xref: /openbmc/linux/kernel/sched/core.c (revision c20cf065)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = rq->hrtick_time;
359 
360 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 	struct rq_flags rf;
370 
371 	rq_lock(rq, &rf);
372 	__hrtick_restart(rq);
373 	rq_unlock(rq, &rf);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	if (rq == this_rq())
394 		__hrtick_restart(rq);
395 	else
396 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
397 }
398 
399 #else
400 /*
401  * Called to set the hrtick timer state.
402  *
403  * called with rq->lock held and irqs disabled
404  */
405 void hrtick_start(struct rq *rq, u64 delay)
406 {
407 	/*
408 	 * Don't schedule slices shorter than 10000ns, that just
409 	 * doesn't make sense. Rely on vruntime for fairness.
410 	 */
411 	delay = max_t(u64, delay, 10000LL);
412 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
413 		      HRTIMER_MODE_REL_PINNED_HARD);
414 }
415 
416 #endif /* CONFIG_SMP */
417 
418 static void hrtick_rq_init(struct rq *rq)
419 {
420 #ifdef CONFIG_SMP
421 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
422 #endif
423 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
424 	rq->hrtick_timer.function = hrtick;
425 }
426 #else	/* CONFIG_SCHED_HRTICK */
427 static inline void hrtick_clear(struct rq *rq)
428 {
429 }
430 
431 static inline void hrtick_rq_init(struct rq *rq)
432 {
433 }
434 #endif	/* CONFIG_SCHED_HRTICK */
435 
436 /*
437  * cmpxchg based fetch_or, macro so it works for different integer types
438  */
439 #define fetch_or(ptr, mask)						\
440 	({								\
441 		typeof(ptr) _ptr = (ptr);				\
442 		typeof(mask) _mask = (mask);				\
443 		typeof(*_ptr) _old, _val = *_ptr;			\
444 									\
445 		for (;;) {						\
446 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
447 			if (_old == _val)				\
448 				break;					\
449 			_val = _old;					\
450 		}							\
451 	_old;								\
452 })
453 
454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
455 /*
456  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457  * this avoids any races wrt polling state changes and thereby avoids
458  * spurious IPIs.
459  */
460 static bool set_nr_and_not_polling(struct task_struct *p)
461 {
462 	struct thread_info *ti = task_thread_info(p);
463 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464 }
465 
466 /*
467  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468  *
469  * If this returns true, then the idle task promises to call
470  * sched_ttwu_pending() and reschedule soon.
471  */
472 static bool set_nr_if_polling(struct task_struct *p)
473 {
474 	struct thread_info *ti = task_thread_info(p);
475 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
476 
477 	for (;;) {
478 		if (!(val & _TIF_POLLING_NRFLAG))
479 			return false;
480 		if (val & _TIF_NEED_RESCHED)
481 			return true;
482 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 		if (old == val)
484 			break;
485 		val = old;
486 	}
487 	return true;
488 }
489 
490 #else
491 static bool set_nr_and_not_polling(struct task_struct *p)
492 {
493 	set_tsk_need_resched(p);
494 	return true;
495 }
496 
497 #ifdef CONFIG_SMP
498 static bool set_nr_if_polling(struct task_struct *p)
499 {
500 	return false;
501 }
502 #endif
503 #endif
504 
505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
506 {
507 	struct wake_q_node *node = &task->wake_q;
508 
509 	/*
510 	 * Atomically grab the task, if ->wake_q is !nil already it means
511 	 * it's already queued (either by us or someone else) and will get the
512 	 * wakeup due to that.
513 	 *
514 	 * In order to ensure that a pending wakeup will observe our pending
515 	 * state, even in the failed case, an explicit smp_mb() must be used.
516 	 */
517 	smp_mb__before_atomic();
518 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
519 		return false;
520 
521 	/*
522 	 * The head is context local, there can be no concurrency.
523 	 */
524 	*head->lastp = node;
525 	head->lastp = &node->next;
526 	return true;
527 }
528 
529 /**
530  * wake_q_add() - queue a wakeup for 'later' waking.
531  * @head: the wake_q_head to add @task to
532  * @task: the task to queue for 'later' wakeup
533  *
534  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536  * instantly.
537  *
538  * This function must be used as-if it were wake_up_process(); IOW the task
539  * must be ready to be woken at this location.
540  */
541 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542 {
543 	if (__wake_q_add(head, task))
544 		get_task_struct(task);
545 }
546 
547 /**
548  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549  * @head: the wake_q_head to add @task to
550  * @task: the task to queue for 'later' wakeup
551  *
552  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554  * instantly.
555  *
556  * This function must be used as-if it were wake_up_process(); IOW the task
557  * must be ready to be woken at this location.
558  *
559  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560  * that already hold reference to @task can call the 'safe' version and trust
561  * wake_q to do the right thing depending whether or not the @task is already
562  * queued for wakeup.
563  */
564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565 {
566 	if (!__wake_q_add(head, task))
567 		put_task_struct(task);
568 }
569 
570 void wake_up_q(struct wake_q_head *head)
571 {
572 	struct wake_q_node *node = head->first;
573 
574 	while (node != WAKE_Q_TAIL) {
575 		struct task_struct *task;
576 
577 		task = container_of(node, struct task_struct, wake_q);
578 		BUG_ON(!task);
579 		/* Task can safely be re-inserted now: */
580 		node = node->next;
581 		task->wake_q.next = NULL;
582 
583 		/*
584 		 * wake_up_process() executes a full barrier, which pairs with
585 		 * the queueing in wake_q_add() so as not to miss wakeups.
586 		 */
587 		wake_up_process(task);
588 		put_task_struct(task);
589 	}
590 }
591 
592 /*
593  * resched_curr - mark rq's current task 'to be rescheduled now'.
594  *
595  * On UP this means the setting of the need_resched flag, on SMP it
596  * might also involve a cross-CPU call to trigger the scheduler on
597  * the target CPU.
598  */
599 void resched_curr(struct rq *rq)
600 {
601 	struct task_struct *curr = rq->curr;
602 	int cpu;
603 
604 	lockdep_assert_held(&rq->lock);
605 
606 	if (test_tsk_need_resched(curr))
607 		return;
608 
609 	cpu = cpu_of(rq);
610 
611 	if (cpu == smp_processor_id()) {
612 		set_tsk_need_resched(curr);
613 		set_preempt_need_resched();
614 		return;
615 	}
616 
617 	if (set_nr_and_not_polling(curr))
618 		smp_send_reschedule(cpu);
619 	else
620 		trace_sched_wake_idle_without_ipi(cpu);
621 }
622 
623 void resched_cpu(int cpu)
624 {
625 	struct rq *rq = cpu_rq(cpu);
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&rq->lock, flags);
629 	if (cpu_online(cpu) || cpu == smp_processor_id())
630 		resched_curr(rq);
631 	raw_spin_unlock_irqrestore(&rq->lock, flags);
632 }
633 
634 #ifdef CONFIG_SMP
635 #ifdef CONFIG_NO_HZ_COMMON
636 /*
637  * In the semi idle case, use the nearest busy CPU for migrating timers
638  * from an idle CPU.  This is good for power-savings.
639  *
640  * We don't do similar optimization for completely idle system, as
641  * selecting an idle CPU will add more delays to the timers than intended
642  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
643  */
644 int get_nohz_timer_target(void)
645 {
646 	int i, cpu = smp_processor_id(), default_cpu = -1;
647 	struct sched_domain *sd;
648 
649 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 		if (!idle_cpu(cpu))
651 			return cpu;
652 		default_cpu = cpu;
653 	}
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu_and(i, sched_domain_span(sd),
658 			housekeeping_cpumask(HK_FLAG_TIMER)) {
659 			if (cpu == i)
660 				continue;
661 
662 			if (!idle_cpu(i)) {
663 				cpu = i;
664 				goto unlock;
665 			}
666 		}
667 	}
668 
669 	if (default_cpu == -1)
670 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 	cpu = default_cpu;
672 unlock:
673 	rcu_read_unlock();
674 	return cpu;
675 }
676 
677 /*
678  * When add_timer_on() enqueues a timer into the timer wheel of an
679  * idle CPU then this timer might expire before the next timer event
680  * which is scheduled to wake up that CPU. In case of a completely
681  * idle system the next event might even be infinite time into the
682  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683  * leaves the inner idle loop so the newly added timer is taken into
684  * account when the CPU goes back to idle and evaluates the timer
685  * wheel for the next timer event.
686  */
687 static void wake_up_idle_cpu(int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 
691 	if (cpu == smp_processor_id())
692 		return;
693 
694 	if (set_nr_and_not_polling(rq->idle))
695 		smp_send_reschedule(cpu);
696 	else
697 		trace_sched_wake_idle_without_ipi(cpu);
698 }
699 
700 static bool wake_up_full_nohz_cpu(int cpu)
701 {
702 	/*
703 	 * We just need the target to call irq_exit() and re-evaluate
704 	 * the next tick. The nohz full kick at least implies that.
705 	 * If needed we can still optimize that later with an
706 	 * empty IRQ.
707 	 */
708 	if (cpu_is_offline(cpu))
709 		return true;  /* Don't try to wake offline CPUs. */
710 	if (tick_nohz_full_cpu(cpu)) {
711 		if (cpu != smp_processor_id() ||
712 		    tick_nohz_tick_stopped())
713 			tick_nohz_full_kick_cpu(cpu);
714 		return true;
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Wake up the specified CPU.  If the CPU is going offline, it is the
722  * caller's responsibility to deal with the lost wakeup, for example,
723  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724  */
725 void wake_up_nohz_cpu(int cpu)
726 {
727 	if (!wake_up_full_nohz_cpu(cpu))
728 		wake_up_idle_cpu(cpu);
729 }
730 
731 static void nohz_csd_func(void *info)
732 {
733 	struct rq *rq = info;
734 	int cpu = cpu_of(rq);
735 	unsigned int flags;
736 
737 	/*
738 	 * Release the rq::nohz_csd.
739 	 */
740 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 	WARN_ON(!(flags & NOHZ_KICK_MASK));
742 
743 	rq->idle_balance = idle_cpu(cpu);
744 	if (rq->idle_balance && !need_resched()) {
745 		rq->nohz_idle_balance = flags;
746 		raise_softirq_irqoff(SCHED_SOFTIRQ);
747 	}
748 }
749 
750 #endif /* CONFIG_NO_HZ_COMMON */
751 
752 #ifdef CONFIG_NO_HZ_FULL
753 bool sched_can_stop_tick(struct rq *rq)
754 {
755 	int fifo_nr_running;
756 
757 	/* Deadline tasks, even if single, need the tick */
758 	if (rq->dl.dl_nr_running)
759 		return false;
760 
761 	/*
762 	 * If there are more than one RR tasks, we need the tick to affect the
763 	 * actual RR behaviour.
764 	 */
765 	if (rq->rt.rr_nr_running) {
766 		if (rq->rt.rr_nr_running == 1)
767 			return true;
768 		else
769 			return false;
770 	}
771 
772 	/*
773 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 	 * forced preemption between FIFO tasks.
775 	 */
776 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 	if (fifo_nr_running)
778 		return true;
779 
780 	/*
781 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 	 * if there's more than one we need the tick for involuntary
783 	 * preemption.
784 	 */
785 	if (rq->nr_running > 1)
786 		return false;
787 
788 	return true;
789 }
790 #endif /* CONFIG_NO_HZ_FULL */
791 #endif /* CONFIG_SMP */
792 
793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
795 /*
796  * Iterate task_group tree rooted at *from, calling @down when first entering a
797  * node and @up when leaving it for the final time.
798  *
799  * Caller must hold rcu_lock or sufficient equivalent.
800  */
801 int walk_tg_tree_from(struct task_group *from,
802 			     tg_visitor down, tg_visitor up, void *data)
803 {
804 	struct task_group *parent, *child;
805 	int ret;
806 
807 	parent = from;
808 
809 down:
810 	ret = (*down)(parent, data);
811 	if (ret)
812 		goto out;
813 	list_for_each_entry_rcu(child, &parent->children, siblings) {
814 		parent = child;
815 		goto down;
816 
817 up:
818 		continue;
819 	}
820 	ret = (*up)(parent, data);
821 	if (ret || parent == from)
822 		goto out;
823 
824 	child = parent;
825 	parent = parent->parent;
826 	if (parent)
827 		goto up;
828 out:
829 	return ret;
830 }
831 
832 int tg_nop(struct task_group *tg, void *data)
833 {
834 	return 0;
835 }
836 #endif
837 
838 static void set_load_weight(struct task_struct *p, bool update_load)
839 {
840 	int prio = p->static_prio - MAX_RT_PRIO;
841 	struct load_weight *load = &p->se.load;
842 
843 	/*
844 	 * SCHED_IDLE tasks get minimal weight:
845 	 */
846 	if (task_has_idle_policy(p)) {
847 		load->weight = scale_load(WEIGHT_IDLEPRIO);
848 		load->inv_weight = WMULT_IDLEPRIO;
849 		return;
850 	}
851 
852 	/*
853 	 * SCHED_OTHER tasks have to update their load when changing their
854 	 * weight
855 	 */
856 	if (update_load && p->sched_class == &fair_sched_class) {
857 		reweight_task(p, prio);
858 	} else {
859 		load->weight = scale_load(sched_prio_to_weight[prio]);
860 		load->inv_weight = sched_prio_to_wmult[prio];
861 	}
862 }
863 
864 #ifdef CONFIG_UCLAMP_TASK
865 /*
866  * Serializes updates of utilization clamp values
867  *
868  * The (slow-path) user-space triggers utilization clamp value updates which
869  * can require updates on (fast-path) scheduler's data structures used to
870  * support enqueue/dequeue operations.
871  * While the per-CPU rq lock protects fast-path update operations, user-space
872  * requests are serialized using a mutex to reduce the risk of conflicting
873  * updates or API abuses.
874  */
875 static DEFINE_MUTEX(uclamp_mutex);
876 
877 /* Max allowed minimum utilization */
878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879 
880 /* Max allowed maximum utilization */
881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882 
883 /*
884  * By default RT tasks run at the maximum performance point/capacity of the
885  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886  * SCHED_CAPACITY_SCALE.
887  *
888  * This knob allows admins to change the default behavior when uclamp is being
889  * used. In battery powered devices, particularly, running at the maximum
890  * capacity and frequency will increase energy consumption and shorten the
891  * battery life.
892  *
893  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894  *
895  * This knob will not override the system default sched_util_clamp_min defined
896  * above.
897  */
898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899 
900 /* All clamps are required to be less or equal than these values */
901 static struct uclamp_se uclamp_default[UCLAMP_CNT];
902 
903 /*
904  * This static key is used to reduce the uclamp overhead in the fast path. It
905  * primarily disables the call to uclamp_rq_{inc, dec}() in
906  * enqueue/dequeue_task().
907  *
908  * This allows users to continue to enable uclamp in their kernel config with
909  * minimum uclamp overhead in the fast path.
910  *
911  * As soon as userspace modifies any of the uclamp knobs, the static key is
912  * enabled, since we have an actual users that make use of uclamp
913  * functionality.
914  *
915  * The knobs that would enable this static key are:
916  *
917  *   * A task modifying its uclamp value with sched_setattr().
918  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
920  */
921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922 
923 /* Integer rounded range for each bucket */
924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925 
926 #define for_each_clamp_id(clamp_id) \
927 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928 
929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930 {
931 	return clamp_value / UCLAMP_BUCKET_DELTA;
932 }
933 
934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
935 {
936 	if (clamp_id == UCLAMP_MIN)
937 		return 0;
938 	return SCHED_CAPACITY_SCALE;
939 }
940 
941 static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 				 unsigned int value, bool user_defined)
943 {
944 	uc_se->value = value;
945 	uc_se->bucket_id = uclamp_bucket_id(value);
946 	uc_se->user_defined = user_defined;
947 }
948 
949 static inline unsigned int
950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
951 		  unsigned int clamp_value)
952 {
953 	/*
954 	 * Avoid blocked utilization pushing up the frequency when we go
955 	 * idle (which drops the max-clamp) by retaining the last known
956 	 * max-clamp.
957 	 */
958 	if (clamp_id == UCLAMP_MAX) {
959 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 		return clamp_value;
961 	}
962 
963 	return uclamp_none(UCLAMP_MIN);
964 }
965 
966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
967 				     unsigned int clamp_value)
968 {
969 	/* Reset max-clamp retention only on idle exit */
970 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 		return;
972 
973 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974 }
975 
976 static inline
977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
978 				   unsigned int clamp_value)
979 {
980 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 	int bucket_id = UCLAMP_BUCKETS - 1;
982 
983 	/*
984 	 * Since both min and max clamps are max aggregated, find the
985 	 * top most bucket with tasks in.
986 	 */
987 	for ( ; bucket_id >= 0; bucket_id--) {
988 		if (!bucket[bucket_id].tasks)
989 			continue;
990 		return bucket[bucket_id].value;
991 	}
992 
993 	/* No tasks -- default clamp values */
994 	return uclamp_idle_value(rq, clamp_id, clamp_value);
995 }
996 
997 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998 {
999 	unsigned int default_util_min;
1000 	struct uclamp_se *uc_se;
1001 
1002 	lockdep_assert_held(&p->pi_lock);
1003 
1004 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1005 
1006 	/* Only sync if user didn't override the default */
1007 	if (uc_se->user_defined)
1008 		return;
1009 
1010 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 	uclamp_se_set(uc_se, default_util_min, false);
1012 }
1013 
1014 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015 {
1016 	struct rq_flags rf;
1017 	struct rq *rq;
1018 
1019 	if (!rt_task(p))
1020 		return;
1021 
1022 	/* Protect updates to p->uclamp_* */
1023 	rq = task_rq_lock(p, &rf);
1024 	__uclamp_update_util_min_rt_default(p);
1025 	task_rq_unlock(rq, p, &rf);
1026 }
1027 
1028 static void uclamp_sync_util_min_rt_default(void)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * copy_process()			sysctl_uclamp
1034 	 *					  uclamp_min_rt = X;
1035 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1036 	 *   // link thread			  smp_mb__after_spinlock()
1037 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1038 	 *   sched_post_fork()			  for_each_process_thread()
1039 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1040 	 *
1041 	 * Ensures that either sched_post_fork() will observe the new
1042 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 	 * task.
1044 	 */
1045 	read_lock(&tasklist_lock);
1046 	smp_mb__after_spinlock();
1047 	read_unlock(&tasklist_lock);
1048 
1049 	rcu_read_lock();
1050 	for_each_process_thread(g, p)
1051 		uclamp_update_util_min_rt_default(p);
1052 	rcu_read_unlock();
1053 }
1054 
1055 static inline struct uclamp_se
1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1057 {
1058 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059 #ifdef CONFIG_UCLAMP_TASK_GROUP
1060 	struct uclamp_se uc_max;
1061 
1062 	/*
1063 	 * Tasks in autogroups or root task group will be
1064 	 * restricted by system defaults.
1065 	 */
1066 	if (task_group_is_autogroup(task_group(p)))
1067 		return uc_req;
1068 	if (task_group(p) == &root_task_group)
1069 		return uc_req;
1070 
1071 	uc_max = task_group(p)->uclamp[clamp_id];
1072 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 		return uc_max;
1074 #endif
1075 
1076 	return uc_req;
1077 }
1078 
1079 /*
1080  * The effective clamp bucket index of a task depends on, by increasing
1081  * priority:
1082  * - the task specific clamp value, when explicitly requested from userspace
1083  * - the task group effective clamp value, for tasks not either in the root
1084  *   group or in an autogroup
1085  * - the system default clamp value, defined by the sysadmin
1086  */
1087 static inline struct uclamp_se
1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1089 {
1090 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1091 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1092 
1093 	/* System default restrictions always apply */
1094 	if (unlikely(uc_req.value > uc_max.value))
1095 		return uc_max;
1096 
1097 	return uc_req;
1098 }
1099 
1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1101 {
1102 	struct uclamp_se uc_eff;
1103 
1104 	/* Task currently refcounted: use back-annotated (effective) value */
1105 	if (p->uclamp[clamp_id].active)
1106 		return (unsigned long)p->uclamp[clamp_id].value;
1107 
1108 	uc_eff = uclamp_eff_get(p, clamp_id);
1109 
1110 	return (unsigned long)uc_eff.value;
1111 }
1112 
1113 /*
1114  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116  * updates the rq's clamp value if required.
1117  *
1118  * Tasks can have a task-specific value requested from user-space, track
1119  * within each bucket the maximum value for tasks refcounted in it.
1120  * This "local max aggregation" allows to track the exact "requested" value
1121  * for each bucket when all its RUNNABLE tasks require the same clamp.
1122  */
1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1124 				    enum uclamp_id clamp_id)
1125 {
1126 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 	struct uclamp_bucket *bucket;
1129 
1130 	lockdep_assert_held(&rq->lock);
1131 
1132 	/* Update task effective clamp */
1133 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134 
1135 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 	bucket->tasks++;
1137 	uc_se->active = true;
1138 
1139 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140 
1141 	/*
1142 	 * Local max aggregation: rq buckets always track the max
1143 	 * "requested" clamp value of its RUNNABLE tasks.
1144 	 */
1145 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 		bucket->value = uc_se->value;
1147 
1148 	if (uc_se->value > READ_ONCE(uc_rq->value))
1149 		WRITE_ONCE(uc_rq->value, uc_se->value);
1150 }
1151 
1152 /*
1153  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154  * is released. If this is the last task reference counting the rq's max
1155  * active clamp value, then the rq's clamp value is updated.
1156  *
1157  * Both refcounted tasks and rq's cached clamp values are expected to be
1158  * always valid. If it's detected they are not, as defensive programming,
1159  * enforce the expected state and warn.
1160  */
1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1162 				    enum uclamp_id clamp_id)
1163 {
1164 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 	struct uclamp_bucket *bucket;
1167 	unsigned int bkt_clamp;
1168 	unsigned int rq_clamp;
1169 
1170 	lockdep_assert_held(&rq->lock);
1171 
1172 	/*
1173 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 	 *
1176 	 * In this case the uc_se->active flag should be false since no uclamp
1177 	 * accounting was performed at enqueue time and we can just return
1178 	 * here.
1179 	 *
1180 	 * Need to be careful of the following enqueue/dequeue ordering
1181 	 * problem too
1182 	 *
1183 	 *	enqueue(taskA)
1184 	 *	// sched_uclamp_used gets enabled
1185 	 *	enqueue(taskB)
1186 	 *	dequeue(taskA)
1187 	 *	// Must not decrement bucket->tasks here
1188 	 *	dequeue(taskB)
1189 	 *
1190 	 * where we could end up with stale data in uc_se and
1191 	 * bucket[uc_se->bucket_id].
1192 	 *
1193 	 * The following check here eliminates the possibility of such race.
1194 	 */
1195 	if (unlikely(!uc_se->active))
1196 		return;
1197 
1198 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1199 
1200 	SCHED_WARN_ON(!bucket->tasks);
1201 	if (likely(bucket->tasks))
1202 		bucket->tasks--;
1203 
1204 	uc_se->active = false;
1205 
1206 	/*
1207 	 * Keep "local max aggregation" simple and accept to (possibly)
1208 	 * overboost some RUNNABLE tasks in the same bucket.
1209 	 * The rq clamp bucket value is reset to its base value whenever
1210 	 * there are no more RUNNABLE tasks refcounting it.
1211 	 */
1212 	if (likely(bucket->tasks))
1213 		return;
1214 
1215 	rq_clamp = READ_ONCE(uc_rq->value);
1216 	/*
1217 	 * Defensive programming: this should never happen. If it happens,
1218 	 * e.g. due to future modification, warn and fixup the expected value.
1219 	 */
1220 	SCHED_WARN_ON(bucket->value > rq_clamp);
1221 	if (bucket->value >= rq_clamp) {
1222 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 	}
1225 }
1226 
1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228 {
1229 	enum uclamp_id clamp_id;
1230 
1231 	/*
1232 	 * Avoid any overhead until uclamp is actually used by the userspace.
1233 	 *
1234 	 * The condition is constructed such that a NOP is generated when
1235 	 * sched_uclamp_used is disabled.
1236 	 */
1237 	if (!static_branch_unlikely(&sched_uclamp_used))
1238 		return;
1239 
1240 	if (unlikely(!p->sched_class->uclamp_enabled))
1241 		return;
1242 
1243 	for_each_clamp_id(clamp_id)
1244 		uclamp_rq_inc_id(rq, p, clamp_id);
1245 
1246 	/* Reset clamp idle holding when there is one RUNNABLE task */
1247 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1249 }
1250 
1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252 {
1253 	enum uclamp_id clamp_id;
1254 
1255 	/*
1256 	 * Avoid any overhead until uclamp is actually used by the userspace.
1257 	 *
1258 	 * The condition is constructed such that a NOP is generated when
1259 	 * sched_uclamp_used is disabled.
1260 	 */
1261 	if (!static_branch_unlikely(&sched_uclamp_used))
1262 		return;
1263 
1264 	if (unlikely(!p->sched_class->uclamp_enabled))
1265 		return;
1266 
1267 	for_each_clamp_id(clamp_id)
1268 		uclamp_rq_dec_id(rq, p, clamp_id);
1269 }
1270 
1271 static inline void
1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1273 {
1274 	struct rq_flags rf;
1275 	struct rq *rq;
1276 
1277 	/*
1278 	 * Lock the task and the rq where the task is (or was) queued.
1279 	 *
1280 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 	 * price to pay to safely serialize util_{min,max} updates with
1282 	 * enqueues, dequeues and migration operations.
1283 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 	 */
1285 	rq = task_rq_lock(p, &rf);
1286 
1287 	/*
1288 	 * Setting the clamp bucket is serialized by task_rq_lock().
1289 	 * If the task is not yet RUNNABLE and its task_struct is not
1290 	 * affecting a valid clamp bucket, the next time it's enqueued,
1291 	 * it will already see the updated clamp bucket value.
1292 	 */
1293 	if (p->uclamp[clamp_id].active) {
1294 		uclamp_rq_dec_id(rq, p, clamp_id);
1295 		uclamp_rq_inc_id(rq, p, clamp_id);
1296 	}
1297 
1298 	task_rq_unlock(rq, p, &rf);
1299 }
1300 
1301 #ifdef CONFIG_UCLAMP_TASK_GROUP
1302 static inline void
1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 			   unsigned int clamps)
1305 {
1306 	enum uclamp_id clamp_id;
1307 	struct css_task_iter it;
1308 	struct task_struct *p;
1309 
1310 	css_task_iter_start(css, 0, &it);
1311 	while ((p = css_task_iter_next(&it))) {
1312 		for_each_clamp_id(clamp_id) {
1313 			if ((0x1 << clamp_id) & clamps)
1314 				uclamp_update_active(p, clamp_id);
1315 		}
1316 	}
1317 	css_task_iter_end(&it);
1318 }
1319 
1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321 static void uclamp_update_root_tg(void)
1322 {
1323 	struct task_group *tg = &root_task_group;
1324 
1325 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 		      sysctl_sched_uclamp_util_min, false);
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 		      sysctl_sched_uclamp_util_max, false);
1329 
1330 	rcu_read_lock();
1331 	cpu_util_update_eff(&root_task_group.css);
1332 	rcu_read_unlock();
1333 }
1334 #else
1335 static void uclamp_update_root_tg(void) { }
1336 #endif
1337 
1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1339 				void *buffer, size_t *lenp, loff_t *ppos)
1340 {
1341 	bool update_root_tg = false;
1342 	int old_min, old_max, old_min_rt;
1343 	int result;
1344 
1345 	mutex_lock(&uclamp_mutex);
1346 	old_min = sysctl_sched_uclamp_util_min;
1347 	old_max = sysctl_sched_uclamp_util_max;
1348 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1349 
1350 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 	if (result)
1352 		goto undo;
1353 	if (!write)
1354 		goto done;
1355 
1356 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1357 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1358 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359 
1360 		result = -EINVAL;
1361 		goto undo;
1362 	}
1363 
1364 	if (old_min != sysctl_sched_uclamp_util_min) {
1365 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1366 			      sysctl_sched_uclamp_util_min, false);
1367 		update_root_tg = true;
1368 	}
1369 	if (old_max != sysctl_sched_uclamp_util_max) {
1370 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1371 			      sysctl_sched_uclamp_util_max, false);
1372 		update_root_tg = true;
1373 	}
1374 
1375 	if (update_root_tg) {
1376 		static_branch_enable(&sched_uclamp_used);
1377 		uclamp_update_root_tg();
1378 	}
1379 
1380 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 		static_branch_enable(&sched_uclamp_used);
1382 		uclamp_sync_util_min_rt_default();
1383 	}
1384 
1385 	/*
1386 	 * We update all RUNNABLE tasks only when task groups are in use.
1387 	 * Otherwise, keep it simple and do just a lazy update at each next
1388 	 * task enqueue time.
1389 	 */
1390 
1391 	goto done;
1392 
1393 undo:
1394 	sysctl_sched_uclamp_util_min = old_min;
1395 	sysctl_sched_uclamp_util_max = old_max;
1396 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1397 done:
1398 	mutex_unlock(&uclamp_mutex);
1399 
1400 	return result;
1401 }
1402 
1403 static int uclamp_validate(struct task_struct *p,
1404 			   const struct sched_attr *attr)
1405 {
1406 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1408 
1409 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 		util_min = attr->sched_util_min;
1411 
1412 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 			return -EINVAL;
1414 	}
1415 
1416 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 		util_max = attr->sched_util_max;
1418 
1419 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1424 		return -EINVAL;
1425 
1426 	/*
1427 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 	 *
1429 	 * We need to do that here, because enabling static branches is a
1430 	 * blocking operation which obviously cannot be done while holding
1431 	 * scheduler locks.
1432 	 */
1433 	static_branch_enable(&sched_uclamp_used);
1434 
1435 	return 0;
1436 }
1437 
1438 static bool uclamp_reset(const struct sched_attr *attr,
1439 			 enum uclamp_id clamp_id,
1440 			 struct uclamp_se *uc_se)
1441 {
1442 	/* Reset on sched class change for a non user-defined clamp value. */
1443 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 	    !uc_se->user_defined)
1445 		return true;
1446 
1447 	/* Reset on sched_util_{min,max} == -1. */
1448 	if (clamp_id == UCLAMP_MIN &&
1449 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 	    attr->sched_util_min == -1) {
1451 		return true;
1452 	}
1453 
1454 	if (clamp_id == UCLAMP_MAX &&
1455 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 	    attr->sched_util_max == -1) {
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 static void __setscheduler_uclamp(struct task_struct *p,
1464 				  const struct sched_attr *attr)
1465 {
1466 	enum uclamp_id clamp_id;
1467 
1468 	for_each_clamp_id(clamp_id) {
1469 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1470 		unsigned int value;
1471 
1472 		if (!uclamp_reset(attr, clamp_id, uc_se))
1473 			continue;
1474 
1475 		/*
1476 		 * RT by default have a 100% boost value that could be modified
1477 		 * at runtime.
1478 		 */
1479 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1480 			value = sysctl_sched_uclamp_util_min_rt_default;
1481 		else
1482 			value = uclamp_none(clamp_id);
1483 
1484 		uclamp_se_set(uc_se, value, false);
1485 
1486 	}
1487 
1488 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 		return;
1490 
1491 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 	    attr->sched_util_min != -1) {
1493 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 			      attr->sched_util_min, true);
1495 	}
1496 
1497 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 	    attr->sched_util_max != -1) {
1499 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 			      attr->sched_util_max, true);
1501 	}
1502 }
1503 
1504 static void uclamp_fork(struct task_struct *p)
1505 {
1506 	enum uclamp_id clamp_id;
1507 
1508 	/*
1509 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 	 * as the task is still at its early fork stages.
1511 	 */
1512 	for_each_clamp_id(clamp_id)
1513 		p->uclamp[clamp_id].active = false;
1514 
1515 	if (likely(!p->sched_reset_on_fork))
1516 		return;
1517 
1518 	for_each_clamp_id(clamp_id) {
1519 		uclamp_se_set(&p->uclamp_req[clamp_id],
1520 			      uclamp_none(clamp_id), false);
1521 	}
1522 }
1523 
1524 static void uclamp_post_fork(struct task_struct *p)
1525 {
1526 	uclamp_update_util_min_rt_default(p);
1527 }
1528 
1529 static void __init init_uclamp_rq(struct rq *rq)
1530 {
1531 	enum uclamp_id clamp_id;
1532 	struct uclamp_rq *uc_rq = rq->uclamp;
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uc_rq[clamp_id] = (struct uclamp_rq) {
1536 			.value = uclamp_none(clamp_id)
1537 		};
1538 	}
1539 
1540 	rq->uclamp_flags = 0;
1541 }
1542 
1543 static void __init init_uclamp(void)
1544 {
1545 	struct uclamp_se uc_max = {};
1546 	enum uclamp_id clamp_id;
1547 	int cpu;
1548 
1549 	for_each_possible_cpu(cpu)
1550 		init_uclamp_rq(cpu_rq(cpu));
1551 
1552 	for_each_clamp_id(clamp_id) {
1553 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1554 			      uclamp_none(clamp_id), false);
1555 	}
1556 
1557 	/* System defaults allow max clamp values for both indexes */
1558 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1559 	for_each_clamp_id(clamp_id) {
1560 		uclamp_default[clamp_id] = uc_max;
1561 #ifdef CONFIG_UCLAMP_TASK_GROUP
1562 		root_task_group.uclamp_req[clamp_id] = uc_max;
1563 		root_task_group.uclamp[clamp_id] = uc_max;
1564 #endif
1565 	}
1566 }
1567 
1568 #else /* CONFIG_UCLAMP_TASK */
1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1571 static inline int uclamp_validate(struct task_struct *p,
1572 				  const struct sched_attr *attr)
1573 {
1574 	return -EOPNOTSUPP;
1575 }
1576 static void __setscheduler_uclamp(struct task_struct *p,
1577 				  const struct sched_attr *attr) { }
1578 static inline void uclamp_fork(struct task_struct *p) { }
1579 static inline void uclamp_post_fork(struct task_struct *p) { }
1580 static inline void init_uclamp(void) { }
1581 #endif /* CONFIG_UCLAMP_TASK */
1582 
1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1584 {
1585 	if (!(flags & ENQUEUE_NOCLOCK))
1586 		update_rq_clock(rq);
1587 
1588 	if (!(flags & ENQUEUE_RESTORE)) {
1589 		sched_info_queued(rq, p);
1590 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 	}
1592 
1593 	uclamp_rq_inc(rq, p);
1594 	p->sched_class->enqueue_task(rq, p, flags);
1595 }
1596 
1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1598 {
1599 	if (!(flags & DEQUEUE_NOCLOCK))
1600 		update_rq_clock(rq);
1601 
1602 	if (!(flags & DEQUEUE_SAVE)) {
1603 		sched_info_dequeued(rq, p);
1604 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 	}
1606 
1607 	uclamp_rq_dec(rq, p);
1608 	p->sched_class->dequeue_task(rq, p, flags);
1609 }
1610 
1611 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 	enqueue_task(rq, p, flags);
1614 
1615 	p->on_rq = TASK_ON_RQ_QUEUED;
1616 }
1617 
1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1619 {
1620 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621 
1622 	dequeue_task(rq, p, flags);
1623 }
1624 
1625 /*
1626  * __normal_prio - return the priority that is based on the static prio
1627  */
1628 static inline int __normal_prio(struct task_struct *p)
1629 {
1630 	return p->static_prio;
1631 }
1632 
1633 /*
1634  * Calculate the expected normal priority: i.e. priority
1635  * without taking RT-inheritance into account. Might be
1636  * boosted by interactivity modifiers. Changes upon fork,
1637  * setprio syscalls, and whenever the interactivity
1638  * estimator recalculates.
1639  */
1640 static inline int normal_prio(struct task_struct *p)
1641 {
1642 	int prio;
1643 
1644 	if (task_has_dl_policy(p))
1645 		prio = MAX_DL_PRIO-1;
1646 	else if (task_has_rt_policy(p))
1647 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 	else
1649 		prio = __normal_prio(p);
1650 	return prio;
1651 }
1652 
1653 /*
1654  * Calculate the current priority, i.e. the priority
1655  * taken into account by the scheduler. This value might
1656  * be boosted by RT tasks, or might be boosted by
1657  * interactivity modifiers. Will be RT if the task got
1658  * RT-boosted. If not then it returns p->normal_prio.
1659  */
1660 static int effective_prio(struct task_struct *p)
1661 {
1662 	p->normal_prio = normal_prio(p);
1663 	/*
1664 	 * If we are RT tasks or we were boosted to RT priority,
1665 	 * keep the priority unchanged. Otherwise, update priority
1666 	 * to the normal priority:
1667 	 */
1668 	if (!rt_prio(p->prio))
1669 		return p->normal_prio;
1670 	return p->prio;
1671 }
1672 
1673 /**
1674  * task_curr - is this task currently executing on a CPU?
1675  * @p: the task in question.
1676  *
1677  * Return: 1 if the task is currently executing. 0 otherwise.
1678  */
1679 inline int task_curr(const struct task_struct *p)
1680 {
1681 	return cpu_curr(task_cpu(p)) == p;
1682 }
1683 
1684 /*
1685  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686  * use the balance_callback list if you want balancing.
1687  *
1688  * this means any call to check_class_changed() must be followed by a call to
1689  * balance_callback().
1690  */
1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 				       const struct sched_class *prev_class,
1693 				       int oldprio)
1694 {
1695 	if (prev_class != p->sched_class) {
1696 		if (prev_class->switched_from)
1697 			prev_class->switched_from(rq, p);
1698 
1699 		p->sched_class->switched_to(rq, p);
1700 	} else if (oldprio != p->prio || dl_task(p))
1701 		p->sched_class->prio_changed(rq, p, oldprio);
1702 }
1703 
1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1705 {
1706 	if (p->sched_class == rq->curr->sched_class)
1707 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1708 	else if (p->sched_class > rq->curr->sched_class)
1709 		resched_curr(rq);
1710 
1711 	/*
1712 	 * A queue event has occurred, and we're going to schedule.  In
1713 	 * this case, we can save a useless back to back clock update.
1714 	 */
1715 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1716 		rq_clock_skip_update(rq);
1717 }
1718 
1719 #ifdef CONFIG_SMP
1720 
1721 static void
1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723 
1724 static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 				  const struct cpumask *new_mask,
1726 				  u32 flags);
1727 
1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729 {
1730 	if (likely(!p->migration_disabled))
1731 		return;
1732 
1733 	if (p->cpus_ptr != &p->cpus_mask)
1734 		return;
1735 
1736 	/*
1737 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 	 */
1739 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740 }
1741 
1742 void migrate_disable(void)
1743 {
1744 	struct task_struct *p = current;
1745 
1746 	if (p->migration_disabled) {
1747 		p->migration_disabled++;
1748 		return;
1749 	}
1750 
1751 	preempt_disable();
1752 	this_rq()->nr_pinned++;
1753 	p->migration_disabled = 1;
1754 	preempt_enable();
1755 }
1756 EXPORT_SYMBOL_GPL(migrate_disable);
1757 
1758 void migrate_enable(void)
1759 {
1760 	struct task_struct *p = current;
1761 
1762 	if (p->migration_disabled > 1) {
1763 		p->migration_disabled--;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Ensure stop_task runs either before or after this, and that
1769 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 	 */
1771 	preempt_disable();
1772 	if (p->cpus_ptr != &p->cpus_mask)
1773 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 	/*
1775 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 	 * regular cpus_mask, otherwise things that race (eg.
1777 	 * select_fallback_rq) get confused.
1778 	 */
1779 	barrier();
1780 	p->migration_disabled = 0;
1781 	this_rq()->nr_pinned--;
1782 	preempt_enable();
1783 }
1784 EXPORT_SYMBOL_GPL(migrate_enable);
1785 
1786 static inline bool rq_has_pinned_tasks(struct rq *rq)
1787 {
1788 	return rq->nr_pinned;
1789 }
1790 
1791 /*
1792  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1793  * __set_cpus_allowed_ptr() and select_fallback_rq().
1794  */
1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796 {
1797 	/* When not in the task's cpumask, no point in looking further. */
1798 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1799 		return false;
1800 
1801 	/* migrate_disabled() must be allowed to finish. */
1802 	if (is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	/* Non kernel threads are not allowed during either online or offline. */
1806 	if (!(p->flags & PF_KTHREAD))
1807 		return cpu_active(cpu);
1808 
1809 	/* KTHREAD_IS_PER_CPU is always allowed. */
1810 	if (kthread_is_per_cpu(p))
1811 		return cpu_online(cpu);
1812 
1813 	/* Regular kernel threads don't get to stay during offline. */
1814 	if (cpu_rq(cpu)->balance_push)
1815 		return false;
1816 
1817 	/* But are allowed during online. */
1818 	return cpu_online(cpu);
1819 }
1820 
1821 /*
1822  * This is how migration works:
1823  *
1824  * 1) we invoke migration_cpu_stop() on the target CPU using
1825  *    stop_one_cpu().
1826  * 2) stopper starts to run (implicitly forcing the migrated thread
1827  *    off the CPU)
1828  * 3) it checks whether the migrated task is still in the wrong runqueue.
1829  * 4) if it's in the wrong runqueue then the migration thread removes
1830  *    it and puts it into the right queue.
1831  * 5) stopper completes and stop_one_cpu() returns and the migration
1832  *    is done.
1833  */
1834 
1835 /*
1836  * move_queued_task - move a queued task to new rq.
1837  *
1838  * Returns (locked) new rq. Old rq's lock is released.
1839  */
1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 				   struct task_struct *p, int new_cpu)
1842 {
1843 	lockdep_assert_held(&rq->lock);
1844 
1845 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1846 	set_task_cpu(p, new_cpu);
1847 	rq_unlock(rq, rf);
1848 
1849 	rq = cpu_rq(new_cpu);
1850 
1851 	rq_lock(rq, rf);
1852 	BUG_ON(task_cpu(p) != new_cpu);
1853 	activate_task(rq, p, 0);
1854 	check_preempt_curr(rq, p, 0);
1855 
1856 	return rq;
1857 }
1858 
1859 struct migration_arg {
1860 	struct task_struct		*task;
1861 	int				dest_cpu;
1862 	struct set_affinity_pending	*pending;
1863 };
1864 
1865 struct set_affinity_pending {
1866 	refcount_t		refs;
1867 	struct completion	done;
1868 	struct cpu_stop_work	stop_work;
1869 	struct migration_arg	arg;
1870 };
1871 
1872 /*
1873  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1874  * this because either it can't run here any more (set_cpus_allowed()
1875  * away from this CPU, or CPU going down), or because we're
1876  * attempting to rebalance this task on exec (sched_exec).
1877  *
1878  * So we race with normal scheduler movements, but that's OK, as long
1879  * as the task is no longer on this CPU.
1880  */
1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1882 				 struct task_struct *p, int dest_cpu)
1883 {
1884 	/* Affinity changed (again). */
1885 	if (!is_cpu_allowed(p, dest_cpu))
1886 		return rq;
1887 
1888 	update_rq_clock(rq);
1889 	rq = move_queued_task(rq, rf, p, dest_cpu);
1890 
1891 	return rq;
1892 }
1893 
1894 /*
1895  * migration_cpu_stop - this will be executed by a highprio stopper thread
1896  * and performs thread migration by bumping thread off CPU then
1897  * 'pushing' onto another runqueue.
1898  */
1899 static int migration_cpu_stop(void *data)
1900 {
1901 	struct migration_arg *arg = data;
1902 	struct set_affinity_pending *pending = arg->pending;
1903 	struct task_struct *p = arg->task;
1904 	int dest_cpu = arg->dest_cpu;
1905 	struct rq *rq = this_rq();
1906 	bool complete = false;
1907 	struct rq_flags rf;
1908 
1909 	/*
1910 	 * The original target CPU might have gone down and we might
1911 	 * be on another CPU but it doesn't matter.
1912 	 */
1913 	local_irq_save(rf.flags);
1914 	/*
1915 	 * We need to explicitly wake pending tasks before running
1916 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1917 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1918 	 */
1919 	flush_smp_call_function_from_idle();
1920 
1921 	raw_spin_lock(&p->pi_lock);
1922 	rq_lock(rq, &rf);
1923 
1924 	/*
1925 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1926 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1927 	 * we're holding p->pi_lock.
1928 	 */
1929 	if (task_rq(p) == rq) {
1930 		if (is_migration_disabled(p))
1931 			goto out;
1932 
1933 		if (pending) {
1934 			if (p->migration_pending == pending)
1935 				p->migration_pending = NULL;
1936 			complete = true;
1937 		}
1938 
1939 		if (dest_cpu < 0)
1940 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1941 
1942 		if (task_on_rq_queued(p))
1943 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1944 		else
1945 			p->wake_cpu = dest_cpu;
1946 
1947 	} else if (pending) {
1948 		/*
1949 		 * This happens when we get migrated between migrate_enable()'s
1950 		 * preempt_enable() and scheduling the stopper task. At that
1951 		 * point we're a regular task again and not current anymore.
1952 		 *
1953 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1954 		 * more likely.
1955 		 */
1956 
1957 		/*
1958 		 * The task moved before the stopper got to run. We're holding
1959 		 * ->pi_lock, so the allowed mask is stable - if it got
1960 		 * somewhere allowed, we're done.
1961 		 */
1962 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1963 			if (p->migration_pending == pending)
1964 				p->migration_pending = NULL;
1965 			complete = true;
1966 			goto out;
1967 		}
1968 
1969 		/*
1970 		 * When migrate_enable() hits a rq mis-match we can't reliably
1971 		 * determine is_migration_disabled() and so have to chase after
1972 		 * it.
1973 		 */
1974 		task_rq_unlock(rq, p, &rf);
1975 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1976 				    &pending->arg, &pending->stop_work);
1977 		return 0;
1978 	}
1979 out:
1980 	task_rq_unlock(rq, p, &rf);
1981 
1982 	if (complete)
1983 		complete_all(&pending->done);
1984 
1985 	/* For pending->{arg,stop_work} */
1986 	if (pending && refcount_dec_and_test(&pending->refs))
1987 		wake_up_var(&pending->refs);
1988 
1989 	return 0;
1990 }
1991 
1992 int push_cpu_stop(void *arg)
1993 {
1994 	struct rq *lowest_rq = NULL, *rq = this_rq();
1995 	struct task_struct *p = arg;
1996 
1997 	raw_spin_lock_irq(&p->pi_lock);
1998 	raw_spin_lock(&rq->lock);
1999 
2000 	if (task_rq(p) != rq)
2001 		goto out_unlock;
2002 
2003 	if (is_migration_disabled(p)) {
2004 		p->migration_flags |= MDF_PUSH;
2005 		goto out_unlock;
2006 	}
2007 
2008 	p->migration_flags &= ~MDF_PUSH;
2009 
2010 	if (p->sched_class->find_lock_rq)
2011 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2012 
2013 	if (!lowest_rq)
2014 		goto out_unlock;
2015 
2016 	// XXX validate p is still the highest prio task
2017 	if (task_rq(p) == rq) {
2018 		deactivate_task(rq, p, 0);
2019 		set_task_cpu(p, lowest_rq->cpu);
2020 		activate_task(lowest_rq, p, 0);
2021 		resched_curr(lowest_rq);
2022 	}
2023 
2024 	double_unlock_balance(rq, lowest_rq);
2025 
2026 out_unlock:
2027 	rq->push_busy = false;
2028 	raw_spin_unlock(&rq->lock);
2029 	raw_spin_unlock_irq(&p->pi_lock);
2030 
2031 	put_task_struct(p);
2032 	return 0;
2033 }
2034 
2035 /*
2036  * sched_class::set_cpus_allowed must do the below, but is not required to
2037  * actually call this function.
2038  */
2039 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2040 {
2041 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2042 		p->cpus_ptr = new_mask;
2043 		return;
2044 	}
2045 
2046 	cpumask_copy(&p->cpus_mask, new_mask);
2047 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2048 }
2049 
2050 static void
2051 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2052 {
2053 	struct rq *rq = task_rq(p);
2054 	bool queued, running;
2055 
2056 	/*
2057 	 * This here violates the locking rules for affinity, since we're only
2058 	 * supposed to change these variables while holding both rq->lock and
2059 	 * p->pi_lock.
2060 	 *
2061 	 * HOWEVER, it magically works, because ttwu() is the only code that
2062 	 * accesses these variables under p->pi_lock and only does so after
2063 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2064 	 * before finish_task().
2065 	 *
2066 	 * XXX do further audits, this smells like something putrid.
2067 	 */
2068 	if (flags & SCA_MIGRATE_DISABLE)
2069 		SCHED_WARN_ON(!p->on_cpu);
2070 	else
2071 		lockdep_assert_held(&p->pi_lock);
2072 
2073 	queued = task_on_rq_queued(p);
2074 	running = task_current(rq, p);
2075 
2076 	if (queued) {
2077 		/*
2078 		 * Because __kthread_bind() calls this on blocked tasks without
2079 		 * holding rq->lock.
2080 		 */
2081 		lockdep_assert_held(&rq->lock);
2082 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2083 	}
2084 	if (running)
2085 		put_prev_task(rq, p);
2086 
2087 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2088 
2089 	if (queued)
2090 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2091 	if (running)
2092 		set_next_task(rq, p);
2093 }
2094 
2095 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2096 {
2097 	__do_set_cpus_allowed(p, new_mask, 0);
2098 }
2099 
2100 /*
2101  * This function is wildly self concurrent; here be dragons.
2102  *
2103  *
2104  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2105  * designated task is enqueued on an allowed CPU. If that task is currently
2106  * running, we have to kick it out using the CPU stopper.
2107  *
2108  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2109  * Consider:
2110  *
2111  *     Initial conditions: P0->cpus_mask = [0, 1]
2112  *
2113  *     P0@CPU0                  P1
2114  *
2115  *     migrate_disable();
2116  *     <preempted>
2117  *                              set_cpus_allowed_ptr(P0, [1]);
2118  *
2119  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2120  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2121  * This means we need the following scheme:
2122  *
2123  *     P0@CPU0                  P1
2124  *
2125  *     migrate_disable();
2126  *     <preempted>
2127  *                              set_cpus_allowed_ptr(P0, [1]);
2128  *                                <blocks>
2129  *     <resumes>
2130  *     migrate_enable();
2131  *       __set_cpus_allowed_ptr();
2132  *       <wakes local stopper>
2133  *                         `--> <woken on migration completion>
2134  *
2135  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2136  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2137  * task p are serialized by p->pi_lock, which we can leverage: the one that
2138  * should come into effect at the end of the Migrate-Disable region is the last
2139  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2140  * but we still need to properly signal those waiting tasks at the appropriate
2141  * moment.
2142  *
2143  * This is implemented using struct set_affinity_pending. The first
2144  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2145  * setup an instance of that struct and install it on the targeted task_struct.
2146  * Any and all further callers will reuse that instance. Those then wait for
2147  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2148  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2149  *
2150  *
2151  * (1) In the cases covered above. There is one more where the completion is
2152  * signaled within affine_move_task() itself: when a subsequent affinity request
2153  * cancels the need for an active migration. Consider:
2154  *
2155  *     Initial conditions: P0->cpus_mask = [0, 1]
2156  *
2157  *     P0@CPU0            P1                             P2
2158  *
2159  *     migrate_disable();
2160  *     <preempted>
2161  *                        set_cpus_allowed_ptr(P0, [1]);
2162  *                          <blocks>
2163  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2164  *                                                         <signal completion>
2165  *                          <awakes>
2166  *
2167  * Note that the above is safe vs a concurrent migrate_enable(), as any
2168  * pending affinity completion is preceded by an uninstallation of
2169  * p->migration_pending done with p->pi_lock held.
2170  */
2171 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2172 			    int dest_cpu, unsigned int flags)
2173 {
2174 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2175 	bool complete = false;
2176 
2177 	/* Can the task run on the task's current CPU? If so, we're done */
2178 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2179 		struct task_struct *push_task = NULL;
2180 
2181 		if ((flags & SCA_MIGRATE_ENABLE) &&
2182 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2183 			rq->push_busy = true;
2184 			push_task = get_task_struct(p);
2185 		}
2186 
2187 		pending = p->migration_pending;
2188 		if (pending) {
2189 			refcount_inc(&pending->refs);
2190 			p->migration_pending = NULL;
2191 			complete = true;
2192 		}
2193 		task_rq_unlock(rq, p, rf);
2194 
2195 		if (push_task) {
2196 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2197 					    p, &rq->push_work);
2198 		}
2199 
2200 		if (complete)
2201 			goto do_complete;
2202 
2203 		return 0;
2204 	}
2205 
2206 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2207 		/* serialized by p->pi_lock */
2208 		if (!p->migration_pending) {
2209 			/* Install the request */
2210 			refcount_set(&my_pending.refs, 1);
2211 			init_completion(&my_pending.done);
2212 			my_pending.arg = (struct migration_arg) {
2213 				.task = p,
2214 				.dest_cpu = -1,		/* any */
2215 				.pending = &my_pending,
2216 			};
2217 
2218 			p->migration_pending = &my_pending;
2219 		} else {
2220 			pending = p->migration_pending;
2221 			refcount_inc(&pending->refs);
2222 		}
2223 	}
2224 	pending = p->migration_pending;
2225 	/*
2226 	 * - !MIGRATE_ENABLE:
2227 	 *   we'll have installed a pending if there wasn't one already.
2228 	 *
2229 	 * - MIGRATE_ENABLE:
2230 	 *   we're here because the current CPU isn't matching anymore,
2231 	 *   the only way that can happen is because of a concurrent
2232 	 *   set_cpus_allowed_ptr() call, which should then still be
2233 	 *   pending completion.
2234 	 *
2235 	 * Either way, we really should have a @pending here.
2236 	 */
2237 	if (WARN_ON_ONCE(!pending)) {
2238 		task_rq_unlock(rq, p, rf);
2239 		return -EINVAL;
2240 	}
2241 
2242 	if (flags & SCA_MIGRATE_ENABLE) {
2243 
2244 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2245 		p->migration_flags &= ~MDF_PUSH;
2246 		task_rq_unlock(rq, p, rf);
2247 
2248 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2249 				    &pending->arg, &pending->stop_work);
2250 
2251 		return 0;
2252 	}
2253 
2254 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2255 		/*
2256 		 * Lessen races (and headaches) by delegating
2257 		 * is_migration_disabled(p) checks to the stopper, which will
2258 		 * run on the same CPU as said p.
2259 		 */
2260 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2261 		task_rq_unlock(rq, p, rf);
2262 
2263 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2264 				    &pending->arg, &pending->stop_work);
2265 
2266 	} else {
2267 
2268 		if (!is_migration_disabled(p)) {
2269 			if (task_on_rq_queued(p))
2270 				rq = move_queued_task(rq, rf, p, dest_cpu);
2271 
2272 			p->migration_pending = NULL;
2273 			complete = true;
2274 		}
2275 		task_rq_unlock(rq, p, rf);
2276 
2277 do_complete:
2278 		if (complete)
2279 			complete_all(&pending->done);
2280 	}
2281 
2282 	wait_for_completion(&pending->done);
2283 
2284 	if (refcount_dec_and_test(&pending->refs))
2285 		wake_up_var(&pending->refs);
2286 
2287 	/*
2288 	 * Block the original owner of &pending until all subsequent callers
2289 	 * have seen the completion and decremented the refcount
2290 	 */
2291 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * Change a given task's CPU affinity. Migrate the thread to a
2298  * proper CPU and schedule it away if the CPU it's executing on
2299  * is removed from the allowed bitmask.
2300  *
2301  * NOTE: the caller must have a valid reference to the task, the
2302  * task must not exit() & deallocate itself prematurely. The
2303  * call is not atomic; no spinlocks may be held.
2304  */
2305 static int __set_cpus_allowed_ptr(struct task_struct *p,
2306 				  const struct cpumask *new_mask,
2307 				  u32 flags)
2308 {
2309 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2310 	unsigned int dest_cpu;
2311 	struct rq_flags rf;
2312 	struct rq *rq;
2313 	int ret = 0;
2314 
2315 	rq = task_rq_lock(p, &rf);
2316 	update_rq_clock(rq);
2317 
2318 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2319 		/*
2320 		 * Kernel threads are allowed on online && !active CPUs,
2321 		 * however, during cpu-hot-unplug, even these might get pushed
2322 		 * away if not KTHREAD_IS_PER_CPU.
2323 		 *
2324 		 * Specifically, migration_disabled() tasks must not fail the
2325 		 * cpumask_any_and_distribute() pick below, esp. so on
2326 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2327 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2328 		 */
2329 		cpu_valid_mask = cpu_online_mask;
2330 	}
2331 
2332 	/*
2333 	 * Must re-check here, to close a race against __kthread_bind(),
2334 	 * sched_setaffinity() is not guaranteed to observe the flag.
2335 	 */
2336 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2337 		ret = -EINVAL;
2338 		goto out;
2339 	}
2340 
2341 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2342 		if (cpumask_equal(&p->cpus_mask, new_mask))
2343 			goto out;
2344 
2345 		if (WARN_ON_ONCE(p == current &&
2346 				 is_migration_disabled(p) &&
2347 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2348 			ret = -EBUSY;
2349 			goto out;
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * Picking a ~random cpu helps in cases where we are changing affinity
2355 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2356 	 * immediately required to distribute the tasks within their new mask.
2357 	 */
2358 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2359 	if (dest_cpu >= nr_cpu_ids) {
2360 		ret = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	__do_set_cpus_allowed(p, new_mask, flags);
2365 
2366 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2367 
2368 out:
2369 	task_rq_unlock(rq, p, &rf);
2370 
2371 	return ret;
2372 }
2373 
2374 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2375 {
2376 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2377 }
2378 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2379 
2380 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2381 {
2382 #ifdef CONFIG_SCHED_DEBUG
2383 	/*
2384 	 * We should never call set_task_cpu() on a blocked task,
2385 	 * ttwu() will sort out the placement.
2386 	 */
2387 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2388 			!p->on_rq);
2389 
2390 	/*
2391 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2392 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2393 	 * time relying on p->on_rq.
2394 	 */
2395 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2396 		     p->sched_class == &fair_sched_class &&
2397 		     (p->on_rq && !task_on_rq_migrating(p)));
2398 
2399 #ifdef CONFIG_LOCKDEP
2400 	/*
2401 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2402 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2403 	 *
2404 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2405 	 * see task_group().
2406 	 *
2407 	 * Furthermore, all task_rq users should acquire both locks, see
2408 	 * task_rq_lock().
2409 	 */
2410 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2411 				      lockdep_is_held(&task_rq(p)->lock)));
2412 #endif
2413 	/*
2414 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2415 	 */
2416 	WARN_ON_ONCE(!cpu_online(new_cpu));
2417 
2418 	WARN_ON_ONCE(is_migration_disabled(p));
2419 #endif
2420 
2421 	trace_sched_migrate_task(p, new_cpu);
2422 
2423 	if (task_cpu(p) != new_cpu) {
2424 		if (p->sched_class->migrate_task_rq)
2425 			p->sched_class->migrate_task_rq(p, new_cpu);
2426 		p->se.nr_migrations++;
2427 		rseq_migrate(p);
2428 		perf_event_task_migrate(p);
2429 	}
2430 
2431 	__set_task_cpu(p, new_cpu);
2432 }
2433 
2434 #ifdef CONFIG_NUMA_BALANCING
2435 static void __migrate_swap_task(struct task_struct *p, int cpu)
2436 {
2437 	if (task_on_rq_queued(p)) {
2438 		struct rq *src_rq, *dst_rq;
2439 		struct rq_flags srf, drf;
2440 
2441 		src_rq = task_rq(p);
2442 		dst_rq = cpu_rq(cpu);
2443 
2444 		rq_pin_lock(src_rq, &srf);
2445 		rq_pin_lock(dst_rq, &drf);
2446 
2447 		deactivate_task(src_rq, p, 0);
2448 		set_task_cpu(p, cpu);
2449 		activate_task(dst_rq, p, 0);
2450 		check_preempt_curr(dst_rq, p, 0);
2451 
2452 		rq_unpin_lock(dst_rq, &drf);
2453 		rq_unpin_lock(src_rq, &srf);
2454 
2455 	} else {
2456 		/*
2457 		 * Task isn't running anymore; make it appear like we migrated
2458 		 * it before it went to sleep. This means on wakeup we make the
2459 		 * previous CPU our target instead of where it really is.
2460 		 */
2461 		p->wake_cpu = cpu;
2462 	}
2463 }
2464 
2465 struct migration_swap_arg {
2466 	struct task_struct *src_task, *dst_task;
2467 	int src_cpu, dst_cpu;
2468 };
2469 
2470 static int migrate_swap_stop(void *data)
2471 {
2472 	struct migration_swap_arg *arg = data;
2473 	struct rq *src_rq, *dst_rq;
2474 	int ret = -EAGAIN;
2475 
2476 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2477 		return -EAGAIN;
2478 
2479 	src_rq = cpu_rq(arg->src_cpu);
2480 	dst_rq = cpu_rq(arg->dst_cpu);
2481 
2482 	double_raw_lock(&arg->src_task->pi_lock,
2483 			&arg->dst_task->pi_lock);
2484 	double_rq_lock(src_rq, dst_rq);
2485 
2486 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2487 		goto unlock;
2488 
2489 	if (task_cpu(arg->src_task) != arg->src_cpu)
2490 		goto unlock;
2491 
2492 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2493 		goto unlock;
2494 
2495 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2496 		goto unlock;
2497 
2498 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2499 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2500 
2501 	ret = 0;
2502 
2503 unlock:
2504 	double_rq_unlock(src_rq, dst_rq);
2505 	raw_spin_unlock(&arg->dst_task->pi_lock);
2506 	raw_spin_unlock(&arg->src_task->pi_lock);
2507 
2508 	return ret;
2509 }
2510 
2511 /*
2512  * Cross migrate two tasks
2513  */
2514 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2515 		int target_cpu, int curr_cpu)
2516 {
2517 	struct migration_swap_arg arg;
2518 	int ret = -EINVAL;
2519 
2520 	arg = (struct migration_swap_arg){
2521 		.src_task = cur,
2522 		.src_cpu = curr_cpu,
2523 		.dst_task = p,
2524 		.dst_cpu = target_cpu,
2525 	};
2526 
2527 	if (arg.src_cpu == arg.dst_cpu)
2528 		goto out;
2529 
2530 	/*
2531 	 * These three tests are all lockless; this is OK since all of them
2532 	 * will be re-checked with proper locks held further down the line.
2533 	 */
2534 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2535 		goto out;
2536 
2537 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2538 		goto out;
2539 
2540 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2541 		goto out;
2542 
2543 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2544 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2545 
2546 out:
2547 	return ret;
2548 }
2549 #endif /* CONFIG_NUMA_BALANCING */
2550 
2551 /*
2552  * wait_task_inactive - wait for a thread to unschedule.
2553  *
2554  * If @match_state is nonzero, it's the @p->state value just checked and
2555  * not expected to change.  If it changes, i.e. @p might have woken up,
2556  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2557  * we return a positive number (its total switch count).  If a second call
2558  * a short while later returns the same number, the caller can be sure that
2559  * @p has remained unscheduled the whole time.
2560  *
2561  * The caller must ensure that the task *will* unschedule sometime soon,
2562  * else this function might spin for a *long* time. This function can't
2563  * be called with interrupts off, or it may introduce deadlock with
2564  * smp_call_function() if an IPI is sent by the same process we are
2565  * waiting to become inactive.
2566  */
2567 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2568 {
2569 	int running, queued;
2570 	struct rq_flags rf;
2571 	unsigned long ncsw;
2572 	struct rq *rq;
2573 
2574 	for (;;) {
2575 		/*
2576 		 * We do the initial early heuristics without holding
2577 		 * any task-queue locks at all. We'll only try to get
2578 		 * the runqueue lock when things look like they will
2579 		 * work out!
2580 		 */
2581 		rq = task_rq(p);
2582 
2583 		/*
2584 		 * If the task is actively running on another CPU
2585 		 * still, just relax and busy-wait without holding
2586 		 * any locks.
2587 		 *
2588 		 * NOTE! Since we don't hold any locks, it's not
2589 		 * even sure that "rq" stays as the right runqueue!
2590 		 * But we don't care, since "task_running()" will
2591 		 * return false if the runqueue has changed and p
2592 		 * is actually now running somewhere else!
2593 		 */
2594 		while (task_running(rq, p)) {
2595 			if (match_state && unlikely(p->state != match_state))
2596 				return 0;
2597 			cpu_relax();
2598 		}
2599 
2600 		/*
2601 		 * Ok, time to look more closely! We need the rq
2602 		 * lock now, to be *sure*. If we're wrong, we'll
2603 		 * just go back and repeat.
2604 		 */
2605 		rq = task_rq_lock(p, &rf);
2606 		trace_sched_wait_task(p);
2607 		running = task_running(rq, p);
2608 		queued = task_on_rq_queued(p);
2609 		ncsw = 0;
2610 		if (!match_state || p->state == match_state)
2611 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2612 		task_rq_unlock(rq, p, &rf);
2613 
2614 		/*
2615 		 * If it changed from the expected state, bail out now.
2616 		 */
2617 		if (unlikely(!ncsw))
2618 			break;
2619 
2620 		/*
2621 		 * Was it really running after all now that we
2622 		 * checked with the proper locks actually held?
2623 		 *
2624 		 * Oops. Go back and try again..
2625 		 */
2626 		if (unlikely(running)) {
2627 			cpu_relax();
2628 			continue;
2629 		}
2630 
2631 		/*
2632 		 * It's not enough that it's not actively running,
2633 		 * it must be off the runqueue _entirely_, and not
2634 		 * preempted!
2635 		 *
2636 		 * So if it was still runnable (but just not actively
2637 		 * running right now), it's preempted, and we should
2638 		 * yield - it could be a while.
2639 		 */
2640 		if (unlikely(queued)) {
2641 			ktime_t to = NSEC_PER_SEC / HZ;
2642 
2643 			set_current_state(TASK_UNINTERRUPTIBLE);
2644 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2645 			continue;
2646 		}
2647 
2648 		/*
2649 		 * Ahh, all good. It wasn't running, and it wasn't
2650 		 * runnable, which means that it will never become
2651 		 * running in the future either. We're all done!
2652 		 */
2653 		break;
2654 	}
2655 
2656 	return ncsw;
2657 }
2658 
2659 /***
2660  * kick_process - kick a running thread to enter/exit the kernel
2661  * @p: the to-be-kicked thread
2662  *
2663  * Cause a process which is running on another CPU to enter
2664  * kernel-mode, without any delay. (to get signals handled.)
2665  *
2666  * NOTE: this function doesn't have to take the runqueue lock,
2667  * because all it wants to ensure is that the remote task enters
2668  * the kernel. If the IPI races and the task has been migrated
2669  * to another CPU then no harm is done and the purpose has been
2670  * achieved as well.
2671  */
2672 void kick_process(struct task_struct *p)
2673 {
2674 	int cpu;
2675 
2676 	preempt_disable();
2677 	cpu = task_cpu(p);
2678 	if ((cpu != smp_processor_id()) && task_curr(p))
2679 		smp_send_reschedule(cpu);
2680 	preempt_enable();
2681 }
2682 EXPORT_SYMBOL_GPL(kick_process);
2683 
2684 /*
2685  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2686  *
2687  * A few notes on cpu_active vs cpu_online:
2688  *
2689  *  - cpu_active must be a subset of cpu_online
2690  *
2691  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2692  *    see __set_cpus_allowed_ptr(). At this point the newly online
2693  *    CPU isn't yet part of the sched domains, and balancing will not
2694  *    see it.
2695  *
2696  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2697  *    avoid the load balancer to place new tasks on the to be removed
2698  *    CPU. Existing tasks will remain running there and will be taken
2699  *    off.
2700  *
2701  * This means that fallback selection must not select !active CPUs.
2702  * And can assume that any active CPU must be online. Conversely
2703  * select_task_rq() below may allow selection of !active CPUs in order
2704  * to satisfy the above rules.
2705  */
2706 static int select_fallback_rq(int cpu, struct task_struct *p)
2707 {
2708 	int nid = cpu_to_node(cpu);
2709 	const struct cpumask *nodemask = NULL;
2710 	enum { cpuset, possible, fail } state = cpuset;
2711 	int dest_cpu;
2712 
2713 	/*
2714 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2715 	 * will return -1. There is no CPU on the node, and we should
2716 	 * select the CPU on the other node.
2717 	 */
2718 	if (nid != -1) {
2719 		nodemask = cpumask_of_node(nid);
2720 
2721 		/* Look for allowed, online CPU in same node. */
2722 		for_each_cpu(dest_cpu, nodemask) {
2723 			if (!cpu_active(dest_cpu))
2724 				continue;
2725 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2726 				return dest_cpu;
2727 		}
2728 	}
2729 
2730 	for (;;) {
2731 		/* Any allowed, online CPU? */
2732 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2733 			if (!is_cpu_allowed(p, dest_cpu))
2734 				continue;
2735 
2736 			goto out;
2737 		}
2738 
2739 		/* No more Mr. Nice Guy. */
2740 		switch (state) {
2741 		case cpuset:
2742 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2743 				cpuset_cpus_allowed_fallback(p);
2744 				state = possible;
2745 				break;
2746 			}
2747 			fallthrough;
2748 		case possible:
2749 			/*
2750 			 * XXX When called from select_task_rq() we only
2751 			 * hold p->pi_lock and again violate locking order.
2752 			 *
2753 			 * More yuck to audit.
2754 			 */
2755 			do_set_cpus_allowed(p, cpu_possible_mask);
2756 			state = fail;
2757 			break;
2758 
2759 		case fail:
2760 			BUG();
2761 			break;
2762 		}
2763 	}
2764 
2765 out:
2766 	if (state != cpuset) {
2767 		/*
2768 		 * Don't tell them about moving exiting tasks or
2769 		 * kernel threads (both mm NULL), since they never
2770 		 * leave kernel.
2771 		 */
2772 		if (p->mm && printk_ratelimit()) {
2773 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2774 					task_pid_nr(p), p->comm, cpu);
2775 		}
2776 	}
2777 
2778 	return dest_cpu;
2779 }
2780 
2781 /*
2782  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2783  */
2784 static inline
2785 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2786 {
2787 	lockdep_assert_held(&p->pi_lock);
2788 
2789 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2790 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2791 	else
2792 		cpu = cpumask_any(p->cpus_ptr);
2793 
2794 	/*
2795 	 * In order not to call set_task_cpu() on a blocking task we need
2796 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2797 	 * CPU.
2798 	 *
2799 	 * Since this is common to all placement strategies, this lives here.
2800 	 *
2801 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2802 	 *   not worry about this generic constraint ]
2803 	 */
2804 	if (unlikely(!is_cpu_allowed(p, cpu)))
2805 		cpu = select_fallback_rq(task_cpu(p), p);
2806 
2807 	return cpu;
2808 }
2809 
2810 void sched_set_stop_task(int cpu, struct task_struct *stop)
2811 {
2812 	static struct lock_class_key stop_pi_lock;
2813 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2814 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2815 
2816 	if (stop) {
2817 		/*
2818 		 * Make it appear like a SCHED_FIFO task, its something
2819 		 * userspace knows about and won't get confused about.
2820 		 *
2821 		 * Also, it will make PI more or less work without too
2822 		 * much confusion -- but then, stop work should not
2823 		 * rely on PI working anyway.
2824 		 */
2825 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2826 
2827 		stop->sched_class = &stop_sched_class;
2828 
2829 		/*
2830 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2831 		 * adjust the effective priority of a task. As a result,
2832 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2833 		 * which can then trigger wakeups of the stop thread to push
2834 		 * around the current task.
2835 		 *
2836 		 * The stop task itself will never be part of the PI-chain, it
2837 		 * never blocks, therefore that ->pi_lock recursion is safe.
2838 		 * Tell lockdep about this by placing the stop->pi_lock in its
2839 		 * own class.
2840 		 */
2841 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2842 	}
2843 
2844 	cpu_rq(cpu)->stop = stop;
2845 
2846 	if (old_stop) {
2847 		/*
2848 		 * Reset it back to a normal scheduling class so that
2849 		 * it can die in pieces.
2850 		 */
2851 		old_stop->sched_class = &rt_sched_class;
2852 	}
2853 }
2854 
2855 #else /* CONFIG_SMP */
2856 
2857 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2858 					 const struct cpumask *new_mask,
2859 					 u32 flags)
2860 {
2861 	return set_cpus_allowed_ptr(p, new_mask);
2862 }
2863 
2864 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2865 
2866 static inline bool rq_has_pinned_tasks(struct rq *rq)
2867 {
2868 	return false;
2869 }
2870 
2871 #endif /* !CONFIG_SMP */
2872 
2873 static void
2874 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2875 {
2876 	struct rq *rq;
2877 
2878 	if (!schedstat_enabled())
2879 		return;
2880 
2881 	rq = this_rq();
2882 
2883 #ifdef CONFIG_SMP
2884 	if (cpu == rq->cpu) {
2885 		__schedstat_inc(rq->ttwu_local);
2886 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2887 	} else {
2888 		struct sched_domain *sd;
2889 
2890 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2891 		rcu_read_lock();
2892 		for_each_domain(rq->cpu, sd) {
2893 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2894 				__schedstat_inc(sd->ttwu_wake_remote);
2895 				break;
2896 			}
2897 		}
2898 		rcu_read_unlock();
2899 	}
2900 
2901 	if (wake_flags & WF_MIGRATED)
2902 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2903 #endif /* CONFIG_SMP */
2904 
2905 	__schedstat_inc(rq->ttwu_count);
2906 	__schedstat_inc(p->se.statistics.nr_wakeups);
2907 
2908 	if (wake_flags & WF_SYNC)
2909 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2910 }
2911 
2912 /*
2913  * Mark the task runnable and perform wakeup-preemption.
2914  */
2915 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2916 			   struct rq_flags *rf)
2917 {
2918 	check_preempt_curr(rq, p, wake_flags);
2919 	p->state = TASK_RUNNING;
2920 	trace_sched_wakeup(p);
2921 
2922 #ifdef CONFIG_SMP
2923 	if (p->sched_class->task_woken) {
2924 		/*
2925 		 * Our task @p is fully woken up and running; so it's safe to
2926 		 * drop the rq->lock, hereafter rq is only used for statistics.
2927 		 */
2928 		rq_unpin_lock(rq, rf);
2929 		p->sched_class->task_woken(rq, p);
2930 		rq_repin_lock(rq, rf);
2931 	}
2932 
2933 	if (rq->idle_stamp) {
2934 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2935 		u64 max = 2*rq->max_idle_balance_cost;
2936 
2937 		update_avg(&rq->avg_idle, delta);
2938 
2939 		if (rq->avg_idle > max)
2940 			rq->avg_idle = max;
2941 
2942 		rq->idle_stamp = 0;
2943 	}
2944 #endif
2945 }
2946 
2947 static void
2948 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2949 		 struct rq_flags *rf)
2950 {
2951 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2952 
2953 	lockdep_assert_held(&rq->lock);
2954 
2955 	if (p->sched_contributes_to_load)
2956 		rq->nr_uninterruptible--;
2957 
2958 #ifdef CONFIG_SMP
2959 	if (wake_flags & WF_MIGRATED)
2960 		en_flags |= ENQUEUE_MIGRATED;
2961 	else
2962 #endif
2963 	if (p->in_iowait) {
2964 		delayacct_blkio_end(p);
2965 		atomic_dec(&task_rq(p)->nr_iowait);
2966 	}
2967 
2968 	activate_task(rq, p, en_flags);
2969 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2970 }
2971 
2972 /*
2973  * Consider @p being inside a wait loop:
2974  *
2975  *   for (;;) {
2976  *      set_current_state(TASK_UNINTERRUPTIBLE);
2977  *
2978  *      if (CONDITION)
2979  *         break;
2980  *
2981  *      schedule();
2982  *   }
2983  *   __set_current_state(TASK_RUNNING);
2984  *
2985  * between set_current_state() and schedule(). In this case @p is still
2986  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2987  * an atomic manner.
2988  *
2989  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2990  * then schedule() must still happen and p->state can be changed to
2991  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2992  * need to do a full wakeup with enqueue.
2993  *
2994  * Returns: %true when the wakeup is done,
2995  *          %false otherwise.
2996  */
2997 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2998 {
2999 	struct rq_flags rf;
3000 	struct rq *rq;
3001 	int ret = 0;
3002 
3003 	rq = __task_rq_lock(p, &rf);
3004 	if (task_on_rq_queued(p)) {
3005 		/* check_preempt_curr() may use rq clock */
3006 		update_rq_clock(rq);
3007 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3008 		ret = 1;
3009 	}
3010 	__task_rq_unlock(rq, &rf);
3011 
3012 	return ret;
3013 }
3014 
3015 #ifdef CONFIG_SMP
3016 void sched_ttwu_pending(void *arg)
3017 {
3018 	struct llist_node *llist = arg;
3019 	struct rq *rq = this_rq();
3020 	struct task_struct *p, *t;
3021 	struct rq_flags rf;
3022 
3023 	if (!llist)
3024 		return;
3025 
3026 	/*
3027 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3028 	 * Races such that false-negatives are possible, since they
3029 	 * are shorter lived that false-positives would be.
3030 	 */
3031 	WRITE_ONCE(rq->ttwu_pending, 0);
3032 
3033 	rq_lock_irqsave(rq, &rf);
3034 	update_rq_clock(rq);
3035 
3036 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3037 		if (WARN_ON_ONCE(p->on_cpu))
3038 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3039 
3040 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3041 			set_task_cpu(p, cpu_of(rq));
3042 
3043 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3044 	}
3045 
3046 	rq_unlock_irqrestore(rq, &rf);
3047 }
3048 
3049 void send_call_function_single_ipi(int cpu)
3050 {
3051 	struct rq *rq = cpu_rq(cpu);
3052 
3053 	if (!set_nr_if_polling(rq->idle))
3054 		arch_send_call_function_single_ipi(cpu);
3055 	else
3056 		trace_sched_wake_idle_without_ipi(cpu);
3057 }
3058 
3059 /*
3060  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3061  * necessary. The wakee CPU on receipt of the IPI will queue the task
3062  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3063  * of the wakeup instead of the waker.
3064  */
3065 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3066 {
3067 	struct rq *rq = cpu_rq(cpu);
3068 
3069 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3070 
3071 	WRITE_ONCE(rq->ttwu_pending, 1);
3072 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3073 }
3074 
3075 void wake_up_if_idle(int cpu)
3076 {
3077 	struct rq *rq = cpu_rq(cpu);
3078 	struct rq_flags rf;
3079 
3080 	rcu_read_lock();
3081 
3082 	if (!is_idle_task(rcu_dereference(rq->curr)))
3083 		goto out;
3084 
3085 	if (set_nr_if_polling(rq->idle)) {
3086 		trace_sched_wake_idle_without_ipi(cpu);
3087 	} else {
3088 		rq_lock_irqsave(rq, &rf);
3089 		if (is_idle_task(rq->curr))
3090 			smp_send_reschedule(cpu);
3091 		/* Else CPU is not idle, do nothing here: */
3092 		rq_unlock_irqrestore(rq, &rf);
3093 	}
3094 
3095 out:
3096 	rcu_read_unlock();
3097 }
3098 
3099 bool cpus_share_cache(int this_cpu, int that_cpu)
3100 {
3101 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3102 }
3103 
3104 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3105 {
3106 	/*
3107 	 * Do not complicate things with the async wake_list while the CPU is
3108 	 * in hotplug state.
3109 	 */
3110 	if (!cpu_active(cpu))
3111 		return false;
3112 
3113 	/*
3114 	 * If the CPU does not share cache, then queue the task on the
3115 	 * remote rqs wakelist to avoid accessing remote data.
3116 	 */
3117 	if (!cpus_share_cache(smp_processor_id(), cpu))
3118 		return true;
3119 
3120 	/*
3121 	 * If the task is descheduling and the only running task on the
3122 	 * CPU then use the wakelist to offload the task activation to
3123 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3124 	 * nr_running is checked to avoid unnecessary task stacking.
3125 	 */
3126 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3127 		return true;
3128 
3129 	return false;
3130 }
3131 
3132 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3133 {
3134 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3135 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3136 			return false;
3137 
3138 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3139 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3140 		return true;
3141 	}
3142 
3143 	return false;
3144 }
3145 
3146 #else /* !CONFIG_SMP */
3147 
3148 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3149 {
3150 	return false;
3151 }
3152 
3153 #endif /* CONFIG_SMP */
3154 
3155 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3156 {
3157 	struct rq *rq = cpu_rq(cpu);
3158 	struct rq_flags rf;
3159 
3160 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3161 		return;
3162 
3163 	rq_lock(rq, &rf);
3164 	update_rq_clock(rq);
3165 	ttwu_do_activate(rq, p, wake_flags, &rf);
3166 	rq_unlock(rq, &rf);
3167 }
3168 
3169 /*
3170  * Notes on Program-Order guarantees on SMP systems.
3171  *
3172  *  MIGRATION
3173  *
3174  * The basic program-order guarantee on SMP systems is that when a task [t]
3175  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3176  * execution on its new CPU [c1].
3177  *
3178  * For migration (of runnable tasks) this is provided by the following means:
3179  *
3180  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3181  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3182  *     rq(c1)->lock (if not at the same time, then in that order).
3183  *  C) LOCK of the rq(c1)->lock scheduling in task
3184  *
3185  * Release/acquire chaining guarantees that B happens after A and C after B.
3186  * Note: the CPU doing B need not be c0 or c1
3187  *
3188  * Example:
3189  *
3190  *   CPU0            CPU1            CPU2
3191  *
3192  *   LOCK rq(0)->lock
3193  *   sched-out X
3194  *   sched-in Y
3195  *   UNLOCK rq(0)->lock
3196  *
3197  *                                   LOCK rq(0)->lock // orders against CPU0
3198  *                                   dequeue X
3199  *                                   UNLOCK rq(0)->lock
3200  *
3201  *                                   LOCK rq(1)->lock
3202  *                                   enqueue X
3203  *                                   UNLOCK rq(1)->lock
3204  *
3205  *                   LOCK rq(1)->lock // orders against CPU2
3206  *                   sched-out Z
3207  *                   sched-in X
3208  *                   UNLOCK rq(1)->lock
3209  *
3210  *
3211  *  BLOCKING -- aka. SLEEP + WAKEUP
3212  *
3213  * For blocking we (obviously) need to provide the same guarantee as for
3214  * migration. However the means are completely different as there is no lock
3215  * chain to provide order. Instead we do:
3216  *
3217  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3218  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3219  *
3220  * Example:
3221  *
3222  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3223  *
3224  *   LOCK rq(0)->lock LOCK X->pi_lock
3225  *   dequeue X
3226  *   sched-out X
3227  *   smp_store_release(X->on_cpu, 0);
3228  *
3229  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3230  *                    X->state = WAKING
3231  *                    set_task_cpu(X,2)
3232  *
3233  *                    LOCK rq(2)->lock
3234  *                    enqueue X
3235  *                    X->state = RUNNING
3236  *                    UNLOCK rq(2)->lock
3237  *
3238  *                                          LOCK rq(2)->lock // orders against CPU1
3239  *                                          sched-out Z
3240  *                                          sched-in X
3241  *                                          UNLOCK rq(2)->lock
3242  *
3243  *                    UNLOCK X->pi_lock
3244  *   UNLOCK rq(0)->lock
3245  *
3246  *
3247  * However, for wakeups there is a second guarantee we must provide, namely we
3248  * must ensure that CONDITION=1 done by the caller can not be reordered with
3249  * accesses to the task state; see try_to_wake_up() and set_current_state().
3250  */
3251 
3252 /**
3253  * try_to_wake_up - wake up a thread
3254  * @p: the thread to be awakened
3255  * @state: the mask of task states that can be woken
3256  * @wake_flags: wake modifier flags (WF_*)
3257  *
3258  * Conceptually does:
3259  *
3260  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3261  *
3262  * If the task was not queued/runnable, also place it back on a runqueue.
3263  *
3264  * This function is atomic against schedule() which would dequeue the task.
3265  *
3266  * It issues a full memory barrier before accessing @p->state, see the comment
3267  * with set_current_state().
3268  *
3269  * Uses p->pi_lock to serialize against concurrent wake-ups.
3270  *
3271  * Relies on p->pi_lock stabilizing:
3272  *  - p->sched_class
3273  *  - p->cpus_ptr
3274  *  - p->sched_task_group
3275  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3276  *
3277  * Tries really hard to only take one task_rq(p)->lock for performance.
3278  * Takes rq->lock in:
3279  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3280  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3281  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3282  *
3283  * As a consequence we race really badly with just about everything. See the
3284  * many memory barriers and their comments for details.
3285  *
3286  * Return: %true if @p->state changes (an actual wakeup was done),
3287  *	   %false otherwise.
3288  */
3289 static int
3290 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3291 {
3292 	unsigned long flags;
3293 	int cpu, success = 0;
3294 
3295 	preempt_disable();
3296 	if (p == current) {
3297 		/*
3298 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3299 		 * == smp_processor_id()'. Together this means we can special
3300 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3301 		 * without taking any locks.
3302 		 *
3303 		 * In particular:
3304 		 *  - we rely on Program-Order guarantees for all the ordering,
3305 		 *  - we're serialized against set_special_state() by virtue of
3306 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3307 		 */
3308 		if (!(p->state & state))
3309 			goto out;
3310 
3311 		success = 1;
3312 		trace_sched_waking(p);
3313 		p->state = TASK_RUNNING;
3314 		trace_sched_wakeup(p);
3315 		goto out;
3316 	}
3317 
3318 	/*
3319 	 * If we are going to wake up a thread waiting for CONDITION we
3320 	 * need to ensure that CONDITION=1 done by the caller can not be
3321 	 * reordered with p->state check below. This pairs with smp_store_mb()
3322 	 * in set_current_state() that the waiting thread does.
3323 	 */
3324 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3325 	smp_mb__after_spinlock();
3326 	if (!(p->state & state))
3327 		goto unlock;
3328 
3329 	trace_sched_waking(p);
3330 
3331 	/* We're going to change ->state: */
3332 	success = 1;
3333 
3334 	/*
3335 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3336 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3337 	 * in smp_cond_load_acquire() below.
3338 	 *
3339 	 * sched_ttwu_pending()			try_to_wake_up()
3340 	 *   STORE p->on_rq = 1			  LOAD p->state
3341 	 *   UNLOCK rq->lock
3342 	 *
3343 	 * __schedule() (switch to task 'p')
3344 	 *   LOCK rq->lock			  smp_rmb();
3345 	 *   smp_mb__after_spinlock();
3346 	 *   UNLOCK rq->lock
3347 	 *
3348 	 * [task p]
3349 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3350 	 *
3351 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3352 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3353 	 *
3354 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3355 	 */
3356 	smp_rmb();
3357 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3358 		goto unlock;
3359 
3360 #ifdef CONFIG_SMP
3361 	/*
3362 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3363 	 * possible to, falsely, observe p->on_cpu == 0.
3364 	 *
3365 	 * One must be running (->on_cpu == 1) in order to remove oneself
3366 	 * from the runqueue.
3367 	 *
3368 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3369 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3370 	 *   UNLOCK rq->lock
3371 	 *
3372 	 * __schedule() (put 'p' to sleep)
3373 	 *   LOCK rq->lock			  smp_rmb();
3374 	 *   smp_mb__after_spinlock();
3375 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3376 	 *
3377 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3378 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3379 	 *
3380 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3381 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3382 	 * care about it's own p->state. See the comment in __schedule().
3383 	 */
3384 	smp_acquire__after_ctrl_dep();
3385 
3386 	/*
3387 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3388 	 * == 0), which means we need to do an enqueue, change p->state to
3389 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3390 	 * enqueue, such as ttwu_queue_wakelist().
3391 	 */
3392 	p->state = TASK_WAKING;
3393 
3394 	/*
3395 	 * If the owning (remote) CPU is still in the middle of schedule() with
3396 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3397 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3398 	 * let the waker make forward progress. This is safe because IRQs are
3399 	 * disabled and the IPI will deliver after on_cpu is cleared.
3400 	 *
3401 	 * Ensure we load task_cpu(p) after p->on_cpu:
3402 	 *
3403 	 * set_task_cpu(p, cpu);
3404 	 *   STORE p->cpu = @cpu
3405 	 * __schedule() (switch to task 'p')
3406 	 *   LOCK rq->lock
3407 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3408 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3409 	 *
3410 	 * to ensure we observe the correct CPU on which the task is currently
3411 	 * scheduling.
3412 	 */
3413 	if (smp_load_acquire(&p->on_cpu) &&
3414 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3415 		goto unlock;
3416 
3417 	/*
3418 	 * If the owning (remote) CPU is still in the middle of schedule() with
3419 	 * this task as prev, wait until it's done referencing the task.
3420 	 *
3421 	 * Pairs with the smp_store_release() in finish_task().
3422 	 *
3423 	 * This ensures that tasks getting woken will be fully ordered against
3424 	 * their previous state and preserve Program Order.
3425 	 */
3426 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3427 
3428 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3429 	if (task_cpu(p) != cpu) {
3430 		if (p->in_iowait) {
3431 			delayacct_blkio_end(p);
3432 			atomic_dec(&task_rq(p)->nr_iowait);
3433 		}
3434 
3435 		wake_flags |= WF_MIGRATED;
3436 		psi_ttwu_dequeue(p);
3437 		set_task_cpu(p, cpu);
3438 	}
3439 #else
3440 	cpu = task_cpu(p);
3441 #endif /* CONFIG_SMP */
3442 
3443 	ttwu_queue(p, cpu, wake_flags);
3444 unlock:
3445 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3446 out:
3447 	if (success)
3448 		ttwu_stat(p, task_cpu(p), wake_flags);
3449 	preempt_enable();
3450 
3451 	return success;
3452 }
3453 
3454 /**
3455  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3456  * @p: Process for which the function is to be invoked, can be @current.
3457  * @func: Function to invoke.
3458  * @arg: Argument to function.
3459  *
3460  * If the specified task can be quickly locked into a definite state
3461  * (either sleeping or on a given runqueue), arrange to keep it in that
3462  * state while invoking @func(@arg).  This function can use ->on_rq and
3463  * task_curr() to work out what the state is, if required.  Given that
3464  * @func can be invoked with a runqueue lock held, it had better be quite
3465  * lightweight.
3466  *
3467  * Returns:
3468  *	@false if the task slipped out from under the locks.
3469  *	@true if the task was locked onto a runqueue or is sleeping.
3470  *		However, @func can override this by returning @false.
3471  */
3472 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3473 {
3474 	struct rq_flags rf;
3475 	bool ret = false;
3476 	struct rq *rq;
3477 
3478 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3479 	if (p->on_rq) {
3480 		rq = __task_rq_lock(p, &rf);
3481 		if (task_rq(p) == rq)
3482 			ret = func(p, arg);
3483 		rq_unlock(rq, &rf);
3484 	} else {
3485 		switch (p->state) {
3486 		case TASK_RUNNING:
3487 		case TASK_WAKING:
3488 			break;
3489 		default:
3490 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3491 			if (!p->on_rq)
3492 				ret = func(p, arg);
3493 		}
3494 	}
3495 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3496 	return ret;
3497 }
3498 
3499 /**
3500  * wake_up_process - Wake up a specific process
3501  * @p: The process to be woken up.
3502  *
3503  * Attempt to wake up the nominated process and move it to the set of runnable
3504  * processes.
3505  *
3506  * Return: 1 if the process was woken up, 0 if it was already running.
3507  *
3508  * This function executes a full memory barrier before accessing the task state.
3509  */
3510 int wake_up_process(struct task_struct *p)
3511 {
3512 	return try_to_wake_up(p, TASK_NORMAL, 0);
3513 }
3514 EXPORT_SYMBOL(wake_up_process);
3515 
3516 int wake_up_state(struct task_struct *p, unsigned int state)
3517 {
3518 	return try_to_wake_up(p, state, 0);
3519 }
3520 
3521 /*
3522  * Perform scheduler related setup for a newly forked process p.
3523  * p is forked by current.
3524  *
3525  * __sched_fork() is basic setup used by init_idle() too:
3526  */
3527 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3528 {
3529 	p->on_rq			= 0;
3530 
3531 	p->se.on_rq			= 0;
3532 	p->se.exec_start		= 0;
3533 	p->se.sum_exec_runtime		= 0;
3534 	p->se.prev_sum_exec_runtime	= 0;
3535 	p->se.nr_migrations		= 0;
3536 	p->se.vruntime			= 0;
3537 	INIT_LIST_HEAD(&p->se.group_node);
3538 
3539 #ifdef CONFIG_FAIR_GROUP_SCHED
3540 	p->se.cfs_rq			= NULL;
3541 #endif
3542 
3543 #ifdef CONFIG_SCHEDSTATS
3544 	/* Even if schedstat is disabled, there should not be garbage */
3545 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3546 #endif
3547 
3548 	RB_CLEAR_NODE(&p->dl.rb_node);
3549 	init_dl_task_timer(&p->dl);
3550 	init_dl_inactive_task_timer(&p->dl);
3551 	__dl_clear_params(p);
3552 
3553 	INIT_LIST_HEAD(&p->rt.run_list);
3554 	p->rt.timeout		= 0;
3555 	p->rt.time_slice	= sched_rr_timeslice;
3556 	p->rt.on_rq		= 0;
3557 	p->rt.on_list		= 0;
3558 
3559 #ifdef CONFIG_PREEMPT_NOTIFIERS
3560 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3561 #endif
3562 
3563 #ifdef CONFIG_COMPACTION
3564 	p->capture_control = NULL;
3565 #endif
3566 	init_numa_balancing(clone_flags, p);
3567 #ifdef CONFIG_SMP
3568 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3569 	p->migration_pending = NULL;
3570 #endif
3571 }
3572 
3573 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3574 
3575 #ifdef CONFIG_NUMA_BALANCING
3576 
3577 void set_numabalancing_state(bool enabled)
3578 {
3579 	if (enabled)
3580 		static_branch_enable(&sched_numa_balancing);
3581 	else
3582 		static_branch_disable(&sched_numa_balancing);
3583 }
3584 
3585 #ifdef CONFIG_PROC_SYSCTL
3586 int sysctl_numa_balancing(struct ctl_table *table, int write,
3587 			  void *buffer, size_t *lenp, loff_t *ppos)
3588 {
3589 	struct ctl_table t;
3590 	int err;
3591 	int state = static_branch_likely(&sched_numa_balancing);
3592 
3593 	if (write && !capable(CAP_SYS_ADMIN))
3594 		return -EPERM;
3595 
3596 	t = *table;
3597 	t.data = &state;
3598 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3599 	if (err < 0)
3600 		return err;
3601 	if (write)
3602 		set_numabalancing_state(state);
3603 	return err;
3604 }
3605 #endif
3606 #endif
3607 
3608 #ifdef CONFIG_SCHEDSTATS
3609 
3610 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3611 static bool __initdata __sched_schedstats = false;
3612 
3613 static void set_schedstats(bool enabled)
3614 {
3615 	if (enabled)
3616 		static_branch_enable(&sched_schedstats);
3617 	else
3618 		static_branch_disable(&sched_schedstats);
3619 }
3620 
3621 void force_schedstat_enabled(void)
3622 {
3623 	if (!schedstat_enabled()) {
3624 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3625 		static_branch_enable(&sched_schedstats);
3626 	}
3627 }
3628 
3629 static int __init setup_schedstats(char *str)
3630 {
3631 	int ret = 0;
3632 	if (!str)
3633 		goto out;
3634 
3635 	/*
3636 	 * This code is called before jump labels have been set up, so we can't
3637 	 * change the static branch directly just yet.  Instead set a temporary
3638 	 * variable so init_schedstats() can do it later.
3639 	 */
3640 	if (!strcmp(str, "enable")) {
3641 		__sched_schedstats = true;
3642 		ret = 1;
3643 	} else if (!strcmp(str, "disable")) {
3644 		__sched_schedstats = false;
3645 		ret = 1;
3646 	}
3647 out:
3648 	if (!ret)
3649 		pr_warn("Unable to parse schedstats=\n");
3650 
3651 	return ret;
3652 }
3653 __setup("schedstats=", setup_schedstats);
3654 
3655 static void __init init_schedstats(void)
3656 {
3657 	set_schedstats(__sched_schedstats);
3658 }
3659 
3660 #ifdef CONFIG_PROC_SYSCTL
3661 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3662 		size_t *lenp, loff_t *ppos)
3663 {
3664 	struct ctl_table t;
3665 	int err;
3666 	int state = static_branch_likely(&sched_schedstats);
3667 
3668 	if (write && !capable(CAP_SYS_ADMIN))
3669 		return -EPERM;
3670 
3671 	t = *table;
3672 	t.data = &state;
3673 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3674 	if (err < 0)
3675 		return err;
3676 	if (write)
3677 		set_schedstats(state);
3678 	return err;
3679 }
3680 #endif /* CONFIG_PROC_SYSCTL */
3681 #else  /* !CONFIG_SCHEDSTATS */
3682 static inline void init_schedstats(void) {}
3683 #endif /* CONFIG_SCHEDSTATS */
3684 
3685 /*
3686  * fork()/clone()-time setup:
3687  */
3688 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3689 {
3690 	unsigned long flags;
3691 
3692 	__sched_fork(clone_flags, p);
3693 	/*
3694 	 * We mark the process as NEW here. This guarantees that
3695 	 * nobody will actually run it, and a signal or other external
3696 	 * event cannot wake it up and insert it on the runqueue either.
3697 	 */
3698 	p->state = TASK_NEW;
3699 
3700 	/*
3701 	 * Make sure we do not leak PI boosting priority to the child.
3702 	 */
3703 	p->prio = current->normal_prio;
3704 
3705 	uclamp_fork(p);
3706 
3707 	/*
3708 	 * Revert to default priority/policy on fork if requested.
3709 	 */
3710 	if (unlikely(p->sched_reset_on_fork)) {
3711 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3712 			p->policy = SCHED_NORMAL;
3713 			p->static_prio = NICE_TO_PRIO(0);
3714 			p->rt_priority = 0;
3715 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3716 			p->static_prio = NICE_TO_PRIO(0);
3717 
3718 		p->prio = p->normal_prio = __normal_prio(p);
3719 		set_load_weight(p, false);
3720 
3721 		/*
3722 		 * We don't need the reset flag anymore after the fork. It has
3723 		 * fulfilled its duty:
3724 		 */
3725 		p->sched_reset_on_fork = 0;
3726 	}
3727 
3728 	if (dl_prio(p->prio))
3729 		return -EAGAIN;
3730 	else if (rt_prio(p->prio))
3731 		p->sched_class = &rt_sched_class;
3732 	else
3733 		p->sched_class = &fair_sched_class;
3734 
3735 	init_entity_runnable_average(&p->se);
3736 
3737 	/*
3738 	 * The child is not yet in the pid-hash so no cgroup attach races,
3739 	 * and the cgroup is pinned to this child due to cgroup_fork()
3740 	 * is ran before sched_fork().
3741 	 *
3742 	 * Silence PROVE_RCU.
3743 	 */
3744 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3745 	rseq_migrate(p);
3746 	/*
3747 	 * We're setting the CPU for the first time, we don't migrate,
3748 	 * so use __set_task_cpu().
3749 	 */
3750 	__set_task_cpu(p, smp_processor_id());
3751 	if (p->sched_class->task_fork)
3752 		p->sched_class->task_fork(p);
3753 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3754 
3755 #ifdef CONFIG_SCHED_INFO
3756 	if (likely(sched_info_on()))
3757 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3758 #endif
3759 #if defined(CONFIG_SMP)
3760 	p->on_cpu = 0;
3761 #endif
3762 	init_task_preempt_count(p);
3763 #ifdef CONFIG_SMP
3764 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3765 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3766 #endif
3767 	return 0;
3768 }
3769 
3770 void sched_post_fork(struct task_struct *p)
3771 {
3772 	uclamp_post_fork(p);
3773 }
3774 
3775 unsigned long to_ratio(u64 period, u64 runtime)
3776 {
3777 	if (runtime == RUNTIME_INF)
3778 		return BW_UNIT;
3779 
3780 	/*
3781 	 * Doing this here saves a lot of checks in all
3782 	 * the calling paths, and returning zero seems
3783 	 * safe for them anyway.
3784 	 */
3785 	if (period == 0)
3786 		return 0;
3787 
3788 	return div64_u64(runtime << BW_SHIFT, period);
3789 }
3790 
3791 /*
3792  * wake_up_new_task - wake up a newly created task for the first time.
3793  *
3794  * This function will do some initial scheduler statistics housekeeping
3795  * that must be done for every newly created context, then puts the task
3796  * on the runqueue and wakes it.
3797  */
3798 void wake_up_new_task(struct task_struct *p)
3799 {
3800 	struct rq_flags rf;
3801 	struct rq *rq;
3802 
3803 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3804 	p->state = TASK_RUNNING;
3805 #ifdef CONFIG_SMP
3806 	/*
3807 	 * Fork balancing, do it here and not earlier because:
3808 	 *  - cpus_ptr can change in the fork path
3809 	 *  - any previously selected CPU might disappear through hotplug
3810 	 *
3811 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3812 	 * as we're not fully set-up yet.
3813 	 */
3814 	p->recent_used_cpu = task_cpu(p);
3815 	rseq_migrate(p);
3816 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3817 #endif
3818 	rq = __task_rq_lock(p, &rf);
3819 	update_rq_clock(rq);
3820 	post_init_entity_util_avg(p);
3821 
3822 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3823 	trace_sched_wakeup_new(p);
3824 	check_preempt_curr(rq, p, WF_FORK);
3825 #ifdef CONFIG_SMP
3826 	if (p->sched_class->task_woken) {
3827 		/*
3828 		 * Nothing relies on rq->lock after this, so it's fine to
3829 		 * drop it.
3830 		 */
3831 		rq_unpin_lock(rq, &rf);
3832 		p->sched_class->task_woken(rq, p);
3833 		rq_repin_lock(rq, &rf);
3834 	}
3835 #endif
3836 	task_rq_unlock(rq, p, &rf);
3837 }
3838 
3839 #ifdef CONFIG_PREEMPT_NOTIFIERS
3840 
3841 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3842 
3843 void preempt_notifier_inc(void)
3844 {
3845 	static_branch_inc(&preempt_notifier_key);
3846 }
3847 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3848 
3849 void preempt_notifier_dec(void)
3850 {
3851 	static_branch_dec(&preempt_notifier_key);
3852 }
3853 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3854 
3855 /**
3856  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3857  * @notifier: notifier struct to register
3858  */
3859 void preempt_notifier_register(struct preempt_notifier *notifier)
3860 {
3861 	if (!static_branch_unlikely(&preempt_notifier_key))
3862 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3863 
3864 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3865 }
3866 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3867 
3868 /**
3869  * preempt_notifier_unregister - no longer interested in preemption notifications
3870  * @notifier: notifier struct to unregister
3871  *
3872  * This is *not* safe to call from within a preemption notifier.
3873  */
3874 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3875 {
3876 	hlist_del(&notifier->link);
3877 }
3878 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3879 
3880 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3881 {
3882 	struct preempt_notifier *notifier;
3883 
3884 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3885 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3886 }
3887 
3888 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3889 {
3890 	if (static_branch_unlikely(&preempt_notifier_key))
3891 		__fire_sched_in_preempt_notifiers(curr);
3892 }
3893 
3894 static void
3895 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3896 				   struct task_struct *next)
3897 {
3898 	struct preempt_notifier *notifier;
3899 
3900 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3901 		notifier->ops->sched_out(notifier, next);
3902 }
3903 
3904 static __always_inline void
3905 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3906 				 struct task_struct *next)
3907 {
3908 	if (static_branch_unlikely(&preempt_notifier_key))
3909 		__fire_sched_out_preempt_notifiers(curr, next);
3910 }
3911 
3912 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3913 
3914 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3915 {
3916 }
3917 
3918 static inline void
3919 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3920 				 struct task_struct *next)
3921 {
3922 }
3923 
3924 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3925 
3926 static inline void prepare_task(struct task_struct *next)
3927 {
3928 #ifdef CONFIG_SMP
3929 	/*
3930 	 * Claim the task as running, we do this before switching to it
3931 	 * such that any running task will have this set.
3932 	 *
3933 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3934 	 */
3935 	WRITE_ONCE(next->on_cpu, 1);
3936 #endif
3937 }
3938 
3939 static inline void finish_task(struct task_struct *prev)
3940 {
3941 #ifdef CONFIG_SMP
3942 	/*
3943 	 * This must be the very last reference to @prev from this CPU. After
3944 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3945 	 * must ensure this doesn't happen until the switch is completely
3946 	 * finished.
3947 	 *
3948 	 * In particular, the load of prev->state in finish_task_switch() must
3949 	 * happen before this.
3950 	 *
3951 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3952 	 */
3953 	smp_store_release(&prev->on_cpu, 0);
3954 #endif
3955 }
3956 
3957 #ifdef CONFIG_SMP
3958 
3959 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3960 {
3961 	void (*func)(struct rq *rq);
3962 	struct callback_head *next;
3963 
3964 	lockdep_assert_held(&rq->lock);
3965 
3966 	while (head) {
3967 		func = (void (*)(struct rq *))head->func;
3968 		next = head->next;
3969 		head->next = NULL;
3970 		head = next;
3971 
3972 		func(rq);
3973 	}
3974 }
3975 
3976 static void balance_push(struct rq *rq);
3977 
3978 struct callback_head balance_push_callback = {
3979 	.next = NULL,
3980 	.func = (void (*)(struct callback_head *))balance_push,
3981 };
3982 
3983 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3984 {
3985 	struct callback_head *head = rq->balance_callback;
3986 
3987 	lockdep_assert_held(&rq->lock);
3988 	if (head)
3989 		rq->balance_callback = NULL;
3990 
3991 	return head;
3992 }
3993 
3994 static void __balance_callbacks(struct rq *rq)
3995 {
3996 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
3997 }
3998 
3999 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4000 {
4001 	unsigned long flags;
4002 
4003 	if (unlikely(head)) {
4004 		raw_spin_lock_irqsave(&rq->lock, flags);
4005 		do_balance_callbacks(rq, head);
4006 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4007 	}
4008 }
4009 
4010 #else
4011 
4012 static inline void __balance_callbacks(struct rq *rq)
4013 {
4014 }
4015 
4016 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4017 {
4018 	return NULL;
4019 }
4020 
4021 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4022 {
4023 }
4024 
4025 #endif
4026 
4027 static inline void
4028 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4029 {
4030 	/*
4031 	 * Since the runqueue lock will be released by the next
4032 	 * task (which is an invalid locking op but in the case
4033 	 * of the scheduler it's an obvious special-case), so we
4034 	 * do an early lockdep release here:
4035 	 */
4036 	rq_unpin_lock(rq, rf);
4037 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4038 #ifdef CONFIG_DEBUG_SPINLOCK
4039 	/* this is a valid case when another task releases the spinlock */
4040 	rq->lock.owner = next;
4041 #endif
4042 }
4043 
4044 static inline void finish_lock_switch(struct rq *rq)
4045 {
4046 	/*
4047 	 * If we are tracking spinlock dependencies then we have to
4048 	 * fix up the runqueue lock - which gets 'carried over' from
4049 	 * prev into current:
4050 	 */
4051 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4052 	__balance_callbacks(rq);
4053 	raw_spin_unlock_irq(&rq->lock);
4054 }
4055 
4056 /*
4057  * NOP if the arch has not defined these:
4058  */
4059 
4060 #ifndef prepare_arch_switch
4061 # define prepare_arch_switch(next)	do { } while (0)
4062 #endif
4063 
4064 #ifndef finish_arch_post_lock_switch
4065 # define finish_arch_post_lock_switch()	do { } while (0)
4066 #endif
4067 
4068 static inline void kmap_local_sched_out(void)
4069 {
4070 #ifdef CONFIG_KMAP_LOCAL
4071 	if (unlikely(current->kmap_ctrl.idx))
4072 		__kmap_local_sched_out();
4073 #endif
4074 }
4075 
4076 static inline void kmap_local_sched_in(void)
4077 {
4078 #ifdef CONFIG_KMAP_LOCAL
4079 	if (unlikely(current->kmap_ctrl.idx))
4080 		__kmap_local_sched_in();
4081 #endif
4082 }
4083 
4084 /**
4085  * prepare_task_switch - prepare to switch tasks
4086  * @rq: the runqueue preparing to switch
4087  * @prev: the current task that is being switched out
4088  * @next: the task we are going to switch to.
4089  *
4090  * This is called with the rq lock held and interrupts off. It must
4091  * be paired with a subsequent finish_task_switch after the context
4092  * switch.
4093  *
4094  * prepare_task_switch sets up locking and calls architecture specific
4095  * hooks.
4096  */
4097 static inline void
4098 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4099 		    struct task_struct *next)
4100 {
4101 	kcov_prepare_switch(prev);
4102 	sched_info_switch(rq, prev, next);
4103 	perf_event_task_sched_out(prev, next);
4104 	rseq_preempt(prev);
4105 	fire_sched_out_preempt_notifiers(prev, next);
4106 	kmap_local_sched_out();
4107 	prepare_task(next);
4108 	prepare_arch_switch(next);
4109 }
4110 
4111 /**
4112  * finish_task_switch - clean up after a task-switch
4113  * @prev: the thread we just switched away from.
4114  *
4115  * finish_task_switch must be called after the context switch, paired
4116  * with a prepare_task_switch call before the context switch.
4117  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4118  * and do any other architecture-specific cleanup actions.
4119  *
4120  * Note that we may have delayed dropping an mm in context_switch(). If
4121  * so, we finish that here outside of the runqueue lock. (Doing it
4122  * with the lock held can cause deadlocks; see schedule() for
4123  * details.)
4124  *
4125  * The context switch have flipped the stack from under us and restored the
4126  * local variables which were saved when this task called schedule() in the
4127  * past. prev == current is still correct but we need to recalculate this_rq
4128  * because prev may have moved to another CPU.
4129  */
4130 static struct rq *finish_task_switch(struct task_struct *prev)
4131 	__releases(rq->lock)
4132 {
4133 	struct rq *rq = this_rq();
4134 	struct mm_struct *mm = rq->prev_mm;
4135 	long prev_state;
4136 
4137 	/*
4138 	 * The previous task will have left us with a preempt_count of 2
4139 	 * because it left us after:
4140 	 *
4141 	 *	schedule()
4142 	 *	  preempt_disable();			// 1
4143 	 *	  __schedule()
4144 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4145 	 *
4146 	 * Also, see FORK_PREEMPT_COUNT.
4147 	 */
4148 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4149 		      "corrupted preempt_count: %s/%d/0x%x\n",
4150 		      current->comm, current->pid, preempt_count()))
4151 		preempt_count_set(FORK_PREEMPT_COUNT);
4152 
4153 	rq->prev_mm = NULL;
4154 
4155 	/*
4156 	 * A task struct has one reference for the use as "current".
4157 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4158 	 * schedule one last time. The schedule call will never return, and
4159 	 * the scheduled task must drop that reference.
4160 	 *
4161 	 * We must observe prev->state before clearing prev->on_cpu (in
4162 	 * finish_task), otherwise a concurrent wakeup can get prev
4163 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4164 	 * transition, resulting in a double drop.
4165 	 */
4166 	prev_state = prev->state;
4167 	vtime_task_switch(prev);
4168 	perf_event_task_sched_in(prev, current);
4169 	finish_task(prev);
4170 	finish_lock_switch(rq);
4171 	finish_arch_post_lock_switch();
4172 	kcov_finish_switch(current);
4173 	/*
4174 	 * kmap_local_sched_out() is invoked with rq::lock held and
4175 	 * interrupts disabled. There is no requirement for that, but the
4176 	 * sched out code does not have an interrupt enabled section.
4177 	 * Restoring the maps on sched in does not require interrupts being
4178 	 * disabled either.
4179 	 */
4180 	kmap_local_sched_in();
4181 
4182 	fire_sched_in_preempt_notifiers(current);
4183 	/*
4184 	 * When switching through a kernel thread, the loop in
4185 	 * membarrier_{private,global}_expedited() may have observed that
4186 	 * kernel thread and not issued an IPI. It is therefore possible to
4187 	 * schedule between user->kernel->user threads without passing though
4188 	 * switch_mm(). Membarrier requires a barrier after storing to
4189 	 * rq->curr, before returning to userspace, so provide them here:
4190 	 *
4191 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4192 	 *   provided by mmdrop(),
4193 	 * - a sync_core for SYNC_CORE.
4194 	 */
4195 	if (mm) {
4196 		membarrier_mm_sync_core_before_usermode(mm);
4197 		mmdrop(mm);
4198 	}
4199 	if (unlikely(prev_state == TASK_DEAD)) {
4200 		if (prev->sched_class->task_dead)
4201 			prev->sched_class->task_dead(prev);
4202 
4203 		/*
4204 		 * Remove function-return probe instances associated with this
4205 		 * task and put them back on the free list.
4206 		 */
4207 		kprobe_flush_task(prev);
4208 
4209 		/* Task is done with its stack. */
4210 		put_task_stack(prev);
4211 
4212 		put_task_struct_rcu_user(prev);
4213 	}
4214 
4215 	tick_nohz_task_switch();
4216 	return rq;
4217 }
4218 
4219 /**
4220  * schedule_tail - first thing a freshly forked thread must call.
4221  * @prev: the thread we just switched away from.
4222  */
4223 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4224 	__releases(rq->lock)
4225 {
4226 	struct rq *rq;
4227 
4228 	/*
4229 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4230 	 * finish_task_switch() for details.
4231 	 *
4232 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4233 	 * and the preempt_enable() will end up enabling preemption (on
4234 	 * PREEMPT_COUNT kernels).
4235 	 */
4236 
4237 	rq = finish_task_switch(prev);
4238 	preempt_enable();
4239 
4240 	if (current->set_child_tid)
4241 		put_user(task_pid_vnr(current), current->set_child_tid);
4242 
4243 	calculate_sigpending();
4244 }
4245 
4246 /*
4247  * context_switch - switch to the new MM and the new thread's register state.
4248  */
4249 static __always_inline struct rq *
4250 context_switch(struct rq *rq, struct task_struct *prev,
4251 	       struct task_struct *next, struct rq_flags *rf)
4252 {
4253 	prepare_task_switch(rq, prev, next);
4254 
4255 	/*
4256 	 * For paravirt, this is coupled with an exit in switch_to to
4257 	 * combine the page table reload and the switch backend into
4258 	 * one hypercall.
4259 	 */
4260 	arch_start_context_switch(prev);
4261 
4262 	/*
4263 	 * kernel -> kernel   lazy + transfer active
4264 	 *   user -> kernel   lazy + mmgrab() active
4265 	 *
4266 	 * kernel ->   user   switch + mmdrop() active
4267 	 *   user ->   user   switch
4268 	 */
4269 	if (!next->mm) {                                // to kernel
4270 		enter_lazy_tlb(prev->active_mm, next);
4271 
4272 		next->active_mm = prev->active_mm;
4273 		if (prev->mm)                           // from user
4274 			mmgrab(prev->active_mm);
4275 		else
4276 			prev->active_mm = NULL;
4277 	} else {                                        // to user
4278 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4279 		/*
4280 		 * sys_membarrier() requires an smp_mb() between setting
4281 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4282 		 *
4283 		 * The below provides this either through switch_mm(), or in
4284 		 * case 'prev->active_mm == next->mm' through
4285 		 * finish_task_switch()'s mmdrop().
4286 		 */
4287 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4288 
4289 		if (!prev->mm) {                        // from kernel
4290 			/* will mmdrop() in finish_task_switch(). */
4291 			rq->prev_mm = prev->active_mm;
4292 			prev->active_mm = NULL;
4293 		}
4294 	}
4295 
4296 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4297 
4298 	prepare_lock_switch(rq, next, rf);
4299 
4300 	/* Here we just switch the register state and the stack. */
4301 	switch_to(prev, next, prev);
4302 	barrier();
4303 
4304 	return finish_task_switch(prev);
4305 }
4306 
4307 /*
4308  * nr_running and nr_context_switches:
4309  *
4310  * externally visible scheduler statistics: current number of runnable
4311  * threads, total number of context switches performed since bootup.
4312  */
4313 unsigned long nr_running(void)
4314 {
4315 	unsigned long i, sum = 0;
4316 
4317 	for_each_online_cpu(i)
4318 		sum += cpu_rq(i)->nr_running;
4319 
4320 	return sum;
4321 }
4322 
4323 /*
4324  * Check if only the current task is running on the CPU.
4325  *
4326  * Caution: this function does not check that the caller has disabled
4327  * preemption, thus the result might have a time-of-check-to-time-of-use
4328  * race.  The caller is responsible to use it correctly, for example:
4329  *
4330  * - from a non-preemptible section (of course)
4331  *
4332  * - from a thread that is bound to a single CPU
4333  *
4334  * - in a loop with very short iterations (e.g. a polling loop)
4335  */
4336 bool single_task_running(void)
4337 {
4338 	return raw_rq()->nr_running == 1;
4339 }
4340 EXPORT_SYMBOL(single_task_running);
4341 
4342 unsigned long long nr_context_switches(void)
4343 {
4344 	int i;
4345 	unsigned long long sum = 0;
4346 
4347 	for_each_possible_cpu(i)
4348 		sum += cpu_rq(i)->nr_switches;
4349 
4350 	return sum;
4351 }
4352 
4353 /*
4354  * Consumers of these two interfaces, like for example the cpuidle menu
4355  * governor, are using nonsensical data. Preferring shallow idle state selection
4356  * for a CPU that has IO-wait which might not even end up running the task when
4357  * it does become runnable.
4358  */
4359 
4360 unsigned long nr_iowait_cpu(int cpu)
4361 {
4362 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4363 }
4364 
4365 /*
4366  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4367  *
4368  * The idea behind IO-wait account is to account the idle time that we could
4369  * have spend running if it were not for IO. That is, if we were to improve the
4370  * storage performance, we'd have a proportional reduction in IO-wait time.
4371  *
4372  * This all works nicely on UP, where, when a task blocks on IO, we account
4373  * idle time as IO-wait, because if the storage were faster, it could've been
4374  * running and we'd not be idle.
4375  *
4376  * This has been extended to SMP, by doing the same for each CPU. This however
4377  * is broken.
4378  *
4379  * Imagine for instance the case where two tasks block on one CPU, only the one
4380  * CPU will have IO-wait accounted, while the other has regular idle. Even
4381  * though, if the storage were faster, both could've ran at the same time,
4382  * utilising both CPUs.
4383  *
4384  * This means, that when looking globally, the current IO-wait accounting on
4385  * SMP is a lower bound, by reason of under accounting.
4386  *
4387  * Worse, since the numbers are provided per CPU, they are sometimes
4388  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4389  * associated with any one particular CPU, it can wake to another CPU than it
4390  * blocked on. This means the per CPU IO-wait number is meaningless.
4391  *
4392  * Task CPU affinities can make all that even more 'interesting'.
4393  */
4394 
4395 unsigned long nr_iowait(void)
4396 {
4397 	unsigned long i, sum = 0;
4398 
4399 	for_each_possible_cpu(i)
4400 		sum += nr_iowait_cpu(i);
4401 
4402 	return sum;
4403 }
4404 
4405 #ifdef CONFIG_SMP
4406 
4407 /*
4408  * sched_exec - execve() is a valuable balancing opportunity, because at
4409  * this point the task has the smallest effective memory and cache footprint.
4410  */
4411 void sched_exec(void)
4412 {
4413 	struct task_struct *p = current;
4414 	unsigned long flags;
4415 	int dest_cpu;
4416 
4417 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4418 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4419 	if (dest_cpu == smp_processor_id())
4420 		goto unlock;
4421 
4422 	if (likely(cpu_active(dest_cpu))) {
4423 		struct migration_arg arg = { p, dest_cpu };
4424 
4425 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4426 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4427 		return;
4428 	}
4429 unlock:
4430 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4431 }
4432 
4433 #endif
4434 
4435 DEFINE_PER_CPU(struct kernel_stat, kstat);
4436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4437 
4438 EXPORT_PER_CPU_SYMBOL(kstat);
4439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4440 
4441 /*
4442  * The function fair_sched_class.update_curr accesses the struct curr
4443  * and its field curr->exec_start; when called from task_sched_runtime(),
4444  * we observe a high rate of cache misses in practice.
4445  * Prefetching this data results in improved performance.
4446  */
4447 static inline void prefetch_curr_exec_start(struct task_struct *p)
4448 {
4449 #ifdef CONFIG_FAIR_GROUP_SCHED
4450 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4451 #else
4452 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4453 #endif
4454 	prefetch(curr);
4455 	prefetch(&curr->exec_start);
4456 }
4457 
4458 /*
4459  * Return accounted runtime for the task.
4460  * In case the task is currently running, return the runtime plus current's
4461  * pending runtime that have not been accounted yet.
4462  */
4463 unsigned long long task_sched_runtime(struct task_struct *p)
4464 {
4465 	struct rq_flags rf;
4466 	struct rq *rq;
4467 	u64 ns;
4468 
4469 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4470 	/*
4471 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4472 	 * So we have a optimization chance when the task's delta_exec is 0.
4473 	 * Reading ->on_cpu is racy, but this is ok.
4474 	 *
4475 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4476 	 * If we race with it entering CPU, unaccounted time is 0. This is
4477 	 * indistinguishable from the read occurring a few cycles earlier.
4478 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4479 	 * been accounted, so we're correct here as well.
4480 	 */
4481 	if (!p->on_cpu || !task_on_rq_queued(p))
4482 		return p->se.sum_exec_runtime;
4483 #endif
4484 
4485 	rq = task_rq_lock(p, &rf);
4486 	/*
4487 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4488 	 * project cycles that may never be accounted to this
4489 	 * thread, breaking clock_gettime().
4490 	 */
4491 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4492 		prefetch_curr_exec_start(p);
4493 		update_rq_clock(rq);
4494 		p->sched_class->update_curr(rq);
4495 	}
4496 	ns = p->se.sum_exec_runtime;
4497 	task_rq_unlock(rq, p, &rf);
4498 
4499 	return ns;
4500 }
4501 
4502 /*
4503  * This function gets called by the timer code, with HZ frequency.
4504  * We call it with interrupts disabled.
4505  */
4506 void scheduler_tick(void)
4507 {
4508 	int cpu = smp_processor_id();
4509 	struct rq *rq = cpu_rq(cpu);
4510 	struct task_struct *curr = rq->curr;
4511 	struct rq_flags rf;
4512 	unsigned long thermal_pressure;
4513 
4514 	arch_scale_freq_tick();
4515 	sched_clock_tick();
4516 
4517 	rq_lock(rq, &rf);
4518 
4519 	update_rq_clock(rq);
4520 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4521 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4522 	curr->sched_class->task_tick(rq, curr, 0);
4523 	calc_global_load_tick(rq);
4524 	psi_task_tick(rq);
4525 
4526 	rq_unlock(rq, &rf);
4527 
4528 	perf_event_task_tick();
4529 
4530 #ifdef CONFIG_SMP
4531 	rq->idle_balance = idle_cpu(cpu);
4532 	trigger_load_balance(rq);
4533 #endif
4534 }
4535 
4536 #ifdef CONFIG_NO_HZ_FULL
4537 
4538 struct tick_work {
4539 	int			cpu;
4540 	atomic_t		state;
4541 	struct delayed_work	work;
4542 };
4543 /* Values for ->state, see diagram below. */
4544 #define TICK_SCHED_REMOTE_OFFLINE	0
4545 #define TICK_SCHED_REMOTE_OFFLINING	1
4546 #define TICK_SCHED_REMOTE_RUNNING	2
4547 
4548 /*
4549  * State diagram for ->state:
4550  *
4551  *
4552  *          TICK_SCHED_REMOTE_OFFLINE
4553  *                    |   ^
4554  *                    |   |
4555  *                    |   | sched_tick_remote()
4556  *                    |   |
4557  *                    |   |
4558  *                    +--TICK_SCHED_REMOTE_OFFLINING
4559  *                    |   ^
4560  *                    |   |
4561  * sched_tick_start() |   | sched_tick_stop()
4562  *                    |   |
4563  *                    V   |
4564  *          TICK_SCHED_REMOTE_RUNNING
4565  *
4566  *
4567  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4568  * and sched_tick_start() are happy to leave the state in RUNNING.
4569  */
4570 
4571 static struct tick_work __percpu *tick_work_cpu;
4572 
4573 static void sched_tick_remote(struct work_struct *work)
4574 {
4575 	struct delayed_work *dwork = to_delayed_work(work);
4576 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4577 	int cpu = twork->cpu;
4578 	struct rq *rq = cpu_rq(cpu);
4579 	struct task_struct *curr;
4580 	struct rq_flags rf;
4581 	u64 delta;
4582 	int os;
4583 
4584 	/*
4585 	 * Handle the tick only if it appears the remote CPU is running in full
4586 	 * dynticks mode. The check is racy by nature, but missing a tick or
4587 	 * having one too much is no big deal because the scheduler tick updates
4588 	 * statistics and checks timeslices in a time-independent way, regardless
4589 	 * of when exactly it is running.
4590 	 */
4591 	if (!tick_nohz_tick_stopped_cpu(cpu))
4592 		goto out_requeue;
4593 
4594 	rq_lock_irq(rq, &rf);
4595 	curr = rq->curr;
4596 	if (cpu_is_offline(cpu))
4597 		goto out_unlock;
4598 
4599 	update_rq_clock(rq);
4600 
4601 	if (!is_idle_task(curr)) {
4602 		/*
4603 		 * Make sure the next tick runs within a reasonable
4604 		 * amount of time.
4605 		 */
4606 		delta = rq_clock_task(rq) - curr->se.exec_start;
4607 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4608 	}
4609 	curr->sched_class->task_tick(rq, curr, 0);
4610 
4611 	calc_load_nohz_remote(rq);
4612 out_unlock:
4613 	rq_unlock_irq(rq, &rf);
4614 out_requeue:
4615 
4616 	/*
4617 	 * Run the remote tick once per second (1Hz). This arbitrary
4618 	 * frequency is large enough to avoid overload but short enough
4619 	 * to keep scheduler internal stats reasonably up to date.  But
4620 	 * first update state to reflect hotplug activity if required.
4621 	 */
4622 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4623 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4624 	if (os == TICK_SCHED_REMOTE_RUNNING)
4625 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4626 }
4627 
4628 static void sched_tick_start(int cpu)
4629 {
4630 	int os;
4631 	struct tick_work *twork;
4632 
4633 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4634 		return;
4635 
4636 	WARN_ON_ONCE(!tick_work_cpu);
4637 
4638 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4639 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4640 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4641 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4642 		twork->cpu = cpu;
4643 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4644 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4645 	}
4646 }
4647 
4648 #ifdef CONFIG_HOTPLUG_CPU
4649 static void sched_tick_stop(int cpu)
4650 {
4651 	struct tick_work *twork;
4652 	int os;
4653 
4654 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4655 		return;
4656 
4657 	WARN_ON_ONCE(!tick_work_cpu);
4658 
4659 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4660 	/* There cannot be competing actions, but don't rely on stop-machine. */
4661 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4662 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4663 	/* Don't cancel, as this would mess up the state machine. */
4664 }
4665 #endif /* CONFIG_HOTPLUG_CPU */
4666 
4667 int __init sched_tick_offload_init(void)
4668 {
4669 	tick_work_cpu = alloc_percpu(struct tick_work);
4670 	BUG_ON(!tick_work_cpu);
4671 	return 0;
4672 }
4673 
4674 #else /* !CONFIG_NO_HZ_FULL */
4675 static inline void sched_tick_start(int cpu) { }
4676 static inline void sched_tick_stop(int cpu) { }
4677 #endif
4678 
4679 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4680 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4681 /*
4682  * If the value passed in is equal to the current preempt count
4683  * then we just disabled preemption. Start timing the latency.
4684  */
4685 static inline void preempt_latency_start(int val)
4686 {
4687 	if (preempt_count() == val) {
4688 		unsigned long ip = get_lock_parent_ip();
4689 #ifdef CONFIG_DEBUG_PREEMPT
4690 		current->preempt_disable_ip = ip;
4691 #endif
4692 		trace_preempt_off(CALLER_ADDR0, ip);
4693 	}
4694 }
4695 
4696 void preempt_count_add(int val)
4697 {
4698 #ifdef CONFIG_DEBUG_PREEMPT
4699 	/*
4700 	 * Underflow?
4701 	 */
4702 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4703 		return;
4704 #endif
4705 	__preempt_count_add(val);
4706 #ifdef CONFIG_DEBUG_PREEMPT
4707 	/*
4708 	 * Spinlock count overflowing soon?
4709 	 */
4710 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4711 				PREEMPT_MASK - 10);
4712 #endif
4713 	preempt_latency_start(val);
4714 }
4715 EXPORT_SYMBOL(preempt_count_add);
4716 NOKPROBE_SYMBOL(preempt_count_add);
4717 
4718 /*
4719  * If the value passed in equals to the current preempt count
4720  * then we just enabled preemption. Stop timing the latency.
4721  */
4722 static inline void preempt_latency_stop(int val)
4723 {
4724 	if (preempt_count() == val)
4725 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4726 }
4727 
4728 void preempt_count_sub(int val)
4729 {
4730 #ifdef CONFIG_DEBUG_PREEMPT
4731 	/*
4732 	 * Underflow?
4733 	 */
4734 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4735 		return;
4736 	/*
4737 	 * Is the spinlock portion underflowing?
4738 	 */
4739 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4740 			!(preempt_count() & PREEMPT_MASK)))
4741 		return;
4742 #endif
4743 
4744 	preempt_latency_stop(val);
4745 	__preempt_count_sub(val);
4746 }
4747 EXPORT_SYMBOL(preempt_count_sub);
4748 NOKPROBE_SYMBOL(preempt_count_sub);
4749 
4750 #else
4751 static inline void preempt_latency_start(int val) { }
4752 static inline void preempt_latency_stop(int val) { }
4753 #endif
4754 
4755 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4756 {
4757 #ifdef CONFIG_DEBUG_PREEMPT
4758 	return p->preempt_disable_ip;
4759 #else
4760 	return 0;
4761 #endif
4762 }
4763 
4764 /*
4765  * Print scheduling while atomic bug:
4766  */
4767 static noinline void __schedule_bug(struct task_struct *prev)
4768 {
4769 	/* Save this before calling printk(), since that will clobber it */
4770 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4771 
4772 	if (oops_in_progress)
4773 		return;
4774 
4775 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4776 		prev->comm, prev->pid, preempt_count());
4777 
4778 	debug_show_held_locks(prev);
4779 	print_modules();
4780 	if (irqs_disabled())
4781 		print_irqtrace_events(prev);
4782 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4783 	    && in_atomic_preempt_off()) {
4784 		pr_err("Preemption disabled at:");
4785 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4786 	}
4787 	if (panic_on_warn)
4788 		panic("scheduling while atomic\n");
4789 
4790 	dump_stack();
4791 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4792 }
4793 
4794 /*
4795  * Various schedule()-time debugging checks and statistics:
4796  */
4797 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4798 {
4799 #ifdef CONFIG_SCHED_STACK_END_CHECK
4800 	if (task_stack_end_corrupted(prev))
4801 		panic("corrupted stack end detected inside scheduler\n");
4802 
4803 	if (task_scs_end_corrupted(prev))
4804 		panic("corrupted shadow stack detected inside scheduler\n");
4805 #endif
4806 
4807 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4808 	if (!preempt && prev->state && prev->non_block_count) {
4809 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4810 			prev->comm, prev->pid, prev->non_block_count);
4811 		dump_stack();
4812 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4813 	}
4814 #endif
4815 
4816 	if (unlikely(in_atomic_preempt_off())) {
4817 		__schedule_bug(prev);
4818 		preempt_count_set(PREEMPT_DISABLED);
4819 	}
4820 	rcu_sleep_check();
4821 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4822 
4823 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4824 
4825 	schedstat_inc(this_rq()->sched_count);
4826 }
4827 
4828 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4829 				  struct rq_flags *rf)
4830 {
4831 #ifdef CONFIG_SMP
4832 	const struct sched_class *class;
4833 	/*
4834 	 * We must do the balancing pass before put_prev_task(), such
4835 	 * that when we release the rq->lock the task is in the same
4836 	 * state as before we took rq->lock.
4837 	 *
4838 	 * We can terminate the balance pass as soon as we know there is
4839 	 * a runnable task of @class priority or higher.
4840 	 */
4841 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4842 		if (class->balance(rq, prev, rf))
4843 			break;
4844 	}
4845 #endif
4846 
4847 	put_prev_task(rq, prev);
4848 }
4849 
4850 /*
4851  * Pick up the highest-prio task:
4852  */
4853 static inline struct task_struct *
4854 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4855 {
4856 	const struct sched_class *class;
4857 	struct task_struct *p;
4858 
4859 	/*
4860 	 * Optimization: we know that if all tasks are in the fair class we can
4861 	 * call that function directly, but only if the @prev task wasn't of a
4862 	 * higher scheduling class, because otherwise those lose the
4863 	 * opportunity to pull in more work from other CPUs.
4864 	 */
4865 	if (likely(prev->sched_class <= &fair_sched_class &&
4866 		   rq->nr_running == rq->cfs.h_nr_running)) {
4867 
4868 		p = pick_next_task_fair(rq, prev, rf);
4869 		if (unlikely(p == RETRY_TASK))
4870 			goto restart;
4871 
4872 		/* Assumes fair_sched_class->next == idle_sched_class */
4873 		if (!p) {
4874 			put_prev_task(rq, prev);
4875 			p = pick_next_task_idle(rq);
4876 		}
4877 
4878 		return p;
4879 	}
4880 
4881 restart:
4882 	put_prev_task_balance(rq, prev, rf);
4883 
4884 	for_each_class(class) {
4885 		p = class->pick_next_task(rq);
4886 		if (p)
4887 			return p;
4888 	}
4889 
4890 	/* The idle class should always have a runnable task: */
4891 	BUG();
4892 }
4893 
4894 /*
4895  * __schedule() is the main scheduler function.
4896  *
4897  * The main means of driving the scheduler and thus entering this function are:
4898  *
4899  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4900  *
4901  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4902  *      paths. For example, see arch/x86/entry_64.S.
4903  *
4904  *      To drive preemption between tasks, the scheduler sets the flag in timer
4905  *      interrupt handler scheduler_tick().
4906  *
4907  *   3. Wakeups don't really cause entry into schedule(). They add a
4908  *      task to the run-queue and that's it.
4909  *
4910  *      Now, if the new task added to the run-queue preempts the current
4911  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4912  *      called on the nearest possible occasion:
4913  *
4914  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4915  *
4916  *         - in syscall or exception context, at the next outmost
4917  *           preempt_enable(). (this might be as soon as the wake_up()'s
4918  *           spin_unlock()!)
4919  *
4920  *         - in IRQ context, return from interrupt-handler to
4921  *           preemptible context
4922  *
4923  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4924  *         then at the next:
4925  *
4926  *          - cond_resched() call
4927  *          - explicit schedule() call
4928  *          - return from syscall or exception to user-space
4929  *          - return from interrupt-handler to user-space
4930  *
4931  * WARNING: must be called with preemption disabled!
4932  */
4933 static void __sched notrace __schedule(bool preempt)
4934 {
4935 	struct task_struct *prev, *next;
4936 	unsigned long *switch_count;
4937 	unsigned long prev_state;
4938 	struct rq_flags rf;
4939 	struct rq *rq;
4940 	int cpu;
4941 
4942 	cpu = smp_processor_id();
4943 	rq = cpu_rq(cpu);
4944 	prev = rq->curr;
4945 
4946 	schedule_debug(prev, preempt);
4947 
4948 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
4949 		hrtick_clear(rq);
4950 
4951 	local_irq_disable();
4952 	rcu_note_context_switch(preempt);
4953 
4954 	/*
4955 	 * Make sure that signal_pending_state()->signal_pending() below
4956 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4957 	 * done by the caller to avoid the race with signal_wake_up():
4958 	 *
4959 	 * __set_current_state(@state)		signal_wake_up()
4960 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4961 	 *					  wake_up_state(p, state)
4962 	 *   LOCK rq->lock			    LOCK p->pi_state
4963 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4964 	 *     if (signal_pending_state())	    if (p->state & @state)
4965 	 *
4966 	 * Also, the membarrier system call requires a full memory barrier
4967 	 * after coming from user-space, before storing to rq->curr.
4968 	 */
4969 	rq_lock(rq, &rf);
4970 	smp_mb__after_spinlock();
4971 
4972 	/* Promote REQ to ACT */
4973 	rq->clock_update_flags <<= 1;
4974 	update_rq_clock(rq);
4975 
4976 	switch_count = &prev->nivcsw;
4977 
4978 	/*
4979 	 * We must load prev->state once (task_struct::state is volatile), such
4980 	 * that:
4981 	 *
4982 	 *  - we form a control dependency vs deactivate_task() below.
4983 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4984 	 */
4985 	prev_state = prev->state;
4986 	if (!preempt && prev_state) {
4987 		if (signal_pending_state(prev_state, prev)) {
4988 			prev->state = TASK_RUNNING;
4989 		} else {
4990 			prev->sched_contributes_to_load =
4991 				(prev_state & TASK_UNINTERRUPTIBLE) &&
4992 				!(prev_state & TASK_NOLOAD) &&
4993 				!(prev->flags & PF_FROZEN);
4994 
4995 			if (prev->sched_contributes_to_load)
4996 				rq->nr_uninterruptible++;
4997 
4998 			/*
4999 			 * __schedule()			ttwu()
5000 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5001 			 *   if (prev_state)		    goto out;
5002 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5003 			 *				  p->state = TASK_WAKING
5004 			 *
5005 			 * Where __schedule() and ttwu() have matching control dependencies.
5006 			 *
5007 			 * After this, schedule() must not care about p->state any more.
5008 			 */
5009 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5010 
5011 			if (prev->in_iowait) {
5012 				atomic_inc(&rq->nr_iowait);
5013 				delayacct_blkio_start();
5014 			}
5015 		}
5016 		switch_count = &prev->nvcsw;
5017 	}
5018 
5019 	next = pick_next_task(rq, prev, &rf);
5020 	clear_tsk_need_resched(prev);
5021 	clear_preempt_need_resched();
5022 
5023 	if (likely(prev != next)) {
5024 		rq->nr_switches++;
5025 		/*
5026 		 * RCU users of rcu_dereference(rq->curr) may not see
5027 		 * changes to task_struct made by pick_next_task().
5028 		 */
5029 		RCU_INIT_POINTER(rq->curr, next);
5030 		/*
5031 		 * The membarrier system call requires each architecture
5032 		 * to have a full memory barrier after updating
5033 		 * rq->curr, before returning to user-space.
5034 		 *
5035 		 * Here are the schemes providing that barrier on the
5036 		 * various architectures:
5037 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5038 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5039 		 * - finish_lock_switch() for weakly-ordered
5040 		 *   architectures where spin_unlock is a full barrier,
5041 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5042 		 *   is a RELEASE barrier),
5043 		 */
5044 		++*switch_count;
5045 
5046 		migrate_disable_switch(rq, prev);
5047 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5048 
5049 		trace_sched_switch(preempt, prev, next);
5050 
5051 		/* Also unlocks the rq: */
5052 		rq = context_switch(rq, prev, next, &rf);
5053 	} else {
5054 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5055 
5056 		rq_unpin_lock(rq, &rf);
5057 		__balance_callbacks(rq);
5058 		raw_spin_unlock_irq(&rq->lock);
5059 	}
5060 }
5061 
5062 void __noreturn do_task_dead(void)
5063 {
5064 	/* Causes final put_task_struct in finish_task_switch(): */
5065 	set_special_state(TASK_DEAD);
5066 
5067 	/* Tell freezer to ignore us: */
5068 	current->flags |= PF_NOFREEZE;
5069 
5070 	__schedule(false);
5071 	BUG();
5072 
5073 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5074 	for (;;)
5075 		cpu_relax();
5076 }
5077 
5078 static inline void sched_submit_work(struct task_struct *tsk)
5079 {
5080 	unsigned int task_flags;
5081 
5082 	if (!tsk->state)
5083 		return;
5084 
5085 	task_flags = tsk->flags;
5086 	/*
5087 	 * If a worker went to sleep, notify and ask workqueue whether
5088 	 * it wants to wake up a task to maintain concurrency.
5089 	 * As this function is called inside the schedule() context,
5090 	 * we disable preemption to avoid it calling schedule() again
5091 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5092 	 * requires it.
5093 	 */
5094 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5095 		preempt_disable();
5096 		if (task_flags & PF_WQ_WORKER)
5097 			wq_worker_sleeping(tsk);
5098 		else
5099 			io_wq_worker_sleeping(tsk);
5100 		preempt_enable_no_resched();
5101 	}
5102 
5103 	if (tsk_is_pi_blocked(tsk))
5104 		return;
5105 
5106 	/*
5107 	 * If we are going to sleep and we have plugged IO queued,
5108 	 * make sure to submit it to avoid deadlocks.
5109 	 */
5110 	if (blk_needs_flush_plug(tsk))
5111 		blk_schedule_flush_plug(tsk);
5112 }
5113 
5114 static void sched_update_worker(struct task_struct *tsk)
5115 {
5116 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5117 		if (tsk->flags & PF_WQ_WORKER)
5118 			wq_worker_running(tsk);
5119 		else
5120 			io_wq_worker_running(tsk);
5121 	}
5122 }
5123 
5124 asmlinkage __visible void __sched schedule(void)
5125 {
5126 	struct task_struct *tsk = current;
5127 
5128 	sched_submit_work(tsk);
5129 	do {
5130 		preempt_disable();
5131 		__schedule(false);
5132 		sched_preempt_enable_no_resched();
5133 	} while (need_resched());
5134 	sched_update_worker(tsk);
5135 }
5136 EXPORT_SYMBOL(schedule);
5137 
5138 /*
5139  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5140  * state (have scheduled out non-voluntarily) by making sure that all
5141  * tasks have either left the run queue or have gone into user space.
5142  * As idle tasks do not do either, they must not ever be preempted
5143  * (schedule out non-voluntarily).
5144  *
5145  * schedule_idle() is similar to schedule_preempt_disable() except that it
5146  * never enables preemption because it does not call sched_submit_work().
5147  */
5148 void __sched schedule_idle(void)
5149 {
5150 	/*
5151 	 * As this skips calling sched_submit_work(), which the idle task does
5152 	 * regardless because that function is a nop when the task is in a
5153 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5154 	 * current task can be in any other state. Note, idle is always in the
5155 	 * TASK_RUNNING state.
5156 	 */
5157 	WARN_ON_ONCE(current->state);
5158 	do {
5159 		__schedule(false);
5160 	} while (need_resched());
5161 }
5162 
5163 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5164 asmlinkage __visible void __sched schedule_user(void)
5165 {
5166 	/*
5167 	 * If we come here after a random call to set_need_resched(),
5168 	 * or we have been woken up remotely but the IPI has not yet arrived,
5169 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5170 	 * we find a better solution.
5171 	 *
5172 	 * NB: There are buggy callers of this function.  Ideally we
5173 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5174 	 * too frequently to make sense yet.
5175 	 */
5176 	enum ctx_state prev_state = exception_enter();
5177 	schedule();
5178 	exception_exit(prev_state);
5179 }
5180 #endif
5181 
5182 /**
5183  * schedule_preempt_disabled - called with preemption disabled
5184  *
5185  * Returns with preemption disabled. Note: preempt_count must be 1
5186  */
5187 void __sched schedule_preempt_disabled(void)
5188 {
5189 	sched_preempt_enable_no_resched();
5190 	schedule();
5191 	preempt_disable();
5192 }
5193 
5194 static void __sched notrace preempt_schedule_common(void)
5195 {
5196 	do {
5197 		/*
5198 		 * Because the function tracer can trace preempt_count_sub()
5199 		 * and it also uses preempt_enable/disable_notrace(), if
5200 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5201 		 * by the function tracer will call this function again and
5202 		 * cause infinite recursion.
5203 		 *
5204 		 * Preemption must be disabled here before the function
5205 		 * tracer can trace. Break up preempt_disable() into two
5206 		 * calls. One to disable preemption without fear of being
5207 		 * traced. The other to still record the preemption latency,
5208 		 * which can also be traced by the function tracer.
5209 		 */
5210 		preempt_disable_notrace();
5211 		preempt_latency_start(1);
5212 		__schedule(true);
5213 		preempt_latency_stop(1);
5214 		preempt_enable_no_resched_notrace();
5215 
5216 		/*
5217 		 * Check again in case we missed a preemption opportunity
5218 		 * between schedule and now.
5219 		 */
5220 	} while (need_resched());
5221 }
5222 
5223 #ifdef CONFIG_PREEMPTION
5224 /*
5225  * This is the entry point to schedule() from in-kernel preemption
5226  * off of preempt_enable.
5227  */
5228 asmlinkage __visible void __sched notrace preempt_schedule(void)
5229 {
5230 	/*
5231 	 * If there is a non-zero preempt_count or interrupts are disabled,
5232 	 * we do not want to preempt the current task. Just return..
5233 	 */
5234 	if (likely(!preemptible()))
5235 		return;
5236 
5237 	preempt_schedule_common();
5238 }
5239 NOKPROBE_SYMBOL(preempt_schedule);
5240 EXPORT_SYMBOL(preempt_schedule);
5241 
5242 #ifdef CONFIG_PREEMPT_DYNAMIC
5243 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5244 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5245 #endif
5246 
5247 
5248 /**
5249  * preempt_schedule_notrace - preempt_schedule called by tracing
5250  *
5251  * The tracing infrastructure uses preempt_enable_notrace to prevent
5252  * recursion and tracing preempt enabling caused by the tracing
5253  * infrastructure itself. But as tracing can happen in areas coming
5254  * from userspace or just about to enter userspace, a preempt enable
5255  * can occur before user_exit() is called. This will cause the scheduler
5256  * to be called when the system is still in usermode.
5257  *
5258  * To prevent this, the preempt_enable_notrace will use this function
5259  * instead of preempt_schedule() to exit user context if needed before
5260  * calling the scheduler.
5261  */
5262 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5263 {
5264 	enum ctx_state prev_ctx;
5265 
5266 	if (likely(!preemptible()))
5267 		return;
5268 
5269 	do {
5270 		/*
5271 		 * Because the function tracer can trace preempt_count_sub()
5272 		 * and it also uses preempt_enable/disable_notrace(), if
5273 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5274 		 * by the function tracer will call this function again and
5275 		 * cause infinite recursion.
5276 		 *
5277 		 * Preemption must be disabled here before the function
5278 		 * tracer can trace. Break up preempt_disable() into two
5279 		 * calls. One to disable preemption without fear of being
5280 		 * traced. The other to still record the preemption latency,
5281 		 * which can also be traced by the function tracer.
5282 		 */
5283 		preempt_disable_notrace();
5284 		preempt_latency_start(1);
5285 		/*
5286 		 * Needs preempt disabled in case user_exit() is traced
5287 		 * and the tracer calls preempt_enable_notrace() causing
5288 		 * an infinite recursion.
5289 		 */
5290 		prev_ctx = exception_enter();
5291 		__schedule(true);
5292 		exception_exit(prev_ctx);
5293 
5294 		preempt_latency_stop(1);
5295 		preempt_enable_no_resched_notrace();
5296 	} while (need_resched());
5297 }
5298 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5299 
5300 #ifdef CONFIG_PREEMPT_DYNAMIC
5301 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5302 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5303 #endif
5304 
5305 #endif /* CONFIG_PREEMPTION */
5306 
5307 #ifdef CONFIG_PREEMPT_DYNAMIC
5308 
5309 #include <linux/entry-common.h>
5310 
5311 /*
5312  * SC:cond_resched
5313  * SC:might_resched
5314  * SC:preempt_schedule
5315  * SC:preempt_schedule_notrace
5316  * SC:irqentry_exit_cond_resched
5317  *
5318  *
5319  * NONE:
5320  *   cond_resched               <- __cond_resched
5321  *   might_resched              <- RET0
5322  *   preempt_schedule           <- NOP
5323  *   preempt_schedule_notrace   <- NOP
5324  *   irqentry_exit_cond_resched <- NOP
5325  *
5326  * VOLUNTARY:
5327  *   cond_resched               <- __cond_resched
5328  *   might_resched              <- __cond_resched
5329  *   preempt_schedule           <- NOP
5330  *   preempt_schedule_notrace   <- NOP
5331  *   irqentry_exit_cond_resched <- NOP
5332  *
5333  * FULL:
5334  *   cond_resched               <- RET0
5335  *   might_resched              <- RET0
5336  *   preempt_schedule           <- preempt_schedule
5337  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5338  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5339  */
5340 
5341 enum {
5342 	preempt_dynamic_none = 0,
5343 	preempt_dynamic_voluntary,
5344 	preempt_dynamic_full,
5345 };
5346 
5347 static int preempt_dynamic_mode = preempt_dynamic_full;
5348 
5349 static int sched_dynamic_mode(const char *str)
5350 {
5351 	if (!strcmp(str, "none"))
5352 		return 0;
5353 
5354 	if (!strcmp(str, "voluntary"))
5355 		return 1;
5356 
5357 	if (!strcmp(str, "full"))
5358 		return 2;
5359 
5360 	return -1;
5361 }
5362 
5363 static void sched_dynamic_update(int mode)
5364 {
5365 	/*
5366 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5367 	 * the ZERO state, which is invalid.
5368 	 */
5369 	static_call_update(cond_resched, __cond_resched);
5370 	static_call_update(might_resched, __cond_resched);
5371 	static_call_update(preempt_schedule, __preempt_schedule_func);
5372 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5373 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5374 
5375 	switch (mode) {
5376 	case preempt_dynamic_none:
5377 		static_call_update(cond_resched, __cond_resched);
5378 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5379 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5380 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5381 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5382 		pr_info("Dynamic Preempt: none\n");
5383 		break;
5384 
5385 	case preempt_dynamic_voluntary:
5386 		static_call_update(cond_resched, __cond_resched);
5387 		static_call_update(might_resched, __cond_resched);
5388 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5389 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5390 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5391 		pr_info("Dynamic Preempt: voluntary\n");
5392 		break;
5393 
5394 	case preempt_dynamic_full:
5395 		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5396 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5397 		static_call_update(preempt_schedule, __preempt_schedule_func);
5398 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5399 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5400 		pr_info("Dynamic Preempt: full\n");
5401 		break;
5402 	}
5403 
5404 	preempt_dynamic_mode = mode;
5405 }
5406 
5407 static int __init setup_preempt_mode(char *str)
5408 {
5409 	int mode = sched_dynamic_mode(str);
5410 	if (mode < 0) {
5411 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5412 		return 1;
5413 	}
5414 
5415 	sched_dynamic_update(mode);
5416 	return 0;
5417 }
5418 __setup("preempt=", setup_preempt_mode);
5419 
5420 #ifdef CONFIG_SCHED_DEBUG
5421 
5422 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5423 				   size_t cnt, loff_t *ppos)
5424 {
5425 	char buf[16];
5426 	int mode;
5427 
5428 	if (cnt > 15)
5429 		cnt = 15;
5430 
5431 	if (copy_from_user(&buf, ubuf, cnt))
5432 		return -EFAULT;
5433 
5434 	buf[cnt] = 0;
5435 	mode = sched_dynamic_mode(strstrip(buf));
5436 	if (mode < 0)
5437 		return mode;
5438 
5439 	sched_dynamic_update(mode);
5440 
5441 	*ppos += cnt;
5442 
5443 	return cnt;
5444 }
5445 
5446 static int sched_dynamic_show(struct seq_file *m, void *v)
5447 {
5448 	static const char * preempt_modes[] = {
5449 		"none", "voluntary", "full"
5450 	};
5451 	int i;
5452 
5453 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5454 		if (preempt_dynamic_mode == i)
5455 			seq_puts(m, "(");
5456 		seq_puts(m, preempt_modes[i]);
5457 		if (preempt_dynamic_mode == i)
5458 			seq_puts(m, ")");
5459 
5460 		seq_puts(m, " ");
5461 	}
5462 
5463 	seq_puts(m, "\n");
5464 	return 0;
5465 }
5466 
5467 static int sched_dynamic_open(struct inode *inode, struct file *filp)
5468 {
5469 	return single_open(filp, sched_dynamic_show, NULL);
5470 }
5471 
5472 static const struct file_operations sched_dynamic_fops = {
5473 	.open		= sched_dynamic_open,
5474 	.write		= sched_dynamic_write,
5475 	.read		= seq_read,
5476 	.llseek		= seq_lseek,
5477 	.release	= single_release,
5478 };
5479 
5480 static __init int sched_init_debug_dynamic(void)
5481 {
5482 	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5483 	return 0;
5484 }
5485 late_initcall(sched_init_debug_dynamic);
5486 
5487 #endif /* CONFIG_SCHED_DEBUG */
5488 #endif /* CONFIG_PREEMPT_DYNAMIC */
5489 
5490 
5491 /*
5492  * This is the entry point to schedule() from kernel preemption
5493  * off of irq context.
5494  * Note, that this is called and return with irqs disabled. This will
5495  * protect us against recursive calling from irq.
5496  */
5497 asmlinkage __visible void __sched preempt_schedule_irq(void)
5498 {
5499 	enum ctx_state prev_state;
5500 
5501 	/* Catch callers which need to be fixed */
5502 	BUG_ON(preempt_count() || !irqs_disabled());
5503 
5504 	prev_state = exception_enter();
5505 
5506 	do {
5507 		preempt_disable();
5508 		local_irq_enable();
5509 		__schedule(true);
5510 		local_irq_disable();
5511 		sched_preempt_enable_no_resched();
5512 	} while (need_resched());
5513 
5514 	exception_exit(prev_state);
5515 }
5516 
5517 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5518 			  void *key)
5519 {
5520 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5521 	return try_to_wake_up(curr->private, mode, wake_flags);
5522 }
5523 EXPORT_SYMBOL(default_wake_function);
5524 
5525 #ifdef CONFIG_RT_MUTEXES
5526 
5527 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5528 {
5529 	if (pi_task)
5530 		prio = min(prio, pi_task->prio);
5531 
5532 	return prio;
5533 }
5534 
5535 static inline int rt_effective_prio(struct task_struct *p, int prio)
5536 {
5537 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5538 
5539 	return __rt_effective_prio(pi_task, prio);
5540 }
5541 
5542 /*
5543  * rt_mutex_setprio - set the current priority of a task
5544  * @p: task to boost
5545  * @pi_task: donor task
5546  *
5547  * This function changes the 'effective' priority of a task. It does
5548  * not touch ->normal_prio like __setscheduler().
5549  *
5550  * Used by the rt_mutex code to implement priority inheritance
5551  * logic. Call site only calls if the priority of the task changed.
5552  */
5553 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5554 {
5555 	int prio, oldprio, queued, running, queue_flag =
5556 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5557 	const struct sched_class *prev_class;
5558 	struct rq_flags rf;
5559 	struct rq *rq;
5560 
5561 	/* XXX used to be waiter->prio, not waiter->task->prio */
5562 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5563 
5564 	/*
5565 	 * If nothing changed; bail early.
5566 	 */
5567 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5568 		return;
5569 
5570 	rq = __task_rq_lock(p, &rf);
5571 	update_rq_clock(rq);
5572 	/*
5573 	 * Set under pi_lock && rq->lock, such that the value can be used under
5574 	 * either lock.
5575 	 *
5576 	 * Note that there is loads of tricky to make this pointer cache work
5577 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5578 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5579 	 * task is allowed to run again (and can exit). This ensures the pointer
5580 	 * points to a blocked task -- which guarantees the task is present.
5581 	 */
5582 	p->pi_top_task = pi_task;
5583 
5584 	/*
5585 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5586 	 */
5587 	if (prio == p->prio && !dl_prio(prio))
5588 		goto out_unlock;
5589 
5590 	/*
5591 	 * Idle task boosting is a nono in general. There is one
5592 	 * exception, when PREEMPT_RT and NOHZ is active:
5593 	 *
5594 	 * The idle task calls get_next_timer_interrupt() and holds
5595 	 * the timer wheel base->lock on the CPU and another CPU wants
5596 	 * to access the timer (probably to cancel it). We can safely
5597 	 * ignore the boosting request, as the idle CPU runs this code
5598 	 * with interrupts disabled and will complete the lock
5599 	 * protected section without being interrupted. So there is no
5600 	 * real need to boost.
5601 	 */
5602 	if (unlikely(p == rq->idle)) {
5603 		WARN_ON(p != rq->curr);
5604 		WARN_ON(p->pi_blocked_on);
5605 		goto out_unlock;
5606 	}
5607 
5608 	trace_sched_pi_setprio(p, pi_task);
5609 	oldprio = p->prio;
5610 
5611 	if (oldprio == prio)
5612 		queue_flag &= ~DEQUEUE_MOVE;
5613 
5614 	prev_class = p->sched_class;
5615 	queued = task_on_rq_queued(p);
5616 	running = task_current(rq, p);
5617 	if (queued)
5618 		dequeue_task(rq, p, queue_flag);
5619 	if (running)
5620 		put_prev_task(rq, p);
5621 
5622 	/*
5623 	 * Boosting condition are:
5624 	 * 1. -rt task is running and holds mutex A
5625 	 *      --> -dl task blocks on mutex A
5626 	 *
5627 	 * 2. -dl task is running and holds mutex A
5628 	 *      --> -dl task blocks on mutex A and could preempt the
5629 	 *          running task
5630 	 */
5631 	if (dl_prio(prio)) {
5632 		if (!dl_prio(p->normal_prio) ||
5633 		    (pi_task && dl_prio(pi_task->prio) &&
5634 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5635 			p->dl.pi_se = pi_task->dl.pi_se;
5636 			queue_flag |= ENQUEUE_REPLENISH;
5637 		} else {
5638 			p->dl.pi_se = &p->dl;
5639 		}
5640 		p->sched_class = &dl_sched_class;
5641 	} else if (rt_prio(prio)) {
5642 		if (dl_prio(oldprio))
5643 			p->dl.pi_se = &p->dl;
5644 		if (oldprio < prio)
5645 			queue_flag |= ENQUEUE_HEAD;
5646 		p->sched_class = &rt_sched_class;
5647 	} else {
5648 		if (dl_prio(oldprio))
5649 			p->dl.pi_se = &p->dl;
5650 		if (rt_prio(oldprio))
5651 			p->rt.timeout = 0;
5652 		p->sched_class = &fair_sched_class;
5653 	}
5654 
5655 	p->prio = prio;
5656 
5657 	if (queued)
5658 		enqueue_task(rq, p, queue_flag);
5659 	if (running)
5660 		set_next_task(rq, p);
5661 
5662 	check_class_changed(rq, p, prev_class, oldprio);
5663 out_unlock:
5664 	/* Avoid rq from going away on us: */
5665 	preempt_disable();
5666 
5667 	rq_unpin_lock(rq, &rf);
5668 	__balance_callbacks(rq);
5669 	raw_spin_unlock(&rq->lock);
5670 
5671 	preempt_enable();
5672 }
5673 #else
5674 static inline int rt_effective_prio(struct task_struct *p, int prio)
5675 {
5676 	return prio;
5677 }
5678 #endif
5679 
5680 void set_user_nice(struct task_struct *p, long nice)
5681 {
5682 	bool queued, running;
5683 	int old_prio;
5684 	struct rq_flags rf;
5685 	struct rq *rq;
5686 
5687 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5688 		return;
5689 	/*
5690 	 * We have to be careful, if called from sys_setpriority(),
5691 	 * the task might be in the middle of scheduling on another CPU.
5692 	 */
5693 	rq = task_rq_lock(p, &rf);
5694 	update_rq_clock(rq);
5695 
5696 	/*
5697 	 * The RT priorities are set via sched_setscheduler(), but we still
5698 	 * allow the 'normal' nice value to be set - but as expected
5699 	 * it won't have any effect on scheduling until the task is
5700 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5701 	 */
5702 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5703 		p->static_prio = NICE_TO_PRIO(nice);
5704 		goto out_unlock;
5705 	}
5706 	queued = task_on_rq_queued(p);
5707 	running = task_current(rq, p);
5708 	if (queued)
5709 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5710 	if (running)
5711 		put_prev_task(rq, p);
5712 
5713 	p->static_prio = NICE_TO_PRIO(nice);
5714 	set_load_weight(p, true);
5715 	old_prio = p->prio;
5716 	p->prio = effective_prio(p);
5717 
5718 	if (queued)
5719 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5720 	if (running)
5721 		set_next_task(rq, p);
5722 
5723 	/*
5724 	 * If the task increased its priority or is running and
5725 	 * lowered its priority, then reschedule its CPU:
5726 	 */
5727 	p->sched_class->prio_changed(rq, p, old_prio);
5728 
5729 out_unlock:
5730 	task_rq_unlock(rq, p, &rf);
5731 }
5732 EXPORT_SYMBOL(set_user_nice);
5733 
5734 /*
5735  * can_nice - check if a task can reduce its nice value
5736  * @p: task
5737  * @nice: nice value
5738  */
5739 int can_nice(const struct task_struct *p, const int nice)
5740 {
5741 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5742 	int nice_rlim = nice_to_rlimit(nice);
5743 
5744 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5745 		capable(CAP_SYS_NICE));
5746 }
5747 
5748 #ifdef __ARCH_WANT_SYS_NICE
5749 
5750 /*
5751  * sys_nice - change the priority of the current process.
5752  * @increment: priority increment
5753  *
5754  * sys_setpriority is a more generic, but much slower function that
5755  * does similar things.
5756  */
5757 SYSCALL_DEFINE1(nice, int, increment)
5758 {
5759 	long nice, retval;
5760 
5761 	/*
5762 	 * Setpriority might change our priority at the same moment.
5763 	 * We don't have to worry. Conceptually one call occurs first
5764 	 * and we have a single winner.
5765 	 */
5766 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5767 	nice = task_nice(current) + increment;
5768 
5769 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5770 	if (increment < 0 && !can_nice(current, nice))
5771 		return -EPERM;
5772 
5773 	retval = security_task_setnice(current, nice);
5774 	if (retval)
5775 		return retval;
5776 
5777 	set_user_nice(current, nice);
5778 	return 0;
5779 }
5780 
5781 #endif
5782 
5783 /**
5784  * task_prio - return the priority value of a given task.
5785  * @p: the task in question.
5786  *
5787  * Return: The priority value as seen by users in /proc.
5788  *
5789  * sched policy         return value   kernel prio    user prio/nice
5790  *
5791  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5792  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5793  * deadline                     -101             -1           0
5794  */
5795 int task_prio(const struct task_struct *p)
5796 {
5797 	return p->prio - MAX_RT_PRIO;
5798 }
5799 
5800 /**
5801  * idle_cpu - is a given CPU idle currently?
5802  * @cpu: the processor in question.
5803  *
5804  * Return: 1 if the CPU is currently idle. 0 otherwise.
5805  */
5806 int idle_cpu(int cpu)
5807 {
5808 	struct rq *rq = cpu_rq(cpu);
5809 
5810 	if (rq->curr != rq->idle)
5811 		return 0;
5812 
5813 	if (rq->nr_running)
5814 		return 0;
5815 
5816 #ifdef CONFIG_SMP
5817 	if (rq->ttwu_pending)
5818 		return 0;
5819 #endif
5820 
5821 	return 1;
5822 }
5823 
5824 /**
5825  * available_idle_cpu - is a given CPU idle for enqueuing work.
5826  * @cpu: the CPU in question.
5827  *
5828  * Return: 1 if the CPU is currently idle. 0 otherwise.
5829  */
5830 int available_idle_cpu(int cpu)
5831 {
5832 	if (!idle_cpu(cpu))
5833 		return 0;
5834 
5835 	if (vcpu_is_preempted(cpu))
5836 		return 0;
5837 
5838 	return 1;
5839 }
5840 
5841 /**
5842  * idle_task - return the idle task for a given CPU.
5843  * @cpu: the processor in question.
5844  *
5845  * Return: The idle task for the CPU @cpu.
5846  */
5847 struct task_struct *idle_task(int cpu)
5848 {
5849 	return cpu_rq(cpu)->idle;
5850 }
5851 
5852 #ifdef CONFIG_SMP
5853 /*
5854  * This function computes an effective utilization for the given CPU, to be
5855  * used for frequency selection given the linear relation: f = u * f_max.
5856  *
5857  * The scheduler tracks the following metrics:
5858  *
5859  *   cpu_util_{cfs,rt,dl,irq}()
5860  *   cpu_bw_dl()
5861  *
5862  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5863  * synchronized windows and are thus directly comparable.
5864  *
5865  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5866  * which excludes things like IRQ and steal-time. These latter are then accrued
5867  * in the irq utilization.
5868  *
5869  * The DL bandwidth number otoh is not a measured metric but a value computed
5870  * based on the task model parameters and gives the minimal utilization
5871  * required to meet deadlines.
5872  */
5873 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5874 				 unsigned long max, enum cpu_util_type type,
5875 				 struct task_struct *p)
5876 {
5877 	unsigned long dl_util, util, irq;
5878 	struct rq *rq = cpu_rq(cpu);
5879 
5880 	if (!uclamp_is_used() &&
5881 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5882 		return max;
5883 	}
5884 
5885 	/*
5886 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5887 	 * because of inaccuracies in how we track these -- see
5888 	 * update_irq_load_avg().
5889 	 */
5890 	irq = cpu_util_irq(rq);
5891 	if (unlikely(irq >= max))
5892 		return max;
5893 
5894 	/*
5895 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5896 	 * CFS tasks and we use the same metric to track the effective
5897 	 * utilization (PELT windows are synchronized) we can directly add them
5898 	 * to obtain the CPU's actual utilization.
5899 	 *
5900 	 * CFS and RT utilization can be boosted or capped, depending on
5901 	 * utilization clamp constraints requested by currently RUNNABLE
5902 	 * tasks.
5903 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5904 	 * frequency will be gracefully reduced with the utilization decay.
5905 	 */
5906 	util = util_cfs + cpu_util_rt(rq);
5907 	if (type == FREQUENCY_UTIL)
5908 		util = uclamp_rq_util_with(rq, util, p);
5909 
5910 	dl_util = cpu_util_dl(rq);
5911 
5912 	/*
5913 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5914 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5915 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5916 	 * that we select f_max when there is no idle time.
5917 	 *
5918 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5919 	 * saturation when we should -- something for later.
5920 	 */
5921 	if (util + dl_util >= max)
5922 		return max;
5923 
5924 	/*
5925 	 * OTOH, for energy computation we need the estimated running time, so
5926 	 * include util_dl and ignore dl_bw.
5927 	 */
5928 	if (type == ENERGY_UTIL)
5929 		util += dl_util;
5930 
5931 	/*
5932 	 * There is still idle time; further improve the number by using the
5933 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5934 	 * need to scale the task numbers:
5935 	 *
5936 	 *              max - irq
5937 	 *   U' = irq + --------- * U
5938 	 *                 max
5939 	 */
5940 	util = scale_irq_capacity(util, irq, max);
5941 	util += irq;
5942 
5943 	/*
5944 	 * Bandwidth required by DEADLINE must always be granted while, for
5945 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5946 	 * to gracefully reduce the frequency when no tasks show up for longer
5947 	 * periods of time.
5948 	 *
5949 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5950 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5951 	 * an interface. So, we only do the latter for now.
5952 	 */
5953 	if (type == FREQUENCY_UTIL)
5954 		util += cpu_bw_dl(rq);
5955 
5956 	return min(max, util);
5957 }
5958 
5959 unsigned long sched_cpu_util(int cpu, unsigned long max)
5960 {
5961 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5962 				  ENERGY_UTIL, NULL);
5963 }
5964 #endif /* CONFIG_SMP */
5965 
5966 /**
5967  * find_process_by_pid - find a process with a matching PID value.
5968  * @pid: the pid in question.
5969  *
5970  * The task of @pid, if found. %NULL otherwise.
5971  */
5972 static struct task_struct *find_process_by_pid(pid_t pid)
5973 {
5974 	return pid ? find_task_by_vpid(pid) : current;
5975 }
5976 
5977 /*
5978  * sched_setparam() passes in -1 for its policy, to let the functions
5979  * it calls know not to change it.
5980  */
5981 #define SETPARAM_POLICY	-1
5982 
5983 static void __setscheduler_params(struct task_struct *p,
5984 		const struct sched_attr *attr)
5985 {
5986 	int policy = attr->sched_policy;
5987 
5988 	if (policy == SETPARAM_POLICY)
5989 		policy = p->policy;
5990 
5991 	p->policy = policy;
5992 
5993 	if (dl_policy(policy))
5994 		__setparam_dl(p, attr);
5995 	else if (fair_policy(policy))
5996 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5997 
5998 	/*
5999 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6000 	 * !rt_policy. Always setting this ensures that things like
6001 	 * getparam()/getattr() don't report silly values for !rt tasks.
6002 	 */
6003 	p->rt_priority = attr->sched_priority;
6004 	p->normal_prio = normal_prio(p);
6005 	set_load_weight(p, true);
6006 }
6007 
6008 /* Actually do priority change: must hold pi & rq lock. */
6009 static void __setscheduler(struct rq *rq, struct task_struct *p,
6010 			   const struct sched_attr *attr, bool keep_boost)
6011 {
6012 	/*
6013 	 * If params can't change scheduling class changes aren't allowed
6014 	 * either.
6015 	 */
6016 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6017 		return;
6018 
6019 	__setscheduler_params(p, attr);
6020 
6021 	/*
6022 	 * Keep a potential priority boosting if called from
6023 	 * sched_setscheduler().
6024 	 */
6025 	p->prio = normal_prio(p);
6026 	if (keep_boost)
6027 		p->prio = rt_effective_prio(p, p->prio);
6028 
6029 	if (dl_prio(p->prio))
6030 		p->sched_class = &dl_sched_class;
6031 	else if (rt_prio(p->prio))
6032 		p->sched_class = &rt_sched_class;
6033 	else
6034 		p->sched_class = &fair_sched_class;
6035 }
6036 
6037 /*
6038  * Check the target process has a UID that matches the current process's:
6039  */
6040 static bool check_same_owner(struct task_struct *p)
6041 {
6042 	const struct cred *cred = current_cred(), *pcred;
6043 	bool match;
6044 
6045 	rcu_read_lock();
6046 	pcred = __task_cred(p);
6047 	match = (uid_eq(cred->euid, pcred->euid) ||
6048 		 uid_eq(cred->euid, pcred->uid));
6049 	rcu_read_unlock();
6050 	return match;
6051 }
6052 
6053 static int __sched_setscheduler(struct task_struct *p,
6054 				const struct sched_attr *attr,
6055 				bool user, bool pi)
6056 {
6057 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6058 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6059 	int retval, oldprio, oldpolicy = -1, queued, running;
6060 	int new_effective_prio, policy = attr->sched_policy;
6061 	const struct sched_class *prev_class;
6062 	struct callback_head *head;
6063 	struct rq_flags rf;
6064 	int reset_on_fork;
6065 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6066 	struct rq *rq;
6067 
6068 	/* The pi code expects interrupts enabled */
6069 	BUG_ON(pi && in_interrupt());
6070 recheck:
6071 	/* Double check policy once rq lock held: */
6072 	if (policy < 0) {
6073 		reset_on_fork = p->sched_reset_on_fork;
6074 		policy = oldpolicy = p->policy;
6075 	} else {
6076 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6077 
6078 		if (!valid_policy(policy))
6079 			return -EINVAL;
6080 	}
6081 
6082 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6083 		return -EINVAL;
6084 
6085 	/*
6086 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6087 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6088 	 * SCHED_BATCH and SCHED_IDLE is 0.
6089 	 */
6090 	if (attr->sched_priority > MAX_RT_PRIO-1)
6091 		return -EINVAL;
6092 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6093 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6094 		return -EINVAL;
6095 
6096 	/*
6097 	 * Allow unprivileged RT tasks to decrease priority:
6098 	 */
6099 	if (user && !capable(CAP_SYS_NICE)) {
6100 		if (fair_policy(policy)) {
6101 			if (attr->sched_nice < task_nice(p) &&
6102 			    !can_nice(p, attr->sched_nice))
6103 				return -EPERM;
6104 		}
6105 
6106 		if (rt_policy(policy)) {
6107 			unsigned long rlim_rtprio =
6108 					task_rlimit(p, RLIMIT_RTPRIO);
6109 
6110 			/* Can't set/change the rt policy: */
6111 			if (policy != p->policy && !rlim_rtprio)
6112 				return -EPERM;
6113 
6114 			/* Can't increase priority: */
6115 			if (attr->sched_priority > p->rt_priority &&
6116 			    attr->sched_priority > rlim_rtprio)
6117 				return -EPERM;
6118 		}
6119 
6120 		 /*
6121 		  * Can't set/change SCHED_DEADLINE policy at all for now
6122 		  * (safest behavior); in the future we would like to allow
6123 		  * unprivileged DL tasks to increase their relative deadline
6124 		  * or reduce their runtime (both ways reducing utilization)
6125 		  */
6126 		if (dl_policy(policy))
6127 			return -EPERM;
6128 
6129 		/*
6130 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6131 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6132 		 */
6133 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6134 			if (!can_nice(p, task_nice(p)))
6135 				return -EPERM;
6136 		}
6137 
6138 		/* Can't change other user's priorities: */
6139 		if (!check_same_owner(p))
6140 			return -EPERM;
6141 
6142 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6143 		if (p->sched_reset_on_fork && !reset_on_fork)
6144 			return -EPERM;
6145 	}
6146 
6147 	if (user) {
6148 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6149 			return -EINVAL;
6150 
6151 		retval = security_task_setscheduler(p);
6152 		if (retval)
6153 			return retval;
6154 	}
6155 
6156 	/* Update task specific "requested" clamps */
6157 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6158 		retval = uclamp_validate(p, attr);
6159 		if (retval)
6160 			return retval;
6161 	}
6162 
6163 	if (pi)
6164 		cpuset_read_lock();
6165 
6166 	/*
6167 	 * Make sure no PI-waiters arrive (or leave) while we are
6168 	 * changing the priority of the task:
6169 	 *
6170 	 * To be able to change p->policy safely, the appropriate
6171 	 * runqueue lock must be held.
6172 	 */
6173 	rq = task_rq_lock(p, &rf);
6174 	update_rq_clock(rq);
6175 
6176 	/*
6177 	 * Changing the policy of the stop threads its a very bad idea:
6178 	 */
6179 	if (p == rq->stop) {
6180 		retval = -EINVAL;
6181 		goto unlock;
6182 	}
6183 
6184 	/*
6185 	 * If not changing anything there's no need to proceed further,
6186 	 * but store a possible modification of reset_on_fork.
6187 	 */
6188 	if (unlikely(policy == p->policy)) {
6189 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6190 			goto change;
6191 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6192 			goto change;
6193 		if (dl_policy(policy) && dl_param_changed(p, attr))
6194 			goto change;
6195 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6196 			goto change;
6197 
6198 		p->sched_reset_on_fork = reset_on_fork;
6199 		retval = 0;
6200 		goto unlock;
6201 	}
6202 change:
6203 
6204 	if (user) {
6205 #ifdef CONFIG_RT_GROUP_SCHED
6206 		/*
6207 		 * Do not allow realtime tasks into groups that have no runtime
6208 		 * assigned.
6209 		 */
6210 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6211 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6212 				!task_group_is_autogroup(task_group(p))) {
6213 			retval = -EPERM;
6214 			goto unlock;
6215 		}
6216 #endif
6217 #ifdef CONFIG_SMP
6218 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6219 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6220 			cpumask_t *span = rq->rd->span;
6221 
6222 			/*
6223 			 * Don't allow tasks with an affinity mask smaller than
6224 			 * the entire root_domain to become SCHED_DEADLINE. We
6225 			 * will also fail if there's no bandwidth available.
6226 			 */
6227 			if (!cpumask_subset(span, p->cpus_ptr) ||
6228 			    rq->rd->dl_bw.bw == 0) {
6229 				retval = -EPERM;
6230 				goto unlock;
6231 			}
6232 		}
6233 #endif
6234 	}
6235 
6236 	/* Re-check policy now with rq lock held: */
6237 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6238 		policy = oldpolicy = -1;
6239 		task_rq_unlock(rq, p, &rf);
6240 		if (pi)
6241 			cpuset_read_unlock();
6242 		goto recheck;
6243 	}
6244 
6245 	/*
6246 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6247 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6248 	 * is available.
6249 	 */
6250 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6251 		retval = -EBUSY;
6252 		goto unlock;
6253 	}
6254 
6255 	p->sched_reset_on_fork = reset_on_fork;
6256 	oldprio = p->prio;
6257 
6258 	if (pi) {
6259 		/*
6260 		 * Take priority boosted tasks into account. If the new
6261 		 * effective priority is unchanged, we just store the new
6262 		 * normal parameters and do not touch the scheduler class and
6263 		 * the runqueue. This will be done when the task deboost
6264 		 * itself.
6265 		 */
6266 		new_effective_prio = rt_effective_prio(p, newprio);
6267 		if (new_effective_prio == oldprio)
6268 			queue_flags &= ~DEQUEUE_MOVE;
6269 	}
6270 
6271 	queued = task_on_rq_queued(p);
6272 	running = task_current(rq, p);
6273 	if (queued)
6274 		dequeue_task(rq, p, queue_flags);
6275 	if (running)
6276 		put_prev_task(rq, p);
6277 
6278 	prev_class = p->sched_class;
6279 
6280 	__setscheduler(rq, p, attr, pi);
6281 	__setscheduler_uclamp(p, attr);
6282 
6283 	if (queued) {
6284 		/*
6285 		 * We enqueue to tail when the priority of a task is
6286 		 * increased (user space view).
6287 		 */
6288 		if (oldprio < p->prio)
6289 			queue_flags |= ENQUEUE_HEAD;
6290 
6291 		enqueue_task(rq, p, queue_flags);
6292 	}
6293 	if (running)
6294 		set_next_task(rq, p);
6295 
6296 	check_class_changed(rq, p, prev_class, oldprio);
6297 
6298 	/* Avoid rq from going away on us: */
6299 	preempt_disable();
6300 	head = splice_balance_callbacks(rq);
6301 	task_rq_unlock(rq, p, &rf);
6302 
6303 	if (pi) {
6304 		cpuset_read_unlock();
6305 		rt_mutex_adjust_pi(p);
6306 	}
6307 
6308 	/* Run balance callbacks after we've adjusted the PI chain: */
6309 	balance_callbacks(rq, head);
6310 	preempt_enable();
6311 
6312 	return 0;
6313 
6314 unlock:
6315 	task_rq_unlock(rq, p, &rf);
6316 	if (pi)
6317 		cpuset_read_unlock();
6318 	return retval;
6319 }
6320 
6321 static int _sched_setscheduler(struct task_struct *p, int policy,
6322 			       const struct sched_param *param, bool check)
6323 {
6324 	struct sched_attr attr = {
6325 		.sched_policy   = policy,
6326 		.sched_priority = param->sched_priority,
6327 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6328 	};
6329 
6330 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6331 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6332 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6333 		policy &= ~SCHED_RESET_ON_FORK;
6334 		attr.sched_policy = policy;
6335 	}
6336 
6337 	return __sched_setscheduler(p, &attr, check, true);
6338 }
6339 /**
6340  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6341  * @p: the task in question.
6342  * @policy: new policy.
6343  * @param: structure containing the new RT priority.
6344  *
6345  * Use sched_set_fifo(), read its comment.
6346  *
6347  * Return: 0 on success. An error code otherwise.
6348  *
6349  * NOTE that the task may be already dead.
6350  */
6351 int sched_setscheduler(struct task_struct *p, int policy,
6352 		       const struct sched_param *param)
6353 {
6354 	return _sched_setscheduler(p, policy, param, true);
6355 }
6356 
6357 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6358 {
6359 	return __sched_setscheduler(p, attr, true, true);
6360 }
6361 
6362 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6363 {
6364 	return __sched_setscheduler(p, attr, false, true);
6365 }
6366 
6367 /**
6368  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6369  * @p: the task in question.
6370  * @policy: new policy.
6371  * @param: structure containing the new RT priority.
6372  *
6373  * Just like sched_setscheduler, only don't bother checking if the
6374  * current context has permission.  For example, this is needed in
6375  * stop_machine(): we create temporary high priority worker threads,
6376  * but our caller might not have that capability.
6377  *
6378  * Return: 0 on success. An error code otherwise.
6379  */
6380 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6381 			       const struct sched_param *param)
6382 {
6383 	return _sched_setscheduler(p, policy, param, false);
6384 }
6385 
6386 /*
6387  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6388  * incapable of resource management, which is the one thing an OS really should
6389  * be doing.
6390  *
6391  * This is of course the reason it is limited to privileged users only.
6392  *
6393  * Worse still; it is fundamentally impossible to compose static priority
6394  * workloads. You cannot take two correctly working static prio workloads
6395  * and smash them together and still expect them to work.
6396  *
6397  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6398  *
6399  *   MAX_RT_PRIO / 2
6400  *
6401  * The administrator _MUST_ configure the system, the kernel simply doesn't
6402  * know enough information to make a sensible choice.
6403  */
6404 void sched_set_fifo(struct task_struct *p)
6405 {
6406 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6407 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6408 }
6409 EXPORT_SYMBOL_GPL(sched_set_fifo);
6410 
6411 /*
6412  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6413  */
6414 void sched_set_fifo_low(struct task_struct *p)
6415 {
6416 	struct sched_param sp = { .sched_priority = 1 };
6417 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6418 }
6419 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6420 
6421 void sched_set_normal(struct task_struct *p, int nice)
6422 {
6423 	struct sched_attr attr = {
6424 		.sched_policy = SCHED_NORMAL,
6425 		.sched_nice = nice,
6426 	};
6427 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6428 }
6429 EXPORT_SYMBOL_GPL(sched_set_normal);
6430 
6431 static int
6432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6433 {
6434 	struct sched_param lparam;
6435 	struct task_struct *p;
6436 	int retval;
6437 
6438 	if (!param || pid < 0)
6439 		return -EINVAL;
6440 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6441 		return -EFAULT;
6442 
6443 	rcu_read_lock();
6444 	retval = -ESRCH;
6445 	p = find_process_by_pid(pid);
6446 	if (likely(p))
6447 		get_task_struct(p);
6448 	rcu_read_unlock();
6449 
6450 	if (likely(p)) {
6451 		retval = sched_setscheduler(p, policy, &lparam);
6452 		put_task_struct(p);
6453 	}
6454 
6455 	return retval;
6456 }
6457 
6458 /*
6459  * Mimics kernel/events/core.c perf_copy_attr().
6460  */
6461 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6462 {
6463 	u32 size;
6464 	int ret;
6465 
6466 	/* Zero the full structure, so that a short copy will be nice: */
6467 	memset(attr, 0, sizeof(*attr));
6468 
6469 	ret = get_user(size, &uattr->size);
6470 	if (ret)
6471 		return ret;
6472 
6473 	/* ABI compatibility quirk: */
6474 	if (!size)
6475 		size = SCHED_ATTR_SIZE_VER0;
6476 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6477 		goto err_size;
6478 
6479 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6480 	if (ret) {
6481 		if (ret == -E2BIG)
6482 			goto err_size;
6483 		return ret;
6484 	}
6485 
6486 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6487 	    size < SCHED_ATTR_SIZE_VER1)
6488 		return -EINVAL;
6489 
6490 	/*
6491 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6492 	 * to be strict and return an error on out-of-bounds values?
6493 	 */
6494 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6495 
6496 	return 0;
6497 
6498 err_size:
6499 	put_user(sizeof(*attr), &uattr->size);
6500 	return -E2BIG;
6501 }
6502 
6503 /**
6504  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6505  * @pid: the pid in question.
6506  * @policy: new policy.
6507  * @param: structure containing the new RT priority.
6508  *
6509  * Return: 0 on success. An error code otherwise.
6510  */
6511 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6512 {
6513 	if (policy < 0)
6514 		return -EINVAL;
6515 
6516 	return do_sched_setscheduler(pid, policy, param);
6517 }
6518 
6519 /**
6520  * sys_sched_setparam - set/change the RT priority of a thread
6521  * @pid: the pid in question.
6522  * @param: structure containing the new RT priority.
6523  *
6524  * Return: 0 on success. An error code otherwise.
6525  */
6526 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6527 {
6528 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6529 }
6530 
6531 /**
6532  * sys_sched_setattr - same as above, but with extended sched_attr
6533  * @pid: the pid in question.
6534  * @uattr: structure containing the extended parameters.
6535  * @flags: for future extension.
6536  */
6537 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6538 			       unsigned int, flags)
6539 {
6540 	struct sched_attr attr;
6541 	struct task_struct *p;
6542 	int retval;
6543 
6544 	if (!uattr || pid < 0 || flags)
6545 		return -EINVAL;
6546 
6547 	retval = sched_copy_attr(uattr, &attr);
6548 	if (retval)
6549 		return retval;
6550 
6551 	if ((int)attr.sched_policy < 0)
6552 		return -EINVAL;
6553 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6554 		attr.sched_policy = SETPARAM_POLICY;
6555 
6556 	rcu_read_lock();
6557 	retval = -ESRCH;
6558 	p = find_process_by_pid(pid);
6559 	if (likely(p))
6560 		get_task_struct(p);
6561 	rcu_read_unlock();
6562 
6563 	if (likely(p)) {
6564 		retval = sched_setattr(p, &attr);
6565 		put_task_struct(p);
6566 	}
6567 
6568 	return retval;
6569 }
6570 
6571 /**
6572  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6573  * @pid: the pid in question.
6574  *
6575  * Return: On success, the policy of the thread. Otherwise, a negative error
6576  * code.
6577  */
6578 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6579 {
6580 	struct task_struct *p;
6581 	int retval;
6582 
6583 	if (pid < 0)
6584 		return -EINVAL;
6585 
6586 	retval = -ESRCH;
6587 	rcu_read_lock();
6588 	p = find_process_by_pid(pid);
6589 	if (p) {
6590 		retval = security_task_getscheduler(p);
6591 		if (!retval)
6592 			retval = p->policy
6593 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6594 	}
6595 	rcu_read_unlock();
6596 	return retval;
6597 }
6598 
6599 /**
6600  * sys_sched_getparam - get the RT priority of a thread
6601  * @pid: the pid in question.
6602  * @param: structure containing the RT priority.
6603  *
6604  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6605  * code.
6606  */
6607 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6608 {
6609 	struct sched_param lp = { .sched_priority = 0 };
6610 	struct task_struct *p;
6611 	int retval;
6612 
6613 	if (!param || pid < 0)
6614 		return -EINVAL;
6615 
6616 	rcu_read_lock();
6617 	p = find_process_by_pid(pid);
6618 	retval = -ESRCH;
6619 	if (!p)
6620 		goto out_unlock;
6621 
6622 	retval = security_task_getscheduler(p);
6623 	if (retval)
6624 		goto out_unlock;
6625 
6626 	if (task_has_rt_policy(p))
6627 		lp.sched_priority = p->rt_priority;
6628 	rcu_read_unlock();
6629 
6630 	/*
6631 	 * This one might sleep, we cannot do it with a spinlock held ...
6632 	 */
6633 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6634 
6635 	return retval;
6636 
6637 out_unlock:
6638 	rcu_read_unlock();
6639 	return retval;
6640 }
6641 
6642 /*
6643  * Copy the kernel size attribute structure (which might be larger
6644  * than what user-space knows about) to user-space.
6645  *
6646  * Note that all cases are valid: user-space buffer can be larger or
6647  * smaller than the kernel-space buffer. The usual case is that both
6648  * have the same size.
6649  */
6650 static int
6651 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6652 			struct sched_attr *kattr,
6653 			unsigned int usize)
6654 {
6655 	unsigned int ksize = sizeof(*kattr);
6656 
6657 	if (!access_ok(uattr, usize))
6658 		return -EFAULT;
6659 
6660 	/*
6661 	 * sched_getattr() ABI forwards and backwards compatibility:
6662 	 *
6663 	 * If usize == ksize then we just copy everything to user-space and all is good.
6664 	 *
6665 	 * If usize < ksize then we only copy as much as user-space has space for,
6666 	 * this keeps ABI compatibility as well. We skip the rest.
6667 	 *
6668 	 * If usize > ksize then user-space is using a newer version of the ABI,
6669 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6670 	 * detect the kernel's knowledge of attributes from the attr->size value
6671 	 * which is set to ksize in this case.
6672 	 */
6673 	kattr->size = min(usize, ksize);
6674 
6675 	if (copy_to_user(uattr, kattr, kattr->size))
6676 		return -EFAULT;
6677 
6678 	return 0;
6679 }
6680 
6681 /**
6682  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6683  * @pid: the pid in question.
6684  * @uattr: structure containing the extended parameters.
6685  * @usize: sizeof(attr) for fwd/bwd comp.
6686  * @flags: for future extension.
6687  */
6688 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6689 		unsigned int, usize, unsigned int, flags)
6690 {
6691 	struct sched_attr kattr = { };
6692 	struct task_struct *p;
6693 	int retval;
6694 
6695 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6696 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6697 		return -EINVAL;
6698 
6699 	rcu_read_lock();
6700 	p = find_process_by_pid(pid);
6701 	retval = -ESRCH;
6702 	if (!p)
6703 		goto out_unlock;
6704 
6705 	retval = security_task_getscheduler(p);
6706 	if (retval)
6707 		goto out_unlock;
6708 
6709 	kattr.sched_policy = p->policy;
6710 	if (p->sched_reset_on_fork)
6711 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6712 	if (task_has_dl_policy(p))
6713 		__getparam_dl(p, &kattr);
6714 	else if (task_has_rt_policy(p))
6715 		kattr.sched_priority = p->rt_priority;
6716 	else
6717 		kattr.sched_nice = task_nice(p);
6718 
6719 #ifdef CONFIG_UCLAMP_TASK
6720 	/*
6721 	 * This could race with another potential updater, but this is fine
6722 	 * because it'll correctly read the old or the new value. We don't need
6723 	 * to guarantee who wins the race as long as it doesn't return garbage.
6724 	 */
6725 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6726 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6727 #endif
6728 
6729 	rcu_read_unlock();
6730 
6731 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6732 
6733 out_unlock:
6734 	rcu_read_unlock();
6735 	return retval;
6736 }
6737 
6738 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6739 {
6740 	cpumask_var_t cpus_allowed, new_mask;
6741 	struct task_struct *p;
6742 	int retval;
6743 
6744 	rcu_read_lock();
6745 
6746 	p = find_process_by_pid(pid);
6747 	if (!p) {
6748 		rcu_read_unlock();
6749 		return -ESRCH;
6750 	}
6751 
6752 	/* Prevent p going away */
6753 	get_task_struct(p);
6754 	rcu_read_unlock();
6755 
6756 	if (p->flags & PF_NO_SETAFFINITY) {
6757 		retval = -EINVAL;
6758 		goto out_put_task;
6759 	}
6760 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6761 		retval = -ENOMEM;
6762 		goto out_put_task;
6763 	}
6764 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6765 		retval = -ENOMEM;
6766 		goto out_free_cpus_allowed;
6767 	}
6768 	retval = -EPERM;
6769 	if (!check_same_owner(p)) {
6770 		rcu_read_lock();
6771 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6772 			rcu_read_unlock();
6773 			goto out_free_new_mask;
6774 		}
6775 		rcu_read_unlock();
6776 	}
6777 
6778 	retval = security_task_setscheduler(p);
6779 	if (retval)
6780 		goto out_free_new_mask;
6781 
6782 
6783 	cpuset_cpus_allowed(p, cpus_allowed);
6784 	cpumask_and(new_mask, in_mask, cpus_allowed);
6785 
6786 	/*
6787 	 * Since bandwidth control happens on root_domain basis,
6788 	 * if admission test is enabled, we only admit -deadline
6789 	 * tasks allowed to run on all the CPUs in the task's
6790 	 * root_domain.
6791 	 */
6792 #ifdef CONFIG_SMP
6793 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6794 		rcu_read_lock();
6795 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6796 			retval = -EBUSY;
6797 			rcu_read_unlock();
6798 			goto out_free_new_mask;
6799 		}
6800 		rcu_read_unlock();
6801 	}
6802 #endif
6803 again:
6804 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6805 
6806 	if (!retval) {
6807 		cpuset_cpus_allowed(p, cpus_allowed);
6808 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6809 			/*
6810 			 * We must have raced with a concurrent cpuset
6811 			 * update. Just reset the cpus_allowed to the
6812 			 * cpuset's cpus_allowed
6813 			 */
6814 			cpumask_copy(new_mask, cpus_allowed);
6815 			goto again;
6816 		}
6817 	}
6818 out_free_new_mask:
6819 	free_cpumask_var(new_mask);
6820 out_free_cpus_allowed:
6821 	free_cpumask_var(cpus_allowed);
6822 out_put_task:
6823 	put_task_struct(p);
6824 	return retval;
6825 }
6826 
6827 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6828 			     struct cpumask *new_mask)
6829 {
6830 	if (len < cpumask_size())
6831 		cpumask_clear(new_mask);
6832 	else if (len > cpumask_size())
6833 		len = cpumask_size();
6834 
6835 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6836 }
6837 
6838 /**
6839  * sys_sched_setaffinity - set the CPU affinity of a process
6840  * @pid: pid of the process
6841  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6842  * @user_mask_ptr: user-space pointer to the new CPU mask
6843  *
6844  * Return: 0 on success. An error code otherwise.
6845  */
6846 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6847 		unsigned long __user *, user_mask_ptr)
6848 {
6849 	cpumask_var_t new_mask;
6850 	int retval;
6851 
6852 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6853 		return -ENOMEM;
6854 
6855 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6856 	if (retval == 0)
6857 		retval = sched_setaffinity(pid, new_mask);
6858 	free_cpumask_var(new_mask);
6859 	return retval;
6860 }
6861 
6862 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6863 {
6864 	struct task_struct *p;
6865 	unsigned long flags;
6866 	int retval;
6867 
6868 	rcu_read_lock();
6869 
6870 	retval = -ESRCH;
6871 	p = find_process_by_pid(pid);
6872 	if (!p)
6873 		goto out_unlock;
6874 
6875 	retval = security_task_getscheduler(p);
6876 	if (retval)
6877 		goto out_unlock;
6878 
6879 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6880 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6881 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6882 
6883 out_unlock:
6884 	rcu_read_unlock();
6885 
6886 	return retval;
6887 }
6888 
6889 /**
6890  * sys_sched_getaffinity - get the CPU affinity of a process
6891  * @pid: pid of the process
6892  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6893  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6894  *
6895  * Return: size of CPU mask copied to user_mask_ptr on success. An
6896  * error code otherwise.
6897  */
6898 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6899 		unsigned long __user *, user_mask_ptr)
6900 {
6901 	int ret;
6902 	cpumask_var_t mask;
6903 
6904 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6905 		return -EINVAL;
6906 	if (len & (sizeof(unsigned long)-1))
6907 		return -EINVAL;
6908 
6909 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6910 		return -ENOMEM;
6911 
6912 	ret = sched_getaffinity(pid, mask);
6913 	if (ret == 0) {
6914 		unsigned int retlen = min(len, cpumask_size());
6915 
6916 		if (copy_to_user(user_mask_ptr, mask, retlen))
6917 			ret = -EFAULT;
6918 		else
6919 			ret = retlen;
6920 	}
6921 	free_cpumask_var(mask);
6922 
6923 	return ret;
6924 }
6925 
6926 static void do_sched_yield(void)
6927 {
6928 	struct rq_flags rf;
6929 	struct rq *rq;
6930 
6931 	rq = this_rq_lock_irq(&rf);
6932 
6933 	schedstat_inc(rq->yld_count);
6934 	current->sched_class->yield_task(rq);
6935 
6936 	preempt_disable();
6937 	rq_unlock_irq(rq, &rf);
6938 	sched_preempt_enable_no_resched();
6939 
6940 	schedule();
6941 }
6942 
6943 /**
6944  * sys_sched_yield - yield the current processor to other threads.
6945  *
6946  * This function yields the current CPU to other tasks. If there are no
6947  * other threads running on this CPU then this function will return.
6948  *
6949  * Return: 0.
6950  */
6951 SYSCALL_DEFINE0(sched_yield)
6952 {
6953 	do_sched_yield();
6954 	return 0;
6955 }
6956 
6957 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6958 int __sched __cond_resched(void)
6959 {
6960 	if (should_resched(0)) {
6961 		preempt_schedule_common();
6962 		return 1;
6963 	}
6964 #ifndef CONFIG_PREEMPT_RCU
6965 	rcu_all_qs();
6966 #endif
6967 	return 0;
6968 }
6969 EXPORT_SYMBOL(__cond_resched);
6970 #endif
6971 
6972 #ifdef CONFIG_PREEMPT_DYNAMIC
6973 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
6974 EXPORT_STATIC_CALL_TRAMP(cond_resched);
6975 
6976 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
6977 EXPORT_STATIC_CALL_TRAMP(might_resched);
6978 #endif
6979 
6980 /*
6981  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6982  * call schedule, and on return reacquire the lock.
6983  *
6984  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6985  * operations here to prevent schedule() from being called twice (once via
6986  * spin_unlock(), once by hand).
6987  */
6988 int __cond_resched_lock(spinlock_t *lock)
6989 {
6990 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6991 	int ret = 0;
6992 
6993 	lockdep_assert_held(lock);
6994 
6995 	if (spin_needbreak(lock) || resched) {
6996 		spin_unlock(lock);
6997 		if (resched)
6998 			preempt_schedule_common();
6999 		else
7000 			cpu_relax();
7001 		ret = 1;
7002 		spin_lock(lock);
7003 	}
7004 	return ret;
7005 }
7006 EXPORT_SYMBOL(__cond_resched_lock);
7007 
7008 int __cond_resched_rwlock_read(rwlock_t *lock)
7009 {
7010 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7011 	int ret = 0;
7012 
7013 	lockdep_assert_held_read(lock);
7014 
7015 	if (rwlock_needbreak(lock) || resched) {
7016 		read_unlock(lock);
7017 		if (resched)
7018 			preempt_schedule_common();
7019 		else
7020 			cpu_relax();
7021 		ret = 1;
7022 		read_lock(lock);
7023 	}
7024 	return ret;
7025 }
7026 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7027 
7028 int __cond_resched_rwlock_write(rwlock_t *lock)
7029 {
7030 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7031 	int ret = 0;
7032 
7033 	lockdep_assert_held_write(lock);
7034 
7035 	if (rwlock_needbreak(lock) || resched) {
7036 		write_unlock(lock);
7037 		if (resched)
7038 			preempt_schedule_common();
7039 		else
7040 			cpu_relax();
7041 		ret = 1;
7042 		write_lock(lock);
7043 	}
7044 	return ret;
7045 }
7046 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7047 
7048 /**
7049  * yield - yield the current processor to other threads.
7050  *
7051  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7052  *
7053  * The scheduler is at all times free to pick the calling task as the most
7054  * eligible task to run, if removing the yield() call from your code breaks
7055  * it, it's already broken.
7056  *
7057  * Typical broken usage is:
7058  *
7059  * while (!event)
7060  *	yield();
7061  *
7062  * where one assumes that yield() will let 'the other' process run that will
7063  * make event true. If the current task is a SCHED_FIFO task that will never
7064  * happen. Never use yield() as a progress guarantee!!
7065  *
7066  * If you want to use yield() to wait for something, use wait_event().
7067  * If you want to use yield() to be 'nice' for others, use cond_resched().
7068  * If you still want to use yield(), do not!
7069  */
7070 void __sched yield(void)
7071 {
7072 	set_current_state(TASK_RUNNING);
7073 	do_sched_yield();
7074 }
7075 EXPORT_SYMBOL(yield);
7076 
7077 /**
7078  * yield_to - yield the current processor to another thread in
7079  * your thread group, or accelerate that thread toward the
7080  * processor it's on.
7081  * @p: target task
7082  * @preempt: whether task preemption is allowed or not
7083  *
7084  * It's the caller's job to ensure that the target task struct
7085  * can't go away on us before we can do any checks.
7086  *
7087  * Return:
7088  *	true (>0) if we indeed boosted the target task.
7089  *	false (0) if we failed to boost the target.
7090  *	-ESRCH if there's no task to yield to.
7091  */
7092 int __sched yield_to(struct task_struct *p, bool preempt)
7093 {
7094 	struct task_struct *curr = current;
7095 	struct rq *rq, *p_rq;
7096 	unsigned long flags;
7097 	int yielded = 0;
7098 
7099 	local_irq_save(flags);
7100 	rq = this_rq();
7101 
7102 again:
7103 	p_rq = task_rq(p);
7104 	/*
7105 	 * If we're the only runnable task on the rq and target rq also
7106 	 * has only one task, there's absolutely no point in yielding.
7107 	 */
7108 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7109 		yielded = -ESRCH;
7110 		goto out_irq;
7111 	}
7112 
7113 	double_rq_lock(rq, p_rq);
7114 	if (task_rq(p) != p_rq) {
7115 		double_rq_unlock(rq, p_rq);
7116 		goto again;
7117 	}
7118 
7119 	if (!curr->sched_class->yield_to_task)
7120 		goto out_unlock;
7121 
7122 	if (curr->sched_class != p->sched_class)
7123 		goto out_unlock;
7124 
7125 	if (task_running(p_rq, p) || p->state)
7126 		goto out_unlock;
7127 
7128 	yielded = curr->sched_class->yield_to_task(rq, p);
7129 	if (yielded) {
7130 		schedstat_inc(rq->yld_count);
7131 		/*
7132 		 * Make p's CPU reschedule; pick_next_entity takes care of
7133 		 * fairness.
7134 		 */
7135 		if (preempt && rq != p_rq)
7136 			resched_curr(p_rq);
7137 	}
7138 
7139 out_unlock:
7140 	double_rq_unlock(rq, p_rq);
7141 out_irq:
7142 	local_irq_restore(flags);
7143 
7144 	if (yielded > 0)
7145 		schedule();
7146 
7147 	return yielded;
7148 }
7149 EXPORT_SYMBOL_GPL(yield_to);
7150 
7151 int io_schedule_prepare(void)
7152 {
7153 	int old_iowait = current->in_iowait;
7154 
7155 	current->in_iowait = 1;
7156 	blk_schedule_flush_plug(current);
7157 
7158 	return old_iowait;
7159 }
7160 
7161 void io_schedule_finish(int token)
7162 {
7163 	current->in_iowait = token;
7164 }
7165 
7166 /*
7167  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7168  * that process accounting knows that this is a task in IO wait state.
7169  */
7170 long __sched io_schedule_timeout(long timeout)
7171 {
7172 	int token;
7173 	long ret;
7174 
7175 	token = io_schedule_prepare();
7176 	ret = schedule_timeout(timeout);
7177 	io_schedule_finish(token);
7178 
7179 	return ret;
7180 }
7181 EXPORT_SYMBOL(io_schedule_timeout);
7182 
7183 void __sched io_schedule(void)
7184 {
7185 	int token;
7186 
7187 	token = io_schedule_prepare();
7188 	schedule();
7189 	io_schedule_finish(token);
7190 }
7191 EXPORT_SYMBOL(io_schedule);
7192 
7193 /**
7194  * sys_sched_get_priority_max - return maximum RT priority.
7195  * @policy: scheduling class.
7196  *
7197  * Return: On success, this syscall returns the maximum
7198  * rt_priority that can be used by a given scheduling class.
7199  * On failure, a negative error code is returned.
7200  */
7201 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7202 {
7203 	int ret = -EINVAL;
7204 
7205 	switch (policy) {
7206 	case SCHED_FIFO:
7207 	case SCHED_RR:
7208 		ret = MAX_RT_PRIO-1;
7209 		break;
7210 	case SCHED_DEADLINE:
7211 	case SCHED_NORMAL:
7212 	case SCHED_BATCH:
7213 	case SCHED_IDLE:
7214 		ret = 0;
7215 		break;
7216 	}
7217 	return ret;
7218 }
7219 
7220 /**
7221  * sys_sched_get_priority_min - return minimum RT priority.
7222  * @policy: scheduling class.
7223  *
7224  * Return: On success, this syscall returns the minimum
7225  * rt_priority that can be used by a given scheduling class.
7226  * On failure, a negative error code is returned.
7227  */
7228 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7229 {
7230 	int ret = -EINVAL;
7231 
7232 	switch (policy) {
7233 	case SCHED_FIFO:
7234 	case SCHED_RR:
7235 		ret = 1;
7236 		break;
7237 	case SCHED_DEADLINE:
7238 	case SCHED_NORMAL:
7239 	case SCHED_BATCH:
7240 	case SCHED_IDLE:
7241 		ret = 0;
7242 	}
7243 	return ret;
7244 }
7245 
7246 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7247 {
7248 	struct task_struct *p;
7249 	unsigned int time_slice;
7250 	struct rq_flags rf;
7251 	struct rq *rq;
7252 	int retval;
7253 
7254 	if (pid < 0)
7255 		return -EINVAL;
7256 
7257 	retval = -ESRCH;
7258 	rcu_read_lock();
7259 	p = find_process_by_pid(pid);
7260 	if (!p)
7261 		goto out_unlock;
7262 
7263 	retval = security_task_getscheduler(p);
7264 	if (retval)
7265 		goto out_unlock;
7266 
7267 	rq = task_rq_lock(p, &rf);
7268 	time_slice = 0;
7269 	if (p->sched_class->get_rr_interval)
7270 		time_slice = p->sched_class->get_rr_interval(rq, p);
7271 	task_rq_unlock(rq, p, &rf);
7272 
7273 	rcu_read_unlock();
7274 	jiffies_to_timespec64(time_slice, t);
7275 	return 0;
7276 
7277 out_unlock:
7278 	rcu_read_unlock();
7279 	return retval;
7280 }
7281 
7282 /**
7283  * sys_sched_rr_get_interval - return the default timeslice of a process.
7284  * @pid: pid of the process.
7285  * @interval: userspace pointer to the timeslice value.
7286  *
7287  * this syscall writes the default timeslice value of a given process
7288  * into the user-space timespec buffer. A value of '0' means infinity.
7289  *
7290  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7291  * an error code.
7292  */
7293 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7294 		struct __kernel_timespec __user *, interval)
7295 {
7296 	struct timespec64 t;
7297 	int retval = sched_rr_get_interval(pid, &t);
7298 
7299 	if (retval == 0)
7300 		retval = put_timespec64(&t, interval);
7301 
7302 	return retval;
7303 }
7304 
7305 #ifdef CONFIG_COMPAT_32BIT_TIME
7306 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7307 		struct old_timespec32 __user *, interval)
7308 {
7309 	struct timespec64 t;
7310 	int retval = sched_rr_get_interval(pid, &t);
7311 
7312 	if (retval == 0)
7313 		retval = put_old_timespec32(&t, interval);
7314 	return retval;
7315 }
7316 #endif
7317 
7318 void sched_show_task(struct task_struct *p)
7319 {
7320 	unsigned long free = 0;
7321 	int ppid;
7322 
7323 	if (!try_get_task_stack(p))
7324 		return;
7325 
7326 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7327 
7328 	if (p->state == TASK_RUNNING)
7329 		pr_cont("  running task    ");
7330 #ifdef CONFIG_DEBUG_STACK_USAGE
7331 	free = stack_not_used(p);
7332 #endif
7333 	ppid = 0;
7334 	rcu_read_lock();
7335 	if (pid_alive(p))
7336 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7337 	rcu_read_unlock();
7338 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7339 		free, task_pid_nr(p), ppid,
7340 		(unsigned long)task_thread_info(p)->flags);
7341 
7342 	print_worker_info(KERN_INFO, p);
7343 	print_stop_info(KERN_INFO, p);
7344 	show_stack(p, NULL, KERN_INFO);
7345 	put_task_stack(p);
7346 }
7347 EXPORT_SYMBOL_GPL(sched_show_task);
7348 
7349 static inline bool
7350 state_filter_match(unsigned long state_filter, struct task_struct *p)
7351 {
7352 	/* no filter, everything matches */
7353 	if (!state_filter)
7354 		return true;
7355 
7356 	/* filter, but doesn't match */
7357 	if (!(p->state & state_filter))
7358 		return false;
7359 
7360 	/*
7361 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7362 	 * TASK_KILLABLE).
7363 	 */
7364 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7365 		return false;
7366 
7367 	return true;
7368 }
7369 
7370 
7371 void show_state_filter(unsigned long state_filter)
7372 {
7373 	struct task_struct *g, *p;
7374 
7375 	rcu_read_lock();
7376 	for_each_process_thread(g, p) {
7377 		/*
7378 		 * reset the NMI-timeout, listing all files on a slow
7379 		 * console might take a lot of time:
7380 		 * Also, reset softlockup watchdogs on all CPUs, because
7381 		 * another CPU might be blocked waiting for us to process
7382 		 * an IPI.
7383 		 */
7384 		touch_nmi_watchdog();
7385 		touch_all_softlockup_watchdogs();
7386 		if (state_filter_match(state_filter, p))
7387 			sched_show_task(p);
7388 	}
7389 
7390 #ifdef CONFIG_SCHED_DEBUG
7391 	if (!state_filter)
7392 		sysrq_sched_debug_show();
7393 #endif
7394 	rcu_read_unlock();
7395 	/*
7396 	 * Only show locks if all tasks are dumped:
7397 	 */
7398 	if (!state_filter)
7399 		debug_show_all_locks();
7400 }
7401 
7402 /**
7403  * init_idle - set up an idle thread for a given CPU
7404  * @idle: task in question
7405  * @cpu: CPU the idle task belongs to
7406  *
7407  * NOTE: this function does not set the idle thread's NEED_RESCHED
7408  * flag, to make booting more robust.
7409  */
7410 void init_idle(struct task_struct *idle, int cpu)
7411 {
7412 	struct rq *rq = cpu_rq(cpu);
7413 	unsigned long flags;
7414 
7415 	__sched_fork(0, idle);
7416 
7417 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7418 	raw_spin_lock(&rq->lock);
7419 
7420 	idle->state = TASK_RUNNING;
7421 	idle->se.exec_start = sched_clock();
7422 	idle->flags |= PF_IDLE;
7423 
7424 	scs_task_reset(idle);
7425 	kasan_unpoison_task_stack(idle);
7426 
7427 #ifdef CONFIG_SMP
7428 	/*
7429 	 * It's possible that init_idle() gets called multiple times on a task,
7430 	 * in that case do_set_cpus_allowed() will not do the right thing.
7431 	 *
7432 	 * And since this is boot we can forgo the serialization.
7433 	 */
7434 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7435 #endif
7436 	/*
7437 	 * We're having a chicken and egg problem, even though we are
7438 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7439 	 * lockdep check in task_group() will fail.
7440 	 *
7441 	 * Similar case to sched_fork(). / Alternatively we could
7442 	 * use task_rq_lock() here and obtain the other rq->lock.
7443 	 *
7444 	 * Silence PROVE_RCU
7445 	 */
7446 	rcu_read_lock();
7447 	__set_task_cpu(idle, cpu);
7448 	rcu_read_unlock();
7449 
7450 	rq->idle = idle;
7451 	rcu_assign_pointer(rq->curr, idle);
7452 	idle->on_rq = TASK_ON_RQ_QUEUED;
7453 #ifdef CONFIG_SMP
7454 	idle->on_cpu = 1;
7455 #endif
7456 	raw_spin_unlock(&rq->lock);
7457 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7458 
7459 	/* Set the preempt count _outside_ the spinlocks! */
7460 	init_idle_preempt_count(idle, cpu);
7461 
7462 	/*
7463 	 * The idle tasks have their own, simple scheduling class:
7464 	 */
7465 	idle->sched_class = &idle_sched_class;
7466 	ftrace_graph_init_idle_task(idle, cpu);
7467 	vtime_init_idle(idle, cpu);
7468 #ifdef CONFIG_SMP
7469 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7470 #endif
7471 }
7472 
7473 #ifdef CONFIG_SMP
7474 
7475 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7476 			      const struct cpumask *trial)
7477 {
7478 	int ret = 1;
7479 
7480 	if (!cpumask_weight(cur))
7481 		return ret;
7482 
7483 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7484 
7485 	return ret;
7486 }
7487 
7488 int task_can_attach(struct task_struct *p,
7489 		    const struct cpumask *cs_cpus_allowed)
7490 {
7491 	int ret = 0;
7492 
7493 	/*
7494 	 * Kthreads which disallow setaffinity shouldn't be moved
7495 	 * to a new cpuset; we don't want to change their CPU
7496 	 * affinity and isolating such threads by their set of
7497 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7498 	 * applicable for such threads.  This prevents checking for
7499 	 * success of set_cpus_allowed_ptr() on all attached tasks
7500 	 * before cpus_mask may be changed.
7501 	 */
7502 	if (p->flags & PF_NO_SETAFFINITY) {
7503 		ret = -EINVAL;
7504 		goto out;
7505 	}
7506 
7507 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7508 					      cs_cpus_allowed))
7509 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7510 
7511 out:
7512 	return ret;
7513 }
7514 
7515 bool sched_smp_initialized __read_mostly;
7516 
7517 #ifdef CONFIG_NUMA_BALANCING
7518 /* Migrate current task p to target_cpu */
7519 int migrate_task_to(struct task_struct *p, int target_cpu)
7520 {
7521 	struct migration_arg arg = { p, target_cpu };
7522 	int curr_cpu = task_cpu(p);
7523 
7524 	if (curr_cpu == target_cpu)
7525 		return 0;
7526 
7527 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7528 		return -EINVAL;
7529 
7530 	/* TODO: This is not properly updating schedstats */
7531 
7532 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7533 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7534 }
7535 
7536 /*
7537  * Requeue a task on a given node and accurately track the number of NUMA
7538  * tasks on the runqueues
7539  */
7540 void sched_setnuma(struct task_struct *p, int nid)
7541 {
7542 	bool queued, running;
7543 	struct rq_flags rf;
7544 	struct rq *rq;
7545 
7546 	rq = task_rq_lock(p, &rf);
7547 	queued = task_on_rq_queued(p);
7548 	running = task_current(rq, p);
7549 
7550 	if (queued)
7551 		dequeue_task(rq, p, DEQUEUE_SAVE);
7552 	if (running)
7553 		put_prev_task(rq, p);
7554 
7555 	p->numa_preferred_nid = nid;
7556 
7557 	if (queued)
7558 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7559 	if (running)
7560 		set_next_task(rq, p);
7561 	task_rq_unlock(rq, p, &rf);
7562 }
7563 #endif /* CONFIG_NUMA_BALANCING */
7564 
7565 #ifdef CONFIG_HOTPLUG_CPU
7566 /*
7567  * Ensure that the idle task is using init_mm right before its CPU goes
7568  * offline.
7569  */
7570 void idle_task_exit(void)
7571 {
7572 	struct mm_struct *mm = current->active_mm;
7573 
7574 	BUG_ON(cpu_online(smp_processor_id()));
7575 	BUG_ON(current != this_rq()->idle);
7576 
7577 	if (mm != &init_mm) {
7578 		switch_mm(mm, &init_mm, current);
7579 		finish_arch_post_lock_switch();
7580 	}
7581 
7582 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7583 }
7584 
7585 static int __balance_push_cpu_stop(void *arg)
7586 {
7587 	struct task_struct *p = arg;
7588 	struct rq *rq = this_rq();
7589 	struct rq_flags rf;
7590 	int cpu;
7591 
7592 	raw_spin_lock_irq(&p->pi_lock);
7593 	rq_lock(rq, &rf);
7594 
7595 	update_rq_clock(rq);
7596 
7597 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7598 		cpu = select_fallback_rq(rq->cpu, p);
7599 		rq = __migrate_task(rq, &rf, p, cpu);
7600 	}
7601 
7602 	rq_unlock(rq, &rf);
7603 	raw_spin_unlock_irq(&p->pi_lock);
7604 
7605 	put_task_struct(p);
7606 
7607 	return 0;
7608 }
7609 
7610 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7611 
7612 /*
7613  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7614  */
7615 static void balance_push(struct rq *rq)
7616 {
7617 	struct task_struct *push_task = rq->curr;
7618 
7619 	lockdep_assert_held(&rq->lock);
7620 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7621 	/*
7622 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7623 	 */
7624 	rq->balance_callback = &balance_push_callback;
7625 
7626 	/*
7627 	 * Both the cpu-hotplug and stop task are in this case and are
7628 	 * required to complete the hotplug process.
7629 	 *
7630 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7631 	 * histerical raisins.
7632 	 */
7633 	if (rq->idle == push_task ||
7634 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7635 	    is_migration_disabled(push_task)) {
7636 
7637 		/*
7638 		 * If this is the idle task on the outgoing CPU try to wake
7639 		 * up the hotplug control thread which might wait for the
7640 		 * last task to vanish. The rcuwait_active() check is
7641 		 * accurate here because the waiter is pinned on this CPU
7642 		 * and can't obviously be running in parallel.
7643 		 *
7644 		 * On RT kernels this also has to check whether there are
7645 		 * pinned and scheduled out tasks on the runqueue. They
7646 		 * need to leave the migrate disabled section first.
7647 		 */
7648 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7649 		    rcuwait_active(&rq->hotplug_wait)) {
7650 			raw_spin_unlock(&rq->lock);
7651 			rcuwait_wake_up(&rq->hotplug_wait);
7652 			raw_spin_lock(&rq->lock);
7653 		}
7654 		return;
7655 	}
7656 
7657 	get_task_struct(push_task);
7658 	/*
7659 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7660 	 * Both preemption and IRQs are still disabled.
7661 	 */
7662 	raw_spin_unlock(&rq->lock);
7663 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7664 			    this_cpu_ptr(&push_work));
7665 	/*
7666 	 * At this point need_resched() is true and we'll take the loop in
7667 	 * schedule(). The next pick is obviously going to be the stop task
7668 	 * which kthread_is_per_cpu() and will push this task away.
7669 	 */
7670 	raw_spin_lock(&rq->lock);
7671 }
7672 
7673 static void balance_push_set(int cpu, bool on)
7674 {
7675 	struct rq *rq = cpu_rq(cpu);
7676 	struct rq_flags rf;
7677 
7678 	rq_lock_irqsave(rq, &rf);
7679 	rq->balance_push = on;
7680 	if (on) {
7681 		WARN_ON_ONCE(rq->balance_callback);
7682 		rq->balance_callback = &balance_push_callback;
7683 	} else if (rq->balance_callback == &balance_push_callback) {
7684 		rq->balance_callback = NULL;
7685 	}
7686 	rq_unlock_irqrestore(rq, &rf);
7687 }
7688 
7689 /*
7690  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7691  * inactive. All tasks which are not per CPU kernel threads are either
7692  * pushed off this CPU now via balance_push() or placed on a different CPU
7693  * during wakeup. Wait until the CPU is quiescent.
7694  */
7695 static void balance_hotplug_wait(void)
7696 {
7697 	struct rq *rq = this_rq();
7698 
7699 	rcuwait_wait_event(&rq->hotplug_wait,
7700 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7701 			   TASK_UNINTERRUPTIBLE);
7702 }
7703 
7704 #else
7705 
7706 static inline void balance_push(struct rq *rq)
7707 {
7708 }
7709 
7710 static inline void balance_push_set(int cpu, bool on)
7711 {
7712 }
7713 
7714 static inline void balance_hotplug_wait(void)
7715 {
7716 }
7717 
7718 #endif /* CONFIG_HOTPLUG_CPU */
7719 
7720 void set_rq_online(struct rq *rq)
7721 {
7722 	if (!rq->online) {
7723 		const struct sched_class *class;
7724 
7725 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7726 		rq->online = 1;
7727 
7728 		for_each_class(class) {
7729 			if (class->rq_online)
7730 				class->rq_online(rq);
7731 		}
7732 	}
7733 }
7734 
7735 void set_rq_offline(struct rq *rq)
7736 {
7737 	if (rq->online) {
7738 		const struct sched_class *class;
7739 
7740 		for_each_class(class) {
7741 			if (class->rq_offline)
7742 				class->rq_offline(rq);
7743 		}
7744 
7745 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7746 		rq->online = 0;
7747 	}
7748 }
7749 
7750 /*
7751  * used to mark begin/end of suspend/resume:
7752  */
7753 static int num_cpus_frozen;
7754 
7755 /*
7756  * Update cpusets according to cpu_active mask.  If cpusets are
7757  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7758  * around partition_sched_domains().
7759  *
7760  * If we come here as part of a suspend/resume, don't touch cpusets because we
7761  * want to restore it back to its original state upon resume anyway.
7762  */
7763 static void cpuset_cpu_active(void)
7764 {
7765 	if (cpuhp_tasks_frozen) {
7766 		/*
7767 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7768 		 * resume sequence. As long as this is not the last online
7769 		 * operation in the resume sequence, just build a single sched
7770 		 * domain, ignoring cpusets.
7771 		 */
7772 		partition_sched_domains(1, NULL, NULL);
7773 		if (--num_cpus_frozen)
7774 			return;
7775 		/*
7776 		 * This is the last CPU online operation. So fall through and
7777 		 * restore the original sched domains by considering the
7778 		 * cpuset configurations.
7779 		 */
7780 		cpuset_force_rebuild();
7781 	}
7782 	cpuset_update_active_cpus();
7783 }
7784 
7785 static int cpuset_cpu_inactive(unsigned int cpu)
7786 {
7787 	if (!cpuhp_tasks_frozen) {
7788 		if (dl_cpu_busy(cpu))
7789 			return -EBUSY;
7790 		cpuset_update_active_cpus();
7791 	} else {
7792 		num_cpus_frozen++;
7793 		partition_sched_domains(1, NULL, NULL);
7794 	}
7795 	return 0;
7796 }
7797 
7798 int sched_cpu_activate(unsigned int cpu)
7799 {
7800 	struct rq *rq = cpu_rq(cpu);
7801 	struct rq_flags rf;
7802 
7803 	/*
7804 	 * Make sure that when the hotplug state machine does a roll-back
7805 	 * we clear balance_push. Ideally that would happen earlier...
7806 	 */
7807 	balance_push_set(cpu, false);
7808 
7809 #ifdef CONFIG_SCHED_SMT
7810 	/*
7811 	 * When going up, increment the number of cores with SMT present.
7812 	 */
7813 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7814 		static_branch_inc_cpuslocked(&sched_smt_present);
7815 #endif
7816 	set_cpu_active(cpu, true);
7817 
7818 	if (sched_smp_initialized) {
7819 		sched_domains_numa_masks_set(cpu);
7820 		cpuset_cpu_active();
7821 	}
7822 
7823 	/*
7824 	 * Put the rq online, if not already. This happens:
7825 	 *
7826 	 * 1) In the early boot process, because we build the real domains
7827 	 *    after all CPUs have been brought up.
7828 	 *
7829 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7830 	 *    domains.
7831 	 */
7832 	rq_lock_irqsave(rq, &rf);
7833 	if (rq->rd) {
7834 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7835 		set_rq_online(rq);
7836 	}
7837 	rq_unlock_irqrestore(rq, &rf);
7838 
7839 	return 0;
7840 }
7841 
7842 int sched_cpu_deactivate(unsigned int cpu)
7843 {
7844 	struct rq *rq = cpu_rq(cpu);
7845 	struct rq_flags rf;
7846 	int ret;
7847 
7848 	/*
7849 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7850 	 * load balancing when not active
7851 	 */
7852 	nohz_balance_exit_idle(rq);
7853 
7854 	set_cpu_active(cpu, false);
7855 
7856 	/*
7857 	 * From this point forward, this CPU will refuse to run any task that
7858 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7859 	 * push those tasks away until this gets cleared, see
7860 	 * sched_cpu_dying().
7861 	 */
7862 	balance_push_set(cpu, true);
7863 
7864 	/*
7865 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7866 	 * preempt-disabled and RCU users of this state to go away such that
7867 	 * all new such users will observe it.
7868 	 *
7869 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7870 	 * ttwu_queue_cond() and is_cpu_allowed().
7871 	 *
7872 	 * Do sync before park smpboot threads to take care the rcu boost case.
7873 	 */
7874 	synchronize_rcu();
7875 
7876 	rq_lock_irqsave(rq, &rf);
7877 	if (rq->rd) {
7878 		update_rq_clock(rq);
7879 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7880 		set_rq_offline(rq);
7881 	}
7882 	rq_unlock_irqrestore(rq, &rf);
7883 
7884 #ifdef CONFIG_SCHED_SMT
7885 	/*
7886 	 * When going down, decrement the number of cores with SMT present.
7887 	 */
7888 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7889 		static_branch_dec_cpuslocked(&sched_smt_present);
7890 #endif
7891 
7892 	if (!sched_smp_initialized)
7893 		return 0;
7894 
7895 	ret = cpuset_cpu_inactive(cpu);
7896 	if (ret) {
7897 		balance_push_set(cpu, false);
7898 		set_cpu_active(cpu, true);
7899 		return ret;
7900 	}
7901 	sched_domains_numa_masks_clear(cpu);
7902 	return 0;
7903 }
7904 
7905 static void sched_rq_cpu_starting(unsigned int cpu)
7906 {
7907 	struct rq *rq = cpu_rq(cpu);
7908 
7909 	rq->calc_load_update = calc_load_update;
7910 	update_max_interval();
7911 }
7912 
7913 int sched_cpu_starting(unsigned int cpu)
7914 {
7915 	sched_rq_cpu_starting(cpu);
7916 	sched_tick_start(cpu);
7917 	return 0;
7918 }
7919 
7920 #ifdef CONFIG_HOTPLUG_CPU
7921 
7922 /*
7923  * Invoked immediately before the stopper thread is invoked to bring the
7924  * CPU down completely. At this point all per CPU kthreads except the
7925  * hotplug thread (current) and the stopper thread (inactive) have been
7926  * either parked or have been unbound from the outgoing CPU. Ensure that
7927  * any of those which might be on the way out are gone.
7928  *
7929  * If after this point a bound task is being woken on this CPU then the
7930  * responsible hotplug callback has failed to do it's job.
7931  * sched_cpu_dying() will catch it with the appropriate fireworks.
7932  */
7933 int sched_cpu_wait_empty(unsigned int cpu)
7934 {
7935 	balance_hotplug_wait();
7936 	return 0;
7937 }
7938 
7939 /*
7940  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7941  * might have. Called from the CPU stopper task after ensuring that the
7942  * stopper is the last running task on the CPU, so nr_active count is
7943  * stable. We need to take the teardown thread which is calling this into
7944  * account, so we hand in adjust = 1 to the load calculation.
7945  *
7946  * Also see the comment "Global load-average calculations".
7947  */
7948 static void calc_load_migrate(struct rq *rq)
7949 {
7950 	long delta = calc_load_fold_active(rq, 1);
7951 
7952 	if (delta)
7953 		atomic_long_add(delta, &calc_load_tasks);
7954 }
7955 
7956 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7957 {
7958 	struct task_struct *g, *p;
7959 	int cpu = cpu_of(rq);
7960 
7961 	lockdep_assert_held(&rq->lock);
7962 
7963 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7964 	for_each_process_thread(g, p) {
7965 		if (task_cpu(p) != cpu)
7966 			continue;
7967 
7968 		if (!task_on_rq_queued(p))
7969 			continue;
7970 
7971 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7972 	}
7973 }
7974 
7975 int sched_cpu_dying(unsigned int cpu)
7976 {
7977 	struct rq *rq = cpu_rq(cpu);
7978 	struct rq_flags rf;
7979 
7980 	/* Handle pending wakeups and then migrate everything off */
7981 	sched_tick_stop(cpu);
7982 
7983 	rq_lock_irqsave(rq, &rf);
7984 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7985 		WARN(true, "Dying CPU not properly vacated!");
7986 		dump_rq_tasks(rq, KERN_WARNING);
7987 	}
7988 	rq_unlock_irqrestore(rq, &rf);
7989 
7990 	/*
7991 	 * Now that the CPU is offline, make sure we're welcome
7992 	 * to new tasks once we come back up.
7993 	 */
7994 	balance_push_set(cpu, false);
7995 
7996 	calc_load_migrate(rq);
7997 	update_max_interval();
7998 	hrtick_clear(rq);
7999 	return 0;
8000 }
8001 #endif
8002 
8003 void __init sched_init_smp(void)
8004 {
8005 	sched_init_numa();
8006 
8007 	/*
8008 	 * There's no userspace yet to cause hotplug operations; hence all the
8009 	 * CPU masks are stable and all blatant races in the below code cannot
8010 	 * happen.
8011 	 */
8012 	mutex_lock(&sched_domains_mutex);
8013 	sched_init_domains(cpu_active_mask);
8014 	mutex_unlock(&sched_domains_mutex);
8015 
8016 	/* Move init over to a non-isolated CPU */
8017 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8018 		BUG();
8019 	sched_init_granularity();
8020 
8021 	init_sched_rt_class();
8022 	init_sched_dl_class();
8023 
8024 	sched_smp_initialized = true;
8025 }
8026 
8027 static int __init migration_init(void)
8028 {
8029 	sched_cpu_starting(smp_processor_id());
8030 	return 0;
8031 }
8032 early_initcall(migration_init);
8033 
8034 #else
8035 void __init sched_init_smp(void)
8036 {
8037 	sched_init_granularity();
8038 }
8039 #endif /* CONFIG_SMP */
8040 
8041 int in_sched_functions(unsigned long addr)
8042 {
8043 	return in_lock_functions(addr) ||
8044 		(addr >= (unsigned long)__sched_text_start
8045 		&& addr < (unsigned long)__sched_text_end);
8046 }
8047 
8048 #ifdef CONFIG_CGROUP_SCHED
8049 /*
8050  * Default task group.
8051  * Every task in system belongs to this group at bootup.
8052  */
8053 struct task_group root_task_group;
8054 LIST_HEAD(task_groups);
8055 
8056 /* Cacheline aligned slab cache for task_group */
8057 static struct kmem_cache *task_group_cache __read_mostly;
8058 #endif
8059 
8060 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8061 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8062 
8063 void __init sched_init(void)
8064 {
8065 	unsigned long ptr = 0;
8066 	int i;
8067 
8068 	/* Make sure the linker didn't screw up */
8069 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8070 	       &fair_sched_class + 1 != &rt_sched_class ||
8071 	       &rt_sched_class + 1   != &dl_sched_class);
8072 #ifdef CONFIG_SMP
8073 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8074 #endif
8075 
8076 	wait_bit_init();
8077 
8078 #ifdef CONFIG_FAIR_GROUP_SCHED
8079 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8080 #endif
8081 #ifdef CONFIG_RT_GROUP_SCHED
8082 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8083 #endif
8084 	if (ptr) {
8085 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8086 
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 		root_task_group.se = (struct sched_entity **)ptr;
8089 		ptr += nr_cpu_ids * sizeof(void **);
8090 
8091 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8092 		ptr += nr_cpu_ids * sizeof(void **);
8093 
8094 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8095 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8096 #endif /* CONFIG_FAIR_GROUP_SCHED */
8097 #ifdef CONFIG_RT_GROUP_SCHED
8098 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8099 		ptr += nr_cpu_ids * sizeof(void **);
8100 
8101 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8102 		ptr += nr_cpu_ids * sizeof(void **);
8103 
8104 #endif /* CONFIG_RT_GROUP_SCHED */
8105 	}
8106 #ifdef CONFIG_CPUMASK_OFFSTACK
8107 	for_each_possible_cpu(i) {
8108 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8109 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8110 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8111 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8112 	}
8113 #endif /* CONFIG_CPUMASK_OFFSTACK */
8114 
8115 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8116 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8117 
8118 #ifdef CONFIG_SMP
8119 	init_defrootdomain();
8120 #endif
8121 
8122 #ifdef CONFIG_RT_GROUP_SCHED
8123 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8124 			global_rt_period(), global_rt_runtime());
8125 #endif /* CONFIG_RT_GROUP_SCHED */
8126 
8127 #ifdef CONFIG_CGROUP_SCHED
8128 	task_group_cache = KMEM_CACHE(task_group, 0);
8129 
8130 	list_add(&root_task_group.list, &task_groups);
8131 	INIT_LIST_HEAD(&root_task_group.children);
8132 	INIT_LIST_HEAD(&root_task_group.siblings);
8133 	autogroup_init(&init_task);
8134 #endif /* CONFIG_CGROUP_SCHED */
8135 
8136 	for_each_possible_cpu(i) {
8137 		struct rq *rq;
8138 
8139 		rq = cpu_rq(i);
8140 		raw_spin_lock_init(&rq->lock);
8141 		rq->nr_running = 0;
8142 		rq->calc_load_active = 0;
8143 		rq->calc_load_update = jiffies + LOAD_FREQ;
8144 		init_cfs_rq(&rq->cfs);
8145 		init_rt_rq(&rq->rt);
8146 		init_dl_rq(&rq->dl);
8147 #ifdef CONFIG_FAIR_GROUP_SCHED
8148 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8149 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8150 		/*
8151 		 * How much CPU bandwidth does root_task_group get?
8152 		 *
8153 		 * In case of task-groups formed thr' the cgroup filesystem, it
8154 		 * gets 100% of the CPU resources in the system. This overall
8155 		 * system CPU resource is divided among the tasks of
8156 		 * root_task_group and its child task-groups in a fair manner,
8157 		 * based on each entity's (task or task-group's) weight
8158 		 * (se->load.weight).
8159 		 *
8160 		 * In other words, if root_task_group has 10 tasks of weight
8161 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8162 		 * then A0's share of the CPU resource is:
8163 		 *
8164 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8165 		 *
8166 		 * We achieve this by letting root_task_group's tasks sit
8167 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8168 		 */
8169 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8170 #endif /* CONFIG_FAIR_GROUP_SCHED */
8171 
8172 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8173 #ifdef CONFIG_RT_GROUP_SCHED
8174 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8175 #endif
8176 #ifdef CONFIG_SMP
8177 		rq->sd = NULL;
8178 		rq->rd = NULL;
8179 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8180 		rq->balance_callback = NULL;
8181 		rq->active_balance = 0;
8182 		rq->next_balance = jiffies;
8183 		rq->push_cpu = 0;
8184 		rq->cpu = i;
8185 		rq->online = 0;
8186 		rq->idle_stamp = 0;
8187 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8188 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8189 
8190 		INIT_LIST_HEAD(&rq->cfs_tasks);
8191 
8192 		rq_attach_root(rq, &def_root_domain);
8193 #ifdef CONFIG_NO_HZ_COMMON
8194 		rq->last_blocked_load_update_tick = jiffies;
8195 		atomic_set(&rq->nohz_flags, 0);
8196 
8197 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8198 #endif
8199 #ifdef CONFIG_HOTPLUG_CPU
8200 		rcuwait_init(&rq->hotplug_wait);
8201 #endif
8202 #endif /* CONFIG_SMP */
8203 		hrtick_rq_init(rq);
8204 		atomic_set(&rq->nr_iowait, 0);
8205 	}
8206 
8207 	set_load_weight(&init_task, false);
8208 
8209 	/*
8210 	 * The boot idle thread does lazy MMU switching as well:
8211 	 */
8212 	mmgrab(&init_mm);
8213 	enter_lazy_tlb(&init_mm, current);
8214 
8215 	/*
8216 	 * Make us the idle thread. Technically, schedule() should not be
8217 	 * called from this thread, however somewhere below it might be,
8218 	 * but because we are the idle thread, we just pick up running again
8219 	 * when this runqueue becomes "idle".
8220 	 */
8221 	init_idle(current, smp_processor_id());
8222 
8223 	calc_load_update = jiffies + LOAD_FREQ;
8224 
8225 #ifdef CONFIG_SMP
8226 	idle_thread_set_boot_cpu();
8227 #endif
8228 	init_sched_fair_class();
8229 
8230 	init_schedstats();
8231 
8232 	psi_init();
8233 
8234 	init_uclamp();
8235 
8236 	scheduler_running = 1;
8237 }
8238 
8239 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8240 static inline int preempt_count_equals(int preempt_offset)
8241 {
8242 	int nested = preempt_count() + rcu_preempt_depth();
8243 
8244 	return (nested == preempt_offset);
8245 }
8246 
8247 void __might_sleep(const char *file, int line, int preempt_offset)
8248 {
8249 	/*
8250 	 * Blocking primitives will set (and therefore destroy) current->state,
8251 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8252 	 * otherwise we will destroy state.
8253 	 */
8254 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8255 			"do not call blocking ops when !TASK_RUNNING; "
8256 			"state=%lx set at [<%p>] %pS\n",
8257 			current->state,
8258 			(void *)current->task_state_change,
8259 			(void *)current->task_state_change);
8260 
8261 	___might_sleep(file, line, preempt_offset);
8262 }
8263 EXPORT_SYMBOL(__might_sleep);
8264 
8265 void ___might_sleep(const char *file, int line, int preempt_offset)
8266 {
8267 	/* Ratelimiting timestamp: */
8268 	static unsigned long prev_jiffy;
8269 
8270 	unsigned long preempt_disable_ip;
8271 
8272 	/* WARN_ON_ONCE() by default, no rate limit required: */
8273 	rcu_sleep_check();
8274 
8275 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8276 	     !is_idle_task(current) && !current->non_block_count) ||
8277 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8278 	    oops_in_progress)
8279 		return;
8280 
8281 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8282 		return;
8283 	prev_jiffy = jiffies;
8284 
8285 	/* Save this before calling printk(), since that will clobber it: */
8286 	preempt_disable_ip = get_preempt_disable_ip(current);
8287 
8288 	printk(KERN_ERR
8289 		"BUG: sleeping function called from invalid context at %s:%d\n",
8290 			file, line);
8291 	printk(KERN_ERR
8292 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8293 			in_atomic(), irqs_disabled(), current->non_block_count,
8294 			current->pid, current->comm);
8295 
8296 	if (task_stack_end_corrupted(current))
8297 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8298 
8299 	debug_show_held_locks(current);
8300 	if (irqs_disabled())
8301 		print_irqtrace_events(current);
8302 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8303 	    && !preempt_count_equals(preempt_offset)) {
8304 		pr_err("Preemption disabled at:");
8305 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8306 	}
8307 	dump_stack();
8308 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8309 }
8310 EXPORT_SYMBOL(___might_sleep);
8311 
8312 void __cant_sleep(const char *file, int line, int preempt_offset)
8313 {
8314 	static unsigned long prev_jiffy;
8315 
8316 	if (irqs_disabled())
8317 		return;
8318 
8319 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8320 		return;
8321 
8322 	if (preempt_count() > preempt_offset)
8323 		return;
8324 
8325 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8326 		return;
8327 	prev_jiffy = jiffies;
8328 
8329 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8330 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8331 			in_atomic(), irqs_disabled(),
8332 			current->pid, current->comm);
8333 
8334 	debug_show_held_locks(current);
8335 	dump_stack();
8336 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8337 }
8338 EXPORT_SYMBOL_GPL(__cant_sleep);
8339 
8340 #ifdef CONFIG_SMP
8341 void __cant_migrate(const char *file, int line)
8342 {
8343 	static unsigned long prev_jiffy;
8344 
8345 	if (irqs_disabled())
8346 		return;
8347 
8348 	if (is_migration_disabled(current))
8349 		return;
8350 
8351 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8352 		return;
8353 
8354 	if (preempt_count() > 0)
8355 		return;
8356 
8357 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8358 		return;
8359 	prev_jiffy = jiffies;
8360 
8361 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8362 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8363 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8364 	       current->pid, current->comm);
8365 
8366 	debug_show_held_locks(current);
8367 	dump_stack();
8368 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8369 }
8370 EXPORT_SYMBOL_GPL(__cant_migrate);
8371 #endif
8372 #endif
8373 
8374 #ifdef CONFIG_MAGIC_SYSRQ
8375 void normalize_rt_tasks(void)
8376 {
8377 	struct task_struct *g, *p;
8378 	struct sched_attr attr = {
8379 		.sched_policy = SCHED_NORMAL,
8380 	};
8381 
8382 	read_lock(&tasklist_lock);
8383 	for_each_process_thread(g, p) {
8384 		/*
8385 		 * Only normalize user tasks:
8386 		 */
8387 		if (p->flags & PF_KTHREAD)
8388 			continue;
8389 
8390 		p->se.exec_start = 0;
8391 		schedstat_set(p->se.statistics.wait_start,  0);
8392 		schedstat_set(p->se.statistics.sleep_start, 0);
8393 		schedstat_set(p->se.statistics.block_start, 0);
8394 
8395 		if (!dl_task(p) && !rt_task(p)) {
8396 			/*
8397 			 * Renice negative nice level userspace
8398 			 * tasks back to 0:
8399 			 */
8400 			if (task_nice(p) < 0)
8401 				set_user_nice(p, 0);
8402 			continue;
8403 		}
8404 
8405 		__sched_setscheduler(p, &attr, false, false);
8406 	}
8407 	read_unlock(&tasklist_lock);
8408 }
8409 
8410 #endif /* CONFIG_MAGIC_SYSRQ */
8411 
8412 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8413 /*
8414  * These functions are only useful for the IA64 MCA handling, or kdb.
8415  *
8416  * They can only be called when the whole system has been
8417  * stopped - every CPU needs to be quiescent, and no scheduling
8418  * activity can take place. Using them for anything else would
8419  * be a serious bug, and as a result, they aren't even visible
8420  * under any other configuration.
8421  */
8422 
8423 /**
8424  * curr_task - return the current task for a given CPU.
8425  * @cpu: the processor in question.
8426  *
8427  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8428  *
8429  * Return: The current task for @cpu.
8430  */
8431 struct task_struct *curr_task(int cpu)
8432 {
8433 	return cpu_curr(cpu);
8434 }
8435 
8436 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8437 
8438 #ifdef CONFIG_IA64
8439 /**
8440  * ia64_set_curr_task - set the current task for a given CPU.
8441  * @cpu: the processor in question.
8442  * @p: the task pointer to set.
8443  *
8444  * Description: This function must only be used when non-maskable interrupts
8445  * are serviced on a separate stack. It allows the architecture to switch the
8446  * notion of the current task on a CPU in a non-blocking manner. This function
8447  * must be called with all CPU's synchronized, and interrupts disabled, the
8448  * and caller must save the original value of the current task (see
8449  * curr_task() above) and restore that value before reenabling interrupts and
8450  * re-starting the system.
8451  *
8452  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8453  */
8454 void ia64_set_curr_task(int cpu, struct task_struct *p)
8455 {
8456 	cpu_curr(cpu) = p;
8457 }
8458 
8459 #endif
8460 
8461 #ifdef CONFIG_CGROUP_SCHED
8462 /* task_group_lock serializes the addition/removal of task groups */
8463 static DEFINE_SPINLOCK(task_group_lock);
8464 
8465 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8466 					    struct task_group *parent)
8467 {
8468 #ifdef CONFIG_UCLAMP_TASK_GROUP
8469 	enum uclamp_id clamp_id;
8470 
8471 	for_each_clamp_id(clamp_id) {
8472 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8473 			      uclamp_none(clamp_id), false);
8474 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8475 	}
8476 #endif
8477 }
8478 
8479 static void sched_free_group(struct task_group *tg)
8480 {
8481 	free_fair_sched_group(tg);
8482 	free_rt_sched_group(tg);
8483 	autogroup_free(tg);
8484 	kmem_cache_free(task_group_cache, tg);
8485 }
8486 
8487 /* allocate runqueue etc for a new task group */
8488 struct task_group *sched_create_group(struct task_group *parent)
8489 {
8490 	struct task_group *tg;
8491 
8492 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8493 	if (!tg)
8494 		return ERR_PTR(-ENOMEM);
8495 
8496 	if (!alloc_fair_sched_group(tg, parent))
8497 		goto err;
8498 
8499 	if (!alloc_rt_sched_group(tg, parent))
8500 		goto err;
8501 
8502 	alloc_uclamp_sched_group(tg, parent);
8503 
8504 	return tg;
8505 
8506 err:
8507 	sched_free_group(tg);
8508 	return ERR_PTR(-ENOMEM);
8509 }
8510 
8511 void sched_online_group(struct task_group *tg, struct task_group *parent)
8512 {
8513 	unsigned long flags;
8514 
8515 	spin_lock_irqsave(&task_group_lock, flags);
8516 	list_add_rcu(&tg->list, &task_groups);
8517 
8518 	/* Root should already exist: */
8519 	WARN_ON(!parent);
8520 
8521 	tg->parent = parent;
8522 	INIT_LIST_HEAD(&tg->children);
8523 	list_add_rcu(&tg->siblings, &parent->children);
8524 	spin_unlock_irqrestore(&task_group_lock, flags);
8525 
8526 	online_fair_sched_group(tg);
8527 }
8528 
8529 /* rcu callback to free various structures associated with a task group */
8530 static void sched_free_group_rcu(struct rcu_head *rhp)
8531 {
8532 	/* Now it should be safe to free those cfs_rqs: */
8533 	sched_free_group(container_of(rhp, struct task_group, rcu));
8534 }
8535 
8536 void sched_destroy_group(struct task_group *tg)
8537 {
8538 	/* Wait for possible concurrent references to cfs_rqs complete: */
8539 	call_rcu(&tg->rcu, sched_free_group_rcu);
8540 }
8541 
8542 void sched_offline_group(struct task_group *tg)
8543 {
8544 	unsigned long flags;
8545 
8546 	/* End participation in shares distribution: */
8547 	unregister_fair_sched_group(tg);
8548 
8549 	spin_lock_irqsave(&task_group_lock, flags);
8550 	list_del_rcu(&tg->list);
8551 	list_del_rcu(&tg->siblings);
8552 	spin_unlock_irqrestore(&task_group_lock, flags);
8553 }
8554 
8555 static void sched_change_group(struct task_struct *tsk, int type)
8556 {
8557 	struct task_group *tg;
8558 
8559 	/*
8560 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8561 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8562 	 * to prevent lockdep warnings.
8563 	 */
8564 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8565 			  struct task_group, css);
8566 	tg = autogroup_task_group(tsk, tg);
8567 	tsk->sched_task_group = tg;
8568 
8569 #ifdef CONFIG_FAIR_GROUP_SCHED
8570 	if (tsk->sched_class->task_change_group)
8571 		tsk->sched_class->task_change_group(tsk, type);
8572 	else
8573 #endif
8574 		set_task_rq(tsk, task_cpu(tsk));
8575 }
8576 
8577 /*
8578  * Change task's runqueue when it moves between groups.
8579  *
8580  * The caller of this function should have put the task in its new group by
8581  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8582  * its new group.
8583  */
8584 void sched_move_task(struct task_struct *tsk)
8585 {
8586 	int queued, running, queue_flags =
8587 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8588 	struct rq_flags rf;
8589 	struct rq *rq;
8590 
8591 	rq = task_rq_lock(tsk, &rf);
8592 	update_rq_clock(rq);
8593 
8594 	running = task_current(rq, tsk);
8595 	queued = task_on_rq_queued(tsk);
8596 
8597 	if (queued)
8598 		dequeue_task(rq, tsk, queue_flags);
8599 	if (running)
8600 		put_prev_task(rq, tsk);
8601 
8602 	sched_change_group(tsk, TASK_MOVE_GROUP);
8603 
8604 	if (queued)
8605 		enqueue_task(rq, tsk, queue_flags);
8606 	if (running) {
8607 		set_next_task(rq, tsk);
8608 		/*
8609 		 * After changing group, the running task may have joined a
8610 		 * throttled one but it's still the running task. Trigger a
8611 		 * resched to make sure that task can still run.
8612 		 */
8613 		resched_curr(rq);
8614 	}
8615 
8616 	task_rq_unlock(rq, tsk, &rf);
8617 }
8618 
8619 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8620 {
8621 	return css ? container_of(css, struct task_group, css) : NULL;
8622 }
8623 
8624 static struct cgroup_subsys_state *
8625 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8626 {
8627 	struct task_group *parent = css_tg(parent_css);
8628 	struct task_group *tg;
8629 
8630 	if (!parent) {
8631 		/* This is early initialization for the top cgroup */
8632 		return &root_task_group.css;
8633 	}
8634 
8635 	tg = sched_create_group(parent);
8636 	if (IS_ERR(tg))
8637 		return ERR_PTR(-ENOMEM);
8638 
8639 	return &tg->css;
8640 }
8641 
8642 /* Expose task group only after completing cgroup initialization */
8643 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8644 {
8645 	struct task_group *tg = css_tg(css);
8646 	struct task_group *parent = css_tg(css->parent);
8647 
8648 	if (parent)
8649 		sched_online_group(tg, parent);
8650 
8651 #ifdef CONFIG_UCLAMP_TASK_GROUP
8652 	/* Propagate the effective uclamp value for the new group */
8653 	cpu_util_update_eff(css);
8654 #endif
8655 
8656 	return 0;
8657 }
8658 
8659 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8660 {
8661 	struct task_group *tg = css_tg(css);
8662 
8663 	sched_offline_group(tg);
8664 }
8665 
8666 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8667 {
8668 	struct task_group *tg = css_tg(css);
8669 
8670 	/*
8671 	 * Relies on the RCU grace period between css_released() and this.
8672 	 */
8673 	sched_free_group(tg);
8674 }
8675 
8676 /*
8677  * This is called before wake_up_new_task(), therefore we really only
8678  * have to set its group bits, all the other stuff does not apply.
8679  */
8680 static void cpu_cgroup_fork(struct task_struct *task)
8681 {
8682 	struct rq_flags rf;
8683 	struct rq *rq;
8684 
8685 	rq = task_rq_lock(task, &rf);
8686 
8687 	update_rq_clock(rq);
8688 	sched_change_group(task, TASK_SET_GROUP);
8689 
8690 	task_rq_unlock(rq, task, &rf);
8691 }
8692 
8693 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8694 {
8695 	struct task_struct *task;
8696 	struct cgroup_subsys_state *css;
8697 	int ret = 0;
8698 
8699 	cgroup_taskset_for_each(task, css, tset) {
8700 #ifdef CONFIG_RT_GROUP_SCHED
8701 		if (!sched_rt_can_attach(css_tg(css), task))
8702 			return -EINVAL;
8703 #endif
8704 		/*
8705 		 * Serialize against wake_up_new_task() such that if it's
8706 		 * running, we're sure to observe its full state.
8707 		 */
8708 		raw_spin_lock_irq(&task->pi_lock);
8709 		/*
8710 		 * Avoid calling sched_move_task() before wake_up_new_task()
8711 		 * has happened. This would lead to problems with PELT, due to
8712 		 * move wanting to detach+attach while we're not attached yet.
8713 		 */
8714 		if (task->state == TASK_NEW)
8715 			ret = -EINVAL;
8716 		raw_spin_unlock_irq(&task->pi_lock);
8717 
8718 		if (ret)
8719 			break;
8720 	}
8721 	return ret;
8722 }
8723 
8724 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8725 {
8726 	struct task_struct *task;
8727 	struct cgroup_subsys_state *css;
8728 
8729 	cgroup_taskset_for_each(task, css, tset)
8730 		sched_move_task(task);
8731 }
8732 
8733 #ifdef CONFIG_UCLAMP_TASK_GROUP
8734 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8735 {
8736 	struct cgroup_subsys_state *top_css = css;
8737 	struct uclamp_se *uc_parent = NULL;
8738 	struct uclamp_se *uc_se = NULL;
8739 	unsigned int eff[UCLAMP_CNT];
8740 	enum uclamp_id clamp_id;
8741 	unsigned int clamps;
8742 
8743 	css_for_each_descendant_pre(css, top_css) {
8744 		uc_parent = css_tg(css)->parent
8745 			? css_tg(css)->parent->uclamp : NULL;
8746 
8747 		for_each_clamp_id(clamp_id) {
8748 			/* Assume effective clamps matches requested clamps */
8749 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8750 			/* Cap effective clamps with parent's effective clamps */
8751 			if (uc_parent &&
8752 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8753 				eff[clamp_id] = uc_parent[clamp_id].value;
8754 			}
8755 		}
8756 		/* Ensure protection is always capped by limit */
8757 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8758 
8759 		/* Propagate most restrictive effective clamps */
8760 		clamps = 0x0;
8761 		uc_se = css_tg(css)->uclamp;
8762 		for_each_clamp_id(clamp_id) {
8763 			if (eff[clamp_id] == uc_se[clamp_id].value)
8764 				continue;
8765 			uc_se[clamp_id].value = eff[clamp_id];
8766 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8767 			clamps |= (0x1 << clamp_id);
8768 		}
8769 		if (!clamps) {
8770 			css = css_rightmost_descendant(css);
8771 			continue;
8772 		}
8773 
8774 		/* Immediately update descendants RUNNABLE tasks */
8775 		uclamp_update_active_tasks(css, clamps);
8776 	}
8777 }
8778 
8779 /*
8780  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8781  * C expression. Since there is no way to convert a macro argument (N) into a
8782  * character constant, use two levels of macros.
8783  */
8784 #define _POW10(exp) ((unsigned int)1e##exp)
8785 #define POW10(exp) _POW10(exp)
8786 
8787 struct uclamp_request {
8788 #define UCLAMP_PERCENT_SHIFT	2
8789 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8790 	s64 percent;
8791 	u64 util;
8792 	int ret;
8793 };
8794 
8795 static inline struct uclamp_request
8796 capacity_from_percent(char *buf)
8797 {
8798 	struct uclamp_request req = {
8799 		.percent = UCLAMP_PERCENT_SCALE,
8800 		.util = SCHED_CAPACITY_SCALE,
8801 		.ret = 0,
8802 	};
8803 
8804 	buf = strim(buf);
8805 	if (strcmp(buf, "max")) {
8806 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8807 					     &req.percent);
8808 		if (req.ret)
8809 			return req;
8810 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8811 			req.ret = -ERANGE;
8812 			return req;
8813 		}
8814 
8815 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8816 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8817 	}
8818 
8819 	return req;
8820 }
8821 
8822 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8823 				size_t nbytes, loff_t off,
8824 				enum uclamp_id clamp_id)
8825 {
8826 	struct uclamp_request req;
8827 	struct task_group *tg;
8828 
8829 	req = capacity_from_percent(buf);
8830 	if (req.ret)
8831 		return req.ret;
8832 
8833 	static_branch_enable(&sched_uclamp_used);
8834 
8835 	mutex_lock(&uclamp_mutex);
8836 	rcu_read_lock();
8837 
8838 	tg = css_tg(of_css(of));
8839 	if (tg->uclamp_req[clamp_id].value != req.util)
8840 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8841 
8842 	/*
8843 	 * Because of not recoverable conversion rounding we keep track of the
8844 	 * exact requested value
8845 	 */
8846 	tg->uclamp_pct[clamp_id] = req.percent;
8847 
8848 	/* Update effective clamps to track the most restrictive value */
8849 	cpu_util_update_eff(of_css(of));
8850 
8851 	rcu_read_unlock();
8852 	mutex_unlock(&uclamp_mutex);
8853 
8854 	return nbytes;
8855 }
8856 
8857 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8858 				    char *buf, size_t nbytes,
8859 				    loff_t off)
8860 {
8861 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8862 }
8863 
8864 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8865 				    char *buf, size_t nbytes,
8866 				    loff_t off)
8867 {
8868 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8869 }
8870 
8871 static inline void cpu_uclamp_print(struct seq_file *sf,
8872 				    enum uclamp_id clamp_id)
8873 {
8874 	struct task_group *tg;
8875 	u64 util_clamp;
8876 	u64 percent;
8877 	u32 rem;
8878 
8879 	rcu_read_lock();
8880 	tg = css_tg(seq_css(sf));
8881 	util_clamp = tg->uclamp_req[clamp_id].value;
8882 	rcu_read_unlock();
8883 
8884 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8885 		seq_puts(sf, "max\n");
8886 		return;
8887 	}
8888 
8889 	percent = tg->uclamp_pct[clamp_id];
8890 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8891 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8892 }
8893 
8894 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8895 {
8896 	cpu_uclamp_print(sf, UCLAMP_MIN);
8897 	return 0;
8898 }
8899 
8900 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8901 {
8902 	cpu_uclamp_print(sf, UCLAMP_MAX);
8903 	return 0;
8904 }
8905 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8906 
8907 #ifdef CONFIG_FAIR_GROUP_SCHED
8908 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8909 				struct cftype *cftype, u64 shareval)
8910 {
8911 	if (shareval > scale_load_down(ULONG_MAX))
8912 		shareval = MAX_SHARES;
8913 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8914 }
8915 
8916 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8917 			       struct cftype *cft)
8918 {
8919 	struct task_group *tg = css_tg(css);
8920 
8921 	return (u64) scale_load_down(tg->shares);
8922 }
8923 
8924 #ifdef CONFIG_CFS_BANDWIDTH
8925 static DEFINE_MUTEX(cfs_constraints_mutex);
8926 
8927 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8928 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8929 /* More than 203 days if BW_SHIFT equals 20. */
8930 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8931 
8932 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8933 
8934 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8935 {
8936 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8937 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8938 
8939 	if (tg == &root_task_group)
8940 		return -EINVAL;
8941 
8942 	/*
8943 	 * Ensure we have at some amount of bandwidth every period.  This is
8944 	 * to prevent reaching a state of large arrears when throttled via
8945 	 * entity_tick() resulting in prolonged exit starvation.
8946 	 */
8947 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8948 		return -EINVAL;
8949 
8950 	/*
8951 	 * Likewise, bound things on the otherside by preventing insane quota
8952 	 * periods.  This also allows us to normalize in computing quota
8953 	 * feasibility.
8954 	 */
8955 	if (period > max_cfs_quota_period)
8956 		return -EINVAL;
8957 
8958 	/*
8959 	 * Bound quota to defend quota against overflow during bandwidth shift.
8960 	 */
8961 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8962 		return -EINVAL;
8963 
8964 	/*
8965 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8966 	 * unthrottle_offline_cfs_rqs().
8967 	 */
8968 	get_online_cpus();
8969 	mutex_lock(&cfs_constraints_mutex);
8970 	ret = __cfs_schedulable(tg, period, quota);
8971 	if (ret)
8972 		goto out_unlock;
8973 
8974 	runtime_enabled = quota != RUNTIME_INF;
8975 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8976 	/*
8977 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8978 	 * before making related changes, and on->off must occur afterwards
8979 	 */
8980 	if (runtime_enabled && !runtime_was_enabled)
8981 		cfs_bandwidth_usage_inc();
8982 	raw_spin_lock_irq(&cfs_b->lock);
8983 	cfs_b->period = ns_to_ktime(period);
8984 	cfs_b->quota = quota;
8985 
8986 	__refill_cfs_bandwidth_runtime(cfs_b);
8987 
8988 	/* Restart the period timer (if active) to handle new period expiry: */
8989 	if (runtime_enabled)
8990 		start_cfs_bandwidth(cfs_b);
8991 
8992 	raw_spin_unlock_irq(&cfs_b->lock);
8993 
8994 	for_each_online_cpu(i) {
8995 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8996 		struct rq *rq = cfs_rq->rq;
8997 		struct rq_flags rf;
8998 
8999 		rq_lock_irq(rq, &rf);
9000 		cfs_rq->runtime_enabled = runtime_enabled;
9001 		cfs_rq->runtime_remaining = 0;
9002 
9003 		if (cfs_rq->throttled)
9004 			unthrottle_cfs_rq(cfs_rq);
9005 		rq_unlock_irq(rq, &rf);
9006 	}
9007 	if (runtime_was_enabled && !runtime_enabled)
9008 		cfs_bandwidth_usage_dec();
9009 out_unlock:
9010 	mutex_unlock(&cfs_constraints_mutex);
9011 	put_online_cpus();
9012 
9013 	return ret;
9014 }
9015 
9016 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9017 {
9018 	u64 quota, period;
9019 
9020 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9021 	if (cfs_quota_us < 0)
9022 		quota = RUNTIME_INF;
9023 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9024 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9025 	else
9026 		return -EINVAL;
9027 
9028 	return tg_set_cfs_bandwidth(tg, period, quota);
9029 }
9030 
9031 static long tg_get_cfs_quota(struct task_group *tg)
9032 {
9033 	u64 quota_us;
9034 
9035 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9036 		return -1;
9037 
9038 	quota_us = tg->cfs_bandwidth.quota;
9039 	do_div(quota_us, NSEC_PER_USEC);
9040 
9041 	return quota_us;
9042 }
9043 
9044 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9045 {
9046 	u64 quota, period;
9047 
9048 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9049 		return -EINVAL;
9050 
9051 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9052 	quota = tg->cfs_bandwidth.quota;
9053 
9054 	return tg_set_cfs_bandwidth(tg, period, quota);
9055 }
9056 
9057 static long tg_get_cfs_period(struct task_group *tg)
9058 {
9059 	u64 cfs_period_us;
9060 
9061 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9062 	do_div(cfs_period_us, NSEC_PER_USEC);
9063 
9064 	return cfs_period_us;
9065 }
9066 
9067 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9068 				  struct cftype *cft)
9069 {
9070 	return tg_get_cfs_quota(css_tg(css));
9071 }
9072 
9073 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9074 				   struct cftype *cftype, s64 cfs_quota_us)
9075 {
9076 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9077 }
9078 
9079 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9080 				   struct cftype *cft)
9081 {
9082 	return tg_get_cfs_period(css_tg(css));
9083 }
9084 
9085 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9086 				    struct cftype *cftype, u64 cfs_period_us)
9087 {
9088 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9089 }
9090 
9091 struct cfs_schedulable_data {
9092 	struct task_group *tg;
9093 	u64 period, quota;
9094 };
9095 
9096 /*
9097  * normalize group quota/period to be quota/max_period
9098  * note: units are usecs
9099  */
9100 static u64 normalize_cfs_quota(struct task_group *tg,
9101 			       struct cfs_schedulable_data *d)
9102 {
9103 	u64 quota, period;
9104 
9105 	if (tg == d->tg) {
9106 		period = d->period;
9107 		quota = d->quota;
9108 	} else {
9109 		period = tg_get_cfs_period(tg);
9110 		quota = tg_get_cfs_quota(tg);
9111 	}
9112 
9113 	/* note: these should typically be equivalent */
9114 	if (quota == RUNTIME_INF || quota == -1)
9115 		return RUNTIME_INF;
9116 
9117 	return to_ratio(period, quota);
9118 }
9119 
9120 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9121 {
9122 	struct cfs_schedulable_data *d = data;
9123 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9124 	s64 quota = 0, parent_quota = -1;
9125 
9126 	if (!tg->parent) {
9127 		quota = RUNTIME_INF;
9128 	} else {
9129 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9130 
9131 		quota = normalize_cfs_quota(tg, d);
9132 		parent_quota = parent_b->hierarchical_quota;
9133 
9134 		/*
9135 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9136 		 * always take the min.  On cgroup1, only inherit when no
9137 		 * limit is set:
9138 		 */
9139 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9140 			quota = min(quota, parent_quota);
9141 		} else {
9142 			if (quota == RUNTIME_INF)
9143 				quota = parent_quota;
9144 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9145 				return -EINVAL;
9146 		}
9147 	}
9148 	cfs_b->hierarchical_quota = quota;
9149 
9150 	return 0;
9151 }
9152 
9153 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9154 {
9155 	int ret;
9156 	struct cfs_schedulable_data data = {
9157 		.tg = tg,
9158 		.period = period,
9159 		.quota = quota,
9160 	};
9161 
9162 	if (quota != RUNTIME_INF) {
9163 		do_div(data.period, NSEC_PER_USEC);
9164 		do_div(data.quota, NSEC_PER_USEC);
9165 	}
9166 
9167 	rcu_read_lock();
9168 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9169 	rcu_read_unlock();
9170 
9171 	return ret;
9172 }
9173 
9174 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9175 {
9176 	struct task_group *tg = css_tg(seq_css(sf));
9177 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9178 
9179 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9180 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9181 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9182 
9183 	if (schedstat_enabled() && tg != &root_task_group) {
9184 		u64 ws = 0;
9185 		int i;
9186 
9187 		for_each_possible_cpu(i)
9188 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9189 
9190 		seq_printf(sf, "wait_sum %llu\n", ws);
9191 	}
9192 
9193 	return 0;
9194 }
9195 #endif /* CONFIG_CFS_BANDWIDTH */
9196 #endif /* CONFIG_FAIR_GROUP_SCHED */
9197 
9198 #ifdef CONFIG_RT_GROUP_SCHED
9199 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9200 				struct cftype *cft, s64 val)
9201 {
9202 	return sched_group_set_rt_runtime(css_tg(css), val);
9203 }
9204 
9205 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9206 			       struct cftype *cft)
9207 {
9208 	return sched_group_rt_runtime(css_tg(css));
9209 }
9210 
9211 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9212 				    struct cftype *cftype, u64 rt_period_us)
9213 {
9214 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9215 }
9216 
9217 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9218 				   struct cftype *cft)
9219 {
9220 	return sched_group_rt_period(css_tg(css));
9221 }
9222 #endif /* CONFIG_RT_GROUP_SCHED */
9223 
9224 static struct cftype cpu_legacy_files[] = {
9225 #ifdef CONFIG_FAIR_GROUP_SCHED
9226 	{
9227 		.name = "shares",
9228 		.read_u64 = cpu_shares_read_u64,
9229 		.write_u64 = cpu_shares_write_u64,
9230 	},
9231 #endif
9232 #ifdef CONFIG_CFS_BANDWIDTH
9233 	{
9234 		.name = "cfs_quota_us",
9235 		.read_s64 = cpu_cfs_quota_read_s64,
9236 		.write_s64 = cpu_cfs_quota_write_s64,
9237 	},
9238 	{
9239 		.name = "cfs_period_us",
9240 		.read_u64 = cpu_cfs_period_read_u64,
9241 		.write_u64 = cpu_cfs_period_write_u64,
9242 	},
9243 	{
9244 		.name = "stat",
9245 		.seq_show = cpu_cfs_stat_show,
9246 	},
9247 #endif
9248 #ifdef CONFIG_RT_GROUP_SCHED
9249 	{
9250 		.name = "rt_runtime_us",
9251 		.read_s64 = cpu_rt_runtime_read,
9252 		.write_s64 = cpu_rt_runtime_write,
9253 	},
9254 	{
9255 		.name = "rt_period_us",
9256 		.read_u64 = cpu_rt_period_read_uint,
9257 		.write_u64 = cpu_rt_period_write_uint,
9258 	},
9259 #endif
9260 #ifdef CONFIG_UCLAMP_TASK_GROUP
9261 	{
9262 		.name = "uclamp.min",
9263 		.flags = CFTYPE_NOT_ON_ROOT,
9264 		.seq_show = cpu_uclamp_min_show,
9265 		.write = cpu_uclamp_min_write,
9266 	},
9267 	{
9268 		.name = "uclamp.max",
9269 		.flags = CFTYPE_NOT_ON_ROOT,
9270 		.seq_show = cpu_uclamp_max_show,
9271 		.write = cpu_uclamp_max_write,
9272 	},
9273 #endif
9274 	{ }	/* Terminate */
9275 };
9276 
9277 static int cpu_extra_stat_show(struct seq_file *sf,
9278 			       struct cgroup_subsys_state *css)
9279 {
9280 #ifdef CONFIG_CFS_BANDWIDTH
9281 	{
9282 		struct task_group *tg = css_tg(css);
9283 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9284 		u64 throttled_usec;
9285 
9286 		throttled_usec = cfs_b->throttled_time;
9287 		do_div(throttled_usec, NSEC_PER_USEC);
9288 
9289 		seq_printf(sf, "nr_periods %d\n"
9290 			   "nr_throttled %d\n"
9291 			   "throttled_usec %llu\n",
9292 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9293 			   throttled_usec);
9294 	}
9295 #endif
9296 	return 0;
9297 }
9298 
9299 #ifdef CONFIG_FAIR_GROUP_SCHED
9300 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9301 			       struct cftype *cft)
9302 {
9303 	struct task_group *tg = css_tg(css);
9304 	u64 weight = scale_load_down(tg->shares);
9305 
9306 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9307 }
9308 
9309 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9310 				struct cftype *cft, u64 weight)
9311 {
9312 	/*
9313 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9314 	 * values which are 1, 100 and 10000 respectively.  While it loses
9315 	 * a bit of range on both ends, it maps pretty well onto the shares
9316 	 * value used by scheduler and the round-trip conversions preserve
9317 	 * the original value over the entire range.
9318 	 */
9319 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9320 		return -ERANGE;
9321 
9322 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9323 
9324 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9325 }
9326 
9327 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9328 				    struct cftype *cft)
9329 {
9330 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9331 	int last_delta = INT_MAX;
9332 	int prio, delta;
9333 
9334 	/* find the closest nice value to the current weight */
9335 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9336 		delta = abs(sched_prio_to_weight[prio] - weight);
9337 		if (delta >= last_delta)
9338 			break;
9339 		last_delta = delta;
9340 	}
9341 
9342 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9343 }
9344 
9345 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9346 				     struct cftype *cft, s64 nice)
9347 {
9348 	unsigned long weight;
9349 	int idx;
9350 
9351 	if (nice < MIN_NICE || nice > MAX_NICE)
9352 		return -ERANGE;
9353 
9354 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9355 	idx = array_index_nospec(idx, 40);
9356 	weight = sched_prio_to_weight[idx];
9357 
9358 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9359 }
9360 #endif
9361 
9362 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9363 						  long period, long quota)
9364 {
9365 	if (quota < 0)
9366 		seq_puts(sf, "max");
9367 	else
9368 		seq_printf(sf, "%ld", quota);
9369 
9370 	seq_printf(sf, " %ld\n", period);
9371 }
9372 
9373 /* caller should put the current value in *@periodp before calling */
9374 static int __maybe_unused cpu_period_quota_parse(char *buf,
9375 						 u64 *periodp, u64 *quotap)
9376 {
9377 	char tok[21];	/* U64_MAX */
9378 
9379 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9380 		return -EINVAL;
9381 
9382 	*periodp *= NSEC_PER_USEC;
9383 
9384 	if (sscanf(tok, "%llu", quotap))
9385 		*quotap *= NSEC_PER_USEC;
9386 	else if (!strcmp(tok, "max"))
9387 		*quotap = RUNTIME_INF;
9388 	else
9389 		return -EINVAL;
9390 
9391 	return 0;
9392 }
9393 
9394 #ifdef CONFIG_CFS_BANDWIDTH
9395 static int cpu_max_show(struct seq_file *sf, void *v)
9396 {
9397 	struct task_group *tg = css_tg(seq_css(sf));
9398 
9399 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9400 	return 0;
9401 }
9402 
9403 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9404 			     char *buf, size_t nbytes, loff_t off)
9405 {
9406 	struct task_group *tg = css_tg(of_css(of));
9407 	u64 period = tg_get_cfs_period(tg);
9408 	u64 quota;
9409 	int ret;
9410 
9411 	ret = cpu_period_quota_parse(buf, &period, &quota);
9412 	if (!ret)
9413 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9414 	return ret ?: nbytes;
9415 }
9416 #endif
9417 
9418 static struct cftype cpu_files[] = {
9419 #ifdef CONFIG_FAIR_GROUP_SCHED
9420 	{
9421 		.name = "weight",
9422 		.flags = CFTYPE_NOT_ON_ROOT,
9423 		.read_u64 = cpu_weight_read_u64,
9424 		.write_u64 = cpu_weight_write_u64,
9425 	},
9426 	{
9427 		.name = "weight.nice",
9428 		.flags = CFTYPE_NOT_ON_ROOT,
9429 		.read_s64 = cpu_weight_nice_read_s64,
9430 		.write_s64 = cpu_weight_nice_write_s64,
9431 	},
9432 #endif
9433 #ifdef CONFIG_CFS_BANDWIDTH
9434 	{
9435 		.name = "max",
9436 		.flags = CFTYPE_NOT_ON_ROOT,
9437 		.seq_show = cpu_max_show,
9438 		.write = cpu_max_write,
9439 	},
9440 #endif
9441 #ifdef CONFIG_UCLAMP_TASK_GROUP
9442 	{
9443 		.name = "uclamp.min",
9444 		.flags = CFTYPE_NOT_ON_ROOT,
9445 		.seq_show = cpu_uclamp_min_show,
9446 		.write = cpu_uclamp_min_write,
9447 	},
9448 	{
9449 		.name = "uclamp.max",
9450 		.flags = CFTYPE_NOT_ON_ROOT,
9451 		.seq_show = cpu_uclamp_max_show,
9452 		.write = cpu_uclamp_max_write,
9453 	},
9454 #endif
9455 	{ }	/* terminate */
9456 };
9457 
9458 struct cgroup_subsys cpu_cgrp_subsys = {
9459 	.css_alloc	= cpu_cgroup_css_alloc,
9460 	.css_online	= cpu_cgroup_css_online,
9461 	.css_released	= cpu_cgroup_css_released,
9462 	.css_free	= cpu_cgroup_css_free,
9463 	.css_extra_stat_show = cpu_extra_stat_show,
9464 	.fork		= cpu_cgroup_fork,
9465 	.can_attach	= cpu_cgroup_can_attach,
9466 	.attach		= cpu_cgroup_attach,
9467 	.legacy_cftypes	= cpu_legacy_files,
9468 	.dfl_cftypes	= cpu_files,
9469 	.early_init	= true,
9470 	.threaded	= true,
9471 };
9472 
9473 #endif	/* CONFIG_CGROUP_SCHED */
9474 
9475 void dump_cpu_task(int cpu)
9476 {
9477 	pr_info("Task dump for CPU %d:\n", cpu);
9478 	sched_show_task(cpu_curr(cpu));
9479 }
9480 
9481 /*
9482  * Nice levels are multiplicative, with a gentle 10% change for every
9483  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9484  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9485  * that remained on nice 0.
9486  *
9487  * The "10% effect" is relative and cumulative: from _any_ nice level,
9488  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9489  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9490  * If a task goes up by ~10% and another task goes down by ~10% then
9491  * the relative distance between them is ~25%.)
9492  */
9493 const int sched_prio_to_weight[40] = {
9494  /* -20 */     88761,     71755,     56483,     46273,     36291,
9495  /* -15 */     29154,     23254,     18705,     14949,     11916,
9496  /* -10 */      9548,      7620,      6100,      4904,      3906,
9497  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9498  /*   0 */      1024,       820,       655,       526,       423,
9499  /*   5 */       335,       272,       215,       172,       137,
9500  /*  10 */       110,        87,        70,        56,        45,
9501  /*  15 */        36,        29,        23,        18,        15,
9502 };
9503 
9504 /*
9505  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9506  *
9507  * In cases where the weight does not change often, we can use the
9508  * precalculated inverse to speed up arithmetics by turning divisions
9509  * into multiplications:
9510  */
9511 const u32 sched_prio_to_wmult[40] = {
9512  /* -20 */     48388,     59856,     76040,     92818,    118348,
9513  /* -15 */    147320,    184698,    229616,    287308,    360437,
9514  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9515  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9516  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9517  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9518  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9519  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9520 };
9521 
9522 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9523 {
9524         trace_sched_update_nr_running_tp(rq, count);
9525 }
9526