xref: /openbmc/linux/kernel/sched/core.c (revision d774a589)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/mutex.h>
79 
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 
99 void update_rq_clock(struct rq *rq)
100 {
101 	s64 delta;
102 
103 	lockdep_assert_held(&rq->lock);
104 
105 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 		return;
107 
108 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 	if (delta < 0)
110 		return;
111 	rq->clock += delta;
112 	update_rq_clock_task(rq, delta);
113 }
114 
115 /*
116  * Debugging: various feature bits
117  */
118 
119 #define SCHED_FEAT(name, enabled)	\
120 	(1UL << __SCHED_FEAT_##name) * enabled |
121 
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 
126 #undef SCHED_FEAT
127 
128 /*
129  * Number of tasks to iterate in a single balance run.
130  * Limited because this is done with IRQs disabled.
131  */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133 
134 /*
135  * period over which we average the RT time consumption, measured
136  * in ms.
137  *
138  * default: 1s
139  */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141 
142 /*
143  * period over which we measure -rt task cpu usage in us.
144  * default: 1s
145  */
146 unsigned int sysctl_sched_rt_period = 1000000;
147 
148 __read_mostly int scheduler_running;
149 
150 /*
151  * part of the period that we allow rt tasks to run in us.
152  * default: 0.95s
153  */
154 int sysctl_sched_rt_runtime = 950000;
155 
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158 
159 /*
160  * this_rq_lock - lock this runqueue and disable interrupts.
161  */
162 static struct rq *this_rq_lock(void)
163 	__acquires(rq->lock)
164 {
165 	struct rq *rq;
166 
167 	local_irq_disable();
168 	rq = this_rq();
169 	raw_spin_lock(&rq->lock);
170 
171 	return rq;
172 }
173 
174 /*
175  * __task_rq_lock - lock the rq @p resides on.
176  */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 	__acquires(rq->lock)
179 {
180 	struct rq *rq;
181 
182 	lockdep_assert_held(&p->pi_lock);
183 
184 	for (;;) {
185 		rq = task_rq(p);
186 		raw_spin_lock(&rq->lock);
187 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 			rf->cookie = lockdep_pin_lock(&rq->lock);
189 			return rq;
190 		}
191 		raw_spin_unlock(&rq->lock);
192 
193 		while (unlikely(task_on_rq_migrating(p)))
194 			cpu_relax();
195 	}
196 }
197 
198 /*
199  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200  */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 	__acquires(p->pi_lock)
203 	__acquires(rq->lock)
204 {
205 	struct rq *rq;
206 
207 	for (;;) {
208 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 		rq = task_rq(p);
210 		raw_spin_lock(&rq->lock);
211 		/*
212 		 *	move_queued_task()		task_rq_lock()
213 		 *
214 		 *	ACQUIRE (rq->lock)
215 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
216 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
217 		 *	[S] ->cpu = new_cpu		[L] task_rq()
218 		 *					[L] ->on_rq
219 		 *	RELEASE (rq->lock)
220 		 *
221 		 * If we observe the old cpu in task_rq_lock, the acquire of
222 		 * the old rq->lock will fully serialize against the stores.
223 		 *
224 		 * If we observe the new cpu in task_rq_lock, the acquire will
225 		 * pair with the WMB to ensure we must then also see migrating.
226 		 */
227 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 			rf->cookie = lockdep_pin_lock(&rq->lock);
229 			return rq;
230 		}
231 		raw_spin_unlock(&rq->lock);
232 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 
234 		while (unlikely(task_on_rq_migrating(p)))
235 			cpu_relax();
236 	}
237 }
238 
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241  * Use HR-timers to deliver accurate preemption points.
242  */
243 
244 static void hrtick_clear(struct rq *rq)
245 {
246 	if (hrtimer_active(&rq->hrtick_timer))
247 		hrtimer_cancel(&rq->hrtick_timer);
248 }
249 
250 /*
251  * High-resolution timer tick.
252  * Runs from hardirq context with interrupts disabled.
253  */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257 
258 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259 
260 	raw_spin_lock(&rq->lock);
261 	update_rq_clock(rq);
262 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 	raw_spin_unlock(&rq->lock);
264 
265 	return HRTIMER_NORESTART;
266 }
267 
268 #ifdef CONFIG_SMP
269 
270 static void __hrtick_restart(struct rq *rq)
271 {
272 	struct hrtimer *timer = &rq->hrtick_timer;
273 
274 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276 
277 /*
278  * called from hardirq (IPI) context
279  */
280 static void __hrtick_start(void *arg)
281 {
282 	struct rq *rq = arg;
283 
284 	raw_spin_lock(&rq->lock);
285 	__hrtick_restart(rq);
286 	rq->hrtick_csd_pending = 0;
287 	raw_spin_unlock(&rq->lock);
288 }
289 
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	struct hrtimer *timer = &rq->hrtick_timer;
298 	ktime_t time;
299 	s64 delta;
300 
301 	/*
302 	 * Don't schedule slices shorter than 10000ns, that just
303 	 * doesn't make sense and can cause timer DoS.
304 	 */
305 	delta = max_t(s64, delay, 10000LL);
306 	time = ktime_add_ns(timer->base->get_time(), delta);
307 
308 	hrtimer_set_expires(timer, time);
309 
310 	if (rq == this_rq()) {
311 		__hrtick_restart(rq);
312 	} else if (!rq->hrtick_csd_pending) {
313 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 		rq->hrtick_csd_pending = 1;
315 	}
316 }
317 
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 	/*
327 	 * Don't schedule slices shorter than 10000ns, that just
328 	 * doesn't make sense. Rely on vruntime for fairness.
329 	 */
330 	delay = max_t(u64, delay, 10000LL);
331 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 		      HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335 
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 	rq->hrtick_csd_pending = 0;
340 
341 	rq->hrtick_csd.flags = 0;
342 	rq->hrtick_csd.func = __hrtick_start;
343 	rq->hrtick_csd.info = rq;
344 #endif
345 
346 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 	rq->hrtick_timer.function = hrtick;
348 }
349 #else	/* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353 
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif	/* CONFIG_SCHED_HRTICK */
358 
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)						\
363 	({								\
364 		typeof(ptr) _ptr = (ptr);				\
365 		typeof(mask) _mask = (mask);				\
366 		typeof(*_ptr) _old, _val = *_ptr;			\
367 									\
368 		for (;;) {						\
369 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
370 			if (_old == _val)				\
371 				break;					\
372 			_val = _old;					\
373 		}							\
374 	_old;								\
375 })
376 
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388 
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	struct thread_info *ti = task_thread_info(p);
398 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 
400 	for (;;) {
401 		if (!(val & _TIF_POLLING_NRFLAG))
402 			return false;
403 		if (val & _TIF_NEED_RESCHED)
404 			return true;
405 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 		if (old == val)
407 			break;
408 		val = old;
409 	}
410 	return true;
411 }
412 
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 	set_tsk_need_resched(p);
417 	return true;
418 }
419 
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 	return false;
424 }
425 #endif
426 #endif
427 
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 	struct wake_q_node *node = &task->wake_q;
431 
432 	/*
433 	 * Atomically grab the task, if ->wake_q is !nil already it means
434 	 * its already queued (either by us or someone else) and will get the
435 	 * wakeup due to that.
436 	 *
437 	 * This cmpxchg() implies a full barrier, which pairs with the write
438 	 * barrier implied by the wakeup in wake_up_q().
439 	 */
440 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 		return;
442 
443 	get_task_struct(task);
444 
445 	/*
446 	 * The head is context local, there can be no concurrency.
447 	 */
448 	*head->lastp = node;
449 	head->lastp = &node->next;
450 }
451 
452 void wake_up_q(struct wake_q_head *head)
453 {
454 	struct wake_q_node *node = head->first;
455 
456 	while (node != WAKE_Q_TAIL) {
457 		struct task_struct *task;
458 
459 		task = container_of(node, struct task_struct, wake_q);
460 		BUG_ON(!task);
461 		/* task can safely be re-inserted now */
462 		node = node->next;
463 		task->wake_q.next = NULL;
464 
465 		/*
466 		 * wake_up_process() implies a wmb() to pair with the queueing
467 		 * in wake_q_add() so as not to miss wakeups.
468 		 */
469 		wake_up_process(task);
470 		put_task_struct(task);
471 	}
472 }
473 
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483 	struct task_struct *curr = rq->curr;
484 	int cpu;
485 
486 	lockdep_assert_held(&rq->lock);
487 
488 	if (test_tsk_need_resched(curr))
489 		return;
490 
491 	cpu = cpu_of(rq);
492 
493 	if (cpu == smp_processor_id()) {
494 		set_tsk_need_resched(curr);
495 		set_preempt_need_resched();
496 		return;
497 	}
498 
499 	if (set_nr_and_not_polling(curr))
500 		smp_send_reschedule(cpu);
501 	else
502 		trace_sched_wake_idle_without_ipi(cpu);
503 }
504 
505 void resched_cpu(int cpu)
506 {
507 	struct rq *rq = cpu_rq(cpu);
508 	unsigned long flags;
509 
510 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 		return;
512 	resched_curr(rq);
513 	raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515 
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy cpu for migrating timers
520  * from an idle cpu.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle cpu will add more delays to the timers than intended
524  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528 	int i, cpu = smp_processor_id();
529 	struct sched_domain *sd;
530 
531 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 		return cpu;
533 
534 	rcu_read_lock();
535 	for_each_domain(cpu, sd) {
536 		for_each_cpu(i, sched_domain_span(sd)) {
537 			if (cpu == i)
538 				continue;
539 
540 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 				cpu = i;
542 				goto unlock;
543 			}
544 		}
545 	}
546 
547 	if (!is_housekeeping_cpu(cpu))
548 		cpu = housekeeping_any_cpu();
549 unlock:
550 	rcu_read_unlock();
551 	return cpu;
552 }
553 /*
554  * When add_timer_on() enqueues a timer into the timer wheel of an
555  * idle CPU then this timer might expire before the next timer event
556  * which is scheduled to wake up that CPU. In case of a completely
557  * idle system the next event might even be infinite time into the
558  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559  * leaves the inner idle loop so the newly added timer is taken into
560  * account when the CPU goes back to idle and evaluates the timer
561  * wheel for the next timer event.
562  */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 	struct rq *rq = cpu_rq(cpu);
566 
567 	if (cpu == smp_processor_id())
568 		return;
569 
570 	if (set_nr_and_not_polling(rq->idle))
571 		smp_send_reschedule(cpu);
572 	else
573 		trace_sched_wake_idle_without_ipi(cpu);
574 }
575 
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 	/*
579 	 * We just need the target to call irq_exit() and re-evaluate
580 	 * the next tick. The nohz full kick at least implies that.
581 	 * If needed we can still optimize that later with an
582 	 * empty IRQ.
583 	 */
584 	if (cpu_is_offline(cpu))
585 		return true;  /* Don't try to wake offline CPUs. */
586 	if (tick_nohz_full_cpu(cpu)) {
587 		if (cpu != smp_processor_id() ||
588 		    tick_nohz_tick_stopped())
589 			tick_nohz_full_kick_cpu(cpu);
590 		return true;
591 	}
592 
593 	return false;
594 }
595 
596 /*
597  * Wake up the specified CPU.  If the CPU is going offline, it is the
598  * caller's responsibility to deal with the lost wakeup, for example,
599  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600  */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 	if (!wake_up_full_nohz_cpu(cpu))
604 		wake_up_idle_cpu(cpu);
605 }
606 
607 static inline bool got_nohz_idle_kick(void)
608 {
609 	int cpu = smp_processor_id();
610 
611 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 		return false;
613 
614 	if (idle_cpu(cpu) && !need_resched())
615 		return true;
616 
617 	/*
618 	 * We can't run Idle Load Balance on this CPU for this time so we
619 	 * cancel it and clear NOHZ_BALANCE_KICK
620 	 */
621 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 	return false;
623 }
624 
625 #else /* CONFIG_NO_HZ_COMMON */
626 
627 static inline bool got_nohz_idle_kick(void)
628 {
629 	return false;
630 }
631 
632 #endif /* CONFIG_NO_HZ_COMMON */
633 
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 	int fifo_nr_running;
638 
639 	/* Deadline tasks, even if single, need the tick */
640 	if (rq->dl.dl_nr_running)
641 		return false;
642 
643 	/*
644 	 * If there are more than one RR tasks, we need the tick to effect the
645 	 * actual RR behaviour.
646 	 */
647 	if (rq->rt.rr_nr_running) {
648 		if (rq->rt.rr_nr_running == 1)
649 			return true;
650 		else
651 			return false;
652 	}
653 
654 	/*
655 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 	 * forced preemption between FIFO tasks.
657 	 */
658 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 	if (fifo_nr_running)
660 		return true;
661 
662 	/*
663 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 	 * if there's more than one we need the tick for involuntary
665 	 * preemption.
666 	 */
667 	if (rq->nr_running > 1)
668 		return false;
669 
670 	return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673 
674 void sched_avg_update(struct rq *rq)
675 {
676 	s64 period = sched_avg_period();
677 
678 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 		/*
680 		 * Inline assembly required to prevent the compiler
681 		 * optimising this loop into a divmod call.
682 		 * See __iter_div_u64_rem() for another example of this.
683 		 */
684 		asm("" : "+rm" (rq->age_stamp));
685 		rq->age_stamp += period;
686 		rq->rt_avg /= 2;
687 	}
688 }
689 
690 #endif /* CONFIG_SMP */
691 
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695  * Iterate task_group tree rooted at *from, calling @down when first entering a
696  * node and @up when leaving it for the final time.
697  *
698  * Caller must hold rcu_lock or sufficient equivalent.
699  */
700 int walk_tg_tree_from(struct task_group *from,
701 			     tg_visitor down, tg_visitor up, void *data)
702 {
703 	struct task_group *parent, *child;
704 	int ret;
705 
706 	parent = from;
707 
708 down:
709 	ret = (*down)(parent, data);
710 	if (ret)
711 		goto out;
712 	list_for_each_entry_rcu(child, &parent->children, siblings) {
713 		parent = child;
714 		goto down;
715 
716 up:
717 		continue;
718 	}
719 	ret = (*up)(parent, data);
720 	if (ret || parent == from)
721 		goto out;
722 
723 	child = parent;
724 	parent = parent->parent;
725 	if (parent)
726 		goto up;
727 out:
728 	return ret;
729 }
730 
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 	return 0;
734 }
735 #endif
736 
737 static void set_load_weight(struct task_struct *p)
738 {
739 	int prio = p->static_prio - MAX_RT_PRIO;
740 	struct load_weight *load = &p->se.load;
741 
742 	/*
743 	 * SCHED_IDLE tasks get minimal weight:
744 	 */
745 	if (idle_policy(p->policy)) {
746 		load->weight = scale_load(WEIGHT_IDLEPRIO);
747 		load->inv_weight = WMULT_IDLEPRIO;
748 		return;
749 	}
750 
751 	load->weight = scale_load(sched_prio_to_weight[prio]);
752 	load->inv_weight = sched_prio_to_wmult[prio];
753 }
754 
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & ENQUEUE_RESTORE))
759 		sched_info_queued(rq, p);
760 	p->sched_class->enqueue_task(rq, p, flags);
761 }
762 
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	update_rq_clock(rq);
766 	if (!(flags & DEQUEUE_SAVE))
767 		sched_info_dequeued(rq, p);
768 	p->sched_class->dequeue_task(rq, p, flags);
769 }
770 
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible--;
775 
776 	enqueue_task(rq, p, flags);
777 }
778 
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 	if (task_contributes_to_load(p))
782 		rq->nr_uninterruptible++;
783 
784 	dequeue_task(rq, p, flags);
785 }
786 
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790  * In theory, the compile should just see 0 here, and optimize out the call
791  * to sched_rt_avg_update. But I don't trust it...
792  */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 	s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798 
799 	/*
800 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 	 * this case when a previous update_rq_clock() happened inside a
802 	 * {soft,}irq region.
803 	 *
804 	 * When this happens, we stop ->clock_task and only update the
805 	 * prev_irq_time stamp to account for the part that fit, so that a next
806 	 * update will consume the rest. This ensures ->clock_task is
807 	 * monotonic.
808 	 *
809 	 * It does however cause some slight miss-attribution of {soft,}irq
810 	 * time, a more accurate solution would be to update the irq_time using
811 	 * the current rq->clock timestamp, except that would require using
812 	 * atomic ops.
813 	 */
814 	if (irq_delta > delta)
815 		irq_delta = delta;
816 
817 	rq->prev_irq_time += irq_delta;
818 	delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 	if (static_key_false((&paravirt_steal_rq_enabled))) {
822 		steal = paravirt_steal_clock(cpu_of(rq));
823 		steal -= rq->prev_steal_time_rq;
824 
825 		if (unlikely(steal > delta))
826 			steal = delta;
827 
828 		rq->prev_steal_time_rq += steal;
829 		delta -= steal;
830 	}
831 #endif
832 
833 	rq->clock_task += delta;
834 
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 		sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840 
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
845 
846 	if (stop) {
847 		/*
848 		 * Make it appear like a SCHED_FIFO task, its something
849 		 * userspace knows about and won't get confused about.
850 		 *
851 		 * Also, it will make PI more or less work without too
852 		 * much confusion -- but then, stop work should not
853 		 * rely on PI working anyway.
854 		 */
855 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856 
857 		stop->sched_class = &stop_sched_class;
858 	}
859 
860 	cpu_rq(cpu)->stop = stop;
861 
862 	if (old_stop) {
863 		/*
864 		 * Reset it back to a normal scheduling class so that
865 		 * it can die in pieces.
866 		 */
867 		old_stop->sched_class = &rt_sched_class;
868 	}
869 }
870 
871 /*
872  * __normal_prio - return the priority that is based on the static prio
873  */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 	return p->static_prio;
877 }
878 
879 /*
880  * Calculate the expected normal priority: i.e. priority
881  * without taking RT-inheritance into account. Might be
882  * boosted by interactivity modifiers. Changes upon fork,
883  * setprio syscalls, and whenever the interactivity
884  * estimator recalculates.
885  */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 	int prio;
889 
890 	if (task_has_dl_policy(p))
891 		prio = MAX_DL_PRIO-1;
892 	else if (task_has_rt_policy(p))
893 		prio = MAX_RT_PRIO-1 - p->rt_priority;
894 	else
895 		prio = __normal_prio(p);
896 	return prio;
897 }
898 
899 /*
900  * Calculate the current priority, i.e. the priority
901  * taken into account by the scheduler. This value might
902  * be boosted by RT tasks, or might be boosted by
903  * interactivity modifiers. Will be RT if the task got
904  * RT-boosted. If not then it returns p->normal_prio.
905  */
906 static int effective_prio(struct task_struct *p)
907 {
908 	p->normal_prio = normal_prio(p);
909 	/*
910 	 * If we are RT tasks or we were boosted to RT priority,
911 	 * keep the priority unchanged. Otherwise, update priority
912 	 * to the normal priority:
913 	 */
914 	if (!rt_prio(p->prio))
915 		return p->normal_prio;
916 	return p->prio;
917 }
918 
919 /**
920  * task_curr - is this task currently executing on a CPU?
921  * @p: the task in question.
922  *
923  * Return: 1 if the task is currently executing. 0 otherwise.
924  */
925 inline int task_curr(const struct task_struct *p)
926 {
927 	return cpu_curr(task_cpu(p)) == p;
928 }
929 
930 /*
931  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932  * use the balance_callback list if you want balancing.
933  *
934  * this means any call to check_class_changed() must be followed by a call to
935  * balance_callback().
936  */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 				       const struct sched_class *prev_class,
939 				       int oldprio)
940 {
941 	if (prev_class != p->sched_class) {
942 		if (prev_class->switched_from)
943 			prev_class->switched_from(rq, p);
944 
945 		p->sched_class->switched_to(rq, p);
946 	} else if (oldprio != p->prio || dl_task(p))
947 		p->sched_class->prio_changed(rq, p, oldprio);
948 }
949 
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 	const struct sched_class *class;
953 
954 	if (p->sched_class == rq->curr->sched_class) {
955 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 	} else {
957 		for_each_class(class) {
958 			if (class == rq->curr->sched_class)
959 				break;
960 			if (class == p->sched_class) {
961 				resched_curr(rq);
962 				break;
963 			}
964 		}
965 	}
966 
967 	/*
968 	 * A queue event has occurred, and we're going to schedule.  In
969 	 * this case, we can save a useless back to back clock update.
970 	 */
971 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 		rq_clock_skip_update(rq, true);
973 }
974 
975 #ifdef CONFIG_SMP
976 /*
977  * This is how migration works:
978  *
979  * 1) we invoke migration_cpu_stop() on the target CPU using
980  *    stop_one_cpu().
981  * 2) stopper starts to run (implicitly forcing the migrated thread
982  *    off the CPU)
983  * 3) it checks whether the migrated task is still in the wrong runqueue.
984  * 4) if it's in the wrong runqueue then the migration thread removes
985  *    it and puts it into the right queue.
986  * 5) stopper completes and stop_one_cpu() returns and the migration
987  *    is done.
988  */
989 
990 /*
991  * move_queued_task - move a queued task to new rq.
992  *
993  * Returns (locked) new rq. Old rq's lock is released.
994  */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 	lockdep_assert_held(&rq->lock);
998 
999 	p->on_rq = TASK_ON_RQ_MIGRATING;
1000 	dequeue_task(rq, p, 0);
1001 	set_task_cpu(p, new_cpu);
1002 	raw_spin_unlock(&rq->lock);
1003 
1004 	rq = cpu_rq(new_cpu);
1005 
1006 	raw_spin_lock(&rq->lock);
1007 	BUG_ON(task_cpu(p) != new_cpu);
1008 	enqueue_task(rq, p, 0);
1009 	p->on_rq = TASK_ON_RQ_QUEUED;
1010 	check_preempt_curr(rq, p, 0);
1011 
1012 	return rq;
1013 }
1014 
1015 struct migration_arg {
1016 	struct task_struct *task;
1017 	int dest_cpu;
1018 };
1019 
1020 /*
1021  * Move (not current) task off this cpu, onto dest cpu. We're doing
1022  * this because either it can't run here any more (set_cpus_allowed()
1023  * away from this CPU, or CPU going down), or because we're
1024  * attempting to rebalance this task on exec (sched_exec).
1025  *
1026  * So we race with normal scheduler movements, but that's OK, as long
1027  * as the task is no longer on this CPU.
1028  */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 	if (unlikely(!cpu_active(dest_cpu)))
1032 		return rq;
1033 
1034 	/* Affinity changed (again). */
1035 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 		return rq;
1037 
1038 	rq = move_queued_task(rq, p, dest_cpu);
1039 
1040 	return rq;
1041 }
1042 
1043 /*
1044  * migration_cpu_stop - this will be executed by a highprio stopper thread
1045  * and performs thread migration by bumping thread off CPU then
1046  * 'pushing' onto another runqueue.
1047  */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 	struct migration_arg *arg = data;
1051 	struct task_struct *p = arg->task;
1052 	struct rq *rq = this_rq();
1053 
1054 	/*
1055 	 * The original target cpu might have gone down and we might
1056 	 * be on another cpu but it doesn't matter.
1057 	 */
1058 	local_irq_disable();
1059 	/*
1060 	 * We need to explicitly wake pending tasks before running
1061 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 	 */
1064 	sched_ttwu_pending();
1065 
1066 	raw_spin_lock(&p->pi_lock);
1067 	raw_spin_lock(&rq->lock);
1068 	/*
1069 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 	 * we're holding p->pi_lock.
1072 	 */
1073 	if (task_rq(p) == rq) {
1074 		if (task_on_rq_queued(p))
1075 			rq = __migrate_task(rq, p, arg->dest_cpu);
1076 		else
1077 			p->wake_cpu = arg->dest_cpu;
1078 	}
1079 	raw_spin_unlock(&rq->lock);
1080 	raw_spin_unlock(&p->pi_lock);
1081 
1082 	local_irq_enable();
1083 	return 0;
1084 }
1085 
1086 /*
1087  * sched_class::set_cpus_allowed must do the below, but is not required to
1088  * actually call this function.
1089  */
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091 {
1092 	cpumask_copy(&p->cpus_allowed, new_mask);
1093 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1094 }
1095 
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097 {
1098 	struct rq *rq = task_rq(p);
1099 	bool queued, running;
1100 
1101 	lockdep_assert_held(&p->pi_lock);
1102 
1103 	queued = task_on_rq_queued(p);
1104 	running = task_current(rq, p);
1105 
1106 	if (queued) {
1107 		/*
1108 		 * Because __kthread_bind() calls this on blocked tasks without
1109 		 * holding rq->lock.
1110 		 */
1111 		lockdep_assert_held(&rq->lock);
1112 		dequeue_task(rq, p, DEQUEUE_SAVE);
1113 	}
1114 	if (running)
1115 		put_prev_task(rq, p);
1116 
1117 	p->sched_class->set_cpus_allowed(p, new_mask);
1118 
1119 	if (queued)
1120 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 	if (running)
1122 		set_curr_task(rq, p);
1123 }
1124 
1125 /*
1126  * Change a given task's CPU affinity. Migrate the thread to a
1127  * proper CPU and schedule it away if the CPU it's executing on
1128  * is removed from the allowed bitmask.
1129  *
1130  * NOTE: the caller must have a valid reference to the task, the
1131  * task must not exit() & deallocate itself prematurely. The
1132  * call is not atomic; no spinlocks may be held.
1133  */
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 				  const struct cpumask *new_mask, bool check)
1136 {
1137 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 	unsigned int dest_cpu;
1139 	struct rq_flags rf;
1140 	struct rq *rq;
1141 	int ret = 0;
1142 
1143 	rq = task_rq_lock(p, &rf);
1144 
1145 	if (p->flags & PF_KTHREAD) {
1146 		/*
1147 		 * Kernel threads are allowed on online && !active CPUs
1148 		 */
1149 		cpu_valid_mask = cpu_online_mask;
1150 	}
1151 
1152 	/*
1153 	 * Must re-check here, to close a race against __kthread_bind(),
1154 	 * sched_setaffinity() is not guaranteed to observe the flag.
1155 	 */
1156 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 		ret = -EINVAL;
1158 		goto out;
1159 	}
1160 
1161 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 		goto out;
1163 
1164 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165 		ret = -EINVAL;
1166 		goto out;
1167 	}
1168 
1169 	do_set_cpus_allowed(p, new_mask);
1170 
1171 	if (p->flags & PF_KTHREAD) {
1172 		/*
1173 		 * For kernel threads that do indeed end up on online &&
1174 		 * !active we want to ensure they are strict per-cpu threads.
1175 		 */
1176 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1178 			p->nr_cpus_allowed != 1);
1179 	}
1180 
1181 	/* Can the task run on the task's current CPU? If so, we're done */
1182 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 		goto out;
1184 
1185 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 		struct migration_arg arg = { p, dest_cpu };
1188 		/* Need help from migration thread: drop lock and wait. */
1189 		task_rq_unlock(rq, p, &rf);
1190 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 		tlb_migrate_finish(p->mm);
1192 		return 0;
1193 	} else if (task_on_rq_queued(p)) {
1194 		/*
1195 		 * OK, since we're going to drop the lock immediately
1196 		 * afterwards anyway.
1197 		 */
1198 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1199 		rq = move_queued_task(rq, p, dest_cpu);
1200 		lockdep_repin_lock(&rq->lock, rf.cookie);
1201 	}
1202 out:
1203 	task_rq_unlock(rq, p, &rf);
1204 
1205 	return ret;
1206 }
1207 
1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209 {
1210 	return __set_cpus_allowed_ptr(p, new_mask, false);
1211 }
1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213 
1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215 {
1216 #ifdef CONFIG_SCHED_DEBUG
1217 	/*
1218 	 * We should never call set_task_cpu() on a blocked task,
1219 	 * ttwu() will sort out the placement.
1220 	 */
1221 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222 			!p->on_rq);
1223 
1224 	/*
1225 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 	 * time relying on p->on_rq.
1228 	 */
1229 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 		     p->sched_class == &fair_sched_class &&
1231 		     (p->on_rq && !task_on_rq_migrating(p)));
1232 
1233 #ifdef CONFIG_LOCKDEP
1234 	/*
1235 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 	 *
1238 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1239 	 * see task_group().
1240 	 *
1241 	 * Furthermore, all task_rq users should acquire both locks, see
1242 	 * task_rq_lock().
1243 	 */
1244 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 				      lockdep_is_held(&task_rq(p)->lock)));
1246 #endif
1247 #endif
1248 
1249 	trace_sched_migrate_task(p, new_cpu);
1250 
1251 	if (task_cpu(p) != new_cpu) {
1252 		if (p->sched_class->migrate_task_rq)
1253 			p->sched_class->migrate_task_rq(p);
1254 		p->se.nr_migrations++;
1255 		perf_event_task_migrate(p);
1256 	}
1257 
1258 	__set_task_cpu(p, new_cpu);
1259 }
1260 
1261 static void __migrate_swap_task(struct task_struct *p, int cpu)
1262 {
1263 	if (task_on_rq_queued(p)) {
1264 		struct rq *src_rq, *dst_rq;
1265 
1266 		src_rq = task_rq(p);
1267 		dst_rq = cpu_rq(cpu);
1268 
1269 		p->on_rq = TASK_ON_RQ_MIGRATING;
1270 		deactivate_task(src_rq, p, 0);
1271 		set_task_cpu(p, cpu);
1272 		activate_task(dst_rq, p, 0);
1273 		p->on_rq = TASK_ON_RQ_QUEUED;
1274 		check_preempt_curr(dst_rq, p, 0);
1275 	} else {
1276 		/*
1277 		 * Task isn't running anymore; make it appear like we migrated
1278 		 * it before it went to sleep. This means on wakeup we make the
1279 		 * previous cpu our target instead of where it really is.
1280 		 */
1281 		p->wake_cpu = cpu;
1282 	}
1283 }
1284 
1285 struct migration_swap_arg {
1286 	struct task_struct *src_task, *dst_task;
1287 	int src_cpu, dst_cpu;
1288 };
1289 
1290 static int migrate_swap_stop(void *data)
1291 {
1292 	struct migration_swap_arg *arg = data;
1293 	struct rq *src_rq, *dst_rq;
1294 	int ret = -EAGAIN;
1295 
1296 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 		return -EAGAIN;
1298 
1299 	src_rq = cpu_rq(arg->src_cpu);
1300 	dst_rq = cpu_rq(arg->dst_cpu);
1301 
1302 	double_raw_lock(&arg->src_task->pi_lock,
1303 			&arg->dst_task->pi_lock);
1304 	double_rq_lock(src_rq, dst_rq);
1305 
1306 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 		goto unlock;
1308 
1309 	if (task_cpu(arg->src_task) != arg->src_cpu)
1310 		goto unlock;
1311 
1312 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 		goto unlock;
1314 
1315 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 		goto unlock;
1317 
1318 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1320 
1321 	ret = 0;
1322 
1323 unlock:
1324 	double_rq_unlock(src_rq, dst_rq);
1325 	raw_spin_unlock(&arg->dst_task->pi_lock);
1326 	raw_spin_unlock(&arg->src_task->pi_lock);
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Cross migrate two tasks
1333  */
1334 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335 {
1336 	struct migration_swap_arg arg;
1337 	int ret = -EINVAL;
1338 
1339 	arg = (struct migration_swap_arg){
1340 		.src_task = cur,
1341 		.src_cpu = task_cpu(cur),
1342 		.dst_task = p,
1343 		.dst_cpu = task_cpu(p),
1344 	};
1345 
1346 	if (arg.src_cpu == arg.dst_cpu)
1347 		goto out;
1348 
1349 	/*
1350 	 * These three tests are all lockless; this is OK since all of them
1351 	 * will be re-checked with proper locks held further down the line.
1352 	 */
1353 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 		goto out;
1355 
1356 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 		goto out;
1358 
1359 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 		goto out;
1361 
1362 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364 
1365 out:
1366 	return ret;
1367 }
1368 
1369 /*
1370  * wait_task_inactive - wait for a thread to unschedule.
1371  *
1372  * If @match_state is nonzero, it's the @p->state value just checked and
1373  * not expected to change.  If it changes, i.e. @p might have woken up,
1374  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1375  * we return a positive number (its total switch count).  If a second call
1376  * a short while later returns the same number, the caller can be sure that
1377  * @p has remained unscheduled the whole time.
1378  *
1379  * The caller must ensure that the task *will* unschedule sometime soon,
1380  * else this function might spin for a *long* time. This function can't
1381  * be called with interrupts off, or it may introduce deadlock with
1382  * smp_call_function() if an IPI is sent by the same process we are
1383  * waiting to become inactive.
1384  */
1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386 {
1387 	int running, queued;
1388 	struct rq_flags rf;
1389 	unsigned long ncsw;
1390 	struct rq *rq;
1391 
1392 	for (;;) {
1393 		/*
1394 		 * We do the initial early heuristics without holding
1395 		 * any task-queue locks at all. We'll only try to get
1396 		 * the runqueue lock when things look like they will
1397 		 * work out!
1398 		 */
1399 		rq = task_rq(p);
1400 
1401 		/*
1402 		 * If the task is actively running on another CPU
1403 		 * still, just relax and busy-wait without holding
1404 		 * any locks.
1405 		 *
1406 		 * NOTE! Since we don't hold any locks, it's not
1407 		 * even sure that "rq" stays as the right runqueue!
1408 		 * But we don't care, since "task_running()" will
1409 		 * return false if the runqueue has changed and p
1410 		 * is actually now running somewhere else!
1411 		 */
1412 		while (task_running(rq, p)) {
1413 			if (match_state && unlikely(p->state != match_state))
1414 				return 0;
1415 			cpu_relax();
1416 		}
1417 
1418 		/*
1419 		 * Ok, time to look more closely! We need the rq
1420 		 * lock now, to be *sure*. If we're wrong, we'll
1421 		 * just go back and repeat.
1422 		 */
1423 		rq = task_rq_lock(p, &rf);
1424 		trace_sched_wait_task(p);
1425 		running = task_running(rq, p);
1426 		queued = task_on_rq_queued(p);
1427 		ncsw = 0;
1428 		if (!match_state || p->state == match_state)
1429 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430 		task_rq_unlock(rq, p, &rf);
1431 
1432 		/*
1433 		 * If it changed from the expected state, bail out now.
1434 		 */
1435 		if (unlikely(!ncsw))
1436 			break;
1437 
1438 		/*
1439 		 * Was it really running after all now that we
1440 		 * checked with the proper locks actually held?
1441 		 *
1442 		 * Oops. Go back and try again..
1443 		 */
1444 		if (unlikely(running)) {
1445 			cpu_relax();
1446 			continue;
1447 		}
1448 
1449 		/*
1450 		 * It's not enough that it's not actively running,
1451 		 * it must be off the runqueue _entirely_, and not
1452 		 * preempted!
1453 		 *
1454 		 * So if it was still runnable (but just not actively
1455 		 * running right now), it's preempted, and we should
1456 		 * yield - it could be a while.
1457 		 */
1458 		if (unlikely(queued)) {
1459 			ktime_t to = NSEC_PER_SEC / HZ;
1460 
1461 			set_current_state(TASK_UNINTERRUPTIBLE);
1462 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 			continue;
1464 		}
1465 
1466 		/*
1467 		 * Ahh, all good. It wasn't running, and it wasn't
1468 		 * runnable, which means that it will never become
1469 		 * running in the future either. We're all done!
1470 		 */
1471 		break;
1472 	}
1473 
1474 	return ncsw;
1475 }
1476 
1477 /***
1478  * kick_process - kick a running thread to enter/exit the kernel
1479  * @p: the to-be-kicked thread
1480  *
1481  * Cause a process which is running on another CPU to enter
1482  * kernel-mode, without any delay. (to get signals handled.)
1483  *
1484  * NOTE: this function doesn't have to take the runqueue lock,
1485  * because all it wants to ensure is that the remote task enters
1486  * the kernel. If the IPI races and the task has been migrated
1487  * to another CPU then no harm is done and the purpose has been
1488  * achieved as well.
1489  */
1490 void kick_process(struct task_struct *p)
1491 {
1492 	int cpu;
1493 
1494 	preempt_disable();
1495 	cpu = task_cpu(p);
1496 	if ((cpu != smp_processor_id()) && task_curr(p))
1497 		smp_send_reschedule(cpu);
1498 	preempt_enable();
1499 }
1500 EXPORT_SYMBOL_GPL(kick_process);
1501 
1502 /*
1503  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504  *
1505  * A few notes on cpu_active vs cpu_online:
1506  *
1507  *  - cpu_active must be a subset of cpu_online
1508  *
1509  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510  *    see __set_cpus_allowed_ptr(). At this point the newly online
1511  *    cpu isn't yet part of the sched domains, and balancing will not
1512  *    see it.
1513  *
1514  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1515  *    avoid the load balancer to place new tasks on the to be removed
1516  *    cpu. Existing tasks will remain running there and will be taken
1517  *    off.
1518  *
1519  * This means that fallback selection must not select !active CPUs.
1520  * And can assume that any active CPU must be online. Conversely
1521  * select_task_rq() below may allow selection of !active CPUs in order
1522  * to satisfy the above rules.
1523  */
1524 static int select_fallback_rq(int cpu, struct task_struct *p)
1525 {
1526 	int nid = cpu_to_node(cpu);
1527 	const struct cpumask *nodemask = NULL;
1528 	enum { cpuset, possible, fail } state = cpuset;
1529 	int dest_cpu;
1530 
1531 	/*
1532 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 	 * will return -1. There is no cpu on the node, and we should
1534 	 * select the cpu on the other node.
1535 	 */
1536 	if (nid != -1) {
1537 		nodemask = cpumask_of_node(nid);
1538 
1539 		/* Look for allowed, online CPU in same node. */
1540 		for_each_cpu(dest_cpu, nodemask) {
1541 			if (!cpu_active(dest_cpu))
1542 				continue;
1543 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 				return dest_cpu;
1545 		}
1546 	}
1547 
1548 	for (;;) {
1549 		/* Any allowed, online CPU? */
1550 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 				continue;
1553 			if (!cpu_online(dest_cpu))
1554 				continue;
1555 			goto out;
1556 		}
1557 
1558 		/* No more Mr. Nice Guy. */
1559 		switch (state) {
1560 		case cpuset:
1561 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 				cpuset_cpus_allowed_fallback(p);
1563 				state = possible;
1564 				break;
1565 			}
1566 			/* fall-through */
1567 		case possible:
1568 			do_set_cpus_allowed(p, cpu_possible_mask);
1569 			state = fail;
1570 			break;
1571 
1572 		case fail:
1573 			BUG();
1574 			break;
1575 		}
1576 	}
1577 
1578 out:
1579 	if (state != cpuset) {
1580 		/*
1581 		 * Don't tell them about moving exiting tasks or
1582 		 * kernel threads (both mm NULL), since they never
1583 		 * leave kernel.
1584 		 */
1585 		if (p->mm && printk_ratelimit()) {
1586 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 					task_pid_nr(p), p->comm, cpu);
1588 		}
1589 	}
1590 
1591 	return dest_cpu;
1592 }
1593 
1594 /*
1595  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596  */
1597 static inline
1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599 {
1600 	lockdep_assert_held(&p->pi_lock);
1601 
1602 	if (tsk_nr_cpus_allowed(p) > 1)
1603 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 	else
1605 		cpu = cpumask_any(tsk_cpus_allowed(p));
1606 
1607 	/*
1608 	 * In order not to call set_task_cpu() on a blocking task we need
1609 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 	 * cpu.
1611 	 *
1612 	 * Since this is common to all placement strategies, this lives here.
1613 	 *
1614 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 	 *   not worry about this generic constraint ]
1616 	 */
1617 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618 		     !cpu_online(cpu)))
1619 		cpu = select_fallback_rq(task_cpu(p), p);
1620 
1621 	return cpu;
1622 }
1623 
1624 static void update_avg(u64 *avg, u64 sample)
1625 {
1626 	s64 diff = sample - *avg;
1627 	*avg += diff >> 3;
1628 }
1629 
1630 #else
1631 
1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 					 const struct cpumask *new_mask, bool check)
1634 {
1635 	return set_cpus_allowed_ptr(p, new_mask);
1636 }
1637 
1638 #endif /* CONFIG_SMP */
1639 
1640 static void
1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642 {
1643 	struct rq *rq;
1644 
1645 	if (!schedstat_enabled())
1646 		return;
1647 
1648 	rq = this_rq();
1649 
1650 #ifdef CONFIG_SMP
1651 	if (cpu == rq->cpu) {
1652 		schedstat_inc(rq->ttwu_local);
1653 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1654 	} else {
1655 		struct sched_domain *sd;
1656 
1657 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658 		rcu_read_lock();
1659 		for_each_domain(rq->cpu, sd) {
1660 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661 				schedstat_inc(sd->ttwu_wake_remote);
1662 				break;
1663 			}
1664 		}
1665 		rcu_read_unlock();
1666 	}
1667 
1668 	if (wake_flags & WF_MIGRATED)
1669 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1670 #endif /* CONFIG_SMP */
1671 
1672 	schedstat_inc(rq->ttwu_count);
1673 	schedstat_inc(p->se.statistics.nr_wakeups);
1674 
1675 	if (wake_flags & WF_SYNC)
1676 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1677 }
1678 
1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680 {
1681 	activate_task(rq, p, en_flags);
1682 	p->on_rq = TASK_ON_RQ_QUEUED;
1683 
1684 	/* if a worker is waking up, notify workqueue */
1685 	if (p->flags & PF_WQ_WORKER)
1686 		wq_worker_waking_up(p, cpu_of(rq));
1687 }
1688 
1689 /*
1690  * Mark the task runnable and perform wakeup-preemption.
1691  */
1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 			   struct pin_cookie cookie)
1694 {
1695 	check_preempt_curr(rq, p, wake_flags);
1696 	p->state = TASK_RUNNING;
1697 	trace_sched_wakeup(p);
1698 
1699 #ifdef CONFIG_SMP
1700 	if (p->sched_class->task_woken) {
1701 		/*
1702 		 * Our task @p is fully woken up and running; so its safe to
1703 		 * drop the rq->lock, hereafter rq is only used for statistics.
1704 		 */
1705 		lockdep_unpin_lock(&rq->lock, cookie);
1706 		p->sched_class->task_woken(rq, p);
1707 		lockdep_repin_lock(&rq->lock, cookie);
1708 	}
1709 
1710 	if (rq->idle_stamp) {
1711 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1712 		u64 max = 2*rq->max_idle_balance_cost;
1713 
1714 		update_avg(&rq->avg_idle, delta);
1715 
1716 		if (rq->avg_idle > max)
1717 			rq->avg_idle = max;
1718 
1719 		rq->idle_stamp = 0;
1720 	}
1721 #endif
1722 }
1723 
1724 static void
1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 		 struct pin_cookie cookie)
1727 {
1728 	int en_flags = ENQUEUE_WAKEUP;
1729 
1730 	lockdep_assert_held(&rq->lock);
1731 
1732 #ifdef CONFIG_SMP
1733 	if (p->sched_contributes_to_load)
1734 		rq->nr_uninterruptible--;
1735 
1736 	if (wake_flags & WF_MIGRATED)
1737 		en_flags |= ENQUEUE_MIGRATED;
1738 #endif
1739 
1740 	ttwu_activate(rq, p, en_flags);
1741 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742 }
1743 
1744 /*
1745  * Called in case the task @p isn't fully descheduled from its runqueue,
1746  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747  * since all we need to do is flip p->state to TASK_RUNNING, since
1748  * the task is still ->on_rq.
1749  */
1750 static int ttwu_remote(struct task_struct *p, int wake_flags)
1751 {
1752 	struct rq_flags rf;
1753 	struct rq *rq;
1754 	int ret = 0;
1755 
1756 	rq = __task_rq_lock(p, &rf);
1757 	if (task_on_rq_queued(p)) {
1758 		/* check_preempt_curr() may use rq clock */
1759 		update_rq_clock(rq);
1760 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761 		ret = 1;
1762 	}
1763 	__task_rq_unlock(rq, &rf);
1764 
1765 	return ret;
1766 }
1767 
1768 #ifdef CONFIG_SMP
1769 void sched_ttwu_pending(void)
1770 {
1771 	struct rq *rq = this_rq();
1772 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 	struct pin_cookie cookie;
1774 	struct task_struct *p;
1775 	unsigned long flags;
1776 
1777 	if (!llist)
1778 		return;
1779 
1780 	raw_spin_lock_irqsave(&rq->lock, flags);
1781 	cookie = lockdep_pin_lock(&rq->lock);
1782 
1783 	while (llist) {
1784 		int wake_flags = 0;
1785 
1786 		p = llist_entry(llist, struct task_struct, wake_entry);
1787 		llist = llist_next(llist);
1788 
1789 		if (p->sched_remote_wakeup)
1790 			wake_flags = WF_MIGRATED;
1791 
1792 		ttwu_do_activate(rq, p, wake_flags, cookie);
1793 	}
1794 
1795 	lockdep_unpin_lock(&rq->lock, cookie);
1796 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1797 }
1798 
1799 void scheduler_ipi(void)
1800 {
1801 	/*
1802 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 	 * this IPI.
1805 	 */
1806 	preempt_fold_need_resched();
1807 
1808 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 		return;
1810 
1811 	/*
1812 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 	 * traditionally all their work was done from the interrupt return
1814 	 * path. Now that we actually do some work, we need to make sure
1815 	 * we do call them.
1816 	 *
1817 	 * Some archs already do call them, luckily irq_enter/exit nest
1818 	 * properly.
1819 	 *
1820 	 * Arguably we should visit all archs and update all handlers,
1821 	 * however a fair share of IPIs are still resched only so this would
1822 	 * somewhat pessimize the simple resched case.
1823 	 */
1824 	irq_enter();
1825 	sched_ttwu_pending();
1826 
1827 	/*
1828 	 * Check if someone kicked us for doing the nohz idle load balance.
1829 	 */
1830 	if (unlikely(got_nohz_idle_kick())) {
1831 		this_rq()->idle_balance = 1;
1832 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 	}
1834 	irq_exit();
1835 }
1836 
1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838 {
1839 	struct rq *rq = cpu_rq(cpu);
1840 
1841 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842 
1843 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 		if (!set_nr_if_polling(rq->idle))
1845 			smp_send_reschedule(cpu);
1846 		else
1847 			trace_sched_wake_idle_without_ipi(cpu);
1848 	}
1849 }
1850 
1851 void wake_up_if_idle(int cpu)
1852 {
1853 	struct rq *rq = cpu_rq(cpu);
1854 	unsigned long flags;
1855 
1856 	rcu_read_lock();
1857 
1858 	if (!is_idle_task(rcu_dereference(rq->curr)))
1859 		goto out;
1860 
1861 	if (set_nr_if_polling(rq->idle)) {
1862 		trace_sched_wake_idle_without_ipi(cpu);
1863 	} else {
1864 		raw_spin_lock_irqsave(&rq->lock, flags);
1865 		if (is_idle_task(rq->curr))
1866 			smp_send_reschedule(cpu);
1867 		/* Else cpu is not in idle, do nothing here */
1868 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 	}
1870 
1871 out:
1872 	rcu_read_unlock();
1873 }
1874 
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880 
1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882 {
1883 	struct rq *rq = cpu_rq(cpu);
1884 	struct pin_cookie cookie;
1885 
1886 #if defined(CONFIG_SMP)
1887 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889 		ttwu_queue_remote(p, cpu, wake_flags);
1890 		return;
1891 	}
1892 #endif
1893 
1894 	raw_spin_lock(&rq->lock);
1895 	cookie = lockdep_pin_lock(&rq->lock);
1896 	ttwu_do_activate(rq, p, wake_flags, cookie);
1897 	lockdep_unpin_lock(&rq->lock, cookie);
1898 	raw_spin_unlock(&rq->lock);
1899 }
1900 
1901 /*
1902  * Notes on Program-Order guarantees on SMP systems.
1903  *
1904  *  MIGRATION
1905  *
1906  * The basic program-order guarantee on SMP systems is that when a task [t]
1907  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908  * execution on its new cpu [c1].
1909  *
1910  * For migration (of runnable tasks) this is provided by the following means:
1911  *
1912  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1913  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1914  *     rq(c1)->lock (if not at the same time, then in that order).
1915  *  C) LOCK of the rq(c1)->lock scheduling in task
1916  *
1917  * Transitivity guarantees that B happens after A and C after B.
1918  * Note: we only require RCpc transitivity.
1919  * Note: the cpu doing B need not be c0 or c1
1920  *
1921  * Example:
1922  *
1923  *   CPU0            CPU1            CPU2
1924  *
1925  *   LOCK rq(0)->lock
1926  *   sched-out X
1927  *   sched-in Y
1928  *   UNLOCK rq(0)->lock
1929  *
1930  *                                   LOCK rq(0)->lock // orders against CPU0
1931  *                                   dequeue X
1932  *                                   UNLOCK rq(0)->lock
1933  *
1934  *                                   LOCK rq(1)->lock
1935  *                                   enqueue X
1936  *                                   UNLOCK rq(1)->lock
1937  *
1938  *                   LOCK rq(1)->lock // orders against CPU2
1939  *                   sched-out Z
1940  *                   sched-in X
1941  *                   UNLOCK rq(1)->lock
1942  *
1943  *
1944  *  BLOCKING -- aka. SLEEP + WAKEUP
1945  *
1946  * For blocking we (obviously) need to provide the same guarantee as for
1947  * migration. However the means are completely different as there is no lock
1948  * chain to provide order. Instead we do:
1949  *
1950  *   1) smp_store_release(X->on_cpu, 0)
1951  *   2) smp_cond_load_acquire(!X->on_cpu)
1952  *
1953  * Example:
1954  *
1955  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1956  *
1957  *   LOCK rq(0)->lock LOCK X->pi_lock
1958  *   dequeue X
1959  *   sched-out X
1960  *   smp_store_release(X->on_cpu, 0);
1961  *
1962  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1963  *                    X->state = WAKING
1964  *                    set_task_cpu(X,2)
1965  *
1966  *                    LOCK rq(2)->lock
1967  *                    enqueue X
1968  *                    X->state = RUNNING
1969  *                    UNLOCK rq(2)->lock
1970  *
1971  *                                          LOCK rq(2)->lock // orders against CPU1
1972  *                                          sched-out Z
1973  *                                          sched-in X
1974  *                                          UNLOCK rq(2)->lock
1975  *
1976  *                    UNLOCK X->pi_lock
1977  *   UNLOCK rq(0)->lock
1978  *
1979  *
1980  * However; for wakeups there is a second guarantee we must provide, namely we
1981  * must observe the state that lead to our wakeup. That is, not only must our
1982  * task observe its own prior state, it must also observe the stores prior to
1983  * its wakeup.
1984  *
1985  * This means that any means of doing remote wakeups must order the CPU doing
1986  * the wakeup against the CPU the task is going to end up running on. This,
1987  * however, is already required for the regular Program-Order guarantee above,
1988  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989  *
1990  */
1991 
1992 /**
1993  * try_to_wake_up - wake up a thread
1994  * @p: the thread to be awakened
1995  * @state: the mask of task states that can be woken
1996  * @wake_flags: wake modifier flags (WF_*)
1997  *
1998  * If (@state & @p->state) @p->state = TASK_RUNNING.
1999  *
2000  * If the task was not queued/runnable, also place it back on a runqueue.
2001  *
2002  * Atomic against schedule() which would dequeue a task, also see
2003  * set_current_state().
2004  *
2005  * Return: %true if @p->state changes (an actual wakeup was done),
2006  *	   %false otherwise.
2007  */
2008 static int
2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2010 {
2011 	unsigned long flags;
2012 	int cpu, success = 0;
2013 
2014 	/*
2015 	 * If we are going to wake up a thread waiting for CONDITION we
2016 	 * need to ensure that CONDITION=1 done by the caller can not be
2017 	 * reordered with p->state check below. This pairs with mb() in
2018 	 * set_current_state() the waiting thread does.
2019 	 */
2020 	smp_mb__before_spinlock();
2021 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 	if (!(p->state & state))
2023 		goto out;
2024 
2025 	trace_sched_waking(p);
2026 
2027 	success = 1; /* we're going to change ->state */
2028 	cpu = task_cpu(p);
2029 
2030 	/*
2031 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 	 * in smp_cond_load_acquire() below.
2034 	 *
2035 	 * sched_ttwu_pending()                 try_to_wake_up()
2036 	 *   [S] p->on_rq = 1;                  [L] P->state
2037 	 *       UNLOCK rq->lock  -----.
2038 	 *                              \
2039 	 *				 +---   RMB
2040 	 * schedule()                   /
2041 	 *       LOCK rq->lock    -----'
2042 	 *       UNLOCK rq->lock
2043 	 *
2044 	 * [task p]
2045 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2046 	 *
2047 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 	 * last wakeup of our task and the schedule that got our task
2049 	 * current.
2050 	 */
2051 	smp_rmb();
2052 	if (p->on_rq && ttwu_remote(p, wake_flags))
2053 		goto stat;
2054 
2055 #ifdef CONFIG_SMP
2056 	/*
2057 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 	 * possible to, falsely, observe p->on_cpu == 0.
2059 	 *
2060 	 * One must be running (->on_cpu == 1) in order to remove oneself
2061 	 * from the runqueue.
2062 	 *
2063 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2064 	 *      UNLOCK rq->lock
2065 	 *			RMB
2066 	 *      LOCK   rq->lock
2067 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2068 	 *
2069 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 	 * from the consecutive calls to schedule(); the first switching to our
2071 	 * task, the second putting it to sleep.
2072 	 */
2073 	smp_rmb();
2074 
2075 	/*
2076 	 * If the owning (remote) cpu is still in the middle of schedule() with
2077 	 * this task as prev, wait until its done referencing the task.
2078 	 *
2079 	 * Pairs with the smp_store_release() in finish_lock_switch().
2080 	 *
2081 	 * This ensures that tasks getting woken will be fully ordered against
2082 	 * their previous state and preserve Program Order.
2083 	 */
2084 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2085 
2086 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 	p->state = TASK_WAKING;
2088 
2089 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 	if (task_cpu(p) != cpu) {
2091 		wake_flags |= WF_MIGRATED;
2092 		set_task_cpu(p, cpu);
2093 	}
2094 #endif /* CONFIG_SMP */
2095 
2096 	ttwu_queue(p, cpu, wake_flags);
2097 stat:
2098 	ttwu_stat(p, cpu, wake_flags);
2099 out:
2100 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2101 
2102 	return success;
2103 }
2104 
2105 /**
2106  * try_to_wake_up_local - try to wake up a local task with rq lock held
2107  * @p: the thread to be awakened
2108  * @cookie: context's cookie for pinning
2109  *
2110  * Put @p on the run-queue if it's not already there. The caller must
2111  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112  * the current task.
2113  */
2114 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2115 {
2116 	struct rq *rq = task_rq(p);
2117 
2118 	if (WARN_ON_ONCE(rq != this_rq()) ||
2119 	    WARN_ON_ONCE(p == current))
2120 		return;
2121 
2122 	lockdep_assert_held(&rq->lock);
2123 
2124 	if (!raw_spin_trylock(&p->pi_lock)) {
2125 		/*
2126 		 * This is OK, because current is on_cpu, which avoids it being
2127 		 * picked for load-balance and preemption/IRQs are still
2128 		 * disabled avoiding further scheduler activity on it and we've
2129 		 * not yet picked a replacement task.
2130 		 */
2131 		lockdep_unpin_lock(&rq->lock, cookie);
2132 		raw_spin_unlock(&rq->lock);
2133 		raw_spin_lock(&p->pi_lock);
2134 		raw_spin_lock(&rq->lock);
2135 		lockdep_repin_lock(&rq->lock, cookie);
2136 	}
2137 
2138 	if (!(p->state & TASK_NORMAL))
2139 		goto out;
2140 
2141 	trace_sched_waking(p);
2142 
2143 	if (!task_on_rq_queued(p))
2144 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145 
2146 	ttwu_do_wakeup(rq, p, 0, cookie);
2147 	ttwu_stat(p, smp_processor_id(), 0);
2148 out:
2149 	raw_spin_unlock(&p->pi_lock);
2150 }
2151 
2152 /**
2153  * wake_up_process - Wake up a specific process
2154  * @p: The process to be woken up.
2155  *
2156  * Attempt to wake up the nominated process and move it to the set of runnable
2157  * processes.
2158  *
2159  * Return: 1 if the process was woken up, 0 if it was already running.
2160  *
2161  * It may be assumed that this function implies a write memory barrier before
2162  * changing the task state if and only if any tasks are woken up.
2163  */
2164 int wake_up_process(struct task_struct *p)
2165 {
2166 	return try_to_wake_up(p, TASK_NORMAL, 0);
2167 }
2168 EXPORT_SYMBOL(wake_up_process);
2169 
2170 int wake_up_state(struct task_struct *p, unsigned int state)
2171 {
2172 	return try_to_wake_up(p, state, 0);
2173 }
2174 
2175 /*
2176  * This function clears the sched_dl_entity static params.
2177  */
2178 void __dl_clear_params(struct task_struct *p)
2179 {
2180 	struct sched_dl_entity *dl_se = &p->dl;
2181 
2182 	dl_se->dl_runtime = 0;
2183 	dl_se->dl_deadline = 0;
2184 	dl_se->dl_period = 0;
2185 	dl_se->flags = 0;
2186 	dl_se->dl_bw = 0;
2187 
2188 	dl_se->dl_throttled = 0;
2189 	dl_se->dl_yielded = 0;
2190 }
2191 
2192 /*
2193  * Perform scheduler related setup for a newly forked process p.
2194  * p is forked by current.
2195  *
2196  * __sched_fork() is basic setup used by init_idle() too:
2197  */
2198 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199 {
2200 	p->on_rq			= 0;
2201 
2202 	p->se.on_rq			= 0;
2203 	p->se.exec_start		= 0;
2204 	p->se.sum_exec_runtime		= 0;
2205 	p->se.prev_sum_exec_runtime	= 0;
2206 	p->se.nr_migrations		= 0;
2207 	p->se.vruntime			= 0;
2208 	INIT_LIST_HEAD(&p->se.group_node);
2209 
2210 #ifdef CONFIG_FAIR_GROUP_SCHED
2211 	p->se.cfs_rq			= NULL;
2212 #endif
2213 
2214 #ifdef CONFIG_SCHEDSTATS
2215 	/* Even if schedstat is disabled, there should not be garbage */
2216 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217 #endif
2218 
2219 	RB_CLEAR_NODE(&p->dl.rb_node);
2220 	init_dl_task_timer(&p->dl);
2221 	__dl_clear_params(p);
2222 
2223 	INIT_LIST_HEAD(&p->rt.run_list);
2224 	p->rt.timeout		= 0;
2225 	p->rt.time_slice	= sched_rr_timeslice;
2226 	p->rt.on_rq		= 0;
2227 	p->rt.on_list		= 0;
2228 
2229 #ifdef CONFIG_PREEMPT_NOTIFIERS
2230 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2231 #endif
2232 
2233 #ifdef CONFIG_NUMA_BALANCING
2234 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2235 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2236 		p->mm->numa_scan_seq = 0;
2237 	}
2238 
2239 	if (clone_flags & CLONE_VM)
2240 		p->numa_preferred_nid = current->numa_preferred_nid;
2241 	else
2242 		p->numa_preferred_nid = -1;
2243 
2244 	p->node_stamp = 0ULL;
2245 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2246 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2247 	p->numa_work.next = &p->numa_work;
2248 	p->numa_faults = NULL;
2249 	p->last_task_numa_placement = 0;
2250 	p->last_sum_exec_runtime = 0;
2251 
2252 	p->numa_group = NULL;
2253 #endif /* CONFIG_NUMA_BALANCING */
2254 }
2255 
2256 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257 
2258 #ifdef CONFIG_NUMA_BALANCING
2259 
2260 void set_numabalancing_state(bool enabled)
2261 {
2262 	if (enabled)
2263 		static_branch_enable(&sched_numa_balancing);
2264 	else
2265 		static_branch_disable(&sched_numa_balancing);
2266 }
2267 
2268 #ifdef CONFIG_PROC_SYSCTL
2269 int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2271 {
2272 	struct ctl_table t;
2273 	int err;
2274 	int state = static_branch_likely(&sched_numa_balancing);
2275 
2276 	if (write && !capable(CAP_SYS_ADMIN))
2277 		return -EPERM;
2278 
2279 	t = *table;
2280 	t.data = &state;
2281 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 	if (err < 0)
2283 		return err;
2284 	if (write)
2285 		set_numabalancing_state(state);
2286 	return err;
2287 }
2288 #endif
2289 #endif
2290 
2291 #ifdef CONFIG_SCHEDSTATS
2292 
2293 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2294 static bool __initdata __sched_schedstats = false;
2295 
2296 static void set_schedstats(bool enabled)
2297 {
2298 	if (enabled)
2299 		static_branch_enable(&sched_schedstats);
2300 	else
2301 		static_branch_disable(&sched_schedstats);
2302 }
2303 
2304 void force_schedstat_enabled(void)
2305 {
2306 	if (!schedstat_enabled()) {
2307 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 		static_branch_enable(&sched_schedstats);
2309 	}
2310 }
2311 
2312 static int __init setup_schedstats(char *str)
2313 {
2314 	int ret = 0;
2315 	if (!str)
2316 		goto out;
2317 
2318 	/*
2319 	 * This code is called before jump labels have been set up, so we can't
2320 	 * change the static branch directly just yet.  Instead set a temporary
2321 	 * variable so init_schedstats() can do it later.
2322 	 */
2323 	if (!strcmp(str, "enable")) {
2324 		__sched_schedstats = true;
2325 		ret = 1;
2326 	} else if (!strcmp(str, "disable")) {
2327 		__sched_schedstats = false;
2328 		ret = 1;
2329 	}
2330 out:
2331 	if (!ret)
2332 		pr_warn("Unable to parse schedstats=\n");
2333 
2334 	return ret;
2335 }
2336 __setup("schedstats=", setup_schedstats);
2337 
2338 static void __init init_schedstats(void)
2339 {
2340 	set_schedstats(__sched_schedstats);
2341 }
2342 
2343 #ifdef CONFIG_PROC_SYSCTL
2344 int sysctl_schedstats(struct ctl_table *table, int write,
2345 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2346 {
2347 	struct ctl_table t;
2348 	int err;
2349 	int state = static_branch_likely(&sched_schedstats);
2350 
2351 	if (write && !capable(CAP_SYS_ADMIN))
2352 		return -EPERM;
2353 
2354 	t = *table;
2355 	t.data = &state;
2356 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 	if (err < 0)
2358 		return err;
2359 	if (write)
2360 		set_schedstats(state);
2361 	return err;
2362 }
2363 #endif /* CONFIG_PROC_SYSCTL */
2364 #else  /* !CONFIG_SCHEDSTATS */
2365 static inline void init_schedstats(void) {}
2366 #endif /* CONFIG_SCHEDSTATS */
2367 
2368 /*
2369  * fork()/clone()-time setup:
2370  */
2371 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2372 {
2373 	unsigned long flags;
2374 	int cpu = get_cpu();
2375 
2376 	__sched_fork(clone_flags, p);
2377 	/*
2378 	 * We mark the process as NEW here. This guarantees that
2379 	 * nobody will actually run it, and a signal or other external
2380 	 * event cannot wake it up and insert it on the runqueue either.
2381 	 */
2382 	p->state = TASK_NEW;
2383 
2384 	/*
2385 	 * Make sure we do not leak PI boosting priority to the child.
2386 	 */
2387 	p->prio = current->normal_prio;
2388 
2389 	/*
2390 	 * Revert to default priority/policy on fork if requested.
2391 	 */
2392 	if (unlikely(p->sched_reset_on_fork)) {
2393 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2394 			p->policy = SCHED_NORMAL;
2395 			p->static_prio = NICE_TO_PRIO(0);
2396 			p->rt_priority = 0;
2397 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 			p->static_prio = NICE_TO_PRIO(0);
2399 
2400 		p->prio = p->normal_prio = __normal_prio(p);
2401 		set_load_weight(p);
2402 
2403 		/*
2404 		 * We don't need the reset flag anymore after the fork. It has
2405 		 * fulfilled its duty:
2406 		 */
2407 		p->sched_reset_on_fork = 0;
2408 	}
2409 
2410 	if (dl_prio(p->prio)) {
2411 		put_cpu();
2412 		return -EAGAIN;
2413 	} else if (rt_prio(p->prio)) {
2414 		p->sched_class = &rt_sched_class;
2415 	} else {
2416 		p->sched_class = &fair_sched_class;
2417 	}
2418 
2419 	init_entity_runnable_average(&p->se);
2420 
2421 	/*
2422 	 * The child is not yet in the pid-hash so no cgroup attach races,
2423 	 * and the cgroup is pinned to this child due to cgroup_fork()
2424 	 * is ran before sched_fork().
2425 	 *
2426 	 * Silence PROVE_RCU.
2427 	 */
2428 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2429 	/*
2430 	 * We're setting the cpu for the first time, we don't migrate,
2431 	 * so use __set_task_cpu().
2432 	 */
2433 	__set_task_cpu(p, cpu);
2434 	if (p->sched_class->task_fork)
2435 		p->sched_class->task_fork(p);
2436 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2437 
2438 #ifdef CONFIG_SCHED_INFO
2439 	if (likely(sched_info_on()))
2440 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2441 #endif
2442 #if defined(CONFIG_SMP)
2443 	p->on_cpu = 0;
2444 #endif
2445 	init_task_preempt_count(p);
2446 #ifdef CONFIG_SMP
2447 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2448 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2449 #endif
2450 
2451 	put_cpu();
2452 	return 0;
2453 }
2454 
2455 unsigned long to_ratio(u64 period, u64 runtime)
2456 {
2457 	if (runtime == RUNTIME_INF)
2458 		return 1ULL << 20;
2459 
2460 	/*
2461 	 * Doing this here saves a lot of checks in all
2462 	 * the calling paths, and returning zero seems
2463 	 * safe for them anyway.
2464 	 */
2465 	if (period == 0)
2466 		return 0;
2467 
2468 	return div64_u64(runtime << 20, period);
2469 }
2470 
2471 #ifdef CONFIG_SMP
2472 inline struct dl_bw *dl_bw_of(int i)
2473 {
2474 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 			 "sched RCU must be held");
2476 	return &cpu_rq(i)->rd->dl_bw;
2477 }
2478 
2479 static inline int dl_bw_cpus(int i)
2480 {
2481 	struct root_domain *rd = cpu_rq(i)->rd;
2482 	int cpus = 0;
2483 
2484 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 			 "sched RCU must be held");
2486 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 		cpus++;
2488 
2489 	return cpus;
2490 }
2491 #else
2492 inline struct dl_bw *dl_bw_of(int i)
2493 {
2494 	return &cpu_rq(i)->dl.dl_bw;
2495 }
2496 
2497 static inline int dl_bw_cpus(int i)
2498 {
2499 	return 1;
2500 }
2501 #endif
2502 
2503 /*
2504  * We must be sure that accepting a new task (or allowing changing the
2505  * parameters of an existing one) is consistent with the bandwidth
2506  * constraints. If yes, this function also accordingly updates the currently
2507  * allocated bandwidth to reflect the new situation.
2508  *
2509  * This function is called while holding p's rq->lock.
2510  *
2511  * XXX we should delay bw change until the task's 0-lag point, see
2512  * __setparam_dl().
2513  */
2514 static int dl_overflow(struct task_struct *p, int policy,
2515 		       const struct sched_attr *attr)
2516 {
2517 
2518 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519 	u64 period = attr->sched_period ?: attr->sched_deadline;
2520 	u64 runtime = attr->sched_runtime;
2521 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522 	int cpus, err = -1;
2523 
2524 	/* !deadline task may carry old deadline bandwidth */
2525 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2526 		return 0;
2527 
2528 	/*
2529 	 * Either if a task, enters, leave, or stays -deadline but changes
2530 	 * its parameters, we may need to update accordingly the total
2531 	 * allocated bandwidth of the container.
2532 	 */
2533 	raw_spin_lock(&dl_b->lock);
2534 	cpus = dl_bw_cpus(task_cpu(p));
2535 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 		__dl_add(dl_b, new_bw);
2538 		err = 0;
2539 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 		__dl_clear(dl_b, p->dl.dl_bw);
2542 		__dl_add(dl_b, new_bw);
2543 		err = 0;
2544 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 		__dl_clear(dl_b, p->dl.dl_bw);
2546 		err = 0;
2547 	}
2548 	raw_spin_unlock(&dl_b->lock);
2549 
2550 	return err;
2551 }
2552 
2553 extern void init_dl_bw(struct dl_bw *dl_b);
2554 
2555 /*
2556  * wake_up_new_task - wake up a newly created task for the first time.
2557  *
2558  * This function will do some initial scheduler statistics housekeeping
2559  * that must be done for every newly created context, then puts the task
2560  * on the runqueue and wakes it.
2561  */
2562 void wake_up_new_task(struct task_struct *p)
2563 {
2564 	struct rq_flags rf;
2565 	struct rq *rq;
2566 
2567 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2568 	p->state = TASK_RUNNING;
2569 #ifdef CONFIG_SMP
2570 	/*
2571 	 * Fork balancing, do it here and not earlier because:
2572 	 *  - cpus_allowed can change in the fork path
2573 	 *  - any previously selected cpu might disappear through hotplug
2574 	 *
2575 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 	 * as we're not fully set-up yet.
2577 	 */
2578 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2579 #endif
2580 	rq = __task_rq_lock(p, &rf);
2581 	post_init_entity_util_avg(&p->se);
2582 
2583 	activate_task(rq, p, 0);
2584 	p->on_rq = TASK_ON_RQ_QUEUED;
2585 	trace_sched_wakeup_new(p);
2586 	check_preempt_curr(rq, p, WF_FORK);
2587 #ifdef CONFIG_SMP
2588 	if (p->sched_class->task_woken) {
2589 		/*
2590 		 * Nothing relies on rq->lock after this, so its fine to
2591 		 * drop it.
2592 		 */
2593 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2594 		p->sched_class->task_woken(rq, p);
2595 		lockdep_repin_lock(&rq->lock, rf.cookie);
2596 	}
2597 #endif
2598 	task_rq_unlock(rq, p, &rf);
2599 }
2600 
2601 #ifdef CONFIG_PREEMPT_NOTIFIERS
2602 
2603 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604 
2605 void preempt_notifier_inc(void)
2606 {
2607 	static_key_slow_inc(&preempt_notifier_key);
2608 }
2609 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610 
2611 void preempt_notifier_dec(void)
2612 {
2613 	static_key_slow_dec(&preempt_notifier_key);
2614 }
2615 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616 
2617 /**
2618  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2619  * @notifier: notifier struct to register
2620  */
2621 void preempt_notifier_register(struct preempt_notifier *notifier)
2622 {
2623 	if (!static_key_false(&preempt_notifier_key))
2624 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625 
2626 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627 }
2628 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629 
2630 /**
2631  * preempt_notifier_unregister - no longer interested in preemption notifications
2632  * @notifier: notifier struct to unregister
2633  *
2634  * This is *not* safe to call from within a preemption notifier.
2635  */
2636 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637 {
2638 	hlist_del(&notifier->link);
2639 }
2640 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641 
2642 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643 {
2644 	struct preempt_notifier *notifier;
2645 
2646 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2647 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648 }
2649 
2650 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651 {
2652 	if (static_key_false(&preempt_notifier_key))
2653 		__fire_sched_in_preempt_notifiers(curr);
2654 }
2655 
2656 static void
2657 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 				   struct task_struct *next)
2659 {
2660 	struct preempt_notifier *notifier;
2661 
2662 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2663 		notifier->ops->sched_out(notifier, next);
2664 }
2665 
2666 static __always_inline void
2667 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 				 struct task_struct *next)
2669 {
2670 	if (static_key_false(&preempt_notifier_key))
2671 		__fire_sched_out_preempt_notifiers(curr, next);
2672 }
2673 
2674 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2675 
2676 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2677 {
2678 }
2679 
2680 static inline void
2681 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 				 struct task_struct *next)
2683 {
2684 }
2685 
2686 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2687 
2688 /**
2689  * prepare_task_switch - prepare to switch tasks
2690  * @rq: the runqueue preparing to switch
2691  * @prev: the current task that is being switched out
2692  * @next: the task we are going to switch to.
2693  *
2694  * This is called with the rq lock held and interrupts off. It must
2695  * be paired with a subsequent finish_task_switch after the context
2696  * switch.
2697  *
2698  * prepare_task_switch sets up locking and calls architecture specific
2699  * hooks.
2700  */
2701 static inline void
2702 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703 		    struct task_struct *next)
2704 {
2705 	sched_info_switch(rq, prev, next);
2706 	perf_event_task_sched_out(prev, next);
2707 	fire_sched_out_preempt_notifiers(prev, next);
2708 	prepare_lock_switch(rq, next);
2709 	prepare_arch_switch(next);
2710 }
2711 
2712 /**
2713  * finish_task_switch - clean up after a task-switch
2714  * @prev: the thread we just switched away from.
2715  *
2716  * finish_task_switch must be called after the context switch, paired
2717  * with a prepare_task_switch call before the context switch.
2718  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719  * and do any other architecture-specific cleanup actions.
2720  *
2721  * Note that we may have delayed dropping an mm in context_switch(). If
2722  * so, we finish that here outside of the runqueue lock. (Doing it
2723  * with the lock held can cause deadlocks; see schedule() for
2724  * details.)
2725  *
2726  * The context switch have flipped the stack from under us and restored the
2727  * local variables which were saved when this task called schedule() in the
2728  * past. prev == current is still correct but we need to recalculate this_rq
2729  * because prev may have moved to another CPU.
2730  */
2731 static struct rq *finish_task_switch(struct task_struct *prev)
2732 	__releases(rq->lock)
2733 {
2734 	struct rq *rq = this_rq();
2735 	struct mm_struct *mm = rq->prev_mm;
2736 	long prev_state;
2737 
2738 	/*
2739 	 * The previous task will have left us with a preempt_count of 2
2740 	 * because it left us after:
2741 	 *
2742 	 *	schedule()
2743 	 *	  preempt_disable();			// 1
2744 	 *	  __schedule()
2745 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2746 	 *
2747 	 * Also, see FORK_PREEMPT_COUNT.
2748 	 */
2749 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750 		      "corrupted preempt_count: %s/%d/0x%x\n",
2751 		      current->comm, current->pid, preempt_count()))
2752 		preempt_count_set(FORK_PREEMPT_COUNT);
2753 
2754 	rq->prev_mm = NULL;
2755 
2756 	/*
2757 	 * A task struct has one reference for the use as "current".
2758 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2759 	 * schedule one last time. The schedule call will never return, and
2760 	 * the scheduled task must drop that reference.
2761 	 *
2762 	 * We must observe prev->state before clearing prev->on_cpu (in
2763 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2765 	 * transition, resulting in a double drop.
2766 	 */
2767 	prev_state = prev->state;
2768 	vtime_task_switch(prev);
2769 	perf_event_task_sched_in(prev, current);
2770 	finish_lock_switch(rq, prev);
2771 	finish_arch_post_lock_switch();
2772 
2773 	fire_sched_in_preempt_notifiers(current);
2774 	if (mm)
2775 		mmdrop(mm);
2776 	if (unlikely(prev_state == TASK_DEAD)) {
2777 		if (prev->sched_class->task_dead)
2778 			prev->sched_class->task_dead(prev);
2779 
2780 		/*
2781 		 * Remove function-return probe instances associated with this
2782 		 * task and put them back on the free list.
2783 		 */
2784 		kprobe_flush_task(prev);
2785 
2786 		/* Task is done with its stack. */
2787 		put_task_stack(prev);
2788 
2789 		put_task_struct(prev);
2790 	}
2791 
2792 	tick_nohz_task_switch();
2793 	return rq;
2794 }
2795 
2796 #ifdef CONFIG_SMP
2797 
2798 /* rq->lock is NOT held, but preemption is disabled */
2799 static void __balance_callback(struct rq *rq)
2800 {
2801 	struct callback_head *head, *next;
2802 	void (*func)(struct rq *rq);
2803 	unsigned long flags;
2804 
2805 	raw_spin_lock_irqsave(&rq->lock, flags);
2806 	head = rq->balance_callback;
2807 	rq->balance_callback = NULL;
2808 	while (head) {
2809 		func = (void (*)(struct rq *))head->func;
2810 		next = head->next;
2811 		head->next = NULL;
2812 		head = next;
2813 
2814 		func(rq);
2815 	}
2816 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2817 }
2818 
2819 static inline void balance_callback(struct rq *rq)
2820 {
2821 	if (unlikely(rq->balance_callback))
2822 		__balance_callback(rq);
2823 }
2824 
2825 #else
2826 
2827 static inline void balance_callback(struct rq *rq)
2828 {
2829 }
2830 
2831 #endif
2832 
2833 /**
2834  * schedule_tail - first thing a freshly forked thread must call.
2835  * @prev: the thread we just switched away from.
2836  */
2837 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2838 	__releases(rq->lock)
2839 {
2840 	struct rq *rq;
2841 
2842 	/*
2843 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844 	 * finish_task_switch() for details.
2845 	 *
2846 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847 	 * and the preempt_enable() will end up enabling preemption (on
2848 	 * PREEMPT_COUNT kernels).
2849 	 */
2850 
2851 	rq = finish_task_switch(prev);
2852 	balance_callback(rq);
2853 	preempt_enable();
2854 
2855 	if (current->set_child_tid)
2856 		put_user(task_pid_vnr(current), current->set_child_tid);
2857 }
2858 
2859 /*
2860  * context_switch - switch to the new MM and the new thread's register state.
2861  */
2862 static __always_inline struct rq *
2863 context_switch(struct rq *rq, struct task_struct *prev,
2864 	       struct task_struct *next, struct pin_cookie cookie)
2865 {
2866 	struct mm_struct *mm, *oldmm;
2867 
2868 	prepare_task_switch(rq, prev, next);
2869 
2870 	mm = next->mm;
2871 	oldmm = prev->active_mm;
2872 	/*
2873 	 * For paravirt, this is coupled with an exit in switch_to to
2874 	 * combine the page table reload and the switch backend into
2875 	 * one hypercall.
2876 	 */
2877 	arch_start_context_switch(prev);
2878 
2879 	if (!mm) {
2880 		next->active_mm = oldmm;
2881 		atomic_inc(&oldmm->mm_count);
2882 		enter_lazy_tlb(oldmm, next);
2883 	} else
2884 		switch_mm_irqs_off(oldmm, mm, next);
2885 
2886 	if (!prev->mm) {
2887 		prev->active_mm = NULL;
2888 		rq->prev_mm = oldmm;
2889 	}
2890 	/*
2891 	 * Since the runqueue lock will be released by the next
2892 	 * task (which is an invalid locking op but in the case
2893 	 * of the scheduler it's an obvious special-case), so we
2894 	 * do an early lockdep release here:
2895 	 */
2896 	lockdep_unpin_lock(&rq->lock, cookie);
2897 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2898 
2899 	/* Here we just switch the register state and the stack. */
2900 	switch_to(prev, next, prev);
2901 	barrier();
2902 
2903 	return finish_task_switch(prev);
2904 }
2905 
2906 /*
2907  * nr_running and nr_context_switches:
2908  *
2909  * externally visible scheduler statistics: current number of runnable
2910  * threads, total number of context switches performed since bootup.
2911  */
2912 unsigned long nr_running(void)
2913 {
2914 	unsigned long i, sum = 0;
2915 
2916 	for_each_online_cpu(i)
2917 		sum += cpu_rq(i)->nr_running;
2918 
2919 	return sum;
2920 }
2921 
2922 /*
2923  * Check if only the current task is running on the cpu.
2924  *
2925  * Caution: this function does not check that the caller has disabled
2926  * preemption, thus the result might have a time-of-check-to-time-of-use
2927  * race.  The caller is responsible to use it correctly, for example:
2928  *
2929  * - from a non-preemptable section (of course)
2930  *
2931  * - from a thread that is bound to a single CPU
2932  *
2933  * - in a loop with very short iterations (e.g. a polling loop)
2934  */
2935 bool single_task_running(void)
2936 {
2937 	return raw_rq()->nr_running == 1;
2938 }
2939 EXPORT_SYMBOL(single_task_running);
2940 
2941 unsigned long long nr_context_switches(void)
2942 {
2943 	int i;
2944 	unsigned long long sum = 0;
2945 
2946 	for_each_possible_cpu(i)
2947 		sum += cpu_rq(i)->nr_switches;
2948 
2949 	return sum;
2950 }
2951 
2952 unsigned long nr_iowait(void)
2953 {
2954 	unsigned long i, sum = 0;
2955 
2956 	for_each_possible_cpu(i)
2957 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2958 
2959 	return sum;
2960 }
2961 
2962 unsigned long nr_iowait_cpu(int cpu)
2963 {
2964 	struct rq *this = cpu_rq(cpu);
2965 	return atomic_read(&this->nr_iowait);
2966 }
2967 
2968 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969 {
2970 	struct rq *rq = this_rq();
2971 	*nr_waiters = atomic_read(&rq->nr_iowait);
2972 	*load = rq->load.weight;
2973 }
2974 
2975 #ifdef CONFIG_SMP
2976 
2977 /*
2978  * sched_exec - execve() is a valuable balancing opportunity, because at
2979  * this point the task has the smallest effective memory and cache footprint.
2980  */
2981 void sched_exec(void)
2982 {
2983 	struct task_struct *p = current;
2984 	unsigned long flags;
2985 	int dest_cpu;
2986 
2987 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2988 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2989 	if (dest_cpu == smp_processor_id())
2990 		goto unlock;
2991 
2992 	if (likely(cpu_active(dest_cpu))) {
2993 		struct migration_arg arg = { p, dest_cpu };
2994 
2995 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2997 		return;
2998 	}
2999 unlock:
3000 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3001 }
3002 
3003 #endif
3004 
3005 DEFINE_PER_CPU(struct kernel_stat, kstat);
3006 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007 
3008 EXPORT_PER_CPU_SYMBOL(kstat);
3009 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3010 
3011 /*
3012  * The function fair_sched_class.update_curr accesses the struct curr
3013  * and its field curr->exec_start; when called from task_sched_runtime(),
3014  * we observe a high rate of cache misses in practice.
3015  * Prefetching this data results in improved performance.
3016  */
3017 static inline void prefetch_curr_exec_start(struct task_struct *p)
3018 {
3019 #ifdef CONFIG_FAIR_GROUP_SCHED
3020 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021 #else
3022 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3023 #endif
3024 	prefetch(curr);
3025 	prefetch(&curr->exec_start);
3026 }
3027 
3028 /*
3029  * Return accounted runtime for the task.
3030  * In case the task is currently running, return the runtime plus current's
3031  * pending runtime that have not been accounted yet.
3032  */
3033 unsigned long long task_sched_runtime(struct task_struct *p)
3034 {
3035 	struct rq_flags rf;
3036 	struct rq *rq;
3037 	u64 ns;
3038 
3039 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 	/*
3041 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3042 	 * So we have a optimization chance when the task's delta_exec is 0.
3043 	 * Reading ->on_cpu is racy, but this is ok.
3044 	 *
3045 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3046 	 * If we race with it entering cpu, unaccounted time is 0. This is
3047 	 * indistinguishable from the read occurring a few cycles earlier.
3048 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049 	 * been accounted, so we're correct here as well.
3050 	 */
3051 	if (!p->on_cpu || !task_on_rq_queued(p))
3052 		return p->se.sum_exec_runtime;
3053 #endif
3054 
3055 	rq = task_rq_lock(p, &rf);
3056 	/*
3057 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3058 	 * project cycles that may never be accounted to this
3059 	 * thread, breaking clock_gettime().
3060 	 */
3061 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3062 		prefetch_curr_exec_start(p);
3063 		update_rq_clock(rq);
3064 		p->sched_class->update_curr(rq);
3065 	}
3066 	ns = p->se.sum_exec_runtime;
3067 	task_rq_unlock(rq, p, &rf);
3068 
3069 	return ns;
3070 }
3071 
3072 /*
3073  * This function gets called by the timer code, with HZ frequency.
3074  * We call it with interrupts disabled.
3075  */
3076 void scheduler_tick(void)
3077 {
3078 	int cpu = smp_processor_id();
3079 	struct rq *rq = cpu_rq(cpu);
3080 	struct task_struct *curr = rq->curr;
3081 
3082 	sched_clock_tick();
3083 
3084 	raw_spin_lock(&rq->lock);
3085 	update_rq_clock(rq);
3086 	curr->sched_class->task_tick(rq, curr, 0);
3087 	cpu_load_update_active(rq);
3088 	calc_global_load_tick(rq);
3089 	raw_spin_unlock(&rq->lock);
3090 
3091 	perf_event_task_tick();
3092 
3093 #ifdef CONFIG_SMP
3094 	rq->idle_balance = idle_cpu(cpu);
3095 	trigger_load_balance(rq);
3096 #endif
3097 	rq_last_tick_reset(rq);
3098 }
3099 
3100 #ifdef CONFIG_NO_HZ_FULL
3101 /**
3102  * scheduler_tick_max_deferment
3103  *
3104  * Keep at least one tick per second when a single
3105  * active task is running because the scheduler doesn't
3106  * yet completely support full dynticks environment.
3107  *
3108  * This makes sure that uptime, CFS vruntime, load
3109  * balancing, etc... continue to move forward, even
3110  * with a very low granularity.
3111  *
3112  * Return: Maximum deferment in nanoseconds.
3113  */
3114 u64 scheduler_tick_max_deferment(void)
3115 {
3116 	struct rq *rq = this_rq();
3117 	unsigned long next, now = READ_ONCE(jiffies);
3118 
3119 	next = rq->last_sched_tick + HZ;
3120 
3121 	if (time_before_eq(next, now))
3122 		return 0;
3123 
3124 	return jiffies_to_nsecs(next - now);
3125 }
3126 #endif
3127 
3128 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3129 				defined(CONFIG_PREEMPT_TRACER))
3130 /*
3131  * If the value passed in is equal to the current preempt count
3132  * then we just disabled preemption. Start timing the latency.
3133  */
3134 static inline void preempt_latency_start(int val)
3135 {
3136 	if (preempt_count() == val) {
3137 		unsigned long ip = get_lock_parent_ip();
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 		current->preempt_disable_ip = ip;
3140 #endif
3141 		trace_preempt_off(CALLER_ADDR0, ip);
3142 	}
3143 }
3144 
3145 void preempt_count_add(int val)
3146 {
3147 #ifdef CONFIG_DEBUG_PREEMPT
3148 	/*
3149 	 * Underflow?
3150 	 */
3151 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3152 		return;
3153 #endif
3154 	__preempt_count_add(val);
3155 #ifdef CONFIG_DEBUG_PREEMPT
3156 	/*
3157 	 * Spinlock count overflowing soon?
3158 	 */
3159 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3160 				PREEMPT_MASK - 10);
3161 #endif
3162 	preempt_latency_start(val);
3163 }
3164 EXPORT_SYMBOL(preempt_count_add);
3165 NOKPROBE_SYMBOL(preempt_count_add);
3166 
3167 /*
3168  * If the value passed in equals to the current preempt count
3169  * then we just enabled preemption. Stop timing the latency.
3170  */
3171 static inline void preempt_latency_stop(int val)
3172 {
3173 	if (preempt_count() == val)
3174 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3175 }
3176 
3177 void preempt_count_sub(int val)
3178 {
3179 #ifdef CONFIG_DEBUG_PREEMPT
3180 	/*
3181 	 * Underflow?
3182 	 */
3183 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3184 		return;
3185 	/*
3186 	 * Is the spinlock portion underflowing?
3187 	 */
3188 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3189 			!(preempt_count() & PREEMPT_MASK)))
3190 		return;
3191 #endif
3192 
3193 	preempt_latency_stop(val);
3194 	__preempt_count_sub(val);
3195 }
3196 EXPORT_SYMBOL(preempt_count_sub);
3197 NOKPROBE_SYMBOL(preempt_count_sub);
3198 
3199 #else
3200 static inline void preempt_latency_start(int val) { }
3201 static inline void preempt_latency_stop(int val) { }
3202 #endif
3203 
3204 /*
3205  * Print scheduling while atomic bug:
3206  */
3207 static noinline void __schedule_bug(struct task_struct *prev)
3208 {
3209 	/* Save this before calling printk(), since that will clobber it */
3210 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3211 
3212 	if (oops_in_progress)
3213 		return;
3214 
3215 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3216 		prev->comm, prev->pid, preempt_count());
3217 
3218 	debug_show_held_locks(prev);
3219 	print_modules();
3220 	if (irqs_disabled())
3221 		print_irqtrace_events(prev);
3222 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3223 	    && in_atomic_preempt_off()) {
3224 		pr_err("Preemption disabled at:");
3225 		print_ip_sym(preempt_disable_ip);
3226 		pr_cont("\n");
3227 	}
3228 	if (panic_on_warn)
3229 		panic("scheduling while atomic\n");
3230 
3231 	dump_stack();
3232 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3233 }
3234 
3235 /*
3236  * Various schedule()-time debugging checks and statistics:
3237  */
3238 static inline void schedule_debug(struct task_struct *prev)
3239 {
3240 #ifdef CONFIG_SCHED_STACK_END_CHECK
3241 	if (task_stack_end_corrupted(prev))
3242 		panic("corrupted stack end detected inside scheduler\n");
3243 #endif
3244 
3245 	if (unlikely(in_atomic_preempt_off())) {
3246 		__schedule_bug(prev);
3247 		preempt_count_set(PREEMPT_DISABLED);
3248 	}
3249 	rcu_sleep_check();
3250 
3251 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3252 
3253 	schedstat_inc(this_rq()->sched_count);
3254 }
3255 
3256 /*
3257  * Pick up the highest-prio task:
3258  */
3259 static inline struct task_struct *
3260 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3261 {
3262 	const struct sched_class *class = &fair_sched_class;
3263 	struct task_struct *p;
3264 
3265 	/*
3266 	 * Optimization: we know that if all tasks are in
3267 	 * the fair class we can call that function directly:
3268 	 */
3269 	if (likely(prev->sched_class == class &&
3270 		   rq->nr_running == rq->cfs.h_nr_running)) {
3271 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3272 		if (unlikely(p == RETRY_TASK))
3273 			goto again;
3274 
3275 		/* assumes fair_sched_class->next == idle_sched_class */
3276 		if (unlikely(!p))
3277 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3278 
3279 		return p;
3280 	}
3281 
3282 again:
3283 	for_each_class(class) {
3284 		p = class->pick_next_task(rq, prev, cookie);
3285 		if (p) {
3286 			if (unlikely(p == RETRY_TASK))
3287 				goto again;
3288 			return p;
3289 		}
3290 	}
3291 
3292 	BUG(); /* the idle class will always have a runnable task */
3293 }
3294 
3295 /*
3296  * __schedule() is the main scheduler function.
3297  *
3298  * The main means of driving the scheduler and thus entering this function are:
3299  *
3300  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3301  *
3302  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3303  *      paths. For example, see arch/x86/entry_64.S.
3304  *
3305  *      To drive preemption between tasks, the scheduler sets the flag in timer
3306  *      interrupt handler scheduler_tick().
3307  *
3308  *   3. Wakeups don't really cause entry into schedule(). They add a
3309  *      task to the run-queue and that's it.
3310  *
3311  *      Now, if the new task added to the run-queue preempts the current
3312  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3313  *      called on the nearest possible occasion:
3314  *
3315  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3316  *
3317  *         - in syscall or exception context, at the next outmost
3318  *           preempt_enable(). (this might be as soon as the wake_up()'s
3319  *           spin_unlock()!)
3320  *
3321  *         - in IRQ context, return from interrupt-handler to
3322  *           preemptible context
3323  *
3324  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3325  *         then at the next:
3326  *
3327  *          - cond_resched() call
3328  *          - explicit schedule() call
3329  *          - return from syscall or exception to user-space
3330  *          - return from interrupt-handler to user-space
3331  *
3332  * WARNING: must be called with preemption disabled!
3333  */
3334 static void __sched notrace __schedule(bool preempt)
3335 {
3336 	struct task_struct *prev, *next;
3337 	unsigned long *switch_count;
3338 	struct pin_cookie cookie;
3339 	struct rq *rq;
3340 	int cpu;
3341 
3342 	cpu = smp_processor_id();
3343 	rq = cpu_rq(cpu);
3344 	prev = rq->curr;
3345 
3346 	schedule_debug(prev);
3347 
3348 	if (sched_feat(HRTICK))
3349 		hrtick_clear(rq);
3350 
3351 	local_irq_disable();
3352 	rcu_note_context_switch();
3353 
3354 	/*
3355 	 * Make sure that signal_pending_state()->signal_pending() below
3356 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3357 	 * done by the caller to avoid the race with signal_wake_up().
3358 	 */
3359 	smp_mb__before_spinlock();
3360 	raw_spin_lock(&rq->lock);
3361 	cookie = lockdep_pin_lock(&rq->lock);
3362 
3363 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3364 
3365 	switch_count = &prev->nivcsw;
3366 	if (!preempt && prev->state) {
3367 		if (unlikely(signal_pending_state(prev->state, prev))) {
3368 			prev->state = TASK_RUNNING;
3369 		} else {
3370 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3371 			prev->on_rq = 0;
3372 
3373 			/*
3374 			 * If a worker went to sleep, notify and ask workqueue
3375 			 * whether it wants to wake up a task to maintain
3376 			 * concurrency.
3377 			 */
3378 			if (prev->flags & PF_WQ_WORKER) {
3379 				struct task_struct *to_wakeup;
3380 
3381 				to_wakeup = wq_worker_sleeping(prev);
3382 				if (to_wakeup)
3383 					try_to_wake_up_local(to_wakeup, cookie);
3384 			}
3385 		}
3386 		switch_count = &prev->nvcsw;
3387 	}
3388 
3389 	if (task_on_rq_queued(prev))
3390 		update_rq_clock(rq);
3391 
3392 	next = pick_next_task(rq, prev, cookie);
3393 	clear_tsk_need_resched(prev);
3394 	clear_preempt_need_resched();
3395 	rq->clock_skip_update = 0;
3396 
3397 	if (likely(prev != next)) {
3398 		rq->nr_switches++;
3399 		rq->curr = next;
3400 		++*switch_count;
3401 
3402 		trace_sched_switch(preempt, prev, next);
3403 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3404 	} else {
3405 		lockdep_unpin_lock(&rq->lock, cookie);
3406 		raw_spin_unlock_irq(&rq->lock);
3407 	}
3408 
3409 	balance_callback(rq);
3410 }
3411 
3412 void __noreturn do_task_dead(void)
3413 {
3414 	/*
3415 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3416 	 * when the following two conditions become true.
3417 	 *   - There is race condition of mmap_sem (It is acquired by
3418 	 *     exit_mm()), and
3419 	 *   - SMI occurs before setting TASK_RUNINNG.
3420 	 *     (or hypervisor of virtual machine switches to other guest)
3421 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3422 	 *
3423 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3424 	 * is held by try_to_wake_up()
3425 	 */
3426 	smp_mb();
3427 	raw_spin_unlock_wait(&current->pi_lock);
3428 
3429 	/* causes final put_task_struct in finish_task_switch(). */
3430 	__set_current_state(TASK_DEAD);
3431 	current->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
3432 	__schedule(false);
3433 	BUG();
3434 	/* Avoid "noreturn function does return".  */
3435 	for (;;)
3436 		cpu_relax();	/* For when BUG is null */
3437 }
3438 
3439 static inline void sched_submit_work(struct task_struct *tsk)
3440 {
3441 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3442 		return;
3443 	/*
3444 	 * If we are going to sleep and we have plugged IO queued,
3445 	 * make sure to submit it to avoid deadlocks.
3446 	 */
3447 	if (blk_needs_flush_plug(tsk))
3448 		blk_schedule_flush_plug(tsk);
3449 }
3450 
3451 asmlinkage __visible void __sched schedule(void)
3452 {
3453 	struct task_struct *tsk = current;
3454 
3455 	sched_submit_work(tsk);
3456 	do {
3457 		preempt_disable();
3458 		__schedule(false);
3459 		sched_preempt_enable_no_resched();
3460 	} while (need_resched());
3461 }
3462 EXPORT_SYMBOL(schedule);
3463 
3464 #ifdef CONFIG_CONTEXT_TRACKING
3465 asmlinkage __visible void __sched schedule_user(void)
3466 {
3467 	/*
3468 	 * If we come here after a random call to set_need_resched(),
3469 	 * or we have been woken up remotely but the IPI has not yet arrived,
3470 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3471 	 * we find a better solution.
3472 	 *
3473 	 * NB: There are buggy callers of this function.  Ideally we
3474 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3475 	 * too frequently to make sense yet.
3476 	 */
3477 	enum ctx_state prev_state = exception_enter();
3478 	schedule();
3479 	exception_exit(prev_state);
3480 }
3481 #endif
3482 
3483 /**
3484  * schedule_preempt_disabled - called with preemption disabled
3485  *
3486  * Returns with preemption disabled. Note: preempt_count must be 1
3487  */
3488 void __sched schedule_preempt_disabled(void)
3489 {
3490 	sched_preempt_enable_no_resched();
3491 	schedule();
3492 	preempt_disable();
3493 }
3494 
3495 static void __sched notrace preempt_schedule_common(void)
3496 {
3497 	do {
3498 		/*
3499 		 * Because the function tracer can trace preempt_count_sub()
3500 		 * and it also uses preempt_enable/disable_notrace(), if
3501 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502 		 * by the function tracer will call this function again and
3503 		 * cause infinite recursion.
3504 		 *
3505 		 * Preemption must be disabled here before the function
3506 		 * tracer can trace. Break up preempt_disable() into two
3507 		 * calls. One to disable preemption without fear of being
3508 		 * traced. The other to still record the preemption latency,
3509 		 * which can also be traced by the function tracer.
3510 		 */
3511 		preempt_disable_notrace();
3512 		preempt_latency_start(1);
3513 		__schedule(true);
3514 		preempt_latency_stop(1);
3515 		preempt_enable_no_resched_notrace();
3516 
3517 		/*
3518 		 * Check again in case we missed a preemption opportunity
3519 		 * between schedule and now.
3520 		 */
3521 	} while (need_resched());
3522 }
3523 
3524 #ifdef CONFIG_PREEMPT
3525 /*
3526  * this is the entry point to schedule() from in-kernel preemption
3527  * off of preempt_enable. Kernel preemptions off return from interrupt
3528  * occur there and call schedule directly.
3529  */
3530 asmlinkage __visible void __sched notrace preempt_schedule(void)
3531 {
3532 	/*
3533 	 * If there is a non-zero preempt_count or interrupts are disabled,
3534 	 * we do not want to preempt the current task. Just return..
3535 	 */
3536 	if (likely(!preemptible()))
3537 		return;
3538 
3539 	preempt_schedule_common();
3540 }
3541 NOKPROBE_SYMBOL(preempt_schedule);
3542 EXPORT_SYMBOL(preempt_schedule);
3543 
3544 /**
3545  * preempt_schedule_notrace - preempt_schedule called by tracing
3546  *
3547  * The tracing infrastructure uses preempt_enable_notrace to prevent
3548  * recursion and tracing preempt enabling caused by the tracing
3549  * infrastructure itself. But as tracing can happen in areas coming
3550  * from userspace or just about to enter userspace, a preempt enable
3551  * can occur before user_exit() is called. This will cause the scheduler
3552  * to be called when the system is still in usermode.
3553  *
3554  * To prevent this, the preempt_enable_notrace will use this function
3555  * instead of preempt_schedule() to exit user context if needed before
3556  * calling the scheduler.
3557  */
3558 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3559 {
3560 	enum ctx_state prev_ctx;
3561 
3562 	if (likely(!preemptible()))
3563 		return;
3564 
3565 	do {
3566 		/*
3567 		 * Because the function tracer can trace preempt_count_sub()
3568 		 * and it also uses preempt_enable/disable_notrace(), if
3569 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570 		 * by the function tracer will call this function again and
3571 		 * cause infinite recursion.
3572 		 *
3573 		 * Preemption must be disabled here before the function
3574 		 * tracer can trace. Break up preempt_disable() into two
3575 		 * calls. One to disable preemption without fear of being
3576 		 * traced. The other to still record the preemption latency,
3577 		 * which can also be traced by the function tracer.
3578 		 */
3579 		preempt_disable_notrace();
3580 		preempt_latency_start(1);
3581 		/*
3582 		 * Needs preempt disabled in case user_exit() is traced
3583 		 * and the tracer calls preempt_enable_notrace() causing
3584 		 * an infinite recursion.
3585 		 */
3586 		prev_ctx = exception_enter();
3587 		__schedule(true);
3588 		exception_exit(prev_ctx);
3589 
3590 		preempt_latency_stop(1);
3591 		preempt_enable_no_resched_notrace();
3592 	} while (need_resched());
3593 }
3594 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3595 
3596 #endif /* CONFIG_PREEMPT */
3597 
3598 /*
3599  * this is the entry point to schedule() from kernel preemption
3600  * off of irq context.
3601  * Note, that this is called and return with irqs disabled. This will
3602  * protect us against recursive calling from irq.
3603  */
3604 asmlinkage __visible void __sched preempt_schedule_irq(void)
3605 {
3606 	enum ctx_state prev_state;
3607 
3608 	/* Catch callers which need to be fixed */
3609 	BUG_ON(preempt_count() || !irqs_disabled());
3610 
3611 	prev_state = exception_enter();
3612 
3613 	do {
3614 		preempt_disable();
3615 		local_irq_enable();
3616 		__schedule(true);
3617 		local_irq_disable();
3618 		sched_preempt_enable_no_resched();
3619 	} while (need_resched());
3620 
3621 	exception_exit(prev_state);
3622 }
3623 
3624 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3625 			  void *key)
3626 {
3627 	return try_to_wake_up(curr->private, mode, wake_flags);
3628 }
3629 EXPORT_SYMBOL(default_wake_function);
3630 
3631 #ifdef CONFIG_RT_MUTEXES
3632 
3633 /*
3634  * rt_mutex_setprio - set the current priority of a task
3635  * @p: task
3636  * @prio: prio value (kernel-internal form)
3637  *
3638  * This function changes the 'effective' priority of a task. It does
3639  * not touch ->normal_prio like __setscheduler().
3640  *
3641  * Used by the rt_mutex code to implement priority inheritance
3642  * logic. Call site only calls if the priority of the task changed.
3643  */
3644 void rt_mutex_setprio(struct task_struct *p, int prio)
3645 {
3646 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3647 	const struct sched_class *prev_class;
3648 	struct rq_flags rf;
3649 	struct rq *rq;
3650 
3651 	BUG_ON(prio > MAX_PRIO);
3652 
3653 	rq = __task_rq_lock(p, &rf);
3654 
3655 	/*
3656 	 * Idle task boosting is a nono in general. There is one
3657 	 * exception, when PREEMPT_RT and NOHZ is active:
3658 	 *
3659 	 * The idle task calls get_next_timer_interrupt() and holds
3660 	 * the timer wheel base->lock on the CPU and another CPU wants
3661 	 * to access the timer (probably to cancel it). We can safely
3662 	 * ignore the boosting request, as the idle CPU runs this code
3663 	 * with interrupts disabled and will complete the lock
3664 	 * protected section without being interrupted. So there is no
3665 	 * real need to boost.
3666 	 */
3667 	if (unlikely(p == rq->idle)) {
3668 		WARN_ON(p != rq->curr);
3669 		WARN_ON(p->pi_blocked_on);
3670 		goto out_unlock;
3671 	}
3672 
3673 	trace_sched_pi_setprio(p, prio);
3674 	oldprio = p->prio;
3675 
3676 	if (oldprio == prio)
3677 		queue_flag &= ~DEQUEUE_MOVE;
3678 
3679 	prev_class = p->sched_class;
3680 	queued = task_on_rq_queued(p);
3681 	running = task_current(rq, p);
3682 	if (queued)
3683 		dequeue_task(rq, p, queue_flag);
3684 	if (running)
3685 		put_prev_task(rq, p);
3686 
3687 	/*
3688 	 * Boosting condition are:
3689 	 * 1. -rt task is running and holds mutex A
3690 	 *      --> -dl task blocks on mutex A
3691 	 *
3692 	 * 2. -dl task is running and holds mutex A
3693 	 *      --> -dl task blocks on mutex A and could preempt the
3694 	 *          running task
3695 	 */
3696 	if (dl_prio(prio)) {
3697 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3698 		if (!dl_prio(p->normal_prio) ||
3699 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3700 			p->dl.dl_boosted = 1;
3701 			queue_flag |= ENQUEUE_REPLENISH;
3702 		} else
3703 			p->dl.dl_boosted = 0;
3704 		p->sched_class = &dl_sched_class;
3705 	} else if (rt_prio(prio)) {
3706 		if (dl_prio(oldprio))
3707 			p->dl.dl_boosted = 0;
3708 		if (oldprio < prio)
3709 			queue_flag |= ENQUEUE_HEAD;
3710 		p->sched_class = &rt_sched_class;
3711 	} else {
3712 		if (dl_prio(oldprio))
3713 			p->dl.dl_boosted = 0;
3714 		if (rt_prio(oldprio))
3715 			p->rt.timeout = 0;
3716 		p->sched_class = &fair_sched_class;
3717 	}
3718 
3719 	p->prio = prio;
3720 
3721 	if (queued)
3722 		enqueue_task(rq, p, queue_flag);
3723 	if (running)
3724 		set_curr_task(rq, p);
3725 
3726 	check_class_changed(rq, p, prev_class, oldprio);
3727 out_unlock:
3728 	preempt_disable(); /* avoid rq from going away on us */
3729 	__task_rq_unlock(rq, &rf);
3730 
3731 	balance_callback(rq);
3732 	preempt_enable();
3733 }
3734 #endif
3735 
3736 void set_user_nice(struct task_struct *p, long nice)
3737 {
3738 	bool queued, running;
3739 	int old_prio, delta;
3740 	struct rq_flags rf;
3741 	struct rq *rq;
3742 
3743 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3744 		return;
3745 	/*
3746 	 * We have to be careful, if called from sys_setpriority(),
3747 	 * the task might be in the middle of scheduling on another CPU.
3748 	 */
3749 	rq = task_rq_lock(p, &rf);
3750 	/*
3751 	 * The RT priorities are set via sched_setscheduler(), but we still
3752 	 * allow the 'normal' nice value to be set - but as expected
3753 	 * it wont have any effect on scheduling until the task is
3754 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3755 	 */
3756 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3757 		p->static_prio = NICE_TO_PRIO(nice);
3758 		goto out_unlock;
3759 	}
3760 	queued = task_on_rq_queued(p);
3761 	running = task_current(rq, p);
3762 	if (queued)
3763 		dequeue_task(rq, p, DEQUEUE_SAVE);
3764 	if (running)
3765 		put_prev_task(rq, p);
3766 
3767 	p->static_prio = NICE_TO_PRIO(nice);
3768 	set_load_weight(p);
3769 	old_prio = p->prio;
3770 	p->prio = effective_prio(p);
3771 	delta = p->prio - old_prio;
3772 
3773 	if (queued) {
3774 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3775 		/*
3776 		 * If the task increased its priority or is running and
3777 		 * lowered its priority, then reschedule its CPU:
3778 		 */
3779 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3780 			resched_curr(rq);
3781 	}
3782 	if (running)
3783 		set_curr_task(rq, p);
3784 out_unlock:
3785 	task_rq_unlock(rq, p, &rf);
3786 }
3787 EXPORT_SYMBOL(set_user_nice);
3788 
3789 /*
3790  * can_nice - check if a task can reduce its nice value
3791  * @p: task
3792  * @nice: nice value
3793  */
3794 int can_nice(const struct task_struct *p, const int nice)
3795 {
3796 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3797 	int nice_rlim = nice_to_rlimit(nice);
3798 
3799 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3800 		capable(CAP_SYS_NICE));
3801 }
3802 
3803 #ifdef __ARCH_WANT_SYS_NICE
3804 
3805 /*
3806  * sys_nice - change the priority of the current process.
3807  * @increment: priority increment
3808  *
3809  * sys_setpriority is a more generic, but much slower function that
3810  * does similar things.
3811  */
3812 SYSCALL_DEFINE1(nice, int, increment)
3813 {
3814 	long nice, retval;
3815 
3816 	/*
3817 	 * Setpriority might change our priority at the same moment.
3818 	 * We don't have to worry. Conceptually one call occurs first
3819 	 * and we have a single winner.
3820 	 */
3821 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3822 	nice = task_nice(current) + increment;
3823 
3824 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3825 	if (increment < 0 && !can_nice(current, nice))
3826 		return -EPERM;
3827 
3828 	retval = security_task_setnice(current, nice);
3829 	if (retval)
3830 		return retval;
3831 
3832 	set_user_nice(current, nice);
3833 	return 0;
3834 }
3835 
3836 #endif
3837 
3838 /**
3839  * task_prio - return the priority value of a given task.
3840  * @p: the task in question.
3841  *
3842  * Return: The priority value as seen by users in /proc.
3843  * RT tasks are offset by -200. Normal tasks are centered
3844  * around 0, value goes from -16 to +15.
3845  */
3846 int task_prio(const struct task_struct *p)
3847 {
3848 	return p->prio - MAX_RT_PRIO;
3849 }
3850 
3851 /**
3852  * idle_cpu - is a given cpu idle currently?
3853  * @cpu: the processor in question.
3854  *
3855  * Return: 1 if the CPU is currently idle. 0 otherwise.
3856  */
3857 int idle_cpu(int cpu)
3858 {
3859 	struct rq *rq = cpu_rq(cpu);
3860 
3861 	if (rq->curr != rq->idle)
3862 		return 0;
3863 
3864 	if (rq->nr_running)
3865 		return 0;
3866 
3867 #ifdef CONFIG_SMP
3868 	if (!llist_empty(&rq->wake_list))
3869 		return 0;
3870 #endif
3871 
3872 	return 1;
3873 }
3874 
3875 /**
3876  * idle_task - return the idle task for a given cpu.
3877  * @cpu: the processor in question.
3878  *
3879  * Return: The idle task for the cpu @cpu.
3880  */
3881 struct task_struct *idle_task(int cpu)
3882 {
3883 	return cpu_rq(cpu)->idle;
3884 }
3885 
3886 /**
3887  * find_process_by_pid - find a process with a matching PID value.
3888  * @pid: the pid in question.
3889  *
3890  * The task of @pid, if found. %NULL otherwise.
3891  */
3892 static struct task_struct *find_process_by_pid(pid_t pid)
3893 {
3894 	return pid ? find_task_by_vpid(pid) : current;
3895 }
3896 
3897 /*
3898  * This function initializes the sched_dl_entity of a newly becoming
3899  * SCHED_DEADLINE task.
3900  *
3901  * Only the static values are considered here, the actual runtime and the
3902  * absolute deadline will be properly calculated when the task is enqueued
3903  * for the first time with its new policy.
3904  */
3905 static void
3906 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3907 {
3908 	struct sched_dl_entity *dl_se = &p->dl;
3909 
3910 	dl_se->dl_runtime = attr->sched_runtime;
3911 	dl_se->dl_deadline = attr->sched_deadline;
3912 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3913 	dl_se->flags = attr->sched_flags;
3914 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3915 
3916 	/*
3917 	 * Changing the parameters of a task is 'tricky' and we're not doing
3918 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3919 	 *
3920 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3921 	 * point. This would include retaining the task_struct until that time
3922 	 * and change dl_overflow() to not immediately decrement the current
3923 	 * amount.
3924 	 *
3925 	 * Instead we retain the current runtime/deadline and let the new
3926 	 * parameters take effect after the current reservation period lapses.
3927 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3928 	 * before the current scheduling deadline.
3929 	 *
3930 	 * We can still have temporary overloads because we do not delay the
3931 	 * change in bandwidth until that time; so admission control is
3932 	 * not on the safe side. It does however guarantee tasks will never
3933 	 * consume more than promised.
3934 	 */
3935 }
3936 
3937 /*
3938  * sched_setparam() passes in -1 for its policy, to let the functions
3939  * it calls know not to change it.
3940  */
3941 #define SETPARAM_POLICY	-1
3942 
3943 static void __setscheduler_params(struct task_struct *p,
3944 		const struct sched_attr *attr)
3945 {
3946 	int policy = attr->sched_policy;
3947 
3948 	if (policy == SETPARAM_POLICY)
3949 		policy = p->policy;
3950 
3951 	p->policy = policy;
3952 
3953 	if (dl_policy(policy))
3954 		__setparam_dl(p, attr);
3955 	else if (fair_policy(policy))
3956 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957 
3958 	/*
3959 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 	 * !rt_policy. Always setting this ensures that things like
3961 	 * getparam()/getattr() don't report silly values for !rt tasks.
3962 	 */
3963 	p->rt_priority = attr->sched_priority;
3964 	p->normal_prio = normal_prio(p);
3965 	set_load_weight(p);
3966 }
3967 
3968 /* Actually do priority change: must hold pi & rq lock. */
3969 static void __setscheduler(struct rq *rq, struct task_struct *p,
3970 			   const struct sched_attr *attr, bool keep_boost)
3971 {
3972 	__setscheduler_params(p, attr);
3973 
3974 	/*
3975 	 * Keep a potential priority boosting if called from
3976 	 * sched_setscheduler().
3977 	 */
3978 	if (keep_boost)
3979 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3980 	else
3981 		p->prio = normal_prio(p);
3982 
3983 	if (dl_prio(p->prio))
3984 		p->sched_class = &dl_sched_class;
3985 	else if (rt_prio(p->prio))
3986 		p->sched_class = &rt_sched_class;
3987 	else
3988 		p->sched_class = &fair_sched_class;
3989 }
3990 
3991 static void
3992 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3993 {
3994 	struct sched_dl_entity *dl_se = &p->dl;
3995 
3996 	attr->sched_priority = p->rt_priority;
3997 	attr->sched_runtime = dl_se->dl_runtime;
3998 	attr->sched_deadline = dl_se->dl_deadline;
3999 	attr->sched_period = dl_se->dl_period;
4000 	attr->sched_flags = dl_se->flags;
4001 }
4002 
4003 /*
4004  * This function validates the new parameters of a -deadline task.
4005  * We ask for the deadline not being zero, and greater or equal
4006  * than the runtime, as well as the period of being zero or
4007  * greater than deadline. Furthermore, we have to be sure that
4008  * user parameters are above the internal resolution of 1us (we
4009  * check sched_runtime only since it is always the smaller one) and
4010  * below 2^63 ns (we have to check both sched_deadline and
4011  * sched_period, as the latter can be zero).
4012  */
4013 static bool
4014 __checkparam_dl(const struct sched_attr *attr)
4015 {
4016 	/* deadline != 0 */
4017 	if (attr->sched_deadline == 0)
4018 		return false;
4019 
4020 	/*
4021 	 * Since we truncate DL_SCALE bits, make sure we're at least
4022 	 * that big.
4023 	 */
4024 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4025 		return false;
4026 
4027 	/*
4028 	 * Since we use the MSB for wrap-around and sign issues, make
4029 	 * sure it's not set (mind that period can be equal to zero).
4030 	 */
4031 	if (attr->sched_deadline & (1ULL << 63) ||
4032 	    attr->sched_period & (1ULL << 63))
4033 		return false;
4034 
4035 	/* runtime <= deadline <= period (if period != 0) */
4036 	if ((attr->sched_period != 0 &&
4037 	     attr->sched_period < attr->sched_deadline) ||
4038 	    attr->sched_deadline < attr->sched_runtime)
4039 		return false;
4040 
4041 	return true;
4042 }
4043 
4044 /*
4045  * check the target process has a UID that matches the current process's
4046  */
4047 static bool check_same_owner(struct task_struct *p)
4048 {
4049 	const struct cred *cred = current_cred(), *pcred;
4050 	bool match;
4051 
4052 	rcu_read_lock();
4053 	pcred = __task_cred(p);
4054 	match = (uid_eq(cred->euid, pcred->euid) ||
4055 		 uid_eq(cred->euid, pcred->uid));
4056 	rcu_read_unlock();
4057 	return match;
4058 }
4059 
4060 static bool dl_param_changed(struct task_struct *p,
4061 		const struct sched_attr *attr)
4062 {
4063 	struct sched_dl_entity *dl_se = &p->dl;
4064 
4065 	if (dl_se->dl_runtime != attr->sched_runtime ||
4066 		dl_se->dl_deadline != attr->sched_deadline ||
4067 		dl_se->dl_period != attr->sched_period ||
4068 		dl_se->flags != attr->sched_flags)
4069 		return true;
4070 
4071 	return false;
4072 }
4073 
4074 static int __sched_setscheduler(struct task_struct *p,
4075 				const struct sched_attr *attr,
4076 				bool user, bool pi)
4077 {
4078 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4080 	int retval, oldprio, oldpolicy = -1, queued, running;
4081 	int new_effective_prio, policy = attr->sched_policy;
4082 	const struct sched_class *prev_class;
4083 	struct rq_flags rf;
4084 	int reset_on_fork;
4085 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4086 	struct rq *rq;
4087 
4088 	/* may grab non-irq protected spin_locks */
4089 	BUG_ON(in_interrupt());
4090 recheck:
4091 	/* double check policy once rq lock held */
4092 	if (policy < 0) {
4093 		reset_on_fork = p->sched_reset_on_fork;
4094 		policy = oldpolicy = p->policy;
4095 	} else {
4096 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4097 
4098 		if (!valid_policy(policy))
4099 			return -EINVAL;
4100 	}
4101 
4102 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4103 		return -EINVAL;
4104 
4105 	/*
4106 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 	 * SCHED_BATCH and SCHED_IDLE is 0.
4109 	 */
4110 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4111 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4112 		return -EINVAL;
4113 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4115 		return -EINVAL;
4116 
4117 	/*
4118 	 * Allow unprivileged RT tasks to decrease priority:
4119 	 */
4120 	if (user && !capable(CAP_SYS_NICE)) {
4121 		if (fair_policy(policy)) {
4122 			if (attr->sched_nice < task_nice(p) &&
4123 			    !can_nice(p, attr->sched_nice))
4124 				return -EPERM;
4125 		}
4126 
4127 		if (rt_policy(policy)) {
4128 			unsigned long rlim_rtprio =
4129 					task_rlimit(p, RLIMIT_RTPRIO);
4130 
4131 			/* can't set/change the rt policy */
4132 			if (policy != p->policy && !rlim_rtprio)
4133 				return -EPERM;
4134 
4135 			/* can't increase priority */
4136 			if (attr->sched_priority > p->rt_priority &&
4137 			    attr->sched_priority > rlim_rtprio)
4138 				return -EPERM;
4139 		}
4140 
4141 		 /*
4142 		  * Can't set/change SCHED_DEADLINE policy at all for now
4143 		  * (safest behavior); in the future we would like to allow
4144 		  * unprivileged DL tasks to increase their relative deadline
4145 		  * or reduce their runtime (both ways reducing utilization)
4146 		  */
4147 		if (dl_policy(policy))
4148 			return -EPERM;
4149 
4150 		/*
4151 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4153 		 */
4154 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4155 			if (!can_nice(p, task_nice(p)))
4156 				return -EPERM;
4157 		}
4158 
4159 		/* can't change other user's priorities */
4160 		if (!check_same_owner(p))
4161 			return -EPERM;
4162 
4163 		/* Normal users shall not reset the sched_reset_on_fork flag */
4164 		if (p->sched_reset_on_fork && !reset_on_fork)
4165 			return -EPERM;
4166 	}
4167 
4168 	if (user) {
4169 		retval = security_task_setscheduler(p);
4170 		if (retval)
4171 			return retval;
4172 	}
4173 
4174 	/*
4175 	 * make sure no PI-waiters arrive (or leave) while we are
4176 	 * changing the priority of the task:
4177 	 *
4178 	 * To be able to change p->policy safely, the appropriate
4179 	 * runqueue lock must be held.
4180 	 */
4181 	rq = task_rq_lock(p, &rf);
4182 
4183 	/*
4184 	 * Changing the policy of the stop threads its a very bad idea
4185 	 */
4186 	if (p == rq->stop) {
4187 		task_rq_unlock(rq, p, &rf);
4188 		return -EINVAL;
4189 	}
4190 
4191 	/*
4192 	 * If not changing anything there's no need to proceed further,
4193 	 * but store a possible modification of reset_on_fork.
4194 	 */
4195 	if (unlikely(policy == p->policy)) {
4196 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4197 			goto change;
4198 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4199 			goto change;
4200 		if (dl_policy(policy) && dl_param_changed(p, attr))
4201 			goto change;
4202 
4203 		p->sched_reset_on_fork = reset_on_fork;
4204 		task_rq_unlock(rq, p, &rf);
4205 		return 0;
4206 	}
4207 change:
4208 
4209 	if (user) {
4210 #ifdef CONFIG_RT_GROUP_SCHED
4211 		/*
4212 		 * Do not allow realtime tasks into groups that have no runtime
4213 		 * assigned.
4214 		 */
4215 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4216 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4217 				!task_group_is_autogroup(task_group(p))) {
4218 			task_rq_unlock(rq, p, &rf);
4219 			return -EPERM;
4220 		}
4221 #endif
4222 #ifdef CONFIG_SMP
4223 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4224 			cpumask_t *span = rq->rd->span;
4225 
4226 			/*
4227 			 * Don't allow tasks with an affinity mask smaller than
4228 			 * the entire root_domain to become SCHED_DEADLINE. We
4229 			 * will also fail if there's no bandwidth available.
4230 			 */
4231 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4232 			    rq->rd->dl_bw.bw == 0) {
4233 				task_rq_unlock(rq, p, &rf);
4234 				return -EPERM;
4235 			}
4236 		}
4237 #endif
4238 	}
4239 
4240 	/* recheck policy now with rq lock held */
4241 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4242 		policy = oldpolicy = -1;
4243 		task_rq_unlock(rq, p, &rf);
4244 		goto recheck;
4245 	}
4246 
4247 	/*
4248 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4249 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4250 	 * is available.
4251 	 */
4252 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4253 		task_rq_unlock(rq, p, &rf);
4254 		return -EBUSY;
4255 	}
4256 
4257 	p->sched_reset_on_fork = reset_on_fork;
4258 	oldprio = p->prio;
4259 
4260 	if (pi) {
4261 		/*
4262 		 * Take priority boosted tasks into account. If the new
4263 		 * effective priority is unchanged, we just store the new
4264 		 * normal parameters and do not touch the scheduler class and
4265 		 * the runqueue. This will be done when the task deboost
4266 		 * itself.
4267 		 */
4268 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4269 		if (new_effective_prio == oldprio)
4270 			queue_flags &= ~DEQUEUE_MOVE;
4271 	}
4272 
4273 	queued = task_on_rq_queued(p);
4274 	running = task_current(rq, p);
4275 	if (queued)
4276 		dequeue_task(rq, p, queue_flags);
4277 	if (running)
4278 		put_prev_task(rq, p);
4279 
4280 	prev_class = p->sched_class;
4281 	__setscheduler(rq, p, attr, pi);
4282 
4283 	if (queued) {
4284 		/*
4285 		 * We enqueue to tail when the priority of a task is
4286 		 * increased (user space view).
4287 		 */
4288 		if (oldprio < p->prio)
4289 			queue_flags |= ENQUEUE_HEAD;
4290 
4291 		enqueue_task(rq, p, queue_flags);
4292 	}
4293 	if (running)
4294 		set_curr_task(rq, p);
4295 
4296 	check_class_changed(rq, p, prev_class, oldprio);
4297 	preempt_disable(); /* avoid rq from going away on us */
4298 	task_rq_unlock(rq, p, &rf);
4299 
4300 	if (pi)
4301 		rt_mutex_adjust_pi(p);
4302 
4303 	/*
4304 	 * Run balance callbacks after we've adjusted the PI chain.
4305 	 */
4306 	balance_callback(rq);
4307 	preempt_enable();
4308 
4309 	return 0;
4310 }
4311 
4312 static int _sched_setscheduler(struct task_struct *p, int policy,
4313 			       const struct sched_param *param, bool check)
4314 {
4315 	struct sched_attr attr = {
4316 		.sched_policy   = policy,
4317 		.sched_priority = param->sched_priority,
4318 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4319 	};
4320 
4321 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4322 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4323 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4324 		policy &= ~SCHED_RESET_ON_FORK;
4325 		attr.sched_policy = policy;
4326 	}
4327 
4328 	return __sched_setscheduler(p, &attr, check, true);
4329 }
4330 /**
4331  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4332  * @p: the task in question.
4333  * @policy: new policy.
4334  * @param: structure containing the new RT priority.
4335  *
4336  * Return: 0 on success. An error code otherwise.
4337  *
4338  * NOTE that the task may be already dead.
4339  */
4340 int sched_setscheduler(struct task_struct *p, int policy,
4341 		       const struct sched_param *param)
4342 {
4343 	return _sched_setscheduler(p, policy, param, true);
4344 }
4345 EXPORT_SYMBOL_GPL(sched_setscheduler);
4346 
4347 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4348 {
4349 	return __sched_setscheduler(p, attr, true, true);
4350 }
4351 EXPORT_SYMBOL_GPL(sched_setattr);
4352 
4353 /**
4354  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4355  * @p: the task in question.
4356  * @policy: new policy.
4357  * @param: structure containing the new RT priority.
4358  *
4359  * Just like sched_setscheduler, only don't bother checking if the
4360  * current context has permission.  For example, this is needed in
4361  * stop_machine(): we create temporary high priority worker threads,
4362  * but our caller might not have that capability.
4363  *
4364  * Return: 0 on success. An error code otherwise.
4365  */
4366 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4367 			       const struct sched_param *param)
4368 {
4369 	return _sched_setscheduler(p, policy, param, false);
4370 }
4371 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4372 
4373 static int
4374 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4375 {
4376 	struct sched_param lparam;
4377 	struct task_struct *p;
4378 	int retval;
4379 
4380 	if (!param || pid < 0)
4381 		return -EINVAL;
4382 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383 		return -EFAULT;
4384 
4385 	rcu_read_lock();
4386 	retval = -ESRCH;
4387 	p = find_process_by_pid(pid);
4388 	if (p != NULL)
4389 		retval = sched_setscheduler(p, policy, &lparam);
4390 	rcu_read_unlock();
4391 
4392 	return retval;
4393 }
4394 
4395 /*
4396  * Mimics kernel/events/core.c perf_copy_attr().
4397  */
4398 static int sched_copy_attr(struct sched_attr __user *uattr,
4399 			   struct sched_attr *attr)
4400 {
4401 	u32 size;
4402 	int ret;
4403 
4404 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4405 		return -EFAULT;
4406 
4407 	/*
4408 	 * zero the full structure, so that a short copy will be nice.
4409 	 */
4410 	memset(attr, 0, sizeof(*attr));
4411 
4412 	ret = get_user(size, &uattr->size);
4413 	if (ret)
4414 		return ret;
4415 
4416 	if (size > PAGE_SIZE)	/* silly large */
4417 		goto err_size;
4418 
4419 	if (!size)		/* abi compat */
4420 		size = SCHED_ATTR_SIZE_VER0;
4421 
4422 	if (size < SCHED_ATTR_SIZE_VER0)
4423 		goto err_size;
4424 
4425 	/*
4426 	 * If we're handed a bigger struct than we know of,
4427 	 * ensure all the unknown bits are 0 - i.e. new
4428 	 * user-space does not rely on any kernel feature
4429 	 * extensions we dont know about yet.
4430 	 */
4431 	if (size > sizeof(*attr)) {
4432 		unsigned char __user *addr;
4433 		unsigned char __user *end;
4434 		unsigned char val;
4435 
4436 		addr = (void __user *)uattr + sizeof(*attr);
4437 		end  = (void __user *)uattr + size;
4438 
4439 		for (; addr < end; addr++) {
4440 			ret = get_user(val, addr);
4441 			if (ret)
4442 				return ret;
4443 			if (val)
4444 				goto err_size;
4445 		}
4446 		size = sizeof(*attr);
4447 	}
4448 
4449 	ret = copy_from_user(attr, uattr, size);
4450 	if (ret)
4451 		return -EFAULT;
4452 
4453 	/*
4454 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4455 	 * to be strict and return an error on out-of-bounds values?
4456 	 */
4457 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4458 
4459 	return 0;
4460 
4461 err_size:
4462 	put_user(sizeof(*attr), &uattr->size);
4463 	return -E2BIG;
4464 }
4465 
4466 /**
4467  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468  * @pid: the pid in question.
4469  * @policy: new policy.
4470  * @param: structure containing the new RT priority.
4471  *
4472  * Return: 0 on success. An error code otherwise.
4473  */
4474 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4475 		struct sched_param __user *, param)
4476 {
4477 	/* negative values for policy are not valid */
4478 	if (policy < 0)
4479 		return -EINVAL;
4480 
4481 	return do_sched_setscheduler(pid, policy, param);
4482 }
4483 
4484 /**
4485  * sys_sched_setparam - set/change the RT priority of a thread
4486  * @pid: the pid in question.
4487  * @param: structure containing the new RT priority.
4488  *
4489  * Return: 0 on success. An error code otherwise.
4490  */
4491 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4492 {
4493 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4494 }
4495 
4496 /**
4497  * sys_sched_setattr - same as above, but with extended sched_attr
4498  * @pid: the pid in question.
4499  * @uattr: structure containing the extended parameters.
4500  * @flags: for future extension.
4501  */
4502 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4503 			       unsigned int, flags)
4504 {
4505 	struct sched_attr attr;
4506 	struct task_struct *p;
4507 	int retval;
4508 
4509 	if (!uattr || pid < 0 || flags)
4510 		return -EINVAL;
4511 
4512 	retval = sched_copy_attr(uattr, &attr);
4513 	if (retval)
4514 		return retval;
4515 
4516 	if ((int)attr.sched_policy < 0)
4517 		return -EINVAL;
4518 
4519 	rcu_read_lock();
4520 	retval = -ESRCH;
4521 	p = find_process_by_pid(pid);
4522 	if (p != NULL)
4523 		retval = sched_setattr(p, &attr);
4524 	rcu_read_unlock();
4525 
4526 	return retval;
4527 }
4528 
4529 /**
4530  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4531  * @pid: the pid in question.
4532  *
4533  * Return: On success, the policy of the thread. Otherwise, a negative error
4534  * code.
4535  */
4536 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4537 {
4538 	struct task_struct *p;
4539 	int retval;
4540 
4541 	if (pid < 0)
4542 		return -EINVAL;
4543 
4544 	retval = -ESRCH;
4545 	rcu_read_lock();
4546 	p = find_process_by_pid(pid);
4547 	if (p) {
4548 		retval = security_task_getscheduler(p);
4549 		if (!retval)
4550 			retval = p->policy
4551 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4552 	}
4553 	rcu_read_unlock();
4554 	return retval;
4555 }
4556 
4557 /**
4558  * sys_sched_getparam - get the RT priority of a thread
4559  * @pid: the pid in question.
4560  * @param: structure containing the RT priority.
4561  *
4562  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4563  * code.
4564  */
4565 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4566 {
4567 	struct sched_param lp = { .sched_priority = 0 };
4568 	struct task_struct *p;
4569 	int retval;
4570 
4571 	if (!param || pid < 0)
4572 		return -EINVAL;
4573 
4574 	rcu_read_lock();
4575 	p = find_process_by_pid(pid);
4576 	retval = -ESRCH;
4577 	if (!p)
4578 		goto out_unlock;
4579 
4580 	retval = security_task_getscheduler(p);
4581 	if (retval)
4582 		goto out_unlock;
4583 
4584 	if (task_has_rt_policy(p))
4585 		lp.sched_priority = p->rt_priority;
4586 	rcu_read_unlock();
4587 
4588 	/*
4589 	 * This one might sleep, we cannot do it with a spinlock held ...
4590 	 */
4591 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4592 
4593 	return retval;
4594 
4595 out_unlock:
4596 	rcu_read_unlock();
4597 	return retval;
4598 }
4599 
4600 static int sched_read_attr(struct sched_attr __user *uattr,
4601 			   struct sched_attr *attr,
4602 			   unsigned int usize)
4603 {
4604 	int ret;
4605 
4606 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4607 		return -EFAULT;
4608 
4609 	/*
4610 	 * If we're handed a smaller struct than we know of,
4611 	 * ensure all the unknown bits are 0 - i.e. old
4612 	 * user-space does not get uncomplete information.
4613 	 */
4614 	if (usize < sizeof(*attr)) {
4615 		unsigned char *addr;
4616 		unsigned char *end;
4617 
4618 		addr = (void *)attr + usize;
4619 		end  = (void *)attr + sizeof(*attr);
4620 
4621 		for (; addr < end; addr++) {
4622 			if (*addr)
4623 				return -EFBIG;
4624 		}
4625 
4626 		attr->size = usize;
4627 	}
4628 
4629 	ret = copy_to_user(uattr, attr, attr->size);
4630 	if (ret)
4631 		return -EFAULT;
4632 
4633 	return 0;
4634 }
4635 
4636 /**
4637  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4638  * @pid: the pid in question.
4639  * @uattr: structure containing the extended parameters.
4640  * @size: sizeof(attr) for fwd/bwd comp.
4641  * @flags: for future extension.
4642  */
4643 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4644 		unsigned int, size, unsigned int, flags)
4645 {
4646 	struct sched_attr attr = {
4647 		.size = sizeof(struct sched_attr),
4648 	};
4649 	struct task_struct *p;
4650 	int retval;
4651 
4652 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4653 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4654 		return -EINVAL;
4655 
4656 	rcu_read_lock();
4657 	p = find_process_by_pid(pid);
4658 	retval = -ESRCH;
4659 	if (!p)
4660 		goto out_unlock;
4661 
4662 	retval = security_task_getscheduler(p);
4663 	if (retval)
4664 		goto out_unlock;
4665 
4666 	attr.sched_policy = p->policy;
4667 	if (p->sched_reset_on_fork)
4668 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4669 	if (task_has_dl_policy(p))
4670 		__getparam_dl(p, &attr);
4671 	else if (task_has_rt_policy(p))
4672 		attr.sched_priority = p->rt_priority;
4673 	else
4674 		attr.sched_nice = task_nice(p);
4675 
4676 	rcu_read_unlock();
4677 
4678 	retval = sched_read_attr(uattr, &attr, size);
4679 	return retval;
4680 
4681 out_unlock:
4682 	rcu_read_unlock();
4683 	return retval;
4684 }
4685 
4686 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4687 {
4688 	cpumask_var_t cpus_allowed, new_mask;
4689 	struct task_struct *p;
4690 	int retval;
4691 
4692 	rcu_read_lock();
4693 
4694 	p = find_process_by_pid(pid);
4695 	if (!p) {
4696 		rcu_read_unlock();
4697 		return -ESRCH;
4698 	}
4699 
4700 	/* Prevent p going away */
4701 	get_task_struct(p);
4702 	rcu_read_unlock();
4703 
4704 	if (p->flags & PF_NO_SETAFFINITY) {
4705 		retval = -EINVAL;
4706 		goto out_put_task;
4707 	}
4708 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4709 		retval = -ENOMEM;
4710 		goto out_put_task;
4711 	}
4712 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4713 		retval = -ENOMEM;
4714 		goto out_free_cpus_allowed;
4715 	}
4716 	retval = -EPERM;
4717 	if (!check_same_owner(p)) {
4718 		rcu_read_lock();
4719 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4720 			rcu_read_unlock();
4721 			goto out_free_new_mask;
4722 		}
4723 		rcu_read_unlock();
4724 	}
4725 
4726 	retval = security_task_setscheduler(p);
4727 	if (retval)
4728 		goto out_free_new_mask;
4729 
4730 
4731 	cpuset_cpus_allowed(p, cpus_allowed);
4732 	cpumask_and(new_mask, in_mask, cpus_allowed);
4733 
4734 	/*
4735 	 * Since bandwidth control happens on root_domain basis,
4736 	 * if admission test is enabled, we only admit -deadline
4737 	 * tasks allowed to run on all the CPUs in the task's
4738 	 * root_domain.
4739 	 */
4740 #ifdef CONFIG_SMP
4741 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4742 		rcu_read_lock();
4743 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4744 			retval = -EBUSY;
4745 			rcu_read_unlock();
4746 			goto out_free_new_mask;
4747 		}
4748 		rcu_read_unlock();
4749 	}
4750 #endif
4751 again:
4752 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4753 
4754 	if (!retval) {
4755 		cpuset_cpus_allowed(p, cpus_allowed);
4756 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4757 			/*
4758 			 * We must have raced with a concurrent cpuset
4759 			 * update. Just reset the cpus_allowed to the
4760 			 * cpuset's cpus_allowed
4761 			 */
4762 			cpumask_copy(new_mask, cpus_allowed);
4763 			goto again;
4764 		}
4765 	}
4766 out_free_new_mask:
4767 	free_cpumask_var(new_mask);
4768 out_free_cpus_allowed:
4769 	free_cpumask_var(cpus_allowed);
4770 out_put_task:
4771 	put_task_struct(p);
4772 	return retval;
4773 }
4774 
4775 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4776 			     struct cpumask *new_mask)
4777 {
4778 	if (len < cpumask_size())
4779 		cpumask_clear(new_mask);
4780 	else if (len > cpumask_size())
4781 		len = cpumask_size();
4782 
4783 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784 }
4785 
4786 /**
4787  * sys_sched_setaffinity - set the cpu affinity of a process
4788  * @pid: pid of the process
4789  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790  * @user_mask_ptr: user-space pointer to the new cpu mask
4791  *
4792  * Return: 0 on success. An error code otherwise.
4793  */
4794 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4795 		unsigned long __user *, user_mask_ptr)
4796 {
4797 	cpumask_var_t new_mask;
4798 	int retval;
4799 
4800 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4801 		return -ENOMEM;
4802 
4803 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4804 	if (retval == 0)
4805 		retval = sched_setaffinity(pid, new_mask);
4806 	free_cpumask_var(new_mask);
4807 	return retval;
4808 }
4809 
4810 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4811 {
4812 	struct task_struct *p;
4813 	unsigned long flags;
4814 	int retval;
4815 
4816 	rcu_read_lock();
4817 
4818 	retval = -ESRCH;
4819 	p = find_process_by_pid(pid);
4820 	if (!p)
4821 		goto out_unlock;
4822 
4823 	retval = security_task_getscheduler(p);
4824 	if (retval)
4825 		goto out_unlock;
4826 
4827 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4828 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4829 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4830 
4831 out_unlock:
4832 	rcu_read_unlock();
4833 
4834 	return retval;
4835 }
4836 
4837 /**
4838  * sys_sched_getaffinity - get the cpu affinity of a process
4839  * @pid: pid of the process
4840  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4841  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4842  *
4843  * Return: size of CPU mask copied to user_mask_ptr on success. An
4844  * error code otherwise.
4845  */
4846 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4847 		unsigned long __user *, user_mask_ptr)
4848 {
4849 	int ret;
4850 	cpumask_var_t mask;
4851 
4852 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4853 		return -EINVAL;
4854 	if (len & (sizeof(unsigned long)-1))
4855 		return -EINVAL;
4856 
4857 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 		return -ENOMEM;
4859 
4860 	ret = sched_getaffinity(pid, mask);
4861 	if (ret == 0) {
4862 		size_t retlen = min_t(size_t, len, cpumask_size());
4863 
4864 		if (copy_to_user(user_mask_ptr, mask, retlen))
4865 			ret = -EFAULT;
4866 		else
4867 			ret = retlen;
4868 	}
4869 	free_cpumask_var(mask);
4870 
4871 	return ret;
4872 }
4873 
4874 /**
4875  * sys_sched_yield - yield the current processor to other threads.
4876  *
4877  * This function yields the current CPU to other tasks. If there are no
4878  * other threads running on this CPU then this function will return.
4879  *
4880  * Return: 0.
4881  */
4882 SYSCALL_DEFINE0(sched_yield)
4883 {
4884 	struct rq *rq = this_rq_lock();
4885 
4886 	schedstat_inc(rq->yld_count);
4887 	current->sched_class->yield_task(rq);
4888 
4889 	/*
4890 	 * Since we are going to call schedule() anyway, there's
4891 	 * no need to preempt or enable interrupts:
4892 	 */
4893 	__release(rq->lock);
4894 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4895 	do_raw_spin_unlock(&rq->lock);
4896 	sched_preempt_enable_no_resched();
4897 
4898 	schedule();
4899 
4900 	return 0;
4901 }
4902 
4903 #ifndef CONFIG_PREEMPT
4904 int __sched _cond_resched(void)
4905 {
4906 	if (should_resched(0)) {
4907 		preempt_schedule_common();
4908 		return 1;
4909 	}
4910 	return 0;
4911 }
4912 EXPORT_SYMBOL(_cond_resched);
4913 #endif
4914 
4915 /*
4916  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4917  * call schedule, and on return reacquire the lock.
4918  *
4919  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4920  * operations here to prevent schedule() from being called twice (once via
4921  * spin_unlock(), once by hand).
4922  */
4923 int __cond_resched_lock(spinlock_t *lock)
4924 {
4925 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4926 	int ret = 0;
4927 
4928 	lockdep_assert_held(lock);
4929 
4930 	if (spin_needbreak(lock) || resched) {
4931 		spin_unlock(lock);
4932 		if (resched)
4933 			preempt_schedule_common();
4934 		else
4935 			cpu_relax();
4936 		ret = 1;
4937 		spin_lock(lock);
4938 	}
4939 	return ret;
4940 }
4941 EXPORT_SYMBOL(__cond_resched_lock);
4942 
4943 int __sched __cond_resched_softirq(void)
4944 {
4945 	BUG_ON(!in_softirq());
4946 
4947 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4948 		local_bh_enable();
4949 		preempt_schedule_common();
4950 		local_bh_disable();
4951 		return 1;
4952 	}
4953 	return 0;
4954 }
4955 EXPORT_SYMBOL(__cond_resched_softirq);
4956 
4957 /**
4958  * yield - yield the current processor to other threads.
4959  *
4960  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4961  *
4962  * The scheduler is at all times free to pick the calling task as the most
4963  * eligible task to run, if removing the yield() call from your code breaks
4964  * it, its already broken.
4965  *
4966  * Typical broken usage is:
4967  *
4968  * while (!event)
4969  * 	yield();
4970  *
4971  * where one assumes that yield() will let 'the other' process run that will
4972  * make event true. If the current task is a SCHED_FIFO task that will never
4973  * happen. Never use yield() as a progress guarantee!!
4974  *
4975  * If you want to use yield() to wait for something, use wait_event().
4976  * If you want to use yield() to be 'nice' for others, use cond_resched().
4977  * If you still want to use yield(), do not!
4978  */
4979 void __sched yield(void)
4980 {
4981 	set_current_state(TASK_RUNNING);
4982 	sys_sched_yield();
4983 }
4984 EXPORT_SYMBOL(yield);
4985 
4986 /**
4987  * yield_to - yield the current processor to another thread in
4988  * your thread group, or accelerate that thread toward the
4989  * processor it's on.
4990  * @p: target task
4991  * @preempt: whether task preemption is allowed or not
4992  *
4993  * It's the caller's job to ensure that the target task struct
4994  * can't go away on us before we can do any checks.
4995  *
4996  * Return:
4997  *	true (>0) if we indeed boosted the target task.
4998  *	false (0) if we failed to boost the target.
4999  *	-ESRCH if there's no task to yield to.
5000  */
5001 int __sched yield_to(struct task_struct *p, bool preempt)
5002 {
5003 	struct task_struct *curr = current;
5004 	struct rq *rq, *p_rq;
5005 	unsigned long flags;
5006 	int yielded = 0;
5007 
5008 	local_irq_save(flags);
5009 	rq = this_rq();
5010 
5011 again:
5012 	p_rq = task_rq(p);
5013 	/*
5014 	 * If we're the only runnable task on the rq and target rq also
5015 	 * has only one task, there's absolutely no point in yielding.
5016 	 */
5017 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5018 		yielded = -ESRCH;
5019 		goto out_irq;
5020 	}
5021 
5022 	double_rq_lock(rq, p_rq);
5023 	if (task_rq(p) != p_rq) {
5024 		double_rq_unlock(rq, p_rq);
5025 		goto again;
5026 	}
5027 
5028 	if (!curr->sched_class->yield_to_task)
5029 		goto out_unlock;
5030 
5031 	if (curr->sched_class != p->sched_class)
5032 		goto out_unlock;
5033 
5034 	if (task_running(p_rq, p) || p->state)
5035 		goto out_unlock;
5036 
5037 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5038 	if (yielded) {
5039 		schedstat_inc(rq->yld_count);
5040 		/*
5041 		 * Make p's CPU reschedule; pick_next_entity takes care of
5042 		 * fairness.
5043 		 */
5044 		if (preempt && rq != p_rq)
5045 			resched_curr(p_rq);
5046 	}
5047 
5048 out_unlock:
5049 	double_rq_unlock(rq, p_rq);
5050 out_irq:
5051 	local_irq_restore(flags);
5052 
5053 	if (yielded > 0)
5054 		schedule();
5055 
5056 	return yielded;
5057 }
5058 EXPORT_SYMBOL_GPL(yield_to);
5059 
5060 /*
5061  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5062  * that process accounting knows that this is a task in IO wait state.
5063  */
5064 long __sched io_schedule_timeout(long timeout)
5065 {
5066 	int old_iowait = current->in_iowait;
5067 	struct rq *rq;
5068 	long ret;
5069 
5070 	current->in_iowait = 1;
5071 	blk_schedule_flush_plug(current);
5072 
5073 	delayacct_blkio_start();
5074 	rq = raw_rq();
5075 	atomic_inc(&rq->nr_iowait);
5076 	ret = schedule_timeout(timeout);
5077 	current->in_iowait = old_iowait;
5078 	atomic_dec(&rq->nr_iowait);
5079 	delayacct_blkio_end();
5080 
5081 	return ret;
5082 }
5083 EXPORT_SYMBOL(io_schedule_timeout);
5084 
5085 /**
5086  * sys_sched_get_priority_max - return maximum RT priority.
5087  * @policy: scheduling class.
5088  *
5089  * Return: On success, this syscall returns the maximum
5090  * rt_priority that can be used by a given scheduling class.
5091  * On failure, a negative error code is returned.
5092  */
5093 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5094 {
5095 	int ret = -EINVAL;
5096 
5097 	switch (policy) {
5098 	case SCHED_FIFO:
5099 	case SCHED_RR:
5100 		ret = MAX_USER_RT_PRIO-1;
5101 		break;
5102 	case SCHED_DEADLINE:
5103 	case SCHED_NORMAL:
5104 	case SCHED_BATCH:
5105 	case SCHED_IDLE:
5106 		ret = 0;
5107 		break;
5108 	}
5109 	return ret;
5110 }
5111 
5112 /**
5113  * sys_sched_get_priority_min - return minimum RT priority.
5114  * @policy: scheduling class.
5115  *
5116  * Return: On success, this syscall returns the minimum
5117  * rt_priority that can be used by a given scheduling class.
5118  * On failure, a negative error code is returned.
5119  */
5120 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5121 {
5122 	int ret = -EINVAL;
5123 
5124 	switch (policy) {
5125 	case SCHED_FIFO:
5126 	case SCHED_RR:
5127 		ret = 1;
5128 		break;
5129 	case SCHED_DEADLINE:
5130 	case SCHED_NORMAL:
5131 	case SCHED_BATCH:
5132 	case SCHED_IDLE:
5133 		ret = 0;
5134 	}
5135 	return ret;
5136 }
5137 
5138 /**
5139  * sys_sched_rr_get_interval - return the default timeslice of a process.
5140  * @pid: pid of the process.
5141  * @interval: userspace pointer to the timeslice value.
5142  *
5143  * this syscall writes the default timeslice value of a given process
5144  * into the user-space timespec buffer. A value of '0' means infinity.
5145  *
5146  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5147  * an error code.
5148  */
5149 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5150 		struct timespec __user *, interval)
5151 {
5152 	struct task_struct *p;
5153 	unsigned int time_slice;
5154 	struct rq_flags rf;
5155 	struct timespec t;
5156 	struct rq *rq;
5157 	int retval;
5158 
5159 	if (pid < 0)
5160 		return -EINVAL;
5161 
5162 	retval = -ESRCH;
5163 	rcu_read_lock();
5164 	p = find_process_by_pid(pid);
5165 	if (!p)
5166 		goto out_unlock;
5167 
5168 	retval = security_task_getscheduler(p);
5169 	if (retval)
5170 		goto out_unlock;
5171 
5172 	rq = task_rq_lock(p, &rf);
5173 	time_slice = 0;
5174 	if (p->sched_class->get_rr_interval)
5175 		time_slice = p->sched_class->get_rr_interval(rq, p);
5176 	task_rq_unlock(rq, p, &rf);
5177 
5178 	rcu_read_unlock();
5179 	jiffies_to_timespec(time_slice, &t);
5180 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5181 	return retval;
5182 
5183 out_unlock:
5184 	rcu_read_unlock();
5185 	return retval;
5186 }
5187 
5188 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5189 
5190 void sched_show_task(struct task_struct *p)
5191 {
5192 	unsigned long free = 0;
5193 	int ppid;
5194 	unsigned long state = p->state;
5195 
5196 	if (!try_get_task_stack(p))
5197 		return;
5198 	if (state)
5199 		state = __ffs(state) + 1;
5200 	printk(KERN_INFO "%-15.15s %c", p->comm,
5201 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5202 	if (state == TASK_RUNNING)
5203 		printk(KERN_CONT "  running task    ");
5204 #ifdef CONFIG_DEBUG_STACK_USAGE
5205 	free = stack_not_used(p);
5206 #endif
5207 	ppid = 0;
5208 	rcu_read_lock();
5209 	if (pid_alive(p))
5210 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5211 	rcu_read_unlock();
5212 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5213 		task_pid_nr(p), ppid,
5214 		(unsigned long)task_thread_info(p)->flags);
5215 
5216 	print_worker_info(KERN_INFO, p);
5217 	show_stack(p, NULL);
5218 	put_task_stack(p);
5219 }
5220 
5221 void show_state_filter(unsigned long state_filter)
5222 {
5223 	struct task_struct *g, *p;
5224 
5225 #if BITS_PER_LONG == 32
5226 	printk(KERN_INFO
5227 		"  task                PC stack   pid father\n");
5228 #else
5229 	printk(KERN_INFO
5230 		"  task                        PC stack   pid father\n");
5231 #endif
5232 	rcu_read_lock();
5233 	for_each_process_thread(g, p) {
5234 		/*
5235 		 * reset the NMI-timeout, listing all files on a slow
5236 		 * console might take a lot of time:
5237 		 * Also, reset softlockup watchdogs on all CPUs, because
5238 		 * another CPU might be blocked waiting for us to process
5239 		 * an IPI.
5240 		 */
5241 		touch_nmi_watchdog();
5242 		touch_all_softlockup_watchdogs();
5243 		if (!state_filter || (p->state & state_filter))
5244 			sched_show_task(p);
5245 	}
5246 
5247 #ifdef CONFIG_SCHED_DEBUG
5248 	if (!state_filter)
5249 		sysrq_sched_debug_show();
5250 #endif
5251 	rcu_read_unlock();
5252 	/*
5253 	 * Only show locks if all tasks are dumped:
5254 	 */
5255 	if (!state_filter)
5256 		debug_show_all_locks();
5257 }
5258 
5259 void init_idle_bootup_task(struct task_struct *idle)
5260 {
5261 	idle->sched_class = &idle_sched_class;
5262 }
5263 
5264 /**
5265  * init_idle - set up an idle thread for a given CPU
5266  * @idle: task in question
5267  * @cpu: cpu the idle task belongs to
5268  *
5269  * NOTE: this function does not set the idle thread's NEED_RESCHED
5270  * flag, to make booting more robust.
5271  */
5272 void init_idle(struct task_struct *idle, int cpu)
5273 {
5274 	struct rq *rq = cpu_rq(cpu);
5275 	unsigned long flags;
5276 
5277 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5278 	raw_spin_lock(&rq->lock);
5279 
5280 	__sched_fork(0, idle);
5281 	idle->state = TASK_RUNNING;
5282 	idle->se.exec_start = sched_clock();
5283 	idle->flags |= PF_IDLE;
5284 
5285 	kasan_unpoison_task_stack(idle);
5286 
5287 #ifdef CONFIG_SMP
5288 	/*
5289 	 * Its possible that init_idle() gets called multiple times on a task,
5290 	 * in that case do_set_cpus_allowed() will not do the right thing.
5291 	 *
5292 	 * And since this is boot we can forgo the serialization.
5293 	 */
5294 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5295 #endif
5296 	/*
5297 	 * We're having a chicken and egg problem, even though we are
5298 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5299 	 * lockdep check in task_group() will fail.
5300 	 *
5301 	 * Similar case to sched_fork(). / Alternatively we could
5302 	 * use task_rq_lock() here and obtain the other rq->lock.
5303 	 *
5304 	 * Silence PROVE_RCU
5305 	 */
5306 	rcu_read_lock();
5307 	__set_task_cpu(idle, cpu);
5308 	rcu_read_unlock();
5309 
5310 	rq->curr = rq->idle = idle;
5311 	idle->on_rq = TASK_ON_RQ_QUEUED;
5312 #ifdef CONFIG_SMP
5313 	idle->on_cpu = 1;
5314 #endif
5315 	raw_spin_unlock(&rq->lock);
5316 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5317 
5318 	/* Set the preempt count _outside_ the spinlocks! */
5319 	init_idle_preempt_count(idle, cpu);
5320 
5321 	/*
5322 	 * The idle tasks have their own, simple scheduling class:
5323 	 */
5324 	idle->sched_class = &idle_sched_class;
5325 	ftrace_graph_init_idle_task(idle, cpu);
5326 	vtime_init_idle(idle, cpu);
5327 #ifdef CONFIG_SMP
5328 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5329 #endif
5330 }
5331 
5332 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5333 			      const struct cpumask *trial)
5334 {
5335 	int ret = 1, trial_cpus;
5336 	struct dl_bw *cur_dl_b;
5337 	unsigned long flags;
5338 
5339 	if (!cpumask_weight(cur))
5340 		return ret;
5341 
5342 	rcu_read_lock_sched();
5343 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5344 	trial_cpus = cpumask_weight(trial);
5345 
5346 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5347 	if (cur_dl_b->bw != -1 &&
5348 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5349 		ret = 0;
5350 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5351 	rcu_read_unlock_sched();
5352 
5353 	return ret;
5354 }
5355 
5356 int task_can_attach(struct task_struct *p,
5357 		    const struct cpumask *cs_cpus_allowed)
5358 {
5359 	int ret = 0;
5360 
5361 	/*
5362 	 * Kthreads which disallow setaffinity shouldn't be moved
5363 	 * to a new cpuset; we don't want to change their cpu
5364 	 * affinity and isolating such threads by their set of
5365 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5366 	 * applicable for such threads.  This prevents checking for
5367 	 * success of set_cpus_allowed_ptr() on all attached tasks
5368 	 * before cpus_allowed may be changed.
5369 	 */
5370 	if (p->flags & PF_NO_SETAFFINITY) {
5371 		ret = -EINVAL;
5372 		goto out;
5373 	}
5374 
5375 #ifdef CONFIG_SMP
5376 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5377 					      cs_cpus_allowed)) {
5378 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5379 							cs_cpus_allowed);
5380 		struct dl_bw *dl_b;
5381 		bool overflow;
5382 		int cpus;
5383 		unsigned long flags;
5384 
5385 		rcu_read_lock_sched();
5386 		dl_b = dl_bw_of(dest_cpu);
5387 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5388 		cpus = dl_bw_cpus(dest_cpu);
5389 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5390 		if (overflow)
5391 			ret = -EBUSY;
5392 		else {
5393 			/*
5394 			 * We reserve space for this task in the destination
5395 			 * root_domain, as we can't fail after this point.
5396 			 * We will free resources in the source root_domain
5397 			 * later on (see set_cpus_allowed_dl()).
5398 			 */
5399 			__dl_add(dl_b, p->dl.dl_bw);
5400 		}
5401 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5402 		rcu_read_unlock_sched();
5403 
5404 	}
5405 #endif
5406 out:
5407 	return ret;
5408 }
5409 
5410 #ifdef CONFIG_SMP
5411 
5412 static bool sched_smp_initialized __read_mostly;
5413 
5414 #ifdef CONFIG_NUMA_BALANCING
5415 /* Migrate current task p to target_cpu */
5416 int migrate_task_to(struct task_struct *p, int target_cpu)
5417 {
5418 	struct migration_arg arg = { p, target_cpu };
5419 	int curr_cpu = task_cpu(p);
5420 
5421 	if (curr_cpu == target_cpu)
5422 		return 0;
5423 
5424 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5425 		return -EINVAL;
5426 
5427 	/* TODO: This is not properly updating schedstats */
5428 
5429 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5430 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5431 }
5432 
5433 /*
5434  * Requeue a task on a given node and accurately track the number of NUMA
5435  * tasks on the runqueues
5436  */
5437 void sched_setnuma(struct task_struct *p, int nid)
5438 {
5439 	bool queued, running;
5440 	struct rq_flags rf;
5441 	struct rq *rq;
5442 
5443 	rq = task_rq_lock(p, &rf);
5444 	queued = task_on_rq_queued(p);
5445 	running = task_current(rq, p);
5446 
5447 	if (queued)
5448 		dequeue_task(rq, p, DEQUEUE_SAVE);
5449 	if (running)
5450 		put_prev_task(rq, p);
5451 
5452 	p->numa_preferred_nid = nid;
5453 
5454 	if (queued)
5455 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5456 	if (running)
5457 		set_curr_task(rq, p);
5458 	task_rq_unlock(rq, p, &rf);
5459 }
5460 #endif /* CONFIG_NUMA_BALANCING */
5461 
5462 #ifdef CONFIG_HOTPLUG_CPU
5463 /*
5464  * Ensures that the idle task is using init_mm right before its cpu goes
5465  * offline.
5466  */
5467 void idle_task_exit(void)
5468 {
5469 	struct mm_struct *mm = current->active_mm;
5470 
5471 	BUG_ON(cpu_online(smp_processor_id()));
5472 
5473 	if (mm != &init_mm) {
5474 		switch_mm_irqs_off(mm, &init_mm, current);
5475 		finish_arch_post_lock_switch();
5476 	}
5477 	mmdrop(mm);
5478 }
5479 
5480 /*
5481  * Since this CPU is going 'away' for a while, fold any nr_active delta
5482  * we might have. Assumes we're called after migrate_tasks() so that the
5483  * nr_active count is stable. We need to take the teardown thread which
5484  * is calling this into account, so we hand in adjust = 1 to the load
5485  * calculation.
5486  *
5487  * Also see the comment "Global load-average calculations".
5488  */
5489 static void calc_load_migrate(struct rq *rq)
5490 {
5491 	long delta = calc_load_fold_active(rq, 1);
5492 	if (delta)
5493 		atomic_long_add(delta, &calc_load_tasks);
5494 }
5495 
5496 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5497 {
5498 }
5499 
5500 static const struct sched_class fake_sched_class = {
5501 	.put_prev_task = put_prev_task_fake,
5502 };
5503 
5504 static struct task_struct fake_task = {
5505 	/*
5506 	 * Avoid pull_{rt,dl}_task()
5507 	 */
5508 	.prio = MAX_PRIO + 1,
5509 	.sched_class = &fake_sched_class,
5510 };
5511 
5512 /*
5513  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5514  * try_to_wake_up()->select_task_rq().
5515  *
5516  * Called with rq->lock held even though we'er in stop_machine() and
5517  * there's no concurrency possible, we hold the required locks anyway
5518  * because of lock validation efforts.
5519  */
5520 static void migrate_tasks(struct rq *dead_rq)
5521 {
5522 	struct rq *rq = dead_rq;
5523 	struct task_struct *next, *stop = rq->stop;
5524 	struct pin_cookie cookie;
5525 	int dest_cpu;
5526 
5527 	/*
5528 	 * Fudge the rq selection such that the below task selection loop
5529 	 * doesn't get stuck on the currently eligible stop task.
5530 	 *
5531 	 * We're currently inside stop_machine() and the rq is either stuck
5532 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5533 	 * either way we should never end up calling schedule() until we're
5534 	 * done here.
5535 	 */
5536 	rq->stop = NULL;
5537 
5538 	/*
5539 	 * put_prev_task() and pick_next_task() sched
5540 	 * class method both need to have an up-to-date
5541 	 * value of rq->clock[_task]
5542 	 */
5543 	update_rq_clock(rq);
5544 
5545 	for (;;) {
5546 		/*
5547 		 * There's this thread running, bail when that's the only
5548 		 * remaining thread.
5549 		 */
5550 		if (rq->nr_running == 1)
5551 			break;
5552 
5553 		/*
5554 		 * pick_next_task assumes pinned rq->lock.
5555 		 */
5556 		cookie = lockdep_pin_lock(&rq->lock);
5557 		next = pick_next_task(rq, &fake_task, cookie);
5558 		BUG_ON(!next);
5559 		next->sched_class->put_prev_task(rq, next);
5560 
5561 		/*
5562 		 * Rules for changing task_struct::cpus_allowed are holding
5563 		 * both pi_lock and rq->lock, such that holding either
5564 		 * stabilizes the mask.
5565 		 *
5566 		 * Drop rq->lock is not quite as disastrous as it usually is
5567 		 * because !cpu_active at this point, which means load-balance
5568 		 * will not interfere. Also, stop-machine.
5569 		 */
5570 		lockdep_unpin_lock(&rq->lock, cookie);
5571 		raw_spin_unlock(&rq->lock);
5572 		raw_spin_lock(&next->pi_lock);
5573 		raw_spin_lock(&rq->lock);
5574 
5575 		/*
5576 		 * Since we're inside stop-machine, _nothing_ should have
5577 		 * changed the task, WARN if weird stuff happened, because in
5578 		 * that case the above rq->lock drop is a fail too.
5579 		 */
5580 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5581 			raw_spin_unlock(&next->pi_lock);
5582 			continue;
5583 		}
5584 
5585 		/* Find suitable destination for @next, with force if needed. */
5586 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5587 
5588 		rq = __migrate_task(rq, next, dest_cpu);
5589 		if (rq != dead_rq) {
5590 			raw_spin_unlock(&rq->lock);
5591 			rq = dead_rq;
5592 			raw_spin_lock(&rq->lock);
5593 		}
5594 		raw_spin_unlock(&next->pi_lock);
5595 	}
5596 
5597 	rq->stop = stop;
5598 }
5599 #endif /* CONFIG_HOTPLUG_CPU */
5600 
5601 static void set_rq_online(struct rq *rq)
5602 {
5603 	if (!rq->online) {
5604 		const struct sched_class *class;
5605 
5606 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5607 		rq->online = 1;
5608 
5609 		for_each_class(class) {
5610 			if (class->rq_online)
5611 				class->rq_online(rq);
5612 		}
5613 	}
5614 }
5615 
5616 static void set_rq_offline(struct rq *rq)
5617 {
5618 	if (rq->online) {
5619 		const struct sched_class *class;
5620 
5621 		for_each_class(class) {
5622 			if (class->rq_offline)
5623 				class->rq_offline(rq);
5624 		}
5625 
5626 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5627 		rq->online = 0;
5628 	}
5629 }
5630 
5631 static void set_cpu_rq_start_time(unsigned int cpu)
5632 {
5633 	struct rq *rq = cpu_rq(cpu);
5634 
5635 	rq->age_stamp = sched_clock_cpu(cpu);
5636 }
5637 
5638 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5639 
5640 #ifdef CONFIG_SCHED_DEBUG
5641 
5642 static __read_mostly int sched_debug_enabled;
5643 
5644 static int __init sched_debug_setup(char *str)
5645 {
5646 	sched_debug_enabled = 1;
5647 
5648 	return 0;
5649 }
5650 early_param("sched_debug", sched_debug_setup);
5651 
5652 static inline bool sched_debug(void)
5653 {
5654 	return sched_debug_enabled;
5655 }
5656 
5657 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5658 				  struct cpumask *groupmask)
5659 {
5660 	struct sched_group *group = sd->groups;
5661 
5662 	cpumask_clear(groupmask);
5663 
5664 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5665 
5666 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5667 		printk("does not load-balance\n");
5668 		if (sd->parent)
5669 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5670 					" has parent");
5671 		return -1;
5672 	}
5673 
5674 	printk(KERN_CONT "span %*pbl level %s\n",
5675 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5676 
5677 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5678 		printk(KERN_ERR "ERROR: domain->span does not contain "
5679 				"CPU%d\n", cpu);
5680 	}
5681 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5682 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5683 				" CPU%d\n", cpu);
5684 	}
5685 
5686 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5687 	do {
5688 		if (!group) {
5689 			printk("\n");
5690 			printk(KERN_ERR "ERROR: group is NULL\n");
5691 			break;
5692 		}
5693 
5694 		if (!cpumask_weight(sched_group_cpus(group))) {
5695 			printk(KERN_CONT "\n");
5696 			printk(KERN_ERR "ERROR: empty group\n");
5697 			break;
5698 		}
5699 
5700 		if (!(sd->flags & SD_OVERLAP) &&
5701 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5702 			printk(KERN_CONT "\n");
5703 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5704 			break;
5705 		}
5706 
5707 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5708 
5709 		printk(KERN_CONT " %*pbl",
5710 		       cpumask_pr_args(sched_group_cpus(group)));
5711 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5712 			printk(KERN_CONT " (cpu_capacity = %lu)",
5713 				group->sgc->capacity);
5714 		}
5715 
5716 		group = group->next;
5717 	} while (group != sd->groups);
5718 	printk(KERN_CONT "\n");
5719 
5720 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5721 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5722 
5723 	if (sd->parent &&
5724 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5725 		printk(KERN_ERR "ERROR: parent span is not a superset "
5726 			"of domain->span\n");
5727 	return 0;
5728 }
5729 
5730 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5731 {
5732 	int level = 0;
5733 
5734 	if (!sched_debug_enabled)
5735 		return;
5736 
5737 	if (!sd) {
5738 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5739 		return;
5740 	}
5741 
5742 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5743 
5744 	for (;;) {
5745 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5746 			break;
5747 		level++;
5748 		sd = sd->parent;
5749 		if (!sd)
5750 			break;
5751 	}
5752 }
5753 #else /* !CONFIG_SCHED_DEBUG */
5754 
5755 # define sched_debug_enabled 0
5756 # define sched_domain_debug(sd, cpu) do { } while (0)
5757 static inline bool sched_debug(void)
5758 {
5759 	return false;
5760 }
5761 #endif /* CONFIG_SCHED_DEBUG */
5762 
5763 static int sd_degenerate(struct sched_domain *sd)
5764 {
5765 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5766 		return 1;
5767 
5768 	/* Following flags need at least 2 groups */
5769 	if (sd->flags & (SD_LOAD_BALANCE |
5770 			 SD_BALANCE_NEWIDLE |
5771 			 SD_BALANCE_FORK |
5772 			 SD_BALANCE_EXEC |
5773 			 SD_SHARE_CPUCAPACITY |
5774 			 SD_ASYM_CPUCAPACITY |
5775 			 SD_SHARE_PKG_RESOURCES |
5776 			 SD_SHARE_POWERDOMAIN)) {
5777 		if (sd->groups != sd->groups->next)
5778 			return 0;
5779 	}
5780 
5781 	/* Following flags don't use groups */
5782 	if (sd->flags & (SD_WAKE_AFFINE))
5783 		return 0;
5784 
5785 	return 1;
5786 }
5787 
5788 static int
5789 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5790 {
5791 	unsigned long cflags = sd->flags, pflags = parent->flags;
5792 
5793 	if (sd_degenerate(parent))
5794 		return 1;
5795 
5796 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5797 		return 0;
5798 
5799 	/* Flags needing groups don't count if only 1 group in parent */
5800 	if (parent->groups == parent->groups->next) {
5801 		pflags &= ~(SD_LOAD_BALANCE |
5802 				SD_BALANCE_NEWIDLE |
5803 				SD_BALANCE_FORK |
5804 				SD_BALANCE_EXEC |
5805 				SD_ASYM_CPUCAPACITY |
5806 				SD_SHARE_CPUCAPACITY |
5807 				SD_SHARE_PKG_RESOURCES |
5808 				SD_PREFER_SIBLING |
5809 				SD_SHARE_POWERDOMAIN);
5810 		if (nr_node_ids == 1)
5811 			pflags &= ~SD_SERIALIZE;
5812 	}
5813 	if (~cflags & pflags)
5814 		return 0;
5815 
5816 	return 1;
5817 }
5818 
5819 static void free_rootdomain(struct rcu_head *rcu)
5820 {
5821 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5822 
5823 	cpupri_cleanup(&rd->cpupri);
5824 	cpudl_cleanup(&rd->cpudl);
5825 	free_cpumask_var(rd->dlo_mask);
5826 	free_cpumask_var(rd->rto_mask);
5827 	free_cpumask_var(rd->online);
5828 	free_cpumask_var(rd->span);
5829 	kfree(rd);
5830 }
5831 
5832 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5833 {
5834 	struct root_domain *old_rd = NULL;
5835 	unsigned long flags;
5836 
5837 	raw_spin_lock_irqsave(&rq->lock, flags);
5838 
5839 	if (rq->rd) {
5840 		old_rd = rq->rd;
5841 
5842 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5843 			set_rq_offline(rq);
5844 
5845 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5846 
5847 		/*
5848 		 * If we dont want to free the old_rd yet then
5849 		 * set old_rd to NULL to skip the freeing later
5850 		 * in this function:
5851 		 */
5852 		if (!atomic_dec_and_test(&old_rd->refcount))
5853 			old_rd = NULL;
5854 	}
5855 
5856 	atomic_inc(&rd->refcount);
5857 	rq->rd = rd;
5858 
5859 	cpumask_set_cpu(rq->cpu, rd->span);
5860 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5861 		set_rq_online(rq);
5862 
5863 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5864 
5865 	if (old_rd)
5866 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5867 }
5868 
5869 static int init_rootdomain(struct root_domain *rd)
5870 {
5871 	memset(rd, 0, sizeof(*rd));
5872 
5873 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5874 		goto out;
5875 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5876 		goto free_span;
5877 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5878 		goto free_online;
5879 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5880 		goto free_dlo_mask;
5881 
5882 	init_dl_bw(&rd->dl_bw);
5883 	if (cpudl_init(&rd->cpudl) != 0)
5884 		goto free_dlo_mask;
5885 
5886 	if (cpupri_init(&rd->cpupri) != 0)
5887 		goto free_rto_mask;
5888 	return 0;
5889 
5890 free_rto_mask:
5891 	free_cpumask_var(rd->rto_mask);
5892 free_dlo_mask:
5893 	free_cpumask_var(rd->dlo_mask);
5894 free_online:
5895 	free_cpumask_var(rd->online);
5896 free_span:
5897 	free_cpumask_var(rd->span);
5898 out:
5899 	return -ENOMEM;
5900 }
5901 
5902 /*
5903  * By default the system creates a single root-domain with all cpus as
5904  * members (mimicking the global state we have today).
5905  */
5906 struct root_domain def_root_domain;
5907 
5908 static void init_defrootdomain(void)
5909 {
5910 	init_rootdomain(&def_root_domain);
5911 
5912 	atomic_set(&def_root_domain.refcount, 1);
5913 }
5914 
5915 static struct root_domain *alloc_rootdomain(void)
5916 {
5917 	struct root_domain *rd;
5918 
5919 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5920 	if (!rd)
5921 		return NULL;
5922 
5923 	if (init_rootdomain(rd) != 0) {
5924 		kfree(rd);
5925 		return NULL;
5926 	}
5927 
5928 	return rd;
5929 }
5930 
5931 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5932 {
5933 	struct sched_group *tmp, *first;
5934 
5935 	if (!sg)
5936 		return;
5937 
5938 	first = sg;
5939 	do {
5940 		tmp = sg->next;
5941 
5942 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5943 			kfree(sg->sgc);
5944 
5945 		kfree(sg);
5946 		sg = tmp;
5947 	} while (sg != first);
5948 }
5949 
5950 static void destroy_sched_domain(struct sched_domain *sd)
5951 {
5952 	/*
5953 	 * If its an overlapping domain it has private groups, iterate and
5954 	 * nuke them all.
5955 	 */
5956 	if (sd->flags & SD_OVERLAP) {
5957 		free_sched_groups(sd->groups, 1);
5958 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5959 		kfree(sd->groups->sgc);
5960 		kfree(sd->groups);
5961 	}
5962 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5963 		kfree(sd->shared);
5964 	kfree(sd);
5965 }
5966 
5967 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5968 {
5969 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5970 
5971 	while (sd) {
5972 		struct sched_domain *parent = sd->parent;
5973 		destroy_sched_domain(sd);
5974 		sd = parent;
5975 	}
5976 }
5977 
5978 static void destroy_sched_domains(struct sched_domain *sd)
5979 {
5980 	if (sd)
5981 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5982 }
5983 
5984 /*
5985  * Keep a special pointer to the highest sched_domain that has
5986  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5987  * allows us to avoid some pointer chasing select_idle_sibling().
5988  *
5989  * Also keep a unique ID per domain (we use the first cpu number in
5990  * the cpumask of the domain), this allows us to quickly tell if
5991  * two cpus are in the same cache domain, see cpus_share_cache().
5992  */
5993 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5994 DEFINE_PER_CPU(int, sd_llc_size);
5995 DEFINE_PER_CPU(int, sd_llc_id);
5996 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
5997 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5998 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5999 
6000 static void update_top_cache_domain(int cpu)
6001 {
6002 	struct sched_domain_shared *sds = NULL;
6003 	struct sched_domain *sd;
6004 	int id = cpu;
6005 	int size = 1;
6006 
6007 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6008 	if (sd) {
6009 		id = cpumask_first(sched_domain_span(sd));
6010 		size = cpumask_weight(sched_domain_span(sd));
6011 		sds = sd->shared;
6012 	}
6013 
6014 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6015 	per_cpu(sd_llc_size, cpu) = size;
6016 	per_cpu(sd_llc_id, cpu) = id;
6017 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6018 
6019 	sd = lowest_flag_domain(cpu, SD_NUMA);
6020 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6021 
6022 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6023 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6024 }
6025 
6026 /*
6027  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6028  * hold the hotplug lock.
6029  */
6030 static void
6031 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6032 {
6033 	struct rq *rq = cpu_rq(cpu);
6034 	struct sched_domain *tmp;
6035 
6036 	/* Remove the sched domains which do not contribute to scheduling. */
6037 	for (tmp = sd; tmp; ) {
6038 		struct sched_domain *parent = tmp->parent;
6039 		if (!parent)
6040 			break;
6041 
6042 		if (sd_parent_degenerate(tmp, parent)) {
6043 			tmp->parent = parent->parent;
6044 			if (parent->parent)
6045 				parent->parent->child = tmp;
6046 			/*
6047 			 * Transfer SD_PREFER_SIBLING down in case of a
6048 			 * degenerate parent; the spans match for this
6049 			 * so the property transfers.
6050 			 */
6051 			if (parent->flags & SD_PREFER_SIBLING)
6052 				tmp->flags |= SD_PREFER_SIBLING;
6053 			destroy_sched_domain(parent);
6054 		} else
6055 			tmp = tmp->parent;
6056 	}
6057 
6058 	if (sd && sd_degenerate(sd)) {
6059 		tmp = sd;
6060 		sd = sd->parent;
6061 		destroy_sched_domain(tmp);
6062 		if (sd)
6063 			sd->child = NULL;
6064 	}
6065 
6066 	sched_domain_debug(sd, cpu);
6067 
6068 	rq_attach_root(rq, rd);
6069 	tmp = rq->sd;
6070 	rcu_assign_pointer(rq->sd, sd);
6071 	destroy_sched_domains(tmp);
6072 
6073 	update_top_cache_domain(cpu);
6074 }
6075 
6076 /* Setup the mask of cpus configured for isolated domains */
6077 static int __init isolated_cpu_setup(char *str)
6078 {
6079 	int ret;
6080 
6081 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6082 	ret = cpulist_parse(str, cpu_isolated_map);
6083 	if (ret) {
6084 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6085 		return 0;
6086 	}
6087 	return 1;
6088 }
6089 __setup("isolcpus=", isolated_cpu_setup);
6090 
6091 struct s_data {
6092 	struct sched_domain ** __percpu sd;
6093 	struct root_domain	*rd;
6094 };
6095 
6096 enum s_alloc {
6097 	sa_rootdomain,
6098 	sa_sd,
6099 	sa_sd_storage,
6100 	sa_none,
6101 };
6102 
6103 /*
6104  * Build an iteration mask that can exclude certain CPUs from the upwards
6105  * domain traversal.
6106  *
6107  * Asymmetric node setups can result in situations where the domain tree is of
6108  * unequal depth, make sure to skip domains that already cover the entire
6109  * range.
6110  *
6111  * In that case build_sched_domains() will have terminated the iteration early
6112  * and our sibling sd spans will be empty. Domains should always include the
6113  * cpu they're built on, so check that.
6114  *
6115  */
6116 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6117 {
6118 	const struct cpumask *span = sched_domain_span(sd);
6119 	struct sd_data *sdd = sd->private;
6120 	struct sched_domain *sibling;
6121 	int i;
6122 
6123 	for_each_cpu(i, span) {
6124 		sibling = *per_cpu_ptr(sdd->sd, i);
6125 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6126 			continue;
6127 
6128 		cpumask_set_cpu(i, sched_group_mask(sg));
6129 	}
6130 }
6131 
6132 /*
6133  * Return the canonical balance cpu for this group, this is the first cpu
6134  * of this group that's also in the iteration mask.
6135  */
6136 int group_balance_cpu(struct sched_group *sg)
6137 {
6138 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6139 }
6140 
6141 static int
6142 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6143 {
6144 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6145 	const struct cpumask *span = sched_domain_span(sd);
6146 	struct cpumask *covered = sched_domains_tmpmask;
6147 	struct sd_data *sdd = sd->private;
6148 	struct sched_domain *sibling;
6149 	int i;
6150 
6151 	cpumask_clear(covered);
6152 
6153 	for_each_cpu(i, span) {
6154 		struct cpumask *sg_span;
6155 
6156 		if (cpumask_test_cpu(i, covered))
6157 			continue;
6158 
6159 		sibling = *per_cpu_ptr(sdd->sd, i);
6160 
6161 		/* See the comment near build_group_mask(). */
6162 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6163 			continue;
6164 
6165 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6166 				GFP_KERNEL, cpu_to_node(cpu));
6167 
6168 		if (!sg)
6169 			goto fail;
6170 
6171 		sg_span = sched_group_cpus(sg);
6172 		if (sibling->child)
6173 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6174 		else
6175 			cpumask_set_cpu(i, sg_span);
6176 
6177 		cpumask_or(covered, covered, sg_span);
6178 
6179 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6180 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6181 			build_group_mask(sd, sg);
6182 
6183 		/*
6184 		 * Initialize sgc->capacity such that even if we mess up the
6185 		 * domains and no possible iteration will get us here, we won't
6186 		 * die on a /0 trap.
6187 		 */
6188 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6189 		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6190 
6191 		/*
6192 		 * Make sure the first group of this domain contains the
6193 		 * canonical balance cpu. Otherwise the sched_domain iteration
6194 		 * breaks. See update_sg_lb_stats().
6195 		 */
6196 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6197 		    group_balance_cpu(sg) == cpu)
6198 			groups = sg;
6199 
6200 		if (!first)
6201 			first = sg;
6202 		if (last)
6203 			last->next = sg;
6204 		last = sg;
6205 		last->next = first;
6206 	}
6207 	sd->groups = groups;
6208 
6209 	return 0;
6210 
6211 fail:
6212 	free_sched_groups(first, 0);
6213 
6214 	return -ENOMEM;
6215 }
6216 
6217 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6218 {
6219 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6220 	struct sched_domain *child = sd->child;
6221 
6222 	if (child)
6223 		cpu = cpumask_first(sched_domain_span(child));
6224 
6225 	if (sg) {
6226 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6227 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6228 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6229 	}
6230 
6231 	return cpu;
6232 }
6233 
6234 /*
6235  * build_sched_groups will build a circular linked list of the groups
6236  * covered by the given span, and will set each group's ->cpumask correctly,
6237  * and ->cpu_capacity to 0.
6238  *
6239  * Assumes the sched_domain tree is fully constructed
6240  */
6241 static int
6242 build_sched_groups(struct sched_domain *sd, int cpu)
6243 {
6244 	struct sched_group *first = NULL, *last = NULL;
6245 	struct sd_data *sdd = sd->private;
6246 	const struct cpumask *span = sched_domain_span(sd);
6247 	struct cpumask *covered;
6248 	int i;
6249 
6250 	get_group(cpu, sdd, &sd->groups);
6251 	atomic_inc(&sd->groups->ref);
6252 
6253 	if (cpu != cpumask_first(span))
6254 		return 0;
6255 
6256 	lockdep_assert_held(&sched_domains_mutex);
6257 	covered = sched_domains_tmpmask;
6258 
6259 	cpumask_clear(covered);
6260 
6261 	for_each_cpu(i, span) {
6262 		struct sched_group *sg;
6263 		int group, j;
6264 
6265 		if (cpumask_test_cpu(i, covered))
6266 			continue;
6267 
6268 		group = get_group(i, sdd, &sg);
6269 		cpumask_setall(sched_group_mask(sg));
6270 
6271 		for_each_cpu(j, span) {
6272 			if (get_group(j, sdd, NULL) != group)
6273 				continue;
6274 
6275 			cpumask_set_cpu(j, covered);
6276 			cpumask_set_cpu(j, sched_group_cpus(sg));
6277 		}
6278 
6279 		if (!first)
6280 			first = sg;
6281 		if (last)
6282 			last->next = sg;
6283 		last = sg;
6284 	}
6285 	last->next = first;
6286 
6287 	return 0;
6288 }
6289 
6290 /*
6291  * Initialize sched groups cpu_capacity.
6292  *
6293  * cpu_capacity indicates the capacity of sched group, which is used while
6294  * distributing the load between different sched groups in a sched domain.
6295  * Typically cpu_capacity for all the groups in a sched domain will be same
6296  * unless there are asymmetries in the topology. If there are asymmetries,
6297  * group having more cpu_capacity will pickup more load compared to the
6298  * group having less cpu_capacity.
6299  */
6300 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6301 {
6302 	struct sched_group *sg = sd->groups;
6303 
6304 	WARN_ON(!sg);
6305 
6306 	do {
6307 		int cpu, max_cpu = -1;
6308 
6309 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6310 
6311 		if (!(sd->flags & SD_ASYM_PACKING))
6312 			goto next;
6313 
6314 		for_each_cpu(cpu, sched_group_cpus(sg)) {
6315 			if (max_cpu < 0)
6316 				max_cpu = cpu;
6317 			else if (sched_asym_prefer(cpu, max_cpu))
6318 				max_cpu = cpu;
6319 		}
6320 		sg->asym_prefer_cpu = max_cpu;
6321 
6322 next:
6323 		sg = sg->next;
6324 	} while (sg != sd->groups);
6325 
6326 	if (cpu != group_balance_cpu(sg))
6327 		return;
6328 
6329 	update_group_capacity(sd, cpu);
6330 }
6331 
6332 /*
6333  * Initializers for schedule domains
6334  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6335  */
6336 
6337 static int default_relax_domain_level = -1;
6338 int sched_domain_level_max;
6339 
6340 static int __init setup_relax_domain_level(char *str)
6341 {
6342 	if (kstrtoint(str, 0, &default_relax_domain_level))
6343 		pr_warn("Unable to set relax_domain_level\n");
6344 
6345 	return 1;
6346 }
6347 __setup("relax_domain_level=", setup_relax_domain_level);
6348 
6349 static void set_domain_attribute(struct sched_domain *sd,
6350 				 struct sched_domain_attr *attr)
6351 {
6352 	int request;
6353 
6354 	if (!attr || attr->relax_domain_level < 0) {
6355 		if (default_relax_domain_level < 0)
6356 			return;
6357 		else
6358 			request = default_relax_domain_level;
6359 	} else
6360 		request = attr->relax_domain_level;
6361 	if (request < sd->level) {
6362 		/* turn off idle balance on this domain */
6363 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6364 	} else {
6365 		/* turn on idle balance on this domain */
6366 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6367 	}
6368 }
6369 
6370 static void __sdt_free(const struct cpumask *cpu_map);
6371 static int __sdt_alloc(const struct cpumask *cpu_map);
6372 
6373 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6374 				 const struct cpumask *cpu_map)
6375 {
6376 	switch (what) {
6377 	case sa_rootdomain:
6378 		if (!atomic_read(&d->rd->refcount))
6379 			free_rootdomain(&d->rd->rcu); /* fall through */
6380 	case sa_sd:
6381 		free_percpu(d->sd); /* fall through */
6382 	case sa_sd_storage:
6383 		__sdt_free(cpu_map); /* fall through */
6384 	case sa_none:
6385 		break;
6386 	}
6387 }
6388 
6389 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6390 						   const struct cpumask *cpu_map)
6391 {
6392 	memset(d, 0, sizeof(*d));
6393 
6394 	if (__sdt_alloc(cpu_map))
6395 		return sa_sd_storage;
6396 	d->sd = alloc_percpu(struct sched_domain *);
6397 	if (!d->sd)
6398 		return sa_sd_storage;
6399 	d->rd = alloc_rootdomain();
6400 	if (!d->rd)
6401 		return sa_sd;
6402 	return sa_rootdomain;
6403 }
6404 
6405 /*
6406  * NULL the sd_data elements we've used to build the sched_domain and
6407  * sched_group structure so that the subsequent __free_domain_allocs()
6408  * will not free the data we're using.
6409  */
6410 static void claim_allocations(int cpu, struct sched_domain *sd)
6411 {
6412 	struct sd_data *sdd = sd->private;
6413 
6414 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6415 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6416 
6417 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6418 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
6419 
6420 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6421 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6422 
6423 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6424 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6425 }
6426 
6427 #ifdef CONFIG_NUMA
6428 static int sched_domains_numa_levels;
6429 enum numa_topology_type sched_numa_topology_type;
6430 static int *sched_domains_numa_distance;
6431 int sched_max_numa_distance;
6432 static struct cpumask ***sched_domains_numa_masks;
6433 static int sched_domains_curr_level;
6434 #endif
6435 
6436 /*
6437  * SD_flags allowed in topology descriptions.
6438  *
6439  * These flags are purely descriptive of the topology and do not prescribe
6440  * behaviour. Behaviour is artificial and mapped in the below sd_init()
6441  * function:
6442  *
6443  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
6444  *   SD_SHARE_PKG_RESOURCES - describes shared caches
6445  *   SD_NUMA                - describes NUMA topologies
6446  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6447  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6448  *
6449  * Odd one out, which beside describing the topology has a quirk also
6450  * prescribes the desired behaviour that goes along with it:
6451  *
6452  *   SD_ASYM_PACKING        - describes SMT quirks
6453  */
6454 #define TOPOLOGY_SD_FLAGS		\
6455 	(SD_SHARE_CPUCAPACITY |		\
6456 	 SD_SHARE_PKG_RESOURCES |	\
6457 	 SD_NUMA |			\
6458 	 SD_ASYM_PACKING |		\
6459 	 SD_ASYM_CPUCAPACITY |		\
6460 	 SD_SHARE_POWERDOMAIN)
6461 
6462 static struct sched_domain *
6463 sd_init(struct sched_domain_topology_level *tl,
6464 	const struct cpumask *cpu_map,
6465 	struct sched_domain *child, int cpu)
6466 {
6467 	struct sd_data *sdd = &tl->data;
6468 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6469 	int sd_id, sd_weight, sd_flags = 0;
6470 
6471 #ifdef CONFIG_NUMA
6472 	/*
6473 	 * Ugly hack to pass state to sd_numa_mask()...
6474 	 */
6475 	sched_domains_curr_level = tl->numa_level;
6476 #endif
6477 
6478 	sd_weight = cpumask_weight(tl->mask(cpu));
6479 
6480 	if (tl->sd_flags)
6481 		sd_flags = (*tl->sd_flags)();
6482 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6483 			"wrong sd_flags in topology description\n"))
6484 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6485 
6486 	*sd = (struct sched_domain){
6487 		.min_interval		= sd_weight,
6488 		.max_interval		= 2*sd_weight,
6489 		.busy_factor		= 32,
6490 		.imbalance_pct		= 125,
6491 
6492 		.cache_nice_tries	= 0,
6493 		.busy_idx		= 0,
6494 		.idle_idx		= 0,
6495 		.newidle_idx		= 0,
6496 		.wake_idx		= 0,
6497 		.forkexec_idx		= 0,
6498 
6499 		.flags			= 1*SD_LOAD_BALANCE
6500 					| 1*SD_BALANCE_NEWIDLE
6501 					| 1*SD_BALANCE_EXEC
6502 					| 1*SD_BALANCE_FORK
6503 					| 0*SD_BALANCE_WAKE
6504 					| 1*SD_WAKE_AFFINE
6505 					| 0*SD_SHARE_CPUCAPACITY
6506 					| 0*SD_SHARE_PKG_RESOURCES
6507 					| 0*SD_SERIALIZE
6508 					| 0*SD_PREFER_SIBLING
6509 					| 0*SD_NUMA
6510 					| sd_flags
6511 					,
6512 
6513 		.last_balance		= jiffies,
6514 		.balance_interval	= sd_weight,
6515 		.smt_gain		= 0,
6516 		.max_newidle_lb_cost	= 0,
6517 		.next_decay_max_lb_cost	= jiffies,
6518 		.child			= child,
6519 #ifdef CONFIG_SCHED_DEBUG
6520 		.name			= tl->name,
6521 #endif
6522 	};
6523 
6524 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6525 	sd_id = cpumask_first(sched_domain_span(sd));
6526 
6527 	/*
6528 	 * Convert topological properties into behaviour.
6529 	 */
6530 
6531 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
6532 		struct sched_domain *t = sd;
6533 
6534 		for_each_lower_domain(t)
6535 			t->flags |= SD_BALANCE_WAKE;
6536 	}
6537 
6538 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6539 		sd->flags |= SD_PREFER_SIBLING;
6540 		sd->imbalance_pct = 110;
6541 		sd->smt_gain = 1178; /* ~15% */
6542 
6543 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6544 		sd->imbalance_pct = 117;
6545 		sd->cache_nice_tries = 1;
6546 		sd->busy_idx = 2;
6547 
6548 #ifdef CONFIG_NUMA
6549 	} else if (sd->flags & SD_NUMA) {
6550 		sd->cache_nice_tries = 2;
6551 		sd->busy_idx = 3;
6552 		sd->idle_idx = 2;
6553 
6554 		sd->flags |= SD_SERIALIZE;
6555 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6556 			sd->flags &= ~(SD_BALANCE_EXEC |
6557 				       SD_BALANCE_FORK |
6558 				       SD_WAKE_AFFINE);
6559 		}
6560 
6561 #endif
6562 	} else {
6563 		sd->flags |= SD_PREFER_SIBLING;
6564 		sd->cache_nice_tries = 1;
6565 		sd->busy_idx = 2;
6566 		sd->idle_idx = 1;
6567 	}
6568 
6569 	/*
6570 	 * For all levels sharing cache; connect a sched_domain_shared
6571 	 * instance.
6572 	 */
6573 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6574 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6575 		atomic_inc(&sd->shared->ref);
6576 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6577 	}
6578 
6579 	sd->private = sdd;
6580 
6581 	return sd;
6582 }
6583 
6584 /*
6585  * Topology list, bottom-up.
6586  */
6587 static struct sched_domain_topology_level default_topology[] = {
6588 #ifdef CONFIG_SCHED_SMT
6589 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6590 #endif
6591 #ifdef CONFIG_SCHED_MC
6592 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6593 #endif
6594 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6595 	{ NULL, },
6596 };
6597 
6598 static struct sched_domain_topology_level *sched_domain_topology =
6599 	default_topology;
6600 
6601 #define for_each_sd_topology(tl)			\
6602 	for (tl = sched_domain_topology; tl->mask; tl++)
6603 
6604 void set_sched_topology(struct sched_domain_topology_level *tl)
6605 {
6606 	if (WARN_ON_ONCE(sched_smp_initialized))
6607 		return;
6608 
6609 	sched_domain_topology = tl;
6610 }
6611 
6612 #ifdef CONFIG_NUMA
6613 
6614 static const struct cpumask *sd_numa_mask(int cpu)
6615 {
6616 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6617 }
6618 
6619 static void sched_numa_warn(const char *str)
6620 {
6621 	static int done = false;
6622 	int i,j;
6623 
6624 	if (done)
6625 		return;
6626 
6627 	done = true;
6628 
6629 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6630 
6631 	for (i = 0; i < nr_node_ids; i++) {
6632 		printk(KERN_WARNING "  ");
6633 		for (j = 0; j < nr_node_ids; j++)
6634 			printk(KERN_CONT "%02d ", node_distance(i,j));
6635 		printk(KERN_CONT "\n");
6636 	}
6637 	printk(KERN_WARNING "\n");
6638 }
6639 
6640 bool find_numa_distance(int distance)
6641 {
6642 	int i;
6643 
6644 	if (distance == node_distance(0, 0))
6645 		return true;
6646 
6647 	for (i = 0; i < sched_domains_numa_levels; i++) {
6648 		if (sched_domains_numa_distance[i] == distance)
6649 			return true;
6650 	}
6651 
6652 	return false;
6653 }
6654 
6655 /*
6656  * A system can have three types of NUMA topology:
6657  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6658  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6659  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6660  *
6661  * The difference between a glueless mesh topology and a backplane
6662  * topology lies in whether communication between not directly
6663  * connected nodes goes through intermediary nodes (where programs
6664  * could run), or through backplane controllers. This affects
6665  * placement of programs.
6666  *
6667  * The type of topology can be discerned with the following tests:
6668  * - If the maximum distance between any nodes is 1 hop, the system
6669  *   is directly connected.
6670  * - If for two nodes A and B, located N > 1 hops away from each other,
6671  *   there is an intermediary node C, which is < N hops away from both
6672  *   nodes A and B, the system is a glueless mesh.
6673  */
6674 static void init_numa_topology_type(void)
6675 {
6676 	int a, b, c, n;
6677 
6678 	n = sched_max_numa_distance;
6679 
6680 	if (sched_domains_numa_levels <= 1) {
6681 		sched_numa_topology_type = NUMA_DIRECT;
6682 		return;
6683 	}
6684 
6685 	for_each_online_node(a) {
6686 		for_each_online_node(b) {
6687 			/* Find two nodes furthest removed from each other. */
6688 			if (node_distance(a, b) < n)
6689 				continue;
6690 
6691 			/* Is there an intermediary node between a and b? */
6692 			for_each_online_node(c) {
6693 				if (node_distance(a, c) < n &&
6694 				    node_distance(b, c) < n) {
6695 					sched_numa_topology_type =
6696 							NUMA_GLUELESS_MESH;
6697 					return;
6698 				}
6699 			}
6700 
6701 			sched_numa_topology_type = NUMA_BACKPLANE;
6702 			return;
6703 		}
6704 	}
6705 }
6706 
6707 static void sched_init_numa(void)
6708 {
6709 	int next_distance, curr_distance = node_distance(0, 0);
6710 	struct sched_domain_topology_level *tl;
6711 	int level = 0;
6712 	int i, j, k;
6713 
6714 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6715 	if (!sched_domains_numa_distance)
6716 		return;
6717 
6718 	/*
6719 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6720 	 * unique distances in the node_distance() table.
6721 	 *
6722 	 * Assumes node_distance(0,j) includes all distances in
6723 	 * node_distance(i,j) in order to avoid cubic time.
6724 	 */
6725 	next_distance = curr_distance;
6726 	for (i = 0; i < nr_node_ids; i++) {
6727 		for (j = 0; j < nr_node_ids; j++) {
6728 			for (k = 0; k < nr_node_ids; k++) {
6729 				int distance = node_distance(i, k);
6730 
6731 				if (distance > curr_distance &&
6732 				    (distance < next_distance ||
6733 				     next_distance == curr_distance))
6734 					next_distance = distance;
6735 
6736 				/*
6737 				 * While not a strong assumption it would be nice to know
6738 				 * about cases where if node A is connected to B, B is not
6739 				 * equally connected to A.
6740 				 */
6741 				if (sched_debug() && node_distance(k, i) != distance)
6742 					sched_numa_warn("Node-distance not symmetric");
6743 
6744 				if (sched_debug() && i && !find_numa_distance(distance))
6745 					sched_numa_warn("Node-0 not representative");
6746 			}
6747 			if (next_distance != curr_distance) {
6748 				sched_domains_numa_distance[level++] = next_distance;
6749 				sched_domains_numa_levels = level;
6750 				curr_distance = next_distance;
6751 			} else break;
6752 		}
6753 
6754 		/*
6755 		 * In case of sched_debug() we verify the above assumption.
6756 		 */
6757 		if (!sched_debug())
6758 			break;
6759 	}
6760 
6761 	if (!level)
6762 		return;
6763 
6764 	/*
6765 	 * 'level' contains the number of unique distances, excluding the
6766 	 * identity distance node_distance(i,i).
6767 	 *
6768 	 * The sched_domains_numa_distance[] array includes the actual distance
6769 	 * numbers.
6770 	 */
6771 
6772 	/*
6773 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6774 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6775 	 * the array will contain less then 'level' members. This could be
6776 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6777 	 * in other functions.
6778 	 *
6779 	 * We reset it to 'level' at the end of this function.
6780 	 */
6781 	sched_domains_numa_levels = 0;
6782 
6783 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6784 	if (!sched_domains_numa_masks)
6785 		return;
6786 
6787 	/*
6788 	 * Now for each level, construct a mask per node which contains all
6789 	 * cpus of nodes that are that many hops away from us.
6790 	 */
6791 	for (i = 0; i < level; i++) {
6792 		sched_domains_numa_masks[i] =
6793 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6794 		if (!sched_domains_numa_masks[i])
6795 			return;
6796 
6797 		for (j = 0; j < nr_node_ids; j++) {
6798 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6799 			if (!mask)
6800 				return;
6801 
6802 			sched_domains_numa_masks[i][j] = mask;
6803 
6804 			for_each_node(k) {
6805 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6806 					continue;
6807 
6808 				cpumask_or(mask, mask, cpumask_of_node(k));
6809 			}
6810 		}
6811 	}
6812 
6813 	/* Compute default topology size */
6814 	for (i = 0; sched_domain_topology[i].mask; i++);
6815 
6816 	tl = kzalloc((i + level + 1) *
6817 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6818 	if (!tl)
6819 		return;
6820 
6821 	/*
6822 	 * Copy the default topology bits..
6823 	 */
6824 	for (i = 0; sched_domain_topology[i].mask; i++)
6825 		tl[i] = sched_domain_topology[i];
6826 
6827 	/*
6828 	 * .. and append 'j' levels of NUMA goodness.
6829 	 */
6830 	for (j = 0; j < level; i++, j++) {
6831 		tl[i] = (struct sched_domain_topology_level){
6832 			.mask = sd_numa_mask,
6833 			.sd_flags = cpu_numa_flags,
6834 			.flags = SDTL_OVERLAP,
6835 			.numa_level = j,
6836 			SD_INIT_NAME(NUMA)
6837 		};
6838 	}
6839 
6840 	sched_domain_topology = tl;
6841 
6842 	sched_domains_numa_levels = level;
6843 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6844 
6845 	init_numa_topology_type();
6846 }
6847 
6848 static void sched_domains_numa_masks_set(unsigned int cpu)
6849 {
6850 	int node = cpu_to_node(cpu);
6851 	int i, j;
6852 
6853 	for (i = 0; i < sched_domains_numa_levels; i++) {
6854 		for (j = 0; j < nr_node_ids; j++) {
6855 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6856 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6857 		}
6858 	}
6859 }
6860 
6861 static void sched_domains_numa_masks_clear(unsigned int cpu)
6862 {
6863 	int i, j;
6864 
6865 	for (i = 0; i < sched_domains_numa_levels; i++) {
6866 		for (j = 0; j < nr_node_ids; j++)
6867 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6868 	}
6869 }
6870 
6871 #else
6872 static inline void sched_init_numa(void) { }
6873 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6874 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6875 #endif /* CONFIG_NUMA */
6876 
6877 static int __sdt_alloc(const struct cpumask *cpu_map)
6878 {
6879 	struct sched_domain_topology_level *tl;
6880 	int j;
6881 
6882 	for_each_sd_topology(tl) {
6883 		struct sd_data *sdd = &tl->data;
6884 
6885 		sdd->sd = alloc_percpu(struct sched_domain *);
6886 		if (!sdd->sd)
6887 			return -ENOMEM;
6888 
6889 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
6890 		if (!sdd->sds)
6891 			return -ENOMEM;
6892 
6893 		sdd->sg = alloc_percpu(struct sched_group *);
6894 		if (!sdd->sg)
6895 			return -ENOMEM;
6896 
6897 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6898 		if (!sdd->sgc)
6899 			return -ENOMEM;
6900 
6901 		for_each_cpu(j, cpu_map) {
6902 			struct sched_domain *sd;
6903 			struct sched_domain_shared *sds;
6904 			struct sched_group *sg;
6905 			struct sched_group_capacity *sgc;
6906 
6907 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6908 					GFP_KERNEL, cpu_to_node(j));
6909 			if (!sd)
6910 				return -ENOMEM;
6911 
6912 			*per_cpu_ptr(sdd->sd, j) = sd;
6913 
6914 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
6915 					GFP_KERNEL, cpu_to_node(j));
6916 			if (!sds)
6917 				return -ENOMEM;
6918 
6919 			*per_cpu_ptr(sdd->sds, j) = sds;
6920 
6921 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6922 					GFP_KERNEL, cpu_to_node(j));
6923 			if (!sg)
6924 				return -ENOMEM;
6925 
6926 			sg->next = sg;
6927 
6928 			*per_cpu_ptr(sdd->sg, j) = sg;
6929 
6930 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6931 					GFP_KERNEL, cpu_to_node(j));
6932 			if (!sgc)
6933 				return -ENOMEM;
6934 
6935 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6936 		}
6937 	}
6938 
6939 	return 0;
6940 }
6941 
6942 static void __sdt_free(const struct cpumask *cpu_map)
6943 {
6944 	struct sched_domain_topology_level *tl;
6945 	int j;
6946 
6947 	for_each_sd_topology(tl) {
6948 		struct sd_data *sdd = &tl->data;
6949 
6950 		for_each_cpu(j, cpu_map) {
6951 			struct sched_domain *sd;
6952 
6953 			if (sdd->sd) {
6954 				sd = *per_cpu_ptr(sdd->sd, j);
6955 				if (sd && (sd->flags & SD_OVERLAP))
6956 					free_sched_groups(sd->groups, 0);
6957 				kfree(*per_cpu_ptr(sdd->sd, j));
6958 			}
6959 
6960 			if (sdd->sds)
6961 				kfree(*per_cpu_ptr(sdd->sds, j));
6962 			if (sdd->sg)
6963 				kfree(*per_cpu_ptr(sdd->sg, j));
6964 			if (sdd->sgc)
6965 				kfree(*per_cpu_ptr(sdd->sgc, j));
6966 		}
6967 		free_percpu(sdd->sd);
6968 		sdd->sd = NULL;
6969 		free_percpu(sdd->sds);
6970 		sdd->sds = NULL;
6971 		free_percpu(sdd->sg);
6972 		sdd->sg = NULL;
6973 		free_percpu(sdd->sgc);
6974 		sdd->sgc = NULL;
6975 	}
6976 }
6977 
6978 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6979 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6980 		struct sched_domain *child, int cpu)
6981 {
6982 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6983 
6984 	if (child) {
6985 		sd->level = child->level + 1;
6986 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6987 		child->parent = sd;
6988 
6989 		if (!cpumask_subset(sched_domain_span(child),
6990 				    sched_domain_span(sd))) {
6991 			pr_err("BUG: arch topology borken\n");
6992 #ifdef CONFIG_SCHED_DEBUG
6993 			pr_err("     the %s domain not a subset of the %s domain\n",
6994 					child->name, sd->name);
6995 #endif
6996 			/* Fixup, ensure @sd has at least @child cpus. */
6997 			cpumask_or(sched_domain_span(sd),
6998 				   sched_domain_span(sd),
6999 				   sched_domain_span(child));
7000 		}
7001 
7002 	}
7003 	set_domain_attribute(sd, attr);
7004 
7005 	return sd;
7006 }
7007 
7008 /*
7009  * Build sched domains for a given set of cpus and attach the sched domains
7010  * to the individual cpus
7011  */
7012 static int build_sched_domains(const struct cpumask *cpu_map,
7013 			       struct sched_domain_attr *attr)
7014 {
7015 	enum s_alloc alloc_state;
7016 	struct sched_domain *sd;
7017 	struct s_data d;
7018 	struct rq *rq = NULL;
7019 	int i, ret = -ENOMEM;
7020 
7021 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7022 	if (alloc_state != sa_rootdomain)
7023 		goto error;
7024 
7025 	/* Set up domains for cpus specified by the cpu_map. */
7026 	for_each_cpu(i, cpu_map) {
7027 		struct sched_domain_topology_level *tl;
7028 
7029 		sd = NULL;
7030 		for_each_sd_topology(tl) {
7031 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7032 			if (tl == sched_domain_topology)
7033 				*per_cpu_ptr(d.sd, i) = sd;
7034 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7035 				sd->flags |= SD_OVERLAP;
7036 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7037 				break;
7038 		}
7039 	}
7040 
7041 	/* Build the groups for the domains */
7042 	for_each_cpu(i, cpu_map) {
7043 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7044 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7045 			if (sd->flags & SD_OVERLAP) {
7046 				if (build_overlap_sched_groups(sd, i))
7047 					goto error;
7048 			} else {
7049 				if (build_sched_groups(sd, i))
7050 					goto error;
7051 			}
7052 		}
7053 	}
7054 
7055 	/* Calculate CPU capacity for physical packages and nodes */
7056 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7057 		if (!cpumask_test_cpu(i, cpu_map))
7058 			continue;
7059 
7060 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7061 			claim_allocations(i, sd);
7062 			init_sched_groups_capacity(i, sd);
7063 		}
7064 	}
7065 
7066 	/* Attach the domains */
7067 	rcu_read_lock();
7068 	for_each_cpu(i, cpu_map) {
7069 		rq = cpu_rq(i);
7070 		sd = *per_cpu_ptr(d.sd, i);
7071 
7072 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7073 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7074 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7075 
7076 		cpu_attach_domain(sd, d.rd, i);
7077 	}
7078 	rcu_read_unlock();
7079 
7080 	if (rq && sched_debug_enabled) {
7081 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7082 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7083 	}
7084 
7085 	ret = 0;
7086 error:
7087 	__free_domain_allocs(&d, alloc_state, cpu_map);
7088 	return ret;
7089 }
7090 
7091 static cpumask_var_t *doms_cur;	/* current sched domains */
7092 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7093 static struct sched_domain_attr *dattr_cur;
7094 				/* attribues of custom domains in 'doms_cur' */
7095 
7096 /*
7097  * Special case: If a kmalloc of a doms_cur partition (array of
7098  * cpumask) fails, then fallback to a single sched domain,
7099  * as determined by the single cpumask fallback_doms.
7100  */
7101 static cpumask_var_t fallback_doms;
7102 
7103 /*
7104  * arch_update_cpu_topology lets virtualized architectures update the
7105  * cpu core maps. It is supposed to return 1 if the topology changed
7106  * or 0 if it stayed the same.
7107  */
7108 int __weak arch_update_cpu_topology(void)
7109 {
7110 	return 0;
7111 }
7112 
7113 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7114 {
7115 	int i;
7116 	cpumask_var_t *doms;
7117 
7118 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7119 	if (!doms)
7120 		return NULL;
7121 	for (i = 0; i < ndoms; i++) {
7122 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7123 			free_sched_domains(doms, i);
7124 			return NULL;
7125 		}
7126 	}
7127 	return doms;
7128 }
7129 
7130 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7131 {
7132 	unsigned int i;
7133 	for (i = 0; i < ndoms; i++)
7134 		free_cpumask_var(doms[i]);
7135 	kfree(doms);
7136 }
7137 
7138 /*
7139  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7140  * For now this just excludes isolated cpus, but could be used to
7141  * exclude other special cases in the future.
7142  */
7143 static int init_sched_domains(const struct cpumask *cpu_map)
7144 {
7145 	int err;
7146 
7147 	arch_update_cpu_topology();
7148 	ndoms_cur = 1;
7149 	doms_cur = alloc_sched_domains(ndoms_cur);
7150 	if (!doms_cur)
7151 		doms_cur = &fallback_doms;
7152 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7153 	err = build_sched_domains(doms_cur[0], NULL);
7154 	register_sched_domain_sysctl();
7155 
7156 	return err;
7157 }
7158 
7159 /*
7160  * Detach sched domains from a group of cpus specified in cpu_map
7161  * These cpus will now be attached to the NULL domain
7162  */
7163 static void detach_destroy_domains(const struct cpumask *cpu_map)
7164 {
7165 	int i;
7166 
7167 	rcu_read_lock();
7168 	for_each_cpu(i, cpu_map)
7169 		cpu_attach_domain(NULL, &def_root_domain, i);
7170 	rcu_read_unlock();
7171 }
7172 
7173 /* handle null as "default" */
7174 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7175 			struct sched_domain_attr *new, int idx_new)
7176 {
7177 	struct sched_domain_attr tmp;
7178 
7179 	/* fast path */
7180 	if (!new && !cur)
7181 		return 1;
7182 
7183 	tmp = SD_ATTR_INIT;
7184 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7185 			new ? (new + idx_new) : &tmp,
7186 			sizeof(struct sched_domain_attr));
7187 }
7188 
7189 /*
7190  * Partition sched domains as specified by the 'ndoms_new'
7191  * cpumasks in the array doms_new[] of cpumasks. This compares
7192  * doms_new[] to the current sched domain partitioning, doms_cur[].
7193  * It destroys each deleted domain and builds each new domain.
7194  *
7195  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196  * The masks don't intersect (don't overlap.) We should setup one
7197  * sched domain for each mask. CPUs not in any of the cpumasks will
7198  * not be load balanced. If the same cpumask appears both in the
7199  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7200  * it as it is.
7201  *
7202  * The passed in 'doms_new' should be allocated using
7203  * alloc_sched_domains.  This routine takes ownership of it and will
7204  * free_sched_domains it when done with it. If the caller failed the
7205  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206  * and partition_sched_domains() will fallback to the single partition
7207  * 'fallback_doms', it also forces the domains to be rebuilt.
7208  *
7209  * If doms_new == NULL it will be replaced with cpu_online_mask.
7210  * ndoms_new == 0 is a special case for destroying existing domains,
7211  * and it will not create the default domain.
7212  *
7213  * Call with hotplug lock held
7214  */
7215 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216 			     struct sched_domain_attr *dattr_new)
7217 {
7218 	int i, j, n;
7219 	int new_topology;
7220 
7221 	mutex_lock(&sched_domains_mutex);
7222 
7223 	/* always unregister in case we don't destroy any domains */
7224 	unregister_sched_domain_sysctl();
7225 
7226 	/* Let architecture update cpu core mappings. */
7227 	new_topology = arch_update_cpu_topology();
7228 
7229 	n = doms_new ? ndoms_new : 0;
7230 
7231 	/* Destroy deleted domains */
7232 	for (i = 0; i < ndoms_cur; i++) {
7233 		for (j = 0; j < n && !new_topology; j++) {
7234 			if (cpumask_equal(doms_cur[i], doms_new[j])
7235 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7236 				goto match1;
7237 		}
7238 		/* no match - a current sched domain not in new doms_new[] */
7239 		detach_destroy_domains(doms_cur[i]);
7240 match1:
7241 		;
7242 	}
7243 
7244 	n = ndoms_cur;
7245 	if (doms_new == NULL) {
7246 		n = 0;
7247 		doms_new = &fallback_doms;
7248 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7249 		WARN_ON_ONCE(dattr_new);
7250 	}
7251 
7252 	/* Build new domains */
7253 	for (i = 0; i < ndoms_new; i++) {
7254 		for (j = 0; j < n && !new_topology; j++) {
7255 			if (cpumask_equal(doms_new[i], doms_cur[j])
7256 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7257 				goto match2;
7258 		}
7259 		/* no match - add a new doms_new */
7260 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7261 match2:
7262 		;
7263 	}
7264 
7265 	/* Remember the new sched domains */
7266 	if (doms_cur != &fallback_doms)
7267 		free_sched_domains(doms_cur, ndoms_cur);
7268 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7269 	doms_cur = doms_new;
7270 	dattr_cur = dattr_new;
7271 	ndoms_cur = ndoms_new;
7272 
7273 	register_sched_domain_sysctl();
7274 
7275 	mutex_unlock(&sched_domains_mutex);
7276 }
7277 
7278 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7279 
7280 /*
7281  * Update cpusets according to cpu_active mask.  If cpusets are
7282  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7283  * around partition_sched_domains().
7284  *
7285  * If we come here as part of a suspend/resume, don't touch cpusets because we
7286  * want to restore it back to its original state upon resume anyway.
7287  */
7288 static void cpuset_cpu_active(void)
7289 {
7290 	if (cpuhp_tasks_frozen) {
7291 		/*
7292 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7293 		 * resume sequence. As long as this is not the last online
7294 		 * operation in the resume sequence, just build a single sched
7295 		 * domain, ignoring cpusets.
7296 		 */
7297 		num_cpus_frozen--;
7298 		if (likely(num_cpus_frozen)) {
7299 			partition_sched_domains(1, NULL, NULL);
7300 			return;
7301 		}
7302 		/*
7303 		 * This is the last CPU online operation. So fall through and
7304 		 * restore the original sched domains by considering the
7305 		 * cpuset configurations.
7306 		 */
7307 	}
7308 	cpuset_update_active_cpus(true);
7309 }
7310 
7311 static int cpuset_cpu_inactive(unsigned int cpu)
7312 {
7313 	unsigned long flags;
7314 	struct dl_bw *dl_b;
7315 	bool overflow;
7316 	int cpus;
7317 
7318 	if (!cpuhp_tasks_frozen) {
7319 		rcu_read_lock_sched();
7320 		dl_b = dl_bw_of(cpu);
7321 
7322 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7323 		cpus = dl_bw_cpus(cpu);
7324 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7325 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7326 
7327 		rcu_read_unlock_sched();
7328 
7329 		if (overflow)
7330 			return -EBUSY;
7331 		cpuset_update_active_cpus(false);
7332 	} else {
7333 		num_cpus_frozen++;
7334 		partition_sched_domains(1, NULL, NULL);
7335 	}
7336 	return 0;
7337 }
7338 
7339 int sched_cpu_activate(unsigned int cpu)
7340 {
7341 	struct rq *rq = cpu_rq(cpu);
7342 	unsigned long flags;
7343 
7344 	set_cpu_active(cpu, true);
7345 
7346 	if (sched_smp_initialized) {
7347 		sched_domains_numa_masks_set(cpu);
7348 		cpuset_cpu_active();
7349 	}
7350 
7351 	/*
7352 	 * Put the rq online, if not already. This happens:
7353 	 *
7354 	 * 1) In the early boot process, because we build the real domains
7355 	 *    after all cpus have been brought up.
7356 	 *
7357 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7358 	 *    domains.
7359 	 */
7360 	raw_spin_lock_irqsave(&rq->lock, flags);
7361 	if (rq->rd) {
7362 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7363 		set_rq_online(rq);
7364 	}
7365 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7366 
7367 	update_max_interval();
7368 
7369 	return 0;
7370 }
7371 
7372 int sched_cpu_deactivate(unsigned int cpu)
7373 {
7374 	int ret;
7375 
7376 	set_cpu_active(cpu, false);
7377 	/*
7378 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7379 	 * users of this state to go away such that all new such users will
7380 	 * observe it.
7381 	 *
7382 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7383 	 * not imply sync_sched(), so wait for both.
7384 	 *
7385 	 * Do sync before park smpboot threads to take care the rcu boost case.
7386 	 */
7387 	if (IS_ENABLED(CONFIG_PREEMPT))
7388 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7389 	else
7390 		synchronize_rcu();
7391 
7392 	if (!sched_smp_initialized)
7393 		return 0;
7394 
7395 	ret = cpuset_cpu_inactive(cpu);
7396 	if (ret) {
7397 		set_cpu_active(cpu, true);
7398 		return ret;
7399 	}
7400 	sched_domains_numa_masks_clear(cpu);
7401 	return 0;
7402 }
7403 
7404 static void sched_rq_cpu_starting(unsigned int cpu)
7405 {
7406 	struct rq *rq = cpu_rq(cpu);
7407 
7408 	rq->calc_load_update = calc_load_update;
7409 	update_max_interval();
7410 }
7411 
7412 int sched_cpu_starting(unsigned int cpu)
7413 {
7414 	set_cpu_rq_start_time(cpu);
7415 	sched_rq_cpu_starting(cpu);
7416 	return 0;
7417 }
7418 
7419 #ifdef CONFIG_HOTPLUG_CPU
7420 int sched_cpu_dying(unsigned int cpu)
7421 {
7422 	struct rq *rq = cpu_rq(cpu);
7423 	unsigned long flags;
7424 
7425 	/* Handle pending wakeups and then migrate everything off */
7426 	sched_ttwu_pending();
7427 	raw_spin_lock_irqsave(&rq->lock, flags);
7428 	if (rq->rd) {
7429 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7430 		set_rq_offline(rq);
7431 	}
7432 	migrate_tasks(rq);
7433 	BUG_ON(rq->nr_running != 1);
7434 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7435 	calc_load_migrate(rq);
7436 	update_max_interval();
7437 	nohz_balance_exit_idle(cpu);
7438 	hrtick_clear(rq);
7439 	return 0;
7440 }
7441 #endif
7442 
7443 #ifdef CONFIG_SCHED_SMT
7444 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7445 
7446 static void sched_init_smt(void)
7447 {
7448 	/*
7449 	 * We've enumerated all CPUs and will assume that if any CPU
7450 	 * has SMT siblings, CPU0 will too.
7451 	 */
7452 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
7453 		static_branch_enable(&sched_smt_present);
7454 }
7455 #else
7456 static inline void sched_init_smt(void) { }
7457 #endif
7458 
7459 void __init sched_init_smp(void)
7460 {
7461 	cpumask_var_t non_isolated_cpus;
7462 
7463 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7464 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7465 
7466 	sched_init_numa();
7467 
7468 	/*
7469 	 * There's no userspace yet to cause hotplug operations; hence all the
7470 	 * cpu masks are stable and all blatant races in the below code cannot
7471 	 * happen.
7472 	 */
7473 	mutex_lock(&sched_domains_mutex);
7474 	init_sched_domains(cpu_active_mask);
7475 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7476 	if (cpumask_empty(non_isolated_cpus))
7477 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7478 	mutex_unlock(&sched_domains_mutex);
7479 
7480 	/* Move init over to a non-isolated CPU */
7481 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7482 		BUG();
7483 	sched_init_granularity();
7484 	free_cpumask_var(non_isolated_cpus);
7485 
7486 	init_sched_rt_class();
7487 	init_sched_dl_class();
7488 
7489 	sched_init_smt();
7490 
7491 	sched_smp_initialized = true;
7492 }
7493 
7494 static int __init migration_init(void)
7495 {
7496 	sched_rq_cpu_starting(smp_processor_id());
7497 	return 0;
7498 }
7499 early_initcall(migration_init);
7500 
7501 #else
7502 void __init sched_init_smp(void)
7503 {
7504 	sched_init_granularity();
7505 }
7506 #endif /* CONFIG_SMP */
7507 
7508 int in_sched_functions(unsigned long addr)
7509 {
7510 	return in_lock_functions(addr) ||
7511 		(addr >= (unsigned long)__sched_text_start
7512 		&& addr < (unsigned long)__sched_text_end);
7513 }
7514 
7515 #ifdef CONFIG_CGROUP_SCHED
7516 /*
7517  * Default task group.
7518  * Every task in system belongs to this group at bootup.
7519  */
7520 struct task_group root_task_group;
7521 LIST_HEAD(task_groups);
7522 
7523 /* Cacheline aligned slab cache for task_group */
7524 static struct kmem_cache *task_group_cache __read_mostly;
7525 #endif
7526 
7527 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7528 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7529 
7530 #define WAIT_TABLE_BITS 8
7531 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7532 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7533 
7534 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7535 {
7536 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7537 	unsigned long val = (unsigned long)word << shift | bit;
7538 
7539 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7540 }
7541 EXPORT_SYMBOL(bit_waitqueue);
7542 
7543 void __init sched_init(void)
7544 {
7545 	int i, j;
7546 	unsigned long alloc_size = 0, ptr;
7547 
7548 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
7549 		init_waitqueue_head(bit_wait_table + i);
7550 
7551 #ifdef CONFIG_FAIR_GROUP_SCHED
7552 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7553 #endif
7554 #ifdef CONFIG_RT_GROUP_SCHED
7555 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7556 #endif
7557 	if (alloc_size) {
7558 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7559 
7560 #ifdef CONFIG_FAIR_GROUP_SCHED
7561 		root_task_group.se = (struct sched_entity **)ptr;
7562 		ptr += nr_cpu_ids * sizeof(void **);
7563 
7564 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7565 		ptr += nr_cpu_ids * sizeof(void **);
7566 
7567 #endif /* CONFIG_FAIR_GROUP_SCHED */
7568 #ifdef CONFIG_RT_GROUP_SCHED
7569 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7570 		ptr += nr_cpu_ids * sizeof(void **);
7571 
7572 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7573 		ptr += nr_cpu_ids * sizeof(void **);
7574 
7575 #endif /* CONFIG_RT_GROUP_SCHED */
7576 	}
7577 #ifdef CONFIG_CPUMASK_OFFSTACK
7578 	for_each_possible_cpu(i) {
7579 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7580 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7581 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7582 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7583 	}
7584 #endif /* CONFIG_CPUMASK_OFFSTACK */
7585 
7586 	init_rt_bandwidth(&def_rt_bandwidth,
7587 			global_rt_period(), global_rt_runtime());
7588 	init_dl_bandwidth(&def_dl_bandwidth,
7589 			global_rt_period(), global_rt_runtime());
7590 
7591 #ifdef CONFIG_SMP
7592 	init_defrootdomain();
7593 #endif
7594 
7595 #ifdef CONFIG_RT_GROUP_SCHED
7596 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7597 			global_rt_period(), global_rt_runtime());
7598 #endif /* CONFIG_RT_GROUP_SCHED */
7599 
7600 #ifdef CONFIG_CGROUP_SCHED
7601 	task_group_cache = KMEM_CACHE(task_group, 0);
7602 
7603 	list_add(&root_task_group.list, &task_groups);
7604 	INIT_LIST_HEAD(&root_task_group.children);
7605 	INIT_LIST_HEAD(&root_task_group.siblings);
7606 	autogroup_init(&init_task);
7607 #endif /* CONFIG_CGROUP_SCHED */
7608 
7609 	for_each_possible_cpu(i) {
7610 		struct rq *rq;
7611 
7612 		rq = cpu_rq(i);
7613 		raw_spin_lock_init(&rq->lock);
7614 		rq->nr_running = 0;
7615 		rq->calc_load_active = 0;
7616 		rq->calc_load_update = jiffies + LOAD_FREQ;
7617 		init_cfs_rq(&rq->cfs);
7618 		init_rt_rq(&rq->rt);
7619 		init_dl_rq(&rq->dl);
7620 #ifdef CONFIG_FAIR_GROUP_SCHED
7621 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7622 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7623 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7624 		/*
7625 		 * How much cpu bandwidth does root_task_group get?
7626 		 *
7627 		 * In case of task-groups formed thr' the cgroup filesystem, it
7628 		 * gets 100% of the cpu resources in the system. This overall
7629 		 * system cpu resource is divided among the tasks of
7630 		 * root_task_group and its child task-groups in a fair manner,
7631 		 * based on each entity's (task or task-group's) weight
7632 		 * (se->load.weight).
7633 		 *
7634 		 * In other words, if root_task_group has 10 tasks of weight
7635 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7636 		 * then A0's share of the cpu resource is:
7637 		 *
7638 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7639 		 *
7640 		 * We achieve this by letting root_task_group's tasks sit
7641 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7642 		 */
7643 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7644 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7645 #endif /* CONFIG_FAIR_GROUP_SCHED */
7646 
7647 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7648 #ifdef CONFIG_RT_GROUP_SCHED
7649 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7650 #endif
7651 
7652 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7653 			rq->cpu_load[j] = 0;
7654 
7655 #ifdef CONFIG_SMP
7656 		rq->sd = NULL;
7657 		rq->rd = NULL;
7658 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7659 		rq->balance_callback = NULL;
7660 		rq->active_balance = 0;
7661 		rq->next_balance = jiffies;
7662 		rq->push_cpu = 0;
7663 		rq->cpu = i;
7664 		rq->online = 0;
7665 		rq->idle_stamp = 0;
7666 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7667 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7668 
7669 		INIT_LIST_HEAD(&rq->cfs_tasks);
7670 
7671 		rq_attach_root(rq, &def_root_domain);
7672 #ifdef CONFIG_NO_HZ_COMMON
7673 		rq->last_load_update_tick = jiffies;
7674 		rq->nohz_flags = 0;
7675 #endif
7676 #ifdef CONFIG_NO_HZ_FULL
7677 		rq->last_sched_tick = 0;
7678 #endif
7679 #endif /* CONFIG_SMP */
7680 		init_rq_hrtick(rq);
7681 		atomic_set(&rq->nr_iowait, 0);
7682 	}
7683 
7684 	set_load_weight(&init_task);
7685 
7686 	/*
7687 	 * The boot idle thread does lazy MMU switching as well:
7688 	 */
7689 	atomic_inc(&init_mm.mm_count);
7690 	enter_lazy_tlb(&init_mm, current);
7691 
7692 	/*
7693 	 * Make us the idle thread. Technically, schedule() should not be
7694 	 * called from this thread, however somewhere below it might be,
7695 	 * but because we are the idle thread, we just pick up running again
7696 	 * when this runqueue becomes "idle".
7697 	 */
7698 	init_idle(current, smp_processor_id());
7699 
7700 	calc_load_update = jiffies + LOAD_FREQ;
7701 
7702 #ifdef CONFIG_SMP
7703 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7704 	/* May be allocated at isolcpus cmdline parse time */
7705 	if (cpu_isolated_map == NULL)
7706 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7707 	idle_thread_set_boot_cpu();
7708 	set_cpu_rq_start_time(smp_processor_id());
7709 #endif
7710 	init_sched_fair_class();
7711 
7712 	init_schedstats();
7713 
7714 	scheduler_running = 1;
7715 }
7716 
7717 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7718 static inline int preempt_count_equals(int preempt_offset)
7719 {
7720 	int nested = preempt_count() + rcu_preempt_depth();
7721 
7722 	return (nested == preempt_offset);
7723 }
7724 
7725 void __might_sleep(const char *file, int line, int preempt_offset)
7726 {
7727 	/*
7728 	 * Blocking primitives will set (and therefore destroy) current->state,
7729 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7730 	 * otherwise we will destroy state.
7731 	 */
7732 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7733 			"do not call blocking ops when !TASK_RUNNING; "
7734 			"state=%lx set at [<%p>] %pS\n",
7735 			current->state,
7736 			(void *)current->task_state_change,
7737 			(void *)current->task_state_change);
7738 
7739 	___might_sleep(file, line, preempt_offset);
7740 }
7741 EXPORT_SYMBOL(__might_sleep);
7742 
7743 void ___might_sleep(const char *file, int line, int preempt_offset)
7744 {
7745 	static unsigned long prev_jiffy;	/* ratelimiting */
7746 	unsigned long preempt_disable_ip;
7747 
7748 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7749 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7750 	     !is_idle_task(current)) ||
7751 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7752 		return;
7753 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7754 		return;
7755 	prev_jiffy = jiffies;
7756 
7757 	/* Save this before calling printk(), since that will clobber it */
7758 	preempt_disable_ip = get_preempt_disable_ip(current);
7759 
7760 	printk(KERN_ERR
7761 		"BUG: sleeping function called from invalid context at %s:%d\n",
7762 			file, line);
7763 	printk(KERN_ERR
7764 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7765 			in_atomic(), irqs_disabled(),
7766 			current->pid, current->comm);
7767 
7768 	if (task_stack_end_corrupted(current))
7769 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7770 
7771 	debug_show_held_locks(current);
7772 	if (irqs_disabled())
7773 		print_irqtrace_events(current);
7774 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7775 	    && !preempt_count_equals(preempt_offset)) {
7776 		pr_err("Preemption disabled at:");
7777 		print_ip_sym(preempt_disable_ip);
7778 		pr_cont("\n");
7779 	}
7780 	dump_stack();
7781 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7782 }
7783 EXPORT_SYMBOL(___might_sleep);
7784 #endif
7785 
7786 #ifdef CONFIG_MAGIC_SYSRQ
7787 void normalize_rt_tasks(void)
7788 {
7789 	struct task_struct *g, *p;
7790 	struct sched_attr attr = {
7791 		.sched_policy = SCHED_NORMAL,
7792 	};
7793 
7794 	read_lock(&tasklist_lock);
7795 	for_each_process_thread(g, p) {
7796 		/*
7797 		 * Only normalize user tasks:
7798 		 */
7799 		if (p->flags & PF_KTHREAD)
7800 			continue;
7801 
7802 		p->se.exec_start = 0;
7803 		schedstat_set(p->se.statistics.wait_start,  0);
7804 		schedstat_set(p->se.statistics.sleep_start, 0);
7805 		schedstat_set(p->se.statistics.block_start, 0);
7806 
7807 		if (!dl_task(p) && !rt_task(p)) {
7808 			/*
7809 			 * Renice negative nice level userspace
7810 			 * tasks back to 0:
7811 			 */
7812 			if (task_nice(p) < 0)
7813 				set_user_nice(p, 0);
7814 			continue;
7815 		}
7816 
7817 		__sched_setscheduler(p, &attr, false, false);
7818 	}
7819 	read_unlock(&tasklist_lock);
7820 }
7821 
7822 #endif /* CONFIG_MAGIC_SYSRQ */
7823 
7824 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7825 /*
7826  * These functions are only useful for the IA64 MCA handling, or kdb.
7827  *
7828  * They can only be called when the whole system has been
7829  * stopped - every CPU needs to be quiescent, and no scheduling
7830  * activity can take place. Using them for anything else would
7831  * be a serious bug, and as a result, they aren't even visible
7832  * under any other configuration.
7833  */
7834 
7835 /**
7836  * curr_task - return the current task for a given cpu.
7837  * @cpu: the processor in question.
7838  *
7839  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7840  *
7841  * Return: The current task for @cpu.
7842  */
7843 struct task_struct *curr_task(int cpu)
7844 {
7845 	return cpu_curr(cpu);
7846 }
7847 
7848 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7849 
7850 #ifdef CONFIG_IA64
7851 /**
7852  * set_curr_task - set the current task for a given cpu.
7853  * @cpu: the processor in question.
7854  * @p: the task pointer to set.
7855  *
7856  * Description: This function must only be used when non-maskable interrupts
7857  * are serviced on a separate stack. It allows the architecture to switch the
7858  * notion of the current task on a cpu in a non-blocking manner. This function
7859  * must be called with all CPU's synchronized, and interrupts disabled, the
7860  * and caller must save the original value of the current task (see
7861  * curr_task() above) and restore that value before reenabling interrupts and
7862  * re-starting the system.
7863  *
7864  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865  */
7866 void ia64_set_curr_task(int cpu, struct task_struct *p)
7867 {
7868 	cpu_curr(cpu) = p;
7869 }
7870 
7871 #endif
7872 
7873 #ifdef CONFIG_CGROUP_SCHED
7874 /* task_group_lock serializes the addition/removal of task groups */
7875 static DEFINE_SPINLOCK(task_group_lock);
7876 
7877 static void sched_free_group(struct task_group *tg)
7878 {
7879 	free_fair_sched_group(tg);
7880 	free_rt_sched_group(tg);
7881 	autogroup_free(tg);
7882 	kmem_cache_free(task_group_cache, tg);
7883 }
7884 
7885 /* allocate runqueue etc for a new task group */
7886 struct task_group *sched_create_group(struct task_group *parent)
7887 {
7888 	struct task_group *tg;
7889 
7890 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7891 	if (!tg)
7892 		return ERR_PTR(-ENOMEM);
7893 
7894 	if (!alloc_fair_sched_group(tg, parent))
7895 		goto err;
7896 
7897 	if (!alloc_rt_sched_group(tg, parent))
7898 		goto err;
7899 
7900 	return tg;
7901 
7902 err:
7903 	sched_free_group(tg);
7904 	return ERR_PTR(-ENOMEM);
7905 }
7906 
7907 void sched_online_group(struct task_group *tg, struct task_group *parent)
7908 {
7909 	unsigned long flags;
7910 
7911 	spin_lock_irqsave(&task_group_lock, flags);
7912 	list_add_rcu(&tg->list, &task_groups);
7913 
7914 	WARN_ON(!parent); /* root should already exist */
7915 
7916 	tg->parent = parent;
7917 	INIT_LIST_HEAD(&tg->children);
7918 	list_add_rcu(&tg->siblings, &parent->children);
7919 	spin_unlock_irqrestore(&task_group_lock, flags);
7920 
7921 	online_fair_sched_group(tg);
7922 }
7923 
7924 /* rcu callback to free various structures associated with a task group */
7925 static void sched_free_group_rcu(struct rcu_head *rhp)
7926 {
7927 	/* now it should be safe to free those cfs_rqs */
7928 	sched_free_group(container_of(rhp, struct task_group, rcu));
7929 }
7930 
7931 void sched_destroy_group(struct task_group *tg)
7932 {
7933 	/* wait for possible concurrent references to cfs_rqs complete */
7934 	call_rcu(&tg->rcu, sched_free_group_rcu);
7935 }
7936 
7937 void sched_offline_group(struct task_group *tg)
7938 {
7939 	unsigned long flags;
7940 
7941 	/* end participation in shares distribution */
7942 	unregister_fair_sched_group(tg);
7943 
7944 	spin_lock_irqsave(&task_group_lock, flags);
7945 	list_del_rcu(&tg->list);
7946 	list_del_rcu(&tg->siblings);
7947 	spin_unlock_irqrestore(&task_group_lock, flags);
7948 }
7949 
7950 static void sched_change_group(struct task_struct *tsk, int type)
7951 {
7952 	struct task_group *tg;
7953 
7954 	/*
7955 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7956 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7957 	 * to prevent lockdep warnings.
7958 	 */
7959 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7960 			  struct task_group, css);
7961 	tg = autogroup_task_group(tsk, tg);
7962 	tsk->sched_task_group = tg;
7963 
7964 #ifdef CONFIG_FAIR_GROUP_SCHED
7965 	if (tsk->sched_class->task_change_group)
7966 		tsk->sched_class->task_change_group(tsk, type);
7967 	else
7968 #endif
7969 		set_task_rq(tsk, task_cpu(tsk));
7970 }
7971 
7972 /*
7973  * Change task's runqueue when it moves between groups.
7974  *
7975  * The caller of this function should have put the task in its new group by
7976  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7977  * its new group.
7978  */
7979 void sched_move_task(struct task_struct *tsk)
7980 {
7981 	int queued, running;
7982 	struct rq_flags rf;
7983 	struct rq *rq;
7984 
7985 	rq = task_rq_lock(tsk, &rf);
7986 
7987 	running = task_current(rq, tsk);
7988 	queued = task_on_rq_queued(tsk);
7989 
7990 	if (queued)
7991 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7992 	if (unlikely(running))
7993 		put_prev_task(rq, tsk);
7994 
7995 	sched_change_group(tsk, TASK_MOVE_GROUP);
7996 
7997 	if (queued)
7998 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7999 	if (unlikely(running))
8000 		set_curr_task(rq, tsk);
8001 
8002 	task_rq_unlock(rq, tsk, &rf);
8003 }
8004 #endif /* CONFIG_CGROUP_SCHED */
8005 
8006 #ifdef CONFIG_RT_GROUP_SCHED
8007 /*
8008  * Ensure that the real time constraints are schedulable.
8009  */
8010 static DEFINE_MUTEX(rt_constraints_mutex);
8011 
8012 /* Must be called with tasklist_lock held */
8013 static inline int tg_has_rt_tasks(struct task_group *tg)
8014 {
8015 	struct task_struct *g, *p;
8016 
8017 	/*
8018 	 * Autogroups do not have RT tasks; see autogroup_create().
8019 	 */
8020 	if (task_group_is_autogroup(tg))
8021 		return 0;
8022 
8023 	for_each_process_thread(g, p) {
8024 		if (rt_task(p) && task_group(p) == tg)
8025 			return 1;
8026 	}
8027 
8028 	return 0;
8029 }
8030 
8031 struct rt_schedulable_data {
8032 	struct task_group *tg;
8033 	u64 rt_period;
8034 	u64 rt_runtime;
8035 };
8036 
8037 static int tg_rt_schedulable(struct task_group *tg, void *data)
8038 {
8039 	struct rt_schedulable_data *d = data;
8040 	struct task_group *child;
8041 	unsigned long total, sum = 0;
8042 	u64 period, runtime;
8043 
8044 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8045 	runtime = tg->rt_bandwidth.rt_runtime;
8046 
8047 	if (tg == d->tg) {
8048 		period = d->rt_period;
8049 		runtime = d->rt_runtime;
8050 	}
8051 
8052 	/*
8053 	 * Cannot have more runtime than the period.
8054 	 */
8055 	if (runtime > period && runtime != RUNTIME_INF)
8056 		return -EINVAL;
8057 
8058 	/*
8059 	 * Ensure we don't starve existing RT tasks.
8060 	 */
8061 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8062 		return -EBUSY;
8063 
8064 	total = to_ratio(period, runtime);
8065 
8066 	/*
8067 	 * Nobody can have more than the global setting allows.
8068 	 */
8069 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8070 		return -EINVAL;
8071 
8072 	/*
8073 	 * The sum of our children's runtime should not exceed our own.
8074 	 */
8075 	list_for_each_entry_rcu(child, &tg->children, siblings) {
8076 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
8077 		runtime = child->rt_bandwidth.rt_runtime;
8078 
8079 		if (child == d->tg) {
8080 			period = d->rt_period;
8081 			runtime = d->rt_runtime;
8082 		}
8083 
8084 		sum += to_ratio(period, runtime);
8085 	}
8086 
8087 	if (sum > total)
8088 		return -EINVAL;
8089 
8090 	return 0;
8091 }
8092 
8093 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8094 {
8095 	int ret;
8096 
8097 	struct rt_schedulable_data data = {
8098 		.tg = tg,
8099 		.rt_period = period,
8100 		.rt_runtime = runtime,
8101 	};
8102 
8103 	rcu_read_lock();
8104 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8105 	rcu_read_unlock();
8106 
8107 	return ret;
8108 }
8109 
8110 static int tg_set_rt_bandwidth(struct task_group *tg,
8111 		u64 rt_period, u64 rt_runtime)
8112 {
8113 	int i, err = 0;
8114 
8115 	/*
8116 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8117 	 * kernel creating (and or operating) RT threads.
8118 	 */
8119 	if (tg == &root_task_group && rt_runtime == 0)
8120 		return -EINVAL;
8121 
8122 	/* No period doesn't make any sense. */
8123 	if (rt_period == 0)
8124 		return -EINVAL;
8125 
8126 	mutex_lock(&rt_constraints_mutex);
8127 	read_lock(&tasklist_lock);
8128 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8129 	if (err)
8130 		goto unlock;
8131 
8132 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8133 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8134 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8135 
8136 	for_each_possible_cpu(i) {
8137 		struct rt_rq *rt_rq = tg->rt_rq[i];
8138 
8139 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8140 		rt_rq->rt_runtime = rt_runtime;
8141 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8142 	}
8143 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8144 unlock:
8145 	read_unlock(&tasklist_lock);
8146 	mutex_unlock(&rt_constraints_mutex);
8147 
8148 	return err;
8149 }
8150 
8151 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8152 {
8153 	u64 rt_runtime, rt_period;
8154 
8155 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8156 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8157 	if (rt_runtime_us < 0)
8158 		rt_runtime = RUNTIME_INF;
8159 
8160 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8161 }
8162 
8163 static long sched_group_rt_runtime(struct task_group *tg)
8164 {
8165 	u64 rt_runtime_us;
8166 
8167 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8168 		return -1;
8169 
8170 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8171 	do_div(rt_runtime_us, NSEC_PER_USEC);
8172 	return rt_runtime_us;
8173 }
8174 
8175 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8176 {
8177 	u64 rt_runtime, rt_period;
8178 
8179 	rt_period = rt_period_us * NSEC_PER_USEC;
8180 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8181 
8182 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8183 }
8184 
8185 static long sched_group_rt_period(struct task_group *tg)
8186 {
8187 	u64 rt_period_us;
8188 
8189 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8190 	do_div(rt_period_us, NSEC_PER_USEC);
8191 	return rt_period_us;
8192 }
8193 #endif /* CONFIG_RT_GROUP_SCHED */
8194 
8195 #ifdef CONFIG_RT_GROUP_SCHED
8196 static int sched_rt_global_constraints(void)
8197 {
8198 	int ret = 0;
8199 
8200 	mutex_lock(&rt_constraints_mutex);
8201 	read_lock(&tasklist_lock);
8202 	ret = __rt_schedulable(NULL, 0, 0);
8203 	read_unlock(&tasklist_lock);
8204 	mutex_unlock(&rt_constraints_mutex);
8205 
8206 	return ret;
8207 }
8208 
8209 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8210 {
8211 	/* Don't accept realtime tasks when there is no way for them to run */
8212 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8213 		return 0;
8214 
8215 	return 1;
8216 }
8217 
8218 #else /* !CONFIG_RT_GROUP_SCHED */
8219 static int sched_rt_global_constraints(void)
8220 {
8221 	unsigned long flags;
8222 	int i;
8223 
8224 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8225 	for_each_possible_cpu(i) {
8226 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8227 
8228 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8229 		rt_rq->rt_runtime = global_rt_runtime();
8230 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8231 	}
8232 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8233 
8234 	return 0;
8235 }
8236 #endif /* CONFIG_RT_GROUP_SCHED */
8237 
8238 static int sched_dl_global_validate(void)
8239 {
8240 	u64 runtime = global_rt_runtime();
8241 	u64 period = global_rt_period();
8242 	u64 new_bw = to_ratio(period, runtime);
8243 	struct dl_bw *dl_b;
8244 	int cpu, ret = 0;
8245 	unsigned long flags;
8246 
8247 	/*
8248 	 * Here we want to check the bandwidth not being set to some
8249 	 * value smaller than the currently allocated bandwidth in
8250 	 * any of the root_domains.
8251 	 *
8252 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8253 	 * cycling on root_domains... Discussion on different/better
8254 	 * solutions is welcome!
8255 	 */
8256 	for_each_possible_cpu(cpu) {
8257 		rcu_read_lock_sched();
8258 		dl_b = dl_bw_of(cpu);
8259 
8260 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8261 		if (new_bw < dl_b->total_bw)
8262 			ret = -EBUSY;
8263 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8264 
8265 		rcu_read_unlock_sched();
8266 
8267 		if (ret)
8268 			break;
8269 	}
8270 
8271 	return ret;
8272 }
8273 
8274 static void sched_dl_do_global(void)
8275 {
8276 	u64 new_bw = -1;
8277 	struct dl_bw *dl_b;
8278 	int cpu;
8279 	unsigned long flags;
8280 
8281 	def_dl_bandwidth.dl_period = global_rt_period();
8282 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8283 
8284 	if (global_rt_runtime() != RUNTIME_INF)
8285 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8286 
8287 	/*
8288 	 * FIXME: As above...
8289 	 */
8290 	for_each_possible_cpu(cpu) {
8291 		rcu_read_lock_sched();
8292 		dl_b = dl_bw_of(cpu);
8293 
8294 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8295 		dl_b->bw = new_bw;
8296 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8297 
8298 		rcu_read_unlock_sched();
8299 	}
8300 }
8301 
8302 static int sched_rt_global_validate(void)
8303 {
8304 	if (sysctl_sched_rt_period <= 0)
8305 		return -EINVAL;
8306 
8307 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8308 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8309 		return -EINVAL;
8310 
8311 	return 0;
8312 }
8313 
8314 static void sched_rt_do_global(void)
8315 {
8316 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8317 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8318 }
8319 
8320 int sched_rt_handler(struct ctl_table *table, int write,
8321 		void __user *buffer, size_t *lenp,
8322 		loff_t *ppos)
8323 {
8324 	int old_period, old_runtime;
8325 	static DEFINE_MUTEX(mutex);
8326 	int ret;
8327 
8328 	mutex_lock(&mutex);
8329 	old_period = sysctl_sched_rt_period;
8330 	old_runtime = sysctl_sched_rt_runtime;
8331 
8332 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8333 
8334 	if (!ret && write) {
8335 		ret = sched_rt_global_validate();
8336 		if (ret)
8337 			goto undo;
8338 
8339 		ret = sched_dl_global_validate();
8340 		if (ret)
8341 			goto undo;
8342 
8343 		ret = sched_rt_global_constraints();
8344 		if (ret)
8345 			goto undo;
8346 
8347 		sched_rt_do_global();
8348 		sched_dl_do_global();
8349 	}
8350 	if (0) {
8351 undo:
8352 		sysctl_sched_rt_period = old_period;
8353 		sysctl_sched_rt_runtime = old_runtime;
8354 	}
8355 	mutex_unlock(&mutex);
8356 
8357 	return ret;
8358 }
8359 
8360 int sched_rr_handler(struct ctl_table *table, int write,
8361 		void __user *buffer, size_t *lenp,
8362 		loff_t *ppos)
8363 {
8364 	int ret;
8365 	static DEFINE_MUTEX(mutex);
8366 
8367 	mutex_lock(&mutex);
8368 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8369 	/* make sure that internally we keep jiffies */
8370 	/* also, writing zero resets timeslice to default */
8371 	if (!ret && write) {
8372 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8373 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8374 	}
8375 	mutex_unlock(&mutex);
8376 	return ret;
8377 }
8378 
8379 #ifdef CONFIG_CGROUP_SCHED
8380 
8381 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8382 {
8383 	return css ? container_of(css, struct task_group, css) : NULL;
8384 }
8385 
8386 static struct cgroup_subsys_state *
8387 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8388 {
8389 	struct task_group *parent = css_tg(parent_css);
8390 	struct task_group *tg;
8391 
8392 	if (!parent) {
8393 		/* This is early initialization for the top cgroup */
8394 		return &root_task_group.css;
8395 	}
8396 
8397 	tg = sched_create_group(parent);
8398 	if (IS_ERR(tg))
8399 		return ERR_PTR(-ENOMEM);
8400 
8401 	sched_online_group(tg, parent);
8402 
8403 	return &tg->css;
8404 }
8405 
8406 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8407 {
8408 	struct task_group *tg = css_tg(css);
8409 
8410 	sched_offline_group(tg);
8411 }
8412 
8413 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8414 {
8415 	struct task_group *tg = css_tg(css);
8416 
8417 	/*
8418 	 * Relies on the RCU grace period between css_released() and this.
8419 	 */
8420 	sched_free_group(tg);
8421 }
8422 
8423 /*
8424  * This is called before wake_up_new_task(), therefore we really only
8425  * have to set its group bits, all the other stuff does not apply.
8426  */
8427 static void cpu_cgroup_fork(struct task_struct *task)
8428 {
8429 	struct rq_flags rf;
8430 	struct rq *rq;
8431 
8432 	rq = task_rq_lock(task, &rf);
8433 
8434 	sched_change_group(task, TASK_SET_GROUP);
8435 
8436 	task_rq_unlock(rq, task, &rf);
8437 }
8438 
8439 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8440 {
8441 	struct task_struct *task;
8442 	struct cgroup_subsys_state *css;
8443 	int ret = 0;
8444 
8445 	cgroup_taskset_for_each(task, css, tset) {
8446 #ifdef CONFIG_RT_GROUP_SCHED
8447 		if (!sched_rt_can_attach(css_tg(css), task))
8448 			return -EINVAL;
8449 #else
8450 		/* We don't support RT-tasks being in separate groups */
8451 		if (task->sched_class != &fair_sched_class)
8452 			return -EINVAL;
8453 #endif
8454 		/*
8455 		 * Serialize against wake_up_new_task() such that if its
8456 		 * running, we're sure to observe its full state.
8457 		 */
8458 		raw_spin_lock_irq(&task->pi_lock);
8459 		/*
8460 		 * Avoid calling sched_move_task() before wake_up_new_task()
8461 		 * has happened. This would lead to problems with PELT, due to
8462 		 * move wanting to detach+attach while we're not attached yet.
8463 		 */
8464 		if (task->state == TASK_NEW)
8465 			ret = -EINVAL;
8466 		raw_spin_unlock_irq(&task->pi_lock);
8467 
8468 		if (ret)
8469 			break;
8470 	}
8471 	return ret;
8472 }
8473 
8474 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8475 {
8476 	struct task_struct *task;
8477 	struct cgroup_subsys_state *css;
8478 
8479 	cgroup_taskset_for_each(task, css, tset)
8480 		sched_move_task(task);
8481 }
8482 
8483 #ifdef CONFIG_FAIR_GROUP_SCHED
8484 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8485 				struct cftype *cftype, u64 shareval)
8486 {
8487 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8488 }
8489 
8490 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8491 			       struct cftype *cft)
8492 {
8493 	struct task_group *tg = css_tg(css);
8494 
8495 	return (u64) scale_load_down(tg->shares);
8496 }
8497 
8498 #ifdef CONFIG_CFS_BANDWIDTH
8499 static DEFINE_MUTEX(cfs_constraints_mutex);
8500 
8501 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8502 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8503 
8504 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8505 
8506 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8507 {
8508 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8509 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8510 
8511 	if (tg == &root_task_group)
8512 		return -EINVAL;
8513 
8514 	/*
8515 	 * Ensure we have at some amount of bandwidth every period.  This is
8516 	 * to prevent reaching a state of large arrears when throttled via
8517 	 * entity_tick() resulting in prolonged exit starvation.
8518 	 */
8519 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8520 		return -EINVAL;
8521 
8522 	/*
8523 	 * Likewise, bound things on the otherside by preventing insane quota
8524 	 * periods.  This also allows us to normalize in computing quota
8525 	 * feasibility.
8526 	 */
8527 	if (period > max_cfs_quota_period)
8528 		return -EINVAL;
8529 
8530 	/*
8531 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8532 	 * unthrottle_offline_cfs_rqs().
8533 	 */
8534 	get_online_cpus();
8535 	mutex_lock(&cfs_constraints_mutex);
8536 	ret = __cfs_schedulable(tg, period, quota);
8537 	if (ret)
8538 		goto out_unlock;
8539 
8540 	runtime_enabled = quota != RUNTIME_INF;
8541 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8542 	/*
8543 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8544 	 * before making related changes, and on->off must occur afterwards
8545 	 */
8546 	if (runtime_enabled && !runtime_was_enabled)
8547 		cfs_bandwidth_usage_inc();
8548 	raw_spin_lock_irq(&cfs_b->lock);
8549 	cfs_b->period = ns_to_ktime(period);
8550 	cfs_b->quota = quota;
8551 
8552 	__refill_cfs_bandwidth_runtime(cfs_b);
8553 	/* restart the period timer (if active) to handle new period expiry */
8554 	if (runtime_enabled)
8555 		start_cfs_bandwidth(cfs_b);
8556 	raw_spin_unlock_irq(&cfs_b->lock);
8557 
8558 	for_each_online_cpu(i) {
8559 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8560 		struct rq *rq = cfs_rq->rq;
8561 
8562 		raw_spin_lock_irq(&rq->lock);
8563 		cfs_rq->runtime_enabled = runtime_enabled;
8564 		cfs_rq->runtime_remaining = 0;
8565 
8566 		if (cfs_rq->throttled)
8567 			unthrottle_cfs_rq(cfs_rq);
8568 		raw_spin_unlock_irq(&rq->lock);
8569 	}
8570 	if (runtime_was_enabled && !runtime_enabled)
8571 		cfs_bandwidth_usage_dec();
8572 out_unlock:
8573 	mutex_unlock(&cfs_constraints_mutex);
8574 	put_online_cpus();
8575 
8576 	return ret;
8577 }
8578 
8579 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8580 {
8581 	u64 quota, period;
8582 
8583 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8584 	if (cfs_quota_us < 0)
8585 		quota = RUNTIME_INF;
8586 	else
8587 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8588 
8589 	return tg_set_cfs_bandwidth(tg, period, quota);
8590 }
8591 
8592 long tg_get_cfs_quota(struct task_group *tg)
8593 {
8594 	u64 quota_us;
8595 
8596 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8597 		return -1;
8598 
8599 	quota_us = tg->cfs_bandwidth.quota;
8600 	do_div(quota_us, NSEC_PER_USEC);
8601 
8602 	return quota_us;
8603 }
8604 
8605 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8606 {
8607 	u64 quota, period;
8608 
8609 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8610 	quota = tg->cfs_bandwidth.quota;
8611 
8612 	return tg_set_cfs_bandwidth(tg, period, quota);
8613 }
8614 
8615 long tg_get_cfs_period(struct task_group *tg)
8616 {
8617 	u64 cfs_period_us;
8618 
8619 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8620 	do_div(cfs_period_us, NSEC_PER_USEC);
8621 
8622 	return cfs_period_us;
8623 }
8624 
8625 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8626 				  struct cftype *cft)
8627 {
8628 	return tg_get_cfs_quota(css_tg(css));
8629 }
8630 
8631 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8632 				   struct cftype *cftype, s64 cfs_quota_us)
8633 {
8634 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8635 }
8636 
8637 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8638 				   struct cftype *cft)
8639 {
8640 	return tg_get_cfs_period(css_tg(css));
8641 }
8642 
8643 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8644 				    struct cftype *cftype, u64 cfs_period_us)
8645 {
8646 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8647 }
8648 
8649 struct cfs_schedulable_data {
8650 	struct task_group *tg;
8651 	u64 period, quota;
8652 };
8653 
8654 /*
8655  * normalize group quota/period to be quota/max_period
8656  * note: units are usecs
8657  */
8658 static u64 normalize_cfs_quota(struct task_group *tg,
8659 			       struct cfs_schedulable_data *d)
8660 {
8661 	u64 quota, period;
8662 
8663 	if (tg == d->tg) {
8664 		period = d->period;
8665 		quota = d->quota;
8666 	} else {
8667 		period = tg_get_cfs_period(tg);
8668 		quota = tg_get_cfs_quota(tg);
8669 	}
8670 
8671 	/* note: these should typically be equivalent */
8672 	if (quota == RUNTIME_INF || quota == -1)
8673 		return RUNTIME_INF;
8674 
8675 	return to_ratio(period, quota);
8676 }
8677 
8678 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8679 {
8680 	struct cfs_schedulable_data *d = data;
8681 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8682 	s64 quota = 0, parent_quota = -1;
8683 
8684 	if (!tg->parent) {
8685 		quota = RUNTIME_INF;
8686 	} else {
8687 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8688 
8689 		quota = normalize_cfs_quota(tg, d);
8690 		parent_quota = parent_b->hierarchical_quota;
8691 
8692 		/*
8693 		 * ensure max(child_quota) <= parent_quota, inherit when no
8694 		 * limit is set
8695 		 */
8696 		if (quota == RUNTIME_INF)
8697 			quota = parent_quota;
8698 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8699 			return -EINVAL;
8700 	}
8701 	cfs_b->hierarchical_quota = quota;
8702 
8703 	return 0;
8704 }
8705 
8706 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8707 {
8708 	int ret;
8709 	struct cfs_schedulable_data data = {
8710 		.tg = tg,
8711 		.period = period,
8712 		.quota = quota,
8713 	};
8714 
8715 	if (quota != RUNTIME_INF) {
8716 		do_div(data.period, NSEC_PER_USEC);
8717 		do_div(data.quota, NSEC_PER_USEC);
8718 	}
8719 
8720 	rcu_read_lock();
8721 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8722 	rcu_read_unlock();
8723 
8724 	return ret;
8725 }
8726 
8727 static int cpu_stats_show(struct seq_file *sf, void *v)
8728 {
8729 	struct task_group *tg = css_tg(seq_css(sf));
8730 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8731 
8732 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8733 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8734 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8735 
8736 	return 0;
8737 }
8738 #endif /* CONFIG_CFS_BANDWIDTH */
8739 #endif /* CONFIG_FAIR_GROUP_SCHED */
8740 
8741 #ifdef CONFIG_RT_GROUP_SCHED
8742 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8743 				struct cftype *cft, s64 val)
8744 {
8745 	return sched_group_set_rt_runtime(css_tg(css), val);
8746 }
8747 
8748 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8749 			       struct cftype *cft)
8750 {
8751 	return sched_group_rt_runtime(css_tg(css));
8752 }
8753 
8754 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8755 				    struct cftype *cftype, u64 rt_period_us)
8756 {
8757 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8758 }
8759 
8760 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8761 				   struct cftype *cft)
8762 {
8763 	return sched_group_rt_period(css_tg(css));
8764 }
8765 #endif /* CONFIG_RT_GROUP_SCHED */
8766 
8767 static struct cftype cpu_files[] = {
8768 #ifdef CONFIG_FAIR_GROUP_SCHED
8769 	{
8770 		.name = "shares",
8771 		.read_u64 = cpu_shares_read_u64,
8772 		.write_u64 = cpu_shares_write_u64,
8773 	},
8774 #endif
8775 #ifdef CONFIG_CFS_BANDWIDTH
8776 	{
8777 		.name = "cfs_quota_us",
8778 		.read_s64 = cpu_cfs_quota_read_s64,
8779 		.write_s64 = cpu_cfs_quota_write_s64,
8780 	},
8781 	{
8782 		.name = "cfs_period_us",
8783 		.read_u64 = cpu_cfs_period_read_u64,
8784 		.write_u64 = cpu_cfs_period_write_u64,
8785 	},
8786 	{
8787 		.name = "stat",
8788 		.seq_show = cpu_stats_show,
8789 	},
8790 #endif
8791 #ifdef CONFIG_RT_GROUP_SCHED
8792 	{
8793 		.name = "rt_runtime_us",
8794 		.read_s64 = cpu_rt_runtime_read,
8795 		.write_s64 = cpu_rt_runtime_write,
8796 	},
8797 	{
8798 		.name = "rt_period_us",
8799 		.read_u64 = cpu_rt_period_read_uint,
8800 		.write_u64 = cpu_rt_period_write_uint,
8801 	},
8802 #endif
8803 	{ }	/* terminate */
8804 };
8805 
8806 struct cgroup_subsys cpu_cgrp_subsys = {
8807 	.css_alloc	= cpu_cgroup_css_alloc,
8808 	.css_released	= cpu_cgroup_css_released,
8809 	.css_free	= cpu_cgroup_css_free,
8810 	.fork		= cpu_cgroup_fork,
8811 	.can_attach	= cpu_cgroup_can_attach,
8812 	.attach		= cpu_cgroup_attach,
8813 	.legacy_cftypes	= cpu_files,
8814 	.early_init	= true,
8815 };
8816 
8817 #endif	/* CONFIG_CGROUP_SCHED */
8818 
8819 void dump_cpu_task(int cpu)
8820 {
8821 	pr_info("Task dump for CPU %d:\n", cpu);
8822 	sched_show_task(cpu_curr(cpu));
8823 }
8824 
8825 /*
8826  * Nice levels are multiplicative, with a gentle 10% change for every
8827  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8828  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8829  * that remained on nice 0.
8830  *
8831  * The "10% effect" is relative and cumulative: from _any_ nice level,
8832  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8833  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8834  * If a task goes up by ~10% and another task goes down by ~10% then
8835  * the relative distance between them is ~25%.)
8836  */
8837 const int sched_prio_to_weight[40] = {
8838  /* -20 */     88761,     71755,     56483,     46273,     36291,
8839  /* -15 */     29154,     23254,     18705,     14949,     11916,
8840  /* -10 */      9548,      7620,      6100,      4904,      3906,
8841  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8842  /*   0 */      1024,       820,       655,       526,       423,
8843  /*   5 */       335,       272,       215,       172,       137,
8844  /*  10 */       110,        87,        70,        56,        45,
8845  /*  15 */        36,        29,        23,        18,        15,
8846 };
8847 
8848 /*
8849  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8850  *
8851  * In cases where the weight does not change often, we can use the
8852  * precalculated inverse to speed up arithmetics by turning divisions
8853  * into multiplications:
8854  */
8855 const u32 sched_prio_to_wmult[40] = {
8856  /* -20 */     48388,     59856,     76040,     92818,    118348,
8857  /* -15 */    147320,    184698,    229616,    287308,    360437,
8858  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8859  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8860  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8861  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8862  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8863  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8864 };
8865