xref: /openbmc/linux/kernel/sched/core.c (revision e0de91a9)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/cpuset.h>
14 #include <linux/delayacct.h>
15 #include <linux/init_task.h>
16 #include <linux/context_tracking.h>
17 #include <linux/rcupdate_wait.h>
18 
19 #include <linux/blkdev.h>
20 #include <linux/kprobes.h>
21 #include <linux/mmu_context.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/prefetch.h>
25 #include <linux/profile.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 
29 #include <asm/switch_to.h>
30 #include <asm/tlb.h>
31 #ifdef CONFIG_PARAVIRT
32 #include <asm/paravirt.h>
33 #endif
34 
35 #include "sched.h"
36 #include "../workqueue_internal.h"
37 #include "../smpboot.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/sched.h>
41 
42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43 
44 /*
45  * Debugging: various feature bits
46  */
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 
51 const_debug unsigned int sysctl_sched_features =
52 #include "features.h"
53 	0;
54 
55 #undef SCHED_FEAT
56 
57 /*
58  * Number of tasks to iterate in a single balance run.
59  * Limited because this is done with IRQs disabled.
60  */
61 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62 
63 /*
64  * period over which we average the RT time consumption, measured
65  * in ms.
66  *
67  * default: 1s
68  */
69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70 
71 /*
72  * period over which we measure -rt task CPU usage in us.
73  * default: 1s
74  */
75 unsigned int sysctl_sched_rt_period = 1000000;
76 
77 __read_mostly int scheduler_running;
78 
79 /*
80  * part of the period that we allow rt tasks to run in us.
81  * default: 0.95s
82  */
83 int sysctl_sched_rt_runtime = 950000;
84 
85 /* CPUs with isolated domains */
86 cpumask_var_t cpu_isolated_map;
87 
88 /*
89  * __task_rq_lock - lock the rq @p resides on.
90  */
91 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	lockdep_assert_held(&p->pi_lock);
97 
98 	for (;;) {
99 		rq = task_rq(p);
100 		raw_spin_lock(&rq->lock);
101 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102 			rq_pin_lock(rq, rf);
103 			return rq;
104 		}
105 		raw_spin_unlock(&rq->lock);
106 
107 		while (unlikely(task_on_rq_migrating(p)))
108 			cpu_relax();
109 	}
110 }
111 
112 /*
113  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114  */
115 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 	__acquires(p->pi_lock)
117 	__acquires(rq->lock)
118 {
119 	struct rq *rq;
120 
121 	for (;;) {
122 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 		rq = task_rq(p);
124 		raw_spin_lock(&rq->lock);
125 		/*
126 		 *	move_queued_task()		task_rq_lock()
127 		 *
128 		 *	ACQUIRE (rq->lock)
129 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
130 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
131 		 *	[S] ->cpu = new_cpu		[L] task_rq()
132 		 *					[L] ->on_rq
133 		 *	RELEASE (rq->lock)
134 		 *
135 		 * If we observe the old cpu in task_rq_lock, the acquire of
136 		 * the old rq->lock will fully serialize against the stores.
137 		 *
138 		 * If we observe the new CPU in task_rq_lock, the acquire will
139 		 * pair with the WMB to ensure we must then also see migrating.
140 		 */
141 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142 			rq_pin_lock(rq, rf);
143 			return rq;
144 		}
145 		raw_spin_unlock(&rq->lock);
146 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147 
148 		while (unlikely(task_on_rq_migrating(p)))
149 			cpu_relax();
150 	}
151 }
152 
153 /*
154  * RQ-clock updating methods:
155  */
156 
157 static void update_rq_clock_task(struct rq *rq, s64 delta)
158 {
159 /*
160  * In theory, the compile should just see 0 here, and optimize out the call
161  * to sched_rt_avg_update. But I don't trust it...
162  */
163 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 	s64 steal = 0, irq_delta = 0;
165 #endif
166 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168 
169 	/*
170 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 	 * this case when a previous update_rq_clock() happened inside a
172 	 * {soft,}irq region.
173 	 *
174 	 * When this happens, we stop ->clock_task and only update the
175 	 * prev_irq_time stamp to account for the part that fit, so that a next
176 	 * update will consume the rest. This ensures ->clock_task is
177 	 * monotonic.
178 	 *
179 	 * It does however cause some slight miss-attribution of {soft,}irq
180 	 * time, a more accurate solution would be to update the irq_time using
181 	 * the current rq->clock timestamp, except that would require using
182 	 * atomic ops.
183 	 */
184 	if (irq_delta > delta)
185 		irq_delta = delta;
186 
187 	rq->prev_irq_time += irq_delta;
188 	delta -= irq_delta;
189 #endif
190 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 	if (static_key_false((&paravirt_steal_rq_enabled))) {
192 		steal = paravirt_steal_clock(cpu_of(rq));
193 		steal -= rq->prev_steal_time_rq;
194 
195 		if (unlikely(steal > delta))
196 			steal = delta;
197 
198 		rq->prev_steal_time_rq += steal;
199 		delta -= steal;
200 	}
201 #endif
202 
203 	rq->clock_task += delta;
204 
205 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 		sched_rt_avg_update(rq, irq_delta + steal);
208 #endif
209 }
210 
211 void update_rq_clock(struct rq *rq)
212 {
213 	s64 delta;
214 
215 	lockdep_assert_held(&rq->lock);
216 
217 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 		return;
219 
220 #ifdef CONFIG_SCHED_DEBUG
221 	if (sched_feat(WARN_DOUBLE_CLOCK))
222 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 	rq->clock_update_flags |= RQCF_UPDATED;
224 #endif
225 
226 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 	if (delta < 0)
228 		return;
229 	rq->clock += delta;
230 	update_rq_clock_task(rq, delta);
231 }
232 
233 
234 #ifdef CONFIG_SCHED_HRTICK
235 /*
236  * Use HR-timers to deliver accurate preemption points.
237  */
238 
239 static void hrtick_clear(struct rq *rq)
240 {
241 	if (hrtimer_active(&rq->hrtick_timer))
242 		hrtimer_cancel(&rq->hrtick_timer);
243 }
244 
245 /*
246  * High-resolution timer tick.
247  * Runs from hardirq context with interrupts disabled.
248  */
249 static enum hrtimer_restart hrtick(struct hrtimer *timer)
250 {
251 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252 	struct rq_flags rf;
253 
254 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255 
256 	rq_lock(rq, &rf);
257 	update_rq_clock(rq);
258 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259 	rq_unlock(rq, &rf);
260 
261 	return HRTIMER_NORESTART;
262 }
263 
264 #ifdef CONFIG_SMP
265 
266 static void __hrtick_restart(struct rq *rq)
267 {
268 	struct hrtimer *timer = &rq->hrtick_timer;
269 
270 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
271 }
272 
273 /*
274  * called from hardirq (IPI) context
275  */
276 static void __hrtick_start(void *arg)
277 {
278 	struct rq *rq = arg;
279 	struct rq_flags rf;
280 
281 	rq_lock(rq, &rf);
282 	__hrtick_restart(rq);
283 	rq->hrtick_csd_pending = 0;
284 	rq_unlock(rq, &rf);
285 }
286 
287 /*
288  * Called to set the hrtick timer state.
289  *
290  * called with rq->lock held and irqs disabled
291  */
292 void hrtick_start(struct rq *rq, u64 delay)
293 {
294 	struct hrtimer *timer = &rq->hrtick_timer;
295 	ktime_t time;
296 	s64 delta;
297 
298 	/*
299 	 * Don't schedule slices shorter than 10000ns, that just
300 	 * doesn't make sense and can cause timer DoS.
301 	 */
302 	delta = max_t(s64, delay, 10000LL);
303 	time = ktime_add_ns(timer->base->get_time(), delta);
304 
305 	hrtimer_set_expires(timer, time);
306 
307 	if (rq == this_rq()) {
308 		__hrtick_restart(rq);
309 	} else if (!rq->hrtick_csd_pending) {
310 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 		rq->hrtick_csd_pending = 1;
312 	}
313 }
314 
315 #else
316 /*
317  * Called to set the hrtick timer state.
318  *
319  * called with rq->lock held and irqs disabled
320  */
321 void hrtick_start(struct rq *rq, u64 delay)
322 {
323 	/*
324 	 * Don't schedule slices shorter than 10000ns, that just
325 	 * doesn't make sense. Rely on vruntime for fairness.
326 	 */
327 	delay = max_t(u64, delay, 10000LL);
328 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 		      HRTIMER_MODE_REL_PINNED);
330 }
331 #endif /* CONFIG_SMP */
332 
333 static void init_rq_hrtick(struct rq *rq)
334 {
335 #ifdef CONFIG_SMP
336 	rq->hrtick_csd_pending = 0;
337 
338 	rq->hrtick_csd.flags = 0;
339 	rq->hrtick_csd.func = __hrtick_start;
340 	rq->hrtick_csd.info = rq;
341 #endif
342 
343 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 	rq->hrtick_timer.function = hrtick;
345 }
346 #else	/* CONFIG_SCHED_HRTICK */
347 static inline void hrtick_clear(struct rq *rq)
348 {
349 }
350 
351 static inline void init_rq_hrtick(struct rq *rq)
352 {
353 }
354 #endif	/* CONFIG_SCHED_HRTICK */
355 
356 /*
357  * cmpxchg based fetch_or, macro so it works for different integer types
358  */
359 #define fetch_or(ptr, mask)						\
360 	({								\
361 		typeof(ptr) _ptr = (ptr);				\
362 		typeof(mask) _mask = (mask);				\
363 		typeof(*_ptr) _old, _val = *_ptr;			\
364 									\
365 		for (;;) {						\
366 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
367 			if (_old == _val)				\
368 				break;					\
369 			_val = _old;					\
370 		}							\
371 	_old;								\
372 })
373 
374 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 /*
376  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377  * this avoids any races wrt polling state changes and thereby avoids
378  * spurious IPIs.
379  */
380 static bool set_nr_and_not_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384 }
385 
386 /*
387  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388  *
389  * If this returns true, then the idle task promises to call
390  * sched_ttwu_pending() and reschedule soon.
391  */
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 	struct thread_info *ti = task_thread_info(p);
395 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396 
397 	for (;;) {
398 		if (!(val & _TIF_POLLING_NRFLAG))
399 			return false;
400 		if (val & _TIF_NEED_RESCHED)
401 			return true;
402 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 		if (old == val)
404 			break;
405 		val = old;
406 	}
407 	return true;
408 }
409 
410 #else
411 static bool set_nr_and_not_polling(struct task_struct *p)
412 {
413 	set_tsk_need_resched(p);
414 	return true;
415 }
416 
417 #ifdef CONFIG_SMP
418 static bool set_nr_if_polling(struct task_struct *p)
419 {
420 	return false;
421 }
422 #endif
423 #endif
424 
425 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426 {
427 	struct wake_q_node *node = &task->wake_q;
428 
429 	/*
430 	 * Atomically grab the task, if ->wake_q is !nil already it means
431 	 * its already queued (either by us or someone else) and will get the
432 	 * wakeup due to that.
433 	 *
434 	 * This cmpxchg() implies a full barrier, which pairs with the write
435 	 * barrier implied by the wakeup in wake_up_q().
436 	 */
437 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 		return;
439 
440 	get_task_struct(task);
441 
442 	/*
443 	 * The head is context local, there can be no concurrency.
444 	 */
445 	*head->lastp = node;
446 	head->lastp = &node->next;
447 }
448 
449 void wake_up_q(struct wake_q_head *head)
450 {
451 	struct wake_q_node *node = head->first;
452 
453 	while (node != WAKE_Q_TAIL) {
454 		struct task_struct *task;
455 
456 		task = container_of(node, struct task_struct, wake_q);
457 		BUG_ON(!task);
458 		/* Task can safely be re-inserted now: */
459 		node = node->next;
460 		task->wake_q.next = NULL;
461 
462 		/*
463 		 * wake_up_process() implies a wmb() to pair with the queueing
464 		 * in wake_q_add() so as not to miss wakeups.
465 		 */
466 		wake_up_process(task);
467 		put_task_struct(task);
468 	}
469 }
470 
471 /*
472  * resched_curr - mark rq's current task 'to be rescheduled now'.
473  *
474  * On UP this means the setting of the need_resched flag, on SMP it
475  * might also involve a cross-CPU call to trigger the scheduler on
476  * the target CPU.
477  */
478 void resched_curr(struct rq *rq)
479 {
480 	struct task_struct *curr = rq->curr;
481 	int cpu;
482 
483 	lockdep_assert_held(&rq->lock);
484 
485 	if (test_tsk_need_resched(curr))
486 		return;
487 
488 	cpu = cpu_of(rq);
489 
490 	if (cpu == smp_processor_id()) {
491 		set_tsk_need_resched(curr);
492 		set_preempt_need_resched();
493 		return;
494 	}
495 
496 	if (set_nr_and_not_polling(curr))
497 		smp_send_reschedule(cpu);
498 	else
499 		trace_sched_wake_idle_without_ipi(cpu);
500 }
501 
502 void resched_cpu(int cpu)
503 {
504 	struct rq *rq = cpu_rq(cpu);
505 	unsigned long flags;
506 
507 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
508 		return;
509 	resched_curr(rq);
510 	raw_spin_unlock_irqrestore(&rq->lock, flags);
511 }
512 
513 #ifdef CONFIG_SMP
514 #ifdef CONFIG_NO_HZ_COMMON
515 /*
516  * In the semi idle case, use the nearest busy CPU for migrating timers
517  * from an idle CPU.  This is good for power-savings.
518  *
519  * We don't do similar optimization for completely idle system, as
520  * selecting an idle CPU will add more delays to the timers than intended
521  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522  */
523 int get_nohz_timer_target(void)
524 {
525 	int i, cpu = smp_processor_id();
526 	struct sched_domain *sd;
527 
528 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 		return cpu;
530 
531 	rcu_read_lock();
532 	for_each_domain(cpu, sd) {
533 		for_each_cpu(i, sched_domain_span(sd)) {
534 			if (cpu == i)
535 				continue;
536 
537 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 				cpu = i;
539 				goto unlock;
540 			}
541 		}
542 	}
543 
544 	if (!is_housekeeping_cpu(cpu))
545 		cpu = housekeeping_any_cpu();
546 unlock:
547 	rcu_read_unlock();
548 	return cpu;
549 }
550 
551 /*
552  * When add_timer_on() enqueues a timer into the timer wheel of an
553  * idle CPU then this timer might expire before the next timer event
554  * which is scheduled to wake up that CPU. In case of a completely
555  * idle system the next event might even be infinite time into the
556  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557  * leaves the inner idle loop so the newly added timer is taken into
558  * account when the CPU goes back to idle and evaluates the timer
559  * wheel for the next timer event.
560  */
561 static void wake_up_idle_cpu(int cpu)
562 {
563 	struct rq *rq = cpu_rq(cpu);
564 
565 	if (cpu == smp_processor_id())
566 		return;
567 
568 	if (set_nr_and_not_polling(rq->idle))
569 		smp_send_reschedule(cpu);
570 	else
571 		trace_sched_wake_idle_without_ipi(cpu);
572 }
573 
574 static bool wake_up_full_nohz_cpu(int cpu)
575 {
576 	/*
577 	 * We just need the target to call irq_exit() and re-evaluate
578 	 * the next tick. The nohz full kick at least implies that.
579 	 * If needed we can still optimize that later with an
580 	 * empty IRQ.
581 	 */
582 	if (cpu_is_offline(cpu))
583 		return true;  /* Don't try to wake offline CPUs. */
584 	if (tick_nohz_full_cpu(cpu)) {
585 		if (cpu != smp_processor_id() ||
586 		    tick_nohz_tick_stopped())
587 			tick_nohz_full_kick_cpu(cpu);
588 		return true;
589 	}
590 
591 	return false;
592 }
593 
594 /*
595  * Wake up the specified CPU.  If the CPU is going offline, it is the
596  * caller's responsibility to deal with the lost wakeup, for example,
597  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598  */
599 void wake_up_nohz_cpu(int cpu)
600 {
601 	if (!wake_up_full_nohz_cpu(cpu))
602 		wake_up_idle_cpu(cpu);
603 }
604 
605 static inline bool got_nohz_idle_kick(void)
606 {
607 	int cpu = smp_processor_id();
608 
609 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 		return false;
611 
612 	if (idle_cpu(cpu) && !need_resched())
613 		return true;
614 
615 	/*
616 	 * We can't run Idle Load Balance on this CPU for this time so we
617 	 * cancel it and clear NOHZ_BALANCE_KICK
618 	 */
619 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 	return false;
621 }
622 
623 #else /* CONFIG_NO_HZ_COMMON */
624 
625 static inline bool got_nohz_idle_kick(void)
626 {
627 	return false;
628 }
629 
630 #endif /* CONFIG_NO_HZ_COMMON */
631 
632 #ifdef CONFIG_NO_HZ_FULL
633 bool sched_can_stop_tick(struct rq *rq)
634 {
635 	int fifo_nr_running;
636 
637 	/* Deadline tasks, even if single, need the tick */
638 	if (rq->dl.dl_nr_running)
639 		return false;
640 
641 	/*
642 	 * If there are more than one RR tasks, we need the tick to effect the
643 	 * actual RR behaviour.
644 	 */
645 	if (rq->rt.rr_nr_running) {
646 		if (rq->rt.rr_nr_running == 1)
647 			return true;
648 		else
649 			return false;
650 	}
651 
652 	/*
653 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 	 * forced preemption between FIFO tasks.
655 	 */
656 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 	if (fifo_nr_running)
658 		return true;
659 
660 	/*
661 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 	 * if there's more than one we need the tick for involuntary
663 	 * preemption.
664 	 */
665 	if (rq->nr_running > 1)
666 		return false;
667 
668 	return true;
669 }
670 #endif /* CONFIG_NO_HZ_FULL */
671 
672 void sched_avg_update(struct rq *rq)
673 {
674 	s64 period = sched_avg_period();
675 
676 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 		/*
678 		 * Inline assembly required to prevent the compiler
679 		 * optimising this loop into a divmod call.
680 		 * See __iter_div_u64_rem() for another example of this.
681 		 */
682 		asm("" : "+rm" (rq->age_stamp));
683 		rq->age_stamp += period;
684 		rq->rt_avg /= 2;
685 	}
686 }
687 
688 #endif /* CONFIG_SMP */
689 
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693  * Iterate task_group tree rooted at *from, calling @down when first entering a
694  * node and @up when leaving it for the final time.
695  *
696  * Caller must hold rcu_lock or sufficient equivalent.
697  */
698 int walk_tg_tree_from(struct task_group *from,
699 			     tg_visitor down, tg_visitor up, void *data)
700 {
701 	struct task_group *parent, *child;
702 	int ret;
703 
704 	parent = from;
705 
706 down:
707 	ret = (*down)(parent, data);
708 	if (ret)
709 		goto out;
710 	list_for_each_entry_rcu(child, &parent->children, siblings) {
711 		parent = child;
712 		goto down;
713 
714 up:
715 		continue;
716 	}
717 	ret = (*up)(parent, data);
718 	if (ret || parent == from)
719 		goto out;
720 
721 	child = parent;
722 	parent = parent->parent;
723 	if (parent)
724 		goto up;
725 out:
726 	return ret;
727 }
728 
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_load_weight(struct task_struct *p)
736 {
737 	int prio = p->static_prio - MAX_RT_PRIO;
738 	struct load_weight *load = &p->se.load;
739 
740 	/*
741 	 * SCHED_IDLE tasks get minimal weight:
742 	 */
743 	if (idle_policy(p->policy)) {
744 		load->weight = scale_load(WEIGHT_IDLEPRIO);
745 		load->inv_weight = WMULT_IDLEPRIO;
746 		return;
747 	}
748 
749 	load->weight = scale_load(sched_prio_to_weight[prio]);
750 	load->inv_weight = sched_prio_to_wmult[prio];
751 }
752 
753 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754 {
755 	if (!(flags & ENQUEUE_NOCLOCK))
756 		update_rq_clock(rq);
757 
758 	if (!(flags & ENQUEUE_RESTORE))
759 		sched_info_queued(rq, p);
760 
761 	p->sched_class->enqueue_task(rq, p, flags);
762 }
763 
764 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (!(flags & DEQUEUE_NOCLOCK))
767 		update_rq_clock(rq);
768 
769 	if (!(flags & DEQUEUE_SAVE))
770 		sched_info_dequeued(rq, p);
771 
772 	p->sched_class->dequeue_task(rq, p, flags);
773 }
774 
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (task_contributes_to_load(p))
778 		rq->nr_uninterruptible--;
779 
780 	enqueue_task(rq, p, flags);
781 }
782 
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 	if (task_contributes_to_load(p))
786 		rq->nr_uninterruptible++;
787 
788 	dequeue_task(rq, p, flags);
789 }
790 
791 void sched_set_stop_task(int cpu, struct task_struct *stop)
792 {
793 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
795 
796 	if (stop) {
797 		/*
798 		 * Make it appear like a SCHED_FIFO task, its something
799 		 * userspace knows about and won't get confused about.
800 		 *
801 		 * Also, it will make PI more or less work without too
802 		 * much confusion -- but then, stop work should not
803 		 * rely on PI working anyway.
804 		 */
805 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806 
807 		stop->sched_class = &stop_sched_class;
808 	}
809 
810 	cpu_rq(cpu)->stop = stop;
811 
812 	if (old_stop) {
813 		/*
814 		 * Reset it back to a normal scheduling class so that
815 		 * it can die in pieces.
816 		 */
817 		old_stop->sched_class = &rt_sched_class;
818 	}
819 }
820 
821 /*
822  * __normal_prio - return the priority that is based on the static prio
823  */
824 static inline int __normal_prio(struct task_struct *p)
825 {
826 	return p->static_prio;
827 }
828 
829 /*
830  * Calculate the expected normal priority: i.e. priority
831  * without taking RT-inheritance into account. Might be
832  * boosted by interactivity modifiers. Changes upon fork,
833  * setprio syscalls, and whenever the interactivity
834  * estimator recalculates.
835  */
836 static inline int normal_prio(struct task_struct *p)
837 {
838 	int prio;
839 
840 	if (task_has_dl_policy(p))
841 		prio = MAX_DL_PRIO-1;
842 	else if (task_has_rt_policy(p))
843 		prio = MAX_RT_PRIO-1 - p->rt_priority;
844 	else
845 		prio = __normal_prio(p);
846 	return prio;
847 }
848 
849 /*
850  * Calculate the current priority, i.e. the priority
851  * taken into account by the scheduler. This value might
852  * be boosted by RT tasks, or might be boosted by
853  * interactivity modifiers. Will be RT if the task got
854  * RT-boosted. If not then it returns p->normal_prio.
855  */
856 static int effective_prio(struct task_struct *p)
857 {
858 	p->normal_prio = normal_prio(p);
859 	/*
860 	 * If we are RT tasks or we were boosted to RT priority,
861 	 * keep the priority unchanged. Otherwise, update priority
862 	 * to the normal priority:
863 	 */
864 	if (!rt_prio(p->prio))
865 		return p->normal_prio;
866 	return p->prio;
867 }
868 
869 /**
870  * task_curr - is this task currently executing on a CPU?
871  * @p: the task in question.
872  *
873  * Return: 1 if the task is currently executing. 0 otherwise.
874  */
875 inline int task_curr(const struct task_struct *p)
876 {
877 	return cpu_curr(task_cpu(p)) == p;
878 }
879 
880 /*
881  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882  * use the balance_callback list if you want balancing.
883  *
884  * this means any call to check_class_changed() must be followed by a call to
885  * balance_callback().
886  */
887 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 				       const struct sched_class *prev_class,
889 				       int oldprio)
890 {
891 	if (prev_class != p->sched_class) {
892 		if (prev_class->switched_from)
893 			prev_class->switched_from(rq, p);
894 
895 		p->sched_class->switched_to(rq, p);
896 	} else if (oldprio != p->prio || dl_task(p))
897 		p->sched_class->prio_changed(rq, p, oldprio);
898 }
899 
900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 {
902 	const struct sched_class *class;
903 
904 	if (p->sched_class == rq->curr->sched_class) {
905 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 	} else {
907 		for_each_class(class) {
908 			if (class == rq->curr->sched_class)
909 				break;
910 			if (class == p->sched_class) {
911 				resched_curr(rq);
912 				break;
913 			}
914 		}
915 	}
916 
917 	/*
918 	 * A queue event has occurred, and we're going to schedule.  In
919 	 * this case, we can save a useless back to back clock update.
920 	 */
921 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922 		rq_clock_skip_update(rq, true);
923 }
924 
925 #ifdef CONFIG_SMP
926 /*
927  * This is how migration works:
928  *
929  * 1) we invoke migration_cpu_stop() on the target CPU using
930  *    stop_one_cpu().
931  * 2) stopper starts to run (implicitly forcing the migrated thread
932  *    off the CPU)
933  * 3) it checks whether the migrated task is still in the wrong runqueue.
934  * 4) if it's in the wrong runqueue then the migration thread removes
935  *    it and puts it into the right queue.
936  * 5) stopper completes and stop_one_cpu() returns and the migration
937  *    is done.
938  */
939 
940 /*
941  * move_queued_task - move a queued task to new rq.
942  *
943  * Returns (locked) new rq. Old rq's lock is released.
944  */
945 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 				   struct task_struct *p, int new_cpu)
947 {
948 	lockdep_assert_held(&rq->lock);
949 
950 	p->on_rq = TASK_ON_RQ_MIGRATING;
951 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
952 	set_task_cpu(p, new_cpu);
953 	rq_unlock(rq, rf);
954 
955 	rq = cpu_rq(new_cpu);
956 
957 	rq_lock(rq, rf);
958 	BUG_ON(task_cpu(p) != new_cpu);
959 	enqueue_task(rq, p, 0);
960 	p->on_rq = TASK_ON_RQ_QUEUED;
961 	check_preempt_curr(rq, p, 0);
962 
963 	return rq;
964 }
965 
966 struct migration_arg {
967 	struct task_struct *task;
968 	int dest_cpu;
969 };
970 
971 /*
972  * Move (not current) task off this CPU, onto the destination CPU. We're doing
973  * this because either it can't run here any more (set_cpus_allowed()
974  * away from this CPU, or CPU going down), or because we're
975  * attempting to rebalance this task on exec (sched_exec).
976  *
977  * So we race with normal scheduler movements, but that's OK, as long
978  * as the task is no longer on this CPU.
979  */
980 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 				 struct task_struct *p, int dest_cpu)
982 {
983 	if (unlikely(!cpu_active(dest_cpu)))
984 		return rq;
985 
986 	/* Affinity changed (again). */
987 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988 		return rq;
989 
990 	update_rq_clock(rq);
991 	rq = move_queued_task(rq, rf, p, dest_cpu);
992 
993 	return rq;
994 }
995 
996 /*
997  * migration_cpu_stop - this will be executed by a highprio stopper thread
998  * and performs thread migration by bumping thread off CPU then
999  * 'pushing' onto another runqueue.
1000  */
1001 static int migration_cpu_stop(void *data)
1002 {
1003 	struct migration_arg *arg = data;
1004 	struct task_struct *p = arg->task;
1005 	struct rq *rq = this_rq();
1006 	struct rq_flags rf;
1007 
1008 	/*
1009 	 * The original target CPU might have gone down and we might
1010 	 * be on another CPU but it doesn't matter.
1011 	 */
1012 	local_irq_disable();
1013 	/*
1014 	 * We need to explicitly wake pending tasks before running
1015 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 	 */
1018 	sched_ttwu_pending();
1019 
1020 	raw_spin_lock(&p->pi_lock);
1021 	rq_lock(rq, &rf);
1022 	/*
1023 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 	 * we're holding p->pi_lock.
1026 	 */
1027 	if (task_rq(p) == rq) {
1028 		if (task_on_rq_queued(p))
1029 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1030 		else
1031 			p->wake_cpu = arg->dest_cpu;
1032 	}
1033 	rq_unlock(rq, &rf);
1034 	raw_spin_unlock(&p->pi_lock);
1035 
1036 	local_irq_enable();
1037 	return 0;
1038 }
1039 
1040 /*
1041  * sched_class::set_cpus_allowed must do the below, but is not required to
1042  * actually call this function.
1043  */
1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 	cpumask_copy(&p->cpus_allowed, new_mask);
1047 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1048 }
1049 
1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051 {
1052 	struct rq *rq = task_rq(p);
1053 	bool queued, running;
1054 
1055 	lockdep_assert_held(&p->pi_lock);
1056 
1057 	queued = task_on_rq_queued(p);
1058 	running = task_current(rq, p);
1059 
1060 	if (queued) {
1061 		/*
1062 		 * Because __kthread_bind() calls this on blocked tasks without
1063 		 * holding rq->lock.
1064 		 */
1065 		lockdep_assert_held(&rq->lock);
1066 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1067 	}
1068 	if (running)
1069 		put_prev_task(rq, p);
1070 
1071 	p->sched_class->set_cpus_allowed(p, new_mask);
1072 
1073 	if (queued)
1074 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1075 	if (running)
1076 		set_curr_task(rq, p);
1077 }
1078 
1079 /*
1080  * Change a given task's CPU affinity. Migrate the thread to a
1081  * proper CPU and schedule it away if the CPU it's executing on
1082  * is removed from the allowed bitmask.
1083  *
1084  * NOTE: the caller must have a valid reference to the task, the
1085  * task must not exit() & deallocate itself prematurely. The
1086  * call is not atomic; no spinlocks may be held.
1087  */
1088 static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 				  const struct cpumask *new_mask, bool check)
1090 {
1091 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1092 	unsigned int dest_cpu;
1093 	struct rq_flags rf;
1094 	struct rq *rq;
1095 	int ret = 0;
1096 
1097 	rq = task_rq_lock(p, &rf);
1098 	update_rq_clock(rq);
1099 
1100 	if (p->flags & PF_KTHREAD) {
1101 		/*
1102 		 * Kernel threads are allowed on online && !active CPUs
1103 		 */
1104 		cpu_valid_mask = cpu_online_mask;
1105 	}
1106 
1107 	/*
1108 	 * Must re-check here, to close a race against __kthread_bind(),
1109 	 * sched_setaffinity() is not guaranteed to observe the flag.
1110 	 */
1111 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 		ret = -EINVAL;
1113 		goto out;
1114 	}
1115 
1116 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 		goto out;
1118 
1119 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1120 		ret = -EINVAL;
1121 		goto out;
1122 	}
1123 
1124 	do_set_cpus_allowed(p, new_mask);
1125 
1126 	if (p->flags & PF_KTHREAD) {
1127 		/*
1128 		 * For kernel threads that do indeed end up on online &&
1129 		 * !active we want to ensure they are strict per-CPU threads.
1130 		 */
1131 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1133 			p->nr_cpus_allowed != 1);
1134 	}
1135 
1136 	/* Can the task run on the task's current CPU? If so, we're done */
1137 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 		goto out;
1139 
1140 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1141 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 		struct migration_arg arg = { p, dest_cpu };
1143 		/* Need help from migration thread: drop lock and wait. */
1144 		task_rq_unlock(rq, p, &rf);
1145 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 		tlb_migrate_finish(p->mm);
1147 		return 0;
1148 	} else if (task_on_rq_queued(p)) {
1149 		/*
1150 		 * OK, since we're going to drop the lock immediately
1151 		 * afterwards anyway.
1152 		 */
1153 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1154 	}
1155 out:
1156 	task_rq_unlock(rq, p, &rf);
1157 
1158 	return ret;
1159 }
1160 
1161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 	return __set_cpus_allowed_ptr(p, new_mask, false);
1164 }
1165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1166 
1167 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1168 {
1169 #ifdef CONFIG_SCHED_DEBUG
1170 	/*
1171 	 * We should never call set_task_cpu() on a blocked task,
1172 	 * ttwu() will sort out the placement.
1173 	 */
1174 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1175 			!p->on_rq);
1176 
1177 	/*
1178 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1179 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1180 	 * time relying on p->on_rq.
1181 	 */
1182 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1183 		     p->sched_class == &fair_sched_class &&
1184 		     (p->on_rq && !task_on_rq_migrating(p)));
1185 
1186 #ifdef CONFIG_LOCKDEP
1187 	/*
1188 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1189 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1190 	 *
1191 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1192 	 * see task_group().
1193 	 *
1194 	 * Furthermore, all task_rq users should acquire both locks, see
1195 	 * task_rq_lock().
1196 	 */
1197 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1198 				      lockdep_is_held(&task_rq(p)->lock)));
1199 #endif
1200 #endif
1201 
1202 	trace_sched_migrate_task(p, new_cpu);
1203 
1204 	if (task_cpu(p) != new_cpu) {
1205 		if (p->sched_class->migrate_task_rq)
1206 			p->sched_class->migrate_task_rq(p);
1207 		p->se.nr_migrations++;
1208 		perf_event_task_migrate(p);
1209 	}
1210 
1211 	__set_task_cpu(p, new_cpu);
1212 }
1213 
1214 static void __migrate_swap_task(struct task_struct *p, int cpu)
1215 {
1216 	if (task_on_rq_queued(p)) {
1217 		struct rq *src_rq, *dst_rq;
1218 		struct rq_flags srf, drf;
1219 
1220 		src_rq = task_rq(p);
1221 		dst_rq = cpu_rq(cpu);
1222 
1223 		rq_pin_lock(src_rq, &srf);
1224 		rq_pin_lock(dst_rq, &drf);
1225 
1226 		p->on_rq = TASK_ON_RQ_MIGRATING;
1227 		deactivate_task(src_rq, p, 0);
1228 		set_task_cpu(p, cpu);
1229 		activate_task(dst_rq, p, 0);
1230 		p->on_rq = TASK_ON_RQ_QUEUED;
1231 		check_preempt_curr(dst_rq, p, 0);
1232 
1233 		rq_unpin_lock(dst_rq, &drf);
1234 		rq_unpin_lock(src_rq, &srf);
1235 
1236 	} else {
1237 		/*
1238 		 * Task isn't running anymore; make it appear like we migrated
1239 		 * it before it went to sleep. This means on wakeup we make the
1240 		 * previous CPU our target instead of where it really is.
1241 		 */
1242 		p->wake_cpu = cpu;
1243 	}
1244 }
1245 
1246 struct migration_swap_arg {
1247 	struct task_struct *src_task, *dst_task;
1248 	int src_cpu, dst_cpu;
1249 };
1250 
1251 static int migrate_swap_stop(void *data)
1252 {
1253 	struct migration_swap_arg *arg = data;
1254 	struct rq *src_rq, *dst_rq;
1255 	int ret = -EAGAIN;
1256 
1257 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1258 		return -EAGAIN;
1259 
1260 	src_rq = cpu_rq(arg->src_cpu);
1261 	dst_rq = cpu_rq(arg->dst_cpu);
1262 
1263 	double_raw_lock(&arg->src_task->pi_lock,
1264 			&arg->dst_task->pi_lock);
1265 	double_rq_lock(src_rq, dst_rq);
1266 
1267 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1268 		goto unlock;
1269 
1270 	if (task_cpu(arg->src_task) != arg->src_cpu)
1271 		goto unlock;
1272 
1273 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1274 		goto unlock;
1275 
1276 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1277 		goto unlock;
1278 
1279 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1280 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1281 
1282 	ret = 0;
1283 
1284 unlock:
1285 	double_rq_unlock(src_rq, dst_rq);
1286 	raw_spin_unlock(&arg->dst_task->pi_lock);
1287 	raw_spin_unlock(&arg->src_task->pi_lock);
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Cross migrate two tasks
1294  */
1295 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1296 {
1297 	struct migration_swap_arg arg;
1298 	int ret = -EINVAL;
1299 
1300 	arg = (struct migration_swap_arg){
1301 		.src_task = cur,
1302 		.src_cpu = task_cpu(cur),
1303 		.dst_task = p,
1304 		.dst_cpu = task_cpu(p),
1305 	};
1306 
1307 	if (arg.src_cpu == arg.dst_cpu)
1308 		goto out;
1309 
1310 	/*
1311 	 * These three tests are all lockless; this is OK since all of them
1312 	 * will be re-checked with proper locks held further down the line.
1313 	 */
1314 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1315 		goto out;
1316 
1317 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1318 		goto out;
1319 
1320 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1321 		goto out;
1322 
1323 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1324 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1325 
1326 out:
1327 	return ret;
1328 }
1329 
1330 /*
1331  * wait_task_inactive - wait for a thread to unschedule.
1332  *
1333  * If @match_state is nonzero, it's the @p->state value just checked and
1334  * not expected to change.  If it changes, i.e. @p might have woken up,
1335  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1336  * we return a positive number (its total switch count).  If a second call
1337  * a short while later returns the same number, the caller can be sure that
1338  * @p has remained unscheduled the whole time.
1339  *
1340  * The caller must ensure that the task *will* unschedule sometime soon,
1341  * else this function might spin for a *long* time. This function can't
1342  * be called with interrupts off, or it may introduce deadlock with
1343  * smp_call_function() if an IPI is sent by the same process we are
1344  * waiting to become inactive.
1345  */
1346 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1347 {
1348 	int running, queued;
1349 	struct rq_flags rf;
1350 	unsigned long ncsw;
1351 	struct rq *rq;
1352 
1353 	for (;;) {
1354 		/*
1355 		 * We do the initial early heuristics without holding
1356 		 * any task-queue locks at all. We'll only try to get
1357 		 * the runqueue lock when things look like they will
1358 		 * work out!
1359 		 */
1360 		rq = task_rq(p);
1361 
1362 		/*
1363 		 * If the task is actively running on another CPU
1364 		 * still, just relax and busy-wait without holding
1365 		 * any locks.
1366 		 *
1367 		 * NOTE! Since we don't hold any locks, it's not
1368 		 * even sure that "rq" stays as the right runqueue!
1369 		 * But we don't care, since "task_running()" will
1370 		 * return false if the runqueue has changed and p
1371 		 * is actually now running somewhere else!
1372 		 */
1373 		while (task_running(rq, p)) {
1374 			if (match_state && unlikely(p->state != match_state))
1375 				return 0;
1376 			cpu_relax();
1377 		}
1378 
1379 		/*
1380 		 * Ok, time to look more closely! We need the rq
1381 		 * lock now, to be *sure*. If we're wrong, we'll
1382 		 * just go back and repeat.
1383 		 */
1384 		rq = task_rq_lock(p, &rf);
1385 		trace_sched_wait_task(p);
1386 		running = task_running(rq, p);
1387 		queued = task_on_rq_queued(p);
1388 		ncsw = 0;
1389 		if (!match_state || p->state == match_state)
1390 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1391 		task_rq_unlock(rq, p, &rf);
1392 
1393 		/*
1394 		 * If it changed from the expected state, bail out now.
1395 		 */
1396 		if (unlikely(!ncsw))
1397 			break;
1398 
1399 		/*
1400 		 * Was it really running after all now that we
1401 		 * checked with the proper locks actually held?
1402 		 *
1403 		 * Oops. Go back and try again..
1404 		 */
1405 		if (unlikely(running)) {
1406 			cpu_relax();
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * It's not enough that it's not actively running,
1412 		 * it must be off the runqueue _entirely_, and not
1413 		 * preempted!
1414 		 *
1415 		 * So if it was still runnable (but just not actively
1416 		 * running right now), it's preempted, and we should
1417 		 * yield - it could be a while.
1418 		 */
1419 		if (unlikely(queued)) {
1420 			ktime_t to = NSEC_PER_SEC / HZ;
1421 
1422 			set_current_state(TASK_UNINTERRUPTIBLE);
1423 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * Ahh, all good. It wasn't running, and it wasn't
1429 		 * runnable, which means that it will never become
1430 		 * running in the future either. We're all done!
1431 		 */
1432 		break;
1433 	}
1434 
1435 	return ncsw;
1436 }
1437 
1438 /***
1439  * kick_process - kick a running thread to enter/exit the kernel
1440  * @p: the to-be-kicked thread
1441  *
1442  * Cause a process which is running on another CPU to enter
1443  * kernel-mode, without any delay. (to get signals handled.)
1444  *
1445  * NOTE: this function doesn't have to take the runqueue lock,
1446  * because all it wants to ensure is that the remote task enters
1447  * the kernel. If the IPI races and the task has been migrated
1448  * to another CPU then no harm is done and the purpose has been
1449  * achieved as well.
1450  */
1451 void kick_process(struct task_struct *p)
1452 {
1453 	int cpu;
1454 
1455 	preempt_disable();
1456 	cpu = task_cpu(p);
1457 	if ((cpu != smp_processor_id()) && task_curr(p))
1458 		smp_send_reschedule(cpu);
1459 	preempt_enable();
1460 }
1461 EXPORT_SYMBOL_GPL(kick_process);
1462 
1463 /*
1464  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1465  *
1466  * A few notes on cpu_active vs cpu_online:
1467  *
1468  *  - cpu_active must be a subset of cpu_online
1469  *
1470  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1471  *    see __set_cpus_allowed_ptr(). At this point the newly online
1472  *    CPU isn't yet part of the sched domains, and balancing will not
1473  *    see it.
1474  *
1475  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1476  *    avoid the load balancer to place new tasks on the to be removed
1477  *    CPU. Existing tasks will remain running there and will be taken
1478  *    off.
1479  *
1480  * This means that fallback selection must not select !active CPUs.
1481  * And can assume that any active CPU must be online. Conversely
1482  * select_task_rq() below may allow selection of !active CPUs in order
1483  * to satisfy the above rules.
1484  */
1485 static int select_fallback_rq(int cpu, struct task_struct *p)
1486 {
1487 	int nid = cpu_to_node(cpu);
1488 	const struct cpumask *nodemask = NULL;
1489 	enum { cpuset, possible, fail } state = cpuset;
1490 	int dest_cpu;
1491 
1492 	/*
1493 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1494 	 * will return -1. There is no CPU on the node, and we should
1495 	 * select the CPU on the other node.
1496 	 */
1497 	if (nid != -1) {
1498 		nodemask = cpumask_of_node(nid);
1499 
1500 		/* Look for allowed, online CPU in same node. */
1501 		for_each_cpu(dest_cpu, nodemask) {
1502 			if (!cpu_active(dest_cpu))
1503 				continue;
1504 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1505 				return dest_cpu;
1506 		}
1507 	}
1508 
1509 	for (;;) {
1510 		/* Any allowed, online CPU? */
1511 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1512 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1513 				continue;
1514 			if (!cpu_online(dest_cpu))
1515 				continue;
1516 			goto out;
1517 		}
1518 
1519 		/* No more Mr. Nice Guy. */
1520 		switch (state) {
1521 		case cpuset:
1522 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1523 				cpuset_cpus_allowed_fallback(p);
1524 				state = possible;
1525 				break;
1526 			}
1527 			/* Fall-through */
1528 		case possible:
1529 			do_set_cpus_allowed(p, cpu_possible_mask);
1530 			state = fail;
1531 			break;
1532 
1533 		case fail:
1534 			BUG();
1535 			break;
1536 		}
1537 	}
1538 
1539 out:
1540 	if (state != cpuset) {
1541 		/*
1542 		 * Don't tell them about moving exiting tasks or
1543 		 * kernel threads (both mm NULL), since they never
1544 		 * leave kernel.
1545 		 */
1546 		if (p->mm && printk_ratelimit()) {
1547 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1548 					task_pid_nr(p), p->comm, cpu);
1549 		}
1550 	}
1551 
1552 	return dest_cpu;
1553 }
1554 
1555 /*
1556  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1557  */
1558 static inline
1559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1560 {
1561 	lockdep_assert_held(&p->pi_lock);
1562 
1563 	if (p->nr_cpus_allowed > 1)
1564 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1565 	else
1566 		cpu = cpumask_any(&p->cpus_allowed);
1567 
1568 	/*
1569 	 * In order not to call set_task_cpu() on a blocking task we need
1570 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1571 	 * CPU.
1572 	 *
1573 	 * Since this is common to all placement strategies, this lives here.
1574 	 *
1575 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1576 	 *   not worry about this generic constraint ]
1577 	 */
1578 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1579 		     !cpu_online(cpu)))
1580 		cpu = select_fallback_rq(task_cpu(p), p);
1581 
1582 	return cpu;
1583 }
1584 
1585 static void update_avg(u64 *avg, u64 sample)
1586 {
1587 	s64 diff = sample - *avg;
1588 	*avg += diff >> 3;
1589 }
1590 
1591 #else
1592 
1593 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1594 					 const struct cpumask *new_mask, bool check)
1595 {
1596 	return set_cpus_allowed_ptr(p, new_mask);
1597 }
1598 
1599 #endif /* CONFIG_SMP */
1600 
1601 static void
1602 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1603 {
1604 	struct rq *rq;
1605 
1606 	if (!schedstat_enabled())
1607 		return;
1608 
1609 	rq = this_rq();
1610 
1611 #ifdef CONFIG_SMP
1612 	if (cpu == rq->cpu) {
1613 		schedstat_inc(rq->ttwu_local);
1614 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1615 	} else {
1616 		struct sched_domain *sd;
1617 
1618 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1619 		rcu_read_lock();
1620 		for_each_domain(rq->cpu, sd) {
1621 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1622 				schedstat_inc(sd->ttwu_wake_remote);
1623 				break;
1624 			}
1625 		}
1626 		rcu_read_unlock();
1627 	}
1628 
1629 	if (wake_flags & WF_MIGRATED)
1630 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1631 #endif /* CONFIG_SMP */
1632 
1633 	schedstat_inc(rq->ttwu_count);
1634 	schedstat_inc(p->se.statistics.nr_wakeups);
1635 
1636 	if (wake_flags & WF_SYNC)
1637 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1638 }
1639 
1640 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641 {
1642 	activate_task(rq, p, en_flags);
1643 	p->on_rq = TASK_ON_RQ_QUEUED;
1644 
1645 	/* If a worker is waking up, notify the workqueue: */
1646 	if (p->flags & PF_WQ_WORKER)
1647 		wq_worker_waking_up(p, cpu_of(rq));
1648 }
1649 
1650 /*
1651  * Mark the task runnable and perform wakeup-preemption.
1652  */
1653 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1654 			   struct rq_flags *rf)
1655 {
1656 	check_preempt_curr(rq, p, wake_flags);
1657 	p->state = TASK_RUNNING;
1658 	trace_sched_wakeup(p);
1659 
1660 #ifdef CONFIG_SMP
1661 	if (p->sched_class->task_woken) {
1662 		/*
1663 		 * Our task @p is fully woken up and running; so its safe to
1664 		 * drop the rq->lock, hereafter rq is only used for statistics.
1665 		 */
1666 		rq_unpin_lock(rq, rf);
1667 		p->sched_class->task_woken(rq, p);
1668 		rq_repin_lock(rq, rf);
1669 	}
1670 
1671 	if (rq->idle_stamp) {
1672 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 		u64 max = 2*rq->max_idle_balance_cost;
1674 
1675 		update_avg(&rq->avg_idle, delta);
1676 
1677 		if (rq->avg_idle > max)
1678 			rq->avg_idle = max;
1679 
1680 		rq->idle_stamp = 0;
1681 	}
1682 #endif
1683 }
1684 
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1687 		 struct rq_flags *rf)
1688 {
1689 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1690 
1691 	lockdep_assert_held(&rq->lock);
1692 
1693 #ifdef CONFIG_SMP
1694 	if (p->sched_contributes_to_load)
1695 		rq->nr_uninterruptible--;
1696 
1697 	if (wake_flags & WF_MIGRATED)
1698 		en_flags |= ENQUEUE_MIGRATED;
1699 #endif
1700 
1701 	ttwu_activate(rq, p, en_flags);
1702 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 }
1704 
1705 /*
1706  * Called in case the task @p isn't fully descheduled from its runqueue,
1707  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1708  * since all we need to do is flip p->state to TASK_RUNNING, since
1709  * the task is still ->on_rq.
1710  */
1711 static int ttwu_remote(struct task_struct *p, int wake_flags)
1712 {
1713 	struct rq_flags rf;
1714 	struct rq *rq;
1715 	int ret = 0;
1716 
1717 	rq = __task_rq_lock(p, &rf);
1718 	if (task_on_rq_queued(p)) {
1719 		/* check_preempt_curr() may use rq clock */
1720 		update_rq_clock(rq);
1721 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1722 		ret = 1;
1723 	}
1724 	__task_rq_unlock(rq, &rf);
1725 
1726 	return ret;
1727 }
1728 
1729 #ifdef CONFIG_SMP
1730 void sched_ttwu_pending(void)
1731 {
1732 	struct rq *rq = this_rq();
1733 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1734 	struct task_struct *p;
1735 	struct rq_flags rf;
1736 
1737 	if (!llist)
1738 		return;
1739 
1740 	rq_lock_irqsave(rq, &rf);
1741 	update_rq_clock(rq);
1742 
1743 	while (llist) {
1744 		int wake_flags = 0;
1745 
1746 		p = llist_entry(llist, struct task_struct, wake_entry);
1747 		llist = llist_next(llist);
1748 
1749 		if (p->sched_remote_wakeup)
1750 			wake_flags = WF_MIGRATED;
1751 
1752 		ttwu_do_activate(rq, p, wake_flags, &rf);
1753 	}
1754 
1755 	rq_unlock_irqrestore(rq, &rf);
1756 }
1757 
1758 void scheduler_ipi(void)
1759 {
1760 	/*
1761 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1762 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1763 	 * this IPI.
1764 	 */
1765 	preempt_fold_need_resched();
1766 
1767 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1768 		return;
1769 
1770 	/*
1771 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1772 	 * traditionally all their work was done from the interrupt return
1773 	 * path. Now that we actually do some work, we need to make sure
1774 	 * we do call them.
1775 	 *
1776 	 * Some archs already do call them, luckily irq_enter/exit nest
1777 	 * properly.
1778 	 *
1779 	 * Arguably we should visit all archs and update all handlers,
1780 	 * however a fair share of IPIs are still resched only so this would
1781 	 * somewhat pessimize the simple resched case.
1782 	 */
1783 	irq_enter();
1784 	sched_ttwu_pending();
1785 
1786 	/*
1787 	 * Check if someone kicked us for doing the nohz idle load balance.
1788 	 */
1789 	if (unlikely(got_nohz_idle_kick())) {
1790 		this_rq()->idle_balance = 1;
1791 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1792 	}
1793 	irq_exit();
1794 }
1795 
1796 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1797 {
1798 	struct rq *rq = cpu_rq(cpu);
1799 
1800 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1801 
1802 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1803 		if (!set_nr_if_polling(rq->idle))
1804 			smp_send_reschedule(cpu);
1805 		else
1806 			trace_sched_wake_idle_without_ipi(cpu);
1807 	}
1808 }
1809 
1810 void wake_up_if_idle(int cpu)
1811 {
1812 	struct rq *rq = cpu_rq(cpu);
1813 	struct rq_flags rf;
1814 
1815 	rcu_read_lock();
1816 
1817 	if (!is_idle_task(rcu_dereference(rq->curr)))
1818 		goto out;
1819 
1820 	if (set_nr_if_polling(rq->idle)) {
1821 		trace_sched_wake_idle_without_ipi(cpu);
1822 	} else {
1823 		rq_lock_irqsave(rq, &rf);
1824 		if (is_idle_task(rq->curr))
1825 			smp_send_reschedule(cpu);
1826 		/* Else CPU is not idle, do nothing here: */
1827 		rq_unlock_irqrestore(rq, &rf);
1828 	}
1829 
1830 out:
1831 	rcu_read_unlock();
1832 }
1833 
1834 bool cpus_share_cache(int this_cpu, int that_cpu)
1835 {
1836 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1837 }
1838 #endif /* CONFIG_SMP */
1839 
1840 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1841 {
1842 	struct rq *rq = cpu_rq(cpu);
1843 	struct rq_flags rf;
1844 
1845 #if defined(CONFIG_SMP)
1846 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1847 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1848 		ttwu_queue_remote(p, cpu, wake_flags);
1849 		return;
1850 	}
1851 #endif
1852 
1853 	rq_lock(rq, &rf);
1854 	update_rq_clock(rq);
1855 	ttwu_do_activate(rq, p, wake_flags, &rf);
1856 	rq_unlock(rq, &rf);
1857 }
1858 
1859 /*
1860  * Notes on Program-Order guarantees on SMP systems.
1861  *
1862  *  MIGRATION
1863  *
1864  * The basic program-order guarantee on SMP systems is that when a task [t]
1865  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1866  * execution on its new CPU [c1].
1867  *
1868  * For migration (of runnable tasks) this is provided by the following means:
1869  *
1870  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1871  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1872  *     rq(c1)->lock (if not at the same time, then in that order).
1873  *  C) LOCK of the rq(c1)->lock scheduling in task
1874  *
1875  * Transitivity guarantees that B happens after A and C after B.
1876  * Note: we only require RCpc transitivity.
1877  * Note: the CPU doing B need not be c0 or c1
1878  *
1879  * Example:
1880  *
1881  *   CPU0            CPU1            CPU2
1882  *
1883  *   LOCK rq(0)->lock
1884  *   sched-out X
1885  *   sched-in Y
1886  *   UNLOCK rq(0)->lock
1887  *
1888  *                                   LOCK rq(0)->lock // orders against CPU0
1889  *                                   dequeue X
1890  *                                   UNLOCK rq(0)->lock
1891  *
1892  *                                   LOCK rq(1)->lock
1893  *                                   enqueue X
1894  *                                   UNLOCK rq(1)->lock
1895  *
1896  *                   LOCK rq(1)->lock // orders against CPU2
1897  *                   sched-out Z
1898  *                   sched-in X
1899  *                   UNLOCK rq(1)->lock
1900  *
1901  *
1902  *  BLOCKING -- aka. SLEEP + WAKEUP
1903  *
1904  * For blocking we (obviously) need to provide the same guarantee as for
1905  * migration. However the means are completely different as there is no lock
1906  * chain to provide order. Instead we do:
1907  *
1908  *   1) smp_store_release(X->on_cpu, 0)
1909  *   2) smp_cond_load_acquire(!X->on_cpu)
1910  *
1911  * Example:
1912  *
1913  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1914  *
1915  *   LOCK rq(0)->lock LOCK X->pi_lock
1916  *   dequeue X
1917  *   sched-out X
1918  *   smp_store_release(X->on_cpu, 0);
1919  *
1920  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1921  *                    X->state = WAKING
1922  *                    set_task_cpu(X,2)
1923  *
1924  *                    LOCK rq(2)->lock
1925  *                    enqueue X
1926  *                    X->state = RUNNING
1927  *                    UNLOCK rq(2)->lock
1928  *
1929  *                                          LOCK rq(2)->lock // orders against CPU1
1930  *                                          sched-out Z
1931  *                                          sched-in X
1932  *                                          UNLOCK rq(2)->lock
1933  *
1934  *                    UNLOCK X->pi_lock
1935  *   UNLOCK rq(0)->lock
1936  *
1937  *
1938  * However; for wakeups there is a second guarantee we must provide, namely we
1939  * must observe the state that lead to our wakeup. That is, not only must our
1940  * task observe its own prior state, it must also observe the stores prior to
1941  * its wakeup.
1942  *
1943  * This means that any means of doing remote wakeups must order the CPU doing
1944  * the wakeup against the CPU the task is going to end up running on. This,
1945  * however, is already required for the regular Program-Order guarantee above,
1946  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1947  *
1948  */
1949 
1950 /**
1951  * try_to_wake_up - wake up a thread
1952  * @p: the thread to be awakened
1953  * @state: the mask of task states that can be woken
1954  * @wake_flags: wake modifier flags (WF_*)
1955  *
1956  * If (@state & @p->state) @p->state = TASK_RUNNING.
1957  *
1958  * If the task was not queued/runnable, also place it back on a runqueue.
1959  *
1960  * Atomic against schedule() which would dequeue a task, also see
1961  * set_current_state().
1962  *
1963  * Return: %true if @p->state changes (an actual wakeup was done),
1964  *	   %false otherwise.
1965  */
1966 static int
1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1968 {
1969 	unsigned long flags;
1970 	int cpu, success = 0;
1971 
1972 	/*
1973 	 * If we are going to wake up a thread waiting for CONDITION we
1974 	 * need to ensure that CONDITION=1 done by the caller can not be
1975 	 * reordered with p->state check below. This pairs with mb() in
1976 	 * set_current_state() the waiting thread does.
1977 	 */
1978 	smp_mb__before_spinlock();
1979 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1980 	if (!(p->state & state))
1981 		goto out;
1982 
1983 	trace_sched_waking(p);
1984 
1985 	/* We're going to change ->state: */
1986 	success = 1;
1987 	cpu = task_cpu(p);
1988 
1989 	/*
1990 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1991 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1992 	 * in smp_cond_load_acquire() below.
1993 	 *
1994 	 * sched_ttwu_pending()                 try_to_wake_up()
1995 	 *   [S] p->on_rq = 1;                  [L] P->state
1996 	 *       UNLOCK rq->lock  -----.
1997 	 *                              \
1998 	 *				 +---   RMB
1999 	 * schedule()                   /
2000 	 *       LOCK rq->lock    -----'
2001 	 *       UNLOCK rq->lock
2002 	 *
2003 	 * [task p]
2004 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2005 	 *
2006 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2007 	 * last wakeup of our task and the schedule that got our task
2008 	 * current.
2009 	 */
2010 	smp_rmb();
2011 	if (p->on_rq && ttwu_remote(p, wake_flags))
2012 		goto stat;
2013 
2014 #ifdef CONFIG_SMP
2015 	/*
2016 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2017 	 * possible to, falsely, observe p->on_cpu == 0.
2018 	 *
2019 	 * One must be running (->on_cpu == 1) in order to remove oneself
2020 	 * from the runqueue.
2021 	 *
2022 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2023 	 *      UNLOCK rq->lock
2024 	 *			RMB
2025 	 *      LOCK   rq->lock
2026 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2027 	 *
2028 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2029 	 * from the consecutive calls to schedule(); the first switching to our
2030 	 * task, the second putting it to sleep.
2031 	 */
2032 	smp_rmb();
2033 
2034 	/*
2035 	 * If the owning (remote) CPU is still in the middle of schedule() with
2036 	 * this task as prev, wait until its done referencing the task.
2037 	 *
2038 	 * Pairs with the smp_store_release() in finish_lock_switch().
2039 	 *
2040 	 * This ensures that tasks getting woken will be fully ordered against
2041 	 * their previous state and preserve Program Order.
2042 	 */
2043 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2044 
2045 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2046 	p->state = TASK_WAKING;
2047 
2048 	if (p->in_iowait) {
2049 		delayacct_blkio_end();
2050 		atomic_dec(&task_rq(p)->nr_iowait);
2051 	}
2052 
2053 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 	if (task_cpu(p) != cpu) {
2055 		wake_flags |= WF_MIGRATED;
2056 		set_task_cpu(p, cpu);
2057 	}
2058 
2059 #else /* CONFIG_SMP */
2060 
2061 	if (p->in_iowait) {
2062 		delayacct_blkio_end();
2063 		atomic_dec(&task_rq(p)->nr_iowait);
2064 	}
2065 
2066 #endif /* CONFIG_SMP */
2067 
2068 	ttwu_queue(p, cpu, wake_flags);
2069 stat:
2070 	ttwu_stat(p, cpu, wake_flags);
2071 out:
2072 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2073 
2074 	return success;
2075 }
2076 
2077 /**
2078  * try_to_wake_up_local - try to wake up a local task with rq lock held
2079  * @p: the thread to be awakened
2080  * @cookie: context's cookie for pinning
2081  *
2082  * Put @p on the run-queue if it's not already there. The caller must
2083  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2084  * the current task.
2085  */
2086 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2087 {
2088 	struct rq *rq = task_rq(p);
2089 
2090 	if (WARN_ON_ONCE(rq != this_rq()) ||
2091 	    WARN_ON_ONCE(p == current))
2092 		return;
2093 
2094 	lockdep_assert_held(&rq->lock);
2095 
2096 	if (!raw_spin_trylock(&p->pi_lock)) {
2097 		/*
2098 		 * This is OK, because current is on_cpu, which avoids it being
2099 		 * picked for load-balance and preemption/IRQs are still
2100 		 * disabled avoiding further scheduler activity on it and we've
2101 		 * not yet picked a replacement task.
2102 		 */
2103 		rq_unlock(rq, rf);
2104 		raw_spin_lock(&p->pi_lock);
2105 		rq_relock(rq, rf);
2106 	}
2107 
2108 	if (!(p->state & TASK_NORMAL))
2109 		goto out;
2110 
2111 	trace_sched_waking(p);
2112 
2113 	if (!task_on_rq_queued(p)) {
2114 		if (p->in_iowait) {
2115 			delayacct_blkio_end();
2116 			atomic_dec(&rq->nr_iowait);
2117 		}
2118 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2119 	}
2120 
2121 	ttwu_do_wakeup(rq, p, 0, rf);
2122 	ttwu_stat(p, smp_processor_id(), 0);
2123 out:
2124 	raw_spin_unlock(&p->pi_lock);
2125 }
2126 
2127 /**
2128  * wake_up_process - Wake up a specific process
2129  * @p: The process to be woken up.
2130  *
2131  * Attempt to wake up the nominated process and move it to the set of runnable
2132  * processes.
2133  *
2134  * Return: 1 if the process was woken up, 0 if it was already running.
2135  *
2136  * It may be assumed that this function implies a write memory barrier before
2137  * changing the task state if and only if any tasks are woken up.
2138  */
2139 int wake_up_process(struct task_struct *p)
2140 {
2141 	return try_to_wake_up(p, TASK_NORMAL, 0);
2142 }
2143 EXPORT_SYMBOL(wake_up_process);
2144 
2145 int wake_up_state(struct task_struct *p, unsigned int state)
2146 {
2147 	return try_to_wake_up(p, state, 0);
2148 }
2149 
2150 /*
2151  * This function clears the sched_dl_entity static params.
2152  */
2153 void __dl_clear_params(struct task_struct *p)
2154 {
2155 	struct sched_dl_entity *dl_se = &p->dl;
2156 
2157 	dl_se->dl_runtime = 0;
2158 	dl_se->dl_deadline = 0;
2159 	dl_se->dl_period = 0;
2160 	dl_se->flags = 0;
2161 	dl_se->dl_bw = 0;
2162 
2163 	dl_se->dl_throttled = 0;
2164 	dl_se->dl_yielded = 0;
2165 }
2166 
2167 /*
2168  * Perform scheduler related setup for a newly forked process p.
2169  * p is forked by current.
2170  *
2171  * __sched_fork() is basic setup used by init_idle() too:
2172  */
2173 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2174 {
2175 	p->on_rq			= 0;
2176 
2177 	p->se.on_rq			= 0;
2178 	p->se.exec_start		= 0;
2179 	p->se.sum_exec_runtime		= 0;
2180 	p->se.prev_sum_exec_runtime	= 0;
2181 	p->se.nr_migrations		= 0;
2182 	p->se.vruntime			= 0;
2183 	INIT_LIST_HEAD(&p->se.group_node);
2184 
2185 #ifdef CONFIG_FAIR_GROUP_SCHED
2186 	p->se.cfs_rq			= NULL;
2187 #endif
2188 
2189 #ifdef CONFIG_SCHEDSTATS
2190 	/* Even if schedstat is disabled, there should not be garbage */
2191 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2192 #endif
2193 
2194 	RB_CLEAR_NODE(&p->dl.rb_node);
2195 	init_dl_task_timer(&p->dl);
2196 	__dl_clear_params(p);
2197 
2198 	INIT_LIST_HEAD(&p->rt.run_list);
2199 	p->rt.timeout		= 0;
2200 	p->rt.time_slice	= sched_rr_timeslice;
2201 	p->rt.on_rq		= 0;
2202 	p->rt.on_list		= 0;
2203 
2204 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2206 #endif
2207 
2208 #ifdef CONFIG_NUMA_BALANCING
2209 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2210 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2211 		p->mm->numa_scan_seq = 0;
2212 	}
2213 
2214 	if (clone_flags & CLONE_VM)
2215 		p->numa_preferred_nid = current->numa_preferred_nid;
2216 	else
2217 		p->numa_preferred_nid = -1;
2218 
2219 	p->node_stamp = 0ULL;
2220 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2221 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2222 	p->numa_work.next = &p->numa_work;
2223 	p->numa_faults = NULL;
2224 	p->last_task_numa_placement = 0;
2225 	p->last_sum_exec_runtime = 0;
2226 
2227 	p->numa_group = NULL;
2228 #endif /* CONFIG_NUMA_BALANCING */
2229 }
2230 
2231 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2232 
2233 #ifdef CONFIG_NUMA_BALANCING
2234 
2235 void set_numabalancing_state(bool enabled)
2236 {
2237 	if (enabled)
2238 		static_branch_enable(&sched_numa_balancing);
2239 	else
2240 		static_branch_disable(&sched_numa_balancing);
2241 }
2242 
2243 #ifdef CONFIG_PROC_SYSCTL
2244 int sysctl_numa_balancing(struct ctl_table *table, int write,
2245 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2246 {
2247 	struct ctl_table t;
2248 	int err;
2249 	int state = static_branch_likely(&sched_numa_balancing);
2250 
2251 	if (write && !capable(CAP_SYS_ADMIN))
2252 		return -EPERM;
2253 
2254 	t = *table;
2255 	t.data = &state;
2256 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2257 	if (err < 0)
2258 		return err;
2259 	if (write)
2260 		set_numabalancing_state(state);
2261 	return err;
2262 }
2263 #endif
2264 #endif
2265 
2266 #ifdef CONFIG_SCHEDSTATS
2267 
2268 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2269 static bool __initdata __sched_schedstats = false;
2270 
2271 static void set_schedstats(bool enabled)
2272 {
2273 	if (enabled)
2274 		static_branch_enable(&sched_schedstats);
2275 	else
2276 		static_branch_disable(&sched_schedstats);
2277 }
2278 
2279 void force_schedstat_enabled(void)
2280 {
2281 	if (!schedstat_enabled()) {
2282 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2283 		static_branch_enable(&sched_schedstats);
2284 	}
2285 }
2286 
2287 static int __init setup_schedstats(char *str)
2288 {
2289 	int ret = 0;
2290 	if (!str)
2291 		goto out;
2292 
2293 	/*
2294 	 * This code is called before jump labels have been set up, so we can't
2295 	 * change the static branch directly just yet.  Instead set a temporary
2296 	 * variable so init_schedstats() can do it later.
2297 	 */
2298 	if (!strcmp(str, "enable")) {
2299 		__sched_schedstats = true;
2300 		ret = 1;
2301 	} else if (!strcmp(str, "disable")) {
2302 		__sched_schedstats = false;
2303 		ret = 1;
2304 	}
2305 out:
2306 	if (!ret)
2307 		pr_warn("Unable to parse schedstats=\n");
2308 
2309 	return ret;
2310 }
2311 __setup("schedstats=", setup_schedstats);
2312 
2313 static void __init init_schedstats(void)
2314 {
2315 	set_schedstats(__sched_schedstats);
2316 }
2317 
2318 #ifdef CONFIG_PROC_SYSCTL
2319 int sysctl_schedstats(struct ctl_table *table, int write,
2320 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2321 {
2322 	struct ctl_table t;
2323 	int err;
2324 	int state = static_branch_likely(&sched_schedstats);
2325 
2326 	if (write && !capable(CAP_SYS_ADMIN))
2327 		return -EPERM;
2328 
2329 	t = *table;
2330 	t.data = &state;
2331 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2332 	if (err < 0)
2333 		return err;
2334 	if (write)
2335 		set_schedstats(state);
2336 	return err;
2337 }
2338 #endif /* CONFIG_PROC_SYSCTL */
2339 #else  /* !CONFIG_SCHEDSTATS */
2340 static inline void init_schedstats(void) {}
2341 #endif /* CONFIG_SCHEDSTATS */
2342 
2343 /*
2344  * fork()/clone()-time setup:
2345  */
2346 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2347 {
2348 	unsigned long flags;
2349 	int cpu = get_cpu();
2350 
2351 	__sched_fork(clone_flags, p);
2352 	/*
2353 	 * We mark the process as NEW here. This guarantees that
2354 	 * nobody will actually run it, and a signal or other external
2355 	 * event cannot wake it up and insert it on the runqueue either.
2356 	 */
2357 	p->state = TASK_NEW;
2358 
2359 	/*
2360 	 * Make sure we do not leak PI boosting priority to the child.
2361 	 */
2362 	p->prio = current->normal_prio;
2363 
2364 	/*
2365 	 * Revert to default priority/policy on fork if requested.
2366 	 */
2367 	if (unlikely(p->sched_reset_on_fork)) {
2368 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2369 			p->policy = SCHED_NORMAL;
2370 			p->static_prio = NICE_TO_PRIO(0);
2371 			p->rt_priority = 0;
2372 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2373 			p->static_prio = NICE_TO_PRIO(0);
2374 
2375 		p->prio = p->normal_prio = __normal_prio(p);
2376 		set_load_weight(p);
2377 
2378 		/*
2379 		 * We don't need the reset flag anymore after the fork. It has
2380 		 * fulfilled its duty:
2381 		 */
2382 		p->sched_reset_on_fork = 0;
2383 	}
2384 
2385 	if (dl_prio(p->prio)) {
2386 		put_cpu();
2387 		return -EAGAIN;
2388 	} else if (rt_prio(p->prio)) {
2389 		p->sched_class = &rt_sched_class;
2390 	} else {
2391 		p->sched_class = &fair_sched_class;
2392 	}
2393 
2394 	init_entity_runnable_average(&p->se);
2395 
2396 	/*
2397 	 * The child is not yet in the pid-hash so no cgroup attach races,
2398 	 * and the cgroup is pinned to this child due to cgroup_fork()
2399 	 * is ran before sched_fork().
2400 	 *
2401 	 * Silence PROVE_RCU.
2402 	 */
2403 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2404 	/*
2405 	 * We're setting the CPU for the first time, we don't migrate,
2406 	 * so use __set_task_cpu().
2407 	 */
2408 	__set_task_cpu(p, cpu);
2409 	if (p->sched_class->task_fork)
2410 		p->sched_class->task_fork(p);
2411 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412 
2413 #ifdef CONFIG_SCHED_INFO
2414 	if (likely(sched_info_on()))
2415 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2416 #endif
2417 #if defined(CONFIG_SMP)
2418 	p->on_cpu = 0;
2419 #endif
2420 	init_task_preempt_count(p);
2421 #ifdef CONFIG_SMP
2422 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2423 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2424 #endif
2425 
2426 	put_cpu();
2427 	return 0;
2428 }
2429 
2430 unsigned long to_ratio(u64 period, u64 runtime)
2431 {
2432 	if (runtime == RUNTIME_INF)
2433 		return 1ULL << 20;
2434 
2435 	/*
2436 	 * Doing this here saves a lot of checks in all
2437 	 * the calling paths, and returning zero seems
2438 	 * safe for them anyway.
2439 	 */
2440 	if (period == 0)
2441 		return 0;
2442 
2443 	return div64_u64(runtime << 20, period);
2444 }
2445 
2446 #ifdef CONFIG_SMP
2447 inline struct dl_bw *dl_bw_of(int i)
2448 {
2449 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2450 			 "sched RCU must be held");
2451 	return &cpu_rq(i)->rd->dl_bw;
2452 }
2453 
2454 static inline int dl_bw_cpus(int i)
2455 {
2456 	struct root_domain *rd = cpu_rq(i)->rd;
2457 	int cpus = 0;
2458 
2459 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2460 			 "sched RCU must be held");
2461 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2462 		cpus++;
2463 
2464 	return cpus;
2465 }
2466 #else
2467 inline struct dl_bw *dl_bw_of(int i)
2468 {
2469 	return &cpu_rq(i)->dl.dl_bw;
2470 }
2471 
2472 static inline int dl_bw_cpus(int i)
2473 {
2474 	return 1;
2475 }
2476 #endif
2477 
2478 /*
2479  * We must be sure that accepting a new task (or allowing changing the
2480  * parameters of an existing one) is consistent with the bandwidth
2481  * constraints. If yes, this function also accordingly updates the currently
2482  * allocated bandwidth to reflect the new situation.
2483  *
2484  * This function is called while holding p's rq->lock.
2485  *
2486  * XXX we should delay bw change until the task's 0-lag point, see
2487  * __setparam_dl().
2488  */
2489 static int dl_overflow(struct task_struct *p, int policy,
2490 		       const struct sched_attr *attr)
2491 {
2492 
2493 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2494 	u64 period = attr->sched_period ?: attr->sched_deadline;
2495 	u64 runtime = attr->sched_runtime;
2496 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2497 	int cpus, err = -1;
2498 
2499 	/* !deadline task may carry old deadline bandwidth */
2500 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2501 		return 0;
2502 
2503 	/*
2504 	 * Either if a task, enters, leave, or stays -deadline but changes
2505 	 * its parameters, we may need to update accordingly the total
2506 	 * allocated bandwidth of the container.
2507 	 */
2508 	raw_spin_lock(&dl_b->lock);
2509 	cpus = dl_bw_cpus(task_cpu(p));
2510 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2511 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2512 		__dl_add(dl_b, new_bw);
2513 		err = 0;
2514 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2515 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2516 		__dl_clear(dl_b, p->dl.dl_bw);
2517 		__dl_add(dl_b, new_bw);
2518 		err = 0;
2519 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2520 		__dl_clear(dl_b, p->dl.dl_bw);
2521 		err = 0;
2522 	}
2523 	raw_spin_unlock(&dl_b->lock);
2524 
2525 	return err;
2526 }
2527 
2528 extern void init_dl_bw(struct dl_bw *dl_b);
2529 
2530 /*
2531  * wake_up_new_task - wake up a newly created task for the first time.
2532  *
2533  * This function will do some initial scheduler statistics housekeeping
2534  * that must be done for every newly created context, then puts the task
2535  * on the runqueue and wakes it.
2536  */
2537 void wake_up_new_task(struct task_struct *p)
2538 {
2539 	struct rq_flags rf;
2540 	struct rq *rq;
2541 
2542 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2543 	p->state = TASK_RUNNING;
2544 #ifdef CONFIG_SMP
2545 	/*
2546 	 * Fork balancing, do it here and not earlier because:
2547 	 *  - cpus_allowed can change in the fork path
2548 	 *  - any previously selected CPU might disappear through hotplug
2549 	 *
2550 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2551 	 * as we're not fully set-up yet.
2552 	 */
2553 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2554 #endif
2555 	rq = __task_rq_lock(p, &rf);
2556 	update_rq_clock(rq);
2557 	post_init_entity_util_avg(&p->se);
2558 
2559 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2560 	p->on_rq = TASK_ON_RQ_QUEUED;
2561 	trace_sched_wakeup_new(p);
2562 	check_preempt_curr(rq, p, WF_FORK);
2563 #ifdef CONFIG_SMP
2564 	if (p->sched_class->task_woken) {
2565 		/*
2566 		 * Nothing relies on rq->lock after this, so its fine to
2567 		 * drop it.
2568 		 */
2569 		rq_unpin_lock(rq, &rf);
2570 		p->sched_class->task_woken(rq, p);
2571 		rq_repin_lock(rq, &rf);
2572 	}
2573 #endif
2574 	task_rq_unlock(rq, p, &rf);
2575 }
2576 
2577 #ifdef CONFIG_PREEMPT_NOTIFIERS
2578 
2579 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2580 
2581 void preempt_notifier_inc(void)
2582 {
2583 	static_key_slow_inc(&preempt_notifier_key);
2584 }
2585 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2586 
2587 void preempt_notifier_dec(void)
2588 {
2589 	static_key_slow_dec(&preempt_notifier_key);
2590 }
2591 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2592 
2593 /**
2594  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595  * @notifier: notifier struct to register
2596  */
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2598 {
2599 	if (!static_key_false(&preempt_notifier_key))
2600 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2601 
2602 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2603 }
2604 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2605 
2606 /**
2607  * preempt_notifier_unregister - no longer interested in preemption notifications
2608  * @notifier: notifier struct to unregister
2609  *
2610  * This is *not* safe to call from within a preemption notifier.
2611  */
2612 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2613 {
2614 	hlist_del(&notifier->link);
2615 }
2616 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2617 
2618 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 {
2620 	struct preempt_notifier *notifier;
2621 
2622 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2624 }
2625 
2626 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2627 {
2628 	if (static_key_false(&preempt_notifier_key))
2629 		__fire_sched_in_preempt_notifiers(curr);
2630 }
2631 
2632 static void
2633 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2634 				   struct task_struct *next)
2635 {
2636 	struct preempt_notifier *notifier;
2637 
2638 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2639 		notifier->ops->sched_out(notifier, next);
2640 }
2641 
2642 static __always_inline void
2643 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2644 				 struct task_struct *next)
2645 {
2646 	if (static_key_false(&preempt_notifier_key))
2647 		__fire_sched_out_preempt_notifiers(curr, next);
2648 }
2649 
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651 
2652 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 {
2654 }
2655 
2656 static inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 				 struct task_struct *next)
2659 {
2660 }
2661 
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2663 
2664 /**
2665  * prepare_task_switch - prepare to switch tasks
2666  * @rq: the runqueue preparing to switch
2667  * @prev: the current task that is being switched out
2668  * @next: the task we are going to switch to.
2669  *
2670  * This is called with the rq lock held and interrupts off. It must
2671  * be paired with a subsequent finish_task_switch after the context
2672  * switch.
2673  *
2674  * prepare_task_switch sets up locking and calls architecture specific
2675  * hooks.
2676  */
2677 static inline void
2678 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 		    struct task_struct *next)
2680 {
2681 	sched_info_switch(rq, prev, next);
2682 	perf_event_task_sched_out(prev, next);
2683 	fire_sched_out_preempt_notifiers(prev, next);
2684 	prepare_lock_switch(rq, next);
2685 	prepare_arch_switch(next);
2686 }
2687 
2688 /**
2689  * finish_task_switch - clean up after a task-switch
2690  * @prev: the thread we just switched away from.
2691  *
2692  * finish_task_switch must be called after the context switch, paired
2693  * with a prepare_task_switch call before the context switch.
2694  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2695  * and do any other architecture-specific cleanup actions.
2696  *
2697  * Note that we may have delayed dropping an mm in context_switch(). If
2698  * so, we finish that here outside of the runqueue lock. (Doing it
2699  * with the lock held can cause deadlocks; see schedule() for
2700  * details.)
2701  *
2702  * The context switch have flipped the stack from under us and restored the
2703  * local variables which were saved when this task called schedule() in the
2704  * past. prev == current is still correct but we need to recalculate this_rq
2705  * because prev may have moved to another CPU.
2706  */
2707 static struct rq *finish_task_switch(struct task_struct *prev)
2708 	__releases(rq->lock)
2709 {
2710 	struct rq *rq = this_rq();
2711 	struct mm_struct *mm = rq->prev_mm;
2712 	long prev_state;
2713 
2714 	/*
2715 	 * The previous task will have left us with a preempt_count of 2
2716 	 * because it left us after:
2717 	 *
2718 	 *	schedule()
2719 	 *	  preempt_disable();			// 1
2720 	 *	  __schedule()
2721 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2722 	 *
2723 	 * Also, see FORK_PREEMPT_COUNT.
2724 	 */
2725 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2726 		      "corrupted preempt_count: %s/%d/0x%x\n",
2727 		      current->comm, current->pid, preempt_count()))
2728 		preempt_count_set(FORK_PREEMPT_COUNT);
2729 
2730 	rq->prev_mm = NULL;
2731 
2732 	/*
2733 	 * A task struct has one reference for the use as "current".
2734 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2735 	 * schedule one last time. The schedule call will never return, and
2736 	 * the scheduled task must drop that reference.
2737 	 *
2738 	 * We must observe prev->state before clearing prev->on_cpu (in
2739 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2740 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2741 	 * transition, resulting in a double drop.
2742 	 */
2743 	prev_state = prev->state;
2744 	vtime_task_switch(prev);
2745 	perf_event_task_sched_in(prev, current);
2746 	finish_lock_switch(rq, prev);
2747 	finish_arch_post_lock_switch();
2748 
2749 	fire_sched_in_preempt_notifiers(current);
2750 	if (mm)
2751 		mmdrop(mm);
2752 	if (unlikely(prev_state == TASK_DEAD)) {
2753 		if (prev->sched_class->task_dead)
2754 			prev->sched_class->task_dead(prev);
2755 
2756 		/*
2757 		 * Remove function-return probe instances associated with this
2758 		 * task and put them back on the free list.
2759 		 */
2760 		kprobe_flush_task(prev);
2761 
2762 		/* Task is done with its stack. */
2763 		put_task_stack(prev);
2764 
2765 		put_task_struct(prev);
2766 	}
2767 
2768 	tick_nohz_task_switch();
2769 	return rq;
2770 }
2771 
2772 #ifdef CONFIG_SMP
2773 
2774 /* rq->lock is NOT held, but preemption is disabled */
2775 static void __balance_callback(struct rq *rq)
2776 {
2777 	struct callback_head *head, *next;
2778 	void (*func)(struct rq *rq);
2779 	unsigned long flags;
2780 
2781 	raw_spin_lock_irqsave(&rq->lock, flags);
2782 	head = rq->balance_callback;
2783 	rq->balance_callback = NULL;
2784 	while (head) {
2785 		func = (void (*)(struct rq *))head->func;
2786 		next = head->next;
2787 		head->next = NULL;
2788 		head = next;
2789 
2790 		func(rq);
2791 	}
2792 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2793 }
2794 
2795 static inline void balance_callback(struct rq *rq)
2796 {
2797 	if (unlikely(rq->balance_callback))
2798 		__balance_callback(rq);
2799 }
2800 
2801 #else
2802 
2803 static inline void balance_callback(struct rq *rq)
2804 {
2805 }
2806 
2807 #endif
2808 
2809 /**
2810  * schedule_tail - first thing a freshly forked thread must call.
2811  * @prev: the thread we just switched away from.
2812  */
2813 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2814 	__releases(rq->lock)
2815 {
2816 	struct rq *rq;
2817 
2818 	/*
2819 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2820 	 * finish_task_switch() for details.
2821 	 *
2822 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2823 	 * and the preempt_enable() will end up enabling preemption (on
2824 	 * PREEMPT_COUNT kernels).
2825 	 */
2826 
2827 	rq = finish_task_switch(prev);
2828 	balance_callback(rq);
2829 	preempt_enable();
2830 
2831 	if (current->set_child_tid)
2832 		put_user(task_pid_vnr(current), current->set_child_tid);
2833 }
2834 
2835 /*
2836  * context_switch - switch to the new MM and the new thread's register state.
2837  */
2838 static __always_inline struct rq *
2839 context_switch(struct rq *rq, struct task_struct *prev,
2840 	       struct task_struct *next, struct rq_flags *rf)
2841 {
2842 	struct mm_struct *mm, *oldmm;
2843 
2844 	prepare_task_switch(rq, prev, next);
2845 
2846 	mm = next->mm;
2847 	oldmm = prev->active_mm;
2848 	/*
2849 	 * For paravirt, this is coupled with an exit in switch_to to
2850 	 * combine the page table reload and the switch backend into
2851 	 * one hypercall.
2852 	 */
2853 	arch_start_context_switch(prev);
2854 
2855 	if (!mm) {
2856 		next->active_mm = oldmm;
2857 		mmgrab(oldmm);
2858 		enter_lazy_tlb(oldmm, next);
2859 	} else
2860 		switch_mm_irqs_off(oldmm, mm, next);
2861 
2862 	if (!prev->mm) {
2863 		prev->active_mm = NULL;
2864 		rq->prev_mm = oldmm;
2865 	}
2866 
2867 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2868 
2869 	/*
2870 	 * Since the runqueue lock will be released by the next
2871 	 * task (which is an invalid locking op but in the case
2872 	 * of the scheduler it's an obvious special-case), so we
2873 	 * do an early lockdep release here:
2874 	 */
2875 	rq_unpin_lock(rq, rf);
2876 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2877 
2878 	/* Here we just switch the register state and the stack. */
2879 	switch_to(prev, next, prev);
2880 	barrier();
2881 
2882 	return finish_task_switch(prev);
2883 }
2884 
2885 /*
2886  * nr_running and nr_context_switches:
2887  *
2888  * externally visible scheduler statistics: current number of runnable
2889  * threads, total number of context switches performed since bootup.
2890  */
2891 unsigned long nr_running(void)
2892 {
2893 	unsigned long i, sum = 0;
2894 
2895 	for_each_online_cpu(i)
2896 		sum += cpu_rq(i)->nr_running;
2897 
2898 	return sum;
2899 }
2900 
2901 /*
2902  * Check if only the current task is running on the CPU.
2903  *
2904  * Caution: this function does not check that the caller has disabled
2905  * preemption, thus the result might have a time-of-check-to-time-of-use
2906  * race.  The caller is responsible to use it correctly, for example:
2907  *
2908  * - from a non-preemptable section (of course)
2909  *
2910  * - from a thread that is bound to a single CPU
2911  *
2912  * - in a loop with very short iterations (e.g. a polling loop)
2913  */
2914 bool single_task_running(void)
2915 {
2916 	return raw_rq()->nr_running == 1;
2917 }
2918 EXPORT_SYMBOL(single_task_running);
2919 
2920 unsigned long long nr_context_switches(void)
2921 {
2922 	int i;
2923 	unsigned long long sum = 0;
2924 
2925 	for_each_possible_cpu(i)
2926 		sum += cpu_rq(i)->nr_switches;
2927 
2928 	return sum;
2929 }
2930 
2931 /*
2932  * IO-wait accounting, and how its mostly bollocks (on SMP).
2933  *
2934  * The idea behind IO-wait account is to account the idle time that we could
2935  * have spend running if it were not for IO. That is, if we were to improve the
2936  * storage performance, we'd have a proportional reduction in IO-wait time.
2937  *
2938  * This all works nicely on UP, where, when a task blocks on IO, we account
2939  * idle time as IO-wait, because if the storage were faster, it could've been
2940  * running and we'd not be idle.
2941  *
2942  * This has been extended to SMP, by doing the same for each CPU. This however
2943  * is broken.
2944  *
2945  * Imagine for instance the case where two tasks block on one CPU, only the one
2946  * CPU will have IO-wait accounted, while the other has regular idle. Even
2947  * though, if the storage were faster, both could've ran at the same time,
2948  * utilising both CPUs.
2949  *
2950  * This means, that when looking globally, the current IO-wait accounting on
2951  * SMP is a lower bound, by reason of under accounting.
2952  *
2953  * Worse, since the numbers are provided per CPU, they are sometimes
2954  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2955  * associated with any one particular CPU, it can wake to another CPU than it
2956  * blocked on. This means the per CPU IO-wait number is meaningless.
2957  *
2958  * Task CPU affinities can make all that even more 'interesting'.
2959  */
2960 
2961 unsigned long nr_iowait(void)
2962 {
2963 	unsigned long i, sum = 0;
2964 
2965 	for_each_possible_cpu(i)
2966 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2967 
2968 	return sum;
2969 }
2970 
2971 /*
2972  * Consumers of these two interfaces, like for example the cpufreq menu
2973  * governor are using nonsensical data. Boosting frequency for a CPU that has
2974  * IO-wait which might not even end up running the task when it does become
2975  * runnable.
2976  */
2977 
2978 unsigned long nr_iowait_cpu(int cpu)
2979 {
2980 	struct rq *this = cpu_rq(cpu);
2981 	return atomic_read(&this->nr_iowait);
2982 }
2983 
2984 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2985 {
2986 	struct rq *rq = this_rq();
2987 	*nr_waiters = atomic_read(&rq->nr_iowait);
2988 	*load = rq->load.weight;
2989 }
2990 
2991 #ifdef CONFIG_SMP
2992 
2993 /*
2994  * sched_exec - execve() is a valuable balancing opportunity, because at
2995  * this point the task has the smallest effective memory and cache footprint.
2996  */
2997 void sched_exec(void)
2998 {
2999 	struct task_struct *p = current;
3000 	unsigned long flags;
3001 	int dest_cpu;
3002 
3003 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3004 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3005 	if (dest_cpu == smp_processor_id())
3006 		goto unlock;
3007 
3008 	if (likely(cpu_active(dest_cpu))) {
3009 		struct migration_arg arg = { p, dest_cpu };
3010 
3011 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3012 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3013 		return;
3014 	}
3015 unlock:
3016 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3017 }
3018 
3019 #endif
3020 
3021 DEFINE_PER_CPU(struct kernel_stat, kstat);
3022 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3023 
3024 EXPORT_PER_CPU_SYMBOL(kstat);
3025 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3026 
3027 /*
3028  * The function fair_sched_class.update_curr accesses the struct curr
3029  * and its field curr->exec_start; when called from task_sched_runtime(),
3030  * we observe a high rate of cache misses in practice.
3031  * Prefetching this data results in improved performance.
3032  */
3033 static inline void prefetch_curr_exec_start(struct task_struct *p)
3034 {
3035 #ifdef CONFIG_FAIR_GROUP_SCHED
3036 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3037 #else
3038 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3039 #endif
3040 	prefetch(curr);
3041 	prefetch(&curr->exec_start);
3042 }
3043 
3044 /*
3045  * Return accounted runtime for the task.
3046  * In case the task is currently running, return the runtime plus current's
3047  * pending runtime that have not been accounted yet.
3048  */
3049 unsigned long long task_sched_runtime(struct task_struct *p)
3050 {
3051 	struct rq_flags rf;
3052 	struct rq *rq;
3053 	u64 ns;
3054 
3055 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3056 	/*
3057 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3058 	 * So we have a optimization chance when the task's delta_exec is 0.
3059 	 * Reading ->on_cpu is racy, but this is ok.
3060 	 *
3061 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3062 	 * If we race with it entering CPU, unaccounted time is 0. This is
3063 	 * indistinguishable from the read occurring a few cycles earlier.
3064 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3065 	 * been accounted, so we're correct here as well.
3066 	 */
3067 	if (!p->on_cpu || !task_on_rq_queued(p))
3068 		return p->se.sum_exec_runtime;
3069 #endif
3070 
3071 	rq = task_rq_lock(p, &rf);
3072 	/*
3073 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3074 	 * project cycles that may never be accounted to this
3075 	 * thread, breaking clock_gettime().
3076 	 */
3077 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3078 		prefetch_curr_exec_start(p);
3079 		update_rq_clock(rq);
3080 		p->sched_class->update_curr(rq);
3081 	}
3082 	ns = p->se.sum_exec_runtime;
3083 	task_rq_unlock(rq, p, &rf);
3084 
3085 	return ns;
3086 }
3087 
3088 /*
3089  * This function gets called by the timer code, with HZ frequency.
3090  * We call it with interrupts disabled.
3091  */
3092 void scheduler_tick(void)
3093 {
3094 	int cpu = smp_processor_id();
3095 	struct rq *rq = cpu_rq(cpu);
3096 	struct task_struct *curr = rq->curr;
3097 	struct rq_flags rf;
3098 
3099 	sched_clock_tick();
3100 
3101 	rq_lock(rq, &rf);
3102 
3103 	update_rq_clock(rq);
3104 	curr->sched_class->task_tick(rq, curr, 0);
3105 	cpu_load_update_active(rq);
3106 	calc_global_load_tick(rq);
3107 
3108 	rq_unlock(rq, &rf);
3109 
3110 	perf_event_task_tick();
3111 
3112 #ifdef CONFIG_SMP
3113 	rq->idle_balance = idle_cpu(cpu);
3114 	trigger_load_balance(rq);
3115 #endif
3116 	rq_last_tick_reset(rq);
3117 }
3118 
3119 #ifdef CONFIG_NO_HZ_FULL
3120 /**
3121  * scheduler_tick_max_deferment
3122  *
3123  * Keep at least one tick per second when a single
3124  * active task is running because the scheduler doesn't
3125  * yet completely support full dynticks environment.
3126  *
3127  * This makes sure that uptime, CFS vruntime, load
3128  * balancing, etc... continue to move forward, even
3129  * with a very low granularity.
3130  *
3131  * Return: Maximum deferment in nanoseconds.
3132  */
3133 u64 scheduler_tick_max_deferment(void)
3134 {
3135 	struct rq *rq = this_rq();
3136 	unsigned long next, now = READ_ONCE(jiffies);
3137 
3138 	next = rq->last_sched_tick + HZ;
3139 
3140 	if (time_before_eq(next, now))
3141 		return 0;
3142 
3143 	return jiffies_to_nsecs(next - now);
3144 }
3145 #endif
3146 
3147 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3148 				defined(CONFIG_PREEMPT_TRACER))
3149 /*
3150  * If the value passed in is equal to the current preempt count
3151  * then we just disabled preemption. Start timing the latency.
3152  */
3153 static inline void preempt_latency_start(int val)
3154 {
3155 	if (preempt_count() == val) {
3156 		unsigned long ip = get_lock_parent_ip();
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158 		current->preempt_disable_ip = ip;
3159 #endif
3160 		trace_preempt_off(CALLER_ADDR0, ip);
3161 	}
3162 }
3163 
3164 void preempt_count_add(int val)
3165 {
3166 #ifdef CONFIG_DEBUG_PREEMPT
3167 	/*
3168 	 * Underflow?
3169 	 */
3170 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3171 		return;
3172 #endif
3173 	__preempt_count_add(val);
3174 #ifdef CONFIG_DEBUG_PREEMPT
3175 	/*
3176 	 * Spinlock count overflowing soon?
3177 	 */
3178 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3179 				PREEMPT_MASK - 10);
3180 #endif
3181 	preempt_latency_start(val);
3182 }
3183 EXPORT_SYMBOL(preempt_count_add);
3184 NOKPROBE_SYMBOL(preempt_count_add);
3185 
3186 /*
3187  * If the value passed in equals to the current preempt count
3188  * then we just enabled preemption. Stop timing the latency.
3189  */
3190 static inline void preempt_latency_stop(int val)
3191 {
3192 	if (preempt_count() == val)
3193 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3194 }
3195 
3196 void preempt_count_sub(int val)
3197 {
3198 #ifdef CONFIG_DEBUG_PREEMPT
3199 	/*
3200 	 * Underflow?
3201 	 */
3202 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3203 		return;
3204 	/*
3205 	 * Is the spinlock portion underflowing?
3206 	 */
3207 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3208 			!(preempt_count() & PREEMPT_MASK)))
3209 		return;
3210 #endif
3211 
3212 	preempt_latency_stop(val);
3213 	__preempt_count_sub(val);
3214 }
3215 EXPORT_SYMBOL(preempt_count_sub);
3216 NOKPROBE_SYMBOL(preempt_count_sub);
3217 
3218 #else
3219 static inline void preempt_latency_start(int val) { }
3220 static inline void preempt_latency_stop(int val) { }
3221 #endif
3222 
3223 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3224 {
3225 #ifdef CONFIG_DEBUG_PREEMPT
3226 	return p->preempt_disable_ip;
3227 #else
3228 	return 0;
3229 #endif
3230 }
3231 
3232 /*
3233  * Print scheduling while atomic bug:
3234  */
3235 static noinline void __schedule_bug(struct task_struct *prev)
3236 {
3237 	/* Save this before calling printk(), since that will clobber it */
3238 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3239 
3240 	if (oops_in_progress)
3241 		return;
3242 
3243 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3244 		prev->comm, prev->pid, preempt_count());
3245 
3246 	debug_show_held_locks(prev);
3247 	print_modules();
3248 	if (irqs_disabled())
3249 		print_irqtrace_events(prev);
3250 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3251 	    && in_atomic_preempt_off()) {
3252 		pr_err("Preemption disabled at:");
3253 		print_ip_sym(preempt_disable_ip);
3254 		pr_cont("\n");
3255 	}
3256 	if (panic_on_warn)
3257 		panic("scheduling while atomic\n");
3258 
3259 	dump_stack();
3260 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3261 }
3262 
3263 /*
3264  * Various schedule()-time debugging checks and statistics:
3265  */
3266 static inline void schedule_debug(struct task_struct *prev)
3267 {
3268 #ifdef CONFIG_SCHED_STACK_END_CHECK
3269 	if (task_stack_end_corrupted(prev))
3270 		panic("corrupted stack end detected inside scheduler\n");
3271 #endif
3272 
3273 	if (unlikely(in_atomic_preempt_off())) {
3274 		__schedule_bug(prev);
3275 		preempt_count_set(PREEMPT_DISABLED);
3276 	}
3277 	rcu_sleep_check();
3278 
3279 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3280 
3281 	schedstat_inc(this_rq()->sched_count);
3282 }
3283 
3284 /*
3285  * Pick up the highest-prio task:
3286  */
3287 static inline struct task_struct *
3288 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3289 {
3290 	const struct sched_class *class;
3291 	struct task_struct *p;
3292 
3293 	/*
3294 	 * Optimization: we know that if all tasks are in the fair class we can
3295 	 * call that function directly, but only if the @prev task wasn't of a
3296 	 * higher scheduling class, because otherwise those loose the
3297 	 * opportunity to pull in more work from other CPUs.
3298 	 */
3299 	if (likely((prev->sched_class == &idle_sched_class ||
3300 		    prev->sched_class == &fair_sched_class) &&
3301 		   rq->nr_running == rq->cfs.h_nr_running)) {
3302 
3303 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3304 		if (unlikely(p == RETRY_TASK))
3305 			goto again;
3306 
3307 		/* Assumes fair_sched_class->next == idle_sched_class */
3308 		if (unlikely(!p))
3309 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3310 
3311 		return p;
3312 	}
3313 
3314 again:
3315 	for_each_class(class) {
3316 		p = class->pick_next_task(rq, prev, rf);
3317 		if (p) {
3318 			if (unlikely(p == RETRY_TASK))
3319 				goto again;
3320 			return p;
3321 		}
3322 	}
3323 
3324 	/* The idle class should always have a runnable task: */
3325 	BUG();
3326 }
3327 
3328 /*
3329  * __schedule() is the main scheduler function.
3330  *
3331  * The main means of driving the scheduler and thus entering this function are:
3332  *
3333  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3334  *
3335  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3336  *      paths. For example, see arch/x86/entry_64.S.
3337  *
3338  *      To drive preemption between tasks, the scheduler sets the flag in timer
3339  *      interrupt handler scheduler_tick().
3340  *
3341  *   3. Wakeups don't really cause entry into schedule(). They add a
3342  *      task to the run-queue and that's it.
3343  *
3344  *      Now, if the new task added to the run-queue preempts the current
3345  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3346  *      called on the nearest possible occasion:
3347  *
3348  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3349  *
3350  *         - in syscall or exception context, at the next outmost
3351  *           preempt_enable(). (this might be as soon as the wake_up()'s
3352  *           spin_unlock()!)
3353  *
3354  *         - in IRQ context, return from interrupt-handler to
3355  *           preemptible context
3356  *
3357  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3358  *         then at the next:
3359  *
3360  *          - cond_resched() call
3361  *          - explicit schedule() call
3362  *          - return from syscall or exception to user-space
3363  *          - return from interrupt-handler to user-space
3364  *
3365  * WARNING: must be called with preemption disabled!
3366  */
3367 static void __sched notrace __schedule(bool preempt)
3368 {
3369 	struct task_struct *prev, *next;
3370 	unsigned long *switch_count;
3371 	struct rq_flags rf;
3372 	struct rq *rq;
3373 	int cpu;
3374 
3375 	cpu = smp_processor_id();
3376 	rq = cpu_rq(cpu);
3377 	prev = rq->curr;
3378 
3379 	schedule_debug(prev);
3380 
3381 	if (sched_feat(HRTICK))
3382 		hrtick_clear(rq);
3383 
3384 	local_irq_disable();
3385 	rcu_note_context_switch(preempt);
3386 
3387 	/*
3388 	 * Make sure that signal_pending_state()->signal_pending() below
3389 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3390 	 * done by the caller to avoid the race with signal_wake_up().
3391 	 */
3392 	smp_mb__before_spinlock();
3393 	rq_lock(rq, &rf);
3394 
3395 	/* Promote REQ to ACT */
3396 	rq->clock_update_flags <<= 1;
3397 	update_rq_clock(rq);
3398 
3399 	switch_count = &prev->nivcsw;
3400 	if (!preempt && prev->state) {
3401 		if (unlikely(signal_pending_state(prev->state, prev))) {
3402 			prev->state = TASK_RUNNING;
3403 		} else {
3404 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3405 			prev->on_rq = 0;
3406 
3407 			if (prev->in_iowait) {
3408 				atomic_inc(&rq->nr_iowait);
3409 				delayacct_blkio_start();
3410 			}
3411 
3412 			/*
3413 			 * If a worker went to sleep, notify and ask workqueue
3414 			 * whether it wants to wake up a task to maintain
3415 			 * concurrency.
3416 			 */
3417 			if (prev->flags & PF_WQ_WORKER) {
3418 				struct task_struct *to_wakeup;
3419 
3420 				to_wakeup = wq_worker_sleeping(prev);
3421 				if (to_wakeup)
3422 					try_to_wake_up_local(to_wakeup, &rf);
3423 			}
3424 		}
3425 		switch_count = &prev->nvcsw;
3426 	}
3427 
3428 	next = pick_next_task(rq, prev, &rf);
3429 	clear_tsk_need_resched(prev);
3430 	clear_preempt_need_resched();
3431 
3432 	if (likely(prev != next)) {
3433 		rq->nr_switches++;
3434 		rq->curr = next;
3435 		++*switch_count;
3436 
3437 		trace_sched_switch(preempt, prev, next);
3438 
3439 		/* Also unlocks the rq: */
3440 		rq = context_switch(rq, prev, next, &rf);
3441 	} else {
3442 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443 		rq_unlock_irq(rq, &rf);
3444 	}
3445 
3446 	balance_callback(rq);
3447 }
3448 
3449 void __noreturn do_task_dead(void)
3450 {
3451 	/*
3452 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 	 * when the following two conditions become true.
3454 	 *   - There is race condition of mmap_sem (It is acquired by
3455 	 *     exit_mm()), and
3456 	 *   - SMI occurs before setting TASK_RUNINNG.
3457 	 *     (or hypervisor of virtual machine switches to other guest)
3458 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 	 *
3460 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 	 * is held by try_to_wake_up()
3462 	 */
3463 	smp_mb();
3464 	raw_spin_unlock_wait(&current->pi_lock);
3465 
3466 	/* Causes final put_task_struct in finish_task_switch(): */
3467 	__set_current_state(TASK_DEAD);
3468 
3469 	/* Tell freezer to ignore us: */
3470 	current->flags |= PF_NOFREEZE;
3471 
3472 	__schedule(false);
3473 	BUG();
3474 
3475 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 	for (;;)
3477 		cpu_relax();
3478 }
3479 
3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 		return;
3484 	/*
3485 	 * If we are going to sleep and we have plugged IO queued,
3486 	 * make sure to submit it to avoid deadlocks.
3487 	 */
3488 	if (blk_needs_flush_plug(tsk))
3489 		blk_schedule_flush_plug(tsk);
3490 }
3491 
3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 	struct task_struct *tsk = current;
3495 
3496 	sched_submit_work(tsk);
3497 	do {
3498 		preempt_disable();
3499 		__schedule(false);
3500 		sched_preempt_enable_no_resched();
3501 	} while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504 
3505 /*
3506  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3507  * state (have scheduled out non-voluntarily) by making sure that all
3508  * tasks have either left the run queue or have gone into user space.
3509  * As idle tasks do not do either, they must not ever be preempted
3510  * (schedule out non-voluntarily).
3511  *
3512  * schedule_idle() is similar to schedule_preempt_disable() except that it
3513  * never enables preemption because it does not call sched_submit_work().
3514  */
3515 void __sched schedule_idle(void)
3516 {
3517 	/*
3518 	 * As this skips calling sched_submit_work(), which the idle task does
3519 	 * regardless because that function is a nop when the task is in a
3520 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3521 	 * current task can be in any other state. Note, idle is always in the
3522 	 * TASK_RUNNING state.
3523 	 */
3524 	WARN_ON_ONCE(current->state);
3525 	do {
3526 		__schedule(false);
3527 	} while (need_resched());
3528 }
3529 
3530 #ifdef CONFIG_CONTEXT_TRACKING
3531 asmlinkage __visible void __sched schedule_user(void)
3532 {
3533 	/*
3534 	 * If we come here after a random call to set_need_resched(),
3535 	 * or we have been woken up remotely but the IPI has not yet arrived,
3536 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 	 * we find a better solution.
3538 	 *
3539 	 * NB: There are buggy callers of this function.  Ideally we
3540 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541 	 * too frequently to make sense yet.
3542 	 */
3543 	enum ctx_state prev_state = exception_enter();
3544 	schedule();
3545 	exception_exit(prev_state);
3546 }
3547 #endif
3548 
3549 /**
3550  * schedule_preempt_disabled - called with preemption disabled
3551  *
3552  * Returns with preemption disabled. Note: preempt_count must be 1
3553  */
3554 void __sched schedule_preempt_disabled(void)
3555 {
3556 	sched_preempt_enable_no_resched();
3557 	schedule();
3558 	preempt_disable();
3559 }
3560 
3561 static void __sched notrace preempt_schedule_common(void)
3562 {
3563 	do {
3564 		/*
3565 		 * Because the function tracer can trace preempt_count_sub()
3566 		 * and it also uses preempt_enable/disable_notrace(), if
3567 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 		 * by the function tracer will call this function again and
3569 		 * cause infinite recursion.
3570 		 *
3571 		 * Preemption must be disabled here before the function
3572 		 * tracer can trace. Break up preempt_disable() into two
3573 		 * calls. One to disable preemption without fear of being
3574 		 * traced. The other to still record the preemption latency,
3575 		 * which can also be traced by the function tracer.
3576 		 */
3577 		preempt_disable_notrace();
3578 		preempt_latency_start(1);
3579 		__schedule(true);
3580 		preempt_latency_stop(1);
3581 		preempt_enable_no_resched_notrace();
3582 
3583 		/*
3584 		 * Check again in case we missed a preemption opportunity
3585 		 * between schedule and now.
3586 		 */
3587 	} while (need_resched());
3588 }
3589 
3590 #ifdef CONFIG_PREEMPT
3591 /*
3592  * this is the entry point to schedule() from in-kernel preemption
3593  * off of preempt_enable. Kernel preemptions off return from interrupt
3594  * occur there and call schedule directly.
3595  */
3596 asmlinkage __visible void __sched notrace preempt_schedule(void)
3597 {
3598 	/*
3599 	 * If there is a non-zero preempt_count or interrupts are disabled,
3600 	 * we do not want to preempt the current task. Just return..
3601 	 */
3602 	if (likely(!preemptible()))
3603 		return;
3604 
3605 	preempt_schedule_common();
3606 }
3607 NOKPROBE_SYMBOL(preempt_schedule);
3608 EXPORT_SYMBOL(preempt_schedule);
3609 
3610 /**
3611  * preempt_schedule_notrace - preempt_schedule called by tracing
3612  *
3613  * The tracing infrastructure uses preempt_enable_notrace to prevent
3614  * recursion and tracing preempt enabling caused by the tracing
3615  * infrastructure itself. But as tracing can happen in areas coming
3616  * from userspace or just about to enter userspace, a preempt enable
3617  * can occur before user_exit() is called. This will cause the scheduler
3618  * to be called when the system is still in usermode.
3619  *
3620  * To prevent this, the preempt_enable_notrace will use this function
3621  * instead of preempt_schedule() to exit user context if needed before
3622  * calling the scheduler.
3623  */
3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3625 {
3626 	enum ctx_state prev_ctx;
3627 
3628 	if (likely(!preemptible()))
3629 		return;
3630 
3631 	do {
3632 		/*
3633 		 * Because the function tracer can trace preempt_count_sub()
3634 		 * and it also uses preempt_enable/disable_notrace(), if
3635 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 		 * by the function tracer will call this function again and
3637 		 * cause infinite recursion.
3638 		 *
3639 		 * Preemption must be disabled here before the function
3640 		 * tracer can trace. Break up preempt_disable() into two
3641 		 * calls. One to disable preemption without fear of being
3642 		 * traced. The other to still record the preemption latency,
3643 		 * which can also be traced by the function tracer.
3644 		 */
3645 		preempt_disable_notrace();
3646 		preempt_latency_start(1);
3647 		/*
3648 		 * Needs preempt disabled in case user_exit() is traced
3649 		 * and the tracer calls preempt_enable_notrace() causing
3650 		 * an infinite recursion.
3651 		 */
3652 		prev_ctx = exception_enter();
3653 		__schedule(true);
3654 		exception_exit(prev_ctx);
3655 
3656 		preempt_latency_stop(1);
3657 		preempt_enable_no_resched_notrace();
3658 	} while (need_resched());
3659 }
3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3661 
3662 #endif /* CONFIG_PREEMPT */
3663 
3664 /*
3665  * this is the entry point to schedule() from kernel preemption
3666  * off of irq context.
3667  * Note, that this is called and return with irqs disabled. This will
3668  * protect us against recursive calling from irq.
3669  */
3670 asmlinkage __visible void __sched preempt_schedule_irq(void)
3671 {
3672 	enum ctx_state prev_state;
3673 
3674 	/* Catch callers which need to be fixed */
3675 	BUG_ON(preempt_count() || !irqs_disabled());
3676 
3677 	prev_state = exception_enter();
3678 
3679 	do {
3680 		preempt_disable();
3681 		local_irq_enable();
3682 		__schedule(true);
3683 		local_irq_disable();
3684 		sched_preempt_enable_no_resched();
3685 	} while (need_resched());
3686 
3687 	exception_exit(prev_state);
3688 }
3689 
3690 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3691 			  void *key)
3692 {
3693 	return try_to_wake_up(curr->private, mode, wake_flags);
3694 }
3695 EXPORT_SYMBOL(default_wake_function);
3696 
3697 #ifdef CONFIG_RT_MUTEXES
3698 
3699 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3700 {
3701 	if (pi_task)
3702 		prio = min(prio, pi_task->prio);
3703 
3704 	return prio;
3705 }
3706 
3707 static inline int rt_effective_prio(struct task_struct *p, int prio)
3708 {
3709 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3710 
3711 	return __rt_effective_prio(pi_task, prio);
3712 }
3713 
3714 /*
3715  * rt_mutex_setprio - set the current priority of a task
3716  * @p: task to boost
3717  * @pi_task: donor task
3718  *
3719  * This function changes the 'effective' priority of a task. It does
3720  * not touch ->normal_prio like __setscheduler().
3721  *
3722  * Used by the rt_mutex code to implement priority inheritance
3723  * logic. Call site only calls if the priority of the task changed.
3724  */
3725 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3726 {
3727 	int prio, oldprio, queued, running, queue_flag =
3728 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3729 	const struct sched_class *prev_class;
3730 	struct rq_flags rf;
3731 	struct rq *rq;
3732 
3733 	/* XXX used to be waiter->prio, not waiter->task->prio */
3734 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3735 
3736 	/*
3737 	 * If nothing changed; bail early.
3738 	 */
3739 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3740 		return;
3741 
3742 	rq = __task_rq_lock(p, &rf);
3743 	update_rq_clock(rq);
3744 	/*
3745 	 * Set under pi_lock && rq->lock, such that the value can be used under
3746 	 * either lock.
3747 	 *
3748 	 * Note that there is loads of tricky to make this pointer cache work
3749 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3750 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3751 	 * task is allowed to run again (and can exit). This ensures the pointer
3752 	 * points to a blocked task -- which guaratees the task is present.
3753 	 */
3754 	p->pi_top_task = pi_task;
3755 
3756 	/*
3757 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3758 	 */
3759 	if (prio == p->prio && !dl_prio(prio))
3760 		goto out_unlock;
3761 
3762 	/*
3763 	 * Idle task boosting is a nono in general. There is one
3764 	 * exception, when PREEMPT_RT and NOHZ is active:
3765 	 *
3766 	 * The idle task calls get_next_timer_interrupt() and holds
3767 	 * the timer wheel base->lock on the CPU and another CPU wants
3768 	 * to access the timer (probably to cancel it). We can safely
3769 	 * ignore the boosting request, as the idle CPU runs this code
3770 	 * with interrupts disabled and will complete the lock
3771 	 * protected section without being interrupted. So there is no
3772 	 * real need to boost.
3773 	 */
3774 	if (unlikely(p == rq->idle)) {
3775 		WARN_ON(p != rq->curr);
3776 		WARN_ON(p->pi_blocked_on);
3777 		goto out_unlock;
3778 	}
3779 
3780 	trace_sched_pi_setprio(p, pi_task);
3781 	oldprio = p->prio;
3782 
3783 	if (oldprio == prio)
3784 		queue_flag &= ~DEQUEUE_MOVE;
3785 
3786 	prev_class = p->sched_class;
3787 	queued = task_on_rq_queued(p);
3788 	running = task_current(rq, p);
3789 	if (queued)
3790 		dequeue_task(rq, p, queue_flag);
3791 	if (running)
3792 		put_prev_task(rq, p);
3793 
3794 	/*
3795 	 * Boosting condition are:
3796 	 * 1. -rt task is running and holds mutex A
3797 	 *      --> -dl task blocks on mutex A
3798 	 *
3799 	 * 2. -dl task is running and holds mutex A
3800 	 *      --> -dl task blocks on mutex A and could preempt the
3801 	 *          running task
3802 	 */
3803 	if (dl_prio(prio)) {
3804 		if (!dl_prio(p->normal_prio) ||
3805 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3806 			p->dl.dl_boosted = 1;
3807 			queue_flag |= ENQUEUE_REPLENISH;
3808 		} else
3809 			p->dl.dl_boosted = 0;
3810 		p->sched_class = &dl_sched_class;
3811 	} else if (rt_prio(prio)) {
3812 		if (dl_prio(oldprio))
3813 			p->dl.dl_boosted = 0;
3814 		if (oldprio < prio)
3815 			queue_flag |= ENQUEUE_HEAD;
3816 		p->sched_class = &rt_sched_class;
3817 	} else {
3818 		if (dl_prio(oldprio))
3819 			p->dl.dl_boosted = 0;
3820 		if (rt_prio(oldprio))
3821 			p->rt.timeout = 0;
3822 		p->sched_class = &fair_sched_class;
3823 	}
3824 
3825 	p->prio = prio;
3826 
3827 	if (queued)
3828 		enqueue_task(rq, p, queue_flag);
3829 	if (running)
3830 		set_curr_task(rq, p);
3831 
3832 	check_class_changed(rq, p, prev_class, oldprio);
3833 out_unlock:
3834 	/* Avoid rq from going away on us: */
3835 	preempt_disable();
3836 	__task_rq_unlock(rq, &rf);
3837 
3838 	balance_callback(rq);
3839 	preempt_enable();
3840 }
3841 #else
3842 static inline int rt_effective_prio(struct task_struct *p, int prio)
3843 {
3844 	return prio;
3845 }
3846 #endif
3847 
3848 void set_user_nice(struct task_struct *p, long nice)
3849 {
3850 	bool queued, running;
3851 	int old_prio, delta;
3852 	struct rq_flags rf;
3853 	struct rq *rq;
3854 
3855 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3856 		return;
3857 	/*
3858 	 * We have to be careful, if called from sys_setpriority(),
3859 	 * the task might be in the middle of scheduling on another CPU.
3860 	 */
3861 	rq = task_rq_lock(p, &rf);
3862 	update_rq_clock(rq);
3863 
3864 	/*
3865 	 * The RT priorities are set via sched_setscheduler(), but we still
3866 	 * allow the 'normal' nice value to be set - but as expected
3867 	 * it wont have any effect on scheduling until the task is
3868 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3869 	 */
3870 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3871 		p->static_prio = NICE_TO_PRIO(nice);
3872 		goto out_unlock;
3873 	}
3874 	queued = task_on_rq_queued(p);
3875 	running = task_current(rq, p);
3876 	if (queued)
3877 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3878 	if (running)
3879 		put_prev_task(rq, p);
3880 
3881 	p->static_prio = NICE_TO_PRIO(nice);
3882 	set_load_weight(p);
3883 	old_prio = p->prio;
3884 	p->prio = effective_prio(p);
3885 	delta = p->prio - old_prio;
3886 
3887 	if (queued) {
3888 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3889 		/*
3890 		 * If the task increased its priority or is running and
3891 		 * lowered its priority, then reschedule its CPU:
3892 		 */
3893 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3894 			resched_curr(rq);
3895 	}
3896 	if (running)
3897 		set_curr_task(rq, p);
3898 out_unlock:
3899 	task_rq_unlock(rq, p, &rf);
3900 }
3901 EXPORT_SYMBOL(set_user_nice);
3902 
3903 /*
3904  * can_nice - check if a task can reduce its nice value
3905  * @p: task
3906  * @nice: nice value
3907  */
3908 int can_nice(const struct task_struct *p, const int nice)
3909 {
3910 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3911 	int nice_rlim = nice_to_rlimit(nice);
3912 
3913 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3914 		capable(CAP_SYS_NICE));
3915 }
3916 
3917 #ifdef __ARCH_WANT_SYS_NICE
3918 
3919 /*
3920  * sys_nice - change the priority of the current process.
3921  * @increment: priority increment
3922  *
3923  * sys_setpriority is a more generic, but much slower function that
3924  * does similar things.
3925  */
3926 SYSCALL_DEFINE1(nice, int, increment)
3927 {
3928 	long nice, retval;
3929 
3930 	/*
3931 	 * Setpriority might change our priority at the same moment.
3932 	 * We don't have to worry. Conceptually one call occurs first
3933 	 * and we have a single winner.
3934 	 */
3935 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3936 	nice = task_nice(current) + increment;
3937 
3938 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3939 	if (increment < 0 && !can_nice(current, nice))
3940 		return -EPERM;
3941 
3942 	retval = security_task_setnice(current, nice);
3943 	if (retval)
3944 		return retval;
3945 
3946 	set_user_nice(current, nice);
3947 	return 0;
3948 }
3949 
3950 #endif
3951 
3952 /**
3953  * task_prio - return the priority value of a given task.
3954  * @p: the task in question.
3955  *
3956  * Return: The priority value as seen by users in /proc.
3957  * RT tasks are offset by -200. Normal tasks are centered
3958  * around 0, value goes from -16 to +15.
3959  */
3960 int task_prio(const struct task_struct *p)
3961 {
3962 	return p->prio - MAX_RT_PRIO;
3963 }
3964 
3965 /**
3966  * idle_cpu - is a given CPU idle currently?
3967  * @cpu: the processor in question.
3968  *
3969  * Return: 1 if the CPU is currently idle. 0 otherwise.
3970  */
3971 int idle_cpu(int cpu)
3972 {
3973 	struct rq *rq = cpu_rq(cpu);
3974 
3975 	if (rq->curr != rq->idle)
3976 		return 0;
3977 
3978 	if (rq->nr_running)
3979 		return 0;
3980 
3981 #ifdef CONFIG_SMP
3982 	if (!llist_empty(&rq->wake_list))
3983 		return 0;
3984 #endif
3985 
3986 	return 1;
3987 }
3988 
3989 /**
3990  * idle_task - return the idle task for a given CPU.
3991  * @cpu: the processor in question.
3992  *
3993  * Return: The idle task for the CPU @cpu.
3994  */
3995 struct task_struct *idle_task(int cpu)
3996 {
3997 	return cpu_rq(cpu)->idle;
3998 }
3999 
4000 /**
4001  * find_process_by_pid - find a process with a matching PID value.
4002  * @pid: the pid in question.
4003  *
4004  * The task of @pid, if found. %NULL otherwise.
4005  */
4006 static struct task_struct *find_process_by_pid(pid_t pid)
4007 {
4008 	return pid ? find_task_by_vpid(pid) : current;
4009 }
4010 
4011 /*
4012  * This function initializes the sched_dl_entity of a newly becoming
4013  * SCHED_DEADLINE task.
4014  *
4015  * Only the static values are considered here, the actual runtime and the
4016  * absolute deadline will be properly calculated when the task is enqueued
4017  * for the first time with its new policy.
4018  */
4019 static void
4020 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4021 {
4022 	struct sched_dl_entity *dl_se = &p->dl;
4023 
4024 	dl_se->dl_runtime = attr->sched_runtime;
4025 	dl_se->dl_deadline = attr->sched_deadline;
4026 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4027 	dl_se->flags = attr->sched_flags;
4028 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4029 
4030 	/*
4031 	 * Changing the parameters of a task is 'tricky' and we're not doing
4032 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4033 	 *
4034 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
4035 	 * point. This would include retaining the task_struct until that time
4036 	 * and change dl_overflow() to not immediately decrement the current
4037 	 * amount.
4038 	 *
4039 	 * Instead we retain the current runtime/deadline and let the new
4040 	 * parameters take effect after the current reservation period lapses.
4041 	 * This is safe (albeit pessimistic) because the 0-lag point is always
4042 	 * before the current scheduling deadline.
4043 	 *
4044 	 * We can still have temporary overloads because we do not delay the
4045 	 * change in bandwidth until that time; so admission control is
4046 	 * not on the safe side. It does however guarantee tasks will never
4047 	 * consume more than promised.
4048 	 */
4049 }
4050 
4051 /*
4052  * sched_setparam() passes in -1 for its policy, to let the functions
4053  * it calls know not to change it.
4054  */
4055 #define SETPARAM_POLICY	-1
4056 
4057 static void __setscheduler_params(struct task_struct *p,
4058 		const struct sched_attr *attr)
4059 {
4060 	int policy = attr->sched_policy;
4061 
4062 	if (policy == SETPARAM_POLICY)
4063 		policy = p->policy;
4064 
4065 	p->policy = policy;
4066 
4067 	if (dl_policy(policy))
4068 		__setparam_dl(p, attr);
4069 	else if (fair_policy(policy))
4070 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4071 
4072 	/*
4073 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4074 	 * !rt_policy. Always setting this ensures that things like
4075 	 * getparam()/getattr() don't report silly values for !rt tasks.
4076 	 */
4077 	p->rt_priority = attr->sched_priority;
4078 	p->normal_prio = normal_prio(p);
4079 	set_load_weight(p);
4080 }
4081 
4082 /* Actually do priority change: must hold pi & rq lock. */
4083 static void __setscheduler(struct rq *rq, struct task_struct *p,
4084 			   const struct sched_attr *attr, bool keep_boost)
4085 {
4086 	__setscheduler_params(p, attr);
4087 
4088 	/*
4089 	 * Keep a potential priority boosting if called from
4090 	 * sched_setscheduler().
4091 	 */
4092 	p->prio = normal_prio(p);
4093 	if (keep_boost)
4094 		p->prio = rt_effective_prio(p, p->prio);
4095 
4096 	if (dl_prio(p->prio))
4097 		p->sched_class = &dl_sched_class;
4098 	else if (rt_prio(p->prio))
4099 		p->sched_class = &rt_sched_class;
4100 	else
4101 		p->sched_class = &fair_sched_class;
4102 }
4103 
4104 static void
4105 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4106 {
4107 	struct sched_dl_entity *dl_se = &p->dl;
4108 
4109 	attr->sched_priority = p->rt_priority;
4110 	attr->sched_runtime = dl_se->dl_runtime;
4111 	attr->sched_deadline = dl_se->dl_deadline;
4112 	attr->sched_period = dl_se->dl_period;
4113 	attr->sched_flags = dl_se->flags;
4114 }
4115 
4116 /*
4117  * This function validates the new parameters of a -deadline task.
4118  * We ask for the deadline not being zero, and greater or equal
4119  * than the runtime, as well as the period of being zero or
4120  * greater than deadline. Furthermore, we have to be sure that
4121  * user parameters are above the internal resolution of 1us (we
4122  * check sched_runtime only since it is always the smaller one) and
4123  * below 2^63 ns (we have to check both sched_deadline and
4124  * sched_period, as the latter can be zero).
4125  */
4126 static bool
4127 __checkparam_dl(const struct sched_attr *attr)
4128 {
4129 	/* deadline != 0 */
4130 	if (attr->sched_deadline == 0)
4131 		return false;
4132 
4133 	/*
4134 	 * Since we truncate DL_SCALE bits, make sure we're at least
4135 	 * that big.
4136 	 */
4137 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4138 		return false;
4139 
4140 	/*
4141 	 * Since we use the MSB for wrap-around and sign issues, make
4142 	 * sure it's not set (mind that period can be equal to zero).
4143 	 */
4144 	if (attr->sched_deadline & (1ULL << 63) ||
4145 	    attr->sched_period & (1ULL << 63))
4146 		return false;
4147 
4148 	/* runtime <= deadline <= period (if period != 0) */
4149 	if ((attr->sched_period != 0 &&
4150 	     attr->sched_period < attr->sched_deadline) ||
4151 	    attr->sched_deadline < attr->sched_runtime)
4152 		return false;
4153 
4154 	return true;
4155 }
4156 
4157 /*
4158  * Check the target process has a UID that matches the current process's:
4159  */
4160 static bool check_same_owner(struct task_struct *p)
4161 {
4162 	const struct cred *cred = current_cred(), *pcred;
4163 	bool match;
4164 
4165 	rcu_read_lock();
4166 	pcred = __task_cred(p);
4167 	match = (uid_eq(cred->euid, pcred->euid) ||
4168 		 uid_eq(cred->euid, pcred->uid));
4169 	rcu_read_unlock();
4170 	return match;
4171 }
4172 
4173 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4174 {
4175 	struct sched_dl_entity *dl_se = &p->dl;
4176 
4177 	if (dl_se->dl_runtime != attr->sched_runtime ||
4178 		dl_se->dl_deadline != attr->sched_deadline ||
4179 		dl_se->dl_period != attr->sched_period ||
4180 		dl_se->flags != attr->sched_flags)
4181 		return true;
4182 
4183 	return false;
4184 }
4185 
4186 static int __sched_setscheduler(struct task_struct *p,
4187 				const struct sched_attr *attr,
4188 				bool user, bool pi)
4189 {
4190 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4191 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4192 	int retval, oldprio, oldpolicy = -1, queued, running;
4193 	int new_effective_prio, policy = attr->sched_policy;
4194 	const struct sched_class *prev_class;
4195 	struct rq_flags rf;
4196 	int reset_on_fork;
4197 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4198 	struct rq *rq;
4199 
4200 	/* May grab non-irq protected spin_locks: */
4201 	BUG_ON(in_interrupt());
4202 recheck:
4203 	/* Double check policy once rq lock held: */
4204 	if (policy < 0) {
4205 		reset_on_fork = p->sched_reset_on_fork;
4206 		policy = oldpolicy = p->policy;
4207 	} else {
4208 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4209 
4210 		if (!valid_policy(policy))
4211 			return -EINVAL;
4212 	}
4213 
4214 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4215 		return -EINVAL;
4216 
4217 	/*
4218 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4219 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4220 	 * SCHED_BATCH and SCHED_IDLE is 0.
4221 	 */
4222 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4223 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4224 		return -EINVAL;
4225 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4226 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4227 		return -EINVAL;
4228 
4229 	/*
4230 	 * Allow unprivileged RT tasks to decrease priority:
4231 	 */
4232 	if (user && !capable(CAP_SYS_NICE)) {
4233 		if (fair_policy(policy)) {
4234 			if (attr->sched_nice < task_nice(p) &&
4235 			    !can_nice(p, attr->sched_nice))
4236 				return -EPERM;
4237 		}
4238 
4239 		if (rt_policy(policy)) {
4240 			unsigned long rlim_rtprio =
4241 					task_rlimit(p, RLIMIT_RTPRIO);
4242 
4243 			/* Can't set/change the rt policy: */
4244 			if (policy != p->policy && !rlim_rtprio)
4245 				return -EPERM;
4246 
4247 			/* Can't increase priority: */
4248 			if (attr->sched_priority > p->rt_priority &&
4249 			    attr->sched_priority > rlim_rtprio)
4250 				return -EPERM;
4251 		}
4252 
4253 		 /*
4254 		  * Can't set/change SCHED_DEADLINE policy at all for now
4255 		  * (safest behavior); in the future we would like to allow
4256 		  * unprivileged DL tasks to increase their relative deadline
4257 		  * or reduce their runtime (both ways reducing utilization)
4258 		  */
4259 		if (dl_policy(policy))
4260 			return -EPERM;
4261 
4262 		/*
4263 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4264 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4265 		 */
4266 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4267 			if (!can_nice(p, task_nice(p)))
4268 				return -EPERM;
4269 		}
4270 
4271 		/* Can't change other user's priorities: */
4272 		if (!check_same_owner(p))
4273 			return -EPERM;
4274 
4275 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4276 		if (p->sched_reset_on_fork && !reset_on_fork)
4277 			return -EPERM;
4278 	}
4279 
4280 	if (user) {
4281 		retval = security_task_setscheduler(p);
4282 		if (retval)
4283 			return retval;
4284 	}
4285 
4286 	/*
4287 	 * Make sure no PI-waiters arrive (or leave) while we are
4288 	 * changing the priority of the task:
4289 	 *
4290 	 * To be able to change p->policy safely, the appropriate
4291 	 * runqueue lock must be held.
4292 	 */
4293 	rq = task_rq_lock(p, &rf);
4294 	update_rq_clock(rq);
4295 
4296 	/*
4297 	 * Changing the policy of the stop threads its a very bad idea:
4298 	 */
4299 	if (p == rq->stop) {
4300 		task_rq_unlock(rq, p, &rf);
4301 		return -EINVAL;
4302 	}
4303 
4304 	/*
4305 	 * If not changing anything there's no need to proceed further,
4306 	 * but store a possible modification of reset_on_fork.
4307 	 */
4308 	if (unlikely(policy == p->policy)) {
4309 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4310 			goto change;
4311 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4312 			goto change;
4313 		if (dl_policy(policy) && dl_param_changed(p, attr))
4314 			goto change;
4315 
4316 		p->sched_reset_on_fork = reset_on_fork;
4317 		task_rq_unlock(rq, p, &rf);
4318 		return 0;
4319 	}
4320 change:
4321 
4322 	if (user) {
4323 #ifdef CONFIG_RT_GROUP_SCHED
4324 		/*
4325 		 * Do not allow realtime tasks into groups that have no runtime
4326 		 * assigned.
4327 		 */
4328 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4329 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4330 				!task_group_is_autogroup(task_group(p))) {
4331 			task_rq_unlock(rq, p, &rf);
4332 			return -EPERM;
4333 		}
4334 #endif
4335 #ifdef CONFIG_SMP
4336 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4337 			cpumask_t *span = rq->rd->span;
4338 
4339 			/*
4340 			 * Don't allow tasks with an affinity mask smaller than
4341 			 * the entire root_domain to become SCHED_DEADLINE. We
4342 			 * will also fail if there's no bandwidth available.
4343 			 */
4344 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4345 			    rq->rd->dl_bw.bw == 0) {
4346 				task_rq_unlock(rq, p, &rf);
4347 				return -EPERM;
4348 			}
4349 		}
4350 #endif
4351 	}
4352 
4353 	/* Re-check policy now with rq lock held: */
4354 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4355 		policy = oldpolicy = -1;
4356 		task_rq_unlock(rq, p, &rf);
4357 		goto recheck;
4358 	}
4359 
4360 	/*
4361 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4362 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4363 	 * is available.
4364 	 */
4365 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4366 		task_rq_unlock(rq, p, &rf);
4367 		return -EBUSY;
4368 	}
4369 
4370 	p->sched_reset_on_fork = reset_on_fork;
4371 	oldprio = p->prio;
4372 
4373 	if (pi) {
4374 		/*
4375 		 * Take priority boosted tasks into account. If the new
4376 		 * effective priority is unchanged, we just store the new
4377 		 * normal parameters and do not touch the scheduler class and
4378 		 * the runqueue. This will be done when the task deboost
4379 		 * itself.
4380 		 */
4381 		new_effective_prio = rt_effective_prio(p, newprio);
4382 		if (new_effective_prio == oldprio)
4383 			queue_flags &= ~DEQUEUE_MOVE;
4384 	}
4385 
4386 	queued = task_on_rq_queued(p);
4387 	running = task_current(rq, p);
4388 	if (queued)
4389 		dequeue_task(rq, p, queue_flags);
4390 	if (running)
4391 		put_prev_task(rq, p);
4392 
4393 	prev_class = p->sched_class;
4394 	__setscheduler(rq, p, attr, pi);
4395 
4396 	if (queued) {
4397 		/*
4398 		 * We enqueue to tail when the priority of a task is
4399 		 * increased (user space view).
4400 		 */
4401 		if (oldprio < p->prio)
4402 			queue_flags |= ENQUEUE_HEAD;
4403 
4404 		enqueue_task(rq, p, queue_flags);
4405 	}
4406 	if (running)
4407 		set_curr_task(rq, p);
4408 
4409 	check_class_changed(rq, p, prev_class, oldprio);
4410 
4411 	/* Avoid rq from going away on us: */
4412 	preempt_disable();
4413 	task_rq_unlock(rq, p, &rf);
4414 
4415 	if (pi)
4416 		rt_mutex_adjust_pi(p);
4417 
4418 	/* Run balance callbacks after we've adjusted the PI chain: */
4419 	balance_callback(rq);
4420 	preempt_enable();
4421 
4422 	return 0;
4423 }
4424 
4425 static int _sched_setscheduler(struct task_struct *p, int policy,
4426 			       const struct sched_param *param, bool check)
4427 {
4428 	struct sched_attr attr = {
4429 		.sched_policy   = policy,
4430 		.sched_priority = param->sched_priority,
4431 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4432 	};
4433 
4434 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4435 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4436 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4437 		policy &= ~SCHED_RESET_ON_FORK;
4438 		attr.sched_policy = policy;
4439 	}
4440 
4441 	return __sched_setscheduler(p, &attr, check, true);
4442 }
4443 /**
4444  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4445  * @p: the task in question.
4446  * @policy: new policy.
4447  * @param: structure containing the new RT priority.
4448  *
4449  * Return: 0 on success. An error code otherwise.
4450  *
4451  * NOTE that the task may be already dead.
4452  */
4453 int sched_setscheduler(struct task_struct *p, int policy,
4454 		       const struct sched_param *param)
4455 {
4456 	return _sched_setscheduler(p, policy, param, true);
4457 }
4458 EXPORT_SYMBOL_GPL(sched_setscheduler);
4459 
4460 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4461 {
4462 	return __sched_setscheduler(p, attr, true, true);
4463 }
4464 EXPORT_SYMBOL_GPL(sched_setattr);
4465 
4466 /**
4467  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4468  * @p: the task in question.
4469  * @policy: new policy.
4470  * @param: structure containing the new RT priority.
4471  *
4472  * Just like sched_setscheduler, only don't bother checking if the
4473  * current context has permission.  For example, this is needed in
4474  * stop_machine(): we create temporary high priority worker threads,
4475  * but our caller might not have that capability.
4476  *
4477  * Return: 0 on success. An error code otherwise.
4478  */
4479 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4480 			       const struct sched_param *param)
4481 {
4482 	return _sched_setscheduler(p, policy, param, false);
4483 }
4484 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4485 
4486 static int
4487 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4488 {
4489 	struct sched_param lparam;
4490 	struct task_struct *p;
4491 	int retval;
4492 
4493 	if (!param || pid < 0)
4494 		return -EINVAL;
4495 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4496 		return -EFAULT;
4497 
4498 	rcu_read_lock();
4499 	retval = -ESRCH;
4500 	p = find_process_by_pid(pid);
4501 	if (p != NULL)
4502 		retval = sched_setscheduler(p, policy, &lparam);
4503 	rcu_read_unlock();
4504 
4505 	return retval;
4506 }
4507 
4508 /*
4509  * Mimics kernel/events/core.c perf_copy_attr().
4510  */
4511 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4512 {
4513 	u32 size;
4514 	int ret;
4515 
4516 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4517 		return -EFAULT;
4518 
4519 	/* Zero the full structure, so that a short copy will be nice: */
4520 	memset(attr, 0, sizeof(*attr));
4521 
4522 	ret = get_user(size, &uattr->size);
4523 	if (ret)
4524 		return ret;
4525 
4526 	/* Bail out on silly large: */
4527 	if (size > PAGE_SIZE)
4528 		goto err_size;
4529 
4530 	/* ABI compatibility quirk: */
4531 	if (!size)
4532 		size = SCHED_ATTR_SIZE_VER0;
4533 
4534 	if (size < SCHED_ATTR_SIZE_VER0)
4535 		goto err_size;
4536 
4537 	/*
4538 	 * If we're handed a bigger struct than we know of,
4539 	 * ensure all the unknown bits are 0 - i.e. new
4540 	 * user-space does not rely on any kernel feature
4541 	 * extensions we dont know about yet.
4542 	 */
4543 	if (size > sizeof(*attr)) {
4544 		unsigned char __user *addr;
4545 		unsigned char __user *end;
4546 		unsigned char val;
4547 
4548 		addr = (void __user *)uattr + sizeof(*attr);
4549 		end  = (void __user *)uattr + size;
4550 
4551 		for (; addr < end; addr++) {
4552 			ret = get_user(val, addr);
4553 			if (ret)
4554 				return ret;
4555 			if (val)
4556 				goto err_size;
4557 		}
4558 		size = sizeof(*attr);
4559 	}
4560 
4561 	ret = copy_from_user(attr, uattr, size);
4562 	if (ret)
4563 		return -EFAULT;
4564 
4565 	/*
4566 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4567 	 * to be strict and return an error on out-of-bounds values?
4568 	 */
4569 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4570 
4571 	return 0;
4572 
4573 err_size:
4574 	put_user(sizeof(*attr), &uattr->size);
4575 	return -E2BIG;
4576 }
4577 
4578 /**
4579  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4580  * @pid: the pid in question.
4581  * @policy: new policy.
4582  * @param: structure containing the new RT priority.
4583  *
4584  * Return: 0 on success. An error code otherwise.
4585  */
4586 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4587 {
4588 	if (policy < 0)
4589 		return -EINVAL;
4590 
4591 	return do_sched_setscheduler(pid, policy, param);
4592 }
4593 
4594 /**
4595  * sys_sched_setparam - set/change the RT priority of a thread
4596  * @pid: the pid in question.
4597  * @param: structure containing the new RT priority.
4598  *
4599  * Return: 0 on success. An error code otherwise.
4600  */
4601 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4602 {
4603 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4604 }
4605 
4606 /**
4607  * sys_sched_setattr - same as above, but with extended sched_attr
4608  * @pid: the pid in question.
4609  * @uattr: structure containing the extended parameters.
4610  * @flags: for future extension.
4611  */
4612 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4613 			       unsigned int, flags)
4614 {
4615 	struct sched_attr attr;
4616 	struct task_struct *p;
4617 	int retval;
4618 
4619 	if (!uattr || pid < 0 || flags)
4620 		return -EINVAL;
4621 
4622 	retval = sched_copy_attr(uattr, &attr);
4623 	if (retval)
4624 		return retval;
4625 
4626 	if ((int)attr.sched_policy < 0)
4627 		return -EINVAL;
4628 
4629 	rcu_read_lock();
4630 	retval = -ESRCH;
4631 	p = find_process_by_pid(pid);
4632 	if (p != NULL)
4633 		retval = sched_setattr(p, &attr);
4634 	rcu_read_unlock();
4635 
4636 	return retval;
4637 }
4638 
4639 /**
4640  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4641  * @pid: the pid in question.
4642  *
4643  * Return: On success, the policy of the thread. Otherwise, a negative error
4644  * code.
4645  */
4646 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4647 {
4648 	struct task_struct *p;
4649 	int retval;
4650 
4651 	if (pid < 0)
4652 		return -EINVAL;
4653 
4654 	retval = -ESRCH;
4655 	rcu_read_lock();
4656 	p = find_process_by_pid(pid);
4657 	if (p) {
4658 		retval = security_task_getscheduler(p);
4659 		if (!retval)
4660 			retval = p->policy
4661 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4662 	}
4663 	rcu_read_unlock();
4664 	return retval;
4665 }
4666 
4667 /**
4668  * sys_sched_getparam - get the RT priority of a thread
4669  * @pid: the pid in question.
4670  * @param: structure containing the RT priority.
4671  *
4672  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4673  * code.
4674  */
4675 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4676 {
4677 	struct sched_param lp = { .sched_priority = 0 };
4678 	struct task_struct *p;
4679 	int retval;
4680 
4681 	if (!param || pid < 0)
4682 		return -EINVAL;
4683 
4684 	rcu_read_lock();
4685 	p = find_process_by_pid(pid);
4686 	retval = -ESRCH;
4687 	if (!p)
4688 		goto out_unlock;
4689 
4690 	retval = security_task_getscheduler(p);
4691 	if (retval)
4692 		goto out_unlock;
4693 
4694 	if (task_has_rt_policy(p))
4695 		lp.sched_priority = p->rt_priority;
4696 	rcu_read_unlock();
4697 
4698 	/*
4699 	 * This one might sleep, we cannot do it with a spinlock held ...
4700 	 */
4701 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4702 
4703 	return retval;
4704 
4705 out_unlock:
4706 	rcu_read_unlock();
4707 	return retval;
4708 }
4709 
4710 static int sched_read_attr(struct sched_attr __user *uattr,
4711 			   struct sched_attr *attr,
4712 			   unsigned int usize)
4713 {
4714 	int ret;
4715 
4716 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4717 		return -EFAULT;
4718 
4719 	/*
4720 	 * If we're handed a smaller struct than we know of,
4721 	 * ensure all the unknown bits are 0 - i.e. old
4722 	 * user-space does not get uncomplete information.
4723 	 */
4724 	if (usize < sizeof(*attr)) {
4725 		unsigned char *addr;
4726 		unsigned char *end;
4727 
4728 		addr = (void *)attr + usize;
4729 		end  = (void *)attr + sizeof(*attr);
4730 
4731 		for (; addr < end; addr++) {
4732 			if (*addr)
4733 				return -EFBIG;
4734 		}
4735 
4736 		attr->size = usize;
4737 	}
4738 
4739 	ret = copy_to_user(uattr, attr, attr->size);
4740 	if (ret)
4741 		return -EFAULT;
4742 
4743 	return 0;
4744 }
4745 
4746 /**
4747  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4748  * @pid: the pid in question.
4749  * @uattr: structure containing the extended parameters.
4750  * @size: sizeof(attr) for fwd/bwd comp.
4751  * @flags: for future extension.
4752  */
4753 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4754 		unsigned int, size, unsigned int, flags)
4755 {
4756 	struct sched_attr attr = {
4757 		.size = sizeof(struct sched_attr),
4758 	};
4759 	struct task_struct *p;
4760 	int retval;
4761 
4762 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4763 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4764 		return -EINVAL;
4765 
4766 	rcu_read_lock();
4767 	p = find_process_by_pid(pid);
4768 	retval = -ESRCH;
4769 	if (!p)
4770 		goto out_unlock;
4771 
4772 	retval = security_task_getscheduler(p);
4773 	if (retval)
4774 		goto out_unlock;
4775 
4776 	attr.sched_policy = p->policy;
4777 	if (p->sched_reset_on_fork)
4778 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4779 	if (task_has_dl_policy(p))
4780 		__getparam_dl(p, &attr);
4781 	else if (task_has_rt_policy(p))
4782 		attr.sched_priority = p->rt_priority;
4783 	else
4784 		attr.sched_nice = task_nice(p);
4785 
4786 	rcu_read_unlock();
4787 
4788 	retval = sched_read_attr(uattr, &attr, size);
4789 	return retval;
4790 
4791 out_unlock:
4792 	rcu_read_unlock();
4793 	return retval;
4794 }
4795 
4796 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4797 {
4798 	cpumask_var_t cpus_allowed, new_mask;
4799 	struct task_struct *p;
4800 	int retval;
4801 
4802 	rcu_read_lock();
4803 
4804 	p = find_process_by_pid(pid);
4805 	if (!p) {
4806 		rcu_read_unlock();
4807 		return -ESRCH;
4808 	}
4809 
4810 	/* Prevent p going away */
4811 	get_task_struct(p);
4812 	rcu_read_unlock();
4813 
4814 	if (p->flags & PF_NO_SETAFFINITY) {
4815 		retval = -EINVAL;
4816 		goto out_put_task;
4817 	}
4818 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4819 		retval = -ENOMEM;
4820 		goto out_put_task;
4821 	}
4822 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4823 		retval = -ENOMEM;
4824 		goto out_free_cpus_allowed;
4825 	}
4826 	retval = -EPERM;
4827 	if (!check_same_owner(p)) {
4828 		rcu_read_lock();
4829 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4830 			rcu_read_unlock();
4831 			goto out_free_new_mask;
4832 		}
4833 		rcu_read_unlock();
4834 	}
4835 
4836 	retval = security_task_setscheduler(p);
4837 	if (retval)
4838 		goto out_free_new_mask;
4839 
4840 
4841 	cpuset_cpus_allowed(p, cpus_allowed);
4842 	cpumask_and(new_mask, in_mask, cpus_allowed);
4843 
4844 	/*
4845 	 * Since bandwidth control happens on root_domain basis,
4846 	 * if admission test is enabled, we only admit -deadline
4847 	 * tasks allowed to run on all the CPUs in the task's
4848 	 * root_domain.
4849 	 */
4850 #ifdef CONFIG_SMP
4851 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4852 		rcu_read_lock();
4853 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4854 			retval = -EBUSY;
4855 			rcu_read_unlock();
4856 			goto out_free_new_mask;
4857 		}
4858 		rcu_read_unlock();
4859 	}
4860 #endif
4861 again:
4862 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4863 
4864 	if (!retval) {
4865 		cpuset_cpus_allowed(p, cpus_allowed);
4866 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4867 			/*
4868 			 * We must have raced with a concurrent cpuset
4869 			 * update. Just reset the cpus_allowed to the
4870 			 * cpuset's cpus_allowed
4871 			 */
4872 			cpumask_copy(new_mask, cpus_allowed);
4873 			goto again;
4874 		}
4875 	}
4876 out_free_new_mask:
4877 	free_cpumask_var(new_mask);
4878 out_free_cpus_allowed:
4879 	free_cpumask_var(cpus_allowed);
4880 out_put_task:
4881 	put_task_struct(p);
4882 	return retval;
4883 }
4884 
4885 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4886 			     struct cpumask *new_mask)
4887 {
4888 	if (len < cpumask_size())
4889 		cpumask_clear(new_mask);
4890 	else if (len > cpumask_size())
4891 		len = cpumask_size();
4892 
4893 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4894 }
4895 
4896 /**
4897  * sys_sched_setaffinity - set the CPU affinity of a process
4898  * @pid: pid of the process
4899  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4900  * @user_mask_ptr: user-space pointer to the new CPU mask
4901  *
4902  * Return: 0 on success. An error code otherwise.
4903  */
4904 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4905 		unsigned long __user *, user_mask_ptr)
4906 {
4907 	cpumask_var_t new_mask;
4908 	int retval;
4909 
4910 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4911 		return -ENOMEM;
4912 
4913 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4914 	if (retval == 0)
4915 		retval = sched_setaffinity(pid, new_mask);
4916 	free_cpumask_var(new_mask);
4917 	return retval;
4918 }
4919 
4920 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4921 {
4922 	struct task_struct *p;
4923 	unsigned long flags;
4924 	int retval;
4925 
4926 	rcu_read_lock();
4927 
4928 	retval = -ESRCH;
4929 	p = find_process_by_pid(pid);
4930 	if (!p)
4931 		goto out_unlock;
4932 
4933 	retval = security_task_getscheduler(p);
4934 	if (retval)
4935 		goto out_unlock;
4936 
4937 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4938 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4939 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4940 
4941 out_unlock:
4942 	rcu_read_unlock();
4943 
4944 	return retval;
4945 }
4946 
4947 /**
4948  * sys_sched_getaffinity - get the CPU affinity of a process
4949  * @pid: pid of the process
4950  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4951  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4952  *
4953  * Return: size of CPU mask copied to user_mask_ptr on success. An
4954  * error code otherwise.
4955  */
4956 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4957 		unsigned long __user *, user_mask_ptr)
4958 {
4959 	int ret;
4960 	cpumask_var_t mask;
4961 
4962 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4963 		return -EINVAL;
4964 	if (len & (sizeof(unsigned long)-1))
4965 		return -EINVAL;
4966 
4967 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4968 		return -ENOMEM;
4969 
4970 	ret = sched_getaffinity(pid, mask);
4971 	if (ret == 0) {
4972 		size_t retlen = min_t(size_t, len, cpumask_size());
4973 
4974 		if (copy_to_user(user_mask_ptr, mask, retlen))
4975 			ret = -EFAULT;
4976 		else
4977 			ret = retlen;
4978 	}
4979 	free_cpumask_var(mask);
4980 
4981 	return ret;
4982 }
4983 
4984 /**
4985  * sys_sched_yield - yield the current processor to other threads.
4986  *
4987  * This function yields the current CPU to other tasks. If there are no
4988  * other threads running on this CPU then this function will return.
4989  *
4990  * Return: 0.
4991  */
4992 SYSCALL_DEFINE0(sched_yield)
4993 {
4994 	struct rq_flags rf;
4995 	struct rq *rq;
4996 
4997 	local_irq_disable();
4998 	rq = this_rq();
4999 	rq_lock(rq, &rf);
5000 
5001 	schedstat_inc(rq->yld_count);
5002 	current->sched_class->yield_task(rq);
5003 
5004 	/*
5005 	 * Since we are going to call schedule() anyway, there's
5006 	 * no need to preempt or enable interrupts:
5007 	 */
5008 	preempt_disable();
5009 	rq_unlock(rq, &rf);
5010 	sched_preempt_enable_no_resched();
5011 
5012 	schedule();
5013 
5014 	return 0;
5015 }
5016 
5017 #ifndef CONFIG_PREEMPT
5018 int __sched _cond_resched(void)
5019 {
5020 	if (should_resched(0)) {
5021 		preempt_schedule_common();
5022 		return 1;
5023 	}
5024 	return 0;
5025 }
5026 EXPORT_SYMBOL(_cond_resched);
5027 #endif
5028 
5029 /*
5030  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5031  * call schedule, and on return reacquire the lock.
5032  *
5033  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5034  * operations here to prevent schedule() from being called twice (once via
5035  * spin_unlock(), once by hand).
5036  */
5037 int __cond_resched_lock(spinlock_t *lock)
5038 {
5039 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5040 	int ret = 0;
5041 
5042 	lockdep_assert_held(lock);
5043 
5044 	if (spin_needbreak(lock) || resched) {
5045 		spin_unlock(lock);
5046 		if (resched)
5047 			preempt_schedule_common();
5048 		else
5049 			cpu_relax();
5050 		ret = 1;
5051 		spin_lock(lock);
5052 	}
5053 	return ret;
5054 }
5055 EXPORT_SYMBOL(__cond_resched_lock);
5056 
5057 int __sched __cond_resched_softirq(void)
5058 {
5059 	BUG_ON(!in_softirq());
5060 
5061 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5062 		local_bh_enable();
5063 		preempt_schedule_common();
5064 		local_bh_disable();
5065 		return 1;
5066 	}
5067 	return 0;
5068 }
5069 EXPORT_SYMBOL(__cond_resched_softirq);
5070 
5071 /**
5072  * yield - yield the current processor to other threads.
5073  *
5074  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5075  *
5076  * The scheduler is at all times free to pick the calling task as the most
5077  * eligible task to run, if removing the yield() call from your code breaks
5078  * it, its already broken.
5079  *
5080  * Typical broken usage is:
5081  *
5082  * while (!event)
5083  *	yield();
5084  *
5085  * where one assumes that yield() will let 'the other' process run that will
5086  * make event true. If the current task is a SCHED_FIFO task that will never
5087  * happen. Never use yield() as a progress guarantee!!
5088  *
5089  * If you want to use yield() to wait for something, use wait_event().
5090  * If you want to use yield() to be 'nice' for others, use cond_resched().
5091  * If you still want to use yield(), do not!
5092  */
5093 void __sched yield(void)
5094 {
5095 	set_current_state(TASK_RUNNING);
5096 	sys_sched_yield();
5097 }
5098 EXPORT_SYMBOL(yield);
5099 
5100 /**
5101  * yield_to - yield the current processor to another thread in
5102  * your thread group, or accelerate that thread toward the
5103  * processor it's on.
5104  * @p: target task
5105  * @preempt: whether task preemption is allowed or not
5106  *
5107  * It's the caller's job to ensure that the target task struct
5108  * can't go away on us before we can do any checks.
5109  *
5110  * Return:
5111  *	true (>0) if we indeed boosted the target task.
5112  *	false (0) if we failed to boost the target.
5113  *	-ESRCH if there's no task to yield to.
5114  */
5115 int __sched yield_to(struct task_struct *p, bool preempt)
5116 {
5117 	struct task_struct *curr = current;
5118 	struct rq *rq, *p_rq;
5119 	unsigned long flags;
5120 	int yielded = 0;
5121 
5122 	local_irq_save(flags);
5123 	rq = this_rq();
5124 
5125 again:
5126 	p_rq = task_rq(p);
5127 	/*
5128 	 * If we're the only runnable task on the rq and target rq also
5129 	 * has only one task, there's absolutely no point in yielding.
5130 	 */
5131 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5132 		yielded = -ESRCH;
5133 		goto out_irq;
5134 	}
5135 
5136 	double_rq_lock(rq, p_rq);
5137 	if (task_rq(p) != p_rq) {
5138 		double_rq_unlock(rq, p_rq);
5139 		goto again;
5140 	}
5141 
5142 	if (!curr->sched_class->yield_to_task)
5143 		goto out_unlock;
5144 
5145 	if (curr->sched_class != p->sched_class)
5146 		goto out_unlock;
5147 
5148 	if (task_running(p_rq, p) || p->state)
5149 		goto out_unlock;
5150 
5151 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5152 	if (yielded) {
5153 		schedstat_inc(rq->yld_count);
5154 		/*
5155 		 * Make p's CPU reschedule; pick_next_entity takes care of
5156 		 * fairness.
5157 		 */
5158 		if (preempt && rq != p_rq)
5159 			resched_curr(p_rq);
5160 	}
5161 
5162 out_unlock:
5163 	double_rq_unlock(rq, p_rq);
5164 out_irq:
5165 	local_irq_restore(flags);
5166 
5167 	if (yielded > 0)
5168 		schedule();
5169 
5170 	return yielded;
5171 }
5172 EXPORT_SYMBOL_GPL(yield_to);
5173 
5174 int io_schedule_prepare(void)
5175 {
5176 	int old_iowait = current->in_iowait;
5177 
5178 	current->in_iowait = 1;
5179 	blk_schedule_flush_plug(current);
5180 
5181 	return old_iowait;
5182 }
5183 
5184 void io_schedule_finish(int token)
5185 {
5186 	current->in_iowait = token;
5187 }
5188 
5189 /*
5190  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5191  * that process accounting knows that this is a task in IO wait state.
5192  */
5193 long __sched io_schedule_timeout(long timeout)
5194 {
5195 	int token;
5196 	long ret;
5197 
5198 	token = io_schedule_prepare();
5199 	ret = schedule_timeout(timeout);
5200 	io_schedule_finish(token);
5201 
5202 	return ret;
5203 }
5204 EXPORT_SYMBOL(io_schedule_timeout);
5205 
5206 void io_schedule(void)
5207 {
5208 	int token;
5209 
5210 	token = io_schedule_prepare();
5211 	schedule();
5212 	io_schedule_finish(token);
5213 }
5214 EXPORT_SYMBOL(io_schedule);
5215 
5216 /**
5217  * sys_sched_get_priority_max - return maximum RT priority.
5218  * @policy: scheduling class.
5219  *
5220  * Return: On success, this syscall returns the maximum
5221  * rt_priority that can be used by a given scheduling class.
5222  * On failure, a negative error code is returned.
5223  */
5224 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5225 {
5226 	int ret = -EINVAL;
5227 
5228 	switch (policy) {
5229 	case SCHED_FIFO:
5230 	case SCHED_RR:
5231 		ret = MAX_USER_RT_PRIO-1;
5232 		break;
5233 	case SCHED_DEADLINE:
5234 	case SCHED_NORMAL:
5235 	case SCHED_BATCH:
5236 	case SCHED_IDLE:
5237 		ret = 0;
5238 		break;
5239 	}
5240 	return ret;
5241 }
5242 
5243 /**
5244  * sys_sched_get_priority_min - return minimum RT priority.
5245  * @policy: scheduling class.
5246  *
5247  * Return: On success, this syscall returns the minimum
5248  * rt_priority that can be used by a given scheduling class.
5249  * On failure, a negative error code is returned.
5250  */
5251 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5252 {
5253 	int ret = -EINVAL;
5254 
5255 	switch (policy) {
5256 	case SCHED_FIFO:
5257 	case SCHED_RR:
5258 		ret = 1;
5259 		break;
5260 	case SCHED_DEADLINE:
5261 	case SCHED_NORMAL:
5262 	case SCHED_BATCH:
5263 	case SCHED_IDLE:
5264 		ret = 0;
5265 	}
5266 	return ret;
5267 }
5268 
5269 /**
5270  * sys_sched_rr_get_interval - return the default timeslice of a process.
5271  * @pid: pid of the process.
5272  * @interval: userspace pointer to the timeslice value.
5273  *
5274  * this syscall writes the default timeslice value of a given process
5275  * into the user-space timespec buffer. A value of '0' means infinity.
5276  *
5277  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5278  * an error code.
5279  */
5280 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5281 		struct timespec __user *, interval)
5282 {
5283 	struct task_struct *p;
5284 	unsigned int time_slice;
5285 	struct rq_flags rf;
5286 	struct timespec t;
5287 	struct rq *rq;
5288 	int retval;
5289 
5290 	if (pid < 0)
5291 		return -EINVAL;
5292 
5293 	retval = -ESRCH;
5294 	rcu_read_lock();
5295 	p = find_process_by_pid(pid);
5296 	if (!p)
5297 		goto out_unlock;
5298 
5299 	retval = security_task_getscheduler(p);
5300 	if (retval)
5301 		goto out_unlock;
5302 
5303 	rq = task_rq_lock(p, &rf);
5304 	time_slice = 0;
5305 	if (p->sched_class->get_rr_interval)
5306 		time_slice = p->sched_class->get_rr_interval(rq, p);
5307 	task_rq_unlock(rq, p, &rf);
5308 
5309 	rcu_read_unlock();
5310 	jiffies_to_timespec(time_slice, &t);
5311 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5312 	return retval;
5313 
5314 out_unlock:
5315 	rcu_read_unlock();
5316 	return retval;
5317 }
5318 
5319 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5320 
5321 void sched_show_task(struct task_struct *p)
5322 {
5323 	unsigned long free = 0;
5324 	int ppid;
5325 	unsigned long state = p->state;
5326 
5327 	/* Make sure the string lines up properly with the number of task states: */
5328 	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5329 
5330 	if (!try_get_task_stack(p))
5331 		return;
5332 	if (state)
5333 		state = __ffs(state) + 1;
5334 	printk(KERN_INFO "%-15.15s %c", p->comm,
5335 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5336 	if (state == TASK_RUNNING)
5337 		printk(KERN_CONT "  running task    ");
5338 #ifdef CONFIG_DEBUG_STACK_USAGE
5339 	free = stack_not_used(p);
5340 #endif
5341 	ppid = 0;
5342 	rcu_read_lock();
5343 	if (pid_alive(p))
5344 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5345 	rcu_read_unlock();
5346 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5347 		task_pid_nr(p), ppid,
5348 		(unsigned long)task_thread_info(p)->flags);
5349 
5350 	print_worker_info(KERN_INFO, p);
5351 	show_stack(p, NULL);
5352 	put_task_stack(p);
5353 }
5354 
5355 void show_state_filter(unsigned long state_filter)
5356 {
5357 	struct task_struct *g, *p;
5358 
5359 #if BITS_PER_LONG == 32
5360 	printk(KERN_INFO
5361 		"  task                PC stack   pid father\n");
5362 #else
5363 	printk(KERN_INFO
5364 		"  task                        PC stack   pid father\n");
5365 #endif
5366 	rcu_read_lock();
5367 	for_each_process_thread(g, p) {
5368 		/*
5369 		 * reset the NMI-timeout, listing all files on a slow
5370 		 * console might take a lot of time:
5371 		 * Also, reset softlockup watchdogs on all CPUs, because
5372 		 * another CPU might be blocked waiting for us to process
5373 		 * an IPI.
5374 		 */
5375 		touch_nmi_watchdog();
5376 		touch_all_softlockup_watchdogs();
5377 		if (!state_filter || (p->state & state_filter))
5378 			sched_show_task(p);
5379 	}
5380 
5381 #ifdef CONFIG_SCHED_DEBUG
5382 	if (!state_filter)
5383 		sysrq_sched_debug_show();
5384 #endif
5385 	rcu_read_unlock();
5386 	/*
5387 	 * Only show locks if all tasks are dumped:
5388 	 */
5389 	if (!state_filter)
5390 		debug_show_all_locks();
5391 }
5392 
5393 void init_idle_bootup_task(struct task_struct *idle)
5394 {
5395 	idle->sched_class = &idle_sched_class;
5396 }
5397 
5398 /**
5399  * init_idle - set up an idle thread for a given CPU
5400  * @idle: task in question
5401  * @cpu: CPU the idle task belongs to
5402  *
5403  * NOTE: this function does not set the idle thread's NEED_RESCHED
5404  * flag, to make booting more robust.
5405  */
5406 void init_idle(struct task_struct *idle, int cpu)
5407 {
5408 	struct rq *rq = cpu_rq(cpu);
5409 	unsigned long flags;
5410 
5411 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5412 	raw_spin_lock(&rq->lock);
5413 
5414 	__sched_fork(0, idle);
5415 	idle->state = TASK_RUNNING;
5416 	idle->se.exec_start = sched_clock();
5417 	idle->flags |= PF_IDLE;
5418 
5419 	kasan_unpoison_task_stack(idle);
5420 
5421 #ifdef CONFIG_SMP
5422 	/*
5423 	 * Its possible that init_idle() gets called multiple times on a task,
5424 	 * in that case do_set_cpus_allowed() will not do the right thing.
5425 	 *
5426 	 * And since this is boot we can forgo the serialization.
5427 	 */
5428 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5429 #endif
5430 	/*
5431 	 * We're having a chicken and egg problem, even though we are
5432 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5433 	 * lockdep check in task_group() will fail.
5434 	 *
5435 	 * Similar case to sched_fork(). / Alternatively we could
5436 	 * use task_rq_lock() here and obtain the other rq->lock.
5437 	 *
5438 	 * Silence PROVE_RCU
5439 	 */
5440 	rcu_read_lock();
5441 	__set_task_cpu(idle, cpu);
5442 	rcu_read_unlock();
5443 
5444 	rq->curr = rq->idle = idle;
5445 	idle->on_rq = TASK_ON_RQ_QUEUED;
5446 #ifdef CONFIG_SMP
5447 	idle->on_cpu = 1;
5448 #endif
5449 	raw_spin_unlock(&rq->lock);
5450 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5451 
5452 	/* Set the preempt count _outside_ the spinlocks! */
5453 	init_idle_preempt_count(idle, cpu);
5454 
5455 	/*
5456 	 * The idle tasks have their own, simple scheduling class:
5457 	 */
5458 	idle->sched_class = &idle_sched_class;
5459 	ftrace_graph_init_idle_task(idle, cpu);
5460 	vtime_init_idle(idle, cpu);
5461 #ifdef CONFIG_SMP
5462 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5463 #endif
5464 }
5465 
5466 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5467 			      const struct cpumask *trial)
5468 {
5469 	int ret = 1, trial_cpus;
5470 	struct dl_bw *cur_dl_b;
5471 	unsigned long flags;
5472 
5473 	if (!cpumask_weight(cur))
5474 		return ret;
5475 
5476 	rcu_read_lock_sched();
5477 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5478 	trial_cpus = cpumask_weight(trial);
5479 
5480 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5481 	if (cur_dl_b->bw != -1 &&
5482 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5483 		ret = 0;
5484 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5485 	rcu_read_unlock_sched();
5486 
5487 	return ret;
5488 }
5489 
5490 int task_can_attach(struct task_struct *p,
5491 		    const struct cpumask *cs_cpus_allowed)
5492 {
5493 	int ret = 0;
5494 
5495 	/*
5496 	 * Kthreads which disallow setaffinity shouldn't be moved
5497 	 * to a new cpuset; we don't want to change their CPU
5498 	 * affinity and isolating such threads by their set of
5499 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5500 	 * applicable for such threads.  This prevents checking for
5501 	 * success of set_cpus_allowed_ptr() on all attached tasks
5502 	 * before cpus_allowed may be changed.
5503 	 */
5504 	if (p->flags & PF_NO_SETAFFINITY) {
5505 		ret = -EINVAL;
5506 		goto out;
5507 	}
5508 
5509 #ifdef CONFIG_SMP
5510 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5511 					      cs_cpus_allowed)) {
5512 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5513 							cs_cpus_allowed);
5514 		struct dl_bw *dl_b;
5515 		bool overflow;
5516 		int cpus;
5517 		unsigned long flags;
5518 
5519 		rcu_read_lock_sched();
5520 		dl_b = dl_bw_of(dest_cpu);
5521 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5522 		cpus = dl_bw_cpus(dest_cpu);
5523 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5524 		if (overflow)
5525 			ret = -EBUSY;
5526 		else {
5527 			/*
5528 			 * We reserve space for this task in the destination
5529 			 * root_domain, as we can't fail after this point.
5530 			 * We will free resources in the source root_domain
5531 			 * later on (see set_cpus_allowed_dl()).
5532 			 */
5533 			__dl_add(dl_b, p->dl.dl_bw);
5534 		}
5535 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5536 		rcu_read_unlock_sched();
5537 
5538 	}
5539 #endif
5540 out:
5541 	return ret;
5542 }
5543 
5544 #ifdef CONFIG_SMP
5545 
5546 bool sched_smp_initialized __read_mostly;
5547 
5548 #ifdef CONFIG_NUMA_BALANCING
5549 /* Migrate current task p to target_cpu */
5550 int migrate_task_to(struct task_struct *p, int target_cpu)
5551 {
5552 	struct migration_arg arg = { p, target_cpu };
5553 	int curr_cpu = task_cpu(p);
5554 
5555 	if (curr_cpu == target_cpu)
5556 		return 0;
5557 
5558 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5559 		return -EINVAL;
5560 
5561 	/* TODO: This is not properly updating schedstats */
5562 
5563 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5564 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5565 }
5566 
5567 /*
5568  * Requeue a task on a given node and accurately track the number of NUMA
5569  * tasks on the runqueues
5570  */
5571 void sched_setnuma(struct task_struct *p, int nid)
5572 {
5573 	bool queued, running;
5574 	struct rq_flags rf;
5575 	struct rq *rq;
5576 
5577 	rq = task_rq_lock(p, &rf);
5578 	queued = task_on_rq_queued(p);
5579 	running = task_current(rq, p);
5580 
5581 	if (queued)
5582 		dequeue_task(rq, p, DEQUEUE_SAVE);
5583 	if (running)
5584 		put_prev_task(rq, p);
5585 
5586 	p->numa_preferred_nid = nid;
5587 
5588 	if (queued)
5589 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5590 	if (running)
5591 		set_curr_task(rq, p);
5592 	task_rq_unlock(rq, p, &rf);
5593 }
5594 #endif /* CONFIG_NUMA_BALANCING */
5595 
5596 #ifdef CONFIG_HOTPLUG_CPU
5597 /*
5598  * Ensure that the idle task is using init_mm right before its CPU goes
5599  * offline.
5600  */
5601 void idle_task_exit(void)
5602 {
5603 	struct mm_struct *mm = current->active_mm;
5604 
5605 	BUG_ON(cpu_online(smp_processor_id()));
5606 
5607 	if (mm != &init_mm) {
5608 		switch_mm_irqs_off(mm, &init_mm, current);
5609 		finish_arch_post_lock_switch();
5610 	}
5611 	mmdrop(mm);
5612 }
5613 
5614 /*
5615  * Since this CPU is going 'away' for a while, fold any nr_active delta
5616  * we might have. Assumes we're called after migrate_tasks() so that the
5617  * nr_active count is stable. We need to take the teardown thread which
5618  * is calling this into account, so we hand in adjust = 1 to the load
5619  * calculation.
5620  *
5621  * Also see the comment "Global load-average calculations".
5622  */
5623 static void calc_load_migrate(struct rq *rq)
5624 {
5625 	long delta = calc_load_fold_active(rq, 1);
5626 	if (delta)
5627 		atomic_long_add(delta, &calc_load_tasks);
5628 }
5629 
5630 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5631 {
5632 }
5633 
5634 static const struct sched_class fake_sched_class = {
5635 	.put_prev_task = put_prev_task_fake,
5636 };
5637 
5638 static struct task_struct fake_task = {
5639 	/*
5640 	 * Avoid pull_{rt,dl}_task()
5641 	 */
5642 	.prio = MAX_PRIO + 1,
5643 	.sched_class = &fake_sched_class,
5644 };
5645 
5646 /*
5647  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5648  * try_to_wake_up()->select_task_rq().
5649  *
5650  * Called with rq->lock held even though we'er in stop_machine() and
5651  * there's no concurrency possible, we hold the required locks anyway
5652  * because of lock validation efforts.
5653  */
5654 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5655 {
5656 	struct rq *rq = dead_rq;
5657 	struct task_struct *next, *stop = rq->stop;
5658 	struct rq_flags orf = *rf;
5659 	int dest_cpu;
5660 
5661 	/*
5662 	 * Fudge the rq selection such that the below task selection loop
5663 	 * doesn't get stuck on the currently eligible stop task.
5664 	 *
5665 	 * We're currently inside stop_machine() and the rq is either stuck
5666 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5667 	 * either way we should never end up calling schedule() until we're
5668 	 * done here.
5669 	 */
5670 	rq->stop = NULL;
5671 
5672 	/*
5673 	 * put_prev_task() and pick_next_task() sched
5674 	 * class method both need to have an up-to-date
5675 	 * value of rq->clock[_task]
5676 	 */
5677 	update_rq_clock(rq);
5678 
5679 	for (;;) {
5680 		/*
5681 		 * There's this thread running, bail when that's the only
5682 		 * remaining thread:
5683 		 */
5684 		if (rq->nr_running == 1)
5685 			break;
5686 
5687 		/*
5688 		 * pick_next_task() assumes pinned rq->lock:
5689 		 */
5690 		next = pick_next_task(rq, &fake_task, rf);
5691 		BUG_ON(!next);
5692 		next->sched_class->put_prev_task(rq, next);
5693 
5694 		/*
5695 		 * Rules for changing task_struct::cpus_allowed are holding
5696 		 * both pi_lock and rq->lock, such that holding either
5697 		 * stabilizes the mask.
5698 		 *
5699 		 * Drop rq->lock is not quite as disastrous as it usually is
5700 		 * because !cpu_active at this point, which means load-balance
5701 		 * will not interfere. Also, stop-machine.
5702 		 */
5703 		rq_unlock(rq, rf);
5704 		raw_spin_lock(&next->pi_lock);
5705 		rq_relock(rq, rf);
5706 
5707 		/*
5708 		 * Since we're inside stop-machine, _nothing_ should have
5709 		 * changed the task, WARN if weird stuff happened, because in
5710 		 * that case the above rq->lock drop is a fail too.
5711 		 */
5712 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5713 			raw_spin_unlock(&next->pi_lock);
5714 			continue;
5715 		}
5716 
5717 		/* Find suitable destination for @next, with force if needed. */
5718 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5719 		rq = __migrate_task(rq, rf, next, dest_cpu);
5720 		if (rq != dead_rq) {
5721 			rq_unlock(rq, rf);
5722 			rq = dead_rq;
5723 			*rf = orf;
5724 			rq_relock(rq, rf);
5725 		}
5726 		raw_spin_unlock(&next->pi_lock);
5727 	}
5728 
5729 	rq->stop = stop;
5730 }
5731 #endif /* CONFIG_HOTPLUG_CPU */
5732 
5733 void set_rq_online(struct rq *rq)
5734 {
5735 	if (!rq->online) {
5736 		const struct sched_class *class;
5737 
5738 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5739 		rq->online = 1;
5740 
5741 		for_each_class(class) {
5742 			if (class->rq_online)
5743 				class->rq_online(rq);
5744 		}
5745 	}
5746 }
5747 
5748 void set_rq_offline(struct rq *rq)
5749 {
5750 	if (rq->online) {
5751 		const struct sched_class *class;
5752 
5753 		for_each_class(class) {
5754 			if (class->rq_offline)
5755 				class->rq_offline(rq);
5756 		}
5757 
5758 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5759 		rq->online = 0;
5760 	}
5761 }
5762 
5763 static void set_cpu_rq_start_time(unsigned int cpu)
5764 {
5765 	struct rq *rq = cpu_rq(cpu);
5766 
5767 	rq->age_stamp = sched_clock_cpu(cpu);
5768 }
5769 
5770 /*
5771  * used to mark begin/end of suspend/resume:
5772  */
5773 static int num_cpus_frozen;
5774 
5775 /*
5776  * Update cpusets according to cpu_active mask.  If cpusets are
5777  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5778  * around partition_sched_domains().
5779  *
5780  * If we come here as part of a suspend/resume, don't touch cpusets because we
5781  * want to restore it back to its original state upon resume anyway.
5782  */
5783 static void cpuset_cpu_active(void)
5784 {
5785 	if (cpuhp_tasks_frozen) {
5786 		/*
5787 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5788 		 * resume sequence. As long as this is not the last online
5789 		 * operation in the resume sequence, just build a single sched
5790 		 * domain, ignoring cpusets.
5791 		 */
5792 		num_cpus_frozen--;
5793 		if (likely(num_cpus_frozen)) {
5794 			partition_sched_domains(1, NULL, NULL);
5795 			return;
5796 		}
5797 		/*
5798 		 * This is the last CPU online operation. So fall through and
5799 		 * restore the original sched domains by considering the
5800 		 * cpuset configurations.
5801 		 */
5802 	}
5803 	cpuset_update_active_cpus();
5804 }
5805 
5806 static int cpuset_cpu_inactive(unsigned int cpu)
5807 {
5808 	unsigned long flags;
5809 	struct dl_bw *dl_b;
5810 	bool overflow;
5811 	int cpus;
5812 
5813 	if (!cpuhp_tasks_frozen) {
5814 		rcu_read_lock_sched();
5815 		dl_b = dl_bw_of(cpu);
5816 
5817 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5818 		cpus = dl_bw_cpus(cpu);
5819 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
5820 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5821 
5822 		rcu_read_unlock_sched();
5823 
5824 		if (overflow)
5825 			return -EBUSY;
5826 		cpuset_update_active_cpus();
5827 	} else {
5828 		num_cpus_frozen++;
5829 		partition_sched_domains(1, NULL, NULL);
5830 	}
5831 	return 0;
5832 }
5833 
5834 int sched_cpu_activate(unsigned int cpu)
5835 {
5836 	struct rq *rq = cpu_rq(cpu);
5837 	struct rq_flags rf;
5838 
5839 	set_cpu_active(cpu, true);
5840 
5841 	if (sched_smp_initialized) {
5842 		sched_domains_numa_masks_set(cpu);
5843 		cpuset_cpu_active();
5844 	}
5845 
5846 	/*
5847 	 * Put the rq online, if not already. This happens:
5848 	 *
5849 	 * 1) In the early boot process, because we build the real domains
5850 	 *    after all CPUs have been brought up.
5851 	 *
5852 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5853 	 *    domains.
5854 	 */
5855 	rq_lock_irqsave(rq, &rf);
5856 	if (rq->rd) {
5857 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5858 		set_rq_online(rq);
5859 	}
5860 	rq_unlock_irqrestore(rq, &rf);
5861 
5862 	update_max_interval();
5863 
5864 	return 0;
5865 }
5866 
5867 int sched_cpu_deactivate(unsigned int cpu)
5868 {
5869 	int ret;
5870 
5871 	set_cpu_active(cpu, false);
5872 	/*
5873 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5874 	 * users of this state to go away such that all new such users will
5875 	 * observe it.
5876 	 *
5877 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5878 	 * not imply sync_sched(), so wait for both.
5879 	 *
5880 	 * Do sync before park smpboot threads to take care the rcu boost case.
5881 	 */
5882 	if (IS_ENABLED(CONFIG_PREEMPT))
5883 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
5884 	else
5885 		synchronize_rcu();
5886 
5887 	if (!sched_smp_initialized)
5888 		return 0;
5889 
5890 	ret = cpuset_cpu_inactive(cpu);
5891 	if (ret) {
5892 		set_cpu_active(cpu, true);
5893 		return ret;
5894 	}
5895 	sched_domains_numa_masks_clear(cpu);
5896 	return 0;
5897 }
5898 
5899 static void sched_rq_cpu_starting(unsigned int cpu)
5900 {
5901 	struct rq *rq = cpu_rq(cpu);
5902 
5903 	rq->calc_load_update = calc_load_update;
5904 	update_max_interval();
5905 }
5906 
5907 int sched_cpu_starting(unsigned int cpu)
5908 {
5909 	set_cpu_rq_start_time(cpu);
5910 	sched_rq_cpu_starting(cpu);
5911 	return 0;
5912 }
5913 
5914 #ifdef CONFIG_HOTPLUG_CPU
5915 int sched_cpu_dying(unsigned int cpu)
5916 {
5917 	struct rq *rq = cpu_rq(cpu);
5918 	struct rq_flags rf;
5919 
5920 	/* Handle pending wakeups and then migrate everything off */
5921 	sched_ttwu_pending();
5922 
5923 	rq_lock_irqsave(rq, &rf);
5924 	if (rq->rd) {
5925 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5926 		set_rq_offline(rq);
5927 	}
5928 	migrate_tasks(rq, &rf);
5929 	BUG_ON(rq->nr_running != 1);
5930 	rq_unlock_irqrestore(rq, &rf);
5931 
5932 	calc_load_migrate(rq);
5933 	update_max_interval();
5934 	nohz_balance_exit_idle(cpu);
5935 	hrtick_clear(rq);
5936 	return 0;
5937 }
5938 #endif
5939 
5940 #ifdef CONFIG_SCHED_SMT
5941 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5942 
5943 static void sched_init_smt(void)
5944 {
5945 	/*
5946 	 * We've enumerated all CPUs and will assume that if any CPU
5947 	 * has SMT siblings, CPU0 will too.
5948 	 */
5949 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5950 		static_branch_enable(&sched_smt_present);
5951 }
5952 #else
5953 static inline void sched_init_smt(void) { }
5954 #endif
5955 
5956 void __init sched_init_smp(void)
5957 {
5958 	cpumask_var_t non_isolated_cpus;
5959 
5960 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5961 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5962 
5963 	sched_init_numa();
5964 
5965 	/*
5966 	 * There's no userspace yet to cause hotplug operations; hence all the
5967 	 * CPU masks are stable and all blatant races in the below code cannot
5968 	 * happen.
5969 	 */
5970 	mutex_lock(&sched_domains_mutex);
5971 	init_sched_domains(cpu_active_mask);
5972 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5973 	if (cpumask_empty(non_isolated_cpus))
5974 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5975 	mutex_unlock(&sched_domains_mutex);
5976 
5977 	/* Move init over to a non-isolated CPU */
5978 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5979 		BUG();
5980 	sched_init_granularity();
5981 	free_cpumask_var(non_isolated_cpus);
5982 
5983 	init_sched_rt_class();
5984 	init_sched_dl_class();
5985 
5986 	sched_init_smt();
5987 	sched_clock_init_late();
5988 
5989 	sched_smp_initialized = true;
5990 }
5991 
5992 static int __init migration_init(void)
5993 {
5994 	sched_rq_cpu_starting(smp_processor_id());
5995 	return 0;
5996 }
5997 early_initcall(migration_init);
5998 
5999 #else
6000 void __init sched_init_smp(void)
6001 {
6002 	sched_init_granularity();
6003 	sched_clock_init_late();
6004 }
6005 #endif /* CONFIG_SMP */
6006 
6007 int in_sched_functions(unsigned long addr)
6008 {
6009 	return in_lock_functions(addr) ||
6010 		(addr >= (unsigned long)__sched_text_start
6011 		&& addr < (unsigned long)__sched_text_end);
6012 }
6013 
6014 #ifdef CONFIG_CGROUP_SCHED
6015 /*
6016  * Default task group.
6017  * Every task in system belongs to this group at bootup.
6018  */
6019 struct task_group root_task_group;
6020 LIST_HEAD(task_groups);
6021 
6022 /* Cacheline aligned slab cache for task_group */
6023 static struct kmem_cache *task_group_cache __read_mostly;
6024 #endif
6025 
6026 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6027 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6028 
6029 #define WAIT_TABLE_BITS 8
6030 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
6031 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
6032 
6033 wait_queue_head_t *bit_waitqueue(void *word, int bit)
6034 {
6035 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
6036 	unsigned long val = (unsigned long)word << shift | bit;
6037 
6038 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
6039 }
6040 EXPORT_SYMBOL(bit_waitqueue);
6041 
6042 void __init sched_init(void)
6043 {
6044 	int i, j;
6045 	unsigned long alloc_size = 0, ptr;
6046 
6047 	sched_clock_init();
6048 
6049 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
6050 		init_waitqueue_head(bit_wait_table + i);
6051 
6052 #ifdef CONFIG_FAIR_GROUP_SCHED
6053 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6054 #endif
6055 #ifdef CONFIG_RT_GROUP_SCHED
6056 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6057 #endif
6058 	if (alloc_size) {
6059 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6060 
6061 #ifdef CONFIG_FAIR_GROUP_SCHED
6062 		root_task_group.se = (struct sched_entity **)ptr;
6063 		ptr += nr_cpu_ids * sizeof(void **);
6064 
6065 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6066 		ptr += nr_cpu_ids * sizeof(void **);
6067 
6068 #endif /* CONFIG_FAIR_GROUP_SCHED */
6069 #ifdef CONFIG_RT_GROUP_SCHED
6070 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6071 		ptr += nr_cpu_ids * sizeof(void **);
6072 
6073 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6074 		ptr += nr_cpu_ids * sizeof(void **);
6075 
6076 #endif /* CONFIG_RT_GROUP_SCHED */
6077 	}
6078 #ifdef CONFIG_CPUMASK_OFFSTACK
6079 	for_each_possible_cpu(i) {
6080 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6081 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6082 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6083 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6084 	}
6085 #endif /* CONFIG_CPUMASK_OFFSTACK */
6086 
6087 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6088 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6089 
6090 #ifdef CONFIG_SMP
6091 	init_defrootdomain();
6092 #endif
6093 
6094 #ifdef CONFIG_RT_GROUP_SCHED
6095 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6096 			global_rt_period(), global_rt_runtime());
6097 #endif /* CONFIG_RT_GROUP_SCHED */
6098 
6099 #ifdef CONFIG_CGROUP_SCHED
6100 	task_group_cache = KMEM_CACHE(task_group, 0);
6101 
6102 	list_add(&root_task_group.list, &task_groups);
6103 	INIT_LIST_HEAD(&root_task_group.children);
6104 	INIT_LIST_HEAD(&root_task_group.siblings);
6105 	autogroup_init(&init_task);
6106 #endif /* CONFIG_CGROUP_SCHED */
6107 
6108 	for_each_possible_cpu(i) {
6109 		struct rq *rq;
6110 
6111 		rq = cpu_rq(i);
6112 		raw_spin_lock_init(&rq->lock);
6113 		rq->nr_running = 0;
6114 		rq->calc_load_active = 0;
6115 		rq->calc_load_update = jiffies + LOAD_FREQ;
6116 		init_cfs_rq(&rq->cfs);
6117 		init_rt_rq(&rq->rt);
6118 		init_dl_rq(&rq->dl);
6119 #ifdef CONFIG_FAIR_GROUP_SCHED
6120 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6121 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6122 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6123 		/*
6124 		 * How much CPU bandwidth does root_task_group get?
6125 		 *
6126 		 * In case of task-groups formed thr' the cgroup filesystem, it
6127 		 * gets 100% of the CPU resources in the system. This overall
6128 		 * system CPU resource is divided among the tasks of
6129 		 * root_task_group and its child task-groups in a fair manner,
6130 		 * based on each entity's (task or task-group's) weight
6131 		 * (se->load.weight).
6132 		 *
6133 		 * In other words, if root_task_group has 10 tasks of weight
6134 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6135 		 * then A0's share of the CPU resource is:
6136 		 *
6137 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6138 		 *
6139 		 * We achieve this by letting root_task_group's tasks sit
6140 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6141 		 */
6142 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6143 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6144 #endif /* CONFIG_FAIR_GROUP_SCHED */
6145 
6146 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6147 #ifdef CONFIG_RT_GROUP_SCHED
6148 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6149 #endif
6150 
6151 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6152 			rq->cpu_load[j] = 0;
6153 
6154 #ifdef CONFIG_SMP
6155 		rq->sd = NULL;
6156 		rq->rd = NULL;
6157 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6158 		rq->balance_callback = NULL;
6159 		rq->active_balance = 0;
6160 		rq->next_balance = jiffies;
6161 		rq->push_cpu = 0;
6162 		rq->cpu = i;
6163 		rq->online = 0;
6164 		rq->idle_stamp = 0;
6165 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6166 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6167 
6168 		INIT_LIST_HEAD(&rq->cfs_tasks);
6169 
6170 		rq_attach_root(rq, &def_root_domain);
6171 #ifdef CONFIG_NO_HZ_COMMON
6172 		rq->last_load_update_tick = jiffies;
6173 		rq->nohz_flags = 0;
6174 #endif
6175 #ifdef CONFIG_NO_HZ_FULL
6176 		rq->last_sched_tick = 0;
6177 #endif
6178 #endif /* CONFIG_SMP */
6179 		init_rq_hrtick(rq);
6180 		atomic_set(&rq->nr_iowait, 0);
6181 	}
6182 
6183 	set_load_weight(&init_task);
6184 
6185 	/*
6186 	 * The boot idle thread does lazy MMU switching as well:
6187 	 */
6188 	mmgrab(&init_mm);
6189 	enter_lazy_tlb(&init_mm, current);
6190 
6191 	/*
6192 	 * Make us the idle thread. Technically, schedule() should not be
6193 	 * called from this thread, however somewhere below it might be,
6194 	 * but because we are the idle thread, we just pick up running again
6195 	 * when this runqueue becomes "idle".
6196 	 */
6197 	init_idle(current, smp_processor_id());
6198 
6199 	calc_load_update = jiffies + LOAD_FREQ;
6200 
6201 #ifdef CONFIG_SMP
6202 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6203 	/* May be allocated at isolcpus cmdline parse time */
6204 	if (cpu_isolated_map == NULL)
6205 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6206 	idle_thread_set_boot_cpu();
6207 	set_cpu_rq_start_time(smp_processor_id());
6208 #endif
6209 	init_sched_fair_class();
6210 
6211 	init_schedstats();
6212 
6213 	scheduler_running = 1;
6214 }
6215 
6216 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6217 static inline int preempt_count_equals(int preempt_offset)
6218 {
6219 	int nested = preempt_count() + rcu_preempt_depth();
6220 
6221 	return (nested == preempt_offset);
6222 }
6223 
6224 void __might_sleep(const char *file, int line, int preempt_offset)
6225 {
6226 	/*
6227 	 * Blocking primitives will set (and therefore destroy) current->state,
6228 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6229 	 * otherwise we will destroy state.
6230 	 */
6231 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6232 			"do not call blocking ops when !TASK_RUNNING; "
6233 			"state=%lx set at [<%p>] %pS\n",
6234 			current->state,
6235 			(void *)current->task_state_change,
6236 			(void *)current->task_state_change);
6237 
6238 	___might_sleep(file, line, preempt_offset);
6239 }
6240 EXPORT_SYMBOL(__might_sleep);
6241 
6242 void ___might_sleep(const char *file, int line, int preempt_offset)
6243 {
6244 	/* Ratelimiting timestamp: */
6245 	static unsigned long prev_jiffy;
6246 
6247 	unsigned long preempt_disable_ip;
6248 
6249 	/* WARN_ON_ONCE() by default, no rate limit required: */
6250 	rcu_sleep_check();
6251 
6252 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6253 	     !is_idle_task(current)) ||
6254 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6255 		return;
6256 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6257 		return;
6258 	prev_jiffy = jiffies;
6259 
6260 	/* Save this before calling printk(), since that will clobber it: */
6261 	preempt_disable_ip = get_preempt_disable_ip(current);
6262 
6263 	printk(KERN_ERR
6264 		"BUG: sleeping function called from invalid context at %s:%d\n",
6265 			file, line);
6266 	printk(KERN_ERR
6267 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6268 			in_atomic(), irqs_disabled(),
6269 			current->pid, current->comm);
6270 
6271 	if (task_stack_end_corrupted(current))
6272 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6273 
6274 	debug_show_held_locks(current);
6275 	if (irqs_disabled())
6276 		print_irqtrace_events(current);
6277 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6278 	    && !preempt_count_equals(preempt_offset)) {
6279 		pr_err("Preemption disabled at:");
6280 		print_ip_sym(preempt_disable_ip);
6281 		pr_cont("\n");
6282 	}
6283 	dump_stack();
6284 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6285 }
6286 EXPORT_SYMBOL(___might_sleep);
6287 #endif
6288 
6289 #ifdef CONFIG_MAGIC_SYSRQ
6290 void normalize_rt_tasks(void)
6291 {
6292 	struct task_struct *g, *p;
6293 	struct sched_attr attr = {
6294 		.sched_policy = SCHED_NORMAL,
6295 	};
6296 
6297 	read_lock(&tasklist_lock);
6298 	for_each_process_thread(g, p) {
6299 		/*
6300 		 * Only normalize user tasks:
6301 		 */
6302 		if (p->flags & PF_KTHREAD)
6303 			continue;
6304 
6305 		p->se.exec_start = 0;
6306 		schedstat_set(p->se.statistics.wait_start,  0);
6307 		schedstat_set(p->se.statistics.sleep_start, 0);
6308 		schedstat_set(p->se.statistics.block_start, 0);
6309 
6310 		if (!dl_task(p) && !rt_task(p)) {
6311 			/*
6312 			 * Renice negative nice level userspace
6313 			 * tasks back to 0:
6314 			 */
6315 			if (task_nice(p) < 0)
6316 				set_user_nice(p, 0);
6317 			continue;
6318 		}
6319 
6320 		__sched_setscheduler(p, &attr, false, false);
6321 	}
6322 	read_unlock(&tasklist_lock);
6323 }
6324 
6325 #endif /* CONFIG_MAGIC_SYSRQ */
6326 
6327 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6328 /*
6329  * These functions are only useful for the IA64 MCA handling, or kdb.
6330  *
6331  * They can only be called when the whole system has been
6332  * stopped - every CPU needs to be quiescent, and no scheduling
6333  * activity can take place. Using them for anything else would
6334  * be a serious bug, and as a result, they aren't even visible
6335  * under any other configuration.
6336  */
6337 
6338 /**
6339  * curr_task - return the current task for a given CPU.
6340  * @cpu: the processor in question.
6341  *
6342  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6343  *
6344  * Return: The current task for @cpu.
6345  */
6346 struct task_struct *curr_task(int cpu)
6347 {
6348 	return cpu_curr(cpu);
6349 }
6350 
6351 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6352 
6353 #ifdef CONFIG_IA64
6354 /**
6355  * set_curr_task - set the current task for a given CPU.
6356  * @cpu: the processor in question.
6357  * @p: the task pointer to set.
6358  *
6359  * Description: This function must only be used when non-maskable interrupts
6360  * are serviced on a separate stack. It allows the architecture to switch the
6361  * notion of the current task on a CPU in a non-blocking manner. This function
6362  * must be called with all CPU's synchronized, and interrupts disabled, the
6363  * and caller must save the original value of the current task (see
6364  * curr_task() above) and restore that value before reenabling interrupts and
6365  * re-starting the system.
6366  *
6367  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6368  */
6369 void ia64_set_curr_task(int cpu, struct task_struct *p)
6370 {
6371 	cpu_curr(cpu) = p;
6372 }
6373 
6374 #endif
6375 
6376 #ifdef CONFIG_CGROUP_SCHED
6377 /* task_group_lock serializes the addition/removal of task groups */
6378 static DEFINE_SPINLOCK(task_group_lock);
6379 
6380 static void sched_free_group(struct task_group *tg)
6381 {
6382 	free_fair_sched_group(tg);
6383 	free_rt_sched_group(tg);
6384 	autogroup_free(tg);
6385 	kmem_cache_free(task_group_cache, tg);
6386 }
6387 
6388 /* allocate runqueue etc for a new task group */
6389 struct task_group *sched_create_group(struct task_group *parent)
6390 {
6391 	struct task_group *tg;
6392 
6393 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6394 	if (!tg)
6395 		return ERR_PTR(-ENOMEM);
6396 
6397 	if (!alloc_fair_sched_group(tg, parent))
6398 		goto err;
6399 
6400 	if (!alloc_rt_sched_group(tg, parent))
6401 		goto err;
6402 
6403 	return tg;
6404 
6405 err:
6406 	sched_free_group(tg);
6407 	return ERR_PTR(-ENOMEM);
6408 }
6409 
6410 void sched_online_group(struct task_group *tg, struct task_group *parent)
6411 {
6412 	unsigned long flags;
6413 
6414 	spin_lock_irqsave(&task_group_lock, flags);
6415 	list_add_rcu(&tg->list, &task_groups);
6416 
6417 	/* Root should already exist: */
6418 	WARN_ON(!parent);
6419 
6420 	tg->parent = parent;
6421 	INIT_LIST_HEAD(&tg->children);
6422 	list_add_rcu(&tg->siblings, &parent->children);
6423 	spin_unlock_irqrestore(&task_group_lock, flags);
6424 
6425 	online_fair_sched_group(tg);
6426 }
6427 
6428 /* rcu callback to free various structures associated with a task group */
6429 static void sched_free_group_rcu(struct rcu_head *rhp)
6430 {
6431 	/* Now it should be safe to free those cfs_rqs: */
6432 	sched_free_group(container_of(rhp, struct task_group, rcu));
6433 }
6434 
6435 void sched_destroy_group(struct task_group *tg)
6436 {
6437 	/* Wait for possible concurrent references to cfs_rqs complete: */
6438 	call_rcu(&tg->rcu, sched_free_group_rcu);
6439 }
6440 
6441 void sched_offline_group(struct task_group *tg)
6442 {
6443 	unsigned long flags;
6444 
6445 	/* End participation in shares distribution: */
6446 	unregister_fair_sched_group(tg);
6447 
6448 	spin_lock_irqsave(&task_group_lock, flags);
6449 	list_del_rcu(&tg->list);
6450 	list_del_rcu(&tg->siblings);
6451 	spin_unlock_irqrestore(&task_group_lock, flags);
6452 }
6453 
6454 static void sched_change_group(struct task_struct *tsk, int type)
6455 {
6456 	struct task_group *tg;
6457 
6458 	/*
6459 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6460 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6461 	 * to prevent lockdep warnings.
6462 	 */
6463 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6464 			  struct task_group, css);
6465 	tg = autogroup_task_group(tsk, tg);
6466 	tsk->sched_task_group = tg;
6467 
6468 #ifdef CONFIG_FAIR_GROUP_SCHED
6469 	if (tsk->sched_class->task_change_group)
6470 		tsk->sched_class->task_change_group(tsk, type);
6471 	else
6472 #endif
6473 		set_task_rq(tsk, task_cpu(tsk));
6474 }
6475 
6476 /*
6477  * Change task's runqueue when it moves between groups.
6478  *
6479  * The caller of this function should have put the task in its new group by
6480  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6481  * its new group.
6482  */
6483 void sched_move_task(struct task_struct *tsk)
6484 {
6485 	int queued, running, queue_flags =
6486 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6487 	struct rq_flags rf;
6488 	struct rq *rq;
6489 
6490 	rq = task_rq_lock(tsk, &rf);
6491 	update_rq_clock(rq);
6492 
6493 	running = task_current(rq, tsk);
6494 	queued = task_on_rq_queued(tsk);
6495 
6496 	if (queued)
6497 		dequeue_task(rq, tsk, queue_flags);
6498 	if (running)
6499 		put_prev_task(rq, tsk);
6500 
6501 	sched_change_group(tsk, TASK_MOVE_GROUP);
6502 
6503 	if (queued)
6504 		enqueue_task(rq, tsk, queue_flags);
6505 	if (running)
6506 		set_curr_task(rq, tsk);
6507 
6508 	task_rq_unlock(rq, tsk, &rf);
6509 }
6510 #endif /* CONFIG_CGROUP_SCHED */
6511 
6512 #ifdef CONFIG_RT_GROUP_SCHED
6513 /*
6514  * Ensure that the real time constraints are schedulable.
6515  */
6516 static DEFINE_MUTEX(rt_constraints_mutex);
6517 
6518 /* Must be called with tasklist_lock held */
6519 static inline int tg_has_rt_tasks(struct task_group *tg)
6520 {
6521 	struct task_struct *g, *p;
6522 
6523 	/*
6524 	 * Autogroups do not have RT tasks; see autogroup_create().
6525 	 */
6526 	if (task_group_is_autogroup(tg))
6527 		return 0;
6528 
6529 	for_each_process_thread(g, p) {
6530 		if (rt_task(p) && task_group(p) == tg)
6531 			return 1;
6532 	}
6533 
6534 	return 0;
6535 }
6536 
6537 struct rt_schedulable_data {
6538 	struct task_group *tg;
6539 	u64 rt_period;
6540 	u64 rt_runtime;
6541 };
6542 
6543 static int tg_rt_schedulable(struct task_group *tg, void *data)
6544 {
6545 	struct rt_schedulable_data *d = data;
6546 	struct task_group *child;
6547 	unsigned long total, sum = 0;
6548 	u64 period, runtime;
6549 
6550 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6551 	runtime = tg->rt_bandwidth.rt_runtime;
6552 
6553 	if (tg == d->tg) {
6554 		period = d->rt_period;
6555 		runtime = d->rt_runtime;
6556 	}
6557 
6558 	/*
6559 	 * Cannot have more runtime than the period.
6560 	 */
6561 	if (runtime > period && runtime != RUNTIME_INF)
6562 		return -EINVAL;
6563 
6564 	/*
6565 	 * Ensure we don't starve existing RT tasks.
6566 	 */
6567 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6568 		return -EBUSY;
6569 
6570 	total = to_ratio(period, runtime);
6571 
6572 	/*
6573 	 * Nobody can have more than the global setting allows.
6574 	 */
6575 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6576 		return -EINVAL;
6577 
6578 	/*
6579 	 * The sum of our children's runtime should not exceed our own.
6580 	 */
6581 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6582 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6583 		runtime = child->rt_bandwidth.rt_runtime;
6584 
6585 		if (child == d->tg) {
6586 			period = d->rt_period;
6587 			runtime = d->rt_runtime;
6588 		}
6589 
6590 		sum += to_ratio(period, runtime);
6591 	}
6592 
6593 	if (sum > total)
6594 		return -EINVAL;
6595 
6596 	return 0;
6597 }
6598 
6599 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6600 {
6601 	int ret;
6602 
6603 	struct rt_schedulable_data data = {
6604 		.tg = tg,
6605 		.rt_period = period,
6606 		.rt_runtime = runtime,
6607 	};
6608 
6609 	rcu_read_lock();
6610 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6611 	rcu_read_unlock();
6612 
6613 	return ret;
6614 }
6615 
6616 static int tg_set_rt_bandwidth(struct task_group *tg,
6617 		u64 rt_period, u64 rt_runtime)
6618 {
6619 	int i, err = 0;
6620 
6621 	/*
6622 	 * Disallowing the root group RT runtime is BAD, it would disallow the
6623 	 * kernel creating (and or operating) RT threads.
6624 	 */
6625 	if (tg == &root_task_group && rt_runtime == 0)
6626 		return -EINVAL;
6627 
6628 	/* No period doesn't make any sense. */
6629 	if (rt_period == 0)
6630 		return -EINVAL;
6631 
6632 	mutex_lock(&rt_constraints_mutex);
6633 	read_lock(&tasklist_lock);
6634 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6635 	if (err)
6636 		goto unlock;
6637 
6638 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6639 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6640 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6641 
6642 	for_each_possible_cpu(i) {
6643 		struct rt_rq *rt_rq = tg->rt_rq[i];
6644 
6645 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6646 		rt_rq->rt_runtime = rt_runtime;
6647 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6648 	}
6649 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6650 unlock:
6651 	read_unlock(&tasklist_lock);
6652 	mutex_unlock(&rt_constraints_mutex);
6653 
6654 	return err;
6655 }
6656 
6657 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6658 {
6659 	u64 rt_runtime, rt_period;
6660 
6661 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6662 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6663 	if (rt_runtime_us < 0)
6664 		rt_runtime = RUNTIME_INF;
6665 
6666 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6667 }
6668 
6669 static long sched_group_rt_runtime(struct task_group *tg)
6670 {
6671 	u64 rt_runtime_us;
6672 
6673 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6674 		return -1;
6675 
6676 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6677 	do_div(rt_runtime_us, NSEC_PER_USEC);
6678 	return rt_runtime_us;
6679 }
6680 
6681 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6682 {
6683 	u64 rt_runtime, rt_period;
6684 
6685 	rt_period = rt_period_us * NSEC_PER_USEC;
6686 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6687 
6688 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6689 }
6690 
6691 static long sched_group_rt_period(struct task_group *tg)
6692 {
6693 	u64 rt_period_us;
6694 
6695 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6696 	do_div(rt_period_us, NSEC_PER_USEC);
6697 	return rt_period_us;
6698 }
6699 #endif /* CONFIG_RT_GROUP_SCHED */
6700 
6701 #ifdef CONFIG_RT_GROUP_SCHED
6702 static int sched_rt_global_constraints(void)
6703 {
6704 	int ret = 0;
6705 
6706 	mutex_lock(&rt_constraints_mutex);
6707 	read_lock(&tasklist_lock);
6708 	ret = __rt_schedulable(NULL, 0, 0);
6709 	read_unlock(&tasklist_lock);
6710 	mutex_unlock(&rt_constraints_mutex);
6711 
6712 	return ret;
6713 }
6714 
6715 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6716 {
6717 	/* Don't accept realtime tasks when there is no way for them to run */
6718 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6719 		return 0;
6720 
6721 	return 1;
6722 }
6723 
6724 #else /* !CONFIG_RT_GROUP_SCHED */
6725 static int sched_rt_global_constraints(void)
6726 {
6727 	unsigned long flags;
6728 	int i;
6729 
6730 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6731 	for_each_possible_cpu(i) {
6732 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6733 
6734 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6735 		rt_rq->rt_runtime = global_rt_runtime();
6736 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6737 	}
6738 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6739 
6740 	return 0;
6741 }
6742 #endif /* CONFIG_RT_GROUP_SCHED */
6743 
6744 static int sched_dl_global_validate(void)
6745 {
6746 	u64 runtime = global_rt_runtime();
6747 	u64 period = global_rt_period();
6748 	u64 new_bw = to_ratio(period, runtime);
6749 	struct dl_bw *dl_b;
6750 	int cpu, ret = 0;
6751 	unsigned long flags;
6752 
6753 	/*
6754 	 * Here we want to check the bandwidth not being set to some
6755 	 * value smaller than the currently allocated bandwidth in
6756 	 * any of the root_domains.
6757 	 *
6758 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6759 	 * cycling on root_domains... Discussion on different/better
6760 	 * solutions is welcome!
6761 	 */
6762 	for_each_possible_cpu(cpu) {
6763 		rcu_read_lock_sched();
6764 		dl_b = dl_bw_of(cpu);
6765 
6766 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6767 		if (new_bw < dl_b->total_bw)
6768 			ret = -EBUSY;
6769 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6770 
6771 		rcu_read_unlock_sched();
6772 
6773 		if (ret)
6774 			break;
6775 	}
6776 
6777 	return ret;
6778 }
6779 
6780 static void sched_dl_do_global(void)
6781 {
6782 	u64 new_bw = -1;
6783 	struct dl_bw *dl_b;
6784 	int cpu;
6785 	unsigned long flags;
6786 
6787 	def_dl_bandwidth.dl_period = global_rt_period();
6788 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
6789 
6790 	if (global_rt_runtime() != RUNTIME_INF)
6791 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6792 
6793 	/*
6794 	 * FIXME: As above...
6795 	 */
6796 	for_each_possible_cpu(cpu) {
6797 		rcu_read_lock_sched();
6798 		dl_b = dl_bw_of(cpu);
6799 
6800 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6801 		dl_b->bw = new_bw;
6802 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6803 
6804 		rcu_read_unlock_sched();
6805 	}
6806 }
6807 
6808 static int sched_rt_global_validate(void)
6809 {
6810 	if (sysctl_sched_rt_period <= 0)
6811 		return -EINVAL;
6812 
6813 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6814 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6815 		return -EINVAL;
6816 
6817 	return 0;
6818 }
6819 
6820 static void sched_rt_do_global(void)
6821 {
6822 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
6823 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6824 }
6825 
6826 int sched_rt_handler(struct ctl_table *table, int write,
6827 		void __user *buffer, size_t *lenp,
6828 		loff_t *ppos)
6829 {
6830 	int old_period, old_runtime;
6831 	static DEFINE_MUTEX(mutex);
6832 	int ret;
6833 
6834 	mutex_lock(&mutex);
6835 	old_period = sysctl_sched_rt_period;
6836 	old_runtime = sysctl_sched_rt_runtime;
6837 
6838 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6839 
6840 	if (!ret && write) {
6841 		ret = sched_rt_global_validate();
6842 		if (ret)
6843 			goto undo;
6844 
6845 		ret = sched_dl_global_validate();
6846 		if (ret)
6847 			goto undo;
6848 
6849 		ret = sched_rt_global_constraints();
6850 		if (ret)
6851 			goto undo;
6852 
6853 		sched_rt_do_global();
6854 		sched_dl_do_global();
6855 	}
6856 	if (0) {
6857 undo:
6858 		sysctl_sched_rt_period = old_period;
6859 		sysctl_sched_rt_runtime = old_runtime;
6860 	}
6861 	mutex_unlock(&mutex);
6862 
6863 	return ret;
6864 }
6865 
6866 int sched_rr_handler(struct ctl_table *table, int write,
6867 		void __user *buffer, size_t *lenp,
6868 		loff_t *ppos)
6869 {
6870 	int ret;
6871 	static DEFINE_MUTEX(mutex);
6872 
6873 	mutex_lock(&mutex);
6874 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6875 	/*
6876 	 * Make sure that internally we keep jiffies.
6877 	 * Also, writing zero resets the timeslice to default:
6878 	 */
6879 	if (!ret && write) {
6880 		sched_rr_timeslice =
6881 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6882 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6883 	}
6884 	mutex_unlock(&mutex);
6885 	return ret;
6886 }
6887 
6888 #ifdef CONFIG_CGROUP_SCHED
6889 
6890 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6891 {
6892 	return css ? container_of(css, struct task_group, css) : NULL;
6893 }
6894 
6895 static struct cgroup_subsys_state *
6896 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6897 {
6898 	struct task_group *parent = css_tg(parent_css);
6899 	struct task_group *tg;
6900 
6901 	if (!parent) {
6902 		/* This is early initialization for the top cgroup */
6903 		return &root_task_group.css;
6904 	}
6905 
6906 	tg = sched_create_group(parent);
6907 	if (IS_ERR(tg))
6908 		return ERR_PTR(-ENOMEM);
6909 
6910 	return &tg->css;
6911 }
6912 
6913 /* Expose task group only after completing cgroup initialization */
6914 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6915 {
6916 	struct task_group *tg = css_tg(css);
6917 	struct task_group *parent = css_tg(css->parent);
6918 
6919 	if (parent)
6920 		sched_online_group(tg, parent);
6921 	return 0;
6922 }
6923 
6924 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6925 {
6926 	struct task_group *tg = css_tg(css);
6927 
6928 	sched_offline_group(tg);
6929 }
6930 
6931 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6932 {
6933 	struct task_group *tg = css_tg(css);
6934 
6935 	/*
6936 	 * Relies on the RCU grace period between css_released() and this.
6937 	 */
6938 	sched_free_group(tg);
6939 }
6940 
6941 /*
6942  * This is called before wake_up_new_task(), therefore we really only
6943  * have to set its group bits, all the other stuff does not apply.
6944  */
6945 static void cpu_cgroup_fork(struct task_struct *task)
6946 {
6947 	struct rq_flags rf;
6948 	struct rq *rq;
6949 
6950 	rq = task_rq_lock(task, &rf);
6951 
6952 	update_rq_clock(rq);
6953 	sched_change_group(task, TASK_SET_GROUP);
6954 
6955 	task_rq_unlock(rq, task, &rf);
6956 }
6957 
6958 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6959 {
6960 	struct task_struct *task;
6961 	struct cgroup_subsys_state *css;
6962 	int ret = 0;
6963 
6964 	cgroup_taskset_for_each(task, css, tset) {
6965 #ifdef CONFIG_RT_GROUP_SCHED
6966 		if (!sched_rt_can_attach(css_tg(css), task))
6967 			return -EINVAL;
6968 #else
6969 		/* We don't support RT-tasks being in separate groups */
6970 		if (task->sched_class != &fair_sched_class)
6971 			return -EINVAL;
6972 #endif
6973 		/*
6974 		 * Serialize against wake_up_new_task() such that if its
6975 		 * running, we're sure to observe its full state.
6976 		 */
6977 		raw_spin_lock_irq(&task->pi_lock);
6978 		/*
6979 		 * Avoid calling sched_move_task() before wake_up_new_task()
6980 		 * has happened. This would lead to problems with PELT, due to
6981 		 * move wanting to detach+attach while we're not attached yet.
6982 		 */
6983 		if (task->state == TASK_NEW)
6984 			ret = -EINVAL;
6985 		raw_spin_unlock_irq(&task->pi_lock);
6986 
6987 		if (ret)
6988 			break;
6989 	}
6990 	return ret;
6991 }
6992 
6993 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6994 {
6995 	struct task_struct *task;
6996 	struct cgroup_subsys_state *css;
6997 
6998 	cgroup_taskset_for_each(task, css, tset)
6999 		sched_move_task(task);
7000 }
7001 
7002 #ifdef CONFIG_FAIR_GROUP_SCHED
7003 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7004 				struct cftype *cftype, u64 shareval)
7005 {
7006 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7007 }
7008 
7009 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7010 			       struct cftype *cft)
7011 {
7012 	struct task_group *tg = css_tg(css);
7013 
7014 	return (u64) scale_load_down(tg->shares);
7015 }
7016 
7017 #ifdef CONFIG_CFS_BANDWIDTH
7018 static DEFINE_MUTEX(cfs_constraints_mutex);
7019 
7020 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7021 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7022 
7023 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7024 
7025 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7026 {
7027 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7028 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7029 
7030 	if (tg == &root_task_group)
7031 		return -EINVAL;
7032 
7033 	/*
7034 	 * Ensure we have at some amount of bandwidth every period.  This is
7035 	 * to prevent reaching a state of large arrears when throttled via
7036 	 * entity_tick() resulting in prolonged exit starvation.
7037 	 */
7038 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7039 		return -EINVAL;
7040 
7041 	/*
7042 	 * Likewise, bound things on the otherside by preventing insane quota
7043 	 * periods.  This also allows us to normalize in computing quota
7044 	 * feasibility.
7045 	 */
7046 	if (period > max_cfs_quota_period)
7047 		return -EINVAL;
7048 
7049 	/*
7050 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7051 	 * unthrottle_offline_cfs_rqs().
7052 	 */
7053 	get_online_cpus();
7054 	mutex_lock(&cfs_constraints_mutex);
7055 	ret = __cfs_schedulable(tg, period, quota);
7056 	if (ret)
7057 		goto out_unlock;
7058 
7059 	runtime_enabled = quota != RUNTIME_INF;
7060 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7061 	/*
7062 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7063 	 * before making related changes, and on->off must occur afterwards
7064 	 */
7065 	if (runtime_enabled && !runtime_was_enabled)
7066 		cfs_bandwidth_usage_inc();
7067 	raw_spin_lock_irq(&cfs_b->lock);
7068 	cfs_b->period = ns_to_ktime(period);
7069 	cfs_b->quota = quota;
7070 
7071 	__refill_cfs_bandwidth_runtime(cfs_b);
7072 
7073 	/* Restart the period timer (if active) to handle new period expiry: */
7074 	if (runtime_enabled)
7075 		start_cfs_bandwidth(cfs_b);
7076 
7077 	raw_spin_unlock_irq(&cfs_b->lock);
7078 
7079 	for_each_online_cpu(i) {
7080 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7081 		struct rq *rq = cfs_rq->rq;
7082 		struct rq_flags rf;
7083 
7084 		rq_lock_irq(rq, &rf);
7085 		cfs_rq->runtime_enabled = runtime_enabled;
7086 		cfs_rq->runtime_remaining = 0;
7087 
7088 		if (cfs_rq->throttled)
7089 			unthrottle_cfs_rq(cfs_rq);
7090 		rq_unlock_irq(rq, &rf);
7091 	}
7092 	if (runtime_was_enabled && !runtime_enabled)
7093 		cfs_bandwidth_usage_dec();
7094 out_unlock:
7095 	mutex_unlock(&cfs_constraints_mutex);
7096 	put_online_cpus();
7097 
7098 	return ret;
7099 }
7100 
7101 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7102 {
7103 	u64 quota, period;
7104 
7105 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7106 	if (cfs_quota_us < 0)
7107 		quota = RUNTIME_INF;
7108 	else
7109 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7110 
7111 	return tg_set_cfs_bandwidth(tg, period, quota);
7112 }
7113 
7114 long tg_get_cfs_quota(struct task_group *tg)
7115 {
7116 	u64 quota_us;
7117 
7118 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7119 		return -1;
7120 
7121 	quota_us = tg->cfs_bandwidth.quota;
7122 	do_div(quota_us, NSEC_PER_USEC);
7123 
7124 	return quota_us;
7125 }
7126 
7127 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7128 {
7129 	u64 quota, period;
7130 
7131 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7132 	quota = tg->cfs_bandwidth.quota;
7133 
7134 	return tg_set_cfs_bandwidth(tg, period, quota);
7135 }
7136 
7137 long tg_get_cfs_period(struct task_group *tg)
7138 {
7139 	u64 cfs_period_us;
7140 
7141 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7142 	do_div(cfs_period_us, NSEC_PER_USEC);
7143 
7144 	return cfs_period_us;
7145 }
7146 
7147 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7148 				  struct cftype *cft)
7149 {
7150 	return tg_get_cfs_quota(css_tg(css));
7151 }
7152 
7153 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7154 				   struct cftype *cftype, s64 cfs_quota_us)
7155 {
7156 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7157 }
7158 
7159 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7160 				   struct cftype *cft)
7161 {
7162 	return tg_get_cfs_period(css_tg(css));
7163 }
7164 
7165 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7166 				    struct cftype *cftype, u64 cfs_period_us)
7167 {
7168 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7169 }
7170 
7171 struct cfs_schedulable_data {
7172 	struct task_group *tg;
7173 	u64 period, quota;
7174 };
7175 
7176 /*
7177  * normalize group quota/period to be quota/max_period
7178  * note: units are usecs
7179  */
7180 static u64 normalize_cfs_quota(struct task_group *tg,
7181 			       struct cfs_schedulable_data *d)
7182 {
7183 	u64 quota, period;
7184 
7185 	if (tg == d->tg) {
7186 		period = d->period;
7187 		quota = d->quota;
7188 	} else {
7189 		period = tg_get_cfs_period(tg);
7190 		quota = tg_get_cfs_quota(tg);
7191 	}
7192 
7193 	/* note: these should typically be equivalent */
7194 	if (quota == RUNTIME_INF || quota == -1)
7195 		return RUNTIME_INF;
7196 
7197 	return to_ratio(period, quota);
7198 }
7199 
7200 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7201 {
7202 	struct cfs_schedulable_data *d = data;
7203 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7204 	s64 quota = 0, parent_quota = -1;
7205 
7206 	if (!tg->parent) {
7207 		quota = RUNTIME_INF;
7208 	} else {
7209 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7210 
7211 		quota = normalize_cfs_quota(tg, d);
7212 		parent_quota = parent_b->hierarchical_quota;
7213 
7214 		/*
7215 		 * Ensure max(child_quota) <= parent_quota, inherit when no
7216 		 * limit is set:
7217 		 */
7218 		if (quota == RUNTIME_INF)
7219 			quota = parent_quota;
7220 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7221 			return -EINVAL;
7222 	}
7223 	cfs_b->hierarchical_quota = quota;
7224 
7225 	return 0;
7226 }
7227 
7228 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7229 {
7230 	int ret;
7231 	struct cfs_schedulable_data data = {
7232 		.tg = tg,
7233 		.period = period,
7234 		.quota = quota,
7235 	};
7236 
7237 	if (quota != RUNTIME_INF) {
7238 		do_div(data.period, NSEC_PER_USEC);
7239 		do_div(data.quota, NSEC_PER_USEC);
7240 	}
7241 
7242 	rcu_read_lock();
7243 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7244 	rcu_read_unlock();
7245 
7246 	return ret;
7247 }
7248 
7249 static int cpu_stats_show(struct seq_file *sf, void *v)
7250 {
7251 	struct task_group *tg = css_tg(seq_css(sf));
7252 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7253 
7254 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7255 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7256 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7257 
7258 	return 0;
7259 }
7260 #endif /* CONFIG_CFS_BANDWIDTH */
7261 #endif /* CONFIG_FAIR_GROUP_SCHED */
7262 
7263 #ifdef CONFIG_RT_GROUP_SCHED
7264 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7265 				struct cftype *cft, s64 val)
7266 {
7267 	return sched_group_set_rt_runtime(css_tg(css), val);
7268 }
7269 
7270 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7271 			       struct cftype *cft)
7272 {
7273 	return sched_group_rt_runtime(css_tg(css));
7274 }
7275 
7276 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7277 				    struct cftype *cftype, u64 rt_period_us)
7278 {
7279 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7280 }
7281 
7282 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7283 				   struct cftype *cft)
7284 {
7285 	return sched_group_rt_period(css_tg(css));
7286 }
7287 #endif /* CONFIG_RT_GROUP_SCHED */
7288 
7289 static struct cftype cpu_files[] = {
7290 #ifdef CONFIG_FAIR_GROUP_SCHED
7291 	{
7292 		.name = "shares",
7293 		.read_u64 = cpu_shares_read_u64,
7294 		.write_u64 = cpu_shares_write_u64,
7295 	},
7296 #endif
7297 #ifdef CONFIG_CFS_BANDWIDTH
7298 	{
7299 		.name = "cfs_quota_us",
7300 		.read_s64 = cpu_cfs_quota_read_s64,
7301 		.write_s64 = cpu_cfs_quota_write_s64,
7302 	},
7303 	{
7304 		.name = "cfs_period_us",
7305 		.read_u64 = cpu_cfs_period_read_u64,
7306 		.write_u64 = cpu_cfs_period_write_u64,
7307 	},
7308 	{
7309 		.name = "stat",
7310 		.seq_show = cpu_stats_show,
7311 	},
7312 #endif
7313 #ifdef CONFIG_RT_GROUP_SCHED
7314 	{
7315 		.name = "rt_runtime_us",
7316 		.read_s64 = cpu_rt_runtime_read,
7317 		.write_s64 = cpu_rt_runtime_write,
7318 	},
7319 	{
7320 		.name = "rt_period_us",
7321 		.read_u64 = cpu_rt_period_read_uint,
7322 		.write_u64 = cpu_rt_period_write_uint,
7323 	},
7324 #endif
7325 	{ }	/* Terminate */
7326 };
7327 
7328 struct cgroup_subsys cpu_cgrp_subsys = {
7329 	.css_alloc	= cpu_cgroup_css_alloc,
7330 	.css_online	= cpu_cgroup_css_online,
7331 	.css_released	= cpu_cgroup_css_released,
7332 	.css_free	= cpu_cgroup_css_free,
7333 	.fork		= cpu_cgroup_fork,
7334 	.can_attach	= cpu_cgroup_can_attach,
7335 	.attach		= cpu_cgroup_attach,
7336 	.legacy_cftypes	= cpu_files,
7337 	.early_init	= true,
7338 };
7339 
7340 #endif	/* CONFIG_CGROUP_SCHED */
7341 
7342 void dump_cpu_task(int cpu)
7343 {
7344 	pr_info("Task dump for CPU %d:\n", cpu);
7345 	sched_show_task(cpu_curr(cpu));
7346 }
7347 
7348 /*
7349  * Nice levels are multiplicative, with a gentle 10% change for every
7350  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7351  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7352  * that remained on nice 0.
7353  *
7354  * The "10% effect" is relative and cumulative: from _any_ nice level,
7355  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7356  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7357  * If a task goes up by ~10% and another task goes down by ~10% then
7358  * the relative distance between them is ~25%.)
7359  */
7360 const int sched_prio_to_weight[40] = {
7361  /* -20 */     88761,     71755,     56483,     46273,     36291,
7362  /* -15 */     29154,     23254,     18705,     14949,     11916,
7363  /* -10 */      9548,      7620,      6100,      4904,      3906,
7364  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7365  /*   0 */      1024,       820,       655,       526,       423,
7366  /*   5 */       335,       272,       215,       172,       137,
7367  /*  10 */       110,        87,        70,        56,        45,
7368  /*  15 */        36,        29,        23,        18,        15,
7369 };
7370 
7371 /*
7372  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7373  *
7374  * In cases where the weight does not change often, we can use the
7375  * precalculated inverse to speed up arithmetics by turning divisions
7376  * into multiplications:
7377  */
7378 const u32 sched_prio_to_wmult[40] = {
7379  /* -20 */     48388,     59856,     76040,     92818,    118348,
7380  /* -15 */    147320,    184698,    229616,    287308,    360437,
7381  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7382  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7383  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7384  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7385  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7386  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7387 };
7388