xref: /openbmc/linux/kernel/sched/core.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	for (;;) {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 			break;
929 	}
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	if (set_nr_and_not_polling(rq->idle))
1136 		smp_send_reschedule(cpu);
1137 	else
1138 		trace_sched_wake_idle_without_ipi(cpu);
1139 }
1140 
1141 static bool wake_up_full_nohz_cpu(int cpu)
1142 {
1143 	/*
1144 	 * We just need the target to call irq_exit() and re-evaluate
1145 	 * the next tick. The nohz full kick at least implies that.
1146 	 * If needed we can still optimize that later with an
1147 	 * empty IRQ.
1148 	 */
1149 	if (cpu_is_offline(cpu))
1150 		return true;  /* Don't try to wake offline CPUs. */
1151 	if (tick_nohz_full_cpu(cpu)) {
1152 		if (cpu != smp_processor_id() ||
1153 		    tick_nohz_tick_stopped())
1154 			tick_nohz_full_kick_cpu(cpu);
1155 		return true;
1156 	}
1157 
1158 	return false;
1159 }
1160 
1161 /*
1162  * Wake up the specified CPU.  If the CPU is going offline, it is the
1163  * caller's responsibility to deal with the lost wakeup, for example,
1164  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165  */
1166 void wake_up_nohz_cpu(int cpu)
1167 {
1168 	if (!wake_up_full_nohz_cpu(cpu))
1169 		wake_up_idle_cpu(cpu);
1170 }
1171 
1172 static void nohz_csd_func(void *info)
1173 {
1174 	struct rq *rq = info;
1175 	int cpu = cpu_of(rq);
1176 	unsigned int flags;
1177 
1178 	/*
1179 	 * Release the rq::nohz_csd.
1180 	 */
1181 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1182 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1183 
1184 	rq->idle_balance = idle_cpu(cpu);
1185 	if (rq->idle_balance && !need_resched()) {
1186 		rq->nohz_idle_balance = flags;
1187 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1188 	}
1189 }
1190 
1191 #endif /* CONFIG_NO_HZ_COMMON */
1192 
1193 #ifdef CONFIG_NO_HZ_FULL
1194 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 {
1196 	if (rq->nr_running != 1)
1197 		return false;
1198 
1199 	if (p->sched_class != &fair_sched_class)
1200 		return false;
1201 
1202 	if (!task_on_rq_queued(p))
1203 		return false;
1204 
1205 	return true;
1206 }
1207 
1208 bool sched_can_stop_tick(struct rq *rq)
1209 {
1210 	int fifo_nr_running;
1211 
1212 	/* Deadline tasks, even if single, need the tick */
1213 	if (rq->dl.dl_nr_running)
1214 		return false;
1215 
1216 	/*
1217 	 * If there are more than one RR tasks, we need the tick to affect the
1218 	 * actual RR behaviour.
1219 	 */
1220 	if (rq->rt.rr_nr_running) {
1221 		if (rq->rt.rr_nr_running == 1)
1222 			return true;
1223 		else
1224 			return false;
1225 	}
1226 
1227 	/*
1228 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1229 	 * forced preemption between FIFO tasks.
1230 	 */
1231 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1232 	if (fifo_nr_running)
1233 		return true;
1234 
1235 	/*
1236 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1237 	 * if there's more than one we need the tick for involuntary
1238 	 * preemption.
1239 	 */
1240 	if (rq->nr_running > 1)
1241 		return false;
1242 
1243 	/*
1244 	 * If there is one task and it has CFS runtime bandwidth constraints
1245 	 * and it's on the cpu now we don't want to stop the tick.
1246 	 * This check prevents clearing the bit if a newly enqueued task here is
1247 	 * dequeued by migrating while the constrained task continues to run.
1248 	 * E.g. going from 2->1 without going through pick_next_task().
1249 	 */
1250 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1251 		if (cfs_task_bw_constrained(rq->curr))
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 #endif /* CONFIG_NO_HZ_FULL */
1258 #endif /* CONFIG_SMP */
1259 
1260 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1261 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 /*
1263  * Iterate task_group tree rooted at *from, calling @down when first entering a
1264  * node and @up when leaving it for the final time.
1265  *
1266  * Caller must hold rcu_lock or sufficient equivalent.
1267  */
1268 int walk_tg_tree_from(struct task_group *from,
1269 			     tg_visitor down, tg_visitor up, void *data)
1270 {
1271 	struct task_group *parent, *child;
1272 	int ret;
1273 
1274 	parent = from;
1275 
1276 down:
1277 	ret = (*down)(parent, data);
1278 	if (ret)
1279 		goto out;
1280 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1281 		parent = child;
1282 		goto down;
1283 
1284 up:
1285 		continue;
1286 	}
1287 	ret = (*up)(parent, data);
1288 	if (ret || parent == from)
1289 		goto out;
1290 
1291 	child = parent;
1292 	parent = parent->parent;
1293 	if (parent)
1294 		goto up;
1295 out:
1296 	return ret;
1297 }
1298 
1299 int tg_nop(struct task_group *tg, void *data)
1300 {
1301 	return 0;
1302 }
1303 #endif
1304 
1305 static void set_load_weight(struct task_struct *p, bool update_load)
1306 {
1307 	int prio = p->static_prio - MAX_RT_PRIO;
1308 	struct load_weight *load = &p->se.load;
1309 
1310 	/*
1311 	 * SCHED_IDLE tasks get minimal weight:
1312 	 */
1313 	if (task_has_idle_policy(p)) {
1314 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1315 		load->inv_weight = WMULT_IDLEPRIO;
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * SCHED_OTHER tasks have to update their load when changing their
1321 	 * weight
1322 	 */
1323 	if (update_load && p->sched_class == &fair_sched_class) {
1324 		reweight_task(p, prio);
1325 	} else {
1326 		load->weight = scale_load(sched_prio_to_weight[prio]);
1327 		load->inv_weight = sched_prio_to_wmult[prio];
1328 	}
1329 }
1330 
1331 #ifdef CONFIG_UCLAMP_TASK
1332 /*
1333  * Serializes updates of utilization clamp values
1334  *
1335  * The (slow-path) user-space triggers utilization clamp value updates which
1336  * can require updates on (fast-path) scheduler's data structures used to
1337  * support enqueue/dequeue operations.
1338  * While the per-CPU rq lock protects fast-path update operations, user-space
1339  * requests are serialized using a mutex to reduce the risk of conflicting
1340  * updates or API abuses.
1341  */
1342 static DEFINE_MUTEX(uclamp_mutex);
1343 
1344 /* Max allowed minimum utilization */
1345 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1346 
1347 /* Max allowed maximum utilization */
1348 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1349 
1350 /*
1351  * By default RT tasks run at the maximum performance point/capacity of the
1352  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1353  * SCHED_CAPACITY_SCALE.
1354  *
1355  * This knob allows admins to change the default behavior when uclamp is being
1356  * used. In battery powered devices, particularly, running at the maximum
1357  * capacity and frequency will increase energy consumption and shorten the
1358  * battery life.
1359  *
1360  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1361  *
1362  * This knob will not override the system default sched_util_clamp_min defined
1363  * above.
1364  */
1365 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1366 
1367 /* All clamps are required to be less or equal than these values */
1368 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1369 
1370 /*
1371  * This static key is used to reduce the uclamp overhead in the fast path. It
1372  * primarily disables the call to uclamp_rq_{inc, dec}() in
1373  * enqueue/dequeue_task().
1374  *
1375  * This allows users to continue to enable uclamp in their kernel config with
1376  * minimum uclamp overhead in the fast path.
1377  *
1378  * As soon as userspace modifies any of the uclamp knobs, the static key is
1379  * enabled, since we have an actual users that make use of uclamp
1380  * functionality.
1381  *
1382  * The knobs that would enable this static key are:
1383  *
1384  *   * A task modifying its uclamp value with sched_setattr().
1385  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1386  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1387  */
1388 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1389 
1390 /* Integer rounded range for each bucket */
1391 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1392 
1393 #define for_each_clamp_id(clamp_id) \
1394 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1395 
1396 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1397 {
1398 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1399 }
1400 
1401 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1402 {
1403 	if (clamp_id == UCLAMP_MIN)
1404 		return 0;
1405 	return SCHED_CAPACITY_SCALE;
1406 }
1407 
1408 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1409 				 unsigned int value, bool user_defined)
1410 {
1411 	uc_se->value = value;
1412 	uc_se->bucket_id = uclamp_bucket_id(value);
1413 	uc_se->user_defined = user_defined;
1414 }
1415 
1416 static inline unsigned int
1417 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1418 		  unsigned int clamp_value)
1419 {
1420 	/*
1421 	 * Avoid blocked utilization pushing up the frequency when we go
1422 	 * idle (which drops the max-clamp) by retaining the last known
1423 	 * max-clamp.
1424 	 */
1425 	if (clamp_id == UCLAMP_MAX) {
1426 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1427 		return clamp_value;
1428 	}
1429 
1430 	return uclamp_none(UCLAMP_MIN);
1431 }
1432 
1433 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1434 				     unsigned int clamp_value)
1435 {
1436 	/* Reset max-clamp retention only on idle exit */
1437 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1438 		return;
1439 
1440 	uclamp_rq_set(rq, clamp_id, clamp_value);
1441 }
1442 
1443 static inline
1444 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1445 				   unsigned int clamp_value)
1446 {
1447 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1448 	int bucket_id = UCLAMP_BUCKETS - 1;
1449 
1450 	/*
1451 	 * Since both min and max clamps are max aggregated, find the
1452 	 * top most bucket with tasks in.
1453 	 */
1454 	for ( ; bucket_id >= 0; bucket_id--) {
1455 		if (!bucket[bucket_id].tasks)
1456 			continue;
1457 		return bucket[bucket_id].value;
1458 	}
1459 
1460 	/* No tasks -- default clamp values */
1461 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1462 }
1463 
1464 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1465 {
1466 	unsigned int default_util_min;
1467 	struct uclamp_se *uc_se;
1468 
1469 	lockdep_assert_held(&p->pi_lock);
1470 
1471 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1472 
1473 	/* Only sync if user didn't override the default */
1474 	if (uc_se->user_defined)
1475 		return;
1476 
1477 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1478 	uclamp_se_set(uc_se, default_util_min, false);
1479 }
1480 
1481 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1482 {
1483 	struct rq_flags rf;
1484 	struct rq *rq;
1485 
1486 	if (!rt_task(p))
1487 		return;
1488 
1489 	/* Protect updates to p->uclamp_* */
1490 	rq = task_rq_lock(p, &rf);
1491 	__uclamp_update_util_min_rt_default(p);
1492 	task_rq_unlock(rq, p, &rf);
1493 }
1494 
1495 static inline struct uclamp_se
1496 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1497 {
1498 	/* Copy by value as we could modify it */
1499 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1500 #ifdef CONFIG_UCLAMP_TASK_GROUP
1501 	unsigned int tg_min, tg_max, value;
1502 
1503 	/*
1504 	 * Tasks in autogroups or root task group will be
1505 	 * restricted by system defaults.
1506 	 */
1507 	if (task_group_is_autogroup(task_group(p)))
1508 		return uc_req;
1509 	if (task_group(p) == &root_task_group)
1510 		return uc_req;
1511 
1512 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1513 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1514 	value = uc_req.value;
1515 	value = clamp(value, tg_min, tg_max);
1516 	uclamp_se_set(&uc_req, value, false);
1517 #endif
1518 
1519 	return uc_req;
1520 }
1521 
1522 /*
1523  * The effective clamp bucket index of a task depends on, by increasing
1524  * priority:
1525  * - the task specific clamp value, when explicitly requested from userspace
1526  * - the task group effective clamp value, for tasks not either in the root
1527  *   group or in an autogroup
1528  * - the system default clamp value, defined by the sysadmin
1529  */
1530 static inline struct uclamp_se
1531 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1532 {
1533 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1534 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1535 
1536 	/* System default restrictions always apply */
1537 	if (unlikely(uc_req.value > uc_max.value))
1538 		return uc_max;
1539 
1540 	return uc_req;
1541 }
1542 
1543 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1544 {
1545 	struct uclamp_se uc_eff;
1546 
1547 	/* Task currently refcounted: use back-annotated (effective) value */
1548 	if (p->uclamp[clamp_id].active)
1549 		return (unsigned long)p->uclamp[clamp_id].value;
1550 
1551 	uc_eff = uclamp_eff_get(p, clamp_id);
1552 
1553 	return (unsigned long)uc_eff.value;
1554 }
1555 
1556 /*
1557  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1558  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1559  * updates the rq's clamp value if required.
1560  *
1561  * Tasks can have a task-specific value requested from user-space, track
1562  * within each bucket the maximum value for tasks refcounted in it.
1563  * This "local max aggregation" allows to track the exact "requested" value
1564  * for each bucket when all its RUNNABLE tasks require the same clamp.
1565  */
1566 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1567 				    enum uclamp_id clamp_id)
1568 {
1569 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1570 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1571 	struct uclamp_bucket *bucket;
1572 
1573 	lockdep_assert_rq_held(rq);
1574 
1575 	/* Update task effective clamp */
1576 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1577 
1578 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1579 	bucket->tasks++;
1580 	uc_se->active = true;
1581 
1582 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1583 
1584 	/*
1585 	 * Local max aggregation: rq buckets always track the max
1586 	 * "requested" clamp value of its RUNNABLE tasks.
1587 	 */
1588 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1589 		bucket->value = uc_se->value;
1590 
1591 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1592 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1593 }
1594 
1595 /*
1596  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1597  * is released. If this is the last task reference counting the rq's max
1598  * active clamp value, then the rq's clamp value is updated.
1599  *
1600  * Both refcounted tasks and rq's cached clamp values are expected to be
1601  * always valid. If it's detected they are not, as defensive programming,
1602  * enforce the expected state and warn.
1603  */
1604 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1605 				    enum uclamp_id clamp_id)
1606 {
1607 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1608 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1609 	struct uclamp_bucket *bucket;
1610 	unsigned int bkt_clamp;
1611 	unsigned int rq_clamp;
1612 
1613 	lockdep_assert_rq_held(rq);
1614 
1615 	/*
1616 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1617 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1618 	 *
1619 	 * In this case the uc_se->active flag should be false since no uclamp
1620 	 * accounting was performed at enqueue time and we can just return
1621 	 * here.
1622 	 *
1623 	 * Need to be careful of the following enqueue/dequeue ordering
1624 	 * problem too
1625 	 *
1626 	 *	enqueue(taskA)
1627 	 *	// sched_uclamp_used gets enabled
1628 	 *	enqueue(taskB)
1629 	 *	dequeue(taskA)
1630 	 *	// Must not decrement bucket->tasks here
1631 	 *	dequeue(taskB)
1632 	 *
1633 	 * where we could end up with stale data in uc_se and
1634 	 * bucket[uc_se->bucket_id].
1635 	 *
1636 	 * The following check here eliminates the possibility of such race.
1637 	 */
1638 	if (unlikely(!uc_se->active))
1639 		return;
1640 
1641 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1642 
1643 	SCHED_WARN_ON(!bucket->tasks);
1644 	if (likely(bucket->tasks))
1645 		bucket->tasks--;
1646 
1647 	uc_se->active = false;
1648 
1649 	/*
1650 	 * Keep "local max aggregation" simple and accept to (possibly)
1651 	 * overboost some RUNNABLE tasks in the same bucket.
1652 	 * The rq clamp bucket value is reset to its base value whenever
1653 	 * there are no more RUNNABLE tasks refcounting it.
1654 	 */
1655 	if (likely(bucket->tasks))
1656 		return;
1657 
1658 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1659 	/*
1660 	 * Defensive programming: this should never happen. If it happens,
1661 	 * e.g. due to future modification, warn and fixup the expected value.
1662 	 */
1663 	SCHED_WARN_ON(bucket->value > rq_clamp);
1664 	if (bucket->value >= rq_clamp) {
1665 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1666 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1667 	}
1668 }
1669 
1670 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1671 {
1672 	enum uclamp_id clamp_id;
1673 
1674 	/*
1675 	 * Avoid any overhead until uclamp is actually used by the userspace.
1676 	 *
1677 	 * The condition is constructed such that a NOP is generated when
1678 	 * sched_uclamp_used is disabled.
1679 	 */
1680 	if (!static_branch_unlikely(&sched_uclamp_used))
1681 		return;
1682 
1683 	if (unlikely(!p->sched_class->uclamp_enabled))
1684 		return;
1685 
1686 	for_each_clamp_id(clamp_id)
1687 		uclamp_rq_inc_id(rq, p, clamp_id);
1688 
1689 	/* Reset clamp idle holding when there is one RUNNABLE task */
1690 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1691 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1692 }
1693 
1694 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1695 {
1696 	enum uclamp_id clamp_id;
1697 
1698 	/*
1699 	 * Avoid any overhead until uclamp is actually used by the userspace.
1700 	 *
1701 	 * The condition is constructed such that a NOP is generated when
1702 	 * sched_uclamp_used is disabled.
1703 	 */
1704 	if (!static_branch_unlikely(&sched_uclamp_used))
1705 		return;
1706 
1707 	if (unlikely(!p->sched_class->uclamp_enabled))
1708 		return;
1709 
1710 	for_each_clamp_id(clamp_id)
1711 		uclamp_rq_dec_id(rq, p, clamp_id);
1712 }
1713 
1714 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1715 				      enum uclamp_id clamp_id)
1716 {
1717 	if (!p->uclamp[clamp_id].active)
1718 		return;
1719 
1720 	uclamp_rq_dec_id(rq, p, clamp_id);
1721 	uclamp_rq_inc_id(rq, p, clamp_id);
1722 
1723 	/*
1724 	 * Make sure to clear the idle flag if we've transiently reached 0
1725 	 * active tasks on rq.
1726 	 */
1727 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1728 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1729 }
1730 
1731 static inline void
1732 uclamp_update_active(struct task_struct *p)
1733 {
1734 	enum uclamp_id clamp_id;
1735 	struct rq_flags rf;
1736 	struct rq *rq;
1737 
1738 	/*
1739 	 * Lock the task and the rq where the task is (or was) queued.
1740 	 *
1741 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1742 	 * price to pay to safely serialize util_{min,max} updates with
1743 	 * enqueues, dequeues and migration operations.
1744 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1745 	 */
1746 	rq = task_rq_lock(p, &rf);
1747 
1748 	/*
1749 	 * Setting the clamp bucket is serialized by task_rq_lock().
1750 	 * If the task is not yet RUNNABLE and its task_struct is not
1751 	 * affecting a valid clamp bucket, the next time it's enqueued,
1752 	 * it will already see the updated clamp bucket value.
1753 	 */
1754 	for_each_clamp_id(clamp_id)
1755 		uclamp_rq_reinc_id(rq, p, clamp_id);
1756 
1757 	task_rq_unlock(rq, p, &rf);
1758 }
1759 
1760 #ifdef CONFIG_UCLAMP_TASK_GROUP
1761 static inline void
1762 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1763 {
1764 	struct css_task_iter it;
1765 	struct task_struct *p;
1766 
1767 	css_task_iter_start(css, 0, &it);
1768 	while ((p = css_task_iter_next(&it)))
1769 		uclamp_update_active(p);
1770 	css_task_iter_end(&it);
1771 }
1772 
1773 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1774 #endif
1775 
1776 #ifdef CONFIG_SYSCTL
1777 #ifdef CONFIG_UCLAMP_TASK
1778 #ifdef CONFIG_UCLAMP_TASK_GROUP
1779 static void uclamp_update_root_tg(void)
1780 {
1781 	struct task_group *tg = &root_task_group;
1782 
1783 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1784 		      sysctl_sched_uclamp_util_min, false);
1785 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1786 		      sysctl_sched_uclamp_util_max, false);
1787 
1788 	rcu_read_lock();
1789 	cpu_util_update_eff(&root_task_group.css);
1790 	rcu_read_unlock();
1791 }
1792 #else
1793 static void uclamp_update_root_tg(void) { }
1794 #endif
1795 
1796 static void uclamp_sync_util_min_rt_default(void)
1797 {
1798 	struct task_struct *g, *p;
1799 
1800 	/*
1801 	 * copy_process()			sysctl_uclamp
1802 	 *					  uclamp_min_rt = X;
1803 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1804 	 *   // link thread			  smp_mb__after_spinlock()
1805 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1806 	 *   sched_post_fork()			  for_each_process_thread()
1807 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1808 	 *
1809 	 * Ensures that either sched_post_fork() will observe the new
1810 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1811 	 * task.
1812 	 */
1813 	read_lock(&tasklist_lock);
1814 	smp_mb__after_spinlock();
1815 	read_unlock(&tasklist_lock);
1816 
1817 	rcu_read_lock();
1818 	for_each_process_thread(g, p)
1819 		uclamp_update_util_min_rt_default(p);
1820 	rcu_read_unlock();
1821 }
1822 
1823 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1824 				void *buffer, size_t *lenp, loff_t *ppos)
1825 {
1826 	bool update_root_tg = false;
1827 	int old_min, old_max, old_min_rt;
1828 	int result;
1829 
1830 	guard(mutex)(&uclamp_mutex);
1831 
1832 	old_min = sysctl_sched_uclamp_util_min;
1833 	old_max = sysctl_sched_uclamp_util_max;
1834 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1835 
1836 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1837 	if (result)
1838 		goto undo;
1839 	if (!write)
1840 		return 0;
1841 
1842 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1843 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1844 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1845 
1846 		result = -EINVAL;
1847 		goto undo;
1848 	}
1849 
1850 	if (old_min != sysctl_sched_uclamp_util_min) {
1851 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1852 			      sysctl_sched_uclamp_util_min, false);
1853 		update_root_tg = true;
1854 	}
1855 	if (old_max != sysctl_sched_uclamp_util_max) {
1856 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1857 			      sysctl_sched_uclamp_util_max, false);
1858 		update_root_tg = true;
1859 	}
1860 
1861 	if (update_root_tg) {
1862 		static_branch_enable(&sched_uclamp_used);
1863 		uclamp_update_root_tg();
1864 	}
1865 
1866 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1867 		static_branch_enable(&sched_uclamp_used);
1868 		uclamp_sync_util_min_rt_default();
1869 	}
1870 
1871 	/*
1872 	 * We update all RUNNABLE tasks only when task groups are in use.
1873 	 * Otherwise, keep it simple and do just a lazy update at each next
1874 	 * task enqueue time.
1875 	 */
1876 	return 0;
1877 
1878 undo:
1879 	sysctl_sched_uclamp_util_min = old_min;
1880 	sysctl_sched_uclamp_util_max = old_max;
1881 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1882 	return result;
1883 }
1884 #endif
1885 #endif
1886 
1887 static int uclamp_validate(struct task_struct *p,
1888 			   const struct sched_attr *attr)
1889 {
1890 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1891 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1892 
1893 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1894 		util_min = attr->sched_util_min;
1895 
1896 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1897 			return -EINVAL;
1898 	}
1899 
1900 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1901 		util_max = attr->sched_util_max;
1902 
1903 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1904 			return -EINVAL;
1905 	}
1906 
1907 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1908 		return -EINVAL;
1909 
1910 	/*
1911 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1912 	 *
1913 	 * We need to do that here, because enabling static branches is a
1914 	 * blocking operation which obviously cannot be done while holding
1915 	 * scheduler locks.
1916 	 */
1917 	static_branch_enable(&sched_uclamp_used);
1918 
1919 	return 0;
1920 }
1921 
1922 static bool uclamp_reset(const struct sched_attr *attr,
1923 			 enum uclamp_id clamp_id,
1924 			 struct uclamp_se *uc_se)
1925 {
1926 	/* Reset on sched class change for a non user-defined clamp value. */
1927 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1928 	    !uc_se->user_defined)
1929 		return true;
1930 
1931 	/* Reset on sched_util_{min,max} == -1. */
1932 	if (clamp_id == UCLAMP_MIN &&
1933 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min == -1) {
1935 		return true;
1936 	}
1937 
1938 	if (clamp_id == UCLAMP_MAX &&
1939 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max == -1) {
1941 		return true;
1942 	}
1943 
1944 	return false;
1945 }
1946 
1947 static void __setscheduler_uclamp(struct task_struct *p,
1948 				  const struct sched_attr *attr)
1949 {
1950 	enum uclamp_id clamp_id;
1951 
1952 	for_each_clamp_id(clamp_id) {
1953 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1954 		unsigned int value;
1955 
1956 		if (!uclamp_reset(attr, clamp_id, uc_se))
1957 			continue;
1958 
1959 		/*
1960 		 * RT by default have a 100% boost value that could be modified
1961 		 * at runtime.
1962 		 */
1963 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1964 			value = sysctl_sched_uclamp_util_min_rt_default;
1965 		else
1966 			value = uclamp_none(clamp_id);
1967 
1968 		uclamp_se_set(uc_se, value, false);
1969 
1970 	}
1971 
1972 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1973 		return;
1974 
1975 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1976 	    attr->sched_util_min != -1) {
1977 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1978 			      attr->sched_util_min, true);
1979 	}
1980 
1981 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1982 	    attr->sched_util_max != -1) {
1983 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1984 			      attr->sched_util_max, true);
1985 	}
1986 }
1987 
1988 static void uclamp_fork(struct task_struct *p)
1989 {
1990 	enum uclamp_id clamp_id;
1991 
1992 	/*
1993 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1994 	 * as the task is still at its early fork stages.
1995 	 */
1996 	for_each_clamp_id(clamp_id)
1997 		p->uclamp[clamp_id].active = false;
1998 
1999 	if (likely(!p->sched_reset_on_fork))
2000 		return;
2001 
2002 	for_each_clamp_id(clamp_id) {
2003 		uclamp_se_set(&p->uclamp_req[clamp_id],
2004 			      uclamp_none(clamp_id), false);
2005 	}
2006 }
2007 
2008 static void uclamp_post_fork(struct task_struct *p)
2009 {
2010 	uclamp_update_util_min_rt_default(p);
2011 }
2012 
2013 static void __init init_uclamp_rq(struct rq *rq)
2014 {
2015 	enum uclamp_id clamp_id;
2016 	struct uclamp_rq *uc_rq = rq->uclamp;
2017 
2018 	for_each_clamp_id(clamp_id) {
2019 		uc_rq[clamp_id] = (struct uclamp_rq) {
2020 			.value = uclamp_none(clamp_id)
2021 		};
2022 	}
2023 
2024 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2025 }
2026 
2027 static void __init init_uclamp(void)
2028 {
2029 	struct uclamp_se uc_max = {};
2030 	enum uclamp_id clamp_id;
2031 	int cpu;
2032 
2033 	for_each_possible_cpu(cpu)
2034 		init_uclamp_rq(cpu_rq(cpu));
2035 
2036 	for_each_clamp_id(clamp_id) {
2037 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2038 			      uclamp_none(clamp_id), false);
2039 	}
2040 
2041 	/* System defaults allow max clamp values for both indexes */
2042 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2043 	for_each_clamp_id(clamp_id) {
2044 		uclamp_default[clamp_id] = uc_max;
2045 #ifdef CONFIG_UCLAMP_TASK_GROUP
2046 		root_task_group.uclamp_req[clamp_id] = uc_max;
2047 		root_task_group.uclamp[clamp_id] = uc_max;
2048 #endif
2049 	}
2050 }
2051 
2052 #else /* CONFIG_UCLAMP_TASK */
2053 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2054 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2055 static inline int uclamp_validate(struct task_struct *p,
2056 				  const struct sched_attr *attr)
2057 {
2058 	return -EOPNOTSUPP;
2059 }
2060 static void __setscheduler_uclamp(struct task_struct *p,
2061 				  const struct sched_attr *attr) { }
2062 static inline void uclamp_fork(struct task_struct *p) { }
2063 static inline void uclamp_post_fork(struct task_struct *p) { }
2064 static inline void init_uclamp(void) { }
2065 #endif /* CONFIG_UCLAMP_TASK */
2066 
2067 bool sched_task_on_rq(struct task_struct *p)
2068 {
2069 	return task_on_rq_queued(p);
2070 }
2071 
2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074 	unsigned long ip = 0;
2075 	unsigned int state;
2076 
2077 	if (!p || p == current)
2078 		return 0;
2079 
2080 	/* Only get wchan if task is blocked and we can keep it that way. */
2081 	raw_spin_lock_irq(&p->pi_lock);
2082 	state = READ_ONCE(p->__state);
2083 	smp_rmb(); /* see try_to_wake_up() */
2084 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2085 		ip = __get_wchan(p);
2086 	raw_spin_unlock_irq(&p->pi_lock);
2087 
2088 	return ip;
2089 }
2090 
2091 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2092 {
2093 	if (!(flags & ENQUEUE_NOCLOCK))
2094 		update_rq_clock(rq);
2095 
2096 	if (!(flags & ENQUEUE_RESTORE)) {
2097 		sched_info_enqueue(rq, p);
2098 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2099 	}
2100 
2101 	uclamp_rq_inc(rq, p);
2102 	p->sched_class->enqueue_task(rq, p, flags);
2103 
2104 	if (sched_core_enabled(rq))
2105 		sched_core_enqueue(rq, p);
2106 }
2107 
2108 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	if (sched_core_enabled(rq))
2111 		sched_core_dequeue(rq, p, flags);
2112 
2113 	if (!(flags & DEQUEUE_NOCLOCK))
2114 		update_rq_clock(rq);
2115 
2116 	if (!(flags & DEQUEUE_SAVE)) {
2117 		sched_info_dequeue(rq, p);
2118 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2119 	}
2120 
2121 	uclamp_rq_dec(rq, p);
2122 	p->sched_class->dequeue_task(rq, p, flags);
2123 }
2124 
2125 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 	if (task_on_rq_migrating(p))
2128 		flags |= ENQUEUE_MIGRATED;
2129 	if (flags & ENQUEUE_MIGRATED)
2130 		sched_mm_cid_migrate_to(rq, p);
2131 
2132 	enqueue_task(rq, p, flags);
2133 
2134 	p->on_rq = TASK_ON_RQ_QUEUED;
2135 }
2136 
2137 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2138 {
2139 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2140 
2141 	dequeue_task(rq, p, flags);
2142 }
2143 
2144 static inline int __normal_prio(int policy, int rt_prio, int nice)
2145 {
2146 	int prio;
2147 
2148 	if (dl_policy(policy))
2149 		prio = MAX_DL_PRIO - 1;
2150 	else if (rt_policy(policy))
2151 		prio = MAX_RT_PRIO - 1 - rt_prio;
2152 	else
2153 		prio = NICE_TO_PRIO(nice);
2154 
2155 	return prio;
2156 }
2157 
2158 /*
2159  * Calculate the expected normal priority: i.e. priority
2160  * without taking RT-inheritance into account. Might be
2161  * boosted by interactivity modifiers. Changes upon fork,
2162  * setprio syscalls, and whenever the interactivity
2163  * estimator recalculates.
2164  */
2165 static inline int normal_prio(struct task_struct *p)
2166 {
2167 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2168 }
2169 
2170 /*
2171  * Calculate the current priority, i.e. the priority
2172  * taken into account by the scheduler. This value might
2173  * be boosted by RT tasks, or might be boosted by
2174  * interactivity modifiers. Will be RT if the task got
2175  * RT-boosted. If not then it returns p->normal_prio.
2176  */
2177 static int effective_prio(struct task_struct *p)
2178 {
2179 	p->normal_prio = normal_prio(p);
2180 	/*
2181 	 * If we are RT tasks or we were boosted to RT priority,
2182 	 * keep the priority unchanged. Otherwise, update priority
2183 	 * to the normal priority:
2184 	 */
2185 	if (!rt_prio(p->prio))
2186 		return p->normal_prio;
2187 	return p->prio;
2188 }
2189 
2190 /**
2191  * task_curr - is this task currently executing on a CPU?
2192  * @p: the task in question.
2193  *
2194  * Return: 1 if the task is currently executing. 0 otherwise.
2195  */
2196 inline int task_curr(const struct task_struct *p)
2197 {
2198 	return cpu_curr(task_cpu(p)) == p;
2199 }
2200 
2201 /*
2202  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2203  * use the balance_callback list if you want balancing.
2204  *
2205  * this means any call to check_class_changed() must be followed by a call to
2206  * balance_callback().
2207  */
2208 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2209 				       const struct sched_class *prev_class,
2210 				       int oldprio)
2211 {
2212 	if (prev_class != p->sched_class) {
2213 		if (prev_class->switched_from)
2214 			prev_class->switched_from(rq, p);
2215 
2216 		p->sched_class->switched_to(rq, p);
2217 	} else if (oldprio != p->prio || dl_task(p))
2218 		p->sched_class->prio_changed(rq, p, oldprio);
2219 }
2220 
2221 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2222 {
2223 	if (p->sched_class == rq->curr->sched_class)
2224 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2225 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2226 		resched_curr(rq);
2227 
2228 	/*
2229 	 * A queue event has occurred, and we're going to schedule.  In
2230 	 * this case, we can save a useless back to back clock update.
2231 	 */
2232 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2233 		rq_clock_skip_update(rq);
2234 }
2235 
2236 static __always_inline
2237 int __task_state_match(struct task_struct *p, unsigned int state)
2238 {
2239 	if (READ_ONCE(p->__state) & state)
2240 		return 1;
2241 
2242 #ifdef CONFIG_PREEMPT_RT
2243 	if (READ_ONCE(p->saved_state) & state)
2244 		return -1;
2245 #endif
2246 	return 0;
2247 }
2248 
2249 static __always_inline
2250 int task_state_match(struct task_struct *p, unsigned int state)
2251 {
2252 #ifdef CONFIG_PREEMPT_RT
2253 	int match;
2254 
2255 	/*
2256 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2257 	 * current_restore_rtlock_saved_state().
2258 	 */
2259 	raw_spin_lock_irq(&p->pi_lock);
2260 	match = __task_state_match(p, state);
2261 	raw_spin_unlock_irq(&p->pi_lock);
2262 
2263 	return match;
2264 #else
2265 	return __task_state_match(p, state);
2266 #endif
2267 }
2268 
2269 /*
2270  * wait_task_inactive - wait for a thread to unschedule.
2271  *
2272  * Wait for the thread to block in any of the states set in @match_state.
2273  * If it changes, i.e. @p might have woken up, then return zero.  When we
2274  * succeed in waiting for @p to be off its CPU, we return a positive number
2275  * (its total switch count).  If a second call a short while later returns the
2276  * same number, the caller can be sure that @p has remained unscheduled the
2277  * whole time.
2278  *
2279  * The caller must ensure that the task *will* unschedule sometime soon,
2280  * else this function might spin for a *long* time. This function can't
2281  * be called with interrupts off, or it may introduce deadlock with
2282  * smp_call_function() if an IPI is sent by the same process we are
2283  * waiting to become inactive.
2284  */
2285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2286 {
2287 	int running, queued, match;
2288 	struct rq_flags rf;
2289 	unsigned long ncsw;
2290 	struct rq *rq;
2291 
2292 	for (;;) {
2293 		/*
2294 		 * We do the initial early heuristics without holding
2295 		 * any task-queue locks at all. We'll only try to get
2296 		 * the runqueue lock when things look like they will
2297 		 * work out!
2298 		 */
2299 		rq = task_rq(p);
2300 
2301 		/*
2302 		 * If the task is actively running on another CPU
2303 		 * still, just relax and busy-wait without holding
2304 		 * any locks.
2305 		 *
2306 		 * NOTE! Since we don't hold any locks, it's not
2307 		 * even sure that "rq" stays as the right runqueue!
2308 		 * But we don't care, since "task_on_cpu()" will
2309 		 * return false if the runqueue has changed and p
2310 		 * is actually now running somewhere else!
2311 		 */
2312 		while (task_on_cpu(rq, p)) {
2313 			if (!task_state_match(p, match_state))
2314 				return 0;
2315 			cpu_relax();
2316 		}
2317 
2318 		/*
2319 		 * Ok, time to look more closely! We need the rq
2320 		 * lock now, to be *sure*. If we're wrong, we'll
2321 		 * just go back and repeat.
2322 		 */
2323 		rq = task_rq_lock(p, &rf);
2324 		trace_sched_wait_task(p);
2325 		running = task_on_cpu(rq, p);
2326 		queued = task_on_rq_queued(p);
2327 		ncsw = 0;
2328 		if ((match = __task_state_match(p, match_state))) {
2329 			/*
2330 			 * When matching on p->saved_state, consider this task
2331 			 * still queued so it will wait.
2332 			 */
2333 			if (match < 0)
2334 				queued = 1;
2335 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2336 		}
2337 		task_rq_unlock(rq, p, &rf);
2338 
2339 		/*
2340 		 * If it changed from the expected state, bail out now.
2341 		 */
2342 		if (unlikely(!ncsw))
2343 			break;
2344 
2345 		/*
2346 		 * Was it really running after all now that we
2347 		 * checked with the proper locks actually held?
2348 		 *
2349 		 * Oops. Go back and try again..
2350 		 */
2351 		if (unlikely(running)) {
2352 			cpu_relax();
2353 			continue;
2354 		}
2355 
2356 		/*
2357 		 * It's not enough that it's not actively running,
2358 		 * it must be off the runqueue _entirely_, and not
2359 		 * preempted!
2360 		 *
2361 		 * So if it was still runnable (but just not actively
2362 		 * running right now), it's preempted, and we should
2363 		 * yield - it could be a while.
2364 		 */
2365 		if (unlikely(queued)) {
2366 			ktime_t to = NSEC_PER_SEC / HZ;
2367 
2368 			set_current_state(TASK_UNINTERRUPTIBLE);
2369 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2370 			continue;
2371 		}
2372 
2373 		/*
2374 		 * Ahh, all good. It wasn't running, and it wasn't
2375 		 * runnable, which means that it will never become
2376 		 * running in the future either. We're all done!
2377 		 */
2378 		break;
2379 	}
2380 
2381 	return ncsw;
2382 }
2383 
2384 #ifdef CONFIG_SMP
2385 
2386 static void
2387 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2388 
2389 static int __set_cpus_allowed_ptr(struct task_struct *p,
2390 				  struct affinity_context *ctx);
2391 
2392 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2393 {
2394 	struct affinity_context ac = {
2395 		.new_mask  = cpumask_of(rq->cpu),
2396 		.flags     = SCA_MIGRATE_DISABLE,
2397 	};
2398 
2399 	if (likely(!p->migration_disabled))
2400 		return;
2401 
2402 	if (p->cpus_ptr != &p->cpus_mask)
2403 		return;
2404 
2405 	/*
2406 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2407 	 */
2408 	__do_set_cpus_allowed(p, &ac);
2409 }
2410 
2411 void migrate_disable(void)
2412 {
2413 	struct task_struct *p = current;
2414 
2415 	if (p->migration_disabled) {
2416 		p->migration_disabled++;
2417 		return;
2418 	}
2419 
2420 	preempt_disable();
2421 	this_rq()->nr_pinned++;
2422 	p->migration_disabled = 1;
2423 	preempt_enable();
2424 }
2425 EXPORT_SYMBOL_GPL(migrate_disable);
2426 
2427 void migrate_enable(void)
2428 {
2429 	struct task_struct *p = current;
2430 	struct affinity_context ac = {
2431 		.new_mask  = &p->cpus_mask,
2432 		.flags     = SCA_MIGRATE_ENABLE,
2433 	};
2434 
2435 	if (p->migration_disabled > 1) {
2436 		p->migration_disabled--;
2437 		return;
2438 	}
2439 
2440 	if (WARN_ON_ONCE(!p->migration_disabled))
2441 		return;
2442 
2443 	/*
2444 	 * Ensure stop_task runs either before or after this, and that
2445 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2446 	 */
2447 	preempt_disable();
2448 	if (p->cpus_ptr != &p->cpus_mask)
2449 		__set_cpus_allowed_ptr(p, &ac);
2450 	/*
2451 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2452 	 * regular cpus_mask, otherwise things that race (eg.
2453 	 * select_fallback_rq) get confused.
2454 	 */
2455 	barrier();
2456 	p->migration_disabled = 0;
2457 	this_rq()->nr_pinned--;
2458 	preempt_enable();
2459 }
2460 EXPORT_SYMBOL_GPL(migrate_enable);
2461 
2462 static inline bool rq_has_pinned_tasks(struct rq *rq)
2463 {
2464 	return rq->nr_pinned;
2465 }
2466 
2467 /*
2468  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2469  * __set_cpus_allowed_ptr() and select_fallback_rq().
2470  */
2471 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2472 {
2473 	/* When not in the task's cpumask, no point in looking further. */
2474 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2475 		return false;
2476 
2477 	/* migrate_disabled() must be allowed to finish. */
2478 	if (is_migration_disabled(p))
2479 		return cpu_online(cpu);
2480 
2481 	/* Non kernel threads are not allowed during either online or offline. */
2482 	if (!(p->flags & PF_KTHREAD))
2483 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2484 
2485 	/* KTHREAD_IS_PER_CPU is always allowed. */
2486 	if (kthread_is_per_cpu(p))
2487 		return cpu_online(cpu);
2488 
2489 	/* Regular kernel threads don't get to stay during offline. */
2490 	if (cpu_dying(cpu))
2491 		return false;
2492 
2493 	/* But are allowed during online. */
2494 	return cpu_online(cpu);
2495 }
2496 
2497 /*
2498  * This is how migration works:
2499  *
2500  * 1) we invoke migration_cpu_stop() on the target CPU using
2501  *    stop_one_cpu().
2502  * 2) stopper starts to run (implicitly forcing the migrated thread
2503  *    off the CPU)
2504  * 3) it checks whether the migrated task is still in the wrong runqueue.
2505  * 4) if it's in the wrong runqueue then the migration thread removes
2506  *    it and puts it into the right queue.
2507  * 5) stopper completes and stop_one_cpu() returns and the migration
2508  *    is done.
2509  */
2510 
2511 /*
2512  * move_queued_task - move a queued task to new rq.
2513  *
2514  * Returns (locked) new rq. Old rq's lock is released.
2515  */
2516 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2517 				   struct task_struct *p, int new_cpu)
2518 {
2519 	lockdep_assert_rq_held(rq);
2520 
2521 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2522 	set_task_cpu(p, new_cpu);
2523 	rq_unlock(rq, rf);
2524 
2525 	rq = cpu_rq(new_cpu);
2526 
2527 	rq_lock(rq, rf);
2528 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2529 	activate_task(rq, p, 0);
2530 	check_preempt_curr(rq, p, 0);
2531 
2532 	return rq;
2533 }
2534 
2535 struct migration_arg {
2536 	struct task_struct		*task;
2537 	int				dest_cpu;
2538 	struct set_affinity_pending	*pending;
2539 };
2540 
2541 /*
2542  * @refs: number of wait_for_completion()
2543  * @stop_pending: is @stop_work in use
2544  */
2545 struct set_affinity_pending {
2546 	refcount_t		refs;
2547 	unsigned int		stop_pending;
2548 	struct completion	done;
2549 	struct cpu_stop_work	stop_work;
2550 	struct migration_arg	arg;
2551 };
2552 
2553 /*
2554  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2555  * this because either it can't run here any more (set_cpus_allowed()
2556  * away from this CPU, or CPU going down), or because we're
2557  * attempting to rebalance this task on exec (sched_exec).
2558  *
2559  * So we race with normal scheduler movements, but that's OK, as long
2560  * as the task is no longer on this CPU.
2561  */
2562 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2563 				 struct task_struct *p, int dest_cpu)
2564 {
2565 	/* Affinity changed (again). */
2566 	if (!is_cpu_allowed(p, dest_cpu))
2567 		return rq;
2568 
2569 	rq = move_queued_task(rq, rf, p, dest_cpu);
2570 
2571 	return rq;
2572 }
2573 
2574 /*
2575  * migration_cpu_stop - this will be executed by a highprio stopper thread
2576  * and performs thread migration by bumping thread off CPU then
2577  * 'pushing' onto another runqueue.
2578  */
2579 static int migration_cpu_stop(void *data)
2580 {
2581 	struct migration_arg *arg = data;
2582 	struct set_affinity_pending *pending = arg->pending;
2583 	struct task_struct *p = arg->task;
2584 	struct rq *rq = this_rq();
2585 	bool complete = false;
2586 	struct rq_flags rf;
2587 
2588 	/*
2589 	 * The original target CPU might have gone down and we might
2590 	 * be on another CPU but it doesn't matter.
2591 	 */
2592 	local_irq_save(rf.flags);
2593 	/*
2594 	 * We need to explicitly wake pending tasks before running
2595 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2596 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2597 	 */
2598 	flush_smp_call_function_queue();
2599 
2600 	raw_spin_lock(&p->pi_lock);
2601 	rq_lock(rq, &rf);
2602 
2603 	/*
2604 	 * If we were passed a pending, then ->stop_pending was set, thus
2605 	 * p->migration_pending must have remained stable.
2606 	 */
2607 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2608 
2609 	/*
2610 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2611 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2612 	 * we're holding p->pi_lock.
2613 	 */
2614 	if (task_rq(p) == rq) {
2615 		if (is_migration_disabled(p))
2616 			goto out;
2617 
2618 		if (pending) {
2619 			p->migration_pending = NULL;
2620 			complete = true;
2621 
2622 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2623 				goto out;
2624 		}
2625 
2626 		if (task_on_rq_queued(p)) {
2627 			update_rq_clock(rq);
2628 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2629 		} else {
2630 			p->wake_cpu = arg->dest_cpu;
2631 		}
2632 
2633 		/*
2634 		 * XXX __migrate_task() can fail, at which point we might end
2635 		 * up running on a dodgy CPU, AFAICT this can only happen
2636 		 * during CPU hotplug, at which point we'll get pushed out
2637 		 * anyway, so it's probably not a big deal.
2638 		 */
2639 
2640 	} else if (pending) {
2641 		/*
2642 		 * This happens when we get migrated between migrate_enable()'s
2643 		 * preempt_enable() and scheduling the stopper task. At that
2644 		 * point we're a regular task again and not current anymore.
2645 		 *
2646 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2647 		 * more likely.
2648 		 */
2649 
2650 		/*
2651 		 * The task moved before the stopper got to run. We're holding
2652 		 * ->pi_lock, so the allowed mask is stable - if it got
2653 		 * somewhere allowed, we're done.
2654 		 */
2655 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2656 			p->migration_pending = NULL;
2657 			complete = true;
2658 			goto out;
2659 		}
2660 
2661 		/*
2662 		 * When migrate_enable() hits a rq mis-match we can't reliably
2663 		 * determine is_migration_disabled() and so have to chase after
2664 		 * it.
2665 		 */
2666 		WARN_ON_ONCE(!pending->stop_pending);
2667 		preempt_disable();
2668 		task_rq_unlock(rq, p, &rf);
2669 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2670 				    &pending->arg, &pending->stop_work);
2671 		preempt_enable();
2672 		return 0;
2673 	}
2674 out:
2675 	if (pending)
2676 		pending->stop_pending = false;
2677 	task_rq_unlock(rq, p, &rf);
2678 
2679 	if (complete)
2680 		complete_all(&pending->done);
2681 
2682 	return 0;
2683 }
2684 
2685 int push_cpu_stop(void *arg)
2686 {
2687 	struct rq *lowest_rq = NULL, *rq = this_rq();
2688 	struct task_struct *p = arg;
2689 
2690 	raw_spin_lock_irq(&p->pi_lock);
2691 	raw_spin_rq_lock(rq);
2692 
2693 	if (task_rq(p) != rq)
2694 		goto out_unlock;
2695 
2696 	if (is_migration_disabled(p)) {
2697 		p->migration_flags |= MDF_PUSH;
2698 		goto out_unlock;
2699 	}
2700 
2701 	p->migration_flags &= ~MDF_PUSH;
2702 
2703 	if (p->sched_class->find_lock_rq)
2704 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2705 
2706 	if (!lowest_rq)
2707 		goto out_unlock;
2708 
2709 	// XXX validate p is still the highest prio task
2710 	if (task_rq(p) == rq) {
2711 		deactivate_task(rq, p, 0);
2712 		set_task_cpu(p, lowest_rq->cpu);
2713 		activate_task(lowest_rq, p, 0);
2714 		resched_curr(lowest_rq);
2715 	}
2716 
2717 	double_unlock_balance(rq, lowest_rq);
2718 
2719 out_unlock:
2720 	rq->push_busy = false;
2721 	raw_spin_rq_unlock(rq);
2722 	raw_spin_unlock_irq(&p->pi_lock);
2723 
2724 	put_task_struct(p);
2725 	return 0;
2726 }
2727 
2728 /*
2729  * sched_class::set_cpus_allowed must do the below, but is not required to
2730  * actually call this function.
2731  */
2732 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2733 {
2734 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2735 		p->cpus_ptr = ctx->new_mask;
2736 		return;
2737 	}
2738 
2739 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2740 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2741 
2742 	/*
2743 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2744 	 */
2745 	if (ctx->flags & SCA_USER)
2746 		swap(p->user_cpus_ptr, ctx->user_mask);
2747 }
2748 
2749 static void
2750 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2751 {
2752 	struct rq *rq = task_rq(p);
2753 	bool queued, running;
2754 
2755 	/*
2756 	 * This here violates the locking rules for affinity, since we're only
2757 	 * supposed to change these variables while holding both rq->lock and
2758 	 * p->pi_lock.
2759 	 *
2760 	 * HOWEVER, it magically works, because ttwu() is the only code that
2761 	 * accesses these variables under p->pi_lock and only does so after
2762 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2763 	 * before finish_task().
2764 	 *
2765 	 * XXX do further audits, this smells like something putrid.
2766 	 */
2767 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2768 		SCHED_WARN_ON(!p->on_cpu);
2769 	else
2770 		lockdep_assert_held(&p->pi_lock);
2771 
2772 	queued = task_on_rq_queued(p);
2773 	running = task_current(rq, p);
2774 
2775 	if (queued) {
2776 		/*
2777 		 * Because __kthread_bind() calls this on blocked tasks without
2778 		 * holding rq->lock.
2779 		 */
2780 		lockdep_assert_rq_held(rq);
2781 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2782 	}
2783 	if (running)
2784 		put_prev_task(rq, p);
2785 
2786 	p->sched_class->set_cpus_allowed(p, ctx);
2787 
2788 	if (queued)
2789 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2790 	if (running)
2791 		set_next_task(rq, p);
2792 }
2793 
2794 /*
2795  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2796  * affinity (if any) should be destroyed too.
2797  */
2798 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2799 {
2800 	struct affinity_context ac = {
2801 		.new_mask  = new_mask,
2802 		.user_mask = NULL,
2803 		.flags     = SCA_USER,	/* clear the user requested mask */
2804 	};
2805 	union cpumask_rcuhead {
2806 		cpumask_t cpumask;
2807 		struct rcu_head rcu;
2808 	};
2809 
2810 	__do_set_cpus_allowed(p, &ac);
2811 
2812 	/*
2813 	 * Because this is called with p->pi_lock held, it is not possible
2814 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2815 	 * kfree_rcu().
2816 	 */
2817 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2818 }
2819 
2820 static cpumask_t *alloc_user_cpus_ptr(int node)
2821 {
2822 	/*
2823 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2824 	 */
2825 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2826 
2827 	return kmalloc_node(size, GFP_KERNEL, node);
2828 }
2829 
2830 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2831 		      int node)
2832 {
2833 	cpumask_t *user_mask;
2834 	unsigned long flags;
2835 
2836 	/*
2837 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2838 	 * may differ by now due to racing.
2839 	 */
2840 	dst->user_cpus_ptr = NULL;
2841 
2842 	/*
2843 	 * This check is racy and losing the race is a valid situation.
2844 	 * It is not worth the extra overhead of taking the pi_lock on
2845 	 * every fork/clone.
2846 	 */
2847 	if (data_race(!src->user_cpus_ptr))
2848 		return 0;
2849 
2850 	user_mask = alloc_user_cpus_ptr(node);
2851 	if (!user_mask)
2852 		return -ENOMEM;
2853 
2854 	/*
2855 	 * Use pi_lock to protect content of user_cpus_ptr
2856 	 *
2857 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2858 	 * do_set_cpus_allowed().
2859 	 */
2860 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2861 	if (src->user_cpus_ptr) {
2862 		swap(dst->user_cpus_ptr, user_mask);
2863 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2864 	}
2865 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2866 
2867 	if (unlikely(user_mask))
2868 		kfree(user_mask);
2869 
2870 	return 0;
2871 }
2872 
2873 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2874 {
2875 	struct cpumask *user_mask = NULL;
2876 
2877 	swap(p->user_cpus_ptr, user_mask);
2878 
2879 	return user_mask;
2880 }
2881 
2882 void release_user_cpus_ptr(struct task_struct *p)
2883 {
2884 	kfree(clear_user_cpus_ptr(p));
2885 }
2886 
2887 /*
2888  * This function is wildly self concurrent; here be dragons.
2889  *
2890  *
2891  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2892  * designated task is enqueued on an allowed CPU. If that task is currently
2893  * running, we have to kick it out using the CPU stopper.
2894  *
2895  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2896  * Consider:
2897  *
2898  *     Initial conditions: P0->cpus_mask = [0, 1]
2899  *
2900  *     P0@CPU0                  P1
2901  *
2902  *     migrate_disable();
2903  *     <preempted>
2904  *                              set_cpus_allowed_ptr(P0, [1]);
2905  *
2906  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2907  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2908  * This means we need the following scheme:
2909  *
2910  *     P0@CPU0                  P1
2911  *
2912  *     migrate_disable();
2913  *     <preempted>
2914  *                              set_cpus_allowed_ptr(P0, [1]);
2915  *                                <blocks>
2916  *     <resumes>
2917  *     migrate_enable();
2918  *       __set_cpus_allowed_ptr();
2919  *       <wakes local stopper>
2920  *                         `--> <woken on migration completion>
2921  *
2922  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2923  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2924  * task p are serialized by p->pi_lock, which we can leverage: the one that
2925  * should come into effect at the end of the Migrate-Disable region is the last
2926  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2927  * but we still need to properly signal those waiting tasks at the appropriate
2928  * moment.
2929  *
2930  * This is implemented using struct set_affinity_pending. The first
2931  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2932  * setup an instance of that struct and install it on the targeted task_struct.
2933  * Any and all further callers will reuse that instance. Those then wait for
2934  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2935  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2936  *
2937  *
2938  * (1) In the cases covered above. There is one more where the completion is
2939  * signaled within affine_move_task() itself: when a subsequent affinity request
2940  * occurs after the stopper bailed out due to the targeted task still being
2941  * Migrate-Disable. Consider:
2942  *
2943  *     Initial conditions: P0->cpus_mask = [0, 1]
2944  *
2945  *     CPU0		  P1				P2
2946  *     <P0>
2947  *       migrate_disable();
2948  *       <preempted>
2949  *                        set_cpus_allowed_ptr(P0, [1]);
2950  *                          <blocks>
2951  *     <migration/0>
2952  *       migration_cpu_stop()
2953  *         is_migration_disabled()
2954  *           <bails>
2955  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2956  *                                                         <signal completion>
2957  *                          <awakes>
2958  *
2959  * Note that the above is safe vs a concurrent migrate_enable(), as any
2960  * pending affinity completion is preceded by an uninstallation of
2961  * p->migration_pending done with p->pi_lock held.
2962  */
2963 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2964 			    int dest_cpu, unsigned int flags)
2965 	__releases(rq->lock)
2966 	__releases(p->pi_lock)
2967 {
2968 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2969 	bool stop_pending, complete = false;
2970 
2971 	/* Can the task run on the task's current CPU? If so, we're done */
2972 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2973 		struct task_struct *push_task = NULL;
2974 
2975 		if ((flags & SCA_MIGRATE_ENABLE) &&
2976 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2977 			rq->push_busy = true;
2978 			push_task = get_task_struct(p);
2979 		}
2980 
2981 		/*
2982 		 * If there are pending waiters, but no pending stop_work,
2983 		 * then complete now.
2984 		 */
2985 		pending = p->migration_pending;
2986 		if (pending && !pending->stop_pending) {
2987 			p->migration_pending = NULL;
2988 			complete = true;
2989 		}
2990 
2991 		preempt_disable();
2992 		task_rq_unlock(rq, p, rf);
2993 		if (push_task) {
2994 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2995 					    p, &rq->push_work);
2996 		}
2997 		preempt_enable();
2998 
2999 		if (complete)
3000 			complete_all(&pending->done);
3001 
3002 		return 0;
3003 	}
3004 
3005 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3006 		/* serialized by p->pi_lock */
3007 		if (!p->migration_pending) {
3008 			/* Install the request */
3009 			refcount_set(&my_pending.refs, 1);
3010 			init_completion(&my_pending.done);
3011 			my_pending.arg = (struct migration_arg) {
3012 				.task = p,
3013 				.dest_cpu = dest_cpu,
3014 				.pending = &my_pending,
3015 			};
3016 
3017 			p->migration_pending = &my_pending;
3018 		} else {
3019 			pending = p->migration_pending;
3020 			refcount_inc(&pending->refs);
3021 			/*
3022 			 * Affinity has changed, but we've already installed a
3023 			 * pending. migration_cpu_stop() *must* see this, else
3024 			 * we risk a completion of the pending despite having a
3025 			 * task on a disallowed CPU.
3026 			 *
3027 			 * Serialized by p->pi_lock, so this is safe.
3028 			 */
3029 			pending->arg.dest_cpu = dest_cpu;
3030 		}
3031 	}
3032 	pending = p->migration_pending;
3033 	/*
3034 	 * - !MIGRATE_ENABLE:
3035 	 *   we'll have installed a pending if there wasn't one already.
3036 	 *
3037 	 * - MIGRATE_ENABLE:
3038 	 *   we're here because the current CPU isn't matching anymore,
3039 	 *   the only way that can happen is because of a concurrent
3040 	 *   set_cpus_allowed_ptr() call, which should then still be
3041 	 *   pending completion.
3042 	 *
3043 	 * Either way, we really should have a @pending here.
3044 	 */
3045 	if (WARN_ON_ONCE(!pending)) {
3046 		task_rq_unlock(rq, p, rf);
3047 		return -EINVAL;
3048 	}
3049 
3050 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3051 		/*
3052 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3053 		 * anything else we cannot do is_migration_disabled(), punt
3054 		 * and have the stopper function handle it all race-free.
3055 		 */
3056 		stop_pending = pending->stop_pending;
3057 		if (!stop_pending)
3058 			pending->stop_pending = true;
3059 
3060 		if (flags & SCA_MIGRATE_ENABLE)
3061 			p->migration_flags &= ~MDF_PUSH;
3062 
3063 		preempt_disable();
3064 		task_rq_unlock(rq, p, rf);
3065 		if (!stop_pending) {
3066 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3067 					    &pending->arg, &pending->stop_work);
3068 		}
3069 		preempt_enable();
3070 
3071 		if (flags & SCA_MIGRATE_ENABLE)
3072 			return 0;
3073 	} else {
3074 
3075 		if (!is_migration_disabled(p)) {
3076 			if (task_on_rq_queued(p))
3077 				rq = move_queued_task(rq, rf, p, dest_cpu);
3078 
3079 			if (!pending->stop_pending) {
3080 				p->migration_pending = NULL;
3081 				complete = true;
3082 			}
3083 		}
3084 		task_rq_unlock(rq, p, rf);
3085 
3086 		if (complete)
3087 			complete_all(&pending->done);
3088 	}
3089 
3090 	wait_for_completion(&pending->done);
3091 
3092 	if (refcount_dec_and_test(&pending->refs))
3093 		wake_up_var(&pending->refs); /* No UaF, just an address */
3094 
3095 	/*
3096 	 * Block the original owner of &pending until all subsequent callers
3097 	 * have seen the completion and decremented the refcount
3098 	 */
3099 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3100 
3101 	/* ARGH */
3102 	WARN_ON_ONCE(my_pending.stop_pending);
3103 
3104 	return 0;
3105 }
3106 
3107 /*
3108  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3109  */
3110 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3111 					 struct affinity_context *ctx,
3112 					 struct rq *rq,
3113 					 struct rq_flags *rf)
3114 	__releases(rq->lock)
3115 	__releases(p->pi_lock)
3116 {
3117 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3118 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3119 	bool kthread = p->flags & PF_KTHREAD;
3120 	unsigned int dest_cpu;
3121 	int ret = 0;
3122 
3123 	update_rq_clock(rq);
3124 
3125 	if (kthread || is_migration_disabled(p)) {
3126 		/*
3127 		 * Kernel threads are allowed on online && !active CPUs,
3128 		 * however, during cpu-hot-unplug, even these might get pushed
3129 		 * away if not KTHREAD_IS_PER_CPU.
3130 		 *
3131 		 * Specifically, migration_disabled() tasks must not fail the
3132 		 * cpumask_any_and_distribute() pick below, esp. so on
3133 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3134 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3135 		 */
3136 		cpu_valid_mask = cpu_online_mask;
3137 	}
3138 
3139 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3140 		ret = -EINVAL;
3141 		goto out;
3142 	}
3143 
3144 	/*
3145 	 * Must re-check here, to close a race against __kthread_bind(),
3146 	 * sched_setaffinity() is not guaranteed to observe the flag.
3147 	 */
3148 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3149 		ret = -EINVAL;
3150 		goto out;
3151 	}
3152 
3153 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3154 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3155 			if (ctx->flags & SCA_USER)
3156 				swap(p->user_cpus_ptr, ctx->user_mask);
3157 			goto out;
3158 		}
3159 
3160 		if (WARN_ON_ONCE(p == current &&
3161 				 is_migration_disabled(p) &&
3162 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3163 			ret = -EBUSY;
3164 			goto out;
3165 		}
3166 	}
3167 
3168 	/*
3169 	 * Picking a ~random cpu helps in cases where we are changing affinity
3170 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3171 	 * immediately required to distribute the tasks within their new mask.
3172 	 */
3173 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3174 	if (dest_cpu >= nr_cpu_ids) {
3175 		ret = -EINVAL;
3176 		goto out;
3177 	}
3178 
3179 	__do_set_cpus_allowed(p, ctx);
3180 
3181 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3182 
3183 out:
3184 	task_rq_unlock(rq, p, rf);
3185 
3186 	return ret;
3187 }
3188 
3189 /*
3190  * Change a given task's CPU affinity. Migrate the thread to a
3191  * proper CPU and schedule it away if the CPU it's executing on
3192  * is removed from the allowed bitmask.
3193  *
3194  * NOTE: the caller must have a valid reference to the task, the
3195  * task must not exit() & deallocate itself prematurely. The
3196  * call is not atomic; no spinlocks may be held.
3197  */
3198 static int __set_cpus_allowed_ptr(struct task_struct *p,
3199 				  struct affinity_context *ctx)
3200 {
3201 	struct rq_flags rf;
3202 	struct rq *rq;
3203 
3204 	rq = task_rq_lock(p, &rf);
3205 	/*
3206 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3207 	 * flags are set.
3208 	 */
3209 	if (p->user_cpus_ptr &&
3210 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3211 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3212 		ctx->new_mask = rq->scratch_mask;
3213 
3214 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3215 }
3216 
3217 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3218 {
3219 	struct affinity_context ac = {
3220 		.new_mask  = new_mask,
3221 		.flags     = 0,
3222 	};
3223 
3224 	return __set_cpus_allowed_ptr(p, &ac);
3225 }
3226 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3227 
3228 /*
3229  * Change a given task's CPU affinity to the intersection of its current
3230  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3231  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3232  * affinity or use cpu_online_mask instead.
3233  *
3234  * If the resulting mask is empty, leave the affinity unchanged and return
3235  * -EINVAL.
3236  */
3237 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3238 				     struct cpumask *new_mask,
3239 				     const struct cpumask *subset_mask)
3240 {
3241 	struct affinity_context ac = {
3242 		.new_mask  = new_mask,
3243 		.flags     = 0,
3244 	};
3245 	struct rq_flags rf;
3246 	struct rq *rq;
3247 	int err;
3248 
3249 	rq = task_rq_lock(p, &rf);
3250 
3251 	/*
3252 	 * Forcefully restricting the affinity of a deadline task is
3253 	 * likely to cause problems, so fail and noisily override the
3254 	 * mask entirely.
3255 	 */
3256 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3257 		err = -EPERM;
3258 		goto err_unlock;
3259 	}
3260 
3261 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3262 		err = -EINVAL;
3263 		goto err_unlock;
3264 	}
3265 
3266 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3267 
3268 err_unlock:
3269 	task_rq_unlock(rq, p, &rf);
3270 	return err;
3271 }
3272 
3273 /*
3274  * Restrict the CPU affinity of task @p so that it is a subset of
3275  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3276  * old affinity mask. If the resulting mask is empty, we warn and walk
3277  * up the cpuset hierarchy until we find a suitable mask.
3278  */
3279 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3280 {
3281 	cpumask_var_t new_mask;
3282 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3283 
3284 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3285 
3286 	/*
3287 	 * __migrate_task() can fail silently in the face of concurrent
3288 	 * offlining of the chosen destination CPU, so take the hotplug
3289 	 * lock to ensure that the migration succeeds.
3290 	 */
3291 	cpus_read_lock();
3292 	if (!cpumask_available(new_mask))
3293 		goto out_set_mask;
3294 
3295 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3296 		goto out_free_mask;
3297 
3298 	/*
3299 	 * We failed to find a valid subset of the affinity mask for the
3300 	 * task, so override it based on its cpuset hierarchy.
3301 	 */
3302 	cpuset_cpus_allowed(p, new_mask);
3303 	override_mask = new_mask;
3304 
3305 out_set_mask:
3306 	if (printk_ratelimit()) {
3307 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3308 				task_pid_nr(p), p->comm,
3309 				cpumask_pr_args(override_mask));
3310 	}
3311 
3312 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3313 out_free_mask:
3314 	cpus_read_unlock();
3315 	free_cpumask_var(new_mask);
3316 }
3317 
3318 static int
3319 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3320 
3321 /*
3322  * Restore the affinity of a task @p which was previously restricted by a
3323  * call to force_compatible_cpus_allowed_ptr().
3324  *
3325  * It is the caller's responsibility to serialise this with any calls to
3326  * force_compatible_cpus_allowed_ptr(@p).
3327  */
3328 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3329 {
3330 	struct affinity_context ac = {
3331 		.new_mask  = task_user_cpus(p),
3332 		.flags     = 0,
3333 	};
3334 	int ret;
3335 
3336 	/*
3337 	 * Try to restore the old affinity mask with __sched_setaffinity().
3338 	 * Cpuset masking will be done there too.
3339 	 */
3340 	ret = __sched_setaffinity(p, &ac);
3341 	WARN_ON_ONCE(ret);
3342 }
3343 
3344 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3345 {
3346 #ifdef CONFIG_SCHED_DEBUG
3347 	unsigned int state = READ_ONCE(p->__state);
3348 
3349 	/*
3350 	 * We should never call set_task_cpu() on a blocked task,
3351 	 * ttwu() will sort out the placement.
3352 	 */
3353 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3354 
3355 	/*
3356 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3357 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3358 	 * time relying on p->on_rq.
3359 	 */
3360 	WARN_ON_ONCE(state == TASK_RUNNING &&
3361 		     p->sched_class == &fair_sched_class &&
3362 		     (p->on_rq && !task_on_rq_migrating(p)));
3363 
3364 #ifdef CONFIG_LOCKDEP
3365 	/*
3366 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3367 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3368 	 *
3369 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3370 	 * see task_group().
3371 	 *
3372 	 * Furthermore, all task_rq users should acquire both locks, see
3373 	 * task_rq_lock().
3374 	 */
3375 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3376 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3377 #endif
3378 	/*
3379 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3380 	 */
3381 	WARN_ON_ONCE(!cpu_online(new_cpu));
3382 
3383 	WARN_ON_ONCE(is_migration_disabled(p));
3384 #endif
3385 
3386 	trace_sched_migrate_task(p, new_cpu);
3387 
3388 	if (task_cpu(p) != new_cpu) {
3389 		if (p->sched_class->migrate_task_rq)
3390 			p->sched_class->migrate_task_rq(p, new_cpu);
3391 		p->se.nr_migrations++;
3392 		rseq_migrate(p);
3393 		sched_mm_cid_migrate_from(p);
3394 		perf_event_task_migrate(p);
3395 	}
3396 
3397 	__set_task_cpu(p, new_cpu);
3398 }
3399 
3400 #ifdef CONFIG_NUMA_BALANCING
3401 static void __migrate_swap_task(struct task_struct *p, int cpu)
3402 {
3403 	if (task_on_rq_queued(p)) {
3404 		struct rq *src_rq, *dst_rq;
3405 		struct rq_flags srf, drf;
3406 
3407 		src_rq = task_rq(p);
3408 		dst_rq = cpu_rq(cpu);
3409 
3410 		rq_pin_lock(src_rq, &srf);
3411 		rq_pin_lock(dst_rq, &drf);
3412 
3413 		deactivate_task(src_rq, p, 0);
3414 		set_task_cpu(p, cpu);
3415 		activate_task(dst_rq, p, 0);
3416 		check_preempt_curr(dst_rq, p, 0);
3417 
3418 		rq_unpin_lock(dst_rq, &drf);
3419 		rq_unpin_lock(src_rq, &srf);
3420 
3421 	} else {
3422 		/*
3423 		 * Task isn't running anymore; make it appear like we migrated
3424 		 * it before it went to sleep. This means on wakeup we make the
3425 		 * previous CPU our target instead of where it really is.
3426 		 */
3427 		p->wake_cpu = cpu;
3428 	}
3429 }
3430 
3431 struct migration_swap_arg {
3432 	struct task_struct *src_task, *dst_task;
3433 	int src_cpu, dst_cpu;
3434 };
3435 
3436 static int migrate_swap_stop(void *data)
3437 {
3438 	struct migration_swap_arg *arg = data;
3439 	struct rq *src_rq, *dst_rq;
3440 
3441 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3442 		return -EAGAIN;
3443 
3444 	src_rq = cpu_rq(arg->src_cpu);
3445 	dst_rq = cpu_rq(arg->dst_cpu);
3446 
3447 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3448 	guard(double_rq_lock)(src_rq, dst_rq);
3449 
3450 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3451 		return -EAGAIN;
3452 
3453 	if (task_cpu(arg->src_task) != arg->src_cpu)
3454 		return -EAGAIN;
3455 
3456 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3457 		return -EAGAIN;
3458 
3459 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3460 		return -EAGAIN;
3461 
3462 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3463 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3464 
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Cross migrate two tasks
3470  */
3471 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3472 		int target_cpu, int curr_cpu)
3473 {
3474 	struct migration_swap_arg arg;
3475 	int ret = -EINVAL;
3476 
3477 	arg = (struct migration_swap_arg){
3478 		.src_task = cur,
3479 		.src_cpu = curr_cpu,
3480 		.dst_task = p,
3481 		.dst_cpu = target_cpu,
3482 	};
3483 
3484 	if (arg.src_cpu == arg.dst_cpu)
3485 		goto out;
3486 
3487 	/*
3488 	 * These three tests are all lockless; this is OK since all of them
3489 	 * will be re-checked with proper locks held further down the line.
3490 	 */
3491 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3492 		goto out;
3493 
3494 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3495 		goto out;
3496 
3497 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3498 		goto out;
3499 
3500 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3501 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3502 
3503 out:
3504 	return ret;
3505 }
3506 #endif /* CONFIG_NUMA_BALANCING */
3507 
3508 /***
3509  * kick_process - kick a running thread to enter/exit the kernel
3510  * @p: the to-be-kicked thread
3511  *
3512  * Cause a process which is running on another CPU to enter
3513  * kernel-mode, without any delay. (to get signals handled.)
3514  *
3515  * NOTE: this function doesn't have to take the runqueue lock,
3516  * because all it wants to ensure is that the remote task enters
3517  * the kernel. If the IPI races and the task has been migrated
3518  * to another CPU then no harm is done and the purpose has been
3519  * achieved as well.
3520  */
3521 void kick_process(struct task_struct *p)
3522 {
3523 	int cpu;
3524 
3525 	preempt_disable();
3526 	cpu = task_cpu(p);
3527 	if ((cpu != smp_processor_id()) && task_curr(p))
3528 		smp_send_reschedule(cpu);
3529 	preempt_enable();
3530 }
3531 EXPORT_SYMBOL_GPL(kick_process);
3532 
3533 /*
3534  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3535  *
3536  * A few notes on cpu_active vs cpu_online:
3537  *
3538  *  - cpu_active must be a subset of cpu_online
3539  *
3540  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3541  *    see __set_cpus_allowed_ptr(). At this point the newly online
3542  *    CPU isn't yet part of the sched domains, and balancing will not
3543  *    see it.
3544  *
3545  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3546  *    avoid the load balancer to place new tasks on the to be removed
3547  *    CPU. Existing tasks will remain running there and will be taken
3548  *    off.
3549  *
3550  * This means that fallback selection must not select !active CPUs.
3551  * And can assume that any active CPU must be online. Conversely
3552  * select_task_rq() below may allow selection of !active CPUs in order
3553  * to satisfy the above rules.
3554  */
3555 static int select_fallback_rq(int cpu, struct task_struct *p)
3556 {
3557 	int nid = cpu_to_node(cpu);
3558 	const struct cpumask *nodemask = NULL;
3559 	enum { cpuset, possible, fail } state = cpuset;
3560 	int dest_cpu;
3561 
3562 	/*
3563 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3564 	 * will return -1. There is no CPU on the node, and we should
3565 	 * select the CPU on the other node.
3566 	 */
3567 	if (nid != -1) {
3568 		nodemask = cpumask_of_node(nid);
3569 
3570 		/* Look for allowed, online CPU in same node. */
3571 		for_each_cpu(dest_cpu, nodemask) {
3572 			if (is_cpu_allowed(p, dest_cpu))
3573 				return dest_cpu;
3574 		}
3575 	}
3576 
3577 	for (;;) {
3578 		/* Any allowed, online CPU? */
3579 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3580 			if (!is_cpu_allowed(p, dest_cpu))
3581 				continue;
3582 
3583 			goto out;
3584 		}
3585 
3586 		/* No more Mr. Nice Guy. */
3587 		switch (state) {
3588 		case cpuset:
3589 			if (cpuset_cpus_allowed_fallback(p)) {
3590 				state = possible;
3591 				break;
3592 			}
3593 			fallthrough;
3594 		case possible:
3595 			/*
3596 			 * XXX When called from select_task_rq() we only
3597 			 * hold p->pi_lock and again violate locking order.
3598 			 *
3599 			 * More yuck to audit.
3600 			 */
3601 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3602 			state = fail;
3603 			break;
3604 		case fail:
3605 			BUG();
3606 			break;
3607 		}
3608 	}
3609 
3610 out:
3611 	if (state != cpuset) {
3612 		/*
3613 		 * Don't tell them about moving exiting tasks or
3614 		 * kernel threads (both mm NULL), since they never
3615 		 * leave kernel.
3616 		 */
3617 		if (p->mm && printk_ratelimit()) {
3618 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3619 					task_pid_nr(p), p->comm, cpu);
3620 		}
3621 	}
3622 
3623 	return dest_cpu;
3624 }
3625 
3626 /*
3627  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3628  */
3629 static inline
3630 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3631 {
3632 	lockdep_assert_held(&p->pi_lock);
3633 
3634 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3635 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3636 	else
3637 		cpu = cpumask_any(p->cpus_ptr);
3638 
3639 	/*
3640 	 * In order not to call set_task_cpu() on a blocking task we need
3641 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3642 	 * CPU.
3643 	 *
3644 	 * Since this is common to all placement strategies, this lives here.
3645 	 *
3646 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3647 	 *   not worry about this generic constraint ]
3648 	 */
3649 	if (unlikely(!is_cpu_allowed(p, cpu)))
3650 		cpu = select_fallback_rq(task_cpu(p), p);
3651 
3652 	return cpu;
3653 }
3654 
3655 void sched_set_stop_task(int cpu, struct task_struct *stop)
3656 {
3657 	static struct lock_class_key stop_pi_lock;
3658 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3659 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3660 
3661 	if (stop) {
3662 		/*
3663 		 * Make it appear like a SCHED_FIFO task, its something
3664 		 * userspace knows about and won't get confused about.
3665 		 *
3666 		 * Also, it will make PI more or less work without too
3667 		 * much confusion -- but then, stop work should not
3668 		 * rely on PI working anyway.
3669 		 */
3670 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3671 
3672 		stop->sched_class = &stop_sched_class;
3673 
3674 		/*
3675 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3676 		 * adjust the effective priority of a task. As a result,
3677 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3678 		 * which can then trigger wakeups of the stop thread to push
3679 		 * around the current task.
3680 		 *
3681 		 * The stop task itself will never be part of the PI-chain, it
3682 		 * never blocks, therefore that ->pi_lock recursion is safe.
3683 		 * Tell lockdep about this by placing the stop->pi_lock in its
3684 		 * own class.
3685 		 */
3686 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3687 	}
3688 
3689 	cpu_rq(cpu)->stop = stop;
3690 
3691 	if (old_stop) {
3692 		/*
3693 		 * Reset it back to a normal scheduling class so that
3694 		 * it can die in pieces.
3695 		 */
3696 		old_stop->sched_class = &rt_sched_class;
3697 	}
3698 }
3699 
3700 #else /* CONFIG_SMP */
3701 
3702 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3703 					 struct affinity_context *ctx)
3704 {
3705 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3706 }
3707 
3708 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3709 
3710 static inline bool rq_has_pinned_tasks(struct rq *rq)
3711 {
3712 	return false;
3713 }
3714 
3715 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3716 {
3717 	return NULL;
3718 }
3719 
3720 #endif /* !CONFIG_SMP */
3721 
3722 static void
3723 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3724 {
3725 	struct rq *rq;
3726 
3727 	if (!schedstat_enabled())
3728 		return;
3729 
3730 	rq = this_rq();
3731 
3732 #ifdef CONFIG_SMP
3733 	if (cpu == rq->cpu) {
3734 		__schedstat_inc(rq->ttwu_local);
3735 		__schedstat_inc(p->stats.nr_wakeups_local);
3736 	} else {
3737 		struct sched_domain *sd;
3738 
3739 		__schedstat_inc(p->stats.nr_wakeups_remote);
3740 
3741 		guard(rcu)();
3742 		for_each_domain(rq->cpu, sd) {
3743 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3744 				__schedstat_inc(sd->ttwu_wake_remote);
3745 				break;
3746 			}
3747 		}
3748 	}
3749 
3750 	if (wake_flags & WF_MIGRATED)
3751 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3752 #endif /* CONFIG_SMP */
3753 
3754 	__schedstat_inc(rq->ttwu_count);
3755 	__schedstat_inc(p->stats.nr_wakeups);
3756 
3757 	if (wake_flags & WF_SYNC)
3758 		__schedstat_inc(p->stats.nr_wakeups_sync);
3759 }
3760 
3761 /*
3762  * Mark the task runnable.
3763  */
3764 static inline void ttwu_do_wakeup(struct task_struct *p)
3765 {
3766 	WRITE_ONCE(p->__state, TASK_RUNNING);
3767 	trace_sched_wakeup(p);
3768 }
3769 
3770 static void
3771 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3772 		 struct rq_flags *rf)
3773 {
3774 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3775 
3776 	lockdep_assert_rq_held(rq);
3777 
3778 	if (p->sched_contributes_to_load)
3779 		rq->nr_uninterruptible--;
3780 
3781 #ifdef CONFIG_SMP
3782 	if (wake_flags & WF_MIGRATED)
3783 		en_flags |= ENQUEUE_MIGRATED;
3784 	else
3785 #endif
3786 	if (p->in_iowait) {
3787 		delayacct_blkio_end(p);
3788 		atomic_dec(&task_rq(p)->nr_iowait);
3789 	}
3790 
3791 	activate_task(rq, p, en_flags);
3792 	check_preempt_curr(rq, p, wake_flags);
3793 
3794 	ttwu_do_wakeup(p);
3795 
3796 #ifdef CONFIG_SMP
3797 	if (p->sched_class->task_woken) {
3798 		/*
3799 		 * Our task @p is fully woken up and running; so it's safe to
3800 		 * drop the rq->lock, hereafter rq is only used for statistics.
3801 		 */
3802 		rq_unpin_lock(rq, rf);
3803 		p->sched_class->task_woken(rq, p);
3804 		rq_repin_lock(rq, rf);
3805 	}
3806 
3807 	if (rq->idle_stamp) {
3808 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3809 		u64 max = 2*rq->max_idle_balance_cost;
3810 
3811 		update_avg(&rq->avg_idle, delta);
3812 
3813 		if (rq->avg_idle > max)
3814 			rq->avg_idle = max;
3815 
3816 		rq->wake_stamp = jiffies;
3817 		rq->wake_avg_idle = rq->avg_idle / 2;
3818 
3819 		rq->idle_stamp = 0;
3820 	}
3821 #endif
3822 }
3823 
3824 /*
3825  * Consider @p being inside a wait loop:
3826  *
3827  *   for (;;) {
3828  *      set_current_state(TASK_UNINTERRUPTIBLE);
3829  *
3830  *      if (CONDITION)
3831  *         break;
3832  *
3833  *      schedule();
3834  *   }
3835  *   __set_current_state(TASK_RUNNING);
3836  *
3837  * between set_current_state() and schedule(). In this case @p is still
3838  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3839  * an atomic manner.
3840  *
3841  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3842  * then schedule() must still happen and p->state can be changed to
3843  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3844  * need to do a full wakeup with enqueue.
3845  *
3846  * Returns: %true when the wakeup is done,
3847  *          %false otherwise.
3848  */
3849 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3850 {
3851 	struct rq_flags rf;
3852 	struct rq *rq;
3853 	int ret = 0;
3854 
3855 	rq = __task_rq_lock(p, &rf);
3856 	if (task_on_rq_queued(p)) {
3857 		if (!task_on_cpu(rq, p)) {
3858 			/*
3859 			 * When on_rq && !on_cpu the task is preempted, see if
3860 			 * it should preempt the task that is current now.
3861 			 */
3862 			update_rq_clock(rq);
3863 			check_preempt_curr(rq, p, wake_flags);
3864 		}
3865 		ttwu_do_wakeup(p);
3866 		ret = 1;
3867 	}
3868 	__task_rq_unlock(rq, &rf);
3869 
3870 	return ret;
3871 }
3872 
3873 #ifdef CONFIG_SMP
3874 void sched_ttwu_pending(void *arg)
3875 {
3876 	struct llist_node *llist = arg;
3877 	struct rq *rq = this_rq();
3878 	struct task_struct *p, *t;
3879 	struct rq_flags rf;
3880 
3881 	if (!llist)
3882 		return;
3883 
3884 	rq_lock_irqsave(rq, &rf);
3885 	update_rq_clock(rq);
3886 
3887 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3888 		if (WARN_ON_ONCE(p->on_cpu))
3889 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3890 
3891 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3892 			set_task_cpu(p, cpu_of(rq));
3893 
3894 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3895 	}
3896 
3897 	/*
3898 	 * Must be after enqueueing at least once task such that
3899 	 * idle_cpu() does not observe a false-negative -- if it does,
3900 	 * it is possible for select_idle_siblings() to stack a number
3901 	 * of tasks on this CPU during that window.
3902 	 *
3903 	 * It is ok to clear ttwu_pending when another task pending.
3904 	 * We will receive IPI after local irq enabled and then enqueue it.
3905 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3906 	 */
3907 	WRITE_ONCE(rq->ttwu_pending, 0);
3908 	rq_unlock_irqrestore(rq, &rf);
3909 }
3910 
3911 /*
3912  * Prepare the scene for sending an IPI for a remote smp_call
3913  *
3914  * Returns true if the caller can proceed with sending the IPI.
3915  * Returns false otherwise.
3916  */
3917 bool call_function_single_prep_ipi(int cpu)
3918 {
3919 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3920 		trace_sched_wake_idle_without_ipi(cpu);
3921 		return false;
3922 	}
3923 
3924 	return true;
3925 }
3926 
3927 /*
3928  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3929  * necessary. The wakee CPU on receipt of the IPI will queue the task
3930  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3931  * of the wakeup instead of the waker.
3932  */
3933 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3934 {
3935 	struct rq *rq = cpu_rq(cpu);
3936 
3937 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3938 
3939 	WRITE_ONCE(rq->ttwu_pending, 1);
3940 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3941 }
3942 
3943 void wake_up_if_idle(int cpu)
3944 {
3945 	struct rq *rq = cpu_rq(cpu);
3946 
3947 	guard(rcu)();
3948 	if (is_idle_task(rcu_dereference(rq->curr))) {
3949 		guard(rq_lock_irqsave)(rq);
3950 		if (is_idle_task(rq->curr))
3951 			resched_curr(rq);
3952 	}
3953 }
3954 
3955 bool cpus_share_cache(int this_cpu, int that_cpu)
3956 {
3957 	if (this_cpu == that_cpu)
3958 		return true;
3959 
3960 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3961 }
3962 
3963 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3964 {
3965 	/*
3966 	 * Do not complicate things with the async wake_list while the CPU is
3967 	 * in hotplug state.
3968 	 */
3969 	if (!cpu_active(cpu))
3970 		return false;
3971 
3972 	/* Ensure the task will still be allowed to run on the CPU. */
3973 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3974 		return false;
3975 
3976 	/*
3977 	 * If the CPU does not share cache, then queue the task on the
3978 	 * remote rqs wakelist to avoid accessing remote data.
3979 	 */
3980 	if (!cpus_share_cache(smp_processor_id(), cpu))
3981 		return true;
3982 
3983 	if (cpu == smp_processor_id())
3984 		return false;
3985 
3986 	/*
3987 	 * If the wakee cpu is idle, or the task is descheduling and the
3988 	 * only running task on the CPU, then use the wakelist to offload
3989 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3990 	 * the current CPU is likely busy. nr_running is checked to
3991 	 * avoid unnecessary task stacking.
3992 	 *
3993 	 * Note that we can only get here with (wakee) p->on_rq=0,
3994 	 * p->on_cpu can be whatever, we've done the dequeue, so
3995 	 * the wakee has been accounted out of ->nr_running.
3996 	 */
3997 	if (!cpu_rq(cpu)->nr_running)
3998 		return true;
3999 
4000 	return false;
4001 }
4002 
4003 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4004 {
4005 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4006 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4007 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4008 		return true;
4009 	}
4010 
4011 	return false;
4012 }
4013 
4014 #else /* !CONFIG_SMP */
4015 
4016 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4017 {
4018 	return false;
4019 }
4020 
4021 #endif /* CONFIG_SMP */
4022 
4023 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4024 {
4025 	struct rq *rq = cpu_rq(cpu);
4026 	struct rq_flags rf;
4027 
4028 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4029 		return;
4030 
4031 	rq_lock(rq, &rf);
4032 	update_rq_clock(rq);
4033 	ttwu_do_activate(rq, p, wake_flags, &rf);
4034 	rq_unlock(rq, &rf);
4035 }
4036 
4037 /*
4038  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4039  *
4040  * The caller holds p::pi_lock if p != current or has preemption
4041  * disabled when p == current.
4042  *
4043  * The rules of PREEMPT_RT saved_state:
4044  *
4045  *   The related locking code always holds p::pi_lock when updating
4046  *   p::saved_state, which means the code is fully serialized in both cases.
4047  *
4048  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4049  *   bits set. This allows to distinguish all wakeup scenarios.
4050  */
4051 static __always_inline
4052 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4053 {
4054 	int match;
4055 
4056 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4057 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4058 			     state != TASK_RTLOCK_WAIT);
4059 	}
4060 
4061 	*success = !!(match = __task_state_match(p, state));
4062 
4063 #ifdef CONFIG_PREEMPT_RT
4064 	/*
4065 	 * Saved state preserves the task state across blocking on
4066 	 * an RT lock.  If the state matches, set p::saved_state to
4067 	 * TASK_RUNNING, but do not wake the task because it waits
4068 	 * for a lock wakeup. Also indicate success because from
4069 	 * the regular waker's point of view this has succeeded.
4070 	 *
4071 	 * After acquiring the lock the task will restore p::__state
4072 	 * from p::saved_state which ensures that the regular
4073 	 * wakeup is not lost. The restore will also set
4074 	 * p::saved_state to TASK_RUNNING so any further tests will
4075 	 * not result in false positives vs. @success
4076 	 */
4077 	if (match < 0)
4078 		p->saved_state = TASK_RUNNING;
4079 #endif
4080 	return match > 0;
4081 }
4082 
4083 /*
4084  * Notes on Program-Order guarantees on SMP systems.
4085  *
4086  *  MIGRATION
4087  *
4088  * The basic program-order guarantee on SMP systems is that when a task [t]
4089  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4090  * execution on its new CPU [c1].
4091  *
4092  * For migration (of runnable tasks) this is provided by the following means:
4093  *
4094  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4095  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4096  *     rq(c1)->lock (if not at the same time, then in that order).
4097  *  C) LOCK of the rq(c1)->lock scheduling in task
4098  *
4099  * Release/acquire chaining guarantees that B happens after A and C after B.
4100  * Note: the CPU doing B need not be c0 or c1
4101  *
4102  * Example:
4103  *
4104  *   CPU0            CPU1            CPU2
4105  *
4106  *   LOCK rq(0)->lock
4107  *   sched-out X
4108  *   sched-in Y
4109  *   UNLOCK rq(0)->lock
4110  *
4111  *                                   LOCK rq(0)->lock // orders against CPU0
4112  *                                   dequeue X
4113  *                                   UNLOCK rq(0)->lock
4114  *
4115  *                                   LOCK rq(1)->lock
4116  *                                   enqueue X
4117  *                                   UNLOCK rq(1)->lock
4118  *
4119  *                   LOCK rq(1)->lock // orders against CPU2
4120  *                   sched-out Z
4121  *                   sched-in X
4122  *                   UNLOCK rq(1)->lock
4123  *
4124  *
4125  *  BLOCKING -- aka. SLEEP + WAKEUP
4126  *
4127  * For blocking we (obviously) need to provide the same guarantee as for
4128  * migration. However the means are completely different as there is no lock
4129  * chain to provide order. Instead we do:
4130  *
4131  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4132  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4133  *
4134  * Example:
4135  *
4136  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4137  *
4138  *   LOCK rq(0)->lock LOCK X->pi_lock
4139  *   dequeue X
4140  *   sched-out X
4141  *   smp_store_release(X->on_cpu, 0);
4142  *
4143  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4144  *                    X->state = WAKING
4145  *                    set_task_cpu(X,2)
4146  *
4147  *                    LOCK rq(2)->lock
4148  *                    enqueue X
4149  *                    X->state = RUNNING
4150  *                    UNLOCK rq(2)->lock
4151  *
4152  *                                          LOCK rq(2)->lock // orders against CPU1
4153  *                                          sched-out Z
4154  *                                          sched-in X
4155  *                                          UNLOCK rq(2)->lock
4156  *
4157  *                    UNLOCK X->pi_lock
4158  *   UNLOCK rq(0)->lock
4159  *
4160  *
4161  * However, for wakeups there is a second guarantee we must provide, namely we
4162  * must ensure that CONDITION=1 done by the caller can not be reordered with
4163  * accesses to the task state; see try_to_wake_up() and set_current_state().
4164  */
4165 
4166 /**
4167  * try_to_wake_up - wake up a thread
4168  * @p: the thread to be awakened
4169  * @state: the mask of task states that can be woken
4170  * @wake_flags: wake modifier flags (WF_*)
4171  *
4172  * Conceptually does:
4173  *
4174  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4175  *
4176  * If the task was not queued/runnable, also place it back on a runqueue.
4177  *
4178  * This function is atomic against schedule() which would dequeue the task.
4179  *
4180  * It issues a full memory barrier before accessing @p->state, see the comment
4181  * with set_current_state().
4182  *
4183  * Uses p->pi_lock to serialize against concurrent wake-ups.
4184  *
4185  * Relies on p->pi_lock stabilizing:
4186  *  - p->sched_class
4187  *  - p->cpus_ptr
4188  *  - p->sched_task_group
4189  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4190  *
4191  * Tries really hard to only take one task_rq(p)->lock for performance.
4192  * Takes rq->lock in:
4193  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4194  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4195  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4196  *
4197  * As a consequence we race really badly with just about everything. See the
4198  * many memory barriers and their comments for details.
4199  *
4200  * Return: %true if @p->state changes (an actual wakeup was done),
4201  *	   %false otherwise.
4202  */
4203 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4204 {
4205 	guard(preempt)();
4206 	int cpu, success = 0;
4207 
4208 	if (p == current) {
4209 		/*
4210 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4211 		 * == smp_processor_id()'. Together this means we can special
4212 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4213 		 * without taking any locks.
4214 		 *
4215 		 * In particular:
4216 		 *  - we rely on Program-Order guarantees for all the ordering,
4217 		 *  - we're serialized against set_special_state() by virtue of
4218 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4219 		 */
4220 		if (!ttwu_state_match(p, state, &success))
4221 			goto out;
4222 
4223 		trace_sched_waking(p);
4224 		ttwu_do_wakeup(p);
4225 		goto out;
4226 	}
4227 
4228 	/*
4229 	 * If we are going to wake up a thread waiting for CONDITION we
4230 	 * need to ensure that CONDITION=1 done by the caller can not be
4231 	 * reordered with p->state check below. This pairs with smp_store_mb()
4232 	 * in set_current_state() that the waiting thread does.
4233 	 */
4234 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4235 		smp_mb__after_spinlock();
4236 		if (!ttwu_state_match(p, state, &success))
4237 			break;
4238 
4239 		trace_sched_waking(p);
4240 
4241 		/*
4242 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4243 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4244 		 * in smp_cond_load_acquire() below.
4245 		 *
4246 		 * sched_ttwu_pending()			try_to_wake_up()
4247 		 *   STORE p->on_rq = 1			  LOAD p->state
4248 		 *   UNLOCK rq->lock
4249 		 *
4250 		 * __schedule() (switch to task 'p')
4251 		 *   LOCK rq->lock			  smp_rmb();
4252 		 *   smp_mb__after_spinlock();
4253 		 *   UNLOCK rq->lock
4254 		 *
4255 		 * [task p]
4256 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4257 		 *
4258 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4259 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4260 		 *
4261 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4262 		 */
4263 		smp_rmb();
4264 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4265 			break;
4266 
4267 #ifdef CONFIG_SMP
4268 		/*
4269 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4270 		 * possible to, falsely, observe p->on_cpu == 0.
4271 		 *
4272 		 * One must be running (->on_cpu == 1) in order to remove oneself
4273 		 * from the runqueue.
4274 		 *
4275 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4276 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4277 		 *   UNLOCK rq->lock
4278 		 *
4279 		 * __schedule() (put 'p' to sleep)
4280 		 *   LOCK rq->lock			  smp_rmb();
4281 		 *   smp_mb__after_spinlock();
4282 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4283 		 *
4284 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4285 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4286 		 *
4287 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4288 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4289 		 * care about it's own p->state. See the comment in __schedule().
4290 		 */
4291 		smp_acquire__after_ctrl_dep();
4292 
4293 		/*
4294 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4295 		 * == 0), which means we need to do an enqueue, change p->state to
4296 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4297 		 * enqueue, such as ttwu_queue_wakelist().
4298 		 */
4299 		WRITE_ONCE(p->__state, TASK_WAKING);
4300 
4301 		/*
4302 		 * If the owning (remote) CPU is still in the middle of schedule() with
4303 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4304 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4305 		 * let the waker make forward progress. This is safe because IRQs are
4306 		 * disabled and the IPI will deliver after on_cpu is cleared.
4307 		 *
4308 		 * Ensure we load task_cpu(p) after p->on_cpu:
4309 		 *
4310 		 * set_task_cpu(p, cpu);
4311 		 *   STORE p->cpu = @cpu
4312 		 * __schedule() (switch to task 'p')
4313 		 *   LOCK rq->lock
4314 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4315 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4316 		 *
4317 		 * to ensure we observe the correct CPU on which the task is currently
4318 		 * scheduling.
4319 		 */
4320 		if (smp_load_acquire(&p->on_cpu) &&
4321 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4322 			break;
4323 
4324 		/*
4325 		 * If the owning (remote) CPU is still in the middle of schedule() with
4326 		 * this task as prev, wait until it's done referencing the task.
4327 		 *
4328 		 * Pairs with the smp_store_release() in finish_task().
4329 		 *
4330 		 * This ensures that tasks getting woken will be fully ordered against
4331 		 * their previous state and preserve Program Order.
4332 		 */
4333 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4334 
4335 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4336 		if (task_cpu(p) != cpu) {
4337 			if (p->in_iowait) {
4338 				delayacct_blkio_end(p);
4339 				atomic_dec(&task_rq(p)->nr_iowait);
4340 			}
4341 
4342 			wake_flags |= WF_MIGRATED;
4343 			psi_ttwu_dequeue(p);
4344 			set_task_cpu(p, cpu);
4345 		}
4346 #else
4347 		cpu = task_cpu(p);
4348 #endif /* CONFIG_SMP */
4349 
4350 		ttwu_queue(p, cpu, wake_flags);
4351 	}
4352 out:
4353 	if (success)
4354 		ttwu_stat(p, task_cpu(p), wake_flags);
4355 
4356 	return success;
4357 }
4358 
4359 static bool __task_needs_rq_lock(struct task_struct *p)
4360 {
4361 	unsigned int state = READ_ONCE(p->__state);
4362 
4363 	/*
4364 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4365 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4366 	 * locks at the end, see ttwu_queue_wakelist().
4367 	 */
4368 	if (state == TASK_RUNNING || state == TASK_WAKING)
4369 		return true;
4370 
4371 	/*
4372 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4373 	 * possible to, falsely, observe p->on_rq == 0.
4374 	 *
4375 	 * See try_to_wake_up() for a longer comment.
4376 	 */
4377 	smp_rmb();
4378 	if (p->on_rq)
4379 		return true;
4380 
4381 #ifdef CONFIG_SMP
4382 	/*
4383 	 * Ensure the task has finished __schedule() and will not be referenced
4384 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4385 	 */
4386 	smp_rmb();
4387 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4388 #endif
4389 
4390 	return false;
4391 }
4392 
4393 /**
4394  * task_call_func - Invoke a function on task in fixed state
4395  * @p: Process for which the function is to be invoked, can be @current.
4396  * @func: Function to invoke.
4397  * @arg: Argument to function.
4398  *
4399  * Fix the task in it's current state by avoiding wakeups and or rq operations
4400  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4401  * to work out what the state is, if required.  Given that @func can be invoked
4402  * with a runqueue lock held, it had better be quite lightweight.
4403  *
4404  * Returns:
4405  *   Whatever @func returns
4406  */
4407 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4408 {
4409 	struct rq *rq = NULL;
4410 	struct rq_flags rf;
4411 	int ret;
4412 
4413 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4414 
4415 	if (__task_needs_rq_lock(p))
4416 		rq = __task_rq_lock(p, &rf);
4417 
4418 	/*
4419 	 * At this point the task is pinned; either:
4420 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4421 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4422 	 *  - queued, and we're holding off schedule	 (rq->lock)
4423 	 *  - running, and we're holding off de-schedule (rq->lock)
4424 	 *
4425 	 * The called function (@func) can use: task_curr(), p->on_rq and
4426 	 * p->__state to differentiate between these states.
4427 	 */
4428 	ret = func(p, arg);
4429 
4430 	if (rq)
4431 		rq_unlock(rq, &rf);
4432 
4433 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4434 	return ret;
4435 }
4436 
4437 /**
4438  * cpu_curr_snapshot - Return a snapshot of the currently running task
4439  * @cpu: The CPU on which to snapshot the task.
4440  *
4441  * Returns the task_struct pointer of the task "currently" running on
4442  * the specified CPU.  If the same task is running on that CPU throughout,
4443  * the return value will be a pointer to that task's task_struct structure.
4444  * If the CPU did any context switches even vaguely concurrently with the
4445  * execution of this function, the return value will be a pointer to the
4446  * task_struct structure of a randomly chosen task that was running on
4447  * that CPU somewhere around the time that this function was executing.
4448  *
4449  * If the specified CPU was offline, the return value is whatever it
4450  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4451  * task, but there is no guarantee.  Callers wishing a useful return
4452  * value must take some action to ensure that the specified CPU remains
4453  * online throughout.
4454  *
4455  * This function executes full memory barriers before and after fetching
4456  * the pointer, which permits the caller to confine this function's fetch
4457  * with respect to the caller's accesses to other shared variables.
4458  */
4459 struct task_struct *cpu_curr_snapshot(int cpu)
4460 {
4461 	struct task_struct *t;
4462 
4463 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4464 	t = rcu_dereference(cpu_curr(cpu));
4465 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4466 	return t;
4467 }
4468 
4469 /**
4470  * wake_up_process - Wake up a specific process
4471  * @p: The process to be woken up.
4472  *
4473  * Attempt to wake up the nominated process and move it to the set of runnable
4474  * processes.
4475  *
4476  * Return: 1 if the process was woken up, 0 if it was already running.
4477  *
4478  * This function executes a full memory barrier before accessing the task state.
4479  */
4480 int wake_up_process(struct task_struct *p)
4481 {
4482 	return try_to_wake_up(p, TASK_NORMAL, 0);
4483 }
4484 EXPORT_SYMBOL(wake_up_process);
4485 
4486 int wake_up_state(struct task_struct *p, unsigned int state)
4487 {
4488 	return try_to_wake_up(p, state, 0);
4489 }
4490 
4491 /*
4492  * Perform scheduler related setup for a newly forked process p.
4493  * p is forked by current.
4494  *
4495  * __sched_fork() is basic setup used by init_idle() too:
4496  */
4497 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4498 {
4499 	p->on_rq			= 0;
4500 
4501 	p->se.on_rq			= 0;
4502 	p->se.exec_start		= 0;
4503 	p->se.sum_exec_runtime		= 0;
4504 	p->se.prev_sum_exec_runtime	= 0;
4505 	p->se.nr_migrations		= 0;
4506 	p->se.vruntime			= 0;
4507 	p->se.vlag			= 0;
4508 	p->se.slice			= sysctl_sched_base_slice;
4509 	INIT_LIST_HEAD(&p->se.group_node);
4510 
4511 #ifdef CONFIG_FAIR_GROUP_SCHED
4512 	p->se.cfs_rq			= NULL;
4513 #endif
4514 
4515 #ifdef CONFIG_SCHEDSTATS
4516 	/* Even if schedstat is disabled, there should not be garbage */
4517 	memset(&p->stats, 0, sizeof(p->stats));
4518 #endif
4519 
4520 	RB_CLEAR_NODE(&p->dl.rb_node);
4521 	init_dl_task_timer(&p->dl);
4522 	init_dl_inactive_task_timer(&p->dl);
4523 	__dl_clear_params(p);
4524 
4525 	INIT_LIST_HEAD(&p->rt.run_list);
4526 	p->rt.timeout		= 0;
4527 	p->rt.time_slice	= sched_rr_timeslice;
4528 	p->rt.on_rq		= 0;
4529 	p->rt.on_list		= 0;
4530 
4531 #ifdef CONFIG_PREEMPT_NOTIFIERS
4532 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4533 #endif
4534 
4535 #ifdef CONFIG_COMPACTION
4536 	p->capture_control = NULL;
4537 #endif
4538 	init_numa_balancing(clone_flags, p);
4539 #ifdef CONFIG_SMP
4540 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4541 	p->migration_pending = NULL;
4542 #endif
4543 	init_sched_mm_cid(p);
4544 }
4545 
4546 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4547 
4548 #ifdef CONFIG_NUMA_BALANCING
4549 
4550 int sysctl_numa_balancing_mode;
4551 
4552 static void __set_numabalancing_state(bool enabled)
4553 {
4554 	if (enabled)
4555 		static_branch_enable(&sched_numa_balancing);
4556 	else
4557 		static_branch_disable(&sched_numa_balancing);
4558 }
4559 
4560 void set_numabalancing_state(bool enabled)
4561 {
4562 	if (enabled)
4563 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4564 	else
4565 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4566 	__set_numabalancing_state(enabled);
4567 }
4568 
4569 #ifdef CONFIG_PROC_SYSCTL
4570 static void reset_memory_tiering(void)
4571 {
4572 	struct pglist_data *pgdat;
4573 
4574 	for_each_online_pgdat(pgdat) {
4575 		pgdat->nbp_threshold = 0;
4576 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4577 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4578 	}
4579 }
4580 
4581 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4582 			  void *buffer, size_t *lenp, loff_t *ppos)
4583 {
4584 	struct ctl_table t;
4585 	int err;
4586 	int state = sysctl_numa_balancing_mode;
4587 
4588 	if (write && !capable(CAP_SYS_ADMIN))
4589 		return -EPERM;
4590 
4591 	t = *table;
4592 	t.data = &state;
4593 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4594 	if (err < 0)
4595 		return err;
4596 	if (write) {
4597 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4598 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4599 			reset_memory_tiering();
4600 		sysctl_numa_balancing_mode = state;
4601 		__set_numabalancing_state(state);
4602 	}
4603 	return err;
4604 }
4605 #endif
4606 #endif
4607 
4608 #ifdef CONFIG_SCHEDSTATS
4609 
4610 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4611 
4612 static void set_schedstats(bool enabled)
4613 {
4614 	if (enabled)
4615 		static_branch_enable(&sched_schedstats);
4616 	else
4617 		static_branch_disable(&sched_schedstats);
4618 }
4619 
4620 void force_schedstat_enabled(void)
4621 {
4622 	if (!schedstat_enabled()) {
4623 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4624 		static_branch_enable(&sched_schedstats);
4625 	}
4626 }
4627 
4628 static int __init setup_schedstats(char *str)
4629 {
4630 	int ret = 0;
4631 	if (!str)
4632 		goto out;
4633 
4634 	if (!strcmp(str, "enable")) {
4635 		set_schedstats(true);
4636 		ret = 1;
4637 	} else if (!strcmp(str, "disable")) {
4638 		set_schedstats(false);
4639 		ret = 1;
4640 	}
4641 out:
4642 	if (!ret)
4643 		pr_warn("Unable to parse schedstats=\n");
4644 
4645 	return ret;
4646 }
4647 __setup("schedstats=", setup_schedstats);
4648 
4649 #ifdef CONFIG_PROC_SYSCTL
4650 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4651 		size_t *lenp, loff_t *ppos)
4652 {
4653 	struct ctl_table t;
4654 	int err;
4655 	int state = static_branch_likely(&sched_schedstats);
4656 
4657 	if (write && !capable(CAP_SYS_ADMIN))
4658 		return -EPERM;
4659 
4660 	t = *table;
4661 	t.data = &state;
4662 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4663 	if (err < 0)
4664 		return err;
4665 	if (write)
4666 		set_schedstats(state);
4667 	return err;
4668 }
4669 #endif /* CONFIG_PROC_SYSCTL */
4670 #endif /* CONFIG_SCHEDSTATS */
4671 
4672 #ifdef CONFIG_SYSCTL
4673 static struct ctl_table sched_core_sysctls[] = {
4674 #ifdef CONFIG_SCHEDSTATS
4675 	{
4676 		.procname       = "sched_schedstats",
4677 		.data           = NULL,
4678 		.maxlen         = sizeof(unsigned int),
4679 		.mode           = 0644,
4680 		.proc_handler   = sysctl_schedstats,
4681 		.extra1         = SYSCTL_ZERO,
4682 		.extra2         = SYSCTL_ONE,
4683 	},
4684 #endif /* CONFIG_SCHEDSTATS */
4685 #ifdef CONFIG_UCLAMP_TASK
4686 	{
4687 		.procname       = "sched_util_clamp_min",
4688 		.data           = &sysctl_sched_uclamp_util_min,
4689 		.maxlen         = sizeof(unsigned int),
4690 		.mode           = 0644,
4691 		.proc_handler   = sysctl_sched_uclamp_handler,
4692 	},
4693 	{
4694 		.procname       = "sched_util_clamp_max",
4695 		.data           = &sysctl_sched_uclamp_util_max,
4696 		.maxlen         = sizeof(unsigned int),
4697 		.mode           = 0644,
4698 		.proc_handler   = sysctl_sched_uclamp_handler,
4699 	},
4700 	{
4701 		.procname       = "sched_util_clamp_min_rt_default",
4702 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4703 		.maxlen         = sizeof(unsigned int),
4704 		.mode           = 0644,
4705 		.proc_handler   = sysctl_sched_uclamp_handler,
4706 	},
4707 #endif /* CONFIG_UCLAMP_TASK */
4708 #ifdef CONFIG_NUMA_BALANCING
4709 	{
4710 		.procname	= "numa_balancing",
4711 		.data		= NULL, /* filled in by handler */
4712 		.maxlen		= sizeof(unsigned int),
4713 		.mode		= 0644,
4714 		.proc_handler	= sysctl_numa_balancing,
4715 		.extra1		= SYSCTL_ZERO,
4716 		.extra2		= SYSCTL_FOUR,
4717 	},
4718 #endif /* CONFIG_NUMA_BALANCING */
4719 	{}
4720 };
4721 static int __init sched_core_sysctl_init(void)
4722 {
4723 	register_sysctl_init("kernel", sched_core_sysctls);
4724 	return 0;
4725 }
4726 late_initcall(sched_core_sysctl_init);
4727 #endif /* CONFIG_SYSCTL */
4728 
4729 /*
4730  * fork()/clone()-time setup:
4731  */
4732 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4733 {
4734 	__sched_fork(clone_flags, p);
4735 	/*
4736 	 * We mark the process as NEW here. This guarantees that
4737 	 * nobody will actually run it, and a signal or other external
4738 	 * event cannot wake it up and insert it on the runqueue either.
4739 	 */
4740 	p->__state = TASK_NEW;
4741 
4742 	/*
4743 	 * Make sure we do not leak PI boosting priority to the child.
4744 	 */
4745 	p->prio = current->normal_prio;
4746 
4747 	uclamp_fork(p);
4748 
4749 	/*
4750 	 * Revert to default priority/policy on fork if requested.
4751 	 */
4752 	if (unlikely(p->sched_reset_on_fork)) {
4753 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4754 			p->policy = SCHED_NORMAL;
4755 			p->static_prio = NICE_TO_PRIO(0);
4756 			p->rt_priority = 0;
4757 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4758 			p->static_prio = NICE_TO_PRIO(0);
4759 
4760 		p->prio = p->normal_prio = p->static_prio;
4761 		set_load_weight(p, false);
4762 
4763 		/*
4764 		 * We don't need the reset flag anymore after the fork. It has
4765 		 * fulfilled its duty:
4766 		 */
4767 		p->sched_reset_on_fork = 0;
4768 	}
4769 
4770 	if (dl_prio(p->prio))
4771 		return -EAGAIN;
4772 	else if (rt_prio(p->prio))
4773 		p->sched_class = &rt_sched_class;
4774 	else
4775 		p->sched_class = &fair_sched_class;
4776 
4777 	init_entity_runnable_average(&p->se);
4778 
4779 
4780 #ifdef CONFIG_SCHED_INFO
4781 	if (likely(sched_info_on()))
4782 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4783 #endif
4784 #if defined(CONFIG_SMP)
4785 	p->on_cpu = 0;
4786 #endif
4787 	init_task_preempt_count(p);
4788 #ifdef CONFIG_SMP
4789 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4790 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4791 #endif
4792 	return 0;
4793 }
4794 
4795 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4796 {
4797 	unsigned long flags;
4798 
4799 	/*
4800 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4801 	 * required yet, but lockdep gets upset if rules are violated.
4802 	 */
4803 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4804 #ifdef CONFIG_CGROUP_SCHED
4805 	if (1) {
4806 		struct task_group *tg;
4807 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4808 				  struct task_group, css);
4809 		tg = autogroup_task_group(p, tg);
4810 		p->sched_task_group = tg;
4811 	}
4812 #endif
4813 	rseq_migrate(p);
4814 	/*
4815 	 * We're setting the CPU for the first time, we don't migrate,
4816 	 * so use __set_task_cpu().
4817 	 */
4818 	__set_task_cpu(p, smp_processor_id());
4819 	if (p->sched_class->task_fork)
4820 		p->sched_class->task_fork(p);
4821 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4822 }
4823 
4824 void sched_post_fork(struct task_struct *p)
4825 {
4826 	uclamp_post_fork(p);
4827 }
4828 
4829 unsigned long to_ratio(u64 period, u64 runtime)
4830 {
4831 	if (runtime == RUNTIME_INF)
4832 		return BW_UNIT;
4833 
4834 	/*
4835 	 * Doing this here saves a lot of checks in all
4836 	 * the calling paths, and returning zero seems
4837 	 * safe for them anyway.
4838 	 */
4839 	if (period == 0)
4840 		return 0;
4841 
4842 	return div64_u64(runtime << BW_SHIFT, period);
4843 }
4844 
4845 /*
4846  * wake_up_new_task - wake up a newly created task for the first time.
4847  *
4848  * This function will do some initial scheduler statistics housekeeping
4849  * that must be done for every newly created context, then puts the task
4850  * on the runqueue and wakes it.
4851  */
4852 void wake_up_new_task(struct task_struct *p)
4853 {
4854 	struct rq_flags rf;
4855 	struct rq *rq;
4856 
4857 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4858 	WRITE_ONCE(p->__state, TASK_RUNNING);
4859 #ifdef CONFIG_SMP
4860 	/*
4861 	 * Fork balancing, do it here and not earlier because:
4862 	 *  - cpus_ptr can change in the fork path
4863 	 *  - any previously selected CPU might disappear through hotplug
4864 	 *
4865 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4866 	 * as we're not fully set-up yet.
4867 	 */
4868 	p->recent_used_cpu = task_cpu(p);
4869 	rseq_migrate(p);
4870 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4871 #endif
4872 	rq = __task_rq_lock(p, &rf);
4873 	update_rq_clock(rq);
4874 	post_init_entity_util_avg(p);
4875 
4876 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4877 	trace_sched_wakeup_new(p);
4878 	check_preempt_curr(rq, p, WF_FORK);
4879 #ifdef CONFIG_SMP
4880 	if (p->sched_class->task_woken) {
4881 		/*
4882 		 * Nothing relies on rq->lock after this, so it's fine to
4883 		 * drop it.
4884 		 */
4885 		rq_unpin_lock(rq, &rf);
4886 		p->sched_class->task_woken(rq, p);
4887 		rq_repin_lock(rq, &rf);
4888 	}
4889 #endif
4890 	task_rq_unlock(rq, p, &rf);
4891 }
4892 
4893 #ifdef CONFIG_PREEMPT_NOTIFIERS
4894 
4895 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4896 
4897 void preempt_notifier_inc(void)
4898 {
4899 	static_branch_inc(&preempt_notifier_key);
4900 }
4901 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4902 
4903 void preempt_notifier_dec(void)
4904 {
4905 	static_branch_dec(&preempt_notifier_key);
4906 }
4907 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4908 
4909 /**
4910  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4911  * @notifier: notifier struct to register
4912  */
4913 void preempt_notifier_register(struct preempt_notifier *notifier)
4914 {
4915 	if (!static_branch_unlikely(&preempt_notifier_key))
4916 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4917 
4918 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4919 }
4920 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4921 
4922 /**
4923  * preempt_notifier_unregister - no longer interested in preemption notifications
4924  * @notifier: notifier struct to unregister
4925  *
4926  * This is *not* safe to call from within a preemption notifier.
4927  */
4928 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4929 {
4930 	hlist_del(&notifier->link);
4931 }
4932 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4933 
4934 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4935 {
4936 	struct preempt_notifier *notifier;
4937 
4938 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4939 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4940 }
4941 
4942 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4943 {
4944 	if (static_branch_unlikely(&preempt_notifier_key))
4945 		__fire_sched_in_preempt_notifiers(curr);
4946 }
4947 
4948 static void
4949 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4950 				   struct task_struct *next)
4951 {
4952 	struct preempt_notifier *notifier;
4953 
4954 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4955 		notifier->ops->sched_out(notifier, next);
4956 }
4957 
4958 static __always_inline void
4959 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4960 				 struct task_struct *next)
4961 {
4962 	if (static_branch_unlikely(&preempt_notifier_key))
4963 		__fire_sched_out_preempt_notifiers(curr, next);
4964 }
4965 
4966 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4967 
4968 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4969 {
4970 }
4971 
4972 static inline void
4973 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4974 				 struct task_struct *next)
4975 {
4976 }
4977 
4978 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4979 
4980 static inline void prepare_task(struct task_struct *next)
4981 {
4982 #ifdef CONFIG_SMP
4983 	/*
4984 	 * Claim the task as running, we do this before switching to it
4985 	 * such that any running task will have this set.
4986 	 *
4987 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4988 	 * its ordering comment.
4989 	 */
4990 	WRITE_ONCE(next->on_cpu, 1);
4991 #endif
4992 }
4993 
4994 static inline void finish_task(struct task_struct *prev)
4995 {
4996 #ifdef CONFIG_SMP
4997 	/*
4998 	 * This must be the very last reference to @prev from this CPU. After
4999 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5000 	 * must ensure this doesn't happen until the switch is completely
5001 	 * finished.
5002 	 *
5003 	 * In particular, the load of prev->state in finish_task_switch() must
5004 	 * happen before this.
5005 	 *
5006 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5007 	 */
5008 	smp_store_release(&prev->on_cpu, 0);
5009 #endif
5010 }
5011 
5012 #ifdef CONFIG_SMP
5013 
5014 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5015 {
5016 	void (*func)(struct rq *rq);
5017 	struct balance_callback *next;
5018 
5019 	lockdep_assert_rq_held(rq);
5020 
5021 	while (head) {
5022 		func = (void (*)(struct rq *))head->func;
5023 		next = head->next;
5024 		head->next = NULL;
5025 		head = next;
5026 
5027 		func(rq);
5028 	}
5029 }
5030 
5031 static void balance_push(struct rq *rq);
5032 
5033 /*
5034  * balance_push_callback is a right abuse of the callback interface and plays
5035  * by significantly different rules.
5036  *
5037  * Where the normal balance_callback's purpose is to be ran in the same context
5038  * that queued it (only later, when it's safe to drop rq->lock again),
5039  * balance_push_callback is specifically targeted at __schedule().
5040  *
5041  * This abuse is tolerated because it places all the unlikely/odd cases behind
5042  * a single test, namely: rq->balance_callback == NULL.
5043  */
5044 struct balance_callback balance_push_callback = {
5045 	.next = NULL,
5046 	.func = balance_push,
5047 };
5048 
5049 static inline struct balance_callback *
5050 __splice_balance_callbacks(struct rq *rq, bool split)
5051 {
5052 	struct balance_callback *head = rq->balance_callback;
5053 
5054 	if (likely(!head))
5055 		return NULL;
5056 
5057 	lockdep_assert_rq_held(rq);
5058 	/*
5059 	 * Must not take balance_push_callback off the list when
5060 	 * splice_balance_callbacks() and balance_callbacks() are not
5061 	 * in the same rq->lock section.
5062 	 *
5063 	 * In that case it would be possible for __schedule() to interleave
5064 	 * and observe the list empty.
5065 	 */
5066 	if (split && head == &balance_push_callback)
5067 		head = NULL;
5068 	else
5069 		rq->balance_callback = NULL;
5070 
5071 	return head;
5072 }
5073 
5074 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5075 {
5076 	return __splice_balance_callbacks(rq, true);
5077 }
5078 
5079 static void __balance_callbacks(struct rq *rq)
5080 {
5081 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5082 }
5083 
5084 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5085 {
5086 	unsigned long flags;
5087 
5088 	if (unlikely(head)) {
5089 		raw_spin_rq_lock_irqsave(rq, flags);
5090 		do_balance_callbacks(rq, head);
5091 		raw_spin_rq_unlock_irqrestore(rq, flags);
5092 	}
5093 }
5094 
5095 #else
5096 
5097 static inline void __balance_callbacks(struct rq *rq)
5098 {
5099 }
5100 
5101 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5102 {
5103 	return NULL;
5104 }
5105 
5106 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5107 {
5108 }
5109 
5110 #endif
5111 
5112 static inline void
5113 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5114 {
5115 	/*
5116 	 * Since the runqueue lock will be released by the next
5117 	 * task (which is an invalid locking op but in the case
5118 	 * of the scheduler it's an obvious special-case), so we
5119 	 * do an early lockdep release here:
5120 	 */
5121 	rq_unpin_lock(rq, rf);
5122 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5123 #ifdef CONFIG_DEBUG_SPINLOCK
5124 	/* this is a valid case when another task releases the spinlock */
5125 	rq_lockp(rq)->owner = next;
5126 #endif
5127 }
5128 
5129 static inline void finish_lock_switch(struct rq *rq)
5130 {
5131 	/*
5132 	 * If we are tracking spinlock dependencies then we have to
5133 	 * fix up the runqueue lock - which gets 'carried over' from
5134 	 * prev into current:
5135 	 */
5136 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5137 	__balance_callbacks(rq);
5138 	raw_spin_rq_unlock_irq(rq);
5139 }
5140 
5141 /*
5142  * NOP if the arch has not defined these:
5143  */
5144 
5145 #ifndef prepare_arch_switch
5146 # define prepare_arch_switch(next)	do { } while (0)
5147 #endif
5148 
5149 #ifndef finish_arch_post_lock_switch
5150 # define finish_arch_post_lock_switch()	do { } while (0)
5151 #endif
5152 
5153 static inline void kmap_local_sched_out(void)
5154 {
5155 #ifdef CONFIG_KMAP_LOCAL
5156 	if (unlikely(current->kmap_ctrl.idx))
5157 		__kmap_local_sched_out();
5158 #endif
5159 }
5160 
5161 static inline void kmap_local_sched_in(void)
5162 {
5163 #ifdef CONFIG_KMAP_LOCAL
5164 	if (unlikely(current->kmap_ctrl.idx))
5165 		__kmap_local_sched_in();
5166 #endif
5167 }
5168 
5169 /**
5170  * prepare_task_switch - prepare to switch tasks
5171  * @rq: the runqueue preparing to switch
5172  * @prev: the current task that is being switched out
5173  * @next: the task we are going to switch to.
5174  *
5175  * This is called with the rq lock held and interrupts off. It must
5176  * be paired with a subsequent finish_task_switch after the context
5177  * switch.
5178  *
5179  * prepare_task_switch sets up locking and calls architecture specific
5180  * hooks.
5181  */
5182 static inline void
5183 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5184 		    struct task_struct *next)
5185 {
5186 	kcov_prepare_switch(prev);
5187 	sched_info_switch(rq, prev, next);
5188 	perf_event_task_sched_out(prev, next);
5189 	rseq_preempt(prev);
5190 	fire_sched_out_preempt_notifiers(prev, next);
5191 	kmap_local_sched_out();
5192 	prepare_task(next);
5193 	prepare_arch_switch(next);
5194 }
5195 
5196 /**
5197  * finish_task_switch - clean up after a task-switch
5198  * @prev: the thread we just switched away from.
5199  *
5200  * finish_task_switch must be called after the context switch, paired
5201  * with a prepare_task_switch call before the context switch.
5202  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5203  * and do any other architecture-specific cleanup actions.
5204  *
5205  * Note that we may have delayed dropping an mm in context_switch(). If
5206  * so, we finish that here outside of the runqueue lock. (Doing it
5207  * with the lock held can cause deadlocks; see schedule() for
5208  * details.)
5209  *
5210  * The context switch have flipped the stack from under us and restored the
5211  * local variables which were saved when this task called schedule() in the
5212  * past. prev == current is still correct but we need to recalculate this_rq
5213  * because prev may have moved to another CPU.
5214  */
5215 static struct rq *finish_task_switch(struct task_struct *prev)
5216 	__releases(rq->lock)
5217 {
5218 	struct rq *rq = this_rq();
5219 	struct mm_struct *mm = rq->prev_mm;
5220 	unsigned int prev_state;
5221 
5222 	/*
5223 	 * The previous task will have left us with a preempt_count of 2
5224 	 * because it left us after:
5225 	 *
5226 	 *	schedule()
5227 	 *	  preempt_disable();			// 1
5228 	 *	  __schedule()
5229 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5230 	 *
5231 	 * Also, see FORK_PREEMPT_COUNT.
5232 	 */
5233 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5234 		      "corrupted preempt_count: %s/%d/0x%x\n",
5235 		      current->comm, current->pid, preempt_count()))
5236 		preempt_count_set(FORK_PREEMPT_COUNT);
5237 
5238 	rq->prev_mm = NULL;
5239 
5240 	/*
5241 	 * A task struct has one reference for the use as "current".
5242 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5243 	 * schedule one last time. The schedule call will never return, and
5244 	 * the scheduled task must drop that reference.
5245 	 *
5246 	 * We must observe prev->state before clearing prev->on_cpu (in
5247 	 * finish_task), otherwise a concurrent wakeup can get prev
5248 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5249 	 * transition, resulting in a double drop.
5250 	 */
5251 	prev_state = READ_ONCE(prev->__state);
5252 	vtime_task_switch(prev);
5253 	perf_event_task_sched_in(prev, current);
5254 	finish_task(prev);
5255 	tick_nohz_task_switch();
5256 	finish_lock_switch(rq);
5257 	finish_arch_post_lock_switch();
5258 	kcov_finish_switch(current);
5259 	/*
5260 	 * kmap_local_sched_out() is invoked with rq::lock held and
5261 	 * interrupts disabled. There is no requirement for that, but the
5262 	 * sched out code does not have an interrupt enabled section.
5263 	 * Restoring the maps on sched in does not require interrupts being
5264 	 * disabled either.
5265 	 */
5266 	kmap_local_sched_in();
5267 
5268 	fire_sched_in_preempt_notifiers(current);
5269 	/*
5270 	 * When switching through a kernel thread, the loop in
5271 	 * membarrier_{private,global}_expedited() may have observed that
5272 	 * kernel thread and not issued an IPI. It is therefore possible to
5273 	 * schedule between user->kernel->user threads without passing though
5274 	 * switch_mm(). Membarrier requires a barrier after storing to
5275 	 * rq->curr, before returning to userspace, so provide them here:
5276 	 *
5277 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5278 	 *   provided by mmdrop_lazy_tlb(),
5279 	 * - a sync_core for SYNC_CORE.
5280 	 */
5281 	if (mm) {
5282 		membarrier_mm_sync_core_before_usermode(mm);
5283 		mmdrop_lazy_tlb_sched(mm);
5284 	}
5285 
5286 	if (unlikely(prev_state == TASK_DEAD)) {
5287 		if (prev->sched_class->task_dead)
5288 			prev->sched_class->task_dead(prev);
5289 
5290 		/* Task is done with its stack. */
5291 		put_task_stack(prev);
5292 
5293 		put_task_struct_rcu_user(prev);
5294 	}
5295 
5296 	return rq;
5297 }
5298 
5299 /**
5300  * schedule_tail - first thing a freshly forked thread must call.
5301  * @prev: the thread we just switched away from.
5302  */
5303 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5304 	__releases(rq->lock)
5305 {
5306 	/*
5307 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5308 	 * finish_task_switch() for details.
5309 	 *
5310 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5311 	 * and the preempt_enable() will end up enabling preemption (on
5312 	 * PREEMPT_COUNT kernels).
5313 	 */
5314 
5315 	finish_task_switch(prev);
5316 	preempt_enable();
5317 
5318 	if (current->set_child_tid)
5319 		put_user(task_pid_vnr(current), current->set_child_tid);
5320 
5321 	calculate_sigpending();
5322 }
5323 
5324 /*
5325  * context_switch - switch to the new MM and the new thread's register state.
5326  */
5327 static __always_inline struct rq *
5328 context_switch(struct rq *rq, struct task_struct *prev,
5329 	       struct task_struct *next, struct rq_flags *rf)
5330 {
5331 	prepare_task_switch(rq, prev, next);
5332 
5333 	/*
5334 	 * For paravirt, this is coupled with an exit in switch_to to
5335 	 * combine the page table reload and the switch backend into
5336 	 * one hypercall.
5337 	 */
5338 	arch_start_context_switch(prev);
5339 
5340 	/*
5341 	 * kernel -> kernel   lazy + transfer active
5342 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5343 	 *
5344 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5345 	 *   user ->   user   switch
5346 	 *
5347 	 * switch_mm_cid() needs to be updated if the barriers provided
5348 	 * by context_switch() are modified.
5349 	 */
5350 	if (!next->mm) {                                // to kernel
5351 		enter_lazy_tlb(prev->active_mm, next);
5352 
5353 		next->active_mm = prev->active_mm;
5354 		if (prev->mm)                           // from user
5355 			mmgrab_lazy_tlb(prev->active_mm);
5356 		else
5357 			prev->active_mm = NULL;
5358 	} else {                                        // to user
5359 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5360 		/*
5361 		 * sys_membarrier() requires an smp_mb() between setting
5362 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5363 		 *
5364 		 * The below provides this either through switch_mm(), or in
5365 		 * case 'prev->active_mm == next->mm' through
5366 		 * finish_task_switch()'s mmdrop().
5367 		 */
5368 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5369 		lru_gen_use_mm(next->mm);
5370 
5371 		if (!prev->mm) {                        // from kernel
5372 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5373 			rq->prev_mm = prev->active_mm;
5374 			prev->active_mm = NULL;
5375 		}
5376 	}
5377 
5378 	/* switch_mm_cid() requires the memory barriers above. */
5379 	switch_mm_cid(rq, prev, next);
5380 
5381 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5382 
5383 	prepare_lock_switch(rq, next, rf);
5384 
5385 	/* Here we just switch the register state and the stack. */
5386 	switch_to(prev, next, prev);
5387 	barrier();
5388 
5389 	return finish_task_switch(prev);
5390 }
5391 
5392 /*
5393  * nr_running and nr_context_switches:
5394  *
5395  * externally visible scheduler statistics: current number of runnable
5396  * threads, total number of context switches performed since bootup.
5397  */
5398 unsigned int nr_running(void)
5399 {
5400 	unsigned int i, sum = 0;
5401 
5402 	for_each_online_cpu(i)
5403 		sum += cpu_rq(i)->nr_running;
5404 
5405 	return sum;
5406 }
5407 
5408 /*
5409  * Check if only the current task is running on the CPU.
5410  *
5411  * Caution: this function does not check that the caller has disabled
5412  * preemption, thus the result might have a time-of-check-to-time-of-use
5413  * race.  The caller is responsible to use it correctly, for example:
5414  *
5415  * - from a non-preemptible section (of course)
5416  *
5417  * - from a thread that is bound to a single CPU
5418  *
5419  * - in a loop with very short iterations (e.g. a polling loop)
5420  */
5421 bool single_task_running(void)
5422 {
5423 	return raw_rq()->nr_running == 1;
5424 }
5425 EXPORT_SYMBOL(single_task_running);
5426 
5427 unsigned long long nr_context_switches_cpu(int cpu)
5428 {
5429 	return cpu_rq(cpu)->nr_switches;
5430 }
5431 
5432 unsigned long long nr_context_switches(void)
5433 {
5434 	int i;
5435 	unsigned long long sum = 0;
5436 
5437 	for_each_possible_cpu(i)
5438 		sum += cpu_rq(i)->nr_switches;
5439 
5440 	return sum;
5441 }
5442 
5443 /*
5444  * Consumers of these two interfaces, like for example the cpuidle menu
5445  * governor, are using nonsensical data. Preferring shallow idle state selection
5446  * for a CPU that has IO-wait which might not even end up running the task when
5447  * it does become runnable.
5448  */
5449 
5450 unsigned int nr_iowait_cpu(int cpu)
5451 {
5452 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5453 }
5454 
5455 /*
5456  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5457  *
5458  * The idea behind IO-wait account is to account the idle time that we could
5459  * have spend running if it were not for IO. That is, if we were to improve the
5460  * storage performance, we'd have a proportional reduction in IO-wait time.
5461  *
5462  * This all works nicely on UP, where, when a task blocks on IO, we account
5463  * idle time as IO-wait, because if the storage were faster, it could've been
5464  * running and we'd not be idle.
5465  *
5466  * This has been extended to SMP, by doing the same for each CPU. This however
5467  * is broken.
5468  *
5469  * Imagine for instance the case where two tasks block on one CPU, only the one
5470  * CPU will have IO-wait accounted, while the other has regular idle. Even
5471  * though, if the storage were faster, both could've ran at the same time,
5472  * utilising both CPUs.
5473  *
5474  * This means, that when looking globally, the current IO-wait accounting on
5475  * SMP is a lower bound, by reason of under accounting.
5476  *
5477  * Worse, since the numbers are provided per CPU, they are sometimes
5478  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5479  * associated with any one particular CPU, it can wake to another CPU than it
5480  * blocked on. This means the per CPU IO-wait number is meaningless.
5481  *
5482  * Task CPU affinities can make all that even more 'interesting'.
5483  */
5484 
5485 unsigned int nr_iowait(void)
5486 {
5487 	unsigned int i, sum = 0;
5488 
5489 	for_each_possible_cpu(i)
5490 		sum += nr_iowait_cpu(i);
5491 
5492 	return sum;
5493 }
5494 
5495 #ifdef CONFIG_SMP
5496 
5497 /*
5498  * sched_exec - execve() is a valuable balancing opportunity, because at
5499  * this point the task has the smallest effective memory and cache footprint.
5500  */
5501 void sched_exec(void)
5502 {
5503 	struct task_struct *p = current;
5504 	struct migration_arg arg;
5505 	int dest_cpu;
5506 
5507 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5508 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5509 		if (dest_cpu == smp_processor_id())
5510 			return;
5511 
5512 		if (unlikely(!cpu_active(dest_cpu)))
5513 			return;
5514 
5515 		arg = (struct migration_arg){ p, dest_cpu };
5516 	}
5517 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5518 }
5519 
5520 #endif
5521 
5522 DEFINE_PER_CPU(struct kernel_stat, kstat);
5523 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5524 
5525 EXPORT_PER_CPU_SYMBOL(kstat);
5526 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5527 
5528 /*
5529  * The function fair_sched_class.update_curr accesses the struct curr
5530  * and its field curr->exec_start; when called from task_sched_runtime(),
5531  * we observe a high rate of cache misses in practice.
5532  * Prefetching this data results in improved performance.
5533  */
5534 static inline void prefetch_curr_exec_start(struct task_struct *p)
5535 {
5536 #ifdef CONFIG_FAIR_GROUP_SCHED
5537 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5538 #else
5539 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5540 #endif
5541 	prefetch(curr);
5542 	prefetch(&curr->exec_start);
5543 }
5544 
5545 /*
5546  * Return accounted runtime for the task.
5547  * In case the task is currently running, return the runtime plus current's
5548  * pending runtime that have not been accounted yet.
5549  */
5550 unsigned long long task_sched_runtime(struct task_struct *p)
5551 {
5552 	struct rq_flags rf;
5553 	struct rq *rq;
5554 	u64 ns;
5555 
5556 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5557 	/*
5558 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5559 	 * So we have a optimization chance when the task's delta_exec is 0.
5560 	 * Reading ->on_cpu is racy, but this is ok.
5561 	 *
5562 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5563 	 * If we race with it entering CPU, unaccounted time is 0. This is
5564 	 * indistinguishable from the read occurring a few cycles earlier.
5565 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5566 	 * been accounted, so we're correct here as well.
5567 	 */
5568 	if (!p->on_cpu || !task_on_rq_queued(p))
5569 		return p->se.sum_exec_runtime;
5570 #endif
5571 
5572 	rq = task_rq_lock(p, &rf);
5573 	/*
5574 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5575 	 * project cycles that may never be accounted to this
5576 	 * thread, breaking clock_gettime().
5577 	 */
5578 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5579 		prefetch_curr_exec_start(p);
5580 		update_rq_clock(rq);
5581 		p->sched_class->update_curr(rq);
5582 	}
5583 	ns = p->se.sum_exec_runtime;
5584 	task_rq_unlock(rq, p, &rf);
5585 
5586 	return ns;
5587 }
5588 
5589 #ifdef CONFIG_SCHED_DEBUG
5590 static u64 cpu_resched_latency(struct rq *rq)
5591 {
5592 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5593 	u64 resched_latency, now = rq_clock(rq);
5594 	static bool warned_once;
5595 
5596 	if (sysctl_resched_latency_warn_once && warned_once)
5597 		return 0;
5598 
5599 	if (!need_resched() || !latency_warn_ms)
5600 		return 0;
5601 
5602 	if (system_state == SYSTEM_BOOTING)
5603 		return 0;
5604 
5605 	if (!rq->last_seen_need_resched_ns) {
5606 		rq->last_seen_need_resched_ns = now;
5607 		rq->ticks_without_resched = 0;
5608 		return 0;
5609 	}
5610 
5611 	rq->ticks_without_resched++;
5612 	resched_latency = now - rq->last_seen_need_resched_ns;
5613 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5614 		return 0;
5615 
5616 	warned_once = true;
5617 
5618 	return resched_latency;
5619 }
5620 
5621 static int __init setup_resched_latency_warn_ms(char *str)
5622 {
5623 	long val;
5624 
5625 	if ((kstrtol(str, 0, &val))) {
5626 		pr_warn("Unable to set resched_latency_warn_ms\n");
5627 		return 1;
5628 	}
5629 
5630 	sysctl_resched_latency_warn_ms = val;
5631 	return 1;
5632 }
5633 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5634 #else
5635 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5636 #endif /* CONFIG_SCHED_DEBUG */
5637 
5638 /*
5639  * This function gets called by the timer code, with HZ frequency.
5640  * We call it with interrupts disabled.
5641  */
5642 void scheduler_tick(void)
5643 {
5644 	int cpu = smp_processor_id();
5645 	struct rq *rq = cpu_rq(cpu);
5646 	struct task_struct *curr = rq->curr;
5647 	struct rq_flags rf;
5648 	unsigned long thermal_pressure;
5649 	u64 resched_latency;
5650 
5651 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5652 		arch_scale_freq_tick();
5653 
5654 	sched_clock_tick();
5655 
5656 	rq_lock(rq, &rf);
5657 
5658 	update_rq_clock(rq);
5659 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5660 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5661 	curr->sched_class->task_tick(rq, curr, 0);
5662 	if (sched_feat(LATENCY_WARN))
5663 		resched_latency = cpu_resched_latency(rq);
5664 	calc_global_load_tick(rq);
5665 	sched_core_tick(rq);
5666 	task_tick_mm_cid(rq, curr);
5667 
5668 	rq_unlock(rq, &rf);
5669 
5670 	if (sched_feat(LATENCY_WARN) && resched_latency)
5671 		resched_latency_warn(cpu, resched_latency);
5672 
5673 	perf_event_task_tick();
5674 
5675 	if (curr->flags & PF_WQ_WORKER)
5676 		wq_worker_tick(curr);
5677 
5678 #ifdef CONFIG_SMP
5679 	rq->idle_balance = idle_cpu(cpu);
5680 	trigger_load_balance(rq);
5681 #endif
5682 }
5683 
5684 #ifdef CONFIG_NO_HZ_FULL
5685 
5686 struct tick_work {
5687 	int			cpu;
5688 	atomic_t		state;
5689 	struct delayed_work	work;
5690 };
5691 /* Values for ->state, see diagram below. */
5692 #define TICK_SCHED_REMOTE_OFFLINE	0
5693 #define TICK_SCHED_REMOTE_OFFLINING	1
5694 #define TICK_SCHED_REMOTE_RUNNING	2
5695 
5696 /*
5697  * State diagram for ->state:
5698  *
5699  *
5700  *          TICK_SCHED_REMOTE_OFFLINE
5701  *                    |   ^
5702  *                    |   |
5703  *                    |   | sched_tick_remote()
5704  *                    |   |
5705  *                    |   |
5706  *                    +--TICK_SCHED_REMOTE_OFFLINING
5707  *                    |   ^
5708  *                    |   |
5709  * sched_tick_start() |   | sched_tick_stop()
5710  *                    |   |
5711  *                    V   |
5712  *          TICK_SCHED_REMOTE_RUNNING
5713  *
5714  *
5715  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5716  * and sched_tick_start() are happy to leave the state in RUNNING.
5717  */
5718 
5719 static struct tick_work __percpu *tick_work_cpu;
5720 
5721 static void sched_tick_remote(struct work_struct *work)
5722 {
5723 	struct delayed_work *dwork = to_delayed_work(work);
5724 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5725 	int cpu = twork->cpu;
5726 	struct rq *rq = cpu_rq(cpu);
5727 	int os;
5728 
5729 	/*
5730 	 * Handle the tick only if it appears the remote CPU is running in full
5731 	 * dynticks mode. The check is racy by nature, but missing a tick or
5732 	 * having one too much is no big deal because the scheduler tick updates
5733 	 * statistics and checks timeslices in a time-independent way, regardless
5734 	 * of when exactly it is running.
5735 	 */
5736 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5737 		guard(rq_lock_irq)(rq);
5738 		struct task_struct *curr = rq->curr;
5739 
5740 		if (cpu_online(cpu)) {
5741 			update_rq_clock(rq);
5742 
5743 			if (!is_idle_task(curr)) {
5744 				/*
5745 				 * Make sure the next tick runs within a
5746 				 * reasonable amount of time.
5747 				 */
5748 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5749 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5750 			}
5751 			curr->sched_class->task_tick(rq, curr, 0);
5752 
5753 			calc_load_nohz_remote(rq);
5754 		}
5755 	}
5756 
5757 	/*
5758 	 * Run the remote tick once per second (1Hz). This arbitrary
5759 	 * frequency is large enough to avoid overload but short enough
5760 	 * to keep scheduler internal stats reasonably up to date.  But
5761 	 * first update state to reflect hotplug activity if required.
5762 	 */
5763 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5764 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5765 	if (os == TICK_SCHED_REMOTE_RUNNING)
5766 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5767 }
5768 
5769 static void sched_tick_start(int cpu)
5770 {
5771 	int os;
5772 	struct tick_work *twork;
5773 
5774 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5775 		return;
5776 
5777 	WARN_ON_ONCE(!tick_work_cpu);
5778 
5779 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5780 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5781 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5782 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5783 		twork->cpu = cpu;
5784 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5785 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5786 	}
5787 }
5788 
5789 #ifdef CONFIG_HOTPLUG_CPU
5790 static void sched_tick_stop(int cpu)
5791 {
5792 	struct tick_work *twork;
5793 	int os;
5794 
5795 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5796 		return;
5797 
5798 	WARN_ON_ONCE(!tick_work_cpu);
5799 
5800 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5801 	/* There cannot be competing actions, but don't rely on stop-machine. */
5802 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5803 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5804 	/* Don't cancel, as this would mess up the state machine. */
5805 }
5806 #endif /* CONFIG_HOTPLUG_CPU */
5807 
5808 int __init sched_tick_offload_init(void)
5809 {
5810 	tick_work_cpu = alloc_percpu(struct tick_work);
5811 	BUG_ON(!tick_work_cpu);
5812 	return 0;
5813 }
5814 
5815 #else /* !CONFIG_NO_HZ_FULL */
5816 static inline void sched_tick_start(int cpu) { }
5817 static inline void sched_tick_stop(int cpu) { }
5818 #endif
5819 
5820 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5821 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5822 /*
5823  * If the value passed in is equal to the current preempt count
5824  * then we just disabled preemption. Start timing the latency.
5825  */
5826 static inline void preempt_latency_start(int val)
5827 {
5828 	if (preempt_count() == val) {
5829 		unsigned long ip = get_lock_parent_ip();
5830 #ifdef CONFIG_DEBUG_PREEMPT
5831 		current->preempt_disable_ip = ip;
5832 #endif
5833 		trace_preempt_off(CALLER_ADDR0, ip);
5834 	}
5835 }
5836 
5837 void preempt_count_add(int val)
5838 {
5839 #ifdef CONFIG_DEBUG_PREEMPT
5840 	/*
5841 	 * Underflow?
5842 	 */
5843 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5844 		return;
5845 #endif
5846 	__preempt_count_add(val);
5847 #ifdef CONFIG_DEBUG_PREEMPT
5848 	/*
5849 	 * Spinlock count overflowing soon?
5850 	 */
5851 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5852 				PREEMPT_MASK - 10);
5853 #endif
5854 	preempt_latency_start(val);
5855 }
5856 EXPORT_SYMBOL(preempt_count_add);
5857 NOKPROBE_SYMBOL(preempt_count_add);
5858 
5859 /*
5860  * If the value passed in equals to the current preempt count
5861  * then we just enabled preemption. Stop timing the latency.
5862  */
5863 static inline void preempt_latency_stop(int val)
5864 {
5865 	if (preempt_count() == val)
5866 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5867 }
5868 
5869 void preempt_count_sub(int val)
5870 {
5871 #ifdef CONFIG_DEBUG_PREEMPT
5872 	/*
5873 	 * Underflow?
5874 	 */
5875 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5876 		return;
5877 	/*
5878 	 * Is the spinlock portion underflowing?
5879 	 */
5880 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5881 			!(preempt_count() & PREEMPT_MASK)))
5882 		return;
5883 #endif
5884 
5885 	preempt_latency_stop(val);
5886 	__preempt_count_sub(val);
5887 }
5888 EXPORT_SYMBOL(preempt_count_sub);
5889 NOKPROBE_SYMBOL(preempt_count_sub);
5890 
5891 #else
5892 static inline void preempt_latency_start(int val) { }
5893 static inline void preempt_latency_stop(int val) { }
5894 #endif
5895 
5896 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5897 {
5898 #ifdef CONFIG_DEBUG_PREEMPT
5899 	return p->preempt_disable_ip;
5900 #else
5901 	return 0;
5902 #endif
5903 }
5904 
5905 /*
5906  * Print scheduling while atomic bug:
5907  */
5908 static noinline void __schedule_bug(struct task_struct *prev)
5909 {
5910 	/* Save this before calling printk(), since that will clobber it */
5911 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5912 
5913 	if (oops_in_progress)
5914 		return;
5915 
5916 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5917 		prev->comm, prev->pid, preempt_count());
5918 
5919 	debug_show_held_locks(prev);
5920 	print_modules();
5921 	if (irqs_disabled())
5922 		print_irqtrace_events(prev);
5923 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5924 	    && in_atomic_preempt_off()) {
5925 		pr_err("Preemption disabled at:");
5926 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5927 	}
5928 	check_panic_on_warn("scheduling while atomic");
5929 
5930 	dump_stack();
5931 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5932 }
5933 
5934 /*
5935  * Various schedule()-time debugging checks and statistics:
5936  */
5937 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5938 {
5939 #ifdef CONFIG_SCHED_STACK_END_CHECK
5940 	if (task_stack_end_corrupted(prev))
5941 		panic("corrupted stack end detected inside scheduler\n");
5942 
5943 	if (task_scs_end_corrupted(prev))
5944 		panic("corrupted shadow stack detected inside scheduler\n");
5945 #endif
5946 
5947 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5948 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5949 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5950 			prev->comm, prev->pid, prev->non_block_count);
5951 		dump_stack();
5952 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5953 	}
5954 #endif
5955 
5956 	if (unlikely(in_atomic_preempt_off())) {
5957 		__schedule_bug(prev);
5958 		preempt_count_set(PREEMPT_DISABLED);
5959 	}
5960 	rcu_sleep_check();
5961 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5962 
5963 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5964 
5965 	schedstat_inc(this_rq()->sched_count);
5966 }
5967 
5968 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5969 				  struct rq_flags *rf)
5970 {
5971 #ifdef CONFIG_SMP
5972 	const struct sched_class *class;
5973 	/*
5974 	 * We must do the balancing pass before put_prev_task(), such
5975 	 * that when we release the rq->lock the task is in the same
5976 	 * state as before we took rq->lock.
5977 	 *
5978 	 * We can terminate the balance pass as soon as we know there is
5979 	 * a runnable task of @class priority or higher.
5980 	 */
5981 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5982 		if (class->balance(rq, prev, rf))
5983 			break;
5984 	}
5985 #endif
5986 
5987 	put_prev_task(rq, prev);
5988 }
5989 
5990 /*
5991  * Pick up the highest-prio task:
5992  */
5993 static inline struct task_struct *
5994 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5995 {
5996 	const struct sched_class *class;
5997 	struct task_struct *p;
5998 
5999 	/*
6000 	 * Optimization: we know that if all tasks are in the fair class we can
6001 	 * call that function directly, but only if the @prev task wasn't of a
6002 	 * higher scheduling class, because otherwise those lose the
6003 	 * opportunity to pull in more work from other CPUs.
6004 	 */
6005 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6006 		   rq->nr_running == rq->cfs.h_nr_running)) {
6007 
6008 		p = pick_next_task_fair(rq, prev, rf);
6009 		if (unlikely(p == RETRY_TASK))
6010 			goto restart;
6011 
6012 		/* Assume the next prioritized class is idle_sched_class */
6013 		if (!p) {
6014 			put_prev_task(rq, prev);
6015 			p = pick_next_task_idle(rq);
6016 		}
6017 
6018 		return p;
6019 	}
6020 
6021 restart:
6022 	put_prev_task_balance(rq, prev, rf);
6023 
6024 	for_each_class(class) {
6025 		p = class->pick_next_task(rq);
6026 		if (p)
6027 			return p;
6028 	}
6029 
6030 	BUG(); /* The idle class should always have a runnable task. */
6031 }
6032 
6033 #ifdef CONFIG_SCHED_CORE
6034 static inline bool is_task_rq_idle(struct task_struct *t)
6035 {
6036 	return (task_rq(t)->idle == t);
6037 }
6038 
6039 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6040 {
6041 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6042 }
6043 
6044 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6045 {
6046 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6047 		return true;
6048 
6049 	return a->core_cookie == b->core_cookie;
6050 }
6051 
6052 static inline struct task_struct *pick_task(struct rq *rq)
6053 {
6054 	const struct sched_class *class;
6055 	struct task_struct *p;
6056 
6057 	for_each_class(class) {
6058 		p = class->pick_task(rq);
6059 		if (p)
6060 			return p;
6061 	}
6062 
6063 	BUG(); /* The idle class should always have a runnable task. */
6064 }
6065 
6066 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6067 
6068 static void queue_core_balance(struct rq *rq);
6069 
6070 static struct task_struct *
6071 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6072 {
6073 	struct task_struct *next, *p, *max = NULL;
6074 	const struct cpumask *smt_mask;
6075 	bool fi_before = false;
6076 	bool core_clock_updated = (rq == rq->core);
6077 	unsigned long cookie;
6078 	int i, cpu, occ = 0;
6079 	struct rq *rq_i;
6080 	bool need_sync;
6081 
6082 	if (!sched_core_enabled(rq))
6083 		return __pick_next_task(rq, prev, rf);
6084 
6085 	cpu = cpu_of(rq);
6086 
6087 	/* Stopper task is switching into idle, no need core-wide selection. */
6088 	if (cpu_is_offline(cpu)) {
6089 		/*
6090 		 * Reset core_pick so that we don't enter the fastpath when
6091 		 * coming online. core_pick would already be migrated to
6092 		 * another cpu during offline.
6093 		 */
6094 		rq->core_pick = NULL;
6095 		return __pick_next_task(rq, prev, rf);
6096 	}
6097 
6098 	/*
6099 	 * If there were no {en,de}queues since we picked (IOW, the task
6100 	 * pointers are all still valid), and we haven't scheduled the last
6101 	 * pick yet, do so now.
6102 	 *
6103 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6104 	 * it was either offline or went offline during a sibling's core-wide
6105 	 * selection. In this case, do a core-wide selection.
6106 	 */
6107 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6108 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6109 	    rq->core_pick) {
6110 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6111 
6112 		next = rq->core_pick;
6113 		if (next != prev) {
6114 			put_prev_task(rq, prev);
6115 			set_next_task(rq, next);
6116 		}
6117 
6118 		rq->core_pick = NULL;
6119 		goto out;
6120 	}
6121 
6122 	put_prev_task_balance(rq, prev, rf);
6123 
6124 	smt_mask = cpu_smt_mask(cpu);
6125 	need_sync = !!rq->core->core_cookie;
6126 
6127 	/* reset state */
6128 	rq->core->core_cookie = 0UL;
6129 	if (rq->core->core_forceidle_count) {
6130 		if (!core_clock_updated) {
6131 			update_rq_clock(rq->core);
6132 			core_clock_updated = true;
6133 		}
6134 		sched_core_account_forceidle(rq);
6135 		/* reset after accounting force idle */
6136 		rq->core->core_forceidle_start = 0;
6137 		rq->core->core_forceidle_count = 0;
6138 		rq->core->core_forceidle_occupation = 0;
6139 		need_sync = true;
6140 		fi_before = true;
6141 	}
6142 
6143 	/*
6144 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6145 	 *
6146 	 * @task_seq guards the task state ({en,de}queues)
6147 	 * @pick_seq is the @task_seq we did a selection on
6148 	 * @sched_seq is the @pick_seq we scheduled
6149 	 *
6150 	 * However, preemptions can cause multiple picks on the same task set.
6151 	 * 'Fix' this by also increasing @task_seq for every pick.
6152 	 */
6153 	rq->core->core_task_seq++;
6154 
6155 	/*
6156 	 * Optimize for common case where this CPU has no cookies
6157 	 * and there are no cookied tasks running on siblings.
6158 	 */
6159 	if (!need_sync) {
6160 		next = pick_task(rq);
6161 		if (!next->core_cookie) {
6162 			rq->core_pick = NULL;
6163 			/*
6164 			 * For robustness, update the min_vruntime_fi for
6165 			 * unconstrained picks as well.
6166 			 */
6167 			WARN_ON_ONCE(fi_before);
6168 			task_vruntime_update(rq, next, false);
6169 			goto out_set_next;
6170 		}
6171 	}
6172 
6173 	/*
6174 	 * For each thread: do the regular task pick and find the max prio task
6175 	 * amongst them.
6176 	 *
6177 	 * Tie-break prio towards the current CPU
6178 	 */
6179 	for_each_cpu_wrap(i, smt_mask, cpu) {
6180 		rq_i = cpu_rq(i);
6181 
6182 		/*
6183 		 * Current cpu always has its clock updated on entrance to
6184 		 * pick_next_task(). If the current cpu is not the core,
6185 		 * the core may also have been updated above.
6186 		 */
6187 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6188 			update_rq_clock(rq_i);
6189 
6190 		p = rq_i->core_pick = pick_task(rq_i);
6191 		if (!max || prio_less(max, p, fi_before))
6192 			max = p;
6193 	}
6194 
6195 	cookie = rq->core->core_cookie = max->core_cookie;
6196 
6197 	/*
6198 	 * For each thread: try and find a runnable task that matches @max or
6199 	 * force idle.
6200 	 */
6201 	for_each_cpu(i, smt_mask) {
6202 		rq_i = cpu_rq(i);
6203 		p = rq_i->core_pick;
6204 
6205 		if (!cookie_equals(p, cookie)) {
6206 			p = NULL;
6207 			if (cookie)
6208 				p = sched_core_find(rq_i, cookie);
6209 			if (!p)
6210 				p = idle_sched_class.pick_task(rq_i);
6211 		}
6212 
6213 		rq_i->core_pick = p;
6214 
6215 		if (p == rq_i->idle) {
6216 			if (rq_i->nr_running) {
6217 				rq->core->core_forceidle_count++;
6218 				if (!fi_before)
6219 					rq->core->core_forceidle_seq++;
6220 			}
6221 		} else {
6222 			occ++;
6223 		}
6224 	}
6225 
6226 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6227 		rq->core->core_forceidle_start = rq_clock(rq->core);
6228 		rq->core->core_forceidle_occupation = occ;
6229 	}
6230 
6231 	rq->core->core_pick_seq = rq->core->core_task_seq;
6232 	next = rq->core_pick;
6233 	rq->core_sched_seq = rq->core->core_pick_seq;
6234 
6235 	/* Something should have been selected for current CPU */
6236 	WARN_ON_ONCE(!next);
6237 
6238 	/*
6239 	 * Reschedule siblings
6240 	 *
6241 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6242 	 * sending an IPI (below) ensures the sibling will no longer be running
6243 	 * their task. This ensures there is no inter-sibling overlap between
6244 	 * non-matching user state.
6245 	 */
6246 	for_each_cpu(i, smt_mask) {
6247 		rq_i = cpu_rq(i);
6248 
6249 		/*
6250 		 * An online sibling might have gone offline before a task
6251 		 * could be picked for it, or it might be offline but later
6252 		 * happen to come online, but its too late and nothing was
6253 		 * picked for it.  That's Ok - it will pick tasks for itself,
6254 		 * so ignore it.
6255 		 */
6256 		if (!rq_i->core_pick)
6257 			continue;
6258 
6259 		/*
6260 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6261 		 * fi_before     fi      update?
6262 		 *  0            0       1
6263 		 *  0            1       1
6264 		 *  1            0       1
6265 		 *  1            1       0
6266 		 */
6267 		if (!(fi_before && rq->core->core_forceidle_count))
6268 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6269 
6270 		rq_i->core_pick->core_occupation = occ;
6271 
6272 		if (i == cpu) {
6273 			rq_i->core_pick = NULL;
6274 			continue;
6275 		}
6276 
6277 		/* Did we break L1TF mitigation requirements? */
6278 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6279 
6280 		if (rq_i->curr == rq_i->core_pick) {
6281 			rq_i->core_pick = NULL;
6282 			continue;
6283 		}
6284 
6285 		resched_curr(rq_i);
6286 	}
6287 
6288 out_set_next:
6289 	set_next_task(rq, next);
6290 out:
6291 	if (rq->core->core_forceidle_count && next == rq->idle)
6292 		queue_core_balance(rq);
6293 
6294 	return next;
6295 }
6296 
6297 static bool try_steal_cookie(int this, int that)
6298 {
6299 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6300 	struct task_struct *p;
6301 	unsigned long cookie;
6302 	bool success = false;
6303 
6304 	guard(irq)();
6305 	guard(double_rq_lock)(dst, src);
6306 
6307 	cookie = dst->core->core_cookie;
6308 	if (!cookie)
6309 		return false;
6310 
6311 	if (dst->curr != dst->idle)
6312 		return false;
6313 
6314 	p = sched_core_find(src, cookie);
6315 	if (!p)
6316 		return false;
6317 
6318 	do {
6319 		if (p == src->core_pick || p == src->curr)
6320 			goto next;
6321 
6322 		if (!is_cpu_allowed(p, this))
6323 			goto next;
6324 
6325 		if (p->core_occupation > dst->idle->core_occupation)
6326 			goto next;
6327 		/*
6328 		 * sched_core_find() and sched_core_next() will ensure
6329 		 * that task @p is not throttled now, we also need to
6330 		 * check whether the runqueue of the destination CPU is
6331 		 * being throttled.
6332 		 */
6333 		if (sched_task_is_throttled(p, this))
6334 			goto next;
6335 
6336 		deactivate_task(src, p, 0);
6337 		set_task_cpu(p, this);
6338 		activate_task(dst, p, 0);
6339 
6340 		resched_curr(dst);
6341 
6342 		success = true;
6343 		break;
6344 
6345 next:
6346 		p = sched_core_next(p, cookie);
6347 	} while (p);
6348 
6349 	return success;
6350 }
6351 
6352 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6353 {
6354 	int i;
6355 
6356 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6357 		if (i == cpu)
6358 			continue;
6359 
6360 		if (need_resched())
6361 			break;
6362 
6363 		if (try_steal_cookie(cpu, i))
6364 			return true;
6365 	}
6366 
6367 	return false;
6368 }
6369 
6370 static void sched_core_balance(struct rq *rq)
6371 {
6372 	struct sched_domain *sd;
6373 	int cpu = cpu_of(rq);
6374 
6375 	preempt_disable();
6376 	rcu_read_lock();
6377 	raw_spin_rq_unlock_irq(rq);
6378 	for_each_domain(cpu, sd) {
6379 		if (need_resched())
6380 			break;
6381 
6382 		if (steal_cookie_task(cpu, sd))
6383 			break;
6384 	}
6385 	raw_spin_rq_lock_irq(rq);
6386 	rcu_read_unlock();
6387 	preempt_enable();
6388 }
6389 
6390 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6391 
6392 static void queue_core_balance(struct rq *rq)
6393 {
6394 	if (!sched_core_enabled(rq))
6395 		return;
6396 
6397 	if (!rq->core->core_cookie)
6398 		return;
6399 
6400 	if (!rq->nr_running) /* not forced idle */
6401 		return;
6402 
6403 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6404 }
6405 
6406 DEFINE_LOCK_GUARD_1(core_lock, int,
6407 		    sched_core_lock(*_T->lock, &_T->flags),
6408 		    sched_core_unlock(*_T->lock, &_T->flags),
6409 		    unsigned long flags)
6410 
6411 static void sched_core_cpu_starting(unsigned int cpu)
6412 {
6413 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6414 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6415 	int t;
6416 
6417 	guard(core_lock)(&cpu);
6418 
6419 	WARN_ON_ONCE(rq->core != rq);
6420 
6421 	/* if we're the first, we'll be our own leader */
6422 	if (cpumask_weight(smt_mask) == 1)
6423 		return;
6424 
6425 	/* find the leader */
6426 	for_each_cpu(t, smt_mask) {
6427 		if (t == cpu)
6428 			continue;
6429 		rq = cpu_rq(t);
6430 		if (rq->core == rq) {
6431 			core_rq = rq;
6432 			break;
6433 		}
6434 	}
6435 
6436 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6437 		return;
6438 
6439 	/* install and validate core_rq */
6440 	for_each_cpu(t, smt_mask) {
6441 		rq = cpu_rq(t);
6442 
6443 		if (t == cpu)
6444 			rq->core = core_rq;
6445 
6446 		WARN_ON_ONCE(rq->core != core_rq);
6447 	}
6448 }
6449 
6450 static void sched_core_cpu_deactivate(unsigned int cpu)
6451 {
6452 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6453 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6454 	int t;
6455 
6456 	guard(core_lock)(&cpu);
6457 
6458 	/* if we're the last man standing, nothing to do */
6459 	if (cpumask_weight(smt_mask) == 1) {
6460 		WARN_ON_ONCE(rq->core != rq);
6461 		return;
6462 	}
6463 
6464 	/* if we're not the leader, nothing to do */
6465 	if (rq->core != rq)
6466 		return;
6467 
6468 	/* find a new leader */
6469 	for_each_cpu(t, smt_mask) {
6470 		if (t == cpu)
6471 			continue;
6472 		core_rq = cpu_rq(t);
6473 		break;
6474 	}
6475 
6476 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6477 		return;
6478 
6479 	/* copy the shared state to the new leader */
6480 	core_rq->core_task_seq             = rq->core_task_seq;
6481 	core_rq->core_pick_seq             = rq->core_pick_seq;
6482 	core_rq->core_cookie               = rq->core_cookie;
6483 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6484 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6485 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6486 
6487 	/*
6488 	 * Accounting edge for forced idle is handled in pick_next_task().
6489 	 * Don't need another one here, since the hotplug thread shouldn't
6490 	 * have a cookie.
6491 	 */
6492 	core_rq->core_forceidle_start = 0;
6493 
6494 	/* install new leader */
6495 	for_each_cpu(t, smt_mask) {
6496 		rq = cpu_rq(t);
6497 		rq->core = core_rq;
6498 	}
6499 }
6500 
6501 static inline void sched_core_cpu_dying(unsigned int cpu)
6502 {
6503 	struct rq *rq = cpu_rq(cpu);
6504 
6505 	if (rq->core != rq)
6506 		rq->core = rq;
6507 }
6508 
6509 #else /* !CONFIG_SCHED_CORE */
6510 
6511 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6512 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6513 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6514 
6515 static struct task_struct *
6516 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6517 {
6518 	return __pick_next_task(rq, prev, rf);
6519 }
6520 
6521 #endif /* CONFIG_SCHED_CORE */
6522 
6523 /*
6524  * Constants for the sched_mode argument of __schedule().
6525  *
6526  * The mode argument allows RT enabled kernels to differentiate a
6527  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6528  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6529  * optimize the AND operation out and just check for zero.
6530  */
6531 #define SM_NONE			0x0
6532 #define SM_PREEMPT		0x1
6533 #define SM_RTLOCK_WAIT		0x2
6534 
6535 #ifndef CONFIG_PREEMPT_RT
6536 # define SM_MASK_PREEMPT	(~0U)
6537 #else
6538 # define SM_MASK_PREEMPT	SM_PREEMPT
6539 #endif
6540 
6541 /*
6542  * __schedule() is the main scheduler function.
6543  *
6544  * The main means of driving the scheduler and thus entering this function are:
6545  *
6546  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6547  *
6548  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6549  *      paths. For example, see arch/x86/entry_64.S.
6550  *
6551  *      To drive preemption between tasks, the scheduler sets the flag in timer
6552  *      interrupt handler scheduler_tick().
6553  *
6554  *   3. Wakeups don't really cause entry into schedule(). They add a
6555  *      task to the run-queue and that's it.
6556  *
6557  *      Now, if the new task added to the run-queue preempts the current
6558  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6559  *      called on the nearest possible occasion:
6560  *
6561  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6562  *
6563  *         - in syscall or exception context, at the next outmost
6564  *           preempt_enable(). (this might be as soon as the wake_up()'s
6565  *           spin_unlock()!)
6566  *
6567  *         - in IRQ context, return from interrupt-handler to
6568  *           preemptible context
6569  *
6570  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6571  *         then at the next:
6572  *
6573  *          - cond_resched() call
6574  *          - explicit schedule() call
6575  *          - return from syscall or exception to user-space
6576  *          - return from interrupt-handler to user-space
6577  *
6578  * WARNING: must be called with preemption disabled!
6579  */
6580 static void __sched notrace __schedule(unsigned int sched_mode)
6581 {
6582 	struct task_struct *prev, *next;
6583 	unsigned long *switch_count;
6584 	unsigned long prev_state;
6585 	struct rq_flags rf;
6586 	struct rq *rq;
6587 	int cpu;
6588 
6589 	cpu = smp_processor_id();
6590 	rq = cpu_rq(cpu);
6591 	prev = rq->curr;
6592 
6593 	schedule_debug(prev, !!sched_mode);
6594 
6595 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6596 		hrtick_clear(rq);
6597 
6598 	local_irq_disable();
6599 	rcu_note_context_switch(!!sched_mode);
6600 
6601 	/*
6602 	 * Make sure that signal_pending_state()->signal_pending() below
6603 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6604 	 * done by the caller to avoid the race with signal_wake_up():
6605 	 *
6606 	 * __set_current_state(@state)		signal_wake_up()
6607 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6608 	 *					  wake_up_state(p, state)
6609 	 *   LOCK rq->lock			    LOCK p->pi_state
6610 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6611 	 *     if (signal_pending_state())	    if (p->state & @state)
6612 	 *
6613 	 * Also, the membarrier system call requires a full memory barrier
6614 	 * after coming from user-space, before storing to rq->curr.
6615 	 */
6616 	rq_lock(rq, &rf);
6617 	smp_mb__after_spinlock();
6618 
6619 	/* Promote REQ to ACT */
6620 	rq->clock_update_flags <<= 1;
6621 	update_rq_clock(rq);
6622 
6623 	switch_count = &prev->nivcsw;
6624 
6625 	/*
6626 	 * We must load prev->state once (task_struct::state is volatile), such
6627 	 * that we form a control dependency vs deactivate_task() below.
6628 	 */
6629 	prev_state = READ_ONCE(prev->__state);
6630 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6631 		if (signal_pending_state(prev_state, prev)) {
6632 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6633 		} else {
6634 			prev->sched_contributes_to_load =
6635 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6636 				!(prev_state & TASK_NOLOAD) &&
6637 				!(prev_state & TASK_FROZEN);
6638 
6639 			if (prev->sched_contributes_to_load)
6640 				rq->nr_uninterruptible++;
6641 
6642 			/*
6643 			 * __schedule()			ttwu()
6644 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6645 			 *   if (prev_state)		    goto out;
6646 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6647 			 *				  p->state = TASK_WAKING
6648 			 *
6649 			 * Where __schedule() and ttwu() have matching control dependencies.
6650 			 *
6651 			 * After this, schedule() must not care about p->state any more.
6652 			 */
6653 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6654 
6655 			if (prev->in_iowait) {
6656 				atomic_inc(&rq->nr_iowait);
6657 				delayacct_blkio_start();
6658 			}
6659 		}
6660 		switch_count = &prev->nvcsw;
6661 	}
6662 
6663 	next = pick_next_task(rq, prev, &rf);
6664 	clear_tsk_need_resched(prev);
6665 	clear_preempt_need_resched();
6666 #ifdef CONFIG_SCHED_DEBUG
6667 	rq->last_seen_need_resched_ns = 0;
6668 #endif
6669 
6670 	if (likely(prev != next)) {
6671 		rq->nr_switches++;
6672 		/*
6673 		 * RCU users of rcu_dereference(rq->curr) may not see
6674 		 * changes to task_struct made by pick_next_task().
6675 		 */
6676 		RCU_INIT_POINTER(rq->curr, next);
6677 		/*
6678 		 * The membarrier system call requires each architecture
6679 		 * to have a full memory barrier after updating
6680 		 * rq->curr, before returning to user-space.
6681 		 *
6682 		 * Here are the schemes providing that barrier on the
6683 		 * various architectures:
6684 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6685 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6686 		 * - finish_lock_switch() for weakly-ordered
6687 		 *   architectures where spin_unlock is a full barrier,
6688 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6689 		 *   is a RELEASE barrier),
6690 		 */
6691 		++*switch_count;
6692 
6693 		migrate_disable_switch(rq, prev);
6694 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6695 
6696 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6697 
6698 		/* Also unlocks the rq: */
6699 		rq = context_switch(rq, prev, next, &rf);
6700 	} else {
6701 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6702 
6703 		rq_unpin_lock(rq, &rf);
6704 		__balance_callbacks(rq);
6705 		raw_spin_rq_unlock_irq(rq);
6706 	}
6707 }
6708 
6709 void __noreturn do_task_dead(void)
6710 {
6711 	/* Causes final put_task_struct in finish_task_switch(): */
6712 	set_special_state(TASK_DEAD);
6713 
6714 	/* Tell freezer to ignore us: */
6715 	current->flags |= PF_NOFREEZE;
6716 
6717 	__schedule(SM_NONE);
6718 	BUG();
6719 
6720 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6721 	for (;;)
6722 		cpu_relax();
6723 }
6724 
6725 static inline void sched_submit_work(struct task_struct *tsk)
6726 {
6727 	unsigned int task_flags;
6728 
6729 	if (task_is_running(tsk))
6730 		return;
6731 
6732 	task_flags = tsk->flags;
6733 	/*
6734 	 * If a worker goes to sleep, notify and ask workqueue whether it
6735 	 * wants to wake up a task to maintain concurrency.
6736 	 */
6737 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6738 		if (task_flags & PF_WQ_WORKER)
6739 			wq_worker_sleeping(tsk);
6740 		else
6741 			io_wq_worker_sleeping(tsk);
6742 	}
6743 
6744 	/*
6745 	 * spinlock and rwlock must not flush block requests.  This will
6746 	 * deadlock if the callback attempts to acquire a lock which is
6747 	 * already acquired.
6748 	 */
6749 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6750 
6751 	/*
6752 	 * If we are going to sleep and we have plugged IO queued,
6753 	 * make sure to submit it to avoid deadlocks.
6754 	 */
6755 	blk_flush_plug(tsk->plug, true);
6756 }
6757 
6758 static void sched_update_worker(struct task_struct *tsk)
6759 {
6760 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6761 		if (tsk->flags & PF_WQ_WORKER)
6762 			wq_worker_running(tsk);
6763 		else
6764 			io_wq_worker_running(tsk);
6765 	}
6766 }
6767 
6768 asmlinkage __visible void __sched schedule(void)
6769 {
6770 	struct task_struct *tsk = current;
6771 
6772 	sched_submit_work(tsk);
6773 	do {
6774 		preempt_disable();
6775 		__schedule(SM_NONE);
6776 		sched_preempt_enable_no_resched();
6777 	} while (need_resched());
6778 	sched_update_worker(tsk);
6779 }
6780 EXPORT_SYMBOL(schedule);
6781 
6782 /*
6783  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6784  * state (have scheduled out non-voluntarily) by making sure that all
6785  * tasks have either left the run queue or have gone into user space.
6786  * As idle tasks do not do either, they must not ever be preempted
6787  * (schedule out non-voluntarily).
6788  *
6789  * schedule_idle() is similar to schedule_preempt_disable() except that it
6790  * never enables preemption because it does not call sched_submit_work().
6791  */
6792 void __sched schedule_idle(void)
6793 {
6794 	/*
6795 	 * As this skips calling sched_submit_work(), which the idle task does
6796 	 * regardless because that function is a nop when the task is in a
6797 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6798 	 * current task can be in any other state. Note, idle is always in the
6799 	 * TASK_RUNNING state.
6800 	 */
6801 	WARN_ON_ONCE(current->__state);
6802 	do {
6803 		__schedule(SM_NONE);
6804 	} while (need_resched());
6805 }
6806 
6807 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6808 asmlinkage __visible void __sched schedule_user(void)
6809 {
6810 	/*
6811 	 * If we come here after a random call to set_need_resched(),
6812 	 * or we have been woken up remotely but the IPI has not yet arrived,
6813 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6814 	 * we find a better solution.
6815 	 *
6816 	 * NB: There are buggy callers of this function.  Ideally we
6817 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6818 	 * too frequently to make sense yet.
6819 	 */
6820 	enum ctx_state prev_state = exception_enter();
6821 	schedule();
6822 	exception_exit(prev_state);
6823 }
6824 #endif
6825 
6826 /**
6827  * schedule_preempt_disabled - called with preemption disabled
6828  *
6829  * Returns with preemption disabled. Note: preempt_count must be 1
6830  */
6831 void __sched schedule_preempt_disabled(void)
6832 {
6833 	sched_preempt_enable_no_resched();
6834 	schedule();
6835 	preempt_disable();
6836 }
6837 
6838 #ifdef CONFIG_PREEMPT_RT
6839 void __sched notrace schedule_rtlock(void)
6840 {
6841 	do {
6842 		preempt_disable();
6843 		__schedule(SM_RTLOCK_WAIT);
6844 		sched_preempt_enable_no_resched();
6845 	} while (need_resched());
6846 }
6847 NOKPROBE_SYMBOL(schedule_rtlock);
6848 #endif
6849 
6850 static void __sched notrace preempt_schedule_common(void)
6851 {
6852 	do {
6853 		/*
6854 		 * Because the function tracer can trace preempt_count_sub()
6855 		 * and it also uses preempt_enable/disable_notrace(), if
6856 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6857 		 * by the function tracer will call this function again and
6858 		 * cause infinite recursion.
6859 		 *
6860 		 * Preemption must be disabled here before the function
6861 		 * tracer can trace. Break up preempt_disable() into two
6862 		 * calls. One to disable preemption without fear of being
6863 		 * traced. The other to still record the preemption latency,
6864 		 * which can also be traced by the function tracer.
6865 		 */
6866 		preempt_disable_notrace();
6867 		preempt_latency_start(1);
6868 		__schedule(SM_PREEMPT);
6869 		preempt_latency_stop(1);
6870 		preempt_enable_no_resched_notrace();
6871 
6872 		/*
6873 		 * Check again in case we missed a preemption opportunity
6874 		 * between schedule and now.
6875 		 */
6876 	} while (need_resched());
6877 }
6878 
6879 #ifdef CONFIG_PREEMPTION
6880 /*
6881  * This is the entry point to schedule() from in-kernel preemption
6882  * off of preempt_enable.
6883  */
6884 asmlinkage __visible void __sched notrace preempt_schedule(void)
6885 {
6886 	/*
6887 	 * If there is a non-zero preempt_count or interrupts are disabled,
6888 	 * we do not want to preempt the current task. Just return..
6889 	 */
6890 	if (likely(!preemptible()))
6891 		return;
6892 	preempt_schedule_common();
6893 }
6894 NOKPROBE_SYMBOL(preempt_schedule);
6895 EXPORT_SYMBOL(preempt_schedule);
6896 
6897 #ifdef CONFIG_PREEMPT_DYNAMIC
6898 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6899 #ifndef preempt_schedule_dynamic_enabled
6900 #define preempt_schedule_dynamic_enabled	preempt_schedule
6901 #define preempt_schedule_dynamic_disabled	NULL
6902 #endif
6903 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6904 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6905 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6906 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6907 void __sched notrace dynamic_preempt_schedule(void)
6908 {
6909 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6910 		return;
6911 	preempt_schedule();
6912 }
6913 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6914 EXPORT_SYMBOL(dynamic_preempt_schedule);
6915 #endif
6916 #endif
6917 
6918 /**
6919  * preempt_schedule_notrace - preempt_schedule called by tracing
6920  *
6921  * The tracing infrastructure uses preempt_enable_notrace to prevent
6922  * recursion and tracing preempt enabling caused by the tracing
6923  * infrastructure itself. But as tracing can happen in areas coming
6924  * from userspace or just about to enter userspace, a preempt enable
6925  * can occur before user_exit() is called. This will cause the scheduler
6926  * to be called when the system is still in usermode.
6927  *
6928  * To prevent this, the preempt_enable_notrace will use this function
6929  * instead of preempt_schedule() to exit user context if needed before
6930  * calling the scheduler.
6931  */
6932 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6933 {
6934 	enum ctx_state prev_ctx;
6935 
6936 	if (likely(!preemptible()))
6937 		return;
6938 
6939 	do {
6940 		/*
6941 		 * Because the function tracer can trace preempt_count_sub()
6942 		 * and it also uses preempt_enable/disable_notrace(), if
6943 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6944 		 * by the function tracer will call this function again and
6945 		 * cause infinite recursion.
6946 		 *
6947 		 * Preemption must be disabled here before the function
6948 		 * tracer can trace. Break up preempt_disable() into two
6949 		 * calls. One to disable preemption without fear of being
6950 		 * traced. The other to still record the preemption latency,
6951 		 * which can also be traced by the function tracer.
6952 		 */
6953 		preempt_disable_notrace();
6954 		preempt_latency_start(1);
6955 		/*
6956 		 * Needs preempt disabled in case user_exit() is traced
6957 		 * and the tracer calls preempt_enable_notrace() causing
6958 		 * an infinite recursion.
6959 		 */
6960 		prev_ctx = exception_enter();
6961 		__schedule(SM_PREEMPT);
6962 		exception_exit(prev_ctx);
6963 
6964 		preempt_latency_stop(1);
6965 		preempt_enable_no_resched_notrace();
6966 	} while (need_resched());
6967 }
6968 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6969 
6970 #ifdef CONFIG_PREEMPT_DYNAMIC
6971 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6972 #ifndef preempt_schedule_notrace_dynamic_enabled
6973 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6974 #define preempt_schedule_notrace_dynamic_disabled	NULL
6975 #endif
6976 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6977 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6978 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6979 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6980 void __sched notrace dynamic_preempt_schedule_notrace(void)
6981 {
6982 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6983 		return;
6984 	preempt_schedule_notrace();
6985 }
6986 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6987 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6988 #endif
6989 #endif
6990 
6991 #endif /* CONFIG_PREEMPTION */
6992 
6993 /*
6994  * This is the entry point to schedule() from kernel preemption
6995  * off of irq context.
6996  * Note, that this is called and return with irqs disabled. This will
6997  * protect us against recursive calling from irq.
6998  */
6999 asmlinkage __visible void __sched preempt_schedule_irq(void)
7000 {
7001 	enum ctx_state prev_state;
7002 
7003 	/* Catch callers which need to be fixed */
7004 	BUG_ON(preempt_count() || !irqs_disabled());
7005 
7006 	prev_state = exception_enter();
7007 
7008 	do {
7009 		preempt_disable();
7010 		local_irq_enable();
7011 		__schedule(SM_PREEMPT);
7012 		local_irq_disable();
7013 		sched_preempt_enable_no_resched();
7014 	} while (need_resched());
7015 
7016 	exception_exit(prev_state);
7017 }
7018 
7019 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7020 			  void *key)
7021 {
7022 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7023 	return try_to_wake_up(curr->private, mode, wake_flags);
7024 }
7025 EXPORT_SYMBOL(default_wake_function);
7026 
7027 static void __setscheduler_prio(struct task_struct *p, int prio)
7028 {
7029 	if (dl_prio(prio))
7030 		p->sched_class = &dl_sched_class;
7031 	else if (rt_prio(prio))
7032 		p->sched_class = &rt_sched_class;
7033 	else
7034 		p->sched_class = &fair_sched_class;
7035 
7036 	p->prio = prio;
7037 }
7038 
7039 #ifdef CONFIG_RT_MUTEXES
7040 
7041 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7042 {
7043 	if (pi_task)
7044 		prio = min(prio, pi_task->prio);
7045 
7046 	return prio;
7047 }
7048 
7049 static inline int rt_effective_prio(struct task_struct *p, int prio)
7050 {
7051 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7052 
7053 	return __rt_effective_prio(pi_task, prio);
7054 }
7055 
7056 /*
7057  * rt_mutex_setprio - set the current priority of a task
7058  * @p: task to boost
7059  * @pi_task: donor task
7060  *
7061  * This function changes the 'effective' priority of a task. It does
7062  * not touch ->normal_prio like __setscheduler().
7063  *
7064  * Used by the rt_mutex code to implement priority inheritance
7065  * logic. Call site only calls if the priority of the task changed.
7066  */
7067 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7068 {
7069 	int prio, oldprio, queued, running, queue_flag =
7070 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7071 	const struct sched_class *prev_class;
7072 	struct rq_flags rf;
7073 	struct rq *rq;
7074 
7075 	/* XXX used to be waiter->prio, not waiter->task->prio */
7076 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7077 
7078 	/*
7079 	 * If nothing changed; bail early.
7080 	 */
7081 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7082 		return;
7083 
7084 	rq = __task_rq_lock(p, &rf);
7085 	update_rq_clock(rq);
7086 	/*
7087 	 * Set under pi_lock && rq->lock, such that the value can be used under
7088 	 * either lock.
7089 	 *
7090 	 * Note that there is loads of tricky to make this pointer cache work
7091 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7092 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7093 	 * task is allowed to run again (and can exit). This ensures the pointer
7094 	 * points to a blocked task -- which guarantees the task is present.
7095 	 */
7096 	p->pi_top_task = pi_task;
7097 
7098 	/*
7099 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7100 	 */
7101 	if (prio == p->prio && !dl_prio(prio))
7102 		goto out_unlock;
7103 
7104 	/*
7105 	 * Idle task boosting is a nono in general. There is one
7106 	 * exception, when PREEMPT_RT and NOHZ is active:
7107 	 *
7108 	 * The idle task calls get_next_timer_interrupt() and holds
7109 	 * the timer wheel base->lock on the CPU and another CPU wants
7110 	 * to access the timer (probably to cancel it). We can safely
7111 	 * ignore the boosting request, as the idle CPU runs this code
7112 	 * with interrupts disabled and will complete the lock
7113 	 * protected section without being interrupted. So there is no
7114 	 * real need to boost.
7115 	 */
7116 	if (unlikely(p == rq->idle)) {
7117 		WARN_ON(p != rq->curr);
7118 		WARN_ON(p->pi_blocked_on);
7119 		goto out_unlock;
7120 	}
7121 
7122 	trace_sched_pi_setprio(p, pi_task);
7123 	oldprio = p->prio;
7124 
7125 	if (oldprio == prio)
7126 		queue_flag &= ~DEQUEUE_MOVE;
7127 
7128 	prev_class = p->sched_class;
7129 	queued = task_on_rq_queued(p);
7130 	running = task_current(rq, p);
7131 	if (queued)
7132 		dequeue_task(rq, p, queue_flag);
7133 	if (running)
7134 		put_prev_task(rq, p);
7135 
7136 	/*
7137 	 * Boosting condition are:
7138 	 * 1. -rt task is running and holds mutex A
7139 	 *      --> -dl task blocks on mutex A
7140 	 *
7141 	 * 2. -dl task is running and holds mutex A
7142 	 *      --> -dl task blocks on mutex A and could preempt the
7143 	 *          running task
7144 	 */
7145 	if (dl_prio(prio)) {
7146 		if (!dl_prio(p->normal_prio) ||
7147 		    (pi_task && dl_prio(pi_task->prio) &&
7148 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7149 			p->dl.pi_se = pi_task->dl.pi_se;
7150 			queue_flag |= ENQUEUE_REPLENISH;
7151 		} else {
7152 			p->dl.pi_se = &p->dl;
7153 		}
7154 	} else if (rt_prio(prio)) {
7155 		if (dl_prio(oldprio))
7156 			p->dl.pi_se = &p->dl;
7157 		if (oldprio < prio)
7158 			queue_flag |= ENQUEUE_HEAD;
7159 	} else {
7160 		if (dl_prio(oldprio))
7161 			p->dl.pi_se = &p->dl;
7162 		if (rt_prio(oldprio))
7163 			p->rt.timeout = 0;
7164 	}
7165 
7166 	__setscheduler_prio(p, prio);
7167 
7168 	if (queued)
7169 		enqueue_task(rq, p, queue_flag);
7170 	if (running)
7171 		set_next_task(rq, p);
7172 
7173 	check_class_changed(rq, p, prev_class, oldprio);
7174 out_unlock:
7175 	/* Avoid rq from going away on us: */
7176 	preempt_disable();
7177 
7178 	rq_unpin_lock(rq, &rf);
7179 	__balance_callbacks(rq);
7180 	raw_spin_rq_unlock(rq);
7181 
7182 	preempt_enable();
7183 }
7184 #else
7185 static inline int rt_effective_prio(struct task_struct *p, int prio)
7186 {
7187 	return prio;
7188 }
7189 #endif
7190 
7191 void set_user_nice(struct task_struct *p, long nice)
7192 {
7193 	bool queued, running;
7194 	int old_prio;
7195 	struct rq_flags rf;
7196 	struct rq *rq;
7197 
7198 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7199 		return;
7200 	/*
7201 	 * We have to be careful, if called from sys_setpriority(),
7202 	 * the task might be in the middle of scheduling on another CPU.
7203 	 */
7204 	rq = task_rq_lock(p, &rf);
7205 	update_rq_clock(rq);
7206 
7207 	/*
7208 	 * The RT priorities are set via sched_setscheduler(), but we still
7209 	 * allow the 'normal' nice value to be set - but as expected
7210 	 * it won't have any effect on scheduling until the task is
7211 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7212 	 */
7213 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7214 		p->static_prio = NICE_TO_PRIO(nice);
7215 		goto out_unlock;
7216 	}
7217 	queued = task_on_rq_queued(p);
7218 	running = task_current(rq, p);
7219 	if (queued)
7220 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7221 	if (running)
7222 		put_prev_task(rq, p);
7223 
7224 	p->static_prio = NICE_TO_PRIO(nice);
7225 	set_load_weight(p, true);
7226 	old_prio = p->prio;
7227 	p->prio = effective_prio(p);
7228 
7229 	if (queued)
7230 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7231 	if (running)
7232 		set_next_task(rq, p);
7233 
7234 	/*
7235 	 * If the task increased its priority or is running and
7236 	 * lowered its priority, then reschedule its CPU:
7237 	 */
7238 	p->sched_class->prio_changed(rq, p, old_prio);
7239 
7240 out_unlock:
7241 	task_rq_unlock(rq, p, &rf);
7242 }
7243 EXPORT_SYMBOL(set_user_nice);
7244 
7245 /*
7246  * is_nice_reduction - check if nice value is an actual reduction
7247  *
7248  * Similar to can_nice() but does not perform a capability check.
7249  *
7250  * @p: task
7251  * @nice: nice value
7252  */
7253 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7254 {
7255 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7256 	int nice_rlim = nice_to_rlimit(nice);
7257 
7258 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7259 }
7260 
7261 /*
7262  * can_nice - check if a task can reduce its nice value
7263  * @p: task
7264  * @nice: nice value
7265  */
7266 int can_nice(const struct task_struct *p, const int nice)
7267 {
7268 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7269 }
7270 
7271 #ifdef __ARCH_WANT_SYS_NICE
7272 
7273 /*
7274  * sys_nice - change the priority of the current process.
7275  * @increment: priority increment
7276  *
7277  * sys_setpriority is a more generic, but much slower function that
7278  * does similar things.
7279  */
7280 SYSCALL_DEFINE1(nice, int, increment)
7281 {
7282 	long nice, retval;
7283 
7284 	/*
7285 	 * Setpriority might change our priority at the same moment.
7286 	 * We don't have to worry. Conceptually one call occurs first
7287 	 * and we have a single winner.
7288 	 */
7289 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7290 	nice = task_nice(current) + increment;
7291 
7292 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7293 	if (increment < 0 && !can_nice(current, nice))
7294 		return -EPERM;
7295 
7296 	retval = security_task_setnice(current, nice);
7297 	if (retval)
7298 		return retval;
7299 
7300 	set_user_nice(current, nice);
7301 	return 0;
7302 }
7303 
7304 #endif
7305 
7306 /**
7307  * task_prio - return the priority value of a given task.
7308  * @p: the task in question.
7309  *
7310  * Return: The priority value as seen by users in /proc.
7311  *
7312  * sched policy         return value   kernel prio    user prio/nice
7313  *
7314  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7315  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7316  * deadline                     -101             -1           0
7317  */
7318 int task_prio(const struct task_struct *p)
7319 {
7320 	return p->prio - MAX_RT_PRIO;
7321 }
7322 
7323 /**
7324  * idle_cpu - is a given CPU idle currently?
7325  * @cpu: the processor in question.
7326  *
7327  * Return: 1 if the CPU is currently idle. 0 otherwise.
7328  */
7329 int idle_cpu(int cpu)
7330 {
7331 	struct rq *rq = cpu_rq(cpu);
7332 
7333 	if (rq->curr != rq->idle)
7334 		return 0;
7335 
7336 	if (rq->nr_running)
7337 		return 0;
7338 
7339 #ifdef CONFIG_SMP
7340 	if (rq->ttwu_pending)
7341 		return 0;
7342 #endif
7343 
7344 	return 1;
7345 }
7346 
7347 /**
7348  * available_idle_cpu - is a given CPU idle for enqueuing work.
7349  * @cpu: the CPU in question.
7350  *
7351  * Return: 1 if the CPU is currently idle. 0 otherwise.
7352  */
7353 int available_idle_cpu(int cpu)
7354 {
7355 	if (!idle_cpu(cpu))
7356 		return 0;
7357 
7358 	if (vcpu_is_preempted(cpu))
7359 		return 0;
7360 
7361 	return 1;
7362 }
7363 
7364 /**
7365  * idle_task - return the idle task for a given CPU.
7366  * @cpu: the processor in question.
7367  *
7368  * Return: The idle task for the CPU @cpu.
7369  */
7370 struct task_struct *idle_task(int cpu)
7371 {
7372 	return cpu_rq(cpu)->idle;
7373 }
7374 
7375 #ifdef CONFIG_SCHED_CORE
7376 int sched_core_idle_cpu(int cpu)
7377 {
7378 	struct rq *rq = cpu_rq(cpu);
7379 
7380 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7381 		return 1;
7382 
7383 	return idle_cpu(cpu);
7384 }
7385 
7386 #endif
7387 
7388 #ifdef CONFIG_SMP
7389 /*
7390  * This function computes an effective utilization for the given CPU, to be
7391  * used for frequency selection given the linear relation: f = u * f_max.
7392  *
7393  * The scheduler tracks the following metrics:
7394  *
7395  *   cpu_util_{cfs,rt,dl,irq}()
7396  *   cpu_bw_dl()
7397  *
7398  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7399  * synchronized windows and are thus directly comparable.
7400  *
7401  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7402  * which excludes things like IRQ and steal-time. These latter are then accrued
7403  * in the irq utilization.
7404  *
7405  * The DL bandwidth number otoh is not a measured metric but a value computed
7406  * based on the task model parameters and gives the minimal utilization
7407  * required to meet deadlines.
7408  */
7409 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7410 				 enum cpu_util_type type,
7411 				 struct task_struct *p)
7412 {
7413 	unsigned long dl_util, util, irq, max;
7414 	struct rq *rq = cpu_rq(cpu);
7415 
7416 	max = arch_scale_cpu_capacity(cpu);
7417 
7418 	if (!uclamp_is_used() &&
7419 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7420 		return max;
7421 	}
7422 
7423 	/*
7424 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7425 	 * because of inaccuracies in how we track these -- see
7426 	 * update_irq_load_avg().
7427 	 */
7428 	irq = cpu_util_irq(rq);
7429 	if (unlikely(irq >= max))
7430 		return max;
7431 
7432 	/*
7433 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7434 	 * CFS tasks and we use the same metric to track the effective
7435 	 * utilization (PELT windows are synchronized) we can directly add them
7436 	 * to obtain the CPU's actual utilization.
7437 	 *
7438 	 * CFS and RT utilization can be boosted or capped, depending on
7439 	 * utilization clamp constraints requested by currently RUNNABLE
7440 	 * tasks.
7441 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7442 	 * frequency will be gracefully reduced with the utilization decay.
7443 	 */
7444 	util = util_cfs + cpu_util_rt(rq);
7445 	if (type == FREQUENCY_UTIL)
7446 		util = uclamp_rq_util_with(rq, util, p);
7447 
7448 	dl_util = cpu_util_dl(rq);
7449 
7450 	/*
7451 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7452 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7453 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7454 	 * that we select f_max when there is no idle time.
7455 	 *
7456 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7457 	 * saturation when we should -- something for later.
7458 	 */
7459 	if (util + dl_util >= max)
7460 		return max;
7461 
7462 	/*
7463 	 * OTOH, for energy computation we need the estimated running time, so
7464 	 * include util_dl and ignore dl_bw.
7465 	 */
7466 	if (type == ENERGY_UTIL)
7467 		util += dl_util;
7468 
7469 	/*
7470 	 * There is still idle time; further improve the number by using the
7471 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7472 	 * need to scale the task numbers:
7473 	 *
7474 	 *              max - irq
7475 	 *   U' = irq + --------- * U
7476 	 *                 max
7477 	 */
7478 	util = scale_irq_capacity(util, irq, max);
7479 	util += irq;
7480 
7481 	/*
7482 	 * Bandwidth required by DEADLINE must always be granted while, for
7483 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7484 	 * to gracefully reduce the frequency when no tasks show up for longer
7485 	 * periods of time.
7486 	 *
7487 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7488 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7489 	 * an interface. So, we only do the latter for now.
7490 	 */
7491 	if (type == FREQUENCY_UTIL)
7492 		util += cpu_bw_dl(rq);
7493 
7494 	return min(max, util);
7495 }
7496 
7497 unsigned long sched_cpu_util(int cpu)
7498 {
7499 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7500 }
7501 #endif /* CONFIG_SMP */
7502 
7503 /**
7504  * find_process_by_pid - find a process with a matching PID value.
7505  * @pid: the pid in question.
7506  *
7507  * The task of @pid, if found. %NULL otherwise.
7508  */
7509 static struct task_struct *find_process_by_pid(pid_t pid)
7510 {
7511 	return pid ? find_task_by_vpid(pid) : current;
7512 }
7513 
7514 /*
7515  * sched_setparam() passes in -1 for its policy, to let the functions
7516  * it calls know not to change it.
7517  */
7518 #define SETPARAM_POLICY	-1
7519 
7520 static void __setscheduler_params(struct task_struct *p,
7521 		const struct sched_attr *attr)
7522 {
7523 	int policy = attr->sched_policy;
7524 
7525 	if (policy == SETPARAM_POLICY)
7526 		policy = p->policy;
7527 
7528 	p->policy = policy;
7529 
7530 	if (dl_policy(policy))
7531 		__setparam_dl(p, attr);
7532 	else if (fair_policy(policy))
7533 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7534 
7535 	/*
7536 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7537 	 * !rt_policy. Always setting this ensures that things like
7538 	 * getparam()/getattr() don't report silly values for !rt tasks.
7539 	 */
7540 	p->rt_priority = attr->sched_priority;
7541 	p->normal_prio = normal_prio(p);
7542 	set_load_weight(p, true);
7543 }
7544 
7545 /*
7546  * Check the target process has a UID that matches the current process's:
7547  */
7548 static bool check_same_owner(struct task_struct *p)
7549 {
7550 	const struct cred *cred = current_cred(), *pcred;
7551 	bool match;
7552 
7553 	rcu_read_lock();
7554 	pcred = __task_cred(p);
7555 	match = (uid_eq(cred->euid, pcred->euid) ||
7556 		 uid_eq(cred->euid, pcred->uid));
7557 	rcu_read_unlock();
7558 	return match;
7559 }
7560 
7561 /*
7562  * Allow unprivileged RT tasks to decrease priority.
7563  * Only issue a capable test if needed and only once to avoid an audit
7564  * event on permitted non-privileged operations:
7565  */
7566 static int user_check_sched_setscheduler(struct task_struct *p,
7567 					 const struct sched_attr *attr,
7568 					 int policy, int reset_on_fork)
7569 {
7570 	if (fair_policy(policy)) {
7571 		if (attr->sched_nice < task_nice(p) &&
7572 		    !is_nice_reduction(p, attr->sched_nice))
7573 			goto req_priv;
7574 	}
7575 
7576 	if (rt_policy(policy)) {
7577 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7578 
7579 		/* Can't set/change the rt policy: */
7580 		if (policy != p->policy && !rlim_rtprio)
7581 			goto req_priv;
7582 
7583 		/* Can't increase priority: */
7584 		if (attr->sched_priority > p->rt_priority &&
7585 		    attr->sched_priority > rlim_rtprio)
7586 			goto req_priv;
7587 	}
7588 
7589 	/*
7590 	 * Can't set/change SCHED_DEADLINE policy at all for now
7591 	 * (safest behavior); in the future we would like to allow
7592 	 * unprivileged DL tasks to increase their relative deadline
7593 	 * or reduce their runtime (both ways reducing utilization)
7594 	 */
7595 	if (dl_policy(policy))
7596 		goto req_priv;
7597 
7598 	/*
7599 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7600 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7601 	 */
7602 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7603 		if (!is_nice_reduction(p, task_nice(p)))
7604 			goto req_priv;
7605 	}
7606 
7607 	/* Can't change other user's priorities: */
7608 	if (!check_same_owner(p))
7609 		goto req_priv;
7610 
7611 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7612 	if (p->sched_reset_on_fork && !reset_on_fork)
7613 		goto req_priv;
7614 
7615 	return 0;
7616 
7617 req_priv:
7618 	if (!capable(CAP_SYS_NICE))
7619 		return -EPERM;
7620 
7621 	return 0;
7622 }
7623 
7624 static int __sched_setscheduler(struct task_struct *p,
7625 				const struct sched_attr *attr,
7626 				bool user, bool pi)
7627 {
7628 	int oldpolicy = -1, policy = attr->sched_policy;
7629 	int retval, oldprio, newprio, queued, running;
7630 	const struct sched_class *prev_class;
7631 	struct balance_callback *head;
7632 	struct rq_flags rf;
7633 	int reset_on_fork;
7634 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7635 	struct rq *rq;
7636 	bool cpuset_locked = false;
7637 
7638 	/* The pi code expects interrupts enabled */
7639 	BUG_ON(pi && in_interrupt());
7640 recheck:
7641 	/* Double check policy once rq lock held: */
7642 	if (policy < 0) {
7643 		reset_on_fork = p->sched_reset_on_fork;
7644 		policy = oldpolicy = p->policy;
7645 	} else {
7646 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7647 
7648 		if (!valid_policy(policy))
7649 			return -EINVAL;
7650 	}
7651 
7652 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7653 		return -EINVAL;
7654 
7655 	/*
7656 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7657 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7658 	 * SCHED_BATCH and SCHED_IDLE is 0.
7659 	 */
7660 	if (attr->sched_priority > MAX_RT_PRIO-1)
7661 		return -EINVAL;
7662 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7663 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7664 		return -EINVAL;
7665 
7666 	if (user) {
7667 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7668 		if (retval)
7669 			return retval;
7670 
7671 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7672 			return -EINVAL;
7673 
7674 		retval = security_task_setscheduler(p);
7675 		if (retval)
7676 			return retval;
7677 	}
7678 
7679 	/* Update task specific "requested" clamps */
7680 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7681 		retval = uclamp_validate(p, attr);
7682 		if (retval)
7683 			return retval;
7684 	}
7685 
7686 	/*
7687 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7688 	 * information.
7689 	 */
7690 	if (dl_policy(policy) || dl_policy(p->policy)) {
7691 		cpuset_locked = true;
7692 		cpuset_lock();
7693 	}
7694 
7695 	/*
7696 	 * Make sure no PI-waiters arrive (or leave) while we are
7697 	 * changing the priority of the task:
7698 	 *
7699 	 * To be able to change p->policy safely, the appropriate
7700 	 * runqueue lock must be held.
7701 	 */
7702 	rq = task_rq_lock(p, &rf);
7703 	update_rq_clock(rq);
7704 
7705 	/*
7706 	 * Changing the policy of the stop threads its a very bad idea:
7707 	 */
7708 	if (p == rq->stop) {
7709 		retval = -EINVAL;
7710 		goto unlock;
7711 	}
7712 
7713 	/*
7714 	 * If not changing anything there's no need to proceed further,
7715 	 * but store a possible modification of reset_on_fork.
7716 	 */
7717 	if (unlikely(policy == p->policy)) {
7718 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7719 			goto change;
7720 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7721 			goto change;
7722 		if (dl_policy(policy) && dl_param_changed(p, attr))
7723 			goto change;
7724 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7725 			goto change;
7726 
7727 		p->sched_reset_on_fork = reset_on_fork;
7728 		retval = 0;
7729 		goto unlock;
7730 	}
7731 change:
7732 
7733 	if (user) {
7734 #ifdef CONFIG_RT_GROUP_SCHED
7735 		/*
7736 		 * Do not allow realtime tasks into groups that have no runtime
7737 		 * assigned.
7738 		 */
7739 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7740 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7741 				!task_group_is_autogroup(task_group(p))) {
7742 			retval = -EPERM;
7743 			goto unlock;
7744 		}
7745 #endif
7746 #ifdef CONFIG_SMP
7747 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7748 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7749 			cpumask_t *span = rq->rd->span;
7750 
7751 			/*
7752 			 * Don't allow tasks with an affinity mask smaller than
7753 			 * the entire root_domain to become SCHED_DEADLINE. We
7754 			 * will also fail if there's no bandwidth available.
7755 			 */
7756 			if (!cpumask_subset(span, p->cpus_ptr) ||
7757 			    rq->rd->dl_bw.bw == 0) {
7758 				retval = -EPERM;
7759 				goto unlock;
7760 			}
7761 		}
7762 #endif
7763 	}
7764 
7765 	/* Re-check policy now with rq lock held: */
7766 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7767 		policy = oldpolicy = -1;
7768 		task_rq_unlock(rq, p, &rf);
7769 		if (cpuset_locked)
7770 			cpuset_unlock();
7771 		goto recheck;
7772 	}
7773 
7774 	/*
7775 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7776 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7777 	 * is available.
7778 	 */
7779 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7780 		retval = -EBUSY;
7781 		goto unlock;
7782 	}
7783 
7784 	p->sched_reset_on_fork = reset_on_fork;
7785 	oldprio = p->prio;
7786 
7787 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7788 	if (pi) {
7789 		/*
7790 		 * Take priority boosted tasks into account. If the new
7791 		 * effective priority is unchanged, we just store the new
7792 		 * normal parameters and do not touch the scheduler class and
7793 		 * the runqueue. This will be done when the task deboost
7794 		 * itself.
7795 		 */
7796 		newprio = rt_effective_prio(p, newprio);
7797 		if (newprio == oldprio)
7798 			queue_flags &= ~DEQUEUE_MOVE;
7799 	}
7800 
7801 	queued = task_on_rq_queued(p);
7802 	running = task_current(rq, p);
7803 	if (queued)
7804 		dequeue_task(rq, p, queue_flags);
7805 	if (running)
7806 		put_prev_task(rq, p);
7807 
7808 	prev_class = p->sched_class;
7809 
7810 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7811 		__setscheduler_params(p, attr);
7812 		__setscheduler_prio(p, newprio);
7813 	}
7814 	__setscheduler_uclamp(p, attr);
7815 
7816 	if (queued) {
7817 		/*
7818 		 * We enqueue to tail when the priority of a task is
7819 		 * increased (user space view).
7820 		 */
7821 		if (oldprio < p->prio)
7822 			queue_flags |= ENQUEUE_HEAD;
7823 
7824 		enqueue_task(rq, p, queue_flags);
7825 	}
7826 	if (running)
7827 		set_next_task(rq, p);
7828 
7829 	check_class_changed(rq, p, prev_class, oldprio);
7830 
7831 	/* Avoid rq from going away on us: */
7832 	preempt_disable();
7833 	head = splice_balance_callbacks(rq);
7834 	task_rq_unlock(rq, p, &rf);
7835 
7836 	if (pi) {
7837 		if (cpuset_locked)
7838 			cpuset_unlock();
7839 		rt_mutex_adjust_pi(p);
7840 	}
7841 
7842 	/* Run balance callbacks after we've adjusted the PI chain: */
7843 	balance_callbacks(rq, head);
7844 	preempt_enable();
7845 
7846 	return 0;
7847 
7848 unlock:
7849 	task_rq_unlock(rq, p, &rf);
7850 	if (cpuset_locked)
7851 		cpuset_unlock();
7852 	return retval;
7853 }
7854 
7855 static int _sched_setscheduler(struct task_struct *p, int policy,
7856 			       const struct sched_param *param, bool check)
7857 {
7858 	struct sched_attr attr = {
7859 		.sched_policy   = policy,
7860 		.sched_priority = param->sched_priority,
7861 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7862 	};
7863 
7864 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7865 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7866 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7867 		policy &= ~SCHED_RESET_ON_FORK;
7868 		attr.sched_policy = policy;
7869 	}
7870 
7871 	return __sched_setscheduler(p, &attr, check, true);
7872 }
7873 /**
7874  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7875  * @p: the task in question.
7876  * @policy: new policy.
7877  * @param: structure containing the new RT priority.
7878  *
7879  * Use sched_set_fifo(), read its comment.
7880  *
7881  * Return: 0 on success. An error code otherwise.
7882  *
7883  * NOTE that the task may be already dead.
7884  */
7885 int sched_setscheduler(struct task_struct *p, int policy,
7886 		       const struct sched_param *param)
7887 {
7888 	return _sched_setscheduler(p, policy, param, true);
7889 }
7890 
7891 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7892 {
7893 	return __sched_setscheduler(p, attr, true, true);
7894 }
7895 
7896 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7897 {
7898 	return __sched_setscheduler(p, attr, false, true);
7899 }
7900 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7901 
7902 /**
7903  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7904  * @p: the task in question.
7905  * @policy: new policy.
7906  * @param: structure containing the new RT priority.
7907  *
7908  * Just like sched_setscheduler, only don't bother checking if the
7909  * current context has permission.  For example, this is needed in
7910  * stop_machine(): we create temporary high priority worker threads,
7911  * but our caller might not have that capability.
7912  *
7913  * Return: 0 on success. An error code otherwise.
7914  */
7915 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7916 			       const struct sched_param *param)
7917 {
7918 	return _sched_setscheduler(p, policy, param, false);
7919 }
7920 
7921 /*
7922  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7923  * incapable of resource management, which is the one thing an OS really should
7924  * be doing.
7925  *
7926  * This is of course the reason it is limited to privileged users only.
7927  *
7928  * Worse still; it is fundamentally impossible to compose static priority
7929  * workloads. You cannot take two correctly working static prio workloads
7930  * and smash them together and still expect them to work.
7931  *
7932  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7933  *
7934  *   MAX_RT_PRIO / 2
7935  *
7936  * The administrator _MUST_ configure the system, the kernel simply doesn't
7937  * know enough information to make a sensible choice.
7938  */
7939 void sched_set_fifo(struct task_struct *p)
7940 {
7941 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7942 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7943 }
7944 EXPORT_SYMBOL_GPL(sched_set_fifo);
7945 
7946 /*
7947  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7948  */
7949 void sched_set_fifo_low(struct task_struct *p)
7950 {
7951 	struct sched_param sp = { .sched_priority = 1 };
7952 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7953 }
7954 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7955 
7956 void sched_set_normal(struct task_struct *p, int nice)
7957 {
7958 	struct sched_attr attr = {
7959 		.sched_policy = SCHED_NORMAL,
7960 		.sched_nice = nice,
7961 	};
7962 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7963 }
7964 EXPORT_SYMBOL_GPL(sched_set_normal);
7965 
7966 static int
7967 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7968 {
7969 	struct sched_param lparam;
7970 	struct task_struct *p;
7971 	int retval;
7972 
7973 	if (!param || pid < 0)
7974 		return -EINVAL;
7975 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7976 		return -EFAULT;
7977 
7978 	rcu_read_lock();
7979 	retval = -ESRCH;
7980 	p = find_process_by_pid(pid);
7981 	if (likely(p))
7982 		get_task_struct(p);
7983 	rcu_read_unlock();
7984 
7985 	if (likely(p)) {
7986 		retval = sched_setscheduler(p, policy, &lparam);
7987 		put_task_struct(p);
7988 	}
7989 
7990 	return retval;
7991 }
7992 
7993 /*
7994  * Mimics kernel/events/core.c perf_copy_attr().
7995  */
7996 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7997 {
7998 	u32 size;
7999 	int ret;
8000 
8001 	/* Zero the full structure, so that a short copy will be nice: */
8002 	memset(attr, 0, sizeof(*attr));
8003 
8004 	ret = get_user(size, &uattr->size);
8005 	if (ret)
8006 		return ret;
8007 
8008 	/* ABI compatibility quirk: */
8009 	if (!size)
8010 		size = SCHED_ATTR_SIZE_VER0;
8011 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8012 		goto err_size;
8013 
8014 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8015 	if (ret) {
8016 		if (ret == -E2BIG)
8017 			goto err_size;
8018 		return ret;
8019 	}
8020 
8021 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8022 	    size < SCHED_ATTR_SIZE_VER1)
8023 		return -EINVAL;
8024 
8025 	/*
8026 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8027 	 * to be strict and return an error on out-of-bounds values?
8028 	 */
8029 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8030 
8031 	return 0;
8032 
8033 err_size:
8034 	put_user(sizeof(*attr), &uattr->size);
8035 	return -E2BIG;
8036 }
8037 
8038 static void get_params(struct task_struct *p, struct sched_attr *attr)
8039 {
8040 	if (task_has_dl_policy(p))
8041 		__getparam_dl(p, attr);
8042 	else if (task_has_rt_policy(p))
8043 		attr->sched_priority = p->rt_priority;
8044 	else
8045 		attr->sched_nice = task_nice(p);
8046 }
8047 
8048 /**
8049  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8050  * @pid: the pid in question.
8051  * @policy: new policy.
8052  * @param: structure containing the new RT priority.
8053  *
8054  * Return: 0 on success. An error code otherwise.
8055  */
8056 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8057 {
8058 	if (policy < 0)
8059 		return -EINVAL;
8060 
8061 	return do_sched_setscheduler(pid, policy, param);
8062 }
8063 
8064 /**
8065  * sys_sched_setparam - set/change the RT priority of a thread
8066  * @pid: the pid in question.
8067  * @param: structure containing the new RT priority.
8068  *
8069  * Return: 0 on success. An error code otherwise.
8070  */
8071 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8072 {
8073 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8074 }
8075 
8076 /**
8077  * sys_sched_setattr - same as above, but with extended sched_attr
8078  * @pid: the pid in question.
8079  * @uattr: structure containing the extended parameters.
8080  * @flags: for future extension.
8081  */
8082 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8083 			       unsigned int, flags)
8084 {
8085 	struct sched_attr attr;
8086 	struct task_struct *p;
8087 	int retval;
8088 
8089 	if (!uattr || pid < 0 || flags)
8090 		return -EINVAL;
8091 
8092 	retval = sched_copy_attr(uattr, &attr);
8093 	if (retval)
8094 		return retval;
8095 
8096 	if ((int)attr.sched_policy < 0)
8097 		return -EINVAL;
8098 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8099 		attr.sched_policy = SETPARAM_POLICY;
8100 
8101 	rcu_read_lock();
8102 	retval = -ESRCH;
8103 	p = find_process_by_pid(pid);
8104 	if (likely(p))
8105 		get_task_struct(p);
8106 	rcu_read_unlock();
8107 
8108 	if (likely(p)) {
8109 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8110 			get_params(p, &attr);
8111 		retval = sched_setattr(p, &attr);
8112 		put_task_struct(p);
8113 	}
8114 
8115 	return retval;
8116 }
8117 
8118 /**
8119  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8120  * @pid: the pid in question.
8121  *
8122  * Return: On success, the policy of the thread. Otherwise, a negative error
8123  * code.
8124  */
8125 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8126 {
8127 	struct task_struct *p;
8128 	int retval;
8129 
8130 	if (pid < 0)
8131 		return -EINVAL;
8132 
8133 	retval = -ESRCH;
8134 	rcu_read_lock();
8135 	p = find_process_by_pid(pid);
8136 	if (p) {
8137 		retval = security_task_getscheduler(p);
8138 		if (!retval)
8139 			retval = p->policy
8140 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8141 	}
8142 	rcu_read_unlock();
8143 	return retval;
8144 }
8145 
8146 /**
8147  * sys_sched_getparam - get the RT priority of a thread
8148  * @pid: the pid in question.
8149  * @param: structure containing the RT priority.
8150  *
8151  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8152  * code.
8153  */
8154 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8155 {
8156 	struct sched_param lp = { .sched_priority = 0 };
8157 	struct task_struct *p;
8158 	int retval;
8159 
8160 	if (!param || pid < 0)
8161 		return -EINVAL;
8162 
8163 	rcu_read_lock();
8164 	p = find_process_by_pid(pid);
8165 	retval = -ESRCH;
8166 	if (!p)
8167 		goto out_unlock;
8168 
8169 	retval = security_task_getscheduler(p);
8170 	if (retval)
8171 		goto out_unlock;
8172 
8173 	if (task_has_rt_policy(p))
8174 		lp.sched_priority = p->rt_priority;
8175 	rcu_read_unlock();
8176 
8177 	/*
8178 	 * This one might sleep, we cannot do it with a spinlock held ...
8179 	 */
8180 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8181 
8182 	return retval;
8183 
8184 out_unlock:
8185 	rcu_read_unlock();
8186 	return retval;
8187 }
8188 
8189 /*
8190  * Copy the kernel size attribute structure (which might be larger
8191  * than what user-space knows about) to user-space.
8192  *
8193  * Note that all cases are valid: user-space buffer can be larger or
8194  * smaller than the kernel-space buffer. The usual case is that both
8195  * have the same size.
8196  */
8197 static int
8198 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8199 			struct sched_attr *kattr,
8200 			unsigned int usize)
8201 {
8202 	unsigned int ksize = sizeof(*kattr);
8203 
8204 	if (!access_ok(uattr, usize))
8205 		return -EFAULT;
8206 
8207 	/*
8208 	 * sched_getattr() ABI forwards and backwards compatibility:
8209 	 *
8210 	 * If usize == ksize then we just copy everything to user-space and all is good.
8211 	 *
8212 	 * If usize < ksize then we only copy as much as user-space has space for,
8213 	 * this keeps ABI compatibility as well. We skip the rest.
8214 	 *
8215 	 * If usize > ksize then user-space is using a newer version of the ABI,
8216 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8217 	 * detect the kernel's knowledge of attributes from the attr->size value
8218 	 * which is set to ksize in this case.
8219 	 */
8220 	kattr->size = min(usize, ksize);
8221 
8222 	if (copy_to_user(uattr, kattr, kattr->size))
8223 		return -EFAULT;
8224 
8225 	return 0;
8226 }
8227 
8228 /**
8229  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8230  * @pid: the pid in question.
8231  * @uattr: structure containing the extended parameters.
8232  * @usize: sizeof(attr) for fwd/bwd comp.
8233  * @flags: for future extension.
8234  */
8235 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8236 		unsigned int, usize, unsigned int, flags)
8237 {
8238 	struct sched_attr kattr = { };
8239 	struct task_struct *p;
8240 	int retval;
8241 
8242 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8243 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8244 		return -EINVAL;
8245 
8246 	rcu_read_lock();
8247 	p = find_process_by_pid(pid);
8248 	retval = -ESRCH;
8249 	if (!p)
8250 		goto out_unlock;
8251 
8252 	retval = security_task_getscheduler(p);
8253 	if (retval)
8254 		goto out_unlock;
8255 
8256 	kattr.sched_policy = p->policy;
8257 	if (p->sched_reset_on_fork)
8258 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8259 	get_params(p, &kattr);
8260 	kattr.sched_flags &= SCHED_FLAG_ALL;
8261 
8262 #ifdef CONFIG_UCLAMP_TASK
8263 	/*
8264 	 * This could race with another potential updater, but this is fine
8265 	 * because it'll correctly read the old or the new value. We don't need
8266 	 * to guarantee who wins the race as long as it doesn't return garbage.
8267 	 */
8268 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8269 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8270 #endif
8271 
8272 	rcu_read_unlock();
8273 
8274 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8275 
8276 out_unlock:
8277 	rcu_read_unlock();
8278 	return retval;
8279 }
8280 
8281 #ifdef CONFIG_SMP
8282 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8283 {
8284 	int ret = 0;
8285 
8286 	/*
8287 	 * If the task isn't a deadline task or admission control is
8288 	 * disabled then we don't care about affinity changes.
8289 	 */
8290 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8291 		return 0;
8292 
8293 	/*
8294 	 * Since bandwidth control happens on root_domain basis,
8295 	 * if admission test is enabled, we only admit -deadline
8296 	 * tasks allowed to run on all the CPUs in the task's
8297 	 * root_domain.
8298 	 */
8299 	rcu_read_lock();
8300 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8301 		ret = -EBUSY;
8302 	rcu_read_unlock();
8303 	return ret;
8304 }
8305 #endif
8306 
8307 static int
8308 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8309 {
8310 	int retval;
8311 	cpumask_var_t cpus_allowed, new_mask;
8312 
8313 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8314 		return -ENOMEM;
8315 
8316 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8317 		retval = -ENOMEM;
8318 		goto out_free_cpus_allowed;
8319 	}
8320 
8321 	cpuset_cpus_allowed(p, cpus_allowed);
8322 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8323 
8324 	ctx->new_mask = new_mask;
8325 	ctx->flags |= SCA_CHECK;
8326 
8327 	retval = dl_task_check_affinity(p, new_mask);
8328 	if (retval)
8329 		goto out_free_new_mask;
8330 
8331 	retval = __set_cpus_allowed_ptr(p, ctx);
8332 	if (retval)
8333 		goto out_free_new_mask;
8334 
8335 	cpuset_cpus_allowed(p, cpus_allowed);
8336 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8337 		/*
8338 		 * We must have raced with a concurrent cpuset update.
8339 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8340 		 */
8341 		cpumask_copy(new_mask, cpus_allowed);
8342 
8343 		/*
8344 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8345 		 * will restore the previous user_cpus_ptr value.
8346 		 *
8347 		 * In the unlikely event a previous user_cpus_ptr exists,
8348 		 * we need to further restrict the mask to what is allowed
8349 		 * by that old user_cpus_ptr.
8350 		 */
8351 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8352 			bool empty = !cpumask_and(new_mask, new_mask,
8353 						  ctx->user_mask);
8354 
8355 			if (WARN_ON_ONCE(empty))
8356 				cpumask_copy(new_mask, cpus_allowed);
8357 		}
8358 		__set_cpus_allowed_ptr(p, ctx);
8359 		retval = -EINVAL;
8360 	}
8361 
8362 out_free_new_mask:
8363 	free_cpumask_var(new_mask);
8364 out_free_cpus_allowed:
8365 	free_cpumask_var(cpus_allowed);
8366 	return retval;
8367 }
8368 
8369 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8370 {
8371 	struct affinity_context ac;
8372 	struct cpumask *user_mask;
8373 	struct task_struct *p;
8374 	int retval;
8375 
8376 	rcu_read_lock();
8377 
8378 	p = find_process_by_pid(pid);
8379 	if (!p) {
8380 		rcu_read_unlock();
8381 		return -ESRCH;
8382 	}
8383 
8384 	/* Prevent p going away */
8385 	get_task_struct(p);
8386 	rcu_read_unlock();
8387 
8388 	if (p->flags & PF_NO_SETAFFINITY) {
8389 		retval = -EINVAL;
8390 		goto out_put_task;
8391 	}
8392 
8393 	if (!check_same_owner(p)) {
8394 		rcu_read_lock();
8395 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8396 			rcu_read_unlock();
8397 			retval = -EPERM;
8398 			goto out_put_task;
8399 		}
8400 		rcu_read_unlock();
8401 	}
8402 
8403 	retval = security_task_setscheduler(p);
8404 	if (retval)
8405 		goto out_put_task;
8406 
8407 	/*
8408 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8409 	 * alloc_user_cpus_ptr() returns NULL.
8410 	 */
8411 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8412 	if (user_mask) {
8413 		cpumask_copy(user_mask, in_mask);
8414 	} else if (IS_ENABLED(CONFIG_SMP)) {
8415 		retval = -ENOMEM;
8416 		goto out_put_task;
8417 	}
8418 
8419 	ac = (struct affinity_context){
8420 		.new_mask  = in_mask,
8421 		.user_mask = user_mask,
8422 		.flags     = SCA_USER,
8423 	};
8424 
8425 	retval = __sched_setaffinity(p, &ac);
8426 	kfree(ac.user_mask);
8427 
8428 out_put_task:
8429 	put_task_struct(p);
8430 	return retval;
8431 }
8432 
8433 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8434 			     struct cpumask *new_mask)
8435 {
8436 	if (len < cpumask_size())
8437 		cpumask_clear(new_mask);
8438 	else if (len > cpumask_size())
8439 		len = cpumask_size();
8440 
8441 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8442 }
8443 
8444 /**
8445  * sys_sched_setaffinity - set the CPU affinity of a process
8446  * @pid: pid of the process
8447  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8448  * @user_mask_ptr: user-space pointer to the new CPU mask
8449  *
8450  * Return: 0 on success. An error code otherwise.
8451  */
8452 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8453 		unsigned long __user *, user_mask_ptr)
8454 {
8455 	cpumask_var_t new_mask;
8456 	int retval;
8457 
8458 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8459 		return -ENOMEM;
8460 
8461 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8462 	if (retval == 0)
8463 		retval = sched_setaffinity(pid, new_mask);
8464 	free_cpumask_var(new_mask);
8465 	return retval;
8466 }
8467 
8468 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8469 {
8470 	struct task_struct *p;
8471 	unsigned long flags;
8472 	int retval;
8473 
8474 	rcu_read_lock();
8475 
8476 	retval = -ESRCH;
8477 	p = find_process_by_pid(pid);
8478 	if (!p)
8479 		goto out_unlock;
8480 
8481 	retval = security_task_getscheduler(p);
8482 	if (retval)
8483 		goto out_unlock;
8484 
8485 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8486 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8487 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8488 
8489 out_unlock:
8490 	rcu_read_unlock();
8491 
8492 	return retval;
8493 }
8494 
8495 /**
8496  * sys_sched_getaffinity - get the CPU affinity of a process
8497  * @pid: pid of the process
8498  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8499  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8500  *
8501  * Return: size of CPU mask copied to user_mask_ptr on success. An
8502  * error code otherwise.
8503  */
8504 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8505 		unsigned long __user *, user_mask_ptr)
8506 {
8507 	int ret;
8508 	cpumask_var_t mask;
8509 
8510 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8511 		return -EINVAL;
8512 	if (len & (sizeof(unsigned long)-1))
8513 		return -EINVAL;
8514 
8515 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8516 		return -ENOMEM;
8517 
8518 	ret = sched_getaffinity(pid, mask);
8519 	if (ret == 0) {
8520 		unsigned int retlen = min(len, cpumask_size());
8521 
8522 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8523 			ret = -EFAULT;
8524 		else
8525 			ret = retlen;
8526 	}
8527 	free_cpumask_var(mask);
8528 
8529 	return ret;
8530 }
8531 
8532 static void do_sched_yield(void)
8533 {
8534 	struct rq_flags rf;
8535 	struct rq *rq;
8536 
8537 	rq = this_rq_lock_irq(&rf);
8538 
8539 	schedstat_inc(rq->yld_count);
8540 	current->sched_class->yield_task(rq);
8541 
8542 	preempt_disable();
8543 	rq_unlock_irq(rq, &rf);
8544 	sched_preempt_enable_no_resched();
8545 
8546 	schedule();
8547 }
8548 
8549 /**
8550  * sys_sched_yield - yield the current processor to other threads.
8551  *
8552  * This function yields the current CPU to other tasks. If there are no
8553  * other threads running on this CPU then this function will return.
8554  *
8555  * Return: 0.
8556  */
8557 SYSCALL_DEFINE0(sched_yield)
8558 {
8559 	do_sched_yield();
8560 	return 0;
8561 }
8562 
8563 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8564 int __sched __cond_resched(void)
8565 {
8566 	if (should_resched(0)) {
8567 		preempt_schedule_common();
8568 		return 1;
8569 	}
8570 	/*
8571 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8572 	 * whether the current CPU is in an RCU read-side critical section,
8573 	 * so the tick can report quiescent states even for CPUs looping
8574 	 * in kernel context.  In contrast, in non-preemptible kernels,
8575 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8576 	 * processes executing in kernel context might never report an
8577 	 * RCU quiescent state.  Therefore, the following code causes
8578 	 * cond_resched() to report a quiescent state, but only when RCU
8579 	 * is in urgent need of one.
8580 	 */
8581 #ifndef CONFIG_PREEMPT_RCU
8582 	rcu_all_qs();
8583 #endif
8584 	return 0;
8585 }
8586 EXPORT_SYMBOL(__cond_resched);
8587 #endif
8588 
8589 #ifdef CONFIG_PREEMPT_DYNAMIC
8590 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8591 #define cond_resched_dynamic_enabled	__cond_resched
8592 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8593 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8594 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8595 
8596 #define might_resched_dynamic_enabled	__cond_resched
8597 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8598 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8599 EXPORT_STATIC_CALL_TRAMP(might_resched);
8600 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8601 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8602 int __sched dynamic_cond_resched(void)
8603 {
8604 	klp_sched_try_switch();
8605 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8606 		return 0;
8607 	return __cond_resched();
8608 }
8609 EXPORT_SYMBOL(dynamic_cond_resched);
8610 
8611 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8612 int __sched dynamic_might_resched(void)
8613 {
8614 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8615 		return 0;
8616 	return __cond_resched();
8617 }
8618 EXPORT_SYMBOL(dynamic_might_resched);
8619 #endif
8620 #endif
8621 
8622 /*
8623  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8624  * call schedule, and on return reacquire the lock.
8625  *
8626  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8627  * operations here to prevent schedule() from being called twice (once via
8628  * spin_unlock(), once by hand).
8629  */
8630 int __cond_resched_lock(spinlock_t *lock)
8631 {
8632 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8633 	int ret = 0;
8634 
8635 	lockdep_assert_held(lock);
8636 
8637 	if (spin_needbreak(lock) || resched) {
8638 		spin_unlock(lock);
8639 		if (!_cond_resched())
8640 			cpu_relax();
8641 		ret = 1;
8642 		spin_lock(lock);
8643 	}
8644 	return ret;
8645 }
8646 EXPORT_SYMBOL(__cond_resched_lock);
8647 
8648 int __cond_resched_rwlock_read(rwlock_t *lock)
8649 {
8650 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8651 	int ret = 0;
8652 
8653 	lockdep_assert_held_read(lock);
8654 
8655 	if (rwlock_needbreak(lock) || resched) {
8656 		read_unlock(lock);
8657 		if (!_cond_resched())
8658 			cpu_relax();
8659 		ret = 1;
8660 		read_lock(lock);
8661 	}
8662 	return ret;
8663 }
8664 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8665 
8666 int __cond_resched_rwlock_write(rwlock_t *lock)
8667 {
8668 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8669 	int ret = 0;
8670 
8671 	lockdep_assert_held_write(lock);
8672 
8673 	if (rwlock_needbreak(lock) || resched) {
8674 		write_unlock(lock);
8675 		if (!_cond_resched())
8676 			cpu_relax();
8677 		ret = 1;
8678 		write_lock(lock);
8679 	}
8680 	return ret;
8681 }
8682 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8683 
8684 #ifdef CONFIG_PREEMPT_DYNAMIC
8685 
8686 #ifdef CONFIG_GENERIC_ENTRY
8687 #include <linux/entry-common.h>
8688 #endif
8689 
8690 /*
8691  * SC:cond_resched
8692  * SC:might_resched
8693  * SC:preempt_schedule
8694  * SC:preempt_schedule_notrace
8695  * SC:irqentry_exit_cond_resched
8696  *
8697  *
8698  * NONE:
8699  *   cond_resched               <- __cond_resched
8700  *   might_resched              <- RET0
8701  *   preempt_schedule           <- NOP
8702  *   preempt_schedule_notrace   <- NOP
8703  *   irqentry_exit_cond_resched <- NOP
8704  *
8705  * VOLUNTARY:
8706  *   cond_resched               <- __cond_resched
8707  *   might_resched              <- __cond_resched
8708  *   preempt_schedule           <- NOP
8709  *   preempt_schedule_notrace   <- NOP
8710  *   irqentry_exit_cond_resched <- NOP
8711  *
8712  * FULL:
8713  *   cond_resched               <- RET0
8714  *   might_resched              <- RET0
8715  *   preempt_schedule           <- preempt_schedule
8716  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8717  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8718  */
8719 
8720 enum {
8721 	preempt_dynamic_undefined = -1,
8722 	preempt_dynamic_none,
8723 	preempt_dynamic_voluntary,
8724 	preempt_dynamic_full,
8725 };
8726 
8727 int preempt_dynamic_mode = preempt_dynamic_undefined;
8728 
8729 int sched_dynamic_mode(const char *str)
8730 {
8731 	if (!strcmp(str, "none"))
8732 		return preempt_dynamic_none;
8733 
8734 	if (!strcmp(str, "voluntary"))
8735 		return preempt_dynamic_voluntary;
8736 
8737 	if (!strcmp(str, "full"))
8738 		return preempt_dynamic_full;
8739 
8740 	return -EINVAL;
8741 }
8742 
8743 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8744 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8745 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8746 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8747 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8748 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8749 #else
8750 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8751 #endif
8752 
8753 static DEFINE_MUTEX(sched_dynamic_mutex);
8754 static bool klp_override;
8755 
8756 static void __sched_dynamic_update(int mode)
8757 {
8758 	/*
8759 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8760 	 * the ZERO state, which is invalid.
8761 	 */
8762 	if (!klp_override)
8763 		preempt_dynamic_enable(cond_resched);
8764 	preempt_dynamic_enable(might_resched);
8765 	preempt_dynamic_enable(preempt_schedule);
8766 	preempt_dynamic_enable(preempt_schedule_notrace);
8767 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8768 
8769 	switch (mode) {
8770 	case preempt_dynamic_none:
8771 		if (!klp_override)
8772 			preempt_dynamic_enable(cond_resched);
8773 		preempt_dynamic_disable(might_resched);
8774 		preempt_dynamic_disable(preempt_schedule);
8775 		preempt_dynamic_disable(preempt_schedule_notrace);
8776 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8777 		if (mode != preempt_dynamic_mode)
8778 			pr_info("Dynamic Preempt: none\n");
8779 		break;
8780 
8781 	case preempt_dynamic_voluntary:
8782 		if (!klp_override)
8783 			preempt_dynamic_enable(cond_resched);
8784 		preempt_dynamic_enable(might_resched);
8785 		preempt_dynamic_disable(preempt_schedule);
8786 		preempt_dynamic_disable(preempt_schedule_notrace);
8787 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8788 		if (mode != preempt_dynamic_mode)
8789 			pr_info("Dynamic Preempt: voluntary\n");
8790 		break;
8791 
8792 	case preempt_dynamic_full:
8793 		if (!klp_override)
8794 			preempt_dynamic_disable(cond_resched);
8795 		preempt_dynamic_disable(might_resched);
8796 		preempt_dynamic_enable(preempt_schedule);
8797 		preempt_dynamic_enable(preempt_schedule_notrace);
8798 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8799 		if (mode != preempt_dynamic_mode)
8800 			pr_info("Dynamic Preempt: full\n");
8801 		break;
8802 	}
8803 
8804 	preempt_dynamic_mode = mode;
8805 }
8806 
8807 void sched_dynamic_update(int mode)
8808 {
8809 	mutex_lock(&sched_dynamic_mutex);
8810 	__sched_dynamic_update(mode);
8811 	mutex_unlock(&sched_dynamic_mutex);
8812 }
8813 
8814 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8815 
8816 static int klp_cond_resched(void)
8817 {
8818 	__klp_sched_try_switch();
8819 	return __cond_resched();
8820 }
8821 
8822 void sched_dynamic_klp_enable(void)
8823 {
8824 	mutex_lock(&sched_dynamic_mutex);
8825 
8826 	klp_override = true;
8827 	static_call_update(cond_resched, klp_cond_resched);
8828 
8829 	mutex_unlock(&sched_dynamic_mutex);
8830 }
8831 
8832 void sched_dynamic_klp_disable(void)
8833 {
8834 	mutex_lock(&sched_dynamic_mutex);
8835 
8836 	klp_override = false;
8837 	__sched_dynamic_update(preempt_dynamic_mode);
8838 
8839 	mutex_unlock(&sched_dynamic_mutex);
8840 }
8841 
8842 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8843 
8844 static int __init setup_preempt_mode(char *str)
8845 {
8846 	int mode = sched_dynamic_mode(str);
8847 	if (mode < 0) {
8848 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8849 		return 0;
8850 	}
8851 
8852 	sched_dynamic_update(mode);
8853 	return 1;
8854 }
8855 __setup("preempt=", setup_preempt_mode);
8856 
8857 static void __init preempt_dynamic_init(void)
8858 {
8859 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8860 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8861 			sched_dynamic_update(preempt_dynamic_none);
8862 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8863 			sched_dynamic_update(preempt_dynamic_voluntary);
8864 		} else {
8865 			/* Default static call setting, nothing to do */
8866 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8867 			preempt_dynamic_mode = preempt_dynamic_full;
8868 			pr_info("Dynamic Preempt: full\n");
8869 		}
8870 	}
8871 }
8872 
8873 #define PREEMPT_MODEL_ACCESSOR(mode) \
8874 	bool preempt_model_##mode(void)						 \
8875 	{									 \
8876 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8877 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8878 	}									 \
8879 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8880 
8881 PREEMPT_MODEL_ACCESSOR(none);
8882 PREEMPT_MODEL_ACCESSOR(voluntary);
8883 PREEMPT_MODEL_ACCESSOR(full);
8884 
8885 #else /* !CONFIG_PREEMPT_DYNAMIC */
8886 
8887 static inline void preempt_dynamic_init(void) { }
8888 
8889 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8890 
8891 /**
8892  * yield - yield the current processor to other threads.
8893  *
8894  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8895  *
8896  * The scheduler is at all times free to pick the calling task as the most
8897  * eligible task to run, if removing the yield() call from your code breaks
8898  * it, it's already broken.
8899  *
8900  * Typical broken usage is:
8901  *
8902  * while (!event)
8903  *	yield();
8904  *
8905  * where one assumes that yield() will let 'the other' process run that will
8906  * make event true. If the current task is a SCHED_FIFO task that will never
8907  * happen. Never use yield() as a progress guarantee!!
8908  *
8909  * If you want to use yield() to wait for something, use wait_event().
8910  * If you want to use yield() to be 'nice' for others, use cond_resched().
8911  * If you still want to use yield(), do not!
8912  */
8913 void __sched yield(void)
8914 {
8915 	set_current_state(TASK_RUNNING);
8916 	do_sched_yield();
8917 }
8918 EXPORT_SYMBOL(yield);
8919 
8920 /**
8921  * yield_to - yield the current processor to another thread in
8922  * your thread group, or accelerate that thread toward the
8923  * processor it's on.
8924  * @p: target task
8925  * @preempt: whether task preemption is allowed or not
8926  *
8927  * It's the caller's job to ensure that the target task struct
8928  * can't go away on us before we can do any checks.
8929  *
8930  * Return:
8931  *	true (>0) if we indeed boosted the target task.
8932  *	false (0) if we failed to boost the target.
8933  *	-ESRCH if there's no task to yield to.
8934  */
8935 int __sched yield_to(struct task_struct *p, bool preempt)
8936 {
8937 	struct task_struct *curr = current;
8938 	struct rq *rq, *p_rq;
8939 	unsigned long flags;
8940 	int yielded = 0;
8941 
8942 	local_irq_save(flags);
8943 	rq = this_rq();
8944 
8945 again:
8946 	p_rq = task_rq(p);
8947 	/*
8948 	 * If we're the only runnable task on the rq and target rq also
8949 	 * has only one task, there's absolutely no point in yielding.
8950 	 */
8951 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8952 		yielded = -ESRCH;
8953 		goto out_irq;
8954 	}
8955 
8956 	double_rq_lock(rq, p_rq);
8957 	if (task_rq(p) != p_rq) {
8958 		double_rq_unlock(rq, p_rq);
8959 		goto again;
8960 	}
8961 
8962 	if (!curr->sched_class->yield_to_task)
8963 		goto out_unlock;
8964 
8965 	if (curr->sched_class != p->sched_class)
8966 		goto out_unlock;
8967 
8968 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8969 		goto out_unlock;
8970 
8971 	yielded = curr->sched_class->yield_to_task(rq, p);
8972 	if (yielded) {
8973 		schedstat_inc(rq->yld_count);
8974 		/*
8975 		 * Make p's CPU reschedule; pick_next_entity takes care of
8976 		 * fairness.
8977 		 */
8978 		if (preempt && rq != p_rq)
8979 			resched_curr(p_rq);
8980 	}
8981 
8982 out_unlock:
8983 	double_rq_unlock(rq, p_rq);
8984 out_irq:
8985 	local_irq_restore(flags);
8986 
8987 	if (yielded > 0)
8988 		schedule();
8989 
8990 	return yielded;
8991 }
8992 EXPORT_SYMBOL_GPL(yield_to);
8993 
8994 int io_schedule_prepare(void)
8995 {
8996 	int old_iowait = current->in_iowait;
8997 
8998 	current->in_iowait = 1;
8999 	blk_flush_plug(current->plug, true);
9000 	return old_iowait;
9001 }
9002 
9003 void io_schedule_finish(int token)
9004 {
9005 	current->in_iowait = token;
9006 }
9007 
9008 /*
9009  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9010  * that process accounting knows that this is a task in IO wait state.
9011  */
9012 long __sched io_schedule_timeout(long timeout)
9013 {
9014 	int token;
9015 	long ret;
9016 
9017 	token = io_schedule_prepare();
9018 	ret = schedule_timeout(timeout);
9019 	io_schedule_finish(token);
9020 
9021 	return ret;
9022 }
9023 EXPORT_SYMBOL(io_schedule_timeout);
9024 
9025 void __sched io_schedule(void)
9026 {
9027 	int token;
9028 
9029 	token = io_schedule_prepare();
9030 	schedule();
9031 	io_schedule_finish(token);
9032 }
9033 EXPORT_SYMBOL(io_schedule);
9034 
9035 /**
9036  * sys_sched_get_priority_max - return maximum RT priority.
9037  * @policy: scheduling class.
9038  *
9039  * Return: On success, this syscall returns the maximum
9040  * rt_priority that can be used by a given scheduling class.
9041  * On failure, a negative error code is returned.
9042  */
9043 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9044 {
9045 	int ret = -EINVAL;
9046 
9047 	switch (policy) {
9048 	case SCHED_FIFO:
9049 	case SCHED_RR:
9050 		ret = MAX_RT_PRIO-1;
9051 		break;
9052 	case SCHED_DEADLINE:
9053 	case SCHED_NORMAL:
9054 	case SCHED_BATCH:
9055 	case SCHED_IDLE:
9056 		ret = 0;
9057 		break;
9058 	}
9059 	return ret;
9060 }
9061 
9062 /**
9063  * sys_sched_get_priority_min - return minimum RT priority.
9064  * @policy: scheduling class.
9065  *
9066  * Return: On success, this syscall returns the minimum
9067  * rt_priority that can be used by a given scheduling class.
9068  * On failure, a negative error code is returned.
9069  */
9070 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9071 {
9072 	int ret = -EINVAL;
9073 
9074 	switch (policy) {
9075 	case SCHED_FIFO:
9076 	case SCHED_RR:
9077 		ret = 1;
9078 		break;
9079 	case SCHED_DEADLINE:
9080 	case SCHED_NORMAL:
9081 	case SCHED_BATCH:
9082 	case SCHED_IDLE:
9083 		ret = 0;
9084 	}
9085 	return ret;
9086 }
9087 
9088 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9089 {
9090 	struct task_struct *p;
9091 	unsigned int time_slice;
9092 	struct rq_flags rf;
9093 	struct rq *rq;
9094 	int retval;
9095 
9096 	if (pid < 0)
9097 		return -EINVAL;
9098 
9099 	retval = -ESRCH;
9100 	rcu_read_lock();
9101 	p = find_process_by_pid(pid);
9102 	if (!p)
9103 		goto out_unlock;
9104 
9105 	retval = security_task_getscheduler(p);
9106 	if (retval)
9107 		goto out_unlock;
9108 
9109 	rq = task_rq_lock(p, &rf);
9110 	time_slice = 0;
9111 	if (p->sched_class->get_rr_interval)
9112 		time_slice = p->sched_class->get_rr_interval(rq, p);
9113 	task_rq_unlock(rq, p, &rf);
9114 
9115 	rcu_read_unlock();
9116 	jiffies_to_timespec64(time_slice, t);
9117 	return 0;
9118 
9119 out_unlock:
9120 	rcu_read_unlock();
9121 	return retval;
9122 }
9123 
9124 /**
9125  * sys_sched_rr_get_interval - return the default timeslice of a process.
9126  * @pid: pid of the process.
9127  * @interval: userspace pointer to the timeslice value.
9128  *
9129  * this syscall writes the default timeslice value of a given process
9130  * into the user-space timespec buffer. A value of '0' means infinity.
9131  *
9132  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9133  * an error code.
9134  */
9135 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9136 		struct __kernel_timespec __user *, interval)
9137 {
9138 	struct timespec64 t;
9139 	int retval = sched_rr_get_interval(pid, &t);
9140 
9141 	if (retval == 0)
9142 		retval = put_timespec64(&t, interval);
9143 
9144 	return retval;
9145 }
9146 
9147 #ifdef CONFIG_COMPAT_32BIT_TIME
9148 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9149 		struct old_timespec32 __user *, interval)
9150 {
9151 	struct timespec64 t;
9152 	int retval = sched_rr_get_interval(pid, &t);
9153 
9154 	if (retval == 0)
9155 		retval = put_old_timespec32(&t, interval);
9156 	return retval;
9157 }
9158 #endif
9159 
9160 void sched_show_task(struct task_struct *p)
9161 {
9162 	unsigned long free = 0;
9163 	int ppid;
9164 
9165 	if (!try_get_task_stack(p))
9166 		return;
9167 
9168 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9169 
9170 	if (task_is_running(p))
9171 		pr_cont("  running task    ");
9172 #ifdef CONFIG_DEBUG_STACK_USAGE
9173 	free = stack_not_used(p);
9174 #endif
9175 	ppid = 0;
9176 	rcu_read_lock();
9177 	if (pid_alive(p))
9178 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9179 	rcu_read_unlock();
9180 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9181 		free, task_pid_nr(p), ppid,
9182 		read_task_thread_flags(p));
9183 
9184 	print_worker_info(KERN_INFO, p);
9185 	print_stop_info(KERN_INFO, p);
9186 	show_stack(p, NULL, KERN_INFO);
9187 	put_task_stack(p);
9188 }
9189 EXPORT_SYMBOL_GPL(sched_show_task);
9190 
9191 static inline bool
9192 state_filter_match(unsigned long state_filter, struct task_struct *p)
9193 {
9194 	unsigned int state = READ_ONCE(p->__state);
9195 
9196 	/* no filter, everything matches */
9197 	if (!state_filter)
9198 		return true;
9199 
9200 	/* filter, but doesn't match */
9201 	if (!(state & state_filter))
9202 		return false;
9203 
9204 	/*
9205 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9206 	 * TASK_KILLABLE).
9207 	 */
9208 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9209 		return false;
9210 
9211 	return true;
9212 }
9213 
9214 
9215 void show_state_filter(unsigned int state_filter)
9216 {
9217 	struct task_struct *g, *p;
9218 
9219 	rcu_read_lock();
9220 	for_each_process_thread(g, p) {
9221 		/*
9222 		 * reset the NMI-timeout, listing all files on a slow
9223 		 * console might take a lot of time:
9224 		 * Also, reset softlockup watchdogs on all CPUs, because
9225 		 * another CPU might be blocked waiting for us to process
9226 		 * an IPI.
9227 		 */
9228 		touch_nmi_watchdog();
9229 		touch_all_softlockup_watchdogs();
9230 		if (state_filter_match(state_filter, p))
9231 			sched_show_task(p);
9232 	}
9233 
9234 #ifdef CONFIG_SCHED_DEBUG
9235 	if (!state_filter)
9236 		sysrq_sched_debug_show();
9237 #endif
9238 	rcu_read_unlock();
9239 	/*
9240 	 * Only show locks if all tasks are dumped:
9241 	 */
9242 	if (!state_filter)
9243 		debug_show_all_locks();
9244 }
9245 
9246 /**
9247  * init_idle - set up an idle thread for a given CPU
9248  * @idle: task in question
9249  * @cpu: CPU the idle task belongs to
9250  *
9251  * NOTE: this function does not set the idle thread's NEED_RESCHED
9252  * flag, to make booting more robust.
9253  */
9254 void __init init_idle(struct task_struct *idle, int cpu)
9255 {
9256 #ifdef CONFIG_SMP
9257 	struct affinity_context ac = (struct affinity_context) {
9258 		.new_mask  = cpumask_of(cpu),
9259 		.flags     = 0,
9260 	};
9261 #endif
9262 	struct rq *rq = cpu_rq(cpu);
9263 	unsigned long flags;
9264 
9265 	__sched_fork(0, idle);
9266 
9267 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9268 	raw_spin_rq_lock(rq);
9269 
9270 	idle->__state = TASK_RUNNING;
9271 	idle->se.exec_start = sched_clock();
9272 	/*
9273 	 * PF_KTHREAD should already be set at this point; regardless, make it
9274 	 * look like a proper per-CPU kthread.
9275 	 */
9276 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9277 	kthread_set_per_cpu(idle, cpu);
9278 
9279 #ifdef CONFIG_SMP
9280 	/*
9281 	 * It's possible that init_idle() gets called multiple times on a task,
9282 	 * in that case do_set_cpus_allowed() will not do the right thing.
9283 	 *
9284 	 * And since this is boot we can forgo the serialization.
9285 	 */
9286 	set_cpus_allowed_common(idle, &ac);
9287 #endif
9288 	/*
9289 	 * We're having a chicken and egg problem, even though we are
9290 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9291 	 * lockdep check in task_group() will fail.
9292 	 *
9293 	 * Similar case to sched_fork(). / Alternatively we could
9294 	 * use task_rq_lock() here and obtain the other rq->lock.
9295 	 *
9296 	 * Silence PROVE_RCU
9297 	 */
9298 	rcu_read_lock();
9299 	__set_task_cpu(idle, cpu);
9300 	rcu_read_unlock();
9301 
9302 	rq->idle = idle;
9303 	rcu_assign_pointer(rq->curr, idle);
9304 	idle->on_rq = TASK_ON_RQ_QUEUED;
9305 #ifdef CONFIG_SMP
9306 	idle->on_cpu = 1;
9307 #endif
9308 	raw_spin_rq_unlock(rq);
9309 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9310 
9311 	/* Set the preempt count _outside_ the spinlocks! */
9312 	init_idle_preempt_count(idle, cpu);
9313 
9314 	/*
9315 	 * The idle tasks have their own, simple scheduling class:
9316 	 */
9317 	idle->sched_class = &idle_sched_class;
9318 	ftrace_graph_init_idle_task(idle, cpu);
9319 	vtime_init_idle(idle, cpu);
9320 #ifdef CONFIG_SMP
9321 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9322 #endif
9323 }
9324 
9325 #ifdef CONFIG_SMP
9326 
9327 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9328 			      const struct cpumask *trial)
9329 {
9330 	int ret = 1;
9331 
9332 	if (cpumask_empty(cur))
9333 		return ret;
9334 
9335 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9336 
9337 	return ret;
9338 }
9339 
9340 int task_can_attach(struct task_struct *p)
9341 {
9342 	int ret = 0;
9343 
9344 	/*
9345 	 * Kthreads which disallow setaffinity shouldn't be moved
9346 	 * to a new cpuset; we don't want to change their CPU
9347 	 * affinity and isolating such threads by their set of
9348 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9349 	 * applicable for such threads.  This prevents checking for
9350 	 * success of set_cpus_allowed_ptr() on all attached tasks
9351 	 * before cpus_mask may be changed.
9352 	 */
9353 	if (p->flags & PF_NO_SETAFFINITY)
9354 		ret = -EINVAL;
9355 
9356 	return ret;
9357 }
9358 
9359 bool sched_smp_initialized __read_mostly;
9360 
9361 #ifdef CONFIG_NUMA_BALANCING
9362 /* Migrate current task p to target_cpu */
9363 int migrate_task_to(struct task_struct *p, int target_cpu)
9364 {
9365 	struct migration_arg arg = { p, target_cpu };
9366 	int curr_cpu = task_cpu(p);
9367 
9368 	if (curr_cpu == target_cpu)
9369 		return 0;
9370 
9371 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9372 		return -EINVAL;
9373 
9374 	/* TODO: This is not properly updating schedstats */
9375 
9376 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9377 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9378 }
9379 
9380 /*
9381  * Requeue a task on a given node and accurately track the number of NUMA
9382  * tasks on the runqueues
9383  */
9384 void sched_setnuma(struct task_struct *p, int nid)
9385 {
9386 	bool queued, running;
9387 	struct rq_flags rf;
9388 	struct rq *rq;
9389 
9390 	rq = task_rq_lock(p, &rf);
9391 	queued = task_on_rq_queued(p);
9392 	running = task_current(rq, p);
9393 
9394 	if (queued)
9395 		dequeue_task(rq, p, DEQUEUE_SAVE);
9396 	if (running)
9397 		put_prev_task(rq, p);
9398 
9399 	p->numa_preferred_nid = nid;
9400 
9401 	if (queued)
9402 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9403 	if (running)
9404 		set_next_task(rq, p);
9405 	task_rq_unlock(rq, p, &rf);
9406 }
9407 #endif /* CONFIG_NUMA_BALANCING */
9408 
9409 #ifdef CONFIG_HOTPLUG_CPU
9410 /*
9411  * Ensure that the idle task is using init_mm right before its CPU goes
9412  * offline.
9413  */
9414 void idle_task_exit(void)
9415 {
9416 	struct mm_struct *mm = current->active_mm;
9417 
9418 	BUG_ON(cpu_online(smp_processor_id()));
9419 	BUG_ON(current != this_rq()->idle);
9420 
9421 	if (mm != &init_mm) {
9422 		switch_mm(mm, &init_mm, current);
9423 		finish_arch_post_lock_switch();
9424 	}
9425 
9426 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9427 }
9428 
9429 static int __balance_push_cpu_stop(void *arg)
9430 {
9431 	struct task_struct *p = arg;
9432 	struct rq *rq = this_rq();
9433 	struct rq_flags rf;
9434 	int cpu;
9435 
9436 	raw_spin_lock_irq(&p->pi_lock);
9437 	rq_lock(rq, &rf);
9438 
9439 	update_rq_clock(rq);
9440 
9441 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9442 		cpu = select_fallback_rq(rq->cpu, p);
9443 		rq = __migrate_task(rq, &rf, p, cpu);
9444 	}
9445 
9446 	rq_unlock(rq, &rf);
9447 	raw_spin_unlock_irq(&p->pi_lock);
9448 
9449 	put_task_struct(p);
9450 
9451 	return 0;
9452 }
9453 
9454 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9455 
9456 /*
9457  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9458  *
9459  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9460  * effective when the hotplug motion is down.
9461  */
9462 static void balance_push(struct rq *rq)
9463 {
9464 	struct task_struct *push_task = rq->curr;
9465 
9466 	lockdep_assert_rq_held(rq);
9467 
9468 	/*
9469 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9470 	 */
9471 	rq->balance_callback = &balance_push_callback;
9472 
9473 	/*
9474 	 * Only active while going offline and when invoked on the outgoing
9475 	 * CPU.
9476 	 */
9477 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9478 		return;
9479 
9480 	/*
9481 	 * Both the cpu-hotplug and stop task are in this case and are
9482 	 * required to complete the hotplug process.
9483 	 */
9484 	if (kthread_is_per_cpu(push_task) ||
9485 	    is_migration_disabled(push_task)) {
9486 
9487 		/*
9488 		 * If this is the idle task on the outgoing CPU try to wake
9489 		 * up the hotplug control thread which might wait for the
9490 		 * last task to vanish. The rcuwait_active() check is
9491 		 * accurate here because the waiter is pinned on this CPU
9492 		 * and can't obviously be running in parallel.
9493 		 *
9494 		 * On RT kernels this also has to check whether there are
9495 		 * pinned and scheduled out tasks on the runqueue. They
9496 		 * need to leave the migrate disabled section first.
9497 		 */
9498 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9499 		    rcuwait_active(&rq->hotplug_wait)) {
9500 			raw_spin_rq_unlock(rq);
9501 			rcuwait_wake_up(&rq->hotplug_wait);
9502 			raw_spin_rq_lock(rq);
9503 		}
9504 		return;
9505 	}
9506 
9507 	get_task_struct(push_task);
9508 	/*
9509 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9510 	 * Both preemption and IRQs are still disabled.
9511 	 */
9512 	preempt_disable();
9513 	raw_spin_rq_unlock(rq);
9514 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9515 			    this_cpu_ptr(&push_work));
9516 	preempt_enable();
9517 	/*
9518 	 * At this point need_resched() is true and we'll take the loop in
9519 	 * schedule(). The next pick is obviously going to be the stop task
9520 	 * which kthread_is_per_cpu() and will push this task away.
9521 	 */
9522 	raw_spin_rq_lock(rq);
9523 }
9524 
9525 static void balance_push_set(int cpu, bool on)
9526 {
9527 	struct rq *rq = cpu_rq(cpu);
9528 	struct rq_flags rf;
9529 
9530 	rq_lock_irqsave(rq, &rf);
9531 	if (on) {
9532 		WARN_ON_ONCE(rq->balance_callback);
9533 		rq->balance_callback = &balance_push_callback;
9534 	} else if (rq->balance_callback == &balance_push_callback) {
9535 		rq->balance_callback = NULL;
9536 	}
9537 	rq_unlock_irqrestore(rq, &rf);
9538 }
9539 
9540 /*
9541  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9542  * inactive. All tasks which are not per CPU kernel threads are either
9543  * pushed off this CPU now via balance_push() or placed on a different CPU
9544  * during wakeup. Wait until the CPU is quiescent.
9545  */
9546 static void balance_hotplug_wait(void)
9547 {
9548 	struct rq *rq = this_rq();
9549 
9550 	rcuwait_wait_event(&rq->hotplug_wait,
9551 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9552 			   TASK_UNINTERRUPTIBLE);
9553 }
9554 
9555 #else
9556 
9557 static inline void balance_push(struct rq *rq)
9558 {
9559 }
9560 
9561 static inline void balance_push_set(int cpu, bool on)
9562 {
9563 }
9564 
9565 static inline void balance_hotplug_wait(void)
9566 {
9567 }
9568 
9569 #endif /* CONFIG_HOTPLUG_CPU */
9570 
9571 void set_rq_online(struct rq *rq)
9572 {
9573 	if (!rq->online) {
9574 		const struct sched_class *class;
9575 
9576 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9577 		rq->online = 1;
9578 
9579 		for_each_class(class) {
9580 			if (class->rq_online)
9581 				class->rq_online(rq);
9582 		}
9583 	}
9584 }
9585 
9586 void set_rq_offline(struct rq *rq)
9587 {
9588 	if (rq->online) {
9589 		const struct sched_class *class;
9590 
9591 		update_rq_clock(rq);
9592 		for_each_class(class) {
9593 			if (class->rq_offline)
9594 				class->rq_offline(rq);
9595 		}
9596 
9597 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9598 		rq->online = 0;
9599 	}
9600 }
9601 
9602 /*
9603  * used to mark begin/end of suspend/resume:
9604  */
9605 static int num_cpus_frozen;
9606 
9607 /*
9608  * Update cpusets according to cpu_active mask.  If cpusets are
9609  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9610  * around partition_sched_domains().
9611  *
9612  * If we come here as part of a suspend/resume, don't touch cpusets because we
9613  * want to restore it back to its original state upon resume anyway.
9614  */
9615 static void cpuset_cpu_active(void)
9616 {
9617 	if (cpuhp_tasks_frozen) {
9618 		/*
9619 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9620 		 * resume sequence. As long as this is not the last online
9621 		 * operation in the resume sequence, just build a single sched
9622 		 * domain, ignoring cpusets.
9623 		 */
9624 		partition_sched_domains(1, NULL, NULL);
9625 		if (--num_cpus_frozen)
9626 			return;
9627 		/*
9628 		 * This is the last CPU online operation. So fall through and
9629 		 * restore the original sched domains by considering the
9630 		 * cpuset configurations.
9631 		 */
9632 		cpuset_force_rebuild();
9633 	}
9634 	cpuset_update_active_cpus();
9635 }
9636 
9637 static int cpuset_cpu_inactive(unsigned int cpu)
9638 {
9639 	if (!cpuhp_tasks_frozen) {
9640 		int ret = dl_bw_check_overflow(cpu);
9641 
9642 		if (ret)
9643 			return ret;
9644 		cpuset_update_active_cpus();
9645 	} else {
9646 		num_cpus_frozen++;
9647 		partition_sched_domains(1, NULL, NULL);
9648 	}
9649 	return 0;
9650 }
9651 
9652 int sched_cpu_activate(unsigned int cpu)
9653 {
9654 	struct rq *rq = cpu_rq(cpu);
9655 	struct rq_flags rf;
9656 
9657 	/*
9658 	 * Clear the balance_push callback and prepare to schedule
9659 	 * regular tasks.
9660 	 */
9661 	balance_push_set(cpu, false);
9662 
9663 #ifdef CONFIG_SCHED_SMT
9664 	/*
9665 	 * When going up, increment the number of cores with SMT present.
9666 	 */
9667 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9668 		static_branch_inc_cpuslocked(&sched_smt_present);
9669 #endif
9670 	set_cpu_active(cpu, true);
9671 
9672 	if (sched_smp_initialized) {
9673 		sched_update_numa(cpu, true);
9674 		sched_domains_numa_masks_set(cpu);
9675 		cpuset_cpu_active();
9676 	}
9677 
9678 	/*
9679 	 * Put the rq online, if not already. This happens:
9680 	 *
9681 	 * 1) In the early boot process, because we build the real domains
9682 	 *    after all CPUs have been brought up.
9683 	 *
9684 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9685 	 *    domains.
9686 	 */
9687 	rq_lock_irqsave(rq, &rf);
9688 	if (rq->rd) {
9689 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9690 		set_rq_online(rq);
9691 	}
9692 	rq_unlock_irqrestore(rq, &rf);
9693 
9694 	return 0;
9695 }
9696 
9697 int sched_cpu_deactivate(unsigned int cpu)
9698 {
9699 	struct rq *rq = cpu_rq(cpu);
9700 	struct rq_flags rf;
9701 	int ret;
9702 
9703 	/*
9704 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9705 	 * load balancing when not active
9706 	 */
9707 	nohz_balance_exit_idle(rq);
9708 
9709 	set_cpu_active(cpu, false);
9710 
9711 	/*
9712 	 * From this point forward, this CPU will refuse to run any task that
9713 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9714 	 * push those tasks away until this gets cleared, see
9715 	 * sched_cpu_dying().
9716 	 */
9717 	balance_push_set(cpu, true);
9718 
9719 	/*
9720 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9721 	 * preempt-disabled and RCU users of this state to go away such that
9722 	 * all new such users will observe it.
9723 	 *
9724 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9725 	 * ttwu_queue_cond() and is_cpu_allowed().
9726 	 *
9727 	 * Do sync before park smpboot threads to take care the rcu boost case.
9728 	 */
9729 	synchronize_rcu();
9730 
9731 	rq_lock_irqsave(rq, &rf);
9732 	if (rq->rd) {
9733 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9734 		set_rq_offline(rq);
9735 	}
9736 	rq_unlock_irqrestore(rq, &rf);
9737 
9738 #ifdef CONFIG_SCHED_SMT
9739 	/*
9740 	 * When going down, decrement the number of cores with SMT present.
9741 	 */
9742 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9743 		static_branch_dec_cpuslocked(&sched_smt_present);
9744 
9745 	sched_core_cpu_deactivate(cpu);
9746 #endif
9747 
9748 	if (!sched_smp_initialized)
9749 		return 0;
9750 
9751 	sched_update_numa(cpu, false);
9752 	ret = cpuset_cpu_inactive(cpu);
9753 	if (ret) {
9754 		balance_push_set(cpu, false);
9755 		set_cpu_active(cpu, true);
9756 		sched_update_numa(cpu, true);
9757 		return ret;
9758 	}
9759 	sched_domains_numa_masks_clear(cpu);
9760 	return 0;
9761 }
9762 
9763 static void sched_rq_cpu_starting(unsigned int cpu)
9764 {
9765 	struct rq *rq = cpu_rq(cpu);
9766 
9767 	rq->calc_load_update = calc_load_update;
9768 	update_max_interval();
9769 }
9770 
9771 int sched_cpu_starting(unsigned int cpu)
9772 {
9773 	sched_core_cpu_starting(cpu);
9774 	sched_rq_cpu_starting(cpu);
9775 	sched_tick_start(cpu);
9776 	return 0;
9777 }
9778 
9779 #ifdef CONFIG_HOTPLUG_CPU
9780 
9781 /*
9782  * Invoked immediately before the stopper thread is invoked to bring the
9783  * CPU down completely. At this point all per CPU kthreads except the
9784  * hotplug thread (current) and the stopper thread (inactive) have been
9785  * either parked or have been unbound from the outgoing CPU. Ensure that
9786  * any of those which might be on the way out are gone.
9787  *
9788  * If after this point a bound task is being woken on this CPU then the
9789  * responsible hotplug callback has failed to do it's job.
9790  * sched_cpu_dying() will catch it with the appropriate fireworks.
9791  */
9792 int sched_cpu_wait_empty(unsigned int cpu)
9793 {
9794 	balance_hotplug_wait();
9795 	return 0;
9796 }
9797 
9798 /*
9799  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9800  * might have. Called from the CPU stopper task after ensuring that the
9801  * stopper is the last running task on the CPU, so nr_active count is
9802  * stable. We need to take the teardown thread which is calling this into
9803  * account, so we hand in adjust = 1 to the load calculation.
9804  *
9805  * Also see the comment "Global load-average calculations".
9806  */
9807 static void calc_load_migrate(struct rq *rq)
9808 {
9809 	long delta = calc_load_fold_active(rq, 1);
9810 
9811 	if (delta)
9812 		atomic_long_add(delta, &calc_load_tasks);
9813 }
9814 
9815 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9816 {
9817 	struct task_struct *g, *p;
9818 	int cpu = cpu_of(rq);
9819 
9820 	lockdep_assert_rq_held(rq);
9821 
9822 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9823 	for_each_process_thread(g, p) {
9824 		if (task_cpu(p) != cpu)
9825 			continue;
9826 
9827 		if (!task_on_rq_queued(p))
9828 			continue;
9829 
9830 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9831 	}
9832 }
9833 
9834 int sched_cpu_dying(unsigned int cpu)
9835 {
9836 	struct rq *rq = cpu_rq(cpu);
9837 	struct rq_flags rf;
9838 
9839 	/* Handle pending wakeups and then migrate everything off */
9840 	sched_tick_stop(cpu);
9841 
9842 	rq_lock_irqsave(rq, &rf);
9843 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9844 		WARN(true, "Dying CPU not properly vacated!");
9845 		dump_rq_tasks(rq, KERN_WARNING);
9846 	}
9847 	rq_unlock_irqrestore(rq, &rf);
9848 
9849 	calc_load_migrate(rq);
9850 	update_max_interval();
9851 	hrtick_clear(rq);
9852 	sched_core_cpu_dying(cpu);
9853 	return 0;
9854 }
9855 #endif
9856 
9857 void __init sched_init_smp(void)
9858 {
9859 	sched_init_numa(NUMA_NO_NODE);
9860 
9861 	/*
9862 	 * There's no userspace yet to cause hotplug operations; hence all the
9863 	 * CPU masks are stable and all blatant races in the below code cannot
9864 	 * happen.
9865 	 */
9866 	mutex_lock(&sched_domains_mutex);
9867 	sched_init_domains(cpu_active_mask);
9868 	mutex_unlock(&sched_domains_mutex);
9869 
9870 	/* Move init over to a non-isolated CPU */
9871 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9872 		BUG();
9873 	current->flags &= ~PF_NO_SETAFFINITY;
9874 	sched_init_granularity();
9875 
9876 	init_sched_rt_class();
9877 	init_sched_dl_class();
9878 
9879 	sched_smp_initialized = true;
9880 }
9881 
9882 static int __init migration_init(void)
9883 {
9884 	sched_cpu_starting(smp_processor_id());
9885 	return 0;
9886 }
9887 early_initcall(migration_init);
9888 
9889 #else
9890 void __init sched_init_smp(void)
9891 {
9892 	sched_init_granularity();
9893 }
9894 #endif /* CONFIG_SMP */
9895 
9896 int in_sched_functions(unsigned long addr)
9897 {
9898 	return in_lock_functions(addr) ||
9899 		(addr >= (unsigned long)__sched_text_start
9900 		&& addr < (unsigned long)__sched_text_end);
9901 }
9902 
9903 #ifdef CONFIG_CGROUP_SCHED
9904 /*
9905  * Default task group.
9906  * Every task in system belongs to this group at bootup.
9907  */
9908 struct task_group root_task_group;
9909 LIST_HEAD(task_groups);
9910 
9911 /* Cacheline aligned slab cache for task_group */
9912 static struct kmem_cache *task_group_cache __read_mostly;
9913 #endif
9914 
9915 void __init sched_init(void)
9916 {
9917 	unsigned long ptr = 0;
9918 	int i;
9919 
9920 	/* Make sure the linker didn't screw up */
9921 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9922 	       &fair_sched_class != &rt_sched_class + 1 ||
9923 	       &rt_sched_class   != &dl_sched_class + 1);
9924 #ifdef CONFIG_SMP
9925 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9926 #endif
9927 
9928 	wait_bit_init();
9929 
9930 #ifdef CONFIG_FAIR_GROUP_SCHED
9931 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9932 #endif
9933 #ifdef CONFIG_RT_GROUP_SCHED
9934 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9935 #endif
9936 	if (ptr) {
9937 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9938 
9939 #ifdef CONFIG_FAIR_GROUP_SCHED
9940 		root_task_group.se = (struct sched_entity **)ptr;
9941 		ptr += nr_cpu_ids * sizeof(void **);
9942 
9943 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9944 		ptr += nr_cpu_ids * sizeof(void **);
9945 
9946 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9947 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9948 #endif /* CONFIG_FAIR_GROUP_SCHED */
9949 #ifdef CONFIG_RT_GROUP_SCHED
9950 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9951 		ptr += nr_cpu_ids * sizeof(void **);
9952 
9953 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9954 		ptr += nr_cpu_ids * sizeof(void **);
9955 
9956 #endif /* CONFIG_RT_GROUP_SCHED */
9957 	}
9958 
9959 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9960 
9961 #ifdef CONFIG_SMP
9962 	init_defrootdomain();
9963 #endif
9964 
9965 #ifdef CONFIG_RT_GROUP_SCHED
9966 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9967 			global_rt_period(), global_rt_runtime());
9968 #endif /* CONFIG_RT_GROUP_SCHED */
9969 
9970 #ifdef CONFIG_CGROUP_SCHED
9971 	task_group_cache = KMEM_CACHE(task_group, 0);
9972 
9973 	list_add(&root_task_group.list, &task_groups);
9974 	INIT_LIST_HEAD(&root_task_group.children);
9975 	INIT_LIST_HEAD(&root_task_group.siblings);
9976 	autogroup_init(&init_task);
9977 #endif /* CONFIG_CGROUP_SCHED */
9978 
9979 	for_each_possible_cpu(i) {
9980 		struct rq *rq;
9981 
9982 		rq = cpu_rq(i);
9983 		raw_spin_lock_init(&rq->__lock);
9984 		rq->nr_running = 0;
9985 		rq->calc_load_active = 0;
9986 		rq->calc_load_update = jiffies + LOAD_FREQ;
9987 		init_cfs_rq(&rq->cfs);
9988 		init_rt_rq(&rq->rt);
9989 		init_dl_rq(&rq->dl);
9990 #ifdef CONFIG_FAIR_GROUP_SCHED
9991 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9992 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9993 		/*
9994 		 * How much CPU bandwidth does root_task_group get?
9995 		 *
9996 		 * In case of task-groups formed thr' the cgroup filesystem, it
9997 		 * gets 100% of the CPU resources in the system. This overall
9998 		 * system CPU resource is divided among the tasks of
9999 		 * root_task_group and its child task-groups in a fair manner,
10000 		 * based on each entity's (task or task-group's) weight
10001 		 * (se->load.weight).
10002 		 *
10003 		 * In other words, if root_task_group has 10 tasks of weight
10004 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10005 		 * then A0's share of the CPU resource is:
10006 		 *
10007 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10008 		 *
10009 		 * We achieve this by letting root_task_group's tasks sit
10010 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10011 		 */
10012 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10013 #endif /* CONFIG_FAIR_GROUP_SCHED */
10014 
10015 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10016 #ifdef CONFIG_RT_GROUP_SCHED
10017 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10018 #endif
10019 #ifdef CONFIG_SMP
10020 		rq->sd = NULL;
10021 		rq->rd = NULL;
10022 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10023 		rq->balance_callback = &balance_push_callback;
10024 		rq->active_balance = 0;
10025 		rq->next_balance = jiffies;
10026 		rq->push_cpu = 0;
10027 		rq->cpu = i;
10028 		rq->online = 0;
10029 		rq->idle_stamp = 0;
10030 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10031 		rq->wake_stamp = jiffies;
10032 		rq->wake_avg_idle = rq->avg_idle;
10033 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10034 
10035 		INIT_LIST_HEAD(&rq->cfs_tasks);
10036 
10037 		rq_attach_root(rq, &def_root_domain);
10038 #ifdef CONFIG_NO_HZ_COMMON
10039 		rq->last_blocked_load_update_tick = jiffies;
10040 		atomic_set(&rq->nohz_flags, 0);
10041 
10042 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10043 #endif
10044 #ifdef CONFIG_HOTPLUG_CPU
10045 		rcuwait_init(&rq->hotplug_wait);
10046 #endif
10047 #endif /* CONFIG_SMP */
10048 		hrtick_rq_init(rq);
10049 		atomic_set(&rq->nr_iowait, 0);
10050 
10051 #ifdef CONFIG_SCHED_CORE
10052 		rq->core = rq;
10053 		rq->core_pick = NULL;
10054 		rq->core_enabled = 0;
10055 		rq->core_tree = RB_ROOT;
10056 		rq->core_forceidle_count = 0;
10057 		rq->core_forceidle_occupation = 0;
10058 		rq->core_forceidle_start = 0;
10059 
10060 		rq->core_cookie = 0UL;
10061 #endif
10062 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10063 	}
10064 
10065 	set_load_weight(&init_task, false);
10066 
10067 	/*
10068 	 * The boot idle thread does lazy MMU switching as well:
10069 	 */
10070 	mmgrab_lazy_tlb(&init_mm);
10071 	enter_lazy_tlb(&init_mm, current);
10072 
10073 	/*
10074 	 * The idle task doesn't need the kthread struct to function, but it
10075 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10076 	 * if we want to avoid special-casing it in code that deals with per-CPU
10077 	 * kthreads.
10078 	 */
10079 	WARN_ON(!set_kthread_struct(current));
10080 
10081 	/*
10082 	 * Make us the idle thread. Technically, schedule() should not be
10083 	 * called from this thread, however somewhere below it might be,
10084 	 * but because we are the idle thread, we just pick up running again
10085 	 * when this runqueue becomes "idle".
10086 	 */
10087 	init_idle(current, smp_processor_id());
10088 
10089 	calc_load_update = jiffies + LOAD_FREQ;
10090 
10091 #ifdef CONFIG_SMP
10092 	idle_thread_set_boot_cpu();
10093 	balance_push_set(smp_processor_id(), false);
10094 #endif
10095 	init_sched_fair_class();
10096 
10097 	psi_init();
10098 
10099 	init_uclamp();
10100 
10101 	preempt_dynamic_init();
10102 
10103 	scheduler_running = 1;
10104 }
10105 
10106 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10107 
10108 void __might_sleep(const char *file, int line)
10109 {
10110 	unsigned int state = get_current_state();
10111 	/*
10112 	 * Blocking primitives will set (and therefore destroy) current->state,
10113 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10114 	 * otherwise we will destroy state.
10115 	 */
10116 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10117 			"do not call blocking ops when !TASK_RUNNING; "
10118 			"state=%x set at [<%p>] %pS\n", state,
10119 			(void *)current->task_state_change,
10120 			(void *)current->task_state_change);
10121 
10122 	__might_resched(file, line, 0);
10123 }
10124 EXPORT_SYMBOL(__might_sleep);
10125 
10126 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10127 {
10128 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10129 		return;
10130 
10131 	if (preempt_count() == preempt_offset)
10132 		return;
10133 
10134 	pr_err("Preemption disabled at:");
10135 	print_ip_sym(KERN_ERR, ip);
10136 }
10137 
10138 static inline bool resched_offsets_ok(unsigned int offsets)
10139 {
10140 	unsigned int nested = preempt_count();
10141 
10142 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10143 
10144 	return nested == offsets;
10145 }
10146 
10147 void __might_resched(const char *file, int line, unsigned int offsets)
10148 {
10149 	/* Ratelimiting timestamp: */
10150 	static unsigned long prev_jiffy;
10151 
10152 	unsigned long preempt_disable_ip;
10153 
10154 	/* WARN_ON_ONCE() by default, no rate limit required: */
10155 	rcu_sleep_check();
10156 
10157 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10158 	     !is_idle_task(current) && !current->non_block_count) ||
10159 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10160 	    oops_in_progress)
10161 		return;
10162 
10163 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10164 		return;
10165 	prev_jiffy = jiffies;
10166 
10167 	/* Save this before calling printk(), since that will clobber it: */
10168 	preempt_disable_ip = get_preempt_disable_ip(current);
10169 
10170 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10171 	       file, line);
10172 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10173 	       in_atomic(), irqs_disabled(), current->non_block_count,
10174 	       current->pid, current->comm);
10175 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10176 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10177 
10178 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10179 		pr_err("RCU nest depth: %d, expected: %u\n",
10180 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10181 	}
10182 
10183 	if (task_stack_end_corrupted(current))
10184 		pr_emerg("Thread overran stack, or stack corrupted\n");
10185 
10186 	debug_show_held_locks(current);
10187 	if (irqs_disabled())
10188 		print_irqtrace_events(current);
10189 
10190 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10191 				 preempt_disable_ip);
10192 
10193 	dump_stack();
10194 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10195 }
10196 EXPORT_SYMBOL(__might_resched);
10197 
10198 void __cant_sleep(const char *file, int line, int preempt_offset)
10199 {
10200 	static unsigned long prev_jiffy;
10201 
10202 	if (irqs_disabled())
10203 		return;
10204 
10205 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10206 		return;
10207 
10208 	if (preempt_count() > preempt_offset)
10209 		return;
10210 
10211 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10212 		return;
10213 	prev_jiffy = jiffies;
10214 
10215 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10216 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10217 			in_atomic(), irqs_disabled(),
10218 			current->pid, current->comm);
10219 
10220 	debug_show_held_locks(current);
10221 	dump_stack();
10222 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10223 }
10224 EXPORT_SYMBOL_GPL(__cant_sleep);
10225 
10226 #ifdef CONFIG_SMP
10227 void __cant_migrate(const char *file, int line)
10228 {
10229 	static unsigned long prev_jiffy;
10230 
10231 	if (irqs_disabled())
10232 		return;
10233 
10234 	if (is_migration_disabled(current))
10235 		return;
10236 
10237 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10238 		return;
10239 
10240 	if (preempt_count() > 0)
10241 		return;
10242 
10243 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10244 		return;
10245 	prev_jiffy = jiffies;
10246 
10247 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10248 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10249 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10250 	       current->pid, current->comm);
10251 
10252 	debug_show_held_locks(current);
10253 	dump_stack();
10254 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10255 }
10256 EXPORT_SYMBOL_GPL(__cant_migrate);
10257 #endif
10258 #endif
10259 
10260 #ifdef CONFIG_MAGIC_SYSRQ
10261 void normalize_rt_tasks(void)
10262 {
10263 	struct task_struct *g, *p;
10264 	struct sched_attr attr = {
10265 		.sched_policy = SCHED_NORMAL,
10266 	};
10267 
10268 	read_lock(&tasklist_lock);
10269 	for_each_process_thread(g, p) {
10270 		/*
10271 		 * Only normalize user tasks:
10272 		 */
10273 		if (p->flags & PF_KTHREAD)
10274 			continue;
10275 
10276 		p->se.exec_start = 0;
10277 		schedstat_set(p->stats.wait_start,  0);
10278 		schedstat_set(p->stats.sleep_start, 0);
10279 		schedstat_set(p->stats.block_start, 0);
10280 
10281 		if (!dl_task(p) && !rt_task(p)) {
10282 			/*
10283 			 * Renice negative nice level userspace
10284 			 * tasks back to 0:
10285 			 */
10286 			if (task_nice(p) < 0)
10287 				set_user_nice(p, 0);
10288 			continue;
10289 		}
10290 
10291 		__sched_setscheduler(p, &attr, false, false);
10292 	}
10293 	read_unlock(&tasklist_lock);
10294 }
10295 
10296 #endif /* CONFIG_MAGIC_SYSRQ */
10297 
10298 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10299 /*
10300  * These functions are only useful for the IA64 MCA handling, or kdb.
10301  *
10302  * They can only be called when the whole system has been
10303  * stopped - every CPU needs to be quiescent, and no scheduling
10304  * activity can take place. Using them for anything else would
10305  * be a serious bug, and as a result, they aren't even visible
10306  * under any other configuration.
10307  */
10308 
10309 /**
10310  * curr_task - return the current task for a given CPU.
10311  * @cpu: the processor in question.
10312  *
10313  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10314  *
10315  * Return: The current task for @cpu.
10316  */
10317 struct task_struct *curr_task(int cpu)
10318 {
10319 	return cpu_curr(cpu);
10320 }
10321 
10322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10323 
10324 #ifdef CONFIG_IA64
10325 /**
10326  * ia64_set_curr_task - set the current task for a given CPU.
10327  * @cpu: the processor in question.
10328  * @p: the task pointer to set.
10329  *
10330  * Description: This function must only be used when non-maskable interrupts
10331  * are serviced on a separate stack. It allows the architecture to switch the
10332  * notion of the current task on a CPU in a non-blocking manner. This function
10333  * must be called with all CPU's synchronized, and interrupts disabled, the
10334  * and caller must save the original value of the current task (see
10335  * curr_task() above) and restore that value before reenabling interrupts and
10336  * re-starting the system.
10337  *
10338  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10339  */
10340 void ia64_set_curr_task(int cpu, struct task_struct *p)
10341 {
10342 	cpu_curr(cpu) = p;
10343 }
10344 
10345 #endif
10346 
10347 #ifdef CONFIG_CGROUP_SCHED
10348 /* task_group_lock serializes the addition/removal of task groups */
10349 static DEFINE_SPINLOCK(task_group_lock);
10350 
10351 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10352 					    struct task_group *parent)
10353 {
10354 #ifdef CONFIG_UCLAMP_TASK_GROUP
10355 	enum uclamp_id clamp_id;
10356 
10357 	for_each_clamp_id(clamp_id) {
10358 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10359 			      uclamp_none(clamp_id), false);
10360 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10361 	}
10362 #endif
10363 }
10364 
10365 static void sched_free_group(struct task_group *tg)
10366 {
10367 	free_fair_sched_group(tg);
10368 	free_rt_sched_group(tg);
10369 	autogroup_free(tg);
10370 	kmem_cache_free(task_group_cache, tg);
10371 }
10372 
10373 static void sched_free_group_rcu(struct rcu_head *rcu)
10374 {
10375 	sched_free_group(container_of(rcu, struct task_group, rcu));
10376 }
10377 
10378 static void sched_unregister_group(struct task_group *tg)
10379 {
10380 	unregister_fair_sched_group(tg);
10381 	unregister_rt_sched_group(tg);
10382 	/*
10383 	 * We have to wait for yet another RCU grace period to expire, as
10384 	 * print_cfs_stats() might run concurrently.
10385 	 */
10386 	call_rcu(&tg->rcu, sched_free_group_rcu);
10387 }
10388 
10389 /* allocate runqueue etc for a new task group */
10390 struct task_group *sched_create_group(struct task_group *parent)
10391 {
10392 	struct task_group *tg;
10393 
10394 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10395 	if (!tg)
10396 		return ERR_PTR(-ENOMEM);
10397 
10398 	if (!alloc_fair_sched_group(tg, parent))
10399 		goto err;
10400 
10401 	if (!alloc_rt_sched_group(tg, parent))
10402 		goto err;
10403 
10404 	alloc_uclamp_sched_group(tg, parent);
10405 
10406 	return tg;
10407 
10408 err:
10409 	sched_free_group(tg);
10410 	return ERR_PTR(-ENOMEM);
10411 }
10412 
10413 void sched_online_group(struct task_group *tg, struct task_group *parent)
10414 {
10415 	unsigned long flags;
10416 
10417 	spin_lock_irqsave(&task_group_lock, flags);
10418 	list_add_rcu(&tg->list, &task_groups);
10419 
10420 	/* Root should already exist: */
10421 	WARN_ON(!parent);
10422 
10423 	tg->parent = parent;
10424 	INIT_LIST_HEAD(&tg->children);
10425 	list_add_rcu(&tg->siblings, &parent->children);
10426 	spin_unlock_irqrestore(&task_group_lock, flags);
10427 
10428 	online_fair_sched_group(tg);
10429 }
10430 
10431 /* rcu callback to free various structures associated with a task group */
10432 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10433 {
10434 	/* Now it should be safe to free those cfs_rqs: */
10435 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10436 }
10437 
10438 void sched_destroy_group(struct task_group *tg)
10439 {
10440 	/* Wait for possible concurrent references to cfs_rqs complete: */
10441 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10442 }
10443 
10444 void sched_release_group(struct task_group *tg)
10445 {
10446 	unsigned long flags;
10447 
10448 	/*
10449 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10450 	 * sched_cfs_period_timer()).
10451 	 *
10452 	 * For this to be effective, we have to wait for all pending users of
10453 	 * this task group to leave their RCU critical section to ensure no new
10454 	 * user will see our dying task group any more. Specifically ensure
10455 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10456 	 *
10457 	 * We therefore defer calling unregister_fair_sched_group() to
10458 	 * sched_unregister_group() which is guarantied to get called only after the
10459 	 * current RCU grace period has expired.
10460 	 */
10461 	spin_lock_irqsave(&task_group_lock, flags);
10462 	list_del_rcu(&tg->list);
10463 	list_del_rcu(&tg->siblings);
10464 	spin_unlock_irqrestore(&task_group_lock, flags);
10465 }
10466 
10467 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10468 {
10469 	struct task_group *tg;
10470 
10471 	/*
10472 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10473 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10474 	 * to prevent lockdep warnings.
10475 	 */
10476 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10477 			  struct task_group, css);
10478 	tg = autogroup_task_group(tsk, tg);
10479 
10480 	return tg;
10481 }
10482 
10483 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10484 {
10485 	tsk->sched_task_group = group;
10486 
10487 #ifdef CONFIG_FAIR_GROUP_SCHED
10488 	if (tsk->sched_class->task_change_group)
10489 		tsk->sched_class->task_change_group(tsk);
10490 	else
10491 #endif
10492 		set_task_rq(tsk, task_cpu(tsk));
10493 }
10494 
10495 /*
10496  * Change task's runqueue when it moves between groups.
10497  *
10498  * The caller of this function should have put the task in its new group by
10499  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10500  * its new group.
10501  */
10502 void sched_move_task(struct task_struct *tsk)
10503 {
10504 	int queued, running, queue_flags =
10505 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10506 	struct task_group *group;
10507 	struct rq_flags rf;
10508 	struct rq *rq;
10509 
10510 	rq = task_rq_lock(tsk, &rf);
10511 	/*
10512 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10513 	 * group changes.
10514 	 */
10515 	group = sched_get_task_group(tsk);
10516 	if (group == tsk->sched_task_group)
10517 		goto unlock;
10518 
10519 	update_rq_clock(rq);
10520 
10521 	running = task_current(rq, tsk);
10522 	queued = task_on_rq_queued(tsk);
10523 
10524 	if (queued)
10525 		dequeue_task(rq, tsk, queue_flags);
10526 	if (running)
10527 		put_prev_task(rq, tsk);
10528 
10529 	sched_change_group(tsk, group);
10530 
10531 	if (queued)
10532 		enqueue_task(rq, tsk, queue_flags);
10533 	if (running) {
10534 		set_next_task(rq, tsk);
10535 		/*
10536 		 * After changing group, the running task may have joined a
10537 		 * throttled one but it's still the running task. Trigger a
10538 		 * resched to make sure that task can still run.
10539 		 */
10540 		resched_curr(rq);
10541 	}
10542 
10543 unlock:
10544 	task_rq_unlock(rq, tsk, &rf);
10545 }
10546 
10547 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10548 {
10549 	return css ? container_of(css, struct task_group, css) : NULL;
10550 }
10551 
10552 static struct cgroup_subsys_state *
10553 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10554 {
10555 	struct task_group *parent = css_tg(parent_css);
10556 	struct task_group *tg;
10557 
10558 	if (!parent) {
10559 		/* This is early initialization for the top cgroup */
10560 		return &root_task_group.css;
10561 	}
10562 
10563 	tg = sched_create_group(parent);
10564 	if (IS_ERR(tg))
10565 		return ERR_PTR(-ENOMEM);
10566 
10567 	return &tg->css;
10568 }
10569 
10570 /* Expose task group only after completing cgroup initialization */
10571 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10572 {
10573 	struct task_group *tg = css_tg(css);
10574 	struct task_group *parent = css_tg(css->parent);
10575 
10576 	if (parent)
10577 		sched_online_group(tg, parent);
10578 
10579 #ifdef CONFIG_UCLAMP_TASK_GROUP
10580 	/* Propagate the effective uclamp value for the new group */
10581 	mutex_lock(&uclamp_mutex);
10582 	rcu_read_lock();
10583 	cpu_util_update_eff(css);
10584 	rcu_read_unlock();
10585 	mutex_unlock(&uclamp_mutex);
10586 #endif
10587 
10588 	return 0;
10589 }
10590 
10591 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10592 {
10593 	struct task_group *tg = css_tg(css);
10594 
10595 	sched_release_group(tg);
10596 }
10597 
10598 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10599 {
10600 	struct task_group *tg = css_tg(css);
10601 
10602 	/*
10603 	 * Relies on the RCU grace period between css_released() and this.
10604 	 */
10605 	sched_unregister_group(tg);
10606 }
10607 
10608 #ifdef CONFIG_RT_GROUP_SCHED
10609 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10610 {
10611 	struct task_struct *task;
10612 	struct cgroup_subsys_state *css;
10613 
10614 	cgroup_taskset_for_each(task, css, tset) {
10615 		if (!sched_rt_can_attach(css_tg(css), task))
10616 			return -EINVAL;
10617 	}
10618 	return 0;
10619 }
10620 #endif
10621 
10622 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10623 {
10624 	struct task_struct *task;
10625 	struct cgroup_subsys_state *css;
10626 
10627 	cgroup_taskset_for_each(task, css, tset)
10628 		sched_move_task(task);
10629 }
10630 
10631 #ifdef CONFIG_UCLAMP_TASK_GROUP
10632 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10633 {
10634 	struct cgroup_subsys_state *top_css = css;
10635 	struct uclamp_se *uc_parent = NULL;
10636 	struct uclamp_se *uc_se = NULL;
10637 	unsigned int eff[UCLAMP_CNT];
10638 	enum uclamp_id clamp_id;
10639 	unsigned int clamps;
10640 
10641 	lockdep_assert_held(&uclamp_mutex);
10642 	SCHED_WARN_ON(!rcu_read_lock_held());
10643 
10644 	css_for_each_descendant_pre(css, top_css) {
10645 		uc_parent = css_tg(css)->parent
10646 			? css_tg(css)->parent->uclamp : NULL;
10647 
10648 		for_each_clamp_id(clamp_id) {
10649 			/* Assume effective clamps matches requested clamps */
10650 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10651 			/* Cap effective clamps with parent's effective clamps */
10652 			if (uc_parent &&
10653 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10654 				eff[clamp_id] = uc_parent[clamp_id].value;
10655 			}
10656 		}
10657 		/* Ensure protection is always capped by limit */
10658 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10659 
10660 		/* Propagate most restrictive effective clamps */
10661 		clamps = 0x0;
10662 		uc_se = css_tg(css)->uclamp;
10663 		for_each_clamp_id(clamp_id) {
10664 			if (eff[clamp_id] == uc_se[clamp_id].value)
10665 				continue;
10666 			uc_se[clamp_id].value = eff[clamp_id];
10667 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10668 			clamps |= (0x1 << clamp_id);
10669 		}
10670 		if (!clamps) {
10671 			css = css_rightmost_descendant(css);
10672 			continue;
10673 		}
10674 
10675 		/* Immediately update descendants RUNNABLE tasks */
10676 		uclamp_update_active_tasks(css);
10677 	}
10678 }
10679 
10680 /*
10681  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10682  * C expression. Since there is no way to convert a macro argument (N) into a
10683  * character constant, use two levels of macros.
10684  */
10685 #define _POW10(exp) ((unsigned int)1e##exp)
10686 #define POW10(exp) _POW10(exp)
10687 
10688 struct uclamp_request {
10689 #define UCLAMP_PERCENT_SHIFT	2
10690 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10691 	s64 percent;
10692 	u64 util;
10693 	int ret;
10694 };
10695 
10696 static inline struct uclamp_request
10697 capacity_from_percent(char *buf)
10698 {
10699 	struct uclamp_request req = {
10700 		.percent = UCLAMP_PERCENT_SCALE,
10701 		.util = SCHED_CAPACITY_SCALE,
10702 		.ret = 0,
10703 	};
10704 
10705 	buf = strim(buf);
10706 	if (strcmp(buf, "max")) {
10707 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10708 					     &req.percent);
10709 		if (req.ret)
10710 			return req;
10711 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10712 			req.ret = -ERANGE;
10713 			return req;
10714 		}
10715 
10716 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10717 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10718 	}
10719 
10720 	return req;
10721 }
10722 
10723 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10724 				size_t nbytes, loff_t off,
10725 				enum uclamp_id clamp_id)
10726 {
10727 	struct uclamp_request req;
10728 	struct task_group *tg;
10729 
10730 	req = capacity_from_percent(buf);
10731 	if (req.ret)
10732 		return req.ret;
10733 
10734 	static_branch_enable(&sched_uclamp_used);
10735 
10736 	mutex_lock(&uclamp_mutex);
10737 	rcu_read_lock();
10738 
10739 	tg = css_tg(of_css(of));
10740 	if (tg->uclamp_req[clamp_id].value != req.util)
10741 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10742 
10743 	/*
10744 	 * Because of not recoverable conversion rounding we keep track of the
10745 	 * exact requested value
10746 	 */
10747 	tg->uclamp_pct[clamp_id] = req.percent;
10748 
10749 	/* Update effective clamps to track the most restrictive value */
10750 	cpu_util_update_eff(of_css(of));
10751 
10752 	rcu_read_unlock();
10753 	mutex_unlock(&uclamp_mutex);
10754 
10755 	return nbytes;
10756 }
10757 
10758 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10759 				    char *buf, size_t nbytes,
10760 				    loff_t off)
10761 {
10762 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10763 }
10764 
10765 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10766 				    char *buf, size_t nbytes,
10767 				    loff_t off)
10768 {
10769 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10770 }
10771 
10772 static inline void cpu_uclamp_print(struct seq_file *sf,
10773 				    enum uclamp_id clamp_id)
10774 {
10775 	struct task_group *tg;
10776 	u64 util_clamp;
10777 	u64 percent;
10778 	u32 rem;
10779 
10780 	rcu_read_lock();
10781 	tg = css_tg(seq_css(sf));
10782 	util_clamp = tg->uclamp_req[clamp_id].value;
10783 	rcu_read_unlock();
10784 
10785 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10786 		seq_puts(sf, "max\n");
10787 		return;
10788 	}
10789 
10790 	percent = tg->uclamp_pct[clamp_id];
10791 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10792 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10793 }
10794 
10795 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10796 {
10797 	cpu_uclamp_print(sf, UCLAMP_MIN);
10798 	return 0;
10799 }
10800 
10801 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10802 {
10803 	cpu_uclamp_print(sf, UCLAMP_MAX);
10804 	return 0;
10805 }
10806 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10807 
10808 #ifdef CONFIG_FAIR_GROUP_SCHED
10809 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10810 				struct cftype *cftype, u64 shareval)
10811 {
10812 	if (shareval > scale_load_down(ULONG_MAX))
10813 		shareval = MAX_SHARES;
10814 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10815 }
10816 
10817 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10818 			       struct cftype *cft)
10819 {
10820 	struct task_group *tg = css_tg(css);
10821 
10822 	return (u64) scale_load_down(tg->shares);
10823 }
10824 
10825 #ifdef CONFIG_CFS_BANDWIDTH
10826 static DEFINE_MUTEX(cfs_constraints_mutex);
10827 
10828 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10829 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10830 /* More than 203 days if BW_SHIFT equals 20. */
10831 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10832 
10833 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10834 
10835 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10836 				u64 burst)
10837 {
10838 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10839 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10840 
10841 	if (tg == &root_task_group)
10842 		return -EINVAL;
10843 
10844 	/*
10845 	 * Ensure we have at some amount of bandwidth every period.  This is
10846 	 * to prevent reaching a state of large arrears when throttled via
10847 	 * entity_tick() resulting in prolonged exit starvation.
10848 	 */
10849 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10850 		return -EINVAL;
10851 
10852 	/*
10853 	 * Likewise, bound things on the other side by preventing insane quota
10854 	 * periods.  This also allows us to normalize in computing quota
10855 	 * feasibility.
10856 	 */
10857 	if (period > max_cfs_quota_period)
10858 		return -EINVAL;
10859 
10860 	/*
10861 	 * Bound quota to defend quota against overflow during bandwidth shift.
10862 	 */
10863 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10864 		return -EINVAL;
10865 
10866 	if (quota != RUNTIME_INF && (burst > quota ||
10867 				     burst + quota > max_cfs_runtime))
10868 		return -EINVAL;
10869 
10870 	/*
10871 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10872 	 * unthrottle_offline_cfs_rqs().
10873 	 */
10874 	cpus_read_lock();
10875 	mutex_lock(&cfs_constraints_mutex);
10876 	ret = __cfs_schedulable(tg, period, quota);
10877 	if (ret)
10878 		goto out_unlock;
10879 
10880 	runtime_enabled = quota != RUNTIME_INF;
10881 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10882 	/*
10883 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10884 	 * before making related changes, and on->off must occur afterwards
10885 	 */
10886 	if (runtime_enabled && !runtime_was_enabled)
10887 		cfs_bandwidth_usage_inc();
10888 	raw_spin_lock_irq(&cfs_b->lock);
10889 	cfs_b->period = ns_to_ktime(period);
10890 	cfs_b->quota = quota;
10891 	cfs_b->burst = burst;
10892 
10893 	__refill_cfs_bandwidth_runtime(cfs_b);
10894 
10895 	/* Restart the period timer (if active) to handle new period expiry: */
10896 	if (runtime_enabled)
10897 		start_cfs_bandwidth(cfs_b);
10898 
10899 	raw_spin_unlock_irq(&cfs_b->lock);
10900 
10901 	for_each_online_cpu(i) {
10902 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10903 		struct rq *rq = cfs_rq->rq;
10904 		struct rq_flags rf;
10905 
10906 		rq_lock_irq(rq, &rf);
10907 		cfs_rq->runtime_enabled = runtime_enabled;
10908 		cfs_rq->runtime_remaining = 0;
10909 
10910 		if (cfs_rq->throttled)
10911 			unthrottle_cfs_rq(cfs_rq);
10912 		rq_unlock_irq(rq, &rf);
10913 	}
10914 	if (runtime_was_enabled && !runtime_enabled)
10915 		cfs_bandwidth_usage_dec();
10916 out_unlock:
10917 	mutex_unlock(&cfs_constraints_mutex);
10918 	cpus_read_unlock();
10919 
10920 	return ret;
10921 }
10922 
10923 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10924 {
10925 	u64 quota, period, burst;
10926 
10927 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10928 	burst = tg->cfs_bandwidth.burst;
10929 	if (cfs_quota_us < 0)
10930 		quota = RUNTIME_INF;
10931 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10932 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10933 	else
10934 		return -EINVAL;
10935 
10936 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10937 }
10938 
10939 static long tg_get_cfs_quota(struct task_group *tg)
10940 {
10941 	u64 quota_us;
10942 
10943 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10944 		return -1;
10945 
10946 	quota_us = tg->cfs_bandwidth.quota;
10947 	do_div(quota_us, NSEC_PER_USEC);
10948 
10949 	return quota_us;
10950 }
10951 
10952 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10953 {
10954 	u64 quota, period, burst;
10955 
10956 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10957 		return -EINVAL;
10958 
10959 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10960 	quota = tg->cfs_bandwidth.quota;
10961 	burst = tg->cfs_bandwidth.burst;
10962 
10963 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10964 }
10965 
10966 static long tg_get_cfs_period(struct task_group *tg)
10967 {
10968 	u64 cfs_period_us;
10969 
10970 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10971 	do_div(cfs_period_us, NSEC_PER_USEC);
10972 
10973 	return cfs_period_us;
10974 }
10975 
10976 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10977 {
10978 	u64 quota, period, burst;
10979 
10980 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10981 		return -EINVAL;
10982 
10983 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10984 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10985 	quota = tg->cfs_bandwidth.quota;
10986 
10987 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10988 }
10989 
10990 static long tg_get_cfs_burst(struct task_group *tg)
10991 {
10992 	u64 burst_us;
10993 
10994 	burst_us = tg->cfs_bandwidth.burst;
10995 	do_div(burst_us, NSEC_PER_USEC);
10996 
10997 	return burst_us;
10998 }
10999 
11000 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11001 				  struct cftype *cft)
11002 {
11003 	return tg_get_cfs_quota(css_tg(css));
11004 }
11005 
11006 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11007 				   struct cftype *cftype, s64 cfs_quota_us)
11008 {
11009 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11010 }
11011 
11012 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11013 				   struct cftype *cft)
11014 {
11015 	return tg_get_cfs_period(css_tg(css));
11016 }
11017 
11018 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11019 				    struct cftype *cftype, u64 cfs_period_us)
11020 {
11021 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11022 }
11023 
11024 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11025 				  struct cftype *cft)
11026 {
11027 	return tg_get_cfs_burst(css_tg(css));
11028 }
11029 
11030 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11031 				   struct cftype *cftype, u64 cfs_burst_us)
11032 {
11033 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11034 }
11035 
11036 struct cfs_schedulable_data {
11037 	struct task_group *tg;
11038 	u64 period, quota;
11039 };
11040 
11041 /*
11042  * normalize group quota/period to be quota/max_period
11043  * note: units are usecs
11044  */
11045 static u64 normalize_cfs_quota(struct task_group *tg,
11046 			       struct cfs_schedulable_data *d)
11047 {
11048 	u64 quota, period;
11049 
11050 	if (tg == d->tg) {
11051 		period = d->period;
11052 		quota = d->quota;
11053 	} else {
11054 		period = tg_get_cfs_period(tg);
11055 		quota = tg_get_cfs_quota(tg);
11056 	}
11057 
11058 	/* note: these should typically be equivalent */
11059 	if (quota == RUNTIME_INF || quota == -1)
11060 		return RUNTIME_INF;
11061 
11062 	return to_ratio(period, quota);
11063 }
11064 
11065 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11066 {
11067 	struct cfs_schedulable_data *d = data;
11068 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11069 	s64 quota = 0, parent_quota = -1;
11070 
11071 	if (!tg->parent) {
11072 		quota = RUNTIME_INF;
11073 	} else {
11074 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11075 
11076 		quota = normalize_cfs_quota(tg, d);
11077 		parent_quota = parent_b->hierarchical_quota;
11078 
11079 		/*
11080 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11081 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11082 		 * inherit when no limit is set. In both cases this is used
11083 		 * by the scheduler to determine if a given CFS task has a
11084 		 * bandwidth constraint at some higher level.
11085 		 */
11086 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11087 			if (quota == RUNTIME_INF)
11088 				quota = parent_quota;
11089 			else if (parent_quota != RUNTIME_INF)
11090 				quota = min(quota, parent_quota);
11091 		} else {
11092 			if (quota == RUNTIME_INF)
11093 				quota = parent_quota;
11094 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11095 				return -EINVAL;
11096 		}
11097 	}
11098 	cfs_b->hierarchical_quota = quota;
11099 
11100 	return 0;
11101 }
11102 
11103 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11104 {
11105 	int ret;
11106 	struct cfs_schedulable_data data = {
11107 		.tg = tg,
11108 		.period = period,
11109 		.quota = quota,
11110 	};
11111 
11112 	if (quota != RUNTIME_INF) {
11113 		do_div(data.period, NSEC_PER_USEC);
11114 		do_div(data.quota, NSEC_PER_USEC);
11115 	}
11116 
11117 	rcu_read_lock();
11118 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11119 	rcu_read_unlock();
11120 
11121 	return ret;
11122 }
11123 
11124 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11125 {
11126 	struct task_group *tg = css_tg(seq_css(sf));
11127 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11128 
11129 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11130 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11131 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11132 
11133 	if (schedstat_enabled() && tg != &root_task_group) {
11134 		struct sched_statistics *stats;
11135 		u64 ws = 0;
11136 		int i;
11137 
11138 		for_each_possible_cpu(i) {
11139 			stats = __schedstats_from_se(tg->se[i]);
11140 			ws += schedstat_val(stats->wait_sum);
11141 		}
11142 
11143 		seq_printf(sf, "wait_sum %llu\n", ws);
11144 	}
11145 
11146 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11147 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11148 
11149 	return 0;
11150 }
11151 
11152 static u64 throttled_time_self(struct task_group *tg)
11153 {
11154 	int i;
11155 	u64 total = 0;
11156 
11157 	for_each_possible_cpu(i) {
11158 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11159 	}
11160 
11161 	return total;
11162 }
11163 
11164 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11165 {
11166 	struct task_group *tg = css_tg(seq_css(sf));
11167 
11168 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11169 
11170 	return 0;
11171 }
11172 #endif /* CONFIG_CFS_BANDWIDTH */
11173 #endif /* CONFIG_FAIR_GROUP_SCHED */
11174 
11175 #ifdef CONFIG_RT_GROUP_SCHED
11176 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11177 				struct cftype *cft, s64 val)
11178 {
11179 	return sched_group_set_rt_runtime(css_tg(css), val);
11180 }
11181 
11182 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11183 			       struct cftype *cft)
11184 {
11185 	return sched_group_rt_runtime(css_tg(css));
11186 }
11187 
11188 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11189 				    struct cftype *cftype, u64 rt_period_us)
11190 {
11191 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11192 }
11193 
11194 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11195 				   struct cftype *cft)
11196 {
11197 	return sched_group_rt_period(css_tg(css));
11198 }
11199 #endif /* CONFIG_RT_GROUP_SCHED */
11200 
11201 #ifdef CONFIG_FAIR_GROUP_SCHED
11202 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11203 			       struct cftype *cft)
11204 {
11205 	return css_tg(css)->idle;
11206 }
11207 
11208 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11209 				struct cftype *cft, s64 idle)
11210 {
11211 	return sched_group_set_idle(css_tg(css), idle);
11212 }
11213 #endif
11214 
11215 static struct cftype cpu_legacy_files[] = {
11216 #ifdef CONFIG_FAIR_GROUP_SCHED
11217 	{
11218 		.name = "shares",
11219 		.read_u64 = cpu_shares_read_u64,
11220 		.write_u64 = cpu_shares_write_u64,
11221 	},
11222 	{
11223 		.name = "idle",
11224 		.read_s64 = cpu_idle_read_s64,
11225 		.write_s64 = cpu_idle_write_s64,
11226 	},
11227 #endif
11228 #ifdef CONFIG_CFS_BANDWIDTH
11229 	{
11230 		.name = "cfs_quota_us",
11231 		.read_s64 = cpu_cfs_quota_read_s64,
11232 		.write_s64 = cpu_cfs_quota_write_s64,
11233 	},
11234 	{
11235 		.name = "cfs_period_us",
11236 		.read_u64 = cpu_cfs_period_read_u64,
11237 		.write_u64 = cpu_cfs_period_write_u64,
11238 	},
11239 	{
11240 		.name = "cfs_burst_us",
11241 		.read_u64 = cpu_cfs_burst_read_u64,
11242 		.write_u64 = cpu_cfs_burst_write_u64,
11243 	},
11244 	{
11245 		.name = "stat",
11246 		.seq_show = cpu_cfs_stat_show,
11247 	},
11248 	{
11249 		.name = "stat.local",
11250 		.seq_show = cpu_cfs_local_stat_show,
11251 	},
11252 #endif
11253 #ifdef CONFIG_RT_GROUP_SCHED
11254 	{
11255 		.name = "rt_runtime_us",
11256 		.read_s64 = cpu_rt_runtime_read,
11257 		.write_s64 = cpu_rt_runtime_write,
11258 	},
11259 	{
11260 		.name = "rt_period_us",
11261 		.read_u64 = cpu_rt_period_read_uint,
11262 		.write_u64 = cpu_rt_period_write_uint,
11263 	},
11264 #endif
11265 #ifdef CONFIG_UCLAMP_TASK_GROUP
11266 	{
11267 		.name = "uclamp.min",
11268 		.flags = CFTYPE_NOT_ON_ROOT,
11269 		.seq_show = cpu_uclamp_min_show,
11270 		.write = cpu_uclamp_min_write,
11271 	},
11272 	{
11273 		.name = "uclamp.max",
11274 		.flags = CFTYPE_NOT_ON_ROOT,
11275 		.seq_show = cpu_uclamp_max_show,
11276 		.write = cpu_uclamp_max_write,
11277 	},
11278 #endif
11279 	{ }	/* Terminate */
11280 };
11281 
11282 static int cpu_extra_stat_show(struct seq_file *sf,
11283 			       struct cgroup_subsys_state *css)
11284 {
11285 #ifdef CONFIG_CFS_BANDWIDTH
11286 	{
11287 		struct task_group *tg = css_tg(css);
11288 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11289 		u64 throttled_usec, burst_usec;
11290 
11291 		throttled_usec = cfs_b->throttled_time;
11292 		do_div(throttled_usec, NSEC_PER_USEC);
11293 		burst_usec = cfs_b->burst_time;
11294 		do_div(burst_usec, NSEC_PER_USEC);
11295 
11296 		seq_printf(sf, "nr_periods %d\n"
11297 			   "nr_throttled %d\n"
11298 			   "throttled_usec %llu\n"
11299 			   "nr_bursts %d\n"
11300 			   "burst_usec %llu\n",
11301 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11302 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11303 	}
11304 #endif
11305 	return 0;
11306 }
11307 
11308 static int cpu_local_stat_show(struct seq_file *sf,
11309 			       struct cgroup_subsys_state *css)
11310 {
11311 #ifdef CONFIG_CFS_BANDWIDTH
11312 	{
11313 		struct task_group *tg = css_tg(css);
11314 		u64 throttled_self_usec;
11315 
11316 		throttled_self_usec = throttled_time_self(tg);
11317 		do_div(throttled_self_usec, NSEC_PER_USEC);
11318 
11319 		seq_printf(sf, "throttled_usec %llu\n",
11320 			   throttled_self_usec);
11321 	}
11322 #endif
11323 	return 0;
11324 }
11325 
11326 #ifdef CONFIG_FAIR_GROUP_SCHED
11327 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11328 			       struct cftype *cft)
11329 {
11330 	struct task_group *tg = css_tg(css);
11331 	u64 weight = scale_load_down(tg->shares);
11332 
11333 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11334 }
11335 
11336 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11337 				struct cftype *cft, u64 weight)
11338 {
11339 	/*
11340 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11341 	 * values which are 1, 100 and 10000 respectively.  While it loses
11342 	 * a bit of range on both ends, it maps pretty well onto the shares
11343 	 * value used by scheduler and the round-trip conversions preserve
11344 	 * the original value over the entire range.
11345 	 */
11346 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11347 		return -ERANGE;
11348 
11349 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11350 
11351 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11352 }
11353 
11354 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11355 				    struct cftype *cft)
11356 {
11357 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11358 	int last_delta = INT_MAX;
11359 	int prio, delta;
11360 
11361 	/* find the closest nice value to the current weight */
11362 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11363 		delta = abs(sched_prio_to_weight[prio] - weight);
11364 		if (delta >= last_delta)
11365 			break;
11366 		last_delta = delta;
11367 	}
11368 
11369 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11370 }
11371 
11372 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11373 				     struct cftype *cft, s64 nice)
11374 {
11375 	unsigned long weight;
11376 	int idx;
11377 
11378 	if (nice < MIN_NICE || nice > MAX_NICE)
11379 		return -ERANGE;
11380 
11381 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11382 	idx = array_index_nospec(idx, 40);
11383 	weight = sched_prio_to_weight[idx];
11384 
11385 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11386 }
11387 #endif
11388 
11389 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11390 						  long period, long quota)
11391 {
11392 	if (quota < 0)
11393 		seq_puts(sf, "max");
11394 	else
11395 		seq_printf(sf, "%ld", quota);
11396 
11397 	seq_printf(sf, " %ld\n", period);
11398 }
11399 
11400 /* caller should put the current value in *@periodp before calling */
11401 static int __maybe_unused cpu_period_quota_parse(char *buf,
11402 						 u64 *periodp, u64 *quotap)
11403 {
11404 	char tok[21];	/* U64_MAX */
11405 
11406 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11407 		return -EINVAL;
11408 
11409 	*periodp *= NSEC_PER_USEC;
11410 
11411 	if (sscanf(tok, "%llu", quotap))
11412 		*quotap *= NSEC_PER_USEC;
11413 	else if (!strcmp(tok, "max"))
11414 		*quotap = RUNTIME_INF;
11415 	else
11416 		return -EINVAL;
11417 
11418 	return 0;
11419 }
11420 
11421 #ifdef CONFIG_CFS_BANDWIDTH
11422 static int cpu_max_show(struct seq_file *sf, void *v)
11423 {
11424 	struct task_group *tg = css_tg(seq_css(sf));
11425 
11426 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11427 	return 0;
11428 }
11429 
11430 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11431 			     char *buf, size_t nbytes, loff_t off)
11432 {
11433 	struct task_group *tg = css_tg(of_css(of));
11434 	u64 period = tg_get_cfs_period(tg);
11435 	u64 burst = tg_get_cfs_burst(tg);
11436 	u64 quota;
11437 	int ret;
11438 
11439 	ret = cpu_period_quota_parse(buf, &period, &quota);
11440 	if (!ret)
11441 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11442 	return ret ?: nbytes;
11443 }
11444 #endif
11445 
11446 static struct cftype cpu_files[] = {
11447 #ifdef CONFIG_FAIR_GROUP_SCHED
11448 	{
11449 		.name = "weight",
11450 		.flags = CFTYPE_NOT_ON_ROOT,
11451 		.read_u64 = cpu_weight_read_u64,
11452 		.write_u64 = cpu_weight_write_u64,
11453 	},
11454 	{
11455 		.name = "weight.nice",
11456 		.flags = CFTYPE_NOT_ON_ROOT,
11457 		.read_s64 = cpu_weight_nice_read_s64,
11458 		.write_s64 = cpu_weight_nice_write_s64,
11459 	},
11460 	{
11461 		.name = "idle",
11462 		.flags = CFTYPE_NOT_ON_ROOT,
11463 		.read_s64 = cpu_idle_read_s64,
11464 		.write_s64 = cpu_idle_write_s64,
11465 	},
11466 #endif
11467 #ifdef CONFIG_CFS_BANDWIDTH
11468 	{
11469 		.name = "max",
11470 		.flags = CFTYPE_NOT_ON_ROOT,
11471 		.seq_show = cpu_max_show,
11472 		.write = cpu_max_write,
11473 	},
11474 	{
11475 		.name = "max.burst",
11476 		.flags = CFTYPE_NOT_ON_ROOT,
11477 		.read_u64 = cpu_cfs_burst_read_u64,
11478 		.write_u64 = cpu_cfs_burst_write_u64,
11479 	},
11480 #endif
11481 #ifdef CONFIG_UCLAMP_TASK_GROUP
11482 	{
11483 		.name = "uclamp.min",
11484 		.flags = CFTYPE_NOT_ON_ROOT,
11485 		.seq_show = cpu_uclamp_min_show,
11486 		.write = cpu_uclamp_min_write,
11487 	},
11488 	{
11489 		.name = "uclamp.max",
11490 		.flags = CFTYPE_NOT_ON_ROOT,
11491 		.seq_show = cpu_uclamp_max_show,
11492 		.write = cpu_uclamp_max_write,
11493 	},
11494 #endif
11495 	{ }	/* terminate */
11496 };
11497 
11498 struct cgroup_subsys cpu_cgrp_subsys = {
11499 	.css_alloc	= cpu_cgroup_css_alloc,
11500 	.css_online	= cpu_cgroup_css_online,
11501 	.css_released	= cpu_cgroup_css_released,
11502 	.css_free	= cpu_cgroup_css_free,
11503 	.css_extra_stat_show = cpu_extra_stat_show,
11504 	.css_local_stat_show = cpu_local_stat_show,
11505 #ifdef CONFIG_RT_GROUP_SCHED
11506 	.can_attach	= cpu_cgroup_can_attach,
11507 #endif
11508 	.attach		= cpu_cgroup_attach,
11509 	.legacy_cftypes	= cpu_legacy_files,
11510 	.dfl_cftypes	= cpu_files,
11511 	.early_init	= true,
11512 	.threaded	= true,
11513 };
11514 
11515 #endif	/* CONFIG_CGROUP_SCHED */
11516 
11517 void dump_cpu_task(int cpu)
11518 {
11519 	if (cpu == smp_processor_id() && in_hardirq()) {
11520 		struct pt_regs *regs;
11521 
11522 		regs = get_irq_regs();
11523 		if (regs) {
11524 			show_regs(regs);
11525 			return;
11526 		}
11527 	}
11528 
11529 	if (trigger_single_cpu_backtrace(cpu))
11530 		return;
11531 
11532 	pr_info("Task dump for CPU %d:\n", cpu);
11533 	sched_show_task(cpu_curr(cpu));
11534 }
11535 
11536 /*
11537  * Nice levels are multiplicative, with a gentle 10% change for every
11538  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11539  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11540  * that remained on nice 0.
11541  *
11542  * The "10% effect" is relative and cumulative: from _any_ nice level,
11543  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11544  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11545  * If a task goes up by ~10% and another task goes down by ~10% then
11546  * the relative distance between them is ~25%.)
11547  */
11548 const int sched_prio_to_weight[40] = {
11549  /* -20 */     88761,     71755,     56483,     46273,     36291,
11550  /* -15 */     29154,     23254,     18705,     14949,     11916,
11551  /* -10 */      9548,      7620,      6100,      4904,      3906,
11552  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11553  /*   0 */      1024,       820,       655,       526,       423,
11554  /*   5 */       335,       272,       215,       172,       137,
11555  /*  10 */       110,        87,        70,        56,        45,
11556  /*  15 */        36,        29,        23,        18,        15,
11557 };
11558 
11559 /*
11560  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11561  *
11562  * In cases where the weight does not change often, we can use the
11563  * precalculated inverse to speed up arithmetics by turning divisions
11564  * into multiplications:
11565  */
11566 const u32 sched_prio_to_wmult[40] = {
11567  /* -20 */     48388,     59856,     76040,     92818,    118348,
11568  /* -15 */    147320,    184698,    229616,    287308,    360437,
11569  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11570  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11571  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11572  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11573  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11574  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11575 };
11576 
11577 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11578 {
11579         trace_sched_update_nr_running_tp(rq, count);
11580 }
11581 
11582 #ifdef CONFIG_SCHED_MM_CID
11583 
11584 /*
11585  * @cid_lock: Guarantee forward-progress of cid allocation.
11586  *
11587  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11588  * is only used when contention is detected by the lock-free allocation so
11589  * forward progress can be guaranteed.
11590  */
11591 DEFINE_RAW_SPINLOCK(cid_lock);
11592 
11593 /*
11594  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11595  *
11596  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11597  * detected, it is set to 1 to ensure that all newly coming allocations are
11598  * serialized by @cid_lock until the allocation which detected contention
11599  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11600  * of a cid allocation.
11601  */
11602 int use_cid_lock;
11603 
11604 /*
11605  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11606  * concurrently with respect to the execution of the source runqueue context
11607  * switch.
11608  *
11609  * There is one basic properties we want to guarantee here:
11610  *
11611  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11612  * used by a task. That would lead to concurrent allocation of the cid and
11613  * userspace corruption.
11614  *
11615  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11616  * that a pair of loads observe at least one of a pair of stores, which can be
11617  * shown as:
11618  *
11619  *      X = Y = 0
11620  *
11621  *      w[X]=1          w[Y]=1
11622  *      MB              MB
11623  *      r[Y]=y          r[X]=x
11624  *
11625  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11626  * values 0 and 1, this algorithm cares about specific state transitions of the
11627  * runqueue current task (as updated by the scheduler context switch), and the
11628  * per-mm/cpu cid value.
11629  *
11630  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11631  * task->mm != mm for the rest of the discussion. There are two scheduler state
11632  * transitions on context switch we care about:
11633  *
11634  * (TSA) Store to rq->curr with transition from (N) to (Y)
11635  *
11636  * (TSB) Store to rq->curr with transition from (Y) to (N)
11637  *
11638  * On the remote-clear side, there is one transition we care about:
11639  *
11640  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11641  *
11642  * There is also a transition to UNSET state which can be performed from all
11643  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11644  * guarantees that only a single thread will succeed:
11645  *
11646  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11647  *
11648  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11649  * when a thread is actively using the cid (property (1)).
11650  *
11651  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11652  *
11653  * Scenario A) (TSA)+(TMA) (from next task perspective)
11654  *
11655  * CPU0                                      CPU1
11656  *
11657  * Context switch CS-1                       Remote-clear
11658  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11659  *                                             (implied barrier after cmpxchg)
11660  *   - switch_mm_cid()
11661  *     - memory barrier (see switch_mm_cid()
11662  *       comment explaining how this barrier
11663  *       is combined with other scheduler
11664  *       barriers)
11665  *     - mm_cid_get (next)
11666  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11667  *
11668  * This Dekker ensures that either task (Y) is observed by the
11669  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11670  * observed.
11671  *
11672  * If task (Y) store is observed by rcu_dereference(), it means that there is
11673  * still an active task on the cpu. Remote-clear will therefore not transition
11674  * to UNSET, which fulfills property (1).
11675  *
11676  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11677  * it will move its state to UNSET, which clears the percpu cid perhaps
11678  * uselessly (which is not an issue for correctness). Because task (Y) is not
11679  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11680  * state to UNSET is done with a cmpxchg expecting that the old state has the
11681  * LAZY flag set, only one thread will successfully UNSET.
11682  *
11683  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11684  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11685  * CPU1 will observe task (Y) and do nothing more, which is fine.
11686  *
11687  * What we are effectively preventing with this Dekker is a scenario where
11688  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11689  * because this would UNSET a cid which is actively used.
11690  */
11691 
11692 void sched_mm_cid_migrate_from(struct task_struct *t)
11693 {
11694 	t->migrate_from_cpu = task_cpu(t);
11695 }
11696 
11697 static
11698 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11699 					  struct task_struct *t,
11700 					  struct mm_cid *src_pcpu_cid)
11701 {
11702 	struct mm_struct *mm = t->mm;
11703 	struct task_struct *src_task;
11704 	int src_cid, last_mm_cid;
11705 
11706 	if (!mm)
11707 		return -1;
11708 
11709 	last_mm_cid = t->last_mm_cid;
11710 	/*
11711 	 * If the migrated task has no last cid, or if the current
11712 	 * task on src rq uses the cid, it means the source cid does not need
11713 	 * to be moved to the destination cpu.
11714 	 */
11715 	if (last_mm_cid == -1)
11716 		return -1;
11717 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11718 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11719 		return -1;
11720 
11721 	/*
11722 	 * If we observe an active task using the mm on this rq, it means we
11723 	 * are not the last task to be migrated from this cpu for this mm, so
11724 	 * there is no need to move src_cid to the destination cpu.
11725 	 */
11726 	rcu_read_lock();
11727 	src_task = rcu_dereference(src_rq->curr);
11728 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11729 		rcu_read_unlock();
11730 		t->last_mm_cid = -1;
11731 		return -1;
11732 	}
11733 	rcu_read_unlock();
11734 
11735 	return src_cid;
11736 }
11737 
11738 static
11739 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11740 					      struct task_struct *t,
11741 					      struct mm_cid *src_pcpu_cid,
11742 					      int src_cid)
11743 {
11744 	struct task_struct *src_task;
11745 	struct mm_struct *mm = t->mm;
11746 	int lazy_cid;
11747 
11748 	if (src_cid == -1)
11749 		return -1;
11750 
11751 	/*
11752 	 * Attempt to clear the source cpu cid to move it to the destination
11753 	 * cpu.
11754 	 */
11755 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11756 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11757 		return -1;
11758 
11759 	/*
11760 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11761 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11762 	 * between store to rq->curr and load of prev and next task's
11763 	 * per-mm/cpu cid.
11764 	 *
11765 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11766 	 * rq->curr->mm_cid_active matches the barrier in
11767 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11768 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11769 	 * load of per-mm/cpu cid.
11770 	 */
11771 
11772 	/*
11773 	 * If we observe an active task using the mm on this rq after setting
11774 	 * the lazy-put flag, this task will be responsible for transitioning
11775 	 * from lazy-put flag set to MM_CID_UNSET.
11776 	 */
11777 	rcu_read_lock();
11778 	src_task = rcu_dereference(src_rq->curr);
11779 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11780 		rcu_read_unlock();
11781 		/*
11782 		 * We observed an active task for this mm, there is therefore
11783 		 * no point in moving this cid to the destination cpu.
11784 		 */
11785 		t->last_mm_cid = -1;
11786 		return -1;
11787 	}
11788 	rcu_read_unlock();
11789 
11790 	/*
11791 	 * The src_cid is unused, so it can be unset.
11792 	 */
11793 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11794 		return -1;
11795 	return src_cid;
11796 }
11797 
11798 /*
11799  * Migration to dst cpu. Called with dst_rq lock held.
11800  * Interrupts are disabled, which keeps the window of cid ownership without the
11801  * source rq lock held small.
11802  */
11803 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11804 {
11805 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11806 	struct mm_struct *mm = t->mm;
11807 	int src_cid, dst_cid, src_cpu;
11808 	struct rq *src_rq;
11809 
11810 	lockdep_assert_rq_held(dst_rq);
11811 
11812 	if (!mm)
11813 		return;
11814 	src_cpu = t->migrate_from_cpu;
11815 	if (src_cpu == -1) {
11816 		t->last_mm_cid = -1;
11817 		return;
11818 	}
11819 	/*
11820 	 * Move the src cid if the dst cid is unset. This keeps id
11821 	 * allocation closest to 0 in cases where few threads migrate around
11822 	 * many cpus.
11823 	 *
11824 	 * If destination cid is already set, we may have to just clear
11825 	 * the src cid to ensure compactness in frequent migrations
11826 	 * scenarios.
11827 	 *
11828 	 * It is not useful to clear the src cid when the number of threads is
11829 	 * greater or equal to the number of allowed cpus, because user-space
11830 	 * can expect that the number of allowed cids can reach the number of
11831 	 * allowed cpus.
11832 	 */
11833 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11834 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11835 	if (!mm_cid_is_unset(dst_cid) &&
11836 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11837 		return;
11838 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11839 	src_rq = cpu_rq(src_cpu);
11840 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11841 	if (src_cid == -1)
11842 		return;
11843 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11844 							    src_cid);
11845 	if (src_cid == -1)
11846 		return;
11847 	if (!mm_cid_is_unset(dst_cid)) {
11848 		__mm_cid_put(mm, src_cid);
11849 		return;
11850 	}
11851 	/* Move src_cid to dst cpu. */
11852 	mm_cid_snapshot_time(dst_rq, mm);
11853 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11854 }
11855 
11856 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11857 				      int cpu)
11858 {
11859 	struct rq *rq = cpu_rq(cpu);
11860 	struct task_struct *t;
11861 	unsigned long flags;
11862 	int cid, lazy_cid;
11863 
11864 	cid = READ_ONCE(pcpu_cid->cid);
11865 	if (!mm_cid_is_valid(cid))
11866 		return;
11867 
11868 	/*
11869 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11870 	 * there happens to be other tasks left on the source cpu using this
11871 	 * mm, the next task using this mm will reallocate its cid on context
11872 	 * switch.
11873 	 */
11874 	lazy_cid = mm_cid_set_lazy_put(cid);
11875 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11876 		return;
11877 
11878 	/*
11879 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11880 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11881 	 * between store to rq->curr and load of prev and next task's
11882 	 * per-mm/cpu cid.
11883 	 *
11884 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11885 	 * rq->curr->mm_cid_active matches the barrier in
11886 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11887 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11888 	 * load of per-mm/cpu cid.
11889 	 */
11890 
11891 	/*
11892 	 * If we observe an active task using the mm on this rq after setting
11893 	 * the lazy-put flag, that task will be responsible for transitioning
11894 	 * from lazy-put flag set to MM_CID_UNSET.
11895 	 */
11896 	rcu_read_lock();
11897 	t = rcu_dereference(rq->curr);
11898 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11899 		rcu_read_unlock();
11900 		return;
11901 	}
11902 	rcu_read_unlock();
11903 
11904 	/*
11905 	 * The cid is unused, so it can be unset.
11906 	 * Disable interrupts to keep the window of cid ownership without rq
11907 	 * lock small.
11908 	 */
11909 	local_irq_save(flags);
11910 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11911 		__mm_cid_put(mm, cid);
11912 	local_irq_restore(flags);
11913 }
11914 
11915 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11916 {
11917 	struct rq *rq = cpu_rq(cpu);
11918 	struct mm_cid *pcpu_cid;
11919 	struct task_struct *curr;
11920 	u64 rq_clock;
11921 
11922 	/*
11923 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11924 	 * while is irrelevant.
11925 	 */
11926 	rq_clock = READ_ONCE(rq->clock);
11927 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11928 
11929 	/*
11930 	 * In order to take care of infrequently scheduled tasks, bump the time
11931 	 * snapshot associated with this cid if an active task using the mm is
11932 	 * observed on this rq.
11933 	 */
11934 	rcu_read_lock();
11935 	curr = rcu_dereference(rq->curr);
11936 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11937 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11938 		rcu_read_unlock();
11939 		return;
11940 	}
11941 	rcu_read_unlock();
11942 
11943 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11944 		return;
11945 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11946 }
11947 
11948 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11949 					     int weight)
11950 {
11951 	struct mm_cid *pcpu_cid;
11952 	int cid;
11953 
11954 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11955 	cid = READ_ONCE(pcpu_cid->cid);
11956 	if (!mm_cid_is_valid(cid) || cid < weight)
11957 		return;
11958 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11959 }
11960 
11961 static void task_mm_cid_work(struct callback_head *work)
11962 {
11963 	unsigned long now = jiffies, old_scan, next_scan;
11964 	struct task_struct *t = current;
11965 	struct cpumask *cidmask;
11966 	struct mm_struct *mm;
11967 	int weight, cpu;
11968 
11969 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11970 
11971 	work->next = work;	/* Prevent double-add */
11972 	if (t->flags & PF_EXITING)
11973 		return;
11974 	mm = t->mm;
11975 	if (!mm)
11976 		return;
11977 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11978 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11979 	if (!old_scan) {
11980 		unsigned long res;
11981 
11982 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11983 		if (res != old_scan)
11984 			old_scan = res;
11985 		else
11986 			old_scan = next_scan;
11987 	}
11988 	if (time_before(now, old_scan))
11989 		return;
11990 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11991 		return;
11992 	cidmask = mm_cidmask(mm);
11993 	/* Clear cids that were not recently used. */
11994 	for_each_possible_cpu(cpu)
11995 		sched_mm_cid_remote_clear_old(mm, cpu);
11996 	weight = cpumask_weight(cidmask);
11997 	/*
11998 	 * Clear cids that are greater or equal to the cidmask weight to
11999 	 * recompact it.
12000 	 */
12001 	for_each_possible_cpu(cpu)
12002 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12003 }
12004 
12005 void init_sched_mm_cid(struct task_struct *t)
12006 {
12007 	struct mm_struct *mm = t->mm;
12008 	int mm_users = 0;
12009 
12010 	if (mm) {
12011 		mm_users = atomic_read(&mm->mm_users);
12012 		if (mm_users == 1)
12013 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12014 	}
12015 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12016 	init_task_work(&t->cid_work, task_mm_cid_work);
12017 }
12018 
12019 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12020 {
12021 	struct callback_head *work = &curr->cid_work;
12022 	unsigned long now = jiffies;
12023 
12024 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12025 	    work->next != work)
12026 		return;
12027 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12028 		return;
12029 	task_work_add(curr, work, TWA_RESUME);
12030 }
12031 
12032 void sched_mm_cid_exit_signals(struct task_struct *t)
12033 {
12034 	struct mm_struct *mm = t->mm;
12035 	struct rq_flags rf;
12036 	struct rq *rq;
12037 
12038 	if (!mm)
12039 		return;
12040 
12041 	preempt_disable();
12042 	rq = this_rq();
12043 	rq_lock_irqsave(rq, &rf);
12044 	preempt_enable_no_resched();	/* holding spinlock */
12045 	WRITE_ONCE(t->mm_cid_active, 0);
12046 	/*
12047 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12048 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12049 	 */
12050 	smp_mb();
12051 	mm_cid_put(mm);
12052 	t->last_mm_cid = t->mm_cid = -1;
12053 	rq_unlock_irqrestore(rq, &rf);
12054 }
12055 
12056 void sched_mm_cid_before_execve(struct task_struct *t)
12057 {
12058 	struct mm_struct *mm = t->mm;
12059 	struct rq_flags rf;
12060 	struct rq *rq;
12061 
12062 	if (!mm)
12063 		return;
12064 
12065 	preempt_disable();
12066 	rq = this_rq();
12067 	rq_lock_irqsave(rq, &rf);
12068 	preempt_enable_no_resched();	/* holding spinlock */
12069 	WRITE_ONCE(t->mm_cid_active, 0);
12070 	/*
12071 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12072 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12073 	 */
12074 	smp_mb();
12075 	mm_cid_put(mm);
12076 	t->last_mm_cid = t->mm_cid = -1;
12077 	rq_unlock_irqrestore(rq, &rf);
12078 }
12079 
12080 void sched_mm_cid_after_execve(struct task_struct *t)
12081 {
12082 	struct mm_struct *mm = t->mm;
12083 	struct rq_flags rf;
12084 	struct rq *rq;
12085 
12086 	if (!mm)
12087 		return;
12088 
12089 	preempt_disable();
12090 	rq = this_rq();
12091 	rq_lock_irqsave(rq, &rf);
12092 	preempt_enable_no_resched();	/* holding spinlock */
12093 	WRITE_ONCE(t->mm_cid_active, 1);
12094 	/*
12095 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12096 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12097 	 */
12098 	smp_mb();
12099 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12100 	rq_unlock_irqrestore(rq, &rf);
12101 	rseq_set_notify_resume(t);
12102 }
12103 
12104 void sched_mm_cid_fork(struct task_struct *t)
12105 {
12106 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12107 	t->mm_cid_active = 1;
12108 }
12109 #endif
12110