xref: /openbmc/linux/kernel/sched/core.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 #include <linux/blkdev.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 #ifdef CONFIG_PREEMPT_RT
78 const_debug unsigned int sysctl_sched_nr_migrate = 8;
79 #else
80 const_debug unsigned int sysctl_sched_nr_migrate = 32;
81 #endif
82 
83 /*
84  * period over which we measure -rt task CPU usage in us.
85  * default: 1s
86  */
87 unsigned int sysctl_sched_rt_period = 1000000;
88 
89 __read_mostly int scheduler_running;
90 
91 #ifdef CONFIG_SCHED_CORE
92 
93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
94 
95 /* kernel prio, less is more */
96 static inline int __task_prio(struct task_struct *p)
97 {
98 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
99 		return -2;
100 
101 	if (rt_prio(p->prio)) /* includes deadline */
102 		return p->prio; /* [-1, 99] */
103 
104 	if (p->sched_class == &idle_sched_class)
105 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
106 
107 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
108 }
109 
110 /*
111  * l(a,b)
112  * le(a,b) := !l(b,a)
113  * g(a,b)  := l(b,a)
114  * ge(a,b) := !l(a,b)
115  */
116 
117 /* real prio, less is less */
118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
119 {
120 
121 	int pa = __task_prio(a), pb = __task_prio(b);
122 
123 	if (-pa < -pb)
124 		return true;
125 
126 	if (-pb < -pa)
127 		return false;
128 
129 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
130 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
131 
132 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
133 		return cfs_prio_less(a, b, in_fi);
134 
135 	return false;
136 }
137 
138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
139 {
140 	if (a->core_cookie < b->core_cookie)
141 		return true;
142 
143 	if (a->core_cookie > b->core_cookie)
144 		return false;
145 
146 	/* flip prio, so high prio is leftmost */
147 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
148 		return true;
149 
150 	return false;
151 }
152 
153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
154 
155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
156 {
157 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
158 }
159 
160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
161 {
162 	const struct task_struct *p = __node_2_sc(node);
163 	unsigned long cookie = (unsigned long)key;
164 
165 	if (cookie < p->core_cookie)
166 		return -1;
167 
168 	if (cookie > p->core_cookie)
169 		return 1;
170 
171 	return 0;
172 }
173 
174 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
175 {
176 	rq->core->core_task_seq++;
177 
178 	if (!p->core_cookie)
179 		return;
180 
181 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
182 }
183 
184 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
185 {
186 	rq->core->core_task_seq++;
187 
188 	if (!sched_core_enqueued(p))
189 		return;
190 
191 	rb_erase(&p->core_node, &rq->core_tree);
192 	RB_CLEAR_NODE(&p->core_node);
193 }
194 
195 /*
196  * Find left-most (aka, highest priority) task matching @cookie.
197  */
198 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
199 {
200 	struct rb_node *node;
201 
202 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
203 	/*
204 	 * The idle task always matches any cookie!
205 	 */
206 	if (!node)
207 		return idle_sched_class.pick_task(rq);
208 
209 	return __node_2_sc(node);
210 }
211 
212 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
213 {
214 	struct rb_node *node = &p->core_node;
215 
216 	node = rb_next(node);
217 	if (!node)
218 		return NULL;
219 
220 	p = container_of(node, struct task_struct, core_node);
221 	if (p->core_cookie != cookie)
222 		return NULL;
223 
224 	return p;
225 }
226 
227 /*
228  * Magic required such that:
229  *
230  *	raw_spin_rq_lock(rq);
231  *	...
232  *	raw_spin_rq_unlock(rq);
233  *
234  * ends up locking and unlocking the _same_ lock, and all CPUs
235  * always agree on what rq has what lock.
236  *
237  * XXX entirely possible to selectively enable cores, don't bother for now.
238  */
239 
240 static DEFINE_MUTEX(sched_core_mutex);
241 static atomic_t sched_core_count;
242 static struct cpumask sched_core_mask;
243 
244 static void sched_core_lock(int cpu, unsigned long *flags)
245 {
246 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
247 	int t, i = 0;
248 
249 	local_irq_save(*flags);
250 	for_each_cpu(t, smt_mask)
251 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
252 }
253 
254 static void sched_core_unlock(int cpu, unsigned long *flags)
255 {
256 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
257 	int t;
258 
259 	for_each_cpu(t, smt_mask)
260 		raw_spin_unlock(&cpu_rq(t)->__lock);
261 	local_irq_restore(*flags);
262 }
263 
264 static void __sched_core_flip(bool enabled)
265 {
266 	unsigned long flags;
267 	int cpu, t;
268 
269 	cpus_read_lock();
270 
271 	/*
272 	 * Toggle the online cores, one by one.
273 	 */
274 	cpumask_copy(&sched_core_mask, cpu_online_mask);
275 	for_each_cpu(cpu, &sched_core_mask) {
276 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
277 
278 		sched_core_lock(cpu, &flags);
279 
280 		for_each_cpu(t, smt_mask)
281 			cpu_rq(t)->core_enabled = enabled;
282 
283 		sched_core_unlock(cpu, &flags);
284 
285 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
286 	}
287 
288 	/*
289 	 * Toggle the offline CPUs.
290 	 */
291 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
292 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
293 
294 	for_each_cpu(cpu, &sched_core_mask)
295 		cpu_rq(cpu)->core_enabled = enabled;
296 
297 	cpus_read_unlock();
298 }
299 
300 static void sched_core_assert_empty(void)
301 {
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu)
305 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
306 }
307 
308 static void __sched_core_enable(void)
309 {
310 	static_branch_enable(&__sched_core_enabled);
311 	/*
312 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
313 	 * and future ones will observe !sched_core_disabled().
314 	 */
315 	synchronize_rcu();
316 	__sched_core_flip(true);
317 	sched_core_assert_empty();
318 }
319 
320 static void __sched_core_disable(void)
321 {
322 	sched_core_assert_empty();
323 	__sched_core_flip(false);
324 	static_branch_disable(&__sched_core_enabled);
325 }
326 
327 void sched_core_get(void)
328 {
329 	if (atomic_inc_not_zero(&sched_core_count))
330 		return;
331 
332 	mutex_lock(&sched_core_mutex);
333 	if (!atomic_read(&sched_core_count))
334 		__sched_core_enable();
335 
336 	smp_mb__before_atomic();
337 	atomic_inc(&sched_core_count);
338 	mutex_unlock(&sched_core_mutex);
339 }
340 
341 static void __sched_core_put(struct work_struct *work)
342 {
343 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
344 		__sched_core_disable();
345 		mutex_unlock(&sched_core_mutex);
346 	}
347 }
348 
349 void sched_core_put(void)
350 {
351 	static DECLARE_WORK(_work, __sched_core_put);
352 
353 	/*
354 	 * "There can be only one"
355 	 *
356 	 * Either this is the last one, or we don't actually need to do any
357 	 * 'work'. If it is the last *again*, we rely on
358 	 * WORK_STRUCT_PENDING_BIT.
359 	 */
360 	if (!atomic_add_unless(&sched_core_count, -1, 1))
361 		schedule_work(&_work);
362 }
363 
364 #else /* !CONFIG_SCHED_CORE */
365 
366 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
367 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
368 
369 #endif /* CONFIG_SCHED_CORE */
370 
371 /*
372  * part of the period that we allow rt tasks to run in us.
373  * default: 0.95s
374  */
375 int sysctl_sched_rt_runtime = 950000;
376 
377 
378 /*
379  * Serialization rules:
380  *
381  * Lock order:
382  *
383  *   p->pi_lock
384  *     rq->lock
385  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
386  *
387  *  rq1->lock
388  *    rq2->lock  where: rq1 < rq2
389  *
390  * Regular state:
391  *
392  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
393  * local CPU's rq->lock, it optionally removes the task from the runqueue and
394  * always looks at the local rq data structures to find the most eligible task
395  * to run next.
396  *
397  * Task enqueue is also under rq->lock, possibly taken from another CPU.
398  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
399  * the local CPU to avoid bouncing the runqueue state around [ see
400  * ttwu_queue_wakelist() ]
401  *
402  * Task wakeup, specifically wakeups that involve migration, are horribly
403  * complicated to avoid having to take two rq->locks.
404  *
405  * Special state:
406  *
407  * System-calls and anything external will use task_rq_lock() which acquires
408  * both p->pi_lock and rq->lock. As a consequence the state they change is
409  * stable while holding either lock:
410  *
411  *  - sched_setaffinity()/
412  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
413  *  - set_user_nice():		p->se.load, p->*prio
414  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
415  *				p->se.load, p->rt_priority,
416  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
417  *  - sched_setnuma():		p->numa_preferred_nid
418  *  - sched_move_task()/
419  *    cpu_cgroup_fork():	p->sched_task_group
420  *  - uclamp_update_active()	p->uclamp*
421  *
422  * p->state <- TASK_*:
423  *
424  *   is changed locklessly using set_current_state(), __set_current_state() or
425  *   set_special_state(), see their respective comments, or by
426  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
427  *   concurrent self.
428  *
429  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
430  *
431  *   is set by activate_task() and cleared by deactivate_task(), under
432  *   rq->lock. Non-zero indicates the task is runnable, the special
433  *   ON_RQ_MIGRATING state is used for migration without holding both
434  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
435  *
436  * p->on_cpu <- { 0, 1 }:
437  *
438  *   is set by prepare_task() and cleared by finish_task() such that it will be
439  *   set before p is scheduled-in and cleared after p is scheduled-out, both
440  *   under rq->lock. Non-zero indicates the task is running on its CPU.
441  *
442  *   [ The astute reader will observe that it is possible for two tasks on one
443  *     CPU to have ->on_cpu = 1 at the same time. ]
444  *
445  * task_cpu(p): is changed by set_task_cpu(), the rules are:
446  *
447  *  - Don't call set_task_cpu() on a blocked task:
448  *
449  *    We don't care what CPU we're not running on, this simplifies hotplug,
450  *    the CPU assignment of blocked tasks isn't required to be valid.
451  *
452  *  - for try_to_wake_up(), called under p->pi_lock:
453  *
454  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
455  *
456  *  - for migration called under rq->lock:
457  *    [ see task_on_rq_migrating() in task_rq_lock() ]
458  *
459  *    o move_queued_task()
460  *    o detach_task()
461  *
462  *  - for migration called under double_rq_lock():
463  *
464  *    o __migrate_swap_task()
465  *    o push_rt_task() / pull_rt_task()
466  *    o push_dl_task() / pull_dl_task()
467  *    o dl_task_offline_migration()
468  *
469  */
470 
471 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
472 {
473 	raw_spinlock_t *lock;
474 
475 	/* Matches synchronize_rcu() in __sched_core_enable() */
476 	preempt_disable();
477 	if (sched_core_disabled()) {
478 		raw_spin_lock_nested(&rq->__lock, subclass);
479 		/* preempt_count *MUST* be > 1 */
480 		preempt_enable_no_resched();
481 		return;
482 	}
483 
484 	for (;;) {
485 		lock = __rq_lockp(rq);
486 		raw_spin_lock_nested(lock, subclass);
487 		if (likely(lock == __rq_lockp(rq))) {
488 			/* preempt_count *MUST* be > 1 */
489 			preempt_enable_no_resched();
490 			return;
491 		}
492 		raw_spin_unlock(lock);
493 	}
494 }
495 
496 bool raw_spin_rq_trylock(struct rq *rq)
497 {
498 	raw_spinlock_t *lock;
499 	bool ret;
500 
501 	/* Matches synchronize_rcu() in __sched_core_enable() */
502 	preempt_disable();
503 	if (sched_core_disabled()) {
504 		ret = raw_spin_trylock(&rq->__lock);
505 		preempt_enable();
506 		return ret;
507 	}
508 
509 	for (;;) {
510 		lock = __rq_lockp(rq);
511 		ret = raw_spin_trylock(lock);
512 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
513 			preempt_enable();
514 			return ret;
515 		}
516 		raw_spin_unlock(lock);
517 	}
518 }
519 
520 void raw_spin_rq_unlock(struct rq *rq)
521 {
522 	raw_spin_unlock(rq_lockp(rq));
523 }
524 
525 #ifdef CONFIG_SMP
526 /*
527  * double_rq_lock - safely lock two runqueues
528  */
529 void double_rq_lock(struct rq *rq1, struct rq *rq2)
530 {
531 	lockdep_assert_irqs_disabled();
532 
533 	if (rq_order_less(rq2, rq1))
534 		swap(rq1, rq2);
535 
536 	raw_spin_rq_lock(rq1);
537 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
538 		return;
539 
540 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
541 }
542 #endif
543 
544 /*
545  * __task_rq_lock - lock the rq @p resides on.
546  */
547 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
548 	__acquires(rq->lock)
549 {
550 	struct rq *rq;
551 
552 	lockdep_assert_held(&p->pi_lock);
553 
554 	for (;;) {
555 		rq = task_rq(p);
556 		raw_spin_rq_lock(rq);
557 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
558 			rq_pin_lock(rq, rf);
559 			return rq;
560 		}
561 		raw_spin_rq_unlock(rq);
562 
563 		while (unlikely(task_on_rq_migrating(p)))
564 			cpu_relax();
565 	}
566 }
567 
568 /*
569  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
570  */
571 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
572 	__acquires(p->pi_lock)
573 	__acquires(rq->lock)
574 {
575 	struct rq *rq;
576 
577 	for (;;) {
578 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
579 		rq = task_rq(p);
580 		raw_spin_rq_lock(rq);
581 		/*
582 		 *	move_queued_task()		task_rq_lock()
583 		 *
584 		 *	ACQUIRE (rq->lock)
585 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
586 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
587 		 *	[S] ->cpu = new_cpu		[L] task_rq()
588 		 *					[L] ->on_rq
589 		 *	RELEASE (rq->lock)
590 		 *
591 		 * If we observe the old CPU in task_rq_lock(), the acquire of
592 		 * the old rq->lock will fully serialize against the stores.
593 		 *
594 		 * If we observe the new CPU in task_rq_lock(), the address
595 		 * dependency headed by '[L] rq = task_rq()' and the acquire
596 		 * will pair with the WMB to ensure we then also see migrating.
597 		 */
598 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
599 			rq_pin_lock(rq, rf);
600 			return rq;
601 		}
602 		raw_spin_rq_unlock(rq);
603 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
604 
605 		while (unlikely(task_on_rq_migrating(p)))
606 			cpu_relax();
607 	}
608 }
609 
610 /*
611  * RQ-clock updating methods:
612  */
613 
614 static void update_rq_clock_task(struct rq *rq, s64 delta)
615 {
616 /*
617  * In theory, the compile should just see 0 here, and optimize out the call
618  * to sched_rt_avg_update. But I don't trust it...
619  */
620 	s64 __maybe_unused steal = 0, irq_delta = 0;
621 
622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
624 
625 	/*
626 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
627 	 * this case when a previous update_rq_clock() happened inside a
628 	 * {soft,}irq region.
629 	 *
630 	 * When this happens, we stop ->clock_task and only update the
631 	 * prev_irq_time stamp to account for the part that fit, so that a next
632 	 * update will consume the rest. This ensures ->clock_task is
633 	 * monotonic.
634 	 *
635 	 * It does however cause some slight miss-attribution of {soft,}irq
636 	 * time, a more accurate solution would be to update the irq_time using
637 	 * the current rq->clock timestamp, except that would require using
638 	 * atomic ops.
639 	 */
640 	if (irq_delta > delta)
641 		irq_delta = delta;
642 
643 	rq->prev_irq_time += irq_delta;
644 	delta -= irq_delta;
645 #endif
646 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
647 	if (static_key_false((&paravirt_steal_rq_enabled))) {
648 		steal = paravirt_steal_clock(cpu_of(rq));
649 		steal -= rq->prev_steal_time_rq;
650 
651 		if (unlikely(steal > delta))
652 			steal = delta;
653 
654 		rq->prev_steal_time_rq += steal;
655 		delta -= steal;
656 	}
657 #endif
658 
659 	rq->clock_task += delta;
660 
661 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
662 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
663 		update_irq_load_avg(rq, irq_delta + steal);
664 #endif
665 	update_rq_clock_pelt(rq, delta);
666 }
667 
668 void update_rq_clock(struct rq *rq)
669 {
670 	s64 delta;
671 
672 	lockdep_assert_rq_held(rq);
673 
674 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
675 		return;
676 
677 #ifdef CONFIG_SCHED_DEBUG
678 	if (sched_feat(WARN_DOUBLE_CLOCK))
679 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
680 	rq->clock_update_flags |= RQCF_UPDATED;
681 #endif
682 
683 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
684 	if (delta < 0)
685 		return;
686 	rq->clock += delta;
687 	update_rq_clock_task(rq, delta);
688 }
689 
690 #ifdef CONFIG_SCHED_HRTICK
691 /*
692  * Use HR-timers to deliver accurate preemption points.
693  */
694 
695 static void hrtick_clear(struct rq *rq)
696 {
697 	if (hrtimer_active(&rq->hrtick_timer))
698 		hrtimer_cancel(&rq->hrtick_timer);
699 }
700 
701 /*
702  * High-resolution timer tick.
703  * Runs from hardirq context with interrupts disabled.
704  */
705 static enum hrtimer_restart hrtick(struct hrtimer *timer)
706 {
707 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
708 	struct rq_flags rf;
709 
710 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
711 
712 	rq_lock(rq, &rf);
713 	update_rq_clock(rq);
714 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
715 	rq_unlock(rq, &rf);
716 
717 	return HRTIMER_NORESTART;
718 }
719 
720 #ifdef CONFIG_SMP
721 
722 static void __hrtick_restart(struct rq *rq)
723 {
724 	struct hrtimer *timer = &rq->hrtick_timer;
725 	ktime_t time = rq->hrtick_time;
726 
727 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
728 }
729 
730 /*
731  * called from hardirq (IPI) context
732  */
733 static void __hrtick_start(void *arg)
734 {
735 	struct rq *rq = arg;
736 	struct rq_flags rf;
737 
738 	rq_lock(rq, &rf);
739 	__hrtick_restart(rq);
740 	rq_unlock(rq, &rf);
741 }
742 
743 /*
744  * Called to set the hrtick timer state.
745  *
746  * called with rq->lock held and irqs disabled
747  */
748 void hrtick_start(struct rq *rq, u64 delay)
749 {
750 	struct hrtimer *timer = &rq->hrtick_timer;
751 	s64 delta;
752 
753 	/*
754 	 * Don't schedule slices shorter than 10000ns, that just
755 	 * doesn't make sense and can cause timer DoS.
756 	 */
757 	delta = max_t(s64, delay, 10000LL);
758 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
759 
760 	if (rq == this_rq())
761 		__hrtick_restart(rq);
762 	else
763 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
764 }
765 
766 #else
767 /*
768  * Called to set the hrtick timer state.
769  *
770  * called with rq->lock held and irqs disabled
771  */
772 void hrtick_start(struct rq *rq, u64 delay)
773 {
774 	/*
775 	 * Don't schedule slices shorter than 10000ns, that just
776 	 * doesn't make sense. Rely on vruntime for fairness.
777 	 */
778 	delay = max_t(u64, delay, 10000LL);
779 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
780 		      HRTIMER_MODE_REL_PINNED_HARD);
781 }
782 
783 #endif /* CONFIG_SMP */
784 
785 static void hrtick_rq_init(struct rq *rq)
786 {
787 #ifdef CONFIG_SMP
788 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
789 #endif
790 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
791 	rq->hrtick_timer.function = hrtick;
792 }
793 #else	/* CONFIG_SCHED_HRTICK */
794 static inline void hrtick_clear(struct rq *rq)
795 {
796 }
797 
798 static inline void hrtick_rq_init(struct rq *rq)
799 {
800 }
801 #endif	/* CONFIG_SCHED_HRTICK */
802 
803 /*
804  * cmpxchg based fetch_or, macro so it works for different integer types
805  */
806 #define fetch_or(ptr, mask)						\
807 	({								\
808 		typeof(ptr) _ptr = (ptr);				\
809 		typeof(mask) _mask = (mask);				\
810 		typeof(*_ptr) _old, _val = *_ptr;			\
811 									\
812 		for (;;) {						\
813 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
814 			if (_old == _val)				\
815 				break;					\
816 			_val = _old;					\
817 		}							\
818 	_old;								\
819 })
820 
821 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
822 /*
823  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
824  * this avoids any races wrt polling state changes and thereby avoids
825  * spurious IPIs.
826  */
827 static bool set_nr_and_not_polling(struct task_struct *p)
828 {
829 	struct thread_info *ti = task_thread_info(p);
830 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
831 }
832 
833 /*
834  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
835  *
836  * If this returns true, then the idle task promises to call
837  * sched_ttwu_pending() and reschedule soon.
838  */
839 static bool set_nr_if_polling(struct task_struct *p)
840 {
841 	struct thread_info *ti = task_thread_info(p);
842 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
843 
844 	for (;;) {
845 		if (!(val & _TIF_POLLING_NRFLAG))
846 			return false;
847 		if (val & _TIF_NEED_RESCHED)
848 			return true;
849 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
850 		if (old == val)
851 			break;
852 		val = old;
853 	}
854 	return true;
855 }
856 
857 #else
858 static bool set_nr_and_not_polling(struct task_struct *p)
859 {
860 	set_tsk_need_resched(p);
861 	return true;
862 }
863 
864 #ifdef CONFIG_SMP
865 static bool set_nr_if_polling(struct task_struct *p)
866 {
867 	return false;
868 }
869 #endif
870 #endif
871 
872 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
873 {
874 	struct wake_q_node *node = &task->wake_q;
875 
876 	/*
877 	 * Atomically grab the task, if ->wake_q is !nil already it means
878 	 * it's already queued (either by us or someone else) and will get the
879 	 * wakeup due to that.
880 	 *
881 	 * In order to ensure that a pending wakeup will observe our pending
882 	 * state, even in the failed case, an explicit smp_mb() must be used.
883 	 */
884 	smp_mb__before_atomic();
885 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
886 		return false;
887 
888 	/*
889 	 * The head is context local, there can be no concurrency.
890 	 */
891 	*head->lastp = node;
892 	head->lastp = &node->next;
893 	return true;
894 }
895 
896 /**
897  * wake_q_add() - queue a wakeup for 'later' waking.
898  * @head: the wake_q_head to add @task to
899  * @task: the task to queue for 'later' wakeup
900  *
901  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903  * instantly.
904  *
905  * This function must be used as-if it were wake_up_process(); IOW the task
906  * must be ready to be woken at this location.
907  */
908 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
909 {
910 	if (__wake_q_add(head, task))
911 		get_task_struct(task);
912 }
913 
914 /**
915  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
916  * @head: the wake_q_head to add @task to
917  * @task: the task to queue for 'later' wakeup
918  *
919  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
920  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
921  * instantly.
922  *
923  * This function must be used as-if it were wake_up_process(); IOW the task
924  * must be ready to be woken at this location.
925  *
926  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
927  * that already hold reference to @task can call the 'safe' version and trust
928  * wake_q to do the right thing depending whether or not the @task is already
929  * queued for wakeup.
930  */
931 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
932 {
933 	if (!__wake_q_add(head, task))
934 		put_task_struct(task);
935 }
936 
937 void wake_up_q(struct wake_q_head *head)
938 {
939 	struct wake_q_node *node = head->first;
940 
941 	while (node != WAKE_Q_TAIL) {
942 		struct task_struct *task;
943 
944 		task = container_of(node, struct task_struct, wake_q);
945 		/* Task can safely be re-inserted now: */
946 		node = node->next;
947 		task->wake_q.next = NULL;
948 
949 		/*
950 		 * wake_up_process() executes a full barrier, which pairs with
951 		 * the queueing in wake_q_add() so as not to miss wakeups.
952 		 */
953 		wake_up_process(task);
954 		put_task_struct(task);
955 	}
956 }
957 
958 /*
959  * resched_curr - mark rq's current task 'to be rescheduled now'.
960  *
961  * On UP this means the setting of the need_resched flag, on SMP it
962  * might also involve a cross-CPU call to trigger the scheduler on
963  * the target CPU.
964  */
965 void resched_curr(struct rq *rq)
966 {
967 	struct task_struct *curr = rq->curr;
968 	int cpu;
969 
970 	lockdep_assert_rq_held(rq);
971 
972 	if (test_tsk_need_resched(curr))
973 		return;
974 
975 	cpu = cpu_of(rq);
976 
977 	if (cpu == smp_processor_id()) {
978 		set_tsk_need_resched(curr);
979 		set_preempt_need_resched();
980 		return;
981 	}
982 
983 	if (set_nr_and_not_polling(curr))
984 		smp_send_reschedule(cpu);
985 	else
986 		trace_sched_wake_idle_without_ipi(cpu);
987 }
988 
989 void resched_cpu(int cpu)
990 {
991 	struct rq *rq = cpu_rq(cpu);
992 	unsigned long flags;
993 
994 	raw_spin_rq_lock_irqsave(rq, flags);
995 	if (cpu_online(cpu) || cpu == smp_processor_id())
996 		resched_curr(rq);
997 	raw_spin_rq_unlock_irqrestore(rq, flags);
998 }
999 
1000 #ifdef CONFIG_SMP
1001 #ifdef CONFIG_NO_HZ_COMMON
1002 /*
1003  * In the semi idle case, use the nearest busy CPU for migrating timers
1004  * from an idle CPU.  This is good for power-savings.
1005  *
1006  * We don't do similar optimization for completely idle system, as
1007  * selecting an idle CPU will add more delays to the timers than intended
1008  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1009  */
1010 int get_nohz_timer_target(void)
1011 {
1012 	int i, cpu = smp_processor_id(), default_cpu = -1;
1013 	struct sched_domain *sd;
1014 	const struct cpumask *hk_mask;
1015 
1016 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1017 		if (!idle_cpu(cpu))
1018 			return cpu;
1019 		default_cpu = cpu;
1020 	}
1021 
1022 	hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1023 
1024 	rcu_read_lock();
1025 	for_each_domain(cpu, sd) {
1026 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1027 			if (cpu == i)
1028 				continue;
1029 
1030 			if (!idle_cpu(i)) {
1031 				cpu = i;
1032 				goto unlock;
1033 			}
1034 		}
1035 	}
1036 
1037 	if (default_cpu == -1)
1038 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1039 	cpu = default_cpu;
1040 unlock:
1041 	rcu_read_unlock();
1042 	return cpu;
1043 }
1044 
1045 /*
1046  * When add_timer_on() enqueues a timer into the timer wheel of an
1047  * idle CPU then this timer might expire before the next timer event
1048  * which is scheduled to wake up that CPU. In case of a completely
1049  * idle system the next event might even be infinite time into the
1050  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1051  * leaves the inner idle loop so the newly added timer is taken into
1052  * account when the CPU goes back to idle and evaluates the timer
1053  * wheel for the next timer event.
1054  */
1055 static void wake_up_idle_cpu(int cpu)
1056 {
1057 	struct rq *rq = cpu_rq(cpu);
1058 
1059 	if (cpu == smp_processor_id())
1060 		return;
1061 
1062 	if (set_nr_and_not_polling(rq->idle))
1063 		smp_send_reschedule(cpu);
1064 	else
1065 		trace_sched_wake_idle_without_ipi(cpu);
1066 }
1067 
1068 static bool wake_up_full_nohz_cpu(int cpu)
1069 {
1070 	/*
1071 	 * We just need the target to call irq_exit() and re-evaluate
1072 	 * the next tick. The nohz full kick at least implies that.
1073 	 * If needed we can still optimize that later with an
1074 	 * empty IRQ.
1075 	 */
1076 	if (cpu_is_offline(cpu))
1077 		return true;  /* Don't try to wake offline CPUs. */
1078 	if (tick_nohz_full_cpu(cpu)) {
1079 		if (cpu != smp_processor_id() ||
1080 		    tick_nohz_tick_stopped())
1081 			tick_nohz_full_kick_cpu(cpu);
1082 		return true;
1083 	}
1084 
1085 	return false;
1086 }
1087 
1088 /*
1089  * Wake up the specified CPU.  If the CPU is going offline, it is the
1090  * caller's responsibility to deal with the lost wakeup, for example,
1091  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1092  */
1093 void wake_up_nohz_cpu(int cpu)
1094 {
1095 	if (!wake_up_full_nohz_cpu(cpu))
1096 		wake_up_idle_cpu(cpu);
1097 }
1098 
1099 static void nohz_csd_func(void *info)
1100 {
1101 	struct rq *rq = info;
1102 	int cpu = cpu_of(rq);
1103 	unsigned int flags;
1104 
1105 	/*
1106 	 * Release the rq::nohz_csd.
1107 	 */
1108 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1109 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1110 
1111 	rq->idle_balance = idle_cpu(cpu);
1112 	if (rq->idle_balance && !need_resched()) {
1113 		rq->nohz_idle_balance = flags;
1114 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1115 	}
1116 }
1117 
1118 #endif /* CONFIG_NO_HZ_COMMON */
1119 
1120 #ifdef CONFIG_NO_HZ_FULL
1121 bool sched_can_stop_tick(struct rq *rq)
1122 {
1123 	int fifo_nr_running;
1124 
1125 	/* Deadline tasks, even if single, need the tick */
1126 	if (rq->dl.dl_nr_running)
1127 		return false;
1128 
1129 	/*
1130 	 * If there are more than one RR tasks, we need the tick to affect the
1131 	 * actual RR behaviour.
1132 	 */
1133 	if (rq->rt.rr_nr_running) {
1134 		if (rq->rt.rr_nr_running == 1)
1135 			return true;
1136 		else
1137 			return false;
1138 	}
1139 
1140 	/*
1141 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1142 	 * forced preemption between FIFO tasks.
1143 	 */
1144 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1145 	if (fifo_nr_running)
1146 		return true;
1147 
1148 	/*
1149 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1150 	 * if there's more than one we need the tick for involuntary
1151 	 * preemption.
1152 	 */
1153 	if (rq->nr_running > 1)
1154 		return false;
1155 
1156 	return true;
1157 }
1158 #endif /* CONFIG_NO_HZ_FULL */
1159 #endif /* CONFIG_SMP */
1160 
1161 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1162 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1163 /*
1164  * Iterate task_group tree rooted at *from, calling @down when first entering a
1165  * node and @up when leaving it for the final time.
1166  *
1167  * Caller must hold rcu_lock or sufficient equivalent.
1168  */
1169 int walk_tg_tree_from(struct task_group *from,
1170 			     tg_visitor down, tg_visitor up, void *data)
1171 {
1172 	struct task_group *parent, *child;
1173 	int ret;
1174 
1175 	parent = from;
1176 
1177 down:
1178 	ret = (*down)(parent, data);
1179 	if (ret)
1180 		goto out;
1181 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1182 		parent = child;
1183 		goto down;
1184 
1185 up:
1186 		continue;
1187 	}
1188 	ret = (*up)(parent, data);
1189 	if (ret || parent == from)
1190 		goto out;
1191 
1192 	child = parent;
1193 	parent = parent->parent;
1194 	if (parent)
1195 		goto up;
1196 out:
1197 	return ret;
1198 }
1199 
1200 int tg_nop(struct task_group *tg, void *data)
1201 {
1202 	return 0;
1203 }
1204 #endif
1205 
1206 static void set_load_weight(struct task_struct *p, bool update_load)
1207 {
1208 	int prio = p->static_prio - MAX_RT_PRIO;
1209 	struct load_weight *load = &p->se.load;
1210 
1211 	/*
1212 	 * SCHED_IDLE tasks get minimal weight:
1213 	 */
1214 	if (task_has_idle_policy(p)) {
1215 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1216 		load->inv_weight = WMULT_IDLEPRIO;
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * SCHED_OTHER tasks have to update their load when changing their
1222 	 * weight
1223 	 */
1224 	if (update_load && p->sched_class == &fair_sched_class) {
1225 		reweight_task(p, prio);
1226 	} else {
1227 		load->weight = scale_load(sched_prio_to_weight[prio]);
1228 		load->inv_weight = sched_prio_to_wmult[prio];
1229 	}
1230 }
1231 
1232 #ifdef CONFIG_UCLAMP_TASK
1233 /*
1234  * Serializes updates of utilization clamp values
1235  *
1236  * The (slow-path) user-space triggers utilization clamp value updates which
1237  * can require updates on (fast-path) scheduler's data structures used to
1238  * support enqueue/dequeue operations.
1239  * While the per-CPU rq lock protects fast-path update operations, user-space
1240  * requests are serialized using a mutex to reduce the risk of conflicting
1241  * updates or API abuses.
1242  */
1243 static DEFINE_MUTEX(uclamp_mutex);
1244 
1245 /* Max allowed minimum utilization */
1246 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1247 
1248 /* Max allowed maximum utilization */
1249 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1250 
1251 /*
1252  * By default RT tasks run at the maximum performance point/capacity of the
1253  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1254  * SCHED_CAPACITY_SCALE.
1255  *
1256  * This knob allows admins to change the default behavior when uclamp is being
1257  * used. In battery powered devices, particularly, running at the maximum
1258  * capacity and frequency will increase energy consumption and shorten the
1259  * battery life.
1260  *
1261  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1262  *
1263  * This knob will not override the system default sched_util_clamp_min defined
1264  * above.
1265  */
1266 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1267 
1268 /* All clamps are required to be less or equal than these values */
1269 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1270 
1271 /*
1272  * This static key is used to reduce the uclamp overhead in the fast path. It
1273  * primarily disables the call to uclamp_rq_{inc, dec}() in
1274  * enqueue/dequeue_task().
1275  *
1276  * This allows users to continue to enable uclamp in their kernel config with
1277  * minimum uclamp overhead in the fast path.
1278  *
1279  * As soon as userspace modifies any of the uclamp knobs, the static key is
1280  * enabled, since we have an actual users that make use of uclamp
1281  * functionality.
1282  *
1283  * The knobs that would enable this static key are:
1284  *
1285  *   * A task modifying its uclamp value with sched_setattr().
1286  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1287  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1288  */
1289 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1290 
1291 /* Integer rounded range for each bucket */
1292 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1293 
1294 #define for_each_clamp_id(clamp_id) \
1295 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1296 
1297 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1298 {
1299 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1300 }
1301 
1302 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1303 {
1304 	if (clamp_id == UCLAMP_MIN)
1305 		return 0;
1306 	return SCHED_CAPACITY_SCALE;
1307 }
1308 
1309 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1310 				 unsigned int value, bool user_defined)
1311 {
1312 	uc_se->value = value;
1313 	uc_se->bucket_id = uclamp_bucket_id(value);
1314 	uc_se->user_defined = user_defined;
1315 }
1316 
1317 static inline unsigned int
1318 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1319 		  unsigned int clamp_value)
1320 {
1321 	/*
1322 	 * Avoid blocked utilization pushing up the frequency when we go
1323 	 * idle (which drops the max-clamp) by retaining the last known
1324 	 * max-clamp.
1325 	 */
1326 	if (clamp_id == UCLAMP_MAX) {
1327 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1328 		return clamp_value;
1329 	}
1330 
1331 	return uclamp_none(UCLAMP_MIN);
1332 }
1333 
1334 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1335 				     unsigned int clamp_value)
1336 {
1337 	/* Reset max-clamp retention only on idle exit */
1338 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1339 		return;
1340 
1341 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1342 }
1343 
1344 static inline
1345 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1346 				   unsigned int clamp_value)
1347 {
1348 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1349 	int bucket_id = UCLAMP_BUCKETS - 1;
1350 
1351 	/*
1352 	 * Since both min and max clamps are max aggregated, find the
1353 	 * top most bucket with tasks in.
1354 	 */
1355 	for ( ; bucket_id >= 0; bucket_id--) {
1356 		if (!bucket[bucket_id].tasks)
1357 			continue;
1358 		return bucket[bucket_id].value;
1359 	}
1360 
1361 	/* No tasks -- default clamp values */
1362 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1363 }
1364 
1365 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1366 {
1367 	unsigned int default_util_min;
1368 	struct uclamp_se *uc_se;
1369 
1370 	lockdep_assert_held(&p->pi_lock);
1371 
1372 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1373 
1374 	/* Only sync if user didn't override the default */
1375 	if (uc_se->user_defined)
1376 		return;
1377 
1378 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1379 	uclamp_se_set(uc_se, default_util_min, false);
1380 }
1381 
1382 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1383 {
1384 	struct rq_flags rf;
1385 	struct rq *rq;
1386 
1387 	if (!rt_task(p))
1388 		return;
1389 
1390 	/* Protect updates to p->uclamp_* */
1391 	rq = task_rq_lock(p, &rf);
1392 	__uclamp_update_util_min_rt_default(p);
1393 	task_rq_unlock(rq, p, &rf);
1394 }
1395 
1396 static void uclamp_sync_util_min_rt_default(void)
1397 {
1398 	struct task_struct *g, *p;
1399 
1400 	/*
1401 	 * copy_process()			sysctl_uclamp
1402 	 *					  uclamp_min_rt = X;
1403 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1404 	 *   // link thread			  smp_mb__after_spinlock()
1405 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1406 	 *   sched_post_fork()			  for_each_process_thread()
1407 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1408 	 *
1409 	 * Ensures that either sched_post_fork() will observe the new
1410 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1411 	 * task.
1412 	 */
1413 	read_lock(&tasklist_lock);
1414 	smp_mb__after_spinlock();
1415 	read_unlock(&tasklist_lock);
1416 
1417 	rcu_read_lock();
1418 	for_each_process_thread(g, p)
1419 		uclamp_update_util_min_rt_default(p);
1420 	rcu_read_unlock();
1421 }
1422 
1423 static inline struct uclamp_se
1424 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1425 {
1426 	/* Copy by value as we could modify it */
1427 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1428 #ifdef CONFIG_UCLAMP_TASK_GROUP
1429 	unsigned int tg_min, tg_max, value;
1430 
1431 	/*
1432 	 * Tasks in autogroups or root task group will be
1433 	 * restricted by system defaults.
1434 	 */
1435 	if (task_group_is_autogroup(task_group(p)))
1436 		return uc_req;
1437 	if (task_group(p) == &root_task_group)
1438 		return uc_req;
1439 
1440 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1441 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1442 	value = uc_req.value;
1443 	value = clamp(value, tg_min, tg_max);
1444 	uclamp_se_set(&uc_req, value, false);
1445 #endif
1446 
1447 	return uc_req;
1448 }
1449 
1450 /*
1451  * The effective clamp bucket index of a task depends on, by increasing
1452  * priority:
1453  * - the task specific clamp value, when explicitly requested from userspace
1454  * - the task group effective clamp value, for tasks not either in the root
1455  *   group or in an autogroup
1456  * - the system default clamp value, defined by the sysadmin
1457  */
1458 static inline struct uclamp_se
1459 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1460 {
1461 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1462 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1463 
1464 	/* System default restrictions always apply */
1465 	if (unlikely(uc_req.value > uc_max.value))
1466 		return uc_max;
1467 
1468 	return uc_req;
1469 }
1470 
1471 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1472 {
1473 	struct uclamp_se uc_eff;
1474 
1475 	/* Task currently refcounted: use back-annotated (effective) value */
1476 	if (p->uclamp[clamp_id].active)
1477 		return (unsigned long)p->uclamp[clamp_id].value;
1478 
1479 	uc_eff = uclamp_eff_get(p, clamp_id);
1480 
1481 	return (unsigned long)uc_eff.value;
1482 }
1483 
1484 /*
1485  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1486  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1487  * updates the rq's clamp value if required.
1488  *
1489  * Tasks can have a task-specific value requested from user-space, track
1490  * within each bucket the maximum value for tasks refcounted in it.
1491  * This "local max aggregation" allows to track the exact "requested" value
1492  * for each bucket when all its RUNNABLE tasks require the same clamp.
1493  */
1494 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1495 				    enum uclamp_id clamp_id)
1496 {
1497 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1498 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1499 	struct uclamp_bucket *bucket;
1500 
1501 	lockdep_assert_rq_held(rq);
1502 
1503 	/* Update task effective clamp */
1504 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1505 
1506 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1507 	bucket->tasks++;
1508 	uc_se->active = true;
1509 
1510 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1511 
1512 	/*
1513 	 * Local max aggregation: rq buckets always track the max
1514 	 * "requested" clamp value of its RUNNABLE tasks.
1515 	 */
1516 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1517 		bucket->value = uc_se->value;
1518 
1519 	if (uc_se->value > READ_ONCE(uc_rq->value))
1520 		WRITE_ONCE(uc_rq->value, uc_se->value);
1521 }
1522 
1523 /*
1524  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1525  * is released. If this is the last task reference counting the rq's max
1526  * active clamp value, then the rq's clamp value is updated.
1527  *
1528  * Both refcounted tasks and rq's cached clamp values are expected to be
1529  * always valid. If it's detected they are not, as defensive programming,
1530  * enforce the expected state and warn.
1531  */
1532 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1533 				    enum uclamp_id clamp_id)
1534 {
1535 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1536 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1537 	struct uclamp_bucket *bucket;
1538 	unsigned int bkt_clamp;
1539 	unsigned int rq_clamp;
1540 
1541 	lockdep_assert_rq_held(rq);
1542 
1543 	/*
1544 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1545 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1546 	 *
1547 	 * In this case the uc_se->active flag should be false since no uclamp
1548 	 * accounting was performed at enqueue time and we can just return
1549 	 * here.
1550 	 *
1551 	 * Need to be careful of the following enqueue/dequeue ordering
1552 	 * problem too
1553 	 *
1554 	 *	enqueue(taskA)
1555 	 *	// sched_uclamp_used gets enabled
1556 	 *	enqueue(taskB)
1557 	 *	dequeue(taskA)
1558 	 *	// Must not decrement bucket->tasks here
1559 	 *	dequeue(taskB)
1560 	 *
1561 	 * where we could end up with stale data in uc_se and
1562 	 * bucket[uc_se->bucket_id].
1563 	 *
1564 	 * The following check here eliminates the possibility of such race.
1565 	 */
1566 	if (unlikely(!uc_se->active))
1567 		return;
1568 
1569 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1570 
1571 	SCHED_WARN_ON(!bucket->tasks);
1572 	if (likely(bucket->tasks))
1573 		bucket->tasks--;
1574 
1575 	uc_se->active = false;
1576 
1577 	/*
1578 	 * Keep "local max aggregation" simple and accept to (possibly)
1579 	 * overboost some RUNNABLE tasks in the same bucket.
1580 	 * The rq clamp bucket value is reset to its base value whenever
1581 	 * there are no more RUNNABLE tasks refcounting it.
1582 	 */
1583 	if (likely(bucket->tasks))
1584 		return;
1585 
1586 	rq_clamp = READ_ONCE(uc_rq->value);
1587 	/*
1588 	 * Defensive programming: this should never happen. If it happens,
1589 	 * e.g. due to future modification, warn and fixup the expected value.
1590 	 */
1591 	SCHED_WARN_ON(bucket->value > rq_clamp);
1592 	if (bucket->value >= rq_clamp) {
1593 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1594 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1595 	}
1596 }
1597 
1598 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1599 {
1600 	enum uclamp_id clamp_id;
1601 
1602 	/*
1603 	 * Avoid any overhead until uclamp is actually used by the userspace.
1604 	 *
1605 	 * The condition is constructed such that a NOP is generated when
1606 	 * sched_uclamp_used is disabled.
1607 	 */
1608 	if (!static_branch_unlikely(&sched_uclamp_used))
1609 		return;
1610 
1611 	if (unlikely(!p->sched_class->uclamp_enabled))
1612 		return;
1613 
1614 	for_each_clamp_id(clamp_id)
1615 		uclamp_rq_inc_id(rq, p, clamp_id);
1616 
1617 	/* Reset clamp idle holding when there is one RUNNABLE task */
1618 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1619 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1620 }
1621 
1622 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1623 {
1624 	enum uclamp_id clamp_id;
1625 
1626 	/*
1627 	 * Avoid any overhead until uclamp is actually used by the userspace.
1628 	 *
1629 	 * The condition is constructed such that a NOP is generated when
1630 	 * sched_uclamp_used is disabled.
1631 	 */
1632 	if (!static_branch_unlikely(&sched_uclamp_used))
1633 		return;
1634 
1635 	if (unlikely(!p->sched_class->uclamp_enabled))
1636 		return;
1637 
1638 	for_each_clamp_id(clamp_id)
1639 		uclamp_rq_dec_id(rq, p, clamp_id);
1640 }
1641 
1642 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1643 				      enum uclamp_id clamp_id)
1644 {
1645 	if (!p->uclamp[clamp_id].active)
1646 		return;
1647 
1648 	uclamp_rq_dec_id(rq, p, clamp_id);
1649 	uclamp_rq_inc_id(rq, p, clamp_id);
1650 
1651 	/*
1652 	 * Make sure to clear the idle flag if we've transiently reached 0
1653 	 * active tasks on rq.
1654 	 */
1655 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1656 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1657 }
1658 
1659 static inline void
1660 uclamp_update_active(struct task_struct *p)
1661 {
1662 	enum uclamp_id clamp_id;
1663 	struct rq_flags rf;
1664 	struct rq *rq;
1665 
1666 	/*
1667 	 * Lock the task and the rq where the task is (or was) queued.
1668 	 *
1669 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1670 	 * price to pay to safely serialize util_{min,max} updates with
1671 	 * enqueues, dequeues and migration operations.
1672 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1673 	 */
1674 	rq = task_rq_lock(p, &rf);
1675 
1676 	/*
1677 	 * Setting the clamp bucket is serialized by task_rq_lock().
1678 	 * If the task is not yet RUNNABLE and its task_struct is not
1679 	 * affecting a valid clamp bucket, the next time it's enqueued,
1680 	 * it will already see the updated clamp bucket value.
1681 	 */
1682 	for_each_clamp_id(clamp_id)
1683 		uclamp_rq_reinc_id(rq, p, clamp_id);
1684 
1685 	task_rq_unlock(rq, p, &rf);
1686 }
1687 
1688 #ifdef CONFIG_UCLAMP_TASK_GROUP
1689 static inline void
1690 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1691 {
1692 	struct css_task_iter it;
1693 	struct task_struct *p;
1694 
1695 	css_task_iter_start(css, 0, &it);
1696 	while ((p = css_task_iter_next(&it)))
1697 		uclamp_update_active(p);
1698 	css_task_iter_end(&it);
1699 }
1700 
1701 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1702 static void uclamp_update_root_tg(void)
1703 {
1704 	struct task_group *tg = &root_task_group;
1705 
1706 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1707 		      sysctl_sched_uclamp_util_min, false);
1708 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1709 		      sysctl_sched_uclamp_util_max, false);
1710 
1711 	rcu_read_lock();
1712 	cpu_util_update_eff(&root_task_group.css);
1713 	rcu_read_unlock();
1714 }
1715 #else
1716 static void uclamp_update_root_tg(void) { }
1717 #endif
1718 
1719 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1720 				void *buffer, size_t *lenp, loff_t *ppos)
1721 {
1722 	bool update_root_tg = false;
1723 	int old_min, old_max, old_min_rt;
1724 	int result;
1725 
1726 	mutex_lock(&uclamp_mutex);
1727 	old_min = sysctl_sched_uclamp_util_min;
1728 	old_max = sysctl_sched_uclamp_util_max;
1729 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1730 
1731 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1732 	if (result)
1733 		goto undo;
1734 	if (!write)
1735 		goto done;
1736 
1737 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1738 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1739 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1740 
1741 		result = -EINVAL;
1742 		goto undo;
1743 	}
1744 
1745 	if (old_min != sysctl_sched_uclamp_util_min) {
1746 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1747 			      sysctl_sched_uclamp_util_min, false);
1748 		update_root_tg = true;
1749 	}
1750 	if (old_max != sysctl_sched_uclamp_util_max) {
1751 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1752 			      sysctl_sched_uclamp_util_max, false);
1753 		update_root_tg = true;
1754 	}
1755 
1756 	if (update_root_tg) {
1757 		static_branch_enable(&sched_uclamp_used);
1758 		uclamp_update_root_tg();
1759 	}
1760 
1761 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1762 		static_branch_enable(&sched_uclamp_used);
1763 		uclamp_sync_util_min_rt_default();
1764 	}
1765 
1766 	/*
1767 	 * We update all RUNNABLE tasks only when task groups are in use.
1768 	 * Otherwise, keep it simple and do just a lazy update at each next
1769 	 * task enqueue time.
1770 	 */
1771 
1772 	goto done;
1773 
1774 undo:
1775 	sysctl_sched_uclamp_util_min = old_min;
1776 	sysctl_sched_uclamp_util_max = old_max;
1777 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1778 done:
1779 	mutex_unlock(&uclamp_mutex);
1780 
1781 	return result;
1782 }
1783 
1784 static int uclamp_validate(struct task_struct *p,
1785 			   const struct sched_attr *attr)
1786 {
1787 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1788 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1789 
1790 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1791 		util_min = attr->sched_util_min;
1792 
1793 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1794 			return -EINVAL;
1795 	}
1796 
1797 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1798 		util_max = attr->sched_util_max;
1799 
1800 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1801 			return -EINVAL;
1802 	}
1803 
1804 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1805 		return -EINVAL;
1806 
1807 	/*
1808 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1809 	 *
1810 	 * We need to do that here, because enabling static branches is a
1811 	 * blocking operation which obviously cannot be done while holding
1812 	 * scheduler locks.
1813 	 */
1814 	static_branch_enable(&sched_uclamp_used);
1815 
1816 	return 0;
1817 }
1818 
1819 static bool uclamp_reset(const struct sched_attr *attr,
1820 			 enum uclamp_id clamp_id,
1821 			 struct uclamp_se *uc_se)
1822 {
1823 	/* Reset on sched class change for a non user-defined clamp value. */
1824 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1825 	    !uc_se->user_defined)
1826 		return true;
1827 
1828 	/* Reset on sched_util_{min,max} == -1. */
1829 	if (clamp_id == UCLAMP_MIN &&
1830 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1831 	    attr->sched_util_min == -1) {
1832 		return true;
1833 	}
1834 
1835 	if (clamp_id == UCLAMP_MAX &&
1836 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1837 	    attr->sched_util_max == -1) {
1838 		return true;
1839 	}
1840 
1841 	return false;
1842 }
1843 
1844 static void __setscheduler_uclamp(struct task_struct *p,
1845 				  const struct sched_attr *attr)
1846 {
1847 	enum uclamp_id clamp_id;
1848 
1849 	for_each_clamp_id(clamp_id) {
1850 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1851 		unsigned int value;
1852 
1853 		if (!uclamp_reset(attr, clamp_id, uc_se))
1854 			continue;
1855 
1856 		/*
1857 		 * RT by default have a 100% boost value that could be modified
1858 		 * at runtime.
1859 		 */
1860 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1861 			value = sysctl_sched_uclamp_util_min_rt_default;
1862 		else
1863 			value = uclamp_none(clamp_id);
1864 
1865 		uclamp_se_set(uc_se, value, false);
1866 
1867 	}
1868 
1869 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1870 		return;
1871 
1872 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1873 	    attr->sched_util_min != -1) {
1874 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1875 			      attr->sched_util_min, true);
1876 	}
1877 
1878 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1879 	    attr->sched_util_max != -1) {
1880 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1881 			      attr->sched_util_max, true);
1882 	}
1883 }
1884 
1885 static void uclamp_fork(struct task_struct *p)
1886 {
1887 	enum uclamp_id clamp_id;
1888 
1889 	/*
1890 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1891 	 * as the task is still at its early fork stages.
1892 	 */
1893 	for_each_clamp_id(clamp_id)
1894 		p->uclamp[clamp_id].active = false;
1895 
1896 	if (likely(!p->sched_reset_on_fork))
1897 		return;
1898 
1899 	for_each_clamp_id(clamp_id) {
1900 		uclamp_se_set(&p->uclamp_req[clamp_id],
1901 			      uclamp_none(clamp_id), false);
1902 	}
1903 }
1904 
1905 static void uclamp_post_fork(struct task_struct *p)
1906 {
1907 	uclamp_update_util_min_rt_default(p);
1908 }
1909 
1910 static void __init init_uclamp_rq(struct rq *rq)
1911 {
1912 	enum uclamp_id clamp_id;
1913 	struct uclamp_rq *uc_rq = rq->uclamp;
1914 
1915 	for_each_clamp_id(clamp_id) {
1916 		uc_rq[clamp_id] = (struct uclamp_rq) {
1917 			.value = uclamp_none(clamp_id)
1918 		};
1919 	}
1920 
1921 	rq->uclamp_flags = 0;
1922 }
1923 
1924 static void __init init_uclamp(void)
1925 {
1926 	struct uclamp_se uc_max = {};
1927 	enum uclamp_id clamp_id;
1928 	int cpu;
1929 
1930 	for_each_possible_cpu(cpu)
1931 		init_uclamp_rq(cpu_rq(cpu));
1932 
1933 	for_each_clamp_id(clamp_id) {
1934 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1935 			      uclamp_none(clamp_id), false);
1936 	}
1937 
1938 	/* System defaults allow max clamp values for both indexes */
1939 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1940 	for_each_clamp_id(clamp_id) {
1941 		uclamp_default[clamp_id] = uc_max;
1942 #ifdef CONFIG_UCLAMP_TASK_GROUP
1943 		root_task_group.uclamp_req[clamp_id] = uc_max;
1944 		root_task_group.uclamp[clamp_id] = uc_max;
1945 #endif
1946 	}
1947 }
1948 
1949 #else /* CONFIG_UCLAMP_TASK */
1950 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1951 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1952 static inline int uclamp_validate(struct task_struct *p,
1953 				  const struct sched_attr *attr)
1954 {
1955 	return -EOPNOTSUPP;
1956 }
1957 static void __setscheduler_uclamp(struct task_struct *p,
1958 				  const struct sched_attr *attr) { }
1959 static inline void uclamp_fork(struct task_struct *p) { }
1960 static inline void uclamp_post_fork(struct task_struct *p) { }
1961 static inline void init_uclamp(void) { }
1962 #endif /* CONFIG_UCLAMP_TASK */
1963 
1964 bool sched_task_on_rq(struct task_struct *p)
1965 {
1966 	return task_on_rq_queued(p);
1967 }
1968 
1969 unsigned long get_wchan(struct task_struct *p)
1970 {
1971 	unsigned long ip = 0;
1972 	unsigned int state;
1973 
1974 	if (!p || p == current)
1975 		return 0;
1976 
1977 	/* Only get wchan if task is blocked and we can keep it that way. */
1978 	raw_spin_lock_irq(&p->pi_lock);
1979 	state = READ_ONCE(p->__state);
1980 	smp_rmb(); /* see try_to_wake_up() */
1981 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1982 		ip = __get_wchan(p);
1983 	raw_spin_unlock_irq(&p->pi_lock);
1984 
1985 	return ip;
1986 }
1987 
1988 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1989 {
1990 	if (!(flags & ENQUEUE_NOCLOCK))
1991 		update_rq_clock(rq);
1992 
1993 	if (!(flags & ENQUEUE_RESTORE)) {
1994 		sched_info_enqueue(rq, p);
1995 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1996 	}
1997 
1998 	uclamp_rq_inc(rq, p);
1999 	p->sched_class->enqueue_task(rq, p, flags);
2000 
2001 	if (sched_core_enabled(rq))
2002 		sched_core_enqueue(rq, p);
2003 }
2004 
2005 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2006 {
2007 	if (sched_core_enabled(rq))
2008 		sched_core_dequeue(rq, p);
2009 
2010 	if (!(flags & DEQUEUE_NOCLOCK))
2011 		update_rq_clock(rq);
2012 
2013 	if (!(flags & DEQUEUE_SAVE)) {
2014 		sched_info_dequeue(rq, p);
2015 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2016 	}
2017 
2018 	uclamp_rq_dec(rq, p);
2019 	p->sched_class->dequeue_task(rq, p, flags);
2020 }
2021 
2022 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2023 {
2024 	enqueue_task(rq, p, flags);
2025 
2026 	p->on_rq = TASK_ON_RQ_QUEUED;
2027 }
2028 
2029 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2030 {
2031 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2032 
2033 	dequeue_task(rq, p, flags);
2034 }
2035 
2036 static inline int __normal_prio(int policy, int rt_prio, int nice)
2037 {
2038 	int prio;
2039 
2040 	if (dl_policy(policy))
2041 		prio = MAX_DL_PRIO - 1;
2042 	else if (rt_policy(policy))
2043 		prio = MAX_RT_PRIO - 1 - rt_prio;
2044 	else
2045 		prio = NICE_TO_PRIO(nice);
2046 
2047 	return prio;
2048 }
2049 
2050 /*
2051  * Calculate the expected normal priority: i.e. priority
2052  * without taking RT-inheritance into account. Might be
2053  * boosted by interactivity modifiers. Changes upon fork,
2054  * setprio syscalls, and whenever the interactivity
2055  * estimator recalculates.
2056  */
2057 static inline int normal_prio(struct task_struct *p)
2058 {
2059 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2060 }
2061 
2062 /*
2063  * Calculate the current priority, i.e. the priority
2064  * taken into account by the scheduler. This value might
2065  * be boosted by RT tasks, or might be boosted by
2066  * interactivity modifiers. Will be RT if the task got
2067  * RT-boosted. If not then it returns p->normal_prio.
2068  */
2069 static int effective_prio(struct task_struct *p)
2070 {
2071 	p->normal_prio = normal_prio(p);
2072 	/*
2073 	 * If we are RT tasks or we were boosted to RT priority,
2074 	 * keep the priority unchanged. Otherwise, update priority
2075 	 * to the normal priority:
2076 	 */
2077 	if (!rt_prio(p->prio))
2078 		return p->normal_prio;
2079 	return p->prio;
2080 }
2081 
2082 /**
2083  * task_curr - is this task currently executing on a CPU?
2084  * @p: the task in question.
2085  *
2086  * Return: 1 if the task is currently executing. 0 otherwise.
2087  */
2088 inline int task_curr(const struct task_struct *p)
2089 {
2090 	return cpu_curr(task_cpu(p)) == p;
2091 }
2092 
2093 /*
2094  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2095  * use the balance_callback list if you want balancing.
2096  *
2097  * this means any call to check_class_changed() must be followed by a call to
2098  * balance_callback().
2099  */
2100 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2101 				       const struct sched_class *prev_class,
2102 				       int oldprio)
2103 {
2104 	if (prev_class != p->sched_class) {
2105 		if (prev_class->switched_from)
2106 			prev_class->switched_from(rq, p);
2107 
2108 		p->sched_class->switched_to(rq, p);
2109 	} else if (oldprio != p->prio || dl_task(p))
2110 		p->sched_class->prio_changed(rq, p, oldprio);
2111 }
2112 
2113 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2114 {
2115 	if (p->sched_class == rq->curr->sched_class)
2116 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 	else if (p->sched_class > rq->curr->sched_class)
2118 		resched_curr(rq);
2119 
2120 	/*
2121 	 * A queue event has occurred, and we're going to schedule.  In
2122 	 * this case, we can save a useless back to back clock update.
2123 	 */
2124 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2125 		rq_clock_skip_update(rq);
2126 }
2127 
2128 #ifdef CONFIG_SMP
2129 
2130 static void
2131 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2132 
2133 static int __set_cpus_allowed_ptr(struct task_struct *p,
2134 				  const struct cpumask *new_mask,
2135 				  u32 flags);
2136 
2137 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2138 {
2139 	if (likely(!p->migration_disabled))
2140 		return;
2141 
2142 	if (p->cpus_ptr != &p->cpus_mask)
2143 		return;
2144 
2145 	/*
2146 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2147 	 */
2148 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2149 }
2150 
2151 void migrate_disable(void)
2152 {
2153 	struct task_struct *p = current;
2154 
2155 	if (p->migration_disabled) {
2156 		p->migration_disabled++;
2157 		return;
2158 	}
2159 
2160 	preempt_disable();
2161 	this_rq()->nr_pinned++;
2162 	p->migration_disabled = 1;
2163 	preempt_enable();
2164 }
2165 EXPORT_SYMBOL_GPL(migrate_disable);
2166 
2167 void migrate_enable(void)
2168 {
2169 	struct task_struct *p = current;
2170 
2171 	if (p->migration_disabled > 1) {
2172 		p->migration_disabled--;
2173 		return;
2174 	}
2175 
2176 	/*
2177 	 * Ensure stop_task runs either before or after this, and that
2178 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2179 	 */
2180 	preempt_disable();
2181 	if (p->cpus_ptr != &p->cpus_mask)
2182 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2183 	/*
2184 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2185 	 * regular cpus_mask, otherwise things that race (eg.
2186 	 * select_fallback_rq) get confused.
2187 	 */
2188 	barrier();
2189 	p->migration_disabled = 0;
2190 	this_rq()->nr_pinned--;
2191 	preempt_enable();
2192 }
2193 EXPORT_SYMBOL_GPL(migrate_enable);
2194 
2195 static inline bool rq_has_pinned_tasks(struct rq *rq)
2196 {
2197 	return rq->nr_pinned;
2198 }
2199 
2200 /*
2201  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2202  * __set_cpus_allowed_ptr() and select_fallback_rq().
2203  */
2204 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2205 {
2206 	/* When not in the task's cpumask, no point in looking further. */
2207 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2208 		return false;
2209 
2210 	/* migrate_disabled() must be allowed to finish. */
2211 	if (is_migration_disabled(p))
2212 		return cpu_online(cpu);
2213 
2214 	/* Non kernel threads are not allowed during either online or offline. */
2215 	if (!(p->flags & PF_KTHREAD))
2216 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2217 
2218 	/* KTHREAD_IS_PER_CPU is always allowed. */
2219 	if (kthread_is_per_cpu(p))
2220 		return cpu_online(cpu);
2221 
2222 	/* Regular kernel threads don't get to stay during offline. */
2223 	if (cpu_dying(cpu))
2224 		return false;
2225 
2226 	/* But are allowed during online. */
2227 	return cpu_online(cpu);
2228 }
2229 
2230 /*
2231  * This is how migration works:
2232  *
2233  * 1) we invoke migration_cpu_stop() on the target CPU using
2234  *    stop_one_cpu().
2235  * 2) stopper starts to run (implicitly forcing the migrated thread
2236  *    off the CPU)
2237  * 3) it checks whether the migrated task is still in the wrong runqueue.
2238  * 4) if it's in the wrong runqueue then the migration thread removes
2239  *    it and puts it into the right queue.
2240  * 5) stopper completes and stop_one_cpu() returns and the migration
2241  *    is done.
2242  */
2243 
2244 /*
2245  * move_queued_task - move a queued task to new rq.
2246  *
2247  * Returns (locked) new rq. Old rq's lock is released.
2248  */
2249 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2250 				   struct task_struct *p, int new_cpu)
2251 {
2252 	lockdep_assert_rq_held(rq);
2253 
2254 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2255 	set_task_cpu(p, new_cpu);
2256 	rq_unlock(rq, rf);
2257 
2258 	rq = cpu_rq(new_cpu);
2259 
2260 	rq_lock(rq, rf);
2261 	BUG_ON(task_cpu(p) != new_cpu);
2262 	activate_task(rq, p, 0);
2263 	check_preempt_curr(rq, p, 0);
2264 
2265 	return rq;
2266 }
2267 
2268 struct migration_arg {
2269 	struct task_struct		*task;
2270 	int				dest_cpu;
2271 	struct set_affinity_pending	*pending;
2272 };
2273 
2274 /*
2275  * @refs: number of wait_for_completion()
2276  * @stop_pending: is @stop_work in use
2277  */
2278 struct set_affinity_pending {
2279 	refcount_t		refs;
2280 	unsigned int		stop_pending;
2281 	struct completion	done;
2282 	struct cpu_stop_work	stop_work;
2283 	struct migration_arg	arg;
2284 };
2285 
2286 /*
2287  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2288  * this because either it can't run here any more (set_cpus_allowed()
2289  * away from this CPU, or CPU going down), or because we're
2290  * attempting to rebalance this task on exec (sched_exec).
2291  *
2292  * So we race with normal scheduler movements, but that's OK, as long
2293  * as the task is no longer on this CPU.
2294  */
2295 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2296 				 struct task_struct *p, int dest_cpu)
2297 {
2298 	/* Affinity changed (again). */
2299 	if (!is_cpu_allowed(p, dest_cpu))
2300 		return rq;
2301 
2302 	update_rq_clock(rq);
2303 	rq = move_queued_task(rq, rf, p, dest_cpu);
2304 
2305 	return rq;
2306 }
2307 
2308 /*
2309  * migration_cpu_stop - this will be executed by a highprio stopper thread
2310  * and performs thread migration by bumping thread off CPU then
2311  * 'pushing' onto another runqueue.
2312  */
2313 static int migration_cpu_stop(void *data)
2314 {
2315 	struct migration_arg *arg = data;
2316 	struct set_affinity_pending *pending = arg->pending;
2317 	struct task_struct *p = arg->task;
2318 	struct rq *rq = this_rq();
2319 	bool complete = false;
2320 	struct rq_flags rf;
2321 
2322 	/*
2323 	 * The original target CPU might have gone down and we might
2324 	 * be on another CPU but it doesn't matter.
2325 	 */
2326 	local_irq_save(rf.flags);
2327 	/*
2328 	 * We need to explicitly wake pending tasks before running
2329 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2330 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2331 	 */
2332 	flush_smp_call_function_from_idle();
2333 
2334 	raw_spin_lock(&p->pi_lock);
2335 	rq_lock(rq, &rf);
2336 
2337 	/*
2338 	 * If we were passed a pending, then ->stop_pending was set, thus
2339 	 * p->migration_pending must have remained stable.
2340 	 */
2341 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2342 
2343 	/*
2344 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2345 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2346 	 * we're holding p->pi_lock.
2347 	 */
2348 	if (task_rq(p) == rq) {
2349 		if (is_migration_disabled(p))
2350 			goto out;
2351 
2352 		if (pending) {
2353 			p->migration_pending = NULL;
2354 			complete = true;
2355 
2356 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2357 				goto out;
2358 		}
2359 
2360 		if (task_on_rq_queued(p))
2361 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2362 		else
2363 			p->wake_cpu = arg->dest_cpu;
2364 
2365 		/*
2366 		 * XXX __migrate_task() can fail, at which point we might end
2367 		 * up running on a dodgy CPU, AFAICT this can only happen
2368 		 * during CPU hotplug, at which point we'll get pushed out
2369 		 * anyway, so it's probably not a big deal.
2370 		 */
2371 
2372 	} else if (pending) {
2373 		/*
2374 		 * This happens when we get migrated between migrate_enable()'s
2375 		 * preempt_enable() and scheduling the stopper task. At that
2376 		 * point we're a regular task again and not current anymore.
2377 		 *
2378 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2379 		 * more likely.
2380 		 */
2381 
2382 		/*
2383 		 * The task moved before the stopper got to run. We're holding
2384 		 * ->pi_lock, so the allowed mask is stable - if it got
2385 		 * somewhere allowed, we're done.
2386 		 */
2387 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2388 			p->migration_pending = NULL;
2389 			complete = true;
2390 			goto out;
2391 		}
2392 
2393 		/*
2394 		 * When migrate_enable() hits a rq mis-match we can't reliably
2395 		 * determine is_migration_disabled() and so have to chase after
2396 		 * it.
2397 		 */
2398 		WARN_ON_ONCE(!pending->stop_pending);
2399 		task_rq_unlock(rq, p, &rf);
2400 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2401 				    &pending->arg, &pending->stop_work);
2402 		return 0;
2403 	}
2404 out:
2405 	if (pending)
2406 		pending->stop_pending = false;
2407 	task_rq_unlock(rq, p, &rf);
2408 
2409 	if (complete)
2410 		complete_all(&pending->done);
2411 
2412 	return 0;
2413 }
2414 
2415 int push_cpu_stop(void *arg)
2416 {
2417 	struct rq *lowest_rq = NULL, *rq = this_rq();
2418 	struct task_struct *p = arg;
2419 
2420 	raw_spin_lock_irq(&p->pi_lock);
2421 	raw_spin_rq_lock(rq);
2422 
2423 	if (task_rq(p) != rq)
2424 		goto out_unlock;
2425 
2426 	if (is_migration_disabled(p)) {
2427 		p->migration_flags |= MDF_PUSH;
2428 		goto out_unlock;
2429 	}
2430 
2431 	p->migration_flags &= ~MDF_PUSH;
2432 
2433 	if (p->sched_class->find_lock_rq)
2434 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2435 
2436 	if (!lowest_rq)
2437 		goto out_unlock;
2438 
2439 	// XXX validate p is still the highest prio task
2440 	if (task_rq(p) == rq) {
2441 		deactivate_task(rq, p, 0);
2442 		set_task_cpu(p, lowest_rq->cpu);
2443 		activate_task(lowest_rq, p, 0);
2444 		resched_curr(lowest_rq);
2445 	}
2446 
2447 	double_unlock_balance(rq, lowest_rq);
2448 
2449 out_unlock:
2450 	rq->push_busy = false;
2451 	raw_spin_rq_unlock(rq);
2452 	raw_spin_unlock_irq(&p->pi_lock);
2453 
2454 	put_task_struct(p);
2455 	return 0;
2456 }
2457 
2458 /*
2459  * sched_class::set_cpus_allowed must do the below, but is not required to
2460  * actually call this function.
2461  */
2462 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2463 {
2464 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2465 		p->cpus_ptr = new_mask;
2466 		return;
2467 	}
2468 
2469 	cpumask_copy(&p->cpus_mask, new_mask);
2470 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2471 }
2472 
2473 static void
2474 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2475 {
2476 	struct rq *rq = task_rq(p);
2477 	bool queued, running;
2478 
2479 	/*
2480 	 * This here violates the locking rules for affinity, since we're only
2481 	 * supposed to change these variables while holding both rq->lock and
2482 	 * p->pi_lock.
2483 	 *
2484 	 * HOWEVER, it magically works, because ttwu() is the only code that
2485 	 * accesses these variables under p->pi_lock and only does so after
2486 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2487 	 * before finish_task().
2488 	 *
2489 	 * XXX do further audits, this smells like something putrid.
2490 	 */
2491 	if (flags & SCA_MIGRATE_DISABLE)
2492 		SCHED_WARN_ON(!p->on_cpu);
2493 	else
2494 		lockdep_assert_held(&p->pi_lock);
2495 
2496 	queued = task_on_rq_queued(p);
2497 	running = task_current(rq, p);
2498 
2499 	if (queued) {
2500 		/*
2501 		 * Because __kthread_bind() calls this on blocked tasks without
2502 		 * holding rq->lock.
2503 		 */
2504 		lockdep_assert_rq_held(rq);
2505 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2506 	}
2507 	if (running)
2508 		put_prev_task(rq, p);
2509 
2510 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2511 
2512 	if (queued)
2513 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2514 	if (running)
2515 		set_next_task(rq, p);
2516 }
2517 
2518 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2519 {
2520 	__do_set_cpus_allowed(p, new_mask, 0);
2521 }
2522 
2523 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2524 		      int node)
2525 {
2526 	if (!src->user_cpus_ptr)
2527 		return 0;
2528 
2529 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2530 	if (!dst->user_cpus_ptr)
2531 		return -ENOMEM;
2532 
2533 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2534 	return 0;
2535 }
2536 
2537 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2538 {
2539 	struct cpumask *user_mask = NULL;
2540 
2541 	swap(p->user_cpus_ptr, user_mask);
2542 
2543 	return user_mask;
2544 }
2545 
2546 void release_user_cpus_ptr(struct task_struct *p)
2547 {
2548 	kfree(clear_user_cpus_ptr(p));
2549 }
2550 
2551 /*
2552  * This function is wildly self concurrent; here be dragons.
2553  *
2554  *
2555  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2556  * designated task is enqueued on an allowed CPU. If that task is currently
2557  * running, we have to kick it out using the CPU stopper.
2558  *
2559  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2560  * Consider:
2561  *
2562  *     Initial conditions: P0->cpus_mask = [0, 1]
2563  *
2564  *     P0@CPU0                  P1
2565  *
2566  *     migrate_disable();
2567  *     <preempted>
2568  *                              set_cpus_allowed_ptr(P0, [1]);
2569  *
2570  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2571  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2572  * This means we need the following scheme:
2573  *
2574  *     P0@CPU0                  P1
2575  *
2576  *     migrate_disable();
2577  *     <preempted>
2578  *                              set_cpus_allowed_ptr(P0, [1]);
2579  *                                <blocks>
2580  *     <resumes>
2581  *     migrate_enable();
2582  *       __set_cpus_allowed_ptr();
2583  *       <wakes local stopper>
2584  *                         `--> <woken on migration completion>
2585  *
2586  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2587  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2588  * task p are serialized by p->pi_lock, which we can leverage: the one that
2589  * should come into effect at the end of the Migrate-Disable region is the last
2590  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2591  * but we still need to properly signal those waiting tasks at the appropriate
2592  * moment.
2593  *
2594  * This is implemented using struct set_affinity_pending. The first
2595  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2596  * setup an instance of that struct and install it on the targeted task_struct.
2597  * Any and all further callers will reuse that instance. Those then wait for
2598  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2599  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2600  *
2601  *
2602  * (1) In the cases covered above. There is one more where the completion is
2603  * signaled within affine_move_task() itself: when a subsequent affinity request
2604  * occurs after the stopper bailed out due to the targeted task still being
2605  * Migrate-Disable. Consider:
2606  *
2607  *     Initial conditions: P0->cpus_mask = [0, 1]
2608  *
2609  *     CPU0		  P1				P2
2610  *     <P0>
2611  *       migrate_disable();
2612  *       <preempted>
2613  *                        set_cpus_allowed_ptr(P0, [1]);
2614  *                          <blocks>
2615  *     <migration/0>
2616  *       migration_cpu_stop()
2617  *         is_migration_disabled()
2618  *           <bails>
2619  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2620  *                                                         <signal completion>
2621  *                          <awakes>
2622  *
2623  * Note that the above is safe vs a concurrent migrate_enable(), as any
2624  * pending affinity completion is preceded by an uninstallation of
2625  * p->migration_pending done with p->pi_lock held.
2626  */
2627 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2628 			    int dest_cpu, unsigned int flags)
2629 {
2630 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2631 	bool stop_pending, complete = false;
2632 
2633 	/* Can the task run on the task's current CPU? If so, we're done */
2634 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2635 		struct task_struct *push_task = NULL;
2636 
2637 		if ((flags & SCA_MIGRATE_ENABLE) &&
2638 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2639 			rq->push_busy = true;
2640 			push_task = get_task_struct(p);
2641 		}
2642 
2643 		/*
2644 		 * If there are pending waiters, but no pending stop_work,
2645 		 * then complete now.
2646 		 */
2647 		pending = p->migration_pending;
2648 		if (pending && !pending->stop_pending) {
2649 			p->migration_pending = NULL;
2650 			complete = true;
2651 		}
2652 
2653 		task_rq_unlock(rq, p, rf);
2654 
2655 		if (push_task) {
2656 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2657 					    p, &rq->push_work);
2658 		}
2659 
2660 		if (complete)
2661 			complete_all(&pending->done);
2662 
2663 		return 0;
2664 	}
2665 
2666 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2667 		/* serialized by p->pi_lock */
2668 		if (!p->migration_pending) {
2669 			/* Install the request */
2670 			refcount_set(&my_pending.refs, 1);
2671 			init_completion(&my_pending.done);
2672 			my_pending.arg = (struct migration_arg) {
2673 				.task = p,
2674 				.dest_cpu = dest_cpu,
2675 				.pending = &my_pending,
2676 			};
2677 
2678 			p->migration_pending = &my_pending;
2679 		} else {
2680 			pending = p->migration_pending;
2681 			refcount_inc(&pending->refs);
2682 			/*
2683 			 * Affinity has changed, but we've already installed a
2684 			 * pending. migration_cpu_stop() *must* see this, else
2685 			 * we risk a completion of the pending despite having a
2686 			 * task on a disallowed CPU.
2687 			 *
2688 			 * Serialized by p->pi_lock, so this is safe.
2689 			 */
2690 			pending->arg.dest_cpu = dest_cpu;
2691 		}
2692 	}
2693 	pending = p->migration_pending;
2694 	/*
2695 	 * - !MIGRATE_ENABLE:
2696 	 *   we'll have installed a pending if there wasn't one already.
2697 	 *
2698 	 * - MIGRATE_ENABLE:
2699 	 *   we're here because the current CPU isn't matching anymore,
2700 	 *   the only way that can happen is because of a concurrent
2701 	 *   set_cpus_allowed_ptr() call, which should then still be
2702 	 *   pending completion.
2703 	 *
2704 	 * Either way, we really should have a @pending here.
2705 	 */
2706 	if (WARN_ON_ONCE(!pending)) {
2707 		task_rq_unlock(rq, p, rf);
2708 		return -EINVAL;
2709 	}
2710 
2711 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2712 		/*
2713 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2714 		 * anything else we cannot do is_migration_disabled(), punt
2715 		 * and have the stopper function handle it all race-free.
2716 		 */
2717 		stop_pending = pending->stop_pending;
2718 		if (!stop_pending)
2719 			pending->stop_pending = true;
2720 
2721 		if (flags & SCA_MIGRATE_ENABLE)
2722 			p->migration_flags &= ~MDF_PUSH;
2723 
2724 		task_rq_unlock(rq, p, rf);
2725 
2726 		if (!stop_pending) {
2727 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2728 					    &pending->arg, &pending->stop_work);
2729 		}
2730 
2731 		if (flags & SCA_MIGRATE_ENABLE)
2732 			return 0;
2733 	} else {
2734 
2735 		if (!is_migration_disabled(p)) {
2736 			if (task_on_rq_queued(p))
2737 				rq = move_queued_task(rq, rf, p, dest_cpu);
2738 
2739 			if (!pending->stop_pending) {
2740 				p->migration_pending = NULL;
2741 				complete = true;
2742 			}
2743 		}
2744 		task_rq_unlock(rq, p, rf);
2745 
2746 		if (complete)
2747 			complete_all(&pending->done);
2748 	}
2749 
2750 	wait_for_completion(&pending->done);
2751 
2752 	if (refcount_dec_and_test(&pending->refs))
2753 		wake_up_var(&pending->refs); /* No UaF, just an address */
2754 
2755 	/*
2756 	 * Block the original owner of &pending until all subsequent callers
2757 	 * have seen the completion and decremented the refcount
2758 	 */
2759 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2760 
2761 	/* ARGH */
2762 	WARN_ON_ONCE(my_pending.stop_pending);
2763 
2764 	return 0;
2765 }
2766 
2767 /*
2768  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2769  */
2770 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2771 					 const struct cpumask *new_mask,
2772 					 u32 flags,
2773 					 struct rq *rq,
2774 					 struct rq_flags *rf)
2775 	__releases(rq->lock)
2776 	__releases(p->pi_lock)
2777 {
2778 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2779 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2780 	bool kthread = p->flags & PF_KTHREAD;
2781 	struct cpumask *user_mask = NULL;
2782 	unsigned int dest_cpu;
2783 	int ret = 0;
2784 
2785 	update_rq_clock(rq);
2786 
2787 	if (kthread || is_migration_disabled(p)) {
2788 		/*
2789 		 * Kernel threads are allowed on online && !active CPUs,
2790 		 * however, during cpu-hot-unplug, even these might get pushed
2791 		 * away if not KTHREAD_IS_PER_CPU.
2792 		 *
2793 		 * Specifically, migration_disabled() tasks must not fail the
2794 		 * cpumask_any_and_distribute() pick below, esp. so on
2795 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2796 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2797 		 */
2798 		cpu_valid_mask = cpu_online_mask;
2799 	}
2800 
2801 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2802 		ret = -EINVAL;
2803 		goto out;
2804 	}
2805 
2806 	/*
2807 	 * Must re-check here, to close a race against __kthread_bind(),
2808 	 * sched_setaffinity() is not guaranteed to observe the flag.
2809 	 */
2810 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2811 		ret = -EINVAL;
2812 		goto out;
2813 	}
2814 
2815 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2816 		if (cpumask_equal(&p->cpus_mask, new_mask))
2817 			goto out;
2818 
2819 		if (WARN_ON_ONCE(p == current &&
2820 				 is_migration_disabled(p) &&
2821 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2822 			ret = -EBUSY;
2823 			goto out;
2824 		}
2825 	}
2826 
2827 	/*
2828 	 * Picking a ~random cpu helps in cases where we are changing affinity
2829 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2830 	 * immediately required to distribute the tasks within their new mask.
2831 	 */
2832 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2833 	if (dest_cpu >= nr_cpu_ids) {
2834 		ret = -EINVAL;
2835 		goto out;
2836 	}
2837 
2838 	__do_set_cpus_allowed(p, new_mask, flags);
2839 
2840 	if (flags & SCA_USER)
2841 		user_mask = clear_user_cpus_ptr(p);
2842 
2843 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2844 
2845 	kfree(user_mask);
2846 
2847 	return ret;
2848 
2849 out:
2850 	task_rq_unlock(rq, p, rf);
2851 
2852 	return ret;
2853 }
2854 
2855 /*
2856  * Change a given task's CPU affinity. Migrate the thread to a
2857  * proper CPU and schedule it away if the CPU it's executing on
2858  * is removed from the allowed bitmask.
2859  *
2860  * NOTE: the caller must have a valid reference to the task, the
2861  * task must not exit() & deallocate itself prematurely. The
2862  * call is not atomic; no spinlocks may be held.
2863  */
2864 static int __set_cpus_allowed_ptr(struct task_struct *p,
2865 				  const struct cpumask *new_mask, u32 flags)
2866 {
2867 	struct rq_flags rf;
2868 	struct rq *rq;
2869 
2870 	rq = task_rq_lock(p, &rf);
2871 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2872 }
2873 
2874 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2875 {
2876 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2877 }
2878 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2879 
2880 /*
2881  * Change a given task's CPU affinity to the intersection of its current
2882  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2883  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2884  * If the resulting mask is empty, leave the affinity unchanged and return
2885  * -EINVAL.
2886  */
2887 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2888 				     struct cpumask *new_mask,
2889 				     const struct cpumask *subset_mask)
2890 {
2891 	struct cpumask *user_mask = NULL;
2892 	struct rq_flags rf;
2893 	struct rq *rq;
2894 	int err;
2895 
2896 	if (!p->user_cpus_ptr) {
2897 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2898 		if (!user_mask)
2899 			return -ENOMEM;
2900 	}
2901 
2902 	rq = task_rq_lock(p, &rf);
2903 
2904 	/*
2905 	 * Forcefully restricting the affinity of a deadline task is
2906 	 * likely to cause problems, so fail and noisily override the
2907 	 * mask entirely.
2908 	 */
2909 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2910 		err = -EPERM;
2911 		goto err_unlock;
2912 	}
2913 
2914 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2915 		err = -EINVAL;
2916 		goto err_unlock;
2917 	}
2918 
2919 	/*
2920 	 * We're about to butcher the task affinity, so keep track of what
2921 	 * the user asked for in case we're able to restore it later on.
2922 	 */
2923 	if (user_mask) {
2924 		cpumask_copy(user_mask, p->cpus_ptr);
2925 		p->user_cpus_ptr = user_mask;
2926 	}
2927 
2928 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2929 
2930 err_unlock:
2931 	task_rq_unlock(rq, p, &rf);
2932 	kfree(user_mask);
2933 	return err;
2934 }
2935 
2936 /*
2937  * Restrict the CPU affinity of task @p so that it is a subset of
2938  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2939  * old affinity mask. If the resulting mask is empty, we warn and walk
2940  * up the cpuset hierarchy until we find a suitable mask.
2941  */
2942 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2943 {
2944 	cpumask_var_t new_mask;
2945 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
2946 
2947 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
2948 
2949 	/*
2950 	 * __migrate_task() can fail silently in the face of concurrent
2951 	 * offlining of the chosen destination CPU, so take the hotplug
2952 	 * lock to ensure that the migration succeeds.
2953 	 */
2954 	cpus_read_lock();
2955 	if (!cpumask_available(new_mask))
2956 		goto out_set_mask;
2957 
2958 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2959 		goto out_free_mask;
2960 
2961 	/*
2962 	 * We failed to find a valid subset of the affinity mask for the
2963 	 * task, so override it based on its cpuset hierarchy.
2964 	 */
2965 	cpuset_cpus_allowed(p, new_mask);
2966 	override_mask = new_mask;
2967 
2968 out_set_mask:
2969 	if (printk_ratelimit()) {
2970 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2971 				task_pid_nr(p), p->comm,
2972 				cpumask_pr_args(override_mask));
2973 	}
2974 
2975 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2976 out_free_mask:
2977 	cpus_read_unlock();
2978 	free_cpumask_var(new_mask);
2979 }
2980 
2981 static int
2982 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2983 
2984 /*
2985  * Restore the affinity of a task @p which was previously restricted by a
2986  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2987  * @p->user_cpus_ptr.
2988  *
2989  * It is the caller's responsibility to serialise this with any calls to
2990  * force_compatible_cpus_allowed_ptr(@p).
2991  */
2992 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2993 {
2994 	struct cpumask *user_mask = p->user_cpus_ptr;
2995 	unsigned long flags;
2996 
2997 	/*
2998 	 * Try to restore the old affinity mask. If this fails, then
2999 	 * we free the mask explicitly to avoid it being inherited across
3000 	 * a subsequent fork().
3001 	 */
3002 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3003 		return;
3004 
3005 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3006 	user_mask = clear_user_cpus_ptr(p);
3007 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3008 
3009 	kfree(user_mask);
3010 }
3011 
3012 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3013 {
3014 #ifdef CONFIG_SCHED_DEBUG
3015 	unsigned int state = READ_ONCE(p->__state);
3016 
3017 	/*
3018 	 * We should never call set_task_cpu() on a blocked task,
3019 	 * ttwu() will sort out the placement.
3020 	 */
3021 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3022 
3023 	/*
3024 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3025 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3026 	 * time relying on p->on_rq.
3027 	 */
3028 	WARN_ON_ONCE(state == TASK_RUNNING &&
3029 		     p->sched_class == &fair_sched_class &&
3030 		     (p->on_rq && !task_on_rq_migrating(p)));
3031 
3032 #ifdef CONFIG_LOCKDEP
3033 	/*
3034 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3035 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3036 	 *
3037 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3038 	 * see task_group().
3039 	 *
3040 	 * Furthermore, all task_rq users should acquire both locks, see
3041 	 * task_rq_lock().
3042 	 */
3043 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3044 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3045 #endif
3046 	/*
3047 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3048 	 */
3049 	WARN_ON_ONCE(!cpu_online(new_cpu));
3050 
3051 	WARN_ON_ONCE(is_migration_disabled(p));
3052 #endif
3053 
3054 	trace_sched_migrate_task(p, new_cpu);
3055 
3056 	if (task_cpu(p) != new_cpu) {
3057 		if (p->sched_class->migrate_task_rq)
3058 			p->sched_class->migrate_task_rq(p, new_cpu);
3059 		p->se.nr_migrations++;
3060 		rseq_migrate(p);
3061 		perf_event_task_migrate(p);
3062 	}
3063 
3064 	__set_task_cpu(p, new_cpu);
3065 }
3066 
3067 #ifdef CONFIG_NUMA_BALANCING
3068 static void __migrate_swap_task(struct task_struct *p, int cpu)
3069 {
3070 	if (task_on_rq_queued(p)) {
3071 		struct rq *src_rq, *dst_rq;
3072 		struct rq_flags srf, drf;
3073 
3074 		src_rq = task_rq(p);
3075 		dst_rq = cpu_rq(cpu);
3076 
3077 		rq_pin_lock(src_rq, &srf);
3078 		rq_pin_lock(dst_rq, &drf);
3079 
3080 		deactivate_task(src_rq, p, 0);
3081 		set_task_cpu(p, cpu);
3082 		activate_task(dst_rq, p, 0);
3083 		check_preempt_curr(dst_rq, p, 0);
3084 
3085 		rq_unpin_lock(dst_rq, &drf);
3086 		rq_unpin_lock(src_rq, &srf);
3087 
3088 	} else {
3089 		/*
3090 		 * Task isn't running anymore; make it appear like we migrated
3091 		 * it before it went to sleep. This means on wakeup we make the
3092 		 * previous CPU our target instead of where it really is.
3093 		 */
3094 		p->wake_cpu = cpu;
3095 	}
3096 }
3097 
3098 struct migration_swap_arg {
3099 	struct task_struct *src_task, *dst_task;
3100 	int src_cpu, dst_cpu;
3101 };
3102 
3103 static int migrate_swap_stop(void *data)
3104 {
3105 	struct migration_swap_arg *arg = data;
3106 	struct rq *src_rq, *dst_rq;
3107 	int ret = -EAGAIN;
3108 
3109 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3110 		return -EAGAIN;
3111 
3112 	src_rq = cpu_rq(arg->src_cpu);
3113 	dst_rq = cpu_rq(arg->dst_cpu);
3114 
3115 	double_raw_lock(&arg->src_task->pi_lock,
3116 			&arg->dst_task->pi_lock);
3117 	double_rq_lock(src_rq, dst_rq);
3118 
3119 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3120 		goto unlock;
3121 
3122 	if (task_cpu(arg->src_task) != arg->src_cpu)
3123 		goto unlock;
3124 
3125 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3126 		goto unlock;
3127 
3128 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3129 		goto unlock;
3130 
3131 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3132 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3133 
3134 	ret = 0;
3135 
3136 unlock:
3137 	double_rq_unlock(src_rq, dst_rq);
3138 	raw_spin_unlock(&arg->dst_task->pi_lock);
3139 	raw_spin_unlock(&arg->src_task->pi_lock);
3140 
3141 	return ret;
3142 }
3143 
3144 /*
3145  * Cross migrate two tasks
3146  */
3147 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3148 		int target_cpu, int curr_cpu)
3149 {
3150 	struct migration_swap_arg arg;
3151 	int ret = -EINVAL;
3152 
3153 	arg = (struct migration_swap_arg){
3154 		.src_task = cur,
3155 		.src_cpu = curr_cpu,
3156 		.dst_task = p,
3157 		.dst_cpu = target_cpu,
3158 	};
3159 
3160 	if (arg.src_cpu == arg.dst_cpu)
3161 		goto out;
3162 
3163 	/*
3164 	 * These three tests are all lockless; this is OK since all of them
3165 	 * will be re-checked with proper locks held further down the line.
3166 	 */
3167 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3168 		goto out;
3169 
3170 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3171 		goto out;
3172 
3173 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3174 		goto out;
3175 
3176 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3177 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3178 
3179 out:
3180 	return ret;
3181 }
3182 #endif /* CONFIG_NUMA_BALANCING */
3183 
3184 /*
3185  * wait_task_inactive - wait for a thread to unschedule.
3186  *
3187  * If @match_state is nonzero, it's the @p->state value just checked and
3188  * not expected to change.  If it changes, i.e. @p might have woken up,
3189  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3190  * we return a positive number (its total switch count).  If a second call
3191  * a short while later returns the same number, the caller can be sure that
3192  * @p has remained unscheduled the whole time.
3193  *
3194  * The caller must ensure that the task *will* unschedule sometime soon,
3195  * else this function might spin for a *long* time. This function can't
3196  * be called with interrupts off, or it may introduce deadlock with
3197  * smp_call_function() if an IPI is sent by the same process we are
3198  * waiting to become inactive.
3199  */
3200 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3201 {
3202 	int running, queued;
3203 	struct rq_flags rf;
3204 	unsigned long ncsw;
3205 	struct rq *rq;
3206 
3207 	for (;;) {
3208 		/*
3209 		 * We do the initial early heuristics without holding
3210 		 * any task-queue locks at all. We'll only try to get
3211 		 * the runqueue lock when things look like they will
3212 		 * work out!
3213 		 */
3214 		rq = task_rq(p);
3215 
3216 		/*
3217 		 * If the task is actively running on another CPU
3218 		 * still, just relax and busy-wait without holding
3219 		 * any locks.
3220 		 *
3221 		 * NOTE! Since we don't hold any locks, it's not
3222 		 * even sure that "rq" stays as the right runqueue!
3223 		 * But we don't care, since "task_running()" will
3224 		 * return false if the runqueue has changed and p
3225 		 * is actually now running somewhere else!
3226 		 */
3227 		while (task_running(rq, p)) {
3228 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3229 				return 0;
3230 			cpu_relax();
3231 		}
3232 
3233 		/*
3234 		 * Ok, time to look more closely! We need the rq
3235 		 * lock now, to be *sure*. If we're wrong, we'll
3236 		 * just go back and repeat.
3237 		 */
3238 		rq = task_rq_lock(p, &rf);
3239 		trace_sched_wait_task(p);
3240 		running = task_running(rq, p);
3241 		queued = task_on_rq_queued(p);
3242 		ncsw = 0;
3243 		if (!match_state || READ_ONCE(p->__state) == match_state)
3244 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3245 		task_rq_unlock(rq, p, &rf);
3246 
3247 		/*
3248 		 * If it changed from the expected state, bail out now.
3249 		 */
3250 		if (unlikely(!ncsw))
3251 			break;
3252 
3253 		/*
3254 		 * Was it really running after all now that we
3255 		 * checked with the proper locks actually held?
3256 		 *
3257 		 * Oops. Go back and try again..
3258 		 */
3259 		if (unlikely(running)) {
3260 			cpu_relax();
3261 			continue;
3262 		}
3263 
3264 		/*
3265 		 * It's not enough that it's not actively running,
3266 		 * it must be off the runqueue _entirely_, and not
3267 		 * preempted!
3268 		 *
3269 		 * So if it was still runnable (but just not actively
3270 		 * running right now), it's preempted, and we should
3271 		 * yield - it could be a while.
3272 		 */
3273 		if (unlikely(queued)) {
3274 			ktime_t to = NSEC_PER_SEC / HZ;
3275 
3276 			set_current_state(TASK_UNINTERRUPTIBLE);
3277 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3278 			continue;
3279 		}
3280 
3281 		/*
3282 		 * Ahh, all good. It wasn't running, and it wasn't
3283 		 * runnable, which means that it will never become
3284 		 * running in the future either. We're all done!
3285 		 */
3286 		break;
3287 	}
3288 
3289 	return ncsw;
3290 }
3291 
3292 /***
3293  * kick_process - kick a running thread to enter/exit the kernel
3294  * @p: the to-be-kicked thread
3295  *
3296  * Cause a process which is running on another CPU to enter
3297  * kernel-mode, without any delay. (to get signals handled.)
3298  *
3299  * NOTE: this function doesn't have to take the runqueue lock,
3300  * because all it wants to ensure is that the remote task enters
3301  * the kernel. If the IPI races and the task has been migrated
3302  * to another CPU then no harm is done and the purpose has been
3303  * achieved as well.
3304  */
3305 void kick_process(struct task_struct *p)
3306 {
3307 	int cpu;
3308 
3309 	preempt_disable();
3310 	cpu = task_cpu(p);
3311 	if ((cpu != smp_processor_id()) && task_curr(p))
3312 		smp_send_reschedule(cpu);
3313 	preempt_enable();
3314 }
3315 EXPORT_SYMBOL_GPL(kick_process);
3316 
3317 /*
3318  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3319  *
3320  * A few notes on cpu_active vs cpu_online:
3321  *
3322  *  - cpu_active must be a subset of cpu_online
3323  *
3324  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3325  *    see __set_cpus_allowed_ptr(). At this point the newly online
3326  *    CPU isn't yet part of the sched domains, and balancing will not
3327  *    see it.
3328  *
3329  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3330  *    avoid the load balancer to place new tasks on the to be removed
3331  *    CPU. Existing tasks will remain running there and will be taken
3332  *    off.
3333  *
3334  * This means that fallback selection must not select !active CPUs.
3335  * And can assume that any active CPU must be online. Conversely
3336  * select_task_rq() below may allow selection of !active CPUs in order
3337  * to satisfy the above rules.
3338  */
3339 static int select_fallback_rq(int cpu, struct task_struct *p)
3340 {
3341 	int nid = cpu_to_node(cpu);
3342 	const struct cpumask *nodemask = NULL;
3343 	enum { cpuset, possible, fail } state = cpuset;
3344 	int dest_cpu;
3345 
3346 	/*
3347 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3348 	 * will return -1. There is no CPU on the node, and we should
3349 	 * select the CPU on the other node.
3350 	 */
3351 	if (nid != -1) {
3352 		nodemask = cpumask_of_node(nid);
3353 
3354 		/* Look for allowed, online CPU in same node. */
3355 		for_each_cpu(dest_cpu, nodemask) {
3356 			if (is_cpu_allowed(p, dest_cpu))
3357 				return dest_cpu;
3358 		}
3359 	}
3360 
3361 	for (;;) {
3362 		/* Any allowed, online CPU? */
3363 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3364 			if (!is_cpu_allowed(p, dest_cpu))
3365 				continue;
3366 
3367 			goto out;
3368 		}
3369 
3370 		/* No more Mr. Nice Guy. */
3371 		switch (state) {
3372 		case cpuset:
3373 			if (cpuset_cpus_allowed_fallback(p)) {
3374 				state = possible;
3375 				break;
3376 			}
3377 			fallthrough;
3378 		case possible:
3379 			/*
3380 			 * XXX When called from select_task_rq() we only
3381 			 * hold p->pi_lock and again violate locking order.
3382 			 *
3383 			 * More yuck to audit.
3384 			 */
3385 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3386 			state = fail;
3387 			break;
3388 		case fail:
3389 			BUG();
3390 			break;
3391 		}
3392 	}
3393 
3394 out:
3395 	if (state != cpuset) {
3396 		/*
3397 		 * Don't tell them about moving exiting tasks or
3398 		 * kernel threads (both mm NULL), since they never
3399 		 * leave kernel.
3400 		 */
3401 		if (p->mm && printk_ratelimit()) {
3402 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3403 					task_pid_nr(p), p->comm, cpu);
3404 		}
3405 	}
3406 
3407 	return dest_cpu;
3408 }
3409 
3410 /*
3411  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3412  */
3413 static inline
3414 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3415 {
3416 	lockdep_assert_held(&p->pi_lock);
3417 
3418 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3419 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3420 	else
3421 		cpu = cpumask_any(p->cpus_ptr);
3422 
3423 	/*
3424 	 * In order not to call set_task_cpu() on a blocking task we need
3425 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3426 	 * CPU.
3427 	 *
3428 	 * Since this is common to all placement strategies, this lives here.
3429 	 *
3430 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3431 	 *   not worry about this generic constraint ]
3432 	 */
3433 	if (unlikely(!is_cpu_allowed(p, cpu)))
3434 		cpu = select_fallback_rq(task_cpu(p), p);
3435 
3436 	return cpu;
3437 }
3438 
3439 void sched_set_stop_task(int cpu, struct task_struct *stop)
3440 {
3441 	static struct lock_class_key stop_pi_lock;
3442 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3443 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3444 
3445 	if (stop) {
3446 		/*
3447 		 * Make it appear like a SCHED_FIFO task, its something
3448 		 * userspace knows about and won't get confused about.
3449 		 *
3450 		 * Also, it will make PI more or less work without too
3451 		 * much confusion -- but then, stop work should not
3452 		 * rely on PI working anyway.
3453 		 */
3454 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3455 
3456 		stop->sched_class = &stop_sched_class;
3457 
3458 		/*
3459 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3460 		 * adjust the effective priority of a task. As a result,
3461 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3462 		 * which can then trigger wakeups of the stop thread to push
3463 		 * around the current task.
3464 		 *
3465 		 * The stop task itself will never be part of the PI-chain, it
3466 		 * never blocks, therefore that ->pi_lock recursion is safe.
3467 		 * Tell lockdep about this by placing the stop->pi_lock in its
3468 		 * own class.
3469 		 */
3470 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3471 	}
3472 
3473 	cpu_rq(cpu)->stop = stop;
3474 
3475 	if (old_stop) {
3476 		/*
3477 		 * Reset it back to a normal scheduling class so that
3478 		 * it can die in pieces.
3479 		 */
3480 		old_stop->sched_class = &rt_sched_class;
3481 	}
3482 }
3483 
3484 #else /* CONFIG_SMP */
3485 
3486 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3487 					 const struct cpumask *new_mask,
3488 					 u32 flags)
3489 {
3490 	return set_cpus_allowed_ptr(p, new_mask);
3491 }
3492 
3493 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3494 
3495 static inline bool rq_has_pinned_tasks(struct rq *rq)
3496 {
3497 	return false;
3498 }
3499 
3500 #endif /* !CONFIG_SMP */
3501 
3502 static void
3503 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3504 {
3505 	struct rq *rq;
3506 
3507 	if (!schedstat_enabled())
3508 		return;
3509 
3510 	rq = this_rq();
3511 
3512 #ifdef CONFIG_SMP
3513 	if (cpu == rq->cpu) {
3514 		__schedstat_inc(rq->ttwu_local);
3515 		__schedstat_inc(p->stats.nr_wakeups_local);
3516 	} else {
3517 		struct sched_domain *sd;
3518 
3519 		__schedstat_inc(p->stats.nr_wakeups_remote);
3520 		rcu_read_lock();
3521 		for_each_domain(rq->cpu, sd) {
3522 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3523 				__schedstat_inc(sd->ttwu_wake_remote);
3524 				break;
3525 			}
3526 		}
3527 		rcu_read_unlock();
3528 	}
3529 
3530 	if (wake_flags & WF_MIGRATED)
3531 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3532 #endif /* CONFIG_SMP */
3533 
3534 	__schedstat_inc(rq->ttwu_count);
3535 	__schedstat_inc(p->stats.nr_wakeups);
3536 
3537 	if (wake_flags & WF_SYNC)
3538 		__schedstat_inc(p->stats.nr_wakeups_sync);
3539 }
3540 
3541 /*
3542  * Mark the task runnable and perform wakeup-preemption.
3543  */
3544 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3545 			   struct rq_flags *rf)
3546 {
3547 	check_preempt_curr(rq, p, wake_flags);
3548 	WRITE_ONCE(p->__state, TASK_RUNNING);
3549 	trace_sched_wakeup(p);
3550 
3551 #ifdef CONFIG_SMP
3552 	if (p->sched_class->task_woken) {
3553 		/*
3554 		 * Our task @p is fully woken up and running; so it's safe to
3555 		 * drop the rq->lock, hereafter rq is only used for statistics.
3556 		 */
3557 		rq_unpin_lock(rq, rf);
3558 		p->sched_class->task_woken(rq, p);
3559 		rq_repin_lock(rq, rf);
3560 	}
3561 
3562 	if (rq->idle_stamp) {
3563 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3564 		u64 max = 2*rq->max_idle_balance_cost;
3565 
3566 		update_avg(&rq->avg_idle, delta);
3567 
3568 		if (rq->avg_idle > max)
3569 			rq->avg_idle = max;
3570 
3571 		rq->wake_stamp = jiffies;
3572 		rq->wake_avg_idle = rq->avg_idle / 2;
3573 
3574 		rq->idle_stamp = 0;
3575 	}
3576 #endif
3577 }
3578 
3579 static void
3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3581 		 struct rq_flags *rf)
3582 {
3583 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3584 
3585 	lockdep_assert_rq_held(rq);
3586 
3587 	if (p->sched_contributes_to_load)
3588 		rq->nr_uninterruptible--;
3589 
3590 #ifdef CONFIG_SMP
3591 	if (wake_flags & WF_MIGRATED)
3592 		en_flags |= ENQUEUE_MIGRATED;
3593 	else
3594 #endif
3595 	if (p->in_iowait) {
3596 		delayacct_blkio_end(p);
3597 		atomic_dec(&task_rq(p)->nr_iowait);
3598 	}
3599 
3600 	activate_task(rq, p, en_flags);
3601 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3602 }
3603 
3604 /*
3605  * Consider @p being inside a wait loop:
3606  *
3607  *   for (;;) {
3608  *      set_current_state(TASK_UNINTERRUPTIBLE);
3609  *
3610  *      if (CONDITION)
3611  *         break;
3612  *
3613  *      schedule();
3614  *   }
3615  *   __set_current_state(TASK_RUNNING);
3616  *
3617  * between set_current_state() and schedule(). In this case @p is still
3618  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3619  * an atomic manner.
3620  *
3621  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3622  * then schedule() must still happen and p->state can be changed to
3623  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3624  * need to do a full wakeup with enqueue.
3625  *
3626  * Returns: %true when the wakeup is done,
3627  *          %false otherwise.
3628  */
3629 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3630 {
3631 	struct rq_flags rf;
3632 	struct rq *rq;
3633 	int ret = 0;
3634 
3635 	rq = __task_rq_lock(p, &rf);
3636 	if (task_on_rq_queued(p)) {
3637 		/* check_preempt_curr() may use rq clock */
3638 		update_rq_clock(rq);
3639 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3640 		ret = 1;
3641 	}
3642 	__task_rq_unlock(rq, &rf);
3643 
3644 	return ret;
3645 }
3646 
3647 #ifdef CONFIG_SMP
3648 void sched_ttwu_pending(void *arg)
3649 {
3650 	struct llist_node *llist = arg;
3651 	struct rq *rq = this_rq();
3652 	struct task_struct *p, *t;
3653 	struct rq_flags rf;
3654 
3655 	if (!llist)
3656 		return;
3657 
3658 	/*
3659 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3660 	 * Races such that false-negatives are possible, since they
3661 	 * are shorter lived that false-positives would be.
3662 	 */
3663 	WRITE_ONCE(rq->ttwu_pending, 0);
3664 
3665 	rq_lock_irqsave(rq, &rf);
3666 	update_rq_clock(rq);
3667 
3668 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3669 		if (WARN_ON_ONCE(p->on_cpu))
3670 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3671 
3672 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3673 			set_task_cpu(p, cpu_of(rq));
3674 
3675 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3676 	}
3677 
3678 	rq_unlock_irqrestore(rq, &rf);
3679 }
3680 
3681 void send_call_function_single_ipi(int cpu)
3682 {
3683 	struct rq *rq = cpu_rq(cpu);
3684 
3685 	if (!set_nr_if_polling(rq->idle))
3686 		arch_send_call_function_single_ipi(cpu);
3687 	else
3688 		trace_sched_wake_idle_without_ipi(cpu);
3689 }
3690 
3691 /*
3692  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3693  * necessary. The wakee CPU on receipt of the IPI will queue the task
3694  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3695  * of the wakeup instead of the waker.
3696  */
3697 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3698 {
3699 	struct rq *rq = cpu_rq(cpu);
3700 
3701 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3702 
3703 	WRITE_ONCE(rq->ttwu_pending, 1);
3704 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3705 }
3706 
3707 void wake_up_if_idle(int cpu)
3708 {
3709 	struct rq *rq = cpu_rq(cpu);
3710 	struct rq_flags rf;
3711 
3712 	rcu_read_lock();
3713 
3714 	if (!is_idle_task(rcu_dereference(rq->curr)))
3715 		goto out;
3716 
3717 	rq_lock_irqsave(rq, &rf);
3718 	if (is_idle_task(rq->curr))
3719 		resched_curr(rq);
3720 	/* Else CPU is not idle, do nothing here: */
3721 	rq_unlock_irqrestore(rq, &rf);
3722 
3723 out:
3724 	rcu_read_unlock();
3725 }
3726 
3727 bool cpus_share_cache(int this_cpu, int that_cpu)
3728 {
3729 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3730 }
3731 
3732 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3733 {
3734 	/*
3735 	 * Do not complicate things with the async wake_list while the CPU is
3736 	 * in hotplug state.
3737 	 */
3738 	if (!cpu_active(cpu))
3739 		return false;
3740 
3741 	/*
3742 	 * If the CPU does not share cache, then queue the task on the
3743 	 * remote rqs wakelist to avoid accessing remote data.
3744 	 */
3745 	if (!cpus_share_cache(smp_processor_id(), cpu))
3746 		return true;
3747 
3748 	/*
3749 	 * If the task is descheduling and the only running task on the
3750 	 * CPU then use the wakelist to offload the task activation to
3751 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3752 	 * nr_running is checked to avoid unnecessary task stacking.
3753 	 */
3754 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3755 		return true;
3756 
3757 	return false;
3758 }
3759 
3760 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3761 {
3762 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3763 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3764 			return false;
3765 
3766 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3767 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3768 		return true;
3769 	}
3770 
3771 	return false;
3772 }
3773 
3774 #else /* !CONFIG_SMP */
3775 
3776 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3777 {
3778 	return false;
3779 }
3780 
3781 #endif /* CONFIG_SMP */
3782 
3783 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3784 {
3785 	struct rq *rq = cpu_rq(cpu);
3786 	struct rq_flags rf;
3787 
3788 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3789 		return;
3790 
3791 	rq_lock(rq, &rf);
3792 	update_rq_clock(rq);
3793 	ttwu_do_activate(rq, p, wake_flags, &rf);
3794 	rq_unlock(rq, &rf);
3795 }
3796 
3797 /*
3798  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3799  *
3800  * The caller holds p::pi_lock if p != current or has preemption
3801  * disabled when p == current.
3802  *
3803  * The rules of PREEMPT_RT saved_state:
3804  *
3805  *   The related locking code always holds p::pi_lock when updating
3806  *   p::saved_state, which means the code is fully serialized in both cases.
3807  *
3808  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3809  *   bits set. This allows to distinguish all wakeup scenarios.
3810  */
3811 static __always_inline
3812 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3813 {
3814 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3815 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3816 			     state != TASK_RTLOCK_WAIT);
3817 	}
3818 
3819 	if (READ_ONCE(p->__state) & state) {
3820 		*success = 1;
3821 		return true;
3822 	}
3823 
3824 #ifdef CONFIG_PREEMPT_RT
3825 	/*
3826 	 * Saved state preserves the task state across blocking on
3827 	 * an RT lock.  If the state matches, set p::saved_state to
3828 	 * TASK_RUNNING, but do not wake the task because it waits
3829 	 * for a lock wakeup. Also indicate success because from
3830 	 * the regular waker's point of view this has succeeded.
3831 	 *
3832 	 * After acquiring the lock the task will restore p::__state
3833 	 * from p::saved_state which ensures that the regular
3834 	 * wakeup is not lost. The restore will also set
3835 	 * p::saved_state to TASK_RUNNING so any further tests will
3836 	 * not result in false positives vs. @success
3837 	 */
3838 	if (p->saved_state & state) {
3839 		p->saved_state = TASK_RUNNING;
3840 		*success = 1;
3841 	}
3842 #endif
3843 	return false;
3844 }
3845 
3846 /*
3847  * Notes on Program-Order guarantees on SMP systems.
3848  *
3849  *  MIGRATION
3850  *
3851  * The basic program-order guarantee on SMP systems is that when a task [t]
3852  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3853  * execution on its new CPU [c1].
3854  *
3855  * For migration (of runnable tasks) this is provided by the following means:
3856  *
3857  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3858  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3859  *     rq(c1)->lock (if not at the same time, then in that order).
3860  *  C) LOCK of the rq(c1)->lock scheduling in task
3861  *
3862  * Release/acquire chaining guarantees that B happens after A and C after B.
3863  * Note: the CPU doing B need not be c0 or c1
3864  *
3865  * Example:
3866  *
3867  *   CPU0            CPU1            CPU2
3868  *
3869  *   LOCK rq(0)->lock
3870  *   sched-out X
3871  *   sched-in Y
3872  *   UNLOCK rq(0)->lock
3873  *
3874  *                                   LOCK rq(0)->lock // orders against CPU0
3875  *                                   dequeue X
3876  *                                   UNLOCK rq(0)->lock
3877  *
3878  *                                   LOCK rq(1)->lock
3879  *                                   enqueue X
3880  *                                   UNLOCK rq(1)->lock
3881  *
3882  *                   LOCK rq(1)->lock // orders against CPU2
3883  *                   sched-out Z
3884  *                   sched-in X
3885  *                   UNLOCK rq(1)->lock
3886  *
3887  *
3888  *  BLOCKING -- aka. SLEEP + WAKEUP
3889  *
3890  * For blocking we (obviously) need to provide the same guarantee as for
3891  * migration. However the means are completely different as there is no lock
3892  * chain to provide order. Instead we do:
3893  *
3894  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3895  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3896  *
3897  * Example:
3898  *
3899  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3900  *
3901  *   LOCK rq(0)->lock LOCK X->pi_lock
3902  *   dequeue X
3903  *   sched-out X
3904  *   smp_store_release(X->on_cpu, 0);
3905  *
3906  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3907  *                    X->state = WAKING
3908  *                    set_task_cpu(X,2)
3909  *
3910  *                    LOCK rq(2)->lock
3911  *                    enqueue X
3912  *                    X->state = RUNNING
3913  *                    UNLOCK rq(2)->lock
3914  *
3915  *                                          LOCK rq(2)->lock // orders against CPU1
3916  *                                          sched-out Z
3917  *                                          sched-in X
3918  *                                          UNLOCK rq(2)->lock
3919  *
3920  *                    UNLOCK X->pi_lock
3921  *   UNLOCK rq(0)->lock
3922  *
3923  *
3924  * However, for wakeups there is a second guarantee we must provide, namely we
3925  * must ensure that CONDITION=1 done by the caller can not be reordered with
3926  * accesses to the task state; see try_to_wake_up() and set_current_state().
3927  */
3928 
3929 /**
3930  * try_to_wake_up - wake up a thread
3931  * @p: the thread to be awakened
3932  * @state: the mask of task states that can be woken
3933  * @wake_flags: wake modifier flags (WF_*)
3934  *
3935  * Conceptually does:
3936  *
3937  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3938  *
3939  * If the task was not queued/runnable, also place it back on a runqueue.
3940  *
3941  * This function is atomic against schedule() which would dequeue the task.
3942  *
3943  * It issues a full memory barrier before accessing @p->state, see the comment
3944  * with set_current_state().
3945  *
3946  * Uses p->pi_lock to serialize against concurrent wake-ups.
3947  *
3948  * Relies on p->pi_lock stabilizing:
3949  *  - p->sched_class
3950  *  - p->cpus_ptr
3951  *  - p->sched_task_group
3952  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3953  *
3954  * Tries really hard to only take one task_rq(p)->lock for performance.
3955  * Takes rq->lock in:
3956  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3957  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3958  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3959  *
3960  * As a consequence we race really badly with just about everything. See the
3961  * many memory barriers and their comments for details.
3962  *
3963  * Return: %true if @p->state changes (an actual wakeup was done),
3964  *	   %false otherwise.
3965  */
3966 static int
3967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3968 {
3969 	unsigned long flags;
3970 	int cpu, success = 0;
3971 
3972 	preempt_disable();
3973 	if (p == current) {
3974 		/*
3975 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3976 		 * == smp_processor_id()'. Together this means we can special
3977 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3978 		 * without taking any locks.
3979 		 *
3980 		 * In particular:
3981 		 *  - we rely on Program-Order guarantees for all the ordering,
3982 		 *  - we're serialized against set_special_state() by virtue of
3983 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3984 		 */
3985 		if (!ttwu_state_match(p, state, &success))
3986 			goto out;
3987 
3988 		trace_sched_waking(p);
3989 		WRITE_ONCE(p->__state, TASK_RUNNING);
3990 		trace_sched_wakeup(p);
3991 		goto out;
3992 	}
3993 
3994 	/*
3995 	 * If we are going to wake up a thread waiting for CONDITION we
3996 	 * need to ensure that CONDITION=1 done by the caller can not be
3997 	 * reordered with p->state check below. This pairs with smp_store_mb()
3998 	 * in set_current_state() that the waiting thread does.
3999 	 */
4000 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4001 	smp_mb__after_spinlock();
4002 	if (!ttwu_state_match(p, state, &success))
4003 		goto unlock;
4004 
4005 	trace_sched_waking(p);
4006 
4007 	/*
4008 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4009 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4010 	 * in smp_cond_load_acquire() below.
4011 	 *
4012 	 * sched_ttwu_pending()			try_to_wake_up()
4013 	 *   STORE p->on_rq = 1			  LOAD p->state
4014 	 *   UNLOCK rq->lock
4015 	 *
4016 	 * __schedule() (switch to task 'p')
4017 	 *   LOCK rq->lock			  smp_rmb();
4018 	 *   smp_mb__after_spinlock();
4019 	 *   UNLOCK rq->lock
4020 	 *
4021 	 * [task p]
4022 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4023 	 *
4024 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4025 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4026 	 *
4027 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4028 	 */
4029 	smp_rmb();
4030 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4031 		goto unlock;
4032 
4033 #ifdef CONFIG_SMP
4034 	/*
4035 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4036 	 * possible to, falsely, observe p->on_cpu == 0.
4037 	 *
4038 	 * One must be running (->on_cpu == 1) in order to remove oneself
4039 	 * from the runqueue.
4040 	 *
4041 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4042 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4043 	 *   UNLOCK rq->lock
4044 	 *
4045 	 * __schedule() (put 'p' to sleep)
4046 	 *   LOCK rq->lock			  smp_rmb();
4047 	 *   smp_mb__after_spinlock();
4048 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4049 	 *
4050 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4051 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4052 	 *
4053 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4054 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4055 	 * care about it's own p->state. See the comment in __schedule().
4056 	 */
4057 	smp_acquire__after_ctrl_dep();
4058 
4059 	/*
4060 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4061 	 * == 0), which means we need to do an enqueue, change p->state to
4062 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4063 	 * enqueue, such as ttwu_queue_wakelist().
4064 	 */
4065 	WRITE_ONCE(p->__state, TASK_WAKING);
4066 
4067 	/*
4068 	 * If the owning (remote) CPU is still in the middle of schedule() with
4069 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4070 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4071 	 * let the waker make forward progress. This is safe because IRQs are
4072 	 * disabled and the IPI will deliver after on_cpu is cleared.
4073 	 *
4074 	 * Ensure we load task_cpu(p) after p->on_cpu:
4075 	 *
4076 	 * set_task_cpu(p, cpu);
4077 	 *   STORE p->cpu = @cpu
4078 	 * __schedule() (switch to task 'p')
4079 	 *   LOCK rq->lock
4080 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4081 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4082 	 *
4083 	 * to ensure we observe the correct CPU on which the task is currently
4084 	 * scheduling.
4085 	 */
4086 	if (smp_load_acquire(&p->on_cpu) &&
4087 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4088 		goto unlock;
4089 
4090 	/*
4091 	 * If the owning (remote) CPU is still in the middle of schedule() with
4092 	 * this task as prev, wait until it's done referencing the task.
4093 	 *
4094 	 * Pairs with the smp_store_release() in finish_task().
4095 	 *
4096 	 * This ensures that tasks getting woken will be fully ordered against
4097 	 * their previous state and preserve Program Order.
4098 	 */
4099 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4100 
4101 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4102 	if (task_cpu(p) != cpu) {
4103 		if (p->in_iowait) {
4104 			delayacct_blkio_end(p);
4105 			atomic_dec(&task_rq(p)->nr_iowait);
4106 		}
4107 
4108 		wake_flags |= WF_MIGRATED;
4109 		psi_ttwu_dequeue(p);
4110 		set_task_cpu(p, cpu);
4111 	}
4112 #else
4113 	cpu = task_cpu(p);
4114 #endif /* CONFIG_SMP */
4115 
4116 	ttwu_queue(p, cpu, wake_flags);
4117 unlock:
4118 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4119 out:
4120 	if (success)
4121 		ttwu_stat(p, task_cpu(p), wake_flags);
4122 	preempt_enable();
4123 
4124 	return success;
4125 }
4126 
4127 /**
4128  * task_call_func - Invoke a function on task in fixed state
4129  * @p: Process for which the function is to be invoked, can be @current.
4130  * @func: Function to invoke.
4131  * @arg: Argument to function.
4132  *
4133  * Fix the task in it's current state by avoiding wakeups and or rq operations
4134  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4135  * to work out what the state is, if required.  Given that @func can be invoked
4136  * with a runqueue lock held, it had better be quite lightweight.
4137  *
4138  * Returns:
4139  *   Whatever @func returns
4140  */
4141 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4142 {
4143 	struct rq *rq = NULL;
4144 	unsigned int state;
4145 	struct rq_flags rf;
4146 	int ret;
4147 
4148 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4149 
4150 	state = READ_ONCE(p->__state);
4151 
4152 	/*
4153 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4154 	 * possible to, falsely, observe p->on_rq == 0.
4155 	 *
4156 	 * See try_to_wake_up() for a longer comment.
4157 	 */
4158 	smp_rmb();
4159 
4160 	/*
4161 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4162 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4163 	 * locks at the end, see ttwu_queue_wakelist().
4164 	 */
4165 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4166 		rq = __task_rq_lock(p, &rf);
4167 
4168 	/*
4169 	 * At this point the task is pinned; either:
4170 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4171 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4172 	 *  - queued, and we're holding off schedule	 (rq->lock)
4173 	 *  - running, and we're holding off de-schedule (rq->lock)
4174 	 *
4175 	 * The called function (@func) can use: task_curr(), p->on_rq and
4176 	 * p->__state to differentiate between these states.
4177 	 */
4178 	ret = func(p, arg);
4179 
4180 	if (rq)
4181 		rq_unlock(rq, &rf);
4182 
4183 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4184 	return ret;
4185 }
4186 
4187 /**
4188  * wake_up_process - Wake up a specific process
4189  * @p: The process to be woken up.
4190  *
4191  * Attempt to wake up the nominated process and move it to the set of runnable
4192  * processes.
4193  *
4194  * Return: 1 if the process was woken up, 0 if it was already running.
4195  *
4196  * This function executes a full memory barrier before accessing the task state.
4197  */
4198 int wake_up_process(struct task_struct *p)
4199 {
4200 	return try_to_wake_up(p, TASK_NORMAL, 0);
4201 }
4202 EXPORT_SYMBOL(wake_up_process);
4203 
4204 int wake_up_state(struct task_struct *p, unsigned int state)
4205 {
4206 	return try_to_wake_up(p, state, 0);
4207 }
4208 
4209 /*
4210  * Perform scheduler related setup for a newly forked process p.
4211  * p is forked by current.
4212  *
4213  * __sched_fork() is basic setup used by init_idle() too:
4214  */
4215 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4216 {
4217 	p->on_rq			= 0;
4218 
4219 	p->se.on_rq			= 0;
4220 	p->se.exec_start		= 0;
4221 	p->se.sum_exec_runtime		= 0;
4222 	p->se.prev_sum_exec_runtime	= 0;
4223 	p->se.nr_migrations		= 0;
4224 	p->se.vruntime			= 0;
4225 	INIT_LIST_HEAD(&p->se.group_node);
4226 
4227 #ifdef CONFIG_FAIR_GROUP_SCHED
4228 	p->se.cfs_rq			= NULL;
4229 #endif
4230 
4231 #ifdef CONFIG_SCHEDSTATS
4232 	/* Even if schedstat is disabled, there should not be garbage */
4233 	memset(&p->stats, 0, sizeof(p->stats));
4234 #endif
4235 
4236 	RB_CLEAR_NODE(&p->dl.rb_node);
4237 	init_dl_task_timer(&p->dl);
4238 	init_dl_inactive_task_timer(&p->dl);
4239 	__dl_clear_params(p);
4240 
4241 	INIT_LIST_HEAD(&p->rt.run_list);
4242 	p->rt.timeout		= 0;
4243 	p->rt.time_slice	= sched_rr_timeslice;
4244 	p->rt.on_rq		= 0;
4245 	p->rt.on_list		= 0;
4246 
4247 #ifdef CONFIG_PREEMPT_NOTIFIERS
4248 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4249 #endif
4250 
4251 #ifdef CONFIG_COMPACTION
4252 	p->capture_control = NULL;
4253 #endif
4254 	init_numa_balancing(clone_flags, p);
4255 #ifdef CONFIG_SMP
4256 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4257 	p->migration_pending = NULL;
4258 #endif
4259 }
4260 
4261 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4262 
4263 #ifdef CONFIG_NUMA_BALANCING
4264 
4265 void set_numabalancing_state(bool enabled)
4266 {
4267 	if (enabled)
4268 		static_branch_enable(&sched_numa_balancing);
4269 	else
4270 		static_branch_disable(&sched_numa_balancing);
4271 }
4272 
4273 #ifdef CONFIG_PROC_SYSCTL
4274 int sysctl_numa_balancing(struct ctl_table *table, int write,
4275 			  void *buffer, size_t *lenp, loff_t *ppos)
4276 {
4277 	struct ctl_table t;
4278 	int err;
4279 	int state = static_branch_likely(&sched_numa_balancing);
4280 
4281 	if (write && !capable(CAP_SYS_ADMIN))
4282 		return -EPERM;
4283 
4284 	t = *table;
4285 	t.data = &state;
4286 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4287 	if (err < 0)
4288 		return err;
4289 	if (write)
4290 		set_numabalancing_state(state);
4291 	return err;
4292 }
4293 #endif
4294 #endif
4295 
4296 #ifdef CONFIG_SCHEDSTATS
4297 
4298 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4299 
4300 static void set_schedstats(bool enabled)
4301 {
4302 	if (enabled)
4303 		static_branch_enable(&sched_schedstats);
4304 	else
4305 		static_branch_disable(&sched_schedstats);
4306 }
4307 
4308 void force_schedstat_enabled(void)
4309 {
4310 	if (!schedstat_enabled()) {
4311 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4312 		static_branch_enable(&sched_schedstats);
4313 	}
4314 }
4315 
4316 static int __init setup_schedstats(char *str)
4317 {
4318 	int ret = 0;
4319 	if (!str)
4320 		goto out;
4321 
4322 	if (!strcmp(str, "enable")) {
4323 		set_schedstats(true);
4324 		ret = 1;
4325 	} else if (!strcmp(str, "disable")) {
4326 		set_schedstats(false);
4327 		ret = 1;
4328 	}
4329 out:
4330 	if (!ret)
4331 		pr_warn("Unable to parse schedstats=\n");
4332 
4333 	return ret;
4334 }
4335 __setup("schedstats=", setup_schedstats);
4336 
4337 #ifdef CONFIG_PROC_SYSCTL
4338 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4339 		size_t *lenp, loff_t *ppos)
4340 {
4341 	struct ctl_table t;
4342 	int err;
4343 	int state = static_branch_likely(&sched_schedstats);
4344 
4345 	if (write && !capable(CAP_SYS_ADMIN))
4346 		return -EPERM;
4347 
4348 	t = *table;
4349 	t.data = &state;
4350 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4351 	if (err < 0)
4352 		return err;
4353 	if (write)
4354 		set_schedstats(state);
4355 	return err;
4356 }
4357 #endif /* CONFIG_PROC_SYSCTL */
4358 #endif /* CONFIG_SCHEDSTATS */
4359 
4360 /*
4361  * fork()/clone()-time setup:
4362  */
4363 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4364 {
4365 	__sched_fork(clone_flags, p);
4366 	/*
4367 	 * We mark the process as NEW here. This guarantees that
4368 	 * nobody will actually run it, and a signal or other external
4369 	 * event cannot wake it up and insert it on the runqueue either.
4370 	 */
4371 	p->__state = TASK_NEW;
4372 
4373 	/*
4374 	 * Make sure we do not leak PI boosting priority to the child.
4375 	 */
4376 	p->prio = current->normal_prio;
4377 
4378 	uclamp_fork(p);
4379 
4380 	/*
4381 	 * Revert to default priority/policy on fork if requested.
4382 	 */
4383 	if (unlikely(p->sched_reset_on_fork)) {
4384 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4385 			p->policy = SCHED_NORMAL;
4386 			p->static_prio = NICE_TO_PRIO(0);
4387 			p->rt_priority = 0;
4388 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4389 			p->static_prio = NICE_TO_PRIO(0);
4390 
4391 		p->prio = p->normal_prio = p->static_prio;
4392 		set_load_weight(p, false);
4393 
4394 		/*
4395 		 * We don't need the reset flag anymore after the fork. It has
4396 		 * fulfilled its duty:
4397 		 */
4398 		p->sched_reset_on_fork = 0;
4399 	}
4400 
4401 	if (dl_prio(p->prio))
4402 		return -EAGAIN;
4403 	else if (rt_prio(p->prio))
4404 		p->sched_class = &rt_sched_class;
4405 	else
4406 		p->sched_class = &fair_sched_class;
4407 
4408 	init_entity_runnable_average(&p->se);
4409 
4410 #ifdef CONFIG_SCHED_INFO
4411 	if (likely(sched_info_on()))
4412 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4413 #endif
4414 #if defined(CONFIG_SMP)
4415 	p->on_cpu = 0;
4416 #endif
4417 	init_task_preempt_count(p);
4418 #ifdef CONFIG_SMP
4419 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4420 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4421 #endif
4422 	return 0;
4423 }
4424 
4425 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4426 {
4427 	unsigned long flags;
4428 #ifdef CONFIG_CGROUP_SCHED
4429 	struct task_group *tg;
4430 #endif
4431 
4432 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4433 #ifdef CONFIG_CGROUP_SCHED
4434 	tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4435 			  struct task_group, css);
4436 	p->sched_task_group = autogroup_task_group(p, tg);
4437 #endif
4438 	rseq_migrate(p);
4439 	/*
4440 	 * We're setting the CPU for the first time, we don't migrate,
4441 	 * so use __set_task_cpu().
4442 	 */
4443 	__set_task_cpu(p, smp_processor_id());
4444 	if (p->sched_class->task_fork)
4445 		p->sched_class->task_fork(p);
4446 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4447 
4448 	uclamp_post_fork(p);
4449 }
4450 
4451 unsigned long to_ratio(u64 period, u64 runtime)
4452 {
4453 	if (runtime == RUNTIME_INF)
4454 		return BW_UNIT;
4455 
4456 	/*
4457 	 * Doing this here saves a lot of checks in all
4458 	 * the calling paths, and returning zero seems
4459 	 * safe for them anyway.
4460 	 */
4461 	if (period == 0)
4462 		return 0;
4463 
4464 	return div64_u64(runtime << BW_SHIFT, period);
4465 }
4466 
4467 /*
4468  * wake_up_new_task - wake up a newly created task for the first time.
4469  *
4470  * This function will do some initial scheduler statistics housekeeping
4471  * that must be done for every newly created context, then puts the task
4472  * on the runqueue and wakes it.
4473  */
4474 void wake_up_new_task(struct task_struct *p)
4475 {
4476 	struct rq_flags rf;
4477 	struct rq *rq;
4478 
4479 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4480 	WRITE_ONCE(p->__state, TASK_RUNNING);
4481 #ifdef CONFIG_SMP
4482 	/*
4483 	 * Fork balancing, do it here and not earlier because:
4484 	 *  - cpus_ptr can change in the fork path
4485 	 *  - any previously selected CPU might disappear through hotplug
4486 	 *
4487 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4488 	 * as we're not fully set-up yet.
4489 	 */
4490 	p->recent_used_cpu = task_cpu(p);
4491 	rseq_migrate(p);
4492 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4493 #endif
4494 	rq = __task_rq_lock(p, &rf);
4495 	update_rq_clock(rq);
4496 	post_init_entity_util_avg(p);
4497 
4498 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4499 	trace_sched_wakeup_new(p);
4500 	check_preempt_curr(rq, p, WF_FORK);
4501 #ifdef CONFIG_SMP
4502 	if (p->sched_class->task_woken) {
4503 		/*
4504 		 * Nothing relies on rq->lock after this, so it's fine to
4505 		 * drop it.
4506 		 */
4507 		rq_unpin_lock(rq, &rf);
4508 		p->sched_class->task_woken(rq, p);
4509 		rq_repin_lock(rq, &rf);
4510 	}
4511 #endif
4512 	task_rq_unlock(rq, p, &rf);
4513 }
4514 
4515 #ifdef CONFIG_PREEMPT_NOTIFIERS
4516 
4517 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4518 
4519 void preempt_notifier_inc(void)
4520 {
4521 	static_branch_inc(&preempt_notifier_key);
4522 }
4523 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4524 
4525 void preempt_notifier_dec(void)
4526 {
4527 	static_branch_dec(&preempt_notifier_key);
4528 }
4529 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4530 
4531 /**
4532  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4533  * @notifier: notifier struct to register
4534  */
4535 void preempt_notifier_register(struct preempt_notifier *notifier)
4536 {
4537 	if (!static_branch_unlikely(&preempt_notifier_key))
4538 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4539 
4540 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4541 }
4542 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4543 
4544 /**
4545  * preempt_notifier_unregister - no longer interested in preemption notifications
4546  * @notifier: notifier struct to unregister
4547  *
4548  * This is *not* safe to call from within a preemption notifier.
4549  */
4550 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4551 {
4552 	hlist_del(&notifier->link);
4553 }
4554 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4555 
4556 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4557 {
4558 	struct preempt_notifier *notifier;
4559 
4560 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4561 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4562 }
4563 
4564 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4565 {
4566 	if (static_branch_unlikely(&preempt_notifier_key))
4567 		__fire_sched_in_preempt_notifiers(curr);
4568 }
4569 
4570 static void
4571 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4572 				   struct task_struct *next)
4573 {
4574 	struct preempt_notifier *notifier;
4575 
4576 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4577 		notifier->ops->sched_out(notifier, next);
4578 }
4579 
4580 static __always_inline void
4581 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4582 				 struct task_struct *next)
4583 {
4584 	if (static_branch_unlikely(&preempt_notifier_key))
4585 		__fire_sched_out_preempt_notifiers(curr, next);
4586 }
4587 
4588 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4589 
4590 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4591 {
4592 }
4593 
4594 static inline void
4595 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4596 				 struct task_struct *next)
4597 {
4598 }
4599 
4600 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4601 
4602 static inline void prepare_task(struct task_struct *next)
4603 {
4604 #ifdef CONFIG_SMP
4605 	/*
4606 	 * Claim the task as running, we do this before switching to it
4607 	 * such that any running task will have this set.
4608 	 *
4609 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4610 	 */
4611 	WRITE_ONCE(next->on_cpu, 1);
4612 #endif
4613 }
4614 
4615 static inline void finish_task(struct task_struct *prev)
4616 {
4617 #ifdef CONFIG_SMP
4618 	/*
4619 	 * This must be the very last reference to @prev from this CPU. After
4620 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4621 	 * must ensure this doesn't happen until the switch is completely
4622 	 * finished.
4623 	 *
4624 	 * In particular, the load of prev->state in finish_task_switch() must
4625 	 * happen before this.
4626 	 *
4627 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4628 	 */
4629 	smp_store_release(&prev->on_cpu, 0);
4630 #endif
4631 }
4632 
4633 #ifdef CONFIG_SMP
4634 
4635 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4636 {
4637 	void (*func)(struct rq *rq);
4638 	struct callback_head *next;
4639 
4640 	lockdep_assert_rq_held(rq);
4641 
4642 	while (head) {
4643 		func = (void (*)(struct rq *))head->func;
4644 		next = head->next;
4645 		head->next = NULL;
4646 		head = next;
4647 
4648 		func(rq);
4649 	}
4650 }
4651 
4652 static void balance_push(struct rq *rq);
4653 
4654 struct callback_head balance_push_callback = {
4655 	.next = NULL,
4656 	.func = (void (*)(struct callback_head *))balance_push,
4657 };
4658 
4659 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4660 {
4661 	struct callback_head *head = rq->balance_callback;
4662 
4663 	lockdep_assert_rq_held(rq);
4664 	if (head)
4665 		rq->balance_callback = NULL;
4666 
4667 	return head;
4668 }
4669 
4670 static void __balance_callbacks(struct rq *rq)
4671 {
4672 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4673 }
4674 
4675 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4676 {
4677 	unsigned long flags;
4678 
4679 	if (unlikely(head)) {
4680 		raw_spin_rq_lock_irqsave(rq, flags);
4681 		do_balance_callbacks(rq, head);
4682 		raw_spin_rq_unlock_irqrestore(rq, flags);
4683 	}
4684 }
4685 
4686 #else
4687 
4688 static inline void __balance_callbacks(struct rq *rq)
4689 {
4690 }
4691 
4692 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4693 {
4694 	return NULL;
4695 }
4696 
4697 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4698 {
4699 }
4700 
4701 #endif
4702 
4703 static inline void
4704 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4705 {
4706 	/*
4707 	 * Since the runqueue lock will be released by the next
4708 	 * task (which is an invalid locking op but in the case
4709 	 * of the scheduler it's an obvious special-case), so we
4710 	 * do an early lockdep release here:
4711 	 */
4712 	rq_unpin_lock(rq, rf);
4713 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4714 #ifdef CONFIG_DEBUG_SPINLOCK
4715 	/* this is a valid case when another task releases the spinlock */
4716 	rq_lockp(rq)->owner = next;
4717 #endif
4718 }
4719 
4720 static inline void finish_lock_switch(struct rq *rq)
4721 {
4722 	/*
4723 	 * If we are tracking spinlock dependencies then we have to
4724 	 * fix up the runqueue lock - which gets 'carried over' from
4725 	 * prev into current:
4726 	 */
4727 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4728 	__balance_callbacks(rq);
4729 	raw_spin_rq_unlock_irq(rq);
4730 }
4731 
4732 /*
4733  * NOP if the arch has not defined these:
4734  */
4735 
4736 #ifndef prepare_arch_switch
4737 # define prepare_arch_switch(next)	do { } while (0)
4738 #endif
4739 
4740 #ifndef finish_arch_post_lock_switch
4741 # define finish_arch_post_lock_switch()	do { } while (0)
4742 #endif
4743 
4744 static inline void kmap_local_sched_out(void)
4745 {
4746 #ifdef CONFIG_KMAP_LOCAL
4747 	if (unlikely(current->kmap_ctrl.idx))
4748 		__kmap_local_sched_out();
4749 #endif
4750 }
4751 
4752 static inline void kmap_local_sched_in(void)
4753 {
4754 #ifdef CONFIG_KMAP_LOCAL
4755 	if (unlikely(current->kmap_ctrl.idx))
4756 		__kmap_local_sched_in();
4757 #endif
4758 }
4759 
4760 /**
4761  * prepare_task_switch - prepare to switch tasks
4762  * @rq: the runqueue preparing to switch
4763  * @prev: the current task that is being switched out
4764  * @next: the task we are going to switch to.
4765  *
4766  * This is called with the rq lock held and interrupts off. It must
4767  * be paired with a subsequent finish_task_switch after the context
4768  * switch.
4769  *
4770  * prepare_task_switch sets up locking and calls architecture specific
4771  * hooks.
4772  */
4773 static inline void
4774 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4775 		    struct task_struct *next)
4776 {
4777 	kcov_prepare_switch(prev);
4778 	sched_info_switch(rq, prev, next);
4779 	perf_event_task_sched_out(prev, next);
4780 	rseq_preempt(prev);
4781 	fire_sched_out_preempt_notifiers(prev, next);
4782 	kmap_local_sched_out();
4783 	prepare_task(next);
4784 	prepare_arch_switch(next);
4785 }
4786 
4787 /**
4788  * finish_task_switch - clean up after a task-switch
4789  * @prev: the thread we just switched away from.
4790  *
4791  * finish_task_switch must be called after the context switch, paired
4792  * with a prepare_task_switch call before the context switch.
4793  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4794  * and do any other architecture-specific cleanup actions.
4795  *
4796  * Note that we may have delayed dropping an mm in context_switch(). If
4797  * so, we finish that here outside of the runqueue lock. (Doing it
4798  * with the lock held can cause deadlocks; see schedule() for
4799  * details.)
4800  *
4801  * The context switch have flipped the stack from under us and restored the
4802  * local variables which were saved when this task called schedule() in the
4803  * past. prev == current is still correct but we need to recalculate this_rq
4804  * because prev may have moved to another CPU.
4805  */
4806 static struct rq *finish_task_switch(struct task_struct *prev)
4807 	__releases(rq->lock)
4808 {
4809 	struct rq *rq = this_rq();
4810 	struct mm_struct *mm = rq->prev_mm;
4811 	long prev_state;
4812 
4813 	/*
4814 	 * The previous task will have left us with a preempt_count of 2
4815 	 * because it left us after:
4816 	 *
4817 	 *	schedule()
4818 	 *	  preempt_disable();			// 1
4819 	 *	  __schedule()
4820 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4821 	 *
4822 	 * Also, see FORK_PREEMPT_COUNT.
4823 	 */
4824 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4825 		      "corrupted preempt_count: %s/%d/0x%x\n",
4826 		      current->comm, current->pid, preempt_count()))
4827 		preempt_count_set(FORK_PREEMPT_COUNT);
4828 
4829 	rq->prev_mm = NULL;
4830 
4831 	/*
4832 	 * A task struct has one reference for the use as "current".
4833 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4834 	 * schedule one last time. The schedule call will never return, and
4835 	 * the scheduled task must drop that reference.
4836 	 *
4837 	 * We must observe prev->state before clearing prev->on_cpu (in
4838 	 * finish_task), otherwise a concurrent wakeup can get prev
4839 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4840 	 * transition, resulting in a double drop.
4841 	 */
4842 	prev_state = READ_ONCE(prev->__state);
4843 	vtime_task_switch(prev);
4844 	perf_event_task_sched_in(prev, current);
4845 	finish_task(prev);
4846 	tick_nohz_task_switch();
4847 	finish_lock_switch(rq);
4848 	finish_arch_post_lock_switch();
4849 	kcov_finish_switch(current);
4850 	/*
4851 	 * kmap_local_sched_out() is invoked with rq::lock held and
4852 	 * interrupts disabled. There is no requirement for that, but the
4853 	 * sched out code does not have an interrupt enabled section.
4854 	 * Restoring the maps on sched in does not require interrupts being
4855 	 * disabled either.
4856 	 */
4857 	kmap_local_sched_in();
4858 
4859 	fire_sched_in_preempt_notifiers(current);
4860 	/*
4861 	 * When switching through a kernel thread, the loop in
4862 	 * membarrier_{private,global}_expedited() may have observed that
4863 	 * kernel thread and not issued an IPI. It is therefore possible to
4864 	 * schedule between user->kernel->user threads without passing though
4865 	 * switch_mm(). Membarrier requires a barrier after storing to
4866 	 * rq->curr, before returning to userspace, so provide them here:
4867 	 *
4868 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4869 	 *   provided by mmdrop(),
4870 	 * - a sync_core for SYNC_CORE.
4871 	 */
4872 	if (mm) {
4873 		membarrier_mm_sync_core_before_usermode(mm);
4874 		mmdrop_sched(mm);
4875 	}
4876 	if (unlikely(prev_state == TASK_DEAD)) {
4877 		if (prev->sched_class->task_dead)
4878 			prev->sched_class->task_dead(prev);
4879 
4880 		/* Task is done with its stack. */
4881 		put_task_stack(prev);
4882 
4883 		put_task_struct_rcu_user(prev);
4884 	}
4885 
4886 	return rq;
4887 }
4888 
4889 /**
4890  * schedule_tail - first thing a freshly forked thread must call.
4891  * @prev: the thread we just switched away from.
4892  */
4893 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4894 	__releases(rq->lock)
4895 {
4896 	/*
4897 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4898 	 * finish_task_switch() for details.
4899 	 *
4900 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4901 	 * and the preempt_enable() will end up enabling preemption (on
4902 	 * PREEMPT_COUNT kernels).
4903 	 */
4904 
4905 	finish_task_switch(prev);
4906 	preempt_enable();
4907 
4908 	if (current->set_child_tid)
4909 		put_user(task_pid_vnr(current), current->set_child_tid);
4910 
4911 	calculate_sigpending();
4912 }
4913 
4914 /*
4915  * context_switch - switch to the new MM and the new thread's register state.
4916  */
4917 static __always_inline struct rq *
4918 context_switch(struct rq *rq, struct task_struct *prev,
4919 	       struct task_struct *next, struct rq_flags *rf)
4920 {
4921 	prepare_task_switch(rq, prev, next);
4922 
4923 	/*
4924 	 * For paravirt, this is coupled with an exit in switch_to to
4925 	 * combine the page table reload and the switch backend into
4926 	 * one hypercall.
4927 	 */
4928 	arch_start_context_switch(prev);
4929 
4930 	/*
4931 	 * kernel -> kernel   lazy + transfer active
4932 	 *   user -> kernel   lazy + mmgrab() active
4933 	 *
4934 	 * kernel ->   user   switch + mmdrop() active
4935 	 *   user ->   user   switch
4936 	 */
4937 	if (!next->mm) {                                // to kernel
4938 		enter_lazy_tlb(prev->active_mm, next);
4939 
4940 		next->active_mm = prev->active_mm;
4941 		if (prev->mm)                           // from user
4942 			mmgrab(prev->active_mm);
4943 		else
4944 			prev->active_mm = NULL;
4945 	} else {                                        // to user
4946 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4947 		/*
4948 		 * sys_membarrier() requires an smp_mb() between setting
4949 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4950 		 *
4951 		 * The below provides this either through switch_mm(), or in
4952 		 * case 'prev->active_mm == next->mm' through
4953 		 * finish_task_switch()'s mmdrop().
4954 		 */
4955 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4956 
4957 		if (!prev->mm) {                        // from kernel
4958 			/* will mmdrop() in finish_task_switch(). */
4959 			rq->prev_mm = prev->active_mm;
4960 			prev->active_mm = NULL;
4961 		}
4962 	}
4963 
4964 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4965 
4966 	prepare_lock_switch(rq, next, rf);
4967 
4968 	/* Here we just switch the register state and the stack. */
4969 	switch_to(prev, next, prev);
4970 	barrier();
4971 
4972 	return finish_task_switch(prev);
4973 }
4974 
4975 /*
4976  * nr_running and nr_context_switches:
4977  *
4978  * externally visible scheduler statistics: current number of runnable
4979  * threads, total number of context switches performed since bootup.
4980  */
4981 unsigned int nr_running(void)
4982 {
4983 	unsigned int i, sum = 0;
4984 
4985 	for_each_online_cpu(i)
4986 		sum += cpu_rq(i)->nr_running;
4987 
4988 	return sum;
4989 }
4990 
4991 /*
4992  * Check if only the current task is running on the CPU.
4993  *
4994  * Caution: this function does not check that the caller has disabled
4995  * preemption, thus the result might have a time-of-check-to-time-of-use
4996  * race.  The caller is responsible to use it correctly, for example:
4997  *
4998  * - from a non-preemptible section (of course)
4999  *
5000  * - from a thread that is bound to a single CPU
5001  *
5002  * - in a loop with very short iterations (e.g. a polling loop)
5003  */
5004 bool single_task_running(void)
5005 {
5006 	return raw_rq()->nr_running == 1;
5007 }
5008 EXPORT_SYMBOL(single_task_running);
5009 
5010 unsigned long long nr_context_switches(void)
5011 {
5012 	int i;
5013 	unsigned long long sum = 0;
5014 
5015 	for_each_possible_cpu(i)
5016 		sum += cpu_rq(i)->nr_switches;
5017 
5018 	return sum;
5019 }
5020 
5021 /*
5022  * Consumers of these two interfaces, like for example the cpuidle menu
5023  * governor, are using nonsensical data. Preferring shallow idle state selection
5024  * for a CPU that has IO-wait which might not even end up running the task when
5025  * it does become runnable.
5026  */
5027 
5028 unsigned int nr_iowait_cpu(int cpu)
5029 {
5030 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5031 }
5032 
5033 /*
5034  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5035  *
5036  * The idea behind IO-wait account is to account the idle time that we could
5037  * have spend running if it were not for IO. That is, if we were to improve the
5038  * storage performance, we'd have a proportional reduction in IO-wait time.
5039  *
5040  * This all works nicely on UP, where, when a task blocks on IO, we account
5041  * idle time as IO-wait, because if the storage were faster, it could've been
5042  * running and we'd not be idle.
5043  *
5044  * This has been extended to SMP, by doing the same for each CPU. This however
5045  * is broken.
5046  *
5047  * Imagine for instance the case where two tasks block on one CPU, only the one
5048  * CPU will have IO-wait accounted, while the other has regular idle. Even
5049  * though, if the storage were faster, both could've ran at the same time,
5050  * utilising both CPUs.
5051  *
5052  * This means, that when looking globally, the current IO-wait accounting on
5053  * SMP is a lower bound, by reason of under accounting.
5054  *
5055  * Worse, since the numbers are provided per CPU, they are sometimes
5056  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5057  * associated with any one particular CPU, it can wake to another CPU than it
5058  * blocked on. This means the per CPU IO-wait number is meaningless.
5059  *
5060  * Task CPU affinities can make all that even more 'interesting'.
5061  */
5062 
5063 unsigned int nr_iowait(void)
5064 {
5065 	unsigned int i, sum = 0;
5066 
5067 	for_each_possible_cpu(i)
5068 		sum += nr_iowait_cpu(i);
5069 
5070 	return sum;
5071 }
5072 
5073 #ifdef CONFIG_SMP
5074 
5075 /*
5076  * sched_exec - execve() is a valuable balancing opportunity, because at
5077  * this point the task has the smallest effective memory and cache footprint.
5078  */
5079 void sched_exec(void)
5080 {
5081 	struct task_struct *p = current;
5082 	unsigned long flags;
5083 	int dest_cpu;
5084 
5085 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5086 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5087 	if (dest_cpu == smp_processor_id())
5088 		goto unlock;
5089 
5090 	if (likely(cpu_active(dest_cpu))) {
5091 		struct migration_arg arg = { p, dest_cpu };
5092 
5093 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5094 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5095 		return;
5096 	}
5097 unlock:
5098 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5099 }
5100 
5101 #endif
5102 
5103 DEFINE_PER_CPU(struct kernel_stat, kstat);
5104 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5105 
5106 EXPORT_PER_CPU_SYMBOL(kstat);
5107 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5108 
5109 /*
5110  * The function fair_sched_class.update_curr accesses the struct curr
5111  * and its field curr->exec_start; when called from task_sched_runtime(),
5112  * we observe a high rate of cache misses in practice.
5113  * Prefetching this data results in improved performance.
5114  */
5115 static inline void prefetch_curr_exec_start(struct task_struct *p)
5116 {
5117 #ifdef CONFIG_FAIR_GROUP_SCHED
5118 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5119 #else
5120 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5121 #endif
5122 	prefetch(curr);
5123 	prefetch(&curr->exec_start);
5124 }
5125 
5126 /*
5127  * Return accounted runtime for the task.
5128  * In case the task is currently running, return the runtime plus current's
5129  * pending runtime that have not been accounted yet.
5130  */
5131 unsigned long long task_sched_runtime(struct task_struct *p)
5132 {
5133 	struct rq_flags rf;
5134 	struct rq *rq;
5135 	u64 ns;
5136 
5137 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5138 	/*
5139 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5140 	 * So we have a optimization chance when the task's delta_exec is 0.
5141 	 * Reading ->on_cpu is racy, but this is ok.
5142 	 *
5143 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5144 	 * If we race with it entering CPU, unaccounted time is 0. This is
5145 	 * indistinguishable from the read occurring a few cycles earlier.
5146 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5147 	 * been accounted, so we're correct here as well.
5148 	 */
5149 	if (!p->on_cpu || !task_on_rq_queued(p))
5150 		return p->se.sum_exec_runtime;
5151 #endif
5152 
5153 	rq = task_rq_lock(p, &rf);
5154 	/*
5155 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5156 	 * project cycles that may never be accounted to this
5157 	 * thread, breaking clock_gettime().
5158 	 */
5159 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5160 		prefetch_curr_exec_start(p);
5161 		update_rq_clock(rq);
5162 		p->sched_class->update_curr(rq);
5163 	}
5164 	ns = p->se.sum_exec_runtime;
5165 	task_rq_unlock(rq, p, &rf);
5166 
5167 	return ns;
5168 }
5169 
5170 #ifdef CONFIG_SCHED_DEBUG
5171 static u64 cpu_resched_latency(struct rq *rq)
5172 {
5173 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5174 	u64 resched_latency, now = rq_clock(rq);
5175 	static bool warned_once;
5176 
5177 	if (sysctl_resched_latency_warn_once && warned_once)
5178 		return 0;
5179 
5180 	if (!need_resched() || !latency_warn_ms)
5181 		return 0;
5182 
5183 	if (system_state == SYSTEM_BOOTING)
5184 		return 0;
5185 
5186 	if (!rq->last_seen_need_resched_ns) {
5187 		rq->last_seen_need_resched_ns = now;
5188 		rq->ticks_without_resched = 0;
5189 		return 0;
5190 	}
5191 
5192 	rq->ticks_without_resched++;
5193 	resched_latency = now - rq->last_seen_need_resched_ns;
5194 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5195 		return 0;
5196 
5197 	warned_once = true;
5198 
5199 	return resched_latency;
5200 }
5201 
5202 static int __init setup_resched_latency_warn_ms(char *str)
5203 {
5204 	long val;
5205 
5206 	if ((kstrtol(str, 0, &val))) {
5207 		pr_warn("Unable to set resched_latency_warn_ms\n");
5208 		return 1;
5209 	}
5210 
5211 	sysctl_resched_latency_warn_ms = val;
5212 	return 1;
5213 }
5214 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5215 #else
5216 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5217 #endif /* CONFIG_SCHED_DEBUG */
5218 
5219 /*
5220  * This function gets called by the timer code, with HZ frequency.
5221  * We call it with interrupts disabled.
5222  */
5223 void scheduler_tick(void)
5224 {
5225 	int cpu = smp_processor_id();
5226 	struct rq *rq = cpu_rq(cpu);
5227 	struct task_struct *curr = rq->curr;
5228 	struct rq_flags rf;
5229 	unsigned long thermal_pressure;
5230 	u64 resched_latency;
5231 
5232 	arch_scale_freq_tick();
5233 	sched_clock_tick();
5234 
5235 	rq_lock(rq, &rf);
5236 
5237 	update_rq_clock(rq);
5238 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5239 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5240 	curr->sched_class->task_tick(rq, curr, 0);
5241 	if (sched_feat(LATENCY_WARN))
5242 		resched_latency = cpu_resched_latency(rq);
5243 	calc_global_load_tick(rq);
5244 
5245 	rq_unlock(rq, &rf);
5246 
5247 	if (sched_feat(LATENCY_WARN) && resched_latency)
5248 		resched_latency_warn(cpu, resched_latency);
5249 
5250 	perf_event_task_tick();
5251 
5252 #ifdef CONFIG_SMP
5253 	rq->idle_balance = idle_cpu(cpu);
5254 	trigger_load_balance(rq);
5255 #endif
5256 }
5257 
5258 #ifdef CONFIG_NO_HZ_FULL
5259 
5260 struct tick_work {
5261 	int			cpu;
5262 	atomic_t		state;
5263 	struct delayed_work	work;
5264 };
5265 /* Values for ->state, see diagram below. */
5266 #define TICK_SCHED_REMOTE_OFFLINE	0
5267 #define TICK_SCHED_REMOTE_OFFLINING	1
5268 #define TICK_SCHED_REMOTE_RUNNING	2
5269 
5270 /*
5271  * State diagram for ->state:
5272  *
5273  *
5274  *          TICK_SCHED_REMOTE_OFFLINE
5275  *                    |   ^
5276  *                    |   |
5277  *                    |   | sched_tick_remote()
5278  *                    |   |
5279  *                    |   |
5280  *                    +--TICK_SCHED_REMOTE_OFFLINING
5281  *                    |   ^
5282  *                    |   |
5283  * sched_tick_start() |   | sched_tick_stop()
5284  *                    |   |
5285  *                    V   |
5286  *          TICK_SCHED_REMOTE_RUNNING
5287  *
5288  *
5289  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5290  * and sched_tick_start() are happy to leave the state in RUNNING.
5291  */
5292 
5293 static struct tick_work __percpu *tick_work_cpu;
5294 
5295 static void sched_tick_remote(struct work_struct *work)
5296 {
5297 	struct delayed_work *dwork = to_delayed_work(work);
5298 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5299 	int cpu = twork->cpu;
5300 	struct rq *rq = cpu_rq(cpu);
5301 	struct task_struct *curr;
5302 	struct rq_flags rf;
5303 	u64 delta;
5304 	int os;
5305 
5306 	/*
5307 	 * Handle the tick only if it appears the remote CPU is running in full
5308 	 * dynticks mode. The check is racy by nature, but missing a tick or
5309 	 * having one too much is no big deal because the scheduler tick updates
5310 	 * statistics and checks timeslices in a time-independent way, regardless
5311 	 * of when exactly it is running.
5312 	 */
5313 	if (!tick_nohz_tick_stopped_cpu(cpu))
5314 		goto out_requeue;
5315 
5316 	rq_lock_irq(rq, &rf);
5317 	curr = rq->curr;
5318 	if (cpu_is_offline(cpu))
5319 		goto out_unlock;
5320 
5321 	update_rq_clock(rq);
5322 
5323 	if (!is_idle_task(curr)) {
5324 		/*
5325 		 * Make sure the next tick runs within a reasonable
5326 		 * amount of time.
5327 		 */
5328 		delta = rq_clock_task(rq) - curr->se.exec_start;
5329 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5330 	}
5331 	curr->sched_class->task_tick(rq, curr, 0);
5332 
5333 	calc_load_nohz_remote(rq);
5334 out_unlock:
5335 	rq_unlock_irq(rq, &rf);
5336 out_requeue:
5337 
5338 	/*
5339 	 * Run the remote tick once per second (1Hz). This arbitrary
5340 	 * frequency is large enough to avoid overload but short enough
5341 	 * to keep scheduler internal stats reasonably up to date.  But
5342 	 * first update state to reflect hotplug activity if required.
5343 	 */
5344 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5345 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5346 	if (os == TICK_SCHED_REMOTE_RUNNING)
5347 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5348 }
5349 
5350 static void sched_tick_start(int cpu)
5351 {
5352 	int os;
5353 	struct tick_work *twork;
5354 
5355 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5356 		return;
5357 
5358 	WARN_ON_ONCE(!tick_work_cpu);
5359 
5360 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5361 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5362 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5363 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5364 		twork->cpu = cpu;
5365 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5366 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5367 	}
5368 }
5369 
5370 #ifdef CONFIG_HOTPLUG_CPU
5371 static void sched_tick_stop(int cpu)
5372 {
5373 	struct tick_work *twork;
5374 	int os;
5375 
5376 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5377 		return;
5378 
5379 	WARN_ON_ONCE(!tick_work_cpu);
5380 
5381 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5382 	/* There cannot be competing actions, but don't rely on stop-machine. */
5383 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5384 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5385 	/* Don't cancel, as this would mess up the state machine. */
5386 }
5387 #endif /* CONFIG_HOTPLUG_CPU */
5388 
5389 int __init sched_tick_offload_init(void)
5390 {
5391 	tick_work_cpu = alloc_percpu(struct tick_work);
5392 	BUG_ON(!tick_work_cpu);
5393 	return 0;
5394 }
5395 
5396 #else /* !CONFIG_NO_HZ_FULL */
5397 static inline void sched_tick_start(int cpu) { }
5398 static inline void sched_tick_stop(int cpu) { }
5399 #endif
5400 
5401 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5402 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5403 /*
5404  * If the value passed in is equal to the current preempt count
5405  * then we just disabled preemption. Start timing the latency.
5406  */
5407 static inline void preempt_latency_start(int val)
5408 {
5409 	if (preempt_count() == val) {
5410 		unsigned long ip = get_lock_parent_ip();
5411 #ifdef CONFIG_DEBUG_PREEMPT
5412 		current->preempt_disable_ip = ip;
5413 #endif
5414 		trace_preempt_off(CALLER_ADDR0, ip);
5415 	}
5416 }
5417 
5418 void preempt_count_add(int val)
5419 {
5420 #ifdef CONFIG_DEBUG_PREEMPT
5421 	/*
5422 	 * Underflow?
5423 	 */
5424 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5425 		return;
5426 #endif
5427 	__preempt_count_add(val);
5428 #ifdef CONFIG_DEBUG_PREEMPT
5429 	/*
5430 	 * Spinlock count overflowing soon?
5431 	 */
5432 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5433 				PREEMPT_MASK - 10);
5434 #endif
5435 	preempt_latency_start(val);
5436 }
5437 EXPORT_SYMBOL(preempt_count_add);
5438 NOKPROBE_SYMBOL(preempt_count_add);
5439 
5440 /*
5441  * If the value passed in equals to the current preempt count
5442  * then we just enabled preemption. Stop timing the latency.
5443  */
5444 static inline void preempt_latency_stop(int val)
5445 {
5446 	if (preempt_count() == val)
5447 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5448 }
5449 
5450 void preempt_count_sub(int val)
5451 {
5452 #ifdef CONFIG_DEBUG_PREEMPT
5453 	/*
5454 	 * Underflow?
5455 	 */
5456 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5457 		return;
5458 	/*
5459 	 * Is the spinlock portion underflowing?
5460 	 */
5461 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5462 			!(preempt_count() & PREEMPT_MASK)))
5463 		return;
5464 #endif
5465 
5466 	preempt_latency_stop(val);
5467 	__preempt_count_sub(val);
5468 }
5469 EXPORT_SYMBOL(preempt_count_sub);
5470 NOKPROBE_SYMBOL(preempt_count_sub);
5471 
5472 #else
5473 static inline void preempt_latency_start(int val) { }
5474 static inline void preempt_latency_stop(int val) { }
5475 #endif
5476 
5477 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5478 {
5479 #ifdef CONFIG_DEBUG_PREEMPT
5480 	return p->preempt_disable_ip;
5481 #else
5482 	return 0;
5483 #endif
5484 }
5485 
5486 /*
5487  * Print scheduling while atomic bug:
5488  */
5489 static noinline void __schedule_bug(struct task_struct *prev)
5490 {
5491 	/* Save this before calling printk(), since that will clobber it */
5492 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5493 
5494 	if (oops_in_progress)
5495 		return;
5496 
5497 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5498 		prev->comm, prev->pid, preempt_count());
5499 
5500 	debug_show_held_locks(prev);
5501 	print_modules();
5502 	if (irqs_disabled())
5503 		print_irqtrace_events(prev);
5504 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5505 	    && in_atomic_preempt_off()) {
5506 		pr_err("Preemption disabled at:");
5507 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5508 	}
5509 	if (panic_on_warn)
5510 		panic("scheduling while atomic\n");
5511 
5512 	dump_stack();
5513 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5514 }
5515 
5516 /*
5517  * Various schedule()-time debugging checks and statistics:
5518  */
5519 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5520 {
5521 #ifdef CONFIG_SCHED_STACK_END_CHECK
5522 	if (task_stack_end_corrupted(prev))
5523 		panic("corrupted stack end detected inside scheduler\n");
5524 
5525 	if (task_scs_end_corrupted(prev))
5526 		panic("corrupted shadow stack detected inside scheduler\n");
5527 #endif
5528 
5529 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5530 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5531 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5532 			prev->comm, prev->pid, prev->non_block_count);
5533 		dump_stack();
5534 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5535 	}
5536 #endif
5537 
5538 	if (unlikely(in_atomic_preempt_off())) {
5539 		__schedule_bug(prev);
5540 		preempt_count_set(PREEMPT_DISABLED);
5541 	}
5542 	rcu_sleep_check();
5543 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5544 
5545 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5546 
5547 	schedstat_inc(this_rq()->sched_count);
5548 }
5549 
5550 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5551 				  struct rq_flags *rf)
5552 {
5553 #ifdef CONFIG_SMP
5554 	const struct sched_class *class;
5555 	/*
5556 	 * We must do the balancing pass before put_prev_task(), such
5557 	 * that when we release the rq->lock the task is in the same
5558 	 * state as before we took rq->lock.
5559 	 *
5560 	 * We can terminate the balance pass as soon as we know there is
5561 	 * a runnable task of @class priority or higher.
5562 	 */
5563 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5564 		if (class->balance(rq, prev, rf))
5565 			break;
5566 	}
5567 #endif
5568 
5569 	put_prev_task(rq, prev);
5570 }
5571 
5572 /*
5573  * Pick up the highest-prio task:
5574  */
5575 static inline struct task_struct *
5576 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5577 {
5578 	const struct sched_class *class;
5579 	struct task_struct *p;
5580 
5581 	/*
5582 	 * Optimization: we know that if all tasks are in the fair class we can
5583 	 * call that function directly, but only if the @prev task wasn't of a
5584 	 * higher scheduling class, because otherwise those lose the
5585 	 * opportunity to pull in more work from other CPUs.
5586 	 */
5587 	if (likely(prev->sched_class <= &fair_sched_class &&
5588 		   rq->nr_running == rq->cfs.h_nr_running)) {
5589 
5590 		p = pick_next_task_fair(rq, prev, rf);
5591 		if (unlikely(p == RETRY_TASK))
5592 			goto restart;
5593 
5594 		/* Assume the next prioritized class is idle_sched_class */
5595 		if (!p) {
5596 			put_prev_task(rq, prev);
5597 			p = pick_next_task_idle(rq);
5598 		}
5599 
5600 		return p;
5601 	}
5602 
5603 restart:
5604 	put_prev_task_balance(rq, prev, rf);
5605 
5606 	for_each_class(class) {
5607 		p = class->pick_next_task(rq);
5608 		if (p)
5609 			return p;
5610 	}
5611 
5612 	BUG(); /* The idle class should always have a runnable task. */
5613 }
5614 
5615 #ifdef CONFIG_SCHED_CORE
5616 static inline bool is_task_rq_idle(struct task_struct *t)
5617 {
5618 	return (task_rq(t)->idle == t);
5619 }
5620 
5621 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5622 {
5623 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5624 }
5625 
5626 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5627 {
5628 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5629 		return true;
5630 
5631 	return a->core_cookie == b->core_cookie;
5632 }
5633 
5634 static inline struct task_struct *pick_task(struct rq *rq)
5635 {
5636 	const struct sched_class *class;
5637 	struct task_struct *p;
5638 
5639 	for_each_class(class) {
5640 		p = class->pick_task(rq);
5641 		if (p)
5642 			return p;
5643 	}
5644 
5645 	BUG(); /* The idle class should always have a runnable task. */
5646 }
5647 
5648 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5649 
5650 static struct task_struct *
5651 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5652 {
5653 	struct task_struct *next, *p, *max = NULL;
5654 	const struct cpumask *smt_mask;
5655 	bool fi_before = false;
5656 	unsigned long cookie;
5657 	int i, cpu, occ = 0;
5658 	struct rq *rq_i;
5659 	bool need_sync;
5660 
5661 	if (!sched_core_enabled(rq))
5662 		return __pick_next_task(rq, prev, rf);
5663 
5664 	cpu = cpu_of(rq);
5665 
5666 	/* Stopper task is switching into idle, no need core-wide selection. */
5667 	if (cpu_is_offline(cpu)) {
5668 		/*
5669 		 * Reset core_pick so that we don't enter the fastpath when
5670 		 * coming online. core_pick would already be migrated to
5671 		 * another cpu during offline.
5672 		 */
5673 		rq->core_pick = NULL;
5674 		return __pick_next_task(rq, prev, rf);
5675 	}
5676 
5677 	/*
5678 	 * If there were no {en,de}queues since we picked (IOW, the task
5679 	 * pointers are all still valid), and we haven't scheduled the last
5680 	 * pick yet, do so now.
5681 	 *
5682 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5683 	 * it was either offline or went offline during a sibling's core-wide
5684 	 * selection. In this case, do a core-wide selection.
5685 	 */
5686 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5687 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5688 	    rq->core_pick) {
5689 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5690 
5691 		next = rq->core_pick;
5692 		if (next != prev) {
5693 			put_prev_task(rq, prev);
5694 			set_next_task(rq, next);
5695 		}
5696 
5697 		rq->core_pick = NULL;
5698 		return next;
5699 	}
5700 
5701 	put_prev_task_balance(rq, prev, rf);
5702 
5703 	smt_mask = cpu_smt_mask(cpu);
5704 	need_sync = !!rq->core->core_cookie;
5705 
5706 	/* reset state */
5707 	rq->core->core_cookie = 0UL;
5708 	if (rq->core->core_forceidle) {
5709 		need_sync = true;
5710 		fi_before = true;
5711 		rq->core->core_forceidle = false;
5712 	}
5713 
5714 	/*
5715 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5716 	 *
5717 	 * @task_seq guards the task state ({en,de}queues)
5718 	 * @pick_seq is the @task_seq we did a selection on
5719 	 * @sched_seq is the @pick_seq we scheduled
5720 	 *
5721 	 * However, preemptions can cause multiple picks on the same task set.
5722 	 * 'Fix' this by also increasing @task_seq for every pick.
5723 	 */
5724 	rq->core->core_task_seq++;
5725 
5726 	/*
5727 	 * Optimize for common case where this CPU has no cookies
5728 	 * and there are no cookied tasks running on siblings.
5729 	 */
5730 	if (!need_sync) {
5731 		next = pick_task(rq);
5732 		if (!next->core_cookie) {
5733 			rq->core_pick = NULL;
5734 			/*
5735 			 * For robustness, update the min_vruntime_fi for
5736 			 * unconstrained picks as well.
5737 			 */
5738 			WARN_ON_ONCE(fi_before);
5739 			task_vruntime_update(rq, next, false);
5740 			goto done;
5741 		}
5742 	}
5743 
5744 	/*
5745 	 * For each thread: do the regular task pick and find the max prio task
5746 	 * amongst them.
5747 	 *
5748 	 * Tie-break prio towards the current CPU
5749 	 */
5750 	for_each_cpu_wrap(i, smt_mask, cpu) {
5751 		rq_i = cpu_rq(i);
5752 
5753 		if (i != cpu)
5754 			update_rq_clock(rq_i);
5755 
5756 		p = rq_i->core_pick = pick_task(rq_i);
5757 		if (!max || prio_less(max, p, fi_before))
5758 			max = p;
5759 	}
5760 
5761 	cookie = rq->core->core_cookie = max->core_cookie;
5762 
5763 	/*
5764 	 * For each thread: try and find a runnable task that matches @max or
5765 	 * force idle.
5766 	 */
5767 	for_each_cpu(i, smt_mask) {
5768 		rq_i = cpu_rq(i);
5769 		p = rq_i->core_pick;
5770 
5771 		if (!cookie_equals(p, cookie)) {
5772 			p = NULL;
5773 			if (cookie)
5774 				p = sched_core_find(rq_i, cookie);
5775 			if (!p)
5776 				p = idle_sched_class.pick_task(rq_i);
5777 		}
5778 
5779 		rq_i->core_pick = p;
5780 
5781 		if (p == rq_i->idle) {
5782 			if (rq_i->nr_running) {
5783 				rq->core->core_forceidle = true;
5784 				if (!fi_before)
5785 					rq->core->core_forceidle_seq++;
5786 			}
5787 		} else {
5788 			occ++;
5789 		}
5790 	}
5791 
5792 	rq->core->core_pick_seq = rq->core->core_task_seq;
5793 	next = rq->core_pick;
5794 	rq->core_sched_seq = rq->core->core_pick_seq;
5795 
5796 	/* Something should have been selected for current CPU */
5797 	WARN_ON_ONCE(!next);
5798 
5799 	/*
5800 	 * Reschedule siblings
5801 	 *
5802 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5803 	 * sending an IPI (below) ensures the sibling will no longer be running
5804 	 * their task. This ensures there is no inter-sibling overlap between
5805 	 * non-matching user state.
5806 	 */
5807 	for_each_cpu(i, smt_mask) {
5808 		rq_i = cpu_rq(i);
5809 
5810 		/*
5811 		 * An online sibling might have gone offline before a task
5812 		 * could be picked for it, or it might be offline but later
5813 		 * happen to come online, but its too late and nothing was
5814 		 * picked for it.  That's Ok - it will pick tasks for itself,
5815 		 * so ignore it.
5816 		 */
5817 		if (!rq_i->core_pick)
5818 			continue;
5819 
5820 		/*
5821 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5822 		 * fi_before     fi      update?
5823 		 *  0            0       1
5824 		 *  0            1       1
5825 		 *  1            0       1
5826 		 *  1            1       0
5827 		 */
5828 		if (!(fi_before && rq->core->core_forceidle))
5829 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5830 
5831 		rq_i->core_pick->core_occupation = occ;
5832 
5833 		if (i == cpu) {
5834 			rq_i->core_pick = NULL;
5835 			continue;
5836 		}
5837 
5838 		/* Did we break L1TF mitigation requirements? */
5839 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5840 
5841 		if (rq_i->curr == rq_i->core_pick) {
5842 			rq_i->core_pick = NULL;
5843 			continue;
5844 		}
5845 
5846 		resched_curr(rq_i);
5847 	}
5848 
5849 done:
5850 	set_next_task(rq, next);
5851 	return next;
5852 }
5853 
5854 static bool try_steal_cookie(int this, int that)
5855 {
5856 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5857 	struct task_struct *p;
5858 	unsigned long cookie;
5859 	bool success = false;
5860 
5861 	local_irq_disable();
5862 	double_rq_lock(dst, src);
5863 
5864 	cookie = dst->core->core_cookie;
5865 	if (!cookie)
5866 		goto unlock;
5867 
5868 	if (dst->curr != dst->idle)
5869 		goto unlock;
5870 
5871 	p = sched_core_find(src, cookie);
5872 	if (p == src->idle)
5873 		goto unlock;
5874 
5875 	do {
5876 		if (p == src->core_pick || p == src->curr)
5877 			goto next;
5878 
5879 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5880 			goto next;
5881 
5882 		if (p->core_occupation > dst->idle->core_occupation)
5883 			goto next;
5884 
5885 		deactivate_task(src, p, 0);
5886 		set_task_cpu(p, this);
5887 		activate_task(dst, p, 0);
5888 
5889 		resched_curr(dst);
5890 
5891 		success = true;
5892 		break;
5893 
5894 next:
5895 		p = sched_core_next(p, cookie);
5896 	} while (p);
5897 
5898 unlock:
5899 	double_rq_unlock(dst, src);
5900 	local_irq_enable();
5901 
5902 	return success;
5903 }
5904 
5905 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5906 {
5907 	int i;
5908 
5909 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5910 		if (i == cpu)
5911 			continue;
5912 
5913 		if (need_resched())
5914 			break;
5915 
5916 		if (try_steal_cookie(cpu, i))
5917 			return true;
5918 	}
5919 
5920 	return false;
5921 }
5922 
5923 static void sched_core_balance(struct rq *rq)
5924 {
5925 	struct sched_domain *sd;
5926 	int cpu = cpu_of(rq);
5927 
5928 	preempt_disable();
5929 	rcu_read_lock();
5930 	raw_spin_rq_unlock_irq(rq);
5931 	for_each_domain(cpu, sd) {
5932 		if (need_resched())
5933 			break;
5934 
5935 		if (steal_cookie_task(cpu, sd))
5936 			break;
5937 	}
5938 	raw_spin_rq_lock_irq(rq);
5939 	rcu_read_unlock();
5940 	preempt_enable();
5941 }
5942 
5943 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5944 
5945 void queue_core_balance(struct rq *rq)
5946 {
5947 	if (!sched_core_enabled(rq))
5948 		return;
5949 
5950 	if (!rq->core->core_cookie)
5951 		return;
5952 
5953 	if (!rq->nr_running) /* not forced idle */
5954 		return;
5955 
5956 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5957 }
5958 
5959 static void sched_core_cpu_starting(unsigned int cpu)
5960 {
5961 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5962 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5963 	unsigned long flags;
5964 	int t;
5965 
5966 	sched_core_lock(cpu, &flags);
5967 
5968 	WARN_ON_ONCE(rq->core != rq);
5969 
5970 	/* if we're the first, we'll be our own leader */
5971 	if (cpumask_weight(smt_mask) == 1)
5972 		goto unlock;
5973 
5974 	/* find the leader */
5975 	for_each_cpu(t, smt_mask) {
5976 		if (t == cpu)
5977 			continue;
5978 		rq = cpu_rq(t);
5979 		if (rq->core == rq) {
5980 			core_rq = rq;
5981 			break;
5982 		}
5983 	}
5984 
5985 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5986 		goto unlock;
5987 
5988 	/* install and validate core_rq */
5989 	for_each_cpu(t, smt_mask) {
5990 		rq = cpu_rq(t);
5991 
5992 		if (t == cpu)
5993 			rq->core = core_rq;
5994 
5995 		WARN_ON_ONCE(rq->core != core_rq);
5996 	}
5997 
5998 unlock:
5999 	sched_core_unlock(cpu, &flags);
6000 }
6001 
6002 static void sched_core_cpu_deactivate(unsigned int cpu)
6003 {
6004 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6005 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6006 	unsigned long flags;
6007 	int t;
6008 
6009 	sched_core_lock(cpu, &flags);
6010 
6011 	/* if we're the last man standing, nothing to do */
6012 	if (cpumask_weight(smt_mask) == 1) {
6013 		WARN_ON_ONCE(rq->core != rq);
6014 		goto unlock;
6015 	}
6016 
6017 	/* if we're not the leader, nothing to do */
6018 	if (rq->core != rq)
6019 		goto unlock;
6020 
6021 	/* find a new leader */
6022 	for_each_cpu(t, smt_mask) {
6023 		if (t == cpu)
6024 			continue;
6025 		core_rq = cpu_rq(t);
6026 		break;
6027 	}
6028 
6029 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6030 		goto unlock;
6031 
6032 	/* copy the shared state to the new leader */
6033 	core_rq->core_task_seq      = rq->core_task_seq;
6034 	core_rq->core_pick_seq      = rq->core_pick_seq;
6035 	core_rq->core_cookie        = rq->core_cookie;
6036 	core_rq->core_forceidle     = rq->core_forceidle;
6037 	core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6038 
6039 	/* install new leader */
6040 	for_each_cpu(t, smt_mask) {
6041 		rq = cpu_rq(t);
6042 		rq->core = core_rq;
6043 	}
6044 
6045 unlock:
6046 	sched_core_unlock(cpu, &flags);
6047 }
6048 
6049 static inline void sched_core_cpu_dying(unsigned int cpu)
6050 {
6051 	struct rq *rq = cpu_rq(cpu);
6052 
6053 	if (rq->core != rq)
6054 		rq->core = rq;
6055 }
6056 
6057 #else /* !CONFIG_SCHED_CORE */
6058 
6059 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6060 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6061 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6062 
6063 static struct task_struct *
6064 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6065 {
6066 	return __pick_next_task(rq, prev, rf);
6067 }
6068 
6069 #endif /* CONFIG_SCHED_CORE */
6070 
6071 /*
6072  * Constants for the sched_mode argument of __schedule().
6073  *
6074  * The mode argument allows RT enabled kernels to differentiate a
6075  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6076  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6077  * optimize the AND operation out and just check for zero.
6078  */
6079 #define SM_NONE			0x0
6080 #define SM_PREEMPT		0x1
6081 #define SM_RTLOCK_WAIT		0x2
6082 
6083 #ifndef CONFIG_PREEMPT_RT
6084 # define SM_MASK_PREEMPT	(~0U)
6085 #else
6086 # define SM_MASK_PREEMPT	SM_PREEMPT
6087 #endif
6088 
6089 /*
6090  * __schedule() is the main scheduler function.
6091  *
6092  * The main means of driving the scheduler and thus entering this function are:
6093  *
6094  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6095  *
6096  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6097  *      paths. For example, see arch/x86/entry_64.S.
6098  *
6099  *      To drive preemption between tasks, the scheduler sets the flag in timer
6100  *      interrupt handler scheduler_tick().
6101  *
6102  *   3. Wakeups don't really cause entry into schedule(). They add a
6103  *      task to the run-queue and that's it.
6104  *
6105  *      Now, if the new task added to the run-queue preempts the current
6106  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6107  *      called on the nearest possible occasion:
6108  *
6109  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6110  *
6111  *         - in syscall or exception context, at the next outmost
6112  *           preempt_enable(). (this might be as soon as the wake_up()'s
6113  *           spin_unlock()!)
6114  *
6115  *         - in IRQ context, return from interrupt-handler to
6116  *           preemptible context
6117  *
6118  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6119  *         then at the next:
6120  *
6121  *          - cond_resched() call
6122  *          - explicit schedule() call
6123  *          - return from syscall or exception to user-space
6124  *          - return from interrupt-handler to user-space
6125  *
6126  * WARNING: must be called with preemption disabled!
6127  */
6128 static void __sched notrace __schedule(unsigned int sched_mode)
6129 {
6130 	struct task_struct *prev, *next;
6131 	unsigned long *switch_count;
6132 	unsigned long prev_state;
6133 	struct rq_flags rf;
6134 	struct rq *rq;
6135 	int cpu;
6136 
6137 	cpu = smp_processor_id();
6138 	rq = cpu_rq(cpu);
6139 	prev = rq->curr;
6140 
6141 	schedule_debug(prev, !!sched_mode);
6142 
6143 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6144 		hrtick_clear(rq);
6145 
6146 	local_irq_disable();
6147 	rcu_note_context_switch(!!sched_mode);
6148 
6149 	/*
6150 	 * Make sure that signal_pending_state()->signal_pending() below
6151 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6152 	 * done by the caller to avoid the race with signal_wake_up():
6153 	 *
6154 	 * __set_current_state(@state)		signal_wake_up()
6155 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6156 	 *					  wake_up_state(p, state)
6157 	 *   LOCK rq->lock			    LOCK p->pi_state
6158 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6159 	 *     if (signal_pending_state())	    if (p->state & @state)
6160 	 *
6161 	 * Also, the membarrier system call requires a full memory barrier
6162 	 * after coming from user-space, before storing to rq->curr.
6163 	 */
6164 	rq_lock(rq, &rf);
6165 	smp_mb__after_spinlock();
6166 
6167 	/* Promote REQ to ACT */
6168 	rq->clock_update_flags <<= 1;
6169 	update_rq_clock(rq);
6170 
6171 	switch_count = &prev->nivcsw;
6172 
6173 	/*
6174 	 * We must load prev->state once (task_struct::state is volatile), such
6175 	 * that:
6176 	 *
6177 	 *  - we form a control dependency vs deactivate_task() below.
6178 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6179 	 */
6180 	prev_state = READ_ONCE(prev->__state);
6181 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6182 		if (signal_pending_state(prev_state, prev)) {
6183 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6184 		} else {
6185 			prev->sched_contributes_to_load =
6186 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6187 				!(prev_state & TASK_NOLOAD) &&
6188 				!(prev->flags & PF_FROZEN);
6189 
6190 			if (prev->sched_contributes_to_load)
6191 				rq->nr_uninterruptible++;
6192 
6193 			/*
6194 			 * __schedule()			ttwu()
6195 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6196 			 *   if (prev_state)		    goto out;
6197 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6198 			 *				  p->state = TASK_WAKING
6199 			 *
6200 			 * Where __schedule() and ttwu() have matching control dependencies.
6201 			 *
6202 			 * After this, schedule() must not care about p->state any more.
6203 			 */
6204 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6205 
6206 			if (prev->in_iowait) {
6207 				atomic_inc(&rq->nr_iowait);
6208 				delayacct_blkio_start();
6209 			}
6210 		}
6211 		switch_count = &prev->nvcsw;
6212 	}
6213 
6214 	next = pick_next_task(rq, prev, &rf);
6215 	clear_tsk_need_resched(prev);
6216 	clear_preempt_need_resched();
6217 #ifdef CONFIG_SCHED_DEBUG
6218 	rq->last_seen_need_resched_ns = 0;
6219 #endif
6220 
6221 	if (likely(prev != next)) {
6222 		rq->nr_switches++;
6223 		/*
6224 		 * RCU users of rcu_dereference(rq->curr) may not see
6225 		 * changes to task_struct made by pick_next_task().
6226 		 */
6227 		RCU_INIT_POINTER(rq->curr, next);
6228 		/*
6229 		 * The membarrier system call requires each architecture
6230 		 * to have a full memory barrier after updating
6231 		 * rq->curr, before returning to user-space.
6232 		 *
6233 		 * Here are the schemes providing that barrier on the
6234 		 * various architectures:
6235 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6236 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6237 		 * - finish_lock_switch() for weakly-ordered
6238 		 *   architectures where spin_unlock is a full barrier,
6239 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6240 		 *   is a RELEASE barrier),
6241 		 */
6242 		++*switch_count;
6243 
6244 		migrate_disable_switch(rq, prev);
6245 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6246 
6247 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6248 
6249 		/* Also unlocks the rq: */
6250 		rq = context_switch(rq, prev, next, &rf);
6251 	} else {
6252 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6253 
6254 		rq_unpin_lock(rq, &rf);
6255 		__balance_callbacks(rq);
6256 		raw_spin_rq_unlock_irq(rq);
6257 	}
6258 }
6259 
6260 void __noreturn do_task_dead(void)
6261 {
6262 	/* Causes final put_task_struct in finish_task_switch(): */
6263 	set_special_state(TASK_DEAD);
6264 
6265 	/* Tell freezer to ignore us: */
6266 	current->flags |= PF_NOFREEZE;
6267 
6268 	__schedule(SM_NONE);
6269 	BUG();
6270 
6271 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6272 	for (;;)
6273 		cpu_relax();
6274 }
6275 
6276 static inline void sched_submit_work(struct task_struct *tsk)
6277 {
6278 	unsigned int task_flags;
6279 
6280 	if (task_is_running(tsk))
6281 		return;
6282 
6283 	task_flags = tsk->flags;
6284 	/*
6285 	 * If a worker goes to sleep, notify and ask workqueue whether it
6286 	 * wants to wake up a task to maintain concurrency.
6287 	 */
6288 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6289 		if (task_flags & PF_WQ_WORKER)
6290 			wq_worker_sleeping(tsk);
6291 		else
6292 			io_wq_worker_sleeping(tsk);
6293 	}
6294 
6295 	if (tsk_is_pi_blocked(tsk))
6296 		return;
6297 
6298 	/*
6299 	 * If we are going to sleep and we have plugged IO queued,
6300 	 * make sure to submit it to avoid deadlocks.
6301 	 */
6302 	if (blk_needs_flush_plug(tsk))
6303 		blk_flush_plug(tsk->plug, true);
6304 }
6305 
6306 static void sched_update_worker(struct task_struct *tsk)
6307 {
6308 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6309 		if (tsk->flags & PF_WQ_WORKER)
6310 			wq_worker_running(tsk);
6311 		else
6312 			io_wq_worker_running(tsk);
6313 	}
6314 }
6315 
6316 asmlinkage __visible void __sched schedule(void)
6317 {
6318 	struct task_struct *tsk = current;
6319 
6320 	sched_submit_work(tsk);
6321 	do {
6322 		preempt_disable();
6323 		__schedule(SM_NONE);
6324 		sched_preempt_enable_no_resched();
6325 	} while (need_resched());
6326 	sched_update_worker(tsk);
6327 }
6328 EXPORT_SYMBOL(schedule);
6329 
6330 /*
6331  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6332  * state (have scheduled out non-voluntarily) by making sure that all
6333  * tasks have either left the run queue or have gone into user space.
6334  * As idle tasks do not do either, they must not ever be preempted
6335  * (schedule out non-voluntarily).
6336  *
6337  * schedule_idle() is similar to schedule_preempt_disable() except that it
6338  * never enables preemption because it does not call sched_submit_work().
6339  */
6340 void __sched schedule_idle(void)
6341 {
6342 	/*
6343 	 * As this skips calling sched_submit_work(), which the idle task does
6344 	 * regardless because that function is a nop when the task is in a
6345 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6346 	 * current task can be in any other state. Note, idle is always in the
6347 	 * TASK_RUNNING state.
6348 	 */
6349 	WARN_ON_ONCE(current->__state);
6350 	do {
6351 		__schedule(SM_NONE);
6352 	} while (need_resched());
6353 }
6354 
6355 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6356 asmlinkage __visible void __sched schedule_user(void)
6357 {
6358 	/*
6359 	 * If we come here after a random call to set_need_resched(),
6360 	 * or we have been woken up remotely but the IPI has not yet arrived,
6361 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6362 	 * we find a better solution.
6363 	 *
6364 	 * NB: There are buggy callers of this function.  Ideally we
6365 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6366 	 * too frequently to make sense yet.
6367 	 */
6368 	enum ctx_state prev_state = exception_enter();
6369 	schedule();
6370 	exception_exit(prev_state);
6371 }
6372 #endif
6373 
6374 /**
6375  * schedule_preempt_disabled - called with preemption disabled
6376  *
6377  * Returns with preemption disabled. Note: preempt_count must be 1
6378  */
6379 void __sched schedule_preempt_disabled(void)
6380 {
6381 	sched_preempt_enable_no_resched();
6382 	schedule();
6383 	preempt_disable();
6384 }
6385 
6386 #ifdef CONFIG_PREEMPT_RT
6387 void __sched notrace schedule_rtlock(void)
6388 {
6389 	do {
6390 		preempt_disable();
6391 		__schedule(SM_RTLOCK_WAIT);
6392 		sched_preempt_enable_no_resched();
6393 	} while (need_resched());
6394 }
6395 NOKPROBE_SYMBOL(schedule_rtlock);
6396 #endif
6397 
6398 static void __sched notrace preempt_schedule_common(void)
6399 {
6400 	do {
6401 		/*
6402 		 * Because the function tracer can trace preempt_count_sub()
6403 		 * and it also uses preempt_enable/disable_notrace(), if
6404 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6405 		 * by the function tracer will call this function again and
6406 		 * cause infinite recursion.
6407 		 *
6408 		 * Preemption must be disabled here before the function
6409 		 * tracer can trace. Break up preempt_disable() into two
6410 		 * calls. One to disable preemption without fear of being
6411 		 * traced. The other to still record the preemption latency,
6412 		 * which can also be traced by the function tracer.
6413 		 */
6414 		preempt_disable_notrace();
6415 		preempt_latency_start(1);
6416 		__schedule(SM_PREEMPT);
6417 		preempt_latency_stop(1);
6418 		preempt_enable_no_resched_notrace();
6419 
6420 		/*
6421 		 * Check again in case we missed a preemption opportunity
6422 		 * between schedule and now.
6423 		 */
6424 	} while (need_resched());
6425 }
6426 
6427 #ifdef CONFIG_PREEMPTION
6428 /*
6429  * This is the entry point to schedule() from in-kernel preemption
6430  * off of preempt_enable.
6431  */
6432 asmlinkage __visible void __sched notrace preempt_schedule(void)
6433 {
6434 	/*
6435 	 * If there is a non-zero preempt_count or interrupts are disabled,
6436 	 * we do not want to preempt the current task. Just return..
6437 	 */
6438 	if (likely(!preemptible()))
6439 		return;
6440 
6441 	preempt_schedule_common();
6442 }
6443 NOKPROBE_SYMBOL(preempt_schedule);
6444 EXPORT_SYMBOL(preempt_schedule);
6445 
6446 #ifdef CONFIG_PREEMPT_DYNAMIC
6447 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6448 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6449 #endif
6450 
6451 
6452 /**
6453  * preempt_schedule_notrace - preempt_schedule called by tracing
6454  *
6455  * The tracing infrastructure uses preempt_enable_notrace to prevent
6456  * recursion and tracing preempt enabling caused by the tracing
6457  * infrastructure itself. But as tracing can happen in areas coming
6458  * from userspace or just about to enter userspace, a preempt enable
6459  * can occur before user_exit() is called. This will cause the scheduler
6460  * to be called when the system is still in usermode.
6461  *
6462  * To prevent this, the preempt_enable_notrace will use this function
6463  * instead of preempt_schedule() to exit user context if needed before
6464  * calling the scheduler.
6465  */
6466 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6467 {
6468 	enum ctx_state prev_ctx;
6469 
6470 	if (likely(!preemptible()))
6471 		return;
6472 
6473 	do {
6474 		/*
6475 		 * Because the function tracer can trace preempt_count_sub()
6476 		 * and it also uses preempt_enable/disable_notrace(), if
6477 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6478 		 * by the function tracer will call this function again and
6479 		 * cause infinite recursion.
6480 		 *
6481 		 * Preemption must be disabled here before the function
6482 		 * tracer can trace. Break up preempt_disable() into two
6483 		 * calls. One to disable preemption without fear of being
6484 		 * traced. The other to still record the preemption latency,
6485 		 * which can also be traced by the function tracer.
6486 		 */
6487 		preempt_disable_notrace();
6488 		preempt_latency_start(1);
6489 		/*
6490 		 * Needs preempt disabled in case user_exit() is traced
6491 		 * and the tracer calls preempt_enable_notrace() causing
6492 		 * an infinite recursion.
6493 		 */
6494 		prev_ctx = exception_enter();
6495 		__schedule(SM_PREEMPT);
6496 		exception_exit(prev_ctx);
6497 
6498 		preempt_latency_stop(1);
6499 		preempt_enable_no_resched_notrace();
6500 	} while (need_resched());
6501 }
6502 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6503 
6504 #ifdef CONFIG_PREEMPT_DYNAMIC
6505 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6506 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6507 #endif
6508 
6509 #endif /* CONFIG_PREEMPTION */
6510 
6511 #ifdef CONFIG_PREEMPT_DYNAMIC
6512 
6513 #include <linux/entry-common.h>
6514 
6515 /*
6516  * SC:cond_resched
6517  * SC:might_resched
6518  * SC:preempt_schedule
6519  * SC:preempt_schedule_notrace
6520  * SC:irqentry_exit_cond_resched
6521  *
6522  *
6523  * NONE:
6524  *   cond_resched               <- __cond_resched
6525  *   might_resched              <- RET0
6526  *   preempt_schedule           <- NOP
6527  *   preempt_schedule_notrace   <- NOP
6528  *   irqentry_exit_cond_resched <- NOP
6529  *
6530  * VOLUNTARY:
6531  *   cond_resched               <- __cond_resched
6532  *   might_resched              <- __cond_resched
6533  *   preempt_schedule           <- NOP
6534  *   preempt_schedule_notrace   <- NOP
6535  *   irqentry_exit_cond_resched <- NOP
6536  *
6537  * FULL:
6538  *   cond_resched               <- RET0
6539  *   might_resched              <- RET0
6540  *   preempt_schedule           <- preempt_schedule
6541  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6542  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6543  */
6544 
6545 enum {
6546 	preempt_dynamic_undefined = -1,
6547 	preempt_dynamic_none,
6548 	preempt_dynamic_voluntary,
6549 	preempt_dynamic_full,
6550 };
6551 
6552 int preempt_dynamic_mode = preempt_dynamic_undefined;
6553 
6554 int sched_dynamic_mode(const char *str)
6555 {
6556 	if (!strcmp(str, "none"))
6557 		return preempt_dynamic_none;
6558 
6559 	if (!strcmp(str, "voluntary"))
6560 		return preempt_dynamic_voluntary;
6561 
6562 	if (!strcmp(str, "full"))
6563 		return preempt_dynamic_full;
6564 
6565 	return -EINVAL;
6566 }
6567 
6568 void sched_dynamic_update(int mode)
6569 {
6570 	/*
6571 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6572 	 * the ZERO state, which is invalid.
6573 	 */
6574 	static_call_update(cond_resched, __cond_resched);
6575 	static_call_update(might_resched, __cond_resched);
6576 	static_call_update(preempt_schedule, __preempt_schedule_func);
6577 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6578 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6579 
6580 	switch (mode) {
6581 	case preempt_dynamic_none:
6582 		static_call_update(cond_resched, __cond_resched);
6583 		static_call_update(might_resched, (void *)&__static_call_return0);
6584 		static_call_update(preempt_schedule, NULL);
6585 		static_call_update(preempt_schedule_notrace, NULL);
6586 		static_call_update(irqentry_exit_cond_resched, NULL);
6587 		pr_info("Dynamic Preempt: none\n");
6588 		break;
6589 
6590 	case preempt_dynamic_voluntary:
6591 		static_call_update(cond_resched, __cond_resched);
6592 		static_call_update(might_resched, __cond_resched);
6593 		static_call_update(preempt_schedule, NULL);
6594 		static_call_update(preempt_schedule_notrace, NULL);
6595 		static_call_update(irqentry_exit_cond_resched, NULL);
6596 		pr_info("Dynamic Preempt: voluntary\n");
6597 		break;
6598 
6599 	case preempt_dynamic_full:
6600 		static_call_update(cond_resched, (void *)&__static_call_return0);
6601 		static_call_update(might_resched, (void *)&__static_call_return0);
6602 		static_call_update(preempt_schedule, __preempt_schedule_func);
6603 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6604 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6605 		pr_info("Dynamic Preempt: full\n");
6606 		break;
6607 	}
6608 
6609 	preempt_dynamic_mode = mode;
6610 }
6611 
6612 static int __init setup_preempt_mode(char *str)
6613 {
6614 	int mode = sched_dynamic_mode(str);
6615 	if (mode < 0) {
6616 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6617 		return 1;
6618 	}
6619 
6620 	sched_dynamic_update(mode);
6621 	return 0;
6622 }
6623 __setup("preempt=", setup_preempt_mode);
6624 
6625 static void __init preempt_dynamic_init(void)
6626 {
6627 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
6628 		if (IS_ENABLED(CONFIG_PREEMPT_NONE_BEHAVIOUR)) {
6629 			sched_dynamic_update(preempt_dynamic_none);
6630 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BEHAVIOUR)) {
6631 			sched_dynamic_update(preempt_dynamic_voluntary);
6632 		} else {
6633 			/* Default static call setting, nothing to do */
6634 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_BEHAVIOUR));
6635 			preempt_dynamic_mode = preempt_dynamic_full;
6636 			pr_info("Dynamic Preempt: full\n");
6637 		}
6638 	}
6639 }
6640 
6641 #else /* !CONFIG_PREEMPT_DYNAMIC */
6642 
6643 static inline void preempt_dynamic_init(void) { }
6644 
6645 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
6646 
6647 /*
6648  * This is the entry point to schedule() from kernel preemption
6649  * off of irq context.
6650  * Note, that this is called and return with irqs disabled. This will
6651  * protect us against recursive calling from irq.
6652  */
6653 asmlinkage __visible void __sched preempt_schedule_irq(void)
6654 {
6655 	enum ctx_state prev_state;
6656 
6657 	/* Catch callers which need to be fixed */
6658 	BUG_ON(preempt_count() || !irqs_disabled());
6659 
6660 	prev_state = exception_enter();
6661 
6662 	do {
6663 		preempt_disable();
6664 		local_irq_enable();
6665 		__schedule(SM_PREEMPT);
6666 		local_irq_disable();
6667 		sched_preempt_enable_no_resched();
6668 	} while (need_resched());
6669 
6670 	exception_exit(prev_state);
6671 }
6672 
6673 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6674 			  void *key)
6675 {
6676 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6677 	return try_to_wake_up(curr->private, mode, wake_flags);
6678 }
6679 EXPORT_SYMBOL(default_wake_function);
6680 
6681 static void __setscheduler_prio(struct task_struct *p, int prio)
6682 {
6683 	if (dl_prio(prio))
6684 		p->sched_class = &dl_sched_class;
6685 	else if (rt_prio(prio))
6686 		p->sched_class = &rt_sched_class;
6687 	else
6688 		p->sched_class = &fair_sched_class;
6689 
6690 	p->prio = prio;
6691 }
6692 
6693 #ifdef CONFIG_RT_MUTEXES
6694 
6695 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6696 {
6697 	if (pi_task)
6698 		prio = min(prio, pi_task->prio);
6699 
6700 	return prio;
6701 }
6702 
6703 static inline int rt_effective_prio(struct task_struct *p, int prio)
6704 {
6705 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6706 
6707 	return __rt_effective_prio(pi_task, prio);
6708 }
6709 
6710 /*
6711  * rt_mutex_setprio - set the current priority of a task
6712  * @p: task to boost
6713  * @pi_task: donor task
6714  *
6715  * This function changes the 'effective' priority of a task. It does
6716  * not touch ->normal_prio like __setscheduler().
6717  *
6718  * Used by the rt_mutex code to implement priority inheritance
6719  * logic. Call site only calls if the priority of the task changed.
6720  */
6721 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6722 {
6723 	int prio, oldprio, queued, running, queue_flag =
6724 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6725 	const struct sched_class *prev_class;
6726 	struct rq_flags rf;
6727 	struct rq *rq;
6728 
6729 	/* XXX used to be waiter->prio, not waiter->task->prio */
6730 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6731 
6732 	/*
6733 	 * If nothing changed; bail early.
6734 	 */
6735 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6736 		return;
6737 
6738 	rq = __task_rq_lock(p, &rf);
6739 	update_rq_clock(rq);
6740 	/*
6741 	 * Set under pi_lock && rq->lock, such that the value can be used under
6742 	 * either lock.
6743 	 *
6744 	 * Note that there is loads of tricky to make this pointer cache work
6745 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6746 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6747 	 * task is allowed to run again (and can exit). This ensures the pointer
6748 	 * points to a blocked task -- which guarantees the task is present.
6749 	 */
6750 	p->pi_top_task = pi_task;
6751 
6752 	/*
6753 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6754 	 */
6755 	if (prio == p->prio && !dl_prio(prio))
6756 		goto out_unlock;
6757 
6758 	/*
6759 	 * Idle task boosting is a nono in general. There is one
6760 	 * exception, when PREEMPT_RT and NOHZ is active:
6761 	 *
6762 	 * The idle task calls get_next_timer_interrupt() and holds
6763 	 * the timer wheel base->lock on the CPU and another CPU wants
6764 	 * to access the timer (probably to cancel it). We can safely
6765 	 * ignore the boosting request, as the idle CPU runs this code
6766 	 * with interrupts disabled and will complete the lock
6767 	 * protected section without being interrupted. So there is no
6768 	 * real need to boost.
6769 	 */
6770 	if (unlikely(p == rq->idle)) {
6771 		WARN_ON(p != rq->curr);
6772 		WARN_ON(p->pi_blocked_on);
6773 		goto out_unlock;
6774 	}
6775 
6776 	trace_sched_pi_setprio(p, pi_task);
6777 	oldprio = p->prio;
6778 
6779 	if (oldprio == prio)
6780 		queue_flag &= ~DEQUEUE_MOVE;
6781 
6782 	prev_class = p->sched_class;
6783 	queued = task_on_rq_queued(p);
6784 	running = task_current(rq, p);
6785 	if (queued)
6786 		dequeue_task(rq, p, queue_flag);
6787 	if (running)
6788 		put_prev_task(rq, p);
6789 
6790 	/*
6791 	 * Boosting condition are:
6792 	 * 1. -rt task is running and holds mutex A
6793 	 *      --> -dl task blocks on mutex A
6794 	 *
6795 	 * 2. -dl task is running and holds mutex A
6796 	 *      --> -dl task blocks on mutex A and could preempt the
6797 	 *          running task
6798 	 */
6799 	if (dl_prio(prio)) {
6800 		if (!dl_prio(p->normal_prio) ||
6801 		    (pi_task && dl_prio(pi_task->prio) &&
6802 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6803 			p->dl.pi_se = pi_task->dl.pi_se;
6804 			queue_flag |= ENQUEUE_REPLENISH;
6805 		} else {
6806 			p->dl.pi_se = &p->dl;
6807 		}
6808 	} else if (rt_prio(prio)) {
6809 		if (dl_prio(oldprio))
6810 			p->dl.pi_se = &p->dl;
6811 		if (oldprio < prio)
6812 			queue_flag |= ENQUEUE_HEAD;
6813 	} else {
6814 		if (dl_prio(oldprio))
6815 			p->dl.pi_se = &p->dl;
6816 		if (rt_prio(oldprio))
6817 			p->rt.timeout = 0;
6818 	}
6819 
6820 	__setscheduler_prio(p, prio);
6821 
6822 	if (queued)
6823 		enqueue_task(rq, p, queue_flag);
6824 	if (running)
6825 		set_next_task(rq, p);
6826 
6827 	check_class_changed(rq, p, prev_class, oldprio);
6828 out_unlock:
6829 	/* Avoid rq from going away on us: */
6830 	preempt_disable();
6831 
6832 	rq_unpin_lock(rq, &rf);
6833 	__balance_callbacks(rq);
6834 	raw_spin_rq_unlock(rq);
6835 
6836 	preempt_enable();
6837 }
6838 #else
6839 static inline int rt_effective_prio(struct task_struct *p, int prio)
6840 {
6841 	return prio;
6842 }
6843 #endif
6844 
6845 void set_user_nice(struct task_struct *p, long nice)
6846 {
6847 	bool queued, running;
6848 	int old_prio;
6849 	struct rq_flags rf;
6850 	struct rq *rq;
6851 
6852 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6853 		return;
6854 	/*
6855 	 * We have to be careful, if called from sys_setpriority(),
6856 	 * the task might be in the middle of scheduling on another CPU.
6857 	 */
6858 	rq = task_rq_lock(p, &rf);
6859 	update_rq_clock(rq);
6860 
6861 	/*
6862 	 * The RT priorities are set via sched_setscheduler(), but we still
6863 	 * allow the 'normal' nice value to be set - but as expected
6864 	 * it won't have any effect on scheduling until the task is
6865 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6866 	 */
6867 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6868 		p->static_prio = NICE_TO_PRIO(nice);
6869 		goto out_unlock;
6870 	}
6871 	queued = task_on_rq_queued(p);
6872 	running = task_current(rq, p);
6873 	if (queued)
6874 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6875 	if (running)
6876 		put_prev_task(rq, p);
6877 
6878 	p->static_prio = NICE_TO_PRIO(nice);
6879 	set_load_weight(p, true);
6880 	old_prio = p->prio;
6881 	p->prio = effective_prio(p);
6882 
6883 	if (queued)
6884 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6885 	if (running)
6886 		set_next_task(rq, p);
6887 
6888 	/*
6889 	 * If the task increased its priority or is running and
6890 	 * lowered its priority, then reschedule its CPU:
6891 	 */
6892 	p->sched_class->prio_changed(rq, p, old_prio);
6893 
6894 out_unlock:
6895 	task_rq_unlock(rq, p, &rf);
6896 }
6897 EXPORT_SYMBOL(set_user_nice);
6898 
6899 /*
6900  * can_nice - check if a task can reduce its nice value
6901  * @p: task
6902  * @nice: nice value
6903  */
6904 int can_nice(const struct task_struct *p, const int nice)
6905 {
6906 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6907 	int nice_rlim = nice_to_rlimit(nice);
6908 
6909 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6910 		capable(CAP_SYS_NICE));
6911 }
6912 
6913 #ifdef __ARCH_WANT_SYS_NICE
6914 
6915 /*
6916  * sys_nice - change the priority of the current process.
6917  * @increment: priority increment
6918  *
6919  * sys_setpriority is a more generic, but much slower function that
6920  * does similar things.
6921  */
6922 SYSCALL_DEFINE1(nice, int, increment)
6923 {
6924 	long nice, retval;
6925 
6926 	/*
6927 	 * Setpriority might change our priority at the same moment.
6928 	 * We don't have to worry. Conceptually one call occurs first
6929 	 * and we have a single winner.
6930 	 */
6931 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6932 	nice = task_nice(current) + increment;
6933 
6934 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6935 	if (increment < 0 && !can_nice(current, nice))
6936 		return -EPERM;
6937 
6938 	retval = security_task_setnice(current, nice);
6939 	if (retval)
6940 		return retval;
6941 
6942 	set_user_nice(current, nice);
6943 	return 0;
6944 }
6945 
6946 #endif
6947 
6948 /**
6949  * task_prio - return the priority value of a given task.
6950  * @p: the task in question.
6951  *
6952  * Return: The priority value as seen by users in /proc.
6953  *
6954  * sched policy         return value   kernel prio    user prio/nice
6955  *
6956  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6957  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6958  * deadline                     -101             -1           0
6959  */
6960 int task_prio(const struct task_struct *p)
6961 {
6962 	return p->prio - MAX_RT_PRIO;
6963 }
6964 
6965 /**
6966  * idle_cpu - is a given CPU idle currently?
6967  * @cpu: the processor in question.
6968  *
6969  * Return: 1 if the CPU is currently idle. 0 otherwise.
6970  */
6971 int idle_cpu(int cpu)
6972 {
6973 	struct rq *rq = cpu_rq(cpu);
6974 
6975 	if (rq->curr != rq->idle)
6976 		return 0;
6977 
6978 	if (rq->nr_running)
6979 		return 0;
6980 
6981 #ifdef CONFIG_SMP
6982 	if (rq->ttwu_pending)
6983 		return 0;
6984 #endif
6985 
6986 	return 1;
6987 }
6988 
6989 /**
6990  * available_idle_cpu - is a given CPU idle for enqueuing work.
6991  * @cpu: the CPU in question.
6992  *
6993  * Return: 1 if the CPU is currently idle. 0 otherwise.
6994  */
6995 int available_idle_cpu(int cpu)
6996 {
6997 	if (!idle_cpu(cpu))
6998 		return 0;
6999 
7000 	if (vcpu_is_preempted(cpu))
7001 		return 0;
7002 
7003 	return 1;
7004 }
7005 
7006 /**
7007  * idle_task - return the idle task for a given CPU.
7008  * @cpu: the processor in question.
7009  *
7010  * Return: The idle task for the CPU @cpu.
7011  */
7012 struct task_struct *idle_task(int cpu)
7013 {
7014 	return cpu_rq(cpu)->idle;
7015 }
7016 
7017 #ifdef CONFIG_SMP
7018 /*
7019  * This function computes an effective utilization for the given CPU, to be
7020  * used for frequency selection given the linear relation: f = u * f_max.
7021  *
7022  * The scheduler tracks the following metrics:
7023  *
7024  *   cpu_util_{cfs,rt,dl,irq}()
7025  *   cpu_bw_dl()
7026  *
7027  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7028  * synchronized windows and are thus directly comparable.
7029  *
7030  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7031  * which excludes things like IRQ and steal-time. These latter are then accrued
7032  * in the irq utilization.
7033  *
7034  * The DL bandwidth number otoh is not a measured metric but a value computed
7035  * based on the task model parameters and gives the minimal utilization
7036  * required to meet deadlines.
7037  */
7038 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7039 				 unsigned long max, enum cpu_util_type type,
7040 				 struct task_struct *p)
7041 {
7042 	unsigned long dl_util, util, irq;
7043 	struct rq *rq = cpu_rq(cpu);
7044 
7045 	if (!uclamp_is_used() &&
7046 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7047 		return max;
7048 	}
7049 
7050 	/*
7051 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7052 	 * because of inaccuracies in how we track these -- see
7053 	 * update_irq_load_avg().
7054 	 */
7055 	irq = cpu_util_irq(rq);
7056 	if (unlikely(irq >= max))
7057 		return max;
7058 
7059 	/*
7060 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7061 	 * CFS tasks and we use the same metric to track the effective
7062 	 * utilization (PELT windows are synchronized) we can directly add them
7063 	 * to obtain the CPU's actual utilization.
7064 	 *
7065 	 * CFS and RT utilization can be boosted or capped, depending on
7066 	 * utilization clamp constraints requested by currently RUNNABLE
7067 	 * tasks.
7068 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7069 	 * frequency will be gracefully reduced with the utilization decay.
7070 	 */
7071 	util = util_cfs + cpu_util_rt(rq);
7072 	if (type == FREQUENCY_UTIL)
7073 		util = uclamp_rq_util_with(rq, util, p);
7074 
7075 	dl_util = cpu_util_dl(rq);
7076 
7077 	/*
7078 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7079 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7080 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7081 	 * that we select f_max when there is no idle time.
7082 	 *
7083 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7084 	 * saturation when we should -- something for later.
7085 	 */
7086 	if (util + dl_util >= max)
7087 		return max;
7088 
7089 	/*
7090 	 * OTOH, for energy computation we need the estimated running time, so
7091 	 * include util_dl and ignore dl_bw.
7092 	 */
7093 	if (type == ENERGY_UTIL)
7094 		util += dl_util;
7095 
7096 	/*
7097 	 * There is still idle time; further improve the number by using the
7098 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7099 	 * need to scale the task numbers:
7100 	 *
7101 	 *              max - irq
7102 	 *   U' = irq + --------- * U
7103 	 *                 max
7104 	 */
7105 	util = scale_irq_capacity(util, irq, max);
7106 	util += irq;
7107 
7108 	/*
7109 	 * Bandwidth required by DEADLINE must always be granted while, for
7110 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7111 	 * to gracefully reduce the frequency when no tasks show up for longer
7112 	 * periods of time.
7113 	 *
7114 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7115 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7116 	 * an interface. So, we only do the latter for now.
7117 	 */
7118 	if (type == FREQUENCY_UTIL)
7119 		util += cpu_bw_dl(rq);
7120 
7121 	return min(max, util);
7122 }
7123 
7124 unsigned long sched_cpu_util(int cpu, unsigned long max)
7125 {
7126 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7127 				  ENERGY_UTIL, NULL);
7128 }
7129 #endif /* CONFIG_SMP */
7130 
7131 /**
7132  * find_process_by_pid - find a process with a matching PID value.
7133  * @pid: the pid in question.
7134  *
7135  * The task of @pid, if found. %NULL otherwise.
7136  */
7137 static struct task_struct *find_process_by_pid(pid_t pid)
7138 {
7139 	return pid ? find_task_by_vpid(pid) : current;
7140 }
7141 
7142 /*
7143  * sched_setparam() passes in -1 for its policy, to let the functions
7144  * it calls know not to change it.
7145  */
7146 #define SETPARAM_POLICY	-1
7147 
7148 static void __setscheduler_params(struct task_struct *p,
7149 		const struct sched_attr *attr)
7150 {
7151 	int policy = attr->sched_policy;
7152 
7153 	if (policy == SETPARAM_POLICY)
7154 		policy = p->policy;
7155 
7156 	p->policy = policy;
7157 
7158 	if (dl_policy(policy))
7159 		__setparam_dl(p, attr);
7160 	else if (fair_policy(policy))
7161 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7162 
7163 	/*
7164 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7165 	 * !rt_policy. Always setting this ensures that things like
7166 	 * getparam()/getattr() don't report silly values for !rt tasks.
7167 	 */
7168 	p->rt_priority = attr->sched_priority;
7169 	p->normal_prio = normal_prio(p);
7170 	set_load_weight(p, true);
7171 }
7172 
7173 /*
7174  * Check the target process has a UID that matches the current process's:
7175  */
7176 static bool check_same_owner(struct task_struct *p)
7177 {
7178 	const struct cred *cred = current_cred(), *pcred;
7179 	bool match;
7180 
7181 	rcu_read_lock();
7182 	pcred = __task_cred(p);
7183 	match = (uid_eq(cred->euid, pcred->euid) ||
7184 		 uid_eq(cred->euid, pcred->uid));
7185 	rcu_read_unlock();
7186 	return match;
7187 }
7188 
7189 static int __sched_setscheduler(struct task_struct *p,
7190 				const struct sched_attr *attr,
7191 				bool user, bool pi)
7192 {
7193 	int oldpolicy = -1, policy = attr->sched_policy;
7194 	int retval, oldprio, newprio, queued, running;
7195 	const struct sched_class *prev_class;
7196 	struct callback_head *head;
7197 	struct rq_flags rf;
7198 	int reset_on_fork;
7199 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7200 	struct rq *rq;
7201 
7202 	/* The pi code expects interrupts enabled */
7203 	BUG_ON(pi && in_interrupt());
7204 recheck:
7205 	/* Double check policy once rq lock held: */
7206 	if (policy < 0) {
7207 		reset_on_fork = p->sched_reset_on_fork;
7208 		policy = oldpolicy = p->policy;
7209 	} else {
7210 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7211 
7212 		if (!valid_policy(policy))
7213 			return -EINVAL;
7214 	}
7215 
7216 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7217 		return -EINVAL;
7218 
7219 	/*
7220 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7221 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7222 	 * SCHED_BATCH and SCHED_IDLE is 0.
7223 	 */
7224 	if (attr->sched_priority > MAX_RT_PRIO-1)
7225 		return -EINVAL;
7226 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7227 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7228 		return -EINVAL;
7229 
7230 	/*
7231 	 * Allow unprivileged RT tasks to decrease priority:
7232 	 */
7233 	if (user && !capable(CAP_SYS_NICE)) {
7234 		if (fair_policy(policy)) {
7235 			if (attr->sched_nice < task_nice(p) &&
7236 			    !can_nice(p, attr->sched_nice))
7237 				return -EPERM;
7238 		}
7239 
7240 		if (rt_policy(policy)) {
7241 			unsigned long rlim_rtprio =
7242 					task_rlimit(p, RLIMIT_RTPRIO);
7243 
7244 			/* Can't set/change the rt policy: */
7245 			if (policy != p->policy && !rlim_rtprio)
7246 				return -EPERM;
7247 
7248 			/* Can't increase priority: */
7249 			if (attr->sched_priority > p->rt_priority &&
7250 			    attr->sched_priority > rlim_rtprio)
7251 				return -EPERM;
7252 		}
7253 
7254 		 /*
7255 		  * Can't set/change SCHED_DEADLINE policy at all for now
7256 		  * (safest behavior); in the future we would like to allow
7257 		  * unprivileged DL tasks to increase their relative deadline
7258 		  * or reduce their runtime (both ways reducing utilization)
7259 		  */
7260 		if (dl_policy(policy))
7261 			return -EPERM;
7262 
7263 		/*
7264 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7265 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7266 		 */
7267 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7268 			if (!can_nice(p, task_nice(p)))
7269 				return -EPERM;
7270 		}
7271 
7272 		/* Can't change other user's priorities: */
7273 		if (!check_same_owner(p))
7274 			return -EPERM;
7275 
7276 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7277 		if (p->sched_reset_on_fork && !reset_on_fork)
7278 			return -EPERM;
7279 	}
7280 
7281 	if (user) {
7282 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7283 			return -EINVAL;
7284 
7285 		retval = security_task_setscheduler(p);
7286 		if (retval)
7287 			return retval;
7288 	}
7289 
7290 	/* Update task specific "requested" clamps */
7291 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7292 		retval = uclamp_validate(p, attr);
7293 		if (retval)
7294 			return retval;
7295 	}
7296 
7297 	if (pi)
7298 		cpuset_read_lock();
7299 
7300 	/*
7301 	 * Make sure no PI-waiters arrive (or leave) while we are
7302 	 * changing the priority of the task:
7303 	 *
7304 	 * To be able to change p->policy safely, the appropriate
7305 	 * runqueue lock must be held.
7306 	 */
7307 	rq = task_rq_lock(p, &rf);
7308 	update_rq_clock(rq);
7309 
7310 	/*
7311 	 * Changing the policy of the stop threads its a very bad idea:
7312 	 */
7313 	if (p == rq->stop) {
7314 		retval = -EINVAL;
7315 		goto unlock;
7316 	}
7317 
7318 	/*
7319 	 * If not changing anything there's no need to proceed further,
7320 	 * but store a possible modification of reset_on_fork.
7321 	 */
7322 	if (unlikely(policy == p->policy)) {
7323 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7324 			goto change;
7325 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7326 			goto change;
7327 		if (dl_policy(policy) && dl_param_changed(p, attr))
7328 			goto change;
7329 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7330 			goto change;
7331 
7332 		p->sched_reset_on_fork = reset_on_fork;
7333 		retval = 0;
7334 		goto unlock;
7335 	}
7336 change:
7337 
7338 	if (user) {
7339 #ifdef CONFIG_RT_GROUP_SCHED
7340 		/*
7341 		 * Do not allow realtime tasks into groups that have no runtime
7342 		 * assigned.
7343 		 */
7344 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7345 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7346 				!task_group_is_autogroup(task_group(p))) {
7347 			retval = -EPERM;
7348 			goto unlock;
7349 		}
7350 #endif
7351 #ifdef CONFIG_SMP
7352 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7353 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7354 			cpumask_t *span = rq->rd->span;
7355 
7356 			/*
7357 			 * Don't allow tasks with an affinity mask smaller than
7358 			 * the entire root_domain to become SCHED_DEADLINE. We
7359 			 * will also fail if there's no bandwidth available.
7360 			 */
7361 			if (!cpumask_subset(span, p->cpus_ptr) ||
7362 			    rq->rd->dl_bw.bw == 0) {
7363 				retval = -EPERM;
7364 				goto unlock;
7365 			}
7366 		}
7367 #endif
7368 	}
7369 
7370 	/* Re-check policy now with rq lock held: */
7371 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7372 		policy = oldpolicy = -1;
7373 		task_rq_unlock(rq, p, &rf);
7374 		if (pi)
7375 			cpuset_read_unlock();
7376 		goto recheck;
7377 	}
7378 
7379 	/*
7380 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7381 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7382 	 * is available.
7383 	 */
7384 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7385 		retval = -EBUSY;
7386 		goto unlock;
7387 	}
7388 
7389 	p->sched_reset_on_fork = reset_on_fork;
7390 	oldprio = p->prio;
7391 
7392 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7393 	if (pi) {
7394 		/*
7395 		 * Take priority boosted tasks into account. If the new
7396 		 * effective priority is unchanged, we just store the new
7397 		 * normal parameters and do not touch the scheduler class and
7398 		 * the runqueue. This will be done when the task deboost
7399 		 * itself.
7400 		 */
7401 		newprio = rt_effective_prio(p, newprio);
7402 		if (newprio == oldprio)
7403 			queue_flags &= ~DEQUEUE_MOVE;
7404 	}
7405 
7406 	queued = task_on_rq_queued(p);
7407 	running = task_current(rq, p);
7408 	if (queued)
7409 		dequeue_task(rq, p, queue_flags);
7410 	if (running)
7411 		put_prev_task(rq, p);
7412 
7413 	prev_class = p->sched_class;
7414 
7415 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7416 		__setscheduler_params(p, attr);
7417 		__setscheduler_prio(p, newprio);
7418 	}
7419 	__setscheduler_uclamp(p, attr);
7420 
7421 	if (queued) {
7422 		/*
7423 		 * We enqueue to tail when the priority of a task is
7424 		 * increased (user space view).
7425 		 */
7426 		if (oldprio < p->prio)
7427 			queue_flags |= ENQUEUE_HEAD;
7428 
7429 		enqueue_task(rq, p, queue_flags);
7430 	}
7431 	if (running)
7432 		set_next_task(rq, p);
7433 
7434 	check_class_changed(rq, p, prev_class, oldprio);
7435 
7436 	/* Avoid rq from going away on us: */
7437 	preempt_disable();
7438 	head = splice_balance_callbacks(rq);
7439 	task_rq_unlock(rq, p, &rf);
7440 
7441 	if (pi) {
7442 		cpuset_read_unlock();
7443 		rt_mutex_adjust_pi(p);
7444 	}
7445 
7446 	/* Run balance callbacks after we've adjusted the PI chain: */
7447 	balance_callbacks(rq, head);
7448 	preempt_enable();
7449 
7450 	return 0;
7451 
7452 unlock:
7453 	task_rq_unlock(rq, p, &rf);
7454 	if (pi)
7455 		cpuset_read_unlock();
7456 	return retval;
7457 }
7458 
7459 static int _sched_setscheduler(struct task_struct *p, int policy,
7460 			       const struct sched_param *param, bool check)
7461 {
7462 	struct sched_attr attr = {
7463 		.sched_policy   = policy,
7464 		.sched_priority = param->sched_priority,
7465 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7466 	};
7467 
7468 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7469 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7470 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7471 		policy &= ~SCHED_RESET_ON_FORK;
7472 		attr.sched_policy = policy;
7473 	}
7474 
7475 	return __sched_setscheduler(p, &attr, check, true);
7476 }
7477 /**
7478  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7479  * @p: the task in question.
7480  * @policy: new policy.
7481  * @param: structure containing the new RT priority.
7482  *
7483  * Use sched_set_fifo(), read its comment.
7484  *
7485  * Return: 0 on success. An error code otherwise.
7486  *
7487  * NOTE that the task may be already dead.
7488  */
7489 int sched_setscheduler(struct task_struct *p, int policy,
7490 		       const struct sched_param *param)
7491 {
7492 	return _sched_setscheduler(p, policy, param, true);
7493 }
7494 
7495 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7496 {
7497 	return __sched_setscheduler(p, attr, true, true);
7498 }
7499 
7500 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7501 {
7502 	return __sched_setscheduler(p, attr, false, true);
7503 }
7504 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7505 
7506 /**
7507  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7508  * @p: the task in question.
7509  * @policy: new policy.
7510  * @param: structure containing the new RT priority.
7511  *
7512  * Just like sched_setscheduler, only don't bother checking if the
7513  * current context has permission.  For example, this is needed in
7514  * stop_machine(): we create temporary high priority worker threads,
7515  * but our caller might not have that capability.
7516  *
7517  * Return: 0 on success. An error code otherwise.
7518  */
7519 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7520 			       const struct sched_param *param)
7521 {
7522 	return _sched_setscheduler(p, policy, param, false);
7523 }
7524 
7525 /*
7526  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7527  * incapable of resource management, which is the one thing an OS really should
7528  * be doing.
7529  *
7530  * This is of course the reason it is limited to privileged users only.
7531  *
7532  * Worse still; it is fundamentally impossible to compose static priority
7533  * workloads. You cannot take two correctly working static prio workloads
7534  * and smash them together and still expect them to work.
7535  *
7536  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7537  *
7538  *   MAX_RT_PRIO / 2
7539  *
7540  * The administrator _MUST_ configure the system, the kernel simply doesn't
7541  * know enough information to make a sensible choice.
7542  */
7543 void sched_set_fifo(struct task_struct *p)
7544 {
7545 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7546 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7547 }
7548 EXPORT_SYMBOL_GPL(sched_set_fifo);
7549 
7550 /*
7551  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7552  */
7553 void sched_set_fifo_low(struct task_struct *p)
7554 {
7555 	struct sched_param sp = { .sched_priority = 1 };
7556 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7557 }
7558 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7559 
7560 void sched_set_normal(struct task_struct *p, int nice)
7561 {
7562 	struct sched_attr attr = {
7563 		.sched_policy = SCHED_NORMAL,
7564 		.sched_nice = nice,
7565 	};
7566 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7567 }
7568 EXPORT_SYMBOL_GPL(sched_set_normal);
7569 
7570 static int
7571 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7572 {
7573 	struct sched_param lparam;
7574 	struct task_struct *p;
7575 	int retval;
7576 
7577 	if (!param || pid < 0)
7578 		return -EINVAL;
7579 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7580 		return -EFAULT;
7581 
7582 	rcu_read_lock();
7583 	retval = -ESRCH;
7584 	p = find_process_by_pid(pid);
7585 	if (likely(p))
7586 		get_task_struct(p);
7587 	rcu_read_unlock();
7588 
7589 	if (likely(p)) {
7590 		retval = sched_setscheduler(p, policy, &lparam);
7591 		put_task_struct(p);
7592 	}
7593 
7594 	return retval;
7595 }
7596 
7597 /*
7598  * Mimics kernel/events/core.c perf_copy_attr().
7599  */
7600 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7601 {
7602 	u32 size;
7603 	int ret;
7604 
7605 	/* Zero the full structure, so that a short copy will be nice: */
7606 	memset(attr, 0, sizeof(*attr));
7607 
7608 	ret = get_user(size, &uattr->size);
7609 	if (ret)
7610 		return ret;
7611 
7612 	/* ABI compatibility quirk: */
7613 	if (!size)
7614 		size = SCHED_ATTR_SIZE_VER0;
7615 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7616 		goto err_size;
7617 
7618 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7619 	if (ret) {
7620 		if (ret == -E2BIG)
7621 			goto err_size;
7622 		return ret;
7623 	}
7624 
7625 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7626 	    size < SCHED_ATTR_SIZE_VER1)
7627 		return -EINVAL;
7628 
7629 	/*
7630 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7631 	 * to be strict and return an error on out-of-bounds values?
7632 	 */
7633 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7634 
7635 	return 0;
7636 
7637 err_size:
7638 	put_user(sizeof(*attr), &uattr->size);
7639 	return -E2BIG;
7640 }
7641 
7642 static void get_params(struct task_struct *p, struct sched_attr *attr)
7643 {
7644 	if (task_has_dl_policy(p))
7645 		__getparam_dl(p, attr);
7646 	else if (task_has_rt_policy(p))
7647 		attr->sched_priority = p->rt_priority;
7648 	else
7649 		attr->sched_nice = task_nice(p);
7650 }
7651 
7652 /**
7653  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7654  * @pid: the pid in question.
7655  * @policy: new policy.
7656  * @param: structure containing the new RT priority.
7657  *
7658  * Return: 0 on success. An error code otherwise.
7659  */
7660 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7661 {
7662 	if (policy < 0)
7663 		return -EINVAL;
7664 
7665 	return do_sched_setscheduler(pid, policy, param);
7666 }
7667 
7668 /**
7669  * sys_sched_setparam - set/change the RT priority of a thread
7670  * @pid: the pid in question.
7671  * @param: structure containing the new RT priority.
7672  *
7673  * Return: 0 on success. An error code otherwise.
7674  */
7675 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7676 {
7677 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7678 }
7679 
7680 /**
7681  * sys_sched_setattr - same as above, but with extended sched_attr
7682  * @pid: the pid in question.
7683  * @uattr: structure containing the extended parameters.
7684  * @flags: for future extension.
7685  */
7686 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7687 			       unsigned int, flags)
7688 {
7689 	struct sched_attr attr;
7690 	struct task_struct *p;
7691 	int retval;
7692 
7693 	if (!uattr || pid < 0 || flags)
7694 		return -EINVAL;
7695 
7696 	retval = sched_copy_attr(uattr, &attr);
7697 	if (retval)
7698 		return retval;
7699 
7700 	if ((int)attr.sched_policy < 0)
7701 		return -EINVAL;
7702 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7703 		attr.sched_policy = SETPARAM_POLICY;
7704 
7705 	rcu_read_lock();
7706 	retval = -ESRCH;
7707 	p = find_process_by_pid(pid);
7708 	if (likely(p))
7709 		get_task_struct(p);
7710 	rcu_read_unlock();
7711 
7712 	if (likely(p)) {
7713 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7714 			get_params(p, &attr);
7715 		retval = sched_setattr(p, &attr);
7716 		put_task_struct(p);
7717 	}
7718 
7719 	return retval;
7720 }
7721 
7722 /**
7723  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7724  * @pid: the pid in question.
7725  *
7726  * Return: On success, the policy of the thread. Otherwise, a negative error
7727  * code.
7728  */
7729 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7730 {
7731 	struct task_struct *p;
7732 	int retval;
7733 
7734 	if (pid < 0)
7735 		return -EINVAL;
7736 
7737 	retval = -ESRCH;
7738 	rcu_read_lock();
7739 	p = find_process_by_pid(pid);
7740 	if (p) {
7741 		retval = security_task_getscheduler(p);
7742 		if (!retval)
7743 			retval = p->policy
7744 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7745 	}
7746 	rcu_read_unlock();
7747 	return retval;
7748 }
7749 
7750 /**
7751  * sys_sched_getparam - get the RT priority of a thread
7752  * @pid: the pid in question.
7753  * @param: structure containing the RT priority.
7754  *
7755  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7756  * code.
7757  */
7758 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7759 {
7760 	struct sched_param lp = { .sched_priority = 0 };
7761 	struct task_struct *p;
7762 	int retval;
7763 
7764 	if (!param || pid < 0)
7765 		return -EINVAL;
7766 
7767 	rcu_read_lock();
7768 	p = find_process_by_pid(pid);
7769 	retval = -ESRCH;
7770 	if (!p)
7771 		goto out_unlock;
7772 
7773 	retval = security_task_getscheduler(p);
7774 	if (retval)
7775 		goto out_unlock;
7776 
7777 	if (task_has_rt_policy(p))
7778 		lp.sched_priority = p->rt_priority;
7779 	rcu_read_unlock();
7780 
7781 	/*
7782 	 * This one might sleep, we cannot do it with a spinlock held ...
7783 	 */
7784 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7785 
7786 	return retval;
7787 
7788 out_unlock:
7789 	rcu_read_unlock();
7790 	return retval;
7791 }
7792 
7793 /*
7794  * Copy the kernel size attribute structure (which might be larger
7795  * than what user-space knows about) to user-space.
7796  *
7797  * Note that all cases are valid: user-space buffer can be larger or
7798  * smaller than the kernel-space buffer. The usual case is that both
7799  * have the same size.
7800  */
7801 static int
7802 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7803 			struct sched_attr *kattr,
7804 			unsigned int usize)
7805 {
7806 	unsigned int ksize = sizeof(*kattr);
7807 
7808 	if (!access_ok(uattr, usize))
7809 		return -EFAULT;
7810 
7811 	/*
7812 	 * sched_getattr() ABI forwards and backwards compatibility:
7813 	 *
7814 	 * If usize == ksize then we just copy everything to user-space and all is good.
7815 	 *
7816 	 * If usize < ksize then we only copy as much as user-space has space for,
7817 	 * this keeps ABI compatibility as well. We skip the rest.
7818 	 *
7819 	 * If usize > ksize then user-space is using a newer version of the ABI,
7820 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7821 	 * detect the kernel's knowledge of attributes from the attr->size value
7822 	 * which is set to ksize in this case.
7823 	 */
7824 	kattr->size = min(usize, ksize);
7825 
7826 	if (copy_to_user(uattr, kattr, kattr->size))
7827 		return -EFAULT;
7828 
7829 	return 0;
7830 }
7831 
7832 /**
7833  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7834  * @pid: the pid in question.
7835  * @uattr: structure containing the extended parameters.
7836  * @usize: sizeof(attr) for fwd/bwd comp.
7837  * @flags: for future extension.
7838  */
7839 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7840 		unsigned int, usize, unsigned int, flags)
7841 {
7842 	struct sched_attr kattr = { };
7843 	struct task_struct *p;
7844 	int retval;
7845 
7846 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7847 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7848 		return -EINVAL;
7849 
7850 	rcu_read_lock();
7851 	p = find_process_by_pid(pid);
7852 	retval = -ESRCH;
7853 	if (!p)
7854 		goto out_unlock;
7855 
7856 	retval = security_task_getscheduler(p);
7857 	if (retval)
7858 		goto out_unlock;
7859 
7860 	kattr.sched_policy = p->policy;
7861 	if (p->sched_reset_on_fork)
7862 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7863 	get_params(p, &kattr);
7864 	kattr.sched_flags &= SCHED_FLAG_ALL;
7865 
7866 #ifdef CONFIG_UCLAMP_TASK
7867 	/*
7868 	 * This could race with another potential updater, but this is fine
7869 	 * because it'll correctly read the old or the new value. We don't need
7870 	 * to guarantee who wins the race as long as it doesn't return garbage.
7871 	 */
7872 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7873 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7874 #endif
7875 
7876 	rcu_read_unlock();
7877 
7878 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7879 
7880 out_unlock:
7881 	rcu_read_unlock();
7882 	return retval;
7883 }
7884 
7885 #ifdef CONFIG_SMP
7886 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7887 {
7888 	int ret = 0;
7889 
7890 	/*
7891 	 * If the task isn't a deadline task or admission control is
7892 	 * disabled then we don't care about affinity changes.
7893 	 */
7894 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7895 		return 0;
7896 
7897 	/*
7898 	 * Since bandwidth control happens on root_domain basis,
7899 	 * if admission test is enabled, we only admit -deadline
7900 	 * tasks allowed to run on all the CPUs in the task's
7901 	 * root_domain.
7902 	 */
7903 	rcu_read_lock();
7904 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7905 		ret = -EBUSY;
7906 	rcu_read_unlock();
7907 	return ret;
7908 }
7909 #endif
7910 
7911 static int
7912 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7913 {
7914 	int retval;
7915 	cpumask_var_t cpus_allowed, new_mask;
7916 
7917 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7918 		return -ENOMEM;
7919 
7920 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7921 		retval = -ENOMEM;
7922 		goto out_free_cpus_allowed;
7923 	}
7924 
7925 	cpuset_cpus_allowed(p, cpus_allowed);
7926 	cpumask_and(new_mask, mask, cpus_allowed);
7927 
7928 	retval = dl_task_check_affinity(p, new_mask);
7929 	if (retval)
7930 		goto out_free_new_mask;
7931 again:
7932 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7933 	if (retval)
7934 		goto out_free_new_mask;
7935 
7936 	cpuset_cpus_allowed(p, cpus_allowed);
7937 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7938 		/*
7939 		 * We must have raced with a concurrent cpuset update.
7940 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7941 		 */
7942 		cpumask_copy(new_mask, cpus_allowed);
7943 		goto again;
7944 	}
7945 
7946 out_free_new_mask:
7947 	free_cpumask_var(new_mask);
7948 out_free_cpus_allowed:
7949 	free_cpumask_var(cpus_allowed);
7950 	return retval;
7951 }
7952 
7953 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7954 {
7955 	struct task_struct *p;
7956 	int retval;
7957 
7958 	rcu_read_lock();
7959 
7960 	p = find_process_by_pid(pid);
7961 	if (!p) {
7962 		rcu_read_unlock();
7963 		return -ESRCH;
7964 	}
7965 
7966 	/* Prevent p going away */
7967 	get_task_struct(p);
7968 	rcu_read_unlock();
7969 
7970 	if (p->flags & PF_NO_SETAFFINITY) {
7971 		retval = -EINVAL;
7972 		goto out_put_task;
7973 	}
7974 
7975 	if (!check_same_owner(p)) {
7976 		rcu_read_lock();
7977 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7978 			rcu_read_unlock();
7979 			retval = -EPERM;
7980 			goto out_put_task;
7981 		}
7982 		rcu_read_unlock();
7983 	}
7984 
7985 	retval = security_task_setscheduler(p);
7986 	if (retval)
7987 		goto out_put_task;
7988 
7989 	retval = __sched_setaffinity(p, in_mask);
7990 out_put_task:
7991 	put_task_struct(p);
7992 	return retval;
7993 }
7994 
7995 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7996 			     struct cpumask *new_mask)
7997 {
7998 	if (len < cpumask_size())
7999 		cpumask_clear(new_mask);
8000 	else if (len > cpumask_size())
8001 		len = cpumask_size();
8002 
8003 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8004 }
8005 
8006 /**
8007  * sys_sched_setaffinity - set the CPU affinity of a process
8008  * @pid: pid of the process
8009  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8010  * @user_mask_ptr: user-space pointer to the new CPU mask
8011  *
8012  * Return: 0 on success. An error code otherwise.
8013  */
8014 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8015 		unsigned long __user *, user_mask_ptr)
8016 {
8017 	cpumask_var_t new_mask;
8018 	int retval;
8019 
8020 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8021 		return -ENOMEM;
8022 
8023 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8024 	if (retval == 0)
8025 		retval = sched_setaffinity(pid, new_mask);
8026 	free_cpumask_var(new_mask);
8027 	return retval;
8028 }
8029 
8030 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8031 {
8032 	struct task_struct *p;
8033 	unsigned long flags;
8034 	int retval;
8035 
8036 	rcu_read_lock();
8037 
8038 	retval = -ESRCH;
8039 	p = find_process_by_pid(pid);
8040 	if (!p)
8041 		goto out_unlock;
8042 
8043 	retval = security_task_getscheduler(p);
8044 	if (retval)
8045 		goto out_unlock;
8046 
8047 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8048 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8049 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8050 
8051 out_unlock:
8052 	rcu_read_unlock();
8053 
8054 	return retval;
8055 }
8056 
8057 /**
8058  * sys_sched_getaffinity - get the CPU affinity of a process
8059  * @pid: pid of the process
8060  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8061  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8062  *
8063  * Return: size of CPU mask copied to user_mask_ptr on success. An
8064  * error code otherwise.
8065  */
8066 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8067 		unsigned long __user *, user_mask_ptr)
8068 {
8069 	int ret;
8070 	cpumask_var_t mask;
8071 
8072 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8073 		return -EINVAL;
8074 	if (len & (sizeof(unsigned long)-1))
8075 		return -EINVAL;
8076 
8077 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8078 		return -ENOMEM;
8079 
8080 	ret = sched_getaffinity(pid, mask);
8081 	if (ret == 0) {
8082 		unsigned int retlen = min(len, cpumask_size());
8083 
8084 		if (copy_to_user(user_mask_ptr, mask, retlen))
8085 			ret = -EFAULT;
8086 		else
8087 			ret = retlen;
8088 	}
8089 	free_cpumask_var(mask);
8090 
8091 	return ret;
8092 }
8093 
8094 static void do_sched_yield(void)
8095 {
8096 	struct rq_flags rf;
8097 	struct rq *rq;
8098 
8099 	rq = this_rq_lock_irq(&rf);
8100 
8101 	schedstat_inc(rq->yld_count);
8102 	current->sched_class->yield_task(rq);
8103 
8104 	preempt_disable();
8105 	rq_unlock_irq(rq, &rf);
8106 	sched_preempt_enable_no_resched();
8107 
8108 	schedule();
8109 }
8110 
8111 /**
8112  * sys_sched_yield - yield the current processor to other threads.
8113  *
8114  * This function yields the current CPU to other tasks. If there are no
8115  * other threads running on this CPU then this function will return.
8116  *
8117  * Return: 0.
8118  */
8119 SYSCALL_DEFINE0(sched_yield)
8120 {
8121 	do_sched_yield();
8122 	return 0;
8123 }
8124 
8125 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8126 int __sched __cond_resched(void)
8127 {
8128 	if (should_resched(0)) {
8129 		preempt_schedule_common();
8130 		return 1;
8131 	}
8132 	/*
8133 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8134 	 * whether the current CPU is in an RCU read-side critical section,
8135 	 * so the tick can report quiescent states even for CPUs looping
8136 	 * in kernel context.  In contrast, in non-preemptible kernels,
8137 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8138 	 * processes executing in kernel context might never report an
8139 	 * RCU quiescent state.  Therefore, the following code causes
8140 	 * cond_resched() to report a quiescent state, but only when RCU
8141 	 * is in urgent need of one.
8142 	 */
8143 #ifndef CONFIG_PREEMPT_RCU
8144 	rcu_all_qs();
8145 #endif
8146 	return 0;
8147 }
8148 EXPORT_SYMBOL(__cond_resched);
8149 #endif
8150 
8151 #ifdef CONFIG_PREEMPT_DYNAMIC
8152 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8153 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8154 
8155 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8156 EXPORT_STATIC_CALL_TRAMP(might_resched);
8157 #endif
8158 
8159 /*
8160  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8161  * call schedule, and on return reacquire the lock.
8162  *
8163  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8164  * operations here to prevent schedule() from being called twice (once via
8165  * spin_unlock(), once by hand).
8166  */
8167 int __cond_resched_lock(spinlock_t *lock)
8168 {
8169 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8170 	int ret = 0;
8171 
8172 	lockdep_assert_held(lock);
8173 
8174 	if (spin_needbreak(lock) || resched) {
8175 		spin_unlock(lock);
8176 		if (resched)
8177 			preempt_schedule_common();
8178 		else
8179 			cpu_relax();
8180 		ret = 1;
8181 		spin_lock(lock);
8182 	}
8183 	return ret;
8184 }
8185 EXPORT_SYMBOL(__cond_resched_lock);
8186 
8187 int __cond_resched_rwlock_read(rwlock_t *lock)
8188 {
8189 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8190 	int ret = 0;
8191 
8192 	lockdep_assert_held_read(lock);
8193 
8194 	if (rwlock_needbreak(lock) || resched) {
8195 		read_unlock(lock);
8196 		if (resched)
8197 			preempt_schedule_common();
8198 		else
8199 			cpu_relax();
8200 		ret = 1;
8201 		read_lock(lock);
8202 	}
8203 	return ret;
8204 }
8205 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8206 
8207 int __cond_resched_rwlock_write(rwlock_t *lock)
8208 {
8209 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8210 	int ret = 0;
8211 
8212 	lockdep_assert_held_write(lock);
8213 
8214 	if (rwlock_needbreak(lock) || resched) {
8215 		write_unlock(lock);
8216 		if (resched)
8217 			preempt_schedule_common();
8218 		else
8219 			cpu_relax();
8220 		ret = 1;
8221 		write_lock(lock);
8222 	}
8223 	return ret;
8224 }
8225 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8226 
8227 /**
8228  * yield - yield the current processor to other threads.
8229  *
8230  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8231  *
8232  * The scheduler is at all times free to pick the calling task as the most
8233  * eligible task to run, if removing the yield() call from your code breaks
8234  * it, it's already broken.
8235  *
8236  * Typical broken usage is:
8237  *
8238  * while (!event)
8239  *	yield();
8240  *
8241  * where one assumes that yield() will let 'the other' process run that will
8242  * make event true. If the current task is a SCHED_FIFO task that will never
8243  * happen. Never use yield() as a progress guarantee!!
8244  *
8245  * If you want to use yield() to wait for something, use wait_event().
8246  * If you want to use yield() to be 'nice' for others, use cond_resched().
8247  * If you still want to use yield(), do not!
8248  */
8249 void __sched yield(void)
8250 {
8251 	set_current_state(TASK_RUNNING);
8252 	do_sched_yield();
8253 }
8254 EXPORT_SYMBOL(yield);
8255 
8256 /**
8257  * yield_to - yield the current processor to another thread in
8258  * your thread group, or accelerate that thread toward the
8259  * processor it's on.
8260  * @p: target task
8261  * @preempt: whether task preemption is allowed or not
8262  *
8263  * It's the caller's job to ensure that the target task struct
8264  * can't go away on us before we can do any checks.
8265  *
8266  * Return:
8267  *	true (>0) if we indeed boosted the target task.
8268  *	false (0) if we failed to boost the target.
8269  *	-ESRCH if there's no task to yield to.
8270  */
8271 int __sched yield_to(struct task_struct *p, bool preempt)
8272 {
8273 	struct task_struct *curr = current;
8274 	struct rq *rq, *p_rq;
8275 	unsigned long flags;
8276 	int yielded = 0;
8277 
8278 	local_irq_save(flags);
8279 	rq = this_rq();
8280 
8281 again:
8282 	p_rq = task_rq(p);
8283 	/*
8284 	 * If we're the only runnable task on the rq and target rq also
8285 	 * has only one task, there's absolutely no point in yielding.
8286 	 */
8287 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8288 		yielded = -ESRCH;
8289 		goto out_irq;
8290 	}
8291 
8292 	double_rq_lock(rq, p_rq);
8293 	if (task_rq(p) != p_rq) {
8294 		double_rq_unlock(rq, p_rq);
8295 		goto again;
8296 	}
8297 
8298 	if (!curr->sched_class->yield_to_task)
8299 		goto out_unlock;
8300 
8301 	if (curr->sched_class != p->sched_class)
8302 		goto out_unlock;
8303 
8304 	if (task_running(p_rq, p) || !task_is_running(p))
8305 		goto out_unlock;
8306 
8307 	yielded = curr->sched_class->yield_to_task(rq, p);
8308 	if (yielded) {
8309 		schedstat_inc(rq->yld_count);
8310 		/*
8311 		 * Make p's CPU reschedule; pick_next_entity takes care of
8312 		 * fairness.
8313 		 */
8314 		if (preempt && rq != p_rq)
8315 			resched_curr(p_rq);
8316 	}
8317 
8318 out_unlock:
8319 	double_rq_unlock(rq, p_rq);
8320 out_irq:
8321 	local_irq_restore(flags);
8322 
8323 	if (yielded > 0)
8324 		schedule();
8325 
8326 	return yielded;
8327 }
8328 EXPORT_SYMBOL_GPL(yield_to);
8329 
8330 int io_schedule_prepare(void)
8331 {
8332 	int old_iowait = current->in_iowait;
8333 
8334 	current->in_iowait = 1;
8335 	if (current->plug)
8336 		blk_flush_plug(current->plug, true);
8337 
8338 	return old_iowait;
8339 }
8340 
8341 void io_schedule_finish(int token)
8342 {
8343 	current->in_iowait = token;
8344 }
8345 
8346 /*
8347  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8348  * that process accounting knows that this is a task in IO wait state.
8349  */
8350 long __sched io_schedule_timeout(long timeout)
8351 {
8352 	int token;
8353 	long ret;
8354 
8355 	token = io_schedule_prepare();
8356 	ret = schedule_timeout(timeout);
8357 	io_schedule_finish(token);
8358 
8359 	return ret;
8360 }
8361 EXPORT_SYMBOL(io_schedule_timeout);
8362 
8363 void __sched io_schedule(void)
8364 {
8365 	int token;
8366 
8367 	token = io_schedule_prepare();
8368 	schedule();
8369 	io_schedule_finish(token);
8370 }
8371 EXPORT_SYMBOL(io_schedule);
8372 
8373 /**
8374  * sys_sched_get_priority_max - return maximum RT priority.
8375  * @policy: scheduling class.
8376  *
8377  * Return: On success, this syscall returns the maximum
8378  * rt_priority that can be used by a given scheduling class.
8379  * On failure, a negative error code is returned.
8380  */
8381 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8382 {
8383 	int ret = -EINVAL;
8384 
8385 	switch (policy) {
8386 	case SCHED_FIFO:
8387 	case SCHED_RR:
8388 		ret = MAX_RT_PRIO-1;
8389 		break;
8390 	case SCHED_DEADLINE:
8391 	case SCHED_NORMAL:
8392 	case SCHED_BATCH:
8393 	case SCHED_IDLE:
8394 		ret = 0;
8395 		break;
8396 	}
8397 	return ret;
8398 }
8399 
8400 /**
8401  * sys_sched_get_priority_min - return minimum RT priority.
8402  * @policy: scheduling class.
8403  *
8404  * Return: On success, this syscall returns the minimum
8405  * rt_priority that can be used by a given scheduling class.
8406  * On failure, a negative error code is returned.
8407  */
8408 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8409 {
8410 	int ret = -EINVAL;
8411 
8412 	switch (policy) {
8413 	case SCHED_FIFO:
8414 	case SCHED_RR:
8415 		ret = 1;
8416 		break;
8417 	case SCHED_DEADLINE:
8418 	case SCHED_NORMAL:
8419 	case SCHED_BATCH:
8420 	case SCHED_IDLE:
8421 		ret = 0;
8422 	}
8423 	return ret;
8424 }
8425 
8426 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8427 {
8428 	struct task_struct *p;
8429 	unsigned int time_slice;
8430 	struct rq_flags rf;
8431 	struct rq *rq;
8432 	int retval;
8433 
8434 	if (pid < 0)
8435 		return -EINVAL;
8436 
8437 	retval = -ESRCH;
8438 	rcu_read_lock();
8439 	p = find_process_by_pid(pid);
8440 	if (!p)
8441 		goto out_unlock;
8442 
8443 	retval = security_task_getscheduler(p);
8444 	if (retval)
8445 		goto out_unlock;
8446 
8447 	rq = task_rq_lock(p, &rf);
8448 	time_slice = 0;
8449 	if (p->sched_class->get_rr_interval)
8450 		time_slice = p->sched_class->get_rr_interval(rq, p);
8451 	task_rq_unlock(rq, p, &rf);
8452 
8453 	rcu_read_unlock();
8454 	jiffies_to_timespec64(time_slice, t);
8455 	return 0;
8456 
8457 out_unlock:
8458 	rcu_read_unlock();
8459 	return retval;
8460 }
8461 
8462 /**
8463  * sys_sched_rr_get_interval - return the default timeslice of a process.
8464  * @pid: pid of the process.
8465  * @interval: userspace pointer to the timeslice value.
8466  *
8467  * this syscall writes the default timeslice value of a given process
8468  * into the user-space timespec buffer. A value of '0' means infinity.
8469  *
8470  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8471  * an error code.
8472  */
8473 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8474 		struct __kernel_timespec __user *, interval)
8475 {
8476 	struct timespec64 t;
8477 	int retval = sched_rr_get_interval(pid, &t);
8478 
8479 	if (retval == 0)
8480 		retval = put_timespec64(&t, interval);
8481 
8482 	return retval;
8483 }
8484 
8485 #ifdef CONFIG_COMPAT_32BIT_TIME
8486 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8487 		struct old_timespec32 __user *, interval)
8488 {
8489 	struct timespec64 t;
8490 	int retval = sched_rr_get_interval(pid, &t);
8491 
8492 	if (retval == 0)
8493 		retval = put_old_timespec32(&t, interval);
8494 	return retval;
8495 }
8496 #endif
8497 
8498 void sched_show_task(struct task_struct *p)
8499 {
8500 	unsigned long free = 0;
8501 	int ppid;
8502 
8503 	if (!try_get_task_stack(p))
8504 		return;
8505 
8506 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8507 
8508 	if (task_is_running(p))
8509 		pr_cont("  running task    ");
8510 #ifdef CONFIG_DEBUG_STACK_USAGE
8511 	free = stack_not_used(p);
8512 #endif
8513 	ppid = 0;
8514 	rcu_read_lock();
8515 	if (pid_alive(p))
8516 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8517 	rcu_read_unlock();
8518 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8519 		free, task_pid_nr(p), ppid,
8520 		(unsigned long)task_thread_info(p)->flags);
8521 
8522 	print_worker_info(KERN_INFO, p);
8523 	print_stop_info(KERN_INFO, p);
8524 	show_stack(p, NULL, KERN_INFO);
8525 	put_task_stack(p);
8526 }
8527 EXPORT_SYMBOL_GPL(sched_show_task);
8528 
8529 static inline bool
8530 state_filter_match(unsigned long state_filter, struct task_struct *p)
8531 {
8532 	unsigned int state = READ_ONCE(p->__state);
8533 
8534 	/* no filter, everything matches */
8535 	if (!state_filter)
8536 		return true;
8537 
8538 	/* filter, but doesn't match */
8539 	if (!(state & state_filter))
8540 		return false;
8541 
8542 	/*
8543 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8544 	 * TASK_KILLABLE).
8545 	 */
8546 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8547 		return false;
8548 
8549 	return true;
8550 }
8551 
8552 
8553 void show_state_filter(unsigned int state_filter)
8554 {
8555 	struct task_struct *g, *p;
8556 
8557 	rcu_read_lock();
8558 	for_each_process_thread(g, p) {
8559 		/*
8560 		 * reset the NMI-timeout, listing all files on a slow
8561 		 * console might take a lot of time:
8562 		 * Also, reset softlockup watchdogs on all CPUs, because
8563 		 * another CPU might be blocked waiting for us to process
8564 		 * an IPI.
8565 		 */
8566 		touch_nmi_watchdog();
8567 		touch_all_softlockup_watchdogs();
8568 		if (state_filter_match(state_filter, p))
8569 			sched_show_task(p);
8570 	}
8571 
8572 #ifdef CONFIG_SCHED_DEBUG
8573 	if (!state_filter)
8574 		sysrq_sched_debug_show();
8575 #endif
8576 	rcu_read_unlock();
8577 	/*
8578 	 * Only show locks if all tasks are dumped:
8579 	 */
8580 	if (!state_filter)
8581 		debug_show_all_locks();
8582 }
8583 
8584 /**
8585  * init_idle - set up an idle thread for a given CPU
8586  * @idle: task in question
8587  * @cpu: CPU the idle task belongs to
8588  *
8589  * NOTE: this function does not set the idle thread's NEED_RESCHED
8590  * flag, to make booting more robust.
8591  */
8592 void __init init_idle(struct task_struct *idle, int cpu)
8593 {
8594 	struct rq *rq = cpu_rq(cpu);
8595 	unsigned long flags;
8596 
8597 	__sched_fork(0, idle);
8598 
8599 	/*
8600 	 * The idle task doesn't need the kthread struct to function, but it
8601 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8602 	 * if we want to avoid special-casing it in code that deals with per-CPU
8603 	 * kthreads.
8604 	 */
8605 	set_kthread_struct(idle);
8606 
8607 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8608 	raw_spin_rq_lock(rq);
8609 
8610 	idle->__state = TASK_RUNNING;
8611 	idle->se.exec_start = sched_clock();
8612 	/*
8613 	 * PF_KTHREAD should already be set at this point; regardless, make it
8614 	 * look like a proper per-CPU kthread.
8615 	 */
8616 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8617 	kthread_set_per_cpu(idle, cpu);
8618 
8619 	scs_task_reset(idle);
8620 	kasan_unpoison_task_stack(idle);
8621 
8622 #ifdef CONFIG_SMP
8623 	/*
8624 	 * It's possible that init_idle() gets called multiple times on a task,
8625 	 * in that case do_set_cpus_allowed() will not do the right thing.
8626 	 *
8627 	 * And since this is boot we can forgo the serialization.
8628 	 */
8629 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8630 #endif
8631 	/*
8632 	 * We're having a chicken and egg problem, even though we are
8633 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8634 	 * lockdep check in task_group() will fail.
8635 	 *
8636 	 * Similar case to sched_fork(). / Alternatively we could
8637 	 * use task_rq_lock() here and obtain the other rq->lock.
8638 	 *
8639 	 * Silence PROVE_RCU
8640 	 */
8641 	rcu_read_lock();
8642 	__set_task_cpu(idle, cpu);
8643 	rcu_read_unlock();
8644 
8645 	rq->idle = idle;
8646 	rcu_assign_pointer(rq->curr, idle);
8647 	idle->on_rq = TASK_ON_RQ_QUEUED;
8648 #ifdef CONFIG_SMP
8649 	idle->on_cpu = 1;
8650 #endif
8651 	raw_spin_rq_unlock(rq);
8652 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8653 
8654 	/* Set the preempt count _outside_ the spinlocks! */
8655 	init_idle_preempt_count(idle, cpu);
8656 
8657 	/*
8658 	 * The idle tasks have their own, simple scheduling class:
8659 	 */
8660 	idle->sched_class = &idle_sched_class;
8661 	ftrace_graph_init_idle_task(idle, cpu);
8662 	vtime_init_idle(idle, cpu);
8663 #ifdef CONFIG_SMP
8664 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8665 #endif
8666 }
8667 
8668 #ifdef CONFIG_SMP
8669 
8670 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8671 			      const struct cpumask *trial)
8672 {
8673 	int ret = 1;
8674 
8675 	if (!cpumask_weight(cur))
8676 		return ret;
8677 
8678 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8679 
8680 	return ret;
8681 }
8682 
8683 int task_can_attach(struct task_struct *p,
8684 		    const struct cpumask *cs_cpus_allowed)
8685 {
8686 	int ret = 0;
8687 
8688 	/*
8689 	 * Kthreads which disallow setaffinity shouldn't be moved
8690 	 * to a new cpuset; we don't want to change their CPU
8691 	 * affinity and isolating such threads by their set of
8692 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8693 	 * applicable for such threads.  This prevents checking for
8694 	 * success of set_cpus_allowed_ptr() on all attached tasks
8695 	 * before cpus_mask may be changed.
8696 	 */
8697 	if (p->flags & PF_NO_SETAFFINITY) {
8698 		ret = -EINVAL;
8699 		goto out;
8700 	}
8701 
8702 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8703 					      cs_cpus_allowed))
8704 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8705 
8706 out:
8707 	return ret;
8708 }
8709 
8710 bool sched_smp_initialized __read_mostly;
8711 
8712 #ifdef CONFIG_NUMA_BALANCING
8713 /* Migrate current task p to target_cpu */
8714 int migrate_task_to(struct task_struct *p, int target_cpu)
8715 {
8716 	struct migration_arg arg = { p, target_cpu };
8717 	int curr_cpu = task_cpu(p);
8718 
8719 	if (curr_cpu == target_cpu)
8720 		return 0;
8721 
8722 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8723 		return -EINVAL;
8724 
8725 	/* TODO: This is not properly updating schedstats */
8726 
8727 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8728 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8729 }
8730 
8731 /*
8732  * Requeue a task on a given node and accurately track the number of NUMA
8733  * tasks on the runqueues
8734  */
8735 void sched_setnuma(struct task_struct *p, int nid)
8736 {
8737 	bool queued, running;
8738 	struct rq_flags rf;
8739 	struct rq *rq;
8740 
8741 	rq = task_rq_lock(p, &rf);
8742 	queued = task_on_rq_queued(p);
8743 	running = task_current(rq, p);
8744 
8745 	if (queued)
8746 		dequeue_task(rq, p, DEQUEUE_SAVE);
8747 	if (running)
8748 		put_prev_task(rq, p);
8749 
8750 	p->numa_preferred_nid = nid;
8751 
8752 	if (queued)
8753 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8754 	if (running)
8755 		set_next_task(rq, p);
8756 	task_rq_unlock(rq, p, &rf);
8757 }
8758 #endif /* CONFIG_NUMA_BALANCING */
8759 
8760 #ifdef CONFIG_HOTPLUG_CPU
8761 /*
8762  * Ensure that the idle task is using init_mm right before its CPU goes
8763  * offline.
8764  */
8765 void idle_task_exit(void)
8766 {
8767 	struct mm_struct *mm = current->active_mm;
8768 
8769 	BUG_ON(cpu_online(smp_processor_id()));
8770 	BUG_ON(current != this_rq()->idle);
8771 
8772 	if (mm != &init_mm) {
8773 		switch_mm(mm, &init_mm, current);
8774 		finish_arch_post_lock_switch();
8775 	}
8776 
8777 	scs_task_reset(current);
8778 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8779 }
8780 
8781 static int __balance_push_cpu_stop(void *arg)
8782 {
8783 	struct task_struct *p = arg;
8784 	struct rq *rq = this_rq();
8785 	struct rq_flags rf;
8786 	int cpu;
8787 
8788 	raw_spin_lock_irq(&p->pi_lock);
8789 	rq_lock(rq, &rf);
8790 
8791 	update_rq_clock(rq);
8792 
8793 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8794 		cpu = select_fallback_rq(rq->cpu, p);
8795 		rq = __migrate_task(rq, &rf, p, cpu);
8796 	}
8797 
8798 	rq_unlock(rq, &rf);
8799 	raw_spin_unlock_irq(&p->pi_lock);
8800 
8801 	put_task_struct(p);
8802 
8803 	return 0;
8804 }
8805 
8806 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8807 
8808 /*
8809  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8810  *
8811  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8812  * effective when the hotplug motion is down.
8813  */
8814 static void balance_push(struct rq *rq)
8815 {
8816 	struct task_struct *push_task = rq->curr;
8817 
8818 	lockdep_assert_rq_held(rq);
8819 
8820 	/*
8821 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8822 	 */
8823 	rq->balance_callback = &balance_push_callback;
8824 
8825 	/*
8826 	 * Only active while going offline and when invoked on the outgoing
8827 	 * CPU.
8828 	 */
8829 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8830 		return;
8831 
8832 	/*
8833 	 * Both the cpu-hotplug and stop task are in this case and are
8834 	 * required to complete the hotplug process.
8835 	 */
8836 	if (kthread_is_per_cpu(push_task) ||
8837 	    is_migration_disabled(push_task)) {
8838 
8839 		/*
8840 		 * If this is the idle task on the outgoing CPU try to wake
8841 		 * up the hotplug control thread which might wait for the
8842 		 * last task to vanish. The rcuwait_active() check is
8843 		 * accurate here because the waiter is pinned on this CPU
8844 		 * and can't obviously be running in parallel.
8845 		 *
8846 		 * On RT kernels this also has to check whether there are
8847 		 * pinned and scheduled out tasks on the runqueue. They
8848 		 * need to leave the migrate disabled section first.
8849 		 */
8850 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8851 		    rcuwait_active(&rq->hotplug_wait)) {
8852 			raw_spin_rq_unlock(rq);
8853 			rcuwait_wake_up(&rq->hotplug_wait);
8854 			raw_spin_rq_lock(rq);
8855 		}
8856 		return;
8857 	}
8858 
8859 	get_task_struct(push_task);
8860 	/*
8861 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8862 	 * Both preemption and IRQs are still disabled.
8863 	 */
8864 	raw_spin_rq_unlock(rq);
8865 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8866 			    this_cpu_ptr(&push_work));
8867 	/*
8868 	 * At this point need_resched() is true and we'll take the loop in
8869 	 * schedule(). The next pick is obviously going to be the stop task
8870 	 * which kthread_is_per_cpu() and will push this task away.
8871 	 */
8872 	raw_spin_rq_lock(rq);
8873 }
8874 
8875 static void balance_push_set(int cpu, bool on)
8876 {
8877 	struct rq *rq = cpu_rq(cpu);
8878 	struct rq_flags rf;
8879 
8880 	rq_lock_irqsave(rq, &rf);
8881 	if (on) {
8882 		WARN_ON_ONCE(rq->balance_callback);
8883 		rq->balance_callback = &balance_push_callback;
8884 	} else if (rq->balance_callback == &balance_push_callback) {
8885 		rq->balance_callback = NULL;
8886 	}
8887 	rq_unlock_irqrestore(rq, &rf);
8888 }
8889 
8890 /*
8891  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8892  * inactive. All tasks which are not per CPU kernel threads are either
8893  * pushed off this CPU now via balance_push() or placed on a different CPU
8894  * during wakeup. Wait until the CPU is quiescent.
8895  */
8896 static void balance_hotplug_wait(void)
8897 {
8898 	struct rq *rq = this_rq();
8899 
8900 	rcuwait_wait_event(&rq->hotplug_wait,
8901 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8902 			   TASK_UNINTERRUPTIBLE);
8903 }
8904 
8905 #else
8906 
8907 static inline void balance_push(struct rq *rq)
8908 {
8909 }
8910 
8911 static inline void balance_push_set(int cpu, bool on)
8912 {
8913 }
8914 
8915 static inline void balance_hotplug_wait(void)
8916 {
8917 }
8918 
8919 #endif /* CONFIG_HOTPLUG_CPU */
8920 
8921 void set_rq_online(struct rq *rq)
8922 {
8923 	if (!rq->online) {
8924 		const struct sched_class *class;
8925 
8926 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8927 		rq->online = 1;
8928 
8929 		for_each_class(class) {
8930 			if (class->rq_online)
8931 				class->rq_online(rq);
8932 		}
8933 	}
8934 }
8935 
8936 void set_rq_offline(struct rq *rq)
8937 {
8938 	if (rq->online) {
8939 		const struct sched_class *class;
8940 
8941 		for_each_class(class) {
8942 			if (class->rq_offline)
8943 				class->rq_offline(rq);
8944 		}
8945 
8946 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8947 		rq->online = 0;
8948 	}
8949 }
8950 
8951 /*
8952  * used to mark begin/end of suspend/resume:
8953  */
8954 static int num_cpus_frozen;
8955 
8956 /*
8957  * Update cpusets according to cpu_active mask.  If cpusets are
8958  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8959  * around partition_sched_domains().
8960  *
8961  * If we come here as part of a suspend/resume, don't touch cpusets because we
8962  * want to restore it back to its original state upon resume anyway.
8963  */
8964 static void cpuset_cpu_active(void)
8965 {
8966 	if (cpuhp_tasks_frozen) {
8967 		/*
8968 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8969 		 * resume sequence. As long as this is not the last online
8970 		 * operation in the resume sequence, just build a single sched
8971 		 * domain, ignoring cpusets.
8972 		 */
8973 		partition_sched_domains(1, NULL, NULL);
8974 		if (--num_cpus_frozen)
8975 			return;
8976 		/*
8977 		 * This is the last CPU online operation. So fall through and
8978 		 * restore the original sched domains by considering the
8979 		 * cpuset configurations.
8980 		 */
8981 		cpuset_force_rebuild();
8982 	}
8983 	cpuset_update_active_cpus();
8984 }
8985 
8986 static int cpuset_cpu_inactive(unsigned int cpu)
8987 {
8988 	if (!cpuhp_tasks_frozen) {
8989 		if (dl_cpu_busy(cpu))
8990 			return -EBUSY;
8991 		cpuset_update_active_cpus();
8992 	} else {
8993 		num_cpus_frozen++;
8994 		partition_sched_domains(1, NULL, NULL);
8995 	}
8996 	return 0;
8997 }
8998 
8999 int sched_cpu_activate(unsigned int cpu)
9000 {
9001 	struct rq *rq = cpu_rq(cpu);
9002 	struct rq_flags rf;
9003 
9004 	/*
9005 	 * Clear the balance_push callback and prepare to schedule
9006 	 * regular tasks.
9007 	 */
9008 	balance_push_set(cpu, false);
9009 
9010 #ifdef CONFIG_SCHED_SMT
9011 	/*
9012 	 * When going up, increment the number of cores with SMT present.
9013 	 */
9014 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9015 		static_branch_inc_cpuslocked(&sched_smt_present);
9016 #endif
9017 	set_cpu_active(cpu, true);
9018 
9019 	if (sched_smp_initialized) {
9020 		sched_domains_numa_masks_set(cpu);
9021 		cpuset_cpu_active();
9022 	}
9023 
9024 	/*
9025 	 * Put the rq online, if not already. This happens:
9026 	 *
9027 	 * 1) In the early boot process, because we build the real domains
9028 	 *    after all CPUs have been brought up.
9029 	 *
9030 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9031 	 *    domains.
9032 	 */
9033 	rq_lock_irqsave(rq, &rf);
9034 	if (rq->rd) {
9035 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9036 		set_rq_online(rq);
9037 	}
9038 	rq_unlock_irqrestore(rq, &rf);
9039 
9040 	return 0;
9041 }
9042 
9043 int sched_cpu_deactivate(unsigned int cpu)
9044 {
9045 	struct rq *rq = cpu_rq(cpu);
9046 	struct rq_flags rf;
9047 	int ret;
9048 
9049 	/*
9050 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9051 	 * load balancing when not active
9052 	 */
9053 	nohz_balance_exit_idle(rq);
9054 
9055 	set_cpu_active(cpu, false);
9056 
9057 	/*
9058 	 * From this point forward, this CPU will refuse to run any task that
9059 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9060 	 * push those tasks away until this gets cleared, see
9061 	 * sched_cpu_dying().
9062 	 */
9063 	balance_push_set(cpu, true);
9064 
9065 	/*
9066 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9067 	 * preempt-disabled and RCU users of this state to go away such that
9068 	 * all new such users will observe it.
9069 	 *
9070 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9071 	 * ttwu_queue_cond() and is_cpu_allowed().
9072 	 *
9073 	 * Do sync before park smpboot threads to take care the rcu boost case.
9074 	 */
9075 	synchronize_rcu();
9076 
9077 	rq_lock_irqsave(rq, &rf);
9078 	if (rq->rd) {
9079 		update_rq_clock(rq);
9080 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9081 		set_rq_offline(rq);
9082 	}
9083 	rq_unlock_irqrestore(rq, &rf);
9084 
9085 #ifdef CONFIG_SCHED_SMT
9086 	/*
9087 	 * When going down, decrement the number of cores with SMT present.
9088 	 */
9089 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9090 		static_branch_dec_cpuslocked(&sched_smt_present);
9091 
9092 	sched_core_cpu_deactivate(cpu);
9093 #endif
9094 
9095 	if (!sched_smp_initialized)
9096 		return 0;
9097 
9098 	ret = cpuset_cpu_inactive(cpu);
9099 	if (ret) {
9100 		balance_push_set(cpu, false);
9101 		set_cpu_active(cpu, true);
9102 		return ret;
9103 	}
9104 	sched_domains_numa_masks_clear(cpu);
9105 	return 0;
9106 }
9107 
9108 static void sched_rq_cpu_starting(unsigned int cpu)
9109 {
9110 	struct rq *rq = cpu_rq(cpu);
9111 
9112 	rq->calc_load_update = calc_load_update;
9113 	update_max_interval();
9114 }
9115 
9116 int sched_cpu_starting(unsigned int cpu)
9117 {
9118 	sched_core_cpu_starting(cpu);
9119 	sched_rq_cpu_starting(cpu);
9120 	sched_tick_start(cpu);
9121 	return 0;
9122 }
9123 
9124 #ifdef CONFIG_HOTPLUG_CPU
9125 
9126 /*
9127  * Invoked immediately before the stopper thread is invoked to bring the
9128  * CPU down completely. At this point all per CPU kthreads except the
9129  * hotplug thread (current) and the stopper thread (inactive) have been
9130  * either parked or have been unbound from the outgoing CPU. Ensure that
9131  * any of those which might be on the way out are gone.
9132  *
9133  * If after this point a bound task is being woken on this CPU then the
9134  * responsible hotplug callback has failed to do it's job.
9135  * sched_cpu_dying() will catch it with the appropriate fireworks.
9136  */
9137 int sched_cpu_wait_empty(unsigned int cpu)
9138 {
9139 	balance_hotplug_wait();
9140 	return 0;
9141 }
9142 
9143 /*
9144  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9145  * might have. Called from the CPU stopper task after ensuring that the
9146  * stopper is the last running task on the CPU, so nr_active count is
9147  * stable. We need to take the teardown thread which is calling this into
9148  * account, so we hand in adjust = 1 to the load calculation.
9149  *
9150  * Also see the comment "Global load-average calculations".
9151  */
9152 static void calc_load_migrate(struct rq *rq)
9153 {
9154 	long delta = calc_load_fold_active(rq, 1);
9155 
9156 	if (delta)
9157 		atomic_long_add(delta, &calc_load_tasks);
9158 }
9159 
9160 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9161 {
9162 	struct task_struct *g, *p;
9163 	int cpu = cpu_of(rq);
9164 
9165 	lockdep_assert_rq_held(rq);
9166 
9167 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9168 	for_each_process_thread(g, p) {
9169 		if (task_cpu(p) != cpu)
9170 			continue;
9171 
9172 		if (!task_on_rq_queued(p))
9173 			continue;
9174 
9175 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9176 	}
9177 }
9178 
9179 int sched_cpu_dying(unsigned int cpu)
9180 {
9181 	struct rq *rq = cpu_rq(cpu);
9182 	struct rq_flags rf;
9183 
9184 	/* Handle pending wakeups and then migrate everything off */
9185 	sched_tick_stop(cpu);
9186 
9187 	rq_lock_irqsave(rq, &rf);
9188 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9189 		WARN(true, "Dying CPU not properly vacated!");
9190 		dump_rq_tasks(rq, KERN_WARNING);
9191 	}
9192 	rq_unlock_irqrestore(rq, &rf);
9193 
9194 	calc_load_migrate(rq);
9195 	update_max_interval();
9196 	hrtick_clear(rq);
9197 	sched_core_cpu_dying(cpu);
9198 	return 0;
9199 }
9200 #endif
9201 
9202 void __init sched_init_smp(void)
9203 {
9204 	sched_init_numa();
9205 
9206 	/*
9207 	 * There's no userspace yet to cause hotplug operations; hence all the
9208 	 * CPU masks are stable and all blatant races in the below code cannot
9209 	 * happen.
9210 	 */
9211 	mutex_lock(&sched_domains_mutex);
9212 	sched_init_domains(cpu_active_mask);
9213 	mutex_unlock(&sched_domains_mutex);
9214 
9215 	/* Move init over to a non-isolated CPU */
9216 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9217 		BUG();
9218 	current->flags &= ~PF_NO_SETAFFINITY;
9219 	sched_init_granularity();
9220 
9221 	init_sched_rt_class();
9222 	init_sched_dl_class();
9223 
9224 	sched_smp_initialized = true;
9225 }
9226 
9227 static int __init migration_init(void)
9228 {
9229 	sched_cpu_starting(smp_processor_id());
9230 	return 0;
9231 }
9232 early_initcall(migration_init);
9233 
9234 #else
9235 void __init sched_init_smp(void)
9236 {
9237 	sched_init_granularity();
9238 }
9239 #endif /* CONFIG_SMP */
9240 
9241 int in_sched_functions(unsigned long addr)
9242 {
9243 	return in_lock_functions(addr) ||
9244 		(addr >= (unsigned long)__sched_text_start
9245 		&& addr < (unsigned long)__sched_text_end);
9246 }
9247 
9248 #ifdef CONFIG_CGROUP_SCHED
9249 /*
9250  * Default task group.
9251  * Every task in system belongs to this group at bootup.
9252  */
9253 struct task_group root_task_group;
9254 LIST_HEAD(task_groups);
9255 
9256 /* Cacheline aligned slab cache for task_group */
9257 static struct kmem_cache *task_group_cache __read_mostly;
9258 #endif
9259 
9260 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9261 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9262 
9263 void __init sched_init(void)
9264 {
9265 	unsigned long ptr = 0;
9266 	int i;
9267 
9268 	/* Make sure the linker didn't screw up */
9269 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9270 	       &fair_sched_class + 1 != &rt_sched_class ||
9271 	       &rt_sched_class + 1   != &dl_sched_class);
9272 #ifdef CONFIG_SMP
9273 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9274 #endif
9275 
9276 	wait_bit_init();
9277 
9278 #ifdef CONFIG_FAIR_GROUP_SCHED
9279 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9280 #endif
9281 #ifdef CONFIG_RT_GROUP_SCHED
9282 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9283 #endif
9284 	if (ptr) {
9285 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9286 
9287 #ifdef CONFIG_FAIR_GROUP_SCHED
9288 		root_task_group.se = (struct sched_entity **)ptr;
9289 		ptr += nr_cpu_ids * sizeof(void **);
9290 
9291 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9292 		ptr += nr_cpu_ids * sizeof(void **);
9293 
9294 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9295 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9296 #endif /* CONFIG_FAIR_GROUP_SCHED */
9297 #ifdef CONFIG_RT_GROUP_SCHED
9298 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9299 		ptr += nr_cpu_ids * sizeof(void **);
9300 
9301 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9302 		ptr += nr_cpu_ids * sizeof(void **);
9303 
9304 #endif /* CONFIG_RT_GROUP_SCHED */
9305 	}
9306 #ifdef CONFIG_CPUMASK_OFFSTACK
9307 	for_each_possible_cpu(i) {
9308 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9309 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9310 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9311 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9312 	}
9313 #endif /* CONFIG_CPUMASK_OFFSTACK */
9314 
9315 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9316 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9317 
9318 #ifdef CONFIG_SMP
9319 	init_defrootdomain();
9320 #endif
9321 
9322 #ifdef CONFIG_RT_GROUP_SCHED
9323 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9324 			global_rt_period(), global_rt_runtime());
9325 #endif /* CONFIG_RT_GROUP_SCHED */
9326 
9327 #ifdef CONFIG_CGROUP_SCHED
9328 	task_group_cache = KMEM_CACHE(task_group, 0);
9329 
9330 	list_add(&root_task_group.list, &task_groups);
9331 	INIT_LIST_HEAD(&root_task_group.children);
9332 	INIT_LIST_HEAD(&root_task_group.siblings);
9333 	autogroup_init(&init_task);
9334 #endif /* CONFIG_CGROUP_SCHED */
9335 
9336 	for_each_possible_cpu(i) {
9337 		struct rq *rq;
9338 
9339 		rq = cpu_rq(i);
9340 		raw_spin_lock_init(&rq->__lock);
9341 		rq->nr_running = 0;
9342 		rq->calc_load_active = 0;
9343 		rq->calc_load_update = jiffies + LOAD_FREQ;
9344 		init_cfs_rq(&rq->cfs);
9345 		init_rt_rq(&rq->rt);
9346 		init_dl_rq(&rq->dl);
9347 #ifdef CONFIG_FAIR_GROUP_SCHED
9348 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9349 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9350 		/*
9351 		 * How much CPU bandwidth does root_task_group get?
9352 		 *
9353 		 * In case of task-groups formed thr' the cgroup filesystem, it
9354 		 * gets 100% of the CPU resources in the system. This overall
9355 		 * system CPU resource is divided among the tasks of
9356 		 * root_task_group and its child task-groups in a fair manner,
9357 		 * based on each entity's (task or task-group's) weight
9358 		 * (se->load.weight).
9359 		 *
9360 		 * In other words, if root_task_group has 10 tasks of weight
9361 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9362 		 * then A0's share of the CPU resource is:
9363 		 *
9364 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9365 		 *
9366 		 * We achieve this by letting root_task_group's tasks sit
9367 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9368 		 */
9369 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9370 #endif /* CONFIG_FAIR_GROUP_SCHED */
9371 
9372 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9373 #ifdef CONFIG_RT_GROUP_SCHED
9374 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9375 #endif
9376 #ifdef CONFIG_SMP
9377 		rq->sd = NULL;
9378 		rq->rd = NULL;
9379 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9380 		rq->balance_callback = &balance_push_callback;
9381 		rq->active_balance = 0;
9382 		rq->next_balance = jiffies;
9383 		rq->push_cpu = 0;
9384 		rq->cpu = i;
9385 		rq->online = 0;
9386 		rq->idle_stamp = 0;
9387 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9388 		rq->wake_stamp = jiffies;
9389 		rq->wake_avg_idle = rq->avg_idle;
9390 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9391 
9392 		INIT_LIST_HEAD(&rq->cfs_tasks);
9393 
9394 		rq_attach_root(rq, &def_root_domain);
9395 #ifdef CONFIG_NO_HZ_COMMON
9396 		rq->last_blocked_load_update_tick = jiffies;
9397 		atomic_set(&rq->nohz_flags, 0);
9398 
9399 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9400 #endif
9401 #ifdef CONFIG_HOTPLUG_CPU
9402 		rcuwait_init(&rq->hotplug_wait);
9403 #endif
9404 #endif /* CONFIG_SMP */
9405 		hrtick_rq_init(rq);
9406 		atomic_set(&rq->nr_iowait, 0);
9407 
9408 #ifdef CONFIG_SCHED_CORE
9409 		rq->core = rq;
9410 		rq->core_pick = NULL;
9411 		rq->core_enabled = 0;
9412 		rq->core_tree = RB_ROOT;
9413 		rq->core_forceidle = false;
9414 
9415 		rq->core_cookie = 0UL;
9416 #endif
9417 	}
9418 
9419 	set_load_weight(&init_task, false);
9420 
9421 	/*
9422 	 * The boot idle thread does lazy MMU switching as well:
9423 	 */
9424 	mmgrab(&init_mm);
9425 	enter_lazy_tlb(&init_mm, current);
9426 
9427 	/*
9428 	 * Make us the idle thread. Technically, schedule() should not be
9429 	 * called from this thread, however somewhere below it might be,
9430 	 * but because we are the idle thread, we just pick up running again
9431 	 * when this runqueue becomes "idle".
9432 	 */
9433 	init_idle(current, smp_processor_id());
9434 
9435 	calc_load_update = jiffies + LOAD_FREQ;
9436 
9437 #ifdef CONFIG_SMP
9438 	idle_thread_set_boot_cpu();
9439 	balance_push_set(smp_processor_id(), false);
9440 #endif
9441 	init_sched_fair_class();
9442 
9443 	psi_init();
9444 
9445 	init_uclamp();
9446 
9447 	preempt_dynamic_init();
9448 
9449 	scheduler_running = 1;
9450 }
9451 
9452 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9453 
9454 void __might_sleep(const char *file, int line)
9455 {
9456 	unsigned int state = get_current_state();
9457 	/*
9458 	 * Blocking primitives will set (and therefore destroy) current->state,
9459 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9460 	 * otherwise we will destroy state.
9461 	 */
9462 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9463 			"do not call blocking ops when !TASK_RUNNING; "
9464 			"state=%x set at [<%p>] %pS\n", state,
9465 			(void *)current->task_state_change,
9466 			(void *)current->task_state_change);
9467 
9468 	__might_resched(file, line, 0);
9469 }
9470 EXPORT_SYMBOL(__might_sleep);
9471 
9472 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9473 {
9474 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9475 		return;
9476 
9477 	if (preempt_count() == preempt_offset)
9478 		return;
9479 
9480 	pr_err("Preemption disabled at:");
9481 	print_ip_sym(KERN_ERR, ip);
9482 }
9483 
9484 static inline bool resched_offsets_ok(unsigned int offsets)
9485 {
9486 	unsigned int nested = preempt_count();
9487 
9488 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9489 
9490 	return nested == offsets;
9491 }
9492 
9493 void __might_resched(const char *file, int line, unsigned int offsets)
9494 {
9495 	/* Ratelimiting timestamp: */
9496 	static unsigned long prev_jiffy;
9497 
9498 	unsigned long preempt_disable_ip;
9499 
9500 	/* WARN_ON_ONCE() by default, no rate limit required: */
9501 	rcu_sleep_check();
9502 
9503 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9504 	     !is_idle_task(current) && !current->non_block_count) ||
9505 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9506 	    oops_in_progress)
9507 		return;
9508 
9509 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9510 		return;
9511 	prev_jiffy = jiffies;
9512 
9513 	/* Save this before calling printk(), since that will clobber it: */
9514 	preempt_disable_ip = get_preempt_disable_ip(current);
9515 
9516 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9517 	       file, line);
9518 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9519 	       in_atomic(), irqs_disabled(), current->non_block_count,
9520 	       current->pid, current->comm);
9521 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9522 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9523 
9524 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9525 		pr_err("RCU nest depth: %d, expected: %u\n",
9526 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9527 	}
9528 
9529 	if (task_stack_end_corrupted(current))
9530 		pr_emerg("Thread overran stack, or stack corrupted\n");
9531 
9532 	debug_show_held_locks(current);
9533 	if (irqs_disabled())
9534 		print_irqtrace_events(current);
9535 
9536 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9537 				 preempt_disable_ip);
9538 
9539 	dump_stack();
9540 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9541 }
9542 EXPORT_SYMBOL(__might_resched);
9543 
9544 void __cant_sleep(const char *file, int line, int preempt_offset)
9545 {
9546 	static unsigned long prev_jiffy;
9547 
9548 	if (irqs_disabled())
9549 		return;
9550 
9551 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9552 		return;
9553 
9554 	if (preempt_count() > preempt_offset)
9555 		return;
9556 
9557 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9558 		return;
9559 	prev_jiffy = jiffies;
9560 
9561 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9562 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9563 			in_atomic(), irqs_disabled(),
9564 			current->pid, current->comm);
9565 
9566 	debug_show_held_locks(current);
9567 	dump_stack();
9568 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9569 }
9570 EXPORT_SYMBOL_GPL(__cant_sleep);
9571 
9572 #ifdef CONFIG_SMP
9573 void __cant_migrate(const char *file, int line)
9574 {
9575 	static unsigned long prev_jiffy;
9576 
9577 	if (irqs_disabled())
9578 		return;
9579 
9580 	if (is_migration_disabled(current))
9581 		return;
9582 
9583 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9584 		return;
9585 
9586 	if (preempt_count() > 0)
9587 		return;
9588 
9589 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9590 		return;
9591 	prev_jiffy = jiffies;
9592 
9593 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9594 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9595 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9596 	       current->pid, current->comm);
9597 
9598 	debug_show_held_locks(current);
9599 	dump_stack();
9600 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9601 }
9602 EXPORT_SYMBOL_GPL(__cant_migrate);
9603 #endif
9604 #endif
9605 
9606 #ifdef CONFIG_MAGIC_SYSRQ
9607 void normalize_rt_tasks(void)
9608 {
9609 	struct task_struct *g, *p;
9610 	struct sched_attr attr = {
9611 		.sched_policy = SCHED_NORMAL,
9612 	};
9613 
9614 	read_lock(&tasklist_lock);
9615 	for_each_process_thread(g, p) {
9616 		/*
9617 		 * Only normalize user tasks:
9618 		 */
9619 		if (p->flags & PF_KTHREAD)
9620 			continue;
9621 
9622 		p->se.exec_start = 0;
9623 		schedstat_set(p->stats.wait_start,  0);
9624 		schedstat_set(p->stats.sleep_start, 0);
9625 		schedstat_set(p->stats.block_start, 0);
9626 
9627 		if (!dl_task(p) && !rt_task(p)) {
9628 			/*
9629 			 * Renice negative nice level userspace
9630 			 * tasks back to 0:
9631 			 */
9632 			if (task_nice(p) < 0)
9633 				set_user_nice(p, 0);
9634 			continue;
9635 		}
9636 
9637 		__sched_setscheduler(p, &attr, false, false);
9638 	}
9639 	read_unlock(&tasklist_lock);
9640 }
9641 
9642 #endif /* CONFIG_MAGIC_SYSRQ */
9643 
9644 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9645 /*
9646  * These functions are only useful for the IA64 MCA handling, or kdb.
9647  *
9648  * They can only be called when the whole system has been
9649  * stopped - every CPU needs to be quiescent, and no scheduling
9650  * activity can take place. Using them for anything else would
9651  * be a serious bug, and as a result, they aren't even visible
9652  * under any other configuration.
9653  */
9654 
9655 /**
9656  * curr_task - return the current task for a given CPU.
9657  * @cpu: the processor in question.
9658  *
9659  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9660  *
9661  * Return: The current task for @cpu.
9662  */
9663 struct task_struct *curr_task(int cpu)
9664 {
9665 	return cpu_curr(cpu);
9666 }
9667 
9668 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9669 
9670 #ifdef CONFIG_IA64
9671 /**
9672  * ia64_set_curr_task - set the current task for a given CPU.
9673  * @cpu: the processor in question.
9674  * @p: the task pointer to set.
9675  *
9676  * Description: This function must only be used when non-maskable interrupts
9677  * are serviced on a separate stack. It allows the architecture to switch the
9678  * notion of the current task on a CPU in a non-blocking manner. This function
9679  * must be called with all CPU's synchronized, and interrupts disabled, the
9680  * and caller must save the original value of the current task (see
9681  * curr_task() above) and restore that value before reenabling interrupts and
9682  * re-starting the system.
9683  *
9684  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9685  */
9686 void ia64_set_curr_task(int cpu, struct task_struct *p)
9687 {
9688 	cpu_curr(cpu) = p;
9689 }
9690 
9691 #endif
9692 
9693 #ifdef CONFIG_CGROUP_SCHED
9694 /* task_group_lock serializes the addition/removal of task groups */
9695 static DEFINE_SPINLOCK(task_group_lock);
9696 
9697 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9698 					    struct task_group *parent)
9699 {
9700 #ifdef CONFIG_UCLAMP_TASK_GROUP
9701 	enum uclamp_id clamp_id;
9702 
9703 	for_each_clamp_id(clamp_id) {
9704 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9705 			      uclamp_none(clamp_id), false);
9706 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9707 	}
9708 #endif
9709 }
9710 
9711 static void sched_free_group(struct task_group *tg)
9712 {
9713 	free_fair_sched_group(tg);
9714 	free_rt_sched_group(tg);
9715 	autogroup_free(tg);
9716 	kmem_cache_free(task_group_cache, tg);
9717 }
9718 
9719 /* allocate runqueue etc for a new task group */
9720 struct task_group *sched_create_group(struct task_group *parent)
9721 {
9722 	struct task_group *tg;
9723 
9724 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9725 	if (!tg)
9726 		return ERR_PTR(-ENOMEM);
9727 
9728 	if (!alloc_fair_sched_group(tg, parent))
9729 		goto err;
9730 
9731 	if (!alloc_rt_sched_group(tg, parent))
9732 		goto err;
9733 
9734 	alloc_uclamp_sched_group(tg, parent);
9735 
9736 	return tg;
9737 
9738 err:
9739 	sched_free_group(tg);
9740 	return ERR_PTR(-ENOMEM);
9741 }
9742 
9743 void sched_online_group(struct task_group *tg, struct task_group *parent)
9744 {
9745 	unsigned long flags;
9746 
9747 	spin_lock_irqsave(&task_group_lock, flags);
9748 	list_add_rcu(&tg->list, &task_groups);
9749 
9750 	/* Root should already exist: */
9751 	WARN_ON(!parent);
9752 
9753 	tg->parent = parent;
9754 	INIT_LIST_HEAD(&tg->children);
9755 	list_add_rcu(&tg->siblings, &parent->children);
9756 	spin_unlock_irqrestore(&task_group_lock, flags);
9757 
9758 	online_fair_sched_group(tg);
9759 }
9760 
9761 /* rcu callback to free various structures associated with a task group */
9762 static void sched_free_group_rcu(struct rcu_head *rhp)
9763 {
9764 	/* Now it should be safe to free those cfs_rqs: */
9765 	sched_free_group(container_of(rhp, struct task_group, rcu));
9766 }
9767 
9768 void sched_destroy_group(struct task_group *tg)
9769 {
9770 	/* Wait for possible concurrent references to cfs_rqs complete: */
9771 	call_rcu(&tg->rcu, sched_free_group_rcu);
9772 }
9773 
9774 void sched_offline_group(struct task_group *tg)
9775 {
9776 	unsigned long flags;
9777 
9778 	/* End participation in shares distribution: */
9779 	unregister_fair_sched_group(tg);
9780 
9781 	spin_lock_irqsave(&task_group_lock, flags);
9782 	list_del_rcu(&tg->list);
9783 	list_del_rcu(&tg->siblings);
9784 	spin_unlock_irqrestore(&task_group_lock, flags);
9785 }
9786 
9787 static void sched_change_group(struct task_struct *tsk, int type)
9788 {
9789 	struct task_group *tg;
9790 
9791 	/*
9792 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9793 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9794 	 * to prevent lockdep warnings.
9795 	 */
9796 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9797 			  struct task_group, css);
9798 	tg = autogroup_task_group(tsk, tg);
9799 	tsk->sched_task_group = tg;
9800 
9801 #ifdef CONFIG_FAIR_GROUP_SCHED
9802 	if (tsk->sched_class->task_change_group)
9803 		tsk->sched_class->task_change_group(tsk, type);
9804 	else
9805 #endif
9806 		set_task_rq(tsk, task_cpu(tsk));
9807 }
9808 
9809 /*
9810  * Change task's runqueue when it moves between groups.
9811  *
9812  * The caller of this function should have put the task in its new group by
9813  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9814  * its new group.
9815  */
9816 void sched_move_task(struct task_struct *tsk)
9817 {
9818 	int queued, running, queue_flags =
9819 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9820 	struct rq_flags rf;
9821 	struct rq *rq;
9822 
9823 	rq = task_rq_lock(tsk, &rf);
9824 	update_rq_clock(rq);
9825 
9826 	running = task_current(rq, tsk);
9827 	queued = task_on_rq_queued(tsk);
9828 
9829 	if (queued)
9830 		dequeue_task(rq, tsk, queue_flags);
9831 	if (running)
9832 		put_prev_task(rq, tsk);
9833 
9834 	sched_change_group(tsk, TASK_MOVE_GROUP);
9835 
9836 	if (queued)
9837 		enqueue_task(rq, tsk, queue_flags);
9838 	if (running) {
9839 		set_next_task(rq, tsk);
9840 		/*
9841 		 * After changing group, the running task may have joined a
9842 		 * throttled one but it's still the running task. Trigger a
9843 		 * resched to make sure that task can still run.
9844 		 */
9845 		resched_curr(rq);
9846 	}
9847 
9848 	task_rq_unlock(rq, tsk, &rf);
9849 }
9850 
9851 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9852 {
9853 	return css ? container_of(css, struct task_group, css) : NULL;
9854 }
9855 
9856 static struct cgroup_subsys_state *
9857 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9858 {
9859 	struct task_group *parent = css_tg(parent_css);
9860 	struct task_group *tg;
9861 
9862 	if (!parent) {
9863 		/* This is early initialization for the top cgroup */
9864 		return &root_task_group.css;
9865 	}
9866 
9867 	tg = sched_create_group(parent);
9868 	if (IS_ERR(tg))
9869 		return ERR_PTR(-ENOMEM);
9870 
9871 	return &tg->css;
9872 }
9873 
9874 /* Expose task group only after completing cgroup initialization */
9875 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9876 {
9877 	struct task_group *tg = css_tg(css);
9878 	struct task_group *parent = css_tg(css->parent);
9879 
9880 	if (parent)
9881 		sched_online_group(tg, parent);
9882 
9883 #ifdef CONFIG_UCLAMP_TASK_GROUP
9884 	/* Propagate the effective uclamp value for the new group */
9885 	mutex_lock(&uclamp_mutex);
9886 	rcu_read_lock();
9887 	cpu_util_update_eff(css);
9888 	rcu_read_unlock();
9889 	mutex_unlock(&uclamp_mutex);
9890 #endif
9891 
9892 	return 0;
9893 }
9894 
9895 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9896 {
9897 	struct task_group *tg = css_tg(css);
9898 
9899 	sched_offline_group(tg);
9900 }
9901 
9902 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9903 {
9904 	struct task_group *tg = css_tg(css);
9905 
9906 	/*
9907 	 * Relies on the RCU grace period between css_released() and this.
9908 	 */
9909 	sched_free_group(tg);
9910 }
9911 
9912 /*
9913  * This is called before wake_up_new_task(), therefore we really only
9914  * have to set its group bits, all the other stuff does not apply.
9915  */
9916 static void cpu_cgroup_fork(struct task_struct *task)
9917 {
9918 	struct rq_flags rf;
9919 	struct rq *rq;
9920 
9921 	rq = task_rq_lock(task, &rf);
9922 
9923 	update_rq_clock(rq);
9924 	sched_change_group(task, TASK_SET_GROUP);
9925 
9926 	task_rq_unlock(rq, task, &rf);
9927 }
9928 
9929 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9930 {
9931 	struct task_struct *task;
9932 	struct cgroup_subsys_state *css;
9933 	int ret = 0;
9934 
9935 	cgroup_taskset_for_each(task, css, tset) {
9936 #ifdef CONFIG_RT_GROUP_SCHED
9937 		if (!sched_rt_can_attach(css_tg(css), task))
9938 			return -EINVAL;
9939 #endif
9940 		/*
9941 		 * Serialize against wake_up_new_task() such that if it's
9942 		 * running, we're sure to observe its full state.
9943 		 */
9944 		raw_spin_lock_irq(&task->pi_lock);
9945 		/*
9946 		 * Avoid calling sched_move_task() before wake_up_new_task()
9947 		 * has happened. This would lead to problems with PELT, due to
9948 		 * move wanting to detach+attach while we're not attached yet.
9949 		 */
9950 		if (READ_ONCE(task->__state) == TASK_NEW)
9951 			ret = -EINVAL;
9952 		raw_spin_unlock_irq(&task->pi_lock);
9953 
9954 		if (ret)
9955 			break;
9956 	}
9957 	return ret;
9958 }
9959 
9960 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9961 {
9962 	struct task_struct *task;
9963 	struct cgroup_subsys_state *css;
9964 
9965 	cgroup_taskset_for_each(task, css, tset)
9966 		sched_move_task(task);
9967 }
9968 
9969 #ifdef CONFIG_UCLAMP_TASK_GROUP
9970 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9971 {
9972 	struct cgroup_subsys_state *top_css = css;
9973 	struct uclamp_se *uc_parent = NULL;
9974 	struct uclamp_se *uc_se = NULL;
9975 	unsigned int eff[UCLAMP_CNT];
9976 	enum uclamp_id clamp_id;
9977 	unsigned int clamps;
9978 
9979 	lockdep_assert_held(&uclamp_mutex);
9980 	SCHED_WARN_ON(!rcu_read_lock_held());
9981 
9982 	css_for_each_descendant_pre(css, top_css) {
9983 		uc_parent = css_tg(css)->parent
9984 			? css_tg(css)->parent->uclamp : NULL;
9985 
9986 		for_each_clamp_id(clamp_id) {
9987 			/* Assume effective clamps matches requested clamps */
9988 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9989 			/* Cap effective clamps with parent's effective clamps */
9990 			if (uc_parent &&
9991 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9992 				eff[clamp_id] = uc_parent[clamp_id].value;
9993 			}
9994 		}
9995 		/* Ensure protection is always capped by limit */
9996 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9997 
9998 		/* Propagate most restrictive effective clamps */
9999 		clamps = 0x0;
10000 		uc_se = css_tg(css)->uclamp;
10001 		for_each_clamp_id(clamp_id) {
10002 			if (eff[clamp_id] == uc_se[clamp_id].value)
10003 				continue;
10004 			uc_se[clamp_id].value = eff[clamp_id];
10005 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10006 			clamps |= (0x1 << clamp_id);
10007 		}
10008 		if (!clamps) {
10009 			css = css_rightmost_descendant(css);
10010 			continue;
10011 		}
10012 
10013 		/* Immediately update descendants RUNNABLE tasks */
10014 		uclamp_update_active_tasks(css);
10015 	}
10016 }
10017 
10018 /*
10019  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10020  * C expression. Since there is no way to convert a macro argument (N) into a
10021  * character constant, use two levels of macros.
10022  */
10023 #define _POW10(exp) ((unsigned int)1e##exp)
10024 #define POW10(exp) _POW10(exp)
10025 
10026 struct uclamp_request {
10027 #define UCLAMP_PERCENT_SHIFT	2
10028 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10029 	s64 percent;
10030 	u64 util;
10031 	int ret;
10032 };
10033 
10034 static inline struct uclamp_request
10035 capacity_from_percent(char *buf)
10036 {
10037 	struct uclamp_request req = {
10038 		.percent = UCLAMP_PERCENT_SCALE,
10039 		.util = SCHED_CAPACITY_SCALE,
10040 		.ret = 0,
10041 	};
10042 
10043 	buf = strim(buf);
10044 	if (strcmp(buf, "max")) {
10045 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10046 					     &req.percent);
10047 		if (req.ret)
10048 			return req;
10049 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10050 			req.ret = -ERANGE;
10051 			return req;
10052 		}
10053 
10054 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10055 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10056 	}
10057 
10058 	return req;
10059 }
10060 
10061 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10062 				size_t nbytes, loff_t off,
10063 				enum uclamp_id clamp_id)
10064 {
10065 	struct uclamp_request req;
10066 	struct task_group *tg;
10067 
10068 	req = capacity_from_percent(buf);
10069 	if (req.ret)
10070 		return req.ret;
10071 
10072 	static_branch_enable(&sched_uclamp_used);
10073 
10074 	mutex_lock(&uclamp_mutex);
10075 	rcu_read_lock();
10076 
10077 	tg = css_tg(of_css(of));
10078 	if (tg->uclamp_req[clamp_id].value != req.util)
10079 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10080 
10081 	/*
10082 	 * Because of not recoverable conversion rounding we keep track of the
10083 	 * exact requested value
10084 	 */
10085 	tg->uclamp_pct[clamp_id] = req.percent;
10086 
10087 	/* Update effective clamps to track the most restrictive value */
10088 	cpu_util_update_eff(of_css(of));
10089 
10090 	rcu_read_unlock();
10091 	mutex_unlock(&uclamp_mutex);
10092 
10093 	return nbytes;
10094 }
10095 
10096 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10097 				    char *buf, size_t nbytes,
10098 				    loff_t off)
10099 {
10100 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10101 }
10102 
10103 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10104 				    char *buf, size_t nbytes,
10105 				    loff_t off)
10106 {
10107 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10108 }
10109 
10110 static inline void cpu_uclamp_print(struct seq_file *sf,
10111 				    enum uclamp_id clamp_id)
10112 {
10113 	struct task_group *tg;
10114 	u64 util_clamp;
10115 	u64 percent;
10116 	u32 rem;
10117 
10118 	rcu_read_lock();
10119 	tg = css_tg(seq_css(sf));
10120 	util_clamp = tg->uclamp_req[clamp_id].value;
10121 	rcu_read_unlock();
10122 
10123 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10124 		seq_puts(sf, "max\n");
10125 		return;
10126 	}
10127 
10128 	percent = tg->uclamp_pct[clamp_id];
10129 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10130 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10131 }
10132 
10133 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10134 {
10135 	cpu_uclamp_print(sf, UCLAMP_MIN);
10136 	return 0;
10137 }
10138 
10139 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10140 {
10141 	cpu_uclamp_print(sf, UCLAMP_MAX);
10142 	return 0;
10143 }
10144 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10145 
10146 #ifdef CONFIG_FAIR_GROUP_SCHED
10147 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10148 				struct cftype *cftype, u64 shareval)
10149 {
10150 	if (shareval > scale_load_down(ULONG_MAX))
10151 		shareval = MAX_SHARES;
10152 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10153 }
10154 
10155 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10156 			       struct cftype *cft)
10157 {
10158 	struct task_group *tg = css_tg(css);
10159 
10160 	return (u64) scale_load_down(tg->shares);
10161 }
10162 
10163 #ifdef CONFIG_CFS_BANDWIDTH
10164 static DEFINE_MUTEX(cfs_constraints_mutex);
10165 
10166 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10167 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10168 /* More than 203 days if BW_SHIFT equals 20. */
10169 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10170 
10171 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10172 
10173 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10174 				u64 burst)
10175 {
10176 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10177 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10178 
10179 	if (tg == &root_task_group)
10180 		return -EINVAL;
10181 
10182 	/*
10183 	 * Ensure we have at some amount of bandwidth every period.  This is
10184 	 * to prevent reaching a state of large arrears when throttled via
10185 	 * entity_tick() resulting in prolonged exit starvation.
10186 	 */
10187 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10188 		return -EINVAL;
10189 
10190 	/*
10191 	 * Likewise, bound things on the other side by preventing insane quota
10192 	 * periods.  This also allows us to normalize in computing quota
10193 	 * feasibility.
10194 	 */
10195 	if (period > max_cfs_quota_period)
10196 		return -EINVAL;
10197 
10198 	/*
10199 	 * Bound quota to defend quota against overflow during bandwidth shift.
10200 	 */
10201 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10202 		return -EINVAL;
10203 
10204 	if (quota != RUNTIME_INF && (burst > quota ||
10205 				     burst + quota > max_cfs_runtime))
10206 		return -EINVAL;
10207 
10208 	/*
10209 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10210 	 * unthrottle_offline_cfs_rqs().
10211 	 */
10212 	cpus_read_lock();
10213 	mutex_lock(&cfs_constraints_mutex);
10214 	ret = __cfs_schedulable(tg, period, quota);
10215 	if (ret)
10216 		goto out_unlock;
10217 
10218 	runtime_enabled = quota != RUNTIME_INF;
10219 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10220 	/*
10221 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10222 	 * before making related changes, and on->off must occur afterwards
10223 	 */
10224 	if (runtime_enabled && !runtime_was_enabled)
10225 		cfs_bandwidth_usage_inc();
10226 	raw_spin_lock_irq(&cfs_b->lock);
10227 	cfs_b->period = ns_to_ktime(period);
10228 	cfs_b->quota = quota;
10229 	cfs_b->burst = burst;
10230 
10231 	__refill_cfs_bandwidth_runtime(cfs_b);
10232 
10233 	/* Restart the period timer (if active) to handle new period expiry: */
10234 	if (runtime_enabled)
10235 		start_cfs_bandwidth(cfs_b);
10236 
10237 	raw_spin_unlock_irq(&cfs_b->lock);
10238 
10239 	for_each_online_cpu(i) {
10240 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10241 		struct rq *rq = cfs_rq->rq;
10242 		struct rq_flags rf;
10243 
10244 		rq_lock_irq(rq, &rf);
10245 		cfs_rq->runtime_enabled = runtime_enabled;
10246 		cfs_rq->runtime_remaining = 0;
10247 
10248 		if (cfs_rq->throttled)
10249 			unthrottle_cfs_rq(cfs_rq);
10250 		rq_unlock_irq(rq, &rf);
10251 	}
10252 	if (runtime_was_enabled && !runtime_enabled)
10253 		cfs_bandwidth_usage_dec();
10254 out_unlock:
10255 	mutex_unlock(&cfs_constraints_mutex);
10256 	cpus_read_unlock();
10257 
10258 	return ret;
10259 }
10260 
10261 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10262 {
10263 	u64 quota, period, burst;
10264 
10265 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10266 	burst = tg->cfs_bandwidth.burst;
10267 	if (cfs_quota_us < 0)
10268 		quota = RUNTIME_INF;
10269 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10270 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10271 	else
10272 		return -EINVAL;
10273 
10274 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10275 }
10276 
10277 static long tg_get_cfs_quota(struct task_group *tg)
10278 {
10279 	u64 quota_us;
10280 
10281 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10282 		return -1;
10283 
10284 	quota_us = tg->cfs_bandwidth.quota;
10285 	do_div(quota_us, NSEC_PER_USEC);
10286 
10287 	return quota_us;
10288 }
10289 
10290 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10291 {
10292 	u64 quota, period, burst;
10293 
10294 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10295 		return -EINVAL;
10296 
10297 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10298 	quota = tg->cfs_bandwidth.quota;
10299 	burst = tg->cfs_bandwidth.burst;
10300 
10301 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10302 }
10303 
10304 static long tg_get_cfs_period(struct task_group *tg)
10305 {
10306 	u64 cfs_period_us;
10307 
10308 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10309 	do_div(cfs_period_us, NSEC_PER_USEC);
10310 
10311 	return cfs_period_us;
10312 }
10313 
10314 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10315 {
10316 	u64 quota, period, burst;
10317 
10318 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10319 		return -EINVAL;
10320 
10321 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10322 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10323 	quota = tg->cfs_bandwidth.quota;
10324 
10325 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10326 }
10327 
10328 static long tg_get_cfs_burst(struct task_group *tg)
10329 {
10330 	u64 burst_us;
10331 
10332 	burst_us = tg->cfs_bandwidth.burst;
10333 	do_div(burst_us, NSEC_PER_USEC);
10334 
10335 	return burst_us;
10336 }
10337 
10338 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10339 				  struct cftype *cft)
10340 {
10341 	return tg_get_cfs_quota(css_tg(css));
10342 }
10343 
10344 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10345 				   struct cftype *cftype, s64 cfs_quota_us)
10346 {
10347 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10348 }
10349 
10350 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10351 				   struct cftype *cft)
10352 {
10353 	return tg_get_cfs_period(css_tg(css));
10354 }
10355 
10356 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10357 				    struct cftype *cftype, u64 cfs_period_us)
10358 {
10359 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10360 }
10361 
10362 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10363 				  struct cftype *cft)
10364 {
10365 	return tg_get_cfs_burst(css_tg(css));
10366 }
10367 
10368 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10369 				   struct cftype *cftype, u64 cfs_burst_us)
10370 {
10371 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10372 }
10373 
10374 struct cfs_schedulable_data {
10375 	struct task_group *tg;
10376 	u64 period, quota;
10377 };
10378 
10379 /*
10380  * normalize group quota/period to be quota/max_period
10381  * note: units are usecs
10382  */
10383 static u64 normalize_cfs_quota(struct task_group *tg,
10384 			       struct cfs_schedulable_data *d)
10385 {
10386 	u64 quota, period;
10387 
10388 	if (tg == d->tg) {
10389 		period = d->period;
10390 		quota = d->quota;
10391 	} else {
10392 		period = tg_get_cfs_period(tg);
10393 		quota = tg_get_cfs_quota(tg);
10394 	}
10395 
10396 	/* note: these should typically be equivalent */
10397 	if (quota == RUNTIME_INF || quota == -1)
10398 		return RUNTIME_INF;
10399 
10400 	return to_ratio(period, quota);
10401 }
10402 
10403 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10404 {
10405 	struct cfs_schedulable_data *d = data;
10406 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10407 	s64 quota = 0, parent_quota = -1;
10408 
10409 	if (!tg->parent) {
10410 		quota = RUNTIME_INF;
10411 	} else {
10412 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10413 
10414 		quota = normalize_cfs_quota(tg, d);
10415 		parent_quota = parent_b->hierarchical_quota;
10416 
10417 		/*
10418 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10419 		 * always take the min.  On cgroup1, only inherit when no
10420 		 * limit is set:
10421 		 */
10422 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10423 			quota = min(quota, parent_quota);
10424 		} else {
10425 			if (quota == RUNTIME_INF)
10426 				quota = parent_quota;
10427 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10428 				return -EINVAL;
10429 		}
10430 	}
10431 	cfs_b->hierarchical_quota = quota;
10432 
10433 	return 0;
10434 }
10435 
10436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10437 {
10438 	int ret;
10439 	struct cfs_schedulable_data data = {
10440 		.tg = tg,
10441 		.period = period,
10442 		.quota = quota,
10443 	};
10444 
10445 	if (quota != RUNTIME_INF) {
10446 		do_div(data.period, NSEC_PER_USEC);
10447 		do_div(data.quota, NSEC_PER_USEC);
10448 	}
10449 
10450 	rcu_read_lock();
10451 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10452 	rcu_read_unlock();
10453 
10454 	return ret;
10455 }
10456 
10457 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10458 {
10459 	struct task_group *tg = css_tg(seq_css(sf));
10460 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10461 
10462 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10463 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10464 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10465 
10466 	if (schedstat_enabled() && tg != &root_task_group) {
10467 		struct sched_statistics *stats;
10468 		u64 ws = 0;
10469 		int i;
10470 
10471 		for_each_possible_cpu(i) {
10472 			stats = __schedstats_from_se(tg->se[i]);
10473 			ws += schedstat_val(stats->wait_sum);
10474 		}
10475 
10476 		seq_printf(sf, "wait_sum %llu\n", ws);
10477 	}
10478 
10479 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10480 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10481 
10482 	return 0;
10483 }
10484 #endif /* CONFIG_CFS_BANDWIDTH */
10485 #endif /* CONFIG_FAIR_GROUP_SCHED */
10486 
10487 #ifdef CONFIG_RT_GROUP_SCHED
10488 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10489 				struct cftype *cft, s64 val)
10490 {
10491 	return sched_group_set_rt_runtime(css_tg(css), val);
10492 }
10493 
10494 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10495 			       struct cftype *cft)
10496 {
10497 	return sched_group_rt_runtime(css_tg(css));
10498 }
10499 
10500 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10501 				    struct cftype *cftype, u64 rt_period_us)
10502 {
10503 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10504 }
10505 
10506 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10507 				   struct cftype *cft)
10508 {
10509 	return sched_group_rt_period(css_tg(css));
10510 }
10511 #endif /* CONFIG_RT_GROUP_SCHED */
10512 
10513 #ifdef CONFIG_FAIR_GROUP_SCHED
10514 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10515 			       struct cftype *cft)
10516 {
10517 	return css_tg(css)->idle;
10518 }
10519 
10520 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10521 				struct cftype *cft, s64 idle)
10522 {
10523 	return sched_group_set_idle(css_tg(css), idle);
10524 }
10525 #endif
10526 
10527 static struct cftype cpu_legacy_files[] = {
10528 #ifdef CONFIG_FAIR_GROUP_SCHED
10529 	{
10530 		.name = "shares",
10531 		.read_u64 = cpu_shares_read_u64,
10532 		.write_u64 = cpu_shares_write_u64,
10533 	},
10534 	{
10535 		.name = "idle",
10536 		.read_s64 = cpu_idle_read_s64,
10537 		.write_s64 = cpu_idle_write_s64,
10538 	},
10539 #endif
10540 #ifdef CONFIG_CFS_BANDWIDTH
10541 	{
10542 		.name = "cfs_quota_us",
10543 		.read_s64 = cpu_cfs_quota_read_s64,
10544 		.write_s64 = cpu_cfs_quota_write_s64,
10545 	},
10546 	{
10547 		.name = "cfs_period_us",
10548 		.read_u64 = cpu_cfs_period_read_u64,
10549 		.write_u64 = cpu_cfs_period_write_u64,
10550 	},
10551 	{
10552 		.name = "cfs_burst_us",
10553 		.read_u64 = cpu_cfs_burst_read_u64,
10554 		.write_u64 = cpu_cfs_burst_write_u64,
10555 	},
10556 	{
10557 		.name = "stat",
10558 		.seq_show = cpu_cfs_stat_show,
10559 	},
10560 #endif
10561 #ifdef CONFIG_RT_GROUP_SCHED
10562 	{
10563 		.name = "rt_runtime_us",
10564 		.read_s64 = cpu_rt_runtime_read,
10565 		.write_s64 = cpu_rt_runtime_write,
10566 	},
10567 	{
10568 		.name = "rt_period_us",
10569 		.read_u64 = cpu_rt_period_read_uint,
10570 		.write_u64 = cpu_rt_period_write_uint,
10571 	},
10572 #endif
10573 #ifdef CONFIG_UCLAMP_TASK_GROUP
10574 	{
10575 		.name = "uclamp.min",
10576 		.flags = CFTYPE_NOT_ON_ROOT,
10577 		.seq_show = cpu_uclamp_min_show,
10578 		.write = cpu_uclamp_min_write,
10579 	},
10580 	{
10581 		.name = "uclamp.max",
10582 		.flags = CFTYPE_NOT_ON_ROOT,
10583 		.seq_show = cpu_uclamp_max_show,
10584 		.write = cpu_uclamp_max_write,
10585 	},
10586 #endif
10587 	{ }	/* Terminate */
10588 };
10589 
10590 static int cpu_extra_stat_show(struct seq_file *sf,
10591 			       struct cgroup_subsys_state *css)
10592 {
10593 #ifdef CONFIG_CFS_BANDWIDTH
10594 	{
10595 		struct task_group *tg = css_tg(css);
10596 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10597 		u64 throttled_usec, burst_usec;
10598 
10599 		throttled_usec = cfs_b->throttled_time;
10600 		do_div(throttled_usec, NSEC_PER_USEC);
10601 		burst_usec = cfs_b->burst_time;
10602 		do_div(burst_usec, NSEC_PER_USEC);
10603 
10604 		seq_printf(sf, "nr_periods %d\n"
10605 			   "nr_throttled %d\n"
10606 			   "throttled_usec %llu\n"
10607 			   "nr_bursts %d\n"
10608 			   "burst_usec %llu\n",
10609 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10610 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10611 	}
10612 #endif
10613 	return 0;
10614 }
10615 
10616 #ifdef CONFIG_FAIR_GROUP_SCHED
10617 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10618 			       struct cftype *cft)
10619 {
10620 	struct task_group *tg = css_tg(css);
10621 	u64 weight = scale_load_down(tg->shares);
10622 
10623 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10624 }
10625 
10626 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10627 				struct cftype *cft, u64 weight)
10628 {
10629 	/*
10630 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10631 	 * values which are 1, 100 and 10000 respectively.  While it loses
10632 	 * a bit of range on both ends, it maps pretty well onto the shares
10633 	 * value used by scheduler and the round-trip conversions preserve
10634 	 * the original value over the entire range.
10635 	 */
10636 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10637 		return -ERANGE;
10638 
10639 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10640 
10641 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10642 }
10643 
10644 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10645 				    struct cftype *cft)
10646 {
10647 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10648 	int last_delta = INT_MAX;
10649 	int prio, delta;
10650 
10651 	/* find the closest nice value to the current weight */
10652 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10653 		delta = abs(sched_prio_to_weight[prio] - weight);
10654 		if (delta >= last_delta)
10655 			break;
10656 		last_delta = delta;
10657 	}
10658 
10659 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10660 }
10661 
10662 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10663 				     struct cftype *cft, s64 nice)
10664 {
10665 	unsigned long weight;
10666 	int idx;
10667 
10668 	if (nice < MIN_NICE || nice > MAX_NICE)
10669 		return -ERANGE;
10670 
10671 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10672 	idx = array_index_nospec(idx, 40);
10673 	weight = sched_prio_to_weight[idx];
10674 
10675 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10676 }
10677 #endif
10678 
10679 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10680 						  long period, long quota)
10681 {
10682 	if (quota < 0)
10683 		seq_puts(sf, "max");
10684 	else
10685 		seq_printf(sf, "%ld", quota);
10686 
10687 	seq_printf(sf, " %ld\n", period);
10688 }
10689 
10690 /* caller should put the current value in *@periodp before calling */
10691 static int __maybe_unused cpu_period_quota_parse(char *buf,
10692 						 u64 *periodp, u64 *quotap)
10693 {
10694 	char tok[21];	/* U64_MAX */
10695 
10696 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10697 		return -EINVAL;
10698 
10699 	*periodp *= NSEC_PER_USEC;
10700 
10701 	if (sscanf(tok, "%llu", quotap))
10702 		*quotap *= NSEC_PER_USEC;
10703 	else if (!strcmp(tok, "max"))
10704 		*quotap = RUNTIME_INF;
10705 	else
10706 		return -EINVAL;
10707 
10708 	return 0;
10709 }
10710 
10711 #ifdef CONFIG_CFS_BANDWIDTH
10712 static int cpu_max_show(struct seq_file *sf, void *v)
10713 {
10714 	struct task_group *tg = css_tg(seq_css(sf));
10715 
10716 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10717 	return 0;
10718 }
10719 
10720 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10721 			     char *buf, size_t nbytes, loff_t off)
10722 {
10723 	struct task_group *tg = css_tg(of_css(of));
10724 	u64 period = tg_get_cfs_period(tg);
10725 	u64 burst = tg_get_cfs_burst(tg);
10726 	u64 quota;
10727 	int ret;
10728 
10729 	ret = cpu_period_quota_parse(buf, &period, &quota);
10730 	if (!ret)
10731 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10732 	return ret ?: nbytes;
10733 }
10734 #endif
10735 
10736 static struct cftype cpu_files[] = {
10737 #ifdef CONFIG_FAIR_GROUP_SCHED
10738 	{
10739 		.name = "weight",
10740 		.flags = CFTYPE_NOT_ON_ROOT,
10741 		.read_u64 = cpu_weight_read_u64,
10742 		.write_u64 = cpu_weight_write_u64,
10743 	},
10744 	{
10745 		.name = "weight.nice",
10746 		.flags = CFTYPE_NOT_ON_ROOT,
10747 		.read_s64 = cpu_weight_nice_read_s64,
10748 		.write_s64 = cpu_weight_nice_write_s64,
10749 	},
10750 	{
10751 		.name = "idle",
10752 		.flags = CFTYPE_NOT_ON_ROOT,
10753 		.read_s64 = cpu_idle_read_s64,
10754 		.write_s64 = cpu_idle_write_s64,
10755 	},
10756 #endif
10757 #ifdef CONFIG_CFS_BANDWIDTH
10758 	{
10759 		.name = "max",
10760 		.flags = CFTYPE_NOT_ON_ROOT,
10761 		.seq_show = cpu_max_show,
10762 		.write = cpu_max_write,
10763 	},
10764 	{
10765 		.name = "max.burst",
10766 		.flags = CFTYPE_NOT_ON_ROOT,
10767 		.read_u64 = cpu_cfs_burst_read_u64,
10768 		.write_u64 = cpu_cfs_burst_write_u64,
10769 	},
10770 #endif
10771 #ifdef CONFIG_UCLAMP_TASK_GROUP
10772 	{
10773 		.name = "uclamp.min",
10774 		.flags = CFTYPE_NOT_ON_ROOT,
10775 		.seq_show = cpu_uclamp_min_show,
10776 		.write = cpu_uclamp_min_write,
10777 	},
10778 	{
10779 		.name = "uclamp.max",
10780 		.flags = CFTYPE_NOT_ON_ROOT,
10781 		.seq_show = cpu_uclamp_max_show,
10782 		.write = cpu_uclamp_max_write,
10783 	},
10784 #endif
10785 	{ }	/* terminate */
10786 };
10787 
10788 struct cgroup_subsys cpu_cgrp_subsys = {
10789 	.css_alloc	= cpu_cgroup_css_alloc,
10790 	.css_online	= cpu_cgroup_css_online,
10791 	.css_released	= cpu_cgroup_css_released,
10792 	.css_free	= cpu_cgroup_css_free,
10793 	.css_extra_stat_show = cpu_extra_stat_show,
10794 	.fork		= cpu_cgroup_fork,
10795 	.can_attach	= cpu_cgroup_can_attach,
10796 	.attach		= cpu_cgroup_attach,
10797 	.legacy_cftypes	= cpu_legacy_files,
10798 	.dfl_cftypes	= cpu_files,
10799 	.early_init	= true,
10800 	.threaded	= true,
10801 };
10802 
10803 #endif	/* CONFIG_CGROUP_SCHED */
10804 
10805 void dump_cpu_task(int cpu)
10806 {
10807 	pr_info("Task dump for CPU %d:\n", cpu);
10808 	sched_show_task(cpu_curr(cpu));
10809 }
10810 
10811 /*
10812  * Nice levels are multiplicative, with a gentle 10% change for every
10813  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10814  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10815  * that remained on nice 0.
10816  *
10817  * The "10% effect" is relative and cumulative: from _any_ nice level,
10818  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10819  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10820  * If a task goes up by ~10% and another task goes down by ~10% then
10821  * the relative distance between them is ~25%.)
10822  */
10823 const int sched_prio_to_weight[40] = {
10824  /* -20 */     88761,     71755,     56483,     46273,     36291,
10825  /* -15 */     29154,     23254,     18705,     14949,     11916,
10826  /* -10 */      9548,      7620,      6100,      4904,      3906,
10827  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10828  /*   0 */      1024,       820,       655,       526,       423,
10829  /*   5 */       335,       272,       215,       172,       137,
10830  /*  10 */       110,        87,        70,        56,        45,
10831  /*  15 */        36,        29,        23,        18,        15,
10832 };
10833 
10834 /*
10835  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10836  *
10837  * In cases where the weight does not change often, we can use the
10838  * precalculated inverse to speed up arithmetics by turning divisions
10839  * into multiplications:
10840  */
10841 const u32 sched_prio_to_wmult[40] = {
10842  /* -20 */     48388,     59856,     76040,     92818,    118348,
10843  /* -15 */    147320,    184698,    229616,    287308,    360437,
10844  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10845  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10846  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10847  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10848  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10849  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10850 };
10851 
10852 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10853 {
10854         trace_sched_update_nr_running_tp(rq, count);
10855 }
10856