xref: /openbmc/linux/kernel/sched/core.c (revision e23feb16)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  */
374 
375 static void hrtick_clear(struct rq *rq)
376 {
377 	if (hrtimer_active(&rq->hrtick_timer))
378 		hrtimer_cancel(&rq->hrtick_timer);
379 }
380 
381 /*
382  * High-resolution timer tick.
383  * Runs from hardirq context with interrupts disabled.
384  */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388 
389 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 
391 	raw_spin_lock(&rq->lock);
392 	update_rq_clock(rq);
393 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 	raw_spin_unlock(&rq->lock);
395 
396 	return HRTIMER_NORESTART;
397 }
398 
399 #ifdef CONFIG_SMP
400 
401 static int __hrtick_restart(struct rq *rq)
402 {
403 	struct hrtimer *timer = &rq->hrtick_timer;
404 	ktime_t time = hrtimer_get_softexpires(timer);
405 
406 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408 
409 /*
410  * called from hardirq (IPI) context
411  */
412 static void __hrtick_start(void *arg)
413 {
414 	struct rq *rq = arg;
415 
416 	raw_spin_lock(&rq->lock);
417 	__hrtick_restart(rq);
418 	rq->hrtick_csd_pending = 0;
419 	raw_spin_unlock(&rq->lock);
420 }
421 
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	struct hrtimer *timer = &rq->hrtick_timer;
430 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431 
432 	hrtimer_set_expires(timer, time);
433 
434 	if (rq == this_rq()) {
435 		__hrtick_restart(rq);
436 	} else if (!rq->hrtick_csd_pending) {
437 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 		rq->hrtick_csd_pending = 1;
439 	}
440 }
441 
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 	int cpu = (int)(long)hcpu;
446 
447 	switch (action) {
448 	case CPU_UP_CANCELED:
449 	case CPU_UP_CANCELED_FROZEN:
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 	case CPU_DEAD:
453 	case CPU_DEAD_FROZEN:
454 		hrtick_clear(cpu_rq(cpu));
455 		return NOTIFY_OK;
456 	}
457 
458 	return NOTIFY_DONE;
459 }
460 
461 static __init void init_hrtick(void)
462 {
463 	hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467  * Called to set the hrtick timer state.
468  *
469  * called with rq->lock held and irqs disabled
470  */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 			HRTIMER_MODE_REL_PINNED, 0);
475 }
476 
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 	rq->hrtick_csd_pending = 0;
486 
487 	rq->hrtick_csd.flags = 0;
488 	rq->hrtick_csd.func = __hrtick_start;
489 	rq->hrtick_csd.info = rq;
490 #endif
491 
492 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 	rq->hrtick_timer.function = hrtick;
494 }
495 #else	/* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499 
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif	/* CONFIG_SCHED_HRTICK */
508 
509 /*
510  * resched_task - mark a task 'to be rescheduled now'.
511  *
512  * On UP this means the setting of the need_resched flag, on SMP it
513  * might also involve a cross-CPU call to trigger the scheduler on
514  * the target CPU.
515  */
516 #ifdef CONFIG_SMP
517 void resched_task(struct task_struct *p)
518 {
519 	int cpu;
520 
521 	assert_raw_spin_locked(&task_rq(p)->lock);
522 
523 	if (test_tsk_need_resched(p))
524 		return;
525 
526 	set_tsk_need_resched(p);
527 
528 	cpu = task_cpu(p);
529 	if (cpu == smp_processor_id())
530 		return;
531 
532 	/* NEED_RESCHED must be visible before we test polling */
533 	smp_mb();
534 	if (!tsk_is_polling(p))
535 		smp_send_reschedule(cpu);
536 }
537 
538 void resched_cpu(int cpu)
539 {
540 	struct rq *rq = cpu_rq(cpu);
541 	unsigned long flags;
542 
543 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 		return;
545 	resched_task(cpu_curr(cpu));
546 	raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548 
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551  * In the semi idle case, use the nearest busy cpu for migrating timers
552  * from an idle cpu.  This is good for power-savings.
553  *
554  * We don't do similar optimization for completely idle system, as
555  * selecting an idle cpu will add more delays to the timers than intended
556  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557  */
558 int get_nohz_timer_target(void)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct sched_domain *sd;
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu(i, sched_domain_span(sd)) {
567 			if (!idle_cpu(i)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 unlock:
574 	rcu_read_unlock();
575 	return cpu;
576 }
577 /*
578  * When add_timer_on() enqueues a timer into the timer wheel of an
579  * idle CPU then this timer might expire before the next timer event
580  * which is scheduled to wake up that CPU. In case of a completely
581  * idle system the next event might even be infinite time into the
582  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583  * leaves the inner idle loop so the newly added timer is taken into
584  * account when the CPU goes back to idle and evaluates the timer
585  * wheel for the next timer event.
586  */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 	struct rq *rq = cpu_rq(cpu);
590 
591 	if (cpu == smp_processor_id())
592 		return;
593 
594 	/*
595 	 * This is safe, as this function is called with the timer
596 	 * wheel base lock of (cpu) held. When the CPU is on the way
597 	 * to idle and has not yet set rq->curr to idle then it will
598 	 * be serialized on the timer wheel base lock and take the new
599 	 * timer into account automatically.
600 	 */
601 	if (rq->curr != rq->idle)
602 		return;
603 
604 	/*
605 	 * We can set TIF_RESCHED on the idle task of the other CPU
606 	 * lockless. The worst case is that the other CPU runs the
607 	 * idle task through an additional NOOP schedule()
608 	 */
609 	set_tsk_need_resched(rq->idle);
610 
611 	/* NEED_RESCHED must be visible before we test polling */
612 	smp_mb();
613 	if (!tsk_is_polling(rq->idle))
614 		smp_send_reschedule(cpu);
615 }
616 
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			smp_send_reschedule(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665        struct rq *rq;
666 
667        rq = this_rq();
668 
669        /* Make sure rq->nr_running update is visible after the IPI */
670        smp_rmb();
671 
672        /* More than one running task need preemption */
673        if (rq->nr_running > 1)
674                return false;
675 
676        return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679 
680 void sched_avg_update(struct rq *rq)
681 {
682 	s64 period = sched_avg_period();
683 
684 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 		/*
686 		 * Inline assembly required to prevent the compiler
687 		 * optimising this loop into a divmod call.
688 		 * See __iter_div_u64_rem() for another example of this.
689 		 */
690 		asm("" : "+rm" (rq->age_stamp));
691 		rq->age_stamp += period;
692 		rq->rt_avg /= 2;
693 	}
694 }
695 
696 #else /* !CONFIG_SMP */
697 void resched_task(struct task_struct *p)
698 {
699 	assert_raw_spin_locked(&task_rq(p)->lock);
700 	set_tsk_need_resched(p);
701 }
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (p->policy == SCHED_IDLE) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	load->weight = scale_load(prio_to_weight[prio]);
764 	load->inv_weight = prio_to_wmult[prio];
765 }
766 
767 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 	update_rq_clock(rq);
770 	sched_info_queued(p);
771 	p->sched_class->enqueue_task(rq, p, flags);
772 }
773 
774 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 	update_rq_clock(rq);
777 	sched_info_dequeued(p);
778 	p->sched_class->dequeue_task(rq, p, flags);
779 }
780 
781 void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 {
783 	if (task_contributes_to_load(p))
784 		rq->nr_uninterruptible--;
785 
786 	enqueue_task(rq, p, flags);
787 }
788 
789 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 	if (task_contributes_to_load(p))
792 		rq->nr_uninterruptible++;
793 
794 	dequeue_task(rq, p, flags);
795 }
796 
797 static void update_rq_clock_task(struct rq *rq, s64 delta)
798 {
799 /*
800  * In theory, the compile should just see 0 here, and optimize out the call
801  * to sched_rt_avg_update. But I don't trust it...
802  */
803 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804 	s64 steal = 0, irq_delta = 0;
805 #endif
806 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
807 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 
809 	/*
810 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811 	 * this case when a previous update_rq_clock() happened inside a
812 	 * {soft,}irq region.
813 	 *
814 	 * When this happens, we stop ->clock_task and only update the
815 	 * prev_irq_time stamp to account for the part that fit, so that a next
816 	 * update will consume the rest. This ensures ->clock_task is
817 	 * monotonic.
818 	 *
819 	 * It does however cause some slight miss-attribution of {soft,}irq
820 	 * time, a more accurate solution would be to update the irq_time using
821 	 * the current rq->clock timestamp, except that would require using
822 	 * atomic ops.
823 	 */
824 	if (irq_delta > delta)
825 		irq_delta = delta;
826 
827 	rq->prev_irq_time += irq_delta;
828 	delta -= irq_delta;
829 #endif
830 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831 	if (static_key_false((&paravirt_steal_rq_enabled))) {
832 		u64 st;
833 
834 		steal = paravirt_steal_clock(cpu_of(rq));
835 		steal -= rq->prev_steal_time_rq;
836 
837 		if (unlikely(steal > delta))
838 			steal = delta;
839 
840 		st = steal_ticks(steal);
841 		steal = st * TICK_NSEC;
842 
843 		rq->prev_steal_time_rq += steal;
844 
845 		delta -= steal;
846 	}
847 #endif
848 
849 	rq->clock_task += delta;
850 
851 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853 		sched_rt_avg_update(rq, irq_delta + steal);
854 #endif
855 }
856 
857 void sched_set_stop_task(int cpu, struct task_struct *stop)
858 {
859 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
861 
862 	if (stop) {
863 		/*
864 		 * Make it appear like a SCHED_FIFO task, its something
865 		 * userspace knows about and won't get confused about.
866 		 *
867 		 * Also, it will make PI more or less work without too
868 		 * much confusion -- but then, stop work should not
869 		 * rely on PI working anyway.
870 		 */
871 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872 
873 		stop->sched_class = &stop_sched_class;
874 	}
875 
876 	cpu_rq(cpu)->stop = stop;
877 
878 	if (old_stop) {
879 		/*
880 		 * Reset it back to a normal scheduling class so that
881 		 * it can die in pieces.
882 		 */
883 		old_stop->sched_class = &rt_sched_class;
884 	}
885 }
886 
887 /*
888  * __normal_prio - return the priority that is based on the static prio
889  */
890 static inline int __normal_prio(struct task_struct *p)
891 {
892 	return p->static_prio;
893 }
894 
895 /*
896  * Calculate the expected normal priority: i.e. priority
897  * without taking RT-inheritance into account. Might be
898  * boosted by interactivity modifiers. Changes upon fork,
899  * setprio syscalls, and whenever the interactivity
900  * estimator recalculates.
901  */
902 static inline int normal_prio(struct task_struct *p)
903 {
904 	int prio;
905 
906 	if (task_has_rt_policy(p))
907 		prio = MAX_RT_PRIO-1 - p->rt_priority;
908 	else
909 		prio = __normal_prio(p);
910 	return prio;
911 }
912 
913 /*
914  * Calculate the current priority, i.e. the priority
915  * taken into account by the scheduler. This value might
916  * be boosted by RT tasks, or might be boosted by
917  * interactivity modifiers. Will be RT if the task got
918  * RT-boosted. If not then it returns p->normal_prio.
919  */
920 static int effective_prio(struct task_struct *p)
921 {
922 	p->normal_prio = normal_prio(p);
923 	/*
924 	 * If we are RT tasks or we were boosted to RT priority,
925 	 * keep the priority unchanged. Otherwise, update priority
926 	 * to the normal priority:
927 	 */
928 	if (!rt_prio(p->prio))
929 		return p->normal_prio;
930 	return p->prio;
931 }
932 
933 /**
934  * task_curr - is this task currently executing on a CPU?
935  * @p: the task in question.
936  *
937  * Return: 1 if the task is currently executing. 0 otherwise.
938  */
939 inline int task_curr(const struct task_struct *p)
940 {
941 	return cpu_curr(task_cpu(p)) == p;
942 }
943 
944 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
945 				       const struct sched_class *prev_class,
946 				       int oldprio)
947 {
948 	if (prev_class != p->sched_class) {
949 		if (prev_class->switched_from)
950 			prev_class->switched_from(rq, p);
951 		p->sched_class->switched_to(rq, p);
952 	} else if (oldprio != p->prio)
953 		p->sched_class->prio_changed(rq, p, oldprio);
954 }
955 
956 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
957 {
958 	const struct sched_class *class;
959 
960 	if (p->sched_class == rq->curr->sched_class) {
961 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
962 	} else {
963 		for_each_class(class) {
964 			if (class == rq->curr->sched_class)
965 				break;
966 			if (class == p->sched_class) {
967 				resched_task(rq->curr);
968 				break;
969 			}
970 		}
971 	}
972 
973 	/*
974 	 * A queue event has occurred, and we're going to schedule.  In
975 	 * this case, we can save a useless back to back clock update.
976 	 */
977 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
978 		rq->skip_clock_update = 1;
979 }
980 
981 #ifdef CONFIG_SMP
982 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
983 {
984 #ifdef CONFIG_SCHED_DEBUG
985 	/*
986 	 * We should never call set_task_cpu() on a blocked task,
987 	 * ttwu() will sort out the placement.
988 	 */
989 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
990 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
991 
992 #ifdef CONFIG_LOCKDEP
993 	/*
994 	 * The caller should hold either p->pi_lock or rq->lock, when changing
995 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
996 	 *
997 	 * sched_move_task() holds both and thus holding either pins the cgroup,
998 	 * see task_group().
999 	 *
1000 	 * Furthermore, all task_rq users should acquire both locks, see
1001 	 * task_rq_lock().
1002 	 */
1003 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1004 				      lockdep_is_held(&task_rq(p)->lock)));
1005 #endif
1006 #endif
1007 
1008 	trace_sched_migrate_task(p, new_cpu);
1009 
1010 	if (task_cpu(p) != new_cpu) {
1011 		if (p->sched_class->migrate_task_rq)
1012 			p->sched_class->migrate_task_rq(p, new_cpu);
1013 		p->se.nr_migrations++;
1014 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1015 	}
1016 
1017 	__set_task_cpu(p, new_cpu);
1018 }
1019 
1020 struct migration_arg {
1021 	struct task_struct *task;
1022 	int dest_cpu;
1023 };
1024 
1025 static int migration_cpu_stop(void *data);
1026 
1027 /*
1028  * wait_task_inactive - wait for a thread to unschedule.
1029  *
1030  * If @match_state is nonzero, it's the @p->state value just checked and
1031  * not expected to change.  If it changes, i.e. @p might have woken up,
1032  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1033  * we return a positive number (its total switch count).  If a second call
1034  * a short while later returns the same number, the caller can be sure that
1035  * @p has remained unscheduled the whole time.
1036  *
1037  * The caller must ensure that the task *will* unschedule sometime soon,
1038  * else this function might spin for a *long* time. This function can't
1039  * be called with interrupts off, or it may introduce deadlock with
1040  * smp_call_function() if an IPI is sent by the same process we are
1041  * waiting to become inactive.
1042  */
1043 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1044 {
1045 	unsigned long flags;
1046 	int running, on_rq;
1047 	unsigned long ncsw;
1048 	struct rq *rq;
1049 
1050 	for (;;) {
1051 		/*
1052 		 * We do the initial early heuristics without holding
1053 		 * any task-queue locks at all. We'll only try to get
1054 		 * the runqueue lock when things look like they will
1055 		 * work out!
1056 		 */
1057 		rq = task_rq(p);
1058 
1059 		/*
1060 		 * If the task is actively running on another CPU
1061 		 * still, just relax and busy-wait without holding
1062 		 * any locks.
1063 		 *
1064 		 * NOTE! Since we don't hold any locks, it's not
1065 		 * even sure that "rq" stays as the right runqueue!
1066 		 * But we don't care, since "task_running()" will
1067 		 * return false if the runqueue has changed and p
1068 		 * is actually now running somewhere else!
1069 		 */
1070 		while (task_running(rq, p)) {
1071 			if (match_state && unlikely(p->state != match_state))
1072 				return 0;
1073 			cpu_relax();
1074 		}
1075 
1076 		/*
1077 		 * Ok, time to look more closely! We need the rq
1078 		 * lock now, to be *sure*. If we're wrong, we'll
1079 		 * just go back and repeat.
1080 		 */
1081 		rq = task_rq_lock(p, &flags);
1082 		trace_sched_wait_task(p);
1083 		running = task_running(rq, p);
1084 		on_rq = p->on_rq;
1085 		ncsw = 0;
1086 		if (!match_state || p->state == match_state)
1087 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1088 		task_rq_unlock(rq, p, &flags);
1089 
1090 		/*
1091 		 * If it changed from the expected state, bail out now.
1092 		 */
1093 		if (unlikely(!ncsw))
1094 			break;
1095 
1096 		/*
1097 		 * Was it really running after all now that we
1098 		 * checked with the proper locks actually held?
1099 		 *
1100 		 * Oops. Go back and try again..
1101 		 */
1102 		if (unlikely(running)) {
1103 			cpu_relax();
1104 			continue;
1105 		}
1106 
1107 		/*
1108 		 * It's not enough that it's not actively running,
1109 		 * it must be off the runqueue _entirely_, and not
1110 		 * preempted!
1111 		 *
1112 		 * So if it was still runnable (but just not actively
1113 		 * running right now), it's preempted, and we should
1114 		 * yield - it could be a while.
1115 		 */
1116 		if (unlikely(on_rq)) {
1117 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1118 
1119 			set_current_state(TASK_UNINTERRUPTIBLE);
1120 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1121 			continue;
1122 		}
1123 
1124 		/*
1125 		 * Ahh, all good. It wasn't running, and it wasn't
1126 		 * runnable, which means that it will never become
1127 		 * running in the future either. We're all done!
1128 		 */
1129 		break;
1130 	}
1131 
1132 	return ncsw;
1133 }
1134 
1135 /***
1136  * kick_process - kick a running thread to enter/exit the kernel
1137  * @p: the to-be-kicked thread
1138  *
1139  * Cause a process which is running on another CPU to enter
1140  * kernel-mode, without any delay. (to get signals handled.)
1141  *
1142  * NOTE: this function doesn't have to take the runqueue lock,
1143  * because all it wants to ensure is that the remote task enters
1144  * the kernel. If the IPI races and the task has been migrated
1145  * to another CPU then no harm is done and the purpose has been
1146  * achieved as well.
1147  */
1148 void kick_process(struct task_struct *p)
1149 {
1150 	int cpu;
1151 
1152 	preempt_disable();
1153 	cpu = task_cpu(p);
1154 	if ((cpu != smp_processor_id()) && task_curr(p))
1155 		smp_send_reschedule(cpu);
1156 	preempt_enable();
1157 }
1158 EXPORT_SYMBOL_GPL(kick_process);
1159 #endif /* CONFIG_SMP */
1160 
1161 #ifdef CONFIG_SMP
1162 /*
1163  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1164  */
1165 static int select_fallback_rq(int cpu, struct task_struct *p)
1166 {
1167 	int nid = cpu_to_node(cpu);
1168 	const struct cpumask *nodemask = NULL;
1169 	enum { cpuset, possible, fail } state = cpuset;
1170 	int dest_cpu;
1171 
1172 	/*
1173 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1174 	 * will return -1. There is no cpu on the node, and we should
1175 	 * select the cpu on the other node.
1176 	 */
1177 	if (nid != -1) {
1178 		nodemask = cpumask_of_node(nid);
1179 
1180 		/* Look for allowed, online CPU in same node. */
1181 		for_each_cpu(dest_cpu, nodemask) {
1182 			if (!cpu_online(dest_cpu))
1183 				continue;
1184 			if (!cpu_active(dest_cpu))
1185 				continue;
1186 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1187 				return dest_cpu;
1188 		}
1189 	}
1190 
1191 	for (;;) {
1192 		/* Any allowed, online CPU? */
1193 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1194 			if (!cpu_online(dest_cpu))
1195 				continue;
1196 			if (!cpu_active(dest_cpu))
1197 				continue;
1198 			goto out;
1199 		}
1200 
1201 		switch (state) {
1202 		case cpuset:
1203 			/* No more Mr. Nice Guy. */
1204 			cpuset_cpus_allowed_fallback(p);
1205 			state = possible;
1206 			break;
1207 
1208 		case possible:
1209 			do_set_cpus_allowed(p, cpu_possible_mask);
1210 			state = fail;
1211 			break;
1212 
1213 		case fail:
1214 			BUG();
1215 			break;
1216 		}
1217 	}
1218 
1219 out:
1220 	if (state != cpuset) {
1221 		/*
1222 		 * Don't tell them about moving exiting tasks or
1223 		 * kernel threads (both mm NULL), since they never
1224 		 * leave kernel.
1225 		 */
1226 		if (p->mm && printk_ratelimit()) {
1227 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1228 					task_pid_nr(p), p->comm, cpu);
1229 		}
1230 	}
1231 
1232 	return dest_cpu;
1233 }
1234 
1235 /*
1236  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1237  */
1238 static inline
1239 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1240 {
1241 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1242 
1243 	/*
1244 	 * In order not to call set_task_cpu() on a blocking task we need
1245 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1246 	 * cpu.
1247 	 *
1248 	 * Since this is common to all placement strategies, this lives here.
1249 	 *
1250 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1251 	 *   not worry about this generic constraint ]
1252 	 */
1253 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1254 		     !cpu_online(cpu)))
1255 		cpu = select_fallback_rq(task_cpu(p), p);
1256 
1257 	return cpu;
1258 }
1259 
1260 static void update_avg(u64 *avg, u64 sample)
1261 {
1262 	s64 diff = sample - *avg;
1263 	*avg += diff >> 3;
1264 }
1265 #endif
1266 
1267 static void
1268 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1269 {
1270 #ifdef CONFIG_SCHEDSTATS
1271 	struct rq *rq = this_rq();
1272 
1273 #ifdef CONFIG_SMP
1274 	int this_cpu = smp_processor_id();
1275 
1276 	if (cpu == this_cpu) {
1277 		schedstat_inc(rq, ttwu_local);
1278 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1279 	} else {
1280 		struct sched_domain *sd;
1281 
1282 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1283 		rcu_read_lock();
1284 		for_each_domain(this_cpu, sd) {
1285 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1286 				schedstat_inc(sd, ttwu_wake_remote);
1287 				break;
1288 			}
1289 		}
1290 		rcu_read_unlock();
1291 	}
1292 
1293 	if (wake_flags & WF_MIGRATED)
1294 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1295 
1296 #endif /* CONFIG_SMP */
1297 
1298 	schedstat_inc(rq, ttwu_count);
1299 	schedstat_inc(p, se.statistics.nr_wakeups);
1300 
1301 	if (wake_flags & WF_SYNC)
1302 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1303 
1304 #endif /* CONFIG_SCHEDSTATS */
1305 }
1306 
1307 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1308 {
1309 	activate_task(rq, p, en_flags);
1310 	p->on_rq = 1;
1311 
1312 	/* if a worker is waking up, notify workqueue */
1313 	if (p->flags & PF_WQ_WORKER)
1314 		wq_worker_waking_up(p, cpu_of(rq));
1315 }
1316 
1317 /*
1318  * Mark the task runnable and perform wakeup-preemption.
1319  */
1320 static void
1321 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1322 {
1323 	check_preempt_curr(rq, p, wake_flags);
1324 	trace_sched_wakeup(p, true);
1325 
1326 	p->state = TASK_RUNNING;
1327 #ifdef CONFIG_SMP
1328 	if (p->sched_class->task_woken)
1329 		p->sched_class->task_woken(rq, p);
1330 
1331 	if (rq->idle_stamp) {
1332 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1333 		u64 max = 2*sysctl_sched_migration_cost;
1334 
1335 		if (delta > max)
1336 			rq->avg_idle = max;
1337 		else
1338 			update_avg(&rq->avg_idle, delta);
1339 		rq->idle_stamp = 0;
1340 	}
1341 #endif
1342 }
1343 
1344 static void
1345 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1346 {
1347 #ifdef CONFIG_SMP
1348 	if (p->sched_contributes_to_load)
1349 		rq->nr_uninterruptible--;
1350 #endif
1351 
1352 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1353 	ttwu_do_wakeup(rq, p, wake_flags);
1354 }
1355 
1356 /*
1357  * Called in case the task @p isn't fully descheduled from its runqueue,
1358  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1359  * since all we need to do is flip p->state to TASK_RUNNING, since
1360  * the task is still ->on_rq.
1361  */
1362 static int ttwu_remote(struct task_struct *p, int wake_flags)
1363 {
1364 	struct rq *rq;
1365 	int ret = 0;
1366 
1367 	rq = __task_rq_lock(p);
1368 	if (p->on_rq) {
1369 		/* check_preempt_curr() may use rq clock */
1370 		update_rq_clock(rq);
1371 		ttwu_do_wakeup(rq, p, wake_flags);
1372 		ret = 1;
1373 	}
1374 	__task_rq_unlock(rq);
1375 
1376 	return ret;
1377 }
1378 
1379 #ifdef CONFIG_SMP
1380 static void sched_ttwu_pending(void)
1381 {
1382 	struct rq *rq = this_rq();
1383 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1384 	struct task_struct *p;
1385 
1386 	raw_spin_lock(&rq->lock);
1387 
1388 	while (llist) {
1389 		p = llist_entry(llist, struct task_struct, wake_entry);
1390 		llist = llist_next(llist);
1391 		ttwu_do_activate(rq, p, 0);
1392 	}
1393 
1394 	raw_spin_unlock(&rq->lock);
1395 }
1396 
1397 void scheduler_ipi(void)
1398 {
1399 	if (llist_empty(&this_rq()->wake_list)
1400 			&& !tick_nohz_full_cpu(smp_processor_id())
1401 			&& !got_nohz_idle_kick())
1402 		return;
1403 
1404 	/*
1405 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1406 	 * traditionally all their work was done from the interrupt return
1407 	 * path. Now that we actually do some work, we need to make sure
1408 	 * we do call them.
1409 	 *
1410 	 * Some archs already do call them, luckily irq_enter/exit nest
1411 	 * properly.
1412 	 *
1413 	 * Arguably we should visit all archs and update all handlers,
1414 	 * however a fair share of IPIs are still resched only so this would
1415 	 * somewhat pessimize the simple resched case.
1416 	 */
1417 	irq_enter();
1418 	tick_nohz_full_check();
1419 	sched_ttwu_pending();
1420 
1421 	/*
1422 	 * Check if someone kicked us for doing the nohz idle load balance.
1423 	 */
1424 	if (unlikely(got_nohz_idle_kick())) {
1425 		this_rq()->idle_balance = 1;
1426 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1427 	}
1428 	irq_exit();
1429 }
1430 
1431 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1432 {
1433 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1434 		smp_send_reschedule(cpu);
1435 }
1436 
1437 bool cpus_share_cache(int this_cpu, int that_cpu)
1438 {
1439 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1440 }
1441 #endif /* CONFIG_SMP */
1442 
1443 static void ttwu_queue(struct task_struct *p, int cpu)
1444 {
1445 	struct rq *rq = cpu_rq(cpu);
1446 
1447 #if defined(CONFIG_SMP)
1448 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1449 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1450 		ttwu_queue_remote(p, cpu);
1451 		return;
1452 	}
1453 #endif
1454 
1455 	raw_spin_lock(&rq->lock);
1456 	ttwu_do_activate(rq, p, 0);
1457 	raw_spin_unlock(&rq->lock);
1458 }
1459 
1460 /**
1461  * try_to_wake_up - wake up a thread
1462  * @p: the thread to be awakened
1463  * @state: the mask of task states that can be woken
1464  * @wake_flags: wake modifier flags (WF_*)
1465  *
1466  * Put it on the run-queue if it's not already there. The "current"
1467  * thread is always on the run-queue (except when the actual
1468  * re-schedule is in progress), and as such you're allowed to do
1469  * the simpler "current->state = TASK_RUNNING" to mark yourself
1470  * runnable without the overhead of this.
1471  *
1472  * Return: %true if @p was woken up, %false if it was already running.
1473  * or @state didn't match @p's state.
1474  */
1475 static int
1476 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1477 {
1478 	unsigned long flags;
1479 	int cpu, success = 0;
1480 
1481 	/*
1482 	 * If we are going to wake up a thread waiting for CONDITION we
1483 	 * need to ensure that CONDITION=1 done by the caller can not be
1484 	 * reordered with p->state check below. This pairs with mb() in
1485 	 * set_current_state() the waiting thread does.
1486 	 */
1487 	smp_mb__before_spinlock();
1488 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1489 	if (!(p->state & state))
1490 		goto out;
1491 
1492 	success = 1; /* we're going to change ->state */
1493 	cpu = task_cpu(p);
1494 
1495 	if (p->on_rq && ttwu_remote(p, wake_flags))
1496 		goto stat;
1497 
1498 #ifdef CONFIG_SMP
1499 	/*
1500 	 * If the owning (remote) cpu is still in the middle of schedule() with
1501 	 * this task as prev, wait until its done referencing the task.
1502 	 */
1503 	while (p->on_cpu)
1504 		cpu_relax();
1505 	/*
1506 	 * Pairs with the smp_wmb() in finish_lock_switch().
1507 	 */
1508 	smp_rmb();
1509 
1510 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1511 	p->state = TASK_WAKING;
1512 
1513 	if (p->sched_class->task_waking)
1514 		p->sched_class->task_waking(p);
1515 
1516 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1517 	if (task_cpu(p) != cpu) {
1518 		wake_flags |= WF_MIGRATED;
1519 		set_task_cpu(p, cpu);
1520 	}
1521 #endif /* CONFIG_SMP */
1522 
1523 	ttwu_queue(p, cpu);
1524 stat:
1525 	ttwu_stat(p, cpu, wake_flags);
1526 out:
1527 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1528 
1529 	return success;
1530 }
1531 
1532 /**
1533  * try_to_wake_up_local - try to wake up a local task with rq lock held
1534  * @p: the thread to be awakened
1535  *
1536  * Put @p on the run-queue if it's not already there. The caller must
1537  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1538  * the current task.
1539  */
1540 static void try_to_wake_up_local(struct task_struct *p)
1541 {
1542 	struct rq *rq = task_rq(p);
1543 
1544 	if (WARN_ON_ONCE(rq != this_rq()) ||
1545 	    WARN_ON_ONCE(p == current))
1546 		return;
1547 
1548 	lockdep_assert_held(&rq->lock);
1549 
1550 	if (!raw_spin_trylock(&p->pi_lock)) {
1551 		raw_spin_unlock(&rq->lock);
1552 		raw_spin_lock(&p->pi_lock);
1553 		raw_spin_lock(&rq->lock);
1554 	}
1555 
1556 	if (!(p->state & TASK_NORMAL))
1557 		goto out;
1558 
1559 	if (!p->on_rq)
1560 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1561 
1562 	ttwu_do_wakeup(rq, p, 0);
1563 	ttwu_stat(p, smp_processor_id(), 0);
1564 out:
1565 	raw_spin_unlock(&p->pi_lock);
1566 }
1567 
1568 /**
1569  * wake_up_process - Wake up a specific process
1570  * @p: The process to be woken up.
1571  *
1572  * Attempt to wake up the nominated process and move it to the set of runnable
1573  * processes.
1574  *
1575  * Return: 1 if the process was woken up, 0 if it was already running.
1576  *
1577  * It may be assumed that this function implies a write memory barrier before
1578  * changing the task state if and only if any tasks are woken up.
1579  */
1580 int wake_up_process(struct task_struct *p)
1581 {
1582 	WARN_ON(task_is_stopped_or_traced(p));
1583 	return try_to_wake_up(p, TASK_NORMAL, 0);
1584 }
1585 EXPORT_SYMBOL(wake_up_process);
1586 
1587 int wake_up_state(struct task_struct *p, unsigned int state)
1588 {
1589 	return try_to_wake_up(p, state, 0);
1590 }
1591 
1592 /*
1593  * Perform scheduler related setup for a newly forked process p.
1594  * p is forked by current.
1595  *
1596  * __sched_fork() is basic setup used by init_idle() too:
1597  */
1598 static void __sched_fork(struct task_struct *p)
1599 {
1600 	p->on_rq			= 0;
1601 
1602 	p->se.on_rq			= 0;
1603 	p->se.exec_start		= 0;
1604 	p->se.sum_exec_runtime		= 0;
1605 	p->se.prev_sum_exec_runtime	= 0;
1606 	p->se.nr_migrations		= 0;
1607 	p->se.vruntime			= 0;
1608 	INIT_LIST_HEAD(&p->se.group_node);
1609 
1610 #ifdef CONFIG_SCHEDSTATS
1611 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1612 #endif
1613 
1614 	INIT_LIST_HEAD(&p->rt.run_list);
1615 
1616 #ifdef CONFIG_PREEMPT_NOTIFIERS
1617 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1618 #endif
1619 
1620 #ifdef CONFIG_NUMA_BALANCING
1621 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1622 		p->mm->numa_next_scan = jiffies;
1623 		p->mm->numa_next_reset = jiffies;
1624 		p->mm->numa_scan_seq = 0;
1625 	}
1626 
1627 	p->node_stamp = 0ULL;
1628 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1629 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1630 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1631 	p->numa_work.next = &p->numa_work;
1632 #endif /* CONFIG_NUMA_BALANCING */
1633 }
1634 
1635 #ifdef CONFIG_NUMA_BALANCING
1636 #ifdef CONFIG_SCHED_DEBUG
1637 void set_numabalancing_state(bool enabled)
1638 {
1639 	if (enabled)
1640 		sched_feat_set("NUMA");
1641 	else
1642 		sched_feat_set("NO_NUMA");
1643 }
1644 #else
1645 __read_mostly bool numabalancing_enabled;
1646 
1647 void set_numabalancing_state(bool enabled)
1648 {
1649 	numabalancing_enabled = enabled;
1650 }
1651 #endif /* CONFIG_SCHED_DEBUG */
1652 #endif /* CONFIG_NUMA_BALANCING */
1653 
1654 /*
1655  * fork()/clone()-time setup:
1656  */
1657 void sched_fork(struct task_struct *p)
1658 {
1659 	unsigned long flags;
1660 	int cpu = get_cpu();
1661 
1662 	__sched_fork(p);
1663 	/*
1664 	 * We mark the process as running here. This guarantees that
1665 	 * nobody will actually run it, and a signal or other external
1666 	 * event cannot wake it up and insert it on the runqueue either.
1667 	 */
1668 	p->state = TASK_RUNNING;
1669 
1670 	/*
1671 	 * Make sure we do not leak PI boosting priority to the child.
1672 	 */
1673 	p->prio = current->normal_prio;
1674 
1675 	/*
1676 	 * Revert to default priority/policy on fork if requested.
1677 	 */
1678 	if (unlikely(p->sched_reset_on_fork)) {
1679 		if (task_has_rt_policy(p)) {
1680 			p->policy = SCHED_NORMAL;
1681 			p->static_prio = NICE_TO_PRIO(0);
1682 			p->rt_priority = 0;
1683 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1684 			p->static_prio = NICE_TO_PRIO(0);
1685 
1686 		p->prio = p->normal_prio = __normal_prio(p);
1687 		set_load_weight(p);
1688 
1689 		/*
1690 		 * We don't need the reset flag anymore after the fork. It has
1691 		 * fulfilled its duty:
1692 		 */
1693 		p->sched_reset_on_fork = 0;
1694 	}
1695 
1696 	if (!rt_prio(p->prio))
1697 		p->sched_class = &fair_sched_class;
1698 
1699 	if (p->sched_class->task_fork)
1700 		p->sched_class->task_fork(p);
1701 
1702 	/*
1703 	 * The child is not yet in the pid-hash so no cgroup attach races,
1704 	 * and the cgroup is pinned to this child due to cgroup_fork()
1705 	 * is ran before sched_fork().
1706 	 *
1707 	 * Silence PROVE_RCU.
1708 	 */
1709 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1710 	set_task_cpu(p, cpu);
1711 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1712 
1713 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1714 	if (likely(sched_info_on()))
1715 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1716 #endif
1717 #if defined(CONFIG_SMP)
1718 	p->on_cpu = 0;
1719 #endif
1720 #ifdef CONFIG_PREEMPT_COUNT
1721 	/* Want to start with kernel preemption disabled. */
1722 	task_thread_info(p)->preempt_count = 1;
1723 #endif
1724 #ifdef CONFIG_SMP
1725 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1726 #endif
1727 
1728 	put_cpu();
1729 }
1730 
1731 /*
1732  * wake_up_new_task - wake up a newly created task for the first time.
1733  *
1734  * This function will do some initial scheduler statistics housekeeping
1735  * that must be done for every newly created context, then puts the task
1736  * on the runqueue and wakes it.
1737  */
1738 void wake_up_new_task(struct task_struct *p)
1739 {
1740 	unsigned long flags;
1741 	struct rq *rq;
1742 
1743 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1744 #ifdef CONFIG_SMP
1745 	/*
1746 	 * Fork balancing, do it here and not earlier because:
1747 	 *  - cpus_allowed can change in the fork path
1748 	 *  - any previously selected cpu might disappear through hotplug
1749 	 */
1750 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1751 #endif
1752 
1753 	/* Initialize new task's runnable average */
1754 	init_task_runnable_average(p);
1755 	rq = __task_rq_lock(p);
1756 	activate_task(rq, p, 0);
1757 	p->on_rq = 1;
1758 	trace_sched_wakeup_new(p, true);
1759 	check_preempt_curr(rq, p, WF_FORK);
1760 #ifdef CONFIG_SMP
1761 	if (p->sched_class->task_woken)
1762 		p->sched_class->task_woken(rq, p);
1763 #endif
1764 	task_rq_unlock(rq, p, &flags);
1765 }
1766 
1767 #ifdef CONFIG_PREEMPT_NOTIFIERS
1768 
1769 /**
1770  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1771  * @notifier: notifier struct to register
1772  */
1773 void preempt_notifier_register(struct preempt_notifier *notifier)
1774 {
1775 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1776 }
1777 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1778 
1779 /**
1780  * preempt_notifier_unregister - no longer interested in preemption notifications
1781  * @notifier: notifier struct to unregister
1782  *
1783  * This is safe to call from within a preemption notifier.
1784  */
1785 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1786 {
1787 	hlist_del(&notifier->link);
1788 }
1789 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1790 
1791 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1792 {
1793 	struct preempt_notifier *notifier;
1794 
1795 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1796 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1797 }
1798 
1799 static void
1800 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1801 				 struct task_struct *next)
1802 {
1803 	struct preempt_notifier *notifier;
1804 
1805 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1806 		notifier->ops->sched_out(notifier, next);
1807 }
1808 
1809 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1810 
1811 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1812 {
1813 }
1814 
1815 static void
1816 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1817 				 struct task_struct *next)
1818 {
1819 }
1820 
1821 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1822 
1823 /**
1824  * prepare_task_switch - prepare to switch tasks
1825  * @rq: the runqueue preparing to switch
1826  * @prev: the current task that is being switched out
1827  * @next: the task we are going to switch to.
1828  *
1829  * This is called with the rq lock held and interrupts off. It must
1830  * be paired with a subsequent finish_task_switch after the context
1831  * switch.
1832  *
1833  * prepare_task_switch sets up locking and calls architecture specific
1834  * hooks.
1835  */
1836 static inline void
1837 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1838 		    struct task_struct *next)
1839 {
1840 	trace_sched_switch(prev, next);
1841 	sched_info_switch(prev, next);
1842 	perf_event_task_sched_out(prev, next);
1843 	fire_sched_out_preempt_notifiers(prev, next);
1844 	prepare_lock_switch(rq, next);
1845 	prepare_arch_switch(next);
1846 }
1847 
1848 /**
1849  * finish_task_switch - clean up after a task-switch
1850  * @rq: runqueue associated with task-switch
1851  * @prev: the thread we just switched away from.
1852  *
1853  * finish_task_switch must be called after the context switch, paired
1854  * with a prepare_task_switch call before the context switch.
1855  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1856  * and do any other architecture-specific cleanup actions.
1857  *
1858  * Note that we may have delayed dropping an mm in context_switch(). If
1859  * so, we finish that here outside of the runqueue lock. (Doing it
1860  * with the lock held can cause deadlocks; see schedule() for
1861  * details.)
1862  */
1863 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1864 	__releases(rq->lock)
1865 {
1866 	struct mm_struct *mm = rq->prev_mm;
1867 	long prev_state;
1868 
1869 	rq->prev_mm = NULL;
1870 
1871 	/*
1872 	 * A task struct has one reference for the use as "current".
1873 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1874 	 * schedule one last time. The schedule call will never return, and
1875 	 * the scheduled task must drop that reference.
1876 	 * The test for TASK_DEAD must occur while the runqueue locks are
1877 	 * still held, otherwise prev could be scheduled on another cpu, die
1878 	 * there before we look at prev->state, and then the reference would
1879 	 * be dropped twice.
1880 	 *		Manfred Spraul <manfred@colorfullife.com>
1881 	 */
1882 	prev_state = prev->state;
1883 	vtime_task_switch(prev);
1884 	finish_arch_switch(prev);
1885 	perf_event_task_sched_in(prev, current);
1886 	finish_lock_switch(rq, prev);
1887 	finish_arch_post_lock_switch();
1888 
1889 	fire_sched_in_preempt_notifiers(current);
1890 	if (mm)
1891 		mmdrop(mm);
1892 	if (unlikely(prev_state == TASK_DEAD)) {
1893 		/*
1894 		 * Remove function-return probe instances associated with this
1895 		 * task and put them back on the free list.
1896 		 */
1897 		kprobe_flush_task(prev);
1898 		put_task_struct(prev);
1899 	}
1900 
1901 	tick_nohz_task_switch(current);
1902 }
1903 
1904 #ifdef CONFIG_SMP
1905 
1906 /* assumes rq->lock is held */
1907 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1908 {
1909 	if (prev->sched_class->pre_schedule)
1910 		prev->sched_class->pre_schedule(rq, prev);
1911 }
1912 
1913 /* rq->lock is NOT held, but preemption is disabled */
1914 static inline void post_schedule(struct rq *rq)
1915 {
1916 	if (rq->post_schedule) {
1917 		unsigned long flags;
1918 
1919 		raw_spin_lock_irqsave(&rq->lock, flags);
1920 		if (rq->curr->sched_class->post_schedule)
1921 			rq->curr->sched_class->post_schedule(rq);
1922 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1923 
1924 		rq->post_schedule = 0;
1925 	}
1926 }
1927 
1928 #else
1929 
1930 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1931 {
1932 }
1933 
1934 static inline void post_schedule(struct rq *rq)
1935 {
1936 }
1937 
1938 #endif
1939 
1940 /**
1941  * schedule_tail - first thing a freshly forked thread must call.
1942  * @prev: the thread we just switched away from.
1943  */
1944 asmlinkage void schedule_tail(struct task_struct *prev)
1945 	__releases(rq->lock)
1946 {
1947 	struct rq *rq = this_rq();
1948 
1949 	finish_task_switch(rq, prev);
1950 
1951 	/*
1952 	 * FIXME: do we need to worry about rq being invalidated by the
1953 	 * task_switch?
1954 	 */
1955 	post_schedule(rq);
1956 
1957 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1958 	/* In this case, finish_task_switch does not reenable preemption */
1959 	preempt_enable();
1960 #endif
1961 	if (current->set_child_tid)
1962 		put_user(task_pid_vnr(current), current->set_child_tid);
1963 }
1964 
1965 /*
1966  * context_switch - switch to the new MM and the new
1967  * thread's register state.
1968  */
1969 static inline void
1970 context_switch(struct rq *rq, struct task_struct *prev,
1971 	       struct task_struct *next)
1972 {
1973 	struct mm_struct *mm, *oldmm;
1974 
1975 	prepare_task_switch(rq, prev, next);
1976 
1977 	mm = next->mm;
1978 	oldmm = prev->active_mm;
1979 	/*
1980 	 * For paravirt, this is coupled with an exit in switch_to to
1981 	 * combine the page table reload and the switch backend into
1982 	 * one hypercall.
1983 	 */
1984 	arch_start_context_switch(prev);
1985 
1986 	if (!mm) {
1987 		next->active_mm = oldmm;
1988 		atomic_inc(&oldmm->mm_count);
1989 		enter_lazy_tlb(oldmm, next);
1990 	} else
1991 		switch_mm(oldmm, mm, next);
1992 
1993 	if (!prev->mm) {
1994 		prev->active_mm = NULL;
1995 		rq->prev_mm = oldmm;
1996 	}
1997 	/*
1998 	 * Since the runqueue lock will be released by the next
1999 	 * task (which is an invalid locking op but in the case
2000 	 * of the scheduler it's an obvious special-case), so we
2001 	 * do an early lockdep release here:
2002 	 */
2003 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2004 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2005 #endif
2006 
2007 	context_tracking_task_switch(prev, next);
2008 	/* Here we just switch the register state and the stack. */
2009 	switch_to(prev, next, prev);
2010 
2011 	barrier();
2012 	/*
2013 	 * this_rq must be evaluated again because prev may have moved
2014 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2015 	 * frame will be invalid.
2016 	 */
2017 	finish_task_switch(this_rq(), prev);
2018 }
2019 
2020 /*
2021  * nr_running and nr_context_switches:
2022  *
2023  * externally visible scheduler statistics: current number of runnable
2024  * threads, total number of context switches performed since bootup.
2025  */
2026 unsigned long nr_running(void)
2027 {
2028 	unsigned long i, sum = 0;
2029 
2030 	for_each_online_cpu(i)
2031 		sum += cpu_rq(i)->nr_running;
2032 
2033 	return sum;
2034 }
2035 
2036 unsigned long long nr_context_switches(void)
2037 {
2038 	int i;
2039 	unsigned long long sum = 0;
2040 
2041 	for_each_possible_cpu(i)
2042 		sum += cpu_rq(i)->nr_switches;
2043 
2044 	return sum;
2045 }
2046 
2047 unsigned long nr_iowait(void)
2048 {
2049 	unsigned long i, sum = 0;
2050 
2051 	for_each_possible_cpu(i)
2052 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2053 
2054 	return sum;
2055 }
2056 
2057 unsigned long nr_iowait_cpu(int cpu)
2058 {
2059 	struct rq *this = cpu_rq(cpu);
2060 	return atomic_read(&this->nr_iowait);
2061 }
2062 
2063 #ifdef CONFIG_SMP
2064 
2065 /*
2066  * sched_exec - execve() is a valuable balancing opportunity, because at
2067  * this point the task has the smallest effective memory and cache footprint.
2068  */
2069 void sched_exec(void)
2070 {
2071 	struct task_struct *p = current;
2072 	unsigned long flags;
2073 	int dest_cpu;
2074 
2075 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2076 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2077 	if (dest_cpu == smp_processor_id())
2078 		goto unlock;
2079 
2080 	if (likely(cpu_active(dest_cpu))) {
2081 		struct migration_arg arg = { p, dest_cpu };
2082 
2083 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2085 		return;
2086 	}
2087 unlock:
2088 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2089 }
2090 
2091 #endif
2092 
2093 DEFINE_PER_CPU(struct kernel_stat, kstat);
2094 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2095 
2096 EXPORT_PER_CPU_SYMBOL(kstat);
2097 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2098 
2099 /*
2100  * Return any ns on the sched_clock that have not yet been accounted in
2101  * @p in case that task is currently running.
2102  *
2103  * Called with task_rq_lock() held on @rq.
2104  */
2105 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2106 {
2107 	u64 ns = 0;
2108 
2109 	if (task_current(rq, p)) {
2110 		update_rq_clock(rq);
2111 		ns = rq_clock_task(rq) - p->se.exec_start;
2112 		if ((s64)ns < 0)
2113 			ns = 0;
2114 	}
2115 
2116 	return ns;
2117 }
2118 
2119 unsigned long long task_delta_exec(struct task_struct *p)
2120 {
2121 	unsigned long flags;
2122 	struct rq *rq;
2123 	u64 ns = 0;
2124 
2125 	rq = task_rq_lock(p, &flags);
2126 	ns = do_task_delta_exec(p, rq);
2127 	task_rq_unlock(rq, p, &flags);
2128 
2129 	return ns;
2130 }
2131 
2132 /*
2133  * Return accounted runtime for the task.
2134  * In case the task is currently running, return the runtime plus current's
2135  * pending runtime that have not been accounted yet.
2136  */
2137 unsigned long long task_sched_runtime(struct task_struct *p)
2138 {
2139 	unsigned long flags;
2140 	struct rq *rq;
2141 	u64 ns = 0;
2142 
2143 	rq = task_rq_lock(p, &flags);
2144 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2145 	task_rq_unlock(rq, p, &flags);
2146 
2147 	return ns;
2148 }
2149 
2150 /*
2151  * This function gets called by the timer code, with HZ frequency.
2152  * We call it with interrupts disabled.
2153  */
2154 void scheduler_tick(void)
2155 {
2156 	int cpu = smp_processor_id();
2157 	struct rq *rq = cpu_rq(cpu);
2158 	struct task_struct *curr = rq->curr;
2159 
2160 	sched_clock_tick();
2161 
2162 	raw_spin_lock(&rq->lock);
2163 	update_rq_clock(rq);
2164 	curr->sched_class->task_tick(rq, curr, 0);
2165 	update_cpu_load_active(rq);
2166 	raw_spin_unlock(&rq->lock);
2167 
2168 	perf_event_task_tick();
2169 
2170 #ifdef CONFIG_SMP
2171 	rq->idle_balance = idle_cpu(cpu);
2172 	trigger_load_balance(rq, cpu);
2173 #endif
2174 	rq_last_tick_reset(rq);
2175 }
2176 
2177 #ifdef CONFIG_NO_HZ_FULL
2178 /**
2179  * scheduler_tick_max_deferment
2180  *
2181  * Keep at least one tick per second when a single
2182  * active task is running because the scheduler doesn't
2183  * yet completely support full dynticks environment.
2184  *
2185  * This makes sure that uptime, CFS vruntime, load
2186  * balancing, etc... continue to move forward, even
2187  * with a very low granularity.
2188  *
2189  * Return: Maximum deferment in nanoseconds.
2190  */
2191 u64 scheduler_tick_max_deferment(void)
2192 {
2193 	struct rq *rq = this_rq();
2194 	unsigned long next, now = ACCESS_ONCE(jiffies);
2195 
2196 	next = rq->last_sched_tick + HZ;
2197 
2198 	if (time_before_eq(next, now))
2199 		return 0;
2200 
2201 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2202 }
2203 #endif
2204 
2205 notrace unsigned long get_parent_ip(unsigned long addr)
2206 {
2207 	if (in_lock_functions(addr)) {
2208 		addr = CALLER_ADDR2;
2209 		if (in_lock_functions(addr))
2210 			addr = CALLER_ADDR3;
2211 	}
2212 	return addr;
2213 }
2214 
2215 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2216 				defined(CONFIG_PREEMPT_TRACER))
2217 
2218 void __kprobes add_preempt_count(int val)
2219 {
2220 #ifdef CONFIG_DEBUG_PREEMPT
2221 	/*
2222 	 * Underflow?
2223 	 */
2224 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2225 		return;
2226 #endif
2227 	preempt_count() += val;
2228 #ifdef CONFIG_DEBUG_PREEMPT
2229 	/*
2230 	 * Spinlock count overflowing soon?
2231 	 */
2232 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2233 				PREEMPT_MASK - 10);
2234 #endif
2235 	if (preempt_count() == val)
2236 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2237 }
2238 EXPORT_SYMBOL(add_preempt_count);
2239 
2240 void __kprobes sub_preempt_count(int val)
2241 {
2242 #ifdef CONFIG_DEBUG_PREEMPT
2243 	/*
2244 	 * Underflow?
2245 	 */
2246 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2247 		return;
2248 	/*
2249 	 * Is the spinlock portion underflowing?
2250 	 */
2251 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2252 			!(preempt_count() & PREEMPT_MASK)))
2253 		return;
2254 #endif
2255 
2256 	if (preempt_count() == val)
2257 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2258 	preempt_count() -= val;
2259 }
2260 EXPORT_SYMBOL(sub_preempt_count);
2261 
2262 #endif
2263 
2264 /*
2265  * Print scheduling while atomic bug:
2266  */
2267 static noinline void __schedule_bug(struct task_struct *prev)
2268 {
2269 	if (oops_in_progress)
2270 		return;
2271 
2272 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2273 		prev->comm, prev->pid, preempt_count());
2274 
2275 	debug_show_held_locks(prev);
2276 	print_modules();
2277 	if (irqs_disabled())
2278 		print_irqtrace_events(prev);
2279 	dump_stack();
2280 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2281 }
2282 
2283 /*
2284  * Various schedule()-time debugging checks and statistics:
2285  */
2286 static inline void schedule_debug(struct task_struct *prev)
2287 {
2288 	/*
2289 	 * Test if we are atomic. Since do_exit() needs to call into
2290 	 * schedule() atomically, we ignore that path for now.
2291 	 * Otherwise, whine if we are scheduling when we should not be.
2292 	 */
2293 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2294 		__schedule_bug(prev);
2295 	rcu_sleep_check();
2296 
2297 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2298 
2299 	schedstat_inc(this_rq(), sched_count);
2300 }
2301 
2302 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2303 {
2304 	if (prev->on_rq || rq->skip_clock_update < 0)
2305 		update_rq_clock(rq);
2306 	prev->sched_class->put_prev_task(rq, prev);
2307 }
2308 
2309 /*
2310  * Pick up the highest-prio task:
2311  */
2312 static inline struct task_struct *
2313 pick_next_task(struct rq *rq)
2314 {
2315 	const struct sched_class *class;
2316 	struct task_struct *p;
2317 
2318 	/*
2319 	 * Optimization: we know that if all tasks are in
2320 	 * the fair class we can call that function directly:
2321 	 */
2322 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2323 		p = fair_sched_class.pick_next_task(rq);
2324 		if (likely(p))
2325 			return p;
2326 	}
2327 
2328 	for_each_class(class) {
2329 		p = class->pick_next_task(rq);
2330 		if (p)
2331 			return p;
2332 	}
2333 
2334 	BUG(); /* the idle class will always have a runnable task */
2335 }
2336 
2337 /*
2338  * __schedule() is the main scheduler function.
2339  *
2340  * The main means of driving the scheduler and thus entering this function are:
2341  *
2342  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2343  *
2344  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2345  *      paths. For example, see arch/x86/entry_64.S.
2346  *
2347  *      To drive preemption between tasks, the scheduler sets the flag in timer
2348  *      interrupt handler scheduler_tick().
2349  *
2350  *   3. Wakeups don't really cause entry into schedule(). They add a
2351  *      task to the run-queue and that's it.
2352  *
2353  *      Now, if the new task added to the run-queue preempts the current
2354  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2355  *      called on the nearest possible occasion:
2356  *
2357  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2358  *
2359  *         - in syscall or exception context, at the next outmost
2360  *           preempt_enable(). (this might be as soon as the wake_up()'s
2361  *           spin_unlock()!)
2362  *
2363  *         - in IRQ context, return from interrupt-handler to
2364  *           preemptible context
2365  *
2366  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2367  *         then at the next:
2368  *
2369  *          - cond_resched() call
2370  *          - explicit schedule() call
2371  *          - return from syscall or exception to user-space
2372  *          - return from interrupt-handler to user-space
2373  */
2374 static void __sched __schedule(void)
2375 {
2376 	struct task_struct *prev, *next;
2377 	unsigned long *switch_count;
2378 	struct rq *rq;
2379 	int cpu;
2380 
2381 need_resched:
2382 	preempt_disable();
2383 	cpu = smp_processor_id();
2384 	rq = cpu_rq(cpu);
2385 	rcu_note_context_switch(cpu);
2386 	prev = rq->curr;
2387 
2388 	schedule_debug(prev);
2389 
2390 	if (sched_feat(HRTICK))
2391 		hrtick_clear(rq);
2392 
2393 	/*
2394 	 * Make sure that signal_pending_state()->signal_pending() below
2395 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2396 	 * done by the caller to avoid the race with signal_wake_up().
2397 	 */
2398 	smp_mb__before_spinlock();
2399 	raw_spin_lock_irq(&rq->lock);
2400 
2401 	switch_count = &prev->nivcsw;
2402 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2403 		if (unlikely(signal_pending_state(prev->state, prev))) {
2404 			prev->state = TASK_RUNNING;
2405 		} else {
2406 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2407 			prev->on_rq = 0;
2408 
2409 			/*
2410 			 * If a worker went to sleep, notify and ask workqueue
2411 			 * whether it wants to wake up a task to maintain
2412 			 * concurrency.
2413 			 */
2414 			if (prev->flags & PF_WQ_WORKER) {
2415 				struct task_struct *to_wakeup;
2416 
2417 				to_wakeup = wq_worker_sleeping(prev, cpu);
2418 				if (to_wakeup)
2419 					try_to_wake_up_local(to_wakeup);
2420 			}
2421 		}
2422 		switch_count = &prev->nvcsw;
2423 	}
2424 
2425 	pre_schedule(rq, prev);
2426 
2427 	if (unlikely(!rq->nr_running))
2428 		idle_balance(cpu, rq);
2429 
2430 	put_prev_task(rq, prev);
2431 	next = pick_next_task(rq);
2432 	clear_tsk_need_resched(prev);
2433 	rq->skip_clock_update = 0;
2434 
2435 	if (likely(prev != next)) {
2436 		rq->nr_switches++;
2437 		rq->curr = next;
2438 		++*switch_count;
2439 
2440 		context_switch(rq, prev, next); /* unlocks the rq */
2441 		/*
2442 		 * The context switch have flipped the stack from under us
2443 		 * and restored the local variables which were saved when
2444 		 * this task called schedule() in the past. prev == current
2445 		 * is still correct, but it can be moved to another cpu/rq.
2446 		 */
2447 		cpu = smp_processor_id();
2448 		rq = cpu_rq(cpu);
2449 	} else
2450 		raw_spin_unlock_irq(&rq->lock);
2451 
2452 	post_schedule(rq);
2453 
2454 	sched_preempt_enable_no_resched();
2455 	if (need_resched())
2456 		goto need_resched;
2457 }
2458 
2459 static inline void sched_submit_work(struct task_struct *tsk)
2460 {
2461 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2462 		return;
2463 	/*
2464 	 * If we are going to sleep and we have plugged IO queued,
2465 	 * make sure to submit it to avoid deadlocks.
2466 	 */
2467 	if (blk_needs_flush_plug(tsk))
2468 		blk_schedule_flush_plug(tsk);
2469 }
2470 
2471 asmlinkage void __sched schedule(void)
2472 {
2473 	struct task_struct *tsk = current;
2474 
2475 	sched_submit_work(tsk);
2476 	__schedule();
2477 }
2478 EXPORT_SYMBOL(schedule);
2479 
2480 #ifdef CONFIG_CONTEXT_TRACKING
2481 asmlinkage void __sched schedule_user(void)
2482 {
2483 	/*
2484 	 * If we come here after a random call to set_need_resched(),
2485 	 * or we have been woken up remotely but the IPI has not yet arrived,
2486 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2487 	 * we find a better solution.
2488 	 */
2489 	user_exit();
2490 	schedule();
2491 	user_enter();
2492 }
2493 #endif
2494 
2495 /**
2496  * schedule_preempt_disabled - called with preemption disabled
2497  *
2498  * Returns with preemption disabled. Note: preempt_count must be 1
2499  */
2500 void __sched schedule_preempt_disabled(void)
2501 {
2502 	sched_preempt_enable_no_resched();
2503 	schedule();
2504 	preempt_disable();
2505 }
2506 
2507 #ifdef CONFIG_PREEMPT
2508 /*
2509  * this is the entry point to schedule() from in-kernel preemption
2510  * off of preempt_enable. Kernel preemptions off return from interrupt
2511  * occur there and call schedule directly.
2512  */
2513 asmlinkage void __sched notrace preempt_schedule(void)
2514 {
2515 	/*
2516 	 * If there is a non-zero preempt_count or interrupts are disabled,
2517 	 * we do not want to preempt the current task. Just return..
2518 	 */
2519 	if (likely(!preemptible()))
2520 		return;
2521 
2522 	do {
2523 		add_preempt_count_notrace(PREEMPT_ACTIVE);
2524 		__schedule();
2525 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2526 
2527 		/*
2528 		 * Check again in case we missed a preemption opportunity
2529 		 * between schedule and now.
2530 		 */
2531 		barrier();
2532 	} while (need_resched());
2533 }
2534 EXPORT_SYMBOL(preempt_schedule);
2535 
2536 /*
2537  * this is the entry point to schedule() from kernel preemption
2538  * off of irq context.
2539  * Note, that this is called and return with irqs disabled. This will
2540  * protect us against recursive calling from irq.
2541  */
2542 asmlinkage void __sched preempt_schedule_irq(void)
2543 {
2544 	struct thread_info *ti = current_thread_info();
2545 	enum ctx_state prev_state;
2546 
2547 	/* Catch callers which need to be fixed */
2548 	BUG_ON(ti->preempt_count || !irqs_disabled());
2549 
2550 	prev_state = exception_enter();
2551 
2552 	do {
2553 		add_preempt_count(PREEMPT_ACTIVE);
2554 		local_irq_enable();
2555 		__schedule();
2556 		local_irq_disable();
2557 		sub_preempt_count(PREEMPT_ACTIVE);
2558 
2559 		/*
2560 		 * Check again in case we missed a preemption opportunity
2561 		 * between schedule and now.
2562 		 */
2563 		barrier();
2564 	} while (need_resched());
2565 
2566 	exception_exit(prev_state);
2567 }
2568 
2569 #endif /* CONFIG_PREEMPT */
2570 
2571 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2572 			  void *key)
2573 {
2574 	return try_to_wake_up(curr->private, mode, wake_flags);
2575 }
2576 EXPORT_SYMBOL(default_wake_function);
2577 
2578 /*
2579  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2580  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2581  * number) then we wake all the non-exclusive tasks and one exclusive task.
2582  *
2583  * There are circumstances in which we can try to wake a task which has already
2584  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2585  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2586  */
2587 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2588 			int nr_exclusive, int wake_flags, void *key)
2589 {
2590 	wait_queue_t *curr, *next;
2591 
2592 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2593 		unsigned flags = curr->flags;
2594 
2595 		if (curr->func(curr, mode, wake_flags, key) &&
2596 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2597 			break;
2598 	}
2599 }
2600 
2601 /**
2602  * __wake_up - wake up threads blocked on a waitqueue.
2603  * @q: the waitqueue
2604  * @mode: which threads
2605  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2606  * @key: is directly passed to the wakeup function
2607  *
2608  * It may be assumed that this function implies a write memory barrier before
2609  * changing the task state if and only if any tasks are woken up.
2610  */
2611 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2612 			int nr_exclusive, void *key)
2613 {
2614 	unsigned long flags;
2615 
2616 	spin_lock_irqsave(&q->lock, flags);
2617 	__wake_up_common(q, mode, nr_exclusive, 0, key);
2618 	spin_unlock_irqrestore(&q->lock, flags);
2619 }
2620 EXPORT_SYMBOL(__wake_up);
2621 
2622 /*
2623  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2624  */
2625 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2626 {
2627 	__wake_up_common(q, mode, nr, 0, NULL);
2628 }
2629 EXPORT_SYMBOL_GPL(__wake_up_locked);
2630 
2631 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2632 {
2633 	__wake_up_common(q, mode, 1, 0, key);
2634 }
2635 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636 
2637 /**
2638  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2639  * @q: the waitqueue
2640  * @mode: which threads
2641  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2642  * @key: opaque value to be passed to wakeup targets
2643  *
2644  * The sync wakeup differs that the waker knows that it will schedule
2645  * away soon, so while the target thread will be woken up, it will not
2646  * be migrated to another CPU - ie. the two threads are 'synchronized'
2647  * with each other. This can prevent needless bouncing between CPUs.
2648  *
2649  * On UP it can prevent extra preemption.
2650  *
2651  * It may be assumed that this function implies a write memory barrier before
2652  * changing the task state if and only if any tasks are woken up.
2653  */
2654 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2655 			int nr_exclusive, void *key)
2656 {
2657 	unsigned long flags;
2658 	int wake_flags = WF_SYNC;
2659 
2660 	if (unlikely(!q))
2661 		return;
2662 
2663 	if (unlikely(nr_exclusive != 1))
2664 		wake_flags = 0;
2665 
2666 	spin_lock_irqsave(&q->lock, flags);
2667 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2668 	spin_unlock_irqrestore(&q->lock, flags);
2669 }
2670 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671 
2672 /*
2673  * __wake_up_sync - see __wake_up_sync_key()
2674  */
2675 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2676 {
2677 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2678 }
2679 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2680 
2681 /**
2682  * complete: - signals a single thread waiting on this completion
2683  * @x:  holds the state of this particular completion
2684  *
2685  * This will wake up a single thread waiting on this completion. Threads will be
2686  * awakened in the same order in which they were queued.
2687  *
2688  * See also complete_all(), wait_for_completion() and related routines.
2689  *
2690  * It may be assumed that this function implies a write memory barrier before
2691  * changing the task state if and only if any tasks are woken up.
2692  */
2693 void complete(struct completion *x)
2694 {
2695 	unsigned long flags;
2696 
2697 	spin_lock_irqsave(&x->wait.lock, flags);
2698 	x->done++;
2699 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2700 	spin_unlock_irqrestore(&x->wait.lock, flags);
2701 }
2702 EXPORT_SYMBOL(complete);
2703 
2704 /**
2705  * complete_all: - signals all threads waiting on this completion
2706  * @x:  holds the state of this particular completion
2707  *
2708  * This will wake up all threads waiting on this particular completion event.
2709  *
2710  * It may be assumed that this function implies a write memory barrier before
2711  * changing the task state if and only if any tasks are woken up.
2712  */
2713 void complete_all(struct completion *x)
2714 {
2715 	unsigned long flags;
2716 
2717 	spin_lock_irqsave(&x->wait.lock, flags);
2718 	x->done += UINT_MAX/2;
2719 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2720 	spin_unlock_irqrestore(&x->wait.lock, flags);
2721 }
2722 EXPORT_SYMBOL(complete_all);
2723 
2724 static inline long __sched
2725 do_wait_for_common(struct completion *x,
2726 		   long (*action)(long), long timeout, int state)
2727 {
2728 	if (!x->done) {
2729 		DECLARE_WAITQUEUE(wait, current);
2730 
2731 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2732 		do {
2733 			if (signal_pending_state(state, current)) {
2734 				timeout = -ERESTARTSYS;
2735 				break;
2736 			}
2737 			__set_current_state(state);
2738 			spin_unlock_irq(&x->wait.lock);
2739 			timeout = action(timeout);
2740 			spin_lock_irq(&x->wait.lock);
2741 		} while (!x->done && timeout);
2742 		__remove_wait_queue(&x->wait, &wait);
2743 		if (!x->done)
2744 			return timeout;
2745 	}
2746 	x->done--;
2747 	return timeout ?: 1;
2748 }
2749 
2750 static inline long __sched
2751 __wait_for_common(struct completion *x,
2752 		  long (*action)(long), long timeout, int state)
2753 {
2754 	might_sleep();
2755 
2756 	spin_lock_irq(&x->wait.lock);
2757 	timeout = do_wait_for_common(x, action, timeout, state);
2758 	spin_unlock_irq(&x->wait.lock);
2759 	return timeout;
2760 }
2761 
2762 static long __sched
2763 wait_for_common(struct completion *x, long timeout, int state)
2764 {
2765 	return __wait_for_common(x, schedule_timeout, timeout, state);
2766 }
2767 
2768 static long __sched
2769 wait_for_common_io(struct completion *x, long timeout, int state)
2770 {
2771 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2772 }
2773 
2774 /**
2775  * wait_for_completion: - waits for completion of a task
2776  * @x:  holds the state of this particular completion
2777  *
2778  * This waits to be signaled for completion of a specific task. It is NOT
2779  * interruptible and there is no timeout.
2780  *
2781  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2782  * and interrupt capability. Also see complete().
2783  */
2784 void __sched wait_for_completion(struct completion *x)
2785 {
2786 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2787 }
2788 EXPORT_SYMBOL(wait_for_completion);
2789 
2790 /**
2791  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2792  * @x:  holds the state of this particular completion
2793  * @timeout:  timeout value in jiffies
2794  *
2795  * This waits for either a completion of a specific task to be signaled or for a
2796  * specified timeout to expire. The timeout is in jiffies. It is not
2797  * interruptible.
2798  *
2799  * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2800  * till timeout) if completed.
2801  */
2802 unsigned long __sched
2803 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2804 {
2805 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2806 }
2807 EXPORT_SYMBOL(wait_for_completion_timeout);
2808 
2809 /**
2810  * wait_for_completion_io: - waits for completion of a task
2811  * @x:  holds the state of this particular completion
2812  *
2813  * This waits to be signaled for completion of a specific task. It is NOT
2814  * interruptible and there is no timeout. The caller is accounted as waiting
2815  * for IO.
2816  */
2817 void __sched wait_for_completion_io(struct completion *x)
2818 {
2819 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2820 }
2821 EXPORT_SYMBOL(wait_for_completion_io);
2822 
2823 /**
2824  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2825  * @x:  holds the state of this particular completion
2826  * @timeout:  timeout value in jiffies
2827  *
2828  * This waits for either a completion of a specific task to be signaled or for a
2829  * specified timeout to expire. The timeout is in jiffies. It is not
2830  * interruptible. The caller is accounted as waiting for IO.
2831  *
2832  * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2833  * till timeout) if completed.
2834  */
2835 unsigned long __sched
2836 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2837 {
2838 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2839 }
2840 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841 
2842 /**
2843  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2844  * @x:  holds the state of this particular completion
2845  *
2846  * This waits for completion of a specific task to be signaled. It is
2847  * interruptible.
2848  *
2849  * Return: -ERESTARTSYS if interrupted, 0 if completed.
2850  */
2851 int __sched wait_for_completion_interruptible(struct completion *x)
2852 {
2853 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2854 	if (t == -ERESTARTSYS)
2855 		return t;
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(wait_for_completion_interruptible);
2859 
2860 /**
2861  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2862  * @x:  holds the state of this particular completion
2863  * @timeout:  timeout value in jiffies
2864  *
2865  * This waits for either a completion of a specific task to be signaled or for a
2866  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2867  *
2868  * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2869  * or number of jiffies left till timeout) if completed.
2870  */
2871 long __sched
2872 wait_for_completion_interruptible_timeout(struct completion *x,
2873 					  unsigned long timeout)
2874 {
2875 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2876 }
2877 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2878 
2879 /**
2880  * wait_for_completion_killable: - waits for completion of a task (killable)
2881  * @x:  holds the state of this particular completion
2882  *
2883  * This waits to be signaled for completion of a specific task. It can be
2884  * interrupted by a kill signal.
2885  *
2886  * Return: -ERESTARTSYS if interrupted, 0 if completed.
2887  */
2888 int __sched wait_for_completion_killable(struct completion *x)
2889 {
2890 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2891 	if (t == -ERESTARTSYS)
2892 		return t;
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(wait_for_completion_killable);
2896 
2897 /**
2898  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2899  * @x:  holds the state of this particular completion
2900  * @timeout:  timeout value in jiffies
2901  *
2902  * This waits for either a completion of a specific task to be
2903  * signaled or for a specified timeout to expire. It can be
2904  * interrupted by a kill signal. The timeout is in jiffies.
2905  *
2906  * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2907  * or number of jiffies left till timeout) if completed.
2908  */
2909 long __sched
2910 wait_for_completion_killable_timeout(struct completion *x,
2911 				     unsigned long timeout)
2912 {
2913 	return wait_for_common(x, timeout, TASK_KILLABLE);
2914 }
2915 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916 
2917 /**
2918  *	try_wait_for_completion - try to decrement a completion without blocking
2919  *	@x:	completion structure
2920  *
2921  *	Return: 0 if a decrement cannot be done without blocking
2922  *		 1 if a decrement succeeded.
2923  *
2924  *	If a completion is being used as a counting completion,
2925  *	attempt to decrement the counter without blocking. This
2926  *	enables us to avoid waiting if the resource the completion
2927  *	is protecting is not available.
2928  */
2929 bool try_wait_for_completion(struct completion *x)
2930 {
2931 	unsigned long flags;
2932 	int ret = 1;
2933 
2934 	spin_lock_irqsave(&x->wait.lock, flags);
2935 	if (!x->done)
2936 		ret = 0;
2937 	else
2938 		x->done--;
2939 	spin_unlock_irqrestore(&x->wait.lock, flags);
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL(try_wait_for_completion);
2943 
2944 /**
2945  *	completion_done - Test to see if a completion has any waiters
2946  *	@x:	completion structure
2947  *
2948  *	Return: 0 if there are waiters (wait_for_completion() in progress)
2949  *		 1 if there are no waiters.
2950  *
2951  */
2952 bool completion_done(struct completion *x)
2953 {
2954 	unsigned long flags;
2955 	int ret = 1;
2956 
2957 	spin_lock_irqsave(&x->wait.lock, flags);
2958 	if (!x->done)
2959 		ret = 0;
2960 	spin_unlock_irqrestore(&x->wait.lock, flags);
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL(completion_done);
2964 
2965 static long __sched
2966 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2967 {
2968 	unsigned long flags;
2969 	wait_queue_t wait;
2970 
2971 	init_waitqueue_entry(&wait, current);
2972 
2973 	__set_current_state(state);
2974 
2975 	spin_lock_irqsave(&q->lock, flags);
2976 	__add_wait_queue(q, &wait);
2977 	spin_unlock(&q->lock);
2978 	timeout = schedule_timeout(timeout);
2979 	spin_lock_irq(&q->lock);
2980 	__remove_wait_queue(q, &wait);
2981 	spin_unlock_irqrestore(&q->lock, flags);
2982 
2983 	return timeout;
2984 }
2985 
2986 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2987 {
2988 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2989 }
2990 EXPORT_SYMBOL(interruptible_sleep_on);
2991 
2992 long __sched
2993 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2994 {
2995 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2996 }
2997 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2998 
2999 void __sched sleep_on(wait_queue_head_t *q)
3000 {
3001 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3002 }
3003 EXPORT_SYMBOL(sleep_on);
3004 
3005 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3006 {
3007 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3008 }
3009 EXPORT_SYMBOL(sleep_on_timeout);
3010 
3011 #ifdef CONFIG_RT_MUTEXES
3012 
3013 /*
3014  * rt_mutex_setprio - set the current priority of a task
3015  * @p: task
3016  * @prio: prio value (kernel-internal form)
3017  *
3018  * This function changes the 'effective' priority of a task. It does
3019  * not touch ->normal_prio like __setscheduler().
3020  *
3021  * Used by the rt_mutex code to implement priority inheritance logic.
3022  */
3023 void rt_mutex_setprio(struct task_struct *p, int prio)
3024 {
3025 	int oldprio, on_rq, running;
3026 	struct rq *rq;
3027 	const struct sched_class *prev_class;
3028 
3029 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3030 
3031 	rq = __task_rq_lock(p);
3032 
3033 	/*
3034 	 * Idle task boosting is a nono in general. There is one
3035 	 * exception, when PREEMPT_RT and NOHZ is active:
3036 	 *
3037 	 * The idle task calls get_next_timer_interrupt() and holds
3038 	 * the timer wheel base->lock on the CPU and another CPU wants
3039 	 * to access the timer (probably to cancel it). We can safely
3040 	 * ignore the boosting request, as the idle CPU runs this code
3041 	 * with interrupts disabled and will complete the lock
3042 	 * protected section without being interrupted. So there is no
3043 	 * real need to boost.
3044 	 */
3045 	if (unlikely(p == rq->idle)) {
3046 		WARN_ON(p != rq->curr);
3047 		WARN_ON(p->pi_blocked_on);
3048 		goto out_unlock;
3049 	}
3050 
3051 	trace_sched_pi_setprio(p, prio);
3052 	oldprio = p->prio;
3053 	prev_class = p->sched_class;
3054 	on_rq = p->on_rq;
3055 	running = task_current(rq, p);
3056 	if (on_rq)
3057 		dequeue_task(rq, p, 0);
3058 	if (running)
3059 		p->sched_class->put_prev_task(rq, p);
3060 
3061 	if (rt_prio(prio))
3062 		p->sched_class = &rt_sched_class;
3063 	else
3064 		p->sched_class = &fair_sched_class;
3065 
3066 	p->prio = prio;
3067 
3068 	if (running)
3069 		p->sched_class->set_curr_task(rq);
3070 	if (on_rq)
3071 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3072 
3073 	check_class_changed(rq, p, prev_class, oldprio);
3074 out_unlock:
3075 	__task_rq_unlock(rq);
3076 }
3077 #endif
3078 void set_user_nice(struct task_struct *p, long nice)
3079 {
3080 	int old_prio, delta, on_rq;
3081 	unsigned long flags;
3082 	struct rq *rq;
3083 
3084 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085 		return;
3086 	/*
3087 	 * We have to be careful, if called from sys_setpriority(),
3088 	 * the task might be in the middle of scheduling on another CPU.
3089 	 */
3090 	rq = task_rq_lock(p, &flags);
3091 	/*
3092 	 * The RT priorities are set via sched_setscheduler(), but we still
3093 	 * allow the 'normal' nice value to be set - but as expected
3094 	 * it wont have any effect on scheduling until the task is
3095 	 * SCHED_FIFO/SCHED_RR:
3096 	 */
3097 	if (task_has_rt_policy(p)) {
3098 		p->static_prio = NICE_TO_PRIO(nice);
3099 		goto out_unlock;
3100 	}
3101 	on_rq = p->on_rq;
3102 	if (on_rq)
3103 		dequeue_task(rq, p, 0);
3104 
3105 	p->static_prio = NICE_TO_PRIO(nice);
3106 	set_load_weight(p);
3107 	old_prio = p->prio;
3108 	p->prio = effective_prio(p);
3109 	delta = p->prio - old_prio;
3110 
3111 	if (on_rq) {
3112 		enqueue_task(rq, p, 0);
3113 		/*
3114 		 * If the task increased its priority or is running and
3115 		 * lowered its priority, then reschedule its CPU:
3116 		 */
3117 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3118 			resched_task(rq->curr);
3119 	}
3120 out_unlock:
3121 	task_rq_unlock(rq, p, &flags);
3122 }
3123 EXPORT_SYMBOL(set_user_nice);
3124 
3125 /*
3126  * can_nice - check if a task can reduce its nice value
3127  * @p: task
3128  * @nice: nice value
3129  */
3130 int can_nice(const struct task_struct *p, const int nice)
3131 {
3132 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3133 	int nice_rlim = 20 - nice;
3134 
3135 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3136 		capable(CAP_SYS_NICE));
3137 }
3138 
3139 #ifdef __ARCH_WANT_SYS_NICE
3140 
3141 /*
3142  * sys_nice - change the priority of the current process.
3143  * @increment: priority increment
3144  *
3145  * sys_setpriority is a more generic, but much slower function that
3146  * does similar things.
3147  */
3148 SYSCALL_DEFINE1(nice, int, increment)
3149 {
3150 	long nice, retval;
3151 
3152 	/*
3153 	 * Setpriority might change our priority at the same moment.
3154 	 * We don't have to worry. Conceptually one call occurs first
3155 	 * and we have a single winner.
3156 	 */
3157 	if (increment < -40)
3158 		increment = -40;
3159 	if (increment > 40)
3160 		increment = 40;
3161 
3162 	nice = TASK_NICE(current) + increment;
3163 	if (nice < -20)
3164 		nice = -20;
3165 	if (nice > 19)
3166 		nice = 19;
3167 
3168 	if (increment < 0 && !can_nice(current, nice))
3169 		return -EPERM;
3170 
3171 	retval = security_task_setnice(current, nice);
3172 	if (retval)
3173 		return retval;
3174 
3175 	set_user_nice(current, nice);
3176 	return 0;
3177 }
3178 
3179 #endif
3180 
3181 /**
3182  * task_prio - return the priority value of a given task.
3183  * @p: the task in question.
3184  *
3185  * Return: The priority value as seen by users in /proc.
3186  * RT tasks are offset by -200. Normal tasks are centered
3187  * around 0, value goes from -16 to +15.
3188  */
3189 int task_prio(const struct task_struct *p)
3190 {
3191 	return p->prio - MAX_RT_PRIO;
3192 }
3193 
3194 /**
3195  * task_nice - return the nice value of a given task.
3196  * @p: the task in question.
3197  *
3198  * Return: The nice value [ -20 ... 0 ... 19 ].
3199  */
3200 int task_nice(const struct task_struct *p)
3201 {
3202 	return TASK_NICE(p);
3203 }
3204 EXPORT_SYMBOL(task_nice);
3205 
3206 /**
3207  * idle_cpu - is a given cpu idle currently?
3208  * @cpu: the processor in question.
3209  *
3210  * Return: 1 if the CPU is currently idle. 0 otherwise.
3211  */
3212 int idle_cpu(int cpu)
3213 {
3214 	struct rq *rq = cpu_rq(cpu);
3215 
3216 	if (rq->curr != rq->idle)
3217 		return 0;
3218 
3219 	if (rq->nr_running)
3220 		return 0;
3221 
3222 #ifdef CONFIG_SMP
3223 	if (!llist_empty(&rq->wake_list))
3224 		return 0;
3225 #endif
3226 
3227 	return 1;
3228 }
3229 
3230 /**
3231  * idle_task - return the idle task for a given cpu.
3232  * @cpu: the processor in question.
3233  *
3234  * Return: The idle task for the cpu @cpu.
3235  */
3236 struct task_struct *idle_task(int cpu)
3237 {
3238 	return cpu_rq(cpu)->idle;
3239 }
3240 
3241 /**
3242  * find_process_by_pid - find a process with a matching PID value.
3243  * @pid: the pid in question.
3244  *
3245  * The task of @pid, if found. %NULL otherwise.
3246  */
3247 static struct task_struct *find_process_by_pid(pid_t pid)
3248 {
3249 	return pid ? find_task_by_vpid(pid) : current;
3250 }
3251 
3252 /* Actually do priority change: must hold rq lock. */
3253 static void
3254 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3255 {
3256 	p->policy = policy;
3257 	p->rt_priority = prio;
3258 	p->normal_prio = normal_prio(p);
3259 	/* we are holding p->pi_lock already */
3260 	p->prio = rt_mutex_getprio(p);
3261 	if (rt_prio(p->prio))
3262 		p->sched_class = &rt_sched_class;
3263 	else
3264 		p->sched_class = &fair_sched_class;
3265 	set_load_weight(p);
3266 }
3267 
3268 /*
3269  * check the target process has a UID that matches the current process's
3270  */
3271 static bool check_same_owner(struct task_struct *p)
3272 {
3273 	const struct cred *cred = current_cred(), *pcred;
3274 	bool match;
3275 
3276 	rcu_read_lock();
3277 	pcred = __task_cred(p);
3278 	match = (uid_eq(cred->euid, pcred->euid) ||
3279 		 uid_eq(cred->euid, pcred->uid));
3280 	rcu_read_unlock();
3281 	return match;
3282 }
3283 
3284 static int __sched_setscheduler(struct task_struct *p, int policy,
3285 				const struct sched_param *param, bool user)
3286 {
3287 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3288 	unsigned long flags;
3289 	const struct sched_class *prev_class;
3290 	struct rq *rq;
3291 	int reset_on_fork;
3292 
3293 	/* may grab non-irq protected spin_locks */
3294 	BUG_ON(in_interrupt());
3295 recheck:
3296 	/* double check policy once rq lock held */
3297 	if (policy < 0) {
3298 		reset_on_fork = p->sched_reset_on_fork;
3299 		policy = oldpolicy = p->policy;
3300 	} else {
3301 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3302 		policy &= ~SCHED_RESET_ON_FORK;
3303 
3304 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3305 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3306 				policy != SCHED_IDLE)
3307 			return -EINVAL;
3308 	}
3309 
3310 	/*
3311 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3312 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3313 	 * SCHED_BATCH and SCHED_IDLE is 0.
3314 	 */
3315 	if (param->sched_priority < 0 ||
3316 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3317 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3318 		return -EINVAL;
3319 	if (rt_policy(policy) != (param->sched_priority != 0))
3320 		return -EINVAL;
3321 
3322 	/*
3323 	 * Allow unprivileged RT tasks to decrease priority:
3324 	 */
3325 	if (user && !capable(CAP_SYS_NICE)) {
3326 		if (rt_policy(policy)) {
3327 			unsigned long rlim_rtprio =
3328 					task_rlimit(p, RLIMIT_RTPRIO);
3329 
3330 			/* can't set/change the rt policy */
3331 			if (policy != p->policy && !rlim_rtprio)
3332 				return -EPERM;
3333 
3334 			/* can't increase priority */
3335 			if (param->sched_priority > p->rt_priority &&
3336 			    param->sched_priority > rlim_rtprio)
3337 				return -EPERM;
3338 		}
3339 
3340 		/*
3341 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3342 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3343 		 */
3344 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3345 			if (!can_nice(p, TASK_NICE(p)))
3346 				return -EPERM;
3347 		}
3348 
3349 		/* can't change other user's priorities */
3350 		if (!check_same_owner(p))
3351 			return -EPERM;
3352 
3353 		/* Normal users shall not reset the sched_reset_on_fork flag */
3354 		if (p->sched_reset_on_fork && !reset_on_fork)
3355 			return -EPERM;
3356 	}
3357 
3358 	if (user) {
3359 		retval = security_task_setscheduler(p);
3360 		if (retval)
3361 			return retval;
3362 	}
3363 
3364 	/*
3365 	 * make sure no PI-waiters arrive (or leave) while we are
3366 	 * changing the priority of the task:
3367 	 *
3368 	 * To be able to change p->policy safely, the appropriate
3369 	 * runqueue lock must be held.
3370 	 */
3371 	rq = task_rq_lock(p, &flags);
3372 
3373 	/*
3374 	 * Changing the policy of the stop threads its a very bad idea
3375 	 */
3376 	if (p == rq->stop) {
3377 		task_rq_unlock(rq, p, &flags);
3378 		return -EINVAL;
3379 	}
3380 
3381 	/*
3382 	 * If not changing anything there's no need to proceed further:
3383 	 */
3384 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3385 			param->sched_priority == p->rt_priority))) {
3386 		task_rq_unlock(rq, p, &flags);
3387 		return 0;
3388 	}
3389 
3390 #ifdef CONFIG_RT_GROUP_SCHED
3391 	if (user) {
3392 		/*
3393 		 * Do not allow realtime tasks into groups that have no runtime
3394 		 * assigned.
3395 		 */
3396 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3397 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3398 				!task_group_is_autogroup(task_group(p))) {
3399 			task_rq_unlock(rq, p, &flags);
3400 			return -EPERM;
3401 		}
3402 	}
3403 #endif
3404 
3405 	/* recheck policy now with rq lock held */
3406 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3407 		policy = oldpolicy = -1;
3408 		task_rq_unlock(rq, p, &flags);
3409 		goto recheck;
3410 	}
3411 	on_rq = p->on_rq;
3412 	running = task_current(rq, p);
3413 	if (on_rq)
3414 		dequeue_task(rq, p, 0);
3415 	if (running)
3416 		p->sched_class->put_prev_task(rq, p);
3417 
3418 	p->sched_reset_on_fork = reset_on_fork;
3419 
3420 	oldprio = p->prio;
3421 	prev_class = p->sched_class;
3422 	__setscheduler(rq, p, policy, param->sched_priority);
3423 
3424 	if (running)
3425 		p->sched_class->set_curr_task(rq);
3426 	if (on_rq)
3427 		enqueue_task(rq, p, 0);
3428 
3429 	check_class_changed(rq, p, prev_class, oldprio);
3430 	task_rq_unlock(rq, p, &flags);
3431 
3432 	rt_mutex_adjust_pi(p);
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3439  * @p: the task in question.
3440  * @policy: new policy.
3441  * @param: structure containing the new RT priority.
3442  *
3443  * Return: 0 on success. An error code otherwise.
3444  *
3445  * NOTE that the task may be already dead.
3446  */
3447 int sched_setscheduler(struct task_struct *p, int policy,
3448 		       const struct sched_param *param)
3449 {
3450 	return __sched_setscheduler(p, policy, param, true);
3451 }
3452 EXPORT_SYMBOL_GPL(sched_setscheduler);
3453 
3454 /**
3455  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3456  * @p: the task in question.
3457  * @policy: new policy.
3458  * @param: structure containing the new RT priority.
3459  *
3460  * Just like sched_setscheduler, only don't bother checking if the
3461  * current context has permission.  For example, this is needed in
3462  * stop_machine(): we create temporary high priority worker threads,
3463  * but our caller might not have that capability.
3464  *
3465  * Return: 0 on success. An error code otherwise.
3466  */
3467 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3468 			       const struct sched_param *param)
3469 {
3470 	return __sched_setscheduler(p, policy, param, false);
3471 }
3472 
3473 static int
3474 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3475 {
3476 	struct sched_param lparam;
3477 	struct task_struct *p;
3478 	int retval;
3479 
3480 	if (!param || pid < 0)
3481 		return -EINVAL;
3482 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3483 		return -EFAULT;
3484 
3485 	rcu_read_lock();
3486 	retval = -ESRCH;
3487 	p = find_process_by_pid(pid);
3488 	if (p != NULL)
3489 		retval = sched_setscheduler(p, policy, &lparam);
3490 	rcu_read_unlock();
3491 
3492 	return retval;
3493 }
3494 
3495 /**
3496  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3497  * @pid: the pid in question.
3498  * @policy: new policy.
3499  * @param: structure containing the new RT priority.
3500  *
3501  * Return: 0 on success. An error code otherwise.
3502  */
3503 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3504 		struct sched_param __user *, param)
3505 {
3506 	/* negative values for policy are not valid */
3507 	if (policy < 0)
3508 		return -EINVAL;
3509 
3510 	return do_sched_setscheduler(pid, policy, param);
3511 }
3512 
3513 /**
3514  * sys_sched_setparam - set/change the RT priority of a thread
3515  * @pid: the pid in question.
3516  * @param: structure containing the new RT priority.
3517  *
3518  * Return: 0 on success. An error code otherwise.
3519  */
3520 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3521 {
3522 	return do_sched_setscheduler(pid, -1, param);
3523 }
3524 
3525 /**
3526  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3527  * @pid: the pid in question.
3528  *
3529  * Return: On success, the policy of the thread. Otherwise, a negative error
3530  * code.
3531  */
3532 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3533 {
3534 	struct task_struct *p;
3535 	int retval;
3536 
3537 	if (pid < 0)
3538 		return -EINVAL;
3539 
3540 	retval = -ESRCH;
3541 	rcu_read_lock();
3542 	p = find_process_by_pid(pid);
3543 	if (p) {
3544 		retval = security_task_getscheduler(p);
3545 		if (!retval)
3546 			retval = p->policy
3547 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3548 	}
3549 	rcu_read_unlock();
3550 	return retval;
3551 }
3552 
3553 /**
3554  * sys_sched_getparam - get the RT priority of a thread
3555  * @pid: the pid in question.
3556  * @param: structure containing the RT priority.
3557  *
3558  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3559  * code.
3560  */
3561 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3562 {
3563 	struct sched_param lp;
3564 	struct task_struct *p;
3565 	int retval;
3566 
3567 	if (!param || pid < 0)
3568 		return -EINVAL;
3569 
3570 	rcu_read_lock();
3571 	p = find_process_by_pid(pid);
3572 	retval = -ESRCH;
3573 	if (!p)
3574 		goto out_unlock;
3575 
3576 	retval = security_task_getscheduler(p);
3577 	if (retval)
3578 		goto out_unlock;
3579 
3580 	lp.sched_priority = p->rt_priority;
3581 	rcu_read_unlock();
3582 
3583 	/*
3584 	 * This one might sleep, we cannot do it with a spinlock held ...
3585 	 */
3586 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3587 
3588 	return retval;
3589 
3590 out_unlock:
3591 	rcu_read_unlock();
3592 	return retval;
3593 }
3594 
3595 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3596 {
3597 	cpumask_var_t cpus_allowed, new_mask;
3598 	struct task_struct *p;
3599 	int retval;
3600 
3601 	get_online_cpus();
3602 	rcu_read_lock();
3603 
3604 	p = find_process_by_pid(pid);
3605 	if (!p) {
3606 		rcu_read_unlock();
3607 		put_online_cpus();
3608 		return -ESRCH;
3609 	}
3610 
3611 	/* Prevent p going away */
3612 	get_task_struct(p);
3613 	rcu_read_unlock();
3614 
3615 	if (p->flags & PF_NO_SETAFFINITY) {
3616 		retval = -EINVAL;
3617 		goto out_put_task;
3618 	}
3619 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3620 		retval = -ENOMEM;
3621 		goto out_put_task;
3622 	}
3623 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3624 		retval = -ENOMEM;
3625 		goto out_free_cpus_allowed;
3626 	}
3627 	retval = -EPERM;
3628 	if (!check_same_owner(p)) {
3629 		rcu_read_lock();
3630 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3631 			rcu_read_unlock();
3632 			goto out_unlock;
3633 		}
3634 		rcu_read_unlock();
3635 	}
3636 
3637 	retval = security_task_setscheduler(p);
3638 	if (retval)
3639 		goto out_unlock;
3640 
3641 	cpuset_cpus_allowed(p, cpus_allowed);
3642 	cpumask_and(new_mask, in_mask, cpus_allowed);
3643 again:
3644 	retval = set_cpus_allowed_ptr(p, new_mask);
3645 
3646 	if (!retval) {
3647 		cpuset_cpus_allowed(p, cpus_allowed);
3648 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3649 			/*
3650 			 * We must have raced with a concurrent cpuset
3651 			 * update. Just reset the cpus_allowed to the
3652 			 * cpuset's cpus_allowed
3653 			 */
3654 			cpumask_copy(new_mask, cpus_allowed);
3655 			goto again;
3656 		}
3657 	}
3658 out_unlock:
3659 	free_cpumask_var(new_mask);
3660 out_free_cpus_allowed:
3661 	free_cpumask_var(cpus_allowed);
3662 out_put_task:
3663 	put_task_struct(p);
3664 	put_online_cpus();
3665 	return retval;
3666 }
3667 
3668 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3669 			     struct cpumask *new_mask)
3670 {
3671 	if (len < cpumask_size())
3672 		cpumask_clear(new_mask);
3673 	else if (len > cpumask_size())
3674 		len = cpumask_size();
3675 
3676 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3677 }
3678 
3679 /**
3680  * sys_sched_setaffinity - set the cpu affinity of a process
3681  * @pid: pid of the process
3682  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3683  * @user_mask_ptr: user-space pointer to the new cpu mask
3684  *
3685  * Return: 0 on success. An error code otherwise.
3686  */
3687 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3688 		unsigned long __user *, user_mask_ptr)
3689 {
3690 	cpumask_var_t new_mask;
3691 	int retval;
3692 
3693 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3694 		return -ENOMEM;
3695 
3696 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3697 	if (retval == 0)
3698 		retval = sched_setaffinity(pid, new_mask);
3699 	free_cpumask_var(new_mask);
3700 	return retval;
3701 }
3702 
3703 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3704 {
3705 	struct task_struct *p;
3706 	unsigned long flags;
3707 	int retval;
3708 
3709 	get_online_cpus();
3710 	rcu_read_lock();
3711 
3712 	retval = -ESRCH;
3713 	p = find_process_by_pid(pid);
3714 	if (!p)
3715 		goto out_unlock;
3716 
3717 	retval = security_task_getscheduler(p);
3718 	if (retval)
3719 		goto out_unlock;
3720 
3721 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3722 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3723 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3724 
3725 out_unlock:
3726 	rcu_read_unlock();
3727 	put_online_cpus();
3728 
3729 	return retval;
3730 }
3731 
3732 /**
3733  * sys_sched_getaffinity - get the cpu affinity of a process
3734  * @pid: pid of the process
3735  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3736  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3737  *
3738  * Return: 0 on success. An error code otherwise.
3739  */
3740 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3741 		unsigned long __user *, user_mask_ptr)
3742 {
3743 	int ret;
3744 	cpumask_var_t mask;
3745 
3746 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3747 		return -EINVAL;
3748 	if (len & (sizeof(unsigned long)-1))
3749 		return -EINVAL;
3750 
3751 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3752 		return -ENOMEM;
3753 
3754 	ret = sched_getaffinity(pid, mask);
3755 	if (ret == 0) {
3756 		size_t retlen = min_t(size_t, len, cpumask_size());
3757 
3758 		if (copy_to_user(user_mask_ptr, mask, retlen))
3759 			ret = -EFAULT;
3760 		else
3761 			ret = retlen;
3762 	}
3763 	free_cpumask_var(mask);
3764 
3765 	return ret;
3766 }
3767 
3768 /**
3769  * sys_sched_yield - yield the current processor to other threads.
3770  *
3771  * This function yields the current CPU to other tasks. If there are no
3772  * other threads running on this CPU then this function will return.
3773  *
3774  * Return: 0.
3775  */
3776 SYSCALL_DEFINE0(sched_yield)
3777 {
3778 	struct rq *rq = this_rq_lock();
3779 
3780 	schedstat_inc(rq, yld_count);
3781 	current->sched_class->yield_task(rq);
3782 
3783 	/*
3784 	 * Since we are going to call schedule() anyway, there's
3785 	 * no need to preempt or enable interrupts:
3786 	 */
3787 	__release(rq->lock);
3788 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3789 	do_raw_spin_unlock(&rq->lock);
3790 	sched_preempt_enable_no_resched();
3791 
3792 	schedule();
3793 
3794 	return 0;
3795 }
3796 
3797 static inline int should_resched(void)
3798 {
3799 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3800 }
3801 
3802 static void __cond_resched(void)
3803 {
3804 	add_preempt_count(PREEMPT_ACTIVE);
3805 	__schedule();
3806 	sub_preempt_count(PREEMPT_ACTIVE);
3807 }
3808 
3809 int __sched _cond_resched(void)
3810 {
3811 	if (should_resched()) {
3812 		__cond_resched();
3813 		return 1;
3814 	}
3815 	return 0;
3816 }
3817 EXPORT_SYMBOL(_cond_resched);
3818 
3819 /*
3820  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3821  * call schedule, and on return reacquire the lock.
3822  *
3823  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3824  * operations here to prevent schedule() from being called twice (once via
3825  * spin_unlock(), once by hand).
3826  */
3827 int __cond_resched_lock(spinlock_t *lock)
3828 {
3829 	int resched = should_resched();
3830 	int ret = 0;
3831 
3832 	lockdep_assert_held(lock);
3833 
3834 	if (spin_needbreak(lock) || resched) {
3835 		spin_unlock(lock);
3836 		if (resched)
3837 			__cond_resched();
3838 		else
3839 			cpu_relax();
3840 		ret = 1;
3841 		spin_lock(lock);
3842 	}
3843 	return ret;
3844 }
3845 EXPORT_SYMBOL(__cond_resched_lock);
3846 
3847 int __sched __cond_resched_softirq(void)
3848 {
3849 	BUG_ON(!in_softirq());
3850 
3851 	if (should_resched()) {
3852 		local_bh_enable();
3853 		__cond_resched();
3854 		local_bh_disable();
3855 		return 1;
3856 	}
3857 	return 0;
3858 }
3859 EXPORT_SYMBOL(__cond_resched_softirq);
3860 
3861 /**
3862  * yield - yield the current processor to other threads.
3863  *
3864  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3865  *
3866  * The scheduler is at all times free to pick the calling task as the most
3867  * eligible task to run, if removing the yield() call from your code breaks
3868  * it, its already broken.
3869  *
3870  * Typical broken usage is:
3871  *
3872  * while (!event)
3873  * 	yield();
3874  *
3875  * where one assumes that yield() will let 'the other' process run that will
3876  * make event true. If the current task is a SCHED_FIFO task that will never
3877  * happen. Never use yield() as a progress guarantee!!
3878  *
3879  * If you want to use yield() to wait for something, use wait_event().
3880  * If you want to use yield() to be 'nice' for others, use cond_resched().
3881  * If you still want to use yield(), do not!
3882  */
3883 void __sched yield(void)
3884 {
3885 	set_current_state(TASK_RUNNING);
3886 	sys_sched_yield();
3887 }
3888 EXPORT_SYMBOL(yield);
3889 
3890 /**
3891  * yield_to - yield the current processor to another thread in
3892  * your thread group, or accelerate that thread toward the
3893  * processor it's on.
3894  * @p: target task
3895  * @preempt: whether task preemption is allowed or not
3896  *
3897  * It's the caller's job to ensure that the target task struct
3898  * can't go away on us before we can do any checks.
3899  *
3900  * Return:
3901  *	true (>0) if we indeed boosted the target task.
3902  *	false (0) if we failed to boost the target.
3903  *	-ESRCH if there's no task to yield to.
3904  */
3905 bool __sched yield_to(struct task_struct *p, bool preempt)
3906 {
3907 	struct task_struct *curr = current;
3908 	struct rq *rq, *p_rq;
3909 	unsigned long flags;
3910 	int yielded = 0;
3911 
3912 	local_irq_save(flags);
3913 	rq = this_rq();
3914 
3915 again:
3916 	p_rq = task_rq(p);
3917 	/*
3918 	 * If we're the only runnable task on the rq and target rq also
3919 	 * has only one task, there's absolutely no point in yielding.
3920 	 */
3921 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3922 		yielded = -ESRCH;
3923 		goto out_irq;
3924 	}
3925 
3926 	double_rq_lock(rq, p_rq);
3927 	while (task_rq(p) != p_rq) {
3928 		double_rq_unlock(rq, p_rq);
3929 		goto again;
3930 	}
3931 
3932 	if (!curr->sched_class->yield_to_task)
3933 		goto out_unlock;
3934 
3935 	if (curr->sched_class != p->sched_class)
3936 		goto out_unlock;
3937 
3938 	if (task_running(p_rq, p) || p->state)
3939 		goto out_unlock;
3940 
3941 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3942 	if (yielded) {
3943 		schedstat_inc(rq, yld_count);
3944 		/*
3945 		 * Make p's CPU reschedule; pick_next_entity takes care of
3946 		 * fairness.
3947 		 */
3948 		if (preempt && rq != p_rq)
3949 			resched_task(p_rq->curr);
3950 	}
3951 
3952 out_unlock:
3953 	double_rq_unlock(rq, p_rq);
3954 out_irq:
3955 	local_irq_restore(flags);
3956 
3957 	if (yielded > 0)
3958 		schedule();
3959 
3960 	return yielded;
3961 }
3962 EXPORT_SYMBOL_GPL(yield_to);
3963 
3964 /*
3965  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3966  * that process accounting knows that this is a task in IO wait state.
3967  */
3968 void __sched io_schedule(void)
3969 {
3970 	struct rq *rq = raw_rq();
3971 
3972 	delayacct_blkio_start();
3973 	atomic_inc(&rq->nr_iowait);
3974 	blk_flush_plug(current);
3975 	current->in_iowait = 1;
3976 	schedule();
3977 	current->in_iowait = 0;
3978 	atomic_dec(&rq->nr_iowait);
3979 	delayacct_blkio_end();
3980 }
3981 EXPORT_SYMBOL(io_schedule);
3982 
3983 long __sched io_schedule_timeout(long timeout)
3984 {
3985 	struct rq *rq = raw_rq();
3986 	long ret;
3987 
3988 	delayacct_blkio_start();
3989 	atomic_inc(&rq->nr_iowait);
3990 	blk_flush_plug(current);
3991 	current->in_iowait = 1;
3992 	ret = schedule_timeout(timeout);
3993 	current->in_iowait = 0;
3994 	atomic_dec(&rq->nr_iowait);
3995 	delayacct_blkio_end();
3996 	return ret;
3997 }
3998 
3999 /**
4000  * sys_sched_get_priority_max - return maximum RT priority.
4001  * @policy: scheduling class.
4002  *
4003  * Return: On success, this syscall returns the maximum
4004  * rt_priority that can be used by a given scheduling class.
4005  * On failure, a negative error code is returned.
4006  */
4007 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4008 {
4009 	int ret = -EINVAL;
4010 
4011 	switch (policy) {
4012 	case SCHED_FIFO:
4013 	case SCHED_RR:
4014 		ret = MAX_USER_RT_PRIO-1;
4015 		break;
4016 	case SCHED_NORMAL:
4017 	case SCHED_BATCH:
4018 	case SCHED_IDLE:
4019 		ret = 0;
4020 		break;
4021 	}
4022 	return ret;
4023 }
4024 
4025 /**
4026  * sys_sched_get_priority_min - return minimum RT priority.
4027  * @policy: scheduling class.
4028  *
4029  * Return: On success, this syscall returns the minimum
4030  * rt_priority that can be used by a given scheduling class.
4031  * On failure, a negative error code is returned.
4032  */
4033 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4034 {
4035 	int ret = -EINVAL;
4036 
4037 	switch (policy) {
4038 	case SCHED_FIFO:
4039 	case SCHED_RR:
4040 		ret = 1;
4041 		break;
4042 	case SCHED_NORMAL:
4043 	case SCHED_BATCH:
4044 	case SCHED_IDLE:
4045 		ret = 0;
4046 	}
4047 	return ret;
4048 }
4049 
4050 /**
4051  * sys_sched_rr_get_interval - return the default timeslice of a process.
4052  * @pid: pid of the process.
4053  * @interval: userspace pointer to the timeslice value.
4054  *
4055  * this syscall writes the default timeslice value of a given process
4056  * into the user-space timespec buffer. A value of '0' means infinity.
4057  *
4058  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4059  * an error code.
4060  */
4061 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4062 		struct timespec __user *, interval)
4063 {
4064 	struct task_struct *p;
4065 	unsigned int time_slice;
4066 	unsigned long flags;
4067 	struct rq *rq;
4068 	int retval;
4069 	struct timespec t;
4070 
4071 	if (pid < 0)
4072 		return -EINVAL;
4073 
4074 	retval = -ESRCH;
4075 	rcu_read_lock();
4076 	p = find_process_by_pid(pid);
4077 	if (!p)
4078 		goto out_unlock;
4079 
4080 	retval = security_task_getscheduler(p);
4081 	if (retval)
4082 		goto out_unlock;
4083 
4084 	rq = task_rq_lock(p, &flags);
4085 	time_slice = p->sched_class->get_rr_interval(rq, p);
4086 	task_rq_unlock(rq, p, &flags);
4087 
4088 	rcu_read_unlock();
4089 	jiffies_to_timespec(time_slice, &t);
4090 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4091 	return retval;
4092 
4093 out_unlock:
4094 	rcu_read_unlock();
4095 	return retval;
4096 }
4097 
4098 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4099 
4100 void sched_show_task(struct task_struct *p)
4101 {
4102 	unsigned long free = 0;
4103 	int ppid;
4104 	unsigned state;
4105 
4106 	state = p->state ? __ffs(p->state) + 1 : 0;
4107 	printk(KERN_INFO "%-15.15s %c", p->comm,
4108 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4109 #if BITS_PER_LONG == 32
4110 	if (state == TASK_RUNNING)
4111 		printk(KERN_CONT " running  ");
4112 	else
4113 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4114 #else
4115 	if (state == TASK_RUNNING)
4116 		printk(KERN_CONT "  running task    ");
4117 	else
4118 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4119 #endif
4120 #ifdef CONFIG_DEBUG_STACK_USAGE
4121 	free = stack_not_used(p);
4122 #endif
4123 	rcu_read_lock();
4124 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4125 	rcu_read_unlock();
4126 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4127 		task_pid_nr(p), ppid,
4128 		(unsigned long)task_thread_info(p)->flags);
4129 
4130 	print_worker_info(KERN_INFO, p);
4131 	show_stack(p, NULL);
4132 }
4133 
4134 void show_state_filter(unsigned long state_filter)
4135 {
4136 	struct task_struct *g, *p;
4137 
4138 #if BITS_PER_LONG == 32
4139 	printk(KERN_INFO
4140 		"  task                PC stack   pid father\n");
4141 #else
4142 	printk(KERN_INFO
4143 		"  task                        PC stack   pid father\n");
4144 #endif
4145 	rcu_read_lock();
4146 	do_each_thread(g, p) {
4147 		/*
4148 		 * reset the NMI-timeout, listing all files on a slow
4149 		 * console might take a lot of time:
4150 		 */
4151 		touch_nmi_watchdog();
4152 		if (!state_filter || (p->state & state_filter))
4153 			sched_show_task(p);
4154 	} while_each_thread(g, p);
4155 
4156 	touch_all_softlockup_watchdogs();
4157 
4158 #ifdef CONFIG_SCHED_DEBUG
4159 	sysrq_sched_debug_show();
4160 #endif
4161 	rcu_read_unlock();
4162 	/*
4163 	 * Only show locks if all tasks are dumped:
4164 	 */
4165 	if (!state_filter)
4166 		debug_show_all_locks();
4167 }
4168 
4169 void init_idle_bootup_task(struct task_struct *idle)
4170 {
4171 	idle->sched_class = &idle_sched_class;
4172 }
4173 
4174 /**
4175  * init_idle - set up an idle thread for a given CPU
4176  * @idle: task in question
4177  * @cpu: cpu the idle task belongs to
4178  *
4179  * NOTE: this function does not set the idle thread's NEED_RESCHED
4180  * flag, to make booting more robust.
4181  */
4182 void init_idle(struct task_struct *idle, int cpu)
4183 {
4184 	struct rq *rq = cpu_rq(cpu);
4185 	unsigned long flags;
4186 
4187 	raw_spin_lock_irqsave(&rq->lock, flags);
4188 
4189 	__sched_fork(idle);
4190 	idle->state = TASK_RUNNING;
4191 	idle->se.exec_start = sched_clock();
4192 
4193 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4194 	/*
4195 	 * We're having a chicken and egg problem, even though we are
4196 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4197 	 * lockdep check in task_group() will fail.
4198 	 *
4199 	 * Similar case to sched_fork(). / Alternatively we could
4200 	 * use task_rq_lock() here and obtain the other rq->lock.
4201 	 *
4202 	 * Silence PROVE_RCU
4203 	 */
4204 	rcu_read_lock();
4205 	__set_task_cpu(idle, cpu);
4206 	rcu_read_unlock();
4207 
4208 	rq->curr = rq->idle = idle;
4209 #if defined(CONFIG_SMP)
4210 	idle->on_cpu = 1;
4211 #endif
4212 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4213 
4214 	/* Set the preempt count _outside_ the spinlocks! */
4215 	task_thread_info(idle)->preempt_count = 0;
4216 
4217 	/*
4218 	 * The idle tasks have their own, simple scheduling class:
4219 	 */
4220 	idle->sched_class = &idle_sched_class;
4221 	ftrace_graph_init_idle_task(idle, cpu);
4222 	vtime_init_idle(idle, cpu);
4223 #if defined(CONFIG_SMP)
4224 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4225 #endif
4226 }
4227 
4228 #ifdef CONFIG_SMP
4229 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4230 {
4231 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4232 		p->sched_class->set_cpus_allowed(p, new_mask);
4233 
4234 	cpumask_copy(&p->cpus_allowed, new_mask);
4235 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4236 }
4237 
4238 /*
4239  * This is how migration works:
4240  *
4241  * 1) we invoke migration_cpu_stop() on the target CPU using
4242  *    stop_one_cpu().
4243  * 2) stopper starts to run (implicitly forcing the migrated thread
4244  *    off the CPU)
4245  * 3) it checks whether the migrated task is still in the wrong runqueue.
4246  * 4) if it's in the wrong runqueue then the migration thread removes
4247  *    it and puts it into the right queue.
4248  * 5) stopper completes and stop_one_cpu() returns and the migration
4249  *    is done.
4250  */
4251 
4252 /*
4253  * Change a given task's CPU affinity. Migrate the thread to a
4254  * proper CPU and schedule it away if the CPU it's executing on
4255  * is removed from the allowed bitmask.
4256  *
4257  * NOTE: the caller must have a valid reference to the task, the
4258  * task must not exit() & deallocate itself prematurely. The
4259  * call is not atomic; no spinlocks may be held.
4260  */
4261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4262 {
4263 	unsigned long flags;
4264 	struct rq *rq;
4265 	unsigned int dest_cpu;
4266 	int ret = 0;
4267 
4268 	rq = task_rq_lock(p, &flags);
4269 
4270 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4271 		goto out;
4272 
4273 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4274 		ret = -EINVAL;
4275 		goto out;
4276 	}
4277 
4278 	do_set_cpus_allowed(p, new_mask);
4279 
4280 	/* Can the task run on the task's current CPU? If so, we're done */
4281 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4282 		goto out;
4283 
4284 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4285 	if (p->on_rq) {
4286 		struct migration_arg arg = { p, dest_cpu };
4287 		/* Need help from migration thread: drop lock and wait. */
4288 		task_rq_unlock(rq, p, &flags);
4289 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4290 		tlb_migrate_finish(p->mm);
4291 		return 0;
4292 	}
4293 out:
4294 	task_rq_unlock(rq, p, &flags);
4295 
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4299 
4300 /*
4301  * Move (not current) task off this cpu, onto dest cpu. We're doing
4302  * this because either it can't run here any more (set_cpus_allowed()
4303  * away from this CPU, or CPU going down), or because we're
4304  * attempting to rebalance this task on exec (sched_exec).
4305  *
4306  * So we race with normal scheduler movements, but that's OK, as long
4307  * as the task is no longer on this CPU.
4308  *
4309  * Returns non-zero if task was successfully migrated.
4310  */
4311 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4312 {
4313 	struct rq *rq_dest, *rq_src;
4314 	int ret = 0;
4315 
4316 	if (unlikely(!cpu_active(dest_cpu)))
4317 		return ret;
4318 
4319 	rq_src = cpu_rq(src_cpu);
4320 	rq_dest = cpu_rq(dest_cpu);
4321 
4322 	raw_spin_lock(&p->pi_lock);
4323 	double_rq_lock(rq_src, rq_dest);
4324 	/* Already moved. */
4325 	if (task_cpu(p) != src_cpu)
4326 		goto done;
4327 	/* Affinity changed (again). */
4328 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4329 		goto fail;
4330 
4331 	/*
4332 	 * If we're not on a rq, the next wake-up will ensure we're
4333 	 * placed properly.
4334 	 */
4335 	if (p->on_rq) {
4336 		dequeue_task(rq_src, p, 0);
4337 		set_task_cpu(p, dest_cpu);
4338 		enqueue_task(rq_dest, p, 0);
4339 		check_preempt_curr(rq_dest, p, 0);
4340 	}
4341 done:
4342 	ret = 1;
4343 fail:
4344 	double_rq_unlock(rq_src, rq_dest);
4345 	raw_spin_unlock(&p->pi_lock);
4346 	return ret;
4347 }
4348 
4349 /*
4350  * migration_cpu_stop - this will be executed by a highprio stopper thread
4351  * and performs thread migration by bumping thread off CPU then
4352  * 'pushing' onto another runqueue.
4353  */
4354 static int migration_cpu_stop(void *data)
4355 {
4356 	struct migration_arg *arg = data;
4357 
4358 	/*
4359 	 * The original target cpu might have gone down and we might
4360 	 * be on another cpu but it doesn't matter.
4361 	 */
4362 	local_irq_disable();
4363 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4364 	local_irq_enable();
4365 	return 0;
4366 }
4367 
4368 #ifdef CONFIG_HOTPLUG_CPU
4369 
4370 /*
4371  * Ensures that the idle task is using init_mm right before its cpu goes
4372  * offline.
4373  */
4374 void idle_task_exit(void)
4375 {
4376 	struct mm_struct *mm = current->active_mm;
4377 
4378 	BUG_ON(cpu_online(smp_processor_id()));
4379 
4380 	if (mm != &init_mm)
4381 		switch_mm(mm, &init_mm, current);
4382 	mmdrop(mm);
4383 }
4384 
4385 /*
4386  * Since this CPU is going 'away' for a while, fold any nr_active delta
4387  * we might have. Assumes we're called after migrate_tasks() so that the
4388  * nr_active count is stable.
4389  *
4390  * Also see the comment "Global load-average calculations".
4391  */
4392 static void calc_load_migrate(struct rq *rq)
4393 {
4394 	long delta = calc_load_fold_active(rq);
4395 	if (delta)
4396 		atomic_long_add(delta, &calc_load_tasks);
4397 }
4398 
4399 /*
4400  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4401  * try_to_wake_up()->select_task_rq().
4402  *
4403  * Called with rq->lock held even though we'er in stop_machine() and
4404  * there's no concurrency possible, we hold the required locks anyway
4405  * because of lock validation efforts.
4406  */
4407 static void migrate_tasks(unsigned int dead_cpu)
4408 {
4409 	struct rq *rq = cpu_rq(dead_cpu);
4410 	struct task_struct *next, *stop = rq->stop;
4411 	int dest_cpu;
4412 
4413 	/*
4414 	 * Fudge the rq selection such that the below task selection loop
4415 	 * doesn't get stuck on the currently eligible stop task.
4416 	 *
4417 	 * We're currently inside stop_machine() and the rq is either stuck
4418 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4419 	 * either way we should never end up calling schedule() until we're
4420 	 * done here.
4421 	 */
4422 	rq->stop = NULL;
4423 
4424 	/*
4425 	 * put_prev_task() and pick_next_task() sched
4426 	 * class method both need to have an up-to-date
4427 	 * value of rq->clock[_task]
4428 	 */
4429 	update_rq_clock(rq);
4430 
4431 	for ( ; ; ) {
4432 		/*
4433 		 * There's this thread running, bail when that's the only
4434 		 * remaining thread.
4435 		 */
4436 		if (rq->nr_running == 1)
4437 			break;
4438 
4439 		next = pick_next_task(rq);
4440 		BUG_ON(!next);
4441 		next->sched_class->put_prev_task(rq, next);
4442 
4443 		/* Find suitable destination for @next, with force if needed. */
4444 		dest_cpu = select_fallback_rq(dead_cpu, next);
4445 		raw_spin_unlock(&rq->lock);
4446 
4447 		__migrate_task(next, dead_cpu, dest_cpu);
4448 
4449 		raw_spin_lock(&rq->lock);
4450 	}
4451 
4452 	rq->stop = stop;
4453 }
4454 
4455 #endif /* CONFIG_HOTPLUG_CPU */
4456 
4457 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4458 
4459 static struct ctl_table sd_ctl_dir[] = {
4460 	{
4461 		.procname	= "sched_domain",
4462 		.mode		= 0555,
4463 	},
4464 	{}
4465 };
4466 
4467 static struct ctl_table sd_ctl_root[] = {
4468 	{
4469 		.procname	= "kernel",
4470 		.mode		= 0555,
4471 		.child		= sd_ctl_dir,
4472 	},
4473 	{}
4474 };
4475 
4476 static struct ctl_table *sd_alloc_ctl_entry(int n)
4477 {
4478 	struct ctl_table *entry =
4479 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4480 
4481 	return entry;
4482 }
4483 
4484 static void sd_free_ctl_entry(struct ctl_table **tablep)
4485 {
4486 	struct ctl_table *entry;
4487 
4488 	/*
4489 	 * In the intermediate directories, both the child directory and
4490 	 * procname are dynamically allocated and could fail but the mode
4491 	 * will always be set. In the lowest directory the names are
4492 	 * static strings and all have proc handlers.
4493 	 */
4494 	for (entry = *tablep; entry->mode; entry++) {
4495 		if (entry->child)
4496 			sd_free_ctl_entry(&entry->child);
4497 		if (entry->proc_handler == NULL)
4498 			kfree(entry->procname);
4499 	}
4500 
4501 	kfree(*tablep);
4502 	*tablep = NULL;
4503 }
4504 
4505 static int min_load_idx = 0;
4506 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4507 
4508 static void
4509 set_table_entry(struct ctl_table *entry,
4510 		const char *procname, void *data, int maxlen,
4511 		umode_t mode, proc_handler *proc_handler,
4512 		bool load_idx)
4513 {
4514 	entry->procname = procname;
4515 	entry->data = data;
4516 	entry->maxlen = maxlen;
4517 	entry->mode = mode;
4518 	entry->proc_handler = proc_handler;
4519 
4520 	if (load_idx) {
4521 		entry->extra1 = &min_load_idx;
4522 		entry->extra2 = &max_load_idx;
4523 	}
4524 }
4525 
4526 static struct ctl_table *
4527 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4528 {
4529 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4530 
4531 	if (table == NULL)
4532 		return NULL;
4533 
4534 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4535 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4536 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4537 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4538 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4539 		sizeof(int), 0644, proc_dointvec_minmax, true);
4540 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4541 		sizeof(int), 0644, proc_dointvec_minmax, true);
4542 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4543 		sizeof(int), 0644, proc_dointvec_minmax, true);
4544 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4545 		sizeof(int), 0644, proc_dointvec_minmax, true);
4546 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4547 		sizeof(int), 0644, proc_dointvec_minmax, true);
4548 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4549 		sizeof(int), 0644, proc_dointvec_minmax, false);
4550 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4551 		sizeof(int), 0644, proc_dointvec_minmax, false);
4552 	set_table_entry(&table[9], "cache_nice_tries",
4553 		&sd->cache_nice_tries,
4554 		sizeof(int), 0644, proc_dointvec_minmax, false);
4555 	set_table_entry(&table[10], "flags", &sd->flags,
4556 		sizeof(int), 0644, proc_dointvec_minmax, false);
4557 	set_table_entry(&table[11], "name", sd->name,
4558 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4559 	/* &table[12] is terminator */
4560 
4561 	return table;
4562 }
4563 
4564 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4565 {
4566 	struct ctl_table *entry, *table;
4567 	struct sched_domain *sd;
4568 	int domain_num = 0, i;
4569 	char buf[32];
4570 
4571 	for_each_domain(cpu, sd)
4572 		domain_num++;
4573 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4574 	if (table == NULL)
4575 		return NULL;
4576 
4577 	i = 0;
4578 	for_each_domain(cpu, sd) {
4579 		snprintf(buf, 32, "domain%d", i);
4580 		entry->procname = kstrdup(buf, GFP_KERNEL);
4581 		entry->mode = 0555;
4582 		entry->child = sd_alloc_ctl_domain_table(sd);
4583 		entry++;
4584 		i++;
4585 	}
4586 	return table;
4587 }
4588 
4589 static struct ctl_table_header *sd_sysctl_header;
4590 static void register_sched_domain_sysctl(void)
4591 {
4592 	int i, cpu_num = num_possible_cpus();
4593 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4594 	char buf[32];
4595 
4596 	WARN_ON(sd_ctl_dir[0].child);
4597 	sd_ctl_dir[0].child = entry;
4598 
4599 	if (entry == NULL)
4600 		return;
4601 
4602 	for_each_possible_cpu(i) {
4603 		snprintf(buf, 32, "cpu%d", i);
4604 		entry->procname = kstrdup(buf, GFP_KERNEL);
4605 		entry->mode = 0555;
4606 		entry->child = sd_alloc_ctl_cpu_table(i);
4607 		entry++;
4608 	}
4609 
4610 	WARN_ON(sd_sysctl_header);
4611 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4612 }
4613 
4614 /* may be called multiple times per register */
4615 static void unregister_sched_domain_sysctl(void)
4616 {
4617 	if (sd_sysctl_header)
4618 		unregister_sysctl_table(sd_sysctl_header);
4619 	sd_sysctl_header = NULL;
4620 	if (sd_ctl_dir[0].child)
4621 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4622 }
4623 #else
4624 static void register_sched_domain_sysctl(void)
4625 {
4626 }
4627 static void unregister_sched_domain_sysctl(void)
4628 {
4629 }
4630 #endif
4631 
4632 static void set_rq_online(struct rq *rq)
4633 {
4634 	if (!rq->online) {
4635 		const struct sched_class *class;
4636 
4637 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4638 		rq->online = 1;
4639 
4640 		for_each_class(class) {
4641 			if (class->rq_online)
4642 				class->rq_online(rq);
4643 		}
4644 	}
4645 }
4646 
4647 static void set_rq_offline(struct rq *rq)
4648 {
4649 	if (rq->online) {
4650 		const struct sched_class *class;
4651 
4652 		for_each_class(class) {
4653 			if (class->rq_offline)
4654 				class->rq_offline(rq);
4655 		}
4656 
4657 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4658 		rq->online = 0;
4659 	}
4660 }
4661 
4662 /*
4663  * migration_call - callback that gets triggered when a CPU is added.
4664  * Here we can start up the necessary migration thread for the new CPU.
4665  */
4666 static int
4667 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4668 {
4669 	int cpu = (long)hcpu;
4670 	unsigned long flags;
4671 	struct rq *rq = cpu_rq(cpu);
4672 
4673 	switch (action & ~CPU_TASKS_FROZEN) {
4674 
4675 	case CPU_UP_PREPARE:
4676 		rq->calc_load_update = calc_load_update;
4677 		break;
4678 
4679 	case CPU_ONLINE:
4680 		/* Update our root-domain */
4681 		raw_spin_lock_irqsave(&rq->lock, flags);
4682 		if (rq->rd) {
4683 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4684 
4685 			set_rq_online(rq);
4686 		}
4687 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4688 		break;
4689 
4690 #ifdef CONFIG_HOTPLUG_CPU
4691 	case CPU_DYING:
4692 		sched_ttwu_pending();
4693 		/* Update our root-domain */
4694 		raw_spin_lock_irqsave(&rq->lock, flags);
4695 		if (rq->rd) {
4696 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4697 			set_rq_offline(rq);
4698 		}
4699 		migrate_tasks(cpu);
4700 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4701 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4702 		break;
4703 
4704 	case CPU_DEAD:
4705 		calc_load_migrate(rq);
4706 		break;
4707 #endif
4708 	}
4709 
4710 	update_max_interval();
4711 
4712 	return NOTIFY_OK;
4713 }
4714 
4715 /*
4716  * Register at high priority so that task migration (migrate_all_tasks)
4717  * happens before everything else.  This has to be lower priority than
4718  * the notifier in the perf_event subsystem, though.
4719  */
4720 static struct notifier_block migration_notifier = {
4721 	.notifier_call = migration_call,
4722 	.priority = CPU_PRI_MIGRATION,
4723 };
4724 
4725 static int sched_cpu_active(struct notifier_block *nfb,
4726 				      unsigned long action, void *hcpu)
4727 {
4728 	switch (action & ~CPU_TASKS_FROZEN) {
4729 	case CPU_STARTING:
4730 	case CPU_DOWN_FAILED:
4731 		set_cpu_active((long)hcpu, true);
4732 		return NOTIFY_OK;
4733 	default:
4734 		return NOTIFY_DONE;
4735 	}
4736 }
4737 
4738 static int sched_cpu_inactive(struct notifier_block *nfb,
4739 					unsigned long action, void *hcpu)
4740 {
4741 	switch (action & ~CPU_TASKS_FROZEN) {
4742 	case CPU_DOWN_PREPARE:
4743 		set_cpu_active((long)hcpu, false);
4744 		return NOTIFY_OK;
4745 	default:
4746 		return NOTIFY_DONE;
4747 	}
4748 }
4749 
4750 static int __init migration_init(void)
4751 {
4752 	void *cpu = (void *)(long)smp_processor_id();
4753 	int err;
4754 
4755 	/* Initialize migration for the boot CPU */
4756 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4757 	BUG_ON(err == NOTIFY_BAD);
4758 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4759 	register_cpu_notifier(&migration_notifier);
4760 
4761 	/* Register cpu active notifiers */
4762 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4763 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4764 
4765 	return 0;
4766 }
4767 early_initcall(migration_init);
4768 #endif
4769 
4770 #ifdef CONFIG_SMP
4771 
4772 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4773 
4774 #ifdef CONFIG_SCHED_DEBUG
4775 
4776 static __read_mostly int sched_debug_enabled;
4777 
4778 static int __init sched_debug_setup(char *str)
4779 {
4780 	sched_debug_enabled = 1;
4781 
4782 	return 0;
4783 }
4784 early_param("sched_debug", sched_debug_setup);
4785 
4786 static inline bool sched_debug(void)
4787 {
4788 	return sched_debug_enabled;
4789 }
4790 
4791 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4792 				  struct cpumask *groupmask)
4793 {
4794 	struct sched_group *group = sd->groups;
4795 	char str[256];
4796 
4797 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4798 	cpumask_clear(groupmask);
4799 
4800 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4801 
4802 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4803 		printk("does not load-balance\n");
4804 		if (sd->parent)
4805 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4806 					" has parent");
4807 		return -1;
4808 	}
4809 
4810 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4811 
4812 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4813 		printk(KERN_ERR "ERROR: domain->span does not contain "
4814 				"CPU%d\n", cpu);
4815 	}
4816 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4817 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4818 				" CPU%d\n", cpu);
4819 	}
4820 
4821 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4822 	do {
4823 		if (!group) {
4824 			printk("\n");
4825 			printk(KERN_ERR "ERROR: group is NULL\n");
4826 			break;
4827 		}
4828 
4829 		/*
4830 		 * Even though we initialize ->power to something semi-sane,
4831 		 * we leave power_orig unset. This allows us to detect if
4832 		 * domain iteration is still funny without causing /0 traps.
4833 		 */
4834 		if (!group->sgp->power_orig) {
4835 			printk(KERN_CONT "\n");
4836 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4837 					"set\n");
4838 			break;
4839 		}
4840 
4841 		if (!cpumask_weight(sched_group_cpus(group))) {
4842 			printk(KERN_CONT "\n");
4843 			printk(KERN_ERR "ERROR: empty group\n");
4844 			break;
4845 		}
4846 
4847 		if (!(sd->flags & SD_OVERLAP) &&
4848 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4849 			printk(KERN_CONT "\n");
4850 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4851 			break;
4852 		}
4853 
4854 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4855 
4856 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4857 
4858 		printk(KERN_CONT " %s", str);
4859 		if (group->sgp->power != SCHED_POWER_SCALE) {
4860 			printk(KERN_CONT " (cpu_power = %d)",
4861 				group->sgp->power);
4862 		}
4863 
4864 		group = group->next;
4865 	} while (group != sd->groups);
4866 	printk(KERN_CONT "\n");
4867 
4868 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4869 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4870 
4871 	if (sd->parent &&
4872 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4873 		printk(KERN_ERR "ERROR: parent span is not a superset "
4874 			"of domain->span\n");
4875 	return 0;
4876 }
4877 
4878 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4879 {
4880 	int level = 0;
4881 
4882 	if (!sched_debug_enabled)
4883 		return;
4884 
4885 	if (!sd) {
4886 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4887 		return;
4888 	}
4889 
4890 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4891 
4892 	for (;;) {
4893 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4894 			break;
4895 		level++;
4896 		sd = sd->parent;
4897 		if (!sd)
4898 			break;
4899 	}
4900 }
4901 #else /* !CONFIG_SCHED_DEBUG */
4902 # define sched_domain_debug(sd, cpu) do { } while (0)
4903 static inline bool sched_debug(void)
4904 {
4905 	return false;
4906 }
4907 #endif /* CONFIG_SCHED_DEBUG */
4908 
4909 static int sd_degenerate(struct sched_domain *sd)
4910 {
4911 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4912 		return 1;
4913 
4914 	/* Following flags need at least 2 groups */
4915 	if (sd->flags & (SD_LOAD_BALANCE |
4916 			 SD_BALANCE_NEWIDLE |
4917 			 SD_BALANCE_FORK |
4918 			 SD_BALANCE_EXEC |
4919 			 SD_SHARE_CPUPOWER |
4920 			 SD_SHARE_PKG_RESOURCES)) {
4921 		if (sd->groups != sd->groups->next)
4922 			return 0;
4923 	}
4924 
4925 	/* Following flags don't use groups */
4926 	if (sd->flags & (SD_WAKE_AFFINE))
4927 		return 0;
4928 
4929 	return 1;
4930 }
4931 
4932 static int
4933 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4934 {
4935 	unsigned long cflags = sd->flags, pflags = parent->flags;
4936 
4937 	if (sd_degenerate(parent))
4938 		return 1;
4939 
4940 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4941 		return 0;
4942 
4943 	/* Flags needing groups don't count if only 1 group in parent */
4944 	if (parent->groups == parent->groups->next) {
4945 		pflags &= ~(SD_LOAD_BALANCE |
4946 				SD_BALANCE_NEWIDLE |
4947 				SD_BALANCE_FORK |
4948 				SD_BALANCE_EXEC |
4949 				SD_SHARE_CPUPOWER |
4950 				SD_SHARE_PKG_RESOURCES |
4951 				SD_PREFER_SIBLING);
4952 		if (nr_node_ids == 1)
4953 			pflags &= ~SD_SERIALIZE;
4954 	}
4955 	if (~cflags & pflags)
4956 		return 0;
4957 
4958 	return 1;
4959 }
4960 
4961 static void free_rootdomain(struct rcu_head *rcu)
4962 {
4963 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4964 
4965 	cpupri_cleanup(&rd->cpupri);
4966 	free_cpumask_var(rd->rto_mask);
4967 	free_cpumask_var(rd->online);
4968 	free_cpumask_var(rd->span);
4969 	kfree(rd);
4970 }
4971 
4972 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4973 {
4974 	struct root_domain *old_rd = NULL;
4975 	unsigned long flags;
4976 
4977 	raw_spin_lock_irqsave(&rq->lock, flags);
4978 
4979 	if (rq->rd) {
4980 		old_rd = rq->rd;
4981 
4982 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4983 			set_rq_offline(rq);
4984 
4985 		cpumask_clear_cpu(rq->cpu, old_rd->span);
4986 
4987 		/*
4988 		 * If we dont want to free the old_rt yet then
4989 		 * set old_rd to NULL to skip the freeing later
4990 		 * in this function:
4991 		 */
4992 		if (!atomic_dec_and_test(&old_rd->refcount))
4993 			old_rd = NULL;
4994 	}
4995 
4996 	atomic_inc(&rd->refcount);
4997 	rq->rd = rd;
4998 
4999 	cpumask_set_cpu(rq->cpu, rd->span);
5000 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5001 		set_rq_online(rq);
5002 
5003 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5004 
5005 	if (old_rd)
5006 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5007 }
5008 
5009 static int init_rootdomain(struct root_domain *rd)
5010 {
5011 	memset(rd, 0, sizeof(*rd));
5012 
5013 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5014 		goto out;
5015 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5016 		goto free_span;
5017 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5018 		goto free_online;
5019 
5020 	if (cpupri_init(&rd->cpupri) != 0)
5021 		goto free_rto_mask;
5022 	return 0;
5023 
5024 free_rto_mask:
5025 	free_cpumask_var(rd->rto_mask);
5026 free_online:
5027 	free_cpumask_var(rd->online);
5028 free_span:
5029 	free_cpumask_var(rd->span);
5030 out:
5031 	return -ENOMEM;
5032 }
5033 
5034 /*
5035  * By default the system creates a single root-domain with all cpus as
5036  * members (mimicking the global state we have today).
5037  */
5038 struct root_domain def_root_domain;
5039 
5040 static void init_defrootdomain(void)
5041 {
5042 	init_rootdomain(&def_root_domain);
5043 
5044 	atomic_set(&def_root_domain.refcount, 1);
5045 }
5046 
5047 static struct root_domain *alloc_rootdomain(void)
5048 {
5049 	struct root_domain *rd;
5050 
5051 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5052 	if (!rd)
5053 		return NULL;
5054 
5055 	if (init_rootdomain(rd) != 0) {
5056 		kfree(rd);
5057 		return NULL;
5058 	}
5059 
5060 	return rd;
5061 }
5062 
5063 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5064 {
5065 	struct sched_group *tmp, *first;
5066 
5067 	if (!sg)
5068 		return;
5069 
5070 	first = sg;
5071 	do {
5072 		tmp = sg->next;
5073 
5074 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5075 			kfree(sg->sgp);
5076 
5077 		kfree(sg);
5078 		sg = tmp;
5079 	} while (sg != first);
5080 }
5081 
5082 static void free_sched_domain(struct rcu_head *rcu)
5083 {
5084 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5085 
5086 	/*
5087 	 * If its an overlapping domain it has private groups, iterate and
5088 	 * nuke them all.
5089 	 */
5090 	if (sd->flags & SD_OVERLAP) {
5091 		free_sched_groups(sd->groups, 1);
5092 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5093 		kfree(sd->groups->sgp);
5094 		kfree(sd->groups);
5095 	}
5096 	kfree(sd);
5097 }
5098 
5099 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5100 {
5101 	call_rcu(&sd->rcu, free_sched_domain);
5102 }
5103 
5104 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5105 {
5106 	for (; sd; sd = sd->parent)
5107 		destroy_sched_domain(sd, cpu);
5108 }
5109 
5110 /*
5111  * Keep a special pointer to the highest sched_domain that has
5112  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5113  * allows us to avoid some pointer chasing select_idle_sibling().
5114  *
5115  * Also keep a unique ID per domain (we use the first cpu number in
5116  * the cpumask of the domain), this allows us to quickly tell if
5117  * two cpus are in the same cache domain, see cpus_share_cache().
5118  */
5119 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5120 DEFINE_PER_CPU(int, sd_llc_size);
5121 DEFINE_PER_CPU(int, sd_llc_id);
5122 
5123 static void update_top_cache_domain(int cpu)
5124 {
5125 	struct sched_domain *sd;
5126 	int id = cpu;
5127 	int size = 1;
5128 
5129 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5130 	if (sd) {
5131 		id = cpumask_first(sched_domain_span(sd));
5132 		size = cpumask_weight(sched_domain_span(sd));
5133 	}
5134 
5135 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5136 	per_cpu(sd_llc_size, cpu) = size;
5137 	per_cpu(sd_llc_id, cpu) = id;
5138 }
5139 
5140 /*
5141  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5142  * hold the hotplug lock.
5143  */
5144 static void
5145 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5146 {
5147 	struct rq *rq = cpu_rq(cpu);
5148 	struct sched_domain *tmp;
5149 
5150 	/* Remove the sched domains which do not contribute to scheduling. */
5151 	for (tmp = sd; tmp; ) {
5152 		struct sched_domain *parent = tmp->parent;
5153 		if (!parent)
5154 			break;
5155 
5156 		if (sd_parent_degenerate(tmp, parent)) {
5157 			tmp->parent = parent->parent;
5158 			if (parent->parent)
5159 				parent->parent->child = tmp;
5160 			/*
5161 			 * Transfer SD_PREFER_SIBLING down in case of a
5162 			 * degenerate parent; the spans match for this
5163 			 * so the property transfers.
5164 			 */
5165 			if (parent->flags & SD_PREFER_SIBLING)
5166 				tmp->flags |= SD_PREFER_SIBLING;
5167 			destroy_sched_domain(parent, cpu);
5168 		} else
5169 			tmp = tmp->parent;
5170 	}
5171 
5172 	if (sd && sd_degenerate(sd)) {
5173 		tmp = sd;
5174 		sd = sd->parent;
5175 		destroy_sched_domain(tmp, cpu);
5176 		if (sd)
5177 			sd->child = NULL;
5178 	}
5179 
5180 	sched_domain_debug(sd, cpu);
5181 
5182 	rq_attach_root(rq, rd);
5183 	tmp = rq->sd;
5184 	rcu_assign_pointer(rq->sd, sd);
5185 	destroy_sched_domains(tmp, cpu);
5186 
5187 	update_top_cache_domain(cpu);
5188 }
5189 
5190 /* cpus with isolated domains */
5191 static cpumask_var_t cpu_isolated_map;
5192 
5193 /* Setup the mask of cpus configured for isolated domains */
5194 static int __init isolated_cpu_setup(char *str)
5195 {
5196 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5197 	cpulist_parse(str, cpu_isolated_map);
5198 	return 1;
5199 }
5200 
5201 __setup("isolcpus=", isolated_cpu_setup);
5202 
5203 static const struct cpumask *cpu_cpu_mask(int cpu)
5204 {
5205 	return cpumask_of_node(cpu_to_node(cpu));
5206 }
5207 
5208 struct sd_data {
5209 	struct sched_domain **__percpu sd;
5210 	struct sched_group **__percpu sg;
5211 	struct sched_group_power **__percpu sgp;
5212 };
5213 
5214 struct s_data {
5215 	struct sched_domain ** __percpu sd;
5216 	struct root_domain	*rd;
5217 };
5218 
5219 enum s_alloc {
5220 	sa_rootdomain,
5221 	sa_sd,
5222 	sa_sd_storage,
5223 	sa_none,
5224 };
5225 
5226 struct sched_domain_topology_level;
5227 
5228 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5229 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5230 
5231 #define SDTL_OVERLAP	0x01
5232 
5233 struct sched_domain_topology_level {
5234 	sched_domain_init_f init;
5235 	sched_domain_mask_f mask;
5236 	int		    flags;
5237 	int		    numa_level;
5238 	struct sd_data      data;
5239 };
5240 
5241 /*
5242  * Build an iteration mask that can exclude certain CPUs from the upwards
5243  * domain traversal.
5244  *
5245  * Asymmetric node setups can result in situations where the domain tree is of
5246  * unequal depth, make sure to skip domains that already cover the entire
5247  * range.
5248  *
5249  * In that case build_sched_domains() will have terminated the iteration early
5250  * and our sibling sd spans will be empty. Domains should always include the
5251  * cpu they're built on, so check that.
5252  *
5253  */
5254 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5255 {
5256 	const struct cpumask *span = sched_domain_span(sd);
5257 	struct sd_data *sdd = sd->private;
5258 	struct sched_domain *sibling;
5259 	int i;
5260 
5261 	for_each_cpu(i, span) {
5262 		sibling = *per_cpu_ptr(sdd->sd, i);
5263 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5264 			continue;
5265 
5266 		cpumask_set_cpu(i, sched_group_mask(sg));
5267 	}
5268 }
5269 
5270 /*
5271  * Return the canonical balance cpu for this group, this is the first cpu
5272  * of this group that's also in the iteration mask.
5273  */
5274 int group_balance_cpu(struct sched_group *sg)
5275 {
5276 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5277 }
5278 
5279 static int
5280 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5281 {
5282 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5283 	const struct cpumask *span = sched_domain_span(sd);
5284 	struct cpumask *covered = sched_domains_tmpmask;
5285 	struct sd_data *sdd = sd->private;
5286 	struct sched_domain *child;
5287 	int i;
5288 
5289 	cpumask_clear(covered);
5290 
5291 	for_each_cpu(i, span) {
5292 		struct cpumask *sg_span;
5293 
5294 		if (cpumask_test_cpu(i, covered))
5295 			continue;
5296 
5297 		child = *per_cpu_ptr(sdd->sd, i);
5298 
5299 		/* See the comment near build_group_mask(). */
5300 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5301 			continue;
5302 
5303 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5304 				GFP_KERNEL, cpu_to_node(cpu));
5305 
5306 		if (!sg)
5307 			goto fail;
5308 
5309 		sg_span = sched_group_cpus(sg);
5310 		if (child->child) {
5311 			child = child->child;
5312 			cpumask_copy(sg_span, sched_domain_span(child));
5313 		} else
5314 			cpumask_set_cpu(i, sg_span);
5315 
5316 		cpumask_or(covered, covered, sg_span);
5317 
5318 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5319 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5320 			build_group_mask(sd, sg);
5321 
5322 		/*
5323 		 * Initialize sgp->power such that even if we mess up the
5324 		 * domains and no possible iteration will get us here, we won't
5325 		 * die on a /0 trap.
5326 		 */
5327 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5328 
5329 		/*
5330 		 * Make sure the first group of this domain contains the
5331 		 * canonical balance cpu. Otherwise the sched_domain iteration
5332 		 * breaks. See update_sg_lb_stats().
5333 		 */
5334 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5335 		    group_balance_cpu(sg) == cpu)
5336 			groups = sg;
5337 
5338 		if (!first)
5339 			first = sg;
5340 		if (last)
5341 			last->next = sg;
5342 		last = sg;
5343 		last->next = first;
5344 	}
5345 	sd->groups = groups;
5346 
5347 	return 0;
5348 
5349 fail:
5350 	free_sched_groups(first, 0);
5351 
5352 	return -ENOMEM;
5353 }
5354 
5355 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5356 {
5357 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5358 	struct sched_domain *child = sd->child;
5359 
5360 	if (child)
5361 		cpu = cpumask_first(sched_domain_span(child));
5362 
5363 	if (sg) {
5364 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5365 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5366 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5367 	}
5368 
5369 	return cpu;
5370 }
5371 
5372 /*
5373  * build_sched_groups will build a circular linked list of the groups
5374  * covered by the given span, and will set each group's ->cpumask correctly,
5375  * and ->cpu_power to 0.
5376  *
5377  * Assumes the sched_domain tree is fully constructed
5378  */
5379 static int
5380 build_sched_groups(struct sched_domain *sd, int cpu)
5381 {
5382 	struct sched_group *first = NULL, *last = NULL;
5383 	struct sd_data *sdd = sd->private;
5384 	const struct cpumask *span = sched_domain_span(sd);
5385 	struct cpumask *covered;
5386 	int i;
5387 
5388 	get_group(cpu, sdd, &sd->groups);
5389 	atomic_inc(&sd->groups->ref);
5390 
5391 	if (cpu != cpumask_first(span))
5392 		return 0;
5393 
5394 	lockdep_assert_held(&sched_domains_mutex);
5395 	covered = sched_domains_tmpmask;
5396 
5397 	cpumask_clear(covered);
5398 
5399 	for_each_cpu(i, span) {
5400 		struct sched_group *sg;
5401 		int group, j;
5402 
5403 		if (cpumask_test_cpu(i, covered))
5404 			continue;
5405 
5406 		group = get_group(i, sdd, &sg);
5407 		cpumask_clear(sched_group_cpus(sg));
5408 		sg->sgp->power = 0;
5409 		cpumask_setall(sched_group_mask(sg));
5410 
5411 		for_each_cpu(j, span) {
5412 			if (get_group(j, sdd, NULL) != group)
5413 				continue;
5414 
5415 			cpumask_set_cpu(j, covered);
5416 			cpumask_set_cpu(j, sched_group_cpus(sg));
5417 		}
5418 
5419 		if (!first)
5420 			first = sg;
5421 		if (last)
5422 			last->next = sg;
5423 		last = sg;
5424 	}
5425 	last->next = first;
5426 
5427 	return 0;
5428 }
5429 
5430 /*
5431  * Initialize sched groups cpu_power.
5432  *
5433  * cpu_power indicates the capacity of sched group, which is used while
5434  * distributing the load between different sched groups in a sched domain.
5435  * Typically cpu_power for all the groups in a sched domain will be same unless
5436  * there are asymmetries in the topology. If there are asymmetries, group
5437  * having more cpu_power will pickup more load compared to the group having
5438  * less cpu_power.
5439  */
5440 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5441 {
5442 	struct sched_group *sg = sd->groups;
5443 
5444 	WARN_ON(!sg);
5445 
5446 	do {
5447 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5448 		sg = sg->next;
5449 	} while (sg != sd->groups);
5450 
5451 	if (cpu != group_balance_cpu(sg))
5452 		return;
5453 
5454 	update_group_power(sd, cpu);
5455 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5456 }
5457 
5458 int __weak arch_sd_sibling_asym_packing(void)
5459 {
5460        return 0*SD_ASYM_PACKING;
5461 }
5462 
5463 /*
5464  * Initializers for schedule domains
5465  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5466  */
5467 
5468 #ifdef CONFIG_SCHED_DEBUG
5469 # define SD_INIT_NAME(sd, type)		sd->name = #type
5470 #else
5471 # define SD_INIT_NAME(sd, type)		do { } while (0)
5472 #endif
5473 
5474 #define SD_INIT_FUNC(type)						\
5475 static noinline struct sched_domain *					\
5476 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5477 {									\
5478 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5479 	*sd = SD_##type##_INIT;						\
5480 	SD_INIT_NAME(sd, type);						\
5481 	sd->private = &tl->data;					\
5482 	return sd;							\
5483 }
5484 
5485 SD_INIT_FUNC(CPU)
5486 #ifdef CONFIG_SCHED_SMT
5487  SD_INIT_FUNC(SIBLING)
5488 #endif
5489 #ifdef CONFIG_SCHED_MC
5490  SD_INIT_FUNC(MC)
5491 #endif
5492 #ifdef CONFIG_SCHED_BOOK
5493  SD_INIT_FUNC(BOOK)
5494 #endif
5495 
5496 static int default_relax_domain_level = -1;
5497 int sched_domain_level_max;
5498 
5499 static int __init setup_relax_domain_level(char *str)
5500 {
5501 	if (kstrtoint(str, 0, &default_relax_domain_level))
5502 		pr_warn("Unable to set relax_domain_level\n");
5503 
5504 	return 1;
5505 }
5506 __setup("relax_domain_level=", setup_relax_domain_level);
5507 
5508 static void set_domain_attribute(struct sched_domain *sd,
5509 				 struct sched_domain_attr *attr)
5510 {
5511 	int request;
5512 
5513 	if (!attr || attr->relax_domain_level < 0) {
5514 		if (default_relax_domain_level < 0)
5515 			return;
5516 		else
5517 			request = default_relax_domain_level;
5518 	} else
5519 		request = attr->relax_domain_level;
5520 	if (request < sd->level) {
5521 		/* turn off idle balance on this domain */
5522 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5523 	} else {
5524 		/* turn on idle balance on this domain */
5525 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5526 	}
5527 }
5528 
5529 static void __sdt_free(const struct cpumask *cpu_map);
5530 static int __sdt_alloc(const struct cpumask *cpu_map);
5531 
5532 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5533 				 const struct cpumask *cpu_map)
5534 {
5535 	switch (what) {
5536 	case sa_rootdomain:
5537 		if (!atomic_read(&d->rd->refcount))
5538 			free_rootdomain(&d->rd->rcu); /* fall through */
5539 	case sa_sd:
5540 		free_percpu(d->sd); /* fall through */
5541 	case sa_sd_storage:
5542 		__sdt_free(cpu_map); /* fall through */
5543 	case sa_none:
5544 		break;
5545 	}
5546 }
5547 
5548 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5549 						   const struct cpumask *cpu_map)
5550 {
5551 	memset(d, 0, sizeof(*d));
5552 
5553 	if (__sdt_alloc(cpu_map))
5554 		return sa_sd_storage;
5555 	d->sd = alloc_percpu(struct sched_domain *);
5556 	if (!d->sd)
5557 		return sa_sd_storage;
5558 	d->rd = alloc_rootdomain();
5559 	if (!d->rd)
5560 		return sa_sd;
5561 	return sa_rootdomain;
5562 }
5563 
5564 /*
5565  * NULL the sd_data elements we've used to build the sched_domain and
5566  * sched_group structure so that the subsequent __free_domain_allocs()
5567  * will not free the data we're using.
5568  */
5569 static void claim_allocations(int cpu, struct sched_domain *sd)
5570 {
5571 	struct sd_data *sdd = sd->private;
5572 
5573 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5574 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5575 
5576 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5577 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5578 
5579 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5580 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5581 }
5582 
5583 #ifdef CONFIG_SCHED_SMT
5584 static const struct cpumask *cpu_smt_mask(int cpu)
5585 {
5586 	return topology_thread_cpumask(cpu);
5587 }
5588 #endif
5589 
5590 /*
5591  * Topology list, bottom-up.
5592  */
5593 static struct sched_domain_topology_level default_topology[] = {
5594 #ifdef CONFIG_SCHED_SMT
5595 	{ sd_init_SIBLING, cpu_smt_mask, },
5596 #endif
5597 #ifdef CONFIG_SCHED_MC
5598 	{ sd_init_MC, cpu_coregroup_mask, },
5599 #endif
5600 #ifdef CONFIG_SCHED_BOOK
5601 	{ sd_init_BOOK, cpu_book_mask, },
5602 #endif
5603 	{ sd_init_CPU, cpu_cpu_mask, },
5604 	{ NULL, },
5605 };
5606 
5607 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5608 
5609 #define for_each_sd_topology(tl)			\
5610 	for (tl = sched_domain_topology; tl->init; tl++)
5611 
5612 #ifdef CONFIG_NUMA
5613 
5614 static int sched_domains_numa_levels;
5615 static int *sched_domains_numa_distance;
5616 static struct cpumask ***sched_domains_numa_masks;
5617 static int sched_domains_curr_level;
5618 
5619 static inline int sd_local_flags(int level)
5620 {
5621 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5622 		return 0;
5623 
5624 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5625 }
5626 
5627 static struct sched_domain *
5628 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5629 {
5630 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5631 	int level = tl->numa_level;
5632 	int sd_weight = cpumask_weight(
5633 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5634 
5635 	*sd = (struct sched_domain){
5636 		.min_interval		= sd_weight,
5637 		.max_interval		= 2*sd_weight,
5638 		.busy_factor		= 32,
5639 		.imbalance_pct		= 125,
5640 		.cache_nice_tries	= 2,
5641 		.busy_idx		= 3,
5642 		.idle_idx		= 2,
5643 		.newidle_idx		= 0,
5644 		.wake_idx		= 0,
5645 		.forkexec_idx		= 0,
5646 
5647 		.flags			= 1*SD_LOAD_BALANCE
5648 					| 1*SD_BALANCE_NEWIDLE
5649 					| 0*SD_BALANCE_EXEC
5650 					| 0*SD_BALANCE_FORK
5651 					| 0*SD_BALANCE_WAKE
5652 					| 0*SD_WAKE_AFFINE
5653 					| 0*SD_SHARE_CPUPOWER
5654 					| 0*SD_SHARE_PKG_RESOURCES
5655 					| 1*SD_SERIALIZE
5656 					| 0*SD_PREFER_SIBLING
5657 					| sd_local_flags(level)
5658 					,
5659 		.last_balance		= jiffies,
5660 		.balance_interval	= sd_weight,
5661 	};
5662 	SD_INIT_NAME(sd, NUMA);
5663 	sd->private = &tl->data;
5664 
5665 	/*
5666 	 * Ugly hack to pass state to sd_numa_mask()...
5667 	 */
5668 	sched_domains_curr_level = tl->numa_level;
5669 
5670 	return sd;
5671 }
5672 
5673 static const struct cpumask *sd_numa_mask(int cpu)
5674 {
5675 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5676 }
5677 
5678 static void sched_numa_warn(const char *str)
5679 {
5680 	static int done = false;
5681 	int i,j;
5682 
5683 	if (done)
5684 		return;
5685 
5686 	done = true;
5687 
5688 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5689 
5690 	for (i = 0; i < nr_node_ids; i++) {
5691 		printk(KERN_WARNING "  ");
5692 		for (j = 0; j < nr_node_ids; j++)
5693 			printk(KERN_CONT "%02d ", node_distance(i,j));
5694 		printk(KERN_CONT "\n");
5695 	}
5696 	printk(KERN_WARNING "\n");
5697 }
5698 
5699 static bool find_numa_distance(int distance)
5700 {
5701 	int i;
5702 
5703 	if (distance == node_distance(0, 0))
5704 		return true;
5705 
5706 	for (i = 0; i < sched_domains_numa_levels; i++) {
5707 		if (sched_domains_numa_distance[i] == distance)
5708 			return true;
5709 	}
5710 
5711 	return false;
5712 }
5713 
5714 static void sched_init_numa(void)
5715 {
5716 	int next_distance, curr_distance = node_distance(0, 0);
5717 	struct sched_domain_topology_level *tl;
5718 	int level = 0;
5719 	int i, j, k;
5720 
5721 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5722 	if (!sched_domains_numa_distance)
5723 		return;
5724 
5725 	/*
5726 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5727 	 * unique distances in the node_distance() table.
5728 	 *
5729 	 * Assumes node_distance(0,j) includes all distances in
5730 	 * node_distance(i,j) in order to avoid cubic time.
5731 	 */
5732 	next_distance = curr_distance;
5733 	for (i = 0; i < nr_node_ids; i++) {
5734 		for (j = 0; j < nr_node_ids; j++) {
5735 			for (k = 0; k < nr_node_ids; k++) {
5736 				int distance = node_distance(i, k);
5737 
5738 				if (distance > curr_distance &&
5739 				    (distance < next_distance ||
5740 				     next_distance == curr_distance))
5741 					next_distance = distance;
5742 
5743 				/*
5744 				 * While not a strong assumption it would be nice to know
5745 				 * about cases where if node A is connected to B, B is not
5746 				 * equally connected to A.
5747 				 */
5748 				if (sched_debug() && node_distance(k, i) != distance)
5749 					sched_numa_warn("Node-distance not symmetric");
5750 
5751 				if (sched_debug() && i && !find_numa_distance(distance))
5752 					sched_numa_warn("Node-0 not representative");
5753 			}
5754 			if (next_distance != curr_distance) {
5755 				sched_domains_numa_distance[level++] = next_distance;
5756 				sched_domains_numa_levels = level;
5757 				curr_distance = next_distance;
5758 			} else break;
5759 		}
5760 
5761 		/*
5762 		 * In case of sched_debug() we verify the above assumption.
5763 		 */
5764 		if (!sched_debug())
5765 			break;
5766 	}
5767 	/*
5768 	 * 'level' contains the number of unique distances, excluding the
5769 	 * identity distance node_distance(i,i).
5770 	 *
5771 	 * The sched_domains_numa_distance[] array includes the actual distance
5772 	 * numbers.
5773 	 */
5774 
5775 	/*
5776 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5777 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5778 	 * the array will contain less then 'level' members. This could be
5779 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5780 	 * in other functions.
5781 	 *
5782 	 * We reset it to 'level' at the end of this function.
5783 	 */
5784 	sched_domains_numa_levels = 0;
5785 
5786 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5787 	if (!sched_domains_numa_masks)
5788 		return;
5789 
5790 	/*
5791 	 * Now for each level, construct a mask per node which contains all
5792 	 * cpus of nodes that are that many hops away from us.
5793 	 */
5794 	for (i = 0; i < level; i++) {
5795 		sched_domains_numa_masks[i] =
5796 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5797 		if (!sched_domains_numa_masks[i])
5798 			return;
5799 
5800 		for (j = 0; j < nr_node_ids; j++) {
5801 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5802 			if (!mask)
5803 				return;
5804 
5805 			sched_domains_numa_masks[i][j] = mask;
5806 
5807 			for (k = 0; k < nr_node_ids; k++) {
5808 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5809 					continue;
5810 
5811 				cpumask_or(mask, mask, cpumask_of_node(k));
5812 			}
5813 		}
5814 	}
5815 
5816 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5817 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5818 	if (!tl)
5819 		return;
5820 
5821 	/*
5822 	 * Copy the default topology bits..
5823 	 */
5824 	for (i = 0; default_topology[i].init; i++)
5825 		tl[i] = default_topology[i];
5826 
5827 	/*
5828 	 * .. and append 'j' levels of NUMA goodness.
5829 	 */
5830 	for (j = 0; j < level; i++, j++) {
5831 		tl[i] = (struct sched_domain_topology_level){
5832 			.init = sd_numa_init,
5833 			.mask = sd_numa_mask,
5834 			.flags = SDTL_OVERLAP,
5835 			.numa_level = j,
5836 		};
5837 	}
5838 
5839 	sched_domain_topology = tl;
5840 
5841 	sched_domains_numa_levels = level;
5842 }
5843 
5844 static void sched_domains_numa_masks_set(int cpu)
5845 {
5846 	int i, j;
5847 	int node = cpu_to_node(cpu);
5848 
5849 	for (i = 0; i < sched_domains_numa_levels; i++) {
5850 		for (j = 0; j < nr_node_ids; j++) {
5851 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5852 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5853 		}
5854 	}
5855 }
5856 
5857 static void sched_domains_numa_masks_clear(int cpu)
5858 {
5859 	int i, j;
5860 	for (i = 0; i < sched_domains_numa_levels; i++) {
5861 		for (j = 0; j < nr_node_ids; j++)
5862 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5863 	}
5864 }
5865 
5866 /*
5867  * Update sched_domains_numa_masks[level][node] array when new cpus
5868  * are onlined.
5869  */
5870 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5871 					   unsigned long action,
5872 					   void *hcpu)
5873 {
5874 	int cpu = (long)hcpu;
5875 
5876 	switch (action & ~CPU_TASKS_FROZEN) {
5877 	case CPU_ONLINE:
5878 		sched_domains_numa_masks_set(cpu);
5879 		break;
5880 
5881 	case CPU_DEAD:
5882 		sched_domains_numa_masks_clear(cpu);
5883 		break;
5884 
5885 	default:
5886 		return NOTIFY_DONE;
5887 	}
5888 
5889 	return NOTIFY_OK;
5890 }
5891 #else
5892 static inline void sched_init_numa(void)
5893 {
5894 }
5895 
5896 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5897 					   unsigned long action,
5898 					   void *hcpu)
5899 {
5900 	return 0;
5901 }
5902 #endif /* CONFIG_NUMA */
5903 
5904 static int __sdt_alloc(const struct cpumask *cpu_map)
5905 {
5906 	struct sched_domain_topology_level *tl;
5907 	int j;
5908 
5909 	for_each_sd_topology(tl) {
5910 		struct sd_data *sdd = &tl->data;
5911 
5912 		sdd->sd = alloc_percpu(struct sched_domain *);
5913 		if (!sdd->sd)
5914 			return -ENOMEM;
5915 
5916 		sdd->sg = alloc_percpu(struct sched_group *);
5917 		if (!sdd->sg)
5918 			return -ENOMEM;
5919 
5920 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5921 		if (!sdd->sgp)
5922 			return -ENOMEM;
5923 
5924 		for_each_cpu(j, cpu_map) {
5925 			struct sched_domain *sd;
5926 			struct sched_group *sg;
5927 			struct sched_group_power *sgp;
5928 
5929 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5930 					GFP_KERNEL, cpu_to_node(j));
5931 			if (!sd)
5932 				return -ENOMEM;
5933 
5934 			*per_cpu_ptr(sdd->sd, j) = sd;
5935 
5936 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5937 					GFP_KERNEL, cpu_to_node(j));
5938 			if (!sg)
5939 				return -ENOMEM;
5940 
5941 			sg->next = sg;
5942 
5943 			*per_cpu_ptr(sdd->sg, j) = sg;
5944 
5945 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5946 					GFP_KERNEL, cpu_to_node(j));
5947 			if (!sgp)
5948 				return -ENOMEM;
5949 
5950 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5951 		}
5952 	}
5953 
5954 	return 0;
5955 }
5956 
5957 static void __sdt_free(const struct cpumask *cpu_map)
5958 {
5959 	struct sched_domain_topology_level *tl;
5960 	int j;
5961 
5962 	for_each_sd_topology(tl) {
5963 		struct sd_data *sdd = &tl->data;
5964 
5965 		for_each_cpu(j, cpu_map) {
5966 			struct sched_domain *sd;
5967 
5968 			if (sdd->sd) {
5969 				sd = *per_cpu_ptr(sdd->sd, j);
5970 				if (sd && (sd->flags & SD_OVERLAP))
5971 					free_sched_groups(sd->groups, 0);
5972 				kfree(*per_cpu_ptr(sdd->sd, j));
5973 			}
5974 
5975 			if (sdd->sg)
5976 				kfree(*per_cpu_ptr(sdd->sg, j));
5977 			if (sdd->sgp)
5978 				kfree(*per_cpu_ptr(sdd->sgp, j));
5979 		}
5980 		free_percpu(sdd->sd);
5981 		sdd->sd = NULL;
5982 		free_percpu(sdd->sg);
5983 		sdd->sg = NULL;
5984 		free_percpu(sdd->sgp);
5985 		sdd->sgp = NULL;
5986 	}
5987 }
5988 
5989 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5990 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5991 		struct sched_domain *child, int cpu)
5992 {
5993 	struct sched_domain *sd = tl->init(tl, cpu);
5994 	if (!sd)
5995 		return child;
5996 
5997 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5998 	if (child) {
5999 		sd->level = child->level + 1;
6000 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6001 		child->parent = sd;
6002 		sd->child = child;
6003 	}
6004 	set_domain_attribute(sd, attr);
6005 
6006 	return sd;
6007 }
6008 
6009 /*
6010  * Build sched domains for a given set of cpus and attach the sched domains
6011  * to the individual cpus
6012  */
6013 static int build_sched_domains(const struct cpumask *cpu_map,
6014 			       struct sched_domain_attr *attr)
6015 {
6016 	enum s_alloc alloc_state;
6017 	struct sched_domain *sd;
6018 	struct s_data d;
6019 	int i, ret = -ENOMEM;
6020 
6021 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6022 	if (alloc_state != sa_rootdomain)
6023 		goto error;
6024 
6025 	/* Set up domains for cpus specified by the cpu_map. */
6026 	for_each_cpu(i, cpu_map) {
6027 		struct sched_domain_topology_level *tl;
6028 
6029 		sd = NULL;
6030 		for_each_sd_topology(tl) {
6031 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6032 			if (tl == sched_domain_topology)
6033 				*per_cpu_ptr(d.sd, i) = sd;
6034 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6035 				sd->flags |= SD_OVERLAP;
6036 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6037 				break;
6038 		}
6039 	}
6040 
6041 	/* Build the groups for the domains */
6042 	for_each_cpu(i, cpu_map) {
6043 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6044 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6045 			if (sd->flags & SD_OVERLAP) {
6046 				if (build_overlap_sched_groups(sd, i))
6047 					goto error;
6048 			} else {
6049 				if (build_sched_groups(sd, i))
6050 					goto error;
6051 			}
6052 		}
6053 	}
6054 
6055 	/* Calculate CPU power for physical packages and nodes */
6056 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6057 		if (!cpumask_test_cpu(i, cpu_map))
6058 			continue;
6059 
6060 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6061 			claim_allocations(i, sd);
6062 			init_sched_groups_power(i, sd);
6063 		}
6064 	}
6065 
6066 	/* Attach the domains */
6067 	rcu_read_lock();
6068 	for_each_cpu(i, cpu_map) {
6069 		sd = *per_cpu_ptr(d.sd, i);
6070 		cpu_attach_domain(sd, d.rd, i);
6071 	}
6072 	rcu_read_unlock();
6073 
6074 	ret = 0;
6075 error:
6076 	__free_domain_allocs(&d, alloc_state, cpu_map);
6077 	return ret;
6078 }
6079 
6080 static cpumask_var_t *doms_cur;	/* current sched domains */
6081 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6082 static struct sched_domain_attr *dattr_cur;
6083 				/* attribues of custom domains in 'doms_cur' */
6084 
6085 /*
6086  * Special case: If a kmalloc of a doms_cur partition (array of
6087  * cpumask) fails, then fallback to a single sched domain,
6088  * as determined by the single cpumask fallback_doms.
6089  */
6090 static cpumask_var_t fallback_doms;
6091 
6092 /*
6093  * arch_update_cpu_topology lets virtualized architectures update the
6094  * cpu core maps. It is supposed to return 1 if the topology changed
6095  * or 0 if it stayed the same.
6096  */
6097 int __attribute__((weak)) arch_update_cpu_topology(void)
6098 {
6099 	return 0;
6100 }
6101 
6102 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6103 {
6104 	int i;
6105 	cpumask_var_t *doms;
6106 
6107 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6108 	if (!doms)
6109 		return NULL;
6110 	for (i = 0; i < ndoms; i++) {
6111 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6112 			free_sched_domains(doms, i);
6113 			return NULL;
6114 		}
6115 	}
6116 	return doms;
6117 }
6118 
6119 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6120 {
6121 	unsigned int i;
6122 	for (i = 0; i < ndoms; i++)
6123 		free_cpumask_var(doms[i]);
6124 	kfree(doms);
6125 }
6126 
6127 /*
6128  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6129  * For now this just excludes isolated cpus, but could be used to
6130  * exclude other special cases in the future.
6131  */
6132 static int init_sched_domains(const struct cpumask *cpu_map)
6133 {
6134 	int err;
6135 
6136 	arch_update_cpu_topology();
6137 	ndoms_cur = 1;
6138 	doms_cur = alloc_sched_domains(ndoms_cur);
6139 	if (!doms_cur)
6140 		doms_cur = &fallback_doms;
6141 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6142 	err = build_sched_domains(doms_cur[0], NULL);
6143 	register_sched_domain_sysctl();
6144 
6145 	return err;
6146 }
6147 
6148 /*
6149  * Detach sched domains from a group of cpus specified in cpu_map
6150  * These cpus will now be attached to the NULL domain
6151  */
6152 static void detach_destroy_domains(const struct cpumask *cpu_map)
6153 {
6154 	int i;
6155 
6156 	rcu_read_lock();
6157 	for_each_cpu(i, cpu_map)
6158 		cpu_attach_domain(NULL, &def_root_domain, i);
6159 	rcu_read_unlock();
6160 }
6161 
6162 /* handle null as "default" */
6163 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6164 			struct sched_domain_attr *new, int idx_new)
6165 {
6166 	struct sched_domain_attr tmp;
6167 
6168 	/* fast path */
6169 	if (!new && !cur)
6170 		return 1;
6171 
6172 	tmp = SD_ATTR_INIT;
6173 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6174 			new ? (new + idx_new) : &tmp,
6175 			sizeof(struct sched_domain_attr));
6176 }
6177 
6178 /*
6179  * Partition sched domains as specified by the 'ndoms_new'
6180  * cpumasks in the array doms_new[] of cpumasks. This compares
6181  * doms_new[] to the current sched domain partitioning, doms_cur[].
6182  * It destroys each deleted domain and builds each new domain.
6183  *
6184  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6185  * The masks don't intersect (don't overlap.) We should setup one
6186  * sched domain for each mask. CPUs not in any of the cpumasks will
6187  * not be load balanced. If the same cpumask appears both in the
6188  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6189  * it as it is.
6190  *
6191  * The passed in 'doms_new' should be allocated using
6192  * alloc_sched_domains.  This routine takes ownership of it and will
6193  * free_sched_domains it when done with it. If the caller failed the
6194  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6195  * and partition_sched_domains() will fallback to the single partition
6196  * 'fallback_doms', it also forces the domains to be rebuilt.
6197  *
6198  * If doms_new == NULL it will be replaced with cpu_online_mask.
6199  * ndoms_new == 0 is a special case for destroying existing domains,
6200  * and it will not create the default domain.
6201  *
6202  * Call with hotplug lock held
6203  */
6204 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6205 			     struct sched_domain_attr *dattr_new)
6206 {
6207 	int i, j, n;
6208 	int new_topology;
6209 
6210 	mutex_lock(&sched_domains_mutex);
6211 
6212 	/* always unregister in case we don't destroy any domains */
6213 	unregister_sched_domain_sysctl();
6214 
6215 	/* Let architecture update cpu core mappings. */
6216 	new_topology = arch_update_cpu_topology();
6217 
6218 	n = doms_new ? ndoms_new : 0;
6219 
6220 	/* Destroy deleted domains */
6221 	for (i = 0; i < ndoms_cur; i++) {
6222 		for (j = 0; j < n && !new_topology; j++) {
6223 			if (cpumask_equal(doms_cur[i], doms_new[j])
6224 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6225 				goto match1;
6226 		}
6227 		/* no match - a current sched domain not in new doms_new[] */
6228 		detach_destroy_domains(doms_cur[i]);
6229 match1:
6230 		;
6231 	}
6232 
6233 	n = ndoms_cur;
6234 	if (doms_new == NULL) {
6235 		n = 0;
6236 		doms_new = &fallback_doms;
6237 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6238 		WARN_ON_ONCE(dattr_new);
6239 	}
6240 
6241 	/* Build new domains */
6242 	for (i = 0; i < ndoms_new; i++) {
6243 		for (j = 0; j < n && !new_topology; j++) {
6244 			if (cpumask_equal(doms_new[i], doms_cur[j])
6245 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6246 				goto match2;
6247 		}
6248 		/* no match - add a new doms_new */
6249 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6250 match2:
6251 		;
6252 	}
6253 
6254 	/* Remember the new sched domains */
6255 	if (doms_cur != &fallback_doms)
6256 		free_sched_domains(doms_cur, ndoms_cur);
6257 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6258 	doms_cur = doms_new;
6259 	dattr_cur = dattr_new;
6260 	ndoms_cur = ndoms_new;
6261 
6262 	register_sched_domain_sysctl();
6263 
6264 	mutex_unlock(&sched_domains_mutex);
6265 }
6266 
6267 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6268 
6269 /*
6270  * Update cpusets according to cpu_active mask.  If cpusets are
6271  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6272  * around partition_sched_domains().
6273  *
6274  * If we come here as part of a suspend/resume, don't touch cpusets because we
6275  * want to restore it back to its original state upon resume anyway.
6276  */
6277 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6278 			     void *hcpu)
6279 {
6280 	switch (action) {
6281 	case CPU_ONLINE_FROZEN:
6282 	case CPU_DOWN_FAILED_FROZEN:
6283 
6284 		/*
6285 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6286 		 * resume sequence. As long as this is not the last online
6287 		 * operation in the resume sequence, just build a single sched
6288 		 * domain, ignoring cpusets.
6289 		 */
6290 		num_cpus_frozen--;
6291 		if (likely(num_cpus_frozen)) {
6292 			partition_sched_domains(1, NULL, NULL);
6293 			break;
6294 		}
6295 
6296 		/*
6297 		 * This is the last CPU online operation. So fall through and
6298 		 * restore the original sched domains by considering the
6299 		 * cpuset configurations.
6300 		 */
6301 
6302 	case CPU_ONLINE:
6303 	case CPU_DOWN_FAILED:
6304 		cpuset_update_active_cpus(true);
6305 		break;
6306 	default:
6307 		return NOTIFY_DONE;
6308 	}
6309 	return NOTIFY_OK;
6310 }
6311 
6312 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6313 			       void *hcpu)
6314 {
6315 	switch (action) {
6316 	case CPU_DOWN_PREPARE:
6317 		cpuset_update_active_cpus(false);
6318 		break;
6319 	case CPU_DOWN_PREPARE_FROZEN:
6320 		num_cpus_frozen++;
6321 		partition_sched_domains(1, NULL, NULL);
6322 		break;
6323 	default:
6324 		return NOTIFY_DONE;
6325 	}
6326 	return NOTIFY_OK;
6327 }
6328 
6329 void __init sched_init_smp(void)
6330 {
6331 	cpumask_var_t non_isolated_cpus;
6332 
6333 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6334 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6335 
6336 	sched_init_numa();
6337 
6338 	get_online_cpus();
6339 	mutex_lock(&sched_domains_mutex);
6340 	init_sched_domains(cpu_active_mask);
6341 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6342 	if (cpumask_empty(non_isolated_cpus))
6343 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6344 	mutex_unlock(&sched_domains_mutex);
6345 	put_online_cpus();
6346 
6347 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6348 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6349 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6350 
6351 	init_hrtick();
6352 
6353 	/* Move init over to a non-isolated CPU */
6354 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6355 		BUG();
6356 	sched_init_granularity();
6357 	free_cpumask_var(non_isolated_cpus);
6358 
6359 	init_sched_rt_class();
6360 }
6361 #else
6362 void __init sched_init_smp(void)
6363 {
6364 	sched_init_granularity();
6365 }
6366 #endif /* CONFIG_SMP */
6367 
6368 const_debug unsigned int sysctl_timer_migration = 1;
6369 
6370 int in_sched_functions(unsigned long addr)
6371 {
6372 	return in_lock_functions(addr) ||
6373 		(addr >= (unsigned long)__sched_text_start
6374 		&& addr < (unsigned long)__sched_text_end);
6375 }
6376 
6377 #ifdef CONFIG_CGROUP_SCHED
6378 /*
6379  * Default task group.
6380  * Every task in system belongs to this group at bootup.
6381  */
6382 struct task_group root_task_group;
6383 LIST_HEAD(task_groups);
6384 #endif
6385 
6386 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6387 
6388 void __init sched_init(void)
6389 {
6390 	int i, j;
6391 	unsigned long alloc_size = 0, ptr;
6392 
6393 #ifdef CONFIG_FAIR_GROUP_SCHED
6394 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6395 #endif
6396 #ifdef CONFIG_RT_GROUP_SCHED
6397 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6398 #endif
6399 #ifdef CONFIG_CPUMASK_OFFSTACK
6400 	alloc_size += num_possible_cpus() * cpumask_size();
6401 #endif
6402 	if (alloc_size) {
6403 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6404 
6405 #ifdef CONFIG_FAIR_GROUP_SCHED
6406 		root_task_group.se = (struct sched_entity **)ptr;
6407 		ptr += nr_cpu_ids * sizeof(void **);
6408 
6409 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6410 		ptr += nr_cpu_ids * sizeof(void **);
6411 
6412 #endif /* CONFIG_FAIR_GROUP_SCHED */
6413 #ifdef CONFIG_RT_GROUP_SCHED
6414 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6415 		ptr += nr_cpu_ids * sizeof(void **);
6416 
6417 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6418 		ptr += nr_cpu_ids * sizeof(void **);
6419 
6420 #endif /* CONFIG_RT_GROUP_SCHED */
6421 #ifdef CONFIG_CPUMASK_OFFSTACK
6422 		for_each_possible_cpu(i) {
6423 			per_cpu(load_balance_mask, i) = (void *)ptr;
6424 			ptr += cpumask_size();
6425 		}
6426 #endif /* CONFIG_CPUMASK_OFFSTACK */
6427 	}
6428 
6429 #ifdef CONFIG_SMP
6430 	init_defrootdomain();
6431 #endif
6432 
6433 	init_rt_bandwidth(&def_rt_bandwidth,
6434 			global_rt_period(), global_rt_runtime());
6435 
6436 #ifdef CONFIG_RT_GROUP_SCHED
6437 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6438 			global_rt_period(), global_rt_runtime());
6439 #endif /* CONFIG_RT_GROUP_SCHED */
6440 
6441 #ifdef CONFIG_CGROUP_SCHED
6442 	list_add(&root_task_group.list, &task_groups);
6443 	INIT_LIST_HEAD(&root_task_group.children);
6444 	INIT_LIST_HEAD(&root_task_group.siblings);
6445 	autogroup_init(&init_task);
6446 
6447 #endif /* CONFIG_CGROUP_SCHED */
6448 
6449 	for_each_possible_cpu(i) {
6450 		struct rq *rq;
6451 
6452 		rq = cpu_rq(i);
6453 		raw_spin_lock_init(&rq->lock);
6454 		rq->nr_running = 0;
6455 		rq->calc_load_active = 0;
6456 		rq->calc_load_update = jiffies + LOAD_FREQ;
6457 		init_cfs_rq(&rq->cfs);
6458 		init_rt_rq(&rq->rt, rq);
6459 #ifdef CONFIG_FAIR_GROUP_SCHED
6460 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6461 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6462 		/*
6463 		 * How much cpu bandwidth does root_task_group get?
6464 		 *
6465 		 * In case of task-groups formed thr' the cgroup filesystem, it
6466 		 * gets 100% of the cpu resources in the system. This overall
6467 		 * system cpu resource is divided among the tasks of
6468 		 * root_task_group and its child task-groups in a fair manner,
6469 		 * based on each entity's (task or task-group's) weight
6470 		 * (se->load.weight).
6471 		 *
6472 		 * In other words, if root_task_group has 10 tasks of weight
6473 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6474 		 * then A0's share of the cpu resource is:
6475 		 *
6476 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6477 		 *
6478 		 * We achieve this by letting root_task_group's tasks sit
6479 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6480 		 */
6481 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6482 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6483 #endif /* CONFIG_FAIR_GROUP_SCHED */
6484 
6485 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6486 #ifdef CONFIG_RT_GROUP_SCHED
6487 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6488 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6489 #endif
6490 
6491 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6492 			rq->cpu_load[j] = 0;
6493 
6494 		rq->last_load_update_tick = jiffies;
6495 
6496 #ifdef CONFIG_SMP
6497 		rq->sd = NULL;
6498 		rq->rd = NULL;
6499 		rq->cpu_power = SCHED_POWER_SCALE;
6500 		rq->post_schedule = 0;
6501 		rq->active_balance = 0;
6502 		rq->next_balance = jiffies;
6503 		rq->push_cpu = 0;
6504 		rq->cpu = i;
6505 		rq->online = 0;
6506 		rq->idle_stamp = 0;
6507 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6508 
6509 		INIT_LIST_HEAD(&rq->cfs_tasks);
6510 
6511 		rq_attach_root(rq, &def_root_domain);
6512 #ifdef CONFIG_NO_HZ_COMMON
6513 		rq->nohz_flags = 0;
6514 #endif
6515 #ifdef CONFIG_NO_HZ_FULL
6516 		rq->last_sched_tick = 0;
6517 #endif
6518 #endif
6519 		init_rq_hrtick(rq);
6520 		atomic_set(&rq->nr_iowait, 0);
6521 	}
6522 
6523 	set_load_weight(&init_task);
6524 
6525 #ifdef CONFIG_PREEMPT_NOTIFIERS
6526 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6527 #endif
6528 
6529 #ifdef CONFIG_RT_MUTEXES
6530 	plist_head_init(&init_task.pi_waiters);
6531 #endif
6532 
6533 	/*
6534 	 * The boot idle thread does lazy MMU switching as well:
6535 	 */
6536 	atomic_inc(&init_mm.mm_count);
6537 	enter_lazy_tlb(&init_mm, current);
6538 
6539 	/*
6540 	 * Make us the idle thread. Technically, schedule() should not be
6541 	 * called from this thread, however somewhere below it might be,
6542 	 * but because we are the idle thread, we just pick up running again
6543 	 * when this runqueue becomes "idle".
6544 	 */
6545 	init_idle(current, smp_processor_id());
6546 
6547 	calc_load_update = jiffies + LOAD_FREQ;
6548 
6549 	/*
6550 	 * During early bootup we pretend to be a normal task:
6551 	 */
6552 	current->sched_class = &fair_sched_class;
6553 
6554 #ifdef CONFIG_SMP
6555 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6556 	/* May be allocated at isolcpus cmdline parse time */
6557 	if (cpu_isolated_map == NULL)
6558 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6559 	idle_thread_set_boot_cpu();
6560 #endif
6561 	init_sched_fair_class();
6562 
6563 	scheduler_running = 1;
6564 }
6565 
6566 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6567 static inline int preempt_count_equals(int preempt_offset)
6568 {
6569 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6570 
6571 	return (nested == preempt_offset);
6572 }
6573 
6574 void __might_sleep(const char *file, int line, int preempt_offset)
6575 {
6576 	static unsigned long prev_jiffy;	/* ratelimiting */
6577 
6578 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6579 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6580 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6581 		return;
6582 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6583 		return;
6584 	prev_jiffy = jiffies;
6585 
6586 	printk(KERN_ERR
6587 		"BUG: sleeping function called from invalid context at %s:%d\n",
6588 			file, line);
6589 	printk(KERN_ERR
6590 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6591 			in_atomic(), irqs_disabled(),
6592 			current->pid, current->comm);
6593 
6594 	debug_show_held_locks(current);
6595 	if (irqs_disabled())
6596 		print_irqtrace_events(current);
6597 	dump_stack();
6598 }
6599 EXPORT_SYMBOL(__might_sleep);
6600 #endif
6601 
6602 #ifdef CONFIG_MAGIC_SYSRQ
6603 static void normalize_task(struct rq *rq, struct task_struct *p)
6604 {
6605 	const struct sched_class *prev_class = p->sched_class;
6606 	int old_prio = p->prio;
6607 	int on_rq;
6608 
6609 	on_rq = p->on_rq;
6610 	if (on_rq)
6611 		dequeue_task(rq, p, 0);
6612 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6613 	if (on_rq) {
6614 		enqueue_task(rq, p, 0);
6615 		resched_task(rq->curr);
6616 	}
6617 
6618 	check_class_changed(rq, p, prev_class, old_prio);
6619 }
6620 
6621 void normalize_rt_tasks(void)
6622 {
6623 	struct task_struct *g, *p;
6624 	unsigned long flags;
6625 	struct rq *rq;
6626 
6627 	read_lock_irqsave(&tasklist_lock, flags);
6628 	do_each_thread(g, p) {
6629 		/*
6630 		 * Only normalize user tasks:
6631 		 */
6632 		if (!p->mm)
6633 			continue;
6634 
6635 		p->se.exec_start		= 0;
6636 #ifdef CONFIG_SCHEDSTATS
6637 		p->se.statistics.wait_start	= 0;
6638 		p->se.statistics.sleep_start	= 0;
6639 		p->se.statistics.block_start	= 0;
6640 #endif
6641 
6642 		if (!rt_task(p)) {
6643 			/*
6644 			 * Renice negative nice level userspace
6645 			 * tasks back to 0:
6646 			 */
6647 			if (TASK_NICE(p) < 0 && p->mm)
6648 				set_user_nice(p, 0);
6649 			continue;
6650 		}
6651 
6652 		raw_spin_lock(&p->pi_lock);
6653 		rq = __task_rq_lock(p);
6654 
6655 		normalize_task(rq, p);
6656 
6657 		__task_rq_unlock(rq);
6658 		raw_spin_unlock(&p->pi_lock);
6659 	} while_each_thread(g, p);
6660 
6661 	read_unlock_irqrestore(&tasklist_lock, flags);
6662 }
6663 
6664 #endif /* CONFIG_MAGIC_SYSRQ */
6665 
6666 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6667 /*
6668  * These functions are only useful for the IA64 MCA handling, or kdb.
6669  *
6670  * They can only be called when the whole system has been
6671  * stopped - every CPU needs to be quiescent, and no scheduling
6672  * activity can take place. Using them for anything else would
6673  * be a serious bug, and as a result, they aren't even visible
6674  * under any other configuration.
6675  */
6676 
6677 /**
6678  * curr_task - return the current task for a given cpu.
6679  * @cpu: the processor in question.
6680  *
6681  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682  *
6683  * Return: The current task for @cpu.
6684  */
6685 struct task_struct *curr_task(int cpu)
6686 {
6687 	return cpu_curr(cpu);
6688 }
6689 
6690 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6691 
6692 #ifdef CONFIG_IA64
6693 /**
6694  * set_curr_task - set the current task for a given cpu.
6695  * @cpu: the processor in question.
6696  * @p: the task pointer to set.
6697  *
6698  * Description: This function must only be used when non-maskable interrupts
6699  * are serviced on a separate stack. It allows the architecture to switch the
6700  * notion of the current task on a cpu in a non-blocking manner. This function
6701  * must be called with all CPU's synchronized, and interrupts disabled, the
6702  * and caller must save the original value of the current task (see
6703  * curr_task() above) and restore that value before reenabling interrupts and
6704  * re-starting the system.
6705  *
6706  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6707  */
6708 void set_curr_task(int cpu, struct task_struct *p)
6709 {
6710 	cpu_curr(cpu) = p;
6711 }
6712 
6713 #endif
6714 
6715 #ifdef CONFIG_CGROUP_SCHED
6716 /* task_group_lock serializes the addition/removal of task groups */
6717 static DEFINE_SPINLOCK(task_group_lock);
6718 
6719 static void free_sched_group(struct task_group *tg)
6720 {
6721 	free_fair_sched_group(tg);
6722 	free_rt_sched_group(tg);
6723 	autogroup_free(tg);
6724 	kfree(tg);
6725 }
6726 
6727 /* allocate runqueue etc for a new task group */
6728 struct task_group *sched_create_group(struct task_group *parent)
6729 {
6730 	struct task_group *tg;
6731 
6732 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6733 	if (!tg)
6734 		return ERR_PTR(-ENOMEM);
6735 
6736 	if (!alloc_fair_sched_group(tg, parent))
6737 		goto err;
6738 
6739 	if (!alloc_rt_sched_group(tg, parent))
6740 		goto err;
6741 
6742 	return tg;
6743 
6744 err:
6745 	free_sched_group(tg);
6746 	return ERR_PTR(-ENOMEM);
6747 }
6748 
6749 void sched_online_group(struct task_group *tg, struct task_group *parent)
6750 {
6751 	unsigned long flags;
6752 
6753 	spin_lock_irqsave(&task_group_lock, flags);
6754 	list_add_rcu(&tg->list, &task_groups);
6755 
6756 	WARN_ON(!parent); /* root should already exist */
6757 
6758 	tg->parent = parent;
6759 	INIT_LIST_HEAD(&tg->children);
6760 	list_add_rcu(&tg->siblings, &parent->children);
6761 	spin_unlock_irqrestore(&task_group_lock, flags);
6762 }
6763 
6764 /* rcu callback to free various structures associated with a task group */
6765 static void free_sched_group_rcu(struct rcu_head *rhp)
6766 {
6767 	/* now it should be safe to free those cfs_rqs */
6768 	free_sched_group(container_of(rhp, struct task_group, rcu));
6769 }
6770 
6771 /* Destroy runqueue etc associated with a task group */
6772 void sched_destroy_group(struct task_group *tg)
6773 {
6774 	/* wait for possible concurrent references to cfs_rqs complete */
6775 	call_rcu(&tg->rcu, free_sched_group_rcu);
6776 }
6777 
6778 void sched_offline_group(struct task_group *tg)
6779 {
6780 	unsigned long flags;
6781 	int i;
6782 
6783 	/* end participation in shares distribution */
6784 	for_each_possible_cpu(i)
6785 		unregister_fair_sched_group(tg, i);
6786 
6787 	spin_lock_irqsave(&task_group_lock, flags);
6788 	list_del_rcu(&tg->list);
6789 	list_del_rcu(&tg->siblings);
6790 	spin_unlock_irqrestore(&task_group_lock, flags);
6791 }
6792 
6793 /* change task's runqueue when it moves between groups.
6794  *	The caller of this function should have put the task in its new group
6795  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6796  *	reflect its new group.
6797  */
6798 void sched_move_task(struct task_struct *tsk)
6799 {
6800 	struct task_group *tg;
6801 	int on_rq, running;
6802 	unsigned long flags;
6803 	struct rq *rq;
6804 
6805 	rq = task_rq_lock(tsk, &flags);
6806 
6807 	running = task_current(rq, tsk);
6808 	on_rq = tsk->on_rq;
6809 
6810 	if (on_rq)
6811 		dequeue_task(rq, tsk, 0);
6812 	if (unlikely(running))
6813 		tsk->sched_class->put_prev_task(rq, tsk);
6814 
6815 	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6816 				lockdep_is_held(&tsk->sighand->siglock)),
6817 			  struct task_group, css);
6818 	tg = autogroup_task_group(tsk, tg);
6819 	tsk->sched_task_group = tg;
6820 
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 	if (tsk->sched_class->task_move_group)
6823 		tsk->sched_class->task_move_group(tsk, on_rq);
6824 	else
6825 #endif
6826 		set_task_rq(tsk, task_cpu(tsk));
6827 
6828 	if (unlikely(running))
6829 		tsk->sched_class->set_curr_task(rq);
6830 	if (on_rq)
6831 		enqueue_task(rq, tsk, 0);
6832 
6833 	task_rq_unlock(rq, tsk, &flags);
6834 }
6835 #endif /* CONFIG_CGROUP_SCHED */
6836 
6837 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6838 static unsigned long to_ratio(u64 period, u64 runtime)
6839 {
6840 	if (runtime == RUNTIME_INF)
6841 		return 1ULL << 20;
6842 
6843 	return div64_u64(runtime << 20, period);
6844 }
6845 #endif
6846 
6847 #ifdef CONFIG_RT_GROUP_SCHED
6848 /*
6849  * Ensure that the real time constraints are schedulable.
6850  */
6851 static DEFINE_MUTEX(rt_constraints_mutex);
6852 
6853 /* Must be called with tasklist_lock held */
6854 static inline int tg_has_rt_tasks(struct task_group *tg)
6855 {
6856 	struct task_struct *g, *p;
6857 
6858 	do_each_thread(g, p) {
6859 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6860 			return 1;
6861 	} while_each_thread(g, p);
6862 
6863 	return 0;
6864 }
6865 
6866 struct rt_schedulable_data {
6867 	struct task_group *tg;
6868 	u64 rt_period;
6869 	u64 rt_runtime;
6870 };
6871 
6872 static int tg_rt_schedulable(struct task_group *tg, void *data)
6873 {
6874 	struct rt_schedulable_data *d = data;
6875 	struct task_group *child;
6876 	unsigned long total, sum = 0;
6877 	u64 period, runtime;
6878 
6879 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6880 	runtime = tg->rt_bandwidth.rt_runtime;
6881 
6882 	if (tg == d->tg) {
6883 		period = d->rt_period;
6884 		runtime = d->rt_runtime;
6885 	}
6886 
6887 	/*
6888 	 * Cannot have more runtime than the period.
6889 	 */
6890 	if (runtime > period && runtime != RUNTIME_INF)
6891 		return -EINVAL;
6892 
6893 	/*
6894 	 * Ensure we don't starve existing RT tasks.
6895 	 */
6896 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6897 		return -EBUSY;
6898 
6899 	total = to_ratio(period, runtime);
6900 
6901 	/*
6902 	 * Nobody can have more than the global setting allows.
6903 	 */
6904 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6905 		return -EINVAL;
6906 
6907 	/*
6908 	 * The sum of our children's runtime should not exceed our own.
6909 	 */
6910 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6911 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6912 		runtime = child->rt_bandwidth.rt_runtime;
6913 
6914 		if (child == d->tg) {
6915 			period = d->rt_period;
6916 			runtime = d->rt_runtime;
6917 		}
6918 
6919 		sum += to_ratio(period, runtime);
6920 	}
6921 
6922 	if (sum > total)
6923 		return -EINVAL;
6924 
6925 	return 0;
6926 }
6927 
6928 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6929 {
6930 	int ret;
6931 
6932 	struct rt_schedulable_data data = {
6933 		.tg = tg,
6934 		.rt_period = period,
6935 		.rt_runtime = runtime,
6936 	};
6937 
6938 	rcu_read_lock();
6939 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6940 	rcu_read_unlock();
6941 
6942 	return ret;
6943 }
6944 
6945 static int tg_set_rt_bandwidth(struct task_group *tg,
6946 		u64 rt_period, u64 rt_runtime)
6947 {
6948 	int i, err = 0;
6949 
6950 	mutex_lock(&rt_constraints_mutex);
6951 	read_lock(&tasklist_lock);
6952 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6953 	if (err)
6954 		goto unlock;
6955 
6956 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6957 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6958 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6959 
6960 	for_each_possible_cpu(i) {
6961 		struct rt_rq *rt_rq = tg->rt_rq[i];
6962 
6963 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6964 		rt_rq->rt_runtime = rt_runtime;
6965 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6966 	}
6967 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6968 unlock:
6969 	read_unlock(&tasklist_lock);
6970 	mutex_unlock(&rt_constraints_mutex);
6971 
6972 	return err;
6973 }
6974 
6975 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6976 {
6977 	u64 rt_runtime, rt_period;
6978 
6979 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6980 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6981 	if (rt_runtime_us < 0)
6982 		rt_runtime = RUNTIME_INF;
6983 
6984 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6985 }
6986 
6987 static long sched_group_rt_runtime(struct task_group *tg)
6988 {
6989 	u64 rt_runtime_us;
6990 
6991 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6992 		return -1;
6993 
6994 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6995 	do_div(rt_runtime_us, NSEC_PER_USEC);
6996 	return rt_runtime_us;
6997 }
6998 
6999 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7000 {
7001 	u64 rt_runtime, rt_period;
7002 
7003 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7004 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7005 
7006 	if (rt_period == 0)
7007 		return -EINVAL;
7008 
7009 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7010 }
7011 
7012 static long sched_group_rt_period(struct task_group *tg)
7013 {
7014 	u64 rt_period_us;
7015 
7016 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7017 	do_div(rt_period_us, NSEC_PER_USEC);
7018 	return rt_period_us;
7019 }
7020 
7021 static int sched_rt_global_constraints(void)
7022 {
7023 	u64 runtime, period;
7024 	int ret = 0;
7025 
7026 	if (sysctl_sched_rt_period <= 0)
7027 		return -EINVAL;
7028 
7029 	runtime = global_rt_runtime();
7030 	period = global_rt_period();
7031 
7032 	/*
7033 	 * Sanity check on the sysctl variables.
7034 	 */
7035 	if (runtime > period && runtime != RUNTIME_INF)
7036 		return -EINVAL;
7037 
7038 	mutex_lock(&rt_constraints_mutex);
7039 	read_lock(&tasklist_lock);
7040 	ret = __rt_schedulable(NULL, 0, 0);
7041 	read_unlock(&tasklist_lock);
7042 	mutex_unlock(&rt_constraints_mutex);
7043 
7044 	return ret;
7045 }
7046 
7047 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7048 {
7049 	/* Don't accept realtime tasks when there is no way for them to run */
7050 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7051 		return 0;
7052 
7053 	return 1;
7054 }
7055 
7056 #else /* !CONFIG_RT_GROUP_SCHED */
7057 static int sched_rt_global_constraints(void)
7058 {
7059 	unsigned long flags;
7060 	int i;
7061 
7062 	if (sysctl_sched_rt_period <= 0)
7063 		return -EINVAL;
7064 
7065 	/*
7066 	 * There's always some RT tasks in the root group
7067 	 * -- migration, kstopmachine etc..
7068 	 */
7069 	if (sysctl_sched_rt_runtime == 0)
7070 		return -EBUSY;
7071 
7072 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7073 	for_each_possible_cpu(i) {
7074 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7075 
7076 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7077 		rt_rq->rt_runtime = global_rt_runtime();
7078 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7079 	}
7080 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7081 
7082 	return 0;
7083 }
7084 #endif /* CONFIG_RT_GROUP_SCHED */
7085 
7086 int sched_rr_handler(struct ctl_table *table, int write,
7087 		void __user *buffer, size_t *lenp,
7088 		loff_t *ppos)
7089 {
7090 	int ret;
7091 	static DEFINE_MUTEX(mutex);
7092 
7093 	mutex_lock(&mutex);
7094 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7095 	/* make sure that internally we keep jiffies */
7096 	/* also, writing zero resets timeslice to default */
7097 	if (!ret && write) {
7098 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7099 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7100 	}
7101 	mutex_unlock(&mutex);
7102 	return ret;
7103 }
7104 
7105 int sched_rt_handler(struct ctl_table *table, int write,
7106 		void __user *buffer, size_t *lenp,
7107 		loff_t *ppos)
7108 {
7109 	int ret;
7110 	int old_period, old_runtime;
7111 	static DEFINE_MUTEX(mutex);
7112 
7113 	mutex_lock(&mutex);
7114 	old_period = sysctl_sched_rt_period;
7115 	old_runtime = sysctl_sched_rt_runtime;
7116 
7117 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7118 
7119 	if (!ret && write) {
7120 		ret = sched_rt_global_constraints();
7121 		if (ret) {
7122 			sysctl_sched_rt_period = old_period;
7123 			sysctl_sched_rt_runtime = old_runtime;
7124 		} else {
7125 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7126 			def_rt_bandwidth.rt_period =
7127 				ns_to_ktime(global_rt_period());
7128 		}
7129 	}
7130 	mutex_unlock(&mutex);
7131 
7132 	return ret;
7133 }
7134 
7135 #ifdef CONFIG_CGROUP_SCHED
7136 
7137 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7138 {
7139 	return css ? container_of(css, struct task_group, css) : NULL;
7140 }
7141 
7142 static struct cgroup_subsys_state *
7143 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7144 {
7145 	struct task_group *parent = css_tg(parent_css);
7146 	struct task_group *tg;
7147 
7148 	if (!parent) {
7149 		/* This is early initialization for the top cgroup */
7150 		return &root_task_group.css;
7151 	}
7152 
7153 	tg = sched_create_group(parent);
7154 	if (IS_ERR(tg))
7155 		return ERR_PTR(-ENOMEM);
7156 
7157 	return &tg->css;
7158 }
7159 
7160 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7161 {
7162 	struct task_group *tg = css_tg(css);
7163 	struct task_group *parent = css_tg(css_parent(css));
7164 
7165 	if (parent)
7166 		sched_online_group(tg, parent);
7167 	return 0;
7168 }
7169 
7170 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7171 {
7172 	struct task_group *tg = css_tg(css);
7173 
7174 	sched_destroy_group(tg);
7175 }
7176 
7177 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7178 {
7179 	struct task_group *tg = css_tg(css);
7180 
7181 	sched_offline_group(tg);
7182 }
7183 
7184 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7185 				 struct cgroup_taskset *tset)
7186 {
7187 	struct task_struct *task;
7188 
7189 	cgroup_taskset_for_each(task, css, tset) {
7190 #ifdef CONFIG_RT_GROUP_SCHED
7191 		if (!sched_rt_can_attach(css_tg(css), task))
7192 			return -EINVAL;
7193 #else
7194 		/* We don't support RT-tasks being in separate groups */
7195 		if (task->sched_class != &fair_sched_class)
7196 			return -EINVAL;
7197 #endif
7198 	}
7199 	return 0;
7200 }
7201 
7202 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7203 			      struct cgroup_taskset *tset)
7204 {
7205 	struct task_struct *task;
7206 
7207 	cgroup_taskset_for_each(task, css, tset)
7208 		sched_move_task(task);
7209 }
7210 
7211 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7212 			    struct cgroup_subsys_state *old_css,
7213 			    struct task_struct *task)
7214 {
7215 	/*
7216 	 * cgroup_exit() is called in the copy_process() failure path.
7217 	 * Ignore this case since the task hasn't ran yet, this avoids
7218 	 * trying to poke a half freed task state from generic code.
7219 	 */
7220 	if (!(task->flags & PF_EXITING))
7221 		return;
7222 
7223 	sched_move_task(task);
7224 }
7225 
7226 #ifdef CONFIG_FAIR_GROUP_SCHED
7227 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7228 				struct cftype *cftype, u64 shareval)
7229 {
7230 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7231 }
7232 
7233 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7234 			       struct cftype *cft)
7235 {
7236 	struct task_group *tg = css_tg(css);
7237 
7238 	return (u64) scale_load_down(tg->shares);
7239 }
7240 
7241 #ifdef CONFIG_CFS_BANDWIDTH
7242 static DEFINE_MUTEX(cfs_constraints_mutex);
7243 
7244 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7245 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7246 
7247 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7248 
7249 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7250 {
7251 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7252 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7253 
7254 	if (tg == &root_task_group)
7255 		return -EINVAL;
7256 
7257 	/*
7258 	 * Ensure we have at some amount of bandwidth every period.  This is
7259 	 * to prevent reaching a state of large arrears when throttled via
7260 	 * entity_tick() resulting in prolonged exit starvation.
7261 	 */
7262 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7263 		return -EINVAL;
7264 
7265 	/*
7266 	 * Likewise, bound things on the otherside by preventing insane quota
7267 	 * periods.  This also allows us to normalize in computing quota
7268 	 * feasibility.
7269 	 */
7270 	if (period > max_cfs_quota_period)
7271 		return -EINVAL;
7272 
7273 	mutex_lock(&cfs_constraints_mutex);
7274 	ret = __cfs_schedulable(tg, period, quota);
7275 	if (ret)
7276 		goto out_unlock;
7277 
7278 	runtime_enabled = quota != RUNTIME_INF;
7279 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7280 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7281 	raw_spin_lock_irq(&cfs_b->lock);
7282 	cfs_b->period = ns_to_ktime(period);
7283 	cfs_b->quota = quota;
7284 
7285 	__refill_cfs_bandwidth_runtime(cfs_b);
7286 	/* restart the period timer (if active) to handle new period expiry */
7287 	if (runtime_enabled && cfs_b->timer_active) {
7288 		/* force a reprogram */
7289 		cfs_b->timer_active = 0;
7290 		__start_cfs_bandwidth(cfs_b);
7291 	}
7292 	raw_spin_unlock_irq(&cfs_b->lock);
7293 
7294 	for_each_possible_cpu(i) {
7295 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7296 		struct rq *rq = cfs_rq->rq;
7297 
7298 		raw_spin_lock_irq(&rq->lock);
7299 		cfs_rq->runtime_enabled = runtime_enabled;
7300 		cfs_rq->runtime_remaining = 0;
7301 
7302 		if (cfs_rq->throttled)
7303 			unthrottle_cfs_rq(cfs_rq);
7304 		raw_spin_unlock_irq(&rq->lock);
7305 	}
7306 out_unlock:
7307 	mutex_unlock(&cfs_constraints_mutex);
7308 
7309 	return ret;
7310 }
7311 
7312 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7313 {
7314 	u64 quota, period;
7315 
7316 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7317 	if (cfs_quota_us < 0)
7318 		quota = RUNTIME_INF;
7319 	else
7320 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7321 
7322 	return tg_set_cfs_bandwidth(tg, period, quota);
7323 }
7324 
7325 long tg_get_cfs_quota(struct task_group *tg)
7326 {
7327 	u64 quota_us;
7328 
7329 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7330 		return -1;
7331 
7332 	quota_us = tg->cfs_bandwidth.quota;
7333 	do_div(quota_us, NSEC_PER_USEC);
7334 
7335 	return quota_us;
7336 }
7337 
7338 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7339 {
7340 	u64 quota, period;
7341 
7342 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7343 	quota = tg->cfs_bandwidth.quota;
7344 
7345 	return tg_set_cfs_bandwidth(tg, period, quota);
7346 }
7347 
7348 long tg_get_cfs_period(struct task_group *tg)
7349 {
7350 	u64 cfs_period_us;
7351 
7352 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7353 	do_div(cfs_period_us, NSEC_PER_USEC);
7354 
7355 	return cfs_period_us;
7356 }
7357 
7358 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7359 				  struct cftype *cft)
7360 {
7361 	return tg_get_cfs_quota(css_tg(css));
7362 }
7363 
7364 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7365 				   struct cftype *cftype, s64 cfs_quota_us)
7366 {
7367 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7368 }
7369 
7370 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7371 				   struct cftype *cft)
7372 {
7373 	return tg_get_cfs_period(css_tg(css));
7374 }
7375 
7376 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7377 				    struct cftype *cftype, u64 cfs_period_us)
7378 {
7379 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7380 }
7381 
7382 struct cfs_schedulable_data {
7383 	struct task_group *tg;
7384 	u64 period, quota;
7385 };
7386 
7387 /*
7388  * normalize group quota/period to be quota/max_period
7389  * note: units are usecs
7390  */
7391 static u64 normalize_cfs_quota(struct task_group *tg,
7392 			       struct cfs_schedulable_data *d)
7393 {
7394 	u64 quota, period;
7395 
7396 	if (tg == d->tg) {
7397 		period = d->period;
7398 		quota = d->quota;
7399 	} else {
7400 		period = tg_get_cfs_period(tg);
7401 		quota = tg_get_cfs_quota(tg);
7402 	}
7403 
7404 	/* note: these should typically be equivalent */
7405 	if (quota == RUNTIME_INF || quota == -1)
7406 		return RUNTIME_INF;
7407 
7408 	return to_ratio(period, quota);
7409 }
7410 
7411 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7412 {
7413 	struct cfs_schedulable_data *d = data;
7414 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7415 	s64 quota = 0, parent_quota = -1;
7416 
7417 	if (!tg->parent) {
7418 		quota = RUNTIME_INF;
7419 	} else {
7420 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7421 
7422 		quota = normalize_cfs_quota(tg, d);
7423 		parent_quota = parent_b->hierarchal_quota;
7424 
7425 		/*
7426 		 * ensure max(child_quota) <= parent_quota, inherit when no
7427 		 * limit is set
7428 		 */
7429 		if (quota == RUNTIME_INF)
7430 			quota = parent_quota;
7431 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7432 			return -EINVAL;
7433 	}
7434 	cfs_b->hierarchal_quota = quota;
7435 
7436 	return 0;
7437 }
7438 
7439 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7440 {
7441 	int ret;
7442 	struct cfs_schedulable_data data = {
7443 		.tg = tg,
7444 		.period = period,
7445 		.quota = quota,
7446 	};
7447 
7448 	if (quota != RUNTIME_INF) {
7449 		do_div(data.period, NSEC_PER_USEC);
7450 		do_div(data.quota, NSEC_PER_USEC);
7451 	}
7452 
7453 	rcu_read_lock();
7454 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7455 	rcu_read_unlock();
7456 
7457 	return ret;
7458 }
7459 
7460 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7461 		struct cgroup_map_cb *cb)
7462 {
7463 	struct task_group *tg = css_tg(css);
7464 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7465 
7466 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7467 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7468 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7469 
7470 	return 0;
7471 }
7472 #endif /* CONFIG_CFS_BANDWIDTH */
7473 #endif /* CONFIG_FAIR_GROUP_SCHED */
7474 
7475 #ifdef CONFIG_RT_GROUP_SCHED
7476 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7477 				struct cftype *cft, s64 val)
7478 {
7479 	return sched_group_set_rt_runtime(css_tg(css), val);
7480 }
7481 
7482 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7483 			       struct cftype *cft)
7484 {
7485 	return sched_group_rt_runtime(css_tg(css));
7486 }
7487 
7488 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7489 				    struct cftype *cftype, u64 rt_period_us)
7490 {
7491 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7492 }
7493 
7494 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7495 				   struct cftype *cft)
7496 {
7497 	return sched_group_rt_period(css_tg(css));
7498 }
7499 #endif /* CONFIG_RT_GROUP_SCHED */
7500 
7501 static struct cftype cpu_files[] = {
7502 #ifdef CONFIG_FAIR_GROUP_SCHED
7503 	{
7504 		.name = "shares",
7505 		.read_u64 = cpu_shares_read_u64,
7506 		.write_u64 = cpu_shares_write_u64,
7507 	},
7508 #endif
7509 #ifdef CONFIG_CFS_BANDWIDTH
7510 	{
7511 		.name = "cfs_quota_us",
7512 		.read_s64 = cpu_cfs_quota_read_s64,
7513 		.write_s64 = cpu_cfs_quota_write_s64,
7514 	},
7515 	{
7516 		.name = "cfs_period_us",
7517 		.read_u64 = cpu_cfs_period_read_u64,
7518 		.write_u64 = cpu_cfs_period_write_u64,
7519 	},
7520 	{
7521 		.name = "stat",
7522 		.read_map = cpu_stats_show,
7523 	},
7524 #endif
7525 #ifdef CONFIG_RT_GROUP_SCHED
7526 	{
7527 		.name = "rt_runtime_us",
7528 		.read_s64 = cpu_rt_runtime_read,
7529 		.write_s64 = cpu_rt_runtime_write,
7530 	},
7531 	{
7532 		.name = "rt_period_us",
7533 		.read_u64 = cpu_rt_period_read_uint,
7534 		.write_u64 = cpu_rt_period_write_uint,
7535 	},
7536 #endif
7537 	{ }	/* terminate */
7538 };
7539 
7540 struct cgroup_subsys cpu_cgroup_subsys = {
7541 	.name		= "cpu",
7542 	.css_alloc	= cpu_cgroup_css_alloc,
7543 	.css_free	= cpu_cgroup_css_free,
7544 	.css_online	= cpu_cgroup_css_online,
7545 	.css_offline	= cpu_cgroup_css_offline,
7546 	.can_attach	= cpu_cgroup_can_attach,
7547 	.attach		= cpu_cgroup_attach,
7548 	.exit		= cpu_cgroup_exit,
7549 	.subsys_id	= cpu_cgroup_subsys_id,
7550 	.base_cftypes	= cpu_files,
7551 	.early_init	= 1,
7552 };
7553 
7554 #endif	/* CONFIG_CGROUP_SCHED */
7555 
7556 void dump_cpu_task(int cpu)
7557 {
7558 	pr_info("Task dump for CPU %d:\n", cpu);
7559 	sched_show_task(cpu_curr(cpu));
7560 }
7561