xref: /openbmc/linux/kernel/sched/core.c (revision e6c81cce)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311 
312 /*
313  * this_rq_lock - lock this runqueue and disable interrupts.
314  */
315 static struct rq *this_rq_lock(void)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	local_irq_disable();
321 	rq = this_rq();
322 	raw_spin_lock(&rq->lock);
323 
324 	return rq;
325 }
326 
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329  * Use HR-timers to deliver accurate preemption points.
330  */
331 
332 static void hrtick_clear(struct rq *rq)
333 {
334 	if (hrtimer_active(&rq->hrtick_timer))
335 		hrtimer_cancel(&rq->hrtick_timer);
336 }
337 
338 /*
339  * High-resolution timer tick.
340  * Runs from hardirq context with interrupts disabled.
341  */
342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345 
346 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347 
348 	raw_spin_lock(&rq->lock);
349 	update_rq_clock(rq);
350 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351 	raw_spin_unlock(&rq->lock);
352 
353 	return HRTIMER_NORESTART;
354 }
355 
356 #ifdef CONFIG_SMP
357 
358 static int __hrtick_restart(struct rq *rq)
359 {
360 	struct hrtimer *timer = &rq->hrtick_timer;
361 	ktime_t time = hrtimer_get_softexpires(timer);
362 
363 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365 
366 /*
367  * called from hardirq (IPI) context
368  */
369 static void __hrtick_start(void *arg)
370 {
371 	struct rq *rq = arg;
372 
373 	raw_spin_lock(&rq->lock);
374 	__hrtick_restart(rq);
375 	rq->hrtick_csd_pending = 0;
376 	raw_spin_unlock(&rq->lock);
377 }
378 
379 /*
380  * Called to set the hrtick timer state.
381  *
382  * called with rq->lock held and irqs disabled
383  */
384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386 	struct hrtimer *timer = &rq->hrtick_timer;
387 	ktime_t time;
388 	s64 delta;
389 
390 	/*
391 	 * Don't schedule slices shorter than 10000ns, that just
392 	 * doesn't make sense and can cause timer DoS.
393 	 */
394 	delta = max_t(s64, delay, 10000LL);
395 	time = ktime_add_ns(timer->base->get_time(), delta);
396 
397 	hrtimer_set_expires(timer, time);
398 
399 	if (rq == this_rq()) {
400 		__hrtick_restart(rq);
401 	} else if (!rq->hrtick_csd_pending) {
402 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 		rq->hrtick_csd_pending = 1;
404 	}
405 }
406 
407 static int
408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410 	int cpu = (int)(long)hcpu;
411 
412 	switch (action) {
413 	case CPU_UP_CANCELED:
414 	case CPU_UP_CANCELED_FROZEN:
415 	case CPU_DOWN_PREPARE:
416 	case CPU_DOWN_PREPARE_FROZEN:
417 	case CPU_DEAD:
418 	case CPU_DEAD_FROZEN:
419 		hrtick_clear(cpu_rq(cpu));
420 		return NOTIFY_OK;
421 	}
422 
423 	return NOTIFY_DONE;
424 }
425 
426 static __init void init_hrtick(void)
427 {
428 	hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432  * Called to set the hrtick timer state.
433  *
434  * called with rq->lock held and irqs disabled
435  */
436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438 	/*
439 	 * Don't schedule slices shorter than 10000ns, that just
440 	 * doesn't make sense. Rely on vruntime for fairness.
441 	 */
442 	delay = max_t(u64, delay, 10000LL);
443 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444 			HRTIMER_MODE_REL_PINNED, 0);
445 }
446 
447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451 
452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455 	rq->hrtick_csd_pending = 0;
456 
457 	rq->hrtick_csd.flags = 0;
458 	rq->hrtick_csd.func = __hrtick_start;
459 	rq->hrtick_csd.info = rq;
460 #endif
461 
462 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 	rq->hrtick_timer.function = hrtick;
464 }
465 #else	/* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469 
470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473 
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif	/* CONFIG_SCHED_HRTICK */
478 
479 /*
480  * cmpxchg based fetch_or, macro so it works for different integer types
481  */
482 #define fetch_or(ptr, val)						\
483 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
484  	for (;;) {							\
485  		__old = cmpxchg((ptr), __val, __val | (val));		\
486  		if (__old == __val)					\
487  			break;						\
488  		__val = __old;						\
489  	}								\
490  	__old;								\
491 })
492 
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496  * this avoids any races wrt polling state changes and thereby avoids
497  * spurious IPIs.
498  */
499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501 	struct thread_info *ti = task_thread_info(p);
502 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504 
505 /*
506  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507  *
508  * If this returns true, then the idle task promises to call
509  * sched_ttwu_pending() and reschedule soon.
510  */
511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513 	struct thread_info *ti = task_thread_info(p);
514 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515 
516 	for (;;) {
517 		if (!(val & _TIF_POLLING_NRFLAG))
518 			return false;
519 		if (val & _TIF_NEED_RESCHED)
520 			return true;
521 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 		if (old == val)
523 			break;
524 		val = old;
525 	}
526 	return true;
527 }
528 
529 #else
530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532 	set_tsk_need_resched(p);
533 	return true;
534 }
535 
536 #ifdef CONFIG_SMP
537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539 	return false;
540 }
541 #endif
542 #endif
543 
544 /*
545  * resched_curr - mark rq's current task 'to be rescheduled now'.
546  *
547  * On UP this means the setting of the need_resched flag, on SMP it
548  * might also involve a cross-CPU call to trigger the scheduler on
549  * the target CPU.
550  */
551 void resched_curr(struct rq *rq)
552 {
553 	struct task_struct *curr = rq->curr;
554 	int cpu;
555 
556 	lockdep_assert_held(&rq->lock);
557 
558 	if (test_tsk_need_resched(curr))
559 		return;
560 
561 	cpu = cpu_of(rq);
562 
563 	if (cpu == smp_processor_id()) {
564 		set_tsk_need_resched(curr);
565 		set_preempt_need_resched();
566 		return;
567 	}
568 
569 	if (set_nr_and_not_polling(curr))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 void resched_cpu(int cpu)
576 {
577 	struct rq *rq = cpu_rq(cpu);
578 	unsigned long flags;
579 
580 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581 		return;
582 	resched_curr(rq);
583 	raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585 
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * In the semi idle case, use the nearest busy cpu for migrating timers
590  * from an idle cpu.  This is good for power-savings.
591  *
592  * We don't do similar optimization for completely idle system, as
593  * selecting an idle cpu will add more delays to the timers than intended
594  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595  */
596 int get_nohz_timer_target(int pinned)
597 {
598 	int cpu = smp_processor_id();
599 	int i;
600 	struct sched_domain *sd;
601 
602 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 		return cpu;
604 
605 	rcu_read_lock();
606 	for_each_domain(cpu, sd) {
607 		for_each_cpu(i, sched_domain_span(sd)) {
608 			if (!idle_cpu(i)) {
609 				cpu = i;
610 				goto unlock;
611 			}
612 		}
613 	}
614 unlock:
615 	rcu_read_unlock();
616 	return cpu;
617 }
618 /*
619  * When add_timer_on() enqueues a timer into the timer wheel of an
620  * idle CPU then this timer might expire before the next timer event
621  * which is scheduled to wake up that CPU. In case of a completely
622  * idle system the next event might even be infinite time into the
623  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624  * leaves the inner idle loop so the newly added timer is taken into
625  * account when the CPU goes back to idle and evaluates the timer
626  * wheel for the next timer event.
627  */
628 static void wake_up_idle_cpu(int cpu)
629 {
630 	struct rq *rq = cpu_rq(cpu);
631 
632 	if (cpu == smp_processor_id())
633 		return;
634 
635 	if (set_nr_and_not_polling(rq->idle))
636 		smp_send_reschedule(cpu);
637 	else
638 		trace_sched_wake_idle_without_ipi(cpu);
639 }
640 
641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643 	/*
644 	 * We just need the target to call irq_exit() and re-evaluate
645 	 * the next tick. The nohz full kick at least implies that.
646 	 * If needed we can still optimize that later with an
647 	 * empty IRQ.
648 	 */
649 	if (tick_nohz_full_cpu(cpu)) {
650 		if (cpu != smp_processor_id() ||
651 		    tick_nohz_tick_stopped())
652 			tick_nohz_full_kick_cpu(cpu);
653 		return true;
654 	}
655 
656 	return false;
657 }
658 
659 void wake_up_nohz_cpu(int cpu)
660 {
661 	if (!wake_up_full_nohz_cpu(cpu))
662 		wake_up_idle_cpu(cpu);
663 }
664 
665 static inline bool got_nohz_idle_kick(void)
666 {
667 	int cpu = smp_processor_id();
668 
669 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 		return false;
671 
672 	if (idle_cpu(cpu) && !need_resched())
673 		return true;
674 
675 	/*
676 	 * We can't run Idle Load Balance on this CPU for this time so we
677 	 * cancel it and clear NOHZ_BALANCE_KICK
678 	 */
679 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 	return false;
681 }
682 
683 #else /* CONFIG_NO_HZ_COMMON */
684 
685 static inline bool got_nohz_idle_kick(void)
686 {
687 	return false;
688 }
689 
690 #endif /* CONFIG_NO_HZ_COMMON */
691 
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
694 {
695 	/*
696 	 * FIFO realtime policy runs the highest priority task. Other runnable
697 	 * tasks are of a lower priority. The scheduler tick does nothing.
698 	 */
699 	if (current->policy == SCHED_FIFO)
700 		return true;
701 
702 	/*
703 	 * Round-robin realtime tasks time slice with other tasks at the same
704 	 * realtime priority. Is this task the only one at this priority?
705 	 */
706 	if (current->policy == SCHED_RR) {
707 		struct sched_rt_entity *rt_se = &current->rt;
708 
709 		return rt_se->run_list.prev == rt_se->run_list.next;
710 	}
711 
712 	/*
713 	 * More than one running task need preemption.
714 	 * nr_running update is assumed to be visible
715 	 * after IPI is sent from wakers.
716 	 */
717 	if (this_rq()->nr_running > 1)
718 		return false;
719 
720 	return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723 
724 void sched_avg_update(struct rq *rq)
725 {
726 	s64 period = sched_avg_period();
727 
728 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 		/*
730 		 * Inline assembly required to prevent the compiler
731 		 * optimising this loop into a divmod call.
732 		 * See __iter_div_u64_rem() for another example of this.
733 		 */
734 		asm("" : "+rm" (rq->age_stamp));
735 		rq->age_stamp += period;
736 		rq->rt_avg /= 2;
737 	}
738 }
739 
740 #endif /* CONFIG_SMP */
741 
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745  * Iterate task_group tree rooted at *from, calling @down when first entering a
746  * node and @up when leaving it for the final time.
747  *
748  * Caller must hold rcu_lock or sufficient equivalent.
749  */
750 int walk_tg_tree_from(struct task_group *from,
751 			     tg_visitor down, tg_visitor up, void *data)
752 {
753 	struct task_group *parent, *child;
754 	int ret;
755 
756 	parent = from;
757 
758 down:
759 	ret = (*down)(parent, data);
760 	if (ret)
761 		goto out;
762 	list_for_each_entry_rcu(child, &parent->children, siblings) {
763 		parent = child;
764 		goto down;
765 
766 up:
767 		continue;
768 	}
769 	ret = (*up)(parent, data);
770 	if (ret || parent == from)
771 		goto out;
772 
773 	child = parent;
774 	parent = parent->parent;
775 	if (parent)
776 		goto up;
777 out:
778 	return ret;
779 }
780 
781 int tg_nop(struct task_group *tg, void *data)
782 {
783 	return 0;
784 }
785 #endif
786 
787 static void set_load_weight(struct task_struct *p)
788 {
789 	int prio = p->static_prio - MAX_RT_PRIO;
790 	struct load_weight *load = &p->se.load;
791 
792 	/*
793 	 * SCHED_IDLE tasks get minimal weight:
794 	 */
795 	if (p->policy == SCHED_IDLE) {
796 		load->weight = scale_load(WEIGHT_IDLEPRIO);
797 		load->inv_weight = WMULT_IDLEPRIO;
798 		return;
799 	}
800 
801 	load->weight = scale_load(prio_to_weight[prio]);
802 	load->inv_weight = prio_to_wmult[prio];
803 }
804 
805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807 	update_rq_clock(rq);
808 	sched_info_queued(rq, p);
809 	p->sched_class->enqueue_task(rq, p, flags);
810 }
811 
812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814 	update_rq_clock(rq);
815 	sched_info_dequeued(rq, p);
816 	p->sched_class->dequeue_task(rq, p, flags);
817 }
818 
819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821 	if (task_contributes_to_load(p))
822 		rq->nr_uninterruptible--;
823 
824 	enqueue_task(rq, p, flags);
825 }
826 
827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829 	if (task_contributes_to_load(p))
830 		rq->nr_uninterruptible++;
831 
832 	dequeue_task(rq, p, flags);
833 }
834 
835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838  * In theory, the compile should just see 0 here, and optimize out the call
839  * to sched_rt_avg_update. But I don't trust it...
840  */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 	s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846 
847 	/*
848 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 	 * this case when a previous update_rq_clock() happened inside a
850 	 * {soft,}irq region.
851 	 *
852 	 * When this happens, we stop ->clock_task and only update the
853 	 * prev_irq_time stamp to account for the part that fit, so that a next
854 	 * update will consume the rest. This ensures ->clock_task is
855 	 * monotonic.
856 	 *
857 	 * It does however cause some slight miss-attribution of {soft,}irq
858 	 * time, a more accurate solution would be to update the irq_time using
859 	 * the current rq->clock timestamp, except that would require using
860 	 * atomic ops.
861 	 */
862 	if (irq_delta > delta)
863 		irq_delta = delta;
864 
865 	rq->prev_irq_time += irq_delta;
866 	delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 	if (static_key_false((&paravirt_steal_rq_enabled))) {
870 		steal = paravirt_steal_clock(cpu_of(rq));
871 		steal -= rq->prev_steal_time_rq;
872 
873 		if (unlikely(steal > delta))
874 			steal = delta;
875 
876 		rq->prev_steal_time_rq += steal;
877 		delta -= steal;
878 	}
879 #endif
880 
881 	rq->clock_task += delta;
882 
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 		sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888 
889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
893 
894 	if (stop) {
895 		/*
896 		 * Make it appear like a SCHED_FIFO task, its something
897 		 * userspace knows about and won't get confused about.
898 		 *
899 		 * Also, it will make PI more or less work without too
900 		 * much confusion -- but then, stop work should not
901 		 * rely on PI working anyway.
902 		 */
903 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904 
905 		stop->sched_class = &stop_sched_class;
906 	}
907 
908 	cpu_rq(cpu)->stop = stop;
909 
910 	if (old_stop) {
911 		/*
912 		 * Reset it back to a normal scheduling class so that
913 		 * it can die in pieces.
914 		 */
915 		old_stop->sched_class = &rt_sched_class;
916 	}
917 }
918 
919 /*
920  * __normal_prio - return the priority that is based on the static prio
921  */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924 	return p->static_prio;
925 }
926 
927 /*
928  * Calculate the expected normal priority: i.e. priority
929  * without taking RT-inheritance into account. Might be
930  * boosted by interactivity modifiers. Changes upon fork,
931  * setprio syscalls, and whenever the interactivity
932  * estimator recalculates.
933  */
934 static inline int normal_prio(struct task_struct *p)
935 {
936 	int prio;
937 
938 	if (task_has_dl_policy(p))
939 		prio = MAX_DL_PRIO-1;
940 	else if (task_has_rt_policy(p))
941 		prio = MAX_RT_PRIO-1 - p->rt_priority;
942 	else
943 		prio = __normal_prio(p);
944 	return prio;
945 }
946 
947 /*
948  * Calculate the current priority, i.e. the priority
949  * taken into account by the scheduler. This value might
950  * be boosted by RT tasks, or might be boosted by
951  * interactivity modifiers. Will be RT if the task got
952  * RT-boosted. If not then it returns p->normal_prio.
953  */
954 static int effective_prio(struct task_struct *p)
955 {
956 	p->normal_prio = normal_prio(p);
957 	/*
958 	 * If we are RT tasks or we were boosted to RT priority,
959 	 * keep the priority unchanged. Otherwise, update priority
960 	 * to the normal priority:
961 	 */
962 	if (!rt_prio(p->prio))
963 		return p->normal_prio;
964 	return p->prio;
965 }
966 
967 /**
968  * task_curr - is this task currently executing on a CPU?
969  * @p: the task in question.
970  *
971  * Return: 1 if the task is currently executing. 0 otherwise.
972  */
973 inline int task_curr(const struct task_struct *p)
974 {
975 	return cpu_curr(task_cpu(p)) == p;
976 }
977 
978 /*
979  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980  */
981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 				       const struct sched_class *prev_class,
983 				       int oldprio)
984 {
985 	if (prev_class != p->sched_class) {
986 		if (prev_class->switched_from)
987 			prev_class->switched_from(rq, p);
988 		/* Possble rq->lock 'hole'.  */
989 		p->sched_class->switched_to(rq, p);
990 	} else if (oldprio != p->prio || dl_task(p))
991 		p->sched_class->prio_changed(rq, p, oldprio);
992 }
993 
994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996 	const struct sched_class *class;
997 
998 	if (p->sched_class == rq->curr->sched_class) {
999 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 	} else {
1001 		for_each_class(class) {
1002 			if (class == rq->curr->sched_class)
1003 				break;
1004 			if (class == p->sched_class) {
1005 				resched_curr(rq);
1006 				break;
1007 			}
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * A queue event has occurred, and we're going to schedule.  In
1013 	 * this case, we can save a useless back to back clock update.
1014 	 */
1015 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016 		rq_clock_skip_update(rq, true);
1017 }
1018 
1019 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
1020 
1021 void register_task_migration_notifier(struct notifier_block *n)
1022 {
1023 	atomic_notifier_chain_register(&task_migration_notifier, n);
1024 }
1025 
1026 #ifdef CONFIG_SMP
1027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1028 {
1029 #ifdef CONFIG_SCHED_DEBUG
1030 	/*
1031 	 * We should never call set_task_cpu() on a blocked task,
1032 	 * ttwu() will sort out the placement.
1033 	 */
1034 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1035 			!p->on_rq);
1036 
1037 #ifdef CONFIG_LOCKDEP
1038 	/*
1039 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1040 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1041 	 *
1042 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1043 	 * see task_group().
1044 	 *
1045 	 * Furthermore, all task_rq users should acquire both locks, see
1046 	 * task_rq_lock().
1047 	 */
1048 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1049 				      lockdep_is_held(&task_rq(p)->lock)));
1050 #endif
1051 #endif
1052 
1053 	trace_sched_migrate_task(p, new_cpu);
1054 
1055 	if (task_cpu(p) != new_cpu) {
1056 		struct task_migration_notifier tmn;
1057 
1058 		if (p->sched_class->migrate_task_rq)
1059 			p->sched_class->migrate_task_rq(p, new_cpu);
1060 		p->se.nr_migrations++;
1061 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1062 
1063 		tmn.task = p;
1064 		tmn.from_cpu = task_cpu(p);
1065 		tmn.to_cpu = new_cpu;
1066 
1067 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1068 	}
1069 
1070 	__set_task_cpu(p, new_cpu);
1071 }
1072 
1073 static void __migrate_swap_task(struct task_struct *p, int cpu)
1074 {
1075 	if (task_on_rq_queued(p)) {
1076 		struct rq *src_rq, *dst_rq;
1077 
1078 		src_rq = task_rq(p);
1079 		dst_rq = cpu_rq(cpu);
1080 
1081 		deactivate_task(src_rq, p, 0);
1082 		set_task_cpu(p, cpu);
1083 		activate_task(dst_rq, p, 0);
1084 		check_preempt_curr(dst_rq, p, 0);
1085 	} else {
1086 		/*
1087 		 * Task isn't running anymore; make it appear like we migrated
1088 		 * it before it went to sleep. This means on wakeup we make the
1089 		 * previous cpu our targer instead of where it really is.
1090 		 */
1091 		p->wake_cpu = cpu;
1092 	}
1093 }
1094 
1095 struct migration_swap_arg {
1096 	struct task_struct *src_task, *dst_task;
1097 	int src_cpu, dst_cpu;
1098 };
1099 
1100 static int migrate_swap_stop(void *data)
1101 {
1102 	struct migration_swap_arg *arg = data;
1103 	struct rq *src_rq, *dst_rq;
1104 	int ret = -EAGAIN;
1105 
1106 	src_rq = cpu_rq(arg->src_cpu);
1107 	dst_rq = cpu_rq(arg->dst_cpu);
1108 
1109 	double_raw_lock(&arg->src_task->pi_lock,
1110 			&arg->dst_task->pi_lock);
1111 	double_rq_lock(src_rq, dst_rq);
1112 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1113 		goto unlock;
1114 
1115 	if (task_cpu(arg->src_task) != arg->src_cpu)
1116 		goto unlock;
1117 
1118 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1119 		goto unlock;
1120 
1121 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1122 		goto unlock;
1123 
1124 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1125 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1126 
1127 	ret = 0;
1128 
1129 unlock:
1130 	double_rq_unlock(src_rq, dst_rq);
1131 	raw_spin_unlock(&arg->dst_task->pi_lock);
1132 	raw_spin_unlock(&arg->src_task->pi_lock);
1133 
1134 	return ret;
1135 }
1136 
1137 /*
1138  * Cross migrate two tasks
1139  */
1140 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1141 {
1142 	struct migration_swap_arg arg;
1143 	int ret = -EINVAL;
1144 
1145 	arg = (struct migration_swap_arg){
1146 		.src_task = cur,
1147 		.src_cpu = task_cpu(cur),
1148 		.dst_task = p,
1149 		.dst_cpu = task_cpu(p),
1150 	};
1151 
1152 	if (arg.src_cpu == arg.dst_cpu)
1153 		goto out;
1154 
1155 	/*
1156 	 * These three tests are all lockless; this is OK since all of them
1157 	 * will be re-checked with proper locks held further down the line.
1158 	 */
1159 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1160 		goto out;
1161 
1162 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1163 		goto out;
1164 
1165 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1166 		goto out;
1167 
1168 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1169 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1170 
1171 out:
1172 	return ret;
1173 }
1174 
1175 struct migration_arg {
1176 	struct task_struct *task;
1177 	int dest_cpu;
1178 };
1179 
1180 static int migration_cpu_stop(void *data);
1181 
1182 /*
1183  * wait_task_inactive - wait for a thread to unschedule.
1184  *
1185  * If @match_state is nonzero, it's the @p->state value just checked and
1186  * not expected to change.  If it changes, i.e. @p might have woken up,
1187  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1188  * we return a positive number (its total switch count).  If a second call
1189  * a short while later returns the same number, the caller can be sure that
1190  * @p has remained unscheduled the whole time.
1191  *
1192  * The caller must ensure that the task *will* unschedule sometime soon,
1193  * else this function might spin for a *long* time. This function can't
1194  * be called with interrupts off, or it may introduce deadlock with
1195  * smp_call_function() if an IPI is sent by the same process we are
1196  * waiting to become inactive.
1197  */
1198 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1199 {
1200 	unsigned long flags;
1201 	int running, queued;
1202 	unsigned long ncsw;
1203 	struct rq *rq;
1204 
1205 	for (;;) {
1206 		/*
1207 		 * We do the initial early heuristics without holding
1208 		 * any task-queue locks at all. We'll only try to get
1209 		 * the runqueue lock when things look like they will
1210 		 * work out!
1211 		 */
1212 		rq = task_rq(p);
1213 
1214 		/*
1215 		 * If the task is actively running on another CPU
1216 		 * still, just relax and busy-wait without holding
1217 		 * any locks.
1218 		 *
1219 		 * NOTE! Since we don't hold any locks, it's not
1220 		 * even sure that "rq" stays as the right runqueue!
1221 		 * But we don't care, since "task_running()" will
1222 		 * return false if the runqueue has changed and p
1223 		 * is actually now running somewhere else!
1224 		 */
1225 		while (task_running(rq, p)) {
1226 			if (match_state && unlikely(p->state != match_state))
1227 				return 0;
1228 			cpu_relax();
1229 		}
1230 
1231 		/*
1232 		 * Ok, time to look more closely! We need the rq
1233 		 * lock now, to be *sure*. If we're wrong, we'll
1234 		 * just go back and repeat.
1235 		 */
1236 		rq = task_rq_lock(p, &flags);
1237 		trace_sched_wait_task(p);
1238 		running = task_running(rq, p);
1239 		queued = task_on_rq_queued(p);
1240 		ncsw = 0;
1241 		if (!match_state || p->state == match_state)
1242 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1243 		task_rq_unlock(rq, p, &flags);
1244 
1245 		/*
1246 		 * If it changed from the expected state, bail out now.
1247 		 */
1248 		if (unlikely(!ncsw))
1249 			break;
1250 
1251 		/*
1252 		 * Was it really running after all now that we
1253 		 * checked with the proper locks actually held?
1254 		 *
1255 		 * Oops. Go back and try again..
1256 		 */
1257 		if (unlikely(running)) {
1258 			cpu_relax();
1259 			continue;
1260 		}
1261 
1262 		/*
1263 		 * It's not enough that it's not actively running,
1264 		 * it must be off the runqueue _entirely_, and not
1265 		 * preempted!
1266 		 *
1267 		 * So if it was still runnable (but just not actively
1268 		 * running right now), it's preempted, and we should
1269 		 * yield - it could be a while.
1270 		 */
1271 		if (unlikely(queued)) {
1272 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1273 
1274 			set_current_state(TASK_UNINTERRUPTIBLE);
1275 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1276 			continue;
1277 		}
1278 
1279 		/*
1280 		 * Ahh, all good. It wasn't running, and it wasn't
1281 		 * runnable, which means that it will never become
1282 		 * running in the future either. We're all done!
1283 		 */
1284 		break;
1285 	}
1286 
1287 	return ncsw;
1288 }
1289 
1290 /***
1291  * kick_process - kick a running thread to enter/exit the kernel
1292  * @p: the to-be-kicked thread
1293  *
1294  * Cause a process which is running on another CPU to enter
1295  * kernel-mode, without any delay. (to get signals handled.)
1296  *
1297  * NOTE: this function doesn't have to take the runqueue lock,
1298  * because all it wants to ensure is that the remote task enters
1299  * the kernel. If the IPI races and the task has been migrated
1300  * to another CPU then no harm is done and the purpose has been
1301  * achieved as well.
1302  */
1303 void kick_process(struct task_struct *p)
1304 {
1305 	int cpu;
1306 
1307 	preempt_disable();
1308 	cpu = task_cpu(p);
1309 	if ((cpu != smp_processor_id()) && task_curr(p))
1310 		smp_send_reschedule(cpu);
1311 	preempt_enable();
1312 }
1313 EXPORT_SYMBOL_GPL(kick_process);
1314 #endif /* CONFIG_SMP */
1315 
1316 #ifdef CONFIG_SMP
1317 /*
1318  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1319  */
1320 static int select_fallback_rq(int cpu, struct task_struct *p)
1321 {
1322 	int nid = cpu_to_node(cpu);
1323 	const struct cpumask *nodemask = NULL;
1324 	enum { cpuset, possible, fail } state = cpuset;
1325 	int dest_cpu;
1326 
1327 	/*
1328 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1329 	 * will return -1. There is no cpu on the node, and we should
1330 	 * select the cpu on the other node.
1331 	 */
1332 	if (nid != -1) {
1333 		nodemask = cpumask_of_node(nid);
1334 
1335 		/* Look for allowed, online CPU in same node. */
1336 		for_each_cpu(dest_cpu, nodemask) {
1337 			if (!cpu_online(dest_cpu))
1338 				continue;
1339 			if (!cpu_active(dest_cpu))
1340 				continue;
1341 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1342 				return dest_cpu;
1343 		}
1344 	}
1345 
1346 	for (;;) {
1347 		/* Any allowed, online CPU? */
1348 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1349 			if (!cpu_online(dest_cpu))
1350 				continue;
1351 			if (!cpu_active(dest_cpu))
1352 				continue;
1353 			goto out;
1354 		}
1355 
1356 		switch (state) {
1357 		case cpuset:
1358 			/* No more Mr. Nice Guy. */
1359 			cpuset_cpus_allowed_fallback(p);
1360 			state = possible;
1361 			break;
1362 
1363 		case possible:
1364 			do_set_cpus_allowed(p, cpu_possible_mask);
1365 			state = fail;
1366 			break;
1367 
1368 		case fail:
1369 			BUG();
1370 			break;
1371 		}
1372 	}
1373 
1374 out:
1375 	if (state != cpuset) {
1376 		/*
1377 		 * Don't tell them about moving exiting tasks or
1378 		 * kernel threads (both mm NULL), since they never
1379 		 * leave kernel.
1380 		 */
1381 		if (p->mm && printk_ratelimit()) {
1382 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1383 					task_pid_nr(p), p->comm, cpu);
1384 		}
1385 	}
1386 
1387 	return dest_cpu;
1388 }
1389 
1390 /*
1391  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1392  */
1393 static inline
1394 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1395 {
1396 	if (p->nr_cpus_allowed > 1)
1397 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1398 
1399 	/*
1400 	 * In order not to call set_task_cpu() on a blocking task we need
1401 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1402 	 * cpu.
1403 	 *
1404 	 * Since this is common to all placement strategies, this lives here.
1405 	 *
1406 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1407 	 *   not worry about this generic constraint ]
1408 	 */
1409 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1410 		     !cpu_online(cpu)))
1411 		cpu = select_fallback_rq(task_cpu(p), p);
1412 
1413 	return cpu;
1414 }
1415 
1416 static void update_avg(u64 *avg, u64 sample)
1417 {
1418 	s64 diff = sample - *avg;
1419 	*avg += diff >> 3;
1420 }
1421 #endif
1422 
1423 static void
1424 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1425 {
1426 #ifdef CONFIG_SCHEDSTATS
1427 	struct rq *rq = this_rq();
1428 
1429 #ifdef CONFIG_SMP
1430 	int this_cpu = smp_processor_id();
1431 
1432 	if (cpu == this_cpu) {
1433 		schedstat_inc(rq, ttwu_local);
1434 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1435 	} else {
1436 		struct sched_domain *sd;
1437 
1438 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1439 		rcu_read_lock();
1440 		for_each_domain(this_cpu, sd) {
1441 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1442 				schedstat_inc(sd, ttwu_wake_remote);
1443 				break;
1444 			}
1445 		}
1446 		rcu_read_unlock();
1447 	}
1448 
1449 	if (wake_flags & WF_MIGRATED)
1450 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1451 
1452 #endif /* CONFIG_SMP */
1453 
1454 	schedstat_inc(rq, ttwu_count);
1455 	schedstat_inc(p, se.statistics.nr_wakeups);
1456 
1457 	if (wake_flags & WF_SYNC)
1458 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1459 
1460 #endif /* CONFIG_SCHEDSTATS */
1461 }
1462 
1463 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1464 {
1465 	activate_task(rq, p, en_flags);
1466 	p->on_rq = TASK_ON_RQ_QUEUED;
1467 
1468 	/* if a worker is waking up, notify workqueue */
1469 	if (p->flags & PF_WQ_WORKER)
1470 		wq_worker_waking_up(p, cpu_of(rq));
1471 }
1472 
1473 /*
1474  * Mark the task runnable and perform wakeup-preemption.
1475  */
1476 static void
1477 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1478 {
1479 	check_preempt_curr(rq, p, wake_flags);
1480 	trace_sched_wakeup(p, true);
1481 
1482 	p->state = TASK_RUNNING;
1483 #ifdef CONFIG_SMP
1484 	if (p->sched_class->task_woken)
1485 		p->sched_class->task_woken(rq, p);
1486 
1487 	if (rq->idle_stamp) {
1488 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1489 		u64 max = 2*rq->max_idle_balance_cost;
1490 
1491 		update_avg(&rq->avg_idle, delta);
1492 
1493 		if (rq->avg_idle > max)
1494 			rq->avg_idle = max;
1495 
1496 		rq->idle_stamp = 0;
1497 	}
1498 #endif
1499 }
1500 
1501 static void
1502 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1503 {
1504 #ifdef CONFIG_SMP
1505 	if (p->sched_contributes_to_load)
1506 		rq->nr_uninterruptible--;
1507 #endif
1508 
1509 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1510 	ttwu_do_wakeup(rq, p, wake_flags);
1511 }
1512 
1513 /*
1514  * Called in case the task @p isn't fully descheduled from its runqueue,
1515  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1516  * since all we need to do is flip p->state to TASK_RUNNING, since
1517  * the task is still ->on_rq.
1518  */
1519 static int ttwu_remote(struct task_struct *p, int wake_flags)
1520 {
1521 	struct rq *rq;
1522 	int ret = 0;
1523 
1524 	rq = __task_rq_lock(p);
1525 	if (task_on_rq_queued(p)) {
1526 		/* check_preempt_curr() may use rq clock */
1527 		update_rq_clock(rq);
1528 		ttwu_do_wakeup(rq, p, wake_flags);
1529 		ret = 1;
1530 	}
1531 	__task_rq_unlock(rq);
1532 
1533 	return ret;
1534 }
1535 
1536 #ifdef CONFIG_SMP
1537 void sched_ttwu_pending(void)
1538 {
1539 	struct rq *rq = this_rq();
1540 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1541 	struct task_struct *p;
1542 	unsigned long flags;
1543 
1544 	if (!llist)
1545 		return;
1546 
1547 	raw_spin_lock_irqsave(&rq->lock, flags);
1548 
1549 	while (llist) {
1550 		p = llist_entry(llist, struct task_struct, wake_entry);
1551 		llist = llist_next(llist);
1552 		ttwu_do_activate(rq, p, 0);
1553 	}
1554 
1555 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1556 }
1557 
1558 void scheduler_ipi(void)
1559 {
1560 	/*
1561 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1562 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1563 	 * this IPI.
1564 	 */
1565 	preempt_fold_need_resched();
1566 
1567 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1568 		return;
1569 
1570 	/*
1571 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1572 	 * traditionally all their work was done from the interrupt return
1573 	 * path. Now that we actually do some work, we need to make sure
1574 	 * we do call them.
1575 	 *
1576 	 * Some archs already do call them, luckily irq_enter/exit nest
1577 	 * properly.
1578 	 *
1579 	 * Arguably we should visit all archs and update all handlers,
1580 	 * however a fair share of IPIs are still resched only so this would
1581 	 * somewhat pessimize the simple resched case.
1582 	 */
1583 	irq_enter();
1584 	sched_ttwu_pending();
1585 
1586 	/*
1587 	 * Check if someone kicked us for doing the nohz idle load balance.
1588 	 */
1589 	if (unlikely(got_nohz_idle_kick())) {
1590 		this_rq()->idle_balance = 1;
1591 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1592 	}
1593 	irq_exit();
1594 }
1595 
1596 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1597 {
1598 	struct rq *rq = cpu_rq(cpu);
1599 
1600 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1601 		if (!set_nr_if_polling(rq->idle))
1602 			smp_send_reschedule(cpu);
1603 		else
1604 			trace_sched_wake_idle_without_ipi(cpu);
1605 	}
1606 }
1607 
1608 void wake_up_if_idle(int cpu)
1609 {
1610 	struct rq *rq = cpu_rq(cpu);
1611 	unsigned long flags;
1612 
1613 	rcu_read_lock();
1614 
1615 	if (!is_idle_task(rcu_dereference(rq->curr)))
1616 		goto out;
1617 
1618 	if (set_nr_if_polling(rq->idle)) {
1619 		trace_sched_wake_idle_without_ipi(cpu);
1620 	} else {
1621 		raw_spin_lock_irqsave(&rq->lock, flags);
1622 		if (is_idle_task(rq->curr))
1623 			smp_send_reschedule(cpu);
1624 		/* Else cpu is not in idle, do nothing here */
1625 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1626 	}
1627 
1628 out:
1629 	rcu_read_unlock();
1630 }
1631 
1632 bool cpus_share_cache(int this_cpu, int that_cpu)
1633 {
1634 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1635 }
1636 #endif /* CONFIG_SMP */
1637 
1638 static void ttwu_queue(struct task_struct *p, int cpu)
1639 {
1640 	struct rq *rq = cpu_rq(cpu);
1641 
1642 #if defined(CONFIG_SMP)
1643 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1644 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1645 		ttwu_queue_remote(p, cpu);
1646 		return;
1647 	}
1648 #endif
1649 
1650 	raw_spin_lock(&rq->lock);
1651 	ttwu_do_activate(rq, p, 0);
1652 	raw_spin_unlock(&rq->lock);
1653 }
1654 
1655 /**
1656  * try_to_wake_up - wake up a thread
1657  * @p: the thread to be awakened
1658  * @state: the mask of task states that can be woken
1659  * @wake_flags: wake modifier flags (WF_*)
1660  *
1661  * Put it on the run-queue if it's not already there. The "current"
1662  * thread is always on the run-queue (except when the actual
1663  * re-schedule is in progress), and as such you're allowed to do
1664  * the simpler "current->state = TASK_RUNNING" to mark yourself
1665  * runnable without the overhead of this.
1666  *
1667  * Return: %true if @p was woken up, %false if it was already running.
1668  * or @state didn't match @p's state.
1669  */
1670 static int
1671 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1672 {
1673 	unsigned long flags;
1674 	int cpu, success = 0;
1675 
1676 	/*
1677 	 * If we are going to wake up a thread waiting for CONDITION we
1678 	 * need to ensure that CONDITION=1 done by the caller can not be
1679 	 * reordered with p->state check below. This pairs with mb() in
1680 	 * set_current_state() the waiting thread does.
1681 	 */
1682 	smp_mb__before_spinlock();
1683 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1684 	if (!(p->state & state))
1685 		goto out;
1686 
1687 	success = 1; /* we're going to change ->state */
1688 	cpu = task_cpu(p);
1689 
1690 	if (p->on_rq && ttwu_remote(p, wake_flags))
1691 		goto stat;
1692 
1693 #ifdef CONFIG_SMP
1694 	/*
1695 	 * If the owning (remote) cpu is still in the middle of schedule() with
1696 	 * this task as prev, wait until its done referencing the task.
1697 	 */
1698 	while (p->on_cpu)
1699 		cpu_relax();
1700 	/*
1701 	 * Pairs with the smp_wmb() in finish_lock_switch().
1702 	 */
1703 	smp_rmb();
1704 
1705 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1706 	p->state = TASK_WAKING;
1707 
1708 	if (p->sched_class->task_waking)
1709 		p->sched_class->task_waking(p);
1710 
1711 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1712 	if (task_cpu(p) != cpu) {
1713 		wake_flags |= WF_MIGRATED;
1714 		set_task_cpu(p, cpu);
1715 	}
1716 #endif /* CONFIG_SMP */
1717 
1718 	ttwu_queue(p, cpu);
1719 stat:
1720 	ttwu_stat(p, cpu, wake_flags);
1721 out:
1722 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1723 
1724 	return success;
1725 }
1726 
1727 /**
1728  * try_to_wake_up_local - try to wake up a local task with rq lock held
1729  * @p: the thread to be awakened
1730  *
1731  * Put @p on the run-queue if it's not already there. The caller must
1732  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1733  * the current task.
1734  */
1735 static void try_to_wake_up_local(struct task_struct *p)
1736 {
1737 	struct rq *rq = task_rq(p);
1738 
1739 	if (WARN_ON_ONCE(rq != this_rq()) ||
1740 	    WARN_ON_ONCE(p == current))
1741 		return;
1742 
1743 	lockdep_assert_held(&rq->lock);
1744 
1745 	if (!raw_spin_trylock(&p->pi_lock)) {
1746 		raw_spin_unlock(&rq->lock);
1747 		raw_spin_lock(&p->pi_lock);
1748 		raw_spin_lock(&rq->lock);
1749 	}
1750 
1751 	if (!(p->state & TASK_NORMAL))
1752 		goto out;
1753 
1754 	if (!task_on_rq_queued(p))
1755 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1756 
1757 	ttwu_do_wakeup(rq, p, 0);
1758 	ttwu_stat(p, smp_processor_id(), 0);
1759 out:
1760 	raw_spin_unlock(&p->pi_lock);
1761 }
1762 
1763 /**
1764  * wake_up_process - Wake up a specific process
1765  * @p: The process to be woken up.
1766  *
1767  * Attempt to wake up the nominated process and move it to the set of runnable
1768  * processes.
1769  *
1770  * Return: 1 if the process was woken up, 0 if it was already running.
1771  *
1772  * It may be assumed that this function implies a write memory barrier before
1773  * changing the task state if and only if any tasks are woken up.
1774  */
1775 int wake_up_process(struct task_struct *p)
1776 {
1777 	WARN_ON(task_is_stopped_or_traced(p));
1778 	return try_to_wake_up(p, TASK_NORMAL, 0);
1779 }
1780 EXPORT_SYMBOL(wake_up_process);
1781 
1782 int wake_up_state(struct task_struct *p, unsigned int state)
1783 {
1784 	return try_to_wake_up(p, state, 0);
1785 }
1786 
1787 /*
1788  * This function clears the sched_dl_entity static params.
1789  */
1790 void __dl_clear_params(struct task_struct *p)
1791 {
1792 	struct sched_dl_entity *dl_se = &p->dl;
1793 
1794 	dl_se->dl_runtime = 0;
1795 	dl_se->dl_deadline = 0;
1796 	dl_se->dl_period = 0;
1797 	dl_se->flags = 0;
1798 	dl_se->dl_bw = 0;
1799 
1800 	dl_se->dl_throttled = 0;
1801 	dl_se->dl_new = 1;
1802 	dl_se->dl_yielded = 0;
1803 }
1804 
1805 /*
1806  * Perform scheduler related setup for a newly forked process p.
1807  * p is forked by current.
1808  *
1809  * __sched_fork() is basic setup used by init_idle() too:
1810  */
1811 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1812 {
1813 	p->on_rq			= 0;
1814 
1815 	p->se.on_rq			= 0;
1816 	p->se.exec_start		= 0;
1817 	p->se.sum_exec_runtime		= 0;
1818 	p->se.prev_sum_exec_runtime	= 0;
1819 	p->se.nr_migrations		= 0;
1820 	p->se.vruntime			= 0;
1821 #ifdef CONFIG_SMP
1822 	p->se.avg.decay_count		= 0;
1823 #endif
1824 	INIT_LIST_HEAD(&p->se.group_node);
1825 
1826 #ifdef CONFIG_SCHEDSTATS
1827 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1828 #endif
1829 
1830 	RB_CLEAR_NODE(&p->dl.rb_node);
1831 	init_dl_task_timer(&p->dl);
1832 	__dl_clear_params(p);
1833 
1834 	INIT_LIST_HEAD(&p->rt.run_list);
1835 
1836 #ifdef CONFIG_PREEMPT_NOTIFIERS
1837 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1838 #endif
1839 
1840 #ifdef CONFIG_NUMA_BALANCING
1841 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1842 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1843 		p->mm->numa_scan_seq = 0;
1844 	}
1845 
1846 	if (clone_flags & CLONE_VM)
1847 		p->numa_preferred_nid = current->numa_preferred_nid;
1848 	else
1849 		p->numa_preferred_nid = -1;
1850 
1851 	p->node_stamp = 0ULL;
1852 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1853 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1854 	p->numa_work.next = &p->numa_work;
1855 	p->numa_faults = NULL;
1856 	p->last_task_numa_placement = 0;
1857 	p->last_sum_exec_runtime = 0;
1858 
1859 	p->numa_group = NULL;
1860 #endif /* CONFIG_NUMA_BALANCING */
1861 }
1862 
1863 #ifdef CONFIG_NUMA_BALANCING
1864 #ifdef CONFIG_SCHED_DEBUG
1865 void set_numabalancing_state(bool enabled)
1866 {
1867 	if (enabled)
1868 		sched_feat_set("NUMA");
1869 	else
1870 		sched_feat_set("NO_NUMA");
1871 }
1872 #else
1873 __read_mostly bool numabalancing_enabled;
1874 
1875 void set_numabalancing_state(bool enabled)
1876 {
1877 	numabalancing_enabled = enabled;
1878 }
1879 #endif /* CONFIG_SCHED_DEBUG */
1880 
1881 #ifdef CONFIG_PROC_SYSCTL
1882 int sysctl_numa_balancing(struct ctl_table *table, int write,
1883 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1884 {
1885 	struct ctl_table t;
1886 	int err;
1887 	int state = numabalancing_enabled;
1888 
1889 	if (write && !capable(CAP_SYS_ADMIN))
1890 		return -EPERM;
1891 
1892 	t = *table;
1893 	t.data = &state;
1894 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1895 	if (err < 0)
1896 		return err;
1897 	if (write)
1898 		set_numabalancing_state(state);
1899 	return err;
1900 }
1901 #endif
1902 #endif
1903 
1904 /*
1905  * fork()/clone()-time setup:
1906  */
1907 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1908 {
1909 	unsigned long flags;
1910 	int cpu = get_cpu();
1911 
1912 	__sched_fork(clone_flags, p);
1913 	/*
1914 	 * We mark the process as running here. This guarantees that
1915 	 * nobody will actually run it, and a signal or other external
1916 	 * event cannot wake it up and insert it on the runqueue either.
1917 	 */
1918 	p->state = TASK_RUNNING;
1919 
1920 	/*
1921 	 * Make sure we do not leak PI boosting priority to the child.
1922 	 */
1923 	p->prio = current->normal_prio;
1924 
1925 	/*
1926 	 * Revert to default priority/policy on fork if requested.
1927 	 */
1928 	if (unlikely(p->sched_reset_on_fork)) {
1929 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1930 			p->policy = SCHED_NORMAL;
1931 			p->static_prio = NICE_TO_PRIO(0);
1932 			p->rt_priority = 0;
1933 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1934 			p->static_prio = NICE_TO_PRIO(0);
1935 
1936 		p->prio = p->normal_prio = __normal_prio(p);
1937 		set_load_weight(p);
1938 
1939 		/*
1940 		 * We don't need the reset flag anymore after the fork. It has
1941 		 * fulfilled its duty:
1942 		 */
1943 		p->sched_reset_on_fork = 0;
1944 	}
1945 
1946 	if (dl_prio(p->prio)) {
1947 		put_cpu();
1948 		return -EAGAIN;
1949 	} else if (rt_prio(p->prio)) {
1950 		p->sched_class = &rt_sched_class;
1951 	} else {
1952 		p->sched_class = &fair_sched_class;
1953 	}
1954 
1955 	if (p->sched_class->task_fork)
1956 		p->sched_class->task_fork(p);
1957 
1958 	/*
1959 	 * The child is not yet in the pid-hash so no cgroup attach races,
1960 	 * and the cgroup is pinned to this child due to cgroup_fork()
1961 	 * is ran before sched_fork().
1962 	 *
1963 	 * Silence PROVE_RCU.
1964 	 */
1965 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1966 	set_task_cpu(p, cpu);
1967 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1968 
1969 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1970 	if (likely(sched_info_on()))
1971 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1972 #endif
1973 #if defined(CONFIG_SMP)
1974 	p->on_cpu = 0;
1975 #endif
1976 	init_task_preempt_count(p);
1977 #ifdef CONFIG_SMP
1978 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1979 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1980 #endif
1981 
1982 	put_cpu();
1983 	return 0;
1984 }
1985 
1986 unsigned long to_ratio(u64 period, u64 runtime)
1987 {
1988 	if (runtime == RUNTIME_INF)
1989 		return 1ULL << 20;
1990 
1991 	/*
1992 	 * Doing this here saves a lot of checks in all
1993 	 * the calling paths, and returning zero seems
1994 	 * safe for them anyway.
1995 	 */
1996 	if (period == 0)
1997 		return 0;
1998 
1999 	return div64_u64(runtime << 20, period);
2000 }
2001 
2002 #ifdef CONFIG_SMP
2003 inline struct dl_bw *dl_bw_of(int i)
2004 {
2005 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2006 			   "sched RCU must be held");
2007 	return &cpu_rq(i)->rd->dl_bw;
2008 }
2009 
2010 static inline int dl_bw_cpus(int i)
2011 {
2012 	struct root_domain *rd = cpu_rq(i)->rd;
2013 	int cpus = 0;
2014 
2015 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2016 			   "sched RCU must be held");
2017 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2018 		cpus++;
2019 
2020 	return cpus;
2021 }
2022 #else
2023 inline struct dl_bw *dl_bw_of(int i)
2024 {
2025 	return &cpu_rq(i)->dl.dl_bw;
2026 }
2027 
2028 static inline int dl_bw_cpus(int i)
2029 {
2030 	return 1;
2031 }
2032 #endif
2033 
2034 /*
2035  * We must be sure that accepting a new task (or allowing changing the
2036  * parameters of an existing one) is consistent with the bandwidth
2037  * constraints. If yes, this function also accordingly updates the currently
2038  * allocated bandwidth to reflect the new situation.
2039  *
2040  * This function is called while holding p's rq->lock.
2041  *
2042  * XXX we should delay bw change until the task's 0-lag point, see
2043  * __setparam_dl().
2044  */
2045 static int dl_overflow(struct task_struct *p, int policy,
2046 		       const struct sched_attr *attr)
2047 {
2048 
2049 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2050 	u64 period = attr->sched_period ?: attr->sched_deadline;
2051 	u64 runtime = attr->sched_runtime;
2052 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2053 	int cpus, err = -1;
2054 
2055 	if (new_bw == p->dl.dl_bw)
2056 		return 0;
2057 
2058 	/*
2059 	 * Either if a task, enters, leave, or stays -deadline but changes
2060 	 * its parameters, we may need to update accordingly the total
2061 	 * allocated bandwidth of the container.
2062 	 */
2063 	raw_spin_lock(&dl_b->lock);
2064 	cpus = dl_bw_cpus(task_cpu(p));
2065 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2066 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2067 		__dl_add(dl_b, new_bw);
2068 		err = 0;
2069 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2070 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2071 		__dl_clear(dl_b, p->dl.dl_bw);
2072 		__dl_add(dl_b, new_bw);
2073 		err = 0;
2074 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2075 		__dl_clear(dl_b, p->dl.dl_bw);
2076 		err = 0;
2077 	}
2078 	raw_spin_unlock(&dl_b->lock);
2079 
2080 	return err;
2081 }
2082 
2083 extern void init_dl_bw(struct dl_bw *dl_b);
2084 
2085 /*
2086  * wake_up_new_task - wake up a newly created task for the first time.
2087  *
2088  * This function will do some initial scheduler statistics housekeeping
2089  * that must be done for every newly created context, then puts the task
2090  * on the runqueue and wakes it.
2091  */
2092 void wake_up_new_task(struct task_struct *p)
2093 {
2094 	unsigned long flags;
2095 	struct rq *rq;
2096 
2097 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2098 #ifdef CONFIG_SMP
2099 	/*
2100 	 * Fork balancing, do it here and not earlier because:
2101 	 *  - cpus_allowed can change in the fork path
2102 	 *  - any previously selected cpu might disappear through hotplug
2103 	 */
2104 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2105 #endif
2106 
2107 	/* Initialize new task's runnable average */
2108 	init_task_runnable_average(p);
2109 	rq = __task_rq_lock(p);
2110 	activate_task(rq, p, 0);
2111 	p->on_rq = TASK_ON_RQ_QUEUED;
2112 	trace_sched_wakeup_new(p, true);
2113 	check_preempt_curr(rq, p, WF_FORK);
2114 #ifdef CONFIG_SMP
2115 	if (p->sched_class->task_woken)
2116 		p->sched_class->task_woken(rq, p);
2117 #endif
2118 	task_rq_unlock(rq, p, &flags);
2119 }
2120 
2121 #ifdef CONFIG_PREEMPT_NOTIFIERS
2122 
2123 /**
2124  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2125  * @notifier: notifier struct to register
2126  */
2127 void preempt_notifier_register(struct preempt_notifier *notifier)
2128 {
2129 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2130 }
2131 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2132 
2133 /**
2134  * preempt_notifier_unregister - no longer interested in preemption notifications
2135  * @notifier: notifier struct to unregister
2136  *
2137  * This is safe to call from within a preemption notifier.
2138  */
2139 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2140 {
2141 	hlist_del(&notifier->link);
2142 }
2143 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2144 
2145 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2146 {
2147 	struct preempt_notifier *notifier;
2148 
2149 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2150 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2151 }
2152 
2153 static void
2154 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2155 				 struct task_struct *next)
2156 {
2157 	struct preempt_notifier *notifier;
2158 
2159 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2160 		notifier->ops->sched_out(notifier, next);
2161 }
2162 
2163 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2164 
2165 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2166 {
2167 }
2168 
2169 static void
2170 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2171 				 struct task_struct *next)
2172 {
2173 }
2174 
2175 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2176 
2177 /**
2178  * prepare_task_switch - prepare to switch tasks
2179  * @rq: the runqueue preparing to switch
2180  * @prev: the current task that is being switched out
2181  * @next: the task we are going to switch to.
2182  *
2183  * This is called with the rq lock held and interrupts off. It must
2184  * be paired with a subsequent finish_task_switch after the context
2185  * switch.
2186  *
2187  * prepare_task_switch sets up locking and calls architecture specific
2188  * hooks.
2189  */
2190 static inline void
2191 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2192 		    struct task_struct *next)
2193 {
2194 	trace_sched_switch(prev, next);
2195 	sched_info_switch(rq, prev, next);
2196 	perf_event_task_sched_out(prev, next);
2197 	fire_sched_out_preempt_notifiers(prev, next);
2198 	prepare_lock_switch(rq, next);
2199 	prepare_arch_switch(next);
2200 }
2201 
2202 /**
2203  * finish_task_switch - clean up after a task-switch
2204  * @prev: the thread we just switched away from.
2205  *
2206  * finish_task_switch must be called after the context switch, paired
2207  * with a prepare_task_switch call before the context switch.
2208  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2209  * and do any other architecture-specific cleanup actions.
2210  *
2211  * Note that we may have delayed dropping an mm in context_switch(). If
2212  * so, we finish that here outside of the runqueue lock. (Doing it
2213  * with the lock held can cause deadlocks; see schedule() for
2214  * details.)
2215  *
2216  * The context switch have flipped the stack from under us and restored the
2217  * local variables which were saved when this task called schedule() in the
2218  * past. prev == current is still correct but we need to recalculate this_rq
2219  * because prev may have moved to another CPU.
2220  */
2221 static struct rq *finish_task_switch(struct task_struct *prev)
2222 	__releases(rq->lock)
2223 {
2224 	struct rq *rq = this_rq();
2225 	struct mm_struct *mm = rq->prev_mm;
2226 	long prev_state;
2227 
2228 	rq->prev_mm = NULL;
2229 
2230 	/*
2231 	 * A task struct has one reference for the use as "current".
2232 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2233 	 * schedule one last time. The schedule call will never return, and
2234 	 * the scheduled task must drop that reference.
2235 	 * The test for TASK_DEAD must occur while the runqueue locks are
2236 	 * still held, otherwise prev could be scheduled on another cpu, die
2237 	 * there before we look at prev->state, and then the reference would
2238 	 * be dropped twice.
2239 	 *		Manfred Spraul <manfred@colorfullife.com>
2240 	 */
2241 	prev_state = prev->state;
2242 	vtime_task_switch(prev);
2243 	finish_arch_switch(prev);
2244 	perf_event_task_sched_in(prev, current);
2245 	finish_lock_switch(rq, prev);
2246 	finish_arch_post_lock_switch();
2247 
2248 	fire_sched_in_preempt_notifiers(current);
2249 	if (mm)
2250 		mmdrop(mm);
2251 	if (unlikely(prev_state == TASK_DEAD)) {
2252 		if (prev->sched_class->task_dead)
2253 			prev->sched_class->task_dead(prev);
2254 
2255 		/*
2256 		 * Remove function-return probe instances associated with this
2257 		 * task and put them back on the free list.
2258 		 */
2259 		kprobe_flush_task(prev);
2260 		put_task_struct(prev);
2261 	}
2262 
2263 	tick_nohz_task_switch(current);
2264 	return rq;
2265 }
2266 
2267 #ifdef CONFIG_SMP
2268 
2269 /* rq->lock is NOT held, but preemption is disabled */
2270 static inline void post_schedule(struct rq *rq)
2271 {
2272 	if (rq->post_schedule) {
2273 		unsigned long flags;
2274 
2275 		raw_spin_lock_irqsave(&rq->lock, flags);
2276 		if (rq->curr->sched_class->post_schedule)
2277 			rq->curr->sched_class->post_schedule(rq);
2278 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2279 
2280 		rq->post_schedule = 0;
2281 	}
2282 }
2283 
2284 #else
2285 
2286 static inline void post_schedule(struct rq *rq)
2287 {
2288 }
2289 
2290 #endif
2291 
2292 /**
2293  * schedule_tail - first thing a freshly forked thread must call.
2294  * @prev: the thread we just switched away from.
2295  */
2296 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2297 	__releases(rq->lock)
2298 {
2299 	struct rq *rq;
2300 
2301 	/* finish_task_switch() drops rq->lock and enables preemtion */
2302 	preempt_disable();
2303 	rq = finish_task_switch(prev);
2304 	post_schedule(rq);
2305 	preempt_enable();
2306 
2307 	if (current->set_child_tid)
2308 		put_user(task_pid_vnr(current), current->set_child_tid);
2309 }
2310 
2311 /*
2312  * context_switch - switch to the new MM and the new thread's register state.
2313  */
2314 static inline struct rq *
2315 context_switch(struct rq *rq, struct task_struct *prev,
2316 	       struct task_struct *next)
2317 {
2318 	struct mm_struct *mm, *oldmm;
2319 
2320 	prepare_task_switch(rq, prev, next);
2321 
2322 	mm = next->mm;
2323 	oldmm = prev->active_mm;
2324 	/*
2325 	 * For paravirt, this is coupled with an exit in switch_to to
2326 	 * combine the page table reload and the switch backend into
2327 	 * one hypercall.
2328 	 */
2329 	arch_start_context_switch(prev);
2330 
2331 	if (!mm) {
2332 		next->active_mm = oldmm;
2333 		atomic_inc(&oldmm->mm_count);
2334 		enter_lazy_tlb(oldmm, next);
2335 	} else
2336 		switch_mm(oldmm, mm, next);
2337 
2338 	if (!prev->mm) {
2339 		prev->active_mm = NULL;
2340 		rq->prev_mm = oldmm;
2341 	}
2342 	/*
2343 	 * Since the runqueue lock will be released by the next
2344 	 * task (which is an invalid locking op but in the case
2345 	 * of the scheduler it's an obvious special-case), so we
2346 	 * do an early lockdep release here:
2347 	 */
2348 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2349 
2350 	context_tracking_task_switch(prev, next);
2351 	/* Here we just switch the register state and the stack. */
2352 	switch_to(prev, next, prev);
2353 	barrier();
2354 
2355 	return finish_task_switch(prev);
2356 }
2357 
2358 /*
2359  * nr_running and nr_context_switches:
2360  *
2361  * externally visible scheduler statistics: current number of runnable
2362  * threads, total number of context switches performed since bootup.
2363  */
2364 unsigned long nr_running(void)
2365 {
2366 	unsigned long i, sum = 0;
2367 
2368 	for_each_online_cpu(i)
2369 		sum += cpu_rq(i)->nr_running;
2370 
2371 	return sum;
2372 }
2373 
2374 /*
2375  * Check if only the current task is running on the cpu.
2376  */
2377 bool single_task_running(void)
2378 {
2379 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2380 		return true;
2381 	else
2382 		return false;
2383 }
2384 EXPORT_SYMBOL(single_task_running);
2385 
2386 unsigned long long nr_context_switches(void)
2387 {
2388 	int i;
2389 	unsigned long long sum = 0;
2390 
2391 	for_each_possible_cpu(i)
2392 		sum += cpu_rq(i)->nr_switches;
2393 
2394 	return sum;
2395 }
2396 
2397 unsigned long nr_iowait(void)
2398 {
2399 	unsigned long i, sum = 0;
2400 
2401 	for_each_possible_cpu(i)
2402 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2403 
2404 	return sum;
2405 }
2406 
2407 unsigned long nr_iowait_cpu(int cpu)
2408 {
2409 	struct rq *this = cpu_rq(cpu);
2410 	return atomic_read(&this->nr_iowait);
2411 }
2412 
2413 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2414 {
2415 	struct rq *this = this_rq();
2416 	*nr_waiters = atomic_read(&this->nr_iowait);
2417 	*load = this->cpu_load[0];
2418 }
2419 
2420 #ifdef CONFIG_SMP
2421 
2422 /*
2423  * sched_exec - execve() is a valuable balancing opportunity, because at
2424  * this point the task has the smallest effective memory and cache footprint.
2425  */
2426 void sched_exec(void)
2427 {
2428 	struct task_struct *p = current;
2429 	unsigned long flags;
2430 	int dest_cpu;
2431 
2432 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2433 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2434 	if (dest_cpu == smp_processor_id())
2435 		goto unlock;
2436 
2437 	if (likely(cpu_active(dest_cpu))) {
2438 		struct migration_arg arg = { p, dest_cpu };
2439 
2440 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2441 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2442 		return;
2443 	}
2444 unlock:
2445 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2446 }
2447 
2448 #endif
2449 
2450 DEFINE_PER_CPU(struct kernel_stat, kstat);
2451 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2452 
2453 EXPORT_PER_CPU_SYMBOL(kstat);
2454 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2455 
2456 /*
2457  * Return accounted runtime for the task.
2458  * In case the task is currently running, return the runtime plus current's
2459  * pending runtime that have not been accounted yet.
2460  */
2461 unsigned long long task_sched_runtime(struct task_struct *p)
2462 {
2463 	unsigned long flags;
2464 	struct rq *rq;
2465 	u64 ns;
2466 
2467 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2468 	/*
2469 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2470 	 * So we have a optimization chance when the task's delta_exec is 0.
2471 	 * Reading ->on_cpu is racy, but this is ok.
2472 	 *
2473 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2474 	 * If we race with it entering cpu, unaccounted time is 0. This is
2475 	 * indistinguishable from the read occurring a few cycles earlier.
2476 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2477 	 * been accounted, so we're correct here as well.
2478 	 */
2479 	if (!p->on_cpu || !task_on_rq_queued(p))
2480 		return p->se.sum_exec_runtime;
2481 #endif
2482 
2483 	rq = task_rq_lock(p, &flags);
2484 	/*
2485 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2486 	 * project cycles that may never be accounted to this
2487 	 * thread, breaking clock_gettime().
2488 	 */
2489 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2490 		update_rq_clock(rq);
2491 		p->sched_class->update_curr(rq);
2492 	}
2493 	ns = p->se.sum_exec_runtime;
2494 	task_rq_unlock(rq, p, &flags);
2495 
2496 	return ns;
2497 }
2498 
2499 /*
2500  * This function gets called by the timer code, with HZ frequency.
2501  * We call it with interrupts disabled.
2502  */
2503 void scheduler_tick(void)
2504 {
2505 	int cpu = smp_processor_id();
2506 	struct rq *rq = cpu_rq(cpu);
2507 	struct task_struct *curr = rq->curr;
2508 
2509 	sched_clock_tick();
2510 
2511 	raw_spin_lock(&rq->lock);
2512 	update_rq_clock(rq);
2513 	curr->sched_class->task_tick(rq, curr, 0);
2514 	update_cpu_load_active(rq);
2515 	raw_spin_unlock(&rq->lock);
2516 
2517 	perf_event_task_tick();
2518 
2519 #ifdef CONFIG_SMP
2520 	rq->idle_balance = idle_cpu(cpu);
2521 	trigger_load_balance(rq);
2522 #endif
2523 	rq_last_tick_reset(rq);
2524 }
2525 
2526 #ifdef CONFIG_NO_HZ_FULL
2527 /**
2528  * scheduler_tick_max_deferment
2529  *
2530  * Keep at least one tick per second when a single
2531  * active task is running because the scheduler doesn't
2532  * yet completely support full dynticks environment.
2533  *
2534  * This makes sure that uptime, CFS vruntime, load
2535  * balancing, etc... continue to move forward, even
2536  * with a very low granularity.
2537  *
2538  * Return: Maximum deferment in nanoseconds.
2539  */
2540 u64 scheduler_tick_max_deferment(void)
2541 {
2542 	struct rq *rq = this_rq();
2543 	unsigned long next, now = ACCESS_ONCE(jiffies);
2544 
2545 	next = rq->last_sched_tick + HZ;
2546 
2547 	if (time_before_eq(next, now))
2548 		return 0;
2549 
2550 	return jiffies_to_nsecs(next - now);
2551 }
2552 #endif
2553 
2554 notrace unsigned long get_parent_ip(unsigned long addr)
2555 {
2556 	if (in_lock_functions(addr)) {
2557 		addr = CALLER_ADDR2;
2558 		if (in_lock_functions(addr))
2559 			addr = CALLER_ADDR3;
2560 	}
2561 	return addr;
2562 }
2563 
2564 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2565 				defined(CONFIG_PREEMPT_TRACER))
2566 
2567 void preempt_count_add(int val)
2568 {
2569 #ifdef CONFIG_DEBUG_PREEMPT
2570 	/*
2571 	 * Underflow?
2572 	 */
2573 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2574 		return;
2575 #endif
2576 	__preempt_count_add(val);
2577 #ifdef CONFIG_DEBUG_PREEMPT
2578 	/*
2579 	 * Spinlock count overflowing soon?
2580 	 */
2581 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2582 				PREEMPT_MASK - 10);
2583 #endif
2584 	if (preempt_count() == val) {
2585 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2586 #ifdef CONFIG_DEBUG_PREEMPT
2587 		current->preempt_disable_ip = ip;
2588 #endif
2589 		trace_preempt_off(CALLER_ADDR0, ip);
2590 	}
2591 }
2592 EXPORT_SYMBOL(preempt_count_add);
2593 NOKPROBE_SYMBOL(preempt_count_add);
2594 
2595 void preempt_count_sub(int val)
2596 {
2597 #ifdef CONFIG_DEBUG_PREEMPT
2598 	/*
2599 	 * Underflow?
2600 	 */
2601 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2602 		return;
2603 	/*
2604 	 * Is the spinlock portion underflowing?
2605 	 */
2606 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2607 			!(preempt_count() & PREEMPT_MASK)))
2608 		return;
2609 #endif
2610 
2611 	if (preempt_count() == val)
2612 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2613 	__preempt_count_sub(val);
2614 }
2615 EXPORT_SYMBOL(preempt_count_sub);
2616 NOKPROBE_SYMBOL(preempt_count_sub);
2617 
2618 #endif
2619 
2620 /*
2621  * Print scheduling while atomic bug:
2622  */
2623 static noinline void __schedule_bug(struct task_struct *prev)
2624 {
2625 	if (oops_in_progress)
2626 		return;
2627 
2628 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2629 		prev->comm, prev->pid, preempt_count());
2630 
2631 	debug_show_held_locks(prev);
2632 	print_modules();
2633 	if (irqs_disabled())
2634 		print_irqtrace_events(prev);
2635 #ifdef CONFIG_DEBUG_PREEMPT
2636 	if (in_atomic_preempt_off()) {
2637 		pr_err("Preemption disabled at:");
2638 		print_ip_sym(current->preempt_disable_ip);
2639 		pr_cont("\n");
2640 	}
2641 #endif
2642 	dump_stack();
2643 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2644 }
2645 
2646 /*
2647  * Various schedule()-time debugging checks and statistics:
2648  */
2649 static inline void schedule_debug(struct task_struct *prev)
2650 {
2651 #ifdef CONFIG_SCHED_STACK_END_CHECK
2652 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2653 #endif
2654 	/*
2655 	 * Test if we are atomic. Since do_exit() needs to call into
2656 	 * schedule() atomically, we ignore that path. Otherwise whine
2657 	 * if we are scheduling when we should not.
2658 	 */
2659 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2660 		__schedule_bug(prev);
2661 	rcu_sleep_check();
2662 
2663 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2664 
2665 	schedstat_inc(this_rq(), sched_count);
2666 }
2667 
2668 /*
2669  * Pick up the highest-prio task:
2670  */
2671 static inline struct task_struct *
2672 pick_next_task(struct rq *rq, struct task_struct *prev)
2673 {
2674 	const struct sched_class *class = &fair_sched_class;
2675 	struct task_struct *p;
2676 
2677 	/*
2678 	 * Optimization: we know that if all tasks are in
2679 	 * the fair class we can call that function directly:
2680 	 */
2681 	if (likely(prev->sched_class == class &&
2682 		   rq->nr_running == rq->cfs.h_nr_running)) {
2683 		p = fair_sched_class.pick_next_task(rq, prev);
2684 		if (unlikely(p == RETRY_TASK))
2685 			goto again;
2686 
2687 		/* assumes fair_sched_class->next == idle_sched_class */
2688 		if (unlikely(!p))
2689 			p = idle_sched_class.pick_next_task(rq, prev);
2690 
2691 		return p;
2692 	}
2693 
2694 again:
2695 	for_each_class(class) {
2696 		p = class->pick_next_task(rq, prev);
2697 		if (p) {
2698 			if (unlikely(p == RETRY_TASK))
2699 				goto again;
2700 			return p;
2701 		}
2702 	}
2703 
2704 	BUG(); /* the idle class will always have a runnable task */
2705 }
2706 
2707 /*
2708  * __schedule() is the main scheduler function.
2709  *
2710  * The main means of driving the scheduler and thus entering this function are:
2711  *
2712  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2713  *
2714  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2715  *      paths. For example, see arch/x86/entry_64.S.
2716  *
2717  *      To drive preemption between tasks, the scheduler sets the flag in timer
2718  *      interrupt handler scheduler_tick().
2719  *
2720  *   3. Wakeups don't really cause entry into schedule(). They add a
2721  *      task to the run-queue and that's it.
2722  *
2723  *      Now, if the new task added to the run-queue preempts the current
2724  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2725  *      called on the nearest possible occasion:
2726  *
2727  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2728  *
2729  *         - in syscall or exception context, at the next outmost
2730  *           preempt_enable(). (this might be as soon as the wake_up()'s
2731  *           spin_unlock()!)
2732  *
2733  *         - in IRQ context, return from interrupt-handler to
2734  *           preemptible context
2735  *
2736  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2737  *         then at the next:
2738  *
2739  *          - cond_resched() call
2740  *          - explicit schedule() call
2741  *          - return from syscall or exception to user-space
2742  *          - return from interrupt-handler to user-space
2743  *
2744  * WARNING: all callers must re-check need_resched() afterward and reschedule
2745  * accordingly in case an event triggered the need for rescheduling (such as
2746  * an interrupt waking up a task) while preemption was disabled in __schedule().
2747  */
2748 static void __sched __schedule(void)
2749 {
2750 	struct task_struct *prev, *next;
2751 	unsigned long *switch_count;
2752 	struct rq *rq;
2753 	int cpu;
2754 
2755 	preempt_disable();
2756 	cpu = smp_processor_id();
2757 	rq = cpu_rq(cpu);
2758 	rcu_note_context_switch();
2759 	prev = rq->curr;
2760 
2761 	schedule_debug(prev);
2762 
2763 	if (sched_feat(HRTICK))
2764 		hrtick_clear(rq);
2765 
2766 	/*
2767 	 * Make sure that signal_pending_state()->signal_pending() below
2768 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2769 	 * done by the caller to avoid the race with signal_wake_up().
2770 	 */
2771 	smp_mb__before_spinlock();
2772 	raw_spin_lock_irq(&rq->lock);
2773 
2774 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2775 
2776 	switch_count = &prev->nivcsw;
2777 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2778 		if (unlikely(signal_pending_state(prev->state, prev))) {
2779 			prev->state = TASK_RUNNING;
2780 		} else {
2781 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2782 			prev->on_rq = 0;
2783 
2784 			/*
2785 			 * If a worker went to sleep, notify and ask workqueue
2786 			 * whether it wants to wake up a task to maintain
2787 			 * concurrency.
2788 			 */
2789 			if (prev->flags & PF_WQ_WORKER) {
2790 				struct task_struct *to_wakeup;
2791 
2792 				to_wakeup = wq_worker_sleeping(prev, cpu);
2793 				if (to_wakeup)
2794 					try_to_wake_up_local(to_wakeup);
2795 			}
2796 		}
2797 		switch_count = &prev->nvcsw;
2798 	}
2799 
2800 	if (task_on_rq_queued(prev))
2801 		update_rq_clock(rq);
2802 
2803 	next = pick_next_task(rq, prev);
2804 	clear_tsk_need_resched(prev);
2805 	clear_preempt_need_resched();
2806 	rq->clock_skip_update = 0;
2807 
2808 	if (likely(prev != next)) {
2809 		rq->nr_switches++;
2810 		rq->curr = next;
2811 		++*switch_count;
2812 
2813 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2814 		cpu = cpu_of(rq);
2815 	} else
2816 		raw_spin_unlock_irq(&rq->lock);
2817 
2818 	post_schedule(rq);
2819 
2820 	sched_preempt_enable_no_resched();
2821 }
2822 
2823 static inline void sched_submit_work(struct task_struct *tsk)
2824 {
2825 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2826 		return;
2827 	/*
2828 	 * If we are going to sleep and we have plugged IO queued,
2829 	 * make sure to submit it to avoid deadlocks.
2830 	 */
2831 	if (blk_needs_flush_plug(tsk))
2832 		blk_schedule_flush_plug(tsk);
2833 }
2834 
2835 asmlinkage __visible void __sched schedule(void)
2836 {
2837 	struct task_struct *tsk = current;
2838 
2839 	sched_submit_work(tsk);
2840 	do {
2841 		__schedule();
2842 	} while (need_resched());
2843 }
2844 EXPORT_SYMBOL(schedule);
2845 
2846 #ifdef CONFIG_CONTEXT_TRACKING
2847 asmlinkage __visible void __sched schedule_user(void)
2848 {
2849 	/*
2850 	 * If we come here after a random call to set_need_resched(),
2851 	 * or we have been woken up remotely but the IPI has not yet arrived,
2852 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2853 	 * we find a better solution.
2854 	 *
2855 	 * NB: There are buggy callers of this function.  Ideally we
2856 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2857 	 * too frequently to make sense yet.
2858 	 */
2859 	enum ctx_state prev_state = exception_enter();
2860 	schedule();
2861 	exception_exit(prev_state);
2862 }
2863 #endif
2864 
2865 /**
2866  * schedule_preempt_disabled - called with preemption disabled
2867  *
2868  * Returns with preemption disabled. Note: preempt_count must be 1
2869  */
2870 void __sched schedule_preempt_disabled(void)
2871 {
2872 	sched_preempt_enable_no_resched();
2873 	schedule();
2874 	preempt_disable();
2875 }
2876 
2877 static void __sched notrace preempt_schedule_common(void)
2878 {
2879 	do {
2880 		__preempt_count_add(PREEMPT_ACTIVE);
2881 		__schedule();
2882 		__preempt_count_sub(PREEMPT_ACTIVE);
2883 
2884 		/*
2885 		 * Check again in case we missed a preemption opportunity
2886 		 * between schedule and now.
2887 		 */
2888 		barrier();
2889 	} while (need_resched());
2890 }
2891 
2892 #ifdef CONFIG_PREEMPT
2893 /*
2894  * this is the entry point to schedule() from in-kernel preemption
2895  * off of preempt_enable. Kernel preemptions off return from interrupt
2896  * occur there and call schedule directly.
2897  */
2898 asmlinkage __visible void __sched notrace preempt_schedule(void)
2899 {
2900 	/*
2901 	 * If there is a non-zero preempt_count or interrupts are disabled,
2902 	 * we do not want to preempt the current task. Just return..
2903 	 */
2904 	if (likely(!preemptible()))
2905 		return;
2906 
2907 	preempt_schedule_common();
2908 }
2909 NOKPROBE_SYMBOL(preempt_schedule);
2910 EXPORT_SYMBOL(preempt_schedule);
2911 
2912 #ifdef CONFIG_CONTEXT_TRACKING
2913 /**
2914  * preempt_schedule_context - preempt_schedule called by tracing
2915  *
2916  * The tracing infrastructure uses preempt_enable_notrace to prevent
2917  * recursion and tracing preempt enabling caused by the tracing
2918  * infrastructure itself. But as tracing can happen in areas coming
2919  * from userspace or just about to enter userspace, a preempt enable
2920  * can occur before user_exit() is called. This will cause the scheduler
2921  * to be called when the system is still in usermode.
2922  *
2923  * To prevent this, the preempt_enable_notrace will use this function
2924  * instead of preempt_schedule() to exit user context if needed before
2925  * calling the scheduler.
2926  */
2927 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2928 {
2929 	enum ctx_state prev_ctx;
2930 
2931 	if (likely(!preemptible()))
2932 		return;
2933 
2934 	do {
2935 		__preempt_count_add(PREEMPT_ACTIVE);
2936 		/*
2937 		 * Needs preempt disabled in case user_exit() is traced
2938 		 * and the tracer calls preempt_enable_notrace() causing
2939 		 * an infinite recursion.
2940 		 */
2941 		prev_ctx = exception_enter();
2942 		__schedule();
2943 		exception_exit(prev_ctx);
2944 
2945 		__preempt_count_sub(PREEMPT_ACTIVE);
2946 		barrier();
2947 	} while (need_resched());
2948 }
2949 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2950 #endif /* CONFIG_CONTEXT_TRACKING */
2951 
2952 #endif /* CONFIG_PREEMPT */
2953 
2954 /*
2955  * this is the entry point to schedule() from kernel preemption
2956  * off of irq context.
2957  * Note, that this is called and return with irqs disabled. This will
2958  * protect us against recursive calling from irq.
2959  */
2960 asmlinkage __visible void __sched preempt_schedule_irq(void)
2961 {
2962 	enum ctx_state prev_state;
2963 
2964 	/* Catch callers which need to be fixed */
2965 	BUG_ON(preempt_count() || !irqs_disabled());
2966 
2967 	prev_state = exception_enter();
2968 
2969 	do {
2970 		__preempt_count_add(PREEMPT_ACTIVE);
2971 		local_irq_enable();
2972 		__schedule();
2973 		local_irq_disable();
2974 		__preempt_count_sub(PREEMPT_ACTIVE);
2975 
2976 		/*
2977 		 * Check again in case we missed a preemption opportunity
2978 		 * between schedule and now.
2979 		 */
2980 		barrier();
2981 	} while (need_resched());
2982 
2983 	exception_exit(prev_state);
2984 }
2985 
2986 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2987 			  void *key)
2988 {
2989 	return try_to_wake_up(curr->private, mode, wake_flags);
2990 }
2991 EXPORT_SYMBOL(default_wake_function);
2992 
2993 #ifdef CONFIG_RT_MUTEXES
2994 
2995 /*
2996  * rt_mutex_setprio - set the current priority of a task
2997  * @p: task
2998  * @prio: prio value (kernel-internal form)
2999  *
3000  * This function changes the 'effective' priority of a task. It does
3001  * not touch ->normal_prio like __setscheduler().
3002  *
3003  * Used by the rt_mutex code to implement priority inheritance
3004  * logic. Call site only calls if the priority of the task changed.
3005  */
3006 void rt_mutex_setprio(struct task_struct *p, int prio)
3007 {
3008 	int oldprio, queued, running, enqueue_flag = 0;
3009 	struct rq *rq;
3010 	const struct sched_class *prev_class;
3011 
3012 	BUG_ON(prio > MAX_PRIO);
3013 
3014 	rq = __task_rq_lock(p);
3015 
3016 	/*
3017 	 * Idle task boosting is a nono in general. There is one
3018 	 * exception, when PREEMPT_RT and NOHZ is active:
3019 	 *
3020 	 * The idle task calls get_next_timer_interrupt() and holds
3021 	 * the timer wheel base->lock on the CPU and another CPU wants
3022 	 * to access the timer (probably to cancel it). We can safely
3023 	 * ignore the boosting request, as the idle CPU runs this code
3024 	 * with interrupts disabled and will complete the lock
3025 	 * protected section without being interrupted. So there is no
3026 	 * real need to boost.
3027 	 */
3028 	if (unlikely(p == rq->idle)) {
3029 		WARN_ON(p != rq->curr);
3030 		WARN_ON(p->pi_blocked_on);
3031 		goto out_unlock;
3032 	}
3033 
3034 	trace_sched_pi_setprio(p, prio);
3035 	oldprio = p->prio;
3036 	prev_class = p->sched_class;
3037 	queued = task_on_rq_queued(p);
3038 	running = task_current(rq, p);
3039 	if (queued)
3040 		dequeue_task(rq, p, 0);
3041 	if (running)
3042 		put_prev_task(rq, p);
3043 
3044 	/*
3045 	 * Boosting condition are:
3046 	 * 1. -rt task is running and holds mutex A
3047 	 *      --> -dl task blocks on mutex A
3048 	 *
3049 	 * 2. -dl task is running and holds mutex A
3050 	 *      --> -dl task blocks on mutex A and could preempt the
3051 	 *          running task
3052 	 */
3053 	if (dl_prio(prio)) {
3054 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3055 		if (!dl_prio(p->normal_prio) ||
3056 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3057 			p->dl.dl_boosted = 1;
3058 			p->dl.dl_throttled = 0;
3059 			enqueue_flag = ENQUEUE_REPLENISH;
3060 		} else
3061 			p->dl.dl_boosted = 0;
3062 		p->sched_class = &dl_sched_class;
3063 	} else if (rt_prio(prio)) {
3064 		if (dl_prio(oldprio))
3065 			p->dl.dl_boosted = 0;
3066 		if (oldprio < prio)
3067 			enqueue_flag = ENQUEUE_HEAD;
3068 		p->sched_class = &rt_sched_class;
3069 	} else {
3070 		if (dl_prio(oldprio))
3071 			p->dl.dl_boosted = 0;
3072 		if (rt_prio(oldprio))
3073 			p->rt.timeout = 0;
3074 		p->sched_class = &fair_sched_class;
3075 	}
3076 
3077 	p->prio = prio;
3078 
3079 	if (running)
3080 		p->sched_class->set_curr_task(rq);
3081 	if (queued)
3082 		enqueue_task(rq, p, enqueue_flag);
3083 
3084 	check_class_changed(rq, p, prev_class, oldprio);
3085 out_unlock:
3086 	__task_rq_unlock(rq);
3087 }
3088 #endif
3089 
3090 void set_user_nice(struct task_struct *p, long nice)
3091 {
3092 	int old_prio, delta, queued;
3093 	unsigned long flags;
3094 	struct rq *rq;
3095 
3096 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3097 		return;
3098 	/*
3099 	 * We have to be careful, if called from sys_setpriority(),
3100 	 * the task might be in the middle of scheduling on another CPU.
3101 	 */
3102 	rq = task_rq_lock(p, &flags);
3103 	/*
3104 	 * The RT priorities are set via sched_setscheduler(), but we still
3105 	 * allow the 'normal' nice value to be set - but as expected
3106 	 * it wont have any effect on scheduling until the task is
3107 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3108 	 */
3109 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3110 		p->static_prio = NICE_TO_PRIO(nice);
3111 		goto out_unlock;
3112 	}
3113 	queued = task_on_rq_queued(p);
3114 	if (queued)
3115 		dequeue_task(rq, p, 0);
3116 
3117 	p->static_prio = NICE_TO_PRIO(nice);
3118 	set_load_weight(p);
3119 	old_prio = p->prio;
3120 	p->prio = effective_prio(p);
3121 	delta = p->prio - old_prio;
3122 
3123 	if (queued) {
3124 		enqueue_task(rq, p, 0);
3125 		/*
3126 		 * If the task increased its priority or is running and
3127 		 * lowered its priority, then reschedule its CPU:
3128 		 */
3129 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3130 			resched_curr(rq);
3131 	}
3132 out_unlock:
3133 	task_rq_unlock(rq, p, &flags);
3134 }
3135 EXPORT_SYMBOL(set_user_nice);
3136 
3137 /*
3138  * can_nice - check if a task can reduce its nice value
3139  * @p: task
3140  * @nice: nice value
3141  */
3142 int can_nice(const struct task_struct *p, const int nice)
3143 {
3144 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3145 	int nice_rlim = nice_to_rlimit(nice);
3146 
3147 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3148 		capable(CAP_SYS_NICE));
3149 }
3150 
3151 #ifdef __ARCH_WANT_SYS_NICE
3152 
3153 /*
3154  * sys_nice - change the priority of the current process.
3155  * @increment: priority increment
3156  *
3157  * sys_setpriority is a more generic, but much slower function that
3158  * does similar things.
3159  */
3160 SYSCALL_DEFINE1(nice, int, increment)
3161 {
3162 	long nice, retval;
3163 
3164 	/*
3165 	 * Setpriority might change our priority at the same moment.
3166 	 * We don't have to worry. Conceptually one call occurs first
3167 	 * and we have a single winner.
3168 	 */
3169 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3170 	nice = task_nice(current) + increment;
3171 
3172 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3173 	if (increment < 0 && !can_nice(current, nice))
3174 		return -EPERM;
3175 
3176 	retval = security_task_setnice(current, nice);
3177 	if (retval)
3178 		return retval;
3179 
3180 	set_user_nice(current, nice);
3181 	return 0;
3182 }
3183 
3184 #endif
3185 
3186 /**
3187  * task_prio - return the priority value of a given task.
3188  * @p: the task in question.
3189  *
3190  * Return: The priority value as seen by users in /proc.
3191  * RT tasks are offset by -200. Normal tasks are centered
3192  * around 0, value goes from -16 to +15.
3193  */
3194 int task_prio(const struct task_struct *p)
3195 {
3196 	return p->prio - MAX_RT_PRIO;
3197 }
3198 
3199 /**
3200  * idle_cpu - is a given cpu idle currently?
3201  * @cpu: the processor in question.
3202  *
3203  * Return: 1 if the CPU is currently idle. 0 otherwise.
3204  */
3205 int idle_cpu(int cpu)
3206 {
3207 	struct rq *rq = cpu_rq(cpu);
3208 
3209 	if (rq->curr != rq->idle)
3210 		return 0;
3211 
3212 	if (rq->nr_running)
3213 		return 0;
3214 
3215 #ifdef CONFIG_SMP
3216 	if (!llist_empty(&rq->wake_list))
3217 		return 0;
3218 #endif
3219 
3220 	return 1;
3221 }
3222 
3223 /**
3224  * idle_task - return the idle task for a given cpu.
3225  * @cpu: the processor in question.
3226  *
3227  * Return: The idle task for the cpu @cpu.
3228  */
3229 struct task_struct *idle_task(int cpu)
3230 {
3231 	return cpu_rq(cpu)->idle;
3232 }
3233 
3234 /**
3235  * find_process_by_pid - find a process with a matching PID value.
3236  * @pid: the pid in question.
3237  *
3238  * The task of @pid, if found. %NULL otherwise.
3239  */
3240 static struct task_struct *find_process_by_pid(pid_t pid)
3241 {
3242 	return pid ? find_task_by_vpid(pid) : current;
3243 }
3244 
3245 /*
3246  * This function initializes the sched_dl_entity of a newly becoming
3247  * SCHED_DEADLINE task.
3248  *
3249  * Only the static values are considered here, the actual runtime and the
3250  * absolute deadline will be properly calculated when the task is enqueued
3251  * for the first time with its new policy.
3252  */
3253 static void
3254 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3255 {
3256 	struct sched_dl_entity *dl_se = &p->dl;
3257 
3258 	dl_se->dl_runtime = attr->sched_runtime;
3259 	dl_se->dl_deadline = attr->sched_deadline;
3260 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3261 	dl_se->flags = attr->sched_flags;
3262 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3263 
3264 	/*
3265 	 * Changing the parameters of a task is 'tricky' and we're not doing
3266 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3267 	 *
3268 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3269 	 * point. This would include retaining the task_struct until that time
3270 	 * and change dl_overflow() to not immediately decrement the current
3271 	 * amount.
3272 	 *
3273 	 * Instead we retain the current runtime/deadline and let the new
3274 	 * parameters take effect after the current reservation period lapses.
3275 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3276 	 * before the current scheduling deadline.
3277 	 *
3278 	 * We can still have temporary overloads because we do not delay the
3279 	 * change in bandwidth until that time; so admission control is
3280 	 * not on the safe side. It does however guarantee tasks will never
3281 	 * consume more than promised.
3282 	 */
3283 }
3284 
3285 /*
3286  * sched_setparam() passes in -1 for its policy, to let the functions
3287  * it calls know not to change it.
3288  */
3289 #define SETPARAM_POLICY	-1
3290 
3291 static void __setscheduler_params(struct task_struct *p,
3292 		const struct sched_attr *attr)
3293 {
3294 	int policy = attr->sched_policy;
3295 
3296 	if (policy == SETPARAM_POLICY)
3297 		policy = p->policy;
3298 
3299 	p->policy = policy;
3300 
3301 	if (dl_policy(policy))
3302 		__setparam_dl(p, attr);
3303 	else if (fair_policy(policy))
3304 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3305 
3306 	/*
3307 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3308 	 * !rt_policy. Always setting this ensures that things like
3309 	 * getparam()/getattr() don't report silly values for !rt tasks.
3310 	 */
3311 	p->rt_priority = attr->sched_priority;
3312 	p->normal_prio = normal_prio(p);
3313 	set_load_weight(p);
3314 }
3315 
3316 /* Actually do priority change: must hold pi & rq lock. */
3317 static void __setscheduler(struct rq *rq, struct task_struct *p,
3318 			   const struct sched_attr *attr)
3319 {
3320 	__setscheduler_params(p, attr);
3321 
3322 	/*
3323 	 * If we get here, there was no pi waiters boosting the
3324 	 * task. It is safe to use the normal prio.
3325 	 */
3326 	p->prio = normal_prio(p);
3327 
3328 	if (dl_prio(p->prio))
3329 		p->sched_class = &dl_sched_class;
3330 	else if (rt_prio(p->prio))
3331 		p->sched_class = &rt_sched_class;
3332 	else
3333 		p->sched_class = &fair_sched_class;
3334 }
3335 
3336 static void
3337 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3338 {
3339 	struct sched_dl_entity *dl_se = &p->dl;
3340 
3341 	attr->sched_priority = p->rt_priority;
3342 	attr->sched_runtime = dl_se->dl_runtime;
3343 	attr->sched_deadline = dl_se->dl_deadline;
3344 	attr->sched_period = dl_se->dl_period;
3345 	attr->sched_flags = dl_se->flags;
3346 }
3347 
3348 /*
3349  * This function validates the new parameters of a -deadline task.
3350  * We ask for the deadline not being zero, and greater or equal
3351  * than the runtime, as well as the period of being zero or
3352  * greater than deadline. Furthermore, we have to be sure that
3353  * user parameters are above the internal resolution of 1us (we
3354  * check sched_runtime only since it is always the smaller one) and
3355  * below 2^63 ns (we have to check both sched_deadline and
3356  * sched_period, as the latter can be zero).
3357  */
3358 static bool
3359 __checkparam_dl(const struct sched_attr *attr)
3360 {
3361 	/* deadline != 0 */
3362 	if (attr->sched_deadline == 0)
3363 		return false;
3364 
3365 	/*
3366 	 * Since we truncate DL_SCALE bits, make sure we're at least
3367 	 * that big.
3368 	 */
3369 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3370 		return false;
3371 
3372 	/*
3373 	 * Since we use the MSB for wrap-around and sign issues, make
3374 	 * sure it's not set (mind that period can be equal to zero).
3375 	 */
3376 	if (attr->sched_deadline & (1ULL << 63) ||
3377 	    attr->sched_period & (1ULL << 63))
3378 		return false;
3379 
3380 	/* runtime <= deadline <= period (if period != 0) */
3381 	if ((attr->sched_period != 0 &&
3382 	     attr->sched_period < attr->sched_deadline) ||
3383 	    attr->sched_deadline < attr->sched_runtime)
3384 		return false;
3385 
3386 	return true;
3387 }
3388 
3389 /*
3390  * check the target process has a UID that matches the current process's
3391  */
3392 static bool check_same_owner(struct task_struct *p)
3393 {
3394 	const struct cred *cred = current_cred(), *pcred;
3395 	bool match;
3396 
3397 	rcu_read_lock();
3398 	pcred = __task_cred(p);
3399 	match = (uid_eq(cred->euid, pcred->euid) ||
3400 		 uid_eq(cred->euid, pcred->uid));
3401 	rcu_read_unlock();
3402 	return match;
3403 }
3404 
3405 static bool dl_param_changed(struct task_struct *p,
3406 		const struct sched_attr *attr)
3407 {
3408 	struct sched_dl_entity *dl_se = &p->dl;
3409 
3410 	if (dl_se->dl_runtime != attr->sched_runtime ||
3411 		dl_se->dl_deadline != attr->sched_deadline ||
3412 		dl_se->dl_period != attr->sched_period ||
3413 		dl_se->flags != attr->sched_flags)
3414 		return true;
3415 
3416 	return false;
3417 }
3418 
3419 static int __sched_setscheduler(struct task_struct *p,
3420 				const struct sched_attr *attr,
3421 				bool user)
3422 {
3423 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3424 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3425 	int retval, oldprio, oldpolicy = -1, queued, running;
3426 	int policy = attr->sched_policy;
3427 	unsigned long flags;
3428 	const struct sched_class *prev_class;
3429 	struct rq *rq;
3430 	int reset_on_fork;
3431 
3432 	/* may grab non-irq protected spin_locks */
3433 	BUG_ON(in_interrupt());
3434 recheck:
3435 	/* double check policy once rq lock held */
3436 	if (policy < 0) {
3437 		reset_on_fork = p->sched_reset_on_fork;
3438 		policy = oldpolicy = p->policy;
3439 	} else {
3440 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3441 
3442 		if (policy != SCHED_DEADLINE &&
3443 				policy != SCHED_FIFO && policy != SCHED_RR &&
3444 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3445 				policy != SCHED_IDLE)
3446 			return -EINVAL;
3447 	}
3448 
3449 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3450 		return -EINVAL;
3451 
3452 	/*
3453 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3454 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3455 	 * SCHED_BATCH and SCHED_IDLE is 0.
3456 	 */
3457 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3458 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3459 		return -EINVAL;
3460 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3461 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3462 		return -EINVAL;
3463 
3464 	/*
3465 	 * Allow unprivileged RT tasks to decrease priority:
3466 	 */
3467 	if (user && !capable(CAP_SYS_NICE)) {
3468 		if (fair_policy(policy)) {
3469 			if (attr->sched_nice < task_nice(p) &&
3470 			    !can_nice(p, attr->sched_nice))
3471 				return -EPERM;
3472 		}
3473 
3474 		if (rt_policy(policy)) {
3475 			unsigned long rlim_rtprio =
3476 					task_rlimit(p, RLIMIT_RTPRIO);
3477 
3478 			/* can't set/change the rt policy */
3479 			if (policy != p->policy && !rlim_rtprio)
3480 				return -EPERM;
3481 
3482 			/* can't increase priority */
3483 			if (attr->sched_priority > p->rt_priority &&
3484 			    attr->sched_priority > rlim_rtprio)
3485 				return -EPERM;
3486 		}
3487 
3488 		 /*
3489 		  * Can't set/change SCHED_DEADLINE policy at all for now
3490 		  * (safest behavior); in the future we would like to allow
3491 		  * unprivileged DL tasks to increase their relative deadline
3492 		  * or reduce their runtime (both ways reducing utilization)
3493 		  */
3494 		if (dl_policy(policy))
3495 			return -EPERM;
3496 
3497 		/*
3498 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3499 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3500 		 */
3501 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3502 			if (!can_nice(p, task_nice(p)))
3503 				return -EPERM;
3504 		}
3505 
3506 		/* can't change other user's priorities */
3507 		if (!check_same_owner(p))
3508 			return -EPERM;
3509 
3510 		/* Normal users shall not reset the sched_reset_on_fork flag */
3511 		if (p->sched_reset_on_fork && !reset_on_fork)
3512 			return -EPERM;
3513 	}
3514 
3515 	if (user) {
3516 		retval = security_task_setscheduler(p);
3517 		if (retval)
3518 			return retval;
3519 	}
3520 
3521 	/*
3522 	 * make sure no PI-waiters arrive (or leave) while we are
3523 	 * changing the priority of the task:
3524 	 *
3525 	 * To be able to change p->policy safely, the appropriate
3526 	 * runqueue lock must be held.
3527 	 */
3528 	rq = task_rq_lock(p, &flags);
3529 
3530 	/*
3531 	 * Changing the policy of the stop threads its a very bad idea
3532 	 */
3533 	if (p == rq->stop) {
3534 		task_rq_unlock(rq, p, &flags);
3535 		return -EINVAL;
3536 	}
3537 
3538 	/*
3539 	 * If not changing anything there's no need to proceed further,
3540 	 * but store a possible modification of reset_on_fork.
3541 	 */
3542 	if (unlikely(policy == p->policy)) {
3543 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3544 			goto change;
3545 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3546 			goto change;
3547 		if (dl_policy(policy) && dl_param_changed(p, attr))
3548 			goto change;
3549 
3550 		p->sched_reset_on_fork = reset_on_fork;
3551 		task_rq_unlock(rq, p, &flags);
3552 		return 0;
3553 	}
3554 change:
3555 
3556 	if (user) {
3557 #ifdef CONFIG_RT_GROUP_SCHED
3558 		/*
3559 		 * Do not allow realtime tasks into groups that have no runtime
3560 		 * assigned.
3561 		 */
3562 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3563 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3564 				!task_group_is_autogroup(task_group(p))) {
3565 			task_rq_unlock(rq, p, &flags);
3566 			return -EPERM;
3567 		}
3568 #endif
3569 #ifdef CONFIG_SMP
3570 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3571 			cpumask_t *span = rq->rd->span;
3572 
3573 			/*
3574 			 * Don't allow tasks with an affinity mask smaller than
3575 			 * the entire root_domain to become SCHED_DEADLINE. We
3576 			 * will also fail if there's no bandwidth available.
3577 			 */
3578 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3579 			    rq->rd->dl_bw.bw == 0) {
3580 				task_rq_unlock(rq, p, &flags);
3581 				return -EPERM;
3582 			}
3583 		}
3584 #endif
3585 	}
3586 
3587 	/* recheck policy now with rq lock held */
3588 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3589 		policy = oldpolicy = -1;
3590 		task_rq_unlock(rq, p, &flags);
3591 		goto recheck;
3592 	}
3593 
3594 	/*
3595 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3596 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3597 	 * is available.
3598 	 */
3599 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3600 		task_rq_unlock(rq, p, &flags);
3601 		return -EBUSY;
3602 	}
3603 
3604 	p->sched_reset_on_fork = reset_on_fork;
3605 	oldprio = p->prio;
3606 
3607 	/*
3608 	 * Special case for priority boosted tasks.
3609 	 *
3610 	 * If the new priority is lower or equal (user space view)
3611 	 * than the current (boosted) priority, we just store the new
3612 	 * normal parameters and do not touch the scheduler class and
3613 	 * the runqueue. This will be done when the task deboost
3614 	 * itself.
3615 	 */
3616 	if (rt_mutex_check_prio(p, newprio)) {
3617 		__setscheduler_params(p, attr);
3618 		task_rq_unlock(rq, p, &flags);
3619 		return 0;
3620 	}
3621 
3622 	queued = task_on_rq_queued(p);
3623 	running = task_current(rq, p);
3624 	if (queued)
3625 		dequeue_task(rq, p, 0);
3626 	if (running)
3627 		put_prev_task(rq, p);
3628 
3629 	prev_class = p->sched_class;
3630 	__setscheduler(rq, p, attr);
3631 
3632 	if (running)
3633 		p->sched_class->set_curr_task(rq);
3634 	if (queued) {
3635 		/*
3636 		 * We enqueue to tail when the priority of a task is
3637 		 * increased (user space view).
3638 		 */
3639 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3640 	}
3641 
3642 	check_class_changed(rq, p, prev_class, oldprio);
3643 	task_rq_unlock(rq, p, &flags);
3644 
3645 	rt_mutex_adjust_pi(p);
3646 
3647 	return 0;
3648 }
3649 
3650 static int _sched_setscheduler(struct task_struct *p, int policy,
3651 			       const struct sched_param *param, bool check)
3652 {
3653 	struct sched_attr attr = {
3654 		.sched_policy   = policy,
3655 		.sched_priority = param->sched_priority,
3656 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3657 	};
3658 
3659 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3660 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3661 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3662 		policy &= ~SCHED_RESET_ON_FORK;
3663 		attr.sched_policy = policy;
3664 	}
3665 
3666 	return __sched_setscheduler(p, &attr, check);
3667 }
3668 /**
3669  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3670  * @p: the task in question.
3671  * @policy: new policy.
3672  * @param: structure containing the new RT priority.
3673  *
3674  * Return: 0 on success. An error code otherwise.
3675  *
3676  * NOTE that the task may be already dead.
3677  */
3678 int sched_setscheduler(struct task_struct *p, int policy,
3679 		       const struct sched_param *param)
3680 {
3681 	return _sched_setscheduler(p, policy, param, true);
3682 }
3683 EXPORT_SYMBOL_GPL(sched_setscheduler);
3684 
3685 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3686 {
3687 	return __sched_setscheduler(p, attr, true);
3688 }
3689 EXPORT_SYMBOL_GPL(sched_setattr);
3690 
3691 /**
3692  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3693  * @p: the task in question.
3694  * @policy: new policy.
3695  * @param: structure containing the new RT priority.
3696  *
3697  * Just like sched_setscheduler, only don't bother checking if the
3698  * current context has permission.  For example, this is needed in
3699  * stop_machine(): we create temporary high priority worker threads,
3700  * but our caller might not have that capability.
3701  *
3702  * Return: 0 on success. An error code otherwise.
3703  */
3704 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3705 			       const struct sched_param *param)
3706 {
3707 	return _sched_setscheduler(p, policy, param, false);
3708 }
3709 
3710 static int
3711 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3712 {
3713 	struct sched_param lparam;
3714 	struct task_struct *p;
3715 	int retval;
3716 
3717 	if (!param || pid < 0)
3718 		return -EINVAL;
3719 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3720 		return -EFAULT;
3721 
3722 	rcu_read_lock();
3723 	retval = -ESRCH;
3724 	p = find_process_by_pid(pid);
3725 	if (p != NULL)
3726 		retval = sched_setscheduler(p, policy, &lparam);
3727 	rcu_read_unlock();
3728 
3729 	return retval;
3730 }
3731 
3732 /*
3733  * Mimics kernel/events/core.c perf_copy_attr().
3734  */
3735 static int sched_copy_attr(struct sched_attr __user *uattr,
3736 			   struct sched_attr *attr)
3737 {
3738 	u32 size;
3739 	int ret;
3740 
3741 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3742 		return -EFAULT;
3743 
3744 	/*
3745 	 * zero the full structure, so that a short copy will be nice.
3746 	 */
3747 	memset(attr, 0, sizeof(*attr));
3748 
3749 	ret = get_user(size, &uattr->size);
3750 	if (ret)
3751 		return ret;
3752 
3753 	if (size > PAGE_SIZE)	/* silly large */
3754 		goto err_size;
3755 
3756 	if (!size)		/* abi compat */
3757 		size = SCHED_ATTR_SIZE_VER0;
3758 
3759 	if (size < SCHED_ATTR_SIZE_VER0)
3760 		goto err_size;
3761 
3762 	/*
3763 	 * If we're handed a bigger struct than we know of,
3764 	 * ensure all the unknown bits are 0 - i.e. new
3765 	 * user-space does not rely on any kernel feature
3766 	 * extensions we dont know about yet.
3767 	 */
3768 	if (size > sizeof(*attr)) {
3769 		unsigned char __user *addr;
3770 		unsigned char __user *end;
3771 		unsigned char val;
3772 
3773 		addr = (void __user *)uattr + sizeof(*attr);
3774 		end  = (void __user *)uattr + size;
3775 
3776 		for (; addr < end; addr++) {
3777 			ret = get_user(val, addr);
3778 			if (ret)
3779 				return ret;
3780 			if (val)
3781 				goto err_size;
3782 		}
3783 		size = sizeof(*attr);
3784 	}
3785 
3786 	ret = copy_from_user(attr, uattr, size);
3787 	if (ret)
3788 		return -EFAULT;
3789 
3790 	/*
3791 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3792 	 * to be strict and return an error on out-of-bounds values?
3793 	 */
3794 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3795 
3796 	return 0;
3797 
3798 err_size:
3799 	put_user(sizeof(*attr), &uattr->size);
3800 	return -E2BIG;
3801 }
3802 
3803 /**
3804  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3805  * @pid: the pid in question.
3806  * @policy: new policy.
3807  * @param: structure containing the new RT priority.
3808  *
3809  * Return: 0 on success. An error code otherwise.
3810  */
3811 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3812 		struct sched_param __user *, param)
3813 {
3814 	/* negative values for policy are not valid */
3815 	if (policy < 0)
3816 		return -EINVAL;
3817 
3818 	return do_sched_setscheduler(pid, policy, param);
3819 }
3820 
3821 /**
3822  * sys_sched_setparam - set/change the RT priority of a thread
3823  * @pid: the pid in question.
3824  * @param: structure containing the new RT priority.
3825  *
3826  * Return: 0 on success. An error code otherwise.
3827  */
3828 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3829 {
3830 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3831 }
3832 
3833 /**
3834  * sys_sched_setattr - same as above, but with extended sched_attr
3835  * @pid: the pid in question.
3836  * @uattr: structure containing the extended parameters.
3837  * @flags: for future extension.
3838  */
3839 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3840 			       unsigned int, flags)
3841 {
3842 	struct sched_attr attr;
3843 	struct task_struct *p;
3844 	int retval;
3845 
3846 	if (!uattr || pid < 0 || flags)
3847 		return -EINVAL;
3848 
3849 	retval = sched_copy_attr(uattr, &attr);
3850 	if (retval)
3851 		return retval;
3852 
3853 	if ((int)attr.sched_policy < 0)
3854 		return -EINVAL;
3855 
3856 	rcu_read_lock();
3857 	retval = -ESRCH;
3858 	p = find_process_by_pid(pid);
3859 	if (p != NULL)
3860 		retval = sched_setattr(p, &attr);
3861 	rcu_read_unlock();
3862 
3863 	return retval;
3864 }
3865 
3866 /**
3867  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3868  * @pid: the pid in question.
3869  *
3870  * Return: On success, the policy of the thread. Otherwise, a negative error
3871  * code.
3872  */
3873 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3874 {
3875 	struct task_struct *p;
3876 	int retval;
3877 
3878 	if (pid < 0)
3879 		return -EINVAL;
3880 
3881 	retval = -ESRCH;
3882 	rcu_read_lock();
3883 	p = find_process_by_pid(pid);
3884 	if (p) {
3885 		retval = security_task_getscheduler(p);
3886 		if (!retval)
3887 			retval = p->policy
3888 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3889 	}
3890 	rcu_read_unlock();
3891 	return retval;
3892 }
3893 
3894 /**
3895  * sys_sched_getparam - get the RT priority of a thread
3896  * @pid: the pid in question.
3897  * @param: structure containing the RT priority.
3898  *
3899  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3900  * code.
3901  */
3902 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3903 {
3904 	struct sched_param lp = { .sched_priority = 0 };
3905 	struct task_struct *p;
3906 	int retval;
3907 
3908 	if (!param || pid < 0)
3909 		return -EINVAL;
3910 
3911 	rcu_read_lock();
3912 	p = find_process_by_pid(pid);
3913 	retval = -ESRCH;
3914 	if (!p)
3915 		goto out_unlock;
3916 
3917 	retval = security_task_getscheduler(p);
3918 	if (retval)
3919 		goto out_unlock;
3920 
3921 	if (task_has_rt_policy(p))
3922 		lp.sched_priority = p->rt_priority;
3923 	rcu_read_unlock();
3924 
3925 	/*
3926 	 * This one might sleep, we cannot do it with a spinlock held ...
3927 	 */
3928 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3929 
3930 	return retval;
3931 
3932 out_unlock:
3933 	rcu_read_unlock();
3934 	return retval;
3935 }
3936 
3937 static int sched_read_attr(struct sched_attr __user *uattr,
3938 			   struct sched_attr *attr,
3939 			   unsigned int usize)
3940 {
3941 	int ret;
3942 
3943 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3944 		return -EFAULT;
3945 
3946 	/*
3947 	 * If we're handed a smaller struct than we know of,
3948 	 * ensure all the unknown bits are 0 - i.e. old
3949 	 * user-space does not get uncomplete information.
3950 	 */
3951 	if (usize < sizeof(*attr)) {
3952 		unsigned char *addr;
3953 		unsigned char *end;
3954 
3955 		addr = (void *)attr + usize;
3956 		end  = (void *)attr + sizeof(*attr);
3957 
3958 		for (; addr < end; addr++) {
3959 			if (*addr)
3960 				return -EFBIG;
3961 		}
3962 
3963 		attr->size = usize;
3964 	}
3965 
3966 	ret = copy_to_user(uattr, attr, attr->size);
3967 	if (ret)
3968 		return -EFAULT;
3969 
3970 	return 0;
3971 }
3972 
3973 /**
3974  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3975  * @pid: the pid in question.
3976  * @uattr: structure containing the extended parameters.
3977  * @size: sizeof(attr) for fwd/bwd comp.
3978  * @flags: for future extension.
3979  */
3980 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3981 		unsigned int, size, unsigned int, flags)
3982 {
3983 	struct sched_attr attr = {
3984 		.size = sizeof(struct sched_attr),
3985 	};
3986 	struct task_struct *p;
3987 	int retval;
3988 
3989 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3990 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3991 		return -EINVAL;
3992 
3993 	rcu_read_lock();
3994 	p = find_process_by_pid(pid);
3995 	retval = -ESRCH;
3996 	if (!p)
3997 		goto out_unlock;
3998 
3999 	retval = security_task_getscheduler(p);
4000 	if (retval)
4001 		goto out_unlock;
4002 
4003 	attr.sched_policy = p->policy;
4004 	if (p->sched_reset_on_fork)
4005 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4006 	if (task_has_dl_policy(p))
4007 		__getparam_dl(p, &attr);
4008 	else if (task_has_rt_policy(p))
4009 		attr.sched_priority = p->rt_priority;
4010 	else
4011 		attr.sched_nice = task_nice(p);
4012 
4013 	rcu_read_unlock();
4014 
4015 	retval = sched_read_attr(uattr, &attr, size);
4016 	return retval;
4017 
4018 out_unlock:
4019 	rcu_read_unlock();
4020 	return retval;
4021 }
4022 
4023 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4024 {
4025 	cpumask_var_t cpus_allowed, new_mask;
4026 	struct task_struct *p;
4027 	int retval;
4028 
4029 	rcu_read_lock();
4030 
4031 	p = find_process_by_pid(pid);
4032 	if (!p) {
4033 		rcu_read_unlock();
4034 		return -ESRCH;
4035 	}
4036 
4037 	/* Prevent p going away */
4038 	get_task_struct(p);
4039 	rcu_read_unlock();
4040 
4041 	if (p->flags & PF_NO_SETAFFINITY) {
4042 		retval = -EINVAL;
4043 		goto out_put_task;
4044 	}
4045 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4046 		retval = -ENOMEM;
4047 		goto out_put_task;
4048 	}
4049 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4050 		retval = -ENOMEM;
4051 		goto out_free_cpus_allowed;
4052 	}
4053 	retval = -EPERM;
4054 	if (!check_same_owner(p)) {
4055 		rcu_read_lock();
4056 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4057 			rcu_read_unlock();
4058 			goto out_free_new_mask;
4059 		}
4060 		rcu_read_unlock();
4061 	}
4062 
4063 	retval = security_task_setscheduler(p);
4064 	if (retval)
4065 		goto out_free_new_mask;
4066 
4067 
4068 	cpuset_cpus_allowed(p, cpus_allowed);
4069 	cpumask_and(new_mask, in_mask, cpus_allowed);
4070 
4071 	/*
4072 	 * Since bandwidth control happens on root_domain basis,
4073 	 * if admission test is enabled, we only admit -deadline
4074 	 * tasks allowed to run on all the CPUs in the task's
4075 	 * root_domain.
4076 	 */
4077 #ifdef CONFIG_SMP
4078 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4079 		rcu_read_lock();
4080 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4081 			retval = -EBUSY;
4082 			rcu_read_unlock();
4083 			goto out_free_new_mask;
4084 		}
4085 		rcu_read_unlock();
4086 	}
4087 #endif
4088 again:
4089 	retval = set_cpus_allowed_ptr(p, new_mask);
4090 
4091 	if (!retval) {
4092 		cpuset_cpus_allowed(p, cpus_allowed);
4093 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4094 			/*
4095 			 * We must have raced with a concurrent cpuset
4096 			 * update. Just reset the cpus_allowed to the
4097 			 * cpuset's cpus_allowed
4098 			 */
4099 			cpumask_copy(new_mask, cpus_allowed);
4100 			goto again;
4101 		}
4102 	}
4103 out_free_new_mask:
4104 	free_cpumask_var(new_mask);
4105 out_free_cpus_allowed:
4106 	free_cpumask_var(cpus_allowed);
4107 out_put_task:
4108 	put_task_struct(p);
4109 	return retval;
4110 }
4111 
4112 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4113 			     struct cpumask *new_mask)
4114 {
4115 	if (len < cpumask_size())
4116 		cpumask_clear(new_mask);
4117 	else if (len > cpumask_size())
4118 		len = cpumask_size();
4119 
4120 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4121 }
4122 
4123 /**
4124  * sys_sched_setaffinity - set the cpu affinity of a process
4125  * @pid: pid of the process
4126  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4127  * @user_mask_ptr: user-space pointer to the new cpu mask
4128  *
4129  * Return: 0 on success. An error code otherwise.
4130  */
4131 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4132 		unsigned long __user *, user_mask_ptr)
4133 {
4134 	cpumask_var_t new_mask;
4135 	int retval;
4136 
4137 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4138 		return -ENOMEM;
4139 
4140 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4141 	if (retval == 0)
4142 		retval = sched_setaffinity(pid, new_mask);
4143 	free_cpumask_var(new_mask);
4144 	return retval;
4145 }
4146 
4147 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4148 {
4149 	struct task_struct *p;
4150 	unsigned long flags;
4151 	int retval;
4152 
4153 	rcu_read_lock();
4154 
4155 	retval = -ESRCH;
4156 	p = find_process_by_pid(pid);
4157 	if (!p)
4158 		goto out_unlock;
4159 
4160 	retval = security_task_getscheduler(p);
4161 	if (retval)
4162 		goto out_unlock;
4163 
4164 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4165 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4166 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4167 
4168 out_unlock:
4169 	rcu_read_unlock();
4170 
4171 	return retval;
4172 }
4173 
4174 /**
4175  * sys_sched_getaffinity - get the cpu affinity of a process
4176  * @pid: pid of the process
4177  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4178  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4179  *
4180  * Return: 0 on success. An error code otherwise.
4181  */
4182 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4183 		unsigned long __user *, user_mask_ptr)
4184 {
4185 	int ret;
4186 	cpumask_var_t mask;
4187 
4188 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4189 		return -EINVAL;
4190 	if (len & (sizeof(unsigned long)-1))
4191 		return -EINVAL;
4192 
4193 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4194 		return -ENOMEM;
4195 
4196 	ret = sched_getaffinity(pid, mask);
4197 	if (ret == 0) {
4198 		size_t retlen = min_t(size_t, len, cpumask_size());
4199 
4200 		if (copy_to_user(user_mask_ptr, mask, retlen))
4201 			ret = -EFAULT;
4202 		else
4203 			ret = retlen;
4204 	}
4205 	free_cpumask_var(mask);
4206 
4207 	return ret;
4208 }
4209 
4210 /**
4211  * sys_sched_yield - yield the current processor to other threads.
4212  *
4213  * This function yields the current CPU to other tasks. If there are no
4214  * other threads running on this CPU then this function will return.
4215  *
4216  * Return: 0.
4217  */
4218 SYSCALL_DEFINE0(sched_yield)
4219 {
4220 	struct rq *rq = this_rq_lock();
4221 
4222 	schedstat_inc(rq, yld_count);
4223 	current->sched_class->yield_task(rq);
4224 
4225 	/*
4226 	 * Since we are going to call schedule() anyway, there's
4227 	 * no need to preempt or enable interrupts:
4228 	 */
4229 	__release(rq->lock);
4230 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4231 	do_raw_spin_unlock(&rq->lock);
4232 	sched_preempt_enable_no_resched();
4233 
4234 	schedule();
4235 
4236 	return 0;
4237 }
4238 
4239 int __sched _cond_resched(void)
4240 {
4241 	if (should_resched()) {
4242 		preempt_schedule_common();
4243 		return 1;
4244 	}
4245 	return 0;
4246 }
4247 EXPORT_SYMBOL(_cond_resched);
4248 
4249 /*
4250  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4251  * call schedule, and on return reacquire the lock.
4252  *
4253  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4254  * operations here to prevent schedule() from being called twice (once via
4255  * spin_unlock(), once by hand).
4256  */
4257 int __cond_resched_lock(spinlock_t *lock)
4258 {
4259 	int resched = should_resched();
4260 	int ret = 0;
4261 
4262 	lockdep_assert_held(lock);
4263 
4264 	if (spin_needbreak(lock) || resched) {
4265 		spin_unlock(lock);
4266 		if (resched)
4267 			preempt_schedule_common();
4268 		else
4269 			cpu_relax();
4270 		ret = 1;
4271 		spin_lock(lock);
4272 	}
4273 	return ret;
4274 }
4275 EXPORT_SYMBOL(__cond_resched_lock);
4276 
4277 int __sched __cond_resched_softirq(void)
4278 {
4279 	BUG_ON(!in_softirq());
4280 
4281 	if (should_resched()) {
4282 		local_bh_enable();
4283 		preempt_schedule_common();
4284 		local_bh_disable();
4285 		return 1;
4286 	}
4287 	return 0;
4288 }
4289 EXPORT_SYMBOL(__cond_resched_softirq);
4290 
4291 /**
4292  * yield - yield the current processor to other threads.
4293  *
4294  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4295  *
4296  * The scheduler is at all times free to pick the calling task as the most
4297  * eligible task to run, if removing the yield() call from your code breaks
4298  * it, its already broken.
4299  *
4300  * Typical broken usage is:
4301  *
4302  * while (!event)
4303  * 	yield();
4304  *
4305  * where one assumes that yield() will let 'the other' process run that will
4306  * make event true. If the current task is a SCHED_FIFO task that will never
4307  * happen. Never use yield() as a progress guarantee!!
4308  *
4309  * If you want to use yield() to wait for something, use wait_event().
4310  * If you want to use yield() to be 'nice' for others, use cond_resched().
4311  * If you still want to use yield(), do not!
4312  */
4313 void __sched yield(void)
4314 {
4315 	set_current_state(TASK_RUNNING);
4316 	sys_sched_yield();
4317 }
4318 EXPORT_SYMBOL(yield);
4319 
4320 /**
4321  * yield_to - yield the current processor to another thread in
4322  * your thread group, or accelerate that thread toward the
4323  * processor it's on.
4324  * @p: target task
4325  * @preempt: whether task preemption is allowed or not
4326  *
4327  * It's the caller's job to ensure that the target task struct
4328  * can't go away on us before we can do any checks.
4329  *
4330  * Return:
4331  *	true (>0) if we indeed boosted the target task.
4332  *	false (0) if we failed to boost the target.
4333  *	-ESRCH if there's no task to yield to.
4334  */
4335 int __sched yield_to(struct task_struct *p, bool preempt)
4336 {
4337 	struct task_struct *curr = current;
4338 	struct rq *rq, *p_rq;
4339 	unsigned long flags;
4340 	int yielded = 0;
4341 
4342 	local_irq_save(flags);
4343 	rq = this_rq();
4344 
4345 again:
4346 	p_rq = task_rq(p);
4347 	/*
4348 	 * If we're the only runnable task on the rq and target rq also
4349 	 * has only one task, there's absolutely no point in yielding.
4350 	 */
4351 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4352 		yielded = -ESRCH;
4353 		goto out_irq;
4354 	}
4355 
4356 	double_rq_lock(rq, p_rq);
4357 	if (task_rq(p) != p_rq) {
4358 		double_rq_unlock(rq, p_rq);
4359 		goto again;
4360 	}
4361 
4362 	if (!curr->sched_class->yield_to_task)
4363 		goto out_unlock;
4364 
4365 	if (curr->sched_class != p->sched_class)
4366 		goto out_unlock;
4367 
4368 	if (task_running(p_rq, p) || p->state)
4369 		goto out_unlock;
4370 
4371 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4372 	if (yielded) {
4373 		schedstat_inc(rq, yld_count);
4374 		/*
4375 		 * Make p's CPU reschedule; pick_next_entity takes care of
4376 		 * fairness.
4377 		 */
4378 		if (preempt && rq != p_rq)
4379 			resched_curr(p_rq);
4380 	}
4381 
4382 out_unlock:
4383 	double_rq_unlock(rq, p_rq);
4384 out_irq:
4385 	local_irq_restore(flags);
4386 
4387 	if (yielded > 0)
4388 		schedule();
4389 
4390 	return yielded;
4391 }
4392 EXPORT_SYMBOL_GPL(yield_to);
4393 
4394 /*
4395  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4396  * that process accounting knows that this is a task in IO wait state.
4397  */
4398 long __sched io_schedule_timeout(long timeout)
4399 {
4400 	int old_iowait = current->in_iowait;
4401 	struct rq *rq;
4402 	long ret;
4403 
4404 	current->in_iowait = 1;
4405 	if (old_iowait)
4406 		blk_schedule_flush_plug(current);
4407 	else
4408 		blk_flush_plug(current);
4409 
4410 	delayacct_blkio_start();
4411 	rq = raw_rq();
4412 	atomic_inc(&rq->nr_iowait);
4413 	ret = schedule_timeout(timeout);
4414 	current->in_iowait = old_iowait;
4415 	atomic_dec(&rq->nr_iowait);
4416 	delayacct_blkio_end();
4417 
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL(io_schedule_timeout);
4421 
4422 /**
4423  * sys_sched_get_priority_max - return maximum RT priority.
4424  * @policy: scheduling class.
4425  *
4426  * Return: On success, this syscall returns the maximum
4427  * rt_priority that can be used by a given scheduling class.
4428  * On failure, a negative error code is returned.
4429  */
4430 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4431 {
4432 	int ret = -EINVAL;
4433 
4434 	switch (policy) {
4435 	case SCHED_FIFO:
4436 	case SCHED_RR:
4437 		ret = MAX_USER_RT_PRIO-1;
4438 		break;
4439 	case SCHED_DEADLINE:
4440 	case SCHED_NORMAL:
4441 	case SCHED_BATCH:
4442 	case SCHED_IDLE:
4443 		ret = 0;
4444 		break;
4445 	}
4446 	return ret;
4447 }
4448 
4449 /**
4450  * sys_sched_get_priority_min - return minimum RT priority.
4451  * @policy: scheduling class.
4452  *
4453  * Return: On success, this syscall returns the minimum
4454  * rt_priority that can be used by a given scheduling class.
4455  * On failure, a negative error code is returned.
4456  */
4457 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4458 {
4459 	int ret = -EINVAL;
4460 
4461 	switch (policy) {
4462 	case SCHED_FIFO:
4463 	case SCHED_RR:
4464 		ret = 1;
4465 		break;
4466 	case SCHED_DEADLINE:
4467 	case SCHED_NORMAL:
4468 	case SCHED_BATCH:
4469 	case SCHED_IDLE:
4470 		ret = 0;
4471 	}
4472 	return ret;
4473 }
4474 
4475 /**
4476  * sys_sched_rr_get_interval - return the default timeslice of a process.
4477  * @pid: pid of the process.
4478  * @interval: userspace pointer to the timeslice value.
4479  *
4480  * this syscall writes the default timeslice value of a given process
4481  * into the user-space timespec buffer. A value of '0' means infinity.
4482  *
4483  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4484  * an error code.
4485  */
4486 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4487 		struct timespec __user *, interval)
4488 {
4489 	struct task_struct *p;
4490 	unsigned int time_slice;
4491 	unsigned long flags;
4492 	struct rq *rq;
4493 	int retval;
4494 	struct timespec t;
4495 
4496 	if (pid < 0)
4497 		return -EINVAL;
4498 
4499 	retval = -ESRCH;
4500 	rcu_read_lock();
4501 	p = find_process_by_pid(pid);
4502 	if (!p)
4503 		goto out_unlock;
4504 
4505 	retval = security_task_getscheduler(p);
4506 	if (retval)
4507 		goto out_unlock;
4508 
4509 	rq = task_rq_lock(p, &flags);
4510 	time_slice = 0;
4511 	if (p->sched_class->get_rr_interval)
4512 		time_slice = p->sched_class->get_rr_interval(rq, p);
4513 	task_rq_unlock(rq, p, &flags);
4514 
4515 	rcu_read_unlock();
4516 	jiffies_to_timespec(time_slice, &t);
4517 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4518 	return retval;
4519 
4520 out_unlock:
4521 	rcu_read_unlock();
4522 	return retval;
4523 }
4524 
4525 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4526 
4527 void sched_show_task(struct task_struct *p)
4528 {
4529 	unsigned long free = 0;
4530 	int ppid;
4531 	unsigned long state = p->state;
4532 
4533 	if (state)
4534 		state = __ffs(state) + 1;
4535 	printk(KERN_INFO "%-15.15s %c", p->comm,
4536 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4537 #if BITS_PER_LONG == 32
4538 	if (state == TASK_RUNNING)
4539 		printk(KERN_CONT " running  ");
4540 	else
4541 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4542 #else
4543 	if (state == TASK_RUNNING)
4544 		printk(KERN_CONT "  running task    ");
4545 	else
4546 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4547 #endif
4548 #ifdef CONFIG_DEBUG_STACK_USAGE
4549 	free = stack_not_used(p);
4550 #endif
4551 	ppid = 0;
4552 	rcu_read_lock();
4553 	if (pid_alive(p))
4554 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4555 	rcu_read_unlock();
4556 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4557 		task_pid_nr(p), ppid,
4558 		(unsigned long)task_thread_info(p)->flags);
4559 
4560 	print_worker_info(KERN_INFO, p);
4561 	show_stack(p, NULL);
4562 }
4563 
4564 void show_state_filter(unsigned long state_filter)
4565 {
4566 	struct task_struct *g, *p;
4567 
4568 #if BITS_PER_LONG == 32
4569 	printk(KERN_INFO
4570 		"  task                PC stack   pid father\n");
4571 #else
4572 	printk(KERN_INFO
4573 		"  task                        PC stack   pid father\n");
4574 #endif
4575 	rcu_read_lock();
4576 	for_each_process_thread(g, p) {
4577 		/*
4578 		 * reset the NMI-timeout, listing all files on a slow
4579 		 * console might take a lot of time:
4580 		 */
4581 		touch_nmi_watchdog();
4582 		if (!state_filter || (p->state & state_filter))
4583 			sched_show_task(p);
4584 	}
4585 
4586 	touch_all_softlockup_watchdogs();
4587 
4588 #ifdef CONFIG_SCHED_DEBUG
4589 	sysrq_sched_debug_show();
4590 #endif
4591 	rcu_read_unlock();
4592 	/*
4593 	 * Only show locks if all tasks are dumped:
4594 	 */
4595 	if (!state_filter)
4596 		debug_show_all_locks();
4597 }
4598 
4599 void init_idle_bootup_task(struct task_struct *idle)
4600 {
4601 	idle->sched_class = &idle_sched_class;
4602 }
4603 
4604 /**
4605  * init_idle - set up an idle thread for a given CPU
4606  * @idle: task in question
4607  * @cpu: cpu the idle task belongs to
4608  *
4609  * NOTE: this function does not set the idle thread's NEED_RESCHED
4610  * flag, to make booting more robust.
4611  */
4612 void init_idle(struct task_struct *idle, int cpu)
4613 {
4614 	struct rq *rq = cpu_rq(cpu);
4615 	unsigned long flags;
4616 
4617 	raw_spin_lock_irqsave(&rq->lock, flags);
4618 
4619 	__sched_fork(0, idle);
4620 	idle->state = TASK_RUNNING;
4621 	idle->se.exec_start = sched_clock();
4622 
4623 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4624 	/*
4625 	 * We're having a chicken and egg problem, even though we are
4626 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4627 	 * lockdep check in task_group() will fail.
4628 	 *
4629 	 * Similar case to sched_fork(). / Alternatively we could
4630 	 * use task_rq_lock() here and obtain the other rq->lock.
4631 	 *
4632 	 * Silence PROVE_RCU
4633 	 */
4634 	rcu_read_lock();
4635 	__set_task_cpu(idle, cpu);
4636 	rcu_read_unlock();
4637 
4638 	rq->curr = rq->idle = idle;
4639 	idle->on_rq = TASK_ON_RQ_QUEUED;
4640 #if defined(CONFIG_SMP)
4641 	idle->on_cpu = 1;
4642 #endif
4643 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4644 
4645 	/* Set the preempt count _outside_ the spinlocks! */
4646 	init_idle_preempt_count(idle, cpu);
4647 
4648 	/*
4649 	 * The idle tasks have their own, simple scheduling class:
4650 	 */
4651 	idle->sched_class = &idle_sched_class;
4652 	ftrace_graph_init_idle_task(idle, cpu);
4653 	vtime_init_idle(idle, cpu);
4654 #if defined(CONFIG_SMP)
4655 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4656 #endif
4657 }
4658 
4659 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4660 			      const struct cpumask *trial)
4661 {
4662 	int ret = 1, trial_cpus;
4663 	struct dl_bw *cur_dl_b;
4664 	unsigned long flags;
4665 
4666 	if (!cpumask_weight(cur))
4667 		return ret;
4668 
4669 	rcu_read_lock_sched();
4670 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4671 	trial_cpus = cpumask_weight(trial);
4672 
4673 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4674 	if (cur_dl_b->bw != -1 &&
4675 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4676 		ret = 0;
4677 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4678 	rcu_read_unlock_sched();
4679 
4680 	return ret;
4681 }
4682 
4683 int task_can_attach(struct task_struct *p,
4684 		    const struct cpumask *cs_cpus_allowed)
4685 {
4686 	int ret = 0;
4687 
4688 	/*
4689 	 * Kthreads which disallow setaffinity shouldn't be moved
4690 	 * to a new cpuset; we don't want to change their cpu
4691 	 * affinity and isolating such threads by their set of
4692 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4693 	 * applicable for such threads.  This prevents checking for
4694 	 * success of set_cpus_allowed_ptr() on all attached tasks
4695 	 * before cpus_allowed may be changed.
4696 	 */
4697 	if (p->flags & PF_NO_SETAFFINITY) {
4698 		ret = -EINVAL;
4699 		goto out;
4700 	}
4701 
4702 #ifdef CONFIG_SMP
4703 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4704 					      cs_cpus_allowed)) {
4705 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4706 							cs_cpus_allowed);
4707 		struct dl_bw *dl_b;
4708 		bool overflow;
4709 		int cpus;
4710 		unsigned long flags;
4711 
4712 		rcu_read_lock_sched();
4713 		dl_b = dl_bw_of(dest_cpu);
4714 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4715 		cpus = dl_bw_cpus(dest_cpu);
4716 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4717 		if (overflow)
4718 			ret = -EBUSY;
4719 		else {
4720 			/*
4721 			 * We reserve space for this task in the destination
4722 			 * root_domain, as we can't fail after this point.
4723 			 * We will free resources in the source root_domain
4724 			 * later on (see set_cpus_allowed_dl()).
4725 			 */
4726 			__dl_add(dl_b, p->dl.dl_bw);
4727 		}
4728 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4729 		rcu_read_unlock_sched();
4730 
4731 	}
4732 #endif
4733 out:
4734 	return ret;
4735 }
4736 
4737 #ifdef CONFIG_SMP
4738 /*
4739  * move_queued_task - move a queued task to new rq.
4740  *
4741  * Returns (locked) new rq. Old rq's lock is released.
4742  */
4743 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4744 {
4745 	struct rq *rq = task_rq(p);
4746 
4747 	lockdep_assert_held(&rq->lock);
4748 
4749 	dequeue_task(rq, p, 0);
4750 	p->on_rq = TASK_ON_RQ_MIGRATING;
4751 	set_task_cpu(p, new_cpu);
4752 	raw_spin_unlock(&rq->lock);
4753 
4754 	rq = cpu_rq(new_cpu);
4755 
4756 	raw_spin_lock(&rq->lock);
4757 	BUG_ON(task_cpu(p) != new_cpu);
4758 	p->on_rq = TASK_ON_RQ_QUEUED;
4759 	enqueue_task(rq, p, 0);
4760 	check_preempt_curr(rq, p, 0);
4761 
4762 	return rq;
4763 }
4764 
4765 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4766 {
4767 	if (p->sched_class->set_cpus_allowed)
4768 		p->sched_class->set_cpus_allowed(p, new_mask);
4769 
4770 	cpumask_copy(&p->cpus_allowed, new_mask);
4771 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4772 }
4773 
4774 /*
4775  * This is how migration works:
4776  *
4777  * 1) we invoke migration_cpu_stop() on the target CPU using
4778  *    stop_one_cpu().
4779  * 2) stopper starts to run (implicitly forcing the migrated thread
4780  *    off the CPU)
4781  * 3) it checks whether the migrated task is still in the wrong runqueue.
4782  * 4) if it's in the wrong runqueue then the migration thread removes
4783  *    it and puts it into the right queue.
4784  * 5) stopper completes and stop_one_cpu() returns and the migration
4785  *    is done.
4786  */
4787 
4788 /*
4789  * Change a given task's CPU affinity. Migrate the thread to a
4790  * proper CPU and schedule it away if the CPU it's executing on
4791  * is removed from the allowed bitmask.
4792  *
4793  * NOTE: the caller must have a valid reference to the task, the
4794  * task must not exit() & deallocate itself prematurely. The
4795  * call is not atomic; no spinlocks may be held.
4796  */
4797 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4798 {
4799 	unsigned long flags;
4800 	struct rq *rq;
4801 	unsigned int dest_cpu;
4802 	int ret = 0;
4803 
4804 	rq = task_rq_lock(p, &flags);
4805 
4806 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4807 		goto out;
4808 
4809 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4810 		ret = -EINVAL;
4811 		goto out;
4812 	}
4813 
4814 	do_set_cpus_allowed(p, new_mask);
4815 
4816 	/* Can the task run on the task's current CPU? If so, we're done */
4817 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4818 		goto out;
4819 
4820 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4821 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4822 		struct migration_arg arg = { p, dest_cpu };
4823 		/* Need help from migration thread: drop lock and wait. */
4824 		task_rq_unlock(rq, p, &flags);
4825 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4826 		tlb_migrate_finish(p->mm);
4827 		return 0;
4828 	} else if (task_on_rq_queued(p))
4829 		rq = move_queued_task(p, dest_cpu);
4830 out:
4831 	task_rq_unlock(rq, p, &flags);
4832 
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4836 
4837 /*
4838  * Move (not current) task off this cpu, onto dest cpu. We're doing
4839  * this because either it can't run here any more (set_cpus_allowed()
4840  * away from this CPU, or CPU going down), or because we're
4841  * attempting to rebalance this task on exec (sched_exec).
4842  *
4843  * So we race with normal scheduler movements, but that's OK, as long
4844  * as the task is no longer on this CPU.
4845  *
4846  * Returns non-zero if task was successfully migrated.
4847  */
4848 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4849 {
4850 	struct rq *rq;
4851 	int ret = 0;
4852 
4853 	if (unlikely(!cpu_active(dest_cpu)))
4854 		return ret;
4855 
4856 	rq = cpu_rq(src_cpu);
4857 
4858 	raw_spin_lock(&p->pi_lock);
4859 	raw_spin_lock(&rq->lock);
4860 	/* Already moved. */
4861 	if (task_cpu(p) != src_cpu)
4862 		goto done;
4863 
4864 	/* Affinity changed (again). */
4865 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4866 		goto fail;
4867 
4868 	/*
4869 	 * If we're not on a rq, the next wake-up will ensure we're
4870 	 * placed properly.
4871 	 */
4872 	if (task_on_rq_queued(p))
4873 		rq = move_queued_task(p, dest_cpu);
4874 done:
4875 	ret = 1;
4876 fail:
4877 	raw_spin_unlock(&rq->lock);
4878 	raw_spin_unlock(&p->pi_lock);
4879 	return ret;
4880 }
4881 
4882 #ifdef CONFIG_NUMA_BALANCING
4883 /* Migrate current task p to target_cpu */
4884 int migrate_task_to(struct task_struct *p, int target_cpu)
4885 {
4886 	struct migration_arg arg = { p, target_cpu };
4887 	int curr_cpu = task_cpu(p);
4888 
4889 	if (curr_cpu == target_cpu)
4890 		return 0;
4891 
4892 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4893 		return -EINVAL;
4894 
4895 	/* TODO: This is not properly updating schedstats */
4896 
4897 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4898 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4899 }
4900 
4901 /*
4902  * Requeue a task on a given node and accurately track the number of NUMA
4903  * tasks on the runqueues
4904  */
4905 void sched_setnuma(struct task_struct *p, int nid)
4906 {
4907 	struct rq *rq;
4908 	unsigned long flags;
4909 	bool queued, running;
4910 
4911 	rq = task_rq_lock(p, &flags);
4912 	queued = task_on_rq_queued(p);
4913 	running = task_current(rq, p);
4914 
4915 	if (queued)
4916 		dequeue_task(rq, p, 0);
4917 	if (running)
4918 		put_prev_task(rq, p);
4919 
4920 	p->numa_preferred_nid = nid;
4921 
4922 	if (running)
4923 		p->sched_class->set_curr_task(rq);
4924 	if (queued)
4925 		enqueue_task(rq, p, 0);
4926 	task_rq_unlock(rq, p, &flags);
4927 }
4928 #endif
4929 
4930 /*
4931  * migration_cpu_stop - this will be executed by a highprio stopper thread
4932  * and performs thread migration by bumping thread off CPU then
4933  * 'pushing' onto another runqueue.
4934  */
4935 static int migration_cpu_stop(void *data)
4936 {
4937 	struct migration_arg *arg = data;
4938 
4939 	/*
4940 	 * The original target cpu might have gone down and we might
4941 	 * be on another cpu but it doesn't matter.
4942 	 */
4943 	local_irq_disable();
4944 	/*
4945 	 * We need to explicitly wake pending tasks before running
4946 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4947 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4948 	 */
4949 	sched_ttwu_pending();
4950 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4951 	local_irq_enable();
4952 	return 0;
4953 }
4954 
4955 #ifdef CONFIG_HOTPLUG_CPU
4956 
4957 /*
4958  * Ensures that the idle task is using init_mm right before its cpu goes
4959  * offline.
4960  */
4961 void idle_task_exit(void)
4962 {
4963 	struct mm_struct *mm = current->active_mm;
4964 
4965 	BUG_ON(cpu_online(smp_processor_id()));
4966 
4967 	if (mm != &init_mm) {
4968 		switch_mm(mm, &init_mm, current);
4969 		finish_arch_post_lock_switch();
4970 	}
4971 	mmdrop(mm);
4972 }
4973 
4974 /*
4975  * Since this CPU is going 'away' for a while, fold any nr_active delta
4976  * we might have. Assumes we're called after migrate_tasks() so that the
4977  * nr_active count is stable.
4978  *
4979  * Also see the comment "Global load-average calculations".
4980  */
4981 static void calc_load_migrate(struct rq *rq)
4982 {
4983 	long delta = calc_load_fold_active(rq);
4984 	if (delta)
4985 		atomic_long_add(delta, &calc_load_tasks);
4986 }
4987 
4988 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4989 {
4990 }
4991 
4992 static const struct sched_class fake_sched_class = {
4993 	.put_prev_task = put_prev_task_fake,
4994 };
4995 
4996 static struct task_struct fake_task = {
4997 	/*
4998 	 * Avoid pull_{rt,dl}_task()
4999 	 */
5000 	.prio = MAX_PRIO + 1,
5001 	.sched_class = &fake_sched_class,
5002 };
5003 
5004 /*
5005  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5006  * try_to_wake_up()->select_task_rq().
5007  *
5008  * Called with rq->lock held even though we'er in stop_machine() and
5009  * there's no concurrency possible, we hold the required locks anyway
5010  * because of lock validation efforts.
5011  */
5012 static void migrate_tasks(unsigned int dead_cpu)
5013 {
5014 	struct rq *rq = cpu_rq(dead_cpu);
5015 	struct task_struct *next, *stop = rq->stop;
5016 	int dest_cpu;
5017 
5018 	/*
5019 	 * Fudge the rq selection such that the below task selection loop
5020 	 * doesn't get stuck on the currently eligible stop task.
5021 	 *
5022 	 * We're currently inside stop_machine() and the rq is either stuck
5023 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5024 	 * either way we should never end up calling schedule() until we're
5025 	 * done here.
5026 	 */
5027 	rq->stop = NULL;
5028 
5029 	/*
5030 	 * put_prev_task() and pick_next_task() sched
5031 	 * class method both need to have an up-to-date
5032 	 * value of rq->clock[_task]
5033 	 */
5034 	update_rq_clock(rq);
5035 
5036 	for ( ; ; ) {
5037 		/*
5038 		 * There's this thread running, bail when that's the only
5039 		 * remaining thread.
5040 		 */
5041 		if (rq->nr_running == 1)
5042 			break;
5043 
5044 		next = pick_next_task(rq, &fake_task);
5045 		BUG_ON(!next);
5046 		next->sched_class->put_prev_task(rq, next);
5047 
5048 		/* Find suitable destination for @next, with force if needed. */
5049 		dest_cpu = select_fallback_rq(dead_cpu, next);
5050 		raw_spin_unlock(&rq->lock);
5051 
5052 		__migrate_task(next, dead_cpu, dest_cpu);
5053 
5054 		raw_spin_lock(&rq->lock);
5055 	}
5056 
5057 	rq->stop = stop;
5058 }
5059 
5060 #endif /* CONFIG_HOTPLUG_CPU */
5061 
5062 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5063 
5064 static struct ctl_table sd_ctl_dir[] = {
5065 	{
5066 		.procname	= "sched_domain",
5067 		.mode		= 0555,
5068 	},
5069 	{}
5070 };
5071 
5072 static struct ctl_table sd_ctl_root[] = {
5073 	{
5074 		.procname	= "kernel",
5075 		.mode		= 0555,
5076 		.child		= sd_ctl_dir,
5077 	},
5078 	{}
5079 };
5080 
5081 static struct ctl_table *sd_alloc_ctl_entry(int n)
5082 {
5083 	struct ctl_table *entry =
5084 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5085 
5086 	return entry;
5087 }
5088 
5089 static void sd_free_ctl_entry(struct ctl_table **tablep)
5090 {
5091 	struct ctl_table *entry;
5092 
5093 	/*
5094 	 * In the intermediate directories, both the child directory and
5095 	 * procname are dynamically allocated and could fail but the mode
5096 	 * will always be set. In the lowest directory the names are
5097 	 * static strings and all have proc handlers.
5098 	 */
5099 	for (entry = *tablep; entry->mode; entry++) {
5100 		if (entry->child)
5101 			sd_free_ctl_entry(&entry->child);
5102 		if (entry->proc_handler == NULL)
5103 			kfree(entry->procname);
5104 	}
5105 
5106 	kfree(*tablep);
5107 	*tablep = NULL;
5108 }
5109 
5110 static int min_load_idx = 0;
5111 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5112 
5113 static void
5114 set_table_entry(struct ctl_table *entry,
5115 		const char *procname, void *data, int maxlen,
5116 		umode_t mode, proc_handler *proc_handler,
5117 		bool load_idx)
5118 {
5119 	entry->procname = procname;
5120 	entry->data = data;
5121 	entry->maxlen = maxlen;
5122 	entry->mode = mode;
5123 	entry->proc_handler = proc_handler;
5124 
5125 	if (load_idx) {
5126 		entry->extra1 = &min_load_idx;
5127 		entry->extra2 = &max_load_idx;
5128 	}
5129 }
5130 
5131 static struct ctl_table *
5132 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5133 {
5134 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5135 
5136 	if (table == NULL)
5137 		return NULL;
5138 
5139 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5140 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5141 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5142 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5143 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5144 		sizeof(int), 0644, proc_dointvec_minmax, true);
5145 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5146 		sizeof(int), 0644, proc_dointvec_minmax, true);
5147 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5148 		sizeof(int), 0644, proc_dointvec_minmax, true);
5149 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5150 		sizeof(int), 0644, proc_dointvec_minmax, true);
5151 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5152 		sizeof(int), 0644, proc_dointvec_minmax, true);
5153 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5154 		sizeof(int), 0644, proc_dointvec_minmax, false);
5155 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5156 		sizeof(int), 0644, proc_dointvec_minmax, false);
5157 	set_table_entry(&table[9], "cache_nice_tries",
5158 		&sd->cache_nice_tries,
5159 		sizeof(int), 0644, proc_dointvec_minmax, false);
5160 	set_table_entry(&table[10], "flags", &sd->flags,
5161 		sizeof(int), 0644, proc_dointvec_minmax, false);
5162 	set_table_entry(&table[11], "max_newidle_lb_cost",
5163 		&sd->max_newidle_lb_cost,
5164 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5165 	set_table_entry(&table[12], "name", sd->name,
5166 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5167 	/* &table[13] is terminator */
5168 
5169 	return table;
5170 }
5171 
5172 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5173 {
5174 	struct ctl_table *entry, *table;
5175 	struct sched_domain *sd;
5176 	int domain_num = 0, i;
5177 	char buf[32];
5178 
5179 	for_each_domain(cpu, sd)
5180 		domain_num++;
5181 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5182 	if (table == NULL)
5183 		return NULL;
5184 
5185 	i = 0;
5186 	for_each_domain(cpu, sd) {
5187 		snprintf(buf, 32, "domain%d", i);
5188 		entry->procname = kstrdup(buf, GFP_KERNEL);
5189 		entry->mode = 0555;
5190 		entry->child = sd_alloc_ctl_domain_table(sd);
5191 		entry++;
5192 		i++;
5193 	}
5194 	return table;
5195 }
5196 
5197 static struct ctl_table_header *sd_sysctl_header;
5198 static void register_sched_domain_sysctl(void)
5199 {
5200 	int i, cpu_num = num_possible_cpus();
5201 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5202 	char buf[32];
5203 
5204 	WARN_ON(sd_ctl_dir[0].child);
5205 	sd_ctl_dir[0].child = entry;
5206 
5207 	if (entry == NULL)
5208 		return;
5209 
5210 	for_each_possible_cpu(i) {
5211 		snprintf(buf, 32, "cpu%d", i);
5212 		entry->procname = kstrdup(buf, GFP_KERNEL);
5213 		entry->mode = 0555;
5214 		entry->child = sd_alloc_ctl_cpu_table(i);
5215 		entry++;
5216 	}
5217 
5218 	WARN_ON(sd_sysctl_header);
5219 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5220 }
5221 
5222 /* may be called multiple times per register */
5223 static void unregister_sched_domain_sysctl(void)
5224 {
5225 	if (sd_sysctl_header)
5226 		unregister_sysctl_table(sd_sysctl_header);
5227 	sd_sysctl_header = NULL;
5228 	if (sd_ctl_dir[0].child)
5229 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5230 }
5231 #else
5232 static void register_sched_domain_sysctl(void)
5233 {
5234 }
5235 static void unregister_sched_domain_sysctl(void)
5236 {
5237 }
5238 #endif
5239 
5240 static void set_rq_online(struct rq *rq)
5241 {
5242 	if (!rq->online) {
5243 		const struct sched_class *class;
5244 
5245 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5246 		rq->online = 1;
5247 
5248 		for_each_class(class) {
5249 			if (class->rq_online)
5250 				class->rq_online(rq);
5251 		}
5252 	}
5253 }
5254 
5255 static void set_rq_offline(struct rq *rq)
5256 {
5257 	if (rq->online) {
5258 		const struct sched_class *class;
5259 
5260 		for_each_class(class) {
5261 			if (class->rq_offline)
5262 				class->rq_offline(rq);
5263 		}
5264 
5265 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5266 		rq->online = 0;
5267 	}
5268 }
5269 
5270 /*
5271  * migration_call - callback that gets triggered when a CPU is added.
5272  * Here we can start up the necessary migration thread for the new CPU.
5273  */
5274 static int
5275 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5276 {
5277 	int cpu = (long)hcpu;
5278 	unsigned long flags;
5279 	struct rq *rq = cpu_rq(cpu);
5280 
5281 	switch (action & ~CPU_TASKS_FROZEN) {
5282 
5283 	case CPU_UP_PREPARE:
5284 		rq->calc_load_update = calc_load_update;
5285 		break;
5286 
5287 	case CPU_ONLINE:
5288 		/* Update our root-domain */
5289 		raw_spin_lock_irqsave(&rq->lock, flags);
5290 		if (rq->rd) {
5291 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5292 
5293 			set_rq_online(rq);
5294 		}
5295 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5296 		break;
5297 
5298 #ifdef CONFIG_HOTPLUG_CPU
5299 	case CPU_DYING:
5300 		sched_ttwu_pending();
5301 		/* Update our root-domain */
5302 		raw_spin_lock_irqsave(&rq->lock, flags);
5303 		if (rq->rd) {
5304 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5305 			set_rq_offline(rq);
5306 		}
5307 		migrate_tasks(cpu);
5308 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5309 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5310 		break;
5311 
5312 	case CPU_DEAD:
5313 		calc_load_migrate(rq);
5314 		break;
5315 #endif
5316 	}
5317 
5318 	update_max_interval();
5319 
5320 	return NOTIFY_OK;
5321 }
5322 
5323 /*
5324  * Register at high priority so that task migration (migrate_all_tasks)
5325  * happens before everything else.  This has to be lower priority than
5326  * the notifier in the perf_event subsystem, though.
5327  */
5328 static struct notifier_block migration_notifier = {
5329 	.notifier_call = migration_call,
5330 	.priority = CPU_PRI_MIGRATION,
5331 };
5332 
5333 static void __cpuinit set_cpu_rq_start_time(void)
5334 {
5335 	int cpu = smp_processor_id();
5336 	struct rq *rq = cpu_rq(cpu);
5337 	rq->age_stamp = sched_clock_cpu(cpu);
5338 }
5339 
5340 static int sched_cpu_active(struct notifier_block *nfb,
5341 				      unsigned long action, void *hcpu)
5342 {
5343 	switch (action & ~CPU_TASKS_FROZEN) {
5344 	case CPU_STARTING:
5345 		set_cpu_rq_start_time();
5346 		return NOTIFY_OK;
5347 	case CPU_DOWN_FAILED:
5348 		set_cpu_active((long)hcpu, true);
5349 		return NOTIFY_OK;
5350 	default:
5351 		return NOTIFY_DONE;
5352 	}
5353 }
5354 
5355 static int sched_cpu_inactive(struct notifier_block *nfb,
5356 					unsigned long action, void *hcpu)
5357 {
5358 	switch (action & ~CPU_TASKS_FROZEN) {
5359 	case CPU_DOWN_PREPARE:
5360 		set_cpu_active((long)hcpu, false);
5361 		return NOTIFY_OK;
5362 	default:
5363 		return NOTIFY_DONE;
5364 	}
5365 }
5366 
5367 static int __init migration_init(void)
5368 {
5369 	void *cpu = (void *)(long)smp_processor_id();
5370 	int err;
5371 
5372 	/* Initialize migration for the boot CPU */
5373 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5374 	BUG_ON(err == NOTIFY_BAD);
5375 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5376 	register_cpu_notifier(&migration_notifier);
5377 
5378 	/* Register cpu active notifiers */
5379 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5380 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5381 
5382 	return 0;
5383 }
5384 early_initcall(migration_init);
5385 #endif
5386 
5387 #ifdef CONFIG_SMP
5388 
5389 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5390 
5391 #ifdef CONFIG_SCHED_DEBUG
5392 
5393 static __read_mostly int sched_debug_enabled;
5394 
5395 static int __init sched_debug_setup(char *str)
5396 {
5397 	sched_debug_enabled = 1;
5398 
5399 	return 0;
5400 }
5401 early_param("sched_debug", sched_debug_setup);
5402 
5403 static inline bool sched_debug(void)
5404 {
5405 	return sched_debug_enabled;
5406 }
5407 
5408 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5409 				  struct cpumask *groupmask)
5410 {
5411 	struct sched_group *group = sd->groups;
5412 
5413 	cpumask_clear(groupmask);
5414 
5415 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5416 
5417 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5418 		printk("does not load-balance\n");
5419 		if (sd->parent)
5420 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5421 					" has parent");
5422 		return -1;
5423 	}
5424 
5425 	printk(KERN_CONT "span %*pbl level %s\n",
5426 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5427 
5428 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5429 		printk(KERN_ERR "ERROR: domain->span does not contain "
5430 				"CPU%d\n", cpu);
5431 	}
5432 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5433 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5434 				" CPU%d\n", cpu);
5435 	}
5436 
5437 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5438 	do {
5439 		if (!group) {
5440 			printk("\n");
5441 			printk(KERN_ERR "ERROR: group is NULL\n");
5442 			break;
5443 		}
5444 
5445 		if (!cpumask_weight(sched_group_cpus(group))) {
5446 			printk(KERN_CONT "\n");
5447 			printk(KERN_ERR "ERROR: empty group\n");
5448 			break;
5449 		}
5450 
5451 		if (!(sd->flags & SD_OVERLAP) &&
5452 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5453 			printk(KERN_CONT "\n");
5454 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5455 			break;
5456 		}
5457 
5458 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5459 
5460 		printk(KERN_CONT " %*pbl",
5461 		       cpumask_pr_args(sched_group_cpus(group)));
5462 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5463 			printk(KERN_CONT " (cpu_capacity = %d)",
5464 				group->sgc->capacity);
5465 		}
5466 
5467 		group = group->next;
5468 	} while (group != sd->groups);
5469 	printk(KERN_CONT "\n");
5470 
5471 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5472 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5473 
5474 	if (sd->parent &&
5475 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5476 		printk(KERN_ERR "ERROR: parent span is not a superset "
5477 			"of domain->span\n");
5478 	return 0;
5479 }
5480 
5481 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5482 {
5483 	int level = 0;
5484 
5485 	if (!sched_debug_enabled)
5486 		return;
5487 
5488 	if (!sd) {
5489 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5490 		return;
5491 	}
5492 
5493 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5494 
5495 	for (;;) {
5496 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5497 			break;
5498 		level++;
5499 		sd = sd->parent;
5500 		if (!sd)
5501 			break;
5502 	}
5503 }
5504 #else /* !CONFIG_SCHED_DEBUG */
5505 # define sched_domain_debug(sd, cpu) do { } while (0)
5506 static inline bool sched_debug(void)
5507 {
5508 	return false;
5509 }
5510 #endif /* CONFIG_SCHED_DEBUG */
5511 
5512 static int sd_degenerate(struct sched_domain *sd)
5513 {
5514 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5515 		return 1;
5516 
5517 	/* Following flags need at least 2 groups */
5518 	if (sd->flags & (SD_LOAD_BALANCE |
5519 			 SD_BALANCE_NEWIDLE |
5520 			 SD_BALANCE_FORK |
5521 			 SD_BALANCE_EXEC |
5522 			 SD_SHARE_CPUCAPACITY |
5523 			 SD_SHARE_PKG_RESOURCES |
5524 			 SD_SHARE_POWERDOMAIN)) {
5525 		if (sd->groups != sd->groups->next)
5526 			return 0;
5527 	}
5528 
5529 	/* Following flags don't use groups */
5530 	if (sd->flags & (SD_WAKE_AFFINE))
5531 		return 0;
5532 
5533 	return 1;
5534 }
5535 
5536 static int
5537 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5538 {
5539 	unsigned long cflags = sd->flags, pflags = parent->flags;
5540 
5541 	if (sd_degenerate(parent))
5542 		return 1;
5543 
5544 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5545 		return 0;
5546 
5547 	/* Flags needing groups don't count if only 1 group in parent */
5548 	if (parent->groups == parent->groups->next) {
5549 		pflags &= ~(SD_LOAD_BALANCE |
5550 				SD_BALANCE_NEWIDLE |
5551 				SD_BALANCE_FORK |
5552 				SD_BALANCE_EXEC |
5553 				SD_SHARE_CPUCAPACITY |
5554 				SD_SHARE_PKG_RESOURCES |
5555 				SD_PREFER_SIBLING |
5556 				SD_SHARE_POWERDOMAIN);
5557 		if (nr_node_ids == 1)
5558 			pflags &= ~SD_SERIALIZE;
5559 	}
5560 	if (~cflags & pflags)
5561 		return 0;
5562 
5563 	return 1;
5564 }
5565 
5566 static void free_rootdomain(struct rcu_head *rcu)
5567 {
5568 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5569 
5570 	cpupri_cleanup(&rd->cpupri);
5571 	cpudl_cleanup(&rd->cpudl);
5572 	free_cpumask_var(rd->dlo_mask);
5573 	free_cpumask_var(rd->rto_mask);
5574 	free_cpumask_var(rd->online);
5575 	free_cpumask_var(rd->span);
5576 	kfree(rd);
5577 }
5578 
5579 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5580 {
5581 	struct root_domain *old_rd = NULL;
5582 	unsigned long flags;
5583 
5584 	raw_spin_lock_irqsave(&rq->lock, flags);
5585 
5586 	if (rq->rd) {
5587 		old_rd = rq->rd;
5588 
5589 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5590 			set_rq_offline(rq);
5591 
5592 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5593 
5594 		/*
5595 		 * If we dont want to free the old_rd yet then
5596 		 * set old_rd to NULL to skip the freeing later
5597 		 * in this function:
5598 		 */
5599 		if (!atomic_dec_and_test(&old_rd->refcount))
5600 			old_rd = NULL;
5601 	}
5602 
5603 	atomic_inc(&rd->refcount);
5604 	rq->rd = rd;
5605 
5606 	cpumask_set_cpu(rq->cpu, rd->span);
5607 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5608 		set_rq_online(rq);
5609 
5610 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5611 
5612 	if (old_rd)
5613 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5614 }
5615 
5616 static int init_rootdomain(struct root_domain *rd)
5617 {
5618 	memset(rd, 0, sizeof(*rd));
5619 
5620 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5621 		goto out;
5622 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5623 		goto free_span;
5624 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5625 		goto free_online;
5626 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5627 		goto free_dlo_mask;
5628 
5629 	init_dl_bw(&rd->dl_bw);
5630 	if (cpudl_init(&rd->cpudl) != 0)
5631 		goto free_dlo_mask;
5632 
5633 	if (cpupri_init(&rd->cpupri) != 0)
5634 		goto free_rto_mask;
5635 	return 0;
5636 
5637 free_rto_mask:
5638 	free_cpumask_var(rd->rto_mask);
5639 free_dlo_mask:
5640 	free_cpumask_var(rd->dlo_mask);
5641 free_online:
5642 	free_cpumask_var(rd->online);
5643 free_span:
5644 	free_cpumask_var(rd->span);
5645 out:
5646 	return -ENOMEM;
5647 }
5648 
5649 /*
5650  * By default the system creates a single root-domain with all cpus as
5651  * members (mimicking the global state we have today).
5652  */
5653 struct root_domain def_root_domain;
5654 
5655 static void init_defrootdomain(void)
5656 {
5657 	init_rootdomain(&def_root_domain);
5658 
5659 	atomic_set(&def_root_domain.refcount, 1);
5660 }
5661 
5662 static struct root_domain *alloc_rootdomain(void)
5663 {
5664 	struct root_domain *rd;
5665 
5666 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5667 	if (!rd)
5668 		return NULL;
5669 
5670 	if (init_rootdomain(rd) != 0) {
5671 		kfree(rd);
5672 		return NULL;
5673 	}
5674 
5675 	return rd;
5676 }
5677 
5678 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5679 {
5680 	struct sched_group *tmp, *first;
5681 
5682 	if (!sg)
5683 		return;
5684 
5685 	first = sg;
5686 	do {
5687 		tmp = sg->next;
5688 
5689 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5690 			kfree(sg->sgc);
5691 
5692 		kfree(sg);
5693 		sg = tmp;
5694 	} while (sg != first);
5695 }
5696 
5697 static void free_sched_domain(struct rcu_head *rcu)
5698 {
5699 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5700 
5701 	/*
5702 	 * If its an overlapping domain it has private groups, iterate and
5703 	 * nuke them all.
5704 	 */
5705 	if (sd->flags & SD_OVERLAP) {
5706 		free_sched_groups(sd->groups, 1);
5707 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5708 		kfree(sd->groups->sgc);
5709 		kfree(sd->groups);
5710 	}
5711 	kfree(sd);
5712 }
5713 
5714 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5715 {
5716 	call_rcu(&sd->rcu, free_sched_domain);
5717 }
5718 
5719 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5720 {
5721 	for (; sd; sd = sd->parent)
5722 		destroy_sched_domain(sd, cpu);
5723 }
5724 
5725 /*
5726  * Keep a special pointer to the highest sched_domain that has
5727  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5728  * allows us to avoid some pointer chasing select_idle_sibling().
5729  *
5730  * Also keep a unique ID per domain (we use the first cpu number in
5731  * the cpumask of the domain), this allows us to quickly tell if
5732  * two cpus are in the same cache domain, see cpus_share_cache().
5733  */
5734 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5735 DEFINE_PER_CPU(int, sd_llc_size);
5736 DEFINE_PER_CPU(int, sd_llc_id);
5737 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5739 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5740 
5741 static void update_top_cache_domain(int cpu)
5742 {
5743 	struct sched_domain *sd;
5744 	struct sched_domain *busy_sd = NULL;
5745 	int id = cpu;
5746 	int size = 1;
5747 
5748 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5749 	if (sd) {
5750 		id = cpumask_first(sched_domain_span(sd));
5751 		size = cpumask_weight(sched_domain_span(sd));
5752 		busy_sd = sd->parent; /* sd_busy */
5753 	}
5754 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5755 
5756 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5757 	per_cpu(sd_llc_size, cpu) = size;
5758 	per_cpu(sd_llc_id, cpu) = id;
5759 
5760 	sd = lowest_flag_domain(cpu, SD_NUMA);
5761 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5762 
5763 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5764 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5765 }
5766 
5767 /*
5768  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5769  * hold the hotplug lock.
5770  */
5771 static void
5772 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5773 {
5774 	struct rq *rq = cpu_rq(cpu);
5775 	struct sched_domain *tmp;
5776 
5777 	/* Remove the sched domains which do not contribute to scheduling. */
5778 	for (tmp = sd; tmp; ) {
5779 		struct sched_domain *parent = tmp->parent;
5780 		if (!parent)
5781 			break;
5782 
5783 		if (sd_parent_degenerate(tmp, parent)) {
5784 			tmp->parent = parent->parent;
5785 			if (parent->parent)
5786 				parent->parent->child = tmp;
5787 			/*
5788 			 * Transfer SD_PREFER_SIBLING down in case of a
5789 			 * degenerate parent; the spans match for this
5790 			 * so the property transfers.
5791 			 */
5792 			if (parent->flags & SD_PREFER_SIBLING)
5793 				tmp->flags |= SD_PREFER_SIBLING;
5794 			destroy_sched_domain(parent, cpu);
5795 		} else
5796 			tmp = tmp->parent;
5797 	}
5798 
5799 	if (sd && sd_degenerate(sd)) {
5800 		tmp = sd;
5801 		sd = sd->parent;
5802 		destroy_sched_domain(tmp, cpu);
5803 		if (sd)
5804 			sd->child = NULL;
5805 	}
5806 
5807 	sched_domain_debug(sd, cpu);
5808 
5809 	rq_attach_root(rq, rd);
5810 	tmp = rq->sd;
5811 	rcu_assign_pointer(rq->sd, sd);
5812 	destroy_sched_domains(tmp, cpu);
5813 
5814 	update_top_cache_domain(cpu);
5815 }
5816 
5817 /* Setup the mask of cpus configured for isolated domains */
5818 static int __init isolated_cpu_setup(char *str)
5819 {
5820 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5821 	cpulist_parse(str, cpu_isolated_map);
5822 	return 1;
5823 }
5824 
5825 __setup("isolcpus=", isolated_cpu_setup);
5826 
5827 struct s_data {
5828 	struct sched_domain ** __percpu sd;
5829 	struct root_domain	*rd;
5830 };
5831 
5832 enum s_alloc {
5833 	sa_rootdomain,
5834 	sa_sd,
5835 	sa_sd_storage,
5836 	sa_none,
5837 };
5838 
5839 /*
5840  * Build an iteration mask that can exclude certain CPUs from the upwards
5841  * domain traversal.
5842  *
5843  * Asymmetric node setups can result in situations where the domain tree is of
5844  * unequal depth, make sure to skip domains that already cover the entire
5845  * range.
5846  *
5847  * In that case build_sched_domains() will have terminated the iteration early
5848  * and our sibling sd spans will be empty. Domains should always include the
5849  * cpu they're built on, so check that.
5850  *
5851  */
5852 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5853 {
5854 	const struct cpumask *span = sched_domain_span(sd);
5855 	struct sd_data *sdd = sd->private;
5856 	struct sched_domain *sibling;
5857 	int i;
5858 
5859 	for_each_cpu(i, span) {
5860 		sibling = *per_cpu_ptr(sdd->sd, i);
5861 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5862 			continue;
5863 
5864 		cpumask_set_cpu(i, sched_group_mask(sg));
5865 	}
5866 }
5867 
5868 /*
5869  * Return the canonical balance cpu for this group, this is the first cpu
5870  * of this group that's also in the iteration mask.
5871  */
5872 int group_balance_cpu(struct sched_group *sg)
5873 {
5874 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5875 }
5876 
5877 static int
5878 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5879 {
5880 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5881 	const struct cpumask *span = sched_domain_span(sd);
5882 	struct cpumask *covered = sched_domains_tmpmask;
5883 	struct sd_data *sdd = sd->private;
5884 	struct sched_domain *sibling;
5885 	int i;
5886 
5887 	cpumask_clear(covered);
5888 
5889 	for_each_cpu(i, span) {
5890 		struct cpumask *sg_span;
5891 
5892 		if (cpumask_test_cpu(i, covered))
5893 			continue;
5894 
5895 		sibling = *per_cpu_ptr(sdd->sd, i);
5896 
5897 		/* See the comment near build_group_mask(). */
5898 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5899 			continue;
5900 
5901 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5902 				GFP_KERNEL, cpu_to_node(cpu));
5903 
5904 		if (!sg)
5905 			goto fail;
5906 
5907 		sg_span = sched_group_cpus(sg);
5908 		if (sibling->child)
5909 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5910 		else
5911 			cpumask_set_cpu(i, sg_span);
5912 
5913 		cpumask_or(covered, covered, sg_span);
5914 
5915 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5916 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5917 			build_group_mask(sd, sg);
5918 
5919 		/*
5920 		 * Initialize sgc->capacity such that even if we mess up the
5921 		 * domains and no possible iteration will get us here, we won't
5922 		 * die on a /0 trap.
5923 		 */
5924 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5925 
5926 		/*
5927 		 * Make sure the first group of this domain contains the
5928 		 * canonical balance cpu. Otherwise the sched_domain iteration
5929 		 * breaks. See update_sg_lb_stats().
5930 		 */
5931 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5932 		    group_balance_cpu(sg) == cpu)
5933 			groups = sg;
5934 
5935 		if (!first)
5936 			first = sg;
5937 		if (last)
5938 			last->next = sg;
5939 		last = sg;
5940 		last->next = first;
5941 	}
5942 	sd->groups = groups;
5943 
5944 	return 0;
5945 
5946 fail:
5947 	free_sched_groups(first, 0);
5948 
5949 	return -ENOMEM;
5950 }
5951 
5952 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5953 {
5954 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5955 	struct sched_domain *child = sd->child;
5956 
5957 	if (child)
5958 		cpu = cpumask_first(sched_domain_span(child));
5959 
5960 	if (sg) {
5961 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5962 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5963 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5964 	}
5965 
5966 	return cpu;
5967 }
5968 
5969 /*
5970  * build_sched_groups will build a circular linked list of the groups
5971  * covered by the given span, and will set each group's ->cpumask correctly,
5972  * and ->cpu_capacity to 0.
5973  *
5974  * Assumes the sched_domain tree is fully constructed
5975  */
5976 static int
5977 build_sched_groups(struct sched_domain *sd, int cpu)
5978 {
5979 	struct sched_group *first = NULL, *last = NULL;
5980 	struct sd_data *sdd = sd->private;
5981 	const struct cpumask *span = sched_domain_span(sd);
5982 	struct cpumask *covered;
5983 	int i;
5984 
5985 	get_group(cpu, sdd, &sd->groups);
5986 	atomic_inc(&sd->groups->ref);
5987 
5988 	if (cpu != cpumask_first(span))
5989 		return 0;
5990 
5991 	lockdep_assert_held(&sched_domains_mutex);
5992 	covered = sched_domains_tmpmask;
5993 
5994 	cpumask_clear(covered);
5995 
5996 	for_each_cpu(i, span) {
5997 		struct sched_group *sg;
5998 		int group, j;
5999 
6000 		if (cpumask_test_cpu(i, covered))
6001 			continue;
6002 
6003 		group = get_group(i, sdd, &sg);
6004 		cpumask_setall(sched_group_mask(sg));
6005 
6006 		for_each_cpu(j, span) {
6007 			if (get_group(j, sdd, NULL) != group)
6008 				continue;
6009 
6010 			cpumask_set_cpu(j, covered);
6011 			cpumask_set_cpu(j, sched_group_cpus(sg));
6012 		}
6013 
6014 		if (!first)
6015 			first = sg;
6016 		if (last)
6017 			last->next = sg;
6018 		last = sg;
6019 	}
6020 	last->next = first;
6021 
6022 	return 0;
6023 }
6024 
6025 /*
6026  * Initialize sched groups cpu_capacity.
6027  *
6028  * cpu_capacity indicates the capacity of sched group, which is used while
6029  * distributing the load between different sched groups in a sched domain.
6030  * Typically cpu_capacity for all the groups in a sched domain will be same
6031  * unless there are asymmetries in the topology. If there are asymmetries,
6032  * group having more cpu_capacity will pickup more load compared to the
6033  * group having less cpu_capacity.
6034  */
6035 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6036 {
6037 	struct sched_group *sg = sd->groups;
6038 
6039 	WARN_ON(!sg);
6040 
6041 	do {
6042 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6043 		sg = sg->next;
6044 	} while (sg != sd->groups);
6045 
6046 	if (cpu != group_balance_cpu(sg))
6047 		return;
6048 
6049 	update_group_capacity(sd, cpu);
6050 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6051 }
6052 
6053 /*
6054  * Initializers for schedule domains
6055  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6056  */
6057 
6058 static int default_relax_domain_level = -1;
6059 int sched_domain_level_max;
6060 
6061 static int __init setup_relax_domain_level(char *str)
6062 {
6063 	if (kstrtoint(str, 0, &default_relax_domain_level))
6064 		pr_warn("Unable to set relax_domain_level\n");
6065 
6066 	return 1;
6067 }
6068 __setup("relax_domain_level=", setup_relax_domain_level);
6069 
6070 static void set_domain_attribute(struct sched_domain *sd,
6071 				 struct sched_domain_attr *attr)
6072 {
6073 	int request;
6074 
6075 	if (!attr || attr->relax_domain_level < 0) {
6076 		if (default_relax_domain_level < 0)
6077 			return;
6078 		else
6079 			request = default_relax_domain_level;
6080 	} else
6081 		request = attr->relax_domain_level;
6082 	if (request < sd->level) {
6083 		/* turn off idle balance on this domain */
6084 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6085 	} else {
6086 		/* turn on idle balance on this domain */
6087 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6088 	}
6089 }
6090 
6091 static void __sdt_free(const struct cpumask *cpu_map);
6092 static int __sdt_alloc(const struct cpumask *cpu_map);
6093 
6094 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6095 				 const struct cpumask *cpu_map)
6096 {
6097 	switch (what) {
6098 	case sa_rootdomain:
6099 		if (!atomic_read(&d->rd->refcount))
6100 			free_rootdomain(&d->rd->rcu); /* fall through */
6101 	case sa_sd:
6102 		free_percpu(d->sd); /* fall through */
6103 	case sa_sd_storage:
6104 		__sdt_free(cpu_map); /* fall through */
6105 	case sa_none:
6106 		break;
6107 	}
6108 }
6109 
6110 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6111 						   const struct cpumask *cpu_map)
6112 {
6113 	memset(d, 0, sizeof(*d));
6114 
6115 	if (__sdt_alloc(cpu_map))
6116 		return sa_sd_storage;
6117 	d->sd = alloc_percpu(struct sched_domain *);
6118 	if (!d->sd)
6119 		return sa_sd_storage;
6120 	d->rd = alloc_rootdomain();
6121 	if (!d->rd)
6122 		return sa_sd;
6123 	return sa_rootdomain;
6124 }
6125 
6126 /*
6127  * NULL the sd_data elements we've used to build the sched_domain and
6128  * sched_group structure so that the subsequent __free_domain_allocs()
6129  * will not free the data we're using.
6130  */
6131 static void claim_allocations(int cpu, struct sched_domain *sd)
6132 {
6133 	struct sd_data *sdd = sd->private;
6134 
6135 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6136 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6137 
6138 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6139 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6140 
6141 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6142 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6143 }
6144 
6145 #ifdef CONFIG_NUMA
6146 static int sched_domains_numa_levels;
6147 enum numa_topology_type sched_numa_topology_type;
6148 static int *sched_domains_numa_distance;
6149 int sched_max_numa_distance;
6150 static struct cpumask ***sched_domains_numa_masks;
6151 static int sched_domains_curr_level;
6152 #endif
6153 
6154 /*
6155  * SD_flags allowed in topology descriptions.
6156  *
6157  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6158  * SD_SHARE_PKG_RESOURCES - describes shared caches
6159  * SD_NUMA                - describes NUMA topologies
6160  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6161  *
6162  * Odd one out:
6163  * SD_ASYM_PACKING        - describes SMT quirks
6164  */
6165 #define TOPOLOGY_SD_FLAGS		\
6166 	(SD_SHARE_CPUCAPACITY |		\
6167 	 SD_SHARE_PKG_RESOURCES |	\
6168 	 SD_NUMA |			\
6169 	 SD_ASYM_PACKING |		\
6170 	 SD_SHARE_POWERDOMAIN)
6171 
6172 static struct sched_domain *
6173 sd_init(struct sched_domain_topology_level *tl, int cpu)
6174 {
6175 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6176 	int sd_weight, sd_flags = 0;
6177 
6178 #ifdef CONFIG_NUMA
6179 	/*
6180 	 * Ugly hack to pass state to sd_numa_mask()...
6181 	 */
6182 	sched_domains_curr_level = tl->numa_level;
6183 #endif
6184 
6185 	sd_weight = cpumask_weight(tl->mask(cpu));
6186 
6187 	if (tl->sd_flags)
6188 		sd_flags = (*tl->sd_flags)();
6189 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6190 			"wrong sd_flags in topology description\n"))
6191 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6192 
6193 	*sd = (struct sched_domain){
6194 		.min_interval		= sd_weight,
6195 		.max_interval		= 2*sd_weight,
6196 		.busy_factor		= 32,
6197 		.imbalance_pct		= 125,
6198 
6199 		.cache_nice_tries	= 0,
6200 		.busy_idx		= 0,
6201 		.idle_idx		= 0,
6202 		.newidle_idx		= 0,
6203 		.wake_idx		= 0,
6204 		.forkexec_idx		= 0,
6205 
6206 		.flags			= 1*SD_LOAD_BALANCE
6207 					| 1*SD_BALANCE_NEWIDLE
6208 					| 1*SD_BALANCE_EXEC
6209 					| 1*SD_BALANCE_FORK
6210 					| 0*SD_BALANCE_WAKE
6211 					| 1*SD_WAKE_AFFINE
6212 					| 0*SD_SHARE_CPUCAPACITY
6213 					| 0*SD_SHARE_PKG_RESOURCES
6214 					| 0*SD_SERIALIZE
6215 					| 0*SD_PREFER_SIBLING
6216 					| 0*SD_NUMA
6217 					| sd_flags
6218 					,
6219 
6220 		.last_balance		= jiffies,
6221 		.balance_interval	= sd_weight,
6222 		.smt_gain		= 0,
6223 		.max_newidle_lb_cost	= 0,
6224 		.next_decay_max_lb_cost	= jiffies,
6225 #ifdef CONFIG_SCHED_DEBUG
6226 		.name			= tl->name,
6227 #endif
6228 	};
6229 
6230 	/*
6231 	 * Convert topological properties into behaviour.
6232 	 */
6233 
6234 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6235 		sd->flags |= SD_PREFER_SIBLING;
6236 		sd->imbalance_pct = 110;
6237 		sd->smt_gain = 1178; /* ~15% */
6238 
6239 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6240 		sd->imbalance_pct = 117;
6241 		sd->cache_nice_tries = 1;
6242 		sd->busy_idx = 2;
6243 
6244 #ifdef CONFIG_NUMA
6245 	} else if (sd->flags & SD_NUMA) {
6246 		sd->cache_nice_tries = 2;
6247 		sd->busy_idx = 3;
6248 		sd->idle_idx = 2;
6249 
6250 		sd->flags |= SD_SERIALIZE;
6251 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6252 			sd->flags &= ~(SD_BALANCE_EXEC |
6253 				       SD_BALANCE_FORK |
6254 				       SD_WAKE_AFFINE);
6255 		}
6256 
6257 #endif
6258 	} else {
6259 		sd->flags |= SD_PREFER_SIBLING;
6260 		sd->cache_nice_tries = 1;
6261 		sd->busy_idx = 2;
6262 		sd->idle_idx = 1;
6263 	}
6264 
6265 	sd->private = &tl->data;
6266 
6267 	return sd;
6268 }
6269 
6270 /*
6271  * Topology list, bottom-up.
6272  */
6273 static struct sched_domain_topology_level default_topology[] = {
6274 #ifdef CONFIG_SCHED_SMT
6275 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6276 #endif
6277 #ifdef CONFIG_SCHED_MC
6278 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6279 #endif
6280 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6281 	{ NULL, },
6282 };
6283 
6284 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6285 
6286 #define for_each_sd_topology(tl)			\
6287 	for (tl = sched_domain_topology; tl->mask; tl++)
6288 
6289 void set_sched_topology(struct sched_domain_topology_level *tl)
6290 {
6291 	sched_domain_topology = tl;
6292 }
6293 
6294 #ifdef CONFIG_NUMA
6295 
6296 static const struct cpumask *sd_numa_mask(int cpu)
6297 {
6298 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6299 }
6300 
6301 static void sched_numa_warn(const char *str)
6302 {
6303 	static int done = false;
6304 	int i,j;
6305 
6306 	if (done)
6307 		return;
6308 
6309 	done = true;
6310 
6311 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6312 
6313 	for (i = 0; i < nr_node_ids; i++) {
6314 		printk(KERN_WARNING "  ");
6315 		for (j = 0; j < nr_node_ids; j++)
6316 			printk(KERN_CONT "%02d ", node_distance(i,j));
6317 		printk(KERN_CONT "\n");
6318 	}
6319 	printk(KERN_WARNING "\n");
6320 }
6321 
6322 bool find_numa_distance(int distance)
6323 {
6324 	int i;
6325 
6326 	if (distance == node_distance(0, 0))
6327 		return true;
6328 
6329 	for (i = 0; i < sched_domains_numa_levels; i++) {
6330 		if (sched_domains_numa_distance[i] == distance)
6331 			return true;
6332 	}
6333 
6334 	return false;
6335 }
6336 
6337 /*
6338  * A system can have three types of NUMA topology:
6339  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6340  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6341  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6342  *
6343  * The difference between a glueless mesh topology and a backplane
6344  * topology lies in whether communication between not directly
6345  * connected nodes goes through intermediary nodes (where programs
6346  * could run), or through backplane controllers. This affects
6347  * placement of programs.
6348  *
6349  * The type of topology can be discerned with the following tests:
6350  * - If the maximum distance between any nodes is 1 hop, the system
6351  *   is directly connected.
6352  * - If for two nodes A and B, located N > 1 hops away from each other,
6353  *   there is an intermediary node C, which is < N hops away from both
6354  *   nodes A and B, the system is a glueless mesh.
6355  */
6356 static void init_numa_topology_type(void)
6357 {
6358 	int a, b, c, n;
6359 
6360 	n = sched_max_numa_distance;
6361 
6362 	if (n <= 1)
6363 		sched_numa_topology_type = NUMA_DIRECT;
6364 
6365 	for_each_online_node(a) {
6366 		for_each_online_node(b) {
6367 			/* Find two nodes furthest removed from each other. */
6368 			if (node_distance(a, b) < n)
6369 				continue;
6370 
6371 			/* Is there an intermediary node between a and b? */
6372 			for_each_online_node(c) {
6373 				if (node_distance(a, c) < n &&
6374 				    node_distance(b, c) < n) {
6375 					sched_numa_topology_type =
6376 							NUMA_GLUELESS_MESH;
6377 					return;
6378 				}
6379 			}
6380 
6381 			sched_numa_topology_type = NUMA_BACKPLANE;
6382 			return;
6383 		}
6384 	}
6385 }
6386 
6387 static void sched_init_numa(void)
6388 {
6389 	int next_distance, curr_distance = node_distance(0, 0);
6390 	struct sched_domain_topology_level *tl;
6391 	int level = 0;
6392 	int i, j, k;
6393 
6394 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6395 	if (!sched_domains_numa_distance)
6396 		return;
6397 
6398 	/*
6399 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6400 	 * unique distances in the node_distance() table.
6401 	 *
6402 	 * Assumes node_distance(0,j) includes all distances in
6403 	 * node_distance(i,j) in order to avoid cubic time.
6404 	 */
6405 	next_distance = curr_distance;
6406 	for (i = 0; i < nr_node_ids; i++) {
6407 		for (j = 0; j < nr_node_ids; j++) {
6408 			for (k = 0; k < nr_node_ids; k++) {
6409 				int distance = node_distance(i, k);
6410 
6411 				if (distance > curr_distance &&
6412 				    (distance < next_distance ||
6413 				     next_distance == curr_distance))
6414 					next_distance = distance;
6415 
6416 				/*
6417 				 * While not a strong assumption it would be nice to know
6418 				 * about cases where if node A is connected to B, B is not
6419 				 * equally connected to A.
6420 				 */
6421 				if (sched_debug() && node_distance(k, i) != distance)
6422 					sched_numa_warn("Node-distance not symmetric");
6423 
6424 				if (sched_debug() && i && !find_numa_distance(distance))
6425 					sched_numa_warn("Node-0 not representative");
6426 			}
6427 			if (next_distance != curr_distance) {
6428 				sched_domains_numa_distance[level++] = next_distance;
6429 				sched_domains_numa_levels = level;
6430 				curr_distance = next_distance;
6431 			} else break;
6432 		}
6433 
6434 		/*
6435 		 * In case of sched_debug() we verify the above assumption.
6436 		 */
6437 		if (!sched_debug())
6438 			break;
6439 	}
6440 
6441 	if (!level)
6442 		return;
6443 
6444 	/*
6445 	 * 'level' contains the number of unique distances, excluding the
6446 	 * identity distance node_distance(i,i).
6447 	 *
6448 	 * The sched_domains_numa_distance[] array includes the actual distance
6449 	 * numbers.
6450 	 */
6451 
6452 	/*
6453 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6454 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6455 	 * the array will contain less then 'level' members. This could be
6456 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6457 	 * in other functions.
6458 	 *
6459 	 * We reset it to 'level' at the end of this function.
6460 	 */
6461 	sched_domains_numa_levels = 0;
6462 
6463 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6464 	if (!sched_domains_numa_masks)
6465 		return;
6466 
6467 	/*
6468 	 * Now for each level, construct a mask per node which contains all
6469 	 * cpus of nodes that are that many hops away from us.
6470 	 */
6471 	for (i = 0; i < level; i++) {
6472 		sched_domains_numa_masks[i] =
6473 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6474 		if (!sched_domains_numa_masks[i])
6475 			return;
6476 
6477 		for (j = 0; j < nr_node_ids; j++) {
6478 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6479 			if (!mask)
6480 				return;
6481 
6482 			sched_domains_numa_masks[i][j] = mask;
6483 
6484 			for (k = 0; k < nr_node_ids; k++) {
6485 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6486 					continue;
6487 
6488 				cpumask_or(mask, mask, cpumask_of_node(k));
6489 			}
6490 		}
6491 	}
6492 
6493 	/* Compute default topology size */
6494 	for (i = 0; sched_domain_topology[i].mask; i++);
6495 
6496 	tl = kzalloc((i + level + 1) *
6497 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6498 	if (!tl)
6499 		return;
6500 
6501 	/*
6502 	 * Copy the default topology bits..
6503 	 */
6504 	for (i = 0; sched_domain_topology[i].mask; i++)
6505 		tl[i] = sched_domain_topology[i];
6506 
6507 	/*
6508 	 * .. and append 'j' levels of NUMA goodness.
6509 	 */
6510 	for (j = 0; j < level; i++, j++) {
6511 		tl[i] = (struct sched_domain_topology_level){
6512 			.mask = sd_numa_mask,
6513 			.sd_flags = cpu_numa_flags,
6514 			.flags = SDTL_OVERLAP,
6515 			.numa_level = j,
6516 			SD_INIT_NAME(NUMA)
6517 		};
6518 	}
6519 
6520 	sched_domain_topology = tl;
6521 
6522 	sched_domains_numa_levels = level;
6523 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6524 
6525 	init_numa_topology_type();
6526 }
6527 
6528 static void sched_domains_numa_masks_set(int cpu)
6529 {
6530 	int i, j;
6531 	int node = cpu_to_node(cpu);
6532 
6533 	for (i = 0; i < sched_domains_numa_levels; i++) {
6534 		for (j = 0; j < nr_node_ids; j++) {
6535 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6536 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6537 		}
6538 	}
6539 }
6540 
6541 static void sched_domains_numa_masks_clear(int cpu)
6542 {
6543 	int i, j;
6544 	for (i = 0; i < sched_domains_numa_levels; i++) {
6545 		for (j = 0; j < nr_node_ids; j++)
6546 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6547 	}
6548 }
6549 
6550 /*
6551  * Update sched_domains_numa_masks[level][node] array when new cpus
6552  * are onlined.
6553  */
6554 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6555 					   unsigned long action,
6556 					   void *hcpu)
6557 {
6558 	int cpu = (long)hcpu;
6559 
6560 	switch (action & ~CPU_TASKS_FROZEN) {
6561 	case CPU_ONLINE:
6562 		sched_domains_numa_masks_set(cpu);
6563 		break;
6564 
6565 	case CPU_DEAD:
6566 		sched_domains_numa_masks_clear(cpu);
6567 		break;
6568 
6569 	default:
6570 		return NOTIFY_DONE;
6571 	}
6572 
6573 	return NOTIFY_OK;
6574 }
6575 #else
6576 static inline void sched_init_numa(void)
6577 {
6578 }
6579 
6580 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6581 					   unsigned long action,
6582 					   void *hcpu)
6583 {
6584 	return 0;
6585 }
6586 #endif /* CONFIG_NUMA */
6587 
6588 static int __sdt_alloc(const struct cpumask *cpu_map)
6589 {
6590 	struct sched_domain_topology_level *tl;
6591 	int j;
6592 
6593 	for_each_sd_topology(tl) {
6594 		struct sd_data *sdd = &tl->data;
6595 
6596 		sdd->sd = alloc_percpu(struct sched_domain *);
6597 		if (!sdd->sd)
6598 			return -ENOMEM;
6599 
6600 		sdd->sg = alloc_percpu(struct sched_group *);
6601 		if (!sdd->sg)
6602 			return -ENOMEM;
6603 
6604 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6605 		if (!sdd->sgc)
6606 			return -ENOMEM;
6607 
6608 		for_each_cpu(j, cpu_map) {
6609 			struct sched_domain *sd;
6610 			struct sched_group *sg;
6611 			struct sched_group_capacity *sgc;
6612 
6613 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6614 					GFP_KERNEL, cpu_to_node(j));
6615 			if (!sd)
6616 				return -ENOMEM;
6617 
6618 			*per_cpu_ptr(sdd->sd, j) = sd;
6619 
6620 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6621 					GFP_KERNEL, cpu_to_node(j));
6622 			if (!sg)
6623 				return -ENOMEM;
6624 
6625 			sg->next = sg;
6626 
6627 			*per_cpu_ptr(sdd->sg, j) = sg;
6628 
6629 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6630 					GFP_KERNEL, cpu_to_node(j));
6631 			if (!sgc)
6632 				return -ENOMEM;
6633 
6634 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6635 		}
6636 	}
6637 
6638 	return 0;
6639 }
6640 
6641 static void __sdt_free(const struct cpumask *cpu_map)
6642 {
6643 	struct sched_domain_topology_level *tl;
6644 	int j;
6645 
6646 	for_each_sd_topology(tl) {
6647 		struct sd_data *sdd = &tl->data;
6648 
6649 		for_each_cpu(j, cpu_map) {
6650 			struct sched_domain *sd;
6651 
6652 			if (sdd->sd) {
6653 				sd = *per_cpu_ptr(sdd->sd, j);
6654 				if (sd && (sd->flags & SD_OVERLAP))
6655 					free_sched_groups(sd->groups, 0);
6656 				kfree(*per_cpu_ptr(sdd->sd, j));
6657 			}
6658 
6659 			if (sdd->sg)
6660 				kfree(*per_cpu_ptr(sdd->sg, j));
6661 			if (sdd->sgc)
6662 				kfree(*per_cpu_ptr(sdd->sgc, j));
6663 		}
6664 		free_percpu(sdd->sd);
6665 		sdd->sd = NULL;
6666 		free_percpu(sdd->sg);
6667 		sdd->sg = NULL;
6668 		free_percpu(sdd->sgc);
6669 		sdd->sgc = NULL;
6670 	}
6671 }
6672 
6673 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6674 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6675 		struct sched_domain *child, int cpu)
6676 {
6677 	struct sched_domain *sd = sd_init(tl, cpu);
6678 	if (!sd)
6679 		return child;
6680 
6681 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6682 	if (child) {
6683 		sd->level = child->level + 1;
6684 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6685 		child->parent = sd;
6686 		sd->child = child;
6687 
6688 		if (!cpumask_subset(sched_domain_span(child),
6689 				    sched_domain_span(sd))) {
6690 			pr_err("BUG: arch topology borken\n");
6691 #ifdef CONFIG_SCHED_DEBUG
6692 			pr_err("     the %s domain not a subset of the %s domain\n",
6693 					child->name, sd->name);
6694 #endif
6695 			/* Fixup, ensure @sd has at least @child cpus. */
6696 			cpumask_or(sched_domain_span(sd),
6697 				   sched_domain_span(sd),
6698 				   sched_domain_span(child));
6699 		}
6700 
6701 	}
6702 	set_domain_attribute(sd, attr);
6703 
6704 	return sd;
6705 }
6706 
6707 /*
6708  * Build sched domains for a given set of cpus and attach the sched domains
6709  * to the individual cpus
6710  */
6711 static int build_sched_domains(const struct cpumask *cpu_map,
6712 			       struct sched_domain_attr *attr)
6713 {
6714 	enum s_alloc alloc_state;
6715 	struct sched_domain *sd;
6716 	struct s_data d;
6717 	int i, ret = -ENOMEM;
6718 
6719 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6720 	if (alloc_state != sa_rootdomain)
6721 		goto error;
6722 
6723 	/* Set up domains for cpus specified by the cpu_map. */
6724 	for_each_cpu(i, cpu_map) {
6725 		struct sched_domain_topology_level *tl;
6726 
6727 		sd = NULL;
6728 		for_each_sd_topology(tl) {
6729 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6730 			if (tl == sched_domain_topology)
6731 				*per_cpu_ptr(d.sd, i) = sd;
6732 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6733 				sd->flags |= SD_OVERLAP;
6734 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6735 				break;
6736 		}
6737 	}
6738 
6739 	/* Build the groups for the domains */
6740 	for_each_cpu(i, cpu_map) {
6741 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6742 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6743 			if (sd->flags & SD_OVERLAP) {
6744 				if (build_overlap_sched_groups(sd, i))
6745 					goto error;
6746 			} else {
6747 				if (build_sched_groups(sd, i))
6748 					goto error;
6749 			}
6750 		}
6751 	}
6752 
6753 	/* Calculate CPU capacity for physical packages and nodes */
6754 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6755 		if (!cpumask_test_cpu(i, cpu_map))
6756 			continue;
6757 
6758 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6759 			claim_allocations(i, sd);
6760 			init_sched_groups_capacity(i, sd);
6761 		}
6762 	}
6763 
6764 	/* Attach the domains */
6765 	rcu_read_lock();
6766 	for_each_cpu(i, cpu_map) {
6767 		sd = *per_cpu_ptr(d.sd, i);
6768 		cpu_attach_domain(sd, d.rd, i);
6769 	}
6770 	rcu_read_unlock();
6771 
6772 	ret = 0;
6773 error:
6774 	__free_domain_allocs(&d, alloc_state, cpu_map);
6775 	return ret;
6776 }
6777 
6778 static cpumask_var_t *doms_cur;	/* current sched domains */
6779 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6780 static struct sched_domain_attr *dattr_cur;
6781 				/* attribues of custom domains in 'doms_cur' */
6782 
6783 /*
6784  * Special case: If a kmalloc of a doms_cur partition (array of
6785  * cpumask) fails, then fallback to a single sched domain,
6786  * as determined by the single cpumask fallback_doms.
6787  */
6788 static cpumask_var_t fallback_doms;
6789 
6790 /*
6791  * arch_update_cpu_topology lets virtualized architectures update the
6792  * cpu core maps. It is supposed to return 1 if the topology changed
6793  * or 0 if it stayed the same.
6794  */
6795 int __weak arch_update_cpu_topology(void)
6796 {
6797 	return 0;
6798 }
6799 
6800 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6801 {
6802 	int i;
6803 	cpumask_var_t *doms;
6804 
6805 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6806 	if (!doms)
6807 		return NULL;
6808 	for (i = 0; i < ndoms; i++) {
6809 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6810 			free_sched_domains(doms, i);
6811 			return NULL;
6812 		}
6813 	}
6814 	return doms;
6815 }
6816 
6817 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6818 {
6819 	unsigned int i;
6820 	for (i = 0; i < ndoms; i++)
6821 		free_cpumask_var(doms[i]);
6822 	kfree(doms);
6823 }
6824 
6825 /*
6826  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6827  * For now this just excludes isolated cpus, but could be used to
6828  * exclude other special cases in the future.
6829  */
6830 static int init_sched_domains(const struct cpumask *cpu_map)
6831 {
6832 	int err;
6833 
6834 	arch_update_cpu_topology();
6835 	ndoms_cur = 1;
6836 	doms_cur = alloc_sched_domains(ndoms_cur);
6837 	if (!doms_cur)
6838 		doms_cur = &fallback_doms;
6839 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6840 	err = build_sched_domains(doms_cur[0], NULL);
6841 	register_sched_domain_sysctl();
6842 
6843 	return err;
6844 }
6845 
6846 /*
6847  * Detach sched domains from a group of cpus specified in cpu_map
6848  * These cpus will now be attached to the NULL domain
6849  */
6850 static void detach_destroy_domains(const struct cpumask *cpu_map)
6851 {
6852 	int i;
6853 
6854 	rcu_read_lock();
6855 	for_each_cpu(i, cpu_map)
6856 		cpu_attach_domain(NULL, &def_root_domain, i);
6857 	rcu_read_unlock();
6858 }
6859 
6860 /* handle null as "default" */
6861 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6862 			struct sched_domain_attr *new, int idx_new)
6863 {
6864 	struct sched_domain_attr tmp;
6865 
6866 	/* fast path */
6867 	if (!new && !cur)
6868 		return 1;
6869 
6870 	tmp = SD_ATTR_INIT;
6871 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6872 			new ? (new + idx_new) : &tmp,
6873 			sizeof(struct sched_domain_attr));
6874 }
6875 
6876 /*
6877  * Partition sched domains as specified by the 'ndoms_new'
6878  * cpumasks in the array doms_new[] of cpumasks. This compares
6879  * doms_new[] to the current sched domain partitioning, doms_cur[].
6880  * It destroys each deleted domain and builds each new domain.
6881  *
6882  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6883  * The masks don't intersect (don't overlap.) We should setup one
6884  * sched domain for each mask. CPUs not in any of the cpumasks will
6885  * not be load balanced. If the same cpumask appears both in the
6886  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6887  * it as it is.
6888  *
6889  * The passed in 'doms_new' should be allocated using
6890  * alloc_sched_domains.  This routine takes ownership of it and will
6891  * free_sched_domains it when done with it. If the caller failed the
6892  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6893  * and partition_sched_domains() will fallback to the single partition
6894  * 'fallback_doms', it also forces the domains to be rebuilt.
6895  *
6896  * If doms_new == NULL it will be replaced with cpu_online_mask.
6897  * ndoms_new == 0 is a special case for destroying existing domains,
6898  * and it will not create the default domain.
6899  *
6900  * Call with hotplug lock held
6901  */
6902 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6903 			     struct sched_domain_attr *dattr_new)
6904 {
6905 	int i, j, n;
6906 	int new_topology;
6907 
6908 	mutex_lock(&sched_domains_mutex);
6909 
6910 	/* always unregister in case we don't destroy any domains */
6911 	unregister_sched_domain_sysctl();
6912 
6913 	/* Let architecture update cpu core mappings. */
6914 	new_topology = arch_update_cpu_topology();
6915 
6916 	n = doms_new ? ndoms_new : 0;
6917 
6918 	/* Destroy deleted domains */
6919 	for (i = 0; i < ndoms_cur; i++) {
6920 		for (j = 0; j < n && !new_topology; j++) {
6921 			if (cpumask_equal(doms_cur[i], doms_new[j])
6922 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6923 				goto match1;
6924 		}
6925 		/* no match - a current sched domain not in new doms_new[] */
6926 		detach_destroy_domains(doms_cur[i]);
6927 match1:
6928 		;
6929 	}
6930 
6931 	n = ndoms_cur;
6932 	if (doms_new == NULL) {
6933 		n = 0;
6934 		doms_new = &fallback_doms;
6935 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6936 		WARN_ON_ONCE(dattr_new);
6937 	}
6938 
6939 	/* Build new domains */
6940 	for (i = 0; i < ndoms_new; i++) {
6941 		for (j = 0; j < n && !new_topology; j++) {
6942 			if (cpumask_equal(doms_new[i], doms_cur[j])
6943 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6944 				goto match2;
6945 		}
6946 		/* no match - add a new doms_new */
6947 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6948 match2:
6949 		;
6950 	}
6951 
6952 	/* Remember the new sched domains */
6953 	if (doms_cur != &fallback_doms)
6954 		free_sched_domains(doms_cur, ndoms_cur);
6955 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6956 	doms_cur = doms_new;
6957 	dattr_cur = dattr_new;
6958 	ndoms_cur = ndoms_new;
6959 
6960 	register_sched_domain_sysctl();
6961 
6962 	mutex_unlock(&sched_domains_mutex);
6963 }
6964 
6965 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6966 
6967 /*
6968  * Update cpusets according to cpu_active mask.  If cpusets are
6969  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6970  * around partition_sched_domains().
6971  *
6972  * If we come here as part of a suspend/resume, don't touch cpusets because we
6973  * want to restore it back to its original state upon resume anyway.
6974  */
6975 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6976 			     void *hcpu)
6977 {
6978 	switch (action) {
6979 	case CPU_ONLINE_FROZEN:
6980 	case CPU_DOWN_FAILED_FROZEN:
6981 
6982 		/*
6983 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6984 		 * resume sequence. As long as this is not the last online
6985 		 * operation in the resume sequence, just build a single sched
6986 		 * domain, ignoring cpusets.
6987 		 */
6988 		num_cpus_frozen--;
6989 		if (likely(num_cpus_frozen)) {
6990 			partition_sched_domains(1, NULL, NULL);
6991 			break;
6992 		}
6993 
6994 		/*
6995 		 * This is the last CPU online operation. So fall through and
6996 		 * restore the original sched domains by considering the
6997 		 * cpuset configurations.
6998 		 */
6999 
7000 	case CPU_ONLINE:
7001 		cpuset_update_active_cpus(true);
7002 		break;
7003 	default:
7004 		return NOTIFY_DONE;
7005 	}
7006 	return NOTIFY_OK;
7007 }
7008 
7009 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7010 			       void *hcpu)
7011 {
7012 	unsigned long flags;
7013 	long cpu = (long)hcpu;
7014 	struct dl_bw *dl_b;
7015 
7016 	switch (action & ~CPU_TASKS_FROZEN) {
7017 	case CPU_DOWN_PREPARE:
7018 		/* explicitly allow suspend */
7019 		if (!(action & CPU_TASKS_FROZEN)) {
7020 			bool overflow;
7021 			int cpus;
7022 
7023 			rcu_read_lock_sched();
7024 			dl_b = dl_bw_of(cpu);
7025 
7026 			raw_spin_lock_irqsave(&dl_b->lock, flags);
7027 			cpus = dl_bw_cpus(cpu);
7028 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
7029 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7030 
7031 			rcu_read_unlock_sched();
7032 
7033 			if (overflow)
7034 				return notifier_from_errno(-EBUSY);
7035 		}
7036 		cpuset_update_active_cpus(false);
7037 		break;
7038 	case CPU_DOWN_PREPARE_FROZEN:
7039 		num_cpus_frozen++;
7040 		partition_sched_domains(1, NULL, NULL);
7041 		break;
7042 	default:
7043 		return NOTIFY_DONE;
7044 	}
7045 	return NOTIFY_OK;
7046 }
7047 
7048 void __init sched_init_smp(void)
7049 {
7050 	cpumask_var_t non_isolated_cpus;
7051 
7052 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7053 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7054 
7055 	sched_init_numa();
7056 
7057 	/*
7058 	 * There's no userspace yet to cause hotplug operations; hence all the
7059 	 * cpu masks are stable and all blatant races in the below code cannot
7060 	 * happen.
7061 	 */
7062 	mutex_lock(&sched_domains_mutex);
7063 	init_sched_domains(cpu_active_mask);
7064 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7065 	if (cpumask_empty(non_isolated_cpus))
7066 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7067 	mutex_unlock(&sched_domains_mutex);
7068 
7069 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7070 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7071 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7072 
7073 	init_hrtick();
7074 
7075 	/* Move init over to a non-isolated CPU */
7076 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7077 		BUG();
7078 	sched_init_granularity();
7079 	free_cpumask_var(non_isolated_cpus);
7080 
7081 	init_sched_rt_class();
7082 	init_sched_dl_class();
7083 }
7084 #else
7085 void __init sched_init_smp(void)
7086 {
7087 	sched_init_granularity();
7088 }
7089 #endif /* CONFIG_SMP */
7090 
7091 const_debug unsigned int sysctl_timer_migration = 1;
7092 
7093 int in_sched_functions(unsigned long addr)
7094 {
7095 	return in_lock_functions(addr) ||
7096 		(addr >= (unsigned long)__sched_text_start
7097 		&& addr < (unsigned long)__sched_text_end);
7098 }
7099 
7100 #ifdef CONFIG_CGROUP_SCHED
7101 /*
7102  * Default task group.
7103  * Every task in system belongs to this group at bootup.
7104  */
7105 struct task_group root_task_group;
7106 LIST_HEAD(task_groups);
7107 #endif
7108 
7109 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7110 
7111 void __init sched_init(void)
7112 {
7113 	int i, j;
7114 	unsigned long alloc_size = 0, ptr;
7115 
7116 #ifdef CONFIG_FAIR_GROUP_SCHED
7117 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7118 #endif
7119 #ifdef CONFIG_RT_GROUP_SCHED
7120 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7121 #endif
7122 	if (alloc_size) {
7123 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7124 
7125 #ifdef CONFIG_FAIR_GROUP_SCHED
7126 		root_task_group.se = (struct sched_entity **)ptr;
7127 		ptr += nr_cpu_ids * sizeof(void **);
7128 
7129 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7130 		ptr += nr_cpu_ids * sizeof(void **);
7131 
7132 #endif /* CONFIG_FAIR_GROUP_SCHED */
7133 #ifdef CONFIG_RT_GROUP_SCHED
7134 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7135 		ptr += nr_cpu_ids * sizeof(void **);
7136 
7137 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7138 		ptr += nr_cpu_ids * sizeof(void **);
7139 
7140 #endif /* CONFIG_RT_GROUP_SCHED */
7141 	}
7142 #ifdef CONFIG_CPUMASK_OFFSTACK
7143 	for_each_possible_cpu(i) {
7144 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7145 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7146 	}
7147 #endif /* CONFIG_CPUMASK_OFFSTACK */
7148 
7149 	init_rt_bandwidth(&def_rt_bandwidth,
7150 			global_rt_period(), global_rt_runtime());
7151 	init_dl_bandwidth(&def_dl_bandwidth,
7152 			global_rt_period(), global_rt_runtime());
7153 
7154 #ifdef CONFIG_SMP
7155 	init_defrootdomain();
7156 #endif
7157 
7158 #ifdef CONFIG_RT_GROUP_SCHED
7159 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7160 			global_rt_period(), global_rt_runtime());
7161 #endif /* CONFIG_RT_GROUP_SCHED */
7162 
7163 #ifdef CONFIG_CGROUP_SCHED
7164 	list_add(&root_task_group.list, &task_groups);
7165 	INIT_LIST_HEAD(&root_task_group.children);
7166 	INIT_LIST_HEAD(&root_task_group.siblings);
7167 	autogroup_init(&init_task);
7168 
7169 #endif /* CONFIG_CGROUP_SCHED */
7170 
7171 	for_each_possible_cpu(i) {
7172 		struct rq *rq;
7173 
7174 		rq = cpu_rq(i);
7175 		raw_spin_lock_init(&rq->lock);
7176 		rq->nr_running = 0;
7177 		rq->calc_load_active = 0;
7178 		rq->calc_load_update = jiffies + LOAD_FREQ;
7179 		init_cfs_rq(&rq->cfs);
7180 		init_rt_rq(&rq->rt);
7181 		init_dl_rq(&rq->dl);
7182 #ifdef CONFIG_FAIR_GROUP_SCHED
7183 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7184 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7185 		/*
7186 		 * How much cpu bandwidth does root_task_group get?
7187 		 *
7188 		 * In case of task-groups formed thr' the cgroup filesystem, it
7189 		 * gets 100% of the cpu resources in the system. This overall
7190 		 * system cpu resource is divided among the tasks of
7191 		 * root_task_group and its child task-groups in a fair manner,
7192 		 * based on each entity's (task or task-group's) weight
7193 		 * (se->load.weight).
7194 		 *
7195 		 * In other words, if root_task_group has 10 tasks of weight
7196 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7197 		 * then A0's share of the cpu resource is:
7198 		 *
7199 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7200 		 *
7201 		 * We achieve this by letting root_task_group's tasks sit
7202 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7203 		 */
7204 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7205 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7206 #endif /* CONFIG_FAIR_GROUP_SCHED */
7207 
7208 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7209 #ifdef CONFIG_RT_GROUP_SCHED
7210 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7211 #endif
7212 
7213 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7214 			rq->cpu_load[j] = 0;
7215 
7216 		rq->last_load_update_tick = jiffies;
7217 
7218 #ifdef CONFIG_SMP
7219 		rq->sd = NULL;
7220 		rq->rd = NULL;
7221 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7222 		rq->post_schedule = 0;
7223 		rq->active_balance = 0;
7224 		rq->next_balance = jiffies;
7225 		rq->push_cpu = 0;
7226 		rq->cpu = i;
7227 		rq->online = 0;
7228 		rq->idle_stamp = 0;
7229 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7230 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7231 
7232 		INIT_LIST_HEAD(&rq->cfs_tasks);
7233 
7234 		rq_attach_root(rq, &def_root_domain);
7235 #ifdef CONFIG_NO_HZ_COMMON
7236 		rq->nohz_flags = 0;
7237 #endif
7238 #ifdef CONFIG_NO_HZ_FULL
7239 		rq->last_sched_tick = 0;
7240 #endif
7241 #endif
7242 		init_rq_hrtick(rq);
7243 		atomic_set(&rq->nr_iowait, 0);
7244 	}
7245 
7246 	set_load_weight(&init_task);
7247 
7248 #ifdef CONFIG_PREEMPT_NOTIFIERS
7249 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7250 #endif
7251 
7252 	/*
7253 	 * The boot idle thread does lazy MMU switching as well:
7254 	 */
7255 	atomic_inc(&init_mm.mm_count);
7256 	enter_lazy_tlb(&init_mm, current);
7257 
7258 	/*
7259 	 * During early bootup we pretend to be a normal task:
7260 	 */
7261 	current->sched_class = &fair_sched_class;
7262 
7263 	/*
7264 	 * Make us the idle thread. Technically, schedule() should not be
7265 	 * called from this thread, however somewhere below it might be,
7266 	 * but because we are the idle thread, we just pick up running again
7267 	 * when this runqueue becomes "idle".
7268 	 */
7269 	init_idle(current, smp_processor_id());
7270 
7271 	calc_load_update = jiffies + LOAD_FREQ;
7272 
7273 #ifdef CONFIG_SMP
7274 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7275 	/* May be allocated at isolcpus cmdline parse time */
7276 	if (cpu_isolated_map == NULL)
7277 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7278 	idle_thread_set_boot_cpu();
7279 	set_cpu_rq_start_time();
7280 #endif
7281 	init_sched_fair_class();
7282 
7283 	scheduler_running = 1;
7284 }
7285 
7286 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7287 static inline int preempt_count_equals(int preempt_offset)
7288 {
7289 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7290 
7291 	return (nested == preempt_offset);
7292 }
7293 
7294 void __might_sleep(const char *file, int line, int preempt_offset)
7295 {
7296 	/*
7297 	 * Blocking primitives will set (and therefore destroy) current->state,
7298 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7299 	 * otherwise we will destroy state.
7300 	 */
7301 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7302 			"do not call blocking ops when !TASK_RUNNING; "
7303 			"state=%lx set at [<%p>] %pS\n",
7304 			current->state,
7305 			(void *)current->task_state_change,
7306 			(void *)current->task_state_change);
7307 
7308 	___might_sleep(file, line, preempt_offset);
7309 }
7310 EXPORT_SYMBOL(__might_sleep);
7311 
7312 void ___might_sleep(const char *file, int line, int preempt_offset)
7313 {
7314 	static unsigned long prev_jiffy;	/* ratelimiting */
7315 
7316 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7317 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7318 	     !is_idle_task(current)) ||
7319 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7320 		return;
7321 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7322 		return;
7323 	prev_jiffy = jiffies;
7324 
7325 	printk(KERN_ERR
7326 		"BUG: sleeping function called from invalid context at %s:%d\n",
7327 			file, line);
7328 	printk(KERN_ERR
7329 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7330 			in_atomic(), irqs_disabled(),
7331 			current->pid, current->comm);
7332 
7333 	if (task_stack_end_corrupted(current))
7334 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7335 
7336 	debug_show_held_locks(current);
7337 	if (irqs_disabled())
7338 		print_irqtrace_events(current);
7339 #ifdef CONFIG_DEBUG_PREEMPT
7340 	if (!preempt_count_equals(preempt_offset)) {
7341 		pr_err("Preemption disabled at:");
7342 		print_ip_sym(current->preempt_disable_ip);
7343 		pr_cont("\n");
7344 	}
7345 #endif
7346 	dump_stack();
7347 }
7348 EXPORT_SYMBOL(___might_sleep);
7349 #endif
7350 
7351 #ifdef CONFIG_MAGIC_SYSRQ
7352 static void normalize_task(struct rq *rq, struct task_struct *p)
7353 {
7354 	const struct sched_class *prev_class = p->sched_class;
7355 	struct sched_attr attr = {
7356 		.sched_policy = SCHED_NORMAL,
7357 	};
7358 	int old_prio = p->prio;
7359 	int queued;
7360 
7361 	queued = task_on_rq_queued(p);
7362 	if (queued)
7363 		dequeue_task(rq, p, 0);
7364 	__setscheduler(rq, p, &attr);
7365 	if (queued) {
7366 		enqueue_task(rq, p, 0);
7367 		resched_curr(rq);
7368 	}
7369 
7370 	check_class_changed(rq, p, prev_class, old_prio);
7371 }
7372 
7373 void normalize_rt_tasks(void)
7374 {
7375 	struct task_struct *g, *p;
7376 	unsigned long flags;
7377 	struct rq *rq;
7378 
7379 	read_lock(&tasklist_lock);
7380 	for_each_process_thread(g, p) {
7381 		/*
7382 		 * Only normalize user tasks:
7383 		 */
7384 		if (p->flags & PF_KTHREAD)
7385 			continue;
7386 
7387 		p->se.exec_start		= 0;
7388 #ifdef CONFIG_SCHEDSTATS
7389 		p->se.statistics.wait_start	= 0;
7390 		p->se.statistics.sleep_start	= 0;
7391 		p->se.statistics.block_start	= 0;
7392 #endif
7393 
7394 		if (!dl_task(p) && !rt_task(p)) {
7395 			/*
7396 			 * Renice negative nice level userspace
7397 			 * tasks back to 0:
7398 			 */
7399 			if (task_nice(p) < 0)
7400 				set_user_nice(p, 0);
7401 			continue;
7402 		}
7403 
7404 		rq = task_rq_lock(p, &flags);
7405 		normalize_task(rq, p);
7406 		task_rq_unlock(rq, p, &flags);
7407 	}
7408 	read_unlock(&tasklist_lock);
7409 }
7410 
7411 #endif /* CONFIG_MAGIC_SYSRQ */
7412 
7413 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7414 /*
7415  * These functions are only useful for the IA64 MCA handling, or kdb.
7416  *
7417  * They can only be called when the whole system has been
7418  * stopped - every CPU needs to be quiescent, and no scheduling
7419  * activity can take place. Using them for anything else would
7420  * be a serious bug, and as a result, they aren't even visible
7421  * under any other configuration.
7422  */
7423 
7424 /**
7425  * curr_task - return the current task for a given cpu.
7426  * @cpu: the processor in question.
7427  *
7428  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7429  *
7430  * Return: The current task for @cpu.
7431  */
7432 struct task_struct *curr_task(int cpu)
7433 {
7434 	return cpu_curr(cpu);
7435 }
7436 
7437 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7438 
7439 #ifdef CONFIG_IA64
7440 /**
7441  * set_curr_task - set the current task for a given cpu.
7442  * @cpu: the processor in question.
7443  * @p: the task pointer to set.
7444  *
7445  * Description: This function must only be used when non-maskable interrupts
7446  * are serviced on a separate stack. It allows the architecture to switch the
7447  * notion of the current task on a cpu in a non-blocking manner. This function
7448  * must be called with all CPU's synchronized, and interrupts disabled, the
7449  * and caller must save the original value of the current task (see
7450  * curr_task() above) and restore that value before reenabling interrupts and
7451  * re-starting the system.
7452  *
7453  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7454  */
7455 void set_curr_task(int cpu, struct task_struct *p)
7456 {
7457 	cpu_curr(cpu) = p;
7458 }
7459 
7460 #endif
7461 
7462 #ifdef CONFIG_CGROUP_SCHED
7463 /* task_group_lock serializes the addition/removal of task groups */
7464 static DEFINE_SPINLOCK(task_group_lock);
7465 
7466 static void free_sched_group(struct task_group *tg)
7467 {
7468 	free_fair_sched_group(tg);
7469 	free_rt_sched_group(tg);
7470 	autogroup_free(tg);
7471 	kfree(tg);
7472 }
7473 
7474 /* allocate runqueue etc for a new task group */
7475 struct task_group *sched_create_group(struct task_group *parent)
7476 {
7477 	struct task_group *tg;
7478 
7479 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7480 	if (!tg)
7481 		return ERR_PTR(-ENOMEM);
7482 
7483 	if (!alloc_fair_sched_group(tg, parent))
7484 		goto err;
7485 
7486 	if (!alloc_rt_sched_group(tg, parent))
7487 		goto err;
7488 
7489 	return tg;
7490 
7491 err:
7492 	free_sched_group(tg);
7493 	return ERR_PTR(-ENOMEM);
7494 }
7495 
7496 void sched_online_group(struct task_group *tg, struct task_group *parent)
7497 {
7498 	unsigned long flags;
7499 
7500 	spin_lock_irqsave(&task_group_lock, flags);
7501 	list_add_rcu(&tg->list, &task_groups);
7502 
7503 	WARN_ON(!parent); /* root should already exist */
7504 
7505 	tg->parent = parent;
7506 	INIT_LIST_HEAD(&tg->children);
7507 	list_add_rcu(&tg->siblings, &parent->children);
7508 	spin_unlock_irqrestore(&task_group_lock, flags);
7509 }
7510 
7511 /* rcu callback to free various structures associated with a task group */
7512 static void free_sched_group_rcu(struct rcu_head *rhp)
7513 {
7514 	/* now it should be safe to free those cfs_rqs */
7515 	free_sched_group(container_of(rhp, struct task_group, rcu));
7516 }
7517 
7518 /* Destroy runqueue etc associated with a task group */
7519 void sched_destroy_group(struct task_group *tg)
7520 {
7521 	/* wait for possible concurrent references to cfs_rqs complete */
7522 	call_rcu(&tg->rcu, free_sched_group_rcu);
7523 }
7524 
7525 void sched_offline_group(struct task_group *tg)
7526 {
7527 	unsigned long flags;
7528 	int i;
7529 
7530 	/* end participation in shares distribution */
7531 	for_each_possible_cpu(i)
7532 		unregister_fair_sched_group(tg, i);
7533 
7534 	spin_lock_irqsave(&task_group_lock, flags);
7535 	list_del_rcu(&tg->list);
7536 	list_del_rcu(&tg->siblings);
7537 	spin_unlock_irqrestore(&task_group_lock, flags);
7538 }
7539 
7540 /* change task's runqueue when it moves between groups.
7541  *	The caller of this function should have put the task in its new group
7542  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7543  *	reflect its new group.
7544  */
7545 void sched_move_task(struct task_struct *tsk)
7546 {
7547 	struct task_group *tg;
7548 	int queued, running;
7549 	unsigned long flags;
7550 	struct rq *rq;
7551 
7552 	rq = task_rq_lock(tsk, &flags);
7553 
7554 	running = task_current(rq, tsk);
7555 	queued = task_on_rq_queued(tsk);
7556 
7557 	if (queued)
7558 		dequeue_task(rq, tsk, 0);
7559 	if (unlikely(running))
7560 		put_prev_task(rq, tsk);
7561 
7562 	/*
7563 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7564 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7565 	 * to prevent lockdep warnings.
7566 	 */
7567 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7568 			  struct task_group, css);
7569 	tg = autogroup_task_group(tsk, tg);
7570 	tsk->sched_task_group = tg;
7571 
7572 #ifdef CONFIG_FAIR_GROUP_SCHED
7573 	if (tsk->sched_class->task_move_group)
7574 		tsk->sched_class->task_move_group(tsk, queued);
7575 	else
7576 #endif
7577 		set_task_rq(tsk, task_cpu(tsk));
7578 
7579 	if (unlikely(running))
7580 		tsk->sched_class->set_curr_task(rq);
7581 	if (queued)
7582 		enqueue_task(rq, tsk, 0);
7583 
7584 	task_rq_unlock(rq, tsk, &flags);
7585 }
7586 #endif /* CONFIG_CGROUP_SCHED */
7587 
7588 #ifdef CONFIG_RT_GROUP_SCHED
7589 /*
7590  * Ensure that the real time constraints are schedulable.
7591  */
7592 static DEFINE_MUTEX(rt_constraints_mutex);
7593 
7594 /* Must be called with tasklist_lock held */
7595 static inline int tg_has_rt_tasks(struct task_group *tg)
7596 {
7597 	struct task_struct *g, *p;
7598 
7599 	/*
7600 	 * Autogroups do not have RT tasks; see autogroup_create().
7601 	 */
7602 	if (task_group_is_autogroup(tg))
7603 		return 0;
7604 
7605 	for_each_process_thread(g, p) {
7606 		if (rt_task(p) && task_group(p) == tg)
7607 			return 1;
7608 	}
7609 
7610 	return 0;
7611 }
7612 
7613 struct rt_schedulable_data {
7614 	struct task_group *tg;
7615 	u64 rt_period;
7616 	u64 rt_runtime;
7617 };
7618 
7619 static int tg_rt_schedulable(struct task_group *tg, void *data)
7620 {
7621 	struct rt_schedulable_data *d = data;
7622 	struct task_group *child;
7623 	unsigned long total, sum = 0;
7624 	u64 period, runtime;
7625 
7626 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7627 	runtime = tg->rt_bandwidth.rt_runtime;
7628 
7629 	if (tg == d->tg) {
7630 		period = d->rt_period;
7631 		runtime = d->rt_runtime;
7632 	}
7633 
7634 	/*
7635 	 * Cannot have more runtime than the period.
7636 	 */
7637 	if (runtime > period && runtime != RUNTIME_INF)
7638 		return -EINVAL;
7639 
7640 	/*
7641 	 * Ensure we don't starve existing RT tasks.
7642 	 */
7643 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7644 		return -EBUSY;
7645 
7646 	total = to_ratio(period, runtime);
7647 
7648 	/*
7649 	 * Nobody can have more than the global setting allows.
7650 	 */
7651 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7652 		return -EINVAL;
7653 
7654 	/*
7655 	 * The sum of our children's runtime should not exceed our own.
7656 	 */
7657 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7658 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7659 		runtime = child->rt_bandwidth.rt_runtime;
7660 
7661 		if (child == d->tg) {
7662 			period = d->rt_period;
7663 			runtime = d->rt_runtime;
7664 		}
7665 
7666 		sum += to_ratio(period, runtime);
7667 	}
7668 
7669 	if (sum > total)
7670 		return -EINVAL;
7671 
7672 	return 0;
7673 }
7674 
7675 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7676 {
7677 	int ret;
7678 
7679 	struct rt_schedulable_data data = {
7680 		.tg = tg,
7681 		.rt_period = period,
7682 		.rt_runtime = runtime,
7683 	};
7684 
7685 	rcu_read_lock();
7686 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7687 	rcu_read_unlock();
7688 
7689 	return ret;
7690 }
7691 
7692 static int tg_set_rt_bandwidth(struct task_group *tg,
7693 		u64 rt_period, u64 rt_runtime)
7694 {
7695 	int i, err = 0;
7696 
7697 	/*
7698 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7699 	 * kernel creating (and or operating) RT threads.
7700 	 */
7701 	if (tg == &root_task_group && rt_runtime == 0)
7702 		return -EINVAL;
7703 
7704 	/* No period doesn't make any sense. */
7705 	if (rt_period == 0)
7706 		return -EINVAL;
7707 
7708 	mutex_lock(&rt_constraints_mutex);
7709 	read_lock(&tasklist_lock);
7710 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7711 	if (err)
7712 		goto unlock;
7713 
7714 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7715 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7716 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7717 
7718 	for_each_possible_cpu(i) {
7719 		struct rt_rq *rt_rq = tg->rt_rq[i];
7720 
7721 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7722 		rt_rq->rt_runtime = rt_runtime;
7723 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7724 	}
7725 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7726 unlock:
7727 	read_unlock(&tasklist_lock);
7728 	mutex_unlock(&rt_constraints_mutex);
7729 
7730 	return err;
7731 }
7732 
7733 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7734 {
7735 	u64 rt_runtime, rt_period;
7736 
7737 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7738 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7739 	if (rt_runtime_us < 0)
7740 		rt_runtime = RUNTIME_INF;
7741 
7742 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7743 }
7744 
7745 static long sched_group_rt_runtime(struct task_group *tg)
7746 {
7747 	u64 rt_runtime_us;
7748 
7749 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7750 		return -1;
7751 
7752 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7753 	do_div(rt_runtime_us, NSEC_PER_USEC);
7754 	return rt_runtime_us;
7755 }
7756 
7757 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7758 {
7759 	u64 rt_runtime, rt_period;
7760 
7761 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7762 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7763 
7764 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7765 }
7766 
7767 static long sched_group_rt_period(struct task_group *tg)
7768 {
7769 	u64 rt_period_us;
7770 
7771 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7772 	do_div(rt_period_us, NSEC_PER_USEC);
7773 	return rt_period_us;
7774 }
7775 #endif /* CONFIG_RT_GROUP_SCHED */
7776 
7777 #ifdef CONFIG_RT_GROUP_SCHED
7778 static int sched_rt_global_constraints(void)
7779 {
7780 	int ret = 0;
7781 
7782 	mutex_lock(&rt_constraints_mutex);
7783 	read_lock(&tasklist_lock);
7784 	ret = __rt_schedulable(NULL, 0, 0);
7785 	read_unlock(&tasklist_lock);
7786 	mutex_unlock(&rt_constraints_mutex);
7787 
7788 	return ret;
7789 }
7790 
7791 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7792 {
7793 	/* Don't accept realtime tasks when there is no way for them to run */
7794 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7795 		return 0;
7796 
7797 	return 1;
7798 }
7799 
7800 #else /* !CONFIG_RT_GROUP_SCHED */
7801 static int sched_rt_global_constraints(void)
7802 {
7803 	unsigned long flags;
7804 	int i, ret = 0;
7805 
7806 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7807 	for_each_possible_cpu(i) {
7808 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7809 
7810 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7811 		rt_rq->rt_runtime = global_rt_runtime();
7812 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7813 	}
7814 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7815 
7816 	return ret;
7817 }
7818 #endif /* CONFIG_RT_GROUP_SCHED */
7819 
7820 static int sched_dl_global_validate(void)
7821 {
7822 	u64 runtime = global_rt_runtime();
7823 	u64 period = global_rt_period();
7824 	u64 new_bw = to_ratio(period, runtime);
7825 	struct dl_bw *dl_b;
7826 	int cpu, ret = 0;
7827 	unsigned long flags;
7828 
7829 	/*
7830 	 * Here we want to check the bandwidth not being set to some
7831 	 * value smaller than the currently allocated bandwidth in
7832 	 * any of the root_domains.
7833 	 *
7834 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7835 	 * cycling on root_domains... Discussion on different/better
7836 	 * solutions is welcome!
7837 	 */
7838 	for_each_possible_cpu(cpu) {
7839 		rcu_read_lock_sched();
7840 		dl_b = dl_bw_of(cpu);
7841 
7842 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7843 		if (new_bw < dl_b->total_bw)
7844 			ret = -EBUSY;
7845 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7846 
7847 		rcu_read_unlock_sched();
7848 
7849 		if (ret)
7850 			break;
7851 	}
7852 
7853 	return ret;
7854 }
7855 
7856 static void sched_dl_do_global(void)
7857 {
7858 	u64 new_bw = -1;
7859 	struct dl_bw *dl_b;
7860 	int cpu;
7861 	unsigned long flags;
7862 
7863 	def_dl_bandwidth.dl_period = global_rt_period();
7864 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7865 
7866 	if (global_rt_runtime() != RUNTIME_INF)
7867 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7868 
7869 	/*
7870 	 * FIXME: As above...
7871 	 */
7872 	for_each_possible_cpu(cpu) {
7873 		rcu_read_lock_sched();
7874 		dl_b = dl_bw_of(cpu);
7875 
7876 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7877 		dl_b->bw = new_bw;
7878 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7879 
7880 		rcu_read_unlock_sched();
7881 	}
7882 }
7883 
7884 static int sched_rt_global_validate(void)
7885 {
7886 	if (sysctl_sched_rt_period <= 0)
7887 		return -EINVAL;
7888 
7889 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7890 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7891 		return -EINVAL;
7892 
7893 	return 0;
7894 }
7895 
7896 static void sched_rt_do_global(void)
7897 {
7898 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7899 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7900 }
7901 
7902 int sched_rt_handler(struct ctl_table *table, int write,
7903 		void __user *buffer, size_t *lenp,
7904 		loff_t *ppos)
7905 {
7906 	int old_period, old_runtime;
7907 	static DEFINE_MUTEX(mutex);
7908 	int ret;
7909 
7910 	mutex_lock(&mutex);
7911 	old_period = sysctl_sched_rt_period;
7912 	old_runtime = sysctl_sched_rt_runtime;
7913 
7914 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7915 
7916 	if (!ret && write) {
7917 		ret = sched_rt_global_validate();
7918 		if (ret)
7919 			goto undo;
7920 
7921 		ret = sched_dl_global_validate();
7922 		if (ret)
7923 			goto undo;
7924 
7925 		ret = sched_rt_global_constraints();
7926 		if (ret)
7927 			goto undo;
7928 
7929 		sched_rt_do_global();
7930 		sched_dl_do_global();
7931 	}
7932 	if (0) {
7933 undo:
7934 		sysctl_sched_rt_period = old_period;
7935 		sysctl_sched_rt_runtime = old_runtime;
7936 	}
7937 	mutex_unlock(&mutex);
7938 
7939 	return ret;
7940 }
7941 
7942 int sched_rr_handler(struct ctl_table *table, int write,
7943 		void __user *buffer, size_t *lenp,
7944 		loff_t *ppos)
7945 {
7946 	int ret;
7947 	static DEFINE_MUTEX(mutex);
7948 
7949 	mutex_lock(&mutex);
7950 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7951 	/* make sure that internally we keep jiffies */
7952 	/* also, writing zero resets timeslice to default */
7953 	if (!ret && write) {
7954 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7955 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7956 	}
7957 	mutex_unlock(&mutex);
7958 	return ret;
7959 }
7960 
7961 #ifdef CONFIG_CGROUP_SCHED
7962 
7963 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7964 {
7965 	return css ? container_of(css, struct task_group, css) : NULL;
7966 }
7967 
7968 static struct cgroup_subsys_state *
7969 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7970 {
7971 	struct task_group *parent = css_tg(parent_css);
7972 	struct task_group *tg;
7973 
7974 	if (!parent) {
7975 		/* This is early initialization for the top cgroup */
7976 		return &root_task_group.css;
7977 	}
7978 
7979 	tg = sched_create_group(parent);
7980 	if (IS_ERR(tg))
7981 		return ERR_PTR(-ENOMEM);
7982 
7983 	return &tg->css;
7984 }
7985 
7986 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7987 {
7988 	struct task_group *tg = css_tg(css);
7989 	struct task_group *parent = css_tg(css->parent);
7990 
7991 	if (parent)
7992 		sched_online_group(tg, parent);
7993 	return 0;
7994 }
7995 
7996 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7997 {
7998 	struct task_group *tg = css_tg(css);
7999 
8000 	sched_destroy_group(tg);
8001 }
8002 
8003 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8004 {
8005 	struct task_group *tg = css_tg(css);
8006 
8007 	sched_offline_group(tg);
8008 }
8009 
8010 static void cpu_cgroup_fork(struct task_struct *task)
8011 {
8012 	sched_move_task(task);
8013 }
8014 
8015 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8016 				 struct cgroup_taskset *tset)
8017 {
8018 	struct task_struct *task;
8019 
8020 	cgroup_taskset_for_each(task, tset) {
8021 #ifdef CONFIG_RT_GROUP_SCHED
8022 		if (!sched_rt_can_attach(css_tg(css), task))
8023 			return -EINVAL;
8024 #else
8025 		/* We don't support RT-tasks being in separate groups */
8026 		if (task->sched_class != &fair_sched_class)
8027 			return -EINVAL;
8028 #endif
8029 	}
8030 	return 0;
8031 }
8032 
8033 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8034 			      struct cgroup_taskset *tset)
8035 {
8036 	struct task_struct *task;
8037 
8038 	cgroup_taskset_for_each(task, tset)
8039 		sched_move_task(task);
8040 }
8041 
8042 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8043 			    struct cgroup_subsys_state *old_css,
8044 			    struct task_struct *task)
8045 {
8046 	/*
8047 	 * cgroup_exit() is called in the copy_process() failure path.
8048 	 * Ignore this case since the task hasn't ran yet, this avoids
8049 	 * trying to poke a half freed task state from generic code.
8050 	 */
8051 	if (!(task->flags & PF_EXITING))
8052 		return;
8053 
8054 	sched_move_task(task);
8055 }
8056 
8057 #ifdef CONFIG_FAIR_GROUP_SCHED
8058 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8059 				struct cftype *cftype, u64 shareval)
8060 {
8061 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8062 }
8063 
8064 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8065 			       struct cftype *cft)
8066 {
8067 	struct task_group *tg = css_tg(css);
8068 
8069 	return (u64) scale_load_down(tg->shares);
8070 }
8071 
8072 #ifdef CONFIG_CFS_BANDWIDTH
8073 static DEFINE_MUTEX(cfs_constraints_mutex);
8074 
8075 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8076 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8077 
8078 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8079 
8080 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8081 {
8082 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8083 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8084 
8085 	if (tg == &root_task_group)
8086 		return -EINVAL;
8087 
8088 	/*
8089 	 * Ensure we have at some amount of bandwidth every period.  This is
8090 	 * to prevent reaching a state of large arrears when throttled via
8091 	 * entity_tick() resulting in prolonged exit starvation.
8092 	 */
8093 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8094 		return -EINVAL;
8095 
8096 	/*
8097 	 * Likewise, bound things on the otherside by preventing insane quota
8098 	 * periods.  This also allows us to normalize in computing quota
8099 	 * feasibility.
8100 	 */
8101 	if (period > max_cfs_quota_period)
8102 		return -EINVAL;
8103 
8104 	/*
8105 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8106 	 * unthrottle_offline_cfs_rqs().
8107 	 */
8108 	get_online_cpus();
8109 	mutex_lock(&cfs_constraints_mutex);
8110 	ret = __cfs_schedulable(tg, period, quota);
8111 	if (ret)
8112 		goto out_unlock;
8113 
8114 	runtime_enabled = quota != RUNTIME_INF;
8115 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8116 	/*
8117 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8118 	 * before making related changes, and on->off must occur afterwards
8119 	 */
8120 	if (runtime_enabled && !runtime_was_enabled)
8121 		cfs_bandwidth_usage_inc();
8122 	raw_spin_lock_irq(&cfs_b->lock);
8123 	cfs_b->period = ns_to_ktime(period);
8124 	cfs_b->quota = quota;
8125 
8126 	__refill_cfs_bandwidth_runtime(cfs_b);
8127 	/* restart the period timer (if active) to handle new period expiry */
8128 	if (runtime_enabled && cfs_b->timer_active) {
8129 		/* force a reprogram */
8130 		__start_cfs_bandwidth(cfs_b, true);
8131 	}
8132 	raw_spin_unlock_irq(&cfs_b->lock);
8133 
8134 	for_each_online_cpu(i) {
8135 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8136 		struct rq *rq = cfs_rq->rq;
8137 
8138 		raw_spin_lock_irq(&rq->lock);
8139 		cfs_rq->runtime_enabled = runtime_enabled;
8140 		cfs_rq->runtime_remaining = 0;
8141 
8142 		if (cfs_rq->throttled)
8143 			unthrottle_cfs_rq(cfs_rq);
8144 		raw_spin_unlock_irq(&rq->lock);
8145 	}
8146 	if (runtime_was_enabled && !runtime_enabled)
8147 		cfs_bandwidth_usage_dec();
8148 out_unlock:
8149 	mutex_unlock(&cfs_constraints_mutex);
8150 	put_online_cpus();
8151 
8152 	return ret;
8153 }
8154 
8155 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8156 {
8157 	u64 quota, period;
8158 
8159 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8160 	if (cfs_quota_us < 0)
8161 		quota = RUNTIME_INF;
8162 	else
8163 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8164 
8165 	return tg_set_cfs_bandwidth(tg, period, quota);
8166 }
8167 
8168 long tg_get_cfs_quota(struct task_group *tg)
8169 {
8170 	u64 quota_us;
8171 
8172 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8173 		return -1;
8174 
8175 	quota_us = tg->cfs_bandwidth.quota;
8176 	do_div(quota_us, NSEC_PER_USEC);
8177 
8178 	return quota_us;
8179 }
8180 
8181 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8182 {
8183 	u64 quota, period;
8184 
8185 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8186 	quota = tg->cfs_bandwidth.quota;
8187 
8188 	return tg_set_cfs_bandwidth(tg, period, quota);
8189 }
8190 
8191 long tg_get_cfs_period(struct task_group *tg)
8192 {
8193 	u64 cfs_period_us;
8194 
8195 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8196 	do_div(cfs_period_us, NSEC_PER_USEC);
8197 
8198 	return cfs_period_us;
8199 }
8200 
8201 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8202 				  struct cftype *cft)
8203 {
8204 	return tg_get_cfs_quota(css_tg(css));
8205 }
8206 
8207 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8208 				   struct cftype *cftype, s64 cfs_quota_us)
8209 {
8210 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8211 }
8212 
8213 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8214 				   struct cftype *cft)
8215 {
8216 	return tg_get_cfs_period(css_tg(css));
8217 }
8218 
8219 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8220 				    struct cftype *cftype, u64 cfs_period_us)
8221 {
8222 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8223 }
8224 
8225 struct cfs_schedulable_data {
8226 	struct task_group *tg;
8227 	u64 period, quota;
8228 };
8229 
8230 /*
8231  * normalize group quota/period to be quota/max_period
8232  * note: units are usecs
8233  */
8234 static u64 normalize_cfs_quota(struct task_group *tg,
8235 			       struct cfs_schedulable_data *d)
8236 {
8237 	u64 quota, period;
8238 
8239 	if (tg == d->tg) {
8240 		period = d->period;
8241 		quota = d->quota;
8242 	} else {
8243 		period = tg_get_cfs_period(tg);
8244 		quota = tg_get_cfs_quota(tg);
8245 	}
8246 
8247 	/* note: these should typically be equivalent */
8248 	if (quota == RUNTIME_INF || quota == -1)
8249 		return RUNTIME_INF;
8250 
8251 	return to_ratio(period, quota);
8252 }
8253 
8254 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8255 {
8256 	struct cfs_schedulable_data *d = data;
8257 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8258 	s64 quota = 0, parent_quota = -1;
8259 
8260 	if (!tg->parent) {
8261 		quota = RUNTIME_INF;
8262 	} else {
8263 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8264 
8265 		quota = normalize_cfs_quota(tg, d);
8266 		parent_quota = parent_b->hierarchical_quota;
8267 
8268 		/*
8269 		 * ensure max(child_quota) <= parent_quota, inherit when no
8270 		 * limit is set
8271 		 */
8272 		if (quota == RUNTIME_INF)
8273 			quota = parent_quota;
8274 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8275 			return -EINVAL;
8276 	}
8277 	cfs_b->hierarchical_quota = quota;
8278 
8279 	return 0;
8280 }
8281 
8282 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8283 {
8284 	int ret;
8285 	struct cfs_schedulable_data data = {
8286 		.tg = tg,
8287 		.period = period,
8288 		.quota = quota,
8289 	};
8290 
8291 	if (quota != RUNTIME_INF) {
8292 		do_div(data.period, NSEC_PER_USEC);
8293 		do_div(data.quota, NSEC_PER_USEC);
8294 	}
8295 
8296 	rcu_read_lock();
8297 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8298 	rcu_read_unlock();
8299 
8300 	return ret;
8301 }
8302 
8303 static int cpu_stats_show(struct seq_file *sf, void *v)
8304 {
8305 	struct task_group *tg = css_tg(seq_css(sf));
8306 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8307 
8308 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8309 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8310 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8311 
8312 	return 0;
8313 }
8314 #endif /* CONFIG_CFS_BANDWIDTH */
8315 #endif /* CONFIG_FAIR_GROUP_SCHED */
8316 
8317 #ifdef CONFIG_RT_GROUP_SCHED
8318 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8319 				struct cftype *cft, s64 val)
8320 {
8321 	return sched_group_set_rt_runtime(css_tg(css), val);
8322 }
8323 
8324 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8325 			       struct cftype *cft)
8326 {
8327 	return sched_group_rt_runtime(css_tg(css));
8328 }
8329 
8330 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8331 				    struct cftype *cftype, u64 rt_period_us)
8332 {
8333 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8334 }
8335 
8336 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8337 				   struct cftype *cft)
8338 {
8339 	return sched_group_rt_period(css_tg(css));
8340 }
8341 #endif /* CONFIG_RT_GROUP_SCHED */
8342 
8343 static struct cftype cpu_files[] = {
8344 #ifdef CONFIG_FAIR_GROUP_SCHED
8345 	{
8346 		.name = "shares",
8347 		.read_u64 = cpu_shares_read_u64,
8348 		.write_u64 = cpu_shares_write_u64,
8349 	},
8350 #endif
8351 #ifdef CONFIG_CFS_BANDWIDTH
8352 	{
8353 		.name = "cfs_quota_us",
8354 		.read_s64 = cpu_cfs_quota_read_s64,
8355 		.write_s64 = cpu_cfs_quota_write_s64,
8356 	},
8357 	{
8358 		.name = "cfs_period_us",
8359 		.read_u64 = cpu_cfs_period_read_u64,
8360 		.write_u64 = cpu_cfs_period_write_u64,
8361 	},
8362 	{
8363 		.name = "stat",
8364 		.seq_show = cpu_stats_show,
8365 	},
8366 #endif
8367 #ifdef CONFIG_RT_GROUP_SCHED
8368 	{
8369 		.name = "rt_runtime_us",
8370 		.read_s64 = cpu_rt_runtime_read,
8371 		.write_s64 = cpu_rt_runtime_write,
8372 	},
8373 	{
8374 		.name = "rt_period_us",
8375 		.read_u64 = cpu_rt_period_read_uint,
8376 		.write_u64 = cpu_rt_period_write_uint,
8377 	},
8378 #endif
8379 	{ }	/* terminate */
8380 };
8381 
8382 struct cgroup_subsys cpu_cgrp_subsys = {
8383 	.css_alloc	= cpu_cgroup_css_alloc,
8384 	.css_free	= cpu_cgroup_css_free,
8385 	.css_online	= cpu_cgroup_css_online,
8386 	.css_offline	= cpu_cgroup_css_offline,
8387 	.fork		= cpu_cgroup_fork,
8388 	.can_attach	= cpu_cgroup_can_attach,
8389 	.attach		= cpu_cgroup_attach,
8390 	.exit		= cpu_cgroup_exit,
8391 	.legacy_cftypes	= cpu_files,
8392 	.early_init	= 1,
8393 };
8394 
8395 #endif	/* CONFIG_CGROUP_SCHED */
8396 
8397 void dump_cpu_task(int cpu)
8398 {
8399 	pr_info("Task dump for CPU %d:\n", cpu);
8400 	sched_show_task(cpu_curr(cpu));
8401 }
8402