xref: /openbmc/linux/kernel/sched/core.c (revision c2732114)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	if (delta < 0)
127 		return;
128 	rq->clock += delta;
129 	update_rq_clock_task(rq, delta);
130 }
131 
132 /*
133  * Debugging: various feature bits
134  */
135 
136 #define SCHED_FEAT(name, enabled)	\
137 	(1UL << __SCHED_FEAT_##name) * enabled |
138 
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 	0;
142 
143 #undef SCHED_FEAT
144 
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled)	\
147 	#name ,
148 
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152 
153 #undef SCHED_FEAT
154 
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 
159 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 		if (!(sysctl_sched_features & (1UL << i)))
161 			seq_puts(m, "NO_");
162 		seq_printf(m, "%s ", sched_feat_names[i]);
163 	}
164 	seq_puts(m, "\n");
165 
166 	return 0;
167 }
168 
169 #ifdef HAVE_JUMP_LABEL
170 
171 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173 
174 #define SCHED_FEAT(name, enabled)	\
175 	jump_label_key__##enabled ,
176 
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180 
181 #undef SCHED_FEAT
182 
183 static void sched_feat_disable(int i)
184 {
185 	if (static_key_enabled(&sched_feat_keys[i]))
186 		static_key_slow_dec(&sched_feat_keys[i]);
187 }
188 
189 static void sched_feat_enable(int i)
190 {
191 	if (!static_key_enabled(&sched_feat_keys[i]))
192 		static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198 
199 static int sched_feat_set(char *cmp)
200 {
201 	int i;
202 	int neg = 0;
203 
204 	if (strncmp(cmp, "NO_", 3) == 0) {
205 		neg = 1;
206 		cmp += 3;
207 	}
208 
209 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 			if (neg) {
212 				sysctl_sched_features &= ~(1UL << i);
213 				sched_feat_disable(i);
214 			} else {
215 				sysctl_sched_features |= (1UL << i);
216 				sched_feat_enable(i);
217 			}
218 			break;
219 		}
220 	}
221 
222 	return i;
223 }
224 
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 		size_t cnt, loff_t *ppos)
228 {
229 	char buf[64];
230 	char *cmp;
231 	int i;
232 	struct inode *inode;
233 
234 	if (cnt > 63)
235 		cnt = 63;
236 
237 	if (copy_from_user(&buf, ubuf, cnt))
238 		return -EFAULT;
239 
240 	buf[cnt] = 0;
241 	cmp = strstrip(buf);
242 
243 	/* Ensure the static_key remains in a consistent state */
244 	inode = file_inode(filp);
245 	mutex_lock(&inode->i_mutex);
246 	i = sched_feat_set(cmp);
247 	mutex_unlock(&inode->i_mutex);
248 	if (i == __SCHED_FEAT_NR)
249 		return -EINVAL;
250 
251 	*ppos += cnt;
252 
253 	return cnt;
254 }
255 
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 	return single_open(filp, sched_feat_show, NULL);
259 }
260 
261 static const struct file_operations sched_feat_fops = {
262 	.open		= sched_feat_open,
263 	.write		= sched_feat_write,
264 	.read		= seq_read,
265 	.llseek		= seq_lseek,
266 	.release	= single_release,
267 };
268 
269 static __init int sched_init_debug(void)
270 {
271 	debugfs_create_file("sched_features", 0644, NULL, NULL,
272 			&sched_feat_fops);
273 
274 	return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278 
279 /*
280  * Number of tasks to iterate in a single balance run.
281  * Limited because this is done with IRQs disabled.
282  */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284 
285 /*
286  * period over which we average the RT time consumption, measured
287  * in ms.
288  *
289  * default: 1s
290  */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292 
293 /*
294  * period over which we measure -rt task cpu usage in us.
295  * default: 1s
296  */
297 unsigned int sysctl_sched_rt_period = 1000000;
298 
299 __read_mostly int scheduler_running;
300 
301 /*
302  * part of the period that we allow rt tasks to run in us.
303  * default: 0.95s
304  */
305 int sysctl_sched_rt_runtime = 950000;
306 
307 /*
308  * __task_rq_lock - lock the rq @p resides on.
309  */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 	__acquires(rq->lock)
312 {
313 	struct rq *rq;
314 
315 	lockdep_assert_held(&p->pi_lock);
316 
317 	for (;;) {
318 		rq = task_rq(p);
319 		raw_spin_lock(&rq->lock);
320 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 			return rq;
322 		raw_spin_unlock(&rq->lock);
323 
324 		while (unlikely(task_on_rq_migrating(p)))
325 			cpu_relax();
326 	}
327 }
328 
329 /*
330  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331  */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 	__acquires(p->pi_lock)
334 	__acquires(rq->lock)
335 {
336 	struct rq *rq;
337 
338 	for (;;) {
339 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 		rq = task_rq(p);
341 		raw_spin_lock(&rq->lock);
342 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 			return rq;
344 		raw_spin_unlock(&rq->lock);
345 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 
347 		while (unlikely(task_on_rq_migrating(p)))
348 			cpu_relax();
349 	}
350 }
351 
352 static void __task_rq_unlock(struct rq *rq)
353 	__releases(rq->lock)
354 {
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 	__releases(rq->lock)
361 	__releases(p->pi_lock)
362 {
363 	raw_spin_unlock(&rq->lock);
364 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366 
367 /*
368  * this_rq_lock - lock this runqueue and disable interrupts.
369  */
370 static struct rq *this_rq_lock(void)
371 	__acquires(rq->lock)
372 {
373 	struct rq *rq;
374 
375 	local_irq_disable();
376 	rq = this_rq();
377 	raw_spin_lock(&rq->lock);
378 
379 	return rq;
380 }
381 
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384  * Use HR-timers to deliver accurate preemption points.
385  */
386 
387 static void hrtick_clear(struct rq *rq)
388 {
389 	if (hrtimer_active(&rq->hrtick_timer))
390 		hrtimer_cancel(&rq->hrtick_timer);
391 }
392 
393 /*
394  * High-resolution timer tick.
395  * Runs from hardirq context with interrupts disabled.
396  */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400 
401 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402 
403 	raw_spin_lock(&rq->lock);
404 	update_rq_clock(rq);
405 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 	raw_spin_unlock(&rq->lock);
407 
408 	return HRTIMER_NORESTART;
409 }
410 
411 #ifdef CONFIG_SMP
412 
413 static int __hrtick_restart(struct rq *rq)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = hrtimer_get_softexpires(timer);
417 
418 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420 
421 /*
422  * called from hardirq (IPI) context
423  */
424 static void __hrtick_start(void *arg)
425 {
426 	struct rq *rq = arg;
427 
428 	raw_spin_lock(&rq->lock);
429 	__hrtick_restart(rq);
430 	rq->hrtick_csd_pending = 0;
431 	raw_spin_unlock(&rq->lock);
432 }
433 
434 /*
435  * Called to set the hrtick timer state.
436  *
437  * called with rq->lock held and irqs disabled
438  */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 	struct hrtimer *timer = &rq->hrtick_timer;
442 	ktime_t time;
443 	s64 delta;
444 
445 	/*
446 	 * Don't schedule slices shorter than 10000ns, that just
447 	 * doesn't make sense and can cause timer DoS.
448 	 */
449 	delta = max_t(s64, delay, 10000LL);
450 	time = ktime_add_ns(timer->base->get_time(), delta);
451 
452 	hrtimer_set_expires(timer, time);
453 
454 	if (rq == this_rq()) {
455 		__hrtick_restart(rq);
456 	} else if (!rq->hrtick_csd_pending) {
457 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 		rq->hrtick_csd_pending = 1;
459 	}
460 }
461 
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 	int cpu = (int)(long)hcpu;
466 
467 	switch (action) {
468 	case CPU_UP_CANCELED:
469 	case CPU_UP_CANCELED_FROZEN:
470 	case CPU_DOWN_PREPARE:
471 	case CPU_DOWN_PREPARE_FROZEN:
472 	case CPU_DEAD:
473 	case CPU_DEAD_FROZEN:
474 		hrtick_clear(cpu_rq(cpu));
475 		return NOTIFY_OK;
476 	}
477 
478 	return NOTIFY_DONE;
479 }
480 
481 static __init void init_hrtick(void)
482 {
483 	hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487  * Called to set the hrtick timer state.
488  *
489  * called with rq->lock held and irqs disabled
490  */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 			HRTIMER_MODE_REL_PINNED, 0);
495 }
496 
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501 
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 	rq->hrtick_csd_pending = 0;
506 
507 	rq->hrtick_csd.flags = 0;
508 	rq->hrtick_csd.func = __hrtick_start;
509 	rq->hrtick_csd.info = rq;
510 #endif
511 
512 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 	rq->hrtick_timer.function = hrtick;
514 }
515 #else	/* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519 
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523 
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif	/* CONFIG_SCHED_HRTICK */
528 
529 /*
530  * cmpxchg based fetch_or, macro so it works for different integer types
531  */
532 #define fetch_or(ptr, val)						\
533 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
534  	for (;;) {							\
535  		__old = cmpxchg((ptr), __val, __val | (val));		\
536  		if (__old == __val)					\
537  			break;						\
538  		__val = __old;						\
539  	}								\
540  	__old;								\
541 })
542 
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546  * this avoids any races wrt polling state changes and thereby avoids
547  * spurious IPIs.
548  */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 	struct thread_info *ti = task_thread_info(p);
552 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554 
555 /*
556  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557  *
558  * If this returns true, then the idle task promises to call
559  * sched_ttwu_pending() and reschedule soon.
560  */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 	struct thread_info *ti = task_thread_info(p);
564 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565 
566 	for (;;) {
567 		if (!(val & _TIF_POLLING_NRFLAG))
568 			return false;
569 		if (val & _TIF_NEED_RESCHED)
570 			return true;
571 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 		if (old == val)
573 			break;
574 		val = old;
575 	}
576 	return true;
577 }
578 
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 	set_tsk_need_resched(p);
583 	return true;
584 }
585 
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 	return false;
590 }
591 #endif
592 #endif
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 		return;
632 	resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy cpu for migrating timers
640  * from an idle cpu.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle cpu will add more delays to the timers than intended
644  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(int pinned)
647 {
648 	int cpu = smp_processor_id();
649 	int i;
650 	struct sched_domain *sd;
651 
652 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 		return cpu;
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu(i, sched_domain_span(sd)) {
658 			if (!idle_cpu(i)) {
659 				cpu = i;
660 				goto unlock;
661 			}
662 		}
663 	}
664 unlock:
665 	rcu_read_unlock();
666 	return cpu;
667 }
668 /*
669  * When add_timer_on() enqueues a timer into the timer wheel of an
670  * idle CPU then this timer might expire before the next timer event
671  * which is scheduled to wake up that CPU. In case of a completely
672  * idle system the next event might even be infinite time into the
673  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674  * leaves the inner idle loop so the newly added timer is taken into
675  * account when the CPU goes back to idle and evaluates the timer
676  * wheel for the next timer event.
677  */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 	struct rq *rq = cpu_rq(cpu);
681 
682 	if (cpu == smp_processor_id())
683 		return;
684 
685 	if (set_nr_and_not_polling(rq->idle))
686 		smp_send_reschedule(cpu);
687 	else
688 		trace_sched_wake_idle_without_ipi(cpu);
689 }
690 
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 	/*
694 	 * We just need the target to call irq_exit() and re-evaluate
695 	 * the next tick. The nohz full kick at least implies that.
696 	 * If needed we can still optimize that later with an
697 	 * empty IRQ.
698 	 */
699 	if (tick_nohz_full_cpu(cpu)) {
700 		if (cpu != smp_processor_id() ||
701 		    tick_nohz_tick_stopped())
702 			tick_nohz_full_kick_cpu(cpu);
703 		return true;
704 	}
705 
706 	return false;
707 }
708 
709 void wake_up_nohz_cpu(int cpu)
710 {
711 	if (!wake_up_full_nohz_cpu(cpu))
712 		wake_up_idle_cpu(cpu);
713 }
714 
715 static inline bool got_nohz_idle_kick(void)
716 {
717 	int cpu = smp_processor_id();
718 
719 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 		return false;
721 
722 	if (idle_cpu(cpu) && !need_resched())
723 		return true;
724 
725 	/*
726 	 * We can't run Idle Load Balance on this CPU for this time so we
727 	 * cancel it and clear NOHZ_BALANCE_KICK
728 	 */
729 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 	return false;
731 }
732 
733 #else /* CONFIG_NO_HZ_COMMON */
734 
735 static inline bool got_nohz_idle_kick(void)
736 {
737 	return false;
738 }
739 
740 #endif /* CONFIG_NO_HZ_COMMON */
741 
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 	/*
746 	 * More than one running task need preemption.
747 	 * nr_running update is assumed to be visible
748 	 * after IPI is sent from wakers.
749 	 */
750 	if (this_rq()->nr_running > 1)
751 		return false;
752 
753 	return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756 
757 void sched_avg_update(struct rq *rq)
758 {
759 	s64 period = sched_avg_period();
760 
761 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 		/*
763 		 * Inline assembly required to prevent the compiler
764 		 * optimising this loop into a divmod call.
765 		 * See __iter_div_u64_rem() for another example of this.
766 		 */
767 		asm("" : "+rm" (rq->age_stamp));
768 		rq->age_stamp += period;
769 		rq->rt_avg /= 2;
770 	}
771 }
772 
773 #endif /* CONFIG_SMP */
774 
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778  * Iterate task_group tree rooted at *from, calling @down when first entering a
779  * node and @up when leaving it for the final time.
780  *
781  * Caller must hold rcu_lock or sufficient equivalent.
782  */
783 int walk_tg_tree_from(struct task_group *from,
784 			     tg_visitor down, tg_visitor up, void *data)
785 {
786 	struct task_group *parent, *child;
787 	int ret;
788 
789 	parent = from;
790 
791 down:
792 	ret = (*down)(parent, data);
793 	if (ret)
794 		goto out;
795 	list_for_each_entry_rcu(child, &parent->children, siblings) {
796 		parent = child;
797 		goto down;
798 
799 up:
800 		continue;
801 	}
802 	ret = (*up)(parent, data);
803 	if (ret || parent == from)
804 		goto out;
805 
806 	child = parent;
807 	parent = parent->parent;
808 	if (parent)
809 		goto up;
810 out:
811 	return ret;
812 }
813 
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 	return 0;
817 }
818 #endif
819 
820 static void set_load_weight(struct task_struct *p)
821 {
822 	int prio = p->static_prio - MAX_RT_PRIO;
823 	struct load_weight *load = &p->se.load;
824 
825 	/*
826 	 * SCHED_IDLE tasks get minimal weight:
827 	 */
828 	if (p->policy == SCHED_IDLE) {
829 		load->weight = scale_load(WEIGHT_IDLEPRIO);
830 		load->inv_weight = WMULT_IDLEPRIO;
831 		return;
832 	}
833 
834 	load->weight = scale_load(prio_to_weight[prio]);
835 	load->inv_weight = prio_to_wmult[prio];
836 }
837 
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	sched_info_queued(rq, p);
842 	p->sched_class->enqueue_task(rq, p, flags);
843 }
844 
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_dequeued(rq, p);
849 	p->sched_class->dequeue_task(rq, p, flags);
850 }
851 
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible--;
856 
857 	enqueue_task(rq, p, flags);
858 }
859 
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	if (task_contributes_to_load(p))
863 		rq->nr_uninterruptible++;
864 
865 	dequeue_task(rq, p, flags);
866 }
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 		steal = paravirt_steal_clock(cpu_of(rq));
904 		steal -= rq->prev_steal_time_rq;
905 
906 		if (unlikely(steal > delta))
907 			steal = delta;
908 
909 		rq->prev_steal_time_rq += steal;
910 		delta -= steal;
911 	}
912 #endif
913 
914 	rq->clock_task += delta;
915 
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 		sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921 
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926 
927 	if (stop) {
928 		/*
929 		 * Make it appear like a SCHED_FIFO task, its something
930 		 * userspace knows about and won't get confused about.
931 		 *
932 		 * Also, it will make PI more or less work without too
933 		 * much confusion -- but then, stop work should not
934 		 * rely on PI working anyway.
935 		 */
936 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937 
938 		stop->sched_class = &stop_sched_class;
939 	}
940 
941 	cpu_rq(cpu)->stop = stop;
942 
943 	if (old_stop) {
944 		/*
945 		 * Reset it back to a normal scheduling class so that
946 		 * it can die in pieces.
947 		 */
948 		old_stop->sched_class = &rt_sched_class;
949 	}
950 }
951 
952 /*
953  * __normal_prio - return the priority that is based on the static prio
954  */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 	return p->static_prio;
958 }
959 
960 /*
961  * Calculate the expected normal priority: i.e. priority
962  * without taking RT-inheritance into account. Might be
963  * boosted by interactivity modifiers. Changes upon fork,
964  * setprio syscalls, and whenever the interactivity
965  * estimator recalculates.
966  */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 	int prio;
970 
971 	if (task_has_dl_policy(p))
972 		prio = MAX_DL_PRIO-1;
973 	else if (task_has_rt_policy(p))
974 		prio = MAX_RT_PRIO-1 - p->rt_priority;
975 	else
976 		prio = __normal_prio(p);
977 	return prio;
978 }
979 
980 /*
981  * Calculate the current priority, i.e. the priority
982  * taken into account by the scheduler. This value might
983  * be boosted by RT tasks, or might be boosted by
984  * interactivity modifiers. Will be RT if the task got
985  * RT-boosted. If not then it returns p->normal_prio.
986  */
987 static int effective_prio(struct task_struct *p)
988 {
989 	p->normal_prio = normal_prio(p);
990 	/*
991 	 * If we are RT tasks or we were boosted to RT priority,
992 	 * keep the priority unchanged. Otherwise, update priority
993 	 * to the normal priority:
994 	 */
995 	if (!rt_prio(p->prio))
996 		return p->normal_prio;
997 	return p->prio;
998 }
999 
1000 /**
1001  * task_curr - is this task currently executing on a CPU?
1002  * @p: the task in question.
1003  *
1004  * Return: 1 if the task is currently executing. 0 otherwise.
1005  */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 	return cpu_curr(task_cpu(p)) == p;
1009 }
1010 
1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 				       const struct sched_class *prev_class,
1013 				       int oldprio)
1014 {
1015 	if (prev_class != p->sched_class) {
1016 		if (prev_class->switched_from)
1017 			prev_class->switched_from(rq, p);
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq->skip_clock_update = 1;
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	/*
1053 	 * We should never call set_task_cpu() on a blocked task,
1054 	 * ttwu() will sort out the placement.
1055 	 */
1056 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058 
1059 #ifdef CONFIG_LOCKDEP
1060 	/*
1061 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 	 *
1064 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 	 * see task_group().
1066 	 *
1067 	 * Furthermore, all task_rq users should acquire both locks, see
1068 	 * task_rq_lock().
1069 	 */
1070 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 				      lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074 
1075 	trace_sched_migrate_task(p, new_cpu);
1076 
1077 	if (task_cpu(p) != new_cpu) {
1078 		if (p->sched_class->migrate_task_rq)
1079 			p->sched_class->migrate_task_rq(p, new_cpu);
1080 		p->se.nr_migrations++;
1081 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 	}
1083 
1084 	__set_task_cpu(p, new_cpu);
1085 }
1086 
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 	if (task_on_rq_queued(p)) {
1090 		struct rq *src_rq, *dst_rq;
1091 
1092 		src_rq = task_rq(p);
1093 		dst_rq = cpu_rq(cpu);
1094 
1095 		deactivate_task(src_rq, p, 0);
1096 		set_task_cpu(p, cpu);
1097 		activate_task(dst_rq, p, 0);
1098 		check_preempt_curr(dst_rq, p, 0);
1099 	} else {
1100 		/*
1101 		 * Task isn't running anymore; make it appear like we migrated
1102 		 * it before it went to sleep. This means on wakeup we make the
1103 		 * previous cpu our targer instead of where it really is.
1104 		 */
1105 		p->wake_cpu = cpu;
1106 	}
1107 }
1108 
1109 struct migration_swap_arg {
1110 	struct task_struct *src_task, *dst_task;
1111 	int src_cpu, dst_cpu;
1112 };
1113 
1114 static int migrate_swap_stop(void *data)
1115 {
1116 	struct migration_swap_arg *arg = data;
1117 	struct rq *src_rq, *dst_rq;
1118 	int ret = -EAGAIN;
1119 
1120 	src_rq = cpu_rq(arg->src_cpu);
1121 	dst_rq = cpu_rq(arg->dst_cpu);
1122 
1123 	double_raw_lock(&arg->src_task->pi_lock,
1124 			&arg->dst_task->pi_lock);
1125 	double_rq_lock(src_rq, dst_rq);
1126 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 		goto unlock;
1128 
1129 	if (task_cpu(arg->src_task) != arg->src_cpu)
1130 		goto unlock;
1131 
1132 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 		goto unlock;
1134 
1135 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 		goto unlock;
1137 
1138 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140 
1141 	ret = 0;
1142 
1143 unlock:
1144 	double_rq_unlock(src_rq, dst_rq);
1145 	raw_spin_unlock(&arg->dst_task->pi_lock);
1146 	raw_spin_unlock(&arg->src_task->pi_lock);
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Cross migrate two tasks
1153  */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 	struct migration_swap_arg arg;
1157 	int ret = -EINVAL;
1158 
1159 	arg = (struct migration_swap_arg){
1160 		.src_task = cur,
1161 		.src_cpu = task_cpu(cur),
1162 		.dst_task = p,
1163 		.dst_cpu = task_cpu(p),
1164 	};
1165 
1166 	if (arg.src_cpu == arg.dst_cpu)
1167 		goto out;
1168 
1169 	/*
1170 	 * These three tests are all lockless; this is OK since all of them
1171 	 * will be re-checked with proper locks held further down the line.
1172 	 */
1173 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 		goto out;
1175 
1176 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 		goto out;
1178 
1179 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 		goto out;
1181 
1182 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184 
1185 out:
1186 	return ret;
1187 }
1188 
1189 struct migration_arg {
1190 	struct task_struct *task;
1191 	int dest_cpu;
1192 };
1193 
1194 static int migration_cpu_stop(void *data);
1195 
1196 /*
1197  * wait_task_inactive - wait for a thread to unschedule.
1198  *
1199  * If @match_state is nonzero, it's the @p->state value just checked and
1200  * not expected to change.  If it changes, i.e. @p might have woken up,
1201  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202  * we return a positive number (its total switch count).  If a second call
1203  * a short while later returns the same number, the caller can be sure that
1204  * @p has remained unscheduled the whole time.
1205  *
1206  * The caller must ensure that the task *will* unschedule sometime soon,
1207  * else this function might spin for a *long* time. This function can't
1208  * be called with interrupts off, or it may introduce deadlock with
1209  * smp_call_function() if an IPI is sent by the same process we are
1210  * waiting to become inactive.
1211  */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 	unsigned long flags;
1215 	int running, queued;
1216 	unsigned long ncsw;
1217 	struct rq *rq;
1218 
1219 	for (;;) {
1220 		/*
1221 		 * We do the initial early heuristics without holding
1222 		 * any task-queue locks at all. We'll only try to get
1223 		 * the runqueue lock when things look like they will
1224 		 * work out!
1225 		 */
1226 		rq = task_rq(p);
1227 
1228 		/*
1229 		 * If the task is actively running on another CPU
1230 		 * still, just relax and busy-wait without holding
1231 		 * any locks.
1232 		 *
1233 		 * NOTE! Since we don't hold any locks, it's not
1234 		 * even sure that "rq" stays as the right runqueue!
1235 		 * But we don't care, since "task_running()" will
1236 		 * return false if the runqueue has changed and p
1237 		 * is actually now running somewhere else!
1238 		 */
1239 		while (task_running(rq, p)) {
1240 			if (match_state && unlikely(p->state != match_state))
1241 				return 0;
1242 			cpu_relax();
1243 		}
1244 
1245 		/*
1246 		 * Ok, time to look more closely! We need the rq
1247 		 * lock now, to be *sure*. If we're wrong, we'll
1248 		 * just go back and repeat.
1249 		 */
1250 		rq = task_rq_lock(p, &flags);
1251 		trace_sched_wait_task(p);
1252 		running = task_running(rq, p);
1253 		queued = task_on_rq_queued(p);
1254 		ncsw = 0;
1255 		if (!match_state || p->state == match_state)
1256 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 		task_rq_unlock(rq, p, &flags);
1258 
1259 		/*
1260 		 * If it changed from the expected state, bail out now.
1261 		 */
1262 		if (unlikely(!ncsw))
1263 			break;
1264 
1265 		/*
1266 		 * Was it really running after all now that we
1267 		 * checked with the proper locks actually held?
1268 		 *
1269 		 * Oops. Go back and try again..
1270 		 */
1271 		if (unlikely(running)) {
1272 			cpu_relax();
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * It's not enough that it's not actively running,
1278 		 * it must be off the runqueue _entirely_, and not
1279 		 * preempted!
1280 		 *
1281 		 * So if it was still runnable (but just not actively
1282 		 * running right now), it's preempted, and we should
1283 		 * yield - it could be a while.
1284 		 */
1285 		if (unlikely(queued)) {
1286 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287 
1288 			set_current_state(TASK_UNINTERRUPTIBLE);
1289 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 			continue;
1291 		}
1292 
1293 		/*
1294 		 * Ahh, all good. It wasn't running, and it wasn't
1295 		 * runnable, which means that it will never become
1296 		 * running in the future either. We're all done!
1297 		 */
1298 		break;
1299 	}
1300 
1301 	return ncsw;
1302 }
1303 
1304 /***
1305  * kick_process - kick a running thread to enter/exit the kernel
1306  * @p: the to-be-kicked thread
1307  *
1308  * Cause a process which is running on another CPU to enter
1309  * kernel-mode, without any delay. (to get signals handled.)
1310  *
1311  * NOTE: this function doesn't have to take the runqueue lock,
1312  * because all it wants to ensure is that the remote task enters
1313  * the kernel. If the IPI races and the task has been migrated
1314  * to another CPU then no harm is done and the purpose has been
1315  * achieved as well.
1316  */
1317 void kick_process(struct task_struct *p)
1318 {
1319 	int cpu;
1320 
1321 	preempt_disable();
1322 	cpu = task_cpu(p);
1323 	if ((cpu != smp_processor_id()) && task_curr(p))
1324 		smp_send_reschedule(cpu);
1325 	preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329 
1330 #ifdef CONFIG_SMP
1331 /*
1332  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333  */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 	int nid = cpu_to_node(cpu);
1337 	const struct cpumask *nodemask = NULL;
1338 	enum { cpuset, possible, fail } state = cpuset;
1339 	int dest_cpu;
1340 
1341 	/*
1342 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 	 * will return -1. There is no cpu on the node, and we should
1344 	 * select the cpu on the other node.
1345 	 */
1346 	if (nid != -1) {
1347 		nodemask = cpumask_of_node(nid);
1348 
1349 		/* Look for allowed, online CPU in same node. */
1350 		for_each_cpu(dest_cpu, nodemask) {
1351 			if (!cpu_online(dest_cpu))
1352 				continue;
1353 			if (!cpu_active(dest_cpu))
1354 				continue;
1355 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 				return dest_cpu;
1357 		}
1358 	}
1359 
1360 	for (;;) {
1361 		/* Any allowed, online CPU? */
1362 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 			if (!cpu_online(dest_cpu))
1364 				continue;
1365 			if (!cpu_active(dest_cpu))
1366 				continue;
1367 			goto out;
1368 		}
1369 
1370 		switch (state) {
1371 		case cpuset:
1372 			/* No more Mr. Nice Guy. */
1373 			cpuset_cpus_allowed_fallback(p);
1374 			state = possible;
1375 			break;
1376 
1377 		case possible:
1378 			do_set_cpus_allowed(p, cpu_possible_mask);
1379 			state = fail;
1380 			break;
1381 
1382 		case fail:
1383 			BUG();
1384 			break;
1385 		}
1386 	}
1387 
1388 out:
1389 	if (state != cpuset) {
1390 		/*
1391 		 * Don't tell them about moving exiting tasks or
1392 		 * kernel threads (both mm NULL), since they never
1393 		 * leave kernel.
1394 		 */
1395 		if (p->mm && printk_ratelimit()) {
1396 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 					task_pid_nr(p), p->comm, cpu);
1398 		}
1399 	}
1400 
1401 	return dest_cpu;
1402 }
1403 
1404 /*
1405  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406  */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411 
1412 	/*
1413 	 * In order not to call set_task_cpu() on a blocking task we need
1414 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 	 * cpu.
1416 	 *
1417 	 * Since this is common to all placement strategies, this lives here.
1418 	 *
1419 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 	 *   not worry about this generic constraint ]
1421 	 */
1422 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 		     !cpu_online(cpu)))
1424 		cpu = select_fallback_rq(task_cpu(p), p);
1425 
1426 	return cpu;
1427 }
1428 
1429 static void update_avg(u64 *avg, u64 sample)
1430 {
1431 	s64 diff = sample - *avg;
1432 	*avg += diff >> 3;
1433 }
1434 #endif
1435 
1436 static void
1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438 {
1439 #ifdef CONFIG_SCHEDSTATS
1440 	struct rq *rq = this_rq();
1441 
1442 #ifdef CONFIG_SMP
1443 	int this_cpu = smp_processor_id();
1444 
1445 	if (cpu == this_cpu) {
1446 		schedstat_inc(rq, ttwu_local);
1447 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 	} else {
1449 		struct sched_domain *sd;
1450 
1451 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 		rcu_read_lock();
1453 		for_each_domain(this_cpu, sd) {
1454 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 				schedstat_inc(sd, ttwu_wake_remote);
1456 				break;
1457 			}
1458 		}
1459 		rcu_read_unlock();
1460 	}
1461 
1462 	if (wake_flags & WF_MIGRATED)
1463 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464 
1465 #endif /* CONFIG_SMP */
1466 
1467 	schedstat_inc(rq, ttwu_count);
1468 	schedstat_inc(p, se.statistics.nr_wakeups);
1469 
1470 	if (wake_flags & WF_SYNC)
1471 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472 
1473 #endif /* CONFIG_SCHEDSTATS */
1474 }
1475 
1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477 {
1478 	activate_task(rq, p, en_flags);
1479 	p->on_rq = TASK_ON_RQ_QUEUED;
1480 
1481 	/* if a worker is waking up, notify workqueue */
1482 	if (p->flags & PF_WQ_WORKER)
1483 		wq_worker_waking_up(p, cpu_of(rq));
1484 }
1485 
1486 /*
1487  * Mark the task runnable and perform wakeup-preemption.
1488  */
1489 static void
1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491 {
1492 	check_preempt_curr(rq, p, wake_flags);
1493 	trace_sched_wakeup(p, true);
1494 
1495 	p->state = TASK_RUNNING;
1496 #ifdef CONFIG_SMP
1497 	if (p->sched_class->task_woken)
1498 		p->sched_class->task_woken(rq, p);
1499 
1500 	if (rq->idle_stamp) {
1501 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 		u64 max = 2*rq->max_idle_balance_cost;
1503 
1504 		update_avg(&rq->avg_idle, delta);
1505 
1506 		if (rq->avg_idle > max)
1507 			rq->avg_idle = max;
1508 
1509 		rq->idle_stamp = 0;
1510 	}
1511 #endif
1512 }
1513 
1514 static void
1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516 {
1517 #ifdef CONFIG_SMP
1518 	if (p->sched_contributes_to_load)
1519 		rq->nr_uninterruptible--;
1520 #endif
1521 
1522 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 	ttwu_do_wakeup(rq, p, wake_flags);
1524 }
1525 
1526 /*
1527  * Called in case the task @p isn't fully descheduled from its runqueue,
1528  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529  * since all we need to do is flip p->state to TASK_RUNNING, since
1530  * the task is still ->on_rq.
1531  */
1532 static int ttwu_remote(struct task_struct *p, int wake_flags)
1533 {
1534 	struct rq *rq;
1535 	int ret = 0;
1536 
1537 	rq = __task_rq_lock(p);
1538 	if (task_on_rq_queued(p)) {
1539 		/* check_preempt_curr() may use rq clock */
1540 		update_rq_clock(rq);
1541 		ttwu_do_wakeup(rq, p, wake_flags);
1542 		ret = 1;
1543 	}
1544 	__task_rq_unlock(rq);
1545 
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_SMP
1550 void sched_ttwu_pending(void)
1551 {
1552 	struct rq *rq = this_rq();
1553 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 	struct task_struct *p;
1555 	unsigned long flags;
1556 
1557 	if (!llist)
1558 		return;
1559 
1560 	raw_spin_lock_irqsave(&rq->lock, flags);
1561 
1562 	while (llist) {
1563 		p = llist_entry(llist, struct task_struct, wake_entry);
1564 		llist = llist_next(llist);
1565 		ttwu_do_activate(rq, p, 0);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569 }
1570 
1571 void scheduler_ipi(void)
1572 {
1573 	/*
1574 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 	 * this IPI.
1577 	 */
1578 	preempt_fold_need_resched();
1579 
1580 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 		return;
1582 
1583 	/*
1584 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 	 * traditionally all their work was done from the interrupt return
1586 	 * path. Now that we actually do some work, we need to make sure
1587 	 * we do call them.
1588 	 *
1589 	 * Some archs already do call them, luckily irq_enter/exit nest
1590 	 * properly.
1591 	 *
1592 	 * Arguably we should visit all archs and update all handlers,
1593 	 * however a fair share of IPIs are still resched only so this would
1594 	 * somewhat pessimize the simple resched case.
1595 	 */
1596 	irq_enter();
1597 	sched_ttwu_pending();
1598 
1599 	/*
1600 	 * Check if someone kicked us for doing the nohz idle load balance.
1601 	 */
1602 	if (unlikely(got_nohz_idle_kick())) {
1603 		this_rq()->idle_balance = 1;
1604 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 	}
1606 	irq_exit();
1607 }
1608 
1609 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610 {
1611 	struct rq *rq = cpu_rq(cpu);
1612 
1613 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 		if (!set_nr_if_polling(rq->idle))
1615 			smp_send_reschedule(cpu);
1616 		else
1617 			trace_sched_wake_idle_without_ipi(cpu);
1618 	}
1619 }
1620 
1621 void wake_up_if_idle(int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 	unsigned long flags;
1625 
1626 	if (!is_idle_task(rq->curr))
1627 		return;
1628 
1629 	if (set_nr_if_polling(rq->idle)) {
1630 		trace_sched_wake_idle_without_ipi(cpu);
1631 	} else {
1632 		raw_spin_lock_irqsave(&rq->lock, flags);
1633 		if (is_idle_task(rq->curr))
1634 			smp_send_reschedule(cpu);
1635 		/* Else cpu is not in idle, do nothing here */
1636 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 	}
1638 }
1639 
1640 bool cpus_share_cache(int this_cpu, int that_cpu)
1641 {
1642 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643 }
1644 #endif /* CONFIG_SMP */
1645 
1646 static void ttwu_queue(struct task_struct *p, int cpu)
1647 {
1648 	struct rq *rq = cpu_rq(cpu);
1649 
1650 #if defined(CONFIG_SMP)
1651 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 		ttwu_queue_remote(p, cpu);
1654 		return;
1655 	}
1656 #endif
1657 
1658 	raw_spin_lock(&rq->lock);
1659 	ttwu_do_activate(rq, p, 0);
1660 	raw_spin_unlock(&rq->lock);
1661 }
1662 
1663 /**
1664  * try_to_wake_up - wake up a thread
1665  * @p: the thread to be awakened
1666  * @state: the mask of task states that can be woken
1667  * @wake_flags: wake modifier flags (WF_*)
1668  *
1669  * Put it on the run-queue if it's not already there. The "current"
1670  * thread is always on the run-queue (except when the actual
1671  * re-schedule is in progress), and as such you're allowed to do
1672  * the simpler "current->state = TASK_RUNNING" to mark yourself
1673  * runnable without the overhead of this.
1674  *
1675  * Return: %true if @p was woken up, %false if it was already running.
1676  * or @state didn't match @p's state.
1677  */
1678 static int
1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680 {
1681 	unsigned long flags;
1682 	int cpu, success = 0;
1683 
1684 	/*
1685 	 * If we are going to wake up a thread waiting for CONDITION we
1686 	 * need to ensure that CONDITION=1 done by the caller can not be
1687 	 * reordered with p->state check below. This pairs with mb() in
1688 	 * set_current_state() the waiting thread does.
1689 	 */
1690 	smp_mb__before_spinlock();
1691 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 	if (!(p->state & state))
1693 		goto out;
1694 
1695 	success = 1; /* we're going to change ->state */
1696 	cpu = task_cpu(p);
1697 
1698 	if (p->on_rq && ttwu_remote(p, wake_flags))
1699 		goto stat;
1700 
1701 #ifdef CONFIG_SMP
1702 	/*
1703 	 * If the owning (remote) cpu is still in the middle of schedule() with
1704 	 * this task as prev, wait until its done referencing the task.
1705 	 */
1706 	while (p->on_cpu)
1707 		cpu_relax();
1708 	/*
1709 	 * Pairs with the smp_wmb() in finish_lock_switch().
1710 	 */
1711 	smp_rmb();
1712 
1713 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 	p->state = TASK_WAKING;
1715 
1716 	if (p->sched_class->task_waking)
1717 		p->sched_class->task_waking(p);
1718 
1719 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 	if (task_cpu(p) != cpu) {
1721 		wake_flags |= WF_MIGRATED;
1722 		set_task_cpu(p, cpu);
1723 	}
1724 #endif /* CONFIG_SMP */
1725 
1726 	ttwu_queue(p, cpu);
1727 stat:
1728 	ttwu_stat(p, cpu, wake_flags);
1729 out:
1730 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731 
1732 	return success;
1733 }
1734 
1735 /**
1736  * try_to_wake_up_local - try to wake up a local task with rq lock held
1737  * @p: the thread to be awakened
1738  *
1739  * Put @p on the run-queue if it's not already there. The caller must
1740  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741  * the current task.
1742  */
1743 static void try_to_wake_up_local(struct task_struct *p)
1744 {
1745 	struct rq *rq = task_rq(p);
1746 
1747 	if (WARN_ON_ONCE(rq != this_rq()) ||
1748 	    WARN_ON_ONCE(p == current))
1749 		return;
1750 
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 	if (!raw_spin_trylock(&p->pi_lock)) {
1754 		raw_spin_unlock(&rq->lock);
1755 		raw_spin_lock(&p->pi_lock);
1756 		raw_spin_lock(&rq->lock);
1757 	}
1758 
1759 	if (!(p->state & TASK_NORMAL))
1760 		goto out;
1761 
1762 	if (!task_on_rq_queued(p))
1763 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764 
1765 	ttwu_do_wakeup(rq, p, 0);
1766 	ttwu_stat(p, smp_processor_id(), 0);
1767 out:
1768 	raw_spin_unlock(&p->pi_lock);
1769 }
1770 
1771 /**
1772  * wake_up_process - Wake up a specific process
1773  * @p: The process to be woken up.
1774  *
1775  * Attempt to wake up the nominated process and move it to the set of runnable
1776  * processes.
1777  *
1778  * Return: 1 if the process was woken up, 0 if it was already running.
1779  *
1780  * It may be assumed that this function implies a write memory barrier before
1781  * changing the task state if and only if any tasks are woken up.
1782  */
1783 int wake_up_process(struct task_struct *p)
1784 {
1785 	WARN_ON(task_is_stopped_or_traced(p));
1786 	return try_to_wake_up(p, TASK_NORMAL, 0);
1787 }
1788 EXPORT_SYMBOL(wake_up_process);
1789 
1790 int wake_up_state(struct task_struct *p, unsigned int state)
1791 {
1792 	return try_to_wake_up(p, state, 0);
1793 }
1794 
1795 /*
1796  * This function clears the sched_dl_entity static params.
1797  */
1798 void __dl_clear_params(struct task_struct *p)
1799 {
1800 	struct sched_dl_entity *dl_se = &p->dl;
1801 
1802 	dl_se->dl_runtime = 0;
1803 	dl_se->dl_deadline = 0;
1804 	dl_se->dl_period = 0;
1805 	dl_se->flags = 0;
1806 	dl_se->dl_bw = 0;
1807 }
1808 
1809 /*
1810  * Perform scheduler related setup for a newly forked process p.
1811  * p is forked by current.
1812  *
1813  * __sched_fork() is basic setup used by init_idle() too:
1814  */
1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816 {
1817 	p->on_rq			= 0;
1818 
1819 	p->se.on_rq			= 0;
1820 	p->se.exec_start		= 0;
1821 	p->se.sum_exec_runtime		= 0;
1822 	p->se.prev_sum_exec_runtime	= 0;
1823 	p->se.nr_migrations		= 0;
1824 	p->se.vruntime			= 0;
1825 	INIT_LIST_HEAD(&p->se.group_node);
1826 
1827 #ifdef CONFIG_SCHEDSTATS
1828 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829 #endif
1830 
1831 	RB_CLEAR_NODE(&p->dl.rb_node);
1832 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 	__dl_clear_params(p);
1834 
1835 	INIT_LIST_HEAD(&p->rt.run_list);
1836 
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839 #endif
1840 
1841 #ifdef CONFIG_NUMA_BALANCING
1842 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 		p->mm->numa_scan_seq = 0;
1845 	}
1846 
1847 	if (clone_flags & CLONE_VM)
1848 		p->numa_preferred_nid = current->numa_preferred_nid;
1849 	else
1850 		p->numa_preferred_nid = -1;
1851 
1852 	p->node_stamp = 0ULL;
1853 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 	p->numa_work.next = &p->numa_work;
1856 	p->numa_faults_memory = NULL;
1857 	p->numa_faults_buffer_memory = NULL;
1858 	p->last_task_numa_placement = 0;
1859 	p->last_sum_exec_runtime = 0;
1860 
1861 	INIT_LIST_HEAD(&p->numa_entry);
1862 	p->numa_group = NULL;
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 }
1865 
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled)
1869 {
1870 	if (enabled)
1871 		sched_feat_set("NUMA");
1872 	else
1873 		sched_feat_set("NO_NUMA");
1874 }
1875 #else
1876 __read_mostly bool numabalancing_enabled;
1877 
1878 void set_numabalancing_state(bool enabled)
1879 {
1880 	numabalancing_enabled = enabled;
1881 }
1882 #endif /* CONFIG_SCHED_DEBUG */
1883 
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888 	struct ctl_table t;
1889 	int err;
1890 	int state = numabalancing_enabled;
1891 
1892 	if (write && !capable(CAP_SYS_ADMIN))
1893 		return -EPERM;
1894 
1895 	t = *table;
1896 	t.data = &state;
1897 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 	if (err < 0)
1899 		return err;
1900 	if (write)
1901 		set_numabalancing_state(state);
1902 	return err;
1903 }
1904 #endif
1905 #endif
1906 
1907 /*
1908  * fork()/clone()-time setup:
1909  */
1910 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911 {
1912 	unsigned long flags;
1913 	int cpu = get_cpu();
1914 
1915 	__sched_fork(clone_flags, p);
1916 	/*
1917 	 * We mark the process as running here. This guarantees that
1918 	 * nobody will actually run it, and a signal or other external
1919 	 * event cannot wake it up and insert it on the runqueue either.
1920 	 */
1921 	p->state = TASK_RUNNING;
1922 
1923 	/*
1924 	 * Make sure we do not leak PI boosting priority to the child.
1925 	 */
1926 	p->prio = current->normal_prio;
1927 
1928 	/*
1929 	 * Revert to default priority/policy on fork if requested.
1930 	 */
1931 	if (unlikely(p->sched_reset_on_fork)) {
1932 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 			p->policy = SCHED_NORMAL;
1934 			p->static_prio = NICE_TO_PRIO(0);
1935 			p->rt_priority = 0;
1936 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 			p->static_prio = NICE_TO_PRIO(0);
1938 
1939 		p->prio = p->normal_prio = __normal_prio(p);
1940 		set_load_weight(p);
1941 
1942 		/*
1943 		 * We don't need the reset flag anymore after the fork. It has
1944 		 * fulfilled its duty:
1945 		 */
1946 		p->sched_reset_on_fork = 0;
1947 	}
1948 
1949 	if (dl_prio(p->prio)) {
1950 		put_cpu();
1951 		return -EAGAIN;
1952 	} else if (rt_prio(p->prio)) {
1953 		p->sched_class = &rt_sched_class;
1954 	} else {
1955 		p->sched_class = &fair_sched_class;
1956 	}
1957 
1958 	if (p->sched_class->task_fork)
1959 		p->sched_class->task_fork(p);
1960 
1961 	/*
1962 	 * The child is not yet in the pid-hash so no cgroup attach races,
1963 	 * and the cgroup is pinned to this child due to cgroup_fork()
1964 	 * is ran before sched_fork().
1965 	 *
1966 	 * Silence PROVE_RCU.
1967 	 */
1968 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 	set_task_cpu(p, cpu);
1970 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971 
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 	if (likely(sched_info_on()))
1974 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975 #endif
1976 #if defined(CONFIG_SMP)
1977 	p->on_cpu = 0;
1978 #endif
1979 	init_task_preempt_count(p);
1980 #ifdef CONFIG_SMP
1981 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983 #endif
1984 
1985 	put_cpu();
1986 	return 0;
1987 }
1988 
1989 unsigned long to_ratio(u64 period, u64 runtime)
1990 {
1991 	if (runtime == RUNTIME_INF)
1992 		return 1ULL << 20;
1993 
1994 	/*
1995 	 * Doing this here saves a lot of checks in all
1996 	 * the calling paths, and returning zero seems
1997 	 * safe for them anyway.
1998 	 */
1999 	if (period == 0)
2000 		return 0;
2001 
2002 	return div64_u64(runtime << 20, period);
2003 }
2004 
2005 #ifdef CONFIG_SMP
2006 inline struct dl_bw *dl_bw_of(int i)
2007 {
2008 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 			   "sched RCU must be held");
2010 	return &cpu_rq(i)->rd->dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	struct root_domain *rd = cpu_rq(i)->rd;
2016 	int cpus = 0;
2017 
2018 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 			   "sched RCU must be held");
2020 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 		cpus++;
2022 
2023 	return cpus;
2024 }
2025 #else
2026 inline struct dl_bw *dl_bw_of(int i)
2027 {
2028 	return &cpu_rq(i)->dl.dl_bw;
2029 }
2030 
2031 static inline int dl_bw_cpus(int i)
2032 {
2033 	return 1;
2034 }
2035 #endif
2036 
2037 static inline
2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039 {
2040 	dl_b->total_bw -= tsk_bw;
2041 }
2042 
2043 static inline
2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045 {
2046 	dl_b->total_bw += tsk_bw;
2047 }
2048 
2049 static inline
2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051 {
2052 	return dl_b->bw != -1 &&
2053 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054 }
2055 
2056 /*
2057  * We must be sure that accepting a new task (or allowing changing the
2058  * parameters of an existing one) is consistent with the bandwidth
2059  * constraints. If yes, this function also accordingly updates the currently
2060  * allocated bandwidth to reflect the new situation.
2061  *
2062  * This function is called while holding p's rq->lock.
2063  */
2064 static int dl_overflow(struct task_struct *p, int policy,
2065 		       const struct sched_attr *attr)
2066 {
2067 
2068 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 	u64 period = attr->sched_period ?: attr->sched_deadline;
2070 	u64 runtime = attr->sched_runtime;
2071 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 	int cpus, err = -1;
2073 
2074 	if (new_bw == p->dl.dl_bw)
2075 		return 0;
2076 
2077 	/*
2078 	 * Either if a task, enters, leave, or stays -deadline but changes
2079 	 * its parameters, we may need to update accordingly the total
2080 	 * allocated bandwidth of the container.
2081 	 */
2082 	raw_spin_lock(&dl_b->lock);
2083 	cpus = dl_bw_cpus(task_cpu(p));
2084 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 		__dl_add(dl_b, new_bw);
2087 		err = 0;
2088 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 		__dl_clear(dl_b, p->dl.dl_bw);
2091 		__dl_add(dl_b, new_bw);
2092 		err = 0;
2093 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 		__dl_clear(dl_b, p->dl.dl_bw);
2095 		err = 0;
2096 	}
2097 	raw_spin_unlock(&dl_b->lock);
2098 
2099 	return err;
2100 }
2101 
2102 extern void init_dl_bw(struct dl_bw *dl_b);
2103 
2104 /*
2105  * wake_up_new_task - wake up a newly created task for the first time.
2106  *
2107  * This function will do some initial scheduler statistics housekeeping
2108  * that must be done for every newly created context, then puts the task
2109  * on the runqueue and wakes it.
2110  */
2111 void wake_up_new_task(struct task_struct *p)
2112 {
2113 	unsigned long flags;
2114 	struct rq *rq;
2115 
2116 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117 #ifdef CONFIG_SMP
2118 	/*
2119 	 * Fork balancing, do it here and not earlier because:
2120 	 *  - cpus_allowed can change in the fork path
2121 	 *  - any previously selected cpu might disappear through hotplug
2122 	 */
2123 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124 #endif
2125 
2126 	/* Initialize new task's runnable average */
2127 	init_task_runnable_average(p);
2128 	rq = __task_rq_lock(p);
2129 	activate_task(rq, p, 0);
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 	trace_sched_wakeup_new(p, true);
2132 	check_preempt_curr(rq, p, WF_FORK);
2133 #ifdef CONFIG_SMP
2134 	if (p->sched_class->task_woken)
2135 		p->sched_class->task_woken(rq, p);
2136 #endif
2137 	task_rq_unlock(rq, p, &flags);
2138 }
2139 
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2141 
2142 /**
2143  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144  * @notifier: notifier struct to register
2145  */
2146 void preempt_notifier_register(struct preempt_notifier *notifier)
2147 {
2148 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149 }
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151 
2152 /**
2153  * preempt_notifier_unregister - no longer interested in preemption notifications
2154  * @notifier: notifier struct to unregister
2155  *
2156  * This is safe to call from within a preemption notifier.
2157  */
2158 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159 {
2160 	hlist_del(&notifier->link);
2161 }
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163 
2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165 {
2166 	struct preempt_notifier *notifier;
2167 
2168 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170 }
2171 
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 				 struct task_struct *next)
2175 {
2176 	struct preempt_notifier *notifier;
2177 
2178 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 		notifier->ops->sched_out(notifier, next);
2180 }
2181 
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2183 
2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185 {
2186 }
2187 
2188 static void
2189 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 				 struct task_struct *next)
2191 {
2192 }
2193 
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2195 
2196 /**
2197  * prepare_task_switch - prepare to switch tasks
2198  * @rq: the runqueue preparing to switch
2199  * @prev: the current task that is being switched out
2200  * @next: the task we are going to switch to.
2201  *
2202  * This is called with the rq lock held and interrupts off. It must
2203  * be paired with a subsequent finish_task_switch after the context
2204  * switch.
2205  *
2206  * prepare_task_switch sets up locking and calls architecture specific
2207  * hooks.
2208  */
2209 static inline void
2210 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 		    struct task_struct *next)
2212 {
2213 	trace_sched_switch(prev, next);
2214 	sched_info_switch(rq, prev, next);
2215 	perf_event_task_sched_out(prev, next);
2216 	fire_sched_out_preempt_notifiers(prev, next);
2217 	prepare_lock_switch(rq, next);
2218 	prepare_arch_switch(next);
2219 }
2220 
2221 /**
2222  * finish_task_switch - clean up after a task-switch
2223  * @rq: runqueue associated with task-switch
2224  * @prev: the thread we just switched away from.
2225  *
2226  * finish_task_switch must be called after the context switch, paired
2227  * with a prepare_task_switch call before the context switch.
2228  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229  * and do any other architecture-specific cleanup actions.
2230  *
2231  * Note that we may have delayed dropping an mm in context_switch(). If
2232  * so, we finish that here outside of the runqueue lock. (Doing it
2233  * with the lock held can cause deadlocks; see schedule() for
2234  * details.)
2235  */
2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 	__releases(rq->lock)
2238 {
2239 	struct mm_struct *mm = rq->prev_mm;
2240 	long prev_state;
2241 
2242 	rq->prev_mm = NULL;
2243 
2244 	/*
2245 	 * A task struct has one reference for the use as "current".
2246 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 	 * schedule one last time. The schedule call will never return, and
2248 	 * the scheduled task must drop that reference.
2249 	 * The test for TASK_DEAD must occur while the runqueue locks are
2250 	 * still held, otherwise prev could be scheduled on another cpu, die
2251 	 * there before we look at prev->state, and then the reference would
2252 	 * be dropped twice.
2253 	 *		Manfred Spraul <manfred@colorfullife.com>
2254 	 */
2255 	prev_state = prev->state;
2256 	vtime_task_switch(prev);
2257 	finish_arch_switch(prev);
2258 	perf_event_task_sched_in(prev, current);
2259 	finish_lock_switch(rq, prev);
2260 	finish_arch_post_lock_switch();
2261 
2262 	fire_sched_in_preempt_notifiers(current);
2263 	if (mm)
2264 		mmdrop(mm);
2265 	if (unlikely(prev_state == TASK_DEAD)) {
2266 		if (prev->sched_class->task_dead)
2267 			prev->sched_class->task_dead(prev);
2268 
2269 		/*
2270 		 * Remove function-return probe instances associated with this
2271 		 * task and put them back on the free list.
2272 		 */
2273 		kprobe_flush_task(prev);
2274 		put_task_struct(prev);
2275 	}
2276 
2277 	tick_nohz_task_switch(current);
2278 }
2279 
2280 #ifdef CONFIG_SMP
2281 
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq *rq)
2284 {
2285 	if (rq->post_schedule) {
2286 		unsigned long flags;
2287 
2288 		raw_spin_lock_irqsave(&rq->lock, flags);
2289 		if (rq->curr->sched_class->post_schedule)
2290 			rq->curr->sched_class->post_schedule(rq);
2291 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292 
2293 		rq->post_schedule = 0;
2294 	}
2295 }
2296 
2297 #else
2298 
2299 static inline void post_schedule(struct rq *rq)
2300 {
2301 }
2302 
2303 #endif
2304 
2305 /**
2306  * schedule_tail - first thing a freshly forked thread must call.
2307  * @prev: the thread we just switched away from.
2308  */
2309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 	__releases(rq->lock)
2311 {
2312 	struct rq *rq = this_rq();
2313 
2314 	finish_task_switch(rq, prev);
2315 
2316 	/*
2317 	 * FIXME: do we need to worry about rq being invalidated by the
2318 	 * task_switch?
2319 	 */
2320 	post_schedule(rq);
2321 
2322 	if (current->set_child_tid)
2323 		put_user(task_pid_vnr(current), current->set_child_tid);
2324 }
2325 
2326 /*
2327  * context_switch - switch to the new MM and the new
2328  * thread's register state.
2329  */
2330 static inline void
2331 context_switch(struct rq *rq, struct task_struct *prev,
2332 	       struct task_struct *next)
2333 {
2334 	struct mm_struct *mm, *oldmm;
2335 
2336 	prepare_task_switch(rq, prev, next);
2337 
2338 	mm = next->mm;
2339 	oldmm = prev->active_mm;
2340 	/*
2341 	 * For paravirt, this is coupled with an exit in switch_to to
2342 	 * combine the page table reload and the switch backend into
2343 	 * one hypercall.
2344 	 */
2345 	arch_start_context_switch(prev);
2346 
2347 	if (!mm) {
2348 		next->active_mm = oldmm;
2349 		atomic_inc(&oldmm->mm_count);
2350 		enter_lazy_tlb(oldmm, next);
2351 	} else
2352 		switch_mm(oldmm, mm, next);
2353 
2354 	if (!prev->mm) {
2355 		prev->active_mm = NULL;
2356 		rq->prev_mm = oldmm;
2357 	}
2358 	/*
2359 	 * Since the runqueue lock will be released by the next
2360 	 * task (which is an invalid locking op but in the case
2361 	 * of the scheduler it's an obvious special-case), so we
2362 	 * do an early lockdep release here:
2363 	 */
2364 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365 
2366 	context_tracking_task_switch(prev, next);
2367 	/* Here we just switch the register state and the stack. */
2368 	switch_to(prev, next, prev);
2369 
2370 	barrier();
2371 	/*
2372 	 * this_rq must be evaluated again because prev may have moved
2373 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 	 * frame will be invalid.
2375 	 */
2376 	finish_task_switch(this_rq(), prev);
2377 }
2378 
2379 /*
2380  * nr_running and nr_context_switches:
2381  *
2382  * externally visible scheduler statistics: current number of runnable
2383  * threads, total number of context switches performed since bootup.
2384  */
2385 unsigned long nr_running(void)
2386 {
2387 	unsigned long i, sum = 0;
2388 
2389 	for_each_online_cpu(i)
2390 		sum += cpu_rq(i)->nr_running;
2391 
2392 	return sum;
2393 }
2394 
2395 /*
2396  * Check if only the current task is running on the cpu.
2397  */
2398 bool single_task_running(void)
2399 {
2400 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 		return true;
2402 	else
2403 		return false;
2404 }
2405 EXPORT_SYMBOL(single_task_running);
2406 
2407 unsigned long long nr_context_switches(void)
2408 {
2409 	int i;
2410 	unsigned long long sum = 0;
2411 
2412 	for_each_possible_cpu(i)
2413 		sum += cpu_rq(i)->nr_switches;
2414 
2415 	return sum;
2416 }
2417 
2418 unsigned long nr_iowait(void)
2419 {
2420 	unsigned long i, sum = 0;
2421 
2422 	for_each_possible_cpu(i)
2423 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424 
2425 	return sum;
2426 }
2427 
2428 unsigned long nr_iowait_cpu(int cpu)
2429 {
2430 	struct rq *this = cpu_rq(cpu);
2431 	return atomic_read(&this->nr_iowait);
2432 }
2433 
2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435 {
2436 	struct rq *this = this_rq();
2437 	*nr_waiters = atomic_read(&this->nr_iowait);
2438 	*load = this->cpu_load[0];
2439 }
2440 
2441 #ifdef CONFIG_SMP
2442 
2443 /*
2444  * sched_exec - execve() is a valuable balancing opportunity, because at
2445  * this point the task has the smallest effective memory and cache footprint.
2446  */
2447 void sched_exec(void)
2448 {
2449 	struct task_struct *p = current;
2450 	unsigned long flags;
2451 	int dest_cpu;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 	if (dest_cpu == smp_processor_id())
2456 		goto unlock;
2457 
2458 	if (likely(cpu_active(dest_cpu))) {
2459 		struct migration_arg arg = { p, dest_cpu };
2460 
2461 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 		return;
2464 	}
2465 unlock:
2466 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467 }
2468 
2469 #endif
2470 
2471 DEFINE_PER_CPU(struct kernel_stat, kstat);
2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473 
2474 EXPORT_PER_CPU_SYMBOL(kstat);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476 
2477 /*
2478  * Return any ns on the sched_clock that have not yet been accounted in
2479  * @p in case that task is currently running.
2480  *
2481  * Called with task_rq_lock() held on @rq.
2482  */
2483 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484 {
2485 	u64 ns = 0;
2486 
2487 	/*
2488 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2489 	 * project cycles that may never be accounted to this
2490 	 * thread, breaking clock_gettime().
2491 	 */
2492 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2493 		update_rq_clock(rq);
2494 		ns = rq_clock_task(rq) - p->se.exec_start;
2495 		if ((s64)ns < 0)
2496 			ns = 0;
2497 	}
2498 
2499 	return ns;
2500 }
2501 
2502 unsigned long long task_delta_exec(struct task_struct *p)
2503 {
2504 	unsigned long flags;
2505 	struct rq *rq;
2506 	u64 ns = 0;
2507 
2508 	rq = task_rq_lock(p, &flags);
2509 	ns = do_task_delta_exec(p, rq);
2510 	task_rq_unlock(rq, p, &flags);
2511 
2512 	return ns;
2513 }
2514 
2515 /*
2516  * Return accounted runtime for the task.
2517  * In case the task is currently running, return the runtime plus current's
2518  * pending runtime that have not been accounted yet.
2519  */
2520 unsigned long long task_sched_runtime(struct task_struct *p)
2521 {
2522 	unsigned long flags;
2523 	struct rq *rq;
2524 	u64 ns = 0;
2525 
2526 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 	/*
2528 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 	 * So we have a optimization chance when the task's delta_exec is 0.
2530 	 * Reading ->on_cpu is racy, but this is ok.
2531 	 *
2532 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 	 * If we race with it entering cpu, unaccounted time is 0. This is
2534 	 * indistinguishable from the read occurring a few cycles earlier.
2535 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 	 * been accounted, so we're correct here as well.
2537 	 */
2538 	if (!p->on_cpu || !task_on_rq_queued(p))
2539 		return p->se.sum_exec_runtime;
2540 #endif
2541 
2542 	rq = task_rq_lock(p, &flags);
2543 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2544 	task_rq_unlock(rq, p, &flags);
2545 
2546 	return ns;
2547 }
2548 
2549 /*
2550  * This function gets called by the timer code, with HZ frequency.
2551  * We call it with interrupts disabled.
2552  */
2553 void scheduler_tick(void)
2554 {
2555 	int cpu = smp_processor_id();
2556 	struct rq *rq = cpu_rq(cpu);
2557 	struct task_struct *curr = rq->curr;
2558 
2559 	sched_clock_tick();
2560 
2561 	raw_spin_lock(&rq->lock);
2562 	update_rq_clock(rq);
2563 	curr->sched_class->task_tick(rq, curr, 0);
2564 	update_cpu_load_active(rq);
2565 	raw_spin_unlock(&rq->lock);
2566 
2567 	perf_event_task_tick();
2568 
2569 #ifdef CONFIG_SMP
2570 	rq->idle_balance = idle_cpu(cpu);
2571 	trigger_load_balance(rq);
2572 #endif
2573 	rq_last_tick_reset(rq);
2574 }
2575 
2576 #ifdef CONFIG_NO_HZ_FULL
2577 /**
2578  * scheduler_tick_max_deferment
2579  *
2580  * Keep at least one tick per second when a single
2581  * active task is running because the scheduler doesn't
2582  * yet completely support full dynticks environment.
2583  *
2584  * This makes sure that uptime, CFS vruntime, load
2585  * balancing, etc... continue to move forward, even
2586  * with a very low granularity.
2587  *
2588  * Return: Maximum deferment in nanoseconds.
2589  */
2590 u64 scheduler_tick_max_deferment(void)
2591 {
2592 	struct rq *rq = this_rq();
2593 	unsigned long next, now = ACCESS_ONCE(jiffies);
2594 
2595 	next = rq->last_sched_tick + HZ;
2596 
2597 	if (time_before_eq(next, now))
2598 		return 0;
2599 
2600 	return jiffies_to_nsecs(next - now);
2601 }
2602 #endif
2603 
2604 notrace unsigned long get_parent_ip(unsigned long addr)
2605 {
2606 	if (in_lock_functions(addr)) {
2607 		addr = CALLER_ADDR2;
2608 		if (in_lock_functions(addr))
2609 			addr = CALLER_ADDR3;
2610 	}
2611 	return addr;
2612 }
2613 
2614 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 				defined(CONFIG_PREEMPT_TRACER))
2616 
2617 void preempt_count_add(int val)
2618 {
2619 #ifdef CONFIG_DEBUG_PREEMPT
2620 	/*
2621 	 * Underflow?
2622 	 */
2623 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 		return;
2625 #endif
2626 	__preempt_count_add(val);
2627 #ifdef CONFIG_DEBUG_PREEMPT
2628 	/*
2629 	 * Spinlock count overflowing soon?
2630 	 */
2631 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 				PREEMPT_MASK - 10);
2633 #endif
2634 	if (preempt_count() == val) {
2635 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636 #ifdef CONFIG_DEBUG_PREEMPT
2637 		current->preempt_disable_ip = ip;
2638 #endif
2639 		trace_preempt_off(CALLER_ADDR0, ip);
2640 	}
2641 }
2642 EXPORT_SYMBOL(preempt_count_add);
2643 NOKPROBE_SYMBOL(preempt_count_add);
2644 
2645 void preempt_count_sub(int val)
2646 {
2647 #ifdef CONFIG_DEBUG_PREEMPT
2648 	/*
2649 	 * Underflow?
2650 	 */
2651 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2652 		return;
2653 	/*
2654 	 * Is the spinlock portion underflowing?
2655 	 */
2656 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 			!(preempt_count() & PREEMPT_MASK)))
2658 		return;
2659 #endif
2660 
2661 	if (preempt_count() == val)
2662 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2663 	__preempt_count_sub(val);
2664 }
2665 EXPORT_SYMBOL(preempt_count_sub);
2666 NOKPROBE_SYMBOL(preempt_count_sub);
2667 
2668 #endif
2669 
2670 /*
2671  * Print scheduling while atomic bug:
2672  */
2673 static noinline void __schedule_bug(struct task_struct *prev)
2674 {
2675 	if (oops_in_progress)
2676 		return;
2677 
2678 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 		prev->comm, prev->pid, preempt_count());
2680 
2681 	debug_show_held_locks(prev);
2682 	print_modules();
2683 	if (irqs_disabled())
2684 		print_irqtrace_events(prev);
2685 #ifdef CONFIG_DEBUG_PREEMPT
2686 	if (in_atomic_preempt_off()) {
2687 		pr_err("Preemption disabled at:");
2688 		print_ip_sym(current->preempt_disable_ip);
2689 		pr_cont("\n");
2690 	}
2691 #endif
2692 	dump_stack();
2693 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2694 }
2695 
2696 /*
2697  * Various schedule()-time debugging checks and statistics:
2698  */
2699 static inline void schedule_debug(struct task_struct *prev)
2700 {
2701 #ifdef CONFIG_SCHED_STACK_END_CHECK
2702 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703 #endif
2704 	/*
2705 	 * Test if we are atomic. Since do_exit() needs to call into
2706 	 * schedule() atomically, we ignore that path. Otherwise whine
2707 	 * if we are scheduling when we should not.
2708 	 */
2709 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2710 		__schedule_bug(prev);
2711 	rcu_sleep_check();
2712 
2713 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714 
2715 	schedstat_inc(this_rq(), sched_count);
2716 }
2717 
2718 /*
2719  * Pick up the highest-prio task:
2720  */
2721 static inline struct task_struct *
2722 pick_next_task(struct rq *rq, struct task_struct *prev)
2723 {
2724 	const struct sched_class *class = &fair_sched_class;
2725 	struct task_struct *p;
2726 
2727 	/*
2728 	 * Optimization: we know that if all tasks are in
2729 	 * the fair class we can call that function directly:
2730 	 */
2731 	if (likely(prev->sched_class == class &&
2732 		   rq->nr_running == rq->cfs.h_nr_running)) {
2733 		p = fair_sched_class.pick_next_task(rq, prev);
2734 		if (unlikely(p == RETRY_TASK))
2735 			goto again;
2736 
2737 		/* assumes fair_sched_class->next == idle_sched_class */
2738 		if (unlikely(!p))
2739 			p = idle_sched_class.pick_next_task(rq, prev);
2740 
2741 		return p;
2742 	}
2743 
2744 again:
2745 	for_each_class(class) {
2746 		p = class->pick_next_task(rq, prev);
2747 		if (p) {
2748 			if (unlikely(p == RETRY_TASK))
2749 				goto again;
2750 			return p;
2751 		}
2752 	}
2753 
2754 	BUG(); /* the idle class will always have a runnable task */
2755 }
2756 
2757 /*
2758  * __schedule() is the main scheduler function.
2759  *
2760  * The main means of driving the scheduler and thus entering this function are:
2761  *
2762  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763  *
2764  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765  *      paths. For example, see arch/x86/entry_64.S.
2766  *
2767  *      To drive preemption between tasks, the scheduler sets the flag in timer
2768  *      interrupt handler scheduler_tick().
2769  *
2770  *   3. Wakeups don't really cause entry into schedule(). They add a
2771  *      task to the run-queue and that's it.
2772  *
2773  *      Now, if the new task added to the run-queue preempts the current
2774  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775  *      called on the nearest possible occasion:
2776  *
2777  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778  *
2779  *         - in syscall or exception context, at the next outmost
2780  *           preempt_enable(). (this might be as soon as the wake_up()'s
2781  *           spin_unlock()!)
2782  *
2783  *         - in IRQ context, return from interrupt-handler to
2784  *           preemptible context
2785  *
2786  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787  *         then at the next:
2788  *
2789  *          - cond_resched() call
2790  *          - explicit schedule() call
2791  *          - return from syscall or exception to user-space
2792  *          - return from interrupt-handler to user-space
2793  */
2794 static void __sched __schedule(void)
2795 {
2796 	struct task_struct *prev, *next;
2797 	unsigned long *switch_count;
2798 	struct rq *rq;
2799 	int cpu;
2800 
2801 need_resched:
2802 	preempt_disable();
2803 	cpu = smp_processor_id();
2804 	rq = cpu_rq(cpu);
2805 	rcu_note_context_switch(cpu);
2806 	prev = rq->curr;
2807 
2808 	schedule_debug(prev);
2809 
2810 	if (sched_feat(HRTICK))
2811 		hrtick_clear(rq);
2812 
2813 	/*
2814 	 * Make sure that signal_pending_state()->signal_pending() below
2815 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 	 * done by the caller to avoid the race with signal_wake_up().
2817 	 */
2818 	smp_mb__before_spinlock();
2819 	raw_spin_lock_irq(&rq->lock);
2820 
2821 	switch_count = &prev->nivcsw;
2822 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2823 		if (unlikely(signal_pending_state(prev->state, prev))) {
2824 			prev->state = TASK_RUNNING;
2825 		} else {
2826 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 			prev->on_rq = 0;
2828 
2829 			/*
2830 			 * If a worker went to sleep, notify and ask workqueue
2831 			 * whether it wants to wake up a task to maintain
2832 			 * concurrency.
2833 			 */
2834 			if (prev->flags & PF_WQ_WORKER) {
2835 				struct task_struct *to_wakeup;
2836 
2837 				to_wakeup = wq_worker_sleeping(prev, cpu);
2838 				if (to_wakeup)
2839 					try_to_wake_up_local(to_wakeup);
2840 			}
2841 		}
2842 		switch_count = &prev->nvcsw;
2843 	}
2844 
2845 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2846 		update_rq_clock(rq);
2847 
2848 	next = pick_next_task(rq, prev);
2849 	clear_tsk_need_resched(prev);
2850 	clear_preempt_need_resched();
2851 	rq->skip_clock_update = 0;
2852 
2853 	if (likely(prev != next)) {
2854 		rq->nr_switches++;
2855 		rq->curr = next;
2856 		++*switch_count;
2857 
2858 		context_switch(rq, prev, next); /* unlocks the rq */
2859 		/*
2860 		 * The context switch have flipped the stack from under us
2861 		 * and restored the local variables which were saved when
2862 		 * this task called schedule() in the past. prev == current
2863 		 * is still correct, but it can be moved to another cpu/rq.
2864 		 */
2865 		cpu = smp_processor_id();
2866 		rq = cpu_rq(cpu);
2867 	} else
2868 		raw_spin_unlock_irq(&rq->lock);
2869 
2870 	post_schedule(rq);
2871 
2872 	sched_preempt_enable_no_resched();
2873 	if (need_resched())
2874 		goto need_resched;
2875 }
2876 
2877 static inline void sched_submit_work(struct task_struct *tsk)
2878 {
2879 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2880 		return;
2881 	/*
2882 	 * If we are going to sleep and we have plugged IO queued,
2883 	 * make sure to submit it to avoid deadlocks.
2884 	 */
2885 	if (blk_needs_flush_plug(tsk))
2886 		blk_schedule_flush_plug(tsk);
2887 }
2888 
2889 asmlinkage __visible void __sched schedule(void)
2890 {
2891 	struct task_struct *tsk = current;
2892 
2893 	sched_submit_work(tsk);
2894 	__schedule();
2895 }
2896 EXPORT_SYMBOL(schedule);
2897 
2898 #ifdef CONFIG_CONTEXT_TRACKING
2899 asmlinkage __visible void __sched schedule_user(void)
2900 {
2901 	/*
2902 	 * If we come here after a random call to set_need_resched(),
2903 	 * or we have been woken up remotely but the IPI has not yet arrived,
2904 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 	 * we find a better solution.
2906 	 */
2907 	user_exit();
2908 	schedule();
2909 	user_enter();
2910 }
2911 #endif
2912 
2913 /**
2914  * schedule_preempt_disabled - called with preemption disabled
2915  *
2916  * Returns with preemption disabled. Note: preempt_count must be 1
2917  */
2918 void __sched schedule_preempt_disabled(void)
2919 {
2920 	sched_preempt_enable_no_resched();
2921 	schedule();
2922 	preempt_disable();
2923 }
2924 
2925 #ifdef CONFIG_PREEMPT
2926 /*
2927  * this is the entry point to schedule() from in-kernel preemption
2928  * off of preempt_enable. Kernel preemptions off return from interrupt
2929  * occur there and call schedule directly.
2930  */
2931 asmlinkage __visible void __sched notrace preempt_schedule(void)
2932 {
2933 	/*
2934 	 * If there is a non-zero preempt_count or interrupts are disabled,
2935 	 * we do not want to preempt the current task. Just return..
2936 	 */
2937 	if (likely(!preemptible()))
2938 		return;
2939 
2940 	do {
2941 		__preempt_count_add(PREEMPT_ACTIVE);
2942 		__schedule();
2943 		__preempt_count_sub(PREEMPT_ACTIVE);
2944 
2945 		/*
2946 		 * Check again in case we missed a preemption opportunity
2947 		 * between schedule and now.
2948 		 */
2949 		barrier();
2950 	} while (need_resched());
2951 }
2952 NOKPROBE_SYMBOL(preempt_schedule);
2953 EXPORT_SYMBOL(preempt_schedule);
2954 #endif /* CONFIG_PREEMPT */
2955 
2956 /*
2957  * this is the entry point to schedule() from kernel preemption
2958  * off of irq context.
2959  * Note, that this is called and return with irqs disabled. This will
2960  * protect us against recursive calling from irq.
2961  */
2962 asmlinkage __visible void __sched preempt_schedule_irq(void)
2963 {
2964 	enum ctx_state prev_state;
2965 
2966 	/* Catch callers which need to be fixed */
2967 	BUG_ON(preempt_count() || !irqs_disabled());
2968 
2969 	prev_state = exception_enter();
2970 
2971 	do {
2972 		__preempt_count_add(PREEMPT_ACTIVE);
2973 		local_irq_enable();
2974 		__schedule();
2975 		local_irq_disable();
2976 		__preempt_count_sub(PREEMPT_ACTIVE);
2977 
2978 		/*
2979 		 * Check again in case we missed a preemption opportunity
2980 		 * between schedule and now.
2981 		 */
2982 		barrier();
2983 	} while (need_resched());
2984 
2985 	exception_exit(prev_state);
2986 }
2987 
2988 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2989 			  void *key)
2990 {
2991 	return try_to_wake_up(curr->private, mode, wake_flags);
2992 }
2993 EXPORT_SYMBOL(default_wake_function);
2994 
2995 #ifdef CONFIG_RT_MUTEXES
2996 
2997 /*
2998  * rt_mutex_setprio - set the current priority of a task
2999  * @p: task
3000  * @prio: prio value (kernel-internal form)
3001  *
3002  * This function changes the 'effective' priority of a task. It does
3003  * not touch ->normal_prio like __setscheduler().
3004  *
3005  * Used by the rt_mutex code to implement priority inheritance
3006  * logic. Call site only calls if the priority of the task changed.
3007  */
3008 void rt_mutex_setprio(struct task_struct *p, int prio)
3009 {
3010 	int oldprio, queued, running, enqueue_flag = 0;
3011 	struct rq *rq;
3012 	const struct sched_class *prev_class;
3013 
3014 	BUG_ON(prio > MAX_PRIO);
3015 
3016 	rq = __task_rq_lock(p);
3017 
3018 	/*
3019 	 * Idle task boosting is a nono in general. There is one
3020 	 * exception, when PREEMPT_RT and NOHZ is active:
3021 	 *
3022 	 * The idle task calls get_next_timer_interrupt() and holds
3023 	 * the timer wheel base->lock on the CPU and another CPU wants
3024 	 * to access the timer (probably to cancel it). We can safely
3025 	 * ignore the boosting request, as the idle CPU runs this code
3026 	 * with interrupts disabled and will complete the lock
3027 	 * protected section without being interrupted. So there is no
3028 	 * real need to boost.
3029 	 */
3030 	if (unlikely(p == rq->idle)) {
3031 		WARN_ON(p != rq->curr);
3032 		WARN_ON(p->pi_blocked_on);
3033 		goto out_unlock;
3034 	}
3035 
3036 	trace_sched_pi_setprio(p, prio);
3037 	oldprio = p->prio;
3038 	prev_class = p->sched_class;
3039 	queued = task_on_rq_queued(p);
3040 	running = task_current(rq, p);
3041 	if (queued)
3042 		dequeue_task(rq, p, 0);
3043 	if (running)
3044 		put_prev_task(rq, p);
3045 
3046 	/*
3047 	 * Boosting condition are:
3048 	 * 1. -rt task is running and holds mutex A
3049 	 *      --> -dl task blocks on mutex A
3050 	 *
3051 	 * 2. -dl task is running and holds mutex A
3052 	 *      --> -dl task blocks on mutex A and could preempt the
3053 	 *          running task
3054 	 */
3055 	if (dl_prio(prio)) {
3056 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3057 		if (!dl_prio(p->normal_prio) ||
3058 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3059 			p->dl.dl_boosted = 1;
3060 			p->dl.dl_throttled = 0;
3061 			enqueue_flag = ENQUEUE_REPLENISH;
3062 		} else
3063 			p->dl.dl_boosted = 0;
3064 		p->sched_class = &dl_sched_class;
3065 	} else if (rt_prio(prio)) {
3066 		if (dl_prio(oldprio))
3067 			p->dl.dl_boosted = 0;
3068 		if (oldprio < prio)
3069 			enqueue_flag = ENQUEUE_HEAD;
3070 		p->sched_class = &rt_sched_class;
3071 	} else {
3072 		if (dl_prio(oldprio))
3073 			p->dl.dl_boosted = 0;
3074 		p->sched_class = &fair_sched_class;
3075 	}
3076 
3077 	p->prio = prio;
3078 
3079 	if (running)
3080 		p->sched_class->set_curr_task(rq);
3081 	if (queued)
3082 		enqueue_task(rq, p, enqueue_flag);
3083 
3084 	check_class_changed(rq, p, prev_class, oldprio);
3085 out_unlock:
3086 	__task_rq_unlock(rq);
3087 }
3088 #endif
3089 
3090 void set_user_nice(struct task_struct *p, long nice)
3091 {
3092 	int old_prio, delta, queued;
3093 	unsigned long flags;
3094 	struct rq *rq;
3095 
3096 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3097 		return;
3098 	/*
3099 	 * We have to be careful, if called from sys_setpriority(),
3100 	 * the task might be in the middle of scheduling on another CPU.
3101 	 */
3102 	rq = task_rq_lock(p, &flags);
3103 	/*
3104 	 * The RT priorities are set via sched_setscheduler(), but we still
3105 	 * allow the 'normal' nice value to be set - but as expected
3106 	 * it wont have any effect on scheduling until the task is
3107 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3108 	 */
3109 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3110 		p->static_prio = NICE_TO_PRIO(nice);
3111 		goto out_unlock;
3112 	}
3113 	queued = task_on_rq_queued(p);
3114 	if (queued)
3115 		dequeue_task(rq, p, 0);
3116 
3117 	p->static_prio = NICE_TO_PRIO(nice);
3118 	set_load_weight(p);
3119 	old_prio = p->prio;
3120 	p->prio = effective_prio(p);
3121 	delta = p->prio - old_prio;
3122 
3123 	if (queued) {
3124 		enqueue_task(rq, p, 0);
3125 		/*
3126 		 * If the task increased its priority or is running and
3127 		 * lowered its priority, then reschedule its CPU:
3128 		 */
3129 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3130 			resched_curr(rq);
3131 	}
3132 out_unlock:
3133 	task_rq_unlock(rq, p, &flags);
3134 }
3135 EXPORT_SYMBOL(set_user_nice);
3136 
3137 /*
3138  * can_nice - check if a task can reduce its nice value
3139  * @p: task
3140  * @nice: nice value
3141  */
3142 int can_nice(const struct task_struct *p, const int nice)
3143 {
3144 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3145 	int nice_rlim = nice_to_rlimit(nice);
3146 
3147 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3148 		capable(CAP_SYS_NICE));
3149 }
3150 
3151 #ifdef __ARCH_WANT_SYS_NICE
3152 
3153 /*
3154  * sys_nice - change the priority of the current process.
3155  * @increment: priority increment
3156  *
3157  * sys_setpriority is a more generic, but much slower function that
3158  * does similar things.
3159  */
3160 SYSCALL_DEFINE1(nice, int, increment)
3161 {
3162 	long nice, retval;
3163 
3164 	/*
3165 	 * Setpriority might change our priority at the same moment.
3166 	 * We don't have to worry. Conceptually one call occurs first
3167 	 * and we have a single winner.
3168 	 */
3169 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3170 	nice = task_nice(current) + increment;
3171 
3172 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3173 	if (increment < 0 && !can_nice(current, nice))
3174 		return -EPERM;
3175 
3176 	retval = security_task_setnice(current, nice);
3177 	if (retval)
3178 		return retval;
3179 
3180 	set_user_nice(current, nice);
3181 	return 0;
3182 }
3183 
3184 #endif
3185 
3186 /**
3187  * task_prio - return the priority value of a given task.
3188  * @p: the task in question.
3189  *
3190  * Return: The priority value as seen by users in /proc.
3191  * RT tasks are offset by -200. Normal tasks are centered
3192  * around 0, value goes from -16 to +15.
3193  */
3194 int task_prio(const struct task_struct *p)
3195 {
3196 	return p->prio - MAX_RT_PRIO;
3197 }
3198 
3199 /**
3200  * idle_cpu - is a given cpu idle currently?
3201  * @cpu: the processor in question.
3202  *
3203  * Return: 1 if the CPU is currently idle. 0 otherwise.
3204  */
3205 int idle_cpu(int cpu)
3206 {
3207 	struct rq *rq = cpu_rq(cpu);
3208 
3209 	if (rq->curr != rq->idle)
3210 		return 0;
3211 
3212 	if (rq->nr_running)
3213 		return 0;
3214 
3215 #ifdef CONFIG_SMP
3216 	if (!llist_empty(&rq->wake_list))
3217 		return 0;
3218 #endif
3219 
3220 	return 1;
3221 }
3222 
3223 /**
3224  * idle_task - return the idle task for a given cpu.
3225  * @cpu: the processor in question.
3226  *
3227  * Return: The idle task for the cpu @cpu.
3228  */
3229 struct task_struct *idle_task(int cpu)
3230 {
3231 	return cpu_rq(cpu)->idle;
3232 }
3233 
3234 /**
3235  * find_process_by_pid - find a process with a matching PID value.
3236  * @pid: the pid in question.
3237  *
3238  * The task of @pid, if found. %NULL otherwise.
3239  */
3240 static struct task_struct *find_process_by_pid(pid_t pid)
3241 {
3242 	return pid ? find_task_by_vpid(pid) : current;
3243 }
3244 
3245 /*
3246  * This function initializes the sched_dl_entity of a newly becoming
3247  * SCHED_DEADLINE task.
3248  *
3249  * Only the static values are considered here, the actual runtime and the
3250  * absolute deadline will be properly calculated when the task is enqueued
3251  * for the first time with its new policy.
3252  */
3253 static void
3254 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3255 {
3256 	struct sched_dl_entity *dl_se = &p->dl;
3257 
3258 	init_dl_task_timer(dl_se);
3259 	dl_se->dl_runtime = attr->sched_runtime;
3260 	dl_se->dl_deadline = attr->sched_deadline;
3261 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3262 	dl_se->flags = attr->sched_flags;
3263 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3264 	dl_se->dl_throttled = 0;
3265 	dl_se->dl_new = 1;
3266 	dl_se->dl_yielded = 0;
3267 }
3268 
3269 /*
3270  * sched_setparam() passes in -1 for its policy, to let the functions
3271  * it calls know not to change it.
3272  */
3273 #define SETPARAM_POLICY	-1
3274 
3275 static void __setscheduler_params(struct task_struct *p,
3276 		const struct sched_attr *attr)
3277 {
3278 	int policy = attr->sched_policy;
3279 
3280 	if (policy == SETPARAM_POLICY)
3281 		policy = p->policy;
3282 
3283 	p->policy = policy;
3284 
3285 	if (dl_policy(policy))
3286 		__setparam_dl(p, attr);
3287 	else if (fair_policy(policy))
3288 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3289 
3290 	/*
3291 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3292 	 * !rt_policy. Always setting this ensures that things like
3293 	 * getparam()/getattr() don't report silly values for !rt tasks.
3294 	 */
3295 	p->rt_priority = attr->sched_priority;
3296 	p->normal_prio = normal_prio(p);
3297 	set_load_weight(p);
3298 }
3299 
3300 /* Actually do priority change: must hold pi & rq lock. */
3301 static void __setscheduler(struct rq *rq, struct task_struct *p,
3302 			   const struct sched_attr *attr)
3303 {
3304 	__setscheduler_params(p, attr);
3305 
3306 	/*
3307 	 * If we get here, there was no pi waiters boosting the
3308 	 * task. It is safe to use the normal prio.
3309 	 */
3310 	p->prio = normal_prio(p);
3311 
3312 	if (dl_prio(p->prio))
3313 		p->sched_class = &dl_sched_class;
3314 	else if (rt_prio(p->prio))
3315 		p->sched_class = &rt_sched_class;
3316 	else
3317 		p->sched_class = &fair_sched_class;
3318 }
3319 
3320 static void
3321 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3322 {
3323 	struct sched_dl_entity *dl_se = &p->dl;
3324 
3325 	attr->sched_priority = p->rt_priority;
3326 	attr->sched_runtime = dl_se->dl_runtime;
3327 	attr->sched_deadline = dl_se->dl_deadline;
3328 	attr->sched_period = dl_se->dl_period;
3329 	attr->sched_flags = dl_se->flags;
3330 }
3331 
3332 /*
3333  * This function validates the new parameters of a -deadline task.
3334  * We ask for the deadline not being zero, and greater or equal
3335  * than the runtime, as well as the period of being zero or
3336  * greater than deadline. Furthermore, we have to be sure that
3337  * user parameters are above the internal resolution of 1us (we
3338  * check sched_runtime only since it is always the smaller one) and
3339  * below 2^63 ns (we have to check both sched_deadline and
3340  * sched_period, as the latter can be zero).
3341  */
3342 static bool
3343 __checkparam_dl(const struct sched_attr *attr)
3344 {
3345 	/* deadline != 0 */
3346 	if (attr->sched_deadline == 0)
3347 		return false;
3348 
3349 	/*
3350 	 * Since we truncate DL_SCALE bits, make sure we're at least
3351 	 * that big.
3352 	 */
3353 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3354 		return false;
3355 
3356 	/*
3357 	 * Since we use the MSB for wrap-around and sign issues, make
3358 	 * sure it's not set (mind that period can be equal to zero).
3359 	 */
3360 	if (attr->sched_deadline & (1ULL << 63) ||
3361 	    attr->sched_period & (1ULL << 63))
3362 		return false;
3363 
3364 	/* runtime <= deadline <= period (if period != 0) */
3365 	if ((attr->sched_period != 0 &&
3366 	     attr->sched_period < attr->sched_deadline) ||
3367 	    attr->sched_deadline < attr->sched_runtime)
3368 		return false;
3369 
3370 	return true;
3371 }
3372 
3373 /*
3374  * check the target process has a UID that matches the current process's
3375  */
3376 static bool check_same_owner(struct task_struct *p)
3377 {
3378 	const struct cred *cred = current_cred(), *pcred;
3379 	bool match;
3380 
3381 	rcu_read_lock();
3382 	pcred = __task_cred(p);
3383 	match = (uid_eq(cred->euid, pcred->euid) ||
3384 		 uid_eq(cred->euid, pcred->uid));
3385 	rcu_read_unlock();
3386 	return match;
3387 }
3388 
3389 static int __sched_setscheduler(struct task_struct *p,
3390 				const struct sched_attr *attr,
3391 				bool user)
3392 {
3393 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3394 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3395 	int retval, oldprio, oldpolicy = -1, queued, running;
3396 	int policy = attr->sched_policy;
3397 	unsigned long flags;
3398 	const struct sched_class *prev_class;
3399 	struct rq *rq;
3400 	int reset_on_fork;
3401 
3402 	/* may grab non-irq protected spin_locks */
3403 	BUG_ON(in_interrupt());
3404 recheck:
3405 	/* double check policy once rq lock held */
3406 	if (policy < 0) {
3407 		reset_on_fork = p->sched_reset_on_fork;
3408 		policy = oldpolicy = p->policy;
3409 	} else {
3410 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3411 
3412 		if (policy != SCHED_DEADLINE &&
3413 				policy != SCHED_FIFO && policy != SCHED_RR &&
3414 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3415 				policy != SCHED_IDLE)
3416 			return -EINVAL;
3417 	}
3418 
3419 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3420 		return -EINVAL;
3421 
3422 	/*
3423 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3424 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425 	 * SCHED_BATCH and SCHED_IDLE is 0.
3426 	 */
3427 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3428 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3429 		return -EINVAL;
3430 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3431 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3432 		return -EINVAL;
3433 
3434 	/*
3435 	 * Allow unprivileged RT tasks to decrease priority:
3436 	 */
3437 	if (user && !capable(CAP_SYS_NICE)) {
3438 		if (fair_policy(policy)) {
3439 			if (attr->sched_nice < task_nice(p) &&
3440 			    !can_nice(p, attr->sched_nice))
3441 				return -EPERM;
3442 		}
3443 
3444 		if (rt_policy(policy)) {
3445 			unsigned long rlim_rtprio =
3446 					task_rlimit(p, RLIMIT_RTPRIO);
3447 
3448 			/* can't set/change the rt policy */
3449 			if (policy != p->policy && !rlim_rtprio)
3450 				return -EPERM;
3451 
3452 			/* can't increase priority */
3453 			if (attr->sched_priority > p->rt_priority &&
3454 			    attr->sched_priority > rlim_rtprio)
3455 				return -EPERM;
3456 		}
3457 
3458 		 /*
3459 		  * Can't set/change SCHED_DEADLINE policy at all for now
3460 		  * (safest behavior); in the future we would like to allow
3461 		  * unprivileged DL tasks to increase their relative deadline
3462 		  * or reduce their runtime (both ways reducing utilization)
3463 		  */
3464 		if (dl_policy(policy))
3465 			return -EPERM;
3466 
3467 		/*
3468 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3469 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3470 		 */
3471 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3472 			if (!can_nice(p, task_nice(p)))
3473 				return -EPERM;
3474 		}
3475 
3476 		/* can't change other user's priorities */
3477 		if (!check_same_owner(p))
3478 			return -EPERM;
3479 
3480 		/* Normal users shall not reset the sched_reset_on_fork flag */
3481 		if (p->sched_reset_on_fork && !reset_on_fork)
3482 			return -EPERM;
3483 	}
3484 
3485 	if (user) {
3486 		retval = security_task_setscheduler(p);
3487 		if (retval)
3488 			return retval;
3489 	}
3490 
3491 	/*
3492 	 * make sure no PI-waiters arrive (or leave) while we are
3493 	 * changing the priority of the task:
3494 	 *
3495 	 * To be able to change p->policy safely, the appropriate
3496 	 * runqueue lock must be held.
3497 	 */
3498 	rq = task_rq_lock(p, &flags);
3499 
3500 	/*
3501 	 * Changing the policy of the stop threads its a very bad idea
3502 	 */
3503 	if (p == rq->stop) {
3504 		task_rq_unlock(rq, p, &flags);
3505 		return -EINVAL;
3506 	}
3507 
3508 	/*
3509 	 * If not changing anything there's no need to proceed further,
3510 	 * but store a possible modification of reset_on_fork.
3511 	 */
3512 	if (unlikely(policy == p->policy)) {
3513 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3514 			goto change;
3515 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3516 			goto change;
3517 		if (dl_policy(policy))
3518 			goto change;
3519 
3520 		p->sched_reset_on_fork = reset_on_fork;
3521 		task_rq_unlock(rq, p, &flags);
3522 		return 0;
3523 	}
3524 change:
3525 
3526 	if (user) {
3527 #ifdef CONFIG_RT_GROUP_SCHED
3528 		/*
3529 		 * Do not allow realtime tasks into groups that have no runtime
3530 		 * assigned.
3531 		 */
3532 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3533 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3534 				!task_group_is_autogroup(task_group(p))) {
3535 			task_rq_unlock(rq, p, &flags);
3536 			return -EPERM;
3537 		}
3538 #endif
3539 #ifdef CONFIG_SMP
3540 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3541 			cpumask_t *span = rq->rd->span;
3542 
3543 			/*
3544 			 * Don't allow tasks with an affinity mask smaller than
3545 			 * the entire root_domain to become SCHED_DEADLINE. We
3546 			 * will also fail if there's no bandwidth available.
3547 			 */
3548 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3549 			    rq->rd->dl_bw.bw == 0) {
3550 				task_rq_unlock(rq, p, &flags);
3551 				return -EPERM;
3552 			}
3553 		}
3554 #endif
3555 	}
3556 
3557 	/* recheck policy now with rq lock held */
3558 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3559 		policy = oldpolicy = -1;
3560 		task_rq_unlock(rq, p, &flags);
3561 		goto recheck;
3562 	}
3563 
3564 	/*
3565 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3566 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3567 	 * is available.
3568 	 */
3569 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3570 		task_rq_unlock(rq, p, &flags);
3571 		return -EBUSY;
3572 	}
3573 
3574 	p->sched_reset_on_fork = reset_on_fork;
3575 	oldprio = p->prio;
3576 
3577 	/*
3578 	 * Special case for priority boosted tasks.
3579 	 *
3580 	 * If the new priority is lower or equal (user space view)
3581 	 * than the current (boosted) priority, we just store the new
3582 	 * normal parameters and do not touch the scheduler class and
3583 	 * the runqueue. This will be done when the task deboost
3584 	 * itself.
3585 	 */
3586 	if (rt_mutex_check_prio(p, newprio)) {
3587 		__setscheduler_params(p, attr);
3588 		task_rq_unlock(rq, p, &flags);
3589 		return 0;
3590 	}
3591 
3592 	queued = task_on_rq_queued(p);
3593 	running = task_current(rq, p);
3594 	if (queued)
3595 		dequeue_task(rq, p, 0);
3596 	if (running)
3597 		put_prev_task(rq, p);
3598 
3599 	prev_class = p->sched_class;
3600 	__setscheduler(rq, p, attr);
3601 
3602 	if (running)
3603 		p->sched_class->set_curr_task(rq);
3604 	if (queued) {
3605 		/*
3606 		 * We enqueue to tail when the priority of a task is
3607 		 * increased (user space view).
3608 		 */
3609 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3610 	}
3611 
3612 	check_class_changed(rq, p, prev_class, oldprio);
3613 	task_rq_unlock(rq, p, &flags);
3614 
3615 	rt_mutex_adjust_pi(p);
3616 
3617 	return 0;
3618 }
3619 
3620 static int _sched_setscheduler(struct task_struct *p, int policy,
3621 			       const struct sched_param *param, bool check)
3622 {
3623 	struct sched_attr attr = {
3624 		.sched_policy   = policy,
3625 		.sched_priority = param->sched_priority,
3626 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3627 	};
3628 
3629 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3630 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3631 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3632 		policy &= ~SCHED_RESET_ON_FORK;
3633 		attr.sched_policy = policy;
3634 	}
3635 
3636 	return __sched_setscheduler(p, &attr, check);
3637 }
3638 /**
3639  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3640  * @p: the task in question.
3641  * @policy: new policy.
3642  * @param: structure containing the new RT priority.
3643  *
3644  * Return: 0 on success. An error code otherwise.
3645  *
3646  * NOTE that the task may be already dead.
3647  */
3648 int sched_setscheduler(struct task_struct *p, int policy,
3649 		       const struct sched_param *param)
3650 {
3651 	return _sched_setscheduler(p, policy, param, true);
3652 }
3653 EXPORT_SYMBOL_GPL(sched_setscheduler);
3654 
3655 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3656 {
3657 	return __sched_setscheduler(p, attr, true);
3658 }
3659 EXPORT_SYMBOL_GPL(sched_setattr);
3660 
3661 /**
3662  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3663  * @p: the task in question.
3664  * @policy: new policy.
3665  * @param: structure containing the new RT priority.
3666  *
3667  * Just like sched_setscheduler, only don't bother checking if the
3668  * current context has permission.  For example, this is needed in
3669  * stop_machine(): we create temporary high priority worker threads,
3670  * but our caller might not have that capability.
3671  *
3672  * Return: 0 on success. An error code otherwise.
3673  */
3674 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3675 			       const struct sched_param *param)
3676 {
3677 	return _sched_setscheduler(p, policy, param, false);
3678 }
3679 
3680 static int
3681 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3682 {
3683 	struct sched_param lparam;
3684 	struct task_struct *p;
3685 	int retval;
3686 
3687 	if (!param || pid < 0)
3688 		return -EINVAL;
3689 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3690 		return -EFAULT;
3691 
3692 	rcu_read_lock();
3693 	retval = -ESRCH;
3694 	p = find_process_by_pid(pid);
3695 	if (p != NULL)
3696 		retval = sched_setscheduler(p, policy, &lparam);
3697 	rcu_read_unlock();
3698 
3699 	return retval;
3700 }
3701 
3702 /*
3703  * Mimics kernel/events/core.c perf_copy_attr().
3704  */
3705 static int sched_copy_attr(struct sched_attr __user *uattr,
3706 			   struct sched_attr *attr)
3707 {
3708 	u32 size;
3709 	int ret;
3710 
3711 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3712 		return -EFAULT;
3713 
3714 	/*
3715 	 * zero the full structure, so that a short copy will be nice.
3716 	 */
3717 	memset(attr, 0, sizeof(*attr));
3718 
3719 	ret = get_user(size, &uattr->size);
3720 	if (ret)
3721 		return ret;
3722 
3723 	if (size > PAGE_SIZE)	/* silly large */
3724 		goto err_size;
3725 
3726 	if (!size)		/* abi compat */
3727 		size = SCHED_ATTR_SIZE_VER0;
3728 
3729 	if (size < SCHED_ATTR_SIZE_VER0)
3730 		goto err_size;
3731 
3732 	/*
3733 	 * If we're handed a bigger struct than we know of,
3734 	 * ensure all the unknown bits are 0 - i.e. new
3735 	 * user-space does not rely on any kernel feature
3736 	 * extensions we dont know about yet.
3737 	 */
3738 	if (size > sizeof(*attr)) {
3739 		unsigned char __user *addr;
3740 		unsigned char __user *end;
3741 		unsigned char val;
3742 
3743 		addr = (void __user *)uattr + sizeof(*attr);
3744 		end  = (void __user *)uattr + size;
3745 
3746 		for (; addr < end; addr++) {
3747 			ret = get_user(val, addr);
3748 			if (ret)
3749 				return ret;
3750 			if (val)
3751 				goto err_size;
3752 		}
3753 		size = sizeof(*attr);
3754 	}
3755 
3756 	ret = copy_from_user(attr, uattr, size);
3757 	if (ret)
3758 		return -EFAULT;
3759 
3760 	/*
3761 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3762 	 * to be strict and return an error on out-of-bounds values?
3763 	 */
3764 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3765 
3766 	return 0;
3767 
3768 err_size:
3769 	put_user(sizeof(*attr), &uattr->size);
3770 	return -E2BIG;
3771 }
3772 
3773 /**
3774  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775  * @pid: the pid in question.
3776  * @policy: new policy.
3777  * @param: structure containing the new RT priority.
3778  *
3779  * Return: 0 on success. An error code otherwise.
3780  */
3781 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3782 		struct sched_param __user *, param)
3783 {
3784 	/* negative values for policy are not valid */
3785 	if (policy < 0)
3786 		return -EINVAL;
3787 
3788 	return do_sched_setscheduler(pid, policy, param);
3789 }
3790 
3791 /**
3792  * sys_sched_setparam - set/change the RT priority of a thread
3793  * @pid: the pid in question.
3794  * @param: structure containing the new RT priority.
3795  *
3796  * Return: 0 on success. An error code otherwise.
3797  */
3798 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3799 {
3800 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3801 }
3802 
3803 /**
3804  * sys_sched_setattr - same as above, but with extended sched_attr
3805  * @pid: the pid in question.
3806  * @uattr: structure containing the extended parameters.
3807  * @flags: for future extension.
3808  */
3809 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3810 			       unsigned int, flags)
3811 {
3812 	struct sched_attr attr;
3813 	struct task_struct *p;
3814 	int retval;
3815 
3816 	if (!uattr || pid < 0 || flags)
3817 		return -EINVAL;
3818 
3819 	retval = sched_copy_attr(uattr, &attr);
3820 	if (retval)
3821 		return retval;
3822 
3823 	if ((int)attr.sched_policy < 0)
3824 		return -EINVAL;
3825 
3826 	rcu_read_lock();
3827 	retval = -ESRCH;
3828 	p = find_process_by_pid(pid);
3829 	if (p != NULL)
3830 		retval = sched_setattr(p, &attr);
3831 	rcu_read_unlock();
3832 
3833 	return retval;
3834 }
3835 
3836 /**
3837  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3838  * @pid: the pid in question.
3839  *
3840  * Return: On success, the policy of the thread. Otherwise, a negative error
3841  * code.
3842  */
3843 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3844 {
3845 	struct task_struct *p;
3846 	int retval;
3847 
3848 	if (pid < 0)
3849 		return -EINVAL;
3850 
3851 	retval = -ESRCH;
3852 	rcu_read_lock();
3853 	p = find_process_by_pid(pid);
3854 	if (p) {
3855 		retval = security_task_getscheduler(p);
3856 		if (!retval)
3857 			retval = p->policy
3858 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3859 	}
3860 	rcu_read_unlock();
3861 	return retval;
3862 }
3863 
3864 /**
3865  * sys_sched_getparam - get the RT priority of a thread
3866  * @pid: the pid in question.
3867  * @param: structure containing the RT priority.
3868  *
3869  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3870  * code.
3871  */
3872 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3873 {
3874 	struct sched_param lp = { .sched_priority = 0 };
3875 	struct task_struct *p;
3876 	int retval;
3877 
3878 	if (!param || pid < 0)
3879 		return -EINVAL;
3880 
3881 	rcu_read_lock();
3882 	p = find_process_by_pid(pid);
3883 	retval = -ESRCH;
3884 	if (!p)
3885 		goto out_unlock;
3886 
3887 	retval = security_task_getscheduler(p);
3888 	if (retval)
3889 		goto out_unlock;
3890 
3891 	if (task_has_rt_policy(p))
3892 		lp.sched_priority = p->rt_priority;
3893 	rcu_read_unlock();
3894 
3895 	/*
3896 	 * This one might sleep, we cannot do it with a spinlock held ...
3897 	 */
3898 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3899 
3900 	return retval;
3901 
3902 out_unlock:
3903 	rcu_read_unlock();
3904 	return retval;
3905 }
3906 
3907 static int sched_read_attr(struct sched_attr __user *uattr,
3908 			   struct sched_attr *attr,
3909 			   unsigned int usize)
3910 {
3911 	int ret;
3912 
3913 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3914 		return -EFAULT;
3915 
3916 	/*
3917 	 * If we're handed a smaller struct than we know of,
3918 	 * ensure all the unknown bits are 0 - i.e. old
3919 	 * user-space does not get uncomplete information.
3920 	 */
3921 	if (usize < sizeof(*attr)) {
3922 		unsigned char *addr;
3923 		unsigned char *end;
3924 
3925 		addr = (void *)attr + usize;
3926 		end  = (void *)attr + sizeof(*attr);
3927 
3928 		for (; addr < end; addr++) {
3929 			if (*addr)
3930 				return -EFBIG;
3931 		}
3932 
3933 		attr->size = usize;
3934 	}
3935 
3936 	ret = copy_to_user(uattr, attr, attr->size);
3937 	if (ret)
3938 		return -EFAULT;
3939 
3940 	return 0;
3941 }
3942 
3943 /**
3944  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3945  * @pid: the pid in question.
3946  * @uattr: structure containing the extended parameters.
3947  * @size: sizeof(attr) for fwd/bwd comp.
3948  * @flags: for future extension.
3949  */
3950 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3951 		unsigned int, size, unsigned int, flags)
3952 {
3953 	struct sched_attr attr = {
3954 		.size = sizeof(struct sched_attr),
3955 	};
3956 	struct task_struct *p;
3957 	int retval;
3958 
3959 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3960 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3961 		return -EINVAL;
3962 
3963 	rcu_read_lock();
3964 	p = find_process_by_pid(pid);
3965 	retval = -ESRCH;
3966 	if (!p)
3967 		goto out_unlock;
3968 
3969 	retval = security_task_getscheduler(p);
3970 	if (retval)
3971 		goto out_unlock;
3972 
3973 	attr.sched_policy = p->policy;
3974 	if (p->sched_reset_on_fork)
3975 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3976 	if (task_has_dl_policy(p))
3977 		__getparam_dl(p, &attr);
3978 	else if (task_has_rt_policy(p))
3979 		attr.sched_priority = p->rt_priority;
3980 	else
3981 		attr.sched_nice = task_nice(p);
3982 
3983 	rcu_read_unlock();
3984 
3985 	retval = sched_read_attr(uattr, &attr, size);
3986 	return retval;
3987 
3988 out_unlock:
3989 	rcu_read_unlock();
3990 	return retval;
3991 }
3992 
3993 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3994 {
3995 	cpumask_var_t cpus_allowed, new_mask;
3996 	struct task_struct *p;
3997 	int retval;
3998 
3999 	rcu_read_lock();
4000 
4001 	p = find_process_by_pid(pid);
4002 	if (!p) {
4003 		rcu_read_unlock();
4004 		return -ESRCH;
4005 	}
4006 
4007 	/* Prevent p going away */
4008 	get_task_struct(p);
4009 	rcu_read_unlock();
4010 
4011 	if (p->flags & PF_NO_SETAFFINITY) {
4012 		retval = -EINVAL;
4013 		goto out_put_task;
4014 	}
4015 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4016 		retval = -ENOMEM;
4017 		goto out_put_task;
4018 	}
4019 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4020 		retval = -ENOMEM;
4021 		goto out_free_cpus_allowed;
4022 	}
4023 	retval = -EPERM;
4024 	if (!check_same_owner(p)) {
4025 		rcu_read_lock();
4026 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4027 			rcu_read_unlock();
4028 			goto out_free_new_mask;
4029 		}
4030 		rcu_read_unlock();
4031 	}
4032 
4033 	retval = security_task_setscheduler(p);
4034 	if (retval)
4035 		goto out_free_new_mask;
4036 
4037 
4038 	cpuset_cpus_allowed(p, cpus_allowed);
4039 	cpumask_and(new_mask, in_mask, cpus_allowed);
4040 
4041 	/*
4042 	 * Since bandwidth control happens on root_domain basis,
4043 	 * if admission test is enabled, we only admit -deadline
4044 	 * tasks allowed to run on all the CPUs in the task's
4045 	 * root_domain.
4046 	 */
4047 #ifdef CONFIG_SMP
4048 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4049 		rcu_read_lock();
4050 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4051 			retval = -EBUSY;
4052 			rcu_read_unlock();
4053 			goto out_free_new_mask;
4054 		}
4055 		rcu_read_unlock();
4056 	}
4057 #endif
4058 again:
4059 	retval = set_cpus_allowed_ptr(p, new_mask);
4060 
4061 	if (!retval) {
4062 		cpuset_cpus_allowed(p, cpus_allowed);
4063 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4064 			/*
4065 			 * We must have raced with a concurrent cpuset
4066 			 * update. Just reset the cpus_allowed to the
4067 			 * cpuset's cpus_allowed
4068 			 */
4069 			cpumask_copy(new_mask, cpus_allowed);
4070 			goto again;
4071 		}
4072 	}
4073 out_free_new_mask:
4074 	free_cpumask_var(new_mask);
4075 out_free_cpus_allowed:
4076 	free_cpumask_var(cpus_allowed);
4077 out_put_task:
4078 	put_task_struct(p);
4079 	return retval;
4080 }
4081 
4082 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4083 			     struct cpumask *new_mask)
4084 {
4085 	if (len < cpumask_size())
4086 		cpumask_clear(new_mask);
4087 	else if (len > cpumask_size())
4088 		len = cpumask_size();
4089 
4090 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4091 }
4092 
4093 /**
4094  * sys_sched_setaffinity - set the cpu affinity of a process
4095  * @pid: pid of the process
4096  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4097  * @user_mask_ptr: user-space pointer to the new cpu mask
4098  *
4099  * Return: 0 on success. An error code otherwise.
4100  */
4101 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4102 		unsigned long __user *, user_mask_ptr)
4103 {
4104 	cpumask_var_t new_mask;
4105 	int retval;
4106 
4107 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4108 		return -ENOMEM;
4109 
4110 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4111 	if (retval == 0)
4112 		retval = sched_setaffinity(pid, new_mask);
4113 	free_cpumask_var(new_mask);
4114 	return retval;
4115 }
4116 
4117 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4118 {
4119 	struct task_struct *p;
4120 	unsigned long flags;
4121 	int retval;
4122 
4123 	rcu_read_lock();
4124 
4125 	retval = -ESRCH;
4126 	p = find_process_by_pid(pid);
4127 	if (!p)
4128 		goto out_unlock;
4129 
4130 	retval = security_task_getscheduler(p);
4131 	if (retval)
4132 		goto out_unlock;
4133 
4134 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4135 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4136 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4137 
4138 out_unlock:
4139 	rcu_read_unlock();
4140 
4141 	return retval;
4142 }
4143 
4144 /**
4145  * sys_sched_getaffinity - get the cpu affinity of a process
4146  * @pid: pid of the process
4147  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4148  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4149  *
4150  * Return: 0 on success. An error code otherwise.
4151  */
4152 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4153 		unsigned long __user *, user_mask_ptr)
4154 {
4155 	int ret;
4156 	cpumask_var_t mask;
4157 
4158 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4159 		return -EINVAL;
4160 	if (len & (sizeof(unsigned long)-1))
4161 		return -EINVAL;
4162 
4163 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4164 		return -ENOMEM;
4165 
4166 	ret = sched_getaffinity(pid, mask);
4167 	if (ret == 0) {
4168 		size_t retlen = min_t(size_t, len, cpumask_size());
4169 
4170 		if (copy_to_user(user_mask_ptr, mask, retlen))
4171 			ret = -EFAULT;
4172 		else
4173 			ret = retlen;
4174 	}
4175 	free_cpumask_var(mask);
4176 
4177 	return ret;
4178 }
4179 
4180 /**
4181  * sys_sched_yield - yield the current processor to other threads.
4182  *
4183  * This function yields the current CPU to other tasks. If there are no
4184  * other threads running on this CPU then this function will return.
4185  *
4186  * Return: 0.
4187  */
4188 SYSCALL_DEFINE0(sched_yield)
4189 {
4190 	struct rq *rq = this_rq_lock();
4191 
4192 	schedstat_inc(rq, yld_count);
4193 	current->sched_class->yield_task(rq);
4194 
4195 	/*
4196 	 * Since we are going to call schedule() anyway, there's
4197 	 * no need to preempt or enable interrupts:
4198 	 */
4199 	__release(rq->lock);
4200 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4201 	do_raw_spin_unlock(&rq->lock);
4202 	sched_preempt_enable_no_resched();
4203 
4204 	schedule();
4205 
4206 	return 0;
4207 }
4208 
4209 static void __cond_resched(void)
4210 {
4211 	__preempt_count_add(PREEMPT_ACTIVE);
4212 	__schedule();
4213 	__preempt_count_sub(PREEMPT_ACTIVE);
4214 }
4215 
4216 int __sched _cond_resched(void)
4217 {
4218 	if (should_resched()) {
4219 		__cond_resched();
4220 		return 1;
4221 	}
4222 	return 0;
4223 }
4224 EXPORT_SYMBOL(_cond_resched);
4225 
4226 /*
4227  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4228  * call schedule, and on return reacquire the lock.
4229  *
4230  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4231  * operations here to prevent schedule() from being called twice (once via
4232  * spin_unlock(), once by hand).
4233  */
4234 int __cond_resched_lock(spinlock_t *lock)
4235 {
4236 	int resched = should_resched();
4237 	int ret = 0;
4238 
4239 	lockdep_assert_held(lock);
4240 
4241 	if (spin_needbreak(lock) || resched) {
4242 		spin_unlock(lock);
4243 		if (resched)
4244 			__cond_resched();
4245 		else
4246 			cpu_relax();
4247 		ret = 1;
4248 		spin_lock(lock);
4249 	}
4250 	return ret;
4251 }
4252 EXPORT_SYMBOL(__cond_resched_lock);
4253 
4254 int __sched __cond_resched_softirq(void)
4255 {
4256 	BUG_ON(!in_softirq());
4257 
4258 	if (should_resched()) {
4259 		local_bh_enable();
4260 		__cond_resched();
4261 		local_bh_disable();
4262 		return 1;
4263 	}
4264 	return 0;
4265 }
4266 EXPORT_SYMBOL(__cond_resched_softirq);
4267 
4268 /**
4269  * yield - yield the current processor to other threads.
4270  *
4271  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4272  *
4273  * The scheduler is at all times free to pick the calling task as the most
4274  * eligible task to run, if removing the yield() call from your code breaks
4275  * it, its already broken.
4276  *
4277  * Typical broken usage is:
4278  *
4279  * while (!event)
4280  * 	yield();
4281  *
4282  * where one assumes that yield() will let 'the other' process run that will
4283  * make event true. If the current task is a SCHED_FIFO task that will never
4284  * happen. Never use yield() as a progress guarantee!!
4285  *
4286  * If you want to use yield() to wait for something, use wait_event().
4287  * If you want to use yield() to be 'nice' for others, use cond_resched().
4288  * If you still want to use yield(), do not!
4289  */
4290 void __sched yield(void)
4291 {
4292 	set_current_state(TASK_RUNNING);
4293 	sys_sched_yield();
4294 }
4295 EXPORT_SYMBOL(yield);
4296 
4297 /**
4298  * yield_to - yield the current processor to another thread in
4299  * your thread group, or accelerate that thread toward the
4300  * processor it's on.
4301  * @p: target task
4302  * @preempt: whether task preemption is allowed or not
4303  *
4304  * It's the caller's job to ensure that the target task struct
4305  * can't go away on us before we can do any checks.
4306  *
4307  * Return:
4308  *	true (>0) if we indeed boosted the target task.
4309  *	false (0) if we failed to boost the target.
4310  *	-ESRCH if there's no task to yield to.
4311  */
4312 int __sched yield_to(struct task_struct *p, bool preempt)
4313 {
4314 	struct task_struct *curr = current;
4315 	struct rq *rq, *p_rq;
4316 	unsigned long flags;
4317 	int yielded = 0;
4318 
4319 	local_irq_save(flags);
4320 	rq = this_rq();
4321 
4322 again:
4323 	p_rq = task_rq(p);
4324 	/*
4325 	 * If we're the only runnable task on the rq and target rq also
4326 	 * has only one task, there's absolutely no point in yielding.
4327 	 */
4328 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4329 		yielded = -ESRCH;
4330 		goto out_irq;
4331 	}
4332 
4333 	double_rq_lock(rq, p_rq);
4334 	if (task_rq(p) != p_rq) {
4335 		double_rq_unlock(rq, p_rq);
4336 		goto again;
4337 	}
4338 
4339 	if (!curr->sched_class->yield_to_task)
4340 		goto out_unlock;
4341 
4342 	if (curr->sched_class != p->sched_class)
4343 		goto out_unlock;
4344 
4345 	if (task_running(p_rq, p) || p->state)
4346 		goto out_unlock;
4347 
4348 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4349 	if (yielded) {
4350 		schedstat_inc(rq, yld_count);
4351 		/*
4352 		 * Make p's CPU reschedule; pick_next_entity takes care of
4353 		 * fairness.
4354 		 */
4355 		if (preempt && rq != p_rq)
4356 			resched_curr(p_rq);
4357 	}
4358 
4359 out_unlock:
4360 	double_rq_unlock(rq, p_rq);
4361 out_irq:
4362 	local_irq_restore(flags);
4363 
4364 	if (yielded > 0)
4365 		schedule();
4366 
4367 	return yielded;
4368 }
4369 EXPORT_SYMBOL_GPL(yield_to);
4370 
4371 /*
4372  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4373  * that process accounting knows that this is a task in IO wait state.
4374  */
4375 void __sched io_schedule(void)
4376 {
4377 	struct rq *rq = raw_rq();
4378 
4379 	delayacct_blkio_start();
4380 	atomic_inc(&rq->nr_iowait);
4381 	blk_flush_plug(current);
4382 	current->in_iowait = 1;
4383 	schedule();
4384 	current->in_iowait = 0;
4385 	atomic_dec(&rq->nr_iowait);
4386 	delayacct_blkio_end();
4387 }
4388 EXPORT_SYMBOL(io_schedule);
4389 
4390 long __sched io_schedule_timeout(long timeout)
4391 {
4392 	struct rq *rq = raw_rq();
4393 	long ret;
4394 
4395 	delayacct_blkio_start();
4396 	atomic_inc(&rq->nr_iowait);
4397 	blk_flush_plug(current);
4398 	current->in_iowait = 1;
4399 	ret = schedule_timeout(timeout);
4400 	current->in_iowait = 0;
4401 	atomic_dec(&rq->nr_iowait);
4402 	delayacct_blkio_end();
4403 	return ret;
4404 }
4405 
4406 /**
4407  * sys_sched_get_priority_max - return maximum RT priority.
4408  * @policy: scheduling class.
4409  *
4410  * Return: On success, this syscall returns the maximum
4411  * rt_priority that can be used by a given scheduling class.
4412  * On failure, a negative error code is returned.
4413  */
4414 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4415 {
4416 	int ret = -EINVAL;
4417 
4418 	switch (policy) {
4419 	case SCHED_FIFO:
4420 	case SCHED_RR:
4421 		ret = MAX_USER_RT_PRIO-1;
4422 		break;
4423 	case SCHED_DEADLINE:
4424 	case SCHED_NORMAL:
4425 	case SCHED_BATCH:
4426 	case SCHED_IDLE:
4427 		ret = 0;
4428 		break;
4429 	}
4430 	return ret;
4431 }
4432 
4433 /**
4434  * sys_sched_get_priority_min - return minimum RT priority.
4435  * @policy: scheduling class.
4436  *
4437  * Return: On success, this syscall returns the minimum
4438  * rt_priority that can be used by a given scheduling class.
4439  * On failure, a negative error code is returned.
4440  */
4441 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4442 {
4443 	int ret = -EINVAL;
4444 
4445 	switch (policy) {
4446 	case SCHED_FIFO:
4447 	case SCHED_RR:
4448 		ret = 1;
4449 		break;
4450 	case SCHED_DEADLINE:
4451 	case SCHED_NORMAL:
4452 	case SCHED_BATCH:
4453 	case SCHED_IDLE:
4454 		ret = 0;
4455 	}
4456 	return ret;
4457 }
4458 
4459 /**
4460  * sys_sched_rr_get_interval - return the default timeslice of a process.
4461  * @pid: pid of the process.
4462  * @interval: userspace pointer to the timeslice value.
4463  *
4464  * this syscall writes the default timeslice value of a given process
4465  * into the user-space timespec buffer. A value of '0' means infinity.
4466  *
4467  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4468  * an error code.
4469  */
4470 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4471 		struct timespec __user *, interval)
4472 {
4473 	struct task_struct *p;
4474 	unsigned int time_slice;
4475 	unsigned long flags;
4476 	struct rq *rq;
4477 	int retval;
4478 	struct timespec t;
4479 
4480 	if (pid < 0)
4481 		return -EINVAL;
4482 
4483 	retval = -ESRCH;
4484 	rcu_read_lock();
4485 	p = find_process_by_pid(pid);
4486 	if (!p)
4487 		goto out_unlock;
4488 
4489 	retval = security_task_getscheduler(p);
4490 	if (retval)
4491 		goto out_unlock;
4492 
4493 	rq = task_rq_lock(p, &flags);
4494 	time_slice = 0;
4495 	if (p->sched_class->get_rr_interval)
4496 		time_slice = p->sched_class->get_rr_interval(rq, p);
4497 	task_rq_unlock(rq, p, &flags);
4498 
4499 	rcu_read_unlock();
4500 	jiffies_to_timespec(time_slice, &t);
4501 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4502 	return retval;
4503 
4504 out_unlock:
4505 	rcu_read_unlock();
4506 	return retval;
4507 }
4508 
4509 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4510 
4511 void sched_show_task(struct task_struct *p)
4512 {
4513 	unsigned long free = 0;
4514 	int ppid;
4515 	unsigned state;
4516 
4517 	state = p->state ? __ffs(p->state) + 1 : 0;
4518 	printk(KERN_INFO "%-15.15s %c", p->comm,
4519 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4520 #if BITS_PER_LONG == 32
4521 	if (state == TASK_RUNNING)
4522 		printk(KERN_CONT " running  ");
4523 	else
4524 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4525 #else
4526 	if (state == TASK_RUNNING)
4527 		printk(KERN_CONT "  running task    ");
4528 	else
4529 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4530 #endif
4531 #ifdef CONFIG_DEBUG_STACK_USAGE
4532 	free = stack_not_used(p);
4533 #endif
4534 	rcu_read_lock();
4535 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4536 	rcu_read_unlock();
4537 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4538 		task_pid_nr(p), ppid,
4539 		(unsigned long)task_thread_info(p)->flags);
4540 
4541 	print_worker_info(KERN_INFO, p);
4542 	show_stack(p, NULL);
4543 }
4544 
4545 void show_state_filter(unsigned long state_filter)
4546 {
4547 	struct task_struct *g, *p;
4548 
4549 #if BITS_PER_LONG == 32
4550 	printk(KERN_INFO
4551 		"  task                PC stack   pid father\n");
4552 #else
4553 	printk(KERN_INFO
4554 		"  task                        PC stack   pid father\n");
4555 #endif
4556 	rcu_read_lock();
4557 	for_each_process_thread(g, p) {
4558 		/*
4559 		 * reset the NMI-timeout, listing all files on a slow
4560 		 * console might take a lot of time:
4561 		 */
4562 		touch_nmi_watchdog();
4563 		if (!state_filter || (p->state & state_filter))
4564 			sched_show_task(p);
4565 	}
4566 
4567 	touch_all_softlockup_watchdogs();
4568 
4569 #ifdef CONFIG_SCHED_DEBUG
4570 	sysrq_sched_debug_show();
4571 #endif
4572 	rcu_read_unlock();
4573 	/*
4574 	 * Only show locks if all tasks are dumped:
4575 	 */
4576 	if (!state_filter)
4577 		debug_show_all_locks();
4578 }
4579 
4580 void init_idle_bootup_task(struct task_struct *idle)
4581 {
4582 	idle->sched_class = &idle_sched_class;
4583 }
4584 
4585 /**
4586  * init_idle - set up an idle thread for a given CPU
4587  * @idle: task in question
4588  * @cpu: cpu the idle task belongs to
4589  *
4590  * NOTE: this function does not set the idle thread's NEED_RESCHED
4591  * flag, to make booting more robust.
4592  */
4593 void init_idle(struct task_struct *idle, int cpu)
4594 {
4595 	struct rq *rq = cpu_rq(cpu);
4596 	unsigned long flags;
4597 
4598 	raw_spin_lock_irqsave(&rq->lock, flags);
4599 
4600 	__sched_fork(0, idle);
4601 	idle->state = TASK_RUNNING;
4602 	idle->se.exec_start = sched_clock();
4603 
4604 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4605 	/*
4606 	 * We're having a chicken and egg problem, even though we are
4607 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4608 	 * lockdep check in task_group() will fail.
4609 	 *
4610 	 * Similar case to sched_fork(). / Alternatively we could
4611 	 * use task_rq_lock() here and obtain the other rq->lock.
4612 	 *
4613 	 * Silence PROVE_RCU
4614 	 */
4615 	rcu_read_lock();
4616 	__set_task_cpu(idle, cpu);
4617 	rcu_read_unlock();
4618 
4619 	rq->curr = rq->idle = idle;
4620 	idle->on_rq = TASK_ON_RQ_QUEUED;
4621 #if defined(CONFIG_SMP)
4622 	idle->on_cpu = 1;
4623 #endif
4624 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4625 
4626 	/* Set the preempt count _outside_ the spinlocks! */
4627 	init_idle_preempt_count(idle, cpu);
4628 
4629 	/*
4630 	 * The idle tasks have their own, simple scheduling class:
4631 	 */
4632 	idle->sched_class = &idle_sched_class;
4633 	ftrace_graph_init_idle_task(idle, cpu);
4634 	vtime_init_idle(idle, cpu);
4635 #if defined(CONFIG_SMP)
4636 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4637 #endif
4638 }
4639 
4640 #ifdef CONFIG_SMP
4641 /*
4642  * move_queued_task - move a queued task to new rq.
4643  *
4644  * Returns (locked) new rq. Old rq's lock is released.
4645  */
4646 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4647 {
4648 	struct rq *rq = task_rq(p);
4649 
4650 	lockdep_assert_held(&rq->lock);
4651 
4652 	dequeue_task(rq, p, 0);
4653 	p->on_rq = TASK_ON_RQ_MIGRATING;
4654 	set_task_cpu(p, new_cpu);
4655 	raw_spin_unlock(&rq->lock);
4656 
4657 	rq = cpu_rq(new_cpu);
4658 
4659 	raw_spin_lock(&rq->lock);
4660 	BUG_ON(task_cpu(p) != new_cpu);
4661 	p->on_rq = TASK_ON_RQ_QUEUED;
4662 	enqueue_task(rq, p, 0);
4663 	check_preempt_curr(rq, p, 0);
4664 
4665 	return rq;
4666 }
4667 
4668 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4669 {
4670 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4671 		p->sched_class->set_cpus_allowed(p, new_mask);
4672 
4673 	cpumask_copy(&p->cpus_allowed, new_mask);
4674 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4675 }
4676 
4677 /*
4678  * This is how migration works:
4679  *
4680  * 1) we invoke migration_cpu_stop() on the target CPU using
4681  *    stop_one_cpu().
4682  * 2) stopper starts to run (implicitly forcing the migrated thread
4683  *    off the CPU)
4684  * 3) it checks whether the migrated task is still in the wrong runqueue.
4685  * 4) if it's in the wrong runqueue then the migration thread removes
4686  *    it and puts it into the right queue.
4687  * 5) stopper completes and stop_one_cpu() returns and the migration
4688  *    is done.
4689  */
4690 
4691 /*
4692  * Change a given task's CPU affinity. Migrate the thread to a
4693  * proper CPU and schedule it away if the CPU it's executing on
4694  * is removed from the allowed bitmask.
4695  *
4696  * NOTE: the caller must have a valid reference to the task, the
4697  * task must not exit() & deallocate itself prematurely. The
4698  * call is not atomic; no spinlocks may be held.
4699  */
4700 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4701 {
4702 	unsigned long flags;
4703 	struct rq *rq;
4704 	unsigned int dest_cpu;
4705 	int ret = 0;
4706 
4707 	rq = task_rq_lock(p, &flags);
4708 
4709 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4710 		goto out;
4711 
4712 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4713 		ret = -EINVAL;
4714 		goto out;
4715 	}
4716 
4717 	do_set_cpus_allowed(p, new_mask);
4718 
4719 	/* Can the task run on the task's current CPU? If so, we're done */
4720 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4721 		goto out;
4722 
4723 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4724 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4725 		struct migration_arg arg = { p, dest_cpu };
4726 		/* Need help from migration thread: drop lock and wait. */
4727 		task_rq_unlock(rq, p, &flags);
4728 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4729 		tlb_migrate_finish(p->mm);
4730 		return 0;
4731 	} else if (task_on_rq_queued(p))
4732 		rq = move_queued_task(p, dest_cpu);
4733 out:
4734 	task_rq_unlock(rq, p, &flags);
4735 
4736 	return ret;
4737 }
4738 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4739 
4740 /*
4741  * Move (not current) task off this cpu, onto dest cpu. We're doing
4742  * this because either it can't run here any more (set_cpus_allowed()
4743  * away from this CPU, or CPU going down), or because we're
4744  * attempting to rebalance this task on exec (sched_exec).
4745  *
4746  * So we race with normal scheduler movements, but that's OK, as long
4747  * as the task is no longer on this CPU.
4748  *
4749  * Returns non-zero if task was successfully migrated.
4750  */
4751 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4752 {
4753 	struct rq *rq;
4754 	int ret = 0;
4755 
4756 	if (unlikely(!cpu_active(dest_cpu)))
4757 		return ret;
4758 
4759 	rq = cpu_rq(src_cpu);
4760 
4761 	raw_spin_lock(&p->pi_lock);
4762 	raw_spin_lock(&rq->lock);
4763 	/* Already moved. */
4764 	if (task_cpu(p) != src_cpu)
4765 		goto done;
4766 
4767 	/* Affinity changed (again). */
4768 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4769 		goto fail;
4770 
4771 	/*
4772 	 * If we're not on a rq, the next wake-up will ensure we're
4773 	 * placed properly.
4774 	 */
4775 	if (task_on_rq_queued(p))
4776 		rq = move_queued_task(p, dest_cpu);
4777 done:
4778 	ret = 1;
4779 fail:
4780 	raw_spin_unlock(&rq->lock);
4781 	raw_spin_unlock(&p->pi_lock);
4782 	return ret;
4783 }
4784 
4785 #ifdef CONFIG_NUMA_BALANCING
4786 /* Migrate current task p to target_cpu */
4787 int migrate_task_to(struct task_struct *p, int target_cpu)
4788 {
4789 	struct migration_arg arg = { p, target_cpu };
4790 	int curr_cpu = task_cpu(p);
4791 
4792 	if (curr_cpu == target_cpu)
4793 		return 0;
4794 
4795 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4796 		return -EINVAL;
4797 
4798 	/* TODO: This is not properly updating schedstats */
4799 
4800 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4801 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4802 }
4803 
4804 /*
4805  * Requeue a task on a given node and accurately track the number of NUMA
4806  * tasks on the runqueues
4807  */
4808 void sched_setnuma(struct task_struct *p, int nid)
4809 {
4810 	struct rq *rq;
4811 	unsigned long flags;
4812 	bool queued, running;
4813 
4814 	rq = task_rq_lock(p, &flags);
4815 	queued = task_on_rq_queued(p);
4816 	running = task_current(rq, p);
4817 
4818 	if (queued)
4819 		dequeue_task(rq, p, 0);
4820 	if (running)
4821 		put_prev_task(rq, p);
4822 
4823 	p->numa_preferred_nid = nid;
4824 
4825 	if (running)
4826 		p->sched_class->set_curr_task(rq);
4827 	if (queued)
4828 		enqueue_task(rq, p, 0);
4829 	task_rq_unlock(rq, p, &flags);
4830 }
4831 #endif
4832 
4833 /*
4834  * migration_cpu_stop - this will be executed by a highprio stopper thread
4835  * and performs thread migration by bumping thread off CPU then
4836  * 'pushing' onto another runqueue.
4837  */
4838 static int migration_cpu_stop(void *data)
4839 {
4840 	struct migration_arg *arg = data;
4841 
4842 	/*
4843 	 * The original target cpu might have gone down and we might
4844 	 * be on another cpu but it doesn't matter.
4845 	 */
4846 	local_irq_disable();
4847 	/*
4848 	 * We need to explicitly wake pending tasks before running
4849 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4850 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4851 	 */
4852 	sched_ttwu_pending();
4853 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4854 	local_irq_enable();
4855 	return 0;
4856 }
4857 
4858 #ifdef CONFIG_HOTPLUG_CPU
4859 
4860 /*
4861  * Ensures that the idle task is using init_mm right before its cpu goes
4862  * offline.
4863  */
4864 void idle_task_exit(void)
4865 {
4866 	struct mm_struct *mm = current->active_mm;
4867 
4868 	BUG_ON(cpu_online(smp_processor_id()));
4869 
4870 	if (mm != &init_mm) {
4871 		switch_mm(mm, &init_mm, current);
4872 		finish_arch_post_lock_switch();
4873 	}
4874 	mmdrop(mm);
4875 }
4876 
4877 /*
4878  * Since this CPU is going 'away' for a while, fold any nr_active delta
4879  * we might have. Assumes we're called after migrate_tasks() so that the
4880  * nr_active count is stable.
4881  *
4882  * Also see the comment "Global load-average calculations".
4883  */
4884 static void calc_load_migrate(struct rq *rq)
4885 {
4886 	long delta = calc_load_fold_active(rq);
4887 	if (delta)
4888 		atomic_long_add(delta, &calc_load_tasks);
4889 }
4890 
4891 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4892 {
4893 }
4894 
4895 static const struct sched_class fake_sched_class = {
4896 	.put_prev_task = put_prev_task_fake,
4897 };
4898 
4899 static struct task_struct fake_task = {
4900 	/*
4901 	 * Avoid pull_{rt,dl}_task()
4902 	 */
4903 	.prio = MAX_PRIO + 1,
4904 	.sched_class = &fake_sched_class,
4905 };
4906 
4907 /*
4908  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4909  * try_to_wake_up()->select_task_rq().
4910  *
4911  * Called with rq->lock held even though we'er in stop_machine() and
4912  * there's no concurrency possible, we hold the required locks anyway
4913  * because of lock validation efforts.
4914  */
4915 static void migrate_tasks(unsigned int dead_cpu)
4916 {
4917 	struct rq *rq = cpu_rq(dead_cpu);
4918 	struct task_struct *next, *stop = rq->stop;
4919 	int dest_cpu;
4920 
4921 	/*
4922 	 * Fudge the rq selection such that the below task selection loop
4923 	 * doesn't get stuck on the currently eligible stop task.
4924 	 *
4925 	 * We're currently inside stop_machine() and the rq is either stuck
4926 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4927 	 * either way we should never end up calling schedule() until we're
4928 	 * done here.
4929 	 */
4930 	rq->stop = NULL;
4931 
4932 	/*
4933 	 * put_prev_task() and pick_next_task() sched
4934 	 * class method both need to have an up-to-date
4935 	 * value of rq->clock[_task]
4936 	 */
4937 	update_rq_clock(rq);
4938 
4939 	for ( ; ; ) {
4940 		/*
4941 		 * There's this thread running, bail when that's the only
4942 		 * remaining thread.
4943 		 */
4944 		if (rq->nr_running == 1)
4945 			break;
4946 
4947 		next = pick_next_task(rq, &fake_task);
4948 		BUG_ON(!next);
4949 		next->sched_class->put_prev_task(rq, next);
4950 
4951 		/* Find suitable destination for @next, with force if needed. */
4952 		dest_cpu = select_fallback_rq(dead_cpu, next);
4953 		raw_spin_unlock(&rq->lock);
4954 
4955 		__migrate_task(next, dead_cpu, dest_cpu);
4956 
4957 		raw_spin_lock(&rq->lock);
4958 	}
4959 
4960 	rq->stop = stop;
4961 }
4962 
4963 #endif /* CONFIG_HOTPLUG_CPU */
4964 
4965 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4966 
4967 static struct ctl_table sd_ctl_dir[] = {
4968 	{
4969 		.procname	= "sched_domain",
4970 		.mode		= 0555,
4971 	},
4972 	{}
4973 };
4974 
4975 static struct ctl_table sd_ctl_root[] = {
4976 	{
4977 		.procname	= "kernel",
4978 		.mode		= 0555,
4979 		.child		= sd_ctl_dir,
4980 	},
4981 	{}
4982 };
4983 
4984 static struct ctl_table *sd_alloc_ctl_entry(int n)
4985 {
4986 	struct ctl_table *entry =
4987 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4988 
4989 	return entry;
4990 }
4991 
4992 static void sd_free_ctl_entry(struct ctl_table **tablep)
4993 {
4994 	struct ctl_table *entry;
4995 
4996 	/*
4997 	 * In the intermediate directories, both the child directory and
4998 	 * procname are dynamically allocated and could fail but the mode
4999 	 * will always be set. In the lowest directory the names are
5000 	 * static strings and all have proc handlers.
5001 	 */
5002 	for (entry = *tablep; entry->mode; entry++) {
5003 		if (entry->child)
5004 			sd_free_ctl_entry(&entry->child);
5005 		if (entry->proc_handler == NULL)
5006 			kfree(entry->procname);
5007 	}
5008 
5009 	kfree(*tablep);
5010 	*tablep = NULL;
5011 }
5012 
5013 static int min_load_idx = 0;
5014 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5015 
5016 static void
5017 set_table_entry(struct ctl_table *entry,
5018 		const char *procname, void *data, int maxlen,
5019 		umode_t mode, proc_handler *proc_handler,
5020 		bool load_idx)
5021 {
5022 	entry->procname = procname;
5023 	entry->data = data;
5024 	entry->maxlen = maxlen;
5025 	entry->mode = mode;
5026 	entry->proc_handler = proc_handler;
5027 
5028 	if (load_idx) {
5029 		entry->extra1 = &min_load_idx;
5030 		entry->extra2 = &max_load_idx;
5031 	}
5032 }
5033 
5034 static struct ctl_table *
5035 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5036 {
5037 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5038 
5039 	if (table == NULL)
5040 		return NULL;
5041 
5042 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5043 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5044 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5045 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5046 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5047 		sizeof(int), 0644, proc_dointvec_minmax, true);
5048 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5049 		sizeof(int), 0644, proc_dointvec_minmax, true);
5050 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5051 		sizeof(int), 0644, proc_dointvec_minmax, true);
5052 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5053 		sizeof(int), 0644, proc_dointvec_minmax, true);
5054 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5055 		sizeof(int), 0644, proc_dointvec_minmax, true);
5056 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5057 		sizeof(int), 0644, proc_dointvec_minmax, false);
5058 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5059 		sizeof(int), 0644, proc_dointvec_minmax, false);
5060 	set_table_entry(&table[9], "cache_nice_tries",
5061 		&sd->cache_nice_tries,
5062 		sizeof(int), 0644, proc_dointvec_minmax, false);
5063 	set_table_entry(&table[10], "flags", &sd->flags,
5064 		sizeof(int), 0644, proc_dointvec_minmax, false);
5065 	set_table_entry(&table[11], "max_newidle_lb_cost",
5066 		&sd->max_newidle_lb_cost,
5067 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5068 	set_table_entry(&table[12], "name", sd->name,
5069 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5070 	/* &table[13] is terminator */
5071 
5072 	return table;
5073 }
5074 
5075 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5076 {
5077 	struct ctl_table *entry, *table;
5078 	struct sched_domain *sd;
5079 	int domain_num = 0, i;
5080 	char buf[32];
5081 
5082 	for_each_domain(cpu, sd)
5083 		domain_num++;
5084 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5085 	if (table == NULL)
5086 		return NULL;
5087 
5088 	i = 0;
5089 	for_each_domain(cpu, sd) {
5090 		snprintf(buf, 32, "domain%d", i);
5091 		entry->procname = kstrdup(buf, GFP_KERNEL);
5092 		entry->mode = 0555;
5093 		entry->child = sd_alloc_ctl_domain_table(sd);
5094 		entry++;
5095 		i++;
5096 	}
5097 	return table;
5098 }
5099 
5100 static struct ctl_table_header *sd_sysctl_header;
5101 static void register_sched_domain_sysctl(void)
5102 {
5103 	int i, cpu_num = num_possible_cpus();
5104 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5105 	char buf[32];
5106 
5107 	WARN_ON(sd_ctl_dir[0].child);
5108 	sd_ctl_dir[0].child = entry;
5109 
5110 	if (entry == NULL)
5111 		return;
5112 
5113 	for_each_possible_cpu(i) {
5114 		snprintf(buf, 32, "cpu%d", i);
5115 		entry->procname = kstrdup(buf, GFP_KERNEL);
5116 		entry->mode = 0555;
5117 		entry->child = sd_alloc_ctl_cpu_table(i);
5118 		entry++;
5119 	}
5120 
5121 	WARN_ON(sd_sysctl_header);
5122 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5123 }
5124 
5125 /* may be called multiple times per register */
5126 static void unregister_sched_domain_sysctl(void)
5127 {
5128 	if (sd_sysctl_header)
5129 		unregister_sysctl_table(sd_sysctl_header);
5130 	sd_sysctl_header = NULL;
5131 	if (sd_ctl_dir[0].child)
5132 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5133 }
5134 #else
5135 static void register_sched_domain_sysctl(void)
5136 {
5137 }
5138 static void unregister_sched_domain_sysctl(void)
5139 {
5140 }
5141 #endif
5142 
5143 static void set_rq_online(struct rq *rq)
5144 {
5145 	if (!rq->online) {
5146 		const struct sched_class *class;
5147 
5148 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5149 		rq->online = 1;
5150 
5151 		for_each_class(class) {
5152 			if (class->rq_online)
5153 				class->rq_online(rq);
5154 		}
5155 	}
5156 }
5157 
5158 static void set_rq_offline(struct rq *rq)
5159 {
5160 	if (rq->online) {
5161 		const struct sched_class *class;
5162 
5163 		for_each_class(class) {
5164 			if (class->rq_offline)
5165 				class->rq_offline(rq);
5166 		}
5167 
5168 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5169 		rq->online = 0;
5170 	}
5171 }
5172 
5173 /*
5174  * migration_call - callback that gets triggered when a CPU is added.
5175  * Here we can start up the necessary migration thread for the new CPU.
5176  */
5177 static int
5178 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5179 {
5180 	int cpu = (long)hcpu;
5181 	unsigned long flags;
5182 	struct rq *rq = cpu_rq(cpu);
5183 
5184 	switch (action & ~CPU_TASKS_FROZEN) {
5185 
5186 	case CPU_UP_PREPARE:
5187 		rq->calc_load_update = calc_load_update;
5188 		break;
5189 
5190 	case CPU_ONLINE:
5191 		/* Update our root-domain */
5192 		raw_spin_lock_irqsave(&rq->lock, flags);
5193 		if (rq->rd) {
5194 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5195 
5196 			set_rq_online(rq);
5197 		}
5198 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5199 		break;
5200 
5201 #ifdef CONFIG_HOTPLUG_CPU
5202 	case CPU_DYING:
5203 		sched_ttwu_pending();
5204 		/* Update our root-domain */
5205 		raw_spin_lock_irqsave(&rq->lock, flags);
5206 		if (rq->rd) {
5207 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5208 			set_rq_offline(rq);
5209 		}
5210 		migrate_tasks(cpu);
5211 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5212 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5213 		break;
5214 
5215 	case CPU_DEAD:
5216 		calc_load_migrate(rq);
5217 		break;
5218 #endif
5219 	}
5220 
5221 	update_max_interval();
5222 
5223 	return NOTIFY_OK;
5224 }
5225 
5226 /*
5227  * Register at high priority so that task migration (migrate_all_tasks)
5228  * happens before everything else.  This has to be lower priority than
5229  * the notifier in the perf_event subsystem, though.
5230  */
5231 static struct notifier_block migration_notifier = {
5232 	.notifier_call = migration_call,
5233 	.priority = CPU_PRI_MIGRATION,
5234 };
5235 
5236 static void __cpuinit set_cpu_rq_start_time(void)
5237 {
5238 	int cpu = smp_processor_id();
5239 	struct rq *rq = cpu_rq(cpu);
5240 	rq->age_stamp = sched_clock_cpu(cpu);
5241 }
5242 
5243 static int sched_cpu_active(struct notifier_block *nfb,
5244 				      unsigned long action, void *hcpu)
5245 {
5246 	switch (action & ~CPU_TASKS_FROZEN) {
5247 	case CPU_STARTING:
5248 		set_cpu_rq_start_time();
5249 		return NOTIFY_OK;
5250 	case CPU_DOWN_FAILED:
5251 		set_cpu_active((long)hcpu, true);
5252 		return NOTIFY_OK;
5253 	default:
5254 		return NOTIFY_DONE;
5255 	}
5256 }
5257 
5258 static int sched_cpu_inactive(struct notifier_block *nfb,
5259 					unsigned long action, void *hcpu)
5260 {
5261 	unsigned long flags;
5262 	long cpu = (long)hcpu;
5263 	struct dl_bw *dl_b;
5264 
5265 	switch (action & ~CPU_TASKS_FROZEN) {
5266 	case CPU_DOWN_PREPARE:
5267 		set_cpu_active(cpu, false);
5268 
5269 		/* explicitly allow suspend */
5270 		if (!(action & CPU_TASKS_FROZEN)) {
5271 			bool overflow;
5272 			int cpus;
5273 
5274 			rcu_read_lock_sched();
5275 			dl_b = dl_bw_of(cpu);
5276 
5277 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5278 			cpus = dl_bw_cpus(cpu);
5279 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5280 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5281 
5282 			rcu_read_unlock_sched();
5283 
5284 			if (overflow)
5285 				return notifier_from_errno(-EBUSY);
5286 		}
5287 		return NOTIFY_OK;
5288 	}
5289 
5290 	return NOTIFY_DONE;
5291 }
5292 
5293 static int __init migration_init(void)
5294 {
5295 	void *cpu = (void *)(long)smp_processor_id();
5296 	int err;
5297 
5298 	/* Initialize migration for the boot CPU */
5299 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5300 	BUG_ON(err == NOTIFY_BAD);
5301 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5302 	register_cpu_notifier(&migration_notifier);
5303 
5304 	/* Register cpu active notifiers */
5305 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5306 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5307 
5308 	return 0;
5309 }
5310 early_initcall(migration_init);
5311 #endif
5312 
5313 #ifdef CONFIG_SMP
5314 
5315 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5316 
5317 #ifdef CONFIG_SCHED_DEBUG
5318 
5319 static __read_mostly int sched_debug_enabled;
5320 
5321 static int __init sched_debug_setup(char *str)
5322 {
5323 	sched_debug_enabled = 1;
5324 
5325 	return 0;
5326 }
5327 early_param("sched_debug", sched_debug_setup);
5328 
5329 static inline bool sched_debug(void)
5330 {
5331 	return sched_debug_enabled;
5332 }
5333 
5334 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5335 				  struct cpumask *groupmask)
5336 {
5337 	struct sched_group *group = sd->groups;
5338 	char str[256];
5339 
5340 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5341 	cpumask_clear(groupmask);
5342 
5343 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5344 
5345 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5346 		printk("does not load-balance\n");
5347 		if (sd->parent)
5348 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5349 					" has parent");
5350 		return -1;
5351 	}
5352 
5353 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5354 
5355 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5356 		printk(KERN_ERR "ERROR: domain->span does not contain "
5357 				"CPU%d\n", cpu);
5358 	}
5359 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5360 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5361 				" CPU%d\n", cpu);
5362 	}
5363 
5364 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5365 	do {
5366 		if (!group) {
5367 			printk("\n");
5368 			printk(KERN_ERR "ERROR: group is NULL\n");
5369 			break;
5370 		}
5371 
5372 		/*
5373 		 * Even though we initialize ->capacity to something semi-sane,
5374 		 * we leave capacity_orig unset. This allows us to detect if
5375 		 * domain iteration is still funny without causing /0 traps.
5376 		 */
5377 		if (!group->sgc->capacity_orig) {
5378 			printk(KERN_CONT "\n");
5379 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5380 			break;
5381 		}
5382 
5383 		if (!cpumask_weight(sched_group_cpus(group))) {
5384 			printk(KERN_CONT "\n");
5385 			printk(KERN_ERR "ERROR: empty group\n");
5386 			break;
5387 		}
5388 
5389 		if (!(sd->flags & SD_OVERLAP) &&
5390 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5391 			printk(KERN_CONT "\n");
5392 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5393 			break;
5394 		}
5395 
5396 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5397 
5398 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5399 
5400 		printk(KERN_CONT " %s", str);
5401 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5402 			printk(KERN_CONT " (cpu_capacity = %d)",
5403 				group->sgc->capacity);
5404 		}
5405 
5406 		group = group->next;
5407 	} while (group != sd->groups);
5408 	printk(KERN_CONT "\n");
5409 
5410 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5411 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5412 
5413 	if (sd->parent &&
5414 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5415 		printk(KERN_ERR "ERROR: parent span is not a superset "
5416 			"of domain->span\n");
5417 	return 0;
5418 }
5419 
5420 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5421 {
5422 	int level = 0;
5423 
5424 	if (!sched_debug_enabled)
5425 		return;
5426 
5427 	if (!sd) {
5428 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5429 		return;
5430 	}
5431 
5432 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5433 
5434 	for (;;) {
5435 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5436 			break;
5437 		level++;
5438 		sd = sd->parent;
5439 		if (!sd)
5440 			break;
5441 	}
5442 }
5443 #else /* !CONFIG_SCHED_DEBUG */
5444 # define sched_domain_debug(sd, cpu) do { } while (0)
5445 static inline bool sched_debug(void)
5446 {
5447 	return false;
5448 }
5449 #endif /* CONFIG_SCHED_DEBUG */
5450 
5451 static int sd_degenerate(struct sched_domain *sd)
5452 {
5453 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5454 		return 1;
5455 
5456 	/* Following flags need at least 2 groups */
5457 	if (sd->flags & (SD_LOAD_BALANCE |
5458 			 SD_BALANCE_NEWIDLE |
5459 			 SD_BALANCE_FORK |
5460 			 SD_BALANCE_EXEC |
5461 			 SD_SHARE_CPUCAPACITY |
5462 			 SD_SHARE_PKG_RESOURCES |
5463 			 SD_SHARE_POWERDOMAIN)) {
5464 		if (sd->groups != sd->groups->next)
5465 			return 0;
5466 	}
5467 
5468 	/* Following flags don't use groups */
5469 	if (sd->flags & (SD_WAKE_AFFINE))
5470 		return 0;
5471 
5472 	return 1;
5473 }
5474 
5475 static int
5476 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5477 {
5478 	unsigned long cflags = sd->flags, pflags = parent->flags;
5479 
5480 	if (sd_degenerate(parent))
5481 		return 1;
5482 
5483 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5484 		return 0;
5485 
5486 	/* Flags needing groups don't count if only 1 group in parent */
5487 	if (parent->groups == parent->groups->next) {
5488 		pflags &= ~(SD_LOAD_BALANCE |
5489 				SD_BALANCE_NEWIDLE |
5490 				SD_BALANCE_FORK |
5491 				SD_BALANCE_EXEC |
5492 				SD_SHARE_CPUCAPACITY |
5493 				SD_SHARE_PKG_RESOURCES |
5494 				SD_PREFER_SIBLING |
5495 				SD_SHARE_POWERDOMAIN);
5496 		if (nr_node_ids == 1)
5497 			pflags &= ~SD_SERIALIZE;
5498 	}
5499 	if (~cflags & pflags)
5500 		return 0;
5501 
5502 	return 1;
5503 }
5504 
5505 static void free_rootdomain(struct rcu_head *rcu)
5506 {
5507 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5508 
5509 	cpupri_cleanup(&rd->cpupri);
5510 	cpudl_cleanup(&rd->cpudl);
5511 	free_cpumask_var(rd->dlo_mask);
5512 	free_cpumask_var(rd->rto_mask);
5513 	free_cpumask_var(rd->online);
5514 	free_cpumask_var(rd->span);
5515 	kfree(rd);
5516 }
5517 
5518 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5519 {
5520 	struct root_domain *old_rd = NULL;
5521 	unsigned long flags;
5522 
5523 	raw_spin_lock_irqsave(&rq->lock, flags);
5524 
5525 	if (rq->rd) {
5526 		old_rd = rq->rd;
5527 
5528 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5529 			set_rq_offline(rq);
5530 
5531 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5532 
5533 		/*
5534 		 * If we dont want to free the old_rd yet then
5535 		 * set old_rd to NULL to skip the freeing later
5536 		 * in this function:
5537 		 */
5538 		if (!atomic_dec_and_test(&old_rd->refcount))
5539 			old_rd = NULL;
5540 	}
5541 
5542 	atomic_inc(&rd->refcount);
5543 	rq->rd = rd;
5544 
5545 	cpumask_set_cpu(rq->cpu, rd->span);
5546 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5547 		set_rq_online(rq);
5548 
5549 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5550 
5551 	if (old_rd)
5552 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5553 }
5554 
5555 static int init_rootdomain(struct root_domain *rd)
5556 {
5557 	memset(rd, 0, sizeof(*rd));
5558 
5559 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5560 		goto out;
5561 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5562 		goto free_span;
5563 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5564 		goto free_online;
5565 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5566 		goto free_dlo_mask;
5567 
5568 	init_dl_bw(&rd->dl_bw);
5569 	if (cpudl_init(&rd->cpudl) != 0)
5570 		goto free_dlo_mask;
5571 
5572 	if (cpupri_init(&rd->cpupri) != 0)
5573 		goto free_rto_mask;
5574 	return 0;
5575 
5576 free_rto_mask:
5577 	free_cpumask_var(rd->rto_mask);
5578 free_dlo_mask:
5579 	free_cpumask_var(rd->dlo_mask);
5580 free_online:
5581 	free_cpumask_var(rd->online);
5582 free_span:
5583 	free_cpumask_var(rd->span);
5584 out:
5585 	return -ENOMEM;
5586 }
5587 
5588 /*
5589  * By default the system creates a single root-domain with all cpus as
5590  * members (mimicking the global state we have today).
5591  */
5592 struct root_domain def_root_domain;
5593 
5594 static void init_defrootdomain(void)
5595 {
5596 	init_rootdomain(&def_root_domain);
5597 
5598 	atomic_set(&def_root_domain.refcount, 1);
5599 }
5600 
5601 static struct root_domain *alloc_rootdomain(void)
5602 {
5603 	struct root_domain *rd;
5604 
5605 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5606 	if (!rd)
5607 		return NULL;
5608 
5609 	if (init_rootdomain(rd) != 0) {
5610 		kfree(rd);
5611 		return NULL;
5612 	}
5613 
5614 	return rd;
5615 }
5616 
5617 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5618 {
5619 	struct sched_group *tmp, *first;
5620 
5621 	if (!sg)
5622 		return;
5623 
5624 	first = sg;
5625 	do {
5626 		tmp = sg->next;
5627 
5628 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5629 			kfree(sg->sgc);
5630 
5631 		kfree(sg);
5632 		sg = tmp;
5633 	} while (sg != first);
5634 }
5635 
5636 static void free_sched_domain(struct rcu_head *rcu)
5637 {
5638 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5639 
5640 	/*
5641 	 * If its an overlapping domain it has private groups, iterate and
5642 	 * nuke them all.
5643 	 */
5644 	if (sd->flags & SD_OVERLAP) {
5645 		free_sched_groups(sd->groups, 1);
5646 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5647 		kfree(sd->groups->sgc);
5648 		kfree(sd->groups);
5649 	}
5650 	kfree(sd);
5651 }
5652 
5653 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5654 {
5655 	call_rcu(&sd->rcu, free_sched_domain);
5656 }
5657 
5658 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5659 {
5660 	for (; sd; sd = sd->parent)
5661 		destroy_sched_domain(sd, cpu);
5662 }
5663 
5664 /*
5665  * Keep a special pointer to the highest sched_domain that has
5666  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5667  * allows us to avoid some pointer chasing select_idle_sibling().
5668  *
5669  * Also keep a unique ID per domain (we use the first cpu number in
5670  * the cpumask of the domain), this allows us to quickly tell if
5671  * two cpus are in the same cache domain, see cpus_share_cache().
5672  */
5673 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5674 DEFINE_PER_CPU(int, sd_llc_size);
5675 DEFINE_PER_CPU(int, sd_llc_id);
5676 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5677 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5678 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5679 
5680 static void update_top_cache_domain(int cpu)
5681 {
5682 	struct sched_domain *sd;
5683 	struct sched_domain *busy_sd = NULL;
5684 	int id = cpu;
5685 	int size = 1;
5686 
5687 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5688 	if (sd) {
5689 		id = cpumask_first(sched_domain_span(sd));
5690 		size = cpumask_weight(sched_domain_span(sd));
5691 		busy_sd = sd->parent; /* sd_busy */
5692 	}
5693 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5694 
5695 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5696 	per_cpu(sd_llc_size, cpu) = size;
5697 	per_cpu(sd_llc_id, cpu) = id;
5698 
5699 	sd = lowest_flag_domain(cpu, SD_NUMA);
5700 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5701 
5702 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5703 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5704 }
5705 
5706 /*
5707  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5708  * hold the hotplug lock.
5709  */
5710 static void
5711 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5712 {
5713 	struct rq *rq = cpu_rq(cpu);
5714 	struct sched_domain *tmp;
5715 
5716 	/* Remove the sched domains which do not contribute to scheduling. */
5717 	for (tmp = sd; tmp; ) {
5718 		struct sched_domain *parent = tmp->parent;
5719 		if (!parent)
5720 			break;
5721 
5722 		if (sd_parent_degenerate(tmp, parent)) {
5723 			tmp->parent = parent->parent;
5724 			if (parent->parent)
5725 				parent->parent->child = tmp;
5726 			/*
5727 			 * Transfer SD_PREFER_SIBLING down in case of a
5728 			 * degenerate parent; the spans match for this
5729 			 * so the property transfers.
5730 			 */
5731 			if (parent->flags & SD_PREFER_SIBLING)
5732 				tmp->flags |= SD_PREFER_SIBLING;
5733 			destroy_sched_domain(parent, cpu);
5734 		} else
5735 			tmp = tmp->parent;
5736 	}
5737 
5738 	if (sd && sd_degenerate(sd)) {
5739 		tmp = sd;
5740 		sd = sd->parent;
5741 		destroy_sched_domain(tmp, cpu);
5742 		if (sd)
5743 			sd->child = NULL;
5744 	}
5745 
5746 	sched_domain_debug(sd, cpu);
5747 
5748 	rq_attach_root(rq, rd);
5749 	tmp = rq->sd;
5750 	rcu_assign_pointer(rq->sd, sd);
5751 	destroy_sched_domains(tmp, cpu);
5752 
5753 	update_top_cache_domain(cpu);
5754 }
5755 
5756 /* cpus with isolated domains */
5757 static cpumask_var_t cpu_isolated_map;
5758 
5759 /* Setup the mask of cpus configured for isolated domains */
5760 static int __init isolated_cpu_setup(char *str)
5761 {
5762 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5763 	cpulist_parse(str, cpu_isolated_map);
5764 	return 1;
5765 }
5766 
5767 __setup("isolcpus=", isolated_cpu_setup);
5768 
5769 struct s_data {
5770 	struct sched_domain ** __percpu sd;
5771 	struct root_domain	*rd;
5772 };
5773 
5774 enum s_alloc {
5775 	sa_rootdomain,
5776 	sa_sd,
5777 	sa_sd_storage,
5778 	sa_none,
5779 };
5780 
5781 /*
5782  * Build an iteration mask that can exclude certain CPUs from the upwards
5783  * domain traversal.
5784  *
5785  * Asymmetric node setups can result in situations where the domain tree is of
5786  * unequal depth, make sure to skip domains that already cover the entire
5787  * range.
5788  *
5789  * In that case build_sched_domains() will have terminated the iteration early
5790  * and our sibling sd spans will be empty. Domains should always include the
5791  * cpu they're built on, so check that.
5792  *
5793  */
5794 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5795 {
5796 	const struct cpumask *span = sched_domain_span(sd);
5797 	struct sd_data *sdd = sd->private;
5798 	struct sched_domain *sibling;
5799 	int i;
5800 
5801 	for_each_cpu(i, span) {
5802 		sibling = *per_cpu_ptr(sdd->sd, i);
5803 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5804 			continue;
5805 
5806 		cpumask_set_cpu(i, sched_group_mask(sg));
5807 	}
5808 }
5809 
5810 /*
5811  * Return the canonical balance cpu for this group, this is the first cpu
5812  * of this group that's also in the iteration mask.
5813  */
5814 int group_balance_cpu(struct sched_group *sg)
5815 {
5816 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5817 }
5818 
5819 static int
5820 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5821 {
5822 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5823 	const struct cpumask *span = sched_domain_span(sd);
5824 	struct cpumask *covered = sched_domains_tmpmask;
5825 	struct sd_data *sdd = sd->private;
5826 	struct sched_domain *sibling;
5827 	int i;
5828 
5829 	cpumask_clear(covered);
5830 
5831 	for_each_cpu(i, span) {
5832 		struct cpumask *sg_span;
5833 
5834 		if (cpumask_test_cpu(i, covered))
5835 			continue;
5836 
5837 		sibling = *per_cpu_ptr(sdd->sd, i);
5838 
5839 		/* See the comment near build_group_mask(). */
5840 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5841 			continue;
5842 
5843 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5844 				GFP_KERNEL, cpu_to_node(cpu));
5845 
5846 		if (!sg)
5847 			goto fail;
5848 
5849 		sg_span = sched_group_cpus(sg);
5850 		if (sibling->child)
5851 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5852 		else
5853 			cpumask_set_cpu(i, sg_span);
5854 
5855 		cpumask_or(covered, covered, sg_span);
5856 
5857 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5858 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5859 			build_group_mask(sd, sg);
5860 
5861 		/*
5862 		 * Initialize sgc->capacity such that even if we mess up the
5863 		 * domains and no possible iteration will get us here, we won't
5864 		 * die on a /0 trap.
5865 		 */
5866 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5867 		sg->sgc->capacity_orig = sg->sgc->capacity;
5868 
5869 		/*
5870 		 * Make sure the first group of this domain contains the
5871 		 * canonical balance cpu. Otherwise the sched_domain iteration
5872 		 * breaks. See update_sg_lb_stats().
5873 		 */
5874 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5875 		    group_balance_cpu(sg) == cpu)
5876 			groups = sg;
5877 
5878 		if (!first)
5879 			first = sg;
5880 		if (last)
5881 			last->next = sg;
5882 		last = sg;
5883 		last->next = first;
5884 	}
5885 	sd->groups = groups;
5886 
5887 	return 0;
5888 
5889 fail:
5890 	free_sched_groups(first, 0);
5891 
5892 	return -ENOMEM;
5893 }
5894 
5895 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5896 {
5897 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5898 	struct sched_domain *child = sd->child;
5899 
5900 	if (child)
5901 		cpu = cpumask_first(sched_domain_span(child));
5902 
5903 	if (sg) {
5904 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5905 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5906 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5907 	}
5908 
5909 	return cpu;
5910 }
5911 
5912 /*
5913  * build_sched_groups will build a circular linked list of the groups
5914  * covered by the given span, and will set each group's ->cpumask correctly,
5915  * and ->cpu_capacity to 0.
5916  *
5917  * Assumes the sched_domain tree is fully constructed
5918  */
5919 static int
5920 build_sched_groups(struct sched_domain *sd, int cpu)
5921 {
5922 	struct sched_group *first = NULL, *last = NULL;
5923 	struct sd_data *sdd = sd->private;
5924 	const struct cpumask *span = sched_domain_span(sd);
5925 	struct cpumask *covered;
5926 	int i;
5927 
5928 	get_group(cpu, sdd, &sd->groups);
5929 	atomic_inc(&sd->groups->ref);
5930 
5931 	if (cpu != cpumask_first(span))
5932 		return 0;
5933 
5934 	lockdep_assert_held(&sched_domains_mutex);
5935 	covered = sched_domains_tmpmask;
5936 
5937 	cpumask_clear(covered);
5938 
5939 	for_each_cpu(i, span) {
5940 		struct sched_group *sg;
5941 		int group, j;
5942 
5943 		if (cpumask_test_cpu(i, covered))
5944 			continue;
5945 
5946 		group = get_group(i, sdd, &sg);
5947 		cpumask_setall(sched_group_mask(sg));
5948 
5949 		for_each_cpu(j, span) {
5950 			if (get_group(j, sdd, NULL) != group)
5951 				continue;
5952 
5953 			cpumask_set_cpu(j, covered);
5954 			cpumask_set_cpu(j, sched_group_cpus(sg));
5955 		}
5956 
5957 		if (!first)
5958 			first = sg;
5959 		if (last)
5960 			last->next = sg;
5961 		last = sg;
5962 	}
5963 	last->next = first;
5964 
5965 	return 0;
5966 }
5967 
5968 /*
5969  * Initialize sched groups cpu_capacity.
5970  *
5971  * cpu_capacity indicates the capacity of sched group, which is used while
5972  * distributing the load between different sched groups in a sched domain.
5973  * Typically cpu_capacity for all the groups in a sched domain will be same
5974  * unless there are asymmetries in the topology. If there are asymmetries,
5975  * group having more cpu_capacity will pickup more load compared to the
5976  * group having less cpu_capacity.
5977  */
5978 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5979 {
5980 	struct sched_group *sg = sd->groups;
5981 
5982 	WARN_ON(!sg);
5983 
5984 	do {
5985 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5986 		sg = sg->next;
5987 	} while (sg != sd->groups);
5988 
5989 	if (cpu != group_balance_cpu(sg))
5990 		return;
5991 
5992 	update_group_capacity(sd, cpu);
5993 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5994 }
5995 
5996 /*
5997  * Initializers for schedule domains
5998  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5999  */
6000 
6001 static int default_relax_domain_level = -1;
6002 int sched_domain_level_max;
6003 
6004 static int __init setup_relax_domain_level(char *str)
6005 {
6006 	if (kstrtoint(str, 0, &default_relax_domain_level))
6007 		pr_warn("Unable to set relax_domain_level\n");
6008 
6009 	return 1;
6010 }
6011 __setup("relax_domain_level=", setup_relax_domain_level);
6012 
6013 static void set_domain_attribute(struct sched_domain *sd,
6014 				 struct sched_domain_attr *attr)
6015 {
6016 	int request;
6017 
6018 	if (!attr || attr->relax_domain_level < 0) {
6019 		if (default_relax_domain_level < 0)
6020 			return;
6021 		else
6022 			request = default_relax_domain_level;
6023 	} else
6024 		request = attr->relax_domain_level;
6025 	if (request < sd->level) {
6026 		/* turn off idle balance on this domain */
6027 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6028 	} else {
6029 		/* turn on idle balance on this domain */
6030 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6031 	}
6032 }
6033 
6034 static void __sdt_free(const struct cpumask *cpu_map);
6035 static int __sdt_alloc(const struct cpumask *cpu_map);
6036 
6037 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038 				 const struct cpumask *cpu_map)
6039 {
6040 	switch (what) {
6041 	case sa_rootdomain:
6042 		if (!atomic_read(&d->rd->refcount))
6043 			free_rootdomain(&d->rd->rcu); /* fall through */
6044 	case sa_sd:
6045 		free_percpu(d->sd); /* fall through */
6046 	case sa_sd_storage:
6047 		__sdt_free(cpu_map); /* fall through */
6048 	case sa_none:
6049 		break;
6050 	}
6051 }
6052 
6053 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054 						   const struct cpumask *cpu_map)
6055 {
6056 	memset(d, 0, sizeof(*d));
6057 
6058 	if (__sdt_alloc(cpu_map))
6059 		return sa_sd_storage;
6060 	d->sd = alloc_percpu(struct sched_domain *);
6061 	if (!d->sd)
6062 		return sa_sd_storage;
6063 	d->rd = alloc_rootdomain();
6064 	if (!d->rd)
6065 		return sa_sd;
6066 	return sa_rootdomain;
6067 }
6068 
6069 /*
6070  * NULL the sd_data elements we've used to build the sched_domain and
6071  * sched_group structure so that the subsequent __free_domain_allocs()
6072  * will not free the data we're using.
6073  */
6074 static void claim_allocations(int cpu, struct sched_domain *sd)
6075 {
6076 	struct sd_data *sdd = sd->private;
6077 
6078 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6080 
6081 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6082 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6083 
6084 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6085 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6086 }
6087 
6088 #ifdef CONFIG_NUMA
6089 static int sched_domains_numa_levels;
6090 static int *sched_domains_numa_distance;
6091 static struct cpumask ***sched_domains_numa_masks;
6092 static int sched_domains_curr_level;
6093 #endif
6094 
6095 /*
6096  * SD_flags allowed in topology descriptions.
6097  *
6098  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6099  * SD_SHARE_PKG_RESOURCES - describes shared caches
6100  * SD_NUMA                - describes NUMA topologies
6101  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6102  *
6103  * Odd one out:
6104  * SD_ASYM_PACKING        - describes SMT quirks
6105  */
6106 #define TOPOLOGY_SD_FLAGS		\
6107 	(SD_SHARE_CPUCAPACITY |		\
6108 	 SD_SHARE_PKG_RESOURCES |	\
6109 	 SD_NUMA |			\
6110 	 SD_ASYM_PACKING |		\
6111 	 SD_SHARE_POWERDOMAIN)
6112 
6113 static struct sched_domain *
6114 sd_init(struct sched_domain_topology_level *tl, int cpu)
6115 {
6116 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6117 	int sd_weight, sd_flags = 0;
6118 
6119 #ifdef CONFIG_NUMA
6120 	/*
6121 	 * Ugly hack to pass state to sd_numa_mask()...
6122 	 */
6123 	sched_domains_curr_level = tl->numa_level;
6124 #endif
6125 
6126 	sd_weight = cpumask_weight(tl->mask(cpu));
6127 
6128 	if (tl->sd_flags)
6129 		sd_flags = (*tl->sd_flags)();
6130 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6131 			"wrong sd_flags in topology description\n"))
6132 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6133 
6134 	*sd = (struct sched_domain){
6135 		.min_interval		= sd_weight,
6136 		.max_interval		= 2*sd_weight,
6137 		.busy_factor		= 32,
6138 		.imbalance_pct		= 125,
6139 
6140 		.cache_nice_tries	= 0,
6141 		.busy_idx		= 0,
6142 		.idle_idx		= 0,
6143 		.newidle_idx		= 0,
6144 		.wake_idx		= 0,
6145 		.forkexec_idx		= 0,
6146 
6147 		.flags			= 1*SD_LOAD_BALANCE
6148 					| 1*SD_BALANCE_NEWIDLE
6149 					| 1*SD_BALANCE_EXEC
6150 					| 1*SD_BALANCE_FORK
6151 					| 0*SD_BALANCE_WAKE
6152 					| 1*SD_WAKE_AFFINE
6153 					| 0*SD_SHARE_CPUCAPACITY
6154 					| 0*SD_SHARE_PKG_RESOURCES
6155 					| 0*SD_SERIALIZE
6156 					| 0*SD_PREFER_SIBLING
6157 					| 0*SD_NUMA
6158 					| sd_flags
6159 					,
6160 
6161 		.last_balance		= jiffies,
6162 		.balance_interval	= sd_weight,
6163 		.smt_gain		= 0,
6164 		.max_newidle_lb_cost	= 0,
6165 		.next_decay_max_lb_cost	= jiffies,
6166 #ifdef CONFIG_SCHED_DEBUG
6167 		.name			= tl->name,
6168 #endif
6169 	};
6170 
6171 	/*
6172 	 * Convert topological properties into behaviour.
6173 	 */
6174 
6175 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6176 		sd->imbalance_pct = 110;
6177 		sd->smt_gain = 1178; /* ~15% */
6178 
6179 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6180 		sd->imbalance_pct = 117;
6181 		sd->cache_nice_tries = 1;
6182 		sd->busy_idx = 2;
6183 
6184 #ifdef CONFIG_NUMA
6185 	} else if (sd->flags & SD_NUMA) {
6186 		sd->cache_nice_tries = 2;
6187 		sd->busy_idx = 3;
6188 		sd->idle_idx = 2;
6189 
6190 		sd->flags |= SD_SERIALIZE;
6191 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6192 			sd->flags &= ~(SD_BALANCE_EXEC |
6193 				       SD_BALANCE_FORK |
6194 				       SD_WAKE_AFFINE);
6195 		}
6196 
6197 #endif
6198 	} else {
6199 		sd->flags |= SD_PREFER_SIBLING;
6200 		sd->cache_nice_tries = 1;
6201 		sd->busy_idx = 2;
6202 		sd->idle_idx = 1;
6203 	}
6204 
6205 	sd->private = &tl->data;
6206 
6207 	return sd;
6208 }
6209 
6210 /*
6211  * Topology list, bottom-up.
6212  */
6213 static struct sched_domain_topology_level default_topology[] = {
6214 #ifdef CONFIG_SCHED_SMT
6215 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6216 #endif
6217 #ifdef CONFIG_SCHED_MC
6218 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6219 #endif
6220 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6221 	{ NULL, },
6222 };
6223 
6224 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6225 
6226 #define for_each_sd_topology(tl)			\
6227 	for (tl = sched_domain_topology; tl->mask; tl++)
6228 
6229 void set_sched_topology(struct sched_domain_topology_level *tl)
6230 {
6231 	sched_domain_topology = tl;
6232 }
6233 
6234 #ifdef CONFIG_NUMA
6235 
6236 static const struct cpumask *sd_numa_mask(int cpu)
6237 {
6238 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6239 }
6240 
6241 static void sched_numa_warn(const char *str)
6242 {
6243 	static int done = false;
6244 	int i,j;
6245 
6246 	if (done)
6247 		return;
6248 
6249 	done = true;
6250 
6251 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6252 
6253 	for (i = 0; i < nr_node_ids; i++) {
6254 		printk(KERN_WARNING "  ");
6255 		for (j = 0; j < nr_node_ids; j++)
6256 			printk(KERN_CONT "%02d ", node_distance(i,j));
6257 		printk(KERN_CONT "\n");
6258 	}
6259 	printk(KERN_WARNING "\n");
6260 }
6261 
6262 static bool find_numa_distance(int distance)
6263 {
6264 	int i;
6265 
6266 	if (distance == node_distance(0, 0))
6267 		return true;
6268 
6269 	for (i = 0; i < sched_domains_numa_levels; i++) {
6270 		if (sched_domains_numa_distance[i] == distance)
6271 			return true;
6272 	}
6273 
6274 	return false;
6275 }
6276 
6277 static void sched_init_numa(void)
6278 {
6279 	int next_distance, curr_distance = node_distance(0, 0);
6280 	struct sched_domain_topology_level *tl;
6281 	int level = 0;
6282 	int i, j, k;
6283 
6284 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6285 	if (!sched_domains_numa_distance)
6286 		return;
6287 
6288 	/*
6289 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6290 	 * unique distances in the node_distance() table.
6291 	 *
6292 	 * Assumes node_distance(0,j) includes all distances in
6293 	 * node_distance(i,j) in order to avoid cubic time.
6294 	 */
6295 	next_distance = curr_distance;
6296 	for (i = 0; i < nr_node_ids; i++) {
6297 		for (j = 0; j < nr_node_ids; j++) {
6298 			for (k = 0; k < nr_node_ids; k++) {
6299 				int distance = node_distance(i, k);
6300 
6301 				if (distance > curr_distance &&
6302 				    (distance < next_distance ||
6303 				     next_distance == curr_distance))
6304 					next_distance = distance;
6305 
6306 				/*
6307 				 * While not a strong assumption it would be nice to know
6308 				 * about cases where if node A is connected to B, B is not
6309 				 * equally connected to A.
6310 				 */
6311 				if (sched_debug() && node_distance(k, i) != distance)
6312 					sched_numa_warn("Node-distance not symmetric");
6313 
6314 				if (sched_debug() && i && !find_numa_distance(distance))
6315 					sched_numa_warn("Node-0 not representative");
6316 			}
6317 			if (next_distance != curr_distance) {
6318 				sched_domains_numa_distance[level++] = next_distance;
6319 				sched_domains_numa_levels = level;
6320 				curr_distance = next_distance;
6321 			} else break;
6322 		}
6323 
6324 		/*
6325 		 * In case of sched_debug() we verify the above assumption.
6326 		 */
6327 		if (!sched_debug())
6328 			break;
6329 	}
6330 	/*
6331 	 * 'level' contains the number of unique distances, excluding the
6332 	 * identity distance node_distance(i,i).
6333 	 *
6334 	 * The sched_domains_numa_distance[] array includes the actual distance
6335 	 * numbers.
6336 	 */
6337 
6338 	/*
6339 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6340 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6341 	 * the array will contain less then 'level' members. This could be
6342 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6343 	 * in other functions.
6344 	 *
6345 	 * We reset it to 'level' at the end of this function.
6346 	 */
6347 	sched_domains_numa_levels = 0;
6348 
6349 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6350 	if (!sched_domains_numa_masks)
6351 		return;
6352 
6353 	/*
6354 	 * Now for each level, construct a mask per node which contains all
6355 	 * cpus of nodes that are that many hops away from us.
6356 	 */
6357 	for (i = 0; i < level; i++) {
6358 		sched_domains_numa_masks[i] =
6359 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6360 		if (!sched_domains_numa_masks[i])
6361 			return;
6362 
6363 		for (j = 0; j < nr_node_ids; j++) {
6364 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6365 			if (!mask)
6366 				return;
6367 
6368 			sched_domains_numa_masks[i][j] = mask;
6369 
6370 			for (k = 0; k < nr_node_ids; k++) {
6371 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6372 					continue;
6373 
6374 				cpumask_or(mask, mask, cpumask_of_node(k));
6375 			}
6376 		}
6377 	}
6378 
6379 	/* Compute default topology size */
6380 	for (i = 0; sched_domain_topology[i].mask; i++);
6381 
6382 	tl = kzalloc((i + level + 1) *
6383 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6384 	if (!tl)
6385 		return;
6386 
6387 	/*
6388 	 * Copy the default topology bits..
6389 	 */
6390 	for (i = 0; sched_domain_topology[i].mask; i++)
6391 		tl[i] = sched_domain_topology[i];
6392 
6393 	/*
6394 	 * .. and append 'j' levels of NUMA goodness.
6395 	 */
6396 	for (j = 0; j < level; i++, j++) {
6397 		tl[i] = (struct sched_domain_topology_level){
6398 			.mask = sd_numa_mask,
6399 			.sd_flags = cpu_numa_flags,
6400 			.flags = SDTL_OVERLAP,
6401 			.numa_level = j,
6402 			SD_INIT_NAME(NUMA)
6403 		};
6404 	}
6405 
6406 	sched_domain_topology = tl;
6407 
6408 	sched_domains_numa_levels = level;
6409 }
6410 
6411 static void sched_domains_numa_masks_set(int cpu)
6412 {
6413 	int i, j;
6414 	int node = cpu_to_node(cpu);
6415 
6416 	for (i = 0; i < sched_domains_numa_levels; i++) {
6417 		for (j = 0; j < nr_node_ids; j++) {
6418 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6419 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6420 		}
6421 	}
6422 }
6423 
6424 static void sched_domains_numa_masks_clear(int cpu)
6425 {
6426 	int i, j;
6427 	for (i = 0; i < sched_domains_numa_levels; i++) {
6428 		for (j = 0; j < nr_node_ids; j++)
6429 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6430 	}
6431 }
6432 
6433 /*
6434  * Update sched_domains_numa_masks[level][node] array when new cpus
6435  * are onlined.
6436  */
6437 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6438 					   unsigned long action,
6439 					   void *hcpu)
6440 {
6441 	int cpu = (long)hcpu;
6442 
6443 	switch (action & ~CPU_TASKS_FROZEN) {
6444 	case CPU_ONLINE:
6445 		sched_domains_numa_masks_set(cpu);
6446 		break;
6447 
6448 	case CPU_DEAD:
6449 		sched_domains_numa_masks_clear(cpu);
6450 		break;
6451 
6452 	default:
6453 		return NOTIFY_DONE;
6454 	}
6455 
6456 	return NOTIFY_OK;
6457 }
6458 #else
6459 static inline void sched_init_numa(void)
6460 {
6461 }
6462 
6463 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6464 					   unsigned long action,
6465 					   void *hcpu)
6466 {
6467 	return 0;
6468 }
6469 #endif /* CONFIG_NUMA */
6470 
6471 static int __sdt_alloc(const struct cpumask *cpu_map)
6472 {
6473 	struct sched_domain_topology_level *tl;
6474 	int j;
6475 
6476 	for_each_sd_topology(tl) {
6477 		struct sd_data *sdd = &tl->data;
6478 
6479 		sdd->sd = alloc_percpu(struct sched_domain *);
6480 		if (!sdd->sd)
6481 			return -ENOMEM;
6482 
6483 		sdd->sg = alloc_percpu(struct sched_group *);
6484 		if (!sdd->sg)
6485 			return -ENOMEM;
6486 
6487 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6488 		if (!sdd->sgc)
6489 			return -ENOMEM;
6490 
6491 		for_each_cpu(j, cpu_map) {
6492 			struct sched_domain *sd;
6493 			struct sched_group *sg;
6494 			struct sched_group_capacity *sgc;
6495 
6496 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6497 					GFP_KERNEL, cpu_to_node(j));
6498 			if (!sd)
6499 				return -ENOMEM;
6500 
6501 			*per_cpu_ptr(sdd->sd, j) = sd;
6502 
6503 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504 					GFP_KERNEL, cpu_to_node(j));
6505 			if (!sg)
6506 				return -ENOMEM;
6507 
6508 			sg->next = sg;
6509 
6510 			*per_cpu_ptr(sdd->sg, j) = sg;
6511 
6512 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6513 					GFP_KERNEL, cpu_to_node(j));
6514 			if (!sgc)
6515 				return -ENOMEM;
6516 
6517 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6518 		}
6519 	}
6520 
6521 	return 0;
6522 }
6523 
6524 static void __sdt_free(const struct cpumask *cpu_map)
6525 {
6526 	struct sched_domain_topology_level *tl;
6527 	int j;
6528 
6529 	for_each_sd_topology(tl) {
6530 		struct sd_data *sdd = &tl->data;
6531 
6532 		for_each_cpu(j, cpu_map) {
6533 			struct sched_domain *sd;
6534 
6535 			if (sdd->sd) {
6536 				sd = *per_cpu_ptr(sdd->sd, j);
6537 				if (sd && (sd->flags & SD_OVERLAP))
6538 					free_sched_groups(sd->groups, 0);
6539 				kfree(*per_cpu_ptr(sdd->sd, j));
6540 			}
6541 
6542 			if (sdd->sg)
6543 				kfree(*per_cpu_ptr(sdd->sg, j));
6544 			if (sdd->sgc)
6545 				kfree(*per_cpu_ptr(sdd->sgc, j));
6546 		}
6547 		free_percpu(sdd->sd);
6548 		sdd->sd = NULL;
6549 		free_percpu(sdd->sg);
6550 		sdd->sg = NULL;
6551 		free_percpu(sdd->sgc);
6552 		sdd->sgc = NULL;
6553 	}
6554 }
6555 
6556 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6557 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6558 		struct sched_domain *child, int cpu)
6559 {
6560 	struct sched_domain *sd = sd_init(tl, cpu);
6561 	if (!sd)
6562 		return child;
6563 
6564 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6565 	if (child) {
6566 		sd->level = child->level + 1;
6567 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6568 		child->parent = sd;
6569 		sd->child = child;
6570 
6571 		if (!cpumask_subset(sched_domain_span(child),
6572 				    sched_domain_span(sd))) {
6573 			pr_err("BUG: arch topology borken\n");
6574 #ifdef CONFIG_SCHED_DEBUG
6575 			pr_err("     the %s domain not a subset of the %s domain\n",
6576 					child->name, sd->name);
6577 #endif
6578 			/* Fixup, ensure @sd has at least @child cpus. */
6579 			cpumask_or(sched_domain_span(sd),
6580 				   sched_domain_span(sd),
6581 				   sched_domain_span(child));
6582 		}
6583 
6584 	}
6585 	set_domain_attribute(sd, attr);
6586 
6587 	return sd;
6588 }
6589 
6590 /*
6591  * Build sched domains for a given set of cpus and attach the sched domains
6592  * to the individual cpus
6593  */
6594 static int build_sched_domains(const struct cpumask *cpu_map,
6595 			       struct sched_domain_attr *attr)
6596 {
6597 	enum s_alloc alloc_state;
6598 	struct sched_domain *sd;
6599 	struct s_data d;
6600 	int i, ret = -ENOMEM;
6601 
6602 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6603 	if (alloc_state != sa_rootdomain)
6604 		goto error;
6605 
6606 	/* Set up domains for cpus specified by the cpu_map. */
6607 	for_each_cpu(i, cpu_map) {
6608 		struct sched_domain_topology_level *tl;
6609 
6610 		sd = NULL;
6611 		for_each_sd_topology(tl) {
6612 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6613 			if (tl == sched_domain_topology)
6614 				*per_cpu_ptr(d.sd, i) = sd;
6615 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6616 				sd->flags |= SD_OVERLAP;
6617 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6618 				break;
6619 		}
6620 	}
6621 
6622 	/* Build the groups for the domains */
6623 	for_each_cpu(i, cpu_map) {
6624 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6625 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6626 			if (sd->flags & SD_OVERLAP) {
6627 				if (build_overlap_sched_groups(sd, i))
6628 					goto error;
6629 			} else {
6630 				if (build_sched_groups(sd, i))
6631 					goto error;
6632 			}
6633 		}
6634 	}
6635 
6636 	/* Calculate CPU capacity for physical packages and nodes */
6637 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6638 		if (!cpumask_test_cpu(i, cpu_map))
6639 			continue;
6640 
6641 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6642 			claim_allocations(i, sd);
6643 			init_sched_groups_capacity(i, sd);
6644 		}
6645 	}
6646 
6647 	/* Attach the domains */
6648 	rcu_read_lock();
6649 	for_each_cpu(i, cpu_map) {
6650 		sd = *per_cpu_ptr(d.sd, i);
6651 		cpu_attach_domain(sd, d.rd, i);
6652 	}
6653 	rcu_read_unlock();
6654 
6655 	ret = 0;
6656 error:
6657 	__free_domain_allocs(&d, alloc_state, cpu_map);
6658 	return ret;
6659 }
6660 
6661 static cpumask_var_t *doms_cur;	/* current sched domains */
6662 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6663 static struct sched_domain_attr *dattr_cur;
6664 				/* attribues of custom domains in 'doms_cur' */
6665 
6666 /*
6667  * Special case: If a kmalloc of a doms_cur partition (array of
6668  * cpumask) fails, then fallback to a single sched domain,
6669  * as determined by the single cpumask fallback_doms.
6670  */
6671 static cpumask_var_t fallback_doms;
6672 
6673 /*
6674  * arch_update_cpu_topology lets virtualized architectures update the
6675  * cpu core maps. It is supposed to return 1 if the topology changed
6676  * or 0 if it stayed the same.
6677  */
6678 int __weak arch_update_cpu_topology(void)
6679 {
6680 	return 0;
6681 }
6682 
6683 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6684 {
6685 	int i;
6686 	cpumask_var_t *doms;
6687 
6688 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6689 	if (!doms)
6690 		return NULL;
6691 	for (i = 0; i < ndoms; i++) {
6692 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6693 			free_sched_domains(doms, i);
6694 			return NULL;
6695 		}
6696 	}
6697 	return doms;
6698 }
6699 
6700 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6701 {
6702 	unsigned int i;
6703 	for (i = 0; i < ndoms; i++)
6704 		free_cpumask_var(doms[i]);
6705 	kfree(doms);
6706 }
6707 
6708 /*
6709  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6710  * For now this just excludes isolated cpus, but could be used to
6711  * exclude other special cases in the future.
6712  */
6713 static int init_sched_domains(const struct cpumask *cpu_map)
6714 {
6715 	int err;
6716 
6717 	arch_update_cpu_topology();
6718 	ndoms_cur = 1;
6719 	doms_cur = alloc_sched_domains(ndoms_cur);
6720 	if (!doms_cur)
6721 		doms_cur = &fallback_doms;
6722 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6723 	err = build_sched_domains(doms_cur[0], NULL);
6724 	register_sched_domain_sysctl();
6725 
6726 	return err;
6727 }
6728 
6729 /*
6730  * Detach sched domains from a group of cpus specified in cpu_map
6731  * These cpus will now be attached to the NULL domain
6732  */
6733 static void detach_destroy_domains(const struct cpumask *cpu_map)
6734 {
6735 	int i;
6736 
6737 	rcu_read_lock();
6738 	for_each_cpu(i, cpu_map)
6739 		cpu_attach_domain(NULL, &def_root_domain, i);
6740 	rcu_read_unlock();
6741 }
6742 
6743 /* handle null as "default" */
6744 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6745 			struct sched_domain_attr *new, int idx_new)
6746 {
6747 	struct sched_domain_attr tmp;
6748 
6749 	/* fast path */
6750 	if (!new && !cur)
6751 		return 1;
6752 
6753 	tmp = SD_ATTR_INIT;
6754 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6755 			new ? (new + idx_new) : &tmp,
6756 			sizeof(struct sched_domain_attr));
6757 }
6758 
6759 /*
6760  * Partition sched domains as specified by the 'ndoms_new'
6761  * cpumasks in the array doms_new[] of cpumasks. This compares
6762  * doms_new[] to the current sched domain partitioning, doms_cur[].
6763  * It destroys each deleted domain and builds each new domain.
6764  *
6765  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6766  * The masks don't intersect (don't overlap.) We should setup one
6767  * sched domain for each mask. CPUs not in any of the cpumasks will
6768  * not be load balanced. If the same cpumask appears both in the
6769  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6770  * it as it is.
6771  *
6772  * The passed in 'doms_new' should be allocated using
6773  * alloc_sched_domains.  This routine takes ownership of it and will
6774  * free_sched_domains it when done with it. If the caller failed the
6775  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6776  * and partition_sched_domains() will fallback to the single partition
6777  * 'fallback_doms', it also forces the domains to be rebuilt.
6778  *
6779  * If doms_new == NULL it will be replaced with cpu_online_mask.
6780  * ndoms_new == 0 is a special case for destroying existing domains,
6781  * and it will not create the default domain.
6782  *
6783  * Call with hotplug lock held
6784  */
6785 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6786 			     struct sched_domain_attr *dattr_new)
6787 {
6788 	int i, j, n;
6789 	int new_topology;
6790 
6791 	mutex_lock(&sched_domains_mutex);
6792 
6793 	/* always unregister in case we don't destroy any domains */
6794 	unregister_sched_domain_sysctl();
6795 
6796 	/* Let architecture update cpu core mappings. */
6797 	new_topology = arch_update_cpu_topology();
6798 
6799 	n = doms_new ? ndoms_new : 0;
6800 
6801 	/* Destroy deleted domains */
6802 	for (i = 0; i < ndoms_cur; i++) {
6803 		for (j = 0; j < n && !new_topology; j++) {
6804 			if (cpumask_equal(doms_cur[i], doms_new[j])
6805 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6806 				goto match1;
6807 		}
6808 		/* no match - a current sched domain not in new doms_new[] */
6809 		detach_destroy_domains(doms_cur[i]);
6810 match1:
6811 		;
6812 	}
6813 
6814 	n = ndoms_cur;
6815 	if (doms_new == NULL) {
6816 		n = 0;
6817 		doms_new = &fallback_doms;
6818 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6819 		WARN_ON_ONCE(dattr_new);
6820 	}
6821 
6822 	/* Build new domains */
6823 	for (i = 0; i < ndoms_new; i++) {
6824 		for (j = 0; j < n && !new_topology; j++) {
6825 			if (cpumask_equal(doms_new[i], doms_cur[j])
6826 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6827 				goto match2;
6828 		}
6829 		/* no match - add a new doms_new */
6830 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6831 match2:
6832 		;
6833 	}
6834 
6835 	/* Remember the new sched domains */
6836 	if (doms_cur != &fallback_doms)
6837 		free_sched_domains(doms_cur, ndoms_cur);
6838 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6839 	doms_cur = doms_new;
6840 	dattr_cur = dattr_new;
6841 	ndoms_cur = ndoms_new;
6842 
6843 	register_sched_domain_sysctl();
6844 
6845 	mutex_unlock(&sched_domains_mutex);
6846 }
6847 
6848 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6849 
6850 /*
6851  * Update cpusets according to cpu_active mask.  If cpusets are
6852  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6853  * around partition_sched_domains().
6854  *
6855  * If we come here as part of a suspend/resume, don't touch cpusets because we
6856  * want to restore it back to its original state upon resume anyway.
6857  */
6858 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6859 			     void *hcpu)
6860 {
6861 	switch (action) {
6862 	case CPU_ONLINE_FROZEN:
6863 	case CPU_DOWN_FAILED_FROZEN:
6864 
6865 		/*
6866 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6867 		 * resume sequence. As long as this is not the last online
6868 		 * operation in the resume sequence, just build a single sched
6869 		 * domain, ignoring cpusets.
6870 		 */
6871 		num_cpus_frozen--;
6872 		if (likely(num_cpus_frozen)) {
6873 			partition_sched_domains(1, NULL, NULL);
6874 			break;
6875 		}
6876 
6877 		/*
6878 		 * This is the last CPU online operation. So fall through and
6879 		 * restore the original sched domains by considering the
6880 		 * cpuset configurations.
6881 		 */
6882 
6883 	case CPU_ONLINE:
6884 	case CPU_DOWN_FAILED:
6885 		cpuset_update_active_cpus(true);
6886 		break;
6887 	default:
6888 		return NOTIFY_DONE;
6889 	}
6890 	return NOTIFY_OK;
6891 }
6892 
6893 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6894 			       void *hcpu)
6895 {
6896 	switch (action) {
6897 	case CPU_DOWN_PREPARE:
6898 		cpuset_update_active_cpus(false);
6899 		break;
6900 	case CPU_DOWN_PREPARE_FROZEN:
6901 		num_cpus_frozen++;
6902 		partition_sched_domains(1, NULL, NULL);
6903 		break;
6904 	default:
6905 		return NOTIFY_DONE;
6906 	}
6907 	return NOTIFY_OK;
6908 }
6909 
6910 void __init sched_init_smp(void)
6911 {
6912 	cpumask_var_t non_isolated_cpus;
6913 
6914 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6915 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6916 
6917 	sched_init_numa();
6918 
6919 	/*
6920 	 * There's no userspace yet to cause hotplug operations; hence all the
6921 	 * cpu masks are stable and all blatant races in the below code cannot
6922 	 * happen.
6923 	 */
6924 	mutex_lock(&sched_domains_mutex);
6925 	init_sched_domains(cpu_active_mask);
6926 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6927 	if (cpumask_empty(non_isolated_cpus))
6928 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6929 	mutex_unlock(&sched_domains_mutex);
6930 
6931 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6932 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6933 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6934 
6935 	init_hrtick();
6936 
6937 	/* Move init over to a non-isolated CPU */
6938 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6939 		BUG();
6940 	sched_init_granularity();
6941 	free_cpumask_var(non_isolated_cpus);
6942 
6943 	init_sched_rt_class();
6944 	init_sched_dl_class();
6945 }
6946 #else
6947 void __init sched_init_smp(void)
6948 {
6949 	sched_init_granularity();
6950 }
6951 #endif /* CONFIG_SMP */
6952 
6953 const_debug unsigned int sysctl_timer_migration = 1;
6954 
6955 int in_sched_functions(unsigned long addr)
6956 {
6957 	return in_lock_functions(addr) ||
6958 		(addr >= (unsigned long)__sched_text_start
6959 		&& addr < (unsigned long)__sched_text_end);
6960 }
6961 
6962 #ifdef CONFIG_CGROUP_SCHED
6963 /*
6964  * Default task group.
6965  * Every task in system belongs to this group at bootup.
6966  */
6967 struct task_group root_task_group;
6968 LIST_HEAD(task_groups);
6969 #endif
6970 
6971 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6972 
6973 void __init sched_init(void)
6974 {
6975 	int i, j;
6976 	unsigned long alloc_size = 0, ptr;
6977 
6978 #ifdef CONFIG_FAIR_GROUP_SCHED
6979 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6980 #endif
6981 #ifdef CONFIG_RT_GROUP_SCHED
6982 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6983 #endif
6984 #ifdef CONFIG_CPUMASK_OFFSTACK
6985 	alloc_size += num_possible_cpus() * cpumask_size();
6986 #endif
6987 	if (alloc_size) {
6988 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6989 
6990 #ifdef CONFIG_FAIR_GROUP_SCHED
6991 		root_task_group.se = (struct sched_entity **)ptr;
6992 		ptr += nr_cpu_ids * sizeof(void **);
6993 
6994 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6995 		ptr += nr_cpu_ids * sizeof(void **);
6996 
6997 #endif /* CONFIG_FAIR_GROUP_SCHED */
6998 #ifdef CONFIG_RT_GROUP_SCHED
6999 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7000 		ptr += nr_cpu_ids * sizeof(void **);
7001 
7002 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7003 		ptr += nr_cpu_ids * sizeof(void **);
7004 
7005 #endif /* CONFIG_RT_GROUP_SCHED */
7006 #ifdef CONFIG_CPUMASK_OFFSTACK
7007 		for_each_possible_cpu(i) {
7008 			per_cpu(load_balance_mask, i) = (void *)ptr;
7009 			ptr += cpumask_size();
7010 		}
7011 #endif /* CONFIG_CPUMASK_OFFSTACK */
7012 	}
7013 
7014 	init_rt_bandwidth(&def_rt_bandwidth,
7015 			global_rt_period(), global_rt_runtime());
7016 	init_dl_bandwidth(&def_dl_bandwidth,
7017 			global_rt_period(), global_rt_runtime());
7018 
7019 #ifdef CONFIG_SMP
7020 	init_defrootdomain();
7021 #endif
7022 
7023 #ifdef CONFIG_RT_GROUP_SCHED
7024 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7025 			global_rt_period(), global_rt_runtime());
7026 #endif /* CONFIG_RT_GROUP_SCHED */
7027 
7028 #ifdef CONFIG_CGROUP_SCHED
7029 	list_add(&root_task_group.list, &task_groups);
7030 	INIT_LIST_HEAD(&root_task_group.children);
7031 	INIT_LIST_HEAD(&root_task_group.siblings);
7032 	autogroup_init(&init_task);
7033 
7034 #endif /* CONFIG_CGROUP_SCHED */
7035 
7036 	for_each_possible_cpu(i) {
7037 		struct rq *rq;
7038 
7039 		rq = cpu_rq(i);
7040 		raw_spin_lock_init(&rq->lock);
7041 		rq->nr_running = 0;
7042 		rq->calc_load_active = 0;
7043 		rq->calc_load_update = jiffies + LOAD_FREQ;
7044 		init_cfs_rq(&rq->cfs);
7045 		init_rt_rq(&rq->rt, rq);
7046 		init_dl_rq(&rq->dl, rq);
7047 #ifdef CONFIG_FAIR_GROUP_SCHED
7048 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7049 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7050 		/*
7051 		 * How much cpu bandwidth does root_task_group get?
7052 		 *
7053 		 * In case of task-groups formed thr' the cgroup filesystem, it
7054 		 * gets 100% of the cpu resources in the system. This overall
7055 		 * system cpu resource is divided among the tasks of
7056 		 * root_task_group and its child task-groups in a fair manner,
7057 		 * based on each entity's (task or task-group's) weight
7058 		 * (se->load.weight).
7059 		 *
7060 		 * In other words, if root_task_group has 10 tasks of weight
7061 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7062 		 * then A0's share of the cpu resource is:
7063 		 *
7064 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7065 		 *
7066 		 * We achieve this by letting root_task_group's tasks sit
7067 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7068 		 */
7069 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7070 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7071 #endif /* CONFIG_FAIR_GROUP_SCHED */
7072 
7073 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7074 #ifdef CONFIG_RT_GROUP_SCHED
7075 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7076 #endif
7077 
7078 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7079 			rq->cpu_load[j] = 0;
7080 
7081 		rq->last_load_update_tick = jiffies;
7082 
7083 #ifdef CONFIG_SMP
7084 		rq->sd = NULL;
7085 		rq->rd = NULL;
7086 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7087 		rq->post_schedule = 0;
7088 		rq->active_balance = 0;
7089 		rq->next_balance = jiffies;
7090 		rq->push_cpu = 0;
7091 		rq->cpu = i;
7092 		rq->online = 0;
7093 		rq->idle_stamp = 0;
7094 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7095 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7096 
7097 		INIT_LIST_HEAD(&rq->cfs_tasks);
7098 
7099 		rq_attach_root(rq, &def_root_domain);
7100 #ifdef CONFIG_NO_HZ_COMMON
7101 		rq->nohz_flags = 0;
7102 #endif
7103 #ifdef CONFIG_NO_HZ_FULL
7104 		rq->last_sched_tick = 0;
7105 #endif
7106 #endif
7107 		init_rq_hrtick(rq);
7108 		atomic_set(&rq->nr_iowait, 0);
7109 	}
7110 
7111 	set_load_weight(&init_task);
7112 
7113 #ifdef CONFIG_PREEMPT_NOTIFIERS
7114 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7115 #endif
7116 
7117 	/*
7118 	 * The boot idle thread does lazy MMU switching as well:
7119 	 */
7120 	atomic_inc(&init_mm.mm_count);
7121 	enter_lazy_tlb(&init_mm, current);
7122 
7123 	/*
7124 	 * Make us the idle thread. Technically, schedule() should not be
7125 	 * called from this thread, however somewhere below it might be,
7126 	 * but because we are the idle thread, we just pick up running again
7127 	 * when this runqueue becomes "idle".
7128 	 */
7129 	init_idle(current, smp_processor_id());
7130 
7131 	calc_load_update = jiffies + LOAD_FREQ;
7132 
7133 	/*
7134 	 * During early bootup we pretend to be a normal task:
7135 	 */
7136 	current->sched_class = &fair_sched_class;
7137 
7138 #ifdef CONFIG_SMP
7139 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7140 	/* May be allocated at isolcpus cmdline parse time */
7141 	if (cpu_isolated_map == NULL)
7142 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7143 	idle_thread_set_boot_cpu();
7144 	set_cpu_rq_start_time();
7145 #endif
7146 	init_sched_fair_class();
7147 
7148 	scheduler_running = 1;
7149 }
7150 
7151 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7152 static inline int preempt_count_equals(int preempt_offset)
7153 {
7154 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7155 
7156 	return (nested == preempt_offset);
7157 }
7158 
7159 void __might_sleep(const char *file, int line, int preempt_offset)
7160 {
7161 	static unsigned long prev_jiffy;	/* ratelimiting */
7162 
7163 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7164 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7165 	     !is_idle_task(current)) ||
7166 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7167 		return;
7168 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7169 		return;
7170 	prev_jiffy = jiffies;
7171 
7172 	printk(KERN_ERR
7173 		"BUG: sleeping function called from invalid context at %s:%d\n",
7174 			file, line);
7175 	printk(KERN_ERR
7176 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7177 			in_atomic(), irqs_disabled(),
7178 			current->pid, current->comm);
7179 
7180 	debug_show_held_locks(current);
7181 	if (irqs_disabled())
7182 		print_irqtrace_events(current);
7183 #ifdef CONFIG_DEBUG_PREEMPT
7184 	if (!preempt_count_equals(preempt_offset)) {
7185 		pr_err("Preemption disabled at:");
7186 		print_ip_sym(current->preempt_disable_ip);
7187 		pr_cont("\n");
7188 	}
7189 #endif
7190 	dump_stack();
7191 }
7192 EXPORT_SYMBOL(__might_sleep);
7193 #endif
7194 
7195 #ifdef CONFIG_MAGIC_SYSRQ
7196 static void normalize_task(struct rq *rq, struct task_struct *p)
7197 {
7198 	const struct sched_class *prev_class = p->sched_class;
7199 	struct sched_attr attr = {
7200 		.sched_policy = SCHED_NORMAL,
7201 	};
7202 	int old_prio = p->prio;
7203 	int queued;
7204 
7205 	queued = task_on_rq_queued(p);
7206 	if (queued)
7207 		dequeue_task(rq, p, 0);
7208 	__setscheduler(rq, p, &attr);
7209 	if (queued) {
7210 		enqueue_task(rq, p, 0);
7211 		resched_curr(rq);
7212 	}
7213 
7214 	check_class_changed(rq, p, prev_class, old_prio);
7215 }
7216 
7217 void normalize_rt_tasks(void)
7218 {
7219 	struct task_struct *g, *p;
7220 	unsigned long flags;
7221 	struct rq *rq;
7222 
7223 	read_lock(&tasklist_lock);
7224 	for_each_process_thread(g, p) {
7225 		/*
7226 		 * Only normalize user tasks:
7227 		 */
7228 		if (p->flags & PF_KTHREAD)
7229 			continue;
7230 
7231 		p->se.exec_start		= 0;
7232 #ifdef CONFIG_SCHEDSTATS
7233 		p->se.statistics.wait_start	= 0;
7234 		p->se.statistics.sleep_start	= 0;
7235 		p->se.statistics.block_start	= 0;
7236 #endif
7237 
7238 		if (!dl_task(p) && !rt_task(p)) {
7239 			/*
7240 			 * Renice negative nice level userspace
7241 			 * tasks back to 0:
7242 			 */
7243 			if (task_nice(p) < 0)
7244 				set_user_nice(p, 0);
7245 			continue;
7246 		}
7247 
7248 		rq = task_rq_lock(p, &flags);
7249 		normalize_task(rq, p);
7250 		task_rq_unlock(rq, p, &flags);
7251 	}
7252 	read_unlock(&tasklist_lock);
7253 }
7254 
7255 #endif /* CONFIG_MAGIC_SYSRQ */
7256 
7257 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7258 /*
7259  * These functions are only useful for the IA64 MCA handling, or kdb.
7260  *
7261  * They can only be called when the whole system has been
7262  * stopped - every CPU needs to be quiescent, and no scheduling
7263  * activity can take place. Using them for anything else would
7264  * be a serious bug, and as a result, they aren't even visible
7265  * under any other configuration.
7266  */
7267 
7268 /**
7269  * curr_task - return the current task for a given cpu.
7270  * @cpu: the processor in question.
7271  *
7272  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7273  *
7274  * Return: The current task for @cpu.
7275  */
7276 struct task_struct *curr_task(int cpu)
7277 {
7278 	return cpu_curr(cpu);
7279 }
7280 
7281 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7282 
7283 #ifdef CONFIG_IA64
7284 /**
7285  * set_curr_task - set the current task for a given cpu.
7286  * @cpu: the processor in question.
7287  * @p: the task pointer to set.
7288  *
7289  * Description: This function must only be used when non-maskable interrupts
7290  * are serviced on a separate stack. It allows the architecture to switch the
7291  * notion of the current task on a cpu in a non-blocking manner. This function
7292  * must be called with all CPU's synchronized, and interrupts disabled, the
7293  * and caller must save the original value of the current task (see
7294  * curr_task() above) and restore that value before reenabling interrupts and
7295  * re-starting the system.
7296  *
7297  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7298  */
7299 void set_curr_task(int cpu, struct task_struct *p)
7300 {
7301 	cpu_curr(cpu) = p;
7302 }
7303 
7304 #endif
7305 
7306 #ifdef CONFIG_CGROUP_SCHED
7307 /* task_group_lock serializes the addition/removal of task groups */
7308 static DEFINE_SPINLOCK(task_group_lock);
7309 
7310 static void free_sched_group(struct task_group *tg)
7311 {
7312 	free_fair_sched_group(tg);
7313 	free_rt_sched_group(tg);
7314 	autogroup_free(tg);
7315 	kfree(tg);
7316 }
7317 
7318 /* allocate runqueue etc for a new task group */
7319 struct task_group *sched_create_group(struct task_group *parent)
7320 {
7321 	struct task_group *tg;
7322 
7323 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7324 	if (!tg)
7325 		return ERR_PTR(-ENOMEM);
7326 
7327 	if (!alloc_fair_sched_group(tg, parent))
7328 		goto err;
7329 
7330 	if (!alloc_rt_sched_group(tg, parent))
7331 		goto err;
7332 
7333 	return tg;
7334 
7335 err:
7336 	free_sched_group(tg);
7337 	return ERR_PTR(-ENOMEM);
7338 }
7339 
7340 void sched_online_group(struct task_group *tg, struct task_group *parent)
7341 {
7342 	unsigned long flags;
7343 
7344 	spin_lock_irqsave(&task_group_lock, flags);
7345 	list_add_rcu(&tg->list, &task_groups);
7346 
7347 	WARN_ON(!parent); /* root should already exist */
7348 
7349 	tg->parent = parent;
7350 	INIT_LIST_HEAD(&tg->children);
7351 	list_add_rcu(&tg->siblings, &parent->children);
7352 	spin_unlock_irqrestore(&task_group_lock, flags);
7353 }
7354 
7355 /* rcu callback to free various structures associated with a task group */
7356 static void free_sched_group_rcu(struct rcu_head *rhp)
7357 {
7358 	/* now it should be safe to free those cfs_rqs */
7359 	free_sched_group(container_of(rhp, struct task_group, rcu));
7360 }
7361 
7362 /* Destroy runqueue etc associated with a task group */
7363 void sched_destroy_group(struct task_group *tg)
7364 {
7365 	/* wait for possible concurrent references to cfs_rqs complete */
7366 	call_rcu(&tg->rcu, free_sched_group_rcu);
7367 }
7368 
7369 void sched_offline_group(struct task_group *tg)
7370 {
7371 	unsigned long flags;
7372 	int i;
7373 
7374 	/* end participation in shares distribution */
7375 	for_each_possible_cpu(i)
7376 		unregister_fair_sched_group(tg, i);
7377 
7378 	spin_lock_irqsave(&task_group_lock, flags);
7379 	list_del_rcu(&tg->list);
7380 	list_del_rcu(&tg->siblings);
7381 	spin_unlock_irqrestore(&task_group_lock, flags);
7382 }
7383 
7384 /* change task's runqueue when it moves between groups.
7385  *	The caller of this function should have put the task in its new group
7386  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7387  *	reflect its new group.
7388  */
7389 void sched_move_task(struct task_struct *tsk)
7390 {
7391 	struct task_group *tg;
7392 	int queued, running;
7393 	unsigned long flags;
7394 	struct rq *rq;
7395 
7396 	rq = task_rq_lock(tsk, &flags);
7397 
7398 	running = task_current(rq, tsk);
7399 	queued = task_on_rq_queued(tsk);
7400 
7401 	if (queued)
7402 		dequeue_task(rq, tsk, 0);
7403 	if (unlikely(running))
7404 		put_prev_task(rq, tsk);
7405 
7406 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7407 				lockdep_is_held(&tsk->sighand->siglock)),
7408 			  struct task_group, css);
7409 	tg = autogroup_task_group(tsk, tg);
7410 	tsk->sched_task_group = tg;
7411 
7412 #ifdef CONFIG_FAIR_GROUP_SCHED
7413 	if (tsk->sched_class->task_move_group)
7414 		tsk->sched_class->task_move_group(tsk, queued);
7415 	else
7416 #endif
7417 		set_task_rq(tsk, task_cpu(tsk));
7418 
7419 	if (unlikely(running))
7420 		tsk->sched_class->set_curr_task(rq);
7421 	if (queued)
7422 		enqueue_task(rq, tsk, 0);
7423 
7424 	task_rq_unlock(rq, tsk, &flags);
7425 }
7426 #endif /* CONFIG_CGROUP_SCHED */
7427 
7428 #ifdef CONFIG_RT_GROUP_SCHED
7429 /*
7430  * Ensure that the real time constraints are schedulable.
7431  */
7432 static DEFINE_MUTEX(rt_constraints_mutex);
7433 
7434 /* Must be called with tasklist_lock held */
7435 static inline int tg_has_rt_tasks(struct task_group *tg)
7436 {
7437 	struct task_struct *g, *p;
7438 
7439 	for_each_process_thread(g, p) {
7440 		if (rt_task(p) && task_group(p) == tg)
7441 			return 1;
7442 	}
7443 
7444 	return 0;
7445 }
7446 
7447 struct rt_schedulable_data {
7448 	struct task_group *tg;
7449 	u64 rt_period;
7450 	u64 rt_runtime;
7451 };
7452 
7453 static int tg_rt_schedulable(struct task_group *tg, void *data)
7454 {
7455 	struct rt_schedulable_data *d = data;
7456 	struct task_group *child;
7457 	unsigned long total, sum = 0;
7458 	u64 period, runtime;
7459 
7460 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461 	runtime = tg->rt_bandwidth.rt_runtime;
7462 
7463 	if (tg == d->tg) {
7464 		period = d->rt_period;
7465 		runtime = d->rt_runtime;
7466 	}
7467 
7468 	/*
7469 	 * Cannot have more runtime than the period.
7470 	 */
7471 	if (runtime > period && runtime != RUNTIME_INF)
7472 		return -EINVAL;
7473 
7474 	/*
7475 	 * Ensure we don't starve existing RT tasks.
7476 	 */
7477 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7478 		return -EBUSY;
7479 
7480 	total = to_ratio(period, runtime);
7481 
7482 	/*
7483 	 * Nobody can have more than the global setting allows.
7484 	 */
7485 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7486 		return -EINVAL;
7487 
7488 	/*
7489 	 * The sum of our children's runtime should not exceed our own.
7490 	 */
7491 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7492 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7493 		runtime = child->rt_bandwidth.rt_runtime;
7494 
7495 		if (child == d->tg) {
7496 			period = d->rt_period;
7497 			runtime = d->rt_runtime;
7498 		}
7499 
7500 		sum += to_ratio(period, runtime);
7501 	}
7502 
7503 	if (sum > total)
7504 		return -EINVAL;
7505 
7506 	return 0;
7507 }
7508 
7509 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7510 {
7511 	int ret;
7512 
7513 	struct rt_schedulable_data data = {
7514 		.tg = tg,
7515 		.rt_period = period,
7516 		.rt_runtime = runtime,
7517 	};
7518 
7519 	rcu_read_lock();
7520 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7521 	rcu_read_unlock();
7522 
7523 	return ret;
7524 }
7525 
7526 static int tg_set_rt_bandwidth(struct task_group *tg,
7527 		u64 rt_period, u64 rt_runtime)
7528 {
7529 	int i, err = 0;
7530 
7531 	mutex_lock(&rt_constraints_mutex);
7532 	read_lock(&tasklist_lock);
7533 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7534 	if (err)
7535 		goto unlock;
7536 
7537 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7538 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7539 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7540 
7541 	for_each_possible_cpu(i) {
7542 		struct rt_rq *rt_rq = tg->rt_rq[i];
7543 
7544 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7545 		rt_rq->rt_runtime = rt_runtime;
7546 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7547 	}
7548 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7549 unlock:
7550 	read_unlock(&tasklist_lock);
7551 	mutex_unlock(&rt_constraints_mutex);
7552 
7553 	return err;
7554 }
7555 
7556 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7557 {
7558 	u64 rt_runtime, rt_period;
7559 
7560 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7561 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7562 	if (rt_runtime_us < 0)
7563 		rt_runtime = RUNTIME_INF;
7564 
7565 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7566 }
7567 
7568 static long sched_group_rt_runtime(struct task_group *tg)
7569 {
7570 	u64 rt_runtime_us;
7571 
7572 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7573 		return -1;
7574 
7575 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7576 	do_div(rt_runtime_us, NSEC_PER_USEC);
7577 	return rt_runtime_us;
7578 }
7579 
7580 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7581 {
7582 	u64 rt_runtime, rt_period;
7583 
7584 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7585 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7586 
7587 	if (rt_period == 0)
7588 		return -EINVAL;
7589 
7590 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7591 }
7592 
7593 static long sched_group_rt_period(struct task_group *tg)
7594 {
7595 	u64 rt_period_us;
7596 
7597 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7598 	do_div(rt_period_us, NSEC_PER_USEC);
7599 	return rt_period_us;
7600 }
7601 #endif /* CONFIG_RT_GROUP_SCHED */
7602 
7603 #ifdef CONFIG_RT_GROUP_SCHED
7604 static int sched_rt_global_constraints(void)
7605 {
7606 	int ret = 0;
7607 
7608 	mutex_lock(&rt_constraints_mutex);
7609 	read_lock(&tasklist_lock);
7610 	ret = __rt_schedulable(NULL, 0, 0);
7611 	read_unlock(&tasklist_lock);
7612 	mutex_unlock(&rt_constraints_mutex);
7613 
7614 	return ret;
7615 }
7616 
7617 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7618 {
7619 	/* Don't accept realtime tasks when there is no way for them to run */
7620 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7621 		return 0;
7622 
7623 	return 1;
7624 }
7625 
7626 #else /* !CONFIG_RT_GROUP_SCHED */
7627 static int sched_rt_global_constraints(void)
7628 {
7629 	unsigned long flags;
7630 	int i, ret = 0;
7631 
7632 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7633 	for_each_possible_cpu(i) {
7634 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7635 
7636 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7637 		rt_rq->rt_runtime = global_rt_runtime();
7638 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7639 	}
7640 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7641 
7642 	return ret;
7643 }
7644 #endif /* CONFIG_RT_GROUP_SCHED */
7645 
7646 static int sched_dl_global_constraints(void)
7647 {
7648 	u64 runtime = global_rt_runtime();
7649 	u64 period = global_rt_period();
7650 	u64 new_bw = to_ratio(period, runtime);
7651 	struct dl_bw *dl_b;
7652 	int cpu, ret = 0;
7653 	unsigned long flags;
7654 
7655 	/*
7656 	 * Here we want to check the bandwidth not being set to some
7657 	 * value smaller than the currently allocated bandwidth in
7658 	 * any of the root_domains.
7659 	 *
7660 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7661 	 * cycling on root_domains... Discussion on different/better
7662 	 * solutions is welcome!
7663 	 */
7664 	for_each_possible_cpu(cpu) {
7665 		rcu_read_lock_sched();
7666 		dl_b = dl_bw_of(cpu);
7667 
7668 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7669 		if (new_bw < dl_b->total_bw)
7670 			ret = -EBUSY;
7671 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7672 
7673 		rcu_read_unlock_sched();
7674 
7675 		if (ret)
7676 			break;
7677 	}
7678 
7679 	return ret;
7680 }
7681 
7682 static void sched_dl_do_global(void)
7683 {
7684 	u64 new_bw = -1;
7685 	struct dl_bw *dl_b;
7686 	int cpu;
7687 	unsigned long flags;
7688 
7689 	def_dl_bandwidth.dl_period = global_rt_period();
7690 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7691 
7692 	if (global_rt_runtime() != RUNTIME_INF)
7693 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7694 
7695 	/*
7696 	 * FIXME: As above...
7697 	 */
7698 	for_each_possible_cpu(cpu) {
7699 		rcu_read_lock_sched();
7700 		dl_b = dl_bw_of(cpu);
7701 
7702 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7703 		dl_b->bw = new_bw;
7704 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7705 
7706 		rcu_read_unlock_sched();
7707 	}
7708 }
7709 
7710 static int sched_rt_global_validate(void)
7711 {
7712 	if (sysctl_sched_rt_period <= 0)
7713 		return -EINVAL;
7714 
7715 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7716 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7717 		return -EINVAL;
7718 
7719 	return 0;
7720 }
7721 
7722 static void sched_rt_do_global(void)
7723 {
7724 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7725 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7726 }
7727 
7728 int sched_rt_handler(struct ctl_table *table, int write,
7729 		void __user *buffer, size_t *lenp,
7730 		loff_t *ppos)
7731 {
7732 	int old_period, old_runtime;
7733 	static DEFINE_MUTEX(mutex);
7734 	int ret;
7735 
7736 	mutex_lock(&mutex);
7737 	old_period = sysctl_sched_rt_period;
7738 	old_runtime = sysctl_sched_rt_runtime;
7739 
7740 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7741 
7742 	if (!ret && write) {
7743 		ret = sched_rt_global_validate();
7744 		if (ret)
7745 			goto undo;
7746 
7747 		ret = sched_rt_global_constraints();
7748 		if (ret)
7749 			goto undo;
7750 
7751 		ret = sched_dl_global_constraints();
7752 		if (ret)
7753 			goto undo;
7754 
7755 		sched_rt_do_global();
7756 		sched_dl_do_global();
7757 	}
7758 	if (0) {
7759 undo:
7760 		sysctl_sched_rt_period = old_period;
7761 		sysctl_sched_rt_runtime = old_runtime;
7762 	}
7763 	mutex_unlock(&mutex);
7764 
7765 	return ret;
7766 }
7767 
7768 int sched_rr_handler(struct ctl_table *table, int write,
7769 		void __user *buffer, size_t *lenp,
7770 		loff_t *ppos)
7771 {
7772 	int ret;
7773 	static DEFINE_MUTEX(mutex);
7774 
7775 	mutex_lock(&mutex);
7776 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7777 	/* make sure that internally we keep jiffies */
7778 	/* also, writing zero resets timeslice to default */
7779 	if (!ret && write) {
7780 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7781 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7782 	}
7783 	mutex_unlock(&mutex);
7784 	return ret;
7785 }
7786 
7787 #ifdef CONFIG_CGROUP_SCHED
7788 
7789 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7790 {
7791 	return css ? container_of(css, struct task_group, css) : NULL;
7792 }
7793 
7794 static struct cgroup_subsys_state *
7795 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7796 {
7797 	struct task_group *parent = css_tg(parent_css);
7798 	struct task_group *tg;
7799 
7800 	if (!parent) {
7801 		/* This is early initialization for the top cgroup */
7802 		return &root_task_group.css;
7803 	}
7804 
7805 	tg = sched_create_group(parent);
7806 	if (IS_ERR(tg))
7807 		return ERR_PTR(-ENOMEM);
7808 
7809 	return &tg->css;
7810 }
7811 
7812 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7813 {
7814 	struct task_group *tg = css_tg(css);
7815 	struct task_group *parent = css_tg(css->parent);
7816 
7817 	if (parent)
7818 		sched_online_group(tg, parent);
7819 	return 0;
7820 }
7821 
7822 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7823 {
7824 	struct task_group *tg = css_tg(css);
7825 
7826 	sched_destroy_group(tg);
7827 }
7828 
7829 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7830 {
7831 	struct task_group *tg = css_tg(css);
7832 
7833 	sched_offline_group(tg);
7834 }
7835 
7836 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7837 				 struct cgroup_taskset *tset)
7838 {
7839 	struct task_struct *task;
7840 
7841 	cgroup_taskset_for_each(task, tset) {
7842 #ifdef CONFIG_RT_GROUP_SCHED
7843 		if (!sched_rt_can_attach(css_tg(css), task))
7844 			return -EINVAL;
7845 #else
7846 		/* We don't support RT-tasks being in separate groups */
7847 		if (task->sched_class != &fair_sched_class)
7848 			return -EINVAL;
7849 #endif
7850 	}
7851 	return 0;
7852 }
7853 
7854 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7855 			      struct cgroup_taskset *tset)
7856 {
7857 	struct task_struct *task;
7858 
7859 	cgroup_taskset_for_each(task, tset)
7860 		sched_move_task(task);
7861 }
7862 
7863 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7864 			    struct cgroup_subsys_state *old_css,
7865 			    struct task_struct *task)
7866 {
7867 	/*
7868 	 * cgroup_exit() is called in the copy_process() failure path.
7869 	 * Ignore this case since the task hasn't ran yet, this avoids
7870 	 * trying to poke a half freed task state from generic code.
7871 	 */
7872 	if (!(task->flags & PF_EXITING))
7873 		return;
7874 
7875 	sched_move_task(task);
7876 }
7877 
7878 #ifdef CONFIG_FAIR_GROUP_SCHED
7879 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7880 				struct cftype *cftype, u64 shareval)
7881 {
7882 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7883 }
7884 
7885 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7886 			       struct cftype *cft)
7887 {
7888 	struct task_group *tg = css_tg(css);
7889 
7890 	return (u64) scale_load_down(tg->shares);
7891 }
7892 
7893 #ifdef CONFIG_CFS_BANDWIDTH
7894 static DEFINE_MUTEX(cfs_constraints_mutex);
7895 
7896 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7897 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7898 
7899 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7900 
7901 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7902 {
7903 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7904 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7905 
7906 	if (tg == &root_task_group)
7907 		return -EINVAL;
7908 
7909 	/*
7910 	 * Ensure we have at some amount of bandwidth every period.  This is
7911 	 * to prevent reaching a state of large arrears when throttled via
7912 	 * entity_tick() resulting in prolonged exit starvation.
7913 	 */
7914 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7915 		return -EINVAL;
7916 
7917 	/*
7918 	 * Likewise, bound things on the otherside by preventing insane quota
7919 	 * periods.  This also allows us to normalize in computing quota
7920 	 * feasibility.
7921 	 */
7922 	if (period > max_cfs_quota_period)
7923 		return -EINVAL;
7924 
7925 	/*
7926 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7927 	 * unthrottle_offline_cfs_rqs().
7928 	 */
7929 	get_online_cpus();
7930 	mutex_lock(&cfs_constraints_mutex);
7931 	ret = __cfs_schedulable(tg, period, quota);
7932 	if (ret)
7933 		goto out_unlock;
7934 
7935 	runtime_enabled = quota != RUNTIME_INF;
7936 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7937 	/*
7938 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7939 	 * before making related changes, and on->off must occur afterwards
7940 	 */
7941 	if (runtime_enabled && !runtime_was_enabled)
7942 		cfs_bandwidth_usage_inc();
7943 	raw_spin_lock_irq(&cfs_b->lock);
7944 	cfs_b->period = ns_to_ktime(period);
7945 	cfs_b->quota = quota;
7946 
7947 	__refill_cfs_bandwidth_runtime(cfs_b);
7948 	/* restart the period timer (if active) to handle new period expiry */
7949 	if (runtime_enabled && cfs_b->timer_active) {
7950 		/* force a reprogram */
7951 		__start_cfs_bandwidth(cfs_b, true);
7952 	}
7953 	raw_spin_unlock_irq(&cfs_b->lock);
7954 
7955 	for_each_online_cpu(i) {
7956 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7957 		struct rq *rq = cfs_rq->rq;
7958 
7959 		raw_spin_lock_irq(&rq->lock);
7960 		cfs_rq->runtime_enabled = runtime_enabled;
7961 		cfs_rq->runtime_remaining = 0;
7962 
7963 		if (cfs_rq->throttled)
7964 			unthrottle_cfs_rq(cfs_rq);
7965 		raw_spin_unlock_irq(&rq->lock);
7966 	}
7967 	if (runtime_was_enabled && !runtime_enabled)
7968 		cfs_bandwidth_usage_dec();
7969 out_unlock:
7970 	mutex_unlock(&cfs_constraints_mutex);
7971 	put_online_cpus();
7972 
7973 	return ret;
7974 }
7975 
7976 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7977 {
7978 	u64 quota, period;
7979 
7980 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7981 	if (cfs_quota_us < 0)
7982 		quota = RUNTIME_INF;
7983 	else
7984 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7985 
7986 	return tg_set_cfs_bandwidth(tg, period, quota);
7987 }
7988 
7989 long tg_get_cfs_quota(struct task_group *tg)
7990 {
7991 	u64 quota_us;
7992 
7993 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7994 		return -1;
7995 
7996 	quota_us = tg->cfs_bandwidth.quota;
7997 	do_div(quota_us, NSEC_PER_USEC);
7998 
7999 	return quota_us;
8000 }
8001 
8002 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8003 {
8004 	u64 quota, period;
8005 
8006 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8007 	quota = tg->cfs_bandwidth.quota;
8008 
8009 	return tg_set_cfs_bandwidth(tg, period, quota);
8010 }
8011 
8012 long tg_get_cfs_period(struct task_group *tg)
8013 {
8014 	u64 cfs_period_us;
8015 
8016 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8017 	do_div(cfs_period_us, NSEC_PER_USEC);
8018 
8019 	return cfs_period_us;
8020 }
8021 
8022 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8023 				  struct cftype *cft)
8024 {
8025 	return tg_get_cfs_quota(css_tg(css));
8026 }
8027 
8028 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8029 				   struct cftype *cftype, s64 cfs_quota_us)
8030 {
8031 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8032 }
8033 
8034 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8035 				   struct cftype *cft)
8036 {
8037 	return tg_get_cfs_period(css_tg(css));
8038 }
8039 
8040 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8041 				    struct cftype *cftype, u64 cfs_period_us)
8042 {
8043 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8044 }
8045 
8046 struct cfs_schedulable_data {
8047 	struct task_group *tg;
8048 	u64 period, quota;
8049 };
8050 
8051 /*
8052  * normalize group quota/period to be quota/max_period
8053  * note: units are usecs
8054  */
8055 static u64 normalize_cfs_quota(struct task_group *tg,
8056 			       struct cfs_schedulable_data *d)
8057 {
8058 	u64 quota, period;
8059 
8060 	if (tg == d->tg) {
8061 		period = d->period;
8062 		quota = d->quota;
8063 	} else {
8064 		period = tg_get_cfs_period(tg);
8065 		quota = tg_get_cfs_quota(tg);
8066 	}
8067 
8068 	/* note: these should typically be equivalent */
8069 	if (quota == RUNTIME_INF || quota == -1)
8070 		return RUNTIME_INF;
8071 
8072 	return to_ratio(period, quota);
8073 }
8074 
8075 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8076 {
8077 	struct cfs_schedulable_data *d = data;
8078 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8079 	s64 quota = 0, parent_quota = -1;
8080 
8081 	if (!tg->parent) {
8082 		quota = RUNTIME_INF;
8083 	} else {
8084 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8085 
8086 		quota = normalize_cfs_quota(tg, d);
8087 		parent_quota = parent_b->hierarchical_quota;
8088 
8089 		/*
8090 		 * ensure max(child_quota) <= parent_quota, inherit when no
8091 		 * limit is set
8092 		 */
8093 		if (quota == RUNTIME_INF)
8094 			quota = parent_quota;
8095 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8096 			return -EINVAL;
8097 	}
8098 	cfs_b->hierarchical_quota = quota;
8099 
8100 	return 0;
8101 }
8102 
8103 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8104 {
8105 	int ret;
8106 	struct cfs_schedulable_data data = {
8107 		.tg = tg,
8108 		.period = period,
8109 		.quota = quota,
8110 	};
8111 
8112 	if (quota != RUNTIME_INF) {
8113 		do_div(data.period, NSEC_PER_USEC);
8114 		do_div(data.quota, NSEC_PER_USEC);
8115 	}
8116 
8117 	rcu_read_lock();
8118 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8119 	rcu_read_unlock();
8120 
8121 	return ret;
8122 }
8123 
8124 static int cpu_stats_show(struct seq_file *sf, void *v)
8125 {
8126 	struct task_group *tg = css_tg(seq_css(sf));
8127 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8128 
8129 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8130 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8131 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8132 
8133 	return 0;
8134 }
8135 #endif /* CONFIG_CFS_BANDWIDTH */
8136 #endif /* CONFIG_FAIR_GROUP_SCHED */
8137 
8138 #ifdef CONFIG_RT_GROUP_SCHED
8139 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8140 				struct cftype *cft, s64 val)
8141 {
8142 	return sched_group_set_rt_runtime(css_tg(css), val);
8143 }
8144 
8145 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8146 			       struct cftype *cft)
8147 {
8148 	return sched_group_rt_runtime(css_tg(css));
8149 }
8150 
8151 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8152 				    struct cftype *cftype, u64 rt_period_us)
8153 {
8154 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8155 }
8156 
8157 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8158 				   struct cftype *cft)
8159 {
8160 	return sched_group_rt_period(css_tg(css));
8161 }
8162 #endif /* CONFIG_RT_GROUP_SCHED */
8163 
8164 static struct cftype cpu_files[] = {
8165 #ifdef CONFIG_FAIR_GROUP_SCHED
8166 	{
8167 		.name = "shares",
8168 		.read_u64 = cpu_shares_read_u64,
8169 		.write_u64 = cpu_shares_write_u64,
8170 	},
8171 #endif
8172 #ifdef CONFIG_CFS_BANDWIDTH
8173 	{
8174 		.name = "cfs_quota_us",
8175 		.read_s64 = cpu_cfs_quota_read_s64,
8176 		.write_s64 = cpu_cfs_quota_write_s64,
8177 	},
8178 	{
8179 		.name = "cfs_period_us",
8180 		.read_u64 = cpu_cfs_period_read_u64,
8181 		.write_u64 = cpu_cfs_period_write_u64,
8182 	},
8183 	{
8184 		.name = "stat",
8185 		.seq_show = cpu_stats_show,
8186 	},
8187 #endif
8188 #ifdef CONFIG_RT_GROUP_SCHED
8189 	{
8190 		.name = "rt_runtime_us",
8191 		.read_s64 = cpu_rt_runtime_read,
8192 		.write_s64 = cpu_rt_runtime_write,
8193 	},
8194 	{
8195 		.name = "rt_period_us",
8196 		.read_u64 = cpu_rt_period_read_uint,
8197 		.write_u64 = cpu_rt_period_write_uint,
8198 	},
8199 #endif
8200 	{ }	/* terminate */
8201 };
8202 
8203 struct cgroup_subsys cpu_cgrp_subsys = {
8204 	.css_alloc	= cpu_cgroup_css_alloc,
8205 	.css_free	= cpu_cgroup_css_free,
8206 	.css_online	= cpu_cgroup_css_online,
8207 	.css_offline	= cpu_cgroup_css_offline,
8208 	.can_attach	= cpu_cgroup_can_attach,
8209 	.attach		= cpu_cgroup_attach,
8210 	.exit		= cpu_cgroup_exit,
8211 	.legacy_cftypes	= cpu_files,
8212 	.early_init	= 1,
8213 };
8214 
8215 #endif	/* CONFIG_CGROUP_SCHED */
8216 
8217 void dump_cpu_task(int cpu)
8218 {
8219 	pr_info("Task dump for CPU %d:\n", cpu);
8220 	sched_show_task(cpu_curr(cpu));
8221 }
8222