xref: /openbmc/linux/kernel/sched/core.c (revision de3a9980)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = rq->hrtick_time;
359 
360 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 	struct rq_flags rf;
370 
371 	rq_lock(rq, &rf);
372 	__hrtick_restart(rq);
373 	rq_unlock(rq, &rf);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	if (rq == this_rq())
394 		__hrtick_restart(rq);
395 	else
396 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
397 }
398 
399 #else
400 /*
401  * Called to set the hrtick timer state.
402  *
403  * called with rq->lock held and irqs disabled
404  */
405 void hrtick_start(struct rq *rq, u64 delay)
406 {
407 	/*
408 	 * Don't schedule slices shorter than 10000ns, that just
409 	 * doesn't make sense. Rely on vruntime for fairness.
410 	 */
411 	delay = max_t(u64, delay, 10000LL);
412 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
413 		      HRTIMER_MODE_REL_PINNED_HARD);
414 }
415 
416 #endif /* CONFIG_SMP */
417 
418 static void hrtick_rq_init(struct rq *rq)
419 {
420 #ifdef CONFIG_SMP
421 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
422 #endif
423 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
424 	rq->hrtick_timer.function = hrtick;
425 }
426 #else	/* CONFIG_SCHED_HRTICK */
427 static inline void hrtick_clear(struct rq *rq)
428 {
429 }
430 
431 static inline void hrtick_rq_init(struct rq *rq)
432 {
433 }
434 #endif	/* CONFIG_SCHED_HRTICK */
435 
436 /*
437  * cmpxchg based fetch_or, macro so it works for different integer types
438  */
439 #define fetch_or(ptr, mask)						\
440 	({								\
441 		typeof(ptr) _ptr = (ptr);				\
442 		typeof(mask) _mask = (mask);				\
443 		typeof(*_ptr) _old, _val = *_ptr;			\
444 									\
445 		for (;;) {						\
446 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
447 			if (_old == _val)				\
448 				break;					\
449 			_val = _old;					\
450 		}							\
451 	_old;								\
452 })
453 
454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
455 /*
456  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457  * this avoids any races wrt polling state changes and thereby avoids
458  * spurious IPIs.
459  */
460 static bool set_nr_and_not_polling(struct task_struct *p)
461 {
462 	struct thread_info *ti = task_thread_info(p);
463 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464 }
465 
466 /*
467  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468  *
469  * If this returns true, then the idle task promises to call
470  * sched_ttwu_pending() and reschedule soon.
471  */
472 static bool set_nr_if_polling(struct task_struct *p)
473 {
474 	struct thread_info *ti = task_thread_info(p);
475 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
476 
477 	for (;;) {
478 		if (!(val & _TIF_POLLING_NRFLAG))
479 			return false;
480 		if (val & _TIF_NEED_RESCHED)
481 			return true;
482 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 		if (old == val)
484 			break;
485 		val = old;
486 	}
487 	return true;
488 }
489 
490 #else
491 static bool set_nr_and_not_polling(struct task_struct *p)
492 {
493 	set_tsk_need_resched(p);
494 	return true;
495 }
496 
497 #ifdef CONFIG_SMP
498 static bool set_nr_if_polling(struct task_struct *p)
499 {
500 	return false;
501 }
502 #endif
503 #endif
504 
505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
506 {
507 	struct wake_q_node *node = &task->wake_q;
508 
509 	/*
510 	 * Atomically grab the task, if ->wake_q is !nil already it means
511 	 * it's already queued (either by us or someone else) and will get the
512 	 * wakeup due to that.
513 	 *
514 	 * In order to ensure that a pending wakeup will observe our pending
515 	 * state, even in the failed case, an explicit smp_mb() must be used.
516 	 */
517 	smp_mb__before_atomic();
518 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
519 		return false;
520 
521 	/*
522 	 * The head is context local, there can be no concurrency.
523 	 */
524 	*head->lastp = node;
525 	head->lastp = &node->next;
526 	return true;
527 }
528 
529 /**
530  * wake_q_add() - queue a wakeup for 'later' waking.
531  * @head: the wake_q_head to add @task to
532  * @task: the task to queue for 'later' wakeup
533  *
534  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536  * instantly.
537  *
538  * This function must be used as-if it were wake_up_process(); IOW the task
539  * must be ready to be woken at this location.
540  */
541 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542 {
543 	if (__wake_q_add(head, task))
544 		get_task_struct(task);
545 }
546 
547 /**
548  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549  * @head: the wake_q_head to add @task to
550  * @task: the task to queue for 'later' wakeup
551  *
552  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554  * instantly.
555  *
556  * This function must be used as-if it were wake_up_process(); IOW the task
557  * must be ready to be woken at this location.
558  *
559  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560  * that already hold reference to @task can call the 'safe' version and trust
561  * wake_q to do the right thing depending whether or not the @task is already
562  * queued for wakeup.
563  */
564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565 {
566 	if (!__wake_q_add(head, task))
567 		put_task_struct(task);
568 }
569 
570 void wake_up_q(struct wake_q_head *head)
571 {
572 	struct wake_q_node *node = head->first;
573 
574 	while (node != WAKE_Q_TAIL) {
575 		struct task_struct *task;
576 
577 		task = container_of(node, struct task_struct, wake_q);
578 		BUG_ON(!task);
579 		/* Task can safely be re-inserted now: */
580 		node = node->next;
581 		task->wake_q.next = NULL;
582 
583 		/*
584 		 * wake_up_process() executes a full barrier, which pairs with
585 		 * the queueing in wake_q_add() so as not to miss wakeups.
586 		 */
587 		wake_up_process(task);
588 		put_task_struct(task);
589 	}
590 }
591 
592 /*
593  * resched_curr - mark rq's current task 'to be rescheduled now'.
594  *
595  * On UP this means the setting of the need_resched flag, on SMP it
596  * might also involve a cross-CPU call to trigger the scheduler on
597  * the target CPU.
598  */
599 void resched_curr(struct rq *rq)
600 {
601 	struct task_struct *curr = rq->curr;
602 	int cpu;
603 
604 	lockdep_assert_held(&rq->lock);
605 
606 	if (test_tsk_need_resched(curr))
607 		return;
608 
609 	cpu = cpu_of(rq);
610 
611 	if (cpu == smp_processor_id()) {
612 		set_tsk_need_resched(curr);
613 		set_preempt_need_resched();
614 		return;
615 	}
616 
617 	if (set_nr_and_not_polling(curr))
618 		smp_send_reschedule(cpu);
619 	else
620 		trace_sched_wake_idle_without_ipi(cpu);
621 }
622 
623 void resched_cpu(int cpu)
624 {
625 	struct rq *rq = cpu_rq(cpu);
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&rq->lock, flags);
629 	if (cpu_online(cpu) || cpu == smp_processor_id())
630 		resched_curr(rq);
631 	raw_spin_unlock_irqrestore(&rq->lock, flags);
632 }
633 
634 #ifdef CONFIG_SMP
635 #ifdef CONFIG_NO_HZ_COMMON
636 /*
637  * In the semi idle case, use the nearest busy CPU for migrating timers
638  * from an idle CPU.  This is good for power-savings.
639  *
640  * We don't do similar optimization for completely idle system, as
641  * selecting an idle CPU will add more delays to the timers than intended
642  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
643  */
644 int get_nohz_timer_target(void)
645 {
646 	int i, cpu = smp_processor_id(), default_cpu = -1;
647 	struct sched_domain *sd;
648 
649 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 		if (!idle_cpu(cpu))
651 			return cpu;
652 		default_cpu = cpu;
653 	}
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu_and(i, sched_domain_span(sd),
658 			housekeeping_cpumask(HK_FLAG_TIMER)) {
659 			if (cpu == i)
660 				continue;
661 
662 			if (!idle_cpu(i)) {
663 				cpu = i;
664 				goto unlock;
665 			}
666 		}
667 	}
668 
669 	if (default_cpu == -1)
670 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 	cpu = default_cpu;
672 unlock:
673 	rcu_read_unlock();
674 	return cpu;
675 }
676 
677 /*
678  * When add_timer_on() enqueues a timer into the timer wheel of an
679  * idle CPU then this timer might expire before the next timer event
680  * which is scheduled to wake up that CPU. In case of a completely
681  * idle system the next event might even be infinite time into the
682  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683  * leaves the inner idle loop so the newly added timer is taken into
684  * account when the CPU goes back to idle and evaluates the timer
685  * wheel for the next timer event.
686  */
687 static void wake_up_idle_cpu(int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 
691 	if (cpu == smp_processor_id())
692 		return;
693 
694 	if (set_nr_and_not_polling(rq->idle))
695 		smp_send_reschedule(cpu);
696 	else
697 		trace_sched_wake_idle_without_ipi(cpu);
698 }
699 
700 static bool wake_up_full_nohz_cpu(int cpu)
701 {
702 	/*
703 	 * We just need the target to call irq_exit() and re-evaluate
704 	 * the next tick. The nohz full kick at least implies that.
705 	 * If needed we can still optimize that later with an
706 	 * empty IRQ.
707 	 */
708 	if (cpu_is_offline(cpu))
709 		return true;  /* Don't try to wake offline CPUs. */
710 	if (tick_nohz_full_cpu(cpu)) {
711 		if (cpu != smp_processor_id() ||
712 		    tick_nohz_tick_stopped())
713 			tick_nohz_full_kick_cpu(cpu);
714 		return true;
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Wake up the specified CPU.  If the CPU is going offline, it is the
722  * caller's responsibility to deal with the lost wakeup, for example,
723  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724  */
725 void wake_up_nohz_cpu(int cpu)
726 {
727 	if (!wake_up_full_nohz_cpu(cpu))
728 		wake_up_idle_cpu(cpu);
729 }
730 
731 static void nohz_csd_func(void *info)
732 {
733 	struct rq *rq = info;
734 	int cpu = cpu_of(rq);
735 	unsigned int flags;
736 
737 	/*
738 	 * Release the rq::nohz_csd.
739 	 */
740 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 	WARN_ON(!(flags & NOHZ_KICK_MASK));
742 
743 	rq->idle_balance = idle_cpu(cpu);
744 	if (rq->idle_balance && !need_resched()) {
745 		rq->nohz_idle_balance = flags;
746 		raise_softirq_irqoff(SCHED_SOFTIRQ);
747 	}
748 }
749 
750 #endif /* CONFIG_NO_HZ_COMMON */
751 
752 #ifdef CONFIG_NO_HZ_FULL
753 bool sched_can_stop_tick(struct rq *rq)
754 {
755 	int fifo_nr_running;
756 
757 	/* Deadline tasks, even if single, need the tick */
758 	if (rq->dl.dl_nr_running)
759 		return false;
760 
761 	/*
762 	 * If there are more than one RR tasks, we need the tick to affect the
763 	 * actual RR behaviour.
764 	 */
765 	if (rq->rt.rr_nr_running) {
766 		if (rq->rt.rr_nr_running == 1)
767 			return true;
768 		else
769 			return false;
770 	}
771 
772 	/*
773 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 	 * forced preemption between FIFO tasks.
775 	 */
776 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 	if (fifo_nr_running)
778 		return true;
779 
780 	/*
781 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 	 * if there's more than one we need the tick for involuntary
783 	 * preemption.
784 	 */
785 	if (rq->nr_running > 1)
786 		return false;
787 
788 	return true;
789 }
790 #endif /* CONFIG_NO_HZ_FULL */
791 #endif /* CONFIG_SMP */
792 
793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
795 /*
796  * Iterate task_group tree rooted at *from, calling @down when first entering a
797  * node and @up when leaving it for the final time.
798  *
799  * Caller must hold rcu_lock or sufficient equivalent.
800  */
801 int walk_tg_tree_from(struct task_group *from,
802 			     tg_visitor down, tg_visitor up, void *data)
803 {
804 	struct task_group *parent, *child;
805 	int ret;
806 
807 	parent = from;
808 
809 down:
810 	ret = (*down)(parent, data);
811 	if (ret)
812 		goto out;
813 	list_for_each_entry_rcu(child, &parent->children, siblings) {
814 		parent = child;
815 		goto down;
816 
817 up:
818 		continue;
819 	}
820 	ret = (*up)(parent, data);
821 	if (ret || parent == from)
822 		goto out;
823 
824 	child = parent;
825 	parent = parent->parent;
826 	if (parent)
827 		goto up;
828 out:
829 	return ret;
830 }
831 
832 int tg_nop(struct task_group *tg, void *data)
833 {
834 	return 0;
835 }
836 #endif
837 
838 static void set_load_weight(struct task_struct *p, bool update_load)
839 {
840 	int prio = p->static_prio - MAX_RT_PRIO;
841 	struct load_weight *load = &p->se.load;
842 
843 	/*
844 	 * SCHED_IDLE tasks get minimal weight:
845 	 */
846 	if (task_has_idle_policy(p)) {
847 		load->weight = scale_load(WEIGHT_IDLEPRIO);
848 		load->inv_weight = WMULT_IDLEPRIO;
849 		return;
850 	}
851 
852 	/*
853 	 * SCHED_OTHER tasks have to update their load when changing their
854 	 * weight
855 	 */
856 	if (update_load && p->sched_class == &fair_sched_class) {
857 		reweight_task(p, prio);
858 	} else {
859 		load->weight = scale_load(sched_prio_to_weight[prio]);
860 		load->inv_weight = sched_prio_to_wmult[prio];
861 	}
862 }
863 
864 #ifdef CONFIG_UCLAMP_TASK
865 /*
866  * Serializes updates of utilization clamp values
867  *
868  * The (slow-path) user-space triggers utilization clamp value updates which
869  * can require updates on (fast-path) scheduler's data structures used to
870  * support enqueue/dequeue operations.
871  * While the per-CPU rq lock protects fast-path update operations, user-space
872  * requests are serialized using a mutex to reduce the risk of conflicting
873  * updates or API abuses.
874  */
875 static DEFINE_MUTEX(uclamp_mutex);
876 
877 /* Max allowed minimum utilization */
878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879 
880 /* Max allowed maximum utilization */
881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882 
883 /*
884  * By default RT tasks run at the maximum performance point/capacity of the
885  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886  * SCHED_CAPACITY_SCALE.
887  *
888  * This knob allows admins to change the default behavior when uclamp is being
889  * used. In battery powered devices, particularly, running at the maximum
890  * capacity and frequency will increase energy consumption and shorten the
891  * battery life.
892  *
893  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894  *
895  * This knob will not override the system default sched_util_clamp_min defined
896  * above.
897  */
898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899 
900 /* All clamps are required to be less or equal than these values */
901 static struct uclamp_se uclamp_default[UCLAMP_CNT];
902 
903 /*
904  * This static key is used to reduce the uclamp overhead in the fast path. It
905  * primarily disables the call to uclamp_rq_{inc, dec}() in
906  * enqueue/dequeue_task().
907  *
908  * This allows users to continue to enable uclamp in their kernel config with
909  * minimum uclamp overhead in the fast path.
910  *
911  * As soon as userspace modifies any of the uclamp knobs, the static key is
912  * enabled, since we have an actual users that make use of uclamp
913  * functionality.
914  *
915  * The knobs that would enable this static key are:
916  *
917  *   * A task modifying its uclamp value with sched_setattr().
918  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
920  */
921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922 
923 /* Integer rounded range for each bucket */
924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925 
926 #define for_each_clamp_id(clamp_id) \
927 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928 
929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930 {
931 	return clamp_value / UCLAMP_BUCKET_DELTA;
932 }
933 
934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
935 {
936 	if (clamp_id == UCLAMP_MIN)
937 		return 0;
938 	return SCHED_CAPACITY_SCALE;
939 }
940 
941 static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 				 unsigned int value, bool user_defined)
943 {
944 	uc_se->value = value;
945 	uc_se->bucket_id = uclamp_bucket_id(value);
946 	uc_se->user_defined = user_defined;
947 }
948 
949 static inline unsigned int
950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
951 		  unsigned int clamp_value)
952 {
953 	/*
954 	 * Avoid blocked utilization pushing up the frequency when we go
955 	 * idle (which drops the max-clamp) by retaining the last known
956 	 * max-clamp.
957 	 */
958 	if (clamp_id == UCLAMP_MAX) {
959 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 		return clamp_value;
961 	}
962 
963 	return uclamp_none(UCLAMP_MIN);
964 }
965 
966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
967 				     unsigned int clamp_value)
968 {
969 	/* Reset max-clamp retention only on idle exit */
970 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 		return;
972 
973 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974 }
975 
976 static inline
977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
978 				   unsigned int clamp_value)
979 {
980 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 	int bucket_id = UCLAMP_BUCKETS - 1;
982 
983 	/*
984 	 * Since both min and max clamps are max aggregated, find the
985 	 * top most bucket with tasks in.
986 	 */
987 	for ( ; bucket_id >= 0; bucket_id--) {
988 		if (!bucket[bucket_id].tasks)
989 			continue;
990 		return bucket[bucket_id].value;
991 	}
992 
993 	/* No tasks -- default clamp values */
994 	return uclamp_idle_value(rq, clamp_id, clamp_value);
995 }
996 
997 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998 {
999 	unsigned int default_util_min;
1000 	struct uclamp_se *uc_se;
1001 
1002 	lockdep_assert_held(&p->pi_lock);
1003 
1004 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1005 
1006 	/* Only sync if user didn't override the default */
1007 	if (uc_se->user_defined)
1008 		return;
1009 
1010 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 	uclamp_se_set(uc_se, default_util_min, false);
1012 }
1013 
1014 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015 {
1016 	struct rq_flags rf;
1017 	struct rq *rq;
1018 
1019 	if (!rt_task(p))
1020 		return;
1021 
1022 	/* Protect updates to p->uclamp_* */
1023 	rq = task_rq_lock(p, &rf);
1024 	__uclamp_update_util_min_rt_default(p);
1025 	task_rq_unlock(rq, p, &rf);
1026 }
1027 
1028 static void uclamp_sync_util_min_rt_default(void)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * copy_process()			sysctl_uclamp
1034 	 *					  uclamp_min_rt = X;
1035 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1036 	 *   // link thread			  smp_mb__after_spinlock()
1037 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1038 	 *   sched_post_fork()			  for_each_process_thread()
1039 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1040 	 *
1041 	 * Ensures that either sched_post_fork() will observe the new
1042 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 	 * task.
1044 	 */
1045 	read_lock(&tasklist_lock);
1046 	smp_mb__after_spinlock();
1047 	read_unlock(&tasklist_lock);
1048 
1049 	rcu_read_lock();
1050 	for_each_process_thread(g, p)
1051 		uclamp_update_util_min_rt_default(p);
1052 	rcu_read_unlock();
1053 }
1054 
1055 static inline struct uclamp_se
1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1057 {
1058 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059 #ifdef CONFIG_UCLAMP_TASK_GROUP
1060 	struct uclamp_se uc_max;
1061 
1062 	/*
1063 	 * Tasks in autogroups or root task group will be
1064 	 * restricted by system defaults.
1065 	 */
1066 	if (task_group_is_autogroup(task_group(p)))
1067 		return uc_req;
1068 	if (task_group(p) == &root_task_group)
1069 		return uc_req;
1070 
1071 	uc_max = task_group(p)->uclamp[clamp_id];
1072 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 		return uc_max;
1074 #endif
1075 
1076 	return uc_req;
1077 }
1078 
1079 /*
1080  * The effective clamp bucket index of a task depends on, by increasing
1081  * priority:
1082  * - the task specific clamp value, when explicitly requested from userspace
1083  * - the task group effective clamp value, for tasks not either in the root
1084  *   group or in an autogroup
1085  * - the system default clamp value, defined by the sysadmin
1086  */
1087 static inline struct uclamp_se
1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1089 {
1090 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1091 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1092 
1093 	/* System default restrictions always apply */
1094 	if (unlikely(uc_req.value > uc_max.value))
1095 		return uc_max;
1096 
1097 	return uc_req;
1098 }
1099 
1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1101 {
1102 	struct uclamp_se uc_eff;
1103 
1104 	/* Task currently refcounted: use back-annotated (effective) value */
1105 	if (p->uclamp[clamp_id].active)
1106 		return (unsigned long)p->uclamp[clamp_id].value;
1107 
1108 	uc_eff = uclamp_eff_get(p, clamp_id);
1109 
1110 	return (unsigned long)uc_eff.value;
1111 }
1112 
1113 /*
1114  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116  * updates the rq's clamp value if required.
1117  *
1118  * Tasks can have a task-specific value requested from user-space, track
1119  * within each bucket the maximum value for tasks refcounted in it.
1120  * This "local max aggregation" allows to track the exact "requested" value
1121  * for each bucket when all its RUNNABLE tasks require the same clamp.
1122  */
1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1124 				    enum uclamp_id clamp_id)
1125 {
1126 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 	struct uclamp_bucket *bucket;
1129 
1130 	lockdep_assert_held(&rq->lock);
1131 
1132 	/* Update task effective clamp */
1133 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134 
1135 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 	bucket->tasks++;
1137 	uc_se->active = true;
1138 
1139 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140 
1141 	/*
1142 	 * Local max aggregation: rq buckets always track the max
1143 	 * "requested" clamp value of its RUNNABLE tasks.
1144 	 */
1145 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 		bucket->value = uc_se->value;
1147 
1148 	if (uc_se->value > READ_ONCE(uc_rq->value))
1149 		WRITE_ONCE(uc_rq->value, uc_se->value);
1150 }
1151 
1152 /*
1153  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154  * is released. If this is the last task reference counting the rq's max
1155  * active clamp value, then the rq's clamp value is updated.
1156  *
1157  * Both refcounted tasks and rq's cached clamp values are expected to be
1158  * always valid. If it's detected they are not, as defensive programming,
1159  * enforce the expected state and warn.
1160  */
1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1162 				    enum uclamp_id clamp_id)
1163 {
1164 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 	struct uclamp_bucket *bucket;
1167 	unsigned int bkt_clamp;
1168 	unsigned int rq_clamp;
1169 
1170 	lockdep_assert_held(&rq->lock);
1171 
1172 	/*
1173 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 	 *
1176 	 * In this case the uc_se->active flag should be false since no uclamp
1177 	 * accounting was performed at enqueue time and we can just return
1178 	 * here.
1179 	 *
1180 	 * Need to be careful of the following enqueue/dequeue ordering
1181 	 * problem too
1182 	 *
1183 	 *	enqueue(taskA)
1184 	 *	// sched_uclamp_used gets enabled
1185 	 *	enqueue(taskB)
1186 	 *	dequeue(taskA)
1187 	 *	// Must not decrement bucket->tasks here
1188 	 *	dequeue(taskB)
1189 	 *
1190 	 * where we could end up with stale data in uc_se and
1191 	 * bucket[uc_se->bucket_id].
1192 	 *
1193 	 * The following check here eliminates the possibility of such race.
1194 	 */
1195 	if (unlikely(!uc_se->active))
1196 		return;
1197 
1198 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1199 
1200 	SCHED_WARN_ON(!bucket->tasks);
1201 	if (likely(bucket->tasks))
1202 		bucket->tasks--;
1203 
1204 	uc_se->active = false;
1205 
1206 	/*
1207 	 * Keep "local max aggregation" simple and accept to (possibly)
1208 	 * overboost some RUNNABLE tasks in the same bucket.
1209 	 * The rq clamp bucket value is reset to its base value whenever
1210 	 * there are no more RUNNABLE tasks refcounting it.
1211 	 */
1212 	if (likely(bucket->tasks))
1213 		return;
1214 
1215 	rq_clamp = READ_ONCE(uc_rq->value);
1216 	/*
1217 	 * Defensive programming: this should never happen. If it happens,
1218 	 * e.g. due to future modification, warn and fixup the expected value.
1219 	 */
1220 	SCHED_WARN_ON(bucket->value > rq_clamp);
1221 	if (bucket->value >= rq_clamp) {
1222 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 	}
1225 }
1226 
1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228 {
1229 	enum uclamp_id clamp_id;
1230 
1231 	/*
1232 	 * Avoid any overhead until uclamp is actually used by the userspace.
1233 	 *
1234 	 * The condition is constructed such that a NOP is generated when
1235 	 * sched_uclamp_used is disabled.
1236 	 */
1237 	if (!static_branch_unlikely(&sched_uclamp_used))
1238 		return;
1239 
1240 	if (unlikely(!p->sched_class->uclamp_enabled))
1241 		return;
1242 
1243 	for_each_clamp_id(clamp_id)
1244 		uclamp_rq_inc_id(rq, p, clamp_id);
1245 
1246 	/* Reset clamp idle holding when there is one RUNNABLE task */
1247 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1249 }
1250 
1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252 {
1253 	enum uclamp_id clamp_id;
1254 
1255 	/*
1256 	 * Avoid any overhead until uclamp is actually used by the userspace.
1257 	 *
1258 	 * The condition is constructed such that a NOP is generated when
1259 	 * sched_uclamp_used is disabled.
1260 	 */
1261 	if (!static_branch_unlikely(&sched_uclamp_used))
1262 		return;
1263 
1264 	if (unlikely(!p->sched_class->uclamp_enabled))
1265 		return;
1266 
1267 	for_each_clamp_id(clamp_id)
1268 		uclamp_rq_dec_id(rq, p, clamp_id);
1269 }
1270 
1271 static inline void
1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1273 {
1274 	struct rq_flags rf;
1275 	struct rq *rq;
1276 
1277 	/*
1278 	 * Lock the task and the rq where the task is (or was) queued.
1279 	 *
1280 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 	 * price to pay to safely serialize util_{min,max} updates with
1282 	 * enqueues, dequeues and migration operations.
1283 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 	 */
1285 	rq = task_rq_lock(p, &rf);
1286 
1287 	/*
1288 	 * Setting the clamp bucket is serialized by task_rq_lock().
1289 	 * If the task is not yet RUNNABLE and its task_struct is not
1290 	 * affecting a valid clamp bucket, the next time it's enqueued,
1291 	 * it will already see the updated clamp bucket value.
1292 	 */
1293 	if (p->uclamp[clamp_id].active) {
1294 		uclamp_rq_dec_id(rq, p, clamp_id);
1295 		uclamp_rq_inc_id(rq, p, clamp_id);
1296 	}
1297 
1298 	task_rq_unlock(rq, p, &rf);
1299 }
1300 
1301 #ifdef CONFIG_UCLAMP_TASK_GROUP
1302 static inline void
1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 			   unsigned int clamps)
1305 {
1306 	enum uclamp_id clamp_id;
1307 	struct css_task_iter it;
1308 	struct task_struct *p;
1309 
1310 	css_task_iter_start(css, 0, &it);
1311 	while ((p = css_task_iter_next(&it))) {
1312 		for_each_clamp_id(clamp_id) {
1313 			if ((0x1 << clamp_id) & clamps)
1314 				uclamp_update_active(p, clamp_id);
1315 		}
1316 	}
1317 	css_task_iter_end(&it);
1318 }
1319 
1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321 static void uclamp_update_root_tg(void)
1322 {
1323 	struct task_group *tg = &root_task_group;
1324 
1325 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 		      sysctl_sched_uclamp_util_min, false);
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 		      sysctl_sched_uclamp_util_max, false);
1329 
1330 	rcu_read_lock();
1331 	cpu_util_update_eff(&root_task_group.css);
1332 	rcu_read_unlock();
1333 }
1334 #else
1335 static void uclamp_update_root_tg(void) { }
1336 #endif
1337 
1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1339 				void *buffer, size_t *lenp, loff_t *ppos)
1340 {
1341 	bool update_root_tg = false;
1342 	int old_min, old_max, old_min_rt;
1343 	int result;
1344 
1345 	mutex_lock(&uclamp_mutex);
1346 	old_min = sysctl_sched_uclamp_util_min;
1347 	old_max = sysctl_sched_uclamp_util_max;
1348 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1349 
1350 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 	if (result)
1352 		goto undo;
1353 	if (!write)
1354 		goto done;
1355 
1356 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1357 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1358 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359 
1360 		result = -EINVAL;
1361 		goto undo;
1362 	}
1363 
1364 	if (old_min != sysctl_sched_uclamp_util_min) {
1365 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1366 			      sysctl_sched_uclamp_util_min, false);
1367 		update_root_tg = true;
1368 	}
1369 	if (old_max != sysctl_sched_uclamp_util_max) {
1370 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1371 			      sysctl_sched_uclamp_util_max, false);
1372 		update_root_tg = true;
1373 	}
1374 
1375 	if (update_root_tg) {
1376 		static_branch_enable(&sched_uclamp_used);
1377 		uclamp_update_root_tg();
1378 	}
1379 
1380 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 		static_branch_enable(&sched_uclamp_used);
1382 		uclamp_sync_util_min_rt_default();
1383 	}
1384 
1385 	/*
1386 	 * We update all RUNNABLE tasks only when task groups are in use.
1387 	 * Otherwise, keep it simple and do just a lazy update at each next
1388 	 * task enqueue time.
1389 	 */
1390 
1391 	goto done;
1392 
1393 undo:
1394 	sysctl_sched_uclamp_util_min = old_min;
1395 	sysctl_sched_uclamp_util_max = old_max;
1396 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1397 done:
1398 	mutex_unlock(&uclamp_mutex);
1399 
1400 	return result;
1401 }
1402 
1403 static int uclamp_validate(struct task_struct *p,
1404 			   const struct sched_attr *attr)
1405 {
1406 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1408 
1409 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 		util_min = attr->sched_util_min;
1411 
1412 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 			return -EINVAL;
1414 	}
1415 
1416 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 		util_max = attr->sched_util_max;
1418 
1419 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1424 		return -EINVAL;
1425 
1426 	/*
1427 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 	 *
1429 	 * We need to do that here, because enabling static branches is a
1430 	 * blocking operation which obviously cannot be done while holding
1431 	 * scheduler locks.
1432 	 */
1433 	static_branch_enable(&sched_uclamp_used);
1434 
1435 	return 0;
1436 }
1437 
1438 static bool uclamp_reset(const struct sched_attr *attr,
1439 			 enum uclamp_id clamp_id,
1440 			 struct uclamp_se *uc_se)
1441 {
1442 	/* Reset on sched class change for a non user-defined clamp value. */
1443 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 	    !uc_se->user_defined)
1445 		return true;
1446 
1447 	/* Reset on sched_util_{min,max} == -1. */
1448 	if (clamp_id == UCLAMP_MIN &&
1449 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 	    attr->sched_util_min == -1) {
1451 		return true;
1452 	}
1453 
1454 	if (clamp_id == UCLAMP_MAX &&
1455 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 	    attr->sched_util_max == -1) {
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 static void __setscheduler_uclamp(struct task_struct *p,
1464 				  const struct sched_attr *attr)
1465 {
1466 	enum uclamp_id clamp_id;
1467 
1468 	for_each_clamp_id(clamp_id) {
1469 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1470 		unsigned int value;
1471 
1472 		if (!uclamp_reset(attr, clamp_id, uc_se))
1473 			continue;
1474 
1475 		/*
1476 		 * RT by default have a 100% boost value that could be modified
1477 		 * at runtime.
1478 		 */
1479 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1480 			value = sysctl_sched_uclamp_util_min_rt_default;
1481 		else
1482 			value = uclamp_none(clamp_id);
1483 
1484 		uclamp_se_set(uc_se, value, false);
1485 
1486 	}
1487 
1488 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 		return;
1490 
1491 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 	    attr->sched_util_min != -1) {
1493 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 			      attr->sched_util_min, true);
1495 	}
1496 
1497 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 	    attr->sched_util_max != -1) {
1499 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 			      attr->sched_util_max, true);
1501 	}
1502 }
1503 
1504 static void uclamp_fork(struct task_struct *p)
1505 {
1506 	enum uclamp_id clamp_id;
1507 
1508 	/*
1509 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 	 * as the task is still at its early fork stages.
1511 	 */
1512 	for_each_clamp_id(clamp_id)
1513 		p->uclamp[clamp_id].active = false;
1514 
1515 	if (likely(!p->sched_reset_on_fork))
1516 		return;
1517 
1518 	for_each_clamp_id(clamp_id) {
1519 		uclamp_se_set(&p->uclamp_req[clamp_id],
1520 			      uclamp_none(clamp_id), false);
1521 	}
1522 }
1523 
1524 static void uclamp_post_fork(struct task_struct *p)
1525 {
1526 	uclamp_update_util_min_rt_default(p);
1527 }
1528 
1529 static void __init init_uclamp_rq(struct rq *rq)
1530 {
1531 	enum uclamp_id clamp_id;
1532 	struct uclamp_rq *uc_rq = rq->uclamp;
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uc_rq[clamp_id] = (struct uclamp_rq) {
1536 			.value = uclamp_none(clamp_id)
1537 		};
1538 	}
1539 
1540 	rq->uclamp_flags = 0;
1541 }
1542 
1543 static void __init init_uclamp(void)
1544 {
1545 	struct uclamp_se uc_max = {};
1546 	enum uclamp_id clamp_id;
1547 	int cpu;
1548 
1549 	for_each_possible_cpu(cpu)
1550 		init_uclamp_rq(cpu_rq(cpu));
1551 
1552 	for_each_clamp_id(clamp_id) {
1553 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1554 			      uclamp_none(clamp_id), false);
1555 	}
1556 
1557 	/* System defaults allow max clamp values for both indexes */
1558 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1559 	for_each_clamp_id(clamp_id) {
1560 		uclamp_default[clamp_id] = uc_max;
1561 #ifdef CONFIG_UCLAMP_TASK_GROUP
1562 		root_task_group.uclamp_req[clamp_id] = uc_max;
1563 		root_task_group.uclamp[clamp_id] = uc_max;
1564 #endif
1565 	}
1566 }
1567 
1568 #else /* CONFIG_UCLAMP_TASK */
1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1571 static inline int uclamp_validate(struct task_struct *p,
1572 				  const struct sched_attr *attr)
1573 {
1574 	return -EOPNOTSUPP;
1575 }
1576 static void __setscheduler_uclamp(struct task_struct *p,
1577 				  const struct sched_attr *attr) { }
1578 static inline void uclamp_fork(struct task_struct *p) { }
1579 static inline void uclamp_post_fork(struct task_struct *p) { }
1580 static inline void init_uclamp(void) { }
1581 #endif /* CONFIG_UCLAMP_TASK */
1582 
1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1584 {
1585 	if (!(flags & ENQUEUE_NOCLOCK))
1586 		update_rq_clock(rq);
1587 
1588 	if (!(flags & ENQUEUE_RESTORE)) {
1589 		sched_info_queued(rq, p);
1590 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 	}
1592 
1593 	uclamp_rq_inc(rq, p);
1594 	p->sched_class->enqueue_task(rq, p, flags);
1595 }
1596 
1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1598 {
1599 	if (!(flags & DEQUEUE_NOCLOCK))
1600 		update_rq_clock(rq);
1601 
1602 	if (!(flags & DEQUEUE_SAVE)) {
1603 		sched_info_dequeued(rq, p);
1604 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 	}
1606 
1607 	uclamp_rq_dec(rq, p);
1608 	p->sched_class->dequeue_task(rq, p, flags);
1609 }
1610 
1611 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 	enqueue_task(rq, p, flags);
1614 
1615 	p->on_rq = TASK_ON_RQ_QUEUED;
1616 }
1617 
1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1619 {
1620 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621 
1622 	dequeue_task(rq, p, flags);
1623 }
1624 
1625 /*
1626  * __normal_prio - return the priority that is based on the static prio
1627  */
1628 static inline int __normal_prio(struct task_struct *p)
1629 {
1630 	return p->static_prio;
1631 }
1632 
1633 /*
1634  * Calculate the expected normal priority: i.e. priority
1635  * without taking RT-inheritance into account. Might be
1636  * boosted by interactivity modifiers. Changes upon fork,
1637  * setprio syscalls, and whenever the interactivity
1638  * estimator recalculates.
1639  */
1640 static inline int normal_prio(struct task_struct *p)
1641 {
1642 	int prio;
1643 
1644 	if (task_has_dl_policy(p))
1645 		prio = MAX_DL_PRIO-1;
1646 	else if (task_has_rt_policy(p))
1647 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 	else
1649 		prio = __normal_prio(p);
1650 	return prio;
1651 }
1652 
1653 /*
1654  * Calculate the current priority, i.e. the priority
1655  * taken into account by the scheduler. This value might
1656  * be boosted by RT tasks, or might be boosted by
1657  * interactivity modifiers. Will be RT if the task got
1658  * RT-boosted. If not then it returns p->normal_prio.
1659  */
1660 static int effective_prio(struct task_struct *p)
1661 {
1662 	p->normal_prio = normal_prio(p);
1663 	/*
1664 	 * If we are RT tasks or we were boosted to RT priority,
1665 	 * keep the priority unchanged. Otherwise, update priority
1666 	 * to the normal priority:
1667 	 */
1668 	if (!rt_prio(p->prio))
1669 		return p->normal_prio;
1670 	return p->prio;
1671 }
1672 
1673 /**
1674  * task_curr - is this task currently executing on a CPU?
1675  * @p: the task in question.
1676  *
1677  * Return: 1 if the task is currently executing. 0 otherwise.
1678  */
1679 inline int task_curr(const struct task_struct *p)
1680 {
1681 	return cpu_curr(task_cpu(p)) == p;
1682 }
1683 
1684 /*
1685  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686  * use the balance_callback list if you want balancing.
1687  *
1688  * this means any call to check_class_changed() must be followed by a call to
1689  * balance_callback().
1690  */
1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 				       const struct sched_class *prev_class,
1693 				       int oldprio)
1694 {
1695 	if (prev_class != p->sched_class) {
1696 		if (prev_class->switched_from)
1697 			prev_class->switched_from(rq, p);
1698 
1699 		p->sched_class->switched_to(rq, p);
1700 	} else if (oldprio != p->prio || dl_task(p))
1701 		p->sched_class->prio_changed(rq, p, oldprio);
1702 }
1703 
1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1705 {
1706 	if (p->sched_class == rq->curr->sched_class)
1707 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1708 	else if (p->sched_class > rq->curr->sched_class)
1709 		resched_curr(rq);
1710 
1711 	/*
1712 	 * A queue event has occurred, and we're going to schedule.  In
1713 	 * this case, we can save a useless back to back clock update.
1714 	 */
1715 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1716 		rq_clock_skip_update(rq);
1717 }
1718 
1719 #ifdef CONFIG_SMP
1720 
1721 static void
1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723 
1724 static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 				  const struct cpumask *new_mask,
1726 				  u32 flags);
1727 
1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729 {
1730 	if (likely(!p->migration_disabled))
1731 		return;
1732 
1733 	if (p->cpus_ptr != &p->cpus_mask)
1734 		return;
1735 
1736 	/*
1737 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 	 */
1739 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740 }
1741 
1742 void migrate_disable(void)
1743 {
1744 	struct task_struct *p = current;
1745 
1746 	if (p->migration_disabled) {
1747 		p->migration_disabled++;
1748 		return;
1749 	}
1750 
1751 	preempt_disable();
1752 	this_rq()->nr_pinned++;
1753 	p->migration_disabled = 1;
1754 	preempt_enable();
1755 }
1756 EXPORT_SYMBOL_GPL(migrate_disable);
1757 
1758 void migrate_enable(void)
1759 {
1760 	struct task_struct *p = current;
1761 
1762 	if (p->migration_disabled > 1) {
1763 		p->migration_disabled--;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Ensure stop_task runs either before or after this, and that
1769 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 	 */
1771 	preempt_disable();
1772 	if (p->cpus_ptr != &p->cpus_mask)
1773 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 	/*
1775 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 	 * regular cpus_mask, otherwise things that race (eg.
1777 	 * select_fallback_rq) get confused.
1778 	 */
1779 	barrier();
1780 	p->migration_disabled = 0;
1781 	this_rq()->nr_pinned--;
1782 	preempt_enable();
1783 }
1784 EXPORT_SYMBOL_GPL(migrate_enable);
1785 
1786 static inline bool rq_has_pinned_tasks(struct rq *rq)
1787 {
1788 	return rq->nr_pinned;
1789 }
1790 
1791 /*
1792  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1793  * __set_cpus_allowed_ptr() and select_fallback_rq().
1794  */
1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796 {
1797 	/* When not in the task's cpumask, no point in looking further. */
1798 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1799 		return false;
1800 
1801 	/* migrate_disabled() must be allowed to finish. */
1802 	if (is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	/* Non kernel threads are not allowed during either online or offline. */
1806 	if (!(p->flags & PF_KTHREAD))
1807 		return cpu_active(cpu);
1808 
1809 	/* KTHREAD_IS_PER_CPU is always allowed. */
1810 	if (kthread_is_per_cpu(p))
1811 		return cpu_online(cpu);
1812 
1813 	/* Regular kernel threads don't get to stay during offline. */
1814 	if (cpu_rq(cpu)->balance_push)
1815 		return false;
1816 
1817 	/* But are allowed during online. */
1818 	return cpu_online(cpu);
1819 }
1820 
1821 /*
1822  * This is how migration works:
1823  *
1824  * 1) we invoke migration_cpu_stop() on the target CPU using
1825  *    stop_one_cpu().
1826  * 2) stopper starts to run (implicitly forcing the migrated thread
1827  *    off the CPU)
1828  * 3) it checks whether the migrated task is still in the wrong runqueue.
1829  * 4) if it's in the wrong runqueue then the migration thread removes
1830  *    it and puts it into the right queue.
1831  * 5) stopper completes and stop_one_cpu() returns and the migration
1832  *    is done.
1833  */
1834 
1835 /*
1836  * move_queued_task - move a queued task to new rq.
1837  *
1838  * Returns (locked) new rq. Old rq's lock is released.
1839  */
1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 				   struct task_struct *p, int new_cpu)
1842 {
1843 	lockdep_assert_held(&rq->lock);
1844 
1845 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1846 	set_task_cpu(p, new_cpu);
1847 	rq_unlock(rq, rf);
1848 
1849 	rq = cpu_rq(new_cpu);
1850 
1851 	rq_lock(rq, rf);
1852 	BUG_ON(task_cpu(p) != new_cpu);
1853 	activate_task(rq, p, 0);
1854 	check_preempt_curr(rq, p, 0);
1855 
1856 	return rq;
1857 }
1858 
1859 struct migration_arg {
1860 	struct task_struct		*task;
1861 	int				dest_cpu;
1862 	struct set_affinity_pending	*pending;
1863 };
1864 
1865 struct set_affinity_pending {
1866 	refcount_t		refs;
1867 	struct completion	done;
1868 	struct cpu_stop_work	stop_work;
1869 	struct migration_arg	arg;
1870 };
1871 
1872 /*
1873  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1874  * this because either it can't run here any more (set_cpus_allowed()
1875  * away from this CPU, or CPU going down), or because we're
1876  * attempting to rebalance this task on exec (sched_exec).
1877  *
1878  * So we race with normal scheduler movements, but that's OK, as long
1879  * as the task is no longer on this CPU.
1880  */
1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1882 				 struct task_struct *p, int dest_cpu)
1883 {
1884 	/* Affinity changed (again). */
1885 	if (!is_cpu_allowed(p, dest_cpu))
1886 		return rq;
1887 
1888 	update_rq_clock(rq);
1889 	rq = move_queued_task(rq, rf, p, dest_cpu);
1890 
1891 	return rq;
1892 }
1893 
1894 /*
1895  * migration_cpu_stop - this will be executed by a highprio stopper thread
1896  * and performs thread migration by bumping thread off CPU then
1897  * 'pushing' onto another runqueue.
1898  */
1899 static int migration_cpu_stop(void *data)
1900 {
1901 	struct set_affinity_pending *pending;
1902 	struct migration_arg *arg = data;
1903 	struct task_struct *p = arg->task;
1904 	int dest_cpu = arg->dest_cpu;
1905 	struct rq *rq = this_rq();
1906 	bool complete = false;
1907 	struct rq_flags rf;
1908 
1909 	/*
1910 	 * The original target CPU might have gone down and we might
1911 	 * be on another CPU but it doesn't matter.
1912 	 */
1913 	local_irq_save(rf.flags);
1914 	/*
1915 	 * We need to explicitly wake pending tasks before running
1916 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1917 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1918 	 */
1919 	flush_smp_call_function_from_idle();
1920 
1921 	raw_spin_lock(&p->pi_lock);
1922 	rq_lock(rq, &rf);
1923 
1924 	pending = p->migration_pending;
1925 	/*
1926 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1927 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1928 	 * we're holding p->pi_lock.
1929 	 */
1930 	if (task_rq(p) == rq) {
1931 		if (is_migration_disabled(p))
1932 			goto out;
1933 
1934 		if (pending) {
1935 			p->migration_pending = NULL;
1936 			complete = true;
1937 		}
1938 
1939 		/* migrate_enable() --  we must not race against SCA */
1940 		if (dest_cpu < 0) {
1941 			/*
1942 			 * When this was migrate_enable() but we no longer
1943 			 * have a @pending, a concurrent SCA 'fixed' things
1944 			 * and we should be valid again. Nothing to do.
1945 			 */
1946 			if (!pending) {
1947 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1948 				goto out;
1949 			}
1950 
1951 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1952 		}
1953 
1954 		if (task_on_rq_queued(p))
1955 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1956 		else
1957 			p->wake_cpu = dest_cpu;
1958 
1959 	} else if (dest_cpu < 0 || pending) {
1960 		/*
1961 		 * This happens when we get migrated between migrate_enable()'s
1962 		 * preempt_enable() and scheduling the stopper task. At that
1963 		 * point we're a regular task again and not current anymore.
1964 		 *
1965 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1966 		 * more likely.
1967 		 */
1968 
1969 		/*
1970 		 * The task moved before the stopper got to run. We're holding
1971 		 * ->pi_lock, so the allowed mask is stable - if it got
1972 		 * somewhere allowed, we're done.
1973 		 */
1974 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1975 			p->migration_pending = NULL;
1976 			complete = true;
1977 			goto out;
1978 		}
1979 
1980 		/*
1981 		 * When this was migrate_enable() but we no longer have an
1982 		 * @pending, a concurrent SCA 'fixed' things and we should be
1983 		 * valid again. Nothing to do.
1984 		 */
1985 		if (!pending) {
1986 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1987 			goto out;
1988 		}
1989 
1990 		/*
1991 		 * When migrate_enable() hits a rq mis-match we can't reliably
1992 		 * determine is_migration_disabled() and so have to chase after
1993 		 * it.
1994 		 */
1995 		task_rq_unlock(rq, p, &rf);
1996 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1997 				    &pending->arg, &pending->stop_work);
1998 		return 0;
1999 	}
2000 out:
2001 	task_rq_unlock(rq, p, &rf);
2002 
2003 	if (complete)
2004 		complete_all(&pending->done);
2005 
2006 	/* For pending->{arg,stop_work} */
2007 	pending = arg->pending;
2008 	if (pending && refcount_dec_and_test(&pending->refs))
2009 		wake_up_var(&pending->refs);
2010 
2011 	return 0;
2012 }
2013 
2014 int push_cpu_stop(void *arg)
2015 {
2016 	struct rq *lowest_rq = NULL, *rq = this_rq();
2017 	struct task_struct *p = arg;
2018 
2019 	raw_spin_lock_irq(&p->pi_lock);
2020 	raw_spin_lock(&rq->lock);
2021 
2022 	if (task_rq(p) != rq)
2023 		goto out_unlock;
2024 
2025 	if (is_migration_disabled(p)) {
2026 		p->migration_flags |= MDF_PUSH;
2027 		goto out_unlock;
2028 	}
2029 
2030 	p->migration_flags &= ~MDF_PUSH;
2031 
2032 	if (p->sched_class->find_lock_rq)
2033 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2034 
2035 	if (!lowest_rq)
2036 		goto out_unlock;
2037 
2038 	// XXX validate p is still the highest prio task
2039 	if (task_rq(p) == rq) {
2040 		deactivate_task(rq, p, 0);
2041 		set_task_cpu(p, lowest_rq->cpu);
2042 		activate_task(lowest_rq, p, 0);
2043 		resched_curr(lowest_rq);
2044 	}
2045 
2046 	double_unlock_balance(rq, lowest_rq);
2047 
2048 out_unlock:
2049 	rq->push_busy = false;
2050 	raw_spin_unlock(&rq->lock);
2051 	raw_spin_unlock_irq(&p->pi_lock);
2052 
2053 	put_task_struct(p);
2054 	return 0;
2055 }
2056 
2057 /*
2058  * sched_class::set_cpus_allowed must do the below, but is not required to
2059  * actually call this function.
2060  */
2061 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2062 {
2063 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2064 		p->cpus_ptr = new_mask;
2065 		return;
2066 	}
2067 
2068 	cpumask_copy(&p->cpus_mask, new_mask);
2069 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2070 }
2071 
2072 static void
2073 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2074 {
2075 	struct rq *rq = task_rq(p);
2076 	bool queued, running;
2077 
2078 	/*
2079 	 * This here violates the locking rules for affinity, since we're only
2080 	 * supposed to change these variables while holding both rq->lock and
2081 	 * p->pi_lock.
2082 	 *
2083 	 * HOWEVER, it magically works, because ttwu() is the only code that
2084 	 * accesses these variables under p->pi_lock and only does so after
2085 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2086 	 * before finish_task().
2087 	 *
2088 	 * XXX do further audits, this smells like something putrid.
2089 	 */
2090 	if (flags & SCA_MIGRATE_DISABLE)
2091 		SCHED_WARN_ON(!p->on_cpu);
2092 	else
2093 		lockdep_assert_held(&p->pi_lock);
2094 
2095 	queued = task_on_rq_queued(p);
2096 	running = task_current(rq, p);
2097 
2098 	if (queued) {
2099 		/*
2100 		 * Because __kthread_bind() calls this on blocked tasks without
2101 		 * holding rq->lock.
2102 		 */
2103 		lockdep_assert_held(&rq->lock);
2104 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2105 	}
2106 	if (running)
2107 		put_prev_task(rq, p);
2108 
2109 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2110 
2111 	if (queued)
2112 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2113 	if (running)
2114 		set_next_task(rq, p);
2115 }
2116 
2117 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2118 {
2119 	__do_set_cpus_allowed(p, new_mask, 0);
2120 }
2121 
2122 /*
2123  * This function is wildly self concurrent; here be dragons.
2124  *
2125  *
2126  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2127  * designated task is enqueued on an allowed CPU. If that task is currently
2128  * running, we have to kick it out using the CPU stopper.
2129  *
2130  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2131  * Consider:
2132  *
2133  *     Initial conditions: P0->cpus_mask = [0, 1]
2134  *
2135  *     P0@CPU0                  P1
2136  *
2137  *     migrate_disable();
2138  *     <preempted>
2139  *                              set_cpus_allowed_ptr(P0, [1]);
2140  *
2141  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2142  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2143  * This means we need the following scheme:
2144  *
2145  *     P0@CPU0                  P1
2146  *
2147  *     migrate_disable();
2148  *     <preempted>
2149  *                              set_cpus_allowed_ptr(P0, [1]);
2150  *                                <blocks>
2151  *     <resumes>
2152  *     migrate_enable();
2153  *       __set_cpus_allowed_ptr();
2154  *       <wakes local stopper>
2155  *                         `--> <woken on migration completion>
2156  *
2157  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2158  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2159  * task p are serialized by p->pi_lock, which we can leverage: the one that
2160  * should come into effect at the end of the Migrate-Disable region is the last
2161  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2162  * but we still need to properly signal those waiting tasks at the appropriate
2163  * moment.
2164  *
2165  * This is implemented using struct set_affinity_pending. The first
2166  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2167  * setup an instance of that struct and install it on the targeted task_struct.
2168  * Any and all further callers will reuse that instance. Those then wait for
2169  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2170  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2171  *
2172  *
2173  * (1) In the cases covered above. There is one more where the completion is
2174  * signaled within affine_move_task() itself: when a subsequent affinity request
2175  * cancels the need for an active migration. Consider:
2176  *
2177  *     Initial conditions: P0->cpus_mask = [0, 1]
2178  *
2179  *     P0@CPU0            P1                             P2
2180  *
2181  *     migrate_disable();
2182  *     <preempted>
2183  *                        set_cpus_allowed_ptr(P0, [1]);
2184  *                          <blocks>
2185  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2186  *                                                         <signal completion>
2187  *                          <awakes>
2188  *
2189  * Note that the above is safe vs a concurrent migrate_enable(), as any
2190  * pending affinity completion is preceded by an uninstallation of
2191  * p->migration_pending done with p->pi_lock held.
2192  */
2193 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2194 			    int dest_cpu, unsigned int flags)
2195 {
2196 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2197 	struct migration_arg arg = {
2198 		.task = p,
2199 		.dest_cpu = dest_cpu,
2200 	};
2201 	bool complete = false;
2202 
2203 	/* Can the task run on the task's current CPU? If so, we're done */
2204 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2205 		struct task_struct *push_task = NULL;
2206 
2207 		if ((flags & SCA_MIGRATE_ENABLE) &&
2208 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2209 			rq->push_busy = true;
2210 			push_task = get_task_struct(p);
2211 		}
2212 
2213 		pending = p->migration_pending;
2214 		if (pending) {
2215 			refcount_inc(&pending->refs);
2216 			p->migration_pending = NULL;
2217 			complete = true;
2218 		}
2219 		task_rq_unlock(rq, p, rf);
2220 
2221 		if (push_task) {
2222 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2223 					    p, &rq->push_work);
2224 		}
2225 
2226 		if (complete)
2227 			goto do_complete;
2228 
2229 		return 0;
2230 	}
2231 
2232 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2233 		/* serialized by p->pi_lock */
2234 		if (!p->migration_pending) {
2235 			/* Install the request */
2236 			refcount_set(&my_pending.refs, 1);
2237 			init_completion(&my_pending.done);
2238 			p->migration_pending = &my_pending;
2239 		} else {
2240 			pending = p->migration_pending;
2241 			refcount_inc(&pending->refs);
2242 		}
2243 	}
2244 	pending = p->migration_pending;
2245 	/*
2246 	 * - !MIGRATE_ENABLE:
2247 	 *   we'll have installed a pending if there wasn't one already.
2248 	 *
2249 	 * - MIGRATE_ENABLE:
2250 	 *   we're here because the current CPU isn't matching anymore,
2251 	 *   the only way that can happen is because of a concurrent
2252 	 *   set_cpus_allowed_ptr() call, which should then still be
2253 	 *   pending completion.
2254 	 *
2255 	 * Either way, we really should have a @pending here.
2256 	 */
2257 	if (WARN_ON_ONCE(!pending)) {
2258 		task_rq_unlock(rq, p, rf);
2259 		return -EINVAL;
2260 	}
2261 
2262 	if (flags & SCA_MIGRATE_ENABLE) {
2263 
2264 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2265 		p->migration_flags &= ~MDF_PUSH;
2266 		task_rq_unlock(rq, p, rf);
2267 
2268 		pending->arg = (struct migration_arg) {
2269 			.task = p,
2270 			.dest_cpu = -1,
2271 			.pending = pending,
2272 		};
2273 
2274 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2275 				    &pending->arg, &pending->stop_work);
2276 
2277 		return 0;
2278 	}
2279 
2280 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2281 		/*
2282 		 * Lessen races (and headaches) by delegating
2283 		 * is_migration_disabled(p) checks to the stopper, which will
2284 		 * run on the same CPU as said p.
2285 		 */
2286 		task_rq_unlock(rq, p, rf);
2287 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2288 
2289 	} else {
2290 
2291 		if (!is_migration_disabled(p)) {
2292 			if (task_on_rq_queued(p))
2293 				rq = move_queued_task(rq, rf, p, dest_cpu);
2294 
2295 			p->migration_pending = NULL;
2296 			complete = true;
2297 		}
2298 		task_rq_unlock(rq, p, rf);
2299 
2300 do_complete:
2301 		if (complete)
2302 			complete_all(&pending->done);
2303 	}
2304 
2305 	wait_for_completion(&pending->done);
2306 
2307 	if (refcount_dec_and_test(&pending->refs))
2308 		wake_up_var(&pending->refs);
2309 
2310 	/*
2311 	 * Block the original owner of &pending until all subsequent callers
2312 	 * have seen the completion and decremented the refcount
2313 	 */
2314 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2315 
2316 	return 0;
2317 }
2318 
2319 /*
2320  * Change a given task's CPU affinity. Migrate the thread to a
2321  * proper CPU and schedule it away if the CPU it's executing on
2322  * is removed from the allowed bitmask.
2323  *
2324  * NOTE: the caller must have a valid reference to the task, the
2325  * task must not exit() & deallocate itself prematurely. The
2326  * call is not atomic; no spinlocks may be held.
2327  */
2328 static int __set_cpus_allowed_ptr(struct task_struct *p,
2329 				  const struct cpumask *new_mask,
2330 				  u32 flags)
2331 {
2332 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2333 	unsigned int dest_cpu;
2334 	struct rq_flags rf;
2335 	struct rq *rq;
2336 	int ret = 0;
2337 
2338 	rq = task_rq_lock(p, &rf);
2339 	update_rq_clock(rq);
2340 
2341 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2342 		/*
2343 		 * Kernel threads are allowed on online && !active CPUs,
2344 		 * however, during cpu-hot-unplug, even these might get pushed
2345 		 * away if not KTHREAD_IS_PER_CPU.
2346 		 *
2347 		 * Specifically, migration_disabled() tasks must not fail the
2348 		 * cpumask_any_and_distribute() pick below, esp. so on
2349 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2350 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2351 		 */
2352 		cpu_valid_mask = cpu_online_mask;
2353 	}
2354 
2355 	/*
2356 	 * Must re-check here, to close a race against __kthread_bind(),
2357 	 * sched_setaffinity() is not guaranteed to observe the flag.
2358 	 */
2359 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2360 		ret = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2365 		if (cpumask_equal(&p->cpus_mask, new_mask))
2366 			goto out;
2367 
2368 		if (WARN_ON_ONCE(p == current &&
2369 				 is_migration_disabled(p) &&
2370 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2371 			ret = -EBUSY;
2372 			goto out;
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * Picking a ~random cpu helps in cases where we are changing affinity
2378 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2379 	 * immediately required to distribute the tasks within their new mask.
2380 	 */
2381 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2382 	if (dest_cpu >= nr_cpu_ids) {
2383 		ret = -EINVAL;
2384 		goto out;
2385 	}
2386 
2387 	__do_set_cpus_allowed(p, new_mask, flags);
2388 
2389 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2390 
2391 out:
2392 	task_rq_unlock(rq, p, &rf);
2393 
2394 	return ret;
2395 }
2396 
2397 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2398 {
2399 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2400 }
2401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2402 
2403 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2404 {
2405 #ifdef CONFIG_SCHED_DEBUG
2406 	/*
2407 	 * We should never call set_task_cpu() on a blocked task,
2408 	 * ttwu() will sort out the placement.
2409 	 */
2410 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2411 			!p->on_rq);
2412 
2413 	/*
2414 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2415 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2416 	 * time relying on p->on_rq.
2417 	 */
2418 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2419 		     p->sched_class == &fair_sched_class &&
2420 		     (p->on_rq && !task_on_rq_migrating(p)));
2421 
2422 #ifdef CONFIG_LOCKDEP
2423 	/*
2424 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2425 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2426 	 *
2427 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2428 	 * see task_group().
2429 	 *
2430 	 * Furthermore, all task_rq users should acquire both locks, see
2431 	 * task_rq_lock().
2432 	 */
2433 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2434 				      lockdep_is_held(&task_rq(p)->lock)));
2435 #endif
2436 	/*
2437 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2438 	 */
2439 	WARN_ON_ONCE(!cpu_online(new_cpu));
2440 
2441 	WARN_ON_ONCE(is_migration_disabled(p));
2442 #endif
2443 
2444 	trace_sched_migrate_task(p, new_cpu);
2445 
2446 	if (task_cpu(p) != new_cpu) {
2447 		if (p->sched_class->migrate_task_rq)
2448 			p->sched_class->migrate_task_rq(p, new_cpu);
2449 		p->se.nr_migrations++;
2450 		rseq_migrate(p);
2451 		perf_event_task_migrate(p);
2452 	}
2453 
2454 	__set_task_cpu(p, new_cpu);
2455 }
2456 
2457 #ifdef CONFIG_NUMA_BALANCING
2458 static void __migrate_swap_task(struct task_struct *p, int cpu)
2459 {
2460 	if (task_on_rq_queued(p)) {
2461 		struct rq *src_rq, *dst_rq;
2462 		struct rq_flags srf, drf;
2463 
2464 		src_rq = task_rq(p);
2465 		dst_rq = cpu_rq(cpu);
2466 
2467 		rq_pin_lock(src_rq, &srf);
2468 		rq_pin_lock(dst_rq, &drf);
2469 
2470 		deactivate_task(src_rq, p, 0);
2471 		set_task_cpu(p, cpu);
2472 		activate_task(dst_rq, p, 0);
2473 		check_preempt_curr(dst_rq, p, 0);
2474 
2475 		rq_unpin_lock(dst_rq, &drf);
2476 		rq_unpin_lock(src_rq, &srf);
2477 
2478 	} else {
2479 		/*
2480 		 * Task isn't running anymore; make it appear like we migrated
2481 		 * it before it went to sleep. This means on wakeup we make the
2482 		 * previous CPU our target instead of where it really is.
2483 		 */
2484 		p->wake_cpu = cpu;
2485 	}
2486 }
2487 
2488 struct migration_swap_arg {
2489 	struct task_struct *src_task, *dst_task;
2490 	int src_cpu, dst_cpu;
2491 };
2492 
2493 static int migrate_swap_stop(void *data)
2494 {
2495 	struct migration_swap_arg *arg = data;
2496 	struct rq *src_rq, *dst_rq;
2497 	int ret = -EAGAIN;
2498 
2499 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2500 		return -EAGAIN;
2501 
2502 	src_rq = cpu_rq(arg->src_cpu);
2503 	dst_rq = cpu_rq(arg->dst_cpu);
2504 
2505 	double_raw_lock(&arg->src_task->pi_lock,
2506 			&arg->dst_task->pi_lock);
2507 	double_rq_lock(src_rq, dst_rq);
2508 
2509 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2510 		goto unlock;
2511 
2512 	if (task_cpu(arg->src_task) != arg->src_cpu)
2513 		goto unlock;
2514 
2515 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2516 		goto unlock;
2517 
2518 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2519 		goto unlock;
2520 
2521 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2522 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2523 
2524 	ret = 0;
2525 
2526 unlock:
2527 	double_rq_unlock(src_rq, dst_rq);
2528 	raw_spin_unlock(&arg->dst_task->pi_lock);
2529 	raw_spin_unlock(&arg->src_task->pi_lock);
2530 
2531 	return ret;
2532 }
2533 
2534 /*
2535  * Cross migrate two tasks
2536  */
2537 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2538 		int target_cpu, int curr_cpu)
2539 {
2540 	struct migration_swap_arg arg;
2541 	int ret = -EINVAL;
2542 
2543 	arg = (struct migration_swap_arg){
2544 		.src_task = cur,
2545 		.src_cpu = curr_cpu,
2546 		.dst_task = p,
2547 		.dst_cpu = target_cpu,
2548 	};
2549 
2550 	if (arg.src_cpu == arg.dst_cpu)
2551 		goto out;
2552 
2553 	/*
2554 	 * These three tests are all lockless; this is OK since all of them
2555 	 * will be re-checked with proper locks held further down the line.
2556 	 */
2557 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2558 		goto out;
2559 
2560 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2561 		goto out;
2562 
2563 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2564 		goto out;
2565 
2566 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2567 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2568 
2569 out:
2570 	return ret;
2571 }
2572 #endif /* CONFIG_NUMA_BALANCING */
2573 
2574 /*
2575  * wait_task_inactive - wait for a thread to unschedule.
2576  *
2577  * If @match_state is nonzero, it's the @p->state value just checked and
2578  * not expected to change.  If it changes, i.e. @p might have woken up,
2579  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2580  * we return a positive number (its total switch count).  If a second call
2581  * a short while later returns the same number, the caller can be sure that
2582  * @p has remained unscheduled the whole time.
2583  *
2584  * The caller must ensure that the task *will* unschedule sometime soon,
2585  * else this function might spin for a *long* time. This function can't
2586  * be called with interrupts off, or it may introduce deadlock with
2587  * smp_call_function() if an IPI is sent by the same process we are
2588  * waiting to become inactive.
2589  */
2590 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2591 {
2592 	int running, queued;
2593 	struct rq_flags rf;
2594 	unsigned long ncsw;
2595 	struct rq *rq;
2596 
2597 	for (;;) {
2598 		/*
2599 		 * We do the initial early heuristics without holding
2600 		 * any task-queue locks at all. We'll only try to get
2601 		 * the runqueue lock when things look like they will
2602 		 * work out!
2603 		 */
2604 		rq = task_rq(p);
2605 
2606 		/*
2607 		 * If the task is actively running on another CPU
2608 		 * still, just relax and busy-wait without holding
2609 		 * any locks.
2610 		 *
2611 		 * NOTE! Since we don't hold any locks, it's not
2612 		 * even sure that "rq" stays as the right runqueue!
2613 		 * But we don't care, since "task_running()" will
2614 		 * return false if the runqueue has changed and p
2615 		 * is actually now running somewhere else!
2616 		 */
2617 		while (task_running(rq, p)) {
2618 			if (match_state && unlikely(p->state != match_state))
2619 				return 0;
2620 			cpu_relax();
2621 		}
2622 
2623 		/*
2624 		 * Ok, time to look more closely! We need the rq
2625 		 * lock now, to be *sure*. If we're wrong, we'll
2626 		 * just go back and repeat.
2627 		 */
2628 		rq = task_rq_lock(p, &rf);
2629 		trace_sched_wait_task(p);
2630 		running = task_running(rq, p);
2631 		queued = task_on_rq_queued(p);
2632 		ncsw = 0;
2633 		if (!match_state || p->state == match_state)
2634 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2635 		task_rq_unlock(rq, p, &rf);
2636 
2637 		/*
2638 		 * If it changed from the expected state, bail out now.
2639 		 */
2640 		if (unlikely(!ncsw))
2641 			break;
2642 
2643 		/*
2644 		 * Was it really running after all now that we
2645 		 * checked with the proper locks actually held?
2646 		 *
2647 		 * Oops. Go back and try again..
2648 		 */
2649 		if (unlikely(running)) {
2650 			cpu_relax();
2651 			continue;
2652 		}
2653 
2654 		/*
2655 		 * It's not enough that it's not actively running,
2656 		 * it must be off the runqueue _entirely_, and not
2657 		 * preempted!
2658 		 *
2659 		 * So if it was still runnable (but just not actively
2660 		 * running right now), it's preempted, and we should
2661 		 * yield - it could be a while.
2662 		 */
2663 		if (unlikely(queued)) {
2664 			ktime_t to = NSEC_PER_SEC / HZ;
2665 
2666 			set_current_state(TASK_UNINTERRUPTIBLE);
2667 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * Ahh, all good. It wasn't running, and it wasn't
2673 		 * runnable, which means that it will never become
2674 		 * running in the future either. We're all done!
2675 		 */
2676 		break;
2677 	}
2678 
2679 	return ncsw;
2680 }
2681 
2682 /***
2683  * kick_process - kick a running thread to enter/exit the kernel
2684  * @p: the to-be-kicked thread
2685  *
2686  * Cause a process which is running on another CPU to enter
2687  * kernel-mode, without any delay. (to get signals handled.)
2688  *
2689  * NOTE: this function doesn't have to take the runqueue lock,
2690  * because all it wants to ensure is that the remote task enters
2691  * the kernel. If the IPI races and the task has been migrated
2692  * to another CPU then no harm is done and the purpose has been
2693  * achieved as well.
2694  */
2695 void kick_process(struct task_struct *p)
2696 {
2697 	int cpu;
2698 
2699 	preempt_disable();
2700 	cpu = task_cpu(p);
2701 	if ((cpu != smp_processor_id()) && task_curr(p))
2702 		smp_send_reschedule(cpu);
2703 	preempt_enable();
2704 }
2705 EXPORT_SYMBOL_GPL(kick_process);
2706 
2707 /*
2708  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2709  *
2710  * A few notes on cpu_active vs cpu_online:
2711  *
2712  *  - cpu_active must be a subset of cpu_online
2713  *
2714  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2715  *    see __set_cpus_allowed_ptr(). At this point the newly online
2716  *    CPU isn't yet part of the sched domains, and balancing will not
2717  *    see it.
2718  *
2719  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2720  *    avoid the load balancer to place new tasks on the to be removed
2721  *    CPU. Existing tasks will remain running there and will be taken
2722  *    off.
2723  *
2724  * This means that fallback selection must not select !active CPUs.
2725  * And can assume that any active CPU must be online. Conversely
2726  * select_task_rq() below may allow selection of !active CPUs in order
2727  * to satisfy the above rules.
2728  */
2729 static int select_fallback_rq(int cpu, struct task_struct *p)
2730 {
2731 	int nid = cpu_to_node(cpu);
2732 	const struct cpumask *nodemask = NULL;
2733 	enum { cpuset, possible, fail } state = cpuset;
2734 	int dest_cpu;
2735 
2736 	/*
2737 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2738 	 * will return -1. There is no CPU on the node, and we should
2739 	 * select the CPU on the other node.
2740 	 */
2741 	if (nid != -1) {
2742 		nodemask = cpumask_of_node(nid);
2743 
2744 		/* Look for allowed, online CPU in same node. */
2745 		for_each_cpu(dest_cpu, nodemask) {
2746 			if (!cpu_active(dest_cpu))
2747 				continue;
2748 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2749 				return dest_cpu;
2750 		}
2751 	}
2752 
2753 	for (;;) {
2754 		/* Any allowed, online CPU? */
2755 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2756 			if (!is_cpu_allowed(p, dest_cpu))
2757 				continue;
2758 
2759 			goto out;
2760 		}
2761 
2762 		/* No more Mr. Nice Guy. */
2763 		switch (state) {
2764 		case cpuset:
2765 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2766 				cpuset_cpus_allowed_fallback(p);
2767 				state = possible;
2768 				break;
2769 			}
2770 			fallthrough;
2771 		case possible:
2772 			/*
2773 			 * XXX When called from select_task_rq() we only
2774 			 * hold p->pi_lock and again violate locking order.
2775 			 *
2776 			 * More yuck to audit.
2777 			 */
2778 			do_set_cpus_allowed(p, cpu_possible_mask);
2779 			state = fail;
2780 			break;
2781 
2782 		case fail:
2783 			BUG();
2784 			break;
2785 		}
2786 	}
2787 
2788 out:
2789 	if (state != cpuset) {
2790 		/*
2791 		 * Don't tell them about moving exiting tasks or
2792 		 * kernel threads (both mm NULL), since they never
2793 		 * leave kernel.
2794 		 */
2795 		if (p->mm && printk_ratelimit()) {
2796 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2797 					task_pid_nr(p), p->comm, cpu);
2798 		}
2799 	}
2800 
2801 	return dest_cpu;
2802 }
2803 
2804 /*
2805  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2806  */
2807 static inline
2808 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2809 {
2810 	lockdep_assert_held(&p->pi_lock);
2811 
2812 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2813 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2814 	else
2815 		cpu = cpumask_any(p->cpus_ptr);
2816 
2817 	/*
2818 	 * In order not to call set_task_cpu() on a blocking task we need
2819 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2820 	 * CPU.
2821 	 *
2822 	 * Since this is common to all placement strategies, this lives here.
2823 	 *
2824 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2825 	 *   not worry about this generic constraint ]
2826 	 */
2827 	if (unlikely(!is_cpu_allowed(p, cpu)))
2828 		cpu = select_fallback_rq(task_cpu(p), p);
2829 
2830 	return cpu;
2831 }
2832 
2833 void sched_set_stop_task(int cpu, struct task_struct *stop)
2834 {
2835 	static struct lock_class_key stop_pi_lock;
2836 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2837 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2838 
2839 	if (stop) {
2840 		/*
2841 		 * Make it appear like a SCHED_FIFO task, its something
2842 		 * userspace knows about and won't get confused about.
2843 		 *
2844 		 * Also, it will make PI more or less work without too
2845 		 * much confusion -- but then, stop work should not
2846 		 * rely on PI working anyway.
2847 		 */
2848 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2849 
2850 		stop->sched_class = &stop_sched_class;
2851 
2852 		/*
2853 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2854 		 * adjust the effective priority of a task. As a result,
2855 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2856 		 * which can then trigger wakeups of the stop thread to push
2857 		 * around the current task.
2858 		 *
2859 		 * The stop task itself will never be part of the PI-chain, it
2860 		 * never blocks, therefore that ->pi_lock recursion is safe.
2861 		 * Tell lockdep about this by placing the stop->pi_lock in its
2862 		 * own class.
2863 		 */
2864 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2865 	}
2866 
2867 	cpu_rq(cpu)->stop = stop;
2868 
2869 	if (old_stop) {
2870 		/*
2871 		 * Reset it back to a normal scheduling class so that
2872 		 * it can die in pieces.
2873 		 */
2874 		old_stop->sched_class = &rt_sched_class;
2875 	}
2876 }
2877 
2878 #else /* CONFIG_SMP */
2879 
2880 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2881 					 const struct cpumask *new_mask,
2882 					 u32 flags)
2883 {
2884 	return set_cpus_allowed_ptr(p, new_mask);
2885 }
2886 
2887 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2888 
2889 static inline bool rq_has_pinned_tasks(struct rq *rq)
2890 {
2891 	return false;
2892 }
2893 
2894 #endif /* !CONFIG_SMP */
2895 
2896 static void
2897 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2898 {
2899 	struct rq *rq;
2900 
2901 	if (!schedstat_enabled())
2902 		return;
2903 
2904 	rq = this_rq();
2905 
2906 #ifdef CONFIG_SMP
2907 	if (cpu == rq->cpu) {
2908 		__schedstat_inc(rq->ttwu_local);
2909 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2910 	} else {
2911 		struct sched_domain *sd;
2912 
2913 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2914 		rcu_read_lock();
2915 		for_each_domain(rq->cpu, sd) {
2916 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2917 				__schedstat_inc(sd->ttwu_wake_remote);
2918 				break;
2919 			}
2920 		}
2921 		rcu_read_unlock();
2922 	}
2923 
2924 	if (wake_flags & WF_MIGRATED)
2925 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2926 #endif /* CONFIG_SMP */
2927 
2928 	__schedstat_inc(rq->ttwu_count);
2929 	__schedstat_inc(p->se.statistics.nr_wakeups);
2930 
2931 	if (wake_flags & WF_SYNC)
2932 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2933 }
2934 
2935 /*
2936  * Mark the task runnable and perform wakeup-preemption.
2937  */
2938 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2939 			   struct rq_flags *rf)
2940 {
2941 	check_preempt_curr(rq, p, wake_flags);
2942 	p->state = TASK_RUNNING;
2943 	trace_sched_wakeup(p);
2944 
2945 #ifdef CONFIG_SMP
2946 	if (p->sched_class->task_woken) {
2947 		/*
2948 		 * Our task @p is fully woken up and running; so it's safe to
2949 		 * drop the rq->lock, hereafter rq is only used for statistics.
2950 		 */
2951 		rq_unpin_lock(rq, rf);
2952 		p->sched_class->task_woken(rq, p);
2953 		rq_repin_lock(rq, rf);
2954 	}
2955 
2956 	if (rq->idle_stamp) {
2957 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2958 		u64 max = 2*rq->max_idle_balance_cost;
2959 
2960 		update_avg(&rq->avg_idle, delta);
2961 
2962 		if (rq->avg_idle > max)
2963 			rq->avg_idle = max;
2964 
2965 		rq->idle_stamp = 0;
2966 	}
2967 #endif
2968 }
2969 
2970 static void
2971 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2972 		 struct rq_flags *rf)
2973 {
2974 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2975 
2976 	lockdep_assert_held(&rq->lock);
2977 
2978 	if (p->sched_contributes_to_load)
2979 		rq->nr_uninterruptible--;
2980 
2981 #ifdef CONFIG_SMP
2982 	if (wake_flags & WF_MIGRATED)
2983 		en_flags |= ENQUEUE_MIGRATED;
2984 	else
2985 #endif
2986 	if (p->in_iowait) {
2987 		delayacct_blkio_end(p);
2988 		atomic_dec(&task_rq(p)->nr_iowait);
2989 	}
2990 
2991 	activate_task(rq, p, en_flags);
2992 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2993 }
2994 
2995 /*
2996  * Consider @p being inside a wait loop:
2997  *
2998  *   for (;;) {
2999  *      set_current_state(TASK_UNINTERRUPTIBLE);
3000  *
3001  *      if (CONDITION)
3002  *         break;
3003  *
3004  *      schedule();
3005  *   }
3006  *   __set_current_state(TASK_RUNNING);
3007  *
3008  * between set_current_state() and schedule(). In this case @p is still
3009  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3010  * an atomic manner.
3011  *
3012  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3013  * then schedule() must still happen and p->state can be changed to
3014  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3015  * need to do a full wakeup with enqueue.
3016  *
3017  * Returns: %true when the wakeup is done,
3018  *          %false otherwise.
3019  */
3020 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3021 {
3022 	struct rq_flags rf;
3023 	struct rq *rq;
3024 	int ret = 0;
3025 
3026 	rq = __task_rq_lock(p, &rf);
3027 	if (task_on_rq_queued(p)) {
3028 		/* check_preempt_curr() may use rq clock */
3029 		update_rq_clock(rq);
3030 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3031 		ret = 1;
3032 	}
3033 	__task_rq_unlock(rq, &rf);
3034 
3035 	return ret;
3036 }
3037 
3038 #ifdef CONFIG_SMP
3039 void sched_ttwu_pending(void *arg)
3040 {
3041 	struct llist_node *llist = arg;
3042 	struct rq *rq = this_rq();
3043 	struct task_struct *p, *t;
3044 	struct rq_flags rf;
3045 
3046 	if (!llist)
3047 		return;
3048 
3049 	/*
3050 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3051 	 * Races such that false-negatives are possible, since they
3052 	 * are shorter lived that false-positives would be.
3053 	 */
3054 	WRITE_ONCE(rq->ttwu_pending, 0);
3055 
3056 	rq_lock_irqsave(rq, &rf);
3057 	update_rq_clock(rq);
3058 
3059 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3060 		if (WARN_ON_ONCE(p->on_cpu))
3061 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3062 
3063 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3064 			set_task_cpu(p, cpu_of(rq));
3065 
3066 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3067 	}
3068 
3069 	rq_unlock_irqrestore(rq, &rf);
3070 }
3071 
3072 void send_call_function_single_ipi(int cpu)
3073 {
3074 	struct rq *rq = cpu_rq(cpu);
3075 
3076 	if (!set_nr_if_polling(rq->idle))
3077 		arch_send_call_function_single_ipi(cpu);
3078 	else
3079 		trace_sched_wake_idle_without_ipi(cpu);
3080 }
3081 
3082 /*
3083  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3084  * necessary. The wakee CPU on receipt of the IPI will queue the task
3085  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3086  * of the wakeup instead of the waker.
3087  */
3088 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3089 {
3090 	struct rq *rq = cpu_rq(cpu);
3091 
3092 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3093 
3094 	WRITE_ONCE(rq->ttwu_pending, 1);
3095 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3096 }
3097 
3098 void wake_up_if_idle(int cpu)
3099 {
3100 	struct rq *rq = cpu_rq(cpu);
3101 	struct rq_flags rf;
3102 
3103 	rcu_read_lock();
3104 
3105 	if (!is_idle_task(rcu_dereference(rq->curr)))
3106 		goto out;
3107 
3108 	if (set_nr_if_polling(rq->idle)) {
3109 		trace_sched_wake_idle_without_ipi(cpu);
3110 	} else {
3111 		rq_lock_irqsave(rq, &rf);
3112 		if (is_idle_task(rq->curr))
3113 			smp_send_reschedule(cpu);
3114 		/* Else CPU is not idle, do nothing here: */
3115 		rq_unlock_irqrestore(rq, &rf);
3116 	}
3117 
3118 out:
3119 	rcu_read_unlock();
3120 }
3121 
3122 bool cpus_share_cache(int this_cpu, int that_cpu)
3123 {
3124 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3125 }
3126 
3127 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3128 {
3129 	/*
3130 	 * Do not complicate things with the async wake_list while the CPU is
3131 	 * in hotplug state.
3132 	 */
3133 	if (!cpu_active(cpu))
3134 		return false;
3135 
3136 	/*
3137 	 * If the CPU does not share cache, then queue the task on the
3138 	 * remote rqs wakelist to avoid accessing remote data.
3139 	 */
3140 	if (!cpus_share_cache(smp_processor_id(), cpu))
3141 		return true;
3142 
3143 	/*
3144 	 * If the task is descheduling and the only running task on the
3145 	 * CPU then use the wakelist to offload the task activation to
3146 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3147 	 * nr_running is checked to avoid unnecessary task stacking.
3148 	 */
3149 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3150 		return true;
3151 
3152 	return false;
3153 }
3154 
3155 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3156 {
3157 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3158 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3159 			return false;
3160 
3161 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3162 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3163 		return true;
3164 	}
3165 
3166 	return false;
3167 }
3168 
3169 #else /* !CONFIG_SMP */
3170 
3171 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3172 {
3173 	return false;
3174 }
3175 
3176 #endif /* CONFIG_SMP */
3177 
3178 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3179 {
3180 	struct rq *rq = cpu_rq(cpu);
3181 	struct rq_flags rf;
3182 
3183 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3184 		return;
3185 
3186 	rq_lock(rq, &rf);
3187 	update_rq_clock(rq);
3188 	ttwu_do_activate(rq, p, wake_flags, &rf);
3189 	rq_unlock(rq, &rf);
3190 }
3191 
3192 /*
3193  * Notes on Program-Order guarantees on SMP systems.
3194  *
3195  *  MIGRATION
3196  *
3197  * The basic program-order guarantee on SMP systems is that when a task [t]
3198  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3199  * execution on its new CPU [c1].
3200  *
3201  * For migration (of runnable tasks) this is provided by the following means:
3202  *
3203  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3204  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3205  *     rq(c1)->lock (if not at the same time, then in that order).
3206  *  C) LOCK of the rq(c1)->lock scheduling in task
3207  *
3208  * Release/acquire chaining guarantees that B happens after A and C after B.
3209  * Note: the CPU doing B need not be c0 or c1
3210  *
3211  * Example:
3212  *
3213  *   CPU0            CPU1            CPU2
3214  *
3215  *   LOCK rq(0)->lock
3216  *   sched-out X
3217  *   sched-in Y
3218  *   UNLOCK rq(0)->lock
3219  *
3220  *                                   LOCK rq(0)->lock // orders against CPU0
3221  *                                   dequeue X
3222  *                                   UNLOCK rq(0)->lock
3223  *
3224  *                                   LOCK rq(1)->lock
3225  *                                   enqueue X
3226  *                                   UNLOCK rq(1)->lock
3227  *
3228  *                   LOCK rq(1)->lock // orders against CPU2
3229  *                   sched-out Z
3230  *                   sched-in X
3231  *                   UNLOCK rq(1)->lock
3232  *
3233  *
3234  *  BLOCKING -- aka. SLEEP + WAKEUP
3235  *
3236  * For blocking we (obviously) need to provide the same guarantee as for
3237  * migration. However the means are completely different as there is no lock
3238  * chain to provide order. Instead we do:
3239  *
3240  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3241  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3242  *
3243  * Example:
3244  *
3245  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3246  *
3247  *   LOCK rq(0)->lock LOCK X->pi_lock
3248  *   dequeue X
3249  *   sched-out X
3250  *   smp_store_release(X->on_cpu, 0);
3251  *
3252  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3253  *                    X->state = WAKING
3254  *                    set_task_cpu(X,2)
3255  *
3256  *                    LOCK rq(2)->lock
3257  *                    enqueue X
3258  *                    X->state = RUNNING
3259  *                    UNLOCK rq(2)->lock
3260  *
3261  *                                          LOCK rq(2)->lock // orders against CPU1
3262  *                                          sched-out Z
3263  *                                          sched-in X
3264  *                                          UNLOCK rq(2)->lock
3265  *
3266  *                    UNLOCK X->pi_lock
3267  *   UNLOCK rq(0)->lock
3268  *
3269  *
3270  * However, for wakeups there is a second guarantee we must provide, namely we
3271  * must ensure that CONDITION=1 done by the caller can not be reordered with
3272  * accesses to the task state; see try_to_wake_up() and set_current_state().
3273  */
3274 
3275 /**
3276  * try_to_wake_up - wake up a thread
3277  * @p: the thread to be awakened
3278  * @state: the mask of task states that can be woken
3279  * @wake_flags: wake modifier flags (WF_*)
3280  *
3281  * Conceptually does:
3282  *
3283  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3284  *
3285  * If the task was not queued/runnable, also place it back on a runqueue.
3286  *
3287  * This function is atomic against schedule() which would dequeue the task.
3288  *
3289  * It issues a full memory barrier before accessing @p->state, see the comment
3290  * with set_current_state().
3291  *
3292  * Uses p->pi_lock to serialize against concurrent wake-ups.
3293  *
3294  * Relies on p->pi_lock stabilizing:
3295  *  - p->sched_class
3296  *  - p->cpus_ptr
3297  *  - p->sched_task_group
3298  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3299  *
3300  * Tries really hard to only take one task_rq(p)->lock for performance.
3301  * Takes rq->lock in:
3302  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3303  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3304  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3305  *
3306  * As a consequence we race really badly with just about everything. See the
3307  * many memory barriers and their comments for details.
3308  *
3309  * Return: %true if @p->state changes (an actual wakeup was done),
3310  *	   %false otherwise.
3311  */
3312 static int
3313 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3314 {
3315 	unsigned long flags;
3316 	int cpu, success = 0;
3317 
3318 	preempt_disable();
3319 	if (p == current) {
3320 		/*
3321 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3322 		 * == smp_processor_id()'. Together this means we can special
3323 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3324 		 * without taking any locks.
3325 		 *
3326 		 * In particular:
3327 		 *  - we rely on Program-Order guarantees for all the ordering,
3328 		 *  - we're serialized against set_special_state() by virtue of
3329 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3330 		 */
3331 		if (!(p->state & state))
3332 			goto out;
3333 
3334 		success = 1;
3335 		trace_sched_waking(p);
3336 		p->state = TASK_RUNNING;
3337 		trace_sched_wakeup(p);
3338 		goto out;
3339 	}
3340 
3341 	/*
3342 	 * If we are going to wake up a thread waiting for CONDITION we
3343 	 * need to ensure that CONDITION=1 done by the caller can not be
3344 	 * reordered with p->state check below. This pairs with smp_store_mb()
3345 	 * in set_current_state() that the waiting thread does.
3346 	 */
3347 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3348 	smp_mb__after_spinlock();
3349 	if (!(p->state & state))
3350 		goto unlock;
3351 
3352 	trace_sched_waking(p);
3353 
3354 	/* We're going to change ->state: */
3355 	success = 1;
3356 
3357 	/*
3358 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3359 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3360 	 * in smp_cond_load_acquire() below.
3361 	 *
3362 	 * sched_ttwu_pending()			try_to_wake_up()
3363 	 *   STORE p->on_rq = 1			  LOAD p->state
3364 	 *   UNLOCK rq->lock
3365 	 *
3366 	 * __schedule() (switch to task 'p')
3367 	 *   LOCK rq->lock			  smp_rmb();
3368 	 *   smp_mb__after_spinlock();
3369 	 *   UNLOCK rq->lock
3370 	 *
3371 	 * [task p]
3372 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3373 	 *
3374 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3375 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3376 	 *
3377 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3378 	 */
3379 	smp_rmb();
3380 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3381 		goto unlock;
3382 
3383 #ifdef CONFIG_SMP
3384 	/*
3385 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3386 	 * possible to, falsely, observe p->on_cpu == 0.
3387 	 *
3388 	 * One must be running (->on_cpu == 1) in order to remove oneself
3389 	 * from the runqueue.
3390 	 *
3391 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3392 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3393 	 *   UNLOCK rq->lock
3394 	 *
3395 	 * __schedule() (put 'p' to sleep)
3396 	 *   LOCK rq->lock			  smp_rmb();
3397 	 *   smp_mb__after_spinlock();
3398 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3399 	 *
3400 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3401 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3402 	 *
3403 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3404 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3405 	 * care about it's own p->state. See the comment in __schedule().
3406 	 */
3407 	smp_acquire__after_ctrl_dep();
3408 
3409 	/*
3410 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3411 	 * == 0), which means we need to do an enqueue, change p->state to
3412 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3413 	 * enqueue, such as ttwu_queue_wakelist().
3414 	 */
3415 	p->state = TASK_WAKING;
3416 
3417 	/*
3418 	 * If the owning (remote) CPU is still in the middle of schedule() with
3419 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3420 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3421 	 * let the waker make forward progress. This is safe because IRQs are
3422 	 * disabled and the IPI will deliver after on_cpu is cleared.
3423 	 *
3424 	 * Ensure we load task_cpu(p) after p->on_cpu:
3425 	 *
3426 	 * set_task_cpu(p, cpu);
3427 	 *   STORE p->cpu = @cpu
3428 	 * __schedule() (switch to task 'p')
3429 	 *   LOCK rq->lock
3430 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3431 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3432 	 *
3433 	 * to ensure we observe the correct CPU on which the task is currently
3434 	 * scheduling.
3435 	 */
3436 	if (smp_load_acquire(&p->on_cpu) &&
3437 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3438 		goto unlock;
3439 
3440 	/*
3441 	 * If the owning (remote) CPU is still in the middle of schedule() with
3442 	 * this task as prev, wait until it's done referencing the task.
3443 	 *
3444 	 * Pairs with the smp_store_release() in finish_task().
3445 	 *
3446 	 * This ensures that tasks getting woken will be fully ordered against
3447 	 * their previous state and preserve Program Order.
3448 	 */
3449 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3450 
3451 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3452 	if (task_cpu(p) != cpu) {
3453 		if (p->in_iowait) {
3454 			delayacct_blkio_end(p);
3455 			atomic_dec(&task_rq(p)->nr_iowait);
3456 		}
3457 
3458 		wake_flags |= WF_MIGRATED;
3459 		psi_ttwu_dequeue(p);
3460 		set_task_cpu(p, cpu);
3461 	}
3462 #else
3463 	cpu = task_cpu(p);
3464 #endif /* CONFIG_SMP */
3465 
3466 	ttwu_queue(p, cpu, wake_flags);
3467 unlock:
3468 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3469 out:
3470 	if (success)
3471 		ttwu_stat(p, task_cpu(p), wake_flags);
3472 	preempt_enable();
3473 
3474 	return success;
3475 }
3476 
3477 /**
3478  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3479  * @p: Process for which the function is to be invoked, can be @current.
3480  * @func: Function to invoke.
3481  * @arg: Argument to function.
3482  *
3483  * If the specified task can be quickly locked into a definite state
3484  * (either sleeping or on a given runqueue), arrange to keep it in that
3485  * state while invoking @func(@arg).  This function can use ->on_rq and
3486  * task_curr() to work out what the state is, if required.  Given that
3487  * @func can be invoked with a runqueue lock held, it had better be quite
3488  * lightweight.
3489  *
3490  * Returns:
3491  *	@false if the task slipped out from under the locks.
3492  *	@true if the task was locked onto a runqueue or is sleeping.
3493  *		However, @func can override this by returning @false.
3494  */
3495 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3496 {
3497 	struct rq_flags rf;
3498 	bool ret = false;
3499 	struct rq *rq;
3500 
3501 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3502 	if (p->on_rq) {
3503 		rq = __task_rq_lock(p, &rf);
3504 		if (task_rq(p) == rq)
3505 			ret = func(p, arg);
3506 		rq_unlock(rq, &rf);
3507 	} else {
3508 		switch (p->state) {
3509 		case TASK_RUNNING:
3510 		case TASK_WAKING:
3511 			break;
3512 		default:
3513 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3514 			if (!p->on_rq)
3515 				ret = func(p, arg);
3516 		}
3517 	}
3518 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3519 	return ret;
3520 }
3521 
3522 /**
3523  * wake_up_process - Wake up a specific process
3524  * @p: The process to be woken up.
3525  *
3526  * Attempt to wake up the nominated process and move it to the set of runnable
3527  * processes.
3528  *
3529  * Return: 1 if the process was woken up, 0 if it was already running.
3530  *
3531  * This function executes a full memory barrier before accessing the task state.
3532  */
3533 int wake_up_process(struct task_struct *p)
3534 {
3535 	return try_to_wake_up(p, TASK_NORMAL, 0);
3536 }
3537 EXPORT_SYMBOL(wake_up_process);
3538 
3539 int wake_up_state(struct task_struct *p, unsigned int state)
3540 {
3541 	return try_to_wake_up(p, state, 0);
3542 }
3543 
3544 /*
3545  * Perform scheduler related setup for a newly forked process p.
3546  * p is forked by current.
3547  *
3548  * __sched_fork() is basic setup used by init_idle() too:
3549  */
3550 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3551 {
3552 	p->on_rq			= 0;
3553 
3554 	p->se.on_rq			= 0;
3555 	p->se.exec_start		= 0;
3556 	p->se.sum_exec_runtime		= 0;
3557 	p->se.prev_sum_exec_runtime	= 0;
3558 	p->se.nr_migrations		= 0;
3559 	p->se.vruntime			= 0;
3560 	INIT_LIST_HEAD(&p->se.group_node);
3561 
3562 #ifdef CONFIG_FAIR_GROUP_SCHED
3563 	p->se.cfs_rq			= NULL;
3564 #endif
3565 
3566 #ifdef CONFIG_SCHEDSTATS
3567 	/* Even if schedstat is disabled, there should not be garbage */
3568 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3569 #endif
3570 
3571 	RB_CLEAR_NODE(&p->dl.rb_node);
3572 	init_dl_task_timer(&p->dl);
3573 	init_dl_inactive_task_timer(&p->dl);
3574 	__dl_clear_params(p);
3575 
3576 	INIT_LIST_HEAD(&p->rt.run_list);
3577 	p->rt.timeout		= 0;
3578 	p->rt.time_slice	= sched_rr_timeslice;
3579 	p->rt.on_rq		= 0;
3580 	p->rt.on_list		= 0;
3581 
3582 #ifdef CONFIG_PREEMPT_NOTIFIERS
3583 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3584 #endif
3585 
3586 #ifdef CONFIG_COMPACTION
3587 	p->capture_control = NULL;
3588 #endif
3589 	init_numa_balancing(clone_flags, p);
3590 #ifdef CONFIG_SMP
3591 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3592 	p->migration_pending = NULL;
3593 #endif
3594 }
3595 
3596 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3597 
3598 #ifdef CONFIG_NUMA_BALANCING
3599 
3600 void set_numabalancing_state(bool enabled)
3601 {
3602 	if (enabled)
3603 		static_branch_enable(&sched_numa_balancing);
3604 	else
3605 		static_branch_disable(&sched_numa_balancing);
3606 }
3607 
3608 #ifdef CONFIG_PROC_SYSCTL
3609 int sysctl_numa_balancing(struct ctl_table *table, int write,
3610 			  void *buffer, size_t *lenp, loff_t *ppos)
3611 {
3612 	struct ctl_table t;
3613 	int err;
3614 	int state = static_branch_likely(&sched_numa_balancing);
3615 
3616 	if (write && !capable(CAP_SYS_ADMIN))
3617 		return -EPERM;
3618 
3619 	t = *table;
3620 	t.data = &state;
3621 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3622 	if (err < 0)
3623 		return err;
3624 	if (write)
3625 		set_numabalancing_state(state);
3626 	return err;
3627 }
3628 #endif
3629 #endif
3630 
3631 #ifdef CONFIG_SCHEDSTATS
3632 
3633 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3634 static bool __initdata __sched_schedstats = false;
3635 
3636 static void set_schedstats(bool enabled)
3637 {
3638 	if (enabled)
3639 		static_branch_enable(&sched_schedstats);
3640 	else
3641 		static_branch_disable(&sched_schedstats);
3642 }
3643 
3644 void force_schedstat_enabled(void)
3645 {
3646 	if (!schedstat_enabled()) {
3647 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3648 		static_branch_enable(&sched_schedstats);
3649 	}
3650 }
3651 
3652 static int __init setup_schedstats(char *str)
3653 {
3654 	int ret = 0;
3655 	if (!str)
3656 		goto out;
3657 
3658 	/*
3659 	 * This code is called before jump labels have been set up, so we can't
3660 	 * change the static branch directly just yet.  Instead set a temporary
3661 	 * variable so init_schedstats() can do it later.
3662 	 */
3663 	if (!strcmp(str, "enable")) {
3664 		__sched_schedstats = true;
3665 		ret = 1;
3666 	} else if (!strcmp(str, "disable")) {
3667 		__sched_schedstats = false;
3668 		ret = 1;
3669 	}
3670 out:
3671 	if (!ret)
3672 		pr_warn("Unable to parse schedstats=\n");
3673 
3674 	return ret;
3675 }
3676 __setup("schedstats=", setup_schedstats);
3677 
3678 static void __init init_schedstats(void)
3679 {
3680 	set_schedstats(__sched_schedstats);
3681 }
3682 
3683 #ifdef CONFIG_PROC_SYSCTL
3684 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3685 		size_t *lenp, loff_t *ppos)
3686 {
3687 	struct ctl_table t;
3688 	int err;
3689 	int state = static_branch_likely(&sched_schedstats);
3690 
3691 	if (write && !capable(CAP_SYS_ADMIN))
3692 		return -EPERM;
3693 
3694 	t = *table;
3695 	t.data = &state;
3696 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3697 	if (err < 0)
3698 		return err;
3699 	if (write)
3700 		set_schedstats(state);
3701 	return err;
3702 }
3703 #endif /* CONFIG_PROC_SYSCTL */
3704 #else  /* !CONFIG_SCHEDSTATS */
3705 static inline void init_schedstats(void) {}
3706 #endif /* CONFIG_SCHEDSTATS */
3707 
3708 /*
3709  * fork()/clone()-time setup:
3710  */
3711 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3712 {
3713 	unsigned long flags;
3714 
3715 	__sched_fork(clone_flags, p);
3716 	/*
3717 	 * We mark the process as NEW here. This guarantees that
3718 	 * nobody will actually run it, and a signal or other external
3719 	 * event cannot wake it up and insert it on the runqueue either.
3720 	 */
3721 	p->state = TASK_NEW;
3722 
3723 	/*
3724 	 * Make sure we do not leak PI boosting priority to the child.
3725 	 */
3726 	p->prio = current->normal_prio;
3727 
3728 	uclamp_fork(p);
3729 
3730 	/*
3731 	 * Revert to default priority/policy on fork if requested.
3732 	 */
3733 	if (unlikely(p->sched_reset_on_fork)) {
3734 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3735 			p->policy = SCHED_NORMAL;
3736 			p->static_prio = NICE_TO_PRIO(0);
3737 			p->rt_priority = 0;
3738 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3739 			p->static_prio = NICE_TO_PRIO(0);
3740 
3741 		p->prio = p->normal_prio = __normal_prio(p);
3742 		set_load_weight(p, false);
3743 
3744 		/*
3745 		 * We don't need the reset flag anymore after the fork. It has
3746 		 * fulfilled its duty:
3747 		 */
3748 		p->sched_reset_on_fork = 0;
3749 	}
3750 
3751 	if (dl_prio(p->prio))
3752 		return -EAGAIN;
3753 	else if (rt_prio(p->prio))
3754 		p->sched_class = &rt_sched_class;
3755 	else
3756 		p->sched_class = &fair_sched_class;
3757 
3758 	init_entity_runnable_average(&p->se);
3759 
3760 	/*
3761 	 * The child is not yet in the pid-hash so no cgroup attach races,
3762 	 * and the cgroup is pinned to this child due to cgroup_fork()
3763 	 * is ran before sched_fork().
3764 	 *
3765 	 * Silence PROVE_RCU.
3766 	 */
3767 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3768 	rseq_migrate(p);
3769 	/*
3770 	 * We're setting the CPU for the first time, we don't migrate,
3771 	 * so use __set_task_cpu().
3772 	 */
3773 	__set_task_cpu(p, smp_processor_id());
3774 	if (p->sched_class->task_fork)
3775 		p->sched_class->task_fork(p);
3776 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3777 
3778 #ifdef CONFIG_SCHED_INFO
3779 	if (likely(sched_info_on()))
3780 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3781 #endif
3782 #if defined(CONFIG_SMP)
3783 	p->on_cpu = 0;
3784 #endif
3785 	init_task_preempt_count(p);
3786 #ifdef CONFIG_SMP
3787 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3788 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3789 #endif
3790 	return 0;
3791 }
3792 
3793 void sched_post_fork(struct task_struct *p)
3794 {
3795 	uclamp_post_fork(p);
3796 }
3797 
3798 unsigned long to_ratio(u64 period, u64 runtime)
3799 {
3800 	if (runtime == RUNTIME_INF)
3801 		return BW_UNIT;
3802 
3803 	/*
3804 	 * Doing this here saves a lot of checks in all
3805 	 * the calling paths, and returning zero seems
3806 	 * safe for them anyway.
3807 	 */
3808 	if (period == 0)
3809 		return 0;
3810 
3811 	return div64_u64(runtime << BW_SHIFT, period);
3812 }
3813 
3814 /*
3815  * wake_up_new_task - wake up a newly created task for the first time.
3816  *
3817  * This function will do some initial scheduler statistics housekeeping
3818  * that must be done for every newly created context, then puts the task
3819  * on the runqueue and wakes it.
3820  */
3821 void wake_up_new_task(struct task_struct *p)
3822 {
3823 	struct rq_flags rf;
3824 	struct rq *rq;
3825 
3826 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3827 	p->state = TASK_RUNNING;
3828 #ifdef CONFIG_SMP
3829 	/*
3830 	 * Fork balancing, do it here and not earlier because:
3831 	 *  - cpus_ptr can change in the fork path
3832 	 *  - any previously selected CPU might disappear through hotplug
3833 	 *
3834 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3835 	 * as we're not fully set-up yet.
3836 	 */
3837 	p->recent_used_cpu = task_cpu(p);
3838 	rseq_migrate(p);
3839 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3840 #endif
3841 	rq = __task_rq_lock(p, &rf);
3842 	update_rq_clock(rq);
3843 	post_init_entity_util_avg(p);
3844 
3845 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3846 	trace_sched_wakeup_new(p);
3847 	check_preempt_curr(rq, p, WF_FORK);
3848 #ifdef CONFIG_SMP
3849 	if (p->sched_class->task_woken) {
3850 		/*
3851 		 * Nothing relies on rq->lock after this, so it's fine to
3852 		 * drop it.
3853 		 */
3854 		rq_unpin_lock(rq, &rf);
3855 		p->sched_class->task_woken(rq, p);
3856 		rq_repin_lock(rq, &rf);
3857 	}
3858 #endif
3859 	task_rq_unlock(rq, p, &rf);
3860 }
3861 
3862 #ifdef CONFIG_PREEMPT_NOTIFIERS
3863 
3864 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3865 
3866 void preempt_notifier_inc(void)
3867 {
3868 	static_branch_inc(&preempt_notifier_key);
3869 }
3870 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3871 
3872 void preempt_notifier_dec(void)
3873 {
3874 	static_branch_dec(&preempt_notifier_key);
3875 }
3876 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3877 
3878 /**
3879  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3880  * @notifier: notifier struct to register
3881  */
3882 void preempt_notifier_register(struct preempt_notifier *notifier)
3883 {
3884 	if (!static_branch_unlikely(&preempt_notifier_key))
3885 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3886 
3887 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3888 }
3889 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3890 
3891 /**
3892  * preempt_notifier_unregister - no longer interested in preemption notifications
3893  * @notifier: notifier struct to unregister
3894  *
3895  * This is *not* safe to call from within a preemption notifier.
3896  */
3897 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3898 {
3899 	hlist_del(&notifier->link);
3900 }
3901 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3902 
3903 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3904 {
3905 	struct preempt_notifier *notifier;
3906 
3907 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3908 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3909 }
3910 
3911 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3912 {
3913 	if (static_branch_unlikely(&preempt_notifier_key))
3914 		__fire_sched_in_preempt_notifiers(curr);
3915 }
3916 
3917 static void
3918 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3919 				   struct task_struct *next)
3920 {
3921 	struct preempt_notifier *notifier;
3922 
3923 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3924 		notifier->ops->sched_out(notifier, next);
3925 }
3926 
3927 static __always_inline void
3928 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3929 				 struct task_struct *next)
3930 {
3931 	if (static_branch_unlikely(&preempt_notifier_key))
3932 		__fire_sched_out_preempt_notifiers(curr, next);
3933 }
3934 
3935 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3936 
3937 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3938 {
3939 }
3940 
3941 static inline void
3942 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3943 				 struct task_struct *next)
3944 {
3945 }
3946 
3947 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3948 
3949 static inline void prepare_task(struct task_struct *next)
3950 {
3951 #ifdef CONFIG_SMP
3952 	/*
3953 	 * Claim the task as running, we do this before switching to it
3954 	 * such that any running task will have this set.
3955 	 *
3956 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3957 	 */
3958 	WRITE_ONCE(next->on_cpu, 1);
3959 #endif
3960 }
3961 
3962 static inline void finish_task(struct task_struct *prev)
3963 {
3964 #ifdef CONFIG_SMP
3965 	/*
3966 	 * This must be the very last reference to @prev from this CPU. After
3967 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3968 	 * must ensure this doesn't happen until the switch is completely
3969 	 * finished.
3970 	 *
3971 	 * In particular, the load of prev->state in finish_task_switch() must
3972 	 * happen before this.
3973 	 *
3974 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3975 	 */
3976 	smp_store_release(&prev->on_cpu, 0);
3977 #endif
3978 }
3979 
3980 #ifdef CONFIG_SMP
3981 
3982 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3983 {
3984 	void (*func)(struct rq *rq);
3985 	struct callback_head *next;
3986 
3987 	lockdep_assert_held(&rq->lock);
3988 
3989 	while (head) {
3990 		func = (void (*)(struct rq *))head->func;
3991 		next = head->next;
3992 		head->next = NULL;
3993 		head = next;
3994 
3995 		func(rq);
3996 	}
3997 }
3998 
3999 static void balance_push(struct rq *rq);
4000 
4001 struct callback_head balance_push_callback = {
4002 	.next = NULL,
4003 	.func = (void (*)(struct callback_head *))balance_push,
4004 };
4005 
4006 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4007 {
4008 	struct callback_head *head = rq->balance_callback;
4009 
4010 	lockdep_assert_held(&rq->lock);
4011 	if (head)
4012 		rq->balance_callback = NULL;
4013 
4014 	return head;
4015 }
4016 
4017 static void __balance_callbacks(struct rq *rq)
4018 {
4019 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4020 }
4021 
4022 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4023 {
4024 	unsigned long flags;
4025 
4026 	if (unlikely(head)) {
4027 		raw_spin_lock_irqsave(&rq->lock, flags);
4028 		do_balance_callbacks(rq, head);
4029 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4030 	}
4031 }
4032 
4033 #else
4034 
4035 static inline void __balance_callbacks(struct rq *rq)
4036 {
4037 }
4038 
4039 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4040 {
4041 	return NULL;
4042 }
4043 
4044 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4045 {
4046 }
4047 
4048 #endif
4049 
4050 static inline void
4051 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4052 {
4053 	/*
4054 	 * Since the runqueue lock will be released by the next
4055 	 * task (which is an invalid locking op but in the case
4056 	 * of the scheduler it's an obvious special-case), so we
4057 	 * do an early lockdep release here:
4058 	 */
4059 	rq_unpin_lock(rq, rf);
4060 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4061 #ifdef CONFIG_DEBUG_SPINLOCK
4062 	/* this is a valid case when another task releases the spinlock */
4063 	rq->lock.owner = next;
4064 #endif
4065 }
4066 
4067 static inline void finish_lock_switch(struct rq *rq)
4068 {
4069 	/*
4070 	 * If we are tracking spinlock dependencies then we have to
4071 	 * fix up the runqueue lock - which gets 'carried over' from
4072 	 * prev into current:
4073 	 */
4074 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4075 	__balance_callbacks(rq);
4076 	raw_spin_unlock_irq(&rq->lock);
4077 }
4078 
4079 /*
4080  * NOP if the arch has not defined these:
4081  */
4082 
4083 #ifndef prepare_arch_switch
4084 # define prepare_arch_switch(next)	do { } while (0)
4085 #endif
4086 
4087 #ifndef finish_arch_post_lock_switch
4088 # define finish_arch_post_lock_switch()	do { } while (0)
4089 #endif
4090 
4091 static inline void kmap_local_sched_out(void)
4092 {
4093 #ifdef CONFIG_KMAP_LOCAL
4094 	if (unlikely(current->kmap_ctrl.idx))
4095 		__kmap_local_sched_out();
4096 #endif
4097 }
4098 
4099 static inline void kmap_local_sched_in(void)
4100 {
4101 #ifdef CONFIG_KMAP_LOCAL
4102 	if (unlikely(current->kmap_ctrl.idx))
4103 		__kmap_local_sched_in();
4104 #endif
4105 }
4106 
4107 /**
4108  * prepare_task_switch - prepare to switch tasks
4109  * @rq: the runqueue preparing to switch
4110  * @prev: the current task that is being switched out
4111  * @next: the task we are going to switch to.
4112  *
4113  * This is called with the rq lock held and interrupts off. It must
4114  * be paired with a subsequent finish_task_switch after the context
4115  * switch.
4116  *
4117  * prepare_task_switch sets up locking and calls architecture specific
4118  * hooks.
4119  */
4120 static inline void
4121 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4122 		    struct task_struct *next)
4123 {
4124 	kcov_prepare_switch(prev);
4125 	sched_info_switch(rq, prev, next);
4126 	perf_event_task_sched_out(prev, next);
4127 	rseq_preempt(prev);
4128 	fire_sched_out_preempt_notifiers(prev, next);
4129 	kmap_local_sched_out();
4130 	prepare_task(next);
4131 	prepare_arch_switch(next);
4132 }
4133 
4134 /**
4135  * finish_task_switch - clean up after a task-switch
4136  * @prev: the thread we just switched away from.
4137  *
4138  * finish_task_switch must be called after the context switch, paired
4139  * with a prepare_task_switch call before the context switch.
4140  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4141  * and do any other architecture-specific cleanup actions.
4142  *
4143  * Note that we may have delayed dropping an mm in context_switch(). If
4144  * so, we finish that here outside of the runqueue lock. (Doing it
4145  * with the lock held can cause deadlocks; see schedule() for
4146  * details.)
4147  *
4148  * The context switch have flipped the stack from under us and restored the
4149  * local variables which were saved when this task called schedule() in the
4150  * past. prev == current is still correct but we need to recalculate this_rq
4151  * because prev may have moved to another CPU.
4152  */
4153 static struct rq *finish_task_switch(struct task_struct *prev)
4154 	__releases(rq->lock)
4155 {
4156 	struct rq *rq = this_rq();
4157 	struct mm_struct *mm = rq->prev_mm;
4158 	long prev_state;
4159 
4160 	/*
4161 	 * The previous task will have left us with a preempt_count of 2
4162 	 * because it left us after:
4163 	 *
4164 	 *	schedule()
4165 	 *	  preempt_disable();			// 1
4166 	 *	  __schedule()
4167 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4168 	 *
4169 	 * Also, see FORK_PREEMPT_COUNT.
4170 	 */
4171 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4172 		      "corrupted preempt_count: %s/%d/0x%x\n",
4173 		      current->comm, current->pid, preempt_count()))
4174 		preempt_count_set(FORK_PREEMPT_COUNT);
4175 
4176 	rq->prev_mm = NULL;
4177 
4178 	/*
4179 	 * A task struct has one reference for the use as "current".
4180 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4181 	 * schedule one last time. The schedule call will never return, and
4182 	 * the scheduled task must drop that reference.
4183 	 *
4184 	 * We must observe prev->state before clearing prev->on_cpu (in
4185 	 * finish_task), otherwise a concurrent wakeup can get prev
4186 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4187 	 * transition, resulting in a double drop.
4188 	 */
4189 	prev_state = prev->state;
4190 	vtime_task_switch(prev);
4191 	perf_event_task_sched_in(prev, current);
4192 	finish_task(prev);
4193 	finish_lock_switch(rq);
4194 	finish_arch_post_lock_switch();
4195 	kcov_finish_switch(current);
4196 	/*
4197 	 * kmap_local_sched_out() is invoked with rq::lock held and
4198 	 * interrupts disabled. There is no requirement for that, but the
4199 	 * sched out code does not have an interrupt enabled section.
4200 	 * Restoring the maps on sched in does not require interrupts being
4201 	 * disabled either.
4202 	 */
4203 	kmap_local_sched_in();
4204 
4205 	fire_sched_in_preempt_notifiers(current);
4206 	/*
4207 	 * When switching through a kernel thread, the loop in
4208 	 * membarrier_{private,global}_expedited() may have observed that
4209 	 * kernel thread and not issued an IPI. It is therefore possible to
4210 	 * schedule between user->kernel->user threads without passing though
4211 	 * switch_mm(). Membarrier requires a barrier after storing to
4212 	 * rq->curr, before returning to userspace, so provide them here:
4213 	 *
4214 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4215 	 *   provided by mmdrop(),
4216 	 * - a sync_core for SYNC_CORE.
4217 	 */
4218 	if (mm) {
4219 		membarrier_mm_sync_core_before_usermode(mm);
4220 		mmdrop(mm);
4221 	}
4222 	if (unlikely(prev_state == TASK_DEAD)) {
4223 		if (prev->sched_class->task_dead)
4224 			prev->sched_class->task_dead(prev);
4225 
4226 		/*
4227 		 * Remove function-return probe instances associated with this
4228 		 * task and put them back on the free list.
4229 		 */
4230 		kprobe_flush_task(prev);
4231 
4232 		/* Task is done with its stack. */
4233 		put_task_stack(prev);
4234 
4235 		put_task_struct_rcu_user(prev);
4236 	}
4237 
4238 	tick_nohz_task_switch();
4239 	return rq;
4240 }
4241 
4242 /**
4243  * schedule_tail - first thing a freshly forked thread must call.
4244  * @prev: the thread we just switched away from.
4245  */
4246 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4247 	__releases(rq->lock)
4248 {
4249 	struct rq *rq;
4250 
4251 	/*
4252 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4253 	 * finish_task_switch() for details.
4254 	 *
4255 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4256 	 * and the preempt_enable() will end up enabling preemption (on
4257 	 * PREEMPT_COUNT kernels).
4258 	 */
4259 
4260 	rq = finish_task_switch(prev);
4261 	preempt_enable();
4262 
4263 	if (current->set_child_tid)
4264 		put_user(task_pid_vnr(current), current->set_child_tid);
4265 
4266 	calculate_sigpending();
4267 }
4268 
4269 /*
4270  * context_switch - switch to the new MM and the new thread's register state.
4271  */
4272 static __always_inline struct rq *
4273 context_switch(struct rq *rq, struct task_struct *prev,
4274 	       struct task_struct *next, struct rq_flags *rf)
4275 {
4276 	prepare_task_switch(rq, prev, next);
4277 
4278 	/*
4279 	 * For paravirt, this is coupled with an exit in switch_to to
4280 	 * combine the page table reload and the switch backend into
4281 	 * one hypercall.
4282 	 */
4283 	arch_start_context_switch(prev);
4284 
4285 	/*
4286 	 * kernel -> kernel   lazy + transfer active
4287 	 *   user -> kernel   lazy + mmgrab() active
4288 	 *
4289 	 * kernel ->   user   switch + mmdrop() active
4290 	 *   user ->   user   switch
4291 	 */
4292 	if (!next->mm) {                                // to kernel
4293 		enter_lazy_tlb(prev->active_mm, next);
4294 
4295 		next->active_mm = prev->active_mm;
4296 		if (prev->mm)                           // from user
4297 			mmgrab(prev->active_mm);
4298 		else
4299 			prev->active_mm = NULL;
4300 	} else {                                        // to user
4301 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4302 		/*
4303 		 * sys_membarrier() requires an smp_mb() between setting
4304 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4305 		 *
4306 		 * The below provides this either through switch_mm(), or in
4307 		 * case 'prev->active_mm == next->mm' through
4308 		 * finish_task_switch()'s mmdrop().
4309 		 */
4310 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4311 
4312 		if (!prev->mm) {                        // from kernel
4313 			/* will mmdrop() in finish_task_switch(). */
4314 			rq->prev_mm = prev->active_mm;
4315 			prev->active_mm = NULL;
4316 		}
4317 	}
4318 
4319 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4320 
4321 	prepare_lock_switch(rq, next, rf);
4322 
4323 	/* Here we just switch the register state and the stack. */
4324 	switch_to(prev, next, prev);
4325 	barrier();
4326 
4327 	return finish_task_switch(prev);
4328 }
4329 
4330 /*
4331  * nr_running and nr_context_switches:
4332  *
4333  * externally visible scheduler statistics: current number of runnable
4334  * threads, total number of context switches performed since bootup.
4335  */
4336 unsigned long nr_running(void)
4337 {
4338 	unsigned long i, sum = 0;
4339 
4340 	for_each_online_cpu(i)
4341 		sum += cpu_rq(i)->nr_running;
4342 
4343 	return sum;
4344 }
4345 
4346 /*
4347  * Check if only the current task is running on the CPU.
4348  *
4349  * Caution: this function does not check that the caller has disabled
4350  * preemption, thus the result might have a time-of-check-to-time-of-use
4351  * race.  The caller is responsible to use it correctly, for example:
4352  *
4353  * - from a non-preemptible section (of course)
4354  *
4355  * - from a thread that is bound to a single CPU
4356  *
4357  * - in a loop with very short iterations (e.g. a polling loop)
4358  */
4359 bool single_task_running(void)
4360 {
4361 	return raw_rq()->nr_running == 1;
4362 }
4363 EXPORT_SYMBOL(single_task_running);
4364 
4365 unsigned long long nr_context_switches(void)
4366 {
4367 	int i;
4368 	unsigned long long sum = 0;
4369 
4370 	for_each_possible_cpu(i)
4371 		sum += cpu_rq(i)->nr_switches;
4372 
4373 	return sum;
4374 }
4375 
4376 /*
4377  * Consumers of these two interfaces, like for example the cpuidle menu
4378  * governor, are using nonsensical data. Preferring shallow idle state selection
4379  * for a CPU that has IO-wait which might not even end up running the task when
4380  * it does become runnable.
4381  */
4382 
4383 unsigned long nr_iowait_cpu(int cpu)
4384 {
4385 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4386 }
4387 
4388 /*
4389  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4390  *
4391  * The idea behind IO-wait account is to account the idle time that we could
4392  * have spend running if it were not for IO. That is, if we were to improve the
4393  * storage performance, we'd have a proportional reduction in IO-wait time.
4394  *
4395  * This all works nicely on UP, where, when a task blocks on IO, we account
4396  * idle time as IO-wait, because if the storage were faster, it could've been
4397  * running and we'd not be idle.
4398  *
4399  * This has been extended to SMP, by doing the same for each CPU. This however
4400  * is broken.
4401  *
4402  * Imagine for instance the case where two tasks block on one CPU, only the one
4403  * CPU will have IO-wait accounted, while the other has regular idle. Even
4404  * though, if the storage were faster, both could've ran at the same time,
4405  * utilising both CPUs.
4406  *
4407  * This means, that when looking globally, the current IO-wait accounting on
4408  * SMP is a lower bound, by reason of under accounting.
4409  *
4410  * Worse, since the numbers are provided per CPU, they are sometimes
4411  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4412  * associated with any one particular CPU, it can wake to another CPU than it
4413  * blocked on. This means the per CPU IO-wait number is meaningless.
4414  *
4415  * Task CPU affinities can make all that even more 'interesting'.
4416  */
4417 
4418 unsigned long nr_iowait(void)
4419 {
4420 	unsigned long i, sum = 0;
4421 
4422 	for_each_possible_cpu(i)
4423 		sum += nr_iowait_cpu(i);
4424 
4425 	return sum;
4426 }
4427 
4428 #ifdef CONFIG_SMP
4429 
4430 /*
4431  * sched_exec - execve() is a valuable balancing opportunity, because at
4432  * this point the task has the smallest effective memory and cache footprint.
4433  */
4434 void sched_exec(void)
4435 {
4436 	struct task_struct *p = current;
4437 	unsigned long flags;
4438 	int dest_cpu;
4439 
4440 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4441 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4442 	if (dest_cpu == smp_processor_id())
4443 		goto unlock;
4444 
4445 	if (likely(cpu_active(dest_cpu))) {
4446 		struct migration_arg arg = { p, dest_cpu };
4447 
4448 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4449 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4450 		return;
4451 	}
4452 unlock:
4453 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4454 }
4455 
4456 #endif
4457 
4458 DEFINE_PER_CPU(struct kernel_stat, kstat);
4459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4460 
4461 EXPORT_PER_CPU_SYMBOL(kstat);
4462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4463 
4464 /*
4465  * The function fair_sched_class.update_curr accesses the struct curr
4466  * and its field curr->exec_start; when called from task_sched_runtime(),
4467  * we observe a high rate of cache misses in practice.
4468  * Prefetching this data results in improved performance.
4469  */
4470 static inline void prefetch_curr_exec_start(struct task_struct *p)
4471 {
4472 #ifdef CONFIG_FAIR_GROUP_SCHED
4473 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4474 #else
4475 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4476 #endif
4477 	prefetch(curr);
4478 	prefetch(&curr->exec_start);
4479 }
4480 
4481 /*
4482  * Return accounted runtime for the task.
4483  * In case the task is currently running, return the runtime plus current's
4484  * pending runtime that have not been accounted yet.
4485  */
4486 unsigned long long task_sched_runtime(struct task_struct *p)
4487 {
4488 	struct rq_flags rf;
4489 	struct rq *rq;
4490 	u64 ns;
4491 
4492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4493 	/*
4494 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4495 	 * So we have a optimization chance when the task's delta_exec is 0.
4496 	 * Reading ->on_cpu is racy, but this is ok.
4497 	 *
4498 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4499 	 * If we race with it entering CPU, unaccounted time is 0. This is
4500 	 * indistinguishable from the read occurring a few cycles earlier.
4501 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4502 	 * been accounted, so we're correct here as well.
4503 	 */
4504 	if (!p->on_cpu || !task_on_rq_queued(p))
4505 		return p->se.sum_exec_runtime;
4506 #endif
4507 
4508 	rq = task_rq_lock(p, &rf);
4509 	/*
4510 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4511 	 * project cycles that may never be accounted to this
4512 	 * thread, breaking clock_gettime().
4513 	 */
4514 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4515 		prefetch_curr_exec_start(p);
4516 		update_rq_clock(rq);
4517 		p->sched_class->update_curr(rq);
4518 	}
4519 	ns = p->se.sum_exec_runtime;
4520 	task_rq_unlock(rq, p, &rf);
4521 
4522 	return ns;
4523 }
4524 
4525 /*
4526  * This function gets called by the timer code, with HZ frequency.
4527  * We call it with interrupts disabled.
4528  */
4529 void scheduler_tick(void)
4530 {
4531 	int cpu = smp_processor_id();
4532 	struct rq *rq = cpu_rq(cpu);
4533 	struct task_struct *curr = rq->curr;
4534 	struct rq_flags rf;
4535 	unsigned long thermal_pressure;
4536 
4537 	arch_scale_freq_tick();
4538 	sched_clock_tick();
4539 
4540 	rq_lock(rq, &rf);
4541 
4542 	update_rq_clock(rq);
4543 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4544 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4545 	curr->sched_class->task_tick(rq, curr, 0);
4546 	calc_global_load_tick(rq);
4547 	psi_task_tick(rq);
4548 
4549 	rq_unlock(rq, &rf);
4550 
4551 	perf_event_task_tick();
4552 
4553 #ifdef CONFIG_SMP
4554 	rq->idle_balance = idle_cpu(cpu);
4555 	trigger_load_balance(rq);
4556 #endif
4557 }
4558 
4559 #ifdef CONFIG_NO_HZ_FULL
4560 
4561 struct tick_work {
4562 	int			cpu;
4563 	atomic_t		state;
4564 	struct delayed_work	work;
4565 };
4566 /* Values for ->state, see diagram below. */
4567 #define TICK_SCHED_REMOTE_OFFLINE	0
4568 #define TICK_SCHED_REMOTE_OFFLINING	1
4569 #define TICK_SCHED_REMOTE_RUNNING	2
4570 
4571 /*
4572  * State diagram for ->state:
4573  *
4574  *
4575  *          TICK_SCHED_REMOTE_OFFLINE
4576  *                    |   ^
4577  *                    |   |
4578  *                    |   | sched_tick_remote()
4579  *                    |   |
4580  *                    |   |
4581  *                    +--TICK_SCHED_REMOTE_OFFLINING
4582  *                    |   ^
4583  *                    |   |
4584  * sched_tick_start() |   | sched_tick_stop()
4585  *                    |   |
4586  *                    V   |
4587  *          TICK_SCHED_REMOTE_RUNNING
4588  *
4589  *
4590  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4591  * and sched_tick_start() are happy to leave the state in RUNNING.
4592  */
4593 
4594 static struct tick_work __percpu *tick_work_cpu;
4595 
4596 static void sched_tick_remote(struct work_struct *work)
4597 {
4598 	struct delayed_work *dwork = to_delayed_work(work);
4599 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4600 	int cpu = twork->cpu;
4601 	struct rq *rq = cpu_rq(cpu);
4602 	struct task_struct *curr;
4603 	struct rq_flags rf;
4604 	u64 delta;
4605 	int os;
4606 
4607 	/*
4608 	 * Handle the tick only if it appears the remote CPU is running in full
4609 	 * dynticks mode. The check is racy by nature, but missing a tick or
4610 	 * having one too much is no big deal because the scheduler tick updates
4611 	 * statistics and checks timeslices in a time-independent way, regardless
4612 	 * of when exactly it is running.
4613 	 */
4614 	if (!tick_nohz_tick_stopped_cpu(cpu))
4615 		goto out_requeue;
4616 
4617 	rq_lock_irq(rq, &rf);
4618 	curr = rq->curr;
4619 	if (cpu_is_offline(cpu))
4620 		goto out_unlock;
4621 
4622 	update_rq_clock(rq);
4623 
4624 	if (!is_idle_task(curr)) {
4625 		/*
4626 		 * Make sure the next tick runs within a reasonable
4627 		 * amount of time.
4628 		 */
4629 		delta = rq_clock_task(rq) - curr->se.exec_start;
4630 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4631 	}
4632 	curr->sched_class->task_tick(rq, curr, 0);
4633 
4634 	calc_load_nohz_remote(rq);
4635 out_unlock:
4636 	rq_unlock_irq(rq, &rf);
4637 out_requeue:
4638 
4639 	/*
4640 	 * Run the remote tick once per second (1Hz). This arbitrary
4641 	 * frequency is large enough to avoid overload but short enough
4642 	 * to keep scheduler internal stats reasonably up to date.  But
4643 	 * first update state to reflect hotplug activity if required.
4644 	 */
4645 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4646 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4647 	if (os == TICK_SCHED_REMOTE_RUNNING)
4648 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4649 }
4650 
4651 static void sched_tick_start(int cpu)
4652 {
4653 	int os;
4654 	struct tick_work *twork;
4655 
4656 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4657 		return;
4658 
4659 	WARN_ON_ONCE(!tick_work_cpu);
4660 
4661 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4662 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4663 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4664 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4665 		twork->cpu = cpu;
4666 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4667 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4668 	}
4669 }
4670 
4671 #ifdef CONFIG_HOTPLUG_CPU
4672 static void sched_tick_stop(int cpu)
4673 {
4674 	struct tick_work *twork;
4675 	int os;
4676 
4677 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4678 		return;
4679 
4680 	WARN_ON_ONCE(!tick_work_cpu);
4681 
4682 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4683 	/* There cannot be competing actions, but don't rely on stop-machine. */
4684 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4685 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4686 	/* Don't cancel, as this would mess up the state machine. */
4687 }
4688 #endif /* CONFIG_HOTPLUG_CPU */
4689 
4690 int __init sched_tick_offload_init(void)
4691 {
4692 	tick_work_cpu = alloc_percpu(struct tick_work);
4693 	BUG_ON(!tick_work_cpu);
4694 	return 0;
4695 }
4696 
4697 #else /* !CONFIG_NO_HZ_FULL */
4698 static inline void sched_tick_start(int cpu) { }
4699 static inline void sched_tick_stop(int cpu) { }
4700 #endif
4701 
4702 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4703 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4704 /*
4705  * If the value passed in is equal to the current preempt count
4706  * then we just disabled preemption. Start timing the latency.
4707  */
4708 static inline void preempt_latency_start(int val)
4709 {
4710 	if (preempt_count() == val) {
4711 		unsigned long ip = get_lock_parent_ip();
4712 #ifdef CONFIG_DEBUG_PREEMPT
4713 		current->preempt_disable_ip = ip;
4714 #endif
4715 		trace_preempt_off(CALLER_ADDR0, ip);
4716 	}
4717 }
4718 
4719 void preempt_count_add(int val)
4720 {
4721 #ifdef CONFIG_DEBUG_PREEMPT
4722 	/*
4723 	 * Underflow?
4724 	 */
4725 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4726 		return;
4727 #endif
4728 	__preempt_count_add(val);
4729 #ifdef CONFIG_DEBUG_PREEMPT
4730 	/*
4731 	 * Spinlock count overflowing soon?
4732 	 */
4733 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4734 				PREEMPT_MASK - 10);
4735 #endif
4736 	preempt_latency_start(val);
4737 }
4738 EXPORT_SYMBOL(preempt_count_add);
4739 NOKPROBE_SYMBOL(preempt_count_add);
4740 
4741 /*
4742  * If the value passed in equals to the current preempt count
4743  * then we just enabled preemption. Stop timing the latency.
4744  */
4745 static inline void preempt_latency_stop(int val)
4746 {
4747 	if (preempt_count() == val)
4748 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4749 }
4750 
4751 void preempt_count_sub(int val)
4752 {
4753 #ifdef CONFIG_DEBUG_PREEMPT
4754 	/*
4755 	 * Underflow?
4756 	 */
4757 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4758 		return;
4759 	/*
4760 	 * Is the spinlock portion underflowing?
4761 	 */
4762 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4763 			!(preempt_count() & PREEMPT_MASK)))
4764 		return;
4765 #endif
4766 
4767 	preempt_latency_stop(val);
4768 	__preempt_count_sub(val);
4769 }
4770 EXPORT_SYMBOL(preempt_count_sub);
4771 NOKPROBE_SYMBOL(preempt_count_sub);
4772 
4773 #else
4774 static inline void preempt_latency_start(int val) { }
4775 static inline void preempt_latency_stop(int val) { }
4776 #endif
4777 
4778 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4779 {
4780 #ifdef CONFIG_DEBUG_PREEMPT
4781 	return p->preempt_disable_ip;
4782 #else
4783 	return 0;
4784 #endif
4785 }
4786 
4787 /*
4788  * Print scheduling while atomic bug:
4789  */
4790 static noinline void __schedule_bug(struct task_struct *prev)
4791 {
4792 	/* Save this before calling printk(), since that will clobber it */
4793 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4794 
4795 	if (oops_in_progress)
4796 		return;
4797 
4798 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4799 		prev->comm, prev->pid, preempt_count());
4800 
4801 	debug_show_held_locks(prev);
4802 	print_modules();
4803 	if (irqs_disabled())
4804 		print_irqtrace_events(prev);
4805 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4806 	    && in_atomic_preempt_off()) {
4807 		pr_err("Preemption disabled at:");
4808 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4809 	}
4810 	if (panic_on_warn)
4811 		panic("scheduling while atomic\n");
4812 
4813 	dump_stack();
4814 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4815 }
4816 
4817 /*
4818  * Various schedule()-time debugging checks and statistics:
4819  */
4820 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4821 {
4822 #ifdef CONFIG_SCHED_STACK_END_CHECK
4823 	if (task_stack_end_corrupted(prev))
4824 		panic("corrupted stack end detected inside scheduler\n");
4825 
4826 	if (task_scs_end_corrupted(prev))
4827 		panic("corrupted shadow stack detected inside scheduler\n");
4828 #endif
4829 
4830 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4831 	if (!preempt && prev->state && prev->non_block_count) {
4832 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4833 			prev->comm, prev->pid, prev->non_block_count);
4834 		dump_stack();
4835 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4836 	}
4837 #endif
4838 
4839 	if (unlikely(in_atomic_preempt_off())) {
4840 		__schedule_bug(prev);
4841 		preempt_count_set(PREEMPT_DISABLED);
4842 	}
4843 	rcu_sleep_check();
4844 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4845 
4846 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4847 
4848 	schedstat_inc(this_rq()->sched_count);
4849 }
4850 
4851 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4852 				  struct rq_flags *rf)
4853 {
4854 #ifdef CONFIG_SMP
4855 	const struct sched_class *class;
4856 	/*
4857 	 * We must do the balancing pass before put_prev_task(), such
4858 	 * that when we release the rq->lock the task is in the same
4859 	 * state as before we took rq->lock.
4860 	 *
4861 	 * We can terminate the balance pass as soon as we know there is
4862 	 * a runnable task of @class priority or higher.
4863 	 */
4864 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4865 		if (class->balance(rq, prev, rf))
4866 			break;
4867 	}
4868 #endif
4869 
4870 	put_prev_task(rq, prev);
4871 }
4872 
4873 /*
4874  * Pick up the highest-prio task:
4875  */
4876 static inline struct task_struct *
4877 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4878 {
4879 	const struct sched_class *class;
4880 	struct task_struct *p;
4881 
4882 	/*
4883 	 * Optimization: we know that if all tasks are in the fair class we can
4884 	 * call that function directly, but only if the @prev task wasn't of a
4885 	 * higher scheduling class, because otherwise those lose the
4886 	 * opportunity to pull in more work from other CPUs.
4887 	 */
4888 	if (likely(prev->sched_class <= &fair_sched_class &&
4889 		   rq->nr_running == rq->cfs.h_nr_running)) {
4890 
4891 		p = pick_next_task_fair(rq, prev, rf);
4892 		if (unlikely(p == RETRY_TASK))
4893 			goto restart;
4894 
4895 		/* Assumes fair_sched_class->next == idle_sched_class */
4896 		if (!p) {
4897 			put_prev_task(rq, prev);
4898 			p = pick_next_task_idle(rq);
4899 		}
4900 
4901 		return p;
4902 	}
4903 
4904 restart:
4905 	put_prev_task_balance(rq, prev, rf);
4906 
4907 	for_each_class(class) {
4908 		p = class->pick_next_task(rq);
4909 		if (p)
4910 			return p;
4911 	}
4912 
4913 	/* The idle class should always have a runnable task: */
4914 	BUG();
4915 }
4916 
4917 /*
4918  * __schedule() is the main scheduler function.
4919  *
4920  * The main means of driving the scheduler and thus entering this function are:
4921  *
4922  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4923  *
4924  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4925  *      paths. For example, see arch/x86/entry_64.S.
4926  *
4927  *      To drive preemption between tasks, the scheduler sets the flag in timer
4928  *      interrupt handler scheduler_tick().
4929  *
4930  *   3. Wakeups don't really cause entry into schedule(). They add a
4931  *      task to the run-queue and that's it.
4932  *
4933  *      Now, if the new task added to the run-queue preempts the current
4934  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4935  *      called on the nearest possible occasion:
4936  *
4937  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4938  *
4939  *         - in syscall or exception context, at the next outmost
4940  *           preempt_enable(). (this might be as soon as the wake_up()'s
4941  *           spin_unlock()!)
4942  *
4943  *         - in IRQ context, return from interrupt-handler to
4944  *           preemptible context
4945  *
4946  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4947  *         then at the next:
4948  *
4949  *          - cond_resched() call
4950  *          - explicit schedule() call
4951  *          - return from syscall or exception to user-space
4952  *          - return from interrupt-handler to user-space
4953  *
4954  * WARNING: must be called with preemption disabled!
4955  */
4956 static void __sched notrace __schedule(bool preempt)
4957 {
4958 	struct task_struct *prev, *next;
4959 	unsigned long *switch_count;
4960 	unsigned long prev_state;
4961 	struct rq_flags rf;
4962 	struct rq *rq;
4963 	int cpu;
4964 
4965 	cpu = smp_processor_id();
4966 	rq = cpu_rq(cpu);
4967 	prev = rq->curr;
4968 
4969 	schedule_debug(prev, preempt);
4970 
4971 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
4972 		hrtick_clear(rq);
4973 
4974 	local_irq_disable();
4975 	rcu_note_context_switch(preempt);
4976 
4977 	/*
4978 	 * Make sure that signal_pending_state()->signal_pending() below
4979 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4980 	 * done by the caller to avoid the race with signal_wake_up():
4981 	 *
4982 	 * __set_current_state(@state)		signal_wake_up()
4983 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4984 	 *					  wake_up_state(p, state)
4985 	 *   LOCK rq->lock			    LOCK p->pi_state
4986 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4987 	 *     if (signal_pending_state())	    if (p->state & @state)
4988 	 *
4989 	 * Also, the membarrier system call requires a full memory barrier
4990 	 * after coming from user-space, before storing to rq->curr.
4991 	 */
4992 	rq_lock(rq, &rf);
4993 	smp_mb__after_spinlock();
4994 
4995 	/* Promote REQ to ACT */
4996 	rq->clock_update_flags <<= 1;
4997 	update_rq_clock(rq);
4998 
4999 	switch_count = &prev->nivcsw;
5000 
5001 	/*
5002 	 * We must load prev->state once (task_struct::state is volatile), such
5003 	 * that:
5004 	 *
5005 	 *  - we form a control dependency vs deactivate_task() below.
5006 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5007 	 */
5008 	prev_state = prev->state;
5009 	if (!preempt && prev_state) {
5010 		if (signal_pending_state(prev_state, prev)) {
5011 			prev->state = TASK_RUNNING;
5012 		} else {
5013 			prev->sched_contributes_to_load =
5014 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5015 				!(prev_state & TASK_NOLOAD) &&
5016 				!(prev->flags & PF_FROZEN);
5017 
5018 			if (prev->sched_contributes_to_load)
5019 				rq->nr_uninterruptible++;
5020 
5021 			/*
5022 			 * __schedule()			ttwu()
5023 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5024 			 *   if (prev_state)		    goto out;
5025 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5026 			 *				  p->state = TASK_WAKING
5027 			 *
5028 			 * Where __schedule() and ttwu() have matching control dependencies.
5029 			 *
5030 			 * After this, schedule() must not care about p->state any more.
5031 			 */
5032 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5033 
5034 			if (prev->in_iowait) {
5035 				atomic_inc(&rq->nr_iowait);
5036 				delayacct_blkio_start();
5037 			}
5038 		}
5039 		switch_count = &prev->nvcsw;
5040 	}
5041 
5042 	next = pick_next_task(rq, prev, &rf);
5043 	clear_tsk_need_resched(prev);
5044 	clear_preempt_need_resched();
5045 
5046 	if (likely(prev != next)) {
5047 		rq->nr_switches++;
5048 		/*
5049 		 * RCU users of rcu_dereference(rq->curr) may not see
5050 		 * changes to task_struct made by pick_next_task().
5051 		 */
5052 		RCU_INIT_POINTER(rq->curr, next);
5053 		/*
5054 		 * The membarrier system call requires each architecture
5055 		 * to have a full memory barrier after updating
5056 		 * rq->curr, before returning to user-space.
5057 		 *
5058 		 * Here are the schemes providing that barrier on the
5059 		 * various architectures:
5060 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5061 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5062 		 * - finish_lock_switch() for weakly-ordered
5063 		 *   architectures where spin_unlock is a full barrier,
5064 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5065 		 *   is a RELEASE barrier),
5066 		 */
5067 		++*switch_count;
5068 
5069 		migrate_disable_switch(rq, prev);
5070 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5071 
5072 		trace_sched_switch(preempt, prev, next);
5073 
5074 		/* Also unlocks the rq: */
5075 		rq = context_switch(rq, prev, next, &rf);
5076 	} else {
5077 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5078 
5079 		rq_unpin_lock(rq, &rf);
5080 		__balance_callbacks(rq);
5081 		raw_spin_unlock_irq(&rq->lock);
5082 	}
5083 }
5084 
5085 void __noreturn do_task_dead(void)
5086 {
5087 	/* Causes final put_task_struct in finish_task_switch(): */
5088 	set_special_state(TASK_DEAD);
5089 
5090 	/* Tell freezer to ignore us: */
5091 	current->flags |= PF_NOFREEZE;
5092 
5093 	__schedule(false);
5094 	BUG();
5095 
5096 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5097 	for (;;)
5098 		cpu_relax();
5099 }
5100 
5101 static inline void sched_submit_work(struct task_struct *tsk)
5102 {
5103 	unsigned int task_flags;
5104 
5105 	if (!tsk->state)
5106 		return;
5107 
5108 	task_flags = tsk->flags;
5109 	/*
5110 	 * If a worker went to sleep, notify and ask workqueue whether
5111 	 * it wants to wake up a task to maintain concurrency.
5112 	 * As this function is called inside the schedule() context,
5113 	 * we disable preemption to avoid it calling schedule() again
5114 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5115 	 * requires it.
5116 	 */
5117 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5118 		preempt_disable();
5119 		if (task_flags & PF_WQ_WORKER)
5120 			wq_worker_sleeping(tsk);
5121 		else
5122 			io_wq_worker_sleeping(tsk);
5123 		preempt_enable_no_resched();
5124 	}
5125 
5126 	if (tsk_is_pi_blocked(tsk))
5127 		return;
5128 
5129 	/*
5130 	 * If we are going to sleep and we have plugged IO queued,
5131 	 * make sure to submit it to avoid deadlocks.
5132 	 */
5133 	if (blk_needs_flush_plug(tsk))
5134 		blk_schedule_flush_plug(tsk);
5135 }
5136 
5137 static void sched_update_worker(struct task_struct *tsk)
5138 {
5139 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5140 		if (tsk->flags & PF_WQ_WORKER)
5141 			wq_worker_running(tsk);
5142 		else
5143 			io_wq_worker_running(tsk);
5144 	}
5145 }
5146 
5147 asmlinkage __visible void __sched schedule(void)
5148 {
5149 	struct task_struct *tsk = current;
5150 
5151 	sched_submit_work(tsk);
5152 	do {
5153 		preempt_disable();
5154 		__schedule(false);
5155 		sched_preempt_enable_no_resched();
5156 	} while (need_resched());
5157 	sched_update_worker(tsk);
5158 }
5159 EXPORT_SYMBOL(schedule);
5160 
5161 /*
5162  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5163  * state (have scheduled out non-voluntarily) by making sure that all
5164  * tasks have either left the run queue or have gone into user space.
5165  * As idle tasks do not do either, they must not ever be preempted
5166  * (schedule out non-voluntarily).
5167  *
5168  * schedule_idle() is similar to schedule_preempt_disable() except that it
5169  * never enables preemption because it does not call sched_submit_work().
5170  */
5171 void __sched schedule_idle(void)
5172 {
5173 	/*
5174 	 * As this skips calling sched_submit_work(), which the idle task does
5175 	 * regardless because that function is a nop when the task is in a
5176 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5177 	 * current task can be in any other state. Note, idle is always in the
5178 	 * TASK_RUNNING state.
5179 	 */
5180 	WARN_ON_ONCE(current->state);
5181 	do {
5182 		__schedule(false);
5183 	} while (need_resched());
5184 }
5185 
5186 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5187 asmlinkage __visible void __sched schedule_user(void)
5188 {
5189 	/*
5190 	 * If we come here after a random call to set_need_resched(),
5191 	 * or we have been woken up remotely but the IPI has not yet arrived,
5192 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5193 	 * we find a better solution.
5194 	 *
5195 	 * NB: There are buggy callers of this function.  Ideally we
5196 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5197 	 * too frequently to make sense yet.
5198 	 */
5199 	enum ctx_state prev_state = exception_enter();
5200 	schedule();
5201 	exception_exit(prev_state);
5202 }
5203 #endif
5204 
5205 /**
5206  * schedule_preempt_disabled - called with preemption disabled
5207  *
5208  * Returns with preemption disabled. Note: preempt_count must be 1
5209  */
5210 void __sched schedule_preempt_disabled(void)
5211 {
5212 	sched_preempt_enable_no_resched();
5213 	schedule();
5214 	preempt_disable();
5215 }
5216 
5217 static void __sched notrace preempt_schedule_common(void)
5218 {
5219 	do {
5220 		/*
5221 		 * Because the function tracer can trace preempt_count_sub()
5222 		 * and it also uses preempt_enable/disable_notrace(), if
5223 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5224 		 * by the function tracer will call this function again and
5225 		 * cause infinite recursion.
5226 		 *
5227 		 * Preemption must be disabled here before the function
5228 		 * tracer can trace. Break up preempt_disable() into two
5229 		 * calls. One to disable preemption without fear of being
5230 		 * traced. The other to still record the preemption latency,
5231 		 * which can also be traced by the function tracer.
5232 		 */
5233 		preempt_disable_notrace();
5234 		preempt_latency_start(1);
5235 		__schedule(true);
5236 		preempt_latency_stop(1);
5237 		preempt_enable_no_resched_notrace();
5238 
5239 		/*
5240 		 * Check again in case we missed a preemption opportunity
5241 		 * between schedule and now.
5242 		 */
5243 	} while (need_resched());
5244 }
5245 
5246 #ifdef CONFIG_PREEMPTION
5247 /*
5248  * This is the entry point to schedule() from in-kernel preemption
5249  * off of preempt_enable.
5250  */
5251 asmlinkage __visible void __sched notrace preempt_schedule(void)
5252 {
5253 	/*
5254 	 * If there is a non-zero preempt_count or interrupts are disabled,
5255 	 * we do not want to preempt the current task. Just return..
5256 	 */
5257 	if (likely(!preemptible()))
5258 		return;
5259 
5260 	preempt_schedule_common();
5261 }
5262 NOKPROBE_SYMBOL(preempt_schedule);
5263 EXPORT_SYMBOL(preempt_schedule);
5264 
5265 #ifdef CONFIG_PREEMPT_DYNAMIC
5266 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5267 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5268 #endif
5269 
5270 
5271 /**
5272  * preempt_schedule_notrace - preempt_schedule called by tracing
5273  *
5274  * The tracing infrastructure uses preempt_enable_notrace to prevent
5275  * recursion and tracing preempt enabling caused by the tracing
5276  * infrastructure itself. But as tracing can happen in areas coming
5277  * from userspace or just about to enter userspace, a preempt enable
5278  * can occur before user_exit() is called. This will cause the scheduler
5279  * to be called when the system is still in usermode.
5280  *
5281  * To prevent this, the preempt_enable_notrace will use this function
5282  * instead of preempt_schedule() to exit user context if needed before
5283  * calling the scheduler.
5284  */
5285 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5286 {
5287 	enum ctx_state prev_ctx;
5288 
5289 	if (likely(!preemptible()))
5290 		return;
5291 
5292 	do {
5293 		/*
5294 		 * Because the function tracer can trace preempt_count_sub()
5295 		 * and it also uses preempt_enable/disable_notrace(), if
5296 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5297 		 * by the function tracer will call this function again and
5298 		 * cause infinite recursion.
5299 		 *
5300 		 * Preemption must be disabled here before the function
5301 		 * tracer can trace. Break up preempt_disable() into two
5302 		 * calls. One to disable preemption without fear of being
5303 		 * traced. The other to still record the preemption latency,
5304 		 * which can also be traced by the function tracer.
5305 		 */
5306 		preempt_disable_notrace();
5307 		preempt_latency_start(1);
5308 		/*
5309 		 * Needs preempt disabled in case user_exit() is traced
5310 		 * and the tracer calls preempt_enable_notrace() causing
5311 		 * an infinite recursion.
5312 		 */
5313 		prev_ctx = exception_enter();
5314 		__schedule(true);
5315 		exception_exit(prev_ctx);
5316 
5317 		preempt_latency_stop(1);
5318 		preempt_enable_no_resched_notrace();
5319 	} while (need_resched());
5320 }
5321 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5322 
5323 #ifdef CONFIG_PREEMPT_DYNAMIC
5324 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5325 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5326 #endif
5327 
5328 #endif /* CONFIG_PREEMPTION */
5329 
5330 #ifdef CONFIG_PREEMPT_DYNAMIC
5331 
5332 #include <linux/entry-common.h>
5333 
5334 /*
5335  * SC:cond_resched
5336  * SC:might_resched
5337  * SC:preempt_schedule
5338  * SC:preempt_schedule_notrace
5339  * SC:irqentry_exit_cond_resched
5340  *
5341  *
5342  * NONE:
5343  *   cond_resched               <- __cond_resched
5344  *   might_resched              <- RET0
5345  *   preempt_schedule           <- NOP
5346  *   preempt_schedule_notrace   <- NOP
5347  *   irqentry_exit_cond_resched <- NOP
5348  *
5349  * VOLUNTARY:
5350  *   cond_resched               <- __cond_resched
5351  *   might_resched              <- __cond_resched
5352  *   preempt_schedule           <- NOP
5353  *   preempt_schedule_notrace   <- NOP
5354  *   irqentry_exit_cond_resched <- NOP
5355  *
5356  * FULL:
5357  *   cond_resched               <- RET0
5358  *   might_resched              <- RET0
5359  *   preempt_schedule           <- preempt_schedule
5360  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5361  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5362  */
5363 
5364 enum {
5365 	preempt_dynamic_none = 0,
5366 	preempt_dynamic_voluntary,
5367 	preempt_dynamic_full,
5368 };
5369 
5370 static int preempt_dynamic_mode = preempt_dynamic_full;
5371 
5372 static int sched_dynamic_mode(const char *str)
5373 {
5374 	if (!strcmp(str, "none"))
5375 		return 0;
5376 
5377 	if (!strcmp(str, "voluntary"))
5378 		return 1;
5379 
5380 	if (!strcmp(str, "full"))
5381 		return 2;
5382 
5383 	return -1;
5384 }
5385 
5386 static void sched_dynamic_update(int mode)
5387 {
5388 	/*
5389 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5390 	 * the ZERO state, which is invalid.
5391 	 */
5392 	static_call_update(cond_resched, __cond_resched);
5393 	static_call_update(might_resched, __cond_resched);
5394 	static_call_update(preempt_schedule, __preempt_schedule_func);
5395 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5396 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5397 
5398 	switch (mode) {
5399 	case preempt_dynamic_none:
5400 		static_call_update(cond_resched, __cond_resched);
5401 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5402 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5403 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5404 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5405 		pr_info("Dynamic Preempt: none\n");
5406 		break;
5407 
5408 	case preempt_dynamic_voluntary:
5409 		static_call_update(cond_resched, __cond_resched);
5410 		static_call_update(might_resched, __cond_resched);
5411 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5412 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5413 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5414 		pr_info("Dynamic Preempt: voluntary\n");
5415 		break;
5416 
5417 	case preempt_dynamic_full:
5418 		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5419 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5420 		static_call_update(preempt_schedule, __preempt_schedule_func);
5421 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5422 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5423 		pr_info("Dynamic Preempt: full\n");
5424 		break;
5425 	}
5426 
5427 	preempt_dynamic_mode = mode;
5428 }
5429 
5430 static int __init setup_preempt_mode(char *str)
5431 {
5432 	int mode = sched_dynamic_mode(str);
5433 	if (mode < 0) {
5434 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5435 		return 1;
5436 	}
5437 
5438 	sched_dynamic_update(mode);
5439 	return 0;
5440 }
5441 __setup("preempt=", setup_preempt_mode);
5442 
5443 #ifdef CONFIG_SCHED_DEBUG
5444 
5445 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5446 				   size_t cnt, loff_t *ppos)
5447 {
5448 	char buf[16];
5449 	int mode;
5450 
5451 	if (cnt > 15)
5452 		cnt = 15;
5453 
5454 	if (copy_from_user(&buf, ubuf, cnt))
5455 		return -EFAULT;
5456 
5457 	buf[cnt] = 0;
5458 	mode = sched_dynamic_mode(strstrip(buf));
5459 	if (mode < 0)
5460 		return mode;
5461 
5462 	sched_dynamic_update(mode);
5463 
5464 	*ppos += cnt;
5465 
5466 	return cnt;
5467 }
5468 
5469 static int sched_dynamic_show(struct seq_file *m, void *v)
5470 {
5471 	static const char * preempt_modes[] = {
5472 		"none", "voluntary", "full"
5473 	};
5474 	int i;
5475 
5476 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5477 		if (preempt_dynamic_mode == i)
5478 			seq_puts(m, "(");
5479 		seq_puts(m, preempt_modes[i]);
5480 		if (preempt_dynamic_mode == i)
5481 			seq_puts(m, ")");
5482 
5483 		seq_puts(m, " ");
5484 	}
5485 
5486 	seq_puts(m, "\n");
5487 	return 0;
5488 }
5489 
5490 static int sched_dynamic_open(struct inode *inode, struct file *filp)
5491 {
5492 	return single_open(filp, sched_dynamic_show, NULL);
5493 }
5494 
5495 static const struct file_operations sched_dynamic_fops = {
5496 	.open		= sched_dynamic_open,
5497 	.write		= sched_dynamic_write,
5498 	.read		= seq_read,
5499 	.llseek		= seq_lseek,
5500 	.release	= single_release,
5501 };
5502 
5503 static __init int sched_init_debug_dynamic(void)
5504 {
5505 	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5506 	return 0;
5507 }
5508 late_initcall(sched_init_debug_dynamic);
5509 
5510 #endif /* CONFIG_SCHED_DEBUG */
5511 #endif /* CONFIG_PREEMPT_DYNAMIC */
5512 
5513 
5514 /*
5515  * This is the entry point to schedule() from kernel preemption
5516  * off of irq context.
5517  * Note, that this is called and return with irqs disabled. This will
5518  * protect us against recursive calling from irq.
5519  */
5520 asmlinkage __visible void __sched preempt_schedule_irq(void)
5521 {
5522 	enum ctx_state prev_state;
5523 
5524 	/* Catch callers which need to be fixed */
5525 	BUG_ON(preempt_count() || !irqs_disabled());
5526 
5527 	prev_state = exception_enter();
5528 
5529 	do {
5530 		preempt_disable();
5531 		local_irq_enable();
5532 		__schedule(true);
5533 		local_irq_disable();
5534 		sched_preempt_enable_no_resched();
5535 	} while (need_resched());
5536 
5537 	exception_exit(prev_state);
5538 }
5539 
5540 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5541 			  void *key)
5542 {
5543 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5544 	return try_to_wake_up(curr->private, mode, wake_flags);
5545 }
5546 EXPORT_SYMBOL(default_wake_function);
5547 
5548 #ifdef CONFIG_RT_MUTEXES
5549 
5550 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5551 {
5552 	if (pi_task)
5553 		prio = min(prio, pi_task->prio);
5554 
5555 	return prio;
5556 }
5557 
5558 static inline int rt_effective_prio(struct task_struct *p, int prio)
5559 {
5560 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5561 
5562 	return __rt_effective_prio(pi_task, prio);
5563 }
5564 
5565 /*
5566  * rt_mutex_setprio - set the current priority of a task
5567  * @p: task to boost
5568  * @pi_task: donor task
5569  *
5570  * This function changes the 'effective' priority of a task. It does
5571  * not touch ->normal_prio like __setscheduler().
5572  *
5573  * Used by the rt_mutex code to implement priority inheritance
5574  * logic. Call site only calls if the priority of the task changed.
5575  */
5576 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5577 {
5578 	int prio, oldprio, queued, running, queue_flag =
5579 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5580 	const struct sched_class *prev_class;
5581 	struct rq_flags rf;
5582 	struct rq *rq;
5583 
5584 	/* XXX used to be waiter->prio, not waiter->task->prio */
5585 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5586 
5587 	/*
5588 	 * If nothing changed; bail early.
5589 	 */
5590 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5591 		return;
5592 
5593 	rq = __task_rq_lock(p, &rf);
5594 	update_rq_clock(rq);
5595 	/*
5596 	 * Set under pi_lock && rq->lock, such that the value can be used under
5597 	 * either lock.
5598 	 *
5599 	 * Note that there is loads of tricky to make this pointer cache work
5600 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5601 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5602 	 * task is allowed to run again (and can exit). This ensures the pointer
5603 	 * points to a blocked task -- which guarantees the task is present.
5604 	 */
5605 	p->pi_top_task = pi_task;
5606 
5607 	/*
5608 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5609 	 */
5610 	if (prio == p->prio && !dl_prio(prio))
5611 		goto out_unlock;
5612 
5613 	/*
5614 	 * Idle task boosting is a nono in general. There is one
5615 	 * exception, when PREEMPT_RT and NOHZ is active:
5616 	 *
5617 	 * The idle task calls get_next_timer_interrupt() and holds
5618 	 * the timer wheel base->lock on the CPU and another CPU wants
5619 	 * to access the timer (probably to cancel it). We can safely
5620 	 * ignore the boosting request, as the idle CPU runs this code
5621 	 * with interrupts disabled and will complete the lock
5622 	 * protected section without being interrupted. So there is no
5623 	 * real need to boost.
5624 	 */
5625 	if (unlikely(p == rq->idle)) {
5626 		WARN_ON(p != rq->curr);
5627 		WARN_ON(p->pi_blocked_on);
5628 		goto out_unlock;
5629 	}
5630 
5631 	trace_sched_pi_setprio(p, pi_task);
5632 	oldprio = p->prio;
5633 
5634 	if (oldprio == prio)
5635 		queue_flag &= ~DEQUEUE_MOVE;
5636 
5637 	prev_class = p->sched_class;
5638 	queued = task_on_rq_queued(p);
5639 	running = task_current(rq, p);
5640 	if (queued)
5641 		dequeue_task(rq, p, queue_flag);
5642 	if (running)
5643 		put_prev_task(rq, p);
5644 
5645 	/*
5646 	 * Boosting condition are:
5647 	 * 1. -rt task is running and holds mutex A
5648 	 *      --> -dl task blocks on mutex A
5649 	 *
5650 	 * 2. -dl task is running and holds mutex A
5651 	 *      --> -dl task blocks on mutex A and could preempt the
5652 	 *          running task
5653 	 */
5654 	if (dl_prio(prio)) {
5655 		if (!dl_prio(p->normal_prio) ||
5656 		    (pi_task && dl_prio(pi_task->prio) &&
5657 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5658 			p->dl.pi_se = pi_task->dl.pi_se;
5659 			queue_flag |= ENQUEUE_REPLENISH;
5660 		} else {
5661 			p->dl.pi_se = &p->dl;
5662 		}
5663 		p->sched_class = &dl_sched_class;
5664 	} else if (rt_prio(prio)) {
5665 		if (dl_prio(oldprio))
5666 			p->dl.pi_se = &p->dl;
5667 		if (oldprio < prio)
5668 			queue_flag |= ENQUEUE_HEAD;
5669 		p->sched_class = &rt_sched_class;
5670 	} else {
5671 		if (dl_prio(oldprio))
5672 			p->dl.pi_se = &p->dl;
5673 		if (rt_prio(oldprio))
5674 			p->rt.timeout = 0;
5675 		p->sched_class = &fair_sched_class;
5676 	}
5677 
5678 	p->prio = prio;
5679 
5680 	if (queued)
5681 		enqueue_task(rq, p, queue_flag);
5682 	if (running)
5683 		set_next_task(rq, p);
5684 
5685 	check_class_changed(rq, p, prev_class, oldprio);
5686 out_unlock:
5687 	/* Avoid rq from going away on us: */
5688 	preempt_disable();
5689 
5690 	rq_unpin_lock(rq, &rf);
5691 	__balance_callbacks(rq);
5692 	raw_spin_unlock(&rq->lock);
5693 
5694 	preempt_enable();
5695 }
5696 #else
5697 static inline int rt_effective_prio(struct task_struct *p, int prio)
5698 {
5699 	return prio;
5700 }
5701 #endif
5702 
5703 void set_user_nice(struct task_struct *p, long nice)
5704 {
5705 	bool queued, running;
5706 	int old_prio;
5707 	struct rq_flags rf;
5708 	struct rq *rq;
5709 
5710 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5711 		return;
5712 	/*
5713 	 * We have to be careful, if called from sys_setpriority(),
5714 	 * the task might be in the middle of scheduling on another CPU.
5715 	 */
5716 	rq = task_rq_lock(p, &rf);
5717 	update_rq_clock(rq);
5718 
5719 	/*
5720 	 * The RT priorities are set via sched_setscheduler(), but we still
5721 	 * allow the 'normal' nice value to be set - but as expected
5722 	 * it won't have any effect on scheduling until the task is
5723 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5724 	 */
5725 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5726 		p->static_prio = NICE_TO_PRIO(nice);
5727 		goto out_unlock;
5728 	}
5729 	queued = task_on_rq_queued(p);
5730 	running = task_current(rq, p);
5731 	if (queued)
5732 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5733 	if (running)
5734 		put_prev_task(rq, p);
5735 
5736 	p->static_prio = NICE_TO_PRIO(nice);
5737 	set_load_weight(p, true);
5738 	old_prio = p->prio;
5739 	p->prio = effective_prio(p);
5740 
5741 	if (queued)
5742 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5743 	if (running)
5744 		set_next_task(rq, p);
5745 
5746 	/*
5747 	 * If the task increased its priority or is running and
5748 	 * lowered its priority, then reschedule its CPU:
5749 	 */
5750 	p->sched_class->prio_changed(rq, p, old_prio);
5751 
5752 out_unlock:
5753 	task_rq_unlock(rq, p, &rf);
5754 }
5755 EXPORT_SYMBOL(set_user_nice);
5756 
5757 /*
5758  * can_nice - check if a task can reduce its nice value
5759  * @p: task
5760  * @nice: nice value
5761  */
5762 int can_nice(const struct task_struct *p, const int nice)
5763 {
5764 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5765 	int nice_rlim = nice_to_rlimit(nice);
5766 
5767 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5768 		capable(CAP_SYS_NICE));
5769 }
5770 
5771 #ifdef __ARCH_WANT_SYS_NICE
5772 
5773 /*
5774  * sys_nice - change the priority of the current process.
5775  * @increment: priority increment
5776  *
5777  * sys_setpriority is a more generic, but much slower function that
5778  * does similar things.
5779  */
5780 SYSCALL_DEFINE1(nice, int, increment)
5781 {
5782 	long nice, retval;
5783 
5784 	/*
5785 	 * Setpriority might change our priority at the same moment.
5786 	 * We don't have to worry. Conceptually one call occurs first
5787 	 * and we have a single winner.
5788 	 */
5789 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5790 	nice = task_nice(current) + increment;
5791 
5792 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5793 	if (increment < 0 && !can_nice(current, nice))
5794 		return -EPERM;
5795 
5796 	retval = security_task_setnice(current, nice);
5797 	if (retval)
5798 		return retval;
5799 
5800 	set_user_nice(current, nice);
5801 	return 0;
5802 }
5803 
5804 #endif
5805 
5806 /**
5807  * task_prio - return the priority value of a given task.
5808  * @p: the task in question.
5809  *
5810  * Return: The priority value as seen by users in /proc.
5811  *
5812  * sched policy         return value   kernel prio    user prio/nice
5813  *
5814  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5815  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5816  * deadline                     -101             -1           0
5817  */
5818 int task_prio(const struct task_struct *p)
5819 {
5820 	return p->prio - MAX_RT_PRIO;
5821 }
5822 
5823 /**
5824  * idle_cpu - is a given CPU idle currently?
5825  * @cpu: the processor in question.
5826  *
5827  * Return: 1 if the CPU is currently idle. 0 otherwise.
5828  */
5829 int idle_cpu(int cpu)
5830 {
5831 	struct rq *rq = cpu_rq(cpu);
5832 
5833 	if (rq->curr != rq->idle)
5834 		return 0;
5835 
5836 	if (rq->nr_running)
5837 		return 0;
5838 
5839 #ifdef CONFIG_SMP
5840 	if (rq->ttwu_pending)
5841 		return 0;
5842 #endif
5843 
5844 	return 1;
5845 }
5846 
5847 /**
5848  * available_idle_cpu - is a given CPU idle for enqueuing work.
5849  * @cpu: the CPU in question.
5850  *
5851  * Return: 1 if the CPU is currently idle. 0 otherwise.
5852  */
5853 int available_idle_cpu(int cpu)
5854 {
5855 	if (!idle_cpu(cpu))
5856 		return 0;
5857 
5858 	if (vcpu_is_preempted(cpu))
5859 		return 0;
5860 
5861 	return 1;
5862 }
5863 
5864 /**
5865  * idle_task - return the idle task for a given CPU.
5866  * @cpu: the processor in question.
5867  *
5868  * Return: The idle task for the CPU @cpu.
5869  */
5870 struct task_struct *idle_task(int cpu)
5871 {
5872 	return cpu_rq(cpu)->idle;
5873 }
5874 
5875 #ifdef CONFIG_SMP
5876 /*
5877  * This function computes an effective utilization for the given CPU, to be
5878  * used for frequency selection given the linear relation: f = u * f_max.
5879  *
5880  * The scheduler tracks the following metrics:
5881  *
5882  *   cpu_util_{cfs,rt,dl,irq}()
5883  *   cpu_bw_dl()
5884  *
5885  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5886  * synchronized windows and are thus directly comparable.
5887  *
5888  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5889  * which excludes things like IRQ and steal-time. These latter are then accrued
5890  * in the irq utilization.
5891  *
5892  * The DL bandwidth number otoh is not a measured metric but a value computed
5893  * based on the task model parameters and gives the minimal utilization
5894  * required to meet deadlines.
5895  */
5896 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5897 				 unsigned long max, enum cpu_util_type type,
5898 				 struct task_struct *p)
5899 {
5900 	unsigned long dl_util, util, irq;
5901 	struct rq *rq = cpu_rq(cpu);
5902 
5903 	if (!uclamp_is_used() &&
5904 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5905 		return max;
5906 	}
5907 
5908 	/*
5909 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5910 	 * because of inaccuracies in how we track these -- see
5911 	 * update_irq_load_avg().
5912 	 */
5913 	irq = cpu_util_irq(rq);
5914 	if (unlikely(irq >= max))
5915 		return max;
5916 
5917 	/*
5918 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5919 	 * CFS tasks and we use the same metric to track the effective
5920 	 * utilization (PELT windows are synchronized) we can directly add them
5921 	 * to obtain the CPU's actual utilization.
5922 	 *
5923 	 * CFS and RT utilization can be boosted or capped, depending on
5924 	 * utilization clamp constraints requested by currently RUNNABLE
5925 	 * tasks.
5926 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5927 	 * frequency will be gracefully reduced with the utilization decay.
5928 	 */
5929 	util = util_cfs + cpu_util_rt(rq);
5930 	if (type == FREQUENCY_UTIL)
5931 		util = uclamp_rq_util_with(rq, util, p);
5932 
5933 	dl_util = cpu_util_dl(rq);
5934 
5935 	/*
5936 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5937 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5938 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5939 	 * that we select f_max when there is no idle time.
5940 	 *
5941 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5942 	 * saturation when we should -- something for later.
5943 	 */
5944 	if (util + dl_util >= max)
5945 		return max;
5946 
5947 	/*
5948 	 * OTOH, for energy computation we need the estimated running time, so
5949 	 * include util_dl and ignore dl_bw.
5950 	 */
5951 	if (type == ENERGY_UTIL)
5952 		util += dl_util;
5953 
5954 	/*
5955 	 * There is still idle time; further improve the number by using the
5956 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5957 	 * need to scale the task numbers:
5958 	 *
5959 	 *              max - irq
5960 	 *   U' = irq + --------- * U
5961 	 *                 max
5962 	 */
5963 	util = scale_irq_capacity(util, irq, max);
5964 	util += irq;
5965 
5966 	/*
5967 	 * Bandwidth required by DEADLINE must always be granted while, for
5968 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5969 	 * to gracefully reduce the frequency when no tasks show up for longer
5970 	 * periods of time.
5971 	 *
5972 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5973 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5974 	 * an interface. So, we only do the latter for now.
5975 	 */
5976 	if (type == FREQUENCY_UTIL)
5977 		util += cpu_bw_dl(rq);
5978 
5979 	return min(max, util);
5980 }
5981 
5982 unsigned long sched_cpu_util(int cpu, unsigned long max)
5983 {
5984 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5985 				  ENERGY_UTIL, NULL);
5986 }
5987 #endif /* CONFIG_SMP */
5988 
5989 /**
5990  * find_process_by_pid - find a process with a matching PID value.
5991  * @pid: the pid in question.
5992  *
5993  * The task of @pid, if found. %NULL otherwise.
5994  */
5995 static struct task_struct *find_process_by_pid(pid_t pid)
5996 {
5997 	return pid ? find_task_by_vpid(pid) : current;
5998 }
5999 
6000 /*
6001  * sched_setparam() passes in -1 for its policy, to let the functions
6002  * it calls know not to change it.
6003  */
6004 #define SETPARAM_POLICY	-1
6005 
6006 static void __setscheduler_params(struct task_struct *p,
6007 		const struct sched_attr *attr)
6008 {
6009 	int policy = attr->sched_policy;
6010 
6011 	if (policy == SETPARAM_POLICY)
6012 		policy = p->policy;
6013 
6014 	p->policy = policy;
6015 
6016 	if (dl_policy(policy))
6017 		__setparam_dl(p, attr);
6018 	else if (fair_policy(policy))
6019 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6020 
6021 	/*
6022 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6023 	 * !rt_policy. Always setting this ensures that things like
6024 	 * getparam()/getattr() don't report silly values for !rt tasks.
6025 	 */
6026 	p->rt_priority = attr->sched_priority;
6027 	p->normal_prio = normal_prio(p);
6028 	set_load_weight(p, true);
6029 }
6030 
6031 /* Actually do priority change: must hold pi & rq lock. */
6032 static void __setscheduler(struct rq *rq, struct task_struct *p,
6033 			   const struct sched_attr *attr, bool keep_boost)
6034 {
6035 	/*
6036 	 * If params can't change scheduling class changes aren't allowed
6037 	 * either.
6038 	 */
6039 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6040 		return;
6041 
6042 	__setscheduler_params(p, attr);
6043 
6044 	/*
6045 	 * Keep a potential priority boosting if called from
6046 	 * sched_setscheduler().
6047 	 */
6048 	p->prio = normal_prio(p);
6049 	if (keep_boost)
6050 		p->prio = rt_effective_prio(p, p->prio);
6051 
6052 	if (dl_prio(p->prio))
6053 		p->sched_class = &dl_sched_class;
6054 	else if (rt_prio(p->prio))
6055 		p->sched_class = &rt_sched_class;
6056 	else
6057 		p->sched_class = &fair_sched_class;
6058 }
6059 
6060 /*
6061  * Check the target process has a UID that matches the current process's:
6062  */
6063 static bool check_same_owner(struct task_struct *p)
6064 {
6065 	const struct cred *cred = current_cred(), *pcred;
6066 	bool match;
6067 
6068 	rcu_read_lock();
6069 	pcred = __task_cred(p);
6070 	match = (uid_eq(cred->euid, pcred->euid) ||
6071 		 uid_eq(cred->euid, pcred->uid));
6072 	rcu_read_unlock();
6073 	return match;
6074 }
6075 
6076 static int __sched_setscheduler(struct task_struct *p,
6077 				const struct sched_attr *attr,
6078 				bool user, bool pi)
6079 {
6080 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6081 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6082 	int retval, oldprio, oldpolicy = -1, queued, running;
6083 	int new_effective_prio, policy = attr->sched_policy;
6084 	const struct sched_class *prev_class;
6085 	struct callback_head *head;
6086 	struct rq_flags rf;
6087 	int reset_on_fork;
6088 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6089 	struct rq *rq;
6090 
6091 	/* The pi code expects interrupts enabled */
6092 	BUG_ON(pi && in_interrupt());
6093 recheck:
6094 	/* Double check policy once rq lock held: */
6095 	if (policy < 0) {
6096 		reset_on_fork = p->sched_reset_on_fork;
6097 		policy = oldpolicy = p->policy;
6098 	} else {
6099 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6100 
6101 		if (!valid_policy(policy))
6102 			return -EINVAL;
6103 	}
6104 
6105 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6106 		return -EINVAL;
6107 
6108 	/*
6109 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6110 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6111 	 * SCHED_BATCH and SCHED_IDLE is 0.
6112 	 */
6113 	if (attr->sched_priority > MAX_RT_PRIO-1)
6114 		return -EINVAL;
6115 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6116 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6117 		return -EINVAL;
6118 
6119 	/*
6120 	 * Allow unprivileged RT tasks to decrease priority:
6121 	 */
6122 	if (user && !capable(CAP_SYS_NICE)) {
6123 		if (fair_policy(policy)) {
6124 			if (attr->sched_nice < task_nice(p) &&
6125 			    !can_nice(p, attr->sched_nice))
6126 				return -EPERM;
6127 		}
6128 
6129 		if (rt_policy(policy)) {
6130 			unsigned long rlim_rtprio =
6131 					task_rlimit(p, RLIMIT_RTPRIO);
6132 
6133 			/* Can't set/change the rt policy: */
6134 			if (policy != p->policy && !rlim_rtprio)
6135 				return -EPERM;
6136 
6137 			/* Can't increase priority: */
6138 			if (attr->sched_priority > p->rt_priority &&
6139 			    attr->sched_priority > rlim_rtprio)
6140 				return -EPERM;
6141 		}
6142 
6143 		 /*
6144 		  * Can't set/change SCHED_DEADLINE policy at all for now
6145 		  * (safest behavior); in the future we would like to allow
6146 		  * unprivileged DL tasks to increase their relative deadline
6147 		  * or reduce their runtime (both ways reducing utilization)
6148 		  */
6149 		if (dl_policy(policy))
6150 			return -EPERM;
6151 
6152 		/*
6153 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6154 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6155 		 */
6156 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6157 			if (!can_nice(p, task_nice(p)))
6158 				return -EPERM;
6159 		}
6160 
6161 		/* Can't change other user's priorities: */
6162 		if (!check_same_owner(p))
6163 			return -EPERM;
6164 
6165 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6166 		if (p->sched_reset_on_fork && !reset_on_fork)
6167 			return -EPERM;
6168 	}
6169 
6170 	if (user) {
6171 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6172 			return -EINVAL;
6173 
6174 		retval = security_task_setscheduler(p);
6175 		if (retval)
6176 			return retval;
6177 	}
6178 
6179 	/* Update task specific "requested" clamps */
6180 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6181 		retval = uclamp_validate(p, attr);
6182 		if (retval)
6183 			return retval;
6184 	}
6185 
6186 	if (pi)
6187 		cpuset_read_lock();
6188 
6189 	/*
6190 	 * Make sure no PI-waiters arrive (or leave) while we are
6191 	 * changing the priority of the task:
6192 	 *
6193 	 * To be able to change p->policy safely, the appropriate
6194 	 * runqueue lock must be held.
6195 	 */
6196 	rq = task_rq_lock(p, &rf);
6197 	update_rq_clock(rq);
6198 
6199 	/*
6200 	 * Changing the policy of the stop threads its a very bad idea:
6201 	 */
6202 	if (p == rq->stop) {
6203 		retval = -EINVAL;
6204 		goto unlock;
6205 	}
6206 
6207 	/*
6208 	 * If not changing anything there's no need to proceed further,
6209 	 * but store a possible modification of reset_on_fork.
6210 	 */
6211 	if (unlikely(policy == p->policy)) {
6212 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6213 			goto change;
6214 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6215 			goto change;
6216 		if (dl_policy(policy) && dl_param_changed(p, attr))
6217 			goto change;
6218 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6219 			goto change;
6220 
6221 		p->sched_reset_on_fork = reset_on_fork;
6222 		retval = 0;
6223 		goto unlock;
6224 	}
6225 change:
6226 
6227 	if (user) {
6228 #ifdef CONFIG_RT_GROUP_SCHED
6229 		/*
6230 		 * Do not allow realtime tasks into groups that have no runtime
6231 		 * assigned.
6232 		 */
6233 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6234 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6235 				!task_group_is_autogroup(task_group(p))) {
6236 			retval = -EPERM;
6237 			goto unlock;
6238 		}
6239 #endif
6240 #ifdef CONFIG_SMP
6241 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6242 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6243 			cpumask_t *span = rq->rd->span;
6244 
6245 			/*
6246 			 * Don't allow tasks with an affinity mask smaller than
6247 			 * the entire root_domain to become SCHED_DEADLINE. We
6248 			 * will also fail if there's no bandwidth available.
6249 			 */
6250 			if (!cpumask_subset(span, p->cpus_ptr) ||
6251 			    rq->rd->dl_bw.bw == 0) {
6252 				retval = -EPERM;
6253 				goto unlock;
6254 			}
6255 		}
6256 #endif
6257 	}
6258 
6259 	/* Re-check policy now with rq lock held: */
6260 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6261 		policy = oldpolicy = -1;
6262 		task_rq_unlock(rq, p, &rf);
6263 		if (pi)
6264 			cpuset_read_unlock();
6265 		goto recheck;
6266 	}
6267 
6268 	/*
6269 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6270 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6271 	 * is available.
6272 	 */
6273 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6274 		retval = -EBUSY;
6275 		goto unlock;
6276 	}
6277 
6278 	p->sched_reset_on_fork = reset_on_fork;
6279 	oldprio = p->prio;
6280 
6281 	if (pi) {
6282 		/*
6283 		 * Take priority boosted tasks into account. If the new
6284 		 * effective priority is unchanged, we just store the new
6285 		 * normal parameters and do not touch the scheduler class and
6286 		 * the runqueue. This will be done when the task deboost
6287 		 * itself.
6288 		 */
6289 		new_effective_prio = rt_effective_prio(p, newprio);
6290 		if (new_effective_prio == oldprio)
6291 			queue_flags &= ~DEQUEUE_MOVE;
6292 	}
6293 
6294 	queued = task_on_rq_queued(p);
6295 	running = task_current(rq, p);
6296 	if (queued)
6297 		dequeue_task(rq, p, queue_flags);
6298 	if (running)
6299 		put_prev_task(rq, p);
6300 
6301 	prev_class = p->sched_class;
6302 
6303 	__setscheduler(rq, p, attr, pi);
6304 	__setscheduler_uclamp(p, attr);
6305 
6306 	if (queued) {
6307 		/*
6308 		 * We enqueue to tail when the priority of a task is
6309 		 * increased (user space view).
6310 		 */
6311 		if (oldprio < p->prio)
6312 			queue_flags |= ENQUEUE_HEAD;
6313 
6314 		enqueue_task(rq, p, queue_flags);
6315 	}
6316 	if (running)
6317 		set_next_task(rq, p);
6318 
6319 	check_class_changed(rq, p, prev_class, oldprio);
6320 
6321 	/* Avoid rq from going away on us: */
6322 	preempt_disable();
6323 	head = splice_balance_callbacks(rq);
6324 	task_rq_unlock(rq, p, &rf);
6325 
6326 	if (pi) {
6327 		cpuset_read_unlock();
6328 		rt_mutex_adjust_pi(p);
6329 	}
6330 
6331 	/* Run balance callbacks after we've adjusted the PI chain: */
6332 	balance_callbacks(rq, head);
6333 	preempt_enable();
6334 
6335 	return 0;
6336 
6337 unlock:
6338 	task_rq_unlock(rq, p, &rf);
6339 	if (pi)
6340 		cpuset_read_unlock();
6341 	return retval;
6342 }
6343 
6344 static int _sched_setscheduler(struct task_struct *p, int policy,
6345 			       const struct sched_param *param, bool check)
6346 {
6347 	struct sched_attr attr = {
6348 		.sched_policy   = policy,
6349 		.sched_priority = param->sched_priority,
6350 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6351 	};
6352 
6353 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6354 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6355 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6356 		policy &= ~SCHED_RESET_ON_FORK;
6357 		attr.sched_policy = policy;
6358 	}
6359 
6360 	return __sched_setscheduler(p, &attr, check, true);
6361 }
6362 /**
6363  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6364  * @p: the task in question.
6365  * @policy: new policy.
6366  * @param: structure containing the new RT priority.
6367  *
6368  * Use sched_set_fifo(), read its comment.
6369  *
6370  * Return: 0 on success. An error code otherwise.
6371  *
6372  * NOTE that the task may be already dead.
6373  */
6374 int sched_setscheduler(struct task_struct *p, int policy,
6375 		       const struct sched_param *param)
6376 {
6377 	return _sched_setscheduler(p, policy, param, true);
6378 }
6379 
6380 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6381 {
6382 	return __sched_setscheduler(p, attr, true, true);
6383 }
6384 
6385 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6386 {
6387 	return __sched_setscheduler(p, attr, false, true);
6388 }
6389 
6390 /**
6391  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6392  * @p: the task in question.
6393  * @policy: new policy.
6394  * @param: structure containing the new RT priority.
6395  *
6396  * Just like sched_setscheduler, only don't bother checking if the
6397  * current context has permission.  For example, this is needed in
6398  * stop_machine(): we create temporary high priority worker threads,
6399  * but our caller might not have that capability.
6400  *
6401  * Return: 0 on success. An error code otherwise.
6402  */
6403 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6404 			       const struct sched_param *param)
6405 {
6406 	return _sched_setscheduler(p, policy, param, false);
6407 }
6408 
6409 /*
6410  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6411  * incapable of resource management, which is the one thing an OS really should
6412  * be doing.
6413  *
6414  * This is of course the reason it is limited to privileged users only.
6415  *
6416  * Worse still; it is fundamentally impossible to compose static priority
6417  * workloads. You cannot take two correctly working static prio workloads
6418  * and smash them together and still expect them to work.
6419  *
6420  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6421  *
6422  *   MAX_RT_PRIO / 2
6423  *
6424  * The administrator _MUST_ configure the system, the kernel simply doesn't
6425  * know enough information to make a sensible choice.
6426  */
6427 void sched_set_fifo(struct task_struct *p)
6428 {
6429 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6430 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6431 }
6432 EXPORT_SYMBOL_GPL(sched_set_fifo);
6433 
6434 /*
6435  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6436  */
6437 void sched_set_fifo_low(struct task_struct *p)
6438 {
6439 	struct sched_param sp = { .sched_priority = 1 };
6440 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6441 }
6442 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6443 
6444 void sched_set_normal(struct task_struct *p, int nice)
6445 {
6446 	struct sched_attr attr = {
6447 		.sched_policy = SCHED_NORMAL,
6448 		.sched_nice = nice,
6449 	};
6450 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6451 }
6452 EXPORT_SYMBOL_GPL(sched_set_normal);
6453 
6454 static int
6455 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6456 {
6457 	struct sched_param lparam;
6458 	struct task_struct *p;
6459 	int retval;
6460 
6461 	if (!param || pid < 0)
6462 		return -EINVAL;
6463 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6464 		return -EFAULT;
6465 
6466 	rcu_read_lock();
6467 	retval = -ESRCH;
6468 	p = find_process_by_pid(pid);
6469 	if (likely(p))
6470 		get_task_struct(p);
6471 	rcu_read_unlock();
6472 
6473 	if (likely(p)) {
6474 		retval = sched_setscheduler(p, policy, &lparam);
6475 		put_task_struct(p);
6476 	}
6477 
6478 	return retval;
6479 }
6480 
6481 /*
6482  * Mimics kernel/events/core.c perf_copy_attr().
6483  */
6484 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6485 {
6486 	u32 size;
6487 	int ret;
6488 
6489 	/* Zero the full structure, so that a short copy will be nice: */
6490 	memset(attr, 0, sizeof(*attr));
6491 
6492 	ret = get_user(size, &uattr->size);
6493 	if (ret)
6494 		return ret;
6495 
6496 	/* ABI compatibility quirk: */
6497 	if (!size)
6498 		size = SCHED_ATTR_SIZE_VER0;
6499 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6500 		goto err_size;
6501 
6502 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6503 	if (ret) {
6504 		if (ret == -E2BIG)
6505 			goto err_size;
6506 		return ret;
6507 	}
6508 
6509 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6510 	    size < SCHED_ATTR_SIZE_VER1)
6511 		return -EINVAL;
6512 
6513 	/*
6514 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6515 	 * to be strict and return an error on out-of-bounds values?
6516 	 */
6517 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6518 
6519 	return 0;
6520 
6521 err_size:
6522 	put_user(sizeof(*attr), &uattr->size);
6523 	return -E2BIG;
6524 }
6525 
6526 /**
6527  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6528  * @pid: the pid in question.
6529  * @policy: new policy.
6530  * @param: structure containing the new RT priority.
6531  *
6532  * Return: 0 on success. An error code otherwise.
6533  */
6534 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6535 {
6536 	if (policy < 0)
6537 		return -EINVAL;
6538 
6539 	return do_sched_setscheduler(pid, policy, param);
6540 }
6541 
6542 /**
6543  * sys_sched_setparam - set/change the RT priority of a thread
6544  * @pid: the pid in question.
6545  * @param: structure containing the new RT priority.
6546  *
6547  * Return: 0 on success. An error code otherwise.
6548  */
6549 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6550 {
6551 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6552 }
6553 
6554 /**
6555  * sys_sched_setattr - same as above, but with extended sched_attr
6556  * @pid: the pid in question.
6557  * @uattr: structure containing the extended parameters.
6558  * @flags: for future extension.
6559  */
6560 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6561 			       unsigned int, flags)
6562 {
6563 	struct sched_attr attr;
6564 	struct task_struct *p;
6565 	int retval;
6566 
6567 	if (!uattr || pid < 0 || flags)
6568 		return -EINVAL;
6569 
6570 	retval = sched_copy_attr(uattr, &attr);
6571 	if (retval)
6572 		return retval;
6573 
6574 	if ((int)attr.sched_policy < 0)
6575 		return -EINVAL;
6576 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6577 		attr.sched_policy = SETPARAM_POLICY;
6578 
6579 	rcu_read_lock();
6580 	retval = -ESRCH;
6581 	p = find_process_by_pid(pid);
6582 	if (likely(p))
6583 		get_task_struct(p);
6584 	rcu_read_unlock();
6585 
6586 	if (likely(p)) {
6587 		retval = sched_setattr(p, &attr);
6588 		put_task_struct(p);
6589 	}
6590 
6591 	return retval;
6592 }
6593 
6594 /**
6595  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6596  * @pid: the pid in question.
6597  *
6598  * Return: On success, the policy of the thread. Otherwise, a negative error
6599  * code.
6600  */
6601 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6602 {
6603 	struct task_struct *p;
6604 	int retval;
6605 
6606 	if (pid < 0)
6607 		return -EINVAL;
6608 
6609 	retval = -ESRCH;
6610 	rcu_read_lock();
6611 	p = find_process_by_pid(pid);
6612 	if (p) {
6613 		retval = security_task_getscheduler(p);
6614 		if (!retval)
6615 			retval = p->policy
6616 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6617 	}
6618 	rcu_read_unlock();
6619 	return retval;
6620 }
6621 
6622 /**
6623  * sys_sched_getparam - get the RT priority of a thread
6624  * @pid: the pid in question.
6625  * @param: structure containing the RT priority.
6626  *
6627  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6628  * code.
6629  */
6630 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6631 {
6632 	struct sched_param lp = { .sched_priority = 0 };
6633 	struct task_struct *p;
6634 	int retval;
6635 
6636 	if (!param || pid < 0)
6637 		return -EINVAL;
6638 
6639 	rcu_read_lock();
6640 	p = find_process_by_pid(pid);
6641 	retval = -ESRCH;
6642 	if (!p)
6643 		goto out_unlock;
6644 
6645 	retval = security_task_getscheduler(p);
6646 	if (retval)
6647 		goto out_unlock;
6648 
6649 	if (task_has_rt_policy(p))
6650 		lp.sched_priority = p->rt_priority;
6651 	rcu_read_unlock();
6652 
6653 	/*
6654 	 * This one might sleep, we cannot do it with a spinlock held ...
6655 	 */
6656 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6657 
6658 	return retval;
6659 
6660 out_unlock:
6661 	rcu_read_unlock();
6662 	return retval;
6663 }
6664 
6665 /*
6666  * Copy the kernel size attribute structure (which might be larger
6667  * than what user-space knows about) to user-space.
6668  *
6669  * Note that all cases are valid: user-space buffer can be larger or
6670  * smaller than the kernel-space buffer. The usual case is that both
6671  * have the same size.
6672  */
6673 static int
6674 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6675 			struct sched_attr *kattr,
6676 			unsigned int usize)
6677 {
6678 	unsigned int ksize = sizeof(*kattr);
6679 
6680 	if (!access_ok(uattr, usize))
6681 		return -EFAULT;
6682 
6683 	/*
6684 	 * sched_getattr() ABI forwards and backwards compatibility:
6685 	 *
6686 	 * If usize == ksize then we just copy everything to user-space and all is good.
6687 	 *
6688 	 * If usize < ksize then we only copy as much as user-space has space for,
6689 	 * this keeps ABI compatibility as well. We skip the rest.
6690 	 *
6691 	 * If usize > ksize then user-space is using a newer version of the ABI,
6692 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6693 	 * detect the kernel's knowledge of attributes from the attr->size value
6694 	 * which is set to ksize in this case.
6695 	 */
6696 	kattr->size = min(usize, ksize);
6697 
6698 	if (copy_to_user(uattr, kattr, kattr->size))
6699 		return -EFAULT;
6700 
6701 	return 0;
6702 }
6703 
6704 /**
6705  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6706  * @pid: the pid in question.
6707  * @uattr: structure containing the extended parameters.
6708  * @usize: sizeof(attr) for fwd/bwd comp.
6709  * @flags: for future extension.
6710  */
6711 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6712 		unsigned int, usize, unsigned int, flags)
6713 {
6714 	struct sched_attr kattr = { };
6715 	struct task_struct *p;
6716 	int retval;
6717 
6718 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6719 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6720 		return -EINVAL;
6721 
6722 	rcu_read_lock();
6723 	p = find_process_by_pid(pid);
6724 	retval = -ESRCH;
6725 	if (!p)
6726 		goto out_unlock;
6727 
6728 	retval = security_task_getscheduler(p);
6729 	if (retval)
6730 		goto out_unlock;
6731 
6732 	kattr.sched_policy = p->policy;
6733 	if (p->sched_reset_on_fork)
6734 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6735 	if (task_has_dl_policy(p))
6736 		__getparam_dl(p, &kattr);
6737 	else if (task_has_rt_policy(p))
6738 		kattr.sched_priority = p->rt_priority;
6739 	else
6740 		kattr.sched_nice = task_nice(p);
6741 
6742 #ifdef CONFIG_UCLAMP_TASK
6743 	/*
6744 	 * This could race with another potential updater, but this is fine
6745 	 * because it'll correctly read the old or the new value. We don't need
6746 	 * to guarantee who wins the race as long as it doesn't return garbage.
6747 	 */
6748 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6749 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6750 #endif
6751 
6752 	rcu_read_unlock();
6753 
6754 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6755 
6756 out_unlock:
6757 	rcu_read_unlock();
6758 	return retval;
6759 }
6760 
6761 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6762 {
6763 	cpumask_var_t cpus_allowed, new_mask;
6764 	struct task_struct *p;
6765 	int retval;
6766 
6767 	rcu_read_lock();
6768 
6769 	p = find_process_by_pid(pid);
6770 	if (!p) {
6771 		rcu_read_unlock();
6772 		return -ESRCH;
6773 	}
6774 
6775 	/* Prevent p going away */
6776 	get_task_struct(p);
6777 	rcu_read_unlock();
6778 
6779 	if (p->flags & PF_NO_SETAFFINITY) {
6780 		retval = -EINVAL;
6781 		goto out_put_task;
6782 	}
6783 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6784 		retval = -ENOMEM;
6785 		goto out_put_task;
6786 	}
6787 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6788 		retval = -ENOMEM;
6789 		goto out_free_cpus_allowed;
6790 	}
6791 	retval = -EPERM;
6792 	if (!check_same_owner(p)) {
6793 		rcu_read_lock();
6794 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6795 			rcu_read_unlock();
6796 			goto out_free_new_mask;
6797 		}
6798 		rcu_read_unlock();
6799 	}
6800 
6801 	retval = security_task_setscheduler(p);
6802 	if (retval)
6803 		goto out_free_new_mask;
6804 
6805 
6806 	cpuset_cpus_allowed(p, cpus_allowed);
6807 	cpumask_and(new_mask, in_mask, cpus_allowed);
6808 
6809 	/*
6810 	 * Since bandwidth control happens on root_domain basis,
6811 	 * if admission test is enabled, we only admit -deadline
6812 	 * tasks allowed to run on all the CPUs in the task's
6813 	 * root_domain.
6814 	 */
6815 #ifdef CONFIG_SMP
6816 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6817 		rcu_read_lock();
6818 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6819 			retval = -EBUSY;
6820 			rcu_read_unlock();
6821 			goto out_free_new_mask;
6822 		}
6823 		rcu_read_unlock();
6824 	}
6825 #endif
6826 again:
6827 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6828 
6829 	if (!retval) {
6830 		cpuset_cpus_allowed(p, cpus_allowed);
6831 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6832 			/*
6833 			 * We must have raced with a concurrent cpuset
6834 			 * update. Just reset the cpus_allowed to the
6835 			 * cpuset's cpus_allowed
6836 			 */
6837 			cpumask_copy(new_mask, cpus_allowed);
6838 			goto again;
6839 		}
6840 	}
6841 out_free_new_mask:
6842 	free_cpumask_var(new_mask);
6843 out_free_cpus_allowed:
6844 	free_cpumask_var(cpus_allowed);
6845 out_put_task:
6846 	put_task_struct(p);
6847 	return retval;
6848 }
6849 
6850 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6851 			     struct cpumask *new_mask)
6852 {
6853 	if (len < cpumask_size())
6854 		cpumask_clear(new_mask);
6855 	else if (len > cpumask_size())
6856 		len = cpumask_size();
6857 
6858 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6859 }
6860 
6861 /**
6862  * sys_sched_setaffinity - set the CPU affinity of a process
6863  * @pid: pid of the process
6864  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6865  * @user_mask_ptr: user-space pointer to the new CPU mask
6866  *
6867  * Return: 0 on success. An error code otherwise.
6868  */
6869 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6870 		unsigned long __user *, user_mask_ptr)
6871 {
6872 	cpumask_var_t new_mask;
6873 	int retval;
6874 
6875 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6876 		return -ENOMEM;
6877 
6878 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6879 	if (retval == 0)
6880 		retval = sched_setaffinity(pid, new_mask);
6881 	free_cpumask_var(new_mask);
6882 	return retval;
6883 }
6884 
6885 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6886 {
6887 	struct task_struct *p;
6888 	unsigned long flags;
6889 	int retval;
6890 
6891 	rcu_read_lock();
6892 
6893 	retval = -ESRCH;
6894 	p = find_process_by_pid(pid);
6895 	if (!p)
6896 		goto out_unlock;
6897 
6898 	retval = security_task_getscheduler(p);
6899 	if (retval)
6900 		goto out_unlock;
6901 
6902 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6903 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6904 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6905 
6906 out_unlock:
6907 	rcu_read_unlock();
6908 
6909 	return retval;
6910 }
6911 
6912 /**
6913  * sys_sched_getaffinity - get the CPU affinity of a process
6914  * @pid: pid of the process
6915  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6916  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6917  *
6918  * Return: size of CPU mask copied to user_mask_ptr on success. An
6919  * error code otherwise.
6920  */
6921 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6922 		unsigned long __user *, user_mask_ptr)
6923 {
6924 	int ret;
6925 	cpumask_var_t mask;
6926 
6927 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6928 		return -EINVAL;
6929 	if (len & (sizeof(unsigned long)-1))
6930 		return -EINVAL;
6931 
6932 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6933 		return -ENOMEM;
6934 
6935 	ret = sched_getaffinity(pid, mask);
6936 	if (ret == 0) {
6937 		unsigned int retlen = min(len, cpumask_size());
6938 
6939 		if (copy_to_user(user_mask_ptr, mask, retlen))
6940 			ret = -EFAULT;
6941 		else
6942 			ret = retlen;
6943 	}
6944 	free_cpumask_var(mask);
6945 
6946 	return ret;
6947 }
6948 
6949 static void do_sched_yield(void)
6950 {
6951 	struct rq_flags rf;
6952 	struct rq *rq;
6953 
6954 	rq = this_rq_lock_irq(&rf);
6955 
6956 	schedstat_inc(rq->yld_count);
6957 	current->sched_class->yield_task(rq);
6958 
6959 	preempt_disable();
6960 	rq_unlock_irq(rq, &rf);
6961 	sched_preempt_enable_no_resched();
6962 
6963 	schedule();
6964 }
6965 
6966 /**
6967  * sys_sched_yield - yield the current processor to other threads.
6968  *
6969  * This function yields the current CPU to other tasks. If there are no
6970  * other threads running on this CPU then this function will return.
6971  *
6972  * Return: 0.
6973  */
6974 SYSCALL_DEFINE0(sched_yield)
6975 {
6976 	do_sched_yield();
6977 	return 0;
6978 }
6979 
6980 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6981 int __sched __cond_resched(void)
6982 {
6983 	if (should_resched(0)) {
6984 		preempt_schedule_common();
6985 		return 1;
6986 	}
6987 #ifndef CONFIG_PREEMPT_RCU
6988 	rcu_all_qs();
6989 #endif
6990 	return 0;
6991 }
6992 EXPORT_SYMBOL(__cond_resched);
6993 #endif
6994 
6995 #ifdef CONFIG_PREEMPT_DYNAMIC
6996 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
6997 EXPORT_STATIC_CALL_TRAMP(cond_resched);
6998 
6999 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7000 EXPORT_STATIC_CALL_TRAMP(might_resched);
7001 #endif
7002 
7003 /*
7004  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7005  * call schedule, and on return reacquire the lock.
7006  *
7007  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7008  * operations here to prevent schedule() from being called twice (once via
7009  * spin_unlock(), once by hand).
7010  */
7011 int __cond_resched_lock(spinlock_t *lock)
7012 {
7013 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7014 	int ret = 0;
7015 
7016 	lockdep_assert_held(lock);
7017 
7018 	if (spin_needbreak(lock) || resched) {
7019 		spin_unlock(lock);
7020 		if (resched)
7021 			preempt_schedule_common();
7022 		else
7023 			cpu_relax();
7024 		ret = 1;
7025 		spin_lock(lock);
7026 	}
7027 	return ret;
7028 }
7029 EXPORT_SYMBOL(__cond_resched_lock);
7030 
7031 int __cond_resched_rwlock_read(rwlock_t *lock)
7032 {
7033 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7034 	int ret = 0;
7035 
7036 	lockdep_assert_held_read(lock);
7037 
7038 	if (rwlock_needbreak(lock) || resched) {
7039 		read_unlock(lock);
7040 		if (resched)
7041 			preempt_schedule_common();
7042 		else
7043 			cpu_relax();
7044 		ret = 1;
7045 		read_lock(lock);
7046 	}
7047 	return ret;
7048 }
7049 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7050 
7051 int __cond_resched_rwlock_write(rwlock_t *lock)
7052 {
7053 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7054 	int ret = 0;
7055 
7056 	lockdep_assert_held_write(lock);
7057 
7058 	if (rwlock_needbreak(lock) || resched) {
7059 		write_unlock(lock);
7060 		if (resched)
7061 			preempt_schedule_common();
7062 		else
7063 			cpu_relax();
7064 		ret = 1;
7065 		write_lock(lock);
7066 	}
7067 	return ret;
7068 }
7069 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7070 
7071 /**
7072  * yield - yield the current processor to other threads.
7073  *
7074  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7075  *
7076  * The scheduler is at all times free to pick the calling task as the most
7077  * eligible task to run, if removing the yield() call from your code breaks
7078  * it, it's already broken.
7079  *
7080  * Typical broken usage is:
7081  *
7082  * while (!event)
7083  *	yield();
7084  *
7085  * where one assumes that yield() will let 'the other' process run that will
7086  * make event true. If the current task is a SCHED_FIFO task that will never
7087  * happen. Never use yield() as a progress guarantee!!
7088  *
7089  * If you want to use yield() to wait for something, use wait_event().
7090  * If you want to use yield() to be 'nice' for others, use cond_resched().
7091  * If you still want to use yield(), do not!
7092  */
7093 void __sched yield(void)
7094 {
7095 	set_current_state(TASK_RUNNING);
7096 	do_sched_yield();
7097 }
7098 EXPORT_SYMBOL(yield);
7099 
7100 /**
7101  * yield_to - yield the current processor to another thread in
7102  * your thread group, or accelerate that thread toward the
7103  * processor it's on.
7104  * @p: target task
7105  * @preempt: whether task preemption is allowed or not
7106  *
7107  * It's the caller's job to ensure that the target task struct
7108  * can't go away on us before we can do any checks.
7109  *
7110  * Return:
7111  *	true (>0) if we indeed boosted the target task.
7112  *	false (0) if we failed to boost the target.
7113  *	-ESRCH if there's no task to yield to.
7114  */
7115 int __sched yield_to(struct task_struct *p, bool preempt)
7116 {
7117 	struct task_struct *curr = current;
7118 	struct rq *rq, *p_rq;
7119 	unsigned long flags;
7120 	int yielded = 0;
7121 
7122 	local_irq_save(flags);
7123 	rq = this_rq();
7124 
7125 again:
7126 	p_rq = task_rq(p);
7127 	/*
7128 	 * If we're the only runnable task on the rq and target rq also
7129 	 * has only one task, there's absolutely no point in yielding.
7130 	 */
7131 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7132 		yielded = -ESRCH;
7133 		goto out_irq;
7134 	}
7135 
7136 	double_rq_lock(rq, p_rq);
7137 	if (task_rq(p) != p_rq) {
7138 		double_rq_unlock(rq, p_rq);
7139 		goto again;
7140 	}
7141 
7142 	if (!curr->sched_class->yield_to_task)
7143 		goto out_unlock;
7144 
7145 	if (curr->sched_class != p->sched_class)
7146 		goto out_unlock;
7147 
7148 	if (task_running(p_rq, p) || p->state)
7149 		goto out_unlock;
7150 
7151 	yielded = curr->sched_class->yield_to_task(rq, p);
7152 	if (yielded) {
7153 		schedstat_inc(rq->yld_count);
7154 		/*
7155 		 * Make p's CPU reschedule; pick_next_entity takes care of
7156 		 * fairness.
7157 		 */
7158 		if (preempt && rq != p_rq)
7159 			resched_curr(p_rq);
7160 	}
7161 
7162 out_unlock:
7163 	double_rq_unlock(rq, p_rq);
7164 out_irq:
7165 	local_irq_restore(flags);
7166 
7167 	if (yielded > 0)
7168 		schedule();
7169 
7170 	return yielded;
7171 }
7172 EXPORT_SYMBOL_GPL(yield_to);
7173 
7174 int io_schedule_prepare(void)
7175 {
7176 	int old_iowait = current->in_iowait;
7177 
7178 	current->in_iowait = 1;
7179 	blk_schedule_flush_plug(current);
7180 
7181 	return old_iowait;
7182 }
7183 
7184 void io_schedule_finish(int token)
7185 {
7186 	current->in_iowait = token;
7187 }
7188 
7189 /*
7190  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7191  * that process accounting knows that this is a task in IO wait state.
7192  */
7193 long __sched io_schedule_timeout(long timeout)
7194 {
7195 	int token;
7196 	long ret;
7197 
7198 	token = io_schedule_prepare();
7199 	ret = schedule_timeout(timeout);
7200 	io_schedule_finish(token);
7201 
7202 	return ret;
7203 }
7204 EXPORT_SYMBOL(io_schedule_timeout);
7205 
7206 void __sched io_schedule(void)
7207 {
7208 	int token;
7209 
7210 	token = io_schedule_prepare();
7211 	schedule();
7212 	io_schedule_finish(token);
7213 }
7214 EXPORT_SYMBOL(io_schedule);
7215 
7216 /**
7217  * sys_sched_get_priority_max - return maximum RT priority.
7218  * @policy: scheduling class.
7219  *
7220  * Return: On success, this syscall returns the maximum
7221  * rt_priority that can be used by a given scheduling class.
7222  * On failure, a negative error code is returned.
7223  */
7224 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7225 {
7226 	int ret = -EINVAL;
7227 
7228 	switch (policy) {
7229 	case SCHED_FIFO:
7230 	case SCHED_RR:
7231 		ret = MAX_RT_PRIO-1;
7232 		break;
7233 	case SCHED_DEADLINE:
7234 	case SCHED_NORMAL:
7235 	case SCHED_BATCH:
7236 	case SCHED_IDLE:
7237 		ret = 0;
7238 		break;
7239 	}
7240 	return ret;
7241 }
7242 
7243 /**
7244  * sys_sched_get_priority_min - return minimum RT priority.
7245  * @policy: scheduling class.
7246  *
7247  * Return: On success, this syscall returns the minimum
7248  * rt_priority that can be used by a given scheduling class.
7249  * On failure, a negative error code is returned.
7250  */
7251 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7252 {
7253 	int ret = -EINVAL;
7254 
7255 	switch (policy) {
7256 	case SCHED_FIFO:
7257 	case SCHED_RR:
7258 		ret = 1;
7259 		break;
7260 	case SCHED_DEADLINE:
7261 	case SCHED_NORMAL:
7262 	case SCHED_BATCH:
7263 	case SCHED_IDLE:
7264 		ret = 0;
7265 	}
7266 	return ret;
7267 }
7268 
7269 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7270 {
7271 	struct task_struct *p;
7272 	unsigned int time_slice;
7273 	struct rq_flags rf;
7274 	struct rq *rq;
7275 	int retval;
7276 
7277 	if (pid < 0)
7278 		return -EINVAL;
7279 
7280 	retval = -ESRCH;
7281 	rcu_read_lock();
7282 	p = find_process_by_pid(pid);
7283 	if (!p)
7284 		goto out_unlock;
7285 
7286 	retval = security_task_getscheduler(p);
7287 	if (retval)
7288 		goto out_unlock;
7289 
7290 	rq = task_rq_lock(p, &rf);
7291 	time_slice = 0;
7292 	if (p->sched_class->get_rr_interval)
7293 		time_slice = p->sched_class->get_rr_interval(rq, p);
7294 	task_rq_unlock(rq, p, &rf);
7295 
7296 	rcu_read_unlock();
7297 	jiffies_to_timespec64(time_slice, t);
7298 	return 0;
7299 
7300 out_unlock:
7301 	rcu_read_unlock();
7302 	return retval;
7303 }
7304 
7305 /**
7306  * sys_sched_rr_get_interval - return the default timeslice of a process.
7307  * @pid: pid of the process.
7308  * @interval: userspace pointer to the timeslice value.
7309  *
7310  * this syscall writes the default timeslice value of a given process
7311  * into the user-space timespec buffer. A value of '0' means infinity.
7312  *
7313  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7314  * an error code.
7315  */
7316 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7317 		struct __kernel_timespec __user *, interval)
7318 {
7319 	struct timespec64 t;
7320 	int retval = sched_rr_get_interval(pid, &t);
7321 
7322 	if (retval == 0)
7323 		retval = put_timespec64(&t, interval);
7324 
7325 	return retval;
7326 }
7327 
7328 #ifdef CONFIG_COMPAT_32BIT_TIME
7329 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7330 		struct old_timespec32 __user *, interval)
7331 {
7332 	struct timespec64 t;
7333 	int retval = sched_rr_get_interval(pid, &t);
7334 
7335 	if (retval == 0)
7336 		retval = put_old_timespec32(&t, interval);
7337 	return retval;
7338 }
7339 #endif
7340 
7341 void sched_show_task(struct task_struct *p)
7342 {
7343 	unsigned long free = 0;
7344 	int ppid;
7345 
7346 	if (!try_get_task_stack(p))
7347 		return;
7348 
7349 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7350 
7351 	if (p->state == TASK_RUNNING)
7352 		pr_cont("  running task    ");
7353 #ifdef CONFIG_DEBUG_STACK_USAGE
7354 	free = stack_not_used(p);
7355 #endif
7356 	ppid = 0;
7357 	rcu_read_lock();
7358 	if (pid_alive(p))
7359 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7360 	rcu_read_unlock();
7361 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7362 		free, task_pid_nr(p), ppid,
7363 		(unsigned long)task_thread_info(p)->flags);
7364 
7365 	print_worker_info(KERN_INFO, p);
7366 	print_stop_info(KERN_INFO, p);
7367 	show_stack(p, NULL, KERN_INFO);
7368 	put_task_stack(p);
7369 }
7370 EXPORT_SYMBOL_GPL(sched_show_task);
7371 
7372 static inline bool
7373 state_filter_match(unsigned long state_filter, struct task_struct *p)
7374 {
7375 	/* no filter, everything matches */
7376 	if (!state_filter)
7377 		return true;
7378 
7379 	/* filter, but doesn't match */
7380 	if (!(p->state & state_filter))
7381 		return false;
7382 
7383 	/*
7384 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7385 	 * TASK_KILLABLE).
7386 	 */
7387 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7388 		return false;
7389 
7390 	return true;
7391 }
7392 
7393 
7394 void show_state_filter(unsigned long state_filter)
7395 {
7396 	struct task_struct *g, *p;
7397 
7398 	rcu_read_lock();
7399 	for_each_process_thread(g, p) {
7400 		/*
7401 		 * reset the NMI-timeout, listing all files on a slow
7402 		 * console might take a lot of time:
7403 		 * Also, reset softlockup watchdogs on all CPUs, because
7404 		 * another CPU might be blocked waiting for us to process
7405 		 * an IPI.
7406 		 */
7407 		touch_nmi_watchdog();
7408 		touch_all_softlockup_watchdogs();
7409 		if (state_filter_match(state_filter, p))
7410 			sched_show_task(p);
7411 	}
7412 
7413 #ifdef CONFIG_SCHED_DEBUG
7414 	if (!state_filter)
7415 		sysrq_sched_debug_show();
7416 #endif
7417 	rcu_read_unlock();
7418 	/*
7419 	 * Only show locks if all tasks are dumped:
7420 	 */
7421 	if (!state_filter)
7422 		debug_show_all_locks();
7423 }
7424 
7425 /**
7426  * init_idle - set up an idle thread for a given CPU
7427  * @idle: task in question
7428  * @cpu: CPU the idle task belongs to
7429  *
7430  * NOTE: this function does not set the idle thread's NEED_RESCHED
7431  * flag, to make booting more robust.
7432  */
7433 void init_idle(struct task_struct *idle, int cpu)
7434 {
7435 	struct rq *rq = cpu_rq(cpu);
7436 	unsigned long flags;
7437 
7438 	__sched_fork(0, idle);
7439 
7440 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7441 	raw_spin_lock(&rq->lock);
7442 
7443 	idle->state = TASK_RUNNING;
7444 	idle->se.exec_start = sched_clock();
7445 	idle->flags |= PF_IDLE;
7446 
7447 	scs_task_reset(idle);
7448 	kasan_unpoison_task_stack(idle);
7449 
7450 #ifdef CONFIG_SMP
7451 	/*
7452 	 * It's possible that init_idle() gets called multiple times on a task,
7453 	 * in that case do_set_cpus_allowed() will not do the right thing.
7454 	 *
7455 	 * And since this is boot we can forgo the serialization.
7456 	 */
7457 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7458 #endif
7459 	/*
7460 	 * We're having a chicken and egg problem, even though we are
7461 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7462 	 * lockdep check in task_group() will fail.
7463 	 *
7464 	 * Similar case to sched_fork(). / Alternatively we could
7465 	 * use task_rq_lock() here and obtain the other rq->lock.
7466 	 *
7467 	 * Silence PROVE_RCU
7468 	 */
7469 	rcu_read_lock();
7470 	__set_task_cpu(idle, cpu);
7471 	rcu_read_unlock();
7472 
7473 	rq->idle = idle;
7474 	rcu_assign_pointer(rq->curr, idle);
7475 	idle->on_rq = TASK_ON_RQ_QUEUED;
7476 #ifdef CONFIG_SMP
7477 	idle->on_cpu = 1;
7478 #endif
7479 	raw_spin_unlock(&rq->lock);
7480 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7481 
7482 	/* Set the preempt count _outside_ the spinlocks! */
7483 	init_idle_preempt_count(idle, cpu);
7484 
7485 	/*
7486 	 * The idle tasks have their own, simple scheduling class:
7487 	 */
7488 	idle->sched_class = &idle_sched_class;
7489 	ftrace_graph_init_idle_task(idle, cpu);
7490 	vtime_init_idle(idle, cpu);
7491 #ifdef CONFIG_SMP
7492 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7493 #endif
7494 }
7495 
7496 #ifdef CONFIG_SMP
7497 
7498 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7499 			      const struct cpumask *trial)
7500 {
7501 	int ret = 1;
7502 
7503 	if (!cpumask_weight(cur))
7504 		return ret;
7505 
7506 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7507 
7508 	return ret;
7509 }
7510 
7511 int task_can_attach(struct task_struct *p,
7512 		    const struct cpumask *cs_cpus_allowed)
7513 {
7514 	int ret = 0;
7515 
7516 	/*
7517 	 * Kthreads which disallow setaffinity shouldn't be moved
7518 	 * to a new cpuset; we don't want to change their CPU
7519 	 * affinity and isolating such threads by their set of
7520 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7521 	 * applicable for such threads.  This prevents checking for
7522 	 * success of set_cpus_allowed_ptr() on all attached tasks
7523 	 * before cpus_mask may be changed.
7524 	 */
7525 	if (p->flags & PF_NO_SETAFFINITY) {
7526 		ret = -EINVAL;
7527 		goto out;
7528 	}
7529 
7530 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7531 					      cs_cpus_allowed))
7532 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7533 
7534 out:
7535 	return ret;
7536 }
7537 
7538 bool sched_smp_initialized __read_mostly;
7539 
7540 #ifdef CONFIG_NUMA_BALANCING
7541 /* Migrate current task p to target_cpu */
7542 int migrate_task_to(struct task_struct *p, int target_cpu)
7543 {
7544 	struct migration_arg arg = { p, target_cpu };
7545 	int curr_cpu = task_cpu(p);
7546 
7547 	if (curr_cpu == target_cpu)
7548 		return 0;
7549 
7550 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7551 		return -EINVAL;
7552 
7553 	/* TODO: This is not properly updating schedstats */
7554 
7555 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7556 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7557 }
7558 
7559 /*
7560  * Requeue a task on a given node and accurately track the number of NUMA
7561  * tasks on the runqueues
7562  */
7563 void sched_setnuma(struct task_struct *p, int nid)
7564 {
7565 	bool queued, running;
7566 	struct rq_flags rf;
7567 	struct rq *rq;
7568 
7569 	rq = task_rq_lock(p, &rf);
7570 	queued = task_on_rq_queued(p);
7571 	running = task_current(rq, p);
7572 
7573 	if (queued)
7574 		dequeue_task(rq, p, DEQUEUE_SAVE);
7575 	if (running)
7576 		put_prev_task(rq, p);
7577 
7578 	p->numa_preferred_nid = nid;
7579 
7580 	if (queued)
7581 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7582 	if (running)
7583 		set_next_task(rq, p);
7584 	task_rq_unlock(rq, p, &rf);
7585 }
7586 #endif /* CONFIG_NUMA_BALANCING */
7587 
7588 #ifdef CONFIG_HOTPLUG_CPU
7589 /*
7590  * Ensure that the idle task is using init_mm right before its CPU goes
7591  * offline.
7592  */
7593 void idle_task_exit(void)
7594 {
7595 	struct mm_struct *mm = current->active_mm;
7596 
7597 	BUG_ON(cpu_online(smp_processor_id()));
7598 	BUG_ON(current != this_rq()->idle);
7599 
7600 	if (mm != &init_mm) {
7601 		switch_mm(mm, &init_mm, current);
7602 		finish_arch_post_lock_switch();
7603 	}
7604 
7605 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7606 }
7607 
7608 static int __balance_push_cpu_stop(void *arg)
7609 {
7610 	struct task_struct *p = arg;
7611 	struct rq *rq = this_rq();
7612 	struct rq_flags rf;
7613 	int cpu;
7614 
7615 	raw_spin_lock_irq(&p->pi_lock);
7616 	rq_lock(rq, &rf);
7617 
7618 	update_rq_clock(rq);
7619 
7620 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7621 		cpu = select_fallback_rq(rq->cpu, p);
7622 		rq = __migrate_task(rq, &rf, p, cpu);
7623 	}
7624 
7625 	rq_unlock(rq, &rf);
7626 	raw_spin_unlock_irq(&p->pi_lock);
7627 
7628 	put_task_struct(p);
7629 
7630 	return 0;
7631 }
7632 
7633 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7634 
7635 /*
7636  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7637  */
7638 static void balance_push(struct rq *rq)
7639 {
7640 	struct task_struct *push_task = rq->curr;
7641 
7642 	lockdep_assert_held(&rq->lock);
7643 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7644 	/*
7645 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7646 	 */
7647 	rq->balance_callback = &balance_push_callback;
7648 
7649 	/*
7650 	 * Both the cpu-hotplug and stop task are in this case and are
7651 	 * required to complete the hotplug process.
7652 	 *
7653 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7654 	 * histerical raisins.
7655 	 */
7656 	if (rq->idle == push_task ||
7657 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7658 	    is_migration_disabled(push_task)) {
7659 
7660 		/*
7661 		 * If this is the idle task on the outgoing CPU try to wake
7662 		 * up the hotplug control thread which might wait for the
7663 		 * last task to vanish. The rcuwait_active() check is
7664 		 * accurate here because the waiter is pinned on this CPU
7665 		 * and can't obviously be running in parallel.
7666 		 *
7667 		 * On RT kernels this also has to check whether there are
7668 		 * pinned and scheduled out tasks on the runqueue. They
7669 		 * need to leave the migrate disabled section first.
7670 		 */
7671 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7672 		    rcuwait_active(&rq->hotplug_wait)) {
7673 			raw_spin_unlock(&rq->lock);
7674 			rcuwait_wake_up(&rq->hotplug_wait);
7675 			raw_spin_lock(&rq->lock);
7676 		}
7677 		return;
7678 	}
7679 
7680 	get_task_struct(push_task);
7681 	/*
7682 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7683 	 * Both preemption and IRQs are still disabled.
7684 	 */
7685 	raw_spin_unlock(&rq->lock);
7686 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7687 			    this_cpu_ptr(&push_work));
7688 	/*
7689 	 * At this point need_resched() is true and we'll take the loop in
7690 	 * schedule(). The next pick is obviously going to be the stop task
7691 	 * which kthread_is_per_cpu() and will push this task away.
7692 	 */
7693 	raw_spin_lock(&rq->lock);
7694 }
7695 
7696 static void balance_push_set(int cpu, bool on)
7697 {
7698 	struct rq *rq = cpu_rq(cpu);
7699 	struct rq_flags rf;
7700 
7701 	rq_lock_irqsave(rq, &rf);
7702 	rq->balance_push = on;
7703 	if (on) {
7704 		WARN_ON_ONCE(rq->balance_callback);
7705 		rq->balance_callback = &balance_push_callback;
7706 	} else if (rq->balance_callback == &balance_push_callback) {
7707 		rq->balance_callback = NULL;
7708 	}
7709 	rq_unlock_irqrestore(rq, &rf);
7710 }
7711 
7712 /*
7713  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7714  * inactive. All tasks which are not per CPU kernel threads are either
7715  * pushed off this CPU now via balance_push() or placed on a different CPU
7716  * during wakeup. Wait until the CPU is quiescent.
7717  */
7718 static void balance_hotplug_wait(void)
7719 {
7720 	struct rq *rq = this_rq();
7721 
7722 	rcuwait_wait_event(&rq->hotplug_wait,
7723 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7724 			   TASK_UNINTERRUPTIBLE);
7725 }
7726 
7727 #else
7728 
7729 static inline void balance_push(struct rq *rq)
7730 {
7731 }
7732 
7733 static inline void balance_push_set(int cpu, bool on)
7734 {
7735 }
7736 
7737 static inline void balance_hotplug_wait(void)
7738 {
7739 }
7740 
7741 #endif /* CONFIG_HOTPLUG_CPU */
7742 
7743 void set_rq_online(struct rq *rq)
7744 {
7745 	if (!rq->online) {
7746 		const struct sched_class *class;
7747 
7748 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7749 		rq->online = 1;
7750 
7751 		for_each_class(class) {
7752 			if (class->rq_online)
7753 				class->rq_online(rq);
7754 		}
7755 	}
7756 }
7757 
7758 void set_rq_offline(struct rq *rq)
7759 {
7760 	if (rq->online) {
7761 		const struct sched_class *class;
7762 
7763 		for_each_class(class) {
7764 			if (class->rq_offline)
7765 				class->rq_offline(rq);
7766 		}
7767 
7768 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7769 		rq->online = 0;
7770 	}
7771 }
7772 
7773 /*
7774  * used to mark begin/end of suspend/resume:
7775  */
7776 static int num_cpus_frozen;
7777 
7778 /*
7779  * Update cpusets according to cpu_active mask.  If cpusets are
7780  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7781  * around partition_sched_domains().
7782  *
7783  * If we come here as part of a suspend/resume, don't touch cpusets because we
7784  * want to restore it back to its original state upon resume anyway.
7785  */
7786 static void cpuset_cpu_active(void)
7787 {
7788 	if (cpuhp_tasks_frozen) {
7789 		/*
7790 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7791 		 * resume sequence. As long as this is not the last online
7792 		 * operation in the resume sequence, just build a single sched
7793 		 * domain, ignoring cpusets.
7794 		 */
7795 		partition_sched_domains(1, NULL, NULL);
7796 		if (--num_cpus_frozen)
7797 			return;
7798 		/*
7799 		 * This is the last CPU online operation. So fall through and
7800 		 * restore the original sched domains by considering the
7801 		 * cpuset configurations.
7802 		 */
7803 		cpuset_force_rebuild();
7804 	}
7805 	cpuset_update_active_cpus();
7806 }
7807 
7808 static int cpuset_cpu_inactive(unsigned int cpu)
7809 {
7810 	if (!cpuhp_tasks_frozen) {
7811 		if (dl_cpu_busy(cpu))
7812 			return -EBUSY;
7813 		cpuset_update_active_cpus();
7814 	} else {
7815 		num_cpus_frozen++;
7816 		partition_sched_domains(1, NULL, NULL);
7817 	}
7818 	return 0;
7819 }
7820 
7821 int sched_cpu_activate(unsigned int cpu)
7822 {
7823 	struct rq *rq = cpu_rq(cpu);
7824 	struct rq_flags rf;
7825 
7826 	/*
7827 	 * Make sure that when the hotplug state machine does a roll-back
7828 	 * we clear balance_push. Ideally that would happen earlier...
7829 	 */
7830 	balance_push_set(cpu, false);
7831 
7832 #ifdef CONFIG_SCHED_SMT
7833 	/*
7834 	 * When going up, increment the number of cores with SMT present.
7835 	 */
7836 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7837 		static_branch_inc_cpuslocked(&sched_smt_present);
7838 #endif
7839 	set_cpu_active(cpu, true);
7840 
7841 	if (sched_smp_initialized) {
7842 		sched_domains_numa_masks_set(cpu);
7843 		cpuset_cpu_active();
7844 	}
7845 
7846 	/*
7847 	 * Put the rq online, if not already. This happens:
7848 	 *
7849 	 * 1) In the early boot process, because we build the real domains
7850 	 *    after all CPUs have been brought up.
7851 	 *
7852 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7853 	 *    domains.
7854 	 */
7855 	rq_lock_irqsave(rq, &rf);
7856 	if (rq->rd) {
7857 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7858 		set_rq_online(rq);
7859 	}
7860 	rq_unlock_irqrestore(rq, &rf);
7861 
7862 	return 0;
7863 }
7864 
7865 int sched_cpu_deactivate(unsigned int cpu)
7866 {
7867 	struct rq *rq = cpu_rq(cpu);
7868 	struct rq_flags rf;
7869 	int ret;
7870 
7871 	/*
7872 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7873 	 * load balancing when not active
7874 	 */
7875 	nohz_balance_exit_idle(rq);
7876 
7877 	set_cpu_active(cpu, false);
7878 
7879 	/*
7880 	 * From this point forward, this CPU will refuse to run any task that
7881 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7882 	 * push those tasks away until this gets cleared, see
7883 	 * sched_cpu_dying().
7884 	 */
7885 	balance_push_set(cpu, true);
7886 
7887 	/*
7888 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7889 	 * preempt-disabled and RCU users of this state to go away such that
7890 	 * all new such users will observe it.
7891 	 *
7892 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7893 	 * ttwu_queue_cond() and is_cpu_allowed().
7894 	 *
7895 	 * Do sync before park smpboot threads to take care the rcu boost case.
7896 	 */
7897 	synchronize_rcu();
7898 
7899 	rq_lock_irqsave(rq, &rf);
7900 	if (rq->rd) {
7901 		update_rq_clock(rq);
7902 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7903 		set_rq_offline(rq);
7904 	}
7905 	rq_unlock_irqrestore(rq, &rf);
7906 
7907 #ifdef CONFIG_SCHED_SMT
7908 	/*
7909 	 * When going down, decrement the number of cores with SMT present.
7910 	 */
7911 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7912 		static_branch_dec_cpuslocked(&sched_smt_present);
7913 #endif
7914 
7915 	if (!sched_smp_initialized)
7916 		return 0;
7917 
7918 	ret = cpuset_cpu_inactive(cpu);
7919 	if (ret) {
7920 		balance_push_set(cpu, false);
7921 		set_cpu_active(cpu, true);
7922 		return ret;
7923 	}
7924 	sched_domains_numa_masks_clear(cpu);
7925 	return 0;
7926 }
7927 
7928 static void sched_rq_cpu_starting(unsigned int cpu)
7929 {
7930 	struct rq *rq = cpu_rq(cpu);
7931 
7932 	rq->calc_load_update = calc_load_update;
7933 	update_max_interval();
7934 }
7935 
7936 int sched_cpu_starting(unsigned int cpu)
7937 {
7938 	sched_rq_cpu_starting(cpu);
7939 	sched_tick_start(cpu);
7940 	return 0;
7941 }
7942 
7943 #ifdef CONFIG_HOTPLUG_CPU
7944 
7945 /*
7946  * Invoked immediately before the stopper thread is invoked to bring the
7947  * CPU down completely. At this point all per CPU kthreads except the
7948  * hotplug thread (current) and the stopper thread (inactive) have been
7949  * either parked or have been unbound from the outgoing CPU. Ensure that
7950  * any of those which might be on the way out are gone.
7951  *
7952  * If after this point a bound task is being woken on this CPU then the
7953  * responsible hotplug callback has failed to do it's job.
7954  * sched_cpu_dying() will catch it with the appropriate fireworks.
7955  */
7956 int sched_cpu_wait_empty(unsigned int cpu)
7957 {
7958 	balance_hotplug_wait();
7959 	return 0;
7960 }
7961 
7962 /*
7963  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7964  * might have. Called from the CPU stopper task after ensuring that the
7965  * stopper is the last running task on the CPU, so nr_active count is
7966  * stable. We need to take the teardown thread which is calling this into
7967  * account, so we hand in adjust = 1 to the load calculation.
7968  *
7969  * Also see the comment "Global load-average calculations".
7970  */
7971 static void calc_load_migrate(struct rq *rq)
7972 {
7973 	long delta = calc_load_fold_active(rq, 1);
7974 
7975 	if (delta)
7976 		atomic_long_add(delta, &calc_load_tasks);
7977 }
7978 
7979 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7980 {
7981 	struct task_struct *g, *p;
7982 	int cpu = cpu_of(rq);
7983 
7984 	lockdep_assert_held(&rq->lock);
7985 
7986 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7987 	for_each_process_thread(g, p) {
7988 		if (task_cpu(p) != cpu)
7989 			continue;
7990 
7991 		if (!task_on_rq_queued(p))
7992 			continue;
7993 
7994 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7995 	}
7996 }
7997 
7998 int sched_cpu_dying(unsigned int cpu)
7999 {
8000 	struct rq *rq = cpu_rq(cpu);
8001 	struct rq_flags rf;
8002 
8003 	/* Handle pending wakeups and then migrate everything off */
8004 	sched_tick_stop(cpu);
8005 
8006 	rq_lock_irqsave(rq, &rf);
8007 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8008 		WARN(true, "Dying CPU not properly vacated!");
8009 		dump_rq_tasks(rq, KERN_WARNING);
8010 	}
8011 	rq_unlock_irqrestore(rq, &rf);
8012 
8013 	/*
8014 	 * Now that the CPU is offline, make sure we're welcome
8015 	 * to new tasks once we come back up.
8016 	 */
8017 	balance_push_set(cpu, false);
8018 
8019 	calc_load_migrate(rq);
8020 	update_max_interval();
8021 	hrtick_clear(rq);
8022 	return 0;
8023 }
8024 #endif
8025 
8026 void __init sched_init_smp(void)
8027 {
8028 	sched_init_numa();
8029 
8030 	/*
8031 	 * There's no userspace yet to cause hotplug operations; hence all the
8032 	 * CPU masks are stable and all blatant races in the below code cannot
8033 	 * happen.
8034 	 */
8035 	mutex_lock(&sched_domains_mutex);
8036 	sched_init_domains(cpu_active_mask);
8037 	mutex_unlock(&sched_domains_mutex);
8038 
8039 	/* Move init over to a non-isolated CPU */
8040 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8041 		BUG();
8042 	sched_init_granularity();
8043 
8044 	init_sched_rt_class();
8045 	init_sched_dl_class();
8046 
8047 	sched_smp_initialized = true;
8048 }
8049 
8050 static int __init migration_init(void)
8051 {
8052 	sched_cpu_starting(smp_processor_id());
8053 	return 0;
8054 }
8055 early_initcall(migration_init);
8056 
8057 #else
8058 void __init sched_init_smp(void)
8059 {
8060 	sched_init_granularity();
8061 }
8062 #endif /* CONFIG_SMP */
8063 
8064 int in_sched_functions(unsigned long addr)
8065 {
8066 	return in_lock_functions(addr) ||
8067 		(addr >= (unsigned long)__sched_text_start
8068 		&& addr < (unsigned long)__sched_text_end);
8069 }
8070 
8071 #ifdef CONFIG_CGROUP_SCHED
8072 /*
8073  * Default task group.
8074  * Every task in system belongs to this group at bootup.
8075  */
8076 struct task_group root_task_group;
8077 LIST_HEAD(task_groups);
8078 
8079 /* Cacheline aligned slab cache for task_group */
8080 static struct kmem_cache *task_group_cache __read_mostly;
8081 #endif
8082 
8083 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8084 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8085 
8086 void __init sched_init(void)
8087 {
8088 	unsigned long ptr = 0;
8089 	int i;
8090 
8091 	/* Make sure the linker didn't screw up */
8092 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8093 	       &fair_sched_class + 1 != &rt_sched_class ||
8094 	       &rt_sched_class + 1   != &dl_sched_class);
8095 #ifdef CONFIG_SMP
8096 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8097 #endif
8098 
8099 	wait_bit_init();
8100 
8101 #ifdef CONFIG_FAIR_GROUP_SCHED
8102 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8103 #endif
8104 #ifdef CONFIG_RT_GROUP_SCHED
8105 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8106 #endif
8107 	if (ptr) {
8108 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8109 
8110 #ifdef CONFIG_FAIR_GROUP_SCHED
8111 		root_task_group.se = (struct sched_entity **)ptr;
8112 		ptr += nr_cpu_ids * sizeof(void **);
8113 
8114 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8115 		ptr += nr_cpu_ids * sizeof(void **);
8116 
8117 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8118 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8119 #endif /* CONFIG_FAIR_GROUP_SCHED */
8120 #ifdef CONFIG_RT_GROUP_SCHED
8121 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8122 		ptr += nr_cpu_ids * sizeof(void **);
8123 
8124 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8125 		ptr += nr_cpu_ids * sizeof(void **);
8126 
8127 #endif /* CONFIG_RT_GROUP_SCHED */
8128 	}
8129 #ifdef CONFIG_CPUMASK_OFFSTACK
8130 	for_each_possible_cpu(i) {
8131 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8132 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8133 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8134 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8135 	}
8136 #endif /* CONFIG_CPUMASK_OFFSTACK */
8137 
8138 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8139 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8140 
8141 #ifdef CONFIG_SMP
8142 	init_defrootdomain();
8143 #endif
8144 
8145 #ifdef CONFIG_RT_GROUP_SCHED
8146 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8147 			global_rt_period(), global_rt_runtime());
8148 #endif /* CONFIG_RT_GROUP_SCHED */
8149 
8150 #ifdef CONFIG_CGROUP_SCHED
8151 	task_group_cache = KMEM_CACHE(task_group, 0);
8152 
8153 	list_add(&root_task_group.list, &task_groups);
8154 	INIT_LIST_HEAD(&root_task_group.children);
8155 	INIT_LIST_HEAD(&root_task_group.siblings);
8156 	autogroup_init(&init_task);
8157 #endif /* CONFIG_CGROUP_SCHED */
8158 
8159 	for_each_possible_cpu(i) {
8160 		struct rq *rq;
8161 
8162 		rq = cpu_rq(i);
8163 		raw_spin_lock_init(&rq->lock);
8164 		rq->nr_running = 0;
8165 		rq->calc_load_active = 0;
8166 		rq->calc_load_update = jiffies + LOAD_FREQ;
8167 		init_cfs_rq(&rq->cfs);
8168 		init_rt_rq(&rq->rt);
8169 		init_dl_rq(&rq->dl);
8170 #ifdef CONFIG_FAIR_GROUP_SCHED
8171 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8172 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8173 		/*
8174 		 * How much CPU bandwidth does root_task_group get?
8175 		 *
8176 		 * In case of task-groups formed thr' the cgroup filesystem, it
8177 		 * gets 100% of the CPU resources in the system. This overall
8178 		 * system CPU resource is divided among the tasks of
8179 		 * root_task_group and its child task-groups in a fair manner,
8180 		 * based on each entity's (task or task-group's) weight
8181 		 * (se->load.weight).
8182 		 *
8183 		 * In other words, if root_task_group has 10 tasks of weight
8184 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8185 		 * then A0's share of the CPU resource is:
8186 		 *
8187 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8188 		 *
8189 		 * We achieve this by letting root_task_group's tasks sit
8190 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8191 		 */
8192 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8193 #endif /* CONFIG_FAIR_GROUP_SCHED */
8194 
8195 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8198 #endif
8199 #ifdef CONFIG_SMP
8200 		rq->sd = NULL;
8201 		rq->rd = NULL;
8202 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8203 		rq->balance_callback = NULL;
8204 		rq->active_balance = 0;
8205 		rq->next_balance = jiffies;
8206 		rq->push_cpu = 0;
8207 		rq->cpu = i;
8208 		rq->online = 0;
8209 		rq->idle_stamp = 0;
8210 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8211 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8212 
8213 		INIT_LIST_HEAD(&rq->cfs_tasks);
8214 
8215 		rq_attach_root(rq, &def_root_domain);
8216 #ifdef CONFIG_NO_HZ_COMMON
8217 		rq->last_blocked_load_update_tick = jiffies;
8218 		atomic_set(&rq->nohz_flags, 0);
8219 
8220 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8221 #endif
8222 #ifdef CONFIG_HOTPLUG_CPU
8223 		rcuwait_init(&rq->hotplug_wait);
8224 #endif
8225 #endif /* CONFIG_SMP */
8226 		hrtick_rq_init(rq);
8227 		atomic_set(&rq->nr_iowait, 0);
8228 	}
8229 
8230 	set_load_weight(&init_task, false);
8231 
8232 	/*
8233 	 * The boot idle thread does lazy MMU switching as well:
8234 	 */
8235 	mmgrab(&init_mm);
8236 	enter_lazy_tlb(&init_mm, current);
8237 
8238 	/*
8239 	 * Make us the idle thread. Technically, schedule() should not be
8240 	 * called from this thread, however somewhere below it might be,
8241 	 * but because we are the idle thread, we just pick up running again
8242 	 * when this runqueue becomes "idle".
8243 	 */
8244 	init_idle(current, smp_processor_id());
8245 
8246 	calc_load_update = jiffies + LOAD_FREQ;
8247 
8248 #ifdef CONFIG_SMP
8249 	idle_thread_set_boot_cpu();
8250 #endif
8251 	init_sched_fair_class();
8252 
8253 	init_schedstats();
8254 
8255 	psi_init();
8256 
8257 	init_uclamp();
8258 
8259 	scheduler_running = 1;
8260 }
8261 
8262 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8263 static inline int preempt_count_equals(int preempt_offset)
8264 {
8265 	int nested = preempt_count() + rcu_preempt_depth();
8266 
8267 	return (nested == preempt_offset);
8268 }
8269 
8270 void __might_sleep(const char *file, int line, int preempt_offset)
8271 {
8272 	/*
8273 	 * Blocking primitives will set (and therefore destroy) current->state,
8274 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8275 	 * otherwise we will destroy state.
8276 	 */
8277 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8278 			"do not call blocking ops when !TASK_RUNNING; "
8279 			"state=%lx set at [<%p>] %pS\n",
8280 			current->state,
8281 			(void *)current->task_state_change,
8282 			(void *)current->task_state_change);
8283 
8284 	___might_sleep(file, line, preempt_offset);
8285 }
8286 EXPORT_SYMBOL(__might_sleep);
8287 
8288 void ___might_sleep(const char *file, int line, int preempt_offset)
8289 {
8290 	/* Ratelimiting timestamp: */
8291 	static unsigned long prev_jiffy;
8292 
8293 	unsigned long preempt_disable_ip;
8294 
8295 	/* WARN_ON_ONCE() by default, no rate limit required: */
8296 	rcu_sleep_check();
8297 
8298 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8299 	     !is_idle_task(current) && !current->non_block_count) ||
8300 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8301 	    oops_in_progress)
8302 		return;
8303 
8304 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8305 		return;
8306 	prev_jiffy = jiffies;
8307 
8308 	/* Save this before calling printk(), since that will clobber it: */
8309 	preempt_disable_ip = get_preempt_disable_ip(current);
8310 
8311 	printk(KERN_ERR
8312 		"BUG: sleeping function called from invalid context at %s:%d\n",
8313 			file, line);
8314 	printk(KERN_ERR
8315 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8316 			in_atomic(), irqs_disabled(), current->non_block_count,
8317 			current->pid, current->comm);
8318 
8319 	if (task_stack_end_corrupted(current))
8320 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8321 
8322 	debug_show_held_locks(current);
8323 	if (irqs_disabled())
8324 		print_irqtrace_events(current);
8325 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8326 	    && !preempt_count_equals(preempt_offset)) {
8327 		pr_err("Preemption disabled at:");
8328 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8329 	}
8330 	dump_stack();
8331 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8332 }
8333 EXPORT_SYMBOL(___might_sleep);
8334 
8335 void __cant_sleep(const char *file, int line, int preempt_offset)
8336 {
8337 	static unsigned long prev_jiffy;
8338 
8339 	if (irqs_disabled())
8340 		return;
8341 
8342 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8343 		return;
8344 
8345 	if (preempt_count() > preempt_offset)
8346 		return;
8347 
8348 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8349 		return;
8350 	prev_jiffy = jiffies;
8351 
8352 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8353 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8354 			in_atomic(), irqs_disabled(),
8355 			current->pid, current->comm);
8356 
8357 	debug_show_held_locks(current);
8358 	dump_stack();
8359 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8360 }
8361 EXPORT_SYMBOL_GPL(__cant_sleep);
8362 
8363 #ifdef CONFIG_SMP
8364 void __cant_migrate(const char *file, int line)
8365 {
8366 	static unsigned long prev_jiffy;
8367 
8368 	if (irqs_disabled())
8369 		return;
8370 
8371 	if (is_migration_disabled(current))
8372 		return;
8373 
8374 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8375 		return;
8376 
8377 	if (preempt_count() > 0)
8378 		return;
8379 
8380 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8381 		return;
8382 	prev_jiffy = jiffies;
8383 
8384 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8385 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8386 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8387 	       current->pid, current->comm);
8388 
8389 	debug_show_held_locks(current);
8390 	dump_stack();
8391 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8392 }
8393 EXPORT_SYMBOL_GPL(__cant_migrate);
8394 #endif
8395 #endif
8396 
8397 #ifdef CONFIG_MAGIC_SYSRQ
8398 void normalize_rt_tasks(void)
8399 {
8400 	struct task_struct *g, *p;
8401 	struct sched_attr attr = {
8402 		.sched_policy = SCHED_NORMAL,
8403 	};
8404 
8405 	read_lock(&tasklist_lock);
8406 	for_each_process_thread(g, p) {
8407 		/*
8408 		 * Only normalize user tasks:
8409 		 */
8410 		if (p->flags & PF_KTHREAD)
8411 			continue;
8412 
8413 		p->se.exec_start = 0;
8414 		schedstat_set(p->se.statistics.wait_start,  0);
8415 		schedstat_set(p->se.statistics.sleep_start, 0);
8416 		schedstat_set(p->se.statistics.block_start, 0);
8417 
8418 		if (!dl_task(p) && !rt_task(p)) {
8419 			/*
8420 			 * Renice negative nice level userspace
8421 			 * tasks back to 0:
8422 			 */
8423 			if (task_nice(p) < 0)
8424 				set_user_nice(p, 0);
8425 			continue;
8426 		}
8427 
8428 		__sched_setscheduler(p, &attr, false, false);
8429 	}
8430 	read_unlock(&tasklist_lock);
8431 }
8432 
8433 #endif /* CONFIG_MAGIC_SYSRQ */
8434 
8435 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8436 /*
8437  * These functions are only useful for the IA64 MCA handling, or kdb.
8438  *
8439  * They can only be called when the whole system has been
8440  * stopped - every CPU needs to be quiescent, and no scheduling
8441  * activity can take place. Using them for anything else would
8442  * be a serious bug, and as a result, they aren't even visible
8443  * under any other configuration.
8444  */
8445 
8446 /**
8447  * curr_task - return the current task for a given CPU.
8448  * @cpu: the processor in question.
8449  *
8450  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8451  *
8452  * Return: The current task for @cpu.
8453  */
8454 struct task_struct *curr_task(int cpu)
8455 {
8456 	return cpu_curr(cpu);
8457 }
8458 
8459 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8460 
8461 #ifdef CONFIG_IA64
8462 /**
8463  * ia64_set_curr_task - set the current task for a given CPU.
8464  * @cpu: the processor in question.
8465  * @p: the task pointer to set.
8466  *
8467  * Description: This function must only be used when non-maskable interrupts
8468  * are serviced on a separate stack. It allows the architecture to switch the
8469  * notion of the current task on a CPU in a non-blocking manner. This function
8470  * must be called with all CPU's synchronized, and interrupts disabled, the
8471  * and caller must save the original value of the current task (see
8472  * curr_task() above) and restore that value before reenabling interrupts and
8473  * re-starting the system.
8474  *
8475  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8476  */
8477 void ia64_set_curr_task(int cpu, struct task_struct *p)
8478 {
8479 	cpu_curr(cpu) = p;
8480 }
8481 
8482 #endif
8483 
8484 #ifdef CONFIG_CGROUP_SCHED
8485 /* task_group_lock serializes the addition/removal of task groups */
8486 static DEFINE_SPINLOCK(task_group_lock);
8487 
8488 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8489 					    struct task_group *parent)
8490 {
8491 #ifdef CONFIG_UCLAMP_TASK_GROUP
8492 	enum uclamp_id clamp_id;
8493 
8494 	for_each_clamp_id(clamp_id) {
8495 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8496 			      uclamp_none(clamp_id), false);
8497 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8498 	}
8499 #endif
8500 }
8501 
8502 static void sched_free_group(struct task_group *tg)
8503 {
8504 	free_fair_sched_group(tg);
8505 	free_rt_sched_group(tg);
8506 	autogroup_free(tg);
8507 	kmem_cache_free(task_group_cache, tg);
8508 }
8509 
8510 /* allocate runqueue etc for a new task group */
8511 struct task_group *sched_create_group(struct task_group *parent)
8512 {
8513 	struct task_group *tg;
8514 
8515 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8516 	if (!tg)
8517 		return ERR_PTR(-ENOMEM);
8518 
8519 	if (!alloc_fair_sched_group(tg, parent))
8520 		goto err;
8521 
8522 	if (!alloc_rt_sched_group(tg, parent))
8523 		goto err;
8524 
8525 	alloc_uclamp_sched_group(tg, parent);
8526 
8527 	return tg;
8528 
8529 err:
8530 	sched_free_group(tg);
8531 	return ERR_PTR(-ENOMEM);
8532 }
8533 
8534 void sched_online_group(struct task_group *tg, struct task_group *parent)
8535 {
8536 	unsigned long flags;
8537 
8538 	spin_lock_irqsave(&task_group_lock, flags);
8539 	list_add_rcu(&tg->list, &task_groups);
8540 
8541 	/* Root should already exist: */
8542 	WARN_ON(!parent);
8543 
8544 	tg->parent = parent;
8545 	INIT_LIST_HEAD(&tg->children);
8546 	list_add_rcu(&tg->siblings, &parent->children);
8547 	spin_unlock_irqrestore(&task_group_lock, flags);
8548 
8549 	online_fair_sched_group(tg);
8550 }
8551 
8552 /* rcu callback to free various structures associated with a task group */
8553 static void sched_free_group_rcu(struct rcu_head *rhp)
8554 {
8555 	/* Now it should be safe to free those cfs_rqs: */
8556 	sched_free_group(container_of(rhp, struct task_group, rcu));
8557 }
8558 
8559 void sched_destroy_group(struct task_group *tg)
8560 {
8561 	/* Wait for possible concurrent references to cfs_rqs complete: */
8562 	call_rcu(&tg->rcu, sched_free_group_rcu);
8563 }
8564 
8565 void sched_offline_group(struct task_group *tg)
8566 {
8567 	unsigned long flags;
8568 
8569 	/* End participation in shares distribution: */
8570 	unregister_fair_sched_group(tg);
8571 
8572 	spin_lock_irqsave(&task_group_lock, flags);
8573 	list_del_rcu(&tg->list);
8574 	list_del_rcu(&tg->siblings);
8575 	spin_unlock_irqrestore(&task_group_lock, flags);
8576 }
8577 
8578 static void sched_change_group(struct task_struct *tsk, int type)
8579 {
8580 	struct task_group *tg;
8581 
8582 	/*
8583 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8584 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8585 	 * to prevent lockdep warnings.
8586 	 */
8587 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8588 			  struct task_group, css);
8589 	tg = autogroup_task_group(tsk, tg);
8590 	tsk->sched_task_group = tg;
8591 
8592 #ifdef CONFIG_FAIR_GROUP_SCHED
8593 	if (tsk->sched_class->task_change_group)
8594 		tsk->sched_class->task_change_group(tsk, type);
8595 	else
8596 #endif
8597 		set_task_rq(tsk, task_cpu(tsk));
8598 }
8599 
8600 /*
8601  * Change task's runqueue when it moves between groups.
8602  *
8603  * The caller of this function should have put the task in its new group by
8604  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8605  * its new group.
8606  */
8607 void sched_move_task(struct task_struct *tsk)
8608 {
8609 	int queued, running, queue_flags =
8610 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8611 	struct rq_flags rf;
8612 	struct rq *rq;
8613 
8614 	rq = task_rq_lock(tsk, &rf);
8615 	update_rq_clock(rq);
8616 
8617 	running = task_current(rq, tsk);
8618 	queued = task_on_rq_queued(tsk);
8619 
8620 	if (queued)
8621 		dequeue_task(rq, tsk, queue_flags);
8622 	if (running)
8623 		put_prev_task(rq, tsk);
8624 
8625 	sched_change_group(tsk, TASK_MOVE_GROUP);
8626 
8627 	if (queued)
8628 		enqueue_task(rq, tsk, queue_flags);
8629 	if (running) {
8630 		set_next_task(rq, tsk);
8631 		/*
8632 		 * After changing group, the running task may have joined a
8633 		 * throttled one but it's still the running task. Trigger a
8634 		 * resched to make sure that task can still run.
8635 		 */
8636 		resched_curr(rq);
8637 	}
8638 
8639 	task_rq_unlock(rq, tsk, &rf);
8640 }
8641 
8642 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8643 {
8644 	return css ? container_of(css, struct task_group, css) : NULL;
8645 }
8646 
8647 static struct cgroup_subsys_state *
8648 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8649 {
8650 	struct task_group *parent = css_tg(parent_css);
8651 	struct task_group *tg;
8652 
8653 	if (!parent) {
8654 		/* This is early initialization for the top cgroup */
8655 		return &root_task_group.css;
8656 	}
8657 
8658 	tg = sched_create_group(parent);
8659 	if (IS_ERR(tg))
8660 		return ERR_PTR(-ENOMEM);
8661 
8662 	return &tg->css;
8663 }
8664 
8665 /* Expose task group only after completing cgroup initialization */
8666 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8667 {
8668 	struct task_group *tg = css_tg(css);
8669 	struct task_group *parent = css_tg(css->parent);
8670 
8671 	if (parent)
8672 		sched_online_group(tg, parent);
8673 
8674 #ifdef CONFIG_UCLAMP_TASK_GROUP
8675 	/* Propagate the effective uclamp value for the new group */
8676 	cpu_util_update_eff(css);
8677 #endif
8678 
8679 	return 0;
8680 }
8681 
8682 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8683 {
8684 	struct task_group *tg = css_tg(css);
8685 
8686 	sched_offline_group(tg);
8687 }
8688 
8689 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8690 {
8691 	struct task_group *tg = css_tg(css);
8692 
8693 	/*
8694 	 * Relies on the RCU grace period between css_released() and this.
8695 	 */
8696 	sched_free_group(tg);
8697 }
8698 
8699 /*
8700  * This is called before wake_up_new_task(), therefore we really only
8701  * have to set its group bits, all the other stuff does not apply.
8702  */
8703 static void cpu_cgroup_fork(struct task_struct *task)
8704 {
8705 	struct rq_flags rf;
8706 	struct rq *rq;
8707 
8708 	rq = task_rq_lock(task, &rf);
8709 
8710 	update_rq_clock(rq);
8711 	sched_change_group(task, TASK_SET_GROUP);
8712 
8713 	task_rq_unlock(rq, task, &rf);
8714 }
8715 
8716 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8717 {
8718 	struct task_struct *task;
8719 	struct cgroup_subsys_state *css;
8720 	int ret = 0;
8721 
8722 	cgroup_taskset_for_each(task, css, tset) {
8723 #ifdef CONFIG_RT_GROUP_SCHED
8724 		if (!sched_rt_can_attach(css_tg(css), task))
8725 			return -EINVAL;
8726 #endif
8727 		/*
8728 		 * Serialize against wake_up_new_task() such that if it's
8729 		 * running, we're sure to observe its full state.
8730 		 */
8731 		raw_spin_lock_irq(&task->pi_lock);
8732 		/*
8733 		 * Avoid calling sched_move_task() before wake_up_new_task()
8734 		 * has happened. This would lead to problems with PELT, due to
8735 		 * move wanting to detach+attach while we're not attached yet.
8736 		 */
8737 		if (task->state == TASK_NEW)
8738 			ret = -EINVAL;
8739 		raw_spin_unlock_irq(&task->pi_lock);
8740 
8741 		if (ret)
8742 			break;
8743 	}
8744 	return ret;
8745 }
8746 
8747 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8748 {
8749 	struct task_struct *task;
8750 	struct cgroup_subsys_state *css;
8751 
8752 	cgroup_taskset_for_each(task, css, tset)
8753 		sched_move_task(task);
8754 }
8755 
8756 #ifdef CONFIG_UCLAMP_TASK_GROUP
8757 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8758 {
8759 	struct cgroup_subsys_state *top_css = css;
8760 	struct uclamp_se *uc_parent = NULL;
8761 	struct uclamp_se *uc_se = NULL;
8762 	unsigned int eff[UCLAMP_CNT];
8763 	enum uclamp_id clamp_id;
8764 	unsigned int clamps;
8765 
8766 	css_for_each_descendant_pre(css, top_css) {
8767 		uc_parent = css_tg(css)->parent
8768 			? css_tg(css)->parent->uclamp : NULL;
8769 
8770 		for_each_clamp_id(clamp_id) {
8771 			/* Assume effective clamps matches requested clamps */
8772 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8773 			/* Cap effective clamps with parent's effective clamps */
8774 			if (uc_parent &&
8775 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8776 				eff[clamp_id] = uc_parent[clamp_id].value;
8777 			}
8778 		}
8779 		/* Ensure protection is always capped by limit */
8780 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8781 
8782 		/* Propagate most restrictive effective clamps */
8783 		clamps = 0x0;
8784 		uc_se = css_tg(css)->uclamp;
8785 		for_each_clamp_id(clamp_id) {
8786 			if (eff[clamp_id] == uc_se[clamp_id].value)
8787 				continue;
8788 			uc_se[clamp_id].value = eff[clamp_id];
8789 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8790 			clamps |= (0x1 << clamp_id);
8791 		}
8792 		if (!clamps) {
8793 			css = css_rightmost_descendant(css);
8794 			continue;
8795 		}
8796 
8797 		/* Immediately update descendants RUNNABLE tasks */
8798 		uclamp_update_active_tasks(css, clamps);
8799 	}
8800 }
8801 
8802 /*
8803  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8804  * C expression. Since there is no way to convert a macro argument (N) into a
8805  * character constant, use two levels of macros.
8806  */
8807 #define _POW10(exp) ((unsigned int)1e##exp)
8808 #define POW10(exp) _POW10(exp)
8809 
8810 struct uclamp_request {
8811 #define UCLAMP_PERCENT_SHIFT	2
8812 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8813 	s64 percent;
8814 	u64 util;
8815 	int ret;
8816 };
8817 
8818 static inline struct uclamp_request
8819 capacity_from_percent(char *buf)
8820 {
8821 	struct uclamp_request req = {
8822 		.percent = UCLAMP_PERCENT_SCALE,
8823 		.util = SCHED_CAPACITY_SCALE,
8824 		.ret = 0,
8825 	};
8826 
8827 	buf = strim(buf);
8828 	if (strcmp(buf, "max")) {
8829 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8830 					     &req.percent);
8831 		if (req.ret)
8832 			return req;
8833 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8834 			req.ret = -ERANGE;
8835 			return req;
8836 		}
8837 
8838 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8839 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8840 	}
8841 
8842 	return req;
8843 }
8844 
8845 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8846 				size_t nbytes, loff_t off,
8847 				enum uclamp_id clamp_id)
8848 {
8849 	struct uclamp_request req;
8850 	struct task_group *tg;
8851 
8852 	req = capacity_from_percent(buf);
8853 	if (req.ret)
8854 		return req.ret;
8855 
8856 	static_branch_enable(&sched_uclamp_used);
8857 
8858 	mutex_lock(&uclamp_mutex);
8859 	rcu_read_lock();
8860 
8861 	tg = css_tg(of_css(of));
8862 	if (tg->uclamp_req[clamp_id].value != req.util)
8863 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8864 
8865 	/*
8866 	 * Because of not recoverable conversion rounding we keep track of the
8867 	 * exact requested value
8868 	 */
8869 	tg->uclamp_pct[clamp_id] = req.percent;
8870 
8871 	/* Update effective clamps to track the most restrictive value */
8872 	cpu_util_update_eff(of_css(of));
8873 
8874 	rcu_read_unlock();
8875 	mutex_unlock(&uclamp_mutex);
8876 
8877 	return nbytes;
8878 }
8879 
8880 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8881 				    char *buf, size_t nbytes,
8882 				    loff_t off)
8883 {
8884 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8885 }
8886 
8887 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8888 				    char *buf, size_t nbytes,
8889 				    loff_t off)
8890 {
8891 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8892 }
8893 
8894 static inline void cpu_uclamp_print(struct seq_file *sf,
8895 				    enum uclamp_id clamp_id)
8896 {
8897 	struct task_group *tg;
8898 	u64 util_clamp;
8899 	u64 percent;
8900 	u32 rem;
8901 
8902 	rcu_read_lock();
8903 	tg = css_tg(seq_css(sf));
8904 	util_clamp = tg->uclamp_req[clamp_id].value;
8905 	rcu_read_unlock();
8906 
8907 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8908 		seq_puts(sf, "max\n");
8909 		return;
8910 	}
8911 
8912 	percent = tg->uclamp_pct[clamp_id];
8913 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8914 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8915 }
8916 
8917 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8918 {
8919 	cpu_uclamp_print(sf, UCLAMP_MIN);
8920 	return 0;
8921 }
8922 
8923 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8924 {
8925 	cpu_uclamp_print(sf, UCLAMP_MAX);
8926 	return 0;
8927 }
8928 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8929 
8930 #ifdef CONFIG_FAIR_GROUP_SCHED
8931 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8932 				struct cftype *cftype, u64 shareval)
8933 {
8934 	if (shareval > scale_load_down(ULONG_MAX))
8935 		shareval = MAX_SHARES;
8936 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8937 }
8938 
8939 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8940 			       struct cftype *cft)
8941 {
8942 	struct task_group *tg = css_tg(css);
8943 
8944 	return (u64) scale_load_down(tg->shares);
8945 }
8946 
8947 #ifdef CONFIG_CFS_BANDWIDTH
8948 static DEFINE_MUTEX(cfs_constraints_mutex);
8949 
8950 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8951 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8952 /* More than 203 days if BW_SHIFT equals 20. */
8953 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8954 
8955 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8956 
8957 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8958 {
8959 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8960 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8961 
8962 	if (tg == &root_task_group)
8963 		return -EINVAL;
8964 
8965 	/*
8966 	 * Ensure we have at some amount of bandwidth every period.  This is
8967 	 * to prevent reaching a state of large arrears when throttled via
8968 	 * entity_tick() resulting in prolonged exit starvation.
8969 	 */
8970 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8971 		return -EINVAL;
8972 
8973 	/*
8974 	 * Likewise, bound things on the otherside by preventing insane quota
8975 	 * periods.  This also allows us to normalize in computing quota
8976 	 * feasibility.
8977 	 */
8978 	if (period > max_cfs_quota_period)
8979 		return -EINVAL;
8980 
8981 	/*
8982 	 * Bound quota to defend quota against overflow during bandwidth shift.
8983 	 */
8984 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8985 		return -EINVAL;
8986 
8987 	/*
8988 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8989 	 * unthrottle_offline_cfs_rqs().
8990 	 */
8991 	get_online_cpus();
8992 	mutex_lock(&cfs_constraints_mutex);
8993 	ret = __cfs_schedulable(tg, period, quota);
8994 	if (ret)
8995 		goto out_unlock;
8996 
8997 	runtime_enabled = quota != RUNTIME_INF;
8998 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8999 	/*
9000 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9001 	 * before making related changes, and on->off must occur afterwards
9002 	 */
9003 	if (runtime_enabled && !runtime_was_enabled)
9004 		cfs_bandwidth_usage_inc();
9005 	raw_spin_lock_irq(&cfs_b->lock);
9006 	cfs_b->period = ns_to_ktime(period);
9007 	cfs_b->quota = quota;
9008 
9009 	__refill_cfs_bandwidth_runtime(cfs_b);
9010 
9011 	/* Restart the period timer (if active) to handle new period expiry: */
9012 	if (runtime_enabled)
9013 		start_cfs_bandwidth(cfs_b);
9014 
9015 	raw_spin_unlock_irq(&cfs_b->lock);
9016 
9017 	for_each_online_cpu(i) {
9018 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9019 		struct rq *rq = cfs_rq->rq;
9020 		struct rq_flags rf;
9021 
9022 		rq_lock_irq(rq, &rf);
9023 		cfs_rq->runtime_enabled = runtime_enabled;
9024 		cfs_rq->runtime_remaining = 0;
9025 
9026 		if (cfs_rq->throttled)
9027 			unthrottle_cfs_rq(cfs_rq);
9028 		rq_unlock_irq(rq, &rf);
9029 	}
9030 	if (runtime_was_enabled && !runtime_enabled)
9031 		cfs_bandwidth_usage_dec();
9032 out_unlock:
9033 	mutex_unlock(&cfs_constraints_mutex);
9034 	put_online_cpus();
9035 
9036 	return ret;
9037 }
9038 
9039 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9040 {
9041 	u64 quota, period;
9042 
9043 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9044 	if (cfs_quota_us < 0)
9045 		quota = RUNTIME_INF;
9046 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9047 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9048 	else
9049 		return -EINVAL;
9050 
9051 	return tg_set_cfs_bandwidth(tg, period, quota);
9052 }
9053 
9054 static long tg_get_cfs_quota(struct task_group *tg)
9055 {
9056 	u64 quota_us;
9057 
9058 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9059 		return -1;
9060 
9061 	quota_us = tg->cfs_bandwidth.quota;
9062 	do_div(quota_us, NSEC_PER_USEC);
9063 
9064 	return quota_us;
9065 }
9066 
9067 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9068 {
9069 	u64 quota, period;
9070 
9071 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9072 		return -EINVAL;
9073 
9074 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9075 	quota = tg->cfs_bandwidth.quota;
9076 
9077 	return tg_set_cfs_bandwidth(tg, period, quota);
9078 }
9079 
9080 static long tg_get_cfs_period(struct task_group *tg)
9081 {
9082 	u64 cfs_period_us;
9083 
9084 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9085 	do_div(cfs_period_us, NSEC_PER_USEC);
9086 
9087 	return cfs_period_us;
9088 }
9089 
9090 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9091 				  struct cftype *cft)
9092 {
9093 	return tg_get_cfs_quota(css_tg(css));
9094 }
9095 
9096 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9097 				   struct cftype *cftype, s64 cfs_quota_us)
9098 {
9099 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9100 }
9101 
9102 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9103 				   struct cftype *cft)
9104 {
9105 	return tg_get_cfs_period(css_tg(css));
9106 }
9107 
9108 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9109 				    struct cftype *cftype, u64 cfs_period_us)
9110 {
9111 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9112 }
9113 
9114 struct cfs_schedulable_data {
9115 	struct task_group *tg;
9116 	u64 period, quota;
9117 };
9118 
9119 /*
9120  * normalize group quota/period to be quota/max_period
9121  * note: units are usecs
9122  */
9123 static u64 normalize_cfs_quota(struct task_group *tg,
9124 			       struct cfs_schedulable_data *d)
9125 {
9126 	u64 quota, period;
9127 
9128 	if (tg == d->tg) {
9129 		period = d->period;
9130 		quota = d->quota;
9131 	} else {
9132 		period = tg_get_cfs_period(tg);
9133 		quota = tg_get_cfs_quota(tg);
9134 	}
9135 
9136 	/* note: these should typically be equivalent */
9137 	if (quota == RUNTIME_INF || quota == -1)
9138 		return RUNTIME_INF;
9139 
9140 	return to_ratio(period, quota);
9141 }
9142 
9143 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9144 {
9145 	struct cfs_schedulable_data *d = data;
9146 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9147 	s64 quota = 0, parent_quota = -1;
9148 
9149 	if (!tg->parent) {
9150 		quota = RUNTIME_INF;
9151 	} else {
9152 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9153 
9154 		quota = normalize_cfs_quota(tg, d);
9155 		parent_quota = parent_b->hierarchical_quota;
9156 
9157 		/*
9158 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9159 		 * always take the min.  On cgroup1, only inherit when no
9160 		 * limit is set:
9161 		 */
9162 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9163 			quota = min(quota, parent_quota);
9164 		} else {
9165 			if (quota == RUNTIME_INF)
9166 				quota = parent_quota;
9167 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9168 				return -EINVAL;
9169 		}
9170 	}
9171 	cfs_b->hierarchical_quota = quota;
9172 
9173 	return 0;
9174 }
9175 
9176 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9177 {
9178 	int ret;
9179 	struct cfs_schedulable_data data = {
9180 		.tg = tg,
9181 		.period = period,
9182 		.quota = quota,
9183 	};
9184 
9185 	if (quota != RUNTIME_INF) {
9186 		do_div(data.period, NSEC_PER_USEC);
9187 		do_div(data.quota, NSEC_PER_USEC);
9188 	}
9189 
9190 	rcu_read_lock();
9191 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9192 	rcu_read_unlock();
9193 
9194 	return ret;
9195 }
9196 
9197 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9198 {
9199 	struct task_group *tg = css_tg(seq_css(sf));
9200 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9201 
9202 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9203 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9204 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9205 
9206 	if (schedstat_enabled() && tg != &root_task_group) {
9207 		u64 ws = 0;
9208 		int i;
9209 
9210 		for_each_possible_cpu(i)
9211 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9212 
9213 		seq_printf(sf, "wait_sum %llu\n", ws);
9214 	}
9215 
9216 	return 0;
9217 }
9218 #endif /* CONFIG_CFS_BANDWIDTH */
9219 #endif /* CONFIG_FAIR_GROUP_SCHED */
9220 
9221 #ifdef CONFIG_RT_GROUP_SCHED
9222 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9223 				struct cftype *cft, s64 val)
9224 {
9225 	return sched_group_set_rt_runtime(css_tg(css), val);
9226 }
9227 
9228 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9229 			       struct cftype *cft)
9230 {
9231 	return sched_group_rt_runtime(css_tg(css));
9232 }
9233 
9234 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9235 				    struct cftype *cftype, u64 rt_period_us)
9236 {
9237 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9238 }
9239 
9240 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9241 				   struct cftype *cft)
9242 {
9243 	return sched_group_rt_period(css_tg(css));
9244 }
9245 #endif /* CONFIG_RT_GROUP_SCHED */
9246 
9247 static struct cftype cpu_legacy_files[] = {
9248 #ifdef CONFIG_FAIR_GROUP_SCHED
9249 	{
9250 		.name = "shares",
9251 		.read_u64 = cpu_shares_read_u64,
9252 		.write_u64 = cpu_shares_write_u64,
9253 	},
9254 #endif
9255 #ifdef CONFIG_CFS_BANDWIDTH
9256 	{
9257 		.name = "cfs_quota_us",
9258 		.read_s64 = cpu_cfs_quota_read_s64,
9259 		.write_s64 = cpu_cfs_quota_write_s64,
9260 	},
9261 	{
9262 		.name = "cfs_period_us",
9263 		.read_u64 = cpu_cfs_period_read_u64,
9264 		.write_u64 = cpu_cfs_period_write_u64,
9265 	},
9266 	{
9267 		.name = "stat",
9268 		.seq_show = cpu_cfs_stat_show,
9269 	},
9270 #endif
9271 #ifdef CONFIG_RT_GROUP_SCHED
9272 	{
9273 		.name = "rt_runtime_us",
9274 		.read_s64 = cpu_rt_runtime_read,
9275 		.write_s64 = cpu_rt_runtime_write,
9276 	},
9277 	{
9278 		.name = "rt_period_us",
9279 		.read_u64 = cpu_rt_period_read_uint,
9280 		.write_u64 = cpu_rt_period_write_uint,
9281 	},
9282 #endif
9283 #ifdef CONFIG_UCLAMP_TASK_GROUP
9284 	{
9285 		.name = "uclamp.min",
9286 		.flags = CFTYPE_NOT_ON_ROOT,
9287 		.seq_show = cpu_uclamp_min_show,
9288 		.write = cpu_uclamp_min_write,
9289 	},
9290 	{
9291 		.name = "uclamp.max",
9292 		.flags = CFTYPE_NOT_ON_ROOT,
9293 		.seq_show = cpu_uclamp_max_show,
9294 		.write = cpu_uclamp_max_write,
9295 	},
9296 #endif
9297 	{ }	/* Terminate */
9298 };
9299 
9300 static int cpu_extra_stat_show(struct seq_file *sf,
9301 			       struct cgroup_subsys_state *css)
9302 {
9303 #ifdef CONFIG_CFS_BANDWIDTH
9304 	{
9305 		struct task_group *tg = css_tg(css);
9306 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9307 		u64 throttled_usec;
9308 
9309 		throttled_usec = cfs_b->throttled_time;
9310 		do_div(throttled_usec, NSEC_PER_USEC);
9311 
9312 		seq_printf(sf, "nr_periods %d\n"
9313 			   "nr_throttled %d\n"
9314 			   "throttled_usec %llu\n",
9315 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9316 			   throttled_usec);
9317 	}
9318 #endif
9319 	return 0;
9320 }
9321 
9322 #ifdef CONFIG_FAIR_GROUP_SCHED
9323 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9324 			       struct cftype *cft)
9325 {
9326 	struct task_group *tg = css_tg(css);
9327 	u64 weight = scale_load_down(tg->shares);
9328 
9329 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9330 }
9331 
9332 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9333 				struct cftype *cft, u64 weight)
9334 {
9335 	/*
9336 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9337 	 * values which are 1, 100 and 10000 respectively.  While it loses
9338 	 * a bit of range on both ends, it maps pretty well onto the shares
9339 	 * value used by scheduler and the round-trip conversions preserve
9340 	 * the original value over the entire range.
9341 	 */
9342 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9343 		return -ERANGE;
9344 
9345 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9346 
9347 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9348 }
9349 
9350 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9351 				    struct cftype *cft)
9352 {
9353 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9354 	int last_delta = INT_MAX;
9355 	int prio, delta;
9356 
9357 	/* find the closest nice value to the current weight */
9358 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9359 		delta = abs(sched_prio_to_weight[prio] - weight);
9360 		if (delta >= last_delta)
9361 			break;
9362 		last_delta = delta;
9363 	}
9364 
9365 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9366 }
9367 
9368 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9369 				     struct cftype *cft, s64 nice)
9370 {
9371 	unsigned long weight;
9372 	int idx;
9373 
9374 	if (nice < MIN_NICE || nice > MAX_NICE)
9375 		return -ERANGE;
9376 
9377 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9378 	idx = array_index_nospec(idx, 40);
9379 	weight = sched_prio_to_weight[idx];
9380 
9381 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9382 }
9383 #endif
9384 
9385 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9386 						  long period, long quota)
9387 {
9388 	if (quota < 0)
9389 		seq_puts(sf, "max");
9390 	else
9391 		seq_printf(sf, "%ld", quota);
9392 
9393 	seq_printf(sf, " %ld\n", period);
9394 }
9395 
9396 /* caller should put the current value in *@periodp before calling */
9397 static int __maybe_unused cpu_period_quota_parse(char *buf,
9398 						 u64 *periodp, u64 *quotap)
9399 {
9400 	char tok[21];	/* U64_MAX */
9401 
9402 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9403 		return -EINVAL;
9404 
9405 	*periodp *= NSEC_PER_USEC;
9406 
9407 	if (sscanf(tok, "%llu", quotap))
9408 		*quotap *= NSEC_PER_USEC;
9409 	else if (!strcmp(tok, "max"))
9410 		*quotap = RUNTIME_INF;
9411 	else
9412 		return -EINVAL;
9413 
9414 	return 0;
9415 }
9416 
9417 #ifdef CONFIG_CFS_BANDWIDTH
9418 static int cpu_max_show(struct seq_file *sf, void *v)
9419 {
9420 	struct task_group *tg = css_tg(seq_css(sf));
9421 
9422 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9423 	return 0;
9424 }
9425 
9426 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9427 			     char *buf, size_t nbytes, loff_t off)
9428 {
9429 	struct task_group *tg = css_tg(of_css(of));
9430 	u64 period = tg_get_cfs_period(tg);
9431 	u64 quota;
9432 	int ret;
9433 
9434 	ret = cpu_period_quota_parse(buf, &period, &quota);
9435 	if (!ret)
9436 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9437 	return ret ?: nbytes;
9438 }
9439 #endif
9440 
9441 static struct cftype cpu_files[] = {
9442 #ifdef CONFIG_FAIR_GROUP_SCHED
9443 	{
9444 		.name = "weight",
9445 		.flags = CFTYPE_NOT_ON_ROOT,
9446 		.read_u64 = cpu_weight_read_u64,
9447 		.write_u64 = cpu_weight_write_u64,
9448 	},
9449 	{
9450 		.name = "weight.nice",
9451 		.flags = CFTYPE_NOT_ON_ROOT,
9452 		.read_s64 = cpu_weight_nice_read_s64,
9453 		.write_s64 = cpu_weight_nice_write_s64,
9454 	},
9455 #endif
9456 #ifdef CONFIG_CFS_BANDWIDTH
9457 	{
9458 		.name = "max",
9459 		.flags = CFTYPE_NOT_ON_ROOT,
9460 		.seq_show = cpu_max_show,
9461 		.write = cpu_max_write,
9462 	},
9463 #endif
9464 #ifdef CONFIG_UCLAMP_TASK_GROUP
9465 	{
9466 		.name = "uclamp.min",
9467 		.flags = CFTYPE_NOT_ON_ROOT,
9468 		.seq_show = cpu_uclamp_min_show,
9469 		.write = cpu_uclamp_min_write,
9470 	},
9471 	{
9472 		.name = "uclamp.max",
9473 		.flags = CFTYPE_NOT_ON_ROOT,
9474 		.seq_show = cpu_uclamp_max_show,
9475 		.write = cpu_uclamp_max_write,
9476 	},
9477 #endif
9478 	{ }	/* terminate */
9479 };
9480 
9481 struct cgroup_subsys cpu_cgrp_subsys = {
9482 	.css_alloc	= cpu_cgroup_css_alloc,
9483 	.css_online	= cpu_cgroup_css_online,
9484 	.css_released	= cpu_cgroup_css_released,
9485 	.css_free	= cpu_cgroup_css_free,
9486 	.css_extra_stat_show = cpu_extra_stat_show,
9487 	.fork		= cpu_cgroup_fork,
9488 	.can_attach	= cpu_cgroup_can_attach,
9489 	.attach		= cpu_cgroup_attach,
9490 	.legacy_cftypes	= cpu_legacy_files,
9491 	.dfl_cftypes	= cpu_files,
9492 	.early_init	= true,
9493 	.threaded	= true,
9494 };
9495 
9496 #endif	/* CONFIG_CGROUP_SCHED */
9497 
9498 void dump_cpu_task(int cpu)
9499 {
9500 	pr_info("Task dump for CPU %d:\n", cpu);
9501 	sched_show_task(cpu_curr(cpu));
9502 }
9503 
9504 /*
9505  * Nice levels are multiplicative, with a gentle 10% change for every
9506  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9507  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9508  * that remained on nice 0.
9509  *
9510  * The "10% effect" is relative and cumulative: from _any_ nice level,
9511  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9512  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9513  * If a task goes up by ~10% and another task goes down by ~10% then
9514  * the relative distance between them is ~25%.)
9515  */
9516 const int sched_prio_to_weight[40] = {
9517  /* -20 */     88761,     71755,     56483,     46273,     36291,
9518  /* -15 */     29154,     23254,     18705,     14949,     11916,
9519  /* -10 */      9548,      7620,      6100,      4904,      3906,
9520  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9521  /*   0 */      1024,       820,       655,       526,       423,
9522  /*   5 */       335,       272,       215,       172,       137,
9523  /*  10 */       110,        87,        70,        56,        45,
9524  /*  15 */        36,        29,        23,        18,        15,
9525 };
9526 
9527 /*
9528  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9529  *
9530  * In cases where the weight does not change often, we can use the
9531  * precalculated inverse to speed up arithmetics by turning divisions
9532  * into multiplications:
9533  */
9534 const u32 sched_prio_to_wmult[40] = {
9535  /* -20 */     48388,     59856,     76040,     92818,    118348,
9536  /* -15 */    147320,    184698,    229616,    287308,    360437,
9537  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9538  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9539  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9540  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9541  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9542  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9543 };
9544 
9545 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9546 {
9547         trace_sched_update_nr_running_tp(rq, count);
9548 }
9549