1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 #include <linux/blkdev.h> 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 #ifdef CONFIG_PREEMPT_RT 78 const_debug unsigned int sysctl_sched_nr_migrate = 8; 79 #else 80 const_debug unsigned int sysctl_sched_nr_migrate = 32; 81 #endif 82 83 /* 84 * period over which we measure -rt task CPU usage in us. 85 * default: 1s 86 */ 87 unsigned int sysctl_sched_rt_period = 1000000; 88 89 __read_mostly int scheduler_running; 90 91 #ifdef CONFIG_SCHED_CORE 92 93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 94 95 /* kernel prio, less is more */ 96 static inline int __task_prio(struct task_struct *p) 97 { 98 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 99 return -2; 100 101 if (rt_prio(p->prio)) /* includes deadline */ 102 return p->prio; /* [-1, 99] */ 103 104 if (p->sched_class == &idle_sched_class) 105 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 106 107 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 108 } 109 110 /* 111 * l(a,b) 112 * le(a,b) := !l(b,a) 113 * g(a,b) := l(b,a) 114 * ge(a,b) := !l(a,b) 115 */ 116 117 /* real prio, less is less */ 118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 119 { 120 121 int pa = __task_prio(a), pb = __task_prio(b); 122 123 if (-pa < -pb) 124 return true; 125 126 if (-pb < -pa) 127 return false; 128 129 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 130 return !dl_time_before(a->dl.deadline, b->dl.deadline); 131 132 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 133 return cfs_prio_less(a, b, in_fi); 134 135 return false; 136 } 137 138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 139 { 140 if (a->core_cookie < b->core_cookie) 141 return true; 142 143 if (a->core_cookie > b->core_cookie) 144 return false; 145 146 /* flip prio, so high prio is leftmost */ 147 if (prio_less(b, a, task_rq(a)->core->core_forceidle)) 148 return true; 149 150 return false; 151 } 152 153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 154 155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 156 { 157 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 158 } 159 160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 161 { 162 const struct task_struct *p = __node_2_sc(node); 163 unsigned long cookie = (unsigned long)key; 164 165 if (cookie < p->core_cookie) 166 return -1; 167 168 if (cookie > p->core_cookie) 169 return 1; 170 171 return 0; 172 } 173 174 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 175 { 176 rq->core->core_task_seq++; 177 178 if (!p->core_cookie) 179 return; 180 181 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 182 } 183 184 void sched_core_dequeue(struct rq *rq, struct task_struct *p) 185 { 186 rq->core->core_task_seq++; 187 188 if (!sched_core_enqueued(p)) 189 return; 190 191 rb_erase(&p->core_node, &rq->core_tree); 192 RB_CLEAR_NODE(&p->core_node); 193 } 194 195 /* 196 * Find left-most (aka, highest priority) task matching @cookie. 197 */ 198 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 199 { 200 struct rb_node *node; 201 202 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 203 /* 204 * The idle task always matches any cookie! 205 */ 206 if (!node) 207 return idle_sched_class.pick_task(rq); 208 209 return __node_2_sc(node); 210 } 211 212 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 213 { 214 struct rb_node *node = &p->core_node; 215 216 node = rb_next(node); 217 if (!node) 218 return NULL; 219 220 p = container_of(node, struct task_struct, core_node); 221 if (p->core_cookie != cookie) 222 return NULL; 223 224 return p; 225 } 226 227 /* 228 * Magic required such that: 229 * 230 * raw_spin_rq_lock(rq); 231 * ... 232 * raw_spin_rq_unlock(rq); 233 * 234 * ends up locking and unlocking the _same_ lock, and all CPUs 235 * always agree on what rq has what lock. 236 * 237 * XXX entirely possible to selectively enable cores, don't bother for now. 238 */ 239 240 static DEFINE_MUTEX(sched_core_mutex); 241 static atomic_t sched_core_count; 242 static struct cpumask sched_core_mask; 243 244 static void sched_core_lock(int cpu, unsigned long *flags) 245 { 246 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 247 int t, i = 0; 248 249 local_irq_save(*flags); 250 for_each_cpu(t, smt_mask) 251 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 252 } 253 254 static void sched_core_unlock(int cpu, unsigned long *flags) 255 { 256 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 257 int t; 258 259 for_each_cpu(t, smt_mask) 260 raw_spin_unlock(&cpu_rq(t)->__lock); 261 local_irq_restore(*flags); 262 } 263 264 static void __sched_core_flip(bool enabled) 265 { 266 unsigned long flags; 267 int cpu, t; 268 269 cpus_read_lock(); 270 271 /* 272 * Toggle the online cores, one by one. 273 */ 274 cpumask_copy(&sched_core_mask, cpu_online_mask); 275 for_each_cpu(cpu, &sched_core_mask) { 276 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 277 278 sched_core_lock(cpu, &flags); 279 280 for_each_cpu(t, smt_mask) 281 cpu_rq(t)->core_enabled = enabled; 282 283 sched_core_unlock(cpu, &flags); 284 285 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 286 } 287 288 /* 289 * Toggle the offline CPUs. 290 */ 291 cpumask_copy(&sched_core_mask, cpu_possible_mask); 292 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 293 294 for_each_cpu(cpu, &sched_core_mask) 295 cpu_rq(cpu)->core_enabled = enabled; 296 297 cpus_read_unlock(); 298 } 299 300 static void sched_core_assert_empty(void) 301 { 302 int cpu; 303 304 for_each_possible_cpu(cpu) 305 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 306 } 307 308 static void __sched_core_enable(void) 309 { 310 static_branch_enable(&__sched_core_enabled); 311 /* 312 * Ensure all previous instances of raw_spin_rq_*lock() have finished 313 * and future ones will observe !sched_core_disabled(). 314 */ 315 synchronize_rcu(); 316 __sched_core_flip(true); 317 sched_core_assert_empty(); 318 } 319 320 static void __sched_core_disable(void) 321 { 322 sched_core_assert_empty(); 323 __sched_core_flip(false); 324 static_branch_disable(&__sched_core_enabled); 325 } 326 327 void sched_core_get(void) 328 { 329 if (atomic_inc_not_zero(&sched_core_count)) 330 return; 331 332 mutex_lock(&sched_core_mutex); 333 if (!atomic_read(&sched_core_count)) 334 __sched_core_enable(); 335 336 smp_mb__before_atomic(); 337 atomic_inc(&sched_core_count); 338 mutex_unlock(&sched_core_mutex); 339 } 340 341 static void __sched_core_put(struct work_struct *work) 342 { 343 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 344 __sched_core_disable(); 345 mutex_unlock(&sched_core_mutex); 346 } 347 } 348 349 void sched_core_put(void) 350 { 351 static DECLARE_WORK(_work, __sched_core_put); 352 353 /* 354 * "There can be only one" 355 * 356 * Either this is the last one, or we don't actually need to do any 357 * 'work'. If it is the last *again*, we rely on 358 * WORK_STRUCT_PENDING_BIT. 359 */ 360 if (!atomic_add_unless(&sched_core_count, -1, 1)) 361 schedule_work(&_work); 362 } 363 364 #else /* !CONFIG_SCHED_CORE */ 365 366 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 367 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { } 368 369 #endif /* CONFIG_SCHED_CORE */ 370 371 /* 372 * part of the period that we allow rt tasks to run in us. 373 * default: 0.95s 374 */ 375 int sysctl_sched_rt_runtime = 950000; 376 377 378 /* 379 * Serialization rules: 380 * 381 * Lock order: 382 * 383 * p->pi_lock 384 * rq->lock 385 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 386 * 387 * rq1->lock 388 * rq2->lock where: rq1 < rq2 389 * 390 * Regular state: 391 * 392 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 393 * local CPU's rq->lock, it optionally removes the task from the runqueue and 394 * always looks at the local rq data structures to find the most eligible task 395 * to run next. 396 * 397 * Task enqueue is also under rq->lock, possibly taken from another CPU. 398 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 399 * the local CPU to avoid bouncing the runqueue state around [ see 400 * ttwu_queue_wakelist() ] 401 * 402 * Task wakeup, specifically wakeups that involve migration, are horribly 403 * complicated to avoid having to take two rq->locks. 404 * 405 * Special state: 406 * 407 * System-calls and anything external will use task_rq_lock() which acquires 408 * both p->pi_lock and rq->lock. As a consequence the state they change is 409 * stable while holding either lock: 410 * 411 * - sched_setaffinity()/ 412 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 413 * - set_user_nice(): p->se.load, p->*prio 414 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 415 * p->se.load, p->rt_priority, 416 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 417 * - sched_setnuma(): p->numa_preferred_nid 418 * - sched_move_task()/ 419 * cpu_cgroup_fork(): p->sched_task_group 420 * - uclamp_update_active() p->uclamp* 421 * 422 * p->state <- TASK_*: 423 * 424 * is changed locklessly using set_current_state(), __set_current_state() or 425 * set_special_state(), see their respective comments, or by 426 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 427 * concurrent self. 428 * 429 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 430 * 431 * is set by activate_task() and cleared by deactivate_task(), under 432 * rq->lock. Non-zero indicates the task is runnable, the special 433 * ON_RQ_MIGRATING state is used for migration without holding both 434 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 435 * 436 * p->on_cpu <- { 0, 1 }: 437 * 438 * is set by prepare_task() and cleared by finish_task() such that it will be 439 * set before p is scheduled-in and cleared after p is scheduled-out, both 440 * under rq->lock. Non-zero indicates the task is running on its CPU. 441 * 442 * [ The astute reader will observe that it is possible for two tasks on one 443 * CPU to have ->on_cpu = 1 at the same time. ] 444 * 445 * task_cpu(p): is changed by set_task_cpu(), the rules are: 446 * 447 * - Don't call set_task_cpu() on a blocked task: 448 * 449 * We don't care what CPU we're not running on, this simplifies hotplug, 450 * the CPU assignment of blocked tasks isn't required to be valid. 451 * 452 * - for try_to_wake_up(), called under p->pi_lock: 453 * 454 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 455 * 456 * - for migration called under rq->lock: 457 * [ see task_on_rq_migrating() in task_rq_lock() ] 458 * 459 * o move_queued_task() 460 * o detach_task() 461 * 462 * - for migration called under double_rq_lock(): 463 * 464 * o __migrate_swap_task() 465 * o push_rt_task() / pull_rt_task() 466 * o push_dl_task() / pull_dl_task() 467 * o dl_task_offline_migration() 468 * 469 */ 470 471 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 472 { 473 raw_spinlock_t *lock; 474 475 /* Matches synchronize_rcu() in __sched_core_enable() */ 476 preempt_disable(); 477 if (sched_core_disabled()) { 478 raw_spin_lock_nested(&rq->__lock, subclass); 479 /* preempt_count *MUST* be > 1 */ 480 preempt_enable_no_resched(); 481 return; 482 } 483 484 for (;;) { 485 lock = __rq_lockp(rq); 486 raw_spin_lock_nested(lock, subclass); 487 if (likely(lock == __rq_lockp(rq))) { 488 /* preempt_count *MUST* be > 1 */ 489 preempt_enable_no_resched(); 490 return; 491 } 492 raw_spin_unlock(lock); 493 } 494 } 495 496 bool raw_spin_rq_trylock(struct rq *rq) 497 { 498 raw_spinlock_t *lock; 499 bool ret; 500 501 /* Matches synchronize_rcu() in __sched_core_enable() */ 502 preempt_disable(); 503 if (sched_core_disabled()) { 504 ret = raw_spin_trylock(&rq->__lock); 505 preempt_enable(); 506 return ret; 507 } 508 509 for (;;) { 510 lock = __rq_lockp(rq); 511 ret = raw_spin_trylock(lock); 512 if (!ret || (likely(lock == __rq_lockp(rq)))) { 513 preempt_enable(); 514 return ret; 515 } 516 raw_spin_unlock(lock); 517 } 518 } 519 520 void raw_spin_rq_unlock(struct rq *rq) 521 { 522 raw_spin_unlock(rq_lockp(rq)); 523 } 524 525 #ifdef CONFIG_SMP 526 /* 527 * double_rq_lock - safely lock two runqueues 528 */ 529 void double_rq_lock(struct rq *rq1, struct rq *rq2) 530 { 531 lockdep_assert_irqs_disabled(); 532 533 if (rq_order_less(rq2, rq1)) 534 swap(rq1, rq2); 535 536 raw_spin_rq_lock(rq1); 537 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 538 return; 539 540 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 541 } 542 #endif 543 544 /* 545 * __task_rq_lock - lock the rq @p resides on. 546 */ 547 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 548 __acquires(rq->lock) 549 { 550 struct rq *rq; 551 552 lockdep_assert_held(&p->pi_lock); 553 554 for (;;) { 555 rq = task_rq(p); 556 raw_spin_rq_lock(rq); 557 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 558 rq_pin_lock(rq, rf); 559 return rq; 560 } 561 raw_spin_rq_unlock(rq); 562 563 while (unlikely(task_on_rq_migrating(p))) 564 cpu_relax(); 565 } 566 } 567 568 /* 569 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 570 */ 571 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 572 __acquires(p->pi_lock) 573 __acquires(rq->lock) 574 { 575 struct rq *rq; 576 577 for (;;) { 578 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 579 rq = task_rq(p); 580 raw_spin_rq_lock(rq); 581 /* 582 * move_queued_task() task_rq_lock() 583 * 584 * ACQUIRE (rq->lock) 585 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 586 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 587 * [S] ->cpu = new_cpu [L] task_rq() 588 * [L] ->on_rq 589 * RELEASE (rq->lock) 590 * 591 * If we observe the old CPU in task_rq_lock(), the acquire of 592 * the old rq->lock will fully serialize against the stores. 593 * 594 * If we observe the new CPU in task_rq_lock(), the address 595 * dependency headed by '[L] rq = task_rq()' and the acquire 596 * will pair with the WMB to ensure we then also see migrating. 597 */ 598 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 599 rq_pin_lock(rq, rf); 600 return rq; 601 } 602 raw_spin_rq_unlock(rq); 603 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 604 605 while (unlikely(task_on_rq_migrating(p))) 606 cpu_relax(); 607 } 608 } 609 610 /* 611 * RQ-clock updating methods: 612 */ 613 614 static void update_rq_clock_task(struct rq *rq, s64 delta) 615 { 616 /* 617 * In theory, the compile should just see 0 here, and optimize out the call 618 * to sched_rt_avg_update. But I don't trust it... 619 */ 620 s64 __maybe_unused steal = 0, irq_delta = 0; 621 622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 623 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 624 625 /* 626 * Since irq_time is only updated on {soft,}irq_exit, we might run into 627 * this case when a previous update_rq_clock() happened inside a 628 * {soft,}irq region. 629 * 630 * When this happens, we stop ->clock_task and only update the 631 * prev_irq_time stamp to account for the part that fit, so that a next 632 * update will consume the rest. This ensures ->clock_task is 633 * monotonic. 634 * 635 * It does however cause some slight miss-attribution of {soft,}irq 636 * time, a more accurate solution would be to update the irq_time using 637 * the current rq->clock timestamp, except that would require using 638 * atomic ops. 639 */ 640 if (irq_delta > delta) 641 irq_delta = delta; 642 643 rq->prev_irq_time += irq_delta; 644 delta -= irq_delta; 645 #endif 646 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 647 if (static_key_false((¶virt_steal_rq_enabled))) { 648 steal = paravirt_steal_clock(cpu_of(rq)); 649 steal -= rq->prev_steal_time_rq; 650 651 if (unlikely(steal > delta)) 652 steal = delta; 653 654 rq->prev_steal_time_rq += steal; 655 delta -= steal; 656 } 657 #endif 658 659 rq->clock_task += delta; 660 661 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 662 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 663 update_irq_load_avg(rq, irq_delta + steal); 664 #endif 665 update_rq_clock_pelt(rq, delta); 666 } 667 668 void update_rq_clock(struct rq *rq) 669 { 670 s64 delta; 671 672 lockdep_assert_rq_held(rq); 673 674 if (rq->clock_update_flags & RQCF_ACT_SKIP) 675 return; 676 677 #ifdef CONFIG_SCHED_DEBUG 678 if (sched_feat(WARN_DOUBLE_CLOCK)) 679 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 680 rq->clock_update_flags |= RQCF_UPDATED; 681 #endif 682 683 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 684 if (delta < 0) 685 return; 686 rq->clock += delta; 687 update_rq_clock_task(rq, delta); 688 } 689 690 #ifdef CONFIG_SCHED_HRTICK 691 /* 692 * Use HR-timers to deliver accurate preemption points. 693 */ 694 695 static void hrtick_clear(struct rq *rq) 696 { 697 if (hrtimer_active(&rq->hrtick_timer)) 698 hrtimer_cancel(&rq->hrtick_timer); 699 } 700 701 /* 702 * High-resolution timer tick. 703 * Runs from hardirq context with interrupts disabled. 704 */ 705 static enum hrtimer_restart hrtick(struct hrtimer *timer) 706 { 707 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 708 struct rq_flags rf; 709 710 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 711 712 rq_lock(rq, &rf); 713 update_rq_clock(rq); 714 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 715 rq_unlock(rq, &rf); 716 717 return HRTIMER_NORESTART; 718 } 719 720 #ifdef CONFIG_SMP 721 722 static void __hrtick_restart(struct rq *rq) 723 { 724 struct hrtimer *timer = &rq->hrtick_timer; 725 ktime_t time = rq->hrtick_time; 726 727 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 728 } 729 730 /* 731 * called from hardirq (IPI) context 732 */ 733 static void __hrtick_start(void *arg) 734 { 735 struct rq *rq = arg; 736 struct rq_flags rf; 737 738 rq_lock(rq, &rf); 739 __hrtick_restart(rq); 740 rq_unlock(rq, &rf); 741 } 742 743 /* 744 * Called to set the hrtick timer state. 745 * 746 * called with rq->lock held and irqs disabled 747 */ 748 void hrtick_start(struct rq *rq, u64 delay) 749 { 750 struct hrtimer *timer = &rq->hrtick_timer; 751 s64 delta; 752 753 /* 754 * Don't schedule slices shorter than 10000ns, that just 755 * doesn't make sense and can cause timer DoS. 756 */ 757 delta = max_t(s64, delay, 10000LL); 758 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 759 760 if (rq == this_rq()) 761 __hrtick_restart(rq); 762 else 763 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 764 } 765 766 #else 767 /* 768 * Called to set the hrtick timer state. 769 * 770 * called with rq->lock held and irqs disabled 771 */ 772 void hrtick_start(struct rq *rq, u64 delay) 773 { 774 /* 775 * Don't schedule slices shorter than 10000ns, that just 776 * doesn't make sense. Rely on vruntime for fairness. 777 */ 778 delay = max_t(u64, delay, 10000LL); 779 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 780 HRTIMER_MODE_REL_PINNED_HARD); 781 } 782 783 #endif /* CONFIG_SMP */ 784 785 static void hrtick_rq_init(struct rq *rq) 786 { 787 #ifdef CONFIG_SMP 788 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 789 #endif 790 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 791 rq->hrtick_timer.function = hrtick; 792 } 793 #else /* CONFIG_SCHED_HRTICK */ 794 static inline void hrtick_clear(struct rq *rq) 795 { 796 } 797 798 static inline void hrtick_rq_init(struct rq *rq) 799 { 800 } 801 #endif /* CONFIG_SCHED_HRTICK */ 802 803 /* 804 * cmpxchg based fetch_or, macro so it works for different integer types 805 */ 806 #define fetch_or(ptr, mask) \ 807 ({ \ 808 typeof(ptr) _ptr = (ptr); \ 809 typeof(mask) _mask = (mask); \ 810 typeof(*_ptr) _old, _val = *_ptr; \ 811 \ 812 for (;;) { \ 813 _old = cmpxchg(_ptr, _val, _val | _mask); \ 814 if (_old == _val) \ 815 break; \ 816 _val = _old; \ 817 } \ 818 _old; \ 819 }) 820 821 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 822 /* 823 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 824 * this avoids any races wrt polling state changes and thereby avoids 825 * spurious IPIs. 826 */ 827 static bool set_nr_and_not_polling(struct task_struct *p) 828 { 829 struct thread_info *ti = task_thread_info(p); 830 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 831 } 832 833 /* 834 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 835 * 836 * If this returns true, then the idle task promises to call 837 * sched_ttwu_pending() and reschedule soon. 838 */ 839 static bool set_nr_if_polling(struct task_struct *p) 840 { 841 struct thread_info *ti = task_thread_info(p); 842 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 843 844 for (;;) { 845 if (!(val & _TIF_POLLING_NRFLAG)) 846 return false; 847 if (val & _TIF_NEED_RESCHED) 848 return true; 849 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 850 if (old == val) 851 break; 852 val = old; 853 } 854 return true; 855 } 856 857 #else 858 static bool set_nr_and_not_polling(struct task_struct *p) 859 { 860 set_tsk_need_resched(p); 861 return true; 862 } 863 864 #ifdef CONFIG_SMP 865 static bool set_nr_if_polling(struct task_struct *p) 866 { 867 return false; 868 } 869 #endif 870 #endif 871 872 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 873 { 874 struct wake_q_node *node = &task->wake_q; 875 876 /* 877 * Atomically grab the task, if ->wake_q is !nil already it means 878 * it's already queued (either by us or someone else) and will get the 879 * wakeup due to that. 880 * 881 * In order to ensure that a pending wakeup will observe our pending 882 * state, even in the failed case, an explicit smp_mb() must be used. 883 */ 884 smp_mb__before_atomic(); 885 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 886 return false; 887 888 /* 889 * The head is context local, there can be no concurrency. 890 */ 891 *head->lastp = node; 892 head->lastp = &node->next; 893 return true; 894 } 895 896 /** 897 * wake_q_add() - queue a wakeup for 'later' waking. 898 * @head: the wake_q_head to add @task to 899 * @task: the task to queue for 'later' wakeup 900 * 901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 903 * instantly. 904 * 905 * This function must be used as-if it were wake_up_process(); IOW the task 906 * must be ready to be woken at this location. 907 */ 908 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 909 { 910 if (__wake_q_add(head, task)) 911 get_task_struct(task); 912 } 913 914 /** 915 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 916 * @head: the wake_q_head to add @task to 917 * @task: the task to queue for 'later' wakeup 918 * 919 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 920 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 921 * instantly. 922 * 923 * This function must be used as-if it were wake_up_process(); IOW the task 924 * must be ready to be woken at this location. 925 * 926 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 927 * that already hold reference to @task can call the 'safe' version and trust 928 * wake_q to do the right thing depending whether or not the @task is already 929 * queued for wakeup. 930 */ 931 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 932 { 933 if (!__wake_q_add(head, task)) 934 put_task_struct(task); 935 } 936 937 void wake_up_q(struct wake_q_head *head) 938 { 939 struct wake_q_node *node = head->first; 940 941 while (node != WAKE_Q_TAIL) { 942 struct task_struct *task; 943 944 task = container_of(node, struct task_struct, wake_q); 945 /* Task can safely be re-inserted now: */ 946 node = node->next; 947 task->wake_q.next = NULL; 948 949 /* 950 * wake_up_process() executes a full barrier, which pairs with 951 * the queueing in wake_q_add() so as not to miss wakeups. 952 */ 953 wake_up_process(task); 954 put_task_struct(task); 955 } 956 } 957 958 /* 959 * resched_curr - mark rq's current task 'to be rescheduled now'. 960 * 961 * On UP this means the setting of the need_resched flag, on SMP it 962 * might also involve a cross-CPU call to trigger the scheduler on 963 * the target CPU. 964 */ 965 void resched_curr(struct rq *rq) 966 { 967 struct task_struct *curr = rq->curr; 968 int cpu; 969 970 lockdep_assert_rq_held(rq); 971 972 if (test_tsk_need_resched(curr)) 973 return; 974 975 cpu = cpu_of(rq); 976 977 if (cpu == smp_processor_id()) { 978 set_tsk_need_resched(curr); 979 set_preempt_need_resched(); 980 return; 981 } 982 983 if (set_nr_and_not_polling(curr)) 984 smp_send_reschedule(cpu); 985 else 986 trace_sched_wake_idle_without_ipi(cpu); 987 } 988 989 void resched_cpu(int cpu) 990 { 991 struct rq *rq = cpu_rq(cpu); 992 unsigned long flags; 993 994 raw_spin_rq_lock_irqsave(rq, flags); 995 if (cpu_online(cpu) || cpu == smp_processor_id()) 996 resched_curr(rq); 997 raw_spin_rq_unlock_irqrestore(rq, flags); 998 } 999 1000 #ifdef CONFIG_SMP 1001 #ifdef CONFIG_NO_HZ_COMMON 1002 /* 1003 * In the semi idle case, use the nearest busy CPU for migrating timers 1004 * from an idle CPU. This is good for power-savings. 1005 * 1006 * We don't do similar optimization for completely idle system, as 1007 * selecting an idle CPU will add more delays to the timers than intended 1008 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1009 */ 1010 int get_nohz_timer_target(void) 1011 { 1012 int i, cpu = smp_processor_id(), default_cpu = -1; 1013 struct sched_domain *sd; 1014 const struct cpumask *hk_mask; 1015 1016 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 1017 if (!idle_cpu(cpu)) 1018 return cpu; 1019 default_cpu = cpu; 1020 } 1021 1022 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER); 1023 1024 rcu_read_lock(); 1025 for_each_domain(cpu, sd) { 1026 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1027 if (cpu == i) 1028 continue; 1029 1030 if (!idle_cpu(i)) { 1031 cpu = i; 1032 goto unlock; 1033 } 1034 } 1035 } 1036 1037 if (default_cpu == -1) 1038 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1039 cpu = default_cpu; 1040 unlock: 1041 rcu_read_unlock(); 1042 return cpu; 1043 } 1044 1045 /* 1046 * When add_timer_on() enqueues a timer into the timer wheel of an 1047 * idle CPU then this timer might expire before the next timer event 1048 * which is scheduled to wake up that CPU. In case of a completely 1049 * idle system the next event might even be infinite time into the 1050 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1051 * leaves the inner idle loop so the newly added timer is taken into 1052 * account when the CPU goes back to idle and evaluates the timer 1053 * wheel for the next timer event. 1054 */ 1055 static void wake_up_idle_cpu(int cpu) 1056 { 1057 struct rq *rq = cpu_rq(cpu); 1058 1059 if (cpu == smp_processor_id()) 1060 return; 1061 1062 if (set_nr_and_not_polling(rq->idle)) 1063 smp_send_reschedule(cpu); 1064 else 1065 trace_sched_wake_idle_without_ipi(cpu); 1066 } 1067 1068 static bool wake_up_full_nohz_cpu(int cpu) 1069 { 1070 /* 1071 * We just need the target to call irq_exit() and re-evaluate 1072 * the next tick. The nohz full kick at least implies that. 1073 * If needed we can still optimize that later with an 1074 * empty IRQ. 1075 */ 1076 if (cpu_is_offline(cpu)) 1077 return true; /* Don't try to wake offline CPUs. */ 1078 if (tick_nohz_full_cpu(cpu)) { 1079 if (cpu != smp_processor_id() || 1080 tick_nohz_tick_stopped()) 1081 tick_nohz_full_kick_cpu(cpu); 1082 return true; 1083 } 1084 1085 return false; 1086 } 1087 1088 /* 1089 * Wake up the specified CPU. If the CPU is going offline, it is the 1090 * caller's responsibility to deal with the lost wakeup, for example, 1091 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1092 */ 1093 void wake_up_nohz_cpu(int cpu) 1094 { 1095 if (!wake_up_full_nohz_cpu(cpu)) 1096 wake_up_idle_cpu(cpu); 1097 } 1098 1099 static void nohz_csd_func(void *info) 1100 { 1101 struct rq *rq = info; 1102 int cpu = cpu_of(rq); 1103 unsigned int flags; 1104 1105 /* 1106 * Release the rq::nohz_csd. 1107 */ 1108 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1109 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1110 1111 rq->idle_balance = idle_cpu(cpu); 1112 if (rq->idle_balance && !need_resched()) { 1113 rq->nohz_idle_balance = flags; 1114 raise_softirq_irqoff(SCHED_SOFTIRQ); 1115 } 1116 } 1117 1118 #endif /* CONFIG_NO_HZ_COMMON */ 1119 1120 #ifdef CONFIG_NO_HZ_FULL 1121 bool sched_can_stop_tick(struct rq *rq) 1122 { 1123 int fifo_nr_running; 1124 1125 /* Deadline tasks, even if single, need the tick */ 1126 if (rq->dl.dl_nr_running) 1127 return false; 1128 1129 /* 1130 * If there are more than one RR tasks, we need the tick to affect the 1131 * actual RR behaviour. 1132 */ 1133 if (rq->rt.rr_nr_running) { 1134 if (rq->rt.rr_nr_running == 1) 1135 return true; 1136 else 1137 return false; 1138 } 1139 1140 /* 1141 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1142 * forced preemption between FIFO tasks. 1143 */ 1144 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1145 if (fifo_nr_running) 1146 return true; 1147 1148 /* 1149 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1150 * if there's more than one we need the tick for involuntary 1151 * preemption. 1152 */ 1153 if (rq->nr_running > 1) 1154 return false; 1155 1156 return true; 1157 } 1158 #endif /* CONFIG_NO_HZ_FULL */ 1159 #endif /* CONFIG_SMP */ 1160 1161 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1162 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1163 /* 1164 * Iterate task_group tree rooted at *from, calling @down when first entering a 1165 * node and @up when leaving it for the final time. 1166 * 1167 * Caller must hold rcu_lock or sufficient equivalent. 1168 */ 1169 int walk_tg_tree_from(struct task_group *from, 1170 tg_visitor down, tg_visitor up, void *data) 1171 { 1172 struct task_group *parent, *child; 1173 int ret; 1174 1175 parent = from; 1176 1177 down: 1178 ret = (*down)(parent, data); 1179 if (ret) 1180 goto out; 1181 list_for_each_entry_rcu(child, &parent->children, siblings) { 1182 parent = child; 1183 goto down; 1184 1185 up: 1186 continue; 1187 } 1188 ret = (*up)(parent, data); 1189 if (ret || parent == from) 1190 goto out; 1191 1192 child = parent; 1193 parent = parent->parent; 1194 if (parent) 1195 goto up; 1196 out: 1197 return ret; 1198 } 1199 1200 int tg_nop(struct task_group *tg, void *data) 1201 { 1202 return 0; 1203 } 1204 #endif 1205 1206 static void set_load_weight(struct task_struct *p, bool update_load) 1207 { 1208 int prio = p->static_prio - MAX_RT_PRIO; 1209 struct load_weight *load = &p->se.load; 1210 1211 /* 1212 * SCHED_IDLE tasks get minimal weight: 1213 */ 1214 if (task_has_idle_policy(p)) { 1215 load->weight = scale_load(WEIGHT_IDLEPRIO); 1216 load->inv_weight = WMULT_IDLEPRIO; 1217 return; 1218 } 1219 1220 /* 1221 * SCHED_OTHER tasks have to update their load when changing their 1222 * weight 1223 */ 1224 if (update_load && p->sched_class == &fair_sched_class) { 1225 reweight_task(p, prio); 1226 } else { 1227 load->weight = scale_load(sched_prio_to_weight[prio]); 1228 load->inv_weight = sched_prio_to_wmult[prio]; 1229 } 1230 } 1231 1232 #ifdef CONFIG_UCLAMP_TASK 1233 /* 1234 * Serializes updates of utilization clamp values 1235 * 1236 * The (slow-path) user-space triggers utilization clamp value updates which 1237 * can require updates on (fast-path) scheduler's data structures used to 1238 * support enqueue/dequeue operations. 1239 * While the per-CPU rq lock protects fast-path update operations, user-space 1240 * requests are serialized using a mutex to reduce the risk of conflicting 1241 * updates or API abuses. 1242 */ 1243 static DEFINE_MUTEX(uclamp_mutex); 1244 1245 /* Max allowed minimum utilization */ 1246 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1247 1248 /* Max allowed maximum utilization */ 1249 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1250 1251 /* 1252 * By default RT tasks run at the maximum performance point/capacity of the 1253 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1254 * SCHED_CAPACITY_SCALE. 1255 * 1256 * This knob allows admins to change the default behavior when uclamp is being 1257 * used. In battery powered devices, particularly, running at the maximum 1258 * capacity and frequency will increase energy consumption and shorten the 1259 * battery life. 1260 * 1261 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1262 * 1263 * This knob will not override the system default sched_util_clamp_min defined 1264 * above. 1265 */ 1266 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1267 1268 /* All clamps are required to be less or equal than these values */ 1269 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1270 1271 /* 1272 * This static key is used to reduce the uclamp overhead in the fast path. It 1273 * primarily disables the call to uclamp_rq_{inc, dec}() in 1274 * enqueue/dequeue_task(). 1275 * 1276 * This allows users to continue to enable uclamp in their kernel config with 1277 * minimum uclamp overhead in the fast path. 1278 * 1279 * As soon as userspace modifies any of the uclamp knobs, the static key is 1280 * enabled, since we have an actual users that make use of uclamp 1281 * functionality. 1282 * 1283 * The knobs that would enable this static key are: 1284 * 1285 * * A task modifying its uclamp value with sched_setattr(). 1286 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1287 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1288 */ 1289 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1290 1291 /* Integer rounded range for each bucket */ 1292 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1293 1294 #define for_each_clamp_id(clamp_id) \ 1295 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1296 1297 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1298 { 1299 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1300 } 1301 1302 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1303 { 1304 if (clamp_id == UCLAMP_MIN) 1305 return 0; 1306 return SCHED_CAPACITY_SCALE; 1307 } 1308 1309 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1310 unsigned int value, bool user_defined) 1311 { 1312 uc_se->value = value; 1313 uc_se->bucket_id = uclamp_bucket_id(value); 1314 uc_se->user_defined = user_defined; 1315 } 1316 1317 static inline unsigned int 1318 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1319 unsigned int clamp_value) 1320 { 1321 /* 1322 * Avoid blocked utilization pushing up the frequency when we go 1323 * idle (which drops the max-clamp) by retaining the last known 1324 * max-clamp. 1325 */ 1326 if (clamp_id == UCLAMP_MAX) { 1327 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1328 return clamp_value; 1329 } 1330 1331 return uclamp_none(UCLAMP_MIN); 1332 } 1333 1334 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1335 unsigned int clamp_value) 1336 { 1337 /* Reset max-clamp retention only on idle exit */ 1338 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1339 return; 1340 1341 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1342 } 1343 1344 static inline 1345 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1346 unsigned int clamp_value) 1347 { 1348 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1349 int bucket_id = UCLAMP_BUCKETS - 1; 1350 1351 /* 1352 * Since both min and max clamps are max aggregated, find the 1353 * top most bucket with tasks in. 1354 */ 1355 for ( ; bucket_id >= 0; bucket_id--) { 1356 if (!bucket[bucket_id].tasks) 1357 continue; 1358 return bucket[bucket_id].value; 1359 } 1360 1361 /* No tasks -- default clamp values */ 1362 return uclamp_idle_value(rq, clamp_id, clamp_value); 1363 } 1364 1365 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1366 { 1367 unsigned int default_util_min; 1368 struct uclamp_se *uc_se; 1369 1370 lockdep_assert_held(&p->pi_lock); 1371 1372 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1373 1374 /* Only sync if user didn't override the default */ 1375 if (uc_se->user_defined) 1376 return; 1377 1378 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1379 uclamp_se_set(uc_se, default_util_min, false); 1380 } 1381 1382 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1383 { 1384 struct rq_flags rf; 1385 struct rq *rq; 1386 1387 if (!rt_task(p)) 1388 return; 1389 1390 /* Protect updates to p->uclamp_* */ 1391 rq = task_rq_lock(p, &rf); 1392 __uclamp_update_util_min_rt_default(p); 1393 task_rq_unlock(rq, p, &rf); 1394 } 1395 1396 static void uclamp_sync_util_min_rt_default(void) 1397 { 1398 struct task_struct *g, *p; 1399 1400 /* 1401 * copy_process() sysctl_uclamp 1402 * uclamp_min_rt = X; 1403 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1404 * // link thread smp_mb__after_spinlock() 1405 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1406 * sched_post_fork() for_each_process_thread() 1407 * __uclamp_sync_rt() __uclamp_sync_rt() 1408 * 1409 * Ensures that either sched_post_fork() will observe the new 1410 * uclamp_min_rt or for_each_process_thread() will observe the new 1411 * task. 1412 */ 1413 read_lock(&tasklist_lock); 1414 smp_mb__after_spinlock(); 1415 read_unlock(&tasklist_lock); 1416 1417 rcu_read_lock(); 1418 for_each_process_thread(g, p) 1419 uclamp_update_util_min_rt_default(p); 1420 rcu_read_unlock(); 1421 } 1422 1423 static inline struct uclamp_se 1424 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1425 { 1426 /* Copy by value as we could modify it */ 1427 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1428 #ifdef CONFIG_UCLAMP_TASK_GROUP 1429 unsigned int tg_min, tg_max, value; 1430 1431 /* 1432 * Tasks in autogroups or root task group will be 1433 * restricted by system defaults. 1434 */ 1435 if (task_group_is_autogroup(task_group(p))) 1436 return uc_req; 1437 if (task_group(p) == &root_task_group) 1438 return uc_req; 1439 1440 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1441 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1442 value = uc_req.value; 1443 value = clamp(value, tg_min, tg_max); 1444 uclamp_se_set(&uc_req, value, false); 1445 #endif 1446 1447 return uc_req; 1448 } 1449 1450 /* 1451 * The effective clamp bucket index of a task depends on, by increasing 1452 * priority: 1453 * - the task specific clamp value, when explicitly requested from userspace 1454 * - the task group effective clamp value, for tasks not either in the root 1455 * group or in an autogroup 1456 * - the system default clamp value, defined by the sysadmin 1457 */ 1458 static inline struct uclamp_se 1459 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1460 { 1461 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1462 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1463 1464 /* System default restrictions always apply */ 1465 if (unlikely(uc_req.value > uc_max.value)) 1466 return uc_max; 1467 1468 return uc_req; 1469 } 1470 1471 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1472 { 1473 struct uclamp_se uc_eff; 1474 1475 /* Task currently refcounted: use back-annotated (effective) value */ 1476 if (p->uclamp[clamp_id].active) 1477 return (unsigned long)p->uclamp[clamp_id].value; 1478 1479 uc_eff = uclamp_eff_get(p, clamp_id); 1480 1481 return (unsigned long)uc_eff.value; 1482 } 1483 1484 /* 1485 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1486 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1487 * updates the rq's clamp value if required. 1488 * 1489 * Tasks can have a task-specific value requested from user-space, track 1490 * within each bucket the maximum value for tasks refcounted in it. 1491 * This "local max aggregation" allows to track the exact "requested" value 1492 * for each bucket when all its RUNNABLE tasks require the same clamp. 1493 */ 1494 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1495 enum uclamp_id clamp_id) 1496 { 1497 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1498 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1499 struct uclamp_bucket *bucket; 1500 1501 lockdep_assert_rq_held(rq); 1502 1503 /* Update task effective clamp */ 1504 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1505 1506 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1507 bucket->tasks++; 1508 uc_se->active = true; 1509 1510 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1511 1512 /* 1513 * Local max aggregation: rq buckets always track the max 1514 * "requested" clamp value of its RUNNABLE tasks. 1515 */ 1516 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1517 bucket->value = uc_se->value; 1518 1519 if (uc_se->value > READ_ONCE(uc_rq->value)) 1520 WRITE_ONCE(uc_rq->value, uc_se->value); 1521 } 1522 1523 /* 1524 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1525 * is released. If this is the last task reference counting the rq's max 1526 * active clamp value, then the rq's clamp value is updated. 1527 * 1528 * Both refcounted tasks and rq's cached clamp values are expected to be 1529 * always valid. If it's detected they are not, as defensive programming, 1530 * enforce the expected state and warn. 1531 */ 1532 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1533 enum uclamp_id clamp_id) 1534 { 1535 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1536 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1537 struct uclamp_bucket *bucket; 1538 unsigned int bkt_clamp; 1539 unsigned int rq_clamp; 1540 1541 lockdep_assert_rq_held(rq); 1542 1543 /* 1544 * If sched_uclamp_used was enabled after task @p was enqueued, 1545 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1546 * 1547 * In this case the uc_se->active flag should be false since no uclamp 1548 * accounting was performed at enqueue time and we can just return 1549 * here. 1550 * 1551 * Need to be careful of the following enqueue/dequeue ordering 1552 * problem too 1553 * 1554 * enqueue(taskA) 1555 * // sched_uclamp_used gets enabled 1556 * enqueue(taskB) 1557 * dequeue(taskA) 1558 * // Must not decrement bucket->tasks here 1559 * dequeue(taskB) 1560 * 1561 * where we could end up with stale data in uc_se and 1562 * bucket[uc_se->bucket_id]. 1563 * 1564 * The following check here eliminates the possibility of such race. 1565 */ 1566 if (unlikely(!uc_se->active)) 1567 return; 1568 1569 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1570 1571 SCHED_WARN_ON(!bucket->tasks); 1572 if (likely(bucket->tasks)) 1573 bucket->tasks--; 1574 1575 uc_se->active = false; 1576 1577 /* 1578 * Keep "local max aggregation" simple and accept to (possibly) 1579 * overboost some RUNNABLE tasks in the same bucket. 1580 * The rq clamp bucket value is reset to its base value whenever 1581 * there are no more RUNNABLE tasks refcounting it. 1582 */ 1583 if (likely(bucket->tasks)) 1584 return; 1585 1586 rq_clamp = READ_ONCE(uc_rq->value); 1587 /* 1588 * Defensive programming: this should never happen. If it happens, 1589 * e.g. due to future modification, warn and fixup the expected value. 1590 */ 1591 SCHED_WARN_ON(bucket->value > rq_clamp); 1592 if (bucket->value >= rq_clamp) { 1593 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1594 WRITE_ONCE(uc_rq->value, bkt_clamp); 1595 } 1596 } 1597 1598 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1599 { 1600 enum uclamp_id clamp_id; 1601 1602 /* 1603 * Avoid any overhead until uclamp is actually used by the userspace. 1604 * 1605 * The condition is constructed such that a NOP is generated when 1606 * sched_uclamp_used is disabled. 1607 */ 1608 if (!static_branch_unlikely(&sched_uclamp_used)) 1609 return; 1610 1611 if (unlikely(!p->sched_class->uclamp_enabled)) 1612 return; 1613 1614 for_each_clamp_id(clamp_id) 1615 uclamp_rq_inc_id(rq, p, clamp_id); 1616 1617 /* Reset clamp idle holding when there is one RUNNABLE task */ 1618 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1619 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1620 } 1621 1622 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1623 { 1624 enum uclamp_id clamp_id; 1625 1626 /* 1627 * Avoid any overhead until uclamp is actually used by the userspace. 1628 * 1629 * The condition is constructed such that a NOP is generated when 1630 * sched_uclamp_used is disabled. 1631 */ 1632 if (!static_branch_unlikely(&sched_uclamp_used)) 1633 return; 1634 1635 if (unlikely(!p->sched_class->uclamp_enabled)) 1636 return; 1637 1638 for_each_clamp_id(clamp_id) 1639 uclamp_rq_dec_id(rq, p, clamp_id); 1640 } 1641 1642 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1643 enum uclamp_id clamp_id) 1644 { 1645 if (!p->uclamp[clamp_id].active) 1646 return; 1647 1648 uclamp_rq_dec_id(rq, p, clamp_id); 1649 uclamp_rq_inc_id(rq, p, clamp_id); 1650 1651 /* 1652 * Make sure to clear the idle flag if we've transiently reached 0 1653 * active tasks on rq. 1654 */ 1655 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1656 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1657 } 1658 1659 static inline void 1660 uclamp_update_active(struct task_struct *p) 1661 { 1662 enum uclamp_id clamp_id; 1663 struct rq_flags rf; 1664 struct rq *rq; 1665 1666 /* 1667 * Lock the task and the rq where the task is (or was) queued. 1668 * 1669 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1670 * price to pay to safely serialize util_{min,max} updates with 1671 * enqueues, dequeues and migration operations. 1672 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1673 */ 1674 rq = task_rq_lock(p, &rf); 1675 1676 /* 1677 * Setting the clamp bucket is serialized by task_rq_lock(). 1678 * If the task is not yet RUNNABLE and its task_struct is not 1679 * affecting a valid clamp bucket, the next time it's enqueued, 1680 * it will already see the updated clamp bucket value. 1681 */ 1682 for_each_clamp_id(clamp_id) 1683 uclamp_rq_reinc_id(rq, p, clamp_id); 1684 1685 task_rq_unlock(rq, p, &rf); 1686 } 1687 1688 #ifdef CONFIG_UCLAMP_TASK_GROUP 1689 static inline void 1690 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1691 { 1692 struct css_task_iter it; 1693 struct task_struct *p; 1694 1695 css_task_iter_start(css, 0, &it); 1696 while ((p = css_task_iter_next(&it))) 1697 uclamp_update_active(p); 1698 css_task_iter_end(&it); 1699 } 1700 1701 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1702 static void uclamp_update_root_tg(void) 1703 { 1704 struct task_group *tg = &root_task_group; 1705 1706 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1707 sysctl_sched_uclamp_util_min, false); 1708 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1709 sysctl_sched_uclamp_util_max, false); 1710 1711 rcu_read_lock(); 1712 cpu_util_update_eff(&root_task_group.css); 1713 rcu_read_unlock(); 1714 } 1715 #else 1716 static void uclamp_update_root_tg(void) { } 1717 #endif 1718 1719 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1720 void *buffer, size_t *lenp, loff_t *ppos) 1721 { 1722 bool update_root_tg = false; 1723 int old_min, old_max, old_min_rt; 1724 int result; 1725 1726 mutex_lock(&uclamp_mutex); 1727 old_min = sysctl_sched_uclamp_util_min; 1728 old_max = sysctl_sched_uclamp_util_max; 1729 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1730 1731 result = proc_dointvec(table, write, buffer, lenp, ppos); 1732 if (result) 1733 goto undo; 1734 if (!write) 1735 goto done; 1736 1737 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1738 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1739 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1740 1741 result = -EINVAL; 1742 goto undo; 1743 } 1744 1745 if (old_min != sysctl_sched_uclamp_util_min) { 1746 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1747 sysctl_sched_uclamp_util_min, false); 1748 update_root_tg = true; 1749 } 1750 if (old_max != sysctl_sched_uclamp_util_max) { 1751 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1752 sysctl_sched_uclamp_util_max, false); 1753 update_root_tg = true; 1754 } 1755 1756 if (update_root_tg) { 1757 static_branch_enable(&sched_uclamp_used); 1758 uclamp_update_root_tg(); 1759 } 1760 1761 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1762 static_branch_enable(&sched_uclamp_used); 1763 uclamp_sync_util_min_rt_default(); 1764 } 1765 1766 /* 1767 * We update all RUNNABLE tasks only when task groups are in use. 1768 * Otherwise, keep it simple and do just a lazy update at each next 1769 * task enqueue time. 1770 */ 1771 1772 goto done; 1773 1774 undo: 1775 sysctl_sched_uclamp_util_min = old_min; 1776 sysctl_sched_uclamp_util_max = old_max; 1777 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1778 done: 1779 mutex_unlock(&uclamp_mutex); 1780 1781 return result; 1782 } 1783 1784 static int uclamp_validate(struct task_struct *p, 1785 const struct sched_attr *attr) 1786 { 1787 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1788 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1789 1790 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1791 util_min = attr->sched_util_min; 1792 1793 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1794 return -EINVAL; 1795 } 1796 1797 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1798 util_max = attr->sched_util_max; 1799 1800 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1801 return -EINVAL; 1802 } 1803 1804 if (util_min != -1 && util_max != -1 && util_min > util_max) 1805 return -EINVAL; 1806 1807 /* 1808 * We have valid uclamp attributes; make sure uclamp is enabled. 1809 * 1810 * We need to do that here, because enabling static branches is a 1811 * blocking operation which obviously cannot be done while holding 1812 * scheduler locks. 1813 */ 1814 static_branch_enable(&sched_uclamp_used); 1815 1816 return 0; 1817 } 1818 1819 static bool uclamp_reset(const struct sched_attr *attr, 1820 enum uclamp_id clamp_id, 1821 struct uclamp_se *uc_se) 1822 { 1823 /* Reset on sched class change for a non user-defined clamp value. */ 1824 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1825 !uc_se->user_defined) 1826 return true; 1827 1828 /* Reset on sched_util_{min,max} == -1. */ 1829 if (clamp_id == UCLAMP_MIN && 1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1831 attr->sched_util_min == -1) { 1832 return true; 1833 } 1834 1835 if (clamp_id == UCLAMP_MAX && 1836 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1837 attr->sched_util_max == -1) { 1838 return true; 1839 } 1840 1841 return false; 1842 } 1843 1844 static void __setscheduler_uclamp(struct task_struct *p, 1845 const struct sched_attr *attr) 1846 { 1847 enum uclamp_id clamp_id; 1848 1849 for_each_clamp_id(clamp_id) { 1850 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1851 unsigned int value; 1852 1853 if (!uclamp_reset(attr, clamp_id, uc_se)) 1854 continue; 1855 1856 /* 1857 * RT by default have a 100% boost value that could be modified 1858 * at runtime. 1859 */ 1860 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1861 value = sysctl_sched_uclamp_util_min_rt_default; 1862 else 1863 value = uclamp_none(clamp_id); 1864 1865 uclamp_se_set(uc_se, value, false); 1866 1867 } 1868 1869 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1870 return; 1871 1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1873 attr->sched_util_min != -1) { 1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1875 attr->sched_util_min, true); 1876 } 1877 1878 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1879 attr->sched_util_max != -1) { 1880 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1881 attr->sched_util_max, true); 1882 } 1883 } 1884 1885 static void uclamp_fork(struct task_struct *p) 1886 { 1887 enum uclamp_id clamp_id; 1888 1889 /* 1890 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1891 * as the task is still at its early fork stages. 1892 */ 1893 for_each_clamp_id(clamp_id) 1894 p->uclamp[clamp_id].active = false; 1895 1896 if (likely(!p->sched_reset_on_fork)) 1897 return; 1898 1899 for_each_clamp_id(clamp_id) { 1900 uclamp_se_set(&p->uclamp_req[clamp_id], 1901 uclamp_none(clamp_id), false); 1902 } 1903 } 1904 1905 static void uclamp_post_fork(struct task_struct *p) 1906 { 1907 uclamp_update_util_min_rt_default(p); 1908 } 1909 1910 static void __init init_uclamp_rq(struct rq *rq) 1911 { 1912 enum uclamp_id clamp_id; 1913 struct uclamp_rq *uc_rq = rq->uclamp; 1914 1915 for_each_clamp_id(clamp_id) { 1916 uc_rq[clamp_id] = (struct uclamp_rq) { 1917 .value = uclamp_none(clamp_id) 1918 }; 1919 } 1920 1921 rq->uclamp_flags = 0; 1922 } 1923 1924 static void __init init_uclamp(void) 1925 { 1926 struct uclamp_se uc_max = {}; 1927 enum uclamp_id clamp_id; 1928 int cpu; 1929 1930 for_each_possible_cpu(cpu) 1931 init_uclamp_rq(cpu_rq(cpu)); 1932 1933 for_each_clamp_id(clamp_id) { 1934 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1935 uclamp_none(clamp_id), false); 1936 } 1937 1938 /* System defaults allow max clamp values for both indexes */ 1939 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1940 for_each_clamp_id(clamp_id) { 1941 uclamp_default[clamp_id] = uc_max; 1942 #ifdef CONFIG_UCLAMP_TASK_GROUP 1943 root_task_group.uclamp_req[clamp_id] = uc_max; 1944 root_task_group.uclamp[clamp_id] = uc_max; 1945 #endif 1946 } 1947 } 1948 1949 #else /* CONFIG_UCLAMP_TASK */ 1950 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1951 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1952 static inline int uclamp_validate(struct task_struct *p, 1953 const struct sched_attr *attr) 1954 { 1955 return -EOPNOTSUPP; 1956 } 1957 static void __setscheduler_uclamp(struct task_struct *p, 1958 const struct sched_attr *attr) { } 1959 static inline void uclamp_fork(struct task_struct *p) { } 1960 static inline void uclamp_post_fork(struct task_struct *p) { } 1961 static inline void init_uclamp(void) { } 1962 #endif /* CONFIG_UCLAMP_TASK */ 1963 1964 bool sched_task_on_rq(struct task_struct *p) 1965 { 1966 return task_on_rq_queued(p); 1967 } 1968 1969 unsigned long get_wchan(struct task_struct *p) 1970 { 1971 unsigned long ip = 0; 1972 unsigned int state; 1973 1974 if (!p || p == current) 1975 return 0; 1976 1977 /* Only get wchan if task is blocked and we can keep it that way. */ 1978 raw_spin_lock_irq(&p->pi_lock); 1979 state = READ_ONCE(p->__state); 1980 smp_rmb(); /* see try_to_wake_up() */ 1981 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1982 ip = __get_wchan(p); 1983 raw_spin_unlock_irq(&p->pi_lock); 1984 1985 return ip; 1986 } 1987 1988 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1989 { 1990 if (!(flags & ENQUEUE_NOCLOCK)) 1991 update_rq_clock(rq); 1992 1993 if (!(flags & ENQUEUE_RESTORE)) { 1994 sched_info_enqueue(rq, p); 1995 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1996 } 1997 1998 uclamp_rq_inc(rq, p); 1999 p->sched_class->enqueue_task(rq, p, flags); 2000 2001 if (sched_core_enabled(rq)) 2002 sched_core_enqueue(rq, p); 2003 } 2004 2005 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2006 { 2007 if (sched_core_enabled(rq)) 2008 sched_core_dequeue(rq, p); 2009 2010 if (!(flags & DEQUEUE_NOCLOCK)) 2011 update_rq_clock(rq); 2012 2013 if (!(flags & DEQUEUE_SAVE)) { 2014 sched_info_dequeue(rq, p); 2015 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2016 } 2017 2018 uclamp_rq_dec(rq, p); 2019 p->sched_class->dequeue_task(rq, p, flags); 2020 } 2021 2022 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2023 { 2024 enqueue_task(rq, p, flags); 2025 2026 p->on_rq = TASK_ON_RQ_QUEUED; 2027 } 2028 2029 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2030 { 2031 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2032 2033 dequeue_task(rq, p, flags); 2034 } 2035 2036 static inline int __normal_prio(int policy, int rt_prio, int nice) 2037 { 2038 int prio; 2039 2040 if (dl_policy(policy)) 2041 prio = MAX_DL_PRIO - 1; 2042 else if (rt_policy(policy)) 2043 prio = MAX_RT_PRIO - 1 - rt_prio; 2044 else 2045 prio = NICE_TO_PRIO(nice); 2046 2047 return prio; 2048 } 2049 2050 /* 2051 * Calculate the expected normal priority: i.e. priority 2052 * without taking RT-inheritance into account. Might be 2053 * boosted by interactivity modifiers. Changes upon fork, 2054 * setprio syscalls, and whenever the interactivity 2055 * estimator recalculates. 2056 */ 2057 static inline int normal_prio(struct task_struct *p) 2058 { 2059 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2060 } 2061 2062 /* 2063 * Calculate the current priority, i.e. the priority 2064 * taken into account by the scheduler. This value might 2065 * be boosted by RT tasks, or might be boosted by 2066 * interactivity modifiers. Will be RT if the task got 2067 * RT-boosted. If not then it returns p->normal_prio. 2068 */ 2069 static int effective_prio(struct task_struct *p) 2070 { 2071 p->normal_prio = normal_prio(p); 2072 /* 2073 * If we are RT tasks or we were boosted to RT priority, 2074 * keep the priority unchanged. Otherwise, update priority 2075 * to the normal priority: 2076 */ 2077 if (!rt_prio(p->prio)) 2078 return p->normal_prio; 2079 return p->prio; 2080 } 2081 2082 /** 2083 * task_curr - is this task currently executing on a CPU? 2084 * @p: the task in question. 2085 * 2086 * Return: 1 if the task is currently executing. 0 otherwise. 2087 */ 2088 inline int task_curr(const struct task_struct *p) 2089 { 2090 return cpu_curr(task_cpu(p)) == p; 2091 } 2092 2093 /* 2094 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2095 * use the balance_callback list if you want balancing. 2096 * 2097 * this means any call to check_class_changed() must be followed by a call to 2098 * balance_callback(). 2099 */ 2100 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2101 const struct sched_class *prev_class, 2102 int oldprio) 2103 { 2104 if (prev_class != p->sched_class) { 2105 if (prev_class->switched_from) 2106 prev_class->switched_from(rq, p); 2107 2108 p->sched_class->switched_to(rq, p); 2109 } else if (oldprio != p->prio || dl_task(p)) 2110 p->sched_class->prio_changed(rq, p, oldprio); 2111 } 2112 2113 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2114 { 2115 if (p->sched_class == rq->curr->sched_class) 2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2117 else if (p->sched_class > rq->curr->sched_class) 2118 resched_curr(rq); 2119 2120 /* 2121 * A queue event has occurred, and we're going to schedule. In 2122 * this case, we can save a useless back to back clock update. 2123 */ 2124 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2125 rq_clock_skip_update(rq); 2126 } 2127 2128 #ifdef CONFIG_SMP 2129 2130 static void 2131 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2132 2133 static int __set_cpus_allowed_ptr(struct task_struct *p, 2134 const struct cpumask *new_mask, 2135 u32 flags); 2136 2137 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2138 { 2139 if (likely(!p->migration_disabled)) 2140 return; 2141 2142 if (p->cpus_ptr != &p->cpus_mask) 2143 return; 2144 2145 /* 2146 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2147 */ 2148 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2149 } 2150 2151 void migrate_disable(void) 2152 { 2153 struct task_struct *p = current; 2154 2155 if (p->migration_disabled) { 2156 p->migration_disabled++; 2157 return; 2158 } 2159 2160 preempt_disable(); 2161 this_rq()->nr_pinned++; 2162 p->migration_disabled = 1; 2163 preempt_enable(); 2164 } 2165 EXPORT_SYMBOL_GPL(migrate_disable); 2166 2167 void migrate_enable(void) 2168 { 2169 struct task_struct *p = current; 2170 2171 if (p->migration_disabled > 1) { 2172 p->migration_disabled--; 2173 return; 2174 } 2175 2176 /* 2177 * Ensure stop_task runs either before or after this, and that 2178 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2179 */ 2180 preempt_disable(); 2181 if (p->cpus_ptr != &p->cpus_mask) 2182 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2183 /* 2184 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2185 * regular cpus_mask, otherwise things that race (eg. 2186 * select_fallback_rq) get confused. 2187 */ 2188 barrier(); 2189 p->migration_disabled = 0; 2190 this_rq()->nr_pinned--; 2191 preempt_enable(); 2192 } 2193 EXPORT_SYMBOL_GPL(migrate_enable); 2194 2195 static inline bool rq_has_pinned_tasks(struct rq *rq) 2196 { 2197 return rq->nr_pinned; 2198 } 2199 2200 /* 2201 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2202 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2203 */ 2204 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2205 { 2206 /* When not in the task's cpumask, no point in looking further. */ 2207 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2208 return false; 2209 2210 /* migrate_disabled() must be allowed to finish. */ 2211 if (is_migration_disabled(p)) 2212 return cpu_online(cpu); 2213 2214 /* Non kernel threads are not allowed during either online or offline. */ 2215 if (!(p->flags & PF_KTHREAD)) 2216 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2217 2218 /* KTHREAD_IS_PER_CPU is always allowed. */ 2219 if (kthread_is_per_cpu(p)) 2220 return cpu_online(cpu); 2221 2222 /* Regular kernel threads don't get to stay during offline. */ 2223 if (cpu_dying(cpu)) 2224 return false; 2225 2226 /* But are allowed during online. */ 2227 return cpu_online(cpu); 2228 } 2229 2230 /* 2231 * This is how migration works: 2232 * 2233 * 1) we invoke migration_cpu_stop() on the target CPU using 2234 * stop_one_cpu(). 2235 * 2) stopper starts to run (implicitly forcing the migrated thread 2236 * off the CPU) 2237 * 3) it checks whether the migrated task is still in the wrong runqueue. 2238 * 4) if it's in the wrong runqueue then the migration thread removes 2239 * it and puts it into the right queue. 2240 * 5) stopper completes and stop_one_cpu() returns and the migration 2241 * is done. 2242 */ 2243 2244 /* 2245 * move_queued_task - move a queued task to new rq. 2246 * 2247 * Returns (locked) new rq. Old rq's lock is released. 2248 */ 2249 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2250 struct task_struct *p, int new_cpu) 2251 { 2252 lockdep_assert_rq_held(rq); 2253 2254 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2255 set_task_cpu(p, new_cpu); 2256 rq_unlock(rq, rf); 2257 2258 rq = cpu_rq(new_cpu); 2259 2260 rq_lock(rq, rf); 2261 BUG_ON(task_cpu(p) != new_cpu); 2262 activate_task(rq, p, 0); 2263 check_preempt_curr(rq, p, 0); 2264 2265 return rq; 2266 } 2267 2268 struct migration_arg { 2269 struct task_struct *task; 2270 int dest_cpu; 2271 struct set_affinity_pending *pending; 2272 }; 2273 2274 /* 2275 * @refs: number of wait_for_completion() 2276 * @stop_pending: is @stop_work in use 2277 */ 2278 struct set_affinity_pending { 2279 refcount_t refs; 2280 unsigned int stop_pending; 2281 struct completion done; 2282 struct cpu_stop_work stop_work; 2283 struct migration_arg arg; 2284 }; 2285 2286 /* 2287 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2288 * this because either it can't run here any more (set_cpus_allowed() 2289 * away from this CPU, or CPU going down), or because we're 2290 * attempting to rebalance this task on exec (sched_exec). 2291 * 2292 * So we race with normal scheduler movements, but that's OK, as long 2293 * as the task is no longer on this CPU. 2294 */ 2295 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2296 struct task_struct *p, int dest_cpu) 2297 { 2298 /* Affinity changed (again). */ 2299 if (!is_cpu_allowed(p, dest_cpu)) 2300 return rq; 2301 2302 update_rq_clock(rq); 2303 rq = move_queued_task(rq, rf, p, dest_cpu); 2304 2305 return rq; 2306 } 2307 2308 /* 2309 * migration_cpu_stop - this will be executed by a highprio stopper thread 2310 * and performs thread migration by bumping thread off CPU then 2311 * 'pushing' onto another runqueue. 2312 */ 2313 static int migration_cpu_stop(void *data) 2314 { 2315 struct migration_arg *arg = data; 2316 struct set_affinity_pending *pending = arg->pending; 2317 struct task_struct *p = arg->task; 2318 struct rq *rq = this_rq(); 2319 bool complete = false; 2320 struct rq_flags rf; 2321 2322 /* 2323 * The original target CPU might have gone down and we might 2324 * be on another CPU but it doesn't matter. 2325 */ 2326 local_irq_save(rf.flags); 2327 /* 2328 * We need to explicitly wake pending tasks before running 2329 * __migrate_task() such that we will not miss enforcing cpus_ptr 2330 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2331 */ 2332 flush_smp_call_function_from_idle(); 2333 2334 raw_spin_lock(&p->pi_lock); 2335 rq_lock(rq, &rf); 2336 2337 /* 2338 * If we were passed a pending, then ->stop_pending was set, thus 2339 * p->migration_pending must have remained stable. 2340 */ 2341 WARN_ON_ONCE(pending && pending != p->migration_pending); 2342 2343 /* 2344 * If task_rq(p) != rq, it cannot be migrated here, because we're 2345 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2346 * we're holding p->pi_lock. 2347 */ 2348 if (task_rq(p) == rq) { 2349 if (is_migration_disabled(p)) 2350 goto out; 2351 2352 if (pending) { 2353 p->migration_pending = NULL; 2354 complete = true; 2355 2356 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2357 goto out; 2358 } 2359 2360 if (task_on_rq_queued(p)) 2361 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2362 else 2363 p->wake_cpu = arg->dest_cpu; 2364 2365 /* 2366 * XXX __migrate_task() can fail, at which point we might end 2367 * up running on a dodgy CPU, AFAICT this can only happen 2368 * during CPU hotplug, at which point we'll get pushed out 2369 * anyway, so it's probably not a big deal. 2370 */ 2371 2372 } else if (pending) { 2373 /* 2374 * This happens when we get migrated between migrate_enable()'s 2375 * preempt_enable() and scheduling the stopper task. At that 2376 * point we're a regular task again and not current anymore. 2377 * 2378 * A !PREEMPT kernel has a giant hole here, which makes it far 2379 * more likely. 2380 */ 2381 2382 /* 2383 * The task moved before the stopper got to run. We're holding 2384 * ->pi_lock, so the allowed mask is stable - if it got 2385 * somewhere allowed, we're done. 2386 */ 2387 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2388 p->migration_pending = NULL; 2389 complete = true; 2390 goto out; 2391 } 2392 2393 /* 2394 * When migrate_enable() hits a rq mis-match we can't reliably 2395 * determine is_migration_disabled() and so have to chase after 2396 * it. 2397 */ 2398 WARN_ON_ONCE(!pending->stop_pending); 2399 task_rq_unlock(rq, p, &rf); 2400 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2401 &pending->arg, &pending->stop_work); 2402 return 0; 2403 } 2404 out: 2405 if (pending) 2406 pending->stop_pending = false; 2407 task_rq_unlock(rq, p, &rf); 2408 2409 if (complete) 2410 complete_all(&pending->done); 2411 2412 return 0; 2413 } 2414 2415 int push_cpu_stop(void *arg) 2416 { 2417 struct rq *lowest_rq = NULL, *rq = this_rq(); 2418 struct task_struct *p = arg; 2419 2420 raw_spin_lock_irq(&p->pi_lock); 2421 raw_spin_rq_lock(rq); 2422 2423 if (task_rq(p) != rq) 2424 goto out_unlock; 2425 2426 if (is_migration_disabled(p)) { 2427 p->migration_flags |= MDF_PUSH; 2428 goto out_unlock; 2429 } 2430 2431 p->migration_flags &= ~MDF_PUSH; 2432 2433 if (p->sched_class->find_lock_rq) 2434 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2435 2436 if (!lowest_rq) 2437 goto out_unlock; 2438 2439 // XXX validate p is still the highest prio task 2440 if (task_rq(p) == rq) { 2441 deactivate_task(rq, p, 0); 2442 set_task_cpu(p, lowest_rq->cpu); 2443 activate_task(lowest_rq, p, 0); 2444 resched_curr(lowest_rq); 2445 } 2446 2447 double_unlock_balance(rq, lowest_rq); 2448 2449 out_unlock: 2450 rq->push_busy = false; 2451 raw_spin_rq_unlock(rq); 2452 raw_spin_unlock_irq(&p->pi_lock); 2453 2454 put_task_struct(p); 2455 return 0; 2456 } 2457 2458 /* 2459 * sched_class::set_cpus_allowed must do the below, but is not required to 2460 * actually call this function. 2461 */ 2462 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2463 { 2464 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2465 p->cpus_ptr = new_mask; 2466 return; 2467 } 2468 2469 cpumask_copy(&p->cpus_mask, new_mask); 2470 p->nr_cpus_allowed = cpumask_weight(new_mask); 2471 } 2472 2473 static void 2474 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2475 { 2476 struct rq *rq = task_rq(p); 2477 bool queued, running; 2478 2479 /* 2480 * This here violates the locking rules for affinity, since we're only 2481 * supposed to change these variables while holding both rq->lock and 2482 * p->pi_lock. 2483 * 2484 * HOWEVER, it magically works, because ttwu() is the only code that 2485 * accesses these variables under p->pi_lock and only does so after 2486 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2487 * before finish_task(). 2488 * 2489 * XXX do further audits, this smells like something putrid. 2490 */ 2491 if (flags & SCA_MIGRATE_DISABLE) 2492 SCHED_WARN_ON(!p->on_cpu); 2493 else 2494 lockdep_assert_held(&p->pi_lock); 2495 2496 queued = task_on_rq_queued(p); 2497 running = task_current(rq, p); 2498 2499 if (queued) { 2500 /* 2501 * Because __kthread_bind() calls this on blocked tasks without 2502 * holding rq->lock. 2503 */ 2504 lockdep_assert_rq_held(rq); 2505 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2506 } 2507 if (running) 2508 put_prev_task(rq, p); 2509 2510 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2511 2512 if (queued) 2513 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2514 if (running) 2515 set_next_task(rq, p); 2516 } 2517 2518 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2519 { 2520 __do_set_cpus_allowed(p, new_mask, 0); 2521 } 2522 2523 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2524 int node) 2525 { 2526 if (!src->user_cpus_ptr) 2527 return 0; 2528 2529 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2530 if (!dst->user_cpus_ptr) 2531 return -ENOMEM; 2532 2533 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2534 return 0; 2535 } 2536 2537 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2538 { 2539 struct cpumask *user_mask = NULL; 2540 2541 swap(p->user_cpus_ptr, user_mask); 2542 2543 return user_mask; 2544 } 2545 2546 void release_user_cpus_ptr(struct task_struct *p) 2547 { 2548 kfree(clear_user_cpus_ptr(p)); 2549 } 2550 2551 /* 2552 * This function is wildly self concurrent; here be dragons. 2553 * 2554 * 2555 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2556 * designated task is enqueued on an allowed CPU. If that task is currently 2557 * running, we have to kick it out using the CPU stopper. 2558 * 2559 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2560 * Consider: 2561 * 2562 * Initial conditions: P0->cpus_mask = [0, 1] 2563 * 2564 * P0@CPU0 P1 2565 * 2566 * migrate_disable(); 2567 * <preempted> 2568 * set_cpus_allowed_ptr(P0, [1]); 2569 * 2570 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2571 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2572 * This means we need the following scheme: 2573 * 2574 * P0@CPU0 P1 2575 * 2576 * migrate_disable(); 2577 * <preempted> 2578 * set_cpus_allowed_ptr(P0, [1]); 2579 * <blocks> 2580 * <resumes> 2581 * migrate_enable(); 2582 * __set_cpus_allowed_ptr(); 2583 * <wakes local stopper> 2584 * `--> <woken on migration completion> 2585 * 2586 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2587 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2588 * task p are serialized by p->pi_lock, which we can leverage: the one that 2589 * should come into effect at the end of the Migrate-Disable region is the last 2590 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2591 * but we still need to properly signal those waiting tasks at the appropriate 2592 * moment. 2593 * 2594 * This is implemented using struct set_affinity_pending. The first 2595 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2596 * setup an instance of that struct and install it on the targeted task_struct. 2597 * Any and all further callers will reuse that instance. Those then wait for 2598 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2599 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2600 * 2601 * 2602 * (1) In the cases covered above. There is one more where the completion is 2603 * signaled within affine_move_task() itself: when a subsequent affinity request 2604 * occurs after the stopper bailed out due to the targeted task still being 2605 * Migrate-Disable. Consider: 2606 * 2607 * Initial conditions: P0->cpus_mask = [0, 1] 2608 * 2609 * CPU0 P1 P2 2610 * <P0> 2611 * migrate_disable(); 2612 * <preempted> 2613 * set_cpus_allowed_ptr(P0, [1]); 2614 * <blocks> 2615 * <migration/0> 2616 * migration_cpu_stop() 2617 * is_migration_disabled() 2618 * <bails> 2619 * set_cpus_allowed_ptr(P0, [0, 1]); 2620 * <signal completion> 2621 * <awakes> 2622 * 2623 * Note that the above is safe vs a concurrent migrate_enable(), as any 2624 * pending affinity completion is preceded by an uninstallation of 2625 * p->migration_pending done with p->pi_lock held. 2626 */ 2627 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2628 int dest_cpu, unsigned int flags) 2629 { 2630 struct set_affinity_pending my_pending = { }, *pending = NULL; 2631 bool stop_pending, complete = false; 2632 2633 /* Can the task run on the task's current CPU? If so, we're done */ 2634 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2635 struct task_struct *push_task = NULL; 2636 2637 if ((flags & SCA_MIGRATE_ENABLE) && 2638 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2639 rq->push_busy = true; 2640 push_task = get_task_struct(p); 2641 } 2642 2643 /* 2644 * If there are pending waiters, but no pending stop_work, 2645 * then complete now. 2646 */ 2647 pending = p->migration_pending; 2648 if (pending && !pending->stop_pending) { 2649 p->migration_pending = NULL; 2650 complete = true; 2651 } 2652 2653 task_rq_unlock(rq, p, rf); 2654 2655 if (push_task) { 2656 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2657 p, &rq->push_work); 2658 } 2659 2660 if (complete) 2661 complete_all(&pending->done); 2662 2663 return 0; 2664 } 2665 2666 if (!(flags & SCA_MIGRATE_ENABLE)) { 2667 /* serialized by p->pi_lock */ 2668 if (!p->migration_pending) { 2669 /* Install the request */ 2670 refcount_set(&my_pending.refs, 1); 2671 init_completion(&my_pending.done); 2672 my_pending.arg = (struct migration_arg) { 2673 .task = p, 2674 .dest_cpu = dest_cpu, 2675 .pending = &my_pending, 2676 }; 2677 2678 p->migration_pending = &my_pending; 2679 } else { 2680 pending = p->migration_pending; 2681 refcount_inc(&pending->refs); 2682 /* 2683 * Affinity has changed, but we've already installed a 2684 * pending. migration_cpu_stop() *must* see this, else 2685 * we risk a completion of the pending despite having a 2686 * task on a disallowed CPU. 2687 * 2688 * Serialized by p->pi_lock, so this is safe. 2689 */ 2690 pending->arg.dest_cpu = dest_cpu; 2691 } 2692 } 2693 pending = p->migration_pending; 2694 /* 2695 * - !MIGRATE_ENABLE: 2696 * we'll have installed a pending if there wasn't one already. 2697 * 2698 * - MIGRATE_ENABLE: 2699 * we're here because the current CPU isn't matching anymore, 2700 * the only way that can happen is because of a concurrent 2701 * set_cpus_allowed_ptr() call, which should then still be 2702 * pending completion. 2703 * 2704 * Either way, we really should have a @pending here. 2705 */ 2706 if (WARN_ON_ONCE(!pending)) { 2707 task_rq_unlock(rq, p, rf); 2708 return -EINVAL; 2709 } 2710 2711 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2712 /* 2713 * MIGRATE_ENABLE gets here because 'p == current', but for 2714 * anything else we cannot do is_migration_disabled(), punt 2715 * and have the stopper function handle it all race-free. 2716 */ 2717 stop_pending = pending->stop_pending; 2718 if (!stop_pending) 2719 pending->stop_pending = true; 2720 2721 if (flags & SCA_MIGRATE_ENABLE) 2722 p->migration_flags &= ~MDF_PUSH; 2723 2724 task_rq_unlock(rq, p, rf); 2725 2726 if (!stop_pending) { 2727 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2728 &pending->arg, &pending->stop_work); 2729 } 2730 2731 if (flags & SCA_MIGRATE_ENABLE) 2732 return 0; 2733 } else { 2734 2735 if (!is_migration_disabled(p)) { 2736 if (task_on_rq_queued(p)) 2737 rq = move_queued_task(rq, rf, p, dest_cpu); 2738 2739 if (!pending->stop_pending) { 2740 p->migration_pending = NULL; 2741 complete = true; 2742 } 2743 } 2744 task_rq_unlock(rq, p, rf); 2745 2746 if (complete) 2747 complete_all(&pending->done); 2748 } 2749 2750 wait_for_completion(&pending->done); 2751 2752 if (refcount_dec_and_test(&pending->refs)) 2753 wake_up_var(&pending->refs); /* No UaF, just an address */ 2754 2755 /* 2756 * Block the original owner of &pending until all subsequent callers 2757 * have seen the completion and decremented the refcount 2758 */ 2759 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2760 2761 /* ARGH */ 2762 WARN_ON_ONCE(my_pending.stop_pending); 2763 2764 return 0; 2765 } 2766 2767 /* 2768 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2769 */ 2770 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2771 const struct cpumask *new_mask, 2772 u32 flags, 2773 struct rq *rq, 2774 struct rq_flags *rf) 2775 __releases(rq->lock) 2776 __releases(p->pi_lock) 2777 { 2778 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2779 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2780 bool kthread = p->flags & PF_KTHREAD; 2781 struct cpumask *user_mask = NULL; 2782 unsigned int dest_cpu; 2783 int ret = 0; 2784 2785 update_rq_clock(rq); 2786 2787 if (kthread || is_migration_disabled(p)) { 2788 /* 2789 * Kernel threads are allowed on online && !active CPUs, 2790 * however, during cpu-hot-unplug, even these might get pushed 2791 * away if not KTHREAD_IS_PER_CPU. 2792 * 2793 * Specifically, migration_disabled() tasks must not fail the 2794 * cpumask_any_and_distribute() pick below, esp. so on 2795 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2796 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2797 */ 2798 cpu_valid_mask = cpu_online_mask; 2799 } 2800 2801 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2802 ret = -EINVAL; 2803 goto out; 2804 } 2805 2806 /* 2807 * Must re-check here, to close a race against __kthread_bind(), 2808 * sched_setaffinity() is not guaranteed to observe the flag. 2809 */ 2810 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2811 ret = -EINVAL; 2812 goto out; 2813 } 2814 2815 if (!(flags & SCA_MIGRATE_ENABLE)) { 2816 if (cpumask_equal(&p->cpus_mask, new_mask)) 2817 goto out; 2818 2819 if (WARN_ON_ONCE(p == current && 2820 is_migration_disabled(p) && 2821 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2822 ret = -EBUSY; 2823 goto out; 2824 } 2825 } 2826 2827 /* 2828 * Picking a ~random cpu helps in cases where we are changing affinity 2829 * for groups of tasks (ie. cpuset), so that load balancing is not 2830 * immediately required to distribute the tasks within their new mask. 2831 */ 2832 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2833 if (dest_cpu >= nr_cpu_ids) { 2834 ret = -EINVAL; 2835 goto out; 2836 } 2837 2838 __do_set_cpus_allowed(p, new_mask, flags); 2839 2840 if (flags & SCA_USER) 2841 user_mask = clear_user_cpus_ptr(p); 2842 2843 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2844 2845 kfree(user_mask); 2846 2847 return ret; 2848 2849 out: 2850 task_rq_unlock(rq, p, rf); 2851 2852 return ret; 2853 } 2854 2855 /* 2856 * Change a given task's CPU affinity. Migrate the thread to a 2857 * proper CPU and schedule it away if the CPU it's executing on 2858 * is removed from the allowed bitmask. 2859 * 2860 * NOTE: the caller must have a valid reference to the task, the 2861 * task must not exit() & deallocate itself prematurely. The 2862 * call is not atomic; no spinlocks may be held. 2863 */ 2864 static int __set_cpus_allowed_ptr(struct task_struct *p, 2865 const struct cpumask *new_mask, u32 flags) 2866 { 2867 struct rq_flags rf; 2868 struct rq *rq; 2869 2870 rq = task_rq_lock(p, &rf); 2871 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2872 } 2873 2874 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2875 { 2876 return __set_cpus_allowed_ptr(p, new_mask, 0); 2877 } 2878 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2879 2880 /* 2881 * Change a given task's CPU affinity to the intersection of its current 2882 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2883 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2884 * If the resulting mask is empty, leave the affinity unchanged and return 2885 * -EINVAL. 2886 */ 2887 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2888 struct cpumask *new_mask, 2889 const struct cpumask *subset_mask) 2890 { 2891 struct cpumask *user_mask = NULL; 2892 struct rq_flags rf; 2893 struct rq *rq; 2894 int err; 2895 2896 if (!p->user_cpus_ptr) { 2897 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2898 if (!user_mask) 2899 return -ENOMEM; 2900 } 2901 2902 rq = task_rq_lock(p, &rf); 2903 2904 /* 2905 * Forcefully restricting the affinity of a deadline task is 2906 * likely to cause problems, so fail and noisily override the 2907 * mask entirely. 2908 */ 2909 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2910 err = -EPERM; 2911 goto err_unlock; 2912 } 2913 2914 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2915 err = -EINVAL; 2916 goto err_unlock; 2917 } 2918 2919 /* 2920 * We're about to butcher the task affinity, so keep track of what 2921 * the user asked for in case we're able to restore it later on. 2922 */ 2923 if (user_mask) { 2924 cpumask_copy(user_mask, p->cpus_ptr); 2925 p->user_cpus_ptr = user_mask; 2926 } 2927 2928 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2929 2930 err_unlock: 2931 task_rq_unlock(rq, p, &rf); 2932 kfree(user_mask); 2933 return err; 2934 } 2935 2936 /* 2937 * Restrict the CPU affinity of task @p so that it is a subset of 2938 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 2939 * old affinity mask. If the resulting mask is empty, we warn and walk 2940 * up the cpuset hierarchy until we find a suitable mask. 2941 */ 2942 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 2943 { 2944 cpumask_var_t new_mask; 2945 const struct cpumask *override_mask = task_cpu_possible_mask(p); 2946 2947 alloc_cpumask_var(&new_mask, GFP_KERNEL); 2948 2949 /* 2950 * __migrate_task() can fail silently in the face of concurrent 2951 * offlining of the chosen destination CPU, so take the hotplug 2952 * lock to ensure that the migration succeeds. 2953 */ 2954 cpus_read_lock(); 2955 if (!cpumask_available(new_mask)) 2956 goto out_set_mask; 2957 2958 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 2959 goto out_free_mask; 2960 2961 /* 2962 * We failed to find a valid subset of the affinity mask for the 2963 * task, so override it based on its cpuset hierarchy. 2964 */ 2965 cpuset_cpus_allowed(p, new_mask); 2966 override_mask = new_mask; 2967 2968 out_set_mask: 2969 if (printk_ratelimit()) { 2970 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 2971 task_pid_nr(p), p->comm, 2972 cpumask_pr_args(override_mask)); 2973 } 2974 2975 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 2976 out_free_mask: 2977 cpus_read_unlock(); 2978 free_cpumask_var(new_mask); 2979 } 2980 2981 static int 2982 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 2983 2984 /* 2985 * Restore the affinity of a task @p which was previously restricted by a 2986 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 2987 * @p->user_cpus_ptr. 2988 * 2989 * It is the caller's responsibility to serialise this with any calls to 2990 * force_compatible_cpus_allowed_ptr(@p). 2991 */ 2992 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 2993 { 2994 struct cpumask *user_mask = p->user_cpus_ptr; 2995 unsigned long flags; 2996 2997 /* 2998 * Try to restore the old affinity mask. If this fails, then 2999 * we free the mask explicitly to avoid it being inherited across 3000 * a subsequent fork(). 3001 */ 3002 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3003 return; 3004 3005 raw_spin_lock_irqsave(&p->pi_lock, flags); 3006 user_mask = clear_user_cpus_ptr(p); 3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3008 3009 kfree(user_mask); 3010 } 3011 3012 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3013 { 3014 #ifdef CONFIG_SCHED_DEBUG 3015 unsigned int state = READ_ONCE(p->__state); 3016 3017 /* 3018 * We should never call set_task_cpu() on a blocked task, 3019 * ttwu() will sort out the placement. 3020 */ 3021 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3022 3023 /* 3024 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3025 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3026 * time relying on p->on_rq. 3027 */ 3028 WARN_ON_ONCE(state == TASK_RUNNING && 3029 p->sched_class == &fair_sched_class && 3030 (p->on_rq && !task_on_rq_migrating(p))); 3031 3032 #ifdef CONFIG_LOCKDEP 3033 /* 3034 * The caller should hold either p->pi_lock or rq->lock, when changing 3035 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3036 * 3037 * sched_move_task() holds both and thus holding either pins the cgroup, 3038 * see task_group(). 3039 * 3040 * Furthermore, all task_rq users should acquire both locks, see 3041 * task_rq_lock(). 3042 */ 3043 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3044 lockdep_is_held(__rq_lockp(task_rq(p))))); 3045 #endif 3046 /* 3047 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3048 */ 3049 WARN_ON_ONCE(!cpu_online(new_cpu)); 3050 3051 WARN_ON_ONCE(is_migration_disabled(p)); 3052 #endif 3053 3054 trace_sched_migrate_task(p, new_cpu); 3055 3056 if (task_cpu(p) != new_cpu) { 3057 if (p->sched_class->migrate_task_rq) 3058 p->sched_class->migrate_task_rq(p, new_cpu); 3059 p->se.nr_migrations++; 3060 rseq_migrate(p); 3061 perf_event_task_migrate(p); 3062 } 3063 3064 __set_task_cpu(p, new_cpu); 3065 } 3066 3067 #ifdef CONFIG_NUMA_BALANCING 3068 static void __migrate_swap_task(struct task_struct *p, int cpu) 3069 { 3070 if (task_on_rq_queued(p)) { 3071 struct rq *src_rq, *dst_rq; 3072 struct rq_flags srf, drf; 3073 3074 src_rq = task_rq(p); 3075 dst_rq = cpu_rq(cpu); 3076 3077 rq_pin_lock(src_rq, &srf); 3078 rq_pin_lock(dst_rq, &drf); 3079 3080 deactivate_task(src_rq, p, 0); 3081 set_task_cpu(p, cpu); 3082 activate_task(dst_rq, p, 0); 3083 check_preempt_curr(dst_rq, p, 0); 3084 3085 rq_unpin_lock(dst_rq, &drf); 3086 rq_unpin_lock(src_rq, &srf); 3087 3088 } else { 3089 /* 3090 * Task isn't running anymore; make it appear like we migrated 3091 * it before it went to sleep. This means on wakeup we make the 3092 * previous CPU our target instead of where it really is. 3093 */ 3094 p->wake_cpu = cpu; 3095 } 3096 } 3097 3098 struct migration_swap_arg { 3099 struct task_struct *src_task, *dst_task; 3100 int src_cpu, dst_cpu; 3101 }; 3102 3103 static int migrate_swap_stop(void *data) 3104 { 3105 struct migration_swap_arg *arg = data; 3106 struct rq *src_rq, *dst_rq; 3107 int ret = -EAGAIN; 3108 3109 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3110 return -EAGAIN; 3111 3112 src_rq = cpu_rq(arg->src_cpu); 3113 dst_rq = cpu_rq(arg->dst_cpu); 3114 3115 double_raw_lock(&arg->src_task->pi_lock, 3116 &arg->dst_task->pi_lock); 3117 double_rq_lock(src_rq, dst_rq); 3118 3119 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3120 goto unlock; 3121 3122 if (task_cpu(arg->src_task) != arg->src_cpu) 3123 goto unlock; 3124 3125 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3126 goto unlock; 3127 3128 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3129 goto unlock; 3130 3131 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3132 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3133 3134 ret = 0; 3135 3136 unlock: 3137 double_rq_unlock(src_rq, dst_rq); 3138 raw_spin_unlock(&arg->dst_task->pi_lock); 3139 raw_spin_unlock(&arg->src_task->pi_lock); 3140 3141 return ret; 3142 } 3143 3144 /* 3145 * Cross migrate two tasks 3146 */ 3147 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3148 int target_cpu, int curr_cpu) 3149 { 3150 struct migration_swap_arg arg; 3151 int ret = -EINVAL; 3152 3153 arg = (struct migration_swap_arg){ 3154 .src_task = cur, 3155 .src_cpu = curr_cpu, 3156 .dst_task = p, 3157 .dst_cpu = target_cpu, 3158 }; 3159 3160 if (arg.src_cpu == arg.dst_cpu) 3161 goto out; 3162 3163 /* 3164 * These three tests are all lockless; this is OK since all of them 3165 * will be re-checked with proper locks held further down the line. 3166 */ 3167 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3168 goto out; 3169 3170 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3171 goto out; 3172 3173 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3174 goto out; 3175 3176 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3177 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3178 3179 out: 3180 return ret; 3181 } 3182 #endif /* CONFIG_NUMA_BALANCING */ 3183 3184 /* 3185 * wait_task_inactive - wait for a thread to unschedule. 3186 * 3187 * If @match_state is nonzero, it's the @p->state value just checked and 3188 * not expected to change. If it changes, i.e. @p might have woken up, 3189 * then return zero. When we succeed in waiting for @p to be off its CPU, 3190 * we return a positive number (its total switch count). If a second call 3191 * a short while later returns the same number, the caller can be sure that 3192 * @p has remained unscheduled the whole time. 3193 * 3194 * The caller must ensure that the task *will* unschedule sometime soon, 3195 * else this function might spin for a *long* time. This function can't 3196 * be called with interrupts off, or it may introduce deadlock with 3197 * smp_call_function() if an IPI is sent by the same process we are 3198 * waiting to become inactive. 3199 */ 3200 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3201 { 3202 int running, queued; 3203 struct rq_flags rf; 3204 unsigned long ncsw; 3205 struct rq *rq; 3206 3207 for (;;) { 3208 /* 3209 * We do the initial early heuristics without holding 3210 * any task-queue locks at all. We'll only try to get 3211 * the runqueue lock when things look like they will 3212 * work out! 3213 */ 3214 rq = task_rq(p); 3215 3216 /* 3217 * If the task is actively running on another CPU 3218 * still, just relax and busy-wait without holding 3219 * any locks. 3220 * 3221 * NOTE! Since we don't hold any locks, it's not 3222 * even sure that "rq" stays as the right runqueue! 3223 * But we don't care, since "task_running()" will 3224 * return false if the runqueue has changed and p 3225 * is actually now running somewhere else! 3226 */ 3227 while (task_running(rq, p)) { 3228 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3229 return 0; 3230 cpu_relax(); 3231 } 3232 3233 /* 3234 * Ok, time to look more closely! We need the rq 3235 * lock now, to be *sure*. If we're wrong, we'll 3236 * just go back and repeat. 3237 */ 3238 rq = task_rq_lock(p, &rf); 3239 trace_sched_wait_task(p); 3240 running = task_running(rq, p); 3241 queued = task_on_rq_queued(p); 3242 ncsw = 0; 3243 if (!match_state || READ_ONCE(p->__state) == match_state) 3244 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3245 task_rq_unlock(rq, p, &rf); 3246 3247 /* 3248 * If it changed from the expected state, bail out now. 3249 */ 3250 if (unlikely(!ncsw)) 3251 break; 3252 3253 /* 3254 * Was it really running after all now that we 3255 * checked with the proper locks actually held? 3256 * 3257 * Oops. Go back and try again.. 3258 */ 3259 if (unlikely(running)) { 3260 cpu_relax(); 3261 continue; 3262 } 3263 3264 /* 3265 * It's not enough that it's not actively running, 3266 * it must be off the runqueue _entirely_, and not 3267 * preempted! 3268 * 3269 * So if it was still runnable (but just not actively 3270 * running right now), it's preempted, and we should 3271 * yield - it could be a while. 3272 */ 3273 if (unlikely(queued)) { 3274 ktime_t to = NSEC_PER_SEC / HZ; 3275 3276 set_current_state(TASK_UNINTERRUPTIBLE); 3277 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3278 continue; 3279 } 3280 3281 /* 3282 * Ahh, all good. It wasn't running, and it wasn't 3283 * runnable, which means that it will never become 3284 * running in the future either. We're all done! 3285 */ 3286 break; 3287 } 3288 3289 return ncsw; 3290 } 3291 3292 /*** 3293 * kick_process - kick a running thread to enter/exit the kernel 3294 * @p: the to-be-kicked thread 3295 * 3296 * Cause a process which is running on another CPU to enter 3297 * kernel-mode, without any delay. (to get signals handled.) 3298 * 3299 * NOTE: this function doesn't have to take the runqueue lock, 3300 * because all it wants to ensure is that the remote task enters 3301 * the kernel. If the IPI races and the task has been migrated 3302 * to another CPU then no harm is done and the purpose has been 3303 * achieved as well. 3304 */ 3305 void kick_process(struct task_struct *p) 3306 { 3307 int cpu; 3308 3309 preempt_disable(); 3310 cpu = task_cpu(p); 3311 if ((cpu != smp_processor_id()) && task_curr(p)) 3312 smp_send_reschedule(cpu); 3313 preempt_enable(); 3314 } 3315 EXPORT_SYMBOL_GPL(kick_process); 3316 3317 /* 3318 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3319 * 3320 * A few notes on cpu_active vs cpu_online: 3321 * 3322 * - cpu_active must be a subset of cpu_online 3323 * 3324 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3325 * see __set_cpus_allowed_ptr(). At this point the newly online 3326 * CPU isn't yet part of the sched domains, and balancing will not 3327 * see it. 3328 * 3329 * - on CPU-down we clear cpu_active() to mask the sched domains and 3330 * avoid the load balancer to place new tasks on the to be removed 3331 * CPU. Existing tasks will remain running there and will be taken 3332 * off. 3333 * 3334 * This means that fallback selection must not select !active CPUs. 3335 * And can assume that any active CPU must be online. Conversely 3336 * select_task_rq() below may allow selection of !active CPUs in order 3337 * to satisfy the above rules. 3338 */ 3339 static int select_fallback_rq(int cpu, struct task_struct *p) 3340 { 3341 int nid = cpu_to_node(cpu); 3342 const struct cpumask *nodemask = NULL; 3343 enum { cpuset, possible, fail } state = cpuset; 3344 int dest_cpu; 3345 3346 /* 3347 * If the node that the CPU is on has been offlined, cpu_to_node() 3348 * will return -1. There is no CPU on the node, and we should 3349 * select the CPU on the other node. 3350 */ 3351 if (nid != -1) { 3352 nodemask = cpumask_of_node(nid); 3353 3354 /* Look for allowed, online CPU in same node. */ 3355 for_each_cpu(dest_cpu, nodemask) { 3356 if (is_cpu_allowed(p, dest_cpu)) 3357 return dest_cpu; 3358 } 3359 } 3360 3361 for (;;) { 3362 /* Any allowed, online CPU? */ 3363 for_each_cpu(dest_cpu, p->cpus_ptr) { 3364 if (!is_cpu_allowed(p, dest_cpu)) 3365 continue; 3366 3367 goto out; 3368 } 3369 3370 /* No more Mr. Nice Guy. */ 3371 switch (state) { 3372 case cpuset: 3373 if (cpuset_cpus_allowed_fallback(p)) { 3374 state = possible; 3375 break; 3376 } 3377 fallthrough; 3378 case possible: 3379 /* 3380 * XXX When called from select_task_rq() we only 3381 * hold p->pi_lock and again violate locking order. 3382 * 3383 * More yuck to audit. 3384 */ 3385 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3386 state = fail; 3387 break; 3388 case fail: 3389 BUG(); 3390 break; 3391 } 3392 } 3393 3394 out: 3395 if (state != cpuset) { 3396 /* 3397 * Don't tell them about moving exiting tasks or 3398 * kernel threads (both mm NULL), since they never 3399 * leave kernel. 3400 */ 3401 if (p->mm && printk_ratelimit()) { 3402 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3403 task_pid_nr(p), p->comm, cpu); 3404 } 3405 } 3406 3407 return dest_cpu; 3408 } 3409 3410 /* 3411 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3412 */ 3413 static inline 3414 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3415 { 3416 lockdep_assert_held(&p->pi_lock); 3417 3418 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3419 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3420 else 3421 cpu = cpumask_any(p->cpus_ptr); 3422 3423 /* 3424 * In order not to call set_task_cpu() on a blocking task we need 3425 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3426 * CPU. 3427 * 3428 * Since this is common to all placement strategies, this lives here. 3429 * 3430 * [ this allows ->select_task() to simply return task_cpu(p) and 3431 * not worry about this generic constraint ] 3432 */ 3433 if (unlikely(!is_cpu_allowed(p, cpu))) 3434 cpu = select_fallback_rq(task_cpu(p), p); 3435 3436 return cpu; 3437 } 3438 3439 void sched_set_stop_task(int cpu, struct task_struct *stop) 3440 { 3441 static struct lock_class_key stop_pi_lock; 3442 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3443 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3444 3445 if (stop) { 3446 /* 3447 * Make it appear like a SCHED_FIFO task, its something 3448 * userspace knows about and won't get confused about. 3449 * 3450 * Also, it will make PI more or less work without too 3451 * much confusion -- but then, stop work should not 3452 * rely on PI working anyway. 3453 */ 3454 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3455 3456 stop->sched_class = &stop_sched_class; 3457 3458 /* 3459 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3460 * adjust the effective priority of a task. As a result, 3461 * rt_mutex_setprio() can trigger (RT) balancing operations, 3462 * which can then trigger wakeups of the stop thread to push 3463 * around the current task. 3464 * 3465 * The stop task itself will never be part of the PI-chain, it 3466 * never blocks, therefore that ->pi_lock recursion is safe. 3467 * Tell lockdep about this by placing the stop->pi_lock in its 3468 * own class. 3469 */ 3470 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3471 } 3472 3473 cpu_rq(cpu)->stop = stop; 3474 3475 if (old_stop) { 3476 /* 3477 * Reset it back to a normal scheduling class so that 3478 * it can die in pieces. 3479 */ 3480 old_stop->sched_class = &rt_sched_class; 3481 } 3482 } 3483 3484 #else /* CONFIG_SMP */ 3485 3486 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3487 const struct cpumask *new_mask, 3488 u32 flags) 3489 { 3490 return set_cpus_allowed_ptr(p, new_mask); 3491 } 3492 3493 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3494 3495 static inline bool rq_has_pinned_tasks(struct rq *rq) 3496 { 3497 return false; 3498 } 3499 3500 #endif /* !CONFIG_SMP */ 3501 3502 static void 3503 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3504 { 3505 struct rq *rq; 3506 3507 if (!schedstat_enabled()) 3508 return; 3509 3510 rq = this_rq(); 3511 3512 #ifdef CONFIG_SMP 3513 if (cpu == rq->cpu) { 3514 __schedstat_inc(rq->ttwu_local); 3515 __schedstat_inc(p->stats.nr_wakeups_local); 3516 } else { 3517 struct sched_domain *sd; 3518 3519 __schedstat_inc(p->stats.nr_wakeups_remote); 3520 rcu_read_lock(); 3521 for_each_domain(rq->cpu, sd) { 3522 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3523 __schedstat_inc(sd->ttwu_wake_remote); 3524 break; 3525 } 3526 } 3527 rcu_read_unlock(); 3528 } 3529 3530 if (wake_flags & WF_MIGRATED) 3531 __schedstat_inc(p->stats.nr_wakeups_migrate); 3532 #endif /* CONFIG_SMP */ 3533 3534 __schedstat_inc(rq->ttwu_count); 3535 __schedstat_inc(p->stats.nr_wakeups); 3536 3537 if (wake_flags & WF_SYNC) 3538 __schedstat_inc(p->stats.nr_wakeups_sync); 3539 } 3540 3541 /* 3542 * Mark the task runnable and perform wakeup-preemption. 3543 */ 3544 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3545 struct rq_flags *rf) 3546 { 3547 check_preempt_curr(rq, p, wake_flags); 3548 WRITE_ONCE(p->__state, TASK_RUNNING); 3549 trace_sched_wakeup(p); 3550 3551 #ifdef CONFIG_SMP 3552 if (p->sched_class->task_woken) { 3553 /* 3554 * Our task @p is fully woken up and running; so it's safe to 3555 * drop the rq->lock, hereafter rq is only used for statistics. 3556 */ 3557 rq_unpin_lock(rq, rf); 3558 p->sched_class->task_woken(rq, p); 3559 rq_repin_lock(rq, rf); 3560 } 3561 3562 if (rq->idle_stamp) { 3563 u64 delta = rq_clock(rq) - rq->idle_stamp; 3564 u64 max = 2*rq->max_idle_balance_cost; 3565 3566 update_avg(&rq->avg_idle, delta); 3567 3568 if (rq->avg_idle > max) 3569 rq->avg_idle = max; 3570 3571 rq->wake_stamp = jiffies; 3572 rq->wake_avg_idle = rq->avg_idle / 2; 3573 3574 rq->idle_stamp = 0; 3575 } 3576 #endif 3577 } 3578 3579 static void 3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3581 struct rq_flags *rf) 3582 { 3583 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3584 3585 lockdep_assert_rq_held(rq); 3586 3587 if (p->sched_contributes_to_load) 3588 rq->nr_uninterruptible--; 3589 3590 #ifdef CONFIG_SMP 3591 if (wake_flags & WF_MIGRATED) 3592 en_flags |= ENQUEUE_MIGRATED; 3593 else 3594 #endif 3595 if (p->in_iowait) { 3596 delayacct_blkio_end(p); 3597 atomic_dec(&task_rq(p)->nr_iowait); 3598 } 3599 3600 activate_task(rq, p, en_flags); 3601 ttwu_do_wakeup(rq, p, wake_flags, rf); 3602 } 3603 3604 /* 3605 * Consider @p being inside a wait loop: 3606 * 3607 * for (;;) { 3608 * set_current_state(TASK_UNINTERRUPTIBLE); 3609 * 3610 * if (CONDITION) 3611 * break; 3612 * 3613 * schedule(); 3614 * } 3615 * __set_current_state(TASK_RUNNING); 3616 * 3617 * between set_current_state() and schedule(). In this case @p is still 3618 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3619 * an atomic manner. 3620 * 3621 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3622 * then schedule() must still happen and p->state can be changed to 3623 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3624 * need to do a full wakeup with enqueue. 3625 * 3626 * Returns: %true when the wakeup is done, 3627 * %false otherwise. 3628 */ 3629 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3630 { 3631 struct rq_flags rf; 3632 struct rq *rq; 3633 int ret = 0; 3634 3635 rq = __task_rq_lock(p, &rf); 3636 if (task_on_rq_queued(p)) { 3637 /* check_preempt_curr() may use rq clock */ 3638 update_rq_clock(rq); 3639 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3640 ret = 1; 3641 } 3642 __task_rq_unlock(rq, &rf); 3643 3644 return ret; 3645 } 3646 3647 #ifdef CONFIG_SMP 3648 void sched_ttwu_pending(void *arg) 3649 { 3650 struct llist_node *llist = arg; 3651 struct rq *rq = this_rq(); 3652 struct task_struct *p, *t; 3653 struct rq_flags rf; 3654 3655 if (!llist) 3656 return; 3657 3658 /* 3659 * rq::ttwu_pending racy indication of out-standing wakeups. 3660 * Races such that false-negatives are possible, since they 3661 * are shorter lived that false-positives would be. 3662 */ 3663 WRITE_ONCE(rq->ttwu_pending, 0); 3664 3665 rq_lock_irqsave(rq, &rf); 3666 update_rq_clock(rq); 3667 3668 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3669 if (WARN_ON_ONCE(p->on_cpu)) 3670 smp_cond_load_acquire(&p->on_cpu, !VAL); 3671 3672 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3673 set_task_cpu(p, cpu_of(rq)); 3674 3675 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3676 } 3677 3678 rq_unlock_irqrestore(rq, &rf); 3679 } 3680 3681 void send_call_function_single_ipi(int cpu) 3682 { 3683 struct rq *rq = cpu_rq(cpu); 3684 3685 if (!set_nr_if_polling(rq->idle)) 3686 arch_send_call_function_single_ipi(cpu); 3687 else 3688 trace_sched_wake_idle_without_ipi(cpu); 3689 } 3690 3691 /* 3692 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3693 * necessary. The wakee CPU on receipt of the IPI will queue the task 3694 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3695 * of the wakeup instead of the waker. 3696 */ 3697 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3698 { 3699 struct rq *rq = cpu_rq(cpu); 3700 3701 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3702 3703 WRITE_ONCE(rq->ttwu_pending, 1); 3704 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3705 } 3706 3707 void wake_up_if_idle(int cpu) 3708 { 3709 struct rq *rq = cpu_rq(cpu); 3710 struct rq_flags rf; 3711 3712 rcu_read_lock(); 3713 3714 if (!is_idle_task(rcu_dereference(rq->curr))) 3715 goto out; 3716 3717 rq_lock_irqsave(rq, &rf); 3718 if (is_idle_task(rq->curr)) 3719 resched_curr(rq); 3720 /* Else CPU is not idle, do nothing here: */ 3721 rq_unlock_irqrestore(rq, &rf); 3722 3723 out: 3724 rcu_read_unlock(); 3725 } 3726 3727 bool cpus_share_cache(int this_cpu, int that_cpu) 3728 { 3729 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3730 } 3731 3732 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3733 { 3734 /* 3735 * Do not complicate things with the async wake_list while the CPU is 3736 * in hotplug state. 3737 */ 3738 if (!cpu_active(cpu)) 3739 return false; 3740 3741 /* 3742 * If the CPU does not share cache, then queue the task on the 3743 * remote rqs wakelist to avoid accessing remote data. 3744 */ 3745 if (!cpus_share_cache(smp_processor_id(), cpu)) 3746 return true; 3747 3748 /* 3749 * If the task is descheduling and the only running task on the 3750 * CPU then use the wakelist to offload the task activation to 3751 * the soon-to-be-idle CPU as the current CPU is likely busy. 3752 * nr_running is checked to avoid unnecessary task stacking. 3753 */ 3754 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3755 return true; 3756 3757 return false; 3758 } 3759 3760 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3761 { 3762 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3763 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3764 return false; 3765 3766 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3767 __ttwu_queue_wakelist(p, cpu, wake_flags); 3768 return true; 3769 } 3770 3771 return false; 3772 } 3773 3774 #else /* !CONFIG_SMP */ 3775 3776 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3777 { 3778 return false; 3779 } 3780 3781 #endif /* CONFIG_SMP */ 3782 3783 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3784 { 3785 struct rq *rq = cpu_rq(cpu); 3786 struct rq_flags rf; 3787 3788 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3789 return; 3790 3791 rq_lock(rq, &rf); 3792 update_rq_clock(rq); 3793 ttwu_do_activate(rq, p, wake_flags, &rf); 3794 rq_unlock(rq, &rf); 3795 } 3796 3797 /* 3798 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3799 * 3800 * The caller holds p::pi_lock if p != current or has preemption 3801 * disabled when p == current. 3802 * 3803 * The rules of PREEMPT_RT saved_state: 3804 * 3805 * The related locking code always holds p::pi_lock when updating 3806 * p::saved_state, which means the code is fully serialized in both cases. 3807 * 3808 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3809 * bits set. This allows to distinguish all wakeup scenarios. 3810 */ 3811 static __always_inline 3812 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3813 { 3814 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3815 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3816 state != TASK_RTLOCK_WAIT); 3817 } 3818 3819 if (READ_ONCE(p->__state) & state) { 3820 *success = 1; 3821 return true; 3822 } 3823 3824 #ifdef CONFIG_PREEMPT_RT 3825 /* 3826 * Saved state preserves the task state across blocking on 3827 * an RT lock. If the state matches, set p::saved_state to 3828 * TASK_RUNNING, but do not wake the task because it waits 3829 * for a lock wakeup. Also indicate success because from 3830 * the regular waker's point of view this has succeeded. 3831 * 3832 * After acquiring the lock the task will restore p::__state 3833 * from p::saved_state which ensures that the regular 3834 * wakeup is not lost. The restore will also set 3835 * p::saved_state to TASK_RUNNING so any further tests will 3836 * not result in false positives vs. @success 3837 */ 3838 if (p->saved_state & state) { 3839 p->saved_state = TASK_RUNNING; 3840 *success = 1; 3841 } 3842 #endif 3843 return false; 3844 } 3845 3846 /* 3847 * Notes on Program-Order guarantees on SMP systems. 3848 * 3849 * MIGRATION 3850 * 3851 * The basic program-order guarantee on SMP systems is that when a task [t] 3852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3853 * execution on its new CPU [c1]. 3854 * 3855 * For migration (of runnable tasks) this is provided by the following means: 3856 * 3857 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3858 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3859 * rq(c1)->lock (if not at the same time, then in that order). 3860 * C) LOCK of the rq(c1)->lock scheduling in task 3861 * 3862 * Release/acquire chaining guarantees that B happens after A and C after B. 3863 * Note: the CPU doing B need not be c0 or c1 3864 * 3865 * Example: 3866 * 3867 * CPU0 CPU1 CPU2 3868 * 3869 * LOCK rq(0)->lock 3870 * sched-out X 3871 * sched-in Y 3872 * UNLOCK rq(0)->lock 3873 * 3874 * LOCK rq(0)->lock // orders against CPU0 3875 * dequeue X 3876 * UNLOCK rq(0)->lock 3877 * 3878 * LOCK rq(1)->lock 3879 * enqueue X 3880 * UNLOCK rq(1)->lock 3881 * 3882 * LOCK rq(1)->lock // orders against CPU2 3883 * sched-out Z 3884 * sched-in X 3885 * UNLOCK rq(1)->lock 3886 * 3887 * 3888 * BLOCKING -- aka. SLEEP + WAKEUP 3889 * 3890 * For blocking we (obviously) need to provide the same guarantee as for 3891 * migration. However the means are completely different as there is no lock 3892 * chain to provide order. Instead we do: 3893 * 3894 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3895 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3896 * 3897 * Example: 3898 * 3899 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3900 * 3901 * LOCK rq(0)->lock LOCK X->pi_lock 3902 * dequeue X 3903 * sched-out X 3904 * smp_store_release(X->on_cpu, 0); 3905 * 3906 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3907 * X->state = WAKING 3908 * set_task_cpu(X,2) 3909 * 3910 * LOCK rq(2)->lock 3911 * enqueue X 3912 * X->state = RUNNING 3913 * UNLOCK rq(2)->lock 3914 * 3915 * LOCK rq(2)->lock // orders against CPU1 3916 * sched-out Z 3917 * sched-in X 3918 * UNLOCK rq(2)->lock 3919 * 3920 * UNLOCK X->pi_lock 3921 * UNLOCK rq(0)->lock 3922 * 3923 * 3924 * However, for wakeups there is a second guarantee we must provide, namely we 3925 * must ensure that CONDITION=1 done by the caller can not be reordered with 3926 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3927 */ 3928 3929 /** 3930 * try_to_wake_up - wake up a thread 3931 * @p: the thread to be awakened 3932 * @state: the mask of task states that can be woken 3933 * @wake_flags: wake modifier flags (WF_*) 3934 * 3935 * Conceptually does: 3936 * 3937 * If (@state & @p->state) @p->state = TASK_RUNNING. 3938 * 3939 * If the task was not queued/runnable, also place it back on a runqueue. 3940 * 3941 * This function is atomic against schedule() which would dequeue the task. 3942 * 3943 * It issues a full memory barrier before accessing @p->state, see the comment 3944 * with set_current_state(). 3945 * 3946 * Uses p->pi_lock to serialize against concurrent wake-ups. 3947 * 3948 * Relies on p->pi_lock stabilizing: 3949 * - p->sched_class 3950 * - p->cpus_ptr 3951 * - p->sched_task_group 3952 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3953 * 3954 * Tries really hard to only take one task_rq(p)->lock for performance. 3955 * Takes rq->lock in: 3956 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3957 * - ttwu_queue() -- new rq, for enqueue of the task; 3958 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3959 * 3960 * As a consequence we race really badly with just about everything. See the 3961 * many memory barriers and their comments for details. 3962 * 3963 * Return: %true if @p->state changes (an actual wakeup was done), 3964 * %false otherwise. 3965 */ 3966 static int 3967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3968 { 3969 unsigned long flags; 3970 int cpu, success = 0; 3971 3972 preempt_disable(); 3973 if (p == current) { 3974 /* 3975 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3976 * == smp_processor_id()'. Together this means we can special 3977 * case the whole 'p->on_rq && ttwu_runnable()' case below 3978 * without taking any locks. 3979 * 3980 * In particular: 3981 * - we rely on Program-Order guarantees for all the ordering, 3982 * - we're serialized against set_special_state() by virtue of 3983 * it disabling IRQs (this allows not taking ->pi_lock). 3984 */ 3985 if (!ttwu_state_match(p, state, &success)) 3986 goto out; 3987 3988 trace_sched_waking(p); 3989 WRITE_ONCE(p->__state, TASK_RUNNING); 3990 trace_sched_wakeup(p); 3991 goto out; 3992 } 3993 3994 /* 3995 * If we are going to wake up a thread waiting for CONDITION we 3996 * need to ensure that CONDITION=1 done by the caller can not be 3997 * reordered with p->state check below. This pairs with smp_store_mb() 3998 * in set_current_state() that the waiting thread does. 3999 */ 4000 raw_spin_lock_irqsave(&p->pi_lock, flags); 4001 smp_mb__after_spinlock(); 4002 if (!ttwu_state_match(p, state, &success)) 4003 goto unlock; 4004 4005 trace_sched_waking(p); 4006 4007 /* 4008 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4009 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4010 * in smp_cond_load_acquire() below. 4011 * 4012 * sched_ttwu_pending() try_to_wake_up() 4013 * STORE p->on_rq = 1 LOAD p->state 4014 * UNLOCK rq->lock 4015 * 4016 * __schedule() (switch to task 'p') 4017 * LOCK rq->lock smp_rmb(); 4018 * smp_mb__after_spinlock(); 4019 * UNLOCK rq->lock 4020 * 4021 * [task p] 4022 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4023 * 4024 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4025 * __schedule(). See the comment for smp_mb__after_spinlock(). 4026 * 4027 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4028 */ 4029 smp_rmb(); 4030 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4031 goto unlock; 4032 4033 #ifdef CONFIG_SMP 4034 /* 4035 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4036 * possible to, falsely, observe p->on_cpu == 0. 4037 * 4038 * One must be running (->on_cpu == 1) in order to remove oneself 4039 * from the runqueue. 4040 * 4041 * __schedule() (switch to task 'p') try_to_wake_up() 4042 * STORE p->on_cpu = 1 LOAD p->on_rq 4043 * UNLOCK rq->lock 4044 * 4045 * __schedule() (put 'p' to sleep) 4046 * LOCK rq->lock smp_rmb(); 4047 * smp_mb__after_spinlock(); 4048 * STORE p->on_rq = 0 LOAD p->on_cpu 4049 * 4050 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4051 * __schedule(). See the comment for smp_mb__after_spinlock(). 4052 * 4053 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4054 * schedule()'s deactivate_task() has 'happened' and p will no longer 4055 * care about it's own p->state. See the comment in __schedule(). 4056 */ 4057 smp_acquire__after_ctrl_dep(); 4058 4059 /* 4060 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4061 * == 0), which means we need to do an enqueue, change p->state to 4062 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4063 * enqueue, such as ttwu_queue_wakelist(). 4064 */ 4065 WRITE_ONCE(p->__state, TASK_WAKING); 4066 4067 /* 4068 * If the owning (remote) CPU is still in the middle of schedule() with 4069 * this task as prev, considering queueing p on the remote CPUs wake_list 4070 * which potentially sends an IPI instead of spinning on p->on_cpu to 4071 * let the waker make forward progress. This is safe because IRQs are 4072 * disabled and the IPI will deliver after on_cpu is cleared. 4073 * 4074 * Ensure we load task_cpu(p) after p->on_cpu: 4075 * 4076 * set_task_cpu(p, cpu); 4077 * STORE p->cpu = @cpu 4078 * __schedule() (switch to task 'p') 4079 * LOCK rq->lock 4080 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4081 * STORE p->on_cpu = 1 LOAD p->cpu 4082 * 4083 * to ensure we observe the correct CPU on which the task is currently 4084 * scheduling. 4085 */ 4086 if (smp_load_acquire(&p->on_cpu) && 4087 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4088 goto unlock; 4089 4090 /* 4091 * If the owning (remote) CPU is still in the middle of schedule() with 4092 * this task as prev, wait until it's done referencing the task. 4093 * 4094 * Pairs with the smp_store_release() in finish_task(). 4095 * 4096 * This ensures that tasks getting woken will be fully ordered against 4097 * their previous state and preserve Program Order. 4098 */ 4099 smp_cond_load_acquire(&p->on_cpu, !VAL); 4100 4101 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4102 if (task_cpu(p) != cpu) { 4103 if (p->in_iowait) { 4104 delayacct_blkio_end(p); 4105 atomic_dec(&task_rq(p)->nr_iowait); 4106 } 4107 4108 wake_flags |= WF_MIGRATED; 4109 psi_ttwu_dequeue(p); 4110 set_task_cpu(p, cpu); 4111 } 4112 #else 4113 cpu = task_cpu(p); 4114 #endif /* CONFIG_SMP */ 4115 4116 ttwu_queue(p, cpu, wake_flags); 4117 unlock: 4118 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4119 out: 4120 if (success) 4121 ttwu_stat(p, task_cpu(p), wake_flags); 4122 preempt_enable(); 4123 4124 return success; 4125 } 4126 4127 /** 4128 * task_call_func - Invoke a function on task in fixed state 4129 * @p: Process for which the function is to be invoked, can be @current. 4130 * @func: Function to invoke. 4131 * @arg: Argument to function. 4132 * 4133 * Fix the task in it's current state by avoiding wakeups and or rq operations 4134 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4135 * to work out what the state is, if required. Given that @func can be invoked 4136 * with a runqueue lock held, it had better be quite lightweight. 4137 * 4138 * Returns: 4139 * Whatever @func returns 4140 */ 4141 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4142 { 4143 struct rq *rq = NULL; 4144 unsigned int state; 4145 struct rq_flags rf; 4146 int ret; 4147 4148 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4149 4150 state = READ_ONCE(p->__state); 4151 4152 /* 4153 * Ensure we load p->on_rq after p->__state, otherwise it would be 4154 * possible to, falsely, observe p->on_rq == 0. 4155 * 4156 * See try_to_wake_up() for a longer comment. 4157 */ 4158 smp_rmb(); 4159 4160 /* 4161 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4162 * the task is blocked. Make sure to check @state since ttwu() can drop 4163 * locks at the end, see ttwu_queue_wakelist(). 4164 */ 4165 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4166 rq = __task_rq_lock(p, &rf); 4167 4168 /* 4169 * At this point the task is pinned; either: 4170 * - blocked and we're holding off wakeups (pi->lock) 4171 * - woken, and we're holding off enqueue (rq->lock) 4172 * - queued, and we're holding off schedule (rq->lock) 4173 * - running, and we're holding off de-schedule (rq->lock) 4174 * 4175 * The called function (@func) can use: task_curr(), p->on_rq and 4176 * p->__state to differentiate between these states. 4177 */ 4178 ret = func(p, arg); 4179 4180 if (rq) 4181 rq_unlock(rq, &rf); 4182 4183 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4184 return ret; 4185 } 4186 4187 /** 4188 * wake_up_process - Wake up a specific process 4189 * @p: The process to be woken up. 4190 * 4191 * Attempt to wake up the nominated process and move it to the set of runnable 4192 * processes. 4193 * 4194 * Return: 1 if the process was woken up, 0 if it was already running. 4195 * 4196 * This function executes a full memory barrier before accessing the task state. 4197 */ 4198 int wake_up_process(struct task_struct *p) 4199 { 4200 return try_to_wake_up(p, TASK_NORMAL, 0); 4201 } 4202 EXPORT_SYMBOL(wake_up_process); 4203 4204 int wake_up_state(struct task_struct *p, unsigned int state) 4205 { 4206 return try_to_wake_up(p, state, 0); 4207 } 4208 4209 /* 4210 * Perform scheduler related setup for a newly forked process p. 4211 * p is forked by current. 4212 * 4213 * __sched_fork() is basic setup used by init_idle() too: 4214 */ 4215 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4216 { 4217 p->on_rq = 0; 4218 4219 p->se.on_rq = 0; 4220 p->se.exec_start = 0; 4221 p->se.sum_exec_runtime = 0; 4222 p->se.prev_sum_exec_runtime = 0; 4223 p->se.nr_migrations = 0; 4224 p->se.vruntime = 0; 4225 INIT_LIST_HEAD(&p->se.group_node); 4226 4227 #ifdef CONFIG_FAIR_GROUP_SCHED 4228 p->se.cfs_rq = NULL; 4229 #endif 4230 4231 #ifdef CONFIG_SCHEDSTATS 4232 /* Even if schedstat is disabled, there should not be garbage */ 4233 memset(&p->stats, 0, sizeof(p->stats)); 4234 #endif 4235 4236 RB_CLEAR_NODE(&p->dl.rb_node); 4237 init_dl_task_timer(&p->dl); 4238 init_dl_inactive_task_timer(&p->dl); 4239 __dl_clear_params(p); 4240 4241 INIT_LIST_HEAD(&p->rt.run_list); 4242 p->rt.timeout = 0; 4243 p->rt.time_slice = sched_rr_timeslice; 4244 p->rt.on_rq = 0; 4245 p->rt.on_list = 0; 4246 4247 #ifdef CONFIG_PREEMPT_NOTIFIERS 4248 INIT_HLIST_HEAD(&p->preempt_notifiers); 4249 #endif 4250 4251 #ifdef CONFIG_COMPACTION 4252 p->capture_control = NULL; 4253 #endif 4254 init_numa_balancing(clone_flags, p); 4255 #ifdef CONFIG_SMP 4256 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4257 p->migration_pending = NULL; 4258 #endif 4259 } 4260 4261 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4262 4263 #ifdef CONFIG_NUMA_BALANCING 4264 4265 void set_numabalancing_state(bool enabled) 4266 { 4267 if (enabled) 4268 static_branch_enable(&sched_numa_balancing); 4269 else 4270 static_branch_disable(&sched_numa_balancing); 4271 } 4272 4273 #ifdef CONFIG_PROC_SYSCTL 4274 int sysctl_numa_balancing(struct ctl_table *table, int write, 4275 void *buffer, size_t *lenp, loff_t *ppos) 4276 { 4277 struct ctl_table t; 4278 int err; 4279 int state = static_branch_likely(&sched_numa_balancing); 4280 4281 if (write && !capable(CAP_SYS_ADMIN)) 4282 return -EPERM; 4283 4284 t = *table; 4285 t.data = &state; 4286 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4287 if (err < 0) 4288 return err; 4289 if (write) 4290 set_numabalancing_state(state); 4291 return err; 4292 } 4293 #endif 4294 #endif 4295 4296 #ifdef CONFIG_SCHEDSTATS 4297 4298 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4299 4300 static void set_schedstats(bool enabled) 4301 { 4302 if (enabled) 4303 static_branch_enable(&sched_schedstats); 4304 else 4305 static_branch_disable(&sched_schedstats); 4306 } 4307 4308 void force_schedstat_enabled(void) 4309 { 4310 if (!schedstat_enabled()) { 4311 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4312 static_branch_enable(&sched_schedstats); 4313 } 4314 } 4315 4316 static int __init setup_schedstats(char *str) 4317 { 4318 int ret = 0; 4319 if (!str) 4320 goto out; 4321 4322 if (!strcmp(str, "enable")) { 4323 set_schedstats(true); 4324 ret = 1; 4325 } else if (!strcmp(str, "disable")) { 4326 set_schedstats(false); 4327 ret = 1; 4328 } 4329 out: 4330 if (!ret) 4331 pr_warn("Unable to parse schedstats=\n"); 4332 4333 return ret; 4334 } 4335 __setup("schedstats=", setup_schedstats); 4336 4337 #ifdef CONFIG_PROC_SYSCTL 4338 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4339 size_t *lenp, loff_t *ppos) 4340 { 4341 struct ctl_table t; 4342 int err; 4343 int state = static_branch_likely(&sched_schedstats); 4344 4345 if (write && !capable(CAP_SYS_ADMIN)) 4346 return -EPERM; 4347 4348 t = *table; 4349 t.data = &state; 4350 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4351 if (err < 0) 4352 return err; 4353 if (write) 4354 set_schedstats(state); 4355 return err; 4356 } 4357 #endif /* CONFIG_PROC_SYSCTL */ 4358 #endif /* CONFIG_SCHEDSTATS */ 4359 4360 /* 4361 * fork()/clone()-time setup: 4362 */ 4363 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4364 { 4365 __sched_fork(clone_flags, p); 4366 /* 4367 * We mark the process as NEW here. This guarantees that 4368 * nobody will actually run it, and a signal or other external 4369 * event cannot wake it up and insert it on the runqueue either. 4370 */ 4371 p->__state = TASK_NEW; 4372 4373 /* 4374 * Make sure we do not leak PI boosting priority to the child. 4375 */ 4376 p->prio = current->normal_prio; 4377 4378 uclamp_fork(p); 4379 4380 /* 4381 * Revert to default priority/policy on fork if requested. 4382 */ 4383 if (unlikely(p->sched_reset_on_fork)) { 4384 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4385 p->policy = SCHED_NORMAL; 4386 p->static_prio = NICE_TO_PRIO(0); 4387 p->rt_priority = 0; 4388 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4389 p->static_prio = NICE_TO_PRIO(0); 4390 4391 p->prio = p->normal_prio = p->static_prio; 4392 set_load_weight(p, false); 4393 4394 /* 4395 * We don't need the reset flag anymore after the fork. It has 4396 * fulfilled its duty: 4397 */ 4398 p->sched_reset_on_fork = 0; 4399 } 4400 4401 if (dl_prio(p->prio)) 4402 return -EAGAIN; 4403 else if (rt_prio(p->prio)) 4404 p->sched_class = &rt_sched_class; 4405 else 4406 p->sched_class = &fair_sched_class; 4407 4408 init_entity_runnable_average(&p->se); 4409 4410 #ifdef CONFIG_SCHED_INFO 4411 if (likely(sched_info_on())) 4412 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4413 #endif 4414 #if defined(CONFIG_SMP) 4415 p->on_cpu = 0; 4416 #endif 4417 init_task_preempt_count(p); 4418 #ifdef CONFIG_SMP 4419 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4420 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4421 #endif 4422 return 0; 4423 } 4424 4425 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4426 { 4427 unsigned long flags; 4428 #ifdef CONFIG_CGROUP_SCHED 4429 struct task_group *tg; 4430 #endif 4431 4432 raw_spin_lock_irqsave(&p->pi_lock, flags); 4433 #ifdef CONFIG_CGROUP_SCHED 4434 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4435 struct task_group, css); 4436 p->sched_task_group = autogroup_task_group(p, tg); 4437 #endif 4438 rseq_migrate(p); 4439 /* 4440 * We're setting the CPU for the first time, we don't migrate, 4441 * so use __set_task_cpu(). 4442 */ 4443 __set_task_cpu(p, smp_processor_id()); 4444 if (p->sched_class->task_fork) 4445 p->sched_class->task_fork(p); 4446 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4447 4448 uclamp_post_fork(p); 4449 } 4450 4451 unsigned long to_ratio(u64 period, u64 runtime) 4452 { 4453 if (runtime == RUNTIME_INF) 4454 return BW_UNIT; 4455 4456 /* 4457 * Doing this here saves a lot of checks in all 4458 * the calling paths, and returning zero seems 4459 * safe for them anyway. 4460 */ 4461 if (period == 0) 4462 return 0; 4463 4464 return div64_u64(runtime << BW_SHIFT, period); 4465 } 4466 4467 /* 4468 * wake_up_new_task - wake up a newly created task for the first time. 4469 * 4470 * This function will do some initial scheduler statistics housekeeping 4471 * that must be done for every newly created context, then puts the task 4472 * on the runqueue and wakes it. 4473 */ 4474 void wake_up_new_task(struct task_struct *p) 4475 { 4476 struct rq_flags rf; 4477 struct rq *rq; 4478 4479 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4480 WRITE_ONCE(p->__state, TASK_RUNNING); 4481 #ifdef CONFIG_SMP 4482 /* 4483 * Fork balancing, do it here and not earlier because: 4484 * - cpus_ptr can change in the fork path 4485 * - any previously selected CPU might disappear through hotplug 4486 * 4487 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4488 * as we're not fully set-up yet. 4489 */ 4490 p->recent_used_cpu = task_cpu(p); 4491 rseq_migrate(p); 4492 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4493 #endif 4494 rq = __task_rq_lock(p, &rf); 4495 update_rq_clock(rq); 4496 post_init_entity_util_avg(p); 4497 4498 activate_task(rq, p, ENQUEUE_NOCLOCK); 4499 trace_sched_wakeup_new(p); 4500 check_preempt_curr(rq, p, WF_FORK); 4501 #ifdef CONFIG_SMP 4502 if (p->sched_class->task_woken) { 4503 /* 4504 * Nothing relies on rq->lock after this, so it's fine to 4505 * drop it. 4506 */ 4507 rq_unpin_lock(rq, &rf); 4508 p->sched_class->task_woken(rq, p); 4509 rq_repin_lock(rq, &rf); 4510 } 4511 #endif 4512 task_rq_unlock(rq, p, &rf); 4513 } 4514 4515 #ifdef CONFIG_PREEMPT_NOTIFIERS 4516 4517 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4518 4519 void preempt_notifier_inc(void) 4520 { 4521 static_branch_inc(&preempt_notifier_key); 4522 } 4523 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4524 4525 void preempt_notifier_dec(void) 4526 { 4527 static_branch_dec(&preempt_notifier_key); 4528 } 4529 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4530 4531 /** 4532 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4533 * @notifier: notifier struct to register 4534 */ 4535 void preempt_notifier_register(struct preempt_notifier *notifier) 4536 { 4537 if (!static_branch_unlikely(&preempt_notifier_key)) 4538 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4539 4540 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4541 } 4542 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4543 4544 /** 4545 * preempt_notifier_unregister - no longer interested in preemption notifications 4546 * @notifier: notifier struct to unregister 4547 * 4548 * This is *not* safe to call from within a preemption notifier. 4549 */ 4550 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4551 { 4552 hlist_del(¬ifier->link); 4553 } 4554 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4555 4556 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4557 { 4558 struct preempt_notifier *notifier; 4559 4560 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4561 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4562 } 4563 4564 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4565 { 4566 if (static_branch_unlikely(&preempt_notifier_key)) 4567 __fire_sched_in_preempt_notifiers(curr); 4568 } 4569 4570 static void 4571 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4572 struct task_struct *next) 4573 { 4574 struct preempt_notifier *notifier; 4575 4576 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4577 notifier->ops->sched_out(notifier, next); 4578 } 4579 4580 static __always_inline void 4581 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4582 struct task_struct *next) 4583 { 4584 if (static_branch_unlikely(&preempt_notifier_key)) 4585 __fire_sched_out_preempt_notifiers(curr, next); 4586 } 4587 4588 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4589 4590 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4591 { 4592 } 4593 4594 static inline void 4595 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4596 struct task_struct *next) 4597 { 4598 } 4599 4600 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4601 4602 static inline void prepare_task(struct task_struct *next) 4603 { 4604 #ifdef CONFIG_SMP 4605 /* 4606 * Claim the task as running, we do this before switching to it 4607 * such that any running task will have this set. 4608 * 4609 * See the ttwu() WF_ON_CPU case and its ordering comment. 4610 */ 4611 WRITE_ONCE(next->on_cpu, 1); 4612 #endif 4613 } 4614 4615 static inline void finish_task(struct task_struct *prev) 4616 { 4617 #ifdef CONFIG_SMP 4618 /* 4619 * This must be the very last reference to @prev from this CPU. After 4620 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4621 * must ensure this doesn't happen until the switch is completely 4622 * finished. 4623 * 4624 * In particular, the load of prev->state in finish_task_switch() must 4625 * happen before this. 4626 * 4627 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4628 */ 4629 smp_store_release(&prev->on_cpu, 0); 4630 #endif 4631 } 4632 4633 #ifdef CONFIG_SMP 4634 4635 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4636 { 4637 void (*func)(struct rq *rq); 4638 struct callback_head *next; 4639 4640 lockdep_assert_rq_held(rq); 4641 4642 while (head) { 4643 func = (void (*)(struct rq *))head->func; 4644 next = head->next; 4645 head->next = NULL; 4646 head = next; 4647 4648 func(rq); 4649 } 4650 } 4651 4652 static void balance_push(struct rq *rq); 4653 4654 struct callback_head balance_push_callback = { 4655 .next = NULL, 4656 .func = (void (*)(struct callback_head *))balance_push, 4657 }; 4658 4659 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4660 { 4661 struct callback_head *head = rq->balance_callback; 4662 4663 lockdep_assert_rq_held(rq); 4664 if (head) 4665 rq->balance_callback = NULL; 4666 4667 return head; 4668 } 4669 4670 static void __balance_callbacks(struct rq *rq) 4671 { 4672 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4673 } 4674 4675 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4676 { 4677 unsigned long flags; 4678 4679 if (unlikely(head)) { 4680 raw_spin_rq_lock_irqsave(rq, flags); 4681 do_balance_callbacks(rq, head); 4682 raw_spin_rq_unlock_irqrestore(rq, flags); 4683 } 4684 } 4685 4686 #else 4687 4688 static inline void __balance_callbacks(struct rq *rq) 4689 { 4690 } 4691 4692 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4693 { 4694 return NULL; 4695 } 4696 4697 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4698 { 4699 } 4700 4701 #endif 4702 4703 static inline void 4704 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4705 { 4706 /* 4707 * Since the runqueue lock will be released by the next 4708 * task (which is an invalid locking op but in the case 4709 * of the scheduler it's an obvious special-case), so we 4710 * do an early lockdep release here: 4711 */ 4712 rq_unpin_lock(rq, rf); 4713 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4714 #ifdef CONFIG_DEBUG_SPINLOCK 4715 /* this is a valid case when another task releases the spinlock */ 4716 rq_lockp(rq)->owner = next; 4717 #endif 4718 } 4719 4720 static inline void finish_lock_switch(struct rq *rq) 4721 { 4722 /* 4723 * If we are tracking spinlock dependencies then we have to 4724 * fix up the runqueue lock - which gets 'carried over' from 4725 * prev into current: 4726 */ 4727 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4728 __balance_callbacks(rq); 4729 raw_spin_rq_unlock_irq(rq); 4730 } 4731 4732 /* 4733 * NOP if the arch has not defined these: 4734 */ 4735 4736 #ifndef prepare_arch_switch 4737 # define prepare_arch_switch(next) do { } while (0) 4738 #endif 4739 4740 #ifndef finish_arch_post_lock_switch 4741 # define finish_arch_post_lock_switch() do { } while (0) 4742 #endif 4743 4744 static inline void kmap_local_sched_out(void) 4745 { 4746 #ifdef CONFIG_KMAP_LOCAL 4747 if (unlikely(current->kmap_ctrl.idx)) 4748 __kmap_local_sched_out(); 4749 #endif 4750 } 4751 4752 static inline void kmap_local_sched_in(void) 4753 { 4754 #ifdef CONFIG_KMAP_LOCAL 4755 if (unlikely(current->kmap_ctrl.idx)) 4756 __kmap_local_sched_in(); 4757 #endif 4758 } 4759 4760 /** 4761 * prepare_task_switch - prepare to switch tasks 4762 * @rq: the runqueue preparing to switch 4763 * @prev: the current task that is being switched out 4764 * @next: the task we are going to switch to. 4765 * 4766 * This is called with the rq lock held and interrupts off. It must 4767 * be paired with a subsequent finish_task_switch after the context 4768 * switch. 4769 * 4770 * prepare_task_switch sets up locking and calls architecture specific 4771 * hooks. 4772 */ 4773 static inline void 4774 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4775 struct task_struct *next) 4776 { 4777 kcov_prepare_switch(prev); 4778 sched_info_switch(rq, prev, next); 4779 perf_event_task_sched_out(prev, next); 4780 rseq_preempt(prev); 4781 fire_sched_out_preempt_notifiers(prev, next); 4782 kmap_local_sched_out(); 4783 prepare_task(next); 4784 prepare_arch_switch(next); 4785 } 4786 4787 /** 4788 * finish_task_switch - clean up after a task-switch 4789 * @prev: the thread we just switched away from. 4790 * 4791 * finish_task_switch must be called after the context switch, paired 4792 * with a prepare_task_switch call before the context switch. 4793 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4794 * and do any other architecture-specific cleanup actions. 4795 * 4796 * Note that we may have delayed dropping an mm in context_switch(). If 4797 * so, we finish that here outside of the runqueue lock. (Doing it 4798 * with the lock held can cause deadlocks; see schedule() for 4799 * details.) 4800 * 4801 * The context switch have flipped the stack from under us and restored the 4802 * local variables which were saved when this task called schedule() in the 4803 * past. prev == current is still correct but we need to recalculate this_rq 4804 * because prev may have moved to another CPU. 4805 */ 4806 static struct rq *finish_task_switch(struct task_struct *prev) 4807 __releases(rq->lock) 4808 { 4809 struct rq *rq = this_rq(); 4810 struct mm_struct *mm = rq->prev_mm; 4811 long prev_state; 4812 4813 /* 4814 * The previous task will have left us with a preempt_count of 2 4815 * because it left us after: 4816 * 4817 * schedule() 4818 * preempt_disable(); // 1 4819 * __schedule() 4820 * raw_spin_lock_irq(&rq->lock) // 2 4821 * 4822 * Also, see FORK_PREEMPT_COUNT. 4823 */ 4824 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4825 "corrupted preempt_count: %s/%d/0x%x\n", 4826 current->comm, current->pid, preempt_count())) 4827 preempt_count_set(FORK_PREEMPT_COUNT); 4828 4829 rq->prev_mm = NULL; 4830 4831 /* 4832 * A task struct has one reference for the use as "current". 4833 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4834 * schedule one last time. The schedule call will never return, and 4835 * the scheduled task must drop that reference. 4836 * 4837 * We must observe prev->state before clearing prev->on_cpu (in 4838 * finish_task), otherwise a concurrent wakeup can get prev 4839 * running on another CPU and we could rave with its RUNNING -> DEAD 4840 * transition, resulting in a double drop. 4841 */ 4842 prev_state = READ_ONCE(prev->__state); 4843 vtime_task_switch(prev); 4844 perf_event_task_sched_in(prev, current); 4845 finish_task(prev); 4846 tick_nohz_task_switch(); 4847 finish_lock_switch(rq); 4848 finish_arch_post_lock_switch(); 4849 kcov_finish_switch(current); 4850 /* 4851 * kmap_local_sched_out() is invoked with rq::lock held and 4852 * interrupts disabled. There is no requirement for that, but the 4853 * sched out code does not have an interrupt enabled section. 4854 * Restoring the maps on sched in does not require interrupts being 4855 * disabled either. 4856 */ 4857 kmap_local_sched_in(); 4858 4859 fire_sched_in_preempt_notifiers(current); 4860 /* 4861 * When switching through a kernel thread, the loop in 4862 * membarrier_{private,global}_expedited() may have observed that 4863 * kernel thread and not issued an IPI. It is therefore possible to 4864 * schedule between user->kernel->user threads without passing though 4865 * switch_mm(). Membarrier requires a barrier after storing to 4866 * rq->curr, before returning to userspace, so provide them here: 4867 * 4868 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4869 * provided by mmdrop(), 4870 * - a sync_core for SYNC_CORE. 4871 */ 4872 if (mm) { 4873 membarrier_mm_sync_core_before_usermode(mm); 4874 mmdrop_sched(mm); 4875 } 4876 if (unlikely(prev_state == TASK_DEAD)) { 4877 if (prev->sched_class->task_dead) 4878 prev->sched_class->task_dead(prev); 4879 4880 /* Task is done with its stack. */ 4881 put_task_stack(prev); 4882 4883 put_task_struct_rcu_user(prev); 4884 } 4885 4886 return rq; 4887 } 4888 4889 /** 4890 * schedule_tail - first thing a freshly forked thread must call. 4891 * @prev: the thread we just switched away from. 4892 */ 4893 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4894 __releases(rq->lock) 4895 { 4896 /* 4897 * New tasks start with FORK_PREEMPT_COUNT, see there and 4898 * finish_task_switch() for details. 4899 * 4900 * finish_task_switch() will drop rq->lock() and lower preempt_count 4901 * and the preempt_enable() will end up enabling preemption (on 4902 * PREEMPT_COUNT kernels). 4903 */ 4904 4905 finish_task_switch(prev); 4906 preempt_enable(); 4907 4908 if (current->set_child_tid) 4909 put_user(task_pid_vnr(current), current->set_child_tid); 4910 4911 calculate_sigpending(); 4912 } 4913 4914 /* 4915 * context_switch - switch to the new MM and the new thread's register state. 4916 */ 4917 static __always_inline struct rq * 4918 context_switch(struct rq *rq, struct task_struct *prev, 4919 struct task_struct *next, struct rq_flags *rf) 4920 { 4921 prepare_task_switch(rq, prev, next); 4922 4923 /* 4924 * For paravirt, this is coupled with an exit in switch_to to 4925 * combine the page table reload and the switch backend into 4926 * one hypercall. 4927 */ 4928 arch_start_context_switch(prev); 4929 4930 /* 4931 * kernel -> kernel lazy + transfer active 4932 * user -> kernel lazy + mmgrab() active 4933 * 4934 * kernel -> user switch + mmdrop() active 4935 * user -> user switch 4936 */ 4937 if (!next->mm) { // to kernel 4938 enter_lazy_tlb(prev->active_mm, next); 4939 4940 next->active_mm = prev->active_mm; 4941 if (prev->mm) // from user 4942 mmgrab(prev->active_mm); 4943 else 4944 prev->active_mm = NULL; 4945 } else { // to user 4946 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4947 /* 4948 * sys_membarrier() requires an smp_mb() between setting 4949 * rq->curr / membarrier_switch_mm() and returning to userspace. 4950 * 4951 * The below provides this either through switch_mm(), or in 4952 * case 'prev->active_mm == next->mm' through 4953 * finish_task_switch()'s mmdrop(). 4954 */ 4955 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4956 4957 if (!prev->mm) { // from kernel 4958 /* will mmdrop() in finish_task_switch(). */ 4959 rq->prev_mm = prev->active_mm; 4960 prev->active_mm = NULL; 4961 } 4962 } 4963 4964 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4965 4966 prepare_lock_switch(rq, next, rf); 4967 4968 /* Here we just switch the register state and the stack. */ 4969 switch_to(prev, next, prev); 4970 barrier(); 4971 4972 return finish_task_switch(prev); 4973 } 4974 4975 /* 4976 * nr_running and nr_context_switches: 4977 * 4978 * externally visible scheduler statistics: current number of runnable 4979 * threads, total number of context switches performed since bootup. 4980 */ 4981 unsigned int nr_running(void) 4982 { 4983 unsigned int i, sum = 0; 4984 4985 for_each_online_cpu(i) 4986 sum += cpu_rq(i)->nr_running; 4987 4988 return sum; 4989 } 4990 4991 /* 4992 * Check if only the current task is running on the CPU. 4993 * 4994 * Caution: this function does not check that the caller has disabled 4995 * preemption, thus the result might have a time-of-check-to-time-of-use 4996 * race. The caller is responsible to use it correctly, for example: 4997 * 4998 * - from a non-preemptible section (of course) 4999 * 5000 * - from a thread that is bound to a single CPU 5001 * 5002 * - in a loop with very short iterations (e.g. a polling loop) 5003 */ 5004 bool single_task_running(void) 5005 { 5006 return raw_rq()->nr_running == 1; 5007 } 5008 EXPORT_SYMBOL(single_task_running); 5009 5010 unsigned long long nr_context_switches(void) 5011 { 5012 int i; 5013 unsigned long long sum = 0; 5014 5015 for_each_possible_cpu(i) 5016 sum += cpu_rq(i)->nr_switches; 5017 5018 return sum; 5019 } 5020 5021 /* 5022 * Consumers of these two interfaces, like for example the cpuidle menu 5023 * governor, are using nonsensical data. Preferring shallow idle state selection 5024 * for a CPU that has IO-wait which might not even end up running the task when 5025 * it does become runnable. 5026 */ 5027 5028 unsigned int nr_iowait_cpu(int cpu) 5029 { 5030 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5031 } 5032 5033 /* 5034 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5035 * 5036 * The idea behind IO-wait account is to account the idle time that we could 5037 * have spend running if it were not for IO. That is, if we were to improve the 5038 * storage performance, we'd have a proportional reduction in IO-wait time. 5039 * 5040 * This all works nicely on UP, where, when a task blocks on IO, we account 5041 * idle time as IO-wait, because if the storage were faster, it could've been 5042 * running and we'd not be idle. 5043 * 5044 * This has been extended to SMP, by doing the same for each CPU. This however 5045 * is broken. 5046 * 5047 * Imagine for instance the case where two tasks block on one CPU, only the one 5048 * CPU will have IO-wait accounted, while the other has regular idle. Even 5049 * though, if the storage were faster, both could've ran at the same time, 5050 * utilising both CPUs. 5051 * 5052 * This means, that when looking globally, the current IO-wait accounting on 5053 * SMP is a lower bound, by reason of under accounting. 5054 * 5055 * Worse, since the numbers are provided per CPU, they are sometimes 5056 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5057 * associated with any one particular CPU, it can wake to another CPU than it 5058 * blocked on. This means the per CPU IO-wait number is meaningless. 5059 * 5060 * Task CPU affinities can make all that even more 'interesting'. 5061 */ 5062 5063 unsigned int nr_iowait(void) 5064 { 5065 unsigned int i, sum = 0; 5066 5067 for_each_possible_cpu(i) 5068 sum += nr_iowait_cpu(i); 5069 5070 return sum; 5071 } 5072 5073 #ifdef CONFIG_SMP 5074 5075 /* 5076 * sched_exec - execve() is a valuable balancing opportunity, because at 5077 * this point the task has the smallest effective memory and cache footprint. 5078 */ 5079 void sched_exec(void) 5080 { 5081 struct task_struct *p = current; 5082 unsigned long flags; 5083 int dest_cpu; 5084 5085 raw_spin_lock_irqsave(&p->pi_lock, flags); 5086 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5087 if (dest_cpu == smp_processor_id()) 5088 goto unlock; 5089 5090 if (likely(cpu_active(dest_cpu))) { 5091 struct migration_arg arg = { p, dest_cpu }; 5092 5093 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5094 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5095 return; 5096 } 5097 unlock: 5098 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5099 } 5100 5101 #endif 5102 5103 DEFINE_PER_CPU(struct kernel_stat, kstat); 5104 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5105 5106 EXPORT_PER_CPU_SYMBOL(kstat); 5107 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5108 5109 /* 5110 * The function fair_sched_class.update_curr accesses the struct curr 5111 * and its field curr->exec_start; when called from task_sched_runtime(), 5112 * we observe a high rate of cache misses in practice. 5113 * Prefetching this data results in improved performance. 5114 */ 5115 static inline void prefetch_curr_exec_start(struct task_struct *p) 5116 { 5117 #ifdef CONFIG_FAIR_GROUP_SCHED 5118 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5119 #else 5120 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5121 #endif 5122 prefetch(curr); 5123 prefetch(&curr->exec_start); 5124 } 5125 5126 /* 5127 * Return accounted runtime for the task. 5128 * In case the task is currently running, return the runtime plus current's 5129 * pending runtime that have not been accounted yet. 5130 */ 5131 unsigned long long task_sched_runtime(struct task_struct *p) 5132 { 5133 struct rq_flags rf; 5134 struct rq *rq; 5135 u64 ns; 5136 5137 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5138 /* 5139 * 64-bit doesn't need locks to atomically read a 64-bit value. 5140 * So we have a optimization chance when the task's delta_exec is 0. 5141 * Reading ->on_cpu is racy, but this is ok. 5142 * 5143 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5144 * If we race with it entering CPU, unaccounted time is 0. This is 5145 * indistinguishable from the read occurring a few cycles earlier. 5146 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5147 * been accounted, so we're correct here as well. 5148 */ 5149 if (!p->on_cpu || !task_on_rq_queued(p)) 5150 return p->se.sum_exec_runtime; 5151 #endif 5152 5153 rq = task_rq_lock(p, &rf); 5154 /* 5155 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5156 * project cycles that may never be accounted to this 5157 * thread, breaking clock_gettime(). 5158 */ 5159 if (task_current(rq, p) && task_on_rq_queued(p)) { 5160 prefetch_curr_exec_start(p); 5161 update_rq_clock(rq); 5162 p->sched_class->update_curr(rq); 5163 } 5164 ns = p->se.sum_exec_runtime; 5165 task_rq_unlock(rq, p, &rf); 5166 5167 return ns; 5168 } 5169 5170 #ifdef CONFIG_SCHED_DEBUG 5171 static u64 cpu_resched_latency(struct rq *rq) 5172 { 5173 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5174 u64 resched_latency, now = rq_clock(rq); 5175 static bool warned_once; 5176 5177 if (sysctl_resched_latency_warn_once && warned_once) 5178 return 0; 5179 5180 if (!need_resched() || !latency_warn_ms) 5181 return 0; 5182 5183 if (system_state == SYSTEM_BOOTING) 5184 return 0; 5185 5186 if (!rq->last_seen_need_resched_ns) { 5187 rq->last_seen_need_resched_ns = now; 5188 rq->ticks_without_resched = 0; 5189 return 0; 5190 } 5191 5192 rq->ticks_without_resched++; 5193 resched_latency = now - rq->last_seen_need_resched_ns; 5194 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5195 return 0; 5196 5197 warned_once = true; 5198 5199 return resched_latency; 5200 } 5201 5202 static int __init setup_resched_latency_warn_ms(char *str) 5203 { 5204 long val; 5205 5206 if ((kstrtol(str, 0, &val))) { 5207 pr_warn("Unable to set resched_latency_warn_ms\n"); 5208 return 1; 5209 } 5210 5211 sysctl_resched_latency_warn_ms = val; 5212 return 1; 5213 } 5214 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5215 #else 5216 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5217 #endif /* CONFIG_SCHED_DEBUG */ 5218 5219 /* 5220 * This function gets called by the timer code, with HZ frequency. 5221 * We call it with interrupts disabled. 5222 */ 5223 void scheduler_tick(void) 5224 { 5225 int cpu = smp_processor_id(); 5226 struct rq *rq = cpu_rq(cpu); 5227 struct task_struct *curr = rq->curr; 5228 struct rq_flags rf; 5229 unsigned long thermal_pressure; 5230 u64 resched_latency; 5231 5232 arch_scale_freq_tick(); 5233 sched_clock_tick(); 5234 5235 rq_lock(rq, &rf); 5236 5237 update_rq_clock(rq); 5238 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5239 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5240 curr->sched_class->task_tick(rq, curr, 0); 5241 if (sched_feat(LATENCY_WARN)) 5242 resched_latency = cpu_resched_latency(rq); 5243 calc_global_load_tick(rq); 5244 5245 rq_unlock(rq, &rf); 5246 5247 if (sched_feat(LATENCY_WARN) && resched_latency) 5248 resched_latency_warn(cpu, resched_latency); 5249 5250 perf_event_task_tick(); 5251 5252 #ifdef CONFIG_SMP 5253 rq->idle_balance = idle_cpu(cpu); 5254 trigger_load_balance(rq); 5255 #endif 5256 } 5257 5258 #ifdef CONFIG_NO_HZ_FULL 5259 5260 struct tick_work { 5261 int cpu; 5262 atomic_t state; 5263 struct delayed_work work; 5264 }; 5265 /* Values for ->state, see diagram below. */ 5266 #define TICK_SCHED_REMOTE_OFFLINE 0 5267 #define TICK_SCHED_REMOTE_OFFLINING 1 5268 #define TICK_SCHED_REMOTE_RUNNING 2 5269 5270 /* 5271 * State diagram for ->state: 5272 * 5273 * 5274 * TICK_SCHED_REMOTE_OFFLINE 5275 * | ^ 5276 * | | 5277 * | | sched_tick_remote() 5278 * | | 5279 * | | 5280 * +--TICK_SCHED_REMOTE_OFFLINING 5281 * | ^ 5282 * | | 5283 * sched_tick_start() | | sched_tick_stop() 5284 * | | 5285 * V | 5286 * TICK_SCHED_REMOTE_RUNNING 5287 * 5288 * 5289 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5290 * and sched_tick_start() are happy to leave the state in RUNNING. 5291 */ 5292 5293 static struct tick_work __percpu *tick_work_cpu; 5294 5295 static void sched_tick_remote(struct work_struct *work) 5296 { 5297 struct delayed_work *dwork = to_delayed_work(work); 5298 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5299 int cpu = twork->cpu; 5300 struct rq *rq = cpu_rq(cpu); 5301 struct task_struct *curr; 5302 struct rq_flags rf; 5303 u64 delta; 5304 int os; 5305 5306 /* 5307 * Handle the tick only if it appears the remote CPU is running in full 5308 * dynticks mode. The check is racy by nature, but missing a tick or 5309 * having one too much is no big deal because the scheduler tick updates 5310 * statistics and checks timeslices in a time-independent way, regardless 5311 * of when exactly it is running. 5312 */ 5313 if (!tick_nohz_tick_stopped_cpu(cpu)) 5314 goto out_requeue; 5315 5316 rq_lock_irq(rq, &rf); 5317 curr = rq->curr; 5318 if (cpu_is_offline(cpu)) 5319 goto out_unlock; 5320 5321 update_rq_clock(rq); 5322 5323 if (!is_idle_task(curr)) { 5324 /* 5325 * Make sure the next tick runs within a reasonable 5326 * amount of time. 5327 */ 5328 delta = rq_clock_task(rq) - curr->se.exec_start; 5329 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5330 } 5331 curr->sched_class->task_tick(rq, curr, 0); 5332 5333 calc_load_nohz_remote(rq); 5334 out_unlock: 5335 rq_unlock_irq(rq, &rf); 5336 out_requeue: 5337 5338 /* 5339 * Run the remote tick once per second (1Hz). This arbitrary 5340 * frequency is large enough to avoid overload but short enough 5341 * to keep scheduler internal stats reasonably up to date. But 5342 * first update state to reflect hotplug activity if required. 5343 */ 5344 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5345 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5346 if (os == TICK_SCHED_REMOTE_RUNNING) 5347 queue_delayed_work(system_unbound_wq, dwork, HZ); 5348 } 5349 5350 static void sched_tick_start(int cpu) 5351 { 5352 int os; 5353 struct tick_work *twork; 5354 5355 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5356 return; 5357 5358 WARN_ON_ONCE(!tick_work_cpu); 5359 5360 twork = per_cpu_ptr(tick_work_cpu, cpu); 5361 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5362 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5363 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5364 twork->cpu = cpu; 5365 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5366 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5367 } 5368 } 5369 5370 #ifdef CONFIG_HOTPLUG_CPU 5371 static void sched_tick_stop(int cpu) 5372 { 5373 struct tick_work *twork; 5374 int os; 5375 5376 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5377 return; 5378 5379 WARN_ON_ONCE(!tick_work_cpu); 5380 5381 twork = per_cpu_ptr(tick_work_cpu, cpu); 5382 /* There cannot be competing actions, but don't rely on stop-machine. */ 5383 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5384 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5385 /* Don't cancel, as this would mess up the state machine. */ 5386 } 5387 #endif /* CONFIG_HOTPLUG_CPU */ 5388 5389 int __init sched_tick_offload_init(void) 5390 { 5391 tick_work_cpu = alloc_percpu(struct tick_work); 5392 BUG_ON(!tick_work_cpu); 5393 return 0; 5394 } 5395 5396 #else /* !CONFIG_NO_HZ_FULL */ 5397 static inline void sched_tick_start(int cpu) { } 5398 static inline void sched_tick_stop(int cpu) { } 5399 #endif 5400 5401 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5402 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5403 /* 5404 * If the value passed in is equal to the current preempt count 5405 * then we just disabled preemption. Start timing the latency. 5406 */ 5407 static inline void preempt_latency_start(int val) 5408 { 5409 if (preempt_count() == val) { 5410 unsigned long ip = get_lock_parent_ip(); 5411 #ifdef CONFIG_DEBUG_PREEMPT 5412 current->preempt_disable_ip = ip; 5413 #endif 5414 trace_preempt_off(CALLER_ADDR0, ip); 5415 } 5416 } 5417 5418 void preempt_count_add(int val) 5419 { 5420 #ifdef CONFIG_DEBUG_PREEMPT 5421 /* 5422 * Underflow? 5423 */ 5424 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5425 return; 5426 #endif 5427 __preempt_count_add(val); 5428 #ifdef CONFIG_DEBUG_PREEMPT 5429 /* 5430 * Spinlock count overflowing soon? 5431 */ 5432 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5433 PREEMPT_MASK - 10); 5434 #endif 5435 preempt_latency_start(val); 5436 } 5437 EXPORT_SYMBOL(preempt_count_add); 5438 NOKPROBE_SYMBOL(preempt_count_add); 5439 5440 /* 5441 * If the value passed in equals to the current preempt count 5442 * then we just enabled preemption. Stop timing the latency. 5443 */ 5444 static inline void preempt_latency_stop(int val) 5445 { 5446 if (preempt_count() == val) 5447 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5448 } 5449 5450 void preempt_count_sub(int val) 5451 { 5452 #ifdef CONFIG_DEBUG_PREEMPT 5453 /* 5454 * Underflow? 5455 */ 5456 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5457 return; 5458 /* 5459 * Is the spinlock portion underflowing? 5460 */ 5461 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5462 !(preempt_count() & PREEMPT_MASK))) 5463 return; 5464 #endif 5465 5466 preempt_latency_stop(val); 5467 __preempt_count_sub(val); 5468 } 5469 EXPORT_SYMBOL(preempt_count_sub); 5470 NOKPROBE_SYMBOL(preempt_count_sub); 5471 5472 #else 5473 static inline void preempt_latency_start(int val) { } 5474 static inline void preempt_latency_stop(int val) { } 5475 #endif 5476 5477 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5478 { 5479 #ifdef CONFIG_DEBUG_PREEMPT 5480 return p->preempt_disable_ip; 5481 #else 5482 return 0; 5483 #endif 5484 } 5485 5486 /* 5487 * Print scheduling while atomic bug: 5488 */ 5489 static noinline void __schedule_bug(struct task_struct *prev) 5490 { 5491 /* Save this before calling printk(), since that will clobber it */ 5492 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5493 5494 if (oops_in_progress) 5495 return; 5496 5497 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5498 prev->comm, prev->pid, preempt_count()); 5499 5500 debug_show_held_locks(prev); 5501 print_modules(); 5502 if (irqs_disabled()) 5503 print_irqtrace_events(prev); 5504 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5505 && in_atomic_preempt_off()) { 5506 pr_err("Preemption disabled at:"); 5507 print_ip_sym(KERN_ERR, preempt_disable_ip); 5508 } 5509 if (panic_on_warn) 5510 panic("scheduling while atomic\n"); 5511 5512 dump_stack(); 5513 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5514 } 5515 5516 /* 5517 * Various schedule()-time debugging checks and statistics: 5518 */ 5519 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5520 { 5521 #ifdef CONFIG_SCHED_STACK_END_CHECK 5522 if (task_stack_end_corrupted(prev)) 5523 panic("corrupted stack end detected inside scheduler\n"); 5524 5525 if (task_scs_end_corrupted(prev)) 5526 panic("corrupted shadow stack detected inside scheduler\n"); 5527 #endif 5528 5529 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5530 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5531 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5532 prev->comm, prev->pid, prev->non_block_count); 5533 dump_stack(); 5534 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5535 } 5536 #endif 5537 5538 if (unlikely(in_atomic_preempt_off())) { 5539 __schedule_bug(prev); 5540 preempt_count_set(PREEMPT_DISABLED); 5541 } 5542 rcu_sleep_check(); 5543 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5544 5545 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5546 5547 schedstat_inc(this_rq()->sched_count); 5548 } 5549 5550 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5551 struct rq_flags *rf) 5552 { 5553 #ifdef CONFIG_SMP 5554 const struct sched_class *class; 5555 /* 5556 * We must do the balancing pass before put_prev_task(), such 5557 * that when we release the rq->lock the task is in the same 5558 * state as before we took rq->lock. 5559 * 5560 * We can terminate the balance pass as soon as we know there is 5561 * a runnable task of @class priority or higher. 5562 */ 5563 for_class_range(class, prev->sched_class, &idle_sched_class) { 5564 if (class->balance(rq, prev, rf)) 5565 break; 5566 } 5567 #endif 5568 5569 put_prev_task(rq, prev); 5570 } 5571 5572 /* 5573 * Pick up the highest-prio task: 5574 */ 5575 static inline struct task_struct * 5576 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5577 { 5578 const struct sched_class *class; 5579 struct task_struct *p; 5580 5581 /* 5582 * Optimization: we know that if all tasks are in the fair class we can 5583 * call that function directly, but only if the @prev task wasn't of a 5584 * higher scheduling class, because otherwise those lose the 5585 * opportunity to pull in more work from other CPUs. 5586 */ 5587 if (likely(prev->sched_class <= &fair_sched_class && 5588 rq->nr_running == rq->cfs.h_nr_running)) { 5589 5590 p = pick_next_task_fair(rq, prev, rf); 5591 if (unlikely(p == RETRY_TASK)) 5592 goto restart; 5593 5594 /* Assume the next prioritized class is idle_sched_class */ 5595 if (!p) { 5596 put_prev_task(rq, prev); 5597 p = pick_next_task_idle(rq); 5598 } 5599 5600 return p; 5601 } 5602 5603 restart: 5604 put_prev_task_balance(rq, prev, rf); 5605 5606 for_each_class(class) { 5607 p = class->pick_next_task(rq); 5608 if (p) 5609 return p; 5610 } 5611 5612 BUG(); /* The idle class should always have a runnable task. */ 5613 } 5614 5615 #ifdef CONFIG_SCHED_CORE 5616 static inline bool is_task_rq_idle(struct task_struct *t) 5617 { 5618 return (task_rq(t)->idle == t); 5619 } 5620 5621 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5622 { 5623 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5624 } 5625 5626 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5627 { 5628 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5629 return true; 5630 5631 return a->core_cookie == b->core_cookie; 5632 } 5633 5634 static inline struct task_struct *pick_task(struct rq *rq) 5635 { 5636 const struct sched_class *class; 5637 struct task_struct *p; 5638 5639 for_each_class(class) { 5640 p = class->pick_task(rq); 5641 if (p) 5642 return p; 5643 } 5644 5645 BUG(); /* The idle class should always have a runnable task. */ 5646 } 5647 5648 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5649 5650 static struct task_struct * 5651 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5652 { 5653 struct task_struct *next, *p, *max = NULL; 5654 const struct cpumask *smt_mask; 5655 bool fi_before = false; 5656 unsigned long cookie; 5657 int i, cpu, occ = 0; 5658 struct rq *rq_i; 5659 bool need_sync; 5660 5661 if (!sched_core_enabled(rq)) 5662 return __pick_next_task(rq, prev, rf); 5663 5664 cpu = cpu_of(rq); 5665 5666 /* Stopper task is switching into idle, no need core-wide selection. */ 5667 if (cpu_is_offline(cpu)) { 5668 /* 5669 * Reset core_pick so that we don't enter the fastpath when 5670 * coming online. core_pick would already be migrated to 5671 * another cpu during offline. 5672 */ 5673 rq->core_pick = NULL; 5674 return __pick_next_task(rq, prev, rf); 5675 } 5676 5677 /* 5678 * If there were no {en,de}queues since we picked (IOW, the task 5679 * pointers are all still valid), and we haven't scheduled the last 5680 * pick yet, do so now. 5681 * 5682 * rq->core_pick can be NULL if no selection was made for a CPU because 5683 * it was either offline or went offline during a sibling's core-wide 5684 * selection. In this case, do a core-wide selection. 5685 */ 5686 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5687 rq->core->core_pick_seq != rq->core_sched_seq && 5688 rq->core_pick) { 5689 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5690 5691 next = rq->core_pick; 5692 if (next != prev) { 5693 put_prev_task(rq, prev); 5694 set_next_task(rq, next); 5695 } 5696 5697 rq->core_pick = NULL; 5698 return next; 5699 } 5700 5701 put_prev_task_balance(rq, prev, rf); 5702 5703 smt_mask = cpu_smt_mask(cpu); 5704 need_sync = !!rq->core->core_cookie; 5705 5706 /* reset state */ 5707 rq->core->core_cookie = 0UL; 5708 if (rq->core->core_forceidle) { 5709 need_sync = true; 5710 fi_before = true; 5711 rq->core->core_forceidle = false; 5712 } 5713 5714 /* 5715 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5716 * 5717 * @task_seq guards the task state ({en,de}queues) 5718 * @pick_seq is the @task_seq we did a selection on 5719 * @sched_seq is the @pick_seq we scheduled 5720 * 5721 * However, preemptions can cause multiple picks on the same task set. 5722 * 'Fix' this by also increasing @task_seq for every pick. 5723 */ 5724 rq->core->core_task_seq++; 5725 5726 /* 5727 * Optimize for common case where this CPU has no cookies 5728 * and there are no cookied tasks running on siblings. 5729 */ 5730 if (!need_sync) { 5731 next = pick_task(rq); 5732 if (!next->core_cookie) { 5733 rq->core_pick = NULL; 5734 /* 5735 * For robustness, update the min_vruntime_fi for 5736 * unconstrained picks as well. 5737 */ 5738 WARN_ON_ONCE(fi_before); 5739 task_vruntime_update(rq, next, false); 5740 goto done; 5741 } 5742 } 5743 5744 /* 5745 * For each thread: do the regular task pick and find the max prio task 5746 * amongst them. 5747 * 5748 * Tie-break prio towards the current CPU 5749 */ 5750 for_each_cpu_wrap(i, smt_mask, cpu) { 5751 rq_i = cpu_rq(i); 5752 5753 if (i != cpu) 5754 update_rq_clock(rq_i); 5755 5756 p = rq_i->core_pick = pick_task(rq_i); 5757 if (!max || prio_less(max, p, fi_before)) 5758 max = p; 5759 } 5760 5761 cookie = rq->core->core_cookie = max->core_cookie; 5762 5763 /* 5764 * For each thread: try and find a runnable task that matches @max or 5765 * force idle. 5766 */ 5767 for_each_cpu(i, smt_mask) { 5768 rq_i = cpu_rq(i); 5769 p = rq_i->core_pick; 5770 5771 if (!cookie_equals(p, cookie)) { 5772 p = NULL; 5773 if (cookie) 5774 p = sched_core_find(rq_i, cookie); 5775 if (!p) 5776 p = idle_sched_class.pick_task(rq_i); 5777 } 5778 5779 rq_i->core_pick = p; 5780 5781 if (p == rq_i->idle) { 5782 if (rq_i->nr_running) { 5783 rq->core->core_forceidle = true; 5784 if (!fi_before) 5785 rq->core->core_forceidle_seq++; 5786 } 5787 } else { 5788 occ++; 5789 } 5790 } 5791 5792 rq->core->core_pick_seq = rq->core->core_task_seq; 5793 next = rq->core_pick; 5794 rq->core_sched_seq = rq->core->core_pick_seq; 5795 5796 /* Something should have been selected for current CPU */ 5797 WARN_ON_ONCE(!next); 5798 5799 /* 5800 * Reschedule siblings 5801 * 5802 * NOTE: L1TF -- at this point we're no longer running the old task and 5803 * sending an IPI (below) ensures the sibling will no longer be running 5804 * their task. This ensures there is no inter-sibling overlap between 5805 * non-matching user state. 5806 */ 5807 for_each_cpu(i, smt_mask) { 5808 rq_i = cpu_rq(i); 5809 5810 /* 5811 * An online sibling might have gone offline before a task 5812 * could be picked for it, or it might be offline but later 5813 * happen to come online, but its too late and nothing was 5814 * picked for it. That's Ok - it will pick tasks for itself, 5815 * so ignore it. 5816 */ 5817 if (!rq_i->core_pick) 5818 continue; 5819 5820 /* 5821 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5822 * fi_before fi update? 5823 * 0 0 1 5824 * 0 1 1 5825 * 1 0 1 5826 * 1 1 0 5827 */ 5828 if (!(fi_before && rq->core->core_forceidle)) 5829 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle); 5830 5831 rq_i->core_pick->core_occupation = occ; 5832 5833 if (i == cpu) { 5834 rq_i->core_pick = NULL; 5835 continue; 5836 } 5837 5838 /* Did we break L1TF mitigation requirements? */ 5839 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5840 5841 if (rq_i->curr == rq_i->core_pick) { 5842 rq_i->core_pick = NULL; 5843 continue; 5844 } 5845 5846 resched_curr(rq_i); 5847 } 5848 5849 done: 5850 set_next_task(rq, next); 5851 return next; 5852 } 5853 5854 static bool try_steal_cookie(int this, int that) 5855 { 5856 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5857 struct task_struct *p; 5858 unsigned long cookie; 5859 bool success = false; 5860 5861 local_irq_disable(); 5862 double_rq_lock(dst, src); 5863 5864 cookie = dst->core->core_cookie; 5865 if (!cookie) 5866 goto unlock; 5867 5868 if (dst->curr != dst->idle) 5869 goto unlock; 5870 5871 p = sched_core_find(src, cookie); 5872 if (p == src->idle) 5873 goto unlock; 5874 5875 do { 5876 if (p == src->core_pick || p == src->curr) 5877 goto next; 5878 5879 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5880 goto next; 5881 5882 if (p->core_occupation > dst->idle->core_occupation) 5883 goto next; 5884 5885 deactivate_task(src, p, 0); 5886 set_task_cpu(p, this); 5887 activate_task(dst, p, 0); 5888 5889 resched_curr(dst); 5890 5891 success = true; 5892 break; 5893 5894 next: 5895 p = sched_core_next(p, cookie); 5896 } while (p); 5897 5898 unlock: 5899 double_rq_unlock(dst, src); 5900 local_irq_enable(); 5901 5902 return success; 5903 } 5904 5905 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5906 { 5907 int i; 5908 5909 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5910 if (i == cpu) 5911 continue; 5912 5913 if (need_resched()) 5914 break; 5915 5916 if (try_steal_cookie(cpu, i)) 5917 return true; 5918 } 5919 5920 return false; 5921 } 5922 5923 static void sched_core_balance(struct rq *rq) 5924 { 5925 struct sched_domain *sd; 5926 int cpu = cpu_of(rq); 5927 5928 preempt_disable(); 5929 rcu_read_lock(); 5930 raw_spin_rq_unlock_irq(rq); 5931 for_each_domain(cpu, sd) { 5932 if (need_resched()) 5933 break; 5934 5935 if (steal_cookie_task(cpu, sd)) 5936 break; 5937 } 5938 raw_spin_rq_lock_irq(rq); 5939 rcu_read_unlock(); 5940 preempt_enable(); 5941 } 5942 5943 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5944 5945 void queue_core_balance(struct rq *rq) 5946 { 5947 if (!sched_core_enabled(rq)) 5948 return; 5949 5950 if (!rq->core->core_cookie) 5951 return; 5952 5953 if (!rq->nr_running) /* not forced idle */ 5954 return; 5955 5956 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 5957 } 5958 5959 static void sched_core_cpu_starting(unsigned int cpu) 5960 { 5961 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 5962 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 5963 unsigned long flags; 5964 int t; 5965 5966 sched_core_lock(cpu, &flags); 5967 5968 WARN_ON_ONCE(rq->core != rq); 5969 5970 /* if we're the first, we'll be our own leader */ 5971 if (cpumask_weight(smt_mask) == 1) 5972 goto unlock; 5973 5974 /* find the leader */ 5975 for_each_cpu(t, smt_mask) { 5976 if (t == cpu) 5977 continue; 5978 rq = cpu_rq(t); 5979 if (rq->core == rq) { 5980 core_rq = rq; 5981 break; 5982 } 5983 } 5984 5985 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 5986 goto unlock; 5987 5988 /* install and validate core_rq */ 5989 for_each_cpu(t, smt_mask) { 5990 rq = cpu_rq(t); 5991 5992 if (t == cpu) 5993 rq->core = core_rq; 5994 5995 WARN_ON_ONCE(rq->core != core_rq); 5996 } 5997 5998 unlock: 5999 sched_core_unlock(cpu, &flags); 6000 } 6001 6002 static void sched_core_cpu_deactivate(unsigned int cpu) 6003 { 6004 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6005 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6006 unsigned long flags; 6007 int t; 6008 6009 sched_core_lock(cpu, &flags); 6010 6011 /* if we're the last man standing, nothing to do */ 6012 if (cpumask_weight(smt_mask) == 1) { 6013 WARN_ON_ONCE(rq->core != rq); 6014 goto unlock; 6015 } 6016 6017 /* if we're not the leader, nothing to do */ 6018 if (rq->core != rq) 6019 goto unlock; 6020 6021 /* find a new leader */ 6022 for_each_cpu(t, smt_mask) { 6023 if (t == cpu) 6024 continue; 6025 core_rq = cpu_rq(t); 6026 break; 6027 } 6028 6029 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6030 goto unlock; 6031 6032 /* copy the shared state to the new leader */ 6033 core_rq->core_task_seq = rq->core_task_seq; 6034 core_rq->core_pick_seq = rq->core_pick_seq; 6035 core_rq->core_cookie = rq->core_cookie; 6036 core_rq->core_forceidle = rq->core_forceidle; 6037 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6038 6039 /* install new leader */ 6040 for_each_cpu(t, smt_mask) { 6041 rq = cpu_rq(t); 6042 rq->core = core_rq; 6043 } 6044 6045 unlock: 6046 sched_core_unlock(cpu, &flags); 6047 } 6048 6049 static inline void sched_core_cpu_dying(unsigned int cpu) 6050 { 6051 struct rq *rq = cpu_rq(cpu); 6052 6053 if (rq->core != rq) 6054 rq->core = rq; 6055 } 6056 6057 #else /* !CONFIG_SCHED_CORE */ 6058 6059 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6060 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6061 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6062 6063 static struct task_struct * 6064 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6065 { 6066 return __pick_next_task(rq, prev, rf); 6067 } 6068 6069 #endif /* CONFIG_SCHED_CORE */ 6070 6071 /* 6072 * Constants for the sched_mode argument of __schedule(). 6073 * 6074 * The mode argument allows RT enabled kernels to differentiate a 6075 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6076 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6077 * optimize the AND operation out and just check for zero. 6078 */ 6079 #define SM_NONE 0x0 6080 #define SM_PREEMPT 0x1 6081 #define SM_RTLOCK_WAIT 0x2 6082 6083 #ifndef CONFIG_PREEMPT_RT 6084 # define SM_MASK_PREEMPT (~0U) 6085 #else 6086 # define SM_MASK_PREEMPT SM_PREEMPT 6087 #endif 6088 6089 /* 6090 * __schedule() is the main scheduler function. 6091 * 6092 * The main means of driving the scheduler and thus entering this function are: 6093 * 6094 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6095 * 6096 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6097 * paths. For example, see arch/x86/entry_64.S. 6098 * 6099 * To drive preemption between tasks, the scheduler sets the flag in timer 6100 * interrupt handler scheduler_tick(). 6101 * 6102 * 3. Wakeups don't really cause entry into schedule(). They add a 6103 * task to the run-queue and that's it. 6104 * 6105 * Now, if the new task added to the run-queue preempts the current 6106 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6107 * called on the nearest possible occasion: 6108 * 6109 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6110 * 6111 * - in syscall or exception context, at the next outmost 6112 * preempt_enable(). (this might be as soon as the wake_up()'s 6113 * spin_unlock()!) 6114 * 6115 * - in IRQ context, return from interrupt-handler to 6116 * preemptible context 6117 * 6118 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6119 * then at the next: 6120 * 6121 * - cond_resched() call 6122 * - explicit schedule() call 6123 * - return from syscall or exception to user-space 6124 * - return from interrupt-handler to user-space 6125 * 6126 * WARNING: must be called with preemption disabled! 6127 */ 6128 static void __sched notrace __schedule(unsigned int sched_mode) 6129 { 6130 struct task_struct *prev, *next; 6131 unsigned long *switch_count; 6132 unsigned long prev_state; 6133 struct rq_flags rf; 6134 struct rq *rq; 6135 int cpu; 6136 6137 cpu = smp_processor_id(); 6138 rq = cpu_rq(cpu); 6139 prev = rq->curr; 6140 6141 schedule_debug(prev, !!sched_mode); 6142 6143 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6144 hrtick_clear(rq); 6145 6146 local_irq_disable(); 6147 rcu_note_context_switch(!!sched_mode); 6148 6149 /* 6150 * Make sure that signal_pending_state()->signal_pending() below 6151 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6152 * done by the caller to avoid the race with signal_wake_up(): 6153 * 6154 * __set_current_state(@state) signal_wake_up() 6155 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6156 * wake_up_state(p, state) 6157 * LOCK rq->lock LOCK p->pi_state 6158 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6159 * if (signal_pending_state()) if (p->state & @state) 6160 * 6161 * Also, the membarrier system call requires a full memory barrier 6162 * after coming from user-space, before storing to rq->curr. 6163 */ 6164 rq_lock(rq, &rf); 6165 smp_mb__after_spinlock(); 6166 6167 /* Promote REQ to ACT */ 6168 rq->clock_update_flags <<= 1; 6169 update_rq_clock(rq); 6170 6171 switch_count = &prev->nivcsw; 6172 6173 /* 6174 * We must load prev->state once (task_struct::state is volatile), such 6175 * that: 6176 * 6177 * - we form a control dependency vs deactivate_task() below. 6178 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6179 */ 6180 prev_state = READ_ONCE(prev->__state); 6181 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6182 if (signal_pending_state(prev_state, prev)) { 6183 WRITE_ONCE(prev->__state, TASK_RUNNING); 6184 } else { 6185 prev->sched_contributes_to_load = 6186 (prev_state & TASK_UNINTERRUPTIBLE) && 6187 !(prev_state & TASK_NOLOAD) && 6188 !(prev->flags & PF_FROZEN); 6189 6190 if (prev->sched_contributes_to_load) 6191 rq->nr_uninterruptible++; 6192 6193 /* 6194 * __schedule() ttwu() 6195 * prev_state = prev->state; if (p->on_rq && ...) 6196 * if (prev_state) goto out; 6197 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6198 * p->state = TASK_WAKING 6199 * 6200 * Where __schedule() and ttwu() have matching control dependencies. 6201 * 6202 * After this, schedule() must not care about p->state any more. 6203 */ 6204 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6205 6206 if (prev->in_iowait) { 6207 atomic_inc(&rq->nr_iowait); 6208 delayacct_blkio_start(); 6209 } 6210 } 6211 switch_count = &prev->nvcsw; 6212 } 6213 6214 next = pick_next_task(rq, prev, &rf); 6215 clear_tsk_need_resched(prev); 6216 clear_preempt_need_resched(); 6217 #ifdef CONFIG_SCHED_DEBUG 6218 rq->last_seen_need_resched_ns = 0; 6219 #endif 6220 6221 if (likely(prev != next)) { 6222 rq->nr_switches++; 6223 /* 6224 * RCU users of rcu_dereference(rq->curr) may not see 6225 * changes to task_struct made by pick_next_task(). 6226 */ 6227 RCU_INIT_POINTER(rq->curr, next); 6228 /* 6229 * The membarrier system call requires each architecture 6230 * to have a full memory barrier after updating 6231 * rq->curr, before returning to user-space. 6232 * 6233 * Here are the schemes providing that barrier on the 6234 * various architectures: 6235 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6236 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6237 * - finish_lock_switch() for weakly-ordered 6238 * architectures where spin_unlock is a full barrier, 6239 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6240 * is a RELEASE barrier), 6241 */ 6242 ++*switch_count; 6243 6244 migrate_disable_switch(rq, prev); 6245 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6246 6247 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next); 6248 6249 /* Also unlocks the rq: */ 6250 rq = context_switch(rq, prev, next, &rf); 6251 } else { 6252 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6253 6254 rq_unpin_lock(rq, &rf); 6255 __balance_callbacks(rq); 6256 raw_spin_rq_unlock_irq(rq); 6257 } 6258 } 6259 6260 void __noreturn do_task_dead(void) 6261 { 6262 /* Causes final put_task_struct in finish_task_switch(): */ 6263 set_special_state(TASK_DEAD); 6264 6265 /* Tell freezer to ignore us: */ 6266 current->flags |= PF_NOFREEZE; 6267 6268 __schedule(SM_NONE); 6269 BUG(); 6270 6271 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6272 for (;;) 6273 cpu_relax(); 6274 } 6275 6276 static inline void sched_submit_work(struct task_struct *tsk) 6277 { 6278 unsigned int task_flags; 6279 6280 if (task_is_running(tsk)) 6281 return; 6282 6283 task_flags = tsk->flags; 6284 /* 6285 * If a worker goes to sleep, notify and ask workqueue whether it 6286 * wants to wake up a task to maintain concurrency. 6287 */ 6288 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6289 if (task_flags & PF_WQ_WORKER) 6290 wq_worker_sleeping(tsk); 6291 else 6292 io_wq_worker_sleeping(tsk); 6293 } 6294 6295 if (tsk_is_pi_blocked(tsk)) 6296 return; 6297 6298 /* 6299 * If we are going to sleep and we have plugged IO queued, 6300 * make sure to submit it to avoid deadlocks. 6301 */ 6302 if (blk_needs_flush_plug(tsk)) 6303 blk_flush_plug(tsk->plug, true); 6304 } 6305 6306 static void sched_update_worker(struct task_struct *tsk) 6307 { 6308 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6309 if (tsk->flags & PF_WQ_WORKER) 6310 wq_worker_running(tsk); 6311 else 6312 io_wq_worker_running(tsk); 6313 } 6314 } 6315 6316 asmlinkage __visible void __sched schedule(void) 6317 { 6318 struct task_struct *tsk = current; 6319 6320 sched_submit_work(tsk); 6321 do { 6322 preempt_disable(); 6323 __schedule(SM_NONE); 6324 sched_preempt_enable_no_resched(); 6325 } while (need_resched()); 6326 sched_update_worker(tsk); 6327 } 6328 EXPORT_SYMBOL(schedule); 6329 6330 /* 6331 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6332 * state (have scheduled out non-voluntarily) by making sure that all 6333 * tasks have either left the run queue or have gone into user space. 6334 * As idle tasks do not do either, they must not ever be preempted 6335 * (schedule out non-voluntarily). 6336 * 6337 * schedule_idle() is similar to schedule_preempt_disable() except that it 6338 * never enables preemption because it does not call sched_submit_work(). 6339 */ 6340 void __sched schedule_idle(void) 6341 { 6342 /* 6343 * As this skips calling sched_submit_work(), which the idle task does 6344 * regardless because that function is a nop when the task is in a 6345 * TASK_RUNNING state, make sure this isn't used someplace that the 6346 * current task can be in any other state. Note, idle is always in the 6347 * TASK_RUNNING state. 6348 */ 6349 WARN_ON_ONCE(current->__state); 6350 do { 6351 __schedule(SM_NONE); 6352 } while (need_resched()); 6353 } 6354 6355 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6356 asmlinkage __visible void __sched schedule_user(void) 6357 { 6358 /* 6359 * If we come here after a random call to set_need_resched(), 6360 * or we have been woken up remotely but the IPI has not yet arrived, 6361 * we haven't yet exited the RCU idle mode. Do it here manually until 6362 * we find a better solution. 6363 * 6364 * NB: There are buggy callers of this function. Ideally we 6365 * should warn if prev_state != CONTEXT_USER, but that will trigger 6366 * too frequently to make sense yet. 6367 */ 6368 enum ctx_state prev_state = exception_enter(); 6369 schedule(); 6370 exception_exit(prev_state); 6371 } 6372 #endif 6373 6374 /** 6375 * schedule_preempt_disabled - called with preemption disabled 6376 * 6377 * Returns with preemption disabled. Note: preempt_count must be 1 6378 */ 6379 void __sched schedule_preempt_disabled(void) 6380 { 6381 sched_preempt_enable_no_resched(); 6382 schedule(); 6383 preempt_disable(); 6384 } 6385 6386 #ifdef CONFIG_PREEMPT_RT 6387 void __sched notrace schedule_rtlock(void) 6388 { 6389 do { 6390 preempt_disable(); 6391 __schedule(SM_RTLOCK_WAIT); 6392 sched_preempt_enable_no_resched(); 6393 } while (need_resched()); 6394 } 6395 NOKPROBE_SYMBOL(schedule_rtlock); 6396 #endif 6397 6398 static void __sched notrace preempt_schedule_common(void) 6399 { 6400 do { 6401 /* 6402 * Because the function tracer can trace preempt_count_sub() 6403 * and it also uses preempt_enable/disable_notrace(), if 6404 * NEED_RESCHED is set, the preempt_enable_notrace() called 6405 * by the function tracer will call this function again and 6406 * cause infinite recursion. 6407 * 6408 * Preemption must be disabled here before the function 6409 * tracer can trace. Break up preempt_disable() into two 6410 * calls. One to disable preemption without fear of being 6411 * traced. The other to still record the preemption latency, 6412 * which can also be traced by the function tracer. 6413 */ 6414 preempt_disable_notrace(); 6415 preempt_latency_start(1); 6416 __schedule(SM_PREEMPT); 6417 preempt_latency_stop(1); 6418 preempt_enable_no_resched_notrace(); 6419 6420 /* 6421 * Check again in case we missed a preemption opportunity 6422 * between schedule and now. 6423 */ 6424 } while (need_resched()); 6425 } 6426 6427 #ifdef CONFIG_PREEMPTION 6428 /* 6429 * This is the entry point to schedule() from in-kernel preemption 6430 * off of preempt_enable. 6431 */ 6432 asmlinkage __visible void __sched notrace preempt_schedule(void) 6433 { 6434 /* 6435 * If there is a non-zero preempt_count or interrupts are disabled, 6436 * we do not want to preempt the current task. Just return.. 6437 */ 6438 if (likely(!preemptible())) 6439 return; 6440 6441 preempt_schedule_common(); 6442 } 6443 NOKPROBE_SYMBOL(preempt_schedule); 6444 EXPORT_SYMBOL(preempt_schedule); 6445 6446 #ifdef CONFIG_PREEMPT_DYNAMIC 6447 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6448 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6449 #endif 6450 6451 6452 /** 6453 * preempt_schedule_notrace - preempt_schedule called by tracing 6454 * 6455 * The tracing infrastructure uses preempt_enable_notrace to prevent 6456 * recursion and tracing preempt enabling caused by the tracing 6457 * infrastructure itself. But as tracing can happen in areas coming 6458 * from userspace or just about to enter userspace, a preempt enable 6459 * can occur before user_exit() is called. This will cause the scheduler 6460 * to be called when the system is still in usermode. 6461 * 6462 * To prevent this, the preempt_enable_notrace will use this function 6463 * instead of preempt_schedule() to exit user context if needed before 6464 * calling the scheduler. 6465 */ 6466 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6467 { 6468 enum ctx_state prev_ctx; 6469 6470 if (likely(!preemptible())) 6471 return; 6472 6473 do { 6474 /* 6475 * Because the function tracer can trace preempt_count_sub() 6476 * and it also uses preempt_enable/disable_notrace(), if 6477 * NEED_RESCHED is set, the preempt_enable_notrace() called 6478 * by the function tracer will call this function again and 6479 * cause infinite recursion. 6480 * 6481 * Preemption must be disabled here before the function 6482 * tracer can trace. Break up preempt_disable() into two 6483 * calls. One to disable preemption without fear of being 6484 * traced. The other to still record the preemption latency, 6485 * which can also be traced by the function tracer. 6486 */ 6487 preempt_disable_notrace(); 6488 preempt_latency_start(1); 6489 /* 6490 * Needs preempt disabled in case user_exit() is traced 6491 * and the tracer calls preempt_enable_notrace() causing 6492 * an infinite recursion. 6493 */ 6494 prev_ctx = exception_enter(); 6495 __schedule(SM_PREEMPT); 6496 exception_exit(prev_ctx); 6497 6498 preempt_latency_stop(1); 6499 preempt_enable_no_resched_notrace(); 6500 } while (need_resched()); 6501 } 6502 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6503 6504 #ifdef CONFIG_PREEMPT_DYNAMIC 6505 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6506 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6507 #endif 6508 6509 #endif /* CONFIG_PREEMPTION */ 6510 6511 #ifdef CONFIG_PREEMPT_DYNAMIC 6512 6513 #include <linux/entry-common.h> 6514 6515 /* 6516 * SC:cond_resched 6517 * SC:might_resched 6518 * SC:preempt_schedule 6519 * SC:preempt_schedule_notrace 6520 * SC:irqentry_exit_cond_resched 6521 * 6522 * 6523 * NONE: 6524 * cond_resched <- __cond_resched 6525 * might_resched <- RET0 6526 * preempt_schedule <- NOP 6527 * preempt_schedule_notrace <- NOP 6528 * irqentry_exit_cond_resched <- NOP 6529 * 6530 * VOLUNTARY: 6531 * cond_resched <- __cond_resched 6532 * might_resched <- __cond_resched 6533 * preempt_schedule <- NOP 6534 * preempt_schedule_notrace <- NOP 6535 * irqentry_exit_cond_resched <- NOP 6536 * 6537 * FULL: 6538 * cond_resched <- RET0 6539 * might_resched <- RET0 6540 * preempt_schedule <- preempt_schedule 6541 * preempt_schedule_notrace <- preempt_schedule_notrace 6542 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6543 */ 6544 6545 enum { 6546 preempt_dynamic_undefined = -1, 6547 preempt_dynamic_none, 6548 preempt_dynamic_voluntary, 6549 preempt_dynamic_full, 6550 }; 6551 6552 int preempt_dynamic_mode = preempt_dynamic_undefined; 6553 6554 int sched_dynamic_mode(const char *str) 6555 { 6556 if (!strcmp(str, "none")) 6557 return preempt_dynamic_none; 6558 6559 if (!strcmp(str, "voluntary")) 6560 return preempt_dynamic_voluntary; 6561 6562 if (!strcmp(str, "full")) 6563 return preempt_dynamic_full; 6564 6565 return -EINVAL; 6566 } 6567 6568 void sched_dynamic_update(int mode) 6569 { 6570 /* 6571 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6572 * the ZERO state, which is invalid. 6573 */ 6574 static_call_update(cond_resched, __cond_resched); 6575 static_call_update(might_resched, __cond_resched); 6576 static_call_update(preempt_schedule, __preempt_schedule_func); 6577 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6578 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6579 6580 switch (mode) { 6581 case preempt_dynamic_none: 6582 static_call_update(cond_resched, __cond_resched); 6583 static_call_update(might_resched, (void *)&__static_call_return0); 6584 static_call_update(preempt_schedule, NULL); 6585 static_call_update(preempt_schedule_notrace, NULL); 6586 static_call_update(irqentry_exit_cond_resched, NULL); 6587 pr_info("Dynamic Preempt: none\n"); 6588 break; 6589 6590 case preempt_dynamic_voluntary: 6591 static_call_update(cond_resched, __cond_resched); 6592 static_call_update(might_resched, __cond_resched); 6593 static_call_update(preempt_schedule, NULL); 6594 static_call_update(preempt_schedule_notrace, NULL); 6595 static_call_update(irqentry_exit_cond_resched, NULL); 6596 pr_info("Dynamic Preempt: voluntary\n"); 6597 break; 6598 6599 case preempt_dynamic_full: 6600 static_call_update(cond_resched, (void *)&__static_call_return0); 6601 static_call_update(might_resched, (void *)&__static_call_return0); 6602 static_call_update(preempt_schedule, __preempt_schedule_func); 6603 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6604 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6605 pr_info("Dynamic Preempt: full\n"); 6606 break; 6607 } 6608 6609 preempt_dynamic_mode = mode; 6610 } 6611 6612 static int __init setup_preempt_mode(char *str) 6613 { 6614 int mode = sched_dynamic_mode(str); 6615 if (mode < 0) { 6616 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6617 return 1; 6618 } 6619 6620 sched_dynamic_update(mode); 6621 return 0; 6622 } 6623 __setup("preempt=", setup_preempt_mode); 6624 6625 static void __init preempt_dynamic_init(void) 6626 { 6627 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 6628 if (IS_ENABLED(CONFIG_PREEMPT_NONE_BEHAVIOUR)) { 6629 sched_dynamic_update(preempt_dynamic_none); 6630 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BEHAVIOUR)) { 6631 sched_dynamic_update(preempt_dynamic_voluntary); 6632 } else { 6633 /* Default static call setting, nothing to do */ 6634 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_BEHAVIOUR)); 6635 preempt_dynamic_mode = preempt_dynamic_full; 6636 pr_info("Dynamic Preempt: full\n"); 6637 } 6638 } 6639 } 6640 6641 #else /* !CONFIG_PREEMPT_DYNAMIC */ 6642 6643 static inline void preempt_dynamic_init(void) { } 6644 6645 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 6646 6647 /* 6648 * This is the entry point to schedule() from kernel preemption 6649 * off of irq context. 6650 * Note, that this is called and return with irqs disabled. This will 6651 * protect us against recursive calling from irq. 6652 */ 6653 asmlinkage __visible void __sched preempt_schedule_irq(void) 6654 { 6655 enum ctx_state prev_state; 6656 6657 /* Catch callers which need to be fixed */ 6658 BUG_ON(preempt_count() || !irqs_disabled()); 6659 6660 prev_state = exception_enter(); 6661 6662 do { 6663 preempt_disable(); 6664 local_irq_enable(); 6665 __schedule(SM_PREEMPT); 6666 local_irq_disable(); 6667 sched_preempt_enable_no_resched(); 6668 } while (need_resched()); 6669 6670 exception_exit(prev_state); 6671 } 6672 6673 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6674 void *key) 6675 { 6676 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6677 return try_to_wake_up(curr->private, mode, wake_flags); 6678 } 6679 EXPORT_SYMBOL(default_wake_function); 6680 6681 static void __setscheduler_prio(struct task_struct *p, int prio) 6682 { 6683 if (dl_prio(prio)) 6684 p->sched_class = &dl_sched_class; 6685 else if (rt_prio(prio)) 6686 p->sched_class = &rt_sched_class; 6687 else 6688 p->sched_class = &fair_sched_class; 6689 6690 p->prio = prio; 6691 } 6692 6693 #ifdef CONFIG_RT_MUTEXES 6694 6695 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6696 { 6697 if (pi_task) 6698 prio = min(prio, pi_task->prio); 6699 6700 return prio; 6701 } 6702 6703 static inline int rt_effective_prio(struct task_struct *p, int prio) 6704 { 6705 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6706 6707 return __rt_effective_prio(pi_task, prio); 6708 } 6709 6710 /* 6711 * rt_mutex_setprio - set the current priority of a task 6712 * @p: task to boost 6713 * @pi_task: donor task 6714 * 6715 * This function changes the 'effective' priority of a task. It does 6716 * not touch ->normal_prio like __setscheduler(). 6717 * 6718 * Used by the rt_mutex code to implement priority inheritance 6719 * logic. Call site only calls if the priority of the task changed. 6720 */ 6721 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6722 { 6723 int prio, oldprio, queued, running, queue_flag = 6724 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6725 const struct sched_class *prev_class; 6726 struct rq_flags rf; 6727 struct rq *rq; 6728 6729 /* XXX used to be waiter->prio, not waiter->task->prio */ 6730 prio = __rt_effective_prio(pi_task, p->normal_prio); 6731 6732 /* 6733 * If nothing changed; bail early. 6734 */ 6735 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6736 return; 6737 6738 rq = __task_rq_lock(p, &rf); 6739 update_rq_clock(rq); 6740 /* 6741 * Set under pi_lock && rq->lock, such that the value can be used under 6742 * either lock. 6743 * 6744 * Note that there is loads of tricky to make this pointer cache work 6745 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6746 * ensure a task is de-boosted (pi_task is set to NULL) before the 6747 * task is allowed to run again (and can exit). This ensures the pointer 6748 * points to a blocked task -- which guarantees the task is present. 6749 */ 6750 p->pi_top_task = pi_task; 6751 6752 /* 6753 * For FIFO/RR we only need to set prio, if that matches we're done. 6754 */ 6755 if (prio == p->prio && !dl_prio(prio)) 6756 goto out_unlock; 6757 6758 /* 6759 * Idle task boosting is a nono in general. There is one 6760 * exception, when PREEMPT_RT and NOHZ is active: 6761 * 6762 * The idle task calls get_next_timer_interrupt() and holds 6763 * the timer wheel base->lock on the CPU and another CPU wants 6764 * to access the timer (probably to cancel it). We can safely 6765 * ignore the boosting request, as the idle CPU runs this code 6766 * with interrupts disabled and will complete the lock 6767 * protected section without being interrupted. So there is no 6768 * real need to boost. 6769 */ 6770 if (unlikely(p == rq->idle)) { 6771 WARN_ON(p != rq->curr); 6772 WARN_ON(p->pi_blocked_on); 6773 goto out_unlock; 6774 } 6775 6776 trace_sched_pi_setprio(p, pi_task); 6777 oldprio = p->prio; 6778 6779 if (oldprio == prio) 6780 queue_flag &= ~DEQUEUE_MOVE; 6781 6782 prev_class = p->sched_class; 6783 queued = task_on_rq_queued(p); 6784 running = task_current(rq, p); 6785 if (queued) 6786 dequeue_task(rq, p, queue_flag); 6787 if (running) 6788 put_prev_task(rq, p); 6789 6790 /* 6791 * Boosting condition are: 6792 * 1. -rt task is running and holds mutex A 6793 * --> -dl task blocks on mutex A 6794 * 6795 * 2. -dl task is running and holds mutex A 6796 * --> -dl task blocks on mutex A and could preempt the 6797 * running task 6798 */ 6799 if (dl_prio(prio)) { 6800 if (!dl_prio(p->normal_prio) || 6801 (pi_task && dl_prio(pi_task->prio) && 6802 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6803 p->dl.pi_se = pi_task->dl.pi_se; 6804 queue_flag |= ENQUEUE_REPLENISH; 6805 } else { 6806 p->dl.pi_se = &p->dl; 6807 } 6808 } else if (rt_prio(prio)) { 6809 if (dl_prio(oldprio)) 6810 p->dl.pi_se = &p->dl; 6811 if (oldprio < prio) 6812 queue_flag |= ENQUEUE_HEAD; 6813 } else { 6814 if (dl_prio(oldprio)) 6815 p->dl.pi_se = &p->dl; 6816 if (rt_prio(oldprio)) 6817 p->rt.timeout = 0; 6818 } 6819 6820 __setscheduler_prio(p, prio); 6821 6822 if (queued) 6823 enqueue_task(rq, p, queue_flag); 6824 if (running) 6825 set_next_task(rq, p); 6826 6827 check_class_changed(rq, p, prev_class, oldprio); 6828 out_unlock: 6829 /* Avoid rq from going away on us: */ 6830 preempt_disable(); 6831 6832 rq_unpin_lock(rq, &rf); 6833 __balance_callbacks(rq); 6834 raw_spin_rq_unlock(rq); 6835 6836 preempt_enable(); 6837 } 6838 #else 6839 static inline int rt_effective_prio(struct task_struct *p, int prio) 6840 { 6841 return prio; 6842 } 6843 #endif 6844 6845 void set_user_nice(struct task_struct *p, long nice) 6846 { 6847 bool queued, running; 6848 int old_prio; 6849 struct rq_flags rf; 6850 struct rq *rq; 6851 6852 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6853 return; 6854 /* 6855 * We have to be careful, if called from sys_setpriority(), 6856 * the task might be in the middle of scheduling on another CPU. 6857 */ 6858 rq = task_rq_lock(p, &rf); 6859 update_rq_clock(rq); 6860 6861 /* 6862 * The RT priorities are set via sched_setscheduler(), but we still 6863 * allow the 'normal' nice value to be set - but as expected 6864 * it won't have any effect on scheduling until the task is 6865 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6866 */ 6867 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6868 p->static_prio = NICE_TO_PRIO(nice); 6869 goto out_unlock; 6870 } 6871 queued = task_on_rq_queued(p); 6872 running = task_current(rq, p); 6873 if (queued) 6874 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6875 if (running) 6876 put_prev_task(rq, p); 6877 6878 p->static_prio = NICE_TO_PRIO(nice); 6879 set_load_weight(p, true); 6880 old_prio = p->prio; 6881 p->prio = effective_prio(p); 6882 6883 if (queued) 6884 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6885 if (running) 6886 set_next_task(rq, p); 6887 6888 /* 6889 * If the task increased its priority or is running and 6890 * lowered its priority, then reschedule its CPU: 6891 */ 6892 p->sched_class->prio_changed(rq, p, old_prio); 6893 6894 out_unlock: 6895 task_rq_unlock(rq, p, &rf); 6896 } 6897 EXPORT_SYMBOL(set_user_nice); 6898 6899 /* 6900 * can_nice - check if a task can reduce its nice value 6901 * @p: task 6902 * @nice: nice value 6903 */ 6904 int can_nice(const struct task_struct *p, const int nice) 6905 { 6906 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6907 int nice_rlim = nice_to_rlimit(nice); 6908 6909 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6910 capable(CAP_SYS_NICE)); 6911 } 6912 6913 #ifdef __ARCH_WANT_SYS_NICE 6914 6915 /* 6916 * sys_nice - change the priority of the current process. 6917 * @increment: priority increment 6918 * 6919 * sys_setpriority is a more generic, but much slower function that 6920 * does similar things. 6921 */ 6922 SYSCALL_DEFINE1(nice, int, increment) 6923 { 6924 long nice, retval; 6925 6926 /* 6927 * Setpriority might change our priority at the same moment. 6928 * We don't have to worry. Conceptually one call occurs first 6929 * and we have a single winner. 6930 */ 6931 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6932 nice = task_nice(current) + increment; 6933 6934 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6935 if (increment < 0 && !can_nice(current, nice)) 6936 return -EPERM; 6937 6938 retval = security_task_setnice(current, nice); 6939 if (retval) 6940 return retval; 6941 6942 set_user_nice(current, nice); 6943 return 0; 6944 } 6945 6946 #endif 6947 6948 /** 6949 * task_prio - return the priority value of a given task. 6950 * @p: the task in question. 6951 * 6952 * Return: The priority value as seen by users in /proc. 6953 * 6954 * sched policy return value kernel prio user prio/nice 6955 * 6956 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 6957 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 6958 * deadline -101 -1 0 6959 */ 6960 int task_prio(const struct task_struct *p) 6961 { 6962 return p->prio - MAX_RT_PRIO; 6963 } 6964 6965 /** 6966 * idle_cpu - is a given CPU idle currently? 6967 * @cpu: the processor in question. 6968 * 6969 * Return: 1 if the CPU is currently idle. 0 otherwise. 6970 */ 6971 int idle_cpu(int cpu) 6972 { 6973 struct rq *rq = cpu_rq(cpu); 6974 6975 if (rq->curr != rq->idle) 6976 return 0; 6977 6978 if (rq->nr_running) 6979 return 0; 6980 6981 #ifdef CONFIG_SMP 6982 if (rq->ttwu_pending) 6983 return 0; 6984 #endif 6985 6986 return 1; 6987 } 6988 6989 /** 6990 * available_idle_cpu - is a given CPU idle for enqueuing work. 6991 * @cpu: the CPU in question. 6992 * 6993 * Return: 1 if the CPU is currently idle. 0 otherwise. 6994 */ 6995 int available_idle_cpu(int cpu) 6996 { 6997 if (!idle_cpu(cpu)) 6998 return 0; 6999 7000 if (vcpu_is_preempted(cpu)) 7001 return 0; 7002 7003 return 1; 7004 } 7005 7006 /** 7007 * idle_task - return the idle task for a given CPU. 7008 * @cpu: the processor in question. 7009 * 7010 * Return: The idle task for the CPU @cpu. 7011 */ 7012 struct task_struct *idle_task(int cpu) 7013 { 7014 return cpu_rq(cpu)->idle; 7015 } 7016 7017 #ifdef CONFIG_SMP 7018 /* 7019 * This function computes an effective utilization for the given CPU, to be 7020 * used for frequency selection given the linear relation: f = u * f_max. 7021 * 7022 * The scheduler tracks the following metrics: 7023 * 7024 * cpu_util_{cfs,rt,dl,irq}() 7025 * cpu_bw_dl() 7026 * 7027 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7028 * synchronized windows and are thus directly comparable. 7029 * 7030 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7031 * which excludes things like IRQ and steal-time. These latter are then accrued 7032 * in the irq utilization. 7033 * 7034 * The DL bandwidth number otoh is not a measured metric but a value computed 7035 * based on the task model parameters and gives the minimal utilization 7036 * required to meet deadlines. 7037 */ 7038 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7039 unsigned long max, enum cpu_util_type type, 7040 struct task_struct *p) 7041 { 7042 unsigned long dl_util, util, irq; 7043 struct rq *rq = cpu_rq(cpu); 7044 7045 if (!uclamp_is_used() && 7046 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7047 return max; 7048 } 7049 7050 /* 7051 * Early check to see if IRQ/steal time saturates the CPU, can be 7052 * because of inaccuracies in how we track these -- see 7053 * update_irq_load_avg(). 7054 */ 7055 irq = cpu_util_irq(rq); 7056 if (unlikely(irq >= max)) 7057 return max; 7058 7059 /* 7060 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7061 * CFS tasks and we use the same metric to track the effective 7062 * utilization (PELT windows are synchronized) we can directly add them 7063 * to obtain the CPU's actual utilization. 7064 * 7065 * CFS and RT utilization can be boosted or capped, depending on 7066 * utilization clamp constraints requested by currently RUNNABLE 7067 * tasks. 7068 * When there are no CFS RUNNABLE tasks, clamps are released and 7069 * frequency will be gracefully reduced with the utilization decay. 7070 */ 7071 util = util_cfs + cpu_util_rt(rq); 7072 if (type == FREQUENCY_UTIL) 7073 util = uclamp_rq_util_with(rq, util, p); 7074 7075 dl_util = cpu_util_dl(rq); 7076 7077 /* 7078 * For frequency selection we do not make cpu_util_dl() a permanent part 7079 * of this sum because we want to use cpu_bw_dl() later on, but we need 7080 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7081 * that we select f_max when there is no idle time. 7082 * 7083 * NOTE: numerical errors or stop class might cause us to not quite hit 7084 * saturation when we should -- something for later. 7085 */ 7086 if (util + dl_util >= max) 7087 return max; 7088 7089 /* 7090 * OTOH, for energy computation we need the estimated running time, so 7091 * include util_dl and ignore dl_bw. 7092 */ 7093 if (type == ENERGY_UTIL) 7094 util += dl_util; 7095 7096 /* 7097 * There is still idle time; further improve the number by using the 7098 * irq metric. Because IRQ/steal time is hidden from the task clock we 7099 * need to scale the task numbers: 7100 * 7101 * max - irq 7102 * U' = irq + --------- * U 7103 * max 7104 */ 7105 util = scale_irq_capacity(util, irq, max); 7106 util += irq; 7107 7108 /* 7109 * Bandwidth required by DEADLINE must always be granted while, for 7110 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7111 * to gracefully reduce the frequency when no tasks show up for longer 7112 * periods of time. 7113 * 7114 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7115 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7116 * an interface. So, we only do the latter for now. 7117 */ 7118 if (type == FREQUENCY_UTIL) 7119 util += cpu_bw_dl(rq); 7120 7121 return min(max, util); 7122 } 7123 7124 unsigned long sched_cpu_util(int cpu, unsigned long max) 7125 { 7126 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 7127 ENERGY_UTIL, NULL); 7128 } 7129 #endif /* CONFIG_SMP */ 7130 7131 /** 7132 * find_process_by_pid - find a process with a matching PID value. 7133 * @pid: the pid in question. 7134 * 7135 * The task of @pid, if found. %NULL otherwise. 7136 */ 7137 static struct task_struct *find_process_by_pid(pid_t pid) 7138 { 7139 return pid ? find_task_by_vpid(pid) : current; 7140 } 7141 7142 /* 7143 * sched_setparam() passes in -1 for its policy, to let the functions 7144 * it calls know not to change it. 7145 */ 7146 #define SETPARAM_POLICY -1 7147 7148 static void __setscheduler_params(struct task_struct *p, 7149 const struct sched_attr *attr) 7150 { 7151 int policy = attr->sched_policy; 7152 7153 if (policy == SETPARAM_POLICY) 7154 policy = p->policy; 7155 7156 p->policy = policy; 7157 7158 if (dl_policy(policy)) 7159 __setparam_dl(p, attr); 7160 else if (fair_policy(policy)) 7161 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7162 7163 /* 7164 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7165 * !rt_policy. Always setting this ensures that things like 7166 * getparam()/getattr() don't report silly values for !rt tasks. 7167 */ 7168 p->rt_priority = attr->sched_priority; 7169 p->normal_prio = normal_prio(p); 7170 set_load_weight(p, true); 7171 } 7172 7173 /* 7174 * Check the target process has a UID that matches the current process's: 7175 */ 7176 static bool check_same_owner(struct task_struct *p) 7177 { 7178 const struct cred *cred = current_cred(), *pcred; 7179 bool match; 7180 7181 rcu_read_lock(); 7182 pcred = __task_cred(p); 7183 match = (uid_eq(cred->euid, pcred->euid) || 7184 uid_eq(cred->euid, pcred->uid)); 7185 rcu_read_unlock(); 7186 return match; 7187 } 7188 7189 static int __sched_setscheduler(struct task_struct *p, 7190 const struct sched_attr *attr, 7191 bool user, bool pi) 7192 { 7193 int oldpolicy = -1, policy = attr->sched_policy; 7194 int retval, oldprio, newprio, queued, running; 7195 const struct sched_class *prev_class; 7196 struct callback_head *head; 7197 struct rq_flags rf; 7198 int reset_on_fork; 7199 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7200 struct rq *rq; 7201 7202 /* The pi code expects interrupts enabled */ 7203 BUG_ON(pi && in_interrupt()); 7204 recheck: 7205 /* Double check policy once rq lock held: */ 7206 if (policy < 0) { 7207 reset_on_fork = p->sched_reset_on_fork; 7208 policy = oldpolicy = p->policy; 7209 } else { 7210 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7211 7212 if (!valid_policy(policy)) 7213 return -EINVAL; 7214 } 7215 7216 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7217 return -EINVAL; 7218 7219 /* 7220 * Valid priorities for SCHED_FIFO and SCHED_RR are 7221 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7222 * SCHED_BATCH and SCHED_IDLE is 0. 7223 */ 7224 if (attr->sched_priority > MAX_RT_PRIO-1) 7225 return -EINVAL; 7226 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7227 (rt_policy(policy) != (attr->sched_priority != 0))) 7228 return -EINVAL; 7229 7230 /* 7231 * Allow unprivileged RT tasks to decrease priority: 7232 */ 7233 if (user && !capable(CAP_SYS_NICE)) { 7234 if (fair_policy(policy)) { 7235 if (attr->sched_nice < task_nice(p) && 7236 !can_nice(p, attr->sched_nice)) 7237 return -EPERM; 7238 } 7239 7240 if (rt_policy(policy)) { 7241 unsigned long rlim_rtprio = 7242 task_rlimit(p, RLIMIT_RTPRIO); 7243 7244 /* Can't set/change the rt policy: */ 7245 if (policy != p->policy && !rlim_rtprio) 7246 return -EPERM; 7247 7248 /* Can't increase priority: */ 7249 if (attr->sched_priority > p->rt_priority && 7250 attr->sched_priority > rlim_rtprio) 7251 return -EPERM; 7252 } 7253 7254 /* 7255 * Can't set/change SCHED_DEADLINE policy at all for now 7256 * (safest behavior); in the future we would like to allow 7257 * unprivileged DL tasks to increase their relative deadline 7258 * or reduce their runtime (both ways reducing utilization) 7259 */ 7260 if (dl_policy(policy)) 7261 return -EPERM; 7262 7263 /* 7264 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7265 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7266 */ 7267 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7268 if (!can_nice(p, task_nice(p))) 7269 return -EPERM; 7270 } 7271 7272 /* Can't change other user's priorities: */ 7273 if (!check_same_owner(p)) 7274 return -EPERM; 7275 7276 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7277 if (p->sched_reset_on_fork && !reset_on_fork) 7278 return -EPERM; 7279 } 7280 7281 if (user) { 7282 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7283 return -EINVAL; 7284 7285 retval = security_task_setscheduler(p); 7286 if (retval) 7287 return retval; 7288 } 7289 7290 /* Update task specific "requested" clamps */ 7291 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7292 retval = uclamp_validate(p, attr); 7293 if (retval) 7294 return retval; 7295 } 7296 7297 if (pi) 7298 cpuset_read_lock(); 7299 7300 /* 7301 * Make sure no PI-waiters arrive (or leave) while we are 7302 * changing the priority of the task: 7303 * 7304 * To be able to change p->policy safely, the appropriate 7305 * runqueue lock must be held. 7306 */ 7307 rq = task_rq_lock(p, &rf); 7308 update_rq_clock(rq); 7309 7310 /* 7311 * Changing the policy of the stop threads its a very bad idea: 7312 */ 7313 if (p == rq->stop) { 7314 retval = -EINVAL; 7315 goto unlock; 7316 } 7317 7318 /* 7319 * If not changing anything there's no need to proceed further, 7320 * but store a possible modification of reset_on_fork. 7321 */ 7322 if (unlikely(policy == p->policy)) { 7323 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7324 goto change; 7325 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7326 goto change; 7327 if (dl_policy(policy) && dl_param_changed(p, attr)) 7328 goto change; 7329 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7330 goto change; 7331 7332 p->sched_reset_on_fork = reset_on_fork; 7333 retval = 0; 7334 goto unlock; 7335 } 7336 change: 7337 7338 if (user) { 7339 #ifdef CONFIG_RT_GROUP_SCHED 7340 /* 7341 * Do not allow realtime tasks into groups that have no runtime 7342 * assigned. 7343 */ 7344 if (rt_bandwidth_enabled() && rt_policy(policy) && 7345 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7346 !task_group_is_autogroup(task_group(p))) { 7347 retval = -EPERM; 7348 goto unlock; 7349 } 7350 #endif 7351 #ifdef CONFIG_SMP 7352 if (dl_bandwidth_enabled() && dl_policy(policy) && 7353 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7354 cpumask_t *span = rq->rd->span; 7355 7356 /* 7357 * Don't allow tasks with an affinity mask smaller than 7358 * the entire root_domain to become SCHED_DEADLINE. We 7359 * will also fail if there's no bandwidth available. 7360 */ 7361 if (!cpumask_subset(span, p->cpus_ptr) || 7362 rq->rd->dl_bw.bw == 0) { 7363 retval = -EPERM; 7364 goto unlock; 7365 } 7366 } 7367 #endif 7368 } 7369 7370 /* Re-check policy now with rq lock held: */ 7371 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7372 policy = oldpolicy = -1; 7373 task_rq_unlock(rq, p, &rf); 7374 if (pi) 7375 cpuset_read_unlock(); 7376 goto recheck; 7377 } 7378 7379 /* 7380 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7381 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7382 * is available. 7383 */ 7384 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7385 retval = -EBUSY; 7386 goto unlock; 7387 } 7388 7389 p->sched_reset_on_fork = reset_on_fork; 7390 oldprio = p->prio; 7391 7392 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7393 if (pi) { 7394 /* 7395 * Take priority boosted tasks into account. If the new 7396 * effective priority is unchanged, we just store the new 7397 * normal parameters and do not touch the scheduler class and 7398 * the runqueue. This will be done when the task deboost 7399 * itself. 7400 */ 7401 newprio = rt_effective_prio(p, newprio); 7402 if (newprio == oldprio) 7403 queue_flags &= ~DEQUEUE_MOVE; 7404 } 7405 7406 queued = task_on_rq_queued(p); 7407 running = task_current(rq, p); 7408 if (queued) 7409 dequeue_task(rq, p, queue_flags); 7410 if (running) 7411 put_prev_task(rq, p); 7412 7413 prev_class = p->sched_class; 7414 7415 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7416 __setscheduler_params(p, attr); 7417 __setscheduler_prio(p, newprio); 7418 } 7419 __setscheduler_uclamp(p, attr); 7420 7421 if (queued) { 7422 /* 7423 * We enqueue to tail when the priority of a task is 7424 * increased (user space view). 7425 */ 7426 if (oldprio < p->prio) 7427 queue_flags |= ENQUEUE_HEAD; 7428 7429 enqueue_task(rq, p, queue_flags); 7430 } 7431 if (running) 7432 set_next_task(rq, p); 7433 7434 check_class_changed(rq, p, prev_class, oldprio); 7435 7436 /* Avoid rq from going away on us: */ 7437 preempt_disable(); 7438 head = splice_balance_callbacks(rq); 7439 task_rq_unlock(rq, p, &rf); 7440 7441 if (pi) { 7442 cpuset_read_unlock(); 7443 rt_mutex_adjust_pi(p); 7444 } 7445 7446 /* Run balance callbacks after we've adjusted the PI chain: */ 7447 balance_callbacks(rq, head); 7448 preempt_enable(); 7449 7450 return 0; 7451 7452 unlock: 7453 task_rq_unlock(rq, p, &rf); 7454 if (pi) 7455 cpuset_read_unlock(); 7456 return retval; 7457 } 7458 7459 static int _sched_setscheduler(struct task_struct *p, int policy, 7460 const struct sched_param *param, bool check) 7461 { 7462 struct sched_attr attr = { 7463 .sched_policy = policy, 7464 .sched_priority = param->sched_priority, 7465 .sched_nice = PRIO_TO_NICE(p->static_prio), 7466 }; 7467 7468 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7469 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7470 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7471 policy &= ~SCHED_RESET_ON_FORK; 7472 attr.sched_policy = policy; 7473 } 7474 7475 return __sched_setscheduler(p, &attr, check, true); 7476 } 7477 /** 7478 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7479 * @p: the task in question. 7480 * @policy: new policy. 7481 * @param: structure containing the new RT priority. 7482 * 7483 * Use sched_set_fifo(), read its comment. 7484 * 7485 * Return: 0 on success. An error code otherwise. 7486 * 7487 * NOTE that the task may be already dead. 7488 */ 7489 int sched_setscheduler(struct task_struct *p, int policy, 7490 const struct sched_param *param) 7491 { 7492 return _sched_setscheduler(p, policy, param, true); 7493 } 7494 7495 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7496 { 7497 return __sched_setscheduler(p, attr, true, true); 7498 } 7499 7500 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7501 { 7502 return __sched_setscheduler(p, attr, false, true); 7503 } 7504 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7505 7506 /** 7507 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7508 * @p: the task in question. 7509 * @policy: new policy. 7510 * @param: structure containing the new RT priority. 7511 * 7512 * Just like sched_setscheduler, only don't bother checking if the 7513 * current context has permission. For example, this is needed in 7514 * stop_machine(): we create temporary high priority worker threads, 7515 * but our caller might not have that capability. 7516 * 7517 * Return: 0 on success. An error code otherwise. 7518 */ 7519 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7520 const struct sched_param *param) 7521 { 7522 return _sched_setscheduler(p, policy, param, false); 7523 } 7524 7525 /* 7526 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7527 * incapable of resource management, which is the one thing an OS really should 7528 * be doing. 7529 * 7530 * This is of course the reason it is limited to privileged users only. 7531 * 7532 * Worse still; it is fundamentally impossible to compose static priority 7533 * workloads. You cannot take two correctly working static prio workloads 7534 * and smash them together and still expect them to work. 7535 * 7536 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7537 * 7538 * MAX_RT_PRIO / 2 7539 * 7540 * The administrator _MUST_ configure the system, the kernel simply doesn't 7541 * know enough information to make a sensible choice. 7542 */ 7543 void sched_set_fifo(struct task_struct *p) 7544 { 7545 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7546 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7547 } 7548 EXPORT_SYMBOL_GPL(sched_set_fifo); 7549 7550 /* 7551 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7552 */ 7553 void sched_set_fifo_low(struct task_struct *p) 7554 { 7555 struct sched_param sp = { .sched_priority = 1 }; 7556 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7557 } 7558 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7559 7560 void sched_set_normal(struct task_struct *p, int nice) 7561 { 7562 struct sched_attr attr = { 7563 .sched_policy = SCHED_NORMAL, 7564 .sched_nice = nice, 7565 }; 7566 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7567 } 7568 EXPORT_SYMBOL_GPL(sched_set_normal); 7569 7570 static int 7571 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7572 { 7573 struct sched_param lparam; 7574 struct task_struct *p; 7575 int retval; 7576 7577 if (!param || pid < 0) 7578 return -EINVAL; 7579 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7580 return -EFAULT; 7581 7582 rcu_read_lock(); 7583 retval = -ESRCH; 7584 p = find_process_by_pid(pid); 7585 if (likely(p)) 7586 get_task_struct(p); 7587 rcu_read_unlock(); 7588 7589 if (likely(p)) { 7590 retval = sched_setscheduler(p, policy, &lparam); 7591 put_task_struct(p); 7592 } 7593 7594 return retval; 7595 } 7596 7597 /* 7598 * Mimics kernel/events/core.c perf_copy_attr(). 7599 */ 7600 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7601 { 7602 u32 size; 7603 int ret; 7604 7605 /* Zero the full structure, so that a short copy will be nice: */ 7606 memset(attr, 0, sizeof(*attr)); 7607 7608 ret = get_user(size, &uattr->size); 7609 if (ret) 7610 return ret; 7611 7612 /* ABI compatibility quirk: */ 7613 if (!size) 7614 size = SCHED_ATTR_SIZE_VER0; 7615 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7616 goto err_size; 7617 7618 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7619 if (ret) { 7620 if (ret == -E2BIG) 7621 goto err_size; 7622 return ret; 7623 } 7624 7625 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7626 size < SCHED_ATTR_SIZE_VER1) 7627 return -EINVAL; 7628 7629 /* 7630 * XXX: Do we want to be lenient like existing syscalls; or do we want 7631 * to be strict and return an error on out-of-bounds values? 7632 */ 7633 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7634 7635 return 0; 7636 7637 err_size: 7638 put_user(sizeof(*attr), &uattr->size); 7639 return -E2BIG; 7640 } 7641 7642 static void get_params(struct task_struct *p, struct sched_attr *attr) 7643 { 7644 if (task_has_dl_policy(p)) 7645 __getparam_dl(p, attr); 7646 else if (task_has_rt_policy(p)) 7647 attr->sched_priority = p->rt_priority; 7648 else 7649 attr->sched_nice = task_nice(p); 7650 } 7651 7652 /** 7653 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7654 * @pid: the pid in question. 7655 * @policy: new policy. 7656 * @param: structure containing the new RT priority. 7657 * 7658 * Return: 0 on success. An error code otherwise. 7659 */ 7660 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7661 { 7662 if (policy < 0) 7663 return -EINVAL; 7664 7665 return do_sched_setscheduler(pid, policy, param); 7666 } 7667 7668 /** 7669 * sys_sched_setparam - set/change the RT priority of a thread 7670 * @pid: the pid in question. 7671 * @param: structure containing the new RT priority. 7672 * 7673 * Return: 0 on success. An error code otherwise. 7674 */ 7675 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7676 { 7677 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7678 } 7679 7680 /** 7681 * sys_sched_setattr - same as above, but with extended sched_attr 7682 * @pid: the pid in question. 7683 * @uattr: structure containing the extended parameters. 7684 * @flags: for future extension. 7685 */ 7686 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7687 unsigned int, flags) 7688 { 7689 struct sched_attr attr; 7690 struct task_struct *p; 7691 int retval; 7692 7693 if (!uattr || pid < 0 || flags) 7694 return -EINVAL; 7695 7696 retval = sched_copy_attr(uattr, &attr); 7697 if (retval) 7698 return retval; 7699 7700 if ((int)attr.sched_policy < 0) 7701 return -EINVAL; 7702 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7703 attr.sched_policy = SETPARAM_POLICY; 7704 7705 rcu_read_lock(); 7706 retval = -ESRCH; 7707 p = find_process_by_pid(pid); 7708 if (likely(p)) 7709 get_task_struct(p); 7710 rcu_read_unlock(); 7711 7712 if (likely(p)) { 7713 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7714 get_params(p, &attr); 7715 retval = sched_setattr(p, &attr); 7716 put_task_struct(p); 7717 } 7718 7719 return retval; 7720 } 7721 7722 /** 7723 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7724 * @pid: the pid in question. 7725 * 7726 * Return: On success, the policy of the thread. Otherwise, a negative error 7727 * code. 7728 */ 7729 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7730 { 7731 struct task_struct *p; 7732 int retval; 7733 7734 if (pid < 0) 7735 return -EINVAL; 7736 7737 retval = -ESRCH; 7738 rcu_read_lock(); 7739 p = find_process_by_pid(pid); 7740 if (p) { 7741 retval = security_task_getscheduler(p); 7742 if (!retval) 7743 retval = p->policy 7744 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7745 } 7746 rcu_read_unlock(); 7747 return retval; 7748 } 7749 7750 /** 7751 * sys_sched_getparam - get the RT priority of a thread 7752 * @pid: the pid in question. 7753 * @param: structure containing the RT priority. 7754 * 7755 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7756 * code. 7757 */ 7758 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7759 { 7760 struct sched_param lp = { .sched_priority = 0 }; 7761 struct task_struct *p; 7762 int retval; 7763 7764 if (!param || pid < 0) 7765 return -EINVAL; 7766 7767 rcu_read_lock(); 7768 p = find_process_by_pid(pid); 7769 retval = -ESRCH; 7770 if (!p) 7771 goto out_unlock; 7772 7773 retval = security_task_getscheduler(p); 7774 if (retval) 7775 goto out_unlock; 7776 7777 if (task_has_rt_policy(p)) 7778 lp.sched_priority = p->rt_priority; 7779 rcu_read_unlock(); 7780 7781 /* 7782 * This one might sleep, we cannot do it with a spinlock held ... 7783 */ 7784 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7785 7786 return retval; 7787 7788 out_unlock: 7789 rcu_read_unlock(); 7790 return retval; 7791 } 7792 7793 /* 7794 * Copy the kernel size attribute structure (which might be larger 7795 * than what user-space knows about) to user-space. 7796 * 7797 * Note that all cases are valid: user-space buffer can be larger or 7798 * smaller than the kernel-space buffer. The usual case is that both 7799 * have the same size. 7800 */ 7801 static int 7802 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7803 struct sched_attr *kattr, 7804 unsigned int usize) 7805 { 7806 unsigned int ksize = sizeof(*kattr); 7807 7808 if (!access_ok(uattr, usize)) 7809 return -EFAULT; 7810 7811 /* 7812 * sched_getattr() ABI forwards and backwards compatibility: 7813 * 7814 * If usize == ksize then we just copy everything to user-space and all is good. 7815 * 7816 * If usize < ksize then we only copy as much as user-space has space for, 7817 * this keeps ABI compatibility as well. We skip the rest. 7818 * 7819 * If usize > ksize then user-space is using a newer version of the ABI, 7820 * which part the kernel doesn't know about. Just ignore it - tooling can 7821 * detect the kernel's knowledge of attributes from the attr->size value 7822 * which is set to ksize in this case. 7823 */ 7824 kattr->size = min(usize, ksize); 7825 7826 if (copy_to_user(uattr, kattr, kattr->size)) 7827 return -EFAULT; 7828 7829 return 0; 7830 } 7831 7832 /** 7833 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7834 * @pid: the pid in question. 7835 * @uattr: structure containing the extended parameters. 7836 * @usize: sizeof(attr) for fwd/bwd comp. 7837 * @flags: for future extension. 7838 */ 7839 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7840 unsigned int, usize, unsigned int, flags) 7841 { 7842 struct sched_attr kattr = { }; 7843 struct task_struct *p; 7844 int retval; 7845 7846 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7847 usize < SCHED_ATTR_SIZE_VER0 || flags) 7848 return -EINVAL; 7849 7850 rcu_read_lock(); 7851 p = find_process_by_pid(pid); 7852 retval = -ESRCH; 7853 if (!p) 7854 goto out_unlock; 7855 7856 retval = security_task_getscheduler(p); 7857 if (retval) 7858 goto out_unlock; 7859 7860 kattr.sched_policy = p->policy; 7861 if (p->sched_reset_on_fork) 7862 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7863 get_params(p, &kattr); 7864 kattr.sched_flags &= SCHED_FLAG_ALL; 7865 7866 #ifdef CONFIG_UCLAMP_TASK 7867 /* 7868 * This could race with another potential updater, but this is fine 7869 * because it'll correctly read the old or the new value. We don't need 7870 * to guarantee who wins the race as long as it doesn't return garbage. 7871 */ 7872 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7873 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7874 #endif 7875 7876 rcu_read_unlock(); 7877 7878 return sched_attr_copy_to_user(uattr, &kattr, usize); 7879 7880 out_unlock: 7881 rcu_read_unlock(); 7882 return retval; 7883 } 7884 7885 #ifdef CONFIG_SMP 7886 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7887 { 7888 int ret = 0; 7889 7890 /* 7891 * If the task isn't a deadline task or admission control is 7892 * disabled then we don't care about affinity changes. 7893 */ 7894 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7895 return 0; 7896 7897 /* 7898 * Since bandwidth control happens on root_domain basis, 7899 * if admission test is enabled, we only admit -deadline 7900 * tasks allowed to run on all the CPUs in the task's 7901 * root_domain. 7902 */ 7903 rcu_read_lock(); 7904 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7905 ret = -EBUSY; 7906 rcu_read_unlock(); 7907 return ret; 7908 } 7909 #endif 7910 7911 static int 7912 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7913 { 7914 int retval; 7915 cpumask_var_t cpus_allowed, new_mask; 7916 7917 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7918 return -ENOMEM; 7919 7920 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7921 retval = -ENOMEM; 7922 goto out_free_cpus_allowed; 7923 } 7924 7925 cpuset_cpus_allowed(p, cpus_allowed); 7926 cpumask_and(new_mask, mask, cpus_allowed); 7927 7928 retval = dl_task_check_affinity(p, new_mask); 7929 if (retval) 7930 goto out_free_new_mask; 7931 again: 7932 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 7933 if (retval) 7934 goto out_free_new_mask; 7935 7936 cpuset_cpus_allowed(p, cpus_allowed); 7937 if (!cpumask_subset(new_mask, cpus_allowed)) { 7938 /* 7939 * We must have raced with a concurrent cpuset update. 7940 * Just reset the cpumask to the cpuset's cpus_allowed. 7941 */ 7942 cpumask_copy(new_mask, cpus_allowed); 7943 goto again; 7944 } 7945 7946 out_free_new_mask: 7947 free_cpumask_var(new_mask); 7948 out_free_cpus_allowed: 7949 free_cpumask_var(cpus_allowed); 7950 return retval; 7951 } 7952 7953 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 7954 { 7955 struct task_struct *p; 7956 int retval; 7957 7958 rcu_read_lock(); 7959 7960 p = find_process_by_pid(pid); 7961 if (!p) { 7962 rcu_read_unlock(); 7963 return -ESRCH; 7964 } 7965 7966 /* Prevent p going away */ 7967 get_task_struct(p); 7968 rcu_read_unlock(); 7969 7970 if (p->flags & PF_NO_SETAFFINITY) { 7971 retval = -EINVAL; 7972 goto out_put_task; 7973 } 7974 7975 if (!check_same_owner(p)) { 7976 rcu_read_lock(); 7977 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 7978 rcu_read_unlock(); 7979 retval = -EPERM; 7980 goto out_put_task; 7981 } 7982 rcu_read_unlock(); 7983 } 7984 7985 retval = security_task_setscheduler(p); 7986 if (retval) 7987 goto out_put_task; 7988 7989 retval = __sched_setaffinity(p, in_mask); 7990 out_put_task: 7991 put_task_struct(p); 7992 return retval; 7993 } 7994 7995 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 7996 struct cpumask *new_mask) 7997 { 7998 if (len < cpumask_size()) 7999 cpumask_clear(new_mask); 8000 else if (len > cpumask_size()) 8001 len = cpumask_size(); 8002 8003 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8004 } 8005 8006 /** 8007 * sys_sched_setaffinity - set the CPU affinity of a process 8008 * @pid: pid of the process 8009 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8010 * @user_mask_ptr: user-space pointer to the new CPU mask 8011 * 8012 * Return: 0 on success. An error code otherwise. 8013 */ 8014 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8015 unsigned long __user *, user_mask_ptr) 8016 { 8017 cpumask_var_t new_mask; 8018 int retval; 8019 8020 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8021 return -ENOMEM; 8022 8023 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8024 if (retval == 0) 8025 retval = sched_setaffinity(pid, new_mask); 8026 free_cpumask_var(new_mask); 8027 return retval; 8028 } 8029 8030 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8031 { 8032 struct task_struct *p; 8033 unsigned long flags; 8034 int retval; 8035 8036 rcu_read_lock(); 8037 8038 retval = -ESRCH; 8039 p = find_process_by_pid(pid); 8040 if (!p) 8041 goto out_unlock; 8042 8043 retval = security_task_getscheduler(p); 8044 if (retval) 8045 goto out_unlock; 8046 8047 raw_spin_lock_irqsave(&p->pi_lock, flags); 8048 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8049 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8050 8051 out_unlock: 8052 rcu_read_unlock(); 8053 8054 return retval; 8055 } 8056 8057 /** 8058 * sys_sched_getaffinity - get the CPU affinity of a process 8059 * @pid: pid of the process 8060 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8061 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8062 * 8063 * Return: size of CPU mask copied to user_mask_ptr on success. An 8064 * error code otherwise. 8065 */ 8066 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8067 unsigned long __user *, user_mask_ptr) 8068 { 8069 int ret; 8070 cpumask_var_t mask; 8071 8072 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8073 return -EINVAL; 8074 if (len & (sizeof(unsigned long)-1)) 8075 return -EINVAL; 8076 8077 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8078 return -ENOMEM; 8079 8080 ret = sched_getaffinity(pid, mask); 8081 if (ret == 0) { 8082 unsigned int retlen = min(len, cpumask_size()); 8083 8084 if (copy_to_user(user_mask_ptr, mask, retlen)) 8085 ret = -EFAULT; 8086 else 8087 ret = retlen; 8088 } 8089 free_cpumask_var(mask); 8090 8091 return ret; 8092 } 8093 8094 static void do_sched_yield(void) 8095 { 8096 struct rq_flags rf; 8097 struct rq *rq; 8098 8099 rq = this_rq_lock_irq(&rf); 8100 8101 schedstat_inc(rq->yld_count); 8102 current->sched_class->yield_task(rq); 8103 8104 preempt_disable(); 8105 rq_unlock_irq(rq, &rf); 8106 sched_preempt_enable_no_resched(); 8107 8108 schedule(); 8109 } 8110 8111 /** 8112 * sys_sched_yield - yield the current processor to other threads. 8113 * 8114 * This function yields the current CPU to other tasks. If there are no 8115 * other threads running on this CPU then this function will return. 8116 * 8117 * Return: 0. 8118 */ 8119 SYSCALL_DEFINE0(sched_yield) 8120 { 8121 do_sched_yield(); 8122 return 0; 8123 } 8124 8125 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8126 int __sched __cond_resched(void) 8127 { 8128 if (should_resched(0)) { 8129 preempt_schedule_common(); 8130 return 1; 8131 } 8132 /* 8133 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8134 * whether the current CPU is in an RCU read-side critical section, 8135 * so the tick can report quiescent states even for CPUs looping 8136 * in kernel context. In contrast, in non-preemptible kernels, 8137 * RCU readers leave no in-memory hints, which means that CPU-bound 8138 * processes executing in kernel context might never report an 8139 * RCU quiescent state. Therefore, the following code causes 8140 * cond_resched() to report a quiescent state, but only when RCU 8141 * is in urgent need of one. 8142 */ 8143 #ifndef CONFIG_PREEMPT_RCU 8144 rcu_all_qs(); 8145 #endif 8146 return 0; 8147 } 8148 EXPORT_SYMBOL(__cond_resched); 8149 #endif 8150 8151 #ifdef CONFIG_PREEMPT_DYNAMIC 8152 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8153 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8154 8155 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8156 EXPORT_STATIC_CALL_TRAMP(might_resched); 8157 #endif 8158 8159 /* 8160 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8161 * call schedule, and on return reacquire the lock. 8162 * 8163 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8164 * operations here to prevent schedule() from being called twice (once via 8165 * spin_unlock(), once by hand). 8166 */ 8167 int __cond_resched_lock(spinlock_t *lock) 8168 { 8169 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8170 int ret = 0; 8171 8172 lockdep_assert_held(lock); 8173 8174 if (spin_needbreak(lock) || resched) { 8175 spin_unlock(lock); 8176 if (resched) 8177 preempt_schedule_common(); 8178 else 8179 cpu_relax(); 8180 ret = 1; 8181 spin_lock(lock); 8182 } 8183 return ret; 8184 } 8185 EXPORT_SYMBOL(__cond_resched_lock); 8186 8187 int __cond_resched_rwlock_read(rwlock_t *lock) 8188 { 8189 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8190 int ret = 0; 8191 8192 lockdep_assert_held_read(lock); 8193 8194 if (rwlock_needbreak(lock) || resched) { 8195 read_unlock(lock); 8196 if (resched) 8197 preempt_schedule_common(); 8198 else 8199 cpu_relax(); 8200 ret = 1; 8201 read_lock(lock); 8202 } 8203 return ret; 8204 } 8205 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8206 8207 int __cond_resched_rwlock_write(rwlock_t *lock) 8208 { 8209 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8210 int ret = 0; 8211 8212 lockdep_assert_held_write(lock); 8213 8214 if (rwlock_needbreak(lock) || resched) { 8215 write_unlock(lock); 8216 if (resched) 8217 preempt_schedule_common(); 8218 else 8219 cpu_relax(); 8220 ret = 1; 8221 write_lock(lock); 8222 } 8223 return ret; 8224 } 8225 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8226 8227 /** 8228 * yield - yield the current processor to other threads. 8229 * 8230 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8231 * 8232 * The scheduler is at all times free to pick the calling task as the most 8233 * eligible task to run, if removing the yield() call from your code breaks 8234 * it, it's already broken. 8235 * 8236 * Typical broken usage is: 8237 * 8238 * while (!event) 8239 * yield(); 8240 * 8241 * where one assumes that yield() will let 'the other' process run that will 8242 * make event true. If the current task is a SCHED_FIFO task that will never 8243 * happen. Never use yield() as a progress guarantee!! 8244 * 8245 * If you want to use yield() to wait for something, use wait_event(). 8246 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8247 * If you still want to use yield(), do not! 8248 */ 8249 void __sched yield(void) 8250 { 8251 set_current_state(TASK_RUNNING); 8252 do_sched_yield(); 8253 } 8254 EXPORT_SYMBOL(yield); 8255 8256 /** 8257 * yield_to - yield the current processor to another thread in 8258 * your thread group, or accelerate that thread toward the 8259 * processor it's on. 8260 * @p: target task 8261 * @preempt: whether task preemption is allowed or not 8262 * 8263 * It's the caller's job to ensure that the target task struct 8264 * can't go away on us before we can do any checks. 8265 * 8266 * Return: 8267 * true (>0) if we indeed boosted the target task. 8268 * false (0) if we failed to boost the target. 8269 * -ESRCH if there's no task to yield to. 8270 */ 8271 int __sched yield_to(struct task_struct *p, bool preempt) 8272 { 8273 struct task_struct *curr = current; 8274 struct rq *rq, *p_rq; 8275 unsigned long flags; 8276 int yielded = 0; 8277 8278 local_irq_save(flags); 8279 rq = this_rq(); 8280 8281 again: 8282 p_rq = task_rq(p); 8283 /* 8284 * If we're the only runnable task on the rq and target rq also 8285 * has only one task, there's absolutely no point in yielding. 8286 */ 8287 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8288 yielded = -ESRCH; 8289 goto out_irq; 8290 } 8291 8292 double_rq_lock(rq, p_rq); 8293 if (task_rq(p) != p_rq) { 8294 double_rq_unlock(rq, p_rq); 8295 goto again; 8296 } 8297 8298 if (!curr->sched_class->yield_to_task) 8299 goto out_unlock; 8300 8301 if (curr->sched_class != p->sched_class) 8302 goto out_unlock; 8303 8304 if (task_running(p_rq, p) || !task_is_running(p)) 8305 goto out_unlock; 8306 8307 yielded = curr->sched_class->yield_to_task(rq, p); 8308 if (yielded) { 8309 schedstat_inc(rq->yld_count); 8310 /* 8311 * Make p's CPU reschedule; pick_next_entity takes care of 8312 * fairness. 8313 */ 8314 if (preempt && rq != p_rq) 8315 resched_curr(p_rq); 8316 } 8317 8318 out_unlock: 8319 double_rq_unlock(rq, p_rq); 8320 out_irq: 8321 local_irq_restore(flags); 8322 8323 if (yielded > 0) 8324 schedule(); 8325 8326 return yielded; 8327 } 8328 EXPORT_SYMBOL_GPL(yield_to); 8329 8330 int io_schedule_prepare(void) 8331 { 8332 int old_iowait = current->in_iowait; 8333 8334 current->in_iowait = 1; 8335 if (current->plug) 8336 blk_flush_plug(current->plug, true); 8337 8338 return old_iowait; 8339 } 8340 8341 void io_schedule_finish(int token) 8342 { 8343 current->in_iowait = token; 8344 } 8345 8346 /* 8347 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8348 * that process accounting knows that this is a task in IO wait state. 8349 */ 8350 long __sched io_schedule_timeout(long timeout) 8351 { 8352 int token; 8353 long ret; 8354 8355 token = io_schedule_prepare(); 8356 ret = schedule_timeout(timeout); 8357 io_schedule_finish(token); 8358 8359 return ret; 8360 } 8361 EXPORT_SYMBOL(io_schedule_timeout); 8362 8363 void __sched io_schedule(void) 8364 { 8365 int token; 8366 8367 token = io_schedule_prepare(); 8368 schedule(); 8369 io_schedule_finish(token); 8370 } 8371 EXPORT_SYMBOL(io_schedule); 8372 8373 /** 8374 * sys_sched_get_priority_max - return maximum RT priority. 8375 * @policy: scheduling class. 8376 * 8377 * Return: On success, this syscall returns the maximum 8378 * rt_priority that can be used by a given scheduling class. 8379 * On failure, a negative error code is returned. 8380 */ 8381 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8382 { 8383 int ret = -EINVAL; 8384 8385 switch (policy) { 8386 case SCHED_FIFO: 8387 case SCHED_RR: 8388 ret = MAX_RT_PRIO-1; 8389 break; 8390 case SCHED_DEADLINE: 8391 case SCHED_NORMAL: 8392 case SCHED_BATCH: 8393 case SCHED_IDLE: 8394 ret = 0; 8395 break; 8396 } 8397 return ret; 8398 } 8399 8400 /** 8401 * sys_sched_get_priority_min - return minimum RT priority. 8402 * @policy: scheduling class. 8403 * 8404 * Return: On success, this syscall returns the minimum 8405 * rt_priority that can be used by a given scheduling class. 8406 * On failure, a negative error code is returned. 8407 */ 8408 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8409 { 8410 int ret = -EINVAL; 8411 8412 switch (policy) { 8413 case SCHED_FIFO: 8414 case SCHED_RR: 8415 ret = 1; 8416 break; 8417 case SCHED_DEADLINE: 8418 case SCHED_NORMAL: 8419 case SCHED_BATCH: 8420 case SCHED_IDLE: 8421 ret = 0; 8422 } 8423 return ret; 8424 } 8425 8426 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8427 { 8428 struct task_struct *p; 8429 unsigned int time_slice; 8430 struct rq_flags rf; 8431 struct rq *rq; 8432 int retval; 8433 8434 if (pid < 0) 8435 return -EINVAL; 8436 8437 retval = -ESRCH; 8438 rcu_read_lock(); 8439 p = find_process_by_pid(pid); 8440 if (!p) 8441 goto out_unlock; 8442 8443 retval = security_task_getscheduler(p); 8444 if (retval) 8445 goto out_unlock; 8446 8447 rq = task_rq_lock(p, &rf); 8448 time_slice = 0; 8449 if (p->sched_class->get_rr_interval) 8450 time_slice = p->sched_class->get_rr_interval(rq, p); 8451 task_rq_unlock(rq, p, &rf); 8452 8453 rcu_read_unlock(); 8454 jiffies_to_timespec64(time_slice, t); 8455 return 0; 8456 8457 out_unlock: 8458 rcu_read_unlock(); 8459 return retval; 8460 } 8461 8462 /** 8463 * sys_sched_rr_get_interval - return the default timeslice of a process. 8464 * @pid: pid of the process. 8465 * @interval: userspace pointer to the timeslice value. 8466 * 8467 * this syscall writes the default timeslice value of a given process 8468 * into the user-space timespec buffer. A value of '0' means infinity. 8469 * 8470 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8471 * an error code. 8472 */ 8473 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8474 struct __kernel_timespec __user *, interval) 8475 { 8476 struct timespec64 t; 8477 int retval = sched_rr_get_interval(pid, &t); 8478 8479 if (retval == 0) 8480 retval = put_timespec64(&t, interval); 8481 8482 return retval; 8483 } 8484 8485 #ifdef CONFIG_COMPAT_32BIT_TIME 8486 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8487 struct old_timespec32 __user *, interval) 8488 { 8489 struct timespec64 t; 8490 int retval = sched_rr_get_interval(pid, &t); 8491 8492 if (retval == 0) 8493 retval = put_old_timespec32(&t, interval); 8494 return retval; 8495 } 8496 #endif 8497 8498 void sched_show_task(struct task_struct *p) 8499 { 8500 unsigned long free = 0; 8501 int ppid; 8502 8503 if (!try_get_task_stack(p)) 8504 return; 8505 8506 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8507 8508 if (task_is_running(p)) 8509 pr_cont(" running task "); 8510 #ifdef CONFIG_DEBUG_STACK_USAGE 8511 free = stack_not_used(p); 8512 #endif 8513 ppid = 0; 8514 rcu_read_lock(); 8515 if (pid_alive(p)) 8516 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8517 rcu_read_unlock(); 8518 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8519 free, task_pid_nr(p), ppid, 8520 (unsigned long)task_thread_info(p)->flags); 8521 8522 print_worker_info(KERN_INFO, p); 8523 print_stop_info(KERN_INFO, p); 8524 show_stack(p, NULL, KERN_INFO); 8525 put_task_stack(p); 8526 } 8527 EXPORT_SYMBOL_GPL(sched_show_task); 8528 8529 static inline bool 8530 state_filter_match(unsigned long state_filter, struct task_struct *p) 8531 { 8532 unsigned int state = READ_ONCE(p->__state); 8533 8534 /* no filter, everything matches */ 8535 if (!state_filter) 8536 return true; 8537 8538 /* filter, but doesn't match */ 8539 if (!(state & state_filter)) 8540 return false; 8541 8542 /* 8543 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8544 * TASK_KILLABLE). 8545 */ 8546 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8547 return false; 8548 8549 return true; 8550 } 8551 8552 8553 void show_state_filter(unsigned int state_filter) 8554 { 8555 struct task_struct *g, *p; 8556 8557 rcu_read_lock(); 8558 for_each_process_thread(g, p) { 8559 /* 8560 * reset the NMI-timeout, listing all files on a slow 8561 * console might take a lot of time: 8562 * Also, reset softlockup watchdogs on all CPUs, because 8563 * another CPU might be blocked waiting for us to process 8564 * an IPI. 8565 */ 8566 touch_nmi_watchdog(); 8567 touch_all_softlockup_watchdogs(); 8568 if (state_filter_match(state_filter, p)) 8569 sched_show_task(p); 8570 } 8571 8572 #ifdef CONFIG_SCHED_DEBUG 8573 if (!state_filter) 8574 sysrq_sched_debug_show(); 8575 #endif 8576 rcu_read_unlock(); 8577 /* 8578 * Only show locks if all tasks are dumped: 8579 */ 8580 if (!state_filter) 8581 debug_show_all_locks(); 8582 } 8583 8584 /** 8585 * init_idle - set up an idle thread for a given CPU 8586 * @idle: task in question 8587 * @cpu: CPU the idle task belongs to 8588 * 8589 * NOTE: this function does not set the idle thread's NEED_RESCHED 8590 * flag, to make booting more robust. 8591 */ 8592 void __init init_idle(struct task_struct *idle, int cpu) 8593 { 8594 struct rq *rq = cpu_rq(cpu); 8595 unsigned long flags; 8596 8597 __sched_fork(0, idle); 8598 8599 /* 8600 * The idle task doesn't need the kthread struct to function, but it 8601 * is dressed up as a per-CPU kthread and thus needs to play the part 8602 * if we want to avoid special-casing it in code that deals with per-CPU 8603 * kthreads. 8604 */ 8605 set_kthread_struct(idle); 8606 8607 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8608 raw_spin_rq_lock(rq); 8609 8610 idle->__state = TASK_RUNNING; 8611 idle->se.exec_start = sched_clock(); 8612 /* 8613 * PF_KTHREAD should already be set at this point; regardless, make it 8614 * look like a proper per-CPU kthread. 8615 */ 8616 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8617 kthread_set_per_cpu(idle, cpu); 8618 8619 scs_task_reset(idle); 8620 kasan_unpoison_task_stack(idle); 8621 8622 #ifdef CONFIG_SMP 8623 /* 8624 * It's possible that init_idle() gets called multiple times on a task, 8625 * in that case do_set_cpus_allowed() will not do the right thing. 8626 * 8627 * And since this is boot we can forgo the serialization. 8628 */ 8629 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8630 #endif 8631 /* 8632 * We're having a chicken and egg problem, even though we are 8633 * holding rq->lock, the CPU isn't yet set to this CPU so the 8634 * lockdep check in task_group() will fail. 8635 * 8636 * Similar case to sched_fork(). / Alternatively we could 8637 * use task_rq_lock() here and obtain the other rq->lock. 8638 * 8639 * Silence PROVE_RCU 8640 */ 8641 rcu_read_lock(); 8642 __set_task_cpu(idle, cpu); 8643 rcu_read_unlock(); 8644 8645 rq->idle = idle; 8646 rcu_assign_pointer(rq->curr, idle); 8647 idle->on_rq = TASK_ON_RQ_QUEUED; 8648 #ifdef CONFIG_SMP 8649 idle->on_cpu = 1; 8650 #endif 8651 raw_spin_rq_unlock(rq); 8652 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8653 8654 /* Set the preempt count _outside_ the spinlocks! */ 8655 init_idle_preempt_count(idle, cpu); 8656 8657 /* 8658 * The idle tasks have their own, simple scheduling class: 8659 */ 8660 idle->sched_class = &idle_sched_class; 8661 ftrace_graph_init_idle_task(idle, cpu); 8662 vtime_init_idle(idle, cpu); 8663 #ifdef CONFIG_SMP 8664 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8665 #endif 8666 } 8667 8668 #ifdef CONFIG_SMP 8669 8670 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8671 const struct cpumask *trial) 8672 { 8673 int ret = 1; 8674 8675 if (!cpumask_weight(cur)) 8676 return ret; 8677 8678 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8679 8680 return ret; 8681 } 8682 8683 int task_can_attach(struct task_struct *p, 8684 const struct cpumask *cs_cpus_allowed) 8685 { 8686 int ret = 0; 8687 8688 /* 8689 * Kthreads which disallow setaffinity shouldn't be moved 8690 * to a new cpuset; we don't want to change their CPU 8691 * affinity and isolating such threads by their set of 8692 * allowed nodes is unnecessary. Thus, cpusets are not 8693 * applicable for such threads. This prevents checking for 8694 * success of set_cpus_allowed_ptr() on all attached tasks 8695 * before cpus_mask may be changed. 8696 */ 8697 if (p->flags & PF_NO_SETAFFINITY) { 8698 ret = -EINVAL; 8699 goto out; 8700 } 8701 8702 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8703 cs_cpus_allowed)) 8704 ret = dl_task_can_attach(p, cs_cpus_allowed); 8705 8706 out: 8707 return ret; 8708 } 8709 8710 bool sched_smp_initialized __read_mostly; 8711 8712 #ifdef CONFIG_NUMA_BALANCING 8713 /* Migrate current task p to target_cpu */ 8714 int migrate_task_to(struct task_struct *p, int target_cpu) 8715 { 8716 struct migration_arg arg = { p, target_cpu }; 8717 int curr_cpu = task_cpu(p); 8718 8719 if (curr_cpu == target_cpu) 8720 return 0; 8721 8722 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8723 return -EINVAL; 8724 8725 /* TODO: This is not properly updating schedstats */ 8726 8727 trace_sched_move_numa(p, curr_cpu, target_cpu); 8728 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8729 } 8730 8731 /* 8732 * Requeue a task on a given node and accurately track the number of NUMA 8733 * tasks on the runqueues 8734 */ 8735 void sched_setnuma(struct task_struct *p, int nid) 8736 { 8737 bool queued, running; 8738 struct rq_flags rf; 8739 struct rq *rq; 8740 8741 rq = task_rq_lock(p, &rf); 8742 queued = task_on_rq_queued(p); 8743 running = task_current(rq, p); 8744 8745 if (queued) 8746 dequeue_task(rq, p, DEQUEUE_SAVE); 8747 if (running) 8748 put_prev_task(rq, p); 8749 8750 p->numa_preferred_nid = nid; 8751 8752 if (queued) 8753 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8754 if (running) 8755 set_next_task(rq, p); 8756 task_rq_unlock(rq, p, &rf); 8757 } 8758 #endif /* CONFIG_NUMA_BALANCING */ 8759 8760 #ifdef CONFIG_HOTPLUG_CPU 8761 /* 8762 * Ensure that the idle task is using init_mm right before its CPU goes 8763 * offline. 8764 */ 8765 void idle_task_exit(void) 8766 { 8767 struct mm_struct *mm = current->active_mm; 8768 8769 BUG_ON(cpu_online(smp_processor_id())); 8770 BUG_ON(current != this_rq()->idle); 8771 8772 if (mm != &init_mm) { 8773 switch_mm(mm, &init_mm, current); 8774 finish_arch_post_lock_switch(); 8775 } 8776 8777 scs_task_reset(current); 8778 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8779 } 8780 8781 static int __balance_push_cpu_stop(void *arg) 8782 { 8783 struct task_struct *p = arg; 8784 struct rq *rq = this_rq(); 8785 struct rq_flags rf; 8786 int cpu; 8787 8788 raw_spin_lock_irq(&p->pi_lock); 8789 rq_lock(rq, &rf); 8790 8791 update_rq_clock(rq); 8792 8793 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8794 cpu = select_fallback_rq(rq->cpu, p); 8795 rq = __migrate_task(rq, &rf, p, cpu); 8796 } 8797 8798 rq_unlock(rq, &rf); 8799 raw_spin_unlock_irq(&p->pi_lock); 8800 8801 put_task_struct(p); 8802 8803 return 0; 8804 } 8805 8806 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8807 8808 /* 8809 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8810 * 8811 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8812 * effective when the hotplug motion is down. 8813 */ 8814 static void balance_push(struct rq *rq) 8815 { 8816 struct task_struct *push_task = rq->curr; 8817 8818 lockdep_assert_rq_held(rq); 8819 8820 /* 8821 * Ensure the thing is persistent until balance_push_set(.on = false); 8822 */ 8823 rq->balance_callback = &balance_push_callback; 8824 8825 /* 8826 * Only active while going offline and when invoked on the outgoing 8827 * CPU. 8828 */ 8829 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8830 return; 8831 8832 /* 8833 * Both the cpu-hotplug and stop task are in this case and are 8834 * required to complete the hotplug process. 8835 */ 8836 if (kthread_is_per_cpu(push_task) || 8837 is_migration_disabled(push_task)) { 8838 8839 /* 8840 * If this is the idle task on the outgoing CPU try to wake 8841 * up the hotplug control thread which might wait for the 8842 * last task to vanish. The rcuwait_active() check is 8843 * accurate here because the waiter is pinned on this CPU 8844 * and can't obviously be running in parallel. 8845 * 8846 * On RT kernels this also has to check whether there are 8847 * pinned and scheduled out tasks on the runqueue. They 8848 * need to leave the migrate disabled section first. 8849 */ 8850 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8851 rcuwait_active(&rq->hotplug_wait)) { 8852 raw_spin_rq_unlock(rq); 8853 rcuwait_wake_up(&rq->hotplug_wait); 8854 raw_spin_rq_lock(rq); 8855 } 8856 return; 8857 } 8858 8859 get_task_struct(push_task); 8860 /* 8861 * Temporarily drop rq->lock such that we can wake-up the stop task. 8862 * Both preemption and IRQs are still disabled. 8863 */ 8864 raw_spin_rq_unlock(rq); 8865 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8866 this_cpu_ptr(&push_work)); 8867 /* 8868 * At this point need_resched() is true and we'll take the loop in 8869 * schedule(). The next pick is obviously going to be the stop task 8870 * which kthread_is_per_cpu() and will push this task away. 8871 */ 8872 raw_spin_rq_lock(rq); 8873 } 8874 8875 static void balance_push_set(int cpu, bool on) 8876 { 8877 struct rq *rq = cpu_rq(cpu); 8878 struct rq_flags rf; 8879 8880 rq_lock_irqsave(rq, &rf); 8881 if (on) { 8882 WARN_ON_ONCE(rq->balance_callback); 8883 rq->balance_callback = &balance_push_callback; 8884 } else if (rq->balance_callback == &balance_push_callback) { 8885 rq->balance_callback = NULL; 8886 } 8887 rq_unlock_irqrestore(rq, &rf); 8888 } 8889 8890 /* 8891 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8892 * inactive. All tasks which are not per CPU kernel threads are either 8893 * pushed off this CPU now via balance_push() or placed on a different CPU 8894 * during wakeup. Wait until the CPU is quiescent. 8895 */ 8896 static void balance_hotplug_wait(void) 8897 { 8898 struct rq *rq = this_rq(); 8899 8900 rcuwait_wait_event(&rq->hotplug_wait, 8901 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8902 TASK_UNINTERRUPTIBLE); 8903 } 8904 8905 #else 8906 8907 static inline void balance_push(struct rq *rq) 8908 { 8909 } 8910 8911 static inline void balance_push_set(int cpu, bool on) 8912 { 8913 } 8914 8915 static inline void balance_hotplug_wait(void) 8916 { 8917 } 8918 8919 #endif /* CONFIG_HOTPLUG_CPU */ 8920 8921 void set_rq_online(struct rq *rq) 8922 { 8923 if (!rq->online) { 8924 const struct sched_class *class; 8925 8926 cpumask_set_cpu(rq->cpu, rq->rd->online); 8927 rq->online = 1; 8928 8929 for_each_class(class) { 8930 if (class->rq_online) 8931 class->rq_online(rq); 8932 } 8933 } 8934 } 8935 8936 void set_rq_offline(struct rq *rq) 8937 { 8938 if (rq->online) { 8939 const struct sched_class *class; 8940 8941 for_each_class(class) { 8942 if (class->rq_offline) 8943 class->rq_offline(rq); 8944 } 8945 8946 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8947 rq->online = 0; 8948 } 8949 } 8950 8951 /* 8952 * used to mark begin/end of suspend/resume: 8953 */ 8954 static int num_cpus_frozen; 8955 8956 /* 8957 * Update cpusets according to cpu_active mask. If cpusets are 8958 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8959 * around partition_sched_domains(). 8960 * 8961 * If we come here as part of a suspend/resume, don't touch cpusets because we 8962 * want to restore it back to its original state upon resume anyway. 8963 */ 8964 static void cpuset_cpu_active(void) 8965 { 8966 if (cpuhp_tasks_frozen) { 8967 /* 8968 * num_cpus_frozen tracks how many CPUs are involved in suspend 8969 * resume sequence. As long as this is not the last online 8970 * operation in the resume sequence, just build a single sched 8971 * domain, ignoring cpusets. 8972 */ 8973 partition_sched_domains(1, NULL, NULL); 8974 if (--num_cpus_frozen) 8975 return; 8976 /* 8977 * This is the last CPU online operation. So fall through and 8978 * restore the original sched domains by considering the 8979 * cpuset configurations. 8980 */ 8981 cpuset_force_rebuild(); 8982 } 8983 cpuset_update_active_cpus(); 8984 } 8985 8986 static int cpuset_cpu_inactive(unsigned int cpu) 8987 { 8988 if (!cpuhp_tasks_frozen) { 8989 if (dl_cpu_busy(cpu)) 8990 return -EBUSY; 8991 cpuset_update_active_cpus(); 8992 } else { 8993 num_cpus_frozen++; 8994 partition_sched_domains(1, NULL, NULL); 8995 } 8996 return 0; 8997 } 8998 8999 int sched_cpu_activate(unsigned int cpu) 9000 { 9001 struct rq *rq = cpu_rq(cpu); 9002 struct rq_flags rf; 9003 9004 /* 9005 * Clear the balance_push callback and prepare to schedule 9006 * regular tasks. 9007 */ 9008 balance_push_set(cpu, false); 9009 9010 #ifdef CONFIG_SCHED_SMT 9011 /* 9012 * When going up, increment the number of cores with SMT present. 9013 */ 9014 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9015 static_branch_inc_cpuslocked(&sched_smt_present); 9016 #endif 9017 set_cpu_active(cpu, true); 9018 9019 if (sched_smp_initialized) { 9020 sched_domains_numa_masks_set(cpu); 9021 cpuset_cpu_active(); 9022 } 9023 9024 /* 9025 * Put the rq online, if not already. This happens: 9026 * 9027 * 1) In the early boot process, because we build the real domains 9028 * after all CPUs have been brought up. 9029 * 9030 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9031 * domains. 9032 */ 9033 rq_lock_irqsave(rq, &rf); 9034 if (rq->rd) { 9035 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9036 set_rq_online(rq); 9037 } 9038 rq_unlock_irqrestore(rq, &rf); 9039 9040 return 0; 9041 } 9042 9043 int sched_cpu_deactivate(unsigned int cpu) 9044 { 9045 struct rq *rq = cpu_rq(cpu); 9046 struct rq_flags rf; 9047 int ret; 9048 9049 /* 9050 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9051 * load balancing when not active 9052 */ 9053 nohz_balance_exit_idle(rq); 9054 9055 set_cpu_active(cpu, false); 9056 9057 /* 9058 * From this point forward, this CPU will refuse to run any task that 9059 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9060 * push those tasks away until this gets cleared, see 9061 * sched_cpu_dying(). 9062 */ 9063 balance_push_set(cpu, true); 9064 9065 /* 9066 * We've cleared cpu_active_mask / set balance_push, wait for all 9067 * preempt-disabled and RCU users of this state to go away such that 9068 * all new such users will observe it. 9069 * 9070 * Specifically, we rely on ttwu to no longer target this CPU, see 9071 * ttwu_queue_cond() and is_cpu_allowed(). 9072 * 9073 * Do sync before park smpboot threads to take care the rcu boost case. 9074 */ 9075 synchronize_rcu(); 9076 9077 rq_lock_irqsave(rq, &rf); 9078 if (rq->rd) { 9079 update_rq_clock(rq); 9080 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9081 set_rq_offline(rq); 9082 } 9083 rq_unlock_irqrestore(rq, &rf); 9084 9085 #ifdef CONFIG_SCHED_SMT 9086 /* 9087 * When going down, decrement the number of cores with SMT present. 9088 */ 9089 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9090 static_branch_dec_cpuslocked(&sched_smt_present); 9091 9092 sched_core_cpu_deactivate(cpu); 9093 #endif 9094 9095 if (!sched_smp_initialized) 9096 return 0; 9097 9098 ret = cpuset_cpu_inactive(cpu); 9099 if (ret) { 9100 balance_push_set(cpu, false); 9101 set_cpu_active(cpu, true); 9102 return ret; 9103 } 9104 sched_domains_numa_masks_clear(cpu); 9105 return 0; 9106 } 9107 9108 static void sched_rq_cpu_starting(unsigned int cpu) 9109 { 9110 struct rq *rq = cpu_rq(cpu); 9111 9112 rq->calc_load_update = calc_load_update; 9113 update_max_interval(); 9114 } 9115 9116 int sched_cpu_starting(unsigned int cpu) 9117 { 9118 sched_core_cpu_starting(cpu); 9119 sched_rq_cpu_starting(cpu); 9120 sched_tick_start(cpu); 9121 return 0; 9122 } 9123 9124 #ifdef CONFIG_HOTPLUG_CPU 9125 9126 /* 9127 * Invoked immediately before the stopper thread is invoked to bring the 9128 * CPU down completely. At this point all per CPU kthreads except the 9129 * hotplug thread (current) and the stopper thread (inactive) have been 9130 * either parked or have been unbound from the outgoing CPU. Ensure that 9131 * any of those which might be on the way out are gone. 9132 * 9133 * If after this point a bound task is being woken on this CPU then the 9134 * responsible hotplug callback has failed to do it's job. 9135 * sched_cpu_dying() will catch it with the appropriate fireworks. 9136 */ 9137 int sched_cpu_wait_empty(unsigned int cpu) 9138 { 9139 balance_hotplug_wait(); 9140 return 0; 9141 } 9142 9143 /* 9144 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9145 * might have. Called from the CPU stopper task after ensuring that the 9146 * stopper is the last running task on the CPU, so nr_active count is 9147 * stable. We need to take the teardown thread which is calling this into 9148 * account, so we hand in adjust = 1 to the load calculation. 9149 * 9150 * Also see the comment "Global load-average calculations". 9151 */ 9152 static void calc_load_migrate(struct rq *rq) 9153 { 9154 long delta = calc_load_fold_active(rq, 1); 9155 9156 if (delta) 9157 atomic_long_add(delta, &calc_load_tasks); 9158 } 9159 9160 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9161 { 9162 struct task_struct *g, *p; 9163 int cpu = cpu_of(rq); 9164 9165 lockdep_assert_rq_held(rq); 9166 9167 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9168 for_each_process_thread(g, p) { 9169 if (task_cpu(p) != cpu) 9170 continue; 9171 9172 if (!task_on_rq_queued(p)) 9173 continue; 9174 9175 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9176 } 9177 } 9178 9179 int sched_cpu_dying(unsigned int cpu) 9180 { 9181 struct rq *rq = cpu_rq(cpu); 9182 struct rq_flags rf; 9183 9184 /* Handle pending wakeups and then migrate everything off */ 9185 sched_tick_stop(cpu); 9186 9187 rq_lock_irqsave(rq, &rf); 9188 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9189 WARN(true, "Dying CPU not properly vacated!"); 9190 dump_rq_tasks(rq, KERN_WARNING); 9191 } 9192 rq_unlock_irqrestore(rq, &rf); 9193 9194 calc_load_migrate(rq); 9195 update_max_interval(); 9196 hrtick_clear(rq); 9197 sched_core_cpu_dying(cpu); 9198 return 0; 9199 } 9200 #endif 9201 9202 void __init sched_init_smp(void) 9203 { 9204 sched_init_numa(); 9205 9206 /* 9207 * There's no userspace yet to cause hotplug operations; hence all the 9208 * CPU masks are stable and all blatant races in the below code cannot 9209 * happen. 9210 */ 9211 mutex_lock(&sched_domains_mutex); 9212 sched_init_domains(cpu_active_mask); 9213 mutex_unlock(&sched_domains_mutex); 9214 9215 /* Move init over to a non-isolated CPU */ 9216 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 9217 BUG(); 9218 current->flags &= ~PF_NO_SETAFFINITY; 9219 sched_init_granularity(); 9220 9221 init_sched_rt_class(); 9222 init_sched_dl_class(); 9223 9224 sched_smp_initialized = true; 9225 } 9226 9227 static int __init migration_init(void) 9228 { 9229 sched_cpu_starting(smp_processor_id()); 9230 return 0; 9231 } 9232 early_initcall(migration_init); 9233 9234 #else 9235 void __init sched_init_smp(void) 9236 { 9237 sched_init_granularity(); 9238 } 9239 #endif /* CONFIG_SMP */ 9240 9241 int in_sched_functions(unsigned long addr) 9242 { 9243 return in_lock_functions(addr) || 9244 (addr >= (unsigned long)__sched_text_start 9245 && addr < (unsigned long)__sched_text_end); 9246 } 9247 9248 #ifdef CONFIG_CGROUP_SCHED 9249 /* 9250 * Default task group. 9251 * Every task in system belongs to this group at bootup. 9252 */ 9253 struct task_group root_task_group; 9254 LIST_HEAD(task_groups); 9255 9256 /* Cacheline aligned slab cache for task_group */ 9257 static struct kmem_cache *task_group_cache __read_mostly; 9258 #endif 9259 9260 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9261 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9262 9263 void __init sched_init(void) 9264 { 9265 unsigned long ptr = 0; 9266 int i; 9267 9268 /* Make sure the linker didn't screw up */ 9269 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 9270 &fair_sched_class + 1 != &rt_sched_class || 9271 &rt_sched_class + 1 != &dl_sched_class); 9272 #ifdef CONFIG_SMP 9273 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 9274 #endif 9275 9276 wait_bit_init(); 9277 9278 #ifdef CONFIG_FAIR_GROUP_SCHED 9279 ptr += 2 * nr_cpu_ids * sizeof(void **); 9280 #endif 9281 #ifdef CONFIG_RT_GROUP_SCHED 9282 ptr += 2 * nr_cpu_ids * sizeof(void **); 9283 #endif 9284 if (ptr) { 9285 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9286 9287 #ifdef CONFIG_FAIR_GROUP_SCHED 9288 root_task_group.se = (struct sched_entity **)ptr; 9289 ptr += nr_cpu_ids * sizeof(void **); 9290 9291 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9292 ptr += nr_cpu_ids * sizeof(void **); 9293 9294 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9295 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9296 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9297 #ifdef CONFIG_RT_GROUP_SCHED 9298 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9299 ptr += nr_cpu_ids * sizeof(void **); 9300 9301 root_task_group.rt_rq = (struct rt_rq **)ptr; 9302 ptr += nr_cpu_ids * sizeof(void **); 9303 9304 #endif /* CONFIG_RT_GROUP_SCHED */ 9305 } 9306 #ifdef CONFIG_CPUMASK_OFFSTACK 9307 for_each_possible_cpu(i) { 9308 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9309 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9310 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9311 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9312 } 9313 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9314 9315 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9316 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 9317 9318 #ifdef CONFIG_SMP 9319 init_defrootdomain(); 9320 #endif 9321 9322 #ifdef CONFIG_RT_GROUP_SCHED 9323 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9324 global_rt_period(), global_rt_runtime()); 9325 #endif /* CONFIG_RT_GROUP_SCHED */ 9326 9327 #ifdef CONFIG_CGROUP_SCHED 9328 task_group_cache = KMEM_CACHE(task_group, 0); 9329 9330 list_add(&root_task_group.list, &task_groups); 9331 INIT_LIST_HEAD(&root_task_group.children); 9332 INIT_LIST_HEAD(&root_task_group.siblings); 9333 autogroup_init(&init_task); 9334 #endif /* CONFIG_CGROUP_SCHED */ 9335 9336 for_each_possible_cpu(i) { 9337 struct rq *rq; 9338 9339 rq = cpu_rq(i); 9340 raw_spin_lock_init(&rq->__lock); 9341 rq->nr_running = 0; 9342 rq->calc_load_active = 0; 9343 rq->calc_load_update = jiffies + LOAD_FREQ; 9344 init_cfs_rq(&rq->cfs); 9345 init_rt_rq(&rq->rt); 9346 init_dl_rq(&rq->dl); 9347 #ifdef CONFIG_FAIR_GROUP_SCHED 9348 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9349 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9350 /* 9351 * How much CPU bandwidth does root_task_group get? 9352 * 9353 * In case of task-groups formed thr' the cgroup filesystem, it 9354 * gets 100% of the CPU resources in the system. This overall 9355 * system CPU resource is divided among the tasks of 9356 * root_task_group and its child task-groups in a fair manner, 9357 * based on each entity's (task or task-group's) weight 9358 * (se->load.weight). 9359 * 9360 * In other words, if root_task_group has 10 tasks of weight 9361 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9362 * then A0's share of the CPU resource is: 9363 * 9364 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9365 * 9366 * We achieve this by letting root_task_group's tasks sit 9367 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9368 */ 9369 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9370 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9371 9372 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9373 #ifdef CONFIG_RT_GROUP_SCHED 9374 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9375 #endif 9376 #ifdef CONFIG_SMP 9377 rq->sd = NULL; 9378 rq->rd = NULL; 9379 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9380 rq->balance_callback = &balance_push_callback; 9381 rq->active_balance = 0; 9382 rq->next_balance = jiffies; 9383 rq->push_cpu = 0; 9384 rq->cpu = i; 9385 rq->online = 0; 9386 rq->idle_stamp = 0; 9387 rq->avg_idle = 2*sysctl_sched_migration_cost; 9388 rq->wake_stamp = jiffies; 9389 rq->wake_avg_idle = rq->avg_idle; 9390 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9391 9392 INIT_LIST_HEAD(&rq->cfs_tasks); 9393 9394 rq_attach_root(rq, &def_root_domain); 9395 #ifdef CONFIG_NO_HZ_COMMON 9396 rq->last_blocked_load_update_tick = jiffies; 9397 atomic_set(&rq->nohz_flags, 0); 9398 9399 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9400 #endif 9401 #ifdef CONFIG_HOTPLUG_CPU 9402 rcuwait_init(&rq->hotplug_wait); 9403 #endif 9404 #endif /* CONFIG_SMP */ 9405 hrtick_rq_init(rq); 9406 atomic_set(&rq->nr_iowait, 0); 9407 9408 #ifdef CONFIG_SCHED_CORE 9409 rq->core = rq; 9410 rq->core_pick = NULL; 9411 rq->core_enabled = 0; 9412 rq->core_tree = RB_ROOT; 9413 rq->core_forceidle = false; 9414 9415 rq->core_cookie = 0UL; 9416 #endif 9417 } 9418 9419 set_load_weight(&init_task, false); 9420 9421 /* 9422 * The boot idle thread does lazy MMU switching as well: 9423 */ 9424 mmgrab(&init_mm); 9425 enter_lazy_tlb(&init_mm, current); 9426 9427 /* 9428 * Make us the idle thread. Technically, schedule() should not be 9429 * called from this thread, however somewhere below it might be, 9430 * but because we are the idle thread, we just pick up running again 9431 * when this runqueue becomes "idle". 9432 */ 9433 init_idle(current, smp_processor_id()); 9434 9435 calc_load_update = jiffies + LOAD_FREQ; 9436 9437 #ifdef CONFIG_SMP 9438 idle_thread_set_boot_cpu(); 9439 balance_push_set(smp_processor_id(), false); 9440 #endif 9441 init_sched_fair_class(); 9442 9443 psi_init(); 9444 9445 init_uclamp(); 9446 9447 preempt_dynamic_init(); 9448 9449 scheduler_running = 1; 9450 } 9451 9452 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9453 9454 void __might_sleep(const char *file, int line) 9455 { 9456 unsigned int state = get_current_state(); 9457 /* 9458 * Blocking primitives will set (and therefore destroy) current->state, 9459 * since we will exit with TASK_RUNNING make sure we enter with it, 9460 * otherwise we will destroy state. 9461 */ 9462 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9463 "do not call blocking ops when !TASK_RUNNING; " 9464 "state=%x set at [<%p>] %pS\n", state, 9465 (void *)current->task_state_change, 9466 (void *)current->task_state_change); 9467 9468 __might_resched(file, line, 0); 9469 } 9470 EXPORT_SYMBOL(__might_sleep); 9471 9472 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9473 { 9474 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9475 return; 9476 9477 if (preempt_count() == preempt_offset) 9478 return; 9479 9480 pr_err("Preemption disabled at:"); 9481 print_ip_sym(KERN_ERR, ip); 9482 } 9483 9484 static inline bool resched_offsets_ok(unsigned int offsets) 9485 { 9486 unsigned int nested = preempt_count(); 9487 9488 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9489 9490 return nested == offsets; 9491 } 9492 9493 void __might_resched(const char *file, int line, unsigned int offsets) 9494 { 9495 /* Ratelimiting timestamp: */ 9496 static unsigned long prev_jiffy; 9497 9498 unsigned long preempt_disable_ip; 9499 9500 /* WARN_ON_ONCE() by default, no rate limit required: */ 9501 rcu_sleep_check(); 9502 9503 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9504 !is_idle_task(current) && !current->non_block_count) || 9505 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9506 oops_in_progress) 9507 return; 9508 9509 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9510 return; 9511 prev_jiffy = jiffies; 9512 9513 /* Save this before calling printk(), since that will clobber it: */ 9514 preempt_disable_ip = get_preempt_disable_ip(current); 9515 9516 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9517 file, line); 9518 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9519 in_atomic(), irqs_disabled(), current->non_block_count, 9520 current->pid, current->comm); 9521 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9522 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9523 9524 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9525 pr_err("RCU nest depth: %d, expected: %u\n", 9526 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9527 } 9528 9529 if (task_stack_end_corrupted(current)) 9530 pr_emerg("Thread overran stack, or stack corrupted\n"); 9531 9532 debug_show_held_locks(current); 9533 if (irqs_disabled()) 9534 print_irqtrace_events(current); 9535 9536 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9537 preempt_disable_ip); 9538 9539 dump_stack(); 9540 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9541 } 9542 EXPORT_SYMBOL(__might_resched); 9543 9544 void __cant_sleep(const char *file, int line, int preempt_offset) 9545 { 9546 static unsigned long prev_jiffy; 9547 9548 if (irqs_disabled()) 9549 return; 9550 9551 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9552 return; 9553 9554 if (preempt_count() > preempt_offset) 9555 return; 9556 9557 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9558 return; 9559 prev_jiffy = jiffies; 9560 9561 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9562 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9563 in_atomic(), irqs_disabled(), 9564 current->pid, current->comm); 9565 9566 debug_show_held_locks(current); 9567 dump_stack(); 9568 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9569 } 9570 EXPORT_SYMBOL_GPL(__cant_sleep); 9571 9572 #ifdef CONFIG_SMP 9573 void __cant_migrate(const char *file, int line) 9574 { 9575 static unsigned long prev_jiffy; 9576 9577 if (irqs_disabled()) 9578 return; 9579 9580 if (is_migration_disabled(current)) 9581 return; 9582 9583 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9584 return; 9585 9586 if (preempt_count() > 0) 9587 return; 9588 9589 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9590 return; 9591 prev_jiffy = jiffies; 9592 9593 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9594 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9595 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9596 current->pid, current->comm); 9597 9598 debug_show_held_locks(current); 9599 dump_stack(); 9600 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9601 } 9602 EXPORT_SYMBOL_GPL(__cant_migrate); 9603 #endif 9604 #endif 9605 9606 #ifdef CONFIG_MAGIC_SYSRQ 9607 void normalize_rt_tasks(void) 9608 { 9609 struct task_struct *g, *p; 9610 struct sched_attr attr = { 9611 .sched_policy = SCHED_NORMAL, 9612 }; 9613 9614 read_lock(&tasklist_lock); 9615 for_each_process_thread(g, p) { 9616 /* 9617 * Only normalize user tasks: 9618 */ 9619 if (p->flags & PF_KTHREAD) 9620 continue; 9621 9622 p->se.exec_start = 0; 9623 schedstat_set(p->stats.wait_start, 0); 9624 schedstat_set(p->stats.sleep_start, 0); 9625 schedstat_set(p->stats.block_start, 0); 9626 9627 if (!dl_task(p) && !rt_task(p)) { 9628 /* 9629 * Renice negative nice level userspace 9630 * tasks back to 0: 9631 */ 9632 if (task_nice(p) < 0) 9633 set_user_nice(p, 0); 9634 continue; 9635 } 9636 9637 __sched_setscheduler(p, &attr, false, false); 9638 } 9639 read_unlock(&tasklist_lock); 9640 } 9641 9642 #endif /* CONFIG_MAGIC_SYSRQ */ 9643 9644 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9645 /* 9646 * These functions are only useful for the IA64 MCA handling, or kdb. 9647 * 9648 * They can only be called when the whole system has been 9649 * stopped - every CPU needs to be quiescent, and no scheduling 9650 * activity can take place. Using them for anything else would 9651 * be a serious bug, and as a result, they aren't even visible 9652 * under any other configuration. 9653 */ 9654 9655 /** 9656 * curr_task - return the current task for a given CPU. 9657 * @cpu: the processor in question. 9658 * 9659 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9660 * 9661 * Return: The current task for @cpu. 9662 */ 9663 struct task_struct *curr_task(int cpu) 9664 { 9665 return cpu_curr(cpu); 9666 } 9667 9668 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9669 9670 #ifdef CONFIG_IA64 9671 /** 9672 * ia64_set_curr_task - set the current task for a given CPU. 9673 * @cpu: the processor in question. 9674 * @p: the task pointer to set. 9675 * 9676 * Description: This function must only be used when non-maskable interrupts 9677 * are serviced on a separate stack. It allows the architecture to switch the 9678 * notion of the current task on a CPU in a non-blocking manner. This function 9679 * must be called with all CPU's synchronized, and interrupts disabled, the 9680 * and caller must save the original value of the current task (see 9681 * curr_task() above) and restore that value before reenabling interrupts and 9682 * re-starting the system. 9683 * 9684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9685 */ 9686 void ia64_set_curr_task(int cpu, struct task_struct *p) 9687 { 9688 cpu_curr(cpu) = p; 9689 } 9690 9691 #endif 9692 9693 #ifdef CONFIG_CGROUP_SCHED 9694 /* task_group_lock serializes the addition/removal of task groups */ 9695 static DEFINE_SPINLOCK(task_group_lock); 9696 9697 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9698 struct task_group *parent) 9699 { 9700 #ifdef CONFIG_UCLAMP_TASK_GROUP 9701 enum uclamp_id clamp_id; 9702 9703 for_each_clamp_id(clamp_id) { 9704 uclamp_se_set(&tg->uclamp_req[clamp_id], 9705 uclamp_none(clamp_id), false); 9706 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9707 } 9708 #endif 9709 } 9710 9711 static void sched_free_group(struct task_group *tg) 9712 { 9713 free_fair_sched_group(tg); 9714 free_rt_sched_group(tg); 9715 autogroup_free(tg); 9716 kmem_cache_free(task_group_cache, tg); 9717 } 9718 9719 /* allocate runqueue etc for a new task group */ 9720 struct task_group *sched_create_group(struct task_group *parent) 9721 { 9722 struct task_group *tg; 9723 9724 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9725 if (!tg) 9726 return ERR_PTR(-ENOMEM); 9727 9728 if (!alloc_fair_sched_group(tg, parent)) 9729 goto err; 9730 9731 if (!alloc_rt_sched_group(tg, parent)) 9732 goto err; 9733 9734 alloc_uclamp_sched_group(tg, parent); 9735 9736 return tg; 9737 9738 err: 9739 sched_free_group(tg); 9740 return ERR_PTR(-ENOMEM); 9741 } 9742 9743 void sched_online_group(struct task_group *tg, struct task_group *parent) 9744 { 9745 unsigned long flags; 9746 9747 spin_lock_irqsave(&task_group_lock, flags); 9748 list_add_rcu(&tg->list, &task_groups); 9749 9750 /* Root should already exist: */ 9751 WARN_ON(!parent); 9752 9753 tg->parent = parent; 9754 INIT_LIST_HEAD(&tg->children); 9755 list_add_rcu(&tg->siblings, &parent->children); 9756 spin_unlock_irqrestore(&task_group_lock, flags); 9757 9758 online_fair_sched_group(tg); 9759 } 9760 9761 /* rcu callback to free various structures associated with a task group */ 9762 static void sched_free_group_rcu(struct rcu_head *rhp) 9763 { 9764 /* Now it should be safe to free those cfs_rqs: */ 9765 sched_free_group(container_of(rhp, struct task_group, rcu)); 9766 } 9767 9768 void sched_destroy_group(struct task_group *tg) 9769 { 9770 /* Wait for possible concurrent references to cfs_rqs complete: */ 9771 call_rcu(&tg->rcu, sched_free_group_rcu); 9772 } 9773 9774 void sched_offline_group(struct task_group *tg) 9775 { 9776 unsigned long flags; 9777 9778 /* End participation in shares distribution: */ 9779 unregister_fair_sched_group(tg); 9780 9781 spin_lock_irqsave(&task_group_lock, flags); 9782 list_del_rcu(&tg->list); 9783 list_del_rcu(&tg->siblings); 9784 spin_unlock_irqrestore(&task_group_lock, flags); 9785 } 9786 9787 static void sched_change_group(struct task_struct *tsk, int type) 9788 { 9789 struct task_group *tg; 9790 9791 /* 9792 * All callers are synchronized by task_rq_lock(); we do not use RCU 9793 * which is pointless here. Thus, we pass "true" to task_css_check() 9794 * to prevent lockdep warnings. 9795 */ 9796 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9797 struct task_group, css); 9798 tg = autogroup_task_group(tsk, tg); 9799 tsk->sched_task_group = tg; 9800 9801 #ifdef CONFIG_FAIR_GROUP_SCHED 9802 if (tsk->sched_class->task_change_group) 9803 tsk->sched_class->task_change_group(tsk, type); 9804 else 9805 #endif 9806 set_task_rq(tsk, task_cpu(tsk)); 9807 } 9808 9809 /* 9810 * Change task's runqueue when it moves between groups. 9811 * 9812 * The caller of this function should have put the task in its new group by 9813 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9814 * its new group. 9815 */ 9816 void sched_move_task(struct task_struct *tsk) 9817 { 9818 int queued, running, queue_flags = 9819 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9820 struct rq_flags rf; 9821 struct rq *rq; 9822 9823 rq = task_rq_lock(tsk, &rf); 9824 update_rq_clock(rq); 9825 9826 running = task_current(rq, tsk); 9827 queued = task_on_rq_queued(tsk); 9828 9829 if (queued) 9830 dequeue_task(rq, tsk, queue_flags); 9831 if (running) 9832 put_prev_task(rq, tsk); 9833 9834 sched_change_group(tsk, TASK_MOVE_GROUP); 9835 9836 if (queued) 9837 enqueue_task(rq, tsk, queue_flags); 9838 if (running) { 9839 set_next_task(rq, tsk); 9840 /* 9841 * After changing group, the running task may have joined a 9842 * throttled one but it's still the running task. Trigger a 9843 * resched to make sure that task can still run. 9844 */ 9845 resched_curr(rq); 9846 } 9847 9848 task_rq_unlock(rq, tsk, &rf); 9849 } 9850 9851 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9852 { 9853 return css ? container_of(css, struct task_group, css) : NULL; 9854 } 9855 9856 static struct cgroup_subsys_state * 9857 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9858 { 9859 struct task_group *parent = css_tg(parent_css); 9860 struct task_group *tg; 9861 9862 if (!parent) { 9863 /* This is early initialization for the top cgroup */ 9864 return &root_task_group.css; 9865 } 9866 9867 tg = sched_create_group(parent); 9868 if (IS_ERR(tg)) 9869 return ERR_PTR(-ENOMEM); 9870 9871 return &tg->css; 9872 } 9873 9874 /* Expose task group only after completing cgroup initialization */ 9875 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9876 { 9877 struct task_group *tg = css_tg(css); 9878 struct task_group *parent = css_tg(css->parent); 9879 9880 if (parent) 9881 sched_online_group(tg, parent); 9882 9883 #ifdef CONFIG_UCLAMP_TASK_GROUP 9884 /* Propagate the effective uclamp value for the new group */ 9885 mutex_lock(&uclamp_mutex); 9886 rcu_read_lock(); 9887 cpu_util_update_eff(css); 9888 rcu_read_unlock(); 9889 mutex_unlock(&uclamp_mutex); 9890 #endif 9891 9892 return 0; 9893 } 9894 9895 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9896 { 9897 struct task_group *tg = css_tg(css); 9898 9899 sched_offline_group(tg); 9900 } 9901 9902 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9903 { 9904 struct task_group *tg = css_tg(css); 9905 9906 /* 9907 * Relies on the RCU grace period between css_released() and this. 9908 */ 9909 sched_free_group(tg); 9910 } 9911 9912 /* 9913 * This is called before wake_up_new_task(), therefore we really only 9914 * have to set its group bits, all the other stuff does not apply. 9915 */ 9916 static void cpu_cgroup_fork(struct task_struct *task) 9917 { 9918 struct rq_flags rf; 9919 struct rq *rq; 9920 9921 rq = task_rq_lock(task, &rf); 9922 9923 update_rq_clock(rq); 9924 sched_change_group(task, TASK_SET_GROUP); 9925 9926 task_rq_unlock(rq, task, &rf); 9927 } 9928 9929 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9930 { 9931 struct task_struct *task; 9932 struct cgroup_subsys_state *css; 9933 int ret = 0; 9934 9935 cgroup_taskset_for_each(task, css, tset) { 9936 #ifdef CONFIG_RT_GROUP_SCHED 9937 if (!sched_rt_can_attach(css_tg(css), task)) 9938 return -EINVAL; 9939 #endif 9940 /* 9941 * Serialize against wake_up_new_task() such that if it's 9942 * running, we're sure to observe its full state. 9943 */ 9944 raw_spin_lock_irq(&task->pi_lock); 9945 /* 9946 * Avoid calling sched_move_task() before wake_up_new_task() 9947 * has happened. This would lead to problems with PELT, due to 9948 * move wanting to detach+attach while we're not attached yet. 9949 */ 9950 if (READ_ONCE(task->__state) == TASK_NEW) 9951 ret = -EINVAL; 9952 raw_spin_unlock_irq(&task->pi_lock); 9953 9954 if (ret) 9955 break; 9956 } 9957 return ret; 9958 } 9959 9960 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9961 { 9962 struct task_struct *task; 9963 struct cgroup_subsys_state *css; 9964 9965 cgroup_taskset_for_each(task, css, tset) 9966 sched_move_task(task); 9967 } 9968 9969 #ifdef CONFIG_UCLAMP_TASK_GROUP 9970 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9971 { 9972 struct cgroup_subsys_state *top_css = css; 9973 struct uclamp_se *uc_parent = NULL; 9974 struct uclamp_se *uc_se = NULL; 9975 unsigned int eff[UCLAMP_CNT]; 9976 enum uclamp_id clamp_id; 9977 unsigned int clamps; 9978 9979 lockdep_assert_held(&uclamp_mutex); 9980 SCHED_WARN_ON(!rcu_read_lock_held()); 9981 9982 css_for_each_descendant_pre(css, top_css) { 9983 uc_parent = css_tg(css)->parent 9984 ? css_tg(css)->parent->uclamp : NULL; 9985 9986 for_each_clamp_id(clamp_id) { 9987 /* Assume effective clamps matches requested clamps */ 9988 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9989 /* Cap effective clamps with parent's effective clamps */ 9990 if (uc_parent && 9991 eff[clamp_id] > uc_parent[clamp_id].value) { 9992 eff[clamp_id] = uc_parent[clamp_id].value; 9993 } 9994 } 9995 /* Ensure protection is always capped by limit */ 9996 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9997 9998 /* Propagate most restrictive effective clamps */ 9999 clamps = 0x0; 10000 uc_se = css_tg(css)->uclamp; 10001 for_each_clamp_id(clamp_id) { 10002 if (eff[clamp_id] == uc_se[clamp_id].value) 10003 continue; 10004 uc_se[clamp_id].value = eff[clamp_id]; 10005 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10006 clamps |= (0x1 << clamp_id); 10007 } 10008 if (!clamps) { 10009 css = css_rightmost_descendant(css); 10010 continue; 10011 } 10012 10013 /* Immediately update descendants RUNNABLE tasks */ 10014 uclamp_update_active_tasks(css); 10015 } 10016 } 10017 10018 /* 10019 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10020 * C expression. Since there is no way to convert a macro argument (N) into a 10021 * character constant, use two levels of macros. 10022 */ 10023 #define _POW10(exp) ((unsigned int)1e##exp) 10024 #define POW10(exp) _POW10(exp) 10025 10026 struct uclamp_request { 10027 #define UCLAMP_PERCENT_SHIFT 2 10028 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10029 s64 percent; 10030 u64 util; 10031 int ret; 10032 }; 10033 10034 static inline struct uclamp_request 10035 capacity_from_percent(char *buf) 10036 { 10037 struct uclamp_request req = { 10038 .percent = UCLAMP_PERCENT_SCALE, 10039 .util = SCHED_CAPACITY_SCALE, 10040 .ret = 0, 10041 }; 10042 10043 buf = strim(buf); 10044 if (strcmp(buf, "max")) { 10045 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10046 &req.percent); 10047 if (req.ret) 10048 return req; 10049 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10050 req.ret = -ERANGE; 10051 return req; 10052 } 10053 10054 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10055 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10056 } 10057 10058 return req; 10059 } 10060 10061 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10062 size_t nbytes, loff_t off, 10063 enum uclamp_id clamp_id) 10064 { 10065 struct uclamp_request req; 10066 struct task_group *tg; 10067 10068 req = capacity_from_percent(buf); 10069 if (req.ret) 10070 return req.ret; 10071 10072 static_branch_enable(&sched_uclamp_used); 10073 10074 mutex_lock(&uclamp_mutex); 10075 rcu_read_lock(); 10076 10077 tg = css_tg(of_css(of)); 10078 if (tg->uclamp_req[clamp_id].value != req.util) 10079 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10080 10081 /* 10082 * Because of not recoverable conversion rounding we keep track of the 10083 * exact requested value 10084 */ 10085 tg->uclamp_pct[clamp_id] = req.percent; 10086 10087 /* Update effective clamps to track the most restrictive value */ 10088 cpu_util_update_eff(of_css(of)); 10089 10090 rcu_read_unlock(); 10091 mutex_unlock(&uclamp_mutex); 10092 10093 return nbytes; 10094 } 10095 10096 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10097 char *buf, size_t nbytes, 10098 loff_t off) 10099 { 10100 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10101 } 10102 10103 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10104 char *buf, size_t nbytes, 10105 loff_t off) 10106 { 10107 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10108 } 10109 10110 static inline void cpu_uclamp_print(struct seq_file *sf, 10111 enum uclamp_id clamp_id) 10112 { 10113 struct task_group *tg; 10114 u64 util_clamp; 10115 u64 percent; 10116 u32 rem; 10117 10118 rcu_read_lock(); 10119 tg = css_tg(seq_css(sf)); 10120 util_clamp = tg->uclamp_req[clamp_id].value; 10121 rcu_read_unlock(); 10122 10123 if (util_clamp == SCHED_CAPACITY_SCALE) { 10124 seq_puts(sf, "max\n"); 10125 return; 10126 } 10127 10128 percent = tg->uclamp_pct[clamp_id]; 10129 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10130 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10131 } 10132 10133 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10134 { 10135 cpu_uclamp_print(sf, UCLAMP_MIN); 10136 return 0; 10137 } 10138 10139 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10140 { 10141 cpu_uclamp_print(sf, UCLAMP_MAX); 10142 return 0; 10143 } 10144 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10145 10146 #ifdef CONFIG_FAIR_GROUP_SCHED 10147 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10148 struct cftype *cftype, u64 shareval) 10149 { 10150 if (shareval > scale_load_down(ULONG_MAX)) 10151 shareval = MAX_SHARES; 10152 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10153 } 10154 10155 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10156 struct cftype *cft) 10157 { 10158 struct task_group *tg = css_tg(css); 10159 10160 return (u64) scale_load_down(tg->shares); 10161 } 10162 10163 #ifdef CONFIG_CFS_BANDWIDTH 10164 static DEFINE_MUTEX(cfs_constraints_mutex); 10165 10166 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10167 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10168 /* More than 203 days if BW_SHIFT equals 20. */ 10169 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10170 10171 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10172 10173 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10174 u64 burst) 10175 { 10176 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10177 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10178 10179 if (tg == &root_task_group) 10180 return -EINVAL; 10181 10182 /* 10183 * Ensure we have at some amount of bandwidth every period. This is 10184 * to prevent reaching a state of large arrears when throttled via 10185 * entity_tick() resulting in prolonged exit starvation. 10186 */ 10187 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10188 return -EINVAL; 10189 10190 /* 10191 * Likewise, bound things on the other side by preventing insane quota 10192 * periods. This also allows us to normalize in computing quota 10193 * feasibility. 10194 */ 10195 if (period > max_cfs_quota_period) 10196 return -EINVAL; 10197 10198 /* 10199 * Bound quota to defend quota against overflow during bandwidth shift. 10200 */ 10201 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10202 return -EINVAL; 10203 10204 if (quota != RUNTIME_INF && (burst > quota || 10205 burst + quota > max_cfs_runtime)) 10206 return -EINVAL; 10207 10208 /* 10209 * Prevent race between setting of cfs_rq->runtime_enabled and 10210 * unthrottle_offline_cfs_rqs(). 10211 */ 10212 cpus_read_lock(); 10213 mutex_lock(&cfs_constraints_mutex); 10214 ret = __cfs_schedulable(tg, period, quota); 10215 if (ret) 10216 goto out_unlock; 10217 10218 runtime_enabled = quota != RUNTIME_INF; 10219 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10220 /* 10221 * If we need to toggle cfs_bandwidth_used, off->on must occur 10222 * before making related changes, and on->off must occur afterwards 10223 */ 10224 if (runtime_enabled && !runtime_was_enabled) 10225 cfs_bandwidth_usage_inc(); 10226 raw_spin_lock_irq(&cfs_b->lock); 10227 cfs_b->period = ns_to_ktime(period); 10228 cfs_b->quota = quota; 10229 cfs_b->burst = burst; 10230 10231 __refill_cfs_bandwidth_runtime(cfs_b); 10232 10233 /* Restart the period timer (if active) to handle new period expiry: */ 10234 if (runtime_enabled) 10235 start_cfs_bandwidth(cfs_b); 10236 10237 raw_spin_unlock_irq(&cfs_b->lock); 10238 10239 for_each_online_cpu(i) { 10240 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10241 struct rq *rq = cfs_rq->rq; 10242 struct rq_flags rf; 10243 10244 rq_lock_irq(rq, &rf); 10245 cfs_rq->runtime_enabled = runtime_enabled; 10246 cfs_rq->runtime_remaining = 0; 10247 10248 if (cfs_rq->throttled) 10249 unthrottle_cfs_rq(cfs_rq); 10250 rq_unlock_irq(rq, &rf); 10251 } 10252 if (runtime_was_enabled && !runtime_enabled) 10253 cfs_bandwidth_usage_dec(); 10254 out_unlock: 10255 mutex_unlock(&cfs_constraints_mutex); 10256 cpus_read_unlock(); 10257 10258 return ret; 10259 } 10260 10261 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10262 { 10263 u64 quota, period, burst; 10264 10265 period = ktime_to_ns(tg->cfs_bandwidth.period); 10266 burst = tg->cfs_bandwidth.burst; 10267 if (cfs_quota_us < 0) 10268 quota = RUNTIME_INF; 10269 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10270 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10271 else 10272 return -EINVAL; 10273 10274 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10275 } 10276 10277 static long tg_get_cfs_quota(struct task_group *tg) 10278 { 10279 u64 quota_us; 10280 10281 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10282 return -1; 10283 10284 quota_us = tg->cfs_bandwidth.quota; 10285 do_div(quota_us, NSEC_PER_USEC); 10286 10287 return quota_us; 10288 } 10289 10290 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10291 { 10292 u64 quota, period, burst; 10293 10294 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10295 return -EINVAL; 10296 10297 period = (u64)cfs_period_us * NSEC_PER_USEC; 10298 quota = tg->cfs_bandwidth.quota; 10299 burst = tg->cfs_bandwidth.burst; 10300 10301 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10302 } 10303 10304 static long tg_get_cfs_period(struct task_group *tg) 10305 { 10306 u64 cfs_period_us; 10307 10308 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10309 do_div(cfs_period_us, NSEC_PER_USEC); 10310 10311 return cfs_period_us; 10312 } 10313 10314 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10315 { 10316 u64 quota, period, burst; 10317 10318 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10319 return -EINVAL; 10320 10321 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10322 period = ktime_to_ns(tg->cfs_bandwidth.period); 10323 quota = tg->cfs_bandwidth.quota; 10324 10325 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10326 } 10327 10328 static long tg_get_cfs_burst(struct task_group *tg) 10329 { 10330 u64 burst_us; 10331 10332 burst_us = tg->cfs_bandwidth.burst; 10333 do_div(burst_us, NSEC_PER_USEC); 10334 10335 return burst_us; 10336 } 10337 10338 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10339 struct cftype *cft) 10340 { 10341 return tg_get_cfs_quota(css_tg(css)); 10342 } 10343 10344 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10345 struct cftype *cftype, s64 cfs_quota_us) 10346 { 10347 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10348 } 10349 10350 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10351 struct cftype *cft) 10352 { 10353 return tg_get_cfs_period(css_tg(css)); 10354 } 10355 10356 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10357 struct cftype *cftype, u64 cfs_period_us) 10358 { 10359 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10360 } 10361 10362 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10363 struct cftype *cft) 10364 { 10365 return tg_get_cfs_burst(css_tg(css)); 10366 } 10367 10368 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10369 struct cftype *cftype, u64 cfs_burst_us) 10370 { 10371 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10372 } 10373 10374 struct cfs_schedulable_data { 10375 struct task_group *tg; 10376 u64 period, quota; 10377 }; 10378 10379 /* 10380 * normalize group quota/period to be quota/max_period 10381 * note: units are usecs 10382 */ 10383 static u64 normalize_cfs_quota(struct task_group *tg, 10384 struct cfs_schedulable_data *d) 10385 { 10386 u64 quota, period; 10387 10388 if (tg == d->tg) { 10389 period = d->period; 10390 quota = d->quota; 10391 } else { 10392 period = tg_get_cfs_period(tg); 10393 quota = tg_get_cfs_quota(tg); 10394 } 10395 10396 /* note: these should typically be equivalent */ 10397 if (quota == RUNTIME_INF || quota == -1) 10398 return RUNTIME_INF; 10399 10400 return to_ratio(period, quota); 10401 } 10402 10403 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10404 { 10405 struct cfs_schedulable_data *d = data; 10406 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10407 s64 quota = 0, parent_quota = -1; 10408 10409 if (!tg->parent) { 10410 quota = RUNTIME_INF; 10411 } else { 10412 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10413 10414 quota = normalize_cfs_quota(tg, d); 10415 parent_quota = parent_b->hierarchical_quota; 10416 10417 /* 10418 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10419 * always take the min. On cgroup1, only inherit when no 10420 * limit is set: 10421 */ 10422 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10423 quota = min(quota, parent_quota); 10424 } else { 10425 if (quota == RUNTIME_INF) 10426 quota = parent_quota; 10427 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10428 return -EINVAL; 10429 } 10430 } 10431 cfs_b->hierarchical_quota = quota; 10432 10433 return 0; 10434 } 10435 10436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10437 { 10438 int ret; 10439 struct cfs_schedulable_data data = { 10440 .tg = tg, 10441 .period = period, 10442 .quota = quota, 10443 }; 10444 10445 if (quota != RUNTIME_INF) { 10446 do_div(data.period, NSEC_PER_USEC); 10447 do_div(data.quota, NSEC_PER_USEC); 10448 } 10449 10450 rcu_read_lock(); 10451 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10452 rcu_read_unlock(); 10453 10454 return ret; 10455 } 10456 10457 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10458 { 10459 struct task_group *tg = css_tg(seq_css(sf)); 10460 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10461 10462 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10463 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10464 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10465 10466 if (schedstat_enabled() && tg != &root_task_group) { 10467 struct sched_statistics *stats; 10468 u64 ws = 0; 10469 int i; 10470 10471 for_each_possible_cpu(i) { 10472 stats = __schedstats_from_se(tg->se[i]); 10473 ws += schedstat_val(stats->wait_sum); 10474 } 10475 10476 seq_printf(sf, "wait_sum %llu\n", ws); 10477 } 10478 10479 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10480 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10481 10482 return 0; 10483 } 10484 #endif /* CONFIG_CFS_BANDWIDTH */ 10485 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10486 10487 #ifdef CONFIG_RT_GROUP_SCHED 10488 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10489 struct cftype *cft, s64 val) 10490 { 10491 return sched_group_set_rt_runtime(css_tg(css), val); 10492 } 10493 10494 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10495 struct cftype *cft) 10496 { 10497 return sched_group_rt_runtime(css_tg(css)); 10498 } 10499 10500 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10501 struct cftype *cftype, u64 rt_period_us) 10502 { 10503 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10504 } 10505 10506 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10507 struct cftype *cft) 10508 { 10509 return sched_group_rt_period(css_tg(css)); 10510 } 10511 #endif /* CONFIG_RT_GROUP_SCHED */ 10512 10513 #ifdef CONFIG_FAIR_GROUP_SCHED 10514 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10515 struct cftype *cft) 10516 { 10517 return css_tg(css)->idle; 10518 } 10519 10520 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10521 struct cftype *cft, s64 idle) 10522 { 10523 return sched_group_set_idle(css_tg(css), idle); 10524 } 10525 #endif 10526 10527 static struct cftype cpu_legacy_files[] = { 10528 #ifdef CONFIG_FAIR_GROUP_SCHED 10529 { 10530 .name = "shares", 10531 .read_u64 = cpu_shares_read_u64, 10532 .write_u64 = cpu_shares_write_u64, 10533 }, 10534 { 10535 .name = "idle", 10536 .read_s64 = cpu_idle_read_s64, 10537 .write_s64 = cpu_idle_write_s64, 10538 }, 10539 #endif 10540 #ifdef CONFIG_CFS_BANDWIDTH 10541 { 10542 .name = "cfs_quota_us", 10543 .read_s64 = cpu_cfs_quota_read_s64, 10544 .write_s64 = cpu_cfs_quota_write_s64, 10545 }, 10546 { 10547 .name = "cfs_period_us", 10548 .read_u64 = cpu_cfs_period_read_u64, 10549 .write_u64 = cpu_cfs_period_write_u64, 10550 }, 10551 { 10552 .name = "cfs_burst_us", 10553 .read_u64 = cpu_cfs_burst_read_u64, 10554 .write_u64 = cpu_cfs_burst_write_u64, 10555 }, 10556 { 10557 .name = "stat", 10558 .seq_show = cpu_cfs_stat_show, 10559 }, 10560 #endif 10561 #ifdef CONFIG_RT_GROUP_SCHED 10562 { 10563 .name = "rt_runtime_us", 10564 .read_s64 = cpu_rt_runtime_read, 10565 .write_s64 = cpu_rt_runtime_write, 10566 }, 10567 { 10568 .name = "rt_period_us", 10569 .read_u64 = cpu_rt_period_read_uint, 10570 .write_u64 = cpu_rt_period_write_uint, 10571 }, 10572 #endif 10573 #ifdef CONFIG_UCLAMP_TASK_GROUP 10574 { 10575 .name = "uclamp.min", 10576 .flags = CFTYPE_NOT_ON_ROOT, 10577 .seq_show = cpu_uclamp_min_show, 10578 .write = cpu_uclamp_min_write, 10579 }, 10580 { 10581 .name = "uclamp.max", 10582 .flags = CFTYPE_NOT_ON_ROOT, 10583 .seq_show = cpu_uclamp_max_show, 10584 .write = cpu_uclamp_max_write, 10585 }, 10586 #endif 10587 { } /* Terminate */ 10588 }; 10589 10590 static int cpu_extra_stat_show(struct seq_file *sf, 10591 struct cgroup_subsys_state *css) 10592 { 10593 #ifdef CONFIG_CFS_BANDWIDTH 10594 { 10595 struct task_group *tg = css_tg(css); 10596 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10597 u64 throttled_usec, burst_usec; 10598 10599 throttled_usec = cfs_b->throttled_time; 10600 do_div(throttled_usec, NSEC_PER_USEC); 10601 burst_usec = cfs_b->burst_time; 10602 do_div(burst_usec, NSEC_PER_USEC); 10603 10604 seq_printf(sf, "nr_periods %d\n" 10605 "nr_throttled %d\n" 10606 "throttled_usec %llu\n" 10607 "nr_bursts %d\n" 10608 "burst_usec %llu\n", 10609 cfs_b->nr_periods, cfs_b->nr_throttled, 10610 throttled_usec, cfs_b->nr_burst, burst_usec); 10611 } 10612 #endif 10613 return 0; 10614 } 10615 10616 #ifdef CONFIG_FAIR_GROUP_SCHED 10617 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10618 struct cftype *cft) 10619 { 10620 struct task_group *tg = css_tg(css); 10621 u64 weight = scale_load_down(tg->shares); 10622 10623 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10624 } 10625 10626 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10627 struct cftype *cft, u64 weight) 10628 { 10629 /* 10630 * cgroup weight knobs should use the common MIN, DFL and MAX 10631 * values which are 1, 100 and 10000 respectively. While it loses 10632 * a bit of range on both ends, it maps pretty well onto the shares 10633 * value used by scheduler and the round-trip conversions preserve 10634 * the original value over the entire range. 10635 */ 10636 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10637 return -ERANGE; 10638 10639 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10640 10641 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10642 } 10643 10644 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10645 struct cftype *cft) 10646 { 10647 unsigned long weight = scale_load_down(css_tg(css)->shares); 10648 int last_delta = INT_MAX; 10649 int prio, delta; 10650 10651 /* find the closest nice value to the current weight */ 10652 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10653 delta = abs(sched_prio_to_weight[prio] - weight); 10654 if (delta >= last_delta) 10655 break; 10656 last_delta = delta; 10657 } 10658 10659 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10660 } 10661 10662 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10663 struct cftype *cft, s64 nice) 10664 { 10665 unsigned long weight; 10666 int idx; 10667 10668 if (nice < MIN_NICE || nice > MAX_NICE) 10669 return -ERANGE; 10670 10671 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10672 idx = array_index_nospec(idx, 40); 10673 weight = sched_prio_to_weight[idx]; 10674 10675 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10676 } 10677 #endif 10678 10679 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10680 long period, long quota) 10681 { 10682 if (quota < 0) 10683 seq_puts(sf, "max"); 10684 else 10685 seq_printf(sf, "%ld", quota); 10686 10687 seq_printf(sf, " %ld\n", period); 10688 } 10689 10690 /* caller should put the current value in *@periodp before calling */ 10691 static int __maybe_unused cpu_period_quota_parse(char *buf, 10692 u64 *periodp, u64 *quotap) 10693 { 10694 char tok[21]; /* U64_MAX */ 10695 10696 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10697 return -EINVAL; 10698 10699 *periodp *= NSEC_PER_USEC; 10700 10701 if (sscanf(tok, "%llu", quotap)) 10702 *quotap *= NSEC_PER_USEC; 10703 else if (!strcmp(tok, "max")) 10704 *quotap = RUNTIME_INF; 10705 else 10706 return -EINVAL; 10707 10708 return 0; 10709 } 10710 10711 #ifdef CONFIG_CFS_BANDWIDTH 10712 static int cpu_max_show(struct seq_file *sf, void *v) 10713 { 10714 struct task_group *tg = css_tg(seq_css(sf)); 10715 10716 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10717 return 0; 10718 } 10719 10720 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10721 char *buf, size_t nbytes, loff_t off) 10722 { 10723 struct task_group *tg = css_tg(of_css(of)); 10724 u64 period = tg_get_cfs_period(tg); 10725 u64 burst = tg_get_cfs_burst(tg); 10726 u64 quota; 10727 int ret; 10728 10729 ret = cpu_period_quota_parse(buf, &period, "a); 10730 if (!ret) 10731 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10732 return ret ?: nbytes; 10733 } 10734 #endif 10735 10736 static struct cftype cpu_files[] = { 10737 #ifdef CONFIG_FAIR_GROUP_SCHED 10738 { 10739 .name = "weight", 10740 .flags = CFTYPE_NOT_ON_ROOT, 10741 .read_u64 = cpu_weight_read_u64, 10742 .write_u64 = cpu_weight_write_u64, 10743 }, 10744 { 10745 .name = "weight.nice", 10746 .flags = CFTYPE_NOT_ON_ROOT, 10747 .read_s64 = cpu_weight_nice_read_s64, 10748 .write_s64 = cpu_weight_nice_write_s64, 10749 }, 10750 { 10751 .name = "idle", 10752 .flags = CFTYPE_NOT_ON_ROOT, 10753 .read_s64 = cpu_idle_read_s64, 10754 .write_s64 = cpu_idle_write_s64, 10755 }, 10756 #endif 10757 #ifdef CONFIG_CFS_BANDWIDTH 10758 { 10759 .name = "max", 10760 .flags = CFTYPE_NOT_ON_ROOT, 10761 .seq_show = cpu_max_show, 10762 .write = cpu_max_write, 10763 }, 10764 { 10765 .name = "max.burst", 10766 .flags = CFTYPE_NOT_ON_ROOT, 10767 .read_u64 = cpu_cfs_burst_read_u64, 10768 .write_u64 = cpu_cfs_burst_write_u64, 10769 }, 10770 #endif 10771 #ifdef CONFIG_UCLAMP_TASK_GROUP 10772 { 10773 .name = "uclamp.min", 10774 .flags = CFTYPE_NOT_ON_ROOT, 10775 .seq_show = cpu_uclamp_min_show, 10776 .write = cpu_uclamp_min_write, 10777 }, 10778 { 10779 .name = "uclamp.max", 10780 .flags = CFTYPE_NOT_ON_ROOT, 10781 .seq_show = cpu_uclamp_max_show, 10782 .write = cpu_uclamp_max_write, 10783 }, 10784 #endif 10785 { } /* terminate */ 10786 }; 10787 10788 struct cgroup_subsys cpu_cgrp_subsys = { 10789 .css_alloc = cpu_cgroup_css_alloc, 10790 .css_online = cpu_cgroup_css_online, 10791 .css_released = cpu_cgroup_css_released, 10792 .css_free = cpu_cgroup_css_free, 10793 .css_extra_stat_show = cpu_extra_stat_show, 10794 .fork = cpu_cgroup_fork, 10795 .can_attach = cpu_cgroup_can_attach, 10796 .attach = cpu_cgroup_attach, 10797 .legacy_cftypes = cpu_legacy_files, 10798 .dfl_cftypes = cpu_files, 10799 .early_init = true, 10800 .threaded = true, 10801 }; 10802 10803 #endif /* CONFIG_CGROUP_SCHED */ 10804 10805 void dump_cpu_task(int cpu) 10806 { 10807 pr_info("Task dump for CPU %d:\n", cpu); 10808 sched_show_task(cpu_curr(cpu)); 10809 } 10810 10811 /* 10812 * Nice levels are multiplicative, with a gentle 10% change for every 10813 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10814 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10815 * that remained on nice 0. 10816 * 10817 * The "10% effect" is relative and cumulative: from _any_ nice level, 10818 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10819 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10820 * If a task goes up by ~10% and another task goes down by ~10% then 10821 * the relative distance between them is ~25%.) 10822 */ 10823 const int sched_prio_to_weight[40] = { 10824 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10825 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10826 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10827 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10828 /* 0 */ 1024, 820, 655, 526, 423, 10829 /* 5 */ 335, 272, 215, 172, 137, 10830 /* 10 */ 110, 87, 70, 56, 45, 10831 /* 15 */ 36, 29, 23, 18, 15, 10832 }; 10833 10834 /* 10835 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10836 * 10837 * In cases where the weight does not change often, we can use the 10838 * precalculated inverse to speed up arithmetics by turning divisions 10839 * into multiplications: 10840 */ 10841 const u32 sched_prio_to_wmult[40] = { 10842 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10843 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10844 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10845 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10846 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10847 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10848 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10849 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10850 }; 10851 10852 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10853 { 10854 trace_sched_update_nr_running_tp(rq, count); 10855 } 10856