1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(const struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(const struct task_struct *a, 178 const struct task_struct *b, bool in_fi) 179 { 180 181 int pa = __task_prio(a), pb = __task_prio(b); 182 183 if (-pa < -pb) 184 return true; 185 186 if (-pb < -pa) 187 return false; 188 189 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 190 return !dl_time_before(a->dl.deadline, b->dl.deadline); 191 192 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 193 return cfs_prio_less(a, b, in_fi); 194 195 return false; 196 } 197 198 static inline bool __sched_core_less(const struct task_struct *a, 199 const struct task_struct *b) 200 { 201 if (a->core_cookie < b->core_cookie) 202 return true; 203 204 if (a->core_cookie > b->core_cookie) 205 return false; 206 207 /* flip prio, so high prio is leftmost */ 208 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 209 return true; 210 211 return false; 212 } 213 214 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 215 216 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 217 { 218 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 219 } 220 221 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 222 { 223 const struct task_struct *p = __node_2_sc(node); 224 unsigned long cookie = (unsigned long)key; 225 226 if (cookie < p->core_cookie) 227 return -1; 228 229 if (cookie > p->core_cookie) 230 return 1; 231 232 return 0; 233 } 234 235 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 236 { 237 rq->core->core_task_seq++; 238 239 if (!p->core_cookie) 240 return; 241 242 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 243 } 244 245 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 246 { 247 rq->core->core_task_seq++; 248 249 if (sched_core_enqueued(p)) { 250 rb_erase(&p->core_node, &rq->core_tree); 251 RB_CLEAR_NODE(&p->core_node); 252 } 253 254 /* 255 * Migrating the last task off the cpu, with the cpu in forced idle 256 * state. Reschedule to create an accounting edge for forced idle, 257 * and re-examine whether the core is still in forced idle state. 258 */ 259 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 260 rq->core->core_forceidle_count && rq->curr == rq->idle) 261 resched_curr(rq); 262 } 263 264 static int sched_task_is_throttled(struct task_struct *p, int cpu) 265 { 266 if (p->sched_class->task_is_throttled) 267 return p->sched_class->task_is_throttled(p, cpu); 268 269 return 0; 270 } 271 272 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 273 { 274 struct rb_node *node = &p->core_node; 275 int cpu = task_cpu(p); 276 277 do { 278 node = rb_next(node); 279 if (!node) 280 return NULL; 281 282 p = __node_2_sc(node); 283 if (p->core_cookie != cookie) 284 return NULL; 285 286 } while (sched_task_is_throttled(p, cpu)); 287 288 return p; 289 } 290 291 /* 292 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 293 * If no suitable task is found, NULL will be returned. 294 */ 295 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 296 { 297 struct task_struct *p; 298 struct rb_node *node; 299 300 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 301 if (!node) 302 return NULL; 303 304 p = __node_2_sc(node); 305 if (!sched_task_is_throttled(p, rq->cpu)) 306 return p; 307 308 return sched_core_next(p, cookie); 309 } 310 311 /* 312 * Magic required such that: 313 * 314 * raw_spin_rq_lock(rq); 315 * ... 316 * raw_spin_rq_unlock(rq); 317 * 318 * ends up locking and unlocking the _same_ lock, and all CPUs 319 * always agree on what rq has what lock. 320 * 321 * XXX entirely possible to selectively enable cores, don't bother for now. 322 */ 323 324 static DEFINE_MUTEX(sched_core_mutex); 325 static atomic_t sched_core_count; 326 static struct cpumask sched_core_mask; 327 328 static void sched_core_lock(int cpu, unsigned long *flags) 329 { 330 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 331 int t, i = 0; 332 333 local_irq_save(*flags); 334 for_each_cpu(t, smt_mask) 335 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 336 } 337 338 static void sched_core_unlock(int cpu, unsigned long *flags) 339 { 340 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 341 int t; 342 343 for_each_cpu(t, smt_mask) 344 raw_spin_unlock(&cpu_rq(t)->__lock); 345 local_irq_restore(*flags); 346 } 347 348 static void __sched_core_flip(bool enabled) 349 { 350 unsigned long flags; 351 int cpu, t; 352 353 cpus_read_lock(); 354 355 /* 356 * Toggle the online cores, one by one. 357 */ 358 cpumask_copy(&sched_core_mask, cpu_online_mask); 359 for_each_cpu(cpu, &sched_core_mask) { 360 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 361 362 sched_core_lock(cpu, &flags); 363 364 for_each_cpu(t, smt_mask) 365 cpu_rq(t)->core_enabled = enabled; 366 367 cpu_rq(cpu)->core->core_forceidle_start = 0; 368 369 sched_core_unlock(cpu, &flags); 370 371 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 372 } 373 374 /* 375 * Toggle the offline CPUs. 376 */ 377 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 378 cpu_rq(cpu)->core_enabled = enabled; 379 380 cpus_read_unlock(); 381 } 382 383 static void sched_core_assert_empty(void) 384 { 385 int cpu; 386 387 for_each_possible_cpu(cpu) 388 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 389 } 390 391 static void __sched_core_enable(void) 392 { 393 static_branch_enable(&__sched_core_enabled); 394 /* 395 * Ensure all previous instances of raw_spin_rq_*lock() have finished 396 * and future ones will observe !sched_core_disabled(). 397 */ 398 synchronize_rcu(); 399 __sched_core_flip(true); 400 sched_core_assert_empty(); 401 } 402 403 static void __sched_core_disable(void) 404 { 405 sched_core_assert_empty(); 406 __sched_core_flip(false); 407 static_branch_disable(&__sched_core_enabled); 408 } 409 410 void sched_core_get(void) 411 { 412 if (atomic_inc_not_zero(&sched_core_count)) 413 return; 414 415 mutex_lock(&sched_core_mutex); 416 if (!atomic_read(&sched_core_count)) 417 __sched_core_enable(); 418 419 smp_mb__before_atomic(); 420 atomic_inc(&sched_core_count); 421 mutex_unlock(&sched_core_mutex); 422 } 423 424 static void __sched_core_put(struct work_struct *work) 425 { 426 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 427 __sched_core_disable(); 428 mutex_unlock(&sched_core_mutex); 429 } 430 } 431 432 void sched_core_put(void) 433 { 434 static DECLARE_WORK(_work, __sched_core_put); 435 436 /* 437 * "There can be only one" 438 * 439 * Either this is the last one, or we don't actually need to do any 440 * 'work'. If it is the last *again*, we rely on 441 * WORK_STRUCT_PENDING_BIT. 442 */ 443 if (!atomic_add_unless(&sched_core_count, -1, 1)) 444 schedule_work(&_work); 445 } 446 447 #else /* !CONFIG_SCHED_CORE */ 448 449 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 450 static inline void 451 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 452 453 #endif /* CONFIG_SCHED_CORE */ 454 455 /* 456 * Serialization rules: 457 * 458 * Lock order: 459 * 460 * p->pi_lock 461 * rq->lock 462 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 463 * 464 * rq1->lock 465 * rq2->lock where: rq1 < rq2 466 * 467 * Regular state: 468 * 469 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 470 * local CPU's rq->lock, it optionally removes the task from the runqueue and 471 * always looks at the local rq data structures to find the most eligible task 472 * to run next. 473 * 474 * Task enqueue is also under rq->lock, possibly taken from another CPU. 475 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 476 * the local CPU to avoid bouncing the runqueue state around [ see 477 * ttwu_queue_wakelist() ] 478 * 479 * Task wakeup, specifically wakeups that involve migration, are horribly 480 * complicated to avoid having to take two rq->locks. 481 * 482 * Special state: 483 * 484 * System-calls and anything external will use task_rq_lock() which acquires 485 * both p->pi_lock and rq->lock. As a consequence the state they change is 486 * stable while holding either lock: 487 * 488 * - sched_setaffinity()/ 489 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 490 * - set_user_nice(): p->se.load, p->*prio 491 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 492 * p->se.load, p->rt_priority, 493 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 494 * - sched_setnuma(): p->numa_preferred_nid 495 * - sched_move_task(): p->sched_task_group 496 * - uclamp_update_active() p->uclamp* 497 * 498 * p->state <- TASK_*: 499 * 500 * is changed locklessly using set_current_state(), __set_current_state() or 501 * set_special_state(), see their respective comments, or by 502 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 503 * concurrent self. 504 * 505 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 506 * 507 * is set by activate_task() and cleared by deactivate_task(), under 508 * rq->lock. Non-zero indicates the task is runnable, the special 509 * ON_RQ_MIGRATING state is used for migration without holding both 510 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 511 * 512 * p->on_cpu <- { 0, 1 }: 513 * 514 * is set by prepare_task() and cleared by finish_task() such that it will be 515 * set before p is scheduled-in and cleared after p is scheduled-out, both 516 * under rq->lock. Non-zero indicates the task is running on its CPU. 517 * 518 * [ The astute reader will observe that it is possible for two tasks on one 519 * CPU to have ->on_cpu = 1 at the same time. ] 520 * 521 * task_cpu(p): is changed by set_task_cpu(), the rules are: 522 * 523 * - Don't call set_task_cpu() on a blocked task: 524 * 525 * We don't care what CPU we're not running on, this simplifies hotplug, 526 * the CPU assignment of blocked tasks isn't required to be valid. 527 * 528 * - for try_to_wake_up(), called under p->pi_lock: 529 * 530 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 531 * 532 * - for migration called under rq->lock: 533 * [ see task_on_rq_migrating() in task_rq_lock() ] 534 * 535 * o move_queued_task() 536 * o detach_task() 537 * 538 * - for migration called under double_rq_lock(): 539 * 540 * o __migrate_swap_task() 541 * o push_rt_task() / pull_rt_task() 542 * o push_dl_task() / pull_dl_task() 543 * o dl_task_offline_migration() 544 * 545 */ 546 547 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 548 { 549 raw_spinlock_t *lock; 550 551 /* Matches synchronize_rcu() in __sched_core_enable() */ 552 preempt_disable(); 553 if (sched_core_disabled()) { 554 raw_spin_lock_nested(&rq->__lock, subclass); 555 /* preempt_count *MUST* be > 1 */ 556 preempt_enable_no_resched(); 557 return; 558 } 559 560 for (;;) { 561 lock = __rq_lockp(rq); 562 raw_spin_lock_nested(lock, subclass); 563 if (likely(lock == __rq_lockp(rq))) { 564 /* preempt_count *MUST* be > 1 */ 565 preempt_enable_no_resched(); 566 return; 567 } 568 raw_spin_unlock(lock); 569 } 570 } 571 572 bool raw_spin_rq_trylock(struct rq *rq) 573 { 574 raw_spinlock_t *lock; 575 bool ret; 576 577 /* Matches synchronize_rcu() in __sched_core_enable() */ 578 preempt_disable(); 579 if (sched_core_disabled()) { 580 ret = raw_spin_trylock(&rq->__lock); 581 preempt_enable(); 582 return ret; 583 } 584 585 for (;;) { 586 lock = __rq_lockp(rq); 587 ret = raw_spin_trylock(lock); 588 if (!ret || (likely(lock == __rq_lockp(rq)))) { 589 preempt_enable(); 590 return ret; 591 } 592 raw_spin_unlock(lock); 593 } 594 } 595 596 void raw_spin_rq_unlock(struct rq *rq) 597 { 598 raw_spin_unlock(rq_lockp(rq)); 599 } 600 601 #ifdef CONFIG_SMP 602 /* 603 * double_rq_lock - safely lock two runqueues 604 */ 605 void double_rq_lock(struct rq *rq1, struct rq *rq2) 606 { 607 lockdep_assert_irqs_disabled(); 608 609 if (rq_order_less(rq2, rq1)) 610 swap(rq1, rq2); 611 612 raw_spin_rq_lock(rq1); 613 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 614 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 615 616 double_rq_clock_clear_update(rq1, rq2); 617 } 618 #endif 619 620 /* 621 * __task_rq_lock - lock the rq @p resides on. 622 */ 623 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 624 __acquires(rq->lock) 625 { 626 struct rq *rq; 627 628 lockdep_assert_held(&p->pi_lock); 629 630 for (;;) { 631 rq = task_rq(p); 632 raw_spin_rq_lock(rq); 633 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 634 rq_pin_lock(rq, rf); 635 return rq; 636 } 637 raw_spin_rq_unlock(rq); 638 639 while (unlikely(task_on_rq_migrating(p))) 640 cpu_relax(); 641 } 642 } 643 644 /* 645 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 646 */ 647 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 648 __acquires(p->pi_lock) 649 __acquires(rq->lock) 650 { 651 struct rq *rq; 652 653 for (;;) { 654 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 655 rq = task_rq(p); 656 raw_spin_rq_lock(rq); 657 /* 658 * move_queued_task() task_rq_lock() 659 * 660 * ACQUIRE (rq->lock) 661 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 662 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 663 * [S] ->cpu = new_cpu [L] task_rq() 664 * [L] ->on_rq 665 * RELEASE (rq->lock) 666 * 667 * If we observe the old CPU in task_rq_lock(), the acquire of 668 * the old rq->lock will fully serialize against the stores. 669 * 670 * If we observe the new CPU in task_rq_lock(), the address 671 * dependency headed by '[L] rq = task_rq()' and the acquire 672 * will pair with the WMB to ensure we then also see migrating. 673 */ 674 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 675 rq_pin_lock(rq, rf); 676 return rq; 677 } 678 raw_spin_rq_unlock(rq); 679 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 680 681 while (unlikely(task_on_rq_migrating(p))) 682 cpu_relax(); 683 } 684 } 685 686 /* 687 * RQ-clock updating methods: 688 */ 689 690 static void update_rq_clock_task(struct rq *rq, s64 delta) 691 { 692 /* 693 * In theory, the compile should just see 0 here, and optimize out the call 694 * to sched_rt_avg_update. But I don't trust it... 695 */ 696 s64 __maybe_unused steal = 0, irq_delta = 0; 697 698 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 699 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 700 701 /* 702 * Since irq_time is only updated on {soft,}irq_exit, we might run into 703 * this case when a previous update_rq_clock() happened inside a 704 * {soft,}irq region. 705 * 706 * When this happens, we stop ->clock_task and only update the 707 * prev_irq_time stamp to account for the part that fit, so that a next 708 * update will consume the rest. This ensures ->clock_task is 709 * monotonic. 710 * 711 * It does however cause some slight miss-attribution of {soft,}irq 712 * time, a more accurate solution would be to update the irq_time using 713 * the current rq->clock timestamp, except that would require using 714 * atomic ops. 715 */ 716 if (irq_delta > delta) 717 irq_delta = delta; 718 719 rq->prev_irq_time += irq_delta; 720 delta -= irq_delta; 721 psi_account_irqtime(rq->curr, irq_delta); 722 #endif 723 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 724 if (static_key_false((¶virt_steal_rq_enabled))) { 725 steal = paravirt_steal_clock(cpu_of(rq)); 726 steal -= rq->prev_steal_time_rq; 727 728 if (unlikely(steal > delta)) 729 steal = delta; 730 731 rq->prev_steal_time_rq += steal; 732 delta -= steal; 733 } 734 #endif 735 736 rq->clock_task += delta; 737 738 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 739 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 740 update_irq_load_avg(rq, irq_delta + steal); 741 #endif 742 update_rq_clock_pelt(rq, delta); 743 } 744 745 void update_rq_clock(struct rq *rq) 746 { 747 s64 delta; 748 749 lockdep_assert_rq_held(rq); 750 751 if (rq->clock_update_flags & RQCF_ACT_SKIP) 752 return; 753 754 #ifdef CONFIG_SCHED_DEBUG 755 if (sched_feat(WARN_DOUBLE_CLOCK)) 756 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 757 rq->clock_update_flags |= RQCF_UPDATED; 758 #endif 759 760 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 761 if (delta < 0) 762 return; 763 rq->clock += delta; 764 update_rq_clock_task(rq, delta); 765 } 766 767 #ifdef CONFIG_SCHED_HRTICK 768 /* 769 * Use HR-timers to deliver accurate preemption points. 770 */ 771 772 static void hrtick_clear(struct rq *rq) 773 { 774 if (hrtimer_active(&rq->hrtick_timer)) 775 hrtimer_cancel(&rq->hrtick_timer); 776 } 777 778 /* 779 * High-resolution timer tick. 780 * Runs from hardirq context with interrupts disabled. 781 */ 782 static enum hrtimer_restart hrtick(struct hrtimer *timer) 783 { 784 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 785 struct rq_flags rf; 786 787 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 788 789 rq_lock(rq, &rf); 790 update_rq_clock(rq); 791 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 792 rq_unlock(rq, &rf); 793 794 return HRTIMER_NORESTART; 795 } 796 797 #ifdef CONFIG_SMP 798 799 static void __hrtick_restart(struct rq *rq) 800 { 801 struct hrtimer *timer = &rq->hrtick_timer; 802 ktime_t time = rq->hrtick_time; 803 804 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 805 } 806 807 /* 808 * called from hardirq (IPI) context 809 */ 810 static void __hrtick_start(void *arg) 811 { 812 struct rq *rq = arg; 813 struct rq_flags rf; 814 815 rq_lock(rq, &rf); 816 __hrtick_restart(rq); 817 rq_unlock(rq, &rf); 818 } 819 820 /* 821 * Called to set the hrtick timer state. 822 * 823 * called with rq->lock held and irqs disabled 824 */ 825 void hrtick_start(struct rq *rq, u64 delay) 826 { 827 struct hrtimer *timer = &rq->hrtick_timer; 828 s64 delta; 829 830 /* 831 * Don't schedule slices shorter than 10000ns, that just 832 * doesn't make sense and can cause timer DoS. 833 */ 834 delta = max_t(s64, delay, 10000LL); 835 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 836 837 if (rq == this_rq()) 838 __hrtick_restart(rq); 839 else 840 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 841 } 842 843 #else 844 /* 845 * Called to set the hrtick timer state. 846 * 847 * called with rq->lock held and irqs disabled 848 */ 849 void hrtick_start(struct rq *rq, u64 delay) 850 { 851 /* 852 * Don't schedule slices shorter than 10000ns, that just 853 * doesn't make sense. Rely on vruntime for fairness. 854 */ 855 delay = max_t(u64, delay, 10000LL); 856 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 857 HRTIMER_MODE_REL_PINNED_HARD); 858 } 859 860 #endif /* CONFIG_SMP */ 861 862 static void hrtick_rq_init(struct rq *rq) 863 { 864 #ifdef CONFIG_SMP 865 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 866 #endif 867 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 868 rq->hrtick_timer.function = hrtick; 869 } 870 #else /* CONFIG_SCHED_HRTICK */ 871 static inline void hrtick_clear(struct rq *rq) 872 { 873 } 874 875 static inline void hrtick_rq_init(struct rq *rq) 876 { 877 } 878 #endif /* CONFIG_SCHED_HRTICK */ 879 880 /* 881 * cmpxchg based fetch_or, macro so it works for different integer types 882 */ 883 #define fetch_or(ptr, mask) \ 884 ({ \ 885 typeof(ptr) _ptr = (ptr); \ 886 typeof(mask) _mask = (mask); \ 887 typeof(*_ptr) _val = *_ptr; \ 888 \ 889 do { \ 890 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 891 _val; \ 892 }) 893 894 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 895 /* 896 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 897 * this avoids any races wrt polling state changes and thereby avoids 898 * spurious IPIs. 899 */ 900 static inline bool set_nr_and_not_polling(struct task_struct *p) 901 { 902 struct thread_info *ti = task_thread_info(p); 903 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 904 } 905 906 /* 907 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 908 * 909 * If this returns true, then the idle task promises to call 910 * sched_ttwu_pending() and reschedule soon. 911 */ 912 static bool set_nr_if_polling(struct task_struct *p) 913 { 914 struct thread_info *ti = task_thread_info(p); 915 typeof(ti->flags) val = READ_ONCE(ti->flags); 916 917 for (;;) { 918 if (!(val & _TIF_POLLING_NRFLAG)) 919 return false; 920 if (val & _TIF_NEED_RESCHED) 921 return true; 922 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 923 break; 924 } 925 return true; 926 } 927 928 #else 929 static inline bool set_nr_and_not_polling(struct task_struct *p) 930 { 931 set_tsk_need_resched(p); 932 return true; 933 } 934 935 #ifdef CONFIG_SMP 936 static inline bool set_nr_if_polling(struct task_struct *p) 937 { 938 return false; 939 } 940 #endif 941 #endif 942 943 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 944 { 945 struct wake_q_node *node = &task->wake_q; 946 947 /* 948 * Atomically grab the task, if ->wake_q is !nil already it means 949 * it's already queued (either by us or someone else) and will get the 950 * wakeup due to that. 951 * 952 * In order to ensure that a pending wakeup will observe our pending 953 * state, even in the failed case, an explicit smp_mb() must be used. 954 */ 955 smp_mb__before_atomic(); 956 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 957 return false; 958 959 /* 960 * The head is context local, there can be no concurrency. 961 */ 962 *head->lastp = node; 963 head->lastp = &node->next; 964 return true; 965 } 966 967 /** 968 * wake_q_add() - queue a wakeup for 'later' waking. 969 * @head: the wake_q_head to add @task to 970 * @task: the task to queue for 'later' wakeup 971 * 972 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 973 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 974 * instantly. 975 * 976 * This function must be used as-if it were wake_up_process(); IOW the task 977 * must be ready to be woken at this location. 978 */ 979 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 980 { 981 if (__wake_q_add(head, task)) 982 get_task_struct(task); 983 } 984 985 /** 986 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 987 * @head: the wake_q_head to add @task to 988 * @task: the task to queue for 'later' wakeup 989 * 990 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 991 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 992 * instantly. 993 * 994 * This function must be used as-if it were wake_up_process(); IOW the task 995 * must be ready to be woken at this location. 996 * 997 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 998 * that already hold reference to @task can call the 'safe' version and trust 999 * wake_q to do the right thing depending whether or not the @task is already 1000 * queued for wakeup. 1001 */ 1002 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1003 { 1004 if (!__wake_q_add(head, task)) 1005 put_task_struct(task); 1006 } 1007 1008 void wake_up_q(struct wake_q_head *head) 1009 { 1010 struct wake_q_node *node = head->first; 1011 1012 while (node != WAKE_Q_TAIL) { 1013 struct task_struct *task; 1014 1015 task = container_of(node, struct task_struct, wake_q); 1016 /* Task can safely be re-inserted now: */ 1017 node = node->next; 1018 task->wake_q.next = NULL; 1019 1020 /* 1021 * wake_up_process() executes a full barrier, which pairs with 1022 * the queueing in wake_q_add() so as not to miss wakeups. 1023 */ 1024 wake_up_process(task); 1025 put_task_struct(task); 1026 } 1027 } 1028 1029 /* 1030 * resched_curr - mark rq's current task 'to be rescheduled now'. 1031 * 1032 * On UP this means the setting of the need_resched flag, on SMP it 1033 * might also involve a cross-CPU call to trigger the scheduler on 1034 * the target CPU. 1035 */ 1036 void resched_curr(struct rq *rq) 1037 { 1038 struct task_struct *curr = rq->curr; 1039 int cpu; 1040 1041 lockdep_assert_rq_held(rq); 1042 1043 if (test_tsk_need_resched(curr)) 1044 return; 1045 1046 cpu = cpu_of(rq); 1047 1048 if (cpu == smp_processor_id()) { 1049 set_tsk_need_resched(curr); 1050 set_preempt_need_resched(); 1051 return; 1052 } 1053 1054 if (set_nr_and_not_polling(curr)) 1055 smp_send_reschedule(cpu); 1056 else 1057 trace_sched_wake_idle_without_ipi(cpu); 1058 } 1059 1060 void resched_cpu(int cpu) 1061 { 1062 struct rq *rq = cpu_rq(cpu); 1063 unsigned long flags; 1064 1065 raw_spin_rq_lock_irqsave(rq, flags); 1066 if (cpu_online(cpu) || cpu == smp_processor_id()) 1067 resched_curr(rq); 1068 raw_spin_rq_unlock_irqrestore(rq, flags); 1069 } 1070 1071 #ifdef CONFIG_SMP 1072 #ifdef CONFIG_NO_HZ_COMMON 1073 /* 1074 * In the semi idle case, use the nearest busy CPU for migrating timers 1075 * from an idle CPU. This is good for power-savings. 1076 * 1077 * We don't do similar optimization for completely idle system, as 1078 * selecting an idle CPU will add more delays to the timers than intended 1079 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1080 */ 1081 int get_nohz_timer_target(void) 1082 { 1083 int i, cpu = smp_processor_id(), default_cpu = -1; 1084 struct sched_domain *sd; 1085 const struct cpumask *hk_mask; 1086 1087 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1088 if (!idle_cpu(cpu)) 1089 return cpu; 1090 default_cpu = cpu; 1091 } 1092 1093 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1094 1095 rcu_read_lock(); 1096 for_each_domain(cpu, sd) { 1097 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1098 if (cpu == i) 1099 continue; 1100 1101 if (!idle_cpu(i)) { 1102 cpu = i; 1103 goto unlock; 1104 } 1105 } 1106 } 1107 1108 if (default_cpu == -1) 1109 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1110 cpu = default_cpu; 1111 unlock: 1112 rcu_read_unlock(); 1113 return cpu; 1114 } 1115 1116 /* 1117 * When add_timer_on() enqueues a timer into the timer wheel of an 1118 * idle CPU then this timer might expire before the next timer event 1119 * which is scheduled to wake up that CPU. In case of a completely 1120 * idle system the next event might even be infinite time into the 1121 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1122 * leaves the inner idle loop so the newly added timer is taken into 1123 * account when the CPU goes back to idle and evaluates the timer 1124 * wheel for the next timer event. 1125 */ 1126 static void wake_up_idle_cpu(int cpu) 1127 { 1128 struct rq *rq = cpu_rq(cpu); 1129 1130 if (cpu == smp_processor_id()) 1131 return; 1132 1133 if (set_nr_and_not_polling(rq->idle)) 1134 smp_send_reschedule(cpu); 1135 else 1136 trace_sched_wake_idle_without_ipi(cpu); 1137 } 1138 1139 static bool wake_up_full_nohz_cpu(int cpu) 1140 { 1141 /* 1142 * We just need the target to call irq_exit() and re-evaluate 1143 * the next tick. The nohz full kick at least implies that. 1144 * If needed we can still optimize that later with an 1145 * empty IRQ. 1146 */ 1147 if (cpu_is_offline(cpu)) 1148 return true; /* Don't try to wake offline CPUs. */ 1149 if (tick_nohz_full_cpu(cpu)) { 1150 if (cpu != smp_processor_id() || 1151 tick_nohz_tick_stopped()) 1152 tick_nohz_full_kick_cpu(cpu); 1153 return true; 1154 } 1155 1156 return false; 1157 } 1158 1159 /* 1160 * Wake up the specified CPU. If the CPU is going offline, it is the 1161 * caller's responsibility to deal with the lost wakeup, for example, 1162 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1163 */ 1164 void wake_up_nohz_cpu(int cpu) 1165 { 1166 if (!wake_up_full_nohz_cpu(cpu)) 1167 wake_up_idle_cpu(cpu); 1168 } 1169 1170 static void nohz_csd_func(void *info) 1171 { 1172 struct rq *rq = info; 1173 int cpu = cpu_of(rq); 1174 unsigned int flags; 1175 1176 /* 1177 * Release the rq::nohz_csd. 1178 */ 1179 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1180 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1181 1182 rq->idle_balance = idle_cpu(cpu); 1183 if (rq->idle_balance && !need_resched()) { 1184 rq->nohz_idle_balance = flags; 1185 raise_softirq_irqoff(SCHED_SOFTIRQ); 1186 } 1187 } 1188 1189 #endif /* CONFIG_NO_HZ_COMMON */ 1190 1191 #ifdef CONFIG_NO_HZ_FULL 1192 bool sched_can_stop_tick(struct rq *rq) 1193 { 1194 int fifo_nr_running; 1195 1196 /* Deadline tasks, even if single, need the tick */ 1197 if (rq->dl.dl_nr_running) 1198 return false; 1199 1200 /* 1201 * If there are more than one RR tasks, we need the tick to affect the 1202 * actual RR behaviour. 1203 */ 1204 if (rq->rt.rr_nr_running) { 1205 if (rq->rt.rr_nr_running == 1) 1206 return true; 1207 else 1208 return false; 1209 } 1210 1211 /* 1212 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1213 * forced preemption between FIFO tasks. 1214 */ 1215 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1216 if (fifo_nr_running) 1217 return true; 1218 1219 /* 1220 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1221 * if there's more than one we need the tick for involuntary 1222 * preemption. 1223 */ 1224 if (rq->nr_running > 1) 1225 return false; 1226 1227 return true; 1228 } 1229 #endif /* CONFIG_NO_HZ_FULL */ 1230 #endif /* CONFIG_SMP */ 1231 1232 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1233 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1234 /* 1235 * Iterate task_group tree rooted at *from, calling @down when first entering a 1236 * node and @up when leaving it for the final time. 1237 * 1238 * Caller must hold rcu_lock or sufficient equivalent. 1239 */ 1240 int walk_tg_tree_from(struct task_group *from, 1241 tg_visitor down, tg_visitor up, void *data) 1242 { 1243 struct task_group *parent, *child; 1244 int ret; 1245 1246 parent = from; 1247 1248 down: 1249 ret = (*down)(parent, data); 1250 if (ret) 1251 goto out; 1252 list_for_each_entry_rcu(child, &parent->children, siblings) { 1253 parent = child; 1254 goto down; 1255 1256 up: 1257 continue; 1258 } 1259 ret = (*up)(parent, data); 1260 if (ret || parent == from) 1261 goto out; 1262 1263 child = parent; 1264 parent = parent->parent; 1265 if (parent) 1266 goto up; 1267 out: 1268 return ret; 1269 } 1270 1271 int tg_nop(struct task_group *tg, void *data) 1272 { 1273 return 0; 1274 } 1275 #endif 1276 1277 static void set_load_weight(struct task_struct *p, bool update_load) 1278 { 1279 int prio = p->static_prio - MAX_RT_PRIO; 1280 struct load_weight *load = &p->se.load; 1281 1282 /* 1283 * SCHED_IDLE tasks get minimal weight: 1284 */ 1285 if (task_has_idle_policy(p)) { 1286 load->weight = scale_load(WEIGHT_IDLEPRIO); 1287 load->inv_weight = WMULT_IDLEPRIO; 1288 return; 1289 } 1290 1291 /* 1292 * SCHED_OTHER tasks have to update their load when changing their 1293 * weight 1294 */ 1295 if (update_load && p->sched_class == &fair_sched_class) { 1296 reweight_task(p, prio); 1297 } else { 1298 load->weight = scale_load(sched_prio_to_weight[prio]); 1299 load->inv_weight = sched_prio_to_wmult[prio]; 1300 } 1301 } 1302 1303 #ifdef CONFIG_UCLAMP_TASK 1304 /* 1305 * Serializes updates of utilization clamp values 1306 * 1307 * The (slow-path) user-space triggers utilization clamp value updates which 1308 * can require updates on (fast-path) scheduler's data structures used to 1309 * support enqueue/dequeue operations. 1310 * While the per-CPU rq lock protects fast-path update operations, user-space 1311 * requests are serialized using a mutex to reduce the risk of conflicting 1312 * updates or API abuses. 1313 */ 1314 static DEFINE_MUTEX(uclamp_mutex); 1315 1316 /* Max allowed minimum utilization */ 1317 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1318 1319 /* Max allowed maximum utilization */ 1320 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1321 1322 /* 1323 * By default RT tasks run at the maximum performance point/capacity of the 1324 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1325 * SCHED_CAPACITY_SCALE. 1326 * 1327 * This knob allows admins to change the default behavior when uclamp is being 1328 * used. In battery powered devices, particularly, running at the maximum 1329 * capacity and frequency will increase energy consumption and shorten the 1330 * battery life. 1331 * 1332 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1333 * 1334 * This knob will not override the system default sched_util_clamp_min defined 1335 * above. 1336 */ 1337 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1338 1339 /* All clamps are required to be less or equal than these values */ 1340 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1341 1342 /* 1343 * This static key is used to reduce the uclamp overhead in the fast path. It 1344 * primarily disables the call to uclamp_rq_{inc, dec}() in 1345 * enqueue/dequeue_task(). 1346 * 1347 * This allows users to continue to enable uclamp in their kernel config with 1348 * minimum uclamp overhead in the fast path. 1349 * 1350 * As soon as userspace modifies any of the uclamp knobs, the static key is 1351 * enabled, since we have an actual users that make use of uclamp 1352 * functionality. 1353 * 1354 * The knobs that would enable this static key are: 1355 * 1356 * * A task modifying its uclamp value with sched_setattr(). 1357 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1358 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1359 */ 1360 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1361 1362 /* Integer rounded range for each bucket */ 1363 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1364 1365 #define for_each_clamp_id(clamp_id) \ 1366 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1367 1368 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1369 { 1370 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1371 } 1372 1373 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1374 { 1375 if (clamp_id == UCLAMP_MIN) 1376 return 0; 1377 return SCHED_CAPACITY_SCALE; 1378 } 1379 1380 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1381 unsigned int value, bool user_defined) 1382 { 1383 uc_se->value = value; 1384 uc_se->bucket_id = uclamp_bucket_id(value); 1385 uc_se->user_defined = user_defined; 1386 } 1387 1388 static inline unsigned int 1389 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1390 unsigned int clamp_value) 1391 { 1392 /* 1393 * Avoid blocked utilization pushing up the frequency when we go 1394 * idle (which drops the max-clamp) by retaining the last known 1395 * max-clamp. 1396 */ 1397 if (clamp_id == UCLAMP_MAX) { 1398 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1399 return clamp_value; 1400 } 1401 1402 return uclamp_none(UCLAMP_MIN); 1403 } 1404 1405 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1406 unsigned int clamp_value) 1407 { 1408 /* Reset max-clamp retention only on idle exit */ 1409 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1410 return; 1411 1412 uclamp_rq_set(rq, clamp_id, clamp_value); 1413 } 1414 1415 static inline 1416 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1417 unsigned int clamp_value) 1418 { 1419 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1420 int bucket_id = UCLAMP_BUCKETS - 1; 1421 1422 /* 1423 * Since both min and max clamps are max aggregated, find the 1424 * top most bucket with tasks in. 1425 */ 1426 for ( ; bucket_id >= 0; bucket_id--) { 1427 if (!bucket[bucket_id].tasks) 1428 continue; 1429 return bucket[bucket_id].value; 1430 } 1431 1432 /* No tasks -- default clamp values */ 1433 return uclamp_idle_value(rq, clamp_id, clamp_value); 1434 } 1435 1436 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 unsigned int default_util_min; 1439 struct uclamp_se *uc_se; 1440 1441 lockdep_assert_held(&p->pi_lock); 1442 1443 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1444 1445 /* Only sync if user didn't override the default */ 1446 if (uc_se->user_defined) 1447 return; 1448 1449 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1450 uclamp_se_set(uc_se, default_util_min, false); 1451 } 1452 1453 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1454 { 1455 struct rq_flags rf; 1456 struct rq *rq; 1457 1458 if (!rt_task(p)) 1459 return; 1460 1461 /* Protect updates to p->uclamp_* */ 1462 rq = task_rq_lock(p, &rf); 1463 __uclamp_update_util_min_rt_default(p); 1464 task_rq_unlock(rq, p, &rf); 1465 } 1466 1467 static inline struct uclamp_se 1468 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1469 { 1470 /* Copy by value as we could modify it */ 1471 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1472 #ifdef CONFIG_UCLAMP_TASK_GROUP 1473 unsigned int tg_min, tg_max, value; 1474 1475 /* 1476 * Tasks in autogroups or root task group will be 1477 * restricted by system defaults. 1478 */ 1479 if (task_group_is_autogroup(task_group(p))) 1480 return uc_req; 1481 if (task_group(p) == &root_task_group) 1482 return uc_req; 1483 1484 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1485 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1486 value = uc_req.value; 1487 value = clamp(value, tg_min, tg_max); 1488 uclamp_se_set(&uc_req, value, false); 1489 #endif 1490 1491 return uc_req; 1492 } 1493 1494 /* 1495 * The effective clamp bucket index of a task depends on, by increasing 1496 * priority: 1497 * - the task specific clamp value, when explicitly requested from userspace 1498 * - the task group effective clamp value, for tasks not either in the root 1499 * group or in an autogroup 1500 * - the system default clamp value, defined by the sysadmin 1501 */ 1502 static inline struct uclamp_se 1503 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1504 { 1505 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1506 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1507 1508 /* System default restrictions always apply */ 1509 if (unlikely(uc_req.value > uc_max.value)) 1510 return uc_max; 1511 1512 return uc_req; 1513 } 1514 1515 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1516 { 1517 struct uclamp_se uc_eff; 1518 1519 /* Task currently refcounted: use back-annotated (effective) value */ 1520 if (p->uclamp[clamp_id].active) 1521 return (unsigned long)p->uclamp[clamp_id].value; 1522 1523 uc_eff = uclamp_eff_get(p, clamp_id); 1524 1525 return (unsigned long)uc_eff.value; 1526 } 1527 1528 /* 1529 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1530 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1531 * updates the rq's clamp value if required. 1532 * 1533 * Tasks can have a task-specific value requested from user-space, track 1534 * within each bucket the maximum value for tasks refcounted in it. 1535 * This "local max aggregation" allows to track the exact "requested" value 1536 * for each bucket when all its RUNNABLE tasks require the same clamp. 1537 */ 1538 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1539 enum uclamp_id clamp_id) 1540 { 1541 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1542 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1543 struct uclamp_bucket *bucket; 1544 1545 lockdep_assert_rq_held(rq); 1546 1547 /* Update task effective clamp */ 1548 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1549 1550 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1551 bucket->tasks++; 1552 uc_se->active = true; 1553 1554 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1555 1556 /* 1557 * Local max aggregation: rq buckets always track the max 1558 * "requested" clamp value of its RUNNABLE tasks. 1559 */ 1560 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1561 bucket->value = uc_se->value; 1562 1563 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1564 uclamp_rq_set(rq, clamp_id, uc_se->value); 1565 } 1566 1567 /* 1568 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1569 * is released. If this is the last task reference counting the rq's max 1570 * active clamp value, then the rq's clamp value is updated. 1571 * 1572 * Both refcounted tasks and rq's cached clamp values are expected to be 1573 * always valid. If it's detected they are not, as defensive programming, 1574 * enforce the expected state and warn. 1575 */ 1576 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1577 enum uclamp_id clamp_id) 1578 { 1579 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1580 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1581 struct uclamp_bucket *bucket; 1582 unsigned int bkt_clamp; 1583 unsigned int rq_clamp; 1584 1585 lockdep_assert_rq_held(rq); 1586 1587 /* 1588 * If sched_uclamp_used was enabled after task @p was enqueued, 1589 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1590 * 1591 * In this case the uc_se->active flag should be false since no uclamp 1592 * accounting was performed at enqueue time and we can just return 1593 * here. 1594 * 1595 * Need to be careful of the following enqueue/dequeue ordering 1596 * problem too 1597 * 1598 * enqueue(taskA) 1599 * // sched_uclamp_used gets enabled 1600 * enqueue(taskB) 1601 * dequeue(taskA) 1602 * // Must not decrement bucket->tasks here 1603 * dequeue(taskB) 1604 * 1605 * where we could end up with stale data in uc_se and 1606 * bucket[uc_se->bucket_id]. 1607 * 1608 * The following check here eliminates the possibility of such race. 1609 */ 1610 if (unlikely(!uc_se->active)) 1611 return; 1612 1613 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1614 1615 SCHED_WARN_ON(!bucket->tasks); 1616 if (likely(bucket->tasks)) 1617 bucket->tasks--; 1618 1619 uc_se->active = false; 1620 1621 /* 1622 * Keep "local max aggregation" simple and accept to (possibly) 1623 * overboost some RUNNABLE tasks in the same bucket. 1624 * The rq clamp bucket value is reset to its base value whenever 1625 * there are no more RUNNABLE tasks refcounting it. 1626 */ 1627 if (likely(bucket->tasks)) 1628 return; 1629 1630 rq_clamp = uclamp_rq_get(rq, clamp_id); 1631 /* 1632 * Defensive programming: this should never happen. If it happens, 1633 * e.g. due to future modification, warn and fixup the expected value. 1634 */ 1635 SCHED_WARN_ON(bucket->value > rq_clamp); 1636 if (bucket->value >= rq_clamp) { 1637 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1638 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1639 } 1640 } 1641 1642 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1643 { 1644 enum uclamp_id clamp_id; 1645 1646 /* 1647 * Avoid any overhead until uclamp is actually used by the userspace. 1648 * 1649 * The condition is constructed such that a NOP is generated when 1650 * sched_uclamp_used is disabled. 1651 */ 1652 if (!static_branch_unlikely(&sched_uclamp_used)) 1653 return; 1654 1655 if (unlikely(!p->sched_class->uclamp_enabled)) 1656 return; 1657 1658 for_each_clamp_id(clamp_id) 1659 uclamp_rq_inc_id(rq, p, clamp_id); 1660 1661 /* Reset clamp idle holding when there is one RUNNABLE task */ 1662 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1663 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1664 } 1665 1666 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1667 { 1668 enum uclamp_id clamp_id; 1669 1670 /* 1671 * Avoid any overhead until uclamp is actually used by the userspace. 1672 * 1673 * The condition is constructed such that a NOP is generated when 1674 * sched_uclamp_used is disabled. 1675 */ 1676 if (!static_branch_unlikely(&sched_uclamp_used)) 1677 return; 1678 1679 if (unlikely(!p->sched_class->uclamp_enabled)) 1680 return; 1681 1682 for_each_clamp_id(clamp_id) 1683 uclamp_rq_dec_id(rq, p, clamp_id); 1684 } 1685 1686 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1687 enum uclamp_id clamp_id) 1688 { 1689 if (!p->uclamp[clamp_id].active) 1690 return; 1691 1692 uclamp_rq_dec_id(rq, p, clamp_id); 1693 uclamp_rq_inc_id(rq, p, clamp_id); 1694 1695 /* 1696 * Make sure to clear the idle flag if we've transiently reached 0 1697 * active tasks on rq. 1698 */ 1699 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1700 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1701 } 1702 1703 static inline void 1704 uclamp_update_active(struct task_struct *p) 1705 { 1706 enum uclamp_id clamp_id; 1707 struct rq_flags rf; 1708 struct rq *rq; 1709 1710 /* 1711 * Lock the task and the rq where the task is (or was) queued. 1712 * 1713 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1714 * price to pay to safely serialize util_{min,max} updates with 1715 * enqueues, dequeues and migration operations. 1716 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1717 */ 1718 rq = task_rq_lock(p, &rf); 1719 1720 /* 1721 * Setting the clamp bucket is serialized by task_rq_lock(). 1722 * If the task is not yet RUNNABLE and its task_struct is not 1723 * affecting a valid clamp bucket, the next time it's enqueued, 1724 * it will already see the updated clamp bucket value. 1725 */ 1726 for_each_clamp_id(clamp_id) 1727 uclamp_rq_reinc_id(rq, p, clamp_id); 1728 1729 task_rq_unlock(rq, p, &rf); 1730 } 1731 1732 #ifdef CONFIG_UCLAMP_TASK_GROUP 1733 static inline void 1734 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1735 { 1736 struct css_task_iter it; 1737 struct task_struct *p; 1738 1739 css_task_iter_start(css, 0, &it); 1740 while ((p = css_task_iter_next(&it))) 1741 uclamp_update_active(p); 1742 css_task_iter_end(&it); 1743 } 1744 1745 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1746 #endif 1747 1748 #ifdef CONFIG_SYSCTL 1749 #ifdef CONFIG_UCLAMP_TASK 1750 #ifdef CONFIG_UCLAMP_TASK_GROUP 1751 static void uclamp_update_root_tg(void) 1752 { 1753 struct task_group *tg = &root_task_group; 1754 1755 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1756 sysctl_sched_uclamp_util_min, false); 1757 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1758 sysctl_sched_uclamp_util_max, false); 1759 1760 rcu_read_lock(); 1761 cpu_util_update_eff(&root_task_group.css); 1762 rcu_read_unlock(); 1763 } 1764 #else 1765 static void uclamp_update_root_tg(void) { } 1766 #endif 1767 1768 static void uclamp_sync_util_min_rt_default(void) 1769 { 1770 struct task_struct *g, *p; 1771 1772 /* 1773 * copy_process() sysctl_uclamp 1774 * uclamp_min_rt = X; 1775 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1776 * // link thread smp_mb__after_spinlock() 1777 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1778 * sched_post_fork() for_each_process_thread() 1779 * __uclamp_sync_rt() __uclamp_sync_rt() 1780 * 1781 * Ensures that either sched_post_fork() will observe the new 1782 * uclamp_min_rt or for_each_process_thread() will observe the new 1783 * task. 1784 */ 1785 read_lock(&tasklist_lock); 1786 smp_mb__after_spinlock(); 1787 read_unlock(&tasklist_lock); 1788 1789 rcu_read_lock(); 1790 for_each_process_thread(g, p) 1791 uclamp_update_util_min_rt_default(p); 1792 rcu_read_unlock(); 1793 } 1794 1795 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1796 void *buffer, size_t *lenp, loff_t *ppos) 1797 { 1798 bool update_root_tg = false; 1799 int old_min, old_max, old_min_rt; 1800 int result; 1801 1802 mutex_lock(&uclamp_mutex); 1803 old_min = sysctl_sched_uclamp_util_min; 1804 old_max = sysctl_sched_uclamp_util_max; 1805 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1806 1807 result = proc_dointvec(table, write, buffer, lenp, ppos); 1808 if (result) 1809 goto undo; 1810 if (!write) 1811 goto done; 1812 1813 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1814 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1815 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1816 1817 result = -EINVAL; 1818 goto undo; 1819 } 1820 1821 if (old_min != sysctl_sched_uclamp_util_min) { 1822 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1823 sysctl_sched_uclamp_util_min, false); 1824 update_root_tg = true; 1825 } 1826 if (old_max != sysctl_sched_uclamp_util_max) { 1827 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1828 sysctl_sched_uclamp_util_max, false); 1829 update_root_tg = true; 1830 } 1831 1832 if (update_root_tg) { 1833 static_branch_enable(&sched_uclamp_used); 1834 uclamp_update_root_tg(); 1835 } 1836 1837 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1838 static_branch_enable(&sched_uclamp_used); 1839 uclamp_sync_util_min_rt_default(); 1840 } 1841 1842 /* 1843 * We update all RUNNABLE tasks only when task groups are in use. 1844 * Otherwise, keep it simple and do just a lazy update at each next 1845 * task enqueue time. 1846 */ 1847 1848 goto done; 1849 1850 undo: 1851 sysctl_sched_uclamp_util_min = old_min; 1852 sysctl_sched_uclamp_util_max = old_max; 1853 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1854 done: 1855 mutex_unlock(&uclamp_mutex); 1856 1857 return result; 1858 } 1859 #endif 1860 #endif 1861 1862 static int uclamp_validate(struct task_struct *p, 1863 const struct sched_attr *attr) 1864 { 1865 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1866 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1867 1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1869 util_min = attr->sched_util_min; 1870 1871 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1872 return -EINVAL; 1873 } 1874 1875 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1876 util_max = attr->sched_util_max; 1877 1878 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1879 return -EINVAL; 1880 } 1881 1882 if (util_min != -1 && util_max != -1 && util_min > util_max) 1883 return -EINVAL; 1884 1885 /* 1886 * We have valid uclamp attributes; make sure uclamp is enabled. 1887 * 1888 * We need to do that here, because enabling static branches is a 1889 * blocking operation which obviously cannot be done while holding 1890 * scheduler locks. 1891 */ 1892 static_branch_enable(&sched_uclamp_used); 1893 1894 return 0; 1895 } 1896 1897 static bool uclamp_reset(const struct sched_attr *attr, 1898 enum uclamp_id clamp_id, 1899 struct uclamp_se *uc_se) 1900 { 1901 /* Reset on sched class change for a non user-defined clamp value. */ 1902 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1903 !uc_se->user_defined) 1904 return true; 1905 1906 /* Reset on sched_util_{min,max} == -1. */ 1907 if (clamp_id == UCLAMP_MIN && 1908 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1909 attr->sched_util_min == -1) { 1910 return true; 1911 } 1912 1913 if (clamp_id == UCLAMP_MAX && 1914 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1915 attr->sched_util_max == -1) { 1916 return true; 1917 } 1918 1919 return false; 1920 } 1921 1922 static void __setscheduler_uclamp(struct task_struct *p, 1923 const struct sched_attr *attr) 1924 { 1925 enum uclamp_id clamp_id; 1926 1927 for_each_clamp_id(clamp_id) { 1928 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1929 unsigned int value; 1930 1931 if (!uclamp_reset(attr, clamp_id, uc_se)) 1932 continue; 1933 1934 /* 1935 * RT by default have a 100% boost value that could be modified 1936 * at runtime. 1937 */ 1938 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1939 value = sysctl_sched_uclamp_util_min_rt_default; 1940 else 1941 value = uclamp_none(clamp_id); 1942 1943 uclamp_se_set(uc_se, value, false); 1944 1945 } 1946 1947 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1948 return; 1949 1950 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1951 attr->sched_util_min != -1) { 1952 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1953 attr->sched_util_min, true); 1954 } 1955 1956 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1957 attr->sched_util_max != -1) { 1958 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1959 attr->sched_util_max, true); 1960 } 1961 } 1962 1963 static void uclamp_fork(struct task_struct *p) 1964 { 1965 enum uclamp_id clamp_id; 1966 1967 /* 1968 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1969 * as the task is still at its early fork stages. 1970 */ 1971 for_each_clamp_id(clamp_id) 1972 p->uclamp[clamp_id].active = false; 1973 1974 if (likely(!p->sched_reset_on_fork)) 1975 return; 1976 1977 for_each_clamp_id(clamp_id) { 1978 uclamp_se_set(&p->uclamp_req[clamp_id], 1979 uclamp_none(clamp_id), false); 1980 } 1981 } 1982 1983 static void uclamp_post_fork(struct task_struct *p) 1984 { 1985 uclamp_update_util_min_rt_default(p); 1986 } 1987 1988 static void __init init_uclamp_rq(struct rq *rq) 1989 { 1990 enum uclamp_id clamp_id; 1991 struct uclamp_rq *uc_rq = rq->uclamp; 1992 1993 for_each_clamp_id(clamp_id) { 1994 uc_rq[clamp_id] = (struct uclamp_rq) { 1995 .value = uclamp_none(clamp_id) 1996 }; 1997 } 1998 1999 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2000 } 2001 2002 static void __init init_uclamp(void) 2003 { 2004 struct uclamp_se uc_max = {}; 2005 enum uclamp_id clamp_id; 2006 int cpu; 2007 2008 for_each_possible_cpu(cpu) 2009 init_uclamp_rq(cpu_rq(cpu)); 2010 2011 for_each_clamp_id(clamp_id) { 2012 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2013 uclamp_none(clamp_id), false); 2014 } 2015 2016 /* System defaults allow max clamp values for both indexes */ 2017 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2018 for_each_clamp_id(clamp_id) { 2019 uclamp_default[clamp_id] = uc_max; 2020 #ifdef CONFIG_UCLAMP_TASK_GROUP 2021 root_task_group.uclamp_req[clamp_id] = uc_max; 2022 root_task_group.uclamp[clamp_id] = uc_max; 2023 #endif 2024 } 2025 } 2026 2027 #else /* CONFIG_UCLAMP_TASK */ 2028 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2029 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2030 static inline int uclamp_validate(struct task_struct *p, 2031 const struct sched_attr *attr) 2032 { 2033 return -EOPNOTSUPP; 2034 } 2035 static void __setscheduler_uclamp(struct task_struct *p, 2036 const struct sched_attr *attr) { } 2037 static inline void uclamp_fork(struct task_struct *p) { } 2038 static inline void uclamp_post_fork(struct task_struct *p) { } 2039 static inline void init_uclamp(void) { } 2040 #endif /* CONFIG_UCLAMP_TASK */ 2041 2042 bool sched_task_on_rq(struct task_struct *p) 2043 { 2044 return task_on_rq_queued(p); 2045 } 2046 2047 unsigned long get_wchan(struct task_struct *p) 2048 { 2049 unsigned long ip = 0; 2050 unsigned int state; 2051 2052 if (!p || p == current) 2053 return 0; 2054 2055 /* Only get wchan if task is blocked and we can keep it that way. */ 2056 raw_spin_lock_irq(&p->pi_lock); 2057 state = READ_ONCE(p->__state); 2058 smp_rmb(); /* see try_to_wake_up() */ 2059 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2060 ip = __get_wchan(p); 2061 raw_spin_unlock_irq(&p->pi_lock); 2062 2063 return ip; 2064 } 2065 2066 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (!(flags & ENQUEUE_NOCLOCK)) 2069 update_rq_clock(rq); 2070 2071 if (!(flags & ENQUEUE_RESTORE)) { 2072 sched_info_enqueue(rq, p); 2073 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2074 } 2075 2076 uclamp_rq_inc(rq, p); 2077 p->sched_class->enqueue_task(rq, p, flags); 2078 2079 if (sched_core_enabled(rq)) 2080 sched_core_enqueue(rq, p); 2081 } 2082 2083 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 if (sched_core_enabled(rq)) 2086 sched_core_dequeue(rq, p, flags); 2087 2088 if (!(flags & DEQUEUE_NOCLOCK)) 2089 update_rq_clock(rq); 2090 2091 if (!(flags & DEQUEUE_SAVE)) { 2092 sched_info_dequeue(rq, p); 2093 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2094 } 2095 2096 uclamp_rq_dec(rq, p); 2097 p->sched_class->dequeue_task(rq, p, flags); 2098 } 2099 2100 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2101 { 2102 enqueue_task(rq, p, flags); 2103 2104 p->on_rq = TASK_ON_RQ_QUEUED; 2105 } 2106 2107 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2108 { 2109 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2110 2111 dequeue_task(rq, p, flags); 2112 } 2113 2114 static inline int __normal_prio(int policy, int rt_prio, int nice) 2115 { 2116 int prio; 2117 2118 if (dl_policy(policy)) 2119 prio = MAX_DL_PRIO - 1; 2120 else if (rt_policy(policy)) 2121 prio = MAX_RT_PRIO - 1 - rt_prio; 2122 else 2123 prio = NICE_TO_PRIO(nice); 2124 2125 return prio; 2126 } 2127 2128 /* 2129 * Calculate the expected normal priority: i.e. priority 2130 * without taking RT-inheritance into account. Might be 2131 * boosted by interactivity modifiers. Changes upon fork, 2132 * setprio syscalls, and whenever the interactivity 2133 * estimator recalculates. 2134 */ 2135 static inline int normal_prio(struct task_struct *p) 2136 { 2137 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2138 } 2139 2140 /* 2141 * Calculate the current priority, i.e. the priority 2142 * taken into account by the scheduler. This value might 2143 * be boosted by RT tasks, or might be boosted by 2144 * interactivity modifiers. Will be RT if the task got 2145 * RT-boosted. If not then it returns p->normal_prio. 2146 */ 2147 static int effective_prio(struct task_struct *p) 2148 { 2149 p->normal_prio = normal_prio(p); 2150 /* 2151 * If we are RT tasks or we were boosted to RT priority, 2152 * keep the priority unchanged. Otherwise, update priority 2153 * to the normal priority: 2154 */ 2155 if (!rt_prio(p->prio)) 2156 return p->normal_prio; 2157 return p->prio; 2158 } 2159 2160 /** 2161 * task_curr - is this task currently executing on a CPU? 2162 * @p: the task in question. 2163 * 2164 * Return: 1 if the task is currently executing. 0 otherwise. 2165 */ 2166 inline int task_curr(const struct task_struct *p) 2167 { 2168 return cpu_curr(task_cpu(p)) == p; 2169 } 2170 2171 /* 2172 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2173 * use the balance_callback list if you want balancing. 2174 * 2175 * this means any call to check_class_changed() must be followed by a call to 2176 * balance_callback(). 2177 */ 2178 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2179 const struct sched_class *prev_class, 2180 int oldprio) 2181 { 2182 if (prev_class != p->sched_class) { 2183 if (prev_class->switched_from) 2184 prev_class->switched_from(rq, p); 2185 2186 p->sched_class->switched_to(rq, p); 2187 } else if (oldprio != p->prio || dl_task(p)) 2188 p->sched_class->prio_changed(rq, p, oldprio); 2189 } 2190 2191 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2192 { 2193 if (p->sched_class == rq->curr->sched_class) 2194 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2195 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2196 resched_curr(rq); 2197 2198 /* 2199 * A queue event has occurred, and we're going to schedule. In 2200 * this case, we can save a useless back to back clock update. 2201 */ 2202 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2203 rq_clock_skip_update(rq); 2204 } 2205 2206 #ifdef CONFIG_SMP 2207 2208 static void 2209 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2210 2211 static int __set_cpus_allowed_ptr(struct task_struct *p, 2212 struct affinity_context *ctx); 2213 2214 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2215 { 2216 struct affinity_context ac = { 2217 .new_mask = cpumask_of(rq->cpu), 2218 .flags = SCA_MIGRATE_DISABLE, 2219 }; 2220 2221 if (likely(!p->migration_disabled)) 2222 return; 2223 2224 if (p->cpus_ptr != &p->cpus_mask) 2225 return; 2226 2227 /* 2228 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2229 */ 2230 __do_set_cpus_allowed(p, &ac); 2231 } 2232 2233 void migrate_disable(void) 2234 { 2235 struct task_struct *p = current; 2236 2237 if (p->migration_disabled) { 2238 p->migration_disabled++; 2239 return; 2240 } 2241 2242 preempt_disable(); 2243 this_rq()->nr_pinned++; 2244 p->migration_disabled = 1; 2245 preempt_enable(); 2246 } 2247 EXPORT_SYMBOL_GPL(migrate_disable); 2248 2249 void migrate_enable(void) 2250 { 2251 struct task_struct *p = current; 2252 struct affinity_context ac = { 2253 .new_mask = &p->cpus_mask, 2254 .flags = SCA_MIGRATE_ENABLE, 2255 }; 2256 2257 if (p->migration_disabled > 1) { 2258 p->migration_disabled--; 2259 return; 2260 } 2261 2262 if (WARN_ON_ONCE(!p->migration_disabled)) 2263 return; 2264 2265 /* 2266 * Ensure stop_task runs either before or after this, and that 2267 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2268 */ 2269 preempt_disable(); 2270 if (p->cpus_ptr != &p->cpus_mask) 2271 __set_cpus_allowed_ptr(p, &ac); 2272 /* 2273 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2274 * regular cpus_mask, otherwise things that race (eg. 2275 * select_fallback_rq) get confused. 2276 */ 2277 barrier(); 2278 p->migration_disabled = 0; 2279 this_rq()->nr_pinned--; 2280 preempt_enable(); 2281 } 2282 EXPORT_SYMBOL_GPL(migrate_enable); 2283 2284 static inline bool rq_has_pinned_tasks(struct rq *rq) 2285 { 2286 return rq->nr_pinned; 2287 } 2288 2289 /* 2290 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2291 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2292 */ 2293 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2294 { 2295 /* When not in the task's cpumask, no point in looking further. */ 2296 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2297 return false; 2298 2299 /* migrate_disabled() must be allowed to finish. */ 2300 if (is_migration_disabled(p)) 2301 return cpu_online(cpu); 2302 2303 /* Non kernel threads are not allowed during either online or offline. */ 2304 if (!(p->flags & PF_KTHREAD)) 2305 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2306 2307 /* KTHREAD_IS_PER_CPU is always allowed. */ 2308 if (kthread_is_per_cpu(p)) 2309 return cpu_online(cpu); 2310 2311 /* Regular kernel threads don't get to stay during offline. */ 2312 if (cpu_dying(cpu)) 2313 return false; 2314 2315 /* But are allowed during online. */ 2316 return cpu_online(cpu); 2317 } 2318 2319 /* 2320 * This is how migration works: 2321 * 2322 * 1) we invoke migration_cpu_stop() on the target CPU using 2323 * stop_one_cpu(). 2324 * 2) stopper starts to run (implicitly forcing the migrated thread 2325 * off the CPU) 2326 * 3) it checks whether the migrated task is still in the wrong runqueue. 2327 * 4) if it's in the wrong runqueue then the migration thread removes 2328 * it and puts it into the right queue. 2329 * 5) stopper completes and stop_one_cpu() returns and the migration 2330 * is done. 2331 */ 2332 2333 /* 2334 * move_queued_task - move a queued task to new rq. 2335 * 2336 * Returns (locked) new rq. Old rq's lock is released. 2337 */ 2338 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2339 struct task_struct *p, int new_cpu) 2340 { 2341 lockdep_assert_rq_held(rq); 2342 2343 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2344 set_task_cpu(p, new_cpu); 2345 rq_unlock(rq, rf); 2346 2347 rq = cpu_rq(new_cpu); 2348 2349 rq_lock(rq, rf); 2350 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2351 activate_task(rq, p, 0); 2352 check_preempt_curr(rq, p, 0); 2353 2354 return rq; 2355 } 2356 2357 struct migration_arg { 2358 struct task_struct *task; 2359 int dest_cpu; 2360 struct set_affinity_pending *pending; 2361 }; 2362 2363 /* 2364 * @refs: number of wait_for_completion() 2365 * @stop_pending: is @stop_work in use 2366 */ 2367 struct set_affinity_pending { 2368 refcount_t refs; 2369 unsigned int stop_pending; 2370 struct completion done; 2371 struct cpu_stop_work stop_work; 2372 struct migration_arg arg; 2373 }; 2374 2375 /* 2376 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2377 * this because either it can't run here any more (set_cpus_allowed() 2378 * away from this CPU, or CPU going down), or because we're 2379 * attempting to rebalance this task on exec (sched_exec). 2380 * 2381 * So we race with normal scheduler movements, but that's OK, as long 2382 * as the task is no longer on this CPU. 2383 */ 2384 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2385 struct task_struct *p, int dest_cpu) 2386 { 2387 /* Affinity changed (again). */ 2388 if (!is_cpu_allowed(p, dest_cpu)) 2389 return rq; 2390 2391 update_rq_clock(rq); 2392 rq = move_queued_task(rq, rf, p, dest_cpu); 2393 2394 return rq; 2395 } 2396 2397 /* 2398 * migration_cpu_stop - this will be executed by a highprio stopper thread 2399 * and performs thread migration by bumping thread off CPU then 2400 * 'pushing' onto another runqueue. 2401 */ 2402 static int migration_cpu_stop(void *data) 2403 { 2404 struct migration_arg *arg = data; 2405 struct set_affinity_pending *pending = arg->pending; 2406 struct task_struct *p = arg->task; 2407 struct rq *rq = this_rq(); 2408 bool complete = false; 2409 struct rq_flags rf; 2410 2411 /* 2412 * The original target CPU might have gone down and we might 2413 * be on another CPU but it doesn't matter. 2414 */ 2415 local_irq_save(rf.flags); 2416 /* 2417 * We need to explicitly wake pending tasks before running 2418 * __migrate_task() such that we will not miss enforcing cpus_ptr 2419 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2420 */ 2421 flush_smp_call_function_queue(); 2422 2423 raw_spin_lock(&p->pi_lock); 2424 rq_lock(rq, &rf); 2425 2426 /* 2427 * If we were passed a pending, then ->stop_pending was set, thus 2428 * p->migration_pending must have remained stable. 2429 */ 2430 WARN_ON_ONCE(pending && pending != p->migration_pending); 2431 2432 /* 2433 * If task_rq(p) != rq, it cannot be migrated here, because we're 2434 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2435 * we're holding p->pi_lock. 2436 */ 2437 if (task_rq(p) == rq) { 2438 if (is_migration_disabled(p)) 2439 goto out; 2440 2441 if (pending) { 2442 p->migration_pending = NULL; 2443 complete = true; 2444 2445 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2446 goto out; 2447 } 2448 2449 if (task_on_rq_queued(p)) 2450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2451 else 2452 p->wake_cpu = arg->dest_cpu; 2453 2454 /* 2455 * XXX __migrate_task() can fail, at which point we might end 2456 * up running on a dodgy CPU, AFAICT this can only happen 2457 * during CPU hotplug, at which point we'll get pushed out 2458 * anyway, so it's probably not a big deal. 2459 */ 2460 2461 } else if (pending) { 2462 /* 2463 * This happens when we get migrated between migrate_enable()'s 2464 * preempt_enable() and scheduling the stopper task. At that 2465 * point we're a regular task again and not current anymore. 2466 * 2467 * A !PREEMPT kernel has a giant hole here, which makes it far 2468 * more likely. 2469 */ 2470 2471 /* 2472 * The task moved before the stopper got to run. We're holding 2473 * ->pi_lock, so the allowed mask is stable - if it got 2474 * somewhere allowed, we're done. 2475 */ 2476 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2477 p->migration_pending = NULL; 2478 complete = true; 2479 goto out; 2480 } 2481 2482 /* 2483 * When migrate_enable() hits a rq mis-match we can't reliably 2484 * determine is_migration_disabled() and so have to chase after 2485 * it. 2486 */ 2487 WARN_ON_ONCE(!pending->stop_pending); 2488 task_rq_unlock(rq, p, &rf); 2489 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2490 &pending->arg, &pending->stop_work); 2491 return 0; 2492 } 2493 out: 2494 if (pending) 2495 pending->stop_pending = false; 2496 task_rq_unlock(rq, p, &rf); 2497 2498 if (complete) 2499 complete_all(&pending->done); 2500 2501 return 0; 2502 } 2503 2504 int push_cpu_stop(void *arg) 2505 { 2506 struct rq *lowest_rq = NULL, *rq = this_rq(); 2507 struct task_struct *p = arg; 2508 2509 raw_spin_lock_irq(&p->pi_lock); 2510 raw_spin_rq_lock(rq); 2511 2512 if (task_rq(p) != rq) 2513 goto out_unlock; 2514 2515 if (is_migration_disabled(p)) { 2516 p->migration_flags |= MDF_PUSH; 2517 goto out_unlock; 2518 } 2519 2520 p->migration_flags &= ~MDF_PUSH; 2521 2522 if (p->sched_class->find_lock_rq) 2523 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2524 2525 if (!lowest_rq) 2526 goto out_unlock; 2527 2528 // XXX validate p is still the highest prio task 2529 if (task_rq(p) == rq) { 2530 deactivate_task(rq, p, 0); 2531 set_task_cpu(p, lowest_rq->cpu); 2532 activate_task(lowest_rq, p, 0); 2533 resched_curr(lowest_rq); 2534 } 2535 2536 double_unlock_balance(rq, lowest_rq); 2537 2538 out_unlock: 2539 rq->push_busy = false; 2540 raw_spin_rq_unlock(rq); 2541 raw_spin_unlock_irq(&p->pi_lock); 2542 2543 put_task_struct(p); 2544 return 0; 2545 } 2546 2547 /* 2548 * sched_class::set_cpus_allowed must do the below, but is not required to 2549 * actually call this function. 2550 */ 2551 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2552 { 2553 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2554 p->cpus_ptr = ctx->new_mask; 2555 return; 2556 } 2557 2558 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2559 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2560 2561 /* 2562 * Swap in a new user_cpus_ptr if SCA_USER flag set 2563 */ 2564 if (ctx->flags & SCA_USER) 2565 swap(p->user_cpus_ptr, ctx->user_mask); 2566 } 2567 2568 static void 2569 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2570 { 2571 struct rq *rq = task_rq(p); 2572 bool queued, running; 2573 2574 /* 2575 * This here violates the locking rules for affinity, since we're only 2576 * supposed to change these variables while holding both rq->lock and 2577 * p->pi_lock. 2578 * 2579 * HOWEVER, it magically works, because ttwu() is the only code that 2580 * accesses these variables under p->pi_lock and only does so after 2581 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2582 * before finish_task(). 2583 * 2584 * XXX do further audits, this smells like something putrid. 2585 */ 2586 if (ctx->flags & SCA_MIGRATE_DISABLE) 2587 SCHED_WARN_ON(!p->on_cpu); 2588 else 2589 lockdep_assert_held(&p->pi_lock); 2590 2591 queued = task_on_rq_queued(p); 2592 running = task_current(rq, p); 2593 2594 if (queued) { 2595 /* 2596 * Because __kthread_bind() calls this on blocked tasks without 2597 * holding rq->lock. 2598 */ 2599 lockdep_assert_rq_held(rq); 2600 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2601 } 2602 if (running) 2603 put_prev_task(rq, p); 2604 2605 p->sched_class->set_cpus_allowed(p, ctx); 2606 2607 if (queued) 2608 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2609 if (running) 2610 set_next_task(rq, p); 2611 } 2612 2613 /* 2614 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2615 * affinity (if any) should be destroyed too. 2616 */ 2617 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2618 { 2619 struct affinity_context ac = { 2620 .new_mask = new_mask, 2621 .user_mask = NULL, 2622 .flags = SCA_USER, /* clear the user requested mask */ 2623 }; 2624 union cpumask_rcuhead { 2625 cpumask_t cpumask; 2626 struct rcu_head rcu; 2627 }; 2628 2629 __do_set_cpus_allowed(p, &ac); 2630 2631 /* 2632 * Because this is called with p->pi_lock held, it is not possible 2633 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2634 * kfree_rcu(). 2635 */ 2636 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2637 } 2638 2639 static cpumask_t *alloc_user_cpus_ptr(int node) 2640 { 2641 /* 2642 * See do_set_cpus_allowed() above for the rcu_head usage. 2643 */ 2644 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2645 2646 return kmalloc_node(size, GFP_KERNEL, node); 2647 } 2648 2649 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2650 int node) 2651 { 2652 cpumask_t *user_mask; 2653 unsigned long flags; 2654 2655 /* 2656 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2657 * may differ by now due to racing. 2658 */ 2659 dst->user_cpus_ptr = NULL; 2660 2661 /* 2662 * This check is racy and losing the race is a valid situation. 2663 * It is not worth the extra overhead of taking the pi_lock on 2664 * every fork/clone. 2665 */ 2666 if (data_race(!src->user_cpus_ptr)) 2667 return 0; 2668 2669 user_mask = alloc_user_cpus_ptr(node); 2670 if (!user_mask) 2671 return -ENOMEM; 2672 2673 /* 2674 * Use pi_lock to protect content of user_cpus_ptr 2675 * 2676 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2677 * do_set_cpus_allowed(). 2678 */ 2679 raw_spin_lock_irqsave(&src->pi_lock, flags); 2680 if (src->user_cpus_ptr) { 2681 swap(dst->user_cpus_ptr, user_mask); 2682 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2683 } 2684 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2685 2686 if (unlikely(user_mask)) 2687 kfree(user_mask); 2688 2689 return 0; 2690 } 2691 2692 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2693 { 2694 struct cpumask *user_mask = NULL; 2695 2696 swap(p->user_cpus_ptr, user_mask); 2697 2698 return user_mask; 2699 } 2700 2701 void release_user_cpus_ptr(struct task_struct *p) 2702 { 2703 kfree(clear_user_cpus_ptr(p)); 2704 } 2705 2706 /* 2707 * This function is wildly self concurrent; here be dragons. 2708 * 2709 * 2710 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2711 * designated task is enqueued on an allowed CPU. If that task is currently 2712 * running, we have to kick it out using the CPU stopper. 2713 * 2714 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2715 * Consider: 2716 * 2717 * Initial conditions: P0->cpus_mask = [0, 1] 2718 * 2719 * P0@CPU0 P1 2720 * 2721 * migrate_disable(); 2722 * <preempted> 2723 * set_cpus_allowed_ptr(P0, [1]); 2724 * 2725 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2726 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2727 * This means we need the following scheme: 2728 * 2729 * P0@CPU0 P1 2730 * 2731 * migrate_disable(); 2732 * <preempted> 2733 * set_cpus_allowed_ptr(P0, [1]); 2734 * <blocks> 2735 * <resumes> 2736 * migrate_enable(); 2737 * __set_cpus_allowed_ptr(); 2738 * <wakes local stopper> 2739 * `--> <woken on migration completion> 2740 * 2741 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2742 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2743 * task p are serialized by p->pi_lock, which we can leverage: the one that 2744 * should come into effect at the end of the Migrate-Disable region is the last 2745 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2746 * but we still need to properly signal those waiting tasks at the appropriate 2747 * moment. 2748 * 2749 * This is implemented using struct set_affinity_pending. The first 2750 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2751 * setup an instance of that struct and install it on the targeted task_struct. 2752 * Any and all further callers will reuse that instance. Those then wait for 2753 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2754 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2755 * 2756 * 2757 * (1) In the cases covered above. There is one more where the completion is 2758 * signaled within affine_move_task() itself: when a subsequent affinity request 2759 * occurs after the stopper bailed out due to the targeted task still being 2760 * Migrate-Disable. Consider: 2761 * 2762 * Initial conditions: P0->cpus_mask = [0, 1] 2763 * 2764 * CPU0 P1 P2 2765 * <P0> 2766 * migrate_disable(); 2767 * <preempted> 2768 * set_cpus_allowed_ptr(P0, [1]); 2769 * <blocks> 2770 * <migration/0> 2771 * migration_cpu_stop() 2772 * is_migration_disabled() 2773 * <bails> 2774 * set_cpus_allowed_ptr(P0, [0, 1]); 2775 * <signal completion> 2776 * <awakes> 2777 * 2778 * Note that the above is safe vs a concurrent migrate_enable(), as any 2779 * pending affinity completion is preceded by an uninstallation of 2780 * p->migration_pending done with p->pi_lock held. 2781 */ 2782 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2783 int dest_cpu, unsigned int flags) 2784 __releases(rq->lock) 2785 __releases(p->pi_lock) 2786 { 2787 struct set_affinity_pending my_pending = { }, *pending = NULL; 2788 bool stop_pending, complete = false; 2789 2790 /* Can the task run on the task's current CPU? If so, we're done */ 2791 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2792 struct task_struct *push_task = NULL; 2793 2794 if ((flags & SCA_MIGRATE_ENABLE) && 2795 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2796 rq->push_busy = true; 2797 push_task = get_task_struct(p); 2798 } 2799 2800 /* 2801 * If there are pending waiters, but no pending stop_work, 2802 * then complete now. 2803 */ 2804 pending = p->migration_pending; 2805 if (pending && !pending->stop_pending) { 2806 p->migration_pending = NULL; 2807 complete = true; 2808 } 2809 2810 task_rq_unlock(rq, p, rf); 2811 2812 if (push_task) { 2813 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2814 p, &rq->push_work); 2815 } 2816 2817 if (complete) 2818 complete_all(&pending->done); 2819 2820 return 0; 2821 } 2822 2823 if (!(flags & SCA_MIGRATE_ENABLE)) { 2824 /* serialized by p->pi_lock */ 2825 if (!p->migration_pending) { 2826 /* Install the request */ 2827 refcount_set(&my_pending.refs, 1); 2828 init_completion(&my_pending.done); 2829 my_pending.arg = (struct migration_arg) { 2830 .task = p, 2831 .dest_cpu = dest_cpu, 2832 .pending = &my_pending, 2833 }; 2834 2835 p->migration_pending = &my_pending; 2836 } else { 2837 pending = p->migration_pending; 2838 refcount_inc(&pending->refs); 2839 /* 2840 * Affinity has changed, but we've already installed a 2841 * pending. migration_cpu_stop() *must* see this, else 2842 * we risk a completion of the pending despite having a 2843 * task on a disallowed CPU. 2844 * 2845 * Serialized by p->pi_lock, so this is safe. 2846 */ 2847 pending->arg.dest_cpu = dest_cpu; 2848 } 2849 } 2850 pending = p->migration_pending; 2851 /* 2852 * - !MIGRATE_ENABLE: 2853 * we'll have installed a pending if there wasn't one already. 2854 * 2855 * - MIGRATE_ENABLE: 2856 * we're here because the current CPU isn't matching anymore, 2857 * the only way that can happen is because of a concurrent 2858 * set_cpus_allowed_ptr() call, which should then still be 2859 * pending completion. 2860 * 2861 * Either way, we really should have a @pending here. 2862 */ 2863 if (WARN_ON_ONCE(!pending)) { 2864 task_rq_unlock(rq, p, rf); 2865 return -EINVAL; 2866 } 2867 2868 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2869 /* 2870 * MIGRATE_ENABLE gets here because 'p == current', but for 2871 * anything else we cannot do is_migration_disabled(), punt 2872 * and have the stopper function handle it all race-free. 2873 */ 2874 stop_pending = pending->stop_pending; 2875 if (!stop_pending) 2876 pending->stop_pending = true; 2877 2878 if (flags & SCA_MIGRATE_ENABLE) 2879 p->migration_flags &= ~MDF_PUSH; 2880 2881 task_rq_unlock(rq, p, rf); 2882 2883 if (!stop_pending) { 2884 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2885 &pending->arg, &pending->stop_work); 2886 } 2887 2888 if (flags & SCA_MIGRATE_ENABLE) 2889 return 0; 2890 } else { 2891 2892 if (!is_migration_disabled(p)) { 2893 if (task_on_rq_queued(p)) 2894 rq = move_queued_task(rq, rf, p, dest_cpu); 2895 2896 if (!pending->stop_pending) { 2897 p->migration_pending = NULL; 2898 complete = true; 2899 } 2900 } 2901 task_rq_unlock(rq, p, rf); 2902 2903 if (complete) 2904 complete_all(&pending->done); 2905 } 2906 2907 wait_for_completion(&pending->done); 2908 2909 if (refcount_dec_and_test(&pending->refs)) 2910 wake_up_var(&pending->refs); /* No UaF, just an address */ 2911 2912 /* 2913 * Block the original owner of &pending until all subsequent callers 2914 * have seen the completion and decremented the refcount 2915 */ 2916 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2917 2918 /* ARGH */ 2919 WARN_ON_ONCE(my_pending.stop_pending); 2920 2921 return 0; 2922 } 2923 2924 /* 2925 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2926 */ 2927 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2928 struct affinity_context *ctx, 2929 struct rq *rq, 2930 struct rq_flags *rf) 2931 __releases(rq->lock) 2932 __releases(p->pi_lock) 2933 { 2934 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2935 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2936 bool kthread = p->flags & PF_KTHREAD; 2937 unsigned int dest_cpu; 2938 int ret = 0; 2939 2940 update_rq_clock(rq); 2941 2942 if (kthread || is_migration_disabled(p)) { 2943 /* 2944 * Kernel threads are allowed on online && !active CPUs, 2945 * however, during cpu-hot-unplug, even these might get pushed 2946 * away if not KTHREAD_IS_PER_CPU. 2947 * 2948 * Specifically, migration_disabled() tasks must not fail the 2949 * cpumask_any_and_distribute() pick below, esp. so on 2950 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2951 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2952 */ 2953 cpu_valid_mask = cpu_online_mask; 2954 } 2955 2956 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2957 ret = -EINVAL; 2958 goto out; 2959 } 2960 2961 /* 2962 * Must re-check here, to close a race against __kthread_bind(), 2963 * sched_setaffinity() is not guaranteed to observe the flag. 2964 */ 2965 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2966 ret = -EINVAL; 2967 goto out; 2968 } 2969 2970 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2971 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2972 if (ctx->flags & SCA_USER) 2973 swap(p->user_cpus_ptr, ctx->user_mask); 2974 goto out; 2975 } 2976 2977 if (WARN_ON_ONCE(p == current && 2978 is_migration_disabled(p) && 2979 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2980 ret = -EBUSY; 2981 goto out; 2982 } 2983 } 2984 2985 /* 2986 * Picking a ~random cpu helps in cases where we are changing affinity 2987 * for groups of tasks (ie. cpuset), so that load balancing is not 2988 * immediately required to distribute the tasks within their new mask. 2989 */ 2990 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2991 if (dest_cpu >= nr_cpu_ids) { 2992 ret = -EINVAL; 2993 goto out; 2994 } 2995 2996 __do_set_cpus_allowed(p, ctx); 2997 2998 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2999 3000 out: 3001 task_rq_unlock(rq, p, rf); 3002 3003 return ret; 3004 } 3005 3006 /* 3007 * Change a given task's CPU affinity. Migrate the thread to a 3008 * proper CPU and schedule it away if the CPU it's executing on 3009 * is removed from the allowed bitmask. 3010 * 3011 * NOTE: the caller must have a valid reference to the task, the 3012 * task must not exit() & deallocate itself prematurely. The 3013 * call is not atomic; no spinlocks may be held. 3014 */ 3015 static int __set_cpus_allowed_ptr(struct task_struct *p, 3016 struct affinity_context *ctx) 3017 { 3018 struct rq_flags rf; 3019 struct rq *rq; 3020 3021 rq = task_rq_lock(p, &rf); 3022 /* 3023 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3024 * flags are set. 3025 */ 3026 if (p->user_cpus_ptr && 3027 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3028 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3029 ctx->new_mask = rq->scratch_mask; 3030 3031 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3032 } 3033 3034 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3035 { 3036 struct affinity_context ac = { 3037 .new_mask = new_mask, 3038 .flags = 0, 3039 }; 3040 3041 return __set_cpus_allowed_ptr(p, &ac); 3042 } 3043 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3044 3045 /* 3046 * Change a given task's CPU affinity to the intersection of its current 3047 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3048 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3049 * affinity or use cpu_online_mask instead. 3050 * 3051 * If the resulting mask is empty, leave the affinity unchanged and return 3052 * -EINVAL. 3053 */ 3054 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3055 struct cpumask *new_mask, 3056 const struct cpumask *subset_mask) 3057 { 3058 struct affinity_context ac = { 3059 .new_mask = new_mask, 3060 .flags = 0, 3061 }; 3062 struct rq_flags rf; 3063 struct rq *rq; 3064 int err; 3065 3066 rq = task_rq_lock(p, &rf); 3067 3068 /* 3069 * Forcefully restricting the affinity of a deadline task is 3070 * likely to cause problems, so fail and noisily override the 3071 * mask entirely. 3072 */ 3073 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3074 err = -EPERM; 3075 goto err_unlock; 3076 } 3077 3078 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3079 err = -EINVAL; 3080 goto err_unlock; 3081 } 3082 3083 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3084 3085 err_unlock: 3086 task_rq_unlock(rq, p, &rf); 3087 return err; 3088 } 3089 3090 /* 3091 * Restrict the CPU affinity of task @p so that it is a subset of 3092 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3093 * old affinity mask. If the resulting mask is empty, we warn and walk 3094 * up the cpuset hierarchy until we find a suitable mask. 3095 */ 3096 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3097 { 3098 cpumask_var_t new_mask; 3099 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3100 3101 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3102 3103 /* 3104 * __migrate_task() can fail silently in the face of concurrent 3105 * offlining of the chosen destination CPU, so take the hotplug 3106 * lock to ensure that the migration succeeds. 3107 */ 3108 cpus_read_lock(); 3109 if (!cpumask_available(new_mask)) 3110 goto out_set_mask; 3111 3112 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3113 goto out_free_mask; 3114 3115 /* 3116 * We failed to find a valid subset of the affinity mask for the 3117 * task, so override it based on its cpuset hierarchy. 3118 */ 3119 cpuset_cpus_allowed(p, new_mask); 3120 override_mask = new_mask; 3121 3122 out_set_mask: 3123 if (printk_ratelimit()) { 3124 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3125 task_pid_nr(p), p->comm, 3126 cpumask_pr_args(override_mask)); 3127 } 3128 3129 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3130 out_free_mask: 3131 cpus_read_unlock(); 3132 free_cpumask_var(new_mask); 3133 } 3134 3135 static int 3136 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3137 3138 /* 3139 * Restore the affinity of a task @p which was previously restricted by a 3140 * call to force_compatible_cpus_allowed_ptr(). 3141 * 3142 * It is the caller's responsibility to serialise this with any calls to 3143 * force_compatible_cpus_allowed_ptr(@p). 3144 */ 3145 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3146 { 3147 struct affinity_context ac = { 3148 .new_mask = task_user_cpus(p), 3149 .flags = 0, 3150 }; 3151 int ret; 3152 3153 /* 3154 * Try to restore the old affinity mask with __sched_setaffinity(). 3155 * Cpuset masking will be done there too. 3156 */ 3157 ret = __sched_setaffinity(p, &ac); 3158 WARN_ON_ONCE(ret); 3159 } 3160 3161 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3162 { 3163 #ifdef CONFIG_SCHED_DEBUG 3164 unsigned int state = READ_ONCE(p->__state); 3165 3166 /* 3167 * We should never call set_task_cpu() on a blocked task, 3168 * ttwu() will sort out the placement. 3169 */ 3170 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3171 3172 /* 3173 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3174 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3175 * time relying on p->on_rq. 3176 */ 3177 WARN_ON_ONCE(state == TASK_RUNNING && 3178 p->sched_class == &fair_sched_class && 3179 (p->on_rq && !task_on_rq_migrating(p))); 3180 3181 #ifdef CONFIG_LOCKDEP 3182 /* 3183 * The caller should hold either p->pi_lock or rq->lock, when changing 3184 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3185 * 3186 * sched_move_task() holds both and thus holding either pins the cgroup, 3187 * see task_group(). 3188 * 3189 * Furthermore, all task_rq users should acquire both locks, see 3190 * task_rq_lock(). 3191 */ 3192 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3193 lockdep_is_held(__rq_lockp(task_rq(p))))); 3194 #endif 3195 /* 3196 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3197 */ 3198 WARN_ON_ONCE(!cpu_online(new_cpu)); 3199 3200 WARN_ON_ONCE(is_migration_disabled(p)); 3201 #endif 3202 3203 trace_sched_migrate_task(p, new_cpu); 3204 3205 if (task_cpu(p) != new_cpu) { 3206 if (p->sched_class->migrate_task_rq) 3207 p->sched_class->migrate_task_rq(p, new_cpu); 3208 p->se.nr_migrations++; 3209 rseq_migrate(p); 3210 perf_event_task_migrate(p); 3211 } 3212 3213 __set_task_cpu(p, new_cpu); 3214 } 3215 3216 #ifdef CONFIG_NUMA_BALANCING 3217 static void __migrate_swap_task(struct task_struct *p, int cpu) 3218 { 3219 if (task_on_rq_queued(p)) { 3220 struct rq *src_rq, *dst_rq; 3221 struct rq_flags srf, drf; 3222 3223 src_rq = task_rq(p); 3224 dst_rq = cpu_rq(cpu); 3225 3226 rq_pin_lock(src_rq, &srf); 3227 rq_pin_lock(dst_rq, &drf); 3228 3229 deactivate_task(src_rq, p, 0); 3230 set_task_cpu(p, cpu); 3231 activate_task(dst_rq, p, 0); 3232 check_preempt_curr(dst_rq, p, 0); 3233 3234 rq_unpin_lock(dst_rq, &drf); 3235 rq_unpin_lock(src_rq, &srf); 3236 3237 } else { 3238 /* 3239 * Task isn't running anymore; make it appear like we migrated 3240 * it before it went to sleep. This means on wakeup we make the 3241 * previous CPU our target instead of where it really is. 3242 */ 3243 p->wake_cpu = cpu; 3244 } 3245 } 3246 3247 struct migration_swap_arg { 3248 struct task_struct *src_task, *dst_task; 3249 int src_cpu, dst_cpu; 3250 }; 3251 3252 static int migrate_swap_stop(void *data) 3253 { 3254 struct migration_swap_arg *arg = data; 3255 struct rq *src_rq, *dst_rq; 3256 int ret = -EAGAIN; 3257 3258 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3259 return -EAGAIN; 3260 3261 src_rq = cpu_rq(arg->src_cpu); 3262 dst_rq = cpu_rq(arg->dst_cpu); 3263 3264 double_raw_lock(&arg->src_task->pi_lock, 3265 &arg->dst_task->pi_lock); 3266 double_rq_lock(src_rq, dst_rq); 3267 3268 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3269 goto unlock; 3270 3271 if (task_cpu(arg->src_task) != arg->src_cpu) 3272 goto unlock; 3273 3274 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3275 goto unlock; 3276 3277 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3278 goto unlock; 3279 3280 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3281 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3282 3283 ret = 0; 3284 3285 unlock: 3286 double_rq_unlock(src_rq, dst_rq); 3287 raw_spin_unlock(&arg->dst_task->pi_lock); 3288 raw_spin_unlock(&arg->src_task->pi_lock); 3289 3290 return ret; 3291 } 3292 3293 /* 3294 * Cross migrate two tasks 3295 */ 3296 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3297 int target_cpu, int curr_cpu) 3298 { 3299 struct migration_swap_arg arg; 3300 int ret = -EINVAL; 3301 3302 arg = (struct migration_swap_arg){ 3303 .src_task = cur, 3304 .src_cpu = curr_cpu, 3305 .dst_task = p, 3306 .dst_cpu = target_cpu, 3307 }; 3308 3309 if (arg.src_cpu == arg.dst_cpu) 3310 goto out; 3311 3312 /* 3313 * These three tests are all lockless; this is OK since all of them 3314 * will be re-checked with proper locks held further down the line. 3315 */ 3316 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3317 goto out; 3318 3319 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3320 goto out; 3321 3322 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3323 goto out; 3324 3325 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3326 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3327 3328 out: 3329 return ret; 3330 } 3331 #endif /* CONFIG_NUMA_BALANCING */ 3332 3333 /* 3334 * wait_task_inactive - wait for a thread to unschedule. 3335 * 3336 * Wait for the thread to block in any of the states set in @match_state. 3337 * If it changes, i.e. @p might have woken up, then return zero. When we 3338 * succeed in waiting for @p to be off its CPU, we return a positive number 3339 * (its total switch count). If a second call a short while later returns the 3340 * same number, the caller can be sure that @p has remained unscheduled the 3341 * whole time. 3342 * 3343 * The caller must ensure that the task *will* unschedule sometime soon, 3344 * else this function might spin for a *long* time. This function can't 3345 * be called with interrupts off, or it may introduce deadlock with 3346 * smp_call_function() if an IPI is sent by the same process we are 3347 * waiting to become inactive. 3348 */ 3349 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3350 { 3351 int running, queued; 3352 struct rq_flags rf; 3353 unsigned long ncsw; 3354 struct rq *rq; 3355 3356 for (;;) { 3357 /* 3358 * We do the initial early heuristics without holding 3359 * any task-queue locks at all. We'll only try to get 3360 * the runqueue lock when things look like they will 3361 * work out! 3362 */ 3363 rq = task_rq(p); 3364 3365 /* 3366 * If the task is actively running on another CPU 3367 * still, just relax and busy-wait without holding 3368 * any locks. 3369 * 3370 * NOTE! Since we don't hold any locks, it's not 3371 * even sure that "rq" stays as the right runqueue! 3372 * But we don't care, since "task_on_cpu()" will 3373 * return false if the runqueue has changed and p 3374 * is actually now running somewhere else! 3375 */ 3376 while (task_on_cpu(rq, p)) { 3377 if (!(READ_ONCE(p->__state) & match_state)) 3378 return 0; 3379 cpu_relax(); 3380 } 3381 3382 /* 3383 * Ok, time to look more closely! We need the rq 3384 * lock now, to be *sure*. If we're wrong, we'll 3385 * just go back and repeat. 3386 */ 3387 rq = task_rq_lock(p, &rf); 3388 trace_sched_wait_task(p); 3389 running = task_on_cpu(rq, p); 3390 queued = task_on_rq_queued(p); 3391 ncsw = 0; 3392 if (READ_ONCE(p->__state) & match_state) 3393 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3394 task_rq_unlock(rq, p, &rf); 3395 3396 /* 3397 * If it changed from the expected state, bail out now. 3398 */ 3399 if (unlikely(!ncsw)) 3400 break; 3401 3402 /* 3403 * Was it really running after all now that we 3404 * checked with the proper locks actually held? 3405 * 3406 * Oops. Go back and try again.. 3407 */ 3408 if (unlikely(running)) { 3409 cpu_relax(); 3410 continue; 3411 } 3412 3413 /* 3414 * It's not enough that it's not actively running, 3415 * it must be off the runqueue _entirely_, and not 3416 * preempted! 3417 * 3418 * So if it was still runnable (but just not actively 3419 * running right now), it's preempted, and we should 3420 * yield - it could be a while. 3421 */ 3422 if (unlikely(queued)) { 3423 ktime_t to = NSEC_PER_SEC / HZ; 3424 3425 set_current_state(TASK_UNINTERRUPTIBLE); 3426 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3427 continue; 3428 } 3429 3430 /* 3431 * Ahh, all good. It wasn't running, and it wasn't 3432 * runnable, which means that it will never become 3433 * running in the future either. We're all done! 3434 */ 3435 break; 3436 } 3437 3438 return ncsw; 3439 } 3440 3441 /*** 3442 * kick_process - kick a running thread to enter/exit the kernel 3443 * @p: the to-be-kicked thread 3444 * 3445 * Cause a process which is running on another CPU to enter 3446 * kernel-mode, without any delay. (to get signals handled.) 3447 * 3448 * NOTE: this function doesn't have to take the runqueue lock, 3449 * because all it wants to ensure is that the remote task enters 3450 * the kernel. If the IPI races and the task has been migrated 3451 * to another CPU then no harm is done and the purpose has been 3452 * achieved as well. 3453 */ 3454 void kick_process(struct task_struct *p) 3455 { 3456 int cpu; 3457 3458 preempt_disable(); 3459 cpu = task_cpu(p); 3460 if ((cpu != smp_processor_id()) && task_curr(p)) 3461 smp_send_reschedule(cpu); 3462 preempt_enable(); 3463 } 3464 EXPORT_SYMBOL_GPL(kick_process); 3465 3466 /* 3467 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3468 * 3469 * A few notes on cpu_active vs cpu_online: 3470 * 3471 * - cpu_active must be a subset of cpu_online 3472 * 3473 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3474 * see __set_cpus_allowed_ptr(). At this point the newly online 3475 * CPU isn't yet part of the sched domains, and balancing will not 3476 * see it. 3477 * 3478 * - on CPU-down we clear cpu_active() to mask the sched domains and 3479 * avoid the load balancer to place new tasks on the to be removed 3480 * CPU. Existing tasks will remain running there and will be taken 3481 * off. 3482 * 3483 * This means that fallback selection must not select !active CPUs. 3484 * And can assume that any active CPU must be online. Conversely 3485 * select_task_rq() below may allow selection of !active CPUs in order 3486 * to satisfy the above rules. 3487 */ 3488 static int select_fallback_rq(int cpu, struct task_struct *p) 3489 { 3490 int nid = cpu_to_node(cpu); 3491 const struct cpumask *nodemask = NULL; 3492 enum { cpuset, possible, fail } state = cpuset; 3493 int dest_cpu; 3494 3495 /* 3496 * If the node that the CPU is on has been offlined, cpu_to_node() 3497 * will return -1. There is no CPU on the node, and we should 3498 * select the CPU on the other node. 3499 */ 3500 if (nid != -1) { 3501 nodemask = cpumask_of_node(nid); 3502 3503 /* Look for allowed, online CPU in same node. */ 3504 for_each_cpu(dest_cpu, nodemask) { 3505 if (is_cpu_allowed(p, dest_cpu)) 3506 return dest_cpu; 3507 } 3508 } 3509 3510 for (;;) { 3511 /* Any allowed, online CPU? */ 3512 for_each_cpu(dest_cpu, p->cpus_ptr) { 3513 if (!is_cpu_allowed(p, dest_cpu)) 3514 continue; 3515 3516 goto out; 3517 } 3518 3519 /* No more Mr. Nice Guy. */ 3520 switch (state) { 3521 case cpuset: 3522 if (cpuset_cpus_allowed_fallback(p)) { 3523 state = possible; 3524 break; 3525 } 3526 fallthrough; 3527 case possible: 3528 /* 3529 * XXX When called from select_task_rq() we only 3530 * hold p->pi_lock and again violate locking order. 3531 * 3532 * More yuck to audit. 3533 */ 3534 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3535 state = fail; 3536 break; 3537 case fail: 3538 BUG(); 3539 break; 3540 } 3541 } 3542 3543 out: 3544 if (state != cpuset) { 3545 /* 3546 * Don't tell them about moving exiting tasks or 3547 * kernel threads (both mm NULL), since they never 3548 * leave kernel. 3549 */ 3550 if (p->mm && printk_ratelimit()) { 3551 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3552 task_pid_nr(p), p->comm, cpu); 3553 } 3554 } 3555 3556 return dest_cpu; 3557 } 3558 3559 /* 3560 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3561 */ 3562 static inline 3563 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3564 { 3565 lockdep_assert_held(&p->pi_lock); 3566 3567 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3568 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3569 else 3570 cpu = cpumask_any(p->cpus_ptr); 3571 3572 /* 3573 * In order not to call set_task_cpu() on a blocking task we need 3574 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3575 * CPU. 3576 * 3577 * Since this is common to all placement strategies, this lives here. 3578 * 3579 * [ this allows ->select_task() to simply return task_cpu(p) and 3580 * not worry about this generic constraint ] 3581 */ 3582 if (unlikely(!is_cpu_allowed(p, cpu))) 3583 cpu = select_fallback_rq(task_cpu(p), p); 3584 3585 return cpu; 3586 } 3587 3588 void sched_set_stop_task(int cpu, struct task_struct *stop) 3589 { 3590 static struct lock_class_key stop_pi_lock; 3591 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3592 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3593 3594 if (stop) { 3595 /* 3596 * Make it appear like a SCHED_FIFO task, its something 3597 * userspace knows about and won't get confused about. 3598 * 3599 * Also, it will make PI more or less work without too 3600 * much confusion -- but then, stop work should not 3601 * rely on PI working anyway. 3602 */ 3603 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3604 3605 stop->sched_class = &stop_sched_class; 3606 3607 /* 3608 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3609 * adjust the effective priority of a task. As a result, 3610 * rt_mutex_setprio() can trigger (RT) balancing operations, 3611 * which can then trigger wakeups of the stop thread to push 3612 * around the current task. 3613 * 3614 * The stop task itself will never be part of the PI-chain, it 3615 * never blocks, therefore that ->pi_lock recursion is safe. 3616 * Tell lockdep about this by placing the stop->pi_lock in its 3617 * own class. 3618 */ 3619 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3620 } 3621 3622 cpu_rq(cpu)->stop = stop; 3623 3624 if (old_stop) { 3625 /* 3626 * Reset it back to a normal scheduling class so that 3627 * it can die in pieces. 3628 */ 3629 old_stop->sched_class = &rt_sched_class; 3630 } 3631 } 3632 3633 #else /* CONFIG_SMP */ 3634 3635 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3636 struct affinity_context *ctx) 3637 { 3638 return set_cpus_allowed_ptr(p, ctx->new_mask); 3639 } 3640 3641 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3642 3643 static inline bool rq_has_pinned_tasks(struct rq *rq) 3644 { 3645 return false; 3646 } 3647 3648 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3649 { 3650 return NULL; 3651 } 3652 3653 #endif /* !CONFIG_SMP */ 3654 3655 static void 3656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3657 { 3658 struct rq *rq; 3659 3660 if (!schedstat_enabled()) 3661 return; 3662 3663 rq = this_rq(); 3664 3665 #ifdef CONFIG_SMP 3666 if (cpu == rq->cpu) { 3667 __schedstat_inc(rq->ttwu_local); 3668 __schedstat_inc(p->stats.nr_wakeups_local); 3669 } else { 3670 struct sched_domain *sd; 3671 3672 __schedstat_inc(p->stats.nr_wakeups_remote); 3673 rcu_read_lock(); 3674 for_each_domain(rq->cpu, sd) { 3675 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3676 __schedstat_inc(sd->ttwu_wake_remote); 3677 break; 3678 } 3679 } 3680 rcu_read_unlock(); 3681 } 3682 3683 if (wake_flags & WF_MIGRATED) 3684 __schedstat_inc(p->stats.nr_wakeups_migrate); 3685 #endif /* CONFIG_SMP */ 3686 3687 __schedstat_inc(rq->ttwu_count); 3688 __schedstat_inc(p->stats.nr_wakeups); 3689 3690 if (wake_flags & WF_SYNC) 3691 __schedstat_inc(p->stats.nr_wakeups_sync); 3692 } 3693 3694 /* 3695 * Mark the task runnable. 3696 */ 3697 static inline void ttwu_do_wakeup(struct task_struct *p) 3698 { 3699 WRITE_ONCE(p->__state, TASK_RUNNING); 3700 trace_sched_wakeup(p); 3701 } 3702 3703 static void 3704 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3705 struct rq_flags *rf) 3706 { 3707 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3708 3709 lockdep_assert_rq_held(rq); 3710 3711 if (p->sched_contributes_to_load) 3712 rq->nr_uninterruptible--; 3713 3714 #ifdef CONFIG_SMP 3715 if (wake_flags & WF_MIGRATED) 3716 en_flags |= ENQUEUE_MIGRATED; 3717 else 3718 #endif 3719 if (p->in_iowait) { 3720 delayacct_blkio_end(p); 3721 atomic_dec(&task_rq(p)->nr_iowait); 3722 } 3723 3724 activate_task(rq, p, en_flags); 3725 check_preempt_curr(rq, p, wake_flags); 3726 3727 ttwu_do_wakeup(p); 3728 3729 #ifdef CONFIG_SMP 3730 if (p->sched_class->task_woken) { 3731 /* 3732 * Our task @p is fully woken up and running; so it's safe to 3733 * drop the rq->lock, hereafter rq is only used for statistics. 3734 */ 3735 rq_unpin_lock(rq, rf); 3736 p->sched_class->task_woken(rq, p); 3737 rq_repin_lock(rq, rf); 3738 } 3739 3740 if (rq->idle_stamp) { 3741 u64 delta = rq_clock(rq) - rq->idle_stamp; 3742 u64 max = 2*rq->max_idle_balance_cost; 3743 3744 update_avg(&rq->avg_idle, delta); 3745 3746 if (rq->avg_idle > max) 3747 rq->avg_idle = max; 3748 3749 rq->wake_stamp = jiffies; 3750 rq->wake_avg_idle = rq->avg_idle / 2; 3751 3752 rq->idle_stamp = 0; 3753 } 3754 #endif 3755 } 3756 3757 /* 3758 * Consider @p being inside a wait loop: 3759 * 3760 * for (;;) { 3761 * set_current_state(TASK_UNINTERRUPTIBLE); 3762 * 3763 * if (CONDITION) 3764 * break; 3765 * 3766 * schedule(); 3767 * } 3768 * __set_current_state(TASK_RUNNING); 3769 * 3770 * between set_current_state() and schedule(). In this case @p is still 3771 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3772 * an atomic manner. 3773 * 3774 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3775 * then schedule() must still happen and p->state can be changed to 3776 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3777 * need to do a full wakeup with enqueue. 3778 * 3779 * Returns: %true when the wakeup is done, 3780 * %false otherwise. 3781 */ 3782 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3783 { 3784 struct rq_flags rf; 3785 struct rq *rq; 3786 int ret = 0; 3787 3788 rq = __task_rq_lock(p, &rf); 3789 if (task_on_rq_queued(p)) { 3790 if (!task_on_cpu(rq, p)) { 3791 /* 3792 * When on_rq && !on_cpu the task is preempted, see if 3793 * it should preempt the task that is current now. 3794 */ 3795 update_rq_clock(rq); 3796 check_preempt_curr(rq, p, wake_flags); 3797 } 3798 ttwu_do_wakeup(p); 3799 ret = 1; 3800 } 3801 __task_rq_unlock(rq, &rf); 3802 3803 return ret; 3804 } 3805 3806 #ifdef CONFIG_SMP 3807 void sched_ttwu_pending(void *arg) 3808 { 3809 struct llist_node *llist = arg; 3810 struct rq *rq = this_rq(); 3811 struct task_struct *p, *t; 3812 struct rq_flags rf; 3813 3814 if (!llist) 3815 return; 3816 3817 rq_lock_irqsave(rq, &rf); 3818 update_rq_clock(rq); 3819 3820 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3821 if (WARN_ON_ONCE(p->on_cpu)) 3822 smp_cond_load_acquire(&p->on_cpu, !VAL); 3823 3824 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3825 set_task_cpu(p, cpu_of(rq)); 3826 3827 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3828 } 3829 3830 /* 3831 * Must be after enqueueing at least once task such that 3832 * idle_cpu() does not observe a false-negative -- if it does, 3833 * it is possible for select_idle_siblings() to stack a number 3834 * of tasks on this CPU during that window. 3835 * 3836 * It is ok to clear ttwu_pending when another task pending. 3837 * We will receive IPI after local irq enabled and then enqueue it. 3838 * Since now nr_running > 0, idle_cpu() will always get correct result. 3839 */ 3840 WRITE_ONCE(rq->ttwu_pending, 0); 3841 rq_unlock_irqrestore(rq, &rf); 3842 } 3843 3844 void send_call_function_single_ipi(int cpu) 3845 { 3846 struct rq *rq = cpu_rq(cpu); 3847 3848 if (!set_nr_if_polling(rq->idle)) 3849 arch_send_call_function_single_ipi(cpu); 3850 else 3851 trace_sched_wake_idle_without_ipi(cpu); 3852 } 3853 3854 /* 3855 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3856 * necessary. The wakee CPU on receipt of the IPI will queue the task 3857 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3858 * of the wakeup instead of the waker. 3859 */ 3860 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3861 { 3862 struct rq *rq = cpu_rq(cpu); 3863 3864 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3865 3866 WRITE_ONCE(rq->ttwu_pending, 1); 3867 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3868 } 3869 3870 void wake_up_if_idle(int cpu) 3871 { 3872 struct rq *rq = cpu_rq(cpu); 3873 struct rq_flags rf; 3874 3875 rcu_read_lock(); 3876 3877 if (!is_idle_task(rcu_dereference(rq->curr))) 3878 goto out; 3879 3880 rq_lock_irqsave(rq, &rf); 3881 if (is_idle_task(rq->curr)) 3882 resched_curr(rq); 3883 /* Else CPU is not idle, do nothing here: */ 3884 rq_unlock_irqrestore(rq, &rf); 3885 3886 out: 3887 rcu_read_unlock(); 3888 } 3889 3890 bool cpus_share_cache(int this_cpu, int that_cpu) 3891 { 3892 if (this_cpu == that_cpu) 3893 return true; 3894 3895 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3896 } 3897 3898 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3899 { 3900 /* 3901 * Do not complicate things with the async wake_list while the CPU is 3902 * in hotplug state. 3903 */ 3904 if (!cpu_active(cpu)) 3905 return false; 3906 3907 /* Ensure the task will still be allowed to run on the CPU. */ 3908 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3909 return false; 3910 3911 /* 3912 * If the CPU does not share cache, then queue the task on the 3913 * remote rqs wakelist to avoid accessing remote data. 3914 */ 3915 if (!cpus_share_cache(smp_processor_id(), cpu)) 3916 return true; 3917 3918 if (cpu == smp_processor_id()) 3919 return false; 3920 3921 /* 3922 * If the wakee cpu is idle, or the task is descheduling and the 3923 * only running task on the CPU, then use the wakelist to offload 3924 * the task activation to the idle (or soon-to-be-idle) CPU as 3925 * the current CPU is likely busy. nr_running is checked to 3926 * avoid unnecessary task stacking. 3927 * 3928 * Note that we can only get here with (wakee) p->on_rq=0, 3929 * p->on_cpu can be whatever, we've done the dequeue, so 3930 * the wakee has been accounted out of ->nr_running. 3931 */ 3932 if (!cpu_rq(cpu)->nr_running) 3933 return true; 3934 3935 return false; 3936 } 3937 3938 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3939 { 3940 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3941 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3942 __ttwu_queue_wakelist(p, cpu, wake_flags); 3943 return true; 3944 } 3945 3946 return false; 3947 } 3948 3949 #else /* !CONFIG_SMP */ 3950 3951 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3952 { 3953 return false; 3954 } 3955 3956 #endif /* CONFIG_SMP */ 3957 3958 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3959 { 3960 struct rq *rq = cpu_rq(cpu); 3961 struct rq_flags rf; 3962 3963 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3964 return; 3965 3966 rq_lock(rq, &rf); 3967 update_rq_clock(rq); 3968 ttwu_do_activate(rq, p, wake_flags, &rf); 3969 rq_unlock(rq, &rf); 3970 } 3971 3972 /* 3973 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3974 * 3975 * The caller holds p::pi_lock if p != current or has preemption 3976 * disabled when p == current. 3977 * 3978 * The rules of PREEMPT_RT saved_state: 3979 * 3980 * The related locking code always holds p::pi_lock when updating 3981 * p::saved_state, which means the code is fully serialized in both cases. 3982 * 3983 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3984 * bits set. This allows to distinguish all wakeup scenarios. 3985 */ 3986 static __always_inline 3987 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3988 { 3989 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3990 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3991 state != TASK_RTLOCK_WAIT); 3992 } 3993 3994 if (READ_ONCE(p->__state) & state) { 3995 *success = 1; 3996 return true; 3997 } 3998 3999 #ifdef CONFIG_PREEMPT_RT 4000 /* 4001 * Saved state preserves the task state across blocking on 4002 * an RT lock. If the state matches, set p::saved_state to 4003 * TASK_RUNNING, but do not wake the task because it waits 4004 * for a lock wakeup. Also indicate success because from 4005 * the regular waker's point of view this has succeeded. 4006 * 4007 * After acquiring the lock the task will restore p::__state 4008 * from p::saved_state which ensures that the regular 4009 * wakeup is not lost. The restore will also set 4010 * p::saved_state to TASK_RUNNING so any further tests will 4011 * not result in false positives vs. @success 4012 */ 4013 if (p->saved_state & state) { 4014 p->saved_state = TASK_RUNNING; 4015 *success = 1; 4016 } 4017 #endif 4018 return false; 4019 } 4020 4021 /* 4022 * Notes on Program-Order guarantees on SMP systems. 4023 * 4024 * MIGRATION 4025 * 4026 * The basic program-order guarantee on SMP systems is that when a task [t] 4027 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4028 * execution on its new CPU [c1]. 4029 * 4030 * For migration (of runnable tasks) this is provided by the following means: 4031 * 4032 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4033 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4034 * rq(c1)->lock (if not at the same time, then in that order). 4035 * C) LOCK of the rq(c1)->lock scheduling in task 4036 * 4037 * Release/acquire chaining guarantees that B happens after A and C after B. 4038 * Note: the CPU doing B need not be c0 or c1 4039 * 4040 * Example: 4041 * 4042 * CPU0 CPU1 CPU2 4043 * 4044 * LOCK rq(0)->lock 4045 * sched-out X 4046 * sched-in Y 4047 * UNLOCK rq(0)->lock 4048 * 4049 * LOCK rq(0)->lock // orders against CPU0 4050 * dequeue X 4051 * UNLOCK rq(0)->lock 4052 * 4053 * LOCK rq(1)->lock 4054 * enqueue X 4055 * UNLOCK rq(1)->lock 4056 * 4057 * LOCK rq(1)->lock // orders against CPU2 4058 * sched-out Z 4059 * sched-in X 4060 * UNLOCK rq(1)->lock 4061 * 4062 * 4063 * BLOCKING -- aka. SLEEP + WAKEUP 4064 * 4065 * For blocking we (obviously) need to provide the same guarantee as for 4066 * migration. However the means are completely different as there is no lock 4067 * chain to provide order. Instead we do: 4068 * 4069 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4070 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4071 * 4072 * Example: 4073 * 4074 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4075 * 4076 * LOCK rq(0)->lock LOCK X->pi_lock 4077 * dequeue X 4078 * sched-out X 4079 * smp_store_release(X->on_cpu, 0); 4080 * 4081 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4082 * X->state = WAKING 4083 * set_task_cpu(X,2) 4084 * 4085 * LOCK rq(2)->lock 4086 * enqueue X 4087 * X->state = RUNNING 4088 * UNLOCK rq(2)->lock 4089 * 4090 * LOCK rq(2)->lock // orders against CPU1 4091 * sched-out Z 4092 * sched-in X 4093 * UNLOCK rq(2)->lock 4094 * 4095 * UNLOCK X->pi_lock 4096 * UNLOCK rq(0)->lock 4097 * 4098 * 4099 * However, for wakeups there is a second guarantee we must provide, namely we 4100 * must ensure that CONDITION=1 done by the caller can not be reordered with 4101 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4102 */ 4103 4104 /** 4105 * try_to_wake_up - wake up a thread 4106 * @p: the thread to be awakened 4107 * @state: the mask of task states that can be woken 4108 * @wake_flags: wake modifier flags (WF_*) 4109 * 4110 * Conceptually does: 4111 * 4112 * If (@state & @p->state) @p->state = TASK_RUNNING. 4113 * 4114 * If the task was not queued/runnable, also place it back on a runqueue. 4115 * 4116 * This function is atomic against schedule() which would dequeue the task. 4117 * 4118 * It issues a full memory barrier before accessing @p->state, see the comment 4119 * with set_current_state(). 4120 * 4121 * Uses p->pi_lock to serialize against concurrent wake-ups. 4122 * 4123 * Relies on p->pi_lock stabilizing: 4124 * - p->sched_class 4125 * - p->cpus_ptr 4126 * - p->sched_task_group 4127 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4128 * 4129 * Tries really hard to only take one task_rq(p)->lock for performance. 4130 * Takes rq->lock in: 4131 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4132 * - ttwu_queue() -- new rq, for enqueue of the task; 4133 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4134 * 4135 * As a consequence we race really badly with just about everything. See the 4136 * many memory barriers and their comments for details. 4137 * 4138 * Return: %true if @p->state changes (an actual wakeup was done), 4139 * %false otherwise. 4140 */ 4141 static int 4142 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4143 { 4144 unsigned long flags; 4145 int cpu, success = 0; 4146 4147 preempt_disable(); 4148 if (p == current) { 4149 /* 4150 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4151 * == smp_processor_id()'. Together this means we can special 4152 * case the whole 'p->on_rq && ttwu_runnable()' case below 4153 * without taking any locks. 4154 * 4155 * In particular: 4156 * - we rely on Program-Order guarantees for all the ordering, 4157 * - we're serialized against set_special_state() by virtue of 4158 * it disabling IRQs (this allows not taking ->pi_lock). 4159 */ 4160 if (!ttwu_state_match(p, state, &success)) 4161 goto out; 4162 4163 trace_sched_waking(p); 4164 ttwu_do_wakeup(p); 4165 goto out; 4166 } 4167 4168 /* 4169 * If we are going to wake up a thread waiting for CONDITION we 4170 * need to ensure that CONDITION=1 done by the caller can not be 4171 * reordered with p->state check below. This pairs with smp_store_mb() 4172 * in set_current_state() that the waiting thread does. 4173 */ 4174 raw_spin_lock_irqsave(&p->pi_lock, flags); 4175 smp_mb__after_spinlock(); 4176 if (!ttwu_state_match(p, state, &success)) 4177 goto unlock; 4178 4179 trace_sched_waking(p); 4180 4181 /* 4182 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4183 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4184 * in smp_cond_load_acquire() below. 4185 * 4186 * sched_ttwu_pending() try_to_wake_up() 4187 * STORE p->on_rq = 1 LOAD p->state 4188 * UNLOCK rq->lock 4189 * 4190 * __schedule() (switch to task 'p') 4191 * LOCK rq->lock smp_rmb(); 4192 * smp_mb__after_spinlock(); 4193 * UNLOCK rq->lock 4194 * 4195 * [task p] 4196 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4197 * 4198 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4199 * __schedule(). See the comment for smp_mb__after_spinlock(). 4200 * 4201 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4202 */ 4203 smp_rmb(); 4204 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4205 goto unlock; 4206 4207 #ifdef CONFIG_SMP 4208 /* 4209 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4210 * possible to, falsely, observe p->on_cpu == 0. 4211 * 4212 * One must be running (->on_cpu == 1) in order to remove oneself 4213 * from the runqueue. 4214 * 4215 * __schedule() (switch to task 'p') try_to_wake_up() 4216 * STORE p->on_cpu = 1 LOAD p->on_rq 4217 * UNLOCK rq->lock 4218 * 4219 * __schedule() (put 'p' to sleep) 4220 * LOCK rq->lock smp_rmb(); 4221 * smp_mb__after_spinlock(); 4222 * STORE p->on_rq = 0 LOAD p->on_cpu 4223 * 4224 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4225 * __schedule(). See the comment for smp_mb__after_spinlock(). 4226 * 4227 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4228 * schedule()'s deactivate_task() has 'happened' and p will no longer 4229 * care about it's own p->state. See the comment in __schedule(). 4230 */ 4231 smp_acquire__after_ctrl_dep(); 4232 4233 /* 4234 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4235 * == 0), which means we need to do an enqueue, change p->state to 4236 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4237 * enqueue, such as ttwu_queue_wakelist(). 4238 */ 4239 WRITE_ONCE(p->__state, TASK_WAKING); 4240 4241 /* 4242 * If the owning (remote) CPU is still in the middle of schedule() with 4243 * this task as prev, considering queueing p on the remote CPUs wake_list 4244 * which potentially sends an IPI instead of spinning on p->on_cpu to 4245 * let the waker make forward progress. This is safe because IRQs are 4246 * disabled and the IPI will deliver after on_cpu is cleared. 4247 * 4248 * Ensure we load task_cpu(p) after p->on_cpu: 4249 * 4250 * set_task_cpu(p, cpu); 4251 * STORE p->cpu = @cpu 4252 * __schedule() (switch to task 'p') 4253 * LOCK rq->lock 4254 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4255 * STORE p->on_cpu = 1 LOAD p->cpu 4256 * 4257 * to ensure we observe the correct CPU on which the task is currently 4258 * scheduling. 4259 */ 4260 if (smp_load_acquire(&p->on_cpu) && 4261 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4262 goto unlock; 4263 4264 /* 4265 * If the owning (remote) CPU is still in the middle of schedule() with 4266 * this task as prev, wait until it's done referencing the task. 4267 * 4268 * Pairs with the smp_store_release() in finish_task(). 4269 * 4270 * This ensures that tasks getting woken will be fully ordered against 4271 * their previous state and preserve Program Order. 4272 */ 4273 smp_cond_load_acquire(&p->on_cpu, !VAL); 4274 4275 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4276 if (task_cpu(p) != cpu) { 4277 if (p->in_iowait) { 4278 delayacct_blkio_end(p); 4279 atomic_dec(&task_rq(p)->nr_iowait); 4280 } 4281 4282 wake_flags |= WF_MIGRATED; 4283 psi_ttwu_dequeue(p); 4284 set_task_cpu(p, cpu); 4285 } 4286 #else 4287 cpu = task_cpu(p); 4288 #endif /* CONFIG_SMP */ 4289 4290 ttwu_queue(p, cpu, wake_flags); 4291 unlock: 4292 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4293 out: 4294 if (success) 4295 ttwu_stat(p, task_cpu(p), wake_flags); 4296 preempt_enable(); 4297 4298 return success; 4299 } 4300 4301 static bool __task_needs_rq_lock(struct task_struct *p) 4302 { 4303 unsigned int state = READ_ONCE(p->__state); 4304 4305 /* 4306 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4307 * the task is blocked. Make sure to check @state since ttwu() can drop 4308 * locks at the end, see ttwu_queue_wakelist(). 4309 */ 4310 if (state == TASK_RUNNING || state == TASK_WAKING) 4311 return true; 4312 4313 /* 4314 * Ensure we load p->on_rq after p->__state, otherwise it would be 4315 * possible to, falsely, observe p->on_rq == 0. 4316 * 4317 * See try_to_wake_up() for a longer comment. 4318 */ 4319 smp_rmb(); 4320 if (p->on_rq) 4321 return true; 4322 4323 #ifdef CONFIG_SMP 4324 /* 4325 * Ensure the task has finished __schedule() and will not be referenced 4326 * anymore. Again, see try_to_wake_up() for a longer comment. 4327 */ 4328 smp_rmb(); 4329 smp_cond_load_acquire(&p->on_cpu, !VAL); 4330 #endif 4331 4332 return false; 4333 } 4334 4335 /** 4336 * task_call_func - Invoke a function on task in fixed state 4337 * @p: Process for which the function is to be invoked, can be @current. 4338 * @func: Function to invoke. 4339 * @arg: Argument to function. 4340 * 4341 * Fix the task in it's current state by avoiding wakeups and or rq operations 4342 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4343 * to work out what the state is, if required. Given that @func can be invoked 4344 * with a runqueue lock held, it had better be quite lightweight. 4345 * 4346 * Returns: 4347 * Whatever @func returns 4348 */ 4349 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4350 { 4351 struct rq *rq = NULL; 4352 struct rq_flags rf; 4353 int ret; 4354 4355 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4356 4357 if (__task_needs_rq_lock(p)) 4358 rq = __task_rq_lock(p, &rf); 4359 4360 /* 4361 * At this point the task is pinned; either: 4362 * - blocked and we're holding off wakeups (pi->lock) 4363 * - woken, and we're holding off enqueue (rq->lock) 4364 * - queued, and we're holding off schedule (rq->lock) 4365 * - running, and we're holding off de-schedule (rq->lock) 4366 * 4367 * The called function (@func) can use: task_curr(), p->on_rq and 4368 * p->__state to differentiate between these states. 4369 */ 4370 ret = func(p, arg); 4371 4372 if (rq) 4373 rq_unlock(rq, &rf); 4374 4375 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4376 return ret; 4377 } 4378 4379 /** 4380 * cpu_curr_snapshot - Return a snapshot of the currently running task 4381 * @cpu: The CPU on which to snapshot the task. 4382 * 4383 * Returns the task_struct pointer of the task "currently" running on 4384 * the specified CPU. If the same task is running on that CPU throughout, 4385 * the return value will be a pointer to that task's task_struct structure. 4386 * If the CPU did any context switches even vaguely concurrently with the 4387 * execution of this function, the return value will be a pointer to the 4388 * task_struct structure of a randomly chosen task that was running on 4389 * that CPU somewhere around the time that this function was executing. 4390 * 4391 * If the specified CPU was offline, the return value is whatever it 4392 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4393 * task, but there is no guarantee. Callers wishing a useful return 4394 * value must take some action to ensure that the specified CPU remains 4395 * online throughout. 4396 * 4397 * This function executes full memory barriers before and after fetching 4398 * the pointer, which permits the caller to confine this function's fetch 4399 * with respect to the caller's accesses to other shared variables. 4400 */ 4401 struct task_struct *cpu_curr_snapshot(int cpu) 4402 { 4403 struct task_struct *t; 4404 4405 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4406 t = rcu_dereference(cpu_curr(cpu)); 4407 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4408 return t; 4409 } 4410 4411 /** 4412 * wake_up_process - Wake up a specific process 4413 * @p: The process to be woken up. 4414 * 4415 * Attempt to wake up the nominated process and move it to the set of runnable 4416 * processes. 4417 * 4418 * Return: 1 if the process was woken up, 0 if it was already running. 4419 * 4420 * This function executes a full memory barrier before accessing the task state. 4421 */ 4422 int wake_up_process(struct task_struct *p) 4423 { 4424 return try_to_wake_up(p, TASK_NORMAL, 0); 4425 } 4426 EXPORT_SYMBOL(wake_up_process); 4427 4428 int wake_up_state(struct task_struct *p, unsigned int state) 4429 { 4430 return try_to_wake_up(p, state, 0); 4431 } 4432 4433 /* 4434 * Perform scheduler related setup for a newly forked process p. 4435 * p is forked by current. 4436 * 4437 * __sched_fork() is basic setup used by init_idle() too: 4438 */ 4439 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4440 { 4441 p->on_rq = 0; 4442 4443 p->se.on_rq = 0; 4444 p->se.exec_start = 0; 4445 p->se.sum_exec_runtime = 0; 4446 p->se.prev_sum_exec_runtime = 0; 4447 p->se.nr_migrations = 0; 4448 p->se.vruntime = 0; 4449 INIT_LIST_HEAD(&p->se.group_node); 4450 4451 #ifdef CONFIG_FAIR_GROUP_SCHED 4452 p->se.cfs_rq = NULL; 4453 #endif 4454 4455 #ifdef CONFIG_SCHEDSTATS 4456 /* Even if schedstat is disabled, there should not be garbage */ 4457 memset(&p->stats, 0, sizeof(p->stats)); 4458 #endif 4459 4460 RB_CLEAR_NODE(&p->dl.rb_node); 4461 init_dl_task_timer(&p->dl); 4462 init_dl_inactive_task_timer(&p->dl); 4463 __dl_clear_params(p); 4464 4465 INIT_LIST_HEAD(&p->rt.run_list); 4466 p->rt.timeout = 0; 4467 p->rt.time_slice = sched_rr_timeslice; 4468 p->rt.on_rq = 0; 4469 p->rt.on_list = 0; 4470 4471 #ifdef CONFIG_PREEMPT_NOTIFIERS 4472 INIT_HLIST_HEAD(&p->preempt_notifiers); 4473 #endif 4474 4475 #ifdef CONFIG_COMPACTION 4476 p->capture_control = NULL; 4477 #endif 4478 init_numa_balancing(clone_flags, p); 4479 #ifdef CONFIG_SMP 4480 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4481 p->migration_pending = NULL; 4482 #endif 4483 } 4484 4485 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4486 4487 #ifdef CONFIG_NUMA_BALANCING 4488 4489 int sysctl_numa_balancing_mode; 4490 4491 static void __set_numabalancing_state(bool enabled) 4492 { 4493 if (enabled) 4494 static_branch_enable(&sched_numa_balancing); 4495 else 4496 static_branch_disable(&sched_numa_balancing); 4497 } 4498 4499 void set_numabalancing_state(bool enabled) 4500 { 4501 if (enabled) 4502 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4503 else 4504 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4505 __set_numabalancing_state(enabled); 4506 } 4507 4508 #ifdef CONFIG_PROC_SYSCTL 4509 static void reset_memory_tiering(void) 4510 { 4511 struct pglist_data *pgdat; 4512 4513 for_each_online_pgdat(pgdat) { 4514 pgdat->nbp_threshold = 0; 4515 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4516 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4517 } 4518 } 4519 4520 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4521 void *buffer, size_t *lenp, loff_t *ppos) 4522 { 4523 struct ctl_table t; 4524 int err; 4525 int state = sysctl_numa_balancing_mode; 4526 4527 if (write && !capable(CAP_SYS_ADMIN)) 4528 return -EPERM; 4529 4530 t = *table; 4531 t.data = &state; 4532 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4533 if (err < 0) 4534 return err; 4535 if (write) { 4536 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4537 (state & NUMA_BALANCING_MEMORY_TIERING)) 4538 reset_memory_tiering(); 4539 sysctl_numa_balancing_mode = state; 4540 __set_numabalancing_state(state); 4541 } 4542 return err; 4543 } 4544 #endif 4545 #endif 4546 4547 #ifdef CONFIG_SCHEDSTATS 4548 4549 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4550 4551 static void set_schedstats(bool enabled) 4552 { 4553 if (enabled) 4554 static_branch_enable(&sched_schedstats); 4555 else 4556 static_branch_disable(&sched_schedstats); 4557 } 4558 4559 void force_schedstat_enabled(void) 4560 { 4561 if (!schedstat_enabled()) { 4562 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4563 static_branch_enable(&sched_schedstats); 4564 } 4565 } 4566 4567 static int __init setup_schedstats(char *str) 4568 { 4569 int ret = 0; 4570 if (!str) 4571 goto out; 4572 4573 if (!strcmp(str, "enable")) { 4574 set_schedstats(true); 4575 ret = 1; 4576 } else if (!strcmp(str, "disable")) { 4577 set_schedstats(false); 4578 ret = 1; 4579 } 4580 out: 4581 if (!ret) 4582 pr_warn("Unable to parse schedstats=\n"); 4583 4584 return ret; 4585 } 4586 __setup("schedstats=", setup_schedstats); 4587 4588 #ifdef CONFIG_PROC_SYSCTL 4589 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4590 size_t *lenp, loff_t *ppos) 4591 { 4592 struct ctl_table t; 4593 int err; 4594 int state = static_branch_likely(&sched_schedstats); 4595 4596 if (write && !capable(CAP_SYS_ADMIN)) 4597 return -EPERM; 4598 4599 t = *table; 4600 t.data = &state; 4601 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4602 if (err < 0) 4603 return err; 4604 if (write) 4605 set_schedstats(state); 4606 return err; 4607 } 4608 #endif /* CONFIG_PROC_SYSCTL */ 4609 #endif /* CONFIG_SCHEDSTATS */ 4610 4611 #ifdef CONFIG_SYSCTL 4612 static struct ctl_table sched_core_sysctls[] = { 4613 #ifdef CONFIG_SCHEDSTATS 4614 { 4615 .procname = "sched_schedstats", 4616 .data = NULL, 4617 .maxlen = sizeof(unsigned int), 4618 .mode = 0644, 4619 .proc_handler = sysctl_schedstats, 4620 .extra1 = SYSCTL_ZERO, 4621 .extra2 = SYSCTL_ONE, 4622 }, 4623 #endif /* CONFIG_SCHEDSTATS */ 4624 #ifdef CONFIG_UCLAMP_TASK 4625 { 4626 .procname = "sched_util_clamp_min", 4627 .data = &sysctl_sched_uclamp_util_min, 4628 .maxlen = sizeof(unsigned int), 4629 .mode = 0644, 4630 .proc_handler = sysctl_sched_uclamp_handler, 4631 }, 4632 { 4633 .procname = "sched_util_clamp_max", 4634 .data = &sysctl_sched_uclamp_util_max, 4635 .maxlen = sizeof(unsigned int), 4636 .mode = 0644, 4637 .proc_handler = sysctl_sched_uclamp_handler, 4638 }, 4639 { 4640 .procname = "sched_util_clamp_min_rt_default", 4641 .data = &sysctl_sched_uclamp_util_min_rt_default, 4642 .maxlen = sizeof(unsigned int), 4643 .mode = 0644, 4644 .proc_handler = sysctl_sched_uclamp_handler, 4645 }, 4646 #endif /* CONFIG_UCLAMP_TASK */ 4647 #ifdef CONFIG_NUMA_BALANCING 4648 { 4649 .procname = "numa_balancing", 4650 .data = NULL, /* filled in by handler */ 4651 .maxlen = sizeof(unsigned int), 4652 .mode = 0644, 4653 .proc_handler = sysctl_numa_balancing, 4654 .extra1 = SYSCTL_ZERO, 4655 .extra2 = SYSCTL_FOUR, 4656 }, 4657 #endif /* CONFIG_NUMA_BALANCING */ 4658 {} 4659 }; 4660 static int __init sched_core_sysctl_init(void) 4661 { 4662 register_sysctl_init("kernel", sched_core_sysctls); 4663 return 0; 4664 } 4665 late_initcall(sched_core_sysctl_init); 4666 #endif /* CONFIG_SYSCTL */ 4667 4668 /* 4669 * fork()/clone()-time setup: 4670 */ 4671 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4672 { 4673 __sched_fork(clone_flags, p); 4674 /* 4675 * We mark the process as NEW here. This guarantees that 4676 * nobody will actually run it, and a signal or other external 4677 * event cannot wake it up and insert it on the runqueue either. 4678 */ 4679 p->__state = TASK_NEW; 4680 4681 /* 4682 * Make sure we do not leak PI boosting priority to the child. 4683 */ 4684 p->prio = current->normal_prio; 4685 4686 uclamp_fork(p); 4687 4688 /* 4689 * Revert to default priority/policy on fork if requested. 4690 */ 4691 if (unlikely(p->sched_reset_on_fork)) { 4692 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4693 p->policy = SCHED_NORMAL; 4694 p->static_prio = NICE_TO_PRIO(0); 4695 p->rt_priority = 0; 4696 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4697 p->static_prio = NICE_TO_PRIO(0); 4698 4699 p->prio = p->normal_prio = p->static_prio; 4700 set_load_weight(p, false); 4701 4702 /* 4703 * We don't need the reset flag anymore after the fork. It has 4704 * fulfilled its duty: 4705 */ 4706 p->sched_reset_on_fork = 0; 4707 } 4708 4709 if (dl_prio(p->prio)) 4710 return -EAGAIN; 4711 else if (rt_prio(p->prio)) 4712 p->sched_class = &rt_sched_class; 4713 else 4714 p->sched_class = &fair_sched_class; 4715 4716 init_entity_runnable_average(&p->se); 4717 4718 4719 #ifdef CONFIG_SCHED_INFO 4720 if (likely(sched_info_on())) 4721 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4722 #endif 4723 #if defined(CONFIG_SMP) 4724 p->on_cpu = 0; 4725 #endif 4726 init_task_preempt_count(p); 4727 #ifdef CONFIG_SMP 4728 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4729 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4730 #endif 4731 return 0; 4732 } 4733 4734 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4735 { 4736 unsigned long flags; 4737 4738 /* 4739 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4740 * required yet, but lockdep gets upset if rules are violated. 4741 */ 4742 raw_spin_lock_irqsave(&p->pi_lock, flags); 4743 #ifdef CONFIG_CGROUP_SCHED 4744 if (1) { 4745 struct task_group *tg; 4746 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4747 struct task_group, css); 4748 tg = autogroup_task_group(p, tg); 4749 p->sched_task_group = tg; 4750 } 4751 #endif 4752 rseq_migrate(p); 4753 /* 4754 * We're setting the CPU for the first time, we don't migrate, 4755 * so use __set_task_cpu(). 4756 */ 4757 __set_task_cpu(p, smp_processor_id()); 4758 if (p->sched_class->task_fork) 4759 p->sched_class->task_fork(p); 4760 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4761 } 4762 4763 void sched_post_fork(struct task_struct *p) 4764 { 4765 uclamp_post_fork(p); 4766 } 4767 4768 unsigned long to_ratio(u64 period, u64 runtime) 4769 { 4770 if (runtime == RUNTIME_INF) 4771 return BW_UNIT; 4772 4773 /* 4774 * Doing this here saves a lot of checks in all 4775 * the calling paths, and returning zero seems 4776 * safe for them anyway. 4777 */ 4778 if (period == 0) 4779 return 0; 4780 4781 return div64_u64(runtime << BW_SHIFT, period); 4782 } 4783 4784 /* 4785 * wake_up_new_task - wake up a newly created task for the first time. 4786 * 4787 * This function will do some initial scheduler statistics housekeeping 4788 * that must be done for every newly created context, then puts the task 4789 * on the runqueue and wakes it. 4790 */ 4791 void wake_up_new_task(struct task_struct *p) 4792 { 4793 struct rq_flags rf; 4794 struct rq *rq; 4795 4796 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4797 WRITE_ONCE(p->__state, TASK_RUNNING); 4798 #ifdef CONFIG_SMP 4799 /* 4800 * Fork balancing, do it here and not earlier because: 4801 * - cpus_ptr can change in the fork path 4802 * - any previously selected CPU might disappear through hotplug 4803 * 4804 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4805 * as we're not fully set-up yet. 4806 */ 4807 p->recent_used_cpu = task_cpu(p); 4808 rseq_migrate(p); 4809 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4810 #endif 4811 rq = __task_rq_lock(p, &rf); 4812 update_rq_clock(rq); 4813 post_init_entity_util_avg(p); 4814 4815 activate_task(rq, p, ENQUEUE_NOCLOCK); 4816 trace_sched_wakeup_new(p); 4817 check_preempt_curr(rq, p, WF_FORK); 4818 #ifdef CONFIG_SMP 4819 if (p->sched_class->task_woken) { 4820 /* 4821 * Nothing relies on rq->lock after this, so it's fine to 4822 * drop it. 4823 */ 4824 rq_unpin_lock(rq, &rf); 4825 p->sched_class->task_woken(rq, p); 4826 rq_repin_lock(rq, &rf); 4827 } 4828 #endif 4829 task_rq_unlock(rq, p, &rf); 4830 } 4831 4832 #ifdef CONFIG_PREEMPT_NOTIFIERS 4833 4834 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4835 4836 void preempt_notifier_inc(void) 4837 { 4838 static_branch_inc(&preempt_notifier_key); 4839 } 4840 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4841 4842 void preempt_notifier_dec(void) 4843 { 4844 static_branch_dec(&preempt_notifier_key); 4845 } 4846 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4847 4848 /** 4849 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4850 * @notifier: notifier struct to register 4851 */ 4852 void preempt_notifier_register(struct preempt_notifier *notifier) 4853 { 4854 if (!static_branch_unlikely(&preempt_notifier_key)) 4855 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4856 4857 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4858 } 4859 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4860 4861 /** 4862 * preempt_notifier_unregister - no longer interested in preemption notifications 4863 * @notifier: notifier struct to unregister 4864 * 4865 * This is *not* safe to call from within a preemption notifier. 4866 */ 4867 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4868 { 4869 hlist_del(¬ifier->link); 4870 } 4871 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4872 4873 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4874 { 4875 struct preempt_notifier *notifier; 4876 4877 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4878 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4879 } 4880 4881 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4882 { 4883 if (static_branch_unlikely(&preempt_notifier_key)) 4884 __fire_sched_in_preempt_notifiers(curr); 4885 } 4886 4887 static void 4888 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4889 struct task_struct *next) 4890 { 4891 struct preempt_notifier *notifier; 4892 4893 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4894 notifier->ops->sched_out(notifier, next); 4895 } 4896 4897 static __always_inline void 4898 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4899 struct task_struct *next) 4900 { 4901 if (static_branch_unlikely(&preempt_notifier_key)) 4902 __fire_sched_out_preempt_notifiers(curr, next); 4903 } 4904 4905 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4906 4907 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4908 { 4909 } 4910 4911 static inline void 4912 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4913 struct task_struct *next) 4914 { 4915 } 4916 4917 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4918 4919 static inline void prepare_task(struct task_struct *next) 4920 { 4921 #ifdef CONFIG_SMP 4922 /* 4923 * Claim the task as running, we do this before switching to it 4924 * such that any running task will have this set. 4925 * 4926 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4927 * its ordering comment. 4928 */ 4929 WRITE_ONCE(next->on_cpu, 1); 4930 #endif 4931 } 4932 4933 static inline void finish_task(struct task_struct *prev) 4934 { 4935 #ifdef CONFIG_SMP 4936 /* 4937 * This must be the very last reference to @prev from this CPU. After 4938 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4939 * must ensure this doesn't happen until the switch is completely 4940 * finished. 4941 * 4942 * In particular, the load of prev->state in finish_task_switch() must 4943 * happen before this. 4944 * 4945 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4946 */ 4947 smp_store_release(&prev->on_cpu, 0); 4948 #endif 4949 } 4950 4951 #ifdef CONFIG_SMP 4952 4953 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4954 { 4955 void (*func)(struct rq *rq); 4956 struct balance_callback *next; 4957 4958 lockdep_assert_rq_held(rq); 4959 4960 while (head) { 4961 func = (void (*)(struct rq *))head->func; 4962 next = head->next; 4963 head->next = NULL; 4964 head = next; 4965 4966 func(rq); 4967 } 4968 } 4969 4970 static void balance_push(struct rq *rq); 4971 4972 /* 4973 * balance_push_callback is a right abuse of the callback interface and plays 4974 * by significantly different rules. 4975 * 4976 * Where the normal balance_callback's purpose is to be ran in the same context 4977 * that queued it (only later, when it's safe to drop rq->lock again), 4978 * balance_push_callback is specifically targeted at __schedule(). 4979 * 4980 * This abuse is tolerated because it places all the unlikely/odd cases behind 4981 * a single test, namely: rq->balance_callback == NULL. 4982 */ 4983 struct balance_callback balance_push_callback = { 4984 .next = NULL, 4985 .func = balance_push, 4986 }; 4987 4988 static inline struct balance_callback * 4989 __splice_balance_callbacks(struct rq *rq, bool split) 4990 { 4991 struct balance_callback *head = rq->balance_callback; 4992 4993 if (likely(!head)) 4994 return NULL; 4995 4996 lockdep_assert_rq_held(rq); 4997 /* 4998 * Must not take balance_push_callback off the list when 4999 * splice_balance_callbacks() and balance_callbacks() are not 5000 * in the same rq->lock section. 5001 * 5002 * In that case it would be possible for __schedule() to interleave 5003 * and observe the list empty. 5004 */ 5005 if (split && head == &balance_push_callback) 5006 head = NULL; 5007 else 5008 rq->balance_callback = NULL; 5009 5010 return head; 5011 } 5012 5013 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5014 { 5015 return __splice_balance_callbacks(rq, true); 5016 } 5017 5018 static void __balance_callbacks(struct rq *rq) 5019 { 5020 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5021 } 5022 5023 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5024 { 5025 unsigned long flags; 5026 5027 if (unlikely(head)) { 5028 raw_spin_rq_lock_irqsave(rq, flags); 5029 do_balance_callbacks(rq, head); 5030 raw_spin_rq_unlock_irqrestore(rq, flags); 5031 } 5032 } 5033 5034 #else 5035 5036 static inline void __balance_callbacks(struct rq *rq) 5037 { 5038 } 5039 5040 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5041 { 5042 return NULL; 5043 } 5044 5045 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5046 { 5047 } 5048 5049 #endif 5050 5051 static inline void 5052 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5053 { 5054 /* 5055 * Since the runqueue lock will be released by the next 5056 * task (which is an invalid locking op but in the case 5057 * of the scheduler it's an obvious special-case), so we 5058 * do an early lockdep release here: 5059 */ 5060 rq_unpin_lock(rq, rf); 5061 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5062 #ifdef CONFIG_DEBUG_SPINLOCK 5063 /* this is a valid case when another task releases the spinlock */ 5064 rq_lockp(rq)->owner = next; 5065 #endif 5066 } 5067 5068 static inline void finish_lock_switch(struct rq *rq) 5069 { 5070 /* 5071 * If we are tracking spinlock dependencies then we have to 5072 * fix up the runqueue lock - which gets 'carried over' from 5073 * prev into current: 5074 */ 5075 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5076 __balance_callbacks(rq); 5077 raw_spin_rq_unlock_irq(rq); 5078 } 5079 5080 /* 5081 * NOP if the arch has not defined these: 5082 */ 5083 5084 #ifndef prepare_arch_switch 5085 # define prepare_arch_switch(next) do { } while (0) 5086 #endif 5087 5088 #ifndef finish_arch_post_lock_switch 5089 # define finish_arch_post_lock_switch() do { } while (0) 5090 #endif 5091 5092 static inline void kmap_local_sched_out(void) 5093 { 5094 #ifdef CONFIG_KMAP_LOCAL 5095 if (unlikely(current->kmap_ctrl.idx)) 5096 __kmap_local_sched_out(); 5097 #endif 5098 } 5099 5100 static inline void kmap_local_sched_in(void) 5101 { 5102 #ifdef CONFIG_KMAP_LOCAL 5103 if (unlikely(current->kmap_ctrl.idx)) 5104 __kmap_local_sched_in(); 5105 #endif 5106 } 5107 5108 /** 5109 * prepare_task_switch - prepare to switch tasks 5110 * @rq: the runqueue preparing to switch 5111 * @prev: the current task that is being switched out 5112 * @next: the task we are going to switch to. 5113 * 5114 * This is called with the rq lock held and interrupts off. It must 5115 * be paired with a subsequent finish_task_switch after the context 5116 * switch. 5117 * 5118 * prepare_task_switch sets up locking and calls architecture specific 5119 * hooks. 5120 */ 5121 static inline void 5122 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5123 struct task_struct *next) 5124 { 5125 kcov_prepare_switch(prev); 5126 sched_info_switch(rq, prev, next); 5127 perf_event_task_sched_out(prev, next); 5128 rseq_preempt(prev); 5129 switch_mm_cid(prev, next); 5130 fire_sched_out_preempt_notifiers(prev, next); 5131 kmap_local_sched_out(); 5132 prepare_task(next); 5133 prepare_arch_switch(next); 5134 } 5135 5136 /** 5137 * finish_task_switch - clean up after a task-switch 5138 * @prev: the thread we just switched away from. 5139 * 5140 * finish_task_switch must be called after the context switch, paired 5141 * with a prepare_task_switch call before the context switch. 5142 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5143 * and do any other architecture-specific cleanup actions. 5144 * 5145 * Note that we may have delayed dropping an mm in context_switch(). If 5146 * so, we finish that here outside of the runqueue lock. (Doing it 5147 * with the lock held can cause deadlocks; see schedule() for 5148 * details.) 5149 * 5150 * The context switch have flipped the stack from under us and restored the 5151 * local variables which were saved when this task called schedule() in the 5152 * past. prev == current is still correct but we need to recalculate this_rq 5153 * because prev may have moved to another CPU. 5154 */ 5155 static struct rq *finish_task_switch(struct task_struct *prev) 5156 __releases(rq->lock) 5157 { 5158 struct rq *rq = this_rq(); 5159 struct mm_struct *mm = rq->prev_mm; 5160 unsigned int prev_state; 5161 5162 /* 5163 * The previous task will have left us with a preempt_count of 2 5164 * because it left us after: 5165 * 5166 * schedule() 5167 * preempt_disable(); // 1 5168 * __schedule() 5169 * raw_spin_lock_irq(&rq->lock) // 2 5170 * 5171 * Also, see FORK_PREEMPT_COUNT. 5172 */ 5173 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5174 "corrupted preempt_count: %s/%d/0x%x\n", 5175 current->comm, current->pid, preempt_count())) 5176 preempt_count_set(FORK_PREEMPT_COUNT); 5177 5178 rq->prev_mm = NULL; 5179 5180 /* 5181 * A task struct has one reference for the use as "current". 5182 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5183 * schedule one last time. The schedule call will never return, and 5184 * the scheduled task must drop that reference. 5185 * 5186 * We must observe prev->state before clearing prev->on_cpu (in 5187 * finish_task), otherwise a concurrent wakeup can get prev 5188 * running on another CPU and we could rave with its RUNNING -> DEAD 5189 * transition, resulting in a double drop. 5190 */ 5191 prev_state = READ_ONCE(prev->__state); 5192 vtime_task_switch(prev); 5193 perf_event_task_sched_in(prev, current); 5194 finish_task(prev); 5195 tick_nohz_task_switch(); 5196 finish_lock_switch(rq); 5197 finish_arch_post_lock_switch(); 5198 kcov_finish_switch(current); 5199 /* 5200 * kmap_local_sched_out() is invoked with rq::lock held and 5201 * interrupts disabled. There is no requirement for that, but the 5202 * sched out code does not have an interrupt enabled section. 5203 * Restoring the maps on sched in does not require interrupts being 5204 * disabled either. 5205 */ 5206 kmap_local_sched_in(); 5207 5208 fire_sched_in_preempt_notifiers(current); 5209 /* 5210 * When switching through a kernel thread, the loop in 5211 * membarrier_{private,global}_expedited() may have observed that 5212 * kernel thread and not issued an IPI. It is therefore possible to 5213 * schedule between user->kernel->user threads without passing though 5214 * switch_mm(). Membarrier requires a barrier after storing to 5215 * rq->curr, before returning to userspace, so provide them here: 5216 * 5217 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5218 * provided by mmdrop(), 5219 * - a sync_core for SYNC_CORE. 5220 */ 5221 if (mm) { 5222 membarrier_mm_sync_core_before_usermode(mm); 5223 mmdrop_sched(mm); 5224 } 5225 if (unlikely(prev_state == TASK_DEAD)) { 5226 if (prev->sched_class->task_dead) 5227 prev->sched_class->task_dead(prev); 5228 5229 /* Task is done with its stack. */ 5230 put_task_stack(prev); 5231 5232 put_task_struct_rcu_user(prev); 5233 } 5234 5235 return rq; 5236 } 5237 5238 /** 5239 * schedule_tail - first thing a freshly forked thread must call. 5240 * @prev: the thread we just switched away from. 5241 */ 5242 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5243 __releases(rq->lock) 5244 { 5245 /* 5246 * New tasks start with FORK_PREEMPT_COUNT, see there and 5247 * finish_task_switch() for details. 5248 * 5249 * finish_task_switch() will drop rq->lock() and lower preempt_count 5250 * and the preempt_enable() will end up enabling preemption (on 5251 * PREEMPT_COUNT kernels). 5252 */ 5253 5254 finish_task_switch(prev); 5255 preempt_enable(); 5256 5257 if (current->set_child_tid) 5258 put_user(task_pid_vnr(current), current->set_child_tid); 5259 5260 calculate_sigpending(); 5261 } 5262 5263 /* 5264 * context_switch - switch to the new MM and the new thread's register state. 5265 */ 5266 static __always_inline struct rq * 5267 context_switch(struct rq *rq, struct task_struct *prev, 5268 struct task_struct *next, struct rq_flags *rf) 5269 { 5270 prepare_task_switch(rq, prev, next); 5271 5272 /* 5273 * For paravirt, this is coupled with an exit in switch_to to 5274 * combine the page table reload and the switch backend into 5275 * one hypercall. 5276 */ 5277 arch_start_context_switch(prev); 5278 5279 /* 5280 * kernel -> kernel lazy + transfer active 5281 * user -> kernel lazy + mmgrab() active 5282 * 5283 * kernel -> user switch + mmdrop() active 5284 * user -> user switch 5285 */ 5286 if (!next->mm) { // to kernel 5287 enter_lazy_tlb(prev->active_mm, next); 5288 5289 next->active_mm = prev->active_mm; 5290 if (prev->mm) // from user 5291 mmgrab(prev->active_mm); 5292 else 5293 prev->active_mm = NULL; 5294 } else { // to user 5295 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5296 /* 5297 * sys_membarrier() requires an smp_mb() between setting 5298 * rq->curr / membarrier_switch_mm() and returning to userspace. 5299 * 5300 * The below provides this either through switch_mm(), or in 5301 * case 'prev->active_mm == next->mm' through 5302 * finish_task_switch()'s mmdrop(). 5303 */ 5304 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5305 lru_gen_use_mm(next->mm); 5306 5307 if (!prev->mm) { // from kernel 5308 /* will mmdrop() in finish_task_switch(). */ 5309 rq->prev_mm = prev->active_mm; 5310 prev->active_mm = NULL; 5311 } 5312 } 5313 5314 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5315 5316 prepare_lock_switch(rq, next, rf); 5317 5318 /* Here we just switch the register state and the stack. */ 5319 switch_to(prev, next, prev); 5320 barrier(); 5321 5322 return finish_task_switch(prev); 5323 } 5324 5325 /* 5326 * nr_running and nr_context_switches: 5327 * 5328 * externally visible scheduler statistics: current number of runnable 5329 * threads, total number of context switches performed since bootup. 5330 */ 5331 unsigned int nr_running(void) 5332 { 5333 unsigned int i, sum = 0; 5334 5335 for_each_online_cpu(i) 5336 sum += cpu_rq(i)->nr_running; 5337 5338 return sum; 5339 } 5340 5341 /* 5342 * Check if only the current task is running on the CPU. 5343 * 5344 * Caution: this function does not check that the caller has disabled 5345 * preemption, thus the result might have a time-of-check-to-time-of-use 5346 * race. The caller is responsible to use it correctly, for example: 5347 * 5348 * - from a non-preemptible section (of course) 5349 * 5350 * - from a thread that is bound to a single CPU 5351 * 5352 * - in a loop with very short iterations (e.g. a polling loop) 5353 */ 5354 bool single_task_running(void) 5355 { 5356 return raw_rq()->nr_running == 1; 5357 } 5358 EXPORT_SYMBOL(single_task_running); 5359 5360 unsigned long long nr_context_switches_cpu(int cpu) 5361 { 5362 return cpu_rq(cpu)->nr_switches; 5363 } 5364 5365 unsigned long long nr_context_switches(void) 5366 { 5367 int i; 5368 unsigned long long sum = 0; 5369 5370 for_each_possible_cpu(i) 5371 sum += cpu_rq(i)->nr_switches; 5372 5373 return sum; 5374 } 5375 5376 /* 5377 * Consumers of these two interfaces, like for example the cpuidle menu 5378 * governor, are using nonsensical data. Preferring shallow idle state selection 5379 * for a CPU that has IO-wait which might not even end up running the task when 5380 * it does become runnable. 5381 */ 5382 5383 unsigned int nr_iowait_cpu(int cpu) 5384 { 5385 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5386 } 5387 5388 /* 5389 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5390 * 5391 * The idea behind IO-wait account is to account the idle time that we could 5392 * have spend running if it were not for IO. That is, if we were to improve the 5393 * storage performance, we'd have a proportional reduction in IO-wait time. 5394 * 5395 * This all works nicely on UP, where, when a task blocks on IO, we account 5396 * idle time as IO-wait, because if the storage were faster, it could've been 5397 * running and we'd not be idle. 5398 * 5399 * This has been extended to SMP, by doing the same for each CPU. This however 5400 * is broken. 5401 * 5402 * Imagine for instance the case where two tasks block on one CPU, only the one 5403 * CPU will have IO-wait accounted, while the other has regular idle. Even 5404 * though, if the storage were faster, both could've ran at the same time, 5405 * utilising both CPUs. 5406 * 5407 * This means, that when looking globally, the current IO-wait accounting on 5408 * SMP is a lower bound, by reason of under accounting. 5409 * 5410 * Worse, since the numbers are provided per CPU, they are sometimes 5411 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5412 * associated with any one particular CPU, it can wake to another CPU than it 5413 * blocked on. This means the per CPU IO-wait number is meaningless. 5414 * 5415 * Task CPU affinities can make all that even more 'interesting'. 5416 */ 5417 5418 unsigned int nr_iowait(void) 5419 { 5420 unsigned int i, sum = 0; 5421 5422 for_each_possible_cpu(i) 5423 sum += nr_iowait_cpu(i); 5424 5425 return sum; 5426 } 5427 5428 #ifdef CONFIG_SMP 5429 5430 /* 5431 * sched_exec - execve() is a valuable balancing opportunity, because at 5432 * this point the task has the smallest effective memory and cache footprint. 5433 */ 5434 void sched_exec(void) 5435 { 5436 struct task_struct *p = current; 5437 unsigned long flags; 5438 int dest_cpu; 5439 5440 raw_spin_lock_irqsave(&p->pi_lock, flags); 5441 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5442 if (dest_cpu == smp_processor_id()) 5443 goto unlock; 5444 5445 if (likely(cpu_active(dest_cpu))) { 5446 struct migration_arg arg = { p, dest_cpu }; 5447 5448 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5449 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5450 return; 5451 } 5452 unlock: 5453 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5454 } 5455 5456 #endif 5457 5458 DEFINE_PER_CPU(struct kernel_stat, kstat); 5459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5460 5461 EXPORT_PER_CPU_SYMBOL(kstat); 5462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5463 5464 /* 5465 * The function fair_sched_class.update_curr accesses the struct curr 5466 * and its field curr->exec_start; when called from task_sched_runtime(), 5467 * we observe a high rate of cache misses in practice. 5468 * Prefetching this data results in improved performance. 5469 */ 5470 static inline void prefetch_curr_exec_start(struct task_struct *p) 5471 { 5472 #ifdef CONFIG_FAIR_GROUP_SCHED 5473 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5474 #else 5475 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5476 #endif 5477 prefetch(curr); 5478 prefetch(&curr->exec_start); 5479 } 5480 5481 /* 5482 * Return accounted runtime for the task. 5483 * In case the task is currently running, return the runtime plus current's 5484 * pending runtime that have not been accounted yet. 5485 */ 5486 unsigned long long task_sched_runtime(struct task_struct *p) 5487 { 5488 struct rq_flags rf; 5489 struct rq *rq; 5490 u64 ns; 5491 5492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5493 /* 5494 * 64-bit doesn't need locks to atomically read a 64-bit value. 5495 * So we have a optimization chance when the task's delta_exec is 0. 5496 * Reading ->on_cpu is racy, but this is ok. 5497 * 5498 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5499 * If we race with it entering CPU, unaccounted time is 0. This is 5500 * indistinguishable from the read occurring a few cycles earlier. 5501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5502 * been accounted, so we're correct here as well. 5503 */ 5504 if (!p->on_cpu || !task_on_rq_queued(p)) 5505 return p->se.sum_exec_runtime; 5506 #endif 5507 5508 rq = task_rq_lock(p, &rf); 5509 /* 5510 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5511 * project cycles that may never be accounted to this 5512 * thread, breaking clock_gettime(). 5513 */ 5514 if (task_current(rq, p) && task_on_rq_queued(p)) { 5515 prefetch_curr_exec_start(p); 5516 update_rq_clock(rq); 5517 p->sched_class->update_curr(rq); 5518 } 5519 ns = p->se.sum_exec_runtime; 5520 task_rq_unlock(rq, p, &rf); 5521 5522 return ns; 5523 } 5524 5525 #ifdef CONFIG_SCHED_DEBUG 5526 static u64 cpu_resched_latency(struct rq *rq) 5527 { 5528 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5529 u64 resched_latency, now = rq_clock(rq); 5530 static bool warned_once; 5531 5532 if (sysctl_resched_latency_warn_once && warned_once) 5533 return 0; 5534 5535 if (!need_resched() || !latency_warn_ms) 5536 return 0; 5537 5538 if (system_state == SYSTEM_BOOTING) 5539 return 0; 5540 5541 if (!rq->last_seen_need_resched_ns) { 5542 rq->last_seen_need_resched_ns = now; 5543 rq->ticks_without_resched = 0; 5544 return 0; 5545 } 5546 5547 rq->ticks_without_resched++; 5548 resched_latency = now - rq->last_seen_need_resched_ns; 5549 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5550 return 0; 5551 5552 warned_once = true; 5553 5554 return resched_latency; 5555 } 5556 5557 static int __init setup_resched_latency_warn_ms(char *str) 5558 { 5559 long val; 5560 5561 if ((kstrtol(str, 0, &val))) { 5562 pr_warn("Unable to set resched_latency_warn_ms\n"); 5563 return 1; 5564 } 5565 5566 sysctl_resched_latency_warn_ms = val; 5567 return 1; 5568 } 5569 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5570 #else 5571 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5572 #endif /* CONFIG_SCHED_DEBUG */ 5573 5574 /* 5575 * This function gets called by the timer code, with HZ frequency. 5576 * We call it with interrupts disabled. 5577 */ 5578 void scheduler_tick(void) 5579 { 5580 int cpu = smp_processor_id(); 5581 struct rq *rq = cpu_rq(cpu); 5582 struct task_struct *curr = rq->curr; 5583 struct rq_flags rf; 5584 unsigned long thermal_pressure; 5585 u64 resched_latency; 5586 5587 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5588 arch_scale_freq_tick(); 5589 5590 sched_clock_tick(); 5591 5592 rq_lock(rq, &rf); 5593 5594 update_rq_clock(rq); 5595 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5596 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5597 curr->sched_class->task_tick(rq, curr, 0); 5598 if (sched_feat(LATENCY_WARN)) 5599 resched_latency = cpu_resched_latency(rq); 5600 calc_global_load_tick(rq); 5601 sched_core_tick(rq); 5602 5603 rq_unlock(rq, &rf); 5604 5605 if (sched_feat(LATENCY_WARN) && resched_latency) 5606 resched_latency_warn(cpu, resched_latency); 5607 5608 perf_event_task_tick(); 5609 5610 #ifdef CONFIG_SMP 5611 rq->idle_balance = idle_cpu(cpu); 5612 trigger_load_balance(rq); 5613 #endif 5614 } 5615 5616 #ifdef CONFIG_NO_HZ_FULL 5617 5618 struct tick_work { 5619 int cpu; 5620 atomic_t state; 5621 struct delayed_work work; 5622 }; 5623 /* Values for ->state, see diagram below. */ 5624 #define TICK_SCHED_REMOTE_OFFLINE 0 5625 #define TICK_SCHED_REMOTE_OFFLINING 1 5626 #define TICK_SCHED_REMOTE_RUNNING 2 5627 5628 /* 5629 * State diagram for ->state: 5630 * 5631 * 5632 * TICK_SCHED_REMOTE_OFFLINE 5633 * | ^ 5634 * | | 5635 * | | sched_tick_remote() 5636 * | | 5637 * | | 5638 * +--TICK_SCHED_REMOTE_OFFLINING 5639 * | ^ 5640 * | | 5641 * sched_tick_start() | | sched_tick_stop() 5642 * | | 5643 * V | 5644 * TICK_SCHED_REMOTE_RUNNING 5645 * 5646 * 5647 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5648 * and sched_tick_start() are happy to leave the state in RUNNING. 5649 */ 5650 5651 static struct tick_work __percpu *tick_work_cpu; 5652 5653 static void sched_tick_remote(struct work_struct *work) 5654 { 5655 struct delayed_work *dwork = to_delayed_work(work); 5656 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5657 int cpu = twork->cpu; 5658 struct rq *rq = cpu_rq(cpu); 5659 struct task_struct *curr; 5660 struct rq_flags rf; 5661 u64 delta; 5662 int os; 5663 5664 /* 5665 * Handle the tick only if it appears the remote CPU is running in full 5666 * dynticks mode. The check is racy by nature, but missing a tick or 5667 * having one too much is no big deal because the scheduler tick updates 5668 * statistics and checks timeslices in a time-independent way, regardless 5669 * of when exactly it is running. 5670 */ 5671 if (!tick_nohz_tick_stopped_cpu(cpu)) 5672 goto out_requeue; 5673 5674 rq_lock_irq(rq, &rf); 5675 curr = rq->curr; 5676 if (cpu_is_offline(cpu)) 5677 goto out_unlock; 5678 5679 update_rq_clock(rq); 5680 5681 if (!is_idle_task(curr)) { 5682 /* 5683 * Make sure the next tick runs within a reasonable 5684 * amount of time. 5685 */ 5686 delta = rq_clock_task(rq) - curr->se.exec_start; 5687 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5688 } 5689 curr->sched_class->task_tick(rq, curr, 0); 5690 5691 calc_load_nohz_remote(rq); 5692 out_unlock: 5693 rq_unlock_irq(rq, &rf); 5694 out_requeue: 5695 5696 /* 5697 * Run the remote tick once per second (1Hz). This arbitrary 5698 * frequency is large enough to avoid overload but short enough 5699 * to keep scheduler internal stats reasonably up to date. But 5700 * first update state to reflect hotplug activity if required. 5701 */ 5702 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5703 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5704 if (os == TICK_SCHED_REMOTE_RUNNING) 5705 queue_delayed_work(system_unbound_wq, dwork, HZ); 5706 } 5707 5708 static void sched_tick_start(int cpu) 5709 { 5710 int os; 5711 struct tick_work *twork; 5712 5713 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5714 return; 5715 5716 WARN_ON_ONCE(!tick_work_cpu); 5717 5718 twork = per_cpu_ptr(tick_work_cpu, cpu); 5719 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5720 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5721 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5722 twork->cpu = cpu; 5723 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5724 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5725 } 5726 } 5727 5728 #ifdef CONFIG_HOTPLUG_CPU 5729 static void sched_tick_stop(int cpu) 5730 { 5731 struct tick_work *twork; 5732 int os; 5733 5734 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5735 return; 5736 5737 WARN_ON_ONCE(!tick_work_cpu); 5738 5739 twork = per_cpu_ptr(tick_work_cpu, cpu); 5740 /* There cannot be competing actions, but don't rely on stop-machine. */ 5741 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5742 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5743 /* Don't cancel, as this would mess up the state machine. */ 5744 } 5745 #endif /* CONFIG_HOTPLUG_CPU */ 5746 5747 int __init sched_tick_offload_init(void) 5748 { 5749 tick_work_cpu = alloc_percpu(struct tick_work); 5750 BUG_ON(!tick_work_cpu); 5751 return 0; 5752 } 5753 5754 #else /* !CONFIG_NO_HZ_FULL */ 5755 static inline void sched_tick_start(int cpu) { } 5756 static inline void sched_tick_stop(int cpu) { } 5757 #endif 5758 5759 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5760 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5761 /* 5762 * If the value passed in is equal to the current preempt count 5763 * then we just disabled preemption. Start timing the latency. 5764 */ 5765 static inline void preempt_latency_start(int val) 5766 { 5767 if (preempt_count() == val) { 5768 unsigned long ip = get_lock_parent_ip(); 5769 #ifdef CONFIG_DEBUG_PREEMPT 5770 current->preempt_disable_ip = ip; 5771 #endif 5772 trace_preempt_off(CALLER_ADDR0, ip); 5773 } 5774 } 5775 5776 void preempt_count_add(int val) 5777 { 5778 #ifdef CONFIG_DEBUG_PREEMPT 5779 /* 5780 * Underflow? 5781 */ 5782 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5783 return; 5784 #endif 5785 __preempt_count_add(val); 5786 #ifdef CONFIG_DEBUG_PREEMPT 5787 /* 5788 * Spinlock count overflowing soon? 5789 */ 5790 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5791 PREEMPT_MASK - 10); 5792 #endif 5793 preempt_latency_start(val); 5794 } 5795 EXPORT_SYMBOL(preempt_count_add); 5796 NOKPROBE_SYMBOL(preempt_count_add); 5797 5798 /* 5799 * If the value passed in equals to the current preempt count 5800 * then we just enabled preemption. Stop timing the latency. 5801 */ 5802 static inline void preempt_latency_stop(int val) 5803 { 5804 if (preempt_count() == val) 5805 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5806 } 5807 5808 void preempt_count_sub(int val) 5809 { 5810 #ifdef CONFIG_DEBUG_PREEMPT 5811 /* 5812 * Underflow? 5813 */ 5814 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5815 return; 5816 /* 5817 * Is the spinlock portion underflowing? 5818 */ 5819 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5820 !(preempt_count() & PREEMPT_MASK))) 5821 return; 5822 #endif 5823 5824 preempt_latency_stop(val); 5825 __preempt_count_sub(val); 5826 } 5827 EXPORT_SYMBOL(preempt_count_sub); 5828 NOKPROBE_SYMBOL(preempt_count_sub); 5829 5830 #else 5831 static inline void preempt_latency_start(int val) { } 5832 static inline void preempt_latency_stop(int val) { } 5833 #endif 5834 5835 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5836 { 5837 #ifdef CONFIG_DEBUG_PREEMPT 5838 return p->preempt_disable_ip; 5839 #else 5840 return 0; 5841 #endif 5842 } 5843 5844 /* 5845 * Print scheduling while atomic bug: 5846 */ 5847 static noinline void __schedule_bug(struct task_struct *prev) 5848 { 5849 /* Save this before calling printk(), since that will clobber it */ 5850 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5851 5852 if (oops_in_progress) 5853 return; 5854 5855 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5856 prev->comm, prev->pid, preempt_count()); 5857 5858 debug_show_held_locks(prev); 5859 print_modules(); 5860 if (irqs_disabled()) 5861 print_irqtrace_events(prev); 5862 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5863 && in_atomic_preempt_off()) { 5864 pr_err("Preemption disabled at:"); 5865 print_ip_sym(KERN_ERR, preempt_disable_ip); 5866 } 5867 check_panic_on_warn("scheduling while atomic"); 5868 5869 dump_stack(); 5870 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5871 } 5872 5873 /* 5874 * Various schedule()-time debugging checks and statistics: 5875 */ 5876 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5877 { 5878 #ifdef CONFIG_SCHED_STACK_END_CHECK 5879 if (task_stack_end_corrupted(prev)) 5880 panic("corrupted stack end detected inside scheduler\n"); 5881 5882 if (task_scs_end_corrupted(prev)) 5883 panic("corrupted shadow stack detected inside scheduler\n"); 5884 #endif 5885 5886 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5887 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5888 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5889 prev->comm, prev->pid, prev->non_block_count); 5890 dump_stack(); 5891 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5892 } 5893 #endif 5894 5895 if (unlikely(in_atomic_preempt_off())) { 5896 __schedule_bug(prev); 5897 preempt_count_set(PREEMPT_DISABLED); 5898 } 5899 rcu_sleep_check(); 5900 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5901 5902 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5903 5904 schedstat_inc(this_rq()->sched_count); 5905 } 5906 5907 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5908 struct rq_flags *rf) 5909 { 5910 #ifdef CONFIG_SMP 5911 const struct sched_class *class; 5912 /* 5913 * We must do the balancing pass before put_prev_task(), such 5914 * that when we release the rq->lock the task is in the same 5915 * state as before we took rq->lock. 5916 * 5917 * We can terminate the balance pass as soon as we know there is 5918 * a runnable task of @class priority or higher. 5919 */ 5920 for_class_range(class, prev->sched_class, &idle_sched_class) { 5921 if (class->balance(rq, prev, rf)) 5922 break; 5923 } 5924 #endif 5925 5926 put_prev_task(rq, prev); 5927 } 5928 5929 /* 5930 * Pick up the highest-prio task: 5931 */ 5932 static inline struct task_struct * 5933 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5934 { 5935 const struct sched_class *class; 5936 struct task_struct *p; 5937 5938 /* 5939 * Optimization: we know that if all tasks are in the fair class we can 5940 * call that function directly, but only if the @prev task wasn't of a 5941 * higher scheduling class, because otherwise those lose the 5942 * opportunity to pull in more work from other CPUs. 5943 */ 5944 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5945 rq->nr_running == rq->cfs.h_nr_running)) { 5946 5947 p = pick_next_task_fair(rq, prev, rf); 5948 if (unlikely(p == RETRY_TASK)) 5949 goto restart; 5950 5951 /* Assume the next prioritized class is idle_sched_class */ 5952 if (!p) { 5953 put_prev_task(rq, prev); 5954 p = pick_next_task_idle(rq); 5955 } 5956 5957 return p; 5958 } 5959 5960 restart: 5961 put_prev_task_balance(rq, prev, rf); 5962 5963 for_each_class(class) { 5964 p = class->pick_next_task(rq); 5965 if (p) 5966 return p; 5967 } 5968 5969 BUG(); /* The idle class should always have a runnable task. */ 5970 } 5971 5972 #ifdef CONFIG_SCHED_CORE 5973 static inline bool is_task_rq_idle(struct task_struct *t) 5974 { 5975 return (task_rq(t)->idle == t); 5976 } 5977 5978 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5979 { 5980 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5981 } 5982 5983 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5984 { 5985 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5986 return true; 5987 5988 return a->core_cookie == b->core_cookie; 5989 } 5990 5991 static inline struct task_struct *pick_task(struct rq *rq) 5992 { 5993 const struct sched_class *class; 5994 struct task_struct *p; 5995 5996 for_each_class(class) { 5997 p = class->pick_task(rq); 5998 if (p) 5999 return p; 6000 } 6001 6002 BUG(); /* The idle class should always have a runnable task. */ 6003 } 6004 6005 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6006 6007 static void queue_core_balance(struct rq *rq); 6008 6009 static struct task_struct * 6010 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6011 { 6012 struct task_struct *next, *p, *max = NULL; 6013 const struct cpumask *smt_mask; 6014 bool fi_before = false; 6015 bool core_clock_updated = (rq == rq->core); 6016 unsigned long cookie; 6017 int i, cpu, occ = 0; 6018 struct rq *rq_i; 6019 bool need_sync; 6020 6021 if (!sched_core_enabled(rq)) 6022 return __pick_next_task(rq, prev, rf); 6023 6024 cpu = cpu_of(rq); 6025 6026 /* Stopper task is switching into idle, no need core-wide selection. */ 6027 if (cpu_is_offline(cpu)) { 6028 /* 6029 * Reset core_pick so that we don't enter the fastpath when 6030 * coming online. core_pick would already be migrated to 6031 * another cpu during offline. 6032 */ 6033 rq->core_pick = NULL; 6034 return __pick_next_task(rq, prev, rf); 6035 } 6036 6037 /* 6038 * If there were no {en,de}queues since we picked (IOW, the task 6039 * pointers are all still valid), and we haven't scheduled the last 6040 * pick yet, do so now. 6041 * 6042 * rq->core_pick can be NULL if no selection was made for a CPU because 6043 * it was either offline or went offline during a sibling's core-wide 6044 * selection. In this case, do a core-wide selection. 6045 */ 6046 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6047 rq->core->core_pick_seq != rq->core_sched_seq && 6048 rq->core_pick) { 6049 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6050 6051 next = rq->core_pick; 6052 if (next != prev) { 6053 put_prev_task(rq, prev); 6054 set_next_task(rq, next); 6055 } 6056 6057 rq->core_pick = NULL; 6058 goto out; 6059 } 6060 6061 put_prev_task_balance(rq, prev, rf); 6062 6063 smt_mask = cpu_smt_mask(cpu); 6064 need_sync = !!rq->core->core_cookie; 6065 6066 /* reset state */ 6067 rq->core->core_cookie = 0UL; 6068 if (rq->core->core_forceidle_count) { 6069 if (!core_clock_updated) { 6070 update_rq_clock(rq->core); 6071 core_clock_updated = true; 6072 } 6073 sched_core_account_forceidle(rq); 6074 /* reset after accounting force idle */ 6075 rq->core->core_forceidle_start = 0; 6076 rq->core->core_forceidle_count = 0; 6077 rq->core->core_forceidle_occupation = 0; 6078 need_sync = true; 6079 fi_before = true; 6080 } 6081 6082 /* 6083 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6084 * 6085 * @task_seq guards the task state ({en,de}queues) 6086 * @pick_seq is the @task_seq we did a selection on 6087 * @sched_seq is the @pick_seq we scheduled 6088 * 6089 * However, preemptions can cause multiple picks on the same task set. 6090 * 'Fix' this by also increasing @task_seq for every pick. 6091 */ 6092 rq->core->core_task_seq++; 6093 6094 /* 6095 * Optimize for common case where this CPU has no cookies 6096 * and there are no cookied tasks running on siblings. 6097 */ 6098 if (!need_sync) { 6099 next = pick_task(rq); 6100 if (!next->core_cookie) { 6101 rq->core_pick = NULL; 6102 /* 6103 * For robustness, update the min_vruntime_fi for 6104 * unconstrained picks as well. 6105 */ 6106 WARN_ON_ONCE(fi_before); 6107 task_vruntime_update(rq, next, false); 6108 goto out_set_next; 6109 } 6110 } 6111 6112 /* 6113 * For each thread: do the regular task pick and find the max prio task 6114 * amongst them. 6115 * 6116 * Tie-break prio towards the current CPU 6117 */ 6118 for_each_cpu_wrap(i, smt_mask, cpu) { 6119 rq_i = cpu_rq(i); 6120 6121 /* 6122 * Current cpu always has its clock updated on entrance to 6123 * pick_next_task(). If the current cpu is not the core, 6124 * the core may also have been updated above. 6125 */ 6126 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6127 update_rq_clock(rq_i); 6128 6129 p = rq_i->core_pick = pick_task(rq_i); 6130 if (!max || prio_less(max, p, fi_before)) 6131 max = p; 6132 } 6133 6134 cookie = rq->core->core_cookie = max->core_cookie; 6135 6136 /* 6137 * For each thread: try and find a runnable task that matches @max or 6138 * force idle. 6139 */ 6140 for_each_cpu(i, smt_mask) { 6141 rq_i = cpu_rq(i); 6142 p = rq_i->core_pick; 6143 6144 if (!cookie_equals(p, cookie)) { 6145 p = NULL; 6146 if (cookie) 6147 p = sched_core_find(rq_i, cookie); 6148 if (!p) 6149 p = idle_sched_class.pick_task(rq_i); 6150 } 6151 6152 rq_i->core_pick = p; 6153 6154 if (p == rq_i->idle) { 6155 if (rq_i->nr_running) { 6156 rq->core->core_forceidle_count++; 6157 if (!fi_before) 6158 rq->core->core_forceidle_seq++; 6159 } 6160 } else { 6161 occ++; 6162 } 6163 } 6164 6165 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6166 rq->core->core_forceidle_start = rq_clock(rq->core); 6167 rq->core->core_forceidle_occupation = occ; 6168 } 6169 6170 rq->core->core_pick_seq = rq->core->core_task_seq; 6171 next = rq->core_pick; 6172 rq->core_sched_seq = rq->core->core_pick_seq; 6173 6174 /* Something should have been selected for current CPU */ 6175 WARN_ON_ONCE(!next); 6176 6177 /* 6178 * Reschedule siblings 6179 * 6180 * NOTE: L1TF -- at this point we're no longer running the old task and 6181 * sending an IPI (below) ensures the sibling will no longer be running 6182 * their task. This ensures there is no inter-sibling overlap between 6183 * non-matching user state. 6184 */ 6185 for_each_cpu(i, smt_mask) { 6186 rq_i = cpu_rq(i); 6187 6188 /* 6189 * An online sibling might have gone offline before a task 6190 * could be picked for it, or it might be offline but later 6191 * happen to come online, but its too late and nothing was 6192 * picked for it. That's Ok - it will pick tasks for itself, 6193 * so ignore it. 6194 */ 6195 if (!rq_i->core_pick) 6196 continue; 6197 6198 /* 6199 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6200 * fi_before fi update? 6201 * 0 0 1 6202 * 0 1 1 6203 * 1 0 1 6204 * 1 1 0 6205 */ 6206 if (!(fi_before && rq->core->core_forceidle_count)) 6207 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6208 6209 rq_i->core_pick->core_occupation = occ; 6210 6211 if (i == cpu) { 6212 rq_i->core_pick = NULL; 6213 continue; 6214 } 6215 6216 /* Did we break L1TF mitigation requirements? */ 6217 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6218 6219 if (rq_i->curr == rq_i->core_pick) { 6220 rq_i->core_pick = NULL; 6221 continue; 6222 } 6223 6224 resched_curr(rq_i); 6225 } 6226 6227 out_set_next: 6228 set_next_task(rq, next); 6229 out: 6230 if (rq->core->core_forceidle_count && next == rq->idle) 6231 queue_core_balance(rq); 6232 6233 return next; 6234 } 6235 6236 static bool try_steal_cookie(int this, int that) 6237 { 6238 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6239 struct task_struct *p; 6240 unsigned long cookie; 6241 bool success = false; 6242 6243 local_irq_disable(); 6244 double_rq_lock(dst, src); 6245 6246 cookie = dst->core->core_cookie; 6247 if (!cookie) 6248 goto unlock; 6249 6250 if (dst->curr != dst->idle) 6251 goto unlock; 6252 6253 p = sched_core_find(src, cookie); 6254 if (!p) 6255 goto unlock; 6256 6257 do { 6258 if (p == src->core_pick || p == src->curr) 6259 goto next; 6260 6261 if (!is_cpu_allowed(p, this)) 6262 goto next; 6263 6264 if (p->core_occupation > dst->idle->core_occupation) 6265 goto next; 6266 /* 6267 * sched_core_find() and sched_core_next() will ensure that task @p 6268 * is not throttled now, we also need to check whether the runqueue 6269 * of the destination CPU is being throttled. 6270 */ 6271 if (sched_task_is_throttled(p, this)) 6272 goto next; 6273 6274 deactivate_task(src, p, 0); 6275 set_task_cpu(p, this); 6276 activate_task(dst, p, 0); 6277 6278 resched_curr(dst); 6279 6280 success = true; 6281 break; 6282 6283 next: 6284 p = sched_core_next(p, cookie); 6285 } while (p); 6286 6287 unlock: 6288 double_rq_unlock(dst, src); 6289 local_irq_enable(); 6290 6291 return success; 6292 } 6293 6294 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6295 { 6296 int i; 6297 6298 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6299 if (i == cpu) 6300 continue; 6301 6302 if (need_resched()) 6303 break; 6304 6305 if (try_steal_cookie(cpu, i)) 6306 return true; 6307 } 6308 6309 return false; 6310 } 6311 6312 static void sched_core_balance(struct rq *rq) 6313 { 6314 struct sched_domain *sd; 6315 int cpu = cpu_of(rq); 6316 6317 preempt_disable(); 6318 rcu_read_lock(); 6319 raw_spin_rq_unlock_irq(rq); 6320 for_each_domain(cpu, sd) { 6321 if (need_resched()) 6322 break; 6323 6324 if (steal_cookie_task(cpu, sd)) 6325 break; 6326 } 6327 raw_spin_rq_lock_irq(rq); 6328 rcu_read_unlock(); 6329 preempt_enable(); 6330 } 6331 6332 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6333 6334 static void queue_core_balance(struct rq *rq) 6335 { 6336 if (!sched_core_enabled(rq)) 6337 return; 6338 6339 if (!rq->core->core_cookie) 6340 return; 6341 6342 if (!rq->nr_running) /* not forced idle */ 6343 return; 6344 6345 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6346 } 6347 6348 static void sched_core_cpu_starting(unsigned int cpu) 6349 { 6350 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6351 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6352 unsigned long flags; 6353 int t; 6354 6355 sched_core_lock(cpu, &flags); 6356 6357 WARN_ON_ONCE(rq->core != rq); 6358 6359 /* if we're the first, we'll be our own leader */ 6360 if (cpumask_weight(smt_mask) == 1) 6361 goto unlock; 6362 6363 /* find the leader */ 6364 for_each_cpu(t, smt_mask) { 6365 if (t == cpu) 6366 continue; 6367 rq = cpu_rq(t); 6368 if (rq->core == rq) { 6369 core_rq = rq; 6370 break; 6371 } 6372 } 6373 6374 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6375 goto unlock; 6376 6377 /* install and validate core_rq */ 6378 for_each_cpu(t, smt_mask) { 6379 rq = cpu_rq(t); 6380 6381 if (t == cpu) 6382 rq->core = core_rq; 6383 6384 WARN_ON_ONCE(rq->core != core_rq); 6385 } 6386 6387 unlock: 6388 sched_core_unlock(cpu, &flags); 6389 } 6390 6391 static void sched_core_cpu_deactivate(unsigned int cpu) 6392 { 6393 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6394 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6395 unsigned long flags; 6396 int t; 6397 6398 sched_core_lock(cpu, &flags); 6399 6400 /* if we're the last man standing, nothing to do */ 6401 if (cpumask_weight(smt_mask) == 1) { 6402 WARN_ON_ONCE(rq->core != rq); 6403 goto unlock; 6404 } 6405 6406 /* if we're not the leader, nothing to do */ 6407 if (rq->core != rq) 6408 goto unlock; 6409 6410 /* find a new leader */ 6411 for_each_cpu(t, smt_mask) { 6412 if (t == cpu) 6413 continue; 6414 core_rq = cpu_rq(t); 6415 break; 6416 } 6417 6418 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6419 goto unlock; 6420 6421 /* copy the shared state to the new leader */ 6422 core_rq->core_task_seq = rq->core_task_seq; 6423 core_rq->core_pick_seq = rq->core_pick_seq; 6424 core_rq->core_cookie = rq->core_cookie; 6425 core_rq->core_forceidle_count = rq->core_forceidle_count; 6426 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6427 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6428 6429 /* 6430 * Accounting edge for forced idle is handled in pick_next_task(). 6431 * Don't need another one here, since the hotplug thread shouldn't 6432 * have a cookie. 6433 */ 6434 core_rq->core_forceidle_start = 0; 6435 6436 /* install new leader */ 6437 for_each_cpu(t, smt_mask) { 6438 rq = cpu_rq(t); 6439 rq->core = core_rq; 6440 } 6441 6442 unlock: 6443 sched_core_unlock(cpu, &flags); 6444 } 6445 6446 static inline void sched_core_cpu_dying(unsigned int cpu) 6447 { 6448 struct rq *rq = cpu_rq(cpu); 6449 6450 if (rq->core != rq) 6451 rq->core = rq; 6452 } 6453 6454 #else /* !CONFIG_SCHED_CORE */ 6455 6456 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6457 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6458 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6459 6460 static struct task_struct * 6461 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6462 { 6463 return __pick_next_task(rq, prev, rf); 6464 } 6465 6466 #endif /* CONFIG_SCHED_CORE */ 6467 6468 /* 6469 * Constants for the sched_mode argument of __schedule(). 6470 * 6471 * The mode argument allows RT enabled kernels to differentiate a 6472 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6473 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6474 * optimize the AND operation out and just check for zero. 6475 */ 6476 #define SM_NONE 0x0 6477 #define SM_PREEMPT 0x1 6478 #define SM_RTLOCK_WAIT 0x2 6479 6480 #ifndef CONFIG_PREEMPT_RT 6481 # define SM_MASK_PREEMPT (~0U) 6482 #else 6483 # define SM_MASK_PREEMPT SM_PREEMPT 6484 #endif 6485 6486 /* 6487 * __schedule() is the main scheduler function. 6488 * 6489 * The main means of driving the scheduler and thus entering this function are: 6490 * 6491 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6492 * 6493 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6494 * paths. For example, see arch/x86/entry_64.S. 6495 * 6496 * To drive preemption between tasks, the scheduler sets the flag in timer 6497 * interrupt handler scheduler_tick(). 6498 * 6499 * 3. Wakeups don't really cause entry into schedule(). They add a 6500 * task to the run-queue and that's it. 6501 * 6502 * Now, if the new task added to the run-queue preempts the current 6503 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6504 * called on the nearest possible occasion: 6505 * 6506 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6507 * 6508 * - in syscall or exception context, at the next outmost 6509 * preempt_enable(). (this might be as soon as the wake_up()'s 6510 * spin_unlock()!) 6511 * 6512 * - in IRQ context, return from interrupt-handler to 6513 * preemptible context 6514 * 6515 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6516 * then at the next: 6517 * 6518 * - cond_resched() call 6519 * - explicit schedule() call 6520 * - return from syscall or exception to user-space 6521 * - return from interrupt-handler to user-space 6522 * 6523 * WARNING: must be called with preemption disabled! 6524 */ 6525 static void __sched notrace __schedule(unsigned int sched_mode) 6526 { 6527 struct task_struct *prev, *next; 6528 unsigned long *switch_count; 6529 unsigned long prev_state; 6530 struct rq_flags rf; 6531 struct rq *rq; 6532 int cpu; 6533 6534 cpu = smp_processor_id(); 6535 rq = cpu_rq(cpu); 6536 prev = rq->curr; 6537 6538 schedule_debug(prev, !!sched_mode); 6539 6540 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6541 hrtick_clear(rq); 6542 6543 local_irq_disable(); 6544 rcu_note_context_switch(!!sched_mode); 6545 6546 /* 6547 * Make sure that signal_pending_state()->signal_pending() below 6548 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6549 * done by the caller to avoid the race with signal_wake_up(): 6550 * 6551 * __set_current_state(@state) signal_wake_up() 6552 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6553 * wake_up_state(p, state) 6554 * LOCK rq->lock LOCK p->pi_state 6555 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6556 * if (signal_pending_state()) if (p->state & @state) 6557 * 6558 * Also, the membarrier system call requires a full memory barrier 6559 * after coming from user-space, before storing to rq->curr. 6560 */ 6561 rq_lock(rq, &rf); 6562 smp_mb__after_spinlock(); 6563 6564 /* Promote REQ to ACT */ 6565 rq->clock_update_flags <<= 1; 6566 update_rq_clock(rq); 6567 6568 switch_count = &prev->nivcsw; 6569 6570 /* 6571 * We must load prev->state once (task_struct::state is volatile), such 6572 * that we form a control dependency vs deactivate_task() below. 6573 */ 6574 prev_state = READ_ONCE(prev->__state); 6575 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6576 if (signal_pending_state(prev_state, prev)) { 6577 WRITE_ONCE(prev->__state, TASK_RUNNING); 6578 } else { 6579 prev->sched_contributes_to_load = 6580 (prev_state & TASK_UNINTERRUPTIBLE) && 6581 !(prev_state & TASK_NOLOAD) && 6582 !(prev_state & TASK_FROZEN); 6583 6584 if (prev->sched_contributes_to_load) 6585 rq->nr_uninterruptible++; 6586 6587 /* 6588 * __schedule() ttwu() 6589 * prev_state = prev->state; if (p->on_rq && ...) 6590 * if (prev_state) goto out; 6591 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6592 * p->state = TASK_WAKING 6593 * 6594 * Where __schedule() and ttwu() have matching control dependencies. 6595 * 6596 * After this, schedule() must not care about p->state any more. 6597 */ 6598 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6599 6600 if (prev->in_iowait) { 6601 atomic_inc(&rq->nr_iowait); 6602 delayacct_blkio_start(); 6603 } 6604 } 6605 switch_count = &prev->nvcsw; 6606 } 6607 6608 next = pick_next_task(rq, prev, &rf); 6609 clear_tsk_need_resched(prev); 6610 clear_preempt_need_resched(); 6611 #ifdef CONFIG_SCHED_DEBUG 6612 rq->last_seen_need_resched_ns = 0; 6613 #endif 6614 6615 if (likely(prev != next)) { 6616 rq->nr_switches++; 6617 /* 6618 * RCU users of rcu_dereference(rq->curr) may not see 6619 * changes to task_struct made by pick_next_task(). 6620 */ 6621 RCU_INIT_POINTER(rq->curr, next); 6622 /* 6623 * The membarrier system call requires each architecture 6624 * to have a full memory barrier after updating 6625 * rq->curr, before returning to user-space. 6626 * 6627 * Here are the schemes providing that barrier on the 6628 * various architectures: 6629 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6630 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6631 * - finish_lock_switch() for weakly-ordered 6632 * architectures where spin_unlock is a full barrier, 6633 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6634 * is a RELEASE barrier), 6635 */ 6636 ++*switch_count; 6637 6638 migrate_disable_switch(rq, prev); 6639 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6640 6641 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6642 6643 /* Also unlocks the rq: */ 6644 rq = context_switch(rq, prev, next, &rf); 6645 } else { 6646 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6647 6648 rq_unpin_lock(rq, &rf); 6649 __balance_callbacks(rq); 6650 raw_spin_rq_unlock_irq(rq); 6651 } 6652 } 6653 6654 void __noreturn do_task_dead(void) 6655 { 6656 /* Causes final put_task_struct in finish_task_switch(): */ 6657 set_special_state(TASK_DEAD); 6658 6659 /* Tell freezer to ignore us: */ 6660 current->flags |= PF_NOFREEZE; 6661 6662 __schedule(SM_NONE); 6663 BUG(); 6664 6665 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6666 for (;;) 6667 cpu_relax(); 6668 } 6669 6670 static inline void sched_submit_work(struct task_struct *tsk) 6671 { 6672 unsigned int task_flags; 6673 6674 if (task_is_running(tsk)) 6675 return; 6676 6677 task_flags = tsk->flags; 6678 /* 6679 * If a worker goes to sleep, notify and ask workqueue whether it 6680 * wants to wake up a task to maintain concurrency. 6681 */ 6682 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6683 if (task_flags & PF_WQ_WORKER) 6684 wq_worker_sleeping(tsk); 6685 else 6686 io_wq_worker_sleeping(tsk); 6687 } 6688 6689 /* 6690 * spinlock and rwlock must not flush block requests. This will 6691 * deadlock if the callback attempts to acquire a lock which is 6692 * already acquired. 6693 */ 6694 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6695 6696 /* 6697 * If we are going to sleep and we have plugged IO queued, 6698 * make sure to submit it to avoid deadlocks. 6699 */ 6700 blk_flush_plug(tsk->plug, true); 6701 } 6702 6703 static void sched_update_worker(struct task_struct *tsk) 6704 { 6705 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6706 if (tsk->flags & PF_WQ_WORKER) 6707 wq_worker_running(tsk); 6708 else 6709 io_wq_worker_running(tsk); 6710 } 6711 } 6712 6713 asmlinkage __visible void __sched schedule(void) 6714 { 6715 struct task_struct *tsk = current; 6716 6717 sched_submit_work(tsk); 6718 do { 6719 preempt_disable(); 6720 __schedule(SM_NONE); 6721 sched_preempt_enable_no_resched(); 6722 } while (need_resched()); 6723 sched_update_worker(tsk); 6724 } 6725 EXPORT_SYMBOL(schedule); 6726 6727 /* 6728 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6729 * state (have scheduled out non-voluntarily) by making sure that all 6730 * tasks have either left the run queue or have gone into user space. 6731 * As idle tasks do not do either, they must not ever be preempted 6732 * (schedule out non-voluntarily). 6733 * 6734 * schedule_idle() is similar to schedule_preempt_disable() except that it 6735 * never enables preemption because it does not call sched_submit_work(). 6736 */ 6737 void __sched schedule_idle(void) 6738 { 6739 /* 6740 * As this skips calling sched_submit_work(), which the idle task does 6741 * regardless because that function is a nop when the task is in a 6742 * TASK_RUNNING state, make sure this isn't used someplace that the 6743 * current task can be in any other state. Note, idle is always in the 6744 * TASK_RUNNING state. 6745 */ 6746 WARN_ON_ONCE(current->__state); 6747 do { 6748 __schedule(SM_NONE); 6749 } while (need_resched()); 6750 } 6751 6752 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6753 asmlinkage __visible void __sched schedule_user(void) 6754 { 6755 /* 6756 * If we come here after a random call to set_need_resched(), 6757 * or we have been woken up remotely but the IPI has not yet arrived, 6758 * we haven't yet exited the RCU idle mode. Do it here manually until 6759 * we find a better solution. 6760 * 6761 * NB: There are buggy callers of this function. Ideally we 6762 * should warn if prev_state != CONTEXT_USER, but that will trigger 6763 * too frequently to make sense yet. 6764 */ 6765 enum ctx_state prev_state = exception_enter(); 6766 schedule(); 6767 exception_exit(prev_state); 6768 } 6769 #endif 6770 6771 /** 6772 * schedule_preempt_disabled - called with preemption disabled 6773 * 6774 * Returns with preemption disabled. Note: preempt_count must be 1 6775 */ 6776 void __sched schedule_preempt_disabled(void) 6777 { 6778 sched_preempt_enable_no_resched(); 6779 schedule(); 6780 preempt_disable(); 6781 } 6782 6783 #ifdef CONFIG_PREEMPT_RT 6784 void __sched notrace schedule_rtlock(void) 6785 { 6786 do { 6787 preempt_disable(); 6788 __schedule(SM_RTLOCK_WAIT); 6789 sched_preempt_enable_no_resched(); 6790 } while (need_resched()); 6791 } 6792 NOKPROBE_SYMBOL(schedule_rtlock); 6793 #endif 6794 6795 static void __sched notrace preempt_schedule_common(void) 6796 { 6797 do { 6798 /* 6799 * Because the function tracer can trace preempt_count_sub() 6800 * and it also uses preempt_enable/disable_notrace(), if 6801 * NEED_RESCHED is set, the preempt_enable_notrace() called 6802 * by the function tracer will call this function again and 6803 * cause infinite recursion. 6804 * 6805 * Preemption must be disabled here before the function 6806 * tracer can trace. Break up preempt_disable() into two 6807 * calls. One to disable preemption without fear of being 6808 * traced. The other to still record the preemption latency, 6809 * which can also be traced by the function tracer. 6810 */ 6811 preempt_disable_notrace(); 6812 preempt_latency_start(1); 6813 __schedule(SM_PREEMPT); 6814 preempt_latency_stop(1); 6815 preempt_enable_no_resched_notrace(); 6816 6817 /* 6818 * Check again in case we missed a preemption opportunity 6819 * between schedule and now. 6820 */ 6821 } while (need_resched()); 6822 } 6823 6824 #ifdef CONFIG_PREEMPTION 6825 /* 6826 * This is the entry point to schedule() from in-kernel preemption 6827 * off of preempt_enable. 6828 */ 6829 asmlinkage __visible void __sched notrace preempt_schedule(void) 6830 { 6831 /* 6832 * If there is a non-zero preempt_count or interrupts are disabled, 6833 * we do not want to preempt the current task. Just return.. 6834 */ 6835 if (likely(!preemptible())) 6836 return; 6837 preempt_schedule_common(); 6838 } 6839 NOKPROBE_SYMBOL(preempt_schedule); 6840 EXPORT_SYMBOL(preempt_schedule); 6841 6842 #ifdef CONFIG_PREEMPT_DYNAMIC 6843 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6844 #ifndef preempt_schedule_dynamic_enabled 6845 #define preempt_schedule_dynamic_enabled preempt_schedule 6846 #define preempt_schedule_dynamic_disabled NULL 6847 #endif 6848 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6849 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6850 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6851 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6852 void __sched notrace dynamic_preempt_schedule(void) 6853 { 6854 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6855 return; 6856 preempt_schedule(); 6857 } 6858 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6859 EXPORT_SYMBOL(dynamic_preempt_schedule); 6860 #endif 6861 #endif 6862 6863 /** 6864 * preempt_schedule_notrace - preempt_schedule called by tracing 6865 * 6866 * The tracing infrastructure uses preempt_enable_notrace to prevent 6867 * recursion and tracing preempt enabling caused by the tracing 6868 * infrastructure itself. But as tracing can happen in areas coming 6869 * from userspace or just about to enter userspace, a preempt enable 6870 * can occur before user_exit() is called. This will cause the scheduler 6871 * to be called when the system is still in usermode. 6872 * 6873 * To prevent this, the preempt_enable_notrace will use this function 6874 * instead of preempt_schedule() to exit user context if needed before 6875 * calling the scheduler. 6876 */ 6877 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6878 { 6879 enum ctx_state prev_ctx; 6880 6881 if (likely(!preemptible())) 6882 return; 6883 6884 do { 6885 /* 6886 * Because the function tracer can trace preempt_count_sub() 6887 * and it also uses preempt_enable/disable_notrace(), if 6888 * NEED_RESCHED is set, the preempt_enable_notrace() called 6889 * by the function tracer will call this function again and 6890 * cause infinite recursion. 6891 * 6892 * Preemption must be disabled here before the function 6893 * tracer can trace. Break up preempt_disable() into two 6894 * calls. One to disable preemption without fear of being 6895 * traced. The other to still record the preemption latency, 6896 * which can also be traced by the function tracer. 6897 */ 6898 preempt_disable_notrace(); 6899 preempt_latency_start(1); 6900 /* 6901 * Needs preempt disabled in case user_exit() is traced 6902 * and the tracer calls preempt_enable_notrace() causing 6903 * an infinite recursion. 6904 */ 6905 prev_ctx = exception_enter(); 6906 __schedule(SM_PREEMPT); 6907 exception_exit(prev_ctx); 6908 6909 preempt_latency_stop(1); 6910 preempt_enable_no_resched_notrace(); 6911 } while (need_resched()); 6912 } 6913 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6914 6915 #ifdef CONFIG_PREEMPT_DYNAMIC 6916 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6917 #ifndef preempt_schedule_notrace_dynamic_enabled 6918 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6919 #define preempt_schedule_notrace_dynamic_disabled NULL 6920 #endif 6921 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6922 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6923 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6924 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6925 void __sched notrace dynamic_preempt_schedule_notrace(void) 6926 { 6927 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6928 return; 6929 preempt_schedule_notrace(); 6930 } 6931 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6932 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6933 #endif 6934 #endif 6935 6936 #endif /* CONFIG_PREEMPTION */ 6937 6938 /* 6939 * This is the entry point to schedule() from kernel preemption 6940 * off of irq context. 6941 * Note, that this is called and return with irqs disabled. This will 6942 * protect us against recursive calling from irq. 6943 */ 6944 asmlinkage __visible void __sched preempt_schedule_irq(void) 6945 { 6946 enum ctx_state prev_state; 6947 6948 /* Catch callers which need to be fixed */ 6949 BUG_ON(preempt_count() || !irqs_disabled()); 6950 6951 prev_state = exception_enter(); 6952 6953 do { 6954 preempt_disable(); 6955 local_irq_enable(); 6956 __schedule(SM_PREEMPT); 6957 local_irq_disable(); 6958 sched_preempt_enable_no_resched(); 6959 } while (need_resched()); 6960 6961 exception_exit(prev_state); 6962 } 6963 6964 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6965 void *key) 6966 { 6967 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6968 return try_to_wake_up(curr->private, mode, wake_flags); 6969 } 6970 EXPORT_SYMBOL(default_wake_function); 6971 6972 static void __setscheduler_prio(struct task_struct *p, int prio) 6973 { 6974 if (dl_prio(prio)) 6975 p->sched_class = &dl_sched_class; 6976 else if (rt_prio(prio)) 6977 p->sched_class = &rt_sched_class; 6978 else 6979 p->sched_class = &fair_sched_class; 6980 6981 p->prio = prio; 6982 } 6983 6984 #ifdef CONFIG_RT_MUTEXES 6985 6986 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6987 { 6988 if (pi_task) 6989 prio = min(prio, pi_task->prio); 6990 6991 return prio; 6992 } 6993 6994 static inline int rt_effective_prio(struct task_struct *p, int prio) 6995 { 6996 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6997 6998 return __rt_effective_prio(pi_task, prio); 6999 } 7000 7001 /* 7002 * rt_mutex_setprio - set the current priority of a task 7003 * @p: task to boost 7004 * @pi_task: donor task 7005 * 7006 * This function changes the 'effective' priority of a task. It does 7007 * not touch ->normal_prio like __setscheduler(). 7008 * 7009 * Used by the rt_mutex code to implement priority inheritance 7010 * logic. Call site only calls if the priority of the task changed. 7011 */ 7012 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7013 { 7014 int prio, oldprio, queued, running, queue_flag = 7015 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7016 const struct sched_class *prev_class; 7017 struct rq_flags rf; 7018 struct rq *rq; 7019 7020 /* XXX used to be waiter->prio, not waiter->task->prio */ 7021 prio = __rt_effective_prio(pi_task, p->normal_prio); 7022 7023 /* 7024 * If nothing changed; bail early. 7025 */ 7026 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7027 return; 7028 7029 rq = __task_rq_lock(p, &rf); 7030 update_rq_clock(rq); 7031 /* 7032 * Set under pi_lock && rq->lock, such that the value can be used under 7033 * either lock. 7034 * 7035 * Note that there is loads of tricky to make this pointer cache work 7036 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7037 * ensure a task is de-boosted (pi_task is set to NULL) before the 7038 * task is allowed to run again (and can exit). This ensures the pointer 7039 * points to a blocked task -- which guarantees the task is present. 7040 */ 7041 p->pi_top_task = pi_task; 7042 7043 /* 7044 * For FIFO/RR we only need to set prio, if that matches we're done. 7045 */ 7046 if (prio == p->prio && !dl_prio(prio)) 7047 goto out_unlock; 7048 7049 /* 7050 * Idle task boosting is a nono in general. There is one 7051 * exception, when PREEMPT_RT and NOHZ is active: 7052 * 7053 * The idle task calls get_next_timer_interrupt() and holds 7054 * the timer wheel base->lock on the CPU and another CPU wants 7055 * to access the timer (probably to cancel it). We can safely 7056 * ignore the boosting request, as the idle CPU runs this code 7057 * with interrupts disabled and will complete the lock 7058 * protected section without being interrupted. So there is no 7059 * real need to boost. 7060 */ 7061 if (unlikely(p == rq->idle)) { 7062 WARN_ON(p != rq->curr); 7063 WARN_ON(p->pi_blocked_on); 7064 goto out_unlock; 7065 } 7066 7067 trace_sched_pi_setprio(p, pi_task); 7068 oldprio = p->prio; 7069 7070 if (oldprio == prio) 7071 queue_flag &= ~DEQUEUE_MOVE; 7072 7073 prev_class = p->sched_class; 7074 queued = task_on_rq_queued(p); 7075 running = task_current(rq, p); 7076 if (queued) 7077 dequeue_task(rq, p, queue_flag); 7078 if (running) 7079 put_prev_task(rq, p); 7080 7081 /* 7082 * Boosting condition are: 7083 * 1. -rt task is running and holds mutex A 7084 * --> -dl task blocks on mutex A 7085 * 7086 * 2. -dl task is running and holds mutex A 7087 * --> -dl task blocks on mutex A and could preempt the 7088 * running task 7089 */ 7090 if (dl_prio(prio)) { 7091 if (!dl_prio(p->normal_prio) || 7092 (pi_task && dl_prio(pi_task->prio) && 7093 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7094 p->dl.pi_se = pi_task->dl.pi_se; 7095 queue_flag |= ENQUEUE_REPLENISH; 7096 } else { 7097 p->dl.pi_se = &p->dl; 7098 } 7099 } else if (rt_prio(prio)) { 7100 if (dl_prio(oldprio)) 7101 p->dl.pi_se = &p->dl; 7102 if (oldprio < prio) 7103 queue_flag |= ENQUEUE_HEAD; 7104 } else { 7105 if (dl_prio(oldprio)) 7106 p->dl.pi_se = &p->dl; 7107 if (rt_prio(oldprio)) 7108 p->rt.timeout = 0; 7109 } 7110 7111 __setscheduler_prio(p, prio); 7112 7113 if (queued) 7114 enqueue_task(rq, p, queue_flag); 7115 if (running) 7116 set_next_task(rq, p); 7117 7118 check_class_changed(rq, p, prev_class, oldprio); 7119 out_unlock: 7120 /* Avoid rq from going away on us: */ 7121 preempt_disable(); 7122 7123 rq_unpin_lock(rq, &rf); 7124 __balance_callbacks(rq); 7125 raw_spin_rq_unlock(rq); 7126 7127 preempt_enable(); 7128 } 7129 #else 7130 static inline int rt_effective_prio(struct task_struct *p, int prio) 7131 { 7132 return prio; 7133 } 7134 #endif 7135 7136 void set_user_nice(struct task_struct *p, long nice) 7137 { 7138 bool queued, running; 7139 int old_prio; 7140 struct rq_flags rf; 7141 struct rq *rq; 7142 7143 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7144 return; 7145 /* 7146 * We have to be careful, if called from sys_setpriority(), 7147 * the task might be in the middle of scheduling on another CPU. 7148 */ 7149 rq = task_rq_lock(p, &rf); 7150 update_rq_clock(rq); 7151 7152 /* 7153 * The RT priorities are set via sched_setscheduler(), but we still 7154 * allow the 'normal' nice value to be set - but as expected 7155 * it won't have any effect on scheduling until the task is 7156 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7157 */ 7158 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7159 p->static_prio = NICE_TO_PRIO(nice); 7160 goto out_unlock; 7161 } 7162 queued = task_on_rq_queued(p); 7163 running = task_current(rq, p); 7164 if (queued) 7165 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7166 if (running) 7167 put_prev_task(rq, p); 7168 7169 p->static_prio = NICE_TO_PRIO(nice); 7170 set_load_weight(p, true); 7171 old_prio = p->prio; 7172 p->prio = effective_prio(p); 7173 7174 if (queued) 7175 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7176 if (running) 7177 set_next_task(rq, p); 7178 7179 /* 7180 * If the task increased its priority or is running and 7181 * lowered its priority, then reschedule its CPU: 7182 */ 7183 p->sched_class->prio_changed(rq, p, old_prio); 7184 7185 out_unlock: 7186 task_rq_unlock(rq, p, &rf); 7187 } 7188 EXPORT_SYMBOL(set_user_nice); 7189 7190 /* 7191 * is_nice_reduction - check if nice value is an actual reduction 7192 * 7193 * Similar to can_nice() but does not perform a capability check. 7194 * 7195 * @p: task 7196 * @nice: nice value 7197 */ 7198 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7199 { 7200 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7201 int nice_rlim = nice_to_rlimit(nice); 7202 7203 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7204 } 7205 7206 /* 7207 * can_nice - check if a task can reduce its nice value 7208 * @p: task 7209 * @nice: nice value 7210 */ 7211 int can_nice(const struct task_struct *p, const int nice) 7212 { 7213 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7214 } 7215 7216 #ifdef __ARCH_WANT_SYS_NICE 7217 7218 /* 7219 * sys_nice - change the priority of the current process. 7220 * @increment: priority increment 7221 * 7222 * sys_setpriority is a more generic, but much slower function that 7223 * does similar things. 7224 */ 7225 SYSCALL_DEFINE1(nice, int, increment) 7226 { 7227 long nice, retval; 7228 7229 /* 7230 * Setpriority might change our priority at the same moment. 7231 * We don't have to worry. Conceptually one call occurs first 7232 * and we have a single winner. 7233 */ 7234 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7235 nice = task_nice(current) + increment; 7236 7237 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7238 if (increment < 0 && !can_nice(current, nice)) 7239 return -EPERM; 7240 7241 retval = security_task_setnice(current, nice); 7242 if (retval) 7243 return retval; 7244 7245 set_user_nice(current, nice); 7246 return 0; 7247 } 7248 7249 #endif 7250 7251 /** 7252 * task_prio - return the priority value of a given task. 7253 * @p: the task in question. 7254 * 7255 * Return: The priority value as seen by users in /proc. 7256 * 7257 * sched policy return value kernel prio user prio/nice 7258 * 7259 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7260 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7261 * deadline -101 -1 0 7262 */ 7263 int task_prio(const struct task_struct *p) 7264 { 7265 return p->prio - MAX_RT_PRIO; 7266 } 7267 7268 /** 7269 * idle_cpu - is a given CPU idle currently? 7270 * @cpu: the processor in question. 7271 * 7272 * Return: 1 if the CPU is currently idle. 0 otherwise. 7273 */ 7274 int idle_cpu(int cpu) 7275 { 7276 struct rq *rq = cpu_rq(cpu); 7277 7278 if (rq->curr != rq->idle) 7279 return 0; 7280 7281 if (rq->nr_running) 7282 return 0; 7283 7284 #ifdef CONFIG_SMP 7285 if (rq->ttwu_pending) 7286 return 0; 7287 #endif 7288 7289 return 1; 7290 } 7291 7292 /** 7293 * available_idle_cpu - is a given CPU idle for enqueuing work. 7294 * @cpu: the CPU in question. 7295 * 7296 * Return: 1 if the CPU is currently idle. 0 otherwise. 7297 */ 7298 int available_idle_cpu(int cpu) 7299 { 7300 if (!idle_cpu(cpu)) 7301 return 0; 7302 7303 if (vcpu_is_preempted(cpu)) 7304 return 0; 7305 7306 return 1; 7307 } 7308 7309 /** 7310 * idle_task - return the idle task for a given CPU. 7311 * @cpu: the processor in question. 7312 * 7313 * Return: The idle task for the CPU @cpu. 7314 */ 7315 struct task_struct *idle_task(int cpu) 7316 { 7317 return cpu_rq(cpu)->idle; 7318 } 7319 7320 #ifdef CONFIG_SMP 7321 /* 7322 * This function computes an effective utilization for the given CPU, to be 7323 * used for frequency selection given the linear relation: f = u * f_max. 7324 * 7325 * The scheduler tracks the following metrics: 7326 * 7327 * cpu_util_{cfs,rt,dl,irq}() 7328 * cpu_bw_dl() 7329 * 7330 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7331 * synchronized windows and are thus directly comparable. 7332 * 7333 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7334 * which excludes things like IRQ and steal-time. These latter are then accrued 7335 * in the irq utilization. 7336 * 7337 * The DL bandwidth number otoh is not a measured metric but a value computed 7338 * based on the task model parameters and gives the minimal utilization 7339 * required to meet deadlines. 7340 */ 7341 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7342 enum cpu_util_type type, 7343 struct task_struct *p) 7344 { 7345 unsigned long dl_util, util, irq, max; 7346 struct rq *rq = cpu_rq(cpu); 7347 7348 max = arch_scale_cpu_capacity(cpu); 7349 7350 if (!uclamp_is_used() && 7351 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7352 return max; 7353 } 7354 7355 /* 7356 * Early check to see if IRQ/steal time saturates the CPU, can be 7357 * because of inaccuracies in how we track these -- see 7358 * update_irq_load_avg(). 7359 */ 7360 irq = cpu_util_irq(rq); 7361 if (unlikely(irq >= max)) 7362 return max; 7363 7364 /* 7365 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7366 * CFS tasks and we use the same metric to track the effective 7367 * utilization (PELT windows are synchronized) we can directly add them 7368 * to obtain the CPU's actual utilization. 7369 * 7370 * CFS and RT utilization can be boosted or capped, depending on 7371 * utilization clamp constraints requested by currently RUNNABLE 7372 * tasks. 7373 * When there are no CFS RUNNABLE tasks, clamps are released and 7374 * frequency will be gracefully reduced with the utilization decay. 7375 */ 7376 util = util_cfs + cpu_util_rt(rq); 7377 if (type == FREQUENCY_UTIL) 7378 util = uclamp_rq_util_with(rq, util, p); 7379 7380 dl_util = cpu_util_dl(rq); 7381 7382 /* 7383 * For frequency selection we do not make cpu_util_dl() a permanent part 7384 * of this sum because we want to use cpu_bw_dl() later on, but we need 7385 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7386 * that we select f_max when there is no idle time. 7387 * 7388 * NOTE: numerical errors or stop class might cause us to not quite hit 7389 * saturation when we should -- something for later. 7390 */ 7391 if (util + dl_util >= max) 7392 return max; 7393 7394 /* 7395 * OTOH, for energy computation we need the estimated running time, so 7396 * include util_dl and ignore dl_bw. 7397 */ 7398 if (type == ENERGY_UTIL) 7399 util += dl_util; 7400 7401 /* 7402 * There is still idle time; further improve the number by using the 7403 * irq metric. Because IRQ/steal time is hidden from the task clock we 7404 * need to scale the task numbers: 7405 * 7406 * max - irq 7407 * U' = irq + --------- * U 7408 * max 7409 */ 7410 util = scale_irq_capacity(util, irq, max); 7411 util += irq; 7412 7413 /* 7414 * Bandwidth required by DEADLINE must always be granted while, for 7415 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7416 * to gracefully reduce the frequency when no tasks show up for longer 7417 * periods of time. 7418 * 7419 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7420 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7421 * an interface. So, we only do the latter for now. 7422 */ 7423 if (type == FREQUENCY_UTIL) 7424 util += cpu_bw_dl(rq); 7425 7426 return min(max, util); 7427 } 7428 7429 unsigned long sched_cpu_util(int cpu) 7430 { 7431 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7432 } 7433 #endif /* CONFIG_SMP */ 7434 7435 /** 7436 * find_process_by_pid - find a process with a matching PID value. 7437 * @pid: the pid in question. 7438 * 7439 * The task of @pid, if found. %NULL otherwise. 7440 */ 7441 static struct task_struct *find_process_by_pid(pid_t pid) 7442 { 7443 return pid ? find_task_by_vpid(pid) : current; 7444 } 7445 7446 /* 7447 * sched_setparam() passes in -1 for its policy, to let the functions 7448 * it calls know not to change it. 7449 */ 7450 #define SETPARAM_POLICY -1 7451 7452 static void __setscheduler_params(struct task_struct *p, 7453 const struct sched_attr *attr) 7454 { 7455 int policy = attr->sched_policy; 7456 7457 if (policy == SETPARAM_POLICY) 7458 policy = p->policy; 7459 7460 p->policy = policy; 7461 7462 if (dl_policy(policy)) 7463 __setparam_dl(p, attr); 7464 else if (fair_policy(policy)) 7465 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7466 7467 /* 7468 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7469 * !rt_policy. Always setting this ensures that things like 7470 * getparam()/getattr() don't report silly values for !rt tasks. 7471 */ 7472 p->rt_priority = attr->sched_priority; 7473 p->normal_prio = normal_prio(p); 7474 set_load_weight(p, true); 7475 } 7476 7477 /* 7478 * Check the target process has a UID that matches the current process's: 7479 */ 7480 static bool check_same_owner(struct task_struct *p) 7481 { 7482 const struct cred *cred = current_cred(), *pcred; 7483 bool match; 7484 7485 rcu_read_lock(); 7486 pcred = __task_cred(p); 7487 match = (uid_eq(cred->euid, pcred->euid) || 7488 uid_eq(cred->euid, pcred->uid)); 7489 rcu_read_unlock(); 7490 return match; 7491 } 7492 7493 /* 7494 * Allow unprivileged RT tasks to decrease priority. 7495 * Only issue a capable test if needed and only once to avoid an audit 7496 * event on permitted non-privileged operations: 7497 */ 7498 static int user_check_sched_setscheduler(struct task_struct *p, 7499 const struct sched_attr *attr, 7500 int policy, int reset_on_fork) 7501 { 7502 if (fair_policy(policy)) { 7503 if (attr->sched_nice < task_nice(p) && 7504 !is_nice_reduction(p, attr->sched_nice)) 7505 goto req_priv; 7506 } 7507 7508 if (rt_policy(policy)) { 7509 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7510 7511 /* Can't set/change the rt policy: */ 7512 if (policy != p->policy && !rlim_rtprio) 7513 goto req_priv; 7514 7515 /* Can't increase priority: */ 7516 if (attr->sched_priority > p->rt_priority && 7517 attr->sched_priority > rlim_rtprio) 7518 goto req_priv; 7519 } 7520 7521 /* 7522 * Can't set/change SCHED_DEADLINE policy at all for now 7523 * (safest behavior); in the future we would like to allow 7524 * unprivileged DL tasks to increase their relative deadline 7525 * or reduce their runtime (both ways reducing utilization) 7526 */ 7527 if (dl_policy(policy)) 7528 goto req_priv; 7529 7530 /* 7531 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7532 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7533 */ 7534 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7535 if (!is_nice_reduction(p, task_nice(p))) 7536 goto req_priv; 7537 } 7538 7539 /* Can't change other user's priorities: */ 7540 if (!check_same_owner(p)) 7541 goto req_priv; 7542 7543 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7544 if (p->sched_reset_on_fork && !reset_on_fork) 7545 goto req_priv; 7546 7547 return 0; 7548 7549 req_priv: 7550 if (!capable(CAP_SYS_NICE)) 7551 return -EPERM; 7552 7553 return 0; 7554 } 7555 7556 static int __sched_setscheduler(struct task_struct *p, 7557 const struct sched_attr *attr, 7558 bool user, bool pi) 7559 { 7560 int oldpolicy = -1, policy = attr->sched_policy; 7561 int retval, oldprio, newprio, queued, running; 7562 const struct sched_class *prev_class; 7563 struct balance_callback *head; 7564 struct rq_flags rf; 7565 int reset_on_fork; 7566 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7567 struct rq *rq; 7568 7569 /* The pi code expects interrupts enabled */ 7570 BUG_ON(pi && in_interrupt()); 7571 recheck: 7572 /* Double check policy once rq lock held: */ 7573 if (policy < 0) { 7574 reset_on_fork = p->sched_reset_on_fork; 7575 policy = oldpolicy = p->policy; 7576 } else { 7577 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7578 7579 if (!valid_policy(policy)) 7580 return -EINVAL; 7581 } 7582 7583 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7584 return -EINVAL; 7585 7586 /* 7587 * Valid priorities for SCHED_FIFO and SCHED_RR are 7588 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7589 * SCHED_BATCH and SCHED_IDLE is 0. 7590 */ 7591 if (attr->sched_priority > MAX_RT_PRIO-1) 7592 return -EINVAL; 7593 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7594 (rt_policy(policy) != (attr->sched_priority != 0))) 7595 return -EINVAL; 7596 7597 if (user) { 7598 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7599 if (retval) 7600 return retval; 7601 7602 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7603 return -EINVAL; 7604 7605 retval = security_task_setscheduler(p); 7606 if (retval) 7607 return retval; 7608 } 7609 7610 /* Update task specific "requested" clamps */ 7611 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7612 retval = uclamp_validate(p, attr); 7613 if (retval) 7614 return retval; 7615 } 7616 7617 if (pi) 7618 cpuset_read_lock(); 7619 7620 /* 7621 * Make sure no PI-waiters arrive (or leave) while we are 7622 * changing the priority of the task: 7623 * 7624 * To be able to change p->policy safely, the appropriate 7625 * runqueue lock must be held. 7626 */ 7627 rq = task_rq_lock(p, &rf); 7628 update_rq_clock(rq); 7629 7630 /* 7631 * Changing the policy of the stop threads its a very bad idea: 7632 */ 7633 if (p == rq->stop) { 7634 retval = -EINVAL; 7635 goto unlock; 7636 } 7637 7638 /* 7639 * If not changing anything there's no need to proceed further, 7640 * but store a possible modification of reset_on_fork. 7641 */ 7642 if (unlikely(policy == p->policy)) { 7643 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7644 goto change; 7645 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7646 goto change; 7647 if (dl_policy(policy) && dl_param_changed(p, attr)) 7648 goto change; 7649 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7650 goto change; 7651 7652 p->sched_reset_on_fork = reset_on_fork; 7653 retval = 0; 7654 goto unlock; 7655 } 7656 change: 7657 7658 if (user) { 7659 #ifdef CONFIG_RT_GROUP_SCHED 7660 /* 7661 * Do not allow realtime tasks into groups that have no runtime 7662 * assigned. 7663 */ 7664 if (rt_bandwidth_enabled() && rt_policy(policy) && 7665 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7666 !task_group_is_autogroup(task_group(p))) { 7667 retval = -EPERM; 7668 goto unlock; 7669 } 7670 #endif 7671 #ifdef CONFIG_SMP 7672 if (dl_bandwidth_enabled() && dl_policy(policy) && 7673 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7674 cpumask_t *span = rq->rd->span; 7675 7676 /* 7677 * Don't allow tasks with an affinity mask smaller than 7678 * the entire root_domain to become SCHED_DEADLINE. We 7679 * will also fail if there's no bandwidth available. 7680 */ 7681 if (!cpumask_subset(span, p->cpus_ptr) || 7682 rq->rd->dl_bw.bw == 0) { 7683 retval = -EPERM; 7684 goto unlock; 7685 } 7686 } 7687 #endif 7688 } 7689 7690 /* Re-check policy now with rq lock held: */ 7691 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7692 policy = oldpolicy = -1; 7693 task_rq_unlock(rq, p, &rf); 7694 if (pi) 7695 cpuset_read_unlock(); 7696 goto recheck; 7697 } 7698 7699 /* 7700 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7701 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7702 * is available. 7703 */ 7704 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7705 retval = -EBUSY; 7706 goto unlock; 7707 } 7708 7709 p->sched_reset_on_fork = reset_on_fork; 7710 oldprio = p->prio; 7711 7712 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7713 if (pi) { 7714 /* 7715 * Take priority boosted tasks into account. If the new 7716 * effective priority is unchanged, we just store the new 7717 * normal parameters and do not touch the scheduler class and 7718 * the runqueue. This will be done when the task deboost 7719 * itself. 7720 */ 7721 newprio = rt_effective_prio(p, newprio); 7722 if (newprio == oldprio) 7723 queue_flags &= ~DEQUEUE_MOVE; 7724 } 7725 7726 queued = task_on_rq_queued(p); 7727 running = task_current(rq, p); 7728 if (queued) 7729 dequeue_task(rq, p, queue_flags); 7730 if (running) 7731 put_prev_task(rq, p); 7732 7733 prev_class = p->sched_class; 7734 7735 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7736 __setscheduler_params(p, attr); 7737 __setscheduler_prio(p, newprio); 7738 } 7739 __setscheduler_uclamp(p, attr); 7740 7741 if (queued) { 7742 /* 7743 * We enqueue to tail when the priority of a task is 7744 * increased (user space view). 7745 */ 7746 if (oldprio < p->prio) 7747 queue_flags |= ENQUEUE_HEAD; 7748 7749 enqueue_task(rq, p, queue_flags); 7750 } 7751 if (running) 7752 set_next_task(rq, p); 7753 7754 check_class_changed(rq, p, prev_class, oldprio); 7755 7756 /* Avoid rq from going away on us: */ 7757 preempt_disable(); 7758 head = splice_balance_callbacks(rq); 7759 task_rq_unlock(rq, p, &rf); 7760 7761 if (pi) { 7762 cpuset_read_unlock(); 7763 rt_mutex_adjust_pi(p); 7764 } 7765 7766 /* Run balance callbacks after we've adjusted the PI chain: */ 7767 balance_callbacks(rq, head); 7768 preempt_enable(); 7769 7770 return 0; 7771 7772 unlock: 7773 task_rq_unlock(rq, p, &rf); 7774 if (pi) 7775 cpuset_read_unlock(); 7776 return retval; 7777 } 7778 7779 static int _sched_setscheduler(struct task_struct *p, int policy, 7780 const struct sched_param *param, bool check) 7781 { 7782 struct sched_attr attr = { 7783 .sched_policy = policy, 7784 .sched_priority = param->sched_priority, 7785 .sched_nice = PRIO_TO_NICE(p->static_prio), 7786 }; 7787 7788 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7789 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7790 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7791 policy &= ~SCHED_RESET_ON_FORK; 7792 attr.sched_policy = policy; 7793 } 7794 7795 return __sched_setscheduler(p, &attr, check, true); 7796 } 7797 /** 7798 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7799 * @p: the task in question. 7800 * @policy: new policy. 7801 * @param: structure containing the new RT priority. 7802 * 7803 * Use sched_set_fifo(), read its comment. 7804 * 7805 * Return: 0 on success. An error code otherwise. 7806 * 7807 * NOTE that the task may be already dead. 7808 */ 7809 int sched_setscheduler(struct task_struct *p, int policy, 7810 const struct sched_param *param) 7811 { 7812 return _sched_setscheduler(p, policy, param, true); 7813 } 7814 7815 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7816 { 7817 return __sched_setscheduler(p, attr, true, true); 7818 } 7819 7820 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7821 { 7822 return __sched_setscheduler(p, attr, false, true); 7823 } 7824 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7825 7826 /** 7827 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7828 * @p: the task in question. 7829 * @policy: new policy. 7830 * @param: structure containing the new RT priority. 7831 * 7832 * Just like sched_setscheduler, only don't bother checking if the 7833 * current context has permission. For example, this is needed in 7834 * stop_machine(): we create temporary high priority worker threads, 7835 * but our caller might not have that capability. 7836 * 7837 * Return: 0 on success. An error code otherwise. 7838 */ 7839 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7840 const struct sched_param *param) 7841 { 7842 return _sched_setscheduler(p, policy, param, false); 7843 } 7844 7845 /* 7846 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7847 * incapable of resource management, which is the one thing an OS really should 7848 * be doing. 7849 * 7850 * This is of course the reason it is limited to privileged users only. 7851 * 7852 * Worse still; it is fundamentally impossible to compose static priority 7853 * workloads. You cannot take two correctly working static prio workloads 7854 * and smash them together and still expect them to work. 7855 * 7856 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7857 * 7858 * MAX_RT_PRIO / 2 7859 * 7860 * The administrator _MUST_ configure the system, the kernel simply doesn't 7861 * know enough information to make a sensible choice. 7862 */ 7863 void sched_set_fifo(struct task_struct *p) 7864 { 7865 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7866 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7867 } 7868 EXPORT_SYMBOL_GPL(sched_set_fifo); 7869 7870 /* 7871 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7872 */ 7873 void sched_set_fifo_low(struct task_struct *p) 7874 { 7875 struct sched_param sp = { .sched_priority = 1 }; 7876 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7877 } 7878 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7879 7880 void sched_set_normal(struct task_struct *p, int nice) 7881 { 7882 struct sched_attr attr = { 7883 .sched_policy = SCHED_NORMAL, 7884 .sched_nice = nice, 7885 }; 7886 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7887 } 7888 EXPORT_SYMBOL_GPL(sched_set_normal); 7889 7890 static int 7891 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7892 { 7893 struct sched_param lparam; 7894 struct task_struct *p; 7895 int retval; 7896 7897 if (!param || pid < 0) 7898 return -EINVAL; 7899 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7900 return -EFAULT; 7901 7902 rcu_read_lock(); 7903 retval = -ESRCH; 7904 p = find_process_by_pid(pid); 7905 if (likely(p)) 7906 get_task_struct(p); 7907 rcu_read_unlock(); 7908 7909 if (likely(p)) { 7910 retval = sched_setscheduler(p, policy, &lparam); 7911 put_task_struct(p); 7912 } 7913 7914 return retval; 7915 } 7916 7917 /* 7918 * Mimics kernel/events/core.c perf_copy_attr(). 7919 */ 7920 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7921 { 7922 u32 size; 7923 int ret; 7924 7925 /* Zero the full structure, so that a short copy will be nice: */ 7926 memset(attr, 0, sizeof(*attr)); 7927 7928 ret = get_user(size, &uattr->size); 7929 if (ret) 7930 return ret; 7931 7932 /* ABI compatibility quirk: */ 7933 if (!size) 7934 size = SCHED_ATTR_SIZE_VER0; 7935 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7936 goto err_size; 7937 7938 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7939 if (ret) { 7940 if (ret == -E2BIG) 7941 goto err_size; 7942 return ret; 7943 } 7944 7945 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7946 size < SCHED_ATTR_SIZE_VER1) 7947 return -EINVAL; 7948 7949 /* 7950 * XXX: Do we want to be lenient like existing syscalls; or do we want 7951 * to be strict and return an error on out-of-bounds values? 7952 */ 7953 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7954 7955 return 0; 7956 7957 err_size: 7958 put_user(sizeof(*attr), &uattr->size); 7959 return -E2BIG; 7960 } 7961 7962 static void get_params(struct task_struct *p, struct sched_attr *attr) 7963 { 7964 if (task_has_dl_policy(p)) 7965 __getparam_dl(p, attr); 7966 else if (task_has_rt_policy(p)) 7967 attr->sched_priority = p->rt_priority; 7968 else 7969 attr->sched_nice = task_nice(p); 7970 } 7971 7972 /** 7973 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7974 * @pid: the pid in question. 7975 * @policy: new policy. 7976 * @param: structure containing the new RT priority. 7977 * 7978 * Return: 0 on success. An error code otherwise. 7979 */ 7980 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7981 { 7982 if (policy < 0) 7983 return -EINVAL; 7984 7985 return do_sched_setscheduler(pid, policy, param); 7986 } 7987 7988 /** 7989 * sys_sched_setparam - set/change the RT priority of a thread 7990 * @pid: the pid in question. 7991 * @param: structure containing the new RT priority. 7992 * 7993 * Return: 0 on success. An error code otherwise. 7994 */ 7995 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7996 { 7997 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7998 } 7999 8000 /** 8001 * sys_sched_setattr - same as above, but with extended sched_attr 8002 * @pid: the pid in question. 8003 * @uattr: structure containing the extended parameters. 8004 * @flags: for future extension. 8005 */ 8006 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 8007 unsigned int, flags) 8008 { 8009 struct sched_attr attr; 8010 struct task_struct *p; 8011 int retval; 8012 8013 if (!uattr || pid < 0 || flags) 8014 return -EINVAL; 8015 8016 retval = sched_copy_attr(uattr, &attr); 8017 if (retval) 8018 return retval; 8019 8020 if ((int)attr.sched_policy < 0) 8021 return -EINVAL; 8022 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 8023 attr.sched_policy = SETPARAM_POLICY; 8024 8025 rcu_read_lock(); 8026 retval = -ESRCH; 8027 p = find_process_by_pid(pid); 8028 if (likely(p)) 8029 get_task_struct(p); 8030 rcu_read_unlock(); 8031 8032 if (likely(p)) { 8033 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 8034 get_params(p, &attr); 8035 retval = sched_setattr(p, &attr); 8036 put_task_struct(p); 8037 } 8038 8039 return retval; 8040 } 8041 8042 /** 8043 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8044 * @pid: the pid in question. 8045 * 8046 * Return: On success, the policy of the thread. Otherwise, a negative error 8047 * code. 8048 */ 8049 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8050 { 8051 struct task_struct *p; 8052 int retval; 8053 8054 if (pid < 0) 8055 return -EINVAL; 8056 8057 retval = -ESRCH; 8058 rcu_read_lock(); 8059 p = find_process_by_pid(pid); 8060 if (p) { 8061 retval = security_task_getscheduler(p); 8062 if (!retval) 8063 retval = p->policy 8064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8065 } 8066 rcu_read_unlock(); 8067 return retval; 8068 } 8069 8070 /** 8071 * sys_sched_getparam - get the RT priority of a thread 8072 * @pid: the pid in question. 8073 * @param: structure containing the RT priority. 8074 * 8075 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8076 * code. 8077 */ 8078 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8079 { 8080 struct sched_param lp = { .sched_priority = 0 }; 8081 struct task_struct *p; 8082 int retval; 8083 8084 if (!param || pid < 0) 8085 return -EINVAL; 8086 8087 rcu_read_lock(); 8088 p = find_process_by_pid(pid); 8089 retval = -ESRCH; 8090 if (!p) 8091 goto out_unlock; 8092 8093 retval = security_task_getscheduler(p); 8094 if (retval) 8095 goto out_unlock; 8096 8097 if (task_has_rt_policy(p)) 8098 lp.sched_priority = p->rt_priority; 8099 rcu_read_unlock(); 8100 8101 /* 8102 * This one might sleep, we cannot do it with a spinlock held ... 8103 */ 8104 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8105 8106 return retval; 8107 8108 out_unlock: 8109 rcu_read_unlock(); 8110 return retval; 8111 } 8112 8113 /* 8114 * Copy the kernel size attribute structure (which might be larger 8115 * than what user-space knows about) to user-space. 8116 * 8117 * Note that all cases are valid: user-space buffer can be larger or 8118 * smaller than the kernel-space buffer. The usual case is that both 8119 * have the same size. 8120 */ 8121 static int 8122 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8123 struct sched_attr *kattr, 8124 unsigned int usize) 8125 { 8126 unsigned int ksize = sizeof(*kattr); 8127 8128 if (!access_ok(uattr, usize)) 8129 return -EFAULT; 8130 8131 /* 8132 * sched_getattr() ABI forwards and backwards compatibility: 8133 * 8134 * If usize == ksize then we just copy everything to user-space and all is good. 8135 * 8136 * If usize < ksize then we only copy as much as user-space has space for, 8137 * this keeps ABI compatibility as well. We skip the rest. 8138 * 8139 * If usize > ksize then user-space is using a newer version of the ABI, 8140 * which part the kernel doesn't know about. Just ignore it - tooling can 8141 * detect the kernel's knowledge of attributes from the attr->size value 8142 * which is set to ksize in this case. 8143 */ 8144 kattr->size = min(usize, ksize); 8145 8146 if (copy_to_user(uattr, kattr, kattr->size)) 8147 return -EFAULT; 8148 8149 return 0; 8150 } 8151 8152 /** 8153 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8154 * @pid: the pid in question. 8155 * @uattr: structure containing the extended parameters. 8156 * @usize: sizeof(attr) for fwd/bwd comp. 8157 * @flags: for future extension. 8158 */ 8159 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8160 unsigned int, usize, unsigned int, flags) 8161 { 8162 struct sched_attr kattr = { }; 8163 struct task_struct *p; 8164 int retval; 8165 8166 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8167 usize < SCHED_ATTR_SIZE_VER0 || flags) 8168 return -EINVAL; 8169 8170 rcu_read_lock(); 8171 p = find_process_by_pid(pid); 8172 retval = -ESRCH; 8173 if (!p) 8174 goto out_unlock; 8175 8176 retval = security_task_getscheduler(p); 8177 if (retval) 8178 goto out_unlock; 8179 8180 kattr.sched_policy = p->policy; 8181 if (p->sched_reset_on_fork) 8182 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8183 get_params(p, &kattr); 8184 kattr.sched_flags &= SCHED_FLAG_ALL; 8185 8186 #ifdef CONFIG_UCLAMP_TASK 8187 /* 8188 * This could race with another potential updater, but this is fine 8189 * because it'll correctly read the old or the new value. We don't need 8190 * to guarantee who wins the race as long as it doesn't return garbage. 8191 */ 8192 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8193 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8194 #endif 8195 8196 rcu_read_unlock(); 8197 8198 return sched_attr_copy_to_user(uattr, &kattr, usize); 8199 8200 out_unlock: 8201 rcu_read_unlock(); 8202 return retval; 8203 } 8204 8205 #ifdef CONFIG_SMP 8206 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8207 { 8208 int ret = 0; 8209 8210 /* 8211 * If the task isn't a deadline task or admission control is 8212 * disabled then we don't care about affinity changes. 8213 */ 8214 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8215 return 0; 8216 8217 /* 8218 * Since bandwidth control happens on root_domain basis, 8219 * if admission test is enabled, we only admit -deadline 8220 * tasks allowed to run on all the CPUs in the task's 8221 * root_domain. 8222 */ 8223 rcu_read_lock(); 8224 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8225 ret = -EBUSY; 8226 rcu_read_unlock(); 8227 return ret; 8228 } 8229 #endif 8230 8231 static int 8232 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8233 { 8234 int retval; 8235 cpumask_var_t cpus_allowed, new_mask; 8236 8237 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8238 return -ENOMEM; 8239 8240 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8241 retval = -ENOMEM; 8242 goto out_free_cpus_allowed; 8243 } 8244 8245 cpuset_cpus_allowed(p, cpus_allowed); 8246 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8247 8248 ctx->new_mask = new_mask; 8249 ctx->flags |= SCA_CHECK; 8250 8251 retval = dl_task_check_affinity(p, new_mask); 8252 if (retval) 8253 goto out_free_new_mask; 8254 8255 retval = __set_cpus_allowed_ptr(p, ctx); 8256 if (retval) 8257 goto out_free_new_mask; 8258 8259 cpuset_cpus_allowed(p, cpus_allowed); 8260 if (!cpumask_subset(new_mask, cpus_allowed)) { 8261 /* 8262 * We must have raced with a concurrent cpuset update. 8263 * Just reset the cpumask to the cpuset's cpus_allowed. 8264 */ 8265 cpumask_copy(new_mask, cpus_allowed); 8266 8267 /* 8268 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8269 * will restore the previous user_cpus_ptr value. 8270 * 8271 * In the unlikely event a previous user_cpus_ptr exists, 8272 * we need to further restrict the mask to what is allowed 8273 * by that old user_cpus_ptr. 8274 */ 8275 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8276 bool empty = !cpumask_and(new_mask, new_mask, 8277 ctx->user_mask); 8278 8279 if (WARN_ON_ONCE(empty)) 8280 cpumask_copy(new_mask, cpus_allowed); 8281 } 8282 __set_cpus_allowed_ptr(p, ctx); 8283 retval = -EINVAL; 8284 } 8285 8286 out_free_new_mask: 8287 free_cpumask_var(new_mask); 8288 out_free_cpus_allowed: 8289 free_cpumask_var(cpus_allowed); 8290 return retval; 8291 } 8292 8293 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8294 { 8295 struct affinity_context ac; 8296 struct cpumask *user_mask; 8297 struct task_struct *p; 8298 int retval; 8299 8300 rcu_read_lock(); 8301 8302 p = find_process_by_pid(pid); 8303 if (!p) { 8304 rcu_read_unlock(); 8305 return -ESRCH; 8306 } 8307 8308 /* Prevent p going away */ 8309 get_task_struct(p); 8310 rcu_read_unlock(); 8311 8312 if (p->flags & PF_NO_SETAFFINITY) { 8313 retval = -EINVAL; 8314 goto out_put_task; 8315 } 8316 8317 if (!check_same_owner(p)) { 8318 rcu_read_lock(); 8319 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8320 rcu_read_unlock(); 8321 retval = -EPERM; 8322 goto out_put_task; 8323 } 8324 rcu_read_unlock(); 8325 } 8326 8327 retval = security_task_setscheduler(p); 8328 if (retval) 8329 goto out_put_task; 8330 8331 /* 8332 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8333 * alloc_user_cpus_ptr() returns NULL. 8334 */ 8335 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8336 if (user_mask) { 8337 cpumask_copy(user_mask, in_mask); 8338 } else if (IS_ENABLED(CONFIG_SMP)) { 8339 retval = -ENOMEM; 8340 goto out_put_task; 8341 } 8342 8343 ac = (struct affinity_context){ 8344 .new_mask = in_mask, 8345 .user_mask = user_mask, 8346 .flags = SCA_USER, 8347 }; 8348 8349 retval = __sched_setaffinity(p, &ac); 8350 kfree(ac.user_mask); 8351 8352 out_put_task: 8353 put_task_struct(p); 8354 return retval; 8355 } 8356 8357 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8358 struct cpumask *new_mask) 8359 { 8360 if (len < cpumask_size()) 8361 cpumask_clear(new_mask); 8362 else if (len > cpumask_size()) 8363 len = cpumask_size(); 8364 8365 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8366 } 8367 8368 /** 8369 * sys_sched_setaffinity - set the CPU affinity of a process 8370 * @pid: pid of the process 8371 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8372 * @user_mask_ptr: user-space pointer to the new CPU mask 8373 * 8374 * Return: 0 on success. An error code otherwise. 8375 */ 8376 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8377 unsigned long __user *, user_mask_ptr) 8378 { 8379 cpumask_var_t new_mask; 8380 int retval; 8381 8382 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8383 return -ENOMEM; 8384 8385 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8386 if (retval == 0) 8387 retval = sched_setaffinity(pid, new_mask); 8388 free_cpumask_var(new_mask); 8389 return retval; 8390 } 8391 8392 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8393 { 8394 struct task_struct *p; 8395 unsigned long flags; 8396 int retval; 8397 8398 rcu_read_lock(); 8399 8400 retval = -ESRCH; 8401 p = find_process_by_pid(pid); 8402 if (!p) 8403 goto out_unlock; 8404 8405 retval = security_task_getscheduler(p); 8406 if (retval) 8407 goto out_unlock; 8408 8409 raw_spin_lock_irqsave(&p->pi_lock, flags); 8410 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8411 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8412 8413 out_unlock: 8414 rcu_read_unlock(); 8415 8416 return retval; 8417 } 8418 8419 /** 8420 * sys_sched_getaffinity - get the CPU affinity of a process 8421 * @pid: pid of the process 8422 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8423 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8424 * 8425 * Return: size of CPU mask copied to user_mask_ptr on success. An 8426 * error code otherwise. 8427 */ 8428 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8429 unsigned long __user *, user_mask_ptr) 8430 { 8431 int ret; 8432 cpumask_var_t mask; 8433 8434 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8435 return -EINVAL; 8436 if (len & (sizeof(unsigned long)-1)) 8437 return -EINVAL; 8438 8439 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 8440 return -ENOMEM; 8441 8442 ret = sched_getaffinity(pid, mask); 8443 if (ret == 0) { 8444 unsigned int retlen = min(len, cpumask_size()); 8445 8446 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 8447 ret = -EFAULT; 8448 else 8449 ret = retlen; 8450 } 8451 free_cpumask_var(mask); 8452 8453 return ret; 8454 } 8455 8456 static void do_sched_yield(void) 8457 { 8458 struct rq_flags rf; 8459 struct rq *rq; 8460 8461 rq = this_rq_lock_irq(&rf); 8462 8463 schedstat_inc(rq->yld_count); 8464 current->sched_class->yield_task(rq); 8465 8466 preempt_disable(); 8467 rq_unlock_irq(rq, &rf); 8468 sched_preempt_enable_no_resched(); 8469 8470 schedule(); 8471 } 8472 8473 /** 8474 * sys_sched_yield - yield the current processor to other threads. 8475 * 8476 * This function yields the current CPU to other tasks. If there are no 8477 * other threads running on this CPU then this function will return. 8478 * 8479 * Return: 0. 8480 */ 8481 SYSCALL_DEFINE0(sched_yield) 8482 { 8483 do_sched_yield(); 8484 return 0; 8485 } 8486 8487 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8488 int __sched __cond_resched(void) 8489 { 8490 if (should_resched(0)) { 8491 preempt_schedule_common(); 8492 return 1; 8493 } 8494 /* 8495 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8496 * whether the current CPU is in an RCU read-side critical section, 8497 * so the tick can report quiescent states even for CPUs looping 8498 * in kernel context. In contrast, in non-preemptible kernels, 8499 * RCU readers leave no in-memory hints, which means that CPU-bound 8500 * processes executing in kernel context might never report an 8501 * RCU quiescent state. Therefore, the following code causes 8502 * cond_resched() to report a quiescent state, but only when RCU 8503 * is in urgent need of one. 8504 */ 8505 #ifndef CONFIG_PREEMPT_RCU 8506 rcu_all_qs(); 8507 #endif 8508 return 0; 8509 } 8510 EXPORT_SYMBOL(__cond_resched); 8511 #endif 8512 8513 #ifdef CONFIG_PREEMPT_DYNAMIC 8514 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8515 #define cond_resched_dynamic_enabled __cond_resched 8516 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8517 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8518 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8519 8520 #define might_resched_dynamic_enabled __cond_resched 8521 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8522 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8523 EXPORT_STATIC_CALL_TRAMP(might_resched); 8524 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8525 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8526 int __sched dynamic_cond_resched(void) 8527 { 8528 klp_sched_try_switch(); 8529 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8530 return 0; 8531 return __cond_resched(); 8532 } 8533 EXPORT_SYMBOL(dynamic_cond_resched); 8534 8535 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8536 int __sched dynamic_might_resched(void) 8537 { 8538 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8539 return 0; 8540 return __cond_resched(); 8541 } 8542 EXPORT_SYMBOL(dynamic_might_resched); 8543 #endif 8544 #endif 8545 8546 /* 8547 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8548 * call schedule, and on return reacquire the lock. 8549 * 8550 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8551 * operations here to prevent schedule() from being called twice (once via 8552 * spin_unlock(), once by hand). 8553 */ 8554 int __cond_resched_lock(spinlock_t *lock) 8555 { 8556 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8557 int ret = 0; 8558 8559 lockdep_assert_held(lock); 8560 8561 if (spin_needbreak(lock) || resched) { 8562 spin_unlock(lock); 8563 if (!_cond_resched()) 8564 cpu_relax(); 8565 ret = 1; 8566 spin_lock(lock); 8567 } 8568 return ret; 8569 } 8570 EXPORT_SYMBOL(__cond_resched_lock); 8571 8572 int __cond_resched_rwlock_read(rwlock_t *lock) 8573 { 8574 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8575 int ret = 0; 8576 8577 lockdep_assert_held_read(lock); 8578 8579 if (rwlock_needbreak(lock) || resched) { 8580 read_unlock(lock); 8581 if (!_cond_resched()) 8582 cpu_relax(); 8583 ret = 1; 8584 read_lock(lock); 8585 } 8586 return ret; 8587 } 8588 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8589 8590 int __cond_resched_rwlock_write(rwlock_t *lock) 8591 { 8592 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8593 int ret = 0; 8594 8595 lockdep_assert_held_write(lock); 8596 8597 if (rwlock_needbreak(lock) || resched) { 8598 write_unlock(lock); 8599 if (!_cond_resched()) 8600 cpu_relax(); 8601 ret = 1; 8602 write_lock(lock); 8603 } 8604 return ret; 8605 } 8606 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8607 8608 #ifdef CONFIG_PREEMPT_DYNAMIC 8609 8610 #ifdef CONFIG_GENERIC_ENTRY 8611 #include <linux/entry-common.h> 8612 #endif 8613 8614 /* 8615 * SC:cond_resched 8616 * SC:might_resched 8617 * SC:preempt_schedule 8618 * SC:preempt_schedule_notrace 8619 * SC:irqentry_exit_cond_resched 8620 * 8621 * 8622 * NONE: 8623 * cond_resched <- __cond_resched 8624 * might_resched <- RET0 8625 * preempt_schedule <- NOP 8626 * preempt_schedule_notrace <- NOP 8627 * irqentry_exit_cond_resched <- NOP 8628 * 8629 * VOLUNTARY: 8630 * cond_resched <- __cond_resched 8631 * might_resched <- __cond_resched 8632 * preempt_schedule <- NOP 8633 * preempt_schedule_notrace <- NOP 8634 * irqentry_exit_cond_resched <- NOP 8635 * 8636 * FULL: 8637 * cond_resched <- RET0 8638 * might_resched <- RET0 8639 * preempt_schedule <- preempt_schedule 8640 * preempt_schedule_notrace <- preempt_schedule_notrace 8641 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8642 */ 8643 8644 enum { 8645 preempt_dynamic_undefined = -1, 8646 preempt_dynamic_none, 8647 preempt_dynamic_voluntary, 8648 preempt_dynamic_full, 8649 }; 8650 8651 int preempt_dynamic_mode = preempt_dynamic_undefined; 8652 8653 int sched_dynamic_mode(const char *str) 8654 { 8655 if (!strcmp(str, "none")) 8656 return preempt_dynamic_none; 8657 8658 if (!strcmp(str, "voluntary")) 8659 return preempt_dynamic_voluntary; 8660 8661 if (!strcmp(str, "full")) 8662 return preempt_dynamic_full; 8663 8664 return -EINVAL; 8665 } 8666 8667 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8668 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8669 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8670 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8671 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8672 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8673 #else 8674 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8675 #endif 8676 8677 DEFINE_MUTEX(sched_dynamic_mutex); 8678 static bool klp_override; 8679 8680 static void __sched_dynamic_update(int mode) 8681 { 8682 /* 8683 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8684 * the ZERO state, which is invalid. 8685 */ 8686 if (!klp_override) 8687 preempt_dynamic_enable(cond_resched); 8688 preempt_dynamic_enable(might_resched); 8689 preempt_dynamic_enable(preempt_schedule); 8690 preempt_dynamic_enable(preempt_schedule_notrace); 8691 preempt_dynamic_enable(irqentry_exit_cond_resched); 8692 8693 switch (mode) { 8694 case preempt_dynamic_none: 8695 if (!klp_override) 8696 preempt_dynamic_enable(cond_resched); 8697 preempt_dynamic_disable(might_resched); 8698 preempt_dynamic_disable(preempt_schedule); 8699 preempt_dynamic_disable(preempt_schedule_notrace); 8700 preempt_dynamic_disable(irqentry_exit_cond_resched); 8701 if (mode != preempt_dynamic_mode) 8702 pr_info("Dynamic Preempt: none\n"); 8703 break; 8704 8705 case preempt_dynamic_voluntary: 8706 if (!klp_override) 8707 preempt_dynamic_enable(cond_resched); 8708 preempt_dynamic_enable(might_resched); 8709 preempt_dynamic_disable(preempt_schedule); 8710 preempt_dynamic_disable(preempt_schedule_notrace); 8711 preempt_dynamic_disable(irqentry_exit_cond_resched); 8712 if (mode != preempt_dynamic_mode) 8713 pr_info("Dynamic Preempt: voluntary\n"); 8714 break; 8715 8716 case preempt_dynamic_full: 8717 if (!klp_override) 8718 preempt_dynamic_disable(cond_resched); 8719 preempt_dynamic_disable(might_resched); 8720 preempt_dynamic_enable(preempt_schedule); 8721 preempt_dynamic_enable(preempt_schedule_notrace); 8722 preempt_dynamic_enable(irqentry_exit_cond_resched); 8723 if (mode != preempt_dynamic_mode) 8724 pr_info("Dynamic Preempt: full\n"); 8725 break; 8726 } 8727 8728 preempt_dynamic_mode = mode; 8729 } 8730 8731 void sched_dynamic_update(int mode) 8732 { 8733 mutex_lock(&sched_dynamic_mutex); 8734 __sched_dynamic_update(mode); 8735 mutex_unlock(&sched_dynamic_mutex); 8736 } 8737 8738 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 8739 8740 static int klp_cond_resched(void) 8741 { 8742 __klp_sched_try_switch(); 8743 return __cond_resched(); 8744 } 8745 8746 void sched_dynamic_klp_enable(void) 8747 { 8748 mutex_lock(&sched_dynamic_mutex); 8749 8750 klp_override = true; 8751 static_call_update(cond_resched, klp_cond_resched); 8752 8753 mutex_unlock(&sched_dynamic_mutex); 8754 } 8755 8756 void sched_dynamic_klp_disable(void) 8757 { 8758 mutex_lock(&sched_dynamic_mutex); 8759 8760 klp_override = false; 8761 __sched_dynamic_update(preempt_dynamic_mode); 8762 8763 mutex_unlock(&sched_dynamic_mutex); 8764 } 8765 8766 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 8767 8768 static int __init setup_preempt_mode(char *str) 8769 { 8770 int mode = sched_dynamic_mode(str); 8771 if (mode < 0) { 8772 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8773 return 0; 8774 } 8775 8776 sched_dynamic_update(mode); 8777 return 1; 8778 } 8779 __setup("preempt=", setup_preempt_mode); 8780 8781 static void __init preempt_dynamic_init(void) 8782 { 8783 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8784 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8785 sched_dynamic_update(preempt_dynamic_none); 8786 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8787 sched_dynamic_update(preempt_dynamic_voluntary); 8788 } else { 8789 /* Default static call setting, nothing to do */ 8790 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8791 preempt_dynamic_mode = preempt_dynamic_full; 8792 pr_info("Dynamic Preempt: full\n"); 8793 } 8794 } 8795 } 8796 8797 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8798 bool preempt_model_##mode(void) \ 8799 { \ 8800 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8801 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8802 } \ 8803 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8804 8805 PREEMPT_MODEL_ACCESSOR(none); 8806 PREEMPT_MODEL_ACCESSOR(voluntary); 8807 PREEMPT_MODEL_ACCESSOR(full); 8808 8809 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8810 8811 static inline void preempt_dynamic_init(void) { } 8812 8813 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8814 8815 /** 8816 * yield - yield the current processor to other threads. 8817 * 8818 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8819 * 8820 * The scheduler is at all times free to pick the calling task as the most 8821 * eligible task to run, if removing the yield() call from your code breaks 8822 * it, it's already broken. 8823 * 8824 * Typical broken usage is: 8825 * 8826 * while (!event) 8827 * yield(); 8828 * 8829 * where one assumes that yield() will let 'the other' process run that will 8830 * make event true. If the current task is a SCHED_FIFO task that will never 8831 * happen. Never use yield() as a progress guarantee!! 8832 * 8833 * If you want to use yield() to wait for something, use wait_event(). 8834 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8835 * If you still want to use yield(), do not! 8836 */ 8837 void __sched yield(void) 8838 { 8839 set_current_state(TASK_RUNNING); 8840 do_sched_yield(); 8841 } 8842 EXPORT_SYMBOL(yield); 8843 8844 /** 8845 * yield_to - yield the current processor to another thread in 8846 * your thread group, or accelerate that thread toward the 8847 * processor it's on. 8848 * @p: target task 8849 * @preempt: whether task preemption is allowed or not 8850 * 8851 * It's the caller's job to ensure that the target task struct 8852 * can't go away on us before we can do any checks. 8853 * 8854 * Return: 8855 * true (>0) if we indeed boosted the target task. 8856 * false (0) if we failed to boost the target. 8857 * -ESRCH if there's no task to yield to. 8858 */ 8859 int __sched yield_to(struct task_struct *p, bool preempt) 8860 { 8861 struct task_struct *curr = current; 8862 struct rq *rq, *p_rq; 8863 unsigned long flags; 8864 int yielded = 0; 8865 8866 local_irq_save(flags); 8867 rq = this_rq(); 8868 8869 again: 8870 p_rq = task_rq(p); 8871 /* 8872 * If we're the only runnable task on the rq and target rq also 8873 * has only one task, there's absolutely no point in yielding. 8874 */ 8875 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8876 yielded = -ESRCH; 8877 goto out_irq; 8878 } 8879 8880 double_rq_lock(rq, p_rq); 8881 if (task_rq(p) != p_rq) { 8882 double_rq_unlock(rq, p_rq); 8883 goto again; 8884 } 8885 8886 if (!curr->sched_class->yield_to_task) 8887 goto out_unlock; 8888 8889 if (curr->sched_class != p->sched_class) 8890 goto out_unlock; 8891 8892 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8893 goto out_unlock; 8894 8895 yielded = curr->sched_class->yield_to_task(rq, p); 8896 if (yielded) { 8897 schedstat_inc(rq->yld_count); 8898 /* 8899 * Make p's CPU reschedule; pick_next_entity takes care of 8900 * fairness. 8901 */ 8902 if (preempt && rq != p_rq) 8903 resched_curr(p_rq); 8904 } 8905 8906 out_unlock: 8907 double_rq_unlock(rq, p_rq); 8908 out_irq: 8909 local_irq_restore(flags); 8910 8911 if (yielded > 0) 8912 schedule(); 8913 8914 return yielded; 8915 } 8916 EXPORT_SYMBOL_GPL(yield_to); 8917 8918 int io_schedule_prepare(void) 8919 { 8920 int old_iowait = current->in_iowait; 8921 8922 current->in_iowait = 1; 8923 blk_flush_plug(current->plug, true); 8924 return old_iowait; 8925 } 8926 8927 void io_schedule_finish(int token) 8928 { 8929 current->in_iowait = token; 8930 } 8931 8932 /* 8933 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8934 * that process accounting knows that this is a task in IO wait state. 8935 */ 8936 long __sched io_schedule_timeout(long timeout) 8937 { 8938 int token; 8939 long ret; 8940 8941 token = io_schedule_prepare(); 8942 ret = schedule_timeout(timeout); 8943 io_schedule_finish(token); 8944 8945 return ret; 8946 } 8947 EXPORT_SYMBOL(io_schedule_timeout); 8948 8949 void __sched io_schedule(void) 8950 { 8951 int token; 8952 8953 token = io_schedule_prepare(); 8954 schedule(); 8955 io_schedule_finish(token); 8956 } 8957 EXPORT_SYMBOL(io_schedule); 8958 8959 /** 8960 * sys_sched_get_priority_max - return maximum RT priority. 8961 * @policy: scheduling class. 8962 * 8963 * Return: On success, this syscall returns the maximum 8964 * rt_priority that can be used by a given scheduling class. 8965 * On failure, a negative error code is returned. 8966 */ 8967 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8968 { 8969 int ret = -EINVAL; 8970 8971 switch (policy) { 8972 case SCHED_FIFO: 8973 case SCHED_RR: 8974 ret = MAX_RT_PRIO-1; 8975 break; 8976 case SCHED_DEADLINE: 8977 case SCHED_NORMAL: 8978 case SCHED_BATCH: 8979 case SCHED_IDLE: 8980 ret = 0; 8981 break; 8982 } 8983 return ret; 8984 } 8985 8986 /** 8987 * sys_sched_get_priority_min - return minimum RT priority. 8988 * @policy: scheduling class. 8989 * 8990 * Return: On success, this syscall returns the minimum 8991 * rt_priority that can be used by a given scheduling class. 8992 * On failure, a negative error code is returned. 8993 */ 8994 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8995 { 8996 int ret = -EINVAL; 8997 8998 switch (policy) { 8999 case SCHED_FIFO: 9000 case SCHED_RR: 9001 ret = 1; 9002 break; 9003 case SCHED_DEADLINE: 9004 case SCHED_NORMAL: 9005 case SCHED_BATCH: 9006 case SCHED_IDLE: 9007 ret = 0; 9008 } 9009 return ret; 9010 } 9011 9012 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 9013 { 9014 struct task_struct *p; 9015 unsigned int time_slice; 9016 struct rq_flags rf; 9017 struct rq *rq; 9018 int retval; 9019 9020 if (pid < 0) 9021 return -EINVAL; 9022 9023 retval = -ESRCH; 9024 rcu_read_lock(); 9025 p = find_process_by_pid(pid); 9026 if (!p) 9027 goto out_unlock; 9028 9029 retval = security_task_getscheduler(p); 9030 if (retval) 9031 goto out_unlock; 9032 9033 rq = task_rq_lock(p, &rf); 9034 time_slice = 0; 9035 if (p->sched_class->get_rr_interval) 9036 time_slice = p->sched_class->get_rr_interval(rq, p); 9037 task_rq_unlock(rq, p, &rf); 9038 9039 rcu_read_unlock(); 9040 jiffies_to_timespec64(time_slice, t); 9041 return 0; 9042 9043 out_unlock: 9044 rcu_read_unlock(); 9045 return retval; 9046 } 9047 9048 /** 9049 * sys_sched_rr_get_interval - return the default timeslice of a process. 9050 * @pid: pid of the process. 9051 * @interval: userspace pointer to the timeslice value. 9052 * 9053 * this syscall writes the default timeslice value of a given process 9054 * into the user-space timespec buffer. A value of '0' means infinity. 9055 * 9056 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 9057 * an error code. 9058 */ 9059 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 9060 struct __kernel_timespec __user *, interval) 9061 { 9062 struct timespec64 t; 9063 int retval = sched_rr_get_interval(pid, &t); 9064 9065 if (retval == 0) 9066 retval = put_timespec64(&t, interval); 9067 9068 return retval; 9069 } 9070 9071 #ifdef CONFIG_COMPAT_32BIT_TIME 9072 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 9073 struct old_timespec32 __user *, interval) 9074 { 9075 struct timespec64 t; 9076 int retval = sched_rr_get_interval(pid, &t); 9077 9078 if (retval == 0) 9079 retval = put_old_timespec32(&t, interval); 9080 return retval; 9081 } 9082 #endif 9083 9084 void sched_show_task(struct task_struct *p) 9085 { 9086 unsigned long free = 0; 9087 int ppid; 9088 9089 if (!try_get_task_stack(p)) 9090 return; 9091 9092 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9093 9094 if (task_is_running(p)) 9095 pr_cont(" running task "); 9096 #ifdef CONFIG_DEBUG_STACK_USAGE 9097 free = stack_not_used(p); 9098 #endif 9099 ppid = 0; 9100 rcu_read_lock(); 9101 if (pid_alive(p)) 9102 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9103 rcu_read_unlock(); 9104 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9105 free, task_pid_nr(p), ppid, 9106 read_task_thread_flags(p)); 9107 9108 print_worker_info(KERN_INFO, p); 9109 print_stop_info(KERN_INFO, p); 9110 show_stack(p, NULL, KERN_INFO); 9111 put_task_stack(p); 9112 } 9113 EXPORT_SYMBOL_GPL(sched_show_task); 9114 9115 static inline bool 9116 state_filter_match(unsigned long state_filter, struct task_struct *p) 9117 { 9118 unsigned int state = READ_ONCE(p->__state); 9119 9120 /* no filter, everything matches */ 9121 if (!state_filter) 9122 return true; 9123 9124 /* filter, but doesn't match */ 9125 if (!(state & state_filter)) 9126 return false; 9127 9128 /* 9129 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9130 * TASK_KILLABLE). 9131 */ 9132 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9133 return false; 9134 9135 return true; 9136 } 9137 9138 9139 void show_state_filter(unsigned int state_filter) 9140 { 9141 struct task_struct *g, *p; 9142 9143 rcu_read_lock(); 9144 for_each_process_thread(g, p) { 9145 /* 9146 * reset the NMI-timeout, listing all files on a slow 9147 * console might take a lot of time: 9148 * Also, reset softlockup watchdogs on all CPUs, because 9149 * another CPU might be blocked waiting for us to process 9150 * an IPI. 9151 */ 9152 touch_nmi_watchdog(); 9153 touch_all_softlockup_watchdogs(); 9154 if (state_filter_match(state_filter, p)) 9155 sched_show_task(p); 9156 } 9157 9158 #ifdef CONFIG_SCHED_DEBUG 9159 if (!state_filter) 9160 sysrq_sched_debug_show(); 9161 #endif 9162 rcu_read_unlock(); 9163 /* 9164 * Only show locks if all tasks are dumped: 9165 */ 9166 if (!state_filter) 9167 debug_show_all_locks(); 9168 } 9169 9170 /** 9171 * init_idle - set up an idle thread for a given CPU 9172 * @idle: task in question 9173 * @cpu: CPU the idle task belongs to 9174 * 9175 * NOTE: this function does not set the idle thread's NEED_RESCHED 9176 * flag, to make booting more robust. 9177 */ 9178 void __init init_idle(struct task_struct *idle, int cpu) 9179 { 9180 #ifdef CONFIG_SMP 9181 struct affinity_context ac = (struct affinity_context) { 9182 .new_mask = cpumask_of(cpu), 9183 .flags = 0, 9184 }; 9185 #endif 9186 struct rq *rq = cpu_rq(cpu); 9187 unsigned long flags; 9188 9189 __sched_fork(0, idle); 9190 9191 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9192 raw_spin_rq_lock(rq); 9193 9194 idle->__state = TASK_RUNNING; 9195 idle->se.exec_start = sched_clock(); 9196 /* 9197 * PF_KTHREAD should already be set at this point; regardless, make it 9198 * look like a proper per-CPU kthread. 9199 */ 9200 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9201 kthread_set_per_cpu(idle, cpu); 9202 9203 #ifdef CONFIG_SMP 9204 /* 9205 * It's possible that init_idle() gets called multiple times on a task, 9206 * in that case do_set_cpus_allowed() will not do the right thing. 9207 * 9208 * And since this is boot we can forgo the serialization. 9209 */ 9210 set_cpus_allowed_common(idle, &ac); 9211 #endif 9212 /* 9213 * We're having a chicken and egg problem, even though we are 9214 * holding rq->lock, the CPU isn't yet set to this CPU so the 9215 * lockdep check in task_group() will fail. 9216 * 9217 * Similar case to sched_fork(). / Alternatively we could 9218 * use task_rq_lock() here and obtain the other rq->lock. 9219 * 9220 * Silence PROVE_RCU 9221 */ 9222 rcu_read_lock(); 9223 __set_task_cpu(idle, cpu); 9224 rcu_read_unlock(); 9225 9226 rq->idle = idle; 9227 rcu_assign_pointer(rq->curr, idle); 9228 idle->on_rq = TASK_ON_RQ_QUEUED; 9229 #ifdef CONFIG_SMP 9230 idle->on_cpu = 1; 9231 #endif 9232 raw_spin_rq_unlock(rq); 9233 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9234 9235 /* Set the preempt count _outside_ the spinlocks! */ 9236 init_idle_preempt_count(idle, cpu); 9237 9238 /* 9239 * The idle tasks have their own, simple scheduling class: 9240 */ 9241 idle->sched_class = &idle_sched_class; 9242 ftrace_graph_init_idle_task(idle, cpu); 9243 vtime_init_idle(idle, cpu); 9244 #ifdef CONFIG_SMP 9245 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9246 #endif 9247 } 9248 9249 #ifdef CONFIG_SMP 9250 9251 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9252 const struct cpumask *trial) 9253 { 9254 int ret = 1; 9255 9256 if (cpumask_empty(cur)) 9257 return ret; 9258 9259 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9260 9261 return ret; 9262 } 9263 9264 int task_can_attach(struct task_struct *p, 9265 const struct cpumask *cs_effective_cpus) 9266 { 9267 int ret = 0; 9268 9269 /* 9270 * Kthreads which disallow setaffinity shouldn't be moved 9271 * to a new cpuset; we don't want to change their CPU 9272 * affinity and isolating such threads by their set of 9273 * allowed nodes is unnecessary. Thus, cpusets are not 9274 * applicable for such threads. This prevents checking for 9275 * success of set_cpus_allowed_ptr() on all attached tasks 9276 * before cpus_mask may be changed. 9277 */ 9278 if (p->flags & PF_NO_SETAFFINITY) { 9279 ret = -EINVAL; 9280 goto out; 9281 } 9282 9283 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9284 cs_effective_cpus)) { 9285 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9286 9287 if (unlikely(cpu >= nr_cpu_ids)) 9288 return -EINVAL; 9289 ret = dl_cpu_busy(cpu, p); 9290 } 9291 9292 out: 9293 return ret; 9294 } 9295 9296 bool sched_smp_initialized __read_mostly; 9297 9298 #ifdef CONFIG_NUMA_BALANCING 9299 /* Migrate current task p to target_cpu */ 9300 int migrate_task_to(struct task_struct *p, int target_cpu) 9301 { 9302 struct migration_arg arg = { p, target_cpu }; 9303 int curr_cpu = task_cpu(p); 9304 9305 if (curr_cpu == target_cpu) 9306 return 0; 9307 9308 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9309 return -EINVAL; 9310 9311 /* TODO: This is not properly updating schedstats */ 9312 9313 trace_sched_move_numa(p, curr_cpu, target_cpu); 9314 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9315 } 9316 9317 /* 9318 * Requeue a task on a given node and accurately track the number of NUMA 9319 * tasks on the runqueues 9320 */ 9321 void sched_setnuma(struct task_struct *p, int nid) 9322 { 9323 bool queued, running; 9324 struct rq_flags rf; 9325 struct rq *rq; 9326 9327 rq = task_rq_lock(p, &rf); 9328 queued = task_on_rq_queued(p); 9329 running = task_current(rq, p); 9330 9331 if (queued) 9332 dequeue_task(rq, p, DEQUEUE_SAVE); 9333 if (running) 9334 put_prev_task(rq, p); 9335 9336 p->numa_preferred_nid = nid; 9337 9338 if (queued) 9339 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9340 if (running) 9341 set_next_task(rq, p); 9342 task_rq_unlock(rq, p, &rf); 9343 } 9344 #endif /* CONFIG_NUMA_BALANCING */ 9345 9346 #ifdef CONFIG_HOTPLUG_CPU 9347 /* 9348 * Ensure that the idle task is using init_mm right before its CPU goes 9349 * offline. 9350 */ 9351 void idle_task_exit(void) 9352 { 9353 struct mm_struct *mm = current->active_mm; 9354 9355 BUG_ON(cpu_online(smp_processor_id())); 9356 BUG_ON(current != this_rq()->idle); 9357 9358 if (mm != &init_mm) { 9359 switch_mm(mm, &init_mm, current); 9360 finish_arch_post_lock_switch(); 9361 } 9362 9363 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9364 } 9365 9366 static int __balance_push_cpu_stop(void *arg) 9367 { 9368 struct task_struct *p = arg; 9369 struct rq *rq = this_rq(); 9370 struct rq_flags rf; 9371 int cpu; 9372 9373 raw_spin_lock_irq(&p->pi_lock); 9374 rq_lock(rq, &rf); 9375 9376 update_rq_clock(rq); 9377 9378 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9379 cpu = select_fallback_rq(rq->cpu, p); 9380 rq = __migrate_task(rq, &rf, p, cpu); 9381 } 9382 9383 rq_unlock(rq, &rf); 9384 raw_spin_unlock_irq(&p->pi_lock); 9385 9386 put_task_struct(p); 9387 9388 return 0; 9389 } 9390 9391 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9392 9393 /* 9394 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9395 * 9396 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9397 * effective when the hotplug motion is down. 9398 */ 9399 static void balance_push(struct rq *rq) 9400 { 9401 struct task_struct *push_task = rq->curr; 9402 9403 lockdep_assert_rq_held(rq); 9404 9405 /* 9406 * Ensure the thing is persistent until balance_push_set(.on = false); 9407 */ 9408 rq->balance_callback = &balance_push_callback; 9409 9410 /* 9411 * Only active while going offline and when invoked on the outgoing 9412 * CPU. 9413 */ 9414 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9415 return; 9416 9417 /* 9418 * Both the cpu-hotplug and stop task are in this case and are 9419 * required to complete the hotplug process. 9420 */ 9421 if (kthread_is_per_cpu(push_task) || 9422 is_migration_disabled(push_task)) { 9423 9424 /* 9425 * If this is the idle task on the outgoing CPU try to wake 9426 * up the hotplug control thread which might wait for the 9427 * last task to vanish. The rcuwait_active() check is 9428 * accurate here because the waiter is pinned on this CPU 9429 * and can't obviously be running in parallel. 9430 * 9431 * On RT kernels this also has to check whether there are 9432 * pinned and scheduled out tasks on the runqueue. They 9433 * need to leave the migrate disabled section first. 9434 */ 9435 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9436 rcuwait_active(&rq->hotplug_wait)) { 9437 raw_spin_rq_unlock(rq); 9438 rcuwait_wake_up(&rq->hotplug_wait); 9439 raw_spin_rq_lock(rq); 9440 } 9441 return; 9442 } 9443 9444 get_task_struct(push_task); 9445 /* 9446 * Temporarily drop rq->lock such that we can wake-up the stop task. 9447 * Both preemption and IRQs are still disabled. 9448 */ 9449 raw_spin_rq_unlock(rq); 9450 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9451 this_cpu_ptr(&push_work)); 9452 /* 9453 * At this point need_resched() is true and we'll take the loop in 9454 * schedule(). The next pick is obviously going to be the stop task 9455 * which kthread_is_per_cpu() and will push this task away. 9456 */ 9457 raw_spin_rq_lock(rq); 9458 } 9459 9460 static void balance_push_set(int cpu, bool on) 9461 { 9462 struct rq *rq = cpu_rq(cpu); 9463 struct rq_flags rf; 9464 9465 rq_lock_irqsave(rq, &rf); 9466 if (on) { 9467 WARN_ON_ONCE(rq->balance_callback); 9468 rq->balance_callback = &balance_push_callback; 9469 } else if (rq->balance_callback == &balance_push_callback) { 9470 rq->balance_callback = NULL; 9471 } 9472 rq_unlock_irqrestore(rq, &rf); 9473 } 9474 9475 /* 9476 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9477 * inactive. All tasks which are not per CPU kernel threads are either 9478 * pushed off this CPU now via balance_push() or placed on a different CPU 9479 * during wakeup. Wait until the CPU is quiescent. 9480 */ 9481 static void balance_hotplug_wait(void) 9482 { 9483 struct rq *rq = this_rq(); 9484 9485 rcuwait_wait_event(&rq->hotplug_wait, 9486 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9487 TASK_UNINTERRUPTIBLE); 9488 } 9489 9490 #else 9491 9492 static inline void balance_push(struct rq *rq) 9493 { 9494 } 9495 9496 static inline void balance_push_set(int cpu, bool on) 9497 { 9498 } 9499 9500 static inline void balance_hotplug_wait(void) 9501 { 9502 } 9503 9504 #endif /* CONFIG_HOTPLUG_CPU */ 9505 9506 void set_rq_online(struct rq *rq) 9507 { 9508 if (!rq->online) { 9509 const struct sched_class *class; 9510 9511 cpumask_set_cpu(rq->cpu, rq->rd->online); 9512 rq->online = 1; 9513 9514 for_each_class(class) { 9515 if (class->rq_online) 9516 class->rq_online(rq); 9517 } 9518 } 9519 } 9520 9521 void set_rq_offline(struct rq *rq) 9522 { 9523 if (rq->online) { 9524 const struct sched_class *class; 9525 9526 for_each_class(class) { 9527 if (class->rq_offline) 9528 class->rq_offline(rq); 9529 } 9530 9531 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9532 rq->online = 0; 9533 } 9534 } 9535 9536 /* 9537 * used to mark begin/end of suspend/resume: 9538 */ 9539 static int num_cpus_frozen; 9540 9541 /* 9542 * Update cpusets according to cpu_active mask. If cpusets are 9543 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9544 * around partition_sched_domains(). 9545 * 9546 * If we come here as part of a suspend/resume, don't touch cpusets because we 9547 * want to restore it back to its original state upon resume anyway. 9548 */ 9549 static void cpuset_cpu_active(void) 9550 { 9551 if (cpuhp_tasks_frozen) { 9552 /* 9553 * num_cpus_frozen tracks how many CPUs are involved in suspend 9554 * resume sequence. As long as this is not the last online 9555 * operation in the resume sequence, just build a single sched 9556 * domain, ignoring cpusets. 9557 */ 9558 partition_sched_domains(1, NULL, NULL); 9559 if (--num_cpus_frozen) 9560 return; 9561 /* 9562 * This is the last CPU online operation. So fall through and 9563 * restore the original sched domains by considering the 9564 * cpuset configurations. 9565 */ 9566 cpuset_force_rebuild(); 9567 } 9568 cpuset_update_active_cpus(); 9569 } 9570 9571 static int cpuset_cpu_inactive(unsigned int cpu) 9572 { 9573 if (!cpuhp_tasks_frozen) { 9574 int ret = dl_cpu_busy(cpu, NULL); 9575 9576 if (ret) 9577 return ret; 9578 cpuset_update_active_cpus(); 9579 } else { 9580 num_cpus_frozen++; 9581 partition_sched_domains(1, NULL, NULL); 9582 } 9583 return 0; 9584 } 9585 9586 int sched_cpu_activate(unsigned int cpu) 9587 { 9588 struct rq *rq = cpu_rq(cpu); 9589 struct rq_flags rf; 9590 9591 /* 9592 * Clear the balance_push callback and prepare to schedule 9593 * regular tasks. 9594 */ 9595 balance_push_set(cpu, false); 9596 9597 #ifdef CONFIG_SCHED_SMT 9598 /* 9599 * When going up, increment the number of cores with SMT present. 9600 */ 9601 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9602 static_branch_inc_cpuslocked(&sched_smt_present); 9603 #endif 9604 set_cpu_active(cpu, true); 9605 9606 if (sched_smp_initialized) { 9607 sched_update_numa(cpu, true); 9608 sched_domains_numa_masks_set(cpu); 9609 cpuset_cpu_active(); 9610 } 9611 9612 /* 9613 * Put the rq online, if not already. This happens: 9614 * 9615 * 1) In the early boot process, because we build the real domains 9616 * after all CPUs have been brought up. 9617 * 9618 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9619 * domains. 9620 */ 9621 rq_lock_irqsave(rq, &rf); 9622 if (rq->rd) { 9623 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9624 set_rq_online(rq); 9625 } 9626 rq_unlock_irqrestore(rq, &rf); 9627 9628 return 0; 9629 } 9630 9631 int sched_cpu_deactivate(unsigned int cpu) 9632 { 9633 struct rq *rq = cpu_rq(cpu); 9634 struct rq_flags rf; 9635 int ret; 9636 9637 /* 9638 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9639 * load balancing when not active 9640 */ 9641 nohz_balance_exit_idle(rq); 9642 9643 set_cpu_active(cpu, false); 9644 9645 /* 9646 * From this point forward, this CPU will refuse to run any task that 9647 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9648 * push those tasks away until this gets cleared, see 9649 * sched_cpu_dying(). 9650 */ 9651 balance_push_set(cpu, true); 9652 9653 /* 9654 * We've cleared cpu_active_mask / set balance_push, wait for all 9655 * preempt-disabled and RCU users of this state to go away such that 9656 * all new such users will observe it. 9657 * 9658 * Specifically, we rely on ttwu to no longer target this CPU, see 9659 * ttwu_queue_cond() and is_cpu_allowed(). 9660 * 9661 * Do sync before park smpboot threads to take care the rcu boost case. 9662 */ 9663 synchronize_rcu(); 9664 9665 rq_lock_irqsave(rq, &rf); 9666 if (rq->rd) { 9667 update_rq_clock(rq); 9668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9669 set_rq_offline(rq); 9670 } 9671 rq_unlock_irqrestore(rq, &rf); 9672 9673 #ifdef CONFIG_SCHED_SMT 9674 /* 9675 * When going down, decrement the number of cores with SMT present. 9676 */ 9677 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9678 static_branch_dec_cpuslocked(&sched_smt_present); 9679 9680 sched_core_cpu_deactivate(cpu); 9681 #endif 9682 9683 if (!sched_smp_initialized) 9684 return 0; 9685 9686 sched_update_numa(cpu, false); 9687 ret = cpuset_cpu_inactive(cpu); 9688 if (ret) { 9689 balance_push_set(cpu, false); 9690 set_cpu_active(cpu, true); 9691 sched_update_numa(cpu, true); 9692 return ret; 9693 } 9694 sched_domains_numa_masks_clear(cpu); 9695 return 0; 9696 } 9697 9698 static void sched_rq_cpu_starting(unsigned int cpu) 9699 { 9700 struct rq *rq = cpu_rq(cpu); 9701 9702 rq->calc_load_update = calc_load_update; 9703 update_max_interval(); 9704 } 9705 9706 int sched_cpu_starting(unsigned int cpu) 9707 { 9708 sched_core_cpu_starting(cpu); 9709 sched_rq_cpu_starting(cpu); 9710 sched_tick_start(cpu); 9711 return 0; 9712 } 9713 9714 #ifdef CONFIG_HOTPLUG_CPU 9715 9716 /* 9717 * Invoked immediately before the stopper thread is invoked to bring the 9718 * CPU down completely. At this point all per CPU kthreads except the 9719 * hotplug thread (current) and the stopper thread (inactive) have been 9720 * either parked or have been unbound from the outgoing CPU. Ensure that 9721 * any of those which might be on the way out are gone. 9722 * 9723 * If after this point a bound task is being woken on this CPU then the 9724 * responsible hotplug callback has failed to do it's job. 9725 * sched_cpu_dying() will catch it with the appropriate fireworks. 9726 */ 9727 int sched_cpu_wait_empty(unsigned int cpu) 9728 { 9729 balance_hotplug_wait(); 9730 return 0; 9731 } 9732 9733 /* 9734 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9735 * might have. Called from the CPU stopper task after ensuring that the 9736 * stopper is the last running task on the CPU, so nr_active count is 9737 * stable. We need to take the teardown thread which is calling this into 9738 * account, so we hand in adjust = 1 to the load calculation. 9739 * 9740 * Also see the comment "Global load-average calculations". 9741 */ 9742 static void calc_load_migrate(struct rq *rq) 9743 { 9744 long delta = calc_load_fold_active(rq, 1); 9745 9746 if (delta) 9747 atomic_long_add(delta, &calc_load_tasks); 9748 } 9749 9750 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9751 { 9752 struct task_struct *g, *p; 9753 int cpu = cpu_of(rq); 9754 9755 lockdep_assert_rq_held(rq); 9756 9757 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9758 for_each_process_thread(g, p) { 9759 if (task_cpu(p) != cpu) 9760 continue; 9761 9762 if (!task_on_rq_queued(p)) 9763 continue; 9764 9765 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9766 } 9767 } 9768 9769 int sched_cpu_dying(unsigned int cpu) 9770 { 9771 struct rq *rq = cpu_rq(cpu); 9772 struct rq_flags rf; 9773 9774 /* Handle pending wakeups and then migrate everything off */ 9775 sched_tick_stop(cpu); 9776 9777 rq_lock_irqsave(rq, &rf); 9778 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9779 WARN(true, "Dying CPU not properly vacated!"); 9780 dump_rq_tasks(rq, KERN_WARNING); 9781 } 9782 rq_unlock_irqrestore(rq, &rf); 9783 9784 calc_load_migrate(rq); 9785 update_max_interval(); 9786 hrtick_clear(rq); 9787 sched_core_cpu_dying(cpu); 9788 return 0; 9789 } 9790 #endif 9791 9792 void __init sched_init_smp(void) 9793 { 9794 sched_init_numa(NUMA_NO_NODE); 9795 9796 /* 9797 * There's no userspace yet to cause hotplug operations; hence all the 9798 * CPU masks are stable and all blatant races in the below code cannot 9799 * happen. 9800 */ 9801 mutex_lock(&sched_domains_mutex); 9802 sched_init_domains(cpu_active_mask); 9803 mutex_unlock(&sched_domains_mutex); 9804 9805 /* Move init over to a non-isolated CPU */ 9806 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9807 BUG(); 9808 current->flags &= ~PF_NO_SETAFFINITY; 9809 sched_init_granularity(); 9810 9811 init_sched_rt_class(); 9812 init_sched_dl_class(); 9813 9814 sched_smp_initialized = true; 9815 } 9816 9817 static int __init migration_init(void) 9818 { 9819 sched_cpu_starting(smp_processor_id()); 9820 return 0; 9821 } 9822 early_initcall(migration_init); 9823 9824 #else 9825 void __init sched_init_smp(void) 9826 { 9827 sched_init_granularity(); 9828 } 9829 #endif /* CONFIG_SMP */ 9830 9831 int in_sched_functions(unsigned long addr) 9832 { 9833 return in_lock_functions(addr) || 9834 (addr >= (unsigned long)__sched_text_start 9835 && addr < (unsigned long)__sched_text_end); 9836 } 9837 9838 #ifdef CONFIG_CGROUP_SCHED 9839 /* 9840 * Default task group. 9841 * Every task in system belongs to this group at bootup. 9842 */ 9843 struct task_group root_task_group; 9844 LIST_HEAD(task_groups); 9845 9846 /* Cacheline aligned slab cache for task_group */ 9847 static struct kmem_cache *task_group_cache __read_mostly; 9848 #endif 9849 9850 void __init sched_init(void) 9851 { 9852 unsigned long ptr = 0; 9853 int i; 9854 9855 /* Make sure the linker didn't screw up */ 9856 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9857 &fair_sched_class != &rt_sched_class + 1 || 9858 &rt_sched_class != &dl_sched_class + 1); 9859 #ifdef CONFIG_SMP 9860 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9861 #endif 9862 9863 wait_bit_init(); 9864 9865 #ifdef CONFIG_FAIR_GROUP_SCHED 9866 ptr += 2 * nr_cpu_ids * sizeof(void **); 9867 #endif 9868 #ifdef CONFIG_RT_GROUP_SCHED 9869 ptr += 2 * nr_cpu_ids * sizeof(void **); 9870 #endif 9871 if (ptr) { 9872 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9873 9874 #ifdef CONFIG_FAIR_GROUP_SCHED 9875 root_task_group.se = (struct sched_entity **)ptr; 9876 ptr += nr_cpu_ids * sizeof(void **); 9877 9878 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9879 ptr += nr_cpu_ids * sizeof(void **); 9880 9881 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9882 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9883 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9884 #ifdef CONFIG_RT_GROUP_SCHED 9885 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9886 ptr += nr_cpu_ids * sizeof(void **); 9887 9888 root_task_group.rt_rq = (struct rt_rq **)ptr; 9889 ptr += nr_cpu_ids * sizeof(void **); 9890 9891 #endif /* CONFIG_RT_GROUP_SCHED */ 9892 } 9893 9894 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9895 9896 #ifdef CONFIG_SMP 9897 init_defrootdomain(); 9898 #endif 9899 9900 #ifdef CONFIG_RT_GROUP_SCHED 9901 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9902 global_rt_period(), global_rt_runtime()); 9903 #endif /* CONFIG_RT_GROUP_SCHED */ 9904 9905 #ifdef CONFIG_CGROUP_SCHED 9906 task_group_cache = KMEM_CACHE(task_group, 0); 9907 9908 list_add(&root_task_group.list, &task_groups); 9909 INIT_LIST_HEAD(&root_task_group.children); 9910 INIT_LIST_HEAD(&root_task_group.siblings); 9911 autogroup_init(&init_task); 9912 #endif /* CONFIG_CGROUP_SCHED */ 9913 9914 for_each_possible_cpu(i) { 9915 struct rq *rq; 9916 9917 rq = cpu_rq(i); 9918 raw_spin_lock_init(&rq->__lock); 9919 rq->nr_running = 0; 9920 rq->calc_load_active = 0; 9921 rq->calc_load_update = jiffies + LOAD_FREQ; 9922 init_cfs_rq(&rq->cfs); 9923 init_rt_rq(&rq->rt); 9924 init_dl_rq(&rq->dl); 9925 #ifdef CONFIG_FAIR_GROUP_SCHED 9926 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9927 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9928 /* 9929 * How much CPU bandwidth does root_task_group get? 9930 * 9931 * In case of task-groups formed thr' the cgroup filesystem, it 9932 * gets 100% of the CPU resources in the system. This overall 9933 * system CPU resource is divided among the tasks of 9934 * root_task_group and its child task-groups in a fair manner, 9935 * based on each entity's (task or task-group's) weight 9936 * (se->load.weight). 9937 * 9938 * In other words, if root_task_group has 10 tasks of weight 9939 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9940 * then A0's share of the CPU resource is: 9941 * 9942 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9943 * 9944 * We achieve this by letting root_task_group's tasks sit 9945 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9946 */ 9947 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9948 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9949 9950 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9951 #ifdef CONFIG_RT_GROUP_SCHED 9952 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9953 #endif 9954 #ifdef CONFIG_SMP 9955 rq->sd = NULL; 9956 rq->rd = NULL; 9957 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9958 rq->balance_callback = &balance_push_callback; 9959 rq->active_balance = 0; 9960 rq->next_balance = jiffies; 9961 rq->push_cpu = 0; 9962 rq->cpu = i; 9963 rq->online = 0; 9964 rq->idle_stamp = 0; 9965 rq->avg_idle = 2*sysctl_sched_migration_cost; 9966 rq->wake_stamp = jiffies; 9967 rq->wake_avg_idle = rq->avg_idle; 9968 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9969 9970 INIT_LIST_HEAD(&rq->cfs_tasks); 9971 9972 rq_attach_root(rq, &def_root_domain); 9973 #ifdef CONFIG_NO_HZ_COMMON 9974 rq->last_blocked_load_update_tick = jiffies; 9975 atomic_set(&rq->nohz_flags, 0); 9976 9977 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9978 #endif 9979 #ifdef CONFIG_HOTPLUG_CPU 9980 rcuwait_init(&rq->hotplug_wait); 9981 #endif 9982 #endif /* CONFIG_SMP */ 9983 hrtick_rq_init(rq); 9984 atomic_set(&rq->nr_iowait, 0); 9985 9986 #ifdef CONFIG_SCHED_CORE 9987 rq->core = rq; 9988 rq->core_pick = NULL; 9989 rq->core_enabled = 0; 9990 rq->core_tree = RB_ROOT; 9991 rq->core_forceidle_count = 0; 9992 rq->core_forceidle_occupation = 0; 9993 rq->core_forceidle_start = 0; 9994 9995 rq->core_cookie = 0UL; 9996 #endif 9997 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9998 } 9999 10000 set_load_weight(&init_task, false); 10001 10002 /* 10003 * The boot idle thread does lazy MMU switching as well: 10004 */ 10005 mmgrab(&init_mm); 10006 enter_lazy_tlb(&init_mm, current); 10007 10008 /* 10009 * The idle task doesn't need the kthread struct to function, but it 10010 * is dressed up as a per-CPU kthread and thus needs to play the part 10011 * if we want to avoid special-casing it in code that deals with per-CPU 10012 * kthreads. 10013 */ 10014 WARN_ON(!set_kthread_struct(current)); 10015 10016 /* 10017 * Make us the idle thread. Technically, schedule() should not be 10018 * called from this thread, however somewhere below it might be, 10019 * but because we are the idle thread, we just pick up running again 10020 * when this runqueue becomes "idle". 10021 */ 10022 init_idle(current, smp_processor_id()); 10023 10024 calc_load_update = jiffies + LOAD_FREQ; 10025 10026 #ifdef CONFIG_SMP 10027 idle_thread_set_boot_cpu(); 10028 balance_push_set(smp_processor_id(), false); 10029 #endif 10030 init_sched_fair_class(); 10031 10032 psi_init(); 10033 10034 init_uclamp(); 10035 10036 preempt_dynamic_init(); 10037 10038 scheduler_running = 1; 10039 } 10040 10041 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 10042 10043 void __might_sleep(const char *file, int line) 10044 { 10045 unsigned int state = get_current_state(); 10046 /* 10047 * Blocking primitives will set (and therefore destroy) current->state, 10048 * since we will exit with TASK_RUNNING make sure we enter with it, 10049 * otherwise we will destroy state. 10050 */ 10051 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 10052 "do not call blocking ops when !TASK_RUNNING; " 10053 "state=%x set at [<%p>] %pS\n", state, 10054 (void *)current->task_state_change, 10055 (void *)current->task_state_change); 10056 10057 __might_resched(file, line, 0); 10058 } 10059 EXPORT_SYMBOL(__might_sleep); 10060 10061 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 10062 { 10063 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 10064 return; 10065 10066 if (preempt_count() == preempt_offset) 10067 return; 10068 10069 pr_err("Preemption disabled at:"); 10070 print_ip_sym(KERN_ERR, ip); 10071 } 10072 10073 static inline bool resched_offsets_ok(unsigned int offsets) 10074 { 10075 unsigned int nested = preempt_count(); 10076 10077 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 10078 10079 return nested == offsets; 10080 } 10081 10082 void __might_resched(const char *file, int line, unsigned int offsets) 10083 { 10084 /* Ratelimiting timestamp: */ 10085 static unsigned long prev_jiffy; 10086 10087 unsigned long preempt_disable_ip; 10088 10089 /* WARN_ON_ONCE() by default, no rate limit required: */ 10090 rcu_sleep_check(); 10091 10092 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10093 !is_idle_task(current) && !current->non_block_count) || 10094 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10095 oops_in_progress) 10096 return; 10097 10098 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10099 return; 10100 prev_jiffy = jiffies; 10101 10102 /* Save this before calling printk(), since that will clobber it: */ 10103 preempt_disable_ip = get_preempt_disable_ip(current); 10104 10105 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10106 file, line); 10107 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10108 in_atomic(), irqs_disabled(), current->non_block_count, 10109 current->pid, current->comm); 10110 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10111 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10112 10113 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10114 pr_err("RCU nest depth: %d, expected: %u\n", 10115 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10116 } 10117 10118 if (task_stack_end_corrupted(current)) 10119 pr_emerg("Thread overran stack, or stack corrupted\n"); 10120 10121 debug_show_held_locks(current); 10122 if (irqs_disabled()) 10123 print_irqtrace_events(current); 10124 10125 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10126 preempt_disable_ip); 10127 10128 dump_stack(); 10129 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10130 } 10131 EXPORT_SYMBOL(__might_resched); 10132 10133 void __cant_sleep(const char *file, int line, int preempt_offset) 10134 { 10135 static unsigned long prev_jiffy; 10136 10137 if (irqs_disabled()) 10138 return; 10139 10140 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10141 return; 10142 10143 if (preempt_count() > preempt_offset) 10144 return; 10145 10146 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10147 return; 10148 prev_jiffy = jiffies; 10149 10150 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10151 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10152 in_atomic(), irqs_disabled(), 10153 current->pid, current->comm); 10154 10155 debug_show_held_locks(current); 10156 dump_stack(); 10157 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10158 } 10159 EXPORT_SYMBOL_GPL(__cant_sleep); 10160 10161 #ifdef CONFIG_SMP 10162 void __cant_migrate(const char *file, int line) 10163 { 10164 static unsigned long prev_jiffy; 10165 10166 if (irqs_disabled()) 10167 return; 10168 10169 if (is_migration_disabled(current)) 10170 return; 10171 10172 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10173 return; 10174 10175 if (preempt_count() > 0) 10176 return; 10177 10178 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10179 return; 10180 prev_jiffy = jiffies; 10181 10182 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10183 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10184 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10185 current->pid, current->comm); 10186 10187 debug_show_held_locks(current); 10188 dump_stack(); 10189 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10190 } 10191 EXPORT_SYMBOL_GPL(__cant_migrate); 10192 #endif 10193 #endif 10194 10195 #ifdef CONFIG_MAGIC_SYSRQ 10196 void normalize_rt_tasks(void) 10197 { 10198 struct task_struct *g, *p; 10199 struct sched_attr attr = { 10200 .sched_policy = SCHED_NORMAL, 10201 }; 10202 10203 read_lock(&tasklist_lock); 10204 for_each_process_thread(g, p) { 10205 /* 10206 * Only normalize user tasks: 10207 */ 10208 if (p->flags & PF_KTHREAD) 10209 continue; 10210 10211 p->se.exec_start = 0; 10212 schedstat_set(p->stats.wait_start, 0); 10213 schedstat_set(p->stats.sleep_start, 0); 10214 schedstat_set(p->stats.block_start, 0); 10215 10216 if (!dl_task(p) && !rt_task(p)) { 10217 /* 10218 * Renice negative nice level userspace 10219 * tasks back to 0: 10220 */ 10221 if (task_nice(p) < 0) 10222 set_user_nice(p, 0); 10223 continue; 10224 } 10225 10226 __sched_setscheduler(p, &attr, false, false); 10227 } 10228 read_unlock(&tasklist_lock); 10229 } 10230 10231 #endif /* CONFIG_MAGIC_SYSRQ */ 10232 10233 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10234 /* 10235 * These functions are only useful for the IA64 MCA handling, or kdb. 10236 * 10237 * They can only be called when the whole system has been 10238 * stopped - every CPU needs to be quiescent, and no scheduling 10239 * activity can take place. Using them for anything else would 10240 * be a serious bug, and as a result, they aren't even visible 10241 * under any other configuration. 10242 */ 10243 10244 /** 10245 * curr_task - return the current task for a given CPU. 10246 * @cpu: the processor in question. 10247 * 10248 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10249 * 10250 * Return: The current task for @cpu. 10251 */ 10252 struct task_struct *curr_task(int cpu) 10253 { 10254 return cpu_curr(cpu); 10255 } 10256 10257 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10258 10259 #ifdef CONFIG_IA64 10260 /** 10261 * ia64_set_curr_task - set the current task for a given CPU. 10262 * @cpu: the processor in question. 10263 * @p: the task pointer to set. 10264 * 10265 * Description: This function must only be used when non-maskable interrupts 10266 * are serviced on a separate stack. It allows the architecture to switch the 10267 * notion of the current task on a CPU in a non-blocking manner. This function 10268 * must be called with all CPU's synchronized, and interrupts disabled, the 10269 * and caller must save the original value of the current task (see 10270 * curr_task() above) and restore that value before reenabling interrupts and 10271 * re-starting the system. 10272 * 10273 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10274 */ 10275 void ia64_set_curr_task(int cpu, struct task_struct *p) 10276 { 10277 cpu_curr(cpu) = p; 10278 } 10279 10280 #endif 10281 10282 #ifdef CONFIG_CGROUP_SCHED 10283 /* task_group_lock serializes the addition/removal of task groups */ 10284 static DEFINE_SPINLOCK(task_group_lock); 10285 10286 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10287 struct task_group *parent) 10288 { 10289 #ifdef CONFIG_UCLAMP_TASK_GROUP 10290 enum uclamp_id clamp_id; 10291 10292 for_each_clamp_id(clamp_id) { 10293 uclamp_se_set(&tg->uclamp_req[clamp_id], 10294 uclamp_none(clamp_id), false); 10295 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10296 } 10297 #endif 10298 } 10299 10300 static void sched_free_group(struct task_group *tg) 10301 { 10302 free_fair_sched_group(tg); 10303 free_rt_sched_group(tg); 10304 autogroup_free(tg); 10305 kmem_cache_free(task_group_cache, tg); 10306 } 10307 10308 static void sched_free_group_rcu(struct rcu_head *rcu) 10309 { 10310 sched_free_group(container_of(rcu, struct task_group, rcu)); 10311 } 10312 10313 static void sched_unregister_group(struct task_group *tg) 10314 { 10315 unregister_fair_sched_group(tg); 10316 unregister_rt_sched_group(tg); 10317 /* 10318 * We have to wait for yet another RCU grace period to expire, as 10319 * print_cfs_stats() might run concurrently. 10320 */ 10321 call_rcu(&tg->rcu, sched_free_group_rcu); 10322 } 10323 10324 /* allocate runqueue etc for a new task group */ 10325 struct task_group *sched_create_group(struct task_group *parent) 10326 { 10327 struct task_group *tg; 10328 10329 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10330 if (!tg) 10331 return ERR_PTR(-ENOMEM); 10332 10333 if (!alloc_fair_sched_group(tg, parent)) 10334 goto err; 10335 10336 if (!alloc_rt_sched_group(tg, parent)) 10337 goto err; 10338 10339 alloc_uclamp_sched_group(tg, parent); 10340 10341 return tg; 10342 10343 err: 10344 sched_free_group(tg); 10345 return ERR_PTR(-ENOMEM); 10346 } 10347 10348 void sched_online_group(struct task_group *tg, struct task_group *parent) 10349 { 10350 unsigned long flags; 10351 10352 spin_lock_irqsave(&task_group_lock, flags); 10353 list_add_rcu(&tg->list, &task_groups); 10354 10355 /* Root should already exist: */ 10356 WARN_ON(!parent); 10357 10358 tg->parent = parent; 10359 INIT_LIST_HEAD(&tg->children); 10360 list_add_rcu(&tg->siblings, &parent->children); 10361 spin_unlock_irqrestore(&task_group_lock, flags); 10362 10363 online_fair_sched_group(tg); 10364 } 10365 10366 /* rcu callback to free various structures associated with a task group */ 10367 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10368 { 10369 /* Now it should be safe to free those cfs_rqs: */ 10370 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10371 } 10372 10373 void sched_destroy_group(struct task_group *tg) 10374 { 10375 /* Wait for possible concurrent references to cfs_rqs complete: */ 10376 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10377 } 10378 10379 void sched_release_group(struct task_group *tg) 10380 { 10381 unsigned long flags; 10382 10383 /* 10384 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10385 * sched_cfs_period_timer()). 10386 * 10387 * For this to be effective, we have to wait for all pending users of 10388 * this task group to leave their RCU critical section to ensure no new 10389 * user will see our dying task group any more. Specifically ensure 10390 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10391 * 10392 * We therefore defer calling unregister_fair_sched_group() to 10393 * sched_unregister_group() which is guarantied to get called only after the 10394 * current RCU grace period has expired. 10395 */ 10396 spin_lock_irqsave(&task_group_lock, flags); 10397 list_del_rcu(&tg->list); 10398 list_del_rcu(&tg->siblings); 10399 spin_unlock_irqrestore(&task_group_lock, flags); 10400 } 10401 10402 static struct task_group *sched_get_task_group(struct task_struct *tsk) 10403 { 10404 struct task_group *tg; 10405 10406 /* 10407 * All callers are synchronized by task_rq_lock(); we do not use RCU 10408 * which is pointless here. Thus, we pass "true" to task_css_check() 10409 * to prevent lockdep warnings. 10410 */ 10411 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10412 struct task_group, css); 10413 tg = autogroup_task_group(tsk, tg); 10414 10415 return tg; 10416 } 10417 10418 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 10419 { 10420 tsk->sched_task_group = group; 10421 10422 #ifdef CONFIG_FAIR_GROUP_SCHED 10423 if (tsk->sched_class->task_change_group) 10424 tsk->sched_class->task_change_group(tsk); 10425 else 10426 #endif 10427 set_task_rq(tsk, task_cpu(tsk)); 10428 } 10429 10430 /* 10431 * Change task's runqueue when it moves between groups. 10432 * 10433 * The caller of this function should have put the task in its new group by 10434 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10435 * its new group. 10436 */ 10437 void sched_move_task(struct task_struct *tsk) 10438 { 10439 int queued, running, queue_flags = 10440 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10441 struct task_group *group; 10442 struct rq_flags rf; 10443 struct rq *rq; 10444 10445 rq = task_rq_lock(tsk, &rf); 10446 /* 10447 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 10448 * group changes. 10449 */ 10450 group = sched_get_task_group(tsk); 10451 if (group == tsk->sched_task_group) 10452 goto unlock; 10453 10454 update_rq_clock(rq); 10455 10456 running = task_current(rq, tsk); 10457 queued = task_on_rq_queued(tsk); 10458 10459 if (queued) 10460 dequeue_task(rq, tsk, queue_flags); 10461 if (running) 10462 put_prev_task(rq, tsk); 10463 10464 sched_change_group(tsk, group); 10465 10466 if (queued) 10467 enqueue_task(rq, tsk, queue_flags); 10468 if (running) { 10469 set_next_task(rq, tsk); 10470 /* 10471 * After changing group, the running task may have joined a 10472 * throttled one but it's still the running task. Trigger a 10473 * resched to make sure that task can still run. 10474 */ 10475 resched_curr(rq); 10476 } 10477 10478 unlock: 10479 task_rq_unlock(rq, tsk, &rf); 10480 } 10481 10482 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10483 { 10484 return css ? container_of(css, struct task_group, css) : NULL; 10485 } 10486 10487 static struct cgroup_subsys_state * 10488 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10489 { 10490 struct task_group *parent = css_tg(parent_css); 10491 struct task_group *tg; 10492 10493 if (!parent) { 10494 /* This is early initialization for the top cgroup */ 10495 return &root_task_group.css; 10496 } 10497 10498 tg = sched_create_group(parent); 10499 if (IS_ERR(tg)) 10500 return ERR_PTR(-ENOMEM); 10501 10502 return &tg->css; 10503 } 10504 10505 /* Expose task group only after completing cgroup initialization */ 10506 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10507 { 10508 struct task_group *tg = css_tg(css); 10509 struct task_group *parent = css_tg(css->parent); 10510 10511 if (parent) 10512 sched_online_group(tg, parent); 10513 10514 #ifdef CONFIG_UCLAMP_TASK_GROUP 10515 /* Propagate the effective uclamp value for the new group */ 10516 mutex_lock(&uclamp_mutex); 10517 rcu_read_lock(); 10518 cpu_util_update_eff(css); 10519 rcu_read_unlock(); 10520 mutex_unlock(&uclamp_mutex); 10521 #endif 10522 10523 return 0; 10524 } 10525 10526 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10527 { 10528 struct task_group *tg = css_tg(css); 10529 10530 sched_release_group(tg); 10531 } 10532 10533 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10534 { 10535 struct task_group *tg = css_tg(css); 10536 10537 /* 10538 * Relies on the RCU grace period between css_released() and this. 10539 */ 10540 sched_unregister_group(tg); 10541 } 10542 10543 #ifdef CONFIG_RT_GROUP_SCHED 10544 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10545 { 10546 struct task_struct *task; 10547 struct cgroup_subsys_state *css; 10548 10549 cgroup_taskset_for_each(task, css, tset) { 10550 if (!sched_rt_can_attach(css_tg(css), task)) 10551 return -EINVAL; 10552 } 10553 return 0; 10554 } 10555 #endif 10556 10557 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10558 { 10559 struct task_struct *task; 10560 struct cgroup_subsys_state *css; 10561 10562 cgroup_taskset_for_each(task, css, tset) 10563 sched_move_task(task); 10564 } 10565 10566 #ifdef CONFIG_UCLAMP_TASK_GROUP 10567 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10568 { 10569 struct cgroup_subsys_state *top_css = css; 10570 struct uclamp_se *uc_parent = NULL; 10571 struct uclamp_se *uc_se = NULL; 10572 unsigned int eff[UCLAMP_CNT]; 10573 enum uclamp_id clamp_id; 10574 unsigned int clamps; 10575 10576 lockdep_assert_held(&uclamp_mutex); 10577 SCHED_WARN_ON(!rcu_read_lock_held()); 10578 10579 css_for_each_descendant_pre(css, top_css) { 10580 uc_parent = css_tg(css)->parent 10581 ? css_tg(css)->parent->uclamp : NULL; 10582 10583 for_each_clamp_id(clamp_id) { 10584 /* Assume effective clamps matches requested clamps */ 10585 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10586 /* Cap effective clamps with parent's effective clamps */ 10587 if (uc_parent && 10588 eff[clamp_id] > uc_parent[clamp_id].value) { 10589 eff[clamp_id] = uc_parent[clamp_id].value; 10590 } 10591 } 10592 /* Ensure protection is always capped by limit */ 10593 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10594 10595 /* Propagate most restrictive effective clamps */ 10596 clamps = 0x0; 10597 uc_se = css_tg(css)->uclamp; 10598 for_each_clamp_id(clamp_id) { 10599 if (eff[clamp_id] == uc_se[clamp_id].value) 10600 continue; 10601 uc_se[clamp_id].value = eff[clamp_id]; 10602 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10603 clamps |= (0x1 << clamp_id); 10604 } 10605 if (!clamps) { 10606 css = css_rightmost_descendant(css); 10607 continue; 10608 } 10609 10610 /* Immediately update descendants RUNNABLE tasks */ 10611 uclamp_update_active_tasks(css); 10612 } 10613 } 10614 10615 /* 10616 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10617 * C expression. Since there is no way to convert a macro argument (N) into a 10618 * character constant, use two levels of macros. 10619 */ 10620 #define _POW10(exp) ((unsigned int)1e##exp) 10621 #define POW10(exp) _POW10(exp) 10622 10623 struct uclamp_request { 10624 #define UCLAMP_PERCENT_SHIFT 2 10625 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10626 s64 percent; 10627 u64 util; 10628 int ret; 10629 }; 10630 10631 static inline struct uclamp_request 10632 capacity_from_percent(char *buf) 10633 { 10634 struct uclamp_request req = { 10635 .percent = UCLAMP_PERCENT_SCALE, 10636 .util = SCHED_CAPACITY_SCALE, 10637 .ret = 0, 10638 }; 10639 10640 buf = strim(buf); 10641 if (strcmp(buf, "max")) { 10642 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10643 &req.percent); 10644 if (req.ret) 10645 return req; 10646 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10647 req.ret = -ERANGE; 10648 return req; 10649 } 10650 10651 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10652 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10653 } 10654 10655 return req; 10656 } 10657 10658 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10659 size_t nbytes, loff_t off, 10660 enum uclamp_id clamp_id) 10661 { 10662 struct uclamp_request req; 10663 struct task_group *tg; 10664 10665 req = capacity_from_percent(buf); 10666 if (req.ret) 10667 return req.ret; 10668 10669 static_branch_enable(&sched_uclamp_used); 10670 10671 mutex_lock(&uclamp_mutex); 10672 rcu_read_lock(); 10673 10674 tg = css_tg(of_css(of)); 10675 if (tg->uclamp_req[clamp_id].value != req.util) 10676 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10677 10678 /* 10679 * Because of not recoverable conversion rounding we keep track of the 10680 * exact requested value 10681 */ 10682 tg->uclamp_pct[clamp_id] = req.percent; 10683 10684 /* Update effective clamps to track the most restrictive value */ 10685 cpu_util_update_eff(of_css(of)); 10686 10687 rcu_read_unlock(); 10688 mutex_unlock(&uclamp_mutex); 10689 10690 return nbytes; 10691 } 10692 10693 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10694 char *buf, size_t nbytes, 10695 loff_t off) 10696 { 10697 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10698 } 10699 10700 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10701 char *buf, size_t nbytes, 10702 loff_t off) 10703 { 10704 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10705 } 10706 10707 static inline void cpu_uclamp_print(struct seq_file *sf, 10708 enum uclamp_id clamp_id) 10709 { 10710 struct task_group *tg; 10711 u64 util_clamp; 10712 u64 percent; 10713 u32 rem; 10714 10715 rcu_read_lock(); 10716 tg = css_tg(seq_css(sf)); 10717 util_clamp = tg->uclamp_req[clamp_id].value; 10718 rcu_read_unlock(); 10719 10720 if (util_clamp == SCHED_CAPACITY_SCALE) { 10721 seq_puts(sf, "max\n"); 10722 return; 10723 } 10724 10725 percent = tg->uclamp_pct[clamp_id]; 10726 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10727 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10728 } 10729 10730 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10731 { 10732 cpu_uclamp_print(sf, UCLAMP_MIN); 10733 return 0; 10734 } 10735 10736 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10737 { 10738 cpu_uclamp_print(sf, UCLAMP_MAX); 10739 return 0; 10740 } 10741 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10742 10743 #ifdef CONFIG_FAIR_GROUP_SCHED 10744 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10745 struct cftype *cftype, u64 shareval) 10746 { 10747 if (shareval > scale_load_down(ULONG_MAX)) 10748 shareval = MAX_SHARES; 10749 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10750 } 10751 10752 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10753 struct cftype *cft) 10754 { 10755 struct task_group *tg = css_tg(css); 10756 10757 return (u64) scale_load_down(tg->shares); 10758 } 10759 10760 #ifdef CONFIG_CFS_BANDWIDTH 10761 static DEFINE_MUTEX(cfs_constraints_mutex); 10762 10763 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10764 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10765 /* More than 203 days if BW_SHIFT equals 20. */ 10766 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10767 10768 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10769 10770 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10771 u64 burst) 10772 { 10773 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10774 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10775 10776 if (tg == &root_task_group) 10777 return -EINVAL; 10778 10779 /* 10780 * Ensure we have at some amount of bandwidth every period. This is 10781 * to prevent reaching a state of large arrears when throttled via 10782 * entity_tick() resulting in prolonged exit starvation. 10783 */ 10784 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10785 return -EINVAL; 10786 10787 /* 10788 * Likewise, bound things on the other side by preventing insane quota 10789 * periods. This also allows us to normalize in computing quota 10790 * feasibility. 10791 */ 10792 if (period > max_cfs_quota_period) 10793 return -EINVAL; 10794 10795 /* 10796 * Bound quota to defend quota against overflow during bandwidth shift. 10797 */ 10798 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10799 return -EINVAL; 10800 10801 if (quota != RUNTIME_INF && (burst > quota || 10802 burst + quota > max_cfs_runtime)) 10803 return -EINVAL; 10804 10805 /* 10806 * Prevent race between setting of cfs_rq->runtime_enabled and 10807 * unthrottle_offline_cfs_rqs(). 10808 */ 10809 cpus_read_lock(); 10810 mutex_lock(&cfs_constraints_mutex); 10811 ret = __cfs_schedulable(tg, period, quota); 10812 if (ret) 10813 goto out_unlock; 10814 10815 runtime_enabled = quota != RUNTIME_INF; 10816 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10817 /* 10818 * If we need to toggle cfs_bandwidth_used, off->on must occur 10819 * before making related changes, and on->off must occur afterwards 10820 */ 10821 if (runtime_enabled && !runtime_was_enabled) 10822 cfs_bandwidth_usage_inc(); 10823 raw_spin_lock_irq(&cfs_b->lock); 10824 cfs_b->period = ns_to_ktime(period); 10825 cfs_b->quota = quota; 10826 cfs_b->burst = burst; 10827 10828 __refill_cfs_bandwidth_runtime(cfs_b); 10829 10830 /* Restart the period timer (if active) to handle new period expiry: */ 10831 if (runtime_enabled) 10832 start_cfs_bandwidth(cfs_b); 10833 10834 raw_spin_unlock_irq(&cfs_b->lock); 10835 10836 for_each_online_cpu(i) { 10837 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10838 struct rq *rq = cfs_rq->rq; 10839 struct rq_flags rf; 10840 10841 rq_lock_irq(rq, &rf); 10842 cfs_rq->runtime_enabled = runtime_enabled; 10843 cfs_rq->runtime_remaining = 0; 10844 10845 if (cfs_rq->throttled) 10846 unthrottle_cfs_rq(cfs_rq); 10847 rq_unlock_irq(rq, &rf); 10848 } 10849 if (runtime_was_enabled && !runtime_enabled) 10850 cfs_bandwidth_usage_dec(); 10851 out_unlock: 10852 mutex_unlock(&cfs_constraints_mutex); 10853 cpus_read_unlock(); 10854 10855 return ret; 10856 } 10857 10858 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10859 { 10860 u64 quota, period, burst; 10861 10862 period = ktime_to_ns(tg->cfs_bandwidth.period); 10863 burst = tg->cfs_bandwidth.burst; 10864 if (cfs_quota_us < 0) 10865 quota = RUNTIME_INF; 10866 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10867 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10868 else 10869 return -EINVAL; 10870 10871 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10872 } 10873 10874 static long tg_get_cfs_quota(struct task_group *tg) 10875 { 10876 u64 quota_us; 10877 10878 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10879 return -1; 10880 10881 quota_us = tg->cfs_bandwidth.quota; 10882 do_div(quota_us, NSEC_PER_USEC); 10883 10884 return quota_us; 10885 } 10886 10887 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10888 { 10889 u64 quota, period, burst; 10890 10891 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10892 return -EINVAL; 10893 10894 period = (u64)cfs_period_us * NSEC_PER_USEC; 10895 quota = tg->cfs_bandwidth.quota; 10896 burst = tg->cfs_bandwidth.burst; 10897 10898 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10899 } 10900 10901 static long tg_get_cfs_period(struct task_group *tg) 10902 { 10903 u64 cfs_period_us; 10904 10905 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10906 do_div(cfs_period_us, NSEC_PER_USEC); 10907 10908 return cfs_period_us; 10909 } 10910 10911 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10912 { 10913 u64 quota, period, burst; 10914 10915 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10916 return -EINVAL; 10917 10918 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10919 period = ktime_to_ns(tg->cfs_bandwidth.period); 10920 quota = tg->cfs_bandwidth.quota; 10921 10922 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10923 } 10924 10925 static long tg_get_cfs_burst(struct task_group *tg) 10926 { 10927 u64 burst_us; 10928 10929 burst_us = tg->cfs_bandwidth.burst; 10930 do_div(burst_us, NSEC_PER_USEC); 10931 10932 return burst_us; 10933 } 10934 10935 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10936 struct cftype *cft) 10937 { 10938 return tg_get_cfs_quota(css_tg(css)); 10939 } 10940 10941 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10942 struct cftype *cftype, s64 cfs_quota_us) 10943 { 10944 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10945 } 10946 10947 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10948 struct cftype *cft) 10949 { 10950 return tg_get_cfs_period(css_tg(css)); 10951 } 10952 10953 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10954 struct cftype *cftype, u64 cfs_period_us) 10955 { 10956 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10957 } 10958 10959 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10960 struct cftype *cft) 10961 { 10962 return tg_get_cfs_burst(css_tg(css)); 10963 } 10964 10965 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10966 struct cftype *cftype, u64 cfs_burst_us) 10967 { 10968 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10969 } 10970 10971 struct cfs_schedulable_data { 10972 struct task_group *tg; 10973 u64 period, quota; 10974 }; 10975 10976 /* 10977 * normalize group quota/period to be quota/max_period 10978 * note: units are usecs 10979 */ 10980 static u64 normalize_cfs_quota(struct task_group *tg, 10981 struct cfs_schedulable_data *d) 10982 { 10983 u64 quota, period; 10984 10985 if (tg == d->tg) { 10986 period = d->period; 10987 quota = d->quota; 10988 } else { 10989 period = tg_get_cfs_period(tg); 10990 quota = tg_get_cfs_quota(tg); 10991 } 10992 10993 /* note: these should typically be equivalent */ 10994 if (quota == RUNTIME_INF || quota == -1) 10995 return RUNTIME_INF; 10996 10997 return to_ratio(period, quota); 10998 } 10999 11000 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 11001 { 11002 struct cfs_schedulable_data *d = data; 11003 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11004 s64 quota = 0, parent_quota = -1; 11005 11006 if (!tg->parent) { 11007 quota = RUNTIME_INF; 11008 } else { 11009 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 11010 11011 quota = normalize_cfs_quota(tg, d); 11012 parent_quota = parent_b->hierarchical_quota; 11013 11014 /* 11015 * Ensure max(child_quota) <= parent_quota. On cgroup2, 11016 * always take the min. On cgroup1, only inherit when no 11017 * limit is set: 11018 */ 11019 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 11020 quota = min(quota, parent_quota); 11021 } else { 11022 if (quota == RUNTIME_INF) 11023 quota = parent_quota; 11024 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 11025 return -EINVAL; 11026 } 11027 } 11028 cfs_b->hierarchical_quota = quota; 11029 11030 return 0; 11031 } 11032 11033 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 11034 { 11035 int ret; 11036 struct cfs_schedulable_data data = { 11037 .tg = tg, 11038 .period = period, 11039 .quota = quota, 11040 }; 11041 11042 if (quota != RUNTIME_INF) { 11043 do_div(data.period, NSEC_PER_USEC); 11044 do_div(data.quota, NSEC_PER_USEC); 11045 } 11046 11047 rcu_read_lock(); 11048 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 11049 rcu_read_unlock(); 11050 11051 return ret; 11052 } 11053 11054 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 11055 { 11056 struct task_group *tg = css_tg(seq_css(sf)); 11057 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11058 11059 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 11060 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 11061 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 11062 11063 if (schedstat_enabled() && tg != &root_task_group) { 11064 struct sched_statistics *stats; 11065 u64 ws = 0; 11066 int i; 11067 11068 for_each_possible_cpu(i) { 11069 stats = __schedstats_from_se(tg->se[i]); 11070 ws += schedstat_val(stats->wait_sum); 11071 } 11072 11073 seq_printf(sf, "wait_sum %llu\n", ws); 11074 } 11075 11076 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 11077 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 11078 11079 return 0; 11080 } 11081 #endif /* CONFIG_CFS_BANDWIDTH */ 11082 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11083 11084 #ifdef CONFIG_RT_GROUP_SCHED 11085 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 11086 struct cftype *cft, s64 val) 11087 { 11088 return sched_group_set_rt_runtime(css_tg(css), val); 11089 } 11090 11091 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 11092 struct cftype *cft) 11093 { 11094 return sched_group_rt_runtime(css_tg(css)); 11095 } 11096 11097 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 11098 struct cftype *cftype, u64 rt_period_us) 11099 { 11100 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11101 } 11102 11103 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11104 struct cftype *cft) 11105 { 11106 return sched_group_rt_period(css_tg(css)); 11107 } 11108 #endif /* CONFIG_RT_GROUP_SCHED */ 11109 11110 #ifdef CONFIG_FAIR_GROUP_SCHED 11111 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11112 struct cftype *cft) 11113 { 11114 return css_tg(css)->idle; 11115 } 11116 11117 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11118 struct cftype *cft, s64 idle) 11119 { 11120 return sched_group_set_idle(css_tg(css), idle); 11121 } 11122 #endif 11123 11124 static struct cftype cpu_legacy_files[] = { 11125 #ifdef CONFIG_FAIR_GROUP_SCHED 11126 { 11127 .name = "shares", 11128 .read_u64 = cpu_shares_read_u64, 11129 .write_u64 = cpu_shares_write_u64, 11130 }, 11131 { 11132 .name = "idle", 11133 .read_s64 = cpu_idle_read_s64, 11134 .write_s64 = cpu_idle_write_s64, 11135 }, 11136 #endif 11137 #ifdef CONFIG_CFS_BANDWIDTH 11138 { 11139 .name = "cfs_quota_us", 11140 .read_s64 = cpu_cfs_quota_read_s64, 11141 .write_s64 = cpu_cfs_quota_write_s64, 11142 }, 11143 { 11144 .name = "cfs_period_us", 11145 .read_u64 = cpu_cfs_period_read_u64, 11146 .write_u64 = cpu_cfs_period_write_u64, 11147 }, 11148 { 11149 .name = "cfs_burst_us", 11150 .read_u64 = cpu_cfs_burst_read_u64, 11151 .write_u64 = cpu_cfs_burst_write_u64, 11152 }, 11153 { 11154 .name = "stat", 11155 .seq_show = cpu_cfs_stat_show, 11156 }, 11157 #endif 11158 #ifdef CONFIG_RT_GROUP_SCHED 11159 { 11160 .name = "rt_runtime_us", 11161 .read_s64 = cpu_rt_runtime_read, 11162 .write_s64 = cpu_rt_runtime_write, 11163 }, 11164 { 11165 .name = "rt_period_us", 11166 .read_u64 = cpu_rt_period_read_uint, 11167 .write_u64 = cpu_rt_period_write_uint, 11168 }, 11169 #endif 11170 #ifdef CONFIG_UCLAMP_TASK_GROUP 11171 { 11172 .name = "uclamp.min", 11173 .flags = CFTYPE_NOT_ON_ROOT, 11174 .seq_show = cpu_uclamp_min_show, 11175 .write = cpu_uclamp_min_write, 11176 }, 11177 { 11178 .name = "uclamp.max", 11179 .flags = CFTYPE_NOT_ON_ROOT, 11180 .seq_show = cpu_uclamp_max_show, 11181 .write = cpu_uclamp_max_write, 11182 }, 11183 #endif 11184 { } /* Terminate */ 11185 }; 11186 11187 static int cpu_extra_stat_show(struct seq_file *sf, 11188 struct cgroup_subsys_state *css) 11189 { 11190 #ifdef CONFIG_CFS_BANDWIDTH 11191 { 11192 struct task_group *tg = css_tg(css); 11193 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11194 u64 throttled_usec, burst_usec; 11195 11196 throttled_usec = cfs_b->throttled_time; 11197 do_div(throttled_usec, NSEC_PER_USEC); 11198 burst_usec = cfs_b->burst_time; 11199 do_div(burst_usec, NSEC_PER_USEC); 11200 11201 seq_printf(sf, "nr_periods %d\n" 11202 "nr_throttled %d\n" 11203 "throttled_usec %llu\n" 11204 "nr_bursts %d\n" 11205 "burst_usec %llu\n", 11206 cfs_b->nr_periods, cfs_b->nr_throttled, 11207 throttled_usec, cfs_b->nr_burst, burst_usec); 11208 } 11209 #endif 11210 return 0; 11211 } 11212 11213 #ifdef CONFIG_FAIR_GROUP_SCHED 11214 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11215 struct cftype *cft) 11216 { 11217 struct task_group *tg = css_tg(css); 11218 u64 weight = scale_load_down(tg->shares); 11219 11220 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11221 } 11222 11223 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11224 struct cftype *cft, u64 weight) 11225 { 11226 /* 11227 * cgroup weight knobs should use the common MIN, DFL and MAX 11228 * values which are 1, 100 and 10000 respectively. While it loses 11229 * a bit of range on both ends, it maps pretty well onto the shares 11230 * value used by scheduler and the round-trip conversions preserve 11231 * the original value over the entire range. 11232 */ 11233 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11234 return -ERANGE; 11235 11236 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11237 11238 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11239 } 11240 11241 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11242 struct cftype *cft) 11243 { 11244 unsigned long weight = scale_load_down(css_tg(css)->shares); 11245 int last_delta = INT_MAX; 11246 int prio, delta; 11247 11248 /* find the closest nice value to the current weight */ 11249 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11250 delta = abs(sched_prio_to_weight[prio] - weight); 11251 if (delta >= last_delta) 11252 break; 11253 last_delta = delta; 11254 } 11255 11256 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11257 } 11258 11259 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11260 struct cftype *cft, s64 nice) 11261 { 11262 unsigned long weight; 11263 int idx; 11264 11265 if (nice < MIN_NICE || nice > MAX_NICE) 11266 return -ERANGE; 11267 11268 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11269 idx = array_index_nospec(idx, 40); 11270 weight = sched_prio_to_weight[idx]; 11271 11272 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11273 } 11274 #endif 11275 11276 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11277 long period, long quota) 11278 { 11279 if (quota < 0) 11280 seq_puts(sf, "max"); 11281 else 11282 seq_printf(sf, "%ld", quota); 11283 11284 seq_printf(sf, " %ld\n", period); 11285 } 11286 11287 /* caller should put the current value in *@periodp before calling */ 11288 static int __maybe_unused cpu_period_quota_parse(char *buf, 11289 u64 *periodp, u64 *quotap) 11290 { 11291 char tok[21]; /* U64_MAX */ 11292 11293 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11294 return -EINVAL; 11295 11296 *periodp *= NSEC_PER_USEC; 11297 11298 if (sscanf(tok, "%llu", quotap)) 11299 *quotap *= NSEC_PER_USEC; 11300 else if (!strcmp(tok, "max")) 11301 *quotap = RUNTIME_INF; 11302 else 11303 return -EINVAL; 11304 11305 return 0; 11306 } 11307 11308 #ifdef CONFIG_CFS_BANDWIDTH 11309 static int cpu_max_show(struct seq_file *sf, void *v) 11310 { 11311 struct task_group *tg = css_tg(seq_css(sf)); 11312 11313 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11314 return 0; 11315 } 11316 11317 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11318 char *buf, size_t nbytes, loff_t off) 11319 { 11320 struct task_group *tg = css_tg(of_css(of)); 11321 u64 period = tg_get_cfs_period(tg); 11322 u64 burst = tg_get_cfs_burst(tg); 11323 u64 quota; 11324 int ret; 11325 11326 ret = cpu_period_quota_parse(buf, &period, "a); 11327 if (!ret) 11328 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11329 return ret ?: nbytes; 11330 } 11331 #endif 11332 11333 static struct cftype cpu_files[] = { 11334 #ifdef CONFIG_FAIR_GROUP_SCHED 11335 { 11336 .name = "weight", 11337 .flags = CFTYPE_NOT_ON_ROOT, 11338 .read_u64 = cpu_weight_read_u64, 11339 .write_u64 = cpu_weight_write_u64, 11340 }, 11341 { 11342 .name = "weight.nice", 11343 .flags = CFTYPE_NOT_ON_ROOT, 11344 .read_s64 = cpu_weight_nice_read_s64, 11345 .write_s64 = cpu_weight_nice_write_s64, 11346 }, 11347 { 11348 .name = "idle", 11349 .flags = CFTYPE_NOT_ON_ROOT, 11350 .read_s64 = cpu_idle_read_s64, 11351 .write_s64 = cpu_idle_write_s64, 11352 }, 11353 #endif 11354 #ifdef CONFIG_CFS_BANDWIDTH 11355 { 11356 .name = "max", 11357 .flags = CFTYPE_NOT_ON_ROOT, 11358 .seq_show = cpu_max_show, 11359 .write = cpu_max_write, 11360 }, 11361 { 11362 .name = "max.burst", 11363 .flags = CFTYPE_NOT_ON_ROOT, 11364 .read_u64 = cpu_cfs_burst_read_u64, 11365 .write_u64 = cpu_cfs_burst_write_u64, 11366 }, 11367 #endif 11368 #ifdef CONFIG_UCLAMP_TASK_GROUP 11369 { 11370 .name = "uclamp.min", 11371 .flags = CFTYPE_NOT_ON_ROOT, 11372 .seq_show = cpu_uclamp_min_show, 11373 .write = cpu_uclamp_min_write, 11374 }, 11375 { 11376 .name = "uclamp.max", 11377 .flags = CFTYPE_NOT_ON_ROOT, 11378 .seq_show = cpu_uclamp_max_show, 11379 .write = cpu_uclamp_max_write, 11380 }, 11381 #endif 11382 { } /* terminate */ 11383 }; 11384 11385 struct cgroup_subsys cpu_cgrp_subsys = { 11386 .css_alloc = cpu_cgroup_css_alloc, 11387 .css_online = cpu_cgroup_css_online, 11388 .css_released = cpu_cgroup_css_released, 11389 .css_free = cpu_cgroup_css_free, 11390 .css_extra_stat_show = cpu_extra_stat_show, 11391 #ifdef CONFIG_RT_GROUP_SCHED 11392 .can_attach = cpu_cgroup_can_attach, 11393 #endif 11394 .attach = cpu_cgroup_attach, 11395 .legacy_cftypes = cpu_legacy_files, 11396 .dfl_cftypes = cpu_files, 11397 .early_init = true, 11398 .threaded = true, 11399 }; 11400 11401 #endif /* CONFIG_CGROUP_SCHED */ 11402 11403 void dump_cpu_task(int cpu) 11404 { 11405 if (cpu == smp_processor_id() && in_hardirq()) { 11406 struct pt_regs *regs; 11407 11408 regs = get_irq_regs(); 11409 if (regs) { 11410 show_regs(regs); 11411 return; 11412 } 11413 } 11414 11415 if (trigger_single_cpu_backtrace(cpu)) 11416 return; 11417 11418 pr_info("Task dump for CPU %d:\n", cpu); 11419 sched_show_task(cpu_curr(cpu)); 11420 } 11421 11422 /* 11423 * Nice levels are multiplicative, with a gentle 10% change for every 11424 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11425 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11426 * that remained on nice 0. 11427 * 11428 * The "10% effect" is relative and cumulative: from _any_ nice level, 11429 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11430 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11431 * If a task goes up by ~10% and another task goes down by ~10% then 11432 * the relative distance between them is ~25%.) 11433 */ 11434 const int sched_prio_to_weight[40] = { 11435 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11436 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11437 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11438 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11439 /* 0 */ 1024, 820, 655, 526, 423, 11440 /* 5 */ 335, 272, 215, 172, 137, 11441 /* 10 */ 110, 87, 70, 56, 45, 11442 /* 15 */ 36, 29, 23, 18, 15, 11443 }; 11444 11445 /* 11446 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11447 * 11448 * In cases where the weight does not change often, we can use the 11449 * precalculated inverse to speed up arithmetics by turning divisions 11450 * into multiplications: 11451 */ 11452 const u32 sched_prio_to_wmult[40] = { 11453 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11454 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11455 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11456 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11457 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11458 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11459 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11460 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11461 }; 11462 11463 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11464 { 11465 trace_sched_update_nr_running_tp(rq, count); 11466 } 11467 11468 #ifdef CONFIG_SCHED_MM_CID 11469 void sched_mm_cid_exit_signals(struct task_struct *t) 11470 { 11471 struct mm_struct *mm = t->mm; 11472 unsigned long flags; 11473 11474 if (!mm) 11475 return; 11476 local_irq_save(flags); 11477 mm_cid_put(mm, t->mm_cid); 11478 t->mm_cid = -1; 11479 t->mm_cid_active = 0; 11480 local_irq_restore(flags); 11481 } 11482 11483 void sched_mm_cid_before_execve(struct task_struct *t) 11484 { 11485 struct mm_struct *mm = t->mm; 11486 unsigned long flags; 11487 11488 if (!mm) 11489 return; 11490 local_irq_save(flags); 11491 mm_cid_put(mm, t->mm_cid); 11492 t->mm_cid = -1; 11493 t->mm_cid_active = 0; 11494 local_irq_restore(flags); 11495 } 11496 11497 void sched_mm_cid_after_execve(struct task_struct *t) 11498 { 11499 struct mm_struct *mm = t->mm; 11500 unsigned long flags; 11501 11502 if (!mm) 11503 return; 11504 local_irq_save(flags); 11505 t->mm_cid = mm_cid_get(mm); 11506 t->mm_cid_active = 1; 11507 local_irq_restore(flags); 11508 rseq_set_notify_resume(t); 11509 } 11510 11511 void sched_mm_cid_fork(struct task_struct *t) 11512 { 11513 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 11514 t->mm_cid_active = 1; 11515 } 11516 #endif 11517