xref: /openbmc/linux/kernel/sched/core.c (revision d9f6e12f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = rq->hrtick_time;
359 
360 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 	struct rq_flags rf;
370 
371 	rq_lock(rq, &rf);
372 	__hrtick_restart(rq);
373 	rq_unlock(rq, &rf);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	if (rq == this_rq())
394 		__hrtick_restart(rq);
395 	else
396 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
397 }
398 
399 #else
400 /*
401  * Called to set the hrtick timer state.
402  *
403  * called with rq->lock held and irqs disabled
404  */
405 void hrtick_start(struct rq *rq, u64 delay)
406 {
407 	/*
408 	 * Don't schedule slices shorter than 10000ns, that just
409 	 * doesn't make sense. Rely on vruntime for fairness.
410 	 */
411 	delay = max_t(u64, delay, 10000LL);
412 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
413 		      HRTIMER_MODE_REL_PINNED_HARD);
414 }
415 
416 #endif /* CONFIG_SMP */
417 
418 static void hrtick_rq_init(struct rq *rq)
419 {
420 #ifdef CONFIG_SMP
421 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
422 #endif
423 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
424 	rq->hrtick_timer.function = hrtick;
425 }
426 #else	/* CONFIG_SCHED_HRTICK */
427 static inline void hrtick_clear(struct rq *rq)
428 {
429 }
430 
431 static inline void hrtick_rq_init(struct rq *rq)
432 {
433 }
434 #endif	/* CONFIG_SCHED_HRTICK */
435 
436 /*
437  * cmpxchg based fetch_or, macro so it works for different integer types
438  */
439 #define fetch_or(ptr, mask)						\
440 	({								\
441 		typeof(ptr) _ptr = (ptr);				\
442 		typeof(mask) _mask = (mask);				\
443 		typeof(*_ptr) _old, _val = *_ptr;			\
444 									\
445 		for (;;) {						\
446 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
447 			if (_old == _val)				\
448 				break;					\
449 			_val = _old;					\
450 		}							\
451 	_old;								\
452 })
453 
454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
455 /*
456  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457  * this avoids any races wrt polling state changes and thereby avoids
458  * spurious IPIs.
459  */
460 static bool set_nr_and_not_polling(struct task_struct *p)
461 {
462 	struct thread_info *ti = task_thread_info(p);
463 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464 }
465 
466 /*
467  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468  *
469  * If this returns true, then the idle task promises to call
470  * sched_ttwu_pending() and reschedule soon.
471  */
472 static bool set_nr_if_polling(struct task_struct *p)
473 {
474 	struct thread_info *ti = task_thread_info(p);
475 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
476 
477 	for (;;) {
478 		if (!(val & _TIF_POLLING_NRFLAG))
479 			return false;
480 		if (val & _TIF_NEED_RESCHED)
481 			return true;
482 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 		if (old == val)
484 			break;
485 		val = old;
486 	}
487 	return true;
488 }
489 
490 #else
491 static bool set_nr_and_not_polling(struct task_struct *p)
492 {
493 	set_tsk_need_resched(p);
494 	return true;
495 }
496 
497 #ifdef CONFIG_SMP
498 static bool set_nr_if_polling(struct task_struct *p)
499 {
500 	return false;
501 }
502 #endif
503 #endif
504 
505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
506 {
507 	struct wake_q_node *node = &task->wake_q;
508 
509 	/*
510 	 * Atomically grab the task, if ->wake_q is !nil already it means
511 	 * it's already queued (either by us or someone else) and will get the
512 	 * wakeup due to that.
513 	 *
514 	 * In order to ensure that a pending wakeup will observe our pending
515 	 * state, even in the failed case, an explicit smp_mb() must be used.
516 	 */
517 	smp_mb__before_atomic();
518 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
519 		return false;
520 
521 	/*
522 	 * The head is context local, there can be no concurrency.
523 	 */
524 	*head->lastp = node;
525 	head->lastp = &node->next;
526 	return true;
527 }
528 
529 /**
530  * wake_q_add() - queue a wakeup for 'later' waking.
531  * @head: the wake_q_head to add @task to
532  * @task: the task to queue for 'later' wakeup
533  *
534  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536  * instantly.
537  *
538  * This function must be used as-if it were wake_up_process(); IOW the task
539  * must be ready to be woken at this location.
540  */
541 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542 {
543 	if (__wake_q_add(head, task))
544 		get_task_struct(task);
545 }
546 
547 /**
548  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549  * @head: the wake_q_head to add @task to
550  * @task: the task to queue for 'later' wakeup
551  *
552  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554  * instantly.
555  *
556  * This function must be used as-if it were wake_up_process(); IOW the task
557  * must be ready to be woken at this location.
558  *
559  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560  * that already hold reference to @task can call the 'safe' version and trust
561  * wake_q to do the right thing depending whether or not the @task is already
562  * queued for wakeup.
563  */
564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565 {
566 	if (!__wake_q_add(head, task))
567 		put_task_struct(task);
568 }
569 
570 void wake_up_q(struct wake_q_head *head)
571 {
572 	struct wake_q_node *node = head->first;
573 
574 	while (node != WAKE_Q_TAIL) {
575 		struct task_struct *task;
576 
577 		task = container_of(node, struct task_struct, wake_q);
578 		BUG_ON(!task);
579 		/* Task can safely be re-inserted now: */
580 		node = node->next;
581 		task->wake_q.next = NULL;
582 
583 		/*
584 		 * wake_up_process() executes a full barrier, which pairs with
585 		 * the queueing in wake_q_add() so as not to miss wakeups.
586 		 */
587 		wake_up_process(task);
588 		put_task_struct(task);
589 	}
590 }
591 
592 /*
593  * resched_curr - mark rq's current task 'to be rescheduled now'.
594  *
595  * On UP this means the setting of the need_resched flag, on SMP it
596  * might also involve a cross-CPU call to trigger the scheduler on
597  * the target CPU.
598  */
599 void resched_curr(struct rq *rq)
600 {
601 	struct task_struct *curr = rq->curr;
602 	int cpu;
603 
604 	lockdep_assert_held(&rq->lock);
605 
606 	if (test_tsk_need_resched(curr))
607 		return;
608 
609 	cpu = cpu_of(rq);
610 
611 	if (cpu == smp_processor_id()) {
612 		set_tsk_need_resched(curr);
613 		set_preempt_need_resched();
614 		return;
615 	}
616 
617 	if (set_nr_and_not_polling(curr))
618 		smp_send_reschedule(cpu);
619 	else
620 		trace_sched_wake_idle_without_ipi(cpu);
621 }
622 
623 void resched_cpu(int cpu)
624 {
625 	struct rq *rq = cpu_rq(cpu);
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&rq->lock, flags);
629 	if (cpu_online(cpu) || cpu == smp_processor_id())
630 		resched_curr(rq);
631 	raw_spin_unlock_irqrestore(&rq->lock, flags);
632 }
633 
634 #ifdef CONFIG_SMP
635 #ifdef CONFIG_NO_HZ_COMMON
636 /*
637  * In the semi idle case, use the nearest busy CPU for migrating timers
638  * from an idle CPU.  This is good for power-savings.
639  *
640  * We don't do similar optimization for completely idle system, as
641  * selecting an idle CPU will add more delays to the timers than intended
642  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
643  */
644 int get_nohz_timer_target(void)
645 {
646 	int i, cpu = smp_processor_id(), default_cpu = -1;
647 	struct sched_domain *sd;
648 
649 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 		if (!idle_cpu(cpu))
651 			return cpu;
652 		default_cpu = cpu;
653 	}
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu_and(i, sched_domain_span(sd),
658 			housekeeping_cpumask(HK_FLAG_TIMER)) {
659 			if (cpu == i)
660 				continue;
661 
662 			if (!idle_cpu(i)) {
663 				cpu = i;
664 				goto unlock;
665 			}
666 		}
667 	}
668 
669 	if (default_cpu == -1)
670 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 	cpu = default_cpu;
672 unlock:
673 	rcu_read_unlock();
674 	return cpu;
675 }
676 
677 /*
678  * When add_timer_on() enqueues a timer into the timer wheel of an
679  * idle CPU then this timer might expire before the next timer event
680  * which is scheduled to wake up that CPU. In case of a completely
681  * idle system the next event might even be infinite time into the
682  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683  * leaves the inner idle loop so the newly added timer is taken into
684  * account when the CPU goes back to idle and evaluates the timer
685  * wheel for the next timer event.
686  */
687 static void wake_up_idle_cpu(int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 
691 	if (cpu == smp_processor_id())
692 		return;
693 
694 	if (set_nr_and_not_polling(rq->idle))
695 		smp_send_reschedule(cpu);
696 	else
697 		trace_sched_wake_idle_without_ipi(cpu);
698 }
699 
700 static bool wake_up_full_nohz_cpu(int cpu)
701 {
702 	/*
703 	 * We just need the target to call irq_exit() and re-evaluate
704 	 * the next tick. The nohz full kick at least implies that.
705 	 * If needed we can still optimize that later with an
706 	 * empty IRQ.
707 	 */
708 	if (cpu_is_offline(cpu))
709 		return true;  /* Don't try to wake offline CPUs. */
710 	if (tick_nohz_full_cpu(cpu)) {
711 		if (cpu != smp_processor_id() ||
712 		    tick_nohz_tick_stopped())
713 			tick_nohz_full_kick_cpu(cpu);
714 		return true;
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Wake up the specified CPU.  If the CPU is going offline, it is the
722  * caller's responsibility to deal with the lost wakeup, for example,
723  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724  */
725 void wake_up_nohz_cpu(int cpu)
726 {
727 	if (!wake_up_full_nohz_cpu(cpu))
728 		wake_up_idle_cpu(cpu);
729 }
730 
731 static void nohz_csd_func(void *info)
732 {
733 	struct rq *rq = info;
734 	int cpu = cpu_of(rq);
735 	unsigned int flags;
736 
737 	/*
738 	 * Release the rq::nohz_csd.
739 	 */
740 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 	WARN_ON(!(flags & NOHZ_KICK_MASK));
742 
743 	rq->idle_balance = idle_cpu(cpu);
744 	if (rq->idle_balance && !need_resched()) {
745 		rq->nohz_idle_balance = flags;
746 		raise_softirq_irqoff(SCHED_SOFTIRQ);
747 	}
748 }
749 
750 #endif /* CONFIG_NO_HZ_COMMON */
751 
752 #ifdef CONFIG_NO_HZ_FULL
753 bool sched_can_stop_tick(struct rq *rq)
754 {
755 	int fifo_nr_running;
756 
757 	/* Deadline tasks, even if single, need the tick */
758 	if (rq->dl.dl_nr_running)
759 		return false;
760 
761 	/*
762 	 * If there are more than one RR tasks, we need the tick to affect the
763 	 * actual RR behaviour.
764 	 */
765 	if (rq->rt.rr_nr_running) {
766 		if (rq->rt.rr_nr_running == 1)
767 			return true;
768 		else
769 			return false;
770 	}
771 
772 	/*
773 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 	 * forced preemption between FIFO tasks.
775 	 */
776 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 	if (fifo_nr_running)
778 		return true;
779 
780 	/*
781 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 	 * if there's more than one we need the tick for involuntary
783 	 * preemption.
784 	 */
785 	if (rq->nr_running > 1)
786 		return false;
787 
788 	return true;
789 }
790 #endif /* CONFIG_NO_HZ_FULL */
791 #endif /* CONFIG_SMP */
792 
793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
795 /*
796  * Iterate task_group tree rooted at *from, calling @down when first entering a
797  * node and @up when leaving it for the final time.
798  *
799  * Caller must hold rcu_lock or sufficient equivalent.
800  */
801 int walk_tg_tree_from(struct task_group *from,
802 			     tg_visitor down, tg_visitor up, void *data)
803 {
804 	struct task_group *parent, *child;
805 	int ret;
806 
807 	parent = from;
808 
809 down:
810 	ret = (*down)(parent, data);
811 	if (ret)
812 		goto out;
813 	list_for_each_entry_rcu(child, &parent->children, siblings) {
814 		parent = child;
815 		goto down;
816 
817 up:
818 		continue;
819 	}
820 	ret = (*up)(parent, data);
821 	if (ret || parent == from)
822 		goto out;
823 
824 	child = parent;
825 	parent = parent->parent;
826 	if (parent)
827 		goto up;
828 out:
829 	return ret;
830 }
831 
832 int tg_nop(struct task_group *tg, void *data)
833 {
834 	return 0;
835 }
836 #endif
837 
838 static void set_load_weight(struct task_struct *p, bool update_load)
839 {
840 	int prio = p->static_prio - MAX_RT_PRIO;
841 	struct load_weight *load = &p->se.load;
842 
843 	/*
844 	 * SCHED_IDLE tasks get minimal weight:
845 	 */
846 	if (task_has_idle_policy(p)) {
847 		load->weight = scale_load(WEIGHT_IDLEPRIO);
848 		load->inv_weight = WMULT_IDLEPRIO;
849 		return;
850 	}
851 
852 	/*
853 	 * SCHED_OTHER tasks have to update their load when changing their
854 	 * weight
855 	 */
856 	if (update_load && p->sched_class == &fair_sched_class) {
857 		reweight_task(p, prio);
858 	} else {
859 		load->weight = scale_load(sched_prio_to_weight[prio]);
860 		load->inv_weight = sched_prio_to_wmult[prio];
861 	}
862 }
863 
864 #ifdef CONFIG_UCLAMP_TASK
865 /*
866  * Serializes updates of utilization clamp values
867  *
868  * The (slow-path) user-space triggers utilization clamp value updates which
869  * can require updates on (fast-path) scheduler's data structures used to
870  * support enqueue/dequeue operations.
871  * While the per-CPU rq lock protects fast-path update operations, user-space
872  * requests are serialized using a mutex to reduce the risk of conflicting
873  * updates or API abuses.
874  */
875 static DEFINE_MUTEX(uclamp_mutex);
876 
877 /* Max allowed minimum utilization */
878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879 
880 /* Max allowed maximum utilization */
881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882 
883 /*
884  * By default RT tasks run at the maximum performance point/capacity of the
885  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886  * SCHED_CAPACITY_SCALE.
887  *
888  * This knob allows admins to change the default behavior when uclamp is being
889  * used. In battery powered devices, particularly, running at the maximum
890  * capacity and frequency will increase energy consumption and shorten the
891  * battery life.
892  *
893  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894  *
895  * This knob will not override the system default sched_util_clamp_min defined
896  * above.
897  */
898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899 
900 /* All clamps are required to be less or equal than these values */
901 static struct uclamp_se uclamp_default[UCLAMP_CNT];
902 
903 /*
904  * This static key is used to reduce the uclamp overhead in the fast path. It
905  * primarily disables the call to uclamp_rq_{inc, dec}() in
906  * enqueue/dequeue_task().
907  *
908  * This allows users to continue to enable uclamp in their kernel config with
909  * minimum uclamp overhead in the fast path.
910  *
911  * As soon as userspace modifies any of the uclamp knobs, the static key is
912  * enabled, since we have an actual users that make use of uclamp
913  * functionality.
914  *
915  * The knobs that would enable this static key are:
916  *
917  *   * A task modifying its uclamp value with sched_setattr().
918  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
920  */
921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922 
923 /* Integer rounded range for each bucket */
924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925 
926 #define for_each_clamp_id(clamp_id) \
927 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928 
929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930 {
931 	return clamp_value / UCLAMP_BUCKET_DELTA;
932 }
933 
934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
935 {
936 	if (clamp_id == UCLAMP_MIN)
937 		return 0;
938 	return SCHED_CAPACITY_SCALE;
939 }
940 
941 static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 				 unsigned int value, bool user_defined)
943 {
944 	uc_se->value = value;
945 	uc_se->bucket_id = uclamp_bucket_id(value);
946 	uc_se->user_defined = user_defined;
947 }
948 
949 static inline unsigned int
950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
951 		  unsigned int clamp_value)
952 {
953 	/*
954 	 * Avoid blocked utilization pushing up the frequency when we go
955 	 * idle (which drops the max-clamp) by retaining the last known
956 	 * max-clamp.
957 	 */
958 	if (clamp_id == UCLAMP_MAX) {
959 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 		return clamp_value;
961 	}
962 
963 	return uclamp_none(UCLAMP_MIN);
964 }
965 
966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
967 				     unsigned int clamp_value)
968 {
969 	/* Reset max-clamp retention only on idle exit */
970 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 		return;
972 
973 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974 }
975 
976 static inline
977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
978 				   unsigned int clamp_value)
979 {
980 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 	int bucket_id = UCLAMP_BUCKETS - 1;
982 
983 	/*
984 	 * Since both min and max clamps are max aggregated, find the
985 	 * top most bucket with tasks in.
986 	 */
987 	for ( ; bucket_id >= 0; bucket_id--) {
988 		if (!bucket[bucket_id].tasks)
989 			continue;
990 		return bucket[bucket_id].value;
991 	}
992 
993 	/* No tasks -- default clamp values */
994 	return uclamp_idle_value(rq, clamp_id, clamp_value);
995 }
996 
997 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998 {
999 	unsigned int default_util_min;
1000 	struct uclamp_se *uc_se;
1001 
1002 	lockdep_assert_held(&p->pi_lock);
1003 
1004 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1005 
1006 	/* Only sync if user didn't override the default */
1007 	if (uc_se->user_defined)
1008 		return;
1009 
1010 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 	uclamp_se_set(uc_se, default_util_min, false);
1012 }
1013 
1014 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015 {
1016 	struct rq_flags rf;
1017 	struct rq *rq;
1018 
1019 	if (!rt_task(p))
1020 		return;
1021 
1022 	/* Protect updates to p->uclamp_* */
1023 	rq = task_rq_lock(p, &rf);
1024 	__uclamp_update_util_min_rt_default(p);
1025 	task_rq_unlock(rq, p, &rf);
1026 }
1027 
1028 static void uclamp_sync_util_min_rt_default(void)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * copy_process()			sysctl_uclamp
1034 	 *					  uclamp_min_rt = X;
1035 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1036 	 *   // link thread			  smp_mb__after_spinlock()
1037 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1038 	 *   sched_post_fork()			  for_each_process_thread()
1039 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1040 	 *
1041 	 * Ensures that either sched_post_fork() will observe the new
1042 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 	 * task.
1044 	 */
1045 	read_lock(&tasklist_lock);
1046 	smp_mb__after_spinlock();
1047 	read_unlock(&tasklist_lock);
1048 
1049 	rcu_read_lock();
1050 	for_each_process_thread(g, p)
1051 		uclamp_update_util_min_rt_default(p);
1052 	rcu_read_unlock();
1053 }
1054 
1055 static inline struct uclamp_se
1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1057 {
1058 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059 #ifdef CONFIG_UCLAMP_TASK_GROUP
1060 	struct uclamp_se uc_max;
1061 
1062 	/*
1063 	 * Tasks in autogroups or root task group will be
1064 	 * restricted by system defaults.
1065 	 */
1066 	if (task_group_is_autogroup(task_group(p)))
1067 		return uc_req;
1068 	if (task_group(p) == &root_task_group)
1069 		return uc_req;
1070 
1071 	uc_max = task_group(p)->uclamp[clamp_id];
1072 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 		return uc_max;
1074 #endif
1075 
1076 	return uc_req;
1077 }
1078 
1079 /*
1080  * The effective clamp bucket index of a task depends on, by increasing
1081  * priority:
1082  * - the task specific clamp value, when explicitly requested from userspace
1083  * - the task group effective clamp value, for tasks not either in the root
1084  *   group or in an autogroup
1085  * - the system default clamp value, defined by the sysadmin
1086  */
1087 static inline struct uclamp_se
1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1089 {
1090 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1091 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1092 
1093 	/* System default restrictions always apply */
1094 	if (unlikely(uc_req.value > uc_max.value))
1095 		return uc_max;
1096 
1097 	return uc_req;
1098 }
1099 
1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1101 {
1102 	struct uclamp_se uc_eff;
1103 
1104 	/* Task currently refcounted: use back-annotated (effective) value */
1105 	if (p->uclamp[clamp_id].active)
1106 		return (unsigned long)p->uclamp[clamp_id].value;
1107 
1108 	uc_eff = uclamp_eff_get(p, clamp_id);
1109 
1110 	return (unsigned long)uc_eff.value;
1111 }
1112 
1113 /*
1114  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116  * updates the rq's clamp value if required.
1117  *
1118  * Tasks can have a task-specific value requested from user-space, track
1119  * within each bucket the maximum value for tasks refcounted in it.
1120  * This "local max aggregation" allows to track the exact "requested" value
1121  * for each bucket when all its RUNNABLE tasks require the same clamp.
1122  */
1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1124 				    enum uclamp_id clamp_id)
1125 {
1126 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 	struct uclamp_bucket *bucket;
1129 
1130 	lockdep_assert_held(&rq->lock);
1131 
1132 	/* Update task effective clamp */
1133 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134 
1135 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 	bucket->tasks++;
1137 	uc_se->active = true;
1138 
1139 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140 
1141 	/*
1142 	 * Local max aggregation: rq buckets always track the max
1143 	 * "requested" clamp value of its RUNNABLE tasks.
1144 	 */
1145 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 		bucket->value = uc_se->value;
1147 
1148 	if (uc_se->value > READ_ONCE(uc_rq->value))
1149 		WRITE_ONCE(uc_rq->value, uc_se->value);
1150 }
1151 
1152 /*
1153  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154  * is released. If this is the last task reference counting the rq's max
1155  * active clamp value, then the rq's clamp value is updated.
1156  *
1157  * Both refcounted tasks and rq's cached clamp values are expected to be
1158  * always valid. If it's detected they are not, as defensive programming,
1159  * enforce the expected state and warn.
1160  */
1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1162 				    enum uclamp_id clamp_id)
1163 {
1164 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 	struct uclamp_bucket *bucket;
1167 	unsigned int bkt_clamp;
1168 	unsigned int rq_clamp;
1169 
1170 	lockdep_assert_held(&rq->lock);
1171 
1172 	/*
1173 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 	 *
1176 	 * In this case the uc_se->active flag should be false since no uclamp
1177 	 * accounting was performed at enqueue time and we can just return
1178 	 * here.
1179 	 *
1180 	 * Need to be careful of the following enqueue/dequeue ordering
1181 	 * problem too
1182 	 *
1183 	 *	enqueue(taskA)
1184 	 *	// sched_uclamp_used gets enabled
1185 	 *	enqueue(taskB)
1186 	 *	dequeue(taskA)
1187 	 *	// Must not decrement bucket->tasks here
1188 	 *	dequeue(taskB)
1189 	 *
1190 	 * where we could end up with stale data in uc_se and
1191 	 * bucket[uc_se->bucket_id].
1192 	 *
1193 	 * The following check here eliminates the possibility of such race.
1194 	 */
1195 	if (unlikely(!uc_se->active))
1196 		return;
1197 
1198 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1199 
1200 	SCHED_WARN_ON(!bucket->tasks);
1201 	if (likely(bucket->tasks))
1202 		bucket->tasks--;
1203 
1204 	uc_se->active = false;
1205 
1206 	/*
1207 	 * Keep "local max aggregation" simple and accept to (possibly)
1208 	 * overboost some RUNNABLE tasks in the same bucket.
1209 	 * The rq clamp bucket value is reset to its base value whenever
1210 	 * there are no more RUNNABLE tasks refcounting it.
1211 	 */
1212 	if (likely(bucket->tasks))
1213 		return;
1214 
1215 	rq_clamp = READ_ONCE(uc_rq->value);
1216 	/*
1217 	 * Defensive programming: this should never happen. If it happens,
1218 	 * e.g. due to future modification, warn and fixup the expected value.
1219 	 */
1220 	SCHED_WARN_ON(bucket->value > rq_clamp);
1221 	if (bucket->value >= rq_clamp) {
1222 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 	}
1225 }
1226 
1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228 {
1229 	enum uclamp_id clamp_id;
1230 
1231 	/*
1232 	 * Avoid any overhead until uclamp is actually used by the userspace.
1233 	 *
1234 	 * The condition is constructed such that a NOP is generated when
1235 	 * sched_uclamp_used is disabled.
1236 	 */
1237 	if (!static_branch_unlikely(&sched_uclamp_used))
1238 		return;
1239 
1240 	if (unlikely(!p->sched_class->uclamp_enabled))
1241 		return;
1242 
1243 	for_each_clamp_id(clamp_id)
1244 		uclamp_rq_inc_id(rq, p, clamp_id);
1245 
1246 	/* Reset clamp idle holding when there is one RUNNABLE task */
1247 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1249 }
1250 
1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252 {
1253 	enum uclamp_id clamp_id;
1254 
1255 	/*
1256 	 * Avoid any overhead until uclamp is actually used by the userspace.
1257 	 *
1258 	 * The condition is constructed such that a NOP is generated when
1259 	 * sched_uclamp_used is disabled.
1260 	 */
1261 	if (!static_branch_unlikely(&sched_uclamp_used))
1262 		return;
1263 
1264 	if (unlikely(!p->sched_class->uclamp_enabled))
1265 		return;
1266 
1267 	for_each_clamp_id(clamp_id)
1268 		uclamp_rq_dec_id(rq, p, clamp_id);
1269 }
1270 
1271 static inline void
1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1273 {
1274 	struct rq_flags rf;
1275 	struct rq *rq;
1276 
1277 	/*
1278 	 * Lock the task and the rq where the task is (or was) queued.
1279 	 *
1280 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 	 * price to pay to safely serialize util_{min,max} updates with
1282 	 * enqueues, dequeues and migration operations.
1283 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 	 */
1285 	rq = task_rq_lock(p, &rf);
1286 
1287 	/*
1288 	 * Setting the clamp bucket is serialized by task_rq_lock().
1289 	 * If the task is not yet RUNNABLE and its task_struct is not
1290 	 * affecting a valid clamp bucket, the next time it's enqueued,
1291 	 * it will already see the updated clamp bucket value.
1292 	 */
1293 	if (p->uclamp[clamp_id].active) {
1294 		uclamp_rq_dec_id(rq, p, clamp_id);
1295 		uclamp_rq_inc_id(rq, p, clamp_id);
1296 	}
1297 
1298 	task_rq_unlock(rq, p, &rf);
1299 }
1300 
1301 #ifdef CONFIG_UCLAMP_TASK_GROUP
1302 static inline void
1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 			   unsigned int clamps)
1305 {
1306 	enum uclamp_id clamp_id;
1307 	struct css_task_iter it;
1308 	struct task_struct *p;
1309 
1310 	css_task_iter_start(css, 0, &it);
1311 	while ((p = css_task_iter_next(&it))) {
1312 		for_each_clamp_id(clamp_id) {
1313 			if ((0x1 << clamp_id) & clamps)
1314 				uclamp_update_active(p, clamp_id);
1315 		}
1316 	}
1317 	css_task_iter_end(&it);
1318 }
1319 
1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321 static void uclamp_update_root_tg(void)
1322 {
1323 	struct task_group *tg = &root_task_group;
1324 
1325 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 		      sysctl_sched_uclamp_util_min, false);
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 		      sysctl_sched_uclamp_util_max, false);
1329 
1330 	rcu_read_lock();
1331 	cpu_util_update_eff(&root_task_group.css);
1332 	rcu_read_unlock();
1333 }
1334 #else
1335 static void uclamp_update_root_tg(void) { }
1336 #endif
1337 
1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1339 				void *buffer, size_t *lenp, loff_t *ppos)
1340 {
1341 	bool update_root_tg = false;
1342 	int old_min, old_max, old_min_rt;
1343 	int result;
1344 
1345 	mutex_lock(&uclamp_mutex);
1346 	old_min = sysctl_sched_uclamp_util_min;
1347 	old_max = sysctl_sched_uclamp_util_max;
1348 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1349 
1350 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 	if (result)
1352 		goto undo;
1353 	if (!write)
1354 		goto done;
1355 
1356 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1357 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1358 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359 
1360 		result = -EINVAL;
1361 		goto undo;
1362 	}
1363 
1364 	if (old_min != sysctl_sched_uclamp_util_min) {
1365 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1366 			      sysctl_sched_uclamp_util_min, false);
1367 		update_root_tg = true;
1368 	}
1369 	if (old_max != sysctl_sched_uclamp_util_max) {
1370 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1371 			      sysctl_sched_uclamp_util_max, false);
1372 		update_root_tg = true;
1373 	}
1374 
1375 	if (update_root_tg) {
1376 		static_branch_enable(&sched_uclamp_used);
1377 		uclamp_update_root_tg();
1378 	}
1379 
1380 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 		static_branch_enable(&sched_uclamp_used);
1382 		uclamp_sync_util_min_rt_default();
1383 	}
1384 
1385 	/*
1386 	 * We update all RUNNABLE tasks only when task groups are in use.
1387 	 * Otherwise, keep it simple and do just a lazy update at each next
1388 	 * task enqueue time.
1389 	 */
1390 
1391 	goto done;
1392 
1393 undo:
1394 	sysctl_sched_uclamp_util_min = old_min;
1395 	sysctl_sched_uclamp_util_max = old_max;
1396 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1397 done:
1398 	mutex_unlock(&uclamp_mutex);
1399 
1400 	return result;
1401 }
1402 
1403 static int uclamp_validate(struct task_struct *p,
1404 			   const struct sched_attr *attr)
1405 {
1406 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1408 
1409 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 		util_min = attr->sched_util_min;
1411 
1412 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 			return -EINVAL;
1414 	}
1415 
1416 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 		util_max = attr->sched_util_max;
1418 
1419 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1424 		return -EINVAL;
1425 
1426 	/*
1427 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 	 *
1429 	 * We need to do that here, because enabling static branches is a
1430 	 * blocking operation which obviously cannot be done while holding
1431 	 * scheduler locks.
1432 	 */
1433 	static_branch_enable(&sched_uclamp_used);
1434 
1435 	return 0;
1436 }
1437 
1438 static bool uclamp_reset(const struct sched_attr *attr,
1439 			 enum uclamp_id clamp_id,
1440 			 struct uclamp_se *uc_se)
1441 {
1442 	/* Reset on sched class change for a non user-defined clamp value. */
1443 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 	    !uc_se->user_defined)
1445 		return true;
1446 
1447 	/* Reset on sched_util_{min,max} == -1. */
1448 	if (clamp_id == UCLAMP_MIN &&
1449 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 	    attr->sched_util_min == -1) {
1451 		return true;
1452 	}
1453 
1454 	if (clamp_id == UCLAMP_MAX &&
1455 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 	    attr->sched_util_max == -1) {
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 static void __setscheduler_uclamp(struct task_struct *p,
1464 				  const struct sched_attr *attr)
1465 {
1466 	enum uclamp_id clamp_id;
1467 
1468 	for_each_clamp_id(clamp_id) {
1469 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1470 		unsigned int value;
1471 
1472 		if (!uclamp_reset(attr, clamp_id, uc_se))
1473 			continue;
1474 
1475 		/*
1476 		 * RT by default have a 100% boost value that could be modified
1477 		 * at runtime.
1478 		 */
1479 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1480 			value = sysctl_sched_uclamp_util_min_rt_default;
1481 		else
1482 			value = uclamp_none(clamp_id);
1483 
1484 		uclamp_se_set(uc_se, value, false);
1485 
1486 	}
1487 
1488 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 		return;
1490 
1491 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 	    attr->sched_util_min != -1) {
1493 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 			      attr->sched_util_min, true);
1495 	}
1496 
1497 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 	    attr->sched_util_max != -1) {
1499 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 			      attr->sched_util_max, true);
1501 	}
1502 }
1503 
1504 static void uclamp_fork(struct task_struct *p)
1505 {
1506 	enum uclamp_id clamp_id;
1507 
1508 	/*
1509 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 	 * as the task is still at its early fork stages.
1511 	 */
1512 	for_each_clamp_id(clamp_id)
1513 		p->uclamp[clamp_id].active = false;
1514 
1515 	if (likely(!p->sched_reset_on_fork))
1516 		return;
1517 
1518 	for_each_clamp_id(clamp_id) {
1519 		uclamp_se_set(&p->uclamp_req[clamp_id],
1520 			      uclamp_none(clamp_id), false);
1521 	}
1522 }
1523 
1524 static void uclamp_post_fork(struct task_struct *p)
1525 {
1526 	uclamp_update_util_min_rt_default(p);
1527 }
1528 
1529 static void __init init_uclamp_rq(struct rq *rq)
1530 {
1531 	enum uclamp_id clamp_id;
1532 	struct uclamp_rq *uc_rq = rq->uclamp;
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uc_rq[clamp_id] = (struct uclamp_rq) {
1536 			.value = uclamp_none(clamp_id)
1537 		};
1538 	}
1539 
1540 	rq->uclamp_flags = 0;
1541 }
1542 
1543 static void __init init_uclamp(void)
1544 {
1545 	struct uclamp_se uc_max = {};
1546 	enum uclamp_id clamp_id;
1547 	int cpu;
1548 
1549 	for_each_possible_cpu(cpu)
1550 		init_uclamp_rq(cpu_rq(cpu));
1551 
1552 	for_each_clamp_id(clamp_id) {
1553 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1554 			      uclamp_none(clamp_id), false);
1555 	}
1556 
1557 	/* System defaults allow max clamp values for both indexes */
1558 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1559 	for_each_clamp_id(clamp_id) {
1560 		uclamp_default[clamp_id] = uc_max;
1561 #ifdef CONFIG_UCLAMP_TASK_GROUP
1562 		root_task_group.uclamp_req[clamp_id] = uc_max;
1563 		root_task_group.uclamp[clamp_id] = uc_max;
1564 #endif
1565 	}
1566 }
1567 
1568 #else /* CONFIG_UCLAMP_TASK */
1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1571 static inline int uclamp_validate(struct task_struct *p,
1572 				  const struct sched_attr *attr)
1573 {
1574 	return -EOPNOTSUPP;
1575 }
1576 static void __setscheduler_uclamp(struct task_struct *p,
1577 				  const struct sched_attr *attr) { }
1578 static inline void uclamp_fork(struct task_struct *p) { }
1579 static inline void uclamp_post_fork(struct task_struct *p) { }
1580 static inline void init_uclamp(void) { }
1581 #endif /* CONFIG_UCLAMP_TASK */
1582 
1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1584 {
1585 	if (!(flags & ENQUEUE_NOCLOCK))
1586 		update_rq_clock(rq);
1587 
1588 	if (!(flags & ENQUEUE_RESTORE)) {
1589 		sched_info_queued(rq, p);
1590 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 	}
1592 
1593 	uclamp_rq_inc(rq, p);
1594 	p->sched_class->enqueue_task(rq, p, flags);
1595 }
1596 
1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1598 {
1599 	if (!(flags & DEQUEUE_NOCLOCK))
1600 		update_rq_clock(rq);
1601 
1602 	if (!(flags & DEQUEUE_SAVE)) {
1603 		sched_info_dequeued(rq, p);
1604 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 	}
1606 
1607 	uclamp_rq_dec(rq, p);
1608 	p->sched_class->dequeue_task(rq, p, flags);
1609 }
1610 
1611 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 	enqueue_task(rq, p, flags);
1614 
1615 	p->on_rq = TASK_ON_RQ_QUEUED;
1616 }
1617 
1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1619 {
1620 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621 
1622 	dequeue_task(rq, p, flags);
1623 }
1624 
1625 /*
1626  * __normal_prio - return the priority that is based on the static prio
1627  */
1628 static inline int __normal_prio(struct task_struct *p)
1629 {
1630 	return p->static_prio;
1631 }
1632 
1633 /*
1634  * Calculate the expected normal priority: i.e. priority
1635  * without taking RT-inheritance into account. Might be
1636  * boosted by interactivity modifiers. Changes upon fork,
1637  * setprio syscalls, and whenever the interactivity
1638  * estimator recalculates.
1639  */
1640 static inline int normal_prio(struct task_struct *p)
1641 {
1642 	int prio;
1643 
1644 	if (task_has_dl_policy(p))
1645 		prio = MAX_DL_PRIO-1;
1646 	else if (task_has_rt_policy(p))
1647 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 	else
1649 		prio = __normal_prio(p);
1650 	return prio;
1651 }
1652 
1653 /*
1654  * Calculate the current priority, i.e. the priority
1655  * taken into account by the scheduler. This value might
1656  * be boosted by RT tasks, or might be boosted by
1657  * interactivity modifiers. Will be RT if the task got
1658  * RT-boosted. If not then it returns p->normal_prio.
1659  */
1660 static int effective_prio(struct task_struct *p)
1661 {
1662 	p->normal_prio = normal_prio(p);
1663 	/*
1664 	 * If we are RT tasks or we were boosted to RT priority,
1665 	 * keep the priority unchanged. Otherwise, update priority
1666 	 * to the normal priority:
1667 	 */
1668 	if (!rt_prio(p->prio))
1669 		return p->normal_prio;
1670 	return p->prio;
1671 }
1672 
1673 /**
1674  * task_curr - is this task currently executing on a CPU?
1675  * @p: the task in question.
1676  *
1677  * Return: 1 if the task is currently executing. 0 otherwise.
1678  */
1679 inline int task_curr(const struct task_struct *p)
1680 {
1681 	return cpu_curr(task_cpu(p)) == p;
1682 }
1683 
1684 /*
1685  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686  * use the balance_callback list if you want balancing.
1687  *
1688  * this means any call to check_class_changed() must be followed by a call to
1689  * balance_callback().
1690  */
1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 				       const struct sched_class *prev_class,
1693 				       int oldprio)
1694 {
1695 	if (prev_class != p->sched_class) {
1696 		if (prev_class->switched_from)
1697 			prev_class->switched_from(rq, p);
1698 
1699 		p->sched_class->switched_to(rq, p);
1700 	} else if (oldprio != p->prio || dl_task(p))
1701 		p->sched_class->prio_changed(rq, p, oldprio);
1702 }
1703 
1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1705 {
1706 	if (p->sched_class == rq->curr->sched_class)
1707 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1708 	else if (p->sched_class > rq->curr->sched_class)
1709 		resched_curr(rq);
1710 
1711 	/*
1712 	 * A queue event has occurred, and we're going to schedule.  In
1713 	 * this case, we can save a useless back to back clock update.
1714 	 */
1715 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1716 		rq_clock_skip_update(rq);
1717 }
1718 
1719 #ifdef CONFIG_SMP
1720 
1721 static void
1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723 
1724 static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 				  const struct cpumask *new_mask,
1726 				  u32 flags);
1727 
1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729 {
1730 	if (likely(!p->migration_disabled))
1731 		return;
1732 
1733 	if (p->cpus_ptr != &p->cpus_mask)
1734 		return;
1735 
1736 	/*
1737 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 	 */
1739 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740 }
1741 
1742 void migrate_disable(void)
1743 {
1744 	struct task_struct *p = current;
1745 
1746 	if (p->migration_disabled) {
1747 		p->migration_disabled++;
1748 		return;
1749 	}
1750 
1751 	preempt_disable();
1752 	this_rq()->nr_pinned++;
1753 	p->migration_disabled = 1;
1754 	preempt_enable();
1755 }
1756 EXPORT_SYMBOL_GPL(migrate_disable);
1757 
1758 void migrate_enable(void)
1759 {
1760 	struct task_struct *p = current;
1761 
1762 	if (p->migration_disabled > 1) {
1763 		p->migration_disabled--;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Ensure stop_task runs either before or after this, and that
1769 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 	 */
1771 	preempt_disable();
1772 	if (p->cpus_ptr != &p->cpus_mask)
1773 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 	/*
1775 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 	 * regular cpus_mask, otherwise things that race (eg.
1777 	 * select_fallback_rq) get confused.
1778 	 */
1779 	barrier();
1780 	p->migration_disabled = 0;
1781 	this_rq()->nr_pinned--;
1782 	preempt_enable();
1783 }
1784 EXPORT_SYMBOL_GPL(migrate_enable);
1785 
1786 static inline bool rq_has_pinned_tasks(struct rq *rq)
1787 {
1788 	return rq->nr_pinned;
1789 }
1790 
1791 /*
1792  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1793  * __set_cpus_allowed_ptr() and select_fallback_rq().
1794  */
1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796 {
1797 	/* When not in the task's cpumask, no point in looking further. */
1798 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1799 		return false;
1800 
1801 	/* migrate_disabled() must be allowed to finish. */
1802 	if (is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	/* Non kernel threads are not allowed during either online or offline. */
1806 	if (!(p->flags & PF_KTHREAD))
1807 		return cpu_active(cpu);
1808 
1809 	/* KTHREAD_IS_PER_CPU is always allowed. */
1810 	if (kthread_is_per_cpu(p))
1811 		return cpu_online(cpu);
1812 
1813 	/* Regular kernel threads don't get to stay during offline. */
1814 	if (cpu_rq(cpu)->balance_push)
1815 		return false;
1816 
1817 	/* But are allowed during online. */
1818 	return cpu_online(cpu);
1819 }
1820 
1821 /*
1822  * This is how migration works:
1823  *
1824  * 1) we invoke migration_cpu_stop() on the target CPU using
1825  *    stop_one_cpu().
1826  * 2) stopper starts to run (implicitly forcing the migrated thread
1827  *    off the CPU)
1828  * 3) it checks whether the migrated task is still in the wrong runqueue.
1829  * 4) if it's in the wrong runqueue then the migration thread removes
1830  *    it and puts it into the right queue.
1831  * 5) stopper completes and stop_one_cpu() returns and the migration
1832  *    is done.
1833  */
1834 
1835 /*
1836  * move_queued_task - move a queued task to new rq.
1837  *
1838  * Returns (locked) new rq. Old rq's lock is released.
1839  */
1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 				   struct task_struct *p, int new_cpu)
1842 {
1843 	lockdep_assert_held(&rq->lock);
1844 
1845 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1846 	set_task_cpu(p, new_cpu);
1847 	rq_unlock(rq, rf);
1848 
1849 	rq = cpu_rq(new_cpu);
1850 
1851 	rq_lock(rq, rf);
1852 	BUG_ON(task_cpu(p) != new_cpu);
1853 	activate_task(rq, p, 0);
1854 	check_preempt_curr(rq, p, 0);
1855 
1856 	return rq;
1857 }
1858 
1859 struct migration_arg {
1860 	struct task_struct		*task;
1861 	int				dest_cpu;
1862 	struct set_affinity_pending	*pending;
1863 };
1864 
1865 /*
1866  * @refs: number of wait_for_completion()
1867  * @stop_pending: is @stop_work in use
1868  */
1869 struct set_affinity_pending {
1870 	refcount_t		refs;
1871 	unsigned int		stop_pending;
1872 	struct completion	done;
1873 	struct cpu_stop_work	stop_work;
1874 	struct migration_arg	arg;
1875 };
1876 
1877 /*
1878  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1879  * this because either it can't run here any more (set_cpus_allowed()
1880  * away from this CPU, or CPU going down), or because we're
1881  * attempting to rebalance this task on exec (sched_exec).
1882  *
1883  * So we race with normal scheduler movements, but that's OK, as long
1884  * as the task is no longer on this CPU.
1885  */
1886 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1887 				 struct task_struct *p, int dest_cpu)
1888 {
1889 	/* Affinity changed (again). */
1890 	if (!is_cpu_allowed(p, dest_cpu))
1891 		return rq;
1892 
1893 	update_rq_clock(rq);
1894 	rq = move_queued_task(rq, rf, p, dest_cpu);
1895 
1896 	return rq;
1897 }
1898 
1899 /*
1900  * migration_cpu_stop - this will be executed by a highprio stopper thread
1901  * and performs thread migration by bumping thread off CPU then
1902  * 'pushing' onto another runqueue.
1903  */
1904 static int migration_cpu_stop(void *data)
1905 {
1906 	struct migration_arg *arg = data;
1907 	struct set_affinity_pending *pending = arg->pending;
1908 	struct task_struct *p = arg->task;
1909 	int dest_cpu = arg->dest_cpu;
1910 	struct rq *rq = this_rq();
1911 	bool complete = false;
1912 	struct rq_flags rf;
1913 
1914 	/*
1915 	 * The original target CPU might have gone down and we might
1916 	 * be on another CPU but it doesn't matter.
1917 	 */
1918 	local_irq_save(rf.flags);
1919 	/*
1920 	 * We need to explicitly wake pending tasks before running
1921 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1922 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1923 	 */
1924 	flush_smp_call_function_from_idle();
1925 
1926 	raw_spin_lock(&p->pi_lock);
1927 	rq_lock(rq, &rf);
1928 
1929 	/*
1930 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1931 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1932 	 * we're holding p->pi_lock.
1933 	 */
1934 	if (task_rq(p) == rq) {
1935 		if (is_migration_disabled(p))
1936 			goto out;
1937 
1938 		if (pending) {
1939 			if (p->migration_pending == pending)
1940 				p->migration_pending = NULL;
1941 			complete = true;
1942 		}
1943 
1944 		if (dest_cpu < 0) {
1945 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1946 				goto out;
1947 
1948 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1949 		}
1950 
1951 		if (task_on_rq_queued(p))
1952 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1953 		else
1954 			p->wake_cpu = dest_cpu;
1955 
1956 		/*
1957 		 * XXX __migrate_task() can fail, at which point we might end
1958 		 * up running on a dodgy CPU, AFAICT this can only happen
1959 		 * during CPU hotplug, at which point we'll get pushed out
1960 		 * anyway, so it's probably not a big deal.
1961 		 */
1962 
1963 	} else if (pending) {
1964 		/*
1965 		 * This happens when we get migrated between migrate_enable()'s
1966 		 * preempt_enable() and scheduling the stopper task. At that
1967 		 * point we're a regular task again and not current anymore.
1968 		 *
1969 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1970 		 * more likely.
1971 		 */
1972 
1973 		/*
1974 		 * The task moved before the stopper got to run. We're holding
1975 		 * ->pi_lock, so the allowed mask is stable - if it got
1976 		 * somewhere allowed, we're done.
1977 		 */
1978 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1979 			if (p->migration_pending == pending)
1980 				p->migration_pending = NULL;
1981 			complete = true;
1982 			goto out;
1983 		}
1984 
1985 		/*
1986 		 * When migrate_enable() hits a rq mis-match we can't reliably
1987 		 * determine is_migration_disabled() and so have to chase after
1988 		 * it.
1989 		 */
1990 		WARN_ON_ONCE(!pending->stop_pending);
1991 		task_rq_unlock(rq, p, &rf);
1992 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1993 				    &pending->arg, &pending->stop_work);
1994 		return 0;
1995 	}
1996 out:
1997 	if (pending)
1998 		pending->stop_pending = false;
1999 	task_rq_unlock(rq, p, &rf);
2000 
2001 	if (complete)
2002 		complete_all(&pending->done);
2003 
2004 	return 0;
2005 }
2006 
2007 int push_cpu_stop(void *arg)
2008 {
2009 	struct rq *lowest_rq = NULL, *rq = this_rq();
2010 	struct task_struct *p = arg;
2011 
2012 	raw_spin_lock_irq(&p->pi_lock);
2013 	raw_spin_lock(&rq->lock);
2014 
2015 	if (task_rq(p) != rq)
2016 		goto out_unlock;
2017 
2018 	if (is_migration_disabled(p)) {
2019 		p->migration_flags |= MDF_PUSH;
2020 		goto out_unlock;
2021 	}
2022 
2023 	p->migration_flags &= ~MDF_PUSH;
2024 
2025 	if (p->sched_class->find_lock_rq)
2026 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2027 
2028 	if (!lowest_rq)
2029 		goto out_unlock;
2030 
2031 	// XXX validate p is still the highest prio task
2032 	if (task_rq(p) == rq) {
2033 		deactivate_task(rq, p, 0);
2034 		set_task_cpu(p, lowest_rq->cpu);
2035 		activate_task(lowest_rq, p, 0);
2036 		resched_curr(lowest_rq);
2037 	}
2038 
2039 	double_unlock_balance(rq, lowest_rq);
2040 
2041 out_unlock:
2042 	rq->push_busy = false;
2043 	raw_spin_unlock(&rq->lock);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	put_task_struct(p);
2047 	return 0;
2048 }
2049 
2050 /*
2051  * sched_class::set_cpus_allowed must do the below, but is not required to
2052  * actually call this function.
2053  */
2054 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2055 {
2056 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2057 		p->cpus_ptr = new_mask;
2058 		return;
2059 	}
2060 
2061 	cpumask_copy(&p->cpus_mask, new_mask);
2062 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2063 }
2064 
2065 static void
2066 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2067 {
2068 	struct rq *rq = task_rq(p);
2069 	bool queued, running;
2070 
2071 	/*
2072 	 * This here violates the locking rules for affinity, since we're only
2073 	 * supposed to change these variables while holding both rq->lock and
2074 	 * p->pi_lock.
2075 	 *
2076 	 * HOWEVER, it magically works, because ttwu() is the only code that
2077 	 * accesses these variables under p->pi_lock and only does so after
2078 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2079 	 * before finish_task().
2080 	 *
2081 	 * XXX do further audits, this smells like something putrid.
2082 	 */
2083 	if (flags & SCA_MIGRATE_DISABLE)
2084 		SCHED_WARN_ON(!p->on_cpu);
2085 	else
2086 		lockdep_assert_held(&p->pi_lock);
2087 
2088 	queued = task_on_rq_queued(p);
2089 	running = task_current(rq, p);
2090 
2091 	if (queued) {
2092 		/*
2093 		 * Because __kthread_bind() calls this on blocked tasks without
2094 		 * holding rq->lock.
2095 		 */
2096 		lockdep_assert_held(&rq->lock);
2097 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2098 	}
2099 	if (running)
2100 		put_prev_task(rq, p);
2101 
2102 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2103 
2104 	if (queued)
2105 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2106 	if (running)
2107 		set_next_task(rq, p);
2108 }
2109 
2110 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2111 {
2112 	__do_set_cpus_allowed(p, new_mask, 0);
2113 }
2114 
2115 /*
2116  * This function is wildly self concurrent; here be dragons.
2117  *
2118  *
2119  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2120  * designated task is enqueued on an allowed CPU. If that task is currently
2121  * running, we have to kick it out using the CPU stopper.
2122  *
2123  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2124  * Consider:
2125  *
2126  *     Initial conditions: P0->cpus_mask = [0, 1]
2127  *
2128  *     P0@CPU0                  P1
2129  *
2130  *     migrate_disable();
2131  *     <preempted>
2132  *                              set_cpus_allowed_ptr(P0, [1]);
2133  *
2134  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2135  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2136  * This means we need the following scheme:
2137  *
2138  *     P0@CPU0                  P1
2139  *
2140  *     migrate_disable();
2141  *     <preempted>
2142  *                              set_cpus_allowed_ptr(P0, [1]);
2143  *                                <blocks>
2144  *     <resumes>
2145  *     migrate_enable();
2146  *       __set_cpus_allowed_ptr();
2147  *       <wakes local stopper>
2148  *                         `--> <woken on migration completion>
2149  *
2150  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2151  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2152  * task p are serialized by p->pi_lock, which we can leverage: the one that
2153  * should come into effect at the end of the Migrate-Disable region is the last
2154  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2155  * but we still need to properly signal those waiting tasks at the appropriate
2156  * moment.
2157  *
2158  * This is implemented using struct set_affinity_pending. The first
2159  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2160  * setup an instance of that struct and install it on the targeted task_struct.
2161  * Any and all further callers will reuse that instance. Those then wait for
2162  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2163  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2164  *
2165  *
2166  * (1) In the cases covered above. There is one more where the completion is
2167  * signaled within affine_move_task() itself: when a subsequent affinity request
2168  * cancels the need for an active migration. Consider:
2169  *
2170  *     Initial conditions: P0->cpus_mask = [0, 1]
2171  *
2172  *     P0@CPU0            P1                             P2
2173  *
2174  *     migrate_disable();
2175  *     <preempted>
2176  *                        set_cpus_allowed_ptr(P0, [1]);
2177  *                          <blocks>
2178  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2179  *                                                         <signal completion>
2180  *                          <awakes>
2181  *
2182  * Note that the above is safe vs a concurrent migrate_enable(), as any
2183  * pending affinity completion is preceded by an uninstallation of
2184  * p->migration_pending done with p->pi_lock held.
2185  */
2186 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2187 			    int dest_cpu, unsigned int flags)
2188 {
2189 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2190 	bool stop_pending, complete = false;
2191 
2192 	/* Can the task run on the task's current CPU? If so, we're done */
2193 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2194 		struct task_struct *push_task = NULL;
2195 
2196 		if ((flags & SCA_MIGRATE_ENABLE) &&
2197 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2198 			rq->push_busy = true;
2199 			push_task = get_task_struct(p);
2200 		}
2201 
2202 		/*
2203 		 * If there are pending waiters, but no pending stop_work,
2204 		 * then complete now.
2205 		 */
2206 		pending = p->migration_pending;
2207 		if (pending && !pending->stop_pending) {
2208 			p->migration_pending = NULL;
2209 			complete = true;
2210 		}
2211 
2212 		task_rq_unlock(rq, p, rf);
2213 
2214 		if (push_task) {
2215 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2216 					    p, &rq->push_work);
2217 		}
2218 
2219 		if (complete)
2220 			complete_all(&pending->done);
2221 
2222 		return 0;
2223 	}
2224 
2225 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2226 		/* serialized by p->pi_lock */
2227 		if (!p->migration_pending) {
2228 			/* Install the request */
2229 			refcount_set(&my_pending.refs, 1);
2230 			init_completion(&my_pending.done);
2231 			my_pending.arg = (struct migration_arg) {
2232 				.task = p,
2233 				.dest_cpu = -1,		/* any */
2234 				.pending = &my_pending,
2235 			};
2236 
2237 			p->migration_pending = &my_pending;
2238 		} else {
2239 			pending = p->migration_pending;
2240 			refcount_inc(&pending->refs);
2241 		}
2242 	}
2243 	pending = p->migration_pending;
2244 	/*
2245 	 * - !MIGRATE_ENABLE:
2246 	 *   we'll have installed a pending if there wasn't one already.
2247 	 *
2248 	 * - MIGRATE_ENABLE:
2249 	 *   we're here because the current CPU isn't matching anymore,
2250 	 *   the only way that can happen is because of a concurrent
2251 	 *   set_cpus_allowed_ptr() call, which should then still be
2252 	 *   pending completion.
2253 	 *
2254 	 * Either way, we really should have a @pending here.
2255 	 */
2256 	if (WARN_ON_ONCE(!pending)) {
2257 		task_rq_unlock(rq, p, rf);
2258 		return -EINVAL;
2259 	}
2260 
2261 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2262 		/*
2263 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2264 		 * anything else we cannot do is_migration_disabled(), punt
2265 		 * and have the stopper function handle it all race-free.
2266 		 */
2267 		stop_pending = pending->stop_pending;
2268 		if (!stop_pending)
2269 			pending->stop_pending = true;
2270 
2271 		if (flags & SCA_MIGRATE_ENABLE)
2272 			p->migration_flags &= ~MDF_PUSH;
2273 
2274 		task_rq_unlock(rq, p, rf);
2275 
2276 		if (!stop_pending) {
2277 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2278 					    &pending->arg, &pending->stop_work);
2279 		}
2280 
2281 		if (flags & SCA_MIGRATE_ENABLE)
2282 			return 0;
2283 	} else {
2284 
2285 		if (!is_migration_disabled(p)) {
2286 			if (task_on_rq_queued(p))
2287 				rq = move_queued_task(rq, rf, p, dest_cpu);
2288 
2289 			if (!pending->stop_pending) {
2290 				p->migration_pending = NULL;
2291 				complete = true;
2292 			}
2293 		}
2294 		task_rq_unlock(rq, p, rf);
2295 
2296 		if (complete)
2297 			complete_all(&pending->done);
2298 	}
2299 
2300 	wait_for_completion(&pending->done);
2301 
2302 	if (refcount_dec_and_test(&pending->refs))
2303 		wake_up_var(&pending->refs); /* No UaF, just an address */
2304 
2305 	/*
2306 	 * Block the original owner of &pending until all subsequent callers
2307 	 * have seen the completion and decremented the refcount
2308 	 */
2309 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2310 
2311 	/* ARGH */
2312 	WARN_ON_ONCE(my_pending.stop_pending);
2313 
2314 	return 0;
2315 }
2316 
2317 /*
2318  * Change a given task's CPU affinity. Migrate the thread to a
2319  * proper CPU and schedule it away if the CPU it's executing on
2320  * is removed from the allowed bitmask.
2321  *
2322  * NOTE: the caller must have a valid reference to the task, the
2323  * task must not exit() & deallocate itself prematurely. The
2324  * call is not atomic; no spinlocks may be held.
2325  */
2326 static int __set_cpus_allowed_ptr(struct task_struct *p,
2327 				  const struct cpumask *new_mask,
2328 				  u32 flags)
2329 {
2330 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2331 	unsigned int dest_cpu;
2332 	struct rq_flags rf;
2333 	struct rq *rq;
2334 	int ret = 0;
2335 
2336 	rq = task_rq_lock(p, &rf);
2337 	update_rq_clock(rq);
2338 
2339 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2340 		/*
2341 		 * Kernel threads are allowed on online && !active CPUs,
2342 		 * however, during cpu-hot-unplug, even these might get pushed
2343 		 * away if not KTHREAD_IS_PER_CPU.
2344 		 *
2345 		 * Specifically, migration_disabled() tasks must not fail the
2346 		 * cpumask_any_and_distribute() pick below, esp. so on
2347 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2348 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2349 		 */
2350 		cpu_valid_mask = cpu_online_mask;
2351 	}
2352 
2353 	/*
2354 	 * Must re-check here, to close a race against __kthread_bind(),
2355 	 * sched_setaffinity() is not guaranteed to observe the flag.
2356 	 */
2357 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2358 		ret = -EINVAL;
2359 		goto out;
2360 	}
2361 
2362 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2363 		if (cpumask_equal(&p->cpus_mask, new_mask))
2364 			goto out;
2365 
2366 		if (WARN_ON_ONCE(p == current &&
2367 				 is_migration_disabled(p) &&
2368 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2369 			ret = -EBUSY;
2370 			goto out;
2371 		}
2372 	}
2373 
2374 	/*
2375 	 * Picking a ~random cpu helps in cases where we are changing affinity
2376 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2377 	 * immediately required to distribute the tasks within their new mask.
2378 	 */
2379 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2380 	if (dest_cpu >= nr_cpu_ids) {
2381 		ret = -EINVAL;
2382 		goto out;
2383 	}
2384 
2385 	__do_set_cpus_allowed(p, new_mask, flags);
2386 
2387 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2388 
2389 out:
2390 	task_rq_unlock(rq, p, &rf);
2391 
2392 	return ret;
2393 }
2394 
2395 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2396 {
2397 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2398 }
2399 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2400 
2401 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2402 {
2403 #ifdef CONFIG_SCHED_DEBUG
2404 	/*
2405 	 * We should never call set_task_cpu() on a blocked task,
2406 	 * ttwu() will sort out the placement.
2407 	 */
2408 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2409 			!p->on_rq);
2410 
2411 	/*
2412 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2413 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2414 	 * time relying on p->on_rq.
2415 	 */
2416 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2417 		     p->sched_class == &fair_sched_class &&
2418 		     (p->on_rq && !task_on_rq_migrating(p)));
2419 
2420 #ifdef CONFIG_LOCKDEP
2421 	/*
2422 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2423 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2424 	 *
2425 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2426 	 * see task_group().
2427 	 *
2428 	 * Furthermore, all task_rq users should acquire both locks, see
2429 	 * task_rq_lock().
2430 	 */
2431 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2432 				      lockdep_is_held(&task_rq(p)->lock)));
2433 #endif
2434 	/*
2435 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2436 	 */
2437 	WARN_ON_ONCE(!cpu_online(new_cpu));
2438 
2439 	WARN_ON_ONCE(is_migration_disabled(p));
2440 #endif
2441 
2442 	trace_sched_migrate_task(p, new_cpu);
2443 
2444 	if (task_cpu(p) != new_cpu) {
2445 		if (p->sched_class->migrate_task_rq)
2446 			p->sched_class->migrate_task_rq(p, new_cpu);
2447 		p->se.nr_migrations++;
2448 		rseq_migrate(p);
2449 		perf_event_task_migrate(p);
2450 	}
2451 
2452 	__set_task_cpu(p, new_cpu);
2453 }
2454 
2455 #ifdef CONFIG_NUMA_BALANCING
2456 static void __migrate_swap_task(struct task_struct *p, int cpu)
2457 {
2458 	if (task_on_rq_queued(p)) {
2459 		struct rq *src_rq, *dst_rq;
2460 		struct rq_flags srf, drf;
2461 
2462 		src_rq = task_rq(p);
2463 		dst_rq = cpu_rq(cpu);
2464 
2465 		rq_pin_lock(src_rq, &srf);
2466 		rq_pin_lock(dst_rq, &drf);
2467 
2468 		deactivate_task(src_rq, p, 0);
2469 		set_task_cpu(p, cpu);
2470 		activate_task(dst_rq, p, 0);
2471 		check_preempt_curr(dst_rq, p, 0);
2472 
2473 		rq_unpin_lock(dst_rq, &drf);
2474 		rq_unpin_lock(src_rq, &srf);
2475 
2476 	} else {
2477 		/*
2478 		 * Task isn't running anymore; make it appear like we migrated
2479 		 * it before it went to sleep. This means on wakeup we make the
2480 		 * previous CPU our target instead of where it really is.
2481 		 */
2482 		p->wake_cpu = cpu;
2483 	}
2484 }
2485 
2486 struct migration_swap_arg {
2487 	struct task_struct *src_task, *dst_task;
2488 	int src_cpu, dst_cpu;
2489 };
2490 
2491 static int migrate_swap_stop(void *data)
2492 {
2493 	struct migration_swap_arg *arg = data;
2494 	struct rq *src_rq, *dst_rq;
2495 	int ret = -EAGAIN;
2496 
2497 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2498 		return -EAGAIN;
2499 
2500 	src_rq = cpu_rq(arg->src_cpu);
2501 	dst_rq = cpu_rq(arg->dst_cpu);
2502 
2503 	double_raw_lock(&arg->src_task->pi_lock,
2504 			&arg->dst_task->pi_lock);
2505 	double_rq_lock(src_rq, dst_rq);
2506 
2507 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2508 		goto unlock;
2509 
2510 	if (task_cpu(arg->src_task) != arg->src_cpu)
2511 		goto unlock;
2512 
2513 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2514 		goto unlock;
2515 
2516 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2517 		goto unlock;
2518 
2519 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2520 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2521 
2522 	ret = 0;
2523 
2524 unlock:
2525 	double_rq_unlock(src_rq, dst_rq);
2526 	raw_spin_unlock(&arg->dst_task->pi_lock);
2527 	raw_spin_unlock(&arg->src_task->pi_lock);
2528 
2529 	return ret;
2530 }
2531 
2532 /*
2533  * Cross migrate two tasks
2534  */
2535 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2536 		int target_cpu, int curr_cpu)
2537 {
2538 	struct migration_swap_arg arg;
2539 	int ret = -EINVAL;
2540 
2541 	arg = (struct migration_swap_arg){
2542 		.src_task = cur,
2543 		.src_cpu = curr_cpu,
2544 		.dst_task = p,
2545 		.dst_cpu = target_cpu,
2546 	};
2547 
2548 	if (arg.src_cpu == arg.dst_cpu)
2549 		goto out;
2550 
2551 	/*
2552 	 * These three tests are all lockless; this is OK since all of them
2553 	 * will be re-checked with proper locks held further down the line.
2554 	 */
2555 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2556 		goto out;
2557 
2558 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2559 		goto out;
2560 
2561 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2562 		goto out;
2563 
2564 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2565 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2566 
2567 out:
2568 	return ret;
2569 }
2570 #endif /* CONFIG_NUMA_BALANCING */
2571 
2572 /*
2573  * wait_task_inactive - wait for a thread to unschedule.
2574  *
2575  * If @match_state is nonzero, it's the @p->state value just checked and
2576  * not expected to change.  If it changes, i.e. @p might have woken up,
2577  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2578  * we return a positive number (its total switch count).  If a second call
2579  * a short while later returns the same number, the caller can be sure that
2580  * @p has remained unscheduled the whole time.
2581  *
2582  * The caller must ensure that the task *will* unschedule sometime soon,
2583  * else this function might spin for a *long* time. This function can't
2584  * be called with interrupts off, or it may introduce deadlock with
2585  * smp_call_function() if an IPI is sent by the same process we are
2586  * waiting to become inactive.
2587  */
2588 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2589 {
2590 	int running, queued;
2591 	struct rq_flags rf;
2592 	unsigned long ncsw;
2593 	struct rq *rq;
2594 
2595 	for (;;) {
2596 		/*
2597 		 * We do the initial early heuristics without holding
2598 		 * any task-queue locks at all. We'll only try to get
2599 		 * the runqueue lock when things look like they will
2600 		 * work out!
2601 		 */
2602 		rq = task_rq(p);
2603 
2604 		/*
2605 		 * If the task is actively running on another CPU
2606 		 * still, just relax and busy-wait without holding
2607 		 * any locks.
2608 		 *
2609 		 * NOTE! Since we don't hold any locks, it's not
2610 		 * even sure that "rq" stays as the right runqueue!
2611 		 * But we don't care, since "task_running()" will
2612 		 * return false if the runqueue has changed and p
2613 		 * is actually now running somewhere else!
2614 		 */
2615 		while (task_running(rq, p)) {
2616 			if (match_state && unlikely(p->state != match_state))
2617 				return 0;
2618 			cpu_relax();
2619 		}
2620 
2621 		/*
2622 		 * Ok, time to look more closely! We need the rq
2623 		 * lock now, to be *sure*. If we're wrong, we'll
2624 		 * just go back and repeat.
2625 		 */
2626 		rq = task_rq_lock(p, &rf);
2627 		trace_sched_wait_task(p);
2628 		running = task_running(rq, p);
2629 		queued = task_on_rq_queued(p);
2630 		ncsw = 0;
2631 		if (!match_state || p->state == match_state)
2632 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2633 		task_rq_unlock(rq, p, &rf);
2634 
2635 		/*
2636 		 * If it changed from the expected state, bail out now.
2637 		 */
2638 		if (unlikely(!ncsw))
2639 			break;
2640 
2641 		/*
2642 		 * Was it really running after all now that we
2643 		 * checked with the proper locks actually held?
2644 		 *
2645 		 * Oops. Go back and try again..
2646 		 */
2647 		if (unlikely(running)) {
2648 			cpu_relax();
2649 			continue;
2650 		}
2651 
2652 		/*
2653 		 * It's not enough that it's not actively running,
2654 		 * it must be off the runqueue _entirely_, and not
2655 		 * preempted!
2656 		 *
2657 		 * So if it was still runnable (but just not actively
2658 		 * running right now), it's preempted, and we should
2659 		 * yield - it could be a while.
2660 		 */
2661 		if (unlikely(queued)) {
2662 			ktime_t to = NSEC_PER_SEC / HZ;
2663 
2664 			set_current_state(TASK_UNINTERRUPTIBLE);
2665 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2666 			continue;
2667 		}
2668 
2669 		/*
2670 		 * Ahh, all good. It wasn't running, and it wasn't
2671 		 * runnable, which means that it will never become
2672 		 * running in the future either. We're all done!
2673 		 */
2674 		break;
2675 	}
2676 
2677 	return ncsw;
2678 }
2679 
2680 /***
2681  * kick_process - kick a running thread to enter/exit the kernel
2682  * @p: the to-be-kicked thread
2683  *
2684  * Cause a process which is running on another CPU to enter
2685  * kernel-mode, without any delay. (to get signals handled.)
2686  *
2687  * NOTE: this function doesn't have to take the runqueue lock,
2688  * because all it wants to ensure is that the remote task enters
2689  * the kernel. If the IPI races and the task has been migrated
2690  * to another CPU then no harm is done and the purpose has been
2691  * achieved as well.
2692  */
2693 void kick_process(struct task_struct *p)
2694 {
2695 	int cpu;
2696 
2697 	preempt_disable();
2698 	cpu = task_cpu(p);
2699 	if ((cpu != smp_processor_id()) && task_curr(p))
2700 		smp_send_reschedule(cpu);
2701 	preempt_enable();
2702 }
2703 EXPORT_SYMBOL_GPL(kick_process);
2704 
2705 /*
2706  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2707  *
2708  * A few notes on cpu_active vs cpu_online:
2709  *
2710  *  - cpu_active must be a subset of cpu_online
2711  *
2712  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2713  *    see __set_cpus_allowed_ptr(). At this point the newly online
2714  *    CPU isn't yet part of the sched domains, and balancing will not
2715  *    see it.
2716  *
2717  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2718  *    avoid the load balancer to place new tasks on the to be removed
2719  *    CPU. Existing tasks will remain running there and will be taken
2720  *    off.
2721  *
2722  * This means that fallback selection must not select !active CPUs.
2723  * And can assume that any active CPU must be online. Conversely
2724  * select_task_rq() below may allow selection of !active CPUs in order
2725  * to satisfy the above rules.
2726  */
2727 static int select_fallback_rq(int cpu, struct task_struct *p)
2728 {
2729 	int nid = cpu_to_node(cpu);
2730 	const struct cpumask *nodemask = NULL;
2731 	enum { cpuset, possible, fail } state = cpuset;
2732 	int dest_cpu;
2733 
2734 	/*
2735 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2736 	 * will return -1. There is no CPU on the node, and we should
2737 	 * select the CPU on the other node.
2738 	 */
2739 	if (nid != -1) {
2740 		nodemask = cpumask_of_node(nid);
2741 
2742 		/* Look for allowed, online CPU in same node. */
2743 		for_each_cpu(dest_cpu, nodemask) {
2744 			if (!cpu_active(dest_cpu))
2745 				continue;
2746 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2747 				return dest_cpu;
2748 		}
2749 	}
2750 
2751 	for (;;) {
2752 		/* Any allowed, online CPU? */
2753 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2754 			if (!is_cpu_allowed(p, dest_cpu))
2755 				continue;
2756 
2757 			goto out;
2758 		}
2759 
2760 		/* No more Mr. Nice Guy. */
2761 		switch (state) {
2762 		case cpuset:
2763 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2764 				cpuset_cpus_allowed_fallback(p);
2765 				state = possible;
2766 				break;
2767 			}
2768 			fallthrough;
2769 		case possible:
2770 			/*
2771 			 * XXX When called from select_task_rq() we only
2772 			 * hold p->pi_lock and again violate locking order.
2773 			 *
2774 			 * More yuck to audit.
2775 			 */
2776 			do_set_cpus_allowed(p, cpu_possible_mask);
2777 			state = fail;
2778 			break;
2779 
2780 		case fail:
2781 			BUG();
2782 			break;
2783 		}
2784 	}
2785 
2786 out:
2787 	if (state != cpuset) {
2788 		/*
2789 		 * Don't tell them about moving exiting tasks or
2790 		 * kernel threads (both mm NULL), since they never
2791 		 * leave kernel.
2792 		 */
2793 		if (p->mm && printk_ratelimit()) {
2794 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2795 					task_pid_nr(p), p->comm, cpu);
2796 		}
2797 	}
2798 
2799 	return dest_cpu;
2800 }
2801 
2802 /*
2803  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2804  */
2805 static inline
2806 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2807 {
2808 	lockdep_assert_held(&p->pi_lock);
2809 
2810 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2811 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2812 	else
2813 		cpu = cpumask_any(p->cpus_ptr);
2814 
2815 	/*
2816 	 * In order not to call set_task_cpu() on a blocking task we need
2817 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2818 	 * CPU.
2819 	 *
2820 	 * Since this is common to all placement strategies, this lives here.
2821 	 *
2822 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2823 	 *   not worry about this generic constraint ]
2824 	 */
2825 	if (unlikely(!is_cpu_allowed(p, cpu)))
2826 		cpu = select_fallback_rq(task_cpu(p), p);
2827 
2828 	return cpu;
2829 }
2830 
2831 void sched_set_stop_task(int cpu, struct task_struct *stop)
2832 {
2833 	static struct lock_class_key stop_pi_lock;
2834 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2835 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2836 
2837 	if (stop) {
2838 		/*
2839 		 * Make it appear like a SCHED_FIFO task, its something
2840 		 * userspace knows about and won't get confused about.
2841 		 *
2842 		 * Also, it will make PI more or less work without too
2843 		 * much confusion -- but then, stop work should not
2844 		 * rely on PI working anyway.
2845 		 */
2846 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2847 
2848 		stop->sched_class = &stop_sched_class;
2849 
2850 		/*
2851 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2852 		 * adjust the effective priority of a task. As a result,
2853 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2854 		 * which can then trigger wakeups of the stop thread to push
2855 		 * around the current task.
2856 		 *
2857 		 * The stop task itself will never be part of the PI-chain, it
2858 		 * never blocks, therefore that ->pi_lock recursion is safe.
2859 		 * Tell lockdep about this by placing the stop->pi_lock in its
2860 		 * own class.
2861 		 */
2862 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2863 	}
2864 
2865 	cpu_rq(cpu)->stop = stop;
2866 
2867 	if (old_stop) {
2868 		/*
2869 		 * Reset it back to a normal scheduling class so that
2870 		 * it can die in pieces.
2871 		 */
2872 		old_stop->sched_class = &rt_sched_class;
2873 	}
2874 }
2875 
2876 #else /* CONFIG_SMP */
2877 
2878 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2879 					 const struct cpumask *new_mask,
2880 					 u32 flags)
2881 {
2882 	return set_cpus_allowed_ptr(p, new_mask);
2883 }
2884 
2885 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2886 
2887 static inline bool rq_has_pinned_tasks(struct rq *rq)
2888 {
2889 	return false;
2890 }
2891 
2892 #endif /* !CONFIG_SMP */
2893 
2894 static void
2895 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2896 {
2897 	struct rq *rq;
2898 
2899 	if (!schedstat_enabled())
2900 		return;
2901 
2902 	rq = this_rq();
2903 
2904 #ifdef CONFIG_SMP
2905 	if (cpu == rq->cpu) {
2906 		__schedstat_inc(rq->ttwu_local);
2907 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2908 	} else {
2909 		struct sched_domain *sd;
2910 
2911 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2912 		rcu_read_lock();
2913 		for_each_domain(rq->cpu, sd) {
2914 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2915 				__schedstat_inc(sd->ttwu_wake_remote);
2916 				break;
2917 			}
2918 		}
2919 		rcu_read_unlock();
2920 	}
2921 
2922 	if (wake_flags & WF_MIGRATED)
2923 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2924 #endif /* CONFIG_SMP */
2925 
2926 	__schedstat_inc(rq->ttwu_count);
2927 	__schedstat_inc(p->se.statistics.nr_wakeups);
2928 
2929 	if (wake_flags & WF_SYNC)
2930 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2931 }
2932 
2933 /*
2934  * Mark the task runnable and perform wakeup-preemption.
2935  */
2936 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2937 			   struct rq_flags *rf)
2938 {
2939 	check_preempt_curr(rq, p, wake_flags);
2940 	p->state = TASK_RUNNING;
2941 	trace_sched_wakeup(p);
2942 
2943 #ifdef CONFIG_SMP
2944 	if (p->sched_class->task_woken) {
2945 		/*
2946 		 * Our task @p is fully woken up and running; so it's safe to
2947 		 * drop the rq->lock, hereafter rq is only used for statistics.
2948 		 */
2949 		rq_unpin_lock(rq, rf);
2950 		p->sched_class->task_woken(rq, p);
2951 		rq_repin_lock(rq, rf);
2952 	}
2953 
2954 	if (rq->idle_stamp) {
2955 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2956 		u64 max = 2*rq->max_idle_balance_cost;
2957 
2958 		update_avg(&rq->avg_idle, delta);
2959 
2960 		if (rq->avg_idle > max)
2961 			rq->avg_idle = max;
2962 
2963 		rq->idle_stamp = 0;
2964 	}
2965 #endif
2966 }
2967 
2968 static void
2969 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2970 		 struct rq_flags *rf)
2971 {
2972 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2973 
2974 	lockdep_assert_held(&rq->lock);
2975 
2976 	if (p->sched_contributes_to_load)
2977 		rq->nr_uninterruptible--;
2978 
2979 #ifdef CONFIG_SMP
2980 	if (wake_flags & WF_MIGRATED)
2981 		en_flags |= ENQUEUE_MIGRATED;
2982 	else
2983 #endif
2984 	if (p->in_iowait) {
2985 		delayacct_blkio_end(p);
2986 		atomic_dec(&task_rq(p)->nr_iowait);
2987 	}
2988 
2989 	activate_task(rq, p, en_flags);
2990 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2991 }
2992 
2993 /*
2994  * Consider @p being inside a wait loop:
2995  *
2996  *   for (;;) {
2997  *      set_current_state(TASK_UNINTERRUPTIBLE);
2998  *
2999  *      if (CONDITION)
3000  *         break;
3001  *
3002  *      schedule();
3003  *   }
3004  *   __set_current_state(TASK_RUNNING);
3005  *
3006  * between set_current_state() and schedule(). In this case @p is still
3007  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3008  * an atomic manner.
3009  *
3010  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3011  * then schedule() must still happen and p->state can be changed to
3012  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3013  * need to do a full wakeup with enqueue.
3014  *
3015  * Returns: %true when the wakeup is done,
3016  *          %false otherwise.
3017  */
3018 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3019 {
3020 	struct rq_flags rf;
3021 	struct rq *rq;
3022 	int ret = 0;
3023 
3024 	rq = __task_rq_lock(p, &rf);
3025 	if (task_on_rq_queued(p)) {
3026 		/* check_preempt_curr() may use rq clock */
3027 		update_rq_clock(rq);
3028 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3029 		ret = 1;
3030 	}
3031 	__task_rq_unlock(rq, &rf);
3032 
3033 	return ret;
3034 }
3035 
3036 #ifdef CONFIG_SMP
3037 void sched_ttwu_pending(void *arg)
3038 {
3039 	struct llist_node *llist = arg;
3040 	struct rq *rq = this_rq();
3041 	struct task_struct *p, *t;
3042 	struct rq_flags rf;
3043 
3044 	if (!llist)
3045 		return;
3046 
3047 	/*
3048 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3049 	 * Races such that false-negatives are possible, since they
3050 	 * are shorter lived that false-positives would be.
3051 	 */
3052 	WRITE_ONCE(rq->ttwu_pending, 0);
3053 
3054 	rq_lock_irqsave(rq, &rf);
3055 	update_rq_clock(rq);
3056 
3057 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3058 		if (WARN_ON_ONCE(p->on_cpu))
3059 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3060 
3061 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3062 			set_task_cpu(p, cpu_of(rq));
3063 
3064 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3065 	}
3066 
3067 	rq_unlock_irqrestore(rq, &rf);
3068 }
3069 
3070 void send_call_function_single_ipi(int cpu)
3071 {
3072 	struct rq *rq = cpu_rq(cpu);
3073 
3074 	if (!set_nr_if_polling(rq->idle))
3075 		arch_send_call_function_single_ipi(cpu);
3076 	else
3077 		trace_sched_wake_idle_without_ipi(cpu);
3078 }
3079 
3080 /*
3081  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3082  * necessary. The wakee CPU on receipt of the IPI will queue the task
3083  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3084  * of the wakeup instead of the waker.
3085  */
3086 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3087 {
3088 	struct rq *rq = cpu_rq(cpu);
3089 
3090 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3091 
3092 	WRITE_ONCE(rq->ttwu_pending, 1);
3093 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3094 }
3095 
3096 void wake_up_if_idle(int cpu)
3097 {
3098 	struct rq *rq = cpu_rq(cpu);
3099 	struct rq_flags rf;
3100 
3101 	rcu_read_lock();
3102 
3103 	if (!is_idle_task(rcu_dereference(rq->curr)))
3104 		goto out;
3105 
3106 	if (set_nr_if_polling(rq->idle)) {
3107 		trace_sched_wake_idle_without_ipi(cpu);
3108 	} else {
3109 		rq_lock_irqsave(rq, &rf);
3110 		if (is_idle_task(rq->curr))
3111 			smp_send_reschedule(cpu);
3112 		/* Else CPU is not idle, do nothing here: */
3113 		rq_unlock_irqrestore(rq, &rf);
3114 	}
3115 
3116 out:
3117 	rcu_read_unlock();
3118 }
3119 
3120 bool cpus_share_cache(int this_cpu, int that_cpu)
3121 {
3122 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3123 }
3124 
3125 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3126 {
3127 	/*
3128 	 * Do not complicate things with the async wake_list while the CPU is
3129 	 * in hotplug state.
3130 	 */
3131 	if (!cpu_active(cpu))
3132 		return false;
3133 
3134 	/*
3135 	 * If the CPU does not share cache, then queue the task on the
3136 	 * remote rqs wakelist to avoid accessing remote data.
3137 	 */
3138 	if (!cpus_share_cache(smp_processor_id(), cpu))
3139 		return true;
3140 
3141 	/*
3142 	 * If the task is descheduling and the only running task on the
3143 	 * CPU then use the wakelist to offload the task activation to
3144 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3145 	 * nr_running is checked to avoid unnecessary task stacking.
3146 	 */
3147 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3148 		return true;
3149 
3150 	return false;
3151 }
3152 
3153 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3154 {
3155 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3156 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3157 			return false;
3158 
3159 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3160 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3161 		return true;
3162 	}
3163 
3164 	return false;
3165 }
3166 
3167 #else /* !CONFIG_SMP */
3168 
3169 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3170 {
3171 	return false;
3172 }
3173 
3174 #endif /* CONFIG_SMP */
3175 
3176 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3177 {
3178 	struct rq *rq = cpu_rq(cpu);
3179 	struct rq_flags rf;
3180 
3181 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3182 		return;
3183 
3184 	rq_lock(rq, &rf);
3185 	update_rq_clock(rq);
3186 	ttwu_do_activate(rq, p, wake_flags, &rf);
3187 	rq_unlock(rq, &rf);
3188 }
3189 
3190 /*
3191  * Notes on Program-Order guarantees on SMP systems.
3192  *
3193  *  MIGRATION
3194  *
3195  * The basic program-order guarantee on SMP systems is that when a task [t]
3196  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3197  * execution on its new CPU [c1].
3198  *
3199  * For migration (of runnable tasks) this is provided by the following means:
3200  *
3201  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3202  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3203  *     rq(c1)->lock (if not at the same time, then in that order).
3204  *  C) LOCK of the rq(c1)->lock scheduling in task
3205  *
3206  * Release/acquire chaining guarantees that B happens after A and C after B.
3207  * Note: the CPU doing B need not be c0 or c1
3208  *
3209  * Example:
3210  *
3211  *   CPU0            CPU1            CPU2
3212  *
3213  *   LOCK rq(0)->lock
3214  *   sched-out X
3215  *   sched-in Y
3216  *   UNLOCK rq(0)->lock
3217  *
3218  *                                   LOCK rq(0)->lock // orders against CPU0
3219  *                                   dequeue X
3220  *                                   UNLOCK rq(0)->lock
3221  *
3222  *                                   LOCK rq(1)->lock
3223  *                                   enqueue X
3224  *                                   UNLOCK rq(1)->lock
3225  *
3226  *                   LOCK rq(1)->lock // orders against CPU2
3227  *                   sched-out Z
3228  *                   sched-in X
3229  *                   UNLOCK rq(1)->lock
3230  *
3231  *
3232  *  BLOCKING -- aka. SLEEP + WAKEUP
3233  *
3234  * For blocking we (obviously) need to provide the same guarantee as for
3235  * migration. However the means are completely different as there is no lock
3236  * chain to provide order. Instead we do:
3237  *
3238  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3239  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3240  *
3241  * Example:
3242  *
3243  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3244  *
3245  *   LOCK rq(0)->lock LOCK X->pi_lock
3246  *   dequeue X
3247  *   sched-out X
3248  *   smp_store_release(X->on_cpu, 0);
3249  *
3250  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3251  *                    X->state = WAKING
3252  *                    set_task_cpu(X,2)
3253  *
3254  *                    LOCK rq(2)->lock
3255  *                    enqueue X
3256  *                    X->state = RUNNING
3257  *                    UNLOCK rq(2)->lock
3258  *
3259  *                                          LOCK rq(2)->lock // orders against CPU1
3260  *                                          sched-out Z
3261  *                                          sched-in X
3262  *                                          UNLOCK rq(2)->lock
3263  *
3264  *                    UNLOCK X->pi_lock
3265  *   UNLOCK rq(0)->lock
3266  *
3267  *
3268  * However, for wakeups there is a second guarantee we must provide, namely we
3269  * must ensure that CONDITION=1 done by the caller can not be reordered with
3270  * accesses to the task state; see try_to_wake_up() and set_current_state().
3271  */
3272 
3273 /**
3274  * try_to_wake_up - wake up a thread
3275  * @p: the thread to be awakened
3276  * @state: the mask of task states that can be woken
3277  * @wake_flags: wake modifier flags (WF_*)
3278  *
3279  * Conceptually does:
3280  *
3281  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3282  *
3283  * If the task was not queued/runnable, also place it back on a runqueue.
3284  *
3285  * This function is atomic against schedule() which would dequeue the task.
3286  *
3287  * It issues a full memory barrier before accessing @p->state, see the comment
3288  * with set_current_state().
3289  *
3290  * Uses p->pi_lock to serialize against concurrent wake-ups.
3291  *
3292  * Relies on p->pi_lock stabilizing:
3293  *  - p->sched_class
3294  *  - p->cpus_ptr
3295  *  - p->sched_task_group
3296  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3297  *
3298  * Tries really hard to only take one task_rq(p)->lock for performance.
3299  * Takes rq->lock in:
3300  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3301  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3302  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3303  *
3304  * As a consequence we race really badly with just about everything. See the
3305  * many memory barriers and their comments for details.
3306  *
3307  * Return: %true if @p->state changes (an actual wakeup was done),
3308  *	   %false otherwise.
3309  */
3310 static int
3311 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3312 {
3313 	unsigned long flags;
3314 	int cpu, success = 0;
3315 
3316 	preempt_disable();
3317 	if (p == current) {
3318 		/*
3319 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3320 		 * == smp_processor_id()'. Together this means we can special
3321 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3322 		 * without taking any locks.
3323 		 *
3324 		 * In particular:
3325 		 *  - we rely on Program-Order guarantees for all the ordering,
3326 		 *  - we're serialized against set_special_state() by virtue of
3327 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3328 		 */
3329 		if (!(p->state & state))
3330 			goto out;
3331 
3332 		success = 1;
3333 		trace_sched_waking(p);
3334 		p->state = TASK_RUNNING;
3335 		trace_sched_wakeup(p);
3336 		goto out;
3337 	}
3338 
3339 	/*
3340 	 * If we are going to wake up a thread waiting for CONDITION we
3341 	 * need to ensure that CONDITION=1 done by the caller can not be
3342 	 * reordered with p->state check below. This pairs with smp_store_mb()
3343 	 * in set_current_state() that the waiting thread does.
3344 	 */
3345 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3346 	smp_mb__after_spinlock();
3347 	if (!(p->state & state))
3348 		goto unlock;
3349 
3350 	trace_sched_waking(p);
3351 
3352 	/* We're going to change ->state: */
3353 	success = 1;
3354 
3355 	/*
3356 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3357 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3358 	 * in smp_cond_load_acquire() below.
3359 	 *
3360 	 * sched_ttwu_pending()			try_to_wake_up()
3361 	 *   STORE p->on_rq = 1			  LOAD p->state
3362 	 *   UNLOCK rq->lock
3363 	 *
3364 	 * __schedule() (switch to task 'p')
3365 	 *   LOCK rq->lock			  smp_rmb();
3366 	 *   smp_mb__after_spinlock();
3367 	 *   UNLOCK rq->lock
3368 	 *
3369 	 * [task p]
3370 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3371 	 *
3372 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3373 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3374 	 *
3375 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3376 	 */
3377 	smp_rmb();
3378 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3379 		goto unlock;
3380 
3381 #ifdef CONFIG_SMP
3382 	/*
3383 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3384 	 * possible to, falsely, observe p->on_cpu == 0.
3385 	 *
3386 	 * One must be running (->on_cpu == 1) in order to remove oneself
3387 	 * from the runqueue.
3388 	 *
3389 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3390 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3391 	 *   UNLOCK rq->lock
3392 	 *
3393 	 * __schedule() (put 'p' to sleep)
3394 	 *   LOCK rq->lock			  smp_rmb();
3395 	 *   smp_mb__after_spinlock();
3396 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3397 	 *
3398 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3399 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3400 	 *
3401 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3402 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3403 	 * care about it's own p->state. See the comment in __schedule().
3404 	 */
3405 	smp_acquire__after_ctrl_dep();
3406 
3407 	/*
3408 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3409 	 * == 0), which means we need to do an enqueue, change p->state to
3410 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3411 	 * enqueue, such as ttwu_queue_wakelist().
3412 	 */
3413 	p->state = TASK_WAKING;
3414 
3415 	/*
3416 	 * If the owning (remote) CPU is still in the middle of schedule() with
3417 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3418 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3419 	 * let the waker make forward progress. This is safe because IRQs are
3420 	 * disabled and the IPI will deliver after on_cpu is cleared.
3421 	 *
3422 	 * Ensure we load task_cpu(p) after p->on_cpu:
3423 	 *
3424 	 * set_task_cpu(p, cpu);
3425 	 *   STORE p->cpu = @cpu
3426 	 * __schedule() (switch to task 'p')
3427 	 *   LOCK rq->lock
3428 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3429 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3430 	 *
3431 	 * to ensure we observe the correct CPU on which the task is currently
3432 	 * scheduling.
3433 	 */
3434 	if (smp_load_acquire(&p->on_cpu) &&
3435 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3436 		goto unlock;
3437 
3438 	/*
3439 	 * If the owning (remote) CPU is still in the middle of schedule() with
3440 	 * this task as prev, wait until it's done referencing the task.
3441 	 *
3442 	 * Pairs with the smp_store_release() in finish_task().
3443 	 *
3444 	 * This ensures that tasks getting woken will be fully ordered against
3445 	 * their previous state and preserve Program Order.
3446 	 */
3447 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3448 
3449 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3450 	if (task_cpu(p) != cpu) {
3451 		if (p->in_iowait) {
3452 			delayacct_blkio_end(p);
3453 			atomic_dec(&task_rq(p)->nr_iowait);
3454 		}
3455 
3456 		wake_flags |= WF_MIGRATED;
3457 		psi_ttwu_dequeue(p);
3458 		set_task_cpu(p, cpu);
3459 	}
3460 #else
3461 	cpu = task_cpu(p);
3462 #endif /* CONFIG_SMP */
3463 
3464 	ttwu_queue(p, cpu, wake_flags);
3465 unlock:
3466 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3467 out:
3468 	if (success)
3469 		ttwu_stat(p, task_cpu(p), wake_flags);
3470 	preempt_enable();
3471 
3472 	return success;
3473 }
3474 
3475 /**
3476  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3477  * @p: Process for which the function is to be invoked, can be @current.
3478  * @func: Function to invoke.
3479  * @arg: Argument to function.
3480  *
3481  * If the specified task can be quickly locked into a definite state
3482  * (either sleeping or on a given runqueue), arrange to keep it in that
3483  * state while invoking @func(@arg).  This function can use ->on_rq and
3484  * task_curr() to work out what the state is, if required.  Given that
3485  * @func can be invoked with a runqueue lock held, it had better be quite
3486  * lightweight.
3487  *
3488  * Returns:
3489  *	@false if the task slipped out from under the locks.
3490  *	@true if the task was locked onto a runqueue or is sleeping.
3491  *		However, @func can override this by returning @false.
3492  */
3493 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3494 {
3495 	struct rq_flags rf;
3496 	bool ret = false;
3497 	struct rq *rq;
3498 
3499 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3500 	if (p->on_rq) {
3501 		rq = __task_rq_lock(p, &rf);
3502 		if (task_rq(p) == rq)
3503 			ret = func(p, arg);
3504 		rq_unlock(rq, &rf);
3505 	} else {
3506 		switch (p->state) {
3507 		case TASK_RUNNING:
3508 		case TASK_WAKING:
3509 			break;
3510 		default:
3511 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3512 			if (!p->on_rq)
3513 				ret = func(p, arg);
3514 		}
3515 	}
3516 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3517 	return ret;
3518 }
3519 
3520 /**
3521  * wake_up_process - Wake up a specific process
3522  * @p: The process to be woken up.
3523  *
3524  * Attempt to wake up the nominated process and move it to the set of runnable
3525  * processes.
3526  *
3527  * Return: 1 if the process was woken up, 0 if it was already running.
3528  *
3529  * This function executes a full memory barrier before accessing the task state.
3530  */
3531 int wake_up_process(struct task_struct *p)
3532 {
3533 	return try_to_wake_up(p, TASK_NORMAL, 0);
3534 }
3535 EXPORT_SYMBOL(wake_up_process);
3536 
3537 int wake_up_state(struct task_struct *p, unsigned int state)
3538 {
3539 	return try_to_wake_up(p, state, 0);
3540 }
3541 
3542 /*
3543  * Perform scheduler related setup for a newly forked process p.
3544  * p is forked by current.
3545  *
3546  * __sched_fork() is basic setup used by init_idle() too:
3547  */
3548 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3549 {
3550 	p->on_rq			= 0;
3551 
3552 	p->se.on_rq			= 0;
3553 	p->se.exec_start		= 0;
3554 	p->se.sum_exec_runtime		= 0;
3555 	p->se.prev_sum_exec_runtime	= 0;
3556 	p->se.nr_migrations		= 0;
3557 	p->se.vruntime			= 0;
3558 	INIT_LIST_HEAD(&p->se.group_node);
3559 
3560 #ifdef CONFIG_FAIR_GROUP_SCHED
3561 	p->se.cfs_rq			= NULL;
3562 #endif
3563 
3564 #ifdef CONFIG_SCHEDSTATS
3565 	/* Even if schedstat is disabled, there should not be garbage */
3566 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3567 #endif
3568 
3569 	RB_CLEAR_NODE(&p->dl.rb_node);
3570 	init_dl_task_timer(&p->dl);
3571 	init_dl_inactive_task_timer(&p->dl);
3572 	__dl_clear_params(p);
3573 
3574 	INIT_LIST_HEAD(&p->rt.run_list);
3575 	p->rt.timeout		= 0;
3576 	p->rt.time_slice	= sched_rr_timeslice;
3577 	p->rt.on_rq		= 0;
3578 	p->rt.on_list		= 0;
3579 
3580 #ifdef CONFIG_PREEMPT_NOTIFIERS
3581 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3582 #endif
3583 
3584 #ifdef CONFIG_COMPACTION
3585 	p->capture_control = NULL;
3586 #endif
3587 	init_numa_balancing(clone_flags, p);
3588 #ifdef CONFIG_SMP
3589 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3590 	p->migration_pending = NULL;
3591 #endif
3592 }
3593 
3594 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3595 
3596 #ifdef CONFIG_NUMA_BALANCING
3597 
3598 void set_numabalancing_state(bool enabled)
3599 {
3600 	if (enabled)
3601 		static_branch_enable(&sched_numa_balancing);
3602 	else
3603 		static_branch_disable(&sched_numa_balancing);
3604 }
3605 
3606 #ifdef CONFIG_PROC_SYSCTL
3607 int sysctl_numa_balancing(struct ctl_table *table, int write,
3608 			  void *buffer, size_t *lenp, loff_t *ppos)
3609 {
3610 	struct ctl_table t;
3611 	int err;
3612 	int state = static_branch_likely(&sched_numa_balancing);
3613 
3614 	if (write && !capable(CAP_SYS_ADMIN))
3615 		return -EPERM;
3616 
3617 	t = *table;
3618 	t.data = &state;
3619 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3620 	if (err < 0)
3621 		return err;
3622 	if (write)
3623 		set_numabalancing_state(state);
3624 	return err;
3625 }
3626 #endif
3627 #endif
3628 
3629 #ifdef CONFIG_SCHEDSTATS
3630 
3631 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3632 static bool __initdata __sched_schedstats = false;
3633 
3634 static void set_schedstats(bool enabled)
3635 {
3636 	if (enabled)
3637 		static_branch_enable(&sched_schedstats);
3638 	else
3639 		static_branch_disable(&sched_schedstats);
3640 }
3641 
3642 void force_schedstat_enabled(void)
3643 {
3644 	if (!schedstat_enabled()) {
3645 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3646 		static_branch_enable(&sched_schedstats);
3647 	}
3648 }
3649 
3650 static int __init setup_schedstats(char *str)
3651 {
3652 	int ret = 0;
3653 	if (!str)
3654 		goto out;
3655 
3656 	/*
3657 	 * This code is called before jump labels have been set up, so we can't
3658 	 * change the static branch directly just yet.  Instead set a temporary
3659 	 * variable so init_schedstats() can do it later.
3660 	 */
3661 	if (!strcmp(str, "enable")) {
3662 		__sched_schedstats = true;
3663 		ret = 1;
3664 	} else if (!strcmp(str, "disable")) {
3665 		__sched_schedstats = false;
3666 		ret = 1;
3667 	}
3668 out:
3669 	if (!ret)
3670 		pr_warn("Unable to parse schedstats=\n");
3671 
3672 	return ret;
3673 }
3674 __setup("schedstats=", setup_schedstats);
3675 
3676 static void __init init_schedstats(void)
3677 {
3678 	set_schedstats(__sched_schedstats);
3679 }
3680 
3681 #ifdef CONFIG_PROC_SYSCTL
3682 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3683 		size_t *lenp, loff_t *ppos)
3684 {
3685 	struct ctl_table t;
3686 	int err;
3687 	int state = static_branch_likely(&sched_schedstats);
3688 
3689 	if (write && !capable(CAP_SYS_ADMIN))
3690 		return -EPERM;
3691 
3692 	t = *table;
3693 	t.data = &state;
3694 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3695 	if (err < 0)
3696 		return err;
3697 	if (write)
3698 		set_schedstats(state);
3699 	return err;
3700 }
3701 #endif /* CONFIG_PROC_SYSCTL */
3702 #else  /* !CONFIG_SCHEDSTATS */
3703 static inline void init_schedstats(void) {}
3704 #endif /* CONFIG_SCHEDSTATS */
3705 
3706 /*
3707  * fork()/clone()-time setup:
3708  */
3709 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3710 {
3711 	unsigned long flags;
3712 
3713 	__sched_fork(clone_flags, p);
3714 	/*
3715 	 * We mark the process as NEW here. This guarantees that
3716 	 * nobody will actually run it, and a signal or other external
3717 	 * event cannot wake it up and insert it on the runqueue either.
3718 	 */
3719 	p->state = TASK_NEW;
3720 
3721 	/*
3722 	 * Make sure we do not leak PI boosting priority to the child.
3723 	 */
3724 	p->prio = current->normal_prio;
3725 
3726 	uclamp_fork(p);
3727 
3728 	/*
3729 	 * Revert to default priority/policy on fork if requested.
3730 	 */
3731 	if (unlikely(p->sched_reset_on_fork)) {
3732 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3733 			p->policy = SCHED_NORMAL;
3734 			p->static_prio = NICE_TO_PRIO(0);
3735 			p->rt_priority = 0;
3736 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3737 			p->static_prio = NICE_TO_PRIO(0);
3738 
3739 		p->prio = p->normal_prio = __normal_prio(p);
3740 		set_load_weight(p, false);
3741 
3742 		/*
3743 		 * We don't need the reset flag anymore after the fork. It has
3744 		 * fulfilled its duty:
3745 		 */
3746 		p->sched_reset_on_fork = 0;
3747 	}
3748 
3749 	if (dl_prio(p->prio))
3750 		return -EAGAIN;
3751 	else if (rt_prio(p->prio))
3752 		p->sched_class = &rt_sched_class;
3753 	else
3754 		p->sched_class = &fair_sched_class;
3755 
3756 	init_entity_runnable_average(&p->se);
3757 
3758 	/*
3759 	 * The child is not yet in the pid-hash so no cgroup attach races,
3760 	 * and the cgroup is pinned to this child due to cgroup_fork()
3761 	 * is ran before sched_fork().
3762 	 *
3763 	 * Silence PROVE_RCU.
3764 	 */
3765 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3766 	rseq_migrate(p);
3767 	/*
3768 	 * We're setting the CPU for the first time, we don't migrate,
3769 	 * so use __set_task_cpu().
3770 	 */
3771 	__set_task_cpu(p, smp_processor_id());
3772 	if (p->sched_class->task_fork)
3773 		p->sched_class->task_fork(p);
3774 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3775 
3776 #ifdef CONFIG_SCHED_INFO
3777 	if (likely(sched_info_on()))
3778 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3779 #endif
3780 #if defined(CONFIG_SMP)
3781 	p->on_cpu = 0;
3782 #endif
3783 	init_task_preempt_count(p);
3784 #ifdef CONFIG_SMP
3785 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3786 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3787 #endif
3788 	return 0;
3789 }
3790 
3791 void sched_post_fork(struct task_struct *p)
3792 {
3793 	uclamp_post_fork(p);
3794 }
3795 
3796 unsigned long to_ratio(u64 period, u64 runtime)
3797 {
3798 	if (runtime == RUNTIME_INF)
3799 		return BW_UNIT;
3800 
3801 	/*
3802 	 * Doing this here saves a lot of checks in all
3803 	 * the calling paths, and returning zero seems
3804 	 * safe for them anyway.
3805 	 */
3806 	if (period == 0)
3807 		return 0;
3808 
3809 	return div64_u64(runtime << BW_SHIFT, period);
3810 }
3811 
3812 /*
3813  * wake_up_new_task - wake up a newly created task for the first time.
3814  *
3815  * This function will do some initial scheduler statistics housekeeping
3816  * that must be done for every newly created context, then puts the task
3817  * on the runqueue and wakes it.
3818  */
3819 void wake_up_new_task(struct task_struct *p)
3820 {
3821 	struct rq_flags rf;
3822 	struct rq *rq;
3823 
3824 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3825 	p->state = TASK_RUNNING;
3826 #ifdef CONFIG_SMP
3827 	/*
3828 	 * Fork balancing, do it here and not earlier because:
3829 	 *  - cpus_ptr can change in the fork path
3830 	 *  - any previously selected CPU might disappear through hotplug
3831 	 *
3832 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3833 	 * as we're not fully set-up yet.
3834 	 */
3835 	p->recent_used_cpu = task_cpu(p);
3836 	rseq_migrate(p);
3837 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3838 #endif
3839 	rq = __task_rq_lock(p, &rf);
3840 	update_rq_clock(rq);
3841 	post_init_entity_util_avg(p);
3842 
3843 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3844 	trace_sched_wakeup_new(p);
3845 	check_preempt_curr(rq, p, WF_FORK);
3846 #ifdef CONFIG_SMP
3847 	if (p->sched_class->task_woken) {
3848 		/*
3849 		 * Nothing relies on rq->lock after this, so it's fine to
3850 		 * drop it.
3851 		 */
3852 		rq_unpin_lock(rq, &rf);
3853 		p->sched_class->task_woken(rq, p);
3854 		rq_repin_lock(rq, &rf);
3855 	}
3856 #endif
3857 	task_rq_unlock(rq, p, &rf);
3858 }
3859 
3860 #ifdef CONFIG_PREEMPT_NOTIFIERS
3861 
3862 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3863 
3864 void preempt_notifier_inc(void)
3865 {
3866 	static_branch_inc(&preempt_notifier_key);
3867 }
3868 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3869 
3870 void preempt_notifier_dec(void)
3871 {
3872 	static_branch_dec(&preempt_notifier_key);
3873 }
3874 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3875 
3876 /**
3877  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3878  * @notifier: notifier struct to register
3879  */
3880 void preempt_notifier_register(struct preempt_notifier *notifier)
3881 {
3882 	if (!static_branch_unlikely(&preempt_notifier_key))
3883 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3884 
3885 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3886 }
3887 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3888 
3889 /**
3890  * preempt_notifier_unregister - no longer interested in preemption notifications
3891  * @notifier: notifier struct to unregister
3892  *
3893  * This is *not* safe to call from within a preemption notifier.
3894  */
3895 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3896 {
3897 	hlist_del(&notifier->link);
3898 }
3899 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3900 
3901 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3902 {
3903 	struct preempt_notifier *notifier;
3904 
3905 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3906 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3907 }
3908 
3909 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3910 {
3911 	if (static_branch_unlikely(&preempt_notifier_key))
3912 		__fire_sched_in_preempt_notifiers(curr);
3913 }
3914 
3915 static void
3916 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3917 				   struct task_struct *next)
3918 {
3919 	struct preempt_notifier *notifier;
3920 
3921 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3922 		notifier->ops->sched_out(notifier, next);
3923 }
3924 
3925 static __always_inline void
3926 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3927 				 struct task_struct *next)
3928 {
3929 	if (static_branch_unlikely(&preempt_notifier_key))
3930 		__fire_sched_out_preempt_notifiers(curr, next);
3931 }
3932 
3933 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3934 
3935 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3936 {
3937 }
3938 
3939 static inline void
3940 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3941 				 struct task_struct *next)
3942 {
3943 }
3944 
3945 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3946 
3947 static inline void prepare_task(struct task_struct *next)
3948 {
3949 #ifdef CONFIG_SMP
3950 	/*
3951 	 * Claim the task as running, we do this before switching to it
3952 	 * such that any running task will have this set.
3953 	 *
3954 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3955 	 */
3956 	WRITE_ONCE(next->on_cpu, 1);
3957 #endif
3958 }
3959 
3960 static inline void finish_task(struct task_struct *prev)
3961 {
3962 #ifdef CONFIG_SMP
3963 	/*
3964 	 * This must be the very last reference to @prev from this CPU. After
3965 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3966 	 * must ensure this doesn't happen until the switch is completely
3967 	 * finished.
3968 	 *
3969 	 * In particular, the load of prev->state in finish_task_switch() must
3970 	 * happen before this.
3971 	 *
3972 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3973 	 */
3974 	smp_store_release(&prev->on_cpu, 0);
3975 #endif
3976 }
3977 
3978 #ifdef CONFIG_SMP
3979 
3980 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3981 {
3982 	void (*func)(struct rq *rq);
3983 	struct callback_head *next;
3984 
3985 	lockdep_assert_held(&rq->lock);
3986 
3987 	while (head) {
3988 		func = (void (*)(struct rq *))head->func;
3989 		next = head->next;
3990 		head->next = NULL;
3991 		head = next;
3992 
3993 		func(rq);
3994 	}
3995 }
3996 
3997 static void balance_push(struct rq *rq);
3998 
3999 struct callback_head balance_push_callback = {
4000 	.next = NULL,
4001 	.func = (void (*)(struct callback_head *))balance_push,
4002 };
4003 
4004 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4005 {
4006 	struct callback_head *head = rq->balance_callback;
4007 
4008 	lockdep_assert_held(&rq->lock);
4009 	if (head)
4010 		rq->balance_callback = NULL;
4011 
4012 	return head;
4013 }
4014 
4015 static void __balance_callbacks(struct rq *rq)
4016 {
4017 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4018 }
4019 
4020 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4021 {
4022 	unsigned long flags;
4023 
4024 	if (unlikely(head)) {
4025 		raw_spin_lock_irqsave(&rq->lock, flags);
4026 		do_balance_callbacks(rq, head);
4027 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4028 	}
4029 }
4030 
4031 #else
4032 
4033 static inline void __balance_callbacks(struct rq *rq)
4034 {
4035 }
4036 
4037 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4038 {
4039 	return NULL;
4040 }
4041 
4042 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4043 {
4044 }
4045 
4046 #endif
4047 
4048 static inline void
4049 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4050 {
4051 	/*
4052 	 * Since the runqueue lock will be released by the next
4053 	 * task (which is an invalid locking op but in the case
4054 	 * of the scheduler it's an obvious special-case), so we
4055 	 * do an early lockdep release here:
4056 	 */
4057 	rq_unpin_lock(rq, rf);
4058 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4059 #ifdef CONFIG_DEBUG_SPINLOCK
4060 	/* this is a valid case when another task releases the spinlock */
4061 	rq->lock.owner = next;
4062 #endif
4063 }
4064 
4065 static inline void finish_lock_switch(struct rq *rq)
4066 {
4067 	/*
4068 	 * If we are tracking spinlock dependencies then we have to
4069 	 * fix up the runqueue lock - which gets 'carried over' from
4070 	 * prev into current:
4071 	 */
4072 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4073 	__balance_callbacks(rq);
4074 	raw_spin_unlock_irq(&rq->lock);
4075 }
4076 
4077 /*
4078  * NOP if the arch has not defined these:
4079  */
4080 
4081 #ifndef prepare_arch_switch
4082 # define prepare_arch_switch(next)	do { } while (0)
4083 #endif
4084 
4085 #ifndef finish_arch_post_lock_switch
4086 # define finish_arch_post_lock_switch()	do { } while (0)
4087 #endif
4088 
4089 static inline void kmap_local_sched_out(void)
4090 {
4091 #ifdef CONFIG_KMAP_LOCAL
4092 	if (unlikely(current->kmap_ctrl.idx))
4093 		__kmap_local_sched_out();
4094 #endif
4095 }
4096 
4097 static inline void kmap_local_sched_in(void)
4098 {
4099 #ifdef CONFIG_KMAP_LOCAL
4100 	if (unlikely(current->kmap_ctrl.idx))
4101 		__kmap_local_sched_in();
4102 #endif
4103 }
4104 
4105 /**
4106  * prepare_task_switch - prepare to switch tasks
4107  * @rq: the runqueue preparing to switch
4108  * @prev: the current task that is being switched out
4109  * @next: the task we are going to switch to.
4110  *
4111  * This is called with the rq lock held and interrupts off. It must
4112  * be paired with a subsequent finish_task_switch after the context
4113  * switch.
4114  *
4115  * prepare_task_switch sets up locking and calls architecture specific
4116  * hooks.
4117  */
4118 static inline void
4119 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4120 		    struct task_struct *next)
4121 {
4122 	kcov_prepare_switch(prev);
4123 	sched_info_switch(rq, prev, next);
4124 	perf_event_task_sched_out(prev, next);
4125 	rseq_preempt(prev);
4126 	fire_sched_out_preempt_notifiers(prev, next);
4127 	kmap_local_sched_out();
4128 	prepare_task(next);
4129 	prepare_arch_switch(next);
4130 }
4131 
4132 /**
4133  * finish_task_switch - clean up after a task-switch
4134  * @prev: the thread we just switched away from.
4135  *
4136  * finish_task_switch must be called after the context switch, paired
4137  * with a prepare_task_switch call before the context switch.
4138  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4139  * and do any other architecture-specific cleanup actions.
4140  *
4141  * Note that we may have delayed dropping an mm in context_switch(). If
4142  * so, we finish that here outside of the runqueue lock. (Doing it
4143  * with the lock held can cause deadlocks; see schedule() for
4144  * details.)
4145  *
4146  * The context switch have flipped the stack from under us and restored the
4147  * local variables which were saved when this task called schedule() in the
4148  * past. prev == current is still correct but we need to recalculate this_rq
4149  * because prev may have moved to another CPU.
4150  */
4151 static struct rq *finish_task_switch(struct task_struct *prev)
4152 	__releases(rq->lock)
4153 {
4154 	struct rq *rq = this_rq();
4155 	struct mm_struct *mm = rq->prev_mm;
4156 	long prev_state;
4157 
4158 	/*
4159 	 * The previous task will have left us with a preempt_count of 2
4160 	 * because it left us after:
4161 	 *
4162 	 *	schedule()
4163 	 *	  preempt_disable();			// 1
4164 	 *	  __schedule()
4165 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4166 	 *
4167 	 * Also, see FORK_PREEMPT_COUNT.
4168 	 */
4169 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4170 		      "corrupted preempt_count: %s/%d/0x%x\n",
4171 		      current->comm, current->pid, preempt_count()))
4172 		preempt_count_set(FORK_PREEMPT_COUNT);
4173 
4174 	rq->prev_mm = NULL;
4175 
4176 	/*
4177 	 * A task struct has one reference for the use as "current".
4178 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4179 	 * schedule one last time. The schedule call will never return, and
4180 	 * the scheduled task must drop that reference.
4181 	 *
4182 	 * We must observe prev->state before clearing prev->on_cpu (in
4183 	 * finish_task), otherwise a concurrent wakeup can get prev
4184 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4185 	 * transition, resulting in a double drop.
4186 	 */
4187 	prev_state = prev->state;
4188 	vtime_task_switch(prev);
4189 	perf_event_task_sched_in(prev, current);
4190 	finish_task(prev);
4191 	finish_lock_switch(rq);
4192 	finish_arch_post_lock_switch();
4193 	kcov_finish_switch(current);
4194 	/*
4195 	 * kmap_local_sched_out() is invoked with rq::lock held and
4196 	 * interrupts disabled. There is no requirement for that, but the
4197 	 * sched out code does not have an interrupt enabled section.
4198 	 * Restoring the maps on sched in does not require interrupts being
4199 	 * disabled either.
4200 	 */
4201 	kmap_local_sched_in();
4202 
4203 	fire_sched_in_preempt_notifiers(current);
4204 	/*
4205 	 * When switching through a kernel thread, the loop in
4206 	 * membarrier_{private,global}_expedited() may have observed that
4207 	 * kernel thread and not issued an IPI. It is therefore possible to
4208 	 * schedule between user->kernel->user threads without passing though
4209 	 * switch_mm(). Membarrier requires a barrier after storing to
4210 	 * rq->curr, before returning to userspace, so provide them here:
4211 	 *
4212 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4213 	 *   provided by mmdrop(),
4214 	 * - a sync_core for SYNC_CORE.
4215 	 */
4216 	if (mm) {
4217 		membarrier_mm_sync_core_before_usermode(mm);
4218 		mmdrop(mm);
4219 	}
4220 	if (unlikely(prev_state == TASK_DEAD)) {
4221 		if (prev->sched_class->task_dead)
4222 			prev->sched_class->task_dead(prev);
4223 
4224 		/*
4225 		 * Remove function-return probe instances associated with this
4226 		 * task and put them back on the free list.
4227 		 */
4228 		kprobe_flush_task(prev);
4229 
4230 		/* Task is done with its stack. */
4231 		put_task_stack(prev);
4232 
4233 		put_task_struct_rcu_user(prev);
4234 	}
4235 
4236 	tick_nohz_task_switch();
4237 	return rq;
4238 }
4239 
4240 /**
4241  * schedule_tail - first thing a freshly forked thread must call.
4242  * @prev: the thread we just switched away from.
4243  */
4244 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4245 	__releases(rq->lock)
4246 {
4247 	struct rq *rq;
4248 
4249 	/*
4250 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4251 	 * finish_task_switch() for details.
4252 	 *
4253 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4254 	 * and the preempt_enable() will end up enabling preemption (on
4255 	 * PREEMPT_COUNT kernels).
4256 	 */
4257 
4258 	rq = finish_task_switch(prev);
4259 	preempt_enable();
4260 
4261 	if (current->set_child_tid)
4262 		put_user(task_pid_vnr(current), current->set_child_tid);
4263 
4264 	calculate_sigpending();
4265 }
4266 
4267 /*
4268  * context_switch - switch to the new MM and the new thread's register state.
4269  */
4270 static __always_inline struct rq *
4271 context_switch(struct rq *rq, struct task_struct *prev,
4272 	       struct task_struct *next, struct rq_flags *rf)
4273 {
4274 	prepare_task_switch(rq, prev, next);
4275 
4276 	/*
4277 	 * For paravirt, this is coupled with an exit in switch_to to
4278 	 * combine the page table reload and the switch backend into
4279 	 * one hypercall.
4280 	 */
4281 	arch_start_context_switch(prev);
4282 
4283 	/*
4284 	 * kernel -> kernel   lazy + transfer active
4285 	 *   user -> kernel   lazy + mmgrab() active
4286 	 *
4287 	 * kernel ->   user   switch + mmdrop() active
4288 	 *   user ->   user   switch
4289 	 */
4290 	if (!next->mm) {                                // to kernel
4291 		enter_lazy_tlb(prev->active_mm, next);
4292 
4293 		next->active_mm = prev->active_mm;
4294 		if (prev->mm)                           // from user
4295 			mmgrab(prev->active_mm);
4296 		else
4297 			prev->active_mm = NULL;
4298 	} else {                                        // to user
4299 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4300 		/*
4301 		 * sys_membarrier() requires an smp_mb() between setting
4302 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4303 		 *
4304 		 * The below provides this either through switch_mm(), or in
4305 		 * case 'prev->active_mm == next->mm' through
4306 		 * finish_task_switch()'s mmdrop().
4307 		 */
4308 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4309 
4310 		if (!prev->mm) {                        // from kernel
4311 			/* will mmdrop() in finish_task_switch(). */
4312 			rq->prev_mm = prev->active_mm;
4313 			prev->active_mm = NULL;
4314 		}
4315 	}
4316 
4317 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4318 
4319 	prepare_lock_switch(rq, next, rf);
4320 
4321 	/* Here we just switch the register state and the stack. */
4322 	switch_to(prev, next, prev);
4323 	barrier();
4324 
4325 	return finish_task_switch(prev);
4326 }
4327 
4328 /*
4329  * nr_running and nr_context_switches:
4330  *
4331  * externally visible scheduler statistics: current number of runnable
4332  * threads, total number of context switches performed since bootup.
4333  */
4334 unsigned long nr_running(void)
4335 {
4336 	unsigned long i, sum = 0;
4337 
4338 	for_each_online_cpu(i)
4339 		sum += cpu_rq(i)->nr_running;
4340 
4341 	return sum;
4342 }
4343 
4344 /*
4345  * Check if only the current task is running on the CPU.
4346  *
4347  * Caution: this function does not check that the caller has disabled
4348  * preemption, thus the result might have a time-of-check-to-time-of-use
4349  * race.  The caller is responsible to use it correctly, for example:
4350  *
4351  * - from a non-preemptible section (of course)
4352  *
4353  * - from a thread that is bound to a single CPU
4354  *
4355  * - in a loop with very short iterations (e.g. a polling loop)
4356  */
4357 bool single_task_running(void)
4358 {
4359 	return raw_rq()->nr_running == 1;
4360 }
4361 EXPORT_SYMBOL(single_task_running);
4362 
4363 unsigned long long nr_context_switches(void)
4364 {
4365 	int i;
4366 	unsigned long long sum = 0;
4367 
4368 	for_each_possible_cpu(i)
4369 		sum += cpu_rq(i)->nr_switches;
4370 
4371 	return sum;
4372 }
4373 
4374 /*
4375  * Consumers of these two interfaces, like for example the cpuidle menu
4376  * governor, are using nonsensical data. Preferring shallow idle state selection
4377  * for a CPU that has IO-wait which might not even end up running the task when
4378  * it does become runnable.
4379  */
4380 
4381 unsigned long nr_iowait_cpu(int cpu)
4382 {
4383 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4384 }
4385 
4386 /*
4387  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4388  *
4389  * The idea behind IO-wait account is to account the idle time that we could
4390  * have spend running if it were not for IO. That is, if we were to improve the
4391  * storage performance, we'd have a proportional reduction in IO-wait time.
4392  *
4393  * This all works nicely on UP, where, when a task blocks on IO, we account
4394  * idle time as IO-wait, because if the storage were faster, it could've been
4395  * running and we'd not be idle.
4396  *
4397  * This has been extended to SMP, by doing the same for each CPU. This however
4398  * is broken.
4399  *
4400  * Imagine for instance the case where two tasks block on one CPU, only the one
4401  * CPU will have IO-wait accounted, while the other has regular idle. Even
4402  * though, if the storage were faster, both could've ran at the same time,
4403  * utilising both CPUs.
4404  *
4405  * This means, that when looking globally, the current IO-wait accounting on
4406  * SMP is a lower bound, by reason of under accounting.
4407  *
4408  * Worse, since the numbers are provided per CPU, they are sometimes
4409  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4410  * associated with any one particular CPU, it can wake to another CPU than it
4411  * blocked on. This means the per CPU IO-wait number is meaningless.
4412  *
4413  * Task CPU affinities can make all that even more 'interesting'.
4414  */
4415 
4416 unsigned long nr_iowait(void)
4417 {
4418 	unsigned long i, sum = 0;
4419 
4420 	for_each_possible_cpu(i)
4421 		sum += nr_iowait_cpu(i);
4422 
4423 	return sum;
4424 }
4425 
4426 #ifdef CONFIG_SMP
4427 
4428 /*
4429  * sched_exec - execve() is a valuable balancing opportunity, because at
4430  * this point the task has the smallest effective memory and cache footprint.
4431  */
4432 void sched_exec(void)
4433 {
4434 	struct task_struct *p = current;
4435 	unsigned long flags;
4436 	int dest_cpu;
4437 
4438 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4439 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4440 	if (dest_cpu == smp_processor_id())
4441 		goto unlock;
4442 
4443 	if (likely(cpu_active(dest_cpu))) {
4444 		struct migration_arg arg = { p, dest_cpu };
4445 
4446 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4447 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4448 		return;
4449 	}
4450 unlock:
4451 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4452 }
4453 
4454 #endif
4455 
4456 DEFINE_PER_CPU(struct kernel_stat, kstat);
4457 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4458 
4459 EXPORT_PER_CPU_SYMBOL(kstat);
4460 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4461 
4462 /*
4463  * The function fair_sched_class.update_curr accesses the struct curr
4464  * and its field curr->exec_start; when called from task_sched_runtime(),
4465  * we observe a high rate of cache misses in practice.
4466  * Prefetching this data results in improved performance.
4467  */
4468 static inline void prefetch_curr_exec_start(struct task_struct *p)
4469 {
4470 #ifdef CONFIG_FAIR_GROUP_SCHED
4471 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4472 #else
4473 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4474 #endif
4475 	prefetch(curr);
4476 	prefetch(&curr->exec_start);
4477 }
4478 
4479 /*
4480  * Return accounted runtime for the task.
4481  * In case the task is currently running, return the runtime plus current's
4482  * pending runtime that have not been accounted yet.
4483  */
4484 unsigned long long task_sched_runtime(struct task_struct *p)
4485 {
4486 	struct rq_flags rf;
4487 	struct rq *rq;
4488 	u64 ns;
4489 
4490 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4491 	/*
4492 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4493 	 * So we have a optimization chance when the task's delta_exec is 0.
4494 	 * Reading ->on_cpu is racy, but this is ok.
4495 	 *
4496 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4497 	 * If we race with it entering CPU, unaccounted time is 0. This is
4498 	 * indistinguishable from the read occurring a few cycles earlier.
4499 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4500 	 * been accounted, so we're correct here as well.
4501 	 */
4502 	if (!p->on_cpu || !task_on_rq_queued(p))
4503 		return p->se.sum_exec_runtime;
4504 #endif
4505 
4506 	rq = task_rq_lock(p, &rf);
4507 	/*
4508 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4509 	 * project cycles that may never be accounted to this
4510 	 * thread, breaking clock_gettime().
4511 	 */
4512 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4513 		prefetch_curr_exec_start(p);
4514 		update_rq_clock(rq);
4515 		p->sched_class->update_curr(rq);
4516 	}
4517 	ns = p->se.sum_exec_runtime;
4518 	task_rq_unlock(rq, p, &rf);
4519 
4520 	return ns;
4521 }
4522 
4523 /*
4524  * This function gets called by the timer code, with HZ frequency.
4525  * We call it with interrupts disabled.
4526  */
4527 void scheduler_tick(void)
4528 {
4529 	int cpu = smp_processor_id();
4530 	struct rq *rq = cpu_rq(cpu);
4531 	struct task_struct *curr = rq->curr;
4532 	struct rq_flags rf;
4533 	unsigned long thermal_pressure;
4534 
4535 	arch_scale_freq_tick();
4536 	sched_clock_tick();
4537 
4538 	rq_lock(rq, &rf);
4539 
4540 	update_rq_clock(rq);
4541 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4542 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4543 	curr->sched_class->task_tick(rq, curr, 0);
4544 	calc_global_load_tick(rq);
4545 	psi_task_tick(rq);
4546 
4547 	rq_unlock(rq, &rf);
4548 
4549 	perf_event_task_tick();
4550 
4551 #ifdef CONFIG_SMP
4552 	rq->idle_balance = idle_cpu(cpu);
4553 	trigger_load_balance(rq);
4554 #endif
4555 }
4556 
4557 #ifdef CONFIG_NO_HZ_FULL
4558 
4559 struct tick_work {
4560 	int			cpu;
4561 	atomic_t		state;
4562 	struct delayed_work	work;
4563 };
4564 /* Values for ->state, see diagram below. */
4565 #define TICK_SCHED_REMOTE_OFFLINE	0
4566 #define TICK_SCHED_REMOTE_OFFLINING	1
4567 #define TICK_SCHED_REMOTE_RUNNING	2
4568 
4569 /*
4570  * State diagram for ->state:
4571  *
4572  *
4573  *          TICK_SCHED_REMOTE_OFFLINE
4574  *                    |   ^
4575  *                    |   |
4576  *                    |   | sched_tick_remote()
4577  *                    |   |
4578  *                    |   |
4579  *                    +--TICK_SCHED_REMOTE_OFFLINING
4580  *                    |   ^
4581  *                    |   |
4582  * sched_tick_start() |   | sched_tick_stop()
4583  *                    |   |
4584  *                    V   |
4585  *          TICK_SCHED_REMOTE_RUNNING
4586  *
4587  *
4588  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4589  * and sched_tick_start() are happy to leave the state in RUNNING.
4590  */
4591 
4592 static struct tick_work __percpu *tick_work_cpu;
4593 
4594 static void sched_tick_remote(struct work_struct *work)
4595 {
4596 	struct delayed_work *dwork = to_delayed_work(work);
4597 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4598 	int cpu = twork->cpu;
4599 	struct rq *rq = cpu_rq(cpu);
4600 	struct task_struct *curr;
4601 	struct rq_flags rf;
4602 	u64 delta;
4603 	int os;
4604 
4605 	/*
4606 	 * Handle the tick only if it appears the remote CPU is running in full
4607 	 * dynticks mode. The check is racy by nature, but missing a tick or
4608 	 * having one too much is no big deal because the scheduler tick updates
4609 	 * statistics and checks timeslices in a time-independent way, regardless
4610 	 * of when exactly it is running.
4611 	 */
4612 	if (!tick_nohz_tick_stopped_cpu(cpu))
4613 		goto out_requeue;
4614 
4615 	rq_lock_irq(rq, &rf);
4616 	curr = rq->curr;
4617 	if (cpu_is_offline(cpu))
4618 		goto out_unlock;
4619 
4620 	update_rq_clock(rq);
4621 
4622 	if (!is_idle_task(curr)) {
4623 		/*
4624 		 * Make sure the next tick runs within a reasonable
4625 		 * amount of time.
4626 		 */
4627 		delta = rq_clock_task(rq) - curr->se.exec_start;
4628 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4629 	}
4630 	curr->sched_class->task_tick(rq, curr, 0);
4631 
4632 	calc_load_nohz_remote(rq);
4633 out_unlock:
4634 	rq_unlock_irq(rq, &rf);
4635 out_requeue:
4636 
4637 	/*
4638 	 * Run the remote tick once per second (1Hz). This arbitrary
4639 	 * frequency is large enough to avoid overload but short enough
4640 	 * to keep scheduler internal stats reasonably up to date.  But
4641 	 * first update state to reflect hotplug activity if required.
4642 	 */
4643 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4644 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4645 	if (os == TICK_SCHED_REMOTE_RUNNING)
4646 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4647 }
4648 
4649 static void sched_tick_start(int cpu)
4650 {
4651 	int os;
4652 	struct tick_work *twork;
4653 
4654 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4655 		return;
4656 
4657 	WARN_ON_ONCE(!tick_work_cpu);
4658 
4659 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4660 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4661 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4662 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4663 		twork->cpu = cpu;
4664 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4665 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4666 	}
4667 }
4668 
4669 #ifdef CONFIG_HOTPLUG_CPU
4670 static void sched_tick_stop(int cpu)
4671 {
4672 	struct tick_work *twork;
4673 	int os;
4674 
4675 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4676 		return;
4677 
4678 	WARN_ON_ONCE(!tick_work_cpu);
4679 
4680 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4681 	/* There cannot be competing actions, but don't rely on stop-machine. */
4682 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4683 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4684 	/* Don't cancel, as this would mess up the state machine. */
4685 }
4686 #endif /* CONFIG_HOTPLUG_CPU */
4687 
4688 int __init sched_tick_offload_init(void)
4689 {
4690 	tick_work_cpu = alloc_percpu(struct tick_work);
4691 	BUG_ON(!tick_work_cpu);
4692 	return 0;
4693 }
4694 
4695 #else /* !CONFIG_NO_HZ_FULL */
4696 static inline void sched_tick_start(int cpu) { }
4697 static inline void sched_tick_stop(int cpu) { }
4698 #endif
4699 
4700 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4701 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4702 /*
4703  * If the value passed in is equal to the current preempt count
4704  * then we just disabled preemption. Start timing the latency.
4705  */
4706 static inline void preempt_latency_start(int val)
4707 {
4708 	if (preempt_count() == val) {
4709 		unsigned long ip = get_lock_parent_ip();
4710 #ifdef CONFIG_DEBUG_PREEMPT
4711 		current->preempt_disable_ip = ip;
4712 #endif
4713 		trace_preempt_off(CALLER_ADDR0, ip);
4714 	}
4715 }
4716 
4717 void preempt_count_add(int val)
4718 {
4719 #ifdef CONFIG_DEBUG_PREEMPT
4720 	/*
4721 	 * Underflow?
4722 	 */
4723 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4724 		return;
4725 #endif
4726 	__preempt_count_add(val);
4727 #ifdef CONFIG_DEBUG_PREEMPT
4728 	/*
4729 	 * Spinlock count overflowing soon?
4730 	 */
4731 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4732 				PREEMPT_MASK - 10);
4733 #endif
4734 	preempt_latency_start(val);
4735 }
4736 EXPORT_SYMBOL(preempt_count_add);
4737 NOKPROBE_SYMBOL(preempt_count_add);
4738 
4739 /*
4740  * If the value passed in equals to the current preempt count
4741  * then we just enabled preemption. Stop timing the latency.
4742  */
4743 static inline void preempt_latency_stop(int val)
4744 {
4745 	if (preempt_count() == val)
4746 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4747 }
4748 
4749 void preempt_count_sub(int val)
4750 {
4751 #ifdef CONFIG_DEBUG_PREEMPT
4752 	/*
4753 	 * Underflow?
4754 	 */
4755 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4756 		return;
4757 	/*
4758 	 * Is the spinlock portion underflowing?
4759 	 */
4760 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4761 			!(preempt_count() & PREEMPT_MASK)))
4762 		return;
4763 #endif
4764 
4765 	preempt_latency_stop(val);
4766 	__preempt_count_sub(val);
4767 }
4768 EXPORT_SYMBOL(preempt_count_sub);
4769 NOKPROBE_SYMBOL(preempt_count_sub);
4770 
4771 #else
4772 static inline void preempt_latency_start(int val) { }
4773 static inline void preempt_latency_stop(int val) { }
4774 #endif
4775 
4776 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4777 {
4778 #ifdef CONFIG_DEBUG_PREEMPT
4779 	return p->preempt_disable_ip;
4780 #else
4781 	return 0;
4782 #endif
4783 }
4784 
4785 /*
4786  * Print scheduling while atomic bug:
4787  */
4788 static noinline void __schedule_bug(struct task_struct *prev)
4789 {
4790 	/* Save this before calling printk(), since that will clobber it */
4791 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4792 
4793 	if (oops_in_progress)
4794 		return;
4795 
4796 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4797 		prev->comm, prev->pid, preempt_count());
4798 
4799 	debug_show_held_locks(prev);
4800 	print_modules();
4801 	if (irqs_disabled())
4802 		print_irqtrace_events(prev);
4803 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4804 	    && in_atomic_preempt_off()) {
4805 		pr_err("Preemption disabled at:");
4806 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4807 	}
4808 	if (panic_on_warn)
4809 		panic("scheduling while atomic\n");
4810 
4811 	dump_stack();
4812 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4813 }
4814 
4815 /*
4816  * Various schedule()-time debugging checks and statistics:
4817  */
4818 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4819 {
4820 #ifdef CONFIG_SCHED_STACK_END_CHECK
4821 	if (task_stack_end_corrupted(prev))
4822 		panic("corrupted stack end detected inside scheduler\n");
4823 
4824 	if (task_scs_end_corrupted(prev))
4825 		panic("corrupted shadow stack detected inside scheduler\n");
4826 #endif
4827 
4828 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4829 	if (!preempt && prev->state && prev->non_block_count) {
4830 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4831 			prev->comm, prev->pid, prev->non_block_count);
4832 		dump_stack();
4833 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4834 	}
4835 #endif
4836 
4837 	if (unlikely(in_atomic_preempt_off())) {
4838 		__schedule_bug(prev);
4839 		preempt_count_set(PREEMPT_DISABLED);
4840 	}
4841 	rcu_sleep_check();
4842 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4843 
4844 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4845 
4846 	schedstat_inc(this_rq()->sched_count);
4847 }
4848 
4849 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4850 				  struct rq_flags *rf)
4851 {
4852 #ifdef CONFIG_SMP
4853 	const struct sched_class *class;
4854 	/*
4855 	 * We must do the balancing pass before put_prev_task(), such
4856 	 * that when we release the rq->lock the task is in the same
4857 	 * state as before we took rq->lock.
4858 	 *
4859 	 * We can terminate the balance pass as soon as we know there is
4860 	 * a runnable task of @class priority or higher.
4861 	 */
4862 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4863 		if (class->balance(rq, prev, rf))
4864 			break;
4865 	}
4866 #endif
4867 
4868 	put_prev_task(rq, prev);
4869 }
4870 
4871 /*
4872  * Pick up the highest-prio task:
4873  */
4874 static inline struct task_struct *
4875 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4876 {
4877 	const struct sched_class *class;
4878 	struct task_struct *p;
4879 
4880 	/*
4881 	 * Optimization: we know that if all tasks are in the fair class we can
4882 	 * call that function directly, but only if the @prev task wasn't of a
4883 	 * higher scheduling class, because otherwise those lose the
4884 	 * opportunity to pull in more work from other CPUs.
4885 	 */
4886 	if (likely(prev->sched_class <= &fair_sched_class &&
4887 		   rq->nr_running == rq->cfs.h_nr_running)) {
4888 
4889 		p = pick_next_task_fair(rq, prev, rf);
4890 		if (unlikely(p == RETRY_TASK))
4891 			goto restart;
4892 
4893 		/* Assumes fair_sched_class->next == idle_sched_class */
4894 		if (!p) {
4895 			put_prev_task(rq, prev);
4896 			p = pick_next_task_idle(rq);
4897 		}
4898 
4899 		return p;
4900 	}
4901 
4902 restart:
4903 	put_prev_task_balance(rq, prev, rf);
4904 
4905 	for_each_class(class) {
4906 		p = class->pick_next_task(rq);
4907 		if (p)
4908 			return p;
4909 	}
4910 
4911 	/* The idle class should always have a runnable task: */
4912 	BUG();
4913 }
4914 
4915 /*
4916  * __schedule() is the main scheduler function.
4917  *
4918  * The main means of driving the scheduler and thus entering this function are:
4919  *
4920  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4921  *
4922  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4923  *      paths. For example, see arch/x86/entry_64.S.
4924  *
4925  *      To drive preemption between tasks, the scheduler sets the flag in timer
4926  *      interrupt handler scheduler_tick().
4927  *
4928  *   3. Wakeups don't really cause entry into schedule(). They add a
4929  *      task to the run-queue and that's it.
4930  *
4931  *      Now, if the new task added to the run-queue preempts the current
4932  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4933  *      called on the nearest possible occasion:
4934  *
4935  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4936  *
4937  *         - in syscall or exception context, at the next outmost
4938  *           preempt_enable(). (this might be as soon as the wake_up()'s
4939  *           spin_unlock()!)
4940  *
4941  *         - in IRQ context, return from interrupt-handler to
4942  *           preemptible context
4943  *
4944  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4945  *         then at the next:
4946  *
4947  *          - cond_resched() call
4948  *          - explicit schedule() call
4949  *          - return from syscall or exception to user-space
4950  *          - return from interrupt-handler to user-space
4951  *
4952  * WARNING: must be called with preemption disabled!
4953  */
4954 static void __sched notrace __schedule(bool preempt)
4955 {
4956 	struct task_struct *prev, *next;
4957 	unsigned long *switch_count;
4958 	unsigned long prev_state;
4959 	struct rq_flags rf;
4960 	struct rq *rq;
4961 	int cpu;
4962 
4963 	cpu = smp_processor_id();
4964 	rq = cpu_rq(cpu);
4965 	prev = rq->curr;
4966 
4967 	schedule_debug(prev, preempt);
4968 
4969 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
4970 		hrtick_clear(rq);
4971 
4972 	local_irq_disable();
4973 	rcu_note_context_switch(preempt);
4974 
4975 	/*
4976 	 * Make sure that signal_pending_state()->signal_pending() below
4977 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4978 	 * done by the caller to avoid the race with signal_wake_up():
4979 	 *
4980 	 * __set_current_state(@state)		signal_wake_up()
4981 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4982 	 *					  wake_up_state(p, state)
4983 	 *   LOCK rq->lock			    LOCK p->pi_state
4984 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4985 	 *     if (signal_pending_state())	    if (p->state & @state)
4986 	 *
4987 	 * Also, the membarrier system call requires a full memory barrier
4988 	 * after coming from user-space, before storing to rq->curr.
4989 	 */
4990 	rq_lock(rq, &rf);
4991 	smp_mb__after_spinlock();
4992 
4993 	/* Promote REQ to ACT */
4994 	rq->clock_update_flags <<= 1;
4995 	update_rq_clock(rq);
4996 
4997 	switch_count = &prev->nivcsw;
4998 
4999 	/*
5000 	 * We must load prev->state once (task_struct::state is volatile), such
5001 	 * that:
5002 	 *
5003 	 *  - we form a control dependency vs deactivate_task() below.
5004 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5005 	 */
5006 	prev_state = prev->state;
5007 	if (!preempt && prev_state) {
5008 		if (signal_pending_state(prev_state, prev)) {
5009 			prev->state = TASK_RUNNING;
5010 		} else {
5011 			prev->sched_contributes_to_load =
5012 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5013 				!(prev_state & TASK_NOLOAD) &&
5014 				!(prev->flags & PF_FROZEN);
5015 
5016 			if (prev->sched_contributes_to_load)
5017 				rq->nr_uninterruptible++;
5018 
5019 			/*
5020 			 * __schedule()			ttwu()
5021 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5022 			 *   if (prev_state)		    goto out;
5023 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5024 			 *				  p->state = TASK_WAKING
5025 			 *
5026 			 * Where __schedule() and ttwu() have matching control dependencies.
5027 			 *
5028 			 * After this, schedule() must not care about p->state any more.
5029 			 */
5030 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5031 
5032 			if (prev->in_iowait) {
5033 				atomic_inc(&rq->nr_iowait);
5034 				delayacct_blkio_start();
5035 			}
5036 		}
5037 		switch_count = &prev->nvcsw;
5038 	}
5039 
5040 	next = pick_next_task(rq, prev, &rf);
5041 	clear_tsk_need_resched(prev);
5042 	clear_preempt_need_resched();
5043 
5044 	if (likely(prev != next)) {
5045 		rq->nr_switches++;
5046 		/*
5047 		 * RCU users of rcu_dereference(rq->curr) may not see
5048 		 * changes to task_struct made by pick_next_task().
5049 		 */
5050 		RCU_INIT_POINTER(rq->curr, next);
5051 		/*
5052 		 * The membarrier system call requires each architecture
5053 		 * to have a full memory barrier after updating
5054 		 * rq->curr, before returning to user-space.
5055 		 *
5056 		 * Here are the schemes providing that barrier on the
5057 		 * various architectures:
5058 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5059 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5060 		 * - finish_lock_switch() for weakly-ordered
5061 		 *   architectures where spin_unlock is a full barrier,
5062 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5063 		 *   is a RELEASE barrier),
5064 		 */
5065 		++*switch_count;
5066 
5067 		migrate_disable_switch(rq, prev);
5068 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5069 
5070 		trace_sched_switch(preempt, prev, next);
5071 
5072 		/* Also unlocks the rq: */
5073 		rq = context_switch(rq, prev, next, &rf);
5074 	} else {
5075 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5076 
5077 		rq_unpin_lock(rq, &rf);
5078 		__balance_callbacks(rq);
5079 		raw_spin_unlock_irq(&rq->lock);
5080 	}
5081 }
5082 
5083 void __noreturn do_task_dead(void)
5084 {
5085 	/* Causes final put_task_struct in finish_task_switch(): */
5086 	set_special_state(TASK_DEAD);
5087 
5088 	/* Tell freezer to ignore us: */
5089 	current->flags |= PF_NOFREEZE;
5090 
5091 	__schedule(false);
5092 	BUG();
5093 
5094 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5095 	for (;;)
5096 		cpu_relax();
5097 }
5098 
5099 static inline void sched_submit_work(struct task_struct *tsk)
5100 {
5101 	unsigned int task_flags;
5102 
5103 	if (!tsk->state)
5104 		return;
5105 
5106 	task_flags = tsk->flags;
5107 	/*
5108 	 * If a worker went to sleep, notify and ask workqueue whether
5109 	 * it wants to wake up a task to maintain concurrency.
5110 	 * As this function is called inside the schedule() context,
5111 	 * we disable preemption to avoid it calling schedule() again
5112 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5113 	 * requires it.
5114 	 */
5115 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5116 		preempt_disable();
5117 		if (task_flags & PF_WQ_WORKER)
5118 			wq_worker_sleeping(tsk);
5119 		else
5120 			io_wq_worker_sleeping(tsk);
5121 		preempt_enable_no_resched();
5122 	}
5123 
5124 	if (tsk_is_pi_blocked(tsk))
5125 		return;
5126 
5127 	/*
5128 	 * If we are going to sleep and we have plugged IO queued,
5129 	 * make sure to submit it to avoid deadlocks.
5130 	 */
5131 	if (blk_needs_flush_plug(tsk))
5132 		blk_schedule_flush_plug(tsk);
5133 }
5134 
5135 static void sched_update_worker(struct task_struct *tsk)
5136 {
5137 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5138 		if (tsk->flags & PF_WQ_WORKER)
5139 			wq_worker_running(tsk);
5140 		else
5141 			io_wq_worker_running(tsk);
5142 	}
5143 }
5144 
5145 asmlinkage __visible void __sched schedule(void)
5146 {
5147 	struct task_struct *tsk = current;
5148 
5149 	sched_submit_work(tsk);
5150 	do {
5151 		preempt_disable();
5152 		__schedule(false);
5153 		sched_preempt_enable_no_resched();
5154 	} while (need_resched());
5155 	sched_update_worker(tsk);
5156 }
5157 EXPORT_SYMBOL(schedule);
5158 
5159 /*
5160  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5161  * state (have scheduled out non-voluntarily) by making sure that all
5162  * tasks have either left the run queue or have gone into user space.
5163  * As idle tasks do not do either, they must not ever be preempted
5164  * (schedule out non-voluntarily).
5165  *
5166  * schedule_idle() is similar to schedule_preempt_disable() except that it
5167  * never enables preemption because it does not call sched_submit_work().
5168  */
5169 void __sched schedule_idle(void)
5170 {
5171 	/*
5172 	 * As this skips calling sched_submit_work(), which the idle task does
5173 	 * regardless because that function is a nop when the task is in a
5174 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5175 	 * current task can be in any other state. Note, idle is always in the
5176 	 * TASK_RUNNING state.
5177 	 */
5178 	WARN_ON_ONCE(current->state);
5179 	do {
5180 		__schedule(false);
5181 	} while (need_resched());
5182 }
5183 
5184 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5185 asmlinkage __visible void __sched schedule_user(void)
5186 {
5187 	/*
5188 	 * If we come here after a random call to set_need_resched(),
5189 	 * or we have been woken up remotely but the IPI has not yet arrived,
5190 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5191 	 * we find a better solution.
5192 	 *
5193 	 * NB: There are buggy callers of this function.  Ideally we
5194 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5195 	 * too frequently to make sense yet.
5196 	 */
5197 	enum ctx_state prev_state = exception_enter();
5198 	schedule();
5199 	exception_exit(prev_state);
5200 }
5201 #endif
5202 
5203 /**
5204  * schedule_preempt_disabled - called with preemption disabled
5205  *
5206  * Returns with preemption disabled. Note: preempt_count must be 1
5207  */
5208 void __sched schedule_preempt_disabled(void)
5209 {
5210 	sched_preempt_enable_no_resched();
5211 	schedule();
5212 	preempt_disable();
5213 }
5214 
5215 static void __sched notrace preempt_schedule_common(void)
5216 {
5217 	do {
5218 		/*
5219 		 * Because the function tracer can trace preempt_count_sub()
5220 		 * and it also uses preempt_enable/disable_notrace(), if
5221 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5222 		 * by the function tracer will call this function again and
5223 		 * cause infinite recursion.
5224 		 *
5225 		 * Preemption must be disabled here before the function
5226 		 * tracer can trace. Break up preempt_disable() into two
5227 		 * calls. One to disable preemption without fear of being
5228 		 * traced. The other to still record the preemption latency,
5229 		 * which can also be traced by the function tracer.
5230 		 */
5231 		preempt_disable_notrace();
5232 		preempt_latency_start(1);
5233 		__schedule(true);
5234 		preempt_latency_stop(1);
5235 		preempt_enable_no_resched_notrace();
5236 
5237 		/*
5238 		 * Check again in case we missed a preemption opportunity
5239 		 * between schedule and now.
5240 		 */
5241 	} while (need_resched());
5242 }
5243 
5244 #ifdef CONFIG_PREEMPTION
5245 /*
5246  * This is the entry point to schedule() from in-kernel preemption
5247  * off of preempt_enable.
5248  */
5249 asmlinkage __visible void __sched notrace preempt_schedule(void)
5250 {
5251 	/*
5252 	 * If there is a non-zero preempt_count or interrupts are disabled,
5253 	 * we do not want to preempt the current task. Just return..
5254 	 */
5255 	if (likely(!preemptible()))
5256 		return;
5257 
5258 	preempt_schedule_common();
5259 }
5260 NOKPROBE_SYMBOL(preempt_schedule);
5261 EXPORT_SYMBOL(preempt_schedule);
5262 
5263 #ifdef CONFIG_PREEMPT_DYNAMIC
5264 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5265 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5266 #endif
5267 
5268 
5269 /**
5270  * preempt_schedule_notrace - preempt_schedule called by tracing
5271  *
5272  * The tracing infrastructure uses preempt_enable_notrace to prevent
5273  * recursion and tracing preempt enabling caused by the tracing
5274  * infrastructure itself. But as tracing can happen in areas coming
5275  * from userspace or just about to enter userspace, a preempt enable
5276  * can occur before user_exit() is called. This will cause the scheduler
5277  * to be called when the system is still in usermode.
5278  *
5279  * To prevent this, the preempt_enable_notrace will use this function
5280  * instead of preempt_schedule() to exit user context if needed before
5281  * calling the scheduler.
5282  */
5283 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5284 {
5285 	enum ctx_state prev_ctx;
5286 
5287 	if (likely(!preemptible()))
5288 		return;
5289 
5290 	do {
5291 		/*
5292 		 * Because the function tracer can trace preempt_count_sub()
5293 		 * and it also uses preempt_enable/disable_notrace(), if
5294 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5295 		 * by the function tracer will call this function again and
5296 		 * cause infinite recursion.
5297 		 *
5298 		 * Preemption must be disabled here before the function
5299 		 * tracer can trace. Break up preempt_disable() into two
5300 		 * calls. One to disable preemption without fear of being
5301 		 * traced. The other to still record the preemption latency,
5302 		 * which can also be traced by the function tracer.
5303 		 */
5304 		preempt_disable_notrace();
5305 		preempt_latency_start(1);
5306 		/*
5307 		 * Needs preempt disabled in case user_exit() is traced
5308 		 * and the tracer calls preempt_enable_notrace() causing
5309 		 * an infinite recursion.
5310 		 */
5311 		prev_ctx = exception_enter();
5312 		__schedule(true);
5313 		exception_exit(prev_ctx);
5314 
5315 		preempt_latency_stop(1);
5316 		preempt_enable_no_resched_notrace();
5317 	} while (need_resched());
5318 }
5319 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5320 
5321 #ifdef CONFIG_PREEMPT_DYNAMIC
5322 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5323 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5324 #endif
5325 
5326 #endif /* CONFIG_PREEMPTION */
5327 
5328 #ifdef CONFIG_PREEMPT_DYNAMIC
5329 
5330 #include <linux/entry-common.h>
5331 
5332 /*
5333  * SC:cond_resched
5334  * SC:might_resched
5335  * SC:preempt_schedule
5336  * SC:preempt_schedule_notrace
5337  * SC:irqentry_exit_cond_resched
5338  *
5339  *
5340  * NONE:
5341  *   cond_resched               <- __cond_resched
5342  *   might_resched              <- RET0
5343  *   preempt_schedule           <- NOP
5344  *   preempt_schedule_notrace   <- NOP
5345  *   irqentry_exit_cond_resched <- NOP
5346  *
5347  * VOLUNTARY:
5348  *   cond_resched               <- __cond_resched
5349  *   might_resched              <- __cond_resched
5350  *   preempt_schedule           <- NOP
5351  *   preempt_schedule_notrace   <- NOP
5352  *   irqentry_exit_cond_resched <- NOP
5353  *
5354  * FULL:
5355  *   cond_resched               <- RET0
5356  *   might_resched              <- RET0
5357  *   preempt_schedule           <- preempt_schedule
5358  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5359  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5360  */
5361 
5362 enum {
5363 	preempt_dynamic_none = 0,
5364 	preempt_dynamic_voluntary,
5365 	preempt_dynamic_full,
5366 };
5367 
5368 static int preempt_dynamic_mode = preempt_dynamic_full;
5369 
5370 static int sched_dynamic_mode(const char *str)
5371 {
5372 	if (!strcmp(str, "none"))
5373 		return 0;
5374 
5375 	if (!strcmp(str, "voluntary"))
5376 		return 1;
5377 
5378 	if (!strcmp(str, "full"))
5379 		return 2;
5380 
5381 	return -1;
5382 }
5383 
5384 static void sched_dynamic_update(int mode)
5385 {
5386 	/*
5387 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5388 	 * the ZERO state, which is invalid.
5389 	 */
5390 	static_call_update(cond_resched, __cond_resched);
5391 	static_call_update(might_resched, __cond_resched);
5392 	static_call_update(preempt_schedule, __preempt_schedule_func);
5393 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5394 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5395 
5396 	switch (mode) {
5397 	case preempt_dynamic_none:
5398 		static_call_update(cond_resched, __cond_resched);
5399 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5400 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5401 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5402 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5403 		pr_info("Dynamic Preempt: none\n");
5404 		break;
5405 
5406 	case preempt_dynamic_voluntary:
5407 		static_call_update(cond_resched, __cond_resched);
5408 		static_call_update(might_resched, __cond_resched);
5409 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5410 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5411 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5412 		pr_info("Dynamic Preempt: voluntary\n");
5413 		break;
5414 
5415 	case preempt_dynamic_full:
5416 		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5417 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5418 		static_call_update(preempt_schedule, __preempt_schedule_func);
5419 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5420 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5421 		pr_info("Dynamic Preempt: full\n");
5422 		break;
5423 	}
5424 
5425 	preempt_dynamic_mode = mode;
5426 }
5427 
5428 static int __init setup_preempt_mode(char *str)
5429 {
5430 	int mode = sched_dynamic_mode(str);
5431 	if (mode < 0) {
5432 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5433 		return 1;
5434 	}
5435 
5436 	sched_dynamic_update(mode);
5437 	return 0;
5438 }
5439 __setup("preempt=", setup_preempt_mode);
5440 
5441 #ifdef CONFIG_SCHED_DEBUG
5442 
5443 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5444 				   size_t cnt, loff_t *ppos)
5445 {
5446 	char buf[16];
5447 	int mode;
5448 
5449 	if (cnt > 15)
5450 		cnt = 15;
5451 
5452 	if (copy_from_user(&buf, ubuf, cnt))
5453 		return -EFAULT;
5454 
5455 	buf[cnt] = 0;
5456 	mode = sched_dynamic_mode(strstrip(buf));
5457 	if (mode < 0)
5458 		return mode;
5459 
5460 	sched_dynamic_update(mode);
5461 
5462 	*ppos += cnt;
5463 
5464 	return cnt;
5465 }
5466 
5467 static int sched_dynamic_show(struct seq_file *m, void *v)
5468 {
5469 	static const char * preempt_modes[] = {
5470 		"none", "voluntary", "full"
5471 	};
5472 	int i;
5473 
5474 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5475 		if (preempt_dynamic_mode == i)
5476 			seq_puts(m, "(");
5477 		seq_puts(m, preempt_modes[i]);
5478 		if (preempt_dynamic_mode == i)
5479 			seq_puts(m, ")");
5480 
5481 		seq_puts(m, " ");
5482 	}
5483 
5484 	seq_puts(m, "\n");
5485 	return 0;
5486 }
5487 
5488 static int sched_dynamic_open(struct inode *inode, struct file *filp)
5489 {
5490 	return single_open(filp, sched_dynamic_show, NULL);
5491 }
5492 
5493 static const struct file_operations sched_dynamic_fops = {
5494 	.open		= sched_dynamic_open,
5495 	.write		= sched_dynamic_write,
5496 	.read		= seq_read,
5497 	.llseek		= seq_lseek,
5498 	.release	= single_release,
5499 };
5500 
5501 static __init int sched_init_debug_dynamic(void)
5502 {
5503 	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5504 	return 0;
5505 }
5506 late_initcall(sched_init_debug_dynamic);
5507 
5508 #endif /* CONFIG_SCHED_DEBUG */
5509 #endif /* CONFIG_PREEMPT_DYNAMIC */
5510 
5511 
5512 /*
5513  * This is the entry point to schedule() from kernel preemption
5514  * off of irq context.
5515  * Note, that this is called and return with irqs disabled. This will
5516  * protect us against recursive calling from irq.
5517  */
5518 asmlinkage __visible void __sched preempt_schedule_irq(void)
5519 {
5520 	enum ctx_state prev_state;
5521 
5522 	/* Catch callers which need to be fixed */
5523 	BUG_ON(preempt_count() || !irqs_disabled());
5524 
5525 	prev_state = exception_enter();
5526 
5527 	do {
5528 		preempt_disable();
5529 		local_irq_enable();
5530 		__schedule(true);
5531 		local_irq_disable();
5532 		sched_preempt_enable_no_resched();
5533 	} while (need_resched());
5534 
5535 	exception_exit(prev_state);
5536 }
5537 
5538 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5539 			  void *key)
5540 {
5541 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5542 	return try_to_wake_up(curr->private, mode, wake_flags);
5543 }
5544 EXPORT_SYMBOL(default_wake_function);
5545 
5546 #ifdef CONFIG_RT_MUTEXES
5547 
5548 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5549 {
5550 	if (pi_task)
5551 		prio = min(prio, pi_task->prio);
5552 
5553 	return prio;
5554 }
5555 
5556 static inline int rt_effective_prio(struct task_struct *p, int prio)
5557 {
5558 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5559 
5560 	return __rt_effective_prio(pi_task, prio);
5561 }
5562 
5563 /*
5564  * rt_mutex_setprio - set the current priority of a task
5565  * @p: task to boost
5566  * @pi_task: donor task
5567  *
5568  * This function changes the 'effective' priority of a task. It does
5569  * not touch ->normal_prio like __setscheduler().
5570  *
5571  * Used by the rt_mutex code to implement priority inheritance
5572  * logic. Call site only calls if the priority of the task changed.
5573  */
5574 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5575 {
5576 	int prio, oldprio, queued, running, queue_flag =
5577 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5578 	const struct sched_class *prev_class;
5579 	struct rq_flags rf;
5580 	struct rq *rq;
5581 
5582 	/* XXX used to be waiter->prio, not waiter->task->prio */
5583 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5584 
5585 	/*
5586 	 * If nothing changed; bail early.
5587 	 */
5588 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5589 		return;
5590 
5591 	rq = __task_rq_lock(p, &rf);
5592 	update_rq_clock(rq);
5593 	/*
5594 	 * Set under pi_lock && rq->lock, such that the value can be used under
5595 	 * either lock.
5596 	 *
5597 	 * Note that there is loads of tricky to make this pointer cache work
5598 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5599 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5600 	 * task is allowed to run again (and can exit). This ensures the pointer
5601 	 * points to a blocked task -- which guarantees the task is present.
5602 	 */
5603 	p->pi_top_task = pi_task;
5604 
5605 	/*
5606 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5607 	 */
5608 	if (prio == p->prio && !dl_prio(prio))
5609 		goto out_unlock;
5610 
5611 	/*
5612 	 * Idle task boosting is a nono in general. There is one
5613 	 * exception, when PREEMPT_RT and NOHZ is active:
5614 	 *
5615 	 * The idle task calls get_next_timer_interrupt() and holds
5616 	 * the timer wheel base->lock on the CPU and another CPU wants
5617 	 * to access the timer (probably to cancel it). We can safely
5618 	 * ignore the boosting request, as the idle CPU runs this code
5619 	 * with interrupts disabled and will complete the lock
5620 	 * protected section without being interrupted. So there is no
5621 	 * real need to boost.
5622 	 */
5623 	if (unlikely(p == rq->idle)) {
5624 		WARN_ON(p != rq->curr);
5625 		WARN_ON(p->pi_blocked_on);
5626 		goto out_unlock;
5627 	}
5628 
5629 	trace_sched_pi_setprio(p, pi_task);
5630 	oldprio = p->prio;
5631 
5632 	if (oldprio == prio)
5633 		queue_flag &= ~DEQUEUE_MOVE;
5634 
5635 	prev_class = p->sched_class;
5636 	queued = task_on_rq_queued(p);
5637 	running = task_current(rq, p);
5638 	if (queued)
5639 		dequeue_task(rq, p, queue_flag);
5640 	if (running)
5641 		put_prev_task(rq, p);
5642 
5643 	/*
5644 	 * Boosting condition are:
5645 	 * 1. -rt task is running and holds mutex A
5646 	 *      --> -dl task blocks on mutex A
5647 	 *
5648 	 * 2. -dl task is running and holds mutex A
5649 	 *      --> -dl task blocks on mutex A and could preempt the
5650 	 *          running task
5651 	 */
5652 	if (dl_prio(prio)) {
5653 		if (!dl_prio(p->normal_prio) ||
5654 		    (pi_task && dl_prio(pi_task->prio) &&
5655 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5656 			p->dl.pi_se = pi_task->dl.pi_se;
5657 			queue_flag |= ENQUEUE_REPLENISH;
5658 		} else {
5659 			p->dl.pi_se = &p->dl;
5660 		}
5661 		p->sched_class = &dl_sched_class;
5662 	} else if (rt_prio(prio)) {
5663 		if (dl_prio(oldprio))
5664 			p->dl.pi_se = &p->dl;
5665 		if (oldprio < prio)
5666 			queue_flag |= ENQUEUE_HEAD;
5667 		p->sched_class = &rt_sched_class;
5668 	} else {
5669 		if (dl_prio(oldprio))
5670 			p->dl.pi_se = &p->dl;
5671 		if (rt_prio(oldprio))
5672 			p->rt.timeout = 0;
5673 		p->sched_class = &fair_sched_class;
5674 	}
5675 
5676 	p->prio = prio;
5677 
5678 	if (queued)
5679 		enqueue_task(rq, p, queue_flag);
5680 	if (running)
5681 		set_next_task(rq, p);
5682 
5683 	check_class_changed(rq, p, prev_class, oldprio);
5684 out_unlock:
5685 	/* Avoid rq from going away on us: */
5686 	preempt_disable();
5687 
5688 	rq_unpin_lock(rq, &rf);
5689 	__balance_callbacks(rq);
5690 	raw_spin_unlock(&rq->lock);
5691 
5692 	preempt_enable();
5693 }
5694 #else
5695 static inline int rt_effective_prio(struct task_struct *p, int prio)
5696 {
5697 	return prio;
5698 }
5699 #endif
5700 
5701 void set_user_nice(struct task_struct *p, long nice)
5702 {
5703 	bool queued, running;
5704 	int old_prio;
5705 	struct rq_flags rf;
5706 	struct rq *rq;
5707 
5708 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5709 		return;
5710 	/*
5711 	 * We have to be careful, if called from sys_setpriority(),
5712 	 * the task might be in the middle of scheduling on another CPU.
5713 	 */
5714 	rq = task_rq_lock(p, &rf);
5715 	update_rq_clock(rq);
5716 
5717 	/*
5718 	 * The RT priorities are set via sched_setscheduler(), but we still
5719 	 * allow the 'normal' nice value to be set - but as expected
5720 	 * it won't have any effect on scheduling until the task is
5721 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5722 	 */
5723 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5724 		p->static_prio = NICE_TO_PRIO(nice);
5725 		goto out_unlock;
5726 	}
5727 	queued = task_on_rq_queued(p);
5728 	running = task_current(rq, p);
5729 	if (queued)
5730 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5731 	if (running)
5732 		put_prev_task(rq, p);
5733 
5734 	p->static_prio = NICE_TO_PRIO(nice);
5735 	set_load_weight(p, true);
5736 	old_prio = p->prio;
5737 	p->prio = effective_prio(p);
5738 
5739 	if (queued)
5740 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5741 	if (running)
5742 		set_next_task(rq, p);
5743 
5744 	/*
5745 	 * If the task increased its priority or is running and
5746 	 * lowered its priority, then reschedule its CPU:
5747 	 */
5748 	p->sched_class->prio_changed(rq, p, old_prio);
5749 
5750 out_unlock:
5751 	task_rq_unlock(rq, p, &rf);
5752 }
5753 EXPORT_SYMBOL(set_user_nice);
5754 
5755 /*
5756  * can_nice - check if a task can reduce its nice value
5757  * @p: task
5758  * @nice: nice value
5759  */
5760 int can_nice(const struct task_struct *p, const int nice)
5761 {
5762 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5763 	int nice_rlim = nice_to_rlimit(nice);
5764 
5765 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5766 		capable(CAP_SYS_NICE));
5767 }
5768 
5769 #ifdef __ARCH_WANT_SYS_NICE
5770 
5771 /*
5772  * sys_nice - change the priority of the current process.
5773  * @increment: priority increment
5774  *
5775  * sys_setpriority is a more generic, but much slower function that
5776  * does similar things.
5777  */
5778 SYSCALL_DEFINE1(nice, int, increment)
5779 {
5780 	long nice, retval;
5781 
5782 	/*
5783 	 * Setpriority might change our priority at the same moment.
5784 	 * We don't have to worry. Conceptually one call occurs first
5785 	 * and we have a single winner.
5786 	 */
5787 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5788 	nice = task_nice(current) + increment;
5789 
5790 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5791 	if (increment < 0 && !can_nice(current, nice))
5792 		return -EPERM;
5793 
5794 	retval = security_task_setnice(current, nice);
5795 	if (retval)
5796 		return retval;
5797 
5798 	set_user_nice(current, nice);
5799 	return 0;
5800 }
5801 
5802 #endif
5803 
5804 /**
5805  * task_prio - return the priority value of a given task.
5806  * @p: the task in question.
5807  *
5808  * Return: The priority value as seen by users in /proc.
5809  *
5810  * sched policy         return value   kernel prio    user prio/nice
5811  *
5812  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5813  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5814  * deadline                     -101             -1           0
5815  */
5816 int task_prio(const struct task_struct *p)
5817 {
5818 	return p->prio - MAX_RT_PRIO;
5819 }
5820 
5821 /**
5822  * idle_cpu - is a given CPU idle currently?
5823  * @cpu: the processor in question.
5824  *
5825  * Return: 1 if the CPU is currently idle. 0 otherwise.
5826  */
5827 int idle_cpu(int cpu)
5828 {
5829 	struct rq *rq = cpu_rq(cpu);
5830 
5831 	if (rq->curr != rq->idle)
5832 		return 0;
5833 
5834 	if (rq->nr_running)
5835 		return 0;
5836 
5837 #ifdef CONFIG_SMP
5838 	if (rq->ttwu_pending)
5839 		return 0;
5840 #endif
5841 
5842 	return 1;
5843 }
5844 
5845 /**
5846  * available_idle_cpu - is a given CPU idle for enqueuing work.
5847  * @cpu: the CPU in question.
5848  *
5849  * Return: 1 if the CPU is currently idle. 0 otherwise.
5850  */
5851 int available_idle_cpu(int cpu)
5852 {
5853 	if (!idle_cpu(cpu))
5854 		return 0;
5855 
5856 	if (vcpu_is_preempted(cpu))
5857 		return 0;
5858 
5859 	return 1;
5860 }
5861 
5862 /**
5863  * idle_task - return the idle task for a given CPU.
5864  * @cpu: the processor in question.
5865  *
5866  * Return: The idle task for the CPU @cpu.
5867  */
5868 struct task_struct *idle_task(int cpu)
5869 {
5870 	return cpu_rq(cpu)->idle;
5871 }
5872 
5873 #ifdef CONFIG_SMP
5874 /*
5875  * This function computes an effective utilization for the given CPU, to be
5876  * used for frequency selection given the linear relation: f = u * f_max.
5877  *
5878  * The scheduler tracks the following metrics:
5879  *
5880  *   cpu_util_{cfs,rt,dl,irq}()
5881  *   cpu_bw_dl()
5882  *
5883  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5884  * synchronized windows and are thus directly comparable.
5885  *
5886  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5887  * which excludes things like IRQ and steal-time. These latter are then accrued
5888  * in the irq utilization.
5889  *
5890  * The DL bandwidth number otoh is not a measured metric but a value computed
5891  * based on the task model parameters and gives the minimal utilization
5892  * required to meet deadlines.
5893  */
5894 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5895 				 unsigned long max, enum cpu_util_type type,
5896 				 struct task_struct *p)
5897 {
5898 	unsigned long dl_util, util, irq;
5899 	struct rq *rq = cpu_rq(cpu);
5900 
5901 	if (!uclamp_is_used() &&
5902 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5903 		return max;
5904 	}
5905 
5906 	/*
5907 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5908 	 * because of inaccuracies in how we track these -- see
5909 	 * update_irq_load_avg().
5910 	 */
5911 	irq = cpu_util_irq(rq);
5912 	if (unlikely(irq >= max))
5913 		return max;
5914 
5915 	/*
5916 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5917 	 * CFS tasks and we use the same metric to track the effective
5918 	 * utilization (PELT windows are synchronized) we can directly add them
5919 	 * to obtain the CPU's actual utilization.
5920 	 *
5921 	 * CFS and RT utilization can be boosted or capped, depending on
5922 	 * utilization clamp constraints requested by currently RUNNABLE
5923 	 * tasks.
5924 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5925 	 * frequency will be gracefully reduced with the utilization decay.
5926 	 */
5927 	util = util_cfs + cpu_util_rt(rq);
5928 	if (type == FREQUENCY_UTIL)
5929 		util = uclamp_rq_util_with(rq, util, p);
5930 
5931 	dl_util = cpu_util_dl(rq);
5932 
5933 	/*
5934 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5935 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5936 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5937 	 * that we select f_max when there is no idle time.
5938 	 *
5939 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5940 	 * saturation when we should -- something for later.
5941 	 */
5942 	if (util + dl_util >= max)
5943 		return max;
5944 
5945 	/*
5946 	 * OTOH, for energy computation we need the estimated running time, so
5947 	 * include util_dl and ignore dl_bw.
5948 	 */
5949 	if (type == ENERGY_UTIL)
5950 		util += dl_util;
5951 
5952 	/*
5953 	 * There is still idle time; further improve the number by using the
5954 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5955 	 * need to scale the task numbers:
5956 	 *
5957 	 *              max - irq
5958 	 *   U' = irq + --------- * U
5959 	 *                 max
5960 	 */
5961 	util = scale_irq_capacity(util, irq, max);
5962 	util += irq;
5963 
5964 	/*
5965 	 * Bandwidth required by DEADLINE must always be granted while, for
5966 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5967 	 * to gracefully reduce the frequency when no tasks show up for longer
5968 	 * periods of time.
5969 	 *
5970 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5971 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5972 	 * an interface. So, we only do the latter for now.
5973 	 */
5974 	if (type == FREQUENCY_UTIL)
5975 		util += cpu_bw_dl(rq);
5976 
5977 	return min(max, util);
5978 }
5979 
5980 unsigned long sched_cpu_util(int cpu, unsigned long max)
5981 {
5982 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5983 				  ENERGY_UTIL, NULL);
5984 }
5985 #endif /* CONFIG_SMP */
5986 
5987 /**
5988  * find_process_by_pid - find a process with a matching PID value.
5989  * @pid: the pid in question.
5990  *
5991  * The task of @pid, if found. %NULL otherwise.
5992  */
5993 static struct task_struct *find_process_by_pid(pid_t pid)
5994 {
5995 	return pid ? find_task_by_vpid(pid) : current;
5996 }
5997 
5998 /*
5999  * sched_setparam() passes in -1 for its policy, to let the functions
6000  * it calls know not to change it.
6001  */
6002 #define SETPARAM_POLICY	-1
6003 
6004 static void __setscheduler_params(struct task_struct *p,
6005 		const struct sched_attr *attr)
6006 {
6007 	int policy = attr->sched_policy;
6008 
6009 	if (policy == SETPARAM_POLICY)
6010 		policy = p->policy;
6011 
6012 	p->policy = policy;
6013 
6014 	if (dl_policy(policy))
6015 		__setparam_dl(p, attr);
6016 	else if (fair_policy(policy))
6017 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6018 
6019 	/*
6020 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6021 	 * !rt_policy. Always setting this ensures that things like
6022 	 * getparam()/getattr() don't report silly values for !rt tasks.
6023 	 */
6024 	p->rt_priority = attr->sched_priority;
6025 	p->normal_prio = normal_prio(p);
6026 	set_load_weight(p, true);
6027 }
6028 
6029 /* Actually do priority change: must hold pi & rq lock. */
6030 static void __setscheduler(struct rq *rq, struct task_struct *p,
6031 			   const struct sched_attr *attr, bool keep_boost)
6032 {
6033 	/*
6034 	 * If params can't change scheduling class changes aren't allowed
6035 	 * either.
6036 	 */
6037 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6038 		return;
6039 
6040 	__setscheduler_params(p, attr);
6041 
6042 	/*
6043 	 * Keep a potential priority boosting if called from
6044 	 * sched_setscheduler().
6045 	 */
6046 	p->prio = normal_prio(p);
6047 	if (keep_boost)
6048 		p->prio = rt_effective_prio(p, p->prio);
6049 
6050 	if (dl_prio(p->prio))
6051 		p->sched_class = &dl_sched_class;
6052 	else if (rt_prio(p->prio))
6053 		p->sched_class = &rt_sched_class;
6054 	else
6055 		p->sched_class = &fair_sched_class;
6056 }
6057 
6058 /*
6059  * Check the target process has a UID that matches the current process's:
6060  */
6061 static bool check_same_owner(struct task_struct *p)
6062 {
6063 	const struct cred *cred = current_cred(), *pcred;
6064 	bool match;
6065 
6066 	rcu_read_lock();
6067 	pcred = __task_cred(p);
6068 	match = (uid_eq(cred->euid, pcred->euid) ||
6069 		 uid_eq(cred->euid, pcred->uid));
6070 	rcu_read_unlock();
6071 	return match;
6072 }
6073 
6074 static int __sched_setscheduler(struct task_struct *p,
6075 				const struct sched_attr *attr,
6076 				bool user, bool pi)
6077 {
6078 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6079 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6080 	int retval, oldprio, oldpolicy = -1, queued, running;
6081 	int new_effective_prio, policy = attr->sched_policy;
6082 	const struct sched_class *prev_class;
6083 	struct callback_head *head;
6084 	struct rq_flags rf;
6085 	int reset_on_fork;
6086 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6087 	struct rq *rq;
6088 
6089 	/* The pi code expects interrupts enabled */
6090 	BUG_ON(pi && in_interrupt());
6091 recheck:
6092 	/* Double check policy once rq lock held: */
6093 	if (policy < 0) {
6094 		reset_on_fork = p->sched_reset_on_fork;
6095 		policy = oldpolicy = p->policy;
6096 	} else {
6097 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6098 
6099 		if (!valid_policy(policy))
6100 			return -EINVAL;
6101 	}
6102 
6103 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6104 		return -EINVAL;
6105 
6106 	/*
6107 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6108 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6109 	 * SCHED_BATCH and SCHED_IDLE is 0.
6110 	 */
6111 	if (attr->sched_priority > MAX_RT_PRIO-1)
6112 		return -EINVAL;
6113 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6114 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6115 		return -EINVAL;
6116 
6117 	/*
6118 	 * Allow unprivileged RT tasks to decrease priority:
6119 	 */
6120 	if (user && !capable(CAP_SYS_NICE)) {
6121 		if (fair_policy(policy)) {
6122 			if (attr->sched_nice < task_nice(p) &&
6123 			    !can_nice(p, attr->sched_nice))
6124 				return -EPERM;
6125 		}
6126 
6127 		if (rt_policy(policy)) {
6128 			unsigned long rlim_rtprio =
6129 					task_rlimit(p, RLIMIT_RTPRIO);
6130 
6131 			/* Can't set/change the rt policy: */
6132 			if (policy != p->policy && !rlim_rtprio)
6133 				return -EPERM;
6134 
6135 			/* Can't increase priority: */
6136 			if (attr->sched_priority > p->rt_priority &&
6137 			    attr->sched_priority > rlim_rtprio)
6138 				return -EPERM;
6139 		}
6140 
6141 		 /*
6142 		  * Can't set/change SCHED_DEADLINE policy at all for now
6143 		  * (safest behavior); in the future we would like to allow
6144 		  * unprivileged DL tasks to increase their relative deadline
6145 		  * or reduce their runtime (both ways reducing utilization)
6146 		  */
6147 		if (dl_policy(policy))
6148 			return -EPERM;
6149 
6150 		/*
6151 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6152 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6153 		 */
6154 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6155 			if (!can_nice(p, task_nice(p)))
6156 				return -EPERM;
6157 		}
6158 
6159 		/* Can't change other user's priorities: */
6160 		if (!check_same_owner(p))
6161 			return -EPERM;
6162 
6163 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6164 		if (p->sched_reset_on_fork && !reset_on_fork)
6165 			return -EPERM;
6166 	}
6167 
6168 	if (user) {
6169 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6170 			return -EINVAL;
6171 
6172 		retval = security_task_setscheduler(p);
6173 		if (retval)
6174 			return retval;
6175 	}
6176 
6177 	/* Update task specific "requested" clamps */
6178 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6179 		retval = uclamp_validate(p, attr);
6180 		if (retval)
6181 			return retval;
6182 	}
6183 
6184 	if (pi)
6185 		cpuset_read_lock();
6186 
6187 	/*
6188 	 * Make sure no PI-waiters arrive (or leave) while we are
6189 	 * changing the priority of the task:
6190 	 *
6191 	 * To be able to change p->policy safely, the appropriate
6192 	 * runqueue lock must be held.
6193 	 */
6194 	rq = task_rq_lock(p, &rf);
6195 	update_rq_clock(rq);
6196 
6197 	/*
6198 	 * Changing the policy of the stop threads its a very bad idea:
6199 	 */
6200 	if (p == rq->stop) {
6201 		retval = -EINVAL;
6202 		goto unlock;
6203 	}
6204 
6205 	/*
6206 	 * If not changing anything there's no need to proceed further,
6207 	 * but store a possible modification of reset_on_fork.
6208 	 */
6209 	if (unlikely(policy == p->policy)) {
6210 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6211 			goto change;
6212 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6213 			goto change;
6214 		if (dl_policy(policy) && dl_param_changed(p, attr))
6215 			goto change;
6216 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6217 			goto change;
6218 
6219 		p->sched_reset_on_fork = reset_on_fork;
6220 		retval = 0;
6221 		goto unlock;
6222 	}
6223 change:
6224 
6225 	if (user) {
6226 #ifdef CONFIG_RT_GROUP_SCHED
6227 		/*
6228 		 * Do not allow realtime tasks into groups that have no runtime
6229 		 * assigned.
6230 		 */
6231 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6232 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6233 				!task_group_is_autogroup(task_group(p))) {
6234 			retval = -EPERM;
6235 			goto unlock;
6236 		}
6237 #endif
6238 #ifdef CONFIG_SMP
6239 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6240 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6241 			cpumask_t *span = rq->rd->span;
6242 
6243 			/*
6244 			 * Don't allow tasks with an affinity mask smaller than
6245 			 * the entire root_domain to become SCHED_DEADLINE. We
6246 			 * will also fail if there's no bandwidth available.
6247 			 */
6248 			if (!cpumask_subset(span, p->cpus_ptr) ||
6249 			    rq->rd->dl_bw.bw == 0) {
6250 				retval = -EPERM;
6251 				goto unlock;
6252 			}
6253 		}
6254 #endif
6255 	}
6256 
6257 	/* Re-check policy now with rq lock held: */
6258 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6259 		policy = oldpolicy = -1;
6260 		task_rq_unlock(rq, p, &rf);
6261 		if (pi)
6262 			cpuset_read_unlock();
6263 		goto recheck;
6264 	}
6265 
6266 	/*
6267 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6268 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6269 	 * is available.
6270 	 */
6271 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6272 		retval = -EBUSY;
6273 		goto unlock;
6274 	}
6275 
6276 	p->sched_reset_on_fork = reset_on_fork;
6277 	oldprio = p->prio;
6278 
6279 	if (pi) {
6280 		/*
6281 		 * Take priority boosted tasks into account. If the new
6282 		 * effective priority is unchanged, we just store the new
6283 		 * normal parameters and do not touch the scheduler class and
6284 		 * the runqueue. This will be done when the task deboost
6285 		 * itself.
6286 		 */
6287 		new_effective_prio = rt_effective_prio(p, newprio);
6288 		if (new_effective_prio == oldprio)
6289 			queue_flags &= ~DEQUEUE_MOVE;
6290 	}
6291 
6292 	queued = task_on_rq_queued(p);
6293 	running = task_current(rq, p);
6294 	if (queued)
6295 		dequeue_task(rq, p, queue_flags);
6296 	if (running)
6297 		put_prev_task(rq, p);
6298 
6299 	prev_class = p->sched_class;
6300 
6301 	__setscheduler(rq, p, attr, pi);
6302 	__setscheduler_uclamp(p, attr);
6303 
6304 	if (queued) {
6305 		/*
6306 		 * We enqueue to tail when the priority of a task is
6307 		 * increased (user space view).
6308 		 */
6309 		if (oldprio < p->prio)
6310 			queue_flags |= ENQUEUE_HEAD;
6311 
6312 		enqueue_task(rq, p, queue_flags);
6313 	}
6314 	if (running)
6315 		set_next_task(rq, p);
6316 
6317 	check_class_changed(rq, p, prev_class, oldprio);
6318 
6319 	/* Avoid rq from going away on us: */
6320 	preempt_disable();
6321 	head = splice_balance_callbacks(rq);
6322 	task_rq_unlock(rq, p, &rf);
6323 
6324 	if (pi) {
6325 		cpuset_read_unlock();
6326 		rt_mutex_adjust_pi(p);
6327 	}
6328 
6329 	/* Run balance callbacks after we've adjusted the PI chain: */
6330 	balance_callbacks(rq, head);
6331 	preempt_enable();
6332 
6333 	return 0;
6334 
6335 unlock:
6336 	task_rq_unlock(rq, p, &rf);
6337 	if (pi)
6338 		cpuset_read_unlock();
6339 	return retval;
6340 }
6341 
6342 static int _sched_setscheduler(struct task_struct *p, int policy,
6343 			       const struct sched_param *param, bool check)
6344 {
6345 	struct sched_attr attr = {
6346 		.sched_policy   = policy,
6347 		.sched_priority = param->sched_priority,
6348 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6349 	};
6350 
6351 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6352 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6353 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6354 		policy &= ~SCHED_RESET_ON_FORK;
6355 		attr.sched_policy = policy;
6356 	}
6357 
6358 	return __sched_setscheduler(p, &attr, check, true);
6359 }
6360 /**
6361  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6362  * @p: the task in question.
6363  * @policy: new policy.
6364  * @param: structure containing the new RT priority.
6365  *
6366  * Use sched_set_fifo(), read its comment.
6367  *
6368  * Return: 0 on success. An error code otherwise.
6369  *
6370  * NOTE that the task may be already dead.
6371  */
6372 int sched_setscheduler(struct task_struct *p, int policy,
6373 		       const struct sched_param *param)
6374 {
6375 	return _sched_setscheduler(p, policy, param, true);
6376 }
6377 
6378 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6379 {
6380 	return __sched_setscheduler(p, attr, true, true);
6381 }
6382 
6383 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6384 {
6385 	return __sched_setscheduler(p, attr, false, true);
6386 }
6387 
6388 /**
6389  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6390  * @p: the task in question.
6391  * @policy: new policy.
6392  * @param: structure containing the new RT priority.
6393  *
6394  * Just like sched_setscheduler, only don't bother checking if the
6395  * current context has permission.  For example, this is needed in
6396  * stop_machine(): we create temporary high priority worker threads,
6397  * but our caller might not have that capability.
6398  *
6399  * Return: 0 on success. An error code otherwise.
6400  */
6401 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6402 			       const struct sched_param *param)
6403 {
6404 	return _sched_setscheduler(p, policy, param, false);
6405 }
6406 
6407 /*
6408  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6409  * incapable of resource management, which is the one thing an OS really should
6410  * be doing.
6411  *
6412  * This is of course the reason it is limited to privileged users only.
6413  *
6414  * Worse still; it is fundamentally impossible to compose static priority
6415  * workloads. You cannot take two correctly working static prio workloads
6416  * and smash them together and still expect them to work.
6417  *
6418  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6419  *
6420  *   MAX_RT_PRIO / 2
6421  *
6422  * The administrator _MUST_ configure the system, the kernel simply doesn't
6423  * know enough information to make a sensible choice.
6424  */
6425 void sched_set_fifo(struct task_struct *p)
6426 {
6427 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6428 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6429 }
6430 EXPORT_SYMBOL_GPL(sched_set_fifo);
6431 
6432 /*
6433  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6434  */
6435 void sched_set_fifo_low(struct task_struct *p)
6436 {
6437 	struct sched_param sp = { .sched_priority = 1 };
6438 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6439 }
6440 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6441 
6442 void sched_set_normal(struct task_struct *p, int nice)
6443 {
6444 	struct sched_attr attr = {
6445 		.sched_policy = SCHED_NORMAL,
6446 		.sched_nice = nice,
6447 	};
6448 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6449 }
6450 EXPORT_SYMBOL_GPL(sched_set_normal);
6451 
6452 static int
6453 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6454 {
6455 	struct sched_param lparam;
6456 	struct task_struct *p;
6457 	int retval;
6458 
6459 	if (!param || pid < 0)
6460 		return -EINVAL;
6461 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6462 		return -EFAULT;
6463 
6464 	rcu_read_lock();
6465 	retval = -ESRCH;
6466 	p = find_process_by_pid(pid);
6467 	if (likely(p))
6468 		get_task_struct(p);
6469 	rcu_read_unlock();
6470 
6471 	if (likely(p)) {
6472 		retval = sched_setscheduler(p, policy, &lparam);
6473 		put_task_struct(p);
6474 	}
6475 
6476 	return retval;
6477 }
6478 
6479 /*
6480  * Mimics kernel/events/core.c perf_copy_attr().
6481  */
6482 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6483 {
6484 	u32 size;
6485 	int ret;
6486 
6487 	/* Zero the full structure, so that a short copy will be nice: */
6488 	memset(attr, 0, sizeof(*attr));
6489 
6490 	ret = get_user(size, &uattr->size);
6491 	if (ret)
6492 		return ret;
6493 
6494 	/* ABI compatibility quirk: */
6495 	if (!size)
6496 		size = SCHED_ATTR_SIZE_VER0;
6497 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6498 		goto err_size;
6499 
6500 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6501 	if (ret) {
6502 		if (ret == -E2BIG)
6503 			goto err_size;
6504 		return ret;
6505 	}
6506 
6507 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6508 	    size < SCHED_ATTR_SIZE_VER1)
6509 		return -EINVAL;
6510 
6511 	/*
6512 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6513 	 * to be strict and return an error on out-of-bounds values?
6514 	 */
6515 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6516 
6517 	return 0;
6518 
6519 err_size:
6520 	put_user(sizeof(*attr), &uattr->size);
6521 	return -E2BIG;
6522 }
6523 
6524 /**
6525  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6526  * @pid: the pid in question.
6527  * @policy: new policy.
6528  * @param: structure containing the new RT priority.
6529  *
6530  * Return: 0 on success. An error code otherwise.
6531  */
6532 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6533 {
6534 	if (policy < 0)
6535 		return -EINVAL;
6536 
6537 	return do_sched_setscheduler(pid, policy, param);
6538 }
6539 
6540 /**
6541  * sys_sched_setparam - set/change the RT priority of a thread
6542  * @pid: the pid in question.
6543  * @param: structure containing the new RT priority.
6544  *
6545  * Return: 0 on success. An error code otherwise.
6546  */
6547 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6548 {
6549 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6550 }
6551 
6552 /**
6553  * sys_sched_setattr - same as above, but with extended sched_attr
6554  * @pid: the pid in question.
6555  * @uattr: structure containing the extended parameters.
6556  * @flags: for future extension.
6557  */
6558 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6559 			       unsigned int, flags)
6560 {
6561 	struct sched_attr attr;
6562 	struct task_struct *p;
6563 	int retval;
6564 
6565 	if (!uattr || pid < 0 || flags)
6566 		return -EINVAL;
6567 
6568 	retval = sched_copy_attr(uattr, &attr);
6569 	if (retval)
6570 		return retval;
6571 
6572 	if ((int)attr.sched_policy < 0)
6573 		return -EINVAL;
6574 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6575 		attr.sched_policy = SETPARAM_POLICY;
6576 
6577 	rcu_read_lock();
6578 	retval = -ESRCH;
6579 	p = find_process_by_pid(pid);
6580 	if (likely(p))
6581 		get_task_struct(p);
6582 	rcu_read_unlock();
6583 
6584 	if (likely(p)) {
6585 		retval = sched_setattr(p, &attr);
6586 		put_task_struct(p);
6587 	}
6588 
6589 	return retval;
6590 }
6591 
6592 /**
6593  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6594  * @pid: the pid in question.
6595  *
6596  * Return: On success, the policy of the thread. Otherwise, a negative error
6597  * code.
6598  */
6599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6600 {
6601 	struct task_struct *p;
6602 	int retval;
6603 
6604 	if (pid < 0)
6605 		return -EINVAL;
6606 
6607 	retval = -ESRCH;
6608 	rcu_read_lock();
6609 	p = find_process_by_pid(pid);
6610 	if (p) {
6611 		retval = security_task_getscheduler(p);
6612 		if (!retval)
6613 			retval = p->policy
6614 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6615 	}
6616 	rcu_read_unlock();
6617 	return retval;
6618 }
6619 
6620 /**
6621  * sys_sched_getparam - get the RT priority of a thread
6622  * @pid: the pid in question.
6623  * @param: structure containing the RT priority.
6624  *
6625  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6626  * code.
6627  */
6628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6629 {
6630 	struct sched_param lp = { .sched_priority = 0 };
6631 	struct task_struct *p;
6632 	int retval;
6633 
6634 	if (!param || pid < 0)
6635 		return -EINVAL;
6636 
6637 	rcu_read_lock();
6638 	p = find_process_by_pid(pid);
6639 	retval = -ESRCH;
6640 	if (!p)
6641 		goto out_unlock;
6642 
6643 	retval = security_task_getscheduler(p);
6644 	if (retval)
6645 		goto out_unlock;
6646 
6647 	if (task_has_rt_policy(p))
6648 		lp.sched_priority = p->rt_priority;
6649 	rcu_read_unlock();
6650 
6651 	/*
6652 	 * This one might sleep, we cannot do it with a spinlock held ...
6653 	 */
6654 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6655 
6656 	return retval;
6657 
6658 out_unlock:
6659 	rcu_read_unlock();
6660 	return retval;
6661 }
6662 
6663 /*
6664  * Copy the kernel size attribute structure (which might be larger
6665  * than what user-space knows about) to user-space.
6666  *
6667  * Note that all cases are valid: user-space buffer can be larger or
6668  * smaller than the kernel-space buffer. The usual case is that both
6669  * have the same size.
6670  */
6671 static int
6672 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6673 			struct sched_attr *kattr,
6674 			unsigned int usize)
6675 {
6676 	unsigned int ksize = sizeof(*kattr);
6677 
6678 	if (!access_ok(uattr, usize))
6679 		return -EFAULT;
6680 
6681 	/*
6682 	 * sched_getattr() ABI forwards and backwards compatibility:
6683 	 *
6684 	 * If usize == ksize then we just copy everything to user-space and all is good.
6685 	 *
6686 	 * If usize < ksize then we only copy as much as user-space has space for,
6687 	 * this keeps ABI compatibility as well. We skip the rest.
6688 	 *
6689 	 * If usize > ksize then user-space is using a newer version of the ABI,
6690 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6691 	 * detect the kernel's knowledge of attributes from the attr->size value
6692 	 * which is set to ksize in this case.
6693 	 */
6694 	kattr->size = min(usize, ksize);
6695 
6696 	if (copy_to_user(uattr, kattr, kattr->size))
6697 		return -EFAULT;
6698 
6699 	return 0;
6700 }
6701 
6702 /**
6703  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6704  * @pid: the pid in question.
6705  * @uattr: structure containing the extended parameters.
6706  * @usize: sizeof(attr) for fwd/bwd comp.
6707  * @flags: for future extension.
6708  */
6709 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6710 		unsigned int, usize, unsigned int, flags)
6711 {
6712 	struct sched_attr kattr = { };
6713 	struct task_struct *p;
6714 	int retval;
6715 
6716 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6717 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6718 		return -EINVAL;
6719 
6720 	rcu_read_lock();
6721 	p = find_process_by_pid(pid);
6722 	retval = -ESRCH;
6723 	if (!p)
6724 		goto out_unlock;
6725 
6726 	retval = security_task_getscheduler(p);
6727 	if (retval)
6728 		goto out_unlock;
6729 
6730 	kattr.sched_policy = p->policy;
6731 	if (p->sched_reset_on_fork)
6732 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6733 	if (task_has_dl_policy(p))
6734 		__getparam_dl(p, &kattr);
6735 	else if (task_has_rt_policy(p))
6736 		kattr.sched_priority = p->rt_priority;
6737 	else
6738 		kattr.sched_nice = task_nice(p);
6739 
6740 #ifdef CONFIG_UCLAMP_TASK
6741 	/*
6742 	 * This could race with another potential updater, but this is fine
6743 	 * because it'll correctly read the old or the new value. We don't need
6744 	 * to guarantee who wins the race as long as it doesn't return garbage.
6745 	 */
6746 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6747 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6748 #endif
6749 
6750 	rcu_read_unlock();
6751 
6752 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6753 
6754 out_unlock:
6755 	rcu_read_unlock();
6756 	return retval;
6757 }
6758 
6759 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6760 {
6761 	cpumask_var_t cpus_allowed, new_mask;
6762 	struct task_struct *p;
6763 	int retval;
6764 
6765 	rcu_read_lock();
6766 
6767 	p = find_process_by_pid(pid);
6768 	if (!p) {
6769 		rcu_read_unlock();
6770 		return -ESRCH;
6771 	}
6772 
6773 	/* Prevent p going away */
6774 	get_task_struct(p);
6775 	rcu_read_unlock();
6776 
6777 	if (p->flags & PF_NO_SETAFFINITY) {
6778 		retval = -EINVAL;
6779 		goto out_put_task;
6780 	}
6781 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6782 		retval = -ENOMEM;
6783 		goto out_put_task;
6784 	}
6785 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6786 		retval = -ENOMEM;
6787 		goto out_free_cpus_allowed;
6788 	}
6789 	retval = -EPERM;
6790 	if (!check_same_owner(p)) {
6791 		rcu_read_lock();
6792 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6793 			rcu_read_unlock();
6794 			goto out_free_new_mask;
6795 		}
6796 		rcu_read_unlock();
6797 	}
6798 
6799 	retval = security_task_setscheduler(p);
6800 	if (retval)
6801 		goto out_free_new_mask;
6802 
6803 
6804 	cpuset_cpus_allowed(p, cpus_allowed);
6805 	cpumask_and(new_mask, in_mask, cpus_allowed);
6806 
6807 	/*
6808 	 * Since bandwidth control happens on root_domain basis,
6809 	 * if admission test is enabled, we only admit -deadline
6810 	 * tasks allowed to run on all the CPUs in the task's
6811 	 * root_domain.
6812 	 */
6813 #ifdef CONFIG_SMP
6814 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6815 		rcu_read_lock();
6816 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6817 			retval = -EBUSY;
6818 			rcu_read_unlock();
6819 			goto out_free_new_mask;
6820 		}
6821 		rcu_read_unlock();
6822 	}
6823 #endif
6824 again:
6825 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6826 
6827 	if (!retval) {
6828 		cpuset_cpus_allowed(p, cpus_allowed);
6829 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6830 			/*
6831 			 * We must have raced with a concurrent cpuset
6832 			 * update. Just reset the cpus_allowed to the
6833 			 * cpuset's cpus_allowed
6834 			 */
6835 			cpumask_copy(new_mask, cpus_allowed);
6836 			goto again;
6837 		}
6838 	}
6839 out_free_new_mask:
6840 	free_cpumask_var(new_mask);
6841 out_free_cpus_allowed:
6842 	free_cpumask_var(cpus_allowed);
6843 out_put_task:
6844 	put_task_struct(p);
6845 	return retval;
6846 }
6847 
6848 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6849 			     struct cpumask *new_mask)
6850 {
6851 	if (len < cpumask_size())
6852 		cpumask_clear(new_mask);
6853 	else if (len > cpumask_size())
6854 		len = cpumask_size();
6855 
6856 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6857 }
6858 
6859 /**
6860  * sys_sched_setaffinity - set the CPU affinity of a process
6861  * @pid: pid of the process
6862  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6863  * @user_mask_ptr: user-space pointer to the new CPU mask
6864  *
6865  * Return: 0 on success. An error code otherwise.
6866  */
6867 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6868 		unsigned long __user *, user_mask_ptr)
6869 {
6870 	cpumask_var_t new_mask;
6871 	int retval;
6872 
6873 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6874 		return -ENOMEM;
6875 
6876 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6877 	if (retval == 0)
6878 		retval = sched_setaffinity(pid, new_mask);
6879 	free_cpumask_var(new_mask);
6880 	return retval;
6881 }
6882 
6883 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6884 {
6885 	struct task_struct *p;
6886 	unsigned long flags;
6887 	int retval;
6888 
6889 	rcu_read_lock();
6890 
6891 	retval = -ESRCH;
6892 	p = find_process_by_pid(pid);
6893 	if (!p)
6894 		goto out_unlock;
6895 
6896 	retval = security_task_getscheduler(p);
6897 	if (retval)
6898 		goto out_unlock;
6899 
6900 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6901 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6902 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6903 
6904 out_unlock:
6905 	rcu_read_unlock();
6906 
6907 	return retval;
6908 }
6909 
6910 /**
6911  * sys_sched_getaffinity - get the CPU affinity of a process
6912  * @pid: pid of the process
6913  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6914  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6915  *
6916  * Return: size of CPU mask copied to user_mask_ptr on success. An
6917  * error code otherwise.
6918  */
6919 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6920 		unsigned long __user *, user_mask_ptr)
6921 {
6922 	int ret;
6923 	cpumask_var_t mask;
6924 
6925 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6926 		return -EINVAL;
6927 	if (len & (sizeof(unsigned long)-1))
6928 		return -EINVAL;
6929 
6930 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6931 		return -ENOMEM;
6932 
6933 	ret = sched_getaffinity(pid, mask);
6934 	if (ret == 0) {
6935 		unsigned int retlen = min(len, cpumask_size());
6936 
6937 		if (copy_to_user(user_mask_ptr, mask, retlen))
6938 			ret = -EFAULT;
6939 		else
6940 			ret = retlen;
6941 	}
6942 	free_cpumask_var(mask);
6943 
6944 	return ret;
6945 }
6946 
6947 static void do_sched_yield(void)
6948 {
6949 	struct rq_flags rf;
6950 	struct rq *rq;
6951 
6952 	rq = this_rq_lock_irq(&rf);
6953 
6954 	schedstat_inc(rq->yld_count);
6955 	current->sched_class->yield_task(rq);
6956 
6957 	preempt_disable();
6958 	rq_unlock_irq(rq, &rf);
6959 	sched_preempt_enable_no_resched();
6960 
6961 	schedule();
6962 }
6963 
6964 /**
6965  * sys_sched_yield - yield the current processor to other threads.
6966  *
6967  * This function yields the current CPU to other tasks. If there are no
6968  * other threads running on this CPU then this function will return.
6969  *
6970  * Return: 0.
6971  */
6972 SYSCALL_DEFINE0(sched_yield)
6973 {
6974 	do_sched_yield();
6975 	return 0;
6976 }
6977 
6978 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6979 int __sched __cond_resched(void)
6980 {
6981 	if (should_resched(0)) {
6982 		preempt_schedule_common();
6983 		return 1;
6984 	}
6985 #ifndef CONFIG_PREEMPT_RCU
6986 	rcu_all_qs();
6987 #endif
6988 	return 0;
6989 }
6990 EXPORT_SYMBOL(__cond_resched);
6991 #endif
6992 
6993 #ifdef CONFIG_PREEMPT_DYNAMIC
6994 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
6995 EXPORT_STATIC_CALL_TRAMP(cond_resched);
6996 
6997 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
6998 EXPORT_STATIC_CALL_TRAMP(might_resched);
6999 #endif
7000 
7001 /*
7002  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7003  * call schedule, and on return reacquire the lock.
7004  *
7005  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7006  * operations here to prevent schedule() from being called twice (once via
7007  * spin_unlock(), once by hand).
7008  */
7009 int __cond_resched_lock(spinlock_t *lock)
7010 {
7011 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7012 	int ret = 0;
7013 
7014 	lockdep_assert_held(lock);
7015 
7016 	if (spin_needbreak(lock) || resched) {
7017 		spin_unlock(lock);
7018 		if (resched)
7019 			preempt_schedule_common();
7020 		else
7021 			cpu_relax();
7022 		ret = 1;
7023 		spin_lock(lock);
7024 	}
7025 	return ret;
7026 }
7027 EXPORT_SYMBOL(__cond_resched_lock);
7028 
7029 int __cond_resched_rwlock_read(rwlock_t *lock)
7030 {
7031 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7032 	int ret = 0;
7033 
7034 	lockdep_assert_held_read(lock);
7035 
7036 	if (rwlock_needbreak(lock) || resched) {
7037 		read_unlock(lock);
7038 		if (resched)
7039 			preempt_schedule_common();
7040 		else
7041 			cpu_relax();
7042 		ret = 1;
7043 		read_lock(lock);
7044 	}
7045 	return ret;
7046 }
7047 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7048 
7049 int __cond_resched_rwlock_write(rwlock_t *lock)
7050 {
7051 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7052 	int ret = 0;
7053 
7054 	lockdep_assert_held_write(lock);
7055 
7056 	if (rwlock_needbreak(lock) || resched) {
7057 		write_unlock(lock);
7058 		if (resched)
7059 			preempt_schedule_common();
7060 		else
7061 			cpu_relax();
7062 		ret = 1;
7063 		write_lock(lock);
7064 	}
7065 	return ret;
7066 }
7067 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7068 
7069 /**
7070  * yield - yield the current processor to other threads.
7071  *
7072  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7073  *
7074  * The scheduler is at all times free to pick the calling task as the most
7075  * eligible task to run, if removing the yield() call from your code breaks
7076  * it, it's already broken.
7077  *
7078  * Typical broken usage is:
7079  *
7080  * while (!event)
7081  *	yield();
7082  *
7083  * where one assumes that yield() will let 'the other' process run that will
7084  * make event true. If the current task is a SCHED_FIFO task that will never
7085  * happen. Never use yield() as a progress guarantee!!
7086  *
7087  * If you want to use yield() to wait for something, use wait_event().
7088  * If you want to use yield() to be 'nice' for others, use cond_resched().
7089  * If you still want to use yield(), do not!
7090  */
7091 void __sched yield(void)
7092 {
7093 	set_current_state(TASK_RUNNING);
7094 	do_sched_yield();
7095 }
7096 EXPORT_SYMBOL(yield);
7097 
7098 /**
7099  * yield_to - yield the current processor to another thread in
7100  * your thread group, or accelerate that thread toward the
7101  * processor it's on.
7102  * @p: target task
7103  * @preempt: whether task preemption is allowed or not
7104  *
7105  * It's the caller's job to ensure that the target task struct
7106  * can't go away on us before we can do any checks.
7107  *
7108  * Return:
7109  *	true (>0) if we indeed boosted the target task.
7110  *	false (0) if we failed to boost the target.
7111  *	-ESRCH if there's no task to yield to.
7112  */
7113 int __sched yield_to(struct task_struct *p, bool preempt)
7114 {
7115 	struct task_struct *curr = current;
7116 	struct rq *rq, *p_rq;
7117 	unsigned long flags;
7118 	int yielded = 0;
7119 
7120 	local_irq_save(flags);
7121 	rq = this_rq();
7122 
7123 again:
7124 	p_rq = task_rq(p);
7125 	/*
7126 	 * If we're the only runnable task on the rq and target rq also
7127 	 * has only one task, there's absolutely no point in yielding.
7128 	 */
7129 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7130 		yielded = -ESRCH;
7131 		goto out_irq;
7132 	}
7133 
7134 	double_rq_lock(rq, p_rq);
7135 	if (task_rq(p) != p_rq) {
7136 		double_rq_unlock(rq, p_rq);
7137 		goto again;
7138 	}
7139 
7140 	if (!curr->sched_class->yield_to_task)
7141 		goto out_unlock;
7142 
7143 	if (curr->sched_class != p->sched_class)
7144 		goto out_unlock;
7145 
7146 	if (task_running(p_rq, p) || p->state)
7147 		goto out_unlock;
7148 
7149 	yielded = curr->sched_class->yield_to_task(rq, p);
7150 	if (yielded) {
7151 		schedstat_inc(rq->yld_count);
7152 		/*
7153 		 * Make p's CPU reschedule; pick_next_entity takes care of
7154 		 * fairness.
7155 		 */
7156 		if (preempt && rq != p_rq)
7157 			resched_curr(p_rq);
7158 	}
7159 
7160 out_unlock:
7161 	double_rq_unlock(rq, p_rq);
7162 out_irq:
7163 	local_irq_restore(flags);
7164 
7165 	if (yielded > 0)
7166 		schedule();
7167 
7168 	return yielded;
7169 }
7170 EXPORT_SYMBOL_GPL(yield_to);
7171 
7172 int io_schedule_prepare(void)
7173 {
7174 	int old_iowait = current->in_iowait;
7175 
7176 	current->in_iowait = 1;
7177 	blk_schedule_flush_plug(current);
7178 
7179 	return old_iowait;
7180 }
7181 
7182 void io_schedule_finish(int token)
7183 {
7184 	current->in_iowait = token;
7185 }
7186 
7187 /*
7188  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7189  * that process accounting knows that this is a task in IO wait state.
7190  */
7191 long __sched io_schedule_timeout(long timeout)
7192 {
7193 	int token;
7194 	long ret;
7195 
7196 	token = io_schedule_prepare();
7197 	ret = schedule_timeout(timeout);
7198 	io_schedule_finish(token);
7199 
7200 	return ret;
7201 }
7202 EXPORT_SYMBOL(io_schedule_timeout);
7203 
7204 void __sched io_schedule(void)
7205 {
7206 	int token;
7207 
7208 	token = io_schedule_prepare();
7209 	schedule();
7210 	io_schedule_finish(token);
7211 }
7212 EXPORT_SYMBOL(io_schedule);
7213 
7214 /**
7215  * sys_sched_get_priority_max - return maximum RT priority.
7216  * @policy: scheduling class.
7217  *
7218  * Return: On success, this syscall returns the maximum
7219  * rt_priority that can be used by a given scheduling class.
7220  * On failure, a negative error code is returned.
7221  */
7222 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7223 {
7224 	int ret = -EINVAL;
7225 
7226 	switch (policy) {
7227 	case SCHED_FIFO:
7228 	case SCHED_RR:
7229 		ret = MAX_RT_PRIO-1;
7230 		break;
7231 	case SCHED_DEADLINE:
7232 	case SCHED_NORMAL:
7233 	case SCHED_BATCH:
7234 	case SCHED_IDLE:
7235 		ret = 0;
7236 		break;
7237 	}
7238 	return ret;
7239 }
7240 
7241 /**
7242  * sys_sched_get_priority_min - return minimum RT priority.
7243  * @policy: scheduling class.
7244  *
7245  * Return: On success, this syscall returns the minimum
7246  * rt_priority that can be used by a given scheduling class.
7247  * On failure, a negative error code is returned.
7248  */
7249 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7250 {
7251 	int ret = -EINVAL;
7252 
7253 	switch (policy) {
7254 	case SCHED_FIFO:
7255 	case SCHED_RR:
7256 		ret = 1;
7257 		break;
7258 	case SCHED_DEADLINE:
7259 	case SCHED_NORMAL:
7260 	case SCHED_BATCH:
7261 	case SCHED_IDLE:
7262 		ret = 0;
7263 	}
7264 	return ret;
7265 }
7266 
7267 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7268 {
7269 	struct task_struct *p;
7270 	unsigned int time_slice;
7271 	struct rq_flags rf;
7272 	struct rq *rq;
7273 	int retval;
7274 
7275 	if (pid < 0)
7276 		return -EINVAL;
7277 
7278 	retval = -ESRCH;
7279 	rcu_read_lock();
7280 	p = find_process_by_pid(pid);
7281 	if (!p)
7282 		goto out_unlock;
7283 
7284 	retval = security_task_getscheduler(p);
7285 	if (retval)
7286 		goto out_unlock;
7287 
7288 	rq = task_rq_lock(p, &rf);
7289 	time_slice = 0;
7290 	if (p->sched_class->get_rr_interval)
7291 		time_slice = p->sched_class->get_rr_interval(rq, p);
7292 	task_rq_unlock(rq, p, &rf);
7293 
7294 	rcu_read_unlock();
7295 	jiffies_to_timespec64(time_slice, t);
7296 	return 0;
7297 
7298 out_unlock:
7299 	rcu_read_unlock();
7300 	return retval;
7301 }
7302 
7303 /**
7304  * sys_sched_rr_get_interval - return the default timeslice of a process.
7305  * @pid: pid of the process.
7306  * @interval: userspace pointer to the timeslice value.
7307  *
7308  * this syscall writes the default timeslice value of a given process
7309  * into the user-space timespec buffer. A value of '0' means infinity.
7310  *
7311  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7312  * an error code.
7313  */
7314 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7315 		struct __kernel_timespec __user *, interval)
7316 {
7317 	struct timespec64 t;
7318 	int retval = sched_rr_get_interval(pid, &t);
7319 
7320 	if (retval == 0)
7321 		retval = put_timespec64(&t, interval);
7322 
7323 	return retval;
7324 }
7325 
7326 #ifdef CONFIG_COMPAT_32BIT_TIME
7327 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7328 		struct old_timespec32 __user *, interval)
7329 {
7330 	struct timespec64 t;
7331 	int retval = sched_rr_get_interval(pid, &t);
7332 
7333 	if (retval == 0)
7334 		retval = put_old_timespec32(&t, interval);
7335 	return retval;
7336 }
7337 #endif
7338 
7339 void sched_show_task(struct task_struct *p)
7340 {
7341 	unsigned long free = 0;
7342 	int ppid;
7343 
7344 	if (!try_get_task_stack(p))
7345 		return;
7346 
7347 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7348 
7349 	if (p->state == TASK_RUNNING)
7350 		pr_cont("  running task    ");
7351 #ifdef CONFIG_DEBUG_STACK_USAGE
7352 	free = stack_not_used(p);
7353 #endif
7354 	ppid = 0;
7355 	rcu_read_lock();
7356 	if (pid_alive(p))
7357 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7358 	rcu_read_unlock();
7359 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7360 		free, task_pid_nr(p), ppid,
7361 		(unsigned long)task_thread_info(p)->flags);
7362 
7363 	print_worker_info(KERN_INFO, p);
7364 	print_stop_info(KERN_INFO, p);
7365 	show_stack(p, NULL, KERN_INFO);
7366 	put_task_stack(p);
7367 }
7368 EXPORT_SYMBOL_GPL(sched_show_task);
7369 
7370 static inline bool
7371 state_filter_match(unsigned long state_filter, struct task_struct *p)
7372 {
7373 	/* no filter, everything matches */
7374 	if (!state_filter)
7375 		return true;
7376 
7377 	/* filter, but doesn't match */
7378 	if (!(p->state & state_filter))
7379 		return false;
7380 
7381 	/*
7382 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7383 	 * TASK_KILLABLE).
7384 	 */
7385 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7386 		return false;
7387 
7388 	return true;
7389 }
7390 
7391 
7392 void show_state_filter(unsigned long state_filter)
7393 {
7394 	struct task_struct *g, *p;
7395 
7396 	rcu_read_lock();
7397 	for_each_process_thread(g, p) {
7398 		/*
7399 		 * reset the NMI-timeout, listing all files on a slow
7400 		 * console might take a lot of time:
7401 		 * Also, reset softlockup watchdogs on all CPUs, because
7402 		 * another CPU might be blocked waiting for us to process
7403 		 * an IPI.
7404 		 */
7405 		touch_nmi_watchdog();
7406 		touch_all_softlockup_watchdogs();
7407 		if (state_filter_match(state_filter, p))
7408 			sched_show_task(p);
7409 	}
7410 
7411 #ifdef CONFIG_SCHED_DEBUG
7412 	if (!state_filter)
7413 		sysrq_sched_debug_show();
7414 #endif
7415 	rcu_read_unlock();
7416 	/*
7417 	 * Only show locks if all tasks are dumped:
7418 	 */
7419 	if (!state_filter)
7420 		debug_show_all_locks();
7421 }
7422 
7423 /**
7424  * init_idle - set up an idle thread for a given CPU
7425  * @idle: task in question
7426  * @cpu: CPU the idle task belongs to
7427  *
7428  * NOTE: this function does not set the idle thread's NEED_RESCHED
7429  * flag, to make booting more robust.
7430  */
7431 void init_idle(struct task_struct *idle, int cpu)
7432 {
7433 	struct rq *rq = cpu_rq(cpu);
7434 	unsigned long flags;
7435 
7436 	__sched_fork(0, idle);
7437 
7438 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7439 	raw_spin_lock(&rq->lock);
7440 
7441 	idle->state = TASK_RUNNING;
7442 	idle->se.exec_start = sched_clock();
7443 	idle->flags |= PF_IDLE;
7444 
7445 	scs_task_reset(idle);
7446 	kasan_unpoison_task_stack(idle);
7447 
7448 #ifdef CONFIG_SMP
7449 	/*
7450 	 * It's possible that init_idle() gets called multiple times on a task,
7451 	 * in that case do_set_cpus_allowed() will not do the right thing.
7452 	 *
7453 	 * And since this is boot we can forgo the serialization.
7454 	 */
7455 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7456 #endif
7457 	/*
7458 	 * We're having a chicken and egg problem, even though we are
7459 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7460 	 * lockdep check in task_group() will fail.
7461 	 *
7462 	 * Similar case to sched_fork(). / Alternatively we could
7463 	 * use task_rq_lock() here and obtain the other rq->lock.
7464 	 *
7465 	 * Silence PROVE_RCU
7466 	 */
7467 	rcu_read_lock();
7468 	__set_task_cpu(idle, cpu);
7469 	rcu_read_unlock();
7470 
7471 	rq->idle = idle;
7472 	rcu_assign_pointer(rq->curr, idle);
7473 	idle->on_rq = TASK_ON_RQ_QUEUED;
7474 #ifdef CONFIG_SMP
7475 	idle->on_cpu = 1;
7476 #endif
7477 	raw_spin_unlock(&rq->lock);
7478 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7479 
7480 	/* Set the preempt count _outside_ the spinlocks! */
7481 	init_idle_preempt_count(idle, cpu);
7482 
7483 	/*
7484 	 * The idle tasks have their own, simple scheduling class:
7485 	 */
7486 	idle->sched_class = &idle_sched_class;
7487 	ftrace_graph_init_idle_task(idle, cpu);
7488 	vtime_init_idle(idle, cpu);
7489 #ifdef CONFIG_SMP
7490 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7491 #endif
7492 }
7493 
7494 #ifdef CONFIG_SMP
7495 
7496 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7497 			      const struct cpumask *trial)
7498 {
7499 	int ret = 1;
7500 
7501 	if (!cpumask_weight(cur))
7502 		return ret;
7503 
7504 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7505 
7506 	return ret;
7507 }
7508 
7509 int task_can_attach(struct task_struct *p,
7510 		    const struct cpumask *cs_cpus_allowed)
7511 {
7512 	int ret = 0;
7513 
7514 	/*
7515 	 * Kthreads which disallow setaffinity shouldn't be moved
7516 	 * to a new cpuset; we don't want to change their CPU
7517 	 * affinity and isolating such threads by their set of
7518 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7519 	 * applicable for such threads.  This prevents checking for
7520 	 * success of set_cpus_allowed_ptr() on all attached tasks
7521 	 * before cpus_mask may be changed.
7522 	 */
7523 	if (p->flags & PF_NO_SETAFFINITY) {
7524 		ret = -EINVAL;
7525 		goto out;
7526 	}
7527 
7528 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7529 					      cs_cpus_allowed))
7530 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7531 
7532 out:
7533 	return ret;
7534 }
7535 
7536 bool sched_smp_initialized __read_mostly;
7537 
7538 #ifdef CONFIG_NUMA_BALANCING
7539 /* Migrate current task p to target_cpu */
7540 int migrate_task_to(struct task_struct *p, int target_cpu)
7541 {
7542 	struct migration_arg arg = { p, target_cpu };
7543 	int curr_cpu = task_cpu(p);
7544 
7545 	if (curr_cpu == target_cpu)
7546 		return 0;
7547 
7548 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7549 		return -EINVAL;
7550 
7551 	/* TODO: This is not properly updating schedstats */
7552 
7553 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7554 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7555 }
7556 
7557 /*
7558  * Requeue a task on a given node and accurately track the number of NUMA
7559  * tasks on the runqueues
7560  */
7561 void sched_setnuma(struct task_struct *p, int nid)
7562 {
7563 	bool queued, running;
7564 	struct rq_flags rf;
7565 	struct rq *rq;
7566 
7567 	rq = task_rq_lock(p, &rf);
7568 	queued = task_on_rq_queued(p);
7569 	running = task_current(rq, p);
7570 
7571 	if (queued)
7572 		dequeue_task(rq, p, DEQUEUE_SAVE);
7573 	if (running)
7574 		put_prev_task(rq, p);
7575 
7576 	p->numa_preferred_nid = nid;
7577 
7578 	if (queued)
7579 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7580 	if (running)
7581 		set_next_task(rq, p);
7582 	task_rq_unlock(rq, p, &rf);
7583 }
7584 #endif /* CONFIG_NUMA_BALANCING */
7585 
7586 #ifdef CONFIG_HOTPLUG_CPU
7587 /*
7588  * Ensure that the idle task is using init_mm right before its CPU goes
7589  * offline.
7590  */
7591 void idle_task_exit(void)
7592 {
7593 	struct mm_struct *mm = current->active_mm;
7594 
7595 	BUG_ON(cpu_online(smp_processor_id()));
7596 	BUG_ON(current != this_rq()->idle);
7597 
7598 	if (mm != &init_mm) {
7599 		switch_mm(mm, &init_mm, current);
7600 		finish_arch_post_lock_switch();
7601 	}
7602 
7603 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7604 }
7605 
7606 static int __balance_push_cpu_stop(void *arg)
7607 {
7608 	struct task_struct *p = arg;
7609 	struct rq *rq = this_rq();
7610 	struct rq_flags rf;
7611 	int cpu;
7612 
7613 	raw_spin_lock_irq(&p->pi_lock);
7614 	rq_lock(rq, &rf);
7615 
7616 	update_rq_clock(rq);
7617 
7618 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7619 		cpu = select_fallback_rq(rq->cpu, p);
7620 		rq = __migrate_task(rq, &rf, p, cpu);
7621 	}
7622 
7623 	rq_unlock(rq, &rf);
7624 	raw_spin_unlock_irq(&p->pi_lock);
7625 
7626 	put_task_struct(p);
7627 
7628 	return 0;
7629 }
7630 
7631 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7632 
7633 /*
7634  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7635  */
7636 static void balance_push(struct rq *rq)
7637 {
7638 	struct task_struct *push_task = rq->curr;
7639 
7640 	lockdep_assert_held(&rq->lock);
7641 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7642 	/*
7643 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7644 	 */
7645 	rq->balance_callback = &balance_push_callback;
7646 
7647 	/*
7648 	 * Both the cpu-hotplug and stop task are in this case and are
7649 	 * required to complete the hotplug process.
7650 	 *
7651 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7652 	 * histerical raisins.
7653 	 */
7654 	if (rq->idle == push_task ||
7655 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7656 	    is_migration_disabled(push_task)) {
7657 
7658 		/*
7659 		 * If this is the idle task on the outgoing CPU try to wake
7660 		 * up the hotplug control thread which might wait for the
7661 		 * last task to vanish. The rcuwait_active() check is
7662 		 * accurate here because the waiter is pinned on this CPU
7663 		 * and can't obviously be running in parallel.
7664 		 *
7665 		 * On RT kernels this also has to check whether there are
7666 		 * pinned and scheduled out tasks on the runqueue. They
7667 		 * need to leave the migrate disabled section first.
7668 		 */
7669 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7670 		    rcuwait_active(&rq->hotplug_wait)) {
7671 			raw_spin_unlock(&rq->lock);
7672 			rcuwait_wake_up(&rq->hotplug_wait);
7673 			raw_spin_lock(&rq->lock);
7674 		}
7675 		return;
7676 	}
7677 
7678 	get_task_struct(push_task);
7679 	/*
7680 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7681 	 * Both preemption and IRQs are still disabled.
7682 	 */
7683 	raw_spin_unlock(&rq->lock);
7684 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7685 			    this_cpu_ptr(&push_work));
7686 	/*
7687 	 * At this point need_resched() is true and we'll take the loop in
7688 	 * schedule(). The next pick is obviously going to be the stop task
7689 	 * which kthread_is_per_cpu() and will push this task away.
7690 	 */
7691 	raw_spin_lock(&rq->lock);
7692 }
7693 
7694 static void balance_push_set(int cpu, bool on)
7695 {
7696 	struct rq *rq = cpu_rq(cpu);
7697 	struct rq_flags rf;
7698 
7699 	rq_lock_irqsave(rq, &rf);
7700 	rq->balance_push = on;
7701 	if (on) {
7702 		WARN_ON_ONCE(rq->balance_callback);
7703 		rq->balance_callback = &balance_push_callback;
7704 	} else if (rq->balance_callback == &balance_push_callback) {
7705 		rq->balance_callback = NULL;
7706 	}
7707 	rq_unlock_irqrestore(rq, &rf);
7708 }
7709 
7710 /*
7711  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7712  * inactive. All tasks which are not per CPU kernel threads are either
7713  * pushed off this CPU now via balance_push() or placed on a different CPU
7714  * during wakeup. Wait until the CPU is quiescent.
7715  */
7716 static void balance_hotplug_wait(void)
7717 {
7718 	struct rq *rq = this_rq();
7719 
7720 	rcuwait_wait_event(&rq->hotplug_wait,
7721 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7722 			   TASK_UNINTERRUPTIBLE);
7723 }
7724 
7725 #else
7726 
7727 static inline void balance_push(struct rq *rq)
7728 {
7729 }
7730 
7731 static inline void balance_push_set(int cpu, bool on)
7732 {
7733 }
7734 
7735 static inline void balance_hotplug_wait(void)
7736 {
7737 }
7738 
7739 #endif /* CONFIG_HOTPLUG_CPU */
7740 
7741 void set_rq_online(struct rq *rq)
7742 {
7743 	if (!rq->online) {
7744 		const struct sched_class *class;
7745 
7746 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7747 		rq->online = 1;
7748 
7749 		for_each_class(class) {
7750 			if (class->rq_online)
7751 				class->rq_online(rq);
7752 		}
7753 	}
7754 }
7755 
7756 void set_rq_offline(struct rq *rq)
7757 {
7758 	if (rq->online) {
7759 		const struct sched_class *class;
7760 
7761 		for_each_class(class) {
7762 			if (class->rq_offline)
7763 				class->rq_offline(rq);
7764 		}
7765 
7766 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7767 		rq->online = 0;
7768 	}
7769 }
7770 
7771 /*
7772  * used to mark begin/end of suspend/resume:
7773  */
7774 static int num_cpus_frozen;
7775 
7776 /*
7777  * Update cpusets according to cpu_active mask.  If cpusets are
7778  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7779  * around partition_sched_domains().
7780  *
7781  * If we come here as part of a suspend/resume, don't touch cpusets because we
7782  * want to restore it back to its original state upon resume anyway.
7783  */
7784 static void cpuset_cpu_active(void)
7785 {
7786 	if (cpuhp_tasks_frozen) {
7787 		/*
7788 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7789 		 * resume sequence. As long as this is not the last online
7790 		 * operation in the resume sequence, just build a single sched
7791 		 * domain, ignoring cpusets.
7792 		 */
7793 		partition_sched_domains(1, NULL, NULL);
7794 		if (--num_cpus_frozen)
7795 			return;
7796 		/*
7797 		 * This is the last CPU online operation. So fall through and
7798 		 * restore the original sched domains by considering the
7799 		 * cpuset configurations.
7800 		 */
7801 		cpuset_force_rebuild();
7802 	}
7803 	cpuset_update_active_cpus();
7804 }
7805 
7806 static int cpuset_cpu_inactive(unsigned int cpu)
7807 {
7808 	if (!cpuhp_tasks_frozen) {
7809 		if (dl_cpu_busy(cpu))
7810 			return -EBUSY;
7811 		cpuset_update_active_cpus();
7812 	} else {
7813 		num_cpus_frozen++;
7814 		partition_sched_domains(1, NULL, NULL);
7815 	}
7816 	return 0;
7817 }
7818 
7819 int sched_cpu_activate(unsigned int cpu)
7820 {
7821 	struct rq *rq = cpu_rq(cpu);
7822 	struct rq_flags rf;
7823 
7824 	/*
7825 	 * Make sure that when the hotplug state machine does a roll-back
7826 	 * we clear balance_push. Ideally that would happen earlier...
7827 	 */
7828 	balance_push_set(cpu, false);
7829 
7830 #ifdef CONFIG_SCHED_SMT
7831 	/*
7832 	 * When going up, increment the number of cores with SMT present.
7833 	 */
7834 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7835 		static_branch_inc_cpuslocked(&sched_smt_present);
7836 #endif
7837 	set_cpu_active(cpu, true);
7838 
7839 	if (sched_smp_initialized) {
7840 		sched_domains_numa_masks_set(cpu);
7841 		cpuset_cpu_active();
7842 	}
7843 
7844 	/*
7845 	 * Put the rq online, if not already. This happens:
7846 	 *
7847 	 * 1) In the early boot process, because we build the real domains
7848 	 *    after all CPUs have been brought up.
7849 	 *
7850 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7851 	 *    domains.
7852 	 */
7853 	rq_lock_irqsave(rq, &rf);
7854 	if (rq->rd) {
7855 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7856 		set_rq_online(rq);
7857 	}
7858 	rq_unlock_irqrestore(rq, &rf);
7859 
7860 	return 0;
7861 }
7862 
7863 int sched_cpu_deactivate(unsigned int cpu)
7864 {
7865 	struct rq *rq = cpu_rq(cpu);
7866 	struct rq_flags rf;
7867 	int ret;
7868 
7869 	/*
7870 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7871 	 * load balancing when not active
7872 	 */
7873 	nohz_balance_exit_idle(rq);
7874 
7875 	set_cpu_active(cpu, false);
7876 
7877 	/*
7878 	 * From this point forward, this CPU will refuse to run any task that
7879 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7880 	 * push those tasks away until this gets cleared, see
7881 	 * sched_cpu_dying().
7882 	 */
7883 	balance_push_set(cpu, true);
7884 
7885 	/*
7886 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7887 	 * preempt-disabled and RCU users of this state to go away such that
7888 	 * all new such users will observe it.
7889 	 *
7890 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7891 	 * ttwu_queue_cond() and is_cpu_allowed().
7892 	 *
7893 	 * Do sync before park smpboot threads to take care the rcu boost case.
7894 	 */
7895 	synchronize_rcu();
7896 
7897 	rq_lock_irqsave(rq, &rf);
7898 	if (rq->rd) {
7899 		update_rq_clock(rq);
7900 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7901 		set_rq_offline(rq);
7902 	}
7903 	rq_unlock_irqrestore(rq, &rf);
7904 
7905 #ifdef CONFIG_SCHED_SMT
7906 	/*
7907 	 * When going down, decrement the number of cores with SMT present.
7908 	 */
7909 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7910 		static_branch_dec_cpuslocked(&sched_smt_present);
7911 #endif
7912 
7913 	if (!sched_smp_initialized)
7914 		return 0;
7915 
7916 	ret = cpuset_cpu_inactive(cpu);
7917 	if (ret) {
7918 		balance_push_set(cpu, false);
7919 		set_cpu_active(cpu, true);
7920 		return ret;
7921 	}
7922 	sched_domains_numa_masks_clear(cpu);
7923 	return 0;
7924 }
7925 
7926 static void sched_rq_cpu_starting(unsigned int cpu)
7927 {
7928 	struct rq *rq = cpu_rq(cpu);
7929 
7930 	rq->calc_load_update = calc_load_update;
7931 	update_max_interval();
7932 }
7933 
7934 int sched_cpu_starting(unsigned int cpu)
7935 {
7936 	sched_rq_cpu_starting(cpu);
7937 	sched_tick_start(cpu);
7938 	return 0;
7939 }
7940 
7941 #ifdef CONFIG_HOTPLUG_CPU
7942 
7943 /*
7944  * Invoked immediately before the stopper thread is invoked to bring the
7945  * CPU down completely. At this point all per CPU kthreads except the
7946  * hotplug thread (current) and the stopper thread (inactive) have been
7947  * either parked or have been unbound from the outgoing CPU. Ensure that
7948  * any of those which might be on the way out are gone.
7949  *
7950  * If after this point a bound task is being woken on this CPU then the
7951  * responsible hotplug callback has failed to do it's job.
7952  * sched_cpu_dying() will catch it with the appropriate fireworks.
7953  */
7954 int sched_cpu_wait_empty(unsigned int cpu)
7955 {
7956 	balance_hotplug_wait();
7957 	return 0;
7958 }
7959 
7960 /*
7961  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7962  * might have. Called from the CPU stopper task after ensuring that the
7963  * stopper is the last running task on the CPU, so nr_active count is
7964  * stable. We need to take the teardown thread which is calling this into
7965  * account, so we hand in adjust = 1 to the load calculation.
7966  *
7967  * Also see the comment "Global load-average calculations".
7968  */
7969 static void calc_load_migrate(struct rq *rq)
7970 {
7971 	long delta = calc_load_fold_active(rq, 1);
7972 
7973 	if (delta)
7974 		atomic_long_add(delta, &calc_load_tasks);
7975 }
7976 
7977 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7978 {
7979 	struct task_struct *g, *p;
7980 	int cpu = cpu_of(rq);
7981 
7982 	lockdep_assert_held(&rq->lock);
7983 
7984 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7985 	for_each_process_thread(g, p) {
7986 		if (task_cpu(p) != cpu)
7987 			continue;
7988 
7989 		if (!task_on_rq_queued(p))
7990 			continue;
7991 
7992 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7993 	}
7994 }
7995 
7996 int sched_cpu_dying(unsigned int cpu)
7997 {
7998 	struct rq *rq = cpu_rq(cpu);
7999 	struct rq_flags rf;
8000 
8001 	/* Handle pending wakeups and then migrate everything off */
8002 	sched_tick_stop(cpu);
8003 
8004 	rq_lock_irqsave(rq, &rf);
8005 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8006 		WARN(true, "Dying CPU not properly vacated!");
8007 		dump_rq_tasks(rq, KERN_WARNING);
8008 	}
8009 	rq_unlock_irqrestore(rq, &rf);
8010 
8011 	/*
8012 	 * Now that the CPU is offline, make sure we're welcome
8013 	 * to new tasks once we come back up.
8014 	 */
8015 	balance_push_set(cpu, false);
8016 
8017 	calc_load_migrate(rq);
8018 	update_max_interval();
8019 	hrtick_clear(rq);
8020 	return 0;
8021 }
8022 #endif
8023 
8024 void __init sched_init_smp(void)
8025 {
8026 	sched_init_numa();
8027 
8028 	/*
8029 	 * There's no userspace yet to cause hotplug operations; hence all the
8030 	 * CPU masks are stable and all blatant races in the below code cannot
8031 	 * happen.
8032 	 */
8033 	mutex_lock(&sched_domains_mutex);
8034 	sched_init_domains(cpu_active_mask);
8035 	mutex_unlock(&sched_domains_mutex);
8036 
8037 	/* Move init over to a non-isolated CPU */
8038 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8039 		BUG();
8040 	sched_init_granularity();
8041 
8042 	init_sched_rt_class();
8043 	init_sched_dl_class();
8044 
8045 	sched_smp_initialized = true;
8046 }
8047 
8048 static int __init migration_init(void)
8049 {
8050 	sched_cpu_starting(smp_processor_id());
8051 	return 0;
8052 }
8053 early_initcall(migration_init);
8054 
8055 #else
8056 void __init sched_init_smp(void)
8057 {
8058 	sched_init_granularity();
8059 }
8060 #endif /* CONFIG_SMP */
8061 
8062 int in_sched_functions(unsigned long addr)
8063 {
8064 	return in_lock_functions(addr) ||
8065 		(addr >= (unsigned long)__sched_text_start
8066 		&& addr < (unsigned long)__sched_text_end);
8067 }
8068 
8069 #ifdef CONFIG_CGROUP_SCHED
8070 /*
8071  * Default task group.
8072  * Every task in system belongs to this group at bootup.
8073  */
8074 struct task_group root_task_group;
8075 LIST_HEAD(task_groups);
8076 
8077 /* Cacheline aligned slab cache for task_group */
8078 static struct kmem_cache *task_group_cache __read_mostly;
8079 #endif
8080 
8081 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8082 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8083 
8084 void __init sched_init(void)
8085 {
8086 	unsigned long ptr = 0;
8087 	int i;
8088 
8089 	/* Make sure the linker didn't screw up */
8090 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8091 	       &fair_sched_class + 1 != &rt_sched_class ||
8092 	       &rt_sched_class + 1   != &dl_sched_class);
8093 #ifdef CONFIG_SMP
8094 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8095 #endif
8096 
8097 	wait_bit_init();
8098 
8099 #ifdef CONFIG_FAIR_GROUP_SCHED
8100 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8101 #endif
8102 #ifdef CONFIG_RT_GROUP_SCHED
8103 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8104 #endif
8105 	if (ptr) {
8106 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8107 
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 		root_task_group.se = (struct sched_entity **)ptr;
8110 		ptr += nr_cpu_ids * sizeof(void **);
8111 
8112 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8113 		ptr += nr_cpu_ids * sizeof(void **);
8114 
8115 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8116 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8117 #endif /* CONFIG_FAIR_GROUP_SCHED */
8118 #ifdef CONFIG_RT_GROUP_SCHED
8119 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8120 		ptr += nr_cpu_ids * sizeof(void **);
8121 
8122 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8123 		ptr += nr_cpu_ids * sizeof(void **);
8124 
8125 #endif /* CONFIG_RT_GROUP_SCHED */
8126 	}
8127 #ifdef CONFIG_CPUMASK_OFFSTACK
8128 	for_each_possible_cpu(i) {
8129 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8130 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8131 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8132 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8133 	}
8134 #endif /* CONFIG_CPUMASK_OFFSTACK */
8135 
8136 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8137 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8138 
8139 #ifdef CONFIG_SMP
8140 	init_defrootdomain();
8141 #endif
8142 
8143 #ifdef CONFIG_RT_GROUP_SCHED
8144 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8145 			global_rt_period(), global_rt_runtime());
8146 #endif /* CONFIG_RT_GROUP_SCHED */
8147 
8148 #ifdef CONFIG_CGROUP_SCHED
8149 	task_group_cache = KMEM_CACHE(task_group, 0);
8150 
8151 	list_add(&root_task_group.list, &task_groups);
8152 	INIT_LIST_HEAD(&root_task_group.children);
8153 	INIT_LIST_HEAD(&root_task_group.siblings);
8154 	autogroup_init(&init_task);
8155 #endif /* CONFIG_CGROUP_SCHED */
8156 
8157 	for_each_possible_cpu(i) {
8158 		struct rq *rq;
8159 
8160 		rq = cpu_rq(i);
8161 		raw_spin_lock_init(&rq->lock);
8162 		rq->nr_running = 0;
8163 		rq->calc_load_active = 0;
8164 		rq->calc_load_update = jiffies + LOAD_FREQ;
8165 		init_cfs_rq(&rq->cfs);
8166 		init_rt_rq(&rq->rt);
8167 		init_dl_rq(&rq->dl);
8168 #ifdef CONFIG_FAIR_GROUP_SCHED
8169 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8170 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8171 		/*
8172 		 * How much CPU bandwidth does root_task_group get?
8173 		 *
8174 		 * In case of task-groups formed thr' the cgroup filesystem, it
8175 		 * gets 100% of the CPU resources in the system. This overall
8176 		 * system CPU resource is divided among the tasks of
8177 		 * root_task_group and its child task-groups in a fair manner,
8178 		 * based on each entity's (task or task-group's) weight
8179 		 * (se->load.weight).
8180 		 *
8181 		 * In other words, if root_task_group has 10 tasks of weight
8182 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8183 		 * then A0's share of the CPU resource is:
8184 		 *
8185 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8186 		 *
8187 		 * We achieve this by letting root_task_group's tasks sit
8188 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8189 		 */
8190 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8191 #endif /* CONFIG_FAIR_GROUP_SCHED */
8192 
8193 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8194 #ifdef CONFIG_RT_GROUP_SCHED
8195 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8196 #endif
8197 #ifdef CONFIG_SMP
8198 		rq->sd = NULL;
8199 		rq->rd = NULL;
8200 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8201 		rq->balance_callback = NULL;
8202 		rq->active_balance = 0;
8203 		rq->next_balance = jiffies;
8204 		rq->push_cpu = 0;
8205 		rq->cpu = i;
8206 		rq->online = 0;
8207 		rq->idle_stamp = 0;
8208 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8209 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8210 
8211 		INIT_LIST_HEAD(&rq->cfs_tasks);
8212 
8213 		rq_attach_root(rq, &def_root_domain);
8214 #ifdef CONFIG_NO_HZ_COMMON
8215 		rq->last_blocked_load_update_tick = jiffies;
8216 		atomic_set(&rq->nohz_flags, 0);
8217 
8218 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8219 #endif
8220 #ifdef CONFIG_HOTPLUG_CPU
8221 		rcuwait_init(&rq->hotplug_wait);
8222 #endif
8223 #endif /* CONFIG_SMP */
8224 		hrtick_rq_init(rq);
8225 		atomic_set(&rq->nr_iowait, 0);
8226 	}
8227 
8228 	set_load_weight(&init_task, false);
8229 
8230 	/*
8231 	 * The boot idle thread does lazy MMU switching as well:
8232 	 */
8233 	mmgrab(&init_mm);
8234 	enter_lazy_tlb(&init_mm, current);
8235 
8236 	/*
8237 	 * Make us the idle thread. Technically, schedule() should not be
8238 	 * called from this thread, however somewhere below it might be,
8239 	 * but because we are the idle thread, we just pick up running again
8240 	 * when this runqueue becomes "idle".
8241 	 */
8242 	init_idle(current, smp_processor_id());
8243 
8244 	calc_load_update = jiffies + LOAD_FREQ;
8245 
8246 #ifdef CONFIG_SMP
8247 	idle_thread_set_boot_cpu();
8248 #endif
8249 	init_sched_fair_class();
8250 
8251 	init_schedstats();
8252 
8253 	psi_init();
8254 
8255 	init_uclamp();
8256 
8257 	scheduler_running = 1;
8258 }
8259 
8260 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8261 static inline int preempt_count_equals(int preempt_offset)
8262 {
8263 	int nested = preempt_count() + rcu_preempt_depth();
8264 
8265 	return (nested == preempt_offset);
8266 }
8267 
8268 void __might_sleep(const char *file, int line, int preempt_offset)
8269 {
8270 	/*
8271 	 * Blocking primitives will set (and therefore destroy) current->state,
8272 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8273 	 * otherwise we will destroy state.
8274 	 */
8275 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8276 			"do not call blocking ops when !TASK_RUNNING; "
8277 			"state=%lx set at [<%p>] %pS\n",
8278 			current->state,
8279 			(void *)current->task_state_change,
8280 			(void *)current->task_state_change);
8281 
8282 	___might_sleep(file, line, preempt_offset);
8283 }
8284 EXPORT_SYMBOL(__might_sleep);
8285 
8286 void ___might_sleep(const char *file, int line, int preempt_offset)
8287 {
8288 	/* Ratelimiting timestamp: */
8289 	static unsigned long prev_jiffy;
8290 
8291 	unsigned long preempt_disable_ip;
8292 
8293 	/* WARN_ON_ONCE() by default, no rate limit required: */
8294 	rcu_sleep_check();
8295 
8296 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8297 	     !is_idle_task(current) && !current->non_block_count) ||
8298 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8299 	    oops_in_progress)
8300 		return;
8301 
8302 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8303 		return;
8304 	prev_jiffy = jiffies;
8305 
8306 	/* Save this before calling printk(), since that will clobber it: */
8307 	preempt_disable_ip = get_preempt_disable_ip(current);
8308 
8309 	printk(KERN_ERR
8310 		"BUG: sleeping function called from invalid context at %s:%d\n",
8311 			file, line);
8312 	printk(KERN_ERR
8313 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8314 			in_atomic(), irqs_disabled(), current->non_block_count,
8315 			current->pid, current->comm);
8316 
8317 	if (task_stack_end_corrupted(current))
8318 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8319 
8320 	debug_show_held_locks(current);
8321 	if (irqs_disabled())
8322 		print_irqtrace_events(current);
8323 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8324 	    && !preempt_count_equals(preempt_offset)) {
8325 		pr_err("Preemption disabled at:");
8326 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8327 	}
8328 	dump_stack();
8329 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8330 }
8331 EXPORT_SYMBOL(___might_sleep);
8332 
8333 void __cant_sleep(const char *file, int line, int preempt_offset)
8334 {
8335 	static unsigned long prev_jiffy;
8336 
8337 	if (irqs_disabled())
8338 		return;
8339 
8340 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8341 		return;
8342 
8343 	if (preempt_count() > preempt_offset)
8344 		return;
8345 
8346 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8347 		return;
8348 	prev_jiffy = jiffies;
8349 
8350 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8351 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8352 			in_atomic(), irqs_disabled(),
8353 			current->pid, current->comm);
8354 
8355 	debug_show_held_locks(current);
8356 	dump_stack();
8357 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8358 }
8359 EXPORT_SYMBOL_GPL(__cant_sleep);
8360 
8361 #ifdef CONFIG_SMP
8362 void __cant_migrate(const char *file, int line)
8363 {
8364 	static unsigned long prev_jiffy;
8365 
8366 	if (irqs_disabled())
8367 		return;
8368 
8369 	if (is_migration_disabled(current))
8370 		return;
8371 
8372 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8373 		return;
8374 
8375 	if (preempt_count() > 0)
8376 		return;
8377 
8378 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8379 		return;
8380 	prev_jiffy = jiffies;
8381 
8382 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8383 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8384 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8385 	       current->pid, current->comm);
8386 
8387 	debug_show_held_locks(current);
8388 	dump_stack();
8389 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8390 }
8391 EXPORT_SYMBOL_GPL(__cant_migrate);
8392 #endif
8393 #endif
8394 
8395 #ifdef CONFIG_MAGIC_SYSRQ
8396 void normalize_rt_tasks(void)
8397 {
8398 	struct task_struct *g, *p;
8399 	struct sched_attr attr = {
8400 		.sched_policy = SCHED_NORMAL,
8401 	};
8402 
8403 	read_lock(&tasklist_lock);
8404 	for_each_process_thread(g, p) {
8405 		/*
8406 		 * Only normalize user tasks:
8407 		 */
8408 		if (p->flags & PF_KTHREAD)
8409 			continue;
8410 
8411 		p->se.exec_start = 0;
8412 		schedstat_set(p->se.statistics.wait_start,  0);
8413 		schedstat_set(p->se.statistics.sleep_start, 0);
8414 		schedstat_set(p->se.statistics.block_start, 0);
8415 
8416 		if (!dl_task(p) && !rt_task(p)) {
8417 			/*
8418 			 * Renice negative nice level userspace
8419 			 * tasks back to 0:
8420 			 */
8421 			if (task_nice(p) < 0)
8422 				set_user_nice(p, 0);
8423 			continue;
8424 		}
8425 
8426 		__sched_setscheduler(p, &attr, false, false);
8427 	}
8428 	read_unlock(&tasklist_lock);
8429 }
8430 
8431 #endif /* CONFIG_MAGIC_SYSRQ */
8432 
8433 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8434 /*
8435  * These functions are only useful for the IA64 MCA handling, or kdb.
8436  *
8437  * They can only be called when the whole system has been
8438  * stopped - every CPU needs to be quiescent, and no scheduling
8439  * activity can take place. Using them for anything else would
8440  * be a serious bug, and as a result, they aren't even visible
8441  * under any other configuration.
8442  */
8443 
8444 /**
8445  * curr_task - return the current task for a given CPU.
8446  * @cpu: the processor in question.
8447  *
8448  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8449  *
8450  * Return: The current task for @cpu.
8451  */
8452 struct task_struct *curr_task(int cpu)
8453 {
8454 	return cpu_curr(cpu);
8455 }
8456 
8457 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8458 
8459 #ifdef CONFIG_IA64
8460 /**
8461  * ia64_set_curr_task - set the current task for a given CPU.
8462  * @cpu: the processor in question.
8463  * @p: the task pointer to set.
8464  *
8465  * Description: This function must only be used when non-maskable interrupts
8466  * are serviced on a separate stack. It allows the architecture to switch the
8467  * notion of the current task on a CPU in a non-blocking manner. This function
8468  * must be called with all CPU's synchronized, and interrupts disabled, the
8469  * and caller must save the original value of the current task (see
8470  * curr_task() above) and restore that value before reenabling interrupts and
8471  * re-starting the system.
8472  *
8473  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8474  */
8475 void ia64_set_curr_task(int cpu, struct task_struct *p)
8476 {
8477 	cpu_curr(cpu) = p;
8478 }
8479 
8480 #endif
8481 
8482 #ifdef CONFIG_CGROUP_SCHED
8483 /* task_group_lock serializes the addition/removal of task groups */
8484 static DEFINE_SPINLOCK(task_group_lock);
8485 
8486 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8487 					    struct task_group *parent)
8488 {
8489 #ifdef CONFIG_UCLAMP_TASK_GROUP
8490 	enum uclamp_id clamp_id;
8491 
8492 	for_each_clamp_id(clamp_id) {
8493 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8494 			      uclamp_none(clamp_id), false);
8495 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8496 	}
8497 #endif
8498 }
8499 
8500 static void sched_free_group(struct task_group *tg)
8501 {
8502 	free_fair_sched_group(tg);
8503 	free_rt_sched_group(tg);
8504 	autogroup_free(tg);
8505 	kmem_cache_free(task_group_cache, tg);
8506 }
8507 
8508 /* allocate runqueue etc for a new task group */
8509 struct task_group *sched_create_group(struct task_group *parent)
8510 {
8511 	struct task_group *tg;
8512 
8513 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8514 	if (!tg)
8515 		return ERR_PTR(-ENOMEM);
8516 
8517 	if (!alloc_fair_sched_group(tg, parent))
8518 		goto err;
8519 
8520 	if (!alloc_rt_sched_group(tg, parent))
8521 		goto err;
8522 
8523 	alloc_uclamp_sched_group(tg, parent);
8524 
8525 	return tg;
8526 
8527 err:
8528 	sched_free_group(tg);
8529 	return ERR_PTR(-ENOMEM);
8530 }
8531 
8532 void sched_online_group(struct task_group *tg, struct task_group *parent)
8533 {
8534 	unsigned long flags;
8535 
8536 	spin_lock_irqsave(&task_group_lock, flags);
8537 	list_add_rcu(&tg->list, &task_groups);
8538 
8539 	/* Root should already exist: */
8540 	WARN_ON(!parent);
8541 
8542 	tg->parent = parent;
8543 	INIT_LIST_HEAD(&tg->children);
8544 	list_add_rcu(&tg->siblings, &parent->children);
8545 	spin_unlock_irqrestore(&task_group_lock, flags);
8546 
8547 	online_fair_sched_group(tg);
8548 }
8549 
8550 /* rcu callback to free various structures associated with a task group */
8551 static void sched_free_group_rcu(struct rcu_head *rhp)
8552 {
8553 	/* Now it should be safe to free those cfs_rqs: */
8554 	sched_free_group(container_of(rhp, struct task_group, rcu));
8555 }
8556 
8557 void sched_destroy_group(struct task_group *tg)
8558 {
8559 	/* Wait for possible concurrent references to cfs_rqs complete: */
8560 	call_rcu(&tg->rcu, sched_free_group_rcu);
8561 }
8562 
8563 void sched_offline_group(struct task_group *tg)
8564 {
8565 	unsigned long flags;
8566 
8567 	/* End participation in shares distribution: */
8568 	unregister_fair_sched_group(tg);
8569 
8570 	spin_lock_irqsave(&task_group_lock, flags);
8571 	list_del_rcu(&tg->list);
8572 	list_del_rcu(&tg->siblings);
8573 	spin_unlock_irqrestore(&task_group_lock, flags);
8574 }
8575 
8576 static void sched_change_group(struct task_struct *tsk, int type)
8577 {
8578 	struct task_group *tg;
8579 
8580 	/*
8581 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8582 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8583 	 * to prevent lockdep warnings.
8584 	 */
8585 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8586 			  struct task_group, css);
8587 	tg = autogroup_task_group(tsk, tg);
8588 	tsk->sched_task_group = tg;
8589 
8590 #ifdef CONFIG_FAIR_GROUP_SCHED
8591 	if (tsk->sched_class->task_change_group)
8592 		tsk->sched_class->task_change_group(tsk, type);
8593 	else
8594 #endif
8595 		set_task_rq(tsk, task_cpu(tsk));
8596 }
8597 
8598 /*
8599  * Change task's runqueue when it moves between groups.
8600  *
8601  * The caller of this function should have put the task in its new group by
8602  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8603  * its new group.
8604  */
8605 void sched_move_task(struct task_struct *tsk)
8606 {
8607 	int queued, running, queue_flags =
8608 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8609 	struct rq_flags rf;
8610 	struct rq *rq;
8611 
8612 	rq = task_rq_lock(tsk, &rf);
8613 	update_rq_clock(rq);
8614 
8615 	running = task_current(rq, tsk);
8616 	queued = task_on_rq_queued(tsk);
8617 
8618 	if (queued)
8619 		dequeue_task(rq, tsk, queue_flags);
8620 	if (running)
8621 		put_prev_task(rq, tsk);
8622 
8623 	sched_change_group(tsk, TASK_MOVE_GROUP);
8624 
8625 	if (queued)
8626 		enqueue_task(rq, tsk, queue_flags);
8627 	if (running) {
8628 		set_next_task(rq, tsk);
8629 		/*
8630 		 * After changing group, the running task may have joined a
8631 		 * throttled one but it's still the running task. Trigger a
8632 		 * resched to make sure that task can still run.
8633 		 */
8634 		resched_curr(rq);
8635 	}
8636 
8637 	task_rq_unlock(rq, tsk, &rf);
8638 }
8639 
8640 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8641 {
8642 	return css ? container_of(css, struct task_group, css) : NULL;
8643 }
8644 
8645 static struct cgroup_subsys_state *
8646 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8647 {
8648 	struct task_group *parent = css_tg(parent_css);
8649 	struct task_group *tg;
8650 
8651 	if (!parent) {
8652 		/* This is early initialization for the top cgroup */
8653 		return &root_task_group.css;
8654 	}
8655 
8656 	tg = sched_create_group(parent);
8657 	if (IS_ERR(tg))
8658 		return ERR_PTR(-ENOMEM);
8659 
8660 	return &tg->css;
8661 }
8662 
8663 /* Expose task group only after completing cgroup initialization */
8664 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8665 {
8666 	struct task_group *tg = css_tg(css);
8667 	struct task_group *parent = css_tg(css->parent);
8668 
8669 	if (parent)
8670 		sched_online_group(tg, parent);
8671 
8672 #ifdef CONFIG_UCLAMP_TASK_GROUP
8673 	/* Propagate the effective uclamp value for the new group */
8674 	cpu_util_update_eff(css);
8675 #endif
8676 
8677 	return 0;
8678 }
8679 
8680 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8681 {
8682 	struct task_group *tg = css_tg(css);
8683 
8684 	sched_offline_group(tg);
8685 }
8686 
8687 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8688 {
8689 	struct task_group *tg = css_tg(css);
8690 
8691 	/*
8692 	 * Relies on the RCU grace period between css_released() and this.
8693 	 */
8694 	sched_free_group(tg);
8695 }
8696 
8697 /*
8698  * This is called before wake_up_new_task(), therefore we really only
8699  * have to set its group bits, all the other stuff does not apply.
8700  */
8701 static void cpu_cgroup_fork(struct task_struct *task)
8702 {
8703 	struct rq_flags rf;
8704 	struct rq *rq;
8705 
8706 	rq = task_rq_lock(task, &rf);
8707 
8708 	update_rq_clock(rq);
8709 	sched_change_group(task, TASK_SET_GROUP);
8710 
8711 	task_rq_unlock(rq, task, &rf);
8712 }
8713 
8714 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8715 {
8716 	struct task_struct *task;
8717 	struct cgroup_subsys_state *css;
8718 	int ret = 0;
8719 
8720 	cgroup_taskset_for_each(task, css, tset) {
8721 #ifdef CONFIG_RT_GROUP_SCHED
8722 		if (!sched_rt_can_attach(css_tg(css), task))
8723 			return -EINVAL;
8724 #endif
8725 		/*
8726 		 * Serialize against wake_up_new_task() such that if it's
8727 		 * running, we're sure to observe its full state.
8728 		 */
8729 		raw_spin_lock_irq(&task->pi_lock);
8730 		/*
8731 		 * Avoid calling sched_move_task() before wake_up_new_task()
8732 		 * has happened. This would lead to problems with PELT, due to
8733 		 * move wanting to detach+attach while we're not attached yet.
8734 		 */
8735 		if (task->state == TASK_NEW)
8736 			ret = -EINVAL;
8737 		raw_spin_unlock_irq(&task->pi_lock);
8738 
8739 		if (ret)
8740 			break;
8741 	}
8742 	return ret;
8743 }
8744 
8745 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8746 {
8747 	struct task_struct *task;
8748 	struct cgroup_subsys_state *css;
8749 
8750 	cgroup_taskset_for_each(task, css, tset)
8751 		sched_move_task(task);
8752 }
8753 
8754 #ifdef CONFIG_UCLAMP_TASK_GROUP
8755 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8756 {
8757 	struct cgroup_subsys_state *top_css = css;
8758 	struct uclamp_se *uc_parent = NULL;
8759 	struct uclamp_se *uc_se = NULL;
8760 	unsigned int eff[UCLAMP_CNT];
8761 	enum uclamp_id clamp_id;
8762 	unsigned int clamps;
8763 
8764 	css_for_each_descendant_pre(css, top_css) {
8765 		uc_parent = css_tg(css)->parent
8766 			? css_tg(css)->parent->uclamp : NULL;
8767 
8768 		for_each_clamp_id(clamp_id) {
8769 			/* Assume effective clamps matches requested clamps */
8770 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8771 			/* Cap effective clamps with parent's effective clamps */
8772 			if (uc_parent &&
8773 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8774 				eff[clamp_id] = uc_parent[clamp_id].value;
8775 			}
8776 		}
8777 		/* Ensure protection is always capped by limit */
8778 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8779 
8780 		/* Propagate most restrictive effective clamps */
8781 		clamps = 0x0;
8782 		uc_se = css_tg(css)->uclamp;
8783 		for_each_clamp_id(clamp_id) {
8784 			if (eff[clamp_id] == uc_se[clamp_id].value)
8785 				continue;
8786 			uc_se[clamp_id].value = eff[clamp_id];
8787 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8788 			clamps |= (0x1 << clamp_id);
8789 		}
8790 		if (!clamps) {
8791 			css = css_rightmost_descendant(css);
8792 			continue;
8793 		}
8794 
8795 		/* Immediately update descendants RUNNABLE tasks */
8796 		uclamp_update_active_tasks(css, clamps);
8797 	}
8798 }
8799 
8800 /*
8801  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8802  * C expression. Since there is no way to convert a macro argument (N) into a
8803  * character constant, use two levels of macros.
8804  */
8805 #define _POW10(exp) ((unsigned int)1e##exp)
8806 #define POW10(exp) _POW10(exp)
8807 
8808 struct uclamp_request {
8809 #define UCLAMP_PERCENT_SHIFT	2
8810 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8811 	s64 percent;
8812 	u64 util;
8813 	int ret;
8814 };
8815 
8816 static inline struct uclamp_request
8817 capacity_from_percent(char *buf)
8818 {
8819 	struct uclamp_request req = {
8820 		.percent = UCLAMP_PERCENT_SCALE,
8821 		.util = SCHED_CAPACITY_SCALE,
8822 		.ret = 0,
8823 	};
8824 
8825 	buf = strim(buf);
8826 	if (strcmp(buf, "max")) {
8827 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8828 					     &req.percent);
8829 		if (req.ret)
8830 			return req;
8831 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8832 			req.ret = -ERANGE;
8833 			return req;
8834 		}
8835 
8836 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8837 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8838 	}
8839 
8840 	return req;
8841 }
8842 
8843 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8844 				size_t nbytes, loff_t off,
8845 				enum uclamp_id clamp_id)
8846 {
8847 	struct uclamp_request req;
8848 	struct task_group *tg;
8849 
8850 	req = capacity_from_percent(buf);
8851 	if (req.ret)
8852 		return req.ret;
8853 
8854 	static_branch_enable(&sched_uclamp_used);
8855 
8856 	mutex_lock(&uclamp_mutex);
8857 	rcu_read_lock();
8858 
8859 	tg = css_tg(of_css(of));
8860 	if (tg->uclamp_req[clamp_id].value != req.util)
8861 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8862 
8863 	/*
8864 	 * Because of not recoverable conversion rounding we keep track of the
8865 	 * exact requested value
8866 	 */
8867 	tg->uclamp_pct[clamp_id] = req.percent;
8868 
8869 	/* Update effective clamps to track the most restrictive value */
8870 	cpu_util_update_eff(of_css(of));
8871 
8872 	rcu_read_unlock();
8873 	mutex_unlock(&uclamp_mutex);
8874 
8875 	return nbytes;
8876 }
8877 
8878 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8879 				    char *buf, size_t nbytes,
8880 				    loff_t off)
8881 {
8882 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8883 }
8884 
8885 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8886 				    char *buf, size_t nbytes,
8887 				    loff_t off)
8888 {
8889 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8890 }
8891 
8892 static inline void cpu_uclamp_print(struct seq_file *sf,
8893 				    enum uclamp_id clamp_id)
8894 {
8895 	struct task_group *tg;
8896 	u64 util_clamp;
8897 	u64 percent;
8898 	u32 rem;
8899 
8900 	rcu_read_lock();
8901 	tg = css_tg(seq_css(sf));
8902 	util_clamp = tg->uclamp_req[clamp_id].value;
8903 	rcu_read_unlock();
8904 
8905 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8906 		seq_puts(sf, "max\n");
8907 		return;
8908 	}
8909 
8910 	percent = tg->uclamp_pct[clamp_id];
8911 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8912 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8913 }
8914 
8915 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8916 {
8917 	cpu_uclamp_print(sf, UCLAMP_MIN);
8918 	return 0;
8919 }
8920 
8921 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8922 {
8923 	cpu_uclamp_print(sf, UCLAMP_MAX);
8924 	return 0;
8925 }
8926 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8927 
8928 #ifdef CONFIG_FAIR_GROUP_SCHED
8929 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8930 				struct cftype *cftype, u64 shareval)
8931 {
8932 	if (shareval > scale_load_down(ULONG_MAX))
8933 		shareval = MAX_SHARES;
8934 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8935 }
8936 
8937 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8938 			       struct cftype *cft)
8939 {
8940 	struct task_group *tg = css_tg(css);
8941 
8942 	return (u64) scale_load_down(tg->shares);
8943 }
8944 
8945 #ifdef CONFIG_CFS_BANDWIDTH
8946 static DEFINE_MUTEX(cfs_constraints_mutex);
8947 
8948 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8949 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8950 /* More than 203 days if BW_SHIFT equals 20. */
8951 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8952 
8953 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8954 
8955 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8956 {
8957 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8958 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8959 
8960 	if (tg == &root_task_group)
8961 		return -EINVAL;
8962 
8963 	/*
8964 	 * Ensure we have at some amount of bandwidth every period.  This is
8965 	 * to prevent reaching a state of large arrears when throttled via
8966 	 * entity_tick() resulting in prolonged exit starvation.
8967 	 */
8968 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8969 		return -EINVAL;
8970 
8971 	/*
8972 	 * Likewise, bound things on the otherside by preventing insane quota
8973 	 * periods.  This also allows us to normalize in computing quota
8974 	 * feasibility.
8975 	 */
8976 	if (period > max_cfs_quota_period)
8977 		return -EINVAL;
8978 
8979 	/*
8980 	 * Bound quota to defend quota against overflow during bandwidth shift.
8981 	 */
8982 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8983 		return -EINVAL;
8984 
8985 	/*
8986 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8987 	 * unthrottle_offline_cfs_rqs().
8988 	 */
8989 	get_online_cpus();
8990 	mutex_lock(&cfs_constraints_mutex);
8991 	ret = __cfs_schedulable(tg, period, quota);
8992 	if (ret)
8993 		goto out_unlock;
8994 
8995 	runtime_enabled = quota != RUNTIME_INF;
8996 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8997 	/*
8998 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8999 	 * before making related changes, and on->off must occur afterwards
9000 	 */
9001 	if (runtime_enabled && !runtime_was_enabled)
9002 		cfs_bandwidth_usage_inc();
9003 	raw_spin_lock_irq(&cfs_b->lock);
9004 	cfs_b->period = ns_to_ktime(period);
9005 	cfs_b->quota = quota;
9006 
9007 	__refill_cfs_bandwidth_runtime(cfs_b);
9008 
9009 	/* Restart the period timer (if active) to handle new period expiry: */
9010 	if (runtime_enabled)
9011 		start_cfs_bandwidth(cfs_b);
9012 
9013 	raw_spin_unlock_irq(&cfs_b->lock);
9014 
9015 	for_each_online_cpu(i) {
9016 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9017 		struct rq *rq = cfs_rq->rq;
9018 		struct rq_flags rf;
9019 
9020 		rq_lock_irq(rq, &rf);
9021 		cfs_rq->runtime_enabled = runtime_enabled;
9022 		cfs_rq->runtime_remaining = 0;
9023 
9024 		if (cfs_rq->throttled)
9025 			unthrottle_cfs_rq(cfs_rq);
9026 		rq_unlock_irq(rq, &rf);
9027 	}
9028 	if (runtime_was_enabled && !runtime_enabled)
9029 		cfs_bandwidth_usage_dec();
9030 out_unlock:
9031 	mutex_unlock(&cfs_constraints_mutex);
9032 	put_online_cpus();
9033 
9034 	return ret;
9035 }
9036 
9037 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9038 {
9039 	u64 quota, period;
9040 
9041 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9042 	if (cfs_quota_us < 0)
9043 		quota = RUNTIME_INF;
9044 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9045 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9046 	else
9047 		return -EINVAL;
9048 
9049 	return tg_set_cfs_bandwidth(tg, period, quota);
9050 }
9051 
9052 static long tg_get_cfs_quota(struct task_group *tg)
9053 {
9054 	u64 quota_us;
9055 
9056 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9057 		return -1;
9058 
9059 	quota_us = tg->cfs_bandwidth.quota;
9060 	do_div(quota_us, NSEC_PER_USEC);
9061 
9062 	return quota_us;
9063 }
9064 
9065 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9066 {
9067 	u64 quota, period;
9068 
9069 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9070 		return -EINVAL;
9071 
9072 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9073 	quota = tg->cfs_bandwidth.quota;
9074 
9075 	return tg_set_cfs_bandwidth(tg, period, quota);
9076 }
9077 
9078 static long tg_get_cfs_period(struct task_group *tg)
9079 {
9080 	u64 cfs_period_us;
9081 
9082 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9083 	do_div(cfs_period_us, NSEC_PER_USEC);
9084 
9085 	return cfs_period_us;
9086 }
9087 
9088 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9089 				  struct cftype *cft)
9090 {
9091 	return tg_get_cfs_quota(css_tg(css));
9092 }
9093 
9094 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9095 				   struct cftype *cftype, s64 cfs_quota_us)
9096 {
9097 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9098 }
9099 
9100 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9101 				   struct cftype *cft)
9102 {
9103 	return tg_get_cfs_period(css_tg(css));
9104 }
9105 
9106 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9107 				    struct cftype *cftype, u64 cfs_period_us)
9108 {
9109 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9110 }
9111 
9112 struct cfs_schedulable_data {
9113 	struct task_group *tg;
9114 	u64 period, quota;
9115 };
9116 
9117 /*
9118  * normalize group quota/period to be quota/max_period
9119  * note: units are usecs
9120  */
9121 static u64 normalize_cfs_quota(struct task_group *tg,
9122 			       struct cfs_schedulable_data *d)
9123 {
9124 	u64 quota, period;
9125 
9126 	if (tg == d->tg) {
9127 		period = d->period;
9128 		quota = d->quota;
9129 	} else {
9130 		period = tg_get_cfs_period(tg);
9131 		quota = tg_get_cfs_quota(tg);
9132 	}
9133 
9134 	/* note: these should typically be equivalent */
9135 	if (quota == RUNTIME_INF || quota == -1)
9136 		return RUNTIME_INF;
9137 
9138 	return to_ratio(period, quota);
9139 }
9140 
9141 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9142 {
9143 	struct cfs_schedulable_data *d = data;
9144 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9145 	s64 quota = 0, parent_quota = -1;
9146 
9147 	if (!tg->parent) {
9148 		quota = RUNTIME_INF;
9149 	} else {
9150 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9151 
9152 		quota = normalize_cfs_quota(tg, d);
9153 		parent_quota = parent_b->hierarchical_quota;
9154 
9155 		/*
9156 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9157 		 * always take the min.  On cgroup1, only inherit when no
9158 		 * limit is set:
9159 		 */
9160 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9161 			quota = min(quota, parent_quota);
9162 		} else {
9163 			if (quota == RUNTIME_INF)
9164 				quota = parent_quota;
9165 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9166 				return -EINVAL;
9167 		}
9168 	}
9169 	cfs_b->hierarchical_quota = quota;
9170 
9171 	return 0;
9172 }
9173 
9174 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9175 {
9176 	int ret;
9177 	struct cfs_schedulable_data data = {
9178 		.tg = tg,
9179 		.period = period,
9180 		.quota = quota,
9181 	};
9182 
9183 	if (quota != RUNTIME_INF) {
9184 		do_div(data.period, NSEC_PER_USEC);
9185 		do_div(data.quota, NSEC_PER_USEC);
9186 	}
9187 
9188 	rcu_read_lock();
9189 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9190 	rcu_read_unlock();
9191 
9192 	return ret;
9193 }
9194 
9195 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9196 {
9197 	struct task_group *tg = css_tg(seq_css(sf));
9198 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9199 
9200 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9201 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9202 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9203 
9204 	if (schedstat_enabled() && tg != &root_task_group) {
9205 		u64 ws = 0;
9206 		int i;
9207 
9208 		for_each_possible_cpu(i)
9209 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9210 
9211 		seq_printf(sf, "wait_sum %llu\n", ws);
9212 	}
9213 
9214 	return 0;
9215 }
9216 #endif /* CONFIG_CFS_BANDWIDTH */
9217 #endif /* CONFIG_FAIR_GROUP_SCHED */
9218 
9219 #ifdef CONFIG_RT_GROUP_SCHED
9220 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9221 				struct cftype *cft, s64 val)
9222 {
9223 	return sched_group_set_rt_runtime(css_tg(css), val);
9224 }
9225 
9226 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9227 			       struct cftype *cft)
9228 {
9229 	return sched_group_rt_runtime(css_tg(css));
9230 }
9231 
9232 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9233 				    struct cftype *cftype, u64 rt_period_us)
9234 {
9235 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9236 }
9237 
9238 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9239 				   struct cftype *cft)
9240 {
9241 	return sched_group_rt_period(css_tg(css));
9242 }
9243 #endif /* CONFIG_RT_GROUP_SCHED */
9244 
9245 static struct cftype cpu_legacy_files[] = {
9246 #ifdef CONFIG_FAIR_GROUP_SCHED
9247 	{
9248 		.name = "shares",
9249 		.read_u64 = cpu_shares_read_u64,
9250 		.write_u64 = cpu_shares_write_u64,
9251 	},
9252 #endif
9253 #ifdef CONFIG_CFS_BANDWIDTH
9254 	{
9255 		.name = "cfs_quota_us",
9256 		.read_s64 = cpu_cfs_quota_read_s64,
9257 		.write_s64 = cpu_cfs_quota_write_s64,
9258 	},
9259 	{
9260 		.name = "cfs_period_us",
9261 		.read_u64 = cpu_cfs_period_read_u64,
9262 		.write_u64 = cpu_cfs_period_write_u64,
9263 	},
9264 	{
9265 		.name = "stat",
9266 		.seq_show = cpu_cfs_stat_show,
9267 	},
9268 #endif
9269 #ifdef CONFIG_RT_GROUP_SCHED
9270 	{
9271 		.name = "rt_runtime_us",
9272 		.read_s64 = cpu_rt_runtime_read,
9273 		.write_s64 = cpu_rt_runtime_write,
9274 	},
9275 	{
9276 		.name = "rt_period_us",
9277 		.read_u64 = cpu_rt_period_read_uint,
9278 		.write_u64 = cpu_rt_period_write_uint,
9279 	},
9280 #endif
9281 #ifdef CONFIG_UCLAMP_TASK_GROUP
9282 	{
9283 		.name = "uclamp.min",
9284 		.flags = CFTYPE_NOT_ON_ROOT,
9285 		.seq_show = cpu_uclamp_min_show,
9286 		.write = cpu_uclamp_min_write,
9287 	},
9288 	{
9289 		.name = "uclamp.max",
9290 		.flags = CFTYPE_NOT_ON_ROOT,
9291 		.seq_show = cpu_uclamp_max_show,
9292 		.write = cpu_uclamp_max_write,
9293 	},
9294 #endif
9295 	{ }	/* Terminate */
9296 };
9297 
9298 static int cpu_extra_stat_show(struct seq_file *sf,
9299 			       struct cgroup_subsys_state *css)
9300 {
9301 #ifdef CONFIG_CFS_BANDWIDTH
9302 	{
9303 		struct task_group *tg = css_tg(css);
9304 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9305 		u64 throttled_usec;
9306 
9307 		throttled_usec = cfs_b->throttled_time;
9308 		do_div(throttled_usec, NSEC_PER_USEC);
9309 
9310 		seq_printf(sf, "nr_periods %d\n"
9311 			   "nr_throttled %d\n"
9312 			   "throttled_usec %llu\n",
9313 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9314 			   throttled_usec);
9315 	}
9316 #endif
9317 	return 0;
9318 }
9319 
9320 #ifdef CONFIG_FAIR_GROUP_SCHED
9321 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9322 			       struct cftype *cft)
9323 {
9324 	struct task_group *tg = css_tg(css);
9325 	u64 weight = scale_load_down(tg->shares);
9326 
9327 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9328 }
9329 
9330 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9331 				struct cftype *cft, u64 weight)
9332 {
9333 	/*
9334 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9335 	 * values which are 1, 100 and 10000 respectively.  While it loses
9336 	 * a bit of range on both ends, it maps pretty well onto the shares
9337 	 * value used by scheduler and the round-trip conversions preserve
9338 	 * the original value over the entire range.
9339 	 */
9340 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9341 		return -ERANGE;
9342 
9343 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9344 
9345 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9346 }
9347 
9348 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9349 				    struct cftype *cft)
9350 {
9351 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9352 	int last_delta = INT_MAX;
9353 	int prio, delta;
9354 
9355 	/* find the closest nice value to the current weight */
9356 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9357 		delta = abs(sched_prio_to_weight[prio] - weight);
9358 		if (delta >= last_delta)
9359 			break;
9360 		last_delta = delta;
9361 	}
9362 
9363 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9364 }
9365 
9366 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9367 				     struct cftype *cft, s64 nice)
9368 {
9369 	unsigned long weight;
9370 	int idx;
9371 
9372 	if (nice < MIN_NICE || nice > MAX_NICE)
9373 		return -ERANGE;
9374 
9375 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9376 	idx = array_index_nospec(idx, 40);
9377 	weight = sched_prio_to_weight[idx];
9378 
9379 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9380 }
9381 #endif
9382 
9383 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9384 						  long period, long quota)
9385 {
9386 	if (quota < 0)
9387 		seq_puts(sf, "max");
9388 	else
9389 		seq_printf(sf, "%ld", quota);
9390 
9391 	seq_printf(sf, " %ld\n", period);
9392 }
9393 
9394 /* caller should put the current value in *@periodp before calling */
9395 static int __maybe_unused cpu_period_quota_parse(char *buf,
9396 						 u64 *periodp, u64 *quotap)
9397 {
9398 	char tok[21];	/* U64_MAX */
9399 
9400 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9401 		return -EINVAL;
9402 
9403 	*periodp *= NSEC_PER_USEC;
9404 
9405 	if (sscanf(tok, "%llu", quotap))
9406 		*quotap *= NSEC_PER_USEC;
9407 	else if (!strcmp(tok, "max"))
9408 		*quotap = RUNTIME_INF;
9409 	else
9410 		return -EINVAL;
9411 
9412 	return 0;
9413 }
9414 
9415 #ifdef CONFIG_CFS_BANDWIDTH
9416 static int cpu_max_show(struct seq_file *sf, void *v)
9417 {
9418 	struct task_group *tg = css_tg(seq_css(sf));
9419 
9420 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9421 	return 0;
9422 }
9423 
9424 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9425 			     char *buf, size_t nbytes, loff_t off)
9426 {
9427 	struct task_group *tg = css_tg(of_css(of));
9428 	u64 period = tg_get_cfs_period(tg);
9429 	u64 quota;
9430 	int ret;
9431 
9432 	ret = cpu_period_quota_parse(buf, &period, &quota);
9433 	if (!ret)
9434 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9435 	return ret ?: nbytes;
9436 }
9437 #endif
9438 
9439 static struct cftype cpu_files[] = {
9440 #ifdef CONFIG_FAIR_GROUP_SCHED
9441 	{
9442 		.name = "weight",
9443 		.flags = CFTYPE_NOT_ON_ROOT,
9444 		.read_u64 = cpu_weight_read_u64,
9445 		.write_u64 = cpu_weight_write_u64,
9446 	},
9447 	{
9448 		.name = "weight.nice",
9449 		.flags = CFTYPE_NOT_ON_ROOT,
9450 		.read_s64 = cpu_weight_nice_read_s64,
9451 		.write_s64 = cpu_weight_nice_write_s64,
9452 	},
9453 #endif
9454 #ifdef CONFIG_CFS_BANDWIDTH
9455 	{
9456 		.name = "max",
9457 		.flags = CFTYPE_NOT_ON_ROOT,
9458 		.seq_show = cpu_max_show,
9459 		.write = cpu_max_write,
9460 	},
9461 #endif
9462 #ifdef CONFIG_UCLAMP_TASK_GROUP
9463 	{
9464 		.name = "uclamp.min",
9465 		.flags = CFTYPE_NOT_ON_ROOT,
9466 		.seq_show = cpu_uclamp_min_show,
9467 		.write = cpu_uclamp_min_write,
9468 	},
9469 	{
9470 		.name = "uclamp.max",
9471 		.flags = CFTYPE_NOT_ON_ROOT,
9472 		.seq_show = cpu_uclamp_max_show,
9473 		.write = cpu_uclamp_max_write,
9474 	},
9475 #endif
9476 	{ }	/* terminate */
9477 };
9478 
9479 struct cgroup_subsys cpu_cgrp_subsys = {
9480 	.css_alloc	= cpu_cgroup_css_alloc,
9481 	.css_online	= cpu_cgroup_css_online,
9482 	.css_released	= cpu_cgroup_css_released,
9483 	.css_free	= cpu_cgroup_css_free,
9484 	.css_extra_stat_show = cpu_extra_stat_show,
9485 	.fork		= cpu_cgroup_fork,
9486 	.can_attach	= cpu_cgroup_can_attach,
9487 	.attach		= cpu_cgroup_attach,
9488 	.legacy_cftypes	= cpu_legacy_files,
9489 	.dfl_cftypes	= cpu_files,
9490 	.early_init	= true,
9491 	.threaded	= true,
9492 };
9493 
9494 #endif	/* CONFIG_CGROUP_SCHED */
9495 
9496 void dump_cpu_task(int cpu)
9497 {
9498 	pr_info("Task dump for CPU %d:\n", cpu);
9499 	sched_show_task(cpu_curr(cpu));
9500 }
9501 
9502 /*
9503  * Nice levels are multiplicative, with a gentle 10% change for every
9504  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9505  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9506  * that remained on nice 0.
9507  *
9508  * The "10% effect" is relative and cumulative: from _any_ nice level,
9509  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9510  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9511  * If a task goes up by ~10% and another task goes down by ~10% then
9512  * the relative distance between them is ~25%.)
9513  */
9514 const int sched_prio_to_weight[40] = {
9515  /* -20 */     88761,     71755,     56483,     46273,     36291,
9516  /* -15 */     29154,     23254,     18705,     14949,     11916,
9517  /* -10 */      9548,      7620,      6100,      4904,      3906,
9518  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9519  /*   0 */      1024,       820,       655,       526,       423,
9520  /*   5 */       335,       272,       215,       172,       137,
9521  /*  10 */       110,        87,        70,        56,        45,
9522  /*  15 */        36,        29,        23,        18,        15,
9523 };
9524 
9525 /*
9526  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9527  *
9528  * In cases where the weight does not change often, we can use the
9529  * precalculated inverse to speed up arithmetics by turning divisions
9530  * into multiplications:
9531  */
9532 const u32 sched_prio_to_wmult[40] = {
9533  /* -20 */     48388,     59856,     76040,     92818,    118348,
9534  /* -15 */    147320,    184698,    229616,    287308,    360437,
9535  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9536  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9537  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9538  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9539  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9540  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9541 };
9542 
9543 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9544 {
9545         trace_sched_update_nr_running_tp(rq, count);
9546 }
9547