1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 79 #define CREATE_TRACE_POINTS 80 #include <linux/sched/rseq_api.h> 81 #include <trace/events/sched.h> 82 #undef CREATE_TRACE_POINTS 83 84 #include "sched.h" 85 #include "stats.h" 86 #include "autogroup.h" 87 88 #include "autogroup.h" 89 #include "pelt.h" 90 #include "smp.h" 91 #include "stats.h" 92 93 #include "../workqueue_internal.h" 94 #include "../../io_uring/io-wq.h" 95 #include "../smpboot.h" 96 97 /* 98 * Export tracepoints that act as a bare tracehook (ie: have no trace event 99 * associated with them) to allow external modules to probe them. 100 */ 101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 112 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 #ifdef CONFIG_SCHED_DEBUG 116 /* 117 * Debugging: various feature bits 118 * 119 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 120 * sysctl_sched_features, defined in sched.h, to allow constants propagation 121 * at compile time and compiler optimization based on features default. 122 */ 123 #define SCHED_FEAT(name, enabled) \ 124 (1UL << __SCHED_FEAT_##name) * enabled | 125 const_debug unsigned int sysctl_sched_features = 126 #include "features.h" 127 0; 128 #undef SCHED_FEAT 129 130 /* 131 * Print a warning if need_resched is set for the given duration (if 132 * LATENCY_WARN is enabled). 133 * 134 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 135 * per boot. 136 */ 137 __read_mostly int sysctl_resched_latency_warn_ms = 100; 138 __read_mostly int sysctl_resched_latency_warn_once = 1; 139 #endif /* CONFIG_SCHED_DEBUG */ 140 141 /* 142 * Number of tasks to iterate in a single balance run. 143 * Limited because this is done with IRQs disabled. 144 */ 145 #ifdef CONFIG_PREEMPT_RT 146 const_debug unsigned int sysctl_sched_nr_migrate = 8; 147 #else 148 const_debug unsigned int sysctl_sched_nr_migrate = 32; 149 #endif 150 151 __read_mostly int scheduler_running; 152 153 #ifdef CONFIG_SCHED_CORE 154 155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 156 157 /* kernel prio, less is more */ 158 static inline int __task_prio(struct task_struct *p) 159 { 160 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 161 return -2; 162 163 if (rt_prio(p->prio)) /* includes deadline */ 164 return p->prio; /* [-1, 99] */ 165 166 if (p->sched_class == &idle_sched_class) 167 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 168 169 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 170 } 171 172 /* 173 * l(a,b) 174 * le(a,b) := !l(b,a) 175 * g(a,b) := l(b,a) 176 * ge(a,b) := !l(a,b) 177 */ 178 179 /* real prio, less is less */ 180 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 181 { 182 183 int pa = __task_prio(a), pb = __task_prio(b); 184 185 if (-pa < -pb) 186 return true; 187 188 if (-pb < -pa) 189 return false; 190 191 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 192 return !dl_time_before(a->dl.deadline, b->dl.deadline); 193 194 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 195 return cfs_prio_less(a, b, in_fi); 196 197 return false; 198 } 199 200 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 201 { 202 if (a->core_cookie < b->core_cookie) 203 return true; 204 205 if (a->core_cookie > b->core_cookie) 206 return false; 207 208 /* flip prio, so high prio is leftmost */ 209 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 210 return true; 211 212 return false; 213 } 214 215 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 216 217 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 218 { 219 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 220 } 221 222 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 223 { 224 const struct task_struct *p = __node_2_sc(node); 225 unsigned long cookie = (unsigned long)key; 226 227 if (cookie < p->core_cookie) 228 return -1; 229 230 if (cookie > p->core_cookie) 231 return 1; 232 233 return 0; 234 } 235 236 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 237 { 238 rq->core->core_task_seq++; 239 240 if (!p->core_cookie) 241 return; 242 243 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 244 } 245 246 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 247 { 248 rq->core->core_task_seq++; 249 250 if (sched_core_enqueued(p)) { 251 rb_erase(&p->core_node, &rq->core_tree); 252 RB_CLEAR_NODE(&p->core_node); 253 } 254 255 /* 256 * Migrating the last task off the cpu, with the cpu in forced idle 257 * state. Reschedule to create an accounting edge for forced idle, 258 * and re-examine whether the core is still in forced idle state. 259 */ 260 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 261 rq->core->core_forceidle_count && rq->curr == rq->idle) 262 resched_curr(rq); 263 } 264 265 /* 266 * Find left-most (aka, highest priority) task matching @cookie. 267 */ 268 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 269 { 270 struct rb_node *node; 271 272 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 273 /* 274 * The idle task always matches any cookie! 275 */ 276 if (!node) 277 return idle_sched_class.pick_task(rq); 278 279 return __node_2_sc(node); 280 } 281 282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 283 { 284 struct rb_node *node = &p->core_node; 285 286 node = rb_next(node); 287 if (!node) 288 return NULL; 289 290 p = container_of(node, struct task_struct, core_node); 291 if (p->core_cookie != cookie) 292 return NULL; 293 294 return p; 295 } 296 297 /* 298 * Magic required such that: 299 * 300 * raw_spin_rq_lock(rq); 301 * ... 302 * raw_spin_rq_unlock(rq); 303 * 304 * ends up locking and unlocking the _same_ lock, and all CPUs 305 * always agree on what rq has what lock. 306 * 307 * XXX entirely possible to selectively enable cores, don't bother for now. 308 */ 309 310 static DEFINE_MUTEX(sched_core_mutex); 311 static atomic_t sched_core_count; 312 static struct cpumask sched_core_mask; 313 314 static void sched_core_lock(int cpu, unsigned long *flags) 315 { 316 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 317 int t, i = 0; 318 319 local_irq_save(*flags); 320 for_each_cpu(t, smt_mask) 321 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 322 } 323 324 static void sched_core_unlock(int cpu, unsigned long *flags) 325 { 326 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 327 int t; 328 329 for_each_cpu(t, smt_mask) 330 raw_spin_unlock(&cpu_rq(t)->__lock); 331 local_irq_restore(*flags); 332 } 333 334 static void __sched_core_flip(bool enabled) 335 { 336 unsigned long flags; 337 int cpu, t; 338 339 cpus_read_lock(); 340 341 /* 342 * Toggle the online cores, one by one. 343 */ 344 cpumask_copy(&sched_core_mask, cpu_online_mask); 345 for_each_cpu(cpu, &sched_core_mask) { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 348 sched_core_lock(cpu, &flags); 349 350 for_each_cpu(t, smt_mask) 351 cpu_rq(t)->core_enabled = enabled; 352 353 cpu_rq(cpu)->core->core_forceidle_start = 0; 354 355 sched_core_unlock(cpu, &flags); 356 357 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 358 } 359 360 /* 361 * Toggle the offline CPUs. 362 */ 363 cpumask_copy(&sched_core_mask, cpu_possible_mask); 364 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 365 366 for_each_cpu(cpu, &sched_core_mask) 367 cpu_rq(cpu)->core_enabled = enabled; 368 369 cpus_read_unlock(); 370 } 371 372 static void sched_core_assert_empty(void) 373 { 374 int cpu; 375 376 for_each_possible_cpu(cpu) 377 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 378 } 379 380 static void __sched_core_enable(void) 381 { 382 static_branch_enable(&__sched_core_enabled); 383 /* 384 * Ensure all previous instances of raw_spin_rq_*lock() have finished 385 * and future ones will observe !sched_core_disabled(). 386 */ 387 synchronize_rcu(); 388 __sched_core_flip(true); 389 sched_core_assert_empty(); 390 } 391 392 static void __sched_core_disable(void) 393 { 394 sched_core_assert_empty(); 395 __sched_core_flip(false); 396 static_branch_disable(&__sched_core_enabled); 397 } 398 399 void sched_core_get(void) 400 { 401 if (atomic_inc_not_zero(&sched_core_count)) 402 return; 403 404 mutex_lock(&sched_core_mutex); 405 if (!atomic_read(&sched_core_count)) 406 __sched_core_enable(); 407 408 smp_mb__before_atomic(); 409 atomic_inc(&sched_core_count); 410 mutex_unlock(&sched_core_mutex); 411 } 412 413 static void __sched_core_put(struct work_struct *work) 414 { 415 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 416 __sched_core_disable(); 417 mutex_unlock(&sched_core_mutex); 418 } 419 } 420 421 void sched_core_put(void) 422 { 423 static DECLARE_WORK(_work, __sched_core_put); 424 425 /* 426 * "There can be only one" 427 * 428 * Either this is the last one, or we don't actually need to do any 429 * 'work'. If it is the last *again*, we rely on 430 * WORK_STRUCT_PENDING_BIT. 431 */ 432 if (!atomic_add_unless(&sched_core_count, -1, 1)) 433 schedule_work(&_work); 434 } 435 436 #else /* !CONFIG_SCHED_CORE */ 437 438 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 439 static inline void 440 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 441 442 #endif /* CONFIG_SCHED_CORE */ 443 444 /* 445 * Serialization rules: 446 * 447 * Lock order: 448 * 449 * p->pi_lock 450 * rq->lock 451 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 452 * 453 * rq1->lock 454 * rq2->lock where: rq1 < rq2 455 * 456 * Regular state: 457 * 458 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 459 * local CPU's rq->lock, it optionally removes the task from the runqueue and 460 * always looks at the local rq data structures to find the most eligible task 461 * to run next. 462 * 463 * Task enqueue is also under rq->lock, possibly taken from another CPU. 464 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 465 * the local CPU to avoid bouncing the runqueue state around [ see 466 * ttwu_queue_wakelist() ] 467 * 468 * Task wakeup, specifically wakeups that involve migration, are horribly 469 * complicated to avoid having to take two rq->locks. 470 * 471 * Special state: 472 * 473 * System-calls and anything external will use task_rq_lock() which acquires 474 * both p->pi_lock and rq->lock. As a consequence the state they change is 475 * stable while holding either lock: 476 * 477 * - sched_setaffinity()/ 478 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 479 * - set_user_nice(): p->se.load, p->*prio 480 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 481 * p->se.load, p->rt_priority, 482 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 483 * - sched_setnuma(): p->numa_preferred_nid 484 * - sched_move_task()/ 485 * cpu_cgroup_fork(): p->sched_task_group 486 * - uclamp_update_active() p->uclamp* 487 * 488 * p->state <- TASK_*: 489 * 490 * is changed locklessly using set_current_state(), __set_current_state() or 491 * set_special_state(), see their respective comments, or by 492 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 493 * concurrent self. 494 * 495 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 496 * 497 * is set by activate_task() and cleared by deactivate_task(), under 498 * rq->lock. Non-zero indicates the task is runnable, the special 499 * ON_RQ_MIGRATING state is used for migration without holding both 500 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 501 * 502 * p->on_cpu <- { 0, 1 }: 503 * 504 * is set by prepare_task() and cleared by finish_task() such that it will be 505 * set before p is scheduled-in and cleared after p is scheduled-out, both 506 * under rq->lock. Non-zero indicates the task is running on its CPU. 507 * 508 * [ The astute reader will observe that it is possible for two tasks on one 509 * CPU to have ->on_cpu = 1 at the same time. ] 510 * 511 * task_cpu(p): is changed by set_task_cpu(), the rules are: 512 * 513 * - Don't call set_task_cpu() on a blocked task: 514 * 515 * We don't care what CPU we're not running on, this simplifies hotplug, 516 * the CPU assignment of blocked tasks isn't required to be valid. 517 * 518 * - for try_to_wake_up(), called under p->pi_lock: 519 * 520 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 521 * 522 * - for migration called under rq->lock: 523 * [ see task_on_rq_migrating() in task_rq_lock() ] 524 * 525 * o move_queued_task() 526 * o detach_task() 527 * 528 * - for migration called under double_rq_lock(): 529 * 530 * o __migrate_swap_task() 531 * o push_rt_task() / pull_rt_task() 532 * o push_dl_task() / pull_dl_task() 533 * o dl_task_offline_migration() 534 * 535 */ 536 537 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 538 { 539 raw_spinlock_t *lock; 540 541 /* Matches synchronize_rcu() in __sched_core_enable() */ 542 preempt_disable(); 543 if (sched_core_disabled()) { 544 raw_spin_lock_nested(&rq->__lock, subclass); 545 /* preempt_count *MUST* be > 1 */ 546 preempt_enable_no_resched(); 547 return; 548 } 549 550 for (;;) { 551 lock = __rq_lockp(rq); 552 raw_spin_lock_nested(lock, subclass); 553 if (likely(lock == __rq_lockp(rq))) { 554 /* preempt_count *MUST* be > 1 */ 555 preempt_enable_no_resched(); 556 return; 557 } 558 raw_spin_unlock(lock); 559 } 560 } 561 562 bool raw_spin_rq_trylock(struct rq *rq) 563 { 564 raw_spinlock_t *lock; 565 bool ret; 566 567 /* Matches synchronize_rcu() in __sched_core_enable() */ 568 preempt_disable(); 569 if (sched_core_disabled()) { 570 ret = raw_spin_trylock(&rq->__lock); 571 preempt_enable(); 572 return ret; 573 } 574 575 for (;;) { 576 lock = __rq_lockp(rq); 577 ret = raw_spin_trylock(lock); 578 if (!ret || (likely(lock == __rq_lockp(rq)))) { 579 preempt_enable(); 580 return ret; 581 } 582 raw_spin_unlock(lock); 583 } 584 } 585 586 void raw_spin_rq_unlock(struct rq *rq) 587 { 588 raw_spin_unlock(rq_lockp(rq)); 589 } 590 591 #ifdef CONFIG_SMP 592 /* 593 * double_rq_lock - safely lock two runqueues 594 */ 595 void double_rq_lock(struct rq *rq1, struct rq *rq2) 596 { 597 lockdep_assert_irqs_disabled(); 598 599 if (rq_order_less(rq2, rq1)) 600 swap(rq1, rq2); 601 602 raw_spin_rq_lock(rq1); 603 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 604 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 605 606 double_rq_clock_clear_update(rq1, rq2); 607 } 608 #endif 609 610 /* 611 * __task_rq_lock - lock the rq @p resides on. 612 */ 613 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 614 __acquires(rq->lock) 615 { 616 struct rq *rq; 617 618 lockdep_assert_held(&p->pi_lock); 619 620 for (;;) { 621 rq = task_rq(p); 622 raw_spin_rq_lock(rq); 623 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 624 rq_pin_lock(rq, rf); 625 return rq; 626 } 627 raw_spin_rq_unlock(rq); 628 629 while (unlikely(task_on_rq_migrating(p))) 630 cpu_relax(); 631 } 632 } 633 634 /* 635 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 636 */ 637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 638 __acquires(p->pi_lock) 639 __acquires(rq->lock) 640 { 641 struct rq *rq; 642 643 for (;;) { 644 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 645 rq = task_rq(p); 646 raw_spin_rq_lock(rq); 647 /* 648 * move_queued_task() task_rq_lock() 649 * 650 * ACQUIRE (rq->lock) 651 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 652 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 653 * [S] ->cpu = new_cpu [L] task_rq() 654 * [L] ->on_rq 655 * RELEASE (rq->lock) 656 * 657 * If we observe the old CPU in task_rq_lock(), the acquire of 658 * the old rq->lock will fully serialize against the stores. 659 * 660 * If we observe the new CPU in task_rq_lock(), the address 661 * dependency headed by '[L] rq = task_rq()' and the acquire 662 * will pair with the WMB to ensure we then also see migrating. 663 */ 664 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 665 rq_pin_lock(rq, rf); 666 return rq; 667 } 668 raw_spin_rq_unlock(rq); 669 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 670 671 while (unlikely(task_on_rq_migrating(p))) 672 cpu_relax(); 673 } 674 } 675 676 /* 677 * RQ-clock updating methods: 678 */ 679 680 static void update_rq_clock_task(struct rq *rq, s64 delta) 681 { 682 /* 683 * In theory, the compile should just see 0 here, and optimize out the call 684 * to sched_rt_avg_update. But I don't trust it... 685 */ 686 s64 __maybe_unused steal = 0, irq_delta = 0; 687 688 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 689 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 690 691 /* 692 * Since irq_time is only updated on {soft,}irq_exit, we might run into 693 * this case when a previous update_rq_clock() happened inside a 694 * {soft,}irq region. 695 * 696 * When this happens, we stop ->clock_task and only update the 697 * prev_irq_time stamp to account for the part that fit, so that a next 698 * update will consume the rest. This ensures ->clock_task is 699 * monotonic. 700 * 701 * It does however cause some slight miss-attribution of {soft,}irq 702 * time, a more accurate solution would be to update the irq_time using 703 * the current rq->clock timestamp, except that would require using 704 * atomic ops. 705 */ 706 if (irq_delta > delta) 707 irq_delta = delta; 708 709 rq->prev_irq_time += irq_delta; 710 delta -= irq_delta; 711 #endif 712 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 713 if (static_key_false((¶virt_steal_rq_enabled))) { 714 steal = paravirt_steal_clock(cpu_of(rq)); 715 steal -= rq->prev_steal_time_rq; 716 717 if (unlikely(steal > delta)) 718 steal = delta; 719 720 rq->prev_steal_time_rq += steal; 721 delta -= steal; 722 } 723 #endif 724 725 rq->clock_task += delta; 726 727 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 728 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 729 update_irq_load_avg(rq, irq_delta + steal); 730 #endif 731 update_rq_clock_pelt(rq, delta); 732 } 733 734 void update_rq_clock(struct rq *rq) 735 { 736 s64 delta; 737 738 lockdep_assert_rq_held(rq); 739 740 if (rq->clock_update_flags & RQCF_ACT_SKIP) 741 return; 742 743 #ifdef CONFIG_SCHED_DEBUG 744 if (sched_feat(WARN_DOUBLE_CLOCK)) 745 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 746 rq->clock_update_flags |= RQCF_UPDATED; 747 #endif 748 749 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 750 if (delta < 0) 751 return; 752 rq->clock += delta; 753 update_rq_clock_task(rq, delta); 754 } 755 756 #ifdef CONFIG_SCHED_HRTICK 757 /* 758 * Use HR-timers to deliver accurate preemption points. 759 */ 760 761 static void hrtick_clear(struct rq *rq) 762 { 763 if (hrtimer_active(&rq->hrtick_timer)) 764 hrtimer_cancel(&rq->hrtick_timer); 765 } 766 767 /* 768 * High-resolution timer tick. 769 * Runs from hardirq context with interrupts disabled. 770 */ 771 static enum hrtimer_restart hrtick(struct hrtimer *timer) 772 { 773 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 774 struct rq_flags rf; 775 776 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 777 778 rq_lock(rq, &rf); 779 update_rq_clock(rq); 780 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 781 rq_unlock(rq, &rf); 782 783 return HRTIMER_NORESTART; 784 } 785 786 #ifdef CONFIG_SMP 787 788 static void __hrtick_restart(struct rq *rq) 789 { 790 struct hrtimer *timer = &rq->hrtick_timer; 791 ktime_t time = rq->hrtick_time; 792 793 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 794 } 795 796 /* 797 * called from hardirq (IPI) context 798 */ 799 static void __hrtick_start(void *arg) 800 { 801 struct rq *rq = arg; 802 struct rq_flags rf; 803 804 rq_lock(rq, &rf); 805 __hrtick_restart(rq); 806 rq_unlock(rq, &rf); 807 } 808 809 /* 810 * Called to set the hrtick timer state. 811 * 812 * called with rq->lock held and irqs disabled 813 */ 814 void hrtick_start(struct rq *rq, u64 delay) 815 { 816 struct hrtimer *timer = &rq->hrtick_timer; 817 s64 delta; 818 819 /* 820 * Don't schedule slices shorter than 10000ns, that just 821 * doesn't make sense and can cause timer DoS. 822 */ 823 delta = max_t(s64, delay, 10000LL); 824 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 825 826 if (rq == this_rq()) 827 __hrtick_restart(rq); 828 else 829 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 830 } 831 832 #else 833 /* 834 * Called to set the hrtick timer state. 835 * 836 * called with rq->lock held and irqs disabled 837 */ 838 void hrtick_start(struct rq *rq, u64 delay) 839 { 840 /* 841 * Don't schedule slices shorter than 10000ns, that just 842 * doesn't make sense. Rely on vruntime for fairness. 843 */ 844 delay = max_t(u64, delay, 10000LL); 845 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 846 HRTIMER_MODE_REL_PINNED_HARD); 847 } 848 849 #endif /* CONFIG_SMP */ 850 851 static void hrtick_rq_init(struct rq *rq) 852 { 853 #ifdef CONFIG_SMP 854 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 855 #endif 856 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 857 rq->hrtick_timer.function = hrtick; 858 } 859 #else /* CONFIG_SCHED_HRTICK */ 860 static inline void hrtick_clear(struct rq *rq) 861 { 862 } 863 864 static inline void hrtick_rq_init(struct rq *rq) 865 { 866 } 867 #endif /* CONFIG_SCHED_HRTICK */ 868 869 /* 870 * cmpxchg based fetch_or, macro so it works for different integer types 871 */ 872 #define fetch_or(ptr, mask) \ 873 ({ \ 874 typeof(ptr) _ptr = (ptr); \ 875 typeof(mask) _mask = (mask); \ 876 typeof(*_ptr) _val = *_ptr; \ 877 \ 878 do { \ 879 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 880 _val; \ 881 }) 882 883 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 884 /* 885 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 886 * this avoids any races wrt polling state changes and thereby avoids 887 * spurious IPIs. 888 */ 889 static inline bool set_nr_and_not_polling(struct task_struct *p) 890 { 891 struct thread_info *ti = task_thread_info(p); 892 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 893 } 894 895 /* 896 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 897 * 898 * If this returns true, then the idle task promises to call 899 * sched_ttwu_pending() and reschedule soon. 900 */ 901 static bool set_nr_if_polling(struct task_struct *p) 902 { 903 struct thread_info *ti = task_thread_info(p); 904 typeof(ti->flags) val = READ_ONCE(ti->flags); 905 906 for (;;) { 907 if (!(val & _TIF_POLLING_NRFLAG)) 908 return false; 909 if (val & _TIF_NEED_RESCHED) 910 return true; 911 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 912 break; 913 } 914 return true; 915 } 916 917 #else 918 static inline bool set_nr_and_not_polling(struct task_struct *p) 919 { 920 set_tsk_need_resched(p); 921 return true; 922 } 923 924 #ifdef CONFIG_SMP 925 static inline bool set_nr_if_polling(struct task_struct *p) 926 { 927 return false; 928 } 929 #endif 930 #endif 931 932 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 933 { 934 struct wake_q_node *node = &task->wake_q; 935 936 /* 937 * Atomically grab the task, if ->wake_q is !nil already it means 938 * it's already queued (either by us or someone else) and will get the 939 * wakeup due to that. 940 * 941 * In order to ensure that a pending wakeup will observe our pending 942 * state, even in the failed case, an explicit smp_mb() must be used. 943 */ 944 smp_mb__before_atomic(); 945 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 946 return false; 947 948 /* 949 * The head is context local, there can be no concurrency. 950 */ 951 *head->lastp = node; 952 head->lastp = &node->next; 953 return true; 954 } 955 956 /** 957 * wake_q_add() - queue a wakeup for 'later' waking. 958 * @head: the wake_q_head to add @task to 959 * @task: the task to queue for 'later' wakeup 960 * 961 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 962 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 963 * instantly. 964 * 965 * This function must be used as-if it were wake_up_process(); IOW the task 966 * must be ready to be woken at this location. 967 */ 968 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 969 { 970 if (__wake_q_add(head, task)) 971 get_task_struct(task); 972 } 973 974 /** 975 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 976 * @head: the wake_q_head to add @task to 977 * @task: the task to queue for 'later' wakeup 978 * 979 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 980 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 981 * instantly. 982 * 983 * This function must be used as-if it were wake_up_process(); IOW the task 984 * must be ready to be woken at this location. 985 * 986 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 987 * that already hold reference to @task can call the 'safe' version and trust 988 * wake_q to do the right thing depending whether or not the @task is already 989 * queued for wakeup. 990 */ 991 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 992 { 993 if (!__wake_q_add(head, task)) 994 put_task_struct(task); 995 } 996 997 void wake_up_q(struct wake_q_head *head) 998 { 999 struct wake_q_node *node = head->first; 1000 1001 while (node != WAKE_Q_TAIL) { 1002 struct task_struct *task; 1003 1004 task = container_of(node, struct task_struct, wake_q); 1005 /* Task can safely be re-inserted now: */ 1006 node = node->next; 1007 task->wake_q.next = NULL; 1008 1009 /* 1010 * wake_up_process() executes a full barrier, which pairs with 1011 * the queueing in wake_q_add() so as not to miss wakeups. 1012 */ 1013 wake_up_process(task); 1014 put_task_struct(task); 1015 } 1016 } 1017 1018 /* 1019 * resched_curr - mark rq's current task 'to be rescheduled now'. 1020 * 1021 * On UP this means the setting of the need_resched flag, on SMP it 1022 * might also involve a cross-CPU call to trigger the scheduler on 1023 * the target CPU. 1024 */ 1025 void resched_curr(struct rq *rq) 1026 { 1027 struct task_struct *curr = rq->curr; 1028 int cpu; 1029 1030 lockdep_assert_rq_held(rq); 1031 1032 if (test_tsk_need_resched(curr)) 1033 return; 1034 1035 cpu = cpu_of(rq); 1036 1037 if (cpu == smp_processor_id()) { 1038 set_tsk_need_resched(curr); 1039 set_preempt_need_resched(); 1040 return; 1041 } 1042 1043 if (set_nr_and_not_polling(curr)) 1044 smp_send_reschedule(cpu); 1045 else 1046 trace_sched_wake_idle_without_ipi(cpu); 1047 } 1048 1049 void resched_cpu(int cpu) 1050 { 1051 struct rq *rq = cpu_rq(cpu); 1052 unsigned long flags; 1053 1054 raw_spin_rq_lock_irqsave(rq, flags); 1055 if (cpu_online(cpu) || cpu == smp_processor_id()) 1056 resched_curr(rq); 1057 raw_spin_rq_unlock_irqrestore(rq, flags); 1058 } 1059 1060 #ifdef CONFIG_SMP 1061 #ifdef CONFIG_NO_HZ_COMMON 1062 /* 1063 * In the semi idle case, use the nearest busy CPU for migrating timers 1064 * from an idle CPU. This is good for power-savings. 1065 * 1066 * We don't do similar optimization for completely idle system, as 1067 * selecting an idle CPU will add more delays to the timers than intended 1068 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1069 */ 1070 int get_nohz_timer_target(void) 1071 { 1072 int i, cpu = smp_processor_id(), default_cpu = -1; 1073 struct sched_domain *sd; 1074 const struct cpumask *hk_mask; 1075 1076 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1077 if (!idle_cpu(cpu)) 1078 return cpu; 1079 default_cpu = cpu; 1080 } 1081 1082 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1083 1084 rcu_read_lock(); 1085 for_each_domain(cpu, sd) { 1086 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1087 if (cpu == i) 1088 continue; 1089 1090 if (!idle_cpu(i)) { 1091 cpu = i; 1092 goto unlock; 1093 } 1094 } 1095 } 1096 1097 if (default_cpu == -1) 1098 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1099 cpu = default_cpu; 1100 unlock: 1101 rcu_read_unlock(); 1102 return cpu; 1103 } 1104 1105 /* 1106 * When add_timer_on() enqueues a timer into the timer wheel of an 1107 * idle CPU then this timer might expire before the next timer event 1108 * which is scheduled to wake up that CPU. In case of a completely 1109 * idle system the next event might even be infinite time into the 1110 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1111 * leaves the inner idle loop so the newly added timer is taken into 1112 * account when the CPU goes back to idle and evaluates the timer 1113 * wheel for the next timer event. 1114 */ 1115 static void wake_up_idle_cpu(int cpu) 1116 { 1117 struct rq *rq = cpu_rq(cpu); 1118 1119 if (cpu == smp_processor_id()) 1120 return; 1121 1122 if (set_nr_and_not_polling(rq->idle)) 1123 smp_send_reschedule(cpu); 1124 else 1125 trace_sched_wake_idle_without_ipi(cpu); 1126 } 1127 1128 static bool wake_up_full_nohz_cpu(int cpu) 1129 { 1130 /* 1131 * We just need the target to call irq_exit() and re-evaluate 1132 * the next tick. The nohz full kick at least implies that. 1133 * If needed we can still optimize that later with an 1134 * empty IRQ. 1135 */ 1136 if (cpu_is_offline(cpu)) 1137 return true; /* Don't try to wake offline CPUs. */ 1138 if (tick_nohz_full_cpu(cpu)) { 1139 if (cpu != smp_processor_id() || 1140 tick_nohz_tick_stopped()) 1141 tick_nohz_full_kick_cpu(cpu); 1142 return true; 1143 } 1144 1145 return false; 1146 } 1147 1148 /* 1149 * Wake up the specified CPU. If the CPU is going offline, it is the 1150 * caller's responsibility to deal with the lost wakeup, for example, 1151 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1152 */ 1153 void wake_up_nohz_cpu(int cpu) 1154 { 1155 if (!wake_up_full_nohz_cpu(cpu)) 1156 wake_up_idle_cpu(cpu); 1157 } 1158 1159 static void nohz_csd_func(void *info) 1160 { 1161 struct rq *rq = info; 1162 int cpu = cpu_of(rq); 1163 unsigned int flags; 1164 1165 /* 1166 * Release the rq::nohz_csd. 1167 */ 1168 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1169 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1170 1171 rq->idle_balance = idle_cpu(cpu); 1172 if (rq->idle_balance && !need_resched()) { 1173 rq->nohz_idle_balance = flags; 1174 raise_softirq_irqoff(SCHED_SOFTIRQ); 1175 } 1176 } 1177 1178 #endif /* CONFIG_NO_HZ_COMMON */ 1179 1180 #ifdef CONFIG_NO_HZ_FULL 1181 bool sched_can_stop_tick(struct rq *rq) 1182 { 1183 int fifo_nr_running; 1184 1185 /* Deadline tasks, even if single, need the tick */ 1186 if (rq->dl.dl_nr_running) 1187 return false; 1188 1189 /* 1190 * If there are more than one RR tasks, we need the tick to affect the 1191 * actual RR behaviour. 1192 */ 1193 if (rq->rt.rr_nr_running) { 1194 if (rq->rt.rr_nr_running == 1) 1195 return true; 1196 else 1197 return false; 1198 } 1199 1200 /* 1201 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1202 * forced preemption between FIFO tasks. 1203 */ 1204 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1205 if (fifo_nr_running) 1206 return true; 1207 1208 /* 1209 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1210 * if there's more than one we need the tick for involuntary 1211 * preemption. 1212 */ 1213 if (rq->nr_running > 1) 1214 return false; 1215 1216 return true; 1217 } 1218 #endif /* CONFIG_NO_HZ_FULL */ 1219 #endif /* CONFIG_SMP */ 1220 1221 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1222 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1223 /* 1224 * Iterate task_group tree rooted at *from, calling @down when first entering a 1225 * node and @up when leaving it for the final time. 1226 * 1227 * Caller must hold rcu_lock or sufficient equivalent. 1228 */ 1229 int walk_tg_tree_from(struct task_group *from, 1230 tg_visitor down, tg_visitor up, void *data) 1231 { 1232 struct task_group *parent, *child; 1233 int ret; 1234 1235 parent = from; 1236 1237 down: 1238 ret = (*down)(parent, data); 1239 if (ret) 1240 goto out; 1241 list_for_each_entry_rcu(child, &parent->children, siblings) { 1242 parent = child; 1243 goto down; 1244 1245 up: 1246 continue; 1247 } 1248 ret = (*up)(parent, data); 1249 if (ret || parent == from) 1250 goto out; 1251 1252 child = parent; 1253 parent = parent->parent; 1254 if (parent) 1255 goto up; 1256 out: 1257 return ret; 1258 } 1259 1260 int tg_nop(struct task_group *tg, void *data) 1261 { 1262 return 0; 1263 } 1264 #endif 1265 1266 static void set_load_weight(struct task_struct *p, bool update_load) 1267 { 1268 int prio = p->static_prio - MAX_RT_PRIO; 1269 struct load_weight *load = &p->se.load; 1270 1271 /* 1272 * SCHED_IDLE tasks get minimal weight: 1273 */ 1274 if (task_has_idle_policy(p)) { 1275 load->weight = scale_load(WEIGHT_IDLEPRIO); 1276 load->inv_weight = WMULT_IDLEPRIO; 1277 return; 1278 } 1279 1280 /* 1281 * SCHED_OTHER tasks have to update their load when changing their 1282 * weight 1283 */ 1284 if (update_load && p->sched_class == &fair_sched_class) { 1285 reweight_task(p, prio); 1286 } else { 1287 load->weight = scale_load(sched_prio_to_weight[prio]); 1288 load->inv_weight = sched_prio_to_wmult[prio]; 1289 } 1290 } 1291 1292 #ifdef CONFIG_UCLAMP_TASK 1293 /* 1294 * Serializes updates of utilization clamp values 1295 * 1296 * The (slow-path) user-space triggers utilization clamp value updates which 1297 * can require updates on (fast-path) scheduler's data structures used to 1298 * support enqueue/dequeue operations. 1299 * While the per-CPU rq lock protects fast-path update operations, user-space 1300 * requests are serialized using a mutex to reduce the risk of conflicting 1301 * updates or API abuses. 1302 */ 1303 static DEFINE_MUTEX(uclamp_mutex); 1304 1305 /* Max allowed minimum utilization */ 1306 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1307 1308 /* Max allowed maximum utilization */ 1309 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1310 1311 /* 1312 * By default RT tasks run at the maximum performance point/capacity of the 1313 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1314 * SCHED_CAPACITY_SCALE. 1315 * 1316 * This knob allows admins to change the default behavior when uclamp is being 1317 * used. In battery powered devices, particularly, running at the maximum 1318 * capacity and frequency will increase energy consumption and shorten the 1319 * battery life. 1320 * 1321 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1322 * 1323 * This knob will not override the system default sched_util_clamp_min defined 1324 * above. 1325 */ 1326 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1327 1328 /* All clamps are required to be less or equal than these values */ 1329 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1330 1331 /* 1332 * This static key is used to reduce the uclamp overhead in the fast path. It 1333 * primarily disables the call to uclamp_rq_{inc, dec}() in 1334 * enqueue/dequeue_task(). 1335 * 1336 * This allows users to continue to enable uclamp in their kernel config with 1337 * minimum uclamp overhead in the fast path. 1338 * 1339 * As soon as userspace modifies any of the uclamp knobs, the static key is 1340 * enabled, since we have an actual users that make use of uclamp 1341 * functionality. 1342 * 1343 * The knobs that would enable this static key are: 1344 * 1345 * * A task modifying its uclamp value with sched_setattr(). 1346 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1347 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1348 */ 1349 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1350 1351 /* Integer rounded range for each bucket */ 1352 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1353 1354 #define for_each_clamp_id(clamp_id) \ 1355 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1356 1357 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1358 { 1359 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1360 } 1361 1362 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1363 { 1364 if (clamp_id == UCLAMP_MIN) 1365 return 0; 1366 return SCHED_CAPACITY_SCALE; 1367 } 1368 1369 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1370 unsigned int value, bool user_defined) 1371 { 1372 uc_se->value = value; 1373 uc_se->bucket_id = uclamp_bucket_id(value); 1374 uc_se->user_defined = user_defined; 1375 } 1376 1377 static inline unsigned int 1378 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1379 unsigned int clamp_value) 1380 { 1381 /* 1382 * Avoid blocked utilization pushing up the frequency when we go 1383 * idle (which drops the max-clamp) by retaining the last known 1384 * max-clamp. 1385 */ 1386 if (clamp_id == UCLAMP_MAX) { 1387 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1388 return clamp_value; 1389 } 1390 1391 return uclamp_none(UCLAMP_MIN); 1392 } 1393 1394 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1395 unsigned int clamp_value) 1396 { 1397 /* Reset max-clamp retention only on idle exit */ 1398 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1399 return; 1400 1401 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1402 } 1403 1404 static inline 1405 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1406 unsigned int clamp_value) 1407 { 1408 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1409 int bucket_id = UCLAMP_BUCKETS - 1; 1410 1411 /* 1412 * Since both min and max clamps are max aggregated, find the 1413 * top most bucket with tasks in. 1414 */ 1415 for ( ; bucket_id >= 0; bucket_id--) { 1416 if (!bucket[bucket_id].tasks) 1417 continue; 1418 return bucket[bucket_id].value; 1419 } 1420 1421 /* No tasks -- default clamp values */ 1422 return uclamp_idle_value(rq, clamp_id, clamp_value); 1423 } 1424 1425 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1426 { 1427 unsigned int default_util_min; 1428 struct uclamp_se *uc_se; 1429 1430 lockdep_assert_held(&p->pi_lock); 1431 1432 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1433 1434 /* Only sync if user didn't override the default */ 1435 if (uc_se->user_defined) 1436 return; 1437 1438 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1439 uclamp_se_set(uc_se, default_util_min, false); 1440 } 1441 1442 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1443 { 1444 struct rq_flags rf; 1445 struct rq *rq; 1446 1447 if (!rt_task(p)) 1448 return; 1449 1450 /* Protect updates to p->uclamp_* */ 1451 rq = task_rq_lock(p, &rf); 1452 __uclamp_update_util_min_rt_default(p); 1453 task_rq_unlock(rq, p, &rf); 1454 } 1455 1456 static inline struct uclamp_se 1457 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1458 { 1459 /* Copy by value as we could modify it */ 1460 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1461 #ifdef CONFIG_UCLAMP_TASK_GROUP 1462 unsigned int tg_min, tg_max, value; 1463 1464 /* 1465 * Tasks in autogroups or root task group will be 1466 * restricted by system defaults. 1467 */ 1468 if (task_group_is_autogroup(task_group(p))) 1469 return uc_req; 1470 if (task_group(p) == &root_task_group) 1471 return uc_req; 1472 1473 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1474 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1475 value = uc_req.value; 1476 value = clamp(value, tg_min, tg_max); 1477 uclamp_se_set(&uc_req, value, false); 1478 #endif 1479 1480 return uc_req; 1481 } 1482 1483 /* 1484 * The effective clamp bucket index of a task depends on, by increasing 1485 * priority: 1486 * - the task specific clamp value, when explicitly requested from userspace 1487 * - the task group effective clamp value, for tasks not either in the root 1488 * group or in an autogroup 1489 * - the system default clamp value, defined by the sysadmin 1490 */ 1491 static inline struct uclamp_se 1492 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1493 { 1494 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1495 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1496 1497 /* System default restrictions always apply */ 1498 if (unlikely(uc_req.value > uc_max.value)) 1499 return uc_max; 1500 1501 return uc_req; 1502 } 1503 1504 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1505 { 1506 struct uclamp_se uc_eff; 1507 1508 /* Task currently refcounted: use back-annotated (effective) value */ 1509 if (p->uclamp[clamp_id].active) 1510 return (unsigned long)p->uclamp[clamp_id].value; 1511 1512 uc_eff = uclamp_eff_get(p, clamp_id); 1513 1514 return (unsigned long)uc_eff.value; 1515 } 1516 1517 /* 1518 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1519 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1520 * updates the rq's clamp value if required. 1521 * 1522 * Tasks can have a task-specific value requested from user-space, track 1523 * within each bucket the maximum value for tasks refcounted in it. 1524 * This "local max aggregation" allows to track the exact "requested" value 1525 * for each bucket when all its RUNNABLE tasks require the same clamp. 1526 */ 1527 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1528 enum uclamp_id clamp_id) 1529 { 1530 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1531 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1532 struct uclamp_bucket *bucket; 1533 1534 lockdep_assert_rq_held(rq); 1535 1536 /* Update task effective clamp */ 1537 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1538 1539 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1540 bucket->tasks++; 1541 uc_se->active = true; 1542 1543 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1544 1545 /* 1546 * Local max aggregation: rq buckets always track the max 1547 * "requested" clamp value of its RUNNABLE tasks. 1548 */ 1549 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1550 bucket->value = uc_se->value; 1551 1552 if (uc_se->value > READ_ONCE(uc_rq->value)) 1553 WRITE_ONCE(uc_rq->value, uc_se->value); 1554 } 1555 1556 /* 1557 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1558 * is released. If this is the last task reference counting the rq's max 1559 * active clamp value, then the rq's clamp value is updated. 1560 * 1561 * Both refcounted tasks and rq's cached clamp values are expected to be 1562 * always valid. If it's detected they are not, as defensive programming, 1563 * enforce the expected state and warn. 1564 */ 1565 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1566 enum uclamp_id clamp_id) 1567 { 1568 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1569 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1570 struct uclamp_bucket *bucket; 1571 unsigned int bkt_clamp; 1572 unsigned int rq_clamp; 1573 1574 lockdep_assert_rq_held(rq); 1575 1576 /* 1577 * If sched_uclamp_used was enabled after task @p was enqueued, 1578 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1579 * 1580 * In this case the uc_se->active flag should be false since no uclamp 1581 * accounting was performed at enqueue time and we can just return 1582 * here. 1583 * 1584 * Need to be careful of the following enqueue/dequeue ordering 1585 * problem too 1586 * 1587 * enqueue(taskA) 1588 * // sched_uclamp_used gets enabled 1589 * enqueue(taskB) 1590 * dequeue(taskA) 1591 * // Must not decrement bucket->tasks here 1592 * dequeue(taskB) 1593 * 1594 * where we could end up with stale data in uc_se and 1595 * bucket[uc_se->bucket_id]. 1596 * 1597 * The following check here eliminates the possibility of such race. 1598 */ 1599 if (unlikely(!uc_se->active)) 1600 return; 1601 1602 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1603 1604 SCHED_WARN_ON(!bucket->tasks); 1605 if (likely(bucket->tasks)) 1606 bucket->tasks--; 1607 1608 uc_se->active = false; 1609 1610 /* 1611 * Keep "local max aggregation" simple and accept to (possibly) 1612 * overboost some RUNNABLE tasks in the same bucket. 1613 * The rq clamp bucket value is reset to its base value whenever 1614 * there are no more RUNNABLE tasks refcounting it. 1615 */ 1616 if (likely(bucket->tasks)) 1617 return; 1618 1619 rq_clamp = READ_ONCE(uc_rq->value); 1620 /* 1621 * Defensive programming: this should never happen. If it happens, 1622 * e.g. due to future modification, warn and fixup the expected value. 1623 */ 1624 SCHED_WARN_ON(bucket->value > rq_clamp); 1625 if (bucket->value >= rq_clamp) { 1626 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1627 WRITE_ONCE(uc_rq->value, bkt_clamp); 1628 } 1629 } 1630 1631 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1632 { 1633 enum uclamp_id clamp_id; 1634 1635 /* 1636 * Avoid any overhead until uclamp is actually used by the userspace. 1637 * 1638 * The condition is constructed such that a NOP is generated when 1639 * sched_uclamp_used is disabled. 1640 */ 1641 if (!static_branch_unlikely(&sched_uclamp_used)) 1642 return; 1643 1644 if (unlikely(!p->sched_class->uclamp_enabled)) 1645 return; 1646 1647 for_each_clamp_id(clamp_id) 1648 uclamp_rq_inc_id(rq, p, clamp_id); 1649 1650 /* Reset clamp idle holding when there is one RUNNABLE task */ 1651 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1652 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1653 } 1654 1655 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1656 { 1657 enum uclamp_id clamp_id; 1658 1659 /* 1660 * Avoid any overhead until uclamp is actually used by the userspace. 1661 * 1662 * The condition is constructed such that a NOP is generated when 1663 * sched_uclamp_used is disabled. 1664 */ 1665 if (!static_branch_unlikely(&sched_uclamp_used)) 1666 return; 1667 1668 if (unlikely(!p->sched_class->uclamp_enabled)) 1669 return; 1670 1671 for_each_clamp_id(clamp_id) 1672 uclamp_rq_dec_id(rq, p, clamp_id); 1673 } 1674 1675 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1676 enum uclamp_id clamp_id) 1677 { 1678 if (!p->uclamp[clamp_id].active) 1679 return; 1680 1681 uclamp_rq_dec_id(rq, p, clamp_id); 1682 uclamp_rq_inc_id(rq, p, clamp_id); 1683 1684 /* 1685 * Make sure to clear the idle flag if we've transiently reached 0 1686 * active tasks on rq. 1687 */ 1688 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1689 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1690 } 1691 1692 static inline void 1693 uclamp_update_active(struct task_struct *p) 1694 { 1695 enum uclamp_id clamp_id; 1696 struct rq_flags rf; 1697 struct rq *rq; 1698 1699 /* 1700 * Lock the task and the rq where the task is (or was) queued. 1701 * 1702 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1703 * price to pay to safely serialize util_{min,max} updates with 1704 * enqueues, dequeues and migration operations. 1705 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1706 */ 1707 rq = task_rq_lock(p, &rf); 1708 1709 /* 1710 * Setting the clamp bucket is serialized by task_rq_lock(). 1711 * If the task is not yet RUNNABLE and its task_struct is not 1712 * affecting a valid clamp bucket, the next time it's enqueued, 1713 * it will already see the updated clamp bucket value. 1714 */ 1715 for_each_clamp_id(clamp_id) 1716 uclamp_rq_reinc_id(rq, p, clamp_id); 1717 1718 task_rq_unlock(rq, p, &rf); 1719 } 1720 1721 #ifdef CONFIG_UCLAMP_TASK_GROUP 1722 static inline void 1723 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1724 { 1725 struct css_task_iter it; 1726 struct task_struct *p; 1727 1728 css_task_iter_start(css, 0, &it); 1729 while ((p = css_task_iter_next(&it))) 1730 uclamp_update_active(p); 1731 css_task_iter_end(&it); 1732 } 1733 1734 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1735 #endif 1736 1737 #ifdef CONFIG_SYSCTL 1738 #ifdef CONFIG_UCLAMP_TASK 1739 #ifdef CONFIG_UCLAMP_TASK_GROUP 1740 static void uclamp_update_root_tg(void) 1741 { 1742 struct task_group *tg = &root_task_group; 1743 1744 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1745 sysctl_sched_uclamp_util_min, false); 1746 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1747 sysctl_sched_uclamp_util_max, false); 1748 1749 rcu_read_lock(); 1750 cpu_util_update_eff(&root_task_group.css); 1751 rcu_read_unlock(); 1752 } 1753 #else 1754 static void uclamp_update_root_tg(void) { } 1755 #endif 1756 1757 static void uclamp_sync_util_min_rt_default(void) 1758 { 1759 struct task_struct *g, *p; 1760 1761 /* 1762 * copy_process() sysctl_uclamp 1763 * uclamp_min_rt = X; 1764 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1765 * // link thread smp_mb__after_spinlock() 1766 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1767 * sched_post_fork() for_each_process_thread() 1768 * __uclamp_sync_rt() __uclamp_sync_rt() 1769 * 1770 * Ensures that either sched_post_fork() will observe the new 1771 * uclamp_min_rt or for_each_process_thread() will observe the new 1772 * task. 1773 */ 1774 read_lock(&tasklist_lock); 1775 smp_mb__after_spinlock(); 1776 read_unlock(&tasklist_lock); 1777 1778 rcu_read_lock(); 1779 for_each_process_thread(g, p) 1780 uclamp_update_util_min_rt_default(p); 1781 rcu_read_unlock(); 1782 } 1783 1784 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1785 void *buffer, size_t *lenp, loff_t *ppos) 1786 { 1787 bool update_root_tg = false; 1788 int old_min, old_max, old_min_rt; 1789 int result; 1790 1791 mutex_lock(&uclamp_mutex); 1792 old_min = sysctl_sched_uclamp_util_min; 1793 old_max = sysctl_sched_uclamp_util_max; 1794 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1795 1796 result = proc_dointvec(table, write, buffer, lenp, ppos); 1797 if (result) 1798 goto undo; 1799 if (!write) 1800 goto done; 1801 1802 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1803 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1804 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1805 1806 result = -EINVAL; 1807 goto undo; 1808 } 1809 1810 if (old_min != sysctl_sched_uclamp_util_min) { 1811 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1812 sysctl_sched_uclamp_util_min, false); 1813 update_root_tg = true; 1814 } 1815 if (old_max != sysctl_sched_uclamp_util_max) { 1816 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1817 sysctl_sched_uclamp_util_max, false); 1818 update_root_tg = true; 1819 } 1820 1821 if (update_root_tg) { 1822 static_branch_enable(&sched_uclamp_used); 1823 uclamp_update_root_tg(); 1824 } 1825 1826 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1827 static_branch_enable(&sched_uclamp_used); 1828 uclamp_sync_util_min_rt_default(); 1829 } 1830 1831 /* 1832 * We update all RUNNABLE tasks only when task groups are in use. 1833 * Otherwise, keep it simple and do just a lazy update at each next 1834 * task enqueue time. 1835 */ 1836 1837 goto done; 1838 1839 undo: 1840 sysctl_sched_uclamp_util_min = old_min; 1841 sysctl_sched_uclamp_util_max = old_max; 1842 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1843 done: 1844 mutex_unlock(&uclamp_mutex); 1845 1846 return result; 1847 } 1848 #endif 1849 #endif 1850 1851 static int uclamp_validate(struct task_struct *p, 1852 const struct sched_attr *attr) 1853 { 1854 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1855 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1856 1857 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1858 util_min = attr->sched_util_min; 1859 1860 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1861 return -EINVAL; 1862 } 1863 1864 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1865 util_max = attr->sched_util_max; 1866 1867 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1868 return -EINVAL; 1869 } 1870 1871 if (util_min != -1 && util_max != -1 && util_min > util_max) 1872 return -EINVAL; 1873 1874 /* 1875 * We have valid uclamp attributes; make sure uclamp is enabled. 1876 * 1877 * We need to do that here, because enabling static branches is a 1878 * blocking operation which obviously cannot be done while holding 1879 * scheduler locks. 1880 */ 1881 static_branch_enable(&sched_uclamp_used); 1882 1883 return 0; 1884 } 1885 1886 static bool uclamp_reset(const struct sched_attr *attr, 1887 enum uclamp_id clamp_id, 1888 struct uclamp_se *uc_se) 1889 { 1890 /* Reset on sched class change for a non user-defined clamp value. */ 1891 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1892 !uc_se->user_defined) 1893 return true; 1894 1895 /* Reset on sched_util_{min,max} == -1. */ 1896 if (clamp_id == UCLAMP_MIN && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1898 attr->sched_util_min == -1) { 1899 return true; 1900 } 1901 1902 if (clamp_id == UCLAMP_MAX && 1903 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1904 attr->sched_util_max == -1) { 1905 return true; 1906 } 1907 1908 return false; 1909 } 1910 1911 static void __setscheduler_uclamp(struct task_struct *p, 1912 const struct sched_attr *attr) 1913 { 1914 enum uclamp_id clamp_id; 1915 1916 for_each_clamp_id(clamp_id) { 1917 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1918 unsigned int value; 1919 1920 if (!uclamp_reset(attr, clamp_id, uc_se)) 1921 continue; 1922 1923 /* 1924 * RT by default have a 100% boost value that could be modified 1925 * at runtime. 1926 */ 1927 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1928 value = sysctl_sched_uclamp_util_min_rt_default; 1929 else 1930 value = uclamp_none(clamp_id); 1931 1932 uclamp_se_set(uc_se, value, false); 1933 1934 } 1935 1936 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1937 return; 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1940 attr->sched_util_min != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1942 attr->sched_util_min, true); 1943 } 1944 1945 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1946 attr->sched_util_max != -1) { 1947 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1948 attr->sched_util_max, true); 1949 } 1950 } 1951 1952 static void uclamp_fork(struct task_struct *p) 1953 { 1954 enum uclamp_id clamp_id; 1955 1956 /* 1957 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1958 * as the task is still at its early fork stages. 1959 */ 1960 for_each_clamp_id(clamp_id) 1961 p->uclamp[clamp_id].active = false; 1962 1963 if (likely(!p->sched_reset_on_fork)) 1964 return; 1965 1966 for_each_clamp_id(clamp_id) { 1967 uclamp_se_set(&p->uclamp_req[clamp_id], 1968 uclamp_none(clamp_id), false); 1969 } 1970 } 1971 1972 static void uclamp_post_fork(struct task_struct *p) 1973 { 1974 uclamp_update_util_min_rt_default(p); 1975 } 1976 1977 static void __init init_uclamp_rq(struct rq *rq) 1978 { 1979 enum uclamp_id clamp_id; 1980 struct uclamp_rq *uc_rq = rq->uclamp; 1981 1982 for_each_clamp_id(clamp_id) { 1983 uc_rq[clamp_id] = (struct uclamp_rq) { 1984 .value = uclamp_none(clamp_id) 1985 }; 1986 } 1987 1988 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1989 } 1990 1991 static void __init init_uclamp(void) 1992 { 1993 struct uclamp_se uc_max = {}; 1994 enum uclamp_id clamp_id; 1995 int cpu; 1996 1997 for_each_possible_cpu(cpu) 1998 init_uclamp_rq(cpu_rq(cpu)); 1999 2000 for_each_clamp_id(clamp_id) { 2001 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2002 uclamp_none(clamp_id), false); 2003 } 2004 2005 /* System defaults allow max clamp values for both indexes */ 2006 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2007 for_each_clamp_id(clamp_id) { 2008 uclamp_default[clamp_id] = uc_max; 2009 #ifdef CONFIG_UCLAMP_TASK_GROUP 2010 root_task_group.uclamp_req[clamp_id] = uc_max; 2011 root_task_group.uclamp[clamp_id] = uc_max; 2012 #endif 2013 } 2014 } 2015 2016 #else /* CONFIG_UCLAMP_TASK */ 2017 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2018 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2019 static inline int uclamp_validate(struct task_struct *p, 2020 const struct sched_attr *attr) 2021 { 2022 return -EOPNOTSUPP; 2023 } 2024 static void __setscheduler_uclamp(struct task_struct *p, 2025 const struct sched_attr *attr) { } 2026 static inline void uclamp_fork(struct task_struct *p) { } 2027 static inline void uclamp_post_fork(struct task_struct *p) { } 2028 static inline void init_uclamp(void) { } 2029 #endif /* CONFIG_UCLAMP_TASK */ 2030 2031 bool sched_task_on_rq(struct task_struct *p) 2032 { 2033 return task_on_rq_queued(p); 2034 } 2035 2036 unsigned long get_wchan(struct task_struct *p) 2037 { 2038 unsigned long ip = 0; 2039 unsigned int state; 2040 2041 if (!p || p == current) 2042 return 0; 2043 2044 /* Only get wchan if task is blocked and we can keep it that way. */ 2045 raw_spin_lock_irq(&p->pi_lock); 2046 state = READ_ONCE(p->__state); 2047 smp_rmb(); /* see try_to_wake_up() */ 2048 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2049 ip = __get_wchan(p); 2050 raw_spin_unlock_irq(&p->pi_lock); 2051 2052 return ip; 2053 } 2054 2055 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2056 { 2057 if (!(flags & ENQUEUE_NOCLOCK)) 2058 update_rq_clock(rq); 2059 2060 if (!(flags & ENQUEUE_RESTORE)) { 2061 sched_info_enqueue(rq, p); 2062 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2063 } 2064 2065 uclamp_rq_inc(rq, p); 2066 p->sched_class->enqueue_task(rq, p, flags); 2067 2068 if (sched_core_enabled(rq)) 2069 sched_core_enqueue(rq, p); 2070 } 2071 2072 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2073 { 2074 if (sched_core_enabled(rq)) 2075 sched_core_dequeue(rq, p, flags); 2076 2077 if (!(flags & DEQUEUE_NOCLOCK)) 2078 update_rq_clock(rq); 2079 2080 if (!(flags & DEQUEUE_SAVE)) { 2081 sched_info_dequeue(rq, p); 2082 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2083 } 2084 2085 uclamp_rq_dec(rq, p); 2086 p->sched_class->dequeue_task(rq, p, flags); 2087 } 2088 2089 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2090 { 2091 enqueue_task(rq, p, flags); 2092 2093 p->on_rq = TASK_ON_RQ_QUEUED; 2094 } 2095 2096 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2097 { 2098 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2099 2100 dequeue_task(rq, p, flags); 2101 } 2102 2103 static inline int __normal_prio(int policy, int rt_prio, int nice) 2104 { 2105 int prio; 2106 2107 if (dl_policy(policy)) 2108 prio = MAX_DL_PRIO - 1; 2109 else if (rt_policy(policy)) 2110 prio = MAX_RT_PRIO - 1 - rt_prio; 2111 else 2112 prio = NICE_TO_PRIO(nice); 2113 2114 return prio; 2115 } 2116 2117 /* 2118 * Calculate the expected normal priority: i.e. priority 2119 * without taking RT-inheritance into account. Might be 2120 * boosted by interactivity modifiers. Changes upon fork, 2121 * setprio syscalls, and whenever the interactivity 2122 * estimator recalculates. 2123 */ 2124 static inline int normal_prio(struct task_struct *p) 2125 { 2126 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2127 } 2128 2129 /* 2130 * Calculate the current priority, i.e. the priority 2131 * taken into account by the scheduler. This value might 2132 * be boosted by RT tasks, or might be boosted by 2133 * interactivity modifiers. Will be RT if the task got 2134 * RT-boosted. If not then it returns p->normal_prio. 2135 */ 2136 static int effective_prio(struct task_struct *p) 2137 { 2138 p->normal_prio = normal_prio(p); 2139 /* 2140 * If we are RT tasks or we were boosted to RT priority, 2141 * keep the priority unchanged. Otherwise, update priority 2142 * to the normal priority: 2143 */ 2144 if (!rt_prio(p->prio)) 2145 return p->normal_prio; 2146 return p->prio; 2147 } 2148 2149 /** 2150 * task_curr - is this task currently executing on a CPU? 2151 * @p: the task in question. 2152 * 2153 * Return: 1 if the task is currently executing. 0 otherwise. 2154 */ 2155 inline int task_curr(const struct task_struct *p) 2156 { 2157 return cpu_curr(task_cpu(p)) == p; 2158 } 2159 2160 /* 2161 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2162 * use the balance_callback list if you want balancing. 2163 * 2164 * this means any call to check_class_changed() must be followed by a call to 2165 * balance_callback(). 2166 */ 2167 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2168 const struct sched_class *prev_class, 2169 int oldprio) 2170 { 2171 if (prev_class != p->sched_class) { 2172 if (prev_class->switched_from) 2173 prev_class->switched_from(rq, p); 2174 2175 p->sched_class->switched_to(rq, p); 2176 } else if (oldprio != p->prio || dl_task(p)) 2177 p->sched_class->prio_changed(rq, p, oldprio); 2178 } 2179 2180 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2181 { 2182 if (p->sched_class == rq->curr->sched_class) 2183 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2184 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2185 resched_curr(rq); 2186 2187 /* 2188 * A queue event has occurred, and we're going to schedule. In 2189 * this case, we can save a useless back to back clock update. 2190 */ 2191 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2192 rq_clock_skip_update(rq); 2193 } 2194 2195 #ifdef CONFIG_SMP 2196 2197 static void 2198 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2199 2200 static int __set_cpus_allowed_ptr(struct task_struct *p, 2201 const struct cpumask *new_mask, 2202 u32 flags); 2203 2204 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2205 { 2206 if (likely(!p->migration_disabled)) 2207 return; 2208 2209 if (p->cpus_ptr != &p->cpus_mask) 2210 return; 2211 2212 /* 2213 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2214 */ 2215 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2216 } 2217 2218 void migrate_disable(void) 2219 { 2220 struct task_struct *p = current; 2221 2222 if (p->migration_disabled) { 2223 p->migration_disabled++; 2224 return; 2225 } 2226 2227 preempt_disable(); 2228 this_rq()->nr_pinned++; 2229 p->migration_disabled = 1; 2230 preempt_enable(); 2231 } 2232 EXPORT_SYMBOL_GPL(migrate_disable); 2233 2234 void migrate_enable(void) 2235 { 2236 struct task_struct *p = current; 2237 2238 if (p->migration_disabled > 1) { 2239 p->migration_disabled--; 2240 return; 2241 } 2242 2243 if (WARN_ON_ONCE(!p->migration_disabled)) 2244 return; 2245 2246 /* 2247 * Ensure stop_task runs either before or after this, and that 2248 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2249 */ 2250 preempt_disable(); 2251 if (p->cpus_ptr != &p->cpus_mask) 2252 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2253 /* 2254 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2255 * regular cpus_mask, otherwise things that race (eg. 2256 * select_fallback_rq) get confused. 2257 */ 2258 barrier(); 2259 p->migration_disabled = 0; 2260 this_rq()->nr_pinned--; 2261 preempt_enable(); 2262 } 2263 EXPORT_SYMBOL_GPL(migrate_enable); 2264 2265 static inline bool rq_has_pinned_tasks(struct rq *rq) 2266 { 2267 return rq->nr_pinned; 2268 } 2269 2270 /* 2271 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2272 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2273 */ 2274 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2275 { 2276 /* When not in the task's cpumask, no point in looking further. */ 2277 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2278 return false; 2279 2280 /* migrate_disabled() must be allowed to finish. */ 2281 if (is_migration_disabled(p)) 2282 return cpu_online(cpu); 2283 2284 /* Non kernel threads are not allowed during either online or offline. */ 2285 if (!(p->flags & PF_KTHREAD)) 2286 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2287 2288 /* KTHREAD_IS_PER_CPU is always allowed. */ 2289 if (kthread_is_per_cpu(p)) 2290 return cpu_online(cpu); 2291 2292 /* Regular kernel threads don't get to stay during offline. */ 2293 if (cpu_dying(cpu)) 2294 return false; 2295 2296 /* But are allowed during online. */ 2297 return cpu_online(cpu); 2298 } 2299 2300 /* 2301 * This is how migration works: 2302 * 2303 * 1) we invoke migration_cpu_stop() on the target CPU using 2304 * stop_one_cpu(). 2305 * 2) stopper starts to run (implicitly forcing the migrated thread 2306 * off the CPU) 2307 * 3) it checks whether the migrated task is still in the wrong runqueue. 2308 * 4) if it's in the wrong runqueue then the migration thread removes 2309 * it and puts it into the right queue. 2310 * 5) stopper completes and stop_one_cpu() returns and the migration 2311 * is done. 2312 */ 2313 2314 /* 2315 * move_queued_task - move a queued task to new rq. 2316 * 2317 * Returns (locked) new rq. Old rq's lock is released. 2318 */ 2319 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2320 struct task_struct *p, int new_cpu) 2321 { 2322 lockdep_assert_rq_held(rq); 2323 2324 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2325 set_task_cpu(p, new_cpu); 2326 rq_unlock(rq, rf); 2327 2328 rq = cpu_rq(new_cpu); 2329 2330 rq_lock(rq, rf); 2331 BUG_ON(task_cpu(p) != new_cpu); 2332 activate_task(rq, p, 0); 2333 check_preempt_curr(rq, p, 0); 2334 2335 return rq; 2336 } 2337 2338 struct migration_arg { 2339 struct task_struct *task; 2340 int dest_cpu; 2341 struct set_affinity_pending *pending; 2342 }; 2343 2344 /* 2345 * @refs: number of wait_for_completion() 2346 * @stop_pending: is @stop_work in use 2347 */ 2348 struct set_affinity_pending { 2349 refcount_t refs; 2350 unsigned int stop_pending; 2351 struct completion done; 2352 struct cpu_stop_work stop_work; 2353 struct migration_arg arg; 2354 }; 2355 2356 /* 2357 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2358 * this because either it can't run here any more (set_cpus_allowed() 2359 * away from this CPU, or CPU going down), or because we're 2360 * attempting to rebalance this task on exec (sched_exec). 2361 * 2362 * So we race with normal scheduler movements, but that's OK, as long 2363 * as the task is no longer on this CPU. 2364 */ 2365 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2366 struct task_struct *p, int dest_cpu) 2367 { 2368 /* Affinity changed (again). */ 2369 if (!is_cpu_allowed(p, dest_cpu)) 2370 return rq; 2371 2372 update_rq_clock(rq); 2373 rq = move_queued_task(rq, rf, p, dest_cpu); 2374 2375 return rq; 2376 } 2377 2378 /* 2379 * migration_cpu_stop - this will be executed by a highprio stopper thread 2380 * and performs thread migration by bumping thread off CPU then 2381 * 'pushing' onto another runqueue. 2382 */ 2383 static int migration_cpu_stop(void *data) 2384 { 2385 struct migration_arg *arg = data; 2386 struct set_affinity_pending *pending = arg->pending; 2387 struct task_struct *p = arg->task; 2388 struct rq *rq = this_rq(); 2389 bool complete = false; 2390 struct rq_flags rf; 2391 2392 /* 2393 * The original target CPU might have gone down and we might 2394 * be on another CPU but it doesn't matter. 2395 */ 2396 local_irq_save(rf.flags); 2397 /* 2398 * We need to explicitly wake pending tasks before running 2399 * __migrate_task() such that we will not miss enforcing cpus_ptr 2400 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2401 */ 2402 flush_smp_call_function_queue(); 2403 2404 raw_spin_lock(&p->pi_lock); 2405 rq_lock(rq, &rf); 2406 2407 /* 2408 * If we were passed a pending, then ->stop_pending was set, thus 2409 * p->migration_pending must have remained stable. 2410 */ 2411 WARN_ON_ONCE(pending && pending != p->migration_pending); 2412 2413 /* 2414 * If task_rq(p) != rq, it cannot be migrated here, because we're 2415 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2416 * we're holding p->pi_lock. 2417 */ 2418 if (task_rq(p) == rq) { 2419 if (is_migration_disabled(p)) 2420 goto out; 2421 2422 if (pending) { 2423 p->migration_pending = NULL; 2424 complete = true; 2425 2426 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2427 goto out; 2428 } 2429 2430 if (task_on_rq_queued(p)) 2431 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2432 else 2433 p->wake_cpu = arg->dest_cpu; 2434 2435 /* 2436 * XXX __migrate_task() can fail, at which point we might end 2437 * up running on a dodgy CPU, AFAICT this can only happen 2438 * during CPU hotplug, at which point we'll get pushed out 2439 * anyway, so it's probably not a big deal. 2440 */ 2441 2442 } else if (pending) { 2443 /* 2444 * This happens when we get migrated between migrate_enable()'s 2445 * preempt_enable() and scheduling the stopper task. At that 2446 * point we're a regular task again and not current anymore. 2447 * 2448 * A !PREEMPT kernel has a giant hole here, which makes it far 2449 * more likely. 2450 */ 2451 2452 /* 2453 * The task moved before the stopper got to run. We're holding 2454 * ->pi_lock, so the allowed mask is stable - if it got 2455 * somewhere allowed, we're done. 2456 */ 2457 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2458 p->migration_pending = NULL; 2459 complete = true; 2460 goto out; 2461 } 2462 2463 /* 2464 * When migrate_enable() hits a rq mis-match we can't reliably 2465 * determine is_migration_disabled() and so have to chase after 2466 * it. 2467 */ 2468 WARN_ON_ONCE(!pending->stop_pending); 2469 task_rq_unlock(rq, p, &rf); 2470 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2471 &pending->arg, &pending->stop_work); 2472 return 0; 2473 } 2474 out: 2475 if (pending) 2476 pending->stop_pending = false; 2477 task_rq_unlock(rq, p, &rf); 2478 2479 if (complete) 2480 complete_all(&pending->done); 2481 2482 return 0; 2483 } 2484 2485 int push_cpu_stop(void *arg) 2486 { 2487 struct rq *lowest_rq = NULL, *rq = this_rq(); 2488 struct task_struct *p = arg; 2489 2490 raw_spin_lock_irq(&p->pi_lock); 2491 raw_spin_rq_lock(rq); 2492 2493 if (task_rq(p) != rq) 2494 goto out_unlock; 2495 2496 if (is_migration_disabled(p)) { 2497 p->migration_flags |= MDF_PUSH; 2498 goto out_unlock; 2499 } 2500 2501 p->migration_flags &= ~MDF_PUSH; 2502 2503 if (p->sched_class->find_lock_rq) 2504 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2505 2506 if (!lowest_rq) 2507 goto out_unlock; 2508 2509 // XXX validate p is still the highest prio task 2510 if (task_rq(p) == rq) { 2511 deactivate_task(rq, p, 0); 2512 set_task_cpu(p, lowest_rq->cpu); 2513 activate_task(lowest_rq, p, 0); 2514 resched_curr(lowest_rq); 2515 } 2516 2517 double_unlock_balance(rq, lowest_rq); 2518 2519 out_unlock: 2520 rq->push_busy = false; 2521 raw_spin_rq_unlock(rq); 2522 raw_spin_unlock_irq(&p->pi_lock); 2523 2524 put_task_struct(p); 2525 return 0; 2526 } 2527 2528 /* 2529 * sched_class::set_cpus_allowed must do the below, but is not required to 2530 * actually call this function. 2531 */ 2532 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2533 { 2534 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2535 p->cpus_ptr = new_mask; 2536 return; 2537 } 2538 2539 cpumask_copy(&p->cpus_mask, new_mask); 2540 p->nr_cpus_allowed = cpumask_weight(new_mask); 2541 } 2542 2543 static void 2544 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2545 { 2546 struct rq *rq = task_rq(p); 2547 bool queued, running; 2548 2549 /* 2550 * This here violates the locking rules for affinity, since we're only 2551 * supposed to change these variables while holding both rq->lock and 2552 * p->pi_lock. 2553 * 2554 * HOWEVER, it magically works, because ttwu() is the only code that 2555 * accesses these variables under p->pi_lock and only does so after 2556 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2557 * before finish_task(). 2558 * 2559 * XXX do further audits, this smells like something putrid. 2560 */ 2561 if (flags & SCA_MIGRATE_DISABLE) 2562 SCHED_WARN_ON(!p->on_cpu); 2563 else 2564 lockdep_assert_held(&p->pi_lock); 2565 2566 queued = task_on_rq_queued(p); 2567 running = task_current(rq, p); 2568 2569 if (queued) { 2570 /* 2571 * Because __kthread_bind() calls this on blocked tasks without 2572 * holding rq->lock. 2573 */ 2574 lockdep_assert_rq_held(rq); 2575 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2576 } 2577 if (running) 2578 put_prev_task(rq, p); 2579 2580 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2581 2582 if (queued) 2583 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2584 if (running) 2585 set_next_task(rq, p); 2586 } 2587 2588 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2589 { 2590 __do_set_cpus_allowed(p, new_mask, 0); 2591 } 2592 2593 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2594 int node) 2595 { 2596 if (!src->user_cpus_ptr) 2597 return 0; 2598 2599 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2600 if (!dst->user_cpus_ptr) 2601 return -ENOMEM; 2602 2603 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2604 return 0; 2605 } 2606 2607 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2608 { 2609 struct cpumask *user_mask = NULL; 2610 2611 swap(p->user_cpus_ptr, user_mask); 2612 2613 return user_mask; 2614 } 2615 2616 void release_user_cpus_ptr(struct task_struct *p) 2617 { 2618 kfree(clear_user_cpus_ptr(p)); 2619 } 2620 2621 /* 2622 * This function is wildly self concurrent; here be dragons. 2623 * 2624 * 2625 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2626 * designated task is enqueued on an allowed CPU. If that task is currently 2627 * running, we have to kick it out using the CPU stopper. 2628 * 2629 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2630 * Consider: 2631 * 2632 * Initial conditions: P0->cpus_mask = [0, 1] 2633 * 2634 * P0@CPU0 P1 2635 * 2636 * migrate_disable(); 2637 * <preempted> 2638 * set_cpus_allowed_ptr(P0, [1]); 2639 * 2640 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2641 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2642 * This means we need the following scheme: 2643 * 2644 * P0@CPU0 P1 2645 * 2646 * migrate_disable(); 2647 * <preempted> 2648 * set_cpus_allowed_ptr(P0, [1]); 2649 * <blocks> 2650 * <resumes> 2651 * migrate_enable(); 2652 * __set_cpus_allowed_ptr(); 2653 * <wakes local stopper> 2654 * `--> <woken on migration completion> 2655 * 2656 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2657 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2658 * task p are serialized by p->pi_lock, which we can leverage: the one that 2659 * should come into effect at the end of the Migrate-Disable region is the last 2660 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2661 * but we still need to properly signal those waiting tasks at the appropriate 2662 * moment. 2663 * 2664 * This is implemented using struct set_affinity_pending. The first 2665 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2666 * setup an instance of that struct and install it on the targeted task_struct. 2667 * Any and all further callers will reuse that instance. Those then wait for 2668 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2669 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2670 * 2671 * 2672 * (1) In the cases covered above. There is one more where the completion is 2673 * signaled within affine_move_task() itself: when a subsequent affinity request 2674 * occurs after the stopper bailed out due to the targeted task still being 2675 * Migrate-Disable. Consider: 2676 * 2677 * Initial conditions: P0->cpus_mask = [0, 1] 2678 * 2679 * CPU0 P1 P2 2680 * <P0> 2681 * migrate_disable(); 2682 * <preempted> 2683 * set_cpus_allowed_ptr(P0, [1]); 2684 * <blocks> 2685 * <migration/0> 2686 * migration_cpu_stop() 2687 * is_migration_disabled() 2688 * <bails> 2689 * set_cpus_allowed_ptr(P0, [0, 1]); 2690 * <signal completion> 2691 * <awakes> 2692 * 2693 * Note that the above is safe vs a concurrent migrate_enable(), as any 2694 * pending affinity completion is preceded by an uninstallation of 2695 * p->migration_pending done with p->pi_lock held. 2696 */ 2697 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2698 int dest_cpu, unsigned int flags) 2699 { 2700 struct set_affinity_pending my_pending = { }, *pending = NULL; 2701 bool stop_pending, complete = false; 2702 2703 /* Can the task run on the task's current CPU? If so, we're done */ 2704 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2705 struct task_struct *push_task = NULL; 2706 2707 if ((flags & SCA_MIGRATE_ENABLE) && 2708 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2709 rq->push_busy = true; 2710 push_task = get_task_struct(p); 2711 } 2712 2713 /* 2714 * If there are pending waiters, but no pending stop_work, 2715 * then complete now. 2716 */ 2717 pending = p->migration_pending; 2718 if (pending && !pending->stop_pending) { 2719 p->migration_pending = NULL; 2720 complete = true; 2721 } 2722 2723 task_rq_unlock(rq, p, rf); 2724 2725 if (push_task) { 2726 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2727 p, &rq->push_work); 2728 } 2729 2730 if (complete) 2731 complete_all(&pending->done); 2732 2733 return 0; 2734 } 2735 2736 if (!(flags & SCA_MIGRATE_ENABLE)) { 2737 /* serialized by p->pi_lock */ 2738 if (!p->migration_pending) { 2739 /* Install the request */ 2740 refcount_set(&my_pending.refs, 1); 2741 init_completion(&my_pending.done); 2742 my_pending.arg = (struct migration_arg) { 2743 .task = p, 2744 .dest_cpu = dest_cpu, 2745 .pending = &my_pending, 2746 }; 2747 2748 p->migration_pending = &my_pending; 2749 } else { 2750 pending = p->migration_pending; 2751 refcount_inc(&pending->refs); 2752 /* 2753 * Affinity has changed, but we've already installed a 2754 * pending. migration_cpu_stop() *must* see this, else 2755 * we risk a completion of the pending despite having a 2756 * task on a disallowed CPU. 2757 * 2758 * Serialized by p->pi_lock, so this is safe. 2759 */ 2760 pending->arg.dest_cpu = dest_cpu; 2761 } 2762 } 2763 pending = p->migration_pending; 2764 /* 2765 * - !MIGRATE_ENABLE: 2766 * we'll have installed a pending if there wasn't one already. 2767 * 2768 * - MIGRATE_ENABLE: 2769 * we're here because the current CPU isn't matching anymore, 2770 * the only way that can happen is because of a concurrent 2771 * set_cpus_allowed_ptr() call, which should then still be 2772 * pending completion. 2773 * 2774 * Either way, we really should have a @pending here. 2775 */ 2776 if (WARN_ON_ONCE(!pending)) { 2777 task_rq_unlock(rq, p, rf); 2778 return -EINVAL; 2779 } 2780 2781 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2782 /* 2783 * MIGRATE_ENABLE gets here because 'p == current', but for 2784 * anything else we cannot do is_migration_disabled(), punt 2785 * and have the stopper function handle it all race-free. 2786 */ 2787 stop_pending = pending->stop_pending; 2788 if (!stop_pending) 2789 pending->stop_pending = true; 2790 2791 if (flags & SCA_MIGRATE_ENABLE) 2792 p->migration_flags &= ~MDF_PUSH; 2793 2794 task_rq_unlock(rq, p, rf); 2795 2796 if (!stop_pending) { 2797 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2798 &pending->arg, &pending->stop_work); 2799 } 2800 2801 if (flags & SCA_MIGRATE_ENABLE) 2802 return 0; 2803 } else { 2804 2805 if (!is_migration_disabled(p)) { 2806 if (task_on_rq_queued(p)) 2807 rq = move_queued_task(rq, rf, p, dest_cpu); 2808 2809 if (!pending->stop_pending) { 2810 p->migration_pending = NULL; 2811 complete = true; 2812 } 2813 } 2814 task_rq_unlock(rq, p, rf); 2815 2816 if (complete) 2817 complete_all(&pending->done); 2818 } 2819 2820 wait_for_completion(&pending->done); 2821 2822 if (refcount_dec_and_test(&pending->refs)) 2823 wake_up_var(&pending->refs); /* No UaF, just an address */ 2824 2825 /* 2826 * Block the original owner of &pending until all subsequent callers 2827 * have seen the completion and decremented the refcount 2828 */ 2829 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2830 2831 /* ARGH */ 2832 WARN_ON_ONCE(my_pending.stop_pending); 2833 2834 return 0; 2835 } 2836 2837 /* 2838 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2839 */ 2840 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2841 const struct cpumask *new_mask, 2842 u32 flags, 2843 struct rq *rq, 2844 struct rq_flags *rf) 2845 __releases(rq->lock) 2846 __releases(p->pi_lock) 2847 { 2848 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2849 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2850 bool kthread = p->flags & PF_KTHREAD; 2851 struct cpumask *user_mask = NULL; 2852 unsigned int dest_cpu; 2853 int ret = 0; 2854 2855 update_rq_clock(rq); 2856 2857 if (kthread || is_migration_disabled(p)) { 2858 /* 2859 * Kernel threads are allowed on online && !active CPUs, 2860 * however, during cpu-hot-unplug, even these might get pushed 2861 * away if not KTHREAD_IS_PER_CPU. 2862 * 2863 * Specifically, migration_disabled() tasks must not fail the 2864 * cpumask_any_and_distribute() pick below, esp. so on 2865 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2866 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2867 */ 2868 cpu_valid_mask = cpu_online_mask; 2869 } 2870 2871 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2872 ret = -EINVAL; 2873 goto out; 2874 } 2875 2876 /* 2877 * Must re-check here, to close a race against __kthread_bind(), 2878 * sched_setaffinity() is not guaranteed to observe the flag. 2879 */ 2880 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2881 ret = -EINVAL; 2882 goto out; 2883 } 2884 2885 if (!(flags & SCA_MIGRATE_ENABLE)) { 2886 if (cpumask_equal(&p->cpus_mask, new_mask)) 2887 goto out; 2888 2889 if (WARN_ON_ONCE(p == current && 2890 is_migration_disabled(p) && 2891 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2892 ret = -EBUSY; 2893 goto out; 2894 } 2895 } 2896 2897 /* 2898 * Picking a ~random cpu helps in cases where we are changing affinity 2899 * for groups of tasks (ie. cpuset), so that load balancing is not 2900 * immediately required to distribute the tasks within their new mask. 2901 */ 2902 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2903 if (dest_cpu >= nr_cpu_ids) { 2904 ret = -EINVAL; 2905 goto out; 2906 } 2907 2908 __do_set_cpus_allowed(p, new_mask, flags); 2909 2910 if (flags & SCA_USER) 2911 user_mask = clear_user_cpus_ptr(p); 2912 2913 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2914 2915 kfree(user_mask); 2916 2917 return ret; 2918 2919 out: 2920 task_rq_unlock(rq, p, rf); 2921 2922 return ret; 2923 } 2924 2925 /* 2926 * Change a given task's CPU affinity. Migrate the thread to a 2927 * proper CPU and schedule it away if the CPU it's executing on 2928 * is removed from the allowed bitmask. 2929 * 2930 * NOTE: the caller must have a valid reference to the task, the 2931 * task must not exit() & deallocate itself prematurely. The 2932 * call is not atomic; no spinlocks may be held. 2933 */ 2934 static int __set_cpus_allowed_ptr(struct task_struct *p, 2935 const struct cpumask *new_mask, u32 flags) 2936 { 2937 struct rq_flags rf; 2938 struct rq *rq; 2939 2940 rq = task_rq_lock(p, &rf); 2941 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2942 } 2943 2944 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2945 { 2946 return __set_cpus_allowed_ptr(p, new_mask, 0); 2947 } 2948 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2949 2950 /* 2951 * Change a given task's CPU affinity to the intersection of its current 2952 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2953 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2954 * If the resulting mask is empty, leave the affinity unchanged and return 2955 * -EINVAL. 2956 */ 2957 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2958 struct cpumask *new_mask, 2959 const struct cpumask *subset_mask) 2960 { 2961 struct cpumask *user_mask = NULL; 2962 struct rq_flags rf; 2963 struct rq *rq; 2964 int err; 2965 2966 if (!p->user_cpus_ptr) { 2967 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2968 if (!user_mask) 2969 return -ENOMEM; 2970 } 2971 2972 rq = task_rq_lock(p, &rf); 2973 2974 /* 2975 * Forcefully restricting the affinity of a deadline task is 2976 * likely to cause problems, so fail and noisily override the 2977 * mask entirely. 2978 */ 2979 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2980 err = -EPERM; 2981 goto err_unlock; 2982 } 2983 2984 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2985 err = -EINVAL; 2986 goto err_unlock; 2987 } 2988 2989 /* 2990 * We're about to butcher the task affinity, so keep track of what 2991 * the user asked for in case we're able to restore it later on. 2992 */ 2993 if (user_mask) { 2994 cpumask_copy(user_mask, p->cpus_ptr); 2995 p->user_cpus_ptr = user_mask; 2996 } 2997 2998 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2999 3000 err_unlock: 3001 task_rq_unlock(rq, p, &rf); 3002 kfree(user_mask); 3003 return err; 3004 } 3005 3006 /* 3007 * Restrict the CPU affinity of task @p so that it is a subset of 3008 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 3009 * old affinity mask. If the resulting mask is empty, we warn and walk 3010 * up the cpuset hierarchy until we find a suitable mask. 3011 */ 3012 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3013 { 3014 cpumask_var_t new_mask; 3015 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3016 3017 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3018 3019 /* 3020 * __migrate_task() can fail silently in the face of concurrent 3021 * offlining of the chosen destination CPU, so take the hotplug 3022 * lock to ensure that the migration succeeds. 3023 */ 3024 cpus_read_lock(); 3025 if (!cpumask_available(new_mask)) 3026 goto out_set_mask; 3027 3028 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3029 goto out_free_mask; 3030 3031 /* 3032 * We failed to find a valid subset of the affinity mask for the 3033 * task, so override it based on its cpuset hierarchy. 3034 */ 3035 cpuset_cpus_allowed(p, new_mask); 3036 override_mask = new_mask; 3037 3038 out_set_mask: 3039 if (printk_ratelimit()) { 3040 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3041 task_pid_nr(p), p->comm, 3042 cpumask_pr_args(override_mask)); 3043 } 3044 3045 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3046 out_free_mask: 3047 cpus_read_unlock(); 3048 free_cpumask_var(new_mask); 3049 } 3050 3051 static int 3052 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 3053 3054 /* 3055 * Restore the affinity of a task @p which was previously restricted by a 3056 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3057 * @p->user_cpus_ptr. 3058 * 3059 * It is the caller's responsibility to serialise this with any calls to 3060 * force_compatible_cpus_allowed_ptr(@p). 3061 */ 3062 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3063 { 3064 struct cpumask *user_mask = p->user_cpus_ptr; 3065 unsigned long flags; 3066 3067 /* 3068 * Try to restore the old affinity mask. If this fails, then 3069 * we free the mask explicitly to avoid it being inherited across 3070 * a subsequent fork(). 3071 */ 3072 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3073 return; 3074 3075 raw_spin_lock_irqsave(&p->pi_lock, flags); 3076 user_mask = clear_user_cpus_ptr(p); 3077 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3078 3079 kfree(user_mask); 3080 } 3081 3082 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3083 { 3084 #ifdef CONFIG_SCHED_DEBUG 3085 unsigned int state = READ_ONCE(p->__state); 3086 3087 /* 3088 * We should never call set_task_cpu() on a blocked task, 3089 * ttwu() will sort out the placement. 3090 */ 3091 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3092 3093 /* 3094 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3095 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3096 * time relying on p->on_rq. 3097 */ 3098 WARN_ON_ONCE(state == TASK_RUNNING && 3099 p->sched_class == &fair_sched_class && 3100 (p->on_rq && !task_on_rq_migrating(p))); 3101 3102 #ifdef CONFIG_LOCKDEP 3103 /* 3104 * The caller should hold either p->pi_lock or rq->lock, when changing 3105 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3106 * 3107 * sched_move_task() holds both and thus holding either pins the cgroup, 3108 * see task_group(). 3109 * 3110 * Furthermore, all task_rq users should acquire both locks, see 3111 * task_rq_lock(). 3112 */ 3113 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3114 lockdep_is_held(__rq_lockp(task_rq(p))))); 3115 #endif 3116 /* 3117 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3118 */ 3119 WARN_ON_ONCE(!cpu_online(new_cpu)); 3120 3121 WARN_ON_ONCE(is_migration_disabled(p)); 3122 #endif 3123 3124 trace_sched_migrate_task(p, new_cpu); 3125 3126 if (task_cpu(p) != new_cpu) { 3127 if (p->sched_class->migrate_task_rq) 3128 p->sched_class->migrate_task_rq(p, new_cpu); 3129 p->se.nr_migrations++; 3130 rseq_migrate(p); 3131 perf_event_task_migrate(p); 3132 } 3133 3134 __set_task_cpu(p, new_cpu); 3135 } 3136 3137 #ifdef CONFIG_NUMA_BALANCING 3138 static void __migrate_swap_task(struct task_struct *p, int cpu) 3139 { 3140 if (task_on_rq_queued(p)) { 3141 struct rq *src_rq, *dst_rq; 3142 struct rq_flags srf, drf; 3143 3144 src_rq = task_rq(p); 3145 dst_rq = cpu_rq(cpu); 3146 3147 rq_pin_lock(src_rq, &srf); 3148 rq_pin_lock(dst_rq, &drf); 3149 3150 deactivate_task(src_rq, p, 0); 3151 set_task_cpu(p, cpu); 3152 activate_task(dst_rq, p, 0); 3153 check_preempt_curr(dst_rq, p, 0); 3154 3155 rq_unpin_lock(dst_rq, &drf); 3156 rq_unpin_lock(src_rq, &srf); 3157 3158 } else { 3159 /* 3160 * Task isn't running anymore; make it appear like we migrated 3161 * it before it went to sleep. This means on wakeup we make the 3162 * previous CPU our target instead of where it really is. 3163 */ 3164 p->wake_cpu = cpu; 3165 } 3166 } 3167 3168 struct migration_swap_arg { 3169 struct task_struct *src_task, *dst_task; 3170 int src_cpu, dst_cpu; 3171 }; 3172 3173 static int migrate_swap_stop(void *data) 3174 { 3175 struct migration_swap_arg *arg = data; 3176 struct rq *src_rq, *dst_rq; 3177 int ret = -EAGAIN; 3178 3179 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3180 return -EAGAIN; 3181 3182 src_rq = cpu_rq(arg->src_cpu); 3183 dst_rq = cpu_rq(arg->dst_cpu); 3184 3185 double_raw_lock(&arg->src_task->pi_lock, 3186 &arg->dst_task->pi_lock); 3187 double_rq_lock(src_rq, dst_rq); 3188 3189 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3190 goto unlock; 3191 3192 if (task_cpu(arg->src_task) != arg->src_cpu) 3193 goto unlock; 3194 3195 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3196 goto unlock; 3197 3198 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3199 goto unlock; 3200 3201 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3202 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3203 3204 ret = 0; 3205 3206 unlock: 3207 double_rq_unlock(src_rq, dst_rq); 3208 raw_spin_unlock(&arg->dst_task->pi_lock); 3209 raw_spin_unlock(&arg->src_task->pi_lock); 3210 3211 return ret; 3212 } 3213 3214 /* 3215 * Cross migrate two tasks 3216 */ 3217 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3218 int target_cpu, int curr_cpu) 3219 { 3220 struct migration_swap_arg arg; 3221 int ret = -EINVAL; 3222 3223 arg = (struct migration_swap_arg){ 3224 .src_task = cur, 3225 .src_cpu = curr_cpu, 3226 .dst_task = p, 3227 .dst_cpu = target_cpu, 3228 }; 3229 3230 if (arg.src_cpu == arg.dst_cpu) 3231 goto out; 3232 3233 /* 3234 * These three tests are all lockless; this is OK since all of them 3235 * will be re-checked with proper locks held further down the line. 3236 */ 3237 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3238 goto out; 3239 3240 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3241 goto out; 3242 3243 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3244 goto out; 3245 3246 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3247 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3248 3249 out: 3250 return ret; 3251 } 3252 #endif /* CONFIG_NUMA_BALANCING */ 3253 3254 /* 3255 * wait_task_inactive - wait for a thread to unschedule. 3256 * 3257 * If @match_state is nonzero, it's the @p->state value just checked and 3258 * not expected to change. If it changes, i.e. @p might have woken up, 3259 * then return zero. When we succeed in waiting for @p to be off its CPU, 3260 * we return a positive number (its total switch count). If a second call 3261 * a short while later returns the same number, the caller can be sure that 3262 * @p has remained unscheduled the whole time. 3263 * 3264 * The caller must ensure that the task *will* unschedule sometime soon, 3265 * else this function might spin for a *long* time. This function can't 3266 * be called with interrupts off, or it may introduce deadlock with 3267 * smp_call_function() if an IPI is sent by the same process we are 3268 * waiting to become inactive. 3269 */ 3270 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3271 { 3272 int running, queued; 3273 struct rq_flags rf; 3274 unsigned long ncsw; 3275 struct rq *rq; 3276 3277 for (;;) { 3278 /* 3279 * We do the initial early heuristics without holding 3280 * any task-queue locks at all. We'll only try to get 3281 * the runqueue lock when things look like they will 3282 * work out! 3283 */ 3284 rq = task_rq(p); 3285 3286 /* 3287 * If the task is actively running on another CPU 3288 * still, just relax and busy-wait without holding 3289 * any locks. 3290 * 3291 * NOTE! Since we don't hold any locks, it's not 3292 * even sure that "rq" stays as the right runqueue! 3293 * But we don't care, since "task_running()" will 3294 * return false if the runqueue has changed and p 3295 * is actually now running somewhere else! 3296 */ 3297 while (task_running(rq, p)) { 3298 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3299 return 0; 3300 cpu_relax(); 3301 } 3302 3303 /* 3304 * Ok, time to look more closely! We need the rq 3305 * lock now, to be *sure*. If we're wrong, we'll 3306 * just go back and repeat. 3307 */ 3308 rq = task_rq_lock(p, &rf); 3309 trace_sched_wait_task(p); 3310 running = task_running(rq, p); 3311 queued = task_on_rq_queued(p); 3312 ncsw = 0; 3313 if (!match_state || READ_ONCE(p->__state) == match_state) 3314 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3315 task_rq_unlock(rq, p, &rf); 3316 3317 /* 3318 * If it changed from the expected state, bail out now. 3319 */ 3320 if (unlikely(!ncsw)) 3321 break; 3322 3323 /* 3324 * Was it really running after all now that we 3325 * checked with the proper locks actually held? 3326 * 3327 * Oops. Go back and try again.. 3328 */ 3329 if (unlikely(running)) { 3330 cpu_relax(); 3331 continue; 3332 } 3333 3334 /* 3335 * It's not enough that it's not actively running, 3336 * it must be off the runqueue _entirely_, and not 3337 * preempted! 3338 * 3339 * So if it was still runnable (but just not actively 3340 * running right now), it's preempted, and we should 3341 * yield - it could be a while. 3342 */ 3343 if (unlikely(queued)) { 3344 ktime_t to = NSEC_PER_SEC / HZ; 3345 3346 set_current_state(TASK_UNINTERRUPTIBLE); 3347 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3348 continue; 3349 } 3350 3351 /* 3352 * Ahh, all good. It wasn't running, and it wasn't 3353 * runnable, which means that it will never become 3354 * running in the future either. We're all done! 3355 */ 3356 break; 3357 } 3358 3359 return ncsw; 3360 } 3361 3362 /*** 3363 * kick_process - kick a running thread to enter/exit the kernel 3364 * @p: the to-be-kicked thread 3365 * 3366 * Cause a process which is running on another CPU to enter 3367 * kernel-mode, without any delay. (to get signals handled.) 3368 * 3369 * NOTE: this function doesn't have to take the runqueue lock, 3370 * because all it wants to ensure is that the remote task enters 3371 * the kernel. If the IPI races and the task has been migrated 3372 * to another CPU then no harm is done and the purpose has been 3373 * achieved as well. 3374 */ 3375 void kick_process(struct task_struct *p) 3376 { 3377 int cpu; 3378 3379 preempt_disable(); 3380 cpu = task_cpu(p); 3381 if ((cpu != smp_processor_id()) && task_curr(p)) 3382 smp_send_reschedule(cpu); 3383 preempt_enable(); 3384 } 3385 EXPORT_SYMBOL_GPL(kick_process); 3386 3387 /* 3388 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3389 * 3390 * A few notes on cpu_active vs cpu_online: 3391 * 3392 * - cpu_active must be a subset of cpu_online 3393 * 3394 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3395 * see __set_cpus_allowed_ptr(). At this point the newly online 3396 * CPU isn't yet part of the sched domains, and balancing will not 3397 * see it. 3398 * 3399 * - on CPU-down we clear cpu_active() to mask the sched domains and 3400 * avoid the load balancer to place new tasks on the to be removed 3401 * CPU. Existing tasks will remain running there and will be taken 3402 * off. 3403 * 3404 * This means that fallback selection must not select !active CPUs. 3405 * And can assume that any active CPU must be online. Conversely 3406 * select_task_rq() below may allow selection of !active CPUs in order 3407 * to satisfy the above rules. 3408 */ 3409 static int select_fallback_rq(int cpu, struct task_struct *p) 3410 { 3411 int nid = cpu_to_node(cpu); 3412 const struct cpumask *nodemask = NULL; 3413 enum { cpuset, possible, fail } state = cpuset; 3414 int dest_cpu; 3415 3416 /* 3417 * If the node that the CPU is on has been offlined, cpu_to_node() 3418 * will return -1. There is no CPU on the node, and we should 3419 * select the CPU on the other node. 3420 */ 3421 if (nid != -1) { 3422 nodemask = cpumask_of_node(nid); 3423 3424 /* Look for allowed, online CPU in same node. */ 3425 for_each_cpu(dest_cpu, nodemask) { 3426 if (is_cpu_allowed(p, dest_cpu)) 3427 return dest_cpu; 3428 } 3429 } 3430 3431 for (;;) { 3432 /* Any allowed, online CPU? */ 3433 for_each_cpu(dest_cpu, p->cpus_ptr) { 3434 if (!is_cpu_allowed(p, dest_cpu)) 3435 continue; 3436 3437 goto out; 3438 } 3439 3440 /* No more Mr. Nice Guy. */ 3441 switch (state) { 3442 case cpuset: 3443 if (cpuset_cpus_allowed_fallback(p)) { 3444 state = possible; 3445 break; 3446 } 3447 fallthrough; 3448 case possible: 3449 /* 3450 * XXX When called from select_task_rq() we only 3451 * hold p->pi_lock and again violate locking order. 3452 * 3453 * More yuck to audit. 3454 */ 3455 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3456 state = fail; 3457 break; 3458 case fail: 3459 BUG(); 3460 break; 3461 } 3462 } 3463 3464 out: 3465 if (state != cpuset) { 3466 /* 3467 * Don't tell them about moving exiting tasks or 3468 * kernel threads (both mm NULL), since they never 3469 * leave kernel. 3470 */ 3471 if (p->mm && printk_ratelimit()) { 3472 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3473 task_pid_nr(p), p->comm, cpu); 3474 } 3475 } 3476 3477 return dest_cpu; 3478 } 3479 3480 /* 3481 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3482 */ 3483 static inline 3484 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3485 { 3486 lockdep_assert_held(&p->pi_lock); 3487 3488 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3489 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3490 else 3491 cpu = cpumask_any(p->cpus_ptr); 3492 3493 /* 3494 * In order not to call set_task_cpu() on a blocking task we need 3495 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3496 * CPU. 3497 * 3498 * Since this is common to all placement strategies, this lives here. 3499 * 3500 * [ this allows ->select_task() to simply return task_cpu(p) and 3501 * not worry about this generic constraint ] 3502 */ 3503 if (unlikely(!is_cpu_allowed(p, cpu))) 3504 cpu = select_fallback_rq(task_cpu(p), p); 3505 3506 return cpu; 3507 } 3508 3509 void sched_set_stop_task(int cpu, struct task_struct *stop) 3510 { 3511 static struct lock_class_key stop_pi_lock; 3512 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3513 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3514 3515 if (stop) { 3516 /* 3517 * Make it appear like a SCHED_FIFO task, its something 3518 * userspace knows about and won't get confused about. 3519 * 3520 * Also, it will make PI more or less work without too 3521 * much confusion -- but then, stop work should not 3522 * rely on PI working anyway. 3523 */ 3524 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3525 3526 stop->sched_class = &stop_sched_class; 3527 3528 /* 3529 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3530 * adjust the effective priority of a task. As a result, 3531 * rt_mutex_setprio() can trigger (RT) balancing operations, 3532 * which can then trigger wakeups of the stop thread to push 3533 * around the current task. 3534 * 3535 * The stop task itself will never be part of the PI-chain, it 3536 * never blocks, therefore that ->pi_lock recursion is safe. 3537 * Tell lockdep about this by placing the stop->pi_lock in its 3538 * own class. 3539 */ 3540 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3541 } 3542 3543 cpu_rq(cpu)->stop = stop; 3544 3545 if (old_stop) { 3546 /* 3547 * Reset it back to a normal scheduling class so that 3548 * it can die in pieces. 3549 */ 3550 old_stop->sched_class = &rt_sched_class; 3551 } 3552 } 3553 3554 #else /* CONFIG_SMP */ 3555 3556 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3557 const struct cpumask *new_mask, 3558 u32 flags) 3559 { 3560 return set_cpus_allowed_ptr(p, new_mask); 3561 } 3562 3563 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3564 3565 static inline bool rq_has_pinned_tasks(struct rq *rq) 3566 { 3567 return false; 3568 } 3569 3570 #endif /* !CONFIG_SMP */ 3571 3572 static void 3573 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3574 { 3575 struct rq *rq; 3576 3577 if (!schedstat_enabled()) 3578 return; 3579 3580 rq = this_rq(); 3581 3582 #ifdef CONFIG_SMP 3583 if (cpu == rq->cpu) { 3584 __schedstat_inc(rq->ttwu_local); 3585 __schedstat_inc(p->stats.nr_wakeups_local); 3586 } else { 3587 struct sched_domain *sd; 3588 3589 __schedstat_inc(p->stats.nr_wakeups_remote); 3590 rcu_read_lock(); 3591 for_each_domain(rq->cpu, sd) { 3592 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3593 __schedstat_inc(sd->ttwu_wake_remote); 3594 break; 3595 } 3596 } 3597 rcu_read_unlock(); 3598 } 3599 3600 if (wake_flags & WF_MIGRATED) 3601 __schedstat_inc(p->stats.nr_wakeups_migrate); 3602 #endif /* CONFIG_SMP */ 3603 3604 __schedstat_inc(rq->ttwu_count); 3605 __schedstat_inc(p->stats.nr_wakeups); 3606 3607 if (wake_flags & WF_SYNC) 3608 __schedstat_inc(p->stats.nr_wakeups_sync); 3609 } 3610 3611 /* 3612 * Mark the task runnable and perform wakeup-preemption. 3613 */ 3614 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3615 struct rq_flags *rf) 3616 { 3617 check_preempt_curr(rq, p, wake_flags); 3618 WRITE_ONCE(p->__state, TASK_RUNNING); 3619 trace_sched_wakeup(p); 3620 3621 #ifdef CONFIG_SMP 3622 if (p->sched_class->task_woken) { 3623 /* 3624 * Our task @p is fully woken up and running; so it's safe to 3625 * drop the rq->lock, hereafter rq is only used for statistics. 3626 */ 3627 rq_unpin_lock(rq, rf); 3628 p->sched_class->task_woken(rq, p); 3629 rq_repin_lock(rq, rf); 3630 } 3631 3632 if (rq->idle_stamp) { 3633 u64 delta = rq_clock(rq) - rq->idle_stamp; 3634 u64 max = 2*rq->max_idle_balance_cost; 3635 3636 update_avg(&rq->avg_idle, delta); 3637 3638 if (rq->avg_idle > max) 3639 rq->avg_idle = max; 3640 3641 rq->wake_stamp = jiffies; 3642 rq->wake_avg_idle = rq->avg_idle / 2; 3643 3644 rq->idle_stamp = 0; 3645 } 3646 #endif 3647 } 3648 3649 static void 3650 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3651 struct rq_flags *rf) 3652 { 3653 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3654 3655 lockdep_assert_rq_held(rq); 3656 3657 if (p->sched_contributes_to_load) 3658 rq->nr_uninterruptible--; 3659 3660 #ifdef CONFIG_SMP 3661 if (wake_flags & WF_MIGRATED) 3662 en_flags |= ENQUEUE_MIGRATED; 3663 else 3664 #endif 3665 if (p->in_iowait) { 3666 delayacct_blkio_end(p); 3667 atomic_dec(&task_rq(p)->nr_iowait); 3668 } 3669 3670 activate_task(rq, p, en_flags); 3671 ttwu_do_wakeup(rq, p, wake_flags, rf); 3672 } 3673 3674 /* 3675 * Consider @p being inside a wait loop: 3676 * 3677 * for (;;) { 3678 * set_current_state(TASK_UNINTERRUPTIBLE); 3679 * 3680 * if (CONDITION) 3681 * break; 3682 * 3683 * schedule(); 3684 * } 3685 * __set_current_state(TASK_RUNNING); 3686 * 3687 * between set_current_state() and schedule(). In this case @p is still 3688 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3689 * an atomic manner. 3690 * 3691 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3692 * then schedule() must still happen and p->state can be changed to 3693 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3694 * need to do a full wakeup with enqueue. 3695 * 3696 * Returns: %true when the wakeup is done, 3697 * %false otherwise. 3698 */ 3699 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3700 { 3701 struct rq_flags rf; 3702 struct rq *rq; 3703 int ret = 0; 3704 3705 rq = __task_rq_lock(p, &rf); 3706 if (task_on_rq_queued(p)) { 3707 /* check_preempt_curr() may use rq clock */ 3708 update_rq_clock(rq); 3709 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3710 ret = 1; 3711 } 3712 __task_rq_unlock(rq, &rf); 3713 3714 return ret; 3715 } 3716 3717 #ifdef CONFIG_SMP 3718 void sched_ttwu_pending(void *arg) 3719 { 3720 struct llist_node *llist = arg; 3721 struct rq *rq = this_rq(); 3722 struct task_struct *p, *t; 3723 struct rq_flags rf; 3724 3725 if (!llist) 3726 return; 3727 3728 /* 3729 * rq::ttwu_pending racy indication of out-standing wakeups. 3730 * Races such that false-negatives are possible, since they 3731 * are shorter lived that false-positives would be. 3732 */ 3733 WRITE_ONCE(rq->ttwu_pending, 0); 3734 3735 rq_lock_irqsave(rq, &rf); 3736 update_rq_clock(rq); 3737 3738 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3739 if (WARN_ON_ONCE(p->on_cpu)) 3740 smp_cond_load_acquire(&p->on_cpu, !VAL); 3741 3742 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3743 set_task_cpu(p, cpu_of(rq)); 3744 3745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3746 } 3747 3748 rq_unlock_irqrestore(rq, &rf); 3749 } 3750 3751 void send_call_function_single_ipi(int cpu) 3752 { 3753 struct rq *rq = cpu_rq(cpu); 3754 3755 if (!set_nr_if_polling(rq->idle)) 3756 arch_send_call_function_single_ipi(cpu); 3757 else 3758 trace_sched_wake_idle_without_ipi(cpu); 3759 } 3760 3761 /* 3762 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3763 * necessary. The wakee CPU on receipt of the IPI will queue the task 3764 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3765 * of the wakeup instead of the waker. 3766 */ 3767 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3768 { 3769 struct rq *rq = cpu_rq(cpu); 3770 3771 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3772 3773 WRITE_ONCE(rq->ttwu_pending, 1); 3774 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3775 } 3776 3777 void wake_up_if_idle(int cpu) 3778 { 3779 struct rq *rq = cpu_rq(cpu); 3780 struct rq_flags rf; 3781 3782 rcu_read_lock(); 3783 3784 if (!is_idle_task(rcu_dereference(rq->curr))) 3785 goto out; 3786 3787 rq_lock_irqsave(rq, &rf); 3788 if (is_idle_task(rq->curr)) 3789 resched_curr(rq); 3790 /* Else CPU is not idle, do nothing here: */ 3791 rq_unlock_irqrestore(rq, &rf); 3792 3793 out: 3794 rcu_read_unlock(); 3795 } 3796 3797 bool cpus_share_cache(int this_cpu, int that_cpu) 3798 { 3799 if (this_cpu == that_cpu) 3800 return true; 3801 3802 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3803 } 3804 3805 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3806 { 3807 /* 3808 * Do not complicate things with the async wake_list while the CPU is 3809 * in hotplug state. 3810 */ 3811 if (!cpu_active(cpu)) 3812 return false; 3813 3814 /* Ensure the task will still be allowed to run on the CPU. */ 3815 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3816 return false; 3817 3818 /* 3819 * If the CPU does not share cache, then queue the task on the 3820 * remote rqs wakelist to avoid accessing remote data. 3821 */ 3822 if (!cpus_share_cache(smp_processor_id(), cpu)) 3823 return true; 3824 3825 if (cpu == smp_processor_id()) 3826 return false; 3827 3828 /* 3829 * If the wakee cpu is idle, or the task is descheduling and the 3830 * only running task on the CPU, then use the wakelist to offload 3831 * the task activation to the idle (or soon-to-be-idle) CPU as 3832 * the current CPU is likely busy. nr_running is checked to 3833 * avoid unnecessary task stacking. 3834 * 3835 * Note that we can only get here with (wakee) p->on_rq=0, 3836 * p->on_cpu can be whatever, we've done the dequeue, so 3837 * the wakee has been accounted out of ->nr_running. 3838 */ 3839 if (!cpu_rq(cpu)->nr_running) 3840 return true; 3841 3842 return false; 3843 } 3844 3845 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3846 { 3847 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3848 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3849 __ttwu_queue_wakelist(p, cpu, wake_flags); 3850 return true; 3851 } 3852 3853 return false; 3854 } 3855 3856 #else /* !CONFIG_SMP */ 3857 3858 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3859 { 3860 return false; 3861 } 3862 3863 #endif /* CONFIG_SMP */ 3864 3865 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3866 { 3867 struct rq *rq = cpu_rq(cpu); 3868 struct rq_flags rf; 3869 3870 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3871 return; 3872 3873 rq_lock(rq, &rf); 3874 update_rq_clock(rq); 3875 ttwu_do_activate(rq, p, wake_flags, &rf); 3876 rq_unlock(rq, &rf); 3877 } 3878 3879 /* 3880 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3881 * 3882 * The caller holds p::pi_lock if p != current or has preemption 3883 * disabled when p == current. 3884 * 3885 * The rules of PREEMPT_RT saved_state: 3886 * 3887 * The related locking code always holds p::pi_lock when updating 3888 * p::saved_state, which means the code is fully serialized in both cases. 3889 * 3890 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3891 * bits set. This allows to distinguish all wakeup scenarios. 3892 */ 3893 static __always_inline 3894 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3895 { 3896 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3897 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3898 state != TASK_RTLOCK_WAIT); 3899 } 3900 3901 if (READ_ONCE(p->__state) & state) { 3902 *success = 1; 3903 return true; 3904 } 3905 3906 #ifdef CONFIG_PREEMPT_RT 3907 /* 3908 * Saved state preserves the task state across blocking on 3909 * an RT lock. If the state matches, set p::saved_state to 3910 * TASK_RUNNING, but do not wake the task because it waits 3911 * for a lock wakeup. Also indicate success because from 3912 * the regular waker's point of view this has succeeded. 3913 * 3914 * After acquiring the lock the task will restore p::__state 3915 * from p::saved_state which ensures that the regular 3916 * wakeup is not lost. The restore will also set 3917 * p::saved_state to TASK_RUNNING so any further tests will 3918 * not result in false positives vs. @success 3919 */ 3920 if (p->saved_state & state) { 3921 p->saved_state = TASK_RUNNING; 3922 *success = 1; 3923 } 3924 #endif 3925 return false; 3926 } 3927 3928 /* 3929 * Notes on Program-Order guarantees on SMP systems. 3930 * 3931 * MIGRATION 3932 * 3933 * The basic program-order guarantee on SMP systems is that when a task [t] 3934 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3935 * execution on its new CPU [c1]. 3936 * 3937 * For migration (of runnable tasks) this is provided by the following means: 3938 * 3939 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3940 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3941 * rq(c1)->lock (if not at the same time, then in that order). 3942 * C) LOCK of the rq(c1)->lock scheduling in task 3943 * 3944 * Release/acquire chaining guarantees that B happens after A and C after B. 3945 * Note: the CPU doing B need not be c0 or c1 3946 * 3947 * Example: 3948 * 3949 * CPU0 CPU1 CPU2 3950 * 3951 * LOCK rq(0)->lock 3952 * sched-out X 3953 * sched-in Y 3954 * UNLOCK rq(0)->lock 3955 * 3956 * LOCK rq(0)->lock // orders against CPU0 3957 * dequeue X 3958 * UNLOCK rq(0)->lock 3959 * 3960 * LOCK rq(1)->lock 3961 * enqueue X 3962 * UNLOCK rq(1)->lock 3963 * 3964 * LOCK rq(1)->lock // orders against CPU2 3965 * sched-out Z 3966 * sched-in X 3967 * UNLOCK rq(1)->lock 3968 * 3969 * 3970 * BLOCKING -- aka. SLEEP + WAKEUP 3971 * 3972 * For blocking we (obviously) need to provide the same guarantee as for 3973 * migration. However the means are completely different as there is no lock 3974 * chain to provide order. Instead we do: 3975 * 3976 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3977 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3978 * 3979 * Example: 3980 * 3981 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3982 * 3983 * LOCK rq(0)->lock LOCK X->pi_lock 3984 * dequeue X 3985 * sched-out X 3986 * smp_store_release(X->on_cpu, 0); 3987 * 3988 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3989 * X->state = WAKING 3990 * set_task_cpu(X,2) 3991 * 3992 * LOCK rq(2)->lock 3993 * enqueue X 3994 * X->state = RUNNING 3995 * UNLOCK rq(2)->lock 3996 * 3997 * LOCK rq(2)->lock // orders against CPU1 3998 * sched-out Z 3999 * sched-in X 4000 * UNLOCK rq(2)->lock 4001 * 4002 * UNLOCK X->pi_lock 4003 * UNLOCK rq(0)->lock 4004 * 4005 * 4006 * However, for wakeups there is a second guarantee we must provide, namely we 4007 * must ensure that CONDITION=1 done by the caller can not be reordered with 4008 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4009 */ 4010 4011 /** 4012 * try_to_wake_up - wake up a thread 4013 * @p: the thread to be awakened 4014 * @state: the mask of task states that can be woken 4015 * @wake_flags: wake modifier flags (WF_*) 4016 * 4017 * Conceptually does: 4018 * 4019 * If (@state & @p->state) @p->state = TASK_RUNNING. 4020 * 4021 * If the task was not queued/runnable, also place it back on a runqueue. 4022 * 4023 * This function is atomic against schedule() which would dequeue the task. 4024 * 4025 * It issues a full memory barrier before accessing @p->state, see the comment 4026 * with set_current_state(). 4027 * 4028 * Uses p->pi_lock to serialize against concurrent wake-ups. 4029 * 4030 * Relies on p->pi_lock stabilizing: 4031 * - p->sched_class 4032 * - p->cpus_ptr 4033 * - p->sched_task_group 4034 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4035 * 4036 * Tries really hard to only take one task_rq(p)->lock for performance. 4037 * Takes rq->lock in: 4038 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4039 * - ttwu_queue() -- new rq, for enqueue of the task; 4040 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4041 * 4042 * As a consequence we race really badly with just about everything. See the 4043 * many memory barriers and their comments for details. 4044 * 4045 * Return: %true if @p->state changes (an actual wakeup was done), 4046 * %false otherwise. 4047 */ 4048 static int 4049 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4050 { 4051 unsigned long flags; 4052 int cpu, success = 0; 4053 4054 preempt_disable(); 4055 if (p == current) { 4056 /* 4057 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4058 * == smp_processor_id()'. Together this means we can special 4059 * case the whole 'p->on_rq && ttwu_runnable()' case below 4060 * without taking any locks. 4061 * 4062 * In particular: 4063 * - we rely on Program-Order guarantees for all the ordering, 4064 * - we're serialized against set_special_state() by virtue of 4065 * it disabling IRQs (this allows not taking ->pi_lock). 4066 */ 4067 if (!ttwu_state_match(p, state, &success)) 4068 goto out; 4069 4070 trace_sched_waking(p); 4071 WRITE_ONCE(p->__state, TASK_RUNNING); 4072 trace_sched_wakeup(p); 4073 goto out; 4074 } 4075 4076 /* 4077 * If we are going to wake up a thread waiting for CONDITION we 4078 * need to ensure that CONDITION=1 done by the caller can not be 4079 * reordered with p->state check below. This pairs with smp_store_mb() 4080 * in set_current_state() that the waiting thread does. 4081 */ 4082 raw_spin_lock_irqsave(&p->pi_lock, flags); 4083 smp_mb__after_spinlock(); 4084 if (!ttwu_state_match(p, state, &success)) 4085 goto unlock; 4086 4087 trace_sched_waking(p); 4088 4089 /* 4090 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4091 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4092 * in smp_cond_load_acquire() below. 4093 * 4094 * sched_ttwu_pending() try_to_wake_up() 4095 * STORE p->on_rq = 1 LOAD p->state 4096 * UNLOCK rq->lock 4097 * 4098 * __schedule() (switch to task 'p') 4099 * LOCK rq->lock smp_rmb(); 4100 * smp_mb__after_spinlock(); 4101 * UNLOCK rq->lock 4102 * 4103 * [task p] 4104 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4105 * 4106 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4107 * __schedule(). See the comment for smp_mb__after_spinlock(). 4108 * 4109 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4110 */ 4111 smp_rmb(); 4112 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4113 goto unlock; 4114 4115 #ifdef CONFIG_SMP 4116 /* 4117 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4118 * possible to, falsely, observe p->on_cpu == 0. 4119 * 4120 * One must be running (->on_cpu == 1) in order to remove oneself 4121 * from the runqueue. 4122 * 4123 * __schedule() (switch to task 'p') try_to_wake_up() 4124 * STORE p->on_cpu = 1 LOAD p->on_rq 4125 * UNLOCK rq->lock 4126 * 4127 * __schedule() (put 'p' to sleep) 4128 * LOCK rq->lock smp_rmb(); 4129 * smp_mb__after_spinlock(); 4130 * STORE p->on_rq = 0 LOAD p->on_cpu 4131 * 4132 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4133 * __schedule(). See the comment for smp_mb__after_spinlock(). 4134 * 4135 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4136 * schedule()'s deactivate_task() has 'happened' and p will no longer 4137 * care about it's own p->state. See the comment in __schedule(). 4138 */ 4139 smp_acquire__after_ctrl_dep(); 4140 4141 /* 4142 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4143 * == 0), which means we need to do an enqueue, change p->state to 4144 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4145 * enqueue, such as ttwu_queue_wakelist(). 4146 */ 4147 WRITE_ONCE(p->__state, TASK_WAKING); 4148 4149 /* 4150 * If the owning (remote) CPU is still in the middle of schedule() with 4151 * this task as prev, considering queueing p on the remote CPUs wake_list 4152 * which potentially sends an IPI instead of spinning on p->on_cpu to 4153 * let the waker make forward progress. This is safe because IRQs are 4154 * disabled and the IPI will deliver after on_cpu is cleared. 4155 * 4156 * Ensure we load task_cpu(p) after p->on_cpu: 4157 * 4158 * set_task_cpu(p, cpu); 4159 * STORE p->cpu = @cpu 4160 * __schedule() (switch to task 'p') 4161 * LOCK rq->lock 4162 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4163 * STORE p->on_cpu = 1 LOAD p->cpu 4164 * 4165 * to ensure we observe the correct CPU on which the task is currently 4166 * scheduling. 4167 */ 4168 if (smp_load_acquire(&p->on_cpu) && 4169 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4170 goto unlock; 4171 4172 /* 4173 * If the owning (remote) CPU is still in the middle of schedule() with 4174 * this task as prev, wait until it's done referencing the task. 4175 * 4176 * Pairs with the smp_store_release() in finish_task(). 4177 * 4178 * This ensures that tasks getting woken will be fully ordered against 4179 * their previous state and preserve Program Order. 4180 */ 4181 smp_cond_load_acquire(&p->on_cpu, !VAL); 4182 4183 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4184 if (task_cpu(p) != cpu) { 4185 if (p->in_iowait) { 4186 delayacct_blkio_end(p); 4187 atomic_dec(&task_rq(p)->nr_iowait); 4188 } 4189 4190 wake_flags |= WF_MIGRATED; 4191 psi_ttwu_dequeue(p); 4192 set_task_cpu(p, cpu); 4193 } 4194 #else 4195 cpu = task_cpu(p); 4196 #endif /* CONFIG_SMP */ 4197 4198 ttwu_queue(p, cpu, wake_flags); 4199 unlock: 4200 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4201 out: 4202 if (success) 4203 ttwu_stat(p, task_cpu(p), wake_flags); 4204 preempt_enable(); 4205 4206 return success; 4207 } 4208 4209 /** 4210 * task_call_func - Invoke a function on task in fixed state 4211 * @p: Process for which the function is to be invoked, can be @current. 4212 * @func: Function to invoke. 4213 * @arg: Argument to function. 4214 * 4215 * Fix the task in it's current state by avoiding wakeups and or rq operations 4216 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4217 * to work out what the state is, if required. Given that @func can be invoked 4218 * with a runqueue lock held, it had better be quite lightweight. 4219 * 4220 * Returns: 4221 * Whatever @func returns 4222 */ 4223 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4224 { 4225 struct rq *rq = NULL; 4226 unsigned int state; 4227 struct rq_flags rf; 4228 int ret; 4229 4230 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4231 4232 state = READ_ONCE(p->__state); 4233 4234 /* 4235 * Ensure we load p->on_rq after p->__state, otherwise it would be 4236 * possible to, falsely, observe p->on_rq == 0. 4237 * 4238 * See try_to_wake_up() for a longer comment. 4239 */ 4240 smp_rmb(); 4241 4242 /* 4243 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4244 * the task is blocked. Make sure to check @state since ttwu() can drop 4245 * locks at the end, see ttwu_queue_wakelist(). 4246 */ 4247 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4248 rq = __task_rq_lock(p, &rf); 4249 4250 /* 4251 * At this point the task is pinned; either: 4252 * - blocked and we're holding off wakeups (pi->lock) 4253 * - woken, and we're holding off enqueue (rq->lock) 4254 * - queued, and we're holding off schedule (rq->lock) 4255 * - running, and we're holding off de-schedule (rq->lock) 4256 * 4257 * The called function (@func) can use: task_curr(), p->on_rq and 4258 * p->__state to differentiate between these states. 4259 */ 4260 ret = func(p, arg); 4261 4262 if (rq) 4263 rq_unlock(rq, &rf); 4264 4265 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4266 return ret; 4267 } 4268 4269 /** 4270 * cpu_curr_snapshot - Return a snapshot of the currently running task 4271 * @cpu: The CPU on which to snapshot the task. 4272 * 4273 * Returns the task_struct pointer of the task "currently" running on 4274 * the specified CPU. If the same task is running on that CPU throughout, 4275 * the return value will be a pointer to that task's task_struct structure. 4276 * If the CPU did any context switches even vaguely concurrently with the 4277 * execution of this function, the return value will be a pointer to the 4278 * task_struct structure of a randomly chosen task that was running on 4279 * that CPU somewhere around the time that this function was executing. 4280 * 4281 * If the specified CPU was offline, the return value is whatever it 4282 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4283 * task, but there is no guarantee. Callers wishing a useful return 4284 * value must take some action to ensure that the specified CPU remains 4285 * online throughout. 4286 * 4287 * This function executes full memory barriers before and after fetching 4288 * the pointer, which permits the caller to confine this function's fetch 4289 * with respect to the caller's accesses to other shared variables. 4290 */ 4291 struct task_struct *cpu_curr_snapshot(int cpu) 4292 { 4293 struct task_struct *t; 4294 4295 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4296 t = rcu_dereference(cpu_curr(cpu)); 4297 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4298 return t; 4299 } 4300 4301 /** 4302 * wake_up_process - Wake up a specific process 4303 * @p: The process to be woken up. 4304 * 4305 * Attempt to wake up the nominated process and move it to the set of runnable 4306 * processes. 4307 * 4308 * Return: 1 if the process was woken up, 0 if it was already running. 4309 * 4310 * This function executes a full memory barrier before accessing the task state. 4311 */ 4312 int wake_up_process(struct task_struct *p) 4313 { 4314 return try_to_wake_up(p, TASK_NORMAL, 0); 4315 } 4316 EXPORT_SYMBOL(wake_up_process); 4317 4318 int wake_up_state(struct task_struct *p, unsigned int state) 4319 { 4320 return try_to_wake_up(p, state, 0); 4321 } 4322 4323 /* 4324 * Perform scheduler related setup for a newly forked process p. 4325 * p is forked by current. 4326 * 4327 * __sched_fork() is basic setup used by init_idle() too: 4328 */ 4329 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4330 { 4331 p->on_rq = 0; 4332 4333 p->se.on_rq = 0; 4334 p->se.exec_start = 0; 4335 p->se.sum_exec_runtime = 0; 4336 p->se.prev_sum_exec_runtime = 0; 4337 p->se.nr_migrations = 0; 4338 p->se.vruntime = 0; 4339 INIT_LIST_HEAD(&p->se.group_node); 4340 4341 #ifdef CONFIG_FAIR_GROUP_SCHED 4342 p->se.cfs_rq = NULL; 4343 #endif 4344 4345 #ifdef CONFIG_SCHEDSTATS 4346 /* Even if schedstat is disabled, there should not be garbage */ 4347 memset(&p->stats, 0, sizeof(p->stats)); 4348 #endif 4349 4350 RB_CLEAR_NODE(&p->dl.rb_node); 4351 init_dl_task_timer(&p->dl); 4352 init_dl_inactive_task_timer(&p->dl); 4353 __dl_clear_params(p); 4354 4355 INIT_LIST_HEAD(&p->rt.run_list); 4356 p->rt.timeout = 0; 4357 p->rt.time_slice = sched_rr_timeslice; 4358 p->rt.on_rq = 0; 4359 p->rt.on_list = 0; 4360 4361 #ifdef CONFIG_PREEMPT_NOTIFIERS 4362 INIT_HLIST_HEAD(&p->preempt_notifiers); 4363 #endif 4364 4365 #ifdef CONFIG_COMPACTION 4366 p->capture_control = NULL; 4367 #endif 4368 init_numa_balancing(clone_flags, p); 4369 #ifdef CONFIG_SMP 4370 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4371 p->migration_pending = NULL; 4372 #endif 4373 } 4374 4375 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4376 4377 #ifdef CONFIG_NUMA_BALANCING 4378 4379 int sysctl_numa_balancing_mode; 4380 4381 static void __set_numabalancing_state(bool enabled) 4382 { 4383 if (enabled) 4384 static_branch_enable(&sched_numa_balancing); 4385 else 4386 static_branch_disable(&sched_numa_balancing); 4387 } 4388 4389 void set_numabalancing_state(bool enabled) 4390 { 4391 if (enabled) 4392 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4393 else 4394 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4395 __set_numabalancing_state(enabled); 4396 } 4397 4398 #ifdef CONFIG_PROC_SYSCTL 4399 int sysctl_numa_balancing(struct ctl_table *table, int write, 4400 void *buffer, size_t *lenp, loff_t *ppos) 4401 { 4402 struct ctl_table t; 4403 int err; 4404 int state = sysctl_numa_balancing_mode; 4405 4406 if (write && !capable(CAP_SYS_ADMIN)) 4407 return -EPERM; 4408 4409 t = *table; 4410 t.data = &state; 4411 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4412 if (err < 0) 4413 return err; 4414 if (write) { 4415 sysctl_numa_balancing_mode = state; 4416 __set_numabalancing_state(state); 4417 } 4418 return err; 4419 } 4420 #endif 4421 #endif 4422 4423 #ifdef CONFIG_SCHEDSTATS 4424 4425 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4426 4427 static void set_schedstats(bool enabled) 4428 { 4429 if (enabled) 4430 static_branch_enable(&sched_schedstats); 4431 else 4432 static_branch_disable(&sched_schedstats); 4433 } 4434 4435 void force_schedstat_enabled(void) 4436 { 4437 if (!schedstat_enabled()) { 4438 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4439 static_branch_enable(&sched_schedstats); 4440 } 4441 } 4442 4443 static int __init setup_schedstats(char *str) 4444 { 4445 int ret = 0; 4446 if (!str) 4447 goto out; 4448 4449 if (!strcmp(str, "enable")) { 4450 set_schedstats(true); 4451 ret = 1; 4452 } else if (!strcmp(str, "disable")) { 4453 set_schedstats(false); 4454 ret = 1; 4455 } 4456 out: 4457 if (!ret) 4458 pr_warn("Unable to parse schedstats=\n"); 4459 4460 return ret; 4461 } 4462 __setup("schedstats=", setup_schedstats); 4463 4464 #ifdef CONFIG_PROC_SYSCTL 4465 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4466 size_t *lenp, loff_t *ppos) 4467 { 4468 struct ctl_table t; 4469 int err; 4470 int state = static_branch_likely(&sched_schedstats); 4471 4472 if (write && !capable(CAP_SYS_ADMIN)) 4473 return -EPERM; 4474 4475 t = *table; 4476 t.data = &state; 4477 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4478 if (err < 0) 4479 return err; 4480 if (write) 4481 set_schedstats(state); 4482 return err; 4483 } 4484 #endif /* CONFIG_PROC_SYSCTL */ 4485 #endif /* CONFIG_SCHEDSTATS */ 4486 4487 #ifdef CONFIG_SYSCTL 4488 static struct ctl_table sched_core_sysctls[] = { 4489 #ifdef CONFIG_SCHEDSTATS 4490 { 4491 .procname = "sched_schedstats", 4492 .data = NULL, 4493 .maxlen = sizeof(unsigned int), 4494 .mode = 0644, 4495 .proc_handler = sysctl_schedstats, 4496 .extra1 = SYSCTL_ZERO, 4497 .extra2 = SYSCTL_ONE, 4498 }, 4499 #endif /* CONFIG_SCHEDSTATS */ 4500 #ifdef CONFIG_UCLAMP_TASK 4501 { 4502 .procname = "sched_util_clamp_min", 4503 .data = &sysctl_sched_uclamp_util_min, 4504 .maxlen = sizeof(unsigned int), 4505 .mode = 0644, 4506 .proc_handler = sysctl_sched_uclamp_handler, 4507 }, 4508 { 4509 .procname = "sched_util_clamp_max", 4510 .data = &sysctl_sched_uclamp_util_max, 4511 .maxlen = sizeof(unsigned int), 4512 .mode = 0644, 4513 .proc_handler = sysctl_sched_uclamp_handler, 4514 }, 4515 { 4516 .procname = "sched_util_clamp_min_rt_default", 4517 .data = &sysctl_sched_uclamp_util_min_rt_default, 4518 .maxlen = sizeof(unsigned int), 4519 .mode = 0644, 4520 .proc_handler = sysctl_sched_uclamp_handler, 4521 }, 4522 #endif /* CONFIG_UCLAMP_TASK */ 4523 {} 4524 }; 4525 static int __init sched_core_sysctl_init(void) 4526 { 4527 register_sysctl_init("kernel", sched_core_sysctls); 4528 return 0; 4529 } 4530 late_initcall(sched_core_sysctl_init); 4531 #endif /* CONFIG_SYSCTL */ 4532 4533 /* 4534 * fork()/clone()-time setup: 4535 */ 4536 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4537 { 4538 __sched_fork(clone_flags, p); 4539 /* 4540 * We mark the process as NEW here. This guarantees that 4541 * nobody will actually run it, and a signal or other external 4542 * event cannot wake it up and insert it on the runqueue either. 4543 */ 4544 p->__state = TASK_NEW; 4545 4546 /* 4547 * Make sure we do not leak PI boosting priority to the child. 4548 */ 4549 p->prio = current->normal_prio; 4550 4551 uclamp_fork(p); 4552 4553 /* 4554 * Revert to default priority/policy on fork if requested. 4555 */ 4556 if (unlikely(p->sched_reset_on_fork)) { 4557 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4558 p->policy = SCHED_NORMAL; 4559 p->static_prio = NICE_TO_PRIO(0); 4560 p->rt_priority = 0; 4561 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4562 p->static_prio = NICE_TO_PRIO(0); 4563 4564 p->prio = p->normal_prio = p->static_prio; 4565 set_load_weight(p, false); 4566 4567 /* 4568 * We don't need the reset flag anymore after the fork. It has 4569 * fulfilled its duty: 4570 */ 4571 p->sched_reset_on_fork = 0; 4572 } 4573 4574 if (dl_prio(p->prio)) 4575 return -EAGAIN; 4576 else if (rt_prio(p->prio)) 4577 p->sched_class = &rt_sched_class; 4578 else 4579 p->sched_class = &fair_sched_class; 4580 4581 init_entity_runnable_average(&p->se); 4582 4583 4584 #ifdef CONFIG_SCHED_INFO 4585 if (likely(sched_info_on())) 4586 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4587 #endif 4588 #if defined(CONFIG_SMP) 4589 p->on_cpu = 0; 4590 #endif 4591 init_task_preempt_count(p); 4592 #ifdef CONFIG_SMP 4593 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4594 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4595 #endif 4596 return 0; 4597 } 4598 4599 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4600 { 4601 unsigned long flags; 4602 4603 /* 4604 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4605 * required yet, but lockdep gets upset if rules are violated. 4606 */ 4607 raw_spin_lock_irqsave(&p->pi_lock, flags); 4608 #ifdef CONFIG_CGROUP_SCHED 4609 if (1) { 4610 struct task_group *tg; 4611 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4612 struct task_group, css); 4613 tg = autogroup_task_group(p, tg); 4614 p->sched_task_group = tg; 4615 } 4616 #endif 4617 rseq_migrate(p); 4618 /* 4619 * We're setting the CPU for the first time, we don't migrate, 4620 * so use __set_task_cpu(). 4621 */ 4622 __set_task_cpu(p, smp_processor_id()); 4623 if (p->sched_class->task_fork) 4624 p->sched_class->task_fork(p); 4625 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4626 } 4627 4628 void sched_post_fork(struct task_struct *p) 4629 { 4630 uclamp_post_fork(p); 4631 } 4632 4633 unsigned long to_ratio(u64 period, u64 runtime) 4634 { 4635 if (runtime == RUNTIME_INF) 4636 return BW_UNIT; 4637 4638 /* 4639 * Doing this here saves a lot of checks in all 4640 * the calling paths, and returning zero seems 4641 * safe for them anyway. 4642 */ 4643 if (period == 0) 4644 return 0; 4645 4646 return div64_u64(runtime << BW_SHIFT, period); 4647 } 4648 4649 /* 4650 * wake_up_new_task - wake up a newly created task for the first time. 4651 * 4652 * This function will do some initial scheduler statistics housekeeping 4653 * that must be done for every newly created context, then puts the task 4654 * on the runqueue and wakes it. 4655 */ 4656 void wake_up_new_task(struct task_struct *p) 4657 { 4658 struct rq_flags rf; 4659 struct rq *rq; 4660 4661 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4662 WRITE_ONCE(p->__state, TASK_RUNNING); 4663 #ifdef CONFIG_SMP 4664 /* 4665 * Fork balancing, do it here and not earlier because: 4666 * - cpus_ptr can change in the fork path 4667 * - any previously selected CPU might disappear through hotplug 4668 * 4669 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4670 * as we're not fully set-up yet. 4671 */ 4672 p->recent_used_cpu = task_cpu(p); 4673 rseq_migrate(p); 4674 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4675 #endif 4676 rq = __task_rq_lock(p, &rf); 4677 update_rq_clock(rq); 4678 post_init_entity_util_avg(p); 4679 4680 activate_task(rq, p, ENQUEUE_NOCLOCK); 4681 trace_sched_wakeup_new(p); 4682 check_preempt_curr(rq, p, WF_FORK); 4683 #ifdef CONFIG_SMP 4684 if (p->sched_class->task_woken) { 4685 /* 4686 * Nothing relies on rq->lock after this, so it's fine to 4687 * drop it. 4688 */ 4689 rq_unpin_lock(rq, &rf); 4690 p->sched_class->task_woken(rq, p); 4691 rq_repin_lock(rq, &rf); 4692 } 4693 #endif 4694 task_rq_unlock(rq, p, &rf); 4695 } 4696 4697 #ifdef CONFIG_PREEMPT_NOTIFIERS 4698 4699 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4700 4701 void preempt_notifier_inc(void) 4702 { 4703 static_branch_inc(&preempt_notifier_key); 4704 } 4705 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4706 4707 void preempt_notifier_dec(void) 4708 { 4709 static_branch_dec(&preempt_notifier_key); 4710 } 4711 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4712 4713 /** 4714 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4715 * @notifier: notifier struct to register 4716 */ 4717 void preempt_notifier_register(struct preempt_notifier *notifier) 4718 { 4719 if (!static_branch_unlikely(&preempt_notifier_key)) 4720 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4721 4722 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4723 } 4724 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4725 4726 /** 4727 * preempt_notifier_unregister - no longer interested in preemption notifications 4728 * @notifier: notifier struct to unregister 4729 * 4730 * This is *not* safe to call from within a preemption notifier. 4731 */ 4732 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4733 { 4734 hlist_del(¬ifier->link); 4735 } 4736 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4737 4738 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4739 { 4740 struct preempt_notifier *notifier; 4741 4742 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4743 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4744 } 4745 4746 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4747 { 4748 if (static_branch_unlikely(&preempt_notifier_key)) 4749 __fire_sched_in_preempt_notifiers(curr); 4750 } 4751 4752 static void 4753 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4754 struct task_struct *next) 4755 { 4756 struct preempt_notifier *notifier; 4757 4758 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4759 notifier->ops->sched_out(notifier, next); 4760 } 4761 4762 static __always_inline void 4763 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4764 struct task_struct *next) 4765 { 4766 if (static_branch_unlikely(&preempt_notifier_key)) 4767 __fire_sched_out_preempt_notifiers(curr, next); 4768 } 4769 4770 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4771 4772 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4773 { 4774 } 4775 4776 static inline void 4777 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4778 struct task_struct *next) 4779 { 4780 } 4781 4782 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4783 4784 static inline void prepare_task(struct task_struct *next) 4785 { 4786 #ifdef CONFIG_SMP 4787 /* 4788 * Claim the task as running, we do this before switching to it 4789 * such that any running task will have this set. 4790 * 4791 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4792 * its ordering comment. 4793 */ 4794 WRITE_ONCE(next->on_cpu, 1); 4795 #endif 4796 } 4797 4798 static inline void finish_task(struct task_struct *prev) 4799 { 4800 #ifdef CONFIG_SMP 4801 /* 4802 * This must be the very last reference to @prev from this CPU. After 4803 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4804 * must ensure this doesn't happen until the switch is completely 4805 * finished. 4806 * 4807 * In particular, the load of prev->state in finish_task_switch() must 4808 * happen before this. 4809 * 4810 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4811 */ 4812 smp_store_release(&prev->on_cpu, 0); 4813 #endif 4814 } 4815 4816 #ifdef CONFIG_SMP 4817 4818 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4819 { 4820 void (*func)(struct rq *rq); 4821 struct callback_head *next; 4822 4823 lockdep_assert_rq_held(rq); 4824 4825 while (head) { 4826 func = (void (*)(struct rq *))head->func; 4827 next = head->next; 4828 head->next = NULL; 4829 head = next; 4830 4831 func(rq); 4832 } 4833 } 4834 4835 static void balance_push(struct rq *rq); 4836 4837 /* 4838 * balance_push_callback is a right abuse of the callback interface and plays 4839 * by significantly different rules. 4840 * 4841 * Where the normal balance_callback's purpose is to be ran in the same context 4842 * that queued it (only later, when it's safe to drop rq->lock again), 4843 * balance_push_callback is specifically targeted at __schedule(). 4844 * 4845 * This abuse is tolerated because it places all the unlikely/odd cases behind 4846 * a single test, namely: rq->balance_callback == NULL. 4847 */ 4848 struct callback_head balance_push_callback = { 4849 .next = NULL, 4850 .func = (void (*)(struct callback_head *))balance_push, 4851 }; 4852 4853 static inline struct callback_head * 4854 __splice_balance_callbacks(struct rq *rq, bool split) 4855 { 4856 struct callback_head *head = rq->balance_callback; 4857 4858 if (likely(!head)) 4859 return NULL; 4860 4861 lockdep_assert_rq_held(rq); 4862 /* 4863 * Must not take balance_push_callback off the list when 4864 * splice_balance_callbacks() and balance_callbacks() are not 4865 * in the same rq->lock section. 4866 * 4867 * In that case it would be possible for __schedule() to interleave 4868 * and observe the list empty. 4869 */ 4870 if (split && head == &balance_push_callback) 4871 head = NULL; 4872 else 4873 rq->balance_callback = NULL; 4874 4875 return head; 4876 } 4877 4878 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4879 { 4880 return __splice_balance_callbacks(rq, true); 4881 } 4882 4883 static void __balance_callbacks(struct rq *rq) 4884 { 4885 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4886 } 4887 4888 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4889 { 4890 unsigned long flags; 4891 4892 if (unlikely(head)) { 4893 raw_spin_rq_lock_irqsave(rq, flags); 4894 do_balance_callbacks(rq, head); 4895 raw_spin_rq_unlock_irqrestore(rq, flags); 4896 } 4897 } 4898 4899 #else 4900 4901 static inline void __balance_callbacks(struct rq *rq) 4902 { 4903 } 4904 4905 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4906 { 4907 return NULL; 4908 } 4909 4910 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4911 { 4912 } 4913 4914 #endif 4915 4916 static inline void 4917 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4918 { 4919 /* 4920 * Since the runqueue lock will be released by the next 4921 * task (which is an invalid locking op but in the case 4922 * of the scheduler it's an obvious special-case), so we 4923 * do an early lockdep release here: 4924 */ 4925 rq_unpin_lock(rq, rf); 4926 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4927 #ifdef CONFIG_DEBUG_SPINLOCK 4928 /* this is a valid case when another task releases the spinlock */ 4929 rq_lockp(rq)->owner = next; 4930 #endif 4931 } 4932 4933 static inline void finish_lock_switch(struct rq *rq) 4934 { 4935 /* 4936 * If we are tracking spinlock dependencies then we have to 4937 * fix up the runqueue lock - which gets 'carried over' from 4938 * prev into current: 4939 */ 4940 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4941 __balance_callbacks(rq); 4942 raw_spin_rq_unlock_irq(rq); 4943 } 4944 4945 /* 4946 * NOP if the arch has not defined these: 4947 */ 4948 4949 #ifndef prepare_arch_switch 4950 # define prepare_arch_switch(next) do { } while (0) 4951 #endif 4952 4953 #ifndef finish_arch_post_lock_switch 4954 # define finish_arch_post_lock_switch() do { } while (0) 4955 #endif 4956 4957 static inline void kmap_local_sched_out(void) 4958 { 4959 #ifdef CONFIG_KMAP_LOCAL 4960 if (unlikely(current->kmap_ctrl.idx)) 4961 __kmap_local_sched_out(); 4962 #endif 4963 } 4964 4965 static inline void kmap_local_sched_in(void) 4966 { 4967 #ifdef CONFIG_KMAP_LOCAL 4968 if (unlikely(current->kmap_ctrl.idx)) 4969 __kmap_local_sched_in(); 4970 #endif 4971 } 4972 4973 /** 4974 * prepare_task_switch - prepare to switch tasks 4975 * @rq: the runqueue preparing to switch 4976 * @prev: the current task that is being switched out 4977 * @next: the task we are going to switch to. 4978 * 4979 * This is called with the rq lock held and interrupts off. It must 4980 * be paired with a subsequent finish_task_switch after the context 4981 * switch. 4982 * 4983 * prepare_task_switch sets up locking and calls architecture specific 4984 * hooks. 4985 */ 4986 static inline void 4987 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4988 struct task_struct *next) 4989 { 4990 kcov_prepare_switch(prev); 4991 sched_info_switch(rq, prev, next); 4992 perf_event_task_sched_out(prev, next); 4993 rseq_preempt(prev); 4994 fire_sched_out_preempt_notifiers(prev, next); 4995 kmap_local_sched_out(); 4996 prepare_task(next); 4997 prepare_arch_switch(next); 4998 } 4999 5000 /** 5001 * finish_task_switch - clean up after a task-switch 5002 * @prev: the thread we just switched away from. 5003 * 5004 * finish_task_switch must be called after the context switch, paired 5005 * with a prepare_task_switch call before the context switch. 5006 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5007 * and do any other architecture-specific cleanup actions. 5008 * 5009 * Note that we may have delayed dropping an mm in context_switch(). If 5010 * so, we finish that here outside of the runqueue lock. (Doing it 5011 * with the lock held can cause deadlocks; see schedule() for 5012 * details.) 5013 * 5014 * The context switch have flipped the stack from under us and restored the 5015 * local variables which were saved when this task called schedule() in the 5016 * past. prev == current is still correct but we need to recalculate this_rq 5017 * because prev may have moved to another CPU. 5018 */ 5019 static struct rq *finish_task_switch(struct task_struct *prev) 5020 __releases(rq->lock) 5021 { 5022 struct rq *rq = this_rq(); 5023 struct mm_struct *mm = rq->prev_mm; 5024 unsigned int prev_state; 5025 5026 /* 5027 * The previous task will have left us with a preempt_count of 2 5028 * because it left us after: 5029 * 5030 * schedule() 5031 * preempt_disable(); // 1 5032 * __schedule() 5033 * raw_spin_lock_irq(&rq->lock) // 2 5034 * 5035 * Also, see FORK_PREEMPT_COUNT. 5036 */ 5037 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5038 "corrupted preempt_count: %s/%d/0x%x\n", 5039 current->comm, current->pid, preempt_count())) 5040 preempt_count_set(FORK_PREEMPT_COUNT); 5041 5042 rq->prev_mm = NULL; 5043 5044 /* 5045 * A task struct has one reference for the use as "current". 5046 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5047 * schedule one last time. The schedule call will never return, and 5048 * the scheduled task must drop that reference. 5049 * 5050 * We must observe prev->state before clearing prev->on_cpu (in 5051 * finish_task), otherwise a concurrent wakeup can get prev 5052 * running on another CPU and we could rave with its RUNNING -> DEAD 5053 * transition, resulting in a double drop. 5054 */ 5055 prev_state = READ_ONCE(prev->__state); 5056 vtime_task_switch(prev); 5057 perf_event_task_sched_in(prev, current); 5058 finish_task(prev); 5059 tick_nohz_task_switch(); 5060 finish_lock_switch(rq); 5061 finish_arch_post_lock_switch(); 5062 kcov_finish_switch(current); 5063 /* 5064 * kmap_local_sched_out() is invoked with rq::lock held and 5065 * interrupts disabled. There is no requirement for that, but the 5066 * sched out code does not have an interrupt enabled section. 5067 * Restoring the maps on sched in does not require interrupts being 5068 * disabled either. 5069 */ 5070 kmap_local_sched_in(); 5071 5072 fire_sched_in_preempt_notifiers(current); 5073 /* 5074 * When switching through a kernel thread, the loop in 5075 * membarrier_{private,global}_expedited() may have observed that 5076 * kernel thread and not issued an IPI. It is therefore possible to 5077 * schedule between user->kernel->user threads without passing though 5078 * switch_mm(). Membarrier requires a barrier after storing to 5079 * rq->curr, before returning to userspace, so provide them here: 5080 * 5081 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5082 * provided by mmdrop(), 5083 * - a sync_core for SYNC_CORE. 5084 */ 5085 if (mm) { 5086 membarrier_mm_sync_core_before_usermode(mm); 5087 mmdrop_sched(mm); 5088 } 5089 if (unlikely(prev_state == TASK_DEAD)) { 5090 if (prev->sched_class->task_dead) 5091 prev->sched_class->task_dead(prev); 5092 5093 /* Task is done with its stack. */ 5094 put_task_stack(prev); 5095 5096 put_task_struct_rcu_user(prev); 5097 } 5098 5099 return rq; 5100 } 5101 5102 /** 5103 * schedule_tail - first thing a freshly forked thread must call. 5104 * @prev: the thread we just switched away from. 5105 */ 5106 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5107 __releases(rq->lock) 5108 { 5109 /* 5110 * New tasks start with FORK_PREEMPT_COUNT, see there and 5111 * finish_task_switch() for details. 5112 * 5113 * finish_task_switch() will drop rq->lock() and lower preempt_count 5114 * and the preempt_enable() will end up enabling preemption (on 5115 * PREEMPT_COUNT kernels). 5116 */ 5117 5118 finish_task_switch(prev); 5119 preempt_enable(); 5120 5121 if (current->set_child_tid) 5122 put_user(task_pid_vnr(current), current->set_child_tid); 5123 5124 calculate_sigpending(); 5125 } 5126 5127 /* 5128 * context_switch - switch to the new MM and the new thread's register state. 5129 */ 5130 static __always_inline struct rq * 5131 context_switch(struct rq *rq, struct task_struct *prev, 5132 struct task_struct *next, struct rq_flags *rf) 5133 { 5134 prepare_task_switch(rq, prev, next); 5135 5136 /* 5137 * For paravirt, this is coupled with an exit in switch_to to 5138 * combine the page table reload and the switch backend into 5139 * one hypercall. 5140 */ 5141 arch_start_context_switch(prev); 5142 5143 /* 5144 * kernel -> kernel lazy + transfer active 5145 * user -> kernel lazy + mmgrab() active 5146 * 5147 * kernel -> user switch + mmdrop() active 5148 * user -> user switch 5149 */ 5150 if (!next->mm) { // to kernel 5151 enter_lazy_tlb(prev->active_mm, next); 5152 5153 next->active_mm = prev->active_mm; 5154 if (prev->mm) // from user 5155 mmgrab(prev->active_mm); 5156 else 5157 prev->active_mm = NULL; 5158 } else { // to user 5159 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5160 /* 5161 * sys_membarrier() requires an smp_mb() between setting 5162 * rq->curr / membarrier_switch_mm() and returning to userspace. 5163 * 5164 * The below provides this either through switch_mm(), or in 5165 * case 'prev->active_mm == next->mm' through 5166 * finish_task_switch()'s mmdrop(). 5167 */ 5168 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5169 5170 if (!prev->mm) { // from kernel 5171 /* will mmdrop() in finish_task_switch(). */ 5172 rq->prev_mm = prev->active_mm; 5173 prev->active_mm = NULL; 5174 } 5175 } 5176 5177 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5178 5179 prepare_lock_switch(rq, next, rf); 5180 5181 /* Here we just switch the register state and the stack. */ 5182 switch_to(prev, next, prev); 5183 barrier(); 5184 5185 return finish_task_switch(prev); 5186 } 5187 5188 /* 5189 * nr_running and nr_context_switches: 5190 * 5191 * externally visible scheduler statistics: current number of runnable 5192 * threads, total number of context switches performed since bootup. 5193 */ 5194 unsigned int nr_running(void) 5195 { 5196 unsigned int i, sum = 0; 5197 5198 for_each_online_cpu(i) 5199 sum += cpu_rq(i)->nr_running; 5200 5201 return sum; 5202 } 5203 5204 /* 5205 * Check if only the current task is running on the CPU. 5206 * 5207 * Caution: this function does not check that the caller has disabled 5208 * preemption, thus the result might have a time-of-check-to-time-of-use 5209 * race. The caller is responsible to use it correctly, for example: 5210 * 5211 * - from a non-preemptible section (of course) 5212 * 5213 * - from a thread that is bound to a single CPU 5214 * 5215 * - in a loop with very short iterations (e.g. a polling loop) 5216 */ 5217 bool single_task_running(void) 5218 { 5219 return raw_rq()->nr_running == 1; 5220 } 5221 EXPORT_SYMBOL(single_task_running); 5222 5223 unsigned long long nr_context_switches(void) 5224 { 5225 int i; 5226 unsigned long long sum = 0; 5227 5228 for_each_possible_cpu(i) 5229 sum += cpu_rq(i)->nr_switches; 5230 5231 return sum; 5232 } 5233 5234 /* 5235 * Consumers of these two interfaces, like for example the cpuidle menu 5236 * governor, are using nonsensical data. Preferring shallow idle state selection 5237 * for a CPU that has IO-wait which might not even end up running the task when 5238 * it does become runnable. 5239 */ 5240 5241 unsigned int nr_iowait_cpu(int cpu) 5242 { 5243 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5244 } 5245 5246 /* 5247 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5248 * 5249 * The idea behind IO-wait account is to account the idle time that we could 5250 * have spend running if it were not for IO. That is, if we were to improve the 5251 * storage performance, we'd have a proportional reduction in IO-wait time. 5252 * 5253 * This all works nicely on UP, where, when a task blocks on IO, we account 5254 * idle time as IO-wait, because if the storage were faster, it could've been 5255 * running and we'd not be idle. 5256 * 5257 * This has been extended to SMP, by doing the same for each CPU. This however 5258 * is broken. 5259 * 5260 * Imagine for instance the case where two tasks block on one CPU, only the one 5261 * CPU will have IO-wait accounted, while the other has regular idle. Even 5262 * though, if the storage were faster, both could've ran at the same time, 5263 * utilising both CPUs. 5264 * 5265 * This means, that when looking globally, the current IO-wait accounting on 5266 * SMP is a lower bound, by reason of under accounting. 5267 * 5268 * Worse, since the numbers are provided per CPU, they are sometimes 5269 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5270 * associated with any one particular CPU, it can wake to another CPU than it 5271 * blocked on. This means the per CPU IO-wait number is meaningless. 5272 * 5273 * Task CPU affinities can make all that even more 'interesting'. 5274 */ 5275 5276 unsigned int nr_iowait(void) 5277 { 5278 unsigned int i, sum = 0; 5279 5280 for_each_possible_cpu(i) 5281 sum += nr_iowait_cpu(i); 5282 5283 return sum; 5284 } 5285 5286 #ifdef CONFIG_SMP 5287 5288 /* 5289 * sched_exec - execve() is a valuable balancing opportunity, because at 5290 * this point the task has the smallest effective memory and cache footprint. 5291 */ 5292 void sched_exec(void) 5293 { 5294 struct task_struct *p = current; 5295 unsigned long flags; 5296 int dest_cpu; 5297 5298 raw_spin_lock_irqsave(&p->pi_lock, flags); 5299 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5300 if (dest_cpu == smp_processor_id()) 5301 goto unlock; 5302 5303 if (likely(cpu_active(dest_cpu))) { 5304 struct migration_arg arg = { p, dest_cpu }; 5305 5306 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5307 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5308 return; 5309 } 5310 unlock: 5311 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5312 } 5313 5314 #endif 5315 5316 DEFINE_PER_CPU(struct kernel_stat, kstat); 5317 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5318 5319 EXPORT_PER_CPU_SYMBOL(kstat); 5320 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5321 5322 /* 5323 * The function fair_sched_class.update_curr accesses the struct curr 5324 * and its field curr->exec_start; when called from task_sched_runtime(), 5325 * we observe a high rate of cache misses in practice. 5326 * Prefetching this data results in improved performance. 5327 */ 5328 static inline void prefetch_curr_exec_start(struct task_struct *p) 5329 { 5330 #ifdef CONFIG_FAIR_GROUP_SCHED 5331 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5332 #else 5333 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5334 #endif 5335 prefetch(curr); 5336 prefetch(&curr->exec_start); 5337 } 5338 5339 /* 5340 * Return accounted runtime for the task. 5341 * In case the task is currently running, return the runtime plus current's 5342 * pending runtime that have not been accounted yet. 5343 */ 5344 unsigned long long task_sched_runtime(struct task_struct *p) 5345 { 5346 struct rq_flags rf; 5347 struct rq *rq; 5348 u64 ns; 5349 5350 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5351 /* 5352 * 64-bit doesn't need locks to atomically read a 64-bit value. 5353 * So we have a optimization chance when the task's delta_exec is 0. 5354 * Reading ->on_cpu is racy, but this is ok. 5355 * 5356 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5357 * If we race with it entering CPU, unaccounted time is 0. This is 5358 * indistinguishable from the read occurring a few cycles earlier. 5359 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5360 * been accounted, so we're correct here as well. 5361 */ 5362 if (!p->on_cpu || !task_on_rq_queued(p)) 5363 return p->se.sum_exec_runtime; 5364 #endif 5365 5366 rq = task_rq_lock(p, &rf); 5367 /* 5368 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5369 * project cycles that may never be accounted to this 5370 * thread, breaking clock_gettime(). 5371 */ 5372 if (task_current(rq, p) && task_on_rq_queued(p)) { 5373 prefetch_curr_exec_start(p); 5374 update_rq_clock(rq); 5375 p->sched_class->update_curr(rq); 5376 } 5377 ns = p->se.sum_exec_runtime; 5378 task_rq_unlock(rq, p, &rf); 5379 5380 return ns; 5381 } 5382 5383 #ifdef CONFIG_SCHED_DEBUG 5384 static u64 cpu_resched_latency(struct rq *rq) 5385 { 5386 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5387 u64 resched_latency, now = rq_clock(rq); 5388 static bool warned_once; 5389 5390 if (sysctl_resched_latency_warn_once && warned_once) 5391 return 0; 5392 5393 if (!need_resched() || !latency_warn_ms) 5394 return 0; 5395 5396 if (system_state == SYSTEM_BOOTING) 5397 return 0; 5398 5399 if (!rq->last_seen_need_resched_ns) { 5400 rq->last_seen_need_resched_ns = now; 5401 rq->ticks_without_resched = 0; 5402 return 0; 5403 } 5404 5405 rq->ticks_without_resched++; 5406 resched_latency = now - rq->last_seen_need_resched_ns; 5407 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5408 return 0; 5409 5410 warned_once = true; 5411 5412 return resched_latency; 5413 } 5414 5415 static int __init setup_resched_latency_warn_ms(char *str) 5416 { 5417 long val; 5418 5419 if ((kstrtol(str, 0, &val))) { 5420 pr_warn("Unable to set resched_latency_warn_ms\n"); 5421 return 1; 5422 } 5423 5424 sysctl_resched_latency_warn_ms = val; 5425 return 1; 5426 } 5427 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5428 #else 5429 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5430 #endif /* CONFIG_SCHED_DEBUG */ 5431 5432 /* 5433 * This function gets called by the timer code, with HZ frequency. 5434 * We call it with interrupts disabled. 5435 */ 5436 void scheduler_tick(void) 5437 { 5438 int cpu = smp_processor_id(); 5439 struct rq *rq = cpu_rq(cpu); 5440 struct task_struct *curr = rq->curr; 5441 struct rq_flags rf; 5442 unsigned long thermal_pressure; 5443 u64 resched_latency; 5444 5445 arch_scale_freq_tick(); 5446 sched_clock_tick(); 5447 5448 rq_lock(rq, &rf); 5449 5450 update_rq_clock(rq); 5451 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5452 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5453 curr->sched_class->task_tick(rq, curr, 0); 5454 if (sched_feat(LATENCY_WARN)) 5455 resched_latency = cpu_resched_latency(rq); 5456 calc_global_load_tick(rq); 5457 sched_core_tick(rq); 5458 5459 rq_unlock(rq, &rf); 5460 5461 if (sched_feat(LATENCY_WARN) && resched_latency) 5462 resched_latency_warn(cpu, resched_latency); 5463 5464 perf_event_task_tick(); 5465 5466 #ifdef CONFIG_SMP 5467 rq->idle_balance = idle_cpu(cpu); 5468 trigger_load_balance(rq); 5469 #endif 5470 } 5471 5472 #ifdef CONFIG_NO_HZ_FULL 5473 5474 struct tick_work { 5475 int cpu; 5476 atomic_t state; 5477 struct delayed_work work; 5478 }; 5479 /* Values for ->state, see diagram below. */ 5480 #define TICK_SCHED_REMOTE_OFFLINE 0 5481 #define TICK_SCHED_REMOTE_OFFLINING 1 5482 #define TICK_SCHED_REMOTE_RUNNING 2 5483 5484 /* 5485 * State diagram for ->state: 5486 * 5487 * 5488 * TICK_SCHED_REMOTE_OFFLINE 5489 * | ^ 5490 * | | 5491 * | | sched_tick_remote() 5492 * | | 5493 * | | 5494 * +--TICK_SCHED_REMOTE_OFFLINING 5495 * | ^ 5496 * | | 5497 * sched_tick_start() | | sched_tick_stop() 5498 * | | 5499 * V | 5500 * TICK_SCHED_REMOTE_RUNNING 5501 * 5502 * 5503 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5504 * and sched_tick_start() are happy to leave the state in RUNNING. 5505 */ 5506 5507 static struct tick_work __percpu *tick_work_cpu; 5508 5509 static void sched_tick_remote(struct work_struct *work) 5510 { 5511 struct delayed_work *dwork = to_delayed_work(work); 5512 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5513 int cpu = twork->cpu; 5514 struct rq *rq = cpu_rq(cpu); 5515 struct task_struct *curr; 5516 struct rq_flags rf; 5517 u64 delta; 5518 int os; 5519 5520 /* 5521 * Handle the tick only if it appears the remote CPU is running in full 5522 * dynticks mode. The check is racy by nature, but missing a tick or 5523 * having one too much is no big deal because the scheduler tick updates 5524 * statistics and checks timeslices in a time-independent way, regardless 5525 * of when exactly it is running. 5526 */ 5527 if (!tick_nohz_tick_stopped_cpu(cpu)) 5528 goto out_requeue; 5529 5530 rq_lock_irq(rq, &rf); 5531 curr = rq->curr; 5532 if (cpu_is_offline(cpu)) 5533 goto out_unlock; 5534 5535 update_rq_clock(rq); 5536 5537 if (!is_idle_task(curr)) { 5538 /* 5539 * Make sure the next tick runs within a reasonable 5540 * amount of time. 5541 */ 5542 delta = rq_clock_task(rq) - curr->se.exec_start; 5543 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5544 } 5545 curr->sched_class->task_tick(rq, curr, 0); 5546 5547 calc_load_nohz_remote(rq); 5548 out_unlock: 5549 rq_unlock_irq(rq, &rf); 5550 out_requeue: 5551 5552 /* 5553 * Run the remote tick once per second (1Hz). This arbitrary 5554 * frequency is large enough to avoid overload but short enough 5555 * to keep scheduler internal stats reasonably up to date. But 5556 * first update state to reflect hotplug activity if required. 5557 */ 5558 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5559 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5560 if (os == TICK_SCHED_REMOTE_RUNNING) 5561 queue_delayed_work(system_unbound_wq, dwork, HZ); 5562 } 5563 5564 static void sched_tick_start(int cpu) 5565 { 5566 int os; 5567 struct tick_work *twork; 5568 5569 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5570 return; 5571 5572 WARN_ON_ONCE(!tick_work_cpu); 5573 5574 twork = per_cpu_ptr(tick_work_cpu, cpu); 5575 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5576 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5577 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5578 twork->cpu = cpu; 5579 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5580 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5581 } 5582 } 5583 5584 #ifdef CONFIG_HOTPLUG_CPU 5585 static void sched_tick_stop(int cpu) 5586 { 5587 struct tick_work *twork; 5588 int os; 5589 5590 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5591 return; 5592 5593 WARN_ON_ONCE(!tick_work_cpu); 5594 5595 twork = per_cpu_ptr(tick_work_cpu, cpu); 5596 /* There cannot be competing actions, but don't rely on stop-machine. */ 5597 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5598 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5599 /* Don't cancel, as this would mess up the state machine. */ 5600 } 5601 #endif /* CONFIG_HOTPLUG_CPU */ 5602 5603 int __init sched_tick_offload_init(void) 5604 { 5605 tick_work_cpu = alloc_percpu(struct tick_work); 5606 BUG_ON(!tick_work_cpu); 5607 return 0; 5608 } 5609 5610 #else /* !CONFIG_NO_HZ_FULL */ 5611 static inline void sched_tick_start(int cpu) { } 5612 static inline void sched_tick_stop(int cpu) { } 5613 #endif 5614 5615 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5616 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5617 /* 5618 * If the value passed in is equal to the current preempt count 5619 * then we just disabled preemption. Start timing the latency. 5620 */ 5621 static inline void preempt_latency_start(int val) 5622 { 5623 if (preempt_count() == val) { 5624 unsigned long ip = get_lock_parent_ip(); 5625 #ifdef CONFIG_DEBUG_PREEMPT 5626 current->preempt_disable_ip = ip; 5627 #endif 5628 trace_preempt_off(CALLER_ADDR0, ip); 5629 } 5630 } 5631 5632 void preempt_count_add(int val) 5633 { 5634 #ifdef CONFIG_DEBUG_PREEMPT 5635 /* 5636 * Underflow? 5637 */ 5638 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5639 return; 5640 #endif 5641 __preempt_count_add(val); 5642 #ifdef CONFIG_DEBUG_PREEMPT 5643 /* 5644 * Spinlock count overflowing soon? 5645 */ 5646 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5647 PREEMPT_MASK - 10); 5648 #endif 5649 preempt_latency_start(val); 5650 } 5651 EXPORT_SYMBOL(preempt_count_add); 5652 NOKPROBE_SYMBOL(preempt_count_add); 5653 5654 /* 5655 * If the value passed in equals to the current preempt count 5656 * then we just enabled preemption. Stop timing the latency. 5657 */ 5658 static inline void preempt_latency_stop(int val) 5659 { 5660 if (preempt_count() == val) 5661 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5662 } 5663 5664 void preempt_count_sub(int val) 5665 { 5666 #ifdef CONFIG_DEBUG_PREEMPT 5667 /* 5668 * Underflow? 5669 */ 5670 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5671 return; 5672 /* 5673 * Is the spinlock portion underflowing? 5674 */ 5675 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5676 !(preempt_count() & PREEMPT_MASK))) 5677 return; 5678 #endif 5679 5680 preempt_latency_stop(val); 5681 __preempt_count_sub(val); 5682 } 5683 EXPORT_SYMBOL(preempt_count_sub); 5684 NOKPROBE_SYMBOL(preempt_count_sub); 5685 5686 #else 5687 static inline void preempt_latency_start(int val) { } 5688 static inline void preempt_latency_stop(int val) { } 5689 #endif 5690 5691 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5692 { 5693 #ifdef CONFIG_DEBUG_PREEMPT 5694 return p->preempt_disable_ip; 5695 #else 5696 return 0; 5697 #endif 5698 } 5699 5700 /* 5701 * Print scheduling while atomic bug: 5702 */ 5703 static noinline void __schedule_bug(struct task_struct *prev) 5704 { 5705 /* Save this before calling printk(), since that will clobber it */ 5706 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5707 5708 if (oops_in_progress) 5709 return; 5710 5711 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5712 prev->comm, prev->pid, preempt_count()); 5713 5714 debug_show_held_locks(prev); 5715 print_modules(); 5716 if (irqs_disabled()) 5717 print_irqtrace_events(prev); 5718 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5719 && in_atomic_preempt_off()) { 5720 pr_err("Preemption disabled at:"); 5721 print_ip_sym(KERN_ERR, preempt_disable_ip); 5722 } 5723 if (panic_on_warn) 5724 panic("scheduling while atomic\n"); 5725 5726 dump_stack(); 5727 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5728 } 5729 5730 /* 5731 * Various schedule()-time debugging checks and statistics: 5732 */ 5733 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5734 { 5735 #ifdef CONFIG_SCHED_STACK_END_CHECK 5736 if (task_stack_end_corrupted(prev)) 5737 panic("corrupted stack end detected inside scheduler\n"); 5738 5739 if (task_scs_end_corrupted(prev)) 5740 panic("corrupted shadow stack detected inside scheduler\n"); 5741 #endif 5742 5743 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5744 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5745 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5746 prev->comm, prev->pid, prev->non_block_count); 5747 dump_stack(); 5748 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5749 } 5750 #endif 5751 5752 if (unlikely(in_atomic_preempt_off())) { 5753 __schedule_bug(prev); 5754 preempt_count_set(PREEMPT_DISABLED); 5755 } 5756 rcu_sleep_check(); 5757 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5758 5759 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5760 5761 schedstat_inc(this_rq()->sched_count); 5762 } 5763 5764 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5765 struct rq_flags *rf) 5766 { 5767 #ifdef CONFIG_SMP 5768 const struct sched_class *class; 5769 /* 5770 * We must do the balancing pass before put_prev_task(), such 5771 * that when we release the rq->lock the task is in the same 5772 * state as before we took rq->lock. 5773 * 5774 * We can terminate the balance pass as soon as we know there is 5775 * a runnable task of @class priority or higher. 5776 */ 5777 for_class_range(class, prev->sched_class, &idle_sched_class) { 5778 if (class->balance(rq, prev, rf)) 5779 break; 5780 } 5781 #endif 5782 5783 put_prev_task(rq, prev); 5784 } 5785 5786 /* 5787 * Pick up the highest-prio task: 5788 */ 5789 static inline struct task_struct * 5790 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5791 { 5792 const struct sched_class *class; 5793 struct task_struct *p; 5794 5795 /* 5796 * Optimization: we know that if all tasks are in the fair class we can 5797 * call that function directly, but only if the @prev task wasn't of a 5798 * higher scheduling class, because otherwise those lose the 5799 * opportunity to pull in more work from other CPUs. 5800 */ 5801 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5802 rq->nr_running == rq->cfs.h_nr_running)) { 5803 5804 p = pick_next_task_fair(rq, prev, rf); 5805 if (unlikely(p == RETRY_TASK)) 5806 goto restart; 5807 5808 /* Assume the next prioritized class is idle_sched_class */ 5809 if (!p) { 5810 put_prev_task(rq, prev); 5811 p = pick_next_task_idle(rq); 5812 } 5813 5814 return p; 5815 } 5816 5817 restart: 5818 put_prev_task_balance(rq, prev, rf); 5819 5820 for_each_class(class) { 5821 p = class->pick_next_task(rq); 5822 if (p) 5823 return p; 5824 } 5825 5826 BUG(); /* The idle class should always have a runnable task. */ 5827 } 5828 5829 #ifdef CONFIG_SCHED_CORE 5830 static inline bool is_task_rq_idle(struct task_struct *t) 5831 { 5832 return (task_rq(t)->idle == t); 5833 } 5834 5835 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5836 { 5837 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5838 } 5839 5840 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5841 { 5842 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5843 return true; 5844 5845 return a->core_cookie == b->core_cookie; 5846 } 5847 5848 static inline struct task_struct *pick_task(struct rq *rq) 5849 { 5850 const struct sched_class *class; 5851 struct task_struct *p; 5852 5853 for_each_class(class) { 5854 p = class->pick_task(rq); 5855 if (p) 5856 return p; 5857 } 5858 5859 BUG(); /* The idle class should always have a runnable task. */ 5860 } 5861 5862 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5863 5864 static void queue_core_balance(struct rq *rq); 5865 5866 static struct task_struct * 5867 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5868 { 5869 struct task_struct *next, *p, *max = NULL; 5870 const struct cpumask *smt_mask; 5871 bool fi_before = false; 5872 bool core_clock_updated = (rq == rq->core); 5873 unsigned long cookie; 5874 int i, cpu, occ = 0; 5875 struct rq *rq_i; 5876 bool need_sync; 5877 5878 if (!sched_core_enabled(rq)) 5879 return __pick_next_task(rq, prev, rf); 5880 5881 cpu = cpu_of(rq); 5882 5883 /* Stopper task is switching into idle, no need core-wide selection. */ 5884 if (cpu_is_offline(cpu)) { 5885 /* 5886 * Reset core_pick so that we don't enter the fastpath when 5887 * coming online. core_pick would already be migrated to 5888 * another cpu during offline. 5889 */ 5890 rq->core_pick = NULL; 5891 return __pick_next_task(rq, prev, rf); 5892 } 5893 5894 /* 5895 * If there were no {en,de}queues since we picked (IOW, the task 5896 * pointers are all still valid), and we haven't scheduled the last 5897 * pick yet, do so now. 5898 * 5899 * rq->core_pick can be NULL if no selection was made for a CPU because 5900 * it was either offline or went offline during a sibling's core-wide 5901 * selection. In this case, do a core-wide selection. 5902 */ 5903 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5904 rq->core->core_pick_seq != rq->core_sched_seq && 5905 rq->core_pick) { 5906 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5907 5908 next = rq->core_pick; 5909 if (next != prev) { 5910 put_prev_task(rq, prev); 5911 set_next_task(rq, next); 5912 } 5913 5914 rq->core_pick = NULL; 5915 goto out; 5916 } 5917 5918 put_prev_task_balance(rq, prev, rf); 5919 5920 smt_mask = cpu_smt_mask(cpu); 5921 need_sync = !!rq->core->core_cookie; 5922 5923 /* reset state */ 5924 rq->core->core_cookie = 0UL; 5925 if (rq->core->core_forceidle_count) { 5926 if (!core_clock_updated) { 5927 update_rq_clock(rq->core); 5928 core_clock_updated = true; 5929 } 5930 sched_core_account_forceidle(rq); 5931 /* reset after accounting force idle */ 5932 rq->core->core_forceidle_start = 0; 5933 rq->core->core_forceidle_count = 0; 5934 rq->core->core_forceidle_occupation = 0; 5935 need_sync = true; 5936 fi_before = true; 5937 } 5938 5939 /* 5940 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5941 * 5942 * @task_seq guards the task state ({en,de}queues) 5943 * @pick_seq is the @task_seq we did a selection on 5944 * @sched_seq is the @pick_seq we scheduled 5945 * 5946 * However, preemptions can cause multiple picks on the same task set. 5947 * 'Fix' this by also increasing @task_seq for every pick. 5948 */ 5949 rq->core->core_task_seq++; 5950 5951 /* 5952 * Optimize for common case where this CPU has no cookies 5953 * and there are no cookied tasks running on siblings. 5954 */ 5955 if (!need_sync) { 5956 next = pick_task(rq); 5957 if (!next->core_cookie) { 5958 rq->core_pick = NULL; 5959 /* 5960 * For robustness, update the min_vruntime_fi for 5961 * unconstrained picks as well. 5962 */ 5963 WARN_ON_ONCE(fi_before); 5964 task_vruntime_update(rq, next, false); 5965 goto out_set_next; 5966 } 5967 } 5968 5969 /* 5970 * For each thread: do the regular task pick and find the max prio task 5971 * amongst them. 5972 * 5973 * Tie-break prio towards the current CPU 5974 */ 5975 for_each_cpu_wrap(i, smt_mask, cpu) { 5976 rq_i = cpu_rq(i); 5977 5978 /* 5979 * Current cpu always has its clock updated on entrance to 5980 * pick_next_task(). If the current cpu is not the core, 5981 * the core may also have been updated above. 5982 */ 5983 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5984 update_rq_clock(rq_i); 5985 5986 p = rq_i->core_pick = pick_task(rq_i); 5987 if (!max || prio_less(max, p, fi_before)) 5988 max = p; 5989 } 5990 5991 cookie = rq->core->core_cookie = max->core_cookie; 5992 5993 /* 5994 * For each thread: try and find a runnable task that matches @max or 5995 * force idle. 5996 */ 5997 for_each_cpu(i, smt_mask) { 5998 rq_i = cpu_rq(i); 5999 p = rq_i->core_pick; 6000 6001 if (!cookie_equals(p, cookie)) { 6002 p = NULL; 6003 if (cookie) 6004 p = sched_core_find(rq_i, cookie); 6005 if (!p) 6006 p = idle_sched_class.pick_task(rq_i); 6007 } 6008 6009 rq_i->core_pick = p; 6010 6011 if (p == rq_i->idle) { 6012 if (rq_i->nr_running) { 6013 rq->core->core_forceidle_count++; 6014 if (!fi_before) 6015 rq->core->core_forceidle_seq++; 6016 } 6017 } else { 6018 occ++; 6019 } 6020 } 6021 6022 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6023 rq->core->core_forceidle_start = rq_clock(rq->core); 6024 rq->core->core_forceidle_occupation = occ; 6025 } 6026 6027 rq->core->core_pick_seq = rq->core->core_task_seq; 6028 next = rq->core_pick; 6029 rq->core_sched_seq = rq->core->core_pick_seq; 6030 6031 /* Something should have been selected for current CPU */ 6032 WARN_ON_ONCE(!next); 6033 6034 /* 6035 * Reschedule siblings 6036 * 6037 * NOTE: L1TF -- at this point we're no longer running the old task and 6038 * sending an IPI (below) ensures the sibling will no longer be running 6039 * their task. This ensures there is no inter-sibling overlap between 6040 * non-matching user state. 6041 */ 6042 for_each_cpu(i, smt_mask) { 6043 rq_i = cpu_rq(i); 6044 6045 /* 6046 * An online sibling might have gone offline before a task 6047 * could be picked for it, or it might be offline but later 6048 * happen to come online, but its too late and nothing was 6049 * picked for it. That's Ok - it will pick tasks for itself, 6050 * so ignore it. 6051 */ 6052 if (!rq_i->core_pick) 6053 continue; 6054 6055 /* 6056 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6057 * fi_before fi update? 6058 * 0 0 1 6059 * 0 1 1 6060 * 1 0 1 6061 * 1 1 0 6062 */ 6063 if (!(fi_before && rq->core->core_forceidle_count)) 6064 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6065 6066 rq_i->core_pick->core_occupation = occ; 6067 6068 if (i == cpu) { 6069 rq_i->core_pick = NULL; 6070 continue; 6071 } 6072 6073 /* Did we break L1TF mitigation requirements? */ 6074 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6075 6076 if (rq_i->curr == rq_i->core_pick) { 6077 rq_i->core_pick = NULL; 6078 continue; 6079 } 6080 6081 resched_curr(rq_i); 6082 } 6083 6084 out_set_next: 6085 set_next_task(rq, next); 6086 out: 6087 if (rq->core->core_forceidle_count && next == rq->idle) 6088 queue_core_balance(rq); 6089 6090 return next; 6091 } 6092 6093 static bool try_steal_cookie(int this, int that) 6094 { 6095 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6096 struct task_struct *p; 6097 unsigned long cookie; 6098 bool success = false; 6099 6100 local_irq_disable(); 6101 double_rq_lock(dst, src); 6102 6103 cookie = dst->core->core_cookie; 6104 if (!cookie) 6105 goto unlock; 6106 6107 if (dst->curr != dst->idle) 6108 goto unlock; 6109 6110 p = sched_core_find(src, cookie); 6111 if (p == src->idle) 6112 goto unlock; 6113 6114 do { 6115 if (p == src->core_pick || p == src->curr) 6116 goto next; 6117 6118 if (!is_cpu_allowed(p, this)) 6119 goto next; 6120 6121 if (p->core_occupation > dst->idle->core_occupation) 6122 goto next; 6123 6124 deactivate_task(src, p, 0); 6125 set_task_cpu(p, this); 6126 activate_task(dst, p, 0); 6127 6128 resched_curr(dst); 6129 6130 success = true; 6131 break; 6132 6133 next: 6134 p = sched_core_next(p, cookie); 6135 } while (p); 6136 6137 unlock: 6138 double_rq_unlock(dst, src); 6139 local_irq_enable(); 6140 6141 return success; 6142 } 6143 6144 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6145 { 6146 int i; 6147 6148 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6149 if (i == cpu) 6150 continue; 6151 6152 if (need_resched()) 6153 break; 6154 6155 if (try_steal_cookie(cpu, i)) 6156 return true; 6157 } 6158 6159 return false; 6160 } 6161 6162 static void sched_core_balance(struct rq *rq) 6163 { 6164 struct sched_domain *sd; 6165 int cpu = cpu_of(rq); 6166 6167 preempt_disable(); 6168 rcu_read_lock(); 6169 raw_spin_rq_unlock_irq(rq); 6170 for_each_domain(cpu, sd) { 6171 if (need_resched()) 6172 break; 6173 6174 if (steal_cookie_task(cpu, sd)) 6175 break; 6176 } 6177 raw_spin_rq_lock_irq(rq); 6178 rcu_read_unlock(); 6179 preempt_enable(); 6180 } 6181 6182 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 6183 6184 static void queue_core_balance(struct rq *rq) 6185 { 6186 if (!sched_core_enabled(rq)) 6187 return; 6188 6189 if (!rq->core->core_cookie) 6190 return; 6191 6192 if (!rq->nr_running) /* not forced idle */ 6193 return; 6194 6195 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6196 } 6197 6198 static void sched_core_cpu_starting(unsigned int cpu) 6199 { 6200 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6201 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6202 unsigned long flags; 6203 int t; 6204 6205 sched_core_lock(cpu, &flags); 6206 6207 WARN_ON_ONCE(rq->core != rq); 6208 6209 /* if we're the first, we'll be our own leader */ 6210 if (cpumask_weight(smt_mask) == 1) 6211 goto unlock; 6212 6213 /* find the leader */ 6214 for_each_cpu(t, smt_mask) { 6215 if (t == cpu) 6216 continue; 6217 rq = cpu_rq(t); 6218 if (rq->core == rq) { 6219 core_rq = rq; 6220 break; 6221 } 6222 } 6223 6224 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6225 goto unlock; 6226 6227 /* install and validate core_rq */ 6228 for_each_cpu(t, smt_mask) { 6229 rq = cpu_rq(t); 6230 6231 if (t == cpu) 6232 rq->core = core_rq; 6233 6234 WARN_ON_ONCE(rq->core != core_rq); 6235 } 6236 6237 unlock: 6238 sched_core_unlock(cpu, &flags); 6239 } 6240 6241 static void sched_core_cpu_deactivate(unsigned int cpu) 6242 { 6243 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6244 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6245 unsigned long flags; 6246 int t; 6247 6248 sched_core_lock(cpu, &flags); 6249 6250 /* if we're the last man standing, nothing to do */ 6251 if (cpumask_weight(smt_mask) == 1) { 6252 WARN_ON_ONCE(rq->core != rq); 6253 goto unlock; 6254 } 6255 6256 /* if we're not the leader, nothing to do */ 6257 if (rq->core != rq) 6258 goto unlock; 6259 6260 /* find a new leader */ 6261 for_each_cpu(t, smt_mask) { 6262 if (t == cpu) 6263 continue; 6264 core_rq = cpu_rq(t); 6265 break; 6266 } 6267 6268 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6269 goto unlock; 6270 6271 /* copy the shared state to the new leader */ 6272 core_rq->core_task_seq = rq->core_task_seq; 6273 core_rq->core_pick_seq = rq->core_pick_seq; 6274 core_rq->core_cookie = rq->core_cookie; 6275 core_rq->core_forceidle_count = rq->core_forceidle_count; 6276 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6277 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6278 6279 /* 6280 * Accounting edge for forced idle is handled in pick_next_task(). 6281 * Don't need another one here, since the hotplug thread shouldn't 6282 * have a cookie. 6283 */ 6284 core_rq->core_forceidle_start = 0; 6285 6286 /* install new leader */ 6287 for_each_cpu(t, smt_mask) { 6288 rq = cpu_rq(t); 6289 rq->core = core_rq; 6290 } 6291 6292 unlock: 6293 sched_core_unlock(cpu, &flags); 6294 } 6295 6296 static inline void sched_core_cpu_dying(unsigned int cpu) 6297 { 6298 struct rq *rq = cpu_rq(cpu); 6299 6300 if (rq->core != rq) 6301 rq->core = rq; 6302 } 6303 6304 #else /* !CONFIG_SCHED_CORE */ 6305 6306 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6307 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6308 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6309 6310 static struct task_struct * 6311 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6312 { 6313 return __pick_next_task(rq, prev, rf); 6314 } 6315 6316 #endif /* CONFIG_SCHED_CORE */ 6317 6318 /* 6319 * Constants for the sched_mode argument of __schedule(). 6320 * 6321 * The mode argument allows RT enabled kernels to differentiate a 6322 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6323 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6324 * optimize the AND operation out and just check for zero. 6325 */ 6326 #define SM_NONE 0x0 6327 #define SM_PREEMPT 0x1 6328 #define SM_RTLOCK_WAIT 0x2 6329 6330 #ifndef CONFIG_PREEMPT_RT 6331 # define SM_MASK_PREEMPT (~0U) 6332 #else 6333 # define SM_MASK_PREEMPT SM_PREEMPT 6334 #endif 6335 6336 /* 6337 * __schedule() is the main scheduler function. 6338 * 6339 * The main means of driving the scheduler and thus entering this function are: 6340 * 6341 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6342 * 6343 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6344 * paths. For example, see arch/x86/entry_64.S. 6345 * 6346 * To drive preemption between tasks, the scheduler sets the flag in timer 6347 * interrupt handler scheduler_tick(). 6348 * 6349 * 3. Wakeups don't really cause entry into schedule(). They add a 6350 * task to the run-queue and that's it. 6351 * 6352 * Now, if the new task added to the run-queue preempts the current 6353 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6354 * called on the nearest possible occasion: 6355 * 6356 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6357 * 6358 * - in syscall or exception context, at the next outmost 6359 * preempt_enable(). (this might be as soon as the wake_up()'s 6360 * spin_unlock()!) 6361 * 6362 * - in IRQ context, return from interrupt-handler to 6363 * preemptible context 6364 * 6365 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6366 * then at the next: 6367 * 6368 * - cond_resched() call 6369 * - explicit schedule() call 6370 * - return from syscall or exception to user-space 6371 * - return from interrupt-handler to user-space 6372 * 6373 * WARNING: must be called with preemption disabled! 6374 */ 6375 static void __sched notrace __schedule(unsigned int sched_mode) 6376 { 6377 struct task_struct *prev, *next; 6378 unsigned long *switch_count; 6379 unsigned long prev_state; 6380 struct rq_flags rf; 6381 struct rq *rq; 6382 int cpu; 6383 6384 cpu = smp_processor_id(); 6385 rq = cpu_rq(cpu); 6386 prev = rq->curr; 6387 6388 schedule_debug(prev, !!sched_mode); 6389 6390 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6391 hrtick_clear(rq); 6392 6393 local_irq_disable(); 6394 rcu_note_context_switch(!!sched_mode); 6395 6396 /* 6397 * Make sure that signal_pending_state()->signal_pending() below 6398 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6399 * done by the caller to avoid the race with signal_wake_up(): 6400 * 6401 * __set_current_state(@state) signal_wake_up() 6402 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6403 * wake_up_state(p, state) 6404 * LOCK rq->lock LOCK p->pi_state 6405 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6406 * if (signal_pending_state()) if (p->state & @state) 6407 * 6408 * Also, the membarrier system call requires a full memory barrier 6409 * after coming from user-space, before storing to rq->curr. 6410 */ 6411 rq_lock(rq, &rf); 6412 smp_mb__after_spinlock(); 6413 6414 /* Promote REQ to ACT */ 6415 rq->clock_update_flags <<= 1; 6416 update_rq_clock(rq); 6417 6418 switch_count = &prev->nivcsw; 6419 6420 /* 6421 * We must load prev->state once (task_struct::state is volatile), such 6422 * that we form a control dependency vs deactivate_task() below. 6423 */ 6424 prev_state = READ_ONCE(prev->__state); 6425 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6426 if (signal_pending_state(prev_state, prev)) { 6427 WRITE_ONCE(prev->__state, TASK_RUNNING); 6428 } else { 6429 prev->sched_contributes_to_load = 6430 (prev_state & TASK_UNINTERRUPTIBLE) && 6431 !(prev_state & TASK_NOLOAD) && 6432 !(prev->flags & PF_FROZEN); 6433 6434 if (prev->sched_contributes_to_load) 6435 rq->nr_uninterruptible++; 6436 6437 /* 6438 * __schedule() ttwu() 6439 * prev_state = prev->state; if (p->on_rq && ...) 6440 * if (prev_state) goto out; 6441 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6442 * p->state = TASK_WAKING 6443 * 6444 * Where __schedule() and ttwu() have matching control dependencies. 6445 * 6446 * After this, schedule() must not care about p->state any more. 6447 */ 6448 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6449 6450 if (prev->in_iowait) { 6451 atomic_inc(&rq->nr_iowait); 6452 delayacct_blkio_start(); 6453 } 6454 } 6455 switch_count = &prev->nvcsw; 6456 } 6457 6458 next = pick_next_task(rq, prev, &rf); 6459 clear_tsk_need_resched(prev); 6460 clear_preempt_need_resched(); 6461 #ifdef CONFIG_SCHED_DEBUG 6462 rq->last_seen_need_resched_ns = 0; 6463 #endif 6464 6465 if (likely(prev != next)) { 6466 rq->nr_switches++; 6467 /* 6468 * RCU users of rcu_dereference(rq->curr) may not see 6469 * changes to task_struct made by pick_next_task(). 6470 */ 6471 RCU_INIT_POINTER(rq->curr, next); 6472 /* 6473 * The membarrier system call requires each architecture 6474 * to have a full memory barrier after updating 6475 * rq->curr, before returning to user-space. 6476 * 6477 * Here are the schemes providing that barrier on the 6478 * various architectures: 6479 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6480 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6481 * - finish_lock_switch() for weakly-ordered 6482 * architectures where spin_unlock is a full barrier, 6483 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6484 * is a RELEASE barrier), 6485 */ 6486 ++*switch_count; 6487 6488 migrate_disable_switch(rq, prev); 6489 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6490 6491 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6492 6493 /* Also unlocks the rq: */ 6494 rq = context_switch(rq, prev, next, &rf); 6495 } else { 6496 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6497 6498 rq_unpin_lock(rq, &rf); 6499 __balance_callbacks(rq); 6500 raw_spin_rq_unlock_irq(rq); 6501 } 6502 } 6503 6504 void __noreturn do_task_dead(void) 6505 { 6506 /* Causes final put_task_struct in finish_task_switch(): */ 6507 set_special_state(TASK_DEAD); 6508 6509 /* Tell freezer to ignore us: */ 6510 current->flags |= PF_NOFREEZE; 6511 6512 __schedule(SM_NONE); 6513 BUG(); 6514 6515 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6516 for (;;) 6517 cpu_relax(); 6518 } 6519 6520 static inline void sched_submit_work(struct task_struct *tsk) 6521 { 6522 unsigned int task_flags; 6523 6524 if (task_is_running(tsk)) 6525 return; 6526 6527 task_flags = tsk->flags; 6528 /* 6529 * If a worker goes to sleep, notify and ask workqueue whether it 6530 * wants to wake up a task to maintain concurrency. 6531 */ 6532 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6533 if (task_flags & PF_WQ_WORKER) 6534 wq_worker_sleeping(tsk); 6535 else 6536 io_wq_worker_sleeping(tsk); 6537 } 6538 6539 /* 6540 * spinlock and rwlock must not flush block requests. This will 6541 * deadlock if the callback attempts to acquire a lock which is 6542 * already acquired. 6543 */ 6544 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6545 6546 /* 6547 * If we are going to sleep and we have plugged IO queued, 6548 * make sure to submit it to avoid deadlocks. 6549 */ 6550 blk_flush_plug(tsk->plug, true); 6551 } 6552 6553 static void sched_update_worker(struct task_struct *tsk) 6554 { 6555 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6556 if (tsk->flags & PF_WQ_WORKER) 6557 wq_worker_running(tsk); 6558 else 6559 io_wq_worker_running(tsk); 6560 } 6561 } 6562 6563 asmlinkage __visible void __sched schedule(void) 6564 { 6565 struct task_struct *tsk = current; 6566 6567 sched_submit_work(tsk); 6568 do { 6569 preempt_disable(); 6570 __schedule(SM_NONE); 6571 sched_preempt_enable_no_resched(); 6572 } while (need_resched()); 6573 sched_update_worker(tsk); 6574 } 6575 EXPORT_SYMBOL(schedule); 6576 6577 /* 6578 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6579 * state (have scheduled out non-voluntarily) by making sure that all 6580 * tasks have either left the run queue or have gone into user space. 6581 * As idle tasks do not do either, they must not ever be preempted 6582 * (schedule out non-voluntarily). 6583 * 6584 * schedule_idle() is similar to schedule_preempt_disable() except that it 6585 * never enables preemption because it does not call sched_submit_work(). 6586 */ 6587 void __sched schedule_idle(void) 6588 { 6589 /* 6590 * As this skips calling sched_submit_work(), which the idle task does 6591 * regardless because that function is a nop when the task is in a 6592 * TASK_RUNNING state, make sure this isn't used someplace that the 6593 * current task can be in any other state. Note, idle is always in the 6594 * TASK_RUNNING state. 6595 */ 6596 WARN_ON_ONCE(current->__state); 6597 do { 6598 __schedule(SM_NONE); 6599 } while (need_resched()); 6600 } 6601 6602 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6603 asmlinkage __visible void __sched schedule_user(void) 6604 { 6605 /* 6606 * If we come here after a random call to set_need_resched(), 6607 * or we have been woken up remotely but the IPI has not yet arrived, 6608 * we haven't yet exited the RCU idle mode. Do it here manually until 6609 * we find a better solution. 6610 * 6611 * NB: There are buggy callers of this function. Ideally we 6612 * should warn if prev_state != CONTEXT_USER, but that will trigger 6613 * too frequently to make sense yet. 6614 */ 6615 enum ctx_state prev_state = exception_enter(); 6616 schedule(); 6617 exception_exit(prev_state); 6618 } 6619 #endif 6620 6621 /** 6622 * schedule_preempt_disabled - called with preemption disabled 6623 * 6624 * Returns with preemption disabled. Note: preempt_count must be 1 6625 */ 6626 void __sched schedule_preempt_disabled(void) 6627 { 6628 sched_preempt_enable_no_resched(); 6629 schedule(); 6630 preempt_disable(); 6631 } 6632 6633 #ifdef CONFIG_PREEMPT_RT 6634 void __sched notrace schedule_rtlock(void) 6635 { 6636 do { 6637 preempt_disable(); 6638 __schedule(SM_RTLOCK_WAIT); 6639 sched_preempt_enable_no_resched(); 6640 } while (need_resched()); 6641 } 6642 NOKPROBE_SYMBOL(schedule_rtlock); 6643 #endif 6644 6645 static void __sched notrace preempt_schedule_common(void) 6646 { 6647 do { 6648 /* 6649 * Because the function tracer can trace preempt_count_sub() 6650 * and it also uses preempt_enable/disable_notrace(), if 6651 * NEED_RESCHED is set, the preempt_enable_notrace() called 6652 * by the function tracer will call this function again and 6653 * cause infinite recursion. 6654 * 6655 * Preemption must be disabled here before the function 6656 * tracer can trace. Break up preempt_disable() into two 6657 * calls. One to disable preemption without fear of being 6658 * traced. The other to still record the preemption latency, 6659 * which can also be traced by the function tracer. 6660 */ 6661 preempt_disable_notrace(); 6662 preempt_latency_start(1); 6663 __schedule(SM_PREEMPT); 6664 preempt_latency_stop(1); 6665 preempt_enable_no_resched_notrace(); 6666 6667 /* 6668 * Check again in case we missed a preemption opportunity 6669 * between schedule and now. 6670 */ 6671 } while (need_resched()); 6672 } 6673 6674 #ifdef CONFIG_PREEMPTION 6675 /* 6676 * This is the entry point to schedule() from in-kernel preemption 6677 * off of preempt_enable. 6678 */ 6679 asmlinkage __visible void __sched notrace preempt_schedule(void) 6680 { 6681 /* 6682 * If there is a non-zero preempt_count or interrupts are disabled, 6683 * we do not want to preempt the current task. Just return.. 6684 */ 6685 if (likely(!preemptible())) 6686 return; 6687 preempt_schedule_common(); 6688 } 6689 NOKPROBE_SYMBOL(preempt_schedule); 6690 EXPORT_SYMBOL(preempt_schedule); 6691 6692 #ifdef CONFIG_PREEMPT_DYNAMIC 6693 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6694 #ifndef preempt_schedule_dynamic_enabled 6695 #define preempt_schedule_dynamic_enabled preempt_schedule 6696 #define preempt_schedule_dynamic_disabled NULL 6697 #endif 6698 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6699 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6700 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6701 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6702 void __sched notrace dynamic_preempt_schedule(void) 6703 { 6704 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6705 return; 6706 preempt_schedule(); 6707 } 6708 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6709 EXPORT_SYMBOL(dynamic_preempt_schedule); 6710 #endif 6711 #endif 6712 6713 /** 6714 * preempt_schedule_notrace - preempt_schedule called by tracing 6715 * 6716 * The tracing infrastructure uses preempt_enable_notrace to prevent 6717 * recursion and tracing preempt enabling caused by the tracing 6718 * infrastructure itself. But as tracing can happen in areas coming 6719 * from userspace or just about to enter userspace, a preempt enable 6720 * can occur before user_exit() is called. This will cause the scheduler 6721 * to be called when the system is still in usermode. 6722 * 6723 * To prevent this, the preempt_enable_notrace will use this function 6724 * instead of preempt_schedule() to exit user context if needed before 6725 * calling the scheduler. 6726 */ 6727 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6728 { 6729 enum ctx_state prev_ctx; 6730 6731 if (likely(!preemptible())) 6732 return; 6733 6734 do { 6735 /* 6736 * Because the function tracer can trace preempt_count_sub() 6737 * and it also uses preempt_enable/disable_notrace(), if 6738 * NEED_RESCHED is set, the preempt_enable_notrace() called 6739 * by the function tracer will call this function again and 6740 * cause infinite recursion. 6741 * 6742 * Preemption must be disabled here before the function 6743 * tracer can trace. Break up preempt_disable() into two 6744 * calls. One to disable preemption without fear of being 6745 * traced. The other to still record the preemption latency, 6746 * which can also be traced by the function tracer. 6747 */ 6748 preempt_disable_notrace(); 6749 preempt_latency_start(1); 6750 /* 6751 * Needs preempt disabled in case user_exit() is traced 6752 * and the tracer calls preempt_enable_notrace() causing 6753 * an infinite recursion. 6754 */ 6755 prev_ctx = exception_enter(); 6756 __schedule(SM_PREEMPT); 6757 exception_exit(prev_ctx); 6758 6759 preempt_latency_stop(1); 6760 preempt_enable_no_resched_notrace(); 6761 } while (need_resched()); 6762 } 6763 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6764 6765 #ifdef CONFIG_PREEMPT_DYNAMIC 6766 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6767 #ifndef preempt_schedule_notrace_dynamic_enabled 6768 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6769 #define preempt_schedule_notrace_dynamic_disabled NULL 6770 #endif 6771 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6772 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6773 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6774 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6775 void __sched notrace dynamic_preempt_schedule_notrace(void) 6776 { 6777 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6778 return; 6779 preempt_schedule_notrace(); 6780 } 6781 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6782 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6783 #endif 6784 #endif 6785 6786 #endif /* CONFIG_PREEMPTION */ 6787 6788 /* 6789 * This is the entry point to schedule() from kernel preemption 6790 * off of irq context. 6791 * Note, that this is called and return with irqs disabled. This will 6792 * protect us against recursive calling from irq. 6793 */ 6794 asmlinkage __visible void __sched preempt_schedule_irq(void) 6795 { 6796 enum ctx_state prev_state; 6797 6798 /* Catch callers which need to be fixed */ 6799 BUG_ON(preempt_count() || !irqs_disabled()); 6800 6801 prev_state = exception_enter(); 6802 6803 do { 6804 preempt_disable(); 6805 local_irq_enable(); 6806 __schedule(SM_PREEMPT); 6807 local_irq_disable(); 6808 sched_preempt_enable_no_resched(); 6809 } while (need_resched()); 6810 6811 exception_exit(prev_state); 6812 } 6813 6814 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6815 void *key) 6816 { 6817 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6818 return try_to_wake_up(curr->private, mode, wake_flags); 6819 } 6820 EXPORT_SYMBOL(default_wake_function); 6821 6822 static void __setscheduler_prio(struct task_struct *p, int prio) 6823 { 6824 if (dl_prio(prio)) 6825 p->sched_class = &dl_sched_class; 6826 else if (rt_prio(prio)) 6827 p->sched_class = &rt_sched_class; 6828 else 6829 p->sched_class = &fair_sched_class; 6830 6831 p->prio = prio; 6832 } 6833 6834 #ifdef CONFIG_RT_MUTEXES 6835 6836 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6837 { 6838 if (pi_task) 6839 prio = min(prio, pi_task->prio); 6840 6841 return prio; 6842 } 6843 6844 static inline int rt_effective_prio(struct task_struct *p, int prio) 6845 { 6846 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6847 6848 return __rt_effective_prio(pi_task, prio); 6849 } 6850 6851 /* 6852 * rt_mutex_setprio - set the current priority of a task 6853 * @p: task to boost 6854 * @pi_task: donor task 6855 * 6856 * This function changes the 'effective' priority of a task. It does 6857 * not touch ->normal_prio like __setscheduler(). 6858 * 6859 * Used by the rt_mutex code to implement priority inheritance 6860 * logic. Call site only calls if the priority of the task changed. 6861 */ 6862 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6863 { 6864 int prio, oldprio, queued, running, queue_flag = 6865 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6866 const struct sched_class *prev_class; 6867 struct rq_flags rf; 6868 struct rq *rq; 6869 6870 /* XXX used to be waiter->prio, not waiter->task->prio */ 6871 prio = __rt_effective_prio(pi_task, p->normal_prio); 6872 6873 /* 6874 * If nothing changed; bail early. 6875 */ 6876 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6877 return; 6878 6879 rq = __task_rq_lock(p, &rf); 6880 update_rq_clock(rq); 6881 /* 6882 * Set under pi_lock && rq->lock, such that the value can be used under 6883 * either lock. 6884 * 6885 * Note that there is loads of tricky to make this pointer cache work 6886 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6887 * ensure a task is de-boosted (pi_task is set to NULL) before the 6888 * task is allowed to run again (and can exit). This ensures the pointer 6889 * points to a blocked task -- which guarantees the task is present. 6890 */ 6891 p->pi_top_task = pi_task; 6892 6893 /* 6894 * For FIFO/RR we only need to set prio, if that matches we're done. 6895 */ 6896 if (prio == p->prio && !dl_prio(prio)) 6897 goto out_unlock; 6898 6899 /* 6900 * Idle task boosting is a nono in general. There is one 6901 * exception, when PREEMPT_RT and NOHZ is active: 6902 * 6903 * The idle task calls get_next_timer_interrupt() and holds 6904 * the timer wheel base->lock on the CPU and another CPU wants 6905 * to access the timer (probably to cancel it). We can safely 6906 * ignore the boosting request, as the idle CPU runs this code 6907 * with interrupts disabled and will complete the lock 6908 * protected section without being interrupted. So there is no 6909 * real need to boost. 6910 */ 6911 if (unlikely(p == rq->idle)) { 6912 WARN_ON(p != rq->curr); 6913 WARN_ON(p->pi_blocked_on); 6914 goto out_unlock; 6915 } 6916 6917 trace_sched_pi_setprio(p, pi_task); 6918 oldprio = p->prio; 6919 6920 if (oldprio == prio) 6921 queue_flag &= ~DEQUEUE_MOVE; 6922 6923 prev_class = p->sched_class; 6924 queued = task_on_rq_queued(p); 6925 running = task_current(rq, p); 6926 if (queued) 6927 dequeue_task(rq, p, queue_flag); 6928 if (running) 6929 put_prev_task(rq, p); 6930 6931 /* 6932 * Boosting condition are: 6933 * 1. -rt task is running and holds mutex A 6934 * --> -dl task blocks on mutex A 6935 * 6936 * 2. -dl task is running and holds mutex A 6937 * --> -dl task blocks on mutex A and could preempt the 6938 * running task 6939 */ 6940 if (dl_prio(prio)) { 6941 if (!dl_prio(p->normal_prio) || 6942 (pi_task && dl_prio(pi_task->prio) && 6943 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6944 p->dl.pi_se = pi_task->dl.pi_se; 6945 queue_flag |= ENQUEUE_REPLENISH; 6946 } else { 6947 p->dl.pi_se = &p->dl; 6948 } 6949 } else if (rt_prio(prio)) { 6950 if (dl_prio(oldprio)) 6951 p->dl.pi_se = &p->dl; 6952 if (oldprio < prio) 6953 queue_flag |= ENQUEUE_HEAD; 6954 } else { 6955 if (dl_prio(oldprio)) 6956 p->dl.pi_se = &p->dl; 6957 if (rt_prio(oldprio)) 6958 p->rt.timeout = 0; 6959 } 6960 6961 __setscheduler_prio(p, prio); 6962 6963 if (queued) 6964 enqueue_task(rq, p, queue_flag); 6965 if (running) 6966 set_next_task(rq, p); 6967 6968 check_class_changed(rq, p, prev_class, oldprio); 6969 out_unlock: 6970 /* Avoid rq from going away on us: */ 6971 preempt_disable(); 6972 6973 rq_unpin_lock(rq, &rf); 6974 __balance_callbacks(rq); 6975 raw_spin_rq_unlock(rq); 6976 6977 preempt_enable(); 6978 } 6979 #else 6980 static inline int rt_effective_prio(struct task_struct *p, int prio) 6981 { 6982 return prio; 6983 } 6984 #endif 6985 6986 void set_user_nice(struct task_struct *p, long nice) 6987 { 6988 bool queued, running; 6989 int old_prio; 6990 struct rq_flags rf; 6991 struct rq *rq; 6992 6993 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6994 return; 6995 /* 6996 * We have to be careful, if called from sys_setpriority(), 6997 * the task might be in the middle of scheduling on another CPU. 6998 */ 6999 rq = task_rq_lock(p, &rf); 7000 update_rq_clock(rq); 7001 7002 /* 7003 * The RT priorities are set via sched_setscheduler(), but we still 7004 * allow the 'normal' nice value to be set - but as expected 7005 * it won't have any effect on scheduling until the task is 7006 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7007 */ 7008 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7009 p->static_prio = NICE_TO_PRIO(nice); 7010 goto out_unlock; 7011 } 7012 queued = task_on_rq_queued(p); 7013 running = task_current(rq, p); 7014 if (queued) 7015 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7016 if (running) 7017 put_prev_task(rq, p); 7018 7019 p->static_prio = NICE_TO_PRIO(nice); 7020 set_load_weight(p, true); 7021 old_prio = p->prio; 7022 p->prio = effective_prio(p); 7023 7024 if (queued) 7025 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7026 if (running) 7027 set_next_task(rq, p); 7028 7029 /* 7030 * If the task increased its priority or is running and 7031 * lowered its priority, then reschedule its CPU: 7032 */ 7033 p->sched_class->prio_changed(rq, p, old_prio); 7034 7035 out_unlock: 7036 task_rq_unlock(rq, p, &rf); 7037 } 7038 EXPORT_SYMBOL(set_user_nice); 7039 7040 /* 7041 * is_nice_reduction - check if nice value is an actual reduction 7042 * 7043 * Similar to can_nice() but does not perform a capability check. 7044 * 7045 * @p: task 7046 * @nice: nice value 7047 */ 7048 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7049 { 7050 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7051 int nice_rlim = nice_to_rlimit(nice); 7052 7053 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7054 } 7055 7056 /* 7057 * can_nice - check if a task can reduce its nice value 7058 * @p: task 7059 * @nice: nice value 7060 */ 7061 int can_nice(const struct task_struct *p, const int nice) 7062 { 7063 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7064 } 7065 7066 #ifdef __ARCH_WANT_SYS_NICE 7067 7068 /* 7069 * sys_nice - change the priority of the current process. 7070 * @increment: priority increment 7071 * 7072 * sys_setpriority is a more generic, but much slower function that 7073 * does similar things. 7074 */ 7075 SYSCALL_DEFINE1(nice, int, increment) 7076 { 7077 long nice, retval; 7078 7079 /* 7080 * Setpriority might change our priority at the same moment. 7081 * We don't have to worry. Conceptually one call occurs first 7082 * and we have a single winner. 7083 */ 7084 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7085 nice = task_nice(current) + increment; 7086 7087 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7088 if (increment < 0 && !can_nice(current, nice)) 7089 return -EPERM; 7090 7091 retval = security_task_setnice(current, nice); 7092 if (retval) 7093 return retval; 7094 7095 set_user_nice(current, nice); 7096 return 0; 7097 } 7098 7099 #endif 7100 7101 /** 7102 * task_prio - return the priority value of a given task. 7103 * @p: the task in question. 7104 * 7105 * Return: The priority value as seen by users in /proc. 7106 * 7107 * sched policy return value kernel prio user prio/nice 7108 * 7109 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7110 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7111 * deadline -101 -1 0 7112 */ 7113 int task_prio(const struct task_struct *p) 7114 { 7115 return p->prio - MAX_RT_PRIO; 7116 } 7117 7118 /** 7119 * idle_cpu - is a given CPU idle currently? 7120 * @cpu: the processor in question. 7121 * 7122 * Return: 1 if the CPU is currently idle. 0 otherwise. 7123 */ 7124 int idle_cpu(int cpu) 7125 { 7126 struct rq *rq = cpu_rq(cpu); 7127 7128 if (rq->curr != rq->idle) 7129 return 0; 7130 7131 if (rq->nr_running) 7132 return 0; 7133 7134 #ifdef CONFIG_SMP 7135 if (rq->ttwu_pending) 7136 return 0; 7137 #endif 7138 7139 return 1; 7140 } 7141 7142 /** 7143 * available_idle_cpu - is a given CPU idle for enqueuing work. 7144 * @cpu: the CPU in question. 7145 * 7146 * Return: 1 if the CPU is currently idle. 0 otherwise. 7147 */ 7148 int available_idle_cpu(int cpu) 7149 { 7150 if (!idle_cpu(cpu)) 7151 return 0; 7152 7153 if (vcpu_is_preempted(cpu)) 7154 return 0; 7155 7156 return 1; 7157 } 7158 7159 /** 7160 * idle_task - return the idle task for a given CPU. 7161 * @cpu: the processor in question. 7162 * 7163 * Return: The idle task for the CPU @cpu. 7164 */ 7165 struct task_struct *idle_task(int cpu) 7166 { 7167 return cpu_rq(cpu)->idle; 7168 } 7169 7170 #ifdef CONFIG_SMP 7171 /* 7172 * This function computes an effective utilization for the given CPU, to be 7173 * used for frequency selection given the linear relation: f = u * f_max. 7174 * 7175 * The scheduler tracks the following metrics: 7176 * 7177 * cpu_util_{cfs,rt,dl,irq}() 7178 * cpu_bw_dl() 7179 * 7180 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7181 * synchronized windows and are thus directly comparable. 7182 * 7183 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7184 * which excludes things like IRQ and steal-time. These latter are then accrued 7185 * in the irq utilization. 7186 * 7187 * The DL bandwidth number otoh is not a measured metric but a value computed 7188 * based on the task model parameters and gives the minimal utilization 7189 * required to meet deadlines. 7190 */ 7191 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7192 enum cpu_util_type type, 7193 struct task_struct *p) 7194 { 7195 unsigned long dl_util, util, irq, max; 7196 struct rq *rq = cpu_rq(cpu); 7197 7198 max = arch_scale_cpu_capacity(cpu); 7199 7200 if (!uclamp_is_used() && 7201 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7202 return max; 7203 } 7204 7205 /* 7206 * Early check to see if IRQ/steal time saturates the CPU, can be 7207 * because of inaccuracies in how we track these -- see 7208 * update_irq_load_avg(). 7209 */ 7210 irq = cpu_util_irq(rq); 7211 if (unlikely(irq >= max)) 7212 return max; 7213 7214 /* 7215 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7216 * CFS tasks and we use the same metric to track the effective 7217 * utilization (PELT windows are synchronized) we can directly add them 7218 * to obtain the CPU's actual utilization. 7219 * 7220 * CFS and RT utilization can be boosted or capped, depending on 7221 * utilization clamp constraints requested by currently RUNNABLE 7222 * tasks. 7223 * When there are no CFS RUNNABLE tasks, clamps are released and 7224 * frequency will be gracefully reduced with the utilization decay. 7225 */ 7226 util = util_cfs + cpu_util_rt(rq); 7227 if (type == FREQUENCY_UTIL) 7228 util = uclamp_rq_util_with(rq, util, p); 7229 7230 dl_util = cpu_util_dl(rq); 7231 7232 /* 7233 * For frequency selection we do not make cpu_util_dl() a permanent part 7234 * of this sum because we want to use cpu_bw_dl() later on, but we need 7235 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7236 * that we select f_max when there is no idle time. 7237 * 7238 * NOTE: numerical errors or stop class might cause us to not quite hit 7239 * saturation when we should -- something for later. 7240 */ 7241 if (util + dl_util >= max) 7242 return max; 7243 7244 /* 7245 * OTOH, for energy computation we need the estimated running time, so 7246 * include util_dl and ignore dl_bw. 7247 */ 7248 if (type == ENERGY_UTIL) 7249 util += dl_util; 7250 7251 /* 7252 * There is still idle time; further improve the number by using the 7253 * irq metric. Because IRQ/steal time is hidden from the task clock we 7254 * need to scale the task numbers: 7255 * 7256 * max - irq 7257 * U' = irq + --------- * U 7258 * max 7259 */ 7260 util = scale_irq_capacity(util, irq, max); 7261 util += irq; 7262 7263 /* 7264 * Bandwidth required by DEADLINE must always be granted while, for 7265 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7266 * to gracefully reduce the frequency when no tasks show up for longer 7267 * periods of time. 7268 * 7269 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7270 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7271 * an interface. So, we only do the latter for now. 7272 */ 7273 if (type == FREQUENCY_UTIL) 7274 util += cpu_bw_dl(rq); 7275 7276 return min(max, util); 7277 } 7278 7279 unsigned long sched_cpu_util(int cpu) 7280 { 7281 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7282 } 7283 #endif /* CONFIG_SMP */ 7284 7285 /** 7286 * find_process_by_pid - find a process with a matching PID value. 7287 * @pid: the pid in question. 7288 * 7289 * The task of @pid, if found. %NULL otherwise. 7290 */ 7291 static struct task_struct *find_process_by_pid(pid_t pid) 7292 { 7293 return pid ? find_task_by_vpid(pid) : current; 7294 } 7295 7296 /* 7297 * sched_setparam() passes in -1 for its policy, to let the functions 7298 * it calls know not to change it. 7299 */ 7300 #define SETPARAM_POLICY -1 7301 7302 static void __setscheduler_params(struct task_struct *p, 7303 const struct sched_attr *attr) 7304 { 7305 int policy = attr->sched_policy; 7306 7307 if (policy == SETPARAM_POLICY) 7308 policy = p->policy; 7309 7310 p->policy = policy; 7311 7312 if (dl_policy(policy)) 7313 __setparam_dl(p, attr); 7314 else if (fair_policy(policy)) 7315 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7316 7317 /* 7318 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7319 * !rt_policy. Always setting this ensures that things like 7320 * getparam()/getattr() don't report silly values for !rt tasks. 7321 */ 7322 p->rt_priority = attr->sched_priority; 7323 p->normal_prio = normal_prio(p); 7324 set_load_weight(p, true); 7325 } 7326 7327 /* 7328 * Check the target process has a UID that matches the current process's: 7329 */ 7330 static bool check_same_owner(struct task_struct *p) 7331 { 7332 const struct cred *cred = current_cred(), *pcred; 7333 bool match; 7334 7335 rcu_read_lock(); 7336 pcred = __task_cred(p); 7337 match = (uid_eq(cred->euid, pcred->euid) || 7338 uid_eq(cred->euid, pcred->uid)); 7339 rcu_read_unlock(); 7340 return match; 7341 } 7342 7343 /* 7344 * Allow unprivileged RT tasks to decrease priority. 7345 * Only issue a capable test if needed and only once to avoid an audit 7346 * event on permitted non-privileged operations: 7347 */ 7348 static int user_check_sched_setscheduler(struct task_struct *p, 7349 const struct sched_attr *attr, 7350 int policy, int reset_on_fork) 7351 { 7352 if (fair_policy(policy)) { 7353 if (attr->sched_nice < task_nice(p) && 7354 !is_nice_reduction(p, attr->sched_nice)) 7355 goto req_priv; 7356 } 7357 7358 if (rt_policy(policy)) { 7359 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7360 7361 /* Can't set/change the rt policy: */ 7362 if (policy != p->policy && !rlim_rtprio) 7363 goto req_priv; 7364 7365 /* Can't increase priority: */ 7366 if (attr->sched_priority > p->rt_priority && 7367 attr->sched_priority > rlim_rtprio) 7368 goto req_priv; 7369 } 7370 7371 /* 7372 * Can't set/change SCHED_DEADLINE policy at all for now 7373 * (safest behavior); in the future we would like to allow 7374 * unprivileged DL tasks to increase their relative deadline 7375 * or reduce their runtime (both ways reducing utilization) 7376 */ 7377 if (dl_policy(policy)) 7378 goto req_priv; 7379 7380 /* 7381 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7382 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7383 */ 7384 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7385 if (!is_nice_reduction(p, task_nice(p))) 7386 goto req_priv; 7387 } 7388 7389 /* Can't change other user's priorities: */ 7390 if (!check_same_owner(p)) 7391 goto req_priv; 7392 7393 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7394 if (p->sched_reset_on_fork && !reset_on_fork) 7395 goto req_priv; 7396 7397 return 0; 7398 7399 req_priv: 7400 if (!capable(CAP_SYS_NICE)) 7401 return -EPERM; 7402 7403 return 0; 7404 } 7405 7406 static int __sched_setscheduler(struct task_struct *p, 7407 const struct sched_attr *attr, 7408 bool user, bool pi) 7409 { 7410 int oldpolicy = -1, policy = attr->sched_policy; 7411 int retval, oldprio, newprio, queued, running; 7412 const struct sched_class *prev_class; 7413 struct callback_head *head; 7414 struct rq_flags rf; 7415 int reset_on_fork; 7416 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7417 struct rq *rq; 7418 7419 /* The pi code expects interrupts enabled */ 7420 BUG_ON(pi && in_interrupt()); 7421 recheck: 7422 /* Double check policy once rq lock held: */ 7423 if (policy < 0) { 7424 reset_on_fork = p->sched_reset_on_fork; 7425 policy = oldpolicy = p->policy; 7426 } else { 7427 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7428 7429 if (!valid_policy(policy)) 7430 return -EINVAL; 7431 } 7432 7433 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7434 return -EINVAL; 7435 7436 /* 7437 * Valid priorities for SCHED_FIFO and SCHED_RR are 7438 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7439 * SCHED_BATCH and SCHED_IDLE is 0. 7440 */ 7441 if (attr->sched_priority > MAX_RT_PRIO-1) 7442 return -EINVAL; 7443 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7444 (rt_policy(policy) != (attr->sched_priority != 0))) 7445 return -EINVAL; 7446 7447 if (user) { 7448 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7449 if (retval) 7450 return retval; 7451 7452 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7453 return -EINVAL; 7454 7455 retval = security_task_setscheduler(p); 7456 if (retval) 7457 return retval; 7458 } 7459 7460 /* Update task specific "requested" clamps */ 7461 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7462 retval = uclamp_validate(p, attr); 7463 if (retval) 7464 return retval; 7465 } 7466 7467 if (pi) 7468 cpuset_read_lock(); 7469 7470 /* 7471 * Make sure no PI-waiters arrive (or leave) while we are 7472 * changing the priority of the task: 7473 * 7474 * To be able to change p->policy safely, the appropriate 7475 * runqueue lock must be held. 7476 */ 7477 rq = task_rq_lock(p, &rf); 7478 update_rq_clock(rq); 7479 7480 /* 7481 * Changing the policy of the stop threads its a very bad idea: 7482 */ 7483 if (p == rq->stop) { 7484 retval = -EINVAL; 7485 goto unlock; 7486 } 7487 7488 /* 7489 * If not changing anything there's no need to proceed further, 7490 * but store a possible modification of reset_on_fork. 7491 */ 7492 if (unlikely(policy == p->policy)) { 7493 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7494 goto change; 7495 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7496 goto change; 7497 if (dl_policy(policy) && dl_param_changed(p, attr)) 7498 goto change; 7499 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7500 goto change; 7501 7502 p->sched_reset_on_fork = reset_on_fork; 7503 retval = 0; 7504 goto unlock; 7505 } 7506 change: 7507 7508 if (user) { 7509 #ifdef CONFIG_RT_GROUP_SCHED 7510 /* 7511 * Do not allow realtime tasks into groups that have no runtime 7512 * assigned. 7513 */ 7514 if (rt_bandwidth_enabled() && rt_policy(policy) && 7515 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7516 !task_group_is_autogroup(task_group(p))) { 7517 retval = -EPERM; 7518 goto unlock; 7519 } 7520 #endif 7521 #ifdef CONFIG_SMP 7522 if (dl_bandwidth_enabled() && dl_policy(policy) && 7523 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7524 cpumask_t *span = rq->rd->span; 7525 7526 /* 7527 * Don't allow tasks with an affinity mask smaller than 7528 * the entire root_domain to become SCHED_DEADLINE. We 7529 * will also fail if there's no bandwidth available. 7530 */ 7531 if (!cpumask_subset(span, p->cpus_ptr) || 7532 rq->rd->dl_bw.bw == 0) { 7533 retval = -EPERM; 7534 goto unlock; 7535 } 7536 } 7537 #endif 7538 } 7539 7540 /* Re-check policy now with rq lock held: */ 7541 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7542 policy = oldpolicy = -1; 7543 task_rq_unlock(rq, p, &rf); 7544 if (pi) 7545 cpuset_read_unlock(); 7546 goto recheck; 7547 } 7548 7549 /* 7550 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7551 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7552 * is available. 7553 */ 7554 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7555 retval = -EBUSY; 7556 goto unlock; 7557 } 7558 7559 p->sched_reset_on_fork = reset_on_fork; 7560 oldprio = p->prio; 7561 7562 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7563 if (pi) { 7564 /* 7565 * Take priority boosted tasks into account. If the new 7566 * effective priority is unchanged, we just store the new 7567 * normal parameters and do not touch the scheduler class and 7568 * the runqueue. This will be done when the task deboost 7569 * itself. 7570 */ 7571 newprio = rt_effective_prio(p, newprio); 7572 if (newprio == oldprio) 7573 queue_flags &= ~DEQUEUE_MOVE; 7574 } 7575 7576 queued = task_on_rq_queued(p); 7577 running = task_current(rq, p); 7578 if (queued) 7579 dequeue_task(rq, p, queue_flags); 7580 if (running) 7581 put_prev_task(rq, p); 7582 7583 prev_class = p->sched_class; 7584 7585 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7586 __setscheduler_params(p, attr); 7587 __setscheduler_prio(p, newprio); 7588 } 7589 __setscheduler_uclamp(p, attr); 7590 7591 if (queued) { 7592 /* 7593 * We enqueue to tail when the priority of a task is 7594 * increased (user space view). 7595 */ 7596 if (oldprio < p->prio) 7597 queue_flags |= ENQUEUE_HEAD; 7598 7599 enqueue_task(rq, p, queue_flags); 7600 } 7601 if (running) 7602 set_next_task(rq, p); 7603 7604 check_class_changed(rq, p, prev_class, oldprio); 7605 7606 /* Avoid rq from going away on us: */ 7607 preempt_disable(); 7608 head = splice_balance_callbacks(rq); 7609 task_rq_unlock(rq, p, &rf); 7610 7611 if (pi) { 7612 cpuset_read_unlock(); 7613 rt_mutex_adjust_pi(p); 7614 } 7615 7616 /* Run balance callbacks after we've adjusted the PI chain: */ 7617 balance_callbacks(rq, head); 7618 preempt_enable(); 7619 7620 return 0; 7621 7622 unlock: 7623 task_rq_unlock(rq, p, &rf); 7624 if (pi) 7625 cpuset_read_unlock(); 7626 return retval; 7627 } 7628 7629 static int _sched_setscheduler(struct task_struct *p, int policy, 7630 const struct sched_param *param, bool check) 7631 { 7632 struct sched_attr attr = { 7633 .sched_policy = policy, 7634 .sched_priority = param->sched_priority, 7635 .sched_nice = PRIO_TO_NICE(p->static_prio), 7636 }; 7637 7638 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7639 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7640 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7641 policy &= ~SCHED_RESET_ON_FORK; 7642 attr.sched_policy = policy; 7643 } 7644 7645 return __sched_setscheduler(p, &attr, check, true); 7646 } 7647 /** 7648 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7649 * @p: the task in question. 7650 * @policy: new policy. 7651 * @param: structure containing the new RT priority. 7652 * 7653 * Use sched_set_fifo(), read its comment. 7654 * 7655 * Return: 0 on success. An error code otherwise. 7656 * 7657 * NOTE that the task may be already dead. 7658 */ 7659 int sched_setscheduler(struct task_struct *p, int policy, 7660 const struct sched_param *param) 7661 { 7662 return _sched_setscheduler(p, policy, param, true); 7663 } 7664 7665 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7666 { 7667 return __sched_setscheduler(p, attr, true, true); 7668 } 7669 7670 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7671 { 7672 return __sched_setscheduler(p, attr, false, true); 7673 } 7674 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7675 7676 /** 7677 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7678 * @p: the task in question. 7679 * @policy: new policy. 7680 * @param: structure containing the new RT priority. 7681 * 7682 * Just like sched_setscheduler, only don't bother checking if the 7683 * current context has permission. For example, this is needed in 7684 * stop_machine(): we create temporary high priority worker threads, 7685 * but our caller might not have that capability. 7686 * 7687 * Return: 0 on success. An error code otherwise. 7688 */ 7689 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7690 const struct sched_param *param) 7691 { 7692 return _sched_setscheduler(p, policy, param, false); 7693 } 7694 7695 /* 7696 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7697 * incapable of resource management, which is the one thing an OS really should 7698 * be doing. 7699 * 7700 * This is of course the reason it is limited to privileged users only. 7701 * 7702 * Worse still; it is fundamentally impossible to compose static priority 7703 * workloads. You cannot take two correctly working static prio workloads 7704 * and smash them together and still expect them to work. 7705 * 7706 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7707 * 7708 * MAX_RT_PRIO / 2 7709 * 7710 * The administrator _MUST_ configure the system, the kernel simply doesn't 7711 * know enough information to make a sensible choice. 7712 */ 7713 void sched_set_fifo(struct task_struct *p) 7714 { 7715 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7716 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7717 } 7718 EXPORT_SYMBOL_GPL(sched_set_fifo); 7719 7720 /* 7721 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7722 */ 7723 void sched_set_fifo_low(struct task_struct *p) 7724 { 7725 struct sched_param sp = { .sched_priority = 1 }; 7726 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7727 } 7728 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7729 7730 void sched_set_normal(struct task_struct *p, int nice) 7731 { 7732 struct sched_attr attr = { 7733 .sched_policy = SCHED_NORMAL, 7734 .sched_nice = nice, 7735 }; 7736 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7737 } 7738 EXPORT_SYMBOL_GPL(sched_set_normal); 7739 7740 static int 7741 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7742 { 7743 struct sched_param lparam; 7744 struct task_struct *p; 7745 int retval; 7746 7747 if (!param || pid < 0) 7748 return -EINVAL; 7749 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7750 return -EFAULT; 7751 7752 rcu_read_lock(); 7753 retval = -ESRCH; 7754 p = find_process_by_pid(pid); 7755 if (likely(p)) 7756 get_task_struct(p); 7757 rcu_read_unlock(); 7758 7759 if (likely(p)) { 7760 retval = sched_setscheduler(p, policy, &lparam); 7761 put_task_struct(p); 7762 } 7763 7764 return retval; 7765 } 7766 7767 /* 7768 * Mimics kernel/events/core.c perf_copy_attr(). 7769 */ 7770 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7771 { 7772 u32 size; 7773 int ret; 7774 7775 /* Zero the full structure, so that a short copy will be nice: */ 7776 memset(attr, 0, sizeof(*attr)); 7777 7778 ret = get_user(size, &uattr->size); 7779 if (ret) 7780 return ret; 7781 7782 /* ABI compatibility quirk: */ 7783 if (!size) 7784 size = SCHED_ATTR_SIZE_VER0; 7785 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7786 goto err_size; 7787 7788 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7789 if (ret) { 7790 if (ret == -E2BIG) 7791 goto err_size; 7792 return ret; 7793 } 7794 7795 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7796 size < SCHED_ATTR_SIZE_VER1) 7797 return -EINVAL; 7798 7799 /* 7800 * XXX: Do we want to be lenient like existing syscalls; or do we want 7801 * to be strict and return an error on out-of-bounds values? 7802 */ 7803 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7804 7805 return 0; 7806 7807 err_size: 7808 put_user(sizeof(*attr), &uattr->size); 7809 return -E2BIG; 7810 } 7811 7812 static void get_params(struct task_struct *p, struct sched_attr *attr) 7813 { 7814 if (task_has_dl_policy(p)) 7815 __getparam_dl(p, attr); 7816 else if (task_has_rt_policy(p)) 7817 attr->sched_priority = p->rt_priority; 7818 else 7819 attr->sched_nice = task_nice(p); 7820 } 7821 7822 /** 7823 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7824 * @pid: the pid in question. 7825 * @policy: new policy. 7826 * @param: structure containing the new RT priority. 7827 * 7828 * Return: 0 on success. An error code otherwise. 7829 */ 7830 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7831 { 7832 if (policy < 0) 7833 return -EINVAL; 7834 7835 return do_sched_setscheduler(pid, policy, param); 7836 } 7837 7838 /** 7839 * sys_sched_setparam - set/change the RT priority of a thread 7840 * @pid: the pid in question. 7841 * @param: structure containing the new RT priority. 7842 * 7843 * Return: 0 on success. An error code otherwise. 7844 */ 7845 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7846 { 7847 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7848 } 7849 7850 /** 7851 * sys_sched_setattr - same as above, but with extended sched_attr 7852 * @pid: the pid in question. 7853 * @uattr: structure containing the extended parameters. 7854 * @flags: for future extension. 7855 */ 7856 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7857 unsigned int, flags) 7858 { 7859 struct sched_attr attr; 7860 struct task_struct *p; 7861 int retval; 7862 7863 if (!uattr || pid < 0 || flags) 7864 return -EINVAL; 7865 7866 retval = sched_copy_attr(uattr, &attr); 7867 if (retval) 7868 return retval; 7869 7870 if ((int)attr.sched_policy < 0) 7871 return -EINVAL; 7872 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7873 attr.sched_policy = SETPARAM_POLICY; 7874 7875 rcu_read_lock(); 7876 retval = -ESRCH; 7877 p = find_process_by_pid(pid); 7878 if (likely(p)) 7879 get_task_struct(p); 7880 rcu_read_unlock(); 7881 7882 if (likely(p)) { 7883 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7884 get_params(p, &attr); 7885 retval = sched_setattr(p, &attr); 7886 put_task_struct(p); 7887 } 7888 7889 return retval; 7890 } 7891 7892 /** 7893 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7894 * @pid: the pid in question. 7895 * 7896 * Return: On success, the policy of the thread. Otherwise, a negative error 7897 * code. 7898 */ 7899 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7900 { 7901 struct task_struct *p; 7902 int retval; 7903 7904 if (pid < 0) 7905 return -EINVAL; 7906 7907 retval = -ESRCH; 7908 rcu_read_lock(); 7909 p = find_process_by_pid(pid); 7910 if (p) { 7911 retval = security_task_getscheduler(p); 7912 if (!retval) 7913 retval = p->policy 7914 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7915 } 7916 rcu_read_unlock(); 7917 return retval; 7918 } 7919 7920 /** 7921 * sys_sched_getparam - get the RT priority of a thread 7922 * @pid: the pid in question. 7923 * @param: structure containing the RT priority. 7924 * 7925 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7926 * code. 7927 */ 7928 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7929 { 7930 struct sched_param lp = { .sched_priority = 0 }; 7931 struct task_struct *p; 7932 int retval; 7933 7934 if (!param || pid < 0) 7935 return -EINVAL; 7936 7937 rcu_read_lock(); 7938 p = find_process_by_pid(pid); 7939 retval = -ESRCH; 7940 if (!p) 7941 goto out_unlock; 7942 7943 retval = security_task_getscheduler(p); 7944 if (retval) 7945 goto out_unlock; 7946 7947 if (task_has_rt_policy(p)) 7948 lp.sched_priority = p->rt_priority; 7949 rcu_read_unlock(); 7950 7951 /* 7952 * This one might sleep, we cannot do it with a spinlock held ... 7953 */ 7954 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7955 7956 return retval; 7957 7958 out_unlock: 7959 rcu_read_unlock(); 7960 return retval; 7961 } 7962 7963 /* 7964 * Copy the kernel size attribute structure (which might be larger 7965 * than what user-space knows about) to user-space. 7966 * 7967 * Note that all cases are valid: user-space buffer can be larger or 7968 * smaller than the kernel-space buffer. The usual case is that both 7969 * have the same size. 7970 */ 7971 static int 7972 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7973 struct sched_attr *kattr, 7974 unsigned int usize) 7975 { 7976 unsigned int ksize = sizeof(*kattr); 7977 7978 if (!access_ok(uattr, usize)) 7979 return -EFAULT; 7980 7981 /* 7982 * sched_getattr() ABI forwards and backwards compatibility: 7983 * 7984 * If usize == ksize then we just copy everything to user-space and all is good. 7985 * 7986 * If usize < ksize then we only copy as much as user-space has space for, 7987 * this keeps ABI compatibility as well. We skip the rest. 7988 * 7989 * If usize > ksize then user-space is using a newer version of the ABI, 7990 * which part the kernel doesn't know about. Just ignore it - tooling can 7991 * detect the kernel's knowledge of attributes from the attr->size value 7992 * which is set to ksize in this case. 7993 */ 7994 kattr->size = min(usize, ksize); 7995 7996 if (copy_to_user(uattr, kattr, kattr->size)) 7997 return -EFAULT; 7998 7999 return 0; 8000 } 8001 8002 /** 8003 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8004 * @pid: the pid in question. 8005 * @uattr: structure containing the extended parameters. 8006 * @usize: sizeof(attr) for fwd/bwd comp. 8007 * @flags: for future extension. 8008 */ 8009 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8010 unsigned int, usize, unsigned int, flags) 8011 { 8012 struct sched_attr kattr = { }; 8013 struct task_struct *p; 8014 int retval; 8015 8016 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8017 usize < SCHED_ATTR_SIZE_VER0 || flags) 8018 return -EINVAL; 8019 8020 rcu_read_lock(); 8021 p = find_process_by_pid(pid); 8022 retval = -ESRCH; 8023 if (!p) 8024 goto out_unlock; 8025 8026 retval = security_task_getscheduler(p); 8027 if (retval) 8028 goto out_unlock; 8029 8030 kattr.sched_policy = p->policy; 8031 if (p->sched_reset_on_fork) 8032 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8033 get_params(p, &kattr); 8034 kattr.sched_flags &= SCHED_FLAG_ALL; 8035 8036 #ifdef CONFIG_UCLAMP_TASK 8037 /* 8038 * This could race with another potential updater, but this is fine 8039 * because it'll correctly read the old or the new value. We don't need 8040 * to guarantee who wins the race as long as it doesn't return garbage. 8041 */ 8042 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8043 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8044 #endif 8045 8046 rcu_read_unlock(); 8047 8048 return sched_attr_copy_to_user(uattr, &kattr, usize); 8049 8050 out_unlock: 8051 rcu_read_unlock(); 8052 return retval; 8053 } 8054 8055 #ifdef CONFIG_SMP 8056 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8057 { 8058 int ret = 0; 8059 8060 /* 8061 * If the task isn't a deadline task or admission control is 8062 * disabled then we don't care about affinity changes. 8063 */ 8064 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8065 return 0; 8066 8067 /* 8068 * Since bandwidth control happens on root_domain basis, 8069 * if admission test is enabled, we only admit -deadline 8070 * tasks allowed to run on all the CPUs in the task's 8071 * root_domain. 8072 */ 8073 rcu_read_lock(); 8074 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8075 ret = -EBUSY; 8076 rcu_read_unlock(); 8077 return ret; 8078 } 8079 #endif 8080 8081 static int 8082 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 8083 { 8084 int retval; 8085 cpumask_var_t cpus_allowed, new_mask; 8086 8087 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8088 return -ENOMEM; 8089 8090 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8091 retval = -ENOMEM; 8092 goto out_free_cpus_allowed; 8093 } 8094 8095 cpuset_cpus_allowed(p, cpus_allowed); 8096 cpumask_and(new_mask, mask, cpus_allowed); 8097 8098 retval = dl_task_check_affinity(p, new_mask); 8099 if (retval) 8100 goto out_free_new_mask; 8101 again: 8102 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 8103 if (retval) 8104 goto out_free_new_mask; 8105 8106 cpuset_cpus_allowed(p, cpus_allowed); 8107 if (!cpumask_subset(new_mask, cpus_allowed)) { 8108 /* 8109 * We must have raced with a concurrent cpuset update. 8110 * Just reset the cpumask to the cpuset's cpus_allowed. 8111 */ 8112 cpumask_copy(new_mask, cpus_allowed); 8113 goto again; 8114 } 8115 8116 out_free_new_mask: 8117 free_cpumask_var(new_mask); 8118 out_free_cpus_allowed: 8119 free_cpumask_var(cpus_allowed); 8120 return retval; 8121 } 8122 8123 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8124 { 8125 struct task_struct *p; 8126 int retval; 8127 8128 rcu_read_lock(); 8129 8130 p = find_process_by_pid(pid); 8131 if (!p) { 8132 rcu_read_unlock(); 8133 return -ESRCH; 8134 } 8135 8136 /* Prevent p going away */ 8137 get_task_struct(p); 8138 rcu_read_unlock(); 8139 8140 if (p->flags & PF_NO_SETAFFINITY) { 8141 retval = -EINVAL; 8142 goto out_put_task; 8143 } 8144 8145 if (!check_same_owner(p)) { 8146 rcu_read_lock(); 8147 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8148 rcu_read_unlock(); 8149 retval = -EPERM; 8150 goto out_put_task; 8151 } 8152 rcu_read_unlock(); 8153 } 8154 8155 retval = security_task_setscheduler(p); 8156 if (retval) 8157 goto out_put_task; 8158 8159 retval = __sched_setaffinity(p, in_mask); 8160 out_put_task: 8161 put_task_struct(p); 8162 return retval; 8163 } 8164 8165 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8166 struct cpumask *new_mask) 8167 { 8168 if (len < cpumask_size()) 8169 cpumask_clear(new_mask); 8170 else if (len > cpumask_size()) 8171 len = cpumask_size(); 8172 8173 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8174 } 8175 8176 /** 8177 * sys_sched_setaffinity - set the CPU affinity of a process 8178 * @pid: pid of the process 8179 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8180 * @user_mask_ptr: user-space pointer to the new CPU mask 8181 * 8182 * Return: 0 on success. An error code otherwise. 8183 */ 8184 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8185 unsigned long __user *, user_mask_ptr) 8186 { 8187 cpumask_var_t new_mask; 8188 int retval; 8189 8190 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8191 return -ENOMEM; 8192 8193 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8194 if (retval == 0) 8195 retval = sched_setaffinity(pid, new_mask); 8196 free_cpumask_var(new_mask); 8197 return retval; 8198 } 8199 8200 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8201 { 8202 struct task_struct *p; 8203 unsigned long flags; 8204 int retval; 8205 8206 rcu_read_lock(); 8207 8208 retval = -ESRCH; 8209 p = find_process_by_pid(pid); 8210 if (!p) 8211 goto out_unlock; 8212 8213 retval = security_task_getscheduler(p); 8214 if (retval) 8215 goto out_unlock; 8216 8217 raw_spin_lock_irqsave(&p->pi_lock, flags); 8218 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8219 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8220 8221 out_unlock: 8222 rcu_read_unlock(); 8223 8224 return retval; 8225 } 8226 8227 /** 8228 * sys_sched_getaffinity - get the CPU affinity of a process 8229 * @pid: pid of the process 8230 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8231 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8232 * 8233 * Return: size of CPU mask copied to user_mask_ptr on success. An 8234 * error code otherwise. 8235 */ 8236 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8237 unsigned long __user *, user_mask_ptr) 8238 { 8239 int ret; 8240 cpumask_var_t mask; 8241 8242 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8243 return -EINVAL; 8244 if (len & (sizeof(unsigned long)-1)) 8245 return -EINVAL; 8246 8247 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8248 return -ENOMEM; 8249 8250 ret = sched_getaffinity(pid, mask); 8251 if (ret == 0) { 8252 unsigned int retlen = min(len, cpumask_size()); 8253 8254 if (copy_to_user(user_mask_ptr, mask, retlen)) 8255 ret = -EFAULT; 8256 else 8257 ret = retlen; 8258 } 8259 free_cpumask_var(mask); 8260 8261 return ret; 8262 } 8263 8264 static void do_sched_yield(void) 8265 { 8266 struct rq_flags rf; 8267 struct rq *rq; 8268 8269 rq = this_rq_lock_irq(&rf); 8270 8271 schedstat_inc(rq->yld_count); 8272 current->sched_class->yield_task(rq); 8273 8274 preempt_disable(); 8275 rq_unlock_irq(rq, &rf); 8276 sched_preempt_enable_no_resched(); 8277 8278 schedule(); 8279 } 8280 8281 /** 8282 * sys_sched_yield - yield the current processor to other threads. 8283 * 8284 * This function yields the current CPU to other tasks. If there are no 8285 * other threads running on this CPU then this function will return. 8286 * 8287 * Return: 0. 8288 */ 8289 SYSCALL_DEFINE0(sched_yield) 8290 { 8291 do_sched_yield(); 8292 return 0; 8293 } 8294 8295 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8296 int __sched __cond_resched(void) 8297 { 8298 if (should_resched(0)) { 8299 preempt_schedule_common(); 8300 return 1; 8301 } 8302 /* 8303 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8304 * whether the current CPU is in an RCU read-side critical section, 8305 * so the tick can report quiescent states even for CPUs looping 8306 * in kernel context. In contrast, in non-preemptible kernels, 8307 * RCU readers leave no in-memory hints, which means that CPU-bound 8308 * processes executing in kernel context might never report an 8309 * RCU quiescent state. Therefore, the following code causes 8310 * cond_resched() to report a quiescent state, but only when RCU 8311 * is in urgent need of one. 8312 */ 8313 #ifndef CONFIG_PREEMPT_RCU 8314 rcu_all_qs(); 8315 #endif 8316 return 0; 8317 } 8318 EXPORT_SYMBOL(__cond_resched); 8319 #endif 8320 8321 #ifdef CONFIG_PREEMPT_DYNAMIC 8322 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8323 #define cond_resched_dynamic_enabled __cond_resched 8324 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8325 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8326 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8327 8328 #define might_resched_dynamic_enabled __cond_resched 8329 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8330 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8331 EXPORT_STATIC_CALL_TRAMP(might_resched); 8332 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8333 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8334 int __sched dynamic_cond_resched(void) 8335 { 8336 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8337 return 0; 8338 return __cond_resched(); 8339 } 8340 EXPORT_SYMBOL(dynamic_cond_resched); 8341 8342 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8343 int __sched dynamic_might_resched(void) 8344 { 8345 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8346 return 0; 8347 return __cond_resched(); 8348 } 8349 EXPORT_SYMBOL(dynamic_might_resched); 8350 #endif 8351 #endif 8352 8353 /* 8354 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8355 * call schedule, and on return reacquire the lock. 8356 * 8357 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8358 * operations here to prevent schedule() from being called twice (once via 8359 * spin_unlock(), once by hand). 8360 */ 8361 int __cond_resched_lock(spinlock_t *lock) 8362 { 8363 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8364 int ret = 0; 8365 8366 lockdep_assert_held(lock); 8367 8368 if (spin_needbreak(lock) || resched) { 8369 spin_unlock(lock); 8370 if (!_cond_resched()) 8371 cpu_relax(); 8372 ret = 1; 8373 spin_lock(lock); 8374 } 8375 return ret; 8376 } 8377 EXPORT_SYMBOL(__cond_resched_lock); 8378 8379 int __cond_resched_rwlock_read(rwlock_t *lock) 8380 { 8381 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8382 int ret = 0; 8383 8384 lockdep_assert_held_read(lock); 8385 8386 if (rwlock_needbreak(lock) || resched) { 8387 read_unlock(lock); 8388 if (!_cond_resched()) 8389 cpu_relax(); 8390 ret = 1; 8391 read_lock(lock); 8392 } 8393 return ret; 8394 } 8395 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8396 8397 int __cond_resched_rwlock_write(rwlock_t *lock) 8398 { 8399 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8400 int ret = 0; 8401 8402 lockdep_assert_held_write(lock); 8403 8404 if (rwlock_needbreak(lock) || resched) { 8405 write_unlock(lock); 8406 if (!_cond_resched()) 8407 cpu_relax(); 8408 ret = 1; 8409 write_lock(lock); 8410 } 8411 return ret; 8412 } 8413 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8414 8415 #ifdef CONFIG_PREEMPT_DYNAMIC 8416 8417 #ifdef CONFIG_GENERIC_ENTRY 8418 #include <linux/entry-common.h> 8419 #endif 8420 8421 /* 8422 * SC:cond_resched 8423 * SC:might_resched 8424 * SC:preempt_schedule 8425 * SC:preempt_schedule_notrace 8426 * SC:irqentry_exit_cond_resched 8427 * 8428 * 8429 * NONE: 8430 * cond_resched <- __cond_resched 8431 * might_resched <- RET0 8432 * preempt_schedule <- NOP 8433 * preempt_schedule_notrace <- NOP 8434 * irqentry_exit_cond_resched <- NOP 8435 * 8436 * VOLUNTARY: 8437 * cond_resched <- __cond_resched 8438 * might_resched <- __cond_resched 8439 * preempt_schedule <- NOP 8440 * preempt_schedule_notrace <- NOP 8441 * irqentry_exit_cond_resched <- NOP 8442 * 8443 * FULL: 8444 * cond_resched <- RET0 8445 * might_resched <- RET0 8446 * preempt_schedule <- preempt_schedule 8447 * preempt_schedule_notrace <- preempt_schedule_notrace 8448 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8449 */ 8450 8451 enum { 8452 preempt_dynamic_undefined = -1, 8453 preempt_dynamic_none, 8454 preempt_dynamic_voluntary, 8455 preempt_dynamic_full, 8456 }; 8457 8458 int preempt_dynamic_mode = preempt_dynamic_undefined; 8459 8460 int sched_dynamic_mode(const char *str) 8461 { 8462 if (!strcmp(str, "none")) 8463 return preempt_dynamic_none; 8464 8465 if (!strcmp(str, "voluntary")) 8466 return preempt_dynamic_voluntary; 8467 8468 if (!strcmp(str, "full")) 8469 return preempt_dynamic_full; 8470 8471 return -EINVAL; 8472 } 8473 8474 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8475 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8476 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8477 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8478 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8479 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8480 #else 8481 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8482 #endif 8483 8484 void sched_dynamic_update(int mode) 8485 { 8486 /* 8487 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8488 * the ZERO state, which is invalid. 8489 */ 8490 preempt_dynamic_enable(cond_resched); 8491 preempt_dynamic_enable(might_resched); 8492 preempt_dynamic_enable(preempt_schedule); 8493 preempt_dynamic_enable(preempt_schedule_notrace); 8494 preempt_dynamic_enable(irqentry_exit_cond_resched); 8495 8496 switch (mode) { 8497 case preempt_dynamic_none: 8498 preempt_dynamic_enable(cond_resched); 8499 preempt_dynamic_disable(might_resched); 8500 preempt_dynamic_disable(preempt_schedule); 8501 preempt_dynamic_disable(preempt_schedule_notrace); 8502 preempt_dynamic_disable(irqentry_exit_cond_resched); 8503 pr_info("Dynamic Preempt: none\n"); 8504 break; 8505 8506 case preempt_dynamic_voluntary: 8507 preempt_dynamic_enable(cond_resched); 8508 preempt_dynamic_enable(might_resched); 8509 preempt_dynamic_disable(preempt_schedule); 8510 preempt_dynamic_disable(preempt_schedule_notrace); 8511 preempt_dynamic_disable(irqentry_exit_cond_resched); 8512 pr_info("Dynamic Preempt: voluntary\n"); 8513 break; 8514 8515 case preempt_dynamic_full: 8516 preempt_dynamic_disable(cond_resched); 8517 preempt_dynamic_disable(might_resched); 8518 preempt_dynamic_enable(preempt_schedule); 8519 preempt_dynamic_enable(preempt_schedule_notrace); 8520 preempt_dynamic_enable(irqentry_exit_cond_resched); 8521 pr_info("Dynamic Preempt: full\n"); 8522 break; 8523 } 8524 8525 preempt_dynamic_mode = mode; 8526 } 8527 8528 static int __init setup_preempt_mode(char *str) 8529 { 8530 int mode = sched_dynamic_mode(str); 8531 if (mode < 0) { 8532 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8533 return 0; 8534 } 8535 8536 sched_dynamic_update(mode); 8537 return 1; 8538 } 8539 __setup("preempt=", setup_preempt_mode); 8540 8541 static void __init preempt_dynamic_init(void) 8542 { 8543 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8544 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8545 sched_dynamic_update(preempt_dynamic_none); 8546 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8547 sched_dynamic_update(preempt_dynamic_voluntary); 8548 } else { 8549 /* Default static call setting, nothing to do */ 8550 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8551 preempt_dynamic_mode = preempt_dynamic_full; 8552 pr_info("Dynamic Preempt: full\n"); 8553 } 8554 } 8555 } 8556 8557 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8558 bool preempt_model_##mode(void) \ 8559 { \ 8560 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8561 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8562 } \ 8563 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8564 8565 PREEMPT_MODEL_ACCESSOR(none); 8566 PREEMPT_MODEL_ACCESSOR(voluntary); 8567 PREEMPT_MODEL_ACCESSOR(full); 8568 8569 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8570 8571 static inline void preempt_dynamic_init(void) { } 8572 8573 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8574 8575 /** 8576 * yield - yield the current processor to other threads. 8577 * 8578 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8579 * 8580 * The scheduler is at all times free to pick the calling task as the most 8581 * eligible task to run, if removing the yield() call from your code breaks 8582 * it, it's already broken. 8583 * 8584 * Typical broken usage is: 8585 * 8586 * while (!event) 8587 * yield(); 8588 * 8589 * where one assumes that yield() will let 'the other' process run that will 8590 * make event true. If the current task is a SCHED_FIFO task that will never 8591 * happen. Never use yield() as a progress guarantee!! 8592 * 8593 * If you want to use yield() to wait for something, use wait_event(). 8594 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8595 * If you still want to use yield(), do not! 8596 */ 8597 void __sched yield(void) 8598 { 8599 set_current_state(TASK_RUNNING); 8600 do_sched_yield(); 8601 } 8602 EXPORT_SYMBOL(yield); 8603 8604 /** 8605 * yield_to - yield the current processor to another thread in 8606 * your thread group, or accelerate that thread toward the 8607 * processor it's on. 8608 * @p: target task 8609 * @preempt: whether task preemption is allowed or not 8610 * 8611 * It's the caller's job to ensure that the target task struct 8612 * can't go away on us before we can do any checks. 8613 * 8614 * Return: 8615 * true (>0) if we indeed boosted the target task. 8616 * false (0) if we failed to boost the target. 8617 * -ESRCH if there's no task to yield to. 8618 */ 8619 int __sched yield_to(struct task_struct *p, bool preempt) 8620 { 8621 struct task_struct *curr = current; 8622 struct rq *rq, *p_rq; 8623 unsigned long flags; 8624 int yielded = 0; 8625 8626 local_irq_save(flags); 8627 rq = this_rq(); 8628 8629 again: 8630 p_rq = task_rq(p); 8631 /* 8632 * If we're the only runnable task on the rq and target rq also 8633 * has only one task, there's absolutely no point in yielding. 8634 */ 8635 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8636 yielded = -ESRCH; 8637 goto out_irq; 8638 } 8639 8640 double_rq_lock(rq, p_rq); 8641 if (task_rq(p) != p_rq) { 8642 double_rq_unlock(rq, p_rq); 8643 goto again; 8644 } 8645 8646 if (!curr->sched_class->yield_to_task) 8647 goto out_unlock; 8648 8649 if (curr->sched_class != p->sched_class) 8650 goto out_unlock; 8651 8652 if (task_running(p_rq, p) || !task_is_running(p)) 8653 goto out_unlock; 8654 8655 yielded = curr->sched_class->yield_to_task(rq, p); 8656 if (yielded) { 8657 schedstat_inc(rq->yld_count); 8658 /* 8659 * Make p's CPU reschedule; pick_next_entity takes care of 8660 * fairness. 8661 */ 8662 if (preempt && rq != p_rq) 8663 resched_curr(p_rq); 8664 } 8665 8666 out_unlock: 8667 double_rq_unlock(rq, p_rq); 8668 out_irq: 8669 local_irq_restore(flags); 8670 8671 if (yielded > 0) 8672 schedule(); 8673 8674 return yielded; 8675 } 8676 EXPORT_SYMBOL_GPL(yield_to); 8677 8678 int io_schedule_prepare(void) 8679 { 8680 int old_iowait = current->in_iowait; 8681 8682 current->in_iowait = 1; 8683 blk_flush_plug(current->plug, true); 8684 return old_iowait; 8685 } 8686 8687 void io_schedule_finish(int token) 8688 { 8689 current->in_iowait = token; 8690 } 8691 8692 /* 8693 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8694 * that process accounting knows that this is a task in IO wait state. 8695 */ 8696 long __sched io_schedule_timeout(long timeout) 8697 { 8698 int token; 8699 long ret; 8700 8701 token = io_schedule_prepare(); 8702 ret = schedule_timeout(timeout); 8703 io_schedule_finish(token); 8704 8705 return ret; 8706 } 8707 EXPORT_SYMBOL(io_schedule_timeout); 8708 8709 void __sched io_schedule(void) 8710 { 8711 int token; 8712 8713 token = io_schedule_prepare(); 8714 schedule(); 8715 io_schedule_finish(token); 8716 } 8717 EXPORT_SYMBOL(io_schedule); 8718 8719 /** 8720 * sys_sched_get_priority_max - return maximum RT priority. 8721 * @policy: scheduling class. 8722 * 8723 * Return: On success, this syscall returns the maximum 8724 * rt_priority that can be used by a given scheduling class. 8725 * On failure, a negative error code is returned. 8726 */ 8727 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8728 { 8729 int ret = -EINVAL; 8730 8731 switch (policy) { 8732 case SCHED_FIFO: 8733 case SCHED_RR: 8734 ret = MAX_RT_PRIO-1; 8735 break; 8736 case SCHED_DEADLINE: 8737 case SCHED_NORMAL: 8738 case SCHED_BATCH: 8739 case SCHED_IDLE: 8740 ret = 0; 8741 break; 8742 } 8743 return ret; 8744 } 8745 8746 /** 8747 * sys_sched_get_priority_min - return minimum RT priority. 8748 * @policy: scheduling class. 8749 * 8750 * Return: On success, this syscall returns the minimum 8751 * rt_priority that can be used by a given scheduling class. 8752 * On failure, a negative error code is returned. 8753 */ 8754 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8755 { 8756 int ret = -EINVAL; 8757 8758 switch (policy) { 8759 case SCHED_FIFO: 8760 case SCHED_RR: 8761 ret = 1; 8762 break; 8763 case SCHED_DEADLINE: 8764 case SCHED_NORMAL: 8765 case SCHED_BATCH: 8766 case SCHED_IDLE: 8767 ret = 0; 8768 } 8769 return ret; 8770 } 8771 8772 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8773 { 8774 struct task_struct *p; 8775 unsigned int time_slice; 8776 struct rq_flags rf; 8777 struct rq *rq; 8778 int retval; 8779 8780 if (pid < 0) 8781 return -EINVAL; 8782 8783 retval = -ESRCH; 8784 rcu_read_lock(); 8785 p = find_process_by_pid(pid); 8786 if (!p) 8787 goto out_unlock; 8788 8789 retval = security_task_getscheduler(p); 8790 if (retval) 8791 goto out_unlock; 8792 8793 rq = task_rq_lock(p, &rf); 8794 time_slice = 0; 8795 if (p->sched_class->get_rr_interval) 8796 time_slice = p->sched_class->get_rr_interval(rq, p); 8797 task_rq_unlock(rq, p, &rf); 8798 8799 rcu_read_unlock(); 8800 jiffies_to_timespec64(time_slice, t); 8801 return 0; 8802 8803 out_unlock: 8804 rcu_read_unlock(); 8805 return retval; 8806 } 8807 8808 /** 8809 * sys_sched_rr_get_interval - return the default timeslice of a process. 8810 * @pid: pid of the process. 8811 * @interval: userspace pointer to the timeslice value. 8812 * 8813 * this syscall writes the default timeslice value of a given process 8814 * into the user-space timespec buffer. A value of '0' means infinity. 8815 * 8816 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8817 * an error code. 8818 */ 8819 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8820 struct __kernel_timespec __user *, interval) 8821 { 8822 struct timespec64 t; 8823 int retval = sched_rr_get_interval(pid, &t); 8824 8825 if (retval == 0) 8826 retval = put_timespec64(&t, interval); 8827 8828 return retval; 8829 } 8830 8831 #ifdef CONFIG_COMPAT_32BIT_TIME 8832 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8833 struct old_timespec32 __user *, interval) 8834 { 8835 struct timespec64 t; 8836 int retval = sched_rr_get_interval(pid, &t); 8837 8838 if (retval == 0) 8839 retval = put_old_timespec32(&t, interval); 8840 return retval; 8841 } 8842 #endif 8843 8844 void sched_show_task(struct task_struct *p) 8845 { 8846 unsigned long free = 0; 8847 int ppid; 8848 8849 if (!try_get_task_stack(p)) 8850 return; 8851 8852 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8853 8854 if (task_is_running(p)) 8855 pr_cont(" running task "); 8856 #ifdef CONFIG_DEBUG_STACK_USAGE 8857 free = stack_not_used(p); 8858 #endif 8859 ppid = 0; 8860 rcu_read_lock(); 8861 if (pid_alive(p)) 8862 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8863 rcu_read_unlock(); 8864 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8865 free, task_pid_nr(p), ppid, 8866 read_task_thread_flags(p)); 8867 8868 print_worker_info(KERN_INFO, p); 8869 print_stop_info(KERN_INFO, p); 8870 show_stack(p, NULL, KERN_INFO); 8871 put_task_stack(p); 8872 } 8873 EXPORT_SYMBOL_GPL(sched_show_task); 8874 8875 static inline bool 8876 state_filter_match(unsigned long state_filter, struct task_struct *p) 8877 { 8878 unsigned int state = READ_ONCE(p->__state); 8879 8880 /* no filter, everything matches */ 8881 if (!state_filter) 8882 return true; 8883 8884 /* filter, but doesn't match */ 8885 if (!(state & state_filter)) 8886 return false; 8887 8888 /* 8889 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8890 * TASK_KILLABLE). 8891 */ 8892 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8893 return false; 8894 8895 return true; 8896 } 8897 8898 8899 void show_state_filter(unsigned int state_filter) 8900 { 8901 struct task_struct *g, *p; 8902 8903 rcu_read_lock(); 8904 for_each_process_thread(g, p) { 8905 /* 8906 * reset the NMI-timeout, listing all files on a slow 8907 * console might take a lot of time: 8908 * Also, reset softlockup watchdogs on all CPUs, because 8909 * another CPU might be blocked waiting for us to process 8910 * an IPI. 8911 */ 8912 touch_nmi_watchdog(); 8913 touch_all_softlockup_watchdogs(); 8914 if (state_filter_match(state_filter, p)) 8915 sched_show_task(p); 8916 } 8917 8918 #ifdef CONFIG_SCHED_DEBUG 8919 if (!state_filter) 8920 sysrq_sched_debug_show(); 8921 #endif 8922 rcu_read_unlock(); 8923 /* 8924 * Only show locks if all tasks are dumped: 8925 */ 8926 if (!state_filter) 8927 debug_show_all_locks(); 8928 } 8929 8930 /** 8931 * init_idle - set up an idle thread for a given CPU 8932 * @idle: task in question 8933 * @cpu: CPU the idle task belongs to 8934 * 8935 * NOTE: this function does not set the idle thread's NEED_RESCHED 8936 * flag, to make booting more robust. 8937 */ 8938 void __init init_idle(struct task_struct *idle, int cpu) 8939 { 8940 struct rq *rq = cpu_rq(cpu); 8941 unsigned long flags; 8942 8943 __sched_fork(0, idle); 8944 8945 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8946 raw_spin_rq_lock(rq); 8947 8948 idle->__state = TASK_RUNNING; 8949 idle->se.exec_start = sched_clock(); 8950 /* 8951 * PF_KTHREAD should already be set at this point; regardless, make it 8952 * look like a proper per-CPU kthread. 8953 */ 8954 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8955 kthread_set_per_cpu(idle, cpu); 8956 8957 #ifdef CONFIG_SMP 8958 /* 8959 * It's possible that init_idle() gets called multiple times on a task, 8960 * in that case do_set_cpus_allowed() will not do the right thing. 8961 * 8962 * And since this is boot we can forgo the serialization. 8963 */ 8964 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8965 #endif 8966 /* 8967 * We're having a chicken and egg problem, even though we are 8968 * holding rq->lock, the CPU isn't yet set to this CPU so the 8969 * lockdep check in task_group() will fail. 8970 * 8971 * Similar case to sched_fork(). / Alternatively we could 8972 * use task_rq_lock() here and obtain the other rq->lock. 8973 * 8974 * Silence PROVE_RCU 8975 */ 8976 rcu_read_lock(); 8977 __set_task_cpu(idle, cpu); 8978 rcu_read_unlock(); 8979 8980 rq->idle = idle; 8981 rcu_assign_pointer(rq->curr, idle); 8982 idle->on_rq = TASK_ON_RQ_QUEUED; 8983 #ifdef CONFIG_SMP 8984 idle->on_cpu = 1; 8985 #endif 8986 raw_spin_rq_unlock(rq); 8987 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8988 8989 /* Set the preempt count _outside_ the spinlocks! */ 8990 init_idle_preempt_count(idle, cpu); 8991 8992 /* 8993 * The idle tasks have their own, simple scheduling class: 8994 */ 8995 idle->sched_class = &idle_sched_class; 8996 ftrace_graph_init_idle_task(idle, cpu); 8997 vtime_init_idle(idle, cpu); 8998 #ifdef CONFIG_SMP 8999 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9000 #endif 9001 } 9002 9003 #ifdef CONFIG_SMP 9004 9005 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9006 const struct cpumask *trial) 9007 { 9008 int ret = 1; 9009 9010 if (cpumask_empty(cur)) 9011 return ret; 9012 9013 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9014 9015 return ret; 9016 } 9017 9018 int task_can_attach(struct task_struct *p, 9019 const struct cpumask *cs_effective_cpus) 9020 { 9021 int ret = 0; 9022 9023 /* 9024 * Kthreads which disallow setaffinity shouldn't be moved 9025 * to a new cpuset; we don't want to change their CPU 9026 * affinity and isolating such threads by their set of 9027 * allowed nodes is unnecessary. Thus, cpusets are not 9028 * applicable for such threads. This prevents checking for 9029 * success of set_cpus_allowed_ptr() on all attached tasks 9030 * before cpus_mask may be changed. 9031 */ 9032 if (p->flags & PF_NO_SETAFFINITY) { 9033 ret = -EINVAL; 9034 goto out; 9035 } 9036 9037 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9038 cs_effective_cpus)) { 9039 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9040 9041 if (unlikely(cpu >= nr_cpu_ids)) 9042 return -EINVAL; 9043 ret = dl_cpu_busy(cpu, p); 9044 } 9045 9046 out: 9047 return ret; 9048 } 9049 9050 bool sched_smp_initialized __read_mostly; 9051 9052 #ifdef CONFIG_NUMA_BALANCING 9053 /* Migrate current task p to target_cpu */ 9054 int migrate_task_to(struct task_struct *p, int target_cpu) 9055 { 9056 struct migration_arg arg = { p, target_cpu }; 9057 int curr_cpu = task_cpu(p); 9058 9059 if (curr_cpu == target_cpu) 9060 return 0; 9061 9062 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9063 return -EINVAL; 9064 9065 /* TODO: This is not properly updating schedstats */ 9066 9067 trace_sched_move_numa(p, curr_cpu, target_cpu); 9068 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9069 } 9070 9071 /* 9072 * Requeue a task on a given node and accurately track the number of NUMA 9073 * tasks on the runqueues 9074 */ 9075 void sched_setnuma(struct task_struct *p, int nid) 9076 { 9077 bool queued, running; 9078 struct rq_flags rf; 9079 struct rq *rq; 9080 9081 rq = task_rq_lock(p, &rf); 9082 queued = task_on_rq_queued(p); 9083 running = task_current(rq, p); 9084 9085 if (queued) 9086 dequeue_task(rq, p, DEQUEUE_SAVE); 9087 if (running) 9088 put_prev_task(rq, p); 9089 9090 p->numa_preferred_nid = nid; 9091 9092 if (queued) 9093 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9094 if (running) 9095 set_next_task(rq, p); 9096 task_rq_unlock(rq, p, &rf); 9097 } 9098 #endif /* CONFIG_NUMA_BALANCING */ 9099 9100 #ifdef CONFIG_HOTPLUG_CPU 9101 /* 9102 * Ensure that the idle task is using init_mm right before its CPU goes 9103 * offline. 9104 */ 9105 void idle_task_exit(void) 9106 { 9107 struct mm_struct *mm = current->active_mm; 9108 9109 BUG_ON(cpu_online(smp_processor_id())); 9110 BUG_ON(current != this_rq()->idle); 9111 9112 if (mm != &init_mm) { 9113 switch_mm(mm, &init_mm, current); 9114 finish_arch_post_lock_switch(); 9115 } 9116 9117 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9118 } 9119 9120 static int __balance_push_cpu_stop(void *arg) 9121 { 9122 struct task_struct *p = arg; 9123 struct rq *rq = this_rq(); 9124 struct rq_flags rf; 9125 int cpu; 9126 9127 raw_spin_lock_irq(&p->pi_lock); 9128 rq_lock(rq, &rf); 9129 9130 update_rq_clock(rq); 9131 9132 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9133 cpu = select_fallback_rq(rq->cpu, p); 9134 rq = __migrate_task(rq, &rf, p, cpu); 9135 } 9136 9137 rq_unlock(rq, &rf); 9138 raw_spin_unlock_irq(&p->pi_lock); 9139 9140 put_task_struct(p); 9141 9142 return 0; 9143 } 9144 9145 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9146 9147 /* 9148 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9149 * 9150 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9151 * effective when the hotplug motion is down. 9152 */ 9153 static void balance_push(struct rq *rq) 9154 { 9155 struct task_struct *push_task = rq->curr; 9156 9157 lockdep_assert_rq_held(rq); 9158 9159 /* 9160 * Ensure the thing is persistent until balance_push_set(.on = false); 9161 */ 9162 rq->balance_callback = &balance_push_callback; 9163 9164 /* 9165 * Only active while going offline and when invoked on the outgoing 9166 * CPU. 9167 */ 9168 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9169 return; 9170 9171 /* 9172 * Both the cpu-hotplug and stop task are in this case and are 9173 * required to complete the hotplug process. 9174 */ 9175 if (kthread_is_per_cpu(push_task) || 9176 is_migration_disabled(push_task)) { 9177 9178 /* 9179 * If this is the idle task on the outgoing CPU try to wake 9180 * up the hotplug control thread which might wait for the 9181 * last task to vanish. The rcuwait_active() check is 9182 * accurate here because the waiter is pinned on this CPU 9183 * and can't obviously be running in parallel. 9184 * 9185 * On RT kernels this also has to check whether there are 9186 * pinned and scheduled out tasks on the runqueue. They 9187 * need to leave the migrate disabled section first. 9188 */ 9189 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9190 rcuwait_active(&rq->hotplug_wait)) { 9191 raw_spin_rq_unlock(rq); 9192 rcuwait_wake_up(&rq->hotplug_wait); 9193 raw_spin_rq_lock(rq); 9194 } 9195 return; 9196 } 9197 9198 get_task_struct(push_task); 9199 /* 9200 * Temporarily drop rq->lock such that we can wake-up the stop task. 9201 * Both preemption and IRQs are still disabled. 9202 */ 9203 raw_spin_rq_unlock(rq); 9204 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9205 this_cpu_ptr(&push_work)); 9206 /* 9207 * At this point need_resched() is true and we'll take the loop in 9208 * schedule(). The next pick is obviously going to be the stop task 9209 * which kthread_is_per_cpu() and will push this task away. 9210 */ 9211 raw_spin_rq_lock(rq); 9212 } 9213 9214 static void balance_push_set(int cpu, bool on) 9215 { 9216 struct rq *rq = cpu_rq(cpu); 9217 struct rq_flags rf; 9218 9219 rq_lock_irqsave(rq, &rf); 9220 if (on) { 9221 WARN_ON_ONCE(rq->balance_callback); 9222 rq->balance_callback = &balance_push_callback; 9223 } else if (rq->balance_callback == &balance_push_callback) { 9224 rq->balance_callback = NULL; 9225 } 9226 rq_unlock_irqrestore(rq, &rf); 9227 } 9228 9229 /* 9230 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9231 * inactive. All tasks which are not per CPU kernel threads are either 9232 * pushed off this CPU now via balance_push() or placed on a different CPU 9233 * during wakeup. Wait until the CPU is quiescent. 9234 */ 9235 static void balance_hotplug_wait(void) 9236 { 9237 struct rq *rq = this_rq(); 9238 9239 rcuwait_wait_event(&rq->hotplug_wait, 9240 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9241 TASK_UNINTERRUPTIBLE); 9242 } 9243 9244 #else 9245 9246 static inline void balance_push(struct rq *rq) 9247 { 9248 } 9249 9250 static inline void balance_push_set(int cpu, bool on) 9251 { 9252 } 9253 9254 static inline void balance_hotplug_wait(void) 9255 { 9256 } 9257 9258 #endif /* CONFIG_HOTPLUG_CPU */ 9259 9260 void set_rq_online(struct rq *rq) 9261 { 9262 if (!rq->online) { 9263 const struct sched_class *class; 9264 9265 cpumask_set_cpu(rq->cpu, rq->rd->online); 9266 rq->online = 1; 9267 9268 for_each_class(class) { 9269 if (class->rq_online) 9270 class->rq_online(rq); 9271 } 9272 } 9273 } 9274 9275 void set_rq_offline(struct rq *rq) 9276 { 9277 if (rq->online) { 9278 const struct sched_class *class; 9279 9280 for_each_class(class) { 9281 if (class->rq_offline) 9282 class->rq_offline(rq); 9283 } 9284 9285 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9286 rq->online = 0; 9287 } 9288 } 9289 9290 /* 9291 * used to mark begin/end of suspend/resume: 9292 */ 9293 static int num_cpus_frozen; 9294 9295 /* 9296 * Update cpusets according to cpu_active mask. If cpusets are 9297 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9298 * around partition_sched_domains(). 9299 * 9300 * If we come here as part of a suspend/resume, don't touch cpusets because we 9301 * want to restore it back to its original state upon resume anyway. 9302 */ 9303 static void cpuset_cpu_active(void) 9304 { 9305 if (cpuhp_tasks_frozen) { 9306 /* 9307 * num_cpus_frozen tracks how many CPUs are involved in suspend 9308 * resume sequence. As long as this is not the last online 9309 * operation in the resume sequence, just build a single sched 9310 * domain, ignoring cpusets. 9311 */ 9312 partition_sched_domains(1, NULL, NULL); 9313 if (--num_cpus_frozen) 9314 return; 9315 /* 9316 * This is the last CPU online operation. So fall through and 9317 * restore the original sched domains by considering the 9318 * cpuset configurations. 9319 */ 9320 cpuset_force_rebuild(); 9321 } 9322 cpuset_update_active_cpus(); 9323 } 9324 9325 static int cpuset_cpu_inactive(unsigned int cpu) 9326 { 9327 if (!cpuhp_tasks_frozen) { 9328 int ret = dl_cpu_busy(cpu, NULL); 9329 9330 if (ret) 9331 return ret; 9332 cpuset_update_active_cpus(); 9333 } else { 9334 num_cpus_frozen++; 9335 partition_sched_domains(1, NULL, NULL); 9336 } 9337 return 0; 9338 } 9339 9340 int sched_cpu_activate(unsigned int cpu) 9341 { 9342 struct rq *rq = cpu_rq(cpu); 9343 struct rq_flags rf; 9344 9345 /* 9346 * Clear the balance_push callback and prepare to schedule 9347 * regular tasks. 9348 */ 9349 balance_push_set(cpu, false); 9350 9351 #ifdef CONFIG_SCHED_SMT 9352 /* 9353 * When going up, increment the number of cores with SMT present. 9354 */ 9355 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9356 static_branch_inc_cpuslocked(&sched_smt_present); 9357 #endif 9358 set_cpu_active(cpu, true); 9359 9360 if (sched_smp_initialized) { 9361 sched_update_numa(cpu, true); 9362 sched_domains_numa_masks_set(cpu); 9363 cpuset_cpu_active(); 9364 } 9365 9366 /* 9367 * Put the rq online, if not already. This happens: 9368 * 9369 * 1) In the early boot process, because we build the real domains 9370 * after all CPUs have been brought up. 9371 * 9372 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9373 * domains. 9374 */ 9375 rq_lock_irqsave(rq, &rf); 9376 if (rq->rd) { 9377 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9378 set_rq_online(rq); 9379 } 9380 rq_unlock_irqrestore(rq, &rf); 9381 9382 return 0; 9383 } 9384 9385 int sched_cpu_deactivate(unsigned int cpu) 9386 { 9387 struct rq *rq = cpu_rq(cpu); 9388 struct rq_flags rf; 9389 int ret; 9390 9391 /* 9392 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9393 * load balancing when not active 9394 */ 9395 nohz_balance_exit_idle(rq); 9396 9397 set_cpu_active(cpu, false); 9398 9399 /* 9400 * From this point forward, this CPU will refuse to run any task that 9401 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9402 * push those tasks away until this gets cleared, see 9403 * sched_cpu_dying(). 9404 */ 9405 balance_push_set(cpu, true); 9406 9407 /* 9408 * We've cleared cpu_active_mask / set balance_push, wait for all 9409 * preempt-disabled and RCU users of this state to go away such that 9410 * all new such users will observe it. 9411 * 9412 * Specifically, we rely on ttwu to no longer target this CPU, see 9413 * ttwu_queue_cond() and is_cpu_allowed(). 9414 * 9415 * Do sync before park smpboot threads to take care the rcu boost case. 9416 */ 9417 synchronize_rcu(); 9418 9419 rq_lock_irqsave(rq, &rf); 9420 if (rq->rd) { 9421 update_rq_clock(rq); 9422 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9423 set_rq_offline(rq); 9424 } 9425 rq_unlock_irqrestore(rq, &rf); 9426 9427 #ifdef CONFIG_SCHED_SMT 9428 /* 9429 * When going down, decrement the number of cores with SMT present. 9430 */ 9431 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9432 static_branch_dec_cpuslocked(&sched_smt_present); 9433 9434 sched_core_cpu_deactivate(cpu); 9435 #endif 9436 9437 if (!sched_smp_initialized) 9438 return 0; 9439 9440 sched_update_numa(cpu, false); 9441 ret = cpuset_cpu_inactive(cpu); 9442 if (ret) { 9443 balance_push_set(cpu, false); 9444 set_cpu_active(cpu, true); 9445 sched_update_numa(cpu, true); 9446 return ret; 9447 } 9448 sched_domains_numa_masks_clear(cpu); 9449 return 0; 9450 } 9451 9452 static void sched_rq_cpu_starting(unsigned int cpu) 9453 { 9454 struct rq *rq = cpu_rq(cpu); 9455 9456 rq->calc_load_update = calc_load_update; 9457 update_max_interval(); 9458 } 9459 9460 int sched_cpu_starting(unsigned int cpu) 9461 { 9462 sched_core_cpu_starting(cpu); 9463 sched_rq_cpu_starting(cpu); 9464 sched_tick_start(cpu); 9465 return 0; 9466 } 9467 9468 #ifdef CONFIG_HOTPLUG_CPU 9469 9470 /* 9471 * Invoked immediately before the stopper thread is invoked to bring the 9472 * CPU down completely. At this point all per CPU kthreads except the 9473 * hotplug thread (current) and the stopper thread (inactive) have been 9474 * either parked or have been unbound from the outgoing CPU. Ensure that 9475 * any of those which might be on the way out are gone. 9476 * 9477 * If after this point a bound task is being woken on this CPU then the 9478 * responsible hotplug callback has failed to do it's job. 9479 * sched_cpu_dying() will catch it with the appropriate fireworks. 9480 */ 9481 int sched_cpu_wait_empty(unsigned int cpu) 9482 { 9483 balance_hotplug_wait(); 9484 return 0; 9485 } 9486 9487 /* 9488 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9489 * might have. Called from the CPU stopper task after ensuring that the 9490 * stopper is the last running task on the CPU, so nr_active count is 9491 * stable. We need to take the teardown thread which is calling this into 9492 * account, so we hand in adjust = 1 to the load calculation. 9493 * 9494 * Also see the comment "Global load-average calculations". 9495 */ 9496 static void calc_load_migrate(struct rq *rq) 9497 { 9498 long delta = calc_load_fold_active(rq, 1); 9499 9500 if (delta) 9501 atomic_long_add(delta, &calc_load_tasks); 9502 } 9503 9504 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9505 { 9506 struct task_struct *g, *p; 9507 int cpu = cpu_of(rq); 9508 9509 lockdep_assert_rq_held(rq); 9510 9511 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9512 for_each_process_thread(g, p) { 9513 if (task_cpu(p) != cpu) 9514 continue; 9515 9516 if (!task_on_rq_queued(p)) 9517 continue; 9518 9519 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9520 } 9521 } 9522 9523 int sched_cpu_dying(unsigned int cpu) 9524 { 9525 struct rq *rq = cpu_rq(cpu); 9526 struct rq_flags rf; 9527 9528 /* Handle pending wakeups and then migrate everything off */ 9529 sched_tick_stop(cpu); 9530 9531 rq_lock_irqsave(rq, &rf); 9532 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9533 WARN(true, "Dying CPU not properly vacated!"); 9534 dump_rq_tasks(rq, KERN_WARNING); 9535 } 9536 rq_unlock_irqrestore(rq, &rf); 9537 9538 calc_load_migrate(rq); 9539 update_max_interval(); 9540 hrtick_clear(rq); 9541 sched_core_cpu_dying(cpu); 9542 return 0; 9543 } 9544 #endif 9545 9546 void __init sched_init_smp(void) 9547 { 9548 sched_init_numa(NUMA_NO_NODE); 9549 9550 /* 9551 * There's no userspace yet to cause hotplug operations; hence all the 9552 * CPU masks are stable and all blatant races in the below code cannot 9553 * happen. 9554 */ 9555 mutex_lock(&sched_domains_mutex); 9556 sched_init_domains(cpu_active_mask); 9557 mutex_unlock(&sched_domains_mutex); 9558 9559 /* Move init over to a non-isolated CPU */ 9560 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9561 BUG(); 9562 current->flags &= ~PF_NO_SETAFFINITY; 9563 sched_init_granularity(); 9564 9565 init_sched_rt_class(); 9566 init_sched_dl_class(); 9567 9568 sched_smp_initialized = true; 9569 } 9570 9571 static int __init migration_init(void) 9572 { 9573 sched_cpu_starting(smp_processor_id()); 9574 return 0; 9575 } 9576 early_initcall(migration_init); 9577 9578 #else 9579 void __init sched_init_smp(void) 9580 { 9581 sched_init_granularity(); 9582 } 9583 #endif /* CONFIG_SMP */ 9584 9585 int in_sched_functions(unsigned long addr) 9586 { 9587 return in_lock_functions(addr) || 9588 (addr >= (unsigned long)__sched_text_start 9589 && addr < (unsigned long)__sched_text_end); 9590 } 9591 9592 #ifdef CONFIG_CGROUP_SCHED 9593 /* 9594 * Default task group. 9595 * Every task in system belongs to this group at bootup. 9596 */ 9597 struct task_group root_task_group; 9598 LIST_HEAD(task_groups); 9599 9600 /* Cacheline aligned slab cache for task_group */ 9601 static struct kmem_cache *task_group_cache __read_mostly; 9602 #endif 9603 9604 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9605 DECLARE_PER_CPU(cpumask_var_t, select_rq_mask); 9606 9607 void __init sched_init(void) 9608 { 9609 unsigned long ptr = 0; 9610 int i; 9611 9612 /* Make sure the linker didn't screw up */ 9613 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9614 &fair_sched_class != &rt_sched_class + 1 || 9615 &rt_sched_class != &dl_sched_class + 1); 9616 #ifdef CONFIG_SMP 9617 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9618 #endif 9619 9620 wait_bit_init(); 9621 9622 #ifdef CONFIG_FAIR_GROUP_SCHED 9623 ptr += 2 * nr_cpu_ids * sizeof(void **); 9624 #endif 9625 #ifdef CONFIG_RT_GROUP_SCHED 9626 ptr += 2 * nr_cpu_ids * sizeof(void **); 9627 #endif 9628 if (ptr) { 9629 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9630 9631 #ifdef CONFIG_FAIR_GROUP_SCHED 9632 root_task_group.se = (struct sched_entity **)ptr; 9633 ptr += nr_cpu_ids * sizeof(void **); 9634 9635 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9636 ptr += nr_cpu_ids * sizeof(void **); 9637 9638 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9639 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9640 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9641 #ifdef CONFIG_RT_GROUP_SCHED 9642 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9643 ptr += nr_cpu_ids * sizeof(void **); 9644 9645 root_task_group.rt_rq = (struct rt_rq **)ptr; 9646 ptr += nr_cpu_ids * sizeof(void **); 9647 9648 #endif /* CONFIG_RT_GROUP_SCHED */ 9649 } 9650 #ifdef CONFIG_CPUMASK_OFFSTACK 9651 for_each_possible_cpu(i) { 9652 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9653 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9654 per_cpu(select_rq_mask, i) = (cpumask_var_t)kzalloc_node( 9655 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9656 } 9657 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9658 9659 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9660 9661 #ifdef CONFIG_SMP 9662 init_defrootdomain(); 9663 #endif 9664 9665 #ifdef CONFIG_RT_GROUP_SCHED 9666 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9667 global_rt_period(), global_rt_runtime()); 9668 #endif /* CONFIG_RT_GROUP_SCHED */ 9669 9670 #ifdef CONFIG_CGROUP_SCHED 9671 task_group_cache = KMEM_CACHE(task_group, 0); 9672 9673 list_add(&root_task_group.list, &task_groups); 9674 INIT_LIST_HEAD(&root_task_group.children); 9675 INIT_LIST_HEAD(&root_task_group.siblings); 9676 autogroup_init(&init_task); 9677 #endif /* CONFIG_CGROUP_SCHED */ 9678 9679 for_each_possible_cpu(i) { 9680 struct rq *rq; 9681 9682 rq = cpu_rq(i); 9683 raw_spin_lock_init(&rq->__lock); 9684 rq->nr_running = 0; 9685 rq->calc_load_active = 0; 9686 rq->calc_load_update = jiffies + LOAD_FREQ; 9687 init_cfs_rq(&rq->cfs); 9688 init_rt_rq(&rq->rt); 9689 init_dl_rq(&rq->dl); 9690 #ifdef CONFIG_FAIR_GROUP_SCHED 9691 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9692 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9693 /* 9694 * How much CPU bandwidth does root_task_group get? 9695 * 9696 * In case of task-groups formed thr' the cgroup filesystem, it 9697 * gets 100% of the CPU resources in the system. This overall 9698 * system CPU resource is divided among the tasks of 9699 * root_task_group and its child task-groups in a fair manner, 9700 * based on each entity's (task or task-group's) weight 9701 * (se->load.weight). 9702 * 9703 * In other words, if root_task_group has 10 tasks of weight 9704 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9705 * then A0's share of the CPU resource is: 9706 * 9707 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9708 * 9709 * We achieve this by letting root_task_group's tasks sit 9710 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9711 */ 9712 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9713 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9714 9715 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9716 #ifdef CONFIG_RT_GROUP_SCHED 9717 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9718 #endif 9719 #ifdef CONFIG_SMP 9720 rq->sd = NULL; 9721 rq->rd = NULL; 9722 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9723 rq->balance_callback = &balance_push_callback; 9724 rq->active_balance = 0; 9725 rq->next_balance = jiffies; 9726 rq->push_cpu = 0; 9727 rq->cpu = i; 9728 rq->online = 0; 9729 rq->idle_stamp = 0; 9730 rq->avg_idle = 2*sysctl_sched_migration_cost; 9731 rq->wake_stamp = jiffies; 9732 rq->wake_avg_idle = rq->avg_idle; 9733 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9734 9735 INIT_LIST_HEAD(&rq->cfs_tasks); 9736 9737 rq_attach_root(rq, &def_root_domain); 9738 #ifdef CONFIG_NO_HZ_COMMON 9739 rq->last_blocked_load_update_tick = jiffies; 9740 atomic_set(&rq->nohz_flags, 0); 9741 9742 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9743 #endif 9744 #ifdef CONFIG_HOTPLUG_CPU 9745 rcuwait_init(&rq->hotplug_wait); 9746 #endif 9747 #endif /* CONFIG_SMP */ 9748 hrtick_rq_init(rq); 9749 atomic_set(&rq->nr_iowait, 0); 9750 9751 #ifdef CONFIG_SCHED_CORE 9752 rq->core = rq; 9753 rq->core_pick = NULL; 9754 rq->core_enabled = 0; 9755 rq->core_tree = RB_ROOT; 9756 rq->core_forceidle_count = 0; 9757 rq->core_forceidle_occupation = 0; 9758 rq->core_forceidle_start = 0; 9759 9760 rq->core_cookie = 0UL; 9761 #endif 9762 } 9763 9764 set_load_weight(&init_task, false); 9765 9766 /* 9767 * The boot idle thread does lazy MMU switching as well: 9768 */ 9769 mmgrab(&init_mm); 9770 enter_lazy_tlb(&init_mm, current); 9771 9772 /* 9773 * The idle task doesn't need the kthread struct to function, but it 9774 * is dressed up as a per-CPU kthread and thus needs to play the part 9775 * if we want to avoid special-casing it in code that deals with per-CPU 9776 * kthreads. 9777 */ 9778 WARN_ON(!set_kthread_struct(current)); 9779 9780 /* 9781 * Make us the idle thread. Technically, schedule() should not be 9782 * called from this thread, however somewhere below it might be, 9783 * but because we are the idle thread, we just pick up running again 9784 * when this runqueue becomes "idle". 9785 */ 9786 init_idle(current, smp_processor_id()); 9787 9788 calc_load_update = jiffies + LOAD_FREQ; 9789 9790 #ifdef CONFIG_SMP 9791 idle_thread_set_boot_cpu(); 9792 balance_push_set(smp_processor_id(), false); 9793 #endif 9794 init_sched_fair_class(); 9795 9796 psi_init(); 9797 9798 init_uclamp(); 9799 9800 preempt_dynamic_init(); 9801 9802 scheduler_running = 1; 9803 } 9804 9805 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9806 9807 void __might_sleep(const char *file, int line) 9808 { 9809 unsigned int state = get_current_state(); 9810 /* 9811 * Blocking primitives will set (and therefore destroy) current->state, 9812 * since we will exit with TASK_RUNNING make sure we enter with it, 9813 * otherwise we will destroy state. 9814 */ 9815 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9816 "do not call blocking ops when !TASK_RUNNING; " 9817 "state=%x set at [<%p>] %pS\n", state, 9818 (void *)current->task_state_change, 9819 (void *)current->task_state_change); 9820 9821 __might_resched(file, line, 0); 9822 } 9823 EXPORT_SYMBOL(__might_sleep); 9824 9825 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9826 { 9827 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9828 return; 9829 9830 if (preempt_count() == preempt_offset) 9831 return; 9832 9833 pr_err("Preemption disabled at:"); 9834 print_ip_sym(KERN_ERR, ip); 9835 } 9836 9837 static inline bool resched_offsets_ok(unsigned int offsets) 9838 { 9839 unsigned int nested = preempt_count(); 9840 9841 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9842 9843 return nested == offsets; 9844 } 9845 9846 void __might_resched(const char *file, int line, unsigned int offsets) 9847 { 9848 /* Ratelimiting timestamp: */ 9849 static unsigned long prev_jiffy; 9850 9851 unsigned long preempt_disable_ip; 9852 9853 /* WARN_ON_ONCE() by default, no rate limit required: */ 9854 rcu_sleep_check(); 9855 9856 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9857 !is_idle_task(current) && !current->non_block_count) || 9858 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9859 oops_in_progress) 9860 return; 9861 9862 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9863 return; 9864 prev_jiffy = jiffies; 9865 9866 /* Save this before calling printk(), since that will clobber it: */ 9867 preempt_disable_ip = get_preempt_disable_ip(current); 9868 9869 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9870 file, line); 9871 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9872 in_atomic(), irqs_disabled(), current->non_block_count, 9873 current->pid, current->comm); 9874 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9875 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9876 9877 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9878 pr_err("RCU nest depth: %d, expected: %u\n", 9879 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9880 } 9881 9882 if (task_stack_end_corrupted(current)) 9883 pr_emerg("Thread overran stack, or stack corrupted\n"); 9884 9885 debug_show_held_locks(current); 9886 if (irqs_disabled()) 9887 print_irqtrace_events(current); 9888 9889 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9890 preempt_disable_ip); 9891 9892 dump_stack(); 9893 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9894 } 9895 EXPORT_SYMBOL(__might_resched); 9896 9897 void __cant_sleep(const char *file, int line, int preempt_offset) 9898 { 9899 static unsigned long prev_jiffy; 9900 9901 if (irqs_disabled()) 9902 return; 9903 9904 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9905 return; 9906 9907 if (preempt_count() > preempt_offset) 9908 return; 9909 9910 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9911 return; 9912 prev_jiffy = jiffies; 9913 9914 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9915 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9916 in_atomic(), irqs_disabled(), 9917 current->pid, current->comm); 9918 9919 debug_show_held_locks(current); 9920 dump_stack(); 9921 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9922 } 9923 EXPORT_SYMBOL_GPL(__cant_sleep); 9924 9925 #ifdef CONFIG_SMP 9926 void __cant_migrate(const char *file, int line) 9927 { 9928 static unsigned long prev_jiffy; 9929 9930 if (irqs_disabled()) 9931 return; 9932 9933 if (is_migration_disabled(current)) 9934 return; 9935 9936 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9937 return; 9938 9939 if (preempt_count() > 0) 9940 return; 9941 9942 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9943 return; 9944 prev_jiffy = jiffies; 9945 9946 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9947 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9948 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9949 current->pid, current->comm); 9950 9951 debug_show_held_locks(current); 9952 dump_stack(); 9953 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9954 } 9955 EXPORT_SYMBOL_GPL(__cant_migrate); 9956 #endif 9957 #endif 9958 9959 #ifdef CONFIG_MAGIC_SYSRQ 9960 void normalize_rt_tasks(void) 9961 { 9962 struct task_struct *g, *p; 9963 struct sched_attr attr = { 9964 .sched_policy = SCHED_NORMAL, 9965 }; 9966 9967 read_lock(&tasklist_lock); 9968 for_each_process_thread(g, p) { 9969 /* 9970 * Only normalize user tasks: 9971 */ 9972 if (p->flags & PF_KTHREAD) 9973 continue; 9974 9975 p->se.exec_start = 0; 9976 schedstat_set(p->stats.wait_start, 0); 9977 schedstat_set(p->stats.sleep_start, 0); 9978 schedstat_set(p->stats.block_start, 0); 9979 9980 if (!dl_task(p) && !rt_task(p)) { 9981 /* 9982 * Renice negative nice level userspace 9983 * tasks back to 0: 9984 */ 9985 if (task_nice(p) < 0) 9986 set_user_nice(p, 0); 9987 continue; 9988 } 9989 9990 __sched_setscheduler(p, &attr, false, false); 9991 } 9992 read_unlock(&tasklist_lock); 9993 } 9994 9995 #endif /* CONFIG_MAGIC_SYSRQ */ 9996 9997 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9998 /* 9999 * These functions are only useful for the IA64 MCA handling, or kdb. 10000 * 10001 * They can only be called when the whole system has been 10002 * stopped - every CPU needs to be quiescent, and no scheduling 10003 * activity can take place. Using them for anything else would 10004 * be a serious bug, and as a result, they aren't even visible 10005 * under any other configuration. 10006 */ 10007 10008 /** 10009 * curr_task - return the current task for a given CPU. 10010 * @cpu: the processor in question. 10011 * 10012 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10013 * 10014 * Return: The current task for @cpu. 10015 */ 10016 struct task_struct *curr_task(int cpu) 10017 { 10018 return cpu_curr(cpu); 10019 } 10020 10021 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10022 10023 #ifdef CONFIG_IA64 10024 /** 10025 * ia64_set_curr_task - set the current task for a given CPU. 10026 * @cpu: the processor in question. 10027 * @p: the task pointer to set. 10028 * 10029 * Description: This function must only be used when non-maskable interrupts 10030 * are serviced on a separate stack. It allows the architecture to switch the 10031 * notion of the current task on a CPU in a non-blocking manner. This function 10032 * must be called with all CPU's synchronized, and interrupts disabled, the 10033 * and caller must save the original value of the current task (see 10034 * curr_task() above) and restore that value before reenabling interrupts and 10035 * re-starting the system. 10036 * 10037 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10038 */ 10039 void ia64_set_curr_task(int cpu, struct task_struct *p) 10040 { 10041 cpu_curr(cpu) = p; 10042 } 10043 10044 #endif 10045 10046 #ifdef CONFIG_CGROUP_SCHED 10047 /* task_group_lock serializes the addition/removal of task groups */ 10048 static DEFINE_SPINLOCK(task_group_lock); 10049 10050 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10051 struct task_group *parent) 10052 { 10053 #ifdef CONFIG_UCLAMP_TASK_GROUP 10054 enum uclamp_id clamp_id; 10055 10056 for_each_clamp_id(clamp_id) { 10057 uclamp_se_set(&tg->uclamp_req[clamp_id], 10058 uclamp_none(clamp_id), false); 10059 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10060 } 10061 #endif 10062 } 10063 10064 static void sched_free_group(struct task_group *tg) 10065 { 10066 free_fair_sched_group(tg); 10067 free_rt_sched_group(tg); 10068 autogroup_free(tg); 10069 kmem_cache_free(task_group_cache, tg); 10070 } 10071 10072 static void sched_free_group_rcu(struct rcu_head *rcu) 10073 { 10074 sched_free_group(container_of(rcu, struct task_group, rcu)); 10075 } 10076 10077 static void sched_unregister_group(struct task_group *tg) 10078 { 10079 unregister_fair_sched_group(tg); 10080 unregister_rt_sched_group(tg); 10081 /* 10082 * We have to wait for yet another RCU grace period to expire, as 10083 * print_cfs_stats() might run concurrently. 10084 */ 10085 call_rcu(&tg->rcu, sched_free_group_rcu); 10086 } 10087 10088 /* allocate runqueue etc for a new task group */ 10089 struct task_group *sched_create_group(struct task_group *parent) 10090 { 10091 struct task_group *tg; 10092 10093 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10094 if (!tg) 10095 return ERR_PTR(-ENOMEM); 10096 10097 if (!alloc_fair_sched_group(tg, parent)) 10098 goto err; 10099 10100 if (!alloc_rt_sched_group(tg, parent)) 10101 goto err; 10102 10103 alloc_uclamp_sched_group(tg, parent); 10104 10105 return tg; 10106 10107 err: 10108 sched_free_group(tg); 10109 return ERR_PTR(-ENOMEM); 10110 } 10111 10112 void sched_online_group(struct task_group *tg, struct task_group *parent) 10113 { 10114 unsigned long flags; 10115 10116 spin_lock_irqsave(&task_group_lock, flags); 10117 list_add_rcu(&tg->list, &task_groups); 10118 10119 /* Root should already exist: */ 10120 WARN_ON(!parent); 10121 10122 tg->parent = parent; 10123 INIT_LIST_HEAD(&tg->children); 10124 list_add_rcu(&tg->siblings, &parent->children); 10125 spin_unlock_irqrestore(&task_group_lock, flags); 10126 10127 online_fair_sched_group(tg); 10128 } 10129 10130 /* rcu callback to free various structures associated with a task group */ 10131 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10132 { 10133 /* Now it should be safe to free those cfs_rqs: */ 10134 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10135 } 10136 10137 void sched_destroy_group(struct task_group *tg) 10138 { 10139 /* Wait for possible concurrent references to cfs_rqs complete: */ 10140 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10141 } 10142 10143 void sched_release_group(struct task_group *tg) 10144 { 10145 unsigned long flags; 10146 10147 /* 10148 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10149 * sched_cfs_period_timer()). 10150 * 10151 * For this to be effective, we have to wait for all pending users of 10152 * this task group to leave their RCU critical section to ensure no new 10153 * user will see our dying task group any more. Specifically ensure 10154 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10155 * 10156 * We therefore defer calling unregister_fair_sched_group() to 10157 * sched_unregister_group() which is guarantied to get called only after the 10158 * current RCU grace period has expired. 10159 */ 10160 spin_lock_irqsave(&task_group_lock, flags); 10161 list_del_rcu(&tg->list); 10162 list_del_rcu(&tg->siblings); 10163 spin_unlock_irqrestore(&task_group_lock, flags); 10164 } 10165 10166 static void sched_change_group(struct task_struct *tsk, int type) 10167 { 10168 struct task_group *tg; 10169 10170 /* 10171 * All callers are synchronized by task_rq_lock(); we do not use RCU 10172 * which is pointless here. Thus, we pass "true" to task_css_check() 10173 * to prevent lockdep warnings. 10174 */ 10175 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10176 struct task_group, css); 10177 tg = autogroup_task_group(tsk, tg); 10178 tsk->sched_task_group = tg; 10179 10180 #ifdef CONFIG_FAIR_GROUP_SCHED 10181 if (tsk->sched_class->task_change_group) 10182 tsk->sched_class->task_change_group(tsk, type); 10183 else 10184 #endif 10185 set_task_rq(tsk, task_cpu(tsk)); 10186 } 10187 10188 /* 10189 * Change task's runqueue when it moves between groups. 10190 * 10191 * The caller of this function should have put the task in its new group by 10192 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10193 * its new group. 10194 */ 10195 void sched_move_task(struct task_struct *tsk) 10196 { 10197 int queued, running, queue_flags = 10198 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10199 struct rq_flags rf; 10200 struct rq *rq; 10201 10202 rq = task_rq_lock(tsk, &rf); 10203 update_rq_clock(rq); 10204 10205 running = task_current(rq, tsk); 10206 queued = task_on_rq_queued(tsk); 10207 10208 if (queued) 10209 dequeue_task(rq, tsk, queue_flags); 10210 if (running) 10211 put_prev_task(rq, tsk); 10212 10213 sched_change_group(tsk, TASK_MOVE_GROUP); 10214 10215 if (queued) 10216 enqueue_task(rq, tsk, queue_flags); 10217 if (running) { 10218 set_next_task(rq, tsk); 10219 /* 10220 * After changing group, the running task may have joined a 10221 * throttled one but it's still the running task. Trigger a 10222 * resched to make sure that task can still run. 10223 */ 10224 resched_curr(rq); 10225 } 10226 10227 task_rq_unlock(rq, tsk, &rf); 10228 } 10229 10230 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10231 { 10232 return css ? container_of(css, struct task_group, css) : NULL; 10233 } 10234 10235 static struct cgroup_subsys_state * 10236 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10237 { 10238 struct task_group *parent = css_tg(parent_css); 10239 struct task_group *tg; 10240 10241 if (!parent) { 10242 /* This is early initialization for the top cgroup */ 10243 return &root_task_group.css; 10244 } 10245 10246 tg = sched_create_group(parent); 10247 if (IS_ERR(tg)) 10248 return ERR_PTR(-ENOMEM); 10249 10250 return &tg->css; 10251 } 10252 10253 /* Expose task group only after completing cgroup initialization */ 10254 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10255 { 10256 struct task_group *tg = css_tg(css); 10257 struct task_group *parent = css_tg(css->parent); 10258 10259 if (parent) 10260 sched_online_group(tg, parent); 10261 10262 #ifdef CONFIG_UCLAMP_TASK_GROUP 10263 /* Propagate the effective uclamp value for the new group */ 10264 mutex_lock(&uclamp_mutex); 10265 rcu_read_lock(); 10266 cpu_util_update_eff(css); 10267 rcu_read_unlock(); 10268 mutex_unlock(&uclamp_mutex); 10269 #endif 10270 10271 return 0; 10272 } 10273 10274 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10275 { 10276 struct task_group *tg = css_tg(css); 10277 10278 sched_release_group(tg); 10279 } 10280 10281 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10282 { 10283 struct task_group *tg = css_tg(css); 10284 10285 /* 10286 * Relies on the RCU grace period between css_released() and this. 10287 */ 10288 sched_unregister_group(tg); 10289 } 10290 10291 /* 10292 * This is called before wake_up_new_task(), therefore we really only 10293 * have to set its group bits, all the other stuff does not apply. 10294 */ 10295 static void cpu_cgroup_fork(struct task_struct *task) 10296 { 10297 struct rq_flags rf; 10298 struct rq *rq; 10299 10300 rq = task_rq_lock(task, &rf); 10301 10302 update_rq_clock(rq); 10303 sched_change_group(task, TASK_SET_GROUP); 10304 10305 task_rq_unlock(rq, task, &rf); 10306 } 10307 10308 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10309 { 10310 struct task_struct *task; 10311 struct cgroup_subsys_state *css; 10312 int ret = 0; 10313 10314 cgroup_taskset_for_each(task, css, tset) { 10315 #ifdef CONFIG_RT_GROUP_SCHED 10316 if (!sched_rt_can_attach(css_tg(css), task)) 10317 return -EINVAL; 10318 #endif 10319 /* 10320 * Serialize against wake_up_new_task() such that if it's 10321 * running, we're sure to observe its full state. 10322 */ 10323 raw_spin_lock_irq(&task->pi_lock); 10324 /* 10325 * Avoid calling sched_move_task() before wake_up_new_task() 10326 * has happened. This would lead to problems with PELT, due to 10327 * move wanting to detach+attach while we're not attached yet. 10328 */ 10329 if (READ_ONCE(task->__state) == TASK_NEW) 10330 ret = -EINVAL; 10331 raw_spin_unlock_irq(&task->pi_lock); 10332 10333 if (ret) 10334 break; 10335 } 10336 return ret; 10337 } 10338 10339 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10340 { 10341 struct task_struct *task; 10342 struct cgroup_subsys_state *css; 10343 10344 cgroup_taskset_for_each(task, css, tset) 10345 sched_move_task(task); 10346 } 10347 10348 #ifdef CONFIG_UCLAMP_TASK_GROUP 10349 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10350 { 10351 struct cgroup_subsys_state *top_css = css; 10352 struct uclamp_se *uc_parent = NULL; 10353 struct uclamp_se *uc_se = NULL; 10354 unsigned int eff[UCLAMP_CNT]; 10355 enum uclamp_id clamp_id; 10356 unsigned int clamps; 10357 10358 lockdep_assert_held(&uclamp_mutex); 10359 SCHED_WARN_ON(!rcu_read_lock_held()); 10360 10361 css_for_each_descendant_pre(css, top_css) { 10362 uc_parent = css_tg(css)->parent 10363 ? css_tg(css)->parent->uclamp : NULL; 10364 10365 for_each_clamp_id(clamp_id) { 10366 /* Assume effective clamps matches requested clamps */ 10367 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10368 /* Cap effective clamps with parent's effective clamps */ 10369 if (uc_parent && 10370 eff[clamp_id] > uc_parent[clamp_id].value) { 10371 eff[clamp_id] = uc_parent[clamp_id].value; 10372 } 10373 } 10374 /* Ensure protection is always capped by limit */ 10375 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10376 10377 /* Propagate most restrictive effective clamps */ 10378 clamps = 0x0; 10379 uc_se = css_tg(css)->uclamp; 10380 for_each_clamp_id(clamp_id) { 10381 if (eff[clamp_id] == uc_se[clamp_id].value) 10382 continue; 10383 uc_se[clamp_id].value = eff[clamp_id]; 10384 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10385 clamps |= (0x1 << clamp_id); 10386 } 10387 if (!clamps) { 10388 css = css_rightmost_descendant(css); 10389 continue; 10390 } 10391 10392 /* Immediately update descendants RUNNABLE tasks */ 10393 uclamp_update_active_tasks(css); 10394 } 10395 } 10396 10397 /* 10398 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10399 * C expression. Since there is no way to convert a macro argument (N) into a 10400 * character constant, use two levels of macros. 10401 */ 10402 #define _POW10(exp) ((unsigned int)1e##exp) 10403 #define POW10(exp) _POW10(exp) 10404 10405 struct uclamp_request { 10406 #define UCLAMP_PERCENT_SHIFT 2 10407 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10408 s64 percent; 10409 u64 util; 10410 int ret; 10411 }; 10412 10413 static inline struct uclamp_request 10414 capacity_from_percent(char *buf) 10415 { 10416 struct uclamp_request req = { 10417 .percent = UCLAMP_PERCENT_SCALE, 10418 .util = SCHED_CAPACITY_SCALE, 10419 .ret = 0, 10420 }; 10421 10422 buf = strim(buf); 10423 if (strcmp(buf, "max")) { 10424 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10425 &req.percent); 10426 if (req.ret) 10427 return req; 10428 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10429 req.ret = -ERANGE; 10430 return req; 10431 } 10432 10433 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10434 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10435 } 10436 10437 return req; 10438 } 10439 10440 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10441 size_t nbytes, loff_t off, 10442 enum uclamp_id clamp_id) 10443 { 10444 struct uclamp_request req; 10445 struct task_group *tg; 10446 10447 req = capacity_from_percent(buf); 10448 if (req.ret) 10449 return req.ret; 10450 10451 static_branch_enable(&sched_uclamp_used); 10452 10453 mutex_lock(&uclamp_mutex); 10454 rcu_read_lock(); 10455 10456 tg = css_tg(of_css(of)); 10457 if (tg->uclamp_req[clamp_id].value != req.util) 10458 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10459 10460 /* 10461 * Because of not recoverable conversion rounding we keep track of the 10462 * exact requested value 10463 */ 10464 tg->uclamp_pct[clamp_id] = req.percent; 10465 10466 /* Update effective clamps to track the most restrictive value */ 10467 cpu_util_update_eff(of_css(of)); 10468 10469 rcu_read_unlock(); 10470 mutex_unlock(&uclamp_mutex); 10471 10472 return nbytes; 10473 } 10474 10475 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10476 char *buf, size_t nbytes, 10477 loff_t off) 10478 { 10479 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10480 } 10481 10482 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10483 char *buf, size_t nbytes, 10484 loff_t off) 10485 { 10486 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10487 } 10488 10489 static inline void cpu_uclamp_print(struct seq_file *sf, 10490 enum uclamp_id clamp_id) 10491 { 10492 struct task_group *tg; 10493 u64 util_clamp; 10494 u64 percent; 10495 u32 rem; 10496 10497 rcu_read_lock(); 10498 tg = css_tg(seq_css(sf)); 10499 util_clamp = tg->uclamp_req[clamp_id].value; 10500 rcu_read_unlock(); 10501 10502 if (util_clamp == SCHED_CAPACITY_SCALE) { 10503 seq_puts(sf, "max\n"); 10504 return; 10505 } 10506 10507 percent = tg->uclamp_pct[clamp_id]; 10508 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10509 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10510 } 10511 10512 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10513 { 10514 cpu_uclamp_print(sf, UCLAMP_MIN); 10515 return 0; 10516 } 10517 10518 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10519 { 10520 cpu_uclamp_print(sf, UCLAMP_MAX); 10521 return 0; 10522 } 10523 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10524 10525 #ifdef CONFIG_FAIR_GROUP_SCHED 10526 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10527 struct cftype *cftype, u64 shareval) 10528 { 10529 if (shareval > scale_load_down(ULONG_MAX)) 10530 shareval = MAX_SHARES; 10531 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10532 } 10533 10534 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10535 struct cftype *cft) 10536 { 10537 struct task_group *tg = css_tg(css); 10538 10539 return (u64) scale_load_down(tg->shares); 10540 } 10541 10542 #ifdef CONFIG_CFS_BANDWIDTH 10543 static DEFINE_MUTEX(cfs_constraints_mutex); 10544 10545 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10546 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10547 /* More than 203 days if BW_SHIFT equals 20. */ 10548 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10549 10550 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10551 10552 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10553 u64 burst) 10554 { 10555 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10556 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10557 10558 if (tg == &root_task_group) 10559 return -EINVAL; 10560 10561 /* 10562 * Ensure we have at some amount of bandwidth every period. This is 10563 * to prevent reaching a state of large arrears when throttled via 10564 * entity_tick() resulting in prolonged exit starvation. 10565 */ 10566 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10567 return -EINVAL; 10568 10569 /* 10570 * Likewise, bound things on the other side by preventing insane quota 10571 * periods. This also allows us to normalize in computing quota 10572 * feasibility. 10573 */ 10574 if (period > max_cfs_quota_period) 10575 return -EINVAL; 10576 10577 /* 10578 * Bound quota to defend quota against overflow during bandwidth shift. 10579 */ 10580 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10581 return -EINVAL; 10582 10583 if (quota != RUNTIME_INF && (burst > quota || 10584 burst + quota > max_cfs_runtime)) 10585 return -EINVAL; 10586 10587 /* 10588 * Prevent race between setting of cfs_rq->runtime_enabled and 10589 * unthrottle_offline_cfs_rqs(). 10590 */ 10591 cpus_read_lock(); 10592 mutex_lock(&cfs_constraints_mutex); 10593 ret = __cfs_schedulable(tg, period, quota); 10594 if (ret) 10595 goto out_unlock; 10596 10597 runtime_enabled = quota != RUNTIME_INF; 10598 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10599 /* 10600 * If we need to toggle cfs_bandwidth_used, off->on must occur 10601 * before making related changes, and on->off must occur afterwards 10602 */ 10603 if (runtime_enabled && !runtime_was_enabled) 10604 cfs_bandwidth_usage_inc(); 10605 raw_spin_lock_irq(&cfs_b->lock); 10606 cfs_b->period = ns_to_ktime(period); 10607 cfs_b->quota = quota; 10608 cfs_b->burst = burst; 10609 10610 __refill_cfs_bandwidth_runtime(cfs_b); 10611 10612 /* Restart the period timer (if active) to handle new period expiry: */ 10613 if (runtime_enabled) 10614 start_cfs_bandwidth(cfs_b); 10615 10616 raw_spin_unlock_irq(&cfs_b->lock); 10617 10618 for_each_online_cpu(i) { 10619 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10620 struct rq *rq = cfs_rq->rq; 10621 struct rq_flags rf; 10622 10623 rq_lock_irq(rq, &rf); 10624 cfs_rq->runtime_enabled = runtime_enabled; 10625 cfs_rq->runtime_remaining = 0; 10626 10627 if (cfs_rq->throttled) 10628 unthrottle_cfs_rq(cfs_rq); 10629 rq_unlock_irq(rq, &rf); 10630 } 10631 if (runtime_was_enabled && !runtime_enabled) 10632 cfs_bandwidth_usage_dec(); 10633 out_unlock: 10634 mutex_unlock(&cfs_constraints_mutex); 10635 cpus_read_unlock(); 10636 10637 return ret; 10638 } 10639 10640 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10641 { 10642 u64 quota, period, burst; 10643 10644 period = ktime_to_ns(tg->cfs_bandwidth.period); 10645 burst = tg->cfs_bandwidth.burst; 10646 if (cfs_quota_us < 0) 10647 quota = RUNTIME_INF; 10648 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10649 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10650 else 10651 return -EINVAL; 10652 10653 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10654 } 10655 10656 static long tg_get_cfs_quota(struct task_group *tg) 10657 { 10658 u64 quota_us; 10659 10660 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10661 return -1; 10662 10663 quota_us = tg->cfs_bandwidth.quota; 10664 do_div(quota_us, NSEC_PER_USEC); 10665 10666 return quota_us; 10667 } 10668 10669 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10670 { 10671 u64 quota, period, burst; 10672 10673 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10674 return -EINVAL; 10675 10676 period = (u64)cfs_period_us * NSEC_PER_USEC; 10677 quota = tg->cfs_bandwidth.quota; 10678 burst = tg->cfs_bandwidth.burst; 10679 10680 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10681 } 10682 10683 static long tg_get_cfs_period(struct task_group *tg) 10684 { 10685 u64 cfs_period_us; 10686 10687 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10688 do_div(cfs_period_us, NSEC_PER_USEC); 10689 10690 return cfs_period_us; 10691 } 10692 10693 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10694 { 10695 u64 quota, period, burst; 10696 10697 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10698 return -EINVAL; 10699 10700 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10701 period = ktime_to_ns(tg->cfs_bandwidth.period); 10702 quota = tg->cfs_bandwidth.quota; 10703 10704 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10705 } 10706 10707 static long tg_get_cfs_burst(struct task_group *tg) 10708 { 10709 u64 burst_us; 10710 10711 burst_us = tg->cfs_bandwidth.burst; 10712 do_div(burst_us, NSEC_PER_USEC); 10713 10714 return burst_us; 10715 } 10716 10717 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10718 struct cftype *cft) 10719 { 10720 return tg_get_cfs_quota(css_tg(css)); 10721 } 10722 10723 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10724 struct cftype *cftype, s64 cfs_quota_us) 10725 { 10726 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10727 } 10728 10729 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10730 struct cftype *cft) 10731 { 10732 return tg_get_cfs_period(css_tg(css)); 10733 } 10734 10735 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10736 struct cftype *cftype, u64 cfs_period_us) 10737 { 10738 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10739 } 10740 10741 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10742 struct cftype *cft) 10743 { 10744 return tg_get_cfs_burst(css_tg(css)); 10745 } 10746 10747 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10748 struct cftype *cftype, u64 cfs_burst_us) 10749 { 10750 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10751 } 10752 10753 struct cfs_schedulable_data { 10754 struct task_group *tg; 10755 u64 period, quota; 10756 }; 10757 10758 /* 10759 * normalize group quota/period to be quota/max_period 10760 * note: units are usecs 10761 */ 10762 static u64 normalize_cfs_quota(struct task_group *tg, 10763 struct cfs_schedulable_data *d) 10764 { 10765 u64 quota, period; 10766 10767 if (tg == d->tg) { 10768 period = d->period; 10769 quota = d->quota; 10770 } else { 10771 period = tg_get_cfs_period(tg); 10772 quota = tg_get_cfs_quota(tg); 10773 } 10774 10775 /* note: these should typically be equivalent */ 10776 if (quota == RUNTIME_INF || quota == -1) 10777 return RUNTIME_INF; 10778 10779 return to_ratio(period, quota); 10780 } 10781 10782 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10783 { 10784 struct cfs_schedulable_data *d = data; 10785 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10786 s64 quota = 0, parent_quota = -1; 10787 10788 if (!tg->parent) { 10789 quota = RUNTIME_INF; 10790 } else { 10791 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10792 10793 quota = normalize_cfs_quota(tg, d); 10794 parent_quota = parent_b->hierarchical_quota; 10795 10796 /* 10797 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10798 * always take the min. On cgroup1, only inherit when no 10799 * limit is set: 10800 */ 10801 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10802 quota = min(quota, parent_quota); 10803 } else { 10804 if (quota == RUNTIME_INF) 10805 quota = parent_quota; 10806 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10807 return -EINVAL; 10808 } 10809 } 10810 cfs_b->hierarchical_quota = quota; 10811 10812 return 0; 10813 } 10814 10815 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10816 { 10817 int ret; 10818 struct cfs_schedulable_data data = { 10819 .tg = tg, 10820 .period = period, 10821 .quota = quota, 10822 }; 10823 10824 if (quota != RUNTIME_INF) { 10825 do_div(data.period, NSEC_PER_USEC); 10826 do_div(data.quota, NSEC_PER_USEC); 10827 } 10828 10829 rcu_read_lock(); 10830 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10831 rcu_read_unlock(); 10832 10833 return ret; 10834 } 10835 10836 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10837 { 10838 struct task_group *tg = css_tg(seq_css(sf)); 10839 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10840 10841 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10842 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10843 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10844 10845 if (schedstat_enabled() && tg != &root_task_group) { 10846 struct sched_statistics *stats; 10847 u64 ws = 0; 10848 int i; 10849 10850 for_each_possible_cpu(i) { 10851 stats = __schedstats_from_se(tg->se[i]); 10852 ws += schedstat_val(stats->wait_sum); 10853 } 10854 10855 seq_printf(sf, "wait_sum %llu\n", ws); 10856 } 10857 10858 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10859 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10860 10861 return 0; 10862 } 10863 #endif /* CONFIG_CFS_BANDWIDTH */ 10864 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10865 10866 #ifdef CONFIG_RT_GROUP_SCHED 10867 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10868 struct cftype *cft, s64 val) 10869 { 10870 return sched_group_set_rt_runtime(css_tg(css), val); 10871 } 10872 10873 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10874 struct cftype *cft) 10875 { 10876 return sched_group_rt_runtime(css_tg(css)); 10877 } 10878 10879 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10880 struct cftype *cftype, u64 rt_period_us) 10881 { 10882 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10883 } 10884 10885 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10886 struct cftype *cft) 10887 { 10888 return sched_group_rt_period(css_tg(css)); 10889 } 10890 #endif /* CONFIG_RT_GROUP_SCHED */ 10891 10892 #ifdef CONFIG_FAIR_GROUP_SCHED 10893 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10894 struct cftype *cft) 10895 { 10896 return css_tg(css)->idle; 10897 } 10898 10899 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10900 struct cftype *cft, s64 idle) 10901 { 10902 return sched_group_set_idle(css_tg(css), idle); 10903 } 10904 #endif 10905 10906 static struct cftype cpu_legacy_files[] = { 10907 #ifdef CONFIG_FAIR_GROUP_SCHED 10908 { 10909 .name = "shares", 10910 .read_u64 = cpu_shares_read_u64, 10911 .write_u64 = cpu_shares_write_u64, 10912 }, 10913 { 10914 .name = "idle", 10915 .read_s64 = cpu_idle_read_s64, 10916 .write_s64 = cpu_idle_write_s64, 10917 }, 10918 #endif 10919 #ifdef CONFIG_CFS_BANDWIDTH 10920 { 10921 .name = "cfs_quota_us", 10922 .read_s64 = cpu_cfs_quota_read_s64, 10923 .write_s64 = cpu_cfs_quota_write_s64, 10924 }, 10925 { 10926 .name = "cfs_period_us", 10927 .read_u64 = cpu_cfs_period_read_u64, 10928 .write_u64 = cpu_cfs_period_write_u64, 10929 }, 10930 { 10931 .name = "cfs_burst_us", 10932 .read_u64 = cpu_cfs_burst_read_u64, 10933 .write_u64 = cpu_cfs_burst_write_u64, 10934 }, 10935 { 10936 .name = "stat", 10937 .seq_show = cpu_cfs_stat_show, 10938 }, 10939 #endif 10940 #ifdef CONFIG_RT_GROUP_SCHED 10941 { 10942 .name = "rt_runtime_us", 10943 .read_s64 = cpu_rt_runtime_read, 10944 .write_s64 = cpu_rt_runtime_write, 10945 }, 10946 { 10947 .name = "rt_period_us", 10948 .read_u64 = cpu_rt_period_read_uint, 10949 .write_u64 = cpu_rt_period_write_uint, 10950 }, 10951 #endif 10952 #ifdef CONFIG_UCLAMP_TASK_GROUP 10953 { 10954 .name = "uclamp.min", 10955 .flags = CFTYPE_NOT_ON_ROOT, 10956 .seq_show = cpu_uclamp_min_show, 10957 .write = cpu_uclamp_min_write, 10958 }, 10959 { 10960 .name = "uclamp.max", 10961 .flags = CFTYPE_NOT_ON_ROOT, 10962 .seq_show = cpu_uclamp_max_show, 10963 .write = cpu_uclamp_max_write, 10964 }, 10965 #endif 10966 { } /* Terminate */ 10967 }; 10968 10969 static int cpu_extra_stat_show(struct seq_file *sf, 10970 struct cgroup_subsys_state *css) 10971 { 10972 #ifdef CONFIG_CFS_BANDWIDTH 10973 { 10974 struct task_group *tg = css_tg(css); 10975 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10976 u64 throttled_usec, burst_usec; 10977 10978 throttled_usec = cfs_b->throttled_time; 10979 do_div(throttled_usec, NSEC_PER_USEC); 10980 burst_usec = cfs_b->burst_time; 10981 do_div(burst_usec, NSEC_PER_USEC); 10982 10983 seq_printf(sf, "nr_periods %d\n" 10984 "nr_throttled %d\n" 10985 "throttled_usec %llu\n" 10986 "nr_bursts %d\n" 10987 "burst_usec %llu\n", 10988 cfs_b->nr_periods, cfs_b->nr_throttled, 10989 throttled_usec, cfs_b->nr_burst, burst_usec); 10990 } 10991 #endif 10992 return 0; 10993 } 10994 10995 #ifdef CONFIG_FAIR_GROUP_SCHED 10996 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10997 struct cftype *cft) 10998 { 10999 struct task_group *tg = css_tg(css); 11000 u64 weight = scale_load_down(tg->shares); 11001 11002 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11003 } 11004 11005 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11006 struct cftype *cft, u64 weight) 11007 { 11008 /* 11009 * cgroup weight knobs should use the common MIN, DFL and MAX 11010 * values which are 1, 100 and 10000 respectively. While it loses 11011 * a bit of range on both ends, it maps pretty well onto the shares 11012 * value used by scheduler and the round-trip conversions preserve 11013 * the original value over the entire range. 11014 */ 11015 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11016 return -ERANGE; 11017 11018 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11019 11020 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11021 } 11022 11023 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11024 struct cftype *cft) 11025 { 11026 unsigned long weight = scale_load_down(css_tg(css)->shares); 11027 int last_delta = INT_MAX; 11028 int prio, delta; 11029 11030 /* find the closest nice value to the current weight */ 11031 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11032 delta = abs(sched_prio_to_weight[prio] - weight); 11033 if (delta >= last_delta) 11034 break; 11035 last_delta = delta; 11036 } 11037 11038 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11039 } 11040 11041 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11042 struct cftype *cft, s64 nice) 11043 { 11044 unsigned long weight; 11045 int idx; 11046 11047 if (nice < MIN_NICE || nice > MAX_NICE) 11048 return -ERANGE; 11049 11050 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11051 idx = array_index_nospec(idx, 40); 11052 weight = sched_prio_to_weight[idx]; 11053 11054 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11055 } 11056 #endif 11057 11058 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11059 long period, long quota) 11060 { 11061 if (quota < 0) 11062 seq_puts(sf, "max"); 11063 else 11064 seq_printf(sf, "%ld", quota); 11065 11066 seq_printf(sf, " %ld\n", period); 11067 } 11068 11069 /* caller should put the current value in *@periodp before calling */ 11070 static int __maybe_unused cpu_period_quota_parse(char *buf, 11071 u64 *periodp, u64 *quotap) 11072 { 11073 char tok[21]; /* U64_MAX */ 11074 11075 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11076 return -EINVAL; 11077 11078 *periodp *= NSEC_PER_USEC; 11079 11080 if (sscanf(tok, "%llu", quotap)) 11081 *quotap *= NSEC_PER_USEC; 11082 else if (!strcmp(tok, "max")) 11083 *quotap = RUNTIME_INF; 11084 else 11085 return -EINVAL; 11086 11087 return 0; 11088 } 11089 11090 #ifdef CONFIG_CFS_BANDWIDTH 11091 static int cpu_max_show(struct seq_file *sf, void *v) 11092 { 11093 struct task_group *tg = css_tg(seq_css(sf)); 11094 11095 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11096 return 0; 11097 } 11098 11099 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11100 char *buf, size_t nbytes, loff_t off) 11101 { 11102 struct task_group *tg = css_tg(of_css(of)); 11103 u64 period = tg_get_cfs_period(tg); 11104 u64 burst = tg_get_cfs_burst(tg); 11105 u64 quota; 11106 int ret; 11107 11108 ret = cpu_period_quota_parse(buf, &period, "a); 11109 if (!ret) 11110 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11111 return ret ?: nbytes; 11112 } 11113 #endif 11114 11115 static struct cftype cpu_files[] = { 11116 #ifdef CONFIG_FAIR_GROUP_SCHED 11117 { 11118 .name = "weight", 11119 .flags = CFTYPE_NOT_ON_ROOT, 11120 .read_u64 = cpu_weight_read_u64, 11121 .write_u64 = cpu_weight_write_u64, 11122 }, 11123 { 11124 .name = "weight.nice", 11125 .flags = CFTYPE_NOT_ON_ROOT, 11126 .read_s64 = cpu_weight_nice_read_s64, 11127 .write_s64 = cpu_weight_nice_write_s64, 11128 }, 11129 { 11130 .name = "idle", 11131 .flags = CFTYPE_NOT_ON_ROOT, 11132 .read_s64 = cpu_idle_read_s64, 11133 .write_s64 = cpu_idle_write_s64, 11134 }, 11135 #endif 11136 #ifdef CONFIG_CFS_BANDWIDTH 11137 { 11138 .name = "max", 11139 .flags = CFTYPE_NOT_ON_ROOT, 11140 .seq_show = cpu_max_show, 11141 .write = cpu_max_write, 11142 }, 11143 { 11144 .name = "max.burst", 11145 .flags = CFTYPE_NOT_ON_ROOT, 11146 .read_u64 = cpu_cfs_burst_read_u64, 11147 .write_u64 = cpu_cfs_burst_write_u64, 11148 }, 11149 #endif 11150 #ifdef CONFIG_UCLAMP_TASK_GROUP 11151 { 11152 .name = "uclamp.min", 11153 .flags = CFTYPE_NOT_ON_ROOT, 11154 .seq_show = cpu_uclamp_min_show, 11155 .write = cpu_uclamp_min_write, 11156 }, 11157 { 11158 .name = "uclamp.max", 11159 .flags = CFTYPE_NOT_ON_ROOT, 11160 .seq_show = cpu_uclamp_max_show, 11161 .write = cpu_uclamp_max_write, 11162 }, 11163 #endif 11164 { } /* terminate */ 11165 }; 11166 11167 struct cgroup_subsys cpu_cgrp_subsys = { 11168 .css_alloc = cpu_cgroup_css_alloc, 11169 .css_online = cpu_cgroup_css_online, 11170 .css_released = cpu_cgroup_css_released, 11171 .css_free = cpu_cgroup_css_free, 11172 .css_extra_stat_show = cpu_extra_stat_show, 11173 .fork = cpu_cgroup_fork, 11174 .can_attach = cpu_cgroup_can_attach, 11175 .attach = cpu_cgroup_attach, 11176 .legacy_cftypes = cpu_legacy_files, 11177 .dfl_cftypes = cpu_files, 11178 .early_init = true, 11179 .threaded = true, 11180 }; 11181 11182 #endif /* CONFIG_CGROUP_SCHED */ 11183 11184 void dump_cpu_task(int cpu) 11185 { 11186 pr_info("Task dump for CPU %d:\n", cpu); 11187 sched_show_task(cpu_curr(cpu)); 11188 } 11189 11190 /* 11191 * Nice levels are multiplicative, with a gentle 10% change for every 11192 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11193 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11194 * that remained on nice 0. 11195 * 11196 * The "10% effect" is relative and cumulative: from _any_ nice level, 11197 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11198 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11199 * If a task goes up by ~10% and another task goes down by ~10% then 11200 * the relative distance between them is ~25%.) 11201 */ 11202 const int sched_prio_to_weight[40] = { 11203 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11204 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11205 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11206 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11207 /* 0 */ 1024, 820, 655, 526, 423, 11208 /* 5 */ 335, 272, 215, 172, 137, 11209 /* 10 */ 110, 87, 70, 56, 45, 11210 /* 15 */ 36, 29, 23, 18, 15, 11211 }; 11212 11213 /* 11214 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11215 * 11216 * In cases where the weight does not change often, we can use the 11217 * precalculated inverse to speed up arithmetics by turning divisions 11218 * into multiplications: 11219 */ 11220 const u32 sched_prio_to_wmult[40] = { 11221 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11222 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11223 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11224 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11225 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11226 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11227 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11228 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11229 }; 11230 11231 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11232 { 11233 trace_sched_update_nr_running_tp(rq, count); 11234 } 11235