xref: /openbmc/linux/kernel/sched/core.c (revision d10cd7bf574ead01fae140ce117a11bcdacbe6a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	delayacct_irq(rq->curr, irq_delta);
726 #endif
727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
728 	if (static_key_false((&paravirt_steal_rq_enabled))) {
729 		steal = paravirt_steal_clock(cpu_of(rq));
730 		steal -= rq->prev_steal_time_rq;
731 
732 		if (unlikely(steal > delta))
733 			steal = delta;
734 
735 		rq->prev_steal_time_rq += steal;
736 		delta -= steal;
737 	}
738 #endif
739 
740 	rq->clock_task += delta;
741 
742 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
743 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
744 		update_irq_load_avg(rq, irq_delta + steal);
745 #endif
746 	update_rq_clock_pelt(rq, delta);
747 }
748 
749 void update_rq_clock(struct rq *rq)
750 {
751 	s64 delta;
752 
753 	lockdep_assert_rq_held(rq);
754 
755 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
756 		return;
757 
758 #ifdef CONFIG_SCHED_DEBUG
759 	if (sched_feat(WARN_DOUBLE_CLOCK))
760 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
761 	rq->clock_update_flags |= RQCF_UPDATED;
762 #endif
763 
764 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
765 	if (delta < 0)
766 		return;
767 	rq->clock += delta;
768 	update_rq_clock_task(rq, delta);
769 }
770 
771 #ifdef CONFIG_SCHED_HRTICK
772 /*
773  * Use HR-timers to deliver accurate preemption points.
774  */
775 
776 static void hrtick_clear(struct rq *rq)
777 {
778 	if (hrtimer_active(&rq->hrtick_timer))
779 		hrtimer_cancel(&rq->hrtick_timer);
780 }
781 
782 /*
783  * High-resolution timer tick.
784  * Runs from hardirq context with interrupts disabled.
785  */
786 static enum hrtimer_restart hrtick(struct hrtimer *timer)
787 {
788 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
789 	struct rq_flags rf;
790 
791 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
792 
793 	rq_lock(rq, &rf);
794 	update_rq_clock(rq);
795 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
796 	rq_unlock(rq, &rf);
797 
798 	return HRTIMER_NORESTART;
799 }
800 
801 #ifdef CONFIG_SMP
802 
803 static void __hrtick_restart(struct rq *rq)
804 {
805 	struct hrtimer *timer = &rq->hrtick_timer;
806 	ktime_t time = rq->hrtick_time;
807 
808 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
809 }
810 
811 /*
812  * called from hardirq (IPI) context
813  */
814 static void __hrtick_start(void *arg)
815 {
816 	struct rq *rq = arg;
817 	struct rq_flags rf;
818 
819 	rq_lock(rq, &rf);
820 	__hrtick_restart(rq);
821 	rq_unlock(rq, &rf);
822 }
823 
824 /*
825  * Called to set the hrtick timer state.
826  *
827  * called with rq->lock held and irqs disabled
828  */
829 void hrtick_start(struct rq *rq, u64 delay)
830 {
831 	struct hrtimer *timer = &rq->hrtick_timer;
832 	s64 delta;
833 
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense and can cause timer DoS.
837 	 */
838 	delta = max_t(s64, delay, 10000LL);
839 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
840 
841 	if (rq == this_rq())
842 		__hrtick_restart(rq);
843 	else
844 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
845 }
846 
847 #else
848 /*
849  * Called to set the hrtick timer state.
850  *
851  * called with rq->lock held and irqs disabled
852  */
853 void hrtick_start(struct rq *rq, u64 delay)
854 {
855 	/*
856 	 * Don't schedule slices shorter than 10000ns, that just
857 	 * doesn't make sense. Rely on vruntime for fairness.
858 	 */
859 	delay = max_t(u64, delay, 10000LL);
860 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
861 		      HRTIMER_MODE_REL_PINNED_HARD);
862 }
863 
864 #endif /* CONFIG_SMP */
865 
866 static void hrtick_rq_init(struct rq *rq)
867 {
868 #ifdef CONFIG_SMP
869 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
870 #endif
871 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
872 	rq->hrtick_timer.function = hrtick;
873 }
874 #else	/* CONFIG_SCHED_HRTICK */
875 static inline void hrtick_clear(struct rq *rq)
876 {
877 }
878 
879 static inline void hrtick_rq_init(struct rq *rq)
880 {
881 }
882 #endif	/* CONFIG_SCHED_HRTICK */
883 
884 /*
885  * cmpxchg based fetch_or, macro so it works for different integer types
886  */
887 #define fetch_or(ptr, mask)						\
888 	({								\
889 		typeof(ptr) _ptr = (ptr);				\
890 		typeof(mask) _mask = (mask);				\
891 		typeof(*_ptr) _val = *_ptr;				\
892 									\
893 		do {							\
894 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
895 	_val;								\
896 })
897 
898 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
899 /*
900  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
901  * this avoids any races wrt polling state changes and thereby avoids
902  * spurious IPIs.
903  */
904 static inline bool set_nr_and_not_polling(struct task_struct *p)
905 {
906 	struct thread_info *ti = task_thread_info(p);
907 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
908 }
909 
910 /*
911  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
912  *
913  * If this returns true, then the idle task promises to call
914  * sched_ttwu_pending() and reschedule soon.
915  */
916 static bool set_nr_if_polling(struct task_struct *p)
917 {
918 	struct thread_info *ti = task_thread_info(p);
919 	typeof(ti->flags) val = READ_ONCE(ti->flags);
920 
921 	for (;;) {
922 		if (!(val & _TIF_POLLING_NRFLAG))
923 			return false;
924 		if (val & _TIF_NEED_RESCHED)
925 			return true;
926 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
927 			break;
928 	}
929 	return true;
930 }
931 
932 #else
933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	set_tsk_need_resched(p);
936 	return true;
937 }
938 
939 #ifdef CONFIG_SMP
940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 	return false;
943 }
944 #endif
945 #endif
946 
947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 	struct wake_q_node *node = &task->wake_q;
950 
951 	/*
952 	 * Atomically grab the task, if ->wake_q is !nil already it means
953 	 * it's already queued (either by us or someone else) and will get the
954 	 * wakeup due to that.
955 	 *
956 	 * In order to ensure that a pending wakeup will observe our pending
957 	 * state, even in the failed case, an explicit smp_mb() must be used.
958 	 */
959 	smp_mb__before_atomic();
960 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 		return false;
962 
963 	/*
964 	 * The head is context local, there can be no concurrency.
965 	 */
966 	*head->lastp = node;
967 	head->lastp = &node->next;
968 	return true;
969 }
970 
971 /**
972  * wake_q_add() - queue a wakeup for 'later' waking.
973  * @head: the wake_q_head to add @task to
974  * @task: the task to queue for 'later' wakeup
975  *
976  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978  * instantly.
979  *
980  * This function must be used as-if it were wake_up_process(); IOW the task
981  * must be ready to be woken at this location.
982  */
983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984 {
985 	if (__wake_q_add(head, task))
986 		get_task_struct(task);
987 }
988 
989 /**
990  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991  * @head: the wake_q_head to add @task to
992  * @task: the task to queue for 'later' wakeup
993  *
994  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996  * instantly.
997  *
998  * This function must be used as-if it were wake_up_process(); IOW the task
999  * must be ready to be woken at this location.
1000  *
1001  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002  * that already hold reference to @task can call the 'safe' version and trust
1003  * wake_q to do the right thing depending whether or not the @task is already
1004  * queued for wakeup.
1005  */
1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007 {
1008 	if (!__wake_q_add(head, task))
1009 		put_task_struct(task);
1010 }
1011 
1012 void wake_up_q(struct wake_q_head *head)
1013 {
1014 	struct wake_q_node *node = head->first;
1015 
1016 	while (node != WAKE_Q_TAIL) {
1017 		struct task_struct *task;
1018 
1019 		task = container_of(node, struct task_struct, wake_q);
1020 		/* Task can safely be re-inserted now: */
1021 		node = node->next;
1022 		task->wake_q.next = NULL;
1023 
1024 		/*
1025 		 * wake_up_process() executes a full barrier, which pairs with
1026 		 * the queueing in wake_q_add() so as not to miss wakeups.
1027 		 */
1028 		wake_up_process(task);
1029 		put_task_struct(task);
1030 	}
1031 }
1032 
1033 /*
1034  * resched_curr - mark rq's current task 'to be rescheduled now'.
1035  *
1036  * On UP this means the setting of the need_resched flag, on SMP it
1037  * might also involve a cross-CPU call to trigger the scheduler on
1038  * the target CPU.
1039  */
1040 void resched_curr(struct rq *rq)
1041 {
1042 	struct task_struct *curr = rq->curr;
1043 	int cpu;
1044 
1045 	lockdep_assert_rq_held(rq);
1046 
1047 	if (test_tsk_need_resched(curr))
1048 		return;
1049 
1050 	cpu = cpu_of(rq);
1051 
1052 	if (cpu == smp_processor_id()) {
1053 		set_tsk_need_resched(curr);
1054 		set_preempt_need_resched();
1055 		return;
1056 	}
1057 
1058 	if (set_nr_and_not_polling(curr))
1059 		smp_send_reschedule(cpu);
1060 	else
1061 		trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063 
1064 void resched_cpu(int cpu)
1065 {
1066 	struct rq *rq = cpu_rq(cpu);
1067 	unsigned long flags;
1068 
1069 	raw_spin_rq_lock_irqsave(rq, flags);
1070 	if (cpu_online(cpu) || cpu == smp_processor_id())
1071 		resched_curr(rq);
1072 	raw_spin_rq_unlock_irqrestore(rq, flags);
1073 }
1074 
1075 #ifdef CONFIG_SMP
1076 #ifdef CONFIG_NO_HZ_COMMON
1077 /*
1078  * In the semi idle case, use the nearest busy CPU for migrating timers
1079  * from an idle CPU.  This is good for power-savings.
1080  *
1081  * We don't do similar optimization for completely idle system, as
1082  * selecting an idle CPU will add more delays to the timers than intended
1083  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084  */
1085 int get_nohz_timer_target(void)
1086 {
1087 	int i, cpu = smp_processor_id(), default_cpu = -1;
1088 	struct sched_domain *sd;
1089 	const struct cpumask *hk_mask;
1090 
1091 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1092 		if (!idle_cpu(cpu))
1093 			return cpu;
1094 		default_cpu = cpu;
1095 	}
1096 
1097 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1098 
1099 	guard(rcu)();
1100 
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i))
1107 				return i;
1108 		}
1109 	}
1110 
1111 	if (default_cpu == -1)
1112 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1113 
1114 	return default_cpu;
1115 }
1116 
1117 /*
1118  * When add_timer_on() enqueues a timer into the timer wheel of an
1119  * idle CPU then this timer might expire before the next timer event
1120  * which is scheduled to wake up that CPU. In case of a completely
1121  * idle system the next event might even be infinite time into the
1122  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123  * leaves the inner idle loop so the newly added timer is taken into
1124  * account when the CPU goes back to idle and evaluates the timer
1125  * wheel for the next timer event.
1126  */
1127 static void wake_up_idle_cpu(int cpu)
1128 {
1129 	struct rq *rq = cpu_rq(cpu);
1130 
1131 	if (cpu == smp_processor_id())
1132 		return;
1133 
1134 	if (set_nr_and_not_polling(rq->idle))
1135 		smp_send_reschedule(cpu);
1136 	else
1137 		trace_sched_wake_idle_without_ipi(cpu);
1138 }
1139 
1140 static bool wake_up_full_nohz_cpu(int cpu)
1141 {
1142 	/*
1143 	 * We just need the target to call irq_exit() and re-evaluate
1144 	 * the next tick. The nohz full kick at least implies that.
1145 	 * If needed we can still optimize that later with an
1146 	 * empty IRQ.
1147 	 */
1148 	if (cpu_is_offline(cpu))
1149 		return true;  /* Don't try to wake offline CPUs. */
1150 	if (tick_nohz_full_cpu(cpu)) {
1151 		if (cpu != smp_processor_id() ||
1152 		    tick_nohz_tick_stopped())
1153 			tick_nohz_full_kick_cpu(cpu);
1154 		return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /*
1161  * Wake up the specified CPU.  If the CPU is going offline, it is the
1162  * caller's responsibility to deal with the lost wakeup, for example,
1163  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1164  */
1165 void wake_up_nohz_cpu(int cpu)
1166 {
1167 	if (!wake_up_full_nohz_cpu(cpu))
1168 		wake_up_idle_cpu(cpu);
1169 }
1170 
1171 static void nohz_csd_func(void *info)
1172 {
1173 	struct rq *rq = info;
1174 	int cpu = cpu_of(rq);
1175 	unsigned int flags;
1176 
1177 	/*
1178 	 * Release the rq::nohz_csd.
1179 	 */
1180 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1182 
1183 	rq->idle_balance = idle_cpu(cpu);
1184 	if (rq->idle_balance && !need_resched()) {
1185 		rq->nohz_idle_balance = flags;
1186 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1187 	}
1188 }
1189 
1190 #endif /* CONFIG_NO_HZ_COMMON */
1191 
1192 #ifdef CONFIG_NO_HZ_FULL
1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1194 {
1195 	if (rq->nr_running != 1)
1196 		return false;
1197 
1198 	if (p->sched_class != &fair_sched_class)
1199 		return false;
1200 
1201 	if (!task_on_rq_queued(p))
1202 		return false;
1203 
1204 	return true;
1205 }
1206 
1207 bool sched_can_stop_tick(struct rq *rq)
1208 {
1209 	int fifo_nr_running;
1210 
1211 	/* Deadline tasks, even if single, need the tick */
1212 	if (rq->dl.dl_nr_running)
1213 		return false;
1214 
1215 	/*
1216 	 * If there are more than one RR tasks, we need the tick to affect the
1217 	 * actual RR behaviour.
1218 	 */
1219 	if (rq->rt.rr_nr_running) {
1220 		if (rq->rt.rr_nr_running == 1)
1221 			return true;
1222 		else
1223 			return false;
1224 	}
1225 
1226 	/*
1227 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 	 * forced preemption between FIFO tasks.
1229 	 */
1230 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 	if (fifo_nr_running)
1232 		return true;
1233 
1234 	/*
1235 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 	 * if there's more than one we need the tick for involuntary
1237 	 * preemption.
1238 	 */
1239 	if (rq->nr_running > 1)
1240 		return false;
1241 
1242 	/*
1243 	 * If there is one task and it has CFS runtime bandwidth constraints
1244 	 * and it's on the cpu now we don't want to stop the tick.
1245 	 * This check prevents clearing the bit if a newly enqueued task here is
1246 	 * dequeued by migrating while the constrained task continues to run.
1247 	 * E.g. going from 2->1 without going through pick_next_task().
1248 	 */
1249 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 		if (cfs_task_bw_constrained(rq->curr))
1251 			return false;
1252 	}
1253 
1254 	return true;
1255 }
1256 #endif /* CONFIG_NO_HZ_FULL */
1257 #endif /* CONFIG_SMP */
1258 
1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1261 /*
1262  * Iterate task_group tree rooted at *from, calling @down when first entering a
1263  * node and @up when leaving it for the final time.
1264  *
1265  * Caller must hold rcu_lock or sufficient equivalent.
1266  */
1267 int walk_tg_tree_from(struct task_group *from,
1268 			     tg_visitor down, tg_visitor up, void *data)
1269 {
1270 	struct task_group *parent, *child;
1271 	int ret;
1272 
1273 	parent = from;
1274 
1275 down:
1276 	ret = (*down)(parent, data);
1277 	if (ret)
1278 		goto out;
1279 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1280 		parent = child;
1281 		goto down;
1282 
1283 up:
1284 		continue;
1285 	}
1286 	ret = (*up)(parent, data);
1287 	if (ret || parent == from)
1288 		goto out;
1289 
1290 	child = parent;
1291 	parent = parent->parent;
1292 	if (parent)
1293 		goto up;
1294 out:
1295 	return ret;
1296 }
1297 
1298 int tg_nop(struct task_group *tg, void *data)
1299 {
1300 	return 0;
1301 }
1302 #endif
1303 
1304 static void set_load_weight(struct task_struct *p, bool update_load)
1305 {
1306 	int prio = p->static_prio - MAX_RT_PRIO;
1307 	struct load_weight lw;
1308 
1309 	if (task_has_idle_policy(p)) {
1310 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1311 		lw.inv_weight = WMULT_IDLEPRIO;
1312 	} else {
1313 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1314 		lw.inv_weight = sched_prio_to_wmult[prio];
1315 	}
1316 
1317 	/*
1318 	 * SCHED_OTHER tasks have to update their load when changing their
1319 	 * weight
1320 	 */
1321 	if (update_load && p->sched_class == &fair_sched_class)
1322 		reweight_task(p, &lw);
1323 	else
1324 		p->se.load = lw;
1325 }
1326 
1327 #ifdef CONFIG_UCLAMP_TASK
1328 /*
1329  * Serializes updates of utilization clamp values
1330  *
1331  * The (slow-path) user-space triggers utilization clamp value updates which
1332  * can require updates on (fast-path) scheduler's data structures used to
1333  * support enqueue/dequeue operations.
1334  * While the per-CPU rq lock protects fast-path update operations, user-space
1335  * requests are serialized using a mutex to reduce the risk of conflicting
1336  * updates or API abuses.
1337  */
1338 static DEFINE_MUTEX(uclamp_mutex);
1339 
1340 /* Max allowed minimum utilization */
1341 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1342 
1343 /* Max allowed maximum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1345 
1346 /*
1347  * By default RT tasks run at the maximum performance point/capacity of the
1348  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1349  * SCHED_CAPACITY_SCALE.
1350  *
1351  * This knob allows admins to change the default behavior when uclamp is being
1352  * used. In battery powered devices, particularly, running at the maximum
1353  * capacity and frequency will increase energy consumption and shorten the
1354  * battery life.
1355  *
1356  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1357  *
1358  * This knob will not override the system default sched_util_clamp_min defined
1359  * above.
1360  */
1361 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1362 
1363 /* All clamps are required to be less or equal than these values */
1364 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1365 
1366 /*
1367  * This static key is used to reduce the uclamp overhead in the fast path. It
1368  * primarily disables the call to uclamp_rq_{inc, dec}() in
1369  * enqueue/dequeue_task().
1370  *
1371  * This allows users to continue to enable uclamp in their kernel config with
1372  * minimum uclamp overhead in the fast path.
1373  *
1374  * As soon as userspace modifies any of the uclamp knobs, the static key is
1375  * enabled, since we have an actual users that make use of uclamp
1376  * functionality.
1377  *
1378  * The knobs that would enable this static key are:
1379  *
1380  *   * A task modifying its uclamp value with sched_setattr().
1381  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1382  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1383  */
1384 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1385 
1386 /* Integer rounded range for each bucket */
1387 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1388 
1389 #define for_each_clamp_id(clamp_id) \
1390 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1391 
1392 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1393 {
1394 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1395 }
1396 
1397 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1398 {
1399 	if (clamp_id == UCLAMP_MIN)
1400 		return 0;
1401 	return SCHED_CAPACITY_SCALE;
1402 }
1403 
1404 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1405 				 unsigned int value, bool user_defined)
1406 {
1407 	uc_se->value = value;
1408 	uc_se->bucket_id = uclamp_bucket_id(value);
1409 	uc_se->user_defined = user_defined;
1410 }
1411 
1412 static inline unsigned int
1413 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1414 		  unsigned int clamp_value)
1415 {
1416 	/*
1417 	 * Avoid blocked utilization pushing up the frequency when we go
1418 	 * idle (which drops the max-clamp) by retaining the last known
1419 	 * max-clamp.
1420 	 */
1421 	if (clamp_id == UCLAMP_MAX) {
1422 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1423 		return clamp_value;
1424 	}
1425 
1426 	return uclamp_none(UCLAMP_MIN);
1427 }
1428 
1429 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1430 				     unsigned int clamp_value)
1431 {
1432 	/* Reset max-clamp retention only on idle exit */
1433 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1434 		return;
1435 
1436 	uclamp_rq_set(rq, clamp_id, clamp_value);
1437 }
1438 
1439 static inline
1440 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1441 				   unsigned int clamp_value)
1442 {
1443 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1444 	int bucket_id = UCLAMP_BUCKETS - 1;
1445 
1446 	/*
1447 	 * Since both min and max clamps are max aggregated, find the
1448 	 * top most bucket with tasks in.
1449 	 */
1450 	for ( ; bucket_id >= 0; bucket_id--) {
1451 		if (!bucket[bucket_id].tasks)
1452 			continue;
1453 		return bucket[bucket_id].value;
1454 	}
1455 
1456 	/* No tasks -- default clamp values */
1457 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1458 }
1459 
1460 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1461 {
1462 	unsigned int default_util_min;
1463 	struct uclamp_se *uc_se;
1464 
1465 	lockdep_assert_held(&p->pi_lock);
1466 
1467 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1468 
1469 	/* Only sync if user didn't override the default */
1470 	if (uc_se->user_defined)
1471 		return;
1472 
1473 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1474 	uclamp_se_set(uc_se, default_util_min, false);
1475 }
1476 
1477 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1478 {
1479 	struct rq_flags rf;
1480 	struct rq *rq;
1481 
1482 	if (!rt_task(p))
1483 		return;
1484 
1485 	/* Protect updates to p->uclamp_* */
1486 	rq = task_rq_lock(p, &rf);
1487 	__uclamp_update_util_min_rt_default(p);
1488 	task_rq_unlock(rq, p, &rf);
1489 }
1490 
1491 static inline struct uclamp_se
1492 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1493 {
1494 	/* Copy by value as we could modify it */
1495 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1496 #ifdef CONFIG_UCLAMP_TASK_GROUP
1497 	unsigned int tg_min, tg_max, value;
1498 
1499 	/*
1500 	 * Tasks in autogroups or root task group will be
1501 	 * restricted by system defaults.
1502 	 */
1503 	if (task_group_is_autogroup(task_group(p)))
1504 		return uc_req;
1505 	if (task_group(p) == &root_task_group)
1506 		return uc_req;
1507 
1508 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1509 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1510 	value = uc_req.value;
1511 	value = clamp(value, tg_min, tg_max);
1512 	uclamp_se_set(&uc_req, value, false);
1513 #endif
1514 
1515 	return uc_req;
1516 }
1517 
1518 /*
1519  * The effective clamp bucket index of a task depends on, by increasing
1520  * priority:
1521  * - the task specific clamp value, when explicitly requested from userspace
1522  * - the task group effective clamp value, for tasks not either in the root
1523  *   group or in an autogroup
1524  * - the system default clamp value, defined by the sysadmin
1525  */
1526 static inline struct uclamp_se
1527 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1528 {
1529 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1530 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1531 
1532 	/* System default restrictions always apply */
1533 	if (unlikely(uc_req.value > uc_max.value))
1534 		return uc_max;
1535 
1536 	return uc_req;
1537 }
1538 
1539 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 	struct uclamp_se uc_eff;
1542 
1543 	/* Task currently refcounted: use back-annotated (effective) value */
1544 	if (p->uclamp[clamp_id].active)
1545 		return (unsigned long)p->uclamp[clamp_id].value;
1546 
1547 	uc_eff = uclamp_eff_get(p, clamp_id);
1548 
1549 	return (unsigned long)uc_eff.value;
1550 }
1551 
1552 /*
1553  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1554  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1555  * updates the rq's clamp value if required.
1556  *
1557  * Tasks can have a task-specific value requested from user-space, track
1558  * within each bucket the maximum value for tasks refcounted in it.
1559  * This "local max aggregation" allows to track the exact "requested" value
1560  * for each bucket when all its RUNNABLE tasks require the same clamp.
1561  */
1562 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1563 				    enum uclamp_id clamp_id)
1564 {
1565 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1566 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1567 	struct uclamp_bucket *bucket;
1568 
1569 	lockdep_assert_rq_held(rq);
1570 
1571 	/* Update task effective clamp */
1572 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1573 
1574 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1575 	bucket->tasks++;
1576 	uc_se->active = true;
1577 
1578 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1579 
1580 	/*
1581 	 * Local max aggregation: rq buckets always track the max
1582 	 * "requested" clamp value of its RUNNABLE tasks.
1583 	 */
1584 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1585 		bucket->value = uc_se->value;
1586 
1587 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1588 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1589 }
1590 
1591 /*
1592  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1593  * is released. If this is the last task reference counting the rq's max
1594  * active clamp value, then the rq's clamp value is updated.
1595  *
1596  * Both refcounted tasks and rq's cached clamp values are expected to be
1597  * always valid. If it's detected they are not, as defensive programming,
1598  * enforce the expected state and warn.
1599  */
1600 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1601 				    enum uclamp_id clamp_id)
1602 {
1603 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1604 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1605 	struct uclamp_bucket *bucket;
1606 	unsigned int bkt_clamp;
1607 	unsigned int rq_clamp;
1608 
1609 	lockdep_assert_rq_held(rq);
1610 
1611 	/*
1612 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1613 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1614 	 *
1615 	 * In this case the uc_se->active flag should be false since no uclamp
1616 	 * accounting was performed at enqueue time and we can just return
1617 	 * here.
1618 	 *
1619 	 * Need to be careful of the following enqueue/dequeue ordering
1620 	 * problem too
1621 	 *
1622 	 *	enqueue(taskA)
1623 	 *	// sched_uclamp_used gets enabled
1624 	 *	enqueue(taskB)
1625 	 *	dequeue(taskA)
1626 	 *	// Must not decrement bucket->tasks here
1627 	 *	dequeue(taskB)
1628 	 *
1629 	 * where we could end up with stale data in uc_se and
1630 	 * bucket[uc_se->bucket_id].
1631 	 *
1632 	 * The following check here eliminates the possibility of such race.
1633 	 */
1634 	if (unlikely(!uc_se->active))
1635 		return;
1636 
1637 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1638 
1639 	SCHED_WARN_ON(!bucket->tasks);
1640 	if (likely(bucket->tasks))
1641 		bucket->tasks--;
1642 
1643 	uc_se->active = false;
1644 
1645 	/*
1646 	 * Keep "local max aggregation" simple and accept to (possibly)
1647 	 * overboost some RUNNABLE tasks in the same bucket.
1648 	 * The rq clamp bucket value is reset to its base value whenever
1649 	 * there are no more RUNNABLE tasks refcounting it.
1650 	 */
1651 	if (likely(bucket->tasks))
1652 		return;
1653 
1654 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1655 	/*
1656 	 * Defensive programming: this should never happen. If it happens,
1657 	 * e.g. due to future modification, warn and fixup the expected value.
1658 	 */
1659 	SCHED_WARN_ON(bucket->value > rq_clamp);
1660 	if (bucket->value >= rq_clamp) {
1661 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1662 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1663 	}
1664 }
1665 
1666 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1667 {
1668 	enum uclamp_id clamp_id;
1669 
1670 	/*
1671 	 * Avoid any overhead until uclamp is actually used by the userspace.
1672 	 *
1673 	 * The condition is constructed such that a NOP is generated when
1674 	 * sched_uclamp_used is disabled.
1675 	 */
1676 	if (!static_branch_unlikely(&sched_uclamp_used))
1677 		return;
1678 
1679 	if (unlikely(!p->sched_class->uclamp_enabled))
1680 		return;
1681 
1682 	for_each_clamp_id(clamp_id)
1683 		uclamp_rq_inc_id(rq, p, clamp_id);
1684 
1685 	/* Reset clamp idle holding when there is one RUNNABLE task */
1686 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1687 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1688 }
1689 
1690 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1691 {
1692 	enum uclamp_id clamp_id;
1693 
1694 	/*
1695 	 * Avoid any overhead until uclamp is actually used by the userspace.
1696 	 *
1697 	 * The condition is constructed such that a NOP is generated when
1698 	 * sched_uclamp_used is disabled.
1699 	 */
1700 	if (!static_branch_unlikely(&sched_uclamp_used))
1701 		return;
1702 
1703 	if (unlikely(!p->sched_class->uclamp_enabled))
1704 		return;
1705 
1706 	for_each_clamp_id(clamp_id)
1707 		uclamp_rq_dec_id(rq, p, clamp_id);
1708 }
1709 
1710 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1711 				      enum uclamp_id clamp_id)
1712 {
1713 	if (!p->uclamp[clamp_id].active)
1714 		return;
1715 
1716 	uclamp_rq_dec_id(rq, p, clamp_id);
1717 	uclamp_rq_inc_id(rq, p, clamp_id);
1718 
1719 	/*
1720 	 * Make sure to clear the idle flag if we've transiently reached 0
1721 	 * active tasks on rq.
1722 	 */
1723 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1724 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1725 }
1726 
1727 static inline void
1728 uclamp_update_active(struct task_struct *p)
1729 {
1730 	enum uclamp_id clamp_id;
1731 	struct rq_flags rf;
1732 	struct rq *rq;
1733 
1734 	/*
1735 	 * Lock the task and the rq where the task is (or was) queued.
1736 	 *
1737 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1738 	 * price to pay to safely serialize util_{min,max} updates with
1739 	 * enqueues, dequeues and migration operations.
1740 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1741 	 */
1742 	rq = task_rq_lock(p, &rf);
1743 
1744 	/*
1745 	 * Setting the clamp bucket is serialized by task_rq_lock().
1746 	 * If the task is not yet RUNNABLE and its task_struct is not
1747 	 * affecting a valid clamp bucket, the next time it's enqueued,
1748 	 * it will already see the updated clamp bucket value.
1749 	 */
1750 	for_each_clamp_id(clamp_id)
1751 		uclamp_rq_reinc_id(rq, p, clamp_id);
1752 
1753 	task_rq_unlock(rq, p, &rf);
1754 }
1755 
1756 #ifdef CONFIG_UCLAMP_TASK_GROUP
1757 static inline void
1758 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1759 {
1760 	struct css_task_iter it;
1761 	struct task_struct *p;
1762 
1763 	css_task_iter_start(css, 0, &it);
1764 	while ((p = css_task_iter_next(&it)))
1765 		uclamp_update_active(p);
1766 	css_task_iter_end(&it);
1767 }
1768 
1769 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1770 #endif
1771 
1772 #ifdef CONFIG_SYSCTL
1773 #ifdef CONFIG_UCLAMP_TASK
1774 #ifdef CONFIG_UCLAMP_TASK_GROUP
1775 static void uclamp_update_root_tg(void)
1776 {
1777 	struct task_group *tg = &root_task_group;
1778 
1779 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1780 		      sysctl_sched_uclamp_util_min, false);
1781 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1782 		      sysctl_sched_uclamp_util_max, false);
1783 
1784 	rcu_read_lock();
1785 	cpu_util_update_eff(&root_task_group.css);
1786 	rcu_read_unlock();
1787 }
1788 #else
1789 static void uclamp_update_root_tg(void) { }
1790 #endif
1791 
1792 static void uclamp_sync_util_min_rt_default(void)
1793 {
1794 	struct task_struct *g, *p;
1795 
1796 	/*
1797 	 * copy_process()			sysctl_uclamp
1798 	 *					  uclamp_min_rt = X;
1799 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1800 	 *   // link thread			  smp_mb__after_spinlock()
1801 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1802 	 *   sched_post_fork()			  for_each_process_thread()
1803 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1804 	 *
1805 	 * Ensures that either sched_post_fork() will observe the new
1806 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1807 	 * task.
1808 	 */
1809 	read_lock(&tasklist_lock);
1810 	smp_mb__after_spinlock();
1811 	read_unlock(&tasklist_lock);
1812 
1813 	rcu_read_lock();
1814 	for_each_process_thread(g, p)
1815 		uclamp_update_util_min_rt_default(p);
1816 	rcu_read_unlock();
1817 }
1818 
1819 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1820 				void *buffer, size_t *lenp, loff_t *ppos)
1821 {
1822 	bool update_root_tg = false;
1823 	int old_min, old_max, old_min_rt;
1824 	int result;
1825 
1826 	guard(mutex)(&uclamp_mutex);
1827 
1828 	old_min = sysctl_sched_uclamp_util_min;
1829 	old_max = sysctl_sched_uclamp_util_max;
1830 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1831 
1832 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1833 	if (result)
1834 		goto undo;
1835 	if (!write)
1836 		return 0;
1837 
1838 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1839 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1840 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1841 
1842 		result = -EINVAL;
1843 		goto undo;
1844 	}
1845 
1846 	if (old_min != sysctl_sched_uclamp_util_min) {
1847 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1848 			      sysctl_sched_uclamp_util_min, false);
1849 		update_root_tg = true;
1850 	}
1851 	if (old_max != sysctl_sched_uclamp_util_max) {
1852 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1853 			      sysctl_sched_uclamp_util_max, false);
1854 		update_root_tg = true;
1855 	}
1856 
1857 	if (update_root_tg) {
1858 		static_branch_enable(&sched_uclamp_used);
1859 		uclamp_update_root_tg();
1860 	}
1861 
1862 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1863 		static_branch_enable(&sched_uclamp_used);
1864 		uclamp_sync_util_min_rt_default();
1865 	}
1866 
1867 	/*
1868 	 * We update all RUNNABLE tasks only when task groups are in use.
1869 	 * Otherwise, keep it simple and do just a lazy update at each next
1870 	 * task enqueue time.
1871 	 */
1872 	return 0;
1873 
1874 undo:
1875 	sysctl_sched_uclamp_util_min = old_min;
1876 	sysctl_sched_uclamp_util_max = old_max;
1877 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1878 	return result;
1879 }
1880 #endif
1881 #endif
1882 
1883 static int uclamp_validate(struct task_struct *p,
1884 			   const struct sched_attr *attr)
1885 {
1886 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1887 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1888 
1889 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1890 		util_min = attr->sched_util_min;
1891 
1892 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1893 			return -EINVAL;
1894 	}
1895 
1896 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1897 		util_max = attr->sched_util_max;
1898 
1899 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1900 			return -EINVAL;
1901 	}
1902 
1903 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1904 		return -EINVAL;
1905 
1906 	/*
1907 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1908 	 *
1909 	 * We need to do that here, because enabling static branches is a
1910 	 * blocking operation which obviously cannot be done while holding
1911 	 * scheduler locks.
1912 	 */
1913 	static_branch_enable(&sched_uclamp_used);
1914 
1915 	return 0;
1916 }
1917 
1918 static bool uclamp_reset(const struct sched_attr *attr,
1919 			 enum uclamp_id clamp_id,
1920 			 struct uclamp_se *uc_se)
1921 {
1922 	/* Reset on sched class change for a non user-defined clamp value. */
1923 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1924 	    !uc_se->user_defined)
1925 		return true;
1926 
1927 	/* Reset on sched_util_{min,max} == -1. */
1928 	if (clamp_id == UCLAMP_MIN &&
1929 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1930 	    attr->sched_util_min == -1) {
1931 		return true;
1932 	}
1933 
1934 	if (clamp_id == UCLAMP_MAX &&
1935 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1936 	    attr->sched_util_max == -1) {
1937 		return true;
1938 	}
1939 
1940 	return false;
1941 }
1942 
1943 static void __setscheduler_uclamp(struct task_struct *p,
1944 				  const struct sched_attr *attr)
1945 {
1946 	enum uclamp_id clamp_id;
1947 
1948 	for_each_clamp_id(clamp_id) {
1949 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1950 		unsigned int value;
1951 
1952 		if (!uclamp_reset(attr, clamp_id, uc_se))
1953 			continue;
1954 
1955 		/*
1956 		 * RT by default have a 100% boost value that could be modified
1957 		 * at runtime.
1958 		 */
1959 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1960 			value = sysctl_sched_uclamp_util_min_rt_default;
1961 		else
1962 			value = uclamp_none(clamp_id);
1963 
1964 		uclamp_se_set(uc_se, value, false);
1965 
1966 	}
1967 
1968 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1969 		return;
1970 
1971 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1972 	    attr->sched_util_min != -1) {
1973 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1974 			      attr->sched_util_min, true);
1975 	}
1976 
1977 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1978 	    attr->sched_util_max != -1) {
1979 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1980 			      attr->sched_util_max, true);
1981 	}
1982 }
1983 
1984 static void uclamp_fork(struct task_struct *p)
1985 {
1986 	enum uclamp_id clamp_id;
1987 
1988 	/*
1989 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1990 	 * as the task is still at its early fork stages.
1991 	 */
1992 	for_each_clamp_id(clamp_id)
1993 		p->uclamp[clamp_id].active = false;
1994 
1995 	if (likely(!p->sched_reset_on_fork))
1996 		return;
1997 
1998 	for_each_clamp_id(clamp_id) {
1999 		uclamp_se_set(&p->uclamp_req[clamp_id],
2000 			      uclamp_none(clamp_id), false);
2001 	}
2002 }
2003 
2004 static void uclamp_post_fork(struct task_struct *p)
2005 {
2006 	uclamp_update_util_min_rt_default(p);
2007 }
2008 
2009 static void __init init_uclamp_rq(struct rq *rq)
2010 {
2011 	enum uclamp_id clamp_id;
2012 	struct uclamp_rq *uc_rq = rq->uclamp;
2013 
2014 	for_each_clamp_id(clamp_id) {
2015 		uc_rq[clamp_id] = (struct uclamp_rq) {
2016 			.value = uclamp_none(clamp_id)
2017 		};
2018 	}
2019 
2020 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2021 }
2022 
2023 static void __init init_uclamp(void)
2024 {
2025 	struct uclamp_se uc_max = {};
2026 	enum uclamp_id clamp_id;
2027 	int cpu;
2028 
2029 	for_each_possible_cpu(cpu)
2030 		init_uclamp_rq(cpu_rq(cpu));
2031 
2032 	for_each_clamp_id(clamp_id) {
2033 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2034 			      uclamp_none(clamp_id), false);
2035 	}
2036 
2037 	/* System defaults allow max clamp values for both indexes */
2038 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2039 	for_each_clamp_id(clamp_id) {
2040 		uclamp_default[clamp_id] = uc_max;
2041 #ifdef CONFIG_UCLAMP_TASK_GROUP
2042 		root_task_group.uclamp_req[clamp_id] = uc_max;
2043 		root_task_group.uclamp[clamp_id] = uc_max;
2044 #endif
2045 	}
2046 }
2047 
2048 #else /* CONFIG_UCLAMP_TASK */
2049 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2050 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2051 static inline int uclamp_validate(struct task_struct *p,
2052 				  const struct sched_attr *attr)
2053 {
2054 	return -EOPNOTSUPP;
2055 }
2056 static void __setscheduler_uclamp(struct task_struct *p,
2057 				  const struct sched_attr *attr) { }
2058 static inline void uclamp_fork(struct task_struct *p) { }
2059 static inline void uclamp_post_fork(struct task_struct *p) { }
2060 static inline void init_uclamp(void) { }
2061 #endif /* CONFIG_UCLAMP_TASK */
2062 
2063 bool sched_task_on_rq(struct task_struct *p)
2064 {
2065 	return task_on_rq_queued(p);
2066 }
2067 
2068 unsigned long get_wchan(struct task_struct *p)
2069 {
2070 	unsigned long ip = 0;
2071 	unsigned int state;
2072 
2073 	if (!p || p == current)
2074 		return 0;
2075 
2076 	/* Only get wchan if task is blocked and we can keep it that way. */
2077 	raw_spin_lock_irq(&p->pi_lock);
2078 	state = READ_ONCE(p->__state);
2079 	smp_rmb(); /* see try_to_wake_up() */
2080 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2081 		ip = __get_wchan(p);
2082 	raw_spin_unlock_irq(&p->pi_lock);
2083 
2084 	return ip;
2085 }
2086 
2087 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2088 {
2089 	if (!(flags & ENQUEUE_NOCLOCK))
2090 		update_rq_clock(rq);
2091 
2092 	if (!(flags & ENQUEUE_RESTORE)) {
2093 		sched_info_enqueue(rq, p);
2094 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2095 	}
2096 
2097 	uclamp_rq_inc(rq, p);
2098 	p->sched_class->enqueue_task(rq, p, flags);
2099 
2100 	if (sched_core_enabled(rq))
2101 		sched_core_enqueue(rq, p);
2102 }
2103 
2104 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2105 {
2106 	if (sched_core_enabled(rq))
2107 		sched_core_dequeue(rq, p, flags);
2108 
2109 	if (!(flags & DEQUEUE_NOCLOCK))
2110 		update_rq_clock(rq);
2111 
2112 	if (!(flags & DEQUEUE_SAVE)) {
2113 		sched_info_dequeue(rq, p);
2114 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2115 	}
2116 
2117 	uclamp_rq_dec(rq, p);
2118 	p->sched_class->dequeue_task(rq, p, flags);
2119 }
2120 
2121 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2122 {
2123 	if (task_on_rq_migrating(p))
2124 		flags |= ENQUEUE_MIGRATED;
2125 	if (flags & ENQUEUE_MIGRATED)
2126 		sched_mm_cid_migrate_to(rq, p);
2127 
2128 	enqueue_task(rq, p, flags);
2129 
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 }
2132 
2133 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2134 {
2135 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2136 
2137 	dequeue_task(rq, p, flags);
2138 }
2139 
2140 static inline int __normal_prio(int policy, int rt_prio, int nice)
2141 {
2142 	int prio;
2143 
2144 	if (dl_policy(policy))
2145 		prio = MAX_DL_PRIO - 1;
2146 	else if (rt_policy(policy))
2147 		prio = MAX_RT_PRIO - 1 - rt_prio;
2148 	else
2149 		prio = NICE_TO_PRIO(nice);
2150 
2151 	return prio;
2152 }
2153 
2154 /*
2155  * Calculate the expected normal priority: i.e. priority
2156  * without taking RT-inheritance into account. Might be
2157  * boosted by interactivity modifiers. Changes upon fork,
2158  * setprio syscalls, and whenever the interactivity
2159  * estimator recalculates.
2160  */
2161 static inline int normal_prio(struct task_struct *p)
2162 {
2163 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2164 }
2165 
2166 /*
2167  * Calculate the current priority, i.e. the priority
2168  * taken into account by the scheduler. This value might
2169  * be boosted by RT tasks, or might be boosted by
2170  * interactivity modifiers. Will be RT if the task got
2171  * RT-boosted. If not then it returns p->normal_prio.
2172  */
2173 static int effective_prio(struct task_struct *p)
2174 {
2175 	p->normal_prio = normal_prio(p);
2176 	/*
2177 	 * If we are RT tasks or we were boosted to RT priority,
2178 	 * keep the priority unchanged. Otherwise, update priority
2179 	 * to the normal priority:
2180 	 */
2181 	if (!rt_prio(p->prio))
2182 		return p->normal_prio;
2183 	return p->prio;
2184 }
2185 
2186 /**
2187  * task_curr - is this task currently executing on a CPU?
2188  * @p: the task in question.
2189  *
2190  * Return: 1 if the task is currently executing. 0 otherwise.
2191  */
2192 inline int task_curr(const struct task_struct *p)
2193 {
2194 	return cpu_curr(task_cpu(p)) == p;
2195 }
2196 
2197 /*
2198  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2199  * use the balance_callback list if you want balancing.
2200  *
2201  * this means any call to check_class_changed() must be followed by a call to
2202  * balance_callback().
2203  */
2204 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2205 				       const struct sched_class *prev_class,
2206 				       int oldprio)
2207 {
2208 	if (prev_class != p->sched_class) {
2209 		if (prev_class->switched_from)
2210 			prev_class->switched_from(rq, p);
2211 
2212 		p->sched_class->switched_to(rq, p);
2213 	} else if (oldprio != p->prio || dl_task(p))
2214 		p->sched_class->prio_changed(rq, p, oldprio);
2215 }
2216 
2217 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2218 {
2219 	if (p->sched_class == rq->curr->sched_class)
2220 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2221 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2222 		resched_curr(rq);
2223 
2224 	/*
2225 	 * A queue event has occurred, and we're going to schedule.  In
2226 	 * this case, we can save a useless back to back clock update.
2227 	 */
2228 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2229 		rq_clock_skip_update(rq);
2230 }
2231 
2232 static __always_inline
2233 int __task_state_match(struct task_struct *p, unsigned int state)
2234 {
2235 	if (READ_ONCE(p->__state) & state)
2236 		return 1;
2237 
2238 #ifdef CONFIG_PREEMPT_RT
2239 	if (READ_ONCE(p->saved_state) & state)
2240 		return -1;
2241 #endif
2242 	return 0;
2243 }
2244 
2245 static __always_inline
2246 int task_state_match(struct task_struct *p, unsigned int state)
2247 {
2248 #ifdef CONFIG_PREEMPT_RT
2249 	int match;
2250 
2251 	/*
2252 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2253 	 * current_restore_rtlock_saved_state().
2254 	 */
2255 	raw_spin_lock_irq(&p->pi_lock);
2256 	match = __task_state_match(p, state);
2257 	raw_spin_unlock_irq(&p->pi_lock);
2258 
2259 	return match;
2260 #else
2261 	return __task_state_match(p, state);
2262 #endif
2263 }
2264 
2265 /*
2266  * wait_task_inactive - wait for a thread to unschedule.
2267  *
2268  * Wait for the thread to block in any of the states set in @match_state.
2269  * If it changes, i.e. @p might have woken up, then return zero.  When we
2270  * succeed in waiting for @p to be off its CPU, we return a positive number
2271  * (its total switch count).  If a second call a short while later returns the
2272  * same number, the caller can be sure that @p has remained unscheduled the
2273  * whole time.
2274  *
2275  * The caller must ensure that the task *will* unschedule sometime soon,
2276  * else this function might spin for a *long* time. This function can't
2277  * be called with interrupts off, or it may introduce deadlock with
2278  * smp_call_function() if an IPI is sent by the same process we are
2279  * waiting to become inactive.
2280  */
2281 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2282 {
2283 	int running, queued, match;
2284 	struct rq_flags rf;
2285 	unsigned long ncsw;
2286 	struct rq *rq;
2287 
2288 	for (;;) {
2289 		/*
2290 		 * We do the initial early heuristics without holding
2291 		 * any task-queue locks at all. We'll only try to get
2292 		 * the runqueue lock when things look like they will
2293 		 * work out!
2294 		 */
2295 		rq = task_rq(p);
2296 
2297 		/*
2298 		 * If the task is actively running on another CPU
2299 		 * still, just relax and busy-wait without holding
2300 		 * any locks.
2301 		 *
2302 		 * NOTE! Since we don't hold any locks, it's not
2303 		 * even sure that "rq" stays as the right runqueue!
2304 		 * But we don't care, since "task_on_cpu()" will
2305 		 * return false if the runqueue has changed and p
2306 		 * is actually now running somewhere else!
2307 		 */
2308 		while (task_on_cpu(rq, p)) {
2309 			if (!task_state_match(p, match_state))
2310 				return 0;
2311 			cpu_relax();
2312 		}
2313 
2314 		/*
2315 		 * Ok, time to look more closely! We need the rq
2316 		 * lock now, to be *sure*. If we're wrong, we'll
2317 		 * just go back and repeat.
2318 		 */
2319 		rq = task_rq_lock(p, &rf);
2320 		trace_sched_wait_task(p);
2321 		running = task_on_cpu(rq, p);
2322 		queued = task_on_rq_queued(p);
2323 		ncsw = 0;
2324 		if ((match = __task_state_match(p, match_state))) {
2325 			/*
2326 			 * When matching on p->saved_state, consider this task
2327 			 * still queued so it will wait.
2328 			 */
2329 			if (match < 0)
2330 				queued = 1;
2331 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2332 		}
2333 		task_rq_unlock(rq, p, &rf);
2334 
2335 		/*
2336 		 * If it changed from the expected state, bail out now.
2337 		 */
2338 		if (unlikely(!ncsw))
2339 			break;
2340 
2341 		/*
2342 		 * Was it really running after all now that we
2343 		 * checked with the proper locks actually held?
2344 		 *
2345 		 * Oops. Go back and try again..
2346 		 */
2347 		if (unlikely(running)) {
2348 			cpu_relax();
2349 			continue;
2350 		}
2351 
2352 		/*
2353 		 * It's not enough that it's not actively running,
2354 		 * it must be off the runqueue _entirely_, and not
2355 		 * preempted!
2356 		 *
2357 		 * So if it was still runnable (but just not actively
2358 		 * running right now), it's preempted, and we should
2359 		 * yield - it could be a while.
2360 		 */
2361 		if (unlikely(queued)) {
2362 			ktime_t to = NSEC_PER_SEC / HZ;
2363 
2364 			set_current_state(TASK_UNINTERRUPTIBLE);
2365 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2366 			continue;
2367 		}
2368 
2369 		/*
2370 		 * Ahh, all good. It wasn't running, and it wasn't
2371 		 * runnable, which means that it will never become
2372 		 * running in the future either. We're all done!
2373 		 */
2374 		break;
2375 	}
2376 
2377 	return ncsw;
2378 }
2379 
2380 #ifdef CONFIG_SMP
2381 
2382 static void
2383 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2384 
2385 static int __set_cpus_allowed_ptr(struct task_struct *p,
2386 				  struct affinity_context *ctx);
2387 
2388 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2389 {
2390 	struct affinity_context ac = {
2391 		.new_mask  = cpumask_of(rq->cpu),
2392 		.flags     = SCA_MIGRATE_DISABLE,
2393 	};
2394 
2395 	if (likely(!p->migration_disabled))
2396 		return;
2397 
2398 	if (p->cpus_ptr != &p->cpus_mask)
2399 		return;
2400 
2401 	/*
2402 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2403 	 */
2404 	__do_set_cpus_allowed(p, &ac);
2405 }
2406 
2407 void migrate_disable(void)
2408 {
2409 	struct task_struct *p = current;
2410 
2411 	if (p->migration_disabled) {
2412 		p->migration_disabled++;
2413 		return;
2414 	}
2415 
2416 	preempt_disable();
2417 	this_rq()->nr_pinned++;
2418 	p->migration_disabled = 1;
2419 	preempt_enable();
2420 }
2421 EXPORT_SYMBOL_GPL(migrate_disable);
2422 
2423 void migrate_enable(void)
2424 {
2425 	struct task_struct *p = current;
2426 	struct affinity_context ac = {
2427 		.new_mask  = &p->cpus_mask,
2428 		.flags     = SCA_MIGRATE_ENABLE,
2429 	};
2430 
2431 	if (p->migration_disabled > 1) {
2432 		p->migration_disabled--;
2433 		return;
2434 	}
2435 
2436 	if (WARN_ON_ONCE(!p->migration_disabled))
2437 		return;
2438 
2439 	/*
2440 	 * Ensure stop_task runs either before or after this, and that
2441 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2442 	 */
2443 	preempt_disable();
2444 	if (p->cpus_ptr != &p->cpus_mask)
2445 		__set_cpus_allowed_ptr(p, &ac);
2446 	/*
2447 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2448 	 * regular cpus_mask, otherwise things that race (eg.
2449 	 * select_fallback_rq) get confused.
2450 	 */
2451 	barrier();
2452 	p->migration_disabled = 0;
2453 	this_rq()->nr_pinned--;
2454 	preempt_enable();
2455 }
2456 EXPORT_SYMBOL_GPL(migrate_enable);
2457 
2458 static inline bool rq_has_pinned_tasks(struct rq *rq)
2459 {
2460 	return rq->nr_pinned;
2461 }
2462 
2463 /*
2464  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2465  * __set_cpus_allowed_ptr() and select_fallback_rq().
2466  */
2467 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2468 {
2469 	/* When not in the task's cpumask, no point in looking further. */
2470 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2471 		return false;
2472 
2473 	/* migrate_disabled() must be allowed to finish. */
2474 	if (is_migration_disabled(p))
2475 		return cpu_online(cpu);
2476 
2477 	/* Non kernel threads are not allowed during either online or offline. */
2478 	if (!(p->flags & PF_KTHREAD))
2479 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2480 
2481 	/* KTHREAD_IS_PER_CPU is always allowed. */
2482 	if (kthread_is_per_cpu(p))
2483 		return cpu_online(cpu);
2484 
2485 	/* Regular kernel threads don't get to stay during offline. */
2486 	if (cpu_dying(cpu))
2487 		return false;
2488 
2489 	/* But are allowed during online. */
2490 	return cpu_online(cpu);
2491 }
2492 
2493 /*
2494  * This is how migration works:
2495  *
2496  * 1) we invoke migration_cpu_stop() on the target CPU using
2497  *    stop_one_cpu().
2498  * 2) stopper starts to run (implicitly forcing the migrated thread
2499  *    off the CPU)
2500  * 3) it checks whether the migrated task is still in the wrong runqueue.
2501  * 4) if it's in the wrong runqueue then the migration thread removes
2502  *    it and puts it into the right queue.
2503  * 5) stopper completes and stop_one_cpu() returns and the migration
2504  *    is done.
2505  */
2506 
2507 /*
2508  * move_queued_task - move a queued task to new rq.
2509  *
2510  * Returns (locked) new rq. Old rq's lock is released.
2511  */
2512 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2513 				   struct task_struct *p, int new_cpu)
2514 {
2515 	lockdep_assert_rq_held(rq);
2516 
2517 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2518 	set_task_cpu(p, new_cpu);
2519 	rq_unlock(rq, rf);
2520 
2521 	rq = cpu_rq(new_cpu);
2522 
2523 	rq_lock(rq, rf);
2524 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2525 	activate_task(rq, p, 0);
2526 	check_preempt_curr(rq, p, 0);
2527 
2528 	return rq;
2529 }
2530 
2531 struct migration_arg {
2532 	struct task_struct		*task;
2533 	int				dest_cpu;
2534 	struct set_affinity_pending	*pending;
2535 };
2536 
2537 /*
2538  * @refs: number of wait_for_completion()
2539  * @stop_pending: is @stop_work in use
2540  */
2541 struct set_affinity_pending {
2542 	refcount_t		refs;
2543 	unsigned int		stop_pending;
2544 	struct completion	done;
2545 	struct cpu_stop_work	stop_work;
2546 	struct migration_arg	arg;
2547 };
2548 
2549 /*
2550  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2551  * this because either it can't run here any more (set_cpus_allowed()
2552  * away from this CPU, or CPU going down), or because we're
2553  * attempting to rebalance this task on exec (sched_exec).
2554  *
2555  * So we race with normal scheduler movements, but that's OK, as long
2556  * as the task is no longer on this CPU.
2557  */
2558 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2559 				 struct task_struct *p, int dest_cpu)
2560 {
2561 	/* Affinity changed (again). */
2562 	if (!is_cpu_allowed(p, dest_cpu))
2563 		return rq;
2564 
2565 	rq = move_queued_task(rq, rf, p, dest_cpu);
2566 
2567 	return rq;
2568 }
2569 
2570 /*
2571  * migration_cpu_stop - this will be executed by a highprio stopper thread
2572  * and performs thread migration by bumping thread off CPU then
2573  * 'pushing' onto another runqueue.
2574  */
2575 static int migration_cpu_stop(void *data)
2576 {
2577 	struct migration_arg *arg = data;
2578 	struct set_affinity_pending *pending = arg->pending;
2579 	struct task_struct *p = arg->task;
2580 	struct rq *rq = this_rq();
2581 	bool complete = false;
2582 	struct rq_flags rf;
2583 
2584 	/*
2585 	 * The original target CPU might have gone down and we might
2586 	 * be on another CPU but it doesn't matter.
2587 	 */
2588 	local_irq_save(rf.flags);
2589 	/*
2590 	 * We need to explicitly wake pending tasks before running
2591 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2592 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2593 	 */
2594 	flush_smp_call_function_queue();
2595 
2596 	raw_spin_lock(&p->pi_lock);
2597 	rq_lock(rq, &rf);
2598 
2599 	/*
2600 	 * If we were passed a pending, then ->stop_pending was set, thus
2601 	 * p->migration_pending must have remained stable.
2602 	 */
2603 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2604 
2605 	/*
2606 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2607 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2608 	 * we're holding p->pi_lock.
2609 	 */
2610 	if (task_rq(p) == rq) {
2611 		if (is_migration_disabled(p))
2612 			goto out;
2613 
2614 		if (pending) {
2615 			p->migration_pending = NULL;
2616 			complete = true;
2617 
2618 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2619 				goto out;
2620 		}
2621 
2622 		if (task_on_rq_queued(p)) {
2623 			update_rq_clock(rq);
2624 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2625 		} else {
2626 			p->wake_cpu = arg->dest_cpu;
2627 		}
2628 
2629 		/*
2630 		 * XXX __migrate_task() can fail, at which point we might end
2631 		 * up running on a dodgy CPU, AFAICT this can only happen
2632 		 * during CPU hotplug, at which point we'll get pushed out
2633 		 * anyway, so it's probably not a big deal.
2634 		 */
2635 
2636 	} else if (pending) {
2637 		/*
2638 		 * This happens when we get migrated between migrate_enable()'s
2639 		 * preempt_enable() and scheduling the stopper task. At that
2640 		 * point we're a regular task again and not current anymore.
2641 		 *
2642 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2643 		 * more likely.
2644 		 */
2645 
2646 		/*
2647 		 * The task moved before the stopper got to run. We're holding
2648 		 * ->pi_lock, so the allowed mask is stable - if it got
2649 		 * somewhere allowed, we're done.
2650 		 */
2651 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2652 			p->migration_pending = NULL;
2653 			complete = true;
2654 			goto out;
2655 		}
2656 
2657 		/*
2658 		 * When migrate_enable() hits a rq mis-match we can't reliably
2659 		 * determine is_migration_disabled() and so have to chase after
2660 		 * it.
2661 		 */
2662 		WARN_ON_ONCE(!pending->stop_pending);
2663 		preempt_disable();
2664 		task_rq_unlock(rq, p, &rf);
2665 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2666 				    &pending->arg, &pending->stop_work);
2667 		preempt_enable();
2668 		return 0;
2669 	}
2670 out:
2671 	if (pending)
2672 		pending->stop_pending = false;
2673 	task_rq_unlock(rq, p, &rf);
2674 
2675 	if (complete)
2676 		complete_all(&pending->done);
2677 
2678 	return 0;
2679 }
2680 
2681 int push_cpu_stop(void *arg)
2682 {
2683 	struct rq *lowest_rq = NULL, *rq = this_rq();
2684 	struct task_struct *p = arg;
2685 
2686 	raw_spin_lock_irq(&p->pi_lock);
2687 	raw_spin_rq_lock(rq);
2688 
2689 	if (task_rq(p) != rq)
2690 		goto out_unlock;
2691 
2692 	if (is_migration_disabled(p)) {
2693 		p->migration_flags |= MDF_PUSH;
2694 		goto out_unlock;
2695 	}
2696 
2697 	p->migration_flags &= ~MDF_PUSH;
2698 
2699 	if (p->sched_class->find_lock_rq)
2700 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2701 
2702 	if (!lowest_rq)
2703 		goto out_unlock;
2704 
2705 	// XXX validate p is still the highest prio task
2706 	if (task_rq(p) == rq) {
2707 		deactivate_task(rq, p, 0);
2708 		set_task_cpu(p, lowest_rq->cpu);
2709 		activate_task(lowest_rq, p, 0);
2710 		resched_curr(lowest_rq);
2711 	}
2712 
2713 	double_unlock_balance(rq, lowest_rq);
2714 
2715 out_unlock:
2716 	rq->push_busy = false;
2717 	raw_spin_rq_unlock(rq);
2718 	raw_spin_unlock_irq(&p->pi_lock);
2719 
2720 	put_task_struct(p);
2721 	return 0;
2722 }
2723 
2724 /*
2725  * sched_class::set_cpus_allowed must do the below, but is not required to
2726  * actually call this function.
2727  */
2728 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2729 {
2730 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2731 		p->cpus_ptr = ctx->new_mask;
2732 		return;
2733 	}
2734 
2735 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2736 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2737 
2738 	/*
2739 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2740 	 */
2741 	if (ctx->flags & SCA_USER)
2742 		swap(p->user_cpus_ptr, ctx->user_mask);
2743 }
2744 
2745 static void
2746 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2747 {
2748 	struct rq *rq = task_rq(p);
2749 	bool queued, running;
2750 
2751 	/*
2752 	 * This here violates the locking rules for affinity, since we're only
2753 	 * supposed to change these variables while holding both rq->lock and
2754 	 * p->pi_lock.
2755 	 *
2756 	 * HOWEVER, it magically works, because ttwu() is the only code that
2757 	 * accesses these variables under p->pi_lock and only does so after
2758 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2759 	 * before finish_task().
2760 	 *
2761 	 * XXX do further audits, this smells like something putrid.
2762 	 */
2763 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2764 		SCHED_WARN_ON(!p->on_cpu);
2765 	else
2766 		lockdep_assert_held(&p->pi_lock);
2767 
2768 	queued = task_on_rq_queued(p);
2769 	running = task_current(rq, p);
2770 
2771 	if (queued) {
2772 		/*
2773 		 * Because __kthread_bind() calls this on blocked tasks without
2774 		 * holding rq->lock.
2775 		 */
2776 		lockdep_assert_rq_held(rq);
2777 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2778 	}
2779 	if (running)
2780 		put_prev_task(rq, p);
2781 
2782 	p->sched_class->set_cpus_allowed(p, ctx);
2783 
2784 	if (queued)
2785 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2786 	if (running)
2787 		set_next_task(rq, p);
2788 }
2789 
2790 /*
2791  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2792  * affinity (if any) should be destroyed too.
2793  */
2794 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2795 {
2796 	struct affinity_context ac = {
2797 		.new_mask  = new_mask,
2798 		.user_mask = NULL,
2799 		.flags     = SCA_USER,	/* clear the user requested mask */
2800 	};
2801 	union cpumask_rcuhead {
2802 		cpumask_t cpumask;
2803 		struct rcu_head rcu;
2804 	};
2805 
2806 	__do_set_cpus_allowed(p, &ac);
2807 
2808 	/*
2809 	 * Because this is called with p->pi_lock held, it is not possible
2810 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2811 	 * kfree_rcu().
2812 	 */
2813 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2814 }
2815 
2816 static cpumask_t *alloc_user_cpus_ptr(int node)
2817 {
2818 	/*
2819 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2820 	 */
2821 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2822 
2823 	return kmalloc_node(size, GFP_KERNEL, node);
2824 }
2825 
2826 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2827 		      int node)
2828 {
2829 	cpumask_t *user_mask;
2830 	unsigned long flags;
2831 
2832 	/*
2833 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2834 	 * may differ by now due to racing.
2835 	 */
2836 	dst->user_cpus_ptr = NULL;
2837 
2838 	/*
2839 	 * This check is racy and losing the race is a valid situation.
2840 	 * It is not worth the extra overhead of taking the pi_lock on
2841 	 * every fork/clone.
2842 	 */
2843 	if (data_race(!src->user_cpus_ptr))
2844 		return 0;
2845 
2846 	user_mask = alloc_user_cpus_ptr(node);
2847 	if (!user_mask)
2848 		return -ENOMEM;
2849 
2850 	/*
2851 	 * Use pi_lock to protect content of user_cpus_ptr
2852 	 *
2853 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2854 	 * do_set_cpus_allowed().
2855 	 */
2856 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2857 	if (src->user_cpus_ptr) {
2858 		swap(dst->user_cpus_ptr, user_mask);
2859 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2860 	}
2861 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2862 
2863 	if (unlikely(user_mask))
2864 		kfree(user_mask);
2865 
2866 	return 0;
2867 }
2868 
2869 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2870 {
2871 	struct cpumask *user_mask = NULL;
2872 
2873 	swap(p->user_cpus_ptr, user_mask);
2874 
2875 	return user_mask;
2876 }
2877 
2878 void release_user_cpus_ptr(struct task_struct *p)
2879 {
2880 	kfree(clear_user_cpus_ptr(p));
2881 }
2882 
2883 /*
2884  * This function is wildly self concurrent; here be dragons.
2885  *
2886  *
2887  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2888  * designated task is enqueued on an allowed CPU. If that task is currently
2889  * running, we have to kick it out using the CPU stopper.
2890  *
2891  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2892  * Consider:
2893  *
2894  *     Initial conditions: P0->cpus_mask = [0, 1]
2895  *
2896  *     P0@CPU0                  P1
2897  *
2898  *     migrate_disable();
2899  *     <preempted>
2900  *                              set_cpus_allowed_ptr(P0, [1]);
2901  *
2902  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2903  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2904  * This means we need the following scheme:
2905  *
2906  *     P0@CPU0                  P1
2907  *
2908  *     migrate_disable();
2909  *     <preempted>
2910  *                              set_cpus_allowed_ptr(P0, [1]);
2911  *                                <blocks>
2912  *     <resumes>
2913  *     migrate_enable();
2914  *       __set_cpus_allowed_ptr();
2915  *       <wakes local stopper>
2916  *                         `--> <woken on migration completion>
2917  *
2918  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2919  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2920  * task p are serialized by p->pi_lock, which we can leverage: the one that
2921  * should come into effect at the end of the Migrate-Disable region is the last
2922  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2923  * but we still need to properly signal those waiting tasks at the appropriate
2924  * moment.
2925  *
2926  * This is implemented using struct set_affinity_pending. The first
2927  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2928  * setup an instance of that struct and install it on the targeted task_struct.
2929  * Any and all further callers will reuse that instance. Those then wait for
2930  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2931  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2932  *
2933  *
2934  * (1) In the cases covered above. There is one more where the completion is
2935  * signaled within affine_move_task() itself: when a subsequent affinity request
2936  * occurs after the stopper bailed out due to the targeted task still being
2937  * Migrate-Disable. Consider:
2938  *
2939  *     Initial conditions: P0->cpus_mask = [0, 1]
2940  *
2941  *     CPU0		  P1				P2
2942  *     <P0>
2943  *       migrate_disable();
2944  *       <preempted>
2945  *                        set_cpus_allowed_ptr(P0, [1]);
2946  *                          <blocks>
2947  *     <migration/0>
2948  *       migration_cpu_stop()
2949  *         is_migration_disabled()
2950  *           <bails>
2951  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2952  *                                                         <signal completion>
2953  *                          <awakes>
2954  *
2955  * Note that the above is safe vs a concurrent migrate_enable(), as any
2956  * pending affinity completion is preceded by an uninstallation of
2957  * p->migration_pending done with p->pi_lock held.
2958  */
2959 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2960 			    int dest_cpu, unsigned int flags)
2961 	__releases(rq->lock)
2962 	__releases(p->pi_lock)
2963 {
2964 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2965 	bool stop_pending, complete = false;
2966 
2967 	/* Can the task run on the task's current CPU? If so, we're done */
2968 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2969 		struct task_struct *push_task = NULL;
2970 
2971 		if ((flags & SCA_MIGRATE_ENABLE) &&
2972 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2973 			rq->push_busy = true;
2974 			push_task = get_task_struct(p);
2975 		}
2976 
2977 		/*
2978 		 * If there are pending waiters, but no pending stop_work,
2979 		 * then complete now.
2980 		 */
2981 		pending = p->migration_pending;
2982 		if (pending && !pending->stop_pending) {
2983 			p->migration_pending = NULL;
2984 			complete = true;
2985 		}
2986 
2987 		preempt_disable();
2988 		task_rq_unlock(rq, p, rf);
2989 		if (push_task) {
2990 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2991 					    p, &rq->push_work);
2992 		}
2993 		preempt_enable();
2994 
2995 		if (complete)
2996 			complete_all(&pending->done);
2997 
2998 		return 0;
2999 	}
3000 
3001 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3002 		/* serialized by p->pi_lock */
3003 		if (!p->migration_pending) {
3004 			/* Install the request */
3005 			refcount_set(&my_pending.refs, 1);
3006 			init_completion(&my_pending.done);
3007 			my_pending.arg = (struct migration_arg) {
3008 				.task = p,
3009 				.dest_cpu = dest_cpu,
3010 				.pending = &my_pending,
3011 			};
3012 
3013 			p->migration_pending = &my_pending;
3014 		} else {
3015 			pending = p->migration_pending;
3016 			refcount_inc(&pending->refs);
3017 			/*
3018 			 * Affinity has changed, but we've already installed a
3019 			 * pending. migration_cpu_stop() *must* see this, else
3020 			 * we risk a completion of the pending despite having a
3021 			 * task on a disallowed CPU.
3022 			 *
3023 			 * Serialized by p->pi_lock, so this is safe.
3024 			 */
3025 			pending->arg.dest_cpu = dest_cpu;
3026 		}
3027 	}
3028 	pending = p->migration_pending;
3029 	/*
3030 	 * - !MIGRATE_ENABLE:
3031 	 *   we'll have installed a pending if there wasn't one already.
3032 	 *
3033 	 * - MIGRATE_ENABLE:
3034 	 *   we're here because the current CPU isn't matching anymore,
3035 	 *   the only way that can happen is because of a concurrent
3036 	 *   set_cpus_allowed_ptr() call, which should then still be
3037 	 *   pending completion.
3038 	 *
3039 	 * Either way, we really should have a @pending here.
3040 	 */
3041 	if (WARN_ON_ONCE(!pending)) {
3042 		task_rq_unlock(rq, p, rf);
3043 		return -EINVAL;
3044 	}
3045 
3046 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3047 		/*
3048 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3049 		 * anything else we cannot do is_migration_disabled(), punt
3050 		 * and have the stopper function handle it all race-free.
3051 		 */
3052 		stop_pending = pending->stop_pending;
3053 		if (!stop_pending)
3054 			pending->stop_pending = true;
3055 
3056 		if (flags & SCA_MIGRATE_ENABLE)
3057 			p->migration_flags &= ~MDF_PUSH;
3058 
3059 		preempt_disable();
3060 		task_rq_unlock(rq, p, rf);
3061 		if (!stop_pending) {
3062 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3063 					    &pending->arg, &pending->stop_work);
3064 		}
3065 		preempt_enable();
3066 
3067 		if (flags & SCA_MIGRATE_ENABLE)
3068 			return 0;
3069 	} else {
3070 
3071 		if (!is_migration_disabled(p)) {
3072 			if (task_on_rq_queued(p))
3073 				rq = move_queued_task(rq, rf, p, dest_cpu);
3074 
3075 			if (!pending->stop_pending) {
3076 				p->migration_pending = NULL;
3077 				complete = true;
3078 			}
3079 		}
3080 		task_rq_unlock(rq, p, rf);
3081 
3082 		if (complete)
3083 			complete_all(&pending->done);
3084 	}
3085 
3086 	wait_for_completion(&pending->done);
3087 
3088 	if (refcount_dec_and_test(&pending->refs))
3089 		wake_up_var(&pending->refs); /* No UaF, just an address */
3090 
3091 	/*
3092 	 * Block the original owner of &pending until all subsequent callers
3093 	 * have seen the completion and decremented the refcount
3094 	 */
3095 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3096 
3097 	/* ARGH */
3098 	WARN_ON_ONCE(my_pending.stop_pending);
3099 
3100 	return 0;
3101 }
3102 
3103 /*
3104  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3105  */
3106 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3107 					 struct affinity_context *ctx,
3108 					 struct rq *rq,
3109 					 struct rq_flags *rf)
3110 	__releases(rq->lock)
3111 	__releases(p->pi_lock)
3112 {
3113 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3114 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3115 	bool kthread = p->flags & PF_KTHREAD;
3116 	unsigned int dest_cpu;
3117 	int ret = 0;
3118 
3119 	update_rq_clock(rq);
3120 
3121 	if (kthread || is_migration_disabled(p)) {
3122 		/*
3123 		 * Kernel threads are allowed on online && !active CPUs,
3124 		 * however, during cpu-hot-unplug, even these might get pushed
3125 		 * away if not KTHREAD_IS_PER_CPU.
3126 		 *
3127 		 * Specifically, migration_disabled() tasks must not fail the
3128 		 * cpumask_any_and_distribute() pick below, esp. so on
3129 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3130 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3131 		 */
3132 		cpu_valid_mask = cpu_online_mask;
3133 	}
3134 
3135 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3136 		ret = -EINVAL;
3137 		goto out;
3138 	}
3139 
3140 	/*
3141 	 * Must re-check here, to close a race against __kthread_bind(),
3142 	 * sched_setaffinity() is not guaranteed to observe the flag.
3143 	 */
3144 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3145 		ret = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3150 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3151 			if (ctx->flags & SCA_USER)
3152 				swap(p->user_cpus_ptr, ctx->user_mask);
3153 			goto out;
3154 		}
3155 
3156 		if (WARN_ON_ONCE(p == current &&
3157 				 is_migration_disabled(p) &&
3158 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3159 			ret = -EBUSY;
3160 			goto out;
3161 		}
3162 	}
3163 
3164 	/*
3165 	 * Picking a ~random cpu helps in cases where we are changing affinity
3166 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3167 	 * immediately required to distribute the tasks within their new mask.
3168 	 */
3169 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3170 	if (dest_cpu >= nr_cpu_ids) {
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 
3175 	__do_set_cpus_allowed(p, ctx);
3176 
3177 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3178 
3179 out:
3180 	task_rq_unlock(rq, p, rf);
3181 
3182 	return ret;
3183 }
3184 
3185 /*
3186  * Change a given task's CPU affinity. Migrate the thread to a
3187  * proper CPU and schedule it away if the CPU it's executing on
3188  * is removed from the allowed bitmask.
3189  *
3190  * NOTE: the caller must have a valid reference to the task, the
3191  * task must not exit() & deallocate itself prematurely. The
3192  * call is not atomic; no spinlocks may be held.
3193  */
3194 static int __set_cpus_allowed_ptr(struct task_struct *p,
3195 				  struct affinity_context *ctx)
3196 {
3197 	struct rq_flags rf;
3198 	struct rq *rq;
3199 
3200 	rq = task_rq_lock(p, &rf);
3201 	/*
3202 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3203 	 * flags are set.
3204 	 */
3205 	if (p->user_cpus_ptr &&
3206 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3207 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3208 		ctx->new_mask = rq->scratch_mask;
3209 
3210 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3211 }
3212 
3213 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3214 {
3215 	struct affinity_context ac = {
3216 		.new_mask  = new_mask,
3217 		.flags     = 0,
3218 	};
3219 
3220 	return __set_cpus_allowed_ptr(p, &ac);
3221 }
3222 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3223 
3224 /*
3225  * Change a given task's CPU affinity to the intersection of its current
3226  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3227  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3228  * affinity or use cpu_online_mask instead.
3229  *
3230  * If the resulting mask is empty, leave the affinity unchanged and return
3231  * -EINVAL.
3232  */
3233 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3234 				     struct cpumask *new_mask,
3235 				     const struct cpumask *subset_mask)
3236 {
3237 	struct affinity_context ac = {
3238 		.new_mask  = new_mask,
3239 		.flags     = 0,
3240 	};
3241 	struct rq_flags rf;
3242 	struct rq *rq;
3243 	int err;
3244 
3245 	rq = task_rq_lock(p, &rf);
3246 
3247 	/*
3248 	 * Forcefully restricting the affinity of a deadline task is
3249 	 * likely to cause problems, so fail and noisily override the
3250 	 * mask entirely.
3251 	 */
3252 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3253 		err = -EPERM;
3254 		goto err_unlock;
3255 	}
3256 
3257 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3258 		err = -EINVAL;
3259 		goto err_unlock;
3260 	}
3261 
3262 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3263 
3264 err_unlock:
3265 	task_rq_unlock(rq, p, &rf);
3266 	return err;
3267 }
3268 
3269 /*
3270  * Restrict the CPU affinity of task @p so that it is a subset of
3271  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3272  * old affinity mask. If the resulting mask is empty, we warn and walk
3273  * up the cpuset hierarchy until we find a suitable mask.
3274  */
3275 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3276 {
3277 	cpumask_var_t new_mask;
3278 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3279 
3280 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3281 
3282 	/*
3283 	 * __migrate_task() can fail silently in the face of concurrent
3284 	 * offlining of the chosen destination CPU, so take the hotplug
3285 	 * lock to ensure that the migration succeeds.
3286 	 */
3287 	cpus_read_lock();
3288 	if (!cpumask_available(new_mask))
3289 		goto out_set_mask;
3290 
3291 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3292 		goto out_free_mask;
3293 
3294 	/*
3295 	 * We failed to find a valid subset of the affinity mask for the
3296 	 * task, so override it based on its cpuset hierarchy.
3297 	 */
3298 	cpuset_cpus_allowed(p, new_mask);
3299 	override_mask = new_mask;
3300 
3301 out_set_mask:
3302 	if (printk_ratelimit()) {
3303 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3304 				task_pid_nr(p), p->comm,
3305 				cpumask_pr_args(override_mask));
3306 	}
3307 
3308 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3309 out_free_mask:
3310 	cpus_read_unlock();
3311 	free_cpumask_var(new_mask);
3312 }
3313 
3314 static int
3315 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3316 
3317 /*
3318  * Restore the affinity of a task @p which was previously restricted by a
3319  * call to force_compatible_cpus_allowed_ptr().
3320  *
3321  * It is the caller's responsibility to serialise this with any calls to
3322  * force_compatible_cpus_allowed_ptr(@p).
3323  */
3324 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3325 {
3326 	struct affinity_context ac = {
3327 		.new_mask  = task_user_cpus(p),
3328 		.flags     = 0,
3329 	};
3330 	int ret;
3331 
3332 	/*
3333 	 * Try to restore the old affinity mask with __sched_setaffinity().
3334 	 * Cpuset masking will be done there too.
3335 	 */
3336 	ret = __sched_setaffinity(p, &ac);
3337 	WARN_ON_ONCE(ret);
3338 }
3339 
3340 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3341 {
3342 #ifdef CONFIG_SCHED_DEBUG
3343 	unsigned int state = READ_ONCE(p->__state);
3344 
3345 	/*
3346 	 * We should never call set_task_cpu() on a blocked task,
3347 	 * ttwu() will sort out the placement.
3348 	 */
3349 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3350 
3351 	/*
3352 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3353 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3354 	 * time relying on p->on_rq.
3355 	 */
3356 	WARN_ON_ONCE(state == TASK_RUNNING &&
3357 		     p->sched_class == &fair_sched_class &&
3358 		     (p->on_rq && !task_on_rq_migrating(p)));
3359 
3360 #ifdef CONFIG_LOCKDEP
3361 	/*
3362 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3363 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3364 	 *
3365 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3366 	 * see task_group().
3367 	 *
3368 	 * Furthermore, all task_rq users should acquire both locks, see
3369 	 * task_rq_lock().
3370 	 */
3371 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3372 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3373 #endif
3374 	/*
3375 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3376 	 */
3377 	WARN_ON_ONCE(!cpu_online(new_cpu));
3378 
3379 	WARN_ON_ONCE(is_migration_disabled(p));
3380 #endif
3381 
3382 	trace_sched_migrate_task(p, new_cpu);
3383 
3384 	if (task_cpu(p) != new_cpu) {
3385 		if (p->sched_class->migrate_task_rq)
3386 			p->sched_class->migrate_task_rq(p, new_cpu);
3387 		p->se.nr_migrations++;
3388 		rseq_migrate(p);
3389 		sched_mm_cid_migrate_from(p);
3390 		perf_event_task_migrate(p);
3391 	}
3392 
3393 	__set_task_cpu(p, new_cpu);
3394 }
3395 
3396 #ifdef CONFIG_NUMA_BALANCING
3397 static void __migrate_swap_task(struct task_struct *p, int cpu)
3398 {
3399 	if (task_on_rq_queued(p)) {
3400 		struct rq *src_rq, *dst_rq;
3401 		struct rq_flags srf, drf;
3402 
3403 		src_rq = task_rq(p);
3404 		dst_rq = cpu_rq(cpu);
3405 
3406 		rq_pin_lock(src_rq, &srf);
3407 		rq_pin_lock(dst_rq, &drf);
3408 
3409 		deactivate_task(src_rq, p, 0);
3410 		set_task_cpu(p, cpu);
3411 		activate_task(dst_rq, p, 0);
3412 		check_preempt_curr(dst_rq, p, 0);
3413 
3414 		rq_unpin_lock(dst_rq, &drf);
3415 		rq_unpin_lock(src_rq, &srf);
3416 
3417 	} else {
3418 		/*
3419 		 * Task isn't running anymore; make it appear like we migrated
3420 		 * it before it went to sleep. This means on wakeup we make the
3421 		 * previous CPU our target instead of where it really is.
3422 		 */
3423 		p->wake_cpu = cpu;
3424 	}
3425 }
3426 
3427 struct migration_swap_arg {
3428 	struct task_struct *src_task, *dst_task;
3429 	int src_cpu, dst_cpu;
3430 };
3431 
3432 static int migrate_swap_stop(void *data)
3433 {
3434 	struct migration_swap_arg *arg = data;
3435 	struct rq *src_rq, *dst_rq;
3436 
3437 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3438 		return -EAGAIN;
3439 
3440 	src_rq = cpu_rq(arg->src_cpu);
3441 	dst_rq = cpu_rq(arg->dst_cpu);
3442 
3443 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3444 	guard(double_rq_lock)(src_rq, dst_rq);
3445 
3446 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3447 		return -EAGAIN;
3448 
3449 	if (task_cpu(arg->src_task) != arg->src_cpu)
3450 		return -EAGAIN;
3451 
3452 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3453 		return -EAGAIN;
3454 
3455 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3456 		return -EAGAIN;
3457 
3458 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3459 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3460 
3461 	return 0;
3462 }
3463 
3464 /*
3465  * Cross migrate two tasks
3466  */
3467 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3468 		int target_cpu, int curr_cpu)
3469 {
3470 	struct migration_swap_arg arg;
3471 	int ret = -EINVAL;
3472 
3473 	arg = (struct migration_swap_arg){
3474 		.src_task = cur,
3475 		.src_cpu = curr_cpu,
3476 		.dst_task = p,
3477 		.dst_cpu = target_cpu,
3478 	};
3479 
3480 	if (arg.src_cpu == arg.dst_cpu)
3481 		goto out;
3482 
3483 	/*
3484 	 * These three tests are all lockless; this is OK since all of them
3485 	 * will be re-checked with proper locks held further down the line.
3486 	 */
3487 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3488 		goto out;
3489 
3490 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3491 		goto out;
3492 
3493 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3494 		goto out;
3495 
3496 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3497 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3498 
3499 out:
3500 	return ret;
3501 }
3502 #endif /* CONFIG_NUMA_BALANCING */
3503 
3504 /***
3505  * kick_process - kick a running thread to enter/exit the kernel
3506  * @p: the to-be-kicked thread
3507  *
3508  * Cause a process which is running on another CPU to enter
3509  * kernel-mode, without any delay. (to get signals handled.)
3510  *
3511  * NOTE: this function doesn't have to take the runqueue lock,
3512  * because all it wants to ensure is that the remote task enters
3513  * the kernel. If the IPI races and the task has been migrated
3514  * to another CPU then no harm is done and the purpose has been
3515  * achieved as well.
3516  */
3517 void kick_process(struct task_struct *p)
3518 {
3519 	int cpu;
3520 
3521 	preempt_disable();
3522 	cpu = task_cpu(p);
3523 	if ((cpu != smp_processor_id()) && task_curr(p))
3524 		smp_send_reschedule(cpu);
3525 	preempt_enable();
3526 }
3527 EXPORT_SYMBOL_GPL(kick_process);
3528 
3529 /*
3530  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3531  *
3532  * A few notes on cpu_active vs cpu_online:
3533  *
3534  *  - cpu_active must be a subset of cpu_online
3535  *
3536  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3537  *    see __set_cpus_allowed_ptr(). At this point the newly online
3538  *    CPU isn't yet part of the sched domains, and balancing will not
3539  *    see it.
3540  *
3541  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3542  *    avoid the load balancer to place new tasks on the to be removed
3543  *    CPU. Existing tasks will remain running there and will be taken
3544  *    off.
3545  *
3546  * This means that fallback selection must not select !active CPUs.
3547  * And can assume that any active CPU must be online. Conversely
3548  * select_task_rq() below may allow selection of !active CPUs in order
3549  * to satisfy the above rules.
3550  */
3551 static int select_fallback_rq(int cpu, struct task_struct *p)
3552 {
3553 	int nid = cpu_to_node(cpu);
3554 	const struct cpumask *nodemask = NULL;
3555 	enum { cpuset, possible, fail } state = cpuset;
3556 	int dest_cpu;
3557 
3558 	/*
3559 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3560 	 * will return -1. There is no CPU on the node, and we should
3561 	 * select the CPU on the other node.
3562 	 */
3563 	if (nid != -1) {
3564 		nodemask = cpumask_of_node(nid);
3565 
3566 		/* Look for allowed, online CPU in same node. */
3567 		for_each_cpu(dest_cpu, nodemask) {
3568 			if (is_cpu_allowed(p, dest_cpu))
3569 				return dest_cpu;
3570 		}
3571 	}
3572 
3573 	for (;;) {
3574 		/* Any allowed, online CPU? */
3575 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3576 			if (!is_cpu_allowed(p, dest_cpu))
3577 				continue;
3578 
3579 			goto out;
3580 		}
3581 
3582 		/* No more Mr. Nice Guy. */
3583 		switch (state) {
3584 		case cpuset:
3585 			if (cpuset_cpus_allowed_fallback(p)) {
3586 				state = possible;
3587 				break;
3588 			}
3589 			fallthrough;
3590 		case possible:
3591 			/*
3592 			 * XXX When called from select_task_rq() we only
3593 			 * hold p->pi_lock and again violate locking order.
3594 			 *
3595 			 * More yuck to audit.
3596 			 */
3597 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3598 			state = fail;
3599 			break;
3600 		case fail:
3601 			BUG();
3602 			break;
3603 		}
3604 	}
3605 
3606 out:
3607 	if (state != cpuset) {
3608 		/*
3609 		 * Don't tell them about moving exiting tasks or
3610 		 * kernel threads (both mm NULL), since they never
3611 		 * leave kernel.
3612 		 */
3613 		if (p->mm && printk_ratelimit()) {
3614 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3615 					task_pid_nr(p), p->comm, cpu);
3616 		}
3617 	}
3618 
3619 	return dest_cpu;
3620 }
3621 
3622 /*
3623  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3624  */
3625 static inline
3626 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3627 {
3628 	lockdep_assert_held(&p->pi_lock);
3629 
3630 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3631 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3632 	else
3633 		cpu = cpumask_any(p->cpus_ptr);
3634 
3635 	/*
3636 	 * In order not to call set_task_cpu() on a blocking task we need
3637 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3638 	 * CPU.
3639 	 *
3640 	 * Since this is common to all placement strategies, this lives here.
3641 	 *
3642 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3643 	 *   not worry about this generic constraint ]
3644 	 */
3645 	if (unlikely(!is_cpu_allowed(p, cpu)))
3646 		cpu = select_fallback_rq(task_cpu(p), p);
3647 
3648 	return cpu;
3649 }
3650 
3651 void sched_set_stop_task(int cpu, struct task_struct *stop)
3652 {
3653 	static struct lock_class_key stop_pi_lock;
3654 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3655 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3656 
3657 	if (stop) {
3658 		/*
3659 		 * Make it appear like a SCHED_FIFO task, its something
3660 		 * userspace knows about and won't get confused about.
3661 		 *
3662 		 * Also, it will make PI more or less work without too
3663 		 * much confusion -- but then, stop work should not
3664 		 * rely on PI working anyway.
3665 		 */
3666 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3667 
3668 		stop->sched_class = &stop_sched_class;
3669 
3670 		/*
3671 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3672 		 * adjust the effective priority of a task. As a result,
3673 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3674 		 * which can then trigger wakeups of the stop thread to push
3675 		 * around the current task.
3676 		 *
3677 		 * The stop task itself will never be part of the PI-chain, it
3678 		 * never blocks, therefore that ->pi_lock recursion is safe.
3679 		 * Tell lockdep about this by placing the stop->pi_lock in its
3680 		 * own class.
3681 		 */
3682 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3683 	}
3684 
3685 	cpu_rq(cpu)->stop = stop;
3686 
3687 	if (old_stop) {
3688 		/*
3689 		 * Reset it back to a normal scheduling class so that
3690 		 * it can die in pieces.
3691 		 */
3692 		old_stop->sched_class = &rt_sched_class;
3693 	}
3694 }
3695 
3696 #else /* CONFIG_SMP */
3697 
3698 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3699 					 struct affinity_context *ctx)
3700 {
3701 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3702 }
3703 
3704 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3705 
3706 static inline bool rq_has_pinned_tasks(struct rq *rq)
3707 {
3708 	return false;
3709 }
3710 
3711 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3712 {
3713 	return NULL;
3714 }
3715 
3716 #endif /* !CONFIG_SMP */
3717 
3718 static void
3719 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3720 {
3721 	struct rq *rq;
3722 
3723 	if (!schedstat_enabled())
3724 		return;
3725 
3726 	rq = this_rq();
3727 
3728 #ifdef CONFIG_SMP
3729 	if (cpu == rq->cpu) {
3730 		__schedstat_inc(rq->ttwu_local);
3731 		__schedstat_inc(p->stats.nr_wakeups_local);
3732 	} else {
3733 		struct sched_domain *sd;
3734 
3735 		__schedstat_inc(p->stats.nr_wakeups_remote);
3736 
3737 		guard(rcu)();
3738 		for_each_domain(rq->cpu, sd) {
3739 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3740 				__schedstat_inc(sd->ttwu_wake_remote);
3741 				break;
3742 			}
3743 		}
3744 	}
3745 
3746 	if (wake_flags & WF_MIGRATED)
3747 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3748 #endif /* CONFIG_SMP */
3749 
3750 	__schedstat_inc(rq->ttwu_count);
3751 	__schedstat_inc(p->stats.nr_wakeups);
3752 
3753 	if (wake_flags & WF_SYNC)
3754 		__schedstat_inc(p->stats.nr_wakeups_sync);
3755 }
3756 
3757 /*
3758  * Mark the task runnable.
3759  */
3760 static inline void ttwu_do_wakeup(struct task_struct *p)
3761 {
3762 	WRITE_ONCE(p->__state, TASK_RUNNING);
3763 	trace_sched_wakeup(p);
3764 }
3765 
3766 static void
3767 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3768 		 struct rq_flags *rf)
3769 {
3770 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3771 
3772 	lockdep_assert_rq_held(rq);
3773 
3774 	if (p->sched_contributes_to_load)
3775 		rq->nr_uninterruptible--;
3776 
3777 #ifdef CONFIG_SMP
3778 	if (wake_flags & WF_MIGRATED)
3779 		en_flags |= ENQUEUE_MIGRATED;
3780 	else
3781 #endif
3782 	if (p->in_iowait) {
3783 		delayacct_blkio_end(p);
3784 		atomic_dec(&task_rq(p)->nr_iowait);
3785 	}
3786 
3787 	activate_task(rq, p, en_flags);
3788 	check_preempt_curr(rq, p, wake_flags);
3789 
3790 	ttwu_do_wakeup(p);
3791 
3792 #ifdef CONFIG_SMP
3793 	if (p->sched_class->task_woken) {
3794 		/*
3795 		 * Our task @p is fully woken up and running; so it's safe to
3796 		 * drop the rq->lock, hereafter rq is only used for statistics.
3797 		 */
3798 		rq_unpin_lock(rq, rf);
3799 		p->sched_class->task_woken(rq, p);
3800 		rq_repin_lock(rq, rf);
3801 	}
3802 
3803 	if (rq->idle_stamp) {
3804 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3805 		u64 max = 2*rq->max_idle_balance_cost;
3806 
3807 		update_avg(&rq->avg_idle, delta);
3808 
3809 		if (rq->avg_idle > max)
3810 			rq->avg_idle = max;
3811 
3812 		rq->wake_stamp = jiffies;
3813 		rq->wake_avg_idle = rq->avg_idle / 2;
3814 
3815 		rq->idle_stamp = 0;
3816 	}
3817 #endif
3818 }
3819 
3820 /*
3821  * Consider @p being inside a wait loop:
3822  *
3823  *   for (;;) {
3824  *      set_current_state(TASK_UNINTERRUPTIBLE);
3825  *
3826  *      if (CONDITION)
3827  *         break;
3828  *
3829  *      schedule();
3830  *   }
3831  *   __set_current_state(TASK_RUNNING);
3832  *
3833  * between set_current_state() and schedule(). In this case @p is still
3834  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3835  * an atomic manner.
3836  *
3837  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3838  * then schedule() must still happen and p->state can be changed to
3839  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3840  * need to do a full wakeup with enqueue.
3841  *
3842  * Returns: %true when the wakeup is done,
3843  *          %false otherwise.
3844  */
3845 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3846 {
3847 	struct rq_flags rf;
3848 	struct rq *rq;
3849 	int ret = 0;
3850 
3851 	rq = __task_rq_lock(p, &rf);
3852 	if (task_on_rq_queued(p)) {
3853 		if (!task_on_cpu(rq, p)) {
3854 			/*
3855 			 * When on_rq && !on_cpu the task is preempted, see if
3856 			 * it should preempt the task that is current now.
3857 			 */
3858 			update_rq_clock(rq);
3859 			check_preempt_curr(rq, p, wake_flags);
3860 		}
3861 		ttwu_do_wakeup(p);
3862 		ret = 1;
3863 	}
3864 	__task_rq_unlock(rq, &rf);
3865 
3866 	return ret;
3867 }
3868 
3869 #ifdef CONFIG_SMP
3870 void sched_ttwu_pending(void *arg)
3871 {
3872 	struct llist_node *llist = arg;
3873 	struct rq *rq = this_rq();
3874 	struct task_struct *p, *t;
3875 	struct rq_flags rf;
3876 
3877 	if (!llist)
3878 		return;
3879 
3880 	rq_lock_irqsave(rq, &rf);
3881 	update_rq_clock(rq);
3882 
3883 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3884 		if (WARN_ON_ONCE(p->on_cpu))
3885 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3886 
3887 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3888 			set_task_cpu(p, cpu_of(rq));
3889 
3890 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3891 	}
3892 
3893 	/*
3894 	 * Must be after enqueueing at least once task such that
3895 	 * idle_cpu() does not observe a false-negative -- if it does,
3896 	 * it is possible for select_idle_siblings() to stack a number
3897 	 * of tasks on this CPU during that window.
3898 	 *
3899 	 * It is ok to clear ttwu_pending when another task pending.
3900 	 * We will receive IPI after local irq enabled and then enqueue it.
3901 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3902 	 */
3903 	WRITE_ONCE(rq->ttwu_pending, 0);
3904 	rq_unlock_irqrestore(rq, &rf);
3905 }
3906 
3907 /*
3908  * Prepare the scene for sending an IPI for a remote smp_call
3909  *
3910  * Returns true if the caller can proceed with sending the IPI.
3911  * Returns false otherwise.
3912  */
3913 bool call_function_single_prep_ipi(int cpu)
3914 {
3915 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3916 		trace_sched_wake_idle_without_ipi(cpu);
3917 		return false;
3918 	}
3919 
3920 	return true;
3921 }
3922 
3923 /*
3924  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3925  * necessary. The wakee CPU on receipt of the IPI will queue the task
3926  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3927  * of the wakeup instead of the waker.
3928  */
3929 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3930 {
3931 	struct rq *rq = cpu_rq(cpu);
3932 
3933 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3934 
3935 	WRITE_ONCE(rq->ttwu_pending, 1);
3936 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3937 }
3938 
3939 void wake_up_if_idle(int cpu)
3940 {
3941 	struct rq *rq = cpu_rq(cpu);
3942 
3943 	guard(rcu)();
3944 	if (is_idle_task(rcu_dereference(rq->curr))) {
3945 		guard(rq_lock_irqsave)(rq);
3946 		if (is_idle_task(rq->curr))
3947 			resched_curr(rq);
3948 	}
3949 }
3950 
3951 bool cpus_share_cache(int this_cpu, int that_cpu)
3952 {
3953 	if (this_cpu == that_cpu)
3954 		return true;
3955 
3956 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3957 }
3958 
3959 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3960 {
3961 	/*
3962 	 * Do not complicate things with the async wake_list while the CPU is
3963 	 * in hotplug state.
3964 	 */
3965 	if (!cpu_active(cpu))
3966 		return false;
3967 
3968 	/* Ensure the task will still be allowed to run on the CPU. */
3969 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3970 		return false;
3971 
3972 	/*
3973 	 * If the CPU does not share cache, then queue the task on the
3974 	 * remote rqs wakelist to avoid accessing remote data.
3975 	 */
3976 	if (!cpus_share_cache(smp_processor_id(), cpu))
3977 		return true;
3978 
3979 	if (cpu == smp_processor_id())
3980 		return false;
3981 
3982 	/*
3983 	 * If the wakee cpu is idle, or the task is descheduling and the
3984 	 * only running task on the CPU, then use the wakelist to offload
3985 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3986 	 * the current CPU is likely busy. nr_running is checked to
3987 	 * avoid unnecessary task stacking.
3988 	 *
3989 	 * Note that we can only get here with (wakee) p->on_rq=0,
3990 	 * p->on_cpu can be whatever, we've done the dequeue, so
3991 	 * the wakee has been accounted out of ->nr_running.
3992 	 */
3993 	if (!cpu_rq(cpu)->nr_running)
3994 		return true;
3995 
3996 	return false;
3997 }
3998 
3999 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4000 {
4001 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4002 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4003 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4004 		return true;
4005 	}
4006 
4007 	return false;
4008 }
4009 
4010 #else /* !CONFIG_SMP */
4011 
4012 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4013 {
4014 	return false;
4015 }
4016 
4017 #endif /* CONFIG_SMP */
4018 
4019 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4020 {
4021 	struct rq *rq = cpu_rq(cpu);
4022 	struct rq_flags rf;
4023 
4024 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4025 		return;
4026 
4027 	rq_lock(rq, &rf);
4028 	update_rq_clock(rq);
4029 	ttwu_do_activate(rq, p, wake_flags, &rf);
4030 	rq_unlock(rq, &rf);
4031 }
4032 
4033 /*
4034  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4035  *
4036  * The caller holds p::pi_lock if p != current or has preemption
4037  * disabled when p == current.
4038  *
4039  * The rules of PREEMPT_RT saved_state:
4040  *
4041  *   The related locking code always holds p::pi_lock when updating
4042  *   p::saved_state, which means the code is fully serialized in both cases.
4043  *
4044  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4045  *   bits set. This allows to distinguish all wakeup scenarios.
4046  */
4047 static __always_inline
4048 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4049 {
4050 	int match;
4051 
4052 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4053 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4054 			     state != TASK_RTLOCK_WAIT);
4055 	}
4056 
4057 	*success = !!(match = __task_state_match(p, state));
4058 
4059 #ifdef CONFIG_PREEMPT_RT
4060 	/*
4061 	 * Saved state preserves the task state across blocking on
4062 	 * an RT lock.  If the state matches, set p::saved_state to
4063 	 * TASK_RUNNING, but do not wake the task because it waits
4064 	 * for a lock wakeup. Also indicate success because from
4065 	 * the regular waker's point of view this has succeeded.
4066 	 *
4067 	 * After acquiring the lock the task will restore p::__state
4068 	 * from p::saved_state which ensures that the regular
4069 	 * wakeup is not lost. The restore will also set
4070 	 * p::saved_state to TASK_RUNNING so any further tests will
4071 	 * not result in false positives vs. @success
4072 	 */
4073 	if (match < 0)
4074 		p->saved_state = TASK_RUNNING;
4075 #endif
4076 	return match > 0;
4077 }
4078 
4079 /*
4080  * Notes on Program-Order guarantees on SMP systems.
4081  *
4082  *  MIGRATION
4083  *
4084  * The basic program-order guarantee on SMP systems is that when a task [t]
4085  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4086  * execution on its new CPU [c1].
4087  *
4088  * For migration (of runnable tasks) this is provided by the following means:
4089  *
4090  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4091  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4092  *     rq(c1)->lock (if not at the same time, then in that order).
4093  *  C) LOCK of the rq(c1)->lock scheduling in task
4094  *
4095  * Release/acquire chaining guarantees that B happens after A and C after B.
4096  * Note: the CPU doing B need not be c0 or c1
4097  *
4098  * Example:
4099  *
4100  *   CPU0            CPU1            CPU2
4101  *
4102  *   LOCK rq(0)->lock
4103  *   sched-out X
4104  *   sched-in Y
4105  *   UNLOCK rq(0)->lock
4106  *
4107  *                                   LOCK rq(0)->lock // orders against CPU0
4108  *                                   dequeue X
4109  *                                   UNLOCK rq(0)->lock
4110  *
4111  *                                   LOCK rq(1)->lock
4112  *                                   enqueue X
4113  *                                   UNLOCK rq(1)->lock
4114  *
4115  *                   LOCK rq(1)->lock // orders against CPU2
4116  *                   sched-out Z
4117  *                   sched-in X
4118  *                   UNLOCK rq(1)->lock
4119  *
4120  *
4121  *  BLOCKING -- aka. SLEEP + WAKEUP
4122  *
4123  * For blocking we (obviously) need to provide the same guarantee as for
4124  * migration. However the means are completely different as there is no lock
4125  * chain to provide order. Instead we do:
4126  *
4127  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4128  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4129  *
4130  * Example:
4131  *
4132  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4133  *
4134  *   LOCK rq(0)->lock LOCK X->pi_lock
4135  *   dequeue X
4136  *   sched-out X
4137  *   smp_store_release(X->on_cpu, 0);
4138  *
4139  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4140  *                    X->state = WAKING
4141  *                    set_task_cpu(X,2)
4142  *
4143  *                    LOCK rq(2)->lock
4144  *                    enqueue X
4145  *                    X->state = RUNNING
4146  *                    UNLOCK rq(2)->lock
4147  *
4148  *                                          LOCK rq(2)->lock // orders against CPU1
4149  *                                          sched-out Z
4150  *                                          sched-in X
4151  *                                          UNLOCK rq(2)->lock
4152  *
4153  *                    UNLOCK X->pi_lock
4154  *   UNLOCK rq(0)->lock
4155  *
4156  *
4157  * However, for wakeups there is a second guarantee we must provide, namely we
4158  * must ensure that CONDITION=1 done by the caller can not be reordered with
4159  * accesses to the task state; see try_to_wake_up() and set_current_state().
4160  */
4161 
4162 /**
4163  * try_to_wake_up - wake up a thread
4164  * @p: the thread to be awakened
4165  * @state: the mask of task states that can be woken
4166  * @wake_flags: wake modifier flags (WF_*)
4167  *
4168  * Conceptually does:
4169  *
4170  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4171  *
4172  * If the task was not queued/runnable, also place it back on a runqueue.
4173  *
4174  * This function is atomic against schedule() which would dequeue the task.
4175  *
4176  * It issues a full memory barrier before accessing @p->state, see the comment
4177  * with set_current_state().
4178  *
4179  * Uses p->pi_lock to serialize against concurrent wake-ups.
4180  *
4181  * Relies on p->pi_lock stabilizing:
4182  *  - p->sched_class
4183  *  - p->cpus_ptr
4184  *  - p->sched_task_group
4185  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4186  *
4187  * Tries really hard to only take one task_rq(p)->lock for performance.
4188  * Takes rq->lock in:
4189  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4190  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4191  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4192  *
4193  * As a consequence we race really badly with just about everything. See the
4194  * many memory barriers and their comments for details.
4195  *
4196  * Return: %true if @p->state changes (an actual wakeup was done),
4197  *	   %false otherwise.
4198  */
4199 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4200 {
4201 	guard(preempt)();
4202 	int cpu, success = 0;
4203 
4204 	if (p == current) {
4205 		/*
4206 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4207 		 * == smp_processor_id()'. Together this means we can special
4208 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4209 		 * without taking any locks.
4210 		 *
4211 		 * In particular:
4212 		 *  - we rely on Program-Order guarantees for all the ordering,
4213 		 *  - we're serialized against set_special_state() by virtue of
4214 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4215 		 */
4216 		if (!ttwu_state_match(p, state, &success))
4217 			goto out;
4218 
4219 		trace_sched_waking(p);
4220 		ttwu_do_wakeup(p);
4221 		goto out;
4222 	}
4223 
4224 	/*
4225 	 * If we are going to wake up a thread waiting for CONDITION we
4226 	 * need to ensure that CONDITION=1 done by the caller can not be
4227 	 * reordered with p->state check below. This pairs with smp_store_mb()
4228 	 * in set_current_state() that the waiting thread does.
4229 	 */
4230 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4231 		smp_mb__after_spinlock();
4232 		if (!ttwu_state_match(p, state, &success))
4233 			break;
4234 
4235 		trace_sched_waking(p);
4236 
4237 		/*
4238 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4239 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4240 		 * in smp_cond_load_acquire() below.
4241 		 *
4242 		 * sched_ttwu_pending()			try_to_wake_up()
4243 		 *   STORE p->on_rq = 1			  LOAD p->state
4244 		 *   UNLOCK rq->lock
4245 		 *
4246 		 * __schedule() (switch to task 'p')
4247 		 *   LOCK rq->lock			  smp_rmb();
4248 		 *   smp_mb__after_spinlock();
4249 		 *   UNLOCK rq->lock
4250 		 *
4251 		 * [task p]
4252 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4253 		 *
4254 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4255 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4256 		 *
4257 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4258 		 */
4259 		smp_rmb();
4260 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4261 			break;
4262 
4263 #ifdef CONFIG_SMP
4264 		/*
4265 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4266 		 * possible to, falsely, observe p->on_cpu == 0.
4267 		 *
4268 		 * One must be running (->on_cpu == 1) in order to remove oneself
4269 		 * from the runqueue.
4270 		 *
4271 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4272 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4273 		 *   UNLOCK rq->lock
4274 		 *
4275 		 * __schedule() (put 'p' to sleep)
4276 		 *   LOCK rq->lock			  smp_rmb();
4277 		 *   smp_mb__after_spinlock();
4278 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4279 		 *
4280 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4281 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4282 		 *
4283 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4284 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4285 		 * care about it's own p->state. See the comment in __schedule().
4286 		 */
4287 		smp_acquire__after_ctrl_dep();
4288 
4289 		/*
4290 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4291 		 * == 0), which means we need to do an enqueue, change p->state to
4292 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4293 		 * enqueue, such as ttwu_queue_wakelist().
4294 		 */
4295 		WRITE_ONCE(p->__state, TASK_WAKING);
4296 
4297 		/*
4298 		 * If the owning (remote) CPU is still in the middle of schedule() with
4299 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4300 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4301 		 * let the waker make forward progress. This is safe because IRQs are
4302 		 * disabled and the IPI will deliver after on_cpu is cleared.
4303 		 *
4304 		 * Ensure we load task_cpu(p) after p->on_cpu:
4305 		 *
4306 		 * set_task_cpu(p, cpu);
4307 		 *   STORE p->cpu = @cpu
4308 		 * __schedule() (switch to task 'p')
4309 		 *   LOCK rq->lock
4310 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4311 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4312 		 *
4313 		 * to ensure we observe the correct CPU on which the task is currently
4314 		 * scheduling.
4315 		 */
4316 		if (smp_load_acquire(&p->on_cpu) &&
4317 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4318 			break;
4319 
4320 		/*
4321 		 * If the owning (remote) CPU is still in the middle of schedule() with
4322 		 * this task as prev, wait until it's done referencing the task.
4323 		 *
4324 		 * Pairs with the smp_store_release() in finish_task().
4325 		 *
4326 		 * This ensures that tasks getting woken will be fully ordered against
4327 		 * their previous state and preserve Program Order.
4328 		 */
4329 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4330 
4331 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4332 		if (task_cpu(p) != cpu) {
4333 			if (p->in_iowait) {
4334 				delayacct_blkio_end(p);
4335 				atomic_dec(&task_rq(p)->nr_iowait);
4336 			}
4337 
4338 			wake_flags |= WF_MIGRATED;
4339 			psi_ttwu_dequeue(p);
4340 			set_task_cpu(p, cpu);
4341 		}
4342 #else
4343 		cpu = task_cpu(p);
4344 #endif /* CONFIG_SMP */
4345 
4346 		ttwu_queue(p, cpu, wake_flags);
4347 	}
4348 out:
4349 	if (success)
4350 		ttwu_stat(p, task_cpu(p), wake_flags);
4351 
4352 	return success;
4353 }
4354 
4355 static bool __task_needs_rq_lock(struct task_struct *p)
4356 {
4357 	unsigned int state = READ_ONCE(p->__state);
4358 
4359 	/*
4360 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4361 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4362 	 * locks at the end, see ttwu_queue_wakelist().
4363 	 */
4364 	if (state == TASK_RUNNING || state == TASK_WAKING)
4365 		return true;
4366 
4367 	/*
4368 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4369 	 * possible to, falsely, observe p->on_rq == 0.
4370 	 *
4371 	 * See try_to_wake_up() for a longer comment.
4372 	 */
4373 	smp_rmb();
4374 	if (p->on_rq)
4375 		return true;
4376 
4377 #ifdef CONFIG_SMP
4378 	/*
4379 	 * Ensure the task has finished __schedule() and will not be referenced
4380 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4381 	 */
4382 	smp_rmb();
4383 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4384 #endif
4385 
4386 	return false;
4387 }
4388 
4389 /**
4390  * task_call_func - Invoke a function on task in fixed state
4391  * @p: Process for which the function is to be invoked, can be @current.
4392  * @func: Function to invoke.
4393  * @arg: Argument to function.
4394  *
4395  * Fix the task in it's current state by avoiding wakeups and or rq operations
4396  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4397  * to work out what the state is, if required.  Given that @func can be invoked
4398  * with a runqueue lock held, it had better be quite lightweight.
4399  *
4400  * Returns:
4401  *   Whatever @func returns
4402  */
4403 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4404 {
4405 	struct rq *rq = NULL;
4406 	struct rq_flags rf;
4407 	int ret;
4408 
4409 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4410 
4411 	if (__task_needs_rq_lock(p))
4412 		rq = __task_rq_lock(p, &rf);
4413 
4414 	/*
4415 	 * At this point the task is pinned; either:
4416 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4417 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4418 	 *  - queued, and we're holding off schedule	 (rq->lock)
4419 	 *  - running, and we're holding off de-schedule (rq->lock)
4420 	 *
4421 	 * The called function (@func) can use: task_curr(), p->on_rq and
4422 	 * p->__state to differentiate between these states.
4423 	 */
4424 	ret = func(p, arg);
4425 
4426 	if (rq)
4427 		rq_unlock(rq, &rf);
4428 
4429 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4430 	return ret;
4431 }
4432 
4433 /**
4434  * cpu_curr_snapshot - Return a snapshot of the currently running task
4435  * @cpu: The CPU on which to snapshot the task.
4436  *
4437  * Returns the task_struct pointer of the task "currently" running on
4438  * the specified CPU.
4439  *
4440  * If the specified CPU was offline, the return value is whatever it
4441  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4442  * task, but there is no guarantee.  Callers wishing a useful return
4443  * value must take some action to ensure that the specified CPU remains
4444  * online throughout.
4445  *
4446  * This function executes full memory barriers before and after fetching
4447  * the pointer, which permits the caller to confine this function's fetch
4448  * with respect to the caller's accesses to other shared variables.
4449  */
4450 struct task_struct *cpu_curr_snapshot(int cpu)
4451 {
4452 	struct rq *rq = cpu_rq(cpu);
4453 	struct task_struct *t;
4454 	struct rq_flags rf;
4455 
4456 	rq_lock_irqsave(rq, &rf);
4457 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4458 	t = rcu_dereference(cpu_curr(cpu));
4459 	rq_unlock_irqrestore(rq, &rf);
4460 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4461 
4462 	return t;
4463 }
4464 
4465 /**
4466  * wake_up_process - Wake up a specific process
4467  * @p: The process to be woken up.
4468  *
4469  * Attempt to wake up the nominated process and move it to the set of runnable
4470  * processes.
4471  *
4472  * Return: 1 if the process was woken up, 0 if it was already running.
4473  *
4474  * This function executes a full memory barrier before accessing the task state.
4475  */
4476 int wake_up_process(struct task_struct *p)
4477 {
4478 	return try_to_wake_up(p, TASK_NORMAL, 0);
4479 }
4480 EXPORT_SYMBOL(wake_up_process);
4481 
4482 int wake_up_state(struct task_struct *p, unsigned int state)
4483 {
4484 	return try_to_wake_up(p, state, 0);
4485 }
4486 
4487 /*
4488  * Perform scheduler related setup for a newly forked process p.
4489  * p is forked by current.
4490  *
4491  * __sched_fork() is basic setup used by init_idle() too:
4492  */
4493 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4494 {
4495 	p->on_rq			= 0;
4496 
4497 	p->se.on_rq			= 0;
4498 	p->se.exec_start		= 0;
4499 	p->se.sum_exec_runtime		= 0;
4500 	p->se.prev_sum_exec_runtime	= 0;
4501 	p->se.nr_migrations		= 0;
4502 	p->se.vruntime			= 0;
4503 	p->se.vlag			= 0;
4504 	p->se.slice			= sysctl_sched_base_slice;
4505 	INIT_LIST_HEAD(&p->se.group_node);
4506 
4507 #ifdef CONFIG_FAIR_GROUP_SCHED
4508 	p->se.cfs_rq			= NULL;
4509 #endif
4510 
4511 #ifdef CONFIG_SCHEDSTATS
4512 	/* Even if schedstat is disabled, there should not be garbage */
4513 	memset(&p->stats, 0, sizeof(p->stats));
4514 #endif
4515 
4516 	RB_CLEAR_NODE(&p->dl.rb_node);
4517 	init_dl_task_timer(&p->dl);
4518 	init_dl_inactive_task_timer(&p->dl);
4519 	__dl_clear_params(p);
4520 
4521 	INIT_LIST_HEAD(&p->rt.run_list);
4522 	p->rt.timeout		= 0;
4523 	p->rt.time_slice	= sched_rr_timeslice;
4524 	p->rt.on_rq		= 0;
4525 	p->rt.on_list		= 0;
4526 
4527 #ifdef CONFIG_PREEMPT_NOTIFIERS
4528 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4529 #endif
4530 
4531 #ifdef CONFIG_COMPACTION
4532 	p->capture_control = NULL;
4533 #endif
4534 	init_numa_balancing(clone_flags, p);
4535 #ifdef CONFIG_SMP
4536 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4537 	p->migration_pending = NULL;
4538 #endif
4539 	init_sched_mm_cid(p);
4540 }
4541 
4542 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4543 
4544 #ifdef CONFIG_NUMA_BALANCING
4545 
4546 int sysctl_numa_balancing_mode;
4547 
4548 static void __set_numabalancing_state(bool enabled)
4549 {
4550 	if (enabled)
4551 		static_branch_enable(&sched_numa_balancing);
4552 	else
4553 		static_branch_disable(&sched_numa_balancing);
4554 }
4555 
4556 void set_numabalancing_state(bool enabled)
4557 {
4558 	if (enabled)
4559 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4560 	else
4561 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4562 	__set_numabalancing_state(enabled);
4563 }
4564 
4565 #ifdef CONFIG_PROC_SYSCTL
4566 static void reset_memory_tiering(void)
4567 {
4568 	struct pglist_data *pgdat;
4569 
4570 	for_each_online_pgdat(pgdat) {
4571 		pgdat->nbp_threshold = 0;
4572 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4573 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4574 	}
4575 }
4576 
4577 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4578 			  void *buffer, size_t *lenp, loff_t *ppos)
4579 {
4580 	struct ctl_table t;
4581 	int err;
4582 	int state = sysctl_numa_balancing_mode;
4583 
4584 	if (write && !capable(CAP_SYS_ADMIN))
4585 		return -EPERM;
4586 
4587 	t = *table;
4588 	t.data = &state;
4589 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4590 	if (err < 0)
4591 		return err;
4592 	if (write) {
4593 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4594 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4595 			reset_memory_tiering();
4596 		sysctl_numa_balancing_mode = state;
4597 		__set_numabalancing_state(state);
4598 	}
4599 	return err;
4600 }
4601 #endif
4602 #endif
4603 
4604 #ifdef CONFIG_SCHEDSTATS
4605 
4606 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4607 
4608 static void set_schedstats(bool enabled)
4609 {
4610 	if (enabled)
4611 		static_branch_enable(&sched_schedstats);
4612 	else
4613 		static_branch_disable(&sched_schedstats);
4614 }
4615 
4616 void force_schedstat_enabled(void)
4617 {
4618 	if (!schedstat_enabled()) {
4619 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4620 		static_branch_enable(&sched_schedstats);
4621 	}
4622 }
4623 
4624 static int __init setup_schedstats(char *str)
4625 {
4626 	int ret = 0;
4627 	if (!str)
4628 		goto out;
4629 
4630 	if (!strcmp(str, "enable")) {
4631 		set_schedstats(true);
4632 		ret = 1;
4633 	} else if (!strcmp(str, "disable")) {
4634 		set_schedstats(false);
4635 		ret = 1;
4636 	}
4637 out:
4638 	if (!ret)
4639 		pr_warn("Unable to parse schedstats=\n");
4640 
4641 	return ret;
4642 }
4643 __setup("schedstats=", setup_schedstats);
4644 
4645 #ifdef CONFIG_PROC_SYSCTL
4646 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4647 		size_t *lenp, loff_t *ppos)
4648 {
4649 	struct ctl_table t;
4650 	int err;
4651 	int state = static_branch_likely(&sched_schedstats);
4652 
4653 	if (write && !capable(CAP_SYS_ADMIN))
4654 		return -EPERM;
4655 
4656 	t = *table;
4657 	t.data = &state;
4658 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4659 	if (err < 0)
4660 		return err;
4661 	if (write)
4662 		set_schedstats(state);
4663 	return err;
4664 }
4665 #endif /* CONFIG_PROC_SYSCTL */
4666 #endif /* CONFIG_SCHEDSTATS */
4667 
4668 #ifdef CONFIG_SYSCTL
4669 static struct ctl_table sched_core_sysctls[] = {
4670 #ifdef CONFIG_SCHEDSTATS
4671 	{
4672 		.procname       = "sched_schedstats",
4673 		.data           = NULL,
4674 		.maxlen         = sizeof(unsigned int),
4675 		.mode           = 0644,
4676 		.proc_handler   = sysctl_schedstats,
4677 		.extra1         = SYSCTL_ZERO,
4678 		.extra2         = SYSCTL_ONE,
4679 	},
4680 #endif /* CONFIG_SCHEDSTATS */
4681 #ifdef CONFIG_UCLAMP_TASK
4682 	{
4683 		.procname       = "sched_util_clamp_min",
4684 		.data           = &sysctl_sched_uclamp_util_min,
4685 		.maxlen         = sizeof(unsigned int),
4686 		.mode           = 0644,
4687 		.proc_handler   = sysctl_sched_uclamp_handler,
4688 	},
4689 	{
4690 		.procname       = "sched_util_clamp_max",
4691 		.data           = &sysctl_sched_uclamp_util_max,
4692 		.maxlen         = sizeof(unsigned int),
4693 		.mode           = 0644,
4694 		.proc_handler   = sysctl_sched_uclamp_handler,
4695 	},
4696 	{
4697 		.procname       = "sched_util_clamp_min_rt_default",
4698 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4699 		.maxlen         = sizeof(unsigned int),
4700 		.mode           = 0644,
4701 		.proc_handler   = sysctl_sched_uclamp_handler,
4702 	},
4703 #endif /* CONFIG_UCLAMP_TASK */
4704 #ifdef CONFIG_NUMA_BALANCING
4705 	{
4706 		.procname	= "numa_balancing",
4707 		.data		= NULL, /* filled in by handler */
4708 		.maxlen		= sizeof(unsigned int),
4709 		.mode		= 0644,
4710 		.proc_handler	= sysctl_numa_balancing,
4711 		.extra1		= SYSCTL_ZERO,
4712 		.extra2		= SYSCTL_FOUR,
4713 	},
4714 #endif /* CONFIG_NUMA_BALANCING */
4715 	{}
4716 };
4717 static int __init sched_core_sysctl_init(void)
4718 {
4719 	register_sysctl_init("kernel", sched_core_sysctls);
4720 	return 0;
4721 }
4722 late_initcall(sched_core_sysctl_init);
4723 #endif /* CONFIG_SYSCTL */
4724 
4725 /*
4726  * fork()/clone()-time setup:
4727  */
4728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4729 {
4730 	__sched_fork(clone_flags, p);
4731 	/*
4732 	 * We mark the process as NEW here. This guarantees that
4733 	 * nobody will actually run it, and a signal or other external
4734 	 * event cannot wake it up and insert it on the runqueue either.
4735 	 */
4736 	p->__state = TASK_NEW;
4737 
4738 	/*
4739 	 * Make sure we do not leak PI boosting priority to the child.
4740 	 */
4741 	p->prio = current->normal_prio;
4742 
4743 	uclamp_fork(p);
4744 
4745 	/*
4746 	 * Revert to default priority/policy on fork if requested.
4747 	 */
4748 	if (unlikely(p->sched_reset_on_fork)) {
4749 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4750 			p->policy = SCHED_NORMAL;
4751 			p->static_prio = NICE_TO_PRIO(0);
4752 			p->rt_priority = 0;
4753 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4754 			p->static_prio = NICE_TO_PRIO(0);
4755 
4756 		p->prio = p->normal_prio = p->static_prio;
4757 		set_load_weight(p, false);
4758 
4759 		/*
4760 		 * We don't need the reset flag anymore after the fork. It has
4761 		 * fulfilled its duty:
4762 		 */
4763 		p->sched_reset_on_fork = 0;
4764 	}
4765 
4766 	if (dl_prio(p->prio))
4767 		return -EAGAIN;
4768 	else if (rt_prio(p->prio))
4769 		p->sched_class = &rt_sched_class;
4770 	else
4771 		p->sched_class = &fair_sched_class;
4772 
4773 	init_entity_runnable_average(&p->se);
4774 
4775 
4776 #ifdef CONFIG_SCHED_INFO
4777 	if (likely(sched_info_on()))
4778 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4779 #endif
4780 #if defined(CONFIG_SMP)
4781 	p->on_cpu = 0;
4782 #endif
4783 	init_task_preempt_count(p);
4784 #ifdef CONFIG_SMP
4785 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4786 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4787 #endif
4788 	return 0;
4789 }
4790 
4791 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4792 {
4793 	unsigned long flags;
4794 
4795 	/*
4796 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4797 	 * required yet, but lockdep gets upset if rules are violated.
4798 	 */
4799 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4800 #ifdef CONFIG_CGROUP_SCHED
4801 	if (1) {
4802 		struct task_group *tg;
4803 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4804 				  struct task_group, css);
4805 		tg = autogroup_task_group(p, tg);
4806 		p->sched_task_group = tg;
4807 	}
4808 #endif
4809 	rseq_migrate(p);
4810 	/*
4811 	 * We're setting the CPU for the first time, we don't migrate,
4812 	 * so use __set_task_cpu().
4813 	 */
4814 	__set_task_cpu(p, smp_processor_id());
4815 	if (p->sched_class->task_fork)
4816 		p->sched_class->task_fork(p);
4817 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4818 }
4819 
4820 void sched_post_fork(struct task_struct *p)
4821 {
4822 	uclamp_post_fork(p);
4823 }
4824 
4825 unsigned long to_ratio(u64 period, u64 runtime)
4826 {
4827 	if (runtime == RUNTIME_INF)
4828 		return BW_UNIT;
4829 
4830 	/*
4831 	 * Doing this here saves a lot of checks in all
4832 	 * the calling paths, and returning zero seems
4833 	 * safe for them anyway.
4834 	 */
4835 	if (period == 0)
4836 		return 0;
4837 
4838 	return div64_u64(runtime << BW_SHIFT, period);
4839 }
4840 
4841 /*
4842  * wake_up_new_task - wake up a newly created task for the first time.
4843  *
4844  * This function will do some initial scheduler statistics housekeeping
4845  * that must be done for every newly created context, then puts the task
4846  * on the runqueue and wakes it.
4847  */
4848 void wake_up_new_task(struct task_struct *p)
4849 {
4850 	struct rq_flags rf;
4851 	struct rq *rq;
4852 
4853 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4854 	WRITE_ONCE(p->__state, TASK_RUNNING);
4855 #ifdef CONFIG_SMP
4856 	/*
4857 	 * Fork balancing, do it here and not earlier because:
4858 	 *  - cpus_ptr can change in the fork path
4859 	 *  - any previously selected CPU might disappear through hotplug
4860 	 *
4861 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4862 	 * as we're not fully set-up yet.
4863 	 */
4864 	p->recent_used_cpu = task_cpu(p);
4865 	rseq_migrate(p);
4866 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4867 #endif
4868 	rq = __task_rq_lock(p, &rf);
4869 	update_rq_clock(rq);
4870 	post_init_entity_util_avg(p);
4871 
4872 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4873 	trace_sched_wakeup_new(p);
4874 	check_preempt_curr(rq, p, WF_FORK);
4875 #ifdef CONFIG_SMP
4876 	if (p->sched_class->task_woken) {
4877 		/*
4878 		 * Nothing relies on rq->lock after this, so it's fine to
4879 		 * drop it.
4880 		 */
4881 		rq_unpin_lock(rq, &rf);
4882 		p->sched_class->task_woken(rq, p);
4883 		rq_repin_lock(rq, &rf);
4884 	}
4885 #endif
4886 	task_rq_unlock(rq, p, &rf);
4887 }
4888 
4889 #ifdef CONFIG_PREEMPT_NOTIFIERS
4890 
4891 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4892 
4893 void preempt_notifier_inc(void)
4894 {
4895 	static_branch_inc(&preempt_notifier_key);
4896 }
4897 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4898 
4899 void preempt_notifier_dec(void)
4900 {
4901 	static_branch_dec(&preempt_notifier_key);
4902 }
4903 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4904 
4905 /**
4906  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4907  * @notifier: notifier struct to register
4908  */
4909 void preempt_notifier_register(struct preempt_notifier *notifier)
4910 {
4911 	if (!static_branch_unlikely(&preempt_notifier_key))
4912 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4913 
4914 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4917 
4918 /**
4919  * preempt_notifier_unregister - no longer interested in preemption notifications
4920  * @notifier: notifier struct to unregister
4921  *
4922  * This is *not* safe to call from within a preemption notifier.
4923  */
4924 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4925 {
4926 	hlist_del(&notifier->link);
4927 }
4928 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4929 
4930 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4931 {
4932 	struct preempt_notifier *notifier;
4933 
4934 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4935 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4936 }
4937 
4938 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4939 {
4940 	if (static_branch_unlikely(&preempt_notifier_key))
4941 		__fire_sched_in_preempt_notifiers(curr);
4942 }
4943 
4944 static void
4945 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4946 				   struct task_struct *next)
4947 {
4948 	struct preempt_notifier *notifier;
4949 
4950 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4951 		notifier->ops->sched_out(notifier, next);
4952 }
4953 
4954 static __always_inline void
4955 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4956 				 struct task_struct *next)
4957 {
4958 	if (static_branch_unlikely(&preempt_notifier_key))
4959 		__fire_sched_out_preempt_notifiers(curr, next);
4960 }
4961 
4962 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4963 
4964 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965 {
4966 }
4967 
4968 static inline void
4969 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 				 struct task_struct *next)
4971 {
4972 }
4973 
4974 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4975 
4976 static inline void prepare_task(struct task_struct *next)
4977 {
4978 #ifdef CONFIG_SMP
4979 	/*
4980 	 * Claim the task as running, we do this before switching to it
4981 	 * such that any running task will have this set.
4982 	 *
4983 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4984 	 * its ordering comment.
4985 	 */
4986 	WRITE_ONCE(next->on_cpu, 1);
4987 #endif
4988 }
4989 
4990 static inline void finish_task(struct task_struct *prev)
4991 {
4992 #ifdef CONFIG_SMP
4993 	/*
4994 	 * This must be the very last reference to @prev from this CPU. After
4995 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4996 	 * must ensure this doesn't happen until the switch is completely
4997 	 * finished.
4998 	 *
4999 	 * In particular, the load of prev->state in finish_task_switch() must
5000 	 * happen before this.
5001 	 *
5002 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5003 	 */
5004 	smp_store_release(&prev->on_cpu, 0);
5005 #endif
5006 }
5007 
5008 #ifdef CONFIG_SMP
5009 
5010 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5011 {
5012 	void (*func)(struct rq *rq);
5013 	struct balance_callback *next;
5014 
5015 	lockdep_assert_rq_held(rq);
5016 
5017 	while (head) {
5018 		func = (void (*)(struct rq *))head->func;
5019 		next = head->next;
5020 		head->next = NULL;
5021 		head = next;
5022 
5023 		func(rq);
5024 	}
5025 }
5026 
5027 static void balance_push(struct rq *rq);
5028 
5029 /*
5030  * balance_push_callback is a right abuse of the callback interface and plays
5031  * by significantly different rules.
5032  *
5033  * Where the normal balance_callback's purpose is to be ran in the same context
5034  * that queued it (only later, when it's safe to drop rq->lock again),
5035  * balance_push_callback is specifically targeted at __schedule().
5036  *
5037  * This abuse is tolerated because it places all the unlikely/odd cases behind
5038  * a single test, namely: rq->balance_callback == NULL.
5039  */
5040 struct balance_callback balance_push_callback = {
5041 	.next = NULL,
5042 	.func = balance_push,
5043 };
5044 
5045 static inline struct balance_callback *
5046 __splice_balance_callbacks(struct rq *rq, bool split)
5047 {
5048 	struct balance_callback *head = rq->balance_callback;
5049 
5050 	if (likely(!head))
5051 		return NULL;
5052 
5053 	lockdep_assert_rq_held(rq);
5054 	/*
5055 	 * Must not take balance_push_callback off the list when
5056 	 * splice_balance_callbacks() and balance_callbacks() are not
5057 	 * in the same rq->lock section.
5058 	 *
5059 	 * In that case it would be possible for __schedule() to interleave
5060 	 * and observe the list empty.
5061 	 */
5062 	if (split && head == &balance_push_callback)
5063 		head = NULL;
5064 	else
5065 		rq->balance_callback = NULL;
5066 
5067 	return head;
5068 }
5069 
5070 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5071 {
5072 	return __splice_balance_callbacks(rq, true);
5073 }
5074 
5075 static void __balance_callbacks(struct rq *rq)
5076 {
5077 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5078 }
5079 
5080 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5081 {
5082 	unsigned long flags;
5083 
5084 	if (unlikely(head)) {
5085 		raw_spin_rq_lock_irqsave(rq, flags);
5086 		do_balance_callbacks(rq, head);
5087 		raw_spin_rq_unlock_irqrestore(rq, flags);
5088 	}
5089 }
5090 
5091 #else
5092 
5093 static inline void __balance_callbacks(struct rq *rq)
5094 {
5095 }
5096 
5097 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5098 {
5099 	return NULL;
5100 }
5101 
5102 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5103 {
5104 }
5105 
5106 #endif
5107 
5108 static inline void
5109 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5110 {
5111 	/*
5112 	 * Since the runqueue lock will be released by the next
5113 	 * task (which is an invalid locking op but in the case
5114 	 * of the scheduler it's an obvious special-case), so we
5115 	 * do an early lockdep release here:
5116 	 */
5117 	rq_unpin_lock(rq, rf);
5118 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5119 #ifdef CONFIG_DEBUG_SPINLOCK
5120 	/* this is a valid case when another task releases the spinlock */
5121 	rq_lockp(rq)->owner = next;
5122 #endif
5123 }
5124 
5125 static inline void finish_lock_switch(struct rq *rq)
5126 {
5127 	/*
5128 	 * If we are tracking spinlock dependencies then we have to
5129 	 * fix up the runqueue lock - which gets 'carried over' from
5130 	 * prev into current:
5131 	 */
5132 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5133 	__balance_callbacks(rq);
5134 	raw_spin_rq_unlock_irq(rq);
5135 }
5136 
5137 /*
5138  * NOP if the arch has not defined these:
5139  */
5140 
5141 #ifndef prepare_arch_switch
5142 # define prepare_arch_switch(next)	do { } while (0)
5143 #endif
5144 
5145 #ifndef finish_arch_post_lock_switch
5146 # define finish_arch_post_lock_switch()	do { } while (0)
5147 #endif
5148 
5149 static inline void kmap_local_sched_out(void)
5150 {
5151 #ifdef CONFIG_KMAP_LOCAL
5152 	if (unlikely(current->kmap_ctrl.idx))
5153 		__kmap_local_sched_out();
5154 #endif
5155 }
5156 
5157 static inline void kmap_local_sched_in(void)
5158 {
5159 #ifdef CONFIG_KMAP_LOCAL
5160 	if (unlikely(current->kmap_ctrl.idx))
5161 		__kmap_local_sched_in();
5162 #endif
5163 }
5164 
5165 /**
5166  * prepare_task_switch - prepare to switch tasks
5167  * @rq: the runqueue preparing to switch
5168  * @prev: the current task that is being switched out
5169  * @next: the task we are going to switch to.
5170  *
5171  * This is called with the rq lock held and interrupts off. It must
5172  * be paired with a subsequent finish_task_switch after the context
5173  * switch.
5174  *
5175  * prepare_task_switch sets up locking and calls architecture specific
5176  * hooks.
5177  */
5178 static inline void
5179 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5180 		    struct task_struct *next)
5181 {
5182 	kcov_prepare_switch(prev);
5183 	sched_info_switch(rq, prev, next);
5184 	perf_event_task_sched_out(prev, next);
5185 	rseq_preempt(prev);
5186 	fire_sched_out_preempt_notifiers(prev, next);
5187 	kmap_local_sched_out();
5188 	prepare_task(next);
5189 	prepare_arch_switch(next);
5190 }
5191 
5192 /**
5193  * finish_task_switch - clean up after a task-switch
5194  * @prev: the thread we just switched away from.
5195  *
5196  * finish_task_switch must be called after the context switch, paired
5197  * with a prepare_task_switch call before the context switch.
5198  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5199  * and do any other architecture-specific cleanup actions.
5200  *
5201  * Note that we may have delayed dropping an mm in context_switch(). If
5202  * so, we finish that here outside of the runqueue lock. (Doing it
5203  * with the lock held can cause deadlocks; see schedule() for
5204  * details.)
5205  *
5206  * The context switch have flipped the stack from under us and restored the
5207  * local variables which were saved when this task called schedule() in the
5208  * past. prev == current is still correct but we need to recalculate this_rq
5209  * because prev may have moved to another CPU.
5210  */
5211 static struct rq *finish_task_switch(struct task_struct *prev)
5212 	__releases(rq->lock)
5213 {
5214 	struct rq *rq = this_rq();
5215 	struct mm_struct *mm = rq->prev_mm;
5216 	unsigned int prev_state;
5217 
5218 	/*
5219 	 * The previous task will have left us with a preempt_count of 2
5220 	 * because it left us after:
5221 	 *
5222 	 *	schedule()
5223 	 *	  preempt_disable();			// 1
5224 	 *	  __schedule()
5225 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5226 	 *
5227 	 * Also, see FORK_PREEMPT_COUNT.
5228 	 */
5229 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5230 		      "corrupted preempt_count: %s/%d/0x%x\n",
5231 		      current->comm, current->pid, preempt_count()))
5232 		preempt_count_set(FORK_PREEMPT_COUNT);
5233 
5234 	rq->prev_mm = NULL;
5235 
5236 	/*
5237 	 * A task struct has one reference for the use as "current".
5238 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5239 	 * schedule one last time. The schedule call will never return, and
5240 	 * the scheduled task must drop that reference.
5241 	 *
5242 	 * We must observe prev->state before clearing prev->on_cpu (in
5243 	 * finish_task), otherwise a concurrent wakeup can get prev
5244 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5245 	 * transition, resulting in a double drop.
5246 	 */
5247 	prev_state = READ_ONCE(prev->__state);
5248 	vtime_task_switch(prev);
5249 	perf_event_task_sched_in(prev, current);
5250 	finish_task(prev);
5251 	tick_nohz_task_switch();
5252 	finish_lock_switch(rq);
5253 	finish_arch_post_lock_switch();
5254 	kcov_finish_switch(current);
5255 	/*
5256 	 * kmap_local_sched_out() is invoked with rq::lock held and
5257 	 * interrupts disabled. There is no requirement for that, but the
5258 	 * sched out code does not have an interrupt enabled section.
5259 	 * Restoring the maps on sched in does not require interrupts being
5260 	 * disabled either.
5261 	 */
5262 	kmap_local_sched_in();
5263 
5264 	fire_sched_in_preempt_notifiers(current);
5265 	/*
5266 	 * When switching through a kernel thread, the loop in
5267 	 * membarrier_{private,global}_expedited() may have observed that
5268 	 * kernel thread and not issued an IPI. It is therefore possible to
5269 	 * schedule between user->kernel->user threads without passing though
5270 	 * switch_mm(). Membarrier requires a barrier after storing to
5271 	 * rq->curr, before returning to userspace, so provide them here:
5272 	 *
5273 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5274 	 *   provided by mmdrop_lazy_tlb(),
5275 	 * - a sync_core for SYNC_CORE.
5276 	 */
5277 	if (mm) {
5278 		membarrier_mm_sync_core_before_usermode(mm);
5279 		mmdrop_lazy_tlb_sched(mm);
5280 	}
5281 
5282 	if (unlikely(prev_state == TASK_DEAD)) {
5283 		if (prev->sched_class->task_dead)
5284 			prev->sched_class->task_dead(prev);
5285 
5286 		/* Task is done with its stack. */
5287 		put_task_stack(prev);
5288 
5289 		put_task_struct_rcu_user(prev);
5290 	}
5291 
5292 	return rq;
5293 }
5294 
5295 /**
5296  * schedule_tail - first thing a freshly forked thread must call.
5297  * @prev: the thread we just switched away from.
5298  */
5299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5300 	__releases(rq->lock)
5301 {
5302 	/*
5303 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5304 	 * finish_task_switch() for details.
5305 	 *
5306 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5307 	 * and the preempt_enable() will end up enabling preemption (on
5308 	 * PREEMPT_COUNT kernels).
5309 	 */
5310 
5311 	finish_task_switch(prev);
5312 	preempt_enable();
5313 
5314 	if (current->set_child_tid)
5315 		put_user(task_pid_vnr(current), current->set_child_tid);
5316 
5317 	calculate_sigpending();
5318 }
5319 
5320 /*
5321  * context_switch - switch to the new MM and the new thread's register state.
5322  */
5323 static __always_inline struct rq *
5324 context_switch(struct rq *rq, struct task_struct *prev,
5325 	       struct task_struct *next, struct rq_flags *rf)
5326 {
5327 	prepare_task_switch(rq, prev, next);
5328 
5329 	/*
5330 	 * For paravirt, this is coupled with an exit in switch_to to
5331 	 * combine the page table reload and the switch backend into
5332 	 * one hypercall.
5333 	 */
5334 	arch_start_context_switch(prev);
5335 
5336 	/*
5337 	 * kernel -> kernel   lazy + transfer active
5338 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5339 	 *
5340 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5341 	 *   user ->   user   switch
5342 	 *
5343 	 * switch_mm_cid() needs to be updated if the barriers provided
5344 	 * by context_switch() are modified.
5345 	 */
5346 	if (!next->mm) {                                // to kernel
5347 		enter_lazy_tlb(prev->active_mm, next);
5348 
5349 		next->active_mm = prev->active_mm;
5350 		if (prev->mm)                           // from user
5351 			mmgrab_lazy_tlb(prev->active_mm);
5352 		else
5353 			prev->active_mm = NULL;
5354 	} else {                                        // to user
5355 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5356 		/*
5357 		 * sys_membarrier() requires an smp_mb() between setting
5358 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5359 		 *
5360 		 * The below provides this either through switch_mm(), or in
5361 		 * case 'prev->active_mm == next->mm' through
5362 		 * finish_task_switch()'s mmdrop().
5363 		 */
5364 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5365 		lru_gen_use_mm(next->mm);
5366 
5367 		if (!prev->mm) {                        // from kernel
5368 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5369 			rq->prev_mm = prev->active_mm;
5370 			prev->active_mm = NULL;
5371 		}
5372 	}
5373 
5374 	/* switch_mm_cid() requires the memory barriers above. */
5375 	switch_mm_cid(rq, prev, next);
5376 
5377 	prepare_lock_switch(rq, next, rf);
5378 
5379 	/* Here we just switch the register state and the stack. */
5380 	switch_to(prev, next, prev);
5381 	barrier();
5382 
5383 	return finish_task_switch(prev);
5384 }
5385 
5386 /*
5387  * nr_running and nr_context_switches:
5388  *
5389  * externally visible scheduler statistics: current number of runnable
5390  * threads, total number of context switches performed since bootup.
5391  */
5392 unsigned int nr_running(void)
5393 {
5394 	unsigned int i, sum = 0;
5395 
5396 	for_each_online_cpu(i)
5397 		sum += cpu_rq(i)->nr_running;
5398 
5399 	return sum;
5400 }
5401 
5402 /*
5403  * Check if only the current task is running on the CPU.
5404  *
5405  * Caution: this function does not check that the caller has disabled
5406  * preemption, thus the result might have a time-of-check-to-time-of-use
5407  * race.  The caller is responsible to use it correctly, for example:
5408  *
5409  * - from a non-preemptible section (of course)
5410  *
5411  * - from a thread that is bound to a single CPU
5412  *
5413  * - in a loop with very short iterations (e.g. a polling loop)
5414  */
5415 bool single_task_running(void)
5416 {
5417 	return raw_rq()->nr_running == 1;
5418 }
5419 EXPORT_SYMBOL(single_task_running);
5420 
5421 unsigned long long nr_context_switches_cpu(int cpu)
5422 {
5423 	return cpu_rq(cpu)->nr_switches;
5424 }
5425 
5426 unsigned long long nr_context_switches(void)
5427 {
5428 	int i;
5429 	unsigned long long sum = 0;
5430 
5431 	for_each_possible_cpu(i)
5432 		sum += cpu_rq(i)->nr_switches;
5433 
5434 	return sum;
5435 }
5436 
5437 /*
5438  * Consumers of these two interfaces, like for example the cpuidle menu
5439  * governor, are using nonsensical data. Preferring shallow idle state selection
5440  * for a CPU that has IO-wait which might not even end up running the task when
5441  * it does become runnable.
5442  */
5443 
5444 unsigned int nr_iowait_cpu(int cpu)
5445 {
5446 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5447 }
5448 
5449 /*
5450  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5451  *
5452  * The idea behind IO-wait account is to account the idle time that we could
5453  * have spend running if it were not for IO. That is, if we were to improve the
5454  * storage performance, we'd have a proportional reduction in IO-wait time.
5455  *
5456  * This all works nicely on UP, where, when a task blocks on IO, we account
5457  * idle time as IO-wait, because if the storage were faster, it could've been
5458  * running and we'd not be idle.
5459  *
5460  * This has been extended to SMP, by doing the same for each CPU. This however
5461  * is broken.
5462  *
5463  * Imagine for instance the case where two tasks block on one CPU, only the one
5464  * CPU will have IO-wait accounted, while the other has regular idle. Even
5465  * though, if the storage were faster, both could've ran at the same time,
5466  * utilising both CPUs.
5467  *
5468  * This means, that when looking globally, the current IO-wait accounting on
5469  * SMP is a lower bound, by reason of under accounting.
5470  *
5471  * Worse, since the numbers are provided per CPU, they are sometimes
5472  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5473  * associated with any one particular CPU, it can wake to another CPU than it
5474  * blocked on. This means the per CPU IO-wait number is meaningless.
5475  *
5476  * Task CPU affinities can make all that even more 'interesting'.
5477  */
5478 
5479 unsigned int nr_iowait(void)
5480 {
5481 	unsigned int i, sum = 0;
5482 
5483 	for_each_possible_cpu(i)
5484 		sum += nr_iowait_cpu(i);
5485 
5486 	return sum;
5487 }
5488 
5489 #ifdef CONFIG_SMP
5490 
5491 /*
5492  * sched_exec - execve() is a valuable balancing opportunity, because at
5493  * this point the task has the smallest effective memory and cache footprint.
5494  */
5495 void sched_exec(void)
5496 {
5497 	struct task_struct *p = current;
5498 	struct migration_arg arg;
5499 	int dest_cpu;
5500 
5501 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5502 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5503 		if (dest_cpu == smp_processor_id())
5504 			return;
5505 
5506 		if (unlikely(!cpu_active(dest_cpu)))
5507 			return;
5508 
5509 		arg = (struct migration_arg){ p, dest_cpu };
5510 	}
5511 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5512 }
5513 
5514 #endif
5515 
5516 DEFINE_PER_CPU(struct kernel_stat, kstat);
5517 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5518 
5519 EXPORT_PER_CPU_SYMBOL(kstat);
5520 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5521 
5522 /*
5523  * The function fair_sched_class.update_curr accesses the struct curr
5524  * and its field curr->exec_start; when called from task_sched_runtime(),
5525  * we observe a high rate of cache misses in practice.
5526  * Prefetching this data results in improved performance.
5527  */
5528 static inline void prefetch_curr_exec_start(struct task_struct *p)
5529 {
5530 #ifdef CONFIG_FAIR_GROUP_SCHED
5531 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5532 #else
5533 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5534 #endif
5535 	prefetch(curr);
5536 	prefetch(&curr->exec_start);
5537 }
5538 
5539 /*
5540  * Return accounted runtime for the task.
5541  * In case the task is currently running, return the runtime plus current's
5542  * pending runtime that have not been accounted yet.
5543  */
5544 unsigned long long task_sched_runtime(struct task_struct *p)
5545 {
5546 	struct rq_flags rf;
5547 	struct rq *rq;
5548 	u64 ns;
5549 
5550 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5551 	/*
5552 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5553 	 * So we have a optimization chance when the task's delta_exec is 0.
5554 	 * Reading ->on_cpu is racy, but this is ok.
5555 	 *
5556 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5557 	 * If we race with it entering CPU, unaccounted time is 0. This is
5558 	 * indistinguishable from the read occurring a few cycles earlier.
5559 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5560 	 * been accounted, so we're correct here as well.
5561 	 */
5562 	if (!p->on_cpu || !task_on_rq_queued(p))
5563 		return p->se.sum_exec_runtime;
5564 #endif
5565 
5566 	rq = task_rq_lock(p, &rf);
5567 	/*
5568 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5569 	 * project cycles that may never be accounted to this
5570 	 * thread, breaking clock_gettime().
5571 	 */
5572 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5573 		prefetch_curr_exec_start(p);
5574 		update_rq_clock(rq);
5575 		p->sched_class->update_curr(rq);
5576 	}
5577 	ns = p->se.sum_exec_runtime;
5578 	task_rq_unlock(rq, p, &rf);
5579 
5580 	return ns;
5581 }
5582 
5583 #ifdef CONFIG_SCHED_DEBUG
5584 static u64 cpu_resched_latency(struct rq *rq)
5585 {
5586 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5587 	u64 resched_latency, now = rq_clock(rq);
5588 	static bool warned_once;
5589 
5590 	if (sysctl_resched_latency_warn_once && warned_once)
5591 		return 0;
5592 
5593 	if (!need_resched() || !latency_warn_ms)
5594 		return 0;
5595 
5596 	if (system_state == SYSTEM_BOOTING)
5597 		return 0;
5598 
5599 	if (!rq->last_seen_need_resched_ns) {
5600 		rq->last_seen_need_resched_ns = now;
5601 		rq->ticks_without_resched = 0;
5602 		return 0;
5603 	}
5604 
5605 	rq->ticks_without_resched++;
5606 	resched_latency = now - rq->last_seen_need_resched_ns;
5607 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5608 		return 0;
5609 
5610 	warned_once = true;
5611 
5612 	return resched_latency;
5613 }
5614 
5615 static int __init setup_resched_latency_warn_ms(char *str)
5616 {
5617 	long val;
5618 
5619 	if ((kstrtol(str, 0, &val))) {
5620 		pr_warn("Unable to set resched_latency_warn_ms\n");
5621 		return 1;
5622 	}
5623 
5624 	sysctl_resched_latency_warn_ms = val;
5625 	return 1;
5626 }
5627 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5628 #else
5629 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5630 #endif /* CONFIG_SCHED_DEBUG */
5631 
5632 /*
5633  * This function gets called by the timer code, with HZ frequency.
5634  * We call it with interrupts disabled.
5635  */
5636 void scheduler_tick(void)
5637 {
5638 	int cpu = smp_processor_id();
5639 	struct rq *rq = cpu_rq(cpu);
5640 	struct task_struct *curr;
5641 	struct rq_flags rf;
5642 	unsigned long thermal_pressure;
5643 	u64 resched_latency;
5644 
5645 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5646 		arch_scale_freq_tick();
5647 
5648 	sched_clock_tick();
5649 
5650 	rq_lock(rq, &rf);
5651 
5652 	curr = rq->curr;
5653 	psi_account_irqtime(rq, curr, NULL);
5654 
5655 	update_rq_clock(rq);
5656 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5657 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5658 	curr->sched_class->task_tick(rq, curr, 0);
5659 	if (sched_feat(LATENCY_WARN))
5660 		resched_latency = cpu_resched_latency(rq);
5661 	calc_global_load_tick(rq);
5662 	sched_core_tick(rq);
5663 	task_tick_mm_cid(rq, curr);
5664 
5665 	rq_unlock(rq, &rf);
5666 
5667 	if (sched_feat(LATENCY_WARN) && resched_latency)
5668 		resched_latency_warn(cpu, resched_latency);
5669 
5670 	perf_event_task_tick();
5671 
5672 	if (curr->flags & PF_WQ_WORKER)
5673 		wq_worker_tick(curr);
5674 
5675 #ifdef CONFIG_SMP
5676 	rq->idle_balance = idle_cpu(cpu);
5677 	trigger_load_balance(rq);
5678 #endif
5679 }
5680 
5681 #ifdef CONFIG_NO_HZ_FULL
5682 
5683 struct tick_work {
5684 	int			cpu;
5685 	atomic_t		state;
5686 	struct delayed_work	work;
5687 };
5688 /* Values for ->state, see diagram below. */
5689 #define TICK_SCHED_REMOTE_OFFLINE	0
5690 #define TICK_SCHED_REMOTE_OFFLINING	1
5691 #define TICK_SCHED_REMOTE_RUNNING	2
5692 
5693 /*
5694  * State diagram for ->state:
5695  *
5696  *
5697  *          TICK_SCHED_REMOTE_OFFLINE
5698  *                    |   ^
5699  *                    |   |
5700  *                    |   | sched_tick_remote()
5701  *                    |   |
5702  *                    |   |
5703  *                    +--TICK_SCHED_REMOTE_OFFLINING
5704  *                    |   ^
5705  *                    |   |
5706  * sched_tick_start() |   | sched_tick_stop()
5707  *                    |   |
5708  *                    V   |
5709  *          TICK_SCHED_REMOTE_RUNNING
5710  *
5711  *
5712  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5713  * and sched_tick_start() are happy to leave the state in RUNNING.
5714  */
5715 
5716 static struct tick_work __percpu *tick_work_cpu;
5717 
5718 static void sched_tick_remote(struct work_struct *work)
5719 {
5720 	struct delayed_work *dwork = to_delayed_work(work);
5721 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5722 	int cpu = twork->cpu;
5723 	struct rq *rq = cpu_rq(cpu);
5724 	int os;
5725 
5726 	/*
5727 	 * Handle the tick only if it appears the remote CPU is running in full
5728 	 * dynticks mode. The check is racy by nature, but missing a tick or
5729 	 * having one too much is no big deal because the scheduler tick updates
5730 	 * statistics and checks timeslices in a time-independent way, regardless
5731 	 * of when exactly it is running.
5732 	 */
5733 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5734 		guard(rq_lock_irq)(rq);
5735 		struct task_struct *curr = rq->curr;
5736 
5737 		if (cpu_online(cpu)) {
5738 			update_rq_clock(rq);
5739 
5740 			if (!is_idle_task(curr)) {
5741 				/*
5742 				 * Make sure the next tick runs within a
5743 				 * reasonable amount of time.
5744 				 */
5745 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5746 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5747 			}
5748 			curr->sched_class->task_tick(rq, curr, 0);
5749 
5750 			calc_load_nohz_remote(rq);
5751 		}
5752 	}
5753 
5754 	/*
5755 	 * Run the remote tick once per second (1Hz). This arbitrary
5756 	 * frequency is large enough to avoid overload but short enough
5757 	 * to keep scheduler internal stats reasonably up to date.  But
5758 	 * first update state to reflect hotplug activity if required.
5759 	 */
5760 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5761 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5762 	if (os == TICK_SCHED_REMOTE_RUNNING)
5763 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5764 }
5765 
5766 static void sched_tick_start(int cpu)
5767 {
5768 	int os;
5769 	struct tick_work *twork;
5770 
5771 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5772 		return;
5773 
5774 	WARN_ON_ONCE(!tick_work_cpu);
5775 
5776 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5777 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5778 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5779 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5780 		twork->cpu = cpu;
5781 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5782 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5783 	}
5784 }
5785 
5786 #ifdef CONFIG_HOTPLUG_CPU
5787 static void sched_tick_stop(int cpu)
5788 {
5789 	struct tick_work *twork;
5790 	int os;
5791 
5792 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5793 		return;
5794 
5795 	WARN_ON_ONCE(!tick_work_cpu);
5796 
5797 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5798 	/* There cannot be competing actions, but don't rely on stop-machine. */
5799 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5800 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5801 	/* Don't cancel, as this would mess up the state machine. */
5802 }
5803 #endif /* CONFIG_HOTPLUG_CPU */
5804 
5805 int __init sched_tick_offload_init(void)
5806 {
5807 	tick_work_cpu = alloc_percpu(struct tick_work);
5808 	BUG_ON(!tick_work_cpu);
5809 	return 0;
5810 }
5811 
5812 #else /* !CONFIG_NO_HZ_FULL */
5813 static inline void sched_tick_start(int cpu) { }
5814 static inline void sched_tick_stop(int cpu) { }
5815 #endif
5816 
5817 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5818 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5819 /*
5820  * If the value passed in is equal to the current preempt count
5821  * then we just disabled preemption. Start timing the latency.
5822  */
5823 static inline void preempt_latency_start(int val)
5824 {
5825 	if (preempt_count() == val) {
5826 		unsigned long ip = get_lock_parent_ip();
5827 #ifdef CONFIG_DEBUG_PREEMPT
5828 		current->preempt_disable_ip = ip;
5829 #endif
5830 		trace_preempt_off(CALLER_ADDR0, ip);
5831 	}
5832 }
5833 
5834 void preempt_count_add(int val)
5835 {
5836 #ifdef CONFIG_DEBUG_PREEMPT
5837 	/*
5838 	 * Underflow?
5839 	 */
5840 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5841 		return;
5842 #endif
5843 	__preempt_count_add(val);
5844 #ifdef CONFIG_DEBUG_PREEMPT
5845 	/*
5846 	 * Spinlock count overflowing soon?
5847 	 */
5848 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5849 				PREEMPT_MASK - 10);
5850 #endif
5851 	preempt_latency_start(val);
5852 }
5853 EXPORT_SYMBOL(preempt_count_add);
5854 NOKPROBE_SYMBOL(preempt_count_add);
5855 
5856 /*
5857  * If the value passed in equals to the current preempt count
5858  * then we just enabled preemption. Stop timing the latency.
5859  */
5860 static inline void preempt_latency_stop(int val)
5861 {
5862 	if (preempt_count() == val)
5863 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5864 }
5865 
5866 void preempt_count_sub(int val)
5867 {
5868 #ifdef CONFIG_DEBUG_PREEMPT
5869 	/*
5870 	 * Underflow?
5871 	 */
5872 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5873 		return;
5874 	/*
5875 	 * Is the spinlock portion underflowing?
5876 	 */
5877 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5878 			!(preempt_count() & PREEMPT_MASK)))
5879 		return;
5880 #endif
5881 
5882 	preempt_latency_stop(val);
5883 	__preempt_count_sub(val);
5884 }
5885 EXPORT_SYMBOL(preempt_count_sub);
5886 NOKPROBE_SYMBOL(preempt_count_sub);
5887 
5888 #else
5889 static inline void preempt_latency_start(int val) { }
5890 static inline void preempt_latency_stop(int val) { }
5891 #endif
5892 
5893 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5894 {
5895 #ifdef CONFIG_DEBUG_PREEMPT
5896 	return p->preempt_disable_ip;
5897 #else
5898 	return 0;
5899 #endif
5900 }
5901 
5902 /*
5903  * Print scheduling while atomic bug:
5904  */
5905 static noinline void __schedule_bug(struct task_struct *prev)
5906 {
5907 	/* Save this before calling printk(), since that will clobber it */
5908 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5909 
5910 	if (oops_in_progress)
5911 		return;
5912 
5913 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5914 		prev->comm, prev->pid, preempt_count());
5915 
5916 	debug_show_held_locks(prev);
5917 	print_modules();
5918 	if (irqs_disabled())
5919 		print_irqtrace_events(prev);
5920 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5921 	    && in_atomic_preempt_off()) {
5922 		pr_err("Preemption disabled at:");
5923 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5924 	}
5925 	check_panic_on_warn("scheduling while atomic");
5926 
5927 	dump_stack();
5928 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5929 }
5930 
5931 /*
5932  * Various schedule()-time debugging checks and statistics:
5933  */
5934 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5935 {
5936 #ifdef CONFIG_SCHED_STACK_END_CHECK
5937 	if (task_stack_end_corrupted(prev))
5938 		panic("corrupted stack end detected inside scheduler\n");
5939 
5940 	if (task_scs_end_corrupted(prev))
5941 		panic("corrupted shadow stack detected inside scheduler\n");
5942 #endif
5943 
5944 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5945 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5946 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5947 			prev->comm, prev->pid, prev->non_block_count);
5948 		dump_stack();
5949 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5950 	}
5951 #endif
5952 
5953 	if (unlikely(in_atomic_preempt_off())) {
5954 		__schedule_bug(prev);
5955 		preempt_count_set(PREEMPT_DISABLED);
5956 	}
5957 	rcu_sleep_check();
5958 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5959 
5960 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5961 
5962 	schedstat_inc(this_rq()->sched_count);
5963 }
5964 
5965 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5966 				  struct rq_flags *rf)
5967 {
5968 #ifdef CONFIG_SMP
5969 	const struct sched_class *class;
5970 	/*
5971 	 * We must do the balancing pass before put_prev_task(), such
5972 	 * that when we release the rq->lock the task is in the same
5973 	 * state as before we took rq->lock.
5974 	 *
5975 	 * We can terminate the balance pass as soon as we know there is
5976 	 * a runnable task of @class priority or higher.
5977 	 */
5978 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5979 		if (class->balance(rq, prev, rf))
5980 			break;
5981 	}
5982 #endif
5983 
5984 	put_prev_task(rq, prev);
5985 }
5986 
5987 /*
5988  * Pick up the highest-prio task:
5989  */
5990 static inline struct task_struct *
5991 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5992 {
5993 	const struct sched_class *class;
5994 	struct task_struct *p;
5995 
5996 	/*
5997 	 * Optimization: we know that if all tasks are in the fair class we can
5998 	 * call that function directly, but only if the @prev task wasn't of a
5999 	 * higher scheduling class, because otherwise those lose the
6000 	 * opportunity to pull in more work from other CPUs.
6001 	 */
6002 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6003 		   rq->nr_running == rq->cfs.h_nr_running)) {
6004 
6005 		p = pick_next_task_fair(rq, prev, rf);
6006 		if (unlikely(p == RETRY_TASK))
6007 			goto restart;
6008 
6009 		/* Assume the next prioritized class is idle_sched_class */
6010 		if (!p) {
6011 			put_prev_task(rq, prev);
6012 			p = pick_next_task_idle(rq);
6013 		}
6014 
6015 		return p;
6016 	}
6017 
6018 restart:
6019 	put_prev_task_balance(rq, prev, rf);
6020 
6021 	for_each_class(class) {
6022 		p = class->pick_next_task(rq);
6023 		if (p)
6024 			return p;
6025 	}
6026 
6027 	BUG(); /* The idle class should always have a runnable task. */
6028 }
6029 
6030 #ifdef CONFIG_SCHED_CORE
6031 static inline bool is_task_rq_idle(struct task_struct *t)
6032 {
6033 	return (task_rq(t)->idle == t);
6034 }
6035 
6036 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6037 {
6038 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6039 }
6040 
6041 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6042 {
6043 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6044 		return true;
6045 
6046 	return a->core_cookie == b->core_cookie;
6047 }
6048 
6049 static inline struct task_struct *pick_task(struct rq *rq)
6050 {
6051 	const struct sched_class *class;
6052 	struct task_struct *p;
6053 
6054 	for_each_class(class) {
6055 		p = class->pick_task(rq);
6056 		if (p)
6057 			return p;
6058 	}
6059 
6060 	BUG(); /* The idle class should always have a runnable task. */
6061 }
6062 
6063 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6064 
6065 static void queue_core_balance(struct rq *rq);
6066 
6067 static struct task_struct *
6068 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6069 {
6070 	struct task_struct *next, *p, *max = NULL;
6071 	const struct cpumask *smt_mask;
6072 	bool fi_before = false;
6073 	bool core_clock_updated = (rq == rq->core);
6074 	unsigned long cookie;
6075 	int i, cpu, occ = 0;
6076 	struct rq *rq_i;
6077 	bool need_sync;
6078 
6079 	if (!sched_core_enabled(rq))
6080 		return __pick_next_task(rq, prev, rf);
6081 
6082 	cpu = cpu_of(rq);
6083 
6084 	/* Stopper task is switching into idle, no need core-wide selection. */
6085 	if (cpu_is_offline(cpu)) {
6086 		/*
6087 		 * Reset core_pick so that we don't enter the fastpath when
6088 		 * coming online. core_pick would already be migrated to
6089 		 * another cpu during offline.
6090 		 */
6091 		rq->core_pick = NULL;
6092 		return __pick_next_task(rq, prev, rf);
6093 	}
6094 
6095 	/*
6096 	 * If there were no {en,de}queues since we picked (IOW, the task
6097 	 * pointers are all still valid), and we haven't scheduled the last
6098 	 * pick yet, do so now.
6099 	 *
6100 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6101 	 * it was either offline or went offline during a sibling's core-wide
6102 	 * selection. In this case, do a core-wide selection.
6103 	 */
6104 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6105 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6106 	    rq->core_pick) {
6107 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6108 
6109 		next = rq->core_pick;
6110 		if (next != prev) {
6111 			put_prev_task(rq, prev);
6112 			set_next_task(rq, next);
6113 		}
6114 
6115 		rq->core_pick = NULL;
6116 		goto out;
6117 	}
6118 
6119 	put_prev_task_balance(rq, prev, rf);
6120 
6121 	smt_mask = cpu_smt_mask(cpu);
6122 	need_sync = !!rq->core->core_cookie;
6123 
6124 	/* reset state */
6125 	rq->core->core_cookie = 0UL;
6126 	if (rq->core->core_forceidle_count) {
6127 		if (!core_clock_updated) {
6128 			update_rq_clock(rq->core);
6129 			core_clock_updated = true;
6130 		}
6131 		sched_core_account_forceidle(rq);
6132 		/* reset after accounting force idle */
6133 		rq->core->core_forceidle_start = 0;
6134 		rq->core->core_forceidle_count = 0;
6135 		rq->core->core_forceidle_occupation = 0;
6136 		need_sync = true;
6137 		fi_before = true;
6138 	}
6139 
6140 	/*
6141 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6142 	 *
6143 	 * @task_seq guards the task state ({en,de}queues)
6144 	 * @pick_seq is the @task_seq we did a selection on
6145 	 * @sched_seq is the @pick_seq we scheduled
6146 	 *
6147 	 * However, preemptions can cause multiple picks on the same task set.
6148 	 * 'Fix' this by also increasing @task_seq for every pick.
6149 	 */
6150 	rq->core->core_task_seq++;
6151 
6152 	/*
6153 	 * Optimize for common case where this CPU has no cookies
6154 	 * and there are no cookied tasks running on siblings.
6155 	 */
6156 	if (!need_sync) {
6157 		next = pick_task(rq);
6158 		if (!next->core_cookie) {
6159 			rq->core_pick = NULL;
6160 			/*
6161 			 * For robustness, update the min_vruntime_fi for
6162 			 * unconstrained picks as well.
6163 			 */
6164 			WARN_ON_ONCE(fi_before);
6165 			task_vruntime_update(rq, next, false);
6166 			goto out_set_next;
6167 		}
6168 	}
6169 
6170 	/*
6171 	 * For each thread: do the regular task pick and find the max prio task
6172 	 * amongst them.
6173 	 *
6174 	 * Tie-break prio towards the current CPU
6175 	 */
6176 	for_each_cpu_wrap(i, smt_mask, cpu) {
6177 		rq_i = cpu_rq(i);
6178 
6179 		/*
6180 		 * Current cpu always has its clock updated on entrance to
6181 		 * pick_next_task(). If the current cpu is not the core,
6182 		 * the core may also have been updated above.
6183 		 */
6184 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6185 			update_rq_clock(rq_i);
6186 
6187 		p = rq_i->core_pick = pick_task(rq_i);
6188 		if (!max || prio_less(max, p, fi_before))
6189 			max = p;
6190 	}
6191 
6192 	cookie = rq->core->core_cookie = max->core_cookie;
6193 
6194 	/*
6195 	 * For each thread: try and find a runnable task that matches @max or
6196 	 * force idle.
6197 	 */
6198 	for_each_cpu(i, smt_mask) {
6199 		rq_i = cpu_rq(i);
6200 		p = rq_i->core_pick;
6201 
6202 		if (!cookie_equals(p, cookie)) {
6203 			p = NULL;
6204 			if (cookie)
6205 				p = sched_core_find(rq_i, cookie);
6206 			if (!p)
6207 				p = idle_sched_class.pick_task(rq_i);
6208 		}
6209 
6210 		rq_i->core_pick = p;
6211 
6212 		if (p == rq_i->idle) {
6213 			if (rq_i->nr_running) {
6214 				rq->core->core_forceidle_count++;
6215 				if (!fi_before)
6216 					rq->core->core_forceidle_seq++;
6217 			}
6218 		} else {
6219 			occ++;
6220 		}
6221 	}
6222 
6223 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6224 		rq->core->core_forceidle_start = rq_clock(rq->core);
6225 		rq->core->core_forceidle_occupation = occ;
6226 	}
6227 
6228 	rq->core->core_pick_seq = rq->core->core_task_seq;
6229 	next = rq->core_pick;
6230 	rq->core_sched_seq = rq->core->core_pick_seq;
6231 
6232 	/* Something should have been selected for current CPU */
6233 	WARN_ON_ONCE(!next);
6234 
6235 	/*
6236 	 * Reschedule siblings
6237 	 *
6238 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6239 	 * sending an IPI (below) ensures the sibling will no longer be running
6240 	 * their task. This ensures there is no inter-sibling overlap between
6241 	 * non-matching user state.
6242 	 */
6243 	for_each_cpu(i, smt_mask) {
6244 		rq_i = cpu_rq(i);
6245 
6246 		/*
6247 		 * An online sibling might have gone offline before a task
6248 		 * could be picked for it, or it might be offline but later
6249 		 * happen to come online, but its too late and nothing was
6250 		 * picked for it.  That's Ok - it will pick tasks for itself,
6251 		 * so ignore it.
6252 		 */
6253 		if (!rq_i->core_pick)
6254 			continue;
6255 
6256 		/*
6257 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6258 		 * fi_before     fi      update?
6259 		 *  0            0       1
6260 		 *  0            1       1
6261 		 *  1            0       1
6262 		 *  1            1       0
6263 		 */
6264 		if (!(fi_before && rq->core->core_forceidle_count))
6265 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6266 
6267 		rq_i->core_pick->core_occupation = occ;
6268 
6269 		if (i == cpu) {
6270 			rq_i->core_pick = NULL;
6271 			continue;
6272 		}
6273 
6274 		/* Did we break L1TF mitigation requirements? */
6275 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6276 
6277 		if (rq_i->curr == rq_i->core_pick) {
6278 			rq_i->core_pick = NULL;
6279 			continue;
6280 		}
6281 
6282 		resched_curr(rq_i);
6283 	}
6284 
6285 out_set_next:
6286 	set_next_task(rq, next);
6287 out:
6288 	if (rq->core->core_forceidle_count && next == rq->idle)
6289 		queue_core_balance(rq);
6290 
6291 	return next;
6292 }
6293 
6294 static bool try_steal_cookie(int this, int that)
6295 {
6296 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6297 	struct task_struct *p;
6298 	unsigned long cookie;
6299 	bool success = false;
6300 
6301 	guard(irq)();
6302 	guard(double_rq_lock)(dst, src);
6303 
6304 	cookie = dst->core->core_cookie;
6305 	if (!cookie)
6306 		return false;
6307 
6308 	if (dst->curr != dst->idle)
6309 		return false;
6310 
6311 	p = sched_core_find(src, cookie);
6312 	if (!p)
6313 		return false;
6314 
6315 	do {
6316 		if (p == src->core_pick || p == src->curr)
6317 			goto next;
6318 
6319 		if (!is_cpu_allowed(p, this))
6320 			goto next;
6321 
6322 		if (p->core_occupation > dst->idle->core_occupation)
6323 			goto next;
6324 		/*
6325 		 * sched_core_find() and sched_core_next() will ensure
6326 		 * that task @p is not throttled now, we also need to
6327 		 * check whether the runqueue of the destination CPU is
6328 		 * being throttled.
6329 		 */
6330 		if (sched_task_is_throttled(p, this))
6331 			goto next;
6332 
6333 		deactivate_task(src, p, 0);
6334 		set_task_cpu(p, this);
6335 		activate_task(dst, p, 0);
6336 
6337 		resched_curr(dst);
6338 
6339 		success = true;
6340 		break;
6341 
6342 next:
6343 		p = sched_core_next(p, cookie);
6344 	} while (p);
6345 
6346 	return success;
6347 }
6348 
6349 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6350 {
6351 	int i;
6352 
6353 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6354 		if (i == cpu)
6355 			continue;
6356 
6357 		if (need_resched())
6358 			break;
6359 
6360 		if (try_steal_cookie(cpu, i))
6361 			return true;
6362 	}
6363 
6364 	return false;
6365 }
6366 
6367 static void sched_core_balance(struct rq *rq)
6368 {
6369 	struct sched_domain *sd;
6370 	int cpu = cpu_of(rq);
6371 
6372 	preempt_disable();
6373 	rcu_read_lock();
6374 	raw_spin_rq_unlock_irq(rq);
6375 	for_each_domain(cpu, sd) {
6376 		if (need_resched())
6377 			break;
6378 
6379 		if (steal_cookie_task(cpu, sd))
6380 			break;
6381 	}
6382 	raw_spin_rq_lock_irq(rq);
6383 	rcu_read_unlock();
6384 	preempt_enable();
6385 }
6386 
6387 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6388 
6389 static void queue_core_balance(struct rq *rq)
6390 {
6391 	if (!sched_core_enabled(rq))
6392 		return;
6393 
6394 	if (!rq->core->core_cookie)
6395 		return;
6396 
6397 	if (!rq->nr_running) /* not forced idle */
6398 		return;
6399 
6400 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6401 }
6402 
6403 DEFINE_LOCK_GUARD_1(core_lock, int,
6404 		    sched_core_lock(*_T->lock, &_T->flags),
6405 		    sched_core_unlock(*_T->lock, &_T->flags),
6406 		    unsigned long flags)
6407 
6408 static void sched_core_cpu_starting(unsigned int cpu)
6409 {
6410 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6411 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6412 	int t;
6413 
6414 	guard(core_lock)(&cpu);
6415 
6416 	WARN_ON_ONCE(rq->core != rq);
6417 
6418 	/* if we're the first, we'll be our own leader */
6419 	if (cpumask_weight(smt_mask) == 1)
6420 		return;
6421 
6422 	/* find the leader */
6423 	for_each_cpu(t, smt_mask) {
6424 		if (t == cpu)
6425 			continue;
6426 		rq = cpu_rq(t);
6427 		if (rq->core == rq) {
6428 			core_rq = rq;
6429 			break;
6430 		}
6431 	}
6432 
6433 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6434 		return;
6435 
6436 	/* install and validate core_rq */
6437 	for_each_cpu(t, smt_mask) {
6438 		rq = cpu_rq(t);
6439 
6440 		if (t == cpu)
6441 			rq->core = core_rq;
6442 
6443 		WARN_ON_ONCE(rq->core != core_rq);
6444 	}
6445 }
6446 
6447 static void sched_core_cpu_deactivate(unsigned int cpu)
6448 {
6449 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6450 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6451 	int t;
6452 
6453 	guard(core_lock)(&cpu);
6454 
6455 	/* if we're the last man standing, nothing to do */
6456 	if (cpumask_weight(smt_mask) == 1) {
6457 		WARN_ON_ONCE(rq->core != rq);
6458 		return;
6459 	}
6460 
6461 	/* if we're not the leader, nothing to do */
6462 	if (rq->core != rq)
6463 		return;
6464 
6465 	/* find a new leader */
6466 	for_each_cpu(t, smt_mask) {
6467 		if (t == cpu)
6468 			continue;
6469 		core_rq = cpu_rq(t);
6470 		break;
6471 	}
6472 
6473 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6474 		return;
6475 
6476 	/* copy the shared state to the new leader */
6477 	core_rq->core_task_seq             = rq->core_task_seq;
6478 	core_rq->core_pick_seq             = rq->core_pick_seq;
6479 	core_rq->core_cookie               = rq->core_cookie;
6480 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6481 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6482 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6483 
6484 	/*
6485 	 * Accounting edge for forced idle is handled in pick_next_task().
6486 	 * Don't need another one here, since the hotplug thread shouldn't
6487 	 * have a cookie.
6488 	 */
6489 	core_rq->core_forceidle_start = 0;
6490 
6491 	/* install new leader */
6492 	for_each_cpu(t, smt_mask) {
6493 		rq = cpu_rq(t);
6494 		rq->core = core_rq;
6495 	}
6496 }
6497 
6498 static inline void sched_core_cpu_dying(unsigned int cpu)
6499 {
6500 	struct rq *rq = cpu_rq(cpu);
6501 
6502 	if (rq->core != rq)
6503 		rq->core = rq;
6504 }
6505 
6506 #else /* !CONFIG_SCHED_CORE */
6507 
6508 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6509 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6510 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6511 
6512 static struct task_struct *
6513 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6514 {
6515 	return __pick_next_task(rq, prev, rf);
6516 }
6517 
6518 #endif /* CONFIG_SCHED_CORE */
6519 
6520 /*
6521  * Constants for the sched_mode argument of __schedule().
6522  *
6523  * The mode argument allows RT enabled kernels to differentiate a
6524  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6525  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6526  * optimize the AND operation out and just check for zero.
6527  */
6528 #define SM_NONE			0x0
6529 #define SM_PREEMPT		0x1
6530 #define SM_RTLOCK_WAIT		0x2
6531 
6532 #ifndef CONFIG_PREEMPT_RT
6533 # define SM_MASK_PREEMPT	(~0U)
6534 #else
6535 # define SM_MASK_PREEMPT	SM_PREEMPT
6536 #endif
6537 
6538 /*
6539  * __schedule() is the main scheduler function.
6540  *
6541  * The main means of driving the scheduler and thus entering this function are:
6542  *
6543  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6544  *
6545  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6546  *      paths. For example, see arch/x86/entry_64.S.
6547  *
6548  *      To drive preemption between tasks, the scheduler sets the flag in timer
6549  *      interrupt handler scheduler_tick().
6550  *
6551  *   3. Wakeups don't really cause entry into schedule(). They add a
6552  *      task to the run-queue and that's it.
6553  *
6554  *      Now, if the new task added to the run-queue preempts the current
6555  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6556  *      called on the nearest possible occasion:
6557  *
6558  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6559  *
6560  *         - in syscall or exception context, at the next outmost
6561  *           preempt_enable(). (this might be as soon as the wake_up()'s
6562  *           spin_unlock()!)
6563  *
6564  *         - in IRQ context, return from interrupt-handler to
6565  *           preemptible context
6566  *
6567  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6568  *         then at the next:
6569  *
6570  *          - cond_resched() call
6571  *          - explicit schedule() call
6572  *          - return from syscall or exception to user-space
6573  *          - return from interrupt-handler to user-space
6574  *
6575  * WARNING: must be called with preemption disabled!
6576  */
6577 static void __sched notrace __schedule(unsigned int sched_mode)
6578 {
6579 	struct task_struct *prev, *next;
6580 	unsigned long *switch_count;
6581 	unsigned long prev_state;
6582 	struct rq_flags rf;
6583 	struct rq *rq;
6584 	int cpu;
6585 
6586 	cpu = smp_processor_id();
6587 	rq = cpu_rq(cpu);
6588 	prev = rq->curr;
6589 
6590 	schedule_debug(prev, !!sched_mode);
6591 
6592 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6593 		hrtick_clear(rq);
6594 
6595 	local_irq_disable();
6596 	rcu_note_context_switch(!!sched_mode);
6597 
6598 	/*
6599 	 * Make sure that signal_pending_state()->signal_pending() below
6600 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6601 	 * done by the caller to avoid the race with signal_wake_up():
6602 	 *
6603 	 * __set_current_state(@state)		signal_wake_up()
6604 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6605 	 *					  wake_up_state(p, state)
6606 	 *   LOCK rq->lock			    LOCK p->pi_state
6607 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6608 	 *     if (signal_pending_state())	    if (p->state & @state)
6609 	 *
6610 	 * Also, the membarrier system call requires a full memory barrier
6611 	 * after coming from user-space, before storing to rq->curr.
6612 	 */
6613 	rq_lock(rq, &rf);
6614 	smp_mb__after_spinlock();
6615 
6616 	/* Promote REQ to ACT */
6617 	rq->clock_update_flags <<= 1;
6618 	update_rq_clock(rq);
6619 	rq->clock_update_flags = RQCF_UPDATED;
6620 
6621 	switch_count = &prev->nivcsw;
6622 
6623 	/*
6624 	 * We must load prev->state once (task_struct::state is volatile), such
6625 	 * that we form a control dependency vs deactivate_task() below.
6626 	 */
6627 	prev_state = READ_ONCE(prev->__state);
6628 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6629 		if (signal_pending_state(prev_state, prev)) {
6630 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6631 		} else {
6632 			prev->sched_contributes_to_load =
6633 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6634 				!(prev_state & TASK_NOLOAD) &&
6635 				!(prev_state & TASK_FROZEN);
6636 
6637 			if (prev->sched_contributes_to_load)
6638 				rq->nr_uninterruptible++;
6639 
6640 			/*
6641 			 * __schedule()			ttwu()
6642 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6643 			 *   if (prev_state)		    goto out;
6644 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6645 			 *				  p->state = TASK_WAKING
6646 			 *
6647 			 * Where __schedule() and ttwu() have matching control dependencies.
6648 			 *
6649 			 * After this, schedule() must not care about p->state any more.
6650 			 */
6651 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6652 
6653 			if (prev->in_iowait) {
6654 				atomic_inc(&rq->nr_iowait);
6655 				delayacct_blkio_start();
6656 			}
6657 		}
6658 		switch_count = &prev->nvcsw;
6659 	}
6660 
6661 	next = pick_next_task(rq, prev, &rf);
6662 	clear_tsk_need_resched(prev);
6663 	clear_preempt_need_resched();
6664 #ifdef CONFIG_SCHED_DEBUG
6665 	rq->last_seen_need_resched_ns = 0;
6666 #endif
6667 
6668 	if (likely(prev != next)) {
6669 		rq->nr_switches++;
6670 		/*
6671 		 * RCU users of rcu_dereference(rq->curr) may not see
6672 		 * changes to task_struct made by pick_next_task().
6673 		 */
6674 		RCU_INIT_POINTER(rq->curr, next);
6675 		/*
6676 		 * The membarrier system call requires each architecture
6677 		 * to have a full memory barrier after updating
6678 		 * rq->curr, before returning to user-space.
6679 		 *
6680 		 * Here are the schemes providing that barrier on the
6681 		 * various architectures:
6682 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6683 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6684 		 *   on PowerPC and on RISC-V.
6685 		 * - finish_lock_switch() for weakly-ordered
6686 		 *   architectures where spin_unlock is a full barrier,
6687 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6688 		 *   is a RELEASE barrier),
6689 		 */
6690 		++*switch_count;
6691 
6692 		migrate_disable_switch(rq, prev);
6693 		psi_account_irqtime(rq, prev, next);
6694 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6695 
6696 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6697 
6698 		/* Also unlocks the rq: */
6699 		rq = context_switch(rq, prev, next, &rf);
6700 	} else {
6701 		rq_unpin_lock(rq, &rf);
6702 		__balance_callbacks(rq);
6703 		raw_spin_rq_unlock_irq(rq);
6704 	}
6705 }
6706 
6707 void __noreturn do_task_dead(void)
6708 {
6709 	/* Causes final put_task_struct in finish_task_switch(): */
6710 	set_special_state(TASK_DEAD);
6711 
6712 	/* Tell freezer to ignore us: */
6713 	current->flags |= PF_NOFREEZE;
6714 
6715 	__schedule(SM_NONE);
6716 	BUG();
6717 
6718 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6719 	for (;;)
6720 		cpu_relax();
6721 }
6722 
6723 static inline void sched_submit_work(struct task_struct *tsk)
6724 {
6725 	unsigned int task_flags;
6726 
6727 	if (task_is_running(tsk))
6728 		return;
6729 
6730 	task_flags = tsk->flags;
6731 	/*
6732 	 * If a worker goes to sleep, notify and ask workqueue whether it
6733 	 * wants to wake up a task to maintain concurrency.
6734 	 */
6735 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6736 		if (task_flags & PF_WQ_WORKER)
6737 			wq_worker_sleeping(tsk);
6738 		else
6739 			io_wq_worker_sleeping(tsk);
6740 	}
6741 
6742 	/*
6743 	 * spinlock and rwlock must not flush block requests.  This will
6744 	 * deadlock if the callback attempts to acquire a lock which is
6745 	 * already acquired.
6746 	 */
6747 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6748 
6749 	/*
6750 	 * If we are going to sleep and we have plugged IO queued,
6751 	 * make sure to submit it to avoid deadlocks.
6752 	 */
6753 	blk_flush_plug(tsk->plug, true);
6754 }
6755 
6756 static void sched_update_worker(struct task_struct *tsk)
6757 {
6758 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6759 		if (tsk->flags & PF_WQ_WORKER)
6760 			wq_worker_running(tsk);
6761 		else
6762 			io_wq_worker_running(tsk);
6763 	}
6764 }
6765 
6766 asmlinkage __visible void __sched schedule(void)
6767 {
6768 	struct task_struct *tsk = current;
6769 
6770 	sched_submit_work(tsk);
6771 	do {
6772 		preempt_disable();
6773 		__schedule(SM_NONE);
6774 		sched_preempt_enable_no_resched();
6775 	} while (need_resched());
6776 	sched_update_worker(tsk);
6777 }
6778 EXPORT_SYMBOL(schedule);
6779 
6780 /*
6781  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6782  * state (have scheduled out non-voluntarily) by making sure that all
6783  * tasks have either left the run queue or have gone into user space.
6784  * As idle tasks do not do either, they must not ever be preempted
6785  * (schedule out non-voluntarily).
6786  *
6787  * schedule_idle() is similar to schedule_preempt_disable() except that it
6788  * never enables preemption because it does not call sched_submit_work().
6789  */
6790 void __sched schedule_idle(void)
6791 {
6792 	/*
6793 	 * As this skips calling sched_submit_work(), which the idle task does
6794 	 * regardless because that function is a nop when the task is in a
6795 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6796 	 * current task can be in any other state. Note, idle is always in the
6797 	 * TASK_RUNNING state.
6798 	 */
6799 	WARN_ON_ONCE(current->__state);
6800 	do {
6801 		__schedule(SM_NONE);
6802 	} while (need_resched());
6803 }
6804 
6805 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6806 asmlinkage __visible void __sched schedule_user(void)
6807 {
6808 	/*
6809 	 * If we come here after a random call to set_need_resched(),
6810 	 * or we have been woken up remotely but the IPI has not yet arrived,
6811 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6812 	 * we find a better solution.
6813 	 *
6814 	 * NB: There are buggy callers of this function.  Ideally we
6815 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6816 	 * too frequently to make sense yet.
6817 	 */
6818 	enum ctx_state prev_state = exception_enter();
6819 	schedule();
6820 	exception_exit(prev_state);
6821 }
6822 #endif
6823 
6824 /**
6825  * schedule_preempt_disabled - called with preemption disabled
6826  *
6827  * Returns with preemption disabled. Note: preempt_count must be 1
6828  */
6829 void __sched schedule_preempt_disabled(void)
6830 {
6831 	sched_preempt_enable_no_resched();
6832 	schedule();
6833 	preempt_disable();
6834 }
6835 
6836 #ifdef CONFIG_PREEMPT_RT
6837 void __sched notrace schedule_rtlock(void)
6838 {
6839 	do {
6840 		preempt_disable();
6841 		__schedule(SM_RTLOCK_WAIT);
6842 		sched_preempt_enable_no_resched();
6843 	} while (need_resched());
6844 }
6845 NOKPROBE_SYMBOL(schedule_rtlock);
6846 #endif
6847 
6848 static void __sched notrace preempt_schedule_common(void)
6849 {
6850 	do {
6851 		/*
6852 		 * Because the function tracer can trace preempt_count_sub()
6853 		 * and it also uses preempt_enable/disable_notrace(), if
6854 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6855 		 * by the function tracer will call this function again and
6856 		 * cause infinite recursion.
6857 		 *
6858 		 * Preemption must be disabled here before the function
6859 		 * tracer can trace. Break up preempt_disable() into two
6860 		 * calls. One to disable preemption without fear of being
6861 		 * traced. The other to still record the preemption latency,
6862 		 * which can also be traced by the function tracer.
6863 		 */
6864 		preempt_disable_notrace();
6865 		preempt_latency_start(1);
6866 		__schedule(SM_PREEMPT);
6867 		preempt_latency_stop(1);
6868 		preempt_enable_no_resched_notrace();
6869 
6870 		/*
6871 		 * Check again in case we missed a preemption opportunity
6872 		 * between schedule and now.
6873 		 */
6874 	} while (need_resched());
6875 }
6876 
6877 #ifdef CONFIG_PREEMPTION
6878 /*
6879  * This is the entry point to schedule() from in-kernel preemption
6880  * off of preempt_enable.
6881  */
6882 asmlinkage __visible void __sched notrace preempt_schedule(void)
6883 {
6884 	/*
6885 	 * If there is a non-zero preempt_count or interrupts are disabled,
6886 	 * we do not want to preempt the current task. Just return..
6887 	 */
6888 	if (likely(!preemptible()))
6889 		return;
6890 	preempt_schedule_common();
6891 }
6892 NOKPROBE_SYMBOL(preempt_schedule);
6893 EXPORT_SYMBOL(preempt_schedule);
6894 
6895 #ifdef CONFIG_PREEMPT_DYNAMIC
6896 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6897 #ifndef preempt_schedule_dynamic_enabled
6898 #define preempt_schedule_dynamic_enabled	preempt_schedule
6899 #define preempt_schedule_dynamic_disabled	NULL
6900 #endif
6901 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6902 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6903 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6904 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6905 void __sched notrace dynamic_preempt_schedule(void)
6906 {
6907 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6908 		return;
6909 	preempt_schedule();
6910 }
6911 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6912 EXPORT_SYMBOL(dynamic_preempt_schedule);
6913 #endif
6914 #endif
6915 
6916 /**
6917  * preempt_schedule_notrace - preempt_schedule called by tracing
6918  *
6919  * The tracing infrastructure uses preempt_enable_notrace to prevent
6920  * recursion and tracing preempt enabling caused by the tracing
6921  * infrastructure itself. But as tracing can happen in areas coming
6922  * from userspace or just about to enter userspace, a preempt enable
6923  * can occur before user_exit() is called. This will cause the scheduler
6924  * to be called when the system is still in usermode.
6925  *
6926  * To prevent this, the preempt_enable_notrace will use this function
6927  * instead of preempt_schedule() to exit user context if needed before
6928  * calling the scheduler.
6929  */
6930 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6931 {
6932 	enum ctx_state prev_ctx;
6933 
6934 	if (likely(!preemptible()))
6935 		return;
6936 
6937 	do {
6938 		/*
6939 		 * Because the function tracer can trace preempt_count_sub()
6940 		 * and it also uses preempt_enable/disable_notrace(), if
6941 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6942 		 * by the function tracer will call this function again and
6943 		 * cause infinite recursion.
6944 		 *
6945 		 * Preemption must be disabled here before the function
6946 		 * tracer can trace. Break up preempt_disable() into two
6947 		 * calls. One to disable preemption without fear of being
6948 		 * traced. The other to still record the preemption latency,
6949 		 * which can also be traced by the function tracer.
6950 		 */
6951 		preempt_disable_notrace();
6952 		preempt_latency_start(1);
6953 		/*
6954 		 * Needs preempt disabled in case user_exit() is traced
6955 		 * and the tracer calls preempt_enable_notrace() causing
6956 		 * an infinite recursion.
6957 		 */
6958 		prev_ctx = exception_enter();
6959 		__schedule(SM_PREEMPT);
6960 		exception_exit(prev_ctx);
6961 
6962 		preempt_latency_stop(1);
6963 		preempt_enable_no_resched_notrace();
6964 	} while (need_resched());
6965 }
6966 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6967 
6968 #ifdef CONFIG_PREEMPT_DYNAMIC
6969 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6970 #ifndef preempt_schedule_notrace_dynamic_enabled
6971 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6972 #define preempt_schedule_notrace_dynamic_disabled	NULL
6973 #endif
6974 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6975 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6976 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6977 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6978 void __sched notrace dynamic_preempt_schedule_notrace(void)
6979 {
6980 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6981 		return;
6982 	preempt_schedule_notrace();
6983 }
6984 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6985 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6986 #endif
6987 #endif
6988 
6989 #endif /* CONFIG_PREEMPTION */
6990 
6991 /*
6992  * This is the entry point to schedule() from kernel preemption
6993  * off of irq context.
6994  * Note, that this is called and return with irqs disabled. This will
6995  * protect us against recursive calling from irq.
6996  */
6997 asmlinkage __visible void __sched preempt_schedule_irq(void)
6998 {
6999 	enum ctx_state prev_state;
7000 
7001 	/* Catch callers which need to be fixed */
7002 	BUG_ON(preempt_count() || !irqs_disabled());
7003 
7004 	prev_state = exception_enter();
7005 
7006 	do {
7007 		preempt_disable();
7008 		local_irq_enable();
7009 		__schedule(SM_PREEMPT);
7010 		local_irq_disable();
7011 		sched_preempt_enable_no_resched();
7012 	} while (need_resched());
7013 
7014 	exception_exit(prev_state);
7015 }
7016 
7017 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7018 			  void *key)
7019 {
7020 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7021 	return try_to_wake_up(curr->private, mode, wake_flags);
7022 }
7023 EXPORT_SYMBOL(default_wake_function);
7024 
7025 static void __setscheduler_prio(struct task_struct *p, int prio)
7026 {
7027 	if (dl_prio(prio))
7028 		p->sched_class = &dl_sched_class;
7029 	else if (rt_prio(prio))
7030 		p->sched_class = &rt_sched_class;
7031 	else
7032 		p->sched_class = &fair_sched_class;
7033 
7034 	p->prio = prio;
7035 }
7036 
7037 #ifdef CONFIG_RT_MUTEXES
7038 
7039 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7040 {
7041 	if (pi_task)
7042 		prio = min(prio, pi_task->prio);
7043 
7044 	return prio;
7045 }
7046 
7047 static inline int rt_effective_prio(struct task_struct *p, int prio)
7048 {
7049 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7050 
7051 	return __rt_effective_prio(pi_task, prio);
7052 }
7053 
7054 /*
7055  * rt_mutex_setprio - set the current priority of a task
7056  * @p: task to boost
7057  * @pi_task: donor task
7058  *
7059  * This function changes the 'effective' priority of a task. It does
7060  * not touch ->normal_prio like __setscheduler().
7061  *
7062  * Used by the rt_mutex code to implement priority inheritance
7063  * logic. Call site only calls if the priority of the task changed.
7064  */
7065 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7066 {
7067 	int prio, oldprio, queued, running, queue_flag =
7068 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7069 	const struct sched_class *prev_class;
7070 	struct rq_flags rf;
7071 	struct rq *rq;
7072 
7073 	/* XXX used to be waiter->prio, not waiter->task->prio */
7074 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7075 
7076 	/*
7077 	 * If nothing changed; bail early.
7078 	 */
7079 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7080 		return;
7081 
7082 	rq = __task_rq_lock(p, &rf);
7083 	update_rq_clock(rq);
7084 	/*
7085 	 * Set under pi_lock && rq->lock, such that the value can be used under
7086 	 * either lock.
7087 	 *
7088 	 * Note that there is loads of tricky to make this pointer cache work
7089 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7090 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7091 	 * task is allowed to run again (and can exit). This ensures the pointer
7092 	 * points to a blocked task -- which guarantees the task is present.
7093 	 */
7094 	p->pi_top_task = pi_task;
7095 
7096 	/*
7097 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7098 	 */
7099 	if (prio == p->prio && !dl_prio(prio))
7100 		goto out_unlock;
7101 
7102 	/*
7103 	 * Idle task boosting is a nono in general. There is one
7104 	 * exception, when PREEMPT_RT and NOHZ is active:
7105 	 *
7106 	 * The idle task calls get_next_timer_interrupt() and holds
7107 	 * the timer wheel base->lock on the CPU and another CPU wants
7108 	 * to access the timer (probably to cancel it). We can safely
7109 	 * ignore the boosting request, as the idle CPU runs this code
7110 	 * with interrupts disabled and will complete the lock
7111 	 * protected section without being interrupted. So there is no
7112 	 * real need to boost.
7113 	 */
7114 	if (unlikely(p == rq->idle)) {
7115 		WARN_ON(p != rq->curr);
7116 		WARN_ON(p->pi_blocked_on);
7117 		goto out_unlock;
7118 	}
7119 
7120 	trace_sched_pi_setprio(p, pi_task);
7121 	oldprio = p->prio;
7122 
7123 	if (oldprio == prio)
7124 		queue_flag &= ~DEQUEUE_MOVE;
7125 
7126 	prev_class = p->sched_class;
7127 	queued = task_on_rq_queued(p);
7128 	running = task_current(rq, p);
7129 	if (queued)
7130 		dequeue_task(rq, p, queue_flag);
7131 	if (running)
7132 		put_prev_task(rq, p);
7133 
7134 	/*
7135 	 * Boosting condition are:
7136 	 * 1. -rt task is running and holds mutex A
7137 	 *      --> -dl task blocks on mutex A
7138 	 *
7139 	 * 2. -dl task is running and holds mutex A
7140 	 *      --> -dl task blocks on mutex A and could preempt the
7141 	 *          running task
7142 	 */
7143 	if (dl_prio(prio)) {
7144 		if (!dl_prio(p->normal_prio) ||
7145 		    (pi_task && dl_prio(pi_task->prio) &&
7146 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7147 			p->dl.pi_se = pi_task->dl.pi_se;
7148 			queue_flag |= ENQUEUE_REPLENISH;
7149 		} else {
7150 			p->dl.pi_se = &p->dl;
7151 		}
7152 	} else if (rt_prio(prio)) {
7153 		if (dl_prio(oldprio))
7154 			p->dl.pi_se = &p->dl;
7155 		if (oldprio < prio)
7156 			queue_flag |= ENQUEUE_HEAD;
7157 	} else {
7158 		if (dl_prio(oldprio))
7159 			p->dl.pi_se = &p->dl;
7160 		if (rt_prio(oldprio))
7161 			p->rt.timeout = 0;
7162 	}
7163 
7164 	__setscheduler_prio(p, prio);
7165 
7166 	if (queued)
7167 		enqueue_task(rq, p, queue_flag);
7168 	if (running)
7169 		set_next_task(rq, p);
7170 
7171 	check_class_changed(rq, p, prev_class, oldprio);
7172 out_unlock:
7173 	/* Avoid rq from going away on us: */
7174 	preempt_disable();
7175 
7176 	rq_unpin_lock(rq, &rf);
7177 	__balance_callbacks(rq);
7178 	raw_spin_rq_unlock(rq);
7179 
7180 	preempt_enable();
7181 }
7182 #else
7183 static inline int rt_effective_prio(struct task_struct *p, int prio)
7184 {
7185 	return prio;
7186 }
7187 #endif
7188 
7189 void set_user_nice(struct task_struct *p, long nice)
7190 {
7191 	bool queued, running;
7192 	int old_prio;
7193 	struct rq_flags rf;
7194 	struct rq *rq;
7195 
7196 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7197 		return;
7198 	/*
7199 	 * We have to be careful, if called from sys_setpriority(),
7200 	 * the task might be in the middle of scheduling on another CPU.
7201 	 */
7202 	rq = task_rq_lock(p, &rf);
7203 	update_rq_clock(rq);
7204 
7205 	/*
7206 	 * The RT priorities are set via sched_setscheduler(), but we still
7207 	 * allow the 'normal' nice value to be set - but as expected
7208 	 * it won't have any effect on scheduling until the task is
7209 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7210 	 */
7211 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7212 		p->static_prio = NICE_TO_PRIO(nice);
7213 		goto out_unlock;
7214 	}
7215 	queued = task_on_rq_queued(p);
7216 	running = task_current(rq, p);
7217 	if (queued)
7218 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7219 	if (running)
7220 		put_prev_task(rq, p);
7221 
7222 	p->static_prio = NICE_TO_PRIO(nice);
7223 	set_load_weight(p, true);
7224 	old_prio = p->prio;
7225 	p->prio = effective_prio(p);
7226 
7227 	if (queued)
7228 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7229 	if (running)
7230 		set_next_task(rq, p);
7231 
7232 	/*
7233 	 * If the task increased its priority or is running and
7234 	 * lowered its priority, then reschedule its CPU:
7235 	 */
7236 	p->sched_class->prio_changed(rq, p, old_prio);
7237 
7238 out_unlock:
7239 	task_rq_unlock(rq, p, &rf);
7240 }
7241 EXPORT_SYMBOL(set_user_nice);
7242 
7243 /*
7244  * is_nice_reduction - check if nice value is an actual reduction
7245  *
7246  * Similar to can_nice() but does not perform a capability check.
7247  *
7248  * @p: task
7249  * @nice: nice value
7250  */
7251 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7252 {
7253 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7254 	int nice_rlim = nice_to_rlimit(nice);
7255 
7256 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7257 }
7258 
7259 /*
7260  * can_nice - check if a task can reduce its nice value
7261  * @p: task
7262  * @nice: nice value
7263  */
7264 int can_nice(const struct task_struct *p, const int nice)
7265 {
7266 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7267 }
7268 
7269 #ifdef __ARCH_WANT_SYS_NICE
7270 
7271 /*
7272  * sys_nice - change the priority of the current process.
7273  * @increment: priority increment
7274  *
7275  * sys_setpriority is a more generic, but much slower function that
7276  * does similar things.
7277  */
7278 SYSCALL_DEFINE1(nice, int, increment)
7279 {
7280 	long nice, retval;
7281 
7282 	/*
7283 	 * Setpriority might change our priority at the same moment.
7284 	 * We don't have to worry. Conceptually one call occurs first
7285 	 * and we have a single winner.
7286 	 */
7287 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7288 	nice = task_nice(current) + increment;
7289 
7290 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7291 	if (increment < 0 && !can_nice(current, nice))
7292 		return -EPERM;
7293 
7294 	retval = security_task_setnice(current, nice);
7295 	if (retval)
7296 		return retval;
7297 
7298 	set_user_nice(current, nice);
7299 	return 0;
7300 }
7301 
7302 #endif
7303 
7304 /**
7305  * task_prio - return the priority value of a given task.
7306  * @p: the task in question.
7307  *
7308  * Return: The priority value as seen by users in /proc.
7309  *
7310  * sched policy         return value   kernel prio    user prio/nice
7311  *
7312  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7313  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7314  * deadline                     -101             -1           0
7315  */
7316 int task_prio(const struct task_struct *p)
7317 {
7318 	return p->prio - MAX_RT_PRIO;
7319 }
7320 
7321 /**
7322  * idle_cpu - is a given CPU idle currently?
7323  * @cpu: the processor in question.
7324  *
7325  * Return: 1 if the CPU is currently idle. 0 otherwise.
7326  */
7327 int idle_cpu(int cpu)
7328 {
7329 	struct rq *rq = cpu_rq(cpu);
7330 
7331 	if (rq->curr != rq->idle)
7332 		return 0;
7333 
7334 	if (rq->nr_running)
7335 		return 0;
7336 
7337 #ifdef CONFIG_SMP
7338 	if (rq->ttwu_pending)
7339 		return 0;
7340 #endif
7341 
7342 	return 1;
7343 }
7344 
7345 /**
7346  * available_idle_cpu - is a given CPU idle for enqueuing work.
7347  * @cpu: the CPU in question.
7348  *
7349  * Return: 1 if the CPU is currently idle. 0 otherwise.
7350  */
7351 int available_idle_cpu(int cpu)
7352 {
7353 	if (!idle_cpu(cpu))
7354 		return 0;
7355 
7356 	if (vcpu_is_preempted(cpu))
7357 		return 0;
7358 
7359 	return 1;
7360 }
7361 
7362 /**
7363  * idle_task - return the idle task for a given CPU.
7364  * @cpu: the processor in question.
7365  *
7366  * Return: The idle task for the CPU @cpu.
7367  */
7368 struct task_struct *idle_task(int cpu)
7369 {
7370 	return cpu_rq(cpu)->idle;
7371 }
7372 
7373 #ifdef CONFIG_SCHED_CORE
7374 int sched_core_idle_cpu(int cpu)
7375 {
7376 	struct rq *rq = cpu_rq(cpu);
7377 
7378 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7379 		return 1;
7380 
7381 	return idle_cpu(cpu);
7382 }
7383 
7384 #endif
7385 
7386 #ifdef CONFIG_SMP
7387 /*
7388  * This function computes an effective utilization for the given CPU, to be
7389  * used for frequency selection given the linear relation: f = u * f_max.
7390  *
7391  * The scheduler tracks the following metrics:
7392  *
7393  *   cpu_util_{cfs,rt,dl,irq}()
7394  *   cpu_bw_dl()
7395  *
7396  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7397  * synchronized windows and are thus directly comparable.
7398  *
7399  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7400  * which excludes things like IRQ and steal-time. These latter are then accrued
7401  * in the irq utilization.
7402  *
7403  * The DL bandwidth number otoh is not a measured metric but a value computed
7404  * based on the task model parameters and gives the minimal utilization
7405  * required to meet deadlines.
7406  */
7407 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7408 				 enum cpu_util_type type,
7409 				 struct task_struct *p)
7410 {
7411 	unsigned long dl_util, util, irq, max;
7412 	struct rq *rq = cpu_rq(cpu);
7413 
7414 	max = arch_scale_cpu_capacity(cpu);
7415 
7416 	if (!uclamp_is_used() &&
7417 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7418 		return max;
7419 	}
7420 
7421 	/*
7422 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7423 	 * because of inaccuracies in how we track these -- see
7424 	 * update_irq_load_avg().
7425 	 */
7426 	irq = cpu_util_irq(rq);
7427 	if (unlikely(irq >= max))
7428 		return max;
7429 
7430 	/*
7431 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7432 	 * CFS tasks and we use the same metric to track the effective
7433 	 * utilization (PELT windows are synchronized) we can directly add them
7434 	 * to obtain the CPU's actual utilization.
7435 	 *
7436 	 * CFS and RT utilization can be boosted or capped, depending on
7437 	 * utilization clamp constraints requested by currently RUNNABLE
7438 	 * tasks.
7439 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7440 	 * frequency will be gracefully reduced with the utilization decay.
7441 	 */
7442 	util = util_cfs + cpu_util_rt(rq);
7443 	if (type == FREQUENCY_UTIL)
7444 		util = uclamp_rq_util_with(rq, util, p);
7445 
7446 	dl_util = cpu_util_dl(rq);
7447 
7448 	/*
7449 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7450 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7451 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7452 	 * that we select f_max when there is no idle time.
7453 	 *
7454 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7455 	 * saturation when we should -- something for later.
7456 	 */
7457 	if (util + dl_util >= max)
7458 		return max;
7459 
7460 	/*
7461 	 * OTOH, for energy computation we need the estimated running time, so
7462 	 * include util_dl and ignore dl_bw.
7463 	 */
7464 	if (type == ENERGY_UTIL)
7465 		util += dl_util;
7466 
7467 	/*
7468 	 * There is still idle time; further improve the number by using the
7469 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7470 	 * need to scale the task numbers:
7471 	 *
7472 	 *              max - irq
7473 	 *   U' = irq + --------- * U
7474 	 *                 max
7475 	 */
7476 	util = scale_irq_capacity(util, irq, max);
7477 	util += irq;
7478 
7479 	/*
7480 	 * Bandwidth required by DEADLINE must always be granted while, for
7481 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7482 	 * to gracefully reduce the frequency when no tasks show up for longer
7483 	 * periods of time.
7484 	 *
7485 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7486 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7487 	 * an interface. So, we only do the latter for now.
7488 	 */
7489 	if (type == FREQUENCY_UTIL)
7490 		util += cpu_bw_dl(rq);
7491 
7492 	return min(max, util);
7493 }
7494 
7495 unsigned long sched_cpu_util(int cpu)
7496 {
7497 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7498 }
7499 #endif /* CONFIG_SMP */
7500 
7501 /**
7502  * find_process_by_pid - find a process with a matching PID value.
7503  * @pid: the pid in question.
7504  *
7505  * The task of @pid, if found. %NULL otherwise.
7506  */
7507 static struct task_struct *find_process_by_pid(pid_t pid)
7508 {
7509 	return pid ? find_task_by_vpid(pid) : current;
7510 }
7511 
7512 /*
7513  * sched_setparam() passes in -1 for its policy, to let the functions
7514  * it calls know not to change it.
7515  */
7516 #define SETPARAM_POLICY	-1
7517 
7518 static void __setscheduler_params(struct task_struct *p,
7519 		const struct sched_attr *attr)
7520 {
7521 	int policy = attr->sched_policy;
7522 
7523 	if (policy == SETPARAM_POLICY)
7524 		policy = p->policy;
7525 
7526 	p->policy = policy;
7527 
7528 	if (dl_policy(policy))
7529 		__setparam_dl(p, attr);
7530 	else if (fair_policy(policy))
7531 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7532 
7533 	/*
7534 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7535 	 * !rt_policy. Always setting this ensures that things like
7536 	 * getparam()/getattr() don't report silly values for !rt tasks.
7537 	 */
7538 	p->rt_priority = attr->sched_priority;
7539 	p->normal_prio = normal_prio(p);
7540 	set_load_weight(p, true);
7541 }
7542 
7543 /*
7544  * Check the target process has a UID that matches the current process's:
7545  */
7546 static bool check_same_owner(struct task_struct *p)
7547 {
7548 	const struct cred *cred = current_cred(), *pcred;
7549 	bool match;
7550 
7551 	rcu_read_lock();
7552 	pcred = __task_cred(p);
7553 	match = (uid_eq(cred->euid, pcred->euid) ||
7554 		 uid_eq(cred->euid, pcred->uid));
7555 	rcu_read_unlock();
7556 	return match;
7557 }
7558 
7559 /*
7560  * Allow unprivileged RT tasks to decrease priority.
7561  * Only issue a capable test if needed and only once to avoid an audit
7562  * event on permitted non-privileged operations:
7563  */
7564 static int user_check_sched_setscheduler(struct task_struct *p,
7565 					 const struct sched_attr *attr,
7566 					 int policy, int reset_on_fork)
7567 {
7568 	if (fair_policy(policy)) {
7569 		if (attr->sched_nice < task_nice(p) &&
7570 		    !is_nice_reduction(p, attr->sched_nice))
7571 			goto req_priv;
7572 	}
7573 
7574 	if (rt_policy(policy)) {
7575 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7576 
7577 		/* Can't set/change the rt policy: */
7578 		if (policy != p->policy && !rlim_rtprio)
7579 			goto req_priv;
7580 
7581 		/* Can't increase priority: */
7582 		if (attr->sched_priority > p->rt_priority &&
7583 		    attr->sched_priority > rlim_rtprio)
7584 			goto req_priv;
7585 	}
7586 
7587 	/*
7588 	 * Can't set/change SCHED_DEADLINE policy at all for now
7589 	 * (safest behavior); in the future we would like to allow
7590 	 * unprivileged DL tasks to increase their relative deadline
7591 	 * or reduce their runtime (both ways reducing utilization)
7592 	 */
7593 	if (dl_policy(policy))
7594 		goto req_priv;
7595 
7596 	/*
7597 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7598 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7599 	 */
7600 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7601 		if (!is_nice_reduction(p, task_nice(p)))
7602 			goto req_priv;
7603 	}
7604 
7605 	/* Can't change other user's priorities: */
7606 	if (!check_same_owner(p))
7607 		goto req_priv;
7608 
7609 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7610 	if (p->sched_reset_on_fork && !reset_on_fork)
7611 		goto req_priv;
7612 
7613 	return 0;
7614 
7615 req_priv:
7616 	if (!capable(CAP_SYS_NICE))
7617 		return -EPERM;
7618 
7619 	return 0;
7620 }
7621 
7622 static int __sched_setscheduler(struct task_struct *p,
7623 				const struct sched_attr *attr,
7624 				bool user, bool pi)
7625 {
7626 	int oldpolicy = -1, policy = attr->sched_policy;
7627 	int retval, oldprio, newprio, queued, running;
7628 	const struct sched_class *prev_class;
7629 	struct balance_callback *head;
7630 	struct rq_flags rf;
7631 	int reset_on_fork;
7632 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7633 	struct rq *rq;
7634 	bool cpuset_locked = false;
7635 
7636 	/* The pi code expects interrupts enabled */
7637 	BUG_ON(pi && in_interrupt());
7638 recheck:
7639 	/* Double check policy once rq lock held: */
7640 	if (policy < 0) {
7641 		reset_on_fork = p->sched_reset_on_fork;
7642 		policy = oldpolicy = p->policy;
7643 	} else {
7644 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7645 
7646 		if (!valid_policy(policy))
7647 			return -EINVAL;
7648 	}
7649 
7650 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7651 		return -EINVAL;
7652 
7653 	/*
7654 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7655 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7656 	 * SCHED_BATCH and SCHED_IDLE is 0.
7657 	 */
7658 	if (attr->sched_priority > MAX_RT_PRIO-1)
7659 		return -EINVAL;
7660 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7661 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7662 		return -EINVAL;
7663 
7664 	if (user) {
7665 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7666 		if (retval)
7667 			return retval;
7668 
7669 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7670 			return -EINVAL;
7671 
7672 		retval = security_task_setscheduler(p);
7673 		if (retval)
7674 			return retval;
7675 	}
7676 
7677 	/* Update task specific "requested" clamps */
7678 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7679 		retval = uclamp_validate(p, attr);
7680 		if (retval)
7681 			return retval;
7682 	}
7683 
7684 	/*
7685 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7686 	 * information.
7687 	 */
7688 	if (dl_policy(policy) || dl_policy(p->policy)) {
7689 		cpuset_locked = true;
7690 		cpuset_lock();
7691 	}
7692 
7693 	/*
7694 	 * Make sure no PI-waiters arrive (or leave) while we are
7695 	 * changing the priority of the task:
7696 	 *
7697 	 * To be able to change p->policy safely, the appropriate
7698 	 * runqueue lock must be held.
7699 	 */
7700 	rq = task_rq_lock(p, &rf);
7701 	update_rq_clock(rq);
7702 
7703 	/*
7704 	 * Changing the policy of the stop threads its a very bad idea:
7705 	 */
7706 	if (p == rq->stop) {
7707 		retval = -EINVAL;
7708 		goto unlock;
7709 	}
7710 
7711 	/*
7712 	 * If not changing anything there's no need to proceed further,
7713 	 * but store a possible modification of reset_on_fork.
7714 	 */
7715 	if (unlikely(policy == p->policy)) {
7716 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7717 			goto change;
7718 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7719 			goto change;
7720 		if (dl_policy(policy) && dl_param_changed(p, attr))
7721 			goto change;
7722 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7723 			goto change;
7724 
7725 		p->sched_reset_on_fork = reset_on_fork;
7726 		retval = 0;
7727 		goto unlock;
7728 	}
7729 change:
7730 
7731 	if (user) {
7732 #ifdef CONFIG_RT_GROUP_SCHED
7733 		/*
7734 		 * Do not allow realtime tasks into groups that have no runtime
7735 		 * assigned.
7736 		 */
7737 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7738 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7739 				!task_group_is_autogroup(task_group(p))) {
7740 			retval = -EPERM;
7741 			goto unlock;
7742 		}
7743 #endif
7744 #ifdef CONFIG_SMP
7745 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7746 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7747 			cpumask_t *span = rq->rd->span;
7748 
7749 			/*
7750 			 * Don't allow tasks with an affinity mask smaller than
7751 			 * the entire root_domain to become SCHED_DEADLINE. We
7752 			 * will also fail if there's no bandwidth available.
7753 			 */
7754 			if (!cpumask_subset(span, p->cpus_ptr) ||
7755 			    rq->rd->dl_bw.bw == 0) {
7756 				retval = -EPERM;
7757 				goto unlock;
7758 			}
7759 		}
7760 #endif
7761 	}
7762 
7763 	/* Re-check policy now with rq lock held: */
7764 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7765 		policy = oldpolicy = -1;
7766 		task_rq_unlock(rq, p, &rf);
7767 		if (cpuset_locked)
7768 			cpuset_unlock();
7769 		goto recheck;
7770 	}
7771 
7772 	/*
7773 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7774 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7775 	 * is available.
7776 	 */
7777 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7778 		retval = -EBUSY;
7779 		goto unlock;
7780 	}
7781 
7782 	p->sched_reset_on_fork = reset_on_fork;
7783 	oldprio = p->prio;
7784 
7785 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7786 	if (pi) {
7787 		/*
7788 		 * Take priority boosted tasks into account. If the new
7789 		 * effective priority is unchanged, we just store the new
7790 		 * normal parameters and do not touch the scheduler class and
7791 		 * the runqueue. This will be done when the task deboost
7792 		 * itself.
7793 		 */
7794 		newprio = rt_effective_prio(p, newprio);
7795 		if (newprio == oldprio)
7796 			queue_flags &= ~DEQUEUE_MOVE;
7797 	}
7798 
7799 	queued = task_on_rq_queued(p);
7800 	running = task_current(rq, p);
7801 	if (queued)
7802 		dequeue_task(rq, p, queue_flags);
7803 	if (running)
7804 		put_prev_task(rq, p);
7805 
7806 	prev_class = p->sched_class;
7807 
7808 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7809 		__setscheduler_params(p, attr);
7810 		__setscheduler_prio(p, newprio);
7811 	}
7812 	__setscheduler_uclamp(p, attr);
7813 
7814 	if (queued) {
7815 		/*
7816 		 * We enqueue to tail when the priority of a task is
7817 		 * increased (user space view).
7818 		 */
7819 		if (oldprio < p->prio)
7820 			queue_flags |= ENQUEUE_HEAD;
7821 
7822 		enqueue_task(rq, p, queue_flags);
7823 	}
7824 	if (running)
7825 		set_next_task(rq, p);
7826 
7827 	check_class_changed(rq, p, prev_class, oldprio);
7828 
7829 	/* Avoid rq from going away on us: */
7830 	preempt_disable();
7831 	head = splice_balance_callbacks(rq);
7832 	task_rq_unlock(rq, p, &rf);
7833 
7834 	if (pi) {
7835 		if (cpuset_locked)
7836 			cpuset_unlock();
7837 		rt_mutex_adjust_pi(p);
7838 	}
7839 
7840 	/* Run balance callbacks after we've adjusted the PI chain: */
7841 	balance_callbacks(rq, head);
7842 	preempt_enable();
7843 
7844 	return 0;
7845 
7846 unlock:
7847 	task_rq_unlock(rq, p, &rf);
7848 	if (cpuset_locked)
7849 		cpuset_unlock();
7850 	return retval;
7851 }
7852 
7853 static int _sched_setscheduler(struct task_struct *p, int policy,
7854 			       const struct sched_param *param, bool check)
7855 {
7856 	struct sched_attr attr = {
7857 		.sched_policy   = policy,
7858 		.sched_priority = param->sched_priority,
7859 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7860 	};
7861 
7862 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7863 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7864 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7865 		policy &= ~SCHED_RESET_ON_FORK;
7866 		attr.sched_policy = policy;
7867 	}
7868 
7869 	return __sched_setscheduler(p, &attr, check, true);
7870 }
7871 /**
7872  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7873  * @p: the task in question.
7874  * @policy: new policy.
7875  * @param: structure containing the new RT priority.
7876  *
7877  * Use sched_set_fifo(), read its comment.
7878  *
7879  * Return: 0 on success. An error code otherwise.
7880  *
7881  * NOTE that the task may be already dead.
7882  */
7883 int sched_setscheduler(struct task_struct *p, int policy,
7884 		       const struct sched_param *param)
7885 {
7886 	return _sched_setscheduler(p, policy, param, true);
7887 }
7888 
7889 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7890 {
7891 	return __sched_setscheduler(p, attr, true, true);
7892 }
7893 
7894 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7895 {
7896 	return __sched_setscheduler(p, attr, false, true);
7897 }
7898 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7899 
7900 /**
7901  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7902  * @p: the task in question.
7903  * @policy: new policy.
7904  * @param: structure containing the new RT priority.
7905  *
7906  * Just like sched_setscheduler, only don't bother checking if the
7907  * current context has permission.  For example, this is needed in
7908  * stop_machine(): we create temporary high priority worker threads,
7909  * but our caller might not have that capability.
7910  *
7911  * Return: 0 on success. An error code otherwise.
7912  */
7913 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7914 			       const struct sched_param *param)
7915 {
7916 	return _sched_setscheduler(p, policy, param, false);
7917 }
7918 
7919 /*
7920  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7921  * incapable of resource management, which is the one thing an OS really should
7922  * be doing.
7923  *
7924  * This is of course the reason it is limited to privileged users only.
7925  *
7926  * Worse still; it is fundamentally impossible to compose static priority
7927  * workloads. You cannot take two correctly working static prio workloads
7928  * and smash them together and still expect them to work.
7929  *
7930  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7931  *
7932  *   MAX_RT_PRIO / 2
7933  *
7934  * The administrator _MUST_ configure the system, the kernel simply doesn't
7935  * know enough information to make a sensible choice.
7936  */
7937 void sched_set_fifo(struct task_struct *p)
7938 {
7939 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7940 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7941 }
7942 EXPORT_SYMBOL_GPL(sched_set_fifo);
7943 
7944 /*
7945  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7946  */
7947 void sched_set_fifo_low(struct task_struct *p)
7948 {
7949 	struct sched_param sp = { .sched_priority = 1 };
7950 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7951 }
7952 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7953 
7954 void sched_set_normal(struct task_struct *p, int nice)
7955 {
7956 	struct sched_attr attr = {
7957 		.sched_policy = SCHED_NORMAL,
7958 		.sched_nice = nice,
7959 	};
7960 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7961 }
7962 EXPORT_SYMBOL_GPL(sched_set_normal);
7963 
7964 static int
7965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7966 {
7967 	struct sched_param lparam;
7968 	struct task_struct *p;
7969 	int retval;
7970 
7971 	if (!param || pid < 0)
7972 		return -EINVAL;
7973 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7974 		return -EFAULT;
7975 
7976 	rcu_read_lock();
7977 	retval = -ESRCH;
7978 	p = find_process_by_pid(pid);
7979 	if (likely(p))
7980 		get_task_struct(p);
7981 	rcu_read_unlock();
7982 
7983 	if (likely(p)) {
7984 		retval = sched_setscheduler(p, policy, &lparam);
7985 		put_task_struct(p);
7986 	}
7987 
7988 	return retval;
7989 }
7990 
7991 /*
7992  * Mimics kernel/events/core.c perf_copy_attr().
7993  */
7994 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7995 {
7996 	u32 size;
7997 	int ret;
7998 
7999 	/* Zero the full structure, so that a short copy will be nice: */
8000 	memset(attr, 0, sizeof(*attr));
8001 
8002 	ret = get_user(size, &uattr->size);
8003 	if (ret)
8004 		return ret;
8005 
8006 	/* ABI compatibility quirk: */
8007 	if (!size)
8008 		size = SCHED_ATTR_SIZE_VER0;
8009 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8010 		goto err_size;
8011 
8012 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8013 	if (ret) {
8014 		if (ret == -E2BIG)
8015 			goto err_size;
8016 		return ret;
8017 	}
8018 
8019 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8020 	    size < SCHED_ATTR_SIZE_VER1)
8021 		return -EINVAL;
8022 
8023 	/*
8024 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8025 	 * to be strict and return an error on out-of-bounds values?
8026 	 */
8027 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8028 
8029 	return 0;
8030 
8031 err_size:
8032 	put_user(sizeof(*attr), &uattr->size);
8033 	return -E2BIG;
8034 }
8035 
8036 static void get_params(struct task_struct *p, struct sched_attr *attr)
8037 {
8038 	if (task_has_dl_policy(p))
8039 		__getparam_dl(p, attr);
8040 	else if (task_has_rt_policy(p))
8041 		attr->sched_priority = p->rt_priority;
8042 	else
8043 		attr->sched_nice = task_nice(p);
8044 }
8045 
8046 /**
8047  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8048  * @pid: the pid in question.
8049  * @policy: new policy.
8050  * @param: structure containing the new RT priority.
8051  *
8052  * Return: 0 on success. An error code otherwise.
8053  */
8054 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8055 {
8056 	if (policy < 0)
8057 		return -EINVAL;
8058 
8059 	return do_sched_setscheduler(pid, policy, param);
8060 }
8061 
8062 /**
8063  * sys_sched_setparam - set/change the RT priority of a thread
8064  * @pid: the pid in question.
8065  * @param: structure containing the new RT priority.
8066  *
8067  * Return: 0 on success. An error code otherwise.
8068  */
8069 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8070 {
8071 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8072 }
8073 
8074 /**
8075  * sys_sched_setattr - same as above, but with extended sched_attr
8076  * @pid: the pid in question.
8077  * @uattr: structure containing the extended parameters.
8078  * @flags: for future extension.
8079  */
8080 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8081 			       unsigned int, flags)
8082 {
8083 	struct sched_attr attr;
8084 	struct task_struct *p;
8085 	int retval;
8086 
8087 	if (!uattr || pid < 0 || flags)
8088 		return -EINVAL;
8089 
8090 	retval = sched_copy_attr(uattr, &attr);
8091 	if (retval)
8092 		return retval;
8093 
8094 	if ((int)attr.sched_policy < 0)
8095 		return -EINVAL;
8096 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8097 		attr.sched_policy = SETPARAM_POLICY;
8098 
8099 	rcu_read_lock();
8100 	retval = -ESRCH;
8101 	p = find_process_by_pid(pid);
8102 	if (likely(p))
8103 		get_task_struct(p);
8104 	rcu_read_unlock();
8105 
8106 	if (likely(p)) {
8107 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8108 			get_params(p, &attr);
8109 		retval = sched_setattr(p, &attr);
8110 		put_task_struct(p);
8111 	}
8112 
8113 	return retval;
8114 }
8115 
8116 /**
8117  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8118  * @pid: the pid in question.
8119  *
8120  * Return: On success, the policy of the thread. Otherwise, a negative error
8121  * code.
8122  */
8123 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8124 {
8125 	struct task_struct *p;
8126 	int retval;
8127 
8128 	if (pid < 0)
8129 		return -EINVAL;
8130 
8131 	retval = -ESRCH;
8132 	rcu_read_lock();
8133 	p = find_process_by_pid(pid);
8134 	if (p) {
8135 		retval = security_task_getscheduler(p);
8136 		if (!retval)
8137 			retval = p->policy
8138 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8139 	}
8140 	rcu_read_unlock();
8141 	return retval;
8142 }
8143 
8144 /**
8145  * sys_sched_getparam - get the RT priority of a thread
8146  * @pid: the pid in question.
8147  * @param: structure containing the RT priority.
8148  *
8149  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8150  * code.
8151  */
8152 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8153 {
8154 	struct sched_param lp = { .sched_priority = 0 };
8155 	struct task_struct *p;
8156 	int retval;
8157 
8158 	if (!param || pid < 0)
8159 		return -EINVAL;
8160 
8161 	rcu_read_lock();
8162 	p = find_process_by_pid(pid);
8163 	retval = -ESRCH;
8164 	if (!p)
8165 		goto out_unlock;
8166 
8167 	retval = security_task_getscheduler(p);
8168 	if (retval)
8169 		goto out_unlock;
8170 
8171 	if (task_has_rt_policy(p))
8172 		lp.sched_priority = p->rt_priority;
8173 	rcu_read_unlock();
8174 
8175 	/*
8176 	 * This one might sleep, we cannot do it with a spinlock held ...
8177 	 */
8178 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8179 
8180 	return retval;
8181 
8182 out_unlock:
8183 	rcu_read_unlock();
8184 	return retval;
8185 }
8186 
8187 /*
8188  * Copy the kernel size attribute structure (which might be larger
8189  * than what user-space knows about) to user-space.
8190  *
8191  * Note that all cases are valid: user-space buffer can be larger or
8192  * smaller than the kernel-space buffer. The usual case is that both
8193  * have the same size.
8194  */
8195 static int
8196 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8197 			struct sched_attr *kattr,
8198 			unsigned int usize)
8199 {
8200 	unsigned int ksize = sizeof(*kattr);
8201 
8202 	if (!access_ok(uattr, usize))
8203 		return -EFAULT;
8204 
8205 	/*
8206 	 * sched_getattr() ABI forwards and backwards compatibility:
8207 	 *
8208 	 * If usize == ksize then we just copy everything to user-space and all is good.
8209 	 *
8210 	 * If usize < ksize then we only copy as much as user-space has space for,
8211 	 * this keeps ABI compatibility as well. We skip the rest.
8212 	 *
8213 	 * If usize > ksize then user-space is using a newer version of the ABI,
8214 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8215 	 * detect the kernel's knowledge of attributes from the attr->size value
8216 	 * which is set to ksize in this case.
8217 	 */
8218 	kattr->size = min(usize, ksize);
8219 
8220 	if (copy_to_user(uattr, kattr, kattr->size))
8221 		return -EFAULT;
8222 
8223 	return 0;
8224 }
8225 
8226 /**
8227  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8228  * @pid: the pid in question.
8229  * @uattr: structure containing the extended parameters.
8230  * @usize: sizeof(attr) for fwd/bwd comp.
8231  * @flags: for future extension.
8232  */
8233 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8234 		unsigned int, usize, unsigned int, flags)
8235 {
8236 	struct sched_attr kattr = { };
8237 	struct task_struct *p;
8238 	int retval;
8239 
8240 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8241 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8242 		return -EINVAL;
8243 
8244 	rcu_read_lock();
8245 	p = find_process_by_pid(pid);
8246 	retval = -ESRCH;
8247 	if (!p)
8248 		goto out_unlock;
8249 
8250 	retval = security_task_getscheduler(p);
8251 	if (retval)
8252 		goto out_unlock;
8253 
8254 	kattr.sched_policy = p->policy;
8255 	if (p->sched_reset_on_fork)
8256 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8257 	get_params(p, &kattr);
8258 	kattr.sched_flags &= SCHED_FLAG_ALL;
8259 
8260 #ifdef CONFIG_UCLAMP_TASK
8261 	/*
8262 	 * This could race with another potential updater, but this is fine
8263 	 * because it'll correctly read the old or the new value. We don't need
8264 	 * to guarantee who wins the race as long as it doesn't return garbage.
8265 	 */
8266 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8267 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8268 #endif
8269 
8270 	rcu_read_unlock();
8271 
8272 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8273 
8274 out_unlock:
8275 	rcu_read_unlock();
8276 	return retval;
8277 }
8278 
8279 #ifdef CONFIG_SMP
8280 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8281 {
8282 	int ret = 0;
8283 
8284 	/*
8285 	 * If the task isn't a deadline task or admission control is
8286 	 * disabled then we don't care about affinity changes.
8287 	 */
8288 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8289 		return 0;
8290 
8291 	/*
8292 	 * Since bandwidth control happens on root_domain basis,
8293 	 * if admission test is enabled, we only admit -deadline
8294 	 * tasks allowed to run on all the CPUs in the task's
8295 	 * root_domain.
8296 	 */
8297 	rcu_read_lock();
8298 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8299 		ret = -EBUSY;
8300 	rcu_read_unlock();
8301 	return ret;
8302 }
8303 #endif
8304 
8305 static int
8306 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8307 {
8308 	int retval;
8309 	cpumask_var_t cpus_allowed, new_mask;
8310 
8311 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8312 		return -ENOMEM;
8313 
8314 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8315 		retval = -ENOMEM;
8316 		goto out_free_cpus_allowed;
8317 	}
8318 
8319 	cpuset_cpus_allowed(p, cpus_allowed);
8320 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8321 
8322 	ctx->new_mask = new_mask;
8323 	ctx->flags |= SCA_CHECK;
8324 
8325 	retval = dl_task_check_affinity(p, new_mask);
8326 	if (retval)
8327 		goto out_free_new_mask;
8328 
8329 	retval = __set_cpus_allowed_ptr(p, ctx);
8330 	if (retval)
8331 		goto out_free_new_mask;
8332 
8333 	cpuset_cpus_allowed(p, cpus_allowed);
8334 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8335 		/*
8336 		 * We must have raced with a concurrent cpuset update.
8337 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8338 		 */
8339 		cpumask_copy(new_mask, cpus_allowed);
8340 
8341 		/*
8342 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8343 		 * will restore the previous user_cpus_ptr value.
8344 		 *
8345 		 * In the unlikely event a previous user_cpus_ptr exists,
8346 		 * we need to further restrict the mask to what is allowed
8347 		 * by that old user_cpus_ptr.
8348 		 */
8349 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8350 			bool empty = !cpumask_and(new_mask, new_mask,
8351 						  ctx->user_mask);
8352 
8353 			if (WARN_ON_ONCE(empty))
8354 				cpumask_copy(new_mask, cpus_allowed);
8355 		}
8356 		__set_cpus_allowed_ptr(p, ctx);
8357 		retval = -EINVAL;
8358 	}
8359 
8360 out_free_new_mask:
8361 	free_cpumask_var(new_mask);
8362 out_free_cpus_allowed:
8363 	free_cpumask_var(cpus_allowed);
8364 	return retval;
8365 }
8366 
8367 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8368 {
8369 	struct affinity_context ac;
8370 	struct cpumask *user_mask;
8371 	struct task_struct *p;
8372 	int retval;
8373 
8374 	rcu_read_lock();
8375 
8376 	p = find_process_by_pid(pid);
8377 	if (!p) {
8378 		rcu_read_unlock();
8379 		return -ESRCH;
8380 	}
8381 
8382 	/* Prevent p going away */
8383 	get_task_struct(p);
8384 	rcu_read_unlock();
8385 
8386 	if (p->flags & PF_NO_SETAFFINITY) {
8387 		retval = -EINVAL;
8388 		goto out_put_task;
8389 	}
8390 
8391 	if (!check_same_owner(p)) {
8392 		rcu_read_lock();
8393 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8394 			rcu_read_unlock();
8395 			retval = -EPERM;
8396 			goto out_put_task;
8397 		}
8398 		rcu_read_unlock();
8399 	}
8400 
8401 	retval = security_task_setscheduler(p);
8402 	if (retval)
8403 		goto out_put_task;
8404 
8405 	/*
8406 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8407 	 * alloc_user_cpus_ptr() returns NULL.
8408 	 */
8409 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8410 	if (user_mask) {
8411 		cpumask_copy(user_mask, in_mask);
8412 	} else if (IS_ENABLED(CONFIG_SMP)) {
8413 		retval = -ENOMEM;
8414 		goto out_put_task;
8415 	}
8416 
8417 	ac = (struct affinity_context){
8418 		.new_mask  = in_mask,
8419 		.user_mask = user_mask,
8420 		.flags     = SCA_USER,
8421 	};
8422 
8423 	retval = __sched_setaffinity(p, &ac);
8424 	kfree(ac.user_mask);
8425 
8426 out_put_task:
8427 	put_task_struct(p);
8428 	return retval;
8429 }
8430 
8431 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8432 			     struct cpumask *new_mask)
8433 {
8434 	if (len < cpumask_size())
8435 		cpumask_clear(new_mask);
8436 	else if (len > cpumask_size())
8437 		len = cpumask_size();
8438 
8439 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8440 }
8441 
8442 /**
8443  * sys_sched_setaffinity - set the CPU affinity of a process
8444  * @pid: pid of the process
8445  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8446  * @user_mask_ptr: user-space pointer to the new CPU mask
8447  *
8448  * Return: 0 on success. An error code otherwise.
8449  */
8450 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8451 		unsigned long __user *, user_mask_ptr)
8452 {
8453 	cpumask_var_t new_mask;
8454 	int retval;
8455 
8456 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8457 		return -ENOMEM;
8458 
8459 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8460 	if (retval == 0)
8461 		retval = sched_setaffinity(pid, new_mask);
8462 	free_cpumask_var(new_mask);
8463 	return retval;
8464 }
8465 
8466 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8467 {
8468 	struct task_struct *p;
8469 	unsigned long flags;
8470 	int retval;
8471 
8472 	rcu_read_lock();
8473 
8474 	retval = -ESRCH;
8475 	p = find_process_by_pid(pid);
8476 	if (!p)
8477 		goto out_unlock;
8478 
8479 	retval = security_task_getscheduler(p);
8480 	if (retval)
8481 		goto out_unlock;
8482 
8483 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8484 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8485 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8486 
8487 out_unlock:
8488 	rcu_read_unlock();
8489 
8490 	return retval;
8491 }
8492 
8493 /**
8494  * sys_sched_getaffinity - get the CPU affinity of a process
8495  * @pid: pid of the process
8496  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8497  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8498  *
8499  * Return: size of CPU mask copied to user_mask_ptr on success. An
8500  * error code otherwise.
8501  */
8502 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8503 		unsigned long __user *, user_mask_ptr)
8504 {
8505 	int ret;
8506 	cpumask_var_t mask;
8507 
8508 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8509 		return -EINVAL;
8510 	if (len & (sizeof(unsigned long)-1))
8511 		return -EINVAL;
8512 
8513 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8514 		return -ENOMEM;
8515 
8516 	ret = sched_getaffinity(pid, mask);
8517 	if (ret == 0) {
8518 		unsigned int retlen = min(len, cpumask_size());
8519 
8520 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8521 			ret = -EFAULT;
8522 		else
8523 			ret = retlen;
8524 	}
8525 	free_cpumask_var(mask);
8526 
8527 	return ret;
8528 }
8529 
8530 static void do_sched_yield(void)
8531 {
8532 	struct rq_flags rf;
8533 	struct rq *rq;
8534 
8535 	rq = this_rq_lock_irq(&rf);
8536 
8537 	schedstat_inc(rq->yld_count);
8538 	current->sched_class->yield_task(rq);
8539 
8540 	preempt_disable();
8541 	rq_unlock_irq(rq, &rf);
8542 	sched_preempt_enable_no_resched();
8543 
8544 	schedule();
8545 }
8546 
8547 /**
8548  * sys_sched_yield - yield the current processor to other threads.
8549  *
8550  * This function yields the current CPU to other tasks. If there are no
8551  * other threads running on this CPU then this function will return.
8552  *
8553  * Return: 0.
8554  */
8555 SYSCALL_DEFINE0(sched_yield)
8556 {
8557 	do_sched_yield();
8558 	return 0;
8559 }
8560 
8561 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8562 int __sched __cond_resched(void)
8563 {
8564 	if (should_resched(0)) {
8565 		preempt_schedule_common();
8566 		return 1;
8567 	}
8568 	/*
8569 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8570 	 * whether the current CPU is in an RCU read-side critical section,
8571 	 * so the tick can report quiescent states even for CPUs looping
8572 	 * in kernel context.  In contrast, in non-preemptible kernels,
8573 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8574 	 * processes executing in kernel context might never report an
8575 	 * RCU quiescent state.  Therefore, the following code causes
8576 	 * cond_resched() to report a quiescent state, but only when RCU
8577 	 * is in urgent need of one.
8578 	 */
8579 #ifndef CONFIG_PREEMPT_RCU
8580 	rcu_all_qs();
8581 #endif
8582 	return 0;
8583 }
8584 EXPORT_SYMBOL(__cond_resched);
8585 #endif
8586 
8587 #ifdef CONFIG_PREEMPT_DYNAMIC
8588 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8589 #define cond_resched_dynamic_enabled	__cond_resched
8590 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8591 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8592 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8593 
8594 #define might_resched_dynamic_enabled	__cond_resched
8595 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8596 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8597 EXPORT_STATIC_CALL_TRAMP(might_resched);
8598 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8599 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8600 int __sched dynamic_cond_resched(void)
8601 {
8602 	klp_sched_try_switch();
8603 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8604 		return 0;
8605 	return __cond_resched();
8606 }
8607 EXPORT_SYMBOL(dynamic_cond_resched);
8608 
8609 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8610 int __sched dynamic_might_resched(void)
8611 {
8612 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8613 		return 0;
8614 	return __cond_resched();
8615 }
8616 EXPORT_SYMBOL(dynamic_might_resched);
8617 #endif
8618 #endif
8619 
8620 /*
8621  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8622  * call schedule, and on return reacquire the lock.
8623  *
8624  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8625  * operations here to prevent schedule() from being called twice (once via
8626  * spin_unlock(), once by hand).
8627  */
8628 int __cond_resched_lock(spinlock_t *lock)
8629 {
8630 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8631 	int ret = 0;
8632 
8633 	lockdep_assert_held(lock);
8634 
8635 	if (spin_needbreak(lock) || resched) {
8636 		spin_unlock(lock);
8637 		if (!_cond_resched())
8638 			cpu_relax();
8639 		ret = 1;
8640 		spin_lock(lock);
8641 	}
8642 	return ret;
8643 }
8644 EXPORT_SYMBOL(__cond_resched_lock);
8645 
8646 int __cond_resched_rwlock_read(rwlock_t *lock)
8647 {
8648 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8649 	int ret = 0;
8650 
8651 	lockdep_assert_held_read(lock);
8652 
8653 	if (rwlock_needbreak(lock) || resched) {
8654 		read_unlock(lock);
8655 		if (!_cond_resched())
8656 			cpu_relax();
8657 		ret = 1;
8658 		read_lock(lock);
8659 	}
8660 	return ret;
8661 }
8662 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8663 
8664 int __cond_resched_rwlock_write(rwlock_t *lock)
8665 {
8666 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8667 	int ret = 0;
8668 
8669 	lockdep_assert_held_write(lock);
8670 
8671 	if (rwlock_needbreak(lock) || resched) {
8672 		write_unlock(lock);
8673 		if (!_cond_resched())
8674 			cpu_relax();
8675 		ret = 1;
8676 		write_lock(lock);
8677 	}
8678 	return ret;
8679 }
8680 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8681 
8682 #ifdef CONFIG_PREEMPT_DYNAMIC
8683 
8684 #ifdef CONFIG_GENERIC_ENTRY
8685 #include <linux/entry-common.h>
8686 #endif
8687 
8688 /*
8689  * SC:cond_resched
8690  * SC:might_resched
8691  * SC:preempt_schedule
8692  * SC:preempt_schedule_notrace
8693  * SC:irqentry_exit_cond_resched
8694  *
8695  *
8696  * NONE:
8697  *   cond_resched               <- __cond_resched
8698  *   might_resched              <- RET0
8699  *   preempt_schedule           <- NOP
8700  *   preempt_schedule_notrace   <- NOP
8701  *   irqentry_exit_cond_resched <- NOP
8702  *
8703  * VOLUNTARY:
8704  *   cond_resched               <- __cond_resched
8705  *   might_resched              <- __cond_resched
8706  *   preempt_schedule           <- NOP
8707  *   preempt_schedule_notrace   <- NOP
8708  *   irqentry_exit_cond_resched <- NOP
8709  *
8710  * FULL:
8711  *   cond_resched               <- RET0
8712  *   might_resched              <- RET0
8713  *   preempt_schedule           <- preempt_schedule
8714  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8715  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8716  */
8717 
8718 enum {
8719 	preempt_dynamic_undefined = -1,
8720 	preempt_dynamic_none,
8721 	preempt_dynamic_voluntary,
8722 	preempt_dynamic_full,
8723 };
8724 
8725 int preempt_dynamic_mode = preempt_dynamic_undefined;
8726 
8727 int sched_dynamic_mode(const char *str)
8728 {
8729 	if (!strcmp(str, "none"))
8730 		return preempt_dynamic_none;
8731 
8732 	if (!strcmp(str, "voluntary"))
8733 		return preempt_dynamic_voluntary;
8734 
8735 	if (!strcmp(str, "full"))
8736 		return preempt_dynamic_full;
8737 
8738 	return -EINVAL;
8739 }
8740 
8741 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8742 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8743 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8744 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8745 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8746 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8747 #else
8748 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8749 #endif
8750 
8751 static DEFINE_MUTEX(sched_dynamic_mutex);
8752 static bool klp_override;
8753 
8754 static void __sched_dynamic_update(int mode)
8755 {
8756 	/*
8757 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8758 	 * the ZERO state, which is invalid.
8759 	 */
8760 	if (!klp_override)
8761 		preempt_dynamic_enable(cond_resched);
8762 	preempt_dynamic_enable(might_resched);
8763 	preempt_dynamic_enable(preempt_schedule);
8764 	preempt_dynamic_enable(preempt_schedule_notrace);
8765 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8766 
8767 	switch (mode) {
8768 	case preempt_dynamic_none:
8769 		if (!klp_override)
8770 			preempt_dynamic_enable(cond_resched);
8771 		preempt_dynamic_disable(might_resched);
8772 		preempt_dynamic_disable(preempt_schedule);
8773 		preempt_dynamic_disable(preempt_schedule_notrace);
8774 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8775 		if (mode != preempt_dynamic_mode)
8776 			pr_info("Dynamic Preempt: none\n");
8777 		break;
8778 
8779 	case preempt_dynamic_voluntary:
8780 		if (!klp_override)
8781 			preempt_dynamic_enable(cond_resched);
8782 		preempt_dynamic_enable(might_resched);
8783 		preempt_dynamic_disable(preempt_schedule);
8784 		preempt_dynamic_disable(preempt_schedule_notrace);
8785 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8786 		if (mode != preempt_dynamic_mode)
8787 			pr_info("Dynamic Preempt: voluntary\n");
8788 		break;
8789 
8790 	case preempt_dynamic_full:
8791 		if (!klp_override)
8792 			preempt_dynamic_disable(cond_resched);
8793 		preempt_dynamic_disable(might_resched);
8794 		preempt_dynamic_enable(preempt_schedule);
8795 		preempt_dynamic_enable(preempt_schedule_notrace);
8796 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8797 		if (mode != preempt_dynamic_mode)
8798 			pr_info("Dynamic Preempt: full\n");
8799 		break;
8800 	}
8801 
8802 	preempt_dynamic_mode = mode;
8803 }
8804 
8805 void sched_dynamic_update(int mode)
8806 {
8807 	mutex_lock(&sched_dynamic_mutex);
8808 	__sched_dynamic_update(mode);
8809 	mutex_unlock(&sched_dynamic_mutex);
8810 }
8811 
8812 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8813 
8814 static int klp_cond_resched(void)
8815 {
8816 	__klp_sched_try_switch();
8817 	return __cond_resched();
8818 }
8819 
8820 void sched_dynamic_klp_enable(void)
8821 {
8822 	mutex_lock(&sched_dynamic_mutex);
8823 
8824 	klp_override = true;
8825 	static_call_update(cond_resched, klp_cond_resched);
8826 
8827 	mutex_unlock(&sched_dynamic_mutex);
8828 }
8829 
8830 void sched_dynamic_klp_disable(void)
8831 {
8832 	mutex_lock(&sched_dynamic_mutex);
8833 
8834 	klp_override = false;
8835 	__sched_dynamic_update(preempt_dynamic_mode);
8836 
8837 	mutex_unlock(&sched_dynamic_mutex);
8838 }
8839 
8840 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8841 
8842 static int __init setup_preempt_mode(char *str)
8843 {
8844 	int mode = sched_dynamic_mode(str);
8845 	if (mode < 0) {
8846 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8847 		return 0;
8848 	}
8849 
8850 	sched_dynamic_update(mode);
8851 	return 1;
8852 }
8853 __setup("preempt=", setup_preempt_mode);
8854 
8855 static void __init preempt_dynamic_init(void)
8856 {
8857 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8858 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8859 			sched_dynamic_update(preempt_dynamic_none);
8860 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8861 			sched_dynamic_update(preempt_dynamic_voluntary);
8862 		} else {
8863 			/* Default static call setting, nothing to do */
8864 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8865 			preempt_dynamic_mode = preempt_dynamic_full;
8866 			pr_info("Dynamic Preempt: full\n");
8867 		}
8868 	}
8869 }
8870 
8871 #define PREEMPT_MODEL_ACCESSOR(mode) \
8872 	bool preempt_model_##mode(void)						 \
8873 	{									 \
8874 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8875 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8876 	}									 \
8877 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8878 
8879 PREEMPT_MODEL_ACCESSOR(none);
8880 PREEMPT_MODEL_ACCESSOR(voluntary);
8881 PREEMPT_MODEL_ACCESSOR(full);
8882 
8883 #else /* !CONFIG_PREEMPT_DYNAMIC */
8884 
8885 static inline void preempt_dynamic_init(void) { }
8886 
8887 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8888 
8889 /**
8890  * yield - yield the current processor to other threads.
8891  *
8892  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8893  *
8894  * The scheduler is at all times free to pick the calling task as the most
8895  * eligible task to run, if removing the yield() call from your code breaks
8896  * it, it's already broken.
8897  *
8898  * Typical broken usage is:
8899  *
8900  * while (!event)
8901  *	yield();
8902  *
8903  * where one assumes that yield() will let 'the other' process run that will
8904  * make event true. If the current task is a SCHED_FIFO task that will never
8905  * happen. Never use yield() as a progress guarantee!!
8906  *
8907  * If you want to use yield() to wait for something, use wait_event().
8908  * If you want to use yield() to be 'nice' for others, use cond_resched().
8909  * If you still want to use yield(), do not!
8910  */
8911 void __sched yield(void)
8912 {
8913 	set_current_state(TASK_RUNNING);
8914 	do_sched_yield();
8915 }
8916 EXPORT_SYMBOL(yield);
8917 
8918 /**
8919  * yield_to - yield the current processor to another thread in
8920  * your thread group, or accelerate that thread toward the
8921  * processor it's on.
8922  * @p: target task
8923  * @preempt: whether task preemption is allowed or not
8924  *
8925  * It's the caller's job to ensure that the target task struct
8926  * can't go away on us before we can do any checks.
8927  *
8928  * Return:
8929  *	true (>0) if we indeed boosted the target task.
8930  *	false (0) if we failed to boost the target.
8931  *	-ESRCH if there's no task to yield to.
8932  */
8933 int __sched yield_to(struct task_struct *p, bool preempt)
8934 {
8935 	struct task_struct *curr = current;
8936 	struct rq *rq, *p_rq;
8937 	unsigned long flags;
8938 	int yielded = 0;
8939 
8940 	local_irq_save(flags);
8941 	rq = this_rq();
8942 
8943 again:
8944 	p_rq = task_rq(p);
8945 	/*
8946 	 * If we're the only runnable task on the rq and target rq also
8947 	 * has only one task, there's absolutely no point in yielding.
8948 	 */
8949 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8950 		yielded = -ESRCH;
8951 		goto out_irq;
8952 	}
8953 
8954 	double_rq_lock(rq, p_rq);
8955 	if (task_rq(p) != p_rq) {
8956 		double_rq_unlock(rq, p_rq);
8957 		goto again;
8958 	}
8959 
8960 	if (!curr->sched_class->yield_to_task)
8961 		goto out_unlock;
8962 
8963 	if (curr->sched_class != p->sched_class)
8964 		goto out_unlock;
8965 
8966 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8967 		goto out_unlock;
8968 
8969 	yielded = curr->sched_class->yield_to_task(rq, p);
8970 	if (yielded) {
8971 		schedstat_inc(rq->yld_count);
8972 		/*
8973 		 * Make p's CPU reschedule; pick_next_entity takes care of
8974 		 * fairness.
8975 		 */
8976 		if (preempt && rq != p_rq)
8977 			resched_curr(p_rq);
8978 	}
8979 
8980 out_unlock:
8981 	double_rq_unlock(rq, p_rq);
8982 out_irq:
8983 	local_irq_restore(flags);
8984 
8985 	if (yielded > 0)
8986 		schedule();
8987 
8988 	return yielded;
8989 }
8990 EXPORT_SYMBOL_GPL(yield_to);
8991 
8992 int io_schedule_prepare(void)
8993 {
8994 	int old_iowait = current->in_iowait;
8995 
8996 	current->in_iowait = 1;
8997 	blk_flush_plug(current->plug, true);
8998 	return old_iowait;
8999 }
9000 
9001 void io_schedule_finish(int token)
9002 {
9003 	current->in_iowait = token;
9004 }
9005 
9006 /*
9007  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9008  * that process accounting knows that this is a task in IO wait state.
9009  */
9010 long __sched io_schedule_timeout(long timeout)
9011 {
9012 	int token;
9013 	long ret;
9014 
9015 	token = io_schedule_prepare();
9016 	ret = schedule_timeout(timeout);
9017 	io_schedule_finish(token);
9018 
9019 	return ret;
9020 }
9021 EXPORT_SYMBOL(io_schedule_timeout);
9022 
9023 void __sched io_schedule(void)
9024 {
9025 	int token;
9026 
9027 	token = io_schedule_prepare();
9028 	schedule();
9029 	io_schedule_finish(token);
9030 }
9031 EXPORT_SYMBOL(io_schedule);
9032 
9033 /**
9034  * sys_sched_get_priority_max - return maximum RT priority.
9035  * @policy: scheduling class.
9036  *
9037  * Return: On success, this syscall returns the maximum
9038  * rt_priority that can be used by a given scheduling class.
9039  * On failure, a negative error code is returned.
9040  */
9041 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9042 {
9043 	int ret = -EINVAL;
9044 
9045 	switch (policy) {
9046 	case SCHED_FIFO:
9047 	case SCHED_RR:
9048 		ret = MAX_RT_PRIO-1;
9049 		break;
9050 	case SCHED_DEADLINE:
9051 	case SCHED_NORMAL:
9052 	case SCHED_BATCH:
9053 	case SCHED_IDLE:
9054 		ret = 0;
9055 		break;
9056 	}
9057 	return ret;
9058 }
9059 
9060 /**
9061  * sys_sched_get_priority_min - return minimum RT priority.
9062  * @policy: scheduling class.
9063  *
9064  * Return: On success, this syscall returns the minimum
9065  * rt_priority that can be used by a given scheduling class.
9066  * On failure, a negative error code is returned.
9067  */
9068 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9069 {
9070 	int ret = -EINVAL;
9071 
9072 	switch (policy) {
9073 	case SCHED_FIFO:
9074 	case SCHED_RR:
9075 		ret = 1;
9076 		break;
9077 	case SCHED_DEADLINE:
9078 	case SCHED_NORMAL:
9079 	case SCHED_BATCH:
9080 	case SCHED_IDLE:
9081 		ret = 0;
9082 	}
9083 	return ret;
9084 }
9085 
9086 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9087 {
9088 	struct task_struct *p;
9089 	unsigned int time_slice;
9090 	struct rq_flags rf;
9091 	struct rq *rq;
9092 	int retval;
9093 
9094 	if (pid < 0)
9095 		return -EINVAL;
9096 
9097 	retval = -ESRCH;
9098 	rcu_read_lock();
9099 	p = find_process_by_pid(pid);
9100 	if (!p)
9101 		goto out_unlock;
9102 
9103 	retval = security_task_getscheduler(p);
9104 	if (retval)
9105 		goto out_unlock;
9106 
9107 	rq = task_rq_lock(p, &rf);
9108 	time_slice = 0;
9109 	if (p->sched_class->get_rr_interval)
9110 		time_slice = p->sched_class->get_rr_interval(rq, p);
9111 	task_rq_unlock(rq, p, &rf);
9112 
9113 	rcu_read_unlock();
9114 	jiffies_to_timespec64(time_slice, t);
9115 	return 0;
9116 
9117 out_unlock:
9118 	rcu_read_unlock();
9119 	return retval;
9120 }
9121 
9122 /**
9123  * sys_sched_rr_get_interval - return the default timeslice of a process.
9124  * @pid: pid of the process.
9125  * @interval: userspace pointer to the timeslice value.
9126  *
9127  * this syscall writes the default timeslice value of a given process
9128  * into the user-space timespec buffer. A value of '0' means infinity.
9129  *
9130  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9131  * an error code.
9132  */
9133 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9134 		struct __kernel_timespec __user *, interval)
9135 {
9136 	struct timespec64 t;
9137 	int retval = sched_rr_get_interval(pid, &t);
9138 
9139 	if (retval == 0)
9140 		retval = put_timespec64(&t, interval);
9141 
9142 	return retval;
9143 }
9144 
9145 #ifdef CONFIG_COMPAT_32BIT_TIME
9146 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9147 		struct old_timespec32 __user *, interval)
9148 {
9149 	struct timespec64 t;
9150 	int retval = sched_rr_get_interval(pid, &t);
9151 
9152 	if (retval == 0)
9153 		retval = put_old_timespec32(&t, interval);
9154 	return retval;
9155 }
9156 #endif
9157 
9158 void sched_show_task(struct task_struct *p)
9159 {
9160 	unsigned long free = 0;
9161 	int ppid;
9162 
9163 	if (!try_get_task_stack(p))
9164 		return;
9165 
9166 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9167 
9168 	if (task_is_running(p))
9169 		pr_cont("  running task    ");
9170 #ifdef CONFIG_DEBUG_STACK_USAGE
9171 	free = stack_not_used(p);
9172 #endif
9173 	ppid = 0;
9174 	rcu_read_lock();
9175 	if (pid_alive(p))
9176 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9177 	rcu_read_unlock();
9178 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9179 		free, task_pid_nr(p), ppid,
9180 		read_task_thread_flags(p));
9181 
9182 	print_worker_info(KERN_INFO, p);
9183 	print_stop_info(KERN_INFO, p);
9184 	show_stack(p, NULL, KERN_INFO);
9185 	put_task_stack(p);
9186 }
9187 EXPORT_SYMBOL_GPL(sched_show_task);
9188 
9189 static inline bool
9190 state_filter_match(unsigned long state_filter, struct task_struct *p)
9191 {
9192 	unsigned int state = READ_ONCE(p->__state);
9193 
9194 	/* no filter, everything matches */
9195 	if (!state_filter)
9196 		return true;
9197 
9198 	/* filter, but doesn't match */
9199 	if (!(state & state_filter))
9200 		return false;
9201 
9202 	/*
9203 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9204 	 * TASK_KILLABLE).
9205 	 */
9206 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9207 		return false;
9208 
9209 	return true;
9210 }
9211 
9212 
9213 void show_state_filter(unsigned int state_filter)
9214 {
9215 	struct task_struct *g, *p;
9216 
9217 	rcu_read_lock();
9218 	for_each_process_thread(g, p) {
9219 		/*
9220 		 * reset the NMI-timeout, listing all files on a slow
9221 		 * console might take a lot of time:
9222 		 * Also, reset softlockup watchdogs on all CPUs, because
9223 		 * another CPU might be blocked waiting for us to process
9224 		 * an IPI.
9225 		 */
9226 		touch_nmi_watchdog();
9227 		touch_all_softlockup_watchdogs();
9228 		if (state_filter_match(state_filter, p))
9229 			sched_show_task(p);
9230 	}
9231 
9232 #ifdef CONFIG_SCHED_DEBUG
9233 	if (!state_filter)
9234 		sysrq_sched_debug_show();
9235 #endif
9236 	rcu_read_unlock();
9237 	/*
9238 	 * Only show locks if all tasks are dumped:
9239 	 */
9240 	if (!state_filter)
9241 		debug_show_all_locks();
9242 }
9243 
9244 /**
9245  * init_idle - set up an idle thread for a given CPU
9246  * @idle: task in question
9247  * @cpu: CPU the idle task belongs to
9248  *
9249  * NOTE: this function does not set the idle thread's NEED_RESCHED
9250  * flag, to make booting more robust.
9251  */
9252 void __init init_idle(struct task_struct *idle, int cpu)
9253 {
9254 #ifdef CONFIG_SMP
9255 	struct affinity_context ac = (struct affinity_context) {
9256 		.new_mask  = cpumask_of(cpu),
9257 		.flags     = 0,
9258 	};
9259 #endif
9260 	struct rq *rq = cpu_rq(cpu);
9261 	unsigned long flags;
9262 
9263 	__sched_fork(0, idle);
9264 
9265 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9266 	raw_spin_rq_lock(rq);
9267 
9268 	idle->__state = TASK_RUNNING;
9269 	idle->se.exec_start = sched_clock();
9270 	/*
9271 	 * PF_KTHREAD should already be set at this point; regardless, make it
9272 	 * look like a proper per-CPU kthread.
9273 	 */
9274 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9275 	kthread_set_per_cpu(idle, cpu);
9276 
9277 #ifdef CONFIG_SMP
9278 	/*
9279 	 * It's possible that init_idle() gets called multiple times on a task,
9280 	 * in that case do_set_cpus_allowed() will not do the right thing.
9281 	 *
9282 	 * And since this is boot we can forgo the serialization.
9283 	 */
9284 	set_cpus_allowed_common(idle, &ac);
9285 #endif
9286 	/*
9287 	 * We're having a chicken and egg problem, even though we are
9288 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9289 	 * lockdep check in task_group() will fail.
9290 	 *
9291 	 * Similar case to sched_fork(). / Alternatively we could
9292 	 * use task_rq_lock() here and obtain the other rq->lock.
9293 	 *
9294 	 * Silence PROVE_RCU
9295 	 */
9296 	rcu_read_lock();
9297 	__set_task_cpu(idle, cpu);
9298 	rcu_read_unlock();
9299 
9300 	rq->idle = idle;
9301 	rcu_assign_pointer(rq->curr, idle);
9302 	idle->on_rq = TASK_ON_RQ_QUEUED;
9303 #ifdef CONFIG_SMP
9304 	idle->on_cpu = 1;
9305 #endif
9306 	raw_spin_rq_unlock(rq);
9307 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9308 
9309 	/* Set the preempt count _outside_ the spinlocks! */
9310 	init_idle_preempt_count(idle, cpu);
9311 
9312 	/*
9313 	 * The idle tasks have their own, simple scheduling class:
9314 	 */
9315 	idle->sched_class = &idle_sched_class;
9316 	ftrace_graph_init_idle_task(idle, cpu);
9317 	vtime_init_idle(idle, cpu);
9318 #ifdef CONFIG_SMP
9319 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9320 #endif
9321 }
9322 
9323 #ifdef CONFIG_SMP
9324 
9325 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9326 			      const struct cpumask *trial)
9327 {
9328 	int ret = 1;
9329 
9330 	if (cpumask_empty(cur))
9331 		return ret;
9332 
9333 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9334 
9335 	return ret;
9336 }
9337 
9338 int task_can_attach(struct task_struct *p)
9339 {
9340 	int ret = 0;
9341 
9342 	/*
9343 	 * Kthreads which disallow setaffinity shouldn't be moved
9344 	 * to a new cpuset; we don't want to change their CPU
9345 	 * affinity and isolating such threads by their set of
9346 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9347 	 * applicable for such threads.  This prevents checking for
9348 	 * success of set_cpus_allowed_ptr() on all attached tasks
9349 	 * before cpus_mask may be changed.
9350 	 */
9351 	if (p->flags & PF_NO_SETAFFINITY)
9352 		ret = -EINVAL;
9353 
9354 	return ret;
9355 }
9356 
9357 bool sched_smp_initialized __read_mostly;
9358 
9359 #ifdef CONFIG_NUMA_BALANCING
9360 /* Migrate current task p to target_cpu */
9361 int migrate_task_to(struct task_struct *p, int target_cpu)
9362 {
9363 	struct migration_arg arg = { p, target_cpu };
9364 	int curr_cpu = task_cpu(p);
9365 
9366 	if (curr_cpu == target_cpu)
9367 		return 0;
9368 
9369 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9370 		return -EINVAL;
9371 
9372 	/* TODO: This is not properly updating schedstats */
9373 
9374 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9375 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9376 }
9377 
9378 /*
9379  * Requeue a task on a given node and accurately track the number of NUMA
9380  * tasks on the runqueues
9381  */
9382 void sched_setnuma(struct task_struct *p, int nid)
9383 {
9384 	bool queued, running;
9385 	struct rq_flags rf;
9386 	struct rq *rq;
9387 
9388 	rq = task_rq_lock(p, &rf);
9389 	queued = task_on_rq_queued(p);
9390 	running = task_current(rq, p);
9391 
9392 	if (queued)
9393 		dequeue_task(rq, p, DEQUEUE_SAVE);
9394 	if (running)
9395 		put_prev_task(rq, p);
9396 
9397 	p->numa_preferred_nid = nid;
9398 
9399 	if (queued)
9400 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9401 	if (running)
9402 		set_next_task(rq, p);
9403 	task_rq_unlock(rq, p, &rf);
9404 }
9405 #endif /* CONFIG_NUMA_BALANCING */
9406 
9407 #ifdef CONFIG_HOTPLUG_CPU
9408 /*
9409  * Ensure that the idle task is using init_mm right before its CPU goes
9410  * offline.
9411  */
9412 void idle_task_exit(void)
9413 {
9414 	struct mm_struct *mm = current->active_mm;
9415 
9416 	BUG_ON(cpu_online(smp_processor_id()));
9417 	BUG_ON(current != this_rq()->idle);
9418 
9419 	if (mm != &init_mm) {
9420 		switch_mm(mm, &init_mm, current);
9421 		finish_arch_post_lock_switch();
9422 	}
9423 
9424 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9425 }
9426 
9427 static int __balance_push_cpu_stop(void *arg)
9428 {
9429 	struct task_struct *p = arg;
9430 	struct rq *rq = this_rq();
9431 	struct rq_flags rf;
9432 	int cpu;
9433 
9434 	raw_spin_lock_irq(&p->pi_lock);
9435 	rq_lock(rq, &rf);
9436 
9437 	update_rq_clock(rq);
9438 
9439 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9440 		cpu = select_fallback_rq(rq->cpu, p);
9441 		rq = __migrate_task(rq, &rf, p, cpu);
9442 	}
9443 
9444 	rq_unlock(rq, &rf);
9445 	raw_spin_unlock_irq(&p->pi_lock);
9446 
9447 	put_task_struct(p);
9448 
9449 	return 0;
9450 }
9451 
9452 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9453 
9454 /*
9455  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9456  *
9457  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9458  * effective when the hotplug motion is down.
9459  */
9460 static void balance_push(struct rq *rq)
9461 {
9462 	struct task_struct *push_task = rq->curr;
9463 
9464 	lockdep_assert_rq_held(rq);
9465 
9466 	/*
9467 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9468 	 */
9469 	rq->balance_callback = &balance_push_callback;
9470 
9471 	/*
9472 	 * Only active while going offline and when invoked on the outgoing
9473 	 * CPU.
9474 	 */
9475 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9476 		return;
9477 
9478 	/*
9479 	 * Both the cpu-hotplug and stop task are in this case and are
9480 	 * required to complete the hotplug process.
9481 	 */
9482 	if (kthread_is_per_cpu(push_task) ||
9483 	    is_migration_disabled(push_task)) {
9484 
9485 		/*
9486 		 * If this is the idle task on the outgoing CPU try to wake
9487 		 * up the hotplug control thread which might wait for the
9488 		 * last task to vanish. The rcuwait_active() check is
9489 		 * accurate here because the waiter is pinned on this CPU
9490 		 * and can't obviously be running in parallel.
9491 		 *
9492 		 * On RT kernels this also has to check whether there are
9493 		 * pinned and scheduled out tasks on the runqueue. They
9494 		 * need to leave the migrate disabled section first.
9495 		 */
9496 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9497 		    rcuwait_active(&rq->hotplug_wait)) {
9498 			raw_spin_rq_unlock(rq);
9499 			rcuwait_wake_up(&rq->hotplug_wait);
9500 			raw_spin_rq_lock(rq);
9501 		}
9502 		return;
9503 	}
9504 
9505 	get_task_struct(push_task);
9506 	/*
9507 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9508 	 * Both preemption and IRQs are still disabled.
9509 	 */
9510 	preempt_disable();
9511 	raw_spin_rq_unlock(rq);
9512 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9513 			    this_cpu_ptr(&push_work));
9514 	preempt_enable();
9515 	/*
9516 	 * At this point need_resched() is true and we'll take the loop in
9517 	 * schedule(). The next pick is obviously going to be the stop task
9518 	 * which kthread_is_per_cpu() and will push this task away.
9519 	 */
9520 	raw_spin_rq_lock(rq);
9521 }
9522 
9523 static void balance_push_set(int cpu, bool on)
9524 {
9525 	struct rq *rq = cpu_rq(cpu);
9526 	struct rq_flags rf;
9527 
9528 	rq_lock_irqsave(rq, &rf);
9529 	if (on) {
9530 		WARN_ON_ONCE(rq->balance_callback);
9531 		rq->balance_callback = &balance_push_callback;
9532 	} else if (rq->balance_callback == &balance_push_callback) {
9533 		rq->balance_callback = NULL;
9534 	}
9535 	rq_unlock_irqrestore(rq, &rf);
9536 }
9537 
9538 /*
9539  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9540  * inactive. All tasks which are not per CPU kernel threads are either
9541  * pushed off this CPU now via balance_push() or placed on a different CPU
9542  * during wakeup. Wait until the CPU is quiescent.
9543  */
9544 static void balance_hotplug_wait(void)
9545 {
9546 	struct rq *rq = this_rq();
9547 
9548 	rcuwait_wait_event(&rq->hotplug_wait,
9549 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9550 			   TASK_UNINTERRUPTIBLE);
9551 }
9552 
9553 #else
9554 
9555 static inline void balance_push(struct rq *rq)
9556 {
9557 }
9558 
9559 static inline void balance_push_set(int cpu, bool on)
9560 {
9561 }
9562 
9563 static inline void balance_hotplug_wait(void)
9564 {
9565 }
9566 
9567 #endif /* CONFIG_HOTPLUG_CPU */
9568 
9569 void set_rq_online(struct rq *rq)
9570 {
9571 	if (!rq->online) {
9572 		const struct sched_class *class;
9573 
9574 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9575 		rq->online = 1;
9576 
9577 		for_each_class(class) {
9578 			if (class->rq_online)
9579 				class->rq_online(rq);
9580 		}
9581 	}
9582 }
9583 
9584 void set_rq_offline(struct rq *rq)
9585 {
9586 	if (rq->online) {
9587 		const struct sched_class *class;
9588 
9589 		update_rq_clock(rq);
9590 		for_each_class(class) {
9591 			if (class->rq_offline)
9592 				class->rq_offline(rq);
9593 		}
9594 
9595 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9596 		rq->online = 0;
9597 	}
9598 }
9599 
9600 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9601 {
9602 	struct rq_flags rf;
9603 
9604 	rq_lock_irqsave(rq, &rf);
9605 	if (rq->rd) {
9606 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9607 		set_rq_online(rq);
9608 	}
9609 	rq_unlock_irqrestore(rq, &rf);
9610 }
9611 
9612 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9613 {
9614 	struct rq_flags rf;
9615 
9616 	rq_lock_irqsave(rq, &rf);
9617 	if (rq->rd) {
9618 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9619 		set_rq_offline(rq);
9620 	}
9621 	rq_unlock_irqrestore(rq, &rf);
9622 }
9623 
9624 /*
9625  * used to mark begin/end of suspend/resume:
9626  */
9627 static int num_cpus_frozen;
9628 
9629 /*
9630  * Update cpusets according to cpu_active mask.  If cpusets are
9631  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9632  * around partition_sched_domains().
9633  *
9634  * If we come here as part of a suspend/resume, don't touch cpusets because we
9635  * want to restore it back to its original state upon resume anyway.
9636  */
9637 static void cpuset_cpu_active(void)
9638 {
9639 	if (cpuhp_tasks_frozen) {
9640 		/*
9641 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9642 		 * resume sequence. As long as this is not the last online
9643 		 * operation in the resume sequence, just build a single sched
9644 		 * domain, ignoring cpusets.
9645 		 */
9646 		partition_sched_domains(1, NULL, NULL);
9647 		if (--num_cpus_frozen)
9648 			return;
9649 		/*
9650 		 * This is the last CPU online operation. So fall through and
9651 		 * restore the original sched domains by considering the
9652 		 * cpuset configurations.
9653 		 */
9654 		cpuset_force_rebuild();
9655 	}
9656 	cpuset_update_active_cpus();
9657 }
9658 
9659 static int cpuset_cpu_inactive(unsigned int cpu)
9660 {
9661 	if (!cpuhp_tasks_frozen) {
9662 		int ret = dl_bw_check_overflow(cpu);
9663 
9664 		if (ret)
9665 			return ret;
9666 		cpuset_update_active_cpus();
9667 	} else {
9668 		num_cpus_frozen++;
9669 		partition_sched_domains(1, NULL, NULL);
9670 	}
9671 	return 0;
9672 }
9673 
9674 static inline void sched_smt_present_inc(int cpu)
9675 {
9676 #ifdef CONFIG_SCHED_SMT
9677 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9678 		static_branch_inc_cpuslocked(&sched_smt_present);
9679 #endif
9680 }
9681 
9682 static inline void sched_smt_present_dec(int cpu)
9683 {
9684 #ifdef CONFIG_SCHED_SMT
9685 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9686 		static_branch_dec_cpuslocked(&sched_smt_present);
9687 #endif
9688 }
9689 
9690 int sched_cpu_activate(unsigned int cpu)
9691 {
9692 	struct rq *rq = cpu_rq(cpu);
9693 
9694 	/*
9695 	 * Clear the balance_push callback and prepare to schedule
9696 	 * regular tasks.
9697 	 */
9698 	balance_push_set(cpu, false);
9699 
9700 	/*
9701 	 * When going up, increment the number of cores with SMT present.
9702 	 */
9703 	sched_smt_present_inc(cpu);
9704 	set_cpu_active(cpu, true);
9705 
9706 	if (sched_smp_initialized) {
9707 		sched_update_numa(cpu, true);
9708 		sched_domains_numa_masks_set(cpu);
9709 		cpuset_cpu_active();
9710 	}
9711 
9712 	/*
9713 	 * Put the rq online, if not already. This happens:
9714 	 *
9715 	 * 1) In the early boot process, because we build the real domains
9716 	 *    after all CPUs have been brought up.
9717 	 *
9718 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9719 	 *    domains.
9720 	 */
9721 	sched_set_rq_online(rq, cpu);
9722 
9723 	return 0;
9724 }
9725 
9726 int sched_cpu_deactivate(unsigned int cpu)
9727 {
9728 	struct rq *rq = cpu_rq(cpu);
9729 	int ret;
9730 
9731 	/*
9732 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9733 	 * load balancing when not active
9734 	 */
9735 	nohz_balance_exit_idle(rq);
9736 
9737 	set_cpu_active(cpu, false);
9738 
9739 	/*
9740 	 * From this point forward, this CPU will refuse to run any task that
9741 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9742 	 * push those tasks away until this gets cleared, see
9743 	 * sched_cpu_dying().
9744 	 */
9745 	balance_push_set(cpu, true);
9746 
9747 	/*
9748 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9749 	 * preempt-disabled and RCU users of this state to go away such that
9750 	 * all new such users will observe it.
9751 	 *
9752 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9753 	 * ttwu_queue_cond() and is_cpu_allowed().
9754 	 *
9755 	 * Do sync before park smpboot threads to take care the rcu boost case.
9756 	 */
9757 	synchronize_rcu();
9758 
9759 	sched_set_rq_offline(rq, cpu);
9760 
9761 	/*
9762 	 * When going down, decrement the number of cores with SMT present.
9763 	 */
9764 	sched_smt_present_dec(cpu);
9765 
9766 #ifdef CONFIG_SCHED_SMT
9767 	sched_core_cpu_deactivate(cpu);
9768 #endif
9769 
9770 	if (!sched_smp_initialized)
9771 		return 0;
9772 
9773 	sched_update_numa(cpu, false);
9774 	ret = cpuset_cpu_inactive(cpu);
9775 	if (ret) {
9776 		sched_smt_present_inc(cpu);
9777 		sched_set_rq_online(rq, cpu);
9778 		balance_push_set(cpu, false);
9779 		set_cpu_active(cpu, true);
9780 		sched_update_numa(cpu, true);
9781 		return ret;
9782 	}
9783 	sched_domains_numa_masks_clear(cpu);
9784 	return 0;
9785 }
9786 
9787 static void sched_rq_cpu_starting(unsigned int cpu)
9788 {
9789 	struct rq *rq = cpu_rq(cpu);
9790 
9791 	rq->calc_load_update = calc_load_update;
9792 	update_max_interval();
9793 }
9794 
9795 int sched_cpu_starting(unsigned int cpu)
9796 {
9797 	sched_core_cpu_starting(cpu);
9798 	sched_rq_cpu_starting(cpu);
9799 	sched_tick_start(cpu);
9800 	return 0;
9801 }
9802 
9803 #ifdef CONFIG_HOTPLUG_CPU
9804 
9805 /*
9806  * Invoked immediately before the stopper thread is invoked to bring the
9807  * CPU down completely. At this point all per CPU kthreads except the
9808  * hotplug thread (current) and the stopper thread (inactive) have been
9809  * either parked or have been unbound from the outgoing CPU. Ensure that
9810  * any of those which might be on the way out are gone.
9811  *
9812  * If after this point a bound task is being woken on this CPU then the
9813  * responsible hotplug callback has failed to do it's job.
9814  * sched_cpu_dying() will catch it with the appropriate fireworks.
9815  */
9816 int sched_cpu_wait_empty(unsigned int cpu)
9817 {
9818 	balance_hotplug_wait();
9819 	return 0;
9820 }
9821 
9822 /*
9823  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9824  * might have. Called from the CPU stopper task after ensuring that the
9825  * stopper is the last running task on the CPU, so nr_active count is
9826  * stable. We need to take the teardown thread which is calling this into
9827  * account, so we hand in adjust = 1 to the load calculation.
9828  *
9829  * Also see the comment "Global load-average calculations".
9830  */
9831 static void calc_load_migrate(struct rq *rq)
9832 {
9833 	long delta = calc_load_fold_active(rq, 1);
9834 
9835 	if (delta)
9836 		atomic_long_add(delta, &calc_load_tasks);
9837 }
9838 
9839 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9840 {
9841 	struct task_struct *g, *p;
9842 	int cpu = cpu_of(rq);
9843 
9844 	lockdep_assert_rq_held(rq);
9845 
9846 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9847 	for_each_process_thread(g, p) {
9848 		if (task_cpu(p) != cpu)
9849 			continue;
9850 
9851 		if (!task_on_rq_queued(p))
9852 			continue;
9853 
9854 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9855 	}
9856 }
9857 
9858 int sched_cpu_dying(unsigned int cpu)
9859 {
9860 	struct rq *rq = cpu_rq(cpu);
9861 	struct rq_flags rf;
9862 
9863 	/* Handle pending wakeups and then migrate everything off */
9864 	sched_tick_stop(cpu);
9865 
9866 	rq_lock_irqsave(rq, &rf);
9867 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9868 		WARN(true, "Dying CPU not properly vacated!");
9869 		dump_rq_tasks(rq, KERN_WARNING);
9870 	}
9871 	rq_unlock_irqrestore(rq, &rf);
9872 
9873 	calc_load_migrate(rq);
9874 	update_max_interval();
9875 	hrtick_clear(rq);
9876 	sched_core_cpu_dying(cpu);
9877 	return 0;
9878 }
9879 #endif
9880 
9881 void __init sched_init_smp(void)
9882 {
9883 	sched_init_numa(NUMA_NO_NODE);
9884 
9885 	/*
9886 	 * There's no userspace yet to cause hotplug operations; hence all the
9887 	 * CPU masks are stable and all blatant races in the below code cannot
9888 	 * happen.
9889 	 */
9890 	mutex_lock(&sched_domains_mutex);
9891 	sched_init_domains(cpu_active_mask);
9892 	mutex_unlock(&sched_domains_mutex);
9893 
9894 	/* Move init over to a non-isolated CPU */
9895 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9896 		BUG();
9897 	current->flags &= ~PF_NO_SETAFFINITY;
9898 	sched_init_granularity();
9899 
9900 	init_sched_rt_class();
9901 	init_sched_dl_class();
9902 
9903 	sched_smp_initialized = true;
9904 }
9905 
9906 static int __init migration_init(void)
9907 {
9908 	sched_cpu_starting(smp_processor_id());
9909 	return 0;
9910 }
9911 early_initcall(migration_init);
9912 
9913 #else
9914 void __init sched_init_smp(void)
9915 {
9916 	sched_init_granularity();
9917 }
9918 #endif /* CONFIG_SMP */
9919 
9920 int in_sched_functions(unsigned long addr)
9921 {
9922 	return in_lock_functions(addr) ||
9923 		(addr >= (unsigned long)__sched_text_start
9924 		&& addr < (unsigned long)__sched_text_end);
9925 }
9926 
9927 #ifdef CONFIG_CGROUP_SCHED
9928 /*
9929  * Default task group.
9930  * Every task in system belongs to this group at bootup.
9931  */
9932 struct task_group root_task_group;
9933 LIST_HEAD(task_groups);
9934 
9935 /* Cacheline aligned slab cache for task_group */
9936 static struct kmem_cache *task_group_cache __read_mostly;
9937 #endif
9938 
9939 void __init sched_init(void)
9940 {
9941 	unsigned long ptr = 0;
9942 	int i;
9943 
9944 	/* Make sure the linker didn't screw up */
9945 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9946 	       &fair_sched_class != &rt_sched_class + 1 ||
9947 	       &rt_sched_class   != &dl_sched_class + 1);
9948 #ifdef CONFIG_SMP
9949 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9950 #endif
9951 
9952 	wait_bit_init();
9953 
9954 #ifdef CONFIG_FAIR_GROUP_SCHED
9955 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9956 #endif
9957 #ifdef CONFIG_RT_GROUP_SCHED
9958 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9959 #endif
9960 	if (ptr) {
9961 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9962 
9963 #ifdef CONFIG_FAIR_GROUP_SCHED
9964 		root_task_group.se = (struct sched_entity **)ptr;
9965 		ptr += nr_cpu_ids * sizeof(void **);
9966 
9967 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9968 		ptr += nr_cpu_ids * sizeof(void **);
9969 
9970 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9971 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9972 #endif /* CONFIG_FAIR_GROUP_SCHED */
9973 #ifdef CONFIG_RT_GROUP_SCHED
9974 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9975 		ptr += nr_cpu_ids * sizeof(void **);
9976 
9977 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9978 		ptr += nr_cpu_ids * sizeof(void **);
9979 
9980 #endif /* CONFIG_RT_GROUP_SCHED */
9981 	}
9982 
9983 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9984 
9985 #ifdef CONFIG_SMP
9986 	init_defrootdomain();
9987 #endif
9988 
9989 #ifdef CONFIG_RT_GROUP_SCHED
9990 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9991 			global_rt_period(), global_rt_runtime());
9992 #endif /* CONFIG_RT_GROUP_SCHED */
9993 
9994 #ifdef CONFIG_CGROUP_SCHED
9995 	task_group_cache = KMEM_CACHE(task_group, 0);
9996 
9997 	list_add(&root_task_group.list, &task_groups);
9998 	INIT_LIST_HEAD(&root_task_group.children);
9999 	INIT_LIST_HEAD(&root_task_group.siblings);
10000 	autogroup_init(&init_task);
10001 #endif /* CONFIG_CGROUP_SCHED */
10002 
10003 	for_each_possible_cpu(i) {
10004 		struct rq *rq;
10005 
10006 		rq = cpu_rq(i);
10007 		raw_spin_lock_init(&rq->__lock);
10008 		rq->nr_running = 0;
10009 		rq->calc_load_active = 0;
10010 		rq->calc_load_update = jiffies + LOAD_FREQ;
10011 		init_cfs_rq(&rq->cfs);
10012 		init_rt_rq(&rq->rt);
10013 		init_dl_rq(&rq->dl);
10014 #ifdef CONFIG_FAIR_GROUP_SCHED
10015 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10016 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10017 		/*
10018 		 * How much CPU bandwidth does root_task_group get?
10019 		 *
10020 		 * In case of task-groups formed thr' the cgroup filesystem, it
10021 		 * gets 100% of the CPU resources in the system. This overall
10022 		 * system CPU resource is divided among the tasks of
10023 		 * root_task_group and its child task-groups in a fair manner,
10024 		 * based on each entity's (task or task-group's) weight
10025 		 * (se->load.weight).
10026 		 *
10027 		 * In other words, if root_task_group has 10 tasks of weight
10028 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10029 		 * then A0's share of the CPU resource is:
10030 		 *
10031 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10032 		 *
10033 		 * We achieve this by letting root_task_group's tasks sit
10034 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10035 		 */
10036 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10037 #endif /* CONFIG_FAIR_GROUP_SCHED */
10038 
10039 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10040 #ifdef CONFIG_RT_GROUP_SCHED
10041 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10042 #endif
10043 #ifdef CONFIG_SMP
10044 		rq->sd = NULL;
10045 		rq->rd = NULL;
10046 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10047 		rq->balance_callback = &balance_push_callback;
10048 		rq->active_balance = 0;
10049 		rq->next_balance = jiffies;
10050 		rq->push_cpu = 0;
10051 		rq->cpu = i;
10052 		rq->online = 0;
10053 		rq->idle_stamp = 0;
10054 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10055 		rq->wake_stamp = jiffies;
10056 		rq->wake_avg_idle = rq->avg_idle;
10057 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10058 
10059 		INIT_LIST_HEAD(&rq->cfs_tasks);
10060 
10061 		rq_attach_root(rq, &def_root_domain);
10062 #ifdef CONFIG_NO_HZ_COMMON
10063 		rq->last_blocked_load_update_tick = jiffies;
10064 		atomic_set(&rq->nohz_flags, 0);
10065 
10066 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10067 #endif
10068 #ifdef CONFIG_HOTPLUG_CPU
10069 		rcuwait_init(&rq->hotplug_wait);
10070 #endif
10071 #endif /* CONFIG_SMP */
10072 		hrtick_rq_init(rq);
10073 		atomic_set(&rq->nr_iowait, 0);
10074 
10075 #ifdef CONFIG_SCHED_CORE
10076 		rq->core = rq;
10077 		rq->core_pick = NULL;
10078 		rq->core_enabled = 0;
10079 		rq->core_tree = RB_ROOT;
10080 		rq->core_forceidle_count = 0;
10081 		rq->core_forceidle_occupation = 0;
10082 		rq->core_forceidle_start = 0;
10083 
10084 		rq->core_cookie = 0UL;
10085 #endif
10086 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10087 	}
10088 
10089 	set_load_weight(&init_task, false);
10090 
10091 	/*
10092 	 * The boot idle thread does lazy MMU switching as well:
10093 	 */
10094 	mmgrab_lazy_tlb(&init_mm);
10095 	enter_lazy_tlb(&init_mm, current);
10096 
10097 	/*
10098 	 * The idle task doesn't need the kthread struct to function, but it
10099 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10100 	 * if we want to avoid special-casing it in code that deals with per-CPU
10101 	 * kthreads.
10102 	 */
10103 	WARN_ON(!set_kthread_struct(current));
10104 
10105 	/*
10106 	 * Make us the idle thread. Technically, schedule() should not be
10107 	 * called from this thread, however somewhere below it might be,
10108 	 * but because we are the idle thread, we just pick up running again
10109 	 * when this runqueue becomes "idle".
10110 	 */
10111 	init_idle(current, smp_processor_id());
10112 
10113 	calc_load_update = jiffies + LOAD_FREQ;
10114 
10115 #ifdef CONFIG_SMP
10116 	idle_thread_set_boot_cpu();
10117 	balance_push_set(smp_processor_id(), false);
10118 #endif
10119 	init_sched_fair_class();
10120 
10121 	psi_init();
10122 
10123 	init_uclamp();
10124 
10125 	preempt_dynamic_init();
10126 
10127 	scheduler_running = 1;
10128 }
10129 
10130 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10131 
10132 void __might_sleep(const char *file, int line)
10133 {
10134 	unsigned int state = get_current_state();
10135 	/*
10136 	 * Blocking primitives will set (and therefore destroy) current->state,
10137 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10138 	 * otherwise we will destroy state.
10139 	 */
10140 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10141 			"do not call blocking ops when !TASK_RUNNING; "
10142 			"state=%x set at [<%p>] %pS\n", state,
10143 			(void *)current->task_state_change,
10144 			(void *)current->task_state_change);
10145 
10146 	__might_resched(file, line, 0);
10147 }
10148 EXPORT_SYMBOL(__might_sleep);
10149 
10150 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10151 {
10152 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10153 		return;
10154 
10155 	if (preempt_count() == preempt_offset)
10156 		return;
10157 
10158 	pr_err("Preemption disabled at:");
10159 	print_ip_sym(KERN_ERR, ip);
10160 }
10161 
10162 static inline bool resched_offsets_ok(unsigned int offsets)
10163 {
10164 	unsigned int nested = preempt_count();
10165 
10166 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10167 
10168 	return nested == offsets;
10169 }
10170 
10171 void __might_resched(const char *file, int line, unsigned int offsets)
10172 {
10173 	/* Ratelimiting timestamp: */
10174 	static unsigned long prev_jiffy;
10175 
10176 	unsigned long preempt_disable_ip;
10177 
10178 	/* WARN_ON_ONCE() by default, no rate limit required: */
10179 	rcu_sleep_check();
10180 
10181 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10182 	     !is_idle_task(current) && !current->non_block_count) ||
10183 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10184 	    oops_in_progress)
10185 		return;
10186 
10187 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10188 		return;
10189 	prev_jiffy = jiffies;
10190 
10191 	/* Save this before calling printk(), since that will clobber it: */
10192 	preempt_disable_ip = get_preempt_disable_ip(current);
10193 
10194 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10195 	       file, line);
10196 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10197 	       in_atomic(), irqs_disabled(), current->non_block_count,
10198 	       current->pid, current->comm);
10199 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10200 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10201 
10202 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10203 		pr_err("RCU nest depth: %d, expected: %u\n",
10204 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10205 	}
10206 
10207 	if (task_stack_end_corrupted(current))
10208 		pr_emerg("Thread overran stack, or stack corrupted\n");
10209 
10210 	debug_show_held_locks(current);
10211 	if (irqs_disabled())
10212 		print_irqtrace_events(current);
10213 
10214 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10215 				 preempt_disable_ip);
10216 
10217 	dump_stack();
10218 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10219 }
10220 EXPORT_SYMBOL(__might_resched);
10221 
10222 void __cant_sleep(const char *file, int line, int preempt_offset)
10223 {
10224 	static unsigned long prev_jiffy;
10225 
10226 	if (irqs_disabled())
10227 		return;
10228 
10229 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10230 		return;
10231 
10232 	if (preempt_count() > preempt_offset)
10233 		return;
10234 
10235 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10236 		return;
10237 	prev_jiffy = jiffies;
10238 
10239 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10240 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10241 			in_atomic(), irqs_disabled(),
10242 			current->pid, current->comm);
10243 
10244 	debug_show_held_locks(current);
10245 	dump_stack();
10246 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10247 }
10248 EXPORT_SYMBOL_GPL(__cant_sleep);
10249 
10250 #ifdef CONFIG_SMP
10251 void __cant_migrate(const char *file, int line)
10252 {
10253 	static unsigned long prev_jiffy;
10254 
10255 	if (irqs_disabled())
10256 		return;
10257 
10258 	if (is_migration_disabled(current))
10259 		return;
10260 
10261 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10262 		return;
10263 
10264 	if (preempt_count() > 0)
10265 		return;
10266 
10267 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10268 		return;
10269 	prev_jiffy = jiffies;
10270 
10271 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10272 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10273 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10274 	       current->pid, current->comm);
10275 
10276 	debug_show_held_locks(current);
10277 	dump_stack();
10278 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10279 }
10280 EXPORT_SYMBOL_GPL(__cant_migrate);
10281 #endif
10282 #endif
10283 
10284 #ifdef CONFIG_MAGIC_SYSRQ
10285 void normalize_rt_tasks(void)
10286 {
10287 	struct task_struct *g, *p;
10288 	struct sched_attr attr = {
10289 		.sched_policy = SCHED_NORMAL,
10290 	};
10291 
10292 	read_lock(&tasklist_lock);
10293 	for_each_process_thread(g, p) {
10294 		/*
10295 		 * Only normalize user tasks:
10296 		 */
10297 		if (p->flags & PF_KTHREAD)
10298 			continue;
10299 
10300 		p->se.exec_start = 0;
10301 		schedstat_set(p->stats.wait_start,  0);
10302 		schedstat_set(p->stats.sleep_start, 0);
10303 		schedstat_set(p->stats.block_start, 0);
10304 
10305 		if (!dl_task(p) && !rt_task(p)) {
10306 			/*
10307 			 * Renice negative nice level userspace
10308 			 * tasks back to 0:
10309 			 */
10310 			if (task_nice(p) < 0)
10311 				set_user_nice(p, 0);
10312 			continue;
10313 		}
10314 
10315 		__sched_setscheduler(p, &attr, false, false);
10316 	}
10317 	read_unlock(&tasklist_lock);
10318 }
10319 
10320 #endif /* CONFIG_MAGIC_SYSRQ */
10321 
10322 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10323 /*
10324  * These functions are only useful for the IA64 MCA handling, or kdb.
10325  *
10326  * They can only be called when the whole system has been
10327  * stopped - every CPU needs to be quiescent, and no scheduling
10328  * activity can take place. Using them for anything else would
10329  * be a serious bug, and as a result, they aren't even visible
10330  * under any other configuration.
10331  */
10332 
10333 /**
10334  * curr_task - return the current task for a given CPU.
10335  * @cpu: the processor in question.
10336  *
10337  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10338  *
10339  * Return: The current task for @cpu.
10340  */
10341 struct task_struct *curr_task(int cpu)
10342 {
10343 	return cpu_curr(cpu);
10344 }
10345 
10346 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10347 
10348 #ifdef CONFIG_IA64
10349 /**
10350  * ia64_set_curr_task - set the current task for a given CPU.
10351  * @cpu: the processor in question.
10352  * @p: the task pointer to set.
10353  *
10354  * Description: This function must only be used when non-maskable interrupts
10355  * are serviced on a separate stack. It allows the architecture to switch the
10356  * notion of the current task on a CPU in a non-blocking manner. This function
10357  * must be called with all CPU's synchronized, and interrupts disabled, the
10358  * and caller must save the original value of the current task (see
10359  * curr_task() above) and restore that value before reenabling interrupts and
10360  * re-starting the system.
10361  *
10362  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10363  */
10364 void ia64_set_curr_task(int cpu, struct task_struct *p)
10365 {
10366 	cpu_curr(cpu) = p;
10367 }
10368 
10369 #endif
10370 
10371 #ifdef CONFIG_CGROUP_SCHED
10372 /* task_group_lock serializes the addition/removal of task groups */
10373 static DEFINE_SPINLOCK(task_group_lock);
10374 
10375 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10376 					    struct task_group *parent)
10377 {
10378 #ifdef CONFIG_UCLAMP_TASK_GROUP
10379 	enum uclamp_id clamp_id;
10380 
10381 	for_each_clamp_id(clamp_id) {
10382 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10383 			      uclamp_none(clamp_id), false);
10384 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10385 	}
10386 #endif
10387 }
10388 
10389 static void sched_free_group(struct task_group *tg)
10390 {
10391 	free_fair_sched_group(tg);
10392 	free_rt_sched_group(tg);
10393 	autogroup_free(tg);
10394 	kmem_cache_free(task_group_cache, tg);
10395 }
10396 
10397 static void sched_free_group_rcu(struct rcu_head *rcu)
10398 {
10399 	sched_free_group(container_of(rcu, struct task_group, rcu));
10400 }
10401 
10402 static void sched_unregister_group(struct task_group *tg)
10403 {
10404 	unregister_fair_sched_group(tg);
10405 	unregister_rt_sched_group(tg);
10406 	/*
10407 	 * We have to wait for yet another RCU grace period to expire, as
10408 	 * print_cfs_stats() might run concurrently.
10409 	 */
10410 	call_rcu(&tg->rcu, sched_free_group_rcu);
10411 }
10412 
10413 /* allocate runqueue etc for a new task group */
10414 struct task_group *sched_create_group(struct task_group *parent)
10415 {
10416 	struct task_group *tg;
10417 
10418 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10419 	if (!tg)
10420 		return ERR_PTR(-ENOMEM);
10421 
10422 	if (!alloc_fair_sched_group(tg, parent))
10423 		goto err;
10424 
10425 	if (!alloc_rt_sched_group(tg, parent))
10426 		goto err;
10427 
10428 	alloc_uclamp_sched_group(tg, parent);
10429 
10430 	return tg;
10431 
10432 err:
10433 	sched_free_group(tg);
10434 	return ERR_PTR(-ENOMEM);
10435 }
10436 
10437 void sched_online_group(struct task_group *tg, struct task_group *parent)
10438 {
10439 	unsigned long flags;
10440 
10441 	spin_lock_irqsave(&task_group_lock, flags);
10442 	list_add_rcu(&tg->list, &task_groups);
10443 
10444 	/* Root should already exist: */
10445 	WARN_ON(!parent);
10446 
10447 	tg->parent = parent;
10448 	INIT_LIST_HEAD(&tg->children);
10449 	list_add_rcu(&tg->siblings, &parent->children);
10450 	spin_unlock_irqrestore(&task_group_lock, flags);
10451 
10452 	online_fair_sched_group(tg);
10453 }
10454 
10455 /* rcu callback to free various structures associated with a task group */
10456 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10457 {
10458 	/* Now it should be safe to free those cfs_rqs: */
10459 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10460 }
10461 
10462 void sched_destroy_group(struct task_group *tg)
10463 {
10464 	/* Wait for possible concurrent references to cfs_rqs complete: */
10465 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10466 }
10467 
10468 void sched_release_group(struct task_group *tg)
10469 {
10470 	unsigned long flags;
10471 
10472 	/*
10473 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10474 	 * sched_cfs_period_timer()).
10475 	 *
10476 	 * For this to be effective, we have to wait for all pending users of
10477 	 * this task group to leave their RCU critical section to ensure no new
10478 	 * user will see our dying task group any more. Specifically ensure
10479 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10480 	 *
10481 	 * We therefore defer calling unregister_fair_sched_group() to
10482 	 * sched_unregister_group() which is guarantied to get called only after the
10483 	 * current RCU grace period has expired.
10484 	 */
10485 	spin_lock_irqsave(&task_group_lock, flags);
10486 	list_del_rcu(&tg->list);
10487 	list_del_rcu(&tg->siblings);
10488 	spin_unlock_irqrestore(&task_group_lock, flags);
10489 }
10490 
10491 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10492 {
10493 	struct task_group *tg;
10494 
10495 	/*
10496 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10497 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10498 	 * to prevent lockdep warnings.
10499 	 */
10500 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10501 			  struct task_group, css);
10502 	tg = autogroup_task_group(tsk, tg);
10503 
10504 	return tg;
10505 }
10506 
10507 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10508 {
10509 	tsk->sched_task_group = group;
10510 
10511 #ifdef CONFIG_FAIR_GROUP_SCHED
10512 	if (tsk->sched_class->task_change_group)
10513 		tsk->sched_class->task_change_group(tsk);
10514 	else
10515 #endif
10516 		set_task_rq(tsk, task_cpu(tsk));
10517 }
10518 
10519 /*
10520  * Change task's runqueue when it moves between groups.
10521  *
10522  * The caller of this function should have put the task in its new group by
10523  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10524  * its new group.
10525  */
10526 void sched_move_task(struct task_struct *tsk)
10527 {
10528 	int queued, running, queue_flags =
10529 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10530 	struct task_group *group;
10531 	struct rq_flags rf;
10532 	struct rq *rq;
10533 
10534 	rq = task_rq_lock(tsk, &rf);
10535 	/*
10536 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10537 	 * group changes.
10538 	 */
10539 	group = sched_get_task_group(tsk);
10540 	if (group == tsk->sched_task_group)
10541 		goto unlock;
10542 
10543 	update_rq_clock(rq);
10544 
10545 	running = task_current(rq, tsk);
10546 	queued = task_on_rq_queued(tsk);
10547 
10548 	if (queued)
10549 		dequeue_task(rq, tsk, queue_flags);
10550 	if (running)
10551 		put_prev_task(rq, tsk);
10552 
10553 	sched_change_group(tsk, group);
10554 
10555 	if (queued)
10556 		enqueue_task(rq, tsk, queue_flags);
10557 	if (running) {
10558 		set_next_task(rq, tsk);
10559 		/*
10560 		 * After changing group, the running task may have joined a
10561 		 * throttled one but it's still the running task. Trigger a
10562 		 * resched to make sure that task can still run.
10563 		 */
10564 		resched_curr(rq);
10565 	}
10566 
10567 unlock:
10568 	task_rq_unlock(rq, tsk, &rf);
10569 }
10570 
10571 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10572 {
10573 	return css ? container_of(css, struct task_group, css) : NULL;
10574 }
10575 
10576 static struct cgroup_subsys_state *
10577 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10578 {
10579 	struct task_group *parent = css_tg(parent_css);
10580 	struct task_group *tg;
10581 
10582 	if (!parent) {
10583 		/* This is early initialization for the top cgroup */
10584 		return &root_task_group.css;
10585 	}
10586 
10587 	tg = sched_create_group(parent);
10588 	if (IS_ERR(tg))
10589 		return ERR_PTR(-ENOMEM);
10590 
10591 	return &tg->css;
10592 }
10593 
10594 /* Expose task group only after completing cgroup initialization */
10595 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10596 {
10597 	struct task_group *tg = css_tg(css);
10598 	struct task_group *parent = css_tg(css->parent);
10599 
10600 	if (parent)
10601 		sched_online_group(tg, parent);
10602 
10603 #ifdef CONFIG_UCLAMP_TASK_GROUP
10604 	/* Propagate the effective uclamp value for the new group */
10605 	mutex_lock(&uclamp_mutex);
10606 	rcu_read_lock();
10607 	cpu_util_update_eff(css);
10608 	rcu_read_unlock();
10609 	mutex_unlock(&uclamp_mutex);
10610 #endif
10611 
10612 	return 0;
10613 }
10614 
10615 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10616 {
10617 	struct task_group *tg = css_tg(css);
10618 
10619 	sched_release_group(tg);
10620 }
10621 
10622 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10623 {
10624 	struct task_group *tg = css_tg(css);
10625 
10626 	/*
10627 	 * Relies on the RCU grace period between css_released() and this.
10628 	 */
10629 	sched_unregister_group(tg);
10630 }
10631 
10632 #ifdef CONFIG_RT_GROUP_SCHED
10633 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10634 {
10635 	struct task_struct *task;
10636 	struct cgroup_subsys_state *css;
10637 
10638 	cgroup_taskset_for_each(task, css, tset) {
10639 		if (!sched_rt_can_attach(css_tg(css), task))
10640 			return -EINVAL;
10641 	}
10642 	return 0;
10643 }
10644 #endif
10645 
10646 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10647 {
10648 	struct task_struct *task;
10649 	struct cgroup_subsys_state *css;
10650 
10651 	cgroup_taskset_for_each(task, css, tset)
10652 		sched_move_task(task);
10653 }
10654 
10655 #ifdef CONFIG_UCLAMP_TASK_GROUP
10656 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10657 {
10658 	struct cgroup_subsys_state *top_css = css;
10659 	struct uclamp_se *uc_parent = NULL;
10660 	struct uclamp_se *uc_se = NULL;
10661 	unsigned int eff[UCLAMP_CNT];
10662 	enum uclamp_id clamp_id;
10663 	unsigned int clamps;
10664 
10665 	lockdep_assert_held(&uclamp_mutex);
10666 	SCHED_WARN_ON(!rcu_read_lock_held());
10667 
10668 	css_for_each_descendant_pre(css, top_css) {
10669 		uc_parent = css_tg(css)->parent
10670 			? css_tg(css)->parent->uclamp : NULL;
10671 
10672 		for_each_clamp_id(clamp_id) {
10673 			/* Assume effective clamps matches requested clamps */
10674 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10675 			/* Cap effective clamps with parent's effective clamps */
10676 			if (uc_parent &&
10677 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10678 				eff[clamp_id] = uc_parent[clamp_id].value;
10679 			}
10680 		}
10681 		/* Ensure protection is always capped by limit */
10682 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10683 
10684 		/* Propagate most restrictive effective clamps */
10685 		clamps = 0x0;
10686 		uc_se = css_tg(css)->uclamp;
10687 		for_each_clamp_id(clamp_id) {
10688 			if (eff[clamp_id] == uc_se[clamp_id].value)
10689 				continue;
10690 			uc_se[clamp_id].value = eff[clamp_id];
10691 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10692 			clamps |= (0x1 << clamp_id);
10693 		}
10694 		if (!clamps) {
10695 			css = css_rightmost_descendant(css);
10696 			continue;
10697 		}
10698 
10699 		/* Immediately update descendants RUNNABLE tasks */
10700 		uclamp_update_active_tasks(css);
10701 	}
10702 }
10703 
10704 /*
10705  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10706  * C expression. Since there is no way to convert a macro argument (N) into a
10707  * character constant, use two levels of macros.
10708  */
10709 #define _POW10(exp) ((unsigned int)1e##exp)
10710 #define POW10(exp) _POW10(exp)
10711 
10712 struct uclamp_request {
10713 #define UCLAMP_PERCENT_SHIFT	2
10714 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10715 	s64 percent;
10716 	u64 util;
10717 	int ret;
10718 };
10719 
10720 static inline struct uclamp_request
10721 capacity_from_percent(char *buf)
10722 {
10723 	struct uclamp_request req = {
10724 		.percent = UCLAMP_PERCENT_SCALE,
10725 		.util = SCHED_CAPACITY_SCALE,
10726 		.ret = 0,
10727 	};
10728 
10729 	buf = strim(buf);
10730 	if (strcmp(buf, "max")) {
10731 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10732 					     &req.percent);
10733 		if (req.ret)
10734 			return req;
10735 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10736 			req.ret = -ERANGE;
10737 			return req;
10738 		}
10739 
10740 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10741 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10742 	}
10743 
10744 	return req;
10745 }
10746 
10747 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10748 				size_t nbytes, loff_t off,
10749 				enum uclamp_id clamp_id)
10750 {
10751 	struct uclamp_request req;
10752 	struct task_group *tg;
10753 
10754 	req = capacity_from_percent(buf);
10755 	if (req.ret)
10756 		return req.ret;
10757 
10758 	static_branch_enable(&sched_uclamp_used);
10759 
10760 	mutex_lock(&uclamp_mutex);
10761 	rcu_read_lock();
10762 
10763 	tg = css_tg(of_css(of));
10764 	if (tg->uclamp_req[clamp_id].value != req.util)
10765 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10766 
10767 	/*
10768 	 * Because of not recoverable conversion rounding we keep track of the
10769 	 * exact requested value
10770 	 */
10771 	tg->uclamp_pct[clamp_id] = req.percent;
10772 
10773 	/* Update effective clamps to track the most restrictive value */
10774 	cpu_util_update_eff(of_css(of));
10775 
10776 	rcu_read_unlock();
10777 	mutex_unlock(&uclamp_mutex);
10778 
10779 	return nbytes;
10780 }
10781 
10782 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10783 				    char *buf, size_t nbytes,
10784 				    loff_t off)
10785 {
10786 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10787 }
10788 
10789 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10790 				    char *buf, size_t nbytes,
10791 				    loff_t off)
10792 {
10793 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10794 }
10795 
10796 static inline void cpu_uclamp_print(struct seq_file *sf,
10797 				    enum uclamp_id clamp_id)
10798 {
10799 	struct task_group *tg;
10800 	u64 util_clamp;
10801 	u64 percent;
10802 	u32 rem;
10803 
10804 	rcu_read_lock();
10805 	tg = css_tg(seq_css(sf));
10806 	util_clamp = tg->uclamp_req[clamp_id].value;
10807 	rcu_read_unlock();
10808 
10809 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10810 		seq_puts(sf, "max\n");
10811 		return;
10812 	}
10813 
10814 	percent = tg->uclamp_pct[clamp_id];
10815 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10816 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10817 }
10818 
10819 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10820 {
10821 	cpu_uclamp_print(sf, UCLAMP_MIN);
10822 	return 0;
10823 }
10824 
10825 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10826 {
10827 	cpu_uclamp_print(sf, UCLAMP_MAX);
10828 	return 0;
10829 }
10830 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10831 
10832 #ifdef CONFIG_FAIR_GROUP_SCHED
10833 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10834 				struct cftype *cftype, u64 shareval)
10835 {
10836 	if (shareval > scale_load_down(ULONG_MAX))
10837 		shareval = MAX_SHARES;
10838 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10839 }
10840 
10841 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10842 			       struct cftype *cft)
10843 {
10844 	struct task_group *tg = css_tg(css);
10845 
10846 	return (u64) scale_load_down(tg->shares);
10847 }
10848 
10849 #ifdef CONFIG_CFS_BANDWIDTH
10850 static DEFINE_MUTEX(cfs_constraints_mutex);
10851 
10852 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10853 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10854 /* More than 203 days if BW_SHIFT equals 20. */
10855 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10856 
10857 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10858 
10859 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10860 				u64 burst)
10861 {
10862 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10863 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10864 
10865 	if (tg == &root_task_group)
10866 		return -EINVAL;
10867 
10868 	/*
10869 	 * Ensure we have at some amount of bandwidth every period.  This is
10870 	 * to prevent reaching a state of large arrears when throttled via
10871 	 * entity_tick() resulting in prolonged exit starvation.
10872 	 */
10873 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10874 		return -EINVAL;
10875 
10876 	/*
10877 	 * Likewise, bound things on the other side by preventing insane quota
10878 	 * periods.  This also allows us to normalize in computing quota
10879 	 * feasibility.
10880 	 */
10881 	if (period > max_cfs_quota_period)
10882 		return -EINVAL;
10883 
10884 	/*
10885 	 * Bound quota to defend quota against overflow during bandwidth shift.
10886 	 */
10887 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10888 		return -EINVAL;
10889 
10890 	if (quota != RUNTIME_INF && (burst > quota ||
10891 				     burst + quota > max_cfs_runtime))
10892 		return -EINVAL;
10893 
10894 	/*
10895 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10896 	 * unthrottle_offline_cfs_rqs().
10897 	 */
10898 	guard(cpus_read_lock)();
10899 	guard(mutex)(&cfs_constraints_mutex);
10900 
10901 	ret = __cfs_schedulable(tg, period, quota);
10902 	if (ret)
10903 		return ret;
10904 
10905 	runtime_enabled = quota != RUNTIME_INF;
10906 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10907 	/*
10908 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10909 	 * before making related changes, and on->off must occur afterwards
10910 	 */
10911 	if (runtime_enabled && !runtime_was_enabled)
10912 		cfs_bandwidth_usage_inc();
10913 
10914 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10915 		cfs_b->period = ns_to_ktime(period);
10916 		cfs_b->quota = quota;
10917 		cfs_b->burst = burst;
10918 
10919 		__refill_cfs_bandwidth_runtime(cfs_b);
10920 
10921 		/*
10922 		 * Restart the period timer (if active) to handle new
10923 		 * period expiry:
10924 		 */
10925 		if (runtime_enabled)
10926 			start_cfs_bandwidth(cfs_b);
10927 	}
10928 
10929 	for_each_online_cpu(i) {
10930 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10931 		struct rq *rq = cfs_rq->rq;
10932 
10933 		guard(rq_lock_irq)(rq);
10934 		cfs_rq->runtime_enabled = runtime_enabled;
10935 		cfs_rq->runtime_remaining = 0;
10936 
10937 		if (cfs_rq->throttled)
10938 			unthrottle_cfs_rq(cfs_rq);
10939 	}
10940 
10941 	if (runtime_was_enabled && !runtime_enabled)
10942 		cfs_bandwidth_usage_dec();
10943 
10944 	return 0;
10945 }
10946 
10947 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10948 {
10949 	u64 quota, period, burst;
10950 
10951 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10952 	burst = tg->cfs_bandwidth.burst;
10953 	if (cfs_quota_us < 0)
10954 		quota = RUNTIME_INF;
10955 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10956 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10957 	else
10958 		return -EINVAL;
10959 
10960 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10961 }
10962 
10963 static long tg_get_cfs_quota(struct task_group *tg)
10964 {
10965 	u64 quota_us;
10966 
10967 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10968 		return -1;
10969 
10970 	quota_us = tg->cfs_bandwidth.quota;
10971 	do_div(quota_us, NSEC_PER_USEC);
10972 
10973 	return quota_us;
10974 }
10975 
10976 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10977 {
10978 	u64 quota, period, burst;
10979 
10980 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10981 		return -EINVAL;
10982 
10983 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10984 	quota = tg->cfs_bandwidth.quota;
10985 	burst = tg->cfs_bandwidth.burst;
10986 
10987 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10988 }
10989 
10990 static long tg_get_cfs_period(struct task_group *tg)
10991 {
10992 	u64 cfs_period_us;
10993 
10994 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10995 	do_div(cfs_period_us, NSEC_PER_USEC);
10996 
10997 	return cfs_period_us;
10998 }
10999 
11000 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11001 {
11002 	u64 quota, period, burst;
11003 
11004 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11005 		return -EINVAL;
11006 
11007 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11008 	period = ktime_to_ns(tg->cfs_bandwidth.period);
11009 	quota = tg->cfs_bandwidth.quota;
11010 
11011 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11012 }
11013 
11014 static long tg_get_cfs_burst(struct task_group *tg)
11015 {
11016 	u64 burst_us;
11017 
11018 	burst_us = tg->cfs_bandwidth.burst;
11019 	do_div(burst_us, NSEC_PER_USEC);
11020 
11021 	return burst_us;
11022 }
11023 
11024 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11025 				  struct cftype *cft)
11026 {
11027 	return tg_get_cfs_quota(css_tg(css));
11028 }
11029 
11030 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11031 				   struct cftype *cftype, s64 cfs_quota_us)
11032 {
11033 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11034 }
11035 
11036 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11037 				   struct cftype *cft)
11038 {
11039 	return tg_get_cfs_period(css_tg(css));
11040 }
11041 
11042 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11043 				    struct cftype *cftype, u64 cfs_period_us)
11044 {
11045 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11046 }
11047 
11048 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11049 				  struct cftype *cft)
11050 {
11051 	return tg_get_cfs_burst(css_tg(css));
11052 }
11053 
11054 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11055 				   struct cftype *cftype, u64 cfs_burst_us)
11056 {
11057 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11058 }
11059 
11060 struct cfs_schedulable_data {
11061 	struct task_group *tg;
11062 	u64 period, quota;
11063 };
11064 
11065 /*
11066  * normalize group quota/period to be quota/max_period
11067  * note: units are usecs
11068  */
11069 static u64 normalize_cfs_quota(struct task_group *tg,
11070 			       struct cfs_schedulable_data *d)
11071 {
11072 	u64 quota, period;
11073 
11074 	if (tg == d->tg) {
11075 		period = d->period;
11076 		quota = d->quota;
11077 	} else {
11078 		period = tg_get_cfs_period(tg);
11079 		quota = tg_get_cfs_quota(tg);
11080 	}
11081 
11082 	/* note: these should typically be equivalent */
11083 	if (quota == RUNTIME_INF || quota == -1)
11084 		return RUNTIME_INF;
11085 
11086 	return to_ratio(period, quota);
11087 }
11088 
11089 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11090 {
11091 	struct cfs_schedulable_data *d = data;
11092 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11093 	s64 quota = 0, parent_quota = -1;
11094 
11095 	if (!tg->parent) {
11096 		quota = RUNTIME_INF;
11097 	} else {
11098 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11099 
11100 		quota = normalize_cfs_quota(tg, d);
11101 		parent_quota = parent_b->hierarchical_quota;
11102 
11103 		/*
11104 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11105 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11106 		 * inherit when no limit is set. In both cases this is used
11107 		 * by the scheduler to determine if a given CFS task has a
11108 		 * bandwidth constraint at some higher level.
11109 		 */
11110 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11111 			if (quota == RUNTIME_INF)
11112 				quota = parent_quota;
11113 			else if (parent_quota != RUNTIME_INF)
11114 				quota = min(quota, parent_quota);
11115 		} else {
11116 			if (quota == RUNTIME_INF)
11117 				quota = parent_quota;
11118 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11119 				return -EINVAL;
11120 		}
11121 	}
11122 	cfs_b->hierarchical_quota = quota;
11123 
11124 	return 0;
11125 }
11126 
11127 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11128 {
11129 	int ret;
11130 	struct cfs_schedulable_data data = {
11131 		.tg = tg,
11132 		.period = period,
11133 		.quota = quota,
11134 	};
11135 
11136 	if (quota != RUNTIME_INF) {
11137 		do_div(data.period, NSEC_PER_USEC);
11138 		do_div(data.quota, NSEC_PER_USEC);
11139 	}
11140 
11141 	rcu_read_lock();
11142 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11143 	rcu_read_unlock();
11144 
11145 	return ret;
11146 }
11147 
11148 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11149 {
11150 	struct task_group *tg = css_tg(seq_css(sf));
11151 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11152 
11153 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11154 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11155 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11156 
11157 	if (schedstat_enabled() && tg != &root_task_group) {
11158 		struct sched_statistics *stats;
11159 		u64 ws = 0;
11160 		int i;
11161 
11162 		for_each_possible_cpu(i) {
11163 			stats = __schedstats_from_se(tg->se[i]);
11164 			ws += schedstat_val(stats->wait_sum);
11165 		}
11166 
11167 		seq_printf(sf, "wait_sum %llu\n", ws);
11168 	}
11169 
11170 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11171 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11172 
11173 	return 0;
11174 }
11175 
11176 static u64 throttled_time_self(struct task_group *tg)
11177 {
11178 	int i;
11179 	u64 total = 0;
11180 
11181 	for_each_possible_cpu(i) {
11182 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11183 	}
11184 
11185 	return total;
11186 }
11187 
11188 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11189 {
11190 	struct task_group *tg = css_tg(seq_css(sf));
11191 
11192 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11193 
11194 	return 0;
11195 }
11196 #endif /* CONFIG_CFS_BANDWIDTH */
11197 #endif /* CONFIG_FAIR_GROUP_SCHED */
11198 
11199 #ifdef CONFIG_RT_GROUP_SCHED
11200 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11201 				struct cftype *cft, s64 val)
11202 {
11203 	return sched_group_set_rt_runtime(css_tg(css), val);
11204 }
11205 
11206 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11207 			       struct cftype *cft)
11208 {
11209 	return sched_group_rt_runtime(css_tg(css));
11210 }
11211 
11212 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11213 				    struct cftype *cftype, u64 rt_period_us)
11214 {
11215 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11216 }
11217 
11218 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11219 				   struct cftype *cft)
11220 {
11221 	return sched_group_rt_period(css_tg(css));
11222 }
11223 #endif /* CONFIG_RT_GROUP_SCHED */
11224 
11225 #ifdef CONFIG_FAIR_GROUP_SCHED
11226 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11227 			       struct cftype *cft)
11228 {
11229 	return css_tg(css)->idle;
11230 }
11231 
11232 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11233 				struct cftype *cft, s64 idle)
11234 {
11235 	return sched_group_set_idle(css_tg(css), idle);
11236 }
11237 #endif
11238 
11239 static struct cftype cpu_legacy_files[] = {
11240 #ifdef CONFIG_FAIR_GROUP_SCHED
11241 	{
11242 		.name = "shares",
11243 		.read_u64 = cpu_shares_read_u64,
11244 		.write_u64 = cpu_shares_write_u64,
11245 	},
11246 	{
11247 		.name = "idle",
11248 		.read_s64 = cpu_idle_read_s64,
11249 		.write_s64 = cpu_idle_write_s64,
11250 	},
11251 #endif
11252 #ifdef CONFIG_CFS_BANDWIDTH
11253 	{
11254 		.name = "cfs_quota_us",
11255 		.read_s64 = cpu_cfs_quota_read_s64,
11256 		.write_s64 = cpu_cfs_quota_write_s64,
11257 	},
11258 	{
11259 		.name = "cfs_period_us",
11260 		.read_u64 = cpu_cfs_period_read_u64,
11261 		.write_u64 = cpu_cfs_period_write_u64,
11262 	},
11263 	{
11264 		.name = "cfs_burst_us",
11265 		.read_u64 = cpu_cfs_burst_read_u64,
11266 		.write_u64 = cpu_cfs_burst_write_u64,
11267 	},
11268 	{
11269 		.name = "stat",
11270 		.seq_show = cpu_cfs_stat_show,
11271 	},
11272 	{
11273 		.name = "stat.local",
11274 		.seq_show = cpu_cfs_local_stat_show,
11275 	},
11276 #endif
11277 #ifdef CONFIG_RT_GROUP_SCHED
11278 	{
11279 		.name = "rt_runtime_us",
11280 		.read_s64 = cpu_rt_runtime_read,
11281 		.write_s64 = cpu_rt_runtime_write,
11282 	},
11283 	{
11284 		.name = "rt_period_us",
11285 		.read_u64 = cpu_rt_period_read_uint,
11286 		.write_u64 = cpu_rt_period_write_uint,
11287 	},
11288 #endif
11289 #ifdef CONFIG_UCLAMP_TASK_GROUP
11290 	{
11291 		.name = "uclamp.min",
11292 		.flags = CFTYPE_NOT_ON_ROOT,
11293 		.seq_show = cpu_uclamp_min_show,
11294 		.write = cpu_uclamp_min_write,
11295 	},
11296 	{
11297 		.name = "uclamp.max",
11298 		.flags = CFTYPE_NOT_ON_ROOT,
11299 		.seq_show = cpu_uclamp_max_show,
11300 		.write = cpu_uclamp_max_write,
11301 	},
11302 #endif
11303 	{ }	/* Terminate */
11304 };
11305 
11306 static int cpu_extra_stat_show(struct seq_file *sf,
11307 			       struct cgroup_subsys_state *css)
11308 {
11309 #ifdef CONFIG_CFS_BANDWIDTH
11310 	{
11311 		struct task_group *tg = css_tg(css);
11312 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11313 		u64 throttled_usec, burst_usec;
11314 
11315 		throttled_usec = cfs_b->throttled_time;
11316 		do_div(throttled_usec, NSEC_PER_USEC);
11317 		burst_usec = cfs_b->burst_time;
11318 		do_div(burst_usec, NSEC_PER_USEC);
11319 
11320 		seq_printf(sf, "nr_periods %d\n"
11321 			   "nr_throttled %d\n"
11322 			   "throttled_usec %llu\n"
11323 			   "nr_bursts %d\n"
11324 			   "burst_usec %llu\n",
11325 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11326 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11327 	}
11328 #endif
11329 	return 0;
11330 }
11331 
11332 static int cpu_local_stat_show(struct seq_file *sf,
11333 			       struct cgroup_subsys_state *css)
11334 {
11335 #ifdef CONFIG_CFS_BANDWIDTH
11336 	{
11337 		struct task_group *tg = css_tg(css);
11338 		u64 throttled_self_usec;
11339 
11340 		throttled_self_usec = throttled_time_self(tg);
11341 		do_div(throttled_self_usec, NSEC_PER_USEC);
11342 
11343 		seq_printf(sf, "throttled_usec %llu\n",
11344 			   throttled_self_usec);
11345 	}
11346 #endif
11347 	return 0;
11348 }
11349 
11350 #ifdef CONFIG_FAIR_GROUP_SCHED
11351 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11352 			       struct cftype *cft)
11353 {
11354 	struct task_group *tg = css_tg(css);
11355 	u64 weight = scale_load_down(tg->shares);
11356 
11357 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11358 }
11359 
11360 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11361 				struct cftype *cft, u64 weight)
11362 {
11363 	/*
11364 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11365 	 * values which are 1, 100 and 10000 respectively.  While it loses
11366 	 * a bit of range on both ends, it maps pretty well onto the shares
11367 	 * value used by scheduler and the round-trip conversions preserve
11368 	 * the original value over the entire range.
11369 	 */
11370 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11371 		return -ERANGE;
11372 
11373 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11374 
11375 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11376 }
11377 
11378 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11379 				    struct cftype *cft)
11380 {
11381 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11382 	int last_delta = INT_MAX;
11383 	int prio, delta;
11384 
11385 	/* find the closest nice value to the current weight */
11386 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11387 		delta = abs(sched_prio_to_weight[prio] - weight);
11388 		if (delta >= last_delta)
11389 			break;
11390 		last_delta = delta;
11391 	}
11392 
11393 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11394 }
11395 
11396 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11397 				     struct cftype *cft, s64 nice)
11398 {
11399 	unsigned long weight;
11400 	int idx;
11401 
11402 	if (nice < MIN_NICE || nice > MAX_NICE)
11403 		return -ERANGE;
11404 
11405 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11406 	idx = array_index_nospec(idx, 40);
11407 	weight = sched_prio_to_weight[idx];
11408 
11409 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11410 }
11411 #endif
11412 
11413 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11414 						  long period, long quota)
11415 {
11416 	if (quota < 0)
11417 		seq_puts(sf, "max");
11418 	else
11419 		seq_printf(sf, "%ld", quota);
11420 
11421 	seq_printf(sf, " %ld\n", period);
11422 }
11423 
11424 /* caller should put the current value in *@periodp before calling */
11425 static int __maybe_unused cpu_period_quota_parse(char *buf,
11426 						 u64 *periodp, u64 *quotap)
11427 {
11428 	char tok[21];	/* U64_MAX */
11429 
11430 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11431 		return -EINVAL;
11432 
11433 	*periodp *= NSEC_PER_USEC;
11434 
11435 	if (sscanf(tok, "%llu", quotap))
11436 		*quotap *= NSEC_PER_USEC;
11437 	else if (!strcmp(tok, "max"))
11438 		*quotap = RUNTIME_INF;
11439 	else
11440 		return -EINVAL;
11441 
11442 	return 0;
11443 }
11444 
11445 #ifdef CONFIG_CFS_BANDWIDTH
11446 static int cpu_max_show(struct seq_file *sf, void *v)
11447 {
11448 	struct task_group *tg = css_tg(seq_css(sf));
11449 
11450 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11451 	return 0;
11452 }
11453 
11454 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11455 			     char *buf, size_t nbytes, loff_t off)
11456 {
11457 	struct task_group *tg = css_tg(of_css(of));
11458 	u64 period = tg_get_cfs_period(tg);
11459 	u64 burst = tg->cfs_bandwidth.burst;
11460 	u64 quota;
11461 	int ret;
11462 
11463 	ret = cpu_period_quota_parse(buf, &period, &quota);
11464 	if (!ret)
11465 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11466 	return ret ?: nbytes;
11467 }
11468 #endif
11469 
11470 static struct cftype cpu_files[] = {
11471 #ifdef CONFIG_FAIR_GROUP_SCHED
11472 	{
11473 		.name = "weight",
11474 		.flags = CFTYPE_NOT_ON_ROOT,
11475 		.read_u64 = cpu_weight_read_u64,
11476 		.write_u64 = cpu_weight_write_u64,
11477 	},
11478 	{
11479 		.name = "weight.nice",
11480 		.flags = CFTYPE_NOT_ON_ROOT,
11481 		.read_s64 = cpu_weight_nice_read_s64,
11482 		.write_s64 = cpu_weight_nice_write_s64,
11483 	},
11484 	{
11485 		.name = "idle",
11486 		.flags = CFTYPE_NOT_ON_ROOT,
11487 		.read_s64 = cpu_idle_read_s64,
11488 		.write_s64 = cpu_idle_write_s64,
11489 	},
11490 #endif
11491 #ifdef CONFIG_CFS_BANDWIDTH
11492 	{
11493 		.name = "max",
11494 		.flags = CFTYPE_NOT_ON_ROOT,
11495 		.seq_show = cpu_max_show,
11496 		.write = cpu_max_write,
11497 	},
11498 	{
11499 		.name = "max.burst",
11500 		.flags = CFTYPE_NOT_ON_ROOT,
11501 		.read_u64 = cpu_cfs_burst_read_u64,
11502 		.write_u64 = cpu_cfs_burst_write_u64,
11503 	},
11504 #endif
11505 #ifdef CONFIG_UCLAMP_TASK_GROUP
11506 	{
11507 		.name = "uclamp.min",
11508 		.flags = CFTYPE_NOT_ON_ROOT,
11509 		.seq_show = cpu_uclamp_min_show,
11510 		.write = cpu_uclamp_min_write,
11511 	},
11512 	{
11513 		.name = "uclamp.max",
11514 		.flags = CFTYPE_NOT_ON_ROOT,
11515 		.seq_show = cpu_uclamp_max_show,
11516 		.write = cpu_uclamp_max_write,
11517 	},
11518 #endif
11519 	{ }	/* terminate */
11520 };
11521 
11522 struct cgroup_subsys cpu_cgrp_subsys = {
11523 	.css_alloc	= cpu_cgroup_css_alloc,
11524 	.css_online	= cpu_cgroup_css_online,
11525 	.css_released	= cpu_cgroup_css_released,
11526 	.css_free	= cpu_cgroup_css_free,
11527 	.css_extra_stat_show = cpu_extra_stat_show,
11528 	.css_local_stat_show = cpu_local_stat_show,
11529 #ifdef CONFIG_RT_GROUP_SCHED
11530 	.can_attach	= cpu_cgroup_can_attach,
11531 #endif
11532 	.attach		= cpu_cgroup_attach,
11533 	.legacy_cftypes	= cpu_legacy_files,
11534 	.dfl_cftypes	= cpu_files,
11535 	.early_init	= true,
11536 	.threaded	= true,
11537 };
11538 
11539 #endif	/* CONFIG_CGROUP_SCHED */
11540 
11541 void dump_cpu_task(int cpu)
11542 {
11543 	if (cpu == smp_processor_id() && in_hardirq()) {
11544 		struct pt_regs *regs;
11545 
11546 		regs = get_irq_regs();
11547 		if (regs) {
11548 			show_regs(regs);
11549 			return;
11550 		}
11551 	}
11552 
11553 	if (trigger_single_cpu_backtrace(cpu))
11554 		return;
11555 
11556 	pr_info("Task dump for CPU %d:\n", cpu);
11557 	sched_show_task(cpu_curr(cpu));
11558 }
11559 
11560 /*
11561  * Nice levels are multiplicative, with a gentle 10% change for every
11562  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11563  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11564  * that remained on nice 0.
11565  *
11566  * The "10% effect" is relative and cumulative: from _any_ nice level,
11567  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11568  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11569  * If a task goes up by ~10% and another task goes down by ~10% then
11570  * the relative distance between them is ~25%.)
11571  */
11572 const int sched_prio_to_weight[40] = {
11573  /* -20 */     88761,     71755,     56483,     46273,     36291,
11574  /* -15 */     29154,     23254,     18705,     14949,     11916,
11575  /* -10 */      9548,      7620,      6100,      4904,      3906,
11576  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11577  /*   0 */      1024,       820,       655,       526,       423,
11578  /*   5 */       335,       272,       215,       172,       137,
11579  /*  10 */       110,        87,        70,        56,        45,
11580  /*  15 */        36,        29,        23,        18,        15,
11581 };
11582 
11583 /*
11584  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11585  *
11586  * In cases where the weight does not change often, we can use the
11587  * precalculated inverse to speed up arithmetics by turning divisions
11588  * into multiplications:
11589  */
11590 const u32 sched_prio_to_wmult[40] = {
11591  /* -20 */     48388,     59856,     76040,     92818,    118348,
11592  /* -15 */    147320,    184698,    229616,    287308,    360437,
11593  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11594  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11595  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11596  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11597  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11598  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11599 };
11600 
11601 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11602 {
11603         trace_sched_update_nr_running_tp(rq, count);
11604 }
11605 
11606 #ifdef CONFIG_SCHED_MM_CID
11607 
11608 /*
11609  * @cid_lock: Guarantee forward-progress of cid allocation.
11610  *
11611  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11612  * is only used when contention is detected by the lock-free allocation so
11613  * forward progress can be guaranteed.
11614  */
11615 DEFINE_RAW_SPINLOCK(cid_lock);
11616 
11617 /*
11618  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11619  *
11620  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11621  * detected, it is set to 1 to ensure that all newly coming allocations are
11622  * serialized by @cid_lock until the allocation which detected contention
11623  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11624  * of a cid allocation.
11625  */
11626 int use_cid_lock;
11627 
11628 /*
11629  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11630  * concurrently with respect to the execution of the source runqueue context
11631  * switch.
11632  *
11633  * There is one basic properties we want to guarantee here:
11634  *
11635  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11636  * used by a task. That would lead to concurrent allocation of the cid and
11637  * userspace corruption.
11638  *
11639  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11640  * that a pair of loads observe at least one of a pair of stores, which can be
11641  * shown as:
11642  *
11643  *      X = Y = 0
11644  *
11645  *      w[X]=1          w[Y]=1
11646  *      MB              MB
11647  *      r[Y]=y          r[X]=x
11648  *
11649  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11650  * values 0 and 1, this algorithm cares about specific state transitions of the
11651  * runqueue current task (as updated by the scheduler context switch), and the
11652  * per-mm/cpu cid value.
11653  *
11654  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11655  * task->mm != mm for the rest of the discussion. There are two scheduler state
11656  * transitions on context switch we care about:
11657  *
11658  * (TSA) Store to rq->curr with transition from (N) to (Y)
11659  *
11660  * (TSB) Store to rq->curr with transition from (Y) to (N)
11661  *
11662  * On the remote-clear side, there is one transition we care about:
11663  *
11664  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11665  *
11666  * There is also a transition to UNSET state which can be performed from all
11667  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11668  * guarantees that only a single thread will succeed:
11669  *
11670  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11671  *
11672  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11673  * when a thread is actively using the cid (property (1)).
11674  *
11675  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11676  *
11677  * Scenario A) (TSA)+(TMA) (from next task perspective)
11678  *
11679  * CPU0                                      CPU1
11680  *
11681  * Context switch CS-1                       Remote-clear
11682  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11683  *                                             (implied barrier after cmpxchg)
11684  *   - switch_mm_cid()
11685  *     - memory barrier (see switch_mm_cid()
11686  *       comment explaining how this barrier
11687  *       is combined with other scheduler
11688  *       barriers)
11689  *     - mm_cid_get (next)
11690  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11691  *
11692  * This Dekker ensures that either task (Y) is observed by the
11693  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11694  * observed.
11695  *
11696  * If task (Y) store is observed by rcu_dereference(), it means that there is
11697  * still an active task on the cpu. Remote-clear will therefore not transition
11698  * to UNSET, which fulfills property (1).
11699  *
11700  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11701  * it will move its state to UNSET, which clears the percpu cid perhaps
11702  * uselessly (which is not an issue for correctness). Because task (Y) is not
11703  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11704  * state to UNSET is done with a cmpxchg expecting that the old state has the
11705  * LAZY flag set, only one thread will successfully UNSET.
11706  *
11707  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11708  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11709  * CPU1 will observe task (Y) and do nothing more, which is fine.
11710  *
11711  * What we are effectively preventing with this Dekker is a scenario where
11712  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11713  * because this would UNSET a cid which is actively used.
11714  */
11715 
11716 void sched_mm_cid_migrate_from(struct task_struct *t)
11717 {
11718 	t->migrate_from_cpu = task_cpu(t);
11719 }
11720 
11721 static
11722 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11723 					  struct task_struct *t,
11724 					  struct mm_cid *src_pcpu_cid)
11725 {
11726 	struct mm_struct *mm = t->mm;
11727 	struct task_struct *src_task;
11728 	int src_cid, last_mm_cid;
11729 
11730 	if (!mm)
11731 		return -1;
11732 
11733 	last_mm_cid = t->last_mm_cid;
11734 	/*
11735 	 * If the migrated task has no last cid, or if the current
11736 	 * task on src rq uses the cid, it means the source cid does not need
11737 	 * to be moved to the destination cpu.
11738 	 */
11739 	if (last_mm_cid == -1)
11740 		return -1;
11741 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11742 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11743 		return -1;
11744 
11745 	/*
11746 	 * If we observe an active task using the mm on this rq, it means we
11747 	 * are not the last task to be migrated from this cpu for this mm, so
11748 	 * there is no need to move src_cid to the destination cpu.
11749 	 */
11750 	rcu_read_lock();
11751 	src_task = rcu_dereference(src_rq->curr);
11752 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11753 		rcu_read_unlock();
11754 		t->last_mm_cid = -1;
11755 		return -1;
11756 	}
11757 	rcu_read_unlock();
11758 
11759 	return src_cid;
11760 }
11761 
11762 static
11763 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11764 					      struct task_struct *t,
11765 					      struct mm_cid *src_pcpu_cid,
11766 					      int src_cid)
11767 {
11768 	struct task_struct *src_task;
11769 	struct mm_struct *mm = t->mm;
11770 	int lazy_cid;
11771 
11772 	if (src_cid == -1)
11773 		return -1;
11774 
11775 	/*
11776 	 * Attempt to clear the source cpu cid to move it to the destination
11777 	 * cpu.
11778 	 */
11779 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11780 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11781 		return -1;
11782 
11783 	/*
11784 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11785 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11786 	 * between store to rq->curr and load of prev and next task's
11787 	 * per-mm/cpu cid.
11788 	 *
11789 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11790 	 * rq->curr->mm_cid_active matches the barrier in
11791 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11792 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11793 	 * load of per-mm/cpu cid.
11794 	 */
11795 
11796 	/*
11797 	 * If we observe an active task using the mm on this rq after setting
11798 	 * the lazy-put flag, this task will be responsible for transitioning
11799 	 * from lazy-put flag set to MM_CID_UNSET.
11800 	 */
11801 	rcu_read_lock();
11802 	src_task = rcu_dereference(src_rq->curr);
11803 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11804 		rcu_read_unlock();
11805 		/*
11806 		 * We observed an active task for this mm, there is therefore
11807 		 * no point in moving this cid to the destination cpu.
11808 		 */
11809 		t->last_mm_cid = -1;
11810 		return -1;
11811 	}
11812 	rcu_read_unlock();
11813 
11814 	/*
11815 	 * The src_cid is unused, so it can be unset.
11816 	 */
11817 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11818 		return -1;
11819 	return src_cid;
11820 }
11821 
11822 /*
11823  * Migration to dst cpu. Called with dst_rq lock held.
11824  * Interrupts are disabled, which keeps the window of cid ownership without the
11825  * source rq lock held small.
11826  */
11827 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11828 {
11829 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11830 	struct mm_struct *mm = t->mm;
11831 	int src_cid, dst_cid, src_cpu;
11832 	struct rq *src_rq;
11833 
11834 	lockdep_assert_rq_held(dst_rq);
11835 
11836 	if (!mm)
11837 		return;
11838 	src_cpu = t->migrate_from_cpu;
11839 	if (src_cpu == -1) {
11840 		t->last_mm_cid = -1;
11841 		return;
11842 	}
11843 	/*
11844 	 * Move the src cid if the dst cid is unset. This keeps id
11845 	 * allocation closest to 0 in cases where few threads migrate around
11846 	 * many cpus.
11847 	 *
11848 	 * If destination cid is already set, we may have to just clear
11849 	 * the src cid to ensure compactness in frequent migrations
11850 	 * scenarios.
11851 	 *
11852 	 * It is not useful to clear the src cid when the number of threads is
11853 	 * greater or equal to the number of allowed cpus, because user-space
11854 	 * can expect that the number of allowed cids can reach the number of
11855 	 * allowed cpus.
11856 	 */
11857 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11858 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11859 	if (!mm_cid_is_unset(dst_cid) &&
11860 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11861 		return;
11862 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11863 	src_rq = cpu_rq(src_cpu);
11864 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11865 	if (src_cid == -1)
11866 		return;
11867 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11868 							    src_cid);
11869 	if (src_cid == -1)
11870 		return;
11871 	if (!mm_cid_is_unset(dst_cid)) {
11872 		__mm_cid_put(mm, src_cid);
11873 		return;
11874 	}
11875 	/* Move src_cid to dst cpu. */
11876 	mm_cid_snapshot_time(dst_rq, mm);
11877 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11878 }
11879 
11880 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11881 				      int cpu)
11882 {
11883 	struct rq *rq = cpu_rq(cpu);
11884 	struct task_struct *t;
11885 	unsigned long flags;
11886 	int cid, lazy_cid;
11887 
11888 	cid = READ_ONCE(pcpu_cid->cid);
11889 	if (!mm_cid_is_valid(cid))
11890 		return;
11891 
11892 	/*
11893 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11894 	 * there happens to be other tasks left on the source cpu using this
11895 	 * mm, the next task using this mm will reallocate its cid on context
11896 	 * switch.
11897 	 */
11898 	lazy_cid = mm_cid_set_lazy_put(cid);
11899 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11900 		return;
11901 
11902 	/*
11903 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11904 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11905 	 * between store to rq->curr and load of prev and next task's
11906 	 * per-mm/cpu cid.
11907 	 *
11908 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11909 	 * rq->curr->mm_cid_active matches the barrier in
11910 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11911 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11912 	 * load of per-mm/cpu cid.
11913 	 */
11914 
11915 	/*
11916 	 * If we observe an active task using the mm on this rq after setting
11917 	 * the lazy-put flag, that task will be responsible for transitioning
11918 	 * from lazy-put flag set to MM_CID_UNSET.
11919 	 */
11920 	rcu_read_lock();
11921 	t = rcu_dereference(rq->curr);
11922 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11923 		rcu_read_unlock();
11924 		return;
11925 	}
11926 	rcu_read_unlock();
11927 
11928 	/*
11929 	 * The cid is unused, so it can be unset.
11930 	 * Disable interrupts to keep the window of cid ownership without rq
11931 	 * lock small.
11932 	 */
11933 	local_irq_save(flags);
11934 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11935 		__mm_cid_put(mm, cid);
11936 	local_irq_restore(flags);
11937 }
11938 
11939 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11940 {
11941 	struct rq *rq = cpu_rq(cpu);
11942 	struct mm_cid *pcpu_cid;
11943 	struct task_struct *curr;
11944 	u64 rq_clock;
11945 
11946 	/*
11947 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11948 	 * while is irrelevant.
11949 	 */
11950 	rq_clock = READ_ONCE(rq->clock);
11951 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11952 
11953 	/*
11954 	 * In order to take care of infrequently scheduled tasks, bump the time
11955 	 * snapshot associated with this cid if an active task using the mm is
11956 	 * observed on this rq.
11957 	 */
11958 	rcu_read_lock();
11959 	curr = rcu_dereference(rq->curr);
11960 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11961 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11962 		rcu_read_unlock();
11963 		return;
11964 	}
11965 	rcu_read_unlock();
11966 
11967 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11968 		return;
11969 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11970 }
11971 
11972 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11973 					     int weight)
11974 {
11975 	struct mm_cid *pcpu_cid;
11976 	int cid;
11977 
11978 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11979 	cid = READ_ONCE(pcpu_cid->cid);
11980 	if (!mm_cid_is_valid(cid) || cid < weight)
11981 		return;
11982 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11983 }
11984 
11985 static void task_mm_cid_work(struct callback_head *work)
11986 {
11987 	unsigned long now = jiffies, old_scan, next_scan;
11988 	struct task_struct *t = current;
11989 	struct cpumask *cidmask;
11990 	struct mm_struct *mm;
11991 	int weight, cpu;
11992 
11993 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11994 
11995 	work->next = work;	/* Prevent double-add */
11996 	if (t->flags & PF_EXITING)
11997 		return;
11998 	mm = t->mm;
11999 	if (!mm)
12000 		return;
12001 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
12002 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12003 	if (!old_scan) {
12004 		unsigned long res;
12005 
12006 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12007 		if (res != old_scan)
12008 			old_scan = res;
12009 		else
12010 			old_scan = next_scan;
12011 	}
12012 	if (time_before(now, old_scan))
12013 		return;
12014 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12015 		return;
12016 	cidmask = mm_cidmask(mm);
12017 	/* Clear cids that were not recently used. */
12018 	for_each_possible_cpu(cpu)
12019 		sched_mm_cid_remote_clear_old(mm, cpu);
12020 	weight = cpumask_weight(cidmask);
12021 	/*
12022 	 * Clear cids that are greater or equal to the cidmask weight to
12023 	 * recompact it.
12024 	 */
12025 	for_each_possible_cpu(cpu)
12026 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12027 }
12028 
12029 void init_sched_mm_cid(struct task_struct *t)
12030 {
12031 	struct mm_struct *mm = t->mm;
12032 	int mm_users = 0;
12033 
12034 	if (mm) {
12035 		mm_users = atomic_read(&mm->mm_users);
12036 		if (mm_users == 1)
12037 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12038 	}
12039 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12040 	init_task_work(&t->cid_work, task_mm_cid_work);
12041 }
12042 
12043 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12044 {
12045 	struct callback_head *work = &curr->cid_work;
12046 	unsigned long now = jiffies;
12047 
12048 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12049 	    work->next != work)
12050 		return;
12051 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12052 		return;
12053 
12054 	/* No page allocation under rq lock */
12055 	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12056 }
12057 
12058 void sched_mm_cid_exit_signals(struct task_struct *t)
12059 {
12060 	struct mm_struct *mm = t->mm;
12061 	struct rq_flags rf;
12062 	struct rq *rq;
12063 
12064 	if (!mm)
12065 		return;
12066 
12067 	preempt_disable();
12068 	rq = this_rq();
12069 	rq_lock_irqsave(rq, &rf);
12070 	preempt_enable_no_resched();	/* holding spinlock */
12071 	WRITE_ONCE(t->mm_cid_active, 0);
12072 	/*
12073 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12074 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12075 	 */
12076 	smp_mb();
12077 	mm_cid_put(mm);
12078 	t->last_mm_cid = t->mm_cid = -1;
12079 	rq_unlock_irqrestore(rq, &rf);
12080 }
12081 
12082 void sched_mm_cid_before_execve(struct task_struct *t)
12083 {
12084 	struct mm_struct *mm = t->mm;
12085 	struct rq_flags rf;
12086 	struct rq *rq;
12087 
12088 	if (!mm)
12089 		return;
12090 
12091 	preempt_disable();
12092 	rq = this_rq();
12093 	rq_lock_irqsave(rq, &rf);
12094 	preempt_enable_no_resched();	/* holding spinlock */
12095 	WRITE_ONCE(t->mm_cid_active, 0);
12096 	/*
12097 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12098 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12099 	 */
12100 	smp_mb();
12101 	mm_cid_put(mm);
12102 	t->last_mm_cid = t->mm_cid = -1;
12103 	rq_unlock_irqrestore(rq, &rf);
12104 }
12105 
12106 void sched_mm_cid_after_execve(struct task_struct *t)
12107 {
12108 	struct mm_struct *mm = t->mm;
12109 	struct rq_flags rf;
12110 	struct rq *rq;
12111 
12112 	if (!mm)
12113 		return;
12114 
12115 	preempt_disable();
12116 	rq = this_rq();
12117 	rq_lock_irqsave(rq, &rf);
12118 	preempt_enable_no_resched();	/* holding spinlock */
12119 	WRITE_ONCE(t->mm_cid_active, 1);
12120 	/*
12121 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12122 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12123 	 */
12124 	smp_mb();
12125 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12126 	rq_unlock_irqrestore(rq, &rf);
12127 	rseq_set_notify_resume(t);
12128 }
12129 
12130 void sched_mm_cid_fork(struct task_struct *t)
12131 {
12132 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12133 	t->mm_cid_active = 1;
12134 }
12135 #endif
12136