1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most eligible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 #ifdef CONFIG_SCHED_HRTICK 324 /* 325 * Use HR-timers to deliver accurate preemption points. 326 */ 327 328 static void hrtick_clear(struct rq *rq) 329 { 330 if (hrtimer_active(&rq->hrtick_timer)) 331 hrtimer_cancel(&rq->hrtick_timer); 332 } 333 334 /* 335 * High-resolution timer tick. 336 * Runs from hardirq context with interrupts disabled. 337 */ 338 static enum hrtimer_restart hrtick(struct hrtimer *timer) 339 { 340 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 341 struct rq_flags rf; 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 rq_lock(rq, &rf); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 rq_unlock(rq, &rf); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static void __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = rq->hrtick_time; 359 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 struct rq_flags rf; 370 371 rq_lock(rq, &rf); 372 __hrtick_restart(rq); 373 rq_unlock(rq, &rf); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 s64 delta; 385 386 /* 387 * Don't schedule slices shorter than 10000ns, that just 388 * doesn't make sense and can cause timer DoS. 389 */ 390 delta = max_t(s64, delay, 10000LL); 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 392 393 if (rq == this_rq()) 394 __hrtick_restart(rq); 395 else 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 397 } 398 399 #else 400 /* 401 * Called to set the hrtick timer state. 402 * 403 * called with rq->lock held and irqs disabled 404 */ 405 void hrtick_start(struct rq *rq, u64 delay) 406 { 407 /* 408 * Don't schedule slices shorter than 10000ns, that just 409 * doesn't make sense. Rely on vruntime for fairness. 410 */ 411 delay = max_t(u64, delay, 10000LL); 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 413 HRTIMER_MODE_REL_PINNED_HARD); 414 } 415 416 #endif /* CONFIG_SMP */ 417 418 static void hrtick_rq_init(struct rq *rq) 419 { 420 #ifdef CONFIG_SMP 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 422 #endif 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 424 rq->hrtick_timer.function = hrtick; 425 } 426 #else /* CONFIG_SCHED_HRTICK */ 427 static inline void hrtick_clear(struct rq *rq) 428 { 429 } 430 431 static inline void hrtick_rq_init(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SCHED_HRTICK */ 435 436 /* 437 * cmpxchg based fetch_or, macro so it works for different integer types 438 */ 439 #define fetch_or(ptr, mask) \ 440 ({ \ 441 typeof(ptr) _ptr = (ptr); \ 442 typeof(mask) _mask = (mask); \ 443 typeof(*_ptr) _old, _val = *_ptr; \ 444 \ 445 for (;;) { \ 446 _old = cmpxchg(_ptr, _val, _val | _mask); \ 447 if (_old == _val) \ 448 break; \ 449 _val = _old; \ 450 } \ 451 _old; \ 452 }) 453 454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 455 /* 456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 457 * this avoids any races wrt polling state changes and thereby avoids 458 * spurious IPIs. 459 */ 460 static bool set_nr_and_not_polling(struct task_struct *p) 461 { 462 struct thread_info *ti = task_thread_info(p); 463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 464 } 465 466 /* 467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 468 * 469 * If this returns true, then the idle task promises to call 470 * sched_ttwu_pending() and reschedule soon. 471 */ 472 static bool set_nr_if_polling(struct task_struct *p) 473 { 474 struct thread_info *ti = task_thread_info(p); 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 476 477 for (;;) { 478 if (!(val & _TIF_POLLING_NRFLAG)) 479 return false; 480 if (val & _TIF_NEED_RESCHED) 481 return true; 482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 483 if (old == val) 484 break; 485 val = old; 486 } 487 return true; 488 } 489 490 #else 491 static bool set_nr_and_not_polling(struct task_struct *p) 492 { 493 set_tsk_need_resched(p); 494 return true; 495 } 496 497 #ifdef CONFIG_SMP 498 static bool set_nr_if_polling(struct task_struct *p) 499 { 500 return false; 501 } 502 #endif 503 #endif 504 505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 506 { 507 struct wake_q_node *node = &task->wake_q; 508 509 /* 510 * Atomically grab the task, if ->wake_q is !nil already it means 511 * it's already queued (either by us or someone else) and will get the 512 * wakeup due to that. 513 * 514 * In order to ensure that a pending wakeup will observe our pending 515 * state, even in the failed case, an explicit smp_mb() must be used. 516 */ 517 smp_mb__before_atomic(); 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 519 return false; 520 521 /* 522 * The head is context local, there can be no concurrency. 523 */ 524 *head->lastp = node; 525 head->lastp = &node->next; 526 return true; 527 } 528 529 /** 530 * wake_q_add() - queue a wakeup for 'later' waking. 531 * @head: the wake_q_head to add @task to 532 * @task: the task to queue for 'later' wakeup 533 * 534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 536 * instantly. 537 * 538 * This function must be used as-if it were wake_up_process(); IOW the task 539 * must be ready to be woken at this location. 540 */ 541 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 542 { 543 if (__wake_q_add(head, task)) 544 get_task_struct(task); 545 } 546 547 /** 548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 549 * @head: the wake_q_head to add @task to 550 * @task: the task to queue for 'later' wakeup 551 * 552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 554 * instantly. 555 * 556 * This function must be used as-if it were wake_up_process(); IOW the task 557 * must be ready to be woken at this location. 558 * 559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 560 * that already hold reference to @task can call the 'safe' version and trust 561 * wake_q to do the right thing depending whether or not the @task is already 562 * queued for wakeup. 563 */ 564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 565 { 566 if (!__wake_q_add(head, task)) 567 put_task_struct(task); 568 } 569 570 void wake_up_q(struct wake_q_head *head) 571 { 572 struct wake_q_node *node = head->first; 573 574 while (node != WAKE_Q_TAIL) { 575 struct task_struct *task; 576 577 task = container_of(node, struct task_struct, wake_q); 578 BUG_ON(!task); 579 /* Task can safely be re-inserted now: */ 580 node = node->next; 581 task->wake_q.next = NULL; 582 583 /* 584 * wake_up_process() executes a full barrier, which pairs with 585 * the queueing in wake_q_add() so as not to miss wakeups. 586 */ 587 wake_up_process(task); 588 put_task_struct(task); 589 } 590 } 591 592 /* 593 * resched_curr - mark rq's current task 'to be rescheduled now'. 594 * 595 * On UP this means the setting of the need_resched flag, on SMP it 596 * might also involve a cross-CPU call to trigger the scheduler on 597 * the target CPU. 598 */ 599 void resched_curr(struct rq *rq) 600 { 601 struct task_struct *curr = rq->curr; 602 int cpu; 603 604 lockdep_assert_held(&rq->lock); 605 606 if (test_tsk_need_resched(curr)) 607 return; 608 609 cpu = cpu_of(rq); 610 611 if (cpu == smp_processor_id()) { 612 set_tsk_need_resched(curr); 613 set_preempt_need_resched(); 614 return; 615 } 616 617 if (set_nr_and_not_polling(curr)) 618 smp_send_reschedule(cpu); 619 else 620 trace_sched_wake_idle_without_ipi(cpu); 621 } 622 623 void resched_cpu(int cpu) 624 { 625 struct rq *rq = cpu_rq(cpu); 626 unsigned long flags; 627 628 raw_spin_lock_irqsave(&rq->lock, flags); 629 if (cpu_online(cpu) || cpu == smp_processor_id()) 630 resched_curr(rq); 631 raw_spin_unlock_irqrestore(&rq->lock, flags); 632 } 633 634 #ifdef CONFIG_SMP 635 #ifdef CONFIG_NO_HZ_COMMON 636 /* 637 * In the semi idle case, use the nearest busy CPU for migrating timers 638 * from an idle CPU. This is good for power-savings. 639 * 640 * We don't do similar optimization for completely idle system, as 641 * selecting an idle CPU will add more delays to the timers than intended 642 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 643 */ 644 int get_nohz_timer_target(void) 645 { 646 int i, cpu = smp_processor_id(), default_cpu = -1; 647 struct sched_domain *sd; 648 649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 650 if (!idle_cpu(cpu)) 651 return cpu; 652 default_cpu = cpu; 653 } 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu_and(i, sched_domain_span(sd), 658 housekeeping_cpumask(HK_FLAG_TIMER)) { 659 if (cpu == i) 660 continue; 661 662 if (!idle_cpu(i)) { 663 cpu = i; 664 goto unlock; 665 } 666 } 667 } 668 669 if (default_cpu == -1) 670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 671 cpu = default_cpu; 672 unlock: 673 rcu_read_unlock(); 674 return cpu; 675 } 676 677 /* 678 * When add_timer_on() enqueues a timer into the timer wheel of an 679 * idle CPU then this timer might expire before the next timer event 680 * which is scheduled to wake up that CPU. In case of a completely 681 * idle system the next event might even be infinite time into the 682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 683 * leaves the inner idle loop so the newly added timer is taken into 684 * account when the CPU goes back to idle and evaluates the timer 685 * wheel for the next timer event. 686 */ 687 static void wake_up_idle_cpu(int cpu) 688 { 689 struct rq *rq = cpu_rq(cpu); 690 691 if (cpu == smp_processor_id()) 692 return; 693 694 if (set_nr_and_not_polling(rq->idle)) 695 smp_send_reschedule(cpu); 696 else 697 trace_sched_wake_idle_without_ipi(cpu); 698 } 699 700 static bool wake_up_full_nohz_cpu(int cpu) 701 { 702 /* 703 * We just need the target to call irq_exit() and re-evaluate 704 * the next tick. The nohz full kick at least implies that. 705 * If needed we can still optimize that later with an 706 * empty IRQ. 707 */ 708 if (cpu_is_offline(cpu)) 709 return true; /* Don't try to wake offline CPUs. */ 710 if (tick_nohz_full_cpu(cpu)) { 711 if (cpu != smp_processor_id() || 712 tick_nohz_tick_stopped()) 713 tick_nohz_full_kick_cpu(cpu); 714 return true; 715 } 716 717 return false; 718 } 719 720 /* 721 * Wake up the specified CPU. If the CPU is going offline, it is the 722 * caller's responsibility to deal with the lost wakeup, for example, 723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 724 */ 725 void wake_up_nohz_cpu(int cpu) 726 { 727 if (!wake_up_full_nohz_cpu(cpu)) 728 wake_up_idle_cpu(cpu); 729 } 730 731 static void nohz_csd_func(void *info) 732 { 733 struct rq *rq = info; 734 int cpu = cpu_of(rq); 735 unsigned int flags; 736 737 /* 738 * Release the rq::nohz_csd. 739 */ 740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 741 WARN_ON(!(flags & NOHZ_KICK_MASK)); 742 743 rq->idle_balance = idle_cpu(cpu); 744 if (rq->idle_balance && !need_resched()) { 745 rq->nohz_idle_balance = flags; 746 raise_softirq_irqoff(SCHED_SOFTIRQ); 747 } 748 } 749 750 #endif /* CONFIG_NO_HZ_COMMON */ 751 752 #ifdef CONFIG_NO_HZ_FULL 753 bool sched_can_stop_tick(struct rq *rq) 754 { 755 int fifo_nr_running; 756 757 /* Deadline tasks, even if single, need the tick */ 758 if (rq->dl.dl_nr_running) 759 return false; 760 761 /* 762 * If there are more than one RR tasks, we need the tick to affect the 763 * actual RR behaviour. 764 */ 765 if (rq->rt.rr_nr_running) { 766 if (rq->rt.rr_nr_running == 1) 767 return true; 768 else 769 return false; 770 } 771 772 /* 773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 774 * forced preemption between FIFO tasks. 775 */ 776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 777 if (fifo_nr_running) 778 return true; 779 780 /* 781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 782 * if there's more than one we need the tick for involuntary 783 * preemption. 784 */ 785 if (rq->nr_running > 1) 786 return false; 787 788 return true; 789 } 790 #endif /* CONFIG_NO_HZ_FULL */ 791 #endif /* CONFIG_SMP */ 792 793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 795 /* 796 * Iterate task_group tree rooted at *from, calling @down when first entering a 797 * node and @up when leaving it for the final time. 798 * 799 * Caller must hold rcu_lock or sufficient equivalent. 800 */ 801 int walk_tg_tree_from(struct task_group *from, 802 tg_visitor down, tg_visitor up, void *data) 803 { 804 struct task_group *parent, *child; 805 int ret; 806 807 parent = from; 808 809 down: 810 ret = (*down)(parent, data); 811 if (ret) 812 goto out; 813 list_for_each_entry_rcu(child, &parent->children, siblings) { 814 parent = child; 815 goto down; 816 817 up: 818 continue; 819 } 820 ret = (*up)(parent, data); 821 if (ret || parent == from) 822 goto out; 823 824 child = parent; 825 parent = parent->parent; 826 if (parent) 827 goto up; 828 out: 829 return ret; 830 } 831 832 int tg_nop(struct task_group *tg, void *data) 833 { 834 return 0; 835 } 836 #endif 837 838 static void set_load_weight(struct task_struct *p, bool update_load) 839 { 840 int prio = p->static_prio - MAX_RT_PRIO; 841 struct load_weight *load = &p->se.load; 842 843 /* 844 * SCHED_IDLE tasks get minimal weight: 845 */ 846 if (task_has_idle_policy(p)) { 847 load->weight = scale_load(WEIGHT_IDLEPRIO); 848 load->inv_weight = WMULT_IDLEPRIO; 849 return; 850 } 851 852 /* 853 * SCHED_OTHER tasks have to update their load when changing their 854 * weight 855 */ 856 if (update_load && p->sched_class == &fair_sched_class) { 857 reweight_task(p, prio); 858 } else { 859 load->weight = scale_load(sched_prio_to_weight[prio]); 860 load->inv_weight = sched_prio_to_wmult[prio]; 861 } 862 } 863 864 #ifdef CONFIG_UCLAMP_TASK 865 /* 866 * Serializes updates of utilization clamp values 867 * 868 * The (slow-path) user-space triggers utilization clamp value updates which 869 * can require updates on (fast-path) scheduler's data structures used to 870 * support enqueue/dequeue operations. 871 * While the per-CPU rq lock protects fast-path update operations, user-space 872 * requests are serialized using a mutex to reduce the risk of conflicting 873 * updates or API abuses. 874 */ 875 static DEFINE_MUTEX(uclamp_mutex); 876 877 /* Max allowed minimum utilization */ 878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 879 880 /* Max allowed maximum utilization */ 881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 882 883 /* 884 * By default RT tasks run at the maximum performance point/capacity of the 885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 886 * SCHED_CAPACITY_SCALE. 887 * 888 * This knob allows admins to change the default behavior when uclamp is being 889 * used. In battery powered devices, particularly, running at the maximum 890 * capacity and frequency will increase energy consumption and shorten the 891 * battery life. 892 * 893 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 894 * 895 * This knob will not override the system default sched_util_clamp_min defined 896 * above. 897 */ 898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 899 900 /* All clamps are required to be less or equal than these values */ 901 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 902 903 /* 904 * This static key is used to reduce the uclamp overhead in the fast path. It 905 * primarily disables the call to uclamp_rq_{inc, dec}() in 906 * enqueue/dequeue_task(). 907 * 908 * This allows users to continue to enable uclamp in their kernel config with 909 * minimum uclamp overhead in the fast path. 910 * 911 * As soon as userspace modifies any of the uclamp knobs, the static key is 912 * enabled, since we have an actual users that make use of uclamp 913 * functionality. 914 * 915 * The knobs that would enable this static key are: 916 * 917 * * A task modifying its uclamp value with sched_setattr(). 918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 919 * * An admin modifying the cgroup cpu.uclamp.{min, max} 920 */ 921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 922 923 /* Integer rounded range for each bucket */ 924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 925 926 #define for_each_clamp_id(clamp_id) \ 927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 928 929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 930 { 931 return clamp_value / UCLAMP_BUCKET_DELTA; 932 } 933 934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 935 { 936 if (clamp_id == UCLAMP_MIN) 937 return 0; 938 return SCHED_CAPACITY_SCALE; 939 } 940 941 static inline void uclamp_se_set(struct uclamp_se *uc_se, 942 unsigned int value, bool user_defined) 943 { 944 uc_se->value = value; 945 uc_se->bucket_id = uclamp_bucket_id(value); 946 uc_se->user_defined = user_defined; 947 } 948 949 static inline unsigned int 950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 951 unsigned int clamp_value) 952 { 953 /* 954 * Avoid blocked utilization pushing up the frequency when we go 955 * idle (which drops the max-clamp) by retaining the last known 956 * max-clamp. 957 */ 958 if (clamp_id == UCLAMP_MAX) { 959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 960 return clamp_value; 961 } 962 963 return uclamp_none(UCLAMP_MIN); 964 } 965 966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 967 unsigned int clamp_value) 968 { 969 /* Reset max-clamp retention only on idle exit */ 970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 971 return; 972 973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 974 } 975 976 static inline 977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 978 unsigned int clamp_value) 979 { 980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 981 int bucket_id = UCLAMP_BUCKETS - 1; 982 983 /* 984 * Since both min and max clamps are max aggregated, find the 985 * top most bucket with tasks in. 986 */ 987 for ( ; bucket_id >= 0; bucket_id--) { 988 if (!bucket[bucket_id].tasks) 989 continue; 990 return bucket[bucket_id].value; 991 } 992 993 /* No tasks -- default clamp values */ 994 return uclamp_idle_value(rq, clamp_id, clamp_value); 995 } 996 997 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 998 { 999 unsigned int default_util_min; 1000 struct uclamp_se *uc_se; 1001 1002 lockdep_assert_held(&p->pi_lock); 1003 1004 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1005 1006 /* Only sync if user didn't override the default */ 1007 if (uc_se->user_defined) 1008 return; 1009 1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1011 uclamp_se_set(uc_se, default_util_min, false); 1012 } 1013 1014 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1015 { 1016 struct rq_flags rf; 1017 struct rq *rq; 1018 1019 if (!rt_task(p)) 1020 return; 1021 1022 /* Protect updates to p->uclamp_* */ 1023 rq = task_rq_lock(p, &rf); 1024 __uclamp_update_util_min_rt_default(p); 1025 task_rq_unlock(rq, p, &rf); 1026 } 1027 1028 static void uclamp_sync_util_min_rt_default(void) 1029 { 1030 struct task_struct *g, *p; 1031 1032 /* 1033 * copy_process() sysctl_uclamp 1034 * uclamp_min_rt = X; 1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1036 * // link thread smp_mb__after_spinlock() 1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1038 * sched_post_fork() for_each_process_thread() 1039 * __uclamp_sync_rt() __uclamp_sync_rt() 1040 * 1041 * Ensures that either sched_post_fork() will observe the new 1042 * uclamp_min_rt or for_each_process_thread() will observe the new 1043 * task. 1044 */ 1045 read_lock(&tasklist_lock); 1046 smp_mb__after_spinlock(); 1047 read_unlock(&tasklist_lock); 1048 1049 rcu_read_lock(); 1050 for_each_process_thread(g, p) 1051 uclamp_update_util_min_rt_default(p); 1052 rcu_read_unlock(); 1053 } 1054 1055 static inline struct uclamp_se 1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1057 { 1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1059 #ifdef CONFIG_UCLAMP_TASK_GROUP 1060 struct uclamp_se uc_max; 1061 1062 /* 1063 * Tasks in autogroups or root task group will be 1064 * restricted by system defaults. 1065 */ 1066 if (task_group_is_autogroup(task_group(p))) 1067 return uc_req; 1068 if (task_group(p) == &root_task_group) 1069 return uc_req; 1070 1071 uc_max = task_group(p)->uclamp[clamp_id]; 1072 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1073 return uc_max; 1074 #endif 1075 1076 return uc_req; 1077 } 1078 1079 /* 1080 * The effective clamp bucket index of a task depends on, by increasing 1081 * priority: 1082 * - the task specific clamp value, when explicitly requested from userspace 1083 * - the task group effective clamp value, for tasks not either in the root 1084 * group or in an autogroup 1085 * - the system default clamp value, defined by the sysadmin 1086 */ 1087 static inline struct uclamp_se 1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1089 { 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1091 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1092 1093 /* System default restrictions always apply */ 1094 if (unlikely(uc_req.value > uc_max.value)) 1095 return uc_max; 1096 1097 return uc_req; 1098 } 1099 1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1101 { 1102 struct uclamp_se uc_eff; 1103 1104 /* Task currently refcounted: use back-annotated (effective) value */ 1105 if (p->uclamp[clamp_id].active) 1106 return (unsigned long)p->uclamp[clamp_id].value; 1107 1108 uc_eff = uclamp_eff_get(p, clamp_id); 1109 1110 return (unsigned long)uc_eff.value; 1111 } 1112 1113 /* 1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1116 * updates the rq's clamp value if required. 1117 * 1118 * Tasks can have a task-specific value requested from user-space, track 1119 * within each bucket the maximum value for tasks refcounted in it. 1120 * This "local max aggregation" allows to track the exact "requested" value 1121 * for each bucket when all its RUNNABLE tasks require the same clamp. 1122 */ 1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1124 enum uclamp_id clamp_id) 1125 { 1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1128 struct uclamp_bucket *bucket; 1129 1130 lockdep_assert_held(&rq->lock); 1131 1132 /* Update task effective clamp */ 1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1134 1135 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1136 bucket->tasks++; 1137 uc_se->active = true; 1138 1139 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1140 1141 /* 1142 * Local max aggregation: rq buckets always track the max 1143 * "requested" clamp value of its RUNNABLE tasks. 1144 */ 1145 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1146 bucket->value = uc_se->value; 1147 1148 if (uc_se->value > READ_ONCE(uc_rq->value)) 1149 WRITE_ONCE(uc_rq->value, uc_se->value); 1150 } 1151 1152 /* 1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1154 * is released. If this is the last task reference counting the rq's max 1155 * active clamp value, then the rq's clamp value is updated. 1156 * 1157 * Both refcounted tasks and rq's cached clamp values are expected to be 1158 * always valid. If it's detected they are not, as defensive programming, 1159 * enforce the expected state and warn. 1160 */ 1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1162 enum uclamp_id clamp_id) 1163 { 1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1166 struct uclamp_bucket *bucket; 1167 unsigned int bkt_clamp; 1168 unsigned int rq_clamp; 1169 1170 lockdep_assert_held(&rq->lock); 1171 1172 /* 1173 * If sched_uclamp_used was enabled after task @p was enqueued, 1174 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1175 * 1176 * In this case the uc_se->active flag should be false since no uclamp 1177 * accounting was performed at enqueue time and we can just return 1178 * here. 1179 * 1180 * Need to be careful of the following enqueue/dequeue ordering 1181 * problem too 1182 * 1183 * enqueue(taskA) 1184 * // sched_uclamp_used gets enabled 1185 * enqueue(taskB) 1186 * dequeue(taskA) 1187 * // Must not decrement bucket->tasks here 1188 * dequeue(taskB) 1189 * 1190 * where we could end up with stale data in uc_se and 1191 * bucket[uc_se->bucket_id]. 1192 * 1193 * The following check here eliminates the possibility of such race. 1194 */ 1195 if (unlikely(!uc_se->active)) 1196 return; 1197 1198 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1199 1200 SCHED_WARN_ON(!bucket->tasks); 1201 if (likely(bucket->tasks)) 1202 bucket->tasks--; 1203 1204 uc_se->active = false; 1205 1206 /* 1207 * Keep "local max aggregation" simple and accept to (possibly) 1208 * overboost some RUNNABLE tasks in the same bucket. 1209 * The rq clamp bucket value is reset to its base value whenever 1210 * there are no more RUNNABLE tasks refcounting it. 1211 */ 1212 if (likely(bucket->tasks)) 1213 return; 1214 1215 rq_clamp = READ_ONCE(uc_rq->value); 1216 /* 1217 * Defensive programming: this should never happen. If it happens, 1218 * e.g. due to future modification, warn and fixup the expected value. 1219 */ 1220 SCHED_WARN_ON(bucket->value > rq_clamp); 1221 if (bucket->value >= rq_clamp) { 1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1223 WRITE_ONCE(uc_rq->value, bkt_clamp); 1224 } 1225 } 1226 1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1228 { 1229 enum uclamp_id clamp_id; 1230 1231 /* 1232 * Avoid any overhead until uclamp is actually used by the userspace. 1233 * 1234 * The condition is constructed such that a NOP is generated when 1235 * sched_uclamp_used is disabled. 1236 */ 1237 if (!static_branch_unlikely(&sched_uclamp_used)) 1238 return; 1239 1240 if (unlikely(!p->sched_class->uclamp_enabled)) 1241 return; 1242 1243 for_each_clamp_id(clamp_id) 1244 uclamp_rq_inc_id(rq, p, clamp_id); 1245 1246 /* Reset clamp idle holding when there is one RUNNABLE task */ 1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1249 } 1250 1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1252 { 1253 enum uclamp_id clamp_id; 1254 1255 /* 1256 * Avoid any overhead until uclamp is actually used by the userspace. 1257 * 1258 * The condition is constructed such that a NOP is generated when 1259 * sched_uclamp_used is disabled. 1260 */ 1261 if (!static_branch_unlikely(&sched_uclamp_used)) 1262 return; 1263 1264 if (unlikely(!p->sched_class->uclamp_enabled)) 1265 return; 1266 1267 for_each_clamp_id(clamp_id) 1268 uclamp_rq_dec_id(rq, p, clamp_id); 1269 } 1270 1271 static inline void 1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1273 { 1274 struct rq_flags rf; 1275 struct rq *rq; 1276 1277 /* 1278 * Lock the task and the rq where the task is (or was) queued. 1279 * 1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1281 * price to pay to safely serialize util_{min,max} updates with 1282 * enqueues, dequeues and migration operations. 1283 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1284 */ 1285 rq = task_rq_lock(p, &rf); 1286 1287 /* 1288 * Setting the clamp bucket is serialized by task_rq_lock(). 1289 * If the task is not yet RUNNABLE and its task_struct is not 1290 * affecting a valid clamp bucket, the next time it's enqueued, 1291 * it will already see the updated clamp bucket value. 1292 */ 1293 if (p->uclamp[clamp_id].active) { 1294 uclamp_rq_dec_id(rq, p, clamp_id); 1295 uclamp_rq_inc_id(rq, p, clamp_id); 1296 } 1297 1298 task_rq_unlock(rq, p, &rf); 1299 } 1300 1301 #ifdef CONFIG_UCLAMP_TASK_GROUP 1302 static inline void 1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1304 unsigned int clamps) 1305 { 1306 enum uclamp_id clamp_id; 1307 struct css_task_iter it; 1308 struct task_struct *p; 1309 1310 css_task_iter_start(css, 0, &it); 1311 while ((p = css_task_iter_next(&it))) { 1312 for_each_clamp_id(clamp_id) { 1313 if ((0x1 << clamp_id) & clamps) 1314 uclamp_update_active(p, clamp_id); 1315 } 1316 } 1317 css_task_iter_end(&it); 1318 } 1319 1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1321 static void uclamp_update_root_tg(void) 1322 { 1323 struct task_group *tg = &root_task_group; 1324 1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1326 sysctl_sched_uclamp_util_min, false); 1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1328 sysctl_sched_uclamp_util_max, false); 1329 1330 rcu_read_lock(); 1331 cpu_util_update_eff(&root_task_group.css); 1332 rcu_read_unlock(); 1333 } 1334 #else 1335 static void uclamp_update_root_tg(void) { } 1336 #endif 1337 1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1339 void *buffer, size_t *lenp, loff_t *ppos) 1340 { 1341 bool update_root_tg = false; 1342 int old_min, old_max, old_min_rt; 1343 int result; 1344 1345 mutex_lock(&uclamp_mutex); 1346 old_min = sysctl_sched_uclamp_util_min; 1347 old_max = sysctl_sched_uclamp_util_max; 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1349 1350 result = proc_dointvec(table, write, buffer, lenp, ppos); 1351 if (result) 1352 goto undo; 1353 if (!write) 1354 goto done; 1355 1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1359 1360 result = -EINVAL; 1361 goto undo; 1362 } 1363 1364 if (old_min != sysctl_sched_uclamp_util_min) { 1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1366 sysctl_sched_uclamp_util_min, false); 1367 update_root_tg = true; 1368 } 1369 if (old_max != sysctl_sched_uclamp_util_max) { 1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1371 sysctl_sched_uclamp_util_max, false); 1372 update_root_tg = true; 1373 } 1374 1375 if (update_root_tg) { 1376 static_branch_enable(&sched_uclamp_used); 1377 uclamp_update_root_tg(); 1378 } 1379 1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1381 static_branch_enable(&sched_uclamp_used); 1382 uclamp_sync_util_min_rt_default(); 1383 } 1384 1385 /* 1386 * We update all RUNNABLE tasks only when task groups are in use. 1387 * Otherwise, keep it simple and do just a lazy update at each next 1388 * task enqueue time. 1389 */ 1390 1391 goto done; 1392 1393 undo: 1394 sysctl_sched_uclamp_util_min = old_min; 1395 sysctl_sched_uclamp_util_max = old_max; 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1397 done: 1398 mutex_unlock(&uclamp_mutex); 1399 1400 return result; 1401 } 1402 1403 static int uclamp_validate(struct task_struct *p, 1404 const struct sched_attr *attr) 1405 { 1406 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1407 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1408 1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1410 util_min = attr->sched_util_min; 1411 1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1413 return -EINVAL; 1414 } 1415 1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1417 util_max = attr->sched_util_max; 1418 1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1420 return -EINVAL; 1421 } 1422 1423 if (util_min != -1 && util_max != -1 && util_min > util_max) 1424 return -EINVAL; 1425 1426 /* 1427 * We have valid uclamp attributes; make sure uclamp is enabled. 1428 * 1429 * We need to do that here, because enabling static branches is a 1430 * blocking operation which obviously cannot be done while holding 1431 * scheduler locks. 1432 */ 1433 static_branch_enable(&sched_uclamp_used); 1434 1435 return 0; 1436 } 1437 1438 static bool uclamp_reset(const struct sched_attr *attr, 1439 enum uclamp_id clamp_id, 1440 struct uclamp_se *uc_se) 1441 { 1442 /* Reset on sched class change for a non user-defined clamp value. */ 1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1444 !uc_se->user_defined) 1445 return true; 1446 1447 /* Reset on sched_util_{min,max} == -1. */ 1448 if (clamp_id == UCLAMP_MIN && 1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1450 attr->sched_util_min == -1) { 1451 return true; 1452 } 1453 1454 if (clamp_id == UCLAMP_MAX && 1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1456 attr->sched_util_max == -1) { 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 static void __setscheduler_uclamp(struct task_struct *p, 1464 const struct sched_attr *attr) 1465 { 1466 enum uclamp_id clamp_id; 1467 1468 for_each_clamp_id(clamp_id) { 1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1470 unsigned int value; 1471 1472 if (!uclamp_reset(attr, clamp_id, uc_se)) 1473 continue; 1474 1475 /* 1476 * RT by default have a 100% boost value that could be modified 1477 * at runtime. 1478 */ 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1480 value = sysctl_sched_uclamp_util_min_rt_default; 1481 else 1482 value = uclamp_none(clamp_id); 1483 1484 uclamp_se_set(uc_se, value, false); 1485 1486 } 1487 1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1489 return; 1490 1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1492 attr->sched_util_min != -1) { 1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1494 attr->sched_util_min, true); 1495 } 1496 1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1498 attr->sched_util_max != -1) { 1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1500 attr->sched_util_max, true); 1501 } 1502 } 1503 1504 static void uclamp_fork(struct task_struct *p) 1505 { 1506 enum uclamp_id clamp_id; 1507 1508 /* 1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1510 * as the task is still at its early fork stages. 1511 */ 1512 for_each_clamp_id(clamp_id) 1513 p->uclamp[clamp_id].active = false; 1514 1515 if (likely(!p->sched_reset_on_fork)) 1516 return; 1517 1518 for_each_clamp_id(clamp_id) { 1519 uclamp_se_set(&p->uclamp_req[clamp_id], 1520 uclamp_none(clamp_id), false); 1521 } 1522 } 1523 1524 static void uclamp_post_fork(struct task_struct *p) 1525 { 1526 uclamp_update_util_min_rt_default(p); 1527 } 1528 1529 static void __init init_uclamp_rq(struct rq *rq) 1530 { 1531 enum uclamp_id clamp_id; 1532 struct uclamp_rq *uc_rq = rq->uclamp; 1533 1534 for_each_clamp_id(clamp_id) { 1535 uc_rq[clamp_id] = (struct uclamp_rq) { 1536 .value = uclamp_none(clamp_id) 1537 }; 1538 } 1539 1540 rq->uclamp_flags = 0; 1541 } 1542 1543 static void __init init_uclamp(void) 1544 { 1545 struct uclamp_se uc_max = {}; 1546 enum uclamp_id clamp_id; 1547 int cpu; 1548 1549 for_each_possible_cpu(cpu) 1550 init_uclamp_rq(cpu_rq(cpu)); 1551 1552 for_each_clamp_id(clamp_id) { 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1554 uclamp_none(clamp_id), false); 1555 } 1556 1557 /* System defaults allow max clamp values for both indexes */ 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1559 for_each_clamp_id(clamp_id) { 1560 uclamp_default[clamp_id] = uc_max; 1561 #ifdef CONFIG_UCLAMP_TASK_GROUP 1562 root_task_group.uclamp_req[clamp_id] = uc_max; 1563 root_task_group.uclamp[clamp_id] = uc_max; 1564 #endif 1565 } 1566 } 1567 1568 #else /* CONFIG_UCLAMP_TASK */ 1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1571 static inline int uclamp_validate(struct task_struct *p, 1572 const struct sched_attr *attr) 1573 { 1574 return -EOPNOTSUPP; 1575 } 1576 static void __setscheduler_uclamp(struct task_struct *p, 1577 const struct sched_attr *attr) { } 1578 static inline void uclamp_fork(struct task_struct *p) { } 1579 static inline void uclamp_post_fork(struct task_struct *p) { } 1580 static inline void init_uclamp(void) { } 1581 #endif /* CONFIG_UCLAMP_TASK */ 1582 1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1584 { 1585 if (!(flags & ENQUEUE_NOCLOCK)) 1586 update_rq_clock(rq); 1587 1588 if (!(flags & ENQUEUE_RESTORE)) { 1589 sched_info_queued(rq, p); 1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1591 } 1592 1593 uclamp_rq_inc(rq, p); 1594 p->sched_class->enqueue_task(rq, p, flags); 1595 } 1596 1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1598 { 1599 if (!(flags & DEQUEUE_NOCLOCK)) 1600 update_rq_clock(rq); 1601 1602 if (!(flags & DEQUEUE_SAVE)) { 1603 sched_info_dequeued(rq, p); 1604 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1605 } 1606 1607 uclamp_rq_dec(rq, p); 1608 p->sched_class->dequeue_task(rq, p, flags); 1609 } 1610 1611 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1612 { 1613 enqueue_task(rq, p, flags); 1614 1615 p->on_rq = TASK_ON_RQ_QUEUED; 1616 } 1617 1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1619 { 1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1621 1622 dequeue_task(rq, p, flags); 1623 } 1624 1625 /* 1626 * __normal_prio - return the priority that is based on the static prio 1627 */ 1628 static inline int __normal_prio(struct task_struct *p) 1629 { 1630 return p->static_prio; 1631 } 1632 1633 /* 1634 * Calculate the expected normal priority: i.e. priority 1635 * without taking RT-inheritance into account. Might be 1636 * boosted by interactivity modifiers. Changes upon fork, 1637 * setprio syscalls, and whenever the interactivity 1638 * estimator recalculates. 1639 */ 1640 static inline int normal_prio(struct task_struct *p) 1641 { 1642 int prio; 1643 1644 if (task_has_dl_policy(p)) 1645 prio = MAX_DL_PRIO-1; 1646 else if (task_has_rt_policy(p)) 1647 prio = MAX_RT_PRIO-1 - p->rt_priority; 1648 else 1649 prio = __normal_prio(p); 1650 return prio; 1651 } 1652 1653 /* 1654 * Calculate the current priority, i.e. the priority 1655 * taken into account by the scheduler. This value might 1656 * be boosted by RT tasks, or might be boosted by 1657 * interactivity modifiers. Will be RT if the task got 1658 * RT-boosted. If not then it returns p->normal_prio. 1659 */ 1660 static int effective_prio(struct task_struct *p) 1661 { 1662 p->normal_prio = normal_prio(p); 1663 /* 1664 * If we are RT tasks or we were boosted to RT priority, 1665 * keep the priority unchanged. Otherwise, update priority 1666 * to the normal priority: 1667 */ 1668 if (!rt_prio(p->prio)) 1669 return p->normal_prio; 1670 return p->prio; 1671 } 1672 1673 /** 1674 * task_curr - is this task currently executing on a CPU? 1675 * @p: the task in question. 1676 * 1677 * Return: 1 if the task is currently executing. 0 otherwise. 1678 */ 1679 inline int task_curr(const struct task_struct *p) 1680 { 1681 return cpu_curr(task_cpu(p)) == p; 1682 } 1683 1684 /* 1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1686 * use the balance_callback list if you want balancing. 1687 * 1688 * this means any call to check_class_changed() must be followed by a call to 1689 * balance_callback(). 1690 */ 1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1692 const struct sched_class *prev_class, 1693 int oldprio) 1694 { 1695 if (prev_class != p->sched_class) { 1696 if (prev_class->switched_from) 1697 prev_class->switched_from(rq, p); 1698 1699 p->sched_class->switched_to(rq, p); 1700 } else if (oldprio != p->prio || dl_task(p)) 1701 p->sched_class->prio_changed(rq, p, oldprio); 1702 } 1703 1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1705 { 1706 if (p->sched_class == rq->curr->sched_class) 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1708 else if (p->sched_class > rq->curr->sched_class) 1709 resched_curr(rq); 1710 1711 /* 1712 * A queue event has occurred, and we're going to schedule. In 1713 * this case, we can save a useless back to back clock update. 1714 */ 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1716 rq_clock_skip_update(rq); 1717 } 1718 1719 #ifdef CONFIG_SMP 1720 1721 static void 1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1723 1724 static int __set_cpus_allowed_ptr(struct task_struct *p, 1725 const struct cpumask *new_mask, 1726 u32 flags); 1727 1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1729 { 1730 if (likely(!p->migration_disabled)) 1731 return; 1732 1733 if (p->cpus_ptr != &p->cpus_mask) 1734 return; 1735 1736 /* 1737 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1738 */ 1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1740 } 1741 1742 void migrate_disable(void) 1743 { 1744 struct task_struct *p = current; 1745 1746 if (p->migration_disabled) { 1747 p->migration_disabled++; 1748 return; 1749 } 1750 1751 preempt_disable(); 1752 this_rq()->nr_pinned++; 1753 p->migration_disabled = 1; 1754 preempt_enable(); 1755 } 1756 EXPORT_SYMBOL_GPL(migrate_disable); 1757 1758 void migrate_enable(void) 1759 { 1760 struct task_struct *p = current; 1761 1762 if (p->migration_disabled > 1) { 1763 p->migration_disabled--; 1764 return; 1765 } 1766 1767 /* 1768 * Ensure stop_task runs either before or after this, and that 1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1770 */ 1771 preempt_disable(); 1772 if (p->cpus_ptr != &p->cpus_mask) 1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1774 /* 1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1776 * regular cpus_mask, otherwise things that race (eg. 1777 * select_fallback_rq) get confused. 1778 */ 1779 barrier(); 1780 p->migration_disabled = 0; 1781 this_rq()->nr_pinned--; 1782 preempt_enable(); 1783 } 1784 EXPORT_SYMBOL_GPL(migrate_enable); 1785 1786 static inline bool rq_has_pinned_tasks(struct rq *rq) 1787 { 1788 return rq->nr_pinned; 1789 } 1790 1791 /* 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1793 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1794 */ 1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1796 { 1797 /* When not in the task's cpumask, no point in looking further. */ 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1799 return false; 1800 1801 /* migrate_disabled() must be allowed to finish. */ 1802 if (is_migration_disabled(p)) 1803 return cpu_online(cpu); 1804 1805 /* Non kernel threads are not allowed during either online or offline. */ 1806 if (!(p->flags & PF_KTHREAD)) 1807 return cpu_active(cpu); 1808 1809 /* KTHREAD_IS_PER_CPU is always allowed. */ 1810 if (kthread_is_per_cpu(p)) 1811 return cpu_online(cpu); 1812 1813 /* Regular kernel threads don't get to stay during offline. */ 1814 if (cpu_rq(cpu)->balance_push) 1815 return false; 1816 1817 /* But are allowed during online. */ 1818 return cpu_online(cpu); 1819 } 1820 1821 /* 1822 * This is how migration works: 1823 * 1824 * 1) we invoke migration_cpu_stop() on the target CPU using 1825 * stop_one_cpu(). 1826 * 2) stopper starts to run (implicitly forcing the migrated thread 1827 * off the CPU) 1828 * 3) it checks whether the migrated task is still in the wrong runqueue. 1829 * 4) if it's in the wrong runqueue then the migration thread removes 1830 * it and puts it into the right queue. 1831 * 5) stopper completes and stop_one_cpu() returns and the migration 1832 * is done. 1833 */ 1834 1835 /* 1836 * move_queued_task - move a queued task to new rq. 1837 * 1838 * Returns (locked) new rq. Old rq's lock is released. 1839 */ 1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1841 struct task_struct *p, int new_cpu) 1842 { 1843 lockdep_assert_held(&rq->lock); 1844 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1846 set_task_cpu(p, new_cpu); 1847 rq_unlock(rq, rf); 1848 1849 rq = cpu_rq(new_cpu); 1850 1851 rq_lock(rq, rf); 1852 BUG_ON(task_cpu(p) != new_cpu); 1853 activate_task(rq, p, 0); 1854 check_preempt_curr(rq, p, 0); 1855 1856 return rq; 1857 } 1858 1859 struct migration_arg { 1860 struct task_struct *task; 1861 int dest_cpu; 1862 struct set_affinity_pending *pending; 1863 }; 1864 1865 struct set_affinity_pending { 1866 refcount_t refs; 1867 struct completion done; 1868 struct cpu_stop_work stop_work; 1869 struct migration_arg arg; 1870 }; 1871 1872 /* 1873 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1874 * this because either it can't run here any more (set_cpus_allowed() 1875 * away from this CPU, or CPU going down), or because we're 1876 * attempting to rebalance this task on exec (sched_exec). 1877 * 1878 * So we race with normal scheduler movements, but that's OK, as long 1879 * as the task is no longer on this CPU. 1880 */ 1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1882 struct task_struct *p, int dest_cpu) 1883 { 1884 /* Affinity changed (again). */ 1885 if (!is_cpu_allowed(p, dest_cpu)) 1886 return rq; 1887 1888 update_rq_clock(rq); 1889 rq = move_queued_task(rq, rf, p, dest_cpu); 1890 1891 return rq; 1892 } 1893 1894 /* 1895 * migration_cpu_stop - this will be executed by a highprio stopper thread 1896 * and performs thread migration by bumping thread off CPU then 1897 * 'pushing' onto another runqueue. 1898 */ 1899 static int migration_cpu_stop(void *data) 1900 { 1901 struct set_affinity_pending *pending; 1902 struct migration_arg *arg = data; 1903 struct task_struct *p = arg->task; 1904 int dest_cpu = arg->dest_cpu; 1905 struct rq *rq = this_rq(); 1906 bool complete = false; 1907 struct rq_flags rf; 1908 1909 /* 1910 * The original target CPU might have gone down and we might 1911 * be on another CPU but it doesn't matter. 1912 */ 1913 local_irq_save(rf.flags); 1914 /* 1915 * We need to explicitly wake pending tasks before running 1916 * __migrate_task() such that we will not miss enforcing cpus_ptr 1917 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1918 */ 1919 flush_smp_call_function_from_idle(); 1920 1921 raw_spin_lock(&p->pi_lock); 1922 rq_lock(rq, &rf); 1923 1924 pending = p->migration_pending; 1925 /* 1926 * If task_rq(p) != rq, it cannot be migrated here, because we're 1927 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1928 * we're holding p->pi_lock. 1929 */ 1930 if (task_rq(p) == rq) { 1931 if (is_migration_disabled(p)) 1932 goto out; 1933 1934 if (pending) { 1935 p->migration_pending = NULL; 1936 complete = true; 1937 } 1938 1939 /* migrate_enable() -- we must not race against SCA */ 1940 if (dest_cpu < 0) { 1941 /* 1942 * When this was migrate_enable() but we no longer 1943 * have a @pending, a concurrent SCA 'fixed' things 1944 * and we should be valid again. Nothing to do. 1945 */ 1946 if (!pending) { 1947 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 1948 goto out; 1949 } 1950 1951 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1952 } 1953 1954 if (task_on_rq_queued(p)) 1955 rq = __migrate_task(rq, &rf, p, dest_cpu); 1956 else 1957 p->wake_cpu = dest_cpu; 1958 1959 } else if (dest_cpu < 0 || pending) { 1960 /* 1961 * This happens when we get migrated between migrate_enable()'s 1962 * preempt_enable() and scheduling the stopper task. At that 1963 * point we're a regular task again and not current anymore. 1964 * 1965 * A !PREEMPT kernel has a giant hole here, which makes it far 1966 * more likely. 1967 */ 1968 1969 /* 1970 * The task moved before the stopper got to run. We're holding 1971 * ->pi_lock, so the allowed mask is stable - if it got 1972 * somewhere allowed, we're done. 1973 */ 1974 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1975 p->migration_pending = NULL; 1976 complete = true; 1977 goto out; 1978 } 1979 1980 /* 1981 * When this was migrate_enable() but we no longer have an 1982 * @pending, a concurrent SCA 'fixed' things and we should be 1983 * valid again. Nothing to do. 1984 */ 1985 if (!pending) { 1986 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 1987 goto out; 1988 } 1989 1990 /* 1991 * When migrate_enable() hits a rq mis-match we can't reliably 1992 * determine is_migration_disabled() and so have to chase after 1993 * it. 1994 */ 1995 task_rq_unlock(rq, p, &rf); 1996 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 1997 &pending->arg, &pending->stop_work); 1998 return 0; 1999 } 2000 out: 2001 task_rq_unlock(rq, p, &rf); 2002 2003 if (complete) 2004 complete_all(&pending->done); 2005 2006 /* For pending->{arg,stop_work} */ 2007 pending = arg->pending; 2008 if (pending && refcount_dec_and_test(&pending->refs)) 2009 wake_up_var(&pending->refs); 2010 2011 return 0; 2012 } 2013 2014 int push_cpu_stop(void *arg) 2015 { 2016 struct rq *lowest_rq = NULL, *rq = this_rq(); 2017 struct task_struct *p = arg; 2018 2019 raw_spin_lock_irq(&p->pi_lock); 2020 raw_spin_lock(&rq->lock); 2021 2022 if (task_rq(p) != rq) 2023 goto out_unlock; 2024 2025 if (is_migration_disabled(p)) { 2026 p->migration_flags |= MDF_PUSH; 2027 goto out_unlock; 2028 } 2029 2030 p->migration_flags &= ~MDF_PUSH; 2031 2032 if (p->sched_class->find_lock_rq) 2033 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2034 2035 if (!lowest_rq) 2036 goto out_unlock; 2037 2038 // XXX validate p is still the highest prio task 2039 if (task_rq(p) == rq) { 2040 deactivate_task(rq, p, 0); 2041 set_task_cpu(p, lowest_rq->cpu); 2042 activate_task(lowest_rq, p, 0); 2043 resched_curr(lowest_rq); 2044 } 2045 2046 double_unlock_balance(rq, lowest_rq); 2047 2048 out_unlock: 2049 rq->push_busy = false; 2050 raw_spin_unlock(&rq->lock); 2051 raw_spin_unlock_irq(&p->pi_lock); 2052 2053 put_task_struct(p); 2054 return 0; 2055 } 2056 2057 /* 2058 * sched_class::set_cpus_allowed must do the below, but is not required to 2059 * actually call this function. 2060 */ 2061 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2062 { 2063 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2064 p->cpus_ptr = new_mask; 2065 return; 2066 } 2067 2068 cpumask_copy(&p->cpus_mask, new_mask); 2069 p->nr_cpus_allowed = cpumask_weight(new_mask); 2070 } 2071 2072 static void 2073 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2074 { 2075 struct rq *rq = task_rq(p); 2076 bool queued, running; 2077 2078 /* 2079 * This here violates the locking rules for affinity, since we're only 2080 * supposed to change these variables while holding both rq->lock and 2081 * p->pi_lock. 2082 * 2083 * HOWEVER, it magically works, because ttwu() is the only code that 2084 * accesses these variables under p->pi_lock and only does so after 2085 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2086 * before finish_task(). 2087 * 2088 * XXX do further audits, this smells like something putrid. 2089 */ 2090 if (flags & SCA_MIGRATE_DISABLE) 2091 SCHED_WARN_ON(!p->on_cpu); 2092 else 2093 lockdep_assert_held(&p->pi_lock); 2094 2095 queued = task_on_rq_queued(p); 2096 running = task_current(rq, p); 2097 2098 if (queued) { 2099 /* 2100 * Because __kthread_bind() calls this on blocked tasks without 2101 * holding rq->lock. 2102 */ 2103 lockdep_assert_held(&rq->lock); 2104 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2105 } 2106 if (running) 2107 put_prev_task(rq, p); 2108 2109 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2110 2111 if (queued) 2112 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2113 if (running) 2114 set_next_task(rq, p); 2115 } 2116 2117 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2118 { 2119 __do_set_cpus_allowed(p, new_mask, 0); 2120 } 2121 2122 /* 2123 * This function is wildly self concurrent; here be dragons. 2124 * 2125 * 2126 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2127 * designated task is enqueued on an allowed CPU. If that task is currently 2128 * running, we have to kick it out using the CPU stopper. 2129 * 2130 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2131 * Consider: 2132 * 2133 * Initial conditions: P0->cpus_mask = [0, 1] 2134 * 2135 * P0@CPU0 P1 2136 * 2137 * migrate_disable(); 2138 * <preempted> 2139 * set_cpus_allowed_ptr(P0, [1]); 2140 * 2141 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2142 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2143 * This means we need the following scheme: 2144 * 2145 * P0@CPU0 P1 2146 * 2147 * migrate_disable(); 2148 * <preempted> 2149 * set_cpus_allowed_ptr(P0, [1]); 2150 * <blocks> 2151 * <resumes> 2152 * migrate_enable(); 2153 * __set_cpus_allowed_ptr(); 2154 * <wakes local stopper> 2155 * `--> <woken on migration completion> 2156 * 2157 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2158 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2159 * task p are serialized by p->pi_lock, which we can leverage: the one that 2160 * should come into effect at the end of the Migrate-Disable region is the last 2161 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2162 * but we still need to properly signal those waiting tasks at the appropriate 2163 * moment. 2164 * 2165 * This is implemented using struct set_affinity_pending. The first 2166 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2167 * setup an instance of that struct and install it on the targeted task_struct. 2168 * Any and all further callers will reuse that instance. Those then wait for 2169 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2170 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2171 * 2172 * 2173 * (1) In the cases covered above. There is one more where the completion is 2174 * signaled within affine_move_task() itself: when a subsequent affinity request 2175 * cancels the need for an active migration. Consider: 2176 * 2177 * Initial conditions: P0->cpus_mask = [0, 1] 2178 * 2179 * P0@CPU0 P1 P2 2180 * 2181 * migrate_disable(); 2182 * <preempted> 2183 * set_cpus_allowed_ptr(P0, [1]); 2184 * <blocks> 2185 * set_cpus_allowed_ptr(P0, [0, 1]); 2186 * <signal completion> 2187 * <awakes> 2188 * 2189 * Note that the above is safe vs a concurrent migrate_enable(), as any 2190 * pending affinity completion is preceded by an uninstallation of 2191 * p->migration_pending done with p->pi_lock held. 2192 */ 2193 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2194 int dest_cpu, unsigned int flags) 2195 { 2196 struct set_affinity_pending my_pending = { }, *pending = NULL; 2197 struct migration_arg arg = { 2198 .task = p, 2199 .dest_cpu = dest_cpu, 2200 }; 2201 bool complete = false; 2202 2203 /* Can the task run on the task's current CPU? If so, we're done */ 2204 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2205 struct task_struct *push_task = NULL; 2206 2207 if ((flags & SCA_MIGRATE_ENABLE) && 2208 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2209 rq->push_busy = true; 2210 push_task = get_task_struct(p); 2211 } 2212 2213 pending = p->migration_pending; 2214 if (pending) { 2215 refcount_inc(&pending->refs); 2216 p->migration_pending = NULL; 2217 complete = true; 2218 } 2219 task_rq_unlock(rq, p, rf); 2220 2221 if (push_task) { 2222 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2223 p, &rq->push_work); 2224 } 2225 2226 if (complete) 2227 goto do_complete; 2228 2229 return 0; 2230 } 2231 2232 if (!(flags & SCA_MIGRATE_ENABLE)) { 2233 /* serialized by p->pi_lock */ 2234 if (!p->migration_pending) { 2235 /* Install the request */ 2236 refcount_set(&my_pending.refs, 1); 2237 init_completion(&my_pending.done); 2238 p->migration_pending = &my_pending; 2239 } else { 2240 pending = p->migration_pending; 2241 refcount_inc(&pending->refs); 2242 } 2243 } 2244 pending = p->migration_pending; 2245 /* 2246 * - !MIGRATE_ENABLE: 2247 * we'll have installed a pending if there wasn't one already. 2248 * 2249 * - MIGRATE_ENABLE: 2250 * we're here because the current CPU isn't matching anymore, 2251 * the only way that can happen is because of a concurrent 2252 * set_cpus_allowed_ptr() call, which should then still be 2253 * pending completion. 2254 * 2255 * Either way, we really should have a @pending here. 2256 */ 2257 if (WARN_ON_ONCE(!pending)) { 2258 task_rq_unlock(rq, p, rf); 2259 return -EINVAL; 2260 } 2261 2262 if (flags & SCA_MIGRATE_ENABLE) { 2263 2264 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */ 2265 p->migration_flags &= ~MDF_PUSH; 2266 task_rq_unlock(rq, p, rf); 2267 2268 pending->arg = (struct migration_arg) { 2269 .task = p, 2270 .dest_cpu = -1, 2271 .pending = pending, 2272 }; 2273 2274 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2275 &pending->arg, &pending->stop_work); 2276 2277 return 0; 2278 } 2279 2280 if (task_running(rq, p) || p->state == TASK_WAKING) { 2281 /* 2282 * Lessen races (and headaches) by delegating 2283 * is_migration_disabled(p) checks to the stopper, which will 2284 * run on the same CPU as said p. 2285 */ 2286 task_rq_unlock(rq, p, rf); 2287 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 2288 2289 } else { 2290 2291 if (!is_migration_disabled(p)) { 2292 if (task_on_rq_queued(p)) 2293 rq = move_queued_task(rq, rf, p, dest_cpu); 2294 2295 p->migration_pending = NULL; 2296 complete = true; 2297 } 2298 task_rq_unlock(rq, p, rf); 2299 2300 do_complete: 2301 if (complete) 2302 complete_all(&pending->done); 2303 } 2304 2305 wait_for_completion(&pending->done); 2306 2307 if (refcount_dec_and_test(&pending->refs)) 2308 wake_up_var(&pending->refs); 2309 2310 /* 2311 * Block the original owner of &pending until all subsequent callers 2312 * have seen the completion and decremented the refcount 2313 */ 2314 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2315 2316 return 0; 2317 } 2318 2319 /* 2320 * Change a given task's CPU affinity. Migrate the thread to a 2321 * proper CPU and schedule it away if the CPU it's executing on 2322 * is removed from the allowed bitmask. 2323 * 2324 * NOTE: the caller must have a valid reference to the task, the 2325 * task must not exit() & deallocate itself prematurely. The 2326 * call is not atomic; no spinlocks may be held. 2327 */ 2328 static int __set_cpus_allowed_ptr(struct task_struct *p, 2329 const struct cpumask *new_mask, 2330 u32 flags) 2331 { 2332 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2333 unsigned int dest_cpu; 2334 struct rq_flags rf; 2335 struct rq *rq; 2336 int ret = 0; 2337 2338 rq = task_rq_lock(p, &rf); 2339 update_rq_clock(rq); 2340 2341 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2342 /* 2343 * Kernel threads are allowed on online && !active CPUs, 2344 * however, during cpu-hot-unplug, even these might get pushed 2345 * away if not KTHREAD_IS_PER_CPU. 2346 * 2347 * Specifically, migration_disabled() tasks must not fail the 2348 * cpumask_any_and_distribute() pick below, esp. so on 2349 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2350 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2351 */ 2352 cpu_valid_mask = cpu_online_mask; 2353 } 2354 2355 /* 2356 * Must re-check here, to close a race against __kthread_bind(), 2357 * sched_setaffinity() is not guaranteed to observe the flag. 2358 */ 2359 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2360 ret = -EINVAL; 2361 goto out; 2362 } 2363 2364 if (!(flags & SCA_MIGRATE_ENABLE)) { 2365 if (cpumask_equal(&p->cpus_mask, new_mask)) 2366 goto out; 2367 2368 if (WARN_ON_ONCE(p == current && 2369 is_migration_disabled(p) && 2370 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2371 ret = -EBUSY; 2372 goto out; 2373 } 2374 } 2375 2376 /* 2377 * Picking a ~random cpu helps in cases where we are changing affinity 2378 * for groups of tasks (ie. cpuset), so that load balancing is not 2379 * immediately required to distribute the tasks within their new mask. 2380 */ 2381 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2382 if (dest_cpu >= nr_cpu_ids) { 2383 ret = -EINVAL; 2384 goto out; 2385 } 2386 2387 __do_set_cpus_allowed(p, new_mask, flags); 2388 2389 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2390 2391 out: 2392 task_rq_unlock(rq, p, &rf); 2393 2394 return ret; 2395 } 2396 2397 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2398 { 2399 return __set_cpus_allowed_ptr(p, new_mask, 0); 2400 } 2401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2402 2403 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2404 { 2405 #ifdef CONFIG_SCHED_DEBUG 2406 /* 2407 * We should never call set_task_cpu() on a blocked task, 2408 * ttwu() will sort out the placement. 2409 */ 2410 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2411 !p->on_rq); 2412 2413 /* 2414 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2415 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2416 * time relying on p->on_rq. 2417 */ 2418 WARN_ON_ONCE(p->state == TASK_RUNNING && 2419 p->sched_class == &fair_sched_class && 2420 (p->on_rq && !task_on_rq_migrating(p))); 2421 2422 #ifdef CONFIG_LOCKDEP 2423 /* 2424 * The caller should hold either p->pi_lock or rq->lock, when changing 2425 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2426 * 2427 * sched_move_task() holds both and thus holding either pins the cgroup, 2428 * see task_group(). 2429 * 2430 * Furthermore, all task_rq users should acquire both locks, see 2431 * task_rq_lock(). 2432 */ 2433 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2434 lockdep_is_held(&task_rq(p)->lock))); 2435 #endif 2436 /* 2437 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2438 */ 2439 WARN_ON_ONCE(!cpu_online(new_cpu)); 2440 2441 WARN_ON_ONCE(is_migration_disabled(p)); 2442 #endif 2443 2444 trace_sched_migrate_task(p, new_cpu); 2445 2446 if (task_cpu(p) != new_cpu) { 2447 if (p->sched_class->migrate_task_rq) 2448 p->sched_class->migrate_task_rq(p, new_cpu); 2449 p->se.nr_migrations++; 2450 rseq_migrate(p); 2451 perf_event_task_migrate(p); 2452 } 2453 2454 __set_task_cpu(p, new_cpu); 2455 } 2456 2457 #ifdef CONFIG_NUMA_BALANCING 2458 static void __migrate_swap_task(struct task_struct *p, int cpu) 2459 { 2460 if (task_on_rq_queued(p)) { 2461 struct rq *src_rq, *dst_rq; 2462 struct rq_flags srf, drf; 2463 2464 src_rq = task_rq(p); 2465 dst_rq = cpu_rq(cpu); 2466 2467 rq_pin_lock(src_rq, &srf); 2468 rq_pin_lock(dst_rq, &drf); 2469 2470 deactivate_task(src_rq, p, 0); 2471 set_task_cpu(p, cpu); 2472 activate_task(dst_rq, p, 0); 2473 check_preempt_curr(dst_rq, p, 0); 2474 2475 rq_unpin_lock(dst_rq, &drf); 2476 rq_unpin_lock(src_rq, &srf); 2477 2478 } else { 2479 /* 2480 * Task isn't running anymore; make it appear like we migrated 2481 * it before it went to sleep. This means on wakeup we make the 2482 * previous CPU our target instead of where it really is. 2483 */ 2484 p->wake_cpu = cpu; 2485 } 2486 } 2487 2488 struct migration_swap_arg { 2489 struct task_struct *src_task, *dst_task; 2490 int src_cpu, dst_cpu; 2491 }; 2492 2493 static int migrate_swap_stop(void *data) 2494 { 2495 struct migration_swap_arg *arg = data; 2496 struct rq *src_rq, *dst_rq; 2497 int ret = -EAGAIN; 2498 2499 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2500 return -EAGAIN; 2501 2502 src_rq = cpu_rq(arg->src_cpu); 2503 dst_rq = cpu_rq(arg->dst_cpu); 2504 2505 double_raw_lock(&arg->src_task->pi_lock, 2506 &arg->dst_task->pi_lock); 2507 double_rq_lock(src_rq, dst_rq); 2508 2509 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2510 goto unlock; 2511 2512 if (task_cpu(arg->src_task) != arg->src_cpu) 2513 goto unlock; 2514 2515 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2516 goto unlock; 2517 2518 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2519 goto unlock; 2520 2521 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2522 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2523 2524 ret = 0; 2525 2526 unlock: 2527 double_rq_unlock(src_rq, dst_rq); 2528 raw_spin_unlock(&arg->dst_task->pi_lock); 2529 raw_spin_unlock(&arg->src_task->pi_lock); 2530 2531 return ret; 2532 } 2533 2534 /* 2535 * Cross migrate two tasks 2536 */ 2537 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2538 int target_cpu, int curr_cpu) 2539 { 2540 struct migration_swap_arg arg; 2541 int ret = -EINVAL; 2542 2543 arg = (struct migration_swap_arg){ 2544 .src_task = cur, 2545 .src_cpu = curr_cpu, 2546 .dst_task = p, 2547 .dst_cpu = target_cpu, 2548 }; 2549 2550 if (arg.src_cpu == arg.dst_cpu) 2551 goto out; 2552 2553 /* 2554 * These three tests are all lockless; this is OK since all of them 2555 * will be re-checked with proper locks held further down the line. 2556 */ 2557 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2558 goto out; 2559 2560 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2561 goto out; 2562 2563 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2564 goto out; 2565 2566 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2567 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2568 2569 out: 2570 return ret; 2571 } 2572 #endif /* CONFIG_NUMA_BALANCING */ 2573 2574 /* 2575 * wait_task_inactive - wait for a thread to unschedule. 2576 * 2577 * If @match_state is nonzero, it's the @p->state value just checked and 2578 * not expected to change. If it changes, i.e. @p might have woken up, 2579 * then return zero. When we succeed in waiting for @p to be off its CPU, 2580 * we return a positive number (its total switch count). If a second call 2581 * a short while later returns the same number, the caller can be sure that 2582 * @p has remained unscheduled the whole time. 2583 * 2584 * The caller must ensure that the task *will* unschedule sometime soon, 2585 * else this function might spin for a *long* time. This function can't 2586 * be called with interrupts off, or it may introduce deadlock with 2587 * smp_call_function() if an IPI is sent by the same process we are 2588 * waiting to become inactive. 2589 */ 2590 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2591 { 2592 int running, queued; 2593 struct rq_flags rf; 2594 unsigned long ncsw; 2595 struct rq *rq; 2596 2597 for (;;) { 2598 /* 2599 * We do the initial early heuristics without holding 2600 * any task-queue locks at all. We'll only try to get 2601 * the runqueue lock when things look like they will 2602 * work out! 2603 */ 2604 rq = task_rq(p); 2605 2606 /* 2607 * If the task is actively running on another CPU 2608 * still, just relax and busy-wait without holding 2609 * any locks. 2610 * 2611 * NOTE! Since we don't hold any locks, it's not 2612 * even sure that "rq" stays as the right runqueue! 2613 * But we don't care, since "task_running()" will 2614 * return false if the runqueue has changed and p 2615 * is actually now running somewhere else! 2616 */ 2617 while (task_running(rq, p)) { 2618 if (match_state && unlikely(p->state != match_state)) 2619 return 0; 2620 cpu_relax(); 2621 } 2622 2623 /* 2624 * Ok, time to look more closely! We need the rq 2625 * lock now, to be *sure*. If we're wrong, we'll 2626 * just go back and repeat. 2627 */ 2628 rq = task_rq_lock(p, &rf); 2629 trace_sched_wait_task(p); 2630 running = task_running(rq, p); 2631 queued = task_on_rq_queued(p); 2632 ncsw = 0; 2633 if (!match_state || p->state == match_state) 2634 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2635 task_rq_unlock(rq, p, &rf); 2636 2637 /* 2638 * If it changed from the expected state, bail out now. 2639 */ 2640 if (unlikely(!ncsw)) 2641 break; 2642 2643 /* 2644 * Was it really running after all now that we 2645 * checked with the proper locks actually held? 2646 * 2647 * Oops. Go back and try again.. 2648 */ 2649 if (unlikely(running)) { 2650 cpu_relax(); 2651 continue; 2652 } 2653 2654 /* 2655 * It's not enough that it's not actively running, 2656 * it must be off the runqueue _entirely_, and not 2657 * preempted! 2658 * 2659 * So if it was still runnable (but just not actively 2660 * running right now), it's preempted, and we should 2661 * yield - it could be a while. 2662 */ 2663 if (unlikely(queued)) { 2664 ktime_t to = NSEC_PER_SEC / HZ; 2665 2666 set_current_state(TASK_UNINTERRUPTIBLE); 2667 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2668 continue; 2669 } 2670 2671 /* 2672 * Ahh, all good. It wasn't running, and it wasn't 2673 * runnable, which means that it will never become 2674 * running in the future either. We're all done! 2675 */ 2676 break; 2677 } 2678 2679 return ncsw; 2680 } 2681 2682 /*** 2683 * kick_process - kick a running thread to enter/exit the kernel 2684 * @p: the to-be-kicked thread 2685 * 2686 * Cause a process which is running on another CPU to enter 2687 * kernel-mode, without any delay. (to get signals handled.) 2688 * 2689 * NOTE: this function doesn't have to take the runqueue lock, 2690 * because all it wants to ensure is that the remote task enters 2691 * the kernel. If the IPI races and the task has been migrated 2692 * to another CPU then no harm is done and the purpose has been 2693 * achieved as well. 2694 */ 2695 void kick_process(struct task_struct *p) 2696 { 2697 int cpu; 2698 2699 preempt_disable(); 2700 cpu = task_cpu(p); 2701 if ((cpu != smp_processor_id()) && task_curr(p)) 2702 smp_send_reschedule(cpu); 2703 preempt_enable(); 2704 } 2705 EXPORT_SYMBOL_GPL(kick_process); 2706 2707 /* 2708 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2709 * 2710 * A few notes on cpu_active vs cpu_online: 2711 * 2712 * - cpu_active must be a subset of cpu_online 2713 * 2714 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2715 * see __set_cpus_allowed_ptr(). At this point the newly online 2716 * CPU isn't yet part of the sched domains, and balancing will not 2717 * see it. 2718 * 2719 * - on CPU-down we clear cpu_active() to mask the sched domains and 2720 * avoid the load balancer to place new tasks on the to be removed 2721 * CPU. Existing tasks will remain running there and will be taken 2722 * off. 2723 * 2724 * This means that fallback selection must not select !active CPUs. 2725 * And can assume that any active CPU must be online. Conversely 2726 * select_task_rq() below may allow selection of !active CPUs in order 2727 * to satisfy the above rules. 2728 */ 2729 static int select_fallback_rq(int cpu, struct task_struct *p) 2730 { 2731 int nid = cpu_to_node(cpu); 2732 const struct cpumask *nodemask = NULL; 2733 enum { cpuset, possible, fail } state = cpuset; 2734 int dest_cpu; 2735 2736 /* 2737 * If the node that the CPU is on has been offlined, cpu_to_node() 2738 * will return -1. There is no CPU on the node, and we should 2739 * select the CPU on the other node. 2740 */ 2741 if (nid != -1) { 2742 nodemask = cpumask_of_node(nid); 2743 2744 /* Look for allowed, online CPU in same node. */ 2745 for_each_cpu(dest_cpu, nodemask) { 2746 if (!cpu_active(dest_cpu)) 2747 continue; 2748 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2749 return dest_cpu; 2750 } 2751 } 2752 2753 for (;;) { 2754 /* Any allowed, online CPU? */ 2755 for_each_cpu(dest_cpu, p->cpus_ptr) { 2756 if (!is_cpu_allowed(p, dest_cpu)) 2757 continue; 2758 2759 goto out; 2760 } 2761 2762 /* No more Mr. Nice Guy. */ 2763 switch (state) { 2764 case cpuset: 2765 if (IS_ENABLED(CONFIG_CPUSETS)) { 2766 cpuset_cpus_allowed_fallback(p); 2767 state = possible; 2768 break; 2769 } 2770 fallthrough; 2771 case possible: 2772 /* 2773 * XXX When called from select_task_rq() we only 2774 * hold p->pi_lock and again violate locking order. 2775 * 2776 * More yuck to audit. 2777 */ 2778 do_set_cpus_allowed(p, cpu_possible_mask); 2779 state = fail; 2780 break; 2781 2782 case fail: 2783 BUG(); 2784 break; 2785 } 2786 } 2787 2788 out: 2789 if (state != cpuset) { 2790 /* 2791 * Don't tell them about moving exiting tasks or 2792 * kernel threads (both mm NULL), since they never 2793 * leave kernel. 2794 */ 2795 if (p->mm && printk_ratelimit()) { 2796 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2797 task_pid_nr(p), p->comm, cpu); 2798 } 2799 } 2800 2801 return dest_cpu; 2802 } 2803 2804 /* 2805 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2806 */ 2807 static inline 2808 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2809 { 2810 lockdep_assert_held(&p->pi_lock); 2811 2812 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2813 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2814 else 2815 cpu = cpumask_any(p->cpus_ptr); 2816 2817 /* 2818 * In order not to call set_task_cpu() on a blocking task we need 2819 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2820 * CPU. 2821 * 2822 * Since this is common to all placement strategies, this lives here. 2823 * 2824 * [ this allows ->select_task() to simply return task_cpu(p) and 2825 * not worry about this generic constraint ] 2826 */ 2827 if (unlikely(!is_cpu_allowed(p, cpu))) 2828 cpu = select_fallback_rq(task_cpu(p), p); 2829 2830 return cpu; 2831 } 2832 2833 void sched_set_stop_task(int cpu, struct task_struct *stop) 2834 { 2835 static struct lock_class_key stop_pi_lock; 2836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2837 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2838 2839 if (stop) { 2840 /* 2841 * Make it appear like a SCHED_FIFO task, its something 2842 * userspace knows about and won't get confused about. 2843 * 2844 * Also, it will make PI more or less work without too 2845 * much confusion -- but then, stop work should not 2846 * rely on PI working anyway. 2847 */ 2848 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2849 2850 stop->sched_class = &stop_sched_class; 2851 2852 /* 2853 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2854 * adjust the effective priority of a task. As a result, 2855 * rt_mutex_setprio() can trigger (RT) balancing operations, 2856 * which can then trigger wakeups of the stop thread to push 2857 * around the current task. 2858 * 2859 * The stop task itself will never be part of the PI-chain, it 2860 * never blocks, therefore that ->pi_lock recursion is safe. 2861 * Tell lockdep about this by placing the stop->pi_lock in its 2862 * own class. 2863 */ 2864 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2865 } 2866 2867 cpu_rq(cpu)->stop = stop; 2868 2869 if (old_stop) { 2870 /* 2871 * Reset it back to a normal scheduling class so that 2872 * it can die in pieces. 2873 */ 2874 old_stop->sched_class = &rt_sched_class; 2875 } 2876 } 2877 2878 #else /* CONFIG_SMP */ 2879 2880 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2881 const struct cpumask *new_mask, 2882 u32 flags) 2883 { 2884 return set_cpus_allowed_ptr(p, new_mask); 2885 } 2886 2887 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2888 2889 static inline bool rq_has_pinned_tasks(struct rq *rq) 2890 { 2891 return false; 2892 } 2893 2894 #endif /* !CONFIG_SMP */ 2895 2896 static void 2897 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2898 { 2899 struct rq *rq; 2900 2901 if (!schedstat_enabled()) 2902 return; 2903 2904 rq = this_rq(); 2905 2906 #ifdef CONFIG_SMP 2907 if (cpu == rq->cpu) { 2908 __schedstat_inc(rq->ttwu_local); 2909 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2910 } else { 2911 struct sched_domain *sd; 2912 2913 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2914 rcu_read_lock(); 2915 for_each_domain(rq->cpu, sd) { 2916 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2917 __schedstat_inc(sd->ttwu_wake_remote); 2918 break; 2919 } 2920 } 2921 rcu_read_unlock(); 2922 } 2923 2924 if (wake_flags & WF_MIGRATED) 2925 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2926 #endif /* CONFIG_SMP */ 2927 2928 __schedstat_inc(rq->ttwu_count); 2929 __schedstat_inc(p->se.statistics.nr_wakeups); 2930 2931 if (wake_flags & WF_SYNC) 2932 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2933 } 2934 2935 /* 2936 * Mark the task runnable and perform wakeup-preemption. 2937 */ 2938 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2939 struct rq_flags *rf) 2940 { 2941 check_preempt_curr(rq, p, wake_flags); 2942 p->state = TASK_RUNNING; 2943 trace_sched_wakeup(p); 2944 2945 #ifdef CONFIG_SMP 2946 if (p->sched_class->task_woken) { 2947 /* 2948 * Our task @p is fully woken up and running; so it's safe to 2949 * drop the rq->lock, hereafter rq is only used for statistics. 2950 */ 2951 rq_unpin_lock(rq, rf); 2952 p->sched_class->task_woken(rq, p); 2953 rq_repin_lock(rq, rf); 2954 } 2955 2956 if (rq->idle_stamp) { 2957 u64 delta = rq_clock(rq) - rq->idle_stamp; 2958 u64 max = 2*rq->max_idle_balance_cost; 2959 2960 update_avg(&rq->avg_idle, delta); 2961 2962 if (rq->avg_idle > max) 2963 rq->avg_idle = max; 2964 2965 rq->idle_stamp = 0; 2966 } 2967 #endif 2968 } 2969 2970 static void 2971 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2972 struct rq_flags *rf) 2973 { 2974 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2975 2976 lockdep_assert_held(&rq->lock); 2977 2978 if (p->sched_contributes_to_load) 2979 rq->nr_uninterruptible--; 2980 2981 #ifdef CONFIG_SMP 2982 if (wake_flags & WF_MIGRATED) 2983 en_flags |= ENQUEUE_MIGRATED; 2984 else 2985 #endif 2986 if (p->in_iowait) { 2987 delayacct_blkio_end(p); 2988 atomic_dec(&task_rq(p)->nr_iowait); 2989 } 2990 2991 activate_task(rq, p, en_flags); 2992 ttwu_do_wakeup(rq, p, wake_flags, rf); 2993 } 2994 2995 /* 2996 * Consider @p being inside a wait loop: 2997 * 2998 * for (;;) { 2999 * set_current_state(TASK_UNINTERRUPTIBLE); 3000 * 3001 * if (CONDITION) 3002 * break; 3003 * 3004 * schedule(); 3005 * } 3006 * __set_current_state(TASK_RUNNING); 3007 * 3008 * between set_current_state() and schedule(). In this case @p is still 3009 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3010 * an atomic manner. 3011 * 3012 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3013 * then schedule() must still happen and p->state can be changed to 3014 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3015 * need to do a full wakeup with enqueue. 3016 * 3017 * Returns: %true when the wakeup is done, 3018 * %false otherwise. 3019 */ 3020 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3021 { 3022 struct rq_flags rf; 3023 struct rq *rq; 3024 int ret = 0; 3025 3026 rq = __task_rq_lock(p, &rf); 3027 if (task_on_rq_queued(p)) { 3028 /* check_preempt_curr() may use rq clock */ 3029 update_rq_clock(rq); 3030 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3031 ret = 1; 3032 } 3033 __task_rq_unlock(rq, &rf); 3034 3035 return ret; 3036 } 3037 3038 #ifdef CONFIG_SMP 3039 void sched_ttwu_pending(void *arg) 3040 { 3041 struct llist_node *llist = arg; 3042 struct rq *rq = this_rq(); 3043 struct task_struct *p, *t; 3044 struct rq_flags rf; 3045 3046 if (!llist) 3047 return; 3048 3049 /* 3050 * rq::ttwu_pending racy indication of out-standing wakeups. 3051 * Races such that false-negatives are possible, since they 3052 * are shorter lived that false-positives would be. 3053 */ 3054 WRITE_ONCE(rq->ttwu_pending, 0); 3055 3056 rq_lock_irqsave(rq, &rf); 3057 update_rq_clock(rq); 3058 3059 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3060 if (WARN_ON_ONCE(p->on_cpu)) 3061 smp_cond_load_acquire(&p->on_cpu, !VAL); 3062 3063 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3064 set_task_cpu(p, cpu_of(rq)); 3065 3066 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3067 } 3068 3069 rq_unlock_irqrestore(rq, &rf); 3070 } 3071 3072 void send_call_function_single_ipi(int cpu) 3073 { 3074 struct rq *rq = cpu_rq(cpu); 3075 3076 if (!set_nr_if_polling(rq->idle)) 3077 arch_send_call_function_single_ipi(cpu); 3078 else 3079 trace_sched_wake_idle_without_ipi(cpu); 3080 } 3081 3082 /* 3083 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3084 * necessary. The wakee CPU on receipt of the IPI will queue the task 3085 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3086 * of the wakeup instead of the waker. 3087 */ 3088 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3089 { 3090 struct rq *rq = cpu_rq(cpu); 3091 3092 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3093 3094 WRITE_ONCE(rq->ttwu_pending, 1); 3095 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3096 } 3097 3098 void wake_up_if_idle(int cpu) 3099 { 3100 struct rq *rq = cpu_rq(cpu); 3101 struct rq_flags rf; 3102 3103 rcu_read_lock(); 3104 3105 if (!is_idle_task(rcu_dereference(rq->curr))) 3106 goto out; 3107 3108 if (set_nr_if_polling(rq->idle)) { 3109 trace_sched_wake_idle_without_ipi(cpu); 3110 } else { 3111 rq_lock_irqsave(rq, &rf); 3112 if (is_idle_task(rq->curr)) 3113 smp_send_reschedule(cpu); 3114 /* Else CPU is not idle, do nothing here: */ 3115 rq_unlock_irqrestore(rq, &rf); 3116 } 3117 3118 out: 3119 rcu_read_unlock(); 3120 } 3121 3122 bool cpus_share_cache(int this_cpu, int that_cpu) 3123 { 3124 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3125 } 3126 3127 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3128 { 3129 /* 3130 * Do not complicate things with the async wake_list while the CPU is 3131 * in hotplug state. 3132 */ 3133 if (!cpu_active(cpu)) 3134 return false; 3135 3136 /* 3137 * If the CPU does not share cache, then queue the task on the 3138 * remote rqs wakelist to avoid accessing remote data. 3139 */ 3140 if (!cpus_share_cache(smp_processor_id(), cpu)) 3141 return true; 3142 3143 /* 3144 * If the task is descheduling and the only running task on the 3145 * CPU then use the wakelist to offload the task activation to 3146 * the soon-to-be-idle CPU as the current CPU is likely busy. 3147 * nr_running is checked to avoid unnecessary task stacking. 3148 */ 3149 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3150 return true; 3151 3152 return false; 3153 } 3154 3155 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3156 { 3157 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3158 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3159 return false; 3160 3161 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3162 __ttwu_queue_wakelist(p, cpu, wake_flags); 3163 return true; 3164 } 3165 3166 return false; 3167 } 3168 3169 #else /* !CONFIG_SMP */ 3170 3171 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3172 { 3173 return false; 3174 } 3175 3176 #endif /* CONFIG_SMP */ 3177 3178 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3179 { 3180 struct rq *rq = cpu_rq(cpu); 3181 struct rq_flags rf; 3182 3183 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3184 return; 3185 3186 rq_lock(rq, &rf); 3187 update_rq_clock(rq); 3188 ttwu_do_activate(rq, p, wake_flags, &rf); 3189 rq_unlock(rq, &rf); 3190 } 3191 3192 /* 3193 * Notes on Program-Order guarantees on SMP systems. 3194 * 3195 * MIGRATION 3196 * 3197 * The basic program-order guarantee on SMP systems is that when a task [t] 3198 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3199 * execution on its new CPU [c1]. 3200 * 3201 * For migration (of runnable tasks) this is provided by the following means: 3202 * 3203 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3204 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3205 * rq(c1)->lock (if not at the same time, then in that order). 3206 * C) LOCK of the rq(c1)->lock scheduling in task 3207 * 3208 * Release/acquire chaining guarantees that B happens after A and C after B. 3209 * Note: the CPU doing B need not be c0 or c1 3210 * 3211 * Example: 3212 * 3213 * CPU0 CPU1 CPU2 3214 * 3215 * LOCK rq(0)->lock 3216 * sched-out X 3217 * sched-in Y 3218 * UNLOCK rq(0)->lock 3219 * 3220 * LOCK rq(0)->lock // orders against CPU0 3221 * dequeue X 3222 * UNLOCK rq(0)->lock 3223 * 3224 * LOCK rq(1)->lock 3225 * enqueue X 3226 * UNLOCK rq(1)->lock 3227 * 3228 * LOCK rq(1)->lock // orders against CPU2 3229 * sched-out Z 3230 * sched-in X 3231 * UNLOCK rq(1)->lock 3232 * 3233 * 3234 * BLOCKING -- aka. SLEEP + WAKEUP 3235 * 3236 * For blocking we (obviously) need to provide the same guarantee as for 3237 * migration. However the means are completely different as there is no lock 3238 * chain to provide order. Instead we do: 3239 * 3240 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3241 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3242 * 3243 * Example: 3244 * 3245 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3246 * 3247 * LOCK rq(0)->lock LOCK X->pi_lock 3248 * dequeue X 3249 * sched-out X 3250 * smp_store_release(X->on_cpu, 0); 3251 * 3252 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3253 * X->state = WAKING 3254 * set_task_cpu(X,2) 3255 * 3256 * LOCK rq(2)->lock 3257 * enqueue X 3258 * X->state = RUNNING 3259 * UNLOCK rq(2)->lock 3260 * 3261 * LOCK rq(2)->lock // orders against CPU1 3262 * sched-out Z 3263 * sched-in X 3264 * UNLOCK rq(2)->lock 3265 * 3266 * UNLOCK X->pi_lock 3267 * UNLOCK rq(0)->lock 3268 * 3269 * 3270 * However, for wakeups there is a second guarantee we must provide, namely we 3271 * must ensure that CONDITION=1 done by the caller can not be reordered with 3272 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3273 */ 3274 3275 /** 3276 * try_to_wake_up - wake up a thread 3277 * @p: the thread to be awakened 3278 * @state: the mask of task states that can be woken 3279 * @wake_flags: wake modifier flags (WF_*) 3280 * 3281 * Conceptually does: 3282 * 3283 * If (@state & @p->state) @p->state = TASK_RUNNING. 3284 * 3285 * If the task was not queued/runnable, also place it back on a runqueue. 3286 * 3287 * This function is atomic against schedule() which would dequeue the task. 3288 * 3289 * It issues a full memory barrier before accessing @p->state, see the comment 3290 * with set_current_state(). 3291 * 3292 * Uses p->pi_lock to serialize against concurrent wake-ups. 3293 * 3294 * Relies on p->pi_lock stabilizing: 3295 * - p->sched_class 3296 * - p->cpus_ptr 3297 * - p->sched_task_group 3298 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3299 * 3300 * Tries really hard to only take one task_rq(p)->lock for performance. 3301 * Takes rq->lock in: 3302 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3303 * - ttwu_queue() -- new rq, for enqueue of the task; 3304 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3305 * 3306 * As a consequence we race really badly with just about everything. See the 3307 * many memory barriers and their comments for details. 3308 * 3309 * Return: %true if @p->state changes (an actual wakeup was done), 3310 * %false otherwise. 3311 */ 3312 static int 3313 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3314 { 3315 unsigned long flags; 3316 int cpu, success = 0; 3317 3318 preempt_disable(); 3319 if (p == current) { 3320 /* 3321 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3322 * == smp_processor_id()'. Together this means we can special 3323 * case the whole 'p->on_rq && ttwu_runnable()' case below 3324 * without taking any locks. 3325 * 3326 * In particular: 3327 * - we rely on Program-Order guarantees for all the ordering, 3328 * - we're serialized against set_special_state() by virtue of 3329 * it disabling IRQs (this allows not taking ->pi_lock). 3330 */ 3331 if (!(p->state & state)) 3332 goto out; 3333 3334 success = 1; 3335 trace_sched_waking(p); 3336 p->state = TASK_RUNNING; 3337 trace_sched_wakeup(p); 3338 goto out; 3339 } 3340 3341 /* 3342 * If we are going to wake up a thread waiting for CONDITION we 3343 * need to ensure that CONDITION=1 done by the caller can not be 3344 * reordered with p->state check below. This pairs with smp_store_mb() 3345 * in set_current_state() that the waiting thread does. 3346 */ 3347 raw_spin_lock_irqsave(&p->pi_lock, flags); 3348 smp_mb__after_spinlock(); 3349 if (!(p->state & state)) 3350 goto unlock; 3351 3352 trace_sched_waking(p); 3353 3354 /* We're going to change ->state: */ 3355 success = 1; 3356 3357 /* 3358 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3359 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3360 * in smp_cond_load_acquire() below. 3361 * 3362 * sched_ttwu_pending() try_to_wake_up() 3363 * STORE p->on_rq = 1 LOAD p->state 3364 * UNLOCK rq->lock 3365 * 3366 * __schedule() (switch to task 'p') 3367 * LOCK rq->lock smp_rmb(); 3368 * smp_mb__after_spinlock(); 3369 * UNLOCK rq->lock 3370 * 3371 * [task p] 3372 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3373 * 3374 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3375 * __schedule(). See the comment for smp_mb__after_spinlock(). 3376 * 3377 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3378 */ 3379 smp_rmb(); 3380 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3381 goto unlock; 3382 3383 #ifdef CONFIG_SMP 3384 /* 3385 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3386 * possible to, falsely, observe p->on_cpu == 0. 3387 * 3388 * One must be running (->on_cpu == 1) in order to remove oneself 3389 * from the runqueue. 3390 * 3391 * __schedule() (switch to task 'p') try_to_wake_up() 3392 * STORE p->on_cpu = 1 LOAD p->on_rq 3393 * UNLOCK rq->lock 3394 * 3395 * __schedule() (put 'p' to sleep) 3396 * LOCK rq->lock smp_rmb(); 3397 * smp_mb__after_spinlock(); 3398 * STORE p->on_rq = 0 LOAD p->on_cpu 3399 * 3400 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3401 * __schedule(). See the comment for smp_mb__after_spinlock(). 3402 * 3403 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3404 * schedule()'s deactivate_task() has 'happened' and p will no longer 3405 * care about it's own p->state. See the comment in __schedule(). 3406 */ 3407 smp_acquire__after_ctrl_dep(); 3408 3409 /* 3410 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3411 * == 0), which means we need to do an enqueue, change p->state to 3412 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3413 * enqueue, such as ttwu_queue_wakelist(). 3414 */ 3415 p->state = TASK_WAKING; 3416 3417 /* 3418 * If the owning (remote) CPU is still in the middle of schedule() with 3419 * this task as prev, considering queueing p on the remote CPUs wake_list 3420 * which potentially sends an IPI instead of spinning on p->on_cpu to 3421 * let the waker make forward progress. This is safe because IRQs are 3422 * disabled and the IPI will deliver after on_cpu is cleared. 3423 * 3424 * Ensure we load task_cpu(p) after p->on_cpu: 3425 * 3426 * set_task_cpu(p, cpu); 3427 * STORE p->cpu = @cpu 3428 * __schedule() (switch to task 'p') 3429 * LOCK rq->lock 3430 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3431 * STORE p->on_cpu = 1 LOAD p->cpu 3432 * 3433 * to ensure we observe the correct CPU on which the task is currently 3434 * scheduling. 3435 */ 3436 if (smp_load_acquire(&p->on_cpu) && 3437 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3438 goto unlock; 3439 3440 /* 3441 * If the owning (remote) CPU is still in the middle of schedule() with 3442 * this task as prev, wait until it's done referencing the task. 3443 * 3444 * Pairs with the smp_store_release() in finish_task(). 3445 * 3446 * This ensures that tasks getting woken will be fully ordered against 3447 * their previous state and preserve Program Order. 3448 */ 3449 smp_cond_load_acquire(&p->on_cpu, !VAL); 3450 3451 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3452 if (task_cpu(p) != cpu) { 3453 if (p->in_iowait) { 3454 delayacct_blkio_end(p); 3455 atomic_dec(&task_rq(p)->nr_iowait); 3456 } 3457 3458 wake_flags |= WF_MIGRATED; 3459 psi_ttwu_dequeue(p); 3460 set_task_cpu(p, cpu); 3461 } 3462 #else 3463 cpu = task_cpu(p); 3464 #endif /* CONFIG_SMP */ 3465 3466 ttwu_queue(p, cpu, wake_flags); 3467 unlock: 3468 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3469 out: 3470 if (success) 3471 ttwu_stat(p, task_cpu(p), wake_flags); 3472 preempt_enable(); 3473 3474 return success; 3475 } 3476 3477 /** 3478 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3479 * @p: Process for which the function is to be invoked, can be @current. 3480 * @func: Function to invoke. 3481 * @arg: Argument to function. 3482 * 3483 * If the specified task can be quickly locked into a definite state 3484 * (either sleeping or on a given runqueue), arrange to keep it in that 3485 * state while invoking @func(@arg). This function can use ->on_rq and 3486 * task_curr() to work out what the state is, if required. Given that 3487 * @func can be invoked with a runqueue lock held, it had better be quite 3488 * lightweight. 3489 * 3490 * Returns: 3491 * @false if the task slipped out from under the locks. 3492 * @true if the task was locked onto a runqueue or is sleeping. 3493 * However, @func can override this by returning @false. 3494 */ 3495 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3496 { 3497 struct rq_flags rf; 3498 bool ret = false; 3499 struct rq *rq; 3500 3501 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3502 if (p->on_rq) { 3503 rq = __task_rq_lock(p, &rf); 3504 if (task_rq(p) == rq) 3505 ret = func(p, arg); 3506 rq_unlock(rq, &rf); 3507 } else { 3508 switch (p->state) { 3509 case TASK_RUNNING: 3510 case TASK_WAKING: 3511 break; 3512 default: 3513 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3514 if (!p->on_rq) 3515 ret = func(p, arg); 3516 } 3517 } 3518 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3519 return ret; 3520 } 3521 3522 /** 3523 * wake_up_process - Wake up a specific process 3524 * @p: The process to be woken up. 3525 * 3526 * Attempt to wake up the nominated process and move it to the set of runnable 3527 * processes. 3528 * 3529 * Return: 1 if the process was woken up, 0 if it was already running. 3530 * 3531 * This function executes a full memory barrier before accessing the task state. 3532 */ 3533 int wake_up_process(struct task_struct *p) 3534 { 3535 return try_to_wake_up(p, TASK_NORMAL, 0); 3536 } 3537 EXPORT_SYMBOL(wake_up_process); 3538 3539 int wake_up_state(struct task_struct *p, unsigned int state) 3540 { 3541 return try_to_wake_up(p, state, 0); 3542 } 3543 3544 /* 3545 * Perform scheduler related setup for a newly forked process p. 3546 * p is forked by current. 3547 * 3548 * __sched_fork() is basic setup used by init_idle() too: 3549 */ 3550 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3551 { 3552 p->on_rq = 0; 3553 3554 p->se.on_rq = 0; 3555 p->se.exec_start = 0; 3556 p->se.sum_exec_runtime = 0; 3557 p->se.prev_sum_exec_runtime = 0; 3558 p->se.nr_migrations = 0; 3559 p->se.vruntime = 0; 3560 INIT_LIST_HEAD(&p->se.group_node); 3561 3562 #ifdef CONFIG_FAIR_GROUP_SCHED 3563 p->se.cfs_rq = NULL; 3564 #endif 3565 3566 #ifdef CONFIG_SCHEDSTATS 3567 /* Even if schedstat is disabled, there should not be garbage */ 3568 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3569 #endif 3570 3571 RB_CLEAR_NODE(&p->dl.rb_node); 3572 init_dl_task_timer(&p->dl); 3573 init_dl_inactive_task_timer(&p->dl); 3574 __dl_clear_params(p); 3575 3576 INIT_LIST_HEAD(&p->rt.run_list); 3577 p->rt.timeout = 0; 3578 p->rt.time_slice = sched_rr_timeslice; 3579 p->rt.on_rq = 0; 3580 p->rt.on_list = 0; 3581 3582 #ifdef CONFIG_PREEMPT_NOTIFIERS 3583 INIT_HLIST_HEAD(&p->preempt_notifiers); 3584 #endif 3585 3586 #ifdef CONFIG_COMPACTION 3587 p->capture_control = NULL; 3588 #endif 3589 init_numa_balancing(clone_flags, p); 3590 #ifdef CONFIG_SMP 3591 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3592 p->migration_pending = NULL; 3593 #endif 3594 } 3595 3596 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3597 3598 #ifdef CONFIG_NUMA_BALANCING 3599 3600 void set_numabalancing_state(bool enabled) 3601 { 3602 if (enabled) 3603 static_branch_enable(&sched_numa_balancing); 3604 else 3605 static_branch_disable(&sched_numa_balancing); 3606 } 3607 3608 #ifdef CONFIG_PROC_SYSCTL 3609 int sysctl_numa_balancing(struct ctl_table *table, int write, 3610 void *buffer, size_t *lenp, loff_t *ppos) 3611 { 3612 struct ctl_table t; 3613 int err; 3614 int state = static_branch_likely(&sched_numa_balancing); 3615 3616 if (write && !capable(CAP_SYS_ADMIN)) 3617 return -EPERM; 3618 3619 t = *table; 3620 t.data = &state; 3621 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3622 if (err < 0) 3623 return err; 3624 if (write) 3625 set_numabalancing_state(state); 3626 return err; 3627 } 3628 #endif 3629 #endif 3630 3631 #ifdef CONFIG_SCHEDSTATS 3632 3633 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3634 static bool __initdata __sched_schedstats = false; 3635 3636 static void set_schedstats(bool enabled) 3637 { 3638 if (enabled) 3639 static_branch_enable(&sched_schedstats); 3640 else 3641 static_branch_disable(&sched_schedstats); 3642 } 3643 3644 void force_schedstat_enabled(void) 3645 { 3646 if (!schedstat_enabled()) { 3647 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3648 static_branch_enable(&sched_schedstats); 3649 } 3650 } 3651 3652 static int __init setup_schedstats(char *str) 3653 { 3654 int ret = 0; 3655 if (!str) 3656 goto out; 3657 3658 /* 3659 * This code is called before jump labels have been set up, so we can't 3660 * change the static branch directly just yet. Instead set a temporary 3661 * variable so init_schedstats() can do it later. 3662 */ 3663 if (!strcmp(str, "enable")) { 3664 __sched_schedstats = true; 3665 ret = 1; 3666 } else if (!strcmp(str, "disable")) { 3667 __sched_schedstats = false; 3668 ret = 1; 3669 } 3670 out: 3671 if (!ret) 3672 pr_warn("Unable to parse schedstats=\n"); 3673 3674 return ret; 3675 } 3676 __setup("schedstats=", setup_schedstats); 3677 3678 static void __init init_schedstats(void) 3679 { 3680 set_schedstats(__sched_schedstats); 3681 } 3682 3683 #ifdef CONFIG_PROC_SYSCTL 3684 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3685 size_t *lenp, loff_t *ppos) 3686 { 3687 struct ctl_table t; 3688 int err; 3689 int state = static_branch_likely(&sched_schedstats); 3690 3691 if (write && !capable(CAP_SYS_ADMIN)) 3692 return -EPERM; 3693 3694 t = *table; 3695 t.data = &state; 3696 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3697 if (err < 0) 3698 return err; 3699 if (write) 3700 set_schedstats(state); 3701 return err; 3702 } 3703 #endif /* CONFIG_PROC_SYSCTL */ 3704 #else /* !CONFIG_SCHEDSTATS */ 3705 static inline void init_schedstats(void) {} 3706 #endif /* CONFIG_SCHEDSTATS */ 3707 3708 /* 3709 * fork()/clone()-time setup: 3710 */ 3711 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3712 { 3713 unsigned long flags; 3714 3715 __sched_fork(clone_flags, p); 3716 /* 3717 * We mark the process as NEW here. This guarantees that 3718 * nobody will actually run it, and a signal or other external 3719 * event cannot wake it up and insert it on the runqueue either. 3720 */ 3721 p->state = TASK_NEW; 3722 3723 /* 3724 * Make sure we do not leak PI boosting priority to the child. 3725 */ 3726 p->prio = current->normal_prio; 3727 3728 uclamp_fork(p); 3729 3730 /* 3731 * Revert to default priority/policy on fork if requested. 3732 */ 3733 if (unlikely(p->sched_reset_on_fork)) { 3734 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3735 p->policy = SCHED_NORMAL; 3736 p->static_prio = NICE_TO_PRIO(0); 3737 p->rt_priority = 0; 3738 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3739 p->static_prio = NICE_TO_PRIO(0); 3740 3741 p->prio = p->normal_prio = __normal_prio(p); 3742 set_load_weight(p, false); 3743 3744 /* 3745 * We don't need the reset flag anymore after the fork. It has 3746 * fulfilled its duty: 3747 */ 3748 p->sched_reset_on_fork = 0; 3749 } 3750 3751 if (dl_prio(p->prio)) 3752 return -EAGAIN; 3753 else if (rt_prio(p->prio)) 3754 p->sched_class = &rt_sched_class; 3755 else 3756 p->sched_class = &fair_sched_class; 3757 3758 init_entity_runnable_average(&p->se); 3759 3760 /* 3761 * The child is not yet in the pid-hash so no cgroup attach races, 3762 * and the cgroup is pinned to this child due to cgroup_fork() 3763 * is ran before sched_fork(). 3764 * 3765 * Silence PROVE_RCU. 3766 */ 3767 raw_spin_lock_irqsave(&p->pi_lock, flags); 3768 rseq_migrate(p); 3769 /* 3770 * We're setting the CPU for the first time, we don't migrate, 3771 * so use __set_task_cpu(). 3772 */ 3773 __set_task_cpu(p, smp_processor_id()); 3774 if (p->sched_class->task_fork) 3775 p->sched_class->task_fork(p); 3776 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3777 3778 #ifdef CONFIG_SCHED_INFO 3779 if (likely(sched_info_on())) 3780 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3781 #endif 3782 #if defined(CONFIG_SMP) 3783 p->on_cpu = 0; 3784 #endif 3785 init_task_preempt_count(p); 3786 #ifdef CONFIG_SMP 3787 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3788 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3789 #endif 3790 return 0; 3791 } 3792 3793 void sched_post_fork(struct task_struct *p) 3794 { 3795 uclamp_post_fork(p); 3796 } 3797 3798 unsigned long to_ratio(u64 period, u64 runtime) 3799 { 3800 if (runtime == RUNTIME_INF) 3801 return BW_UNIT; 3802 3803 /* 3804 * Doing this here saves a lot of checks in all 3805 * the calling paths, and returning zero seems 3806 * safe for them anyway. 3807 */ 3808 if (period == 0) 3809 return 0; 3810 3811 return div64_u64(runtime << BW_SHIFT, period); 3812 } 3813 3814 /* 3815 * wake_up_new_task - wake up a newly created task for the first time. 3816 * 3817 * This function will do some initial scheduler statistics housekeeping 3818 * that must be done for every newly created context, then puts the task 3819 * on the runqueue and wakes it. 3820 */ 3821 void wake_up_new_task(struct task_struct *p) 3822 { 3823 struct rq_flags rf; 3824 struct rq *rq; 3825 3826 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3827 p->state = TASK_RUNNING; 3828 #ifdef CONFIG_SMP 3829 /* 3830 * Fork balancing, do it here and not earlier because: 3831 * - cpus_ptr can change in the fork path 3832 * - any previously selected CPU might disappear through hotplug 3833 * 3834 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3835 * as we're not fully set-up yet. 3836 */ 3837 p->recent_used_cpu = task_cpu(p); 3838 rseq_migrate(p); 3839 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3840 #endif 3841 rq = __task_rq_lock(p, &rf); 3842 update_rq_clock(rq); 3843 post_init_entity_util_avg(p); 3844 3845 activate_task(rq, p, ENQUEUE_NOCLOCK); 3846 trace_sched_wakeup_new(p); 3847 check_preempt_curr(rq, p, WF_FORK); 3848 #ifdef CONFIG_SMP 3849 if (p->sched_class->task_woken) { 3850 /* 3851 * Nothing relies on rq->lock after this, so it's fine to 3852 * drop it. 3853 */ 3854 rq_unpin_lock(rq, &rf); 3855 p->sched_class->task_woken(rq, p); 3856 rq_repin_lock(rq, &rf); 3857 } 3858 #endif 3859 task_rq_unlock(rq, p, &rf); 3860 } 3861 3862 #ifdef CONFIG_PREEMPT_NOTIFIERS 3863 3864 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3865 3866 void preempt_notifier_inc(void) 3867 { 3868 static_branch_inc(&preempt_notifier_key); 3869 } 3870 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3871 3872 void preempt_notifier_dec(void) 3873 { 3874 static_branch_dec(&preempt_notifier_key); 3875 } 3876 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3877 3878 /** 3879 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3880 * @notifier: notifier struct to register 3881 */ 3882 void preempt_notifier_register(struct preempt_notifier *notifier) 3883 { 3884 if (!static_branch_unlikely(&preempt_notifier_key)) 3885 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3886 3887 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3888 } 3889 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3890 3891 /** 3892 * preempt_notifier_unregister - no longer interested in preemption notifications 3893 * @notifier: notifier struct to unregister 3894 * 3895 * This is *not* safe to call from within a preemption notifier. 3896 */ 3897 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3898 { 3899 hlist_del(¬ifier->link); 3900 } 3901 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3902 3903 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3904 { 3905 struct preempt_notifier *notifier; 3906 3907 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3908 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3909 } 3910 3911 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3912 { 3913 if (static_branch_unlikely(&preempt_notifier_key)) 3914 __fire_sched_in_preempt_notifiers(curr); 3915 } 3916 3917 static void 3918 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3919 struct task_struct *next) 3920 { 3921 struct preempt_notifier *notifier; 3922 3923 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3924 notifier->ops->sched_out(notifier, next); 3925 } 3926 3927 static __always_inline void 3928 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3929 struct task_struct *next) 3930 { 3931 if (static_branch_unlikely(&preempt_notifier_key)) 3932 __fire_sched_out_preempt_notifiers(curr, next); 3933 } 3934 3935 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3936 3937 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3938 { 3939 } 3940 3941 static inline void 3942 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3943 struct task_struct *next) 3944 { 3945 } 3946 3947 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3948 3949 static inline void prepare_task(struct task_struct *next) 3950 { 3951 #ifdef CONFIG_SMP 3952 /* 3953 * Claim the task as running, we do this before switching to it 3954 * such that any running task will have this set. 3955 * 3956 * See the ttwu() WF_ON_CPU case and its ordering comment. 3957 */ 3958 WRITE_ONCE(next->on_cpu, 1); 3959 #endif 3960 } 3961 3962 static inline void finish_task(struct task_struct *prev) 3963 { 3964 #ifdef CONFIG_SMP 3965 /* 3966 * This must be the very last reference to @prev from this CPU. After 3967 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3968 * must ensure this doesn't happen until the switch is completely 3969 * finished. 3970 * 3971 * In particular, the load of prev->state in finish_task_switch() must 3972 * happen before this. 3973 * 3974 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3975 */ 3976 smp_store_release(&prev->on_cpu, 0); 3977 #endif 3978 } 3979 3980 #ifdef CONFIG_SMP 3981 3982 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 3983 { 3984 void (*func)(struct rq *rq); 3985 struct callback_head *next; 3986 3987 lockdep_assert_held(&rq->lock); 3988 3989 while (head) { 3990 func = (void (*)(struct rq *))head->func; 3991 next = head->next; 3992 head->next = NULL; 3993 head = next; 3994 3995 func(rq); 3996 } 3997 } 3998 3999 static void balance_push(struct rq *rq); 4000 4001 struct callback_head balance_push_callback = { 4002 .next = NULL, 4003 .func = (void (*)(struct callback_head *))balance_push, 4004 }; 4005 4006 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4007 { 4008 struct callback_head *head = rq->balance_callback; 4009 4010 lockdep_assert_held(&rq->lock); 4011 if (head) 4012 rq->balance_callback = NULL; 4013 4014 return head; 4015 } 4016 4017 static void __balance_callbacks(struct rq *rq) 4018 { 4019 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4020 } 4021 4022 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4023 { 4024 unsigned long flags; 4025 4026 if (unlikely(head)) { 4027 raw_spin_lock_irqsave(&rq->lock, flags); 4028 do_balance_callbacks(rq, head); 4029 raw_spin_unlock_irqrestore(&rq->lock, flags); 4030 } 4031 } 4032 4033 #else 4034 4035 static inline void __balance_callbacks(struct rq *rq) 4036 { 4037 } 4038 4039 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4040 { 4041 return NULL; 4042 } 4043 4044 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4045 { 4046 } 4047 4048 #endif 4049 4050 static inline void 4051 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4052 { 4053 /* 4054 * Since the runqueue lock will be released by the next 4055 * task (which is an invalid locking op but in the case 4056 * of the scheduler it's an obvious special-case), so we 4057 * do an early lockdep release here: 4058 */ 4059 rq_unpin_lock(rq, rf); 4060 spin_release(&rq->lock.dep_map, _THIS_IP_); 4061 #ifdef CONFIG_DEBUG_SPINLOCK 4062 /* this is a valid case when another task releases the spinlock */ 4063 rq->lock.owner = next; 4064 #endif 4065 } 4066 4067 static inline void finish_lock_switch(struct rq *rq) 4068 { 4069 /* 4070 * If we are tracking spinlock dependencies then we have to 4071 * fix up the runqueue lock - which gets 'carried over' from 4072 * prev into current: 4073 */ 4074 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4075 __balance_callbacks(rq); 4076 raw_spin_unlock_irq(&rq->lock); 4077 } 4078 4079 /* 4080 * NOP if the arch has not defined these: 4081 */ 4082 4083 #ifndef prepare_arch_switch 4084 # define prepare_arch_switch(next) do { } while (0) 4085 #endif 4086 4087 #ifndef finish_arch_post_lock_switch 4088 # define finish_arch_post_lock_switch() do { } while (0) 4089 #endif 4090 4091 static inline void kmap_local_sched_out(void) 4092 { 4093 #ifdef CONFIG_KMAP_LOCAL 4094 if (unlikely(current->kmap_ctrl.idx)) 4095 __kmap_local_sched_out(); 4096 #endif 4097 } 4098 4099 static inline void kmap_local_sched_in(void) 4100 { 4101 #ifdef CONFIG_KMAP_LOCAL 4102 if (unlikely(current->kmap_ctrl.idx)) 4103 __kmap_local_sched_in(); 4104 #endif 4105 } 4106 4107 /** 4108 * prepare_task_switch - prepare to switch tasks 4109 * @rq: the runqueue preparing to switch 4110 * @prev: the current task that is being switched out 4111 * @next: the task we are going to switch to. 4112 * 4113 * This is called with the rq lock held and interrupts off. It must 4114 * be paired with a subsequent finish_task_switch after the context 4115 * switch. 4116 * 4117 * prepare_task_switch sets up locking and calls architecture specific 4118 * hooks. 4119 */ 4120 static inline void 4121 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4122 struct task_struct *next) 4123 { 4124 kcov_prepare_switch(prev); 4125 sched_info_switch(rq, prev, next); 4126 perf_event_task_sched_out(prev, next); 4127 rseq_preempt(prev); 4128 fire_sched_out_preempt_notifiers(prev, next); 4129 kmap_local_sched_out(); 4130 prepare_task(next); 4131 prepare_arch_switch(next); 4132 } 4133 4134 /** 4135 * finish_task_switch - clean up after a task-switch 4136 * @prev: the thread we just switched away from. 4137 * 4138 * finish_task_switch must be called after the context switch, paired 4139 * with a prepare_task_switch call before the context switch. 4140 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4141 * and do any other architecture-specific cleanup actions. 4142 * 4143 * Note that we may have delayed dropping an mm in context_switch(). If 4144 * so, we finish that here outside of the runqueue lock. (Doing it 4145 * with the lock held can cause deadlocks; see schedule() for 4146 * details.) 4147 * 4148 * The context switch have flipped the stack from under us and restored the 4149 * local variables which were saved when this task called schedule() in the 4150 * past. prev == current is still correct but we need to recalculate this_rq 4151 * because prev may have moved to another CPU. 4152 */ 4153 static struct rq *finish_task_switch(struct task_struct *prev) 4154 __releases(rq->lock) 4155 { 4156 struct rq *rq = this_rq(); 4157 struct mm_struct *mm = rq->prev_mm; 4158 long prev_state; 4159 4160 /* 4161 * The previous task will have left us with a preempt_count of 2 4162 * because it left us after: 4163 * 4164 * schedule() 4165 * preempt_disable(); // 1 4166 * __schedule() 4167 * raw_spin_lock_irq(&rq->lock) // 2 4168 * 4169 * Also, see FORK_PREEMPT_COUNT. 4170 */ 4171 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4172 "corrupted preempt_count: %s/%d/0x%x\n", 4173 current->comm, current->pid, preempt_count())) 4174 preempt_count_set(FORK_PREEMPT_COUNT); 4175 4176 rq->prev_mm = NULL; 4177 4178 /* 4179 * A task struct has one reference for the use as "current". 4180 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4181 * schedule one last time. The schedule call will never return, and 4182 * the scheduled task must drop that reference. 4183 * 4184 * We must observe prev->state before clearing prev->on_cpu (in 4185 * finish_task), otherwise a concurrent wakeup can get prev 4186 * running on another CPU and we could rave with its RUNNING -> DEAD 4187 * transition, resulting in a double drop. 4188 */ 4189 prev_state = prev->state; 4190 vtime_task_switch(prev); 4191 perf_event_task_sched_in(prev, current); 4192 finish_task(prev); 4193 finish_lock_switch(rq); 4194 finish_arch_post_lock_switch(); 4195 kcov_finish_switch(current); 4196 /* 4197 * kmap_local_sched_out() is invoked with rq::lock held and 4198 * interrupts disabled. There is no requirement for that, but the 4199 * sched out code does not have an interrupt enabled section. 4200 * Restoring the maps on sched in does not require interrupts being 4201 * disabled either. 4202 */ 4203 kmap_local_sched_in(); 4204 4205 fire_sched_in_preempt_notifiers(current); 4206 /* 4207 * When switching through a kernel thread, the loop in 4208 * membarrier_{private,global}_expedited() may have observed that 4209 * kernel thread and not issued an IPI. It is therefore possible to 4210 * schedule between user->kernel->user threads without passing though 4211 * switch_mm(). Membarrier requires a barrier after storing to 4212 * rq->curr, before returning to userspace, so provide them here: 4213 * 4214 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4215 * provided by mmdrop(), 4216 * - a sync_core for SYNC_CORE. 4217 */ 4218 if (mm) { 4219 membarrier_mm_sync_core_before_usermode(mm); 4220 mmdrop(mm); 4221 } 4222 if (unlikely(prev_state == TASK_DEAD)) { 4223 if (prev->sched_class->task_dead) 4224 prev->sched_class->task_dead(prev); 4225 4226 /* 4227 * Remove function-return probe instances associated with this 4228 * task and put them back on the free list. 4229 */ 4230 kprobe_flush_task(prev); 4231 4232 /* Task is done with its stack. */ 4233 put_task_stack(prev); 4234 4235 put_task_struct_rcu_user(prev); 4236 } 4237 4238 tick_nohz_task_switch(); 4239 return rq; 4240 } 4241 4242 /** 4243 * schedule_tail - first thing a freshly forked thread must call. 4244 * @prev: the thread we just switched away from. 4245 */ 4246 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4247 __releases(rq->lock) 4248 { 4249 struct rq *rq; 4250 4251 /* 4252 * New tasks start with FORK_PREEMPT_COUNT, see there and 4253 * finish_task_switch() for details. 4254 * 4255 * finish_task_switch() will drop rq->lock() and lower preempt_count 4256 * and the preempt_enable() will end up enabling preemption (on 4257 * PREEMPT_COUNT kernels). 4258 */ 4259 4260 rq = finish_task_switch(prev); 4261 preempt_enable(); 4262 4263 if (current->set_child_tid) 4264 put_user(task_pid_vnr(current), current->set_child_tid); 4265 4266 calculate_sigpending(); 4267 } 4268 4269 /* 4270 * context_switch - switch to the new MM and the new thread's register state. 4271 */ 4272 static __always_inline struct rq * 4273 context_switch(struct rq *rq, struct task_struct *prev, 4274 struct task_struct *next, struct rq_flags *rf) 4275 { 4276 prepare_task_switch(rq, prev, next); 4277 4278 /* 4279 * For paravirt, this is coupled with an exit in switch_to to 4280 * combine the page table reload and the switch backend into 4281 * one hypercall. 4282 */ 4283 arch_start_context_switch(prev); 4284 4285 /* 4286 * kernel -> kernel lazy + transfer active 4287 * user -> kernel lazy + mmgrab() active 4288 * 4289 * kernel -> user switch + mmdrop() active 4290 * user -> user switch 4291 */ 4292 if (!next->mm) { // to kernel 4293 enter_lazy_tlb(prev->active_mm, next); 4294 4295 next->active_mm = prev->active_mm; 4296 if (prev->mm) // from user 4297 mmgrab(prev->active_mm); 4298 else 4299 prev->active_mm = NULL; 4300 } else { // to user 4301 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4302 /* 4303 * sys_membarrier() requires an smp_mb() between setting 4304 * rq->curr / membarrier_switch_mm() and returning to userspace. 4305 * 4306 * The below provides this either through switch_mm(), or in 4307 * case 'prev->active_mm == next->mm' through 4308 * finish_task_switch()'s mmdrop(). 4309 */ 4310 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4311 4312 if (!prev->mm) { // from kernel 4313 /* will mmdrop() in finish_task_switch(). */ 4314 rq->prev_mm = prev->active_mm; 4315 prev->active_mm = NULL; 4316 } 4317 } 4318 4319 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4320 4321 prepare_lock_switch(rq, next, rf); 4322 4323 /* Here we just switch the register state and the stack. */ 4324 switch_to(prev, next, prev); 4325 barrier(); 4326 4327 return finish_task_switch(prev); 4328 } 4329 4330 /* 4331 * nr_running and nr_context_switches: 4332 * 4333 * externally visible scheduler statistics: current number of runnable 4334 * threads, total number of context switches performed since bootup. 4335 */ 4336 unsigned long nr_running(void) 4337 { 4338 unsigned long i, sum = 0; 4339 4340 for_each_online_cpu(i) 4341 sum += cpu_rq(i)->nr_running; 4342 4343 return sum; 4344 } 4345 4346 /* 4347 * Check if only the current task is running on the CPU. 4348 * 4349 * Caution: this function does not check that the caller has disabled 4350 * preemption, thus the result might have a time-of-check-to-time-of-use 4351 * race. The caller is responsible to use it correctly, for example: 4352 * 4353 * - from a non-preemptible section (of course) 4354 * 4355 * - from a thread that is bound to a single CPU 4356 * 4357 * - in a loop with very short iterations (e.g. a polling loop) 4358 */ 4359 bool single_task_running(void) 4360 { 4361 return raw_rq()->nr_running == 1; 4362 } 4363 EXPORT_SYMBOL(single_task_running); 4364 4365 unsigned long long nr_context_switches(void) 4366 { 4367 int i; 4368 unsigned long long sum = 0; 4369 4370 for_each_possible_cpu(i) 4371 sum += cpu_rq(i)->nr_switches; 4372 4373 return sum; 4374 } 4375 4376 /* 4377 * Consumers of these two interfaces, like for example the cpuidle menu 4378 * governor, are using nonsensical data. Preferring shallow idle state selection 4379 * for a CPU that has IO-wait which might not even end up running the task when 4380 * it does become runnable. 4381 */ 4382 4383 unsigned long nr_iowait_cpu(int cpu) 4384 { 4385 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4386 } 4387 4388 /* 4389 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4390 * 4391 * The idea behind IO-wait account is to account the idle time that we could 4392 * have spend running if it were not for IO. That is, if we were to improve the 4393 * storage performance, we'd have a proportional reduction in IO-wait time. 4394 * 4395 * This all works nicely on UP, where, when a task blocks on IO, we account 4396 * idle time as IO-wait, because if the storage were faster, it could've been 4397 * running and we'd not be idle. 4398 * 4399 * This has been extended to SMP, by doing the same for each CPU. This however 4400 * is broken. 4401 * 4402 * Imagine for instance the case where two tasks block on one CPU, only the one 4403 * CPU will have IO-wait accounted, while the other has regular idle. Even 4404 * though, if the storage were faster, both could've ran at the same time, 4405 * utilising both CPUs. 4406 * 4407 * This means, that when looking globally, the current IO-wait accounting on 4408 * SMP is a lower bound, by reason of under accounting. 4409 * 4410 * Worse, since the numbers are provided per CPU, they are sometimes 4411 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4412 * associated with any one particular CPU, it can wake to another CPU than it 4413 * blocked on. This means the per CPU IO-wait number is meaningless. 4414 * 4415 * Task CPU affinities can make all that even more 'interesting'. 4416 */ 4417 4418 unsigned long nr_iowait(void) 4419 { 4420 unsigned long i, sum = 0; 4421 4422 for_each_possible_cpu(i) 4423 sum += nr_iowait_cpu(i); 4424 4425 return sum; 4426 } 4427 4428 #ifdef CONFIG_SMP 4429 4430 /* 4431 * sched_exec - execve() is a valuable balancing opportunity, because at 4432 * this point the task has the smallest effective memory and cache footprint. 4433 */ 4434 void sched_exec(void) 4435 { 4436 struct task_struct *p = current; 4437 unsigned long flags; 4438 int dest_cpu; 4439 4440 raw_spin_lock_irqsave(&p->pi_lock, flags); 4441 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4442 if (dest_cpu == smp_processor_id()) 4443 goto unlock; 4444 4445 if (likely(cpu_active(dest_cpu))) { 4446 struct migration_arg arg = { p, dest_cpu }; 4447 4448 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4449 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4450 return; 4451 } 4452 unlock: 4453 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4454 } 4455 4456 #endif 4457 4458 DEFINE_PER_CPU(struct kernel_stat, kstat); 4459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4460 4461 EXPORT_PER_CPU_SYMBOL(kstat); 4462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4463 4464 /* 4465 * The function fair_sched_class.update_curr accesses the struct curr 4466 * and its field curr->exec_start; when called from task_sched_runtime(), 4467 * we observe a high rate of cache misses in practice. 4468 * Prefetching this data results in improved performance. 4469 */ 4470 static inline void prefetch_curr_exec_start(struct task_struct *p) 4471 { 4472 #ifdef CONFIG_FAIR_GROUP_SCHED 4473 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4474 #else 4475 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4476 #endif 4477 prefetch(curr); 4478 prefetch(&curr->exec_start); 4479 } 4480 4481 /* 4482 * Return accounted runtime for the task. 4483 * In case the task is currently running, return the runtime plus current's 4484 * pending runtime that have not been accounted yet. 4485 */ 4486 unsigned long long task_sched_runtime(struct task_struct *p) 4487 { 4488 struct rq_flags rf; 4489 struct rq *rq; 4490 u64 ns; 4491 4492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4493 /* 4494 * 64-bit doesn't need locks to atomically read a 64-bit value. 4495 * So we have a optimization chance when the task's delta_exec is 0. 4496 * Reading ->on_cpu is racy, but this is ok. 4497 * 4498 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4499 * If we race with it entering CPU, unaccounted time is 0. This is 4500 * indistinguishable from the read occurring a few cycles earlier. 4501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4502 * been accounted, so we're correct here as well. 4503 */ 4504 if (!p->on_cpu || !task_on_rq_queued(p)) 4505 return p->se.sum_exec_runtime; 4506 #endif 4507 4508 rq = task_rq_lock(p, &rf); 4509 /* 4510 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4511 * project cycles that may never be accounted to this 4512 * thread, breaking clock_gettime(). 4513 */ 4514 if (task_current(rq, p) && task_on_rq_queued(p)) { 4515 prefetch_curr_exec_start(p); 4516 update_rq_clock(rq); 4517 p->sched_class->update_curr(rq); 4518 } 4519 ns = p->se.sum_exec_runtime; 4520 task_rq_unlock(rq, p, &rf); 4521 4522 return ns; 4523 } 4524 4525 /* 4526 * This function gets called by the timer code, with HZ frequency. 4527 * We call it with interrupts disabled. 4528 */ 4529 void scheduler_tick(void) 4530 { 4531 int cpu = smp_processor_id(); 4532 struct rq *rq = cpu_rq(cpu); 4533 struct task_struct *curr = rq->curr; 4534 struct rq_flags rf; 4535 unsigned long thermal_pressure; 4536 4537 arch_scale_freq_tick(); 4538 sched_clock_tick(); 4539 4540 rq_lock(rq, &rf); 4541 4542 update_rq_clock(rq); 4543 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4544 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4545 curr->sched_class->task_tick(rq, curr, 0); 4546 calc_global_load_tick(rq); 4547 psi_task_tick(rq); 4548 4549 rq_unlock(rq, &rf); 4550 4551 perf_event_task_tick(); 4552 4553 #ifdef CONFIG_SMP 4554 rq->idle_balance = idle_cpu(cpu); 4555 trigger_load_balance(rq); 4556 #endif 4557 } 4558 4559 #ifdef CONFIG_NO_HZ_FULL 4560 4561 struct tick_work { 4562 int cpu; 4563 atomic_t state; 4564 struct delayed_work work; 4565 }; 4566 /* Values for ->state, see diagram below. */ 4567 #define TICK_SCHED_REMOTE_OFFLINE 0 4568 #define TICK_SCHED_REMOTE_OFFLINING 1 4569 #define TICK_SCHED_REMOTE_RUNNING 2 4570 4571 /* 4572 * State diagram for ->state: 4573 * 4574 * 4575 * TICK_SCHED_REMOTE_OFFLINE 4576 * | ^ 4577 * | | 4578 * | | sched_tick_remote() 4579 * | | 4580 * | | 4581 * +--TICK_SCHED_REMOTE_OFFLINING 4582 * | ^ 4583 * | | 4584 * sched_tick_start() | | sched_tick_stop() 4585 * | | 4586 * V | 4587 * TICK_SCHED_REMOTE_RUNNING 4588 * 4589 * 4590 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4591 * and sched_tick_start() are happy to leave the state in RUNNING. 4592 */ 4593 4594 static struct tick_work __percpu *tick_work_cpu; 4595 4596 static void sched_tick_remote(struct work_struct *work) 4597 { 4598 struct delayed_work *dwork = to_delayed_work(work); 4599 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4600 int cpu = twork->cpu; 4601 struct rq *rq = cpu_rq(cpu); 4602 struct task_struct *curr; 4603 struct rq_flags rf; 4604 u64 delta; 4605 int os; 4606 4607 /* 4608 * Handle the tick only if it appears the remote CPU is running in full 4609 * dynticks mode. The check is racy by nature, but missing a tick or 4610 * having one too much is no big deal because the scheduler tick updates 4611 * statistics and checks timeslices in a time-independent way, regardless 4612 * of when exactly it is running. 4613 */ 4614 if (!tick_nohz_tick_stopped_cpu(cpu)) 4615 goto out_requeue; 4616 4617 rq_lock_irq(rq, &rf); 4618 curr = rq->curr; 4619 if (cpu_is_offline(cpu)) 4620 goto out_unlock; 4621 4622 update_rq_clock(rq); 4623 4624 if (!is_idle_task(curr)) { 4625 /* 4626 * Make sure the next tick runs within a reasonable 4627 * amount of time. 4628 */ 4629 delta = rq_clock_task(rq) - curr->se.exec_start; 4630 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4631 } 4632 curr->sched_class->task_tick(rq, curr, 0); 4633 4634 calc_load_nohz_remote(rq); 4635 out_unlock: 4636 rq_unlock_irq(rq, &rf); 4637 out_requeue: 4638 4639 /* 4640 * Run the remote tick once per second (1Hz). This arbitrary 4641 * frequency is large enough to avoid overload but short enough 4642 * to keep scheduler internal stats reasonably up to date. But 4643 * first update state to reflect hotplug activity if required. 4644 */ 4645 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4646 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4647 if (os == TICK_SCHED_REMOTE_RUNNING) 4648 queue_delayed_work(system_unbound_wq, dwork, HZ); 4649 } 4650 4651 static void sched_tick_start(int cpu) 4652 { 4653 int os; 4654 struct tick_work *twork; 4655 4656 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4657 return; 4658 4659 WARN_ON_ONCE(!tick_work_cpu); 4660 4661 twork = per_cpu_ptr(tick_work_cpu, cpu); 4662 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4663 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4664 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4665 twork->cpu = cpu; 4666 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4667 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4668 } 4669 } 4670 4671 #ifdef CONFIG_HOTPLUG_CPU 4672 static void sched_tick_stop(int cpu) 4673 { 4674 struct tick_work *twork; 4675 int os; 4676 4677 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4678 return; 4679 4680 WARN_ON_ONCE(!tick_work_cpu); 4681 4682 twork = per_cpu_ptr(tick_work_cpu, cpu); 4683 /* There cannot be competing actions, but don't rely on stop-machine. */ 4684 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4685 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4686 /* Don't cancel, as this would mess up the state machine. */ 4687 } 4688 #endif /* CONFIG_HOTPLUG_CPU */ 4689 4690 int __init sched_tick_offload_init(void) 4691 { 4692 tick_work_cpu = alloc_percpu(struct tick_work); 4693 BUG_ON(!tick_work_cpu); 4694 return 0; 4695 } 4696 4697 #else /* !CONFIG_NO_HZ_FULL */ 4698 static inline void sched_tick_start(int cpu) { } 4699 static inline void sched_tick_stop(int cpu) { } 4700 #endif 4701 4702 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4703 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4704 /* 4705 * If the value passed in is equal to the current preempt count 4706 * then we just disabled preemption. Start timing the latency. 4707 */ 4708 static inline void preempt_latency_start(int val) 4709 { 4710 if (preempt_count() == val) { 4711 unsigned long ip = get_lock_parent_ip(); 4712 #ifdef CONFIG_DEBUG_PREEMPT 4713 current->preempt_disable_ip = ip; 4714 #endif 4715 trace_preempt_off(CALLER_ADDR0, ip); 4716 } 4717 } 4718 4719 void preempt_count_add(int val) 4720 { 4721 #ifdef CONFIG_DEBUG_PREEMPT 4722 /* 4723 * Underflow? 4724 */ 4725 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4726 return; 4727 #endif 4728 __preempt_count_add(val); 4729 #ifdef CONFIG_DEBUG_PREEMPT 4730 /* 4731 * Spinlock count overflowing soon? 4732 */ 4733 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4734 PREEMPT_MASK - 10); 4735 #endif 4736 preempt_latency_start(val); 4737 } 4738 EXPORT_SYMBOL(preempt_count_add); 4739 NOKPROBE_SYMBOL(preempt_count_add); 4740 4741 /* 4742 * If the value passed in equals to the current preempt count 4743 * then we just enabled preemption. Stop timing the latency. 4744 */ 4745 static inline void preempt_latency_stop(int val) 4746 { 4747 if (preempt_count() == val) 4748 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4749 } 4750 4751 void preempt_count_sub(int val) 4752 { 4753 #ifdef CONFIG_DEBUG_PREEMPT 4754 /* 4755 * Underflow? 4756 */ 4757 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4758 return; 4759 /* 4760 * Is the spinlock portion underflowing? 4761 */ 4762 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4763 !(preempt_count() & PREEMPT_MASK))) 4764 return; 4765 #endif 4766 4767 preempt_latency_stop(val); 4768 __preempt_count_sub(val); 4769 } 4770 EXPORT_SYMBOL(preempt_count_sub); 4771 NOKPROBE_SYMBOL(preempt_count_sub); 4772 4773 #else 4774 static inline void preempt_latency_start(int val) { } 4775 static inline void preempt_latency_stop(int val) { } 4776 #endif 4777 4778 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4779 { 4780 #ifdef CONFIG_DEBUG_PREEMPT 4781 return p->preempt_disable_ip; 4782 #else 4783 return 0; 4784 #endif 4785 } 4786 4787 /* 4788 * Print scheduling while atomic bug: 4789 */ 4790 static noinline void __schedule_bug(struct task_struct *prev) 4791 { 4792 /* Save this before calling printk(), since that will clobber it */ 4793 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4794 4795 if (oops_in_progress) 4796 return; 4797 4798 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4799 prev->comm, prev->pid, preempt_count()); 4800 4801 debug_show_held_locks(prev); 4802 print_modules(); 4803 if (irqs_disabled()) 4804 print_irqtrace_events(prev); 4805 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4806 && in_atomic_preempt_off()) { 4807 pr_err("Preemption disabled at:"); 4808 print_ip_sym(KERN_ERR, preempt_disable_ip); 4809 } 4810 if (panic_on_warn) 4811 panic("scheduling while atomic\n"); 4812 4813 dump_stack(); 4814 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4815 } 4816 4817 /* 4818 * Various schedule()-time debugging checks and statistics: 4819 */ 4820 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4821 { 4822 #ifdef CONFIG_SCHED_STACK_END_CHECK 4823 if (task_stack_end_corrupted(prev)) 4824 panic("corrupted stack end detected inside scheduler\n"); 4825 4826 if (task_scs_end_corrupted(prev)) 4827 panic("corrupted shadow stack detected inside scheduler\n"); 4828 #endif 4829 4830 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4831 if (!preempt && prev->state && prev->non_block_count) { 4832 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4833 prev->comm, prev->pid, prev->non_block_count); 4834 dump_stack(); 4835 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4836 } 4837 #endif 4838 4839 if (unlikely(in_atomic_preempt_off())) { 4840 __schedule_bug(prev); 4841 preempt_count_set(PREEMPT_DISABLED); 4842 } 4843 rcu_sleep_check(); 4844 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4845 4846 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4847 4848 schedstat_inc(this_rq()->sched_count); 4849 } 4850 4851 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4852 struct rq_flags *rf) 4853 { 4854 #ifdef CONFIG_SMP 4855 const struct sched_class *class; 4856 /* 4857 * We must do the balancing pass before put_prev_task(), such 4858 * that when we release the rq->lock the task is in the same 4859 * state as before we took rq->lock. 4860 * 4861 * We can terminate the balance pass as soon as we know there is 4862 * a runnable task of @class priority or higher. 4863 */ 4864 for_class_range(class, prev->sched_class, &idle_sched_class) { 4865 if (class->balance(rq, prev, rf)) 4866 break; 4867 } 4868 #endif 4869 4870 put_prev_task(rq, prev); 4871 } 4872 4873 /* 4874 * Pick up the highest-prio task: 4875 */ 4876 static inline struct task_struct * 4877 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4878 { 4879 const struct sched_class *class; 4880 struct task_struct *p; 4881 4882 /* 4883 * Optimization: we know that if all tasks are in the fair class we can 4884 * call that function directly, but only if the @prev task wasn't of a 4885 * higher scheduling class, because otherwise those lose the 4886 * opportunity to pull in more work from other CPUs. 4887 */ 4888 if (likely(prev->sched_class <= &fair_sched_class && 4889 rq->nr_running == rq->cfs.h_nr_running)) { 4890 4891 p = pick_next_task_fair(rq, prev, rf); 4892 if (unlikely(p == RETRY_TASK)) 4893 goto restart; 4894 4895 /* Assumes fair_sched_class->next == idle_sched_class */ 4896 if (!p) { 4897 put_prev_task(rq, prev); 4898 p = pick_next_task_idle(rq); 4899 } 4900 4901 return p; 4902 } 4903 4904 restart: 4905 put_prev_task_balance(rq, prev, rf); 4906 4907 for_each_class(class) { 4908 p = class->pick_next_task(rq); 4909 if (p) 4910 return p; 4911 } 4912 4913 /* The idle class should always have a runnable task: */ 4914 BUG(); 4915 } 4916 4917 /* 4918 * __schedule() is the main scheduler function. 4919 * 4920 * The main means of driving the scheduler and thus entering this function are: 4921 * 4922 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4923 * 4924 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4925 * paths. For example, see arch/x86/entry_64.S. 4926 * 4927 * To drive preemption between tasks, the scheduler sets the flag in timer 4928 * interrupt handler scheduler_tick(). 4929 * 4930 * 3. Wakeups don't really cause entry into schedule(). They add a 4931 * task to the run-queue and that's it. 4932 * 4933 * Now, if the new task added to the run-queue preempts the current 4934 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4935 * called on the nearest possible occasion: 4936 * 4937 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4938 * 4939 * - in syscall or exception context, at the next outmost 4940 * preempt_enable(). (this might be as soon as the wake_up()'s 4941 * spin_unlock()!) 4942 * 4943 * - in IRQ context, return from interrupt-handler to 4944 * preemptible context 4945 * 4946 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4947 * then at the next: 4948 * 4949 * - cond_resched() call 4950 * - explicit schedule() call 4951 * - return from syscall or exception to user-space 4952 * - return from interrupt-handler to user-space 4953 * 4954 * WARNING: must be called with preemption disabled! 4955 */ 4956 static void __sched notrace __schedule(bool preempt) 4957 { 4958 struct task_struct *prev, *next; 4959 unsigned long *switch_count; 4960 unsigned long prev_state; 4961 struct rq_flags rf; 4962 struct rq *rq; 4963 int cpu; 4964 4965 cpu = smp_processor_id(); 4966 rq = cpu_rq(cpu); 4967 prev = rq->curr; 4968 4969 schedule_debug(prev, preempt); 4970 4971 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 4972 hrtick_clear(rq); 4973 4974 local_irq_disable(); 4975 rcu_note_context_switch(preempt); 4976 4977 /* 4978 * Make sure that signal_pending_state()->signal_pending() below 4979 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4980 * done by the caller to avoid the race with signal_wake_up(): 4981 * 4982 * __set_current_state(@state) signal_wake_up() 4983 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4984 * wake_up_state(p, state) 4985 * LOCK rq->lock LOCK p->pi_state 4986 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4987 * if (signal_pending_state()) if (p->state & @state) 4988 * 4989 * Also, the membarrier system call requires a full memory barrier 4990 * after coming from user-space, before storing to rq->curr. 4991 */ 4992 rq_lock(rq, &rf); 4993 smp_mb__after_spinlock(); 4994 4995 /* Promote REQ to ACT */ 4996 rq->clock_update_flags <<= 1; 4997 update_rq_clock(rq); 4998 4999 switch_count = &prev->nivcsw; 5000 5001 /* 5002 * We must load prev->state once (task_struct::state is volatile), such 5003 * that: 5004 * 5005 * - we form a control dependency vs deactivate_task() below. 5006 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 5007 */ 5008 prev_state = prev->state; 5009 if (!preempt && prev_state) { 5010 if (signal_pending_state(prev_state, prev)) { 5011 prev->state = TASK_RUNNING; 5012 } else { 5013 prev->sched_contributes_to_load = 5014 (prev_state & TASK_UNINTERRUPTIBLE) && 5015 !(prev_state & TASK_NOLOAD) && 5016 !(prev->flags & PF_FROZEN); 5017 5018 if (prev->sched_contributes_to_load) 5019 rq->nr_uninterruptible++; 5020 5021 /* 5022 * __schedule() ttwu() 5023 * prev_state = prev->state; if (p->on_rq && ...) 5024 * if (prev_state) goto out; 5025 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5026 * p->state = TASK_WAKING 5027 * 5028 * Where __schedule() and ttwu() have matching control dependencies. 5029 * 5030 * After this, schedule() must not care about p->state any more. 5031 */ 5032 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5033 5034 if (prev->in_iowait) { 5035 atomic_inc(&rq->nr_iowait); 5036 delayacct_blkio_start(); 5037 } 5038 } 5039 switch_count = &prev->nvcsw; 5040 } 5041 5042 next = pick_next_task(rq, prev, &rf); 5043 clear_tsk_need_resched(prev); 5044 clear_preempt_need_resched(); 5045 5046 if (likely(prev != next)) { 5047 rq->nr_switches++; 5048 /* 5049 * RCU users of rcu_dereference(rq->curr) may not see 5050 * changes to task_struct made by pick_next_task(). 5051 */ 5052 RCU_INIT_POINTER(rq->curr, next); 5053 /* 5054 * The membarrier system call requires each architecture 5055 * to have a full memory barrier after updating 5056 * rq->curr, before returning to user-space. 5057 * 5058 * Here are the schemes providing that barrier on the 5059 * various architectures: 5060 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5061 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5062 * - finish_lock_switch() for weakly-ordered 5063 * architectures where spin_unlock is a full barrier, 5064 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5065 * is a RELEASE barrier), 5066 */ 5067 ++*switch_count; 5068 5069 migrate_disable_switch(rq, prev); 5070 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5071 5072 trace_sched_switch(preempt, prev, next); 5073 5074 /* Also unlocks the rq: */ 5075 rq = context_switch(rq, prev, next, &rf); 5076 } else { 5077 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5078 5079 rq_unpin_lock(rq, &rf); 5080 __balance_callbacks(rq); 5081 raw_spin_unlock_irq(&rq->lock); 5082 } 5083 } 5084 5085 void __noreturn do_task_dead(void) 5086 { 5087 /* Causes final put_task_struct in finish_task_switch(): */ 5088 set_special_state(TASK_DEAD); 5089 5090 /* Tell freezer to ignore us: */ 5091 current->flags |= PF_NOFREEZE; 5092 5093 __schedule(false); 5094 BUG(); 5095 5096 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5097 for (;;) 5098 cpu_relax(); 5099 } 5100 5101 static inline void sched_submit_work(struct task_struct *tsk) 5102 { 5103 unsigned int task_flags; 5104 5105 if (!tsk->state) 5106 return; 5107 5108 task_flags = tsk->flags; 5109 /* 5110 * If a worker went to sleep, notify and ask workqueue whether 5111 * it wants to wake up a task to maintain concurrency. 5112 * As this function is called inside the schedule() context, 5113 * we disable preemption to avoid it calling schedule() again 5114 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5115 * requires it. 5116 */ 5117 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5118 preempt_disable(); 5119 if (task_flags & PF_WQ_WORKER) 5120 wq_worker_sleeping(tsk); 5121 else 5122 io_wq_worker_sleeping(tsk); 5123 preempt_enable_no_resched(); 5124 } 5125 5126 if (tsk_is_pi_blocked(tsk)) 5127 return; 5128 5129 /* 5130 * If we are going to sleep and we have plugged IO queued, 5131 * make sure to submit it to avoid deadlocks. 5132 */ 5133 if (blk_needs_flush_plug(tsk)) 5134 blk_schedule_flush_plug(tsk); 5135 } 5136 5137 static void sched_update_worker(struct task_struct *tsk) 5138 { 5139 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5140 if (tsk->flags & PF_WQ_WORKER) 5141 wq_worker_running(tsk); 5142 else 5143 io_wq_worker_running(tsk); 5144 } 5145 } 5146 5147 asmlinkage __visible void __sched schedule(void) 5148 { 5149 struct task_struct *tsk = current; 5150 5151 sched_submit_work(tsk); 5152 do { 5153 preempt_disable(); 5154 __schedule(false); 5155 sched_preempt_enable_no_resched(); 5156 } while (need_resched()); 5157 sched_update_worker(tsk); 5158 } 5159 EXPORT_SYMBOL(schedule); 5160 5161 /* 5162 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5163 * state (have scheduled out non-voluntarily) by making sure that all 5164 * tasks have either left the run queue or have gone into user space. 5165 * As idle tasks do not do either, they must not ever be preempted 5166 * (schedule out non-voluntarily). 5167 * 5168 * schedule_idle() is similar to schedule_preempt_disable() except that it 5169 * never enables preemption because it does not call sched_submit_work(). 5170 */ 5171 void __sched schedule_idle(void) 5172 { 5173 /* 5174 * As this skips calling sched_submit_work(), which the idle task does 5175 * regardless because that function is a nop when the task is in a 5176 * TASK_RUNNING state, make sure this isn't used someplace that the 5177 * current task can be in any other state. Note, idle is always in the 5178 * TASK_RUNNING state. 5179 */ 5180 WARN_ON_ONCE(current->state); 5181 do { 5182 __schedule(false); 5183 } while (need_resched()); 5184 } 5185 5186 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5187 asmlinkage __visible void __sched schedule_user(void) 5188 { 5189 /* 5190 * If we come here after a random call to set_need_resched(), 5191 * or we have been woken up remotely but the IPI has not yet arrived, 5192 * we haven't yet exited the RCU idle mode. Do it here manually until 5193 * we find a better solution. 5194 * 5195 * NB: There are buggy callers of this function. Ideally we 5196 * should warn if prev_state != CONTEXT_USER, but that will trigger 5197 * too frequently to make sense yet. 5198 */ 5199 enum ctx_state prev_state = exception_enter(); 5200 schedule(); 5201 exception_exit(prev_state); 5202 } 5203 #endif 5204 5205 /** 5206 * schedule_preempt_disabled - called with preemption disabled 5207 * 5208 * Returns with preemption disabled. Note: preempt_count must be 1 5209 */ 5210 void __sched schedule_preempt_disabled(void) 5211 { 5212 sched_preempt_enable_no_resched(); 5213 schedule(); 5214 preempt_disable(); 5215 } 5216 5217 static void __sched notrace preempt_schedule_common(void) 5218 { 5219 do { 5220 /* 5221 * Because the function tracer can trace preempt_count_sub() 5222 * and it also uses preempt_enable/disable_notrace(), if 5223 * NEED_RESCHED is set, the preempt_enable_notrace() called 5224 * by the function tracer will call this function again and 5225 * cause infinite recursion. 5226 * 5227 * Preemption must be disabled here before the function 5228 * tracer can trace. Break up preempt_disable() into two 5229 * calls. One to disable preemption without fear of being 5230 * traced. The other to still record the preemption latency, 5231 * which can also be traced by the function tracer. 5232 */ 5233 preempt_disable_notrace(); 5234 preempt_latency_start(1); 5235 __schedule(true); 5236 preempt_latency_stop(1); 5237 preempt_enable_no_resched_notrace(); 5238 5239 /* 5240 * Check again in case we missed a preemption opportunity 5241 * between schedule and now. 5242 */ 5243 } while (need_resched()); 5244 } 5245 5246 #ifdef CONFIG_PREEMPTION 5247 /* 5248 * This is the entry point to schedule() from in-kernel preemption 5249 * off of preempt_enable. 5250 */ 5251 asmlinkage __visible void __sched notrace preempt_schedule(void) 5252 { 5253 /* 5254 * If there is a non-zero preempt_count or interrupts are disabled, 5255 * we do not want to preempt the current task. Just return.. 5256 */ 5257 if (likely(!preemptible())) 5258 return; 5259 5260 preempt_schedule_common(); 5261 } 5262 NOKPROBE_SYMBOL(preempt_schedule); 5263 EXPORT_SYMBOL(preempt_schedule); 5264 5265 #ifdef CONFIG_PREEMPT_DYNAMIC 5266 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 5267 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 5268 #endif 5269 5270 5271 /** 5272 * preempt_schedule_notrace - preempt_schedule called by tracing 5273 * 5274 * The tracing infrastructure uses preempt_enable_notrace to prevent 5275 * recursion and tracing preempt enabling caused by the tracing 5276 * infrastructure itself. But as tracing can happen in areas coming 5277 * from userspace or just about to enter userspace, a preempt enable 5278 * can occur before user_exit() is called. This will cause the scheduler 5279 * to be called when the system is still in usermode. 5280 * 5281 * To prevent this, the preempt_enable_notrace will use this function 5282 * instead of preempt_schedule() to exit user context if needed before 5283 * calling the scheduler. 5284 */ 5285 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5286 { 5287 enum ctx_state prev_ctx; 5288 5289 if (likely(!preemptible())) 5290 return; 5291 5292 do { 5293 /* 5294 * Because the function tracer can trace preempt_count_sub() 5295 * and it also uses preempt_enable/disable_notrace(), if 5296 * NEED_RESCHED is set, the preempt_enable_notrace() called 5297 * by the function tracer will call this function again and 5298 * cause infinite recursion. 5299 * 5300 * Preemption must be disabled here before the function 5301 * tracer can trace. Break up preempt_disable() into two 5302 * calls. One to disable preemption without fear of being 5303 * traced. The other to still record the preemption latency, 5304 * which can also be traced by the function tracer. 5305 */ 5306 preempt_disable_notrace(); 5307 preempt_latency_start(1); 5308 /* 5309 * Needs preempt disabled in case user_exit() is traced 5310 * and the tracer calls preempt_enable_notrace() causing 5311 * an infinite recursion. 5312 */ 5313 prev_ctx = exception_enter(); 5314 __schedule(true); 5315 exception_exit(prev_ctx); 5316 5317 preempt_latency_stop(1); 5318 preempt_enable_no_resched_notrace(); 5319 } while (need_resched()); 5320 } 5321 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5322 5323 #ifdef CONFIG_PREEMPT_DYNAMIC 5324 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5325 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 5326 #endif 5327 5328 #endif /* CONFIG_PREEMPTION */ 5329 5330 #ifdef CONFIG_PREEMPT_DYNAMIC 5331 5332 #include <linux/entry-common.h> 5333 5334 /* 5335 * SC:cond_resched 5336 * SC:might_resched 5337 * SC:preempt_schedule 5338 * SC:preempt_schedule_notrace 5339 * SC:irqentry_exit_cond_resched 5340 * 5341 * 5342 * NONE: 5343 * cond_resched <- __cond_resched 5344 * might_resched <- RET0 5345 * preempt_schedule <- NOP 5346 * preempt_schedule_notrace <- NOP 5347 * irqentry_exit_cond_resched <- NOP 5348 * 5349 * VOLUNTARY: 5350 * cond_resched <- __cond_resched 5351 * might_resched <- __cond_resched 5352 * preempt_schedule <- NOP 5353 * preempt_schedule_notrace <- NOP 5354 * irqentry_exit_cond_resched <- NOP 5355 * 5356 * FULL: 5357 * cond_resched <- RET0 5358 * might_resched <- RET0 5359 * preempt_schedule <- preempt_schedule 5360 * preempt_schedule_notrace <- preempt_schedule_notrace 5361 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 5362 */ 5363 5364 enum { 5365 preempt_dynamic_none = 0, 5366 preempt_dynamic_voluntary, 5367 preempt_dynamic_full, 5368 }; 5369 5370 static int preempt_dynamic_mode = preempt_dynamic_full; 5371 5372 static int sched_dynamic_mode(const char *str) 5373 { 5374 if (!strcmp(str, "none")) 5375 return 0; 5376 5377 if (!strcmp(str, "voluntary")) 5378 return 1; 5379 5380 if (!strcmp(str, "full")) 5381 return 2; 5382 5383 return -1; 5384 } 5385 5386 static void sched_dynamic_update(int mode) 5387 { 5388 /* 5389 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 5390 * the ZERO state, which is invalid. 5391 */ 5392 static_call_update(cond_resched, __cond_resched); 5393 static_call_update(might_resched, __cond_resched); 5394 static_call_update(preempt_schedule, __preempt_schedule_func); 5395 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5396 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5397 5398 switch (mode) { 5399 case preempt_dynamic_none: 5400 static_call_update(cond_resched, __cond_resched); 5401 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5402 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5403 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5404 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5405 pr_info("Dynamic Preempt: none\n"); 5406 break; 5407 5408 case preempt_dynamic_voluntary: 5409 static_call_update(cond_resched, __cond_resched); 5410 static_call_update(might_resched, __cond_resched); 5411 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5412 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5413 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5414 pr_info("Dynamic Preempt: voluntary\n"); 5415 break; 5416 5417 case preempt_dynamic_full: 5418 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0); 5419 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5420 static_call_update(preempt_schedule, __preempt_schedule_func); 5421 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5422 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5423 pr_info("Dynamic Preempt: full\n"); 5424 break; 5425 } 5426 5427 preempt_dynamic_mode = mode; 5428 } 5429 5430 static int __init setup_preempt_mode(char *str) 5431 { 5432 int mode = sched_dynamic_mode(str); 5433 if (mode < 0) { 5434 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 5435 return 1; 5436 } 5437 5438 sched_dynamic_update(mode); 5439 return 0; 5440 } 5441 __setup("preempt=", setup_preempt_mode); 5442 5443 #ifdef CONFIG_SCHED_DEBUG 5444 5445 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 5446 size_t cnt, loff_t *ppos) 5447 { 5448 char buf[16]; 5449 int mode; 5450 5451 if (cnt > 15) 5452 cnt = 15; 5453 5454 if (copy_from_user(&buf, ubuf, cnt)) 5455 return -EFAULT; 5456 5457 buf[cnt] = 0; 5458 mode = sched_dynamic_mode(strstrip(buf)); 5459 if (mode < 0) 5460 return mode; 5461 5462 sched_dynamic_update(mode); 5463 5464 *ppos += cnt; 5465 5466 return cnt; 5467 } 5468 5469 static int sched_dynamic_show(struct seq_file *m, void *v) 5470 { 5471 static const char * preempt_modes[] = { 5472 "none", "voluntary", "full" 5473 }; 5474 int i; 5475 5476 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 5477 if (preempt_dynamic_mode == i) 5478 seq_puts(m, "("); 5479 seq_puts(m, preempt_modes[i]); 5480 if (preempt_dynamic_mode == i) 5481 seq_puts(m, ")"); 5482 5483 seq_puts(m, " "); 5484 } 5485 5486 seq_puts(m, "\n"); 5487 return 0; 5488 } 5489 5490 static int sched_dynamic_open(struct inode *inode, struct file *filp) 5491 { 5492 return single_open(filp, sched_dynamic_show, NULL); 5493 } 5494 5495 static const struct file_operations sched_dynamic_fops = { 5496 .open = sched_dynamic_open, 5497 .write = sched_dynamic_write, 5498 .read = seq_read, 5499 .llseek = seq_lseek, 5500 .release = single_release, 5501 }; 5502 5503 static __init int sched_init_debug_dynamic(void) 5504 { 5505 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops); 5506 return 0; 5507 } 5508 late_initcall(sched_init_debug_dynamic); 5509 5510 #endif /* CONFIG_SCHED_DEBUG */ 5511 #endif /* CONFIG_PREEMPT_DYNAMIC */ 5512 5513 5514 /* 5515 * This is the entry point to schedule() from kernel preemption 5516 * off of irq context. 5517 * Note, that this is called and return with irqs disabled. This will 5518 * protect us against recursive calling from irq. 5519 */ 5520 asmlinkage __visible void __sched preempt_schedule_irq(void) 5521 { 5522 enum ctx_state prev_state; 5523 5524 /* Catch callers which need to be fixed */ 5525 BUG_ON(preempt_count() || !irqs_disabled()); 5526 5527 prev_state = exception_enter(); 5528 5529 do { 5530 preempt_disable(); 5531 local_irq_enable(); 5532 __schedule(true); 5533 local_irq_disable(); 5534 sched_preempt_enable_no_resched(); 5535 } while (need_resched()); 5536 5537 exception_exit(prev_state); 5538 } 5539 5540 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5541 void *key) 5542 { 5543 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5544 return try_to_wake_up(curr->private, mode, wake_flags); 5545 } 5546 EXPORT_SYMBOL(default_wake_function); 5547 5548 #ifdef CONFIG_RT_MUTEXES 5549 5550 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5551 { 5552 if (pi_task) 5553 prio = min(prio, pi_task->prio); 5554 5555 return prio; 5556 } 5557 5558 static inline int rt_effective_prio(struct task_struct *p, int prio) 5559 { 5560 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5561 5562 return __rt_effective_prio(pi_task, prio); 5563 } 5564 5565 /* 5566 * rt_mutex_setprio - set the current priority of a task 5567 * @p: task to boost 5568 * @pi_task: donor task 5569 * 5570 * This function changes the 'effective' priority of a task. It does 5571 * not touch ->normal_prio like __setscheduler(). 5572 * 5573 * Used by the rt_mutex code to implement priority inheritance 5574 * logic. Call site only calls if the priority of the task changed. 5575 */ 5576 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5577 { 5578 int prio, oldprio, queued, running, queue_flag = 5579 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5580 const struct sched_class *prev_class; 5581 struct rq_flags rf; 5582 struct rq *rq; 5583 5584 /* XXX used to be waiter->prio, not waiter->task->prio */ 5585 prio = __rt_effective_prio(pi_task, p->normal_prio); 5586 5587 /* 5588 * If nothing changed; bail early. 5589 */ 5590 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5591 return; 5592 5593 rq = __task_rq_lock(p, &rf); 5594 update_rq_clock(rq); 5595 /* 5596 * Set under pi_lock && rq->lock, such that the value can be used under 5597 * either lock. 5598 * 5599 * Note that there is loads of tricky to make this pointer cache work 5600 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5601 * ensure a task is de-boosted (pi_task is set to NULL) before the 5602 * task is allowed to run again (and can exit). This ensures the pointer 5603 * points to a blocked task -- which guarantees the task is present. 5604 */ 5605 p->pi_top_task = pi_task; 5606 5607 /* 5608 * For FIFO/RR we only need to set prio, if that matches we're done. 5609 */ 5610 if (prio == p->prio && !dl_prio(prio)) 5611 goto out_unlock; 5612 5613 /* 5614 * Idle task boosting is a nono in general. There is one 5615 * exception, when PREEMPT_RT and NOHZ is active: 5616 * 5617 * The idle task calls get_next_timer_interrupt() and holds 5618 * the timer wheel base->lock on the CPU and another CPU wants 5619 * to access the timer (probably to cancel it). We can safely 5620 * ignore the boosting request, as the idle CPU runs this code 5621 * with interrupts disabled and will complete the lock 5622 * protected section without being interrupted. So there is no 5623 * real need to boost. 5624 */ 5625 if (unlikely(p == rq->idle)) { 5626 WARN_ON(p != rq->curr); 5627 WARN_ON(p->pi_blocked_on); 5628 goto out_unlock; 5629 } 5630 5631 trace_sched_pi_setprio(p, pi_task); 5632 oldprio = p->prio; 5633 5634 if (oldprio == prio) 5635 queue_flag &= ~DEQUEUE_MOVE; 5636 5637 prev_class = p->sched_class; 5638 queued = task_on_rq_queued(p); 5639 running = task_current(rq, p); 5640 if (queued) 5641 dequeue_task(rq, p, queue_flag); 5642 if (running) 5643 put_prev_task(rq, p); 5644 5645 /* 5646 * Boosting condition are: 5647 * 1. -rt task is running and holds mutex A 5648 * --> -dl task blocks on mutex A 5649 * 5650 * 2. -dl task is running and holds mutex A 5651 * --> -dl task blocks on mutex A and could preempt the 5652 * running task 5653 */ 5654 if (dl_prio(prio)) { 5655 if (!dl_prio(p->normal_prio) || 5656 (pi_task && dl_prio(pi_task->prio) && 5657 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5658 p->dl.pi_se = pi_task->dl.pi_se; 5659 queue_flag |= ENQUEUE_REPLENISH; 5660 } else { 5661 p->dl.pi_se = &p->dl; 5662 } 5663 p->sched_class = &dl_sched_class; 5664 } else if (rt_prio(prio)) { 5665 if (dl_prio(oldprio)) 5666 p->dl.pi_se = &p->dl; 5667 if (oldprio < prio) 5668 queue_flag |= ENQUEUE_HEAD; 5669 p->sched_class = &rt_sched_class; 5670 } else { 5671 if (dl_prio(oldprio)) 5672 p->dl.pi_se = &p->dl; 5673 if (rt_prio(oldprio)) 5674 p->rt.timeout = 0; 5675 p->sched_class = &fair_sched_class; 5676 } 5677 5678 p->prio = prio; 5679 5680 if (queued) 5681 enqueue_task(rq, p, queue_flag); 5682 if (running) 5683 set_next_task(rq, p); 5684 5685 check_class_changed(rq, p, prev_class, oldprio); 5686 out_unlock: 5687 /* Avoid rq from going away on us: */ 5688 preempt_disable(); 5689 5690 rq_unpin_lock(rq, &rf); 5691 __balance_callbacks(rq); 5692 raw_spin_unlock(&rq->lock); 5693 5694 preempt_enable(); 5695 } 5696 #else 5697 static inline int rt_effective_prio(struct task_struct *p, int prio) 5698 { 5699 return prio; 5700 } 5701 #endif 5702 5703 void set_user_nice(struct task_struct *p, long nice) 5704 { 5705 bool queued, running; 5706 int old_prio; 5707 struct rq_flags rf; 5708 struct rq *rq; 5709 5710 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5711 return; 5712 /* 5713 * We have to be careful, if called from sys_setpriority(), 5714 * the task might be in the middle of scheduling on another CPU. 5715 */ 5716 rq = task_rq_lock(p, &rf); 5717 update_rq_clock(rq); 5718 5719 /* 5720 * The RT priorities are set via sched_setscheduler(), but we still 5721 * allow the 'normal' nice value to be set - but as expected 5722 * it won't have any effect on scheduling until the task is 5723 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5724 */ 5725 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5726 p->static_prio = NICE_TO_PRIO(nice); 5727 goto out_unlock; 5728 } 5729 queued = task_on_rq_queued(p); 5730 running = task_current(rq, p); 5731 if (queued) 5732 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5733 if (running) 5734 put_prev_task(rq, p); 5735 5736 p->static_prio = NICE_TO_PRIO(nice); 5737 set_load_weight(p, true); 5738 old_prio = p->prio; 5739 p->prio = effective_prio(p); 5740 5741 if (queued) 5742 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5743 if (running) 5744 set_next_task(rq, p); 5745 5746 /* 5747 * If the task increased its priority or is running and 5748 * lowered its priority, then reschedule its CPU: 5749 */ 5750 p->sched_class->prio_changed(rq, p, old_prio); 5751 5752 out_unlock: 5753 task_rq_unlock(rq, p, &rf); 5754 } 5755 EXPORT_SYMBOL(set_user_nice); 5756 5757 /* 5758 * can_nice - check if a task can reduce its nice value 5759 * @p: task 5760 * @nice: nice value 5761 */ 5762 int can_nice(const struct task_struct *p, const int nice) 5763 { 5764 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5765 int nice_rlim = nice_to_rlimit(nice); 5766 5767 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5768 capable(CAP_SYS_NICE)); 5769 } 5770 5771 #ifdef __ARCH_WANT_SYS_NICE 5772 5773 /* 5774 * sys_nice - change the priority of the current process. 5775 * @increment: priority increment 5776 * 5777 * sys_setpriority is a more generic, but much slower function that 5778 * does similar things. 5779 */ 5780 SYSCALL_DEFINE1(nice, int, increment) 5781 { 5782 long nice, retval; 5783 5784 /* 5785 * Setpriority might change our priority at the same moment. 5786 * We don't have to worry. Conceptually one call occurs first 5787 * and we have a single winner. 5788 */ 5789 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5790 nice = task_nice(current) + increment; 5791 5792 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5793 if (increment < 0 && !can_nice(current, nice)) 5794 return -EPERM; 5795 5796 retval = security_task_setnice(current, nice); 5797 if (retval) 5798 return retval; 5799 5800 set_user_nice(current, nice); 5801 return 0; 5802 } 5803 5804 #endif 5805 5806 /** 5807 * task_prio - return the priority value of a given task. 5808 * @p: the task in question. 5809 * 5810 * Return: The priority value as seen by users in /proc. 5811 * 5812 * sched policy return value kernel prio user prio/nice 5813 * 5814 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 5815 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 5816 * deadline -101 -1 0 5817 */ 5818 int task_prio(const struct task_struct *p) 5819 { 5820 return p->prio - MAX_RT_PRIO; 5821 } 5822 5823 /** 5824 * idle_cpu - is a given CPU idle currently? 5825 * @cpu: the processor in question. 5826 * 5827 * Return: 1 if the CPU is currently idle. 0 otherwise. 5828 */ 5829 int idle_cpu(int cpu) 5830 { 5831 struct rq *rq = cpu_rq(cpu); 5832 5833 if (rq->curr != rq->idle) 5834 return 0; 5835 5836 if (rq->nr_running) 5837 return 0; 5838 5839 #ifdef CONFIG_SMP 5840 if (rq->ttwu_pending) 5841 return 0; 5842 #endif 5843 5844 return 1; 5845 } 5846 5847 /** 5848 * available_idle_cpu - is a given CPU idle for enqueuing work. 5849 * @cpu: the CPU in question. 5850 * 5851 * Return: 1 if the CPU is currently idle. 0 otherwise. 5852 */ 5853 int available_idle_cpu(int cpu) 5854 { 5855 if (!idle_cpu(cpu)) 5856 return 0; 5857 5858 if (vcpu_is_preempted(cpu)) 5859 return 0; 5860 5861 return 1; 5862 } 5863 5864 /** 5865 * idle_task - return the idle task for a given CPU. 5866 * @cpu: the processor in question. 5867 * 5868 * Return: The idle task for the CPU @cpu. 5869 */ 5870 struct task_struct *idle_task(int cpu) 5871 { 5872 return cpu_rq(cpu)->idle; 5873 } 5874 5875 #ifdef CONFIG_SMP 5876 /* 5877 * This function computes an effective utilization for the given CPU, to be 5878 * used for frequency selection given the linear relation: f = u * f_max. 5879 * 5880 * The scheduler tracks the following metrics: 5881 * 5882 * cpu_util_{cfs,rt,dl,irq}() 5883 * cpu_bw_dl() 5884 * 5885 * Where the cfs,rt and dl util numbers are tracked with the same metric and 5886 * synchronized windows and are thus directly comparable. 5887 * 5888 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 5889 * which excludes things like IRQ and steal-time. These latter are then accrued 5890 * in the irq utilization. 5891 * 5892 * The DL bandwidth number otoh is not a measured metric but a value computed 5893 * based on the task model parameters and gives the minimal utilization 5894 * required to meet deadlines. 5895 */ 5896 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 5897 unsigned long max, enum cpu_util_type type, 5898 struct task_struct *p) 5899 { 5900 unsigned long dl_util, util, irq; 5901 struct rq *rq = cpu_rq(cpu); 5902 5903 if (!uclamp_is_used() && 5904 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 5905 return max; 5906 } 5907 5908 /* 5909 * Early check to see if IRQ/steal time saturates the CPU, can be 5910 * because of inaccuracies in how we track these -- see 5911 * update_irq_load_avg(). 5912 */ 5913 irq = cpu_util_irq(rq); 5914 if (unlikely(irq >= max)) 5915 return max; 5916 5917 /* 5918 * Because the time spend on RT/DL tasks is visible as 'lost' time to 5919 * CFS tasks and we use the same metric to track the effective 5920 * utilization (PELT windows are synchronized) we can directly add them 5921 * to obtain the CPU's actual utilization. 5922 * 5923 * CFS and RT utilization can be boosted or capped, depending on 5924 * utilization clamp constraints requested by currently RUNNABLE 5925 * tasks. 5926 * When there are no CFS RUNNABLE tasks, clamps are released and 5927 * frequency will be gracefully reduced with the utilization decay. 5928 */ 5929 util = util_cfs + cpu_util_rt(rq); 5930 if (type == FREQUENCY_UTIL) 5931 util = uclamp_rq_util_with(rq, util, p); 5932 5933 dl_util = cpu_util_dl(rq); 5934 5935 /* 5936 * For frequency selection we do not make cpu_util_dl() a permanent part 5937 * of this sum because we want to use cpu_bw_dl() later on, but we need 5938 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 5939 * that we select f_max when there is no idle time. 5940 * 5941 * NOTE: numerical errors or stop class might cause us to not quite hit 5942 * saturation when we should -- something for later. 5943 */ 5944 if (util + dl_util >= max) 5945 return max; 5946 5947 /* 5948 * OTOH, for energy computation we need the estimated running time, so 5949 * include util_dl and ignore dl_bw. 5950 */ 5951 if (type == ENERGY_UTIL) 5952 util += dl_util; 5953 5954 /* 5955 * There is still idle time; further improve the number by using the 5956 * irq metric. Because IRQ/steal time is hidden from the task clock we 5957 * need to scale the task numbers: 5958 * 5959 * max - irq 5960 * U' = irq + --------- * U 5961 * max 5962 */ 5963 util = scale_irq_capacity(util, irq, max); 5964 util += irq; 5965 5966 /* 5967 * Bandwidth required by DEADLINE must always be granted while, for 5968 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 5969 * to gracefully reduce the frequency when no tasks show up for longer 5970 * periods of time. 5971 * 5972 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 5973 * bw_dl as requested freq. However, cpufreq is not yet ready for such 5974 * an interface. So, we only do the latter for now. 5975 */ 5976 if (type == FREQUENCY_UTIL) 5977 util += cpu_bw_dl(rq); 5978 5979 return min(max, util); 5980 } 5981 5982 unsigned long sched_cpu_util(int cpu, unsigned long max) 5983 { 5984 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 5985 ENERGY_UTIL, NULL); 5986 } 5987 #endif /* CONFIG_SMP */ 5988 5989 /** 5990 * find_process_by_pid - find a process with a matching PID value. 5991 * @pid: the pid in question. 5992 * 5993 * The task of @pid, if found. %NULL otherwise. 5994 */ 5995 static struct task_struct *find_process_by_pid(pid_t pid) 5996 { 5997 return pid ? find_task_by_vpid(pid) : current; 5998 } 5999 6000 /* 6001 * sched_setparam() passes in -1 for its policy, to let the functions 6002 * it calls know not to change it. 6003 */ 6004 #define SETPARAM_POLICY -1 6005 6006 static void __setscheduler_params(struct task_struct *p, 6007 const struct sched_attr *attr) 6008 { 6009 int policy = attr->sched_policy; 6010 6011 if (policy == SETPARAM_POLICY) 6012 policy = p->policy; 6013 6014 p->policy = policy; 6015 6016 if (dl_policy(policy)) 6017 __setparam_dl(p, attr); 6018 else if (fair_policy(policy)) 6019 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6020 6021 /* 6022 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6023 * !rt_policy. Always setting this ensures that things like 6024 * getparam()/getattr() don't report silly values for !rt tasks. 6025 */ 6026 p->rt_priority = attr->sched_priority; 6027 p->normal_prio = normal_prio(p); 6028 set_load_weight(p, true); 6029 } 6030 6031 /* Actually do priority change: must hold pi & rq lock. */ 6032 static void __setscheduler(struct rq *rq, struct task_struct *p, 6033 const struct sched_attr *attr, bool keep_boost) 6034 { 6035 /* 6036 * If params can't change scheduling class changes aren't allowed 6037 * either. 6038 */ 6039 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6040 return; 6041 6042 __setscheduler_params(p, attr); 6043 6044 /* 6045 * Keep a potential priority boosting if called from 6046 * sched_setscheduler(). 6047 */ 6048 p->prio = normal_prio(p); 6049 if (keep_boost) 6050 p->prio = rt_effective_prio(p, p->prio); 6051 6052 if (dl_prio(p->prio)) 6053 p->sched_class = &dl_sched_class; 6054 else if (rt_prio(p->prio)) 6055 p->sched_class = &rt_sched_class; 6056 else 6057 p->sched_class = &fair_sched_class; 6058 } 6059 6060 /* 6061 * Check the target process has a UID that matches the current process's: 6062 */ 6063 static bool check_same_owner(struct task_struct *p) 6064 { 6065 const struct cred *cred = current_cred(), *pcred; 6066 bool match; 6067 6068 rcu_read_lock(); 6069 pcred = __task_cred(p); 6070 match = (uid_eq(cred->euid, pcred->euid) || 6071 uid_eq(cred->euid, pcred->uid)); 6072 rcu_read_unlock(); 6073 return match; 6074 } 6075 6076 static int __sched_setscheduler(struct task_struct *p, 6077 const struct sched_attr *attr, 6078 bool user, bool pi) 6079 { 6080 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6081 MAX_RT_PRIO - 1 - attr->sched_priority; 6082 int retval, oldprio, oldpolicy = -1, queued, running; 6083 int new_effective_prio, policy = attr->sched_policy; 6084 const struct sched_class *prev_class; 6085 struct callback_head *head; 6086 struct rq_flags rf; 6087 int reset_on_fork; 6088 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6089 struct rq *rq; 6090 6091 /* The pi code expects interrupts enabled */ 6092 BUG_ON(pi && in_interrupt()); 6093 recheck: 6094 /* Double check policy once rq lock held: */ 6095 if (policy < 0) { 6096 reset_on_fork = p->sched_reset_on_fork; 6097 policy = oldpolicy = p->policy; 6098 } else { 6099 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6100 6101 if (!valid_policy(policy)) 6102 return -EINVAL; 6103 } 6104 6105 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6106 return -EINVAL; 6107 6108 /* 6109 * Valid priorities for SCHED_FIFO and SCHED_RR are 6110 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6111 * SCHED_BATCH and SCHED_IDLE is 0. 6112 */ 6113 if (attr->sched_priority > MAX_RT_PRIO-1) 6114 return -EINVAL; 6115 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6116 (rt_policy(policy) != (attr->sched_priority != 0))) 6117 return -EINVAL; 6118 6119 /* 6120 * Allow unprivileged RT tasks to decrease priority: 6121 */ 6122 if (user && !capable(CAP_SYS_NICE)) { 6123 if (fair_policy(policy)) { 6124 if (attr->sched_nice < task_nice(p) && 6125 !can_nice(p, attr->sched_nice)) 6126 return -EPERM; 6127 } 6128 6129 if (rt_policy(policy)) { 6130 unsigned long rlim_rtprio = 6131 task_rlimit(p, RLIMIT_RTPRIO); 6132 6133 /* Can't set/change the rt policy: */ 6134 if (policy != p->policy && !rlim_rtprio) 6135 return -EPERM; 6136 6137 /* Can't increase priority: */ 6138 if (attr->sched_priority > p->rt_priority && 6139 attr->sched_priority > rlim_rtprio) 6140 return -EPERM; 6141 } 6142 6143 /* 6144 * Can't set/change SCHED_DEADLINE policy at all for now 6145 * (safest behavior); in the future we would like to allow 6146 * unprivileged DL tasks to increase their relative deadline 6147 * or reduce their runtime (both ways reducing utilization) 6148 */ 6149 if (dl_policy(policy)) 6150 return -EPERM; 6151 6152 /* 6153 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6154 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6155 */ 6156 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6157 if (!can_nice(p, task_nice(p))) 6158 return -EPERM; 6159 } 6160 6161 /* Can't change other user's priorities: */ 6162 if (!check_same_owner(p)) 6163 return -EPERM; 6164 6165 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6166 if (p->sched_reset_on_fork && !reset_on_fork) 6167 return -EPERM; 6168 } 6169 6170 if (user) { 6171 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6172 return -EINVAL; 6173 6174 retval = security_task_setscheduler(p); 6175 if (retval) 6176 return retval; 6177 } 6178 6179 /* Update task specific "requested" clamps */ 6180 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6181 retval = uclamp_validate(p, attr); 6182 if (retval) 6183 return retval; 6184 } 6185 6186 if (pi) 6187 cpuset_read_lock(); 6188 6189 /* 6190 * Make sure no PI-waiters arrive (or leave) while we are 6191 * changing the priority of the task: 6192 * 6193 * To be able to change p->policy safely, the appropriate 6194 * runqueue lock must be held. 6195 */ 6196 rq = task_rq_lock(p, &rf); 6197 update_rq_clock(rq); 6198 6199 /* 6200 * Changing the policy of the stop threads its a very bad idea: 6201 */ 6202 if (p == rq->stop) { 6203 retval = -EINVAL; 6204 goto unlock; 6205 } 6206 6207 /* 6208 * If not changing anything there's no need to proceed further, 6209 * but store a possible modification of reset_on_fork. 6210 */ 6211 if (unlikely(policy == p->policy)) { 6212 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 6213 goto change; 6214 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 6215 goto change; 6216 if (dl_policy(policy) && dl_param_changed(p, attr)) 6217 goto change; 6218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 6219 goto change; 6220 6221 p->sched_reset_on_fork = reset_on_fork; 6222 retval = 0; 6223 goto unlock; 6224 } 6225 change: 6226 6227 if (user) { 6228 #ifdef CONFIG_RT_GROUP_SCHED 6229 /* 6230 * Do not allow realtime tasks into groups that have no runtime 6231 * assigned. 6232 */ 6233 if (rt_bandwidth_enabled() && rt_policy(policy) && 6234 task_group(p)->rt_bandwidth.rt_runtime == 0 && 6235 !task_group_is_autogroup(task_group(p))) { 6236 retval = -EPERM; 6237 goto unlock; 6238 } 6239 #endif 6240 #ifdef CONFIG_SMP 6241 if (dl_bandwidth_enabled() && dl_policy(policy) && 6242 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 6243 cpumask_t *span = rq->rd->span; 6244 6245 /* 6246 * Don't allow tasks with an affinity mask smaller than 6247 * the entire root_domain to become SCHED_DEADLINE. We 6248 * will also fail if there's no bandwidth available. 6249 */ 6250 if (!cpumask_subset(span, p->cpus_ptr) || 6251 rq->rd->dl_bw.bw == 0) { 6252 retval = -EPERM; 6253 goto unlock; 6254 } 6255 } 6256 #endif 6257 } 6258 6259 /* Re-check policy now with rq lock held: */ 6260 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6261 policy = oldpolicy = -1; 6262 task_rq_unlock(rq, p, &rf); 6263 if (pi) 6264 cpuset_read_unlock(); 6265 goto recheck; 6266 } 6267 6268 /* 6269 * If setscheduling to SCHED_DEADLINE (or changing the parameters 6270 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 6271 * is available. 6272 */ 6273 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 6274 retval = -EBUSY; 6275 goto unlock; 6276 } 6277 6278 p->sched_reset_on_fork = reset_on_fork; 6279 oldprio = p->prio; 6280 6281 if (pi) { 6282 /* 6283 * Take priority boosted tasks into account. If the new 6284 * effective priority is unchanged, we just store the new 6285 * normal parameters and do not touch the scheduler class and 6286 * the runqueue. This will be done when the task deboost 6287 * itself. 6288 */ 6289 new_effective_prio = rt_effective_prio(p, newprio); 6290 if (new_effective_prio == oldprio) 6291 queue_flags &= ~DEQUEUE_MOVE; 6292 } 6293 6294 queued = task_on_rq_queued(p); 6295 running = task_current(rq, p); 6296 if (queued) 6297 dequeue_task(rq, p, queue_flags); 6298 if (running) 6299 put_prev_task(rq, p); 6300 6301 prev_class = p->sched_class; 6302 6303 __setscheduler(rq, p, attr, pi); 6304 __setscheduler_uclamp(p, attr); 6305 6306 if (queued) { 6307 /* 6308 * We enqueue to tail when the priority of a task is 6309 * increased (user space view). 6310 */ 6311 if (oldprio < p->prio) 6312 queue_flags |= ENQUEUE_HEAD; 6313 6314 enqueue_task(rq, p, queue_flags); 6315 } 6316 if (running) 6317 set_next_task(rq, p); 6318 6319 check_class_changed(rq, p, prev_class, oldprio); 6320 6321 /* Avoid rq from going away on us: */ 6322 preempt_disable(); 6323 head = splice_balance_callbacks(rq); 6324 task_rq_unlock(rq, p, &rf); 6325 6326 if (pi) { 6327 cpuset_read_unlock(); 6328 rt_mutex_adjust_pi(p); 6329 } 6330 6331 /* Run balance callbacks after we've adjusted the PI chain: */ 6332 balance_callbacks(rq, head); 6333 preempt_enable(); 6334 6335 return 0; 6336 6337 unlock: 6338 task_rq_unlock(rq, p, &rf); 6339 if (pi) 6340 cpuset_read_unlock(); 6341 return retval; 6342 } 6343 6344 static int _sched_setscheduler(struct task_struct *p, int policy, 6345 const struct sched_param *param, bool check) 6346 { 6347 struct sched_attr attr = { 6348 .sched_policy = policy, 6349 .sched_priority = param->sched_priority, 6350 .sched_nice = PRIO_TO_NICE(p->static_prio), 6351 }; 6352 6353 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6354 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6355 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6356 policy &= ~SCHED_RESET_ON_FORK; 6357 attr.sched_policy = policy; 6358 } 6359 6360 return __sched_setscheduler(p, &attr, check, true); 6361 } 6362 /** 6363 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6364 * @p: the task in question. 6365 * @policy: new policy. 6366 * @param: structure containing the new RT priority. 6367 * 6368 * Use sched_set_fifo(), read its comment. 6369 * 6370 * Return: 0 on success. An error code otherwise. 6371 * 6372 * NOTE that the task may be already dead. 6373 */ 6374 int sched_setscheduler(struct task_struct *p, int policy, 6375 const struct sched_param *param) 6376 { 6377 return _sched_setscheduler(p, policy, param, true); 6378 } 6379 6380 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6381 { 6382 return __sched_setscheduler(p, attr, true, true); 6383 } 6384 6385 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6386 { 6387 return __sched_setscheduler(p, attr, false, true); 6388 } 6389 6390 /** 6391 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6392 * @p: the task in question. 6393 * @policy: new policy. 6394 * @param: structure containing the new RT priority. 6395 * 6396 * Just like sched_setscheduler, only don't bother checking if the 6397 * current context has permission. For example, this is needed in 6398 * stop_machine(): we create temporary high priority worker threads, 6399 * but our caller might not have that capability. 6400 * 6401 * Return: 0 on success. An error code otherwise. 6402 */ 6403 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6404 const struct sched_param *param) 6405 { 6406 return _sched_setscheduler(p, policy, param, false); 6407 } 6408 6409 /* 6410 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6411 * incapable of resource management, which is the one thing an OS really should 6412 * be doing. 6413 * 6414 * This is of course the reason it is limited to privileged users only. 6415 * 6416 * Worse still; it is fundamentally impossible to compose static priority 6417 * workloads. You cannot take two correctly working static prio workloads 6418 * and smash them together and still expect them to work. 6419 * 6420 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6421 * 6422 * MAX_RT_PRIO / 2 6423 * 6424 * The administrator _MUST_ configure the system, the kernel simply doesn't 6425 * know enough information to make a sensible choice. 6426 */ 6427 void sched_set_fifo(struct task_struct *p) 6428 { 6429 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6430 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6431 } 6432 EXPORT_SYMBOL_GPL(sched_set_fifo); 6433 6434 /* 6435 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6436 */ 6437 void sched_set_fifo_low(struct task_struct *p) 6438 { 6439 struct sched_param sp = { .sched_priority = 1 }; 6440 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6441 } 6442 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6443 6444 void sched_set_normal(struct task_struct *p, int nice) 6445 { 6446 struct sched_attr attr = { 6447 .sched_policy = SCHED_NORMAL, 6448 .sched_nice = nice, 6449 }; 6450 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6451 } 6452 EXPORT_SYMBOL_GPL(sched_set_normal); 6453 6454 static int 6455 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6456 { 6457 struct sched_param lparam; 6458 struct task_struct *p; 6459 int retval; 6460 6461 if (!param || pid < 0) 6462 return -EINVAL; 6463 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6464 return -EFAULT; 6465 6466 rcu_read_lock(); 6467 retval = -ESRCH; 6468 p = find_process_by_pid(pid); 6469 if (likely(p)) 6470 get_task_struct(p); 6471 rcu_read_unlock(); 6472 6473 if (likely(p)) { 6474 retval = sched_setscheduler(p, policy, &lparam); 6475 put_task_struct(p); 6476 } 6477 6478 return retval; 6479 } 6480 6481 /* 6482 * Mimics kernel/events/core.c perf_copy_attr(). 6483 */ 6484 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6485 { 6486 u32 size; 6487 int ret; 6488 6489 /* Zero the full structure, so that a short copy will be nice: */ 6490 memset(attr, 0, sizeof(*attr)); 6491 6492 ret = get_user(size, &uattr->size); 6493 if (ret) 6494 return ret; 6495 6496 /* ABI compatibility quirk: */ 6497 if (!size) 6498 size = SCHED_ATTR_SIZE_VER0; 6499 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6500 goto err_size; 6501 6502 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6503 if (ret) { 6504 if (ret == -E2BIG) 6505 goto err_size; 6506 return ret; 6507 } 6508 6509 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6510 size < SCHED_ATTR_SIZE_VER1) 6511 return -EINVAL; 6512 6513 /* 6514 * XXX: Do we want to be lenient like existing syscalls; or do we want 6515 * to be strict and return an error on out-of-bounds values? 6516 */ 6517 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6518 6519 return 0; 6520 6521 err_size: 6522 put_user(sizeof(*attr), &uattr->size); 6523 return -E2BIG; 6524 } 6525 6526 /** 6527 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6528 * @pid: the pid in question. 6529 * @policy: new policy. 6530 * @param: structure containing the new RT priority. 6531 * 6532 * Return: 0 on success. An error code otherwise. 6533 */ 6534 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6535 { 6536 if (policy < 0) 6537 return -EINVAL; 6538 6539 return do_sched_setscheduler(pid, policy, param); 6540 } 6541 6542 /** 6543 * sys_sched_setparam - set/change the RT priority of a thread 6544 * @pid: the pid in question. 6545 * @param: structure containing the new RT priority. 6546 * 6547 * Return: 0 on success. An error code otherwise. 6548 */ 6549 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6550 { 6551 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6552 } 6553 6554 /** 6555 * sys_sched_setattr - same as above, but with extended sched_attr 6556 * @pid: the pid in question. 6557 * @uattr: structure containing the extended parameters. 6558 * @flags: for future extension. 6559 */ 6560 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6561 unsigned int, flags) 6562 { 6563 struct sched_attr attr; 6564 struct task_struct *p; 6565 int retval; 6566 6567 if (!uattr || pid < 0 || flags) 6568 return -EINVAL; 6569 6570 retval = sched_copy_attr(uattr, &attr); 6571 if (retval) 6572 return retval; 6573 6574 if ((int)attr.sched_policy < 0) 6575 return -EINVAL; 6576 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6577 attr.sched_policy = SETPARAM_POLICY; 6578 6579 rcu_read_lock(); 6580 retval = -ESRCH; 6581 p = find_process_by_pid(pid); 6582 if (likely(p)) 6583 get_task_struct(p); 6584 rcu_read_unlock(); 6585 6586 if (likely(p)) { 6587 retval = sched_setattr(p, &attr); 6588 put_task_struct(p); 6589 } 6590 6591 return retval; 6592 } 6593 6594 /** 6595 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6596 * @pid: the pid in question. 6597 * 6598 * Return: On success, the policy of the thread. Otherwise, a negative error 6599 * code. 6600 */ 6601 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6602 { 6603 struct task_struct *p; 6604 int retval; 6605 6606 if (pid < 0) 6607 return -EINVAL; 6608 6609 retval = -ESRCH; 6610 rcu_read_lock(); 6611 p = find_process_by_pid(pid); 6612 if (p) { 6613 retval = security_task_getscheduler(p); 6614 if (!retval) 6615 retval = p->policy 6616 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6617 } 6618 rcu_read_unlock(); 6619 return retval; 6620 } 6621 6622 /** 6623 * sys_sched_getparam - get the RT priority of a thread 6624 * @pid: the pid in question. 6625 * @param: structure containing the RT priority. 6626 * 6627 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6628 * code. 6629 */ 6630 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6631 { 6632 struct sched_param lp = { .sched_priority = 0 }; 6633 struct task_struct *p; 6634 int retval; 6635 6636 if (!param || pid < 0) 6637 return -EINVAL; 6638 6639 rcu_read_lock(); 6640 p = find_process_by_pid(pid); 6641 retval = -ESRCH; 6642 if (!p) 6643 goto out_unlock; 6644 6645 retval = security_task_getscheduler(p); 6646 if (retval) 6647 goto out_unlock; 6648 6649 if (task_has_rt_policy(p)) 6650 lp.sched_priority = p->rt_priority; 6651 rcu_read_unlock(); 6652 6653 /* 6654 * This one might sleep, we cannot do it with a spinlock held ... 6655 */ 6656 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6657 6658 return retval; 6659 6660 out_unlock: 6661 rcu_read_unlock(); 6662 return retval; 6663 } 6664 6665 /* 6666 * Copy the kernel size attribute structure (which might be larger 6667 * than what user-space knows about) to user-space. 6668 * 6669 * Note that all cases are valid: user-space buffer can be larger or 6670 * smaller than the kernel-space buffer. The usual case is that both 6671 * have the same size. 6672 */ 6673 static int 6674 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6675 struct sched_attr *kattr, 6676 unsigned int usize) 6677 { 6678 unsigned int ksize = sizeof(*kattr); 6679 6680 if (!access_ok(uattr, usize)) 6681 return -EFAULT; 6682 6683 /* 6684 * sched_getattr() ABI forwards and backwards compatibility: 6685 * 6686 * If usize == ksize then we just copy everything to user-space and all is good. 6687 * 6688 * If usize < ksize then we only copy as much as user-space has space for, 6689 * this keeps ABI compatibility as well. We skip the rest. 6690 * 6691 * If usize > ksize then user-space is using a newer version of the ABI, 6692 * which part the kernel doesn't know about. Just ignore it - tooling can 6693 * detect the kernel's knowledge of attributes from the attr->size value 6694 * which is set to ksize in this case. 6695 */ 6696 kattr->size = min(usize, ksize); 6697 6698 if (copy_to_user(uattr, kattr, kattr->size)) 6699 return -EFAULT; 6700 6701 return 0; 6702 } 6703 6704 /** 6705 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6706 * @pid: the pid in question. 6707 * @uattr: structure containing the extended parameters. 6708 * @usize: sizeof(attr) for fwd/bwd comp. 6709 * @flags: for future extension. 6710 */ 6711 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6712 unsigned int, usize, unsigned int, flags) 6713 { 6714 struct sched_attr kattr = { }; 6715 struct task_struct *p; 6716 int retval; 6717 6718 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6719 usize < SCHED_ATTR_SIZE_VER0 || flags) 6720 return -EINVAL; 6721 6722 rcu_read_lock(); 6723 p = find_process_by_pid(pid); 6724 retval = -ESRCH; 6725 if (!p) 6726 goto out_unlock; 6727 6728 retval = security_task_getscheduler(p); 6729 if (retval) 6730 goto out_unlock; 6731 6732 kattr.sched_policy = p->policy; 6733 if (p->sched_reset_on_fork) 6734 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6735 if (task_has_dl_policy(p)) 6736 __getparam_dl(p, &kattr); 6737 else if (task_has_rt_policy(p)) 6738 kattr.sched_priority = p->rt_priority; 6739 else 6740 kattr.sched_nice = task_nice(p); 6741 6742 #ifdef CONFIG_UCLAMP_TASK 6743 /* 6744 * This could race with another potential updater, but this is fine 6745 * because it'll correctly read the old or the new value. We don't need 6746 * to guarantee who wins the race as long as it doesn't return garbage. 6747 */ 6748 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6749 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6750 #endif 6751 6752 rcu_read_unlock(); 6753 6754 return sched_attr_copy_to_user(uattr, &kattr, usize); 6755 6756 out_unlock: 6757 rcu_read_unlock(); 6758 return retval; 6759 } 6760 6761 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6762 { 6763 cpumask_var_t cpus_allowed, new_mask; 6764 struct task_struct *p; 6765 int retval; 6766 6767 rcu_read_lock(); 6768 6769 p = find_process_by_pid(pid); 6770 if (!p) { 6771 rcu_read_unlock(); 6772 return -ESRCH; 6773 } 6774 6775 /* Prevent p going away */ 6776 get_task_struct(p); 6777 rcu_read_unlock(); 6778 6779 if (p->flags & PF_NO_SETAFFINITY) { 6780 retval = -EINVAL; 6781 goto out_put_task; 6782 } 6783 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6784 retval = -ENOMEM; 6785 goto out_put_task; 6786 } 6787 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6788 retval = -ENOMEM; 6789 goto out_free_cpus_allowed; 6790 } 6791 retval = -EPERM; 6792 if (!check_same_owner(p)) { 6793 rcu_read_lock(); 6794 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6795 rcu_read_unlock(); 6796 goto out_free_new_mask; 6797 } 6798 rcu_read_unlock(); 6799 } 6800 6801 retval = security_task_setscheduler(p); 6802 if (retval) 6803 goto out_free_new_mask; 6804 6805 6806 cpuset_cpus_allowed(p, cpus_allowed); 6807 cpumask_and(new_mask, in_mask, cpus_allowed); 6808 6809 /* 6810 * Since bandwidth control happens on root_domain basis, 6811 * if admission test is enabled, we only admit -deadline 6812 * tasks allowed to run on all the CPUs in the task's 6813 * root_domain. 6814 */ 6815 #ifdef CONFIG_SMP 6816 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6817 rcu_read_lock(); 6818 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6819 retval = -EBUSY; 6820 rcu_read_unlock(); 6821 goto out_free_new_mask; 6822 } 6823 rcu_read_unlock(); 6824 } 6825 #endif 6826 again: 6827 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6828 6829 if (!retval) { 6830 cpuset_cpus_allowed(p, cpus_allowed); 6831 if (!cpumask_subset(new_mask, cpus_allowed)) { 6832 /* 6833 * We must have raced with a concurrent cpuset 6834 * update. Just reset the cpus_allowed to the 6835 * cpuset's cpus_allowed 6836 */ 6837 cpumask_copy(new_mask, cpus_allowed); 6838 goto again; 6839 } 6840 } 6841 out_free_new_mask: 6842 free_cpumask_var(new_mask); 6843 out_free_cpus_allowed: 6844 free_cpumask_var(cpus_allowed); 6845 out_put_task: 6846 put_task_struct(p); 6847 return retval; 6848 } 6849 6850 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6851 struct cpumask *new_mask) 6852 { 6853 if (len < cpumask_size()) 6854 cpumask_clear(new_mask); 6855 else if (len > cpumask_size()) 6856 len = cpumask_size(); 6857 6858 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6859 } 6860 6861 /** 6862 * sys_sched_setaffinity - set the CPU affinity of a process 6863 * @pid: pid of the process 6864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6865 * @user_mask_ptr: user-space pointer to the new CPU mask 6866 * 6867 * Return: 0 on success. An error code otherwise. 6868 */ 6869 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6870 unsigned long __user *, user_mask_ptr) 6871 { 6872 cpumask_var_t new_mask; 6873 int retval; 6874 6875 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6876 return -ENOMEM; 6877 6878 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6879 if (retval == 0) 6880 retval = sched_setaffinity(pid, new_mask); 6881 free_cpumask_var(new_mask); 6882 return retval; 6883 } 6884 6885 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6886 { 6887 struct task_struct *p; 6888 unsigned long flags; 6889 int retval; 6890 6891 rcu_read_lock(); 6892 6893 retval = -ESRCH; 6894 p = find_process_by_pid(pid); 6895 if (!p) 6896 goto out_unlock; 6897 6898 retval = security_task_getscheduler(p); 6899 if (retval) 6900 goto out_unlock; 6901 6902 raw_spin_lock_irqsave(&p->pi_lock, flags); 6903 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6904 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6905 6906 out_unlock: 6907 rcu_read_unlock(); 6908 6909 return retval; 6910 } 6911 6912 /** 6913 * sys_sched_getaffinity - get the CPU affinity of a process 6914 * @pid: pid of the process 6915 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6916 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6917 * 6918 * Return: size of CPU mask copied to user_mask_ptr on success. An 6919 * error code otherwise. 6920 */ 6921 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6922 unsigned long __user *, user_mask_ptr) 6923 { 6924 int ret; 6925 cpumask_var_t mask; 6926 6927 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6928 return -EINVAL; 6929 if (len & (sizeof(unsigned long)-1)) 6930 return -EINVAL; 6931 6932 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6933 return -ENOMEM; 6934 6935 ret = sched_getaffinity(pid, mask); 6936 if (ret == 0) { 6937 unsigned int retlen = min(len, cpumask_size()); 6938 6939 if (copy_to_user(user_mask_ptr, mask, retlen)) 6940 ret = -EFAULT; 6941 else 6942 ret = retlen; 6943 } 6944 free_cpumask_var(mask); 6945 6946 return ret; 6947 } 6948 6949 static void do_sched_yield(void) 6950 { 6951 struct rq_flags rf; 6952 struct rq *rq; 6953 6954 rq = this_rq_lock_irq(&rf); 6955 6956 schedstat_inc(rq->yld_count); 6957 current->sched_class->yield_task(rq); 6958 6959 preempt_disable(); 6960 rq_unlock_irq(rq, &rf); 6961 sched_preempt_enable_no_resched(); 6962 6963 schedule(); 6964 } 6965 6966 /** 6967 * sys_sched_yield - yield the current processor to other threads. 6968 * 6969 * This function yields the current CPU to other tasks. If there are no 6970 * other threads running on this CPU then this function will return. 6971 * 6972 * Return: 0. 6973 */ 6974 SYSCALL_DEFINE0(sched_yield) 6975 { 6976 do_sched_yield(); 6977 return 0; 6978 } 6979 6980 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 6981 int __sched __cond_resched(void) 6982 { 6983 if (should_resched(0)) { 6984 preempt_schedule_common(); 6985 return 1; 6986 } 6987 #ifndef CONFIG_PREEMPT_RCU 6988 rcu_all_qs(); 6989 #endif 6990 return 0; 6991 } 6992 EXPORT_SYMBOL(__cond_resched); 6993 #endif 6994 6995 #ifdef CONFIG_PREEMPT_DYNAMIC 6996 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 6997 EXPORT_STATIC_CALL_TRAMP(cond_resched); 6998 6999 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7000 EXPORT_STATIC_CALL_TRAMP(might_resched); 7001 #endif 7002 7003 /* 7004 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7005 * call schedule, and on return reacquire the lock. 7006 * 7007 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7008 * operations here to prevent schedule() from being called twice (once via 7009 * spin_unlock(), once by hand). 7010 */ 7011 int __cond_resched_lock(spinlock_t *lock) 7012 { 7013 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7014 int ret = 0; 7015 7016 lockdep_assert_held(lock); 7017 7018 if (spin_needbreak(lock) || resched) { 7019 spin_unlock(lock); 7020 if (resched) 7021 preempt_schedule_common(); 7022 else 7023 cpu_relax(); 7024 ret = 1; 7025 spin_lock(lock); 7026 } 7027 return ret; 7028 } 7029 EXPORT_SYMBOL(__cond_resched_lock); 7030 7031 int __cond_resched_rwlock_read(rwlock_t *lock) 7032 { 7033 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7034 int ret = 0; 7035 7036 lockdep_assert_held_read(lock); 7037 7038 if (rwlock_needbreak(lock) || resched) { 7039 read_unlock(lock); 7040 if (resched) 7041 preempt_schedule_common(); 7042 else 7043 cpu_relax(); 7044 ret = 1; 7045 read_lock(lock); 7046 } 7047 return ret; 7048 } 7049 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7050 7051 int __cond_resched_rwlock_write(rwlock_t *lock) 7052 { 7053 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7054 int ret = 0; 7055 7056 lockdep_assert_held_write(lock); 7057 7058 if (rwlock_needbreak(lock) || resched) { 7059 write_unlock(lock); 7060 if (resched) 7061 preempt_schedule_common(); 7062 else 7063 cpu_relax(); 7064 ret = 1; 7065 write_lock(lock); 7066 } 7067 return ret; 7068 } 7069 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7070 7071 /** 7072 * yield - yield the current processor to other threads. 7073 * 7074 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7075 * 7076 * The scheduler is at all times free to pick the calling task as the most 7077 * eligible task to run, if removing the yield() call from your code breaks 7078 * it, it's already broken. 7079 * 7080 * Typical broken usage is: 7081 * 7082 * while (!event) 7083 * yield(); 7084 * 7085 * where one assumes that yield() will let 'the other' process run that will 7086 * make event true. If the current task is a SCHED_FIFO task that will never 7087 * happen. Never use yield() as a progress guarantee!! 7088 * 7089 * If you want to use yield() to wait for something, use wait_event(). 7090 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7091 * If you still want to use yield(), do not! 7092 */ 7093 void __sched yield(void) 7094 { 7095 set_current_state(TASK_RUNNING); 7096 do_sched_yield(); 7097 } 7098 EXPORT_SYMBOL(yield); 7099 7100 /** 7101 * yield_to - yield the current processor to another thread in 7102 * your thread group, or accelerate that thread toward the 7103 * processor it's on. 7104 * @p: target task 7105 * @preempt: whether task preemption is allowed or not 7106 * 7107 * It's the caller's job to ensure that the target task struct 7108 * can't go away on us before we can do any checks. 7109 * 7110 * Return: 7111 * true (>0) if we indeed boosted the target task. 7112 * false (0) if we failed to boost the target. 7113 * -ESRCH if there's no task to yield to. 7114 */ 7115 int __sched yield_to(struct task_struct *p, bool preempt) 7116 { 7117 struct task_struct *curr = current; 7118 struct rq *rq, *p_rq; 7119 unsigned long flags; 7120 int yielded = 0; 7121 7122 local_irq_save(flags); 7123 rq = this_rq(); 7124 7125 again: 7126 p_rq = task_rq(p); 7127 /* 7128 * If we're the only runnable task on the rq and target rq also 7129 * has only one task, there's absolutely no point in yielding. 7130 */ 7131 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7132 yielded = -ESRCH; 7133 goto out_irq; 7134 } 7135 7136 double_rq_lock(rq, p_rq); 7137 if (task_rq(p) != p_rq) { 7138 double_rq_unlock(rq, p_rq); 7139 goto again; 7140 } 7141 7142 if (!curr->sched_class->yield_to_task) 7143 goto out_unlock; 7144 7145 if (curr->sched_class != p->sched_class) 7146 goto out_unlock; 7147 7148 if (task_running(p_rq, p) || p->state) 7149 goto out_unlock; 7150 7151 yielded = curr->sched_class->yield_to_task(rq, p); 7152 if (yielded) { 7153 schedstat_inc(rq->yld_count); 7154 /* 7155 * Make p's CPU reschedule; pick_next_entity takes care of 7156 * fairness. 7157 */ 7158 if (preempt && rq != p_rq) 7159 resched_curr(p_rq); 7160 } 7161 7162 out_unlock: 7163 double_rq_unlock(rq, p_rq); 7164 out_irq: 7165 local_irq_restore(flags); 7166 7167 if (yielded > 0) 7168 schedule(); 7169 7170 return yielded; 7171 } 7172 EXPORT_SYMBOL_GPL(yield_to); 7173 7174 int io_schedule_prepare(void) 7175 { 7176 int old_iowait = current->in_iowait; 7177 7178 current->in_iowait = 1; 7179 blk_schedule_flush_plug(current); 7180 7181 return old_iowait; 7182 } 7183 7184 void io_schedule_finish(int token) 7185 { 7186 current->in_iowait = token; 7187 } 7188 7189 /* 7190 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7191 * that process accounting knows that this is a task in IO wait state. 7192 */ 7193 long __sched io_schedule_timeout(long timeout) 7194 { 7195 int token; 7196 long ret; 7197 7198 token = io_schedule_prepare(); 7199 ret = schedule_timeout(timeout); 7200 io_schedule_finish(token); 7201 7202 return ret; 7203 } 7204 EXPORT_SYMBOL(io_schedule_timeout); 7205 7206 void __sched io_schedule(void) 7207 { 7208 int token; 7209 7210 token = io_schedule_prepare(); 7211 schedule(); 7212 io_schedule_finish(token); 7213 } 7214 EXPORT_SYMBOL(io_schedule); 7215 7216 /** 7217 * sys_sched_get_priority_max - return maximum RT priority. 7218 * @policy: scheduling class. 7219 * 7220 * Return: On success, this syscall returns the maximum 7221 * rt_priority that can be used by a given scheduling class. 7222 * On failure, a negative error code is returned. 7223 */ 7224 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 7225 { 7226 int ret = -EINVAL; 7227 7228 switch (policy) { 7229 case SCHED_FIFO: 7230 case SCHED_RR: 7231 ret = MAX_RT_PRIO-1; 7232 break; 7233 case SCHED_DEADLINE: 7234 case SCHED_NORMAL: 7235 case SCHED_BATCH: 7236 case SCHED_IDLE: 7237 ret = 0; 7238 break; 7239 } 7240 return ret; 7241 } 7242 7243 /** 7244 * sys_sched_get_priority_min - return minimum RT priority. 7245 * @policy: scheduling class. 7246 * 7247 * Return: On success, this syscall returns the minimum 7248 * rt_priority that can be used by a given scheduling class. 7249 * On failure, a negative error code is returned. 7250 */ 7251 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 7252 { 7253 int ret = -EINVAL; 7254 7255 switch (policy) { 7256 case SCHED_FIFO: 7257 case SCHED_RR: 7258 ret = 1; 7259 break; 7260 case SCHED_DEADLINE: 7261 case SCHED_NORMAL: 7262 case SCHED_BATCH: 7263 case SCHED_IDLE: 7264 ret = 0; 7265 } 7266 return ret; 7267 } 7268 7269 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 7270 { 7271 struct task_struct *p; 7272 unsigned int time_slice; 7273 struct rq_flags rf; 7274 struct rq *rq; 7275 int retval; 7276 7277 if (pid < 0) 7278 return -EINVAL; 7279 7280 retval = -ESRCH; 7281 rcu_read_lock(); 7282 p = find_process_by_pid(pid); 7283 if (!p) 7284 goto out_unlock; 7285 7286 retval = security_task_getscheduler(p); 7287 if (retval) 7288 goto out_unlock; 7289 7290 rq = task_rq_lock(p, &rf); 7291 time_slice = 0; 7292 if (p->sched_class->get_rr_interval) 7293 time_slice = p->sched_class->get_rr_interval(rq, p); 7294 task_rq_unlock(rq, p, &rf); 7295 7296 rcu_read_unlock(); 7297 jiffies_to_timespec64(time_slice, t); 7298 return 0; 7299 7300 out_unlock: 7301 rcu_read_unlock(); 7302 return retval; 7303 } 7304 7305 /** 7306 * sys_sched_rr_get_interval - return the default timeslice of a process. 7307 * @pid: pid of the process. 7308 * @interval: userspace pointer to the timeslice value. 7309 * 7310 * this syscall writes the default timeslice value of a given process 7311 * into the user-space timespec buffer. A value of '0' means infinity. 7312 * 7313 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 7314 * an error code. 7315 */ 7316 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 7317 struct __kernel_timespec __user *, interval) 7318 { 7319 struct timespec64 t; 7320 int retval = sched_rr_get_interval(pid, &t); 7321 7322 if (retval == 0) 7323 retval = put_timespec64(&t, interval); 7324 7325 return retval; 7326 } 7327 7328 #ifdef CONFIG_COMPAT_32BIT_TIME 7329 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 7330 struct old_timespec32 __user *, interval) 7331 { 7332 struct timespec64 t; 7333 int retval = sched_rr_get_interval(pid, &t); 7334 7335 if (retval == 0) 7336 retval = put_old_timespec32(&t, interval); 7337 return retval; 7338 } 7339 #endif 7340 7341 void sched_show_task(struct task_struct *p) 7342 { 7343 unsigned long free = 0; 7344 int ppid; 7345 7346 if (!try_get_task_stack(p)) 7347 return; 7348 7349 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7350 7351 if (p->state == TASK_RUNNING) 7352 pr_cont(" running task "); 7353 #ifdef CONFIG_DEBUG_STACK_USAGE 7354 free = stack_not_used(p); 7355 #endif 7356 ppid = 0; 7357 rcu_read_lock(); 7358 if (pid_alive(p)) 7359 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7360 rcu_read_unlock(); 7361 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 7362 free, task_pid_nr(p), ppid, 7363 (unsigned long)task_thread_info(p)->flags); 7364 7365 print_worker_info(KERN_INFO, p); 7366 print_stop_info(KERN_INFO, p); 7367 show_stack(p, NULL, KERN_INFO); 7368 put_task_stack(p); 7369 } 7370 EXPORT_SYMBOL_GPL(sched_show_task); 7371 7372 static inline bool 7373 state_filter_match(unsigned long state_filter, struct task_struct *p) 7374 { 7375 /* no filter, everything matches */ 7376 if (!state_filter) 7377 return true; 7378 7379 /* filter, but doesn't match */ 7380 if (!(p->state & state_filter)) 7381 return false; 7382 7383 /* 7384 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7385 * TASK_KILLABLE). 7386 */ 7387 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7388 return false; 7389 7390 return true; 7391 } 7392 7393 7394 void show_state_filter(unsigned long state_filter) 7395 { 7396 struct task_struct *g, *p; 7397 7398 rcu_read_lock(); 7399 for_each_process_thread(g, p) { 7400 /* 7401 * reset the NMI-timeout, listing all files on a slow 7402 * console might take a lot of time: 7403 * Also, reset softlockup watchdogs on all CPUs, because 7404 * another CPU might be blocked waiting for us to process 7405 * an IPI. 7406 */ 7407 touch_nmi_watchdog(); 7408 touch_all_softlockup_watchdogs(); 7409 if (state_filter_match(state_filter, p)) 7410 sched_show_task(p); 7411 } 7412 7413 #ifdef CONFIG_SCHED_DEBUG 7414 if (!state_filter) 7415 sysrq_sched_debug_show(); 7416 #endif 7417 rcu_read_unlock(); 7418 /* 7419 * Only show locks if all tasks are dumped: 7420 */ 7421 if (!state_filter) 7422 debug_show_all_locks(); 7423 } 7424 7425 /** 7426 * init_idle - set up an idle thread for a given CPU 7427 * @idle: task in question 7428 * @cpu: CPU the idle task belongs to 7429 * 7430 * NOTE: this function does not set the idle thread's NEED_RESCHED 7431 * flag, to make booting more robust. 7432 */ 7433 void init_idle(struct task_struct *idle, int cpu) 7434 { 7435 struct rq *rq = cpu_rq(cpu); 7436 unsigned long flags; 7437 7438 __sched_fork(0, idle); 7439 7440 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7441 raw_spin_lock(&rq->lock); 7442 7443 idle->state = TASK_RUNNING; 7444 idle->se.exec_start = sched_clock(); 7445 idle->flags |= PF_IDLE; 7446 7447 scs_task_reset(idle); 7448 kasan_unpoison_task_stack(idle); 7449 7450 #ifdef CONFIG_SMP 7451 /* 7452 * It's possible that init_idle() gets called multiple times on a task, 7453 * in that case do_set_cpus_allowed() will not do the right thing. 7454 * 7455 * And since this is boot we can forgo the serialization. 7456 */ 7457 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7458 #endif 7459 /* 7460 * We're having a chicken and egg problem, even though we are 7461 * holding rq->lock, the CPU isn't yet set to this CPU so the 7462 * lockdep check in task_group() will fail. 7463 * 7464 * Similar case to sched_fork(). / Alternatively we could 7465 * use task_rq_lock() here and obtain the other rq->lock. 7466 * 7467 * Silence PROVE_RCU 7468 */ 7469 rcu_read_lock(); 7470 __set_task_cpu(idle, cpu); 7471 rcu_read_unlock(); 7472 7473 rq->idle = idle; 7474 rcu_assign_pointer(rq->curr, idle); 7475 idle->on_rq = TASK_ON_RQ_QUEUED; 7476 #ifdef CONFIG_SMP 7477 idle->on_cpu = 1; 7478 #endif 7479 raw_spin_unlock(&rq->lock); 7480 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7481 7482 /* Set the preempt count _outside_ the spinlocks! */ 7483 init_idle_preempt_count(idle, cpu); 7484 7485 /* 7486 * The idle tasks have their own, simple scheduling class: 7487 */ 7488 idle->sched_class = &idle_sched_class; 7489 ftrace_graph_init_idle_task(idle, cpu); 7490 vtime_init_idle(idle, cpu); 7491 #ifdef CONFIG_SMP 7492 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7493 #endif 7494 } 7495 7496 #ifdef CONFIG_SMP 7497 7498 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7499 const struct cpumask *trial) 7500 { 7501 int ret = 1; 7502 7503 if (!cpumask_weight(cur)) 7504 return ret; 7505 7506 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7507 7508 return ret; 7509 } 7510 7511 int task_can_attach(struct task_struct *p, 7512 const struct cpumask *cs_cpus_allowed) 7513 { 7514 int ret = 0; 7515 7516 /* 7517 * Kthreads which disallow setaffinity shouldn't be moved 7518 * to a new cpuset; we don't want to change their CPU 7519 * affinity and isolating such threads by their set of 7520 * allowed nodes is unnecessary. Thus, cpusets are not 7521 * applicable for such threads. This prevents checking for 7522 * success of set_cpus_allowed_ptr() on all attached tasks 7523 * before cpus_mask may be changed. 7524 */ 7525 if (p->flags & PF_NO_SETAFFINITY) { 7526 ret = -EINVAL; 7527 goto out; 7528 } 7529 7530 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7531 cs_cpus_allowed)) 7532 ret = dl_task_can_attach(p, cs_cpus_allowed); 7533 7534 out: 7535 return ret; 7536 } 7537 7538 bool sched_smp_initialized __read_mostly; 7539 7540 #ifdef CONFIG_NUMA_BALANCING 7541 /* Migrate current task p to target_cpu */ 7542 int migrate_task_to(struct task_struct *p, int target_cpu) 7543 { 7544 struct migration_arg arg = { p, target_cpu }; 7545 int curr_cpu = task_cpu(p); 7546 7547 if (curr_cpu == target_cpu) 7548 return 0; 7549 7550 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7551 return -EINVAL; 7552 7553 /* TODO: This is not properly updating schedstats */ 7554 7555 trace_sched_move_numa(p, curr_cpu, target_cpu); 7556 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7557 } 7558 7559 /* 7560 * Requeue a task on a given node and accurately track the number of NUMA 7561 * tasks on the runqueues 7562 */ 7563 void sched_setnuma(struct task_struct *p, int nid) 7564 { 7565 bool queued, running; 7566 struct rq_flags rf; 7567 struct rq *rq; 7568 7569 rq = task_rq_lock(p, &rf); 7570 queued = task_on_rq_queued(p); 7571 running = task_current(rq, p); 7572 7573 if (queued) 7574 dequeue_task(rq, p, DEQUEUE_SAVE); 7575 if (running) 7576 put_prev_task(rq, p); 7577 7578 p->numa_preferred_nid = nid; 7579 7580 if (queued) 7581 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7582 if (running) 7583 set_next_task(rq, p); 7584 task_rq_unlock(rq, p, &rf); 7585 } 7586 #endif /* CONFIG_NUMA_BALANCING */ 7587 7588 #ifdef CONFIG_HOTPLUG_CPU 7589 /* 7590 * Ensure that the idle task is using init_mm right before its CPU goes 7591 * offline. 7592 */ 7593 void idle_task_exit(void) 7594 { 7595 struct mm_struct *mm = current->active_mm; 7596 7597 BUG_ON(cpu_online(smp_processor_id())); 7598 BUG_ON(current != this_rq()->idle); 7599 7600 if (mm != &init_mm) { 7601 switch_mm(mm, &init_mm, current); 7602 finish_arch_post_lock_switch(); 7603 } 7604 7605 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7606 } 7607 7608 static int __balance_push_cpu_stop(void *arg) 7609 { 7610 struct task_struct *p = arg; 7611 struct rq *rq = this_rq(); 7612 struct rq_flags rf; 7613 int cpu; 7614 7615 raw_spin_lock_irq(&p->pi_lock); 7616 rq_lock(rq, &rf); 7617 7618 update_rq_clock(rq); 7619 7620 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7621 cpu = select_fallback_rq(rq->cpu, p); 7622 rq = __migrate_task(rq, &rf, p, cpu); 7623 } 7624 7625 rq_unlock(rq, &rf); 7626 raw_spin_unlock_irq(&p->pi_lock); 7627 7628 put_task_struct(p); 7629 7630 return 0; 7631 } 7632 7633 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7634 7635 /* 7636 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7637 */ 7638 static void balance_push(struct rq *rq) 7639 { 7640 struct task_struct *push_task = rq->curr; 7641 7642 lockdep_assert_held(&rq->lock); 7643 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7644 /* 7645 * Ensure the thing is persistent until balance_push_set(.on = false); 7646 */ 7647 rq->balance_callback = &balance_push_callback; 7648 7649 /* 7650 * Both the cpu-hotplug and stop task are in this case and are 7651 * required to complete the hotplug process. 7652 * 7653 * XXX: the idle task does not match kthread_is_per_cpu() due to 7654 * histerical raisins. 7655 */ 7656 if (rq->idle == push_task || 7657 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) || 7658 is_migration_disabled(push_task)) { 7659 7660 /* 7661 * If this is the idle task on the outgoing CPU try to wake 7662 * up the hotplug control thread which might wait for the 7663 * last task to vanish. The rcuwait_active() check is 7664 * accurate here because the waiter is pinned on this CPU 7665 * and can't obviously be running in parallel. 7666 * 7667 * On RT kernels this also has to check whether there are 7668 * pinned and scheduled out tasks on the runqueue. They 7669 * need to leave the migrate disabled section first. 7670 */ 7671 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7672 rcuwait_active(&rq->hotplug_wait)) { 7673 raw_spin_unlock(&rq->lock); 7674 rcuwait_wake_up(&rq->hotplug_wait); 7675 raw_spin_lock(&rq->lock); 7676 } 7677 return; 7678 } 7679 7680 get_task_struct(push_task); 7681 /* 7682 * Temporarily drop rq->lock such that we can wake-up the stop task. 7683 * Both preemption and IRQs are still disabled. 7684 */ 7685 raw_spin_unlock(&rq->lock); 7686 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7687 this_cpu_ptr(&push_work)); 7688 /* 7689 * At this point need_resched() is true and we'll take the loop in 7690 * schedule(). The next pick is obviously going to be the stop task 7691 * which kthread_is_per_cpu() and will push this task away. 7692 */ 7693 raw_spin_lock(&rq->lock); 7694 } 7695 7696 static void balance_push_set(int cpu, bool on) 7697 { 7698 struct rq *rq = cpu_rq(cpu); 7699 struct rq_flags rf; 7700 7701 rq_lock_irqsave(rq, &rf); 7702 rq->balance_push = on; 7703 if (on) { 7704 WARN_ON_ONCE(rq->balance_callback); 7705 rq->balance_callback = &balance_push_callback; 7706 } else if (rq->balance_callback == &balance_push_callback) { 7707 rq->balance_callback = NULL; 7708 } 7709 rq_unlock_irqrestore(rq, &rf); 7710 } 7711 7712 /* 7713 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7714 * inactive. All tasks which are not per CPU kernel threads are either 7715 * pushed off this CPU now via balance_push() or placed on a different CPU 7716 * during wakeup. Wait until the CPU is quiescent. 7717 */ 7718 static void balance_hotplug_wait(void) 7719 { 7720 struct rq *rq = this_rq(); 7721 7722 rcuwait_wait_event(&rq->hotplug_wait, 7723 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7724 TASK_UNINTERRUPTIBLE); 7725 } 7726 7727 #else 7728 7729 static inline void balance_push(struct rq *rq) 7730 { 7731 } 7732 7733 static inline void balance_push_set(int cpu, bool on) 7734 { 7735 } 7736 7737 static inline void balance_hotplug_wait(void) 7738 { 7739 } 7740 7741 #endif /* CONFIG_HOTPLUG_CPU */ 7742 7743 void set_rq_online(struct rq *rq) 7744 { 7745 if (!rq->online) { 7746 const struct sched_class *class; 7747 7748 cpumask_set_cpu(rq->cpu, rq->rd->online); 7749 rq->online = 1; 7750 7751 for_each_class(class) { 7752 if (class->rq_online) 7753 class->rq_online(rq); 7754 } 7755 } 7756 } 7757 7758 void set_rq_offline(struct rq *rq) 7759 { 7760 if (rq->online) { 7761 const struct sched_class *class; 7762 7763 for_each_class(class) { 7764 if (class->rq_offline) 7765 class->rq_offline(rq); 7766 } 7767 7768 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7769 rq->online = 0; 7770 } 7771 } 7772 7773 /* 7774 * used to mark begin/end of suspend/resume: 7775 */ 7776 static int num_cpus_frozen; 7777 7778 /* 7779 * Update cpusets according to cpu_active mask. If cpusets are 7780 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7781 * around partition_sched_domains(). 7782 * 7783 * If we come here as part of a suspend/resume, don't touch cpusets because we 7784 * want to restore it back to its original state upon resume anyway. 7785 */ 7786 static void cpuset_cpu_active(void) 7787 { 7788 if (cpuhp_tasks_frozen) { 7789 /* 7790 * num_cpus_frozen tracks how many CPUs are involved in suspend 7791 * resume sequence. As long as this is not the last online 7792 * operation in the resume sequence, just build a single sched 7793 * domain, ignoring cpusets. 7794 */ 7795 partition_sched_domains(1, NULL, NULL); 7796 if (--num_cpus_frozen) 7797 return; 7798 /* 7799 * This is the last CPU online operation. So fall through and 7800 * restore the original sched domains by considering the 7801 * cpuset configurations. 7802 */ 7803 cpuset_force_rebuild(); 7804 } 7805 cpuset_update_active_cpus(); 7806 } 7807 7808 static int cpuset_cpu_inactive(unsigned int cpu) 7809 { 7810 if (!cpuhp_tasks_frozen) { 7811 if (dl_cpu_busy(cpu)) 7812 return -EBUSY; 7813 cpuset_update_active_cpus(); 7814 } else { 7815 num_cpus_frozen++; 7816 partition_sched_domains(1, NULL, NULL); 7817 } 7818 return 0; 7819 } 7820 7821 int sched_cpu_activate(unsigned int cpu) 7822 { 7823 struct rq *rq = cpu_rq(cpu); 7824 struct rq_flags rf; 7825 7826 /* 7827 * Make sure that when the hotplug state machine does a roll-back 7828 * we clear balance_push. Ideally that would happen earlier... 7829 */ 7830 balance_push_set(cpu, false); 7831 7832 #ifdef CONFIG_SCHED_SMT 7833 /* 7834 * When going up, increment the number of cores with SMT present. 7835 */ 7836 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7837 static_branch_inc_cpuslocked(&sched_smt_present); 7838 #endif 7839 set_cpu_active(cpu, true); 7840 7841 if (sched_smp_initialized) { 7842 sched_domains_numa_masks_set(cpu); 7843 cpuset_cpu_active(); 7844 } 7845 7846 /* 7847 * Put the rq online, if not already. This happens: 7848 * 7849 * 1) In the early boot process, because we build the real domains 7850 * after all CPUs have been brought up. 7851 * 7852 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7853 * domains. 7854 */ 7855 rq_lock_irqsave(rq, &rf); 7856 if (rq->rd) { 7857 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7858 set_rq_online(rq); 7859 } 7860 rq_unlock_irqrestore(rq, &rf); 7861 7862 return 0; 7863 } 7864 7865 int sched_cpu_deactivate(unsigned int cpu) 7866 { 7867 struct rq *rq = cpu_rq(cpu); 7868 struct rq_flags rf; 7869 int ret; 7870 7871 /* 7872 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7873 * load balancing when not active 7874 */ 7875 nohz_balance_exit_idle(rq); 7876 7877 set_cpu_active(cpu, false); 7878 7879 /* 7880 * From this point forward, this CPU will refuse to run any task that 7881 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 7882 * push those tasks away until this gets cleared, see 7883 * sched_cpu_dying(). 7884 */ 7885 balance_push_set(cpu, true); 7886 7887 /* 7888 * We've cleared cpu_active_mask / set balance_push, wait for all 7889 * preempt-disabled and RCU users of this state to go away such that 7890 * all new such users will observe it. 7891 * 7892 * Specifically, we rely on ttwu to no longer target this CPU, see 7893 * ttwu_queue_cond() and is_cpu_allowed(). 7894 * 7895 * Do sync before park smpboot threads to take care the rcu boost case. 7896 */ 7897 synchronize_rcu(); 7898 7899 rq_lock_irqsave(rq, &rf); 7900 if (rq->rd) { 7901 update_rq_clock(rq); 7902 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7903 set_rq_offline(rq); 7904 } 7905 rq_unlock_irqrestore(rq, &rf); 7906 7907 #ifdef CONFIG_SCHED_SMT 7908 /* 7909 * When going down, decrement the number of cores with SMT present. 7910 */ 7911 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7912 static_branch_dec_cpuslocked(&sched_smt_present); 7913 #endif 7914 7915 if (!sched_smp_initialized) 7916 return 0; 7917 7918 ret = cpuset_cpu_inactive(cpu); 7919 if (ret) { 7920 balance_push_set(cpu, false); 7921 set_cpu_active(cpu, true); 7922 return ret; 7923 } 7924 sched_domains_numa_masks_clear(cpu); 7925 return 0; 7926 } 7927 7928 static void sched_rq_cpu_starting(unsigned int cpu) 7929 { 7930 struct rq *rq = cpu_rq(cpu); 7931 7932 rq->calc_load_update = calc_load_update; 7933 update_max_interval(); 7934 } 7935 7936 int sched_cpu_starting(unsigned int cpu) 7937 { 7938 sched_rq_cpu_starting(cpu); 7939 sched_tick_start(cpu); 7940 return 0; 7941 } 7942 7943 #ifdef CONFIG_HOTPLUG_CPU 7944 7945 /* 7946 * Invoked immediately before the stopper thread is invoked to bring the 7947 * CPU down completely. At this point all per CPU kthreads except the 7948 * hotplug thread (current) and the stopper thread (inactive) have been 7949 * either parked or have been unbound from the outgoing CPU. Ensure that 7950 * any of those which might be on the way out are gone. 7951 * 7952 * If after this point a bound task is being woken on this CPU then the 7953 * responsible hotplug callback has failed to do it's job. 7954 * sched_cpu_dying() will catch it with the appropriate fireworks. 7955 */ 7956 int sched_cpu_wait_empty(unsigned int cpu) 7957 { 7958 balance_hotplug_wait(); 7959 return 0; 7960 } 7961 7962 /* 7963 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7964 * might have. Called from the CPU stopper task after ensuring that the 7965 * stopper is the last running task on the CPU, so nr_active count is 7966 * stable. We need to take the teardown thread which is calling this into 7967 * account, so we hand in adjust = 1 to the load calculation. 7968 * 7969 * Also see the comment "Global load-average calculations". 7970 */ 7971 static void calc_load_migrate(struct rq *rq) 7972 { 7973 long delta = calc_load_fold_active(rq, 1); 7974 7975 if (delta) 7976 atomic_long_add(delta, &calc_load_tasks); 7977 } 7978 7979 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 7980 { 7981 struct task_struct *g, *p; 7982 int cpu = cpu_of(rq); 7983 7984 lockdep_assert_held(&rq->lock); 7985 7986 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 7987 for_each_process_thread(g, p) { 7988 if (task_cpu(p) != cpu) 7989 continue; 7990 7991 if (!task_on_rq_queued(p)) 7992 continue; 7993 7994 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 7995 } 7996 } 7997 7998 int sched_cpu_dying(unsigned int cpu) 7999 { 8000 struct rq *rq = cpu_rq(cpu); 8001 struct rq_flags rf; 8002 8003 /* Handle pending wakeups and then migrate everything off */ 8004 sched_tick_stop(cpu); 8005 8006 rq_lock_irqsave(rq, &rf); 8007 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8008 WARN(true, "Dying CPU not properly vacated!"); 8009 dump_rq_tasks(rq, KERN_WARNING); 8010 } 8011 rq_unlock_irqrestore(rq, &rf); 8012 8013 /* 8014 * Now that the CPU is offline, make sure we're welcome 8015 * to new tasks once we come back up. 8016 */ 8017 balance_push_set(cpu, false); 8018 8019 calc_load_migrate(rq); 8020 update_max_interval(); 8021 hrtick_clear(rq); 8022 return 0; 8023 } 8024 #endif 8025 8026 void __init sched_init_smp(void) 8027 { 8028 sched_init_numa(); 8029 8030 /* 8031 * There's no userspace yet to cause hotplug operations; hence all the 8032 * CPU masks are stable and all blatant races in the below code cannot 8033 * happen. 8034 */ 8035 mutex_lock(&sched_domains_mutex); 8036 sched_init_domains(cpu_active_mask); 8037 mutex_unlock(&sched_domains_mutex); 8038 8039 /* Move init over to a non-isolated CPU */ 8040 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8041 BUG(); 8042 sched_init_granularity(); 8043 8044 init_sched_rt_class(); 8045 init_sched_dl_class(); 8046 8047 sched_smp_initialized = true; 8048 } 8049 8050 static int __init migration_init(void) 8051 { 8052 sched_cpu_starting(smp_processor_id()); 8053 return 0; 8054 } 8055 early_initcall(migration_init); 8056 8057 #else 8058 void __init sched_init_smp(void) 8059 { 8060 sched_init_granularity(); 8061 } 8062 #endif /* CONFIG_SMP */ 8063 8064 int in_sched_functions(unsigned long addr) 8065 { 8066 return in_lock_functions(addr) || 8067 (addr >= (unsigned long)__sched_text_start 8068 && addr < (unsigned long)__sched_text_end); 8069 } 8070 8071 #ifdef CONFIG_CGROUP_SCHED 8072 /* 8073 * Default task group. 8074 * Every task in system belongs to this group at bootup. 8075 */ 8076 struct task_group root_task_group; 8077 LIST_HEAD(task_groups); 8078 8079 /* Cacheline aligned slab cache for task_group */ 8080 static struct kmem_cache *task_group_cache __read_mostly; 8081 #endif 8082 8083 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8084 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8085 8086 void __init sched_init(void) 8087 { 8088 unsigned long ptr = 0; 8089 int i; 8090 8091 /* Make sure the linker didn't screw up */ 8092 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8093 &fair_sched_class + 1 != &rt_sched_class || 8094 &rt_sched_class + 1 != &dl_sched_class); 8095 #ifdef CONFIG_SMP 8096 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8097 #endif 8098 8099 wait_bit_init(); 8100 8101 #ifdef CONFIG_FAIR_GROUP_SCHED 8102 ptr += 2 * nr_cpu_ids * sizeof(void **); 8103 #endif 8104 #ifdef CONFIG_RT_GROUP_SCHED 8105 ptr += 2 * nr_cpu_ids * sizeof(void **); 8106 #endif 8107 if (ptr) { 8108 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8109 8110 #ifdef CONFIG_FAIR_GROUP_SCHED 8111 root_task_group.se = (struct sched_entity **)ptr; 8112 ptr += nr_cpu_ids * sizeof(void **); 8113 8114 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8115 ptr += nr_cpu_ids * sizeof(void **); 8116 8117 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8118 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8119 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8120 #ifdef CONFIG_RT_GROUP_SCHED 8121 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8122 ptr += nr_cpu_ids * sizeof(void **); 8123 8124 root_task_group.rt_rq = (struct rt_rq **)ptr; 8125 ptr += nr_cpu_ids * sizeof(void **); 8126 8127 #endif /* CONFIG_RT_GROUP_SCHED */ 8128 } 8129 #ifdef CONFIG_CPUMASK_OFFSTACK 8130 for_each_possible_cpu(i) { 8131 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8132 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8133 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8134 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8135 } 8136 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8137 8138 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8139 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8140 8141 #ifdef CONFIG_SMP 8142 init_defrootdomain(); 8143 #endif 8144 8145 #ifdef CONFIG_RT_GROUP_SCHED 8146 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8147 global_rt_period(), global_rt_runtime()); 8148 #endif /* CONFIG_RT_GROUP_SCHED */ 8149 8150 #ifdef CONFIG_CGROUP_SCHED 8151 task_group_cache = KMEM_CACHE(task_group, 0); 8152 8153 list_add(&root_task_group.list, &task_groups); 8154 INIT_LIST_HEAD(&root_task_group.children); 8155 INIT_LIST_HEAD(&root_task_group.siblings); 8156 autogroup_init(&init_task); 8157 #endif /* CONFIG_CGROUP_SCHED */ 8158 8159 for_each_possible_cpu(i) { 8160 struct rq *rq; 8161 8162 rq = cpu_rq(i); 8163 raw_spin_lock_init(&rq->lock); 8164 rq->nr_running = 0; 8165 rq->calc_load_active = 0; 8166 rq->calc_load_update = jiffies + LOAD_FREQ; 8167 init_cfs_rq(&rq->cfs); 8168 init_rt_rq(&rq->rt); 8169 init_dl_rq(&rq->dl); 8170 #ifdef CONFIG_FAIR_GROUP_SCHED 8171 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8172 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8173 /* 8174 * How much CPU bandwidth does root_task_group get? 8175 * 8176 * In case of task-groups formed thr' the cgroup filesystem, it 8177 * gets 100% of the CPU resources in the system. This overall 8178 * system CPU resource is divided among the tasks of 8179 * root_task_group and its child task-groups in a fair manner, 8180 * based on each entity's (task or task-group's) weight 8181 * (se->load.weight). 8182 * 8183 * In other words, if root_task_group has 10 tasks of weight 8184 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8185 * then A0's share of the CPU resource is: 8186 * 8187 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8188 * 8189 * We achieve this by letting root_task_group's tasks sit 8190 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8191 */ 8192 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8193 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8194 8195 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8196 #ifdef CONFIG_RT_GROUP_SCHED 8197 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8198 #endif 8199 #ifdef CONFIG_SMP 8200 rq->sd = NULL; 8201 rq->rd = NULL; 8202 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 8203 rq->balance_callback = NULL; 8204 rq->active_balance = 0; 8205 rq->next_balance = jiffies; 8206 rq->push_cpu = 0; 8207 rq->cpu = i; 8208 rq->online = 0; 8209 rq->idle_stamp = 0; 8210 rq->avg_idle = 2*sysctl_sched_migration_cost; 8211 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8212 8213 INIT_LIST_HEAD(&rq->cfs_tasks); 8214 8215 rq_attach_root(rq, &def_root_domain); 8216 #ifdef CONFIG_NO_HZ_COMMON 8217 rq->last_blocked_load_update_tick = jiffies; 8218 atomic_set(&rq->nohz_flags, 0); 8219 8220 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8221 #endif 8222 #ifdef CONFIG_HOTPLUG_CPU 8223 rcuwait_init(&rq->hotplug_wait); 8224 #endif 8225 #endif /* CONFIG_SMP */ 8226 hrtick_rq_init(rq); 8227 atomic_set(&rq->nr_iowait, 0); 8228 } 8229 8230 set_load_weight(&init_task, false); 8231 8232 /* 8233 * The boot idle thread does lazy MMU switching as well: 8234 */ 8235 mmgrab(&init_mm); 8236 enter_lazy_tlb(&init_mm, current); 8237 8238 /* 8239 * Make us the idle thread. Technically, schedule() should not be 8240 * called from this thread, however somewhere below it might be, 8241 * but because we are the idle thread, we just pick up running again 8242 * when this runqueue becomes "idle". 8243 */ 8244 init_idle(current, smp_processor_id()); 8245 8246 calc_load_update = jiffies + LOAD_FREQ; 8247 8248 #ifdef CONFIG_SMP 8249 idle_thread_set_boot_cpu(); 8250 #endif 8251 init_sched_fair_class(); 8252 8253 init_schedstats(); 8254 8255 psi_init(); 8256 8257 init_uclamp(); 8258 8259 scheduler_running = 1; 8260 } 8261 8262 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8263 static inline int preempt_count_equals(int preempt_offset) 8264 { 8265 int nested = preempt_count() + rcu_preempt_depth(); 8266 8267 return (nested == preempt_offset); 8268 } 8269 8270 void __might_sleep(const char *file, int line, int preempt_offset) 8271 { 8272 /* 8273 * Blocking primitives will set (and therefore destroy) current->state, 8274 * since we will exit with TASK_RUNNING make sure we enter with it, 8275 * otherwise we will destroy state. 8276 */ 8277 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 8278 "do not call blocking ops when !TASK_RUNNING; " 8279 "state=%lx set at [<%p>] %pS\n", 8280 current->state, 8281 (void *)current->task_state_change, 8282 (void *)current->task_state_change); 8283 8284 ___might_sleep(file, line, preempt_offset); 8285 } 8286 EXPORT_SYMBOL(__might_sleep); 8287 8288 void ___might_sleep(const char *file, int line, int preempt_offset) 8289 { 8290 /* Ratelimiting timestamp: */ 8291 static unsigned long prev_jiffy; 8292 8293 unsigned long preempt_disable_ip; 8294 8295 /* WARN_ON_ONCE() by default, no rate limit required: */ 8296 rcu_sleep_check(); 8297 8298 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 8299 !is_idle_task(current) && !current->non_block_count) || 8300 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8301 oops_in_progress) 8302 return; 8303 8304 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8305 return; 8306 prev_jiffy = jiffies; 8307 8308 /* Save this before calling printk(), since that will clobber it: */ 8309 preempt_disable_ip = get_preempt_disable_ip(current); 8310 8311 printk(KERN_ERR 8312 "BUG: sleeping function called from invalid context at %s:%d\n", 8313 file, line); 8314 printk(KERN_ERR 8315 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8316 in_atomic(), irqs_disabled(), current->non_block_count, 8317 current->pid, current->comm); 8318 8319 if (task_stack_end_corrupted(current)) 8320 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 8321 8322 debug_show_held_locks(current); 8323 if (irqs_disabled()) 8324 print_irqtrace_events(current); 8325 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 8326 && !preempt_count_equals(preempt_offset)) { 8327 pr_err("Preemption disabled at:"); 8328 print_ip_sym(KERN_ERR, preempt_disable_ip); 8329 } 8330 dump_stack(); 8331 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8332 } 8333 EXPORT_SYMBOL(___might_sleep); 8334 8335 void __cant_sleep(const char *file, int line, int preempt_offset) 8336 { 8337 static unsigned long prev_jiffy; 8338 8339 if (irqs_disabled()) 8340 return; 8341 8342 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8343 return; 8344 8345 if (preempt_count() > preempt_offset) 8346 return; 8347 8348 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8349 return; 8350 prev_jiffy = jiffies; 8351 8352 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8353 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8354 in_atomic(), irqs_disabled(), 8355 current->pid, current->comm); 8356 8357 debug_show_held_locks(current); 8358 dump_stack(); 8359 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8360 } 8361 EXPORT_SYMBOL_GPL(__cant_sleep); 8362 8363 #ifdef CONFIG_SMP 8364 void __cant_migrate(const char *file, int line) 8365 { 8366 static unsigned long prev_jiffy; 8367 8368 if (irqs_disabled()) 8369 return; 8370 8371 if (is_migration_disabled(current)) 8372 return; 8373 8374 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8375 return; 8376 8377 if (preempt_count() > 0) 8378 return; 8379 8380 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8381 return; 8382 prev_jiffy = jiffies; 8383 8384 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8385 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8386 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8387 current->pid, current->comm); 8388 8389 debug_show_held_locks(current); 8390 dump_stack(); 8391 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8392 } 8393 EXPORT_SYMBOL_GPL(__cant_migrate); 8394 #endif 8395 #endif 8396 8397 #ifdef CONFIG_MAGIC_SYSRQ 8398 void normalize_rt_tasks(void) 8399 { 8400 struct task_struct *g, *p; 8401 struct sched_attr attr = { 8402 .sched_policy = SCHED_NORMAL, 8403 }; 8404 8405 read_lock(&tasklist_lock); 8406 for_each_process_thread(g, p) { 8407 /* 8408 * Only normalize user tasks: 8409 */ 8410 if (p->flags & PF_KTHREAD) 8411 continue; 8412 8413 p->se.exec_start = 0; 8414 schedstat_set(p->se.statistics.wait_start, 0); 8415 schedstat_set(p->se.statistics.sleep_start, 0); 8416 schedstat_set(p->se.statistics.block_start, 0); 8417 8418 if (!dl_task(p) && !rt_task(p)) { 8419 /* 8420 * Renice negative nice level userspace 8421 * tasks back to 0: 8422 */ 8423 if (task_nice(p) < 0) 8424 set_user_nice(p, 0); 8425 continue; 8426 } 8427 8428 __sched_setscheduler(p, &attr, false, false); 8429 } 8430 read_unlock(&tasklist_lock); 8431 } 8432 8433 #endif /* CONFIG_MAGIC_SYSRQ */ 8434 8435 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8436 /* 8437 * These functions are only useful for the IA64 MCA handling, or kdb. 8438 * 8439 * They can only be called when the whole system has been 8440 * stopped - every CPU needs to be quiescent, and no scheduling 8441 * activity can take place. Using them for anything else would 8442 * be a serious bug, and as a result, they aren't even visible 8443 * under any other configuration. 8444 */ 8445 8446 /** 8447 * curr_task - return the current task for a given CPU. 8448 * @cpu: the processor in question. 8449 * 8450 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8451 * 8452 * Return: The current task for @cpu. 8453 */ 8454 struct task_struct *curr_task(int cpu) 8455 { 8456 return cpu_curr(cpu); 8457 } 8458 8459 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8460 8461 #ifdef CONFIG_IA64 8462 /** 8463 * ia64_set_curr_task - set the current task for a given CPU. 8464 * @cpu: the processor in question. 8465 * @p: the task pointer to set. 8466 * 8467 * Description: This function must only be used when non-maskable interrupts 8468 * are serviced on a separate stack. It allows the architecture to switch the 8469 * notion of the current task on a CPU in a non-blocking manner. This function 8470 * must be called with all CPU's synchronized, and interrupts disabled, the 8471 * and caller must save the original value of the current task (see 8472 * curr_task() above) and restore that value before reenabling interrupts and 8473 * re-starting the system. 8474 * 8475 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8476 */ 8477 void ia64_set_curr_task(int cpu, struct task_struct *p) 8478 { 8479 cpu_curr(cpu) = p; 8480 } 8481 8482 #endif 8483 8484 #ifdef CONFIG_CGROUP_SCHED 8485 /* task_group_lock serializes the addition/removal of task groups */ 8486 static DEFINE_SPINLOCK(task_group_lock); 8487 8488 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8489 struct task_group *parent) 8490 { 8491 #ifdef CONFIG_UCLAMP_TASK_GROUP 8492 enum uclamp_id clamp_id; 8493 8494 for_each_clamp_id(clamp_id) { 8495 uclamp_se_set(&tg->uclamp_req[clamp_id], 8496 uclamp_none(clamp_id), false); 8497 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8498 } 8499 #endif 8500 } 8501 8502 static void sched_free_group(struct task_group *tg) 8503 { 8504 free_fair_sched_group(tg); 8505 free_rt_sched_group(tg); 8506 autogroup_free(tg); 8507 kmem_cache_free(task_group_cache, tg); 8508 } 8509 8510 /* allocate runqueue etc for a new task group */ 8511 struct task_group *sched_create_group(struct task_group *parent) 8512 { 8513 struct task_group *tg; 8514 8515 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8516 if (!tg) 8517 return ERR_PTR(-ENOMEM); 8518 8519 if (!alloc_fair_sched_group(tg, parent)) 8520 goto err; 8521 8522 if (!alloc_rt_sched_group(tg, parent)) 8523 goto err; 8524 8525 alloc_uclamp_sched_group(tg, parent); 8526 8527 return tg; 8528 8529 err: 8530 sched_free_group(tg); 8531 return ERR_PTR(-ENOMEM); 8532 } 8533 8534 void sched_online_group(struct task_group *tg, struct task_group *parent) 8535 { 8536 unsigned long flags; 8537 8538 spin_lock_irqsave(&task_group_lock, flags); 8539 list_add_rcu(&tg->list, &task_groups); 8540 8541 /* Root should already exist: */ 8542 WARN_ON(!parent); 8543 8544 tg->parent = parent; 8545 INIT_LIST_HEAD(&tg->children); 8546 list_add_rcu(&tg->siblings, &parent->children); 8547 spin_unlock_irqrestore(&task_group_lock, flags); 8548 8549 online_fair_sched_group(tg); 8550 } 8551 8552 /* rcu callback to free various structures associated with a task group */ 8553 static void sched_free_group_rcu(struct rcu_head *rhp) 8554 { 8555 /* Now it should be safe to free those cfs_rqs: */ 8556 sched_free_group(container_of(rhp, struct task_group, rcu)); 8557 } 8558 8559 void sched_destroy_group(struct task_group *tg) 8560 { 8561 /* Wait for possible concurrent references to cfs_rqs complete: */ 8562 call_rcu(&tg->rcu, sched_free_group_rcu); 8563 } 8564 8565 void sched_offline_group(struct task_group *tg) 8566 { 8567 unsigned long flags; 8568 8569 /* End participation in shares distribution: */ 8570 unregister_fair_sched_group(tg); 8571 8572 spin_lock_irqsave(&task_group_lock, flags); 8573 list_del_rcu(&tg->list); 8574 list_del_rcu(&tg->siblings); 8575 spin_unlock_irqrestore(&task_group_lock, flags); 8576 } 8577 8578 static void sched_change_group(struct task_struct *tsk, int type) 8579 { 8580 struct task_group *tg; 8581 8582 /* 8583 * All callers are synchronized by task_rq_lock(); we do not use RCU 8584 * which is pointless here. Thus, we pass "true" to task_css_check() 8585 * to prevent lockdep warnings. 8586 */ 8587 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8588 struct task_group, css); 8589 tg = autogroup_task_group(tsk, tg); 8590 tsk->sched_task_group = tg; 8591 8592 #ifdef CONFIG_FAIR_GROUP_SCHED 8593 if (tsk->sched_class->task_change_group) 8594 tsk->sched_class->task_change_group(tsk, type); 8595 else 8596 #endif 8597 set_task_rq(tsk, task_cpu(tsk)); 8598 } 8599 8600 /* 8601 * Change task's runqueue when it moves between groups. 8602 * 8603 * The caller of this function should have put the task in its new group by 8604 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8605 * its new group. 8606 */ 8607 void sched_move_task(struct task_struct *tsk) 8608 { 8609 int queued, running, queue_flags = 8610 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8611 struct rq_flags rf; 8612 struct rq *rq; 8613 8614 rq = task_rq_lock(tsk, &rf); 8615 update_rq_clock(rq); 8616 8617 running = task_current(rq, tsk); 8618 queued = task_on_rq_queued(tsk); 8619 8620 if (queued) 8621 dequeue_task(rq, tsk, queue_flags); 8622 if (running) 8623 put_prev_task(rq, tsk); 8624 8625 sched_change_group(tsk, TASK_MOVE_GROUP); 8626 8627 if (queued) 8628 enqueue_task(rq, tsk, queue_flags); 8629 if (running) { 8630 set_next_task(rq, tsk); 8631 /* 8632 * After changing group, the running task may have joined a 8633 * throttled one but it's still the running task. Trigger a 8634 * resched to make sure that task can still run. 8635 */ 8636 resched_curr(rq); 8637 } 8638 8639 task_rq_unlock(rq, tsk, &rf); 8640 } 8641 8642 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8643 { 8644 return css ? container_of(css, struct task_group, css) : NULL; 8645 } 8646 8647 static struct cgroup_subsys_state * 8648 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8649 { 8650 struct task_group *parent = css_tg(parent_css); 8651 struct task_group *tg; 8652 8653 if (!parent) { 8654 /* This is early initialization for the top cgroup */ 8655 return &root_task_group.css; 8656 } 8657 8658 tg = sched_create_group(parent); 8659 if (IS_ERR(tg)) 8660 return ERR_PTR(-ENOMEM); 8661 8662 return &tg->css; 8663 } 8664 8665 /* Expose task group only after completing cgroup initialization */ 8666 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8667 { 8668 struct task_group *tg = css_tg(css); 8669 struct task_group *parent = css_tg(css->parent); 8670 8671 if (parent) 8672 sched_online_group(tg, parent); 8673 8674 #ifdef CONFIG_UCLAMP_TASK_GROUP 8675 /* Propagate the effective uclamp value for the new group */ 8676 cpu_util_update_eff(css); 8677 #endif 8678 8679 return 0; 8680 } 8681 8682 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8683 { 8684 struct task_group *tg = css_tg(css); 8685 8686 sched_offline_group(tg); 8687 } 8688 8689 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8690 { 8691 struct task_group *tg = css_tg(css); 8692 8693 /* 8694 * Relies on the RCU grace period between css_released() and this. 8695 */ 8696 sched_free_group(tg); 8697 } 8698 8699 /* 8700 * This is called before wake_up_new_task(), therefore we really only 8701 * have to set its group bits, all the other stuff does not apply. 8702 */ 8703 static void cpu_cgroup_fork(struct task_struct *task) 8704 { 8705 struct rq_flags rf; 8706 struct rq *rq; 8707 8708 rq = task_rq_lock(task, &rf); 8709 8710 update_rq_clock(rq); 8711 sched_change_group(task, TASK_SET_GROUP); 8712 8713 task_rq_unlock(rq, task, &rf); 8714 } 8715 8716 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8717 { 8718 struct task_struct *task; 8719 struct cgroup_subsys_state *css; 8720 int ret = 0; 8721 8722 cgroup_taskset_for_each(task, css, tset) { 8723 #ifdef CONFIG_RT_GROUP_SCHED 8724 if (!sched_rt_can_attach(css_tg(css), task)) 8725 return -EINVAL; 8726 #endif 8727 /* 8728 * Serialize against wake_up_new_task() such that if it's 8729 * running, we're sure to observe its full state. 8730 */ 8731 raw_spin_lock_irq(&task->pi_lock); 8732 /* 8733 * Avoid calling sched_move_task() before wake_up_new_task() 8734 * has happened. This would lead to problems with PELT, due to 8735 * move wanting to detach+attach while we're not attached yet. 8736 */ 8737 if (task->state == TASK_NEW) 8738 ret = -EINVAL; 8739 raw_spin_unlock_irq(&task->pi_lock); 8740 8741 if (ret) 8742 break; 8743 } 8744 return ret; 8745 } 8746 8747 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8748 { 8749 struct task_struct *task; 8750 struct cgroup_subsys_state *css; 8751 8752 cgroup_taskset_for_each(task, css, tset) 8753 sched_move_task(task); 8754 } 8755 8756 #ifdef CONFIG_UCLAMP_TASK_GROUP 8757 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8758 { 8759 struct cgroup_subsys_state *top_css = css; 8760 struct uclamp_se *uc_parent = NULL; 8761 struct uclamp_se *uc_se = NULL; 8762 unsigned int eff[UCLAMP_CNT]; 8763 enum uclamp_id clamp_id; 8764 unsigned int clamps; 8765 8766 css_for_each_descendant_pre(css, top_css) { 8767 uc_parent = css_tg(css)->parent 8768 ? css_tg(css)->parent->uclamp : NULL; 8769 8770 for_each_clamp_id(clamp_id) { 8771 /* Assume effective clamps matches requested clamps */ 8772 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8773 /* Cap effective clamps with parent's effective clamps */ 8774 if (uc_parent && 8775 eff[clamp_id] > uc_parent[clamp_id].value) { 8776 eff[clamp_id] = uc_parent[clamp_id].value; 8777 } 8778 } 8779 /* Ensure protection is always capped by limit */ 8780 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8781 8782 /* Propagate most restrictive effective clamps */ 8783 clamps = 0x0; 8784 uc_se = css_tg(css)->uclamp; 8785 for_each_clamp_id(clamp_id) { 8786 if (eff[clamp_id] == uc_se[clamp_id].value) 8787 continue; 8788 uc_se[clamp_id].value = eff[clamp_id]; 8789 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8790 clamps |= (0x1 << clamp_id); 8791 } 8792 if (!clamps) { 8793 css = css_rightmost_descendant(css); 8794 continue; 8795 } 8796 8797 /* Immediately update descendants RUNNABLE tasks */ 8798 uclamp_update_active_tasks(css, clamps); 8799 } 8800 } 8801 8802 /* 8803 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8804 * C expression. Since there is no way to convert a macro argument (N) into a 8805 * character constant, use two levels of macros. 8806 */ 8807 #define _POW10(exp) ((unsigned int)1e##exp) 8808 #define POW10(exp) _POW10(exp) 8809 8810 struct uclamp_request { 8811 #define UCLAMP_PERCENT_SHIFT 2 8812 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8813 s64 percent; 8814 u64 util; 8815 int ret; 8816 }; 8817 8818 static inline struct uclamp_request 8819 capacity_from_percent(char *buf) 8820 { 8821 struct uclamp_request req = { 8822 .percent = UCLAMP_PERCENT_SCALE, 8823 .util = SCHED_CAPACITY_SCALE, 8824 .ret = 0, 8825 }; 8826 8827 buf = strim(buf); 8828 if (strcmp(buf, "max")) { 8829 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8830 &req.percent); 8831 if (req.ret) 8832 return req; 8833 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8834 req.ret = -ERANGE; 8835 return req; 8836 } 8837 8838 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8839 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8840 } 8841 8842 return req; 8843 } 8844 8845 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8846 size_t nbytes, loff_t off, 8847 enum uclamp_id clamp_id) 8848 { 8849 struct uclamp_request req; 8850 struct task_group *tg; 8851 8852 req = capacity_from_percent(buf); 8853 if (req.ret) 8854 return req.ret; 8855 8856 static_branch_enable(&sched_uclamp_used); 8857 8858 mutex_lock(&uclamp_mutex); 8859 rcu_read_lock(); 8860 8861 tg = css_tg(of_css(of)); 8862 if (tg->uclamp_req[clamp_id].value != req.util) 8863 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8864 8865 /* 8866 * Because of not recoverable conversion rounding we keep track of the 8867 * exact requested value 8868 */ 8869 tg->uclamp_pct[clamp_id] = req.percent; 8870 8871 /* Update effective clamps to track the most restrictive value */ 8872 cpu_util_update_eff(of_css(of)); 8873 8874 rcu_read_unlock(); 8875 mutex_unlock(&uclamp_mutex); 8876 8877 return nbytes; 8878 } 8879 8880 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8881 char *buf, size_t nbytes, 8882 loff_t off) 8883 { 8884 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8885 } 8886 8887 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8888 char *buf, size_t nbytes, 8889 loff_t off) 8890 { 8891 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8892 } 8893 8894 static inline void cpu_uclamp_print(struct seq_file *sf, 8895 enum uclamp_id clamp_id) 8896 { 8897 struct task_group *tg; 8898 u64 util_clamp; 8899 u64 percent; 8900 u32 rem; 8901 8902 rcu_read_lock(); 8903 tg = css_tg(seq_css(sf)); 8904 util_clamp = tg->uclamp_req[clamp_id].value; 8905 rcu_read_unlock(); 8906 8907 if (util_clamp == SCHED_CAPACITY_SCALE) { 8908 seq_puts(sf, "max\n"); 8909 return; 8910 } 8911 8912 percent = tg->uclamp_pct[clamp_id]; 8913 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8914 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8915 } 8916 8917 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8918 { 8919 cpu_uclamp_print(sf, UCLAMP_MIN); 8920 return 0; 8921 } 8922 8923 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8924 { 8925 cpu_uclamp_print(sf, UCLAMP_MAX); 8926 return 0; 8927 } 8928 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8929 8930 #ifdef CONFIG_FAIR_GROUP_SCHED 8931 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8932 struct cftype *cftype, u64 shareval) 8933 { 8934 if (shareval > scale_load_down(ULONG_MAX)) 8935 shareval = MAX_SHARES; 8936 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8937 } 8938 8939 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8940 struct cftype *cft) 8941 { 8942 struct task_group *tg = css_tg(css); 8943 8944 return (u64) scale_load_down(tg->shares); 8945 } 8946 8947 #ifdef CONFIG_CFS_BANDWIDTH 8948 static DEFINE_MUTEX(cfs_constraints_mutex); 8949 8950 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8951 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8952 /* More than 203 days if BW_SHIFT equals 20. */ 8953 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8954 8955 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8956 8957 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8958 { 8959 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8960 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8961 8962 if (tg == &root_task_group) 8963 return -EINVAL; 8964 8965 /* 8966 * Ensure we have at some amount of bandwidth every period. This is 8967 * to prevent reaching a state of large arrears when throttled via 8968 * entity_tick() resulting in prolonged exit starvation. 8969 */ 8970 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8971 return -EINVAL; 8972 8973 /* 8974 * Likewise, bound things on the otherside by preventing insane quota 8975 * periods. This also allows us to normalize in computing quota 8976 * feasibility. 8977 */ 8978 if (period > max_cfs_quota_period) 8979 return -EINVAL; 8980 8981 /* 8982 * Bound quota to defend quota against overflow during bandwidth shift. 8983 */ 8984 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 8985 return -EINVAL; 8986 8987 /* 8988 * Prevent race between setting of cfs_rq->runtime_enabled and 8989 * unthrottle_offline_cfs_rqs(). 8990 */ 8991 get_online_cpus(); 8992 mutex_lock(&cfs_constraints_mutex); 8993 ret = __cfs_schedulable(tg, period, quota); 8994 if (ret) 8995 goto out_unlock; 8996 8997 runtime_enabled = quota != RUNTIME_INF; 8998 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8999 /* 9000 * If we need to toggle cfs_bandwidth_used, off->on must occur 9001 * before making related changes, and on->off must occur afterwards 9002 */ 9003 if (runtime_enabled && !runtime_was_enabled) 9004 cfs_bandwidth_usage_inc(); 9005 raw_spin_lock_irq(&cfs_b->lock); 9006 cfs_b->period = ns_to_ktime(period); 9007 cfs_b->quota = quota; 9008 9009 __refill_cfs_bandwidth_runtime(cfs_b); 9010 9011 /* Restart the period timer (if active) to handle new period expiry: */ 9012 if (runtime_enabled) 9013 start_cfs_bandwidth(cfs_b); 9014 9015 raw_spin_unlock_irq(&cfs_b->lock); 9016 9017 for_each_online_cpu(i) { 9018 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9019 struct rq *rq = cfs_rq->rq; 9020 struct rq_flags rf; 9021 9022 rq_lock_irq(rq, &rf); 9023 cfs_rq->runtime_enabled = runtime_enabled; 9024 cfs_rq->runtime_remaining = 0; 9025 9026 if (cfs_rq->throttled) 9027 unthrottle_cfs_rq(cfs_rq); 9028 rq_unlock_irq(rq, &rf); 9029 } 9030 if (runtime_was_enabled && !runtime_enabled) 9031 cfs_bandwidth_usage_dec(); 9032 out_unlock: 9033 mutex_unlock(&cfs_constraints_mutex); 9034 put_online_cpus(); 9035 9036 return ret; 9037 } 9038 9039 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9040 { 9041 u64 quota, period; 9042 9043 period = ktime_to_ns(tg->cfs_bandwidth.period); 9044 if (cfs_quota_us < 0) 9045 quota = RUNTIME_INF; 9046 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9047 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9048 else 9049 return -EINVAL; 9050 9051 return tg_set_cfs_bandwidth(tg, period, quota); 9052 } 9053 9054 static long tg_get_cfs_quota(struct task_group *tg) 9055 { 9056 u64 quota_us; 9057 9058 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9059 return -1; 9060 9061 quota_us = tg->cfs_bandwidth.quota; 9062 do_div(quota_us, NSEC_PER_USEC); 9063 9064 return quota_us; 9065 } 9066 9067 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9068 { 9069 u64 quota, period; 9070 9071 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9072 return -EINVAL; 9073 9074 period = (u64)cfs_period_us * NSEC_PER_USEC; 9075 quota = tg->cfs_bandwidth.quota; 9076 9077 return tg_set_cfs_bandwidth(tg, period, quota); 9078 } 9079 9080 static long tg_get_cfs_period(struct task_group *tg) 9081 { 9082 u64 cfs_period_us; 9083 9084 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9085 do_div(cfs_period_us, NSEC_PER_USEC); 9086 9087 return cfs_period_us; 9088 } 9089 9090 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9091 struct cftype *cft) 9092 { 9093 return tg_get_cfs_quota(css_tg(css)); 9094 } 9095 9096 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9097 struct cftype *cftype, s64 cfs_quota_us) 9098 { 9099 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9100 } 9101 9102 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9103 struct cftype *cft) 9104 { 9105 return tg_get_cfs_period(css_tg(css)); 9106 } 9107 9108 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9109 struct cftype *cftype, u64 cfs_period_us) 9110 { 9111 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9112 } 9113 9114 struct cfs_schedulable_data { 9115 struct task_group *tg; 9116 u64 period, quota; 9117 }; 9118 9119 /* 9120 * normalize group quota/period to be quota/max_period 9121 * note: units are usecs 9122 */ 9123 static u64 normalize_cfs_quota(struct task_group *tg, 9124 struct cfs_schedulable_data *d) 9125 { 9126 u64 quota, period; 9127 9128 if (tg == d->tg) { 9129 period = d->period; 9130 quota = d->quota; 9131 } else { 9132 period = tg_get_cfs_period(tg); 9133 quota = tg_get_cfs_quota(tg); 9134 } 9135 9136 /* note: these should typically be equivalent */ 9137 if (quota == RUNTIME_INF || quota == -1) 9138 return RUNTIME_INF; 9139 9140 return to_ratio(period, quota); 9141 } 9142 9143 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9144 { 9145 struct cfs_schedulable_data *d = data; 9146 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9147 s64 quota = 0, parent_quota = -1; 9148 9149 if (!tg->parent) { 9150 quota = RUNTIME_INF; 9151 } else { 9152 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9153 9154 quota = normalize_cfs_quota(tg, d); 9155 parent_quota = parent_b->hierarchical_quota; 9156 9157 /* 9158 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9159 * always take the min. On cgroup1, only inherit when no 9160 * limit is set: 9161 */ 9162 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9163 quota = min(quota, parent_quota); 9164 } else { 9165 if (quota == RUNTIME_INF) 9166 quota = parent_quota; 9167 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9168 return -EINVAL; 9169 } 9170 } 9171 cfs_b->hierarchical_quota = quota; 9172 9173 return 0; 9174 } 9175 9176 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9177 { 9178 int ret; 9179 struct cfs_schedulable_data data = { 9180 .tg = tg, 9181 .period = period, 9182 .quota = quota, 9183 }; 9184 9185 if (quota != RUNTIME_INF) { 9186 do_div(data.period, NSEC_PER_USEC); 9187 do_div(data.quota, NSEC_PER_USEC); 9188 } 9189 9190 rcu_read_lock(); 9191 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9192 rcu_read_unlock(); 9193 9194 return ret; 9195 } 9196 9197 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9198 { 9199 struct task_group *tg = css_tg(seq_css(sf)); 9200 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9201 9202 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9203 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9204 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9205 9206 if (schedstat_enabled() && tg != &root_task_group) { 9207 u64 ws = 0; 9208 int i; 9209 9210 for_each_possible_cpu(i) 9211 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 9212 9213 seq_printf(sf, "wait_sum %llu\n", ws); 9214 } 9215 9216 return 0; 9217 } 9218 #endif /* CONFIG_CFS_BANDWIDTH */ 9219 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9220 9221 #ifdef CONFIG_RT_GROUP_SCHED 9222 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9223 struct cftype *cft, s64 val) 9224 { 9225 return sched_group_set_rt_runtime(css_tg(css), val); 9226 } 9227 9228 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9229 struct cftype *cft) 9230 { 9231 return sched_group_rt_runtime(css_tg(css)); 9232 } 9233 9234 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9235 struct cftype *cftype, u64 rt_period_us) 9236 { 9237 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9238 } 9239 9240 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9241 struct cftype *cft) 9242 { 9243 return sched_group_rt_period(css_tg(css)); 9244 } 9245 #endif /* CONFIG_RT_GROUP_SCHED */ 9246 9247 static struct cftype cpu_legacy_files[] = { 9248 #ifdef CONFIG_FAIR_GROUP_SCHED 9249 { 9250 .name = "shares", 9251 .read_u64 = cpu_shares_read_u64, 9252 .write_u64 = cpu_shares_write_u64, 9253 }, 9254 #endif 9255 #ifdef CONFIG_CFS_BANDWIDTH 9256 { 9257 .name = "cfs_quota_us", 9258 .read_s64 = cpu_cfs_quota_read_s64, 9259 .write_s64 = cpu_cfs_quota_write_s64, 9260 }, 9261 { 9262 .name = "cfs_period_us", 9263 .read_u64 = cpu_cfs_period_read_u64, 9264 .write_u64 = cpu_cfs_period_write_u64, 9265 }, 9266 { 9267 .name = "stat", 9268 .seq_show = cpu_cfs_stat_show, 9269 }, 9270 #endif 9271 #ifdef CONFIG_RT_GROUP_SCHED 9272 { 9273 .name = "rt_runtime_us", 9274 .read_s64 = cpu_rt_runtime_read, 9275 .write_s64 = cpu_rt_runtime_write, 9276 }, 9277 { 9278 .name = "rt_period_us", 9279 .read_u64 = cpu_rt_period_read_uint, 9280 .write_u64 = cpu_rt_period_write_uint, 9281 }, 9282 #endif 9283 #ifdef CONFIG_UCLAMP_TASK_GROUP 9284 { 9285 .name = "uclamp.min", 9286 .flags = CFTYPE_NOT_ON_ROOT, 9287 .seq_show = cpu_uclamp_min_show, 9288 .write = cpu_uclamp_min_write, 9289 }, 9290 { 9291 .name = "uclamp.max", 9292 .flags = CFTYPE_NOT_ON_ROOT, 9293 .seq_show = cpu_uclamp_max_show, 9294 .write = cpu_uclamp_max_write, 9295 }, 9296 #endif 9297 { } /* Terminate */ 9298 }; 9299 9300 static int cpu_extra_stat_show(struct seq_file *sf, 9301 struct cgroup_subsys_state *css) 9302 { 9303 #ifdef CONFIG_CFS_BANDWIDTH 9304 { 9305 struct task_group *tg = css_tg(css); 9306 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9307 u64 throttled_usec; 9308 9309 throttled_usec = cfs_b->throttled_time; 9310 do_div(throttled_usec, NSEC_PER_USEC); 9311 9312 seq_printf(sf, "nr_periods %d\n" 9313 "nr_throttled %d\n" 9314 "throttled_usec %llu\n", 9315 cfs_b->nr_periods, cfs_b->nr_throttled, 9316 throttled_usec); 9317 } 9318 #endif 9319 return 0; 9320 } 9321 9322 #ifdef CONFIG_FAIR_GROUP_SCHED 9323 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9324 struct cftype *cft) 9325 { 9326 struct task_group *tg = css_tg(css); 9327 u64 weight = scale_load_down(tg->shares); 9328 9329 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9330 } 9331 9332 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9333 struct cftype *cft, u64 weight) 9334 { 9335 /* 9336 * cgroup weight knobs should use the common MIN, DFL and MAX 9337 * values which are 1, 100 and 10000 respectively. While it loses 9338 * a bit of range on both ends, it maps pretty well onto the shares 9339 * value used by scheduler and the round-trip conversions preserve 9340 * the original value over the entire range. 9341 */ 9342 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9343 return -ERANGE; 9344 9345 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9346 9347 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9348 } 9349 9350 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9351 struct cftype *cft) 9352 { 9353 unsigned long weight = scale_load_down(css_tg(css)->shares); 9354 int last_delta = INT_MAX; 9355 int prio, delta; 9356 9357 /* find the closest nice value to the current weight */ 9358 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9359 delta = abs(sched_prio_to_weight[prio] - weight); 9360 if (delta >= last_delta) 9361 break; 9362 last_delta = delta; 9363 } 9364 9365 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9366 } 9367 9368 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9369 struct cftype *cft, s64 nice) 9370 { 9371 unsigned long weight; 9372 int idx; 9373 9374 if (nice < MIN_NICE || nice > MAX_NICE) 9375 return -ERANGE; 9376 9377 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9378 idx = array_index_nospec(idx, 40); 9379 weight = sched_prio_to_weight[idx]; 9380 9381 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9382 } 9383 #endif 9384 9385 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9386 long period, long quota) 9387 { 9388 if (quota < 0) 9389 seq_puts(sf, "max"); 9390 else 9391 seq_printf(sf, "%ld", quota); 9392 9393 seq_printf(sf, " %ld\n", period); 9394 } 9395 9396 /* caller should put the current value in *@periodp before calling */ 9397 static int __maybe_unused cpu_period_quota_parse(char *buf, 9398 u64 *periodp, u64 *quotap) 9399 { 9400 char tok[21]; /* U64_MAX */ 9401 9402 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9403 return -EINVAL; 9404 9405 *periodp *= NSEC_PER_USEC; 9406 9407 if (sscanf(tok, "%llu", quotap)) 9408 *quotap *= NSEC_PER_USEC; 9409 else if (!strcmp(tok, "max")) 9410 *quotap = RUNTIME_INF; 9411 else 9412 return -EINVAL; 9413 9414 return 0; 9415 } 9416 9417 #ifdef CONFIG_CFS_BANDWIDTH 9418 static int cpu_max_show(struct seq_file *sf, void *v) 9419 { 9420 struct task_group *tg = css_tg(seq_css(sf)); 9421 9422 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9423 return 0; 9424 } 9425 9426 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9427 char *buf, size_t nbytes, loff_t off) 9428 { 9429 struct task_group *tg = css_tg(of_css(of)); 9430 u64 period = tg_get_cfs_period(tg); 9431 u64 quota; 9432 int ret; 9433 9434 ret = cpu_period_quota_parse(buf, &period, "a); 9435 if (!ret) 9436 ret = tg_set_cfs_bandwidth(tg, period, quota); 9437 return ret ?: nbytes; 9438 } 9439 #endif 9440 9441 static struct cftype cpu_files[] = { 9442 #ifdef CONFIG_FAIR_GROUP_SCHED 9443 { 9444 .name = "weight", 9445 .flags = CFTYPE_NOT_ON_ROOT, 9446 .read_u64 = cpu_weight_read_u64, 9447 .write_u64 = cpu_weight_write_u64, 9448 }, 9449 { 9450 .name = "weight.nice", 9451 .flags = CFTYPE_NOT_ON_ROOT, 9452 .read_s64 = cpu_weight_nice_read_s64, 9453 .write_s64 = cpu_weight_nice_write_s64, 9454 }, 9455 #endif 9456 #ifdef CONFIG_CFS_BANDWIDTH 9457 { 9458 .name = "max", 9459 .flags = CFTYPE_NOT_ON_ROOT, 9460 .seq_show = cpu_max_show, 9461 .write = cpu_max_write, 9462 }, 9463 #endif 9464 #ifdef CONFIG_UCLAMP_TASK_GROUP 9465 { 9466 .name = "uclamp.min", 9467 .flags = CFTYPE_NOT_ON_ROOT, 9468 .seq_show = cpu_uclamp_min_show, 9469 .write = cpu_uclamp_min_write, 9470 }, 9471 { 9472 .name = "uclamp.max", 9473 .flags = CFTYPE_NOT_ON_ROOT, 9474 .seq_show = cpu_uclamp_max_show, 9475 .write = cpu_uclamp_max_write, 9476 }, 9477 #endif 9478 { } /* terminate */ 9479 }; 9480 9481 struct cgroup_subsys cpu_cgrp_subsys = { 9482 .css_alloc = cpu_cgroup_css_alloc, 9483 .css_online = cpu_cgroup_css_online, 9484 .css_released = cpu_cgroup_css_released, 9485 .css_free = cpu_cgroup_css_free, 9486 .css_extra_stat_show = cpu_extra_stat_show, 9487 .fork = cpu_cgroup_fork, 9488 .can_attach = cpu_cgroup_can_attach, 9489 .attach = cpu_cgroup_attach, 9490 .legacy_cftypes = cpu_legacy_files, 9491 .dfl_cftypes = cpu_files, 9492 .early_init = true, 9493 .threaded = true, 9494 }; 9495 9496 #endif /* CONFIG_CGROUP_SCHED */ 9497 9498 void dump_cpu_task(int cpu) 9499 { 9500 pr_info("Task dump for CPU %d:\n", cpu); 9501 sched_show_task(cpu_curr(cpu)); 9502 } 9503 9504 /* 9505 * Nice levels are multiplicative, with a gentle 10% change for every 9506 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9507 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9508 * that remained on nice 0. 9509 * 9510 * The "10% effect" is relative and cumulative: from _any_ nice level, 9511 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9512 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9513 * If a task goes up by ~10% and another task goes down by ~10% then 9514 * the relative distance between them is ~25%.) 9515 */ 9516 const int sched_prio_to_weight[40] = { 9517 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9518 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9519 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9520 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9521 /* 0 */ 1024, 820, 655, 526, 423, 9522 /* 5 */ 335, 272, 215, 172, 137, 9523 /* 10 */ 110, 87, 70, 56, 45, 9524 /* 15 */ 36, 29, 23, 18, 15, 9525 }; 9526 9527 /* 9528 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9529 * 9530 * In cases where the weight does not change often, we can use the 9531 * precalculated inverse to speed up arithmetics by turning divisions 9532 * into multiplications: 9533 */ 9534 const u32 sched_prio_to_wmult[40] = { 9535 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9536 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9537 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9538 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9539 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9540 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9541 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9542 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9543 }; 9544 9545 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9546 { 9547 trace_sched_update_nr_running_tp(rq, count); 9548 } 9549