xref: /openbmc/linux/kernel/sched/core.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
20 
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
31 
32 #include <asm/switch_to.h>
33 #include <asm/tlb.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37 
38 #include "sched.h"
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we average the RT time consumption, measured
71  * in ms.
72  *
73  * default: 1s
74  */
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76 
77 /*
78  * period over which we measure -rt task CPU usage in us.
79  * default: 1s
80  */
81 unsigned int sysctl_sched_rt_period = 1000000;
82 
83 __read_mostly int scheduler_running;
84 
85 /*
86  * part of the period that we allow rt tasks to run in us.
87  * default: 0.95s
88  */
89 int sysctl_sched_rt_runtime = 950000;
90 
91 /*
92  * __task_rq_lock - lock the rq @p resides on.
93  */
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 	__acquires(rq->lock)
96 {
97 	struct rq *rq;
98 
99 	lockdep_assert_held(&p->pi_lock);
100 
101 	for (;;) {
102 		rq = task_rq(p);
103 		raw_spin_lock(&rq->lock);
104 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105 			rq_pin_lock(rq, rf);
106 			return rq;
107 		}
108 		raw_spin_unlock(&rq->lock);
109 
110 		while (unlikely(task_on_rq_migrating(p)))
111 			cpu_relax();
112 	}
113 }
114 
115 /*
116  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117  */
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 	__acquires(p->pi_lock)
120 	__acquires(rq->lock)
121 {
122 	struct rq *rq;
123 
124 	for (;;) {
125 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 		rq = task_rq(p);
127 		raw_spin_lock(&rq->lock);
128 		/*
129 		 *	move_queued_task()		task_rq_lock()
130 		 *
131 		 *	ACQUIRE (rq->lock)
132 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
133 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
134 		 *	[S] ->cpu = new_cpu		[L] task_rq()
135 		 *					[L] ->on_rq
136 		 *	RELEASE (rq->lock)
137 		 *
138 		 * If we observe the old cpu in task_rq_lock, the acquire of
139 		 * the old rq->lock will fully serialize against the stores.
140 		 *
141 		 * If we observe the new CPU in task_rq_lock, the acquire will
142 		 * pair with the WMB to ensure we must then also see migrating.
143 		 */
144 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145 			rq_pin_lock(rq, rf);
146 			return rq;
147 		}
148 		raw_spin_unlock(&rq->lock);
149 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150 
151 		while (unlikely(task_on_rq_migrating(p)))
152 			cpu_relax();
153 	}
154 }
155 
156 /*
157  * RQ-clock updating methods:
158  */
159 
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
161 {
162 /*
163  * In theory, the compile should just see 0 here, and optimize out the call
164  * to sched_rt_avg_update. But I don't trust it...
165  */
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 	s64 steal = 0, irq_delta = 0;
168 #endif
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171 
172 	/*
173 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 	 * this case when a previous update_rq_clock() happened inside a
175 	 * {soft,}irq region.
176 	 *
177 	 * When this happens, we stop ->clock_task and only update the
178 	 * prev_irq_time stamp to account for the part that fit, so that a next
179 	 * update will consume the rest. This ensures ->clock_task is
180 	 * monotonic.
181 	 *
182 	 * It does however cause some slight miss-attribution of {soft,}irq
183 	 * time, a more accurate solution would be to update the irq_time using
184 	 * the current rq->clock timestamp, except that would require using
185 	 * atomic ops.
186 	 */
187 	if (irq_delta > delta)
188 		irq_delta = delta;
189 
190 	rq->prev_irq_time += irq_delta;
191 	delta -= irq_delta;
192 #endif
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 	if (static_key_false((&paravirt_steal_rq_enabled))) {
195 		steal = paravirt_steal_clock(cpu_of(rq));
196 		steal -= rq->prev_steal_time_rq;
197 
198 		if (unlikely(steal > delta))
199 			steal = delta;
200 
201 		rq->prev_steal_time_rq += steal;
202 		delta -= steal;
203 	}
204 #endif
205 
206 	rq->clock_task += delta;
207 
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 		sched_rt_avg_update(rq, irq_delta + steal);
211 #endif
212 }
213 
214 void update_rq_clock(struct rq *rq)
215 {
216 	s64 delta;
217 
218 	lockdep_assert_held(&rq->lock);
219 
220 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 		return;
222 
223 #ifdef CONFIG_SCHED_DEBUG
224 	if (sched_feat(WARN_DOUBLE_CLOCK))
225 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 	rq->clock_update_flags |= RQCF_UPDATED;
227 #endif
228 
229 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 	if (delta < 0)
231 		return;
232 	rq->clock += delta;
233 	update_rq_clock_task(rq, delta);
234 }
235 
236 
237 #ifdef CONFIG_SCHED_HRTICK
238 /*
239  * Use HR-timers to deliver accurate preemption points.
240  */
241 
242 static void hrtick_clear(struct rq *rq)
243 {
244 	if (hrtimer_active(&rq->hrtick_timer))
245 		hrtimer_cancel(&rq->hrtick_timer);
246 }
247 
248 /*
249  * High-resolution timer tick.
250  * Runs from hardirq context with interrupts disabled.
251  */
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
253 {
254 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255 	struct rq_flags rf;
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	rq_lock(rq, &rf);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	rq_unlock(rq, &rf);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 	struct rq_flags rf;
283 
284 	rq_lock(rq, &rf);
285 	__hrtick_restart(rq);
286 	rq->hrtick_csd_pending = 0;
287 	rq_unlock(rq, &rf);
288 }
289 
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	struct hrtimer *timer = &rq->hrtick_timer;
298 	ktime_t time;
299 	s64 delta;
300 
301 	/*
302 	 * Don't schedule slices shorter than 10000ns, that just
303 	 * doesn't make sense and can cause timer DoS.
304 	 */
305 	delta = max_t(s64, delay, 10000LL);
306 	time = ktime_add_ns(timer->base->get_time(), delta);
307 
308 	hrtimer_set_expires(timer, time);
309 
310 	if (rq == this_rq()) {
311 		__hrtick_restart(rq);
312 	} else if (!rq->hrtick_csd_pending) {
313 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 		rq->hrtick_csd_pending = 1;
315 	}
316 }
317 
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 	/*
327 	 * Don't schedule slices shorter than 10000ns, that just
328 	 * doesn't make sense. Rely on vruntime for fairness.
329 	 */
330 	delay = max_t(u64, delay, 10000LL);
331 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 		      HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335 
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 	rq->hrtick_csd_pending = 0;
340 
341 	rq->hrtick_csd.flags = 0;
342 	rq->hrtick_csd.func = __hrtick_start;
343 	rq->hrtick_csd.info = rq;
344 #endif
345 
346 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 	rq->hrtick_timer.function = hrtick;
348 }
349 #else	/* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353 
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif	/* CONFIG_SCHED_HRTICK */
358 
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)						\
363 	({								\
364 		typeof(ptr) _ptr = (ptr);				\
365 		typeof(mask) _mask = (mask);				\
366 		typeof(*_ptr) _old, _val = *_ptr;			\
367 									\
368 		for (;;) {						\
369 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
370 			if (_old == _val)				\
371 				break;					\
372 			_val = _old;					\
373 		}							\
374 	_old;								\
375 })
376 
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388 
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	struct thread_info *ti = task_thread_info(p);
398 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 
400 	for (;;) {
401 		if (!(val & _TIF_POLLING_NRFLAG))
402 			return false;
403 		if (val & _TIF_NEED_RESCHED)
404 			return true;
405 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 		if (old == val)
407 			break;
408 		val = old;
409 	}
410 	return true;
411 }
412 
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 	set_tsk_need_resched(p);
417 	return true;
418 }
419 
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 	return false;
424 }
425 #endif
426 #endif
427 
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 	struct wake_q_node *node = &task->wake_q;
431 
432 	/*
433 	 * Atomically grab the task, if ->wake_q is !nil already it means
434 	 * its already queued (either by us or someone else) and will get the
435 	 * wakeup due to that.
436 	 *
437 	 * This cmpxchg() implies a full barrier, which pairs with the write
438 	 * barrier implied by the wakeup in wake_up_q().
439 	 */
440 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 		return;
442 
443 	get_task_struct(task);
444 
445 	/*
446 	 * The head is context local, there can be no concurrency.
447 	 */
448 	*head->lastp = node;
449 	head->lastp = &node->next;
450 }
451 
452 void wake_up_q(struct wake_q_head *head)
453 {
454 	struct wake_q_node *node = head->first;
455 
456 	while (node != WAKE_Q_TAIL) {
457 		struct task_struct *task;
458 
459 		task = container_of(node, struct task_struct, wake_q);
460 		BUG_ON(!task);
461 		/* Task can safely be re-inserted now: */
462 		node = node->next;
463 		task->wake_q.next = NULL;
464 
465 		/*
466 		 * wake_up_process() implies a wmb() to pair with the queueing
467 		 * in wake_q_add() so as not to miss wakeups.
468 		 */
469 		wake_up_process(task);
470 		put_task_struct(task);
471 	}
472 }
473 
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483 	struct task_struct *curr = rq->curr;
484 	int cpu;
485 
486 	lockdep_assert_held(&rq->lock);
487 
488 	if (test_tsk_need_resched(curr))
489 		return;
490 
491 	cpu = cpu_of(rq);
492 
493 	if (cpu == smp_processor_id()) {
494 		set_tsk_need_resched(curr);
495 		set_preempt_need_resched();
496 		return;
497 	}
498 
499 	if (set_nr_and_not_polling(curr))
500 		smp_send_reschedule(cpu);
501 	else
502 		trace_sched_wake_idle_without_ipi(cpu);
503 }
504 
505 void resched_cpu(int cpu)
506 {
507 	struct rq *rq = cpu_rq(cpu);
508 	unsigned long flags;
509 
510 	raw_spin_lock_irqsave(&rq->lock, flags);
511 	if (cpu_online(cpu) || cpu == smp_processor_id())
512 		resched_curr(rq);
513 	raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515 
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy CPU for migrating timers
520  * from an idle CPU.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle CPU will add more delays to the timers than intended
524  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528 	int i, cpu = smp_processor_id();
529 	struct sched_domain *sd;
530 
531 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
532 		return cpu;
533 
534 	rcu_read_lock();
535 	for_each_domain(cpu, sd) {
536 		for_each_cpu(i, sched_domain_span(sd)) {
537 			if (cpu == i)
538 				continue;
539 
540 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
541 				cpu = i;
542 				goto unlock;
543 			}
544 		}
545 	}
546 
547 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
549 unlock:
550 	rcu_read_unlock();
551 	return cpu;
552 }
553 
554 /*
555  * When add_timer_on() enqueues a timer into the timer wheel of an
556  * idle CPU then this timer might expire before the next timer event
557  * which is scheduled to wake up that CPU. In case of a completely
558  * idle system the next event might even be infinite time into the
559  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560  * leaves the inner idle loop so the newly added timer is taken into
561  * account when the CPU goes back to idle and evaluates the timer
562  * wheel for the next timer event.
563  */
564 static void wake_up_idle_cpu(int cpu)
565 {
566 	struct rq *rq = cpu_rq(cpu);
567 
568 	if (cpu == smp_processor_id())
569 		return;
570 
571 	if (set_nr_and_not_polling(rq->idle))
572 		smp_send_reschedule(cpu);
573 	else
574 		trace_sched_wake_idle_without_ipi(cpu);
575 }
576 
577 static bool wake_up_full_nohz_cpu(int cpu)
578 {
579 	/*
580 	 * We just need the target to call irq_exit() and re-evaluate
581 	 * the next tick. The nohz full kick at least implies that.
582 	 * If needed we can still optimize that later with an
583 	 * empty IRQ.
584 	 */
585 	if (cpu_is_offline(cpu))
586 		return true;  /* Don't try to wake offline CPUs. */
587 	if (tick_nohz_full_cpu(cpu)) {
588 		if (cpu != smp_processor_id() ||
589 		    tick_nohz_tick_stopped())
590 			tick_nohz_full_kick_cpu(cpu);
591 		return true;
592 	}
593 
594 	return false;
595 }
596 
597 /*
598  * Wake up the specified CPU.  If the CPU is going offline, it is the
599  * caller's responsibility to deal with the lost wakeup, for example,
600  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601  */
602 void wake_up_nohz_cpu(int cpu)
603 {
604 	if (!wake_up_full_nohz_cpu(cpu))
605 		wake_up_idle_cpu(cpu);
606 }
607 
608 static inline bool got_nohz_idle_kick(void)
609 {
610 	int cpu = smp_processor_id();
611 
612 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613 		return false;
614 
615 	if (idle_cpu(cpu) && !need_resched())
616 		return true;
617 
618 	/*
619 	 * We can't run Idle Load Balance on this CPU for this time so we
620 	 * cancel it and clear NOHZ_BALANCE_KICK
621 	 */
622 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 	return false;
624 }
625 
626 #else /* CONFIG_NO_HZ_COMMON */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ_COMMON */
634 
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq *rq)
637 {
638 	int fifo_nr_running;
639 
640 	/* Deadline tasks, even if single, need the tick */
641 	if (rq->dl.dl_nr_running)
642 		return false;
643 
644 	/*
645 	 * If there are more than one RR tasks, we need the tick to effect the
646 	 * actual RR behaviour.
647 	 */
648 	if (rq->rt.rr_nr_running) {
649 		if (rq->rt.rr_nr_running == 1)
650 			return true;
651 		else
652 			return false;
653 	}
654 
655 	/*
656 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 	 * forced preemption between FIFO tasks.
658 	 */
659 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660 	if (fifo_nr_running)
661 		return true;
662 
663 	/*
664 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 	 * if there's more than one we need the tick for involuntary
666 	 * preemption.
667 	 */
668 	if (rq->nr_running > 1)
669 		return false;
670 
671 	return true;
672 }
673 #endif /* CONFIG_NO_HZ_FULL */
674 
675 void sched_avg_update(struct rq *rq)
676 {
677 	s64 period = sched_avg_period();
678 
679 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680 		/*
681 		 * Inline assembly required to prevent the compiler
682 		 * optimising this loop into a divmod call.
683 		 * See __iter_div_u64_rem() for another example of this.
684 		 */
685 		asm("" : "+rm" (rq->age_stamp));
686 		rq->age_stamp += period;
687 		rq->rt_avg /= 2;
688 	}
689 }
690 
691 #endif /* CONFIG_SMP */
692 
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695 /*
696  * Iterate task_group tree rooted at *from, calling @down when first entering a
697  * node and @up when leaving it for the final time.
698  *
699  * Caller must hold rcu_lock or sufficient equivalent.
700  */
701 int walk_tg_tree_from(struct task_group *from,
702 			     tg_visitor down, tg_visitor up, void *data)
703 {
704 	struct task_group *parent, *child;
705 	int ret;
706 
707 	parent = from;
708 
709 down:
710 	ret = (*down)(parent, data);
711 	if (ret)
712 		goto out;
713 	list_for_each_entry_rcu(child, &parent->children, siblings) {
714 		parent = child;
715 		goto down;
716 
717 up:
718 		continue;
719 	}
720 	ret = (*up)(parent, data);
721 	if (ret || parent == from)
722 		goto out;
723 
724 	child = parent;
725 	parent = parent->parent;
726 	if (parent)
727 		goto up;
728 out:
729 	return ret;
730 }
731 
732 int tg_nop(struct task_group *tg, void *data)
733 {
734 	return 0;
735 }
736 #endif
737 
738 static void set_load_weight(struct task_struct *p, bool update_load)
739 {
740 	int prio = p->static_prio - MAX_RT_PRIO;
741 	struct load_weight *load = &p->se.load;
742 
743 	/*
744 	 * SCHED_IDLE tasks get minimal weight:
745 	 */
746 	if (idle_policy(p->policy)) {
747 		load->weight = scale_load(WEIGHT_IDLEPRIO);
748 		load->inv_weight = WMULT_IDLEPRIO;
749 		return;
750 	}
751 
752 	/*
753 	 * SCHED_OTHER tasks have to update their load when changing their
754 	 * weight
755 	 */
756 	if (update_load && p->sched_class == &fair_sched_class) {
757 		reweight_task(p, prio);
758 	} else {
759 		load->weight = scale_load(sched_prio_to_weight[prio]);
760 		load->inv_weight = sched_prio_to_wmult[prio];
761 	}
762 }
763 
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (!(flags & ENQUEUE_NOCLOCK))
767 		update_rq_clock(rq);
768 
769 	if (!(flags & ENQUEUE_RESTORE))
770 		sched_info_queued(rq, p);
771 
772 	p->sched_class->enqueue_task(rq, p, flags);
773 }
774 
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (!(flags & DEQUEUE_NOCLOCK))
778 		update_rq_clock(rq);
779 
780 	if (!(flags & DEQUEUE_SAVE))
781 		sched_info_dequeued(rq, p);
782 
783 	p->sched_class->dequeue_task(rq, p, flags);
784 }
785 
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788 	if (task_contributes_to_load(p))
789 		rq->nr_uninterruptible--;
790 
791 	enqueue_task(rq, p, flags);
792 }
793 
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 {
796 	if (task_contributes_to_load(p))
797 		rq->nr_uninterruptible++;
798 
799 	dequeue_task(rq, p, flags);
800 }
801 
802 /*
803  * __normal_prio - return the priority that is based on the static prio
804  */
805 static inline int __normal_prio(struct task_struct *p)
806 {
807 	return p->static_prio;
808 }
809 
810 /*
811  * Calculate the expected normal priority: i.e. priority
812  * without taking RT-inheritance into account. Might be
813  * boosted by interactivity modifiers. Changes upon fork,
814  * setprio syscalls, and whenever the interactivity
815  * estimator recalculates.
816  */
817 static inline int normal_prio(struct task_struct *p)
818 {
819 	int prio;
820 
821 	if (task_has_dl_policy(p))
822 		prio = MAX_DL_PRIO-1;
823 	else if (task_has_rt_policy(p))
824 		prio = MAX_RT_PRIO-1 - p->rt_priority;
825 	else
826 		prio = __normal_prio(p);
827 	return prio;
828 }
829 
830 /*
831  * Calculate the current priority, i.e. the priority
832  * taken into account by the scheduler. This value might
833  * be boosted by RT tasks, or might be boosted by
834  * interactivity modifiers. Will be RT if the task got
835  * RT-boosted. If not then it returns p->normal_prio.
836  */
837 static int effective_prio(struct task_struct *p)
838 {
839 	p->normal_prio = normal_prio(p);
840 	/*
841 	 * If we are RT tasks or we were boosted to RT priority,
842 	 * keep the priority unchanged. Otherwise, update priority
843 	 * to the normal priority:
844 	 */
845 	if (!rt_prio(p->prio))
846 		return p->normal_prio;
847 	return p->prio;
848 }
849 
850 /**
851  * task_curr - is this task currently executing on a CPU?
852  * @p: the task in question.
853  *
854  * Return: 1 if the task is currently executing. 0 otherwise.
855  */
856 inline int task_curr(const struct task_struct *p)
857 {
858 	return cpu_curr(task_cpu(p)) == p;
859 }
860 
861 /*
862  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863  * use the balance_callback list if you want balancing.
864  *
865  * this means any call to check_class_changed() must be followed by a call to
866  * balance_callback().
867  */
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 				       const struct sched_class *prev_class,
870 				       int oldprio)
871 {
872 	if (prev_class != p->sched_class) {
873 		if (prev_class->switched_from)
874 			prev_class->switched_from(rq, p);
875 
876 		p->sched_class->switched_to(rq, p);
877 	} else if (oldprio != p->prio || dl_task(p))
878 		p->sched_class->prio_changed(rq, p, oldprio);
879 }
880 
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
882 {
883 	const struct sched_class *class;
884 
885 	if (p->sched_class == rq->curr->sched_class) {
886 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 	} else {
888 		for_each_class(class) {
889 			if (class == rq->curr->sched_class)
890 				break;
891 			if (class == p->sched_class) {
892 				resched_curr(rq);
893 				break;
894 			}
895 		}
896 	}
897 
898 	/*
899 	 * A queue event has occurred, and we're going to schedule.  In
900 	 * this case, we can save a useless back to back clock update.
901 	 */
902 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903 		rq_clock_skip_update(rq, true);
904 }
905 
906 #ifdef CONFIG_SMP
907 /*
908  * This is how migration works:
909  *
910  * 1) we invoke migration_cpu_stop() on the target CPU using
911  *    stop_one_cpu().
912  * 2) stopper starts to run (implicitly forcing the migrated thread
913  *    off the CPU)
914  * 3) it checks whether the migrated task is still in the wrong runqueue.
915  * 4) if it's in the wrong runqueue then the migration thread removes
916  *    it and puts it into the right queue.
917  * 5) stopper completes and stop_one_cpu() returns and the migration
918  *    is done.
919  */
920 
921 /*
922  * move_queued_task - move a queued task to new rq.
923  *
924  * Returns (locked) new rq. Old rq's lock is released.
925  */
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 				   struct task_struct *p, int new_cpu)
928 {
929 	lockdep_assert_held(&rq->lock);
930 
931 	p->on_rq = TASK_ON_RQ_MIGRATING;
932 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933 	set_task_cpu(p, new_cpu);
934 	rq_unlock(rq, rf);
935 
936 	rq = cpu_rq(new_cpu);
937 
938 	rq_lock(rq, rf);
939 	BUG_ON(task_cpu(p) != new_cpu);
940 	enqueue_task(rq, p, 0);
941 	p->on_rq = TASK_ON_RQ_QUEUED;
942 	check_preempt_curr(rq, p, 0);
943 
944 	return rq;
945 }
946 
947 struct migration_arg {
948 	struct task_struct *task;
949 	int dest_cpu;
950 };
951 
952 /*
953  * Move (not current) task off this CPU, onto the destination CPU. We're doing
954  * this because either it can't run here any more (set_cpus_allowed()
955  * away from this CPU, or CPU going down), or because we're
956  * attempting to rebalance this task on exec (sched_exec).
957  *
958  * So we race with normal scheduler movements, but that's OK, as long
959  * as the task is no longer on this CPU.
960  */
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 				 struct task_struct *p, int dest_cpu)
963 {
964 	if (p->flags & PF_KTHREAD) {
965 		if (unlikely(!cpu_online(dest_cpu)))
966 			return rq;
967 	} else {
968 		if (unlikely(!cpu_active(dest_cpu)))
969 			return rq;
970 	}
971 
972 	/* Affinity changed (again). */
973 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
974 		return rq;
975 
976 	update_rq_clock(rq);
977 	rq = move_queued_task(rq, rf, p, dest_cpu);
978 
979 	return rq;
980 }
981 
982 /*
983  * migration_cpu_stop - this will be executed by a highprio stopper thread
984  * and performs thread migration by bumping thread off CPU then
985  * 'pushing' onto another runqueue.
986  */
987 static int migration_cpu_stop(void *data)
988 {
989 	struct migration_arg *arg = data;
990 	struct task_struct *p = arg->task;
991 	struct rq *rq = this_rq();
992 	struct rq_flags rf;
993 
994 	/*
995 	 * The original target CPU might have gone down and we might
996 	 * be on another CPU but it doesn't matter.
997 	 */
998 	local_irq_disable();
999 	/*
1000 	 * We need to explicitly wake pending tasks before running
1001 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1003 	 */
1004 	sched_ttwu_pending();
1005 
1006 	raw_spin_lock(&p->pi_lock);
1007 	rq_lock(rq, &rf);
1008 	/*
1009 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 	 * we're holding p->pi_lock.
1012 	 */
1013 	if (task_rq(p) == rq) {
1014 		if (task_on_rq_queued(p))
1015 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1016 		else
1017 			p->wake_cpu = arg->dest_cpu;
1018 	}
1019 	rq_unlock(rq, &rf);
1020 	raw_spin_unlock(&p->pi_lock);
1021 
1022 	local_irq_enable();
1023 	return 0;
1024 }
1025 
1026 /*
1027  * sched_class::set_cpus_allowed must do the below, but is not required to
1028  * actually call this function.
1029  */
1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1031 {
1032 	cpumask_copy(&p->cpus_allowed, new_mask);
1033 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1034 }
1035 
1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1037 {
1038 	struct rq *rq = task_rq(p);
1039 	bool queued, running;
1040 
1041 	lockdep_assert_held(&p->pi_lock);
1042 
1043 	queued = task_on_rq_queued(p);
1044 	running = task_current(rq, p);
1045 
1046 	if (queued) {
1047 		/*
1048 		 * Because __kthread_bind() calls this on blocked tasks without
1049 		 * holding rq->lock.
1050 		 */
1051 		lockdep_assert_held(&rq->lock);
1052 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1053 	}
1054 	if (running)
1055 		put_prev_task(rq, p);
1056 
1057 	p->sched_class->set_cpus_allowed(p, new_mask);
1058 
1059 	if (queued)
1060 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1061 	if (running)
1062 		set_curr_task(rq, p);
1063 }
1064 
1065 /*
1066  * Change a given task's CPU affinity. Migrate the thread to a
1067  * proper CPU and schedule it away if the CPU it's executing on
1068  * is removed from the allowed bitmask.
1069  *
1070  * NOTE: the caller must have a valid reference to the task, the
1071  * task must not exit() & deallocate itself prematurely. The
1072  * call is not atomic; no spinlocks may be held.
1073  */
1074 static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 				  const struct cpumask *new_mask, bool check)
1076 {
1077 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1078 	unsigned int dest_cpu;
1079 	struct rq_flags rf;
1080 	struct rq *rq;
1081 	int ret = 0;
1082 
1083 	rq = task_rq_lock(p, &rf);
1084 	update_rq_clock(rq);
1085 
1086 	if (p->flags & PF_KTHREAD) {
1087 		/*
1088 		 * Kernel threads are allowed on online && !active CPUs
1089 		 */
1090 		cpu_valid_mask = cpu_online_mask;
1091 	}
1092 
1093 	/*
1094 	 * Must re-check here, to close a race against __kthread_bind(),
1095 	 * sched_setaffinity() is not guaranteed to observe the flag.
1096 	 */
1097 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 		ret = -EINVAL;
1099 		goto out;
1100 	}
1101 
1102 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1103 		goto out;
1104 
1105 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1106 		ret = -EINVAL;
1107 		goto out;
1108 	}
1109 
1110 	do_set_cpus_allowed(p, new_mask);
1111 
1112 	if (p->flags & PF_KTHREAD) {
1113 		/*
1114 		 * For kernel threads that do indeed end up on online &&
1115 		 * !active we want to ensure they are strict per-CPU threads.
1116 		 */
1117 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1119 			p->nr_cpus_allowed != 1);
1120 	}
1121 
1122 	/* Can the task run on the task's current CPU? If so, we're done */
1123 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1124 		goto out;
1125 
1126 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1127 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 		struct migration_arg arg = { p, dest_cpu };
1129 		/* Need help from migration thread: drop lock and wait. */
1130 		task_rq_unlock(rq, p, &rf);
1131 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 		tlb_migrate_finish(p->mm);
1133 		return 0;
1134 	} else if (task_on_rq_queued(p)) {
1135 		/*
1136 		 * OK, since we're going to drop the lock immediately
1137 		 * afterwards anyway.
1138 		 */
1139 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1140 	}
1141 out:
1142 	task_rq_unlock(rq, p, &rf);
1143 
1144 	return ret;
1145 }
1146 
1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1148 {
1149 	return __set_cpus_allowed_ptr(p, new_mask, false);
1150 }
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1152 
1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1154 {
1155 #ifdef CONFIG_SCHED_DEBUG
1156 	/*
1157 	 * We should never call set_task_cpu() on a blocked task,
1158 	 * ttwu() will sort out the placement.
1159 	 */
1160 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1161 			!p->on_rq);
1162 
1163 	/*
1164 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 	 * time relying on p->on_rq.
1167 	 */
1168 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 		     p->sched_class == &fair_sched_class &&
1170 		     (p->on_rq && !task_on_rq_migrating(p)));
1171 
1172 #ifdef CONFIG_LOCKDEP
1173 	/*
1174 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1176 	 *
1177 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1178 	 * see task_group().
1179 	 *
1180 	 * Furthermore, all task_rq users should acquire both locks, see
1181 	 * task_rq_lock().
1182 	 */
1183 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 				      lockdep_is_held(&task_rq(p)->lock)));
1185 #endif
1186 	/*
1187 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1188 	 */
1189 	WARN_ON_ONCE(!cpu_online(new_cpu));
1190 #endif
1191 
1192 	trace_sched_migrate_task(p, new_cpu);
1193 
1194 	if (task_cpu(p) != new_cpu) {
1195 		if (p->sched_class->migrate_task_rq)
1196 			p->sched_class->migrate_task_rq(p);
1197 		p->se.nr_migrations++;
1198 		perf_event_task_migrate(p);
1199 	}
1200 
1201 	__set_task_cpu(p, new_cpu);
1202 }
1203 
1204 static void __migrate_swap_task(struct task_struct *p, int cpu)
1205 {
1206 	if (task_on_rq_queued(p)) {
1207 		struct rq *src_rq, *dst_rq;
1208 		struct rq_flags srf, drf;
1209 
1210 		src_rq = task_rq(p);
1211 		dst_rq = cpu_rq(cpu);
1212 
1213 		rq_pin_lock(src_rq, &srf);
1214 		rq_pin_lock(dst_rq, &drf);
1215 
1216 		p->on_rq = TASK_ON_RQ_MIGRATING;
1217 		deactivate_task(src_rq, p, 0);
1218 		set_task_cpu(p, cpu);
1219 		activate_task(dst_rq, p, 0);
1220 		p->on_rq = TASK_ON_RQ_QUEUED;
1221 		check_preempt_curr(dst_rq, p, 0);
1222 
1223 		rq_unpin_lock(dst_rq, &drf);
1224 		rq_unpin_lock(src_rq, &srf);
1225 
1226 	} else {
1227 		/*
1228 		 * Task isn't running anymore; make it appear like we migrated
1229 		 * it before it went to sleep. This means on wakeup we make the
1230 		 * previous CPU our target instead of where it really is.
1231 		 */
1232 		p->wake_cpu = cpu;
1233 	}
1234 }
1235 
1236 struct migration_swap_arg {
1237 	struct task_struct *src_task, *dst_task;
1238 	int src_cpu, dst_cpu;
1239 };
1240 
1241 static int migrate_swap_stop(void *data)
1242 {
1243 	struct migration_swap_arg *arg = data;
1244 	struct rq *src_rq, *dst_rq;
1245 	int ret = -EAGAIN;
1246 
1247 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 		return -EAGAIN;
1249 
1250 	src_rq = cpu_rq(arg->src_cpu);
1251 	dst_rq = cpu_rq(arg->dst_cpu);
1252 
1253 	double_raw_lock(&arg->src_task->pi_lock,
1254 			&arg->dst_task->pi_lock);
1255 	double_rq_lock(src_rq, dst_rq);
1256 
1257 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 		goto unlock;
1259 
1260 	if (task_cpu(arg->src_task) != arg->src_cpu)
1261 		goto unlock;
1262 
1263 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264 		goto unlock;
1265 
1266 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267 		goto unlock;
1268 
1269 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1271 
1272 	ret = 0;
1273 
1274 unlock:
1275 	double_rq_unlock(src_rq, dst_rq);
1276 	raw_spin_unlock(&arg->dst_task->pi_lock);
1277 	raw_spin_unlock(&arg->src_task->pi_lock);
1278 
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Cross migrate two tasks
1284  */
1285 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286 {
1287 	struct migration_swap_arg arg;
1288 	int ret = -EINVAL;
1289 
1290 	arg = (struct migration_swap_arg){
1291 		.src_task = cur,
1292 		.src_cpu = task_cpu(cur),
1293 		.dst_task = p,
1294 		.dst_cpu = task_cpu(p),
1295 	};
1296 
1297 	if (arg.src_cpu == arg.dst_cpu)
1298 		goto out;
1299 
1300 	/*
1301 	 * These three tests are all lockless; this is OK since all of them
1302 	 * will be re-checked with proper locks held further down the line.
1303 	 */
1304 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 		goto out;
1306 
1307 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308 		goto out;
1309 
1310 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311 		goto out;
1312 
1313 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315 
1316 out:
1317 	return ret;
1318 }
1319 
1320 /*
1321  * wait_task_inactive - wait for a thread to unschedule.
1322  *
1323  * If @match_state is nonzero, it's the @p->state value just checked and
1324  * not expected to change.  If it changes, i.e. @p might have woken up,
1325  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1326  * we return a positive number (its total switch count).  If a second call
1327  * a short while later returns the same number, the caller can be sure that
1328  * @p has remained unscheduled the whole time.
1329  *
1330  * The caller must ensure that the task *will* unschedule sometime soon,
1331  * else this function might spin for a *long* time. This function can't
1332  * be called with interrupts off, or it may introduce deadlock with
1333  * smp_call_function() if an IPI is sent by the same process we are
1334  * waiting to become inactive.
1335  */
1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1337 {
1338 	int running, queued;
1339 	struct rq_flags rf;
1340 	unsigned long ncsw;
1341 	struct rq *rq;
1342 
1343 	for (;;) {
1344 		/*
1345 		 * We do the initial early heuristics without holding
1346 		 * any task-queue locks at all. We'll only try to get
1347 		 * the runqueue lock when things look like they will
1348 		 * work out!
1349 		 */
1350 		rq = task_rq(p);
1351 
1352 		/*
1353 		 * If the task is actively running on another CPU
1354 		 * still, just relax and busy-wait without holding
1355 		 * any locks.
1356 		 *
1357 		 * NOTE! Since we don't hold any locks, it's not
1358 		 * even sure that "rq" stays as the right runqueue!
1359 		 * But we don't care, since "task_running()" will
1360 		 * return false if the runqueue has changed and p
1361 		 * is actually now running somewhere else!
1362 		 */
1363 		while (task_running(rq, p)) {
1364 			if (match_state && unlikely(p->state != match_state))
1365 				return 0;
1366 			cpu_relax();
1367 		}
1368 
1369 		/*
1370 		 * Ok, time to look more closely! We need the rq
1371 		 * lock now, to be *sure*. If we're wrong, we'll
1372 		 * just go back and repeat.
1373 		 */
1374 		rq = task_rq_lock(p, &rf);
1375 		trace_sched_wait_task(p);
1376 		running = task_running(rq, p);
1377 		queued = task_on_rq_queued(p);
1378 		ncsw = 0;
1379 		if (!match_state || p->state == match_state)
1380 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381 		task_rq_unlock(rq, p, &rf);
1382 
1383 		/*
1384 		 * If it changed from the expected state, bail out now.
1385 		 */
1386 		if (unlikely(!ncsw))
1387 			break;
1388 
1389 		/*
1390 		 * Was it really running after all now that we
1391 		 * checked with the proper locks actually held?
1392 		 *
1393 		 * Oops. Go back and try again..
1394 		 */
1395 		if (unlikely(running)) {
1396 			cpu_relax();
1397 			continue;
1398 		}
1399 
1400 		/*
1401 		 * It's not enough that it's not actively running,
1402 		 * it must be off the runqueue _entirely_, and not
1403 		 * preempted!
1404 		 *
1405 		 * So if it was still runnable (but just not actively
1406 		 * running right now), it's preempted, and we should
1407 		 * yield - it could be a while.
1408 		 */
1409 		if (unlikely(queued)) {
1410 			ktime_t to = NSEC_PER_SEC / HZ;
1411 
1412 			set_current_state(TASK_UNINTERRUPTIBLE);
1413 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 			continue;
1415 		}
1416 
1417 		/*
1418 		 * Ahh, all good. It wasn't running, and it wasn't
1419 		 * runnable, which means that it will never become
1420 		 * running in the future either. We're all done!
1421 		 */
1422 		break;
1423 	}
1424 
1425 	return ncsw;
1426 }
1427 
1428 /***
1429  * kick_process - kick a running thread to enter/exit the kernel
1430  * @p: the to-be-kicked thread
1431  *
1432  * Cause a process which is running on another CPU to enter
1433  * kernel-mode, without any delay. (to get signals handled.)
1434  *
1435  * NOTE: this function doesn't have to take the runqueue lock,
1436  * because all it wants to ensure is that the remote task enters
1437  * the kernel. If the IPI races and the task has been migrated
1438  * to another CPU then no harm is done and the purpose has been
1439  * achieved as well.
1440  */
1441 void kick_process(struct task_struct *p)
1442 {
1443 	int cpu;
1444 
1445 	preempt_disable();
1446 	cpu = task_cpu(p);
1447 	if ((cpu != smp_processor_id()) && task_curr(p))
1448 		smp_send_reschedule(cpu);
1449 	preempt_enable();
1450 }
1451 EXPORT_SYMBOL_GPL(kick_process);
1452 
1453 /*
1454  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1455  *
1456  * A few notes on cpu_active vs cpu_online:
1457  *
1458  *  - cpu_active must be a subset of cpu_online
1459  *
1460  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461  *    see __set_cpus_allowed_ptr(). At this point the newly online
1462  *    CPU isn't yet part of the sched domains, and balancing will not
1463  *    see it.
1464  *
1465  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1466  *    avoid the load balancer to place new tasks on the to be removed
1467  *    CPU. Existing tasks will remain running there and will be taken
1468  *    off.
1469  *
1470  * This means that fallback selection must not select !active CPUs.
1471  * And can assume that any active CPU must be online. Conversely
1472  * select_task_rq() below may allow selection of !active CPUs in order
1473  * to satisfy the above rules.
1474  */
1475 static int select_fallback_rq(int cpu, struct task_struct *p)
1476 {
1477 	int nid = cpu_to_node(cpu);
1478 	const struct cpumask *nodemask = NULL;
1479 	enum { cpuset, possible, fail } state = cpuset;
1480 	int dest_cpu;
1481 
1482 	/*
1483 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 	 * will return -1. There is no CPU on the node, and we should
1485 	 * select the CPU on the other node.
1486 	 */
1487 	if (nid != -1) {
1488 		nodemask = cpumask_of_node(nid);
1489 
1490 		/* Look for allowed, online CPU in same node. */
1491 		for_each_cpu(dest_cpu, nodemask) {
1492 			if (!cpu_active(dest_cpu))
1493 				continue;
1494 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495 				return dest_cpu;
1496 		}
1497 	}
1498 
1499 	for (;;) {
1500 		/* Any allowed, online CPU? */
1501 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 				continue;
1504 			if (!cpu_online(dest_cpu))
1505 				continue;
1506 			goto out;
1507 		}
1508 
1509 		/* No more Mr. Nice Guy. */
1510 		switch (state) {
1511 		case cpuset:
1512 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 				cpuset_cpus_allowed_fallback(p);
1514 				state = possible;
1515 				break;
1516 			}
1517 			/* Fall-through */
1518 		case possible:
1519 			do_set_cpus_allowed(p, cpu_possible_mask);
1520 			state = fail;
1521 			break;
1522 
1523 		case fail:
1524 			BUG();
1525 			break;
1526 		}
1527 	}
1528 
1529 out:
1530 	if (state != cpuset) {
1531 		/*
1532 		 * Don't tell them about moving exiting tasks or
1533 		 * kernel threads (both mm NULL), since they never
1534 		 * leave kernel.
1535 		 */
1536 		if (p->mm && printk_ratelimit()) {
1537 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 					task_pid_nr(p), p->comm, cpu);
1539 		}
1540 	}
1541 
1542 	return dest_cpu;
1543 }
1544 
1545 /*
1546  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1547  */
1548 static inline
1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1550 {
1551 	lockdep_assert_held(&p->pi_lock);
1552 
1553 	if (p->nr_cpus_allowed > 1)
1554 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555 	else
1556 		cpu = cpumask_any(&p->cpus_allowed);
1557 
1558 	/*
1559 	 * In order not to call set_task_cpu() on a blocking task we need
1560 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1561 	 * CPU.
1562 	 *
1563 	 * Since this is common to all placement strategies, this lives here.
1564 	 *
1565 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 	 *   not worry about this generic constraint ]
1567 	 */
1568 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1569 		     !cpu_online(cpu)))
1570 		cpu = select_fallback_rq(task_cpu(p), p);
1571 
1572 	return cpu;
1573 }
1574 
1575 static void update_avg(u64 *avg, u64 sample)
1576 {
1577 	s64 diff = sample - *avg;
1578 	*avg += diff >> 3;
1579 }
1580 
1581 void sched_set_stop_task(int cpu, struct task_struct *stop)
1582 {
1583 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1585 
1586 	if (stop) {
1587 		/*
1588 		 * Make it appear like a SCHED_FIFO task, its something
1589 		 * userspace knows about and won't get confused about.
1590 		 *
1591 		 * Also, it will make PI more or less work without too
1592 		 * much confusion -- but then, stop work should not
1593 		 * rely on PI working anyway.
1594 		 */
1595 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1596 
1597 		stop->sched_class = &stop_sched_class;
1598 	}
1599 
1600 	cpu_rq(cpu)->stop = stop;
1601 
1602 	if (old_stop) {
1603 		/*
1604 		 * Reset it back to a normal scheduling class so that
1605 		 * it can die in pieces.
1606 		 */
1607 		old_stop->sched_class = &rt_sched_class;
1608 	}
1609 }
1610 
1611 #else
1612 
1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 					 const struct cpumask *new_mask, bool check)
1615 {
1616 	return set_cpus_allowed_ptr(p, new_mask);
1617 }
1618 
1619 #endif /* CONFIG_SMP */
1620 
1621 static void
1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1623 {
1624 	struct rq *rq;
1625 
1626 	if (!schedstat_enabled())
1627 		return;
1628 
1629 	rq = this_rq();
1630 
1631 #ifdef CONFIG_SMP
1632 	if (cpu == rq->cpu) {
1633 		__schedstat_inc(rq->ttwu_local);
1634 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1635 	} else {
1636 		struct sched_domain *sd;
1637 
1638 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1639 		rcu_read_lock();
1640 		for_each_domain(rq->cpu, sd) {
1641 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642 				__schedstat_inc(sd->ttwu_wake_remote);
1643 				break;
1644 			}
1645 		}
1646 		rcu_read_unlock();
1647 	}
1648 
1649 	if (wake_flags & WF_MIGRATED)
1650 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1651 #endif /* CONFIG_SMP */
1652 
1653 	__schedstat_inc(rq->ttwu_count);
1654 	__schedstat_inc(p->se.statistics.nr_wakeups);
1655 
1656 	if (wake_flags & WF_SYNC)
1657 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1658 }
1659 
1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1661 {
1662 	activate_task(rq, p, en_flags);
1663 	p->on_rq = TASK_ON_RQ_QUEUED;
1664 
1665 	/* If a worker is waking up, notify the workqueue: */
1666 	if (p->flags & PF_WQ_WORKER)
1667 		wq_worker_waking_up(p, cpu_of(rq));
1668 }
1669 
1670 /*
1671  * Mark the task runnable and perform wakeup-preemption.
1672  */
1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674 			   struct rq_flags *rf)
1675 {
1676 	check_preempt_curr(rq, p, wake_flags);
1677 	p->state = TASK_RUNNING;
1678 	trace_sched_wakeup(p);
1679 
1680 #ifdef CONFIG_SMP
1681 	if (p->sched_class->task_woken) {
1682 		/*
1683 		 * Our task @p is fully woken up and running; so its safe to
1684 		 * drop the rq->lock, hereafter rq is only used for statistics.
1685 		 */
1686 		rq_unpin_lock(rq, rf);
1687 		p->sched_class->task_woken(rq, p);
1688 		rq_repin_lock(rq, rf);
1689 	}
1690 
1691 	if (rq->idle_stamp) {
1692 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1693 		u64 max = 2*rq->max_idle_balance_cost;
1694 
1695 		update_avg(&rq->avg_idle, delta);
1696 
1697 		if (rq->avg_idle > max)
1698 			rq->avg_idle = max;
1699 
1700 		rq->idle_stamp = 0;
1701 	}
1702 #endif
1703 }
1704 
1705 static void
1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707 		 struct rq_flags *rf)
1708 {
1709 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1710 
1711 	lockdep_assert_held(&rq->lock);
1712 
1713 #ifdef CONFIG_SMP
1714 	if (p->sched_contributes_to_load)
1715 		rq->nr_uninterruptible--;
1716 
1717 	if (wake_flags & WF_MIGRATED)
1718 		en_flags |= ENQUEUE_MIGRATED;
1719 #endif
1720 
1721 	ttwu_activate(rq, p, en_flags);
1722 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1723 }
1724 
1725 /*
1726  * Called in case the task @p isn't fully descheduled from its runqueue,
1727  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728  * since all we need to do is flip p->state to TASK_RUNNING, since
1729  * the task is still ->on_rq.
1730  */
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1732 {
1733 	struct rq_flags rf;
1734 	struct rq *rq;
1735 	int ret = 0;
1736 
1737 	rq = __task_rq_lock(p, &rf);
1738 	if (task_on_rq_queued(p)) {
1739 		/* check_preempt_curr() may use rq clock */
1740 		update_rq_clock(rq);
1741 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1742 		ret = 1;
1743 	}
1744 	__task_rq_unlock(rq, &rf);
1745 
1746 	return ret;
1747 }
1748 
1749 #ifdef CONFIG_SMP
1750 void sched_ttwu_pending(void)
1751 {
1752 	struct rq *rq = this_rq();
1753 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1754 	struct task_struct *p, *t;
1755 	struct rq_flags rf;
1756 
1757 	if (!llist)
1758 		return;
1759 
1760 	rq_lock_irqsave(rq, &rf);
1761 	update_rq_clock(rq);
1762 
1763 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1765 
1766 	rq_unlock_irqrestore(rq, &rf);
1767 }
1768 
1769 void scheduler_ipi(void)
1770 {
1771 	/*
1772 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1774 	 * this IPI.
1775 	 */
1776 	preempt_fold_need_resched();
1777 
1778 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1779 		return;
1780 
1781 	/*
1782 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 	 * traditionally all their work was done from the interrupt return
1784 	 * path. Now that we actually do some work, we need to make sure
1785 	 * we do call them.
1786 	 *
1787 	 * Some archs already do call them, luckily irq_enter/exit nest
1788 	 * properly.
1789 	 *
1790 	 * Arguably we should visit all archs and update all handlers,
1791 	 * however a fair share of IPIs are still resched only so this would
1792 	 * somewhat pessimize the simple resched case.
1793 	 */
1794 	irq_enter();
1795 	sched_ttwu_pending();
1796 
1797 	/*
1798 	 * Check if someone kicked us for doing the nohz idle load balance.
1799 	 */
1800 	if (unlikely(got_nohz_idle_kick())) {
1801 		this_rq()->idle_balance = 1;
1802 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1803 	}
1804 	irq_exit();
1805 }
1806 
1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1808 {
1809 	struct rq *rq = cpu_rq(cpu);
1810 
1811 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1812 
1813 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 		if (!set_nr_if_polling(rq->idle))
1815 			smp_send_reschedule(cpu);
1816 		else
1817 			trace_sched_wake_idle_without_ipi(cpu);
1818 	}
1819 }
1820 
1821 void wake_up_if_idle(int cpu)
1822 {
1823 	struct rq *rq = cpu_rq(cpu);
1824 	struct rq_flags rf;
1825 
1826 	rcu_read_lock();
1827 
1828 	if (!is_idle_task(rcu_dereference(rq->curr)))
1829 		goto out;
1830 
1831 	if (set_nr_if_polling(rq->idle)) {
1832 		trace_sched_wake_idle_without_ipi(cpu);
1833 	} else {
1834 		rq_lock_irqsave(rq, &rf);
1835 		if (is_idle_task(rq->curr))
1836 			smp_send_reschedule(cpu);
1837 		/* Else CPU is not idle, do nothing here: */
1838 		rq_unlock_irqrestore(rq, &rf);
1839 	}
1840 
1841 out:
1842 	rcu_read_unlock();
1843 }
1844 
1845 bool cpus_share_cache(int this_cpu, int that_cpu)
1846 {
1847 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1848 }
1849 #endif /* CONFIG_SMP */
1850 
1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1852 {
1853 	struct rq *rq = cpu_rq(cpu);
1854 	struct rq_flags rf;
1855 
1856 #if defined(CONFIG_SMP)
1857 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1859 		ttwu_queue_remote(p, cpu, wake_flags);
1860 		return;
1861 	}
1862 #endif
1863 
1864 	rq_lock(rq, &rf);
1865 	update_rq_clock(rq);
1866 	ttwu_do_activate(rq, p, wake_flags, &rf);
1867 	rq_unlock(rq, &rf);
1868 }
1869 
1870 /*
1871  * Notes on Program-Order guarantees on SMP systems.
1872  *
1873  *  MIGRATION
1874  *
1875  * The basic program-order guarantee on SMP systems is that when a task [t]
1876  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877  * execution on its new CPU [c1].
1878  *
1879  * For migration (of runnable tasks) this is provided by the following means:
1880  *
1881  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1882  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1883  *     rq(c1)->lock (if not at the same time, then in that order).
1884  *  C) LOCK of the rq(c1)->lock scheduling in task
1885  *
1886  * Transitivity guarantees that B happens after A and C after B.
1887  * Note: we only require RCpc transitivity.
1888  * Note: the CPU doing B need not be c0 or c1
1889  *
1890  * Example:
1891  *
1892  *   CPU0            CPU1            CPU2
1893  *
1894  *   LOCK rq(0)->lock
1895  *   sched-out X
1896  *   sched-in Y
1897  *   UNLOCK rq(0)->lock
1898  *
1899  *                                   LOCK rq(0)->lock // orders against CPU0
1900  *                                   dequeue X
1901  *                                   UNLOCK rq(0)->lock
1902  *
1903  *                                   LOCK rq(1)->lock
1904  *                                   enqueue X
1905  *                                   UNLOCK rq(1)->lock
1906  *
1907  *                   LOCK rq(1)->lock // orders against CPU2
1908  *                   sched-out Z
1909  *                   sched-in X
1910  *                   UNLOCK rq(1)->lock
1911  *
1912  *
1913  *  BLOCKING -- aka. SLEEP + WAKEUP
1914  *
1915  * For blocking we (obviously) need to provide the same guarantee as for
1916  * migration. However the means are completely different as there is no lock
1917  * chain to provide order. Instead we do:
1918  *
1919  *   1) smp_store_release(X->on_cpu, 0)
1920  *   2) smp_cond_load_acquire(!X->on_cpu)
1921  *
1922  * Example:
1923  *
1924  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1925  *
1926  *   LOCK rq(0)->lock LOCK X->pi_lock
1927  *   dequeue X
1928  *   sched-out X
1929  *   smp_store_release(X->on_cpu, 0);
1930  *
1931  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1932  *                    X->state = WAKING
1933  *                    set_task_cpu(X,2)
1934  *
1935  *                    LOCK rq(2)->lock
1936  *                    enqueue X
1937  *                    X->state = RUNNING
1938  *                    UNLOCK rq(2)->lock
1939  *
1940  *                                          LOCK rq(2)->lock // orders against CPU1
1941  *                                          sched-out Z
1942  *                                          sched-in X
1943  *                                          UNLOCK rq(2)->lock
1944  *
1945  *                    UNLOCK X->pi_lock
1946  *   UNLOCK rq(0)->lock
1947  *
1948  *
1949  * However; for wakeups there is a second guarantee we must provide, namely we
1950  * must observe the state that lead to our wakeup. That is, not only must our
1951  * task observe its own prior state, it must also observe the stores prior to
1952  * its wakeup.
1953  *
1954  * This means that any means of doing remote wakeups must order the CPU doing
1955  * the wakeup against the CPU the task is going to end up running on. This,
1956  * however, is already required for the regular Program-Order guarantee above,
1957  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1958  *
1959  */
1960 
1961 /**
1962  * try_to_wake_up - wake up a thread
1963  * @p: the thread to be awakened
1964  * @state: the mask of task states that can be woken
1965  * @wake_flags: wake modifier flags (WF_*)
1966  *
1967  * If (@state & @p->state) @p->state = TASK_RUNNING.
1968  *
1969  * If the task was not queued/runnable, also place it back on a runqueue.
1970  *
1971  * Atomic against schedule() which would dequeue a task, also see
1972  * set_current_state().
1973  *
1974  * Return: %true if @p->state changes (an actual wakeup was done),
1975  *	   %false otherwise.
1976  */
1977 static int
1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1979 {
1980 	unsigned long flags;
1981 	int cpu, success = 0;
1982 
1983 	/*
1984 	 * If we are going to wake up a thread waiting for CONDITION we
1985 	 * need to ensure that CONDITION=1 done by the caller can not be
1986 	 * reordered with p->state check below. This pairs with mb() in
1987 	 * set_current_state() the waiting thread does.
1988 	 */
1989 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1990 	smp_mb__after_spinlock();
1991 	if (!(p->state & state))
1992 		goto out;
1993 
1994 	trace_sched_waking(p);
1995 
1996 	/* We're going to change ->state: */
1997 	success = 1;
1998 	cpu = task_cpu(p);
1999 
2000 	/*
2001 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 	 * in smp_cond_load_acquire() below.
2004 	 *
2005 	 * sched_ttwu_pending()                 try_to_wake_up()
2006 	 *   [S] p->on_rq = 1;                  [L] P->state
2007 	 *       UNLOCK rq->lock  -----.
2008 	 *                              \
2009 	 *				 +---   RMB
2010 	 * schedule()                   /
2011 	 *       LOCK rq->lock    -----'
2012 	 *       UNLOCK rq->lock
2013 	 *
2014 	 * [task p]
2015 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2016 	 *
2017 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 	 * last wakeup of our task and the schedule that got our task
2019 	 * current.
2020 	 */
2021 	smp_rmb();
2022 	if (p->on_rq && ttwu_remote(p, wake_flags))
2023 		goto stat;
2024 
2025 #ifdef CONFIG_SMP
2026 	/*
2027 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 	 * possible to, falsely, observe p->on_cpu == 0.
2029 	 *
2030 	 * One must be running (->on_cpu == 1) in order to remove oneself
2031 	 * from the runqueue.
2032 	 *
2033 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2034 	 *      UNLOCK rq->lock
2035 	 *			RMB
2036 	 *      LOCK   rq->lock
2037 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2038 	 *
2039 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 	 * from the consecutive calls to schedule(); the first switching to our
2041 	 * task, the second putting it to sleep.
2042 	 */
2043 	smp_rmb();
2044 
2045 	/*
2046 	 * If the owning (remote) CPU is still in the middle of schedule() with
2047 	 * this task as prev, wait until its done referencing the task.
2048 	 *
2049 	 * Pairs with the smp_store_release() in finish_task().
2050 	 *
2051 	 * This ensures that tasks getting woken will be fully ordered against
2052 	 * their previous state and preserve Program Order.
2053 	 */
2054 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2055 
2056 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 	p->state = TASK_WAKING;
2058 
2059 	if (p->in_iowait) {
2060 		delayacct_blkio_end(p);
2061 		atomic_dec(&task_rq(p)->nr_iowait);
2062 	}
2063 
2064 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065 	if (task_cpu(p) != cpu) {
2066 		wake_flags |= WF_MIGRATED;
2067 		set_task_cpu(p, cpu);
2068 	}
2069 
2070 #else /* CONFIG_SMP */
2071 
2072 	if (p->in_iowait) {
2073 		delayacct_blkio_end(p);
2074 		atomic_dec(&task_rq(p)->nr_iowait);
2075 	}
2076 
2077 #endif /* CONFIG_SMP */
2078 
2079 	ttwu_queue(p, cpu, wake_flags);
2080 stat:
2081 	ttwu_stat(p, cpu, wake_flags);
2082 out:
2083 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084 
2085 	return success;
2086 }
2087 
2088 /**
2089  * try_to_wake_up_local - try to wake up a local task with rq lock held
2090  * @p: the thread to be awakened
2091  * @rf: request-queue flags for pinning
2092  *
2093  * Put @p on the run-queue if it's not already there. The caller must
2094  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2095  * the current task.
2096  */
2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2098 {
2099 	struct rq *rq = task_rq(p);
2100 
2101 	if (WARN_ON_ONCE(rq != this_rq()) ||
2102 	    WARN_ON_ONCE(p == current))
2103 		return;
2104 
2105 	lockdep_assert_held(&rq->lock);
2106 
2107 	if (!raw_spin_trylock(&p->pi_lock)) {
2108 		/*
2109 		 * This is OK, because current is on_cpu, which avoids it being
2110 		 * picked for load-balance and preemption/IRQs are still
2111 		 * disabled avoiding further scheduler activity on it and we've
2112 		 * not yet picked a replacement task.
2113 		 */
2114 		rq_unlock(rq, rf);
2115 		raw_spin_lock(&p->pi_lock);
2116 		rq_relock(rq, rf);
2117 	}
2118 
2119 	if (!(p->state & TASK_NORMAL))
2120 		goto out;
2121 
2122 	trace_sched_waking(p);
2123 
2124 	if (!task_on_rq_queued(p)) {
2125 		if (p->in_iowait) {
2126 			delayacct_blkio_end(p);
2127 			atomic_dec(&rq->nr_iowait);
2128 		}
2129 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2130 	}
2131 
2132 	ttwu_do_wakeup(rq, p, 0, rf);
2133 	ttwu_stat(p, smp_processor_id(), 0);
2134 out:
2135 	raw_spin_unlock(&p->pi_lock);
2136 }
2137 
2138 /**
2139  * wake_up_process - Wake up a specific process
2140  * @p: The process to be woken up.
2141  *
2142  * Attempt to wake up the nominated process and move it to the set of runnable
2143  * processes.
2144  *
2145  * Return: 1 if the process was woken up, 0 if it was already running.
2146  *
2147  * It may be assumed that this function implies a write memory barrier before
2148  * changing the task state if and only if any tasks are woken up.
2149  */
2150 int wake_up_process(struct task_struct *p)
2151 {
2152 	return try_to_wake_up(p, TASK_NORMAL, 0);
2153 }
2154 EXPORT_SYMBOL(wake_up_process);
2155 
2156 int wake_up_state(struct task_struct *p, unsigned int state)
2157 {
2158 	return try_to_wake_up(p, state, 0);
2159 }
2160 
2161 /*
2162  * Perform scheduler related setup for a newly forked process p.
2163  * p is forked by current.
2164  *
2165  * __sched_fork() is basic setup used by init_idle() too:
2166  */
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2168 {
2169 	p->on_rq			= 0;
2170 
2171 	p->se.on_rq			= 0;
2172 	p->se.exec_start		= 0;
2173 	p->se.sum_exec_runtime		= 0;
2174 	p->se.prev_sum_exec_runtime	= 0;
2175 	p->se.nr_migrations		= 0;
2176 	p->se.vruntime			= 0;
2177 	INIT_LIST_HEAD(&p->se.group_node);
2178 
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 	p->se.cfs_rq			= NULL;
2181 #endif
2182 
2183 #ifdef CONFIG_SCHEDSTATS
2184 	/* Even if schedstat is disabled, there should not be garbage */
2185 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2186 #endif
2187 
2188 	RB_CLEAR_NODE(&p->dl.rb_node);
2189 	init_dl_task_timer(&p->dl);
2190 	init_dl_inactive_task_timer(&p->dl);
2191 	__dl_clear_params(p);
2192 
2193 	INIT_LIST_HEAD(&p->rt.run_list);
2194 	p->rt.timeout		= 0;
2195 	p->rt.time_slice	= sched_rr_timeslice;
2196 	p->rt.on_rq		= 0;
2197 	p->rt.on_list		= 0;
2198 
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2201 #endif
2202 
2203 #ifdef CONFIG_NUMA_BALANCING
2204 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 		p->mm->numa_scan_seq = 0;
2207 	}
2208 
2209 	if (clone_flags & CLONE_VM)
2210 		p->numa_preferred_nid = current->numa_preferred_nid;
2211 	else
2212 		p->numa_preferred_nid = -1;
2213 
2214 	p->node_stamp = 0ULL;
2215 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217 	p->numa_work.next = &p->numa_work;
2218 	p->numa_faults = NULL;
2219 	p->last_task_numa_placement = 0;
2220 	p->last_sum_exec_runtime = 0;
2221 
2222 	p->numa_group = NULL;
2223 #endif /* CONFIG_NUMA_BALANCING */
2224 }
2225 
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227 
2228 #ifdef CONFIG_NUMA_BALANCING
2229 
2230 void set_numabalancing_state(bool enabled)
2231 {
2232 	if (enabled)
2233 		static_branch_enable(&sched_numa_balancing);
2234 	else
2235 		static_branch_disable(&sched_numa_balancing);
2236 }
2237 
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2241 {
2242 	struct ctl_table t;
2243 	int err;
2244 	int state = static_branch_likely(&sched_numa_balancing);
2245 
2246 	if (write && !capable(CAP_SYS_ADMIN))
2247 		return -EPERM;
2248 
2249 	t = *table;
2250 	t.data = &state;
2251 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 	if (err < 0)
2253 		return err;
2254 	if (write)
2255 		set_numabalancing_state(state);
2256 	return err;
2257 }
2258 #endif
2259 #endif
2260 
2261 #ifdef CONFIG_SCHEDSTATS
2262 
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264 static bool __initdata __sched_schedstats = false;
2265 
2266 static void set_schedstats(bool enabled)
2267 {
2268 	if (enabled)
2269 		static_branch_enable(&sched_schedstats);
2270 	else
2271 		static_branch_disable(&sched_schedstats);
2272 }
2273 
2274 void force_schedstat_enabled(void)
2275 {
2276 	if (!schedstat_enabled()) {
2277 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 		static_branch_enable(&sched_schedstats);
2279 	}
2280 }
2281 
2282 static int __init setup_schedstats(char *str)
2283 {
2284 	int ret = 0;
2285 	if (!str)
2286 		goto out;
2287 
2288 	/*
2289 	 * This code is called before jump labels have been set up, so we can't
2290 	 * change the static branch directly just yet.  Instead set a temporary
2291 	 * variable so init_schedstats() can do it later.
2292 	 */
2293 	if (!strcmp(str, "enable")) {
2294 		__sched_schedstats = true;
2295 		ret = 1;
2296 	} else if (!strcmp(str, "disable")) {
2297 		__sched_schedstats = false;
2298 		ret = 1;
2299 	}
2300 out:
2301 	if (!ret)
2302 		pr_warn("Unable to parse schedstats=\n");
2303 
2304 	return ret;
2305 }
2306 __setup("schedstats=", setup_schedstats);
2307 
2308 static void __init init_schedstats(void)
2309 {
2310 	set_schedstats(__sched_schedstats);
2311 }
2312 
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table *table, int write,
2315 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2316 {
2317 	struct ctl_table t;
2318 	int err;
2319 	int state = static_branch_likely(&sched_schedstats);
2320 
2321 	if (write && !capable(CAP_SYS_ADMIN))
2322 		return -EPERM;
2323 
2324 	t = *table;
2325 	t.data = &state;
2326 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 	if (err < 0)
2328 		return err;
2329 	if (write)
2330 		set_schedstats(state);
2331 	return err;
2332 }
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else  /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2337 
2338 /*
2339  * fork()/clone()-time setup:
2340  */
2341 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2342 {
2343 	unsigned long flags;
2344 	int cpu = get_cpu();
2345 
2346 	__sched_fork(clone_flags, p);
2347 	/*
2348 	 * We mark the process as NEW here. This guarantees that
2349 	 * nobody will actually run it, and a signal or other external
2350 	 * event cannot wake it up and insert it on the runqueue either.
2351 	 */
2352 	p->state = TASK_NEW;
2353 
2354 	/*
2355 	 * Make sure we do not leak PI boosting priority to the child.
2356 	 */
2357 	p->prio = current->normal_prio;
2358 
2359 	/*
2360 	 * Revert to default priority/policy on fork if requested.
2361 	 */
2362 	if (unlikely(p->sched_reset_on_fork)) {
2363 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364 			p->policy = SCHED_NORMAL;
2365 			p->static_prio = NICE_TO_PRIO(0);
2366 			p->rt_priority = 0;
2367 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 			p->static_prio = NICE_TO_PRIO(0);
2369 
2370 		p->prio = p->normal_prio = __normal_prio(p);
2371 		set_load_weight(p, false);
2372 
2373 		/*
2374 		 * We don't need the reset flag anymore after the fork. It has
2375 		 * fulfilled its duty:
2376 		 */
2377 		p->sched_reset_on_fork = 0;
2378 	}
2379 
2380 	if (dl_prio(p->prio)) {
2381 		put_cpu();
2382 		return -EAGAIN;
2383 	} else if (rt_prio(p->prio)) {
2384 		p->sched_class = &rt_sched_class;
2385 	} else {
2386 		p->sched_class = &fair_sched_class;
2387 	}
2388 
2389 	init_entity_runnable_average(&p->se);
2390 
2391 	/*
2392 	 * The child is not yet in the pid-hash so no cgroup attach races,
2393 	 * and the cgroup is pinned to this child due to cgroup_fork()
2394 	 * is ran before sched_fork().
2395 	 *
2396 	 * Silence PROVE_RCU.
2397 	 */
2398 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2399 	/*
2400 	 * We're setting the CPU for the first time, we don't migrate,
2401 	 * so use __set_task_cpu().
2402 	 */
2403 	__set_task_cpu(p, cpu);
2404 	if (p->sched_class->task_fork)
2405 		p->sched_class->task_fork(p);
2406 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407 
2408 #ifdef CONFIG_SCHED_INFO
2409 	if (likely(sched_info_on()))
2410 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2411 #endif
2412 #if defined(CONFIG_SMP)
2413 	p->on_cpu = 0;
2414 #endif
2415 	init_task_preempt_count(p);
2416 #ifdef CONFIG_SMP
2417 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 #endif
2420 
2421 	put_cpu();
2422 	return 0;
2423 }
2424 
2425 unsigned long to_ratio(u64 period, u64 runtime)
2426 {
2427 	if (runtime == RUNTIME_INF)
2428 		return BW_UNIT;
2429 
2430 	/*
2431 	 * Doing this here saves a lot of checks in all
2432 	 * the calling paths, and returning zero seems
2433 	 * safe for them anyway.
2434 	 */
2435 	if (period == 0)
2436 		return 0;
2437 
2438 	return div64_u64(runtime << BW_SHIFT, period);
2439 }
2440 
2441 /*
2442  * wake_up_new_task - wake up a newly created task for the first time.
2443  *
2444  * This function will do some initial scheduler statistics housekeeping
2445  * that must be done for every newly created context, then puts the task
2446  * on the runqueue and wakes it.
2447  */
2448 void wake_up_new_task(struct task_struct *p)
2449 {
2450 	struct rq_flags rf;
2451 	struct rq *rq;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454 	p->state = TASK_RUNNING;
2455 #ifdef CONFIG_SMP
2456 	/*
2457 	 * Fork balancing, do it here and not earlier because:
2458 	 *  - cpus_allowed can change in the fork path
2459 	 *  - any previously selected CPU might disappear through hotplug
2460 	 *
2461 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 	 * as we're not fully set-up yet.
2463 	 */
2464 	p->recent_used_cpu = task_cpu(p);
2465 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2466 #endif
2467 	rq = __task_rq_lock(p, &rf);
2468 	update_rq_clock(rq);
2469 	post_init_entity_util_avg(&p->se);
2470 
2471 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2472 	p->on_rq = TASK_ON_RQ_QUEUED;
2473 	trace_sched_wakeup_new(p);
2474 	check_preempt_curr(rq, p, WF_FORK);
2475 #ifdef CONFIG_SMP
2476 	if (p->sched_class->task_woken) {
2477 		/*
2478 		 * Nothing relies on rq->lock after this, so its fine to
2479 		 * drop it.
2480 		 */
2481 		rq_unpin_lock(rq, &rf);
2482 		p->sched_class->task_woken(rq, p);
2483 		rq_repin_lock(rq, &rf);
2484 	}
2485 #endif
2486 	task_rq_unlock(rq, p, &rf);
2487 }
2488 
2489 #ifdef CONFIG_PREEMPT_NOTIFIERS
2490 
2491 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2492 
2493 void preempt_notifier_inc(void)
2494 {
2495 	static_key_slow_inc(&preempt_notifier_key);
2496 }
2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2498 
2499 void preempt_notifier_dec(void)
2500 {
2501 	static_key_slow_dec(&preempt_notifier_key);
2502 }
2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2504 
2505 /**
2506  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2507  * @notifier: notifier struct to register
2508  */
2509 void preempt_notifier_register(struct preempt_notifier *notifier)
2510 {
2511 	if (!static_key_false(&preempt_notifier_key))
2512 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2513 
2514 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2515 }
2516 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2517 
2518 /**
2519  * preempt_notifier_unregister - no longer interested in preemption notifications
2520  * @notifier: notifier struct to unregister
2521  *
2522  * This is *not* safe to call from within a preemption notifier.
2523  */
2524 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2525 {
2526 	hlist_del(&notifier->link);
2527 }
2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2529 
2530 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2531 {
2532 	struct preempt_notifier *notifier;
2533 
2534 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2535 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2536 }
2537 
2538 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 	if (static_key_false(&preempt_notifier_key))
2541 		__fire_sched_in_preempt_notifiers(curr);
2542 }
2543 
2544 static void
2545 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 				   struct task_struct *next)
2547 {
2548 	struct preempt_notifier *notifier;
2549 
2550 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2551 		notifier->ops->sched_out(notifier, next);
2552 }
2553 
2554 static __always_inline void
2555 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 				 struct task_struct *next)
2557 {
2558 	if (static_key_false(&preempt_notifier_key))
2559 		__fire_sched_out_preempt_notifiers(curr, next);
2560 }
2561 
2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2563 
2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2565 {
2566 }
2567 
2568 static inline void
2569 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 				 struct task_struct *next)
2571 {
2572 }
2573 
2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2575 
2576 static inline void prepare_task(struct task_struct *next)
2577 {
2578 #ifdef CONFIG_SMP
2579 	/*
2580 	 * Claim the task as running, we do this before switching to it
2581 	 * such that any running task will have this set.
2582 	 */
2583 	next->on_cpu = 1;
2584 #endif
2585 }
2586 
2587 static inline void finish_task(struct task_struct *prev)
2588 {
2589 #ifdef CONFIG_SMP
2590 	/*
2591 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 	 * We must ensure this doesn't happen until the switch is completely
2593 	 * finished.
2594 	 *
2595 	 * In particular, the load of prev->state in finish_task_switch() must
2596 	 * happen before this.
2597 	 *
2598 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2599 	 */
2600 	smp_store_release(&prev->on_cpu, 0);
2601 #endif
2602 }
2603 
2604 static inline void
2605 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2606 {
2607 	/*
2608 	 * Since the runqueue lock will be released by the next
2609 	 * task (which is an invalid locking op but in the case
2610 	 * of the scheduler it's an obvious special-case), so we
2611 	 * do an early lockdep release here:
2612 	 */
2613 	rq_unpin_lock(rq, rf);
2614 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2615 #ifdef CONFIG_DEBUG_SPINLOCK
2616 	/* this is a valid case when another task releases the spinlock */
2617 	rq->lock.owner = next;
2618 #endif
2619 }
2620 
2621 static inline void finish_lock_switch(struct rq *rq)
2622 {
2623 	/*
2624 	 * If we are tracking spinlock dependencies then we have to
2625 	 * fix up the runqueue lock - which gets 'carried over' from
2626 	 * prev into current:
2627 	 */
2628 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2629 	raw_spin_unlock_irq(&rq->lock);
2630 }
2631 
2632 /**
2633  * prepare_task_switch - prepare to switch tasks
2634  * @rq: the runqueue preparing to switch
2635  * @prev: the current task that is being switched out
2636  * @next: the task we are going to switch to.
2637  *
2638  * This is called with the rq lock held and interrupts off. It must
2639  * be paired with a subsequent finish_task_switch after the context
2640  * switch.
2641  *
2642  * prepare_task_switch sets up locking and calls architecture specific
2643  * hooks.
2644  */
2645 static inline void
2646 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 		    struct task_struct *next)
2648 {
2649 	sched_info_switch(rq, prev, next);
2650 	perf_event_task_sched_out(prev, next);
2651 	fire_sched_out_preempt_notifiers(prev, next);
2652 	prepare_task(next);
2653 	prepare_arch_switch(next);
2654 }
2655 
2656 /**
2657  * finish_task_switch - clean up after a task-switch
2658  * @prev: the thread we just switched away from.
2659  *
2660  * finish_task_switch must be called after the context switch, paired
2661  * with a prepare_task_switch call before the context switch.
2662  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2663  * and do any other architecture-specific cleanup actions.
2664  *
2665  * Note that we may have delayed dropping an mm in context_switch(). If
2666  * so, we finish that here outside of the runqueue lock. (Doing it
2667  * with the lock held can cause deadlocks; see schedule() for
2668  * details.)
2669  *
2670  * The context switch have flipped the stack from under us and restored the
2671  * local variables which were saved when this task called schedule() in the
2672  * past. prev == current is still correct but we need to recalculate this_rq
2673  * because prev may have moved to another CPU.
2674  */
2675 static struct rq *finish_task_switch(struct task_struct *prev)
2676 	__releases(rq->lock)
2677 {
2678 	struct rq *rq = this_rq();
2679 	struct mm_struct *mm = rq->prev_mm;
2680 	long prev_state;
2681 
2682 	/*
2683 	 * The previous task will have left us with a preempt_count of 2
2684 	 * because it left us after:
2685 	 *
2686 	 *	schedule()
2687 	 *	  preempt_disable();			// 1
2688 	 *	  __schedule()
2689 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2690 	 *
2691 	 * Also, see FORK_PREEMPT_COUNT.
2692 	 */
2693 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2694 		      "corrupted preempt_count: %s/%d/0x%x\n",
2695 		      current->comm, current->pid, preempt_count()))
2696 		preempt_count_set(FORK_PREEMPT_COUNT);
2697 
2698 	rq->prev_mm = NULL;
2699 
2700 	/*
2701 	 * A task struct has one reference for the use as "current".
2702 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 	 * schedule one last time. The schedule call will never return, and
2704 	 * the scheduled task must drop that reference.
2705 	 *
2706 	 * We must observe prev->state before clearing prev->on_cpu (in
2707 	 * finish_task), otherwise a concurrent wakeup can get prev
2708 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2709 	 * transition, resulting in a double drop.
2710 	 */
2711 	prev_state = prev->state;
2712 	vtime_task_switch(prev);
2713 	perf_event_task_sched_in(prev, current);
2714 	finish_task(prev);
2715 	finish_lock_switch(rq);
2716 	finish_arch_post_lock_switch();
2717 
2718 	fire_sched_in_preempt_notifiers(current);
2719 	/*
2720 	 * When switching through a kernel thread, the loop in
2721 	 * membarrier_{private,global}_expedited() may have observed that
2722 	 * kernel thread and not issued an IPI. It is therefore possible to
2723 	 * schedule between user->kernel->user threads without passing though
2724 	 * switch_mm(). Membarrier requires a barrier after storing to
2725 	 * rq->curr, before returning to userspace, so provide them here:
2726 	 *
2727 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2728 	 *   provided by mmdrop(),
2729 	 * - a sync_core for SYNC_CORE.
2730 	 */
2731 	if (mm) {
2732 		membarrier_mm_sync_core_before_usermode(mm);
2733 		mmdrop(mm);
2734 	}
2735 	if (unlikely(prev_state == TASK_DEAD)) {
2736 		if (prev->sched_class->task_dead)
2737 			prev->sched_class->task_dead(prev);
2738 
2739 		/*
2740 		 * Remove function-return probe instances associated with this
2741 		 * task and put them back on the free list.
2742 		 */
2743 		kprobe_flush_task(prev);
2744 
2745 		/* Task is done with its stack. */
2746 		put_task_stack(prev);
2747 
2748 		put_task_struct(prev);
2749 	}
2750 
2751 	tick_nohz_task_switch();
2752 	return rq;
2753 }
2754 
2755 #ifdef CONFIG_SMP
2756 
2757 /* rq->lock is NOT held, but preemption is disabled */
2758 static void __balance_callback(struct rq *rq)
2759 {
2760 	struct callback_head *head, *next;
2761 	void (*func)(struct rq *rq);
2762 	unsigned long flags;
2763 
2764 	raw_spin_lock_irqsave(&rq->lock, flags);
2765 	head = rq->balance_callback;
2766 	rq->balance_callback = NULL;
2767 	while (head) {
2768 		func = (void (*)(struct rq *))head->func;
2769 		next = head->next;
2770 		head->next = NULL;
2771 		head = next;
2772 
2773 		func(rq);
2774 	}
2775 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2776 }
2777 
2778 static inline void balance_callback(struct rq *rq)
2779 {
2780 	if (unlikely(rq->balance_callback))
2781 		__balance_callback(rq);
2782 }
2783 
2784 #else
2785 
2786 static inline void balance_callback(struct rq *rq)
2787 {
2788 }
2789 
2790 #endif
2791 
2792 /**
2793  * schedule_tail - first thing a freshly forked thread must call.
2794  * @prev: the thread we just switched away from.
2795  */
2796 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2797 	__releases(rq->lock)
2798 {
2799 	struct rq *rq;
2800 
2801 	/*
2802 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2803 	 * finish_task_switch() for details.
2804 	 *
2805 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2806 	 * and the preempt_enable() will end up enabling preemption (on
2807 	 * PREEMPT_COUNT kernels).
2808 	 */
2809 
2810 	rq = finish_task_switch(prev);
2811 	balance_callback(rq);
2812 	preempt_enable();
2813 
2814 	if (current->set_child_tid)
2815 		put_user(task_pid_vnr(current), current->set_child_tid);
2816 }
2817 
2818 /*
2819  * context_switch - switch to the new MM and the new thread's register state.
2820  */
2821 static __always_inline struct rq *
2822 context_switch(struct rq *rq, struct task_struct *prev,
2823 	       struct task_struct *next, struct rq_flags *rf)
2824 {
2825 	struct mm_struct *mm, *oldmm;
2826 
2827 	prepare_task_switch(rq, prev, next);
2828 
2829 	mm = next->mm;
2830 	oldmm = prev->active_mm;
2831 	/*
2832 	 * For paravirt, this is coupled with an exit in switch_to to
2833 	 * combine the page table reload and the switch backend into
2834 	 * one hypercall.
2835 	 */
2836 	arch_start_context_switch(prev);
2837 
2838 	/*
2839 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2840 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2841 	 * Both of these contain the full memory barrier required by
2842 	 * membarrier after storing to rq->curr, before returning to
2843 	 * user-space.
2844 	 */
2845 	if (!mm) {
2846 		next->active_mm = oldmm;
2847 		mmgrab(oldmm);
2848 		enter_lazy_tlb(oldmm, next);
2849 	} else
2850 		switch_mm_irqs_off(oldmm, mm, next);
2851 
2852 	if (!prev->mm) {
2853 		prev->active_mm = NULL;
2854 		rq->prev_mm = oldmm;
2855 	}
2856 
2857 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2858 
2859 	prepare_lock_switch(rq, next, rf);
2860 
2861 	/* Here we just switch the register state and the stack. */
2862 	switch_to(prev, next, prev);
2863 	barrier();
2864 
2865 	return finish_task_switch(prev);
2866 }
2867 
2868 /*
2869  * nr_running and nr_context_switches:
2870  *
2871  * externally visible scheduler statistics: current number of runnable
2872  * threads, total number of context switches performed since bootup.
2873  */
2874 unsigned long nr_running(void)
2875 {
2876 	unsigned long i, sum = 0;
2877 
2878 	for_each_online_cpu(i)
2879 		sum += cpu_rq(i)->nr_running;
2880 
2881 	return sum;
2882 }
2883 
2884 /*
2885  * Check if only the current task is running on the CPU.
2886  *
2887  * Caution: this function does not check that the caller has disabled
2888  * preemption, thus the result might have a time-of-check-to-time-of-use
2889  * race.  The caller is responsible to use it correctly, for example:
2890  *
2891  * - from a non-preemptable section (of course)
2892  *
2893  * - from a thread that is bound to a single CPU
2894  *
2895  * - in a loop with very short iterations (e.g. a polling loop)
2896  */
2897 bool single_task_running(void)
2898 {
2899 	return raw_rq()->nr_running == 1;
2900 }
2901 EXPORT_SYMBOL(single_task_running);
2902 
2903 unsigned long long nr_context_switches(void)
2904 {
2905 	int i;
2906 	unsigned long long sum = 0;
2907 
2908 	for_each_possible_cpu(i)
2909 		sum += cpu_rq(i)->nr_switches;
2910 
2911 	return sum;
2912 }
2913 
2914 /*
2915  * IO-wait accounting, and how its mostly bollocks (on SMP).
2916  *
2917  * The idea behind IO-wait account is to account the idle time that we could
2918  * have spend running if it were not for IO. That is, if we were to improve the
2919  * storage performance, we'd have a proportional reduction in IO-wait time.
2920  *
2921  * This all works nicely on UP, where, when a task blocks on IO, we account
2922  * idle time as IO-wait, because if the storage were faster, it could've been
2923  * running and we'd not be idle.
2924  *
2925  * This has been extended to SMP, by doing the same for each CPU. This however
2926  * is broken.
2927  *
2928  * Imagine for instance the case where two tasks block on one CPU, only the one
2929  * CPU will have IO-wait accounted, while the other has regular idle. Even
2930  * though, if the storage were faster, both could've ran at the same time,
2931  * utilising both CPUs.
2932  *
2933  * This means, that when looking globally, the current IO-wait accounting on
2934  * SMP is a lower bound, by reason of under accounting.
2935  *
2936  * Worse, since the numbers are provided per CPU, they are sometimes
2937  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2938  * associated with any one particular CPU, it can wake to another CPU than it
2939  * blocked on. This means the per CPU IO-wait number is meaningless.
2940  *
2941  * Task CPU affinities can make all that even more 'interesting'.
2942  */
2943 
2944 unsigned long nr_iowait(void)
2945 {
2946 	unsigned long i, sum = 0;
2947 
2948 	for_each_possible_cpu(i)
2949 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2950 
2951 	return sum;
2952 }
2953 
2954 /*
2955  * Consumers of these two interfaces, like for example the cpufreq menu
2956  * governor are using nonsensical data. Boosting frequency for a CPU that has
2957  * IO-wait which might not even end up running the task when it does become
2958  * runnable.
2959  */
2960 
2961 unsigned long nr_iowait_cpu(int cpu)
2962 {
2963 	struct rq *this = cpu_rq(cpu);
2964 	return atomic_read(&this->nr_iowait);
2965 }
2966 
2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2968 {
2969 	struct rq *rq = this_rq();
2970 	*nr_waiters = atomic_read(&rq->nr_iowait);
2971 	*load = rq->load.weight;
2972 }
2973 
2974 #ifdef CONFIG_SMP
2975 
2976 /*
2977  * sched_exec - execve() is a valuable balancing opportunity, because at
2978  * this point the task has the smallest effective memory and cache footprint.
2979  */
2980 void sched_exec(void)
2981 {
2982 	struct task_struct *p = current;
2983 	unsigned long flags;
2984 	int dest_cpu;
2985 
2986 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2987 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 	if (dest_cpu == smp_processor_id())
2989 		goto unlock;
2990 
2991 	if (likely(cpu_active(dest_cpu))) {
2992 		struct migration_arg arg = { p, dest_cpu };
2993 
2994 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2996 		return;
2997 	}
2998 unlock:
2999 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 }
3001 
3002 #endif
3003 
3004 DEFINE_PER_CPU(struct kernel_stat, kstat);
3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3006 
3007 EXPORT_PER_CPU_SYMBOL(kstat);
3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3009 
3010 /*
3011  * The function fair_sched_class.update_curr accesses the struct curr
3012  * and its field curr->exec_start; when called from task_sched_runtime(),
3013  * we observe a high rate of cache misses in practice.
3014  * Prefetching this data results in improved performance.
3015  */
3016 static inline void prefetch_curr_exec_start(struct task_struct *p)
3017 {
3018 #ifdef CONFIG_FAIR_GROUP_SCHED
3019 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020 #else
3021 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022 #endif
3023 	prefetch(curr);
3024 	prefetch(&curr->exec_start);
3025 }
3026 
3027 /*
3028  * Return accounted runtime for the task.
3029  * In case the task is currently running, return the runtime plus current's
3030  * pending runtime that have not been accounted yet.
3031  */
3032 unsigned long long task_sched_runtime(struct task_struct *p)
3033 {
3034 	struct rq_flags rf;
3035 	struct rq *rq;
3036 	u64 ns;
3037 
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3039 	/*
3040 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3041 	 * So we have a optimization chance when the task's delta_exec is 0.
3042 	 * Reading ->on_cpu is racy, but this is ok.
3043 	 *
3044 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3045 	 * If we race with it entering CPU, unaccounted time is 0. This is
3046 	 * indistinguishable from the read occurring a few cycles earlier.
3047 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 	 * been accounted, so we're correct here as well.
3049 	 */
3050 	if (!p->on_cpu || !task_on_rq_queued(p))
3051 		return p->se.sum_exec_runtime;
3052 #endif
3053 
3054 	rq = task_rq_lock(p, &rf);
3055 	/*
3056 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3057 	 * project cycles that may never be accounted to this
3058 	 * thread, breaking clock_gettime().
3059 	 */
3060 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3061 		prefetch_curr_exec_start(p);
3062 		update_rq_clock(rq);
3063 		p->sched_class->update_curr(rq);
3064 	}
3065 	ns = p->se.sum_exec_runtime;
3066 	task_rq_unlock(rq, p, &rf);
3067 
3068 	return ns;
3069 }
3070 
3071 /*
3072  * This function gets called by the timer code, with HZ frequency.
3073  * We call it with interrupts disabled.
3074  */
3075 void scheduler_tick(void)
3076 {
3077 	int cpu = smp_processor_id();
3078 	struct rq *rq = cpu_rq(cpu);
3079 	struct task_struct *curr = rq->curr;
3080 	struct rq_flags rf;
3081 
3082 	sched_clock_tick();
3083 
3084 	rq_lock(rq, &rf);
3085 
3086 	update_rq_clock(rq);
3087 	curr->sched_class->task_tick(rq, curr, 0);
3088 	cpu_load_update_active(rq);
3089 	calc_global_load_tick(rq);
3090 
3091 	rq_unlock(rq, &rf);
3092 
3093 	perf_event_task_tick();
3094 
3095 #ifdef CONFIG_SMP
3096 	rq->idle_balance = idle_cpu(cpu);
3097 	trigger_load_balance(rq);
3098 #endif
3099 	rq_last_tick_reset(rq);
3100 }
3101 
3102 #ifdef CONFIG_NO_HZ_FULL
3103 /**
3104  * scheduler_tick_max_deferment
3105  *
3106  * Keep at least one tick per second when a single
3107  * active task is running because the scheduler doesn't
3108  * yet completely support full dynticks environment.
3109  *
3110  * This makes sure that uptime, CFS vruntime, load
3111  * balancing, etc... continue to move forward, even
3112  * with a very low granularity.
3113  *
3114  * Return: Maximum deferment in nanoseconds.
3115  */
3116 u64 scheduler_tick_max_deferment(void)
3117 {
3118 	struct rq *rq = this_rq();
3119 	unsigned long next, now = READ_ONCE(jiffies);
3120 
3121 	next = rq->last_sched_tick + HZ;
3122 
3123 	if (time_before_eq(next, now))
3124 		return 0;
3125 
3126 	return jiffies_to_nsecs(next - now);
3127 }
3128 #endif
3129 
3130 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3131 				defined(CONFIG_PREEMPT_TRACER))
3132 /*
3133  * If the value passed in is equal to the current preempt count
3134  * then we just disabled preemption. Start timing the latency.
3135  */
3136 static inline void preempt_latency_start(int val)
3137 {
3138 	if (preempt_count() == val) {
3139 		unsigned long ip = get_lock_parent_ip();
3140 #ifdef CONFIG_DEBUG_PREEMPT
3141 		current->preempt_disable_ip = ip;
3142 #endif
3143 		trace_preempt_off(CALLER_ADDR0, ip);
3144 	}
3145 }
3146 
3147 void preempt_count_add(int val)
3148 {
3149 #ifdef CONFIG_DEBUG_PREEMPT
3150 	/*
3151 	 * Underflow?
3152 	 */
3153 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3154 		return;
3155 #endif
3156 	__preempt_count_add(val);
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158 	/*
3159 	 * Spinlock count overflowing soon?
3160 	 */
3161 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3162 				PREEMPT_MASK - 10);
3163 #endif
3164 	preempt_latency_start(val);
3165 }
3166 EXPORT_SYMBOL(preempt_count_add);
3167 NOKPROBE_SYMBOL(preempt_count_add);
3168 
3169 /*
3170  * If the value passed in equals to the current preempt count
3171  * then we just enabled preemption. Stop timing the latency.
3172  */
3173 static inline void preempt_latency_stop(int val)
3174 {
3175 	if (preempt_count() == val)
3176 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3177 }
3178 
3179 void preempt_count_sub(int val)
3180 {
3181 #ifdef CONFIG_DEBUG_PREEMPT
3182 	/*
3183 	 * Underflow?
3184 	 */
3185 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3186 		return;
3187 	/*
3188 	 * Is the spinlock portion underflowing?
3189 	 */
3190 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3191 			!(preempt_count() & PREEMPT_MASK)))
3192 		return;
3193 #endif
3194 
3195 	preempt_latency_stop(val);
3196 	__preempt_count_sub(val);
3197 }
3198 EXPORT_SYMBOL(preempt_count_sub);
3199 NOKPROBE_SYMBOL(preempt_count_sub);
3200 
3201 #else
3202 static inline void preempt_latency_start(int val) { }
3203 static inline void preempt_latency_stop(int val) { }
3204 #endif
3205 
3206 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3207 {
3208 #ifdef CONFIG_DEBUG_PREEMPT
3209 	return p->preempt_disable_ip;
3210 #else
3211 	return 0;
3212 #endif
3213 }
3214 
3215 /*
3216  * Print scheduling while atomic bug:
3217  */
3218 static noinline void __schedule_bug(struct task_struct *prev)
3219 {
3220 	/* Save this before calling printk(), since that will clobber it */
3221 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3222 
3223 	if (oops_in_progress)
3224 		return;
3225 
3226 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3227 		prev->comm, prev->pid, preempt_count());
3228 
3229 	debug_show_held_locks(prev);
3230 	print_modules();
3231 	if (irqs_disabled())
3232 		print_irqtrace_events(prev);
3233 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3234 	    && in_atomic_preempt_off()) {
3235 		pr_err("Preemption disabled at:");
3236 		print_ip_sym(preempt_disable_ip);
3237 		pr_cont("\n");
3238 	}
3239 	if (panic_on_warn)
3240 		panic("scheduling while atomic\n");
3241 
3242 	dump_stack();
3243 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3244 }
3245 
3246 /*
3247  * Various schedule()-time debugging checks and statistics:
3248  */
3249 static inline void schedule_debug(struct task_struct *prev)
3250 {
3251 #ifdef CONFIG_SCHED_STACK_END_CHECK
3252 	if (task_stack_end_corrupted(prev))
3253 		panic("corrupted stack end detected inside scheduler\n");
3254 #endif
3255 
3256 	if (unlikely(in_atomic_preempt_off())) {
3257 		__schedule_bug(prev);
3258 		preempt_count_set(PREEMPT_DISABLED);
3259 	}
3260 	rcu_sleep_check();
3261 
3262 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3263 
3264 	schedstat_inc(this_rq()->sched_count);
3265 }
3266 
3267 /*
3268  * Pick up the highest-prio task:
3269  */
3270 static inline struct task_struct *
3271 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3272 {
3273 	const struct sched_class *class;
3274 	struct task_struct *p;
3275 
3276 	/*
3277 	 * Optimization: we know that if all tasks are in the fair class we can
3278 	 * call that function directly, but only if the @prev task wasn't of a
3279 	 * higher scheduling class, because otherwise those loose the
3280 	 * opportunity to pull in more work from other CPUs.
3281 	 */
3282 	if (likely((prev->sched_class == &idle_sched_class ||
3283 		    prev->sched_class == &fair_sched_class) &&
3284 		   rq->nr_running == rq->cfs.h_nr_running)) {
3285 
3286 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3287 		if (unlikely(p == RETRY_TASK))
3288 			goto again;
3289 
3290 		/* Assumes fair_sched_class->next == idle_sched_class */
3291 		if (unlikely(!p))
3292 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3293 
3294 		return p;
3295 	}
3296 
3297 again:
3298 	for_each_class(class) {
3299 		p = class->pick_next_task(rq, prev, rf);
3300 		if (p) {
3301 			if (unlikely(p == RETRY_TASK))
3302 				goto again;
3303 			return p;
3304 		}
3305 	}
3306 
3307 	/* The idle class should always have a runnable task: */
3308 	BUG();
3309 }
3310 
3311 /*
3312  * __schedule() is the main scheduler function.
3313  *
3314  * The main means of driving the scheduler and thus entering this function are:
3315  *
3316  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3317  *
3318  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3319  *      paths. For example, see arch/x86/entry_64.S.
3320  *
3321  *      To drive preemption between tasks, the scheduler sets the flag in timer
3322  *      interrupt handler scheduler_tick().
3323  *
3324  *   3. Wakeups don't really cause entry into schedule(). They add a
3325  *      task to the run-queue and that's it.
3326  *
3327  *      Now, if the new task added to the run-queue preempts the current
3328  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3329  *      called on the nearest possible occasion:
3330  *
3331  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3332  *
3333  *         - in syscall or exception context, at the next outmost
3334  *           preempt_enable(). (this might be as soon as the wake_up()'s
3335  *           spin_unlock()!)
3336  *
3337  *         - in IRQ context, return from interrupt-handler to
3338  *           preemptible context
3339  *
3340  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3341  *         then at the next:
3342  *
3343  *          - cond_resched() call
3344  *          - explicit schedule() call
3345  *          - return from syscall or exception to user-space
3346  *          - return from interrupt-handler to user-space
3347  *
3348  * WARNING: must be called with preemption disabled!
3349  */
3350 static void __sched notrace __schedule(bool preempt)
3351 {
3352 	struct task_struct *prev, *next;
3353 	unsigned long *switch_count;
3354 	struct rq_flags rf;
3355 	struct rq *rq;
3356 	int cpu;
3357 
3358 	cpu = smp_processor_id();
3359 	rq = cpu_rq(cpu);
3360 	prev = rq->curr;
3361 
3362 	schedule_debug(prev);
3363 
3364 	if (sched_feat(HRTICK))
3365 		hrtick_clear(rq);
3366 
3367 	local_irq_disable();
3368 	rcu_note_context_switch(preempt);
3369 
3370 	/*
3371 	 * Make sure that signal_pending_state()->signal_pending() below
3372 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3373 	 * done by the caller to avoid the race with signal_wake_up().
3374 	 *
3375 	 * The membarrier system call requires a full memory barrier
3376 	 * after coming from user-space, before storing to rq->curr.
3377 	 */
3378 	rq_lock(rq, &rf);
3379 	smp_mb__after_spinlock();
3380 
3381 	/* Promote REQ to ACT */
3382 	rq->clock_update_flags <<= 1;
3383 	update_rq_clock(rq);
3384 
3385 	switch_count = &prev->nivcsw;
3386 	if (!preempt && prev->state) {
3387 		if (unlikely(signal_pending_state(prev->state, prev))) {
3388 			prev->state = TASK_RUNNING;
3389 		} else {
3390 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3391 			prev->on_rq = 0;
3392 
3393 			if (prev->in_iowait) {
3394 				atomic_inc(&rq->nr_iowait);
3395 				delayacct_blkio_start();
3396 			}
3397 
3398 			/*
3399 			 * If a worker went to sleep, notify and ask workqueue
3400 			 * whether it wants to wake up a task to maintain
3401 			 * concurrency.
3402 			 */
3403 			if (prev->flags & PF_WQ_WORKER) {
3404 				struct task_struct *to_wakeup;
3405 
3406 				to_wakeup = wq_worker_sleeping(prev);
3407 				if (to_wakeup)
3408 					try_to_wake_up_local(to_wakeup, &rf);
3409 			}
3410 		}
3411 		switch_count = &prev->nvcsw;
3412 	}
3413 
3414 	next = pick_next_task(rq, prev, &rf);
3415 	clear_tsk_need_resched(prev);
3416 	clear_preempt_need_resched();
3417 
3418 	if (likely(prev != next)) {
3419 		rq->nr_switches++;
3420 		rq->curr = next;
3421 		/*
3422 		 * The membarrier system call requires each architecture
3423 		 * to have a full memory barrier after updating
3424 		 * rq->curr, before returning to user-space.
3425 		 *
3426 		 * Here are the schemes providing that barrier on the
3427 		 * various architectures:
3428 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3429 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3430 		 * - finish_lock_switch() for weakly-ordered
3431 		 *   architectures where spin_unlock is a full barrier,
3432 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3433 		 *   is a RELEASE barrier),
3434 		 */
3435 		++*switch_count;
3436 
3437 		trace_sched_switch(preempt, prev, next);
3438 
3439 		/* Also unlocks the rq: */
3440 		rq = context_switch(rq, prev, next, &rf);
3441 	} else {
3442 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443 		rq_unlock_irq(rq, &rf);
3444 	}
3445 
3446 	balance_callback(rq);
3447 }
3448 
3449 void __noreturn do_task_dead(void)
3450 {
3451 	/*
3452 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 	 * when the following two conditions become true.
3454 	 *   - There is race condition of mmap_sem (It is acquired by
3455 	 *     exit_mm()), and
3456 	 *   - SMI occurs before setting TASK_RUNINNG.
3457 	 *     (or hypervisor of virtual machine switches to other guest)
3458 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 	 *
3460 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 	 * is held by try_to_wake_up()
3462 	 */
3463 	raw_spin_lock_irq(&current->pi_lock);
3464 	raw_spin_unlock_irq(&current->pi_lock);
3465 
3466 	/* Causes final put_task_struct in finish_task_switch(): */
3467 	__set_current_state(TASK_DEAD);
3468 
3469 	/* Tell freezer to ignore us: */
3470 	current->flags |= PF_NOFREEZE;
3471 
3472 	__schedule(false);
3473 	BUG();
3474 
3475 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 	for (;;)
3477 		cpu_relax();
3478 }
3479 
3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 		return;
3484 	/*
3485 	 * If we are going to sleep and we have plugged IO queued,
3486 	 * make sure to submit it to avoid deadlocks.
3487 	 */
3488 	if (blk_needs_flush_plug(tsk))
3489 		blk_schedule_flush_plug(tsk);
3490 }
3491 
3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 	struct task_struct *tsk = current;
3495 
3496 	sched_submit_work(tsk);
3497 	do {
3498 		preempt_disable();
3499 		__schedule(false);
3500 		sched_preempt_enable_no_resched();
3501 	} while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504 
3505 /*
3506  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3507  * state (have scheduled out non-voluntarily) by making sure that all
3508  * tasks have either left the run queue or have gone into user space.
3509  * As idle tasks do not do either, they must not ever be preempted
3510  * (schedule out non-voluntarily).
3511  *
3512  * schedule_idle() is similar to schedule_preempt_disable() except that it
3513  * never enables preemption because it does not call sched_submit_work().
3514  */
3515 void __sched schedule_idle(void)
3516 {
3517 	/*
3518 	 * As this skips calling sched_submit_work(), which the idle task does
3519 	 * regardless because that function is a nop when the task is in a
3520 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3521 	 * current task can be in any other state. Note, idle is always in the
3522 	 * TASK_RUNNING state.
3523 	 */
3524 	WARN_ON_ONCE(current->state);
3525 	do {
3526 		__schedule(false);
3527 	} while (need_resched());
3528 }
3529 
3530 #ifdef CONFIG_CONTEXT_TRACKING
3531 asmlinkage __visible void __sched schedule_user(void)
3532 {
3533 	/*
3534 	 * If we come here after a random call to set_need_resched(),
3535 	 * or we have been woken up remotely but the IPI has not yet arrived,
3536 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 	 * we find a better solution.
3538 	 *
3539 	 * NB: There are buggy callers of this function.  Ideally we
3540 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541 	 * too frequently to make sense yet.
3542 	 */
3543 	enum ctx_state prev_state = exception_enter();
3544 	schedule();
3545 	exception_exit(prev_state);
3546 }
3547 #endif
3548 
3549 /**
3550  * schedule_preempt_disabled - called with preemption disabled
3551  *
3552  * Returns with preemption disabled. Note: preempt_count must be 1
3553  */
3554 void __sched schedule_preempt_disabled(void)
3555 {
3556 	sched_preempt_enable_no_resched();
3557 	schedule();
3558 	preempt_disable();
3559 }
3560 
3561 static void __sched notrace preempt_schedule_common(void)
3562 {
3563 	do {
3564 		/*
3565 		 * Because the function tracer can trace preempt_count_sub()
3566 		 * and it also uses preempt_enable/disable_notrace(), if
3567 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 		 * by the function tracer will call this function again and
3569 		 * cause infinite recursion.
3570 		 *
3571 		 * Preemption must be disabled here before the function
3572 		 * tracer can trace. Break up preempt_disable() into two
3573 		 * calls. One to disable preemption without fear of being
3574 		 * traced. The other to still record the preemption latency,
3575 		 * which can also be traced by the function tracer.
3576 		 */
3577 		preempt_disable_notrace();
3578 		preempt_latency_start(1);
3579 		__schedule(true);
3580 		preempt_latency_stop(1);
3581 		preempt_enable_no_resched_notrace();
3582 
3583 		/*
3584 		 * Check again in case we missed a preemption opportunity
3585 		 * between schedule and now.
3586 		 */
3587 	} while (need_resched());
3588 }
3589 
3590 #ifdef CONFIG_PREEMPT
3591 /*
3592  * this is the entry point to schedule() from in-kernel preemption
3593  * off of preempt_enable. Kernel preemptions off return from interrupt
3594  * occur there and call schedule directly.
3595  */
3596 asmlinkage __visible void __sched notrace preempt_schedule(void)
3597 {
3598 	/*
3599 	 * If there is a non-zero preempt_count or interrupts are disabled,
3600 	 * we do not want to preempt the current task. Just return..
3601 	 */
3602 	if (likely(!preemptible()))
3603 		return;
3604 
3605 	preempt_schedule_common();
3606 }
3607 NOKPROBE_SYMBOL(preempt_schedule);
3608 EXPORT_SYMBOL(preempt_schedule);
3609 
3610 /**
3611  * preempt_schedule_notrace - preempt_schedule called by tracing
3612  *
3613  * The tracing infrastructure uses preempt_enable_notrace to prevent
3614  * recursion and tracing preempt enabling caused by the tracing
3615  * infrastructure itself. But as tracing can happen in areas coming
3616  * from userspace or just about to enter userspace, a preempt enable
3617  * can occur before user_exit() is called. This will cause the scheduler
3618  * to be called when the system is still in usermode.
3619  *
3620  * To prevent this, the preempt_enable_notrace will use this function
3621  * instead of preempt_schedule() to exit user context if needed before
3622  * calling the scheduler.
3623  */
3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3625 {
3626 	enum ctx_state prev_ctx;
3627 
3628 	if (likely(!preemptible()))
3629 		return;
3630 
3631 	do {
3632 		/*
3633 		 * Because the function tracer can trace preempt_count_sub()
3634 		 * and it also uses preempt_enable/disable_notrace(), if
3635 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 		 * by the function tracer will call this function again and
3637 		 * cause infinite recursion.
3638 		 *
3639 		 * Preemption must be disabled here before the function
3640 		 * tracer can trace. Break up preempt_disable() into two
3641 		 * calls. One to disable preemption without fear of being
3642 		 * traced. The other to still record the preemption latency,
3643 		 * which can also be traced by the function tracer.
3644 		 */
3645 		preempt_disable_notrace();
3646 		preempt_latency_start(1);
3647 		/*
3648 		 * Needs preempt disabled in case user_exit() is traced
3649 		 * and the tracer calls preempt_enable_notrace() causing
3650 		 * an infinite recursion.
3651 		 */
3652 		prev_ctx = exception_enter();
3653 		__schedule(true);
3654 		exception_exit(prev_ctx);
3655 
3656 		preempt_latency_stop(1);
3657 		preempt_enable_no_resched_notrace();
3658 	} while (need_resched());
3659 }
3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3661 
3662 #endif /* CONFIG_PREEMPT */
3663 
3664 /*
3665  * this is the entry point to schedule() from kernel preemption
3666  * off of irq context.
3667  * Note, that this is called and return with irqs disabled. This will
3668  * protect us against recursive calling from irq.
3669  */
3670 asmlinkage __visible void __sched preempt_schedule_irq(void)
3671 {
3672 	enum ctx_state prev_state;
3673 
3674 	/* Catch callers which need to be fixed */
3675 	BUG_ON(preempt_count() || !irqs_disabled());
3676 
3677 	prev_state = exception_enter();
3678 
3679 	do {
3680 		preempt_disable();
3681 		local_irq_enable();
3682 		__schedule(true);
3683 		local_irq_disable();
3684 		sched_preempt_enable_no_resched();
3685 	} while (need_resched());
3686 
3687 	exception_exit(prev_state);
3688 }
3689 
3690 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3691 			  void *key)
3692 {
3693 	return try_to_wake_up(curr->private, mode, wake_flags);
3694 }
3695 EXPORT_SYMBOL(default_wake_function);
3696 
3697 #ifdef CONFIG_RT_MUTEXES
3698 
3699 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3700 {
3701 	if (pi_task)
3702 		prio = min(prio, pi_task->prio);
3703 
3704 	return prio;
3705 }
3706 
3707 static inline int rt_effective_prio(struct task_struct *p, int prio)
3708 {
3709 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3710 
3711 	return __rt_effective_prio(pi_task, prio);
3712 }
3713 
3714 /*
3715  * rt_mutex_setprio - set the current priority of a task
3716  * @p: task to boost
3717  * @pi_task: donor task
3718  *
3719  * This function changes the 'effective' priority of a task. It does
3720  * not touch ->normal_prio like __setscheduler().
3721  *
3722  * Used by the rt_mutex code to implement priority inheritance
3723  * logic. Call site only calls if the priority of the task changed.
3724  */
3725 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3726 {
3727 	int prio, oldprio, queued, running, queue_flag =
3728 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3729 	const struct sched_class *prev_class;
3730 	struct rq_flags rf;
3731 	struct rq *rq;
3732 
3733 	/* XXX used to be waiter->prio, not waiter->task->prio */
3734 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3735 
3736 	/*
3737 	 * If nothing changed; bail early.
3738 	 */
3739 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3740 		return;
3741 
3742 	rq = __task_rq_lock(p, &rf);
3743 	update_rq_clock(rq);
3744 	/*
3745 	 * Set under pi_lock && rq->lock, such that the value can be used under
3746 	 * either lock.
3747 	 *
3748 	 * Note that there is loads of tricky to make this pointer cache work
3749 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3750 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3751 	 * task is allowed to run again (and can exit). This ensures the pointer
3752 	 * points to a blocked task -- which guaratees the task is present.
3753 	 */
3754 	p->pi_top_task = pi_task;
3755 
3756 	/*
3757 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3758 	 */
3759 	if (prio == p->prio && !dl_prio(prio))
3760 		goto out_unlock;
3761 
3762 	/*
3763 	 * Idle task boosting is a nono in general. There is one
3764 	 * exception, when PREEMPT_RT and NOHZ is active:
3765 	 *
3766 	 * The idle task calls get_next_timer_interrupt() and holds
3767 	 * the timer wheel base->lock on the CPU and another CPU wants
3768 	 * to access the timer (probably to cancel it). We can safely
3769 	 * ignore the boosting request, as the idle CPU runs this code
3770 	 * with interrupts disabled and will complete the lock
3771 	 * protected section without being interrupted. So there is no
3772 	 * real need to boost.
3773 	 */
3774 	if (unlikely(p == rq->idle)) {
3775 		WARN_ON(p != rq->curr);
3776 		WARN_ON(p->pi_blocked_on);
3777 		goto out_unlock;
3778 	}
3779 
3780 	trace_sched_pi_setprio(p, pi_task);
3781 	oldprio = p->prio;
3782 
3783 	if (oldprio == prio)
3784 		queue_flag &= ~DEQUEUE_MOVE;
3785 
3786 	prev_class = p->sched_class;
3787 	queued = task_on_rq_queued(p);
3788 	running = task_current(rq, p);
3789 	if (queued)
3790 		dequeue_task(rq, p, queue_flag);
3791 	if (running)
3792 		put_prev_task(rq, p);
3793 
3794 	/*
3795 	 * Boosting condition are:
3796 	 * 1. -rt task is running and holds mutex A
3797 	 *      --> -dl task blocks on mutex A
3798 	 *
3799 	 * 2. -dl task is running and holds mutex A
3800 	 *      --> -dl task blocks on mutex A and could preempt the
3801 	 *          running task
3802 	 */
3803 	if (dl_prio(prio)) {
3804 		if (!dl_prio(p->normal_prio) ||
3805 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3806 			p->dl.dl_boosted = 1;
3807 			queue_flag |= ENQUEUE_REPLENISH;
3808 		} else
3809 			p->dl.dl_boosted = 0;
3810 		p->sched_class = &dl_sched_class;
3811 	} else if (rt_prio(prio)) {
3812 		if (dl_prio(oldprio))
3813 			p->dl.dl_boosted = 0;
3814 		if (oldprio < prio)
3815 			queue_flag |= ENQUEUE_HEAD;
3816 		p->sched_class = &rt_sched_class;
3817 	} else {
3818 		if (dl_prio(oldprio))
3819 			p->dl.dl_boosted = 0;
3820 		if (rt_prio(oldprio))
3821 			p->rt.timeout = 0;
3822 		p->sched_class = &fair_sched_class;
3823 	}
3824 
3825 	p->prio = prio;
3826 
3827 	if (queued)
3828 		enqueue_task(rq, p, queue_flag);
3829 	if (running)
3830 		set_curr_task(rq, p);
3831 
3832 	check_class_changed(rq, p, prev_class, oldprio);
3833 out_unlock:
3834 	/* Avoid rq from going away on us: */
3835 	preempt_disable();
3836 	__task_rq_unlock(rq, &rf);
3837 
3838 	balance_callback(rq);
3839 	preempt_enable();
3840 }
3841 #else
3842 static inline int rt_effective_prio(struct task_struct *p, int prio)
3843 {
3844 	return prio;
3845 }
3846 #endif
3847 
3848 void set_user_nice(struct task_struct *p, long nice)
3849 {
3850 	bool queued, running;
3851 	int old_prio, delta;
3852 	struct rq_flags rf;
3853 	struct rq *rq;
3854 
3855 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3856 		return;
3857 	/*
3858 	 * We have to be careful, if called from sys_setpriority(),
3859 	 * the task might be in the middle of scheduling on another CPU.
3860 	 */
3861 	rq = task_rq_lock(p, &rf);
3862 	update_rq_clock(rq);
3863 
3864 	/*
3865 	 * The RT priorities are set via sched_setscheduler(), but we still
3866 	 * allow the 'normal' nice value to be set - but as expected
3867 	 * it wont have any effect on scheduling until the task is
3868 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3869 	 */
3870 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3871 		p->static_prio = NICE_TO_PRIO(nice);
3872 		goto out_unlock;
3873 	}
3874 	queued = task_on_rq_queued(p);
3875 	running = task_current(rq, p);
3876 	if (queued)
3877 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3878 	if (running)
3879 		put_prev_task(rq, p);
3880 
3881 	p->static_prio = NICE_TO_PRIO(nice);
3882 	set_load_weight(p, true);
3883 	old_prio = p->prio;
3884 	p->prio = effective_prio(p);
3885 	delta = p->prio - old_prio;
3886 
3887 	if (queued) {
3888 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3889 		/*
3890 		 * If the task increased its priority or is running and
3891 		 * lowered its priority, then reschedule its CPU:
3892 		 */
3893 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3894 			resched_curr(rq);
3895 	}
3896 	if (running)
3897 		set_curr_task(rq, p);
3898 out_unlock:
3899 	task_rq_unlock(rq, p, &rf);
3900 }
3901 EXPORT_SYMBOL(set_user_nice);
3902 
3903 /*
3904  * can_nice - check if a task can reduce its nice value
3905  * @p: task
3906  * @nice: nice value
3907  */
3908 int can_nice(const struct task_struct *p, const int nice)
3909 {
3910 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3911 	int nice_rlim = nice_to_rlimit(nice);
3912 
3913 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3914 		capable(CAP_SYS_NICE));
3915 }
3916 
3917 #ifdef __ARCH_WANT_SYS_NICE
3918 
3919 /*
3920  * sys_nice - change the priority of the current process.
3921  * @increment: priority increment
3922  *
3923  * sys_setpriority is a more generic, but much slower function that
3924  * does similar things.
3925  */
3926 SYSCALL_DEFINE1(nice, int, increment)
3927 {
3928 	long nice, retval;
3929 
3930 	/*
3931 	 * Setpriority might change our priority at the same moment.
3932 	 * We don't have to worry. Conceptually one call occurs first
3933 	 * and we have a single winner.
3934 	 */
3935 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3936 	nice = task_nice(current) + increment;
3937 
3938 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3939 	if (increment < 0 && !can_nice(current, nice))
3940 		return -EPERM;
3941 
3942 	retval = security_task_setnice(current, nice);
3943 	if (retval)
3944 		return retval;
3945 
3946 	set_user_nice(current, nice);
3947 	return 0;
3948 }
3949 
3950 #endif
3951 
3952 /**
3953  * task_prio - return the priority value of a given task.
3954  * @p: the task in question.
3955  *
3956  * Return: The priority value as seen by users in /proc.
3957  * RT tasks are offset by -200. Normal tasks are centered
3958  * around 0, value goes from -16 to +15.
3959  */
3960 int task_prio(const struct task_struct *p)
3961 {
3962 	return p->prio - MAX_RT_PRIO;
3963 }
3964 
3965 /**
3966  * idle_cpu - is a given CPU idle currently?
3967  * @cpu: the processor in question.
3968  *
3969  * Return: 1 if the CPU is currently idle. 0 otherwise.
3970  */
3971 int idle_cpu(int cpu)
3972 {
3973 	struct rq *rq = cpu_rq(cpu);
3974 
3975 	if (rq->curr != rq->idle)
3976 		return 0;
3977 
3978 	if (rq->nr_running)
3979 		return 0;
3980 
3981 #ifdef CONFIG_SMP
3982 	if (!llist_empty(&rq->wake_list))
3983 		return 0;
3984 #endif
3985 
3986 	return 1;
3987 }
3988 
3989 /**
3990  * idle_task - return the idle task for a given CPU.
3991  * @cpu: the processor in question.
3992  *
3993  * Return: The idle task for the CPU @cpu.
3994  */
3995 struct task_struct *idle_task(int cpu)
3996 {
3997 	return cpu_rq(cpu)->idle;
3998 }
3999 
4000 /**
4001  * find_process_by_pid - find a process with a matching PID value.
4002  * @pid: the pid in question.
4003  *
4004  * The task of @pid, if found. %NULL otherwise.
4005  */
4006 static struct task_struct *find_process_by_pid(pid_t pid)
4007 {
4008 	return pid ? find_task_by_vpid(pid) : current;
4009 }
4010 
4011 /*
4012  * sched_setparam() passes in -1 for its policy, to let the functions
4013  * it calls know not to change it.
4014  */
4015 #define SETPARAM_POLICY	-1
4016 
4017 static void __setscheduler_params(struct task_struct *p,
4018 		const struct sched_attr *attr)
4019 {
4020 	int policy = attr->sched_policy;
4021 
4022 	if (policy == SETPARAM_POLICY)
4023 		policy = p->policy;
4024 
4025 	p->policy = policy;
4026 
4027 	if (dl_policy(policy))
4028 		__setparam_dl(p, attr);
4029 	else if (fair_policy(policy))
4030 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4031 
4032 	/*
4033 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4034 	 * !rt_policy. Always setting this ensures that things like
4035 	 * getparam()/getattr() don't report silly values for !rt tasks.
4036 	 */
4037 	p->rt_priority = attr->sched_priority;
4038 	p->normal_prio = normal_prio(p);
4039 	set_load_weight(p, true);
4040 }
4041 
4042 /* Actually do priority change: must hold pi & rq lock. */
4043 static void __setscheduler(struct rq *rq, struct task_struct *p,
4044 			   const struct sched_attr *attr, bool keep_boost)
4045 {
4046 	__setscheduler_params(p, attr);
4047 
4048 	/*
4049 	 * Keep a potential priority boosting if called from
4050 	 * sched_setscheduler().
4051 	 */
4052 	p->prio = normal_prio(p);
4053 	if (keep_boost)
4054 		p->prio = rt_effective_prio(p, p->prio);
4055 
4056 	if (dl_prio(p->prio))
4057 		p->sched_class = &dl_sched_class;
4058 	else if (rt_prio(p->prio))
4059 		p->sched_class = &rt_sched_class;
4060 	else
4061 		p->sched_class = &fair_sched_class;
4062 }
4063 
4064 /*
4065  * Check the target process has a UID that matches the current process's:
4066  */
4067 static bool check_same_owner(struct task_struct *p)
4068 {
4069 	const struct cred *cred = current_cred(), *pcred;
4070 	bool match;
4071 
4072 	rcu_read_lock();
4073 	pcred = __task_cred(p);
4074 	match = (uid_eq(cred->euid, pcred->euid) ||
4075 		 uid_eq(cred->euid, pcred->uid));
4076 	rcu_read_unlock();
4077 	return match;
4078 }
4079 
4080 static int __sched_setscheduler(struct task_struct *p,
4081 				const struct sched_attr *attr,
4082 				bool user, bool pi)
4083 {
4084 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4085 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4086 	int retval, oldprio, oldpolicy = -1, queued, running;
4087 	int new_effective_prio, policy = attr->sched_policy;
4088 	const struct sched_class *prev_class;
4089 	struct rq_flags rf;
4090 	int reset_on_fork;
4091 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4092 	struct rq *rq;
4093 
4094 	/* The pi code expects interrupts enabled */
4095 	BUG_ON(pi && in_interrupt());
4096 recheck:
4097 	/* Double check policy once rq lock held: */
4098 	if (policy < 0) {
4099 		reset_on_fork = p->sched_reset_on_fork;
4100 		policy = oldpolicy = p->policy;
4101 	} else {
4102 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4103 
4104 		if (!valid_policy(policy))
4105 			return -EINVAL;
4106 	}
4107 
4108 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4109 		return -EINVAL;
4110 
4111 	/*
4112 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4113 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4114 	 * SCHED_BATCH and SCHED_IDLE is 0.
4115 	 */
4116 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4117 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4118 		return -EINVAL;
4119 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4120 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4121 		return -EINVAL;
4122 
4123 	/*
4124 	 * Allow unprivileged RT tasks to decrease priority:
4125 	 */
4126 	if (user && !capable(CAP_SYS_NICE)) {
4127 		if (fair_policy(policy)) {
4128 			if (attr->sched_nice < task_nice(p) &&
4129 			    !can_nice(p, attr->sched_nice))
4130 				return -EPERM;
4131 		}
4132 
4133 		if (rt_policy(policy)) {
4134 			unsigned long rlim_rtprio =
4135 					task_rlimit(p, RLIMIT_RTPRIO);
4136 
4137 			/* Can't set/change the rt policy: */
4138 			if (policy != p->policy && !rlim_rtprio)
4139 				return -EPERM;
4140 
4141 			/* Can't increase priority: */
4142 			if (attr->sched_priority > p->rt_priority &&
4143 			    attr->sched_priority > rlim_rtprio)
4144 				return -EPERM;
4145 		}
4146 
4147 		 /*
4148 		  * Can't set/change SCHED_DEADLINE policy at all for now
4149 		  * (safest behavior); in the future we would like to allow
4150 		  * unprivileged DL tasks to increase their relative deadline
4151 		  * or reduce their runtime (both ways reducing utilization)
4152 		  */
4153 		if (dl_policy(policy))
4154 			return -EPERM;
4155 
4156 		/*
4157 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4158 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4159 		 */
4160 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4161 			if (!can_nice(p, task_nice(p)))
4162 				return -EPERM;
4163 		}
4164 
4165 		/* Can't change other user's priorities: */
4166 		if (!check_same_owner(p))
4167 			return -EPERM;
4168 
4169 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4170 		if (p->sched_reset_on_fork && !reset_on_fork)
4171 			return -EPERM;
4172 	}
4173 
4174 	if (user) {
4175 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4176 			return -EINVAL;
4177 
4178 		retval = security_task_setscheduler(p);
4179 		if (retval)
4180 			return retval;
4181 	}
4182 
4183 	/*
4184 	 * Make sure no PI-waiters arrive (or leave) while we are
4185 	 * changing the priority of the task:
4186 	 *
4187 	 * To be able to change p->policy safely, the appropriate
4188 	 * runqueue lock must be held.
4189 	 */
4190 	rq = task_rq_lock(p, &rf);
4191 	update_rq_clock(rq);
4192 
4193 	/*
4194 	 * Changing the policy of the stop threads its a very bad idea:
4195 	 */
4196 	if (p == rq->stop) {
4197 		task_rq_unlock(rq, p, &rf);
4198 		return -EINVAL;
4199 	}
4200 
4201 	/*
4202 	 * If not changing anything there's no need to proceed further,
4203 	 * but store a possible modification of reset_on_fork.
4204 	 */
4205 	if (unlikely(policy == p->policy)) {
4206 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4207 			goto change;
4208 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4209 			goto change;
4210 		if (dl_policy(policy) && dl_param_changed(p, attr))
4211 			goto change;
4212 
4213 		p->sched_reset_on_fork = reset_on_fork;
4214 		task_rq_unlock(rq, p, &rf);
4215 		return 0;
4216 	}
4217 change:
4218 
4219 	if (user) {
4220 #ifdef CONFIG_RT_GROUP_SCHED
4221 		/*
4222 		 * Do not allow realtime tasks into groups that have no runtime
4223 		 * assigned.
4224 		 */
4225 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 				!task_group_is_autogroup(task_group(p))) {
4228 			task_rq_unlock(rq, p, &rf);
4229 			return -EPERM;
4230 		}
4231 #endif
4232 #ifdef CONFIG_SMP
4233 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4234 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4235 			cpumask_t *span = rq->rd->span;
4236 
4237 			/*
4238 			 * Don't allow tasks with an affinity mask smaller than
4239 			 * the entire root_domain to become SCHED_DEADLINE. We
4240 			 * will also fail if there's no bandwidth available.
4241 			 */
4242 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4243 			    rq->rd->dl_bw.bw == 0) {
4244 				task_rq_unlock(rq, p, &rf);
4245 				return -EPERM;
4246 			}
4247 		}
4248 #endif
4249 	}
4250 
4251 	/* Re-check policy now with rq lock held: */
4252 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4253 		policy = oldpolicy = -1;
4254 		task_rq_unlock(rq, p, &rf);
4255 		goto recheck;
4256 	}
4257 
4258 	/*
4259 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4260 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4261 	 * is available.
4262 	 */
4263 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4264 		task_rq_unlock(rq, p, &rf);
4265 		return -EBUSY;
4266 	}
4267 
4268 	p->sched_reset_on_fork = reset_on_fork;
4269 	oldprio = p->prio;
4270 
4271 	if (pi) {
4272 		/*
4273 		 * Take priority boosted tasks into account. If the new
4274 		 * effective priority is unchanged, we just store the new
4275 		 * normal parameters and do not touch the scheduler class and
4276 		 * the runqueue. This will be done when the task deboost
4277 		 * itself.
4278 		 */
4279 		new_effective_prio = rt_effective_prio(p, newprio);
4280 		if (new_effective_prio == oldprio)
4281 			queue_flags &= ~DEQUEUE_MOVE;
4282 	}
4283 
4284 	queued = task_on_rq_queued(p);
4285 	running = task_current(rq, p);
4286 	if (queued)
4287 		dequeue_task(rq, p, queue_flags);
4288 	if (running)
4289 		put_prev_task(rq, p);
4290 
4291 	prev_class = p->sched_class;
4292 	__setscheduler(rq, p, attr, pi);
4293 
4294 	if (queued) {
4295 		/*
4296 		 * We enqueue to tail when the priority of a task is
4297 		 * increased (user space view).
4298 		 */
4299 		if (oldprio < p->prio)
4300 			queue_flags |= ENQUEUE_HEAD;
4301 
4302 		enqueue_task(rq, p, queue_flags);
4303 	}
4304 	if (running)
4305 		set_curr_task(rq, p);
4306 
4307 	check_class_changed(rq, p, prev_class, oldprio);
4308 
4309 	/* Avoid rq from going away on us: */
4310 	preempt_disable();
4311 	task_rq_unlock(rq, p, &rf);
4312 
4313 	if (pi)
4314 		rt_mutex_adjust_pi(p);
4315 
4316 	/* Run balance callbacks after we've adjusted the PI chain: */
4317 	balance_callback(rq);
4318 	preempt_enable();
4319 
4320 	return 0;
4321 }
4322 
4323 static int _sched_setscheduler(struct task_struct *p, int policy,
4324 			       const struct sched_param *param, bool check)
4325 {
4326 	struct sched_attr attr = {
4327 		.sched_policy   = policy,
4328 		.sched_priority = param->sched_priority,
4329 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4330 	};
4331 
4332 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4333 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4334 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4335 		policy &= ~SCHED_RESET_ON_FORK;
4336 		attr.sched_policy = policy;
4337 	}
4338 
4339 	return __sched_setscheduler(p, &attr, check, true);
4340 }
4341 /**
4342  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4343  * @p: the task in question.
4344  * @policy: new policy.
4345  * @param: structure containing the new RT priority.
4346  *
4347  * Return: 0 on success. An error code otherwise.
4348  *
4349  * NOTE that the task may be already dead.
4350  */
4351 int sched_setscheduler(struct task_struct *p, int policy,
4352 		       const struct sched_param *param)
4353 {
4354 	return _sched_setscheduler(p, policy, param, true);
4355 }
4356 EXPORT_SYMBOL_GPL(sched_setscheduler);
4357 
4358 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4359 {
4360 	return __sched_setscheduler(p, attr, true, true);
4361 }
4362 EXPORT_SYMBOL_GPL(sched_setattr);
4363 
4364 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4365 {
4366 	return __sched_setscheduler(p, attr, false, true);
4367 }
4368 
4369 /**
4370  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4371  * @p: the task in question.
4372  * @policy: new policy.
4373  * @param: structure containing the new RT priority.
4374  *
4375  * Just like sched_setscheduler, only don't bother checking if the
4376  * current context has permission.  For example, this is needed in
4377  * stop_machine(): we create temporary high priority worker threads,
4378  * but our caller might not have that capability.
4379  *
4380  * Return: 0 on success. An error code otherwise.
4381  */
4382 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4383 			       const struct sched_param *param)
4384 {
4385 	return _sched_setscheduler(p, policy, param, false);
4386 }
4387 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4388 
4389 static int
4390 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4391 {
4392 	struct sched_param lparam;
4393 	struct task_struct *p;
4394 	int retval;
4395 
4396 	if (!param || pid < 0)
4397 		return -EINVAL;
4398 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4399 		return -EFAULT;
4400 
4401 	rcu_read_lock();
4402 	retval = -ESRCH;
4403 	p = find_process_by_pid(pid);
4404 	if (p != NULL)
4405 		retval = sched_setscheduler(p, policy, &lparam);
4406 	rcu_read_unlock();
4407 
4408 	return retval;
4409 }
4410 
4411 /*
4412  * Mimics kernel/events/core.c perf_copy_attr().
4413  */
4414 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4415 {
4416 	u32 size;
4417 	int ret;
4418 
4419 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4420 		return -EFAULT;
4421 
4422 	/* Zero the full structure, so that a short copy will be nice: */
4423 	memset(attr, 0, sizeof(*attr));
4424 
4425 	ret = get_user(size, &uattr->size);
4426 	if (ret)
4427 		return ret;
4428 
4429 	/* Bail out on silly large: */
4430 	if (size > PAGE_SIZE)
4431 		goto err_size;
4432 
4433 	/* ABI compatibility quirk: */
4434 	if (!size)
4435 		size = SCHED_ATTR_SIZE_VER0;
4436 
4437 	if (size < SCHED_ATTR_SIZE_VER0)
4438 		goto err_size;
4439 
4440 	/*
4441 	 * If we're handed a bigger struct than we know of,
4442 	 * ensure all the unknown bits are 0 - i.e. new
4443 	 * user-space does not rely on any kernel feature
4444 	 * extensions we dont know about yet.
4445 	 */
4446 	if (size > sizeof(*attr)) {
4447 		unsigned char __user *addr;
4448 		unsigned char __user *end;
4449 		unsigned char val;
4450 
4451 		addr = (void __user *)uattr + sizeof(*attr);
4452 		end  = (void __user *)uattr + size;
4453 
4454 		for (; addr < end; addr++) {
4455 			ret = get_user(val, addr);
4456 			if (ret)
4457 				return ret;
4458 			if (val)
4459 				goto err_size;
4460 		}
4461 		size = sizeof(*attr);
4462 	}
4463 
4464 	ret = copy_from_user(attr, uattr, size);
4465 	if (ret)
4466 		return -EFAULT;
4467 
4468 	/*
4469 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4470 	 * to be strict and return an error on out-of-bounds values?
4471 	 */
4472 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4473 
4474 	return 0;
4475 
4476 err_size:
4477 	put_user(sizeof(*attr), &uattr->size);
4478 	return -E2BIG;
4479 }
4480 
4481 /**
4482  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4483  * @pid: the pid in question.
4484  * @policy: new policy.
4485  * @param: structure containing the new RT priority.
4486  *
4487  * Return: 0 on success. An error code otherwise.
4488  */
4489 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4490 {
4491 	if (policy < 0)
4492 		return -EINVAL;
4493 
4494 	return do_sched_setscheduler(pid, policy, param);
4495 }
4496 
4497 /**
4498  * sys_sched_setparam - set/change the RT priority of a thread
4499  * @pid: the pid in question.
4500  * @param: structure containing the new RT priority.
4501  *
4502  * Return: 0 on success. An error code otherwise.
4503  */
4504 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4505 {
4506 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4507 }
4508 
4509 /**
4510  * sys_sched_setattr - same as above, but with extended sched_attr
4511  * @pid: the pid in question.
4512  * @uattr: structure containing the extended parameters.
4513  * @flags: for future extension.
4514  */
4515 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4516 			       unsigned int, flags)
4517 {
4518 	struct sched_attr attr;
4519 	struct task_struct *p;
4520 	int retval;
4521 
4522 	if (!uattr || pid < 0 || flags)
4523 		return -EINVAL;
4524 
4525 	retval = sched_copy_attr(uattr, &attr);
4526 	if (retval)
4527 		return retval;
4528 
4529 	if ((int)attr.sched_policy < 0)
4530 		return -EINVAL;
4531 
4532 	rcu_read_lock();
4533 	retval = -ESRCH;
4534 	p = find_process_by_pid(pid);
4535 	if (p != NULL)
4536 		retval = sched_setattr(p, &attr);
4537 	rcu_read_unlock();
4538 
4539 	return retval;
4540 }
4541 
4542 /**
4543  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4544  * @pid: the pid in question.
4545  *
4546  * Return: On success, the policy of the thread. Otherwise, a negative error
4547  * code.
4548  */
4549 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4550 {
4551 	struct task_struct *p;
4552 	int retval;
4553 
4554 	if (pid < 0)
4555 		return -EINVAL;
4556 
4557 	retval = -ESRCH;
4558 	rcu_read_lock();
4559 	p = find_process_by_pid(pid);
4560 	if (p) {
4561 		retval = security_task_getscheduler(p);
4562 		if (!retval)
4563 			retval = p->policy
4564 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4565 	}
4566 	rcu_read_unlock();
4567 	return retval;
4568 }
4569 
4570 /**
4571  * sys_sched_getparam - get the RT priority of a thread
4572  * @pid: the pid in question.
4573  * @param: structure containing the RT priority.
4574  *
4575  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4576  * code.
4577  */
4578 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4579 {
4580 	struct sched_param lp = { .sched_priority = 0 };
4581 	struct task_struct *p;
4582 	int retval;
4583 
4584 	if (!param || pid < 0)
4585 		return -EINVAL;
4586 
4587 	rcu_read_lock();
4588 	p = find_process_by_pid(pid);
4589 	retval = -ESRCH;
4590 	if (!p)
4591 		goto out_unlock;
4592 
4593 	retval = security_task_getscheduler(p);
4594 	if (retval)
4595 		goto out_unlock;
4596 
4597 	if (task_has_rt_policy(p))
4598 		lp.sched_priority = p->rt_priority;
4599 	rcu_read_unlock();
4600 
4601 	/*
4602 	 * This one might sleep, we cannot do it with a spinlock held ...
4603 	 */
4604 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4605 
4606 	return retval;
4607 
4608 out_unlock:
4609 	rcu_read_unlock();
4610 	return retval;
4611 }
4612 
4613 static int sched_read_attr(struct sched_attr __user *uattr,
4614 			   struct sched_attr *attr,
4615 			   unsigned int usize)
4616 {
4617 	int ret;
4618 
4619 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4620 		return -EFAULT;
4621 
4622 	/*
4623 	 * If we're handed a smaller struct than we know of,
4624 	 * ensure all the unknown bits are 0 - i.e. old
4625 	 * user-space does not get uncomplete information.
4626 	 */
4627 	if (usize < sizeof(*attr)) {
4628 		unsigned char *addr;
4629 		unsigned char *end;
4630 
4631 		addr = (void *)attr + usize;
4632 		end  = (void *)attr + sizeof(*attr);
4633 
4634 		for (; addr < end; addr++) {
4635 			if (*addr)
4636 				return -EFBIG;
4637 		}
4638 
4639 		attr->size = usize;
4640 	}
4641 
4642 	ret = copy_to_user(uattr, attr, attr->size);
4643 	if (ret)
4644 		return -EFAULT;
4645 
4646 	return 0;
4647 }
4648 
4649 /**
4650  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4651  * @pid: the pid in question.
4652  * @uattr: structure containing the extended parameters.
4653  * @size: sizeof(attr) for fwd/bwd comp.
4654  * @flags: for future extension.
4655  */
4656 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4657 		unsigned int, size, unsigned int, flags)
4658 {
4659 	struct sched_attr attr = {
4660 		.size = sizeof(struct sched_attr),
4661 	};
4662 	struct task_struct *p;
4663 	int retval;
4664 
4665 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4666 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4667 		return -EINVAL;
4668 
4669 	rcu_read_lock();
4670 	p = find_process_by_pid(pid);
4671 	retval = -ESRCH;
4672 	if (!p)
4673 		goto out_unlock;
4674 
4675 	retval = security_task_getscheduler(p);
4676 	if (retval)
4677 		goto out_unlock;
4678 
4679 	attr.sched_policy = p->policy;
4680 	if (p->sched_reset_on_fork)
4681 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4682 	if (task_has_dl_policy(p))
4683 		__getparam_dl(p, &attr);
4684 	else if (task_has_rt_policy(p))
4685 		attr.sched_priority = p->rt_priority;
4686 	else
4687 		attr.sched_nice = task_nice(p);
4688 
4689 	rcu_read_unlock();
4690 
4691 	retval = sched_read_attr(uattr, &attr, size);
4692 	return retval;
4693 
4694 out_unlock:
4695 	rcu_read_unlock();
4696 	return retval;
4697 }
4698 
4699 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4700 {
4701 	cpumask_var_t cpus_allowed, new_mask;
4702 	struct task_struct *p;
4703 	int retval;
4704 
4705 	rcu_read_lock();
4706 
4707 	p = find_process_by_pid(pid);
4708 	if (!p) {
4709 		rcu_read_unlock();
4710 		return -ESRCH;
4711 	}
4712 
4713 	/* Prevent p going away */
4714 	get_task_struct(p);
4715 	rcu_read_unlock();
4716 
4717 	if (p->flags & PF_NO_SETAFFINITY) {
4718 		retval = -EINVAL;
4719 		goto out_put_task;
4720 	}
4721 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4722 		retval = -ENOMEM;
4723 		goto out_put_task;
4724 	}
4725 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4726 		retval = -ENOMEM;
4727 		goto out_free_cpus_allowed;
4728 	}
4729 	retval = -EPERM;
4730 	if (!check_same_owner(p)) {
4731 		rcu_read_lock();
4732 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4733 			rcu_read_unlock();
4734 			goto out_free_new_mask;
4735 		}
4736 		rcu_read_unlock();
4737 	}
4738 
4739 	retval = security_task_setscheduler(p);
4740 	if (retval)
4741 		goto out_free_new_mask;
4742 
4743 
4744 	cpuset_cpus_allowed(p, cpus_allowed);
4745 	cpumask_and(new_mask, in_mask, cpus_allowed);
4746 
4747 	/*
4748 	 * Since bandwidth control happens on root_domain basis,
4749 	 * if admission test is enabled, we only admit -deadline
4750 	 * tasks allowed to run on all the CPUs in the task's
4751 	 * root_domain.
4752 	 */
4753 #ifdef CONFIG_SMP
4754 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4755 		rcu_read_lock();
4756 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4757 			retval = -EBUSY;
4758 			rcu_read_unlock();
4759 			goto out_free_new_mask;
4760 		}
4761 		rcu_read_unlock();
4762 	}
4763 #endif
4764 again:
4765 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4766 
4767 	if (!retval) {
4768 		cpuset_cpus_allowed(p, cpus_allowed);
4769 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4770 			/*
4771 			 * We must have raced with a concurrent cpuset
4772 			 * update. Just reset the cpus_allowed to the
4773 			 * cpuset's cpus_allowed
4774 			 */
4775 			cpumask_copy(new_mask, cpus_allowed);
4776 			goto again;
4777 		}
4778 	}
4779 out_free_new_mask:
4780 	free_cpumask_var(new_mask);
4781 out_free_cpus_allowed:
4782 	free_cpumask_var(cpus_allowed);
4783 out_put_task:
4784 	put_task_struct(p);
4785 	return retval;
4786 }
4787 
4788 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4789 			     struct cpumask *new_mask)
4790 {
4791 	if (len < cpumask_size())
4792 		cpumask_clear(new_mask);
4793 	else if (len > cpumask_size())
4794 		len = cpumask_size();
4795 
4796 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4797 }
4798 
4799 /**
4800  * sys_sched_setaffinity - set the CPU affinity of a process
4801  * @pid: pid of the process
4802  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4803  * @user_mask_ptr: user-space pointer to the new CPU mask
4804  *
4805  * Return: 0 on success. An error code otherwise.
4806  */
4807 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4808 		unsigned long __user *, user_mask_ptr)
4809 {
4810 	cpumask_var_t new_mask;
4811 	int retval;
4812 
4813 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4814 		return -ENOMEM;
4815 
4816 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4817 	if (retval == 0)
4818 		retval = sched_setaffinity(pid, new_mask);
4819 	free_cpumask_var(new_mask);
4820 	return retval;
4821 }
4822 
4823 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4824 {
4825 	struct task_struct *p;
4826 	unsigned long flags;
4827 	int retval;
4828 
4829 	rcu_read_lock();
4830 
4831 	retval = -ESRCH;
4832 	p = find_process_by_pid(pid);
4833 	if (!p)
4834 		goto out_unlock;
4835 
4836 	retval = security_task_getscheduler(p);
4837 	if (retval)
4838 		goto out_unlock;
4839 
4840 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4841 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4842 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4843 
4844 out_unlock:
4845 	rcu_read_unlock();
4846 
4847 	return retval;
4848 }
4849 
4850 /**
4851  * sys_sched_getaffinity - get the CPU affinity of a process
4852  * @pid: pid of the process
4853  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4854  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4855  *
4856  * Return: size of CPU mask copied to user_mask_ptr on success. An
4857  * error code otherwise.
4858  */
4859 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4860 		unsigned long __user *, user_mask_ptr)
4861 {
4862 	int ret;
4863 	cpumask_var_t mask;
4864 
4865 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4866 		return -EINVAL;
4867 	if (len & (sizeof(unsigned long)-1))
4868 		return -EINVAL;
4869 
4870 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4871 		return -ENOMEM;
4872 
4873 	ret = sched_getaffinity(pid, mask);
4874 	if (ret == 0) {
4875 		unsigned int retlen = min(len, cpumask_size());
4876 
4877 		if (copy_to_user(user_mask_ptr, mask, retlen))
4878 			ret = -EFAULT;
4879 		else
4880 			ret = retlen;
4881 	}
4882 	free_cpumask_var(mask);
4883 
4884 	return ret;
4885 }
4886 
4887 /**
4888  * sys_sched_yield - yield the current processor to other threads.
4889  *
4890  * This function yields the current CPU to other tasks. If there are no
4891  * other threads running on this CPU then this function will return.
4892  *
4893  * Return: 0.
4894  */
4895 SYSCALL_DEFINE0(sched_yield)
4896 {
4897 	struct rq_flags rf;
4898 	struct rq *rq;
4899 
4900 	local_irq_disable();
4901 	rq = this_rq();
4902 	rq_lock(rq, &rf);
4903 
4904 	schedstat_inc(rq->yld_count);
4905 	current->sched_class->yield_task(rq);
4906 
4907 	/*
4908 	 * Since we are going to call schedule() anyway, there's
4909 	 * no need to preempt or enable interrupts:
4910 	 */
4911 	preempt_disable();
4912 	rq_unlock(rq, &rf);
4913 	sched_preempt_enable_no_resched();
4914 
4915 	schedule();
4916 
4917 	return 0;
4918 }
4919 
4920 #ifndef CONFIG_PREEMPT
4921 int __sched _cond_resched(void)
4922 {
4923 	if (should_resched(0)) {
4924 		preempt_schedule_common();
4925 		return 1;
4926 	}
4927 	rcu_all_qs();
4928 	return 0;
4929 }
4930 EXPORT_SYMBOL(_cond_resched);
4931 #endif
4932 
4933 /*
4934  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4935  * call schedule, and on return reacquire the lock.
4936  *
4937  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4938  * operations here to prevent schedule() from being called twice (once via
4939  * spin_unlock(), once by hand).
4940  */
4941 int __cond_resched_lock(spinlock_t *lock)
4942 {
4943 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4944 	int ret = 0;
4945 
4946 	lockdep_assert_held(lock);
4947 
4948 	if (spin_needbreak(lock) || resched) {
4949 		spin_unlock(lock);
4950 		if (resched)
4951 			preempt_schedule_common();
4952 		else
4953 			cpu_relax();
4954 		ret = 1;
4955 		spin_lock(lock);
4956 	}
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL(__cond_resched_lock);
4960 
4961 int __sched __cond_resched_softirq(void)
4962 {
4963 	BUG_ON(!in_softirq());
4964 
4965 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4966 		local_bh_enable();
4967 		preempt_schedule_common();
4968 		local_bh_disable();
4969 		return 1;
4970 	}
4971 	return 0;
4972 }
4973 EXPORT_SYMBOL(__cond_resched_softirq);
4974 
4975 /**
4976  * yield - yield the current processor to other threads.
4977  *
4978  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4979  *
4980  * The scheduler is at all times free to pick the calling task as the most
4981  * eligible task to run, if removing the yield() call from your code breaks
4982  * it, its already broken.
4983  *
4984  * Typical broken usage is:
4985  *
4986  * while (!event)
4987  *	yield();
4988  *
4989  * where one assumes that yield() will let 'the other' process run that will
4990  * make event true. If the current task is a SCHED_FIFO task that will never
4991  * happen. Never use yield() as a progress guarantee!!
4992  *
4993  * If you want to use yield() to wait for something, use wait_event().
4994  * If you want to use yield() to be 'nice' for others, use cond_resched().
4995  * If you still want to use yield(), do not!
4996  */
4997 void __sched yield(void)
4998 {
4999 	set_current_state(TASK_RUNNING);
5000 	sys_sched_yield();
5001 }
5002 EXPORT_SYMBOL(yield);
5003 
5004 /**
5005  * yield_to - yield the current processor to another thread in
5006  * your thread group, or accelerate that thread toward the
5007  * processor it's on.
5008  * @p: target task
5009  * @preempt: whether task preemption is allowed or not
5010  *
5011  * It's the caller's job to ensure that the target task struct
5012  * can't go away on us before we can do any checks.
5013  *
5014  * Return:
5015  *	true (>0) if we indeed boosted the target task.
5016  *	false (0) if we failed to boost the target.
5017  *	-ESRCH if there's no task to yield to.
5018  */
5019 int __sched yield_to(struct task_struct *p, bool preempt)
5020 {
5021 	struct task_struct *curr = current;
5022 	struct rq *rq, *p_rq;
5023 	unsigned long flags;
5024 	int yielded = 0;
5025 
5026 	local_irq_save(flags);
5027 	rq = this_rq();
5028 
5029 again:
5030 	p_rq = task_rq(p);
5031 	/*
5032 	 * If we're the only runnable task on the rq and target rq also
5033 	 * has only one task, there's absolutely no point in yielding.
5034 	 */
5035 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5036 		yielded = -ESRCH;
5037 		goto out_irq;
5038 	}
5039 
5040 	double_rq_lock(rq, p_rq);
5041 	if (task_rq(p) != p_rq) {
5042 		double_rq_unlock(rq, p_rq);
5043 		goto again;
5044 	}
5045 
5046 	if (!curr->sched_class->yield_to_task)
5047 		goto out_unlock;
5048 
5049 	if (curr->sched_class != p->sched_class)
5050 		goto out_unlock;
5051 
5052 	if (task_running(p_rq, p) || p->state)
5053 		goto out_unlock;
5054 
5055 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5056 	if (yielded) {
5057 		schedstat_inc(rq->yld_count);
5058 		/*
5059 		 * Make p's CPU reschedule; pick_next_entity takes care of
5060 		 * fairness.
5061 		 */
5062 		if (preempt && rq != p_rq)
5063 			resched_curr(p_rq);
5064 	}
5065 
5066 out_unlock:
5067 	double_rq_unlock(rq, p_rq);
5068 out_irq:
5069 	local_irq_restore(flags);
5070 
5071 	if (yielded > 0)
5072 		schedule();
5073 
5074 	return yielded;
5075 }
5076 EXPORT_SYMBOL_GPL(yield_to);
5077 
5078 int io_schedule_prepare(void)
5079 {
5080 	int old_iowait = current->in_iowait;
5081 
5082 	current->in_iowait = 1;
5083 	blk_schedule_flush_plug(current);
5084 
5085 	return old_iowait;
5086 }
5087 
5088 void io_schedule_finish(int token)
5089 {
5090 	current->in_iowait = token;
5091 }
5092 
5093 /*
5094  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5095  * that process accounting knows that this is a task in IO wait state.
5096  */
5097 long __sched io_schedule_timeout(long timeout)
5098 {
5099 	int token;
5100 	long ret;
5101 
5102 	token = io_schedule_prepare();
5103 	ret = schedule_timeout(timeout);
5104 	io_schedule_finish(token);
5105 
5106 	return ret;
5107 }
5108 EXPORT_SYMBOL(io_schedule_timeout);
5109 
5110 void io_schedule(void)
5111 {
5112 	int token;
5113 
5114 	token = io_schedule_prepare();
5115 	schedule();
5116 	io_schedule_finish(token);
5117 }
5118 EXPORT_SYMBOL(io_schedule);
5119 
5120 /**
5121  * sys_sched_get_priority_max - return maximum RT priority.
5122  * @policy: scheduling class.
5123  *
5124  * Return: On success, this syscall returns the maximum
5125  * rt_priority that can be used by a given scheduling class.
5126  * On failure, a negative error code is returned.
5127  */
5128 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5129 {
5130 	int ret = -EINVAL;
5131 
5132 	switch (policy) {
5133 	case SCHED_FIFO:
5134 	case SCHED_RR:
5135 		ret = MAX_USER_RT_PRIO-1;
5136 		break;
5137 	case SCHED_DEADLINE:
5138 	case SCHED_NORMAL:
5139 	case SCHED_BATCH:
5140 	case SCHED_IDLE:
5141 		ret = 0;
5142 		break;
5143 	}
5144 	return ret;
5145 }
5146 
5147 /**
5148  * sys_sched_get_priority_min - return minimum RT priority.
5149  * @policy: scheduling class.
5150  *
5151  * Return: On success, this syscall returns the minimum
5152  * rt_priority that can be used by a given scheduling class.
5153  * On failure, a negative error code is returned.
5154  */
5155 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5156 {
5157 	int ret = -EINVAL;
5158 
5159 	switch (policy) {
5160 	case SCHED_FIFO:
5161 	case SCHED_RR:
5162 		ret = 1;
5163 		break;
5164 	case SCHED_DEADLINE:
5165 	case SCHED_NORMAL:
5166 	case SCHED_BATCH:
5167 	case SCHED_IDLE:
5168 		ret = 0;
5169 	}
5170 	return ret;
5171 }
5172 
5173 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5174 {
5175 	struct task_struct *p;
5176 	unsigned int time_slice;
5177 	struct rq_flags rf;
5178 	struct rq *rq;
5179 	int retval;
5180 
5181 	if (pid < 0)
5182 		return -EINVAL;
5183 
5184 	retval = -ESRCH;
5185 	rcu_read_lock();
5186 	p = find_process_by_pid(pid);
5187 	if (!p)
5188 		goto out_unlock;
5189 
5190 	retval = security_task_getscheduler(p);
5191 	if (retval)
5192 		goto out_unlock;
5193 
5194 	rq = task_rq_lock(p, &rf);
5195 	time_slice = 0;
5196 	if (p->sched_class->get_rr_interval)
5197 		time_slice = p->sched_class->get_rr_interval(rq, p);
5198 	task_rq_unlock(rq, p, &rf);
5199 
5200 	rcu_read_unlock();
5201 	jiffies_to_timespec64(time_slice, t);
5202 	return 0;
5203 
5204 out_unlock:
5205 	rcu_read_unlock();
5206 	return retval;
5207 }
5208 
5209 /**
5210  * sys_sched_rr_get_interval - return the default timeslice of a process.
5211  * @pid: pid of the process.
5212  * @interval: userspace pointer to the timeslice value.
5213  *
5214  * this syscall writes the default timeslice value of a given process
5215  * into the user-space timespec buffer. A value of '0' means infinity.
5216  *
5217  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5218  * an error code.
5219  */
5220 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5221 		struct timespec __user *, interval)
5222 {
5223 	struct timespec64 t;
5224 	int retval = sched_rr_get_interval(pid, &t);
5225 
5226 	if (retval == 0)
5227 		retval = put_timespec64(&t, interval);
5228 
5229 	return retval;
5230 }
5231 
5232 #ifdef CONFIG_COMPAT
5233 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5234 		       compat_pid_t, pid,
5235 		       struct compat_timespec __user *, interval)
5236 {
5237 	struct timespec64 t;
5238 	int retval = sched_rr_get_interval(pid, &t);
5239 
5240 	if (retval == 0)
5241 		retval = compat_put_timespec64(&t, interval);
5242 	return retval;
5243 }
5244 #endif
5245 
5246 void sched_show_task(struct task_struct *p)
5247 {
5248 	unsigned long free = 0;
5249 	int ppid;
5250 
5251 	if (!try_get_task_stack(p))
5252 		return;
5253 
5254 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5255 
5256 	if (p->state == TASK_RUNNING)
5257 		printk(KERN_CONT "  running task    ");
5258 #ifdef CONFIG_DEBUG_STACK_USAGE
5259 	free = stack_not_used(p);
5260 #endif
5261 	ppid = 0;
5262 	rcu_read_lock();
5263 	if (pid_alive(p))
5264 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5265 	rcu_read_unlock();
5266 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5267 		task_pid_nr(p), ppid,
5268 		(unsigned long)task_thread_info(p)->flags);
5269 
5270 	print_worker_info(KERN_INFO, p);
5271 	show_stack(p, NULL);
5272 	put_task_stack(p);
5273 }
5274 EXPORT_SYMBOL_GPL(sched_show_task);
5275 
5276 static inline bool
5277 state_filter_match(unsigned long state_filter, struct task_struct *p)
5278 {
5279 	/* no filter, everything matches */
5280 	if (!state_filter)
5281 		return true;
5282 
5283 	/* filter, but doesn't match */
5284 	if (!(p->state & state_filter))
5285 		return false;
5286 
5287 	/*
5288 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5289 	 * TASK_KILLABLE).
5290 	 */
5291 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5292 		return false;
5293 
5294 	return true;
5295 }
5296 
5297 
5298 void show_state_filter(unsigned long state_filter)
5299 {
5300 	struct task_struct *g, *p;
5301 
5302 #if BITS_PER_LONG == 32
5303 	printk(KERN_INFO
5304 		"  task                PC stack   pid father\n");
5305 #else
5306 	printk(KERN_INFO
5307 		"  task                        PC stack   pid father\n");
5308 #endif
5309 	rcu_read_lock();
5310 	for_each_process_thread(g, p) {
5311 		/*
5312 		 * reset the NMI-timeout, listing all files on a slow
5313 		 * console might take a lot of time:
5314 		 * Also, reset softlockup watchdogs on all CPUs, because
5315 		 * another CPU might be blocked waiting for us to process
5316 		 * an IPI.
5317 		 */
5318 		touch_nmi_watchdog();
5319 		touch_all_softlockup_watchdogs();
5320 		if (state_filter_match(state_filter, p))
5321 			sched_show_task(p);
5322 	}
5323 
5324 #ifdef CONFIG_SCHED_DEBUG
5325 	if (!state_filter)
5326 		sysrq_sched_debug_show();
5327 #endif
5328 	rcu_read_unlock();
5329 	/*
5330 	 * Only show locks if all tasks are dumped:
5331 	 */
5332 	if (!state_filter)
5333 		debug_show_all_locks();
5334 }
5335 
5336 /**
5337  * init_idle - set up an idle thread for a given CPU
5338  * @idle: task in question
5339  * @cpu: CPU the idle task belongs to
5340  *
5341  * NOTE: this function does not set the idle thread's NEED_RESCHED
5342  * flag, to make booting more robust.
5343  */
5344 void init_idle(struct task_struct *idle, int cpu)
5345 {
5346 	struct rq *rq = cpu_rq(cpu);
5347 	unsigned long flags;
5348 
5349 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5350 	raw_spin_lock(&rq->lock);
5351 
5352 	__sched_fork(0, idle);
5353 	idle->state = TASK_RUNNING;
5354 	idle->se.exec_start = sched_clock();
5355 	idle->flags |= PF_IDLE;
5356 
5357 	kasan_unpoison_task_stack(idle);
5358 
5359 #ifdef CONFIG_SMP
5360 	/*
5361 	 * Its possible that init_idle() gets called multiple times on a task,
5362 	 * in that case do_set_cpus_allowed() will not do the right thing.
5363 	 *
5364 	 * And since this is boot we can forgo the serialization.
5365 	 */
5366 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5367 #endif
5368 	/*
5369 	 * We're having a chicken and egg problem, even though we are
5370 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5371 	 * lockdep check in task_group() will fail.
5372 	 *
5373 	 * Similar case to sched_fork(). / Alternatively we could
5374 	 * use task_rq_lock() here and obtain the other rq->lock.
5375 	 *
5376 	 * Silence PROVE_RCU
5377 	 */
5378 	rcu_read_lock();
5379 	__set_task_cpu(idle, cpu);
5380 	rcu_read_unlock();
5381 
5382 	rq->curr = rq->idle = idle;
5383 	idle->on_rq = TASK_ON_RQ_QUEUED;
5384 #ifdef CONFIG_SMP
5385 	idle->on_cpu = 1;
5386 #endif
5387 	raw_spin_unlock(&rq->lock);
5388 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5389 
5390 	/* Set the preempt count _outside_ the spinlocks! */
5391 	init_idle_preempt_count(idle, cpu);
5392 
5393 	/*
5394 	 * The idle tasks have their own, simple scheduling class:
5395 	 */
5396 	idle->sched_class = &idle_sched_class;
5397 	ftrace_graph_init_idle_task(idle, cpu);
5398 	vtime_init_idle(idle, cpu);
5399 #ifdef CONFIG_SMP
5400 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5401 #endif
5402 }
5403 
5404 #ifdef CONFIG_SMP
5405 
5406 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5407 			      const struct cpumask *trial)
5408 {
5409 	int ret = 1;
5410 
5411 	if (!cpumask_weight(cur))
5412 		return ret;
5413 
5414 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5415 
5416 	return ret;
5417 }
5418 
5419 int task_can_attach(struct task_struct *p,
5420 		    const struct cpumask *cs_cpus_allowed)
5421 {
5422 	int ret = 0;
5423 
5424 	/*
5425 	 * Kthreads which disallow setaffinity shouldn't be moved
5426 	 * to a new cpuset; we don't want to change their CPU
5427 	 * affinity and isolating such threads by their set of
5428 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5429 	 * applicable for such threads.  This prevents checking for
5430 	 * success of set_cpus_allowed_ptr() on all attached tasks
5431 	 * before cpus_allowed may be changed.
5432 	 */
5433 	if (p->flags & PF_NO_SETAFFINITY) {
5434 		ret = -EINVAL;
5435 		goto out;
5436 	}
5437 
5438 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5439 					      cs_cpus_allowed))
5440 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5441 
5442 out:
5443 	return ret;
5444 }
5445 
5446 bool sched_smp_initialized __read_mostly;
5447 
5448 #ifdef CONFIG_NUMA_BALANCING
5449 /* Migrate current task p to target_cpu */
5450 int migrate_task_to(struct task_struct *p, int target_cpu)
5451 {
5452 	struct migration_arg arg = { p, target_cpu };
5453 	int curr_cpu = task_cpu(p);
5454 
5455 	if (curr_cpu == target_cpu)
5456 		return 0;
5457 
5458 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5459 		return -EINVAL;
5460 
5461 	/* TODO: This is not properly updating schedstats */
5462 
5463 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5464 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5465 }
5466 
5467 /*
5468  * Requeue a task on a given node and accurately track the number of NUMA
5469  * tasks on the runqueues
5470  */
5471 void sched_setnuma(struct task_struct *p, int nid)
5472 {
5473 	bool queued, running;
5474 	struct rq_flags rf;
5475 	struct rq *rq;
5476 
5477 	rq = task_rq_lock(p, &rf);
5478 	queued = task_on_rq_queued(p);
5479 	running = task_current(rq, p);
5480 
5481 	if (queued)
5482 		dequeue_task(rq, p, DEQUEUE_SAVE);
5483 	if (running)
5484 		put_prev_task(rq, p);
5485 
5486 	p->numa_preferred_nid = nid;
5487 
5488 	if (queued)
5489 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5490 	if (running)
5491 		set_curr_task(rq, p);
5492 	task_rq_unlock(rq, p, &rf);
5493 }
5494 #endif /* CONFIG_NUMA_BALANCING */
5495 
5496 #ifdef CONFIG_HOTPLUG_CPU
5497 /*
5498  * Ensure that the idle task is using init_mm right before its CPU goes
5499  * offline.
5500  */
5501 void idle_task_exit(void)
5502 {
5503 	struct mm_struct *mm = current->active_mm;
5504 
5505 	BUG_ON(cpu_online(smp_processor_id()));
5506 
5507 	if (mm != &init_mm) {
5508 		switch_mm(mm, &init_mm, current);
5509 		finish_arch_post_lock_switch();
5510 	}
5511 	mmdrop(mm);
5512 }
5513 
5514 /*
5515  * Since this CPU is going 'away' for a while, fold any nr_active delta
5516  * we might have. Assumes we're called after migrate_tasks() so that the
5517  * nr_active count is stable. We need to take the teardown thread which
5518  * is calling this into account, so we hand in adjust = 1 to the load
5519  * calculation.
5520  *
5521  * Also see the comment "Global load-average calculations".
5522  */
5523 static void calc_load_migrate(struct rq *rq)
5524 {
5525 	long delta = calc_load_fold_active(rq, 1);
5526 	if (delta)
5527 		atomic_long_add(delta, &calc_load_tasks);
5528 }
5529 
5530 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5531 {
5532 }
5533 
5534 static const struct sched_class fake_sched_class = {
5535 	.put_prev_task = put_prev_task_fake,
5536 };
5537 
5538 static struct task_struct fake_task = {
5539 	/*
5540 	 * Avoid pull_{rt,dl}_task()
5541 	 */
5542 	.prio = MAX_PRIO + 1,
5543 	.sched_class = &fake_sched_class,
5544 };
5545 
5546 /*
5547  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5548  * try_to_wake_up()->select_task_rq().
5549  *
5550  * Called with rq->lock held even though we'er in stop_machine() and
5551  * there's no concurrency possible, we hold the required locks anyway
5552  * because of lock validation efforts.
5553  */
5554 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5555 {
5556 	struct rq *rq = dead_rq;
5557 	struct task_struct *next, *stop = rq->stop;
5558 	struct rq_flags orf = *rf;
5559 	int dest_cpu;
5560 
5561 	/*
5562 	 * Fudge the rq selection such that the below task selection loop
5563 	 * doesn't get stuck on the currently eligible stop task.
5564 	 *
5565 	 * We're currently inside stop_machine() and the rq is either stuck
5566 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5567 	 * either way we should never end up calling schedule() until we're
5568 	 * done here.
5569 	 */
5570 	rq->stop = NULL;
5571 
5572 	/*
5573 	 * put_prev_task() and pick_next_task() sched
5574 	 * class method both need to have an up-to-date
5575 	 * value of rq->clock[_task]
5576 	 */
5577 	update_rq_clock(rq);
5578 
5579 	for (;;) {
5580 		/*
5581 		 * There's this thread running, bail when that's the only
5582 		 * remaining thread:
5583 		 */
5584 		if (rq->nr_running == 1)
5585 			break;
5586 
5587 		/*
5588 		 * pick_next_task() assumes pinned rq->lock:
5589 		 */
5590 		next = pick_next_task(rq, &fake_task, rf);
5591 		BUG_ON(!next);
5592 		put_prev_task(rq, next);
5593 
5594 		/*
5595 		 * Rules for changing task_struct::cpus_allowed are holding
5596 		 * both pi_lock and rq->lock, such that holding either
5597 		 * stabilizes the mask.
5598 		 *
5599 		 * Drop rq->lock is not quite as disastrous as it usually is
5600 		 * because !cpu_active at this point, which means load-balance
5601 		 * will not interfere. Also, stop-machine.
5602 		 */
5603 		rq_unlock(rq, rf);
5604 		raw_spin_lock(&next->pi_lock);
5605 		rq_relock(rq, rf);
5606 
5607 		/*
5608 		 * Since we're inside stop-machine, _nothing_ should have
5609 		 * changed the task, WARN if weird stuff happened, because in
5610 		 * that case the above rq->lock drop is a fail too.
5611 		 */
5612 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5613 			raw_spin_unlock(&next->pi_lock);
5614 			continue;
5615 		}
5616 
5617 		/* Find suitable destination for @next, with force if needed. */
5618 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5619 		rq = __migrate_task(rq, rf, next, dest_cpu);
5620 		if (rq != dead_rq) {
5621 			rq_unlock(rq, rf);
5622 			rq = dead_rq;
5623 			*rf = orf;
5624 			rq_relock(rq, rf);
5625 		}
5626 		raw_spin_unlock(&next->pi_lock);
5627 	}
5628 
5629 	rq->stop = stop;
5630 }
5631 #endif /* CONFIG_HOTPLUG_CPU */
5632 
5633 void set_rq_online(struct rq *rq)
5634 {
5635 	if (!rq->online) {
5636 		const struct sched_class *class;
5637 
5638 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5639 		rq->online = 1;
5640 
5641 		for_each_class(class) {
5642 			if (class->rq_online)
5643 				class->rq_online(rq);
5644 		}
5645 	}
5646 }
5647 
5648 void set_rq_offline(struct rq *rq)
5649 {
5650 	if (rq->online) {
5651 		const struct sched_class *class;
5652 
5653 		for_each_class(class) {
5654 			if (class->rq_offline)
5655 				class->rq_offline(rq);
5656 		}
5657 
5658 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5659 		rq->online = 0;
5660 	}
5661 }
5662 
5663 static void set_cpu_rq_start_time(unsigned int cpu)
5664 {
5665 	struct rq *rq = cpu_rq(cpu);
5666 
5667 	rq->age_stamp = sched_clock_cpu(cpu);
5668 }
5669 
5670 /*
5671  * used to mark begin/end of suspend/resume:
5672  */
5673 static int num_cpus_frozen;
5674 
5675 /*
5676  * Update cpusets according to cpu_active mask.  If cpusets are
5677  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5678  * around partition_sched_domains().
5679  *
5680  * If we come here as part of a suspend/resume, don't touch cpusets because we
5681  * want to restore it back to its original state upon resume anyway.
5682  */
5683 static void cpuset_cpu_active(void)
5684 {
5685 	if (cpuhp_tasks_frozen) {
5686 		/*
5687 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5688 		 * resume sequence. As long as this is not the last online
5689 		 * operation in the resume sequence, just build a single sched
5690 		 * domain, ignoring cpusets.
5691 		 */
5692 		partition_sched_domains(1, NULL, NULL);
5693 		if (--num_cpus_frozen)
5694 			return;
5695 		/*
5696 		 * This is the last CPU online operation. So fall through and
5697 		 * restore the original sched domains by considering the
5698 		 * cpuset configurations.
5699 		 */
5700 		cpuset_force_rebuild();
5701 	}
5702 	cpuset_update_active_cpus();
5703 }
5704 
5705 static int cpuset_cpu_inactive(unsigned int cpu)
5706 {
5707 	if (!cpuhp_tasks_frozen) {
5708 		if (dl_cpu_busy(cpu))
5709 			return -EBUSY;
5710 		cpuset_update_active_cpus();
5711 	} else {
5712 		num_cpus_frozen++;
5713 		partition_sched_domains(1, NULL, NULL);
5714 	}
5715 	return 0;
5716 }
5717 
5718 int sched_cpu_activate(unsigned int cpu)
5719 {
5720 	struct rq *rq = cpu_rq(cpu);
5721 	struct rq_flags rf;
5722 
5723 	set_cpu_active(cpu, true);
5724 
5725 	if (sched_smp_initialized) {
5726 		sched_domains_numa_masks_set(cpu);
5727 		cpuset_cpu_active();
5728 	}
5729 
5730 	/*
5731 	 * Put the rq online, if not already. This happens:
5732 	 *
5733 	 * 1) In the early boot process, because we build the real domains
5734 	 *    after all CPUs have been brought up.
5735 	 *
5736 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5737 	 *    domains.
5738 	 */
5739 	rq_lock_irqsave(rq, &rf);
5740 	if (rq->rd) {
5741 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5742 		set_rq_online(rq);
5743 	}
5744 	rq_unlock_irqrestore(rq, &rf);
5745 
5746 	update_max_interval();
5747 
5748 	return 0;
5749 }
5750 
5751 int sched_cpu_deactivate(unsigned int cpu)
5752 {
5753 	int ret;
5754 
5755 	set_cpu_active(cpu, false);
5756 	/*
5757 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5758 	 * users of this state to go away such that all new such users will
5759 	 * observe it.
5760 	 *
5761 	 * Do sync before park smpboot threads to take care the rcu boost case.
5762 	 */
5763 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5764 
5765 	if (!sched_smp_initialized)
5766 		return 0;
5767 
5768 	ret = cpuset_cpu_inactive(cpu);
5769 	if (ret) {
5770 		set_cpu_active(cpu, true);
5771 		return ret;
5772 	}
5773 	sched_domains_numa_masks_clear(cpu);
5774 	return 0;
5775 }
5776 
5777 static void sched_rq_cpu_starting(unsigned int cpu)
5778 {
5779 	struct rq *rq = cpu_rq(cpu);
5780 
5781 	rq->calc_load_update = calc_load_update;
5782 	update_max_interval();
5783 }
5784 
5785 int sched_cpu_starting(unsigned int cpu)
5786 {
5787 	set_cpu_rq_start_time(cpu);
5788 	sched_rq_cpu_starting(cpu);
5789 	return 0;
5790 }
5791 
5792 #ifdef CONFIG_HOTPLUG_CPU
5793 int sched_cpu_dying(unsigned int cpu)
5794 {
5795 	struct rq *rq = cpu_rq(cpu);
5796 	struct rq_flags rf;
5797 
5798 	/* Handle pending wakeups and then migrate everything off */
5799 	sched_ttwu_pending();
5800 
5801 	rq_lock_irqsave(rq, &rf);
5802 	if (rq->rd) {
5803 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5804 		set_rq_offline(rq);
5805 	}
5806 	migrate_tasks(rq, &rf);
5807 	BUG_ON(rq->nr_running != 1);
5808 	rq_unlock_irqrestore(rq, &rf);
5809 
5810 	calc_load_migrate(rq);
5811 	update_max_interval();
5812 	nohz_balance_exit_idle(cpu);
5813 	hrtick_clear(rq);
5814 	return 0;
5815 }
5816 #endif
5817 
5818 #ifdef CONFIG_SCHED_SMT
5819 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5820 
5821 static void sched_init_smt(void)
5822 {
5823 	/*
5824 	 * We've enumerated all CPUs and will assume that if any CPU
5825 	 * has SMT siblings, CPU0 will too.
5826 	 */
5827 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5828 		static_branch_enable(&sched_smt_present);
5829 }
5830 #else
5831 static inline void sched_init_smt(void) { }
5832 #endif
5833 
5834 void __init sched_init_smp(void)
5835 {
5836 	sched_init_numa();
5837 
5838 	/*
5839 	 * There's no userspace yet to cause hotplug operations; hence all the
5840 	 * CPU masks are stable and all blatant races in the below code cannot
5841 	 * happen.
5842 	 */
5843 	mutex_lock(&sched_domains_mutex);
5844 	sched_init_domains(cpu_active_mask);
5845 	mutex_unlock(&sched_domains_mutex);
5846 
5847 	/* Move init over to a non-isolated CPU */
5848 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5849 		BUG();
5850 	sched_init_granularity();
5851 
5852 	init_sched_rt_class();
5853 	init_sched_dl_class();
5854 
5855 	sched_init_smt();
5856 
5857 	sched_smp_initialized = true;
5858 }
5859 
5860 static int __init migration_init(void)
5861 {
5862 	sched_rq_cpu_starting(smp_processor_id());
5863 	return 0;
5864 }
5865 early_initcall(migration_init);
5866 
5867 #else
5868 void __init sched_init_smp(void)
5869 {
5870 	sched_init_granularity();
5871 }
5872 #endif /* CONFIG_SMP */
5873 
5874 int in_sched_functions(unsigned long addr)
5875 {
5876 	return in_lock_functions(addr) ||
5877 		(addr >= (unsigned long)__sched_text_start
5878 		&& addr < (unsigned long)__sched_text_end);
5879 }
5880 
5881 #ifdef CONFIG_CGROUP_SCHED
5882 /*
5883  * Default task group.
5884  * Every task in system belongs to this group at bootup.
5885  */
5886 struct task_group root_task_group;
5887 LIST_HEAD(task_groups);
5888 
5889 /* Cacheline aligned slab cache for task_group */
5890 static struct kmem_cache *task_group_cache __read_mostly;
5891 #endif
5892 
5893 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5894 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5895 
5896 void __init sched_init(void)
5897 {
5898 	int i, j;
5899 	unsigned long alloc_size = 0, ptr;
5900 
5901 	sched_clock_init();
5902 	wait_bit_init();
5903 
5904 #ifdef CONFIG_FAIR_GROUP_SCHED
5905 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5906 #endif
5907 #ifdef CONFIG_RT_GROUP_SCHED
5908 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5909 #endif
5910 	if (alloc_size) {
5911 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5912 
5913 #ifdef CONFIG_FAIR_GROUP_SCHED
5914 		root_task_group.se = (struct sched_entity **)ptr;
5915 		ptr += nr_cpu_ids * sizeof(void **);
5916 
5917 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5918 		ptr += nr_cpu_ids * sizeof(void **);
5919 
5920 #endif /* CONFIG_FAIR_GROUP_SCHED */
5921 #ifdef CONFIG_RT_GROUP_SCHED
5922 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5923 		ptr += nr_cpu_ids * sizeof(void **);
5924 
5925 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5926 		ptr += nr_cpu_ids * sizeof(void **);
5927 
5928 #endif /* CONFIG_RT_GROUP_SCHED */
5929 	}
5930 #ifdef CONFIG_CPUMASK_OFFSTACK
5931 	for_each_possible_cpu(i) {
5932 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5933 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5934 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5935 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5936 	}
5937 #endif /* CONFIG_CPUMASK_OFFSTACK */
5938 
5939 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5940 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5941 
5942 #ifdef CONFIG_SMP
5943 	init_defrootdomain();
5944 #endif
5945 
5946 #ifdef CONFIG_RT_GROUP_SCHED
5947 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5948 			global_rt_period(), global_rt_runtime());
5949 #endif /* CONFIG_RT_GROUP_SCHED */
5950 
5951 #ifdef CONFIG_CGROUP_SCHED
5952 	task_group_cache = KMEM_CACHE(task_group, 0);
5953 
5954 	list_add(&root_task_group.list, &task_groups);
5955 	INIT_LIST_HEAD(&root_task_group.children);
5956 	INIT_LIST_HEAD(&root_task_group.siblings);
5957 	autogroup_init(&init_task);
5958 #endif /* CONFIG_CGROUP_SCHED */
5959 
5960 	for_each_possible_cpu(i) {
5961 		struct rq *rq;
5962 
5963 		rq = cpu_rq(i);
5964 		raw_spin_lock_init(&rq->lock);
5965 		rq->nr_running = 0;
5966 		rq->calc_load_active = 0;
5967 		rq->calc_load_update = jiffies + LOAD_FREQ;
5968 		init_cfs_rq(&rq->cfs);
5969 		init_rt_rq(&rq->rt);
5970 		init_dl_rq(&rq->dl);
5971 #ifdef CONFIG_FAIR_GROUP_SCHED
5972 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5973 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5974 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5975 		/*
5976 		 * How much CPU bandwidth does root_task_group get?
5977 		 *
5978 		 * In case of task-groups formed thr' the cgroup filesystem, it
5979 		 * gets 100% of the CPU resources in the system. This overall
5980 		 * system CPU resource is divided among the tasks of
5981 		 * root_task_group and its child task-groups in a fair manner,
5982 		 * based on each entity's (task or task-group's) weight
5983 		 * (se->load.weight).
5984 		 *
5985 		 * In other words, if root_task_group has 10 tasks of weight
5986 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5987 		 * then A0's share of the CPU resource is:
5988 		 *
5989 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5990 		 *
5991 		 * We achieve this by letting root_task_group's tasks sit
5992 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5993 		 */
5994 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5995 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5996 #endif /* CONFIG_FAIR_GROUP_SCHED */
5997 
5998 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5999 #ifdef CONFIG_RT_GROUP_SCHED
6000 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6001 #endif
6002 
6003 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6004 			rq->cpu_load[j] = 0;
6005 
6006 #ifdef CONFIG_SMP
6007 		rq->sd = NULL;
6008 		rq->rd = NULL;
6009 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6010 		rq->balance_callback = NULL;
6011 		rq->active_balance = 0;
6012 		rq->next_balance = jiffies;
6013 		rq->push_cpu = 0;
6014 		rq->cpu = i;
6015 		rq->online = 0;
6016 		rq->idle_stamp = 0;
6017 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6018 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6019 
6020 		INIT_LIST_HEAD(&rq->cfs_tasks);
6021 
6022 		rq_attach_root(rq, &def_root_domain);
6023 #ifdef CONFIG_NO_HZ_COMMON
6024 		rq->last_load_update_tick = jiffies;
6025 		rq->nohz_flags = 0;
6026 #endif
6027 #ifdef CONFIG_NO_HZ_FULL
6028 		rq->last_sched_tick = 0;
6029 #endif
6030 #endif /* CONFIG_SMP */
6031 		init_rq_hrtick(rq);
6032 		atomic_set(&rq->nr_iowait, 0);
6033 	}
6034 
6035 	set_load_weight(&init_task, false);
6036 
6037 	/*
6038 	 * The boot idle thread does lazy MMU switching as well:
6039 	 */
6040 	mmgrab(&init_mm);
6041 	enter_lazy_tlb(&init_mm, current);
6042 
6043 	/*
6044 	 * Make us the idle thread. Technically, schedule() should not be
6045 	 * called from this thread, however somewhere below it might be,
6046 	 * but because we are the idle thread, we just pick up running again
6047 	 * when this runqueue becomes "idle".
6048 	 */
6049 	init_idle(current, smp_processor_id());
6050 
6051 	calc_load_update = jiffies + LOAD_FREQ;
6052 
6053 #ifdef CONFIG_SMP
6054 	idle_thread_set_boot_cpu();
6055 	set_cpu_rq_start_time(smp_processor_id());
6056 #endif
6057 	init_sched_fair_class();
6058 
6059 	init_schedstats();
6060 
6061 	scheduler_running = 1;
6062 }
6063 
6064 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6065 static inline int preempt_count_equals(int preempt_offset)
6066 {
6067 	int nested = preempt_count() + rcu_preempt_depth();
6068 
6069 	return (nested == preempt_offset);
6070 }
6071 
6072 void __might_sleep(const char *file, int line, int preempt_offset)
6073 {
6074 	/*
6075 	 * Blocking primitives will set (and therefore destroy) current->state,
6076 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6077 	 * otherwise we will destroy state.
6078 	 */
6079 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6080 			"do not call blocking ops when !TASK_RUNNING; "
6081 			"state=%lx set at [<%p>] %pS\n",
6082 			current->state,
6083 			(void *)current->task_state_change,
6084 			(void *)current->task_state_change);
6085 
6086 	___might_sleep(file, line, preempt_offset);
6087 }
6088 EXPORT_SYMBOL(__might_sleep);
6089 
6090 void ___might_sleep(const char *file, int line, int preempt_offset)
6091 {
6092 	/* Ratelimiting timestamp: */
6093 	static unsigned long prev_jiffy;
6094 
6095 	unsigned long preempt_disable_ip;
6096 
6097 	/* WARN_ON_ONCE() by default, no rate limit required: */
6098 	rcu_sleep_check();
6099 
6100 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6101 	     !is_idle_task(current)) ||
6102 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6103 	    oops_in_progress)
6104 		return;
6105 
6106 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6107 		return;
6108 	prev_jiffy = jiffies;
6109 
6110 	/* Save this before calling printk(), since that will clobber it: */
6111 	preempt_disable_ip = get_preempt_disable_ip(current);
6112 
6113 	printk(KERN_ERR
6114 		"BUG: sleeping function called from invalid context at %s:%d\n",
6115 			file, line);
6116 	printk(KERN_ERR
6117 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6118 			in_atomic(), irqs_disabled(),
6119 			current->pid, current->comm);
6120 
6121 	if (task_stack_end_corrupted(current))
6122 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6123 
6124 	debug_show_held_locks(current);
6125 	if (irqs_disabled())
6126 		print_irqtrace_events(current);
6127 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6128 	    && !preempt_count_equals(preempt_offset)) {
6129 		pr_err("Preemption disabled at:");
6130 		print_ip_sym(preempt_disable_ip);
6131 		pr_cont("\n");
6132 	}
6133 	dump_stack();
6134 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6135 }
6136 EXPORT_SYMBOL(___might_sleep);
6137 #endif
6138 
6139 #ifdef CONFIG_MAGIC_SYSRQ
6140 void normalize_rt_tasks(void)
6141 {
6142 	struct task_struct *g, *p;
6143 	struct sched_attr attr = {
6144 		.sched_policy = SCHED_NORMAL,
6145 	};
6146 
6147 	read_lock(&tasklist_lock);
6148 	for_each_process_thread(g, p) {
6149 		/*
6150 		 * Only normalize user tasks:
6151 		 */
6152 		if (p->flags & PF_KTHREAD)
6153 			continue;
6154 
6155 		p->se.exec_start = 0;
6156 		schedstat_set(p->se.statistics.wait_start,  0);
6157 		schedstat_set(p->se.statistics.sleep_start, 0);
6158 		schedstat_set(p->se.statistics.block_start, 0);
6159 
6160 		if (!dl_task(p) && !rt_task(p)) {
6161 			/*
6162 			 * Renice negative nice level userspace
6163 			 * tasks back to 0:
6164 			 */
6165 			if (task_nice(p) < 0)
6166 				set_user_nice(p, 0);
6167 			continue;
6168 		}
6169 
6170 		__sched_setscheduler(p, &attr, false, false);
6171 	}
6172 	read_unlock(&tasklist_lock);
6173 }
6174 
6175 #endif /* CONFIG_MAGIC_SYSRQ */
6176 
6177 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6178 /*
6179  * These functions are only useful for the IA64 MCA handling, or kdb.
6180  *
6181  * They can only be called when the whole system has been
6182  * stopped - every CPU needs to be quiescent, and no scheduling
6183  * activity can take place. Using them for anything else would
6184  * be a serious bug, and as a result, they aren't even visible
6185  * under any other configuration.
6186  */
6187 
6188 /**
6189  * curr_task - return the current task for a given CPU.
6190  * @cpu: the processor in question.
6191  *
6192  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6193  *
6194  * Return: The current task for @cpu.
6195  */
6196 struct task_struct *curr_task(int cpu)
6197 {
6198 	return cpu_curr(cpu);
6199 }
6200 
6201 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6202 
6203 #ifdef CONFIG_IA64
6204 /**
6205  * set_curr_task - set the current task for a given CPU.
6206  * @cpu: the processor in question.
6207  * @p: the task pointer to set.
6208  *
6209  * Description: This function must only be used when non-maskable interrupts
6210  * are serviced on a separate stack. It allows the architecture to switch the
6211  * notion of the current task on a CPU in a non-blocking manner. This function
6212  * must be called with all CPU's synchronized, and interrupts disabled, the
6213  * and caller must save the original value of the current task (see
6214  * curr_task() above) and restore that value before reenabling interrupts and
6215  * re-starting the system.
6216  *
6217  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6218  */
6219 void ia64_set_curr_task(int cpu, struct task_struct *p)
6220 {
6221 	cpu_curr(cpu) = p;
6222 }
6223 
6224 #endif
6225 
6226 #ifdef CONFIG_CGROUP_SCHED
6227 /* task_group_lock serializes the addition/removal of task groups */
6228 static DEFINE_SPINLOCK(task_group_lock);
6229 
6230 static void sched_free_group(struct task_group *tg)
6231 {
6232 	free_fair_sched_group(tg);
6233 	free_rt_sched_group(tg);
6234 	autogroup_free(tg);
6235 	kmem_cache_free(task_group_cache, tg);
6236 }
6237 
6238 /* allocate runqueue etc for a new task group */
6239 struct task_group *sched_create_group(struct task_group *parent)
6240 {
6241 	struct task_group *tg;
6242 
6243 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6244 	if (!tg)
6245 		return ERR_PTR(-ENOMEM);
6246 
6247 	if (!alloc_fair_sched_group(tg, parent))
6248 		goto err;
6249 
6250 	if (!alloc_rt_sched_group(tg, parent))
6251 		goto err;
6252 
6253 	return tg;
6254 
6255 err:
6256 	sched_free_group(tg);
6257 	return ERR_PTR(-ENOMEM);
6258 }
6259 
6260 void sched_online_group(struct task_group *tg, struct task_group *parent)
6261 {
6262 	unsigned long flags;
6263 
6264 	spin_lock_irqsave(&task_group_lock, flags);
6265 	list_add_rcu(&tg->list, &task_groups);
6266 
6267 	/* Root should already exist: */
6268 	WARN_ON(!parent);
6269 
6270 	tg->parent = parent;
6271 	INIT_LIST_HEAD(&tg->children);
6272 	list_add_rcu(&tg->siblings, &parent->children);
6273 	spin_unlock_irqrestore(&task_group_lock, flags);
6274 
6275 	online_fair_sched_group(tg);
6276 }
6277 
6278 /* rcu callback to free various structures associated with a task group */
6279 static void sched_free_group_rcu(struct rcu_head *rhp)
6280 {
6281 	/* Now it should be safe to free those cfs_rqs: */
6282 	sched_free_group(container_of(rhp, struct task_group, rcu));
6283 }
6284 
6285 void sched_destroy_group(struct task_group *tg)
6286 {
6287 	/* Wait for possible concurrent references to cfs_rqs complete: */
6288 	call_rcu(&tg->rcu, sched_free_group_rcu);
6289 }
6290 
6291 void sched_offline_group(struct task_group *tg)
6292 {
6293 	unsigned long flags;
6294 
6295 	/* End participation in shares distribution: */
6296 	unregister_fair_sched_group(tg);
6297 
6298 	spin_lock_irqsave(&task_group_lock, flags);
6299 	list_del_rcu(&tg->list);
6300 	list_del_rcu(&tg->siblings);
6301 	spin_unlock_irqrestore(&task_group_lock, flags);
6302 }
6303 
6304 static void sched_change_group(struct task_struct *tsk, int type)
6305 {
6306 	struct task_group *tg;
6307 
6308 	/*
6309 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6310 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6311 	 * to prevent lockdep warnings.
6312 	 */
6313 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6314 			  struct task_group, css);
6315 	tg = autogroup_task_group(tsk, tg);
6316 	tsk->sched_task_group = tg;
6317 
6318 #ifdef CONFIG_FAIR_GROUP_SCHED
6319 	if (tsk->sched_class->task_change_group)
6320 		tsk->sched_class->task_change_group(tsk, type);
6321 	else
6322 #endif
6323 		set_task_rq(tsk, task_cpu(tsk));
6324 }
6325 
6326 /*
6327  * Change task's runqueue when it moves between groups.
6328  *
6329  * The caller of this function should have put the task in its new group by
6330  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6331  * its new group.
6332  */
6333 void sched_move_task(struct task_struct *tsk)
6334 {
6335 	int queued, running, queue_flags =
6336 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6337 	struct rq_flags rf;
6338 	struct rq *rq;
6339 
6340 	rq = task_rq_lock(tsk, &rf);
6341 	update_rq_clock(rq);
6342 
6343 	running = task_current(rq, tsk);
6344 	queued = task_on_rq_queued(tsk);
6345 
6346 	if (queued)
6347 		dequeue_task(rq, tsk, queue_flags);
6348 	if (running)
6349 		put_prev_task(rq, tsk);
6350 
6351 	sched_change_group(tsk, TASK_MOVE_GROUP);
6352 
6353 	if (queued)
6354 		enqueue_task(rq, tsk, queue_flags);
6355 	if (running)
6356 		set_curr_task(rq, tsk);
6357 
6358 	task_rq_unlock(rq, tsk, &rf);
6359 }
6360 
6361 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6362 {
6363 	return css ? container_of(css, struct task_group, css) : NULL;
6364 }
6365 
6366 static struct cgroup_subsys_state *
6367 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6368 {
6369 	struct task_group *parent = css_tg(parent_css);
6370 	struct task_group *tg;
6371 
6372 	if (!parent) {
6373 		/* This is early initialization for the top cgroup */
6374 		return &root_task_group.css;
6375 	}
6376 
6377 	tg = sched_create_group(parent);
6378 	if (IS_ERR(tg))
6379 		return ERR_PTR(-ENOMEM);
6380 
6381 	return &tg->css;
6382 }
6383 
6384 /* Expose task group only after completing cgroup initialization */
6385 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6386 {
6387 	struct task_group *tg = css_tg(css);
6388 	struct task_group *parent = css_tg(css->parent);
6389 
6390 	if (parent)
6391 		sched_online_group(tg, parent);
6392 	return 0;
6393 }
6394 
6395 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6396 {
6397 	struct task_group *tg = css_tg(css);
6398 
6399 	sched_offline_group(tg);
6400 }
6401 
6402 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6403 {
6404 	struct task_group *tg = css_tg(css);
6405 
6406 	/*
6407 	 * Relies on the RCU grace period between css_released() and this.
6408 	 */
6409 	sched_free_group(tg);
6410 }
6411 
6412 /*
6413  * This is called before wake_up_new_task(), therefore we really only
6414  * have to set its group bits, all the other stuff does not apply.
6415  */
6416 static void cpu_cgroup_fork(struct task_struct *task)
6417 {
6418 	struct rq_flags rf;
6419 	struct rq *rq;
6420 
6421 	rq = task_rq_lock(task, &rf);
6422 
6423 	update_rq_clock(rq);
6424 	sched_change_group(task, TASK_SET_GROUP);
6425 
6426 	task_rq_unlock(rq, task, &rf);
6427 }
6428 
6429 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6430 {
6431 	struct task_struct *task;
6432 	struct cgroup_subsys_state *css;
6433 	int ret = 0;
6434 
6435 	cgroup_taskset_for_each(task, css, tset) {
6436 #ifdef CONFIG_RT_GROUP_SCHED
6437 		if (!sched_rt_can_attach(css_tg(css), task))
6438 			return -EINVAL;
6439 #else
6440 		/* We don't support RT-tasks being in separate groups */
6441 		if (task->sched_class != &fair_sched_class)
6442 			return -EINVAL;
6443 #endif
6444 		/*
6445 		 * Serialize against wake_up_new_task() such that if its
6446 		 * running, we're sure to observe its full state.
6447 		 */
6448 		raw_spin_lock_irq(&task->pi_lock);
6449 		/*
6450 		 * Avoid calling sched_move_task() before wake_up_new_task()
6451 		 * has happened. This would lead to problems with PELT, due to
6452 		 * move wanting to detach+attach while we're not attached yet.
6453 		 */
6454 		if (task->state == TASK_NEW)
6455 			ret = -EINVAL;
6456 		raw_spin_unlock_irq(&task->pi_lock);
6457 
6458 		if (ret)
6459 			break;
6460 	}
6461 	return ret;
6462 }
6463 
6464 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6465 {
6466 	struct task_struct *task;
6467 	struct cgroup_subsys_state *css;
6468 
6469 	cgroup_taskset_for_each(task, css, tset)
6470 		sched_move_task(task);
6471 }
6472 
6473 #ifdef CONFIG_FAIR_GROUP_SCHED
6474 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6475 				struct cftype *cftype, u64 shareval)
6476 {
6477 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6478 }
6479 
6480 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6481 			       struct cftype *cft)
6482 {
6483 	struct task_group *tg = css_tg(css);
6484 
6485 	return (u64) scale_load_down(tg->shares);
6486 }
6487 
6488 #ifdef CONFIG_CFS_BANDWIDTH
6489 static DEFINE_MUTEX(cfs_constraints_mutex);
6490 
6491 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6492 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6493 
6494 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6495 
6496 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6497 {
6498 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6499 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6500 
6501 	if (tg == &root_task_group)
6502 		return -EINVAL;
6503 
6504 	/*
6505 	 * Ensure we have at some amount of bandwidth every period.  This is
6506 	 * to prevent reaching a state of large arrears when throttled via
6507 	 * entity_tick() resulting in prolonged exit starvation.
6508 	 */
6509 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6510 		return -EINVAL;
6511 
6512 	/*
6513 	 * Likewise, bound things on the otherside by preventing insane quota
6514 	 * periods.  This also allows us to normalize in computing quota
6515 	 * feasibility.
6516 	 */
6517 	if (period > max_cfs_quota_period)
6518 		return -EINVAL;
6519 
6520 	/*
6521 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6522 	 * unthrottle_offline_cfs_rqs().
6523 	 */
6524 	get_online_cpus();
6525 	mutex_lock(&cfs_constraints_mutex);
6526 	ret = __cfs_schedulable(tg, period, quota);
6527 	if (ret)
6528 		goto out_unlock;
6529 
6530 	runtime_enabled = quota != RUNTIME_INF;
6531 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6532 	/*
6533 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6534 	 * before making related changes, and on->off must occur afterwards
6535 	 */
6536 	if (runtime_enabled && !runtime_was_enabled)
6537 		cfs_bandwidth_usage_inc();
6538 	raw_spin_lock_irq(&cfs_b->lock);
6539 	cfs_b->period = ns_to_ktime(period);
6540 	cfs_b->quota = quota;
6541 
6542 	__refill_cfs_bandwidth_runtime(cfs_b);
6543 
6544 	/* Restart the period timer (if active) to handle new period expiry: */
6545 	if (runtime_enabled)
6546 		start_cfs_bandwidth(cfs_b);
6547 
6548 	raw_spin_unlock_irq(&cfs_b->lock);
6549 
6550 	for_each_online_cpu(i) {
6551 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6552 		struct rq *rq = cfs_rq->rq;
6553 		struct rq_flags rf;
6554 
6555 		rq_lock_irq(rq, &rf);
6556 		cfs_rq->runtime_enabled = runtime_enabled;
6557 		cfs_rq->runtime_remaining = 0;
6558 
6559 		if (cfs_rq->throttled)
6560 			unthrottle_cfs_rq(cfs_rq);
6561 		rq_unlock_irq(rq, &rf);
6562 	}
6563 	if (runtime_was_enabled && !runtime_enabled)
6564 		cfs_bandwidth_usage_dec();
6565 out_unlock:
6566 	mutex_unlock(&cfs_constraints_mutex);
6567 	put_online_cpus();
6568 
6569 	return ret;
6570 }
6571 
6572 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6573 {
6574 	u64 quota, period;
6575 
6576 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6577 	if (cfs_quota_us < 0)
6578 		quota = RUNTIME_INF;
6579 	else
6580 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6581 
6582 	return tg_set_cfs_bandwidth(tg, period, quota);
6583 }
6584 
6585 long tg_get_cfs_quota(struct task_group *tg)
6586 {
6587 	u64 quota_us;
6588 
6589 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6590 		return -1;
6591 
6592 	quota_us = tg->cfs_bandwidth.quota;
6593 	do_div(quota_us, NSEC_PER_USEC);
6594 
6595 	return quota_us;
6596 }
6597 
6598 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6599 {
6600 	u64 quota, period;
6601 
6602 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6603 	quota = tg->cfs_bandwidth.quota;
6604 
6605 	return tg_set_cfs_bandwidth(tg, period, quota);
6606 }
6607 
6608 long tg_get_cfs_period(struct task_group *tg)
6609 {
6610 	u64 cfs_period_us;
6611 
6612 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6613 	do_div(cfs_period_us, NSEC_PER_USEC);
6614 
6615 	return cfs_period_us;
6616 }
6617 
6618 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6619 				  struct cftype *cft)
6620 {
6621 	return tg_get_cfs_quota(css_tg(css));
6622 }
6623 
6624 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6625 				   struct cftype *cftype, s64 cfs_quota_us)
6626 {
6627 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6628 }
6629 
6630 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6631 				   struct cftype *cft)
6632 {
6633 	return tg_get_cfs_period(css_tg(css));
6634 }
6635 
6636 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6637 				    struct cftype *cftype, u64 cfs_period_us)
6638 {
6639 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6640 }
6641 
6642 struct cfs_schedulable_data {
6643 	struct task_group *tg;
6644 	u64 period, quota;
6645 };
6646 
6647 /*
6648  * normalize group quota/period to be quota/max_period
6649  * note: units are usecs
6650  */
6651 static u64 normalize_cfs_quota(struct task_group *tg,
6652 			       struct cfs_schedulable_data *d)
6653 {
6654 	u64 quota, period;
6655 
6656 	if (tg == d->tg) {
6657 		period = d->period;
6658 		quota = d->quota;
6659 	} else {
6660 		period = tg_get_cfs_period(tg);
6661 		quota = tg_get_cfs_quota(tg);
6662 	}
6663 
6664 	/* note: these should typically be equivalent */
6665 	if (quota == RUNTIME_INF || quota == -1)
6666 		return RUNTIME_INF;
6667 
6668 	return to_ratio(period, quota);
6669 }
6670 
6671 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6672 {
6673 	struct cfs_schedulable_data *d = data;
6674 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6675 	s64 quota = 0, parent_quota = -1;
6676 
6677 	if (!tg->parent) {
6678 		quota = RUNTIME_INF;
6679 	} else {
6680 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6681 
6682 		quota = normalize_cfs_quota(tg, d);
6683 		parent_quota = parent_b->hierarchical_quota;
6684 
6685 		/*
6686 		 * Ensure max(child_quota) <= parent_quota, inherit when no
6687 		 * limit is set:
6688 		 */
6689 		if (quota == RUNTIME_INF)
6690 			quota = parent_quota;
6691 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6692 			return -EINVAL;
6693 	}
6694 	cfs_b->hierarchical_quota = quota;
6695 
6696 	return 0;
6697 }
6698 
6699 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6700 {
6701 	int ret;
6702 	struct cfs_schedulable_data data = {
6703 		.tg = tg,
6704 		.period = period,
6705 		.quota = quota,
6706 	};
6707 
6708 	if (quota != RUNTIME_INF) {
6709 		do_div(data.period, NSEC_PER_USEC);
6710 		do_div(data.quota, NSEC_PER_USEC);
6711 	}
6712 
6713 	rcu_read_lock();
6714 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6715 	rcu_read_unlock();
6716 
6717 	return ret;
6718 }
6719 
6720 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6721 {
6722 	struct task_group *tg = css_tg(seq_css(sf));
6723 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6724 
6725 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6726 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6727 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6728 
6729 	return 0;
6730 }
6731 #endif /* CONFIG_CFS_BANDWIDTH */
6732 #endif /* CONFIG_FAIR_GROUP_SCHED */
6733 
6734 #ifdef CONFIG_RT_GROUP_SCHED
6735 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6736 				struct cftype *cft, s64 val)
6737 {
6738 	return sched_group_set_rt_runtime(css_tg(css), val);
6739 }
6740 
6741 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6742 			       struct cftype *cft)
6743 {
6744 	return sched_group_rt_runtime(css_tg(css));
6745 }
6746 
6747 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6748 				    struct cftype *cftype, u64 rt_period_us)
6749 {
6750 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6751 }
6752 
6753 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6754 				   struct cftype *cft)
6755 {
6756 	return sched_group_rt_period(css_tg(css));
6757 }
6758 #endif /* CONFIG_RT_GROUP_SCHED */
6759 
6760 static struct cftype cpu_legacy_files[] = {
6761 #ifdef CONFIG_FAIR_GROUP_SCHED
6762 	{
6763 		.name = "shares",
6764 		.read_u64 = cpu_shares_read_u64,
6765 		.write_u64 = cpu_shares_write_u64,
6766 	},
6767 #endif
6768 #ifdef CONFIG_CFS_BANDWIDTH
6769 	{
6770 		.name = "cfs_quota_us",
6771 		.read_s64 = cpu_cfs_quota_read_s64,
6772 		.write_s64 = cpu_cfs_quota_write_s64,
6773 	},
6774 	{
6775 		.name = "cfs_period_us",
6776 		.read_u64 = cpu_cfs_period_read_u64,
6777 		.write_u64 = cpu_cfs_period_write_u64,
6778 	},
6779 	{
6780 		.name = "stat",
6781 		.seq_show = cpu_cfs_stat_show,
6782 	},
6783 #endif
6784 #ifdef CONFIG_RT_GROUP_SCHED
6785 	{
6786 		.name = "rt_runtime_us",
6787 		.read_s64 = cpu_rt_runtime_read,
6788 		.write_s64 = cpu_rt_runtime_write,
6789 	},
6790 	{
6791 		.name = "rt_period_us",
6792 		.read_u64 = cpu_rt_period_read_uint,
6793 		.write_u64 = cpu_rt_period_write_uint,
6794 	},
6795 #endif
6796 	{ }	/* Terminate */
6797 };
6798 
6799 static int cpu_extra_stat_show(struct seq_file *sf,
6800 			       struct cgroup_subsys_state *css)
6801 {
6802 #ifdef CONFIG_CFS_BANDWIDTH
6803 	{
6804 		struct task_group *tg = css_tg(css);
6805 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6806 		u64 throttled_usec;
6807 
6808 		throttled_usec = cfs_b->throttled_time;
6809 		do_div(throttled_usec, NSEC_PER_USEC);
6810 
6811 		seq_printf(sf, "nr_periods %d\n"
6812 			   "nr_throttled %d\n"
6813 			   "throttled_usec %llu\n",
6814 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6815 			   throttled_usec);
6816 	}
6817 #endif
6818 	return 0;
6819 }
6820 
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6823 			       struct cftype *cft)
6824 {
6825 	struct task_group *tg = css_tg(css);
6826 	u64 weight = scale_load_down(tg->shares);
6827 
6828 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6829 }
6830 
6831 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6832 				struct cftype *cft, u64 weight)
6833 {
6834 	/*
6835 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6836 	 * values which are 1, 100 and 10000 respectively.  While it loses
6837 	 * a bit of range on both ends, it maps pretty well onto the shares
6838 	 * value used by scheduler and the round-trip conversions preserve
6839 	 * the original value over the entire range.
6840 	 */
6841 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6842 		return -ERANGE;
6843 
6844 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6845 
6846 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6847 }
6848 
6849 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6850 				    struct cftype *cft)
6851 {
6852 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6853 	int last_delta = INT_MAX;
6854 	int prio, delta;
6855 
6856 	/* find the closest nice value to the current weight */
6857 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6858 		delta = abs(sched_prio_to_weight[prio] - weight);
6859 		if (delta >= last_delta)
6860 			break;
6861 		last_delta = delta;
6862 	}
6863 
6864 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6865 }
6866 
6867 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6868 				     struct cftype *cft, s64 nice)
6869 {
6870 	unsigned long weight;
6871 
6872 	if (nice < MIN_NICE || nice > MAX_NICE)
6873 		return -ERANGE;
6874 
6875 	weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6876 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6877 }
6878 #endif
6879 
6880 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6881 						  long period, long quota)
6882 {
6883 	if (quota < 0)
6884 		seq_puts(sf, "max");
6885 	else
6886 		seq_printf(sf, "%ld", quota);
6887 
6888 	seq_printf(sf, " %ld\n", period);
6889 }
6890 
6891 /* caller should put the current value in *@periodp before calling */
6892 static int __maybe_unused cpu_period_quota_parse(char *buf,
6893 						 u64 *periodp, u64 *quotap)
6894 {
6895 	char tok[21];	/* U64_MAX */
6896 
6897 	if (!sscanf(buf, "%s %llu", tok, periodp))
6898 		return -EINVAL;
6899 
6900 	*periodp *= NSEC_PER_USEC;
6901 
6902 	if (sscanf(tok, "%llu", quotap))
6903 		*quotap *= NSEC_PER_USEC;
6904 	else if (!strcmp(tok, "max"))
6905 		*quotap = RUNTIME_INF;
6906 	else
6907 		return -EINVAL;
6908 
6909 	return 0;
6910 }
6911 
6912 #ifdef CONFIG_CFS_BANDWIDTH
6913 static int cpu_max_show(struct seq_file *sf, void *v)
6914 {
6915 	struct task_group *tg = css_tg(seq_css(sf));
6916 
6917 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6918 	return 0;
6919 }
6920 
6921 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6922 			     char *buf, size_t nbytes, loff_t off)
6923 {
6924 	struct task_group *tg = css_tg(of_css(of));
6925 	u64 period = tg_get_cfs_period(tg);
6926 	u64 quota;
6927 	int ret;
6928 
6929 	ret = cpu_period_quota_parse(buf, &period, &quota);
6930 	if (!ret)
6931 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6932 	return ret ?: nbytes;
6933 }
6934 #endif
6935 
6936 static struct cftype cpu_files[] = {
6937 #ifdef CONFIG_FAIR_GROUP_SCHED
6938 	{
6939 		.name = "weight",
6940 		.flags = CFTYPE_NOT_ON_ROOT,
6941 		.read_u64 = cpu_weight_read_u64,
6942 		.write_u64 = cpu_weight_write_u64,
6943 	},
6944 	{
6945 		.name = "weight.nice",
6946 		.flags = CFTYPE_NOT_ON_ROOT,
6947 		.read_s64 = cpu_weight_nice_read_s64,
6948 		.write_s64 = cpu_weight_nice_write_s64,
6949 	},
6950 #endif
6951 #ifdef CONFIG_CFS_BANDWIDTH
6952 	{
6953 		.name = "max",
6954 		.flags = CFTYPE_NOT_ON_ROOT,
6955 		.seq_show = cpu_max_show,
6956 		.write = cpu_max_write,
6957 	},
6958 #endif
6959 	{ }	/* terminate */
6960 };
6961 
6962 struct cgroup_subsys cpu_cgrp_subsys = {
6963 	.css_alloc	= cpu_cgroup_css_alloc,
6964 	.css_online	= cpu_cgroup_css_online,
6965 	.css_released	= cpu_cgroup_css_released,
6966 	.css_free	= cpu_cgroup_css_free,
6967 	.css_extra_stat_show = cpu_extra_stat_show,
6968 	.fork		= cpu_cgroup_fork,
6969 	.can_attach	= cpu_cgroup_can_attach,
6970 	.attach		= cpu_cgroup_attach,
6971 	.legacy_cftypes	= cpu_legacy_files,
6972 	.dfl_cftypes	= cpu_files,
6973 	.early_init	= true,
6974 	.threaded	= true,
6975 };
6976 
6977 #endif	/* CONFIG_CGROUP_SCHED */
6978 
6979 void dump_cpu_task(int cpu)
6980 {
6981 	pr_info("Task dump for CPU %d:\n", cpu);
6982 	sched_show_task(cpu_curr(cpu));
6983 }
6984 
6985 /*
6986  * Nice levels are multiplicative, with a gentle 10% change for every
6987  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6988  * nice 1, it will get ~10% less CPU time than another CPU-bound task
6989  * that remained on nice 0.
6990  *
6991  * The "10% effect" is relative and cumulative: from _any_ nice level,
6992  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6993  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6994  * If a task goes up by ~10% and another task goes down by ~10% then
6995  * the relative distance between them is ~25%.)
6996  */
6997 const int sched_prio_to_weight[40] = {
6998  /* -20 */     88761,     71755,     56483,     46273,     36291,
6999  /* -15 */     29154,     23254,     18705,     14949,     11916,
7000  /* -10 */      9548,      7620,      6100,      4904,      3906,
7001  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7002  /*   0 */      1024,       820,       655,       526,       423,
7003  /*   5 */       335,       272,       215,       172,       137,
7004  /*  10 */       110,        87,        70,        56,        45,
7005  /*  15 */        36,        29,        23,        18,        15,
7006 };
7007 
7008 /*
7009  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7010  *
7011  * In cases where the weight does not change often, we can use the
7012  * precalculated inverse to speed up arithmetics by turning divisions
7013  * into multiplications:
7014  */
7015 const u32 sched_prio_to_wmult[40] = {
7016  /* -20 */     48388,     59856,     76040,     92818,    118348,
7017  /* -15 */    147320,    184698,    229616,    287308,    360437,
7018  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7019  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7020  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7021  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7022  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7023  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7024 };
7025