1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 #include <linux/prefetch.h> 78 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 #include <asm/irq_regs.h> 82 #include <asm/mutex.h> 83 #ifdef CONFIG_PARAVIRT 84 #include <asm/paravirt.h> 85 #endif 86 87 #include "sched.h" 88 #include "../workqueue_internal.h" 89 #include "../smpboot.h" 90 91 #define CREATE_TRACE_POINTS 92 #include <trace/events/sched.h> 93 94 DEFINE_MUTEX(sched_domains_mutex); 95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 96 97 static void update_rq_clock_task(struct rq *rq, s64 delta); 98 99 void update_rq_clock(struct rq *rq) 100 { 101 s64 delta; 102 103 lockdep_assert_held(&rq->lock); 104 105 if (rq->clock_skip_update & RQCF_ACT_SKIP) 106 return; 107 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 109 if (delta < 0) 110 return; 111 rq->clock += delta; 112 update_rq_clock_task(rq, delta); 113 } 114 115 /* 116 * Debugging: various feature bits 117 */ 118 119 #define SCHED_FEAT(name, enabled) \ 120 (1UL << __SCHED_FEAT_##name) * enabled | 121 122 const_debug unsigned int sysctl_sched_features = 123 #include "features.h" 124 0; 125 126 #undef SCHED_FEAT 127 128 /* 129 * Number of tasks to iterate in a single balance run. 130 * Limited because this is done with IRQs disabled. 131 */ 132 const_debug unsigned int sysctl_sched_nr_migrate = 32; 133 134 /* 135 * period over which we average the RT time consumption, measured 136 * in ms. 137 * 138 * default: 1s 139 */ 140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 141 142 /* 143 * period over which we measure -rt task cpu usage in us. 144 * default: 1s 145 */ 146 unsigned int sysctl_sched_rt_period = 1000000; 147 148 __read_mostly int scheduler_running; 149 150 /* 151 * part of the period that we allow rt tasks to run in us. 152 * default: 0.95s 153 */ 154 int sysctl_sched_rt_runtime = 950000; 155 156 /* cpus with isolated domains */ 157 cpumask_var_t cpu_isolated_map; 158 159 /* 160 * this_rq_lock - lock this runqueue and disable interrupts. 161 */ 162 static struct rq *this_rq_lock(void) 163 __acquires(rq->lock) 164 { 165 struct rq *rq; 166 167 local_irq_disable(); 168 rq = this_rq(); 169 raw_spin_lock(&rq->lock); 170 171 return rq; 172 } 173 174 /* 175 * __task_rq_lock - lock the rq @p resides on. 176 */ 177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 178 __acquires(rq->lock) 179 { 180 struct rq *rq; 181 182 lockdep_assert_held(&p->pi_lock); 183 184 for (;;) { 185 rq = task_rq(p); 186 raw_spin_lock(&rq->lock); 187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 188 rf->cookie = lockdep_pin_lock(&rq->lock); 189 return rq; 190 } 191 raw_spin_unlock(&rq->lock); 192 193 while (unlikely(task_on_rq_migrating(p))) 194 cpu_relax(); 195 } 196 } 197 198 /* 199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 200 */ 201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 202 __acquires(p->pi_lock) 203 __acquires(rq->lock) 204 { 205 struct rq *rq; 206 207 for (;;) { 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 209 rq = task_rq(p); 210 raw_spin_lock(&rq->lock); 211 /* 212 * move_queued_task() task_rq_lock() 213 * 214 * ACQUIRE (rq->lock) 215 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 217 * [S] ->cpu = new_cpu [L] task_rq() 218 * [L] ->on_rq 219 * RELEASE (rq->lock) 220 * 221 * If we observe the old cpu in task_rq_lock, the acquire of 222 * the old rq->lock will fully serialize against the stores. 223 * 224 * If we observe the new cpu in task_rq_lock, the acquire will 225 * pair with the WMB to ensure we must then also see migrating. 226 */ 227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 228 rf->cookie = lockdep_pin_lock(&rq->lock); 229 return rq; 230 } 231 raw_spin_unlock(&rq->lock); 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 233 234 while (unlikely(task_on_rq_migrating(p))) 235 cpu_relax(); 236 } 237 } 238 239 #ifdef CONFIG_SCHED_HRTICK 240 /* 241 * Use HR-timers to deliver accurate preemption points. 242 */ 243 244 static void hrtick_clear(struct rq *rq) 245 { 246 if (hrtimer_active(&rq->hrtick_timer)) 247 hrtimer_cancel(&rq->hrtick_timer); 248 } 249 250 /* 251 * High-resolution timer tick. 252 * Runs from hardirq context with interrupts disabled. 253 */ 254 static enum hrtimer_restart hrtick(struct hrtimer *timer) 255 { 256 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 257 258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 259 260 raw_spin_lock(&rq->lock); 261 update_rq_clock(rq); 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 263 raw_spin_unlock(&rq->lock); 264 265 return HRTIMER_NORESTART; 266 } 267 268 #ifdef CONFIG_SMP 269 270 static void __hrtick_restart(struct rq *rq) 271 { 272 struct hrtimer *timer = &rq->hrtick_timer; 273 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 275 } 276 277 /* 278 * called from hardirq (IPI) context 279 */ 280 static void __hrtick_start(void *arg) 281 { 282 struct rq *rq = arg; 283 284 raw_spin_lock(&rq->lock); 285 __hrtick_restart(rq); 286 rq->hrtick_csd_pending = 0; 287 raw_spin_unlock(&rq->lock); 288 } 289 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 struct hrtimer *timer = &rq->hrtick_timer; 298 ktime_t time; 299 s64 delta; 300 301 /* 302 * Don't schedule slices shorter than 10000ns, that just 303 * doesn't make sense and can cause timer DoS. 304 */ 305 delta = max_t(s64, delay, 10000LL); 306 time = ktime_add_ns(timer->base->get_time(), delta); 307 308 hrtimer_set_expires(timer, time); 309 310 if (rq == this_rq()) { 311 __hrtick_restart(rq); 312 } else if (!rq->hrtick_csd_pending) { 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 314 rq->hrtick_csd_pending = 1; 315 } 316 } 317 318 #else 319 /* 320 * Called to set the hrtick timer state. 321 * 322 * called with rq->lock held and irqs disabled 323 */ 324 void hrtick_start(struct rq *rq, u64 delay) 325 { 326 /* 327 * Don't schedule slices shorter than 10000ns, that just 328 * doesn't make sense. Rely on vruntime for fairness. 329 */ 330 delay = max_t(u64, delay, 10000LL); 331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 332 HRTIMER_MODE_REL_PINNED); 333 } 334 #endif /* CONFIG_SMP */ 335 336 static void init_rq_hrtick(struct rq *rq) 337 { 338 #ifdef CONFIG_SMP 339 rq->hrtick_csd_pending = 0; 340 341 rq->hrtick_csd.flags = 0; 342 rq->hrtick_csd.func = __hrtick_start; 343 rq->hrtick_csd.info = rq; 344 #endif 345 346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 347 rq->hrtick_timer.function = hrtick; 348 } 349 #else /* CONFIG_SCHED_HRTICK */ 350 static inline void hrtick_clear(struct rq *rq) 351 { 352 } 353 354 static inline void init_rq_hrtick(struct rq *rq) 355 { 356 } 357 #endif /* CONFIG_SCHED_HRTICK */ 358 359 /* 360 * cmpxchg based fetch_or, macro so it works for different integer types 361 */ 362 #define fetch_or(ptr, mask) \ 363 ({ \ 364 typeof(ptr) _ptr = (ptr); \ 365 typeof(mask) _mask = (mask); \ 366 typeof(*_ptr) _old, _val = *_ptr; \ 367 \ 368 for (;;) { \ 369 _old = cmpxchg(_ptr, _val, _val | _mask); \ 370 if (_old == _val) \ 371 break; \ 372 _val = _old; \ 373 } \ 374 _old; \ 375 }) 376 377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 378 /* 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 380 * this avoids any races wrt polling state changes and thereby avoids 381 * spurious IPIs. 382 */ 383 static bool set_nr_and_not_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 387 } 388 389 /* 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 391 * 392 * If this returns true, then the idle task promises to call 393 * sched_ttwu_pending() and reschedule soon. 394 */ 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 struct thread_info *ti = task_thread_info(p); 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 399 400 for (;;) { 401 if (!(val & _TIF_POLLING_NRFLAG)) 402 return false; 403 if (val & _TIF_NEED_RESCHED) 404 return true; 405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 406 if (old == val) 407 break; 408 val = old; 409 } 410 return true; 411 } 412 413 #else 414 static bool set_nr_and_not_polling(struct task_struct *p) 415 { 416 set_tsk_need_resched(p); 417 return true; 418 } 419 420 #ifdef CONFIG_SMP 421 static bool set_nr_if_polling(struct task_struct *p) 422 { 423 return false; 424 } 425 #endif 426 #endif 427 428 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 429 { 430 struct wake_q_node *node = &task->wake_q; 431 432 /* 433 * Atomically grab the task, if ->wake_q is !nil already it means 434 * its already queued (either by us or someone else) and will get the 435 * wakeup due to that. 436 * 437 * This cmpxchg() implies a full barrier, which pairs with the write 438 * barrier implied by the wakeup in wake_up_q(). 439 */ 440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 441 return; 442 443 get_task_struct(task); 444 445 /* 446 * The head is context local, there can be no concurrency. 447 */ 448 *head->lastp = node; 449 head->lastp = &node->next; 450 } 451 452 void wake_up_q(struct wake_q_head *head) 453 { 454 struct wake_q_node *node = head->first; 455 456 while (node != WAKE_Q_TAIL) { 457 struct task_struct *task; 458 459 task = container_of(node, struct task_struct, wake_q); 460 BUG_ON(!task); 461 /* task can safely be re-inserted now */ 462 node = node->next; 463 task->wake_q.next = NULL; 464 465 /* 466 * wake_up_process() implies a wmb() to pair with the queueing 467 * in wake_q_add() so as not to miss wakeups. 468 */ 469 wake_up_process(task); 470 put_task_struct(task); 471 } 472 } 473 474 /* 475 * resched_curr - mark rq's current task 'to be rescheduled now'. 476 * 477 * On UP this means the setting of the need_resched flag, on SMP it 478 * might also involve a cross-CPU call to trigger the scheduler on 479 * the target CPU. 480 */ 481 void resched_curr(struct rq *rq) 482 { 483 struct task_struct *curr = rq->curr; 484 int cpu; 485 486 lockdep_assert_held(&rq->lock); 487 488 if (test_tsk_need_resched(curr)) 489 return; 490 491 cpu = cpu_of(rq); 492 493 if (cpu == smp_processor_id()) { 494 set_tsk_need_resched(curr); 495 set_preempt_need_resched(); 496 return; 497 } 498 499 if (set_nr_and_not_polling(curr)) 500 smp_send_reschedule(cpu); 501 else 502 trace_sched_wake_idle_without_ipi(cpu); 503 } 504 505 void resched_cpu(int cpu) 506 { 507 struct rq *rq = cpu_rq(cpu); 508 unsigned long flags; 509 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 511 return; 512 resched_curr(rq); 513 raw_spin_unlock_irqrestore(&rq->lock, flags); 514 } 515 516 #ifdef CONFIG_SMP 517 #ifdef CONFIG_NO_HZ_COMMON 518 /* 519 * In the semi idle case, use the nearest busy cpu for migrating timers 520 * from an idle cpu. This is good for power-savings. 521 * 522 * We don't do similar optimization for completely idle system, as 523 * selecting an idle cpu will add more delays to the timers than intended 524 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 525 */ 526 int get_nohz_timer_target(void) 527 { 528 int i, cpu = smp_processor_id(); 529 struct sched_domain *sd; 530 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 532 return cpu; 533 534 rcu_read_lock(); 535 for_each_domain(cpu, sd) { 536 for_each_cpu(i, sched_domain_span(sd)) { 537 if (cpu == i) 538 continue; 539 540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 541 cpu = i; 542 goto unlock; 543 } 544 } 545 } 546 547 if (!is_housekeeping_cpu(cpu)) 548 cpu = housekeeping_any_cpu(); 549 unlock: 550 rcu_read_unlock(); 551 return cpu; 552 } 553 /* 554 * When add_timer_on() enqueues a timer into the timer wheel of an 555 * idle CPU then this timer might expire before the next timer event 556 * which is scheduled to wake up that CPU. In case of a completely 557 * idle system the next event might even be infinite time into the 558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 559 * leaves the inner idle loop so the newly added timer is taken into 560 * account when the CPU goes back to idle and evaluates the timer 561 * wheel for the next timer event. 562 */ 563 static void wake_up_idle_cpu(int cpu) 564 { 565 struct rq *rq = cpu_rq(cpu); 566 567 if (cpu == smp_processor_id()) 568 return; 569 570 if (set_nr_and_not_polling(rq->idle)) 571 smp_send_reschedule(cpu); 572 else 573 trace_sched_wake_idle_without_ipi(cpu); 574 } 575 576 static bool wake_up_full_nohz_cpu(int cpu) 577 { 578 /* 579 * We just need the target to call irq_exit() and re-evaluate 580 * the next tick. The nohz full kick at least implies that. 581 * If needed we can still optimize that later with an 582 * empty IRQ. 583 */ 584 if (cpu_is_offline(cpu)) 585 return true; /* Don't try to wake offline CPUs. */ 586 if (tick_nohz_full_cpu(cpu)) { 587 if (cpu != smp_processor_id() || 588 tick_nohz_tick_stopped()) 589 tick_nohz_full_kick_cpu(cpu); 590 return true; 591 } 592 593 return false; 594 } 595 596 /* 597 * Wake up the specified CPU. If the CPU is going offline, it is the 598 * caller's responsibility to deal with the lost wakeup, for example, 599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 600 */ 601 void wake_up_nohz_cpu(int cpu) 602 { 603 if (!wake_up_full_nohz_cpu(cpu)) 604 wake_up_idle_cpu(cpu); 605 } 606 607 static inline bool got_nohz_idle_kick(void) 608 { 609 int cpu = smp_processor_id(); 610 611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 612 return false; 613 614 if (idle_cpu(cpu) && !need_resched()) 615 return true; 616 617 /* 618 * We can't run Idle Load Balance on this CPU for this time so we 619 * cancel it and clear NOHZ_BALANCE_KICK 620 */ 621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 622 return false; 623 } 624 625 #else /* CONFIG_NO_HZ_COMMON */ 626 627 static inline bool got_nohz_idle_kick(void) 628 { 629 return false; 630 } 631 632 #endif /* CONFIG_NO_HZ_COMMON */ 633 634 #ifdef CONFIG_NO_HZ_FULL 635 bool sched_can_stop_tick(struct rq *rq) 636 { 637 int fifo_nr_running; 638 639 /* Deadline tasks, even if single, need the tick */ 640 if (rq->dl.dl_nr_running) 641 return false; 642 643 /* 644 * If there are more than one RR tasks, we need the tick to effect the 645 * actual RR behaviour. 646 */ 647 if (rq->rt.rr_nr_running) { 648 if (rq->rt.rr_nr_running == 1) 649 return true; 650 else 651 return false; 652 } 653 654 /* 655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 656 * forced preemption between FIFO tasks. 657 */ 658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 659 if (fifo_nr_running) 660 return true; 661 662 /* 663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 664 * if there's more than one we need the tick for involuntary 665 * preemption. 666 */ 667 if (rq->nr_running > 1) 668 return false; 669 670 return true; 671 } 672 #endif /* CONFIG_NO_HZ_FULL */ 673 674 void sched_avg_update(struct rq *rq) 675 { 676 s64 period = sched_avg_period(); 677 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 679 /* 680 * Inline assembly required to prevent the compiler 681 * optimising this loop into a divmod call. 682 * See __iter_div_u64_rem() for another example of this. 683 */ 684 asm("" : "+rm" (rq->age_stamp)); 685 rq->age_stamp += period; 686 rq->rt_avg /= 2; 687 } 688 } 689 690 #endif /* CONFIG_SMP */ 691 692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 694 /* 695 * Iterate task_group tree rooted at *from, calling @down when first entering a 696 * node and @up when leaving it for the final time. 697 * 698 * Caller must hold rcu_lock or sufficient equivalent. 699 */ 700 int walk_tg_tree_from(struct task_group *from, 701 tg_visitor down, tg_visitor up, void *data) 702 { 703 struct task_group *parent, *child; 704 int ret; 705 706 parent = from; 707 708 down: 709 ret = (*down)(parent, data); 710 if (ret) 711 goto out; 712 list_for_each_entry_rcu(child, &parent->children, siblings) { 713 parent = child; 714 goto down; 715 716 up: 717 continue; 718 } 719 ret = (*up)(parent, data); 720 if (ret || parent == from) 721 goto out; 722 723 child = parent; 724 parent = parent->parent; 725 if (parent) 726 goto up; 727 out: 728 return ret; 729 } 730 731 int tg_nop(struct task_group *tg, void *data) 732 { 733 return 0; 734 } 735 #endif 736 737 static void set_load_weight(struct task_struct *p) 738 { 739 int prio = p->static_prio - MAX_RT_PRIO; 740 struct load_weight *load = &p->se.load; 741 742 /* 743 * SCHED_IDLE tasks get minimal weight: 744 */ 745 if (idle_policy(p->policy)) { 746 load->weight = scale_load(WEIGHT_IDLEPRIO); 747 load->inv_weight = WMULT_IDLEPRIO; 748 return; 749 } 750 751 load->weight = scale_load(sched_prio_to_weight[prio]); 752 load->inv_weight = sched_prio_to_wmult[prio]; 753 } 754 755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & ENQUEUE_RESTORE)) 759 sched_info_queued(rq, p); 760 p->sched_class->enqueue_task(rq, p, flags); 761 } 762 763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 update_rq_clock(rq); 766 if (!(flags & DEQUEUE_SAVE)) 767 sched_info_dequeued(rq, p); 768 p->sched_class->dequeue_task(rq, p, flags); 769 } 770 771 void activate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible--; 775 776 enqueue_task(rq, p, flags); 777 } 778 779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 780 { 781 if (task_contributes_to_load(p)) 782 rq->nr_uninterruptible++; 783 784 dequeue_task(rq, p, flags); 785 } 786 787 static void update_rq_clock_task(struct rq *rq, s64 delta) 788 { 789 /* 790 * In theory, the compile should just see 0 here, and optimize out the call 791 * to sched_rt_avg_update. But I don't trust it... 792 */ 793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 794 s64 steal = 0, irq_delta = 0; 795 #endif 796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 798 799 /* 800 * Since irq_time is only updated on {soft,}irq_exit, we might run into 801 * this case when a previous update_rq_clock() happened inside a 802 * {soft,}irq region. 803 * 804 * When this happens, we stop ->clock_task and only update the 805 * prev_irq_time stamp to account for the part that fit, so that a next 806 * update will consume the rest. This ensures ->clock_task is 807 * monotonic. 808 * 809 * It does however cause some slight miss-attribution of {soft,}irq 810 * time, a more accurate solution would be to update the irq_time using 811 * the current rq->clock timestamp, except that would require using 812 * atomic ops. 813 */ 814 if (irq_delta > delta) 815 irq_delta = delta; 816 817 rq->prev_irq_time += irq_delta; 818 delta -= irq_delta; 819 #endif 820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 821 if (static_key_false((¶virt_steal_rq_enabled))) { 822 steal = paravirt_steal_clock(cpu_of(rq)); 823 steal -= rq->prev_steal_time_rq; 824 825 if (unlikely(steal > delta)) 826 steal = delta; 827 828 rq->prev_steal_time_rq += steal; 829 delta -= steal; 830 } 831 #endif 832 833 rq->clock_task += delta; 834 835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 837 sched_rt_avg_update(rq, irq_delta + steal); 838 #endif 839 } 840 841 void sched_set_stop_task(int cpu, struct task_struct *stop) 842 { 843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 844 struct task_struct *old_stop = cpu_rq(cpu)->stop; 845 846 if (stop) { 847 /* 848 * Make it appear like a SCHED_FIFO task, its something 849 * userspace knows about and won't get confused about. 850 * 851 * Also, it will make PI more or less work without too 852 * much confusion -- but then, stop work should not 853 * rely on PI working anyway. 854 */ 855 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 856 857 stop->sched_class = &stop_sched_class; 858 } 859 860 cpu_rq(cpu)->stop = stop; 861 862 if (old_stop) { 863 /* 864 * Reset it back to a normal scheduling class so that 865 * it can die in pieces. 866 */ 867 old_stop->sched_class = &rt_sched_class; 868 } 869 } 870 871 /* 872 * __normal_prio - return the priority that is based on the static prio 873 */ 874 static inline int __normal_prio(struct task_struct *p) 875 { 876 return p->static_prio; 877 } 878 879 /* 880 * Calculate the expected normal priority: i.e. priority 881 * without taking RT-inheritance into account. Might be 882 * boosted by interactivity modifiers. Changes upon fork, 883 * setprio syscalls, and whenever the interactivity 884 * estimator recalculates. 885 */ 886 static inline int normal_prio(struct task_struct *p) 887 { 888 int prio; 889 890 if (task_has_dl_policy(p)) 891 prio = MAX_DL_PRIO-1; 892 else if (task_has_rt_policy(p)) 893 prio = MAX_RT_PRIO-1 - p->rt_priority; 894 else 895 prio = __normal_prio(p); 896 return prio; 897 } 898 899 /* 900 * Calculate the current priority, i.e. the priority 901 * taken into account by the scheduler. This value might 902 * be boosted by RT tasks, or might be boosted by 903 * interactivity modifiers. Will be RT if the task got 904 * RT-boosted. If not then it returns p->normal_prio. 905 */ 906 static int effective_prio(struct task_struct *p) 907 { 908 p->normal_prio = normal_prio(p); 909 /* 910 * If we are RT tasks or we were boosted to RT priority, 911 * keep the priority unchanged. Otherwise, update priority 912 * to the normal priority: 913 */ 914 if (!rt_prio(p->prio)) 915 return p->normal_prio; 916 return p->prio; 917 } 918 919 /** 920 * task_curr - is this task currently executing on a CPU? 921 * @p: the task in question. 922 * 923 * Return: 1 if the task is currently executing. 0 otherwise. 924 */ 925 inline int task_curr(const struct task_struct *p) 926 { 927 return cpu_curr(task_cpu(p)) == p; 928 } 929 930 /* 931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 932 * use the balance_callback list if you want balancing. 933 * 934 * this means any call to check_class_changed() must be followed by a call to 935 * balance_callback(). 936 */ 937 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 938 const struct sched_class *prev_class, 939 int oldprio) 940 { 941 if (prev_class != p->sched_class) { 942 if (prev_class->switched_from) 943 prev_class->switched_from(rq, p); 944 945 p->sched_class->switched_to(rq, p); 946 } else if (oldprio != p->prio || dl_task(p)) 947 p->sched_class->prio_changed(rq, p, oldprio); 948 } 949 950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 951 { 952 const struct sched_class *class; 953 954 if (p->sched_class == rq->curr->sched_class) { 955 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 956 } else { 957 for_each_class(class) { 958 if (class == rq->curr->sched_class) 959 break; 960 if (class == p->sched_class) { 961 resched_curr(rq); 962 break; 963 } 964 } 965 } 966 967 /* 968 * A queue event has occurred, and we're going to schedule. In 969 * this case, we can save a useless back to back clock update. 970 */ 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 972 rq_clock_skip_update(rq, true); 973 } 974 975 #ifdef CONFIG_SMP 976 /* 977 * This is how migration works: 978 * 979 * 1) we invoke migration_cpu_stop() on the target CPU using 980 * stop_one_cpu(). 981 * 2) stopper starts to run (implicitly forcing the migrated thread 982 * off the CPU) 983 * 3) it checks whether the migrated task is still in the wrong runqueue. 984 * 4) if it's in the wrong runqueue then the migration thread removes 985 * it and puts it into the right queue. 986 * 5) stopper completes and stop_one_cpu() returns and the migration 987 * is done. 988 */ 989 990 /* 991 * move_queued_task - move a queued task to new rq. 992 * 993 * Returns (locked) new rq. Old rq's lock is released. 994 */ 995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 996 { 997 lockdep_assert_held(&rq->lock); 998 999 p->on_rq = TASK_ON_RQ_MIGRATING; 1000 dequeue_task(rq, p, 0); 1001 set_task_cpu(p, new_cpu); 1002 raw_spin_unlock(&rq->lock); 1003 1004 rq = cpu_rq(new_cpu); 1005 1006 raw_spin_lock(&rq->lock); 1007 BUG_ON(task_cpu(p) != new_cpu); 1008 enqueue_task(rq, p, 0); 1009 p->on_rq = TASK_ON_RQ_QUEUED; 1010 check_preempt_curr(rq, p, 0); 1011 1012 return rq; 1013 } 1014 1015 struct migration_arg { 1016 struct task_struct *task; 1017 int dest_cpu; 1018 }; 1019 1020 /* 1021 * Move (not current) task off this cpu, onto dest cpu. We're doing 1022 * this because either it can't run here any more (set_cpus_allowed() 1023 * away from this CPU, or CPU going down), or because we're 1024 * attempting to rebalance this task on exec (sched_exec). 1025 * 1026 * So we race with normal scheduler movements, but that's OK, as long 1027 * as the task is no longer on this CPU. 1028 */ 1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1030 { 1031 if (unlikely(!cpu_active(dest_cpu))) 1032 return rq; 1033 1034 /* Affinity changed (again). */ 1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1036 return rq; 1037 1038 rq = move_queued_task(rq, p, dest_cpu); 1039 1040 return rq; 1041 } 1042 1043 /* 1044 * migration_cpu_stop - this will be executed by a highprio stopper thread 1045 * and performs thread migration by bumping thread off CPU then 1046 * 'pushing' onto another runqueue. 1047 */ 1048 static int migration_cpu_stop(void *data) 1049 { 1050 struct migration_arg *arg = data; 1051 struct task_struct *p = arg->task; 1052 struct rq *rq = this_rq(); 1053 1054 /* 1055 * The original target cpu might have gone down and we might 1056 * be on another cpu but it doesn't matter. 1057 */ 1058 local_irq_disable(); 1059 /* 1060 * We need to explicitly wake pending tasks before running 1061 * __migrate_task() such that we will not miss enforcing cpus_allowed 1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1063 */ 1064 sched_ttwu_pending(); 1065 1066 raw_spin_lock(&p->pi_lock); 1067 raw_spin_lock(&rq->lock); 1068 /* 1069 * If task_rq(p) != rq, it cannot be migrated here, because we're 1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1071 * we're holding p->pi_lock. 1072 */ 1073 if (task_rq(p) == rq) { 1074 if (task_on_rq_queued(p)) 1075 rq = __migrate_task(rq, p, arg->dest_cpu); 1076 else 1077 p->wake_cpu = arg->dest_cpu; 1078 } 1079 raw_spin_unlock(&rq->lock); 1080 raw_spin_unlock(&p->pi_lock); 1081 1082 local_irq_enable(); 1083 return 0; 1084 } 1085 1086 /* 1087 * sched_class::set_cpus_allowed must do the below, but is not required to 1088 * actually call this function. 1089 */ 1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1091 { 1092 cpumask_copy(&p->cpus_allowed, new_mask); 1093 p->nr_cpus_allowed = cpumask_weight(new_mask); 1094 } 1095 1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1097 { 1098 struct rq *rq = task_rq(p); 1099 bool queued, running; 1100 1101 lockdep_assert_held(&p->pi_lock); 1102 1103 queued = task_on_rq_queued(p); 1104 running = task_current(rq, p); 1105 1106 if (queued) { 1107 /* 1108 * Because __kthread_bind() calls this on blocked tasks without 1109 * holding rq->lock. 1110 */ 1111 lockdep_assert_held(&rq->lock); 1112 dequeue_task(rq, p, DEQUEUE_SAVE); 1113 } 1114 if (running) 1115 put_prev_task(rq, p); 1116 1117 p->sched_class->set_cpus_allowed(p, new_mask); 1118 1119 if (queued) 1120 enqueue_task(rq, p, ENQUEUE_RESTORE); 1121 if (running) 1122 set_curr_task(rq, p); 1123 } 1124 1125 /* 1126 * Change a given task's CPU affinity. Migrate the thread to a 1127 * proper CPU and schedule it away if the CPU it's executing on 1128 * is removed from the allowed bitmask. 1129 * 1130 * NOTE: the caller must have a valid reference to the task, the 1131 * task must not exit() & deallocate itself prematurely. The 1132 * call is not atomic; no spinlocks may be held. 1133 */ 1134 static int __set_cpus_allowed_ptr(struct task_struct *p, 1135 const struct cpumask *new_mask, bool check) 1136 { 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1138 unsigned int dest_cpu; 1139 struct rq_flags rf; 1140 struct rq *rq; 1141 int ret = 0; 1142 1143 rq = task_rq_lock(p, &rf); 1144 1145 if (p->flags & PF_KTHREAD) { 1146 /* 1147 * Kernel threads are allowed on online && !active CPUs 1148 */ 1149 cpu_valid_mask = cpu_online_mask; 1150 } 1151 1152 /* 1153 * Must re-check here, to close a race against __kthread_bind(), 1154 * sched_setaffinity() is not guaranteed to observe the flag. 1155 */ 1156 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1157 ret = -EINVAL; 1158 goto out; 1159 } 1160 1161 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1162 goto out; 1163 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1165 ret = -EINVAL; 1166 goto out; 1167 } 1168 1169 do_set_cpus_allowed(p, new_mask); 1170 1171 if (p->flags & PF_KTHREAD) { 1172 /* 1173 * For kernel threads that do indeed end up on online && 1174 * !active we want to ensure they are strict per-cpu threads. 1175 */ 1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1177 !cpumask_intersects(new_mask, cpu_active_mask) && 1178 p->nr_cpus_allowed != 1); 1179 } 1180 1181 /* Can the task run on the task's current CPU? If so, we're done */ 1182 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1183 goto out; 1184 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1186 if (task_running(rq, p) || p->state == TASK_WAKING) { 1187 struct migration_arg arg = { p, dest_cpu }; 1188 /* Need help from migration thread: drop lock and wait. */ 1189 task_rq_unlock(rq, p, &rf); 1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1191 tlb_migrate_finish(p->mm); 1192 return 0; 1193 } else if (task_on_rq_queued(p)) { 1194 /* 1195 * OK, since we're going to drop the lock immediately 1196 * afterwards anyway. 1197 */ 1198 lockdep_unpin_lock(&rq->lock, rf.cookie); 1199 rq = move_queued_task(rq, p, dest_cpu); 1200 lockdep_repin_lock(&rq->lock, rf.cookie); 1201 } 1202 out: 1203 task_rq_unlock(rq, p, &rf); 1204 1205 return ret; 1206 } 1207 1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1209 { 1210 return __set_cpus_allowed_ptr(p, new_mask, false); 1211 } 1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1213 1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1215 { 1216 #ifdef CONFIG_SCHED_DEBUG 1217 /* 1218 * We should never call set_task_cpu() on a blocked task, 1219 * ttwu() will sort out the placement. 1220 */ 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1222 !p->on_rq); 1223 1224 /* 1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1227 * time relying on p->on_rq. 1228 */ 1229 WARN_ON_ONCE(p->state == TASK_RUNNING && 1230 p->sched_class == &fair_sched_class && 1231 (p->on_rq && !task_on_rq_migrating(p))); 1232 1233 #ifdef CONFIG_LOCKDEP 1234 /* 1235 * The caller should hold either p->pi_lock or rq->lock, when changing 1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1237 * 1238 * sched_move_task() holds both and thus holding either pins the cgroup, 1239 * see task_group(). 1240 * 1241 * Furthermore, all task_rq users should acquire both locks, see 1242 * task_rq_lock(). 1243 */ 1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1245 lockdep_is_held(&task_rq(p)->lock))); 1246 #endif 1247 #endif 1248 1249 trace_sched_migrate_task(p, new_cpu); 1250 1251 if (task_cpu(p) != new_cpu) { 1252 if (p->sched_class->migrate_task_rq) 1253 p->sched_class->migrate_task_rq(p); 1254 p->se.nr_migrations++; 1255 perf_event_task_migrate(p); 1256 } 1257 1258 __set_task_cpu(p, new_cpu); 1259 } 1260 1261 static void __migrate_swap_task(struct task_struct *p, int cpu) 1262 { 1263 if (task_on_rq_queued(p)) { 1264 struct rq *src_rq, *dst_rq; 1265 1266 src_rq = task_rq(p); 1267 dst_rq = cpu_rq(cpu); 1268 1269 p->on_rq = TASK_ON_RQ_MIGRATING; 1270 deactivate_task(src_rq, p, 0); 1271 set_task_cpu(p, cpu); 1272 activate_task(dst_rq, p, 0); 1273 p->on_rq = TASK_ON_RQ_QUEUED; 1274 check_preempt_curr(dst_rq, p, 0); 1275 } else { 1276 /* 1277 * Task isn't running anymore; make it appear like we migrated 1278 * it before it went to sleep. This means on wakeup we make the 1279 * previous cpu our target instead of where it really is. 1280 */ 1281 p->wake_cpu = cpu; 1282 } 1283 } 1284 1285 struct migration_swap_arg { 1286 struct task_struct *src_task, *dst_task; 1287 int src_cpu, dst_cpu; 1288 }; 1289 1290 static int migrate_swap_stop(void *data) 1291 { 1292 struct migration_swap_arg *arg = data; 1293 struct rq *src_rq, *dst_rq; 1294 int ret = -EAGAIN; 1295 1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1297 return -EAGAIN; 1298 1299 src_rq = cpu_rq(arg->src_cpu); 1300 dst_rq = cpu_rq(arg->dst_cpu); 1301 1302 double_raw_lock(&arg->src_task->pi_lock, 1303 &arg->dst_task->pi_lock); 1304 double_rq_lock(src_rq, dst_rq); 1305 1306 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1307 goto unlock; 1308 1309 if (task_cpu(arg->src_task) != arg->src_cpu) 1310 goto unlock; 1311 1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1313 goto unlock; 1314 1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1316 goto unlock; 1317 1318 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1319 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1320 1321 ret = 0; 1322 1323 unlock: 1324 double_rq_unlock(src_rq, dst_rq); 1325 raw_spin_unlock(&arg->dst_task->pi_lock); 1326 raw_spin_unlock(&arg->src_task->pi_lock); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * Cross migrate two tasks 1333 */ 1334 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1335 { 1336 struct migration_swap_arg arg; 1337 int ret = -EINVAL; 1338 1339 arg = (struct migration_swap_arg){ 1340 .src_task = cur, 1341 .src_cpu = task_cpu(cur), 1342 .dst_task = p, 1343 .dst_cpu = task_cpu(p), 1344 }; 1345 1346 if (arg.src_cpu == arg.dst_cpu) 1347 goto out; 1348 1349 /* 1350 * These three tests are all lockless; this is OK since all of them 1351 * will be re-checked with proper locks held further down the line. 1352 */ 1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1354 goto out; 1355 1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1357 goto out; 1358 1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1360 goto out; 1361 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1364 1365 out: 1366 return ret; 1367 } 1368 1369 /* 1370 * wait_task_inactive - wait for a thread to unschedule. 1371 * 1372 * If @match_state is nonzero, it's the @p->state value just checked and 1373 * not expected to change. If it changes, i.e. @p might have woken up, 1374 * then return zero. When we succeed in waiting for @p to be off its CPU, 1375 * we return a positive number (its total switch count). If a second call 1376 * a short while later returns the same number, the caller can be sure that 1377 * @p has remained unscheduled the whole time. 1378 * 1379 * The caller must ensure that the task *will* unschedule sometime soon, 1380 * else this function might spin for a *long* time. This function can't 1381 * be called with interrupts off, or it may introduce deadlock with 1382 * smp_call_function() if an IPI is sent by the same process we are 1383 * waiting to become inactive. 1384 */ 1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1386 { 1387 int running, queued; 1388 struct rq_flags rf; 1389 unsigned long ncsw; 1390 struct rq *rq; 1391 1392 for (;;) { 1393 /* 1394 * We do the initial early heuristics without holding 1395 * any task-queue locks at all. We'll only try to get 1396 * the runqueue lock when things look like they will 1397 * work out! 1398 */ 1399 rq = task_rq(p); 1400 1401 /* 1402 * If the task is actively running on another CPU 1403 * still, just relax and busy-wait without holding 1404 * any locks. 1405 * 1406 * NOTE! Since we don't hold any locks, it's not 1407 * even sure that "rq" stays as the right runqueue! 1408 * But we don't care, since "task_running()" will 1409 * return false if the runqueue has changed and p 1410 * is actually now running somewhere else! 1411 */ 1412 while (task_running(rq, p)) { 1413 if (match_state && unlikely(p->state != match_state)) 1414 return 0; 1415 cpu_relax(); 1416 } 1417 1418 /* 1419 * Ok, time to look more closely! We need the rq 1420 * lock now, to be *sure*. If we're wrong, we'll 1421 * just go back and repeat. 1422 */ 1423 rq = task_rq_lock(p, &rf); 1424 trace_sched_wait_task(p); 1425 running = task_running(rq, p); 1426 queued = task_on_rq_queued(p); 1427 ncsw = 0; 1428 if (!match_state || p->state == match_state) 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1430 task_rq_unlock(rq, p, &rf); 1431 1432 /* 1433 * If it changed from the expected state, bail out now. 1434 */ 1435 if (unlikely(!ncsw)) 1436 break; 1437 1438 /* 1439 * Was it really running after all now that we 1440 * checked with the proper locks actually held? 1441 * 1442 * Oops. Go back and try again.. 1443 */ 1444 if (unlikely(running)) { 1445 cpu_relax(); 1446 continue; 1447 } 1448 1449 /* 1450 * It's not enough that it's not actively running, 1451 * it must be off the runqueue _entirely_, and not 1452 * preempted! 1453 * 1454 * So if it was still runnable (but just not actively 1455 * running right now), it's preempted, and we should 1456 * yield - it could be a while. 1457 */ 1458 if (unlikely(queued)) { 1459 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1460 1461 set_current_state(TASK_UNINTERRUPTIBLE); 1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1463 continue; 1464 } 1465 1466 /* 1467 * Ahh, all good. It wasn't running, and it wasn't 1468 * runnable, which means that it will never become 1469 * running in the future either. We're all done! 1470 */ 1471 break; 1472 } 1473 1474 return ncsw; 1475 } 1476 1477 /*** 1478 * kick_process - kick a running thread to enter/exit the kernel 1479 * @p: the to-be-kicked thread 1480 * 1481 * Cause a process which is running on another CPU to enter 1482 * kernel-mode, without any delay. (to get signals handled.) 1483 * 1484 * NOTE: this function doesn't have to take the runqueue lock, 1485 * because all it wants to ensure is that the remote task enters 1486 * the kernel. If the IPI races and the task has been migrated 1487 * to another CPU then no harm is done and the purpose has been 1488 * achieved as well. 1489 */ 1490 void kick_process(struct task_struct *p) 1491 { 1492 int cpu; 1493 1494 preempt_disable(); 1495 cpu = task_cpu(p); 1496 if ((cpu != smp_processor_id()) && task_curr(p)) 1497 smp_send_reschedule(cpu); 1498 preempt_enable(); 1499 } 1500 EXPORT_SYMBOL_GPL(kick_process); 1501 1502 /* 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1504 * 1505 * A few notes on cpu_active vs cpu_online: 1506 * 1507 * - cpu_active must be a subset of cpu_online 1508 * 1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1510 * see __set_cpus_allowed_ptr(). At this point the newly online 1511 * cpu isn't yet part of the sched domains, and balancing will not 1512 * see it. 1513 * 1514 * - on cpu-down we clear cpu_active() to mask the sched domains and 1515 * avoid the load balancer to place new tasks on the to be removed 1516 * cpu. Existing tasks will remain running there and will be taken 1517 * off. 1518 * 1519 * This means that fallback selection must not select !active CPUs. 1520 * And can assume that any active CPU must be online. Conversely 1521 * select_task_rq() below may allow selection of !active CPUs in order 1522 * to satisfy the above rules. 1523 */ 1524 static int select_fallback_rq(int cpu, struct task_struct *p) 1525 { 1526 int nid = cpu_to_node(cpu); 1527 const struct cpumask *nodemask = NULL; 1528 enum { cpuset, possible, fail } state = cpuset; 1529 int dest_cpu; 1530 1531 /* 1532 * If the node that the cpu is on has been offlined, cpu_to_node() 1533 * will return -1. There is no cpu on the node, and we should 1534 * select the cpu on the other node. 1535 */ 1536 if (nid != -1) { 1537 nodemask = cpumask_of_node(nid); 1538 1539 /* Look for allowed, online CPU in same node. */ 1540 for_each_cpu(dest_cpu, nodemask) { 1541 if (!cpu_active(dest_cpu)) 1542 continue; 1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1544 return dest_cpu; 1545 } 1546 } 1547 1548 for (;;) { 1549 /* Any allowed, online CPU? */ 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1552 continue; 1553 if (!cpu_online(dest_cpu)) 1554 continue; 1555 goto out; 1556 } 1557 1558 /* No more Mr. Nice Guy. */ 1559 switch (state) { 1560 case cpuset: 1561 if (IS_ENABLED(CONFIG_CPUSETS)) { 1562 cpuset_cpus_allowed_fallback(p); 1563 state = possible; 1564 break; 1565 } 1566 /* fall-through */ 1567 case possible: 1568 do_set_cpus_allowed(p, cpu_possible_mask); 1569 state = fail; 1570 break; 1571 1572 case fail: 1573 BUG(); 1574 break; 1575 } 1576 } 1577 1578 out: 1579 if (state != cpuset) { 1580 /* 1581 * Don't tell them about moving exiting tasks or 1582 * kernel threads (both mm NULL), since they never 1583 * leave kernel. 1584 */ 1585 if (p->mm && printk_ratelimit()) { 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1587 task_pid_nr(p), p->comm, cpu); 1588 } 1589 } 1590 1591 return dest_cpu; 1592 } 1593 1594 /* 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1596 */ 1597 static inline 1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1599 { 1600 lockdep_assert_held(&p->pi_lock); 1601 1602 if (tsk_nr_cpus_allowed(p) > 1) 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1604 else 1605 cpu = cpumask_any(tsk_cpus_allowed(p)); 1606 1607 /* 1608 * In order not to call set_task_cpu() on a blocking task we need 1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1610 * cpu. 1611 * 1612 * Since this is common to all placement strategies, this lives here. 1613 * 1614 * [ this allows ->select_task() to simply return task_cpu(p) and 1615 * not worry about this generic constraint ] 1616 */ 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1618 !cpu_online(cpu))) 1619 cpu = select_fallback_rq(task_cpu(p), p); 1620 1621 return cpu; 1622 } 1623 1624 static void update_avg(u64 *avg, u64 sample) 1625 { 1626 s64 diff = sample - *avg; 1627 *avg += diff >> 3; 1628 } 1629 1630 #else 1631 1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1633 const struct cpumask *new_mask, bool check) 1634 { 1635 return set_cpus_allowed_ptr(p, new_mask); 1636 } 1637 1638 #endif /* CONFIG_SMP */ 1639 1640 static void 1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1642 { 1643 struct rq *rq; 1644 1645 if (!schedstat_enabled()) 1646 return; 1647 1648 rq = this_rq(); 1649 1650 #ifdef CONFIG_SMP 1651 if (cpu == rq->cpu) { 1652 schedstat_inc(rq->ttwu_local); 1653 schedstat_inc(p->se.statistics.nr_wakeups_local); 1654 } else { 1655 struct sched_domain *sd; 1656 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1658 rcu_read_lock(); 1659 for_each_domain(rq->cpu, sd) { 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1661 schedstat_inc(sd->ttwu_wake_remote); 1662 break; 1663 } 1664 } 1665 rcu_read_unlock(); 1666 } 1667 1668 if (wake_flags & WF_MIGRATED) 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1670 #endif /* CONFIG_SMP */ 1671 1672 schedstat_inc(rq->ttwu_count); 1673 schedstat_inc(p->se.statistics.nr_wakeups); 1674 1675 if (wake_flags & WF_SYNC) 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1677 } 1678 1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1680 { 1681 activate_task(rq, p, en_flags); 1682 p->on_rq = TASK_ON_RQ_QUEUED; 1683 1684 /* if a worker is waking up, notify workqueue */ 1685 if (p->flags & PF_WQ_WORKER) 1686 wq_worker_waking_up(p, cpu_of(rq)); 1687 } 1688 1689 /* 1690 * Mark the task runnable and perform wakeup-preemption. 1691 */ 1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1693 struct pin_cookie cookie) 1694 { 1695 check_preempt_curr(rq, p, wake_flags); 1696 p->state = TASK_RUNNING; 1697 trace_sched_wakeup(p); 1698 1699 #ifdef CONFIG_SMP 1700 if (p->sched_class->task_woken) { 1701 /* 1702 * Our task @p is fully woken up and running; so its safe to 1703 * drop the rq->lock, hereafter rq is only used for statistics. 1704 */ 1705 lockdep_unpin_lock(&rq->lock, cookie); 1706 p->sched_class->task_woken(rq, p); 1707 lockdep_repin_lock(&rq->lock, cookie); 1708 } 1709 1710 if (rq->idle_stamp) { 1711 u64 delta = rq_clock(rq) - rq->idle_stamp; 1712 u64 max = 2*rq->max_idle_balance_cost; 1713 1714 update_avg(&rq->avg_idle, delta); 1715 1716 if (rq->avg_idle > max) 1717 rq->avg_idle = max; 1718 1719 rq->idle_stamp = 0; 1720 } 1721 #endif 1722 } 1723 1724 static void 1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1726 struct pin_cookie cookie) 1727 { 1728 int en_flags = ENQUEUE_WAKEUP; 1729 1730 lockdep_assert_held(&rq->lock); 1731 1732 #ifdef CONFIG_SMP 1733 if (p->sched_contributes_to_load) 1734 rq->nr_uninterruptible--; 1735 1736 if (wake_flags & WF_MIGRATED) 1737 en_flags |= ENQUEUE_MIGRATED; 1738 #endif 1739 1740 ttwu_activate(rq, p, en_flags); 1741 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1742 } 1743 1744 /* 1745 * Called in case the task @p isn't fully descheduled from its runqueue, 1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1747 * since all we need to do is flip p->state to TASK_RUNNING, since 1748 * the task is still ->on_rq. 1749 */ 1750 static int ttwu_remote(struct task_struct *p, int wake_flags) 1751 { 1752 struct rq_flags rf; 1753 struct rq *rq; 1754 int ret = 0; 1755 1756 rq = __task_rq_lock(p, &rf); 1757 if (task_on_rq_queued(p)) { 1758 /* check_preempt_curr() may use rq clock */ 1759 update_rq_clock(rq); 1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1761 ret = 1; 1762 } 1763 __task_rq_unlock(rq, &rf); 1764 1765 return ret; 1766 } 1767 1768 #ifdef CONFIG_SMP 1769 void sched_ttwu_pending(void) 1770 { 1771 struct rq *rq = this_rq(); 1772 struct llist_node *llist = llist_del_all(&rq->wake_list); 1773 struct pin_cookie cookie; 1774 struct task_struct *p; 1775 unsigned long flags; 1776 1777 if (!llist) 1778 return; 1779 1780 raw_spin_lock_irqsave(&rq->lock, flags); 1781 cookie = lockdep_pin_lock(&rq->lock); 1782 1783 while (llist) { 1784 int wake_flags = 0; 1785 1786 p = llist_entry(llist, struct task_struct, wake_entry); 1787 llist = llist_next(llist); 1788 1789 if (p->sched_remote_wakeup) 1790 wake_flags = WF_MIGRATED; 1791 1792 ttwu_do_activate(rq, p, wake_flags, cookie); 1793 } 1794 1795 lockdep_unpin_lock(&rq->lock, cookie); 1796 raw_spin_unlock_irqrestore(&rq->lock, flags); 1797 } 1798 1799 void scheduler_ipi(void) 1800 { 1801 /* 1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1803 * TIF_NEED_RESCHED remotely (for the first time) will also send 1804 * this IPI. 1805 */ 1806 preempt_fold_need_resched(); 1807 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1809 return; 1810 1811 /* 1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1813 * traditionally all their work was done from the interrupt return 1814 * path. Now that we actually do some work, we need to make sure 1815 * we do call them. 1816 * 1817 * Some archs already do call them, luckily irq_enter/exit nest 1818 * properly. 1819 * 1820 * Arguably we should visit all archs and update all handlers, 1821 * however a fair share of IPIs are still resched only so this would 1822 * somewhat pessimize the simple resched case. 1823 */ 1824 irq_enter(); 1825 sched_ttwu_pending(); 1826 1827 /* 1828 * Check if someone kicked us for doing the nohz idle load balance. 1829 */ 1830 if (unlikely(got_nohz_idle_kick())) { 1831 this_rq()->idle_balance = 1; 1832 raise_softirq_irqoff(SCHED_SOFTIRQ); 1833 } 1834 irq_exit(); 1835 } 1836 1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1838 { 1839 struct rq *rq = cpu_rq(cpu); 1840 1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1842 1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1844 if (!set_nr_if_polling(rq->idle)) 1845 smp_send_reschedule(cpu); 1846 else 1847 trace_sched_wake_idle_without_ipi(cpu); 1848 } 1849 } 1850 1851 void wake_up_if_idle(int cpu) 1852 { 1853 struct rq *rq = cpu_rq(cpu); 1854 unsigned long flags; 1855 1856 rcu_read_lock(); 1857 1858 if (!is_idle_task(rcu_dereference(rq->curr))) 1859 goto out; 1860 1861 if (set_nr_if_polling(rq->idle)) { 1862 trace_sched_wake_idle_without_ipi(cpu); 1863 } else { 1864 raw_spin_lock_irqsave(&rq->lock, flags); 1865 if (is_idle_task(rq->curr)) 1866 smp_send_reschedule(cpu); 1867 /* Else cpu is not in idle, do nothing here */ 1868 raw_spin_unlock_irqrestore(&rq->lock, flags); 1869 } 1870 1871 out: 1872 rcu_read_unlock(); 1873 } 1874 1875 bool cpus_share_cache(int this_cpu, int that_cpu) 1876 { 1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1878 } 1879 #endif /* CONFIG_SMP */ 1880 1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1882 { 1883 struct rq *rq = cpu_rq(cpu); 1884 struct pin_cookie cookie; 1885 1886 #if defined(CONFIG_SMP) 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1889 ttwu_queue_remote(p, cpu, wake_flags); 1890 return; 1891 } 1892 #endif 1893 1894 raw_spin_lock(&rq->lock); 1895 cookie = lockdep_pin_lock(&rq->lock); 1896 ttwu_do_activate(rq, p, wake_flags, cookie); 1897 lockdep_unpin_lock(&rq->lock, cookie); 1898 raw_spin_unlock(&rq->lock); 1899 } 1900 1901 /* 1902 * Notes on Program-Order guarantees on SMP systems. 1903 * 1904 * MIGRATION 1905 * 1906 * The basic program-order guarantee on SMP systems is that when a task [t] 1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1908 * execution on its new cpu [c1]. 1909 * 1910 * For migration (of runnable tasks) this is provided by the following means: 1911 * 1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1914 * rq(c1)->lock (if not at the same time, then in that order). 1915 * C) LOCK of the rq(c1)->lock scheduling in task 1916 * 1917 * Transitivity guarantees that B happens after A and C after B. 1918 * Note: we only require RCpc transitivity. 1919 * Note: the cpu doing B need not be c0 or c1 1920 * 1921 * Example: 1922 * 1923 * CPU0 CPU1 CPU2 1924 * 1925 * LOCK rq(0)->lock 1926 * sched-out X 1927 * sched-in Y 1928 * UNLOCK rq(0)->lock 1929 * 1930 * LOCK rq(0)->lock // orders against CPU0 1931 * dequeue X 1932 * UNLOCK rq(0)->lock 1933 * 1934 * LOCK rq(1)->lock 1935 * enqueue X 1936 * UNLOCK rq(1)->lock 1937 * 1938 * LOCK rq(1)->lock // orders against CPU2 1939 * sched-out Z 1940 * sched-in X 1941 * UNLOCK rq(1)->lock 1942 * 1943 * 1944 * BLOCKING -- aka. SLEEP + WAKEUP 1945 * 1946 * For blocking we (obviously) need to provide the same guarantee as for 1947 * migration. However the means are completely different as there is no lock 1948 * chain to provide order. Instead we do: 1949 * 1950 * 1) smp_store_release(X->on_cpu, 0) 1951 * 2) smp_cond_load_acquire(!X->on_cpu) 1952 * 1953 * Example: 1954 * 1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1956 * 1957 * LOCK rq(0)->lock LOCK X->pi_lock 1958 * dequeue X 1959 * sched-out X 1960 * smp_store_release(X->on_cpu, 0); 1961 * 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1963 * X->state = WAKING 1964 * set_task_cpu(X,2) 1965 * 1966 * LOCK rq(2)->lock 1967 * enqueue X 1968 * X->state = RUNNING 1969 * UNLOCK rq(2)->lock 1970 * 1971 * LOCK rq(2)->lock // orders against CPU1 1972 * sched-out Z 1973 * sched-in X 1974 * UNLOCK rq(2)->lock 1975 * 1976 * UNLOCK X->pi_lock 1977 * UNLOCK rq(0)->lock 1978 * 1979 * 1980 * However; for wakeups there is a second guarantee we must provide, namely we 1981 * must observe the state that lead to our wakeup. That is, not only must our 1982 * task observe its own prior state, it must also observe the stores prior to 1983 * its wakeup. 1984 * 1985 * This means that any means of doing remote wakeups must order the CPU doing 1986 * the wakeup against the CPU the task is going to end up running on. This, 1987 * however, is already required for the regular Program-Order guarantee above, 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1989 * 1990 */ 1991 1992 /** 1993 * try_to_wake_up - wake up a thread 1994 * @p: the thread to be awakened 1995 * @state: the mask of task states that can be woken 1996 * @wake_flags: wake modifier flags (WF_*) 1997 * 1998 * Put it on the run-queue if it's not already there. The "current" 1999 * thread is always on the run-queue (except when the actual 2000 * re-schedule is in progress), and as such you're allowed to do 2001 * the simpler "current->state = TASK_RUNNING" to mark yourself 2002 * runnable without the overhead of this. 2003 * 2004 * Return: %true if @p was woken up, %false if it was already running. 2005 * or @state didn't match @p's state. 2006 */ 2007 static int 2008 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2009 { 2010 unsigned long flags; 2011 int cpu, success = 0; 2012 2013 /* 2014 * If we are going to wake up a thread waiting for CONDITION we 2015 * need to ensure that CONDITION=1 done by the caller can not be 2016 * reordered with p->state check below. This pairs with mb() in 2017 * set_current_state() the waiting thread does. 2018 */ 2019 smp_mb__before_spinlock(); 2020 raw_spin_lock_irqsave(&p->pi_lock, flags); 2021 if (!(p->state & state)) 2022 goto out; 2023 2024 trace_sched_waking(p); 2025 2026 success = 1; /* we're going to change ->state */ 2027 cpu = task_cpu(p); 2028 2029 /* 2030 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2031 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2032 * in smp_cond_load_acquire() below. 2033 * 2034 * sched_ttwu_pending() try_to_wake_up() 2035 * [S] p->on_rq = 1; [L] P->state 2036 * UNLOCK rq->lock -----. 2037 * \ 2038 * +--- RMB 2039 * schedule() / 2040 * LOCK rq->lock -----' 2041 * UNLOCK rq->lock 2042 * 2043 * [task p] 2044 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2045 * 2046 * Pairs with the UNLOCK+LOCK on rq->lock from the 2047 * last wakeup of our task and the schedule that got our task 2048 * current. 2049 */ 2050 smp_rmb(); 2051 if (p->on_rq && ttwu_remote(p, wake_flags)) 2052 goto stat; 2053 2054 #ifdef CONFIG_SMP 2055 /* 2056 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2057 * possible to, falsely, observe p->on_cpu == 0. 2058 * 2059 * One must be running (->on_cpu == 1) in order to remove oneself 2060 * from the runqueue. 2061 * 2062 * [S] ->on_cpu = 1; [L] ->on_rq 2063 * UNLOCK rq->lock 2064 * RMB 2065 * LOCK rq->lock 2066 * [S] ->on_rq = 0; [L] ->on_cpu 2067 * 2068 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2069 * from the consecutive calls to schedule(); the first switching to our 2070 * task, the second putting it to sleep. 2071 */ 2072 smp_rmb(); 2073 2074 /* 2075 * If the owning (remote) cpu is still in the middle of schedule() with 2076 * this task as prev, wait until its done referencing the task. 2077 * 2078 * Pairs with the smp_store_release() in finish_lock_switch(). 2079 * 2080 * This ensures that tasks getting woken will be fully ordered against 2081 * their previous state and preserve Program Order. 2082 */ 2083 smp_cond_load_acquire(&p->on_cpu, !VAL); 2084 2085 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2086 p->state = TASK_WAKING; 2087 2088 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2089 if (task_cpu(p) != cpu) { 2090 wake_flags |= WF_MIGRATED; 2091 set_task_cpu(p, cpu); 2092 } 2093 #endif /* CONFIG_SMP */ 2094 2095 ttwu_queue(p, cpu, wake_flags); 2096 stat: 2097 ttwu_stat(p, cpu, wake_flags); 2098 out: 2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2100 2101 return success; 2102 } 2103 2104 /** 2105 * try_to_wake_up_local - try to wake up a local task with rq lock held 2106 * @p: the thread to be awakened 2107 * @cookie: context's cookie for pinning 2108 * 2109 * Put @p on the run-queue if it's not already there. The caller must 2110 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2111 * the current task. 2112 */ 2113 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2114 { 2115 struct rq *rq = task_rq(p); 2116 2117 if (WARN_ON_ONCE(rq != this_rq()) || 2118 WARN_ON_ONCE(p == current)) 2119 return; 2120 2121 lockdep_assert_held(&rq->lock); 2122 2123 if (!raw_spin_trylock(&p->pi_lock)) { 2124 /* 2125 * This is OK, because current is on_cpu, which avoids it being 2126 * picked for load-balance and preemption/IRQs are still 2127 * disabled avoiding further scheduler activity on it and we've 2128 * not yet picked a replacement task. 2129 */ 2130 lockdep_unpin_lock(&rq->lock, cookie); 2131 raw_spin_unlock(&rq->lock); 2132 raw_spin_lock(&p->pi_lock); 2133 raw_spin_lock(&rq->lock); 2134 lockdep_repin_lock(&rq->lock, cookie); 2135 } 2136 2137 if (!(p->state & TASK_NORMAL)) 2138 goto out; 2139 2140 trace_sched_waking(p); 2141 2142 if (!task_on_rq_queued(p)) 2143 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2144 2145 ttwu_do_wakeup(rq, p, 0, cookie); 2146 ttwu_stat(p, smp_processor_id(), 0); 2147 out: 2148 raw_spin_unlock(&p->pi_lock); 2149 } 2150 2151 /** 2152 * wake_up_process - Wake up a specific process 2153 * @p: The process to be woken up. 2154 * 2155 * Attempt to wake up the nominated process and move it to the set of runnable 2156 * processes. 2157 * 2158 * Return: 1 if the process was woken up, 0 if it was already running. 2159 * 2160 * It may be assumed that this function implies a write memory barrier before 2161 * changing the task state if and only if any tasks are woken up. 2162 */ 2163 int wake_up_process(struct task_struct *p) 2164 { 2165 return try_to_wake_up(p, TASK_NORMAL, 0); 2166 } 2167 EXPORT_SYMBOL(wake_up_process); 2168 2169 int wake_up_state(struct task_struct *p, unsigned int state) 2170 { 2171 return try_to_wake_up(p, state, 0); 2172 } 2173 2174 /* 2175 * This function clears the sched_dl_entity static params. 2176 */ 2177 void __dl_clear_params(struct task_struct *p) 2178 { 2179 struct sched_dl_entity *dl_se = &p->dl; 2180 2181 dl_se->dl_runtime = 0; 2182 dl_se->dl_deadline = 0; 2183 dl_se->dl_period = 0; 2184 dl_se->flags = 0; 2185 dl_se->dl_bw = 0; 2186 2187 dl_se->dl_throttled = 0; 2188 dl_se->dl_yielded = 0; 2189 } 2190 2191 /* 2192 * Perform scheduler related setup for a newly forked process p. 2193 * p is forked by current. 2194 * 2195 * __sched_fork() is basic setup used by init_idle() too: 2196 */ 2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2198 { 2199 p->on_rq = 0; 2200 2201 p->se.on_rq = 0; 2202 p->se.exec_start = 0; 2203 p->se.sum_exec_runtime = 0; 2204 p->se.prev_sum_exec_runtime = 0; 2205 p->se.nr_migrations = 0; 2206 p->se.vruntime = 0; 2207 INIT_LIST_HEAD(&p->se.group_node); 2208 2209 #ifdef CONFIG_FAIR_GROUP_SCHED 2210 p->se.cfs_rq = NULL; 2211 #endif 2212 2213 #ifdef CONFIG_SCHEDSTATS 2214 /* Even if schedstat is disabled, there should not be garbage */ 2215 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2216 #endif 2217 2218 RB_CLEAR_NODE(&p->dl.rb_node); 2219 init_dl_task_timer(&p->dl); 2220 __dl_clear_params(p); 2221 2222 INIT_LIST_HEAD(&p->rt.run_list); 2223 p->rt.timeout = 0; 2224 p->rt.time_slice = sched_rr_timeslice; 2225 p->rt.on_rq = 0; 2226 p->rt.on_list = 0; 2227 2228 #ifdef CONFIG_PREEMPT_NOTIFIERS 2229 INIT_HLIST_HEAD(&p->preempt_notifiers); 2230 #endif 2231 2232 #ifdef CONFIG_NUMA_BALANCING 2233 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2234 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2235 p->mm->numa_scan_seq = 0; 2236 } 2237 2238 if (clone_flags & CLONE_VM) 2239 p->numa_preferred_nid = current->numa_preferred_nid; 2240 else 2241 p->numa_preferred_nid = -1; 2242 2243 p->node_stamp = 0ULL; 2244 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2245 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2246 p->numa_work.next = &p->numa_work; 2247 p->numa_faults = NULL; 2248 p->last_task_numa_placement = 0; 2249 p->last_sum_exec_runtime = 0; 2250 2251 p->numa_group = NULL; 2252 #endif /* CONFIG_NUMA_BALANCING */ 2253 } 2254 2255 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2256 2257 #ifdef CONFIG_NUMA_BALANCING 2258 2259 void set_numabalancing_state(bool enabled) 2260 { 2261 if (enabled) 2262 static_branch_enable(&sched_numa_balancing); 2263 else 2264 static_branch_disable(&sched_numa_balancing); 2265 } 2266 2267 #ifdef CONFIG_PROC_SYSCTL 2268 int sysctl_numa_balancing(struct ctl_table *table, int write, 2269 void __user *buffer, size_t *lenp, loff_t *ppos) 2270 { 2271 struct ctl_table t; 2272 int err; 2273 int state = static_branch_likely(&sched_numa_balancing); 2274 2275 if (write && !capable(CAP_SYS_ADMIN)) 2276 return -EPERM; 2277 2278 t = *table; 2279 t.data = &state; 2280 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2281 if (err < 0) 2282 return err; 2283 if (write) 2284 set_numabalancing_state(state); 2285 return err; 2286 } 2287 #endif 2288 #endif 2289 2290 #ifdef CONFIG_SCHEDSTATS 2291 2292 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2293 static bool __initdata __sched_schedstats = false; 2294 2295 static void set_schedstats(bool enabled) 2296 { 2297 if (enabled) 2298 static_branch_enable(&sched_schedstats); 2299 else 2300 static_branch_disable(&sched_schedstats); 2301 } 2302 2303 void force_schedstat_enabled(void) 2304 { 2305 if (!schedstat_enabled()) { 2306 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2307 static_branch_enable(&sched_schedstats); 2308 } 2309 } 2310 2311 static int __init setup_schedstats(char *str) 2312 { 2313 int ret = 0; 2314 if (!str) 2315 goto out; 2316 2317 /* 2318 * This code is called before jump labels have been set up, so we can't 2319 * change the static branch directly just yet. Instead set a temporary 2320 * variable so init_schedstats() can do it later. 2321 */ 2322 if (!strcmp(str, "enable")) { 2323 __sched_schedstats = true; 2324 ret = 1; 2325 } else if (!strcmp(str, "disable")) { 2326 __sched_schedstats = false; 2327 ret = 1; 2328 } 2329 out: 2330 if (!ret) 2331 pr_warn("Unable to parse schedstats=\n"); 2332 2333 return ret; 2334 } 2335 __setup("schedstats=", setup_schedstats); 2336 2337 static void __init init_schedstats(void) 2338 { 2339 set_schedstats(__sched_schedstats); 2340 } 2341 2342 #ifdef CONFIG_PROC_SYSCTL 2343 int sysctl_schedstats(struct ctl_table *table, int write, 2344 void __user *buffer, size_t *lenp, loff_t *ppos) 2345 { 2346 struct ctl_table t; 2347 int err; 2348 int state = static_branch_likely(&sched_schedstats); 2349 2350 if (write && !capable(CAP_SYS_ADMIN)) 2351 return -EPERM; 2352 2353 t = *table; 2354 t.data = &state; 2355 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2356 if (err < 0) 2357 return err; 2358 if (write) 2359 set_schedstats(state); 2360 return err; 2361 } 2362 #endif /* CONFIG_PROC_SYSCTL */ 2363 #else /* !CONFIG_SCHEDSTATS */ 2364 static inline void init_schedstats(void) {} 2365 #endif /* CONFIG_SCHEDSTATS */ 2366 2367 /* 2368 * fork()/clone()-time setup: 2369 */ 2370 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2371 { 2372 unsigned long flags; 2373 int cpu = get_cpu(); 2374 2375 __sched_fork(clone_flags, p); 2376 /* 2377 * We mark the process as NEW here. This guarantees that 2378 * nobody will actually run it, and a signal or other external 2379 * event cannot wake it up and insert it on the runqueue either. 2380 */ 2381 p->state = TASK_NEW; 2382 2383 /* 2384 * Make sure we do not leak PI boosting priority to the child. 2385 */ 2386 p->prio = current->normal_prio; 2387 2388 /* 2389 * Revert to default priority/policy on fork if requested. 2390 */ 2391 if (unlikely(p->sched_reset_on_fork)) { 2392 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2393 p->policy = SCHED_NORMAL; 2394 p->static_prio = NICE_TO_PRIO(0); 2395 p->rt_priority = 0; 2396 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2397 p->static_prio = NICE_TO_PRIO(0); 2398 2399 p->prio = p->normal_prio = __normal_prio(p); 2400 set_load_weight(p); 2401 2402 /* 2403 * We don't need the reset flag anymore after the fork. It has 2404 * fulfilled its duty: 2405 */ 2406 p->sched_reset_on_fork = 0; 2407 } 2408 2409 if (dl_prio(p->prio)) { 2410 put_cpu(); 2411 return -EAGAIN; 2412 } else if (rt_prio(p->prio)) { 2413 p->sched_class = &rt_sched_class; 2414 } else { 2415 p->sched_class = &fair_sched_class; 2416 } 2417 2418 init_entity_runnable_average(&p->se); 2419 2420 /* 2421 * The child is not yet in the pid-hash so no cgroup attach races, 2422 * and the cgroup is pinned to this child due to cgroup_fork() 2423 * is ran before sched_fork(). 2424 * 2425 * Silence PROVE_RCU. 2426 */ 2427 raw_spin_lock_irqsave(&p->pi_lock, flags); 2428 /* 2429 * We're setting the cpu for the first time, we don't migrate, 2430 * so use __set_task_cpu(). 2431 */ 2432 __set_task_cpu(p, cpu); 2433 if (p->sched_class->task_fork) 2434 p->sched_class->task_fork(p); 2435 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2436 2437 #ifdef CONFIG_SCHED_INFO 2438 if (likely(sched_info_on())) 2439 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2440 #endif 2441 #if defined(CONFIG_SMP) 2442 p->on_cpu = 0; 2443 #endif 2444 init_task_preempt_count(p); 2445 #ifdef CONFIG_SMP 2446 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2447 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2448 #endif 2449 2450 put_cpu(); 2451 return 0; 2452 } 2453 2454 unsigned long to_ratio(u64 period, u64 runtime) 2455 { 2456 if (runtime == RUNTIME_INF) 2457 return 1ULL << 20; 2458 2459 /* 2460 * Doing this here saves a lot of checks in all 2461 * the calling paths, and returning zero seems 2462 * safe for them anyway. 2463 */ 2464 if (period == 0) 2465 return 0; 2466 2467 return div64_u64(runtime << 20, period); 2468 } 2469 2470 #ifdef CONFIG_SMP 2471 inline struct dl_bw *dl_bw_of(int i) 2472 { 2473 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2474 "sched RCU must be held"); 2475 return &cpu_rq(i)->rd->dl_bw; 2476 } 2477 2478 static inline int dl_bw_cpus(int i) 2479 { 2480 struct root_domain *rd = cpu_rq(i)->rd; 2481 int cpus = 0; 2482 2483 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2484 "sched RCU must be held"); 2485 for_each_cpu_and(i, rd->span, cpu_active_mask) 2486 cpus++; 2487 2488 return cpus; 2489 } 2490 #else 2491 inline struct dl_bw *dl_bw_of(int i) 2492 { 2493 return &cpu_rq(i)->dl.dl_bw; 2494 } 2495 2496 static inline int dl_bw_cpus(int i) 2497 { 2498 return 1; 2499 } 2500 #endif 2501 2502 /* 2503 * We must be sure that accepting a new task (or allowing changing the 2504 * parameters of an existing one) is consistent with the bandwidth 2505 * constraints. If yes, this function also accordingly updates the currently 2506 * allocated bandwidth to reflect the new situation. 2507 * 2508 * This function is called while holding p's rq->lock. 2509 * 2510 * XXX we should delay bw change until the task's 0-lag point, see 2511 * __setparam_dl(). 2512 */ 2513 static int dl_overflow(struct task_struct *p, int policy, 2514 const struct sched_attr *attr) 2515 { 2516 2517 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2518 u64 period = attr->sched_period ?: attr->sched_deadline; 2519 u64 runtime = attr->sched_runtime; 2520 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2521 int cpus, err = -1; 2522 2523 /* !deadline task may carry old deadline bandwidth */ 2524 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2525 return 0; 2526 2527 /* 2528 * Either if a task, enters, leave, or stays -deadline but changes 2529 * its parameters, we may need to update accordingly the total 2530 * allocated bandwidth of the container. 2531 */ 2532 raw_spin_lock(&dl_b->lock); 2533 cpus = dl_bw_cpus(task_cpu(p)); 2534 if (dl_policy(policy) && !task_has_dl_policy(p) && 2535 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2536 __dl_add(dl_b, new_bw); 2537 err = 0; 2538 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2539 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2540 __dl_clear(dl_b, p->dl.dl_bw); 2541 __dl_add(dl_b, new_bw); 2542 err = 0; 2543 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2544 __dl_clear(dl_b, p->dl.dl_bw); 2545 err = 0; 2546 } 2547 raw_spin_unlock(&dl_b->lock); 2548 2549 return err; 2550 } 2551 2552 extern void init_dl_bw(struct dl_bw *dl_b); 2553 2554 /* 2555 * wake_up_new_task - wake up a newly created task for the first time. 2556 * 2557 * This function will do some initial scheduler statistics housekeeping 2558 * that must be done for every newly created context, then puts the task 2559 * on the runqueue and wakes it. 2560 */ 2561 void wake_up_new_task(struct task_struct *p) 2562 { 2563 struct rq_flags rf; 2564 struct rq *rq; 2565 2566 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2567 p->state = TASK_RUNNING; 2568 #ifdef CONFIG_SMP 2569 /* 2570 * Fork balancing, do it here and not earlier because: 2571 * - cpus_allowed can change in the fork path 2572 * - any previously selected cpu might disappear through hotplug 2573 * 2574 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2575 * as we're not fully set-up yet. 2576 */ 2577 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2578 #endif 2579 rq = __task_rq_lock(p, &rf); 2580 post_init_entity_util_avg(&p->se); 2581 2582 activate_task(rq, p, 0); 2583 p->on_rq = TASK_ON_RQ_QUEUED; 2584 trace_sched_wakeup_new(p); 2585 check_preempt_curr(rq, p, WF_FORK); 2586 #ifdef CONFIG_SMP 2587 if (p->sched_class->task_woken) { 2588 /* 2589 * Nothing relies on rq->lock after this, so its fine to 2590 * drop it. 2591 */ 2592 lockdep_unpin_lock(&rq->lock, rf.cookie); 2593 p->sched_class->task_woken(rq, p); 2594 lockdep_repin_lock(&rq->lock, rf.cookie); 2595 } 2596 #endif 2597 task_rq_unlock(rq, p, &rf); 2598 } 2599 2600 #ifdef CONFIG_PREEMPT_NOTIFIERS 2601 2602 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2603 2604 void preempt_notifier_inc(void) 2605 { 2606 static_key_slow_inc(&preempt_notifier_key); 2607 } 2608 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2609 2610 void preempt_notifier_dec(void) 2611 { 2612 static_key_slow_dec(&preempt_notifier_key); 2613 } 2614 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2615 2616 /** 2617 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2618 * @notifier: notifier struct to register 2619 */ 2620 void preempt_notifier_register(struct preempt_notifier *notifier) 2621 { 2622 if (!static_key_false(&preempt_notifier_key)) 2623 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2624 2625 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2626 } 2627 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2628 2629 /** 2630 * preempt_notifier_unregister - no longer interested in preemption notifications 2631 * @notifier: notifier struct to unregister 2632 * 2633 * This is *not* safe to call from within a preemption notifier. 2634 */ 2635 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2636 { 2637 hlist_del(¬ifier->link); 2638 } 2639 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2640 2641 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2642 { 2643 struct preempt_notifier *notifier; 2644 2645 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2646 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2647 } 2648 2649 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2650 { 2651 if (static_key_false(&preempt_notifier_key)) 2652 __fire_sched_in_preempt_notifiers(curr); 2653 } 2654 2655 static void 2656 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2657 struct task_struct *next) 2658 { 2659 struct preempt_notifier *notifier; 2660 2661 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2662 notifier->ops->sched_out(notifier, next); 2663 } 2664 2665 static __always_inline void 2666 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2667 struct task_struct *next) 2668 { 2669 if (static_key_false(&preempt_notifier_key)) 2670 __fire_sched_out_preempt_notifiers(curr, next); 2671 } 2672 2673 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2674 2675 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2676 { 2677 } 2678 2679 static inline void 2680 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2681 struct task_struct *next) 2682 { 2683 } 2684 2685 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2686 2687 /** 2688 * prepare_task_switch - prepare to switch tasks 2689 * @rq: the runqueue preparing to switch 2690 * @prev: the current task that is being switched out 2691 * @next: the task we are going to switch to. 2692 * 2693 * This is called with the rq lock held and interrupts off. It must 2694 * be paired with a subsequent finish_task_switch after the context 2695 * switch. 2696 * 2697 * prepare_task_switch sets up locking and calls architecture specific 2698 * hooks. 2699 */ 2700 static inline void 2701 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2702 struct task_struct *next) 2703 { 2704 sched_info_switch(rq, prev, next); 2705 perf_event_task_sched_out(prev, next); 2706 fire_sched_out_preempt_notifiers(prev, next); 2707 prepare_lock_switch(rq, next); 2708 prepare_arch_switch(next); 2709 } 2710 2711 /** 2712 * finish_task_switch - clean up after a task-switch 2713 * @prev: the thread we just switched away from. 2714 * 2715 * finish_task_switch must be called after the context switch, paired 2716 * with a prepare_task_switch call before the context switch. 2717 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2718 * and do any other architecture-specific cleanup actions. 2719 * 2720 * Note that we may have delayed dropping an mm in context_switch(). If 2721 * so, we finish that here outside of the runqueue lock. (Doing it 2722 * with the lock held can cause deadlocks; see schedule() for 2723 * details.) 2724 * 2725 * The context switch have flipped the stack from under us and restored the 2726 * local variables which were saved when this task called schedule() in the 2727 * past. prev == current is still correct but we need to recalculate this_rq 2728 * because prev may have moved to another CPU. 2729 */ 2730 static struct rq *finish_task_switch(struct task_struct *prev) 2731 __releases(rq->lock) 2732 { 2733 struct rq *rq = this_rq(); 2734 struct mm_struct *mm = rq->prev_mm; 2735 long prev_state; 2736 2737 /* 2738 * The previous task will have left us with a preempt_count of 2 2739 * because it left us after: 2740 * 2741 * schedule() 2742 * preempt_disable(); // 1 2743 * __schedule() 2744 * raw_spin_lock_irq(&rq->lock) // 2 2745 * 2746 * Also, see FORK_PREEMPT_COUNT. 2747 */ 2748 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2749 "corrupted preempt_count: %s/%d/0x%x\n", 2750 current->comm, current->pid, preempt_count())) 2751 preempt_count_set(FORK_PREEMPT_COUNT); 2752 2753 rq->prev_mm = NULL; 2754 2755 /* 2756 * A task struct has one reference for the use as "current". 2757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2758 * schedule one last time. The schedule call will never return, and 2759 * the scheduled task must drop that reference. 2760 * 2761 * We must observe prev->state before clearing prev->on_cpu (in 2762 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2763 * running on another CPU and we could rave with its RUNNING -> DEAD 2764 * transition, resulting in a double drop. 2765 */ 2766 prev_state = prev->state; 2767 vtime_task_switch(prev); 2768 perf_event_task_sched_in(prev, current); 2769 finish_lock_switch(rq, prev); 2770 finish_arch_post_lock_switch(); 2771 2772 fire_sched_in_preempt_notifiers(current); 2773 if (mm) 2774 mmdrop(mm); 2775 if (unlikely(prev_state == TASK_DEAD)) { 2776 if (prev->sched_class->task_dead) 2777 prev->sched_class->task_dead(prev); 2778 2779 /* 2780 * Remove function-return probe instances associated with this 2781 * task and put them back on the free list. 2782 */ 2783 kprobe_flush_task(prev); 2784 2785 /* Task is done with its stack. */ 2786 put_task_stack(prev); 2787 2788 put_task_struct(prev); 2789 } 2790 2791 tick_nohz_task_switch(); 2792 return rq; 2793 } 2794 2795 #ifdef CONFIG_SMP 2796 2797 /* rq->lock is NOT held, but preemption is disabled */ 2798 static void __balance_callback(struct rq *rq) 2799 { 2800 struct callback_head *head, *next; 2801 void (*func)(struct rq *rq); 2802 unsigned long flags; 2803 2804 raw_spin_lock_irqsave(&rq->lock, flags); 2805 head = rq->balance_callback; 2806 rq->balance_callback = NULL; 2807 while (head) { 2808 func = (void (*)(struct rq *))head->func; 2809 next = head->next; 2810 head->next = NULL; 2811 head = next; 2812 2813 func(rq); 2814 } 2815 raw_spin_unlock_irqrestore(&rq->lock, flags); 2816 } 2817 2818 static inline void balance_callback(struct rq *rq) 2819 { 2820 if (unlikely(rq->balance_callback)) 2821 __balance_callback(rq); 2822 } 2823 2824 #else 2825 2826 static inline void balance_callback(struct rq *rq) 2827 { 2828 } 2829 2830 #endif 2831 2832 /** 2833 * schedule_tail - first thing a freshly forked thread must call. 2834 * @prev: the thread we just switched away from. 2835 */ 2836 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2837 __releases(rq->lock) 2838 { 2839 struct rq *rq; 2840 2841 /* 2842 * New tasks start with FORK_PREEMPT_COUNT, see there and 2843 * finish_task_switch() for details. 2844 * 2845 * finish_task_switch() will drop rq->lock() and lower preempt_count 2846 * and the preempt_enable() will end up enabling preemption (on 2847 * PREEMPT_COUNT kernels). 2848 */ 2849 2850 rq = finish_task_switch(prev); 2851 balance_callback(rq); 2852 preempt_enable(); 2853 2854 if (current->set_child_tid) 2855 put_user(task_pid_vnr(current), current->set_child_tid); 2856 } 2857 2858 /* 2859 * context_switch - switch to the new MM and the new thread's register state. 2860 */ 2861 static __always_inline struct rq * 2862 context_switch(struct rq *rq, struct task_struct *prev, 2863 struct task_struct *next, struct pin_cookie cookie) 2864 { 2865 struct mm_struct *mm, *oldmm; 2866 2867 prepare_task_switch(rq, prev, next); 2868 2869 mm = next->mm; 2870 oldmm = prev->active_mm; 2871 /* 2872 * For paravirt, this is coupled with an exit in switch_to to 2873 * combine the page table reload and the switch backend into 2874 * one hypercall. 2875 */ 2876 arch_start_context_switch(prev); 2877 2878 if (!mm) { 2879 next->active_mm = oldmm; 2880 atomic_inc(&oldmm->mm_count); 2881 enter_lazy_tlb(oldmm, next); 2882 } else 2883 switch_mm_irqs_off(oldmm, mm, next); 2884 2885 if (!prev->mm) { 2886 prev->active_mm = NULL; 2887 rq->prev_mm = oldmm; 2888 } 2889 /* 2890 * Since the runqueue lock will be released by the next 2891 * task (which is an invalid locking op but in the case 2892 * of the scheduler it's an obvious special-case), so we 2893 * do an early lockdep release here: 2894 */ 2895 lockdep_unpin_lock(&rq->lock, cookie); 2896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2897 2898 /* Here we just switch the register state and the stack. */ 2899 switch_to(prev, next, prev); 2900 barrier(); 2901 2902 return finish_task_switch(prev); 2903 } 2904 2905 /* 2906 * nr_running and nr_context_switches: 2907 * 2908 * externally visible scheduler statistics: current number of runnable 2909 * threads, total number of context switches performed since bootup. 2910 */ 2911 unsigned long nr_running(void) 2912 { 2913 unsigned long i, sum = 0; 2914 2915 for_each_online_cpu(i) 2916 sum += cpu_rq(i)->nr_running; 2917 2918 return sum; 2919 } 2920 2921 /* 2922 * Check if only the current task is running on the cpu. 2923 * 2924 * Caution: this function does not check that the caller has disabled 2925 * preemption, thus the result might have a time-of-check-to-time-of-use 2926 * race. The caller is responsible to use it correctly, for example: 2927 * 2928 * - from a non-preemptable section (of course) 2929 * 2930 * - from a thread that is bound to a single CPU 2931 * 2932 * - in a loop with very short iterations (e.g. a polling loop) 2933 */ 2934 bool single_task_running(void) 2935 { 2936 return raw_rq()->nr_running == 1; 2937 } 2938 EXPORT_SYMBOL(single_task_running); 2939 2940 unsigned long long nr_context_switches(void) 2941 { 2942 int i; 2943 unsigned long long sum = 0; 2944 2945 for_each_possible_cpu(i) 2946 sum += cpu_rq(i)->nr_switches; 2947 2948 return sum; 2949 } 2950 2951 unsigned long nr_iowait(void) 2952 { 2953 unsigned long i, sum = 0; 2954 2955 for_each_possible_cpu(i) 2956 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2957 2958 return sum; 2959 } 2960 2961 unsigned long nr_iowait_cpu(int cpu) 2962 { 2963 struct rq *this = cpu_rq(cpu); 2964 return atomic_read(&this->nr_iowait); 2965 } 2966 2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2968 { 2969 struct rq *rq = this_rq(); 2970 *nr_waiters = atomic_read(&rq->nr_iowait); 2971 *load = rq->load.weight; 2972 } 2973 2974 #ifdef CONFIG_SMP 2975 2976 /* 2977 * sched_exec - execve() is a valuable balancing opportunity, because at 2978 * this point the task has the smallest effective memory and cache footprint. 2979 */ 2980 void sched_exec(void) 2981 { 2982 struct task_struct *p = current; 2983 unsigned long flags; 2984 int dest_cpu; 2985 2986 raw_spin_lock_irqsave(&p->pi_lock, flags); 2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2988 if (dest_cpu == smp_processor_id()) 2989 goto unlock; 2990 2991 if (likely(cpu_active(dest_cpu))) { 2992 struct migration_arg arg = { p, dest_cpu }; 2993 2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2996 return; 2997 } 2998 unlock: 2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3000 } 3001 3002 #endif 3003 3004 DEFINE_PER_CPU(struct kernel_stat, kstat); 3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3006 3007 EXPORT_PER_CPU_SYMBOL(kstat); 3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3009 3010 /* 3011 * The function fair_sched_class.update_curr accesses the struct curr 3012 * and its field curr->exec_start; when called from task_sched_runtime(), 3013 * we observe a high rate of cache misses in practice. 3014 * Prefetching this data results in improved performance. 3015 */ 3016 static inline void prefetch_curr_exec_start(struct task_struct *p) 3017 { 3018 #ifdef CONFIG_FAIR_GROUP_SCHED 3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3020 #else 3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3022 #endif 3023 prefetch(curr); 3024 prefetch(&curr->exec_start); 3025 } 3026 3027 /* 3028 * Return accounted runtime for the task. 3029 * In case the task is currently running, return the runtime plus current's 3030 * pending runtime that have not been accounted yet. 3031 */ 3032 unsigned long long task_sched_runtime(struct task_struct *p) 3033 { 3034 struct rq_flags rf; 3035 struct rq *rq; 3036 u64 ns; 3037 3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3039 /* 3040 * 64-bit doesn't need locks to atomically read a 64bit value. 3041 * So we have a optimization chance when the task's delta_exec is 0. 3042 * Reading ->on_cpu is racy, but this is ok. 3043 * 3044 * If we race with it leaving cpu, we'll take a lock. So we're correct. 3045 * If we race with it entering cpu, unaccounted time is 0. This is 3046 * indistinguishable from the read occurring a few cycles earlier. 3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3048 * been accounted, so we're correct here as well. 3049 */ 3050 if (!p->on_cpu || !task_on_rq_queued(p)) 3051 return p->se.sum_exec_runtime; 3052 #endif 3053 3054 rq = task_rq_lock(p, &rf); 3055 /* 3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3057 * project cycles that may never be accounted to this 3058 * thread, breaking clock_gettime(). 3059 */ 3060 if (task_current(rq, p) && task_on_rq_queued(p)) { 3061 prefetch_curr_exec_start(p); 3062 update_rq_clock(rq); 3063 p->sched_class->update_curr(rq); 3064 } 3065 ns = p->se.sum_exec_runtime; 3066 task_rq_unlock(rq, p, &rf); 3067 3068 return ns; 3069 } 3070 3071 /* 3072 * This function gets called by the timer code, with HZ frequency. 3073 * We call it with interrupts disabled. 3074 */ 3075 void scheduler_tick(void) 3076 { 3077 int cpu = smp_processor_id(); 3078 struct rq *rq = cpu_rq(cpu); 3079 struct task_struct *curr = rq->curr; 3080 3081 sched_clock_tick(); 3082 3083 raw_spin_lock(&rq->lock); 3084 update_rq_clock(rq); 3085 curr->sched_class->task_tick(rq, curr, 0); 3086 cpu_load_update_active(rq); 3087 calc_global_load_tick(rq); 3088 raw_spin_unlock(&rq->lock); 3089 3090 perf_event_task_tick(); 3091 3092 #ifdef CONFIG_SMP 3093 rq->idle_balance = idle_cpu(cpu); 3094 trigger_load_balance(rq); 3095 #endif 3096 rq_last_tick_reset(rq); 3097 } 3098 3099 #ifdef CONFIG_NO_HZ_FULL 3100 /** 3101 * scheduler_tick_max_deferment 3102 * 3103 * Keep at least one tick per second when a single 3104 * active task is running because the scheduler doesn't 3105 * yet completely support full dynticks environment. 3106 * 3107 * This makes sure that uptime, CFS vruntime, load 3108 * balancing, etc... continue to move forward, even 3109 * with a very low granularity. 3110 * 3111 * Return: Maximum deferment in nanoseconds. 3112 */ 3113 u64 scheduler_tick_max_deferment(void) 3114 { 3115 struct rq *rq = this_rq(); 3116 unsigned long next, now = READ_ONCE(jiffies); 3117 3118 next = rq->last_sched_tick + HZ; 3119 3120 if (time_before_eq(next, now)) 3121 return 0; 3122 3123 return jiffies_to_nsecs(next - now); 3124 } 3125 #endif 3126 3127 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3128 defined(CONFIG_PREEMPT_TRACER)) 3129 /* 3130 * If the value passed in is equal to the current preempt count 3131 * then we just disabled preemption. Start timing the latency. 3132 */ 3133 static inline void preempt_latency_start(int val) 3134 { 3135 if (preempt_count() == val) { 3136 unsigned long ip = get_lock_parent_ip(); 3137 #ifdef CONFIG_DEBUG_PREEMPT 3138 current->preempt_disable_ip = ip; 3139 #endif 3140 trace_preempt_off(CALLER_ADDR0, ip); 3141 } 3142 } 3143 3144 void preempt_count_add(int val) 3145 { 3146 #ifdef CONFIG_DEBUG_PREEMPT 3147 /* 3148 * Underflow? 3149 */ 3150 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3151 return; 3152 #endif 3153 __preempt_count_add(val); 3154 #ifdef CONFIG_DEBUG_PREEMPT 3155 /* 3156 * Spinlock count overflowing soon? 3157 */ 3158 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3159 PREEMPT_MASK - 10); 3160 #endif 3161 preempt_latency_start(val); 3162 } 3163 EXPORT_SYMBOL(preempt_count_add); 3164 NOKPROBE_SYMBOL(preempt_count_add); 3165 3166 /* 3167 * If the value passed in equals to the current preempt count 3168 * then we just enabled preemption. Stop timing the latency. 3169 */ 3170 static inline void preempt_latency_stop(int val) 3171 { 3172 if (preempt_count() == val) 3173 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3174 } 3175 3176 void preempt_count_sub(int val) 3177 { 3178 #ifdef CONFIG_DEBUG_PREEMPT 3179 /* 3180 * Underflow? 3181 */ 3182 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3183 return; 3184 /* 3185 * Is the spinlock portion underflowing? 3186 */ 3187 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3188 !(preempt_count() & PREEMPT_MASK))) 3189 return; 3190 #endif 3191 3192 preempt_latency_stop(val); 3193 __preempt_count_sub(val); 3194 } 3195 EXPORT_SYMBOL(preempt_count_sub); 3196 NOKPROBE_SYMBOL(preempt_count_sub); 3197 3198 #else 3199 static inline void preempt_latency_start(int val) { } 3200 static inline void preempt_latency_stop(int val) { } 3201 #endif 3202 3203 /* 3204 * Print scheduling while atomic bug: 3205 */ 3206 static noinline void __schedule_bug(struct task_struct *prev) 3207 { 3208 /* Save this before calling printk(), since that will clobber it */ 3209 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3210 3211 if (oops_in_progress) 3212 return; 3213 3214 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3215 prev->comm, prev->pid, preempt_count()); 3216 3217 debug_show_held_locks(prev); 3218 print_modules(); 3219 if (irqs_disabled()) 3220 print_irqtrace_events(prev); 3221 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3222 && in_atomic_preempt_off()) { 3223 pr_err("Preemption disabled at:"); 3224 print_ip_sym(preempt_disable_ip); 3225 pr_cont("\n"); 3226 } 3227 if (panic_on_warn) 3228 panic("scheduling while atomic\n"); 3229 3230 dump_stack(); 3231 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3232 } 3233 3234 /* 3235 * Various schedule()-time debugging checks and statistics: 3236 */ 3237 static inline void schedule_debug(struct task_struct *prev) 3238 { 3239 #ifdef CONFIG_SCHED_STACK_END_CHECK 3240 if (task_stack_end_corrupted(prev)) 3241 panic("corrupted stack end detected inside scheduler\n"); 3242 #endif 3243 3244 if (unlikely(in_atomic_preempt_off())) { 3245 __schedule_bug(prev); 3246 preempt_count_set(PREEMPT_DISABLED); 3247 } 3248 rcu_sleep_check(); 3249 3250 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3251 3252 schedstat_inc(this_rq()->sched_count); 3253 } 3254 3255 /* 3256 * Pick up the highest-prio task: 3257 */ 3258 static inline struct task_struct * 3259 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3260 { 3261 const struct sched_class *class = &fair_sched_class; 3262 struct task_struct *p; 3263 3264 /* 3265 * Optimization: we know that if all tasks are in 3266 * the fair class we can call that function directly: 3267 */ 3268 if (likely(prev->sched_class == class && 3269 rq->nr_running == rq->cfs.h_nr_running)) { 3270 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3271 if (unlikely(p == RETRY_TASK)) 3272 goto again; 3273 3274 /* assumes fair_sched_class->next == idle_sched_class */ 3275 if (unlikely(!p)) 3276 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3277 3278 return p; 3279 } 3280 3281 again: 3282 for_each_class(class) { 3283 p = class->pick_next_task(rq, prev, cookie); 3284 if (p) { 3285 if (unlikely(p == RETRY_TASK)) 3286 goto again; 3287 return p; 3288 } 3289 } 3290 3291 BUG(); /* the idle class will always have a runnable task */ 3292 } 3293 3294 /* 3295 * __schedule() is the main scheduler function. 3296 * 3297 * The main means of driving the scheduler and thus entering this function are: 3298 * 3299 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3300 * 3301 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3302 * paths. For example, see arch/x86/entry_64.S. 3303 * 3304 * To drive preemption between tasks, the scheduler sets the flag in timer 3305 * interrupt handler scheduler_tick(). 3306 * 3307 * 3. Wakeups don't really cause entry into schedule(). They add a 3308 * task to the run-queue and that's it. 3309 * 3310 * Now, if the new task added to the run-queue preempts the current 3311 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3312 * called on the nearest possible occasion: 3313 * 3314 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3315 * 3316 * - in syscall or exception context, at the next outmost 3317 * preempt_enable(). (this might be as soon as the wake_up()'s 3318 * spin_unlock()!) 3319 * 3320 * - in IRQ context, return from interrupt-handler to 3321 * preemptible context 3322 * 3323 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3324 * then at the next: 3325 * 3326 * - cond_resched() call 3327 * - explicit schedule() call 3328 * - return from syscall or exception to user-space 3329 * - return from interrupt-handler to user-space 3330 * 3331 * WARNING: must be called with preemption disabled! 3332 */ 3333 static void __sched notrace __schedule(bool preempt) 3334 { 3335 struct task_struct *prev, *next; 3336 unsigned long *switch_count; 3337 struct pin_cookie cookie; 3338 struct rq *rq; 3339 int cpu; 3340 3341 cpu = smp_processor_id(); 3342 rq = cpu_rq(cpu); 3343 prev = rq->curr; 3344 3345 schedule_debug(prev); 3346 3347 if (sched_feat(HRTICK)) 3348 hrtick_clear(rq); 3349 3350 local_irq_disable(); 3351 rcu_note_context_switch(); 3352 3353 /* 3354 * Make sure that signal_pending_state()->signal_pending() below 3355 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3356 * done by the caller to avoid the race with signal_wake_up(). 3357 */ 3358 smp_mb__before_spinlock(); 3359 raw_spin_lock(&rq->lock); 3360 cookie = lockdep_pin_lock(&rq->lock); 3361 3362 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3363 3364 switch_count = &prev->nivcsw; 3365 if (!preempt && prev->state) { 3366 if (unlikely(signal_pending_state(prev->state, prev))) { 3367 prev->state = TASK_RUNNING; 3368 } else { 3369 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3370 prev->on_rq = 0; 3371 3372 /* 3373 * If a worker went to sleep, notify and ask workqueue 3374 * whether it wants to wake up a task to maintain 3375 * concurrency. 3376 */ 3377 if (prev->flags & PF_WQ_WORKER) { 3378 struct task_struct *to_wakeup; 3379 3380 to_wakeup = wq_worker_sleeping(prev); 3381 if (to_wakeup) 3382 try_to_wake_up_local(to_wakeup, cookie); 3383 } 3384 } 3385 switch_count = &prev->nvcsw; 3386 } 3387 3388 if (task_on_rq_queued(prev)) 3389 update_rq_clock(rq); 3390 3391 next = pick_next_task(rq, prev, cookie); 3392 clear_tsk_need_resched(prev); 3393 clear_preempt_need_resched(); 3394 rq->clock_skip_update = 0; 3395 3396 if (likely(prev != next)) { 3397 rq->nr_switches++; 3398 rq->curr = next; 3399 ++*switch_count; 3400 3401 trace_sched_switch(preempt, prev, next); 3402 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3403 } else { 3404 lockdep_unpin_lock(&rq->lock, cookie); 3405 raw_spin_unlock_irq(&rq->lock); 3406 } 3407 3408 balance_callback(rq); 3409 } 3410 3411 void __noreturn do_task_dead(void) 3412 { 3413 /* 3414 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3415 * when the following two conditions become true. 3416 * - There is race condition of mmap_sem (It is acquired by 3417 * exit_mm()), and 3418 * - SMI occurs before setting TASK_RUNINNG. 3419 * (or hypervisor of virtual machine switches to other guest) 3420 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3421 * 3422 * To avoid it, we have to wait for releasing tsk->pi_lock which 3423 * is held by try_to_wake_up() 3424 */ 3425 smp_mb(); 3426 raw_spin_unlock_wait(¤t->pi_lock); 3427 3428 /* causes final put_task_struct in finish_task_switch(). */ 3429 __set_current_state(TASK_DEAD); 3430 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 3431 __schedule(false); 3432 BUG(); 3433 /* Avoid "noreturn function does return". */ 3434 for (;;) 3435 cpu_relax(); /* For when BUG is null */ 3436 } 3437 3438 static inline void sched_submit_work(struct task_struct *tsk) 3439 { 3440 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3441 return; 3442 /* 3443 * If we are going to sleep and we have plugged IO queued, 3444 * make sure to submit it to avoid deadlocks. 3445 */ 3446 if (blk_needs_flush_plug(tsk)) 3447 blk_schedule_flush_plug(tsk); 3448 } 3449 3450 asmlinkage __visible void __sched schedule(void) 3451 { 3452 struct task_struct *tsk = current; 3453 3454 sched_submit_work(tsk); 3455 do { 3456 preempt_disable(); 3457 __schedule(false); 3458 sched_preempt_enable_no_resched(); 3459 } while (need_resched()); 3460 } 3461 EXPORT_SYMBOL(schedule); 3462 3463 #ifdef CONFIG_CONTEXT_TRACKING 3464 asmlinkage __visible void __sched schedule_user(void) 3465 { 3466 /* 3467 * If we come here after a random call to set_need_resched(), 3468 * or we have been woken up remotely but the IPI has not yet arrived, 3469 * we haven't yet exited the RCU idle mode. Do it here manually until 3470 * we find a better solution. 3471 * 3472 * NB: There are buggy callers of this function. Ideally we 3473 * should warn if prev_state != CONTEXT_USER, but that will trigger 3474 * too frequently to make sense yet. 3475 */ 3476 enum ctx_state prev_state = exception_enter(); 3477 schedule(); 3478 exception_exit(prev_state); 3479 } 3480 #endif 3481 3482 /** 3483 * schedule_preempt_disabled - called with preemption disabled 3484 * 3485 * Returns with preemption disabled. Note: preempt_count must be 1 3486 */ 3487 void __sched schedule_preempt_disabled(void) 3488 { 3489 sched_preempt_enable_no_resched(); 3490 schedule(); 3491 preempt_disable(); 3492 } 3493 3494 static void __sched notrace preempt_schedule_common(void) 3495 { 3496 do { 3497 /* 3498 * Because the function tracer can trace preempt_count_sub() 3499 * and it also uses preempt_enable/disable_notrace(), if 3500 * NEED_RESCHED is set, the preempt_enable_notrace() called 3501 * by the function tracer will call this function again and 3502 * cause infinite recursion. 3503 * 3504 * Preemption must be disabled here before the function 3505 * tracer can trace. Break up preempt_disable() into two 3506 * calls. One to disable preemption without fear of being 3507 * traced. The other to still record the preemption latency, 3508 * which can also be traced by the function tracer. 3509 */ 3510 preempt_disable_notrace(); 3511 preempt_latency_start(1); 3512 __schedule(true); 3513 preempt_latency_stop(1); 3514 preempt_enable_no_resched_notrace(); 3515 3516 /* 3517 * Check again in case we missed a preemption opportunity 3518 * between schedule and now. 3519 */ 3520 } while (need_resched()); 3521 } 3522 3523 #ifdef CONFIG_PREEMPT 3524 /* 3525 * this is the entry point to schedule() from in-kernel preemption 3526 * off of preempt_enable. Kernel preemptions off return from interrupt 3527 * occur there and call schedule directly. 3528 */ 3529 asmlinkage __visible void __sched notrace preempt_schedule(void) 3530 { 3531 /* 3532 * If there is a non-zero preempt_count or interrupts are disabled, 3533 * we do not want to preempt the current task. Just return.. 3534 */ 3535 if (likely(!preemptible())) 3536 return; 3537 3538 preempt_schedule_common(); 3539 } 3540 NOKPROBE_SYMBOL(preempt_schedule); 3541 EXPORT_SYMBOL(preempt_schedule); 3542 3543 /** 3544 * preempt_schedule_notrace - preempt_schedule called by tracing 3545 * 3546 * The tracing infrastructure uses preempt_enable_notrace to prevent 3547 * recursion and tracing preempt enabling caused by the tracing 3548 * infrastructure itself. But as tracing can happen in areas coming 3549 * from userspace or just about to enter userspace, a preempt enable 3550 * can occur before user_exit() is called. This will cause the scheduler 3551 * to be called when the system is still in usermode. 3552 * 3553 * To prevent this, the preempt_enable_notrace will use this function 3554 * instead of preempt_schedule() to exit user context if needed before 3555 * calling the scheduler. 3556 */ 3557 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3558 { 3559 enum ctx_state prev_ctx; 3560 3561 if (likely(!preemptible())) 3562 return; 3563 3564 do { 3565 /* 3566 * Because the function tracer can trace preempt_count_sub() 3567 * and it also uses preempt_enable/disable_notrace(), if 3568 * NEED_RESCHED is set, the preempt_enable_notrace() called 3569 * by the function tracer will call this function again and 3570 * cause infinite recursion. 3571 * 3572 * Preemption must be disabled here before the function 3573 * tracer can trace. Break up preempt_disable() into two 3574 * calls. One to disable preemption without fear of being 3575 * traced. The other to still record the preemption latency, 3576 * which can also be traced by the function tracer. 3577 */ 3578 preempt_disable_notrace(); 3579 preempt_latency_start(1); 3580 /* 3581 * Needs preempt disabled in case user_exit() is traced 3582 * and the tracer calls preempt_enable_notrace() causing 3583 * an infinite recursion. 3584 */ 3585 prev_ctx = exception_enter(); 3586 __schedule(true); 3587 exception_exit(prev_ctx); 3588 3589 preempt_latency_stop(1); 3590 preempt_enable_no_resched_notrace(); 3591 } while (need_resched()); 3592 } 3593 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3594 3595 #endif /* CONFIG_PREEMPT */ 3596 3597 /* 3598 * this is the entry point to schedule() from kernel preemption 3599 * off of irq context. 3600 * Note, that this is called and return with irqs disabled. This will 3601 * protect us against recursive calling from irq. 3602 */ 3603 asmlinkage __visible void __sched preempt_schedule_irq(void) 3604 { 3605 enum ctx_state prev_state; 3606 3607 /* Catch callers which need to be fixed */ 3608 BUG_ON(preempt_count() || !irqs_disabled()); 3609 3610 prev_state = exception_enter(); 3611 3612 do { 3613 preempt_disable(); 3614 local_irq_enable(); 3615 __schedule(true); 3616 local_irq_disable(); 3617 sched_preempt_enable_no_resched(); 3618 } while (need_resched()); 3619 3620 exception_exit(prev_state); 3621 } 3622 3623 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3624 void *key) 3625 { 3626 return try_to_wake_up(curr->private, mode, wake_flags); 3627 } 3628 EXPORT_SYMBOL(default_wake_function); 3629 3630 #ifdef CONFIG_RT_MUTEXES 3631 3632 /* 3633 * rt_mutex_setprio - set the current priority of a task 3634 * @p: task 3635 * @prio: prio value (kernel-internal form) 3636 * 3637 * This function changes the 'effective' priority of a task. It does 3638 * not touch ->normal_prio like __setscheduler(). 3639 * 3640 * Used by the rt_mutex code to implement priority inheritance 3641 * logic. Call site only calls if the priority of the task changed. 3642 */ 3643 void rt_mutex_setprio(struct task_struct *p, int prio) 3644 { 3645 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3646 const struct sched_class *prev_class; 3647 struct rq_flags rf; 3648 struct rq *rq; 3649 3650 BUG_ON(prio > MAX_PRIO); 3651 3652 rq = __task_rq_lock(p, &rf); 3653 3654 /* 3655 * Idle task boosting is a nono in general. There is one 3656 * exception, when PREEMPT_RT and NOHZ is active: 3657 * 3658 * The idle task calls get_next_timer_interrupt() and holds 3659 * the timer wheel base->lock on the CPU and another CPU wants 3660 * to access the timer (probably to cancel it). We can safely 3661 * ignore the boosting request, as the idle CPU runs this code 3662 * with interrupts disabled and will complete the lock 3663 * protected section without being interrupted. So there is no 3664 * real need to boost. 3665 */ 3666 if (unlikely(p == rq->idle)) { 3667 WARN_ON(p != rq->curr); 3668 WARN_ON(p->pi_blocked_on); 3669 goto out_unlock; 3670 } 3671 3672 trace_sched_pi_setprio(p, prio); 3673 oldprio = p->prio; 3674 3675 if (oldprio == prio) 3676 queue_flag &= ~DEQUEUE_MOVE; 3677 3678 prev_class = p->sched_class; 3679 queued = task_on_rq_queued(p); 3680 running = task_current(rq, p); 3681 if (queued) 3682 dequeue_task(rq, p, queue_flag); 3683 if (running) 3684 put_prev_task(rq, p); 3685 3686 /* 3687 * Boosting condition are: 3688 * 1. -rt task is running and holds mutex A 3689 * --> -dl task blocks on mutex A 3690 * 3691 * 2. -dl task is running and holds mutex A 3692 * --> -dl task blocks on mutex A and could preempt the 3693 * running task 3694 */ 3695 if (dl_prio(prio)) { 3696 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3697 if (!dl_prio(p->normal_prio) || 3698 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3699 p->dl.dl_boosted = 1; 3700 queue_flag |= ENQUEUE_REPLENISH; 3701 } else 3702 p->dl.dl_boosted = 0; 3703 p->sched_class = &dl_sched_class; 3704 } else if (rt_prio(prio)) { 3705 if (dl_prio(oldprio)) 3706 p->dl.dl_boosted = 0; 3707 if (oldprio < prio) 3708 queue_flag |= ENQUEUE_HEAD; 3709 p->sched_class = &rt_sched_class; 3710 } else { 3711 if (dl_prio(oldprio)) 3712 p->dl.dl_boosted = 0; 3713 if (rt_prio(oldprio)) 3714 p->rt.timeout = 0; 3715 p->sched_class = &fair_sched_class; 3716 } 3717 3718 p->prio = prio; 3719 3720 if (queued) 3721 enqueue_task(rq, p, queue_flag); 3722 if (running) 3723 set_curr_task(rq, p); 3724 3725 check_class_changed(rq, p, prev_class, oldprio); 3726 out_unlock: 3727 preempt_disable(); /* avoid rq from going away on us */ 3728 __task_rq_unlock(rq, &rf); 3729 3730 balance_callback(rq); 3731 preempt_enable(); 3732 } 3733 #endif 3734 3735 void set_user_nice(struct task_struct *p, long nice) 3736 { 3737 bool queued, running; 3738 int old_prio, delta; 3739 struct rq_flags rf; 3740 struct rq *rq; 3741 3742 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3743 return; 3744 /* 3745 * We have to be careful, if called from sys_setpriority(), 3746 * the task might be in the middle of scheduling on another CPU. 3747 */ 3748 rq = task_rq_lock(p, &rf); 3749 /* 3750 * The RT priorities are set via sched_setscheduler(), but we still 3751 * allow the 'normal' nice value to be set - but as expected 3752 * it wont have any effect on scheduling until the task is 3753 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3754 */ 3755 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3756 p->static_prio = NICE_TO_PRIO(nice); 3757 goto out_unlock; 3758 } 3759 queued = task_on_rq_queued(p); 3760 running = task_current(rq, p); 3761 if (queued) 3762 dequeue_task(rq, p, DEQUEUE_SAVE); 3763 if (running) 3764 put_prev_task(rq, p); 3765 3766 p->static_prio = NICE_TO_PRIO(nice); 3767 set_load_weight(p); 3768 old_prio = p->prio; 3769 p->prio = effective_prio(p); 3770 delta = p->prio - old_prio; 3771 3772 if (queued) { 3773 enqueue_task(rq, p, ENQUEUE_RESTORE); 3774 /* 3775 * If the task increased its priority or is running and 3776 * lowered its priority, then reschedule its CPU: 3777 */ 3778 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3779 resched_curr(rq); 3780 } 3781 if (running) 3782 set_curr_task(rq, p); 3783 out_unlock: 3784 task_rq_unlock(rq, p, &rf); 3785 } 3786 EXPORT_SYMBOL(set_user_nice); 3787 3788 /* 3789 * can_nice - check if a task can reduce its nice value 3790 * @p: task 3791 * @nice: nice value 3792 */ 3793 int can_nice(const struct task_struct *p, const int nice) 3794 { 3795 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3796 int nice_rlim = nice_to_rlimit(nice); 3797 3798 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3799 capable(CAP_SYS_NICE)); 3800 } 3801 3802 #ifdef __ARCH_WANT_SYS_NICE 3803 3804 /* 3805 * sys_nice - change the priority of the current process. 3806 * @increment: priority increment 3807 * 3808 * sys_setpriority is a more generic, but much slower function that 3809 * does similar things. 3810 */ 3811 SYSCALL_DEFINE1(nice, int, increment) 3812 { 3813 long nice, retval; 3814 3815 /* 3816 * Setpriority might change our priority at the same moment. 3817 * We don't have to worry. Conceptually one call occurs first 3818 * and we have a single winner. 3819 */ 3820 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3821 nice = task_nice(current) + increment; 3822 3823 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3824 if (increment < 0 && !can_nice(current, nice)) 3825 return -EPERM; 3826 3827 retval = security_task_setnice(current, nice); 3828 if (retval) 3829 return retval; 3830 3831 set_user_nice(current, nice); 3832 return 0; 3833 } 3834 3835 #endif 3836 3837 /** 3838 * task_prio - return the priority value of a given task. 3839 * @p: the task in question. 3840 * 3841 * Return: The priority value as seen by users in /proc. 3842 * RT tasks are offset by -200. Normal tasks are centered 3843 * around 0, value goes from -16 to +15. 3844 */ 3845 int task_prio(const struct task_struct *p) 3846 { 3847 return p->prio - MAX_RT_PRIO; 3848 } 3849 3850 /** 3851 * idle_cpu - is a given cpu idle currently? 3852 * @cpu: the processor in question. 3853 * 3854 * Return: 1 if the CPU is currently idle. 0 otherwise. 3855 */ 3856 int idle_cpu(int cpu) 3857 { 3858 struct rq *rq = cpu_rq(cpu); 3859 3860 if (rq->curr != rq->idle) 3861 return 0; 3862 3863 if (rq->nr_running) 3864 return 0; 3865 3866 #ifdef CONFIG_SMP 3867 if (!llist_empty(&rq->wake_list)) 3868 return 0; 3869 #endif 3870 3871 return 1; 3872 } 3873 3874 /** 3875 * idle_task - return the idle task for a given cpu. 3876 * @cpu: the processor in question. 3877 * 3878 * Return: The idle task for the cpu @cpu. 3879 */ 3880 struct task_struct *idle_task(int cpu) 3881 { 3882 return cpu_rq(cpu)->idle; 3883 } 3884 3885 /** 3886 * find_process_by_pid - find a process with a matching PID value. 3887 * @pid: the pid in question. 3888 * 3889 * The task of @pid, if found. %NULL otherwise. 3890 */ 3891 static struct task_struct *find_process_by_pid(pid_t pid) 3892 { 3893 return pid ? find_task_by_vpid(pid) : current; 3894 } 3895 3896 /* 3897 * This function initializes the sched_dl_entity of a newly becoming 3898 * SCHED_DEADLINE task. 3899 * 3900 * Only the static values are considered here, the actual runtime and the 3901 * absolute deadline will be properly calculated when the task is enqueued 3902 * for the first time with its new policy. 3903 */ 3904 static void 3905 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3906 { 3907 struct sched_dl_entity *dl_se = &p->dl; 3908 3909 dl_se->dl_runtime = attr->sched_runtime; 3910 dl_se->dl_deadline = attr->sched_deadline; 3911 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3912 dl_se->flags = attr->sched_flags; 3913 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3914 3915 /* 3916 * Changing the parameters of a task is 'tricky' and we're not doing 3917 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3918 * 3919 * What we SHOULD do is delay the bandwidth release until the 0-lag 3920 * point. This would include retaining the task_struct until that time 3921 * and change dl_overflow() to not immediately decrement the current 3922 * amount. 3923 * 3924 * Instead we retain the current runtime/deadline and let the new 3925 * parameters take effect after the current reservation period lapses. 3926 * This is safe (albeit pessimistic) because the 0-lag point is always 3927 * before the current scheduling deadline. 3928 * 3929 * We can still have temporary overloads because we do not delay the 3930 * change in bandwidth until that time; so admission control is 3931 * not on the safe side. It does however guarantee tasks will never 3932 * consume more than promised. 3933 */ 3934 } 3935 3936 /* 3937 * sched_setparam() passes in -1 for its policy, to let the functions 3938 * it calls know not to change it. 3939 */ 3940 #define SETPARAM_POLICY -1 3941 3942 static void __setscheduler_params(struct task_struct *p, 3943 const struct sched_attr *attr) 3944 { 3945 int policy = attr->sched_policy; 3946 3947 if (policy == SETPARAM_POLICY) 3948 policy = p->policy; 3949 3950 p->policy = policy; 3951 3952 if (dl_policy(policy)) 3953 __setparam_dl(p, attr); 3954 else if (fair_policy(policy)) 3955 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3956 3957 /* 3958 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3959 * !rt_policy. Always setting this ensures that things like 3960 * getparam()/getattr() don't report silly values for !rt tasks. 3961 */ 3962 p->rt_priority = attr->sched_priority; 3963 p->normal_prio = normal_prio(p); 3964 set_load_weight(p); 3965 } 3966 3967 /* Actually do priority change: must hold pi & rq lock. */ 3968 static void __setscheduler(struct rq *rq, struct task_struct *p, 3969 const struct sched_attr *attr, bool keep_boost) 3970 { 3971 __setscheduler_params(p, attr); 3972 3973 /* 3974 * Keep a potential priority boosting if called from 3975 * sched_setscheduler(). 3976 */ 3977 if (keep_boost) 3978 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3979 else 3980 p->prio = normal_prio(p); 3981 3982 if (dl_prio(p->prio)) 3983 p->sched_class = &dl_sched_class; 3984 else if (rt_prio(p->prio)) 3985 p->sched_class = &rt_sched_class; 3986 else 3987 p->sched_class = &fair_sched_class; 3988 } 3989 3990 static void 3991 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3992 { 3993 struct sched_dl_entity *dl_se = &p->dl; 3994 3995 attr->sched_priority = p->rt_priority; 3996 attr->sched_runtime = dl_se->dl_runtime; 3997 attr->sched_deadline = dl_se->dl_deadline; 3998 attr->sched_period = dl_se->dl_period; 3999 attr->sched_flags = dl_se->flags; 4000 } 4001 4002 /* 4003 * This function validates the new parameters of a -deadline task. 4004 * We ask for the deadline not being zero, and greater or equal 4005 * than the runtime, as well as the period of being zero or 4006 * greater than deadline. Furthermore, we have to be sure that 4007 * user parameters are above the internal resolution of 1us (we 4008 * check sched_runtime only since it is always the smaller one) and 4009 * below 2^63 ns (we have to check both sched_deadline and 4010 * sched_period, as the latter can be zero). 4011 */ 4012 static bool 4013 __checkparam_dl(const struct sched_attr *attr) 4014 { 4015 /* deadline != 0 */ 4016 if (attr->sched_deadline == 0) 4017 return false; 4018 4019 /* 4020 * Since we truncate DL_SCALE bits, make sure we're at least 4021 * that big. 4022 */ 4023 if (attr->sched_runtime < (1ULL << DL_SCALE)) 4024 return false; 4025 4026 /* 4027 * Since we use the MSB for wrap-around and sign issues, make 4028 * sure it's not set (mind that period can be equal to zero). 4029 */ 4030 if (attr->sched_deadline & (1ULL << 63) || 4031 attr->sched_period & (1ULL << 63)) 4032 return false; 4033 4034 /* runtime <= deadline <= period (if period != 0) */ 4035 if ((attr->sched_period != 0 && 4036 attr->sched_period < attr->sched_deadline) || 4037 attr->sched_deadline < attr->sched_runtime) 4038 return false; 4039 4040 return true; 4041 } 4042 4043 /* 4044 * check the target process has a UID that matches the current process's 4045 */ 4046 static bool check_same_owner(struct task_struct *p) 4047 { 4048 const struct cred *cred = current_cred(), *pcred; 4049 bool match; 4050 4051 rcu_read_lock(); 4052 pcred = __task_cred(p); 4053 match = (uid_eq(cred->euid, pcred->euid) || 4054 uid_eq(cred->euid, pcred->uid)); 4055 rcu_read_unlock(); 4056 return match; 4057 } 4058 4059 static bool dl_param_changed(struct task_struct *p, 4060 const struct sched_attr *attr) 4061 { 4062 struct sched_dl_entity *dl_se = &p->dl; 4063 4064 if (dl_se->dl_runtime != attr->sched_runtime || 4065 dl_se->dl_deadline != attr->sched_deadline || 4066 dl_se->dl_period != attr->sched_period || 4067 dl_se->flags != attr->sched_flags) 4068 return true; 4069 4070 return false; 4071 } 4072 4073 static int __sched_setscheduler(struct task_struct *p, 4074 const struct sched_attr *attr, 4075 bool user, bool pi) 4076 { 4077 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4078 MAX_RT_PRIO - 1 - attr->sched_priority; 4079 int retval, oldprio, oldpolicy = -1, queued, running; 4080 int new_effective_prio, policy = attr->sched_policy; 4081 const struct sched_class *prev_class; 4082 struct rq_flags rf; 4083 int reset_on_fork; 4084 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4085 struct rq *rq; 4086 4087 /* may grab non-irq protected spin_locks */ 4088 BUG_ON(in_interrupt()); 4089 recheck: 4090 /* double check policy once rq lock held */ 4091 if (policy < 0) { 4092 reset_on_fork = p->sched_reset_on_fork; 4093 policy = oldpolicy = p->policy; 4094 } else { 4095 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4096 4097 if (!valid_policy(policy)) 4098 return -EINVAL; 4099 } 4100 4101 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4102 return -EINVAL; 4103 4104 /* 4105 * Valid priorities for SCHED_FIFO and SCHED_RR are 4106 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4107 * SCHED_BATCH and SCHED_IDLE is 0. 4108 */ 4109 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4110 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4111 return -EINVAL; 4112 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4113 (rt_policy(policy) != (attr->sched_priority != 0))) 4114 return -EINVAL; 4115 4116 /* 4117 * Allow unprivileged RT tasks to decrease priority: 4118 */ 4119 if (user && !capable(CAP_SYS_NICE)) { 4120 if (fair_policy(policy)) { 4121 if (attr->sched_nice < task_nice(p) && 4122 !can_nice(p, attr->sched_nice)) 4123 return -EPERM; 4124 } 4125 4126 if (rt_policy(policy)) { 4127 unsigned long rlim_rtprio = 4128 task_rlimit(p, RLIMIT_RTPRIO); 4129 4130 /* can't set/change the rt policy */ 4131 if (policy != p->policy && !rlim_rtprio) 4132 return -EPERM; 4133 4134 /* can't increase priority */ 4135 if (attr->sched_priority > p->rt_priority && 4136 attr->sched_priority > rlim_rtprio) 4137 return -EPERM; 4138 } 4139 4140 /* 4141 * Can't set/change SCHED_DEADLINE policy at all for now 4142 * (safest behavior); in the future we would like to allow 4143 * unprivileged DL tasks to increase their relative deadline 4144 * or reduce their runtime (both ways reducing utilization) 4145 */ 4146 if (dl_policy(policy)) 4147 return -EPERM; 4148 4149 /* 4150 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4151 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4152 */ 4153 if (idle_policy(p->policy) && !idle_policy(policy)) { 4154 if (!can_nice(p, task_nice(p))) 4155 return -EPERM; 4156 } 4157 4158 /* can't change other user's priorities */ 4159 if (!check_same_owner(p)) 4160 return -EPERM; 4161 4162 /* Normal users shall not reset the sched_reset_on_fork flag */ 4163 if (p->sched_reset_on_fork && !reset_on_fork) 4164 return -EPERM; 4165 } 4166 4167 if (user) { 4168 retval = security_task_setscheduler(p); 4169 if (retval) 4170 return retval; 4171 } 4172 4173 /* 4174 * make sure no PI-waiters arrive (or leave) while we are 4175 * changing the priority of the task: 4176 * 4177 * To be able to change p->policy safely, the appropriate 4178 * runqueue lock must be held. 4179 */ 4180 rq = task_rq_lock(p, &rf); 4181 4182 /* 4183 * Changing the policy of the stop threads its a very bad idea 4184 */ 4185 if (p == rq->stop) { 4186 task_rq_unlock(rq, p, &rf); 4187 return -EINVAL; 4188 } 4189 4190 /* 4191 * If not changing anything there's no need to proceed further, 4192 * but store a possible modification of reset_on_fork. 4193 */ 4194 if (unlikely(policy == p->policy)) { 4195 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4196 goto change; 4197 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4198 goto change; 4199 if (dl_policy(policy) && dl_param_changed(p, attr)) 4200 goto change; 4201 4202 p->sched_reset_on_fork = reset_on_fork; 4203 task_rq_unlock(rq, p, &rf); 4204 return 0; 4205 } 4206 change: 4207 4208 if (user) { 4209 #ifdef CONFIG_RT_GROUP_SCHED 4210 /* 4211 * Do not allow realtime tasks into groups that have no runtime 4212 * assigned. 4213 */ 4214 if (rt_bandwidth_enabled() && rt_policy(policy) && 4215 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4216 !task_group_is_autogroup(task_group(p))) { 4217 task_rq_unlock(rq, p, &rf); 4218 return -EPERM; 4219 } 4220 #endif 4221 #ifdef CONFIG_SMP 4222 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4223 cpumask_t *span = rq->rd->span; 4224 4225 /* 4226 * Don't allow tasks with an affinity mask smaller than 4227 * the entire root_domain to become SCHED_DEADLINE. We 4228 * will also fail if there's no bandwidth available. 4229 */ 4230 if (!cpumask_subset(span, &p->cpus_allowed) || 4231 rq->rd->dl_bw.bw == 0) { 4232 task_rq_unlock(rq, p, &rf); 4233 return -EPERM; 4234 } 4235 } 4236 #endif 4237 } 4238 4239 /* recheck policy now with rq lock held */ 4240 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4241 policy = oldpolicy = -1; 4242 task_rq_unlock(rq, p, &rf); 4243 goto recheck; 4244 } 4245 4246 /* 4247 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4248 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4249 * is available. 4250 */ 4251 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4252 task_rq_unlock(rq, p, &rf); 4253 return -EBUSY; 4254 } 4255 4256 p->sched_reset_on_fork = reset_on_fork; 4257 oldprio = p->prio; 4258 4259 if (pi) { 4260 /* 4261 * Take priority boosted tasks into account. If the new 4262 * effective priority is unchanged, we just store the new 4263 * normal parameters and do not touch the scheduler class and 4264 * the runqueue. This will be done when the task deboost 4265 * itself. 4266 */ 4267 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4268 if (new_effective_prio == oldprio) 4269 queue_flags &= ~DEQUEUE_MOVE; 4270 } 4271 4272 queued = task_on_rq_queued(p); 4273 running = task_current(rq, p); 4274 if (queued) 4275 dequeue_task(rq, p, queue_flags); 4276 if (running) 4277 put_prev_task(rq, p); 4278 4279 prev_class = p->sched_class; 4280 __setscheduler(rq, p, attr, pi); 4281 4282 if (queued) { 4283 /* 4284 * We enqueue to tail when the priority of a task is 4285 * increased (user space view). 4286 */ 4287 if (oldprio < p->prio) 4288 queue_flags |= ENQUEUE_HEAD; 4289 4290 enqueue_task(rq, p, queue_flags); 4291 } 4292 if (running) 4293 set_curr_task(rq, p); 4294 4295 check_class_changed(rq, p, prev_class, oldprio); 4296 preempt_disable(); /* avoid rq from going away on us */ 4297 task_rq_unlock(rq, p, &rf); 4298 4299 if (pi) 4300 rt_mutex_adjust_pi(p); 4301 4302 /* 4303 * Run balance callbacks after we've adjusted the PI chain. 4304 */ 4305 balance_callback(rq); 4306 preempt_enable(); 4307 4308 return 0; 4309 } 4310 4311 static int _sched_setscheduler(struct task_struct *p, int policy, 4312 const struct sched_param *param, bool check) 4313 { 4314 struct sched_attr attr = { 4315 .sched_policy = policy, 4316 .sched_priority = param->sched_priority, 4317 .sched_nice = PRIO_TO_NICE(p->static_prio), 4318 }; 4319 4320 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4321 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4322 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4323 policy &= ~SCHED_RESET_ON_FORK; 4324 attr.sched_policy = policy; 4325 } 4326 4327 return __sched_setscheduler(p, &attr, check, true); 4328 } 4329 /** 4330 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4331 * @p: the task in question. 4332 * @policy: new policy. 4333 * @param: structure containing the new RT priority. 4334 * 4335 * Return: 0 on success. An error code otherwise. 4336 * 4337 * NOTE that the task may be already dead. 4338 */ 4339 int sched_setscheduler(struct task_struct *p, int policy, 4340 const struct sched_param *param) 4341 { 4342 return _sched_setscheduler(p, policy, param, true); 4343 } 4344 EXPORT_SYMBOL_GPL(sched_setscheduler); 4345 4346 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4347 { 4348 return __sched_setscheduler(p, attr, true, true); 4349 } 4350 EXPORT_SYMBOL_GPL(sched_setattr); 4351 4352 /** 4353 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4354 * @p: the task in question. 4355 * @policy: new policy. 4356 * @param: structure containing the new RT priority. 4357 * 4358 * Just like sched_setscheduler, only don't bother checking if the 4359 * current context has permission. For example, this is needed in 4360 * stop_machine(): we create temporary high priority worker threads, 4361 * but our caller might not have that capability. 4362 * 4363 * Return: 0 on success. An error code otherwise. 4364 */ 4365 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4366 const struct sched_param *param) 4367 { 4368 return _sched_setscheduler(p, policy, param, false); 4369 } 4370 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4371 4372 static int 4373 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4374 { 4375 struct sched_param lparam; 4376 struct task_struct *p; 4377 int retval; 4378 4379 if (!param || pid < 0) 4380 return -EINVAL; 4381 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4382 return -EFAULT; 4383 4384 rcu_read_lock(); 4385 retval = -ESRCH; 4386 p = find_process_by_pid(pid); 4387 if (p != NULL) 4388 retval = sched_setscheduler(p, policy, &lparam); 4389 rcu_read_unlock(); 4390 4391 return retval; 4392 } 4393 4394 /* 4395 * Mimics kernel/events/core.c perf_copy_attr(). 4396 */ 4397 static int sched_copy_attr(struct sched_attr __user *uattr, 4398 struct sched_attr *attr) 4399 { 4400 u32 size; 4401 int ret; 4402 4403 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4404 return -EFAULT; 4405 4406 /* 4407 * zero the full structure, so that a short copy will be nice. 4408 */ 4409 memset(attr, 0, sizeof(*attr)); 4410 4411 ret = get_user(size, &uattr->size); 4412 if (ret) 4413 return ret; 4414 4415 if (size > PAGE_SIZE) /* silly large */ 4416 goto err_size; 4417 4418 if (!size) /* abi compat */ 4419 size = SCHED_ATTR_SIZE_VER0; 4420 4421 if (size < SCHED_ATTR_SIZE_VER0) 4422 goto err_size; 4423 4424 /* 4425 * If we're handed a bigger struct than we know of, 4426 * ensure all the unknown bits are 0 - i.e. new 4427 * user-space does not rely on any kernel feature 4428 * extensions we dont know about yet. 4429 */ 4430 if (size > sizeof(*attr)) { 4431 unsigned char __user *addr; 4432 unsigned char __user *end; 4433 unsigned char val; 4434 4435 addr = (void __user *)uattr + sizeof(*attr); 4436 end = (void __user *)uattr + size; 4437 4438 for (; addr < end; addr++) { 4439 ret = get_user(val, addr); 4440 if (ret) 4441 return ret; 4442 if (val) 4443 goto err_size; 4444 } 4445 size = sizeof(*attr); 4446 } 4447 4448 ret = copy_from_user(attr, uattr, size); 4449 if (ret) 4450 return -EFAULT; 4451 4452 /* 4453 * XXX: do we want to be lenient like existing syscalls; or do we want 4454 * to be strict and return an error on out-of-bounds values? 4455 */ 4456 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4457 4458 return 0; 4459 4460 err_size: 4461 put_user(sizeof(*attr), &uattr->size); 4462 return -E2BIG; 4463 } 4464 4465 /** 4466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4467 * @pid: the pid in question. 4468 * @policy: new policy. 4469 * @param: structure containing the new RT priority. 4470 * 4471 * Return: 0 on success. An error code otherwise. 4472 */ 4473 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4474 struct sched_param __user *, param) 4475 { 4476 /* negative values for policy are not valid */ 4477 if (policy < 0) 4478 return -EINVAL; 4479 4480 return do_sched_setscheduler(pid, policy, param); 4481 } 4482 4483 /** 4484 * sys_sched_setparam - set/change the RT priority of a thread 4485 * @pid: the pid in question. 4486 * @param: structure containing the new RT priority. 4487 * 4488 * Return: 0 on success. An error code otherwise. 4489 */ 4490 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4491 { 4492 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4493 } 4494 4495 /** 4496 * sys_sched_setattr - same as above, but with extended sched_attr 4497 * @pid: the pid in question. 4498 * @uattr: structure containing the extended parameters. 4499 * @flags: for future extension. 4500 */ 4501 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4502 unsigned int, flags) 4503 { 4504 struct sched_attr attr; 4505 struct task_struct *p; 4506 int retval; 4507 4508 if (!uattr || pid < 0 || flags) 4509 return -EINVAL; 4510 4511 retval = sched_copy_attr(uattr, &attr); 4512 if (retval) 4513 return retval; 4514 4515 if ((int)attr.sched_policy < 0) 4516 return -EINVAL; 4517 4518 rcu_read_lock(); 4519 retval = -ESRCH; 4520 p = find_process_by_pid(pid); 4521 if (p != NULL) 4522 retval = sched_setattr(p, &attr); 4523 rcu_read_unlock(); 4524 4525 return retval; 4526 } 4527 4528 /** 4529 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4530 * @pid: the pid in question. 4531 * 4532 * Return: On success, the policy of the thread. Otherwise, a negative error 4533 * code. 4534 */ 4535 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4536 { 4537 struct task_struct *p; 4538 int retval; 4539 4540 if (pid < 0) 4541 return -EINVAL; 4542 4543 retval = -ESRCH; 4544 rcu_read_lock(); 4545 p = find_process_by_pid(pid); 4546 if (p) { 4547 retval = security_task_getscheduler(p); 4548 if (!retval) 4549 retval = p->policy 4550 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4551 } 4552 rcu_read_unlock(); 4553 return retval; 4554 } 4555 4556 /** 4557 * sys_sched_getparam - get the RT priority of a thread 4558 * @pid: the pid in question. 4559 * @param: structure containing the RT priority. 4560 * 4561 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4562 * code. 4563 */ 4564 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4565 { 4566 struct sched_param lp = { .sched_priority = 0 }; 4567 struct task_struct *p; 4568 int retval; 4569 4570 if (!param || pid < 0) 4571 return -EINVAL; 4572 4573 rcu_read_lock(); 4574 p = find_process_by_pid(pid); 4575 retval = -ESRCH; 4576 if (!p) 4577 goto out_unlock; 4578 4579 retval = security_task_getscheduler(p); 4580 if (retval) 4581 goto out_unlock; 4582 4583 if (task_has_rt_policy(p)) 4584 lp.sched_priority = p->rt_priority; 4585 rcu_read_unlock(); 4586 4587 /* 4588 * This one might sleep, we cannot do it with a spinlock held ... 4589 */ 4590 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4591 4592 return retval; 4593 4594 out_unlock: 4595 rcu_read_unlock(); 4596 return retval; 4597 } 4598 4599 static int sched_read_attr(struct sched_attr __user *uattr, 4600 struct sched_attr *attr, 4601 unsigned int usize) 4602 { 4603 int ret; 4604 4605 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4606 return -EFAULT; 4607 4608 /* 4609 * If we're handed a smaller struct than we know of, 4610 * ensure all the unknown bits are 0 - i.e. old 4611 * user-space does not get uncomplete information. 4612 */ 4613 if (usize < sizeof(*attr)) { 4614 unsigned char *addr; 4615 unsigned char *end; 4616 4617 addr = (void *)attr + usize; 4618 end = (void *)attr + sizeof(*attr); 4619 4620 for (; addr < end; addr++) { 4621 if (*addr) 4622 return -EFBIG; 4623 } 4624 4625 attr->size = usize; 4626 } 4627 4628 ret = copy_to_user(uattr, attr, attr->size); 4629 if (ret) 4630 return -EFAULT; 4631 4632 return 0; 4633 } 4634 4635 /** 4636 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4637 * @pid: the pid in question. 4638 * @uattr: structure containing the extended parameters. 4639 * @size: sizeof(attr) for fwd/bwd comp. 4640 * @flags: for future extension. 4641 */ 4642 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4643 unsigned int, size, unsigned int, flags) 4644 { 4645 struct sched_attr attr = { 4646 .size = sizeof(struct sched_attr), 4647 }; 4648 struct task_struct *p; 4649 int retval; 4650 4651 if (!uattr || pid < 0 || size > PAGE_SIZE || 4652 size < SCHED_ATTR_SIZE_VER0 || flags) 4653 return -EINVAL; 4654 4655 rcu_read_lock(); 4656 p = find_process_by_pid(pid); 4657 retval = -ESRCH; 4658 if (!p) 4659 goto out_unlock; 4660 4661 retval = security_task_getscheduler(p); 4662 if (retval) 4663 goto out_unlock; 4664 4665 attr.sched_policy = p->policy; 4666 if (p->sched_reset_on_fork) 4667 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4668 if (task_has_dl_policy(p)) 4669 __getparam_dl(p, &attr); 4670 else if (task_has_rt_policy(p)) 4671 attr.sched_priority = p->rt_priority; 4672 else 4673 attr.sched_nice = task_nice(p); 4674 4675 rcu_read_unlock(); 4676 4677 retval = sched_read_attr(uattr, &attr, size); 4678 return retval; 4679 4680 out_unlock: 4681 rcu_read_unlock(); 4682 return retval; 4683 } 4684 4685 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4686 { 4687 cpumask_var_t cpus_allowed, new_mask; 4688 struct task_struct *p; 4689 int retval; 4690 4691 rcu_read_lock(); 4692 4693 p = find_process_by_pid(pid); 4694 if (!p) { 4695 rcu_read_unlock(); 4696 return -ESRCH; 4697 } 4698 4699 /* Prevent p going away */ 4700 get_task_struct(p); 4701 rcu_read_unlock(); 4702 4703 if (p->flags & PF_NO_SETAFFINITY) { 4704 retval = -EINVAL; 4705 goto out_put_task; 4706 } 4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4708 retval = -ENOMEM; 4709 goto out_put_task; 4710 } 4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4712 retval = -ENOMEM; 4713 goto out_free_cpus_allowed; 4714 } 4715 retval = -EPERM; 4716 if (!check_same_owner(p)) { 4717 rcu_read_lock(); 4718 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4719 rcu_read_unlock(); 4720 goto out_free_new_mask; 4721 } 4722 rcu_read_unlock(); 4723 } 4724 4725 retval = security_task_setscheduler(p); 4726 if (retval) 4727 goto out_free_new_mask; 4728 4729 4730 cpuset_cpus_allowed(p, cpus_allowed); 4731 cpumask_and(new_mask, in_mask, cpus_allowed); 4732 4733 /* 4734 * Since bandwidth control happens on root_domain basis, 4735 * if admission test is enabled, we only admit -deadline 4736 * tasks allowed to run on all the CPUs in the task's 4737 * root_domain. 4738 */ 4739 #ifdef CONFIG_SMP 4740 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4741 rcu_read_lock(); 4742 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4743 retval = -EBUSY; 4744 rcu_read_unlock(); 4745 goto out_free_new_mask; 4746 } 4747 rcu_read_unlock(); 4748 } 4749 #endif 4750 again: 4751 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4752 4753 if (!retval) { 4754 cpuset_cpus_allowed(p, cpus_allowed); 4755 if (!cpumask_subset(new_mask, cpus_allowed)) { 4756 /* 4757 * We must have raced with a concurrent cpuset 4758 * update. Just reset the cpus_allowed to the 4759 * cpuset's cpus_allowed 4760 */ 4761 cpumask_copy(new_mask, cpus_allowed); 4762 goto again; 4763 } 4764 } 4765 out_free_new_mask: 4766 free_cpumask_var(new_mask); 4767 out_free_cpus_allowed: 4768 free_cpumask_var(cpus_allowed); 4769 out_put_task: 4770 put_task_struct(p); 4771 return retval; 4772 } 4773 4774 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4775 struct cpumask *new_mask) 4776 { 4777 if (len < cpumask_size()) 4778 cpumask_clear(new_mask); 4779 else if (len > cpumask_size()) 4780 len = cpumask_size(); 4781 4782 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4783 } 4784 4785 /** 4786 * sys_sched_setaffinity - set the cpu affinity of a process 4787 * @pid: pid of the process 4788 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4789 * @user_mask_ptr: user-space pointer to the new cpu mask 4790 * 4791 * Return: 0 on success. An error code otherwise. 4792 */ 4793 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4794 unsigned long __user *, user_mask_ptr) 4795 { 4796 cpumask_var_t new_mask; 4797 int retval; 4798 4799 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4800 return -ENOMEM; 4801 4802 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4803 if (retval == 0) 4804 retval = sched_setaffinity(pid, new_mask); 4805 free_cpumask_var(new_mask); 4806 return retval; 4807 } 4808 4809 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4810 { 4811 struct task_struct *p; 4812 unsigned long flags; 4813 int retval; 4814 4815 rcu_read_lock(); 4816 4817 retval = -ESRCH; 4818 p = find_process_by_pid(pid); 4819 if (!p) 4820 goto out_unlock; 4821 4822 retval = security_task_getscheduler(p); 4823 if (retval) 4824 goto out_unlock; 4825 4826 raw_spin_lock_irqsave(&p->pi_lock, flags); 4827 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4828 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4829 4830 out_unlock: 4831 rcu_read_unlock(); 4832 4833 return retval; 4834 } 4835 4836 /** 4837 * sys_sched_getaffinity - get the cpu affinity of a process 4838 * @pid: pid of the process 4839 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4840 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4841 * 4842 * Return: size of CPU mask copied to user_mask_ptr on success. An 4843 * error code otherwise. 4844 */ 4845 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4846 unsigned long __user *, user_mask_ptr) 4847 { 4848 int ret; 4849 cpumask_var_t mask; 4850 4851 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4852 return -EINVAL; 4853 if (len & (sizeof(unsigned long)-1)) 4854 return -EINVAL; 4855 4856 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4857 return -ENOMEM; 4858 4859 ret = sched_getaffinity(pid, mask); 4860 if (ret == 0) { 4861 size_t retlen = min_t(size_t, len, cpumask_size()); 4862 4863 if (copy_to_user(user_mask_ptr, mask, retlen)) 4864 ret = -EFAULT; 4865 else 4866 ret = retlen; 4867 } 4868 free_cpumask_var(mask); 4869 4870 return ret; 4871 } 4872 4873 /** 4874 * sys_sched_yield - yield the current processor to other threads. 4875 * 4876 * This function yields the current CPU to other tasks. If there are no 4877 * other threads running on this CPU then this function will return. 4878 * 4879 * Return: 0. 4880 */ 4881 SYSCALL_DEFINE0(sched_yield) 4882 { 4883 struct rq *rq = this_rq_lock(); 4884 4885 schedstat_inc(rq->yld_count); 4886 current->sched_class->yield_task(rq); 4887 4888 /* 4889 * Since we are going to call schedule() anyway, there's 4890 * no need to preempt or enable interrupts: 4891 */ 4892 __release(rq->lock); 4893 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4894 do_raw_spin_unlock(&rq->lock); 4895 sched_preempt_enable_no_resched(); 4896 4897 schedule(); 4898 4899 return 0; 4900 } 4901 4902 #ifndef CONFIG_PREEMPT 4903 int __sched _cond_resched(void) 4904 { 4905 if (should_resched(0)) { 4906 preempt_schedule_common(); 4907 return 1; 4908 } 4909 return 0; 4910 } 4911 EXPORT_SYMBOL(_cond_resched); 4912 #endif 4913 4914 /* 4915 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4916 * call schedule, and on return reacquire the lock. 4917 * 4918 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4919 * operations here to prevent schedule() from being called twice (once via 4920 * spin_unlock(), once by hand). 4921 */ 4922 int __cond_resched_lock(spinlock_t *lock) 4923 { 4924 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4925 int ret = 0; 4926 4927 lockdep_assert_held(lock); 4928 4929 if (spin_needbreak(lock) || resched) { 4930 spin_unlock(lock); 4931 if (resched) 4932 preempt_schedule_common(); 4933 else 4934 cpu_relax(); 4935 ret = 1; 4936 spin_lock(lock); 4937 } 4938 return ret; 4939 } 4940 EXPORT_SYMBOL(__cond_resched_lock); 4941 4942 int __sched __cond_resched_softirq(void) 4943 { 4944 BUG_ON(!in_softirq()); 4945 4946 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4947 local_bh_enable(); 4948 preempt_schedule_common(); 4949 local_bh_disable(); 4950 return 1; 4951 } 4952 return 0; 4953 } 4954 EXPORT_SYMBOL(__cond_resched_softirq); 4955 4956 /** 4957 * yield - yield the current processor to other threads. 4958 * 4959 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4960 * 4961 * The scheduler is at all times free to pick the calling task as the most 4962 * eligible task to run, if removing the yield() call from your code breaks 4963 * it, its already broken. 4964 * 4965 * Typical broken usage is: 4966 * 4967 * while (!event) 4968 * yield(); 4969 * 4970 * where one assumes that yield() will let 'the other' process run that will 4971 * make event true. If the current task is a SCHED_FIFO task that will never 4972 * happen. Never use yield() as a progress guarantee!! 4973 * 4974 * If you want to use yield() to wait for something, use wait_event(). 4975 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4976 * If you still want to use yield(), do not! 4977 */ 4978 void __sched yield(void) 4979 { 4980 set_current_state(TASK_RUNNING); 4981 sys_sched_yield(); 4982 } 4983 EXPORT_SYMBOL(yield); 4984 4985 /** 4986 * yield_to - yield the current processor to another thread in 4987 * your thread group, or accelerate that thread toward the 4988 * processor it's on. 4989 * @p: target task 4990 * @preempt: whether task preemption is allowed or not 4991 * 4992 * It's the caller's job to ensure that the target task struct 4993 * can't go away on us before we can do any checks. 4994 * 4995 * Return: 4996 * true (>0) if we indeed boosted the target task. 4997 * false (0) if we failed to boost the target. 4998 * -ESRCH if there's no task to yield to. 4999 */ 5000 int __sched yield_to(struct task_struct *p, bool preempt) 5001 { 5002 struct task_struct *curr = current; 5003 struct rq *rq, *p_rq; 5004 unsigned long flags; 5005 int yielded = 0; 5006 5007 local_irq_save(flags); 5008 rq = this_rq(); 5009 5010 again: 5011 p_rq = task_rq(p); 5012 /* 5013 * If we're the only runnable task on the rq and target rq also 5014 * has only one task, there's absolutely no point in yielding. 5015 */ 5016 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5017 yielded = -ESRCH; 5018 goto out_irq; 5019 } 5020 5021 double_rq_lock(rq, p_rq); 5022 if (task_rq(p) != p_rq) { 5023 double_rq_unlock(rq, p_rq); 5024 goto again; 5025 } 5026 5027 if (!curr->sched_class->yield_to_task) 5028 goto out_unlock; 5029 5030 if (curr->sched_class != p->sched_class) 5031 goto out_unlock; 5032 5033 if (task_running(p_rq, p) || p->state) 5034 goto out_unlock; 5035 5036 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5037 if (yielded) { 5038 schedstat_inc(rq->yld_count); 5039 /* 5040 * Make p's CPU reschedule; pick_next_entity takes care of 5041 * fairness. 5042 */ 5043 if (preempt && rq != p_rq) 5044 resched_curr(p_rq); 5045 } 5046 5047 out_unlock: 5048 double_rq_unlock(rq, p_rq); 5049 out_irq: 5050 local_irq_restore(flags); 5051 5052 if (yielded > 0) 5053 schedule(); 5054 5055 return yielded; 5056 } 5057 EXPORT_SYMBOL_GPL(yield_to); 5058 5059 /* 5060 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5061 * that process accounting knows that this is a task in IO wait state. 5062 */ 5063 long __sched io_schedule_timeout(long timeout) 5064 { 5065 int old_iowait = current->in_iowait; 5066 struct rq *rq; 5067 long ret; 5068 5069 current->in_iowait = 1; 5070 blk_schedule_flush_plug(current); 5071 5072 delayacct_blkio_start(); 5073 rq = raw_rq(); 5074 atomic_inc(&rq->nr_iowait); 5075 ret = schedule_timeout(timeout); 5076 current->in_iowait = old_iowait; 5077 atomic_dec(&rq->nr_iowait); 5078 delayacct_blkio_end(); 5079 5080 return ret; 5081 } 5082 EXPORT_SYMBOL(io_schedule_timeout); 5083 5084 /** 5085 * sys_sched_get_priority_max - return maximum RT priority. 5086 * @policy: scheduling class. 5087 * 5088 * Return: On success, this syscall returns the maximum 5089 * rt_priority that can be used by a given scheduling class. 5090 * On failure, a negative error code is returned. 5091 */ 5092 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5093 { 5094 int ret = -EINVAL; 5095 5096 switch (policy) { 5097 case SCHED_FIFO: 5098 case SCHED_RR: 5099 ret = MAX_USER_RT_PRIO-1; 5100 break; 5101 case SCHED_DEADLINE: 5102 case SCHED_NORMAL: 5103 case SCHED_BATCH: 5104 case SCHED_IDLE: 5105 ret = 0; 5106 break; 5107 } 5108 return ret; 5109 } 5110 5111 /** 5112 * sys_sched_get_priority_min - return minimum RT priority. 5113 * @policy: scheduling class. 5114 * 5115 * Return: On success, this syscall returns the minimum 5116 * rt_priority that can be used by a given scheduling class. 5117 * On failure, a negative error code is returned. 5118 */ 5119 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5120 { 5121 int ret = -EINVAL; 5122 5123 switch (policy) { 5124 case SCHED_FIFO: 5125 case SCHED_RR: 5126 ret = 1; 5127 break; 5128 case SCHED_DEADLINE: 5129 case SCHED_NORMAL: 5130 case SCHED_BATCH: 5131 case SCHED_IDLE: 5132 ret = 0; 5133 } 5134 return ret; 5135 } 5136 5137 /** 5138 * sys_sched_rr_get_interval - return the default timeslice of a process. 5139 * @pid: pid of the process. 5140 * @interval: userspace pointer to the timeslice value. 5141 * 5142 * this syscall writes the default timeslice value of a given process 5143 * into the user-space timespec buffer. A value of '0' means infinity. 5144 * 5145 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5146 * an error code. 5147 */ 5148 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5149 struct timespec __user *, interval) 5150 { 5151 struct task_struct *p; 5152 unsigned int time_slice; 5153 struct rq_flags rf; 5154 struct timespec t; 5155 struct rq *rq; 5156 int retval; 5157 5158 if (pid < 0) 5159 return -EINVAL; 5160 5161 retval = -ESRCH; 5162 rcu_read_lock(); 5163 p = find_process_by_pid(pid); 5164 if (!p) 5165 goto out_unlock; 5166 5167 retval = security_task_getscheduler(p); 5168 if (retval) 5169 goto out_unlock; 5170 5171 rq = task_rq_lock(p, &rf); 5172 time_slice = 0; 5173 if (p->sched_class->get_rr_interval) 5174 time_slice = p->sched_class->get_rr_interval(rq, p); 5175 task_rq_unlock(rq, p, &rf); 5176 5177 rcu_read_unlock(); 5178 jiffies_to_timespec(time_slice, &t); 5179 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5180 return retval; 5181 5182 out_unlock: 5183 rcu_read_unlock(); 5184 return retval; 5185 } 5186 5187 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5188 5189 void sched_show_task(struct task_struct *p) 5190 { 5191 unsigned long free = 0; 5192 int ppid; 5193 unsigned long state = p->state; 5194 5195 if (!try_get_task_stack(p)) 5196 return; 5197 if (state) 5198 state = __ffs(state) + 1; 5199 printk(KERN_INFO "%-15.15s %c", p->comm, 5200 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5201 if (state == TASK_RUNNING) 5202 printk(KERN_CONT " running task "); 5203 #ifdef CONFIG_DEBUG_STACK_USAGE 5204 free = stack_not_used(p); 5205 #endif 5206 ppid = 0; 5207 rcu_read_lock(); 5208 if (pid_alive(p)) 5209 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5210 rcu_read_unlock(); 5211 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5212 task_pid_nr(p), ppid, 5213 (unsigned long)task_thread_info(p)->flags); 5214 5215 print_worker_info(KERN_INFO, p); 5216 show_stack(p, NULL); 5217 put_task_stack(p); 5218 } 5219 5220 void show_state_filter(unsigned long state_filter) 5221 { 5222 struct task_struct *g, *p; 5223 5224 #if BITS_PER_LONG == 32 5225 printk(KERN_INFO 5226 " task PC stack pid father\n"); 5227 #else 5228 printk(KERN_INFO 5229 " task PC stack pid father\n"); 5230 #endif 5231 rcu_read_lock(); 5232 for_each_process_thread(g, p) { 5233 /* 5234 * reset the NMI-timeout, listing all files on a slow 5235 * console might take a lot of time: 5236 * Also, reset softlockup watchdogs on all CPUs, because 5237 * another CPU might be blocked waiting for us to process 5238 * an IPI. 5239 */ 5240 touch_nmi_watchdog(); 5241 touch_all_softlockup_watchdogs(); 5242 if (!state_filter || (p->state & state_filter)) 5243 sched_show_task(p); 5244 } 5245 5246 #ifdef CONFIG_SCHED_DEBUG 5247 if (!state_filter) 5248 sysrq_sched_debug_show(); 5249 #endif 5250 rcu_read_unlock(); 5251 /* 5252 * Only show locks if all tasks are dumped: 5253 */ 5254 if (!state_filter) 5255 debug_show_all_locks(); 5256 } 5257 5258 void init_idle_bootup_task(struct task_struct *idle) 5259 { 5260 idle->sched_class = &idle_sched_class; 5261 } 5262 5263 /** 5264 * init_idle - set up an idle thread for a given CPU 5265 * @idle: task in question 5266 * @cpu: cpu the idle task belongs to 5267 * 5268 * NOTE: this function does not set the idle thread's NEED_RESCHED 5269 * flag, to make booting more robust. 5270 */ 5271 void init_idle(struct task_struct *idle, int cpu) 5272 { 5273 struct rq *rq = cpu_rq(cpu); 5274 unsigned long flags; 5275 5276 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5277 raw_spin_lock(&rq->lock); 5278 5279 __sched_fork(0, idle); 5280 idle->state = TASK_RUNNING; 5281 idle->se.exec_start = sched_clock(); 5282 5283 kasan_unpoison_task_stack(idle); 5284 5285 #ifdef CONFIG_SMP 5286 /* 5287 * Its possible that init_idle() gets called multiple times on a task, 5288 * in that case do_set_cpus_allowed() will not do the right thing. 5289 * 5290 * And since this is boot we can forgo the serialization. 5291 */ 5292 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5293 #endif 5294 /* 5295 * We're having a chicken and egg problem, even though we are 5296 * holding rq->lock, the cpu isn't yet set to this cpu so the 5297 * lockdep check in task_group() will fail. 5298 * 5299 * Similar case to sched_fork(). / Alternatively we could 5300 * use task_rq_lock() here and obtain the other rq->lock. 5301 * 5302 * Silence PROVE_RCU 5303 */ 5304 rcu_read_lock(); 5305 __set_task_cpu(idle, cpu); 5306 rcu_read_unlock(); 5307 5308 rq->curr = rq->idle = idle; 5309 idle->on_rq = TASK_ON_RQ_QUEUED; 5310 #ifdef CONFIG_SMP 5311 idle->on_cpu = 1; 5312 #endif 5313 raw_spin_unlock(&rq->lock); 5314 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5315 5316 /* Set the preempt count _outside_ the spinlocks! */ 5317 init_idle_preempt_count(idle, cpu); 5318 5319 /* 5320 * The idle tasks have their own, simple scheduling class: 5321 */ 5322 idle->sched_class = &idle_sched_class; 5323 ftrace_graph_init_idle_task(idle, cpu); 5324 vtime_init_idle(idle, cpu); 5325 #ifdef CONFIG_SMP 5326 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5327 #endif 5328 } 5329 5330 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5331 const struct cpumask *trial) 5332 { 5333 int ret = 1, trial_cpus; 5334 struct dl_bw *cur_dl_b; 5335 unsigned long flags; 5336 5337 if (!cpumask_weight(cur)) 5338 return ret; 5339 5340 rcu_read_lock_sched(); 5341 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5342 trial_cpus = cpumask_weight(trial); 5343 5344 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5345 if (cur_dl_b->bw != -1 && 5346 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5347 ret = 0; 5348 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5349 rcu_read_unlock_sched(); 5350 5351 return ret; 5352 } 5353 5354 int task_can_attach(struct task_struct *p, 5355 const struct cpumask *cs_cpus_allowed) 5356 { 5357 int ret = 0; 5358 5359 /* 5360 * Kthreads which disallow setaffinity shouldn't be moved 5361 * to a new cpuset; we don't want to change their cpu 5362 * affinity and isolating such threads by their set of 5363 * allowed nodes is unnecessary. Thus, cpusets are not 5364 * applicable for such threads. This prevents checking for 5365 * success of set_cpus_allowed_ptr() on all attached tasks 5366 * before cpus_allowed may be changed. 5367 */ 5368 if (p->flags & PF_NO_SETAFFINITY) { 5369 ret = -EINVAL; 5370 goto out; 5371 } 5372 5373 #ifdef CONFIG_SMP 5374 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5375 cs_cpus_allowed)) { 5376 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5377 cs_cpus_allowed); 5378 struct dl_bw *dl_b; 5379 bool overflow; 5380 int cpus; 5381 unsigned long flags; 5382 5383 rcu_read_lock_sched(); 5384 dl_b = dl_bw_of(dest_cpu); 5385 raw_spin_lock_irqsave(&dl_b->lock, flags); 5386 cpus = dl_bw_cpus(dest_cpu); 5387 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5388 if (overflow) 5389 ret = -EBUSY; 5390 else { 5391 /* 5392 * We reserve space for this task in the destination 5393 * root_domain, as we can't fail after this point. 5394 * We will free resources in the source root_domain 5395 * later on (see set_cpus_allowed_dl()). 5396 */ 5397 __dl_add(dl_b, p->dl.dl_bw); 5398 } 5399 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5400 rcu_read_unlock_sched(); 5401 5402 } 5403 #endif 5404 out: 5405 return ret; 5406 } 5407 5408 #ifdef CONFIG_SMP 5409 5410 static bool sched_smp_initialized __read_mostly; 5411 5412 #ifdef CONFIG_NUMA_BALANCING 5413 /* Migrate current task p to target_cpu */ 5414 int migrate_task_to(struct task_struct *p, int target_cpu) 5415 { 5416 struct migration_arg arg = { p, target_cpu }; 5417 int curr_cpu = task_cpu(p); 5418 5419 if (curr_cpu == target_cpu) 5420 return 0; 5421 5422 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5423 return -EINVAL; 5424 5425 /* TODO: This is not properly updating schedstats */ 5426 5427 trace_sched_move_numa(p, curr_cpu, target_cpu); 5428 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5429 } 5430 5431 /* 5432 * Requeue a task on a given node and accurately track the number of NUMA 5433 * tasks on the runqueues 5434 */ 5435 void sched_setnuma(struct task_struct *p, int nid) 5436 { 5437 bool queued, running; 5438 struct rq_flags rf; 5439 struct rq *rq; 5440 5441 rq = task_rq_lock(p, &rf); 5442 queued = task_on_rq_queued(p); 5443 running = task_current(rq, p); 5444 5445 if (queued) 5446 dequeue_task(rq, p, DEQUEUE_SAVE); 5447 if (running) 5448 put_prev_task(rq, p); 5449 5450 p->numa_preferred_nid = nid; 5451 5452 if (queued) 5453 enqueue_task(rq, p, ENQUEUE_RESTORE); 5454 if (running) 5455 set_curr_task(rq, p); 5456 task_rq_unlock(rq, p, &rf); 5457 } 5458 #endif /* CONFIG_NUMA_BALANCING */ 5459 5460 #ifdef CONFIG_HOTPLUG_CPU 5461 /* 5462 * Ensures that the idle task is using init_mm right before its cpu goes 5463 * offline. 5464 */ 5465 void idle_task_exit(void) 5466 { 5467 struct mm_struct *mm = current->active_mm; 5468 5469 BUG_ON(cpu_online(smp_processor_id())); 5470 5471 if (mm != &init_mm) { 5472 switch_mm_irqs_off(mm, &init_mm, current); 5473 finish_arch_post_lock_switch(); 5474 } 5475 mmdrop(mm); 5476 } 5477 5478 /* 5479 * Since this CPU is going 'away' for a while, fold any nr_active delta 5480 * we might have. Assumes we're called after migrate_tasks() so that the 5481 * nr_active count is stable. We need to take the teardown thread which 5482 * is calling this into account, so we hand in adjust = 1 to the load 5483 * calculation. 5484 * 5485 * Also see the comment "Global load-average calculations". 5486 */ 5487 static void calc_load_migrate(struct rq *rq) 5488 { 5489 long delta = calc_load_fold_active(rq, 1); 5490 if (delta) 5491 atomic_long_add(delta, &calc_load_tasks); 5492 } 5493 5494 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5495 { 5496 } 5497 5498 static const struct sched_class fake_sched_class = { 5499 .put_prev_task = put_prev_task_fake, 5500 }; 5501 5502 static struct task_struct fake_task = { 5503 /* 5504 * Avoid pull_{rt,dl}_task() 5505 */ 5506 .prio = MAX_PRIO + 1, 5507 .sched_class = &fake_sched_class, 5508 }; 5509 5510 /* 5511 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5512 * try_to_wake_up()->select_task_rq(). 5513 * 5514 * Called with rq->lock held even though we'er in stop_machine() and 5515 * there's no concurrency possible, we hold the required locks anyway 5516 * because of lock validation efforts. 5517 */ 5518 static void migrate_tasks(struct rq *dead_rq) 5519 { 5520 struct rq *rq = dead_rq; 5521 struct task_struct *next, *stop = rq->stop; 5522 struct pin_cookie cookie; 5523 int dest_cpu; 5524 5525 /* 5526 * Fudge the rq selection such that the below task selection loop 5527 * doesn't get stuck on the currently eligible stop task. 5528 * 5529 * We're currently inside stop_machine() and the rq is either stuck 5530 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5531 * either way we should never end up calling schedule() until we're 5532 * done here. 5533 */ 5534 rq->stop = NULL; 5535 5536 /* 5537 * put_prev_task() and pick_next_task() sched 5538 * class method both need to have an up-to-date 5539 * value of rq->clock[_task] 5540 */ 5541 update_rq_clock(rq); 5542 5543 for (;;) { 5544 /* 5545 * There's this thread running, bail when that's the only 5546 * remaining thread. 5547 */ 5548 if (rq->nr_running == 1) 5549 break; 5550 5551 /* 5552 * pick_next_task assumes pinned rq->lock. 5553 */ 5554 cookie = lockdep_pin_lock(&rq->lock); 5555 next = pick_next_task(rq, &fake_task, cookie); 5556 BUG_ON(!next); 5557 next->sched_class->put_prev_task(rq, next); 5558 5559 /* 5560 * Rules for changing task_struct::cpus_allowed are holding 5561 * both pi_lock and rq->lock, such that holding either 5562 * stabilizes the mask. 5563 * 5564 * Drop rq->lock is not quite as disastrous as it usually is 5565 * because !cpu_active at this point, which means load-balance 5566 * will not interfere. Also, stop-machine. 5567 */ 5568 lockdep_unpin_lock(&rq->lock, cookie); 5569 raw_spin_unlock(&rq->lock); 5570 raw_spin_lock(&next->pi_lock); 5571 raw_spin_lock(&rq->lock); 5572 5573 /* 5574 * Since we're inside stop-machine, _nothing_ should have 5575 * changed the task, WARN if weird stuff happened, because in 5576 * that case the above rq->lock drop is a fail too. 5577 */ 5578 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5579 raw_spin_unlock(&next->pi_lock); 5580 continue; 5581 } 5582 5583 /* Find suitable destination for @next, with force if needed. */ 5584 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5585 5586 rq = __migrate_task(rq, next, dest_cpu); 5587 if (rq != dead_rq) { 5588 raw_spin_unlock(&rq->lock); 5589 rq = dead_rq; 5590 raw_spin_lock(&rq->lock); 5591 } 5592 raw_spin_unlock(&next->pi_lock); 5593 } 5594 5595 rq->stop = stop; 5596 } 5597 #endif /* CONFIG_HOTPLUG_CPU */ 5598 5599 static void set_rq_online(struct rq *rq) 5600 { 5601 if (!rq->online) { 5602 const struct sched_class *class; 5603 5604 cpumask_set_cpu(rq->cpu, rq->rd->online); 5605 rq->online = 1; 5606 5607 for_each_class(class) { 5608 if (class->rq_online) 5609 class->rq_online(rq); 5610 } 5611 } 5612 } 5613 5614 static void set_rq_offline(struct rq *rq) 5615 { 5616 if (rq->online) { 5617 const struct sched_class *class; 5618 5619 for_each_class(class) { 5620 if (class->rq_offline) 5621 class->rq_offline(rq); 5622 } 5623 5624 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5625 rq->online = 0; 5626 } 5627 } 5628 5629 static void set_cpu_rq_start_time(unsigned int cpu) 5630 { 5631 struct rq *rq = cpu_rq(cpu); 5632 5633 rq->age_stamp = sched_clock_cpu(cpu); 5634 } 5635 5636 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5637 5638 #ifdef CONFIG_SCHED_DEBUG 5639 5640 static __read_mostly int sched_debug_enabled; 5641 5642 static int __init sched_debug_setup(char *str) 5643 { 5644 sched_debug_enabled = 1; 5645 5646 return 0; 5647 } 5648 early_param("sched_debug", sched_debug_setup); 5649 5650 static inline bool sched_debug(void) 5651 { 5652 return sched_debug_enabled; 5653 } 5654 5655 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5656 struct cpumask *groupmask) 5657 { 5658 struct sched_group *group = sd->groups; 5659 5660 cpumask_clear(groupmask); 5661 5662 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5663 5664 if (!(sd->flags & SD_LOAD_BALANCE)) { 5665 printk("does not load-balance\n"); 5666 if (sd->parent) 5667 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5668 " has parent"); 5669 return -1; 5670 } 5671 5672 printk(KERN_CONT "span %*pbl level %s\n", 5673 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5674 5675 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5676 printk(KERN_ERR "ERROR: domain->span does not contain " 5677 "CPU%d\n", cpu); 5678 } 5679 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5680 printk(KERN_ERR "ERROR: domain->groups does not contain" 5681 " CPU%d\n", cpu); 5682 } 5683 5684 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5685 do { 5686 if (!group) { 5687 printk("\n"); 5688 printk(KERN_ERR "ERROR: group is NULL\n"); 5689 break; 5690 } 5691 5692 if (!cpumask_weight(sched_group_cpus(group))) { 5693 printk(KERN_CONT "\n"); 5694 printk(KERN_ERR "ERROR: empty group\n"); 5695 break; 5696 } 5697 5698 if (!(sd->flags & SD_OVERLAP) && 5699 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5700 printk(KERN_CONT "\n"); 5701 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5702 break; 5703 } 5704 5705 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5706 5707 printk(KERN_CONT " %*pbl", 5708 cpumask_pr_args(sched_group_cpus(group))); 5709 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5710 printk(KERN_CONT " (cpu_capacity = %d)", 5711 group->sgc->capacity); 5712 } 5713 5714 group = group->next; 5715 } while (group != sd->groups); 5716 printk(KERN_CONT "\n"); 5717 5718 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5719 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5720 5721 if (sd->parent && 5722 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5723 printk(KERN_ERR "ERROR: parent span is not a superset " 5724 "of domain->span\n"); 5725 return 0; 5726 } 5727 5728 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5729 { 5730 int level = 0; 5731 5732 if (!sched_debug_enabled) 5733 return; 5734 5735 if (!sd) { 5736 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5737 return; 5738 } 5739 5740 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5741 5742 for (;;) { 5743 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5744 break; 5745 level++; 5746 sd = sd->parent; 5747 if (!sd) 5748 break; 5749 } 5750 } 5751 #else /* !CONFIG_SCHED_DEBUG */ 5752 5753 # define sched_debug_enabled 0 5754 # define sched_domain_debug(sd, cpu) do { } while (0) 5755 static inline bool sched_debug(void) 5756 { 5757 return false; 5758 } 5759 #endif /* CONFIG_SCHED_DEBUG */ 5760 5761 static int sd_degenerate(struct sched_domain *sd) 5762 { 5763 if (cpumask_weight(sched_domain_span(sd)) == 1) 5764 return 1; 5765 5766 /* Following flags need at least 2 groups */ 5767 if (sd->flags & (SD_LOAD_BALANCE | 5768 SD_BALANCE_NEWIDLE | 5769 SD_BALANCE_FORK | 5770 SD_BALANCE_EXEC | 5771 SD_SHARE_CPUCAPACITY | 5772 SD_ASYM_CPUCAPACITY | 5773 SD_SHARE_PKG_RESOURCES | 5774 SD_SHARE_POWERDOMAIN)) { 5775 if (sd->groups != sd->groups->next) 5776 return 0; 5777 } 5778 5779 /* Following flags don't use groups */ 5780 if (sd->flags & (SD_WAKE_AFFINE)) 5781 return 0; 5782 5783 return 1; 5784 } 5785 5786 static int 5787 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5788 { 5789 unsigned long cflags = sd->flags, pflags = parent->flags; 5790 5791 if (sd_degenerate(parent)) 5792 return 1; 5793 5794 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5795 return 0; 5796 5797 /* Flags needing groups don't count if only 1 group in parent */ 5798 if (parent->groups == parent->groups->next) { 5799 pflags &= ~(SD_LOAD_BALANCE | 5800 SD_BALANCE_NEWIDLE | 5801 SD_BALANCE_FORK | 5802 SD_BALANCE_EXEC | 5803 SD_ASYM_CPUCAPACITY | 5804 SD_SHARE_CPUCAPACITY | 5805 SD_SHARE_PKG_RESOURCES | 5806 SD_PREFER_SIBLING | 5807 SD_SHARE_POWERDOMAIN); 5808 if (nr_node_ids == 1) 5809 pflags &= ~SD_SERIALIZE; 5810 } 5811 if (~cflags & pflags) 5812 return 0; 5813 5814 return 1; 5815 } 5816 5817 static void free_rootdomain(struct rcu_head *rcu) 5818 { 5819 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5820 5821 cpupri_cleanup(&rd->cpupri); 5822 cpudl_cleanup(&rd->cpudl); 5823 free_cpumask_var(rd->dlo_mask); 5824 free_cpumask_var(rd->rto_mask); 5825 free_cpumask_var(rd->online); 5826 free_cpumask_var(rd->span); 5827 kfree(rd); 5828 } 5829 5830 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5831 { 5832 struct root_domain *old_rd = NULL; 5833 unsigned long flags; 5834 5835 raw_spin_lock_irqsave(&rq->lock, flags); 5836 5837 if (rq->rd) { 5838 old_rd = rq->rd; 5839 5840 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5841 set_rq_offline(rq); 5842 5843 cpumask_clear_cpu(rq->cpu, old_rd->span); 5844 5845 /* 5846 * If we dont want to free the old_rd yet then 5847 * set old_rd to NULL to skip the freeing later 5848 * in this function: 5849 */ 5850 if (!atomic_dec_and_test(&old_rd->refcount)) 5851 old_rd = NULL; 5852 } 5853 5854 atomic_inc(&rd->refcount); 5855 rq->rd = rd; 5856 5857 cpumask_set_cpu(rq->cpu, rd->span); 5858 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5859 set_rq_online(rq); 5860 5861 raw_spin_unlock_irqrestore(&rq->lock, flags); 5862 5863 if (old_rd) 5864 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5865 } 5866 5867 static int init_rootdomain(struct root_domain *rd) 5868 { 5869 memset(rd, 0, sizeof(*rd)); 5870 5871 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5872 goto out; 5873 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5874 goto free_span; 5875 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5876 goto free_online; 5877 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5878 goto free_dlo_mask; 5879 5880 init_dl_bw(&rd->dl_bw); 5881 if (cpudl_init(&rd->cpudl) != 0) 5882 goto free_dlo_mask; 5883 5884 if (cpupri_init(&rd->cpupri) != 0) 5885 goto free_rto_mask; 5886 return 0; 5887 5888 free_rto_mask: 5889 free_cpumask_var(rd->rto_mask); 5890 free_dlo_mask: 5891 free_cpumask_var(rd->dlo_mask); 5892 free_online: 5893 free_cpumask_var(rd->online); 5894 free_span: 5895 free_cpumask_var(rd->span); 5896 out: 5897 return -ENOMEM; 5898 } 5899 5900 /* 5901 * By default the system creates a single root-domain with all cpus as 5902 * members (mimicking the global state we have today). 5903 */ 5904 struct root_domain def_root_domain; 5905 5906 static void init_defrootdomain(void) 5907 { 5908 init_rootdomain(&def_root_domain); 5909 5910 atomic_set(&def_root_domain.refcount, 1); 5911 } 5912 5913 static struct root_domain *alloc_rootdomain(void) 5914 { 5915 struct root_domain *rd; 5916 5917 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5918 if (!rd) 5919 return NULL; 5920 5921 if (init_rootdomain(rd) != 0) { 5922 kfree(rd); 5923 return NULL; 5924 } 5925 5926 return rd; 5927 } 5928 5929 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5930 { 5931 struct sched_group *tmp, *first; 5932 5933 if (!sg) 5934 return; 5935 5936 first = sg; 5937 do { 5938 tmp = sg->next; 5939 5940 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5941 kfree(sg->sgc); 5942 5943 kfree(sg); 5944 sg = tmp; 5945 } while (sg != first); 5946 } 5947 5948 static void destroy_sched_domain(struct sched_domain *sd) 5949 { 5950 /* 5951 * If its an overlapping domain it has private groups, iterate and 5952 * nuke them all. 5953 */ 5954 if (sd->flags & SD_OVERLAP) { 5955 free_sched_groups(sd->groups, 1); 5956 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5957 kfree(sd->groups->sgc); 5958 kfree(sd->groups); 5959 } 5960 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 5961 kfree(sd->shared); 5962 kfree(sd); 5963 } 5964 5965 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 5966 { 5967 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5968 5969 while (sd) { 5970 struct sched_domain *parent = sd->parent; 5971 destroy_sched_domain(sd); 5972 sd = parent; 5973 } 5974 } 5975 5976 static void destroy_sched_domains(struct sched_domain *sd) 5977 { 5978 if (sd) 5979 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 5980 } 5981 5982 /* 5983 * Keep a special pointer to the highest sched_domain that has 5984 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5985 * allows us to avoid some pointer chasing select_idle_sibling(). 5986 * 5987 * Also keep a unique ID per domain (we use the first cpu number in 5988 * the cpumask of the domain), this allows us to quickly tell if 5989 * two cpus are in the same cache domain, see cpus_share_cache(). 5990 */ 5991 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5992 DEFINE_PER_CPU(int, sd_llc_size); 5993 DEFINE_PER_CPU(int, sd_llc_id); 5994 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 5995 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5996 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5997 5998 static void update_top_cache_domain(int cpu) 5999 { 6000 struct sched_domain_shared *sds = NULL; 6001 struct sched_domain *sd; 6002 int id = cpu; 6003 int size = 1; 6004 6005 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 6006 if (sd) { 6007 id = cpumask_first(sched_domain_span(sd)); 6008 size = cpumask_weight(sched_domain_span(sd)); 6009 sds = sd->shared; 6010 } 6011 6012 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 6013 per_cpu(sd_llc_size, cpu) = size; 6014 per_cpu(sd_llc_id, cpu) = id; 6015 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 6016 6017 sd = lowest_flag_domain(cpu, SD_NUMA); 6018 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 6019 6020 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 6021 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 6022 } 6023 6024 /* 6025 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 6026 * hold the hotplug lock. 6027 */ 6028 static void 6029 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6030 { 6031 struct rq *rq = cpu_rq(cpu); 6032 struct sched_domain *tmp; 6033 6034 /* Remove the sched domains which do not contribute to scheduling. */ 6035 for (tmp = sd; tmp; ) { 6036 struct sched_domain *parent = tmp->parent; 6037 if (!parent) 6038 break; 6039 6040 if (sd_parent_degenerate(tmp, parent)) { 6041 tmp->parent = parent->parent; 6042 if (parent->parent) 6043 parent->parent->child = tmp; 6044 /* 6045 * Transfer SD_PREFER_SIBLING down in case of a 6046 * degenerate parent; the spans match for this 6047 * so the property transfers. 6048 */ 6049 if (parent->flags & SD_PREFER_SIBLING) 6050 tmp->flags |= SD_PREFER_SIBLING; 6051 destroy_sched_domain(parent); 6052 } else 6053 tmp = tmp->parent; 6054 } 6055 6056 if (sd && sd_degenerate(sd)) { 6057 tmp = sd; 6058 sd = sd->parent; 6059 destroy_sched_domain(tmp); 6060 if (sd) 6061 sd->child = NULL; 6062 } 6063 6064 sched_domain_debug(sd, cpu); 6065 6066 rq_attach_root(rq, rd); 6067 tmp = rq->sd; 6068 rcu_assign_pointer(rq->sd, sd); 6069 destroy_sched_domains(tmp); 6070 6071 update_top_cache_domain(cpu); 6072 } 6073 6074 /* Setup the mask of cpus configured for isolated domains */ 6075 static int __init isolated_cpu_setup(char *str) 6076 { 6077 int ret; 6078 6079 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6080 ret = cpulist_parse(str, cpu_isolated_map); 6081 if (ret) { 6082 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 6083 return 0; 6084 } 6085 return 1; 6086 } 6087 __setup("isolcpus=", isolated_cpu_setup); 6088 6089 struct s_data { 6090 struct sched_domain ** __percpu sd; 6091 struct root_domain *rd; 6092 }; 6093 6094 enum s_alloc { 6095 sa_rootdomain, 6096 sa_sd, 6097 sa_sd_storage, 6098 sa_none, 6099 }; 6100 6101 /* 6102 * Build an iteration mask that can exclude certain CPUs from the upwards 6103 * domain traversal. 6104 * 6105 * Asymmetric node setups can result in situations where the domain tree is of 6106 * unequal depth, make sure to skip domains that already cover the entire 6107 * range. 6108 * 6109 * In that case build_sched_domains() will have terminated the iteration early 6110 * and our sibling sd spans will be empty. Domains should always include the 6111 * cpu they're built on, so check that. 6112 * 6113 */ 6114 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6115 { 6116 const struct cpumask *span = sched_domain_span(sd); 6117 struct sd_data *sdd = sd->private; 6118 struct sched_domain *sibling; 6119 int i; 6120 6121 for_each_cpu(i, span) { 6122 sibling = *per_cpu_ptr(sdd->sd, i); 6123 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6124 continue; 6125 6126 cpumask_set_cpu(i, sched_group_mask(sg)); 6127 } 6128 } 6129 6130 /* 6131 * Return the canonical balance cpu for this group, this is the first cpu 6132 * of this group that's also in the iteration mask. 6133 */ 6134 int group_balance_cpu(struct sched_group *sg) 6135 { 6136 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6137 } 6138 6139 static int 6140 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6141 { 6142 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6143 const struct cpumask *span = sched_domain_span(sd); 6144 struct cpumask *covered = sched_domains_tmpmask; 6145 struct sd_data *sdd = sd->private; 6146 struct sched_domain *sibling; 6147 int i; 6148 6149 cpumask_clear(covered); 6150 6151 for_each_cpu(i, span) { 6152 struct cpumask *sg_span; 6153 6154 if (cpumask_test_cpu(i, covered)) 6155 continue; 6156 6157 sibling = *per_cpu_ptr(sdd->sd, i); 6158 6159 /* See the comment near build_group_mask(). */ 6160 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6161 continue; 6162 6163 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6164 GFP_KERNEL, cpu_to_node(cpu)); 6165 6166 if (!sg) 6167 goto fail; 6168 6169 sg_span = sched_group_cpus(sg); 6170 if (sibling->child) 6171 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6172 else 6173 cpumask_set_cpu(i, sg_span); 6174 6175 cpumask_or(covered, covered, sg_span); 6176 6177 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6178 if (atomic_inc_return(&sg->sgc->ref) == 1) 6179 build_group_mask(sd, sg); 6180 6181 /* 6182 * Initialize sgc->capacity such that even if we mess up the 6183 * domains and no possible iteration will get us here, we won't 6184 * die on a /0 trap. 6185 */ 6186 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6187 6188 /* 6189 * Make sure the first group of this domain contains the 6190 * canonical balance cpu. Otherwise the sched_domain iteration 6191 * breaks. See update_sg_lb_stats(). 6192 */ 6193 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6194 group_balance_cpu(sg) == cpu) 6195 groups = sg; 6196 6197 if (!first) 6198 first = sg; 6199 if (last) 6200 last->next = sg; 6201 last = sg; 6202 last->next = first; 6203 } 6204 sd->groups = groups; 6205 6206 return 0; 6207 6208 fail: 6209 free_sched_groups(first, 0); 6210 6211 return -ENOMEM; 6212 } 6213 6214 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6215 { 6216 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6217 struct sched_domain *child = sd->child; 6218 6219 if (child) 6220 cpu = cpumask_first(sched_domain_span(child)); 6221 6222 if (sg) { 6223 *sg = *per_cpu_ptr(sdd->sg, cpu); 6224 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6225 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6226 } 6227 6228 return cpu; 6229 } 6230 6231 /* 6232 * build_sched_groups will build a circular linked list of the groups 6233 * covered by the given span, and will set each group's ->cpumask correctly, 6234 * and ->cpu_capacity to 0. 6235 * 6236 * Assumes the sched_domain tree is fully constructed 6237 */ 6238 static int 6239 build_sched_groups(struct sched_domain *sd, int cpu) 6240 { 6241 struct sched_group *first = NULL, *last = NULL; 6242 struct sd_data *sdd = sd->private; 6243 const struct cpumask *span = sched_domain_span(sd); 6244 struct cpumask *covered; 6245 int i; 6246 6247 get_group(cpu, sdd, &sd->groups); 6248 atomic_inc(&sd->groups->ref); 6249 6250 if (cpu != cpumask_first(span)) 6251 return 0; 6252 6253 lockdep_assert_held(&sched_domains_mutex); 6254 covered = sched_domains_tmpmask; 6255 6256 cpumask_clear(covered); 6257 6258 for_each_cpu(i, span) { 6259 struct sched_group *sg; 6260 int group, j; 6261 6262 if (cpumask_test_cpu(i, covered)) 6263 continue; 6264 6265 group = get_group(i, sdd, &sg); 6266 cpumask_setall(sched_group_mask(sg)); 6267 6268 for_each_cpu(j, span) { 6269 if (get_group(j, sdd, NULL) != group) 6270 continue; 6271 6272 cpumask_set_cpu(j, covered); 6273 cpumask_set_cpu(j, sched_group_cpus(sg)); 6274 } 6275 6276 if (!first) 6277 first = sg; 6278 if (last) 6279 last->next = sg; 6280 last = sg; 6281 } 6282 last->next = first; 6283 6284 return 0; 6285 } 6286 6287 /* 6288 * Initialize sched groups cpu_capacity. 6289 * 6290 * cpu_capacity indicates the capacity of sched group, which is used while 6291 * distributing the load between different sched groups in a sched domain. 6292 * Typically cpu_capacity for all the groups in a sched domain will be same 6293 * unless there are asymmetries in the topology. If there are asymmetries, 6294 * group having more cpu_capacity will pickup more load compared to the 6295 * group having less cpu_capacity. 6296 */ 6297 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6298 { 6299 struct sched_group *sg = sd->groups; 6300 6301 WARN_ON(!sg); 6302 6303 do { 6304 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6305 sg = sg->next; 6306 } while (sg != sd->groups); 6307 6308 if (cpu != group_balance_cpu(sg)) 6309 return; 6310 6311 update_group_capacity(sd, cpu); 6312 } 6313 6314 /* 6315 * Initializers for schedule domains 6316 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6317 */ 6318 6319 static int default_relax_domain_level = -1; 6320 int sched_domain_level_max; 6321 6322 static int __init setup_relax_domain_level(char *str) 6323 { 6324 if (kstrtoint(str, 0, &default_relax_domain_level)) 6325 pr_warn("Unable to set relax_domain_level\n"); 6326 6327 return 1; 6328 } 6329 __setup("relax_domain_level=", setup_relax_domain_level); 6330 6331 static void set_domain_attribute(struct sched_domain *sd, 6332 struct sched_domain_attr *attr) 6333 { 6334 int request; 6335 6336 if (!attr || attr->relax_domain_level < 0) { 6337 if (default_relax_domain_level < 0) 6338 return; 6339 else 6340 request = default_relax_domain_level; 6341 } else 6342 request = attr->relax_domain_level; 6343 if (request < sd->level) { 6344 /* turn off idle balance on this domain */ 6345 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6346 } else { 6347 /* turn on idle balance on this domain */ 6348 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6349 } 6350 } 6351 6352 static void __sdt_free(const struct cpumask *cpu_map); 6353 static int __sdt_alloc(const struct cpumask *cpu_map); 6354 6355 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6356 const struct cpumask *cpu_map) 6357 { 6358 switch (what) { 6359 case sa_rootdomain: 6360 if (!atomic_read(&d->rd->refcount)) 6361 free_rootdomain(&d->rd->rcu); /* fall through */ 6362 case sa_sd: 6363 free_percpu(d->sd); /* fall through */ 6364 case sa_sd_storage: 6365 __sdt_free(cpu_map); /* fall through */ 6366 case sa_none: 6367 break; 6368 } 6369 } 6370 6371 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6372 const struct cpumask *cpu_map) 6373 { 6374 memset(d, 0, sizeof(*d)); 6375 6376 if (__sdt_alloc(cpu_map)) 6377 return sa_sd_storage; 6378 d->sd = alloc_percpu(struct sched_domain *); 6379 if (!d->sd) 6380 return sa_sd_storage; 6381 d->rd = alloc_rootdomain(); 6382 if (!d->rd) 6383 return sa_sd; 6384 return sa_rootdomain; 6385 } 6386 6387 /* 6388 * NULL the sd_data elements we've used to build the sched_domain and 6389 * sched_group structure so that the subsequent __free_domain_allocs() 6390 * will not free the data we're using. 6391 */ 6392 static void claim_allocations(int cpu, struct sched_domain *sd) 6393 { 6394 struct sd_data *sdd = sd->private; 6395 6396 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6397 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6398 6399 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 6400 *per_cpu_ptr(sdd->sds, cpu) = NULL; 6401 6402 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6403 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6404 6405 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6406 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6407 } 6408 6409 #ifdef CONFIG_NUMA 6410 static int sched_domains_numa_levels; 6411 enum numa_topology_type sched_numa_topology_type; 6412 static int *sched_domains_numa_distance; 6413 int sched_max_numa_distance; 6414 static struct cpumask ***sched_domains_numa_masks; 6415 static int sched_domains_curr_level; 6416 #endif 6417 6418 /* 6419 * SD_flags allowed in topology descriptions. 6420 * 6421 * These flags are purely descriptive of the topology and do not prescribe 6422 * behaviour. Behaviour is artificial and mapped in the below sd_init() 6423 * function: 6424 * 6425 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6426 * SD_SHARE_PKG_RESOURCES - describes shared caches 6427 * SD_NUMA - describes NUMA topologies 6428 * SD_SHARE_POWERDOMAIN - describes shared power domain 6429 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 6430 * 6431 * Odd one out, which beside describing the topology has a quirk also 6432 * prescribes the desired behaviour that goes along with it: 6433 * 6434 * SD_ASYM_PACKING - describes SMT quirks 6435 */ 6436 #define TOPOLOGY_SD_FLAGS \ 6437 (SD_SHARE_CPUCAPACITY | \ 6438 SD_SHARE_PKG_RESOURCES | \ 6439 SD_NUMA | \ 6440 SD_ASYM_PACKING | \ 6441 SD_ASYM_CPUCAPACITY | \ 6442 SD_SHARE_POWERDOMAIN) 6443 6444 static struct sched_domain * 6445 sd_init(struct sched_domain_topology_level *tl, 6446 const struct cpumask *cpu_map, 6447 struct sched_domain *child, int cpu) 6448 { 6449 struct sd_data *sdd = &tl->data; 6450 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6451 int sd_id, sd_weight, sd_flags = 0; 6452 6453 #ifdef CONFIG_NUMA 6454 /* 6455 * Ugly hack to pass state to sd_numa_mask()... 6456 */ 6457 sched_domains_curr_level = tl->numa_level; 6458 #endif 6459 6460 sd_weight = cpumask_weight(tl->mask(cpu)); 6461 6462 if (tl->sd_flags) 6463 sd_flags = (*tl->sd_flags)(); 6464 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6465 "wrong sd_flags in topology description\n")) 6466 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6467 6468 *sd = (struct sched_domain){ 6469 .min_interval = sd_weight, 6470 .max_interval = 2*sd_weight, 6471 .busy_factor = 32, 6472 .imbalance_pct = 125, 6473 6474 .cache_nice_tries = 0, 6475 .busy_idx = 0, 6476 .idle_idx = 0, 6477 .newidle_idx = 0, 6478 .wake_idx = 0, 6479 .forkexec_idx = 0, 6480 6481 .flags = 1*SD_LOAD_BALANCE 6482 | 1*SD_BALANCE_NEWIDLE 6483 | 1*SD_BALANCE_EXEC 6484 | 1*SD_BALANCE_FORK 6485 | 0*SD_BALANCE_WAKE 6486 | 1*SD_WAKE_AFFINE 6487 | 0*SD_SHARE_CPUCAPACITY 6488 | 0*SD_SHARE_PKG_RESOURCES 6489 | 0*SD_SERIALIZE 6490 | 0*SD_PREFER_SIBLING 6491 | 0*SD_NUMA 6492 | sd_flags 6493 , 6494 6495 .last_balance = jiffies, 6496 .balance_interval = sd_weight, 6497 .smt_gain = 0, 6498 .max_newidle_lb_cost = 0, 6499 .next_decay_max_lb_cost = jiffies, 6500 .child = child, 6501 #ifdef CONFIG_SCHED_DEBUG 6502 .name = tl->name, 6503 #endif 6504 }; 6505 6506 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6507 sd_id = cpumask_first(sched_domain_span(sd)); 6508 6509 /* 6510 * Convert topological properties into behaviour. 6511 */ 6512 6513 if (sd->flags & SD_ASYM_CPUCAPACITY) { 6514 struct sched_domain *t = sd; 6515 6516 for_each_lower_domain(t) 6517 t->flags |= SD_BALANCE_WAKE; 6518 } 6519 6520 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6521 sd->flags |= SD_PREFER_SIBLING; 6522 sd->imbalance_pct = 110; 6523 sd->smt_gain = 1178; /* ~15% */ 6524 6525 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6526 sd->imbalance_pct = 117; 6527 sd->cache_nice_tries = 1; 6528 sd->busy_idx = 2; 6529 6530 #ifdef CONFIG_NUMA 6531 } else if (sd->flags & SD_NUMA) { 6532 sd->cache_nice_tries = 2; 6533 sd->busy_idx = 3; 6534 sd->idle_idx = 2; 6535 6536 sd->flags |= SD_SERIALIZE; 6537 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6538 sd->flags &= ~(SD_BALANCE_EXEC | 6539 SD_BALANCE_FORK | 6540 SD_WAKE_AFFINE); 6541 } 6542 6543 #endif 6544 } else { 6545 sd->flags |= SD_PREFER_SIBLING; 6546 sd->cache_nice_tries = 1; 6547 sd->busy_idx = 2; 6548 sd->idle_idx = 1; 6549 } 6550 6551 /* 6552 * For all levels sharing cache; connect a sched_domain_shared 6553 * instance. 6554 */ 6555 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6556 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 6557 atomic_inc(&sd->shared->ref); 6558 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 6559 } 6560 6561 sd->private = sdd; 6562 6563 return sd; 6564 } 6565 6566 /* 6567 * Topology list, bottom-up. 6568 */ 6569 static struct sched_domain_topology_level default_topology[] = { 6570 #ifdef CONFIG_SCHED_SMT 6571 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6572 #endif 6573 #ifdef CONFIG_SCHED_MC 6574 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6575 #endif 6576 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6577 { NULL, }, 6578 }; 6579 6580 static struct sched_domain_topology_level *sched_domain_topology = 6581 default_topology; 6582 6583 #define for_each_sd_topology(tl) \ 6584 for (tl = sched_domain_topology; tl->mask; tl++) 6585 6586 void set_sched_topology(struct sched_domain_topology_level *tl) 6587 { 6588 if (WARN_ON_ONCE(sched_smp_initialized)) 6589 return; 6590 6591 sched_domain_topology = tl; 6592 } 6593 6594 #ifdef CONFIG_NUMA 6595 6596 static const struct cpumask *sd_numa_mask(int cpu) 6597 { 6598 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6599 } 6600 6601 static void sched_numa_warn(const char *str) 6602 { 6603 static int done = false; 6604 int i,j; 6605 6606 if (done) 6607 return; 6608 6609 done = true; 6610 6611 printk(KERN_WARNING "ERROR: %s\n\n", str); 6612 6613 for (i = 0; i < nr_node_ids; i++) { 6614 printk(KERN_WARNING " "); 6615 for (j = 0; j < nr_node_ids; j++) 6616 printk(KERN_CONT "%02d ", node_distance(i,j)); 6617 printk(KERN_CONT "\n"); 6618 } 6619 printk(KERN_WARNING "\n"); 6620 } 6621 6622 bool find_numa_distance(int distance) 6623 { 6624 int i; 6625 6626 if (distance == node_distance(0, 0)) 6627 return true; 6628 6629 for (i = 0; i < sched_domains_numa_levels; i++) { 6630 if (sched_domains_numa_distance[i] == distance) 6631 return true; 6632 } 6633 6634 return false; 6635 } 6636 6637 /* 6638 * A system can have three types of NUMA topology: 6639 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6640 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6641 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6642 * 6643 * The difference between a glueless mesh topology and a backplane 6644 * topology lies in whether communication between not directly 6645 * connected nodes goes through intermediary nodes (where programs 6646 * could run), or through backplane controllers. This affects 6647 * placement of programs. 6648 * 6649 * The type of topology can be discerned with the following tests: 6650 * - If the maximum distance between any nodes is 1 hop, the system 6651 * is directly connected. 6652 * - If for two nodes A and B, located N > 1 hops away from each other, 6653 * there is an intermediary node C, which is < N hops away from both 6654 * nodes A and B, the system is a glueless mesh. 6655 */ 6656 static void init_numa_topology_type(void) 6657 { 6658 int a, b, c, n; 6659 6660 n = sched_max_numa_distance; 6661 6662 if (sched_domains_numa_levels <= 1) { 6663 sched_numa_topology_type = NUMA_DIRECT; 6664 return; 6665 } 6666 6667 for_each_online_node(a) { 6668 for_each_online_node(b) { 6669 /* Find two nodes furthest removed from each other. */ 6670 if (node_distance(a, b) < n) 6671 continue; 6672 6673 /* Is there an intermediary node between a and b? */ 6674 for_each_online_node(c) { 6675 if (node_distance(a, c) < n && 6676 node_distance(b, c) < n) { 6677 sched_numa_topology_type = 6678 NUMA_GLUELESS_MESH; 6679 return; 6680 } 6681 } 6682 6683 sched_numa_topology_type = NUMA_BACKPLANE; 6684 return; 6685 } 6686 } 6687 } 6688 6689 static void sched_init_numa(void) 6690 { 6691 int next_distance, curr_distance = node_distance(0, 0); 6692 struct sched_domain_topology_level *tl; 6693 int level = 0; 6694 int i, j, k; 6695 6696 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6697 if (!sched_domains_numa_distance) 6698 return; 6699 6700 /* 6701 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6702 * unique distances in the node_distance() table. 6703 * 6704 * Assumes node_distance(0,j) includes all distances in 6705 * node_distance(i,j) in order to avoid cubic time. 6706 */ 6707 next_distance = curr_distance; 6708 for (i = 0; i < nr_node_ids; i++) { 6709 for (j = 0; j < nr_node_ids; j++) { 6710 for (k = 0; k < nr_node_ids; k++) { 6711 int distance = node_distance(i, k); 6712 6713 if (distance > curr_distance && 6714 (distance < next_distance || 6715 next_distance == curr_distance)) 6716 next_distance = distance; 6717 6718 /* 6719 * While not a strong assumption it would be nice to know 6720 * about cases where if node A is connected to B, B is not 6721 * equally connected to A. 6722 */ 6723 if (sched_debug() && node_distance(k, i) != distance) 6724 sched_numa_warn("Node-distance not symmetric"); 6725 6726 if (sched_debug() && i && !find_numa_distance(distance)) 6727 sched_numa_warn("Node-0 not representative"); 6728 } 6729 if (next_distance != curr_distance) { 6730 sched_domains_numa_distance[level++] = next_distance; 6731 sched_domains_numa_levels = level; 6732 curr_distance = next_distance; 6733 } else break; 6734 } 6735 6736 /* 6737 * In case of sched_debug() we verify the above assumption. 6738 */ 6739 if (!sched_debug()) 6740 break; 6741 } 6742 6743 if (!level) 6744 return; 6745 6746 /* 6747 * 'level' contains the number of unique distances, excluding the 6748 * identity distance node_distance(i,i). 6749 * 6750 * The sched_domains_numa_distance[] array includes the actual distance 6751 * numbers. 6752 */ 6753 6754 /* 6755 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6756 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6757 * the array will contain less then 'level' members. This could be 6758 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6759 * in other functions. 6760 * 6761 * We reset it to 'level' at the end of this function. 6762 */ 6763 sched_domains_numa_levels = 0; 6764 6765 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6766 if (!sched_domains_numa_masks) 6767 return; 6768 6769 /* 6770 * Now for each level, construct a mask per node which contains all 6771 * cpus of nodes that are that many hops away from us. 6772 */ 6773 for (i = 0; i < level; i++) { 6774 sched_domains_numa_masks[i] = 6775 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6776 if (!sched_domains_numa_masks[i]) 6777 return; 6778 6779 for (j = 0; j < nr_node_ids; j++) { 6780 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6781 if (!mask) 6782 return; 6783 6784 sched_domains_numa_masks[i][j] = mask; 6785 6786 for_each_node(k) { 6787 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6788 continue; 6789 6790 cpumask_or(mask, mask, cpumask_of_node(k)); 6791 } 6792 } 6793 } 6794 6795 /* Compute default topology size */ 6796 for (i = 0; sched_domain_topology[i].mask; i++); 6797 6798 tl = kzalloc((i + level + 1) * 6799 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6800 if (!tl) 6801 return; 6802 6803 /* 6804 * Copy the default topology bits.. 6805 */ 6806 for (i = 0; sched_domain_topology[i].mask; i++) 6807 tl[i] = sched_domain_topology[i]; 6808 6809 /* 6810 * .. and append 'j' levels of NUMA goodness. 6811 */ 6812 for (j = 0; j < level; i++, j++) { 6813 tl[i] = (struct sched_domain_topology_level){ 6814 .mask = sd_numa_mask, 6815 .sd_flags = cpu_numa_flags, 6816 .flags = SDTL_OVERLAP, 6817 .numa_level = j, 6818 SD_INIT_NAME(NUMA) 6819 }; 6820 } 6821 6822 sched_domain_topology = tl; 6823 6824 sched_domains_numa_levels = level; 6825 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6826 6827 init_numa_topology_type(); 6828 } 6829 6830 static void sched_domains_numa_masks_set(unsigned int cpu) 6831 { 6832 int node = cpu_to_node(cpu); 6833 int i, j; 6834 6835 for (i = 0; i < sched_domains_numa_levels; i++) { 6836 for (j = 0; j < nr_node_ids; j++) { 6837 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6838 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6839 } 6840 } 6841 } 6842 6843 static void sched_domains_numa_masks_clear(unsigned int cpu) 6844 { 6845 int i, j; 6846 6847 for (i = 0; i < sched_domains_numa_levels; i++) { 6848 for (j = 0; j < nr_node_ids; j++) 6849 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6850 } 6851 } 6852 6853 #else 6854 static inline void sched_init_numa(void) { } 6855 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6856 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6857 #endif /* CONFIG_NUMA */ 6858 6859 static int __sdt_alloc(const struct cpumask *cpu_map) 6860 { 6861 struct sched_domain_topology_level *tl; 6862 int j; 6863 6864 for_each_sd_topology(tl) { 6865 struct sd_data *sdd = &tl->data; 6866 6867 sdd->sd = alloc_percpu(struct sched_domain *); 6868 if (!sdd->sd) 6869 return -ENOMEM; 6870 6871 sdd->sds = alloc_percpu(struct sched_domain_shared *); 6872 if (!sdd->sds) 6873 return -ENOMEM; 6874 6875 sdd->sg = alloc_percpu(struct sched_group *); 6876 if (!sdd->sg) 6877 return -ENOMEM; 6878 6879 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6880 if (!sdd->sgc) 6881 return -ENOMEM; 6882 6883 for_each_cpu(j, cpu_map) { 6884 struct sched_domain *sd; 6885 struct sched_domain_shared *sds; 6886 struct sched_group *sg; 6887 struct sched_group_capacity *sgc; 6888 6889 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6890 GFP_KERNEL, cpu_to_node(j)); 6891 if (!sd) 6892 return -ENOMEM; 6893 6894 *per_cpu_ptr(sdd->sd, j) = sd; 6895 6896 sds = kzalloc_node(sizeof(struct sched_domain_shared), 6897 GFP_KERNEL, cpu_to_node(j)); 6898 if (!sds) 6899 return -ENOMEM; 6900 6901 *per_cpu_ptr(sdd->sds, j) = sds; 6902 6903 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6904 GFP_KERNEL, cpu_to_node(j)); 6905 if (!sg) 6906 return -ENOMEM; 6907 6908 sg->next = sg; 6909 6910 *per_cpu_ptr(sdd->sg, j) = sg; 6911 6912 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6913 GFP_KERNEL, cpu_to_node(j)); 6914 if (!sgc) 6915 return -ENOMEM; 6916 6917 *per_cpu_ptr(sdd->sgc, j) = sgc; 6918 } 6919 } 6920 6921 return 0; 6922 } 6923 6924 static void __sdt_free(const struct cpumask *cpu_map) 6925 { 6926 struct sched_domain_topology_level *tl; 6927 int j; 6928 6929 for_each_sd_topology(tl) { 6930 struct sd_data *sdd = &tl->data; 6931 6932 for_each_cpu(j, cpu_map) { 6933 struct sched_domain *sd; 6934 6935 if (sdd->sd) { 6936 sd = *per_cpu_ptr(sdd->sd, j); 6937 if (sd && (sd->flags & SD_OVERLAP)) 6938 free_sched_groups(sd->groups, 0); 6939 kfree(*per_cpu_ptr(sdd->sd, j)); 6940 } 6941 6942 if (sdd->sds) 6943 kfree(*per_cpu_ptr(sdd->sds, j)); 6944 if (sdd->sg) 6945 kfree(*per_cpu_ptr(sdd->sg, j)); 6946 if (sdd->sgc) 6947 kfree(*per_cpu_ptr(sdd->sgc, j)); 6948 } 6949 free_percpu(sdd->sd); 6950 sdd->sd = NULL; 6951 free_percpu(sdd->sds); 6952 sdd->sds = NULL; 6953 free_percpu(sdd->sg); 6954 sdd->sg = NULL; 6955 free_percpu(sdd->sgc); 6956 sdd->sgc = NULL; 6957 } 6958 } 6959 6960 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6961 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6962 struct sched_domain *child, int cpu) 6963 { 6964 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 6965 6966 if (child) { 6967 sd->level = child->level + 1; 6968 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6969 child->parent = sd; 6970 6971 if (!cpumask_subset(sched_domain_span(child), 6972 sched_domain_span(sd))) { 6973 pr_err("BUG: arch topology borken\n"); 6974 #ifdef CONFIG_SCHED_DEBUG 6975 pr_err(" the %s domain not a subset of the %s domain\n", 6976 child->name, sd->name); 6977 #endif 6978 /* Fixup, ensure @sd has at least @child cpus. */ 6979 cpumask_or(sched_domain_span(sd), 6980 sched_domain_span(sd), 6981 sched_domain_span(child)); 6982 } 6983 6984 } 6985 set_domain_attribute(sd, attr); 6986 6987 return sd; 6988 } 6989 6990 /* 6991 * Build sched domains for a given set of cpus and attach the sched domains 6992 * to the individual cpus 6993 */ 6994 static int build_sched_domains(const struct cpumask *cpu_map, 6995 struct sched_domain_attr *attr) 6996 { 6997 enum s_alloc alloc_state; 6998 struct sched_domain *sd; 6999 struct s_data d; 7000 struct rq *rq = NULL; 7001 int i, ret = -ENOMEM; 7002 7003 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 7004 if (alloc_state != sa_rootdomain) 7005 goto error; 7006 7007 /* Set up domains for cpus specified by the cpu_map. */ 7008 for_each_cpu(i, cpu_map) { 7009 struct sched_domain_topology_level *tl; 7010 7011 sd = NULL; 7012 for_each_sd_topology(tl) { 7013 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 7014 if (tl == sched_domain_topology) 7015 *per_cpu_ptr(d.sd, i) = sd; 7016 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 7017 sd->flags |= SD_OVERLAP; 7018 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 7019 break; 7020 } 7021 } 7022 7023 /* Build the groups for the domains */ 7024 for_each_cpu(i, cpu_map) { 7025 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7026 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 7027 if (sd->flags & SD_OVERLAP) { 7028 if (build_overlap_sched_groups(sd, i)) 7029 goto error; 7030 } else { 7031 if (build_sched_groups(sd, i)) 7032 goto error; 7033 } 7034 } 7035 } 7036 7037 /* Calculate CPU capacity for physical packages and nodes */ 7038 for (i = nr_cpumask_bits-1; i >= 0; i--) { 7039 if (!cpumask_test_cpu(i, cpu_map)) 7040 continue; 7041 7042 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7043 claim_allocations(i, sd); 7044 init_sched_groups_capacity(i, sd); 7045 } 7046 } 7047 7048 /* Attach the domains */ 7049 rcu_read_lock(); 7050 for_each_cpu(i, cpu_map) { 7051 rq = cpu_rq(i); 7052 sd = *per_cpu_ptr(d.sd, i); 7053 7054 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 7055 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 7056 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 7057 7058 cpu_attach_domain(sd, d.rd, i); 7059 } 7060 rcu_read_unlock(); 7061 7062 if (rq && sched_debug_enabled) { 7063 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 7064 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 7065 } 7066 7067 ret = 0; 7068 error: 7069 __free_domain_allocs(&d, alloc_state, cpu_map); 7070 return ret; 7071 } 7072 7073 static cpumask_var_t *doms_cur; /* current sched domains */ 7074 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7075 static struct sched_domain_attr *dattr_cur; 7076 /* attribues of custom domains in 'doms_cur' */ 7077 7078 /* 7079 * Special case: If a kmalloc of a doms_cur partition (array of 7080 * cpumask) fails, then fallback to a single sched domain, 7081 * as determined by the single cpumask fallback_doms. 7082 */ 7083 static cpumask_var_t fallback_doms; 7084 7085 /* 7086 * arch_update_cpu_topology lets virtualized architectures update the 7087 * cpu core maps. It is supposed to return 1 if the topology changed 7088 * or 0 if it stayed the same. 7089 */ 7090 int __weak arch_update_cpu_topology(void) 7091 { 7092 return 0; 7093 } 7094 7095 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 7096 { 7097 int i; 7098 cpumask_var_t *doms; 7099 7100 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 7101 if (!doms) 7102 return NULL; 7103 for (i = 0; i < ndoms; i++) { 7104 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 7105 free_sched_domains(doms, i); 7106 return NULL; 7107 } 7108 } 7109 return doms; 7110 } 7111 7112 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 7113 { 7114 unsigned int i; 7115 for (i = 0; i < ndoms; i++) 7116 free_cpumask_var(doms[i]); 7117 kfree(doms); 7118 } 7119 7120 /* 7121 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7122 * For now this just excludes isolated cpus, but could be used to 7123 * exclude other special cases in the future. 7124 */ 7125 static int init_sched_domains(const struct cpumask *cpu_map) 7126 { 7127 int err; 7128 7129 arch_update_cpu_topology(); 7130 ndoms_cur = 1; 7131 doms_cur = alloc_sched_domains(ndoms_cur); 7132 if (!doms_cur) 7133 doms_cur = &fallback_doms; 7134 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7135 err = build_sched_domains(doms_cur[0], NULL); 7136 register_sched_domain_sysctl(); 7137 7138 return err; 7139 } 7140 7141 /* 7142 * Detach sched domains from a group of cpus specified in cpu_map 7143 * These cpus will now be attached to the NULL domain 7144 */ 7145 static void detach_destroy_domains(const struct cpumask *cpu_map) 7146 { 7147 int i; 7148 7149 rcu_read_lock(); 7150 for_each_cpu(i, cpu_map) 7151 cpu_attach_domain(NULL, &def_root_domain, i); 7152 rcu_read_unlock(); 7153 } 7154 7155 /* handle null as "default" */ 7156 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7157 struct sched_domain_attr *new, int idx_new) 7158 { 7159 struct sched_domain_attr tmp; 7160 7161 /* fast path */ 7162 if (!new && !cur) 7163 return 1; 7164 7165 tmp = SD_ATTR_INIT; 7166 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7167 new ? (new + idx_new) : &tmp, 7168 sizeof(struct sched_domain_attr)); 7169 } 7170 7171 /* 7172 * Partition sched domains as specified by the 'ndoms_new' 7173 * cpumasks in the array doms_new[] of cpumasks. This compares 7174 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7175 * It destroys each deleted domain and builds each new domain. 7176 * 7177 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7178 * The masks don't intersect (don't overlap.) We should setup one 7179 * sched domain for each mask. CPUs not in any of the cpumasks will 7180 * not be load balanced. If the same cpumask appears both in the 7181 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7182 * it as it is. 7183 * 7184 * The passed in 'doms_new' should be allocated using 7185 * alloc_sched_domains. This routine takes ownership of it and will 7186 * free_sched_domains it when done with it. If the caller failed the 7187 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7188 * and partition_sched_domains() will fallback to the single partition 7189 * 'fallback_doms', it also forces the domains to be rebuilt. 7190 * 7191 * If doms_new == NULL it will be replaced with cpu_online_mask. 7192 * ndoms_new == 0 is a special case for destroying existing domains, 7193 * and it will not create the default domain. 7194 * 7195 * Call with hotplug lock held 7196 */ 7197 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7198 struct sched_domain_attr *dattr_new) 7199 { 7200 int i, j, n; 7201 int new_topology; 7202 7203 mutex_lock(&sched_domains_mutex); 7204 7205 /* always unregister in case we don't destroy any domains */ 7206 unregister_sched_domain_sysctl(); 7207 7208 /* Let architecture update cpu core mappings. */ 7209 new_topology = arch_update_cpu_topology(); 7210 7211 n = doms_new ? ndoms_new : 0; 7212 7213 /* Destroy deleted domains */ 7214 for (i = 0; i < ndoms_cur; i++) { 7215 for (j = 0; j < n && !new_topology; j++) { 7216 if (cpumask_equal(doms_cur[i], doms_new[j]) 7217 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7218 goto match1; 7219 } 7220 /* no match - a current sched domain not in new doms_new[] */ 7221 detach_destroy_domains(doms_cur[i]); 7222 match1: 7223 ; 7224 } 7225 7226 n = ndoms_cur; 7227 if (doms_new == NULL) { 7228 n = 0; 7229 doms_new = &fallback_doms; 7230 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7231 WARN_ON_ONCE(dattr_new); 7232 } 7233 7234 /* Build new domains */ 7235 for (i = 0; i < ndoms_new; i++) { 7236 for (j = 0; j < n && !new_topology; j++) { 7237 if (cpumask_equal(doms_new[i], doms_cur[j]) 7238 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7239 goto match2; 7240 } 7241 /* no match - add a new doms_new */ 7242 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7243 match2: 7244 ; 7245 } 7246 7247 /* Remember the new sched domains */ 7248 if (doms_cur != &fallback_doms) 7249 free_sched_domains(doms_cur, ndoms_cur); 7250 kfree(dattr_cur); /* kfree(NULL) is safe */ 7251 doms_cur = doms_new; 7252 dattr_cur = dattr_new; 7253 ndoms_cur = ndoms_new; 7254 7255 register_sched_domain_sysctl(); 7256 7257 mutex_unlock(&sched_domains_mutex); 7258 } 7259 7260 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7261 7262 /* 7263 * Update cpusets according to cpu_active mask. If cpusets are 7264 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7265 * around partition_sched_domains(). 7266 * 7267 * If we come here as part of a suspend/resume, don't touch cpusets because we 7268 * want to restore it back to its original state upon resume anyway. 7269 */ 7270 static void cpuset_cpu_active(void) 7271 { 7272 if (cpuhp_tasks_frozen) { 7273 /* 7274 * num_cpus_frozen tracks how many CPUs are involved in suspend 7275 * resume sequence. As long as this is not the last online 7276 * operation in the resume sequence, just build a single sched 7277 * domain, ignoring cpusets. 7278 */ 7279 num_cpus_frozen--; 7280 if (likely(num_cpus_frozen)) { 7281 partition_sched_domains(1, NULL, NULL); 7282 return; 7283 } 7284 /* 7285 * This is the last CPU online operation. So fall through and 7286 * restore the original sched domains by considering the 7287 * cpuset configurations. 7288 */ 7289 } 7290 cpuset_update_active_cpus(true); 7291 } 7292 7293 static int cpuset_cpu_inactive(unsigned int cpu) 7294 { 7295 unsigned long flags; 7296 struct dl_bw *dl_b; 7297 bool overflow; 7298 int cpus; 7299 7300 if (!cpuhp_tasks_frozen) { 7301 rcu_read_lock_sched(); 7302 dl_b = dl_bw_of(cpu); 7303 7304 raw_spin_lock_irqsave(&dl_b->lock, flags); 7305 cpus = dl_bw_cpus(cpu); 7306 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7307 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7308 7309 rcu_read_unlock_sched(); 7310 7311 if (overflow) 7312 return -EBUSY; 7313 cpuset_update_active_cpus(false); 7314 } else { 7315 num_cpus_frozen++; 7316 partition_sched_domains(1, NULL, NULL); 7317 } 7318 return 0; 7319 } 7320 7321 int sched_cpu_activate(unsigned int cpu) 7322 { 7323 struct rq *rq = cpu_rq(cpu); 7324 unsigned long flags; 7325 7326 set_cpu_active(cpu, true); 7327 7328 if (sched_smp_initialized) { 7329 sched_domains_numa_masks_set(cpu); 7330 cpuset_cpu_active(); 7331 } 7332 7333 /* 7334 * Put the rq online, if not already. This happens: 7335 * 7336 * 1) In the early boot process, because we build the real domains 7337 * after all cpus have been brought up. 7338 * 7339 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7340 * domains. 7341 */ 7342 raw_spin_lock_irqsave(&rq->lock, flags); 7343 if (rq->rd) { 7344 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7345 set_rq_online(rq); 7346 } 7347 raw_spin_unlock_irqrestore(&rq->lock, flags); 7348 7349 update_max_interval(); 7350 7351 return 0; 7352 } 7353 7354 int sched_cpu_deactivate(unsigned int cpu) 7355 { 7356 int ret; 7357 7358 set_cpu_active(cpu, false); 7359 /* 7360 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7361 * users of this state to go away such that all new such users will 7362 * observe it. 7363 * 7364 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7365 * not imply sync_sched(), so wait for both. 7366 * 7367 * Do sync before park smpboot threads to take care the rcu boost case. 7368 */ 7369 if (IS_ENABLED(CONFIG_PREEMPT)) 7370 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7371 else 7372 synchronize_rcu(); 7373 7374 if (!sched_smp_initialized) 7375 return 0; 7376 7377 ret = cpuset_cpu_inactive(cpu); 7378 if (ret) { 7379 set_cpu_active(cpu, true); 7380 return ret; 7381 } 7382 sched_domains_numa_masks_clear(cpu); 7383 return 0; 7384 } 7385 7386 static void sched_rq_cpu_starting(unsigned int cpu) 7387 { 7388 struct rq *rq = cpu_rq(cpu); 7389 7390 rq->calc_load_update = calc_load_update; 7391 update_max_interval(); 7392 } 7393 7394 int sched_cpu_starting(unsigned int cpu) 7395 { 7396 set_cpu_rq_start_time(cpu); 7397 sched_rq_cpu_starting(cpu); 7398 return 0; 7399 } 7400 7401 #ifdef CONFIG_HOTPLUG_CPU 7402 int sched_cpu_dying(unsigned int cpu) 7403 { 7404 struct rq *rq = cpu_rq(cpu); 7405 unsigned long flags; 7406 7407 /* Handle pending wakeups and then migrate everything off */ 7408 sched_ttwu_pending(); 7409 raw_spin_lock_irqsave(&rq->lock, flags); 7410 if (rq->rd) { 7411 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7412 set_rq_offline(rq); 7413 } 7414 migrate_tasks(rq); 7415 BUG_ON(rq->nr_running != 1); 7416 raw_spin_unlock_irqrestore(&rq->lock, flags); 7417 calc_load_migrate(rq); 7418 update_max_interval(); 7419 nohz_balance_exit_idle(cpu); 7420 hrtick_clear(rq); 7421 return 0; 7422 } 7423 #endif 7424 7425 #ifdef CONFIG_SCHED_SMT 7426 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7427 7428 static void sched_init_smt(void) 7429 { 7430 /* 7431 * We've enumerated all CPUs and will assume that if any CPU 7432 * has SMT siblings, CPU0 will too. 7433 */ 7434 if (cpumask_weight(cpu_smt_mask(0)) > 1) 7435 static_branch_enable(&sched_smt_present); 7436 } 7437 #else 7438 static inline void sched_init_smt(void) { } 7439 #endif 7440 7441 void __init sched_init_smp(void) 7442 { 7443 cpumask_var_t non_isolated_cpus; 7444 7445 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7446 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7447 7448 sched_init_numa(); 7449 7450 /* 7451 * There's no userspace yet to cause hotplug operations; hence all the 7452 * cpu masks are stable and all blatant races in the below code cannot 7453 * happen. 7454 */ 7455 mutex_lock(&sched_domains_mutex); 7456 init_sched_domains(cpu_active_mask); 7457 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7458 if (cpumask_empty(non_isolated_cpus)) 7459 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7460 mutex_unlock(&sched_domains_mutex); 7461 7462 /* Move init over to a non-isolated CPU */ 7463 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7464 BUG(); 7465 sched_init_granularity(); 7466 free_cpumask_var(non_isolated_cpus); 7467 7468 init_sched_rt_class(); 7469 init_sched_dl_class(); 7470 7471 sched_init_smt(); 7472 7473 sched_smp_initialized = true; 7474 } 7475 7476 static int __init migration_init(void) 7477 { 7478 sched_rq_cpu_starting(smp_processor_id()); 7479 return 0; 7480 } 7481 early_initcall(migration_init); 7482 7483 #else 7484 void __init sched_init_smp(void) 7485 { 7486 sched_init_granularity(); 7487 } 7488 #endif /* CONFIG_SMP */ 7489 7490 int in_sched_functions(unsigned long addr) 7491 { 7492 return in_lock_functions(addr) || 7493 (addr >= (unsigned long)__sched_text_start 7494 && addr < (unsigned long)__sched_text_end); 7495 } 7496 7497 #ifdef CONFIG_CGROUP_SCHED 7498 /* 7499 * Default task group. 7500 * Every task in system belongs to this group at bootup. 7501 */ 7502 struct task_group root_task_group; 7503 LIST_HEAD(task_groups); 7504 7505 /* Cacheline aligned slab cache for task_group */ 7506 static struct kmem_cache *task_group_cache __read_mostly; 7507 #endif 7508 7509 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7510 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 7511 7512 #define WAIT_TABLE_BITS 8 7513 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 7514 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 7515 7516 wait_queue_head_t *bit_waitqueue(void *word, int bit) 7517 { 7518 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 7519 unsigned long val = (unsigned long)word << shift | bit; 7520 7521 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 7522 } 7523 EXPORT_SYMBOL(bit_waitqueue); 7524 7525 void __init sched_init(void) 7526 { 7527 int i, j; 7528 unsigned long alloc_size = 0, ptr; 7529 7530 for (i = 0; i < WAIT_TABLE_SIZE; i++) 7531 init_waitqueue_head(bit_wait_table + i); 7532 7533 #ifdef CONFIG_FAIR_GROUP_SCHED 7534 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7535 #endif 7536 #ifdef CONFIG_RT_GROUP_SCHED 7537 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7538 #endif 7539 if (alloc_size) { 7540 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7541 7542 #ifdef CONFIG_FAIR_GROUP_SCHED 7543 root_task_group.se = (struct sched_entity **)ptr; 7544 ptr += nr_cpu_ids * sizeof(void **); 7545 7546 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7547 ptr += nr_cpu_ids * sizeof(void **); 7548 7549 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7550 #ifdef CONFIG_RT_GROUP_SCHED 7551 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7552 ptr += nr_cpu_ids * sizeof(void **); 7553 7554 root_task_group.rt_rq = (struct rt_rq **)ptr; 7555 ptr += nr_cpu_ids * sizeof(void **); 7556 7557 #endif /* CONFIG_RT_GROUP_SCHED */ 7558 } 7559 #ifdef CONFIG_CPUMASK_OFFSTACK 7560 for_each_possible_cpu(i) { 7561 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7562 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7563 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 7564 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7565 } 7566 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7567 7568 init_rt_bandwidth(&def_rt_bandwidth, 7569 global_rt_period(), global_rt_runtime()); 7570 init_dl_bandwidth(&def_dl_bandwidth, 7571 global_rt_period(), global_rt_runtime()); 7572 7573 #ifdef CONFIG_SMP 7574 init_defrootdomain(); 7575 #endif 7576 7577 #ifdef CONFIG_RT_GROUP_SCHED 7578 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7579 global_rt_period(), global_rt_runtime()); 7580 #endif /* CONFIG_RT_GROUP_SCHED */ 7581 7582 #ifdef CONFIG_CGROUP_SCHED 7583 task_group_cache = KMEM_CACHE(task_group, 0); 7584 7585 list_add(&root_task_group.list, &task_groups); 7586 INIT_LIST_HEAD(&root_task_group.children); 7587 INIT_LIST_HEAD(&root_task_group.siblings); 7588 autogroup_init(&init_task); 7589 #endif /* CONFIG_CGROUP_SCHED */ 7590 7591 for_each_possible_cpu(i) { 7592 struct rq *rq; 7593 7594 rq = cpu_rq(i); 7595 raw_spin_lock_init(&rq->lock); 7596 rq->nr_running = 0; 7597 rq->calc_load_active = 0; 7598 rq->calc_load_update = jiffies + LOAD_FREQ; 7599 init_cfs_rq(&rq->cfs); 7600 init_rt_rq(&rq->rt); 7601 init_dl_rq(&rq->dl); 7602 #ifdef CONFIG_FAIR_GROUP_SCHED 7603 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7604 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7605 /* 7606 * How much cpu bandwidth does root_task_group get? 7607 * 7608 * In case of task-groups formed thr' the cgroup filesystem, it 7609 * gets 100% of the cpu resources in the system. This overall 7610 * system cpu resource is divided among the tasks of 7611 * root_task_group and its child task-groups in a fair manner, 7612 * based on each entity's (task or task-group's) weight 7613 * (se->load.weight). 7614 * 7615 * In other words, if root_task_group has 10 tasks of weight 7616 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7617 * then A0's share of the cpu resource is: 7618 * 7619 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7620 * 7621 * We achieve this by letting root_task_group's tasks sit 7622 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7623 */ 7624 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7625 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7626 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7627 7628 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7629 #ifdef CONFIG_RT_GROUP_SCHED 7630 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7631 #endif 7632 7633 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7634 rq->cpu_load[j] = 0; 7635 7636 #ifdef CONFIG_SMP 7637 rq->sd = NULL; 7638 rq->rd = NULL; 7639 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7640 rq->balance_callback = NULL; 7641 rq->active_balance = 0; 7642 rq->next_balance = jiffies; 7643 rq->push_cpu = 0; 7644 rq->cpu = i; 7645 rq->online = 0; 7646 rq->idle_stamp = 0; 7647 rq->avg_idle = 2*sysctl_sched_migration_cost; 7648 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7649 7650 INIT_LIST_HEAD(&rq->cfs_tasks); 7651 7652 rq_attach_root(rq, &def_root_domain); 7653 #ifdef CONFIG_NO_HZ_COMMON 7654 rq->last_load_update_tick = jiffies; 7655 rq->nohz_flags = 0; 7656 #endif 7657 #ifdef CONFIG_NO_HZ_FULL 7658 rq->last_sched_tick = 0; 7659 #endif 7660 #endif /* CONFIG_SMP */ 7661 init_rq_hrtick(rq); 7662 atomic_set(&rq->nr_iowait, 0); 7663 } 7664 7665 set_load_weight(&init_task); 7666 7667 /* 7668 * The boot idle thread does lazy MMU switching as well: 7669 */ 7670 atomic_inc(&init_mm.mm_count); 7671 enter_lazy_tlb(&init_mm, current); 7672 7673 /* 7674 * Make us the idle thread. Technically, schedule() should not be 7675 * called from this thread, however somewhere below it might be, 7676 * but because we are the idle thread, we just pick up running again 7677 * when this runqueue becomes "idle". 7678 */ 7679 init_idle(current, smp_processor_id()); 7680 7681 calc_load_update = jiffies + LOAD_FREQ; 7682 7683 #ifdef CONFIG_SMP 7684 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7685 /* May be allocated at isolcpus cmdline parse time */ 7686 if (cpu_isolated_map == NULL) 7687 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7688 idle_thread_set_boot_cpu(); 7689 set_cpu_rq_start_time(smp_processor_id()); 7690 #endif 7691 init_sched_fair_class(); 7692 7693 init_schedstats(); 7694 7695 scheduler_running = 1; 7696 } 7697 7698 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7699 static inline int preempt_count_equals(int preempt_offset) 7700 { 7701 int nested = preempt_count() + rcu_preempt_depth(); 7702 7703 return (nested == preempt_offset); 7704 } 7705 7706 void __might_sleep(const char *file, int line, int preempt_offset) 7707 { 7708 /* 7709 * Blocking primitives will set (and therefore destroy) current->state, 7710 * since we will exit with TASK_RUNNING make sure we enter with it, 7711 * otherwise we will destroy state. 7712 */ 7713 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7714 "do not call blocking ops when !TASK_RUNNING; " 7715 "state=%lx set at [<%p>] %pS\n", 7716 current->state, 7717 (void *)current->task_state_change, 7718 (void *)current->task_state_change); 7719 7720 ___might_sleep(file, line, preempt_offset); 7721 } 7722 EXPORT_SYMBOL(__might_sleep); 7723 7724 void ___might_sleep(const char *file, int line, int preempt_offset) 7725 { 7726 static unsigned long prev_jiffy; /* ratelimiting */ 7727 unsigned long preempt_disable_ip; 7728 7729 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7730 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7731 !is_idle_task(current)) || 7732 system_state != SYSTEM_RUNNING || oops_in_progress) 7733 return; 7734 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7735 return; 7736 prev_jiffy = jiffies; 7737 7738 /* Save this before calling printk(), since that will clobber it */ 7739 preempt_disable_ip = get_preempt_disable_ip(current); 7740 7741 printk(KERN_ERR 7742 "BUG: sleeping function called from invalid context at %s:%d\n", 7743 file, line); 7744 printk(KERN_ERR 7745 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7746 in_atomic(), irqs_disabled(), 7747 current->pid, current->comm); 7748 7749 if (task_stack_end_corrupted(current)) 7750 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7751 7752 debug_show_held_locks(current); 7753 if (irqs_disabled()) 7754 print_irqtrace_events(current); 7755 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 7756 && !preempt_count_equals(preempt_offset)) { 7757 pr_err("Preemption disabled at:"); 7758 print_ip_sym(preempt_disable_ip); 7759 pr_cont("\n"); 7760 } 7761 dump_stack(); 7762 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7763 } 7764 EXPORT_SYMBOL(___might_sleep); 7765 #endif 7766 7767 #ifdef CONFIG_MAGIC_SYSRQ 7768 void normalize_rt_tasks(void) 7769 { 7770 struct task_struct *g, *p; 7771 struct sched_attr attr = { 7772 .sched_policy = SCHED_NORMAL, 7773 }; 7774 7775 read_lock(&tasklist_lock); 7776 for_each_process_thread(g, p) { 7777 /* 7778 * Only normalize user tasks: 7779 */ 7780 if (p->flags & PF_KTHREAD) 7781 continue; 7782 7783 p->se.exec_start = 0; 7784 schedstat_set(p->se.statistics.wait_start, 0); 7785 schedstat_set(p->se.statistics.sleep_start, 0); 7786 schedstat_set(p->se.statistics.block_start, 0); 7787 7788 if (!dl_task(p) && !rt_task(p)) { 7789 /* 7790 * Renice negative nice level userspace 7791 * tasks back to 0: 7792 */ 7793 if (task_nice(p) < 0) 7794 set_user_nice(p, 0); 7795 continue; 7796 } 7797 7798 __sched_setscheduler(p, &attr, false, false); 7799 } 7800 read_unlock(&tasklist_lock); 7801 } 7802 7803 #endif /* CONFIG_MAGIC_SYSRQ */ 7804 7805 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7806 /* 7807 * These functions are only useful for the IA64 MCA handling, or kdb. 7808 * 7809 * They can only be called when the whole system has been 7810 * stopped - every CPU needs to be quiescent, and no scheduling 7811 * activity can take place. Using them for anything else would 7812 * be a serious bug, and as a result, they aren't even visible 7813 * under any other configuration. 7814 */ 7815 7816 /** 7817 * curr_task - return the current task for a given cpu. 7818 * @cpu: the processor in question. 7819 * 7820 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7821 * 7822 * Return: The current task for @cpu. 7823 */ 7824 struct task_struct *curr_task(int cpu) 7825 { 7826 return cpu_curr(cpu); 7827 } 7828 7829 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7830 7831 #ifdef CONFIG_IA64 7832 /** 7833 * set_curr_task - set the current task for a given cpu. 7834 * @cpu: the processor in question. 7835 * @p: the task pointer to set. 7836 * 7837 * Description: This function must only be used when non-maskable interrupts 7838 * are serviced on a separate stack. It allows the architecture to switch the 7839 * notion of the current task on a cpu in a non-blocking manner. This function 7840 * must be called with all CPU's synchronized, and interrupts disabled, the 7841 * and caller must save the original value of the current task (see 7842 * curr_task() above) and restore that value before reenabling interrupts and 7843 * re-starting the system. 7844 * 7845 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7846 */ 7847 void ia64_set_curr_task(int cpu, struct task_struct *p) 7848 { 7849 cpu_curr(cpu) = p; 7850 } 7851 7852 #endif 7853 7854 #ifdef CONFIG_CGROUP_SCHED 7855 /* task_group_lock serializes the addition/removal of task groups */ 7856 static DEFINE_SPINLOCK(task_group_lock); 7857 7858 static void sched_free_group(struct task_group *tg) 7859 { 7860 free_fair_sched_group(tg); 7861 free_rt_sched_group(tg); 7862 autogroup_free(tg); 7863 kmem_cache_free(task_group_cache, tg); 7864 } 7865 7866 /* allocate runqueue etc for a new task group */ 7867 struct task_group *sched_create_group(struct task_group *parent) 7868 { 7869 struct task_group *tg; 7870 7871 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7872 if (!tg) 7873 return ERR_PTR(-ENOMEM); 7874 7875 if (!alloc_fair_sched_group(tg, parent)) 7876 goto err; 7877 7878 if (!alloc_rt_sched_group(tg, parent)) 7879 goto err; 7880 7881 return tg; 7882 7883 err: 7884 sched_free_group(tg); 7885 return ERR_PTR(-ENOMEM); 7886 } 7887 7888 void sched_online_group(struct task_group *tg, struct task_group *parent) 7889 { 7890 unsigned long flags; 7891 7892 spin_lock_irqsave(&task_group_lock, flags); 7893 list_add_rcu(&tg->list, &task_groups); 7894 7895 WARN_ON(!parent); /* root should already exist */ 7896 7897 tg->parent = parent; 7898 INIT_LIST_HEAD(&tg->children); 7899 list_add_rcu(&tg->siblings, &parent->children); 7900 spin_unlock_irqrestore(&task_group_lock, flags); 7901 7902 online_fair_sched_group(tg); 7903 } 7904 7905 /* rcu callback to free various structures associated with a task group */ 7906 static void sched_free_group_rcu(struct rcu_head *rhp) 7907 { 7908 /* now it should be safe to free those cfs_rqs */ 7909 sched_free_group(container_of(rhp, struct task_group, rcu)); 7910 } 7911 7912 void sched_destroy_group(struct task_group *tg) 7913 { 7914 /* wait for possible concurrent references to cfs_rqs complete */ 7915 call_rcu(&tg->rcu, sched_free_group_rcu); 7916 } 7917 7918 void sched_offline_group(struct task_group *tg) 7919 { 7920 unsigned long flags; 7921 7922 /* end participation in shares distribution */ 7923 unregister_fair_sched_group(tg); 7924 7925 spin_lock_irqsave(&task_group_lock, flags); 7926 list_del_rcu(&tg->list); 7927 list_del_rcu(&tg->siblings); 7928 spin_unlock_irqrestore(&task_group_lock, flags); 7929 } 7930 7931 static void sched_change_group(struct task_struct *tsk, int type) 7932 { 7933 struct task_group *tg; 7934 7935 /* 7936 * All callers are synchronized by task_rq_lock(); we do not use RCU 7937 * which is pointless here. Thus, we pass "true" to task_css_check() 7938 * to prevent lockdep warnings. 7939 */ 7940 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7941 struct task_group, css); 7942 tg = autogroup_task_group(tsk, tg); 7943 tsk->sched_task_group = tg; 7944 7945 #ifdef CONFIG_FAIR_GROUP_SCHED 7946 if (tsk->sched_class->task_change_group) 7947 tsk->sched_class->task_change_group(tsk, type); 7948 else 7949 #endif 7950 set_task_rq(tsk, task_cpu(tsk)); 7951 } 7952 7953 /* 7954 * Change task's runqueue when it moves between groups. 7955 * 7956 * The caller of this function should have put the task in its new group by 7957 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7958 * its new group. 7959 */ 7960 void sched_move_task(struct task_struct *tsk) 7961 { 7962 int queued, running; 7963 struct rq_flags rf; 7964 struct rq *rq; 7965 7966 rq = task_rq_lock(tsk, &rf); 7967 7968 running = task_current(rq, tsk); 7969 queued = task_on_rq_queued(tsk); 7970 7971 if (queued) 7972 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7973 if (unlikely(running)) 7974 put_prev_task(rq, tsk); 7975 7976 sched_change_group(tsk, TASK_MOVE_GROUP); 7977 7978 if (queued) 7979 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7980 if (unlikely(running)) 7981 set_curr_task(rq, tsk); 7982 7983 task_rq_unlock(rq, tsk, &rf); 7984 } 7985 #endif /* CONFIG_CGROUP_SCHED */ 7986 7987 #ifdef CONFIG_RT_GROUP_SCHED 7988 /* 7989 * Ensure that the real time constraints are schedulable. 7990 */ 7991 static DEFINE_MUTEX(rt_constraints_mutex); 7992 7993 /* Must be called with tasklist_lock held */ 7994 static inline int tg_has_rt_tasks(struct task_group *tg) 7995 { 7996 struct task_struct *g, *p; 7997 7998 /* 7999 * Autogroups do not have RT tasks; see autogroup_create(). 8000 */ 8001 if (task_group_is_autogroup(tg)) 8002 return 0; 8003 8004 for_each_process_thread(g, p) { 8005 if (rt_task(p) && task_group(p) == tg) 8006 return 1; 8007 } 8008 8009 return 0; 8010 } 8011 8012 struct rt_schedulable_data { 8013 struct task_group *tg; 8014 u64 rt_period; 8015 u64 rt_runtime; 8016 }; 8017 8018 static int tg_rt_schedulable(struct task_group *tg, void *data) 8019 { 8020 struct rt_schedulable_data *d = data; 8021 struct task_group *child; 8022 unsigned long total, sum = 0; 8023 u64 period, runtime; 8024 8025 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8026 runtime = tg->rt_bandwidth.rt_runtime; 8027 8028 if (tg == d->tg) { 8029 period = d->rt_period; 8030 runtime = d->rt_runtime; 8031 } 8032 8033 /* 8034 * Cannot have more runtime than the period. 8035 */ 8036 if (runtime > period && runtime != RUNTIME_INF) 8037 return -EINVAL; 8038 8039 /* 8040 * Ensure we don't starve existing RT tasks. 8041 */ 8042 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 8043 return -EBUSY; 8044 8045 total = to_ratio(period, runtime); 8046 8047 /* 8048 * Nobody can have more than the global setting allows. 8049 */ 8050 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 8051 return -EINVAL; 8052 8053 /* 8054 * The sum of our children's runtime should not exceed our own. 8055 */ 8056 list_for_each_entry_rcu(child, &tg->children, siblings) { 8057 period = ktime_to_ns(child->rt_bandwidth.rt_period); 8058 runtime = child->rt_bandwidth.rt_runtime; 8059 8060 if (child == d->tg) { 8061 period = d->rt_period; 8062 runtime = d->rt_runtime; 8063 } 8064 8065 sum += to_ratio(period, runtime); 8066 } 8067 8068 if (sum > total) 8069 return -EINVAL; 8070 8071 return 0; 8072 } 8073 8074 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8075 { 8076 int ret; 8077 8078 struct rt_schedulable_data data = { 8079 .tg = tg, 8080 .rt_period = period, 8081 .rt_runtime = runtime, 8082 }; 8083 8084 rcu_read_lock(); 8085 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 8086 rcu_read_unlock(); 8087 8088 return ret; 8089 } 8090 8091 static int tg_set_rt_bandwidth(struct task_group *tg, 8092 u64 rt_period, u64 rt_runtime) 8093 { 8094 int i, err = 0; 8095 8096 /* 8097 * Disallowing the root group RT runtime is BAD, it would disallow the 8098 * kernel creating (and or operating) RT threads. 8099 */ 8100 if (tg == &root_task_group && rt_runtime == 0) 8101 return -EINVAL; 8102 8103 /* No period doesn't make any sense. */ 8104 if (rt_period == 0) 8105 return -EINVAL; 8106 8107 mutex_lock(&rt_constraints_mutex); 8108 read_lock(&tasklist_lock); 8109 err = __rt_schedulable(tg, rt_period, rt_runtime); 8110 if (err) 8111 goto unlock; 8112 8113 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8114 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8115 tg->rt_bandwidth.rt_runtime = rt_runtime; 8116 8117 for_each_possible_cpu(i) { 8118 struct rt_rq *rt_rq = tg->rt_rq[i]; 8119 8120 raw_spin_lock(&rt_rq->rt_runtime_lock); 8121 rt_rq->rt_runtime = rt_runtime; 8122 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8123 } 8124 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8125 unlock: 8126 read_unlock(&tasklist_lock); 8127 mutex_unlock(&rt_constraints_mutex); 8128 8129 return err; 8130 } 8131 8132 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 8133 { 8134 u64 rt_runtime, rt_period; 8135 8136 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8137 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 8138 if (rt_runtime_us < 0) 8139 rt_runtime = RUNTIME_INF; 8140 8141 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8142 } 8143 8144 static long sched_group_rt_runtime(struct task_group *tg) 8145 { 8146 u64 rt_runtime_us; 8147 8148 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 8149 return -1; 8150 8151 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 8152 do_div(rt_runtime_us, NSEC_PER_USEC); 8153 return rt_runtime_us; 8154 } 8155 8156 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 8157 { 8158 u64 rt_runtime, rt_period; 8159 8160 rt_period = rt_period_us * NSEC_PER_USEC; 8161 rt_runtime = tg->rt_bandwidth.rt_runtime; 8162 8163 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8164 } 8165 8166 static long sched_group_rt_period(struct task_group *tg) 8167 { 8168 u64 rt_period_us; 8169 8170 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 8171 do_div(rt_period_us, NSEC_PER_USEC); 8172 return rt_period_us; 8173 } 8174 #endif /* CONFIG_RT_GROUP_SCHED */ 8175 8176 #ifdef CONFIG_RT_GROUP_SCHED 8177 static int sched_rt_global_constraints(void) 8178 { 8179 int ret = 0; 8180 8181 mutex_lock(&rt_constraints_mutex); 8182 read_lock(&tasklist_lock); 8183 ret = __rt_schedulable(NULL, 0, 0); 8184 read_unlock(&tasklist_lock); 8185 mutex_unlock(&rt_constraints_mutex); 8186 8187 return ret; 8188 } 8189 8190 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 8191 { 8192 /* Don't accept realtime tasks when there is no way for them to run */ 8193 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8194 return 0; 8195 8196 return 1; 8197 } 8198 8199 #else /* !CONFIG_RT_GROUP_SCHED */ 8200 static int sched_rt_global_constraints(void) 8201 { 8202 unsigned long flags; 8203 int i; 8204 8205 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8206 for_each_possible_cpu(i) { 8207 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8208 8209 raw_spin_lock(&rt_rq->rt_runtime_lock); 8210 rt_rq->rt_runtime = global_rt_runtime(); 8211 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8212 } 8213 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8214 8215 return 0; 8216 } 8217 #endif /* CONFIG_RT_GROUP_SCHED */ 8218 8219 static int sched_dl_global_validate(void) 8220 { 8221 u64 runtime = global_rt_runtime(); 8222 u64 period = global_rt_period(); 8223 u64 new_bw = to_ratio(period, runtime); 8224 struct dl_bw *dl_b; 8225 int cpu, ret = 0; 8226 unsigned long flags; 8227 8228 /* 8229 * Here we want to check the bandwidth not being set to some 8230 * value smaller than the currently allocated bandwidth in 8231 * any of the root_domains. 8232 * 8233 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8234 * cycling on root_domains... Discussion on different/better 8235 * solutions is welcome! 8236 */ 8237 for_each_possible_cpu(cpu) { 8238 rcu_read_lock_sched(); 8239 dl_b = dl_bw_of(cpu); 8240 8241 raw_spin_lock_irqsave(&dl_b->lock, flags); 8242 if (new_bw < dl_b->total_bw) 8243 ret = -EBUSY; 8244 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8245 8246 rcu_read_unlock_sched(); 8247 8248 if (ret) 8249 break; 8250 } 8251 8252 return ret; 8253 } 8254 8255 static void sched_dl_do_global(void) 8256 { 8257 u64 new_bw = -1; 8258 struct dl_bw *dl_b; 8259 int cpu; 8260 unsigned long flags; 8261 8262 def_dl_bandwidth.dl_period = global_rt_period(); 8263 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8264 8265 if (global_rt_runtime() != RUNTIME_INF) 8266 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8267 8268 /* 8269 * FIXME: As above... 8270 */ 8271 for_each_possible_cpu(cpu) { 8272 rcu_read_lock_sched(); 8273 dl_b = dl_bw_of(cpu); 8274 8275 raw_spin_lock_irqsave(&dl_b->lock, flags); 8276 dl_b->bw = new_bw; 8277 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8278 8279 rcu_read_unlock_sched(); 8280 } 8281 } 8282 8283 static int sched_rt_global_validate(void) 8284 { 8285 if (sysctl_sched_rt_period <= 0) 8286 return -EINVAL; 8287 8288 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8289 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8290 return -EINVAL; 8291 8292 return 0; 8293 } 8294 8295 static void sched_rt_do_global(void) 8296 { 8297 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8298 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8299 } 8300 8301 int sched_rt_handler(struct ctl_table *table, int write, 8302 void __user *buffer, size_t *lenp, 8303 loff_t *ppos) 8304 { 8305 int old_period, old_runtime; 8306 static DEFINE_MUTEX(mutex); 8307 int ret; 8308 8309 mutex_lock(&mutex); 8310 old_period = sysctl_sched_rt_period; 8311 old_runtime = sysctl_sched_rt_runtime; 8312 8313 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8314 8315 if (!ret && write) { 8316 ret = sched_rt_global_validate(); 8317 if (ret) 8318 goto undo; 8319 8320 ret = sched_dl_global_validate(); 8321 if (ret) 8322 goto undo; 8323 8324 ret = sched_rt_global_constraints(); 8325 if (ret) 8326 goto undo; 8327 8328 sched_rt_do_global(); 8329 sched_dl_do_global(); 8330 } 8331 if (0) { 8332 undo: 8333 sysctl_sched_rt_period = old_period; 8334 sysctl_sched_rt_runtime = old_runtime; 8335 } 8336 mutex_unlock(&mutex); 8337 8338 return ret; 8339 } 8340 8341 int sched_rr_handler(struct ctl_table *table, int write, 8342 void __user *buffer, size_t *lenp, 8343 loff_t *ppos) 8344 { 8345 int ret; 8346 static DEFINE_MUTEX(mutex); 8347 8348 mutex_lock(&mutex); 8349 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8350 /* make sure that internally we keep jiffies */ 8351 /* also, writing zero resets timeslice to default */ 8352 if (!ret && write) { 8353 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8354 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8355 } 8356 mutex_unlock(&mutex); 8357 return ret; 8358 } 8359 8360 #ifdef CONFIG_CGROUP_SCHED 8361 8362 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8363 { 8364 return css ? container_of(css, struct task_group, css) : NULL; 8365 } 8366 8367 static struct cgroup_subsys_state * 8368 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8369 { 8370 struct task_group *parent = css_tg(parent_css); 8371 struct task_group *tg; 8372 8373 if (!parent) { 8374 /* This is early initialization for the top cgroup */ 8375 return &root_task_group.css; 8376 } 8377 8378 tg = sched_create_group(parent); 8379 if (IS_ERR(tg)) 8380 return ERR_PTR(-ENOMEM); 8381 8382 sched_online_group(tg, parent); 8383 8384 return &tg->css; 8385 } 8386 8387 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8388 { 8389 struct task_group *tg = css_tg(css); 8390 8391 sched_offline_group(tg); 8392 } 8393 8394 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8395 { 8396 struct task_group *tg = css_tg(css); 8397 8398 /* 8399 * Relies on the RCU grace period between css_released() and this. 8400 */ 8401 sched_free_group(tg); 8402 } 8403 8404 /* 8405 * This is called before wake_up_new_task(), therefore we really only 8406 * have to set its group bits, all the other stuff does not apply. 8407 */ 8408 static void cpu_cgroup_fork(struct task_struct *task) 8409 { 8410 struct rq_flags rf; 8411 struct rq *rq; 8412 8413 rq = task_rq_lock(task, &rf); 8414 8415 sched_change_group(task, TASK_SET_GROUP); 8416 8417 task_rq_unlock(rq, task, &rf); 8418 } 8419 8420 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8421 { 8422 struct task_struct *task; 8423 struct cgroup_subsys_state *css; 8424 int ret = 0; 8425 8426 cgroup_taskset_for_each(task, css, tset) { 8427 #ifdef CONFIG_RT_GROUP_SCHED 8428 if (!sched_rt_can_attach(css_tg(css), task)) 8429 return -EINVAL; 8430 #else 8431 /* We don't support RT-tasks being in separate groups */ 8432 if (task->sched_class != &fair_sched_class) 8433 return -EINVAL; 8434 #endif 8435 /* 8436 * Serialize against wake_up_new_task() such that if its 8437 * running, we're sure to observe its full state. 8438 */ 8439 raw_spin_lock_irq(&task->pi_lock); 8440 /* 8441 * Avoid calling sched_move_task() before wake_up_new_task() 8442 * has happened. This would lead to problems with PELT, due to 8443 * move wanting to detach+attach while we're not attached yet. 8444 */ 8445 if (task->state == TASK_NEW) 8446 ret = -EINVAL; 8447 raw_spin_unlock_irq(&task->pi_lock); 8448 8449 if (ret) 8450 break; 8451 } 8452 return ret; 8453 } 8454 8455 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8456 { 8457 struct task_struct *task; 8458 struct cgroup_subsys_state *css; 8459 8460 cgroup_taskset_for_each(task, css, tset) 8461 sched_move_task(task); 8462 } 8463 8464 #ifdef CONFIG_FAIR_GROUP_SCHED 8465 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8466 struct cftype *cftype, u64 shareval) 8467 { 8468 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8469 } 8470 8471 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8472 struct cftype *cft) 8473 { 8474 struct task_group *tg = css_tg(css); 8475 8476 return (u64) scale_load_down(tg->shares); 8477 } 8478 8479 #ifdef CONFIG_CFS_BANDWIDTH 8480 static DEFINE_MUTEX(cfs_constraints_mutex); 8481 8482 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8483 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8484 8485 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8486 8487 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8488 { 8489 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8490 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8491 8492 if (tg == &root_task_group) 8493 return -EINVAL; 8494 8495 /* 8496 * Ensure we have at some amount of bandwidth every period. This is 8497 * to prevent reaching a state of large arrears when throttled via 8498 * entity_tick() resulting in prolonged exit starvation. 8499 */ 8500 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8501 return -EINVAL; 8502 8503 /* 8504 * Likewise, bound things on the otherside by preventing insane quota 8505 * periods. This also allows us to normalize in computing quota 8506 * feasibility. 8507 */ 8508 if (period > max_cfs_quota_period) 8509 return -EINVAL; 8510 8511 /* 8512 * Prevent race between setting of cfs_rq->runtime_enabled and 8513 * unthrottle_offline_cfs_rqs(). 8514 */ 8515 get_online_cpus(); 8516 mutex_lock(&cfs_constraints_mutex); 8517 ret = __cfs_schedulable(tg, period, quota); 8518 if (ret) 8519 goto out_unlock; 8520 8521 runtime_enabled = quota != RUNTIME_INF; 8522 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8523 /* 8524 * If we need to toggle cfs_bandwidth_used, off->on must occur 8525 * before making related changes, and on->off must occur afterwards 8526 */ 8527 if (runtime_enabled && !runtime_was_enabled) 8528 cfs_bandwidth_usage_inc(); 8529 raw_spin_lock_irq(&cfs_b->lock); 8530 cfs_b->period = ns_to_ktime(period); 8531 cfs_b->quota = quota; 8532 8533 __refill_cfs_bandwidth_runtime(cfs_b); 8534 /* restart the period timer (if active) to handle new period expiry */ 8535 if (runtime_enabled) 8536 start_cfs_bandwidth(cfs_b); 8537 raw_spin_unlock_irq(&cfs_b->lock); 8538 8539 for_each_online_cpu(i) { 8540 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8541 struct rq *rq = cfs_rq->rq; 8542 8543 raw_spin_lock_irq(&rq->lock); 8544 cfs_rq->runtime_enabled = runtime_enabled; 8545 cfs_rq->runtime_remaining = 0; 8546 8547 if (cfs_rq->throttled) 8548 unthrottle_cfs_rq(cfs_rq); 8549 raw_spin_unlock_irq(&rq->lock); 8550 } 8551 if (runtime_was_enabled && !runtime_enabled) 8552 cfs_bandwidth_usage_dec(); 8553 out_unlock: 8554 mutex_unlock(&cfs_constraints_mutex); 8555 put_online_cpus(); 8556 8557 return ret; 8558 } 8559 8560 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8561 { 8562 u64 quota, period; 8563 8564 period = ktime_to_ns(tg->cfs_bandwidth.period); 8565 if (cfs_quota_us < 0) 8566 quota = RUNTIME_INF; 8567 else 8568 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8569 8570 return tg_set_cfs_bandwidth(tg, period, quota); 8571 } 8572 8573 long tg_get_cfs_quota(struct task_group *tg) 8574 { 8575 u64 quota_us; 8576 8577 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8578 return -1; 8579 8580 quota_us = tg->cfs_bandwidth.quota; 8581 do_div(quota_us, NSEC_PER_USEC); 8582 8583 return quota_us; 8584 } 8585 8586 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8587 { 8588 u64 quota, period; 8589 8590 period = (u64)cfs_period_us * NSEC_PER_USEC; 8591 quota = tg->cfs_bandwidth.quota; 8592 8593 return tg_set_cfs_bandwidth(tg, period, quota); 8594 } 8595 8596 long tg_get_cfs_period(struct task_group *tg) 8597 { 8598 u64 cfs_period_us; 8599 8600 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8601 do_div(cfs_period_us, NSEC_PER_USEC); 8602 8603 return cfs_period_us; 8604 } 8605 8606 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8607 struct cftype *cft) 8608 { 8609 return tg_get_cfs_quota(css_tg(css)); 8610 } 8611 8612 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8613 struct cftype *cftype, s64 cfs_quota_us) 8614 { 8615 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8616 } 8617 8618 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8619 struct cftype *cft) 8620 { 8621 return tg_get_cfs_period(css_tg(css)); 8622 } 8623 8624 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8625 struct cftype *cftype, u64 cfs_period_us) 8626 { 8627 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8628 } 8629 8630 struct cfs_schedulable_data { 8631 struct task_group *tg; 8632 u64 period, quota; 8633 }; 8634 8635 /* 8636 * normalize group quota/period to be quota/max_period 8637 * note: units are usecs 8638 */ 8639 static u64 normalize_cfs_quota(struct task_group *tg, 8640 struct cfs_schedulable_data *d) 8641 { 8642 u64 quota, period; 8643 8644 if (tg == d->tg) { 8645 period = d->period; 8646 quota = d->quota; 8647 } else { 8648 period = tg_get_cfs_period(tg); 8649 quota = tg_get_cfs_quota(tg); 8650 } 8651 8652 /* note: these should typically be equivalent */ 8653 if (quota == RUNTIME_INF || quota == -1) 8654 return RUNTIME_INF; 8655 8656 return to_ratio(period, quota); 8657 } 8658 8659 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8660 { 8661 struct cfs_schedulable_data *d = data; 8662 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8663 s64 quota = 0, parent_quota = -1; 8664 8665 if (!tg->parent) { 8666 quota = RUNTIME_INF; 8667 } else { 8668 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8669 8670 quota = normalize_cfs_quota(tg, d); 8671 parent_quota = parent_b->hierarchical_quota; 8672 8673 /* 8674 * ensure max(child_quota) <= parent_quota, inherit when no 8675 * limit is set 8676 */ 8677 if (quota == RUNTIME_INF) 8678 quota = parent_quota; 8679 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8680 return -EINVAL; 8681 } 8682 cfs_b->hierarchical_quota = quota; 8683 8684 return 0; 8685 } 8686 8687 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8688 { 8689 int ret; 8690 struct cfs_schedulable_data data = { 8691 .tg = tg, 8692 .period = period, 8693 .quota = quota, 8694 }; 8695 8696 if (quota != RUNTIME_INF) { 8697 do_div(data.period, NSEC_PER_USEC); 8698 do_div(data.quota, NSEC_PER_USEC); 8699 } 8700 8701 rcu_read_lock(); 8702 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8703 rcu_read_unlock(); 8704 8705 return ret; 8706 } 8707 8708 static int cpu_stats_show(struct seq_file *sf, void *v) 8709 { 8710 struct task_group *tg = css_tg(seq_css(sf)); 8711 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8712 8713 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8714 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8715 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8716 8717 return 0; 8718 } 8719 #endif /* CONFIG_CFS_BANDWIDTH */ 8720 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8721 8722 #ifdef CONFIG_RT_GROUP_SCHED 8723 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8724 struct cftype *cft, s64 val) 8725 { 8726 return sched_group_set_rt_runtime(css_tg(css), val); 8727 } 8728 8729 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8730 struct cftype *cft) 8731 { 8732 return sched_group_rt_runtime(css_tg(css)); 8733 } 8734 8735 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8736 struct cftype *cftype, u64 rt_period_us) 8737 { 8738 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8739 } 8740 8741 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8742 struct cftype *cft) 8743 { 8744 return sched_group_rt_period(css_tg(css)); 8745 } 8746 #endif /* CONFIG_RT_GROUP_SCHED */ 8747 8748 static struct cftype cpu_files[] = { 8749 #ifdef CONFIG_FAIR_GROUP_SCHED 8750 { 8751 .name = "shares", 8752 .read_u64 = cpu_shares_read_u64, 8753 .write_u64 = cpu_shares_write_u64, 8754 }, 8755 #endif 8756 #ifdef CONFIG_CFS_BANDWIDTH 8757 { 8758 .name = "cfs_quota_us", 8759 .read_s64 = cpu_cfs_quota_read_s64, 8760 .write_s64 = cpu_cfs_quota_write_s64, 8761 }, 8762 { 8763 .name = "cfs_period_us", 8764 .read_u64 = cpu_cfs_period_read_u64, 8765 .write_u64 = cpu_cfs_period_write_u64, 8766 }, 8767 { 8768 .name = "stat", 8769 .seq_show = cpu_stats_show, 8770 }, 8771 #endif 8772 #ifdef CONFIG_RT_GROUP_SCHED 8773 { 8774 .name = "rt_runtime_us", 8775 .read_s64 = cpu_rt_runtime_read, 8776 .write_s64 = cpu_rt_runtime_write, 8777 }, 8778 { 8779 .name = "rt_period_us", 8780 .read_u64 = cpu_rt_period_read_uint, 8781 .write_u64 = cpu_rt_period_write_uint, 8782 }, 8783 #endif 8784 { } /* terminate */ 8785 }; 8786 8787 struct cgroup_subsys cpu_cgrp_subsys = { 8788 .css_alloc = cpu_cgroup_css_alloc, 8789 .css_released = cpu_cgroup_css_released, 8790 .css_free = cpu_cgroup_css_free, 8791 .fork = cpu_cgroup_fork, 8792 .can_attach = cpu_cgroup_can_attach, 8793 .attach = cpu_cgroup_attach, 8794 .legacy_cftypes = cpu_files, 8795 .early_init = true, 8796 }; 8797 8798 #endif /* CONFIG_CGROUP_SCHED */ 8799 8800 void dump_cpu_task(int cpu) 8801 { 8802 pr_info("Task dump for CPU %d:\n", cpu); 8803 sched_show_task(cpu_curr(cpu)); 8804 } 8805 8806 /* 8807 * Nice levels are multiplicative, with a gentle 10% change for every 8808 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8809 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8810 * that remained on nice 0. 8811 * 8812 * The "10% effect" is relative and cumulative: from _any_ nice level, 8813 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8814 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8815 * If a task goes up by ~10% and another task goes down by ~10% then 8816 * the relative distance between them is ~25%.) 8817 */ 8818 const int sched_prio_to_weight[40] = { 8819 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8820 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8821 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8822 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8823 /* 0 */ 1024, 820, 655, 526, 423, 8824 /* 5 */ 335, 272, 215, 172, 137, 8825 /* 10 */ 110, 87, 70, 56, 45, 8826 /* 15 */ 36, 29, 23, 18, 15, 8827 }; 8828 8829 /* 8830 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8831 * 8832 * In cases where the weight does not change often, we can use the 8833 * precalculated inverse to speed up arithmetics by turning divisions 8834 * into multiplications: 8835 */ 8836 const u32 sched_prio_to_wmult[40] = { 8837 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8838 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8839 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8840 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8841 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8842 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8843 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8844 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8845 }; 8846