xref: /openbmc/linux/kernel/sched/core.c (revision ba61bb17)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/kthread.h>
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/sched.h>
23 
24 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
25 
26 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
27 /*
28  * Debugging: various feature bits
29  *
30  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
31  * sysctl_sched_features, defined in sched.h, to allow constants propagation
32  * at compile time and compiler optimization based on features default.
33  */
34 #define SCHED_FEAT(name, enabled)	\
35 	(1UL << __SCHED_FEAT_##name) * enabled |
36 const_debug unsigned int sysctl_sched_features =
37 #include "features.h"
38 	0;
39 #undef SCHED_FEAT
40 #endif
41 
42 /*
43  * Number of tasks to iterate in a single balance run.
44  * Limited because this is done with IRQs disabled.
45  */
46 const_debug unsigned int sysctl_sched_nr_migrate = 32;
47 
48 /*
49  * period over which we average the RT time consumption, measured
50  * in ms.
51  *
52  * default: 1s
53  */
54 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
55 
56 /*
57  * period over which we measure -rt task CPU usage in us.
58  * default: 1s
59  */
60 unsigned int sysctl_sched_rt_period = 1000000;
61 
62 __read_mostly int scheduler_running;
63 
64 /*
65  * part of the period that we allow rt tasks to run in us.
66  * default: 0.95s
67  */
68 int sysctl_sched_rt_runtime = 950000;
69 
70 /*
71  * __task_rq_lock - lock the rq @p resides on.
72  */
73 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
74 	__acquires(rq->lock)
75 {
76 	struct rq *rq;
77 
78 	lockdep_assert_held(&p->pi_lock);
79 
80 	for (;;) {
81 		rq = task_rq(p);
82 		raw_spin_lock(&rq->lock);
83 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
84 			rq_pin_lock(rq, rf);
85 			return rq;
86 		}
87 		raw_spin_unlock(&rq->lock);
88 
89 		while (unlikely(task_on_rq_migrating(p)))
90 			cpu_relax();
91 	}
92 }
93 
94 /*
95  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
96  */
97 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
98 	__acquires(p->pi_lock)
99 	__acquires(rq->lock)
100 {
101 	struct rq *rq;
102 
103 	for (;;) {
104 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
105 		rq = task_rq(p);
106 		raw_spin_lock(&rq->lock);
107 		/*
108 		 *	move_queued_task()		task_rq_lock()
109 		 *
110 		 *	ACQUIRE (rq->lock)
111 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
112 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
113 		 *	[S] ->cpu = new_cpu		[L] task_rq()
114 		 *					[L] ->on_rq
115 		 *	RELEASE (rq->lock)
116 		 *
117 		 * If we observe the old CPU in task_rq_lock, the acquire of
118 		 * the old rq->lock will fully serialize against the stores.
119 		 *
120 		 * If we observe the new CPU in task_rq_lock, the acquire will
121 		 * pair with the WMB to ensure we must then also see migrating.
122 		 */
123 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
124 			rq_pin_lock(rq, rf);
125 			return rq;
126 		}
127 		raw_spin_unlock(&rq->lock);
128 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
129 
130 		while (unlikely(task_on_rq_migrating(p)))
131 			cpu_relax();
132 	}
133 }
134 
135 /*
136  * RQ-clock updating methods:
137  */
138 
139 static void update_rq_clock_task(struct rq *rq, s64 delta)
140 {
141 /*
142  * In theory, the compile should just see 0 here, and optimize out the call
143  * to sched_rt_avg_update. But I don't trust it...
144  */
145 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
146 	s64 steal = 0, irq_delta = 0;
147 #endif
148 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
149 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
150 
151 	/*
152 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
153 	 * this case when a previous update_rq_clock() happened inside a
154 	 * {soft,}irq region.
155 	 *
156 	 * When this happens, we stop ->clock_task and only update the
157 	 * prev_irq_time stamp to account for the part that fit, so that a next
158 	 * update will consume the rest. This ensures ->clock_task is
159 	 * monotonic.
160 	 *
161 	 * It does however cause some slight miss-attribution of {soft,}irq
162 	 * time, a more accurate solution would be to update the irq_time using
163 	 * the current rq->clock timestamp, except that would require using
164 	 * atomic ops.
165 	 */
166 	if (irq_delta > delta)
167 		irq_delta = delta;
168 
169 	rq->prev_irq_time += irq_delta;
170 	delta -= irq_delta;
171 #endif
172 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
173 	if (static_key_false((&paravirt_steal_rq_enabled))) {
174 		steal = paravirt_steal_clock(cpu_of(rq));
175 		steal -= rq->prev_steal_time_rq;
176 
177 		if (unlikely(steal > delta))
178 			steal = delta;
179 
180 		rq->prev_steal_time_rq += steal;
181 		delta -= steal;
182 	}
183 #endif
184 
185 	rq->clock_task += delta;
186 
187 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
188 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
189 		sched_rt_avg_update(rq, irq_delta + steal);
190 #endif
191 }
192 
193 void update_rq_clock(struct rq *rq)
194 {
195 	s64 delta;
196 
197 	lockdep_assert_held(&rq->lock);
198 
199 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
200 		return;
201 
202 #ifdef CONFIG_SCHED_DEBUG
203 	if (sched_feat(WARN_DOUBLE_CLOCK))
204 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
205 	rq->clock_update_flags |= RQCF_UPDATED;
206 #endif
207 
208 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
209 	if (delta < 0)
210 		return;
211 	rq->clock += delta;
212 	update_rq_clock_task(rq, delta);
213 }
214 
215 
216 #ifdef CONFIG_SCHED_HRTICK
217 /*
218  * Use HR-timers to deliver accurate preemption points.
219  */
220 
221 static void hrtick_clear(struct rq *rq)
222 {
223 	if (hrtimer_active(&rq->hrtick_timer))
224 		hrtimer_cancel(&rq->hrtick_timer);
225 }
226 
227 /*
228  * High-resolution timer tick.
229  * Runs from hardirq context with interrupts disabled.
230  */
231 static enum hrtimer_restart hrtick(struct hrtimer *timer)
232 {
233 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
234 	struct rq_flags rf;
235 
236 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
237 
238 	rq_lock(rq, &rf);
239 	update_rq_clock(rq);
240 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
241 	rq_unlock(rq, &rf);
242 
243 	return HRTIMER_NORESTART;
244 }
245 
246 #ifdef CONFIG_SMP
247 
248 static void __hrtick_restart(struct rq *rq)
249 {
250 	struct hrtimer *timer = &rq->hrtick_timer;
251 
252 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
253 }
254 
255 /*
256  * called from hardirq (IPI) context
257  */
258 static void __hrtick_start(void *arg)
259 {
260 	struct rq *rq = arg;
261 	struct rq_flags rf;
262 
263 	rq_lock(rq, &rf);
264 	__hrtick_restart(rq);
265 	rq->hrtick_csd_pending = 0;
266 	rq_unlock(rq, &rf);
267 }
268 
269 /*
270  * Called to set the hrtick timer state.
271  *
272  * called with rq->lock held and irqs disabled
273  */
274 void hrtick_start(struct rq *rq, u64 delay)
275 {
276 	struct hrtimer *timer = &rq->hrtick_timer;
277 	ktime_t time;
278 	s64 delta;
279 
280 	/*
281 	 * Don't schedule slices shorter than 10000ns, that just
282 	 * doesn't make sense and can cause timer DoS.
283 	 */
284 	delta = max_t(s64, delay, 10000LL);
285 	time = ktime_add_ns(timer->base->get_time(), delta);
286 
287 	hrtimer_set_expires(timer, time);
288 
289 	if (rq == this_rq()) {
290 		__hrtick_restart(rq);
291 	} else if (!rq->hrtick_csd_pending) {
292 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
293 		rq->hrtick_csd_pending = 1;
294 	}
295 }
296 
297 #else
298 /*
299  * Called to set the hrtick timer state.
300  *
301  * called with rq->lock held and irqs disabled
302  */
303 void hrtick_start(struct rq *rq, u64 delay)
304 {
305 	/*
306 	 * Don't schedule slices shorter than 10000ns, that just
307 	 * doesn't make sense. Rely on vruntime for fairness.
308 	 */
309 	delay = max_t(u64, delay, 10000LL);
310 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
311 		      HRTIMER_MODE_REL_PINNED);
312 }
313 #endif /* CONFIG_SMP */
314 
315 static void hrtick_rq_init(struct rq *rq)
316 {
317 #ifdef CONFIG_SMP
318 	rq->hrtick_csd_pending = 0;
319 
320 	rq->hrtick_csd.flags = 0;
321 	rq->hrtick_csd.func = __hrtick_start;
322 	rq->hrtick_csd.info = rq;
323 #endif
324 
325 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
326 	rq->hrtick_timer.function = hrtick;
327 }
328 #else	/* CONFIG_SCHED_HRTICK */
329 static inline void hrtick_clear(struct rq *rq)
330 {
331 }
332 
333 static inline void hrtick_rq_init(struct rq *rq)
334 {
335 }
336 #endif	/* CONFIG_SCHED_HRTICK */
337 
338 /*
339  * cmpxchg based fetch_or, macro so it works for different integer types
340  */
341 #define fetch_or(ptr, mask)						\
342 	({								\
343 		typeof(ptr) _ptr = (ptr);				\
344 		typeof(mask) _mask = (mask);				\
345 		typeof(*_ptr) _old, _val = *_ptr;			\
346 									\
347 		for (;;) {						\
348 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
349 			if (_old == _val)				\
350 				break;					\
351 			_val = _old;					\
352 		}							\
353 	_old;								\
354 })
355 
356 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
357 /*
358  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
359  * this avoids any races wrt polling state changes and thereby avoids
360  * spurious IPIs.
361  */
362 static bool set_nr_and_not_polling(struct task_struct *p)
363 {
364 	struct thread_info *ti = task_thread_info(p);
365 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
366 }
367 
368 /*
369  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
370  *
371  * If this returns true, then the idle task promises to call
372  * sched_ttwu_pending() and reschedule soon.
373  */
374 static bool set_nr_if_polling(struct task_struct *p)
375 {
376 	struct thread_info *ti = task_thread_info(p);
377 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
378 
379 	for (;;) {
380 		if (!(val & _TIF_POLLING_NRFLAG))
381 			return false;
382 		if (val & _TIF_NEED_RESCHED)
383 			return true;
384 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
385 		if (old == val)
386 			break;
387 		val = old;
388 	}
389 	return true;
390 }
391 
392 #else
393 static bool set_nr_and_not_polling(struct task_struct *p)
394 {
395 	set_tsk_need_resched(p);
396 	return true;
397 }
398 
399 #ifdef CONFIG_SMP
400 static bool set_nr_if_polling(struct task_struct *p)
401 {
402 	return false;
403 }
404 #endif
405 #endif
406 
407 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
408 {
409 	struct wake_q_node *node = &task->wake_q;
410 
411 	/*
412 	 * Atomically grab the task, if ->wake_q is !nil already it means
413 	 * its already queued (either by us or someone else) and will get the
414 	 * wakeup due to that.
415 	 *
416 	 * This cmpxchg() implies a full barrier, which pairs with the write
417 	 * barrier implied by the wakeup in wake_up_q().
418 	 */
419 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
420 		return;
421 
422 	get_task_struct(task);
423 
424 	/*
425 	 * The head is context local, there can be no concurrency.
426 	 */
427 	*head->lastp = node;
428 	head->lastp = &node->next;
429 }
430 
431 void wake_up_q(struct wake_q_head *head)
432 {
433 	struct wake_q_node *node = head->first;
434 
435 	while (node != WAKE_Q_TAIL) {
436 		struct task_struct *task;
437 
438 		task = container_of(node, struct task_struct, wake_q);
439 		BUG_ON(!task);
440 		/* Task can safely be re-inserted now: */
441 		node = node->next;
442 		task->wake_q.next = NULL;
443 
444 		/*
445 		 * wake_up_process() implies a wmb() to pair with the queueing
446 		 * in wake_q_add() so as not to miss wakeups.
447 		 */
448 		wake_up_process(task);
449 		put_task_struct(task);
450 	}
451 }
452 
453 /*
454  * resched_curr - mark rq's current task 'to be rescheduled now'.
455  *
456  * On UP this means the setting of the need_resched flag, on SMP it
457  * might also involve a cross-CPU call to trigger the scheduler on
458  * the target CPU.
459  */
460 void resched_curr(struct rq *rq)
461 {
462 	struct task_struct *curr = rq->curr;
463 	int cpu;
464 
465 	lockdep_assert_held(&rq->lock);
466 
467 	if (test_tsk_need_resched(curr))
468 		return;
469 
470 	cpu = cpu_of(rq);
471 
472 	if (cpu == smp_processor_id()) {
473 		set_tsk_need_resched(curr);
474 		set_preempt_need_resched();
475 		return;
476 	}
477 
478 	if (set_nr_and_not_polling(curr))
479 		smp_send_reschedule(cpu);
480 	else
481 		trace_sched_wake_idle_without_ipi(cpu);
482 }
483 
484 void resched_cpu(int cpu)
485 {
486 	struct rq *rq = cpu_rq(cpu);
487 	unsigned long flags;
488 
489 	raw_spin_lock_irqsave(&rq->lock, flags);
490 	if (cpu_online(cpu) || cpu == smp_processor_id())
491 		resched_curr(rq);
492 	raw_spin_unlock_irqrestore(&rq->lock, flags);
493 }
494 
495 #ifdef CONFIG_SMP
496 #ifdef CONFIG_NO_HZ_COMMON
497 /*
498  * In the semi idle case, use the nearest busy CPU for migrating timers
499  * from an idle CPU.  This is good for power-savings.
500  *
501  * We don't do similar optimization for completely idle system, as
502  * selecting an idle CPU will add more delays to the timers than intended
503  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
504  */
505 int get_nohz_timer_target(void)
506 {
507 	int i, cpu = smp_processor_id();
508 	struct sched_domain *sd;
509 
510 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
511 		return cpu;
512 
513 	rcu_read_lock();
514 	for_each_domain(cpu, sd) {
515 		for_each_cpu(i, sched_domain_span(sd)) {
516 			if (cpu == i)
517 				continue;
518 
519 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
520 				cpu = i;
521 				goto unlock;
522 			}
523 		}
524 	}
525 
526 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
527 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
528 unlock:
529 	rcu_read_unlock();
530 	return cpu;
531 }
532 
533 /*
534  * When add_timer_on() enqueues a timer into the timer wheel of an
535  * idle CPU then this timer might expire before the next timer event
536  * which is scheduled to wake up that CPU. In case of a completely
537  * idle system the next event might even be infinite time into the
538  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
539  * leaves the inner idle loop so the newly added timer is taken into
540  * account when the CPU goes back to idle and evaluates the timer
541  * wheel for the next timer event.
542  */
543 static void wake_up_idle_cpu(int cpu)
544 {
545 	struct rq *rq = cpu_rq(cpu);
546 
547 	if (cpu == smp_processor_id())
548 		return;
549 
550 	if (set_nr_and_not_polling(rq->idle))
551 		smp_send_reschedule(cpu);
552 	else
553 		trace_sched_wake_idle_without_ipi(cpu);
554 }
555 
556 static bool wake_up_full_nohz_cpu(int cpu)
557 {
558 	/*
559 	 * We just need the target to call irq_exit() and re-evaluate
560 	 * the next tick. The nohz full kick at least implies that.
561 	 * If needed we can still optimize that later with an
562 	 * empty IRQ.
563 	 */
564 	if (cpu_is_offline(cpu))
565 		return true;  /* Don't try to wake offline CPUs. */
566 	if (tick_nohz_full_cpu(cpu)) {
567 		if (cpu != smp_processor_id() ||
568 		    tick_nohz_tick_stopped())
569 			tick_nohz_full_kick_cpu(cpu);
570 		return true;
571 	}
572 
573 	return false;
574 }
575 
576 /*
577  * Wake up the specified CPU.  If the CPU is going offline, it is the
578  * caller's responsibility to deal with the lost wakeup, for example,
579  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
580  */
581 void wake_up_nohz_cpu(int cpu)
582 {
583 	if (!wake_up_full_nohz_cpu(cpu))
584 		wake_up_idle_cpu(cpu);
585 }
586 
587 static inline bool got_nohz_idle_kick(void)
588 {
589 	int cpu = smp_processor_id();
590 
591 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
592 		return false;
593 
594 	if (idle_cpu(cpu) && !need_resched())
595 		return true;
596 
597 	/*
598 	 * We can't run Idle Load Balance on this CPU for this time so we
599 	 * cancel it and clear NOHZ_BALANCE_KICK
600 	 */
601 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
602 	return false;
603 }
604 
605 #else /* CONFIG_NO_HZ_COMMON */
606 
607 static inline bool got_nohz_idle_kick(void)
608 {
609 	return false;
610 }
611 
612 #endif /* CONFIG_NO_HZ_COMMON */
613 
614 #ifdef CONFIG_NO_HZ_FULL
615 bool sched_can_stop_tick(struct rq *rq)
616 {
617 	int fifo_nr_running;
618 
619 	/* Deadline tasks, even if single, need the tick */
620 	if (rq->dl.dl_nr_running)
621 		return false;
622 
623 	/*
624 	 * If there are more than one RR tasks, we need the tick to effect the
625 	 * actual RR behaviour.
626 	 */
627 	if (rq->rt.rr_nr_running) {
628 		if (rq->rt.rr_nr_running == 1)
629 			return true;
630 		else
631 			return false;
632 	}
633 
634 	/*
635 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
636 	 * forced preemption between FIFO tasks.
637 	 */
638 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
639 	if (fifo_nr_running)
640 		return true;
641 
642 	/*
643 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
644 	 * if there's more than one we need the tick for involuntary
645 	 * preemption.
646 	 */
647 	if (rq->nr_running > 1)
648 		return false;
649 
650 	return true;
651 }
652 #endif /* CONFIG_NO_HZ_FULL */
653 
654 void sched_avg_update(struct rq *rq)
655 {
656 	s64 period = sched_avg_period();
657 
658 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
659 		/*
660 		 * Inline assembly required to prevent the compiler
661 		 * optimising this loop into a divmod call.
662 		 * See __iter_div_u64_rem() for another example of this.
663 		 */
664 		asm("" : "+rm" (rq->age_stamp));
665 		rq->age_stamp += period;
666 		rq->rt_avg /= 2;
667 	}
668 }
669 
670 #endif /* CONFIG_SMP */
671 
672 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
673 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
674 /*
675  * Iterate task_group tree rooted at *from, calling @down when first entering a
676  * node and @up when leaving it for the final time.
677  *
678  * Caller must hold rcu_lock or sufficient equivalent.
679  */
680 int walk_tg_tree_from(struct task_group *from,
681 			     tg_visitor down, tg_visitor up, void *data)
682 {
683 	struct task_group *parent, *child;
684 	int ret;
685 
686 	parent = from;
687 
688 down:
689 	ret = (*down)(parent, data);
690 	if (ret)
691 		goto out;
692 	list_for_each_entry_rcu(child, &parent->children, siblings) {
693 		parent = child;
694 		goto down;
695 
696 up:
697 		continue;
698 	}
699 	ret = (*up)(parent, data);
700 	if (ret || parent == from)
701 		goto out;
702 
703 	child = parent;
704 	parent = parent->parent;
705 	if (parent)
706 		goto up;
707 out:
708 	return ret;
709 }
710 
711 int tg_nop(struct task_group *tg, void *data)
712 {
713 	return 0;
714 }
715 #endif
716 
717 static void set_load_weight(struct task_struct *p, bool update_load)
718 {
719 	int prio = p->static_prio - MAX_RT_PRIO;
720 	struct load_weight *load = &p->se.load;
721 
722 	/*
723 	 * SCHED_IDLE tasks get minimal weight:
724 	 */
725 	if (idle_policy(p->policy)) {
726 		load->weight = scale_load(WEIGHT_IDLEPRIO);
727 		load->inv_weight = WMULT_IDLEPRIO;
728 		return;
729 	}
730 
731 	/*
732 	 * SCHED_OTHER tasks have to update their load when changing their
733 	 * weight
734 	 */
735 	if (update_load && p->sched_class == &fair_sched_class) {
736 		reweight_task(p, prio);
737 	} else {
738 		load->weight = scale_load(sched_prio_to_weight[prio]);
739 		load->inv_weight = sched_prio_to_wmult[prio];
740 	}
741 }
742 
743 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
744 {
745 	if (!(flags & ENQUEUE_NOCLOCK))
746 		update_rq_clock(rq);
747 
748 	if (!(flags & ENQUEUE_RESTORE))
749 		sched_info_queued(rq, p);
750 
751 	p->sched_class->enqueue_task(rq, p, flags);
752 }
753 
754 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 	if (!(flags & DEQUEUE_NOCLOCK))
757 		update_rq_clock(rq);
758 
759 	if (!(flags & DEQUEUE_SAVE))
760 		sched_info_dequeued(rq, p);
761 
762 	p->sched_class->dequeue_task(rq, p, flags);
763 }
764 
765 void activate_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	if (task_contributes_to_load(p))
768 		rq->nr_uninterruptible--;
769 
770 	enqueue_task(rq, p, flags);
771 }
772 
773 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
774 {
775 	if (task_contributes_to_load(p))
776 		rq->nr_uninterruptible++;
777 
778 	dequeue_task(rq, p, flags);
779 }
780 
781 /*
782  * __normal_prio - return the priority that is based on the static prio
783  */
784 static inline int __normal_prio(struct task_struct *p)
785 {
786 	return p->static_prio;
787 }
788 
789 /*
790  * Calculate the expected normal priority: i.e. priority
791  * without taking RT-inheritance into account. Might be
792  * boosted by interactivity modifiers. Changes upon fork,
793  * setprio syscalls, and whenever the interactivity
794  * estimator recalculates.
795  */
796 static inline int normal_prio(struct task_struct *p)
797 {
798 	int prio;
799 
800 	if (task_has_dl_policy(p))
801 		prio = MAX_DL_PRIO-1;
802 	else if (task_has_rt_policy(p))
803 		prio = MAX_RT_PRIO-1 - p->rt_priority;
804 	else
805 		prio = __normal_prio(p);
806 	return prio;
807 }
808 
809 /*
810  * Calculate the current priority, i.e. the priority
811  * taken into account by the scheduler. This value might
812  * be boosted by RT tasks, or might be boosted by
813  * interactivity modifiers. Will be RT if the task got
814  * RT-boosted. If not then it returns p->normal_prio.
815  */
816 static int effective_prio(struct task_struct *p)
817 {
818 	p->normal_prio = normal_prio(p);
819 	/*
820 	 * If we are RT tasks or we were boosted to RT priority,
821 	 * keep the priority unchanged. Otherwise, update priority
822 	 * to the normal priority:
823 	 */
824 	if (!rt_prio(p->prio))
825 		return p->normal_prio;
826 	return p->prio;
827 }
828 
829 /**
830  * task_curr - is this task currently executing on a CPU?
831  * @p: the task in question.
832  *
833  * Return: 1 if the task is currently executing. 0 otherwise.
834  */
835 inline int task_curr(const struct task_struct *p)
836 {
837 	return cpu_curr(task_cpu(p)) == p;
838 }
839 
840 /*
841  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
842  * use the balance_callback list if you want balancing.
843  *
844  * this means any call to check_class_changed() must be followed by a call to
845  * balance_callback().
846  */
847 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
848 				       const struct sched_class *prev_class,
849 				       int oldprio)
850 {
851 	if (prev_class != p->sched_class) {
852 		if (prev_class->switched_from)
853 			prev_class->switched_from(rq, p);
854 
855 		p->sched_class->switched_to(rq, p);
856 	} else if (oldprio != p->prio || dl_task(p))
857 		p->sched_class->prio_changed(rq, p, oldprio);
858 }
859 
860 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	const struct sched_class *class;
863 
864 	if (p->sched_class == rq->curr->sched_class) {
865 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
866 	} else {
867 		for_each_class(class) {
868 			if (class == rq->curr->sched_class)
869 				break;
870 			if (class == p->sched_class) {
871 				resched_curr(rq);
872 				break;
873 			}
874 		}
875 	}
876 
877 	/*
878 	 * A queue event has occurred, and we're going to schedule.  In
879 	 * this case, we can save a useless back to back clock update.
880 	 */
881 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
882 		rq_clock_skip_update(rq);
883 }
884 
885 #ifdef CONFIG_SMP
886 
887 static inline bool is_per_cpu_kthread(struct task_struct *p)
888 {
889 	if (!(p->flags & PF_KTHREAD))
890 		return false;
891 
892 	if (p->nr_cpus_allowed != 1)
893 		return false;
894 
895 	return true;
896 }
897 
898 /*
899  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
900  * __set_cpus_allowed_ptr() and select_fallback_rq().
901  */
902 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
903 {
904 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
905 		return false;
906 
907 	if (is_per_cpu_kthread(p))
908 		return cpu_online(cpu);
909 
910 	return cpu_active(cpu);
911 }
912 
913 /*
914  * This is how migration works:
915  *
916  * 1) we invoke migration_cpu_stop() on the target CPU using
917  *    stop_one_cpu().
918  * 2) stopper starts to run (implicitly forcing the migrated thread
919  *    off the CPU)
920  * 3) it checks whether the migrated task is still in the wrong runqueue.
921  * 4) if it's in the wrong runqueue then the migration thread removes
922  *    it and puts it into the right queue.
923  * 5) stopper completes and stop_one_cpu() returns and the migration
924  *    is done.
925  */
926 
927 /*
928  * move_queued_task - move a queued task to new rq.
929  *
930  * Returns (locked) new rq. Old rq's lock is released.
931  */
932 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
933 				   struct task_struct *p, int new_cpu)
934 {
935 	lockdep_assert_held(&rq->lock);
936 
937 	p->on_rq = TASK_ON_RQ_MIGRATING;
938 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
939 	set_task_cpu(p, new_cpu);
940 	rq_unlock(rq, rf);
941 
942 	rq = cpu_rq(new_cpu);
943 
944 	rq_lock(rq, rf);
945 	BUG_ON(task_cpu(p) != new_cpu);
946 	enqueue_task(rq, p, 0);
947 	p->on_rq = TASK_ON_RQ_QUEUED;
948 	check_preempt_curr(rq, p, 0);
949 
950 	return rq;
951 }
952 
953 struct migration_arg {
954 	struct task_struct *task;
955 	int dest_cpu;
956 };
957 
958 /*
959  * Move (not current) task off this CPU, onto the destination CPU. We're doing
960  * this because either it can't run here any more (set_cpus_allowed()
961  * away from this CPU, or CPU going down), or because we're
962  * attempting to rebalance this task on exec (sched_exec).
963  *
964  * So we race with normal scheduler movements, but that's OK, as long
965  * as the task is no longer on this CPU.
966  */
967 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
968 				 struct task_struct *p, int dest_cpu)
969 {
970 	/* Affinity changed (again). */
971 	if (!is_cpu_allowed(p, dest_cpu))
972 		return rq;
973 
974 	update_rq_clock(rq);
975 	rq = move_queued_task(rq, rf, p, dest_cpu);
976 
977 	return rq;
978 }
979 
980 /*
981  * migration_cpu_stop - this will be executed by a highprio stopper thread
982  * and performs thread migration by bumping thread off CPU then
983  * 'pushing' onto another runqueue.
984  */
985 static int migration_cpu_stop(void *data)
986 {
987 	struct migration_arg *arg = data;
988 	struct task_struct *p = arg->task;
989 	struct rq *rq = this_rq();
990 	struct rq_flags rf;
991 
992 	/*
993 	 * The original target CPU might have gone down and we might
994 	 * be on another CPU but it doesn't matter.
995 	 */
996 	local_irq_disable();
997 	/*
998 	 * We need to explicitly wake pending tasks before running
999 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1000 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1001 	 */
1002 	sched_ttwu_pending();
1003 
1004 	raw_spin_lock(&p->pi_lock);
1005 	rq_lock(rq, &rf);
1006 	/*
1007 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1008 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1009 	 * we're holding p->pi_lock.
1010 	 */
1011 	if (task_rq(p) == rq) {
1012 		if (task_on_rq_queued(p))
1013 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1014 		else
1015 			p->wake_cpu = arg->dest_cpu;
1016 	}
1017 	rq_unlock(rq, &rf);
1018 	raw_spin_unlock(&p->pi_lock);
1019 
1020 	local_irq_enable();
1021 	return 0;
1022 }
1023 
1024 /*
1025  * sched_class::set_cpus_allowed must do the below, but is not required to
1026  * actually call this function.
1027  */
1028 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1029 {
1030 	cpumask_copy(&p->cpus_allowed, new_mask);
1031 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1032 }
1033 
1034 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1035 {
1036 	struct rq *rq = task_rq(p);
1037 	bool queued, running;
1038 
1039 	lockdep_assert_held(&p->pi_lock);
1040 
1041 	queued = task_on_rq_queued(p);
1042 	running = task_current(rq, p);
1043 
1044 	if (queued) {
1045 		/*
1046 		 * Because __kthread_bind() calls this on blocked tasks without
1047 		 * holding rq->lock.
1048 		 */
1049 		lockdep_assert_held(&rq->lock);
1050 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1051 	}
1052 	if (running)
1053 		put_prev_task(rq, p);
1054 
1055 	p->sched_class->set_cpus_allowed(p, new_mask);
1056 
1057 	if (queued)
1058 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1059 	if (running)
1060 		set_curr_task(rq, p);
1061 }
1062 
1063 /*
1064  * Change a given task's CPU affinity. Migrate the thread to a
1065  * proper CPU and schedule it away if the CPU it's executing on
1066  * is removed from the allowed bitmask.
1067  *
1068  * NOTE: the caller must have a valid reference to the task, the
1069  * task must not exit() & deallocate itself prematurely. The
1070  * call is not atomic; no spinlocks may be held.
1071  */
1072 static int __set_cpus_allowed_ptr(struct task_struct *p,
1073 				  const struct cpumask *new_mask, bool check)
1074 {
1075 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1076 	unsigned int dest_cpu;
1077 	struct rq_flags rf;
1078 	struct rq *rq;
1079 	int ret = 0;
1080 
1081 	rq = task_rq_lock(p, &rf);
1082 	update_rq_clock(rq);
1083 
1084 	if (p->flags & PF_KTHREAD) {
1085 		/*
1086 		 * Kernel threads are allowed on online && !active CPUs
1087 		 */
1088 		cpu_valid_mask = cpu_online_mask;
1089 	}
1090 
1091 	/*
1092 	 * Must re-check here, to close a race against __kthread_bind(),
1093 	 * sched_setaffinity() is not guaranteed to observe the flag.
1094 	 */
1095 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1096 		ret = -EINVAL;
1097 		goto out;
1098 	}
1099 
1100 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1101 		goto out;
1102 
1103 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1104 		ret = -EINVAL;
1105 		goto out;
1106 	}
1107 
1108 	do_set_cpus_allowed(p, new_mask);
1109 
1110 	if (p->flags & PF_KTHREAD) {
1111 		/*
1112 		 * For kernel threads that do indeed end up on online &&
1113 		 * !active we want to ensure they are strict per-CPU threads.
1114 		 */
1115 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1116 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1117 			p->nr_cpus_allowed != 1);
1118 	}
1119 
1120 	/* Can the task run on the task's current CPU? If so, we're done */
1121 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1122 		goto out;
1123 
1124 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1125 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1126 		struct migration_arg arg = { p, dest_cpu };
1127 		/* Need help from migration thread: drop lock and wait. */
1128 		task_rq_unlock(rq, p, &rf);
1129 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1130 		tlb_migrate_finish(p->mm);
1131 		return 0;
1132 	} else if (task_on_rq_queued(p)) {
1133 		/*
1134 		 * OK, since we're going to drop the lock immediately
1135 		 * afterwards anyway.
1136 		 */
1137 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1138 	}
1139 out:
1140 	task_rq_unlock(rq, p, &rf);
1141 
1142 	return ret;
1143 }
1144 
1145 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1146 {
1147 	return __set_cpus_allowed_ptr(p, new_mask, false);
1148 }
1149 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1150 
1151 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1152 {
1153 #ifdef CONFIG_SCHED_DEBUG
1154 	/*
1155 	 * We should never call set_task_cpu() on a blocked task,
1156 	 * ttwu() will sort out the placement.
1157 	 */
1158 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1159 			!p->on_rq);
1160 
1161 	/*
1162 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1163 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1164 	 * time relying on p->on_rq.
1165 	 */
1166 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1167 		     p->sched_class == &fair_sched_class &&
1168 		     (p->on_rq && !task_on_rq_migrating(p)));
1169 
1170 #ifdef CONFIG_LOCKDEP
1171 	/*
1172 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1173 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1174 	 *
1175 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1176 	 * see task_group().
1177 	 *
1178 	 * Furthermore, all task_rq users should acquire both locks, see
1179 	 * task_rq_lock().
1180 	 */
1181 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1182 				      lockdep_is_held(&task_rq(p)->lock)));
1183 #endif
1184 	/*
1185 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1186 	 */
1187 	WARN_ON_ONCE(!cpu_online(new_cpu));
1188 #endif
1189 
1190 	trace_sched_migrate_task(p, new_cpu);
1191 
1192 	if (task_cpu(p) != new_cpu) {
1193 		if (p->sched_class->migrate_task_rq)
1194 			p->sched_class->migrate_task_rq(p);
1195 		p->se.nr_migrations++;
1196 		rseq_migrate(p);
1197 		perf_event_task_migrate(p);
1198 	}
1199 
1200 	__set_task_cpu(p, new_cpu);
1201 }
1202 
1203 static void __migrate_swap_task(struct task_struct *p, int cpu)
1204 {
1205 	if (task_on_rq_queued(p)) {
1206 		struct rq *src_rq, *dst_rq;
1207 		struct rq_flags srf, drf;
1208 
1209 		src_rq = task_rq(p);
1210 		dst_rq = cpu_rq(cpu);
1211 
1212 		rq_pin_lock(src_rq, &srf);
1213 		rq_pin_lock(dst_rq, &drf);
1214 
1215 		p->on_rq = TASK_ON_RQ_MIGRATING;
1216 		deactivate_task(src_rq, p, 0);
1217 		set_task_cpu(p, cpu);
1218 		activate_task(dst_rq, p, 0);
1219 		p->on_rq = TASK_ON_RQ_QUEUED;
1220 		check_preempt_curr(dst_rq, p, 0);
1221 
1222 		rq_unpin_lock(dst_rq, &drf);
1223 		rq_unpin_lock(src_rq, &srf);
1224 
1225 	} else {
1226 		/*
1227 		 * Task isn't running anymore; make it appear like we migrated
1228 		 * it before it went to sleep. This means on wakeup we make the
1229 		 * previous CPU our target instead of where it really is.
1230 		 */
1231 		p->wake_cpu = cpu;
1232 	}
1233 }
1234 
1235 struct migration_swap_arg {
1236 	struct task_struct *src_task, *dst_task;
1237 	int src_cpu, dst_cpu;
1238 };
1239 
1240 static int migrate_swap_stop(void *data)
1241 {
1242 	struct migration_swap_arg *arg = data;
1243 	struct rq *src_rq, *dst_rq;
1244 	int ret = -EAGAIN;
1245 
1246 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1247 		return -EAGAIN;
1248 
1249 	src_rq = cpu_rq(arg->src_cpu);
1250 	dst_rq = cpu_rq(arg->dst_cpu);
1251 
1252 	double_raw_lock(&arg->src_task->pi_lock,
1253 			&arg->dst_task->pi_lock);
1254 	double_rq_lock(src_rq, dst_rq);
1255 
1256 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1257 		goto unlock;
1258 
1259 	if (task_cpu(arg->src_task) != arg->src_cpu)
1260 		goto unlock;
1261 
1262 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1263 		goto unlock;
1264 
1265 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1266 		goto unlock;
1267 
1268 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1269 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1270 
1271 	ret = 0;
1272 
1273 unlock:
1274 	double_rq_unlock(src_rq, dst_rq);
1275 	raw_spin_unlock(&arg->dst_task->pi_lock);
1276 	raw_spin_unlock(&arg->src_task->pi_lock);
1277 
1278 	return ret;
1279 }
1280 
1281 /*
1282  * Cross migrate two tasks
1283  */
1284 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1285 {
1286 	struct migration_swap_arg arg;
1287 	int ret = -EINVAL;
1288 
1289 	arg = (struct migration_swap_arg){
1290 		.src_task = cur,
1291 		.src_cpu = task_cpu(cur),
1292 		.dst_task = p,
1293 		.dst_cpu = task_cpu(p),
1294 	};
1295 
1296 	if (arg.src_cpu == arg.dst_cpu)
1297 		goto out;
1298 
1299 	/*
1300 	 * These three tests are all lockless; this is OK since all of them
1301 	 * will be re-checked with proper locks held further down the line.
1302 	 */
1303 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1304 		goto out;
1305 
1306 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1307 		goto out;
1308 
1309 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1310 		goto out;
1311 
1312 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1313 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1314 
1315 out:
1316 	return ret;
1317 }
1318 
1319 /*
1320  * wait_task_inactive - wait for a thread to unschedule.
1321  *
1322  * If @match_state is nonzero, it's the @p->state value just checked and
1323  * not expected to change.  If it changes, i.e. @p might have woken up,
1324  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1325  * we return a positive number (its total switch count).  If a second call
1326  * a short while later returns the same number, the caller can be sure that
1327  * @p has remained unscheduled the whole time.
1328  *
1329  * The caller must ensure that the task *will* unschedule sometime soon,
1330  * else this function might spin for a *long* time. This function can't
1331  * be called with interrupts off, or it may introduce deadlock with
1332  * smp_call_function() if an IPI is sent by the same process we are
1333  * waiting to become inactive.
1334  */
1335 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1336 {
1337 	int running, queued;
1338 	struct rq_flags rf;
1339 	unsigned long ncsw;
1340 	struct rq *rq;
1341 
1342 	for (;;) {
1343 		/*
1344 		 * We do the initial early heuristics without holding
1345 		 * any task-queue locks at all. We'll only try to get
1346 		 * the runqueue lock when things look like they will
1347 		 * work out!
1348 		 */
1349 		rq = task_rq(p);
1350 
1351 		/*
1352 		 * If the task is actively running on another CPU
1353 		 * still, just relax and busy-wait without holding
1354 		 * any locks.
1355 		 *
1356 		 * NOTE! Since we don't hold any locks, it's not
1357 		 * even sure that "rq" stays as the right runqueue!
1358 		 * But we don't care, since "task_running()" will
1359 		 * return false if the runqueue has changed and p
1360 		 * is actually now running somewhere else!
1361 		 */
1362 		while (task_running(rq, p)) {
1363 			if (match_state && unlikely(p->state != match_state))
1364 				return 0;
1365 			cpu_relax();
1366 		}
1367 
1368 		/*
1369 		 * Ok, time to look more closely! We need the rq
1370 		 * lock now, to be *sure*. If we're wrong, we'll
1371 		 * just go back and repeat.
1372 		 */
1373 		rq = task_rq_lock(p, &rf);
1374 		trace_sched_wait_task(p);
1375 		running = task_running(rq, p);
1376 		queued = task_on_rq_queued(p);
1377 		ncsw = 0;
1378 		if (!match_state || p->state == match_state)
1379 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1380 		task_rq_unlock(rq, p, &rf);
1381 
1382 		/*
1383 		 * If it changed from the expected state, bail out now.
1384 		 */
1385 		if (unlikely(!ncsw))
1386 			break;
1387 
1388 		/*
1389 		 * Was it really running after all now that we
1390 		 * checked with the proper locks actually held?
1391 		 *
1392 		 * Oops. Go back and try again..
1393 		 */
1394 		if (unlikely(running)) {
1395 			cpu_relax();
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * It's not enough that it's not actively running,
1401 		 * it must be off the runqueue _entirely_, and not
1402 		 * preempted!
1403 		 *
1404 		 * So if it was still runnable (but just not actively
1405 		 * running right now), it's preempted, and we should
1406 		 * yield - it could be a while.
1407 		 */
1408 		if (unlikely(queued)) {
1409 			ktime_t to = NSEC_PER_SEC / HZ;
1410 
1411 			set_current_state(TASK_UNINTERRUPTIBLE);
1412 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1413 			continue;
1414 		}
1415 
1416 		/*
1417 		 * Ahh, all good. It wasn't running, and it wasn't
1418 		 * runnable, which means that it will never become
1419 		 * running in the future either. We're all done!
1420 		 */
1421 		break;
1422 	}
1423 
1424 	return ncsw;
1425 }
1426 
1427 /***
1428  * kick_process - kick a running thread to enter/exit the kernel
1429  * @p: the to-be-kicked thread
1430  *
1431  * Cause a process which is running on another CPU to enter
1432  * kernel-mode, without any delay. (to get signals handled.)
1433  *
1434  * NOTE: this function doesn't have to take the runqueue lock,
1435  * because all it wants to ensure is that the remote task enters
1436  * the kernel. If the IPI races and the task has been migrated
1437  * to another CPU then no harm is done and the purpose has been
1438  * achieved as well.
1439  */
1440 void kick_process(struct task_struct *p)
1441 {
1442 	int cpu;
1443 
1444 	preempt_disable();
1445 	cpu = task_cpu(p);
1446 	if ((cpu != smp_processor_id()) && task_curr(p))
1447 		smp_send_reschedule(cpu);
1448 	preempt_enable();
1449 }
1450 EXPORT_SYMBOL_GPL(kick_process);
1451 
1452 /*
1453  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1454  *
1455  * A few notes on cpu_active vs cpu_online:
1456  *
1457  *  - cpu_active must be a subset of cpu_online
1458  *
1459  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1460  *    see __set_cpus_allowed_ptr(). At this point the newly online
1461  *    CPU isn't yet part of the sched domains, and balancing will not
1462  *    see it.
1463  *
1464  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1465  *    avoid the load balancer to place new tasks on the to be removed
1466  *    CPU. Existing tasks will remain running there and will be taken
1467  *    off.
1468  *
1469  * This means that fallback selection must not select !active CPUs.
1470  * And can assume that any active CPU must be online. Conversely
1471  * select_task_rq() below may allow selection of !active CPUs in order
1472  * to satisfy the above rules.
1473  */
1474 static int select_fallback_rq(int cpu, struct task_struct *p)
1475 {
1476 	int nid = cpu_to_node(cpu);
1477 	const struct cpumask *nodemask = NULL;
1478 	enum { cpuset, possible, fail } state = cpuset;
1479 	int dest_cpu;
1480 
1481 	/*
1482 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1483 	 * will return -1. There is no CPU on the node, and we should
1484 	 * select the CPU on the other node.
1485 	 */
1486 	if (nid != -1) {
1487 		nodemask = cpumask_of_node(nid);
1488 
1489 		/* Look for allowed, online CPU in same node. */
1490 		for_each_cpu(dest_cpu, nodemask) {
1491 			if (!cpu_active(dest_cpu))
1492 				continue;
1493 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1494 				return dest_cpu;
1495 		}
1496 	}
1497 
1498 	for (;;) {
1499 		/* Any allowed, online CPU? */
1500 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1501 			if (!is_cpu_allowed(p, dest_cpu))
1502 				continue;
1503 
1504 			goto out;
1505 		}
1506 
1507 		/* No more Mr. Nice Guy. */
1508 		switch (state) {
1509 		case cpuset:
1510 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1511 				cpuset_cpus_allowed_fallback(p);
1512 				state = possible;
1513 				break;
1514 			}
1515 			/* Fall-through */
1516 		case possible:
1517 			do_set_cpus_allowed(p, cpu_possible_mask);
1518 			state = fail;
1519 			break;
1520 
1521 		case fail:
1522 			BUG();
1523 			break;
1524 		}
1525 	}
1526 
1527 out:
1528 	if (state != cpuset) {
1529 		/*
1530 		 * Don't tell them about moving exiting tasks or
1531 		 * kernel threads (both mm NULL), since they never
1532 		 * leave kernel.
1533 		 */
1534 		if (p->mm && printk_ratelimit()) {
1535 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1536 					task_pid_nr(p), p->comm, cpu);
1537 		}
1538 	}
1539 
1540 	return dest_cpu;
1541 }
1542 
1543 /*
1544  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1545  */
1546 static inline
1547 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1548 {
1549 	lockdep_assert_held(&p->pi_lock);
1550 
1551 	if (p->nr_cpus_allowed > 1)
1552 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1553 	else
1554 		cpu = cpumask_any(&p->cpus_allowed);
1555 
1556 	/*
1557 	 * In order not to call set_task_cpu() on a blocking task we need
1558 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1559 	 * CPU.
1560 	 *
1561 	 * Since this is common to all placement strategies, this lives here.
1562 	 *
1563 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1564 	 *   not worry about this generic constraint ]
1565 	 */
1566 	if (unlikely(!is_cpu_allowed(p, cpu)))
1567 		cpu = select_fallback_rq(task_cpu(p), p);
1568 
1569 	return cpu;
1570 }
1571 
1572 static void update_avg(u64 *avg, u64 sample)
1573 {
1574 	s64 diff = sample - *avg;
1575 	*avg += diff >> 3;
1576 }
1577 
1578 void sched_set_stop_task(int cpu, struct task_struct *stop)
1579 {
1580 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1581 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1582 
1583 	if (stop) {
1584 		/*
1585 		 * Make it appear like a SCHED_FIFO task, its something
1586 		 * userspace knows about and won't get confused about.
1587 		 *
1588 		 * Also, it will make PI more or less work without too
1589 		 * much confusion -- but then, stop work should not
1590 		 * rely on PI working anyway.
1591 		 */
1592 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1593 
1594 		stop->sched_class = &stop_sched_class;
1595 	}
1596 
1597 	cpu_rq(cpu)->stop = stop;
1598 
1599 	if (old_stop) {
1600 		/*
1601 		 * Reset it back to a normal scheduling class so that
1602 		 * it can die in pieces.
1603 		 */
1604 		old_stop->sched_class = &rt_sched_class;
1605 	}
1606 }
1607 
1608 #else
1609 
1610 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1611 					 const struct cpumask *new_mask, bool check)
1612 {
1613 	return set_cpus_allowed_ptr(p, new_mask);
1614 }
1615 
1616 #endif /* CONFIG_SMP */
1617 
1618 static void
1619 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1620 {
1621 	struct rq *rq;
1622 
1623 	if (!schedstat_enabled())
1624 		return;
1625 
1626 	rq = this_rq();
1627 
1628 #ifdef CONFIG_SMP
1629 	if (cpu == rq->cpu) {
1630 		__schedstat_inc(rq->ttwu_local);
1631 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1632 	} else {
1633 		struct sched_domain *sd;
1634 
1635 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1636 		rcu_read_lock();
1637 		for_each_domain(rq->cpu, sd) {
1638 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1639 				__schedstat_inc(sd->ttwu_wake_remote);
1640 				break;
1641 			}
1642 		}
1643 		rcu_read_unlock();
1644 	}
1645 
1646 	if (wake_flags & WF_MIGRATED)
1647 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1648 #endif /* CONFIG_SMP */
1649 
1650 	__schedstat_inc(rq->ttwu_count);
1651 	__schedstat_inc(p->se.statistics.nr_wakeups);
1652 
1653 	if (wake_flags & WF_SYNC)
1654 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1655 }
1656 
1657 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1658 {
1659 	activate_task(rq, p, en_flags);
1660 	p->on_rq = TASK_ON_RQ_QUEUED;
1661 
1662 	/* If a worker is waking up, notify the workqueue: */
1663 	if (p->flags & PF_WQ_WORKER)
1664 		wq_worker_waking_up(p, cpu_of(rq));
1665 }
1666 
1667 /*
1668  * Mark the task runnable and perform wakeup-preemption.
1669  */
1670 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1671 			   struct rq_flags *rf)
1672 {
1673 	check_preempt_curr(rq, p, wake_flags);
1674 	p->state = TASK_RUNNING;
1675 	trace_sched_wakeup(p);
1676 
1677 #ifdef CONFIG_SMP
1678 	if (p->sched_class->task_woken) {
1679 		/*
1680 		 * Our task @p is fully woken up and running; so its safe to
1681 		 * drop the rq->lock, hereafter rq is only used for statistics.
1682 		 */
1683 		rq_unpin_lock(rq, rf);
1684 		p->sched_class->task_woken(rq, p);
1685 		rq_repin_lock(rq, rf);
1686 	}
1687 
1688 	if (rq->idle_stamp) {
1689 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1690 		u64 max = 2*rq->max_idle_balance_cost;
1691 
1692 		update_avg(&rq->avg_idle, delta);
1693 
1694 		if (rq->avg_idle > max)
1695 			rq->avg_idle = max;
1696 
1697 		rq->idle_stamp = 0;
1698 	}
1699 #endif
1700 }
1701 
1702 static void
1703 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1704 		 struct rq_flags *rf)
1705 {
1706 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1707 
1708 	lockdep_assert_held(&rq->lock);
1709 
1710 #ifdef CONFIG_SMP
1711 	if (p->sched_contributes_to_load)
1712 		rq->nr_uninterruptible--;
1713 
1714 	if (wake_flags & WF_MIGRATED)
1715 		en_flags |= ENQUEUE_MIGRATED;
1716 #endif
1717 
1718 	ttwu_activate(rq, p, en_flags);
1719 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1720 }
1721 
1722 /*
1723  * Called in case the task @p isn't fully descheduled from its runqueue,
1724  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1725  * since all we need to do is flip p->state to TASK_RUNNING, since
1726  * the task is still ->on_rq.
1727  */
1728 static int ttwu_remote(struct task_struct *p, int wake_flags)
1729 {
1730 	struct rq_flags rf;
1731 	struct rq *rq;
1732 	int ret = 0;
1733 
1734 	rq = __task_rq_lock(p, &rf);
1735 	if (task_on_rq_queued(p)) {
1736 		/* check_preempt_curr() may use rq clock */
1737 		update_rq_clock(rq);
1738 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1739 		ret = 1;
1740 	}
1741 	__task_rq_unlock(rq, &rf);
1742 
1743 	return ret;
1744 }
1745 
1746 #ifdef CONFIG_SMP
1747 void sched_ttwu_pending(void)
1748 {
1749 	struct rq *rq = this_rq();
1750 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1751 	struct task_struct *p, *t;
1752 	struct rq_flags rf;
1753 
1754 	if (!llist)
1755 		return;
1756 
1757 	rq_lock_irqsave(rq, &rf);
1758 	update_rq_clock(rq);
1759 
1760 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1761 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1762 
1763 	rq_unlock_irqrestore(rq, &rf);
1764 }
1765 
1766 void scheduler_ipi(void)
1767 {
1768 	/*
1769 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1770 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1771 	 * this IPI.
1772 	 */
1773 	preempt_fold_need_resched();
1774 
1775 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1776 		return;
1777 
1778 	/*
1779 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1780 	 * traditionally all their work was done from the interrupt return
1781 	 * path. Now that we actually do some work, we need to make sure
1782 	 * we do call them.
1783 	 *
1784 	 * Some archs already do call them, luckily irq_enter/exit nest
1785 	 * properly.
1786 	 *
1787 	 * Arguably we should visit all archs and update all handlers,
1788 	 * however a fair share of IPIs are still resched only so this would
1789 	 * somewhat pessimize the simple resched case.
1790 	 */
1791 	irq_enter();
1792 	sched_ttwu_pending();
1793 
1794 	/*
1795 	 * Check if someone kicked us for doing the nohz idle load balance.
1796 	 */
1797 	if (unlikely(got_nohz_idle_kick())) {
1798 		this_rq()->idle_balance = 1;
1799 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1800 	}
1801 	irq_exit();
1802 }
1803 
1804 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1805 {
1806 	struct rq *rq = cpu_rq(cpu);
1807 
1808 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1809 
1810 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1811 		if (!set_nr_if_polling(rq->idle))
1812 			smp_send_reschedule(cpu);
1813 		else
1814 			trace_sched_wake_idle_without_ipi(cpu);
1815 	}
1816 }
1817 
1818 void wake_up_if_idle(int cpu)
1819 {
1820 	struct rq *rq = cpu_rq(cpu);
1821 	struct rq_flags rf;
1822 
1823 	rcu_read_lock();
1824 
1825 	if (!is_idle_task(rcu_dereference(rq->curr)))
1826 		goto out;
1827 
1828 	if (set_nr_if_polling(rq->idle)) {
1829 		trace_sched_wake_idle_without_ipi(cpu);
1830 	} else {
1831 		rq_lock_irqsave(rq, &rf);
1832 		if (is_idle_task(rq->curr))
1833 			smp_send_reschedule(cpu);
1834 		/* Else CPU is not idle, do nothing here: */
1835 		rq_unlock_irqrestore(rq, &rf);
1836 	}
1837 
1838 out:
1839 	rcu_read_unlock();
1840 }
1841 
1842 bool cpus_share_cache(int this_cpu, int that_cpu)
1843 {
1844 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1845 }
1846 #endif /* CONFIG_SMP */
1847 
1848 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1849 {
1850 	struct rq *rq = cpu_rq(cpu);
1851 	struct rq_flags rf;
1852 
1853 #if defined(CONFIG_SMP)
1854 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1855 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1856 		ttwu_queue_remote(p, cpu, wake_flags);
1857 		return;
1858 	}
1859 #endif
1860 
1861 	rq_lock(rq, &rf);
1862 	update_rq_clock(rq);
1863 	ttwu_do_activate(rq, p, wake_flags, &rf);
1864 	rq_unlock(rq, &rf);
1865 }
1866 
1867 /*
1868  * Notes on Program-Order guarantees on SMP systems.
1869  *
1870  *  MIGRATION
1871  *
1872  * The basic program-order guarantee on SMP systems is that when a task [t]
1873  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1874  * execution on its new CPU [c1].
1875  *
1876  * For migration (of runnable tasks) this is provided by the following means:
1877  *
1878  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1879  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1880  *     rq(c1)->lock (if not at the same time, then in that order).
1881  *  C) LOCK of the rq(c1)->lock scheduling in task
1882  *
1883  * Transitivity guarantees that B happens after A and C after B.
1884  * Note: we only require RCpc transitivity.
1885  * Note: the CPU doing B need not be c0 or c1
1886  *
1887  * Example:
1888  *
1889  *   CPU0            CPU1            CPU2
1890  *
1891  *   LOCK rq(0)->lock
1892  *   sched-out X
1893  *   sched-in Y
1894  *   UNLOCK rq(0)->lock
1895  *
1896  *                                   LOCK rq(0)->lock // orders against CPU0
1897  *                                   dequeue X
1898  *                                   UNLOCK rq(0)->lock
1899  *
1900  *                                   LOCK rq(1)->lock
1901  *                                   enqueue X
1902  *                                   UNLOCK rq(1)->lock
1903  *
1904  *                   LOCK rq(1)->lock // orders against CPU2
1905  *                   sched-out Z
1906  *                   sched-in X
1907  *                   UNLOCK rq(1)->lock
1908  *
1909  *
1910  *  BLOCKING -- aka. SLEEP + WAKEUP
1911  *
1912  * For blocking we (obviously) need to provide the same guarantee as for
1913  * migration. However the means are completely different as there is no lock
1914  * chain to provide order. Instead we do:
1915  *
1916  *   1) smp_store_release(X->on_cpu, 0)
1917  *   2) smp_cond_load_acquire(!X->on_cpu)
1918  *
1919  * Example:
1920  *
1921  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1922  *
1923  *   LOCK rq(0)->lock LOCK X->pi_lock
1924  *   dequeue X
1925  *   sched-out X
1926  *   smp_store_release(X->on_cpu, 0);
1927  *
1928  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1929  *                    X->state = WAKING
1930  *                    set_task_cpu(X,2)
1931  *
1932  *                    LOCK rq(2)->lock
1933  *                    enqueue X
1934  *                    X->state = RUNNING
1935  *                    UNLOCK rq(2)->lock
1936  *
1937  *                                          LOCK rq(2)->lock // orders against CPU1
1938  *                                          sched-out Z
1939  *                                          sched-in X
1940  *                                          UNLOCK rq(2)->lock
1941  *
1942  *                    UNLOCK X->pi_lock
1943  *   UNLOCK rq(0)->lock
1944  *
1945  *
1946  * However; for wakeups there is a second guarantee we must provide, namely we
1947  * must observe the state that lead to our wakeup. That is, not only must our
1948  * task observe its own prior state, it must also observe the stores prior to
1949  * its wakeup.
1950  *
1951  * This means that any means of doing remote wakeups must order the CPU doing
1952  * the wakeup against the CPU the task is going to end up running on. This,
1953  * however, is already required for the regular Program-Order guarantee above,
1954  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1955  *
1956  */
1957 
1958 /**
1959  * try_to_wake_up - wake up a thread
1960  * @p: the thread to be awakened
1961  * @state: the mask of task states that can be woken
1962  * @wake_flags: wake modifier flags (WF_*)
1963  *
1964  * If (@state & @p->state) @p->state = TASK_RUNNING.
1965  *
1966  * If the task was not queued/runnable, also place it back on a runqueue.
1967  *
1968  * Atomic against schedule() which would dequeue a task, also see
1969  * set_current_state().
1970  *
1971  * Return: %true if @p->state changes (an actual wakeup was done),
1972  *	   %false otherwise.
1973  */
1974 static int
1975 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1976 {
1977 	unsigned long flags;
1978 	int cpu, success = 0;
1979 
1980 	/*
1981 	 * If we are going to wake up a thread waiting for CONDITION we
1982 	 * need to ensure that CONDITION=1 done by the caller can not be
1983 	 * reordered with p->state check below. This pairs with mb() in
1984 	 * set_current_state() the waiting thread does.
1985 	 */
1986 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1987 	smp_mb__after_spinlock();
1988 	if (!(p->state & state))
1989 		goto out;
1990 
1991 	trace_sched_waking(p);
1992 
1993 	/* We're going to change ->state: */
1994 	success = 1;
1995 	cpu = task_cpu(p);
1996 
1997 	/*
1998 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1999 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2000 	 * in smp_cond_load_acquire() below.
2001 	 *
2002 	 * sched_ttwu_pending()                 try_to_wake_up()
2003 	 *   [S] p->on_rq = 1;                  [L] P->state
2004 	 *       UNLOCK rq->lock  -----.
2005 	 *                              \
2006 	 *				 +---   RMB
2007 	 * schedule()                   /
2008 	 *       LOCK rq->lock    -----'
2009 	 *       UNLOCK rq->lock
2010 	 *
2011 	 * [task p]
2012 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2013 	 *
2014 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2015 	 * last wakeup of our task and the schedule that got our task
2016 	 * current.
2017 	 */
2018 	smp_rmb();
2019 	if (p->on_rq && ttwu_remote(p, wake_flags))
2020 		goto stat;
2021 
2022 #ifdef CONFIG_SMP
2023 	/*
2024 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 	 * possible to, falsely, observe p->on_cpu == 0.
2026 	 *
2027 	 * One must be running (->on_cpu == 1) in order to remove oneself
2028 	 * from the runqueue.
2029 	 *
2030 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2031 	 *      UNLOCK rq->lock
2032 	 *			RMB
2033 	 *      LOCK   rq->lock
2034 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2035 	 *
2036 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 	 * from the consecutive calls to schedule(); the first switching to our
2038 	 * task, the second putting it to sleep.
2039 	 */
2040 	smp_rmb();
2041 
2042 	/*
2043 	 * If the owning (remote) CPU is still in the middle of schedule() with
2044 	 * this task as prev, wait until its done referencing the task.
2045 	 *
2046 	 * Pairs with the smp_store_release() in finish_task().
2047 	 *
2048 	 * This ensures that tasks getting woken will be fully ordered against
2049 	 * their previous state and preserve Program Order.
2050 	 */
2051 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2052 
2053 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2054 	p->state = TASK_WAKING;
2055 
2056 	if (p->in_iowait) {
2057 		delayacct_blkio_end(p);
2058 		atomic_dec(&task_rq(p)->nr_iowait);
2059 	}
2060 
2061 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2062 	if (task_cpu(p) != cpu) {
2063 		wake_flags |= WF_MIGRATED;
2064 		set_task_cpu(p, cpu);
2065 	}
2066 
2067 #else /* CONFIG_SMP */
2068 
2069 	if (p->in_iowait) {
2070 		delayacct_blkio_end(p);
2071 		atomic_dec(&task_rq(p)->nr_iowait);
2072 	}
2073 
2074 #endif /* CONFIG_SMP */
2075 
2076 	ttwu_queue(p, cpu, wake_flags);
2077 stat:
2078 	ttwu_stat(p, cpu, wake_flags);
2079 out:
2080 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2081 
2082 	return success;
2083 }
2084 
2085 /**
2086  * try_to_wake_up_local - try to wake up a local task with rq lock held
2087  * @p: the thread to be awakened
2088  * @rf: request-queue flags for pinning
2089  *
2090  * Put @p on the run-queue if it's not already there. The caller must
2091  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2092  * the current task.
2093  */
2094 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2095 {
2096 	struct rq *rq = task_rq(p);
2097 
2098 	if (WARN_ON_ONCE(rq != this_rq()) ||
2099 	    WARN_ON_ONCE(p == current))
2100 		return;
2101 
2102 	lockdep_assert_held(&rq->lock);
2103 
2104 	if (!raw_spin_trylock(&p->pi_lock)) {
2105 		/*
2106 		 * This is OK, because current is on_cpu, which avoids it being
2107 		 * picked for load-balance and preemption/IRQs are still
2108 		 * disabled avoiding further scheduler activity on it and we've
2109 		 * not yet picked a replacement task.
2110 		 */
2111 		rq_unlock(rq, rf);
2112 		raw_spin_lock(&p->pi_lock);
2113 		rq_relock(rq, rf);
2114 	}
2115 
2116 	if (!(p->state & TASK_NORMAL))
2117 		goto out;
2118 
2119 	trace_sched_waking(p);
2120 
2121 	if (!task_on_rq_queued(p)) {
2122 		if (p->in_iowait) {
2123 			delayacct_blkio_end(p);
2124 			atomic_dec(&rq->nr_iowait);
2125 		}
2126 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2127 	}
2128 
2129 	ttwu_do_wakeup(rq, p, 0, rf);
2130 	ttwu_stat(p, smp_processor_id(), 0);
2131 out:
2132 	raw_spin_unlock(&p->pi_lock);
2133 }
2134 
2135 /**
2136  * wake_up_process - Wake up a specific process
2137  * @p: The process to be woken up.
2138  *
2139  * Attempt to wake up the nominated process and move it to the set of runnable
2140  * processes.
2141  *
2142  * Return: 1 if the process was woken up, 0 if it was already running.
2143  *
2144  * It may be assumed that this function implies a write memory barrier before
2145  * changing the task state if and only if any tasks are woken up.
2146  */
2147 int wake_up_process(struct task_struct *p)
2148 {
2149 	return try_to_wake_up(p, TASK_NORMAL, 0);
2150 }
2151 EXPORT_SYMBOL(wake_up_process);
2152 
2153 int wake_up_state(struct task_struct *p, unsigned int state)
2154 {
2155 	return try_to_wake_up(p, state, 0);
2156 }
2157 
2158 /*
2159  * Perform scheduler related setup for a newly forked process p.
2160  * p is forked by current.
2161  *
2162  * __sched_fork() is basic setup used by init_idle() too:
2163  */
2164 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2165 {
2166 	p->on_rq			= 0;
2167 
2168 	p->se.on_rq			= 0;
2169 	p->se.exec_start		= 0;
2170 	p->se.sum_exec_runtime		= 0;
2171 	p->se.prev_sum_exec_runtime	= 0;
2172 	p->se.nr_migrations		= 0;
2173 	p->se.vruntime			= 0;
2174 	INIT_LIST_HEAD(&p->se.group_node);
2175 
2176 #ifdef CONFIG_FAIR_GROUP_SCHED
2177 	p->se.cfs_rq			= NULL;
2178 #endif
2179 
2180 #ifdef CONFIG_SCHEDSTATS
2181 	/* Even if schedstat is disabled, there should not be garbage */
2182 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2183 #endif
2184 
2185 	RB_CLEAR_NODE(&p->dl.rb_node);
2186 	init_dl_task_timer(&p->dl);
2187 	init_dl_inactive_task_timer(&p->dl);
2188 	__dl_clear_params(p);
2189 
2190 	INIT_LIST_HEAD(&p->rt.run_list);
2191 	p->rt.timeout		= 0;
2192 	p->rt.time_slice	= sched_rr_timeslice;
2193 	p->rt.on_rq		= 0;
2194 	p->rt.on_list		= 0;
2195 
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2199 
2200 	init_numa_balancing(clone_flags, p);
2201 }
2202 
2203 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2204 
2205 #ifdef CONFIG_NUMA_BALANCING
2206 
2207 void set_numabalancing_state(bool enabled)
2208 {
2209 	if (enabled)
2210 		static_branch_enable(&sched_numa_balancing);
2211 	else
2212 		static_branch_disable(&sched_numa_balancing);
2213 }
2214 
2215 #ifdef CONFIG_PROC_SYSCTL
2216 int sysctl_numa_balancing(struct ctl_table *table, int write,
2217 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2218 {
2219 	struct ctl_table t;
2220 	int err;
2221 	int state = static_branch_likely(&sched_numa_balancing);
2222 
2223 	if (write && !capable(CAP_SYS_ADMIN))
2224 		return -EPERM;
2225 
2226 	t = *table;
2227 	t.data = &state;
2228 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2229 	if (err < 0)
2230 		return err;
2231 	if (write)
2232 		set_numabalancing_state(state);
2233 	return err;
2234 }
2235 #endif
2236 #endif
2237 
2238 #ifdef CONFIG_SCHEDSTATS
2239 
2240 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2241 static bool __initdata __sched_schedstats = false;
2242 
2243 static void set_schedstats(bool enabled)
2244 {
2245 	if (enabled)
2246 		static_branch_enable(&sched_schedstats);
2247 	else
2248 		static_branch_disable(&sched_schedstats);
2249 }
2250 
2251 void force_schedstat_enabled(void)
2252 {
2253 	if (!schedstat_enabled()) {
2254 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2255 		static_branch_enable(&sched_schedstats);
2256 	}
2257 }
2258 
2259 static int __init setup_schedstats(char *str)
2260 {
2261 	int ret = 0;
2262 	if (!str)
2263 		goto out;
2264 
2265 	/*
2266 	 * This code is called before jump labels have been set up, so we can't
2267 	 * change the static branch directly just yet.  Instead set a temporary
2268 	 * variable so init_schedstats() can do it later.
2269 	 */
2270 	if (!strcmp(str, "enable")) {
2271 		__sched_schedstats = true;
2272 		ret = 1;
2273 	} else if (!strcmp(str, "disable")) {
2274 		__sched_schedstats = false;
2275 		ret = 1;
2276 	}
2277 out:
2278 	if (!ret)
2279 		pr_warn("Unable to parse schedstats=\n");
2280 
2281 	return ret;
2282 }
2283 __setup("schedstats=", setup_schedstats);
2284 
2285 static void __init init_schedstats(void)
2286 {
2287 	set_schedstats(__sched_schedstats);
2288 }
2289 
2290 #ifdef CONFIG_PROC_SYSCTL
2291 int sysctl_schedstats(struct ctl_table *table, int write,
2292 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2293 {
2294 	struct ctl_table t;
2295 	int err;
2296 	int state = static_branch_likely(&sched_schedstats);
2297 
2298 	if (write && !capable(CAP_SYS_ADMIN))
2299 		return -EPERM;
2300 
2301 	t = *table;
2302 	t.data = &state;
2303 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2304 	if (err < 0)
2305 		return err;
2306 	if (write)
2307 		set_schedstats(state);
2308 	return err;
2309 }
2310 #endif /* CONFIG_PROC_SYSCTL */
2311 #else  /* !CONFIG_SCHEDSTATS */
2312 static inline void init_schedstats(void) {}
2313 #endif /* CONFIG_SCHEDSTATS */
2314 
2315 /*
2316  * fork()/clone()-time setup:
2317  */
2318 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2319 {
2320 	unsigned long flags;
2321 	int cpu = get_cpu();
2322 
2323 	__sched_fork(clone_flags, p);
2324 	/*
2325 	 * We mark the process as NEW here. This guarantees that
2326 	 * nobody will actually run it, and a signal or other external
2327 	 * event cannot wake it up and insert it on the runqueue either.
2328 	 */
2329 	p->state = TASK_NEW;
2330 
2331 	/*
2332 	 * Make sure we do not leak PI boosting priority to the child.
2333 	 */
2334 	p->prio = current->normal_prio;
2335 
2336 	/*
2337 	 * Revert to default priority/policy on fork if requested.
2338 	 */
2339 	if (unlikely(p->sched_reset_on_fork)) {
2340 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2341 			p->policy = SCHED_NORMAL;
2342 			p->static_prio = NICE_TO_PRIO(0);
2343 			p->rt_priority = 0;
2344 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2345 			p->static_prio = NICE_TO_PRIO(0);
2346 
2347 		p->prio = p->normal_prio = __normal_prio(p);
2348 		set_load_weight(p, false);
2349 
2350 		/*
2351 		 * We don't need the reset flag anymore after the fork. It has
2352 		 * fulfilled its duty:
2353 		 */
2354 		p->sched_reset_on_fork = 0;
2355 	}
2356 
2357 	if (dl_prio(p->prio)) {
2358 		put_cpu();
2359 		return -EAGAIN;
2360 	} else if (rt_prio(p->prio)) {
2361 		p->sched_class = &rt_sched_class;
2362 	} else {
2363 		p->sched_class = &fair_sched_class;
2364 	}
2365 
2366 	init_entity_runnable_average(&p->se);
2367 
2368 	/*
2369 	 * The child is not yet in the pid-hash so no cgroup attach races,
2370 	 * and the cgroup is pinned to this child due to cgroup_fork()
2371 	 * is ran before sched_fork().
2372 	 *
2373 	 * Silence PROVE_RCU.
2374 	 */
2375 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2376 	/*
2377 	 * We're setting the CPU for the first time, we don't migrate,
2378 	 * so use __set_task_cpu().
2379 	 */
2380 	__set_task_cpu(p, cpu);
2381 	if (p->sched_class->task_fork)
2382 		p->sched_class->task_fork(p);
2383 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2384 
2385 #ifdef CONFIG_SCHED_INFO
2386 	if (likely(sched_info_on()))
2387 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2388 #endif
2389 #if defined(CONFIG_SMP)
2390 	p->on_cpu = 0;
2391 #endif
2392 	init_task_preempt_count(p);
2393 #ifdef CONFIG_SMP
2394 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2395 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2396 #endif
2397 
2398 	put_cpu();
2399 	return 0;
2400 }
2401 
2402 unsigned long to_ratio(u64 period, u64 runtime)
2403 {
2404 	if (runtime == RUNTIME_INF)
2405 		return BW_UNIT;
2406 
2407 	/*
2408 	 * Doing this here saves a lot of checks in all
2409 	 * the calling paths, and returning zero seems
2410 	 * safe for them anyway.
2411 	 */
2412 	if (period == 0)
2413 		return 0;
2414 
2415 	return div64_u64(runtime << BW_SHIFT, period);
2416 }
2417 
2418 /*
2419  * wake_up_new_task - wake up a newly created task for the first time.
2420  *
2421  * This function will do some initial scheduler statistics housekeeping
2422  * that must be done for every newly created context, then puts the task
2423  * on the runqueue and wakes it.
2424  */
2425 void wake_up_new_task(struct task_struct *p)
2426 {
2427 	struct rq_flags rf;
2428 	struct rq *rq;
2429 
2430 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2431 	p->state = TASK_RUNNING;
2432 #ifdef CONFIG_SMP
2433 	/*
2434 	 * Fork balancing, do it here and not earlier because:
2435 	 *  - cpus_allowed can change in the fork path
2436 	 *  - any previously selected CPU might disappear through hotplug
2437 	 *
2438 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2439 	 * as we're not fully set-up yet.
2440 	 */
2441 	p->recent_used_cpu = task_cpu(p);
2442 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2443 #endif
2444 	rq = __task_rq_lock(p, &rf);
2445 	update_rq_clock(rq);
2446 	post_init_entity_util_avg(&p->se);
2447 
2448 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2449 	p->on_rq = TASK_ON_RQ_QUEUED;
2450 	trace_sched_wakeup_new(p);
2451 	check_preempt_curr(rq, p, WF_FORK);
2452 #ifdef CONFIG_SMP
2453 	if (p->sched_class->task_woken) {
2454 		/*
2455 		 * Nothing relies on rq->lock after this, so its fine to
2456 		 * drop it.
2457 		 */
2458 		rq_unpin_lock(rq, &rf);
2459 		p->sched_class->task_woken(rq, p);
2460 		rq_repin_lock(rq, &rf);
2461 	}
2462 #endif
2463 	task_rq_unlock(rq, p, &rf);
2464 }
2465 
2466 #ifdef CONFIG_PREEMPT_NOTIFIERS
2467 
2468 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2469 
2470 void preempt_notifier_inc(void)
2471 {
2472 	static_branch_inc(&preempt_notifier_key);
2473 }
2474 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2475 
2476 void preempt_notifier_dec(void)
2477 {
2478 	static_branch_dec(&preempt_notifier_key);
2479 }
2480 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2481 
2482 /**
2483  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2484  * @notifier: notifier struct to register
2485  */
2486 void preempt_notifier_register(struct preempt_notifier *notifier)
2487 {
2488 	if (!static_branch_unlikely(&preempt_notifier_key))
2489 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2490 
2491 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2492 }
2493 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2494 
2495 /**
2496  * preempt_notifier_unregister - no longer interested in preemption notifications
2497  * @notifier: notifier struct to unregister
2498  *
2499  * This is *not* safe to call from within a preemption notifier.
2500  */
2501 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2502 {
2503 	hlist_del(&notifier->link);
2504 }
2505 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2506 
2507 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 {
2509 	struct preempt_notifier *notifier;
2510 
2511 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2512 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2513 }
2514 
2515 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516 {
2517 	if (static_branch_unlikely(&preempt_notifier_key))
2518 		__fire_sched_in_preempt_notifiers(curr);
2519 }
2520 
2521 static void
2522 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 				   struct task_struct *next)
2524 {
2525 	struct preempt_notifier *notifier;
2526 
2527 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2528 		notifier->ops->sched_out(notifier, next);
2529 }
2530 
2531 static __always_inline void
2532 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2533 				 struct task_struct *next)
2534 {
2535 	if (static_branch_unlikely(&preempt_notifier_key))
2536 		__fire_sched_out_preempt_notifiers(curr, next);
2537 }
2538 
2539 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2540 
2541 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2542 {
2543 }
2544 
2545 static inline void
2546 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2547 				 struct task_struct *next)
2548 {
2549 }
2550 
2551 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2552 
2553 static inline void prepare_task(struct task_struct *next)
2554 {
2555 #ifdef CONFIG_SMP
2556 	/*
2557 	 * Claim the task as running, we do this before switching to it
2558 	 * such that any running task will have this set.
2559 	 */
2560 	next->on_cpu = 1;
2561 #endif
2562 }
2563 
2564 static inline void finish_task(struct task_struct *prev)
2565 {
2566 #ifdef CONFIG_SMP
2567 	/*
2568 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2569 	 * We must ensure this doesn't happen until the switch is completely
2570 	 * finished.
2571 	 *
2572 	 * In particular, the load of prev->state in finish_task_switch() must
2573 	 * happen before this.
2574 	 *
2575 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2576 	 */
2577 	smp_store_release(&prev->on_cpu, 0);
2578 #endif
2579 }
2580 
2581 static inline void
2582 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2583 {
2584 	/*
2585 	 * Since the runqueue lock will be released by the next
2586 	 * task (which is an invalid locking op but in the case
2587 	 * of the scheduler it's an obvious special-case), so we
2588 	 * do an early lockdep release here:
2589 	 */
2590 	rq_unpin_lock(rq, rf);
2591 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2592 #ifdef CONFIG_DEBUG_SPINLOCK
2593 	/* this is a valid case when another task releases the spinlock */
2594 	rq->lock.owner = next;
2595 #endif
2596 }
2597 
2598 static inline void finish_lock_switch(struct rq *rq)
2599 {
2600 	/*
2601 	 * If we are tracking spinlock dependencies then we have to
2602 	 * fix up the runqueue lock - which gets 'carried over' from
2603 	 * prev into current:
2604 	 */
2605 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2606 	raw_spin_unlock_irq(&rq->lock);
2607 }
2608 
2609 /*
2610  * NOP if the arch has not defined these:
2611  */
2612 
2613 #ifndef prepare_arch_switch
2614 # define prepare_arch_switch(next)	do { } while (0)
2615 #endif
2616 
2617 #ifndef finish_arch_post_lock_switch
2618 # define finish_arch_post_lock_switch()	do { } while (0)
2619 #endif
2620 
2621 /**
2622  * prepare_task_switch - prepare to switch tasks
2623  * @rq: the runqueue preparing to switch
2624  * @prev: the current task that is being switched out
2625  * @next: the task we are going to switch to.
2626  *
2627  * This is called with the rq lock held and interrupts off. It must
2628  * be paired with a subsequent finish_task_switch after the context
2629  * switch.
2630  *
2631  * prepare_task_switch sets up locking and calls architecture specific
2632  * hooks.
2633  */
2634 static inline void
2635 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2636 		    struct task_struct *next)
2637 {
2638 	kcov_prepare_switch(prev);
2639 	sched_info_switch(rq, prev, next);
2640 	perf_event_task_sched_out(prev, next);
2641 	rseq_preempt(prev);
2642 	fire_sched_out_preempt_notifiers(prev, next);
2643 	prepare_task(next);
2644 	prepare_arch_switch(next);
2645 }
2646 
2647 /**
2648  * finish_task_switch - clean up after a task-switch
2649  * @prev: the thread we just switched away from.
2650  *
2651  * finish_task_switch must be called after the context switch, paired
2652  * with a prepare_task_switch call before the context switch.
2653  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2654  * and do any other architecture-specific cleanup actions.
2655  *
2656  * Note that we may have delayed dropping an mm in context_switch(). If
2657  * so, we finish that here outside of the runqueue lock. (Doing it
2658  * with the lock held can cause deadlocks; see schedule() for
2659  * details.)
2660  *
2661  * The context switch have flipped the stack from under us and restored the
2662  * local variables which were saved when this task called schedule() in the
2663  * past. prev == current is still correct but we need to recalculate this_rq
2664  * because prev may have moved to another CPU.
2665  */
2666 static struct rq *finish_task_switch(struct task_struct *prev)
2667 	__releases(rq->lock)
2668 {
2669 	struct rq *rq = this_rq();
2670 	struct mm_struct *mm = rq->prev_mm;
2671 	long prev_state;
2672 
2673 	/*
2674 	 * The previous task will have left us with a preempt_count of 2
2675 	 * because it left us after:
2676 	 *
2677 	 *	schedule()
2678 	 *	  preempt_disable();			// 1
2679 	 *	  __schedule()
2680 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2681 	 *
2682 	 * Also, see FORK_PREEMPT_COUNT.
2683 	 */
2684 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2685 		      "corrupted preempt_count: %s/%d/0x%x\n",
2686 		      current->comm, current->pid, preempt_count()))
2687 		preempt_count_set(FORK_PREEMPT_COUNT);
2688 
2689 	rq->prev_mm = NULL;
2690 
2691 	/*
2692 	 * A task struct has one reference for the use as "current".
2693 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2694 	 * schedule one last time. The schedule call will never return, and
2695 	 * the scheduled task must drop that reference.
2696 	 *
2697 	 * We must observe prev->state before clearing prev->on_cpu (in
2698 	 * finish_task), otherwise a concurrent wakeup can get prev
2699 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2700 	 * transition, resulting in a double drop.
2701 	 */
2702 	prev_state = prev->state;
2703 	vtime_task_switch(prev);
2704 	perf_event_task_sched_in(prev, current);
2705 	finish_task(prev);
2706 	finish_lock_switch(rq);
2707 	finish_arch_post_lock_switch();
2708 	kcov_finish_switch(current);
2709 
2710 	fire_sched_in_preempt_notifiers(current);
2711 	/*
2712 	 * When switching through a kernel thread, the loop in
2713 	 * membarrier_{private,global}_expedited() may have observed that
2714 	 * kernel thread and not issued an IPI. It is therefore possible to
2715 	 * schedule between user->kernel->user threads without passing though
2716 	 * switch_mm(). Membarrier requires a barrier after storing to
2717 	 * rq->curr, before returning to userspace, so provide them here:
2718 	 *
2719 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2720 	 *   provided by mmdrop(),
2721 	 * - a sync_core for SYNC_CORE.
2722 	 */
2723 	if (mm) {
2724 		membarrier_mm_sync_core_before_usermode(mm);
2725 		mmdrop(mm);
2726 	}
2727 	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2728 		switch (prev_state) {
2729 		case TASK_DEAD:
2730 			if (prev->sched_class->task_dead)
2731 				prev->sched_class->task_dead(prev);
2732 
2733 			/*
2734 			 * Remove function-return probe instances associated with this
2735 			 * task and put them back on the free list.
2736 			 */
2737 			kprobe_flush_task(prev);
2738 
2739 			/* Task is done with its stack. */
2740 			put_task_stack(prev);
2741 
2742 			put_task_struct(prev);
2743 			break;
2744 
2745 		case TASK_PARKED:
2746 			kthread_park_complete(prev);
2747 			break;
2748 		}
2749 	}
2750 
2751 	tick_nohz_task_switch();
2752 	return rq;
2753 }
2754 
2755 #ifdef CONFIG_SMP
2756 
2757 /* rq->lock is NOT held, but preemption is disabled */
2758 static void __balance_callback(struct rq *rq)
2759 {
2760 	struct callback_head *head, *next;
2761 	void (*func)(struct rq *rq);
2762 	unsigned long flags;
2763 
2764 	raw_spin_lock_irqsave(&rq->lock, flags);
2765 	head = rq->balance_callback;
2766 	rq->balance_callback = NULL;
2767 	while (head) {
2768 		func = (void (*)(struct rq *))head->func;
2769 		next = head->next;
2770 		head->next = NULL;
2771 		head = next;
2772 
2773 		func(rq);
2774 	}
2775 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2776 }
2777 
2778 static inline void balance_callback(struct rq *rq)
2779 {
2780 	if (unlikely(rq->balance_callback))
2781 		__balance_callback(rq);
2782 }
2783 
2784 #else
2785 
2786 static inline void balance_callback(struct rq *rq)
2787 {
2788 }
2789 
2790 #endif
2791 
2792 /**
2793  * schedule_tail - first thing a freshly forked thread must call.
2794  * @prev: the thread we just switched away from.
2795  */
2796 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2797 	__releases(rq->lock)
2798 {
2799 	struct rq *rq;
2800 
2801 	/*
2802 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2803 	 * finish_task_switch() for details.
2804 	 *
2805 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2806 	 * and the preempt_enable() will end up enabling preemption (on
2807 	 * PREEMPT_COUNT kernels).
2808 	 */
2809 
2810 	rq = finish_task_switch(prev);
2811 	balance_callback(rq);
2812 	preempt_enable();
2813 
2814 	if (current->set_child_tid)
2815 		put_user(task_pid_vnr(current), current->set_child_tid);
2816 }
2817 
2818 /*
2819  * context_switch - switch to the new MM and the new thread's register state.
2820  */
2821 static __always_inline struct rq *
2822 context_switch(struct rq *rq, struct task_struct *prev,
2823 	       struct task_struct *next, struct rq_flags *rf)
2824 {
2825 	struct mm_struct *mm, *oldmm;
2826 
2827 	prepare_task_switch(rq, prev, next);
2828 
2829 	mm = next->mm;
2830 	oldmm = prev->active_mm;
2831 	/*
2832 	 * For paravirt, this is coupled with an exit in switch_to to
2833 	 * combine the page table reload and the switch backend into
2834 	 * one hypercall.
2835 	 */
2836 	arch_start_context_switch(prev);
2837 
2838 	/*
2839 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2840 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2841 	 * Both of these contain the full memory barrier required by
2842 	 * membarrier after storing to rq->curr, before returning to
2843 	 * user-space.
2844 	 */
2845 	if (!mm) {
2846 		next->active_mm = oldmm;
2847 		mmgrab(oldmm);
2848 		enter_lazy_tlb(oldmm, next);
2849 	} else
2850 		switch_mm_irqs_off(oldmm, mm, next);
2851 
2852 	if (!prev->mm) {
2853 		prev->active_mm = NULL;
2854 		rq->prev_mm = oldmm;
2855 	}
2856 
2857 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2858 
2859 	prepare_lock_switch(rq, next, rf);
2860 
2861 	/* Here we just switch the register state and the stack. */
2862 	switch_to(prev, next, prev);
2863 	barrier();
2864 
2865 	return finish_task_switch(prev);
2866 }
2867 
2868 /*
2869  * nr_running and nr_context_switches:
2870  *
2871  * externally visible scheduler statistics: current number of runnable
2872  * threads, total number of context switches performed since bootup.
2873  */
2874 unsigned long nr_running(void)
2875 {
2876 	unsigned long i, sum = 0;
2877 
2878 	for_each_online_cpu(i)
2879 		sum += cpu_rq(i)->nr_running;
2880 
2881 	return sum;
2882 }
2883 
2884 /*
2885  * Check if only the current task is running on the CPU.
2886  *
2887  * Caution: this function does not check that the caller has disabled
2888  * preemption, thus the result might have a time-of-check-to-time-of-use
2889  * race.  The caller is responsible to use it correctly, for example:
2890  *
2891  * - from a non-preemptable section (of course)
2892  *
2893  * - from a thread that is bound to a single CPU
2894  *
2895  * - in a loop with very short iterations (e.g. a polling loop)
2896  */
2897 bool single_task_running(void)
2898 {
2899 	return raw_rq()->nr_running == 1;
2900 }
2901 EXPORT_SYMBOL(single_task_running);
2902 
2903 unsigned long long nr_context_switches(void)
2904 {
2905 	int i;
2906 	unsigned long long sum = 0;
2907 
2908 	for_each_possible_cpu(i)
2909 		sum += cpu_rq(i)->nr_switches;
2910 
2911 	return sum;
2912 }
2913 
2914 /*
2915  * IO-wait accounting, and how its mostly bollocks (on SMP).
2916  *
2917  * The idea behind IO-wait account is to account the idle time that we could
2918  * have spend running if it were not for IO. That is, if we were to improve the
2919  * storage performance, we'd have a proportional reduction in IO-wait time.
2920  *
2921  * This all works nicely on UP, where, when a task blocks on IO, we account
2922  * idle time as IO-wait, because if the storage were faster, it could've been
2923  * running and we'd not be idle.
2924  *
2925  * This has been extended to SMP, by doing the same for each CPU. This however
2926  * is broken.
2927  *
2928  * Imagine for instance the case where two tasks block on one CPU, only the one
2929  * CPU will have IO-wait accounted, while the other has regular idle. Even
2930  * though, if the storage were faster, both could've ran at the same time,
2931  * utilising both CPUs.
2932  *
2933  * This means, that when looking globally, the current IO-wait accounting on
2934  * SMP is a lower bound, by reason of under accounting.
2935  *
2936  * Worse, since the numbers are provided per CPU, they are sometimes
2937  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2938  * associated with any one particular CPU, it can wake to another CPU than it
2939  * blocked on. This means the per CPU IO-wait number is meaningless.
2940  *
2941  * Task CPU affinities can make all that even more 'interesting'.
2942  */
2943 
2944 unsigned long nr_iowait(void)
2945 {
2946 	unsigned long i, sum = 0;
2947 
2948 	for_each_possible_cpu(i)
2949 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2950 
2951 	return sum;
2952 }
2953 
2954 /*
2955  * Consumers of these two interfaces, like for example the cpufreq menu
2956  * governor are using nonsensical data. Boosting frequency for a CPU that has
2957  * IO-wait which might not even end up running the task when it does become
2958  * runnable.
2959  */
2960 
2961 unsigned long nr_iowait_cpu(int cpu)
2962 {
2963 	struct rq *this = cpu_rq(cpu);
2964 	return atomic_read(&this->nr_iowait);
2965 }
2966 
2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2968 {
2969 	struct rq *rq = this_rq();
2970 	*nr_waiters = atomic_read(&rq->nr_iowait);
2971 	*load = rq->load.weight;
2972 }
2973 
2974 #ifdef CONFIG_SMP
2975 
2976 /*
2977  * sched_exec - execve() is a valuable balancing opportunity, because at
2978  * this point the task has the smallest effective memory and cache footprint.
2979  */
2980 void sched_exec(void)
2981 {
2982 	struct task_struct *p = current;
2983 	unsigned long flags;
2984 	int dest_cpu;
2985 
2986 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2987 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 	if (dest_cpu == smp_processor_id())
2989 		goto unlock;
2990 
2991 	if (likely(cpu_active(dest_cpu))) {
2992 		struct migration_arg arg = { p, dest_cpu };
2993 
2994 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2996 		return;
2997 	}
2998 unlock:
2999 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 }
3001 
3002 #endif
3003 
3004 DEFINE_PER_CPU(struct kernel_stat, kstat);
3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3006 
3007 EXPORT_PER_CPU_SYMBOL(kstat);
3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3009 
3010 /*
3011  * The function fair_sched_class.update_curr accesses the struct curr
3012  * and its field curr->exec_start; when called from task_sched_runtime(),
3013  * we observe a high rate of cache misses in practice.
3014  * Prefetching this data results in improved performance.
3015  */
3016 static inline void prefetch_curr_exec_start(struct task_struct *p)
3017 {
3018 #ifdef CONFIG_FAIR_GROUP_SCHED
3019 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020 #else
3021 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022 #endif
3023 	prefetch(curr);
3024 	prefetch(&curr->exec_start);
3025 }
3026 
3027 /*
3028  * Return accounted runtime for the task.
3029  * In case the task is currently running, return the runtime plus current's
3030  * pending runtime that have not been accounted yet.
3031  */
3032 unsigned long long task_sched_runtime(struct task_struct *p)
3033 {
3034 	struct rq_flags rf;
3035 	struct rq *rq;
3036 	u64 ns;
3037 
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3039 	/*
3040 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3041 	 * So we have a optimization chance when the task's delta_exec is 0.
3042 	 * Reading ->on_cpu is racy, but this is ok.
3043 	 *
3044 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3045 	 * If we race with it entering CPU, unaccounted time is 0. This is
3046 	 * indistinguishable from the read occurring a few cycles earlier.
3047 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 	 * been accounted, so we're correct here as well.
3049 	 */
3050 	if (!p->on_cpu || !task_on_rq_queued(p))
3051 		return p->se.sum_exec_runtime;
3052 #endif
3053 
3054 	rq = task_rq_lock(p, &rf);
3055 	/*
3056 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3057 	 * project cycles that may never be accounted to this
3058 	 * thread, breaking clock_gettime().
3059 	 */
3060 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3061 		prefetch_curr_exec_start(p);
3062 		update_rq_clock(rq);
3063 		p->sched_class->update_curr(rq);
3064 	}
3065 	ns = p->se.sum_exec_runtime;
3066 	task_rq_unlock(rq, p, &rf);
3067 
3068 	return ns;
3069 }
3070 
3071 /*
3072  * This function gets called by the timer code, with HZ frequency.
3073  * We call it with interrupts disabled.
3074  */
3075 void scheduler_tick(void)
3076 {
3077 	int cpu = smp_processor_id();
3078 	struct rq *rq = cpu_rq(cpu);
3079 	struct task_struct *curr = rq->curr;
3080 	struct rq_flags rf;
3081 
3082 	sched_clock_tick();
3083 
3084 	rq_lock(rq, &rf);
3085 
3086 	update_rq_clock(rq);
3087 	curr->sched_class->task_tick(rq, curr, 0);
3088 	cpu_load_update_active(rq);
3089 	calc_global_load_tick(rq);
3090 
3091 	rq_unlock(rq, &rf);
3092 
3093 	perf_event_task_tick();
3094 
3095 #ifdef CONFIG_SMP
3096 	rq->idle_balance = idle_cpu(cpu);
3097 	trigger_load_balance(rq);
3098 #endif
3099 }
3100 
3101 #ifdef CONFIG_NO_HZ_FULL
3102 
3103 struct tick_work {
3104 	int			cpu;
3105 	struct delayed_work	work;
3106 };
3107 
3108 static struct tick_work __percpu *tick_work_cpu;
3109 
3110 static void sched_tick_remote(struct work_struct *work)
3111 {
3112 	struct delayed_work *dwork = to_delayed_work(work);
3113 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3114 	int cpu = twork->cpu;
3115 	struct rq *rq = cpu_rq(cpu);
3116 	struct rq_flags rf;
3117 
3118 	/*
3119 	 * Handle the tick only if it appears the remote CPU is running in full
3120 	 * dynticks mode. The check is racy by nature, but missing a tick or
3121 	 * having one too much is no big deal because the scheduler tick updates
3122 	 * statistics and checks timeslices in a time-independent way, regardless
3123 	 * of when exactly it is running.
3124 	 */
3125 	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3126 		struct task_struct *curr;
3127 		u64 delta;
3128 
3129 		rq_lock_irq(rq, &rf);
3130 		update_rq_clock(rq);
3131 		curr = rq->curr;
3132 		delta = rq_clock_task(rq) - curr->se.exec_start;
3133 
3134 		/*
3135 		 * Make sure the next tick runs within a reasonable
3136 		 * amount of time.
3137 		 */
3138 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3139 		curr->sched_class->task_tick(rq, curr, 0);
3140 		rq_unlock_irq(rq, &rf);
3141 	}
3142 
3143 	/*
3144 	 * Run the remote tick once per second (1Hz). This arbitrary
3145 	 * frequency is large enough to avoid overload but short enough
3146 	 * to keep scheduler internal stats reasonably up to date.
3147 	 */
3148 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3149 }
3150 
3151 static void sched_tick_start(int cpu)
3152 {
3153 	struct tick_work *twork;
3154 
3155 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3156 		return;
3157 
3158 	WARN_ON_ONCE(!tick_work_cpu);
3159 
3160 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3161 	twork->cpu = cpu;
3162 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3163 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3164 }
3165 
3166 #ifdef CONFIG_HOTPLUG_CPU
3167 static void sched_tick_stop(int cpu)
3168 {
3169 	struct tick_work *twork;
3170 
3171 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3172 		return;
3173 
3174 	WARN_ON_ONCE(!tick_work_cpu);
3175 
3176 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3177 	cancel_delayed_work_sync(&twork->work);
3178 }
3179 #endif /* CONFIG_HOTPLUG_CPU */
3180 
3181 int __init sched_tick_offload_init(void)
3182 {
3183 	tick_work_cpu = alloc_percpu(struct tick_work);
3184 	BUG_ON(!tick_work_cpu);
3185 
3186 	return 0;
3187 }
3188 
3189 #else /* !CONFIG_NO_HZ_FULL */
3190 static inline void sched_tick_start(int cpu) { }
3191 static inline void sched_tick_stop(int cpu) { }
3192 #endif
3193 
3194 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3195 				defined(CONFIG_PREEMPT_TRACER))
3196 /*
3197  * If the value passed in is equal to the current preempt count
3198  * then we just disabled preemption. Start timing the latency.
3199  */
3200 static inline void preempt_latency_start(int val)
3201 {
3202 	if (preempt_count() == val) {
3203 		unsigned long ip = get_lock_parent_ip();
3204 #ifdef CONFIG_DEBUG_PREEMPT
3205 		current->preempt_disable_ip = ip;
3206 #endif
3207 		trace_preempt_off(CALLER_ADDR0, ip);
3208 	}
3209 }
3210 
3211 void preempt_count_add(int val)
3212 {
3213 #ifdef CONFIG_DEBUG_PREEMPT
3214 	/*
3215 	 * Underflow?
3216 	 */
3217 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3218 		return;
3219 #endif
3220 	__preempt_count_add(val);
3221 #ifdef CONFIG_DEBUG_PREEMPT
3222 	/*
3223 	 * Spinlock count overflowing soon?
3224 	 */
3225 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3226 				PREEMPT_MASK - 10);
3227 #endif
3228 	preempt_latency_start(val);
3229 }
3230 EXPORT_SYMBOL(preempt_count_add);
3231 NOKPROBE_SYMBOL(preempt_count_add);
3232 
3233 /*
3234  * If the value passed in equals to the current preempt count
3235  * then we just enabled preemption. Stop timing the latency.
3236  */
3237 static inline void preempt_latency_stop(int val)
3238 {
3239 	if (preempt_count() == val)
3240 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3241 }
3242 
3243 void preempt_count_sub(int val)
3244 {
3245 #ifdef CONFIG_DEBUG_PREEMPT
3246 	/*
3247 	 * Underflow?
3248 	 */
3249 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3250 		return;
3251 	/*
3252 	 * Is the spinlock portion underflowing?
3253 	 */
3254 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3255 			!(preempt_count() & PREEMPT_MASK)))
3256 		return;
3257 #endif
3258 
3259 	preempt_latency_stop(val);
3260 	__preempt_count_sub(val);
3261 }
3262 EXPORT_SYMBOL(preempt_count_sub);
3263 NOKPROBE_SYMBOL(preempt_count_sub);
3264 
3265 #else
3266 static inline void preempt_latency_start(int val) { }
3267 static inline void preempt_latency_stop(int val) { }
3268 #endif
3269 
3270 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3271 {
3272 #ifdef CONFIG_DEBUG_PREEMPT
3273 	return p->preempt_disable_ip;
3274 #else
3275 	return 0;
3276 #endif
3277 }
3278 
3279 /*
3280  * Print scheduling while atomic bug:
3281  */
3282 static noinline void __schedule_bug(struct task_struct *prev)
3283 {
3284 	/* Save this before calling printk(), since that will clobber it */
3285 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3286 
3287 	if (oops_in_progress)
3288 		return;
3289 
3290 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3291 		prev->comm, prev->pid, preempt_count());
3292 
3293 	debug_show_held_locks(prev);
3294 	print_modules();
3295 	if (irqs_disabled())
3296 		print_irqtrace_events(prev);
3297 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3298 	    && in_atomic_preempt_off()) {
3299 		pr_err("Preemption disabled at:");
3300 		print_ip_sym(preempt_disable_ip);
3301 		pr_cont("\n");
3302 	}
3303 	if (panic_on_warn)
3304 		panic("scheduling while atomic\n");
3305 
3306 	dump_stack();
3307 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3308 }
3309 
3310 /*
3311  * Various schedule()-time debugging checks and statistics:
3312  */
3313 static inline void schedule_debug(struct task_struct *prev)
3314 {
3315 #ifdef CONFIG_SCHED_STACK_END_CHECK
3316 	if (task_stack_end_corrupted(prev))
3317 		panic("corrupted stack end detected inside scheduler\n");
3318 #endif
3319 
3320 	if (unlikely(in_atomic_preempt_off())) {
3321 		__schedule_bug(prev);
3322 		preempt_count_set(PREEMPT_DISABLED);
3323 	}
3324 	rcu_sleep_check();
3325 
3326 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3327 
3328 	schedstat_inc(this_rq()->sched_count);
3329 }
3330 
3331 /*
3332  * Pick up the highest-prio task:
3333  */
3334 static inline struct task_struct *
3335 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3336 {
3337 	const struct sched_class *class;
3338 	struct task_struct *p;
3339 
3340 	/*
3341 	 * Optimization: we know that if all tasks are in the fair class we can
3342 	 * call that function directly, but only if the @prev task wasn't of a
3343 	 * higher scheduling class, because otherwise those loose the
3344 	 * opportunity to pull in more work from other CPUs.
3345 	 */
3346 	if (likely((prev->sched_class == &idle_sched_class ||
3347 		    prev->sched_class == &fair_sched_class) &&
3348 		   rq->nr_running == rq->cfs.h_nr_running)) {
3349 
3350 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3351 		if (unlikely(p == RETRY_TASK))
3352 			goto again;
3353 
3354 		/* Assumes fair_sched_class->next == idle_sched_class */
3355 		if (unlikely(!p))
3356 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3357 
3358 		return p;
3359 	}
3360 
3361 again:
3362 	for_each_class(class) {
3363 		p = class->pick_next_task(rq, prev, rf);
3364 		if (p) {
3365 			if (unlikely(p == RETRY_TASK))
3366 				goto again;
3367 			return p;
3368 		}
3369 	}
3370 
3371 	/* The idle class should always have a runnable task: */
3372 	BUG();
3373 }
3374 
3375 /*
3376  * __schedule() is the main scheduler function.
3377  *
3378  * The main means of driving the scheduler and thus entering this function are:
3379  *
3380  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3381  *
3382  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3383  *      paths. For example, see arch/x86/entry_64.S.
3384  *
3385  *      To drive preemption between tasks, the scheduler sets the flag in timer
3386  *      interrupt handler scheduler_tick().
3387  *
3388  *   3. Wakeups don't really cause entry into schedule(). They add a
3389  *      task to the run-queue and that's it.
3390  *
3391  *      Now, if the new task added to the run-queue preempts the current
3392  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3393  *      called on the nearest possible occasion:
3394  *
3395  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3396  *
3397  *         - in syscall or exception context, at the next outmost
3398  *           preempt_enable(). (this might be as soon as the wake_up()'s
3399  *           spin_unlock()!)
3400  *
3401  *         - in IRQ context, return from interrupt-handler to
3402  *           preemptible context
3403  *
3404  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3405  *         then at the next:
3406  *
3407  *          - cond_resched() call
3408  *          - explicit schedule() call
3409  *          - return from syscall or exception to user-space
3410  *          - return from interrupt-handler to user-space
3411  *
3412  * WARNING: must be called with preemption disabled!
3413  */
3414 static void __sched notrace __schedule(bool preempt)
3415 {
3416 	struct task_struct *prev, *next;
3417 	unsigned long *switch_count;
3418 	struct rq_flags rf;
3419 	struct rq *rq;
3420 	int cpu;
3421 
3422 	cpu = smp_processor_id();
3423 	rq = cpu_rq(cpu);
3424 	prev = rq->curr;
3425 
3426 	schedule_debug(prev);
3427 
3428 	if (sched_feat(HRTICK))
3429 		hrtick_clear(rq);
3430 
3431 	local_irq_disable();
3432 	rcu_note_context_switch(preempt);
3433 
3434 	/*
3435 	 * Make sure that signal_pending_state()->signal_pending() below
3436 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3437 	 * done by the caller to avoid the race with signal_wake_up().
3438 	 *
3439 	 * The membarrier system call requires a full memory barrier
3440 	 * after coming from user-space, before storing to rq->curr.
3441 	 */
3442 	rq_lock(rq, &rf);
3443 	smp_mb__after_spinlock();
3444 
3445 	/* Promote REQ to ACT */
3446 	rq->clock_update_flags <<= 1;
3447 	update_rq_clock(rq);
3448 
3449 	switch_count = &prev->nivcsw;
3450 	if (!preempt && prev->state) {
3451 		if (unlikely(signal_pending_state(prev->state, prev))) {
3452 			prev->state = TASK_RUNNING;
3453 		} else {
3454 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3455 			prev->on_rq = 0;
3456 
3457 			if (prev->in_iowait) {
3458 				atomic_inc(&rq->nr_iowait);
3459 				delayacct_blkio_start();
3460 			}
3461 
3462 			/*
3463 			 * If a worker went to sleep, notify and ask workqueue
3464 			 * whether it wants to wake up a task to maintain
3465 			 * concurrency.
3466 			 */
3467 			if (prev->flags & PF_WQ_WORKER) {
3468 				struct task_struct *to_wakeup;
3469 
3470 				to_wakeup = wq_worker_sleeping(prev);
3471 				if (to_wakeup)
3472 					try_to_wake_up_local(to_wakeup, &rf);
3473 			}
3474 		}
3475 		switch_count = &prev->nvcsw;
3476 	}
3477 
3478 	next = pick_next_task(rq, prev, &rf);
3479 	clear_tsk_need_resched(prev);
3480 	clear_preempt_need_resched();
3481 
3482 	if (likely(prev != next)) {
3483 		rq->nr_switches++;
3484 		rq->curr = next;
3485 		/*
3486 		 * The membarrier system call requires each architecture
3487 		 * to have a full memory barrier after updating
3488 		 * rq->curr, before returning to user-space.
3489 		 *
3490 		 * Here are the schemes providing that barrier on the
3491 		 * various architectures:
3492 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3493 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3494 		 * - finish_lock_switch() for weakly-ordered
3495 		 *   architectures where spin_unlock is a full barrier,
3496 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3497 		 *   is a RELEASE barrier),
3498 		 */
3499 		++*switch_count;
3500 
3501 		trace_sched_switch(preempt, prev, next);
3502 
3503 		/* Also unlocks the rq: */
3504 		rq = context_switch(rq, prev, next, &rf);
3505 	} else {
3506 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3507 		rq_unlock_irq(rq, &rf);
3508 	}
3509 
3510 	balance_callback(rq);
3511 }
3512 
3513 void __noreturn do_task_dead(void)
3514 {
3515 	/* Causes final put_task_struct in finish_task_switch(): */
3516 	set_special_state(TASK_DEAD);
3517 
3518 	/* Tell freezer to ignore us: */
3519 	current->flags |= PF_NOFREEZE;
3520 
3521 	__schedule(false);
3522 	BUG();
3523 
3524 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3525 	for (;;)
3526 		cpu_relax();
3527 }
3528 
3529 static inline void sched_submit_work(struct task_struct *tsk)
3530 {
3531 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3532 		return;
3533 	/*
3534 	 * If we are going to sleep and we have plugged IO queued,
3535 	 * make sure to submit it to avoid deadlocks.
3536 	 */
3537 	if (blk_needs_flush_plug(tsk))
3538 		blk_schedule_flush_plug(tsk);
3539 }
3540 
3541 asmlinkage __visible void __sched schedule(void)
3542 {
3543 	struct task_struct *tsk = current;
3544 
3545 	sched_submit_work(tsk);
3546 	do {
3547 		preempt_disable();
3548 		__schedule(false);
3549 		sched_preempt_enable_no_resched();
3550 	} while (need_resched());
3551 }
3552 EXPORT_SYMBOL(schedule);
3553 
3554 /*
3555  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3556  * state (have scheduled out non-voluntarily) by making sure that all
3557  * tasks have either left the run queue or have gone into user space.
3558  * As idle tasks do not do either, they must not ever be preempted
3559  * (schedule out non-voluntarily).
3560  *
3561  * schedule_idle() is similar to schedule_preempt_disable() except that it
3562  * never enables preemption because it does not call sched_submit_work().
3563  */
3564 void __sched schedule_idle(void)
3565 {
3566 	/*
3567 	 * As this skips calling sched_submit_work(), which the idle task does
3568 	 * regardless because that function is a nop when the task is in a
3569 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3570 	 * current task can be in any other state. Note, idle is always in the
3571 	 * TASK_RUNNING state.
3572 	 */
3573 	WARN_ON_ONCE(current->state);
3574 	do {
3575 		__schedule(false);
3576 	} while (need_resched());
3577 }
3578 
3579 #ifdef CONFIG_CONTEXT_TRACKING
3580 asmlinkage __visible void __sched schedule_user(void)
3581 {
3582 	/*
3583 	 * If we come here after a random call to set_need_resched(),
3584 	 * or we have been woken up remotely but the IPI has not yet arrived,
3585 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3586 	 * we find a better solution.
3587 	 *
3588 	 * NB: There are buggy callers of this function.  Ideally we
3589 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3590 	 * too frequently to make sense yet.
3591 	 */
3592 	enum ctx_state prev_state = exception_enter();
3593 	schedule();
3594 	exception_exit(prev_state);
3595 }
3596 #endif
3597 
3598 /**
3599  * schedule_preempt_disabled - called with preemption disabled
3600  *
3601  * Returns with preemption disabled. Note: preempt_count must be 1
3602  */
3603 void __sched schedule_preempt_disabled(void)
3604 {
3605 	sched_preempt_enable_no_resched();
3606 	schedule();
3607 	preempt_disable();
3608 }
3609 
3610 static void __sched notrace preempt_schedule_common(void)
3611 {
3612 	do {
3613 		/*
3614 		 * Because the function tracer can trace preempt_count_sub()
3615 		 * and it also uses preempt_enable/disable_notrace(), if
3616 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3617 		 * by the function tracer will call this function again and
3618 		 * cause infinite recursion.
3619 		 *
3620 		 * Preemption must be disabled here before the function
3621 		 * tracer can trace. Break up preempt_disable() into two
3622 		 * calls. One to disable preemption without fear of being
3623 		 * traced. The other to still record the preemption latency,
3624 		 * which can also be traced by the function tracer.
3625 		 */
3626 		preempt_disable_notrace();
3627 		preempt_latency_start(1);
3628 		__schedule(true);
3629 		preempt_latency_stop(1);
3630 		preempt_enable_no_resched_notrace();
3631 
3632 		/*
3633 		 * Check again in case we missed a preemption opportunity
3634 		 * between schedule and now.
3635 		 */
3636 	} while (need_resched());
3637 }
3638 
3639 #ifdef CONFIG_PREEMPT
3640 /*
3641  * this is the entry point to schedule() from in-kernel preemption
3642  * off of preempt_enable. Kernel preemptions off return from interrupt
3643  * occur there and call schedule directly.
3644  */
3645 asmlinkage __visible void __sched notrace preempt_schedule(void)
3646 {
3647 	/*
3648 	 * If there is a non-zero preempt_count or interrupts are disabled,
3649 	 * we do not want to preempt the current task. Just return..
3650 	 */
3651 	if (likely(!preemptible()))
3652 		return;
3653 
3654 	preempt_schedule_common();
3655 }
3656 NOKPROBE_SYMBOL(preempt_schedule);
3657 EXPORT_SYMBOL(preempt_schedule);
3658 
3659 /**
3660  * preempt_schedule_notrace - preempt_schedule called by tracing
3661  *
3662  * The tracing infrastructure uses preempt_enable_notrace to prevent
3663  * recursion and tracing preempt enabling caused by the tracing
3664  * infrastructure itself. But as tracing can happen in areas coming
3665  * from userspace or just about to enter userspace, a preempt enable
3666  * can occur before user_exit() is called. This will cause the scheduler
3667  * to be called when the system is still in usermode.
3668  *
3669  * To prevent this, the preempt_enable_notrace will use this function
3670  * instead of preempt_schedule() to exit user context if needed before
3671  * calling the scheduler.
3672  */
3673 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3674 {
3675 	enum ctx_state prev_ctx;
3676 
3677 	if (likely(!preemptible()))
3678 		return;
3679 
3680 	do {
3681 		/*
3682 		 * Because the function tracer can trace preempt_count_sub()
3683 		 * and it also uses preempt_enable/disable_notrace(), if
3684 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3685 		 * by the function tracer will call this function again and
3686 		 * cause infinite recursion.
3687 		 *
3688 		 * Preemption must be disabled here before the function
3689 		 * tracer can trace. Break up preempt_disable() into two
3690 		 * calls. One to disable preemption without fear of being
3691 		 * traced. The other to still record the preemption latency,
3692 		 * which can also be traced by the function tracer.
3693 		 */
3694 		preempt_disable_notrace();
3695 		preempt_latency_start(1);
3696 		/*
3697 		 * Needs preempt disabled in case user_exit() is traced
3698 		 * and the tracer calls preempt_enable_notrace() causing
3699 		 * an infinite recursion.
3700 		 */
3701 		prev_ctx = exception_enter();
3702 		__schedule(true);
3703 		exception_exit(prev_ctx);
3704 
3705 		preempt_latency_stop(1);
3706 		preempt_enable_no_resched_notrace();
3707 	} while (need_resched());
3708 }
3709 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3710 
3711 #endif /* CONFIG_PREEMPT */
3712 
3713 /*
3714  * this is the entry point to schedule() from kernel preemption
3715  * off of irq context.
3716  * Note, that this is called and return with irqs disabled. This will
3717  * protect us against recursive calling from irq.
3718  */
3719 asmlinkage __visible void __sched preempt_schedule_irq(void)
3720 {
3721 	enum ctx_state prev_state;
3722 
3723 	/* Catch callers which need to be fixed */
3724 	BUG_ON(preempt_count() || !irqs_disabled());
3725 
3726 	prev_state = exception_enter();
3727 
3728 	do {
3729 		preempt_disable();
3730 		local_irq_enable();
3731 		__schedule(true);
3732 		local_irq_disable();
3733 		sched_preempt_enable_no_resched();
3734 	} while (need_resched());
3735 
3736 	exception_exit(prev_state);
3737 }
3738 
3739 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3740 			  void *key)
3741 {
3742 	return try_to_wake_up(curr->private, mode, wake_flags);
3743 }
3744 EXPORT_SYMBOL(default_wake_function);
3745 
3746 #ifdef CONFIG_RT_MUTEXES
3747 
3748 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3749 {
3750 	if (pi_task)
3751 		prio = min(prio, pi_task->prio);
3752 
3753 	return prio;
3754 }
3755 
3756 static inline int rt_effective_prio(struct task_struct *p, int prio)
3757 {
3758 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3759 
3760 	return __rt_effective_prio(pi_task, prio);
3761 }
3762 
3763 /*
3764  * rt_mutex_setprio - set the current priority of a task
3765  * @p: task to boost
3766  * @pi_task: donor task
3767  *
3768  * This function changes the 'effective' priority of a task. It does
3769  * not touch ->normal_prio like __setscheduler().
3770  *
3771  * Used by the rt_mutex code to implement priority inheritance
3772  * logic. Call site only calls if the priority of the task changed.
3773  */
3774 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3775 {
3776 	int prio, oldprio, queued, running, queue_flag =
3777 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3778 	const struct sched_class *prev_class;
3779 	struct rq_flags rf;
3780 	struct rq *rq;
3781 
3782 	/* XXX used to be waiter->prio, not waiter->task->prio */
3783 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3784 
3785 	/*
3786 	 * If nothing changed; bail early.
3787 	 */
3788 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3789 		return;
3790 
3791 	rq = __task_rq_lock(p, &rf);
3792 	update_rq_clock(rq);
3793 	/*
3794 	 * Set under pi_lock && rq->lock, such that the value can be used under
3795 	 * either lock.
3796 	 *
3797 	 * Note that there is loads of tricky to make this pointer cache work
3798 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3799 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3800 	 * task is allowed to run again (and can exit). This ensures the pointer
3801 	 * points to a blocked task -- which guaratees the task is present.
3802 	 */
3803 	p->pi_top_task = pi_task;
3804 
3805 	/*
3806 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3807 	 */
3808 	if (prio == p->prio && !dl_prio(prio))
3809 		goto out_unlock;
3810 
3811 	/*
3812 	 * Idle task boosting is a nono in general. There is one
3813 	 * exception, when PREEMPT_RT and NOHZ is active:
3814 	 *
3815 	 * The idle task calls get_next_timer_interrupt() and holds
3816 	 * the timer wheel base->lock on the CPU and another CPU wants
3817 	 * to access the timer (probably to cancel it). We can safely
3818 	 * ignore the boosting request, as the idle CPU runs this code
3819 	 * with interrupts disabled and will complete the lock
3820 	 * protected section without being interrupted. So there is no
3821 	 * real need to boost.
3822 	 */
3823 	if (unlikely(p == rq->idle)) {
3824 		WARN_ON(p != rq->curr);
3825 		WARN_ON(p->pi_blocked_on);
3826 		goto out_unlock;
3827 	}
3828 
3829 	trace_sched_pi_setprio(p, pi_task);
3830 	oldprio = p->prio;
3831 
3832 	if (oldprio == prio)
3833 		queue_flag &= ~DEQUEUE_MOVE;
3834 
3835 	prev_class = p->sched_class;
3836 	queued = task_on_rq_queued(p);
3837 	running = task_current(rq, p);
3838 	if (queued)
3839 		dequeue_task(rq, p, queue_flag);
3840 	if (running)
3841 		put_prev_task(rq, p);
3842 
3843 	/*
3844 	 * Boosting condition are:
3845 	 * 1. -rt task is running and holds mutex A
3846 	 *      --> -dl task blocks on mutex A
3847 	 *
3848 	 * 2. -dl task is running and holds mutex A
3849 	 *      --> -dl task blocks on mutex A and could preempt the
3850 	 *          running task
3851 	 */
3852 	if (dl_prio(prio)) {
3853 		if (!dl_prio(p->normal_prio) ||
3854 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3855 			p->dl.dl_boosted = 1;
3856 			queue_flag |= ENQUEUE_REPLENISH;
3857 		} else
3858 			p->dl.dl_boosted = 0;
3859 		p->sched_class = &dl_sched_class;
3860 	} else if (rt_prio(prio)) {
3861 		if (dl_prio(oldprio))
3862 			p->dl.dl_boosted = 0;
3863 		if (oldprio < prio)
3864 			queue_flag |= ENQUEUE_HEAD;
3865 		p->sched_class = &rt_sched_class;
3866 	} else {
3867 		if (dl_prio(oldprio))
3868 			p->dl.dl_boosted = 0;
3869 		if (rt_prio(oldprio))
3870 			p->rt.timeout = 0;
3871 		p->sched_class = &fair_sched_class;
3872 	}
3873 
3874 	p->prio = prio;
3875 
3876 	if (queued)
3877 		enqueue_task(rq, p, queue_flag);
3878 	if (running)
3879 		set_curr_task(rq, p);
3880 
3881 	check_class_changed(rq, p, prev_class, oldprio);
3882 out_unlock:
3883 	/* Avoid rq from going away on us: */
3884 	preempt_disable();
3885 	__task_rq_unlock(rq, &rf);
3886 
3887 	balance_callback(rq);
3888 	preempt_enable();
3889 }
3890 #else
3891 static inline int rt_effective_prio(struct task_struct *p, int prio)
3892 {
3893 	return prio;
3894 }
3895 #endif
3896 
3897 void set_user_nice(struct task_struct *p, long nice)
3898 {
3899 	bool queued, running;
3900 	int old_prio, delta;
3901 	struct rq_flags rf;
3902 	struct rq *rq;
3903 
3904 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3905 		return;
3906 	/*
3907 	 * We have to be careful, if called from sys_setpriority(),
3908 	 * the task might be in the middle of scheduling on another CPU.
3909 	 */
3910 	rq = task_rq_lock(p, &rf);
3911 	update_rq_clock(rq);
3912 
3913 	/*
3914 	 * The RT priorities are set via sched_setscheduler(), but we still
3915 	 * allow the 'normal' nice value to be set - but as expected
3916 	 * it wont have any effect on scheduling until the task is
3917 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3918 	 */
3919 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3920 		p->static_prio = NICE_TO_PRIO(nice);
3921 		goto out_unlock;
3922 	}
3923 	queued = task_on_rq_queued(p);
3924 	running = task_current(rq, p);
3925 	if (queued)
3926 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3927 	if (running)
3928 		put_prev_task(rq, p);
3929 
3930 	p->static_prio = NICE_TO_PRIO(nice);
3931 	set_load_weight(p, true);
3932 	old_prio = p->prio;
3933 	p->prio = effective_prio(p);
3934 	delta = p->prio - old_prio;
3935 
3936 	if (queued) {
3937 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3938 		/*
3939 		 * If the task increased its priority or is running and
3940 		 * lowered its priority, then reschedule its CPU:
3941 		 */
3942 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3943 			resched_curr(rq);
3944 	}
3945 	if (running)
3946 		set_curr_task(rq, p);
3947 out_unlock:
3948 	task_rq_unlock(rq, p, &rf);
3949 }
3950 EXPORT_SYMBOL(set_user_nice);
3951 
3952 /*
3953  * can_nice - check if a task can reduce its nice value
3954  * @p: task
3955  * @nice: nice value
3956  */
3957 int can_nice(const struct task_struct *p, const int nice)
3958 {
3959 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3960 	int nice_rlim = nice_to_rlimit(nice);
3961 
3962 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3963 		capable(CAP_SYS_NICE));
3964 }
3965 
3966 #ifdef __ARCH_WANT_SYS_NICE
3967 
3968 /*
3969  * sys_nice - change the priority of the current process.
3970  * @increment: priority increment
3971  *
3972  * sys_setpriority is a more generic, but much slower function that
3973  * does similar things.
3974  */
3975 SYSCALL_DEFINE1(nice, int, increment)
3976 {
3977 	long nice, retval;
3978 
3979 	/*
3980 	 * Setpriority might change our priority at the same moment.
3981 	 * We don't have to worry. Conceptually one call occurs first
3982 	 * and we have a single winner.
3983 	 */
3984 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3985 	nice = task_nice(current) + increment;
3986 
3987 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3988 	if (increment < 0 && !can_nice(current, nice))
3989 		return -EPERM;
3990 
3991 	retval = security_task_setnice(current, nice);
3992 	if (retval)
3993 		return retval;
3994 
3995 	set_user_nice(current, nice);
3996 	return 0;
3997 }
3998 
3999 #endif
4000 
4001 /**
4002  * task_prio - return the priority value of a given task.
4003  * @p: the task in question.
4004  *
4005  * Return: The priority value as seen by users in /proc.
4006  * RT tasks are offset by -200. Normal tasks are centered
4007  * around 0, value goes from -16 to +15.
4008  */
4009 int task_prio(const struct task_struct *p)
4010 {
4011 	return p->prio - MAX_RT_PRIO;
4012 }
4013 
4014 /**
4015  * idle_cpu - is a given CPU idle currently?
4016  * @cpu: the processor in question.
4017  *
4018  * Return: 1 if the CPU is currently idle. 0 otherwise.
4019  */
4020 int idle_cpu(int cpu)
4021 {
4022 	struct rq *rq = cpu_rq(cpu);
4023 
4024 	if (rq->curr != rq->idle)
4025 		return 0;
4026 
4027 	if (rq->nr_running)
4028 		return 0;
4029 
4030 #ifdef CONFIG_SMP
4031 	if (!llist_empty(&rq->wake_list))
4032 		return 0;
4033 #endif
4034 
4035 	return 1;
4036 }
4037 
4038 /**
4039  * available_idle_cpu - is a given CPU idle for enqueuing work.
4040  * @cpu: the CPU in question.
4041  *
4042  * Return: 1 if the CPU is currently idle. 0 otherwise.
4043  */
4044 int available_idle_cpu(int cpu)
4045 {
4046 	if (!idle_cpu(cpu))
4047 		return 0;
4048 
4049 	if (vcpu_is_preempted(cpu))
4050 		return 0;
4051 
4052 	return 1;
4053 }
4054 
4055 /**
4056  * idle_task - return the idle task for a given CPU.
4057  * @cpu: the processor in question.
4058  *
4059  * Return: The idle task for the CPU @cpu.
4060  */
4061 struct task_struct *idle_task(int cpu)
4062 {
4063 	return cpu_rq(cpu)->idle;
4064 }
4065 
4066 /**
4067  * find_process_by_pid - find a process with a matching PID value.
4068  * @pid: the pid in question.
4069  *
4070  * The task of @pid, if found. %NULL otherwise.
4071  */
4072 static struct task_struct *find_process_by_pid(pid_t pid)
4073 {
4074 	return pid ? find_task_by_vpid(pid) : current;
4075 }
4076 
4077 /*
4078  * sched_setparam() passes in -1 for its policy, to let the functions
4079  * it calls know not to change it.
4080  */
4081 #define SETPARAM_POLICY	-1
4082 
4083 static void __setscheduler_params(struct task_struct *p,
4084 		const struct sched_attr *attr)
4085 {
4086 	int policy = attr->sched_policy;
4087 
4088 	if (policy == SETPARAM_POLICY)
4089 		policy = p->policy;
4090 
4091 	p->policy = policy;
4092 
4093 	if (dl_policy(policy))
4094 		__setparam_dl(p, attr);
4095 	else if (fair_policy(policy))
4096 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4097 
4098 	/*
4099 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4100 	 * !rt_policy. Always setting this ensures that things like
4101 	 * getparam()/getattr() don't report silly values for !rt tasks.
4102 	 */
4103 	p->rt_priority = attr->sched_priority;
4104 	p->normal_prio = normal_prio(p);
4105 	set_load_weight(p, true);
4106 }
4107 
4108 /* Actually do priority change: must hold pi & rq lock. */
4109 static void __setscheduler(struct rq *rq, struct task_struct *p,
4110 			   const struct sched_attr *attr, bool keep_boost)
4111 {
4112 	__setscheduler_params(p, attr);
4113 
4114 	/*
4115 	 * Keep a potential priority boosting if called from
4116 	 * sched_setscheduler().
4117 	 */
4118 	p->prio = normal_prio(p);
4119 	if (keep_boost)
4120 		p->prio = rt_effective_prio(p, p->prio);
4121 
4122 	if (dl_prio(p->prio))
4123 		p->sched_class = &dl_sched_class;
4124 	else if (rt_prio(p->prio))
4125 		p->sched_class = &rt_sched_class;
4126 	else
4127 		p->sched_class = &fair_sched_class;
4128 }
4129 
4130 /*
4131  * Check the target process has a UID that matches the current process's:
4132  */
4133 static bool check_same_owner(struct task_struct *p)
4134 {
4135 	const struct cred *cred = current_cred(), *pcred;
4136 	bool match;
4137 
4138 	rcu_read_lock();
4139 	pcred = __task_cred(p);
4140 	match = (uid_eq(cred->euid, pcred->euid) ||
4141 		 uid_eq(cred->euid, pcred->uid));
4142 	rcu_read_unlock();
4143 	return match;
4144 }
4145 
4146 static int __sched_setscheduler(struct task_struct *p,
4147 				const struct sched_attr *attr,
4148 				bool user, bool pi)
4149 {
4150 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4151 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4152 	int retval, oldprio, oldpolicy = -1, queued, running;
4153 	int new_effective_prio, policy = attr->sched_policy;
4154 	const struct sched_class *prev_class;
4155 	struct rq_flags rf;
4156 	int reset_on_fork;
4157 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4158 	struct rq *rq;
4159 
4160 	/* The pi code expects interrupts enabled */
4161 	BUG_ON(pi && in_interrupt());
4162 recheck:
4163 	/* Double check policy once rq lock held: */
4164 	if (policy < 0) {
4165 		reset_on_fork = p->sched_reset_on_fork;
4166 		policy = oldpolicy = p->policy;
4167 	} else {
4168 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4169 
4170 		if (!valid_policy(policy))
4171 			return -EINVAL;
4172 	}
4173 
4174 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4175 		return -EINVAL;
4176 
4177 	/*
4178 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4179 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4180 	 * SCHED_BATCH and SCHED_IDLE is 0.
4181 	 */
4182 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4183 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4184 		return -EINVAL;
4185 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4186 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4187 		return -EINVAL;
4188 
4189 	/*
4190 	 * Allow unprivileged RT tasks to decrease priority:
4191 	 */
4192 	if (user && !capable(CAP_SYS_NICE)) {
4193 		if (fair_policy(policy)) {
4194 			if (attr->sched_nice < task_nice(p) &&
4195 			    !can_nice(p, attr->sched_nice))
4196 				return -EPERM;
4197 		}
4198 
4199 		if (rt_policy(policy)) {
4200 			unsigned long rlim_rtprio =
4201 					task_rlimit(p, RLIMIT_RTPRIO);
4202 
4203 			/* Can't set/change the rt policy: */
4204 			if (policy != p->policy && !rlim_rtprio)
4205 				return -EPERM;
4206 
4207 			/* Can't increase priority: */
4208 			if (attr->sched_priority > p->rt_priority &&
4209 			    attr->sched_priority > rlim_rtprio)
4210 				return -EPERM;
4211 		}
4212 
4213 		 /*
4214 		  * Can't set/change SCHED_DEADLINE policy at all for now
4215 		  * (safest behavior); in the future we would like to allow
4216 		  * unprivileged DL tasks to increase their relative deadline
4217 		  * or reduce their runtime (both ways reducing utilization)
4218 		  */
4219 		if (dl_policy(policy))
4220 			return -EPERM;
4221 
4222 		/*
4223 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4224 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4225 		 */
4226 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4227 			if (!can_nice(p, task_nice(p)))
4228 				return -EPERM;
4229 		}
4230 
4231 		/* Can't change other user's priorities: */
4232 		if (!check_same_owner(p))
4233 			return -EPERM;
4234 
4235 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4236 		if (p->sched_reset_on_fork && !reset_on_fork)
4237 			return -EPERM;
4238 	}
4239 
4240 	if (user) {
4241 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4242 			return -EINVAL;
4243 
4244 		retval = security_task_setscheduler(p);
4245 		if (retval)
4246 			return retval;
4247 	}
4248 
4249 	/*
4250 	 * Make sure no PI-waiters arrive (or leave) while we are
4251 	 * changing the priority of the task:
4252 	 *
4253 	 * To be able to change p->policy safely, the appropriate
4254 	 * runqueue lock must be held.
4255 	 */
4256 	rq = task_rq_lock(p, &rf);
4257 	update_rq_clock(rq);
4258 
4259 	/*
4260 	 * Changing the policy of the stop threads its a very bad idea:
4261 	 */
4262 	if (p == rq->stop) {
4263 		task_rq_unlock(rq, p, &rf);
4264 		return -EINVAL;
4265 	}
4266 
4267 	/*
4268 	 * If not changing anything there's no need to proceed further,
4269 	 * but store a possible modification of reset_on_fork.
4270 	 */
4271 	if (unlikely(policy == p->policy)) {
4272 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4273 			goto change;
4274 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4275 			goto change;
4276 		if (dl_policy(policy) && dl_param_changed(p, attr))
4277 			goto change;
4278 
4279 		p->sched_reset_on_fork = reset_on_fork;
4280 		task_rq_unlock(rq, p, &rf);
4281 		return 0;
4282 	}
4283 change:
4284 
4285 	if (user) {
4286 #ifdef CONFIG_RT_GROUP_SCHED
4287 		/*
4288 		 * Do not allow realtime tasks into groups that have no runtime
4289 		 * assigned.
4290 		 */
4291 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4292 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4293 				!task_group_is_autogroup(task_group(p))) {
4294 			task_rq_unlock(rq, p, &rf);
4295 			return -EPERM;
4296 		}
4297 #endif
4298 #ifdef CONFIG_SMP
4299 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4300 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4301 			cpumask_t *span = rq->rd->span;
4302 
4303 			/*
4304 			 * Don't allow tasks with an affinity mask smaller than
4305 			 * the entire root_domain to become SCHED_DEADLINE. We
4306 			 * will also fail if there's no bandwidth available.
4307 			 */
4308 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4309 			    rq->rd->dl_bw.bw == 0) {
4310 				task_rq_unlock(rq, p, &rf);
4311 				return -EPERM;
4312 			}
4313 		}
4314 #endif
4315 	}
4316 
4317 	/* Re-check policy now with rq lock held: */
4318 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4319 		policy = oldpolicy = -1;
4320 		task_rq_unlock(rq, p, &rf);
4321 		goto recheck;
4322 	}
4323 
4324 	/*
4325 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4326 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4327 	 * is available.
4328 	 */
4329 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4330 		task_rq_unlock(rq, p, &rf);
4331 		return -EBUSY;
4332 	}
4333 
4334 	p->sched_reset_on_fork = reset_on_fork;
4335 	oldprio = p->prio;
4336 
4337 	if (pi) {
4338 		/*
4339 		 * Take priority boosted tasks into account. If the new
4340 		 * effective priority is unchanged, we just store the new
4341 		 * normal parameters and do not touch the scheduler class and
4342 		 * the runqueue. This will be done when the task deboost
4343 		 * itself.
4344 		 */
4345 		new_effective_prio = rt_effective_prio(p, newprio);
4346 		if (new_effective_prio == oldprio)
4347 			queue_flags &= ~DEQUEUE_MOVE;
4348 	}
4349 
4350 	queued = task_on_rq_queued(p);
4351 	running = task_current(rq, p);
4352 	if (queued)
4353 		dequeue_task(rq, p, queue_flags);
4354 	if (running)
4355 		put_prev_task(rq, p);
4356 
4357 	prev_class = p->sched_class;
4358 	__setscheduler(rq, p, attr, pi);
4359 
4360 	if (queued) {
4361 		/*
4362 		 * We enqueue to tail when the priority of a task is
4363 		 * increased (user space view).
4364 		 */
4365 		if (oldprio < p->prio)
4366 			queue_flags |= ENQUEUE_HEAD;
4367 
4368 		enqueue_task(rq, p, queue_flags);
4369 	}
4370 	if (running)
4371 		set_curr_task(rq, p);
4372 
4373 	check_class_changed(rq, p, prev_class, oldprio);
4374 
4375 	/* Avoid rq from going away on us: */
4376 	preempt_disable();
4377 	task_rq_unlock(rq, p, &rf);
4378 
4379 	if (pi)
4380 		rt_mutex_adjust_pi(p);
4381 
4382 	/* Run balance callbacks after we've adjusted the PI chain: */
4383 	balance_callback(rq);
4384 	preempt_enable();
4385 
4386 	return 0;
4387 }
4388 
4389 static int _sched_setscheduler(struct task_struct *p, int policy,
4390 			       const struct sched_param *param, bool check)
4391 {
4392 	struct sched_attr attr = {
4393 		.sched_policy   = policy,
4394 		.sched_priority = param->sched_priority,
4395 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4396 	};
4397 
4398 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4399 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4400 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4401 		policy &= ~SCHED_RESET_ON_FORK;
4402 		attr.sched_policy = policy;
4403 	}
4404 
4405 	return __sched_setscheduler(p, &attr, check, true);
4406 }
4407 /**
4408  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4409  * @p: the task in question.
4410  * @policy: new policy.
4411  * @param: structure containing the new RT priority.
4412  *
4413  * Return: 0 on success. An error code otherwise.
4414  *
4415  * NOTE that the task may be already dead.
4416  */
4417 int sched_setscheduler(struct task_struct *p, int policy,
4418 		       const struct sched_param *param)
4419 {
4420 	return _sched_setscheduler(p, policy, param, true);
4421 }
4422 EXPORT_SYMBOL_GPL(sched_setscheduler);
4423 
4424 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4425 {
4426 	return __sched_setscheduler(p, attr, true, true);
4427 }
4428 EXPORT_SYMBOL_GPL(sched_setattr);
4429 
4430 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4431 {
4432 	return __sched_setscheduler(p, attr, false, true);
4433 }
4434 
4435 /**
4436  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4437  * @p: the task in question.
4438  * @policy: new policy.
4439  * @param: structure containing the new RT priority.
4440  *
4441  * Just like sched_setscheduler, only don't bother checking if the
4442  * current context has permission.  For example, this is needed in
4443  * stop_machine(): we create temporary high priority worker threads,
4444  * but our caller might not have that capability.
4445  *
4446  * Return: 0 on success. An error code otherwise.
4447  */
4448 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4449 			       const struct sched_param *param)
4450 {
4451 	return _sched_setscheduler(p, policy, param, false);
4452 }
4453 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4454 
4455 static int
4456 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4457 {
4458 	struct sched_param lparam;
4459 	struct task_struct *p;
4460 	int retval;
4461 
4462 	if (!param || pid < 0)
4463 		return -EINVAL;
4464 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4465 		return -EFAULT;
4466 
4467 	rcu_read_lock();
4468 	retval = -ESRCH;
4469 	p = find_process_by_pid(pid);
4470 	if (p != NULL)
4471 		retval = sched_setscheduler(p, policy, &lparam);
4472 	rcu_read_unlock();
4473 
4474 	return retval;
4475 }
4476 
4477 /*
4478  * Mimics kernel/events/core.c perf_copy_attr().
4479  */
4480 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4481 {
4482 	u32 size;
4483 	int ret;
4484 
4485 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4486 		return -EFAULT;
4487 
4488 	/* Zero the full structure, so that a short copy will be nice: */
4489 	memset(attr, 0, sizeof(*attr));
4490 
4491 	ret = get_user(size, &uattr->size);
4492 	if (ret)
4493 		return ret;
4494 
4495 	/* Bail out on silly large: */
4496 	if (size > PAGE_SIZE)
4497 		goto err_size;
4498 
4499 	/* ABI compatibility quirk: */
4500 	if (!size)
4501 		size = SCHED_ATTR_SIZE_VER0;
4502 
4503 	if (size < SCHED_ATTR_SIZE_VER0)
4504 		goto err_size;
4505 
4506 	/*
4507 	 * If we're handed a bigger struct than we know of,
4508 	 * ensure all the unknown bits are 0 - i.e. new
4509 	 * user-space does not rely on any kernel feature
4510 	 * extensions we dont know about yet.
4511 	 */
4512 	if (size > sizeof(*attr)) {
4513 		unsigned char __user *addr;
4514 		unsigned char __user *end;
4515 		unsigned char val;
4516 
4517 		addr = (void __user *)uattr + sizeof(*attr);
4518 		end  = (void __user *)uattr + size;
4519 
4520 		for (; addr < end; addr++) {
4521 			ret = get_user(val, addr);
4522 			if (ret)
4523 				return ret;
4524 			if (val)
4525 				goto err_size;
4526 		}
4527 		size = sizeof(*attr);
4528 	}
4529 
4530 	ret = copy_from_user(attr, uattr, size);
4531 	if (ret)
4532 		return -EFAULT;
4533 
4534 	/*
4535 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4536 	 * to be strict and return an error on out-of-bounds values?
4537 	 */
4538 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4539 
4540 	return 0;
4541 
4542 err_size:
4543 	put_user(sizeof(*attr), &uattr->size);
4544 	return -E2BIG;
4545 }
4546 
4547 /**
4548  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4549  * @pid: the pid in question.
4550  * @policy: new policy.
4551  * @param: structure containing the new RT priority.
4552  *
4553  * Return: 0 on success. An error code otherwise.
4554  */
4555 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4556 {
4557 	if (policy < 0)
4558 		return -EINVAL;
4559 
4560 	return do_sched_setscheduler(pid, policy, param);
4561 }
4562 
4563 /**
4564  * sys_sched_setparam - set/change the RT priority of a thread
4565  * @pid: the pid in question.
4566  * @param: structure containing the new RT priority.
4567  *
4568  * Return: 0 on success. An error code otherwise.
4569  */
4570 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4571 {
4572 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4573 }
4574 
4575 /**
4576  * sys_sched_setattr - same as above, but with extended sched_attr
4577  * @pid: the pid in question.
4578  * @uattr: structure containing the extended parameters.
4579  * @flags: for future extension.
4580  */
4581 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4582 			       unsigned int, flags)
4583 {
4584 	struct sched_attr attr;
4585 	struct task_struct *p;
4586 	int retval;
4587 
4588 	if (!uattr || pid < 0 || flags)
4589 		return -EINVAL;
4590 
4591 	retval = sched_copy_attr(uattr, &attr);
4592 	if (retval)
4593 		return retval;
4594 
4595 	if ((int)attr.sched_policy < 0)
4596 		return -EINVAL;
4597 
4598 	rcu_read_lock();
4599 	retval = -ESRCH;
4600 	p = find_process_by_pid(pid);
4601 	if (p != NULL)
4602 		retval = sched_setattr(p, &attr);
4603 	rcu_read_unlock();
4604 
4605 	return retval;
4606 }
4607 
4608 /**
4609  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610  * @pid: the pid in question.
4611  *
4612  * Return: On success, the policy of the thread. Otherwise, a negative error
4613  * code.
4614  */
4615 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4616 {
4617 	struct task_struct *p;
4618 	int retval;
4619 
4620 	if (pid < 0)
4621 		return -EINVAL;
4622 
4623 	retval = -ESRCH;
4624 	rcu_read_lock();
4625 	p = find_process_by_pid(pid);
4626 	if (p) {
4627 		retval = security_task_getscheduler(p);
4628 		if (!retval)
4629 			retval = p->policy
4630 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4631 	}
4632 	rcu_read_unlock();
4633 	return retval;
4634 }
4635 
4636 /**
4637  * sys_sched_getparam - get the RT priority of a thread
4638  * @pid: the pid in question.
4639  * @param: structure containing the RT priority.
4640  *
4641  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4642  * code.
4643  */
4644 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4645 {
4646 	struct sched_param lp = { .sched_priority = 0 };
4647 	struct task_struct *p;
4648 	int retval;
4649 
4650 	if (!param || pid < 0)
4651 		return -EINVAL;
4652 
4653 	rcu_read_lock();
4654 	p = find_process_by_pid(pid);
4655 	retval = -ESRCH;
4656 	if (!p)
4657 		goto out_unlock;
4658 
4659 	retval = security_task_getscheduler(p);
4660 	if (retval)
4661 		goto out_unlock;
4662 
4663 	if (task_has_rt_policy(p))
4664 		lp.sched_priority = p->rt_priority;
4665 	rcu_read_unlock();
4666 
4667 	/*
4668 	 * This one might sleep, we cannot do it with a spinlock held ...
4669 	 */
4670 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4671 
4672 	return retval;
4673 
4674 out_unlock:
4675 	rcu_read_unlock();
4676 	return retval;
4677 }
4678 
4679 static int sched_read_attr(struct sched_attr __user *uattr,
4680 			   struct sched_attr *attr,
4681 			   unsigned int usize)
4682 {
4683 	int ret;
4684 
4685 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4686 		return -EFAULT;
4687 
4688 	/*
4689 	 * If we're handed a smaller struct than we know of,
4690 	 * ensure all the unknown bits are 0 - i.e. old
4691 	 * user-space does not get uncomplete information.
4692 	 */
4693 	if (usize < sizeof(*attr)) {
4694 		unsigned char *addr;
4695 		unsigned char *end;
4696 
4697 		addr = (void *)attr + usize;
4698 		end  = (void *)attr + sizeof(*attr);
4699 
4700 		for (; addr < end; addr++) {
4701 			if (*addr)
4702 				return -EFBIG;
4703 		}
4704 
4705 		attr->size = usize;
4706 	}
4707 
4708 	ret = copy_to_user(uattr, attr, attr->size);
4709 	if (ret)
4710 		return -EFAULT;
4711 
4712 	return 0;
4713 }
4714 
4715 /**
4716  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4717  * @pid: the pid in question.
4718  * @uattr: structure containing the extended parameters.
4719  * @size: sizeof(attr) for fwd/bwd comp.
4720  * @flags: for future extension.
4721  */
4722 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4723 		unsigned int, size, unsigned int, flags)
4724 {
4725 	struct sched_attr attr = {
4726 		.size = sizeof(struct sched_attr),
4727 	};
4728 	struct task_struct *p;
4729 	int retval;
4730 
4731 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4732 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4733 		return -EINVAL;
4734 
4735 	rcu_read_lock();
4736 	p = find_process_by_pid(pid);
4737 	retval = -ESRCH;
4738 	if (!p)
4739 		goto out_unlock;
4740 
4741 	retval = security_task_getscheduler(p);
4742 	if (retval)
4743 		goto out_unlock;
4744 
4745 	attr.sched_policy = p->policy;
4746 	if (p->sched_reset_on_fork)
4747 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4748 	if (task_has_dl_policy(p))
4749 		__getparam_dl(p, &attr);
4750 	else if (task_has_rt_policy(p))
4751 		attr.sched_priority = p->rt_priority;
4752 	else
4753 		attr.sched_nice = task_nice(p);
4754 
4755 	rcu_read_unlock();
4756 
4757 	retval = sched_read_attr(uattr, &attr, size);
4758 	return retval;
4759 
4760 out_unlock:
4761 	rcu_read_unlock();
4762 	return retval;
4763 }
4764 
4765 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4766 {
4767 	cpumask_var_t cpus_allowed, new_mask;
4768 	struct task_struct *p;
4769 	int retval;
4770 
4771 	rcu_read_lock();
4772 
4773 	p = find_process_by_pid(pid);
4774 	if (!p) {
4775 		rcu_read_unlock();
4776 		return -ESRCH;
4777 	}
4778 
4779 	/* Prevent p going away */
4780 	get_task_struct(p);
4781 	rcu_read_unlock();
4782 
4783 	if (p->flags & PF_NO_SETAFFINITY) {
4784 		retval = -EINVAL;
4785 		goto out_put_task;
4786 	}
4787 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4788 		retval = -ENOMEM;
4789 		goto out_put_task;
4790 	}
4791 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4792 		retval = -ENOMEM;
4793 		goto out_free_cpus_allowed;
4794 	}
4795 	retval = -EPERM;
4796 	if (!check_same_owner(p)) {
4797 		rcu_read_lock();
4798 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4799 			rcu_read_unlock();
4800 			goto out_free_new_mask;
4801 		}
4802 		rcu_read_unlock();
4803 	}
4804 
4805 	retval = security_task_setscheduler(p);
4806 	if (retval)
4807 		goto out_free_new_mask;
4808 
4809 
4810 	cpuset_cpus_allowed(p, cpus_allowed);
4811 	cpumask_and(new_mask, in_mask, cpus_allowed);
4812 
4813 	/*
4814 	 * Since bandwidth control happens on root_domain basis,
4815 	 * if admission test is enabled, we only admit -deadline
4816 	 * tasks allowed to run on all the CPUs in the task's
4817 	 * root_domain.
4818 	 */
4819 #ifdef CONFIG_SMP
4820 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4821 		rcu_read_lock();
4822 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4823 			retval = -EBUSY;
4824 			rcu_read_unlock();
4825 			goto out_free_new_mask;
4826 		}
4827 		rcu_read_unlock();
4828 	}
4829 #endif
4830 again:
4831 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4832 
4833 	if (!retval) {
4834 		cpuset_cpus_allowed(p, cpus_allowed);
4835 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4836 			/*
4837 			 * We must have raced with a concurrent cpuset
4838 			 * update. Just reset the cpus_allowed to the
4839 			 * cpuset's cpus_allowed
4840 			 */
4841 			cpumask_copy(new_mask, cpus_allowed);
4842 			goto again;
4843 		}
4844 	}
4845 out_free_new_mask:
4846 	free_cpumask_var(new_mask);
4847 out_free_cpus_allowed:
4848 	free_cpumask_var(cpus_allowed);
4849 out_put_task:
4850 	put_task_struct(p);
4851 	return retval;
4852 }
4853 
4854 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4855 			     struct cpumask *new_mask)
4856 {
4857 	if (len < cpumask_size())
4858 		cpumask_clear(new_mask);
4859 	else if (len > cpumask_size())
4860 		len = cpumask_size();
4861 
4862 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4863 }
4864 
4865 /**
4866  * sys_sched_setaffinity - set the CPU affinity of a process
4867  * @pid: pid of the process
4868  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4869  * @user_mask_ptr: user-space pointer to the new CPU mask
4870  *
4871  * Return: 0 on success. An error code otherwise.
4872  */
4873 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4874 		unsigned long __user *, user_mask_ptr)
4875 {
4876 	cpumask_var_t new_mask;
4877 	int retval;
4878 
4879 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4880 		return -ENOMEM;
4881 
4882 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4883 	if (retval == 0)
4884 		retval = sched_setaffinity(pid, new_mask);
4885 	free_cpumask_var(new_mask);
4886 	return retval;
4887 }
4888 
4889 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4890 {
4891 	struct task_struct *p;
4892 	unsigned long flags;
4893 	int retval;
4894 
4895 	rcu_read_lock();
4896 
4897 	retval = -ESRCH;
4898 	p = find_process_by_pid(pid);
4899 	if (!p)
4900 		goto out_unlock;
4901 
4902 	retval = security_task_getscheduler(p);
4903 	if (retval)
4904 		goto out_unlock;
4905 
4906 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4907 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4908 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4909 
4910 out_unlock:
4911 	rcu_read_unlock();
4912 
4913 	return retval;
4914 }
4915 
4916 /**
4917  * sys_sched_getaffinity - get the CPU affinity of a process
4918  * @pid: pid of the process
4919  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4920  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4921  *
4922  * Return: size of CPU mask copied to user_mask_ptr on success. An
4923  * error code otherwise.
4924  */
4925 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4926 		unsigned long __user *, user_mask_ptr)
4927 {
4928 	int ret;
4929 	cpumask_var_t mask;
4930 
4931 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4932 		return -EINVAL;
4933 	if (len & (sizeof(unsigned long)-1))
4934 		return -EINVAL;
4935 
4936 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4937 		return -ENOMEM;
4938 
4939 	ret = sched_getaffinity(pid, mask);
4940 	if (ret == 0) {
4941 		unsigned int retlen = min(len, cpumask_size());
4942 
4943 		if (copy_to_user(user_mask_ptr, mask, retlen))
4944 			ret = -EFAULT;
4945 		else
4946 			ret = retlen;
4947 	}
4948 	free_cpumask_var(mask);
4949 
4950 	return ret;
4951 }
4952 
4953 /**
4954  * sys_sched_yield - yield the current processor to other threads.
4955  *
4956  * This function yields the current CPU to other tasks. If there are no
4957  * other threads running on this CPU then this function will return.
4958  *
4959  * Return: 0.
4960  */
4961 static void do_sched_yield(void)
4962 {
4963 	struct rq_flags rf;
4964 	struct rq *rq;
4965 
4966 	local_irq_disable();
4967 	rq = this_rq();
4968 	rq_lock(rq, &rf);
4969 
4970 	schedstat_inc(rq->yld_count);
4971 	current->sched_class->yield_task(rq);
4972 
4973 	/*
4974 	 * Since we are going to call schedule() anyway, there's
4975 	 * no need to preempt or enable interrupts:
4976 	 */
4977 	preempt_disable();
4978 	rq_unlock(rq, &rf);
4979 	sched_preempt_enable_no_resched();
4980 
4981 	schedule();
4982 }
4983 
4984 SYSCALL_DEFINE0(sched_yield)
4985 {
4986 	do_sched_yield();
4987 	return 0;
4988 }
4989 
4990 #ifndef CONFIG_PREEMPT
4991 int __sched _cond_resched(void)
4992 {
4993 	if (should_resched(0)) {
4994 		preempt_schedule_common();
4995 		return 1;
4996 	}
4997 	rcu_all_qs();
4998 	return 0;
4999 }
5000 EXPORT_SYMBOL(_cond_resched);
5001 #endif
5002 
5003 /*
5004  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5005  * call schedule, and on return reacquire the lock.
5006  *
5007  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5008  * operations here to prevent schedule() from being called twice (once via
5009  * spin_unlock(), once by hand).
5010  */
5011 int __cond_resched_lock(spinlock_t *lock)
5012 {
5013 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5014 	int ret = 0;
5015 
5016 	lockdep_assert_held(lock);
5017 
5018 	if (spin_needbreak(lock) || resched) {
5019 		spin_unlock(lock);
5020 		if (resched)
5021 			preempt_schedule_common();
5022 		else
5023 			cpu_relax();
5024 		ret = 1;
5025 		spin_lock(lock);
5026 	}
5027 	return ret;
5028 }
5029 EXPORT_SYMBOL(__cond_resched_lock);
5030 
5031 /**
5032  * yield - yield the current processor to other threads.
5033  *
5034  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5035  *
5036  * The scheduler is at all times free to pick the calling task as the most
5037  * eligible task to run, if removing the yield() call from your code breaks
5038  * it, its already broken.
5039  *
5040  * Typical broken usage is:
5041  *
5042  * while (!event)
5043  *	yield();
5044  *
5045  * where one assumes that yield() will let 'the other' process run that will
5046  * make event true. If the current task is a SCHED_FIFO task that will never
5047  * happen. Never use yield() as a progress guarantee!!
5048  *
5049  * If you want to use yield() to wait for something, use wait_event().
5050  * If you want to use yield() to be 'nice' for others, use cond_resched().
5051  * If you still want to use yield(), do not!
5052  */
5053 void __sched yield(void)
5054 {
5055 	set_current_state(TASK_RUNNING);
5056 	do_sched_yield();
5057 }
5058 EXPORT_SYMBOL(yield);
5059 
5060 /**
5061  * yield_to - yield the current processor to another thread in
5062  * your thread group, or accelerate that thread toward the
5063  * processor it's on.
5064  * @p: target task
5065  * @preempt: whether task preemption is allowed or not
5066  *
5067  * It's the caller's job to ensure that the target task struct
5068  * can't go away on us before we can do any checks.
5069  *
5070  * Return:
5071  *	true (>0) if we indeed boosted the target task.
5072  *	false (0) if we failed to boost the target.
5073  *	-ESRCH if there's no task to yield to.
5074  */
5075 int __sched yield_to(struct task_struct *p, bool preempt)
5076 {
5077 	struct task_struct *curr = current;
5078 	struct rq *rq, *p_rq;
5079 	unsigned long flags;
5080 	int yielded = 0;
5081 
5082 	local_irq_save(flags);
5083 	rq = this_rq();
5084 
5085 again:
5086 	p_rq = task_rq(p);
5087 	/*
5088 	 * If we're the only runnable task on the rq and target rq also
5089 	 * has only one task, there's absolutely no point in yielding.
5090 	 */
5091 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5092 		yielded = -ESRCH;
5093 		goto out_irq;
5094 	}
5095 
5096 	double_rq_lock(rq, p_rq);
5097 	if (task_rq(p) != p_rq) {
5098 		double_rq_unlock(rq, p_rq);
5099 		goto again;
5100 	}
5101 
5102 	if (!curr->sched_class->yield_to_task)
5103 		goto out_unlock;
5104 
5105 	if (curr->sched_class != p->sched_class)
5106 		goto out_unlock;
5107 
5108 	if (task_running(p_rq, p) || p->state)
5109 		goto out_unlock;
5110 
5111 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5112 	if (yielded) {
5113 		schedstat_inc(rq->yld_count);
5114 		/*
5115 		 * Make p's CPU reschedule; pick_next_entity takes care of
5116 		 * fairness.
5117 		 */
5118 		if (preempt && rq != p_rq)
5119 			resched_curr(p_rq);
5120 	}
5121 
5122 out_unlock:
5123 	double_rq_unlock(rq, p_rq);
5124 out_irq:
5125 	local_irq_restore(flags);
5126 
5127 	if (yielded > 0)
5128 		schedule();
5129 
5130 	return yielded;
5131 }
5132 EXPORT_SYMBOL_GPL(yield_to);
5133 
5134 int io_schedule_prepare(void)
5135 {
5136 	int old_iowait = current->in_iowait;
5137 
5138 	current->in_iowait = 1;
5139 	blk_schedule_flush_plug(current);
5140 
5141 	return old_iowait;
5142 }
5143 
5144 void io_schedule_finish(int token)
5145 {
5146 	current->in_iowait = token;
5147 }
5148 
5149 /*
5150  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5151  * that process accounting knows that this is a task in IO wait state.
5152  */
5153 long __sched io_schedule_timeout(long timeout)
5154 {
5155 	int token;
5156 	long ret;
5157 
5158 	token = io_schedule_prepare();
5159 	ret = schedule_timeout(timeout);
5160 	io_schedule_finish(token);
5161 
5162 	return ret;
5163 }
5164 EXPORT_SYMBOL(io_schedule_timeout);
5165 
5166 void io_schedule(void)
5167 {
5168 	int token;
5169 
5170 	token = io_schedule_prepare();
5171 	schedule();
5172 	io_schedule_finish(token);
5173 }
5174 EXPORT_SYMBOL(io_schedule);
5175 
5176 /**
5177  * sys_sched_get_priority_max - return maximum RT priority.
5178  * @policy: scheduling class.
5179  *
5180  * Return: On success, this syscall returns the maximum
5181  * rt_priority that can be used by a given scheduling class.
5182  * On failure, a negative error code is returned.
5183  */
5184 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5185 {
5186 	int ret = -EINVAL;
5187 
5188 	switch (policy) {
5189 	case SCHED_FIFO:
5190 	case SCHED_RR:
5191 		ret = MAX_USER_RT_PRIO-1;
5192 		break;
5193 	case SCHED_DEADLINE:
5194 	case SCHED_NORMAL:
5195 	case SCHED_BATCH:
5196 	case SCHED_IDLE:
5197 		ret = 0;
5198 		break;
5199 	}
5200 	return ret;
5201 }
5202 
5203 /**
5204  * sys_sched_get_priority_min - return minimum RT priority.
5205  * @policy: scheduling class.
5206  *
5207  * Return: On success, this syscall returns the minimum
5208  * rt_priority that can be used by a given scheduling class.
5209  * On failure, a negative error code is returned.
5210  */
5211 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5212 {
5213 	int ret = -EINVAL;
5214 
5215 	switch (policy) {
5216 	case SCHED_FIFO:
5217 	case SCHED_RR:
5218 		ret = 1;
5219 		break;
5220 	case SCHED_DEADLINE:
5221 	case SCHED_NORMAL:
5222 	case SCHED_BATCH:
5223 	case SCHED_IDLE:
5224 		ret = 0;
5225 	}
5226 	return ret;
5227 }
5228 
5229 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5230 {
5231 	struct task_struct *p;
5232 	unsigned int time_slice;
5233 	struct rq_flags rf;
5234 	struct rq *rq;
5235 	int retval;
5236 
5237 	if (pid < 0)
5238 		return -EINVAL;
5239 
5240 	retval = -ESRCH;
5241 	rcu_read_lock();
5242 	p = find_process_by_pid(pid);
5243 	if (!p)
5244 		goto out_unlock;
5245 
5246 	retval = security_task_getscheduler(p);
5247 	if (retval)
5248 		goto out_unlock;
5249 
5250 	rq = task_rq_lock(p, &rf);
5251 	time_slice = 0;
5252 	if (p->sched_class->get_rr_interval)
5253 		time_slice = p->sched_class->get_rr_interval(rq, p);
5254 	task_rq_unlock(rq, p, &rf);
5255 
5256 	rcu_read_unlock();
5257 	jiffies_to_timespec64(time_slice, t);
5258 	return 0;
5259 
5260 out_unlock:
5261 	rcu_read_unlock();
5262 	return retval;
5263 }
5264 
5265 /**
5266  * sys_sched_rr_get_interval - return the default timeslice of a process.
5267  * @pid: pid of the process.
5268  * @interval: userspace pointer to the timeslice value.
5269  *
5270  * this syscall writes the default timeslice value of a given process
5271  * into the user-space timespec buffer. A value of '0' means infinity.
5272  *
5273  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5274  * an error code.
5275  */
5276 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5277 		struct timespec __user *, interval)
5278 {
5279 	struct timespec64 t;
5280 	int retval = sched_rr_get_interval(pid, &t);
5281 
5282 	if (retval == 0)
5283 		retval = put_timespec64(&t, interval);
5284 
5285 	return retval;
5286 }
5287 
5288 #ifdef CONFIG_COMPAT
5289 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5290 		       compat_pid_t, pid,
5291 		       struct compat_timespec __user *, interval)
5292 {
5293 	struct timespec64 t;
5294 	int retval = sched_rr_get_interval(pid, &t);
5295 
5296 	if (retval == 0)
5297 		retval = compat_put_timespec64(&t, interval);
5298 	return retval;
5299 }
5300 #endif
5301 
5302 void sched_show_task(struct task_struct *p)
5303 {
5304 	unsigned long free = 0;
5305 	int ppid;
5306 
5307 	if (!try_get_task_stack(p))
5308 		return;
5309 
5310 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5311 
5312 	if (p->state == TASK_RUNNING)
5313 		printk(KERN_CONT "  running task    ");
5314 #ifdef CONFIG_DEBUG_STACK_USAGE
5315 	free = stack_not_used(p);
5316 #endif
5317 	ppid = 0;
5318 	rcu_read_lock();
5319 	if (pid_alive(p))
5320 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5321 	rcu_read_unlock();
5322 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5323 		task_pid_nr(p), ppid,
5324 		(unsigned long)task_thread_info(p)->flags);
5325 
5326 	print_worker_info(KERN_INFO, p);
5327 	show_stack(p, NULL);
5328 	put_task_stack(p);
5329 }
5330 EXPORT_SYMBOL_GPL(sched_show_task);
5331 
5332 static inline bool
5333 state_filter_match(unsigned long state_filter, struct task_struct *p)
5334 {
5335 	/* no filter, everything matches */
5336 	if (!state_filter)
5337 		return true;
5338 
5339 	/* filter, but doesn't match */
5340 	if (!(p->state & state_filter))
5341 		return false;
5342 
5343 	/*
5344 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5345 	 * TASK_KILLABLE).
5346 	 */
5347 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5348 		return false;
5349 
5350 	return true;
5351 }
5352 
5353 
5354 void show_state_filter(unsigned long state_filter)
5355 {
5356 	struct task_struct *g, *p;
5357 
5358 #if BITS_PER_LONG == 32
5359 	printk(KERN_INFO
5360 		"  task                PC stack   pid father\n");
5361 #else
5362 	printk(KERN_INFO
5363 		"  task                        PC stack   pid father\n");
5364 #endif
5365 	rcu_read_lock();
5366 	for_each_process_thread(g, p) {
5367 		/*
5368 		 * reset the NMI-timeout, listing all files on a slow
5369 		 * console might take a lot of time:
5370 		 * Also, reset softlockup watchdogs on all CPUs, because
5371 		 * another CPU might be blocked waiting for us to process
5372 		 * an IPI.
5373 		 */
5374 		touch_nmi_watchdog();
5375 		touch_all_softlockup_watchdogs();
5376 		if (state_filter_match(state_filter, p))
5377 			sched_show_task(p);
5378 	}
5379 
5380 #ifdef CONFIG_SCHED_DEBUG
5381 	if (!state_filter)
5382 		sysrq_sched_debug_show();
5383 #endif
5384 	rcu_read_unlock();
5385 	/*
5386 	 * Only show locks if all tasks are dumped:
5387 	 */
5388 	if (!state_filter)
5389 		debug_show_all_locks();
5390 }
5391 
5392 /**
5393  * init_idle - set up an idle thread for a given CPU
5394  * @idle: task in question
5395  * @cpu: CPU the idle task belongs to
5396  *
5397  * NOTE: this function does not set the idle thread's NEED_RESCHED
5398  * flag, to make booting more robust.
5399  */
5400 void init_idle(struct task_struct *idle, int cpu)
5401 {
5402 	struct rq *rq = cpu_rq(cpu);
5403 	unsigned long flags;
5404 
5405 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5406 	raw_spin_lock(&rq->lock);
5407 
5408 	__sched_fork(0, idle);
5409 	idle->state = TASK_RUNNING;
5410 	idle->se.exec_start = sched_clock();
5411 	idle->flags |= PF_IDLE;
5412 
5413 	kasan_unpoison_task_stack(idle);
5414 
5415 #ifdef CONFIG_SMP
5416 	/*
5417 	 * Its possible that init_idle() gets called multiple times on a task,
5418 	 * in that case do_set_cpus_allowed() will not do the right thing.
5419 	 *
5420 	 * And since this is boot we can forgo the serialization.
5421 	 */
5422 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5423 #endif
5424 	/*
5425 	 * We're having a chicken and egg problem, even though we are
5426 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5427 	 * lockdep check in task_group() will fail.
5428 	 *
5429 	 * Similar case to sched_fork(). / Alternatively we could
5430 	 * use task_rq_lock() here and obtain the other rq->lock.
5431 	 *
5432 	 * Silence PROVE_RCU
5433 	 */
5434 	rcu_read_lock();
5435 	__set_task_cpu(idle, cpu);
5436 	rcu_read_unlock();
5437 
5438 	rq->curr = rq->idle = idle;
5439 	idle->on_rq = TASK_ON_RQ_QUEUED;
5440 #ifdef CONFIG_SMP
5441 	idle->on_cpu = 1;
5442 #endif
5443 	raw_spin_unlock(&rq->lock);
5444 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5445 
5446 	/* Set the preempt count _outside_ the spinlocks! */
5447 	init_idle_preempt_count(idle, cpu);
5448 
5449 	/*
5450 	 * The idle tasks have their own, simple scheduling class:
5451 	 */
5452 	idle->sched_class = &idle_sched_class;
5453 	ftrace_graph_init_idle_task(idle, cpu);
5454 	vtime_init_idle(idle, cpu);
5455 #ifdef CONFIG_SMP
5456 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5457 #endif
5458 }
5459 
5460 #ifdef CONFIG_SMP
5461 
5462 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5463 			      const struct cpumask *trial)
5464 {
5465 	int ret = 1;
5466 
5467 	if (!cpumask_weight(cur))
5468 		return ret;
5469 
5470 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5471 
5472 	return ret;
5473 }
5474 
5475 int task_can_attach(struct task_struct *p,
5476 		    const struct cpumask *cs_cpus_allowed)
5477 {
5478 	int ret = 0;
5479 
5480 	/*
5481 	 * Kthreads which disallow setaffinity shouldn't be moved
5482 	 * to a new cpuset; we don't want to change their CPU
5483 	 * affinity and isolating such threads by their set of
5484 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5485 	 * applicable for such threads.  This prevents checking for
5486 	 * success of set_cpus_allowed_ptr() on all attached tasks
5487 	 * before cpus_allowed may be changed.
5488 	 */
5489 	if (p->flags & PF_NO_SETAFFINITY) {
5490 		ret = -EINVAL;
5491 		goto out;
5492 	}
5493 
5494 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5495 					      cs_cpus_allowed))
5496 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5497 
5498 out:
5499 	return ret;
5500 }
5501 
5502 bool sched_smp_initialized __read_mostly;
5503 
5504 #ifdef CONFIG_NUMA_BALANCING
5505 /* Migrate current task p to target_cpu */
5506 int migrate_task_to(struct task_struct *p, int target_cpu)
5507 {
5508 	struct migration_arg arg = { p, target_cpu };
5509 	int curr_cpu = task_cpu(p);
5510 
5511 	if (curr_cpu == target_cpu)
5512 		return 0;
5513 
5514 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5515 		return -EINVAL;
5516 
5517 	/* TODO: This is not properly updating schedstats */
5518 
5519 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5520 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5521 }
5522 
5523 /*
5524  * Requeue a task on a given node and accurately track the number of NUMA
5525  * tasks on the runqueues
5526  */
5527 void sched_setnuma(struct task_struct *p, int nid)
5528 {
5529 	bool queued, running;
5530 	struct rq_flags rf;
5531 	struct rq *rq;
5532 
5533 	rq = task_rq_lock(p, &rf);
5534 	queued = task_on_rq_queued(p);
5535 	running = task_current(rq, p);
5536 
5537 	if (queued)
5538 		dequeue_task(rq, p, DEQUEUE_SAVE);
5539 	if (running)
5540 		put_prev_task(rq, p);
5541 
5542 	p->numa_preferred_nid = nid;
5543 
5544 	if (queued)
5545 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5546 	if (running)
5547 		set_curr_task(rq, p);
5548 	task_rq_unlock(rq, p, &rf);
5549 }
5550 #endif /* CONFIG_NUMA_BALANCING */
5551 
5552 #ifdef CONFIG_HOTPLUG_CPU
5553 /*
5554  * Ensure that the idle task is using init_mm right before its CPU goes
5555  * offline.
5556  */
5557 void idle_task_exit(void)
5558 {
5559 	struct mm_struct *mm = current->active_mm;
5560 
5561 	BUG_ON(cpu_online(smp_processor_id()));
5562 
5563 	if (mm != &init_mm) {
5564 		switch_mm(mm, &init_mm, current);
5565 		current->active_mm = &init_mm;
5566 		finish_arch_post_lock_switch();
5567 	}
5568 	mmdrop(mm);
5569 }
5570 
5571 /*
5572  * Since this CPU is going 'away' for a while, fold any nr_active delta
5573  * we might have. Assumes we're called after migrate_tasks() so that the
5574  * nr_active count is stable. We need to take the teardown thread which
5575  * is calling this into account, so we hand in adjust = 1 to the load
5576  * calculation.
5577  *
5578  * Also see the comment "Global load-average calculations".
5579  */
5580 static void calc_load_migrate(struct rq *rq)
5581 {
5582 	long delta = calc_load_fold_active(rq, 1);
5583 	if (delta)
5584 		atomic_long_add(delta, &calc_load_tasks);
5585 }
5586 
5587 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5588 {
5589 }
5590 
5591 static const struct sched_class fake_sched_class = {
5592 	.put_prev_task = put_prev_task_fake,
5593 };
5594 
5595 static struct task_struct fake_task = {
5596 	/*
5597 	 * Avoid pull_{rt,dl}_task()
5598 	 */
5599 	.prio = MAX_PRIO + 1,
5600 	.sched_class = &fake_sched_class,
5601 };
5602 
5603 /*
5604  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5605  * try_to_wake_up()->select_task_rq().
5606  *
5607  * Called with rq->lock held even though we'er in stop_machine() and
5608  * there's no concurrency possible, we hold the required locks anyway
5609  * because of lock validation efforts.
5610  */
5611 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5612 {
5613 	struct rq *rq = dead_rq;
5614 	struct task_struct *next, *stop = rq->stop;
5615 	struct rq_flags orf = *rf;
5616 	int dest_cpu;
5617 
5618 	/*
5619 	 * Fudge the rq selection such that the below task selection loop
5620 	 * doesn't get stuck on the currently eligible stop task.
5621 	 *
5622 	 * We're currently inside stop_machine() and the rq is either stuck
5623 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5624 	 * either way we should never end up calling schedule() until we're
5625 	 * done here.
5626 	 */
5627 	rq->stop = NULL;
5628 
5629 	/*
5630 	 * put_prev_task() and pick_next_task() sched
5631 	 * class method both need to have an up-to-date
5632 	 * value of rq->clock[_task]
5633 	 */
5634 	update_rq_clock(rq);
5635 
5636 	for (;;) {
5637 		/*
5638 		 * There's this thread running, bail when that's the only
5639 		 * remaining thread:
5640 		 */
5641 		if (rq->nr_running == 1)
5642 			break;
5643 
5644 		/*
5645 		 * pick_next_task() assumes pinned rq->lock:
5646 		 */
5647 		next = pick_next_task(rq, &fake_task, rf);
5648 		BUG_ON(!next);
5649 		put_prev_task(rq, next);
5650 
5651 		/*
5652 		 * Rules for changing task_struct::cpus_allowed are holding
5653 		 * both pi_lock and rq->lock, such that holding either
5654 		 * stabilizes the mask.
5655 		 *
5656 		 * Drop rq->lock is not quite as disastrous as it usually is
5657 		 * because !cpu_active at this point, which means load-balance
5658 		 * will not interfere. Also, stop-machine.
5659 		 */
5660 		rq_unlock(rq, rf);
5661 		raw_spin_lock(&next->pi_lock);
5662 		rq_relock(rq, rf);
5663 
5664 		/*
5665 		 * Since we're inside stop-machine, _nothing_ should have
5666 		 * changed the task, WARN if weird stuff happened, because in
5667 		 * that case the above rq->lock drop is a fail too.
5668 		 */
5669 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5670 			raw_spin_unlock(&next->pi_lock);
5671 			continue;
5672 		}
5673 
5674 		/* Find suitable destination for @next, with force if needed. */
5675 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5676 		rq = __migrate_task(rq, rf, next, dest_cpu);
5677 		if (rq != dead_rq) {
5678 			rq_unlock(rq, rf);
5679 			rq = dead_rq;
5680 			*rf = orf;
5681 			rq_relock(rq, rf);
5682 		}
5683 		raw_spin_unlock(&next->pi_lock);
5684 	}
5685 
5686 	rq->stop = stop;
5687 }
5688 #endif /* CONFIG_HOTPLUG_CPU */
5689 
5690 void set_rq_online(struct rq *rq)
5691 {
5692 	if (!rq->online) {
5693 		const struct sched_class *class;
5694 
5695 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5696 		rq->online = 1;
5697 
5698 		for_each_class(class) {
5699 			if (class->rq_online)
5700 				class->rq_online(rq);
5701 		}
5702 	}
5703 }
5704 
5705 void set_rq_offline(struct rq *rq)
5706 {
5707 	if (rq->online) {
5708 		const struct sched_class *class;
5709 
5710 		for_each_class(class) {
5711 			if (class->rq_offline)
5712 				class->rq_offline(rq);
5713 		}
5714 
5715 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5716 		rq->online = 0;
5717 	}
5718 }
5719 
5720 static void set_cpu_rq_start_time(unsigned int cpu)
5721 {
5722 	struct rq *rq = cpu_rq(cpu);
5723 
5724 	rq->age_stamp = sched_clock_cpu(cpu);
5725 }
5726 
5727 /*
5728  * used to mark begin/end of suspend/resume:
5729  */
5730 static int num_cpus_frozen;
5731 
5732 /*
5733  * Update cpusets according to cpu_active mask.  If cpusets are
5734  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5735  * around partition_sched_domains().
5736  *
5737  * If we come here as part of a suspend/resume, don't touch cpusets because we
5738  * want to restore it back to its original state upon resume anyway.
5739  */
5740 static void cpuset_cpu_active(void)
5741 {
5742 	if (cpuhp_tasks_frozen) {
5743 		/*
5744 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5745 		 * resume sequence. As long as this is not the last online
5746 		 * operation in the resume sequence, just build a single sched
5747 		 * domain, ignoring cpusets.
5748 		 */
5749 		partition_sched_domains(1, NULL, NULL);
5750 		if (--num_cpus_frozen)
5751 			return;
5752 		/*
5753 		 * This is the last CPU online operation. So fall through and
5754 		 * restore the original sched domains by considering the
5755 		 * cpuset configurations.
5756 		 */
5757 		cpuset_force_rebuild();
5758 	}
5759 	cpuset_update_active_cpus();
5760 }
5761 
5762 static int cpuset_cpu_inactive(unsigned int cpu)
5763 {
5764 	if (!cpuhp_tasks_frozen) {
5765 		if (dl_cpu_busy(cpu))
5766 			return -EBUSY;
5767 		cpuset_update_active_cpus();
5768 	} else {
5769 		num_cpus_frozen++;
5770 		partition_sched_domains(1, NULL, NULL);
5771 	}
5772 	return 0;
5773 }
5774 
5775 int sched_cpu_activate(unsigned int cpu)
5776 {
5777 	struct rq *rq = cpu_rq(cpu);
5778 	struct rq_flags rf;
5779 
5780 	set_cpu_active(cpu, true);
5781 
5782 	if (sched_smp_initialized) {
5783 		sched_domains_numa_masks_set(cpu);
5784 		cpuset_cpu_active();
5785 	}
5786 
5787 	/*
5788 	 * Put the rq online, if not already. This happens:
5789 	 *
5790 	 * 1) In the early boot process, because we build the real domains
5791 	 *    after all CPUs have been brought up.
5792 	 *
5793 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5794 	 *    domains.
5795 	 */
5796 	rq_lock_irqsave(rq, &rf);
5797 	if (rq->rd) {
5798 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5799 		set_rq_online(rq);
5800 	}
5801 	rq_unlock_irqrestore(rq, &rf);
5802 
5803 	update_max_interval();
5804 
5805 	return 0;
5806 }
5807 
5808 int sched_cpu_deactivate(unsigned int cpu)
5809 {
5810 	int ret;
5811 
5812 	set_cpu_active(cpu, false);
5813 	/*
5814 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5815 	 * users of this state to go away such that all new such users will
5816 	 * observe it.
5817 	 *
5818 	 * Do sync before park smpboot threads to take care the rcu boost case.
5819 	 */
5820 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5821 
5822 	if (!sched_smp_initialized)
5823 		return 0;
5824 
5825 	ret = cpuset_cpu_inactive(cpu);
5826 	if (ret) {
5827 		set_cpu_active(cpu, true);
5828 		return ret;
5829 	}
5830 	sched_domains_numa_masks_clear(cpu);
5831 	return 0;
5832 }
5833 
5834 static void sched_rq_cpu_starting(unsigned int cpu)
5835 {
5836 	struct rq *rq = cpu_rq(cpu);
5837 
5838 	rq->calc_load_update = calc_load_update;
5839 	update_max_interval();
5840 }
5841 
5842 int sched_cpu_starting(unsigned int cpu)
5843 {
5844 	set_cpu_rq_start_time(cpu);
5845 	sched_rq_cpu_starting(cpu);
5846 	sched_tick_start(cpu);
5847 	return 0;
5848 }
5849 
5850 #ifdef CONFIG_HOTPLUG_CPU
5851 int sched_cpu_dying(unsigned int cpu)
5852 {
5853 	struct rq *rq = cpu_rq(cpu);
5854 	struct rq_flags rf;
5855 
5856 	/* Handle pending wakeups and then migrate everything off */
5857 	sched_ttwu_pending();
5858 	sched_tick_stop(cpu);
5859 
5860 	rq_lock_irqsave(rq, &rf);
5861 	if (rq->rd) {
5862 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5863 		set_rq_offline(rq);
5864 	}
5865 	migrate_tasks(rq, &rf);
5866 	BUG_ON(rq->nr_running != 1);
5867 	rq_unlock_irqrestore(rq, &rf);
5868 
5869 	calc_load_migrate(rq);
5870 	update_max_interval();
5871 	nohz_balance_exit_idle(rq);
5872 	hrtick_clear(rq);
5873 	return 0;
5874 }
5875 #endif
5876 
5877 #ifdef CONFIG_SCHED_SMT
5878 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5879 
5880 static void sched_init_smt(void)
5881 {
5882 	/*
5883 	 * We've enumerated all CPUs and will assume that if any CPU
5884 	 * has SMT siblings, CPU0 will too.
5885 	 */
5886 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5887 		static_branch_enable(&sched_smt_present);
5888 }
5889 #else
5890 static inline void sched_init_smt(void) { }
5891 #endif
5892 
5893 void __init sched_init_smp(void)
5894 {
5895 	sched_init_numa();
5896 
5897 	/*
5898 	 * There's no userspace yet to cause hotplug operations; hence all the
5899 	 * CPU masks are stable and all blatant races in the below code cannot
5900 	 * happen.
5901 	 */
5902 	mutex_lock(&sched_domains_mutex);
5903 	sched_init_domains(cpu_active_mask);
5904 	mutex_unlock(&sched_domains_mutex);
5905 
5906 	/* Move init over to a non-isolated CPU */
5907 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5908 		BUG();
5909 	sched_init_granularity();
5910 
5911 	init_sched_rt_class();
5912 	init_sched_dl_class();
5913 
5914 	sched_init_smt();
5915 
5916 	sched_smp_initialized = true;
5917 }
5918 
5919 static int __init migration_init(void)
5920 {
5921 	sched_rq_cpu_starting(smp_processor_id());
5922 	return 0;
5923 }
5924 early_initcall(migration_init);
5925 
5926 #else
5927 void __init sched_init_smp(void)
5928 {
5929 	sched_init_granularity();
5930 }
5931 #endif /* CONFIG_SMP */
5932 
5933 int in_sched_functions(unsigned long addr)
5934 {
5935 	return in_lock_functions(addr) ||
5936 		(addr >= (unsigned long)__sched_text_start
5937 		&& addr < (unsigned long)__sched_text_end);
5938 }
5939 
5940 #ifdef CONFIG_CGROUP_SCHED
5941 /*
5942  * Default task group.
5943  * Every task in system belongs to this group at bootup.
5944  */
5945 struct task_group root_task_group;
5946 LIST_HEAD(task_groups);
5947 
5948 /* Cacheline aligned slab cache for task_group */
5949 static struct kmem_cache *task_group_cache __read_mostly;
5950 #endif
5951 
5952 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5953 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5954 
5955 void __init sched_init(void)
5956 {
5957 	int i, j;
5958 	unsigned long alloc_size = 0, ptr;
5959 
5960 	sched_clock_init();
5961 	wait_bit_init();
5962 
5963 #ifdef CONFIG_FAIR_GROUP_SCHED
5964 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5965 #endif
5966 #ifdef CONFIG_RT_GROUP_SCHED
5967 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5968 #endif
5969 	if (alloc_size) {
5970 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5971 
5972 #ifdef CONFIG_FAIR_GROUP_SCHED
5973 		root_task_group.se = (struct sched_entity **)ptr;
5974 		ptr += nr_cpu_ids * sizeof(void **);
5975 
5976 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5977 		ptr += nr_cpu_ids * sizeof(void **);
5978 
5979 #endif /* CONFIG_FAIR_GROUP_SCHED */
5980 #ifdef CONFIG_RT_GROUP_SCHED
5981 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5982 		ptr += nr_cpu_ids * sizeof(void **);
5983 
5984 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5985 		ptr += nr_cpu_ids * sizeof(void **);
5986 
5987 #endif /* CONFIG_RT_GROUP_SCHED */
5988 	}
5989 #ifdef CONFIG_CPUMASK_OFFSTACK
5990 	for_each_possible_cpu(i) {
5991 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5992 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5993 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5994 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5995 	}
5996 #endif /* CONFIG_CPUMASK_OFFSTACK */
5997 
5998 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5999 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6000 
6001 #ifdef CONFIG_SMP
6002 	init_defrootdomain();
6003 #endif
6004 
6005 #ifdef CONFIG_RT_GROUP_SCHED
6006 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6007 			global_rt_period(), global_rt_runtime());
6008 #endif /* CONFIG_RT_GROUP_SCHED */
6009 
6010 #ifdef CONFIG_CGROUP_SCHED
6011 	task_group_cache = KMEM_CACHE(task_group, 0);
6012 
6013 	list_add(&root_task_group.list, &task_groups);
6014 	INIT_LIST_HEAD(&root_task_group.children);
6015 	INIT_LIST_HEAD(&root_task_group.siblings);
6016 	autogroup_init(&init_task);
6017 #endif /* CONFIG_CGROUP_SCHED */
6018 
6019 	for_each_possible_cpu(i) {
6020 		struct rq *rq;
6021 
6022 		rq = cpu_rq(i);
6023 		raw_spin_lock_init(&rq->lock);
6024 		rq->nr_running = 0;
6025 		rq->calc_load_active = 0;
6026 		rq->calc_load_update = jiffies + LOAD_FREQ;
6027 		init_cfs_rq(&rq->cfs);
6028 		init_rt_rq(&rq->rt);
6029 		init_dl_rq(&rq->dl);
6030 #ifdef CONFIG_FAIR_GROUP_SCHED
6031 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6032 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6033 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6034 		/*
6035 		 * How much CPU bandwidth does root_task_group get?
6036 		 *
6037 		 * In case of task-groups formed thr' the cgroup filesystem, it
6038 		 * gets 100% of the CPU resources in the system. This overall
6039 		 * system CPU resource is divided among the tasks of
6040 		 * root_task_group and its child task-groups in a fair manner,
6041 		 * based on each entity's (task or task-group's) weight
6042 		 * (se->load.weight).
6043 		 *
6044 		 * In other words, if root_task_group has 10 tasks of weight
6045 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6046 		 * then A0's share of the CPU resource is:
6047 		 *
6048 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6049 		 *
6050 		 * We achieve this by letting root_task_group's tasks sit
6051 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6052 		 */
6053 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6054 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6055 #endif /* CONFIG_FAIR_GROUP_SCHED */
6056 
6057 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6058 #ifdef CONFIG_RT_GROUP_SCHED
6059 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6060 #endif
6061 
6062 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6063 			rq->cpu_load[j] = 0;
6064 
6065 #ifdef CONFIG_SMP
6066 		rq->sd = NULL;
6067 		rq->rd = NULL;
6068 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6069 		rq->balance_callback = NULL;
6070 		rq->active_balance = 0;
6071 		rq->next_balance = jiffies;
6072 		rq->push_cpu = 0;
6073 		rq->cpu = i;
6074 		rq->online = 0;
6075 		rq->idle_stamp = 0;
6076 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6077 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6078 
6079 		INIT_LIST_HEAD(&rq->cfs_tasks);
6080 
6081 		rq_attach_root(rq, &def_root_domain);
6082 #ifdef CONFIG_NO_HZ_COMMON
6083 		rq->last_load_update_tick = jiffies;
6084 		rq->last_blocked_load_update_tick = jiffies;
6085 		atomic_set(&rq->nohz_flags, 0);
6086 #endif
6087 #endif /* CONFIG_SMP */
6088 		hrtick_rq_init(rq);
6089 		atomic_set(&rq->nr_iowait, 0);
6090 	}
6091 
6092 	set_load_weight(&init_task, false);
6093 
6094 	/*
6095 	 * The boot idle thread does lazy MMU switching as well:
6096 	 */
6097 	mmgrab(&init_mm);
6098 	enter_lazy_tlb(&init_mm, current);
6099 
6100 	/*
6101 	 * Make us the idle thread. Technically, schedule() should not be
6102 	 * called from this thread, however somewhere below it might be,
6103 	 * but because we are the idle thread, we just pick up running again
6104 	 * when this runqueue becomes "idle".
6105 	 */
6106 	init_idle(current, smp_processor_id());
6107 
6108 	calc_load_update = jiffies + LOAD_FREQ;
6109 
6110 #ifdef CONFIG_SMP
6111 	idle_thread_set_boot_cpu();
6112 	set_cpu_rq_start_time(smp_processor_id());
6113 #endif
6114 	init_sched_fair_class();
6115 
6116 	init_schedstats();
6117 
6118 	scheduler_running = 1;
6119 }
6120 
6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6122 static inline int preempt_count_equals(int preempt_offset)
6123 {
6124 	int nested = preempt_count() + rcu_preempt_depth();
6125 
6126 	return (nested == preempt_offset);
6127 }
6128 
6129 void __might_sleep(const char *file, int line, int preempt_offset)
6130 {
6131 	/*
6132 	 * Blocking primitives will set (and therefore destroy) current->state,
6133 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6134 	 * otherwise we will destroy state.
6135 	 */
6136 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6137 			"do not call blocking ops when !TASK_RUNNING; "
6138 			"state=%lx set at [<%p>] %pS\n",
6139 			current->state,
6140 			(void *)current->task_state_change,
6141 			(void *)current->task_state_change);
6142 
6143 	___might_sleep(file, line, preempt_offset);
6144 }
6145 EXPORT_SYMBOL(__might_sleep);
6146 
6147 void ___might_sleep(const char *file, int line, int preempt_offset)
6148 {
6149 	/* Ratelimiting timestamp: */
6150 	static unsigned long prev_jiffy;
6151 
6152 	unsigned long preempt_disable_ip;
6153 
6154 	/* WARN_ON_ONCE() by default, no rate limit required: */
6155 	rcu_sleep_check();
6156 
6157 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6158 	     !is_idle_task(current)) ||
6159 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6160 	    oops_in_progress)
6161 		return;
6162 
6163 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6164 		return;
6165 	prev_jiffy = jiffies;
6166 
6167 	/* Save this before calling printk(), since that will clobber it: */
6168 	preempt_disable_ip = get_preempt_disable_ip(current);
6169 
6170 	printk(KERN_ERR
6171 		"BUG: sleeping function called from invalid context at %s:%d\n",
6172 			file, line);
6173 	printk(KERN_ERR
6174 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6175 			in_atomic(), irqs_disabled(),
6176 			current->pid, current->comm);
6177 
6178 	if (task_stack_end_corrupted(current))
6179 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6180 
6181 	debug_show_held_locks(current);
6182 	if (irqs_disabled())
6183 		print_irqtrace_events(current);
6184 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6185 	    && !preempt_count_equals(preempt_offset)) {
6186 		pr_err("Preemption disabled at:");
6187 		print_ip_sym(preempt_disable_ip);
6188 		pr_cont("\n");
6189 	}
6190 	dump_stack();
6191 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6192 }
6193 EXPORT_SYMBOL(___might_sleep);
6194 #endif
6195 
6196 #ifdef CONFIG_MAGIC_SYSRQ
6197 void normalize_rt_tasks(void)
6198 {
6199 	struct task_struct *g, *p;
6200 	struct sched_attr attr = {
6201 		.sched_policy = SCHED_NORMAL,
6202 	};
6203 
6204 	read_lock(&tasklist_lock);
6205 	for_each_process_thread(g, p) {
6206 		/*
6207 		 * Only normalize user tasks:
6208 		 */
6209 		if (p->flags & PF_KTHREAD)
6210 			continue;
6211 
6212 		p->se.exec_start = 0;
6213 		schedstat_set(p->se.statistics.wait_start,  0);
6214 		schedstat_set(p->se.statistics.sleep_start, 0);
6215 		schedstat_set(p->se.statistics.block_start, 0);
6216 
6217 		if (!dl_task(p) && !rt_task(p)) {
6218 			/*
6219 			 * Renice negative nice level userspace
6220 			 * tasks back to 0:
6221 			 */
6222 			if (task_nice(p) < 0)
6223 				set_user_nice(p, 0);
6224 			continue;
6225 		}
6226 
6227 		__sched_setscheduler(p, &attr, false, false);
6228 	}
6229 	read_unlock(&tasklist_lock);
6230 }
6231 
6232 #endif /* CONFIG_MAGIC_SYSRQ */
6233 
6234 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6235 /*
6236  * These functions are only useful for the IA64 MCA handling, or kdb.
6237  *
6238  * They can only be called when the whole system has been
6239  * stopped - every CPU needs to be quiescent, and no scheduling
6240  * activity can take place. Using them for anything else would
6241  * be a serious bug, and as a result, they aren't even visible
6242  * under any other configuration.
6243  */
6244 
6245 /**
6246  * curr_task - return the current task for a given CPU.
6247  * @cpu: the processor in question.
6248  *
6249  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6250  *
6251  * Return: The current task for @cpu.
6252  */
6253 struct task_struct *curr_task(int cpu)
6254 {
6255 	return cpu_curr(cpu);
6256 }
6257 
6258 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6259 
6260 #ifdef CONFIG_IA64
6261 /**
6262  * set_curr_task - set the current task for a given CPU.
6263  * @cpu: the processor in question.
6264  * @p: the task pointer to set.
6265  *
6266  * Description: This function must only be used when non-maskable interrupts
6267  * are serviced on a separate stack. It allows the architecture to switch the
6268  * notion of the current task on a CPU in a non-blocking manner. This function
6269  * must be called with all CPU's synchronized, and interrupts disabled, the
6270  * and caller must save the original value of the current task (see
6271  * curr_task() above) and restore that value before reenabling interrupts and
6272  * re-starting the system.
6273  *
6274  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6275  */
6276 void ia64_set_curr_task(int cpu, struct task_struct *p)
6277 {
6278 	cpu_curr(cpu) = p;
6279 }
6280 
6281 #endif
6282 
6283 #ifdef CONFIG_CGROUP_SCHED
6284 /* task_group_lock serializes the addition/removal of task groups */
6285 static DEFINE_SPINLOCK(task_group_lock);
6286 
6287 static void sched_free_group(struct task_group *tg)
6288 {
6289 	free_fair_sched_group(tg);
6290 	free_rt_sched_group(tg);
6291 	autogroup_free(tg);
6292 	kmem_cache_free(task_group_cache, tg);
6293 }
6294 
6295 /* allocate runqueue etc for a new task group */
6296 struct task_group *sched_create_group(struct task_group *parent)
6297 {
6298 	struct task_group *tg;
6299 
6300 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6301 	if (!tg)
6302 		return ERR_PTR(-ENOMEM);
6303 
6304 	if (!alloc_fair_sched_group(tg, parent))
6305 		goto err;
6306 
6307 	if (!alloc_rt_sched_group(tg, parent))
6308 		goto err;
6309 
6310 	return tg;
6311 
6312 err:
6313 	sched_free_group(tg);
6314 	return ERR_PTR(-ENOMEM);
6315 }
6316 
6317 void sched_online_group(struct task_group *tg, struct task_group *parent)
6318 {
6319 	unsigned long flags;
6320 
6321 	spin_lock_irqsave(&task_group_lock, flags);
6322 	list_add_rcu(&tg->list, &task_groups);
6323 
6324 	/* Root should already exist: */
6325 	WARN_ON(!parent);
6326 
6327 	tg->parent = parent;
6328 	INIT_LIST_HEAD(&tg->children);
6329 	list_add_rcu(&tg->siblings, &parent->children);
6330 	spin_unlock_irqrestore(&task_group_lock, flags);
6331 
6332 	online_fair_sched_group(tg);
6333 }
6334 
6335 /* rcu callback to free various structures associated with a task group */
6336 static void sched_free_group_rcu(struct rcu_head *rhp)
6337 {
6338 	/* Now it should be safe to free those cfs_rqs: */
6339 	sched_free_group(container_of(rhp, struct task_group, rcu));
6340 }
6341 
6342 void sched_destroy_group(struct task_group *tg)
6343 {
6344 	/* Wait for possible concurrent references to cfs_rqs complete: */
6345 	call_rcu(&tg->rcu, sched_free_group_rcu);
6346 }
6347 
6348 void sched_offline_group(struct task_group *tg)
6349 {
6350 	unsigned long flags;
6351 
6352 	/* End participation in shares distribution: */
6353 	unregister_fair_sched_group(tg);
6354 
6355 	spin_lock_irqsave(&task_group_lock, flags);
6356 	list_del_rcu(&tg->list);
6357 	list_del_rcu(&tg->siblings);
6358 	spin_unlock_irqrestore(&task_group_lock, flags);
6359 }
6360 
6361 static void sched_change_group(struct task_struct *tsk, int type)
6362 {
6363 	struct task_group *tg;
6364 
6365 	/*
6366 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6367 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6368 	 * to prevent lockdep warnings.
6369 	 */
6370 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6371 			  struct task_group, css);
6372 	tg = autogroup_task_group(tsk, tg);
6373 	tsk->sched_task_group = tg;
6374 
6375 #ifdef CONFIG_FAIR_GROUP_SCHED
6376 	if (tsk->sched_class->task_change_group)
6377 		tsk->sched_class->task_change_group(tsk, type);
6378 	else
6379 #endif
6380 		set_task_rq(tsk, task_cpu(tsk));
6381 }
6382 
6383 /*
6384  * Change task's runqueue when it moves between groups.
6385  *
6386  * The caller of this function should have put the task in its new group by
6387  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6388  * its new group.
6389  */
6390 void sched_move_task(struct task_struct *tsk)
6391 {
6392 	int queued, running, queue_flags =
6393 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6394 	struct rq_flags rf;
6395 	struct rq *rq;
6396 
6397 	rq = task_rq_lock(tsk, &rf);
6398 	update_rq_clock(rq);
6399 
6400 	running = task_current(rq, tsk);
6401 	queued = task_on_rq_queued(tsk);
6402 
6403 	if (queued)
6404 		dequeue_task(rq, tsk, queue_flags);
6405 	if (running)
6406 		put_prev_task(rq, tsk);
6407 
6408 	sched_change_group(tsk, TASK_MOVE_GROUP);
6409 
6410 	if (queued)
6411 		enqueue_task(rq, tsk, queue_flags);
6412 	if (running)
6413 		set_curr_task(rq, tsk);
6414 
6415 	task_rq_unlock(rq, tsk, &rf);
6416 }
6417 
6418 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6419 {
6420 	return css ? container_of(css, struct task_group, css) : NULL;
6421 }
6422 
6423 static struct cgroup_subsys_state *
6424 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6425 {
6426 	struct task_group *parent = css_tg(parent_css);
6427 	struct task_group *tg;
6428 
6429 	if (!parent) {
6430 		/* This is early initialization for the top cgroup */
6431 		return &root_task_group.css;
6432 	}
6433 
6434 	tg = sched_create_group(parent);
6435 	if (IS_ERR(tg))
6436 		return ERR_PTR(-ENOMEM);
6437 
6438 	return &tg->css;
6439 }
6440 
6441 /* Expose task group only after completing cgroup initialization */
6442 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6443 {
6444 	struct task_group *tg = css_tg(css);
6445 	struct task_group *parent = css_tg(css->parent);
6446 
6447 	if (parent)
6448 		sched_online_group(tg, parent);
6449 	return 0;
6450 }
6451 
6452 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6453 {
6454 	struct task_group *tg = css_tg(css);
6455 
6456 	sched_offline_group(tg);
6457 }
6458 
6459 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6460 {
6461 	struct task_group *tg = css_tg(css);
6462 
6463 	/*
6464 	 * Relies on the RCU grace period between css_released() and this.
6465 	 */
6466 	sched_free_group(tg);
6467 }
6468 
6469 /*
6470  * This is called before wake_up_new_task(), therefore we really only
6471  * have to set its group bits, all the other stuff does not apply.
6472  */
6473 static void cpu_cgroup_fork(struct task_struct *task)
6474 {
6475 	struct rq_flags rf;
6476 	struct rq *rq;
6477 
6478 	rq = task_rq_lock(task, &rf);
6479 
6480 	update_rq_clock(rq);
6481 	sched_change_group(task, TASK_SET_GROUP);
6482 
6483 	task_rq_unlock(rq, task, &rf);
6484 }
6485 
6486 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6487 {
6488 	struct task_struct *task;
6489 	struct cgroup_subsys_state *css;
6490 	int ret = 0;
6491 
6492 	cgroup_taskset_for_each(task, css, tset) {
6493 #ifdef CONFIG_RT_GROUP_SCHED
6494 		if (!sched_rt_can_attach(css_tg(css), task))
6495 			return -EINVAL;
6496 #else
6497 		/* We don't support RT-tasks being in separate groups */
6498 		if (task->sched_class != &fair_sched_class)
6499 			return -EINVAL;
6500 #endif
6501 		/*
6502 		 * Serialize against wake_up_new_task() such that if its
6503 		 * running, we're sure to observe its full state.
6504 		 */
6505 		raw_spin_lock_irq(&task->pi_lock);
6506 		/*
6507 		 * Avoid calling sched_move_task() before wake_up_new_task()
6508 		 * has happened. This would lead to problems with PELT, due to
6509 		 * move wanting to detach+attach while we're not attached yet.
6510 		 */
6511 		if (task->state == TASK_NEW)
6512 			ret = -EINVAL;
6513 		raw_spin_unlock_irq(&task->pi_lock);
6514 
6515 		if (ret)
6516 			break;
6517 	}
6518 	return ret;
6519 }
6520 
6521 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6522 {
6523 	struct task_struct *task;
6524 	struct cgroup_subsys_state *css;
6525 
6526 	cgroup_taskset_for_each(task, css, tset)
6527 		sched_move_task(task);
6528 }
6529 
6530 #ifdef CONFIG_FAIR_GROUP_SCHED
6531 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6532 				struct cftype *cftype, u64 shareval)
6533 {
6534 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6535 }
6536 
6537 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6538 			       struct cftype *cft)
6539 {
6540 	struct task_group *tg = css_tg(css);
6541 
6542 	return (u64) scale_load_down(tg->shares);
6543 }
6544 
6545 #ifdef CONFIG_CFS_BANDWIDTH
6546 static DEFINE_MUTEX(cfs_constraints_mutex);
6547 
6548 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6549 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6550 
6551 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6552 
6553 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6554 {
6555 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6556 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6557 
6558 	if (tg == &root_task_group)
6559 		return -EINVAL;
6560 
6561 	/*
6562 	 * Ensure we have at some amount of bandwidth every period.  This is
6563 	 * to prevent reaching a state of large arrears when throttled via
6564 	 * entity_tick() resulting in prolonged exit starvation.
6565 	 */
6566 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6567 		return -EINVAL;
6568 
6569 	/*
6570 	 * Likewise, bound things on the otherside by preventing insane quota
6571 	 * periods.  This also allows us to normalize in computing quota
6572 	 * feasibility.
6573 	 */
6574 	if (period > max_cfs_quota_period)
6575 		return -EINVAL;
6576 
6577 	/*
6578 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6579 	 * unthrottle_offline_cfs_rqs().
6580 	 */
6581 	get_online_cpus();
6582 	mutex_lock(&cfs_constraints_mutex);
6583 	ret = __cfs_schedulable(tg, period, quota);
6584 	if (ret)
6585 		goto out_unlock;
6586 
6587 	runtime_enabled = quota != RUNTIME_INF;
6588 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6589 	/*
6590 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6591 	 * before making related changes, and on->off must occur afterwards
6592 	 */
6593 	if (runtime_enabled && !runtime_was_enabled)
6594 		cfs_bandwidth_usage_inc();
6595 	raw_spin_lock_irq(&cfs_b->lock);
6596 	cfs_b->period = ns_to_ktime(period);
6597 	cfs_b->quota = quota;
6598 
6599 	__refill_cfs_bandwidth_runtime(cfs_b);
6600 
6601 	/* Restart the period timer (if active) to handle new period expiry: */
6602 	if (runtime_enabled)
6603 		start_cfs_bandwidth(cfs_b);
6604 
6605 	raw_spin_unlock_irq(&cfs_b->lock);
6606 
6607 	for_each_online_cpu(i) {
6608 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6609 		struct rq *rq = cfs_rq->rq;
6610 		struct rq_flags rf;
6611 
6612 		rq_lock_irq(rq, &rf);
6613 		cfs_rq->runtime_enabled = runtime_enabled;
6614 		cfs_rq->runtime_remaining = 0;
6615 
6616 		if (cfs_rq->throttled)
6617 			unthrottle_cfs_rq(cfs_rq);
6618 		rq_unlock_irq(rq, &rf);
6619 	}
6620 	if (runtime_was_enabled && !runtime_enabled)
6621 		cfs_bandwidth_usage_dec();
6622 out_unlock:
6623 	mutex_unlock(&cfs_constraints_mutex);
6624 	put_online_cpus();
6625 
6626 	return ret;
6627 }
6628 
6629 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6630 {
6631 	u64 quota, period;
6632 
6633 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6634 	if (cfs_quota_us < 0)
6635 		quota = RUNTIME_INF;
6636 	else
6637 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6638 
6639 	return tg_set_cfs_bandwidth(tg, period, quota);
6640 }
6641 
6642 long tg_get_cfs_quota(struct task_group *tg)
6643 {
6644 	u64 quota_us;
6645 
6646 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6647 		return -1;
6648 
6649 	quota_us = tg->cfs_bandwidth.quota;
6650 	do_div(quota_us, NSEC_PER_USEC);
6651 
6652 	return quota_us;
6653 }
6654 
6655 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6656 {
6657 	u64 quota, period;
6658 
6659 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6660 	quota = tg->cfs_bandwidth.quota;
6661 
6662 	return tg_set_cfs_bandwidth(tg, period, quota);
6663 }
6664 
6665 long tg_get_cfs_period(struct task_group *tg)
6666 {
6667 	u64 cfs_period_us;
6668 
6669 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6670 	do_div(cfs_period_us, NSEC_PER_USEC);
6671 
6672 	return cfs_period_us;
6673 }
6674 
6675 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6676 				  struct cftype *cft)
6677 {
6678 	return tg_get_cfs_quota(css_tg(css));
6679 }
6680 
6681 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6682 				   struct cftype *cftype, s64 cfs_quota_us)
6683 {
6684 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6685 }
6686 
6687 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6688 				   struct cftype *cft)
6689 {
6690 	return tg_get_cfs_period(css_tg(css));
6691 }
6692 
6693 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6694 				    struct cftype *cftype, u64 cfs_period_us)
6695 {
6696 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6697 }
6698 
6699 struct cfs_schedulable_data {
6700 	struct task_group *tg;
6701 	u64 period, quota;
6702 };
6703 
6704 /*
6705  * normalize group quota/period to be quota/max_period
6706  * note: units are usecs
6707  */
6708 static u64 normalize_cfs_quota(struct task_group *tg,
6709 			       struct cfs_schedulable_data *d)
6710 {
6711 	u64 quota, period;
6712 
6713 	if (tg == d->tg) {
6714 		period = d->period;
6715 		quota = d->quota;
6716 	} else {
6717 		period = tg_get_cfs_period(tg);
6718 		quota = tg_get_cfs_quota(tg);
6719 	}
6720 
6721 	/* note: these should typically be equivalent */
6722 	if (quota == RUNTIME_INF || quota == -1)
6723 		return RUNTIME_INF;
6724 
6725 	return to_ratio(period, quota);
6726 }
6727 
6728 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6729 {
6730 	struct cfs_schedulable_data *d = data;
6731 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6732 	s64 quota = 0, parent_quota = -1;
6733 
6734 	if (!tg->parent) {
6735 		quota = RUNTIME_INF;
6736 	} else {
6737 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6738 
6739 		quota = normalize_cfs_quota(tg, d);
6740 		parent_quota = parent_b->hierarchical_quota;
6741 
6742 		/*
6743 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6744 		 * always take the min.  On cgroup1, only inherit when no
6745 		 * limit is set:
6746 		 */
6747 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6748 			quota = min(quota, parent_quota);
6749 		} else {
6750 			if (quota == RUNTIME_INF)
6751 				quota = parent_quota;
6752 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6753 				return -EINVAL;
6754 		}
6755 	}
6756 	cfs_b->hierarchical_quota = quota;
6757 
6758 	return 0;
6759 }
6760 
6761 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6762 {
6763 	int ret;
6764 	struct cfs_schedulable_data data = {
6765 		.tg = tg,
6766 		.period = period,
6767 		.quota = quota,
6768 	};
6769 
6770 	if (quota != RUNTIME_INF) {
6771 		do_div(data.period, NSEC_PER_USEC);
6772 		do_div(data.quota, NSEC_PER_USEC);
6773 	}
6774 
6775 	rcu_read_lock();
6776 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6777 	rcu_read_unlock();
6778 
6779 	return ret;
6780 }
6781 
6782 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6783 {
6784 	struct task_group *tg = css_tg(seq_css(sf));
6785 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6786 
6787 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6788 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6789 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6790 
6791 	return 0;
6792 }
6793 #endif /* CONFIG_CFS_BANDWIDTH */
6794 #endif /* CONFIG_FAIR_GROUP_SCHED */
6795 
6796 #ifdef CONFIG_RT_GROUP_SCHED
6797 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6798 				struct cftype *cft, s64 val)
6799 {
6800 	return sched_group_set_rt_runtime(css_tg(css), val);
6801 }
6802 
6803 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6804 			       struct cftype *cft)
6805 {
6806 	return sched_group_rt_runtime(css_tg(css));
6807 }
6808 
6809 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6810 				    struct cftype *cftype, u64 rt_period_us)
6811 {
6812 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6813 }
6814 
6815 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6816 				   struct cftype *cft)
6817 {
6818 	return sched_group_rt_period(css_tg(css));
6819 }
6820 #endif /* CONFIG_RT_GROUP_SCHED */
6821 
6822 static struct cftype cpu_legacy_files[] = {
6823 #ifdef CONFIG_FAIR_GROUP_SCHED
6824 	{
6825 		.name = "shares",
6826 		.read_u64 = cpu_shares_read_u64,
6827 		.write_u64 = cpu_shares_write_u64,
6828 	},
6829 #endif
6830 #ifdef CONFIG_CFS_BANDWIDTH
6831 	{
6832 		.name = "cfs_quota_us",
6833 		.read_s64 = cpu_cfs_quota_read_s64,
6834 		.write_s64 = cpu_cfs_quota_write_s64,
6835 	},
6836 	{
6837 		.name = "cfs_period_us",
6838 		.read_u64 = cpu_cfs_period_read_u64,
6839 		.write_u64 = cpu_cfs_period_write_u64,
6840 	},
6841 	{
6842 		.name = "stat",
6843 		.seq_show = cpu_cfs_stat_show,
6844 	},
6845 #endif
6846 #ifdef CONFIG_RT_GROUP_SCHED
6847 	{
6848 		.name = "rt_runtime_us",
6849 		.read_s64 = cpu_rt_runtime_read,
6850 		.write_s64 = cpu_rt_runtime_write,
6851 	},
6852 	{
6853 		.name = "rt_period_us",
6854 		.read_u64 = cpu_rt_period_read_uint,
6855 		.write_u64 = cpu_rt_period_write_uint,
6856 	},
6857 #endif
6858 	{ }	/* Terminate */
6859 };
6860 
6861 static int cpu_extra_stat_show(struct seq_file *sf,
6862 			       struct cgroup_subsys_state *css)
6863 {
6864 #ifdef CONFIG_CFS_BANDWIDTH
6865 	{
6866 		struct task_group *tg = css_tg(css);
6867 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6868 		u64 throttled_usec;
6869 
6870 		throttled_usec = cfs_b->throttled_time;
6871 		do_div(throttled_usec, NSEC_PER_USEC);
6872 
6873 		seq_printf(sf, "nr_periods %d\n"
6874 			   "nr_throttled %d\n"
6875 			   "throttled_usec %llu\n",
6876 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6877 			   throttled_usec);
6878 	}
6879 #endif
6880 	return 0;
6881 }
6882 
6883 #ifdef CONFIG_FAIR_GROUP_SCHED
6884 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6885 			       struct cftype *cft)
6886 {
6887 	struct task_group *tg = css_tg(css);
6888 	u64 weight = scale_load_down(tg->shares);
6889 
6890 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6891 }
6892 
6893 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6894 				struct cftype *cft, u64 weight)
6895 {
6896 	/*
6897 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6898 	 * values which are 1, 100 and 10000 respectively.  While it loses
6899 	 * a bit of range on both ends, it maps pretty well onto the shares
6900 	 * value used by scheduler and the round-trip conversions preserve
6901 	 * the original value over the entire range.
6902 	 */
6903 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6904 		return -ERANGE;
6905 
6906 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6907 
6908 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6909 }
6910 
6911 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6912 				    struct cftype *cft)
6913 {
6914 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6915 	int last_delta = INT_MAX;
6916 	int prio, delta;
6917 
6918 	/* find the closest nice value to the current weight */
6919 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6920 		delta = abs(sched_prio_to_weight[prio] - weight);
6921 		if (delta >= last_delta)
6922 			break;
6923 		last_delta = delta;
6924 	}
6925 
6926 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6927 }
6928 
6929 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6930 				     struct cftype *cft, s64 nice)
6931 {
6932 	unsigned long weight;
6933 	int idx;
6934 
6935 	if (nice < MIN_NICE || nice > MAX_NICE)
6936 		return -ERANGE;
6937 
6938 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6939 	idx = array_index_nospec(idx, 40);
6940 	weight = sched_prio_to_weight[idx];
6941 
6942 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6943 }
6944 #endif
6945 
6946 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6947 						  long period, long quota)
6948 {
6949 	if (quota < 0)
6950 		seq_puts(sf, "max");
6951 	else
6952 		seq_printf(sf, "%ld", quota);
6953 
6954 	seq_printf(sf, " %ld\n", period);
6955 }
6956 
6957 /* caller should put the current value in *@periodp before calling */
6958 static int __maybe_unused cpu_period_quota_parse(char *buf,
6959 						 u64 *periodp, u64 *quotap)
6960 {
6961 	char tok[21];	/* U64_MAX */
6962 
6963 	if (!sscanf(buf, "%s %llu", tok, periodp))
6964 		return -EINVAL;
6965 
6966 	*periodp *= NSEC_PER_USEC;
6967 
6968 	if (sscanf(tok, "%llu", quotap))
6969 		*quotap *= NSEC_PER_USEC;
6970 	else if (!strcmp(tok, "max"))
6971 		*quotap = RUNTIME_INF;
6972 	else
6973 		return -EINVAL;
6974 
6975 	return 0;
6976 }
6977 
6978 #ifdef CONFIG_CFS_BANDWIDTH
6979 static int cpu_max_show(struct seq_file *sf, void *v)
6980 {
6981 	struct task_group *tg = css_tg(seq_css(sf));
6982 
6983 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6984 	return 0;
6985 }
6986 
6987 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6988 			     char *buf, size_t nbytes, loff_t off)
6989 {
6990 	struct task_group *tg = css_tg(of_css(of));
6991 	u64 period = tg_get_cfs_period(tg);
6992 	u64 quota;
6993 	int ret;
6994 
6995 	ret = cpu_period_quota_parse(buf, &period, &quota);
6996 	if (!ret)
6997 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6998 	return ret ?: nbytes;
6999 }
7000 #endif
7001 
7002 static struct cftype cpu_files[] = {
7003 #ifdef CONFIG_FAIR_GROUP_SCHED
7004 	{
7005 		.name = "weight",
7006 		.flags = CFTYPE_NOT_ON_ROOT,
7007 		.read_u64 = cpu_weight_read_u64,
7008 		.write_u64 = cpu_weight_write_u64,
7009 	},
7010 	{
7011 		.name = "weight.nice",
7012 		.flags = CFTYPE_NOT_ON_ROOT,
7013 		.read_s64 = cpu_weight_nice_read_s64,
7014 		.write_s64 = cpu_weight_nice_write_s64,
7015 	},
7016 #endif
7017 #ifdef CONFIG_CFS_BANDWIDTH
7018 	{
7019 		.name = "max",
7020 		.flags = CFTYPE_NOT_ON_ROOT,
7021 		.seq_show = cpu_max_show,
7022 		.write = cpu_max_write,
7023 	},
7024 #endif
7025 	{ }	/* terminate */
7026 };
7027 
7028 struct cgroup_subsys cpu_cgrp_subsys = {
7029 	.css_alloc	= cpu_cgroup_css_alloc,
7030 	.css_online	= cpu_cgroup_css_online,
7031 	.css_released	= cpu_cgroup_css_released,
7032 	.css_free	= cpu_cgroup_css_free,
7033 	.css_extra_stat_show = cpu_extra_stat_show,
7034 	.fork		= cpu_cgroup_fork,
7035 	.can_attach	= cpu_cgroup_can_attach,
7036 	.attach		= cpu_cgroup_attach,
7037 	.legacy_cftypes	= cpu_legacy_files,
7038 	.dfl_cftypes	= cpu_files,
7039 	.early_init	= true,
7040 	.threaded	= true,
7041 };
7042 
7043 #endif	/* CONFIG_CGROUP_SCHED */
7044 
7045 void dump_cpu_task(int cpu)
7046 {
7047 	pr_info("Task dump for CPU %d:\n", cpu);
7048 	sched_show_task(cpu_curr(cpu));
7049 }
7050 
7051 /*
7052  * Nice levels are multiplicative, with a gentle 10% change for every
7053  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7054  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7055  * that remained on nice 0.
7056  *
7057  * The "10% effect" is relative and cumulative: from _any_ nice level,
7058  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7059  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7060  * If a task goes up by ~10% and another task goes down by ~10% then
7061  * the relative distance between them is ~25%.)
7062  */
7063 const int sched_prio_to_weight[40] = {
7064  /* -20 */     88761,     71755,     56483,     46273,     36291,
7065  /* -15 */     29154,     23254,     18705,     14949,     11916,
7066  /* -10 */      9548,      7620,      6100,      4904,      3906,
7067  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7068  /*   0 */      1024,       820,       655,       526,       423,
7069  /*   5 */       335,       272,       215,       172,       137,
7070  /*  10 */       110,        87,        70,        56,        45,
7071  /*  15 */        36,        29,        23,        18,        15,
7072 };
7073 
7074 /*
7075  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7076  *
7077  * In cases where the weight does not change often, we can use the
7078  * precalculated inverse to speed up arithmetics by turning divisions
7079  * into multiplications:
7080  */
7081 const u32 sched_prio_to_wmult[40] = {
7082  /* -20 */     48388,     59856,     76040,     92818,    118348,
7083  /* -15 */    147320,    184698,    229616,    287308,    360437,
7084  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7085  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7086  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7087  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7088  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7089  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7090 };
7091 
7092 #undef CREATE_TRACE_POINTS
7093