xref: /openbmc/linux/kernel/sched/core.c (revision b85d4594)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	mutex_lock(&inode->i_mutex);
226 	i = sched_feat_set(cmp);
227 	mutex_unlock(&inode->i_mutex);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 
637 	if (!is_housekeeping_cpu(cpu))
638 		cpu = housekeeping_any_cpu();
639 unlock:
640 	rcu_read_unlock();
641 	return cpu;
642 }
643 /*
644  * When add_timer_on() enqueues a timer into the timer wheel of an
645  * idle CPU then this timer might expire before the next timer event
646  * which is scheduled to wake up that CPU. In case of a completely
647  * idle system the next event might even be infinite time into the
648  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649  * leaves the inner idle loop so the newly added timer is taken into
650  * account when the CPU goes back to idle and evaluates the timer
651  * wheel for the next timer event.
652  */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 	struct rq *rq = cpu_rq(cpu);
656 
657 	if (cpu == smp_processor_id())
658 		return;
659 
660 	if (set_nr_and_not_polling(rq->idle))
661 		smp_send_reschedule(cpu);
662 	else
663 		trace_sched_wake_idle_without_ipi(cpu);
664 }
665 
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 	/*
669 	 * We just need the target to call irq_exit() and re-evaluate
670 	 * the next tick. The nohz full kick at least implies that.
671 	 * If needed we can still optimize that later with an
672 	 * empty IRQ.
673 	 */
674 	if (tick_nohz_full_cpu(cpu)) {
675 		if (cpu != smp_processor_id() ||
676 		    tick_nohz_tick_stopped())
677 			tick_nohz_full_kick_cpu(cpu);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
684 void wake_up_nohz_cpu(int cpu)
685 {
686 	if (!wake_up_full_nohz_cpu(cpu))
687 		wake_up_idle_cpu(cpu);
688 }
689 
690 static inline bool got_nohz_idle_kick(void)
691 {
692 	int cpu = smp_processor_id();
693 
694 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 		return false;
696 
697 	if (idle_cpu(cpu) && !need_resched())
698 		return true;
699 
700 	/*
701 	 * We can't run Idle Load Balance on this CPU for this time so we
702 	 * cancel it and clear NOHZ_BALANCE_KICK
703 	 */
704 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 	return false;
706 }
707 
708 #else /* CONFIG_NO_HZ_COMMON */
709 
710 static inline bool got_nohz_idle_kick(void)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_NO_HZ_COMMON */
716 
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 	/*
721 	 * FIFO realtime policy runs the highest priority task. Other runnable
722 	 * tasks are of a lower priority. The scheduler tick does nothing.
723 	 */
724 	if (current->policy == SCHED_FIFO)
725 		return true;
726 
727 	/*
728 	 * Round-robin realtime tasks time slice with other tasks at the same
729 	 * realtime priority. Is this task the only one at this priority?
730 	 */
731 	if (current->policy == SCHED_RR) {
732 		struct sched_rt_entity *rt_se = &current->rt;
733 
734 		return rt_se->run_list.prev == rt_se->run_list.next;
735 	}
736 
737 	/*
738 	 * More than one running task need preemption.
739 	 * nr_running update is assumed to be visible
740 	 * after IPI is sent from wakers.
741 	 */
742 	if (this_rq()->nr_running > 1)
743 		return false;
744 
745 	return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748 
749 void sched_avg_update(struct rq *rq)
750 {
751 	s64 period = sched_avg_period();
752 
753 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 		/*
755 		 * Inline assembly required to prevent the compiler
756 		 * optimising this loop into a divmod call.
757 		 * See __iter_div_u64_rem() for another example of this.
758 		 */
759 		asm("" : "+rm" (rq->age_stamp));
760 		rq->age_stamp += period;
761 		rq->rt_avg /= 2;
762 	}
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770  * Iterate task_group tree rooted at *from, calling @down when first entering a
771  * node and @up when leaving it for the final time.
772  *
773  * Caller must hold rcu_lock or sufficient equivalent.
774  */
775 int walk_tg_tree_from(struct task_group *from,
776 			     tg_visitor down, tg_visitor up, void *data)
777 {
778 	struct task_group *parent, *child;
779 	int ret;
780 
781 	parent = from;
782 
783 down:
784 	ret = (*down)(parent, data);
785 	if (ret)
786 		goto out;
787 	list_for_each_entry_rcu(child, &parent->children, siblings) {
788 		parent = child;
789 		goto down;
790 
791 up:
792 		continue;
793 	}
794 	ret = (*up)(parent, data);
795 	if (ret || parent == from)
796 		goto out;
797 
798 	child = parent;
799 	parent = parent->parent;
800 	if (parent)
801 		goto up;
802 out:
803 	return ret;
804 }
805 
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 	return 0;
809 }
810 #endif
811 
812 static void set_load_weight(struct task_struct *p)
813 {
814 	int prio = p->static_prio - MAX_RT_PRIO;
815 	struct load_weight *load = &p->se.load;
816 
817 	/*
818 	 * SCHED_IDLE tasks get minimal weight:
819 	 */
820 	if (p->policy == SCHED_IDLE) {
821 		load->weight = scale_load(WEIGHT_IDLEPRIO);
822 		load->inv_weight = WMULT_IDLEPRIO;
823 		return;
824 	}
825 
826 	load->weight = scale_load(prio_to_weight[prio]);
827 	load->inv_weight = prio_to_wmult[prio];
828 }
829 
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 	update_rq_clock(rq);
833 	sched_info_queued(rq, p);
834 	p->sched_class->enqueue_task(rq, p, flags);
835 }
836 
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 	update_rq_clock(rq);
840 	sched_info_dequeued(rq, p);
841 	p->sched_class->dequeue_task(rq, p, flags);
842 }
843 
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 	if (task_contributes_to_load(p))
847 		rq->nr_uninterruptible--;
848 
849 	enqueue_task(rq, p, flags);
850 }
851 
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible++;
856 
857 	dequeue_task(rq, p, flags);
858 }
859 
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863  * In theory, the compile should just see 0 here, and optimize out the call
864  * to sched_rt_avg_update. But I don't trust it...
865  */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 	s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871 
872 	/*
873 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 	 * this case when a previous update_rq_clock() happened inside a
875 	 * {soft,}irq region.
876 	 *
877 	 * When this happens, we stop ->clock_task and only update the
878 	 * prev_irq_time stamp to account for the part that fit, so that a next
879 	 * update will consume the rest. This ensures ->clock_task is
880 	 * monotonic.
881 	 *
882 	 * It does however cause some slight miss-attribution of {soft,}irq
883 	 * time, a more accurate solution would be to update the irq_time using
884 	 * the current rq->clock timestamp, except that would require using
885 	 * atomic ops.
886 	 */
887 	if (irq_delta > delta)
888 		irq_delta = delta;
889 
890 	rq->prev_irq_time += irq_delta;
891 	delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 	if (static_key_false((&paravirt_steal_rq_enabled))) {
895 		steal = paravirt_steal_clock(cpu_of(rq));
896 		steal -= rq->prev_steal_time_rq;
897 
898 		if (unlikely(steal > delta))
899 			steal = delta;
900 
901 		rq->prev_steal_time_rq += steal;
902 		delta -= steal;
903 	}
904 #endif
905 
906 	rq->clock_task += delta;
907 
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 		sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913 
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
918 
919 	if (stop) {
920 		/*
921 		 * Make it appear like a SCHED_FIFO task, its something
922 		 * userspace knows about and won't get confused about.
923 		 *
924 		 * Also, it will make PI more or less work without too
925 		 * much confusion -- but then, stop work should not
926 		 * rely on PI working anyway.
927 		 */
928 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929 
930 		stop->sched_class = &stop_sched_class;
931 	}
932 
933 	cpu_rq(cpu)->stop = stop;
934 
935 	if (old_stop) {
936 		/*
937 		 * Reset it back to a normal scheduling class so that
938 		 * it can die in pieces.
939 		 */
940 		old_stop->sched_class = &rt_sched_class;
941 	}
942 }
943 
944 /*
945  * __normal_prio - return the priority that is based on the static prio
946  */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 	return p->static_prio;
950 }
951 
952 /*
953  * Calculate the expected normal priority: i.e. priority
954  * without taking RT-inheritance into account. Might be
955  * boosted by interactivity modifiers. Changes upon fork,
956  * setprio syscalls, and whenever the interactivity
957  * estimator recalculates.
958  */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 	int prio;
962 
963 	if (task_has_dl_policy(p))
964 		prio = MAX_DL_PRIO-1;
965 	else if (task_has_rt_policy(p))
966 		prio = MAX_RT_PRIO-1 - p->rt_priority;
967 	else
968 		prio = __normal_prio(p);
969 	return prio;
970 }
971 
972 /*
973  * Calculate the current priority, i.e. the priority
974  * taken into account by the scheduler. This value might
975  * be boosted by RT tasks, or might be boosted by
976  * interactivity modifiers. Will be RT if the task got
977  * RT-boosted. If not then it returns p->normal_prio.
978  */
979 static int effective_prio(struct task_struct *p)
980 {
981 	p->normal_prio = normal_prio(p);
982 	/*
983 	 * If we are RT tasks or we were boosted to RT priority,
984 	 * keep the priority unchanged. Otherwise, update priority
985 	 * to the normal priority:
986 	 */
987 	if (!rt_prio(p->prio))
988 		return p->normal_prio;
989 	return p->prio;
990 }
991 
992 /**
993  * task_curr - is this task currently executing on a CPU?
994  * @p: the task in question.
995  *
996  * Return: 1 if the task is currently executing. 0 otherwise.
997  */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 	return cpu_curr(task_cpu(p)) == p;
1001 }
1002 
1003 /*
1004  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005  * use the balance_callback list if you want balancing.
1006  *
1007  * this means any call to check_class_changed() must be followed by a call to
1008  * balance_callback().
1009  */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 				       const struct sched_class *prev_class,
1012 				       int oldprio)
1013 {
1014 	if (prev_class != p->sched_class) {
1015 		if (prev_class->switched_from)
1016 			prev_class->switched_from(rq, p);
1017 
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq_clock_skip_update(rq, true);
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 /*
1050  * This is how migration works:
1051  *
1052  * 1) we invoke migration_cpu_stop() on the target CPU using
1053  *    stop_one_cpu().
1054  * 2) stopper starts to run (implicitly forcing the migrated thread
1055  *    off the CPU)
1056  * 3) it checks whether the migrated task is still in the wrong runqueue.
1057  * 4) if it's in the wrong runqueue then the migration thread removes
1058  *    it and puts it into the right queue.
1059  * 5) stopper completes and stop_one_cpu() returns and the migration
1060  *    is done.
1061  */
1062 
1063 /*
1064  * move_queued_task - move a queued task to new rq.
1065  *
1066  * Returns (locked) new rq. Old rq's lock is released.
1067  */
1068 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 {
1070 	lockdep_assert_held(&rq->lock);
1071 
1072 	dequeue_task(rq, p, 0);
1073 	p->on_rq = TASK_ON_RQ_MIGRATING;
1074 	set_task_cpu(p, new_cpu);
1075 	raw_spin_unlock(&rq->lock);
1076 
1077 	rq = cpu_rq(new_cpu);
1078 
1079 	raw_spin_lock(&rq->lock);
1080 	BUG_ON(task_cpu(p) != new_cpu);
1081 	p->on_rq = TASK_ON_RQ_QUEUED;
1082 	enqueue_task(rq, p, 0);
1083 	check_preempt_curr(rq, p, 0);
1084 
1085 	return rq;
1086 }
1087 
1088 struct migration_arg {
1089 	struct task_struct *task;
1090 	int dest_cpu;
1091 };
1092 
1093 /*
1094  * Move (not current) task off this cpu, onto dest cpu. We're doing
1095  * this because either it can't run here any more (set_cpus_allowed()
1096  * away from this CPU, or CPU going down), or because we're
1097  * attempting to rebalance this task on exec (sched_exec).
1098  *
1099  * So we race with normal scheduler movements, but that's OK, as long
1100  * as the task is no longer on this CPU.
1101  */
1102 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 {
1104 	if (unlikely(!cpu_active(dest_cpu)))
1105 		return rq;
1106 
1107 	/* Affinity changed (again). */
1108 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109 		return rq;
1110 
1111 	rq = move_queued_task(rq, p, dest_cpu);
1112 
1113 	return rq;
1114 }
1115 
1116 /*
1117  * migration_cpu_stop - this will be executed by a highprio stopper thread
1118  * and performs thread migration by bumping thread off CPU then
1119  * 'pushing' onto another runqueue.
1120  */
1121 static int migration_cpu_stop(void *data)
1122 {
1123 	struct migration_arg *arg = data;
1124 	struct task_struct *p = arg->task;
1125 	struct rq *rq = this_rq();
1126 
1127 	/*
1128 	 * The original target cpu might have gone down and we might
1129 	 * be on another cpu but it doesn't matter.
1130 	 */
1131 	local_irq_disable();
1132 	/*
1133 	 * We need to explicitly wake pending tasks before running
1134 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 	 */
1137 	sched_ttwu_pending();
1138 
1139 	raw_spin_lock(&p->pi_lock);
1140 	raw_spin_lock(&rq->lock);
1141 	/*
1142 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 	 * we're holding p->pi_lock.
1145 	 */
1146 	if (task_rq(p) == rq && task_on_rq_queued(p))
1147 		rq = __migrate_task(rq, p, arg->dest_cpu);
1148 	raw_spin_unlock(&rq->lock);
1149 	raw_spin_unlock(&p->pi_lock);
1150 
1151 	local_irq_enable();
1152 	return 0;
1153 }
1154 
1155 /*
1156  * sched_class::set_cpus_allowed must do the below, but is not required to
1157  * actually call this function.
1158  */
1159 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 {
1161 	cpumask_copy(&p->cpus_allowed, new_mask);
1162 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164 
1165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 {
1167 	struct rq *rq = task_rq(p);
1168 	bool queued, running;
1169 
1170 	lockdep_assert_held(&p->pi_lock);
1171 
1172 	queued = task_on_rq_queued(p);
1173 	running = task_current(rq, p);
1174 
1175 	if (queued) {
1176 		/*
1177 		 * Because __kthread_bind() calls this on blocked tasks without
1178 		 * holding rq->lock.
1179 		 */
1180 		lockdep_assert_held(&rq->lock);
1181 		dequeue_task(rq, p, 0);
1182 	}
1183 	if (running)
1184 		put_prev_task(rq, p);
1185 
1186 	p->sched_class->set_cpus_allowed(p, new_mask);
1187 
1188 	if (running)
1189 		p->sched_class->set_curr_task(rq);
1190 	if (queued)
1191 		enqueue_task(rq, p, 0);
1192 }
1193 
1194 /*
1195  * Change a given task's CPU affinity. Migrate the thread to a
1196  * proper CPU and schedule it away if the CPU it's executing on
1197  * is removed from the allowed bitmask.
1198  *
1199  * NOTE: the caller must have a valid reference to the task, the
1200  * task must not exit() & deallocate itself prematurely. The
1201  * call is not atomic; no spinlocks may be held.
1202  */
1203 static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 				  const struct cpumask *new_mask, bool check)
1205 {
1206 	unsigned long flags;
1207 	struct rq *rq;
1208 	unsigned int dest_cpu;
1209 	int ret = 0;
1210 
1211 	rq = task_rq_lock(p, &flags);
1212 
1213 	/*
1214 	 * Must re-check here, to close a race against __kthread_bind(),
1215 	 * sched_setaffinity() is not guaranteed to observe the flag.
1216 	 */
1217 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 		ret = -EINVAL;
1219 		goto out;
1220 	}
1221 
1222 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 		goto out;
1224 
1225 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 		ret = -EINVAL;
1227 		goto out;
1228 	}
1229 
1230 	do_set_cpus_allowed(p, new_mask);
1231 
1232 	/* Can the task run on the task's current CPU? If so, we're done */
1233 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 		goto out;
1235 
1236 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 		struct migration_arg arg = { p, dest_cpu };
1239 		/* Need help from migration thread: drop lock and wait. */
1240 		task_rq_unlock(rq, p, &flags);
1241 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 		tlb_migrate_finish(p->mm);
1243 		return 0;
1244 	} else if (task_on_rq_queued(p)) {
1245 		/*
1246 		 * OK, since we're going to drop the lock immediately
1247 		 * afterwards anyway.
1248 		 */
1249 		lockdep_unpin_lock(&rq->lock);
1250 		rq = move_queued_task(rq, p, dest_cpu);
1251 		lockdep_pin_lock(&rq->lock);
1252 	}
1253 out:
1254 	task_rq_unlock(rq, p, &flags);
1255 
1256 	return ret;
1257 }
1258 
1259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 {
1261 	return __set_cpus_allowed_ptr(p, new_mask, false);
1262 }
1263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264 
1265 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 {
1267 #ifdef CONFIG_SCHED_DEBUG
1268 	/*
1269 	 * We should never call set_task_cpu() on a blocked task,
1270 	 * ttwu() will sort out the placement.
1271 	 */
1272 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1273 			!p->on_rq);
1274 
1275 #ifdef CONFIG_LOCKDEP
1276 	/*
1277 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 	 *
1280 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1281 	 * see task_group().
1282 	 *
1283 	 * Furthermore, all task_rq users should acquire both locks, see
1284 	 * task_rq_lock().
1285 	 */
1286 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 				      lockdep_is_held(&task_rq(p)->lock)));
1288 #endif
1289 #endif
1290 
1291 	trace_sched_migrate_task(p, new_cpu);
1292 
1293 	if (task_cpu(p) != new_cpu) {
1294 		if (p->sched_class->migrate_task_rq)
1295 			p->sched_class->migrate_task_rq(p, new_cpu);
1296 		p->se.nr_migrations++;
1297 		perf_event_task_migrate(p);
1298 	}
1299 
1300 	__set_task_cpu(p, new_cpu);
1301 }
1302 
1303 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 {
1305 	if (task_on_rq_queued(p)) {
1306 		struct rq *src_rq, *dst_rq;
1307 
1308 		src_rq = task_rq(p);
1309 		dst_rq = cpu_rq(cpu);
1310 
1311 		deactivate_task(src_rq, p, 0);
1312 		set_task_cpu(p, cpu);
1313 		activate_task(dst_rq, p, 0);
1314 		check_preempt_curr(dst_rq, p, 0);
1315 	} else {
1316 		/*
1317 		 * Task isn't running anymore; make it appear like we migrated
1318 		 * it before it went to sleep. This means on wakeup we make the
1319 		 * previous cpu our targer instead of where it really is.
1320 		 */
1321 		p->wake_cpu = cpu;
1322 	}
1323 }
1324 
1325 struct migration_swap_arg {
1326 	struct task_struct *src_task, *dst_task;
1327 	int src_cpu, dst_cpu;
1328 };
1329 
1330 static int migrate_swap_stop(void *data)
1331 {
1332 	struct migration_swap_arg *arg = data;
1333 	struct rq *src_rq, *dst_rq;
1334 	int ret = -EAGAIN;
1335 
1336 	src_rq = cpu_rq(arg->src_cpu);
1337 	dst_rq = cpu_rq(arg->dst_cpu);
1338 
1339 	double_raw_lock(&arg->src_task->pi_lock,
1340 			&arg->dst_task->pi_lock);
1341 	double_rq_lock(src_rq, dst_rq);
1342 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 		goto unlock;
1344 
1345 	if (task_cpu(arg->src_task) != arg->src_cpu)
1346 		goto unlock;
1347 
1348 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 		goto unlock;
1350 
1351 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 		goto unlock;
1353 
1354 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1356 
1357 	ret = 0;
1358 
1359 unlock:
1360 	double_rq_unlock(src_rq, dst_rq);
1361 	raw_spin_unlock(&arg->dst_task->pi_lock);
1362 	raw_spin_unlock(&arg->src_task->pi_lock);
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Cross migrate two tasks
1369  */
1370 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 {
1372 	struct migration_swap_arg arg;
1373 	int ret = -EINVAL;
1374 
1375 	arg = (struct migration_swap_arg){
1376 		.src_task = cur,
1377 		.src_cpu = task_cpu(cur),
1378 		.dst_task = p,
1379 		.dst_cpu = task_cpu(p),
1380 	};
1381 
1382 	if (arg.src_cpu == arg.dst_cpu)
1383 		goto out;
1384 
1385 	/*
1386 	 * These three tests are all lockless; this is OK since all of them
1387 	 * will be re-checked with proper locks held further down the line.
1388 	 */
1389 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 		goto out;
1391 
1392 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 		goto out;
1394 
1395 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 		goto out;
1397 
1398 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400 
1401 out:
1402 	return ret;
1403 }
1404 
1405 /*
1406  * wait_task_inactive - wait for a thread to unschedule.
1407  *
1408  * If @match_state is nonzero, it's the @p->state value just checked and
1409  * not expected to change.  If it changes, i.e. @p might have woken up,
1410  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1411  * we return a positive number (its total switch count).  If a second call
1412  * a short while later returns the same number, the caller can be sure that
1413  * @p has remained unscheduled the whole time.
1414  *
1415  * The caller must ensure that the task *will* unschedule sometime soon,
1416  * else this function might spin for a *long* time. This function can't
1417  * be called with interrupts off, or it may introduce deadlock with
1418  * smp_call_function() if an IPI is sent by the same process we are
1419  * waiting to become inactive.
1420  */
1421 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 {
1423 	unsigned long flags;
1424 	int running, queued;
1425 	unsigned long ncsw;
1426 	struct rq *rq;
1427 
1428 	for (;;) {
1429 		/*
1430 		 * We do the initial early heuristics without holding
1431 		 * any task-queue locks at all. We'll only try to get
1432 		 * the runqueue lock when things look like they will
1433 		 * work out!
1434 		 */
1435 		rq = task_rq(p);
1436 
1437 		/*
1438 		 * If the task is actively running on another CPU
1439 		 * still, just relax and busy-wait without holding
1440 		 * any locks.
1441 		 *
1442 		 * NOTE! Since we don't hold any locks, it's not
1443 		 * even sure that "rq" stays as the right runqueue!
1444 		 * But we don't care, since "task_running()" will
1445 		 * return false if the runqueue has changed and p
1446 		 * is actually now running somewhere else!
1447 		 */
1448 		while (task_running(rq, p)) {
1449 			if (match_state && unlikely(p->state != match_state))
1450 				return 0;
1451 			cpu_relax();
1452 		}
1453 
1454 		/*
1455 		 * Ok, time to look more closely! We need the rq
1456 		 * lock now, to be *sure*. If we're wrong, we'll
1457 		 * just go back and repeat.
1458 		 */
1459 		rq = task_rq_lock(p, &flags);
1460 		trace_sched_wait_task(p);
1461 		running = task_running(rq, p);
1462 		queued = task_on_rq_queued(p);
1463 		ncsw = 0;
1464 		if (!match_state || p->state == match_state)
1465 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466 		task_rq_unlock(rq, p, &flags);
1467 
1468 		/*
1469 		 * If it changed from the expected state, bail out now.
1470 		 */
1471 		if (unlikely(!ncsw))
1472 			break;
1473 
1474 		/*
1475 		 * Was it really running after all now that we
1476 		 * checked with the proper locks actually held?
1477 		 *
1478 		 * Oops. Go back and try again..
1479 		 */
1480 		if (unlikely(running)) {
1481 			cpu_relax();
1482 			continue;
1483 		}
1484 
1485 		/*
1486 		 * It's not enough that it's not actively running,
1487 		 * it must be off the runqueue _entirely_, and not
1488 		 * preempted!
1489 		 *
1490 		 * So if it was still runnable (but just not actively
1491 		 * running right now), it's preempted, and we should
1492 		 * yield - it could be a while.
1493 		 */
1494 		if (unlikely(queued)) {
1495 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496 
1497 			set_current_state(TASK_UNINTERRUPTIBLE);
1498 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 			continue;
1500 		}
1501 
1502 		/*
1503 		 * Ahh, all good. It wasn't running, and it wasn't
1504 		 * runnable, which means that it will never become
1505 		 * running in the future either. We're all done!
1506 		 */
1507 		break;
1508 	}
1509 
1510 	return ncsw;
1511 }
1512 
1513 /***
1514  * kick_process - kick a running thread to enter/exit the kernel
1515  * @p: the to-be-kicked thread
1516  *
1517  * Cause a process which is running on another CPU to enter
1518  * kernel-mode, without any delay. (to get signals handled.)
1519  *
1520  * NOTE: this function doesn't have to take the runqueue lock,
1521  * because all it wants to ensure is that the remote task enters
1522  * the kernel. If the IPI races and the task has been migrated
1523  * to another CPU then no harm is done and the purpose has been
1524  * achieved as well.
1525  */
1526 void kick_process(struct task_struct *p)
1527 {
1528 	int cpu;
1529 
1530 	preempt_disable();
1531 	cpu = task_cpu(p);
1532 	if ((cpu != smp_processor_id()) && task_curr(p))
1533 		smp_send_reschedule(cpu);
1534 	preempt_enable();
1535 }
1536 EXPORT_SYMBOL_GPL(kick_process);
1537 
1538 /*
1539  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540  */
1541 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 {
1543 	int nid = cpu_to_node(cpu);
1544 	const struct cpumask *nodemask = NULL;
1545 	enum { cpuset, possible, fail } state = cpuset;
1546 	int dest_cpu;
1547 
1548 	/*
1549 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 	 * will return -1. There is no cpu on the node, and we should
1551 	 * select the cpu on the other node.
1552 	 */
1553 	if (nid != -1) {
1554 		nodemask = cpumask_of_node(nid);
1555 
1556 		/* Look for allowed, online CPU in same node. */
1557 		for_each_cpu(dest_cpu, nodemask) {
1558 			if (!cpu_online(dest_cpu))
1559 				continue;
1560 			if (!cpu_active(dest_cpu))
1561 				continue;
1562 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 				return dest_cpu;
1564 		}
1565 	}
1566 
1567 	for (;;) {
1568 		/* Any allowed, online CPU? */
1569 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 			if (!cpu_online(dest_cpu))
1571 				continue;
1572 			if (!cpu_active(dest_cpu))
1573 				continue;
1574 			goto out;
1575 		}
1576 
1577 		switch (state) {
1578 		case cpuset:
1579 			/* No more Mr. Nice Guy. */
1580 			cpuset_cpus_allowed_fallback(p);
1581 			state = possible;
1582 			break;
1583 
1584 		case possible:
1585 			do_set_cpus_allowed(p, cpu_possible_mask);
1586 			state = fail;
1587 			break;
1588 
1589 		case fail:
1590 			BUG();
1591 			break;
1592 		}
1593 	}
1594 
1595 out:
1596 	if (state != cpuset) {
1597 		/*
1598 		 * Don't tell them about moving exiting tasks or
1599 		 * kernel threads (both mm NULL), since they never
1600 		 * leave kernel.
1601 		 */
1602 		if (p->mm && printk_ratelimit()) {
1603 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 					task_pid_nr(p), p->comm, cpu);
1605 		}
1606 	}
1607 
1608 	return dest_cpu;
1609 }
1610 
1611 /*
1612  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613  */
1614 static inline
1615 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 {
1617 	lockdep_assert_held(&p->pi_lock);
1618 
1619 	if (p->nr_cpus_allowed > 1)
1620 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621 
1622 	/*
1623 	 * In order not to call set_task_cpu() on a blocking task we need
1624 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 	 * cpu.
1626 	 *
1627 	 * Since this is common to all placement strategies, this lives here.
1628 	 *
1629 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 	 *   not worry about this generic constraint ]
1631 	 */
1632 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 		     !cpu_online(cpu)))
1634 		cpu = select_fallback_rq(task_cpu(p), p);
1635 
1636 	return cpu;
1637 }
1638 
1639 static void update_avg(u64 *avg, u64 sample)
1640 {
1641 	s64 diff = sample - *avg;
1642 	*avg += diff >> 3;
1643 }
1644 
1645 #else
1646 
1647 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 					 const struct cpumask *new_mask, bool check)
1649 {
1650 	return set_cpus_allowed_ptr(p, new_mask);
1651 }
1652 
1653 #endif /* CONFIG_SMP */
1654 
1655 static void
1656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 {
1658 #ifdef CONFIG_SCHEDSTATS
1659 	struct rq *rq = this_rq();
1660 
1661 #ifdef CONFIG_SMP
1662 	int this_cpu = smp_processor_id();
1663 
1664 	if (cpu == this_cpu) {
1665 		schedstat_inc(rq, ttwu_local);
1666 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 	} else {
1668 		struct sched_domain *sd;
1669 
1670 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 		rcu_read_lock();
1672 		for_each_domain(this_cpu, sd) {
1673 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 				schedstat_inc(sd, ttwu_wake_remote);
1675 				break;
1676 			}
1677 		}
1678 		rcu_read_unlock();
1679 	}
1680 
1681 	if (wake_flags & WF_MIGRATED)
1682 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683 
1684 #endif /* CONFIG_SMP */
1685 
1686 	schedstat_inc(rq, ttwu_count);
1687 	schedstat_inc(p, se.statistics.nr_wakeups);
1688 
1689 	if (wake_flags & WF_SYNC)
1690 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691 
1692 #endif /* CONFIG_SCHEDSTATS */
1693 }
1694 
1695 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 {
1697 	activate_task(rq, p, en_flags);
1698 	p->on_rq = TASK_ON_RQ_QUEUED;
1699 
1700 	/* if a worker is waking up, notify workqueue */
1701 	if (p->flags & PF_WQ_WORKER)
1702 		wq_worker_waking_up(p, cpu_of(rq));
1703 }
1704 
1705 /*
1706  * Mark the task runnable and perform wakeup-preemption.
1707  */
1708 static void
1709 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 {
1711 	check_preempt_curr(rq, p, wake_flags);
1712 	p->state = TASK_RUNNING;
1713 	trace_sched_wakeup(p);
1714 
1715 #ifdef CONFIG_SMP
1716 	if (p->sched_class->task_woken) {
1717 		/*
1718 		 * Our task @p is fully woken up and running; so its safe to
1719 		 * drop the rq->lock, hereafter rq is only used for statistics.
1720 		 */
1721 		lockdep_unpin_lock(&rq->lock);
1722 		p->sched_class->task_woken(rq, p);
1723 		lockdep_pin_lock(&rq->lock);
1724 	}
1725 
1726 	if (rq->idle_stamp) {
1727 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1728 		u64 max = 2*rq->max_idle_balance_cost;
1729 
1730 		update_avg(&rq->avg_idle, delta);
1731 
1732 		if (rq->avg_idle > max)
1733 			rq->avg_idle = max;
1734 
1735 		rq->idle_stamp = 0;
1736 	}
1737 #endif
1738 }
1739 
1740 static void
1741 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 {
1743 	lockdep_assert_held(&rq->lock);
1744 
1745 #ifdef CONFIG_SMP
1746 	if (p->sched_contributes_to_load)
1747 		rq->nr_uninterruptible--;
1748 #endif
1749 
1750 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 	ttwu_do_wakeup(rq, p, wake_flags);
1752 }
1753 
1754 /*
1755  * Called in case the task @p isn't fully descheduled from its runqueue,
1756  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757  * since all we need to do is flip p->state to TASK_RUNNING, since
1758  * the task is still ->on_rq.
1759  */
1760 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 {
1762 	struct rq *rq;
1763 	int ret = 0;
1764 
1765 	rq = __task_rq_lock(p);
1766 	if (task_on_rq_queued(p)) {
1767 		/* check_preempt_curr() may use rq clock */
1768 		update_rq_clock(rq);
1769 		ttwu_do_wakeup(rq, p, wake_flags);
1770 		ret = 1;
1771 	}
1772 	__task_rq_unlock(rq);
1773 
1774 	return ret;
1775 }
1776 
1777 #ifdef CONFIG_SMP
1778 void sched_ttwu_pending(void)
1779 {
1780 	struct rq *rq = this_rq();
1781 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 	struct task_struct *p;
1783 	unsigned long flags;
1784 
1785 	if (!llist)
1786 		return;
1787 
1788 	raw_spin_lock_irqsave(&rq->lock, flags);
1789 	lockdep_pin_lock(&rq->lock);
1790 
1791 	while (llist) {
1792 		p = llist_entry(llist, struct task_struct, wake_entry);
1793 		llist = llist_next(llist);
1794 		ttwu_do_activate(rq, p, 0);
1795 	}
1796 
1797 	lockdep_unpin_lock(&rq->lock);
1798 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 }
1800 
1801 void scheduler_ipi(void)
1802 {
1803 	/*
1804 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 	 * this IPI.
1807 	 */
1808 	preempt_fold_need_resched();
1809 
1810 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 		return;
1812 
1813 	/*
1814 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 	 * traditionally all their work was done from the interrupt return
1816 	 * path. Now that we actually do some work, we need to make sure
1817 	 * we do call them.
1818 	 *
1819 	 * Some archs already do call them, luckily irq_enter/exit nest
1820 	 * properly.
1821 	 *
1822 	 * Arguably we should visit all archs and update all handlers,
1823 	 * however a fair share of IPIs are still resched only so this would
1824 	 * somewhat pessimize the simple resched case.
1825 	 */
1826 	irq_enter();
1827 	sched_ttwu_pending();
1828 
1829 	/*
1830 	 * Check if someone kicked us for doing the nohz idle load balance.
1831 	 */
1832 	if (unlikely(got_nohz_idle_kick())) {
1833 		this_rq()->idle_balance = 1;
1834 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 	}
1836 	irq_exit();
1837 }
1838 
1839 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 {
1841 	struct rq *rq = cpu_rq(cpu);
1842 
1843 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 		if (!set_nr_if_polling(rq->idle))
1845 			smp_send_reschedule(cpu);
1846 		else
1847 			trace_sched_wake_idle_without_ipi(cpu);
1848 	}
1849 }
1850 
1851 void wake_up_if_idle(int cpu)
1852 {
1853 	struct rq *rq = cpu_rq(cpu);
1854 	unsigned long flags;
1855 
1856 	rcu_read_lock();
1857 
1858 	if (!is_idle_task(rcu_dereference(rq->curr)))
1859 		goto out;
1860 
1861 	if (set_nr_if_polling(rq->idle)) {
1862 		trace_sched_wake_idle_without_ipi(cpu);
1863 	} else {
1864 		raw_spin_lock_irqsave(&rq->lock, flags);
1865 		if (is_idle_task(rq->curr))
1866 			smp_send_reschedule(cpu);
1867 		/* Else cpu is not in idle, do nothing here */
1868 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 	}
1870 
1871 out:
1872 	rcu_read_unlock();
1873 }
1874 
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880 
1881 static void ttwu_queue(struct task_struct *p, int cpu)
1882 {
1883 	struct rq *rq = cpu_rq(cpu);
1884 
1885 #if defined(CONFIG_SMP)
1886 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 		ttwu_queue_remote(p, cpu);
1889 		return;
1890 	}
1891 #endif
1892 
1893 	raw_spin_lock(&rq->lock);
1894 	lockdep_pin_lock(&rq->lock);
1895 	ttwu_do_activate(rq, p, 0);
1896 	lockdep_unpin_lock(&rq->lock);
1897 	raw_spin_unlock(&rq->lock);
1898 }
1899 
1900 /**
1901  * try_to_wake_up - wake up a thread
1902  * @p: the thread to be awakened
1903  * @state: the mask of task states that can be woken
1904  * @wake_flags: wake modifier flags (WF_*)
1905  *
1906  * Put it on the run-queue if it's not already there. The "current"
1907  * thread is always on the run-queue (except when the actual
1908  * re-schedule is in progress), and as such you're allowed to do
1909  * the simpler "current->state = TASK_RUNNING" to mark yourself
1910  * runnable without the overhead of this.
1911  *
1912  * Return: %true if @p was woken up, %false if it was already running.
1913  * or @state didn't match @p's state.
1914  */
1915 static int
1916 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 {
1918 	unsigned long flags;
1919 	int cpu, success = 0;
1920 
1921 	/*
1922 	 * If we are going to wake up a thread waiting for CONDITION we
1923 	 * need to ensure that CONDITION=1 done by the caller can not be
1924 	 * reordered with p->state check below. This pairs with mb() in
1925 	 * set_current_state() the waiting thread does.
1926 	 */
1927 	smp_mb__before_spinlock();
1928 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1929 	if (!(p->state & state))
1930 		goto out;
1931 
1932 	trace_sched_waking(p);
1933 
1934 	success = 1; /* we're going to change ->state */
1935 	cpu = task_cpu(p);
1936 
1937 	if (p->on_rq && ttwu_remote(p, wake_flags))
1938 		goto stat;
1939 
1940 #ifdef CONFIG_SMP
1941 	/*
1942 	 * If the owning (remote) cpu is still in the middle of schedule() with
1943 	 * this task as prev, wait until its done referencing the task.
1944 	 */
1945 	while (p->on_cpu)
1946 		cpu_relax();
1947 	/*
1948 	 * Pairs with the smp_wmb() in finish_lock_switch().
1949 	 */
1950 	smp_rmb();
1951 
1952 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1953 	p->state = TASK_WAKING;
1954 
1955 	if (p->sched_class->task_waking)
1956 		p->sched_class->task_waking(p);
1957 
1958 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 	if (task_cpu(p) != cpu) {
1960 		wake_flags |= WF_MIGRATED;
1961 		set_task_cpu(p, cpu);
1962 	}
1963 #endif /* CONFIG_SMP */
1964 
1965 	ttwu_queue(p, cpu);
1966 stat:
1967 	ttwu_stat(p, cpu, wake_flags);
1968 out:
1969 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1970 
1971 	return success;
1972 }
1973 
1974 /**
1975  * try_to_wake_up_local - try to wake up a local task with rq lock held
1976  * @p: the thread to be awakened
1977  *
1978  * Put @p on the run-queue if it's not already there. The caller must
1979  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980  * the current task.
1981  */
1982 static void try_to_wake_up_local(struct task_struct *p)
1983 {
1984 	struct rq *rq = task_rq(p);
1985 
1986 	if (WARN_ON_ONCE(rq != this_rq()) ||
1987 	    WARN_ON_ONCE(p == current))
1988 		return;
1989 
1990 	lockdep_assert_held(&rq->lock);
1991 
1992 	if (!raw_spin_trylock(&p->pi_lock)) {
1993 		/*
1994 		 * This is OK, because current is on_cpu, which avoids it being
1995 		 * picked for load-balance and preemption/IRQs are still
1996 		 * disabled avoiding further scheduler activity on it and we've
1997 		 * not yet picked a replacement task.
1998 		 */
1999 		lockdep_unpin_lock(&rq->lock);
2000 		raw_spin_unlock(&rq->lock);
2001 		raw_spin_lock(&p->pi_lock);
2002 		raw_spin_lock(&rq->lock);
2003 		lockdep_pin_lock(&rq->lock);
2004 	}
2005 
2006 	if (!(p->state & TASK_NORMAL))
2007 		goto out;
2008 
2009 	trace_sched_waking(p);
2010 
2011 	if (!task_on_rq_queued(p))
2012 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013 
2014 	ttwu_do_wakeup(rq, p, 0);
2015 	ttwu_stat(p, smp_processor_id(), 0);
2016 out:
2017 	raw_spin_unlock(&p->pi_lock);
2018 }
2019 
2020 /**
2021  * wake_up_process - Wake up a specific process
2022  * @p: The process to be woken up.
2023  *
2024  * Attempt to wake up the nominated process and move it to the set of runnable
2025  * processes.
2026  *
2027  * Return: 1 if the process was woken up, 0 if it was already running.
2028  *
2029  * It may be assumed that this function implies a write memory barrier before
2030  * changing the task state if and only if any tasks are woken up.
2031  */
2032 int wake_up_process(struct task_struct *p)
2033 {
2034 	WARN_ON(task_is_stopped_or_traced(p));
2035 	return try_to_wake_up(p, TASK_NORMAL, 0);
2036 }
2037 EXPORT_SYMBOL(wake_up_process);
2038 
2039 int wake_up_state(struct task_struct *p, unsigned int state)
2040 {
2041 	return try_to_wake_up(p, state, 0);
2042 }
2043 
2044 /*
2045  * This function clears the sched_dl_entity static params.
2046  */
2047 void __dl_clear_params(struct task_struct *p)
2048 {
2049 	struct sched_dl_entity *dl_se = &p->dl;
2050 
2051 	dl_se->dl_runtime = 0;
2052 	dl_se->dl_deadline = 0;
2053 	dl_se->dl_period = 0;
2054 	dl_se->flags = 0;
2055 	dl_se->dl_bw = 0;
2056 
2057 	dl_se->dl_throttled = 0;
2058 	dl_se->dl_new = 1;
2059 	dl_se->dl_yielded = 0;
2060 }
2061 
2062 /*
2063  * Perform scheduler related setup for a newly forked process p.
2064  * p is forked by current.
2065  *
2066  * __sched_fork() is basic setup used by init_idle() too:
2067  */
2068 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2069 {
2070 	p->on_rq			= 0;
2071 
2072 	p->se.on_rq			= 0;
2073 	p->se.exec_start		= 0;
2074 	p->se.sum_exec_runtime		= 0;
2075 	p->se.prev_sum_exec_runtime	= 0;
2076 	p->se.nr_migrations		= 0;
2077 	p->se.vruntime			= 0;
2078 	INIT_LIST_HEAD(&p->se.group_node);
2079 
2080 #ifdef CONFIG_SCHEDSTATS
2081 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2082 #endif
2083 
2084 	RB_CLEAR_NODE(&p->dl.rb_node);
2085 	init_dl_task_timer(&p->dl);
2086 	__dl_clear_params(p);
2087 
2088 	INIT_LIST_HEAD(&p->rt.run_list);
2089 
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2092 #endif
2093 
2094 #ifdef CONFIG_NUMA_BALANCING
2095 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 		p->mm->numa_scan_seq = 0;
2098 	}
2099 
2100 	if (clone_flags & CLONE_VM)
2101 		p->numa_preferred_nid = current->numa_preferred_nid;
2102 	else
2103 		p->numa_preferred_nid = -1;
2104 
2105 	p->node_stamp = 0ULL;
2106 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108 	p->numa_work.next = &p->numa_work;
2109 	p->numa_faults = NULL;
2110 	p->last_task_numa_placement = 0;
2111 	p->last_sum_exec_runtime = 0;
2112 
2113 	p->numa_group = NULL;
2114 #endif /* CONFIG_NUMA_BALANCING */
2115 }
2116 
2117 #ifdef CONFIG_NUMA_BALANCING
2118 #ifdef CONFIG_SCHED_DEBUG
2119 void set_numabalancing_state(bool enabled)
2120 {
2121 	if (enabled)
2122 		sched_feat_set("NUMA");
2123 	else
2124 		sched_feat_set("NO_NUMA");
2125 }
2126 #else
2127 __read_mostly bool numabalancing_enabled;
2128 
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 	numabalancing_enabled = enabled;
2132 }
2133 #endif /* CONFIG_SCHED_DEBUG */
2134 
2135 #ifdef CONFIG_PROC_SYSCTL
2136 int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 	struct ctl_table t;
2140 	int err;
2141 	int state = numabalancing_enabled;
2142 
2143 	if (write && !capable(CAP_SYS_ADMIN))
2144 		return -EPERM;
2145 
2146 	t = *table;
2147 	t.data = &state;
2148 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 	if (err < 0)
2150 		return err;
2151 	if (write)
2152 		set_numabalancing_state(state);
2153 	return err;
2154 }
2155 #endif
2156 #endif
2157 
2158 /*
2159  * fork()/clone()-time setup:
2160  */
2161 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 	unsigned long flags;
2164 	int cpu = get_cpu();
2165 
2166 	__sched_fork(clone_flags, p);
2167 	/*
2168 	 * We mark the process as running here. This guarantees that
2169 	 * nobody will actually run it, and a signal or other external
2170 	 * event cannot wake it up and insert it on the runqueue either.
2171 	 */
2172 	p->state = TASK_RUNNING;
2173 
2174 	/*
2175 	 * Make sure we do not leak PI boosting priority to the child.
2176 	 */
2177 	p->prio = current->normal_prio;
2178 
2179 	/*
2180 	 * Revert to default priority/policy on fork if requested.
2181 	 */
2182 	if (unlikely(p->sched_reset_on_fork)) {
2183 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2184 			p->policy = SCHED_NORMAL;
2185 			p->static_prio = NICE_TO_PRIO(0);
2186 			p->rt_priority = 0;
2187 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 			p->static_prio = NICE_TO_PRIO(0);
2189 
2190 		p->prio = p->normal_prio = __normal_prio(p);
2191 		set_load_weight(p);
2192 
2193 		/*
2194 		 * We don't need the reset flag anymore after the fork. It has
2195 		 * fulfilled its duty:
2196 		 */
2197 		p->sched_reset_on_fork = 0;
2198 	}
2199 
2200 	if (dl_prio(p->prio)) {
2201 		put_cpu();
2202 		return -EAGAIN;
2203 	} else if (rt_prio(p->prio)) {
2204 		p->sched_class = &rt_sched_class;
2205 	} else {
2206 		p->sched_class = &fair_sched_class;
2207 	}
2208 
2209 	if (p->sched_class->task_fork)
2210 		p->sched_class->task_fork(p);
2211 
2212 	/*
2213 	 * The child is not yet in the pid-hash so no cgroup attach races,
2214 	 * and the cgroup is pinned to this child due to cgroup_fork()
2215 	 * is ran before sched_fork().
2216 	 *
2217 	 * Silence PROVE_RCU.
2218 	 */
2219 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2220 	set_task_cpu(p, cpu);
2221 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222 
2223 #ifdef CONFIG_SCHED_INFO
2224 	if (likely(sched_info_on()))
2225 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #endif
2227 #if defined(CONFIG_SMP)
2228 	p->on_cpu = 0;
2229 #endif
2230 	init_task_preempt_count(p);
2231 #ifdef CONFIG_SMP
2232 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2233 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2234 #endif
2235 
2236 	put_cpu();
2237 	return 0;
2238 }
2239 
2240 unsigned long to_ratio(u64 period, u64 runtime)
2241 {
2242 	if (runtime == RUNTIME_INF)
2243 		return 1ULL << 20;
2244 
2245 	/*
2246 	 * Doing this here saves a lot of checks in all
2247 	 * the calling paths, and returning zero seems
2248 	 * safe for them anyway.
2249 	 */
2250 	if (period == 0)
2251 		return 0;
2252 
2253 	return div64_u64(runtime << 20, period);
2254 }
2255 
2256 #ifdef CONFIG_SMP
2257 inline struct dl_bw *dl_bw_of(int i)
2258 {
2259 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 			 "sched RCU must be held");
2261 	return &cpu_rq(i)->rd->dl_bw;
2262 }
2263 
2264 static inline int dl_bw_cpus(int i)
2265 {
2266 	struct root_domain *rd = cpu_rq(i)->rd;
2267 	int cpus = 0;
2268 
2269 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 			 "sched RCU must be held");
2271 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 		cpus++;
2273 
2274 	return cpus;
2275 }
2276 #else
2277 inline struct dl_bw *dl_bw_of(int i)
2278 {
2279 	return &cpu_rq(i)->dl.dl_bw;
2280 }
2281 
2282 static inline int dl_bw_cpus(int i)
2283 {
2284 	return 1;
2285 }
2286 #endif
2287 
2288 /*
2289  * We must be sure that accepting a new task (or allowing changing the
2290  * parameters of an existing one) is consistent with the bandwidth
2291  * constraints. If yes, this function also accordingly updates the currently
2292  * allocated bandwidth to reflect the new situation.
2293  *
2294  * This function is called while holding p's rq->lock.
2295  *
2296  * XXX we should delay bw change until the task's 0-lag point, see
2297  * __setparam_dl().
2298  */
2299 static int dl_overflow(struct task_struct *p, int policy,
2300 		       const struct sched_attr *attr)
2301 {
2302 
2303 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2304 	u64 period = attr->sched_period ?: attr->sched_deadline;
2305 	u64 runtime = attr->sched_runtime;
2306 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2307 	int cpus, err = -1;
2308 
2309 	if (new_bw == p->dl.dl_bw)
2310 		return 0;
2311 
2312 	/*
2313 	 * Either if a task, enters, leave, or stays -deadline but changes
2314 	 * its parameters, we may need to update accordingly the total
2315 	 * allocated bandwidth of the container.
2316 	 */
2317 	raw_spin_lock(&dl_b->lock);
2318 	cpus = dl_bw_cpus(task_cpu(p));
2319 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 		__dl_add(dl_b, new_bw);
2322 		err = 0;
2323 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 		__dl_clear(dl_b, p->dl.dl_bw);
2326 		__dl_add(dl_b, new_bw);
2327 		err = 0;
2328 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 		__dl_clear(dl_b, p->dl.dl_bw);
2330 		err = 0;
2331 	}
2332 	raw_spin_unlock(&dl_b->lock);
2333 
2334 	return err;
2335 }
2336 
2337 extern void init_dl_bw(struct dl_bw *dl_b);
2338 
2339 /*
2340  * wake_up_new_task - wake up a newly created task for the first time.
2341  *
2342  * This function will do some initial scheduler statistics housekeeping
2343  * that must be done for every newly created context, then puts the task
2344  * on the runqueue and wakes it.
2345  */
2346 void wake_up_new_task(struct task_struct *p)
2347 {
2348 	unsigned long flags;
2349 	struct rq *rq;
2350 
2351 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2352 #ifdef CONFIG_SMP
2353 	/*
2354 	 * Fork balancing, do it here and not earlier because:
2355 	 *  - cpus_allowed can change in the fork path
2356 	 *  - any previously selected cpu might disappear through hotplug
2357 	 */
2358 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2359 #endif
2360 
2361 	/* Initialize new task's runnable average */
2362 	init_entity_runnable_average(&p->se);
2363 	rq = __task_rq_lock(p);
2364 	activate_task(rq, p, 0);
2365 	p->on_rq = TASK_ON_RQ_QUEUED;
2366 	trace_sched_wakeup_new(p);
2367 	check_preempt_curr(rq, p, WF_FORK);
2368 #ifdef CONFIG_SMP
2369 	if (p->sched_class->task_woken) {
2370 		/*
2371 		 * Nothing relies on rq->lock after this, so its fine to
2372 		 * drop it.
2373 		 */
2374 		lockdep_unpin_lock(&rq->lock);
2375 		p->sched_class->task_woken(rq, p);
2376 		lockdep_pin_lock(&rq->lock);
2377 	}
2378 #endif
2379 	task_rq_unlock(rq, p, &flags);
2380 }
2381 
2382 #ifdef CONFIG_PREEMPT_NOTIFIERS
2383 
2384 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2385 
2386 void preempt_notifier_inc(void)
2387 {
2388 	static_key_slow_inc(&preempt_notifier_key);
2389 }
2390 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2391 
2392 void preempt_notifier_dec(void)
2393 {
2394 	static_key_slow_dec(&preempt_notifier_key);
2395 }
2396 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2397 
2398 /**
2399  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2400  * @notifier: notifier struct to register
2401  */
2402 void preempt_notifier_register(struct preempt_notifier *notifier)
2403 {
2404 	if (!static_key_false(&preempt_notifier_key))
2405 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2406 
2407 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2408 }
2409 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2410 
2411 /**
2412  * preempt_notifier_unregister - no longer interested in preemption notifications
2413  * @notifier: notifier struct to unregister
2414  *
2415  * This is *not* safe to call from within a preemption notifier.
2416  */
2417 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2418 {
2419 	hlist_del(&notifier->link);
2420 }
2421 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2422 
2423 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2424 {
2425 	struct preempt_notifier *notifier;
2426 
2427 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2428 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2429 }
2430 
2431 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2432 {
2433 	if (static_key_false(&preempt_notifier_key))
2434 		__fire_sched_in_preempt_notifiers(curr);
2435 }
2436 
2437 static void
2438 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 				   struct task_struct *next)
2440 {
2441 	struct preempt_notifier *notifier;
2442 
2443 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2444 		notifier->ops->sched_out(notifier, next);
2445 }
2446 
2447 static __always_inline void
2448 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2449 				 struct task_struct *next)
2450 {
2451 	if (static_key_false(&preempt_notifier_key))
2452 		__fire_sched_out_preempt_notifiers(curr, next);
2453 }
2454 
2455 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2456 
2457 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2458 {
2459 }
2460 
2461 static inline void
2462 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2463 				 struct task_struct *next)
2464 {
2465 }
2466 
2467 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2468 
2469 /**
2470  * prepare_task_switch - prepare to switch tasks
2471  * @rq: the runqueue preparing to switch
2472  * @prev: the current task that is being switched out
2473  * @next: the task we are going to switch to.
2474  *
2475  * This is called with the rq lock held and interrupts off. It must
2476  * be paired with a subsequent finish_task_switch after the context
2477  * switch.
2478  *
2479  * prepare_task_switch sets up locking and calls architecture specific
2480  * hooks.
2481  */
2482 static inline void
2483 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2484 		    struct task_struct *next)
2485 {
2486 	trace_sched_switch(prev, next);
2487 	sched_info_switch(rq, prev, next);
2488 	perf_event_task_sched_out(prev, next);
2489 	fire_sched_out_preempt_notifiers(prev, next);
2490 	prepare_lock_switch(rq, next);
2491 	prepare_arch_switch(next);
2492 }
2493 
2494 /**
2495  * finish_task_switch - clean up after a task-switch
2496  * @prev: the thread we just switched away from.
2497  *
2498  * finish_task_switch must be called after the context switch, paired
2499  * with a prepare_task_switch call before the context switch.
2500  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2501  * and do any other architecture-specific cleanup actions.
2502  *
2503  * Note that we may have delayed dropping an mm in context_switch(). If
2504  * so, we finish that here outside of the runqueue lock. (Doing it
2505  * with the lock held can cause deadlocks; see schedule() for
2506  * details.)
2507  *
2508  * The context switch have flipped the stack from under us and restored the
2509  * local variables which were saved when this task called schedule() in the
2510  * past. prev == current is still correct but we need to recalculate this_rq
2511  * because prev may have moved to another CPU.
2512  */
2513 static struct rq *finish_task_switch(struct task_struct *prev)
2514 	__releases(rq->lock)
2515 {
2516 	struct rq *rq = this_rq();
2517 	struct mm_struct *mm = rq->prev_mm;
2518 	long prev_state;
2519 
2520 	rq->prev_mm = NULL;
2521 
2522 	/*
2523 	 * A task struct has one reference for the use as "current".
2524 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2525 	 * schedule one last time. The schedule call will never return, and
2526 	 * the scheduled task must drop that reference.
2527 	 *
2528 	 * We must observe prev->state before clearing prev->on_cpu (in
2529 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2530 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2531 	 * transition, resulting in a double drop.
2532 	 */
2533 	prev_state = prev->state;
2534 	vtime_task_switch(prev);
2535 	perf_event_task_sched_in(prev, current);
2536 	finish_lock_switch(rq, prev);
2537 	finish_arch_post_lock_switch();
2538 
2539 	fire_sched_in_preempt_notifiers(current);
2540 	if (mm)
2541 		mmdrop(mm);
2542 	if (unlikely(prev_state == TASK_DEAD)) {
2543 		if (prev->sched_class->task_dead)
2544 			prev->sched_class->task_dead(prev);
2545 
2546 		/*
2547 		 * Remove function-return probe instances associated with this
2548 		 * task and put them back on the free list.
2549 		 */
2550 		kprobe_flush_task(prev);
2551 		put_task_struct(prev);
2552 	}
2553 
2554 	tick_nohz_task_switch();
2555 	return rq;
2556 }
2557 
2558 #ifdef CONFIG_SMP
2559 
2560 /* rq->lock is NOT held, but preemption is disabled */
2561 static void __balance_callback(struct rq *rq)
2562 {
2563 	struct callback_head *head, *next;
2564 	void (*func)(struct rq *rq);
2565 	unsigned long flags;
2566 
2567 	raw_spin_lock_irqsave(&rq->lock, flags);
2568 	head = rq->balance_callback;
2569 	rq->balance_callback = NULL;
2570 	while (head) {
2571 		func = (void (*)(struct rq *))head->func;
2572 		next = head->next;
2573 		head->next = NULL;
2574 		head = next;
2575 
2576 		func(rq);
2577 	}
2578 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2579 }
2580 
2581 static inline void balance_callback(struct rq *rq)
2582 {
2583 	if (unlikely(rq->balance_callback))
2584 		__balance_callback(rq);
2585 }
2586 
2587 #else
2588 
2589 static inline void balance_callback(struct rq *rq)
2590 {
2591 }
2592 
2593 #endif
2594 
2595 /**
2596  * schedule_tail - first thing a freshly forked thread must call.
2597  * @prev: the thread we just switched away from.
2598  */
2599 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2600 	__releases(rq->lock)
2601 {
2602 	struct rq *rq;
2603 
2604 	/* finish_task_switch() drops rq->lock and enables preemtion */
2605 	preempt_disable();
2606 	rq = finish_task_switch(prev);
2607 	balance_callback(rq);
2608 	preempt_enable();
2609 
2610 	if (current->set_child_tid)
2611 		put_user(task_pid_vnr(current), current->set_child_tid);
2612 }
2613 
2614 /*
2615  * context_switch - switch to the new MM and the new thread's register state.
2616  */
2617 static inline struct rq *
2618 context_switch(struct rq *rq, struct task_struct *prev,
2619 	       struct task_struct *next)
2620 {
2621 	struct mm_struct *mm, *oldmm;
2622 
2623 	prepare_task_switch(rq, prev, next);
2624 
2625 	mm = next->mm;
2626 	oldmm = prev->active_mm;
2627 	/*
2628 	 * For paravirt, this is coupled with an exit in switch_to to
2629 	 * combine the page table reload and the switch backend into
2630 	 * one hypercall.
2631 	 */
2632 	arch_start_context_switch(prev);
2633 
2634 	if (!mm) {
2635 		next->active_mm = oldmm;
2636 		atomic_inc(&oldmm->mm_count);
2637 		enter_lazy_tlb(oldmm, next);
2638 	} else
2639 		switch_mm(oldmm, mm, next);
2640 
2641 	if (!prev->mm) {
2642 		prev->active_mm = NULL;
2643 		rq->prev_mm = oldmm;
2644 	}
2645 	/*
2646 	 * Since the runqueue lock will be released by the next
2647 	 * task (which is an invalid locking op but in the case
2648 	 * of the scheduler it's an obvious special-case), so we
2649 	 * do an early lockdep release here:
2650 	 */
2651 	lockdep_unpin_lock(&rq->lock);
2652 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653 
2654 	/* Here we just switch the register state and the stack. */
2655 	switch_to(prev, next, prev);
2656 	barrier();
2657 
2658 	return finish_task_switch(prev);
2659 }
2660 
2661 /*
2662  * nr_running and nr_context_switches:
2663  *
2664  * externally visible scheduler statistics: current number of runnable
2665  * threads, total number of context switches performed since bootup.
2666  */
2667 unsigned long nr_running(void)
2668 {
2669 	unsigned long i, sum = 0;
2670 
2671 	for_each_online_cpu(i)
2672 		sum += cpu_rq(i)->nr_running;
2673 
2674 	return sum;
2675 }
2676 
2677 /*
2678  * Check if only the current task is running on the cpu.
2679  *
2680  * Caution: this function does not check that the caller has disabled
2681  * preemption, thus the result might have a time-of-check-to-time-of-use
2682  * race.  The caller is responsible to use it correctly, for example:
2683  *
2684  * - from a non-preemptable section (of course)
2685  *
2686  * - from a thread that is bound to a single CPU
2687  *
2688  * - in a loop with very short iterations (e.g. a polling loop)
2689  */
2690 bool single_task_running(void)
2691 {
2692 	return raw_rq()->nr_running == 1;
2693 }
2694 EXPORT_SYMBOL(single_task_running);
2695 
2696 unsigned long long nr_context_switches(void)
2697 {
2698 	int i;
2699 	unsigned long long sum = 0;
2700 
2701 	for_each_possible_cpu(i)
2702 		sum += cpu_rq(i)->nr_switches;
2703 
2704 	return sum;
2705 }
2706 
2707 unsigned long nr_iowait(void)
2708 {
2709 	unsigned long i, sum = 0;
2710 
2711 	for_each_possible_cpu(i)
2712 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2713 
2714 	return sum;
2715 }
2716 
2717 unsigned long nr_iowait_cpu(int cpu)
2718 {
2719 	struct rq *this = cpu_rq(cpu);
2720 	return atomic_read(&this->nr_iowait);
2721 }
2722 
2723 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2724 {
2725 	struct rq *rq = this_rq();
2726 	*nr_waiters = atomic_read(&rq->nr_iowait);
2727 	*load = rq->load.weight;
2728 }
2729 
2730 #ifdef CONFIG_SMP
2731 
2732 /*
2733  * sched_exec - execve() is a valuable balancing opportunity, because at
2734  * this point the task has the smallest effective memory and cache footprint.
2735  */
2736 void sched_exec(void)
2737 {
2738 	struct task_struct *p = current;
2739 	unsigned long flags;
2740 	int dest_cpu;
2741 
2742 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2743 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2744 	if (dest_cpu == smp_processor_id())
2745 		goto unlock;
2746 
2747 	if (likely(cpu_active(dest_cpu))) {
2748 		struct migration_arg arg = { p, dest_cpu };
2749 
2750 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2752 		return;
2753 	}
2754 unlock:
2755 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2756 }
2757 
2758 #endif
2759 
2760 DEFINE_PER_CPU(struct kernel_stat, kstat);
2761 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2762 
2763 EXPORT_PER_CPU_SYMBOL(kstat);
2764 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2765 
2766 /*
2767  * Return accounted runtime for the task.
2768  * In case the task is currently running, return the runtime plus current's
2769  * pending runtime that have not been accounted yet.
2770  */
2771 unsigned long long task_sched_runtime(struct task_struct *p)
2772 {
2773 	unsigned long flags;
2774 	struct rq *rq;
2775 	u64 ns;
2776 
2777 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2778 	/*
2779 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2780 	 * So we have a optimization chance when the task's delta_exec is 0.
2781 	 * Reading ->on_cpu is racy, but this is ok.
2782 	 *
2783 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2784 	 * If we race with it entering cpu, unaccounted time is 0. This is
2785 	 * indistinguishable from the read occurring a few cycles earlier.
2786 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2787 	 * been accounted, so we're correct here as well.
2788 	 */
2789 	if (!p->on_cpu || !task_on_rq_queued(p))
2790 		return p->se.sum_exec_runtime;
2791 #endif
2792 
2793 	rq = task_rq_lock(p, &flags);
2794 	/*
2795 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2796 	 * project cycles that may never be accounted to this
2797 	 * thread, breaking clock_gettime().
2798 	 */
2799 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2800 		update_rq_clock(rq);
2801 		p->sched_class->update_curr(rq);
2802 	}
2803 	ns = p->se.sum_exec_runtime;
2804 	task_rq_unlock(rq, p, &flags);
2805 
2806 	return ns;
2807 }
2808 
2809 /*
2810  * This function gets called by the timer code, with HZ frequency.
2811  * We call it with interrupts disabled.
2812  */
2813 void scheduler_tick(void)
2814 {
2815 	int cpu = smp_processor_id();
2816 	struct rq *rq = cpu_rq(cpu);
2817 	struct task_struct *curr = rq->curr;
2818 
2819 	sched_clock_tick();
2820 
2821 	raw_spin_lock(&rq->lock);
2822 	update_rq_clock(rq);
2823 	curr->sched_class->task_tick(rq, curr, 0);
2824 	update_cpu_load_active(rq);
2825 	calc_global_load_tick(rq);
2826 	raw_spin_unlock(&rq->lock);
2827 
2828 	perf_event_task_tick();
2829 
2830 #ifdef CONFIG_SMP
2831 	rq->idle_balance = idle_cpu(cpu);
2832 	trigger_load_balance(rq);
2833 #endif
2834 	rq_last_tick_reset(rq);
2835 }
2836 
2837 #ifdef CONFIG_NO_HZ_FULL
2838 /**
2839  * scheduler_tick_max_deferment
2840  *
2841  * Keep at least one tick per second when a single
2842  * active task is running because the scheduler doesn't
2843  * yet completely support full dynticks environment.
2844  *
2845  * This makes sure that uptime, CFS vruntime, load
2846  * balancing, etc... continue to move forward, even
2847  * with a very low granularity.
2848  *
2849  * Return: Maximum deferment in nanoseconds.
2850  */
2851 u64 scheduler_tick_max_deferment(void)
2852 {
2853 	struct rq *rq = this_rq();
2854 	unsigned long next, now = READ_ONCE(jiffies);
2855 
2856 	next = rq->last_sched_tick + HZ;
2857 
2858 	if (time_before_eq(next, now))
2859 		return 0;
2860 
2861 	return jiffies_to_nsecs(next - now);
2862 }
2863 #endif
2864 
2865 notrace unsigned long get_parent_ip(unsigned long addr)
2866 {
2867 	if (in_lock_functions(addr)) {
2868 		addr = CALLER_ADDR2;
2869 		if (in_lock_functions(addr))
2870 			addr = CALLER_ADDR3;
2871 	}
2872 	return addr;
2873 }
2874 
2875 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2876 				defined(CONFIG_PREEMPT_TRACER))
2877 
2878 void preempt_count_add(int val)
2879 {
2880 #ifdef CONFIG_DEBUG_PREEMPT
2881 	/*
2882 	 * Underflow?
2883 	 */
2884 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2885 		return;
2886 #endif
2887 	__preempt_count_add(val);
2888 #ifdef CONFIG_DEBUG_PREEMPT
2889 	/*
2890 	 * Spinlock count overflowing soon?
2891 	 */
2892 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2893 				PREEMPT_MASK - 10);
2894 #endif
2895 	if (preempt_count() == val) {
2896 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2897 #ifdef CONFIG_DEBUG_PREEMPT
2898 		current->preempt_disable_ip = ip;
2899 #endif
2900 		trace_preempt_off(CALLER_ADDR0, ip);
2901 	}
2902 }
2903 EXPORT_SYMBOL(preempt_count_add);
2904 NOKPROBE_SYMBOL(preempt_count_add);
2905 
2906 void preempt_count_sub(int val)
2907 {
2908 #ifdef CONFIG_DEBUG_PREEMPT
2909 	/*
2910 	 * Underflow?
2911 	 */
2912 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2913 		return;
2914 	/*
2915 	 * Is the spinlock portion underflowing?
2916 	 */
2917 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2918 			!(preempt_count() & PREEMPT_MASK)))
2919 		return;
2920 #endif
2921 
2922 	if (preempt_count() == val)
2923 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2924 	__preempt_count_sub(val);
2925 }
2926 EXPORT_SYMBOL(preempt_count_sub);
2927 NOKPROBE_SYMBOL(preempt_count_sub);
2928 
2929 #endif
2930 
2931 /*
2932  * Print scheduling while atomic bug:
2933  */
2934 static noinline void __schedule_bug(struct task_struct *prev)
2935 {
2936 	if (oops_in_progress)
2937 		return;
2938 
2939 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2940 		prev->comm, prev->pid, preempt_count());
2941 
2942 	debug_show_held_locks(prev);
2943 	print_modules();
2944 	if (irqs_disabled())
2945 		print_irqtrace_events(prev);
2946 #ifdef CONFIG_DEBUG_PREEMPT
2947 	if (in_atomic_preempt_off()) {
2948 		pr_err("Preemption disabled at:");
2949 		print_ip_sym(current->preempt_disable_ip);
2950 		pr_cont("\n");
2951 	}
2952 #endif
2953 	dump_stack();
2954 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2955 }
2956 
2957 /*
2958  * Various schedule()-time debugging checks and statistics:
2959  */
2960 static inline void schedule_debug(struct task_struct *prev)
2961 {
2962 #ifdef CONFIG_SCHED_STACK_END_CHECK
2963 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2964 #endif
2965 	/*
2966 	 * Test if we are atomic. Since do_exit() needs to call into
2967 	 * schedule() atomically, we ignore that path. Otherwise whine
2968 	 * if we are scheduling when we should not.
2969 	 */
2970 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2971 		__schedule_bug(prev);
2972 	rcu_sleep_check();
2973 
2974 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2975 
2976 	schedstat_inc(this_rq(), sched_count);
2977 }
2978 
2979 /*
2980  * Pick up the highest-prio task:
2981  */
2982 static inline struct task_struct *
2983 pick_next_task(struct rq *rq, struct task_struct *prev)
2984 {
2985 	const struct sched_class *class = &fair_sched_class;
2986 	struct task_struct *p;
2987 
2988 	/*
2989 	 * Optimization: we know that if all tasks are in
2990 	 * the fair class we can call that function directly:
2991 	 */
2992 	if (likely(prev->sched_class == class &&
2993 		   rq->nr_running == rq->cfs.h_nr_running)) {
2994 		p = fair_sched_class.pick_next_task(rq, prev);
2995 		if (unlikely(p == RETRY_TASK))
2996 			goto again;
2997 
2998 		/* assumes fair_sched_class->next == idle_sched_class */
2999 		if (unlikely(!p))
3000 			p = idle_sched_class.pick_next_task(rq, prev);
3001 
3002 		return p;
3003 	}
3004 
3005 again:
3006 	for_each_class(class) {
3007 		p = class->pick_next_task(rq, prev);
3008 		if (p) {
3009 			if (unlikely(p == RETRY_TASK))
3010 				goto again;
3011 			return p;
3012 		}
3013 	}
3014 
3015 	BUG(); /* the idle class will always have a runnable task */
3016 }
3017 
3018 /*
3019  * __schedule() is the main scheduler function.
3020  *
3021  * The main means of driving the scheduler and thus entering this function are:
3022  *
3023  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3024  *
3025  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3026  *      paths. For example, see arch/x86/entry_64.S.
3027  *
3028  *      To drive preemption between tasks, the scheduler sets the flag in timer
3029  *      interrupt handler scheduler_tick().
3030  *
3031  *   3. Wakeups don't really cause entry into schedule(). They add a
3032  *      task to the run-queue and that's it.
3033  *
3034  *      Now, if the new task added to the run-queue preempts the current
3035  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3036  *      called on the nearest possible occasion:
3037  *
3038  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3039  *
3040  *         - in syscall or exception context, at the next outmost
3041  *           preempt_enable(). (this might be as soon as the wake_up()'s
3042  *           spin_unlock()!)
3043  *
3044  *         - in IRQ context, return from interrupt-handler to
3045  *           preemptible context
3046  *
3047  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3048  *         then at the next:
3049  *
3050  *          - cond_resched() call
3051  *          - explicit schedule() call
3052  *          - return from syscall or exception to user-space
3053  *          - return from interrupt-handler to user-space
3054  *
3055  * WARNING: must be called with preemption disabled!
3056  */
3057 static void __sched __schedule(void)
3058 {
3059 	struct task_struct *prev, *next;
3060 	unsigned long *switch_count;
3061 	struct rq *rq;
3062 	int cpu;
3063 
3064 	cpu = smp_processor_id();
3065 	rq = cpu_rq(cpu);
3066 	rcu_note_context_switch();
3067 	prev = rq->curr;
3068 
3069 	schedule_debug(prev);
3070 
3071 	if (sched_feat(HRTICK))
3072 		hrtick_clear(rq);
3073 
3074 	/*
3075 	 * Make sure that signal_pending_state()->signal_pending() below
3076 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3077 	 * done by the caller to avoid the race with signal_wake_up().
3078 	 */
3079 	smp_mb__before_spinlock();
3080 	raw_spin_lock_irq(&rq->lock);
3081 	lockdep_pin_lock(&rq->lock);
3082 
3083 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3084 
3085 	switch_count = &prev->nivcsw;
3086 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3087 		if (unlikely(signal_pending_state(prev->state, prev))) {
3088 			prev->state = TASK_RUNNING;
3089 		} else {
3090 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3091 			prev->on_rq = 0;
3092 
3093 			/*
3094 			 * If a worker went to sleep, notify and ask workqueue
3095 			 * whether it wants to wake up a task to maintain
3096 			 * concurrency.
3097 			 */
3098 			if (prev->flags & PF_WQ_WORKER) {
3099 				struct task_struct *to_wakeup;
3100 
3101 				to_wakeup = wq_worker_sleeping(prev, cpu);
3102 				if (to_wakeup)
3103 					try_to_wake_up_local(to_wakeup);
3104 			}
3105 		}
3106 		switch_count = &prev->nvcsw;
3107 	}
3108 
3109 	if (task_on_rq_queued(prev))
3110 		update_rq_clock(rq);
3111 
3112 	next = pick_next_task(rq, prev);
3113 	clear_tsk_need_resched(prev);
3114 	clear_preempt_need_resched();
3115 	rq->clock_skip_update = 0;
3116 
3117 	if (likely(prev != next)) {
3118 		rq->nr_switches++;
3119 		rq->curr = next;
3120 		++*switch_count;
3121 
3122 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3123 		cpu = cpu_of(rq);
3124 	} else {
3125 		lockdep_unpin_lock(&rq->lock);
3126 		raw_spin_unlock_irq(&rq->lock);
3127 	}
3128 
3129 	balance_callback(rq);
3130 }
3131 
3132 static inline void sched_submit_work(struct task_struct *tsk)
3133 {
3134 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3135 		return;
3136 	/*
3137 	 * If we are going to sleep and we have plugged IO queued,
3138 	 * make sure to submit it to avoid deadlocks.
3139 	 */
3140 	if (blk_needs_flush_plug(tsk))
3141 		blk_schedule_flush_plug(tsk);
3142 }
3143 
3144 asmlinkage __visible void __sched schedule(void)
3145 {
3146 	struct task_struct *tsk = current;
3147 
3148 	sched_submit_work(tsk);
3149 	do {
3150 		preempt_disable();
3151 		__schedule();
3152 		sched_preempt_enable_no_resched();
3153 	} while (need_resched());
3154 }
3155 EXPORT_SYMBOL(schedule);
3156 
3157 #ifdef CONFIG_CONTEXT_TRACKING
3158 asmlinkage __visible void __sched schedule_user(void)
3159 {
3160 	/*
3161 	 * If we come here after a random call to set_need_resched(),
3162 	 * or we have been woken up remotely but the IPI has not yet arrived,
3163 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3164 	 * we find a better solution.
3165 	 *
3166 	 * NB: There are buggy callers of this function.  Ideally we
3167 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3168 	 * too frequently to make sense yet.
3169 	 */
3170 	enum ctx_state prev_state = exception_enter();
3171 	schedule();
3172 	exception_exit(prev_state);
3173 }
3174 #endif
3175 
3176 /**
3177  * schedule_preempt_disabled - called with preemption disabled
3178  *
3179  * Returns with preemption disabled. Note: preempt_count must be 1
3180  */
3181 void __sched schedule_preempt_disabled(void)
3182 {
3183 	sched_preempt_enable_no_resched();
3184 	schedule();
3185 	preempt_disable();
3186 }
3187 
3188 static void __sched notrace preempt_schedule_common(void)
3189 {
3190 	do {
3191 		preempt_active_enter();
3192 		__schedule();
3193 		preempt_active_exit();
3194 
3195 		/*
3196 		 * Check again in case we missed a preemption opportunity
3197 		 * between schedule and now.
3198 		 */
3199 	} while (need_resched());
3200 }
3201 
3202 #ifdef CONFIG_PREEMPT
3203 /*
3204  * this is the entry point to schedule() from in-kernel preemption
3205  * off of preempt_enable. Kernel preemptions off return from interrupt
3206  * occur there and call schedule directly.
3207  */
3208 asmlinkage __visible void __sched notrace preempt_schedule(void)
3209 {
3210 	/*
3211 	 * If there is a non-zero preempt_count or interrupts are disabled,
3212 	 * we do not want to preempt the current task. Just return..
3213 	 */
3214 	if (likely(!preemptible()))
3215 		return;
3216 
3217 	preempt_schedule_common();
3218 }
3219 NOKPROBE_SYMBOL(preempt_schedule);
3220 EXPORT_SYMBOL(preempt_schedule);
3221 
3222 /**
3223  * preempt_schedule_notrace - preempt_schedule called by tracing
3224  *
3225  * The tracing infrastructure uses preempt_enable_notrace to prevent
3226  * recursion and tracing preempt enabling caused by the tracing
3227  * infrastructure itself. But as tracing can happen in areas coming
3228  * from userspace or just about to enter userspace, a preempt enable
3229  * can occur before user_exit() is called. This will cause the scheduler
3230  * to be called when the system is still in usermode.
3231  *
3232  * To prevent this, the preempt_enable_notrace will use this function
3233  * instead of preempt_schedule() to exit user context if needed before
3234  * calling the scheduler.
3235  */
3236 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3237 {
3238 	enum ctx_state prev_ctx;
3239 
3240 	if (likely(!preemptible()))
3241 		return;
3242 
3243 	do {
3244 		/*
3245 		 * Use raw __prempt_count() ops that don't call function.
3246 		 * We can't call functions before disabling preemption which
3247 		 * disarm preemption tracing recursions.
3248 		 */
3249 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3250 		barrier();
3251 		/*
3252 		 * Needs preempt disabled in case user_exit() is traced
3253 		 * and the tracer calls preempt_enable_notrace() causing
3254 		 * an infinite recursion.
3255 		 */
3256 		prev_ctx = exception_enter();
3257 		__schedule();
3258 		exception_exit(prev_ctx);
3259 
3260 		barrier();
3261 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3262 	} while (need_resched());
3263 }
3264 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3265 
3266 #endif /* CONFIG_PREEMPT */
3267 
3268 /*
3269  * this is the entry point to schedule() from kernel preemption
3270  * off of irq context.
3271  * Note, that this is called and return with irqs disabled. This will
3272  * protect us against recursive calling from irq.
3273  */
3274 asmlinkage __visible void __sched preempt_schedule_irq(void)
3275 {
3276 	enum ctx_state prev_state;
3277 
3278 	/* Catch callers which need to be fixed */
3279 	BUG_ON(preempt_count() || !irqs_disabled());
3280 
3281 	prev_state = exception_enter();
3282 
3283 	do {
3284 		preempt_active_enter();
3285 		local_irq_enable();
3286 		__schedule();
3287 		local_irq_disable();
3288 		preempt_active_exit();
3289 	} while (need_resched());
3290 
3291 	exception_exit(prev_state);
3292 }
3293 
3294 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3295 			  void *key)
3296 {
3297 	return try_to_wake_up(curr->private, mode, wake_flags);
3298 }
3299 EXPORT_SYMBOL(default_wake_function);
3300 
3301 #ifdef CONFIG_RT_MUTEXES
3302 
3303 /*
3304  * rt_mutex_setprio - set the current priority of a task
3305  * @p: task
3306  * @prio: prio value (kernel-internal form)
3307  *
3308  * This function changes the 'effective' priority of a task. It does
3309  * not touch ->normal_prio like __setscheduler().
3310  *
3311  * Used by the rt_mutex code to implement priority inheritance
3312  * logic. Call site only calls if the priority of the task changed.
3313  */
3314 void rt_mutex_setprio(struct task_struct *p, int prio)
3315 {
3316 	int oldprio, queued, running, enqueue_flag = 0;
3317 	struct rq *rq;
3318 	const struct sched_class *prev_class;
3319 
3320 	BUG_ON(prio > MAX_PRIO);
3321 
3322 	rq = __task_rq_lock(p);
3323 
3324 	/*
3325 	 * Idle task boosting is a nono in general. There is one
3326 	 * exception, when PREEMPT_RT and NOHZ is active:
3327 	 *
3328 	 * The idle task calls get_next_timer_interrupt() and holds
3329 	 * the timer wheel base->lock on the CPU and another CPU wants
3330 	 * to access the timer (probably to cancel it). We can safely
3331 	 * ignore the boosting request, as the idle CPU runs this code
3332 	 * with interrupts disabled and will complete the lock
3333 	 * protected section without being interrupted. So there is no
3334 	 * real need to boost.
3335 	 */
3336 	if (unlikely(p == rq->idle)) {
3337 		WARN_ON(p != rq->curr);
3338 		WARN_ON(p->pi_blocked_on);
3339 		goto out_unlock;
3340 	}
3341 
3342 	trace_sched_pi_setprio(p, prio);
3343 	oldprio = p->prio;
3344 	prev_class = p->sched_class;
3345 	queued = task_on_rq_queued(p);
3346 	running = task_current(rq, p);
3347 	if (queued)
3348 		dequeue_task(rq, p, 0);
3349 	if (running)
3350 		put_prev_task(rq, p);
3351 
3352 	/*
3353 	 * Boosting condition are:
3354 	 * 1. -rt task is running and holds mutex A
3355 	 *      --> -dl task blocks on mutex A
3356 	 *
3357 	 * 2. -dl task is running and holds mutex A
3358 	 *      --> -dl task blocks on mutex A and could preempt the
3359 	 *          running task
3360 	 */
3361 	if (dl_prio(prio)) {
3362 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3363 		if (!dl_prio(p->normal_prio) ||
3364 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3365 			p->dl.dl_boosted = 1;
3366 			enqueue_flag = ENQUEUE_REPLENISH;
3367 		} else
3368 			p->dl.dl_boosted = 0;
3369 		p->sched_class = &dl_sched_class;
3370 	} else if (rt_prio(prio)) {
3371 		if (dl_prio(oldprio))
3372 			p->dl.dl_boosted = 0;
3373 		if (oldprio < prio)
3374 			enqueue_flag = ENQUEUE_HEAD;
3375 		p->sched_class = &rt_sched_class;
3376 	} else {
3377 		if (dl_prio(oldprio))
3378 			p->dl.dl_boosted = 0;
3379 		if (rt_prio(oldprio))
3380 			p->rt.timeout = 0;
3381 		p->sched_class = &fair_sched_class;
3382 	}
3383 
3384 	p->prio = prio;
3385 
3386 	if (running)
3387 		p->sched_class->set_curr_task(rq);
3388 	if (queued)
3389 		enqueue_task(rq, p, enqueue_flag);
3390 
3391 	check_class_changed(rq, p, prev_class, oldprio);
3392 out_unlock:
3393 	preempt_disable(); /* avoid rq from going away on us */
3394 	__task_rq_unlock(rq);
3395 
3396 	balance_callback(rq);
3397 	preempt_enable();
3398 }
3399 #endif
3400 
3401 void set_user_nice(struct task_struct *p, long nice)
3402 {
3403 	int old_prio, delta, queued;
3404 	unsigned long flags;
3405 	struct rq *rq;
3406 
3407 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3408 		return;
3409 	/*
3410 	 * We have to be careful, if called from sys_setpriority(),
3411 	 * the task might be in the middle of scheduling on another CPU.
3412 	 */
3413 	rq = task_rq_lock(p, &flags);
3414 	/*
3415 	 * The RT priorities are set via sched_setscheduler(), but we still
3416 	 * allow the 'normal' nice value to be set - but as expected
3417 	 * it wont have any effect on scheduling until the task is
3418 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3419 	 */
3420 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3421 		p->static_prio = NICE_TO_PRIO(nice);
3422 		goto out_unlock;
3423 	}
3424 	queued = task_on_rq_queued(p);
3425 	if (queued)
3426 		dequeue_task(rq, p, 0);
3427 
3428 	p->static_prio = NICE_TO_PRIO(nice);
3429 	set_load_weight(p);
3430 	old_prio = p->prio;
3431 	p->prio = effective_prio(p);
3432 	delta = p->prio - old_prio;
3433 
3434 	if (queued) {
3435 		enqueue_task(rq, p, 0);
3436 		/*
3437 		 * If the task increased its priority or is running and
3438 		 * lowered its priority, then reschedule its CPU:
3439 		 */
3440 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3441 			resched_curr(rq);
3442 	}
3443 out_unlock:
3444 	task_rq_unlock(rq, p, &flags);
3445 }
3446 EXPORT_SYMBOL(set_user_nice);
3447 
3448 /*
3449  * can_nice - check if a task can reduce its nice value
3450  * @p: task
3451  * @nice: nice value
3452  */
3453 int can_nice(const struct task_struct *p, const int nice)
3454 {
3455 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3456 	int nice_rlim = nice_to_rlimit(nice);
3457 
3458 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3459 		capable(CAP_SYS_NICE));
3460 }
3461 
3462 #ifdef __ARCH_WANT_SYS_NICE
3463 
3464 /*
3465  * sys_nice - change the priority of the current process.
3466  * @increment: priority increment
3467  *
3468  * sys_setpriority is a more generic, but much slower function that
3469  * does similar things.
3470  */
3471 SYSCALL_DEFINE1(nice, int, increment)
3472 {
3473 	long nice, retval;
3474 
3475 	/*
3476 	 * Setpriority might change our priority at the same moment.
3477 	 * We don't have to worry. Conceptually one call occurs first
3478 	 * and we have a single winner.
3479 	 */
3480 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3481 	nice = task_nice(current) + increment;
3482 
3483 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3484 	if (increment < 0 && !can_nice(current, nice))
3485 		return -EPERM;
3486 
3487 	retval = security_task_setnice(current, nice);
3488 	if (retval)
3489 		return retval;
3490 
3491 	set_user_nice(current, nice);
3492 	return 0;
3493 }
3494 
3495 #endif
3496 
3497 /**
3498  * task_prio - return the priority value of a given task.
3499  * @p: the task in question.
3500  *
3501  * Return: The priority value as seen by users in /proc.
3502  * RT tasks are offset by -200. Normal tasks are centered
3503  * around 0, value goes from -16 to +15.
3504  */
3505 int task_prio(const struct task_struct *p)
3506 {
3507 	return p->prio - MAX_RT_PRIO;
3508 }
3509 
3510 /**
3511  * idle_cpu - is a given cpu idle currently?
3512  * @cpu: the processor in question.
3513  *
3514  * Return: 1 if the CPU is currently idle. 0 otherwise.
3515  */
3516 int idle_cpu(int cpu)
3517 {
3518 	struct rq *rq = cpu_rq(cpu);
3519 
3520 	if (rq->curr != rq->idle)
3521 		return 0;
3522 
3523 	if (rq->nr_running)
3524 		return 0;
3525 
3526 #ifdef CONFIG_SMP
3527 	if (!llist_empty(&rq->wake_list))
3528 		return 0;
3529 #endif
3530 
3531 	return 1;
3532 }
3533 
3534 /**
3535  * idle_task - return the idle task for a given cpu.
3536  * @cpu: the processor in question.
3537  *
3538  * Return: The idle task for the cpu @cpu.
3539  */
3540 struct task_struct *idle_task(int cpu)
3541 {
3542 	return cpu_rq(cpu)->idle;
3543 }
3544 
3545 /**
3546  * find_process_by_pid - find a process with a matching PID value.
3547  * @pid: the pid in question.
3548  *
3549  * The task of @pid, if found. %NULL otherwise.
3550  */
3551 static struct task_struct *find_process_by_pid(pid_t pid)
3552 {
3553 	return pid ? find_task_by_vpid(pid) : current;
3554 }
3555 
3556 /*
3557  * This function initializes the sched_dl_entity of a newly becoming
3558  * SCHED_DEADLINE task.
3559  *
3560  * Only the static values are considered here, the actual runtime and the
3561  * absolute deadline will be properly calculated when the task is enqueued
3562  * for the first time with its new policy.
3563  */
3564 static void
3565 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3566 {
3567 	struct sched_dl_entity *dl_se = &p->dl;
3568 
3569 	dl_se->dl_runtime = attr->sched_runtime;
3570 	dl_se->dl_deadline = attr->sched_deadline;
3571 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3572 	dl_se->flags = attr->sched_flags;
3573 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3574 
3575 	/*
3576 	 * Changing the parameters of a task is 'tricky' and we're not doing
3577 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3578 	 *
3579 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3580 	 * point. This would include retaining the task_struct until that time
3581 	 * and change dl_overflow() to not immediately decrement the current
3582 	 * amount.
3583 	 *
3584 	 * Instead we retain the current runtime/deadline and let the new
3585 	 * parameters take effect after the current reservation period lapses.
3586 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3587 	 * before the current scheduling deadline.
3588 	 *
3589 	 * We can still have temporary overloads because we do not delay the
3590 	 * change in bandwidth until that time; so admission control is
3591 	 * not on the safe side. It does however guarantee tasks will never
3592 	 * consume more than promised.
3593 	 */
3594 }
3595 
3596 /*
3597  * sched_setparam() passes in -1 for its policy, to let the functions
3598  * it calls know not to change it.
3599  */
3600 #define SETPARAM_POLICY	-1
3601 
3602 static void __setscheduler_params(struct task_struct *p,
3603 		const struct sched_attr *attr)
3604 {
3605 	int policy = attr->sched_policy;
3606 
3607 	if (policy == SETPARAM_POLICY)
3608 		policy = p->policy;
3609 
3610 	p->policy = policy;
3611 
3612 	if (dl_policy(policy))
3613 		__setparam_dl(p, attr);
3614 	else if (fair_policy(policy))
3615 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3616 
3617 	/*
3618 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3619 	 * !rt_policy. Always setting this ensures that things like
3620 	 * getparam()/getattr() don't report silly values for !rt tasks.
3621 	 */
3622 	p->rt_priority = attr->sched_priority;
3623 	p->normal_prio = normal_prio(p);
3624 	set_load_weight(p);
3625 }
3626 
3627 /* Actually do priority change: must hold pi & rq lock. */
3628 static void __setscheduler(struct rq *rq, struct task_struct *p,
3629 			   const struct sched_attr *attr, bool keep_boost)
3630 {
3631 	__setscheduler_params(p, attr);
3632 
3633 	/*
3634 	 * Keep a potential priority boosting if called from
3635 	 * sched_setscheduler().
3636 	 */
3637 	if (keep_boost)
3638 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3639 	else
3640 		p->prio = normal_prio(p);
3641 
3642 	if (dl_prio(p->prio))
3643 		p->sched_class = &dl_sched_class;
3644 	else if (rt_prio(p->prio))
3645 		p->sched_class = &rt_sched_class;
3646 	else
3647 		p->sched_class = &fair_sched_class;
3648 }
3649 
3650 static void
3651 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3652 {
3653 	struct sched_dl_entity *dl_se = &p->dl;
3654 
3655 	attr->sched_priority = p->rt_priority;
3656 	attr->sched_runtime = dl_se->dl_runtime;
3657 	attr->sched_deadline = dl_se->dl_deadline;
3658 	attr->sched_period = dl_se->dl_period;
3659 	attr->sched_flags = dl_se->flags;
3660 }
3661 
3662 /*
3663  * This function validates the new parameters of a -deadline task.
3664  * We ask for the deadline not being zero, and greater or equal
3665  * than the runtime, as well as the period of being zero or
3666  * greater than deadline. Furthermore, we have to be sure that
3667  * user parameters are above the internal resolution of 1us (we
3668  * check sched_runtime only since it is always the smaller one) and
3669  * below 2^63 ns (we have to check both sched_deadline and
3670  * sched_period, as the latter can be zero).
3671  */
3672 static bool
3673 __checkparam_dl(const struct sched_attr *attr)
3674 {
3675 	/* deadline != 0 */
3676 	if (attr->sched_deadline == 0)
3677 		return false;
3678 
3679 	/*
3680 	 * Since we truncate DL_SCALE bits, make sure we're at least
3681 	 * that big.
3682 	 */
3683 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3684 		return false;
3685 
3686 	/*
3687 	 * Since we use the MSB for wrap-around and sign issues, make
3688 	 * sure it's not set (mind that period can be equal to zero).
3689 	 */
3690 	if (attr->sched_deadline & (1ULL << 63) ||
3691 	    attr->sched_period & (1ULL << 63))
3692 		return false;
3693 
3694 	/* runtime <= deadline <= period (if period != 0) */
3695 	if ((attr->sched_period != 0 &&
3696 	     attr->sched_period < attr->sched_deadline) ||
3697 	    attr->sched_deadline < attr->sched_runtime)
3698 		return false;
3699 
3700 	return true;
3701 }
3702 
3703 /*
3704  * check the target process has a UID that matches the current process's
3705  */
3706 static bool check_same_owner(struct task_struct *p)
3707 {
3708 	const struct cred *cred = current_cred(), *pcred;
3709 	bool match;
3710 
3711 	rcu_read_lock();
3712 	pcred = __task_cred(p);
3713 	match = (uid_eq(cred->euid, pcred->euid) ||
3714 		 uid_eq(cred->euid, pcred->uid));
3715 	rcu_read_unlock();
3716 	return match;
3717 }
3718 
3719 static bool dl_param_changed(struct task_struct *p,
3720 		const struct sched_attr *attr)
3721 {
3722 	struct sched_dl_entity *dl_se = &p->dl;
3723 
3724 	if (dl_se->dl_runtime != attr->sched_runtime ||
3725 		dl_se->dl_deadline != attr->sched_deadline ||
3726 		dl_se->dl_period != attr->sched_period ||
3727 		dl_se->flags != attr->sched_flags)
3728 		return true;
3729 
3730 	return false;
3731 }
3732 
3733 static int __sched_setscheduler(struct task_struct *p,
3734 				const struct sched_attr *attr,
3735 				bool user, bool pi)
3736 {
3737 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3738 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3739 	int retval, oldprio, oldpolicy = -1, queued, running;
3740 	int new_effective_prio, policy = attr->sched_policy;
3741 	unsigned long flags;
3742 	const struct sched_class *prev_class;
3743 	struct rq *rq;
3744 	int reset_on_fork;
3745 
3746 	/* may grab non-irq protected spin_locks */
3747 	BUG_ON(in_interrupt());
3748 recheck:
3749 	/* double check policy once rq lock held */
3750 	if (policy < 0) {
3751 		reset_on_fork = p->sched_reset_on_fork;
3752 		policy = oldpolicy = p->policy;
3753 	} else {
3754 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3755 
3756 		if (policy != SCHED_DEADLINE &&
3757 				policy != SCHED_FIFO && policy != SCHED_RR &&
3758 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3759 				policy != SCHED_IDLE)
3760 			return -EINVAL;
3761 	}
3762 
3763 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3764 		return -EINVAL;
3765 
3766 	/*
3767 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3768 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3769 	 * SCHED_BATCH and SCHED_IDLE is 0.
3770 	 */
3771 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3772 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3773 		return -EINVAL;
3774 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3775 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3776 		return -EINVAL;
3777 
3778 	/*
3779 	 * Allow unprivileged RT tasks to decrease priority:
3780 	 */
3781 	if (user && !capable(CAP_SYS_NICE)) {
3782 		if (fair_policy(policy)) {
3783 			if (attr->sched_nice < task_nice(p) &&
3784 			    !can_nice(p, attr->sched_nice))
3785 				return -EPERM;
3786 		}
3787 
3788 		if (rt_policy(policy)) {
3789 			unsigned long rlim_rtprio =
3790 					task_rlimit(p, RLIMIT_RTPRIO);
3791 
3792 			/* can't set/change the rt policy */
3793 			if (policy != p->policy && !rlim_rtprio)
3794 				return -EPERM;
3795 
3796 			/* can't increase priority */
3797 			if (attr->sched_priority > p->rt_priority &&
3798 			    attr->sched_priority > rlim_rtprio)
3799 				return -EPERM;
3800 		}
3801 
3802 		 /*
3803 		  * Can't set/change SCHED_DEADLINE policy at all for now
3804 		  * (safest behavior); in the future we would like to allow
3805 		  * unprivileged DL tasks to increase their relative deadline
3806 		  * or reduce their runtime (both ways reducing utilization)
3807 		  */
3808 		if (dl_policy(policy))
3809 			return -EPERM;
3810 
3811 		/*
3812 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3813 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3814 		 */
3815 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3816 			if (!can_nice(p, task_nice(p)))
3817 				return -EPERM;
3818 		}
3819 
3820 		/* can't change other user's priorities */
3821 		if (!check_same_owner(p))
3822 			return -EPERM;
3823 
3824 		/* Normal users shall not reset the sched_reset_on_fork flag */
3825 		if (p->sched_reset_on_fork && !reset_on_fork)
3826 			return -EPERM;
3827 	}
3828 
3829 	if (user) {
3830 		retval = security_task_setscheduler(p);
3831 		if (retval)
3832 			return retval;
3833 	}
3834 
3835 	/*
3836 	 * make sure no PI-waiters arrive (or leave) while we are
3837 	 * changing the priority of the task:
3838 	 *
3839 	 * To be able to change p->policy safely, the appropriate
3840 	 * runqueue lock must be held.
3841 	 */
3842 	rq = task_rq_lock(p, &flags);
3843 
3844 	/*
3845 	 * Changing the policy of the stop threads its a very bad idea
3846 	 */
3847 	if (p == rq->stop) {
3848 		task_rq_unlock(rq, p, &flags);
3849 		return -EINVAL;
3850 	}
3851 
3852 	/*
3853 	 * If not changing anything there's no need to proceed further,
3854 	 * but store a possible modification of reset_on_fork.
3855 	 */
3856 	if (unlikely(policy == p->policy)) {
3857 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3858 			goto change;
3859 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3860 			goto change;
3861 		if (dl_policy(policy) && dl_param_changed(p, attr))
3862 			goto change;
3863 
3864 		p->sched_reset_on_fork = reset_on_fork;
3865 		task_rq_unlock(rq, p, &flags);
3866 		return 0;
3867 	}
3868 change:
3869 
3870 	if (user) {
3871 #ifdef CONFIG_RT_GROUP_SCHED
3872 		/*
3873 		 * Do not allow realtime tasks into groups that have no runtime
3874 		 * assigned.
3875 		 */
3876 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3877 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3878 				!task_group_is_autogroup(task_group(p))) {
3879 			task_rq_unlock(rq, p, &flags);
3880 			return -EPERM;
3881 		}
3882 #endif
3883 #ifdef CONFIG_SMP
3884 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3885 			cpumask_t *span = rq->rd->span;
3886 
3887 			/*
3888 			 * Don't allow tasks with an affinity mask smaller than
3889 			 * the entire root_domain to become SCHED_DEADLINE. We
3890 			 * will also fail if there's no bandwidth available.
3891 			 */
3892 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3893 			    rq->rd->dl_bw.bw == 0) {
3894 				task_rq_unlock(rq, p, &flags);
3895 				return -EPERM;
3896 			}
3897 		}
3898 #endif
3899 	}
3900 
3901 	/* recheck policy now with rq lock held */
3902 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3903 		policy = oldpolicy = -1;
3904 		task_rq_unlock(rq, p, &flags);
3905 		goto recheck;
3906 	}
3907 
3908 	/*
3909 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3910 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3911 	 * is available.
3912 	 */
3913 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3914 		task_rq_unlock(rq, p, &flags);
3915 		return -EBUSY;
3916 	}
3917 
3918 	p->sched_reset_on_fork = reset_on_fork;
3919 	oldprio = p->prio;
3920 
3921 	if (pi) {
3922 		/*
3923 		 * Take priority boosted tasks into account. If the new
3924 		 * effective priority is unchanged, we just store the new
3925 		 * normal parameters and do not touch the scheduler class and
3926 		 * the runqueue. This will be done when the task deboost
3927 		 * itself.
3928 		 */
3929 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3930 		if (new_effective_prio == oldprio) {
3931 			__setscheduler_params(p, attr);
3932 			task_rq_unlock(rq, p, &flags);
3933 			return 0;
3934 		}
3935 	}
3936 
3937 	queued = task_on_rq_queued(p);
3938 	running = task_current(rq, p);
3939 	if (queued)
3940 		dequeue_task(rq, p, 0);
3941 	if (running)
3942 		put_prev_task(rq, p);
3943 
3944 	prev_class = p->sched_class;
3945 	__setscheduler(rq, p, attr, pi);
3946 
3947 	if (running)
3948 		p->sched_class->set_curr_task(rq);
3949 	if (queued) {
3950 		/*
3951 		 * We enqueue to tail when the priority of a task is
3952 		 * increased (user space view).
3953 		 */
3954 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3955 	}
3956 
3957 	check_class_changed(rq, p, prev_class, oldprio);
3958 	preempt_disable(); /* avoid rq from going away on us */
3959 	task_rq_unlock(rq, p, &flags);
3960 
3961 	if (pi)
3962 		rt_mutex_adjust_pi(p);
3963 
3964 	/*
3965 	 * Run balance callbacks after we've adjusted the PI chain.
3966 	 */
3967 	balance_callback(rq);
3968 	preempt_enable();
3969 
3970 	return 0;
3971 }
3972 
3973 static int _sched_setscheduler(struct task_struct *p, int policy,
3974 			       const struct sched_param *param, bool check)
3975 {
3976 	struct sched_attr attr = {
3977 		.sched_policy   = policy,
3978 		.sched_priority = param->sched_priority,
3979 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3980 	};
3981 
3982 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3983 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3984 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3985 		policy &= ~SCHED_RESET_ON_FORK;
3986 		attr.sched_policy = policy;
3987 	}
3988 
3989 	return __sched_setscheduler(p, &attr, check, true);
3990 }
3991 /**
3992  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3993  * @p: the task in question.
3994  * @policy: new policy.
3995  * @param: structure containing the new RT priority.
3996  *
3997  * Return: 0 on success. An error code otherwise.
3998  *
3999  * NOTE that the task may be already dead.
4000  */
4001 int sched_setscheduler(struct task_struct *p, int policy,
4002 		       const struct sched_param *param)
4003 {
4004 	return _sched_setscheduler(p, policy, param, true);
4005 }
4006 EXPORT_SYMBOL_GPL(sched_setscheduler);
4007 
4008 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4009 {
4010 	return __sched_setscheduler(p, attr, true, true);
4011 }
4012 EXPORT_SYMBOL_GPL(sched_setattr);
4013 
4014 /**
4015  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4016  * @p: the task in question.
4017  * @policy: new policy.
4018  * @param: structure containing the new RT priority.
4019  *
4020  * Just like sched_setscheduler, only don't bother checking if the
4021  * current context has permission.  For example, this is needed in
4022  * stop_machine(): we create temporary high priority worker threads,
4023  * but our caller might not have that capability.
4024  *
4025  * Return: 0 on success. An error code otherwise.
4026  */
4027 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4028 			       const struct sched_param *param)
4029 {
4030 	return _sched_setscheduler(p, policy, param, false);
4031 }
4032 
4033 static int
4034 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4035 {
4036 	struct sched_param lparam;
4037 	struct task_struct *p;
4038 	int retval;
4039 
4040 	if (!param || pid < 0)
4041 		return -EINVAL;
4042 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4043 		return -EFAULT;
4044 
4045 	rcu_read_lock();
4046 	retval = -ESRCH;
4047 	p = find_process_by_pid(pid);
4048 	if (p != NULL)
4049 		retval = sched_setscheduler(p, policy, &lparam);
4050 	rcu_read_unlock();
4051 
4052 	return retval;
4053 }
4054 
4055 /*
4056  * Mimics kernel/events/core.c perf_copy_attr().
4057  */
4058 static int sched_copy_attr(struct sched_attr __user *uattr,
4059 			   struct sched_attr *attr)
4060 {
4061 	u32 size;
4062 	int ret;
4063 
4064 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4065 		return -EFAULT;
4066 
4067 	/*
4068 	 * zero the full structure, so that a short copy will be nice.
4069 	 */
4070 	memset(attr, 0, sizeof(*attr));
4071 
4072 	ret = get_user(size, &uattr->size);
4073 	if (ret)
4074 		return ret;
4075 
4076 	if (size > PAGE_SIZE)	/* silly large */
4077 		goto err_size;
4078 
4079 	if (!size)		/* abi compat */
4080 		size = SCHED_ATTR_SIZE_VER0;
4081 
4082 	if (size < SCHED_ATTR_SIZE_VER0)
4083 		goto err_size;
4084 
4085 	/*
4086 	 * If we're handed a bigger struct than we know of,
4087 	 * ensure all the unknown bits are 0 - i.e. new
4088 	 * user-space does not rely on any kernel feature
4089 	 * extensions we dont know about yet.
4090 	 */
4091 	if (size > sizeof(*attr)) {
4092 		unsigned char __user *addr;
4093 		unsigned char __user *end;
4094 		unsigned char val;
4095 
4096 		addr = (void __user *)uattr + sizeof(*attr);
4097 		end  = (void __user *)uattr + size;
4098 
4099 		for (; addr < end; addr++) {
4100 			ret = get_user(val, addr);
4101 			if (ret)
4102 				return ret;
4103 			if (val)
4104 				goto err_size;
4105 		}
4106 		size = sizeof(*attr);
4107 	}
4108 
4109 	ret = copy_from_user(attr, uattr, size);
4110 	if (ret)
4111 		return -EFAULT;
4112 
4113 	/*
4114 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4115 	 * to be strict and return an error on out-of-bounds values?
4116 	 */
4117 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4118 
4119 	return 0;
4120 
4121 err_size:
4122 	put_user(sizeof(*attr), &uattr->size);
4123 	return -E2BIG;
4124 }
4125 
4126 /**
4127  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4128  * @pid: the pid in question.
4129  * @policy: new policy.
4130  * @param: structure containing the new RT priority.
4131  *
4132  * Return: 0 on success. An error code otherwise.
4133  */
4134 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4135 		struct sched_param __user *, param)
4136 {
4137 	/* negative values for policy are not valid */
4138 	if (policy < 0)
4139 		return -EINVAL;
4140 
4141 	return do_sched_setscheduler(pid, policy, param);
4142 }
4143 
4144 /**
4145  * sys_sched_setparam - set/change the RT priority of a thread
4146  * @pid: the pid in question.
4147  * @param: structure containing the new RT priority.
4148  *
4149  * Return: 0 on success. An error code otherwise.
4150  */
4151 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4152 {
4153 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4154 }
4155 
4156 /**
4157  * sys_sched_setattr - same as above, but with extended sched_attr
4158  * @pid: the pid in question.
4159  * @uattr: structure containing the extended parameters.
4160  * @flags: for future extension.
4161  */
4162 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4163 			       unsigned int, flags)
4164 {
4165 	struct sched_attr attr;
4166 	struct task_struct *p;
4167 	int retval;
4168 
4169 	if (!uattr || pid < 0 || flags)
4170 		return -EINVAL;
4171 
4172 	retval = sched_copy_attr(uattr, &attr);
4173 	if (retval)
4174 		return retval;
4175 
4176 	if ((int)attr.sched_policy < 0)
4177 		return -EINVAL;
4178 
4179 	rcu_read_lock();
4180 	retval = -ESRCH;
4181 	p = find_process_by_pid(pid);
4182 	if (p != NULL)
4183 		retval = sched_setattr(p, &attr);
4184 	rcu_read_unlock();
4185 
4186 	return retval;
4187 }
4188 
4189 /**
4190  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4191  * @pid: the pid in question.
4192  *
4193  * Return: On success, the policy of the thread. Otherwise, a negative error
4194  * code.
4195  */
4196 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4197 {
4198 	struct task_struct *p;
4199 	int retval;
4200 
4201 	if (pid < 0)
4202 		return -EINVAL;
4203 
4204 	retval = -ESRCH;
4205 	rcu_read_lock();
4206 	p = find_process_by_pid(pid);
4207 	if (p) {
4208 		retval = security_task_getscheduler(p);
4209 		if (!retval)
4210 			retval = p->policy
4211 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4212 	}
4213 	rcu_read_unlock();
4214 	return retval;
4215 }
4216 
4217 /**
4218  * sys_sched_getparam - get the RT priority of a thread
4219  * @pid: the pid in question.
4220  * @param: structure containing the RT priority.
4221  *
4222  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4223  * code.
4224  */
4225 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4226 {
4227 	struct sched_param lp = { .sched_priority = 0 };
4228 	struct task_struct *p;
4229 	int retval;
4230 
4231 	if (!param || pid < 0)
4232 		return -EINVAL;
4233 
4234 	rcu_read_lock();
4235 	p = find_process_by_pid(pid);
4236 	retval = -ESRCH;
4237 	if (!p)
4238 		goto out_unlock;
4239 
4240 	retval = security_task_getscheduler(p);
4241 	if (retval)
4242 		goto out_unlock;
4243 
4244 	if (task_has_rt_policy(p))
4245 		lp.sched_priority = p->rt_priority;
4246 	rcu_read_unlock();
4247 
4248 	/*
4249 	 * This one might sleep, we cannot do it with a spinlock held ...
4250 	 */
4251 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4252 
4253 	return retval;
4254 
4255 out_unlock:
4256 	rcu_read_unlock();
4257 	return retval;
4258 }
4259 
4260 static int sched_read_attr(struct sched_attr __user *uattr,
4261 			   struct sched_attr *attr,
4262 			   unsigned int usize)
4263 {
4264 	int ret;
4265 
4266 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4267 		return -EFAULT;
4268 
4269 	/*
4270 	 * If we're handed a smaller struct than we know of,
4271 	 * ensure all the unknown bits are 0 - i.e. old
4272 	 * user-space does not get uncomplete information.
4273 	 */
4274 	if (usize < sizeof(*attr)) {
4275 		unsigned char *addr;
4276 		unsigned char *end;
4277 
4278 		addr = (void *)attr + usize;
4279 		end  = (void *)attr + sizeof(*attr);
4280 
4281 		for (; addr < end; addr++) {
4282 			if (*addr)
4283 				return -EFBIG;
4284 		}
4285 
4286 		attr->size = usize;
4287 	}
4288 
4289 	ret = copy_to_user(uattr, attr, attr->size);
4290 	if (ret)
4291 		return -EFAULT;
4292 
4293 	return 0;
4294 }
4295 
4296 /**
4297  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4298  * @pid: the pid in question.
4299  * @uattr: structure containing the extended parameters.
4300  * @size: sizeof(attr) for fwd/bwd comp.
4301  * @flags: for future extension.
4302  */
4303 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4304 		unsigned int, size, unsigned int, flags)
4305 {
4306 	struct sched_attr attr = {
4307 		.size = sizeof(struct sched_attr),
4308 	};
4309 	struct task_struct *p;
4310 	int retval;
4311 
4312 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4313 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4314 		return -EINVAL;
4315 
4316 	rcu_read_lock();
4317 	p = find_process_by_pid(pid);
4318 	retval = -ESRCH;
4319 	if (!p)
4320 		goto out_unlock;
4321 
4322 	retval = security_task_getscheduler(p);
4323 	if (retval)
4324 		goto out_unlock;
4325 
4326 	attr.sched_policy = p->policy;
4327 	if (p->sched_reset_on_fork)
4328 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4329 	if (task_has_dl_policy(p))
4330 		__getparam_dl(p, &attr);
4331 	else if (task_has_rt_policy(p))
4332 		attr.sched_priority = p->rt_priority;
4333 	else
4334 		attr.sched_nice = task_nice(p);
4335 
4336 	rcu_read_unlock();
4337 
4338 	retval = sched_read_attr(uattr, &attr, size);
4339 	return retval;
4340 
4341 out_unlock:
4342 	rcu_read_unlock();
4343 	return retval;
4344 }
4345 
4346 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4347 {
4348 	cpumask_var_t cpus_allowed, new_mask;
4349 	struct task_struct *p;
4350 	int retval;
4351 
4352 	rcu_read_lock();
4353 
4354 	p = find_process_by_pid(pid);
4355 	if (!p) {
4356 		rcu_read_unlock();
4357 		return -ESRCH;
4358 	}
4359 
4360 	/* Prevent p going away */
4361 	get_task_struct(p);
4362 	rcu_read_unlock();
4363 
4364 	if (p->flags & PF_NO_SETAFFINITY) {
4365 		retval = -EINVAL;
4366 		goto out_put_task;
4367 	}
4368 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4369 		retval = -ENOMEM;
4370 		goto out_put_task;
4371 	}
4372 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4373 		retval = -ENOMEM;
4374 		goto out_free_cpus_allowed;
4375 	}
4376 	retval = -EPERM;
4377 	if (!check_same_owner(p)) {
4378 		rcu_read_lock();
4379 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4380 			rcu_read_unlock();
4381 			goto out_free_new_mask;
4382 		}
4383 		rcu_read_unlock();
4384 	}
4385 
4386 	retval = security_task_setscheduler(p);
4387 	if (retval)
4388 		goto out_free_new_mask;
4389 
4390 
4391 	cpuset_cpus_allowed(p, cpus_allowed);
4392 	cpumask_and(new_mask, in_mask, cpus_allowed);
4393 
4394 	/*
4395 	 * Since bandwidth control happens on root_domain basis,
4396 	 * if admission test is enabled, we only admit -deadline
4397 	 * tasks allowed to run on all the CPUs in the task's
4398 	 * root_domain.
4399 	 */
4400 #ifdef CONFIG_SMP
4401 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4402 		rcu_read_lock();
4403 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4404 			retval = -EBUSY;
4405 			rcu_read_unlock();
4406 			goto out_free_new_mask;
4407 		}
4408 		rcu_read_unlock();
4409 	}
4410 #endif
4411 again:
4412 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4413 
4414 	if (!retval) {
4415 		cpuset_cpus_allowed(p, cpus_allowed);
4416 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4417 			/*
4418 			 * We must have raced with a concurrent cpuset
4419 			 * update. Just reset the cpus_allowed to the
4420 			 * cpuset's cpus_allowed
4421 			 */
4422 			cpumask_copy(new_mask, cpus_allowed);
4423 			goto again;
4424 		}
4425 	}
4426 out_free_new_mask:
4427 	free_cpumask_var(new_mask);
4428 out_free_cpus_allowed:
4429 	free_cpumask_var(cpus_allowed);
4430 out_put_task:
4431 	put_task_struct(p);
4432 	return retval;
4433 }
4434 
4435 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4436 			     struct cpumask *new_mask)
4437 {
4438 	if (len < cpumask_size())
4439 		cpumask_clear(new_mask);
4440 	else if (len > cpumask_size())
4441 		len = cpumask_size();
4442 
4443 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4444 }
4445 
4446 /**
4447  * sys_sched_setaffinity - set the cpu affinity of a process
4448  * @pid: pid of the process
4449  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4450  * @user_mask_ptr: user-space pointer to the new cpu mask
4451  *
4452  * Return: 0 on success. An error code otherwise.
4453  */
4454 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4455 		unsigned long __user *, user_mask_ptr)
4456 {
4457 	cpumask_var_t new_mask;
4458 	int retval;
4459 
4460 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4461 		return -ENOMEM;
4462 
4463 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4464 	if (retval == 0)
4465 		retval = sched_setaffinity(pid, new_mask);
4466 	free_cpumask_var(new_mask);
4467 	return retval;
4468 }
4469 
4470 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4471 {
4472 	struct task_struct *p;
4473 	unsigned long flags;
4474 	int retval;
4475 
4476 	rcu_read_lock();
4477 
4478 	retval = -ESRCH;
4479 	p = find_process_by_pid(pid);
4480 	if (!p)
4481 		goto out_unlock;
4482 
4483 	retval = security_task_getscheduler(p);
4484 	if (retval)
4485 		goto out_unlock;
4486 
4487 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4488 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4489 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4490 
4491 out_unlock:
4492 	rcu_read_unlock();
4493 
4494 	return retval;
4495 }
4496 
4497 /**
4498  * sys_sched_getaffinity - get the cpu affinity of a process
4499  * @pid: pid of the process
4500  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4501  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4502  *
4503  * Return: 0 on success. An error code otherwise.
4504  */
4505 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4506 		unsigned long __user *, user_mask_ptr)
4507 {
4508 	int ret;
4509 	cpumask_var_t mask;
4510 
4511 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4512 		return -EINVAL;
4513 	if (len & (sizeof(unsigned long)-1))
4514 		return -EINVAL;
4515 
4516 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4517 		return -ENOMEM;
4518 
4519 	ret = sched_getaffinity(pid, mask);
4520 	if (ret == 0) {
4521 		size_t retlen = min_t(size_t, len, cpumask_size());
4522 
4523 		if (copy_to_user(user_mask_ptr, mask, retlen))
4524 			ret = -EFAULT;
4525 		else
4526 			ret = retlen;
4527 	}
4528 	free_cpumask_var(mask);
4529 
4530 	return ret;
4531 }
4532 
4533 /**
4534  * sys_sched_yield - yield the current processor to other threads.
4535  *
4536  * This function yields the current CPU to other tasks. If there are no
4537  * other threads running on this CPU then this function will return.
4538  *
4539  * Return: 0.
4540  */
4541 SYSCALL_DEFINE0(sched_yield)
4542 {
4543 	struct rq *rq = this_rq_lock();
4544 
4545 	schedstat_inc(rq, yld_count);
4546 	current->sched_class->yield_task(rq);
4547 
4548 	/*
4549 	 * Since we are going to call schedule() anyway, there's
4550 	 * no need to preempt or enable interrupts:
4551 	 */
4552 	__release(rq->lock);
4553 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4554 	do_raw_spin_unlock(&rq->lock);
4555 	sched_preempt_enable_no_resched();
4556 
4557 	schedule();
4558 
4559 	return 0;
4560 }
4561 
4562 int __sched _cond_resched(void)
4563 {
4564 	if (should_resched(0)) {
4565 		preempt_schedule_common();
4566 		return 1;
4567 	}
4568 	return 0;
4569 }
4570 EXPORT_SYMBOL(_cond_resched);
4571 
4572 /*
4573  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4574  * call schedule, and on return reacquire the lock.
4575  *
4576  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4577  * operations here to prevent schedule() from being called twice (once via
4578  * spin_unlock(), once by hand).
4579  */
4580 int __cond_resched_lock(spinlock_t *lock)
4581 {
4582 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4583 	int ret = 0;
4584 
4585 	lockdep_assert_held(lock);
4586 
4587 	if (spin_needbreak(lock) || resched) {
4588 		spin_unlock(lock);
4589 		if (resched)
4590 			preempt_schedule_common();
4591 		else
4592 			cpu_relax();
4593 		ret = 1;
4594 		spin_lock(lock);
4595 	}
4596 	return ret;
4597 }
4598 EXPORT_SYMBOL(__cond_resched_lock);
4599 
4600 int __sched __cond_resched_softirq(void)
4601 {
4602 	BUG_ON(!in_softirq());
4603 
4604 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4605 		local_bh_enable();
4606 		preempt_schedule_common();
4607 		local_bh_disable();
4608 		return 1;
4609 	}
4610 	return 0;
4611 }
4612 EXPORT_SYMBOL(__cond_resched_softirq);
4613 
4614 /**
4615  * yield - yield the current processor to other threads.
4616  *
4617  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4618  *
4619  * The scheduler is at all times free to pick the calling task as the most
4620  * eligible task to run, if removing the yield() call from your code breaks
4621  * it, its already broken.
4622  *
4623  * Typical broken usage is:
4624  *
4625  * while (!event)
4626  * 	yield();
4627  *
4628  * where one assumes that yield() will let 'the other' process run that will
4629  * make event true. If the current task is a SCHED_FIFO task that will never
4630  * happen. Never use yield() as a progress guarantee!!
4631  *
4632  * If you want to use yield() to wait for something, use wait_event().
4633  * If you want to use yield() to be 'nice' for others, use cond_resched().
4634  * If you still want to use yield(), do not!
4635  */
4636 void __sched yield(void)
4637 {
4638 	set_current_state(TASK_RUNNING);
4639 	sys_sched_yield();
4640 }
4641 EXPORT_SYMBOL(yield);
4642 
4643 /**
4644  * yield_to - yield the current processor to another thread in
4645  * your thread group, or accelerate that thread toward the
4646  * processor it's on.
4647  * @p: target task
4648  * @preempt: whether task preemption is allowed or not
4649  *
4650  * It's the caller's job to ensure that the target task struct
4651  * can't go away on us before we can do any checks.
4652  *
4653  * Return:
4654  *	true (>0) if we indeed boosted the target task.
4655  *	false (0) if we failed to boost the target.
4656  *	-ESRCH if there's no task to yield to.
4657  */
4658 int __sched yield_to(struct task_struct *p, bool preempt)
4659 {
4660 	struct task_struct *curr = current;
4661 	struct rq *rq, *p_rq;
4662 	unsigned long flags;
4663 	int yielded = 0;
4664 
4665 	local_irq_save(flags);
4666 	rq = this_rq();
4667 
4668 again:
4669 	p_rq = task_rq(p);
4670 	/*
4671 	 * If we're the only runnable task on the rq and target rq also
4672 	 * has only one task, there's absolutely no point in yielding.
4673 	 */
4674 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4675 		yielded = -ESRCH;
4676 		goto out_irq;
4677 	}
4678 
4679 	double_rq_lock(rq, p_rq);
4680 	if (task_rq(p) != p_rq) {
4681 		double_rq_unlock(rq, p_rq);
4682 		goto again;
4683 	}
4684 
4685 	if (!curr->sched_class->yield_to_task)
4686 		goto out_unlock;
4687 
4688 	if (curr->sched_class != p->sched_class)
4689 		goto out_unlock;
4690 
4691 	if (task_running(p_rq, p) || p->state)
4692 		goto out_unlock;
4693 
4694 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4695 	if (yielded) {
4696 		schedstat_inc(rq, yld_count);
4697 		/*
4698 		 * Make p's CPU reschedule; pick_next_entity takes care of
4699 		 * fairness.
4700 		 */
4701 		if (preempt && rq != p_rq)
4702 			resched_curr(p_rq);
4703 	}
4704 
4705 out_unlock:
4706 	double_rq_unlock(rq, p_rq);
4707 out_irq:
4708 	local_irq_restore(flags);
4709 
4710 	if (yielded > 0)
4711 		schedule();
4712 
4713 	return yielded;
4714 }
4715 EXPORT_SYMBOL_GPL(yield_to);
4716 
4717 /*
4718  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4719  * that process accounting knows that this is a task in IO wait state.
4720  */
4721 long __sched io_schedule_timeout(long timeout)
4722 {
4723 	int old_iowait = current->in_iowait;
4724 	struct rq *rq;
4725 	long ret;
4726 
4727 	current->in_iowait = 1;
4728 	blk_schedule_flush_plug(current);
4729 
4730 	delayacct_blkio_start();
4731 	rq = raw_rq();
4732 	atomic_inc(&rq->nr_iowait);
4733 	ret = schedule_timeout(timeout);
4734 	current->in_iowait = old_iowait;
4735 	atomic_dec(&rq->nr_iowait);
4736 	delayacct_blkio_end();
4737 
4738 	return ret;
4739 }
4740 EXPORT_SYMBOL(io_schedule_timeout);
4741 
4742 /**
4743  * sys_sched_get_priority_max - return maximum RT priority.
4744  * @policy: scheduling class.
4745  *
4746  * Return: On success, this syscall returns the maximum
4747  * rt_priority that can be used by a given scheduling class.
4748  * On failure, a negative error code is returned.
4749  */
4750 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4751 {
4752 	int ret = -EINVAL;
4753 
4754 	switch (policy) {
4755 	case SCHED_FIFO:
4756 	case SCHED_RR:
4757 		ret = MAX_USER_RT_PRIO-1;
4758 		break;
4759 	case SCHED_DEADLINE:
4760 	case SCHED_NORMAL:
4761 	case SCHED_BATCH:
4762 	case SCHED_IDLE:
4763 		ret = 0;
4764 		break;
4765 	}
4766 	return ret;
4767 }
4768 
4769 /**
4770  * sys_sched_get_priority_min - return minimum RT priority.
4771  * @policy: scheduling class.
4772  *
4773  * Return: On success, this syscall returns the minimum
4774  * rt_priority that can be used by a given scheduling class.
4775  * On failure, a negative error code is returned.
4776  */
4777 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4778 {
4779 	int ret = -EINVAL;
4780 
4781 	switch (policy) {
4782 	case SCHED_FIFO:
4783 	case SCHED_RR:
4784 		ret = 1;
4785 		break;
4786 	case SCHED_DEADLINE:
4787 	case SCHED_NORMAL:
4788 	case SCHED_BATCH:
4789 	case SCHED_IDLE:
4790 		ret = 0;
4791 	}
4792 	return ret;
4793 }
4794 
4795 /**
4796  * sys_sched_rr_get_interval - return the default timeslice of a process.
4797  * @pid: pid of the process.
4798  * @interval: userspace pointer to the timeslice value.
4799  *
4800  * this syscall writes the default timeslice value of a given process
4801  * into the user-space timespec buffer. A value of '0' means infinity.
4802  *
4803  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4804  * an error code.
4805  */
4806 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4807 		struct timespec __user *, interval)
4808 {
4809 	struct task_struct *p;
4810 	unsigned int time_slice;
4811 	unsigned long flags;
4812 	struct rq *rq;
4813 	int retval;
4814 	struct timespec t;
4815 
4816 	if (pid < 0)
4817 		return -EINVAL;
4818 
4819 	retval = -ESRCH;
4820 	rcu_read_lock();
4821 	p = find_process_by_pid(pid);
4822 	if (!p)
4823 		goto out_unlock;
4824 
4825 	retval = security_task_getscheduler(p);
4826 	if (retval)
4827 		goto out_unlock;
4828 
4829 	rq = task_rq_lock(p, &flags);
4830 	time_slice = 0;
4831 	if (p->sched_class->get_rr_interval)
4832 		time_slice = p->sched_class->get_rr_interval(rq, p);
4833 	task_rq_unlock(rq, p, &flags);
4834 
4835 	rcu_read_unlock();
4836 	jiffies_to_timespec(time_slice, &t);
4837 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4838 	return retval;
4839 
4840 out_unlock:
4841 	rcu_read_unlock();
4842 	return retval;
4843 }
4844 
4845 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4846 
4847 void sched_show_task(struct task_struct *p)
4848 {
4849 	unsigned long free = 0;
4850 	int ppid;
4851 	unsigned long state = p->state;
4852 
4853 	if (state)
4854 		state = __ffs(state) + 1;
4855 	printk(KERN_INFO "%-15.15s %c", p->comm,
4856 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4857 #if BITS_PER_LONG == 32
4858 	if (state == TASK_RUNNING)
4859 		printk(KERN_CONT " running  ");
4860 	else
4861 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4862 #else
4863 	if (state == TASK_RUNNING)
4864 		printk(KERN_CONT "  running task    ");
4865 	else
4866 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4867 #endif
4868 #ifdef CONFIG_DEBUG_STACK_USAGE
4869 	free = stack_not_used(p);
4870 #endif
4871 	ppid = 0;
4872 	rcu_read_lock();
4873 	if (pid_alive(p))
4874 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4875 	rcu_read_unlock();
4876 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4877 		task_pid_nr(p), ppid,
4878 		(unsigned long)task_thread_info(p)->flags);
4879 
4880 	print_worker_info(KERN_INFO, p);
4881 	show_stack(p, NULL);
4882 }
4883 
4884 void show_state_filter(unsigned long state_filter)
4885 {
4886 	struct task_struct *g, *p;
4887 
4888 #if BITS_PER_LONG == 32
4889 	printk(KERN_INFO
4890 		"  task                PC stack   pid father\n");
4891 #else
4892 	printk(KERN_INFO
4893 		"  task                        PC stack   pid father\n");
4894 #endif
4895 	rcu_read_lock();
4896 	for_each_process_thread(g, p) {
4897 		/*
4898 		 * reset the NMI-timeout, listing all files on a slow
4899 		 * console might take a lot of time:
4900 		 */
4901 		touch_nmi_watchdog();
4902 		if (!state_filter || (p->state & state_filter))
4903 			sched_show_task(p);
4904 	}
4905 
4906 	touch_all_softlockup_watchdogs();
4907 
4908 #ifdef CONFIG_SCHED_DEBUG
4909 	sysrq_sched_debug_show();
4910 #endif
4911 	rcu_read_unlock();
4912 	/*
4913 	 * Only show locks if all tasks are dumped:
4914 	 */
4915 	if (!state_filter)
4916 		debug_show_all_locks();
4917 }
4918 
4919 void init_idle_bootup_task(struct task_struct *idle)
4920 {
4921 	idle->sched_class = &idle_sched_class;
4922 }
4923 
4924 /**
4925  * init_idle - set up an idle thread for a given CPU
4926  * @idle: task in question
4927  * @cpu: cpu the idle task belongs to
4928  *
4929  * NOTE: this function does not set the idle thread's NEED_RESCHED
4930  * flag, to make booting more robust.
4931  */
4932 void init_idle(struct task_struct *idle, int cpu)
4933 {
4934 	struct rq *rq = cpu_rq(cpu);
4935 	unsigned long flags;
4936 
4937 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4938 	raw_spin_lock(&rq->lock);
4939 
4940 	__sched_fork(0, idle);
4941 	idle->state = TASK_RUNNING;
4942 	idle->se.exec_start = sched_clock();
4943 
4944 #ifdef CONFIG_SMP
4945 	/*
4946 	 * Its possible that init_idle() gets called multiple times on a task,
4947 	 * in that case do_set_cpus_allowed() will not do the right thing.
4948 	 *
4949 	 * And since this is boot we can forgo the serialization.
4950 	 */
4951 	set_cpus_allowed_common(idle, cpumask_of(cpu));
4952 #endif
4953 	/*
4954 	 * We're having a chicken and egg problem, even though we are
4955 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4956 	 * lockdep check in task_group() will fail.
4957 	 *
4958 	 * Similar case to sched_fork(). / Alternatively we could
4959 	 * use task_rq_lock() here and obtain the other rq->lock.
4960 	 *
4961 	 * Silence PROVE_RCU
4962 	 */
4963 	rcu_read_lock();
4964 	__set_task_cpu(idle, cpu);
4965 	rcu_read_unlock();
4966 
4967 	rq->curr = rq->idle = idle;
4968 	idle->on_rq = TASK_ON_RQ_QUEUED;
4969 #ifdef CONFIG_SMP
4970 	idle->on_cpu = 1;
4971 #endif
4972 	raw_spin_unlock(&rq->lock);
4973 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4974 
4975 	/* Set the preempt count _outside_ the spinlocks! */
4976 	init_idle_preempt_count(idle, cpu);
4977 
4978 	/*
4979 	 * The idle tasks have their own, simple scheduling class:
4980 	 */
4981 	idle->sched_class = &idle_sched_class;
4982 	ftrace_graph_init_idle_task(idle, cpu);
4983 	vtime_init_idle(idle, cpu);
4984 #ifdef CONFIG_SMP
4985 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4986 #endif
4987 }
4988 
4989 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4990 			      const struct cpumask *trial)
4991 {
4992 	int ret = 1, trial_cpus;
4993 	struct dl_bw *cur_dl_b;
4994 	unsigned long flags;
4995 
4996 	if (!cpumask_weight(cur))
4997 		return ret;
4998 
4999 	rcu_read_lock_sched();
5000 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5001 	trial_cpus = cpumask_weight(trial);
5002 
5003 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5004 	if (cur_dl_b->bw != -1 &&
5005 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5006 		ret = 0;
5007 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5008 	rcu_read_unlock_sched();
5009 
5010 	return ret;
5011 }
5012 
5013 int task_can_attach(struct task_struct *p,
5014 		    const struct cpumask *cs_cpus_allowed)
5015 {
5016 	int ret = 0;
5017 
5018 	/*
5019 	 * Kthreads which disallow setaffinity shouldn't be moved
5020 	 * to a new cpuset; we don't want to change their cpu
5021 	 * affinity and isolating such threads by their set of
5022 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5023 	 * applicable for such threads.  This prevents checking for
5024 	 * success of set_cpus_allowed_ptr() on all attached tasks
5025 	 * before cpus_allowed may be changed.
5026 	 */
5027 	if (p->flags & PF_NO_SETAFFINITY) {
5028 		ret = -EINVAL;
5029 		goto out;
5030 	}
5031 
5032 #ifdef CONFIG_SMP
5033 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5034 					      cs_cpus_allowed)) {
5035 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5036 							cs_cpus_allowed);
5037 		struct dl_bw *dl_b;
5038 		bool overflow;
5039 		int cpus;
5040 		unsigned long flags;
5041 
5042 		rcu_read_lock_sched();
5043 		dl_b = dl_bw_of(dest_cpu);
5044 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5045 		cpus = dl_bw_cpus(dest_cpu);
5046 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5047 		if (overflow)
5048 			ret = -EBUSY;
5049 		else {
5050 			/*
5051 			 * We reserve space for this task in the destination
5052 			 * root_domain, as we can't fail after this point.
5053 			 * We will free resources in the source root_domain
5054 			 * later on (see set_cpus_allowed_dl()).
5055 			 */
5056 			__dl_add(dl_b, p->dl.dl_bw);
5057 		}
5058 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5059 		rcu_read_unlock_sched();
5060 
5061 	}
5062 #endif
5063 out:
5064 	return ret;
5065 }
5066 
5067 #ifdef CONFIG_SMP
5068 
5069 #ifdef CONFIG_NUMA_BALANCING
5070 /* Migrate current task p to target_cpu */
5071 int migrate_task_to(struct task_struct *p, int target_cpu)
5072 {
5073 	struct migration_arg arg = { p, target_cpu };
5074 	int curr_cpu = task_cpu(p);
5075 
5076 	if (curr_cpu == target_cpu)
5077 		return 0;
5078 
5079 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5080 		return -EINVAL;
5081 
5082 	/* TODO: This is not properly updating schedstats */
5083 
5084 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5085 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5086 }
5087 
5088 /*
5089  * Requeue a task on a given node and accurately track the number of NUMA
5090  * tasks on the runqueues
5091  */
5092 void sched_setnuma(struct task_struct *p, int nid)
5093 {
5094 	struct rq *rq;
5095 	unsigned long flags;
5096 	bool queued, running;
5097 
5098 	rq = task_rq_lock(p, &flags);
5099 	queued = task_on_rq_queued(p);
5100 	running = task_current(rq, p);
5101 
5102 	if (queued)
5103 		dequeue_task(rq, p, 0);
5104 	if (running)
5105 		put_prev_task(rq, p);
5106 
5107 	p->numa_preferred_nid = nid;
5108 
5109 	if (running)
5110 		p->sched_class->set_curr_task(rq);
5111 	if (queued)
5112 		enqueue_task(rq, p, 0);
5113 	task_rq_unlock(rq, p, &flags);
5114 }
5115 #endif /* CONFIG_NUMA_BALANCING */
5116 
5117 #ifdef CONFIG_HOTPLUG_CPU
5118 /*
5119  * Ensures that the idle task is using init_mm right before its cpu goes
5120  * offline.
5121  */
5122 void idle_task_exit(void)
5123 {
5124 	struct mm_struct *mm = current->active_mm;
5125 
5126 	BUG_ON(cpu_online(smp_processor_id()));
5127 
5128 	if (mm != &init_mm) {
5129 		switch_mm(mm, &init_mm, current);
5130 		finish_arch_post_lock_switch();
5131 	}
5132 	mmdrop(mm);
5133 }
5134 
5135 /*
5136  * Since this CPU is going 'away' for a while, fold any nr_active delta
5137  * we might have. Assumes we're called after migrate_tasks() so that the
5138  * nr_active count is stable.
5139  *
5140  * Also see the comment "Global load-average calculations".
5141  */
5142 static void calc_load_migrate(struct rq *rq)
5143 {
5144 	long delta = calc_load_fold_active(rq);
5145 	if (delta)
5146 		atomic_long_add(delta, &calc_load_tasks);
5147 }
5148 
5149 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5150 {
5151 }
5152 
5153 static const struct sched_class fake_sched_class = {
5154 	.put_prev_task = put_prev_task_fake,
5155 };
5156 
5157 static struct task_struct fake_task = {
5158 	/*
5159 	 * Avoid pull_{rt,dl}_task()
5160 	 */
5161 	.prio = MAX_PRIO + 1,
5162 	.sched_class = &fake_sched_class,
5163 };
5164 
5165 /*
5166  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5167  * try_to_wake_up()->select_task_rq().
5168  *
5169  * Called with rq->lock held even though we'er in stop_machine() and
5170  * there's no concurrency possible, we hold the required locks anyway
5171  * because of lock validation efforts.
5172  */
5173 static void migrate_tasks(struct rq *dead_rq)
5174 {
5175 	struct rq *rq = dead_rq;
5176 	struct task_struct *next, *stop = rq->stop;
5177 	int dest_cpu;
5178 
5179 	/*
5180 	 * Fudge the rq selection such that the below task selection loop
5181 	 * doesn't get stuck on the currently eligible stop task.
5182 	 *
5183 	 * We're currently inside stop_machine() and the rq is either stuck
5184 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5185 	 * either way we should never end up calling schedule() until we're
5186 	 * done here.
5187 	 */
5188 	rq->stop = NULL;
5189 
5190 	/*
5191 	 * put_prev_task() and pick_next_task() sched
5192 	 * class method both need to have an up-to-date
5193 	 * value of rq->clock[_task]
5194 	 */
5195 	update_rq_clock(rq);
5196 
5197 	for (;;) {
5198 		/*
5199 		 * There's this thread running, bail when that's the only
5200 		 * remaining thread.
5201 		 */
5202 		if (rq->nr_running == 1)
5203 			break;
5204 
5205 		/*
5206 		 * pick_next_task assumes pinned rq->lock.
5207 		 */
5208 		lockdep_pin_lock(&rq->lock);
5209 		next = pick_next_task(rq, &fake_task);
5210 		BUG_ON(!next);
5211 		next->sched_class->put_prev_task(rq, next);
5212 
5213 		/*
5214 		 * Rules for changing task_struct::cpus_allowed are holding
5215 		 * both pi_lock and rq->lock, such that holding either
5216 		 * stabilizes the mask.
5217 		 *
5218 		 * Drop rq->lock is not quite as disastrous as it usually is
5219 		 * because !cpu_active at this point, which means load-balance
5220 		 * will not interfere. Also, stop-machine.
5221 		 */
5222 		lockdep_unpin_lock(&rq->lock);
5223 		raw_spin_unlock(&rq->lock);
5224 		raw_spin_lock(&next->pi_lock);
5225 		raw_spin_lock(&rq->lock);
5226 
5227 		/*
5228 		 * Since we're inside stop-machine, _nothing_ should have
5229 		 * changed the task, WARN if weird stuff happened, because in
5230 		 * that case the above rq->lock drop is a fail too.
5231 		 */
5232 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5233 			raw_spin_unlock(&next->pi_lock);
5234 			continue;
5235 		}
5236 
5237 		/* Find suitable destination for @next, with force if needed. */
5238 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5239 
5240 		rq = __migrate_task(rq, next, dest_cpu);
5241 		if (rq != dead_rq) {
5242 			raw_spin_unlock(&rq->lock);
5243 			rq = dead_rq;
5244 			raw_spin_lock(&rq->lock);
5245 		}
5246 		raw_spin_unlock(&next->pi_lock);
5247 	}
5248 
5249 	rq->stop = stop;
5250 }
5251 #endif /* CONFIG_HOTPLUG_CPU */
5252 
5253 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5254 
5255 static struct ctl_table sd_ctl_dir[] = {
5256 	{
5257 		.procname	= "sched_domain",
5258 		.mode		= 0555,
5259 	},
5260 	{}
5261 };
5262 
5263 static struct ctl_table sd_ctl_root[] = {
5264 	{
5265 		.procname	= "kernel",
5266 		.mode		= 0555,
5267 		.child		= sd_ctl_dir,
5268 	},
5269 	{}
5270 };
5271 
5272 static struct ctl_table *sd_alloc_ctl_entry(int n)
5273 {
5274 	struct ctl_table *entry =
5275 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5276 
5277 	return entry;
5278 }
5279 
5280 static void sd_free_ctl_entry(struct ctl_table **tablep)
5281 {
5282 	struct ctl_table *entry;
5283 
5284 	/*
5285 	 * In the intermediate directories, both the child directory and
5286 	 * procname are dynamically allocated and could fail but the mode
5287 	 * will always be set. In the lowest directory the names are
5288 	 * static strings and all have proc handlers.
5289 	 */
5290 	for (entry = *tablep; entry->mode; entry++) {
5291 		if (entry->child)
5292 			sd_free_ctl_entry(&entry->child);
5293 		if (entry->proc_handler == NULL)
5294 			kfree(entry->procname);
5295 	}
5296 
5297 	kfree(*tablep);
5298 	*tablep = NULL;
5299 }
5300 
5301 static int min_load_idx = 0;
5302 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5303 
5304 static void
5305 set_table_entry(struct ctl_table *entry,
5306 		const char *procname, void *data, int maxlen,
5307 		umode_t mode, proc_handler *proc_handler,
5308 		bool load_idx)
5309 {
5310 	entry->procname = procname;
5311 	entry->data = data;
5312 	entry->maxlen = maxlen;
5313 	entry->mode = mode;
5314 	entry->proc_handler = proc_handler;
5315 
5316 	if (load_idx) {
5317 		entry->extra1 = &min_load_idx;
5318 		entry->extra2 = &max_load_idx;
5319 	}
5320 }
5321 
5322 static struct ctl_table *
5323 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5324 {
5325 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5326 
5327 	if (table == NULL)
5328 		return NULL;
5329 
5330 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5331 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5332 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5333 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5334 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5335 		sizeof(int), 0644, proc_dointvec_minmax, true);
5336 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5337 		sizeof(int), 0644, proc_dointvec_minmax, true);
5338 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5339 		sizeof(int), 0644, proc_dointvec_minmax, true);
5340 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5341 		sizeof(int), 0644, proc_dointvec_minmax, true);
5342 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5343 		sizeof(int), 0644, proc_dointvec_minmax, true);
5344 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5345 		sizeof(int), 0644, proc_dointvec_minmax, false);
5346 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5347 		sizeof(int), 0644, proc_dointvec_minmax, false);
5348 	set_table_entry(&table[9], "cache_nice_tries",
5349 		&sd->cache_nice_tries,
5350 		sizeof(int), 0644, proc_dointvec_minmax, false);
5351 	set_table_entry(&table[10], "flags", &sd->flags,
5352 		sizeof(int), 0644, proc_dointvec_minmax, false);
5353 	set_table_entry(&table[11], "max_newidle_lb_cost",
5354 		&sd->max_newidle_lb_cost,
5355 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5356 	set_table_entry(&table[12], "name", sd->name,
5357 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5358 	/* &table[13] is terminator */
5359 
5360 	return table;
5361 }
5362 
5363 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5364 {
5365 	struct ctl_table *entry, *table;
5366 	struct sched_domain *sd;
5367 	int domain_num = 0, i;
5368 	char buf[32];
5369 
5370 	for_each_domain(cpu, sd)
5371 		domain_num++;
5372 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5373 	if (table == NULL)
5374 		return NULL;
5375 
5376 	i = 0;
5377 	for_each_domain(cpu, sd) {
5378 		snprintf(buf, 32, "domain%d", i);
5379 		entry->procname = kstrdup(buf, GFP_KERNEL);
5380 		entry->mode = 0555;
5381 		entry->child = sd_alloc_ctl_domain_table(sd);
5382 		entry++;
5383 		i++;
5384 	}
5385 	return table;
5386 }
5387 
5388 static struct ctl_table_header *sd_sysctl_header;
5389 static void register_sched_domain_sysctl(void)
5390 {
5391 	int i, cpu_num = num_possible_cpus();
5392 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5393 	char buf[32];
5394 
5395 	WARN_ON(sd_ctl_dir[0].child);
5396 	sd_ctl_dir[0].child = entry;
5397 
5398 	if (entry == NULL)
5399 		return;
5400 
5401 	for_each_possible_cpu(i) {
5402 		snprintf(buf, 32, "cpu%d", i);
5403 		entry->procname = kstrdup(buf, GFP_KERNEL);
5404 		entry->mode = 0555;
5405 		entry->child = sd_alloc_ctl_cpu_table(i);
5406 		entry++;
5407 	}
5408 
5409 	WARN_ON(sd_sysctl_header);
5410 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5411 }
5412 
5413 /* may be called multiple times per register */
5414 static void unregister_sched_domain_sysctl(void)
5415 {
5416 	unregister_sysctl_table(sd_sysctl_header);
5417 	sd_sysctl_header = NULL;
5418 	if (sd_ctl_dir[0].child)
5419 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5420 }
5421 #else
5422 static void register_sched_domain_sysctl(void)
5423 {
5424 }
5425 static void unregister_sched_domain_sysctl(void)
5426 {
5427 }
5428 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5429 
5430 static void set_rq_online(struct rq *rq)
5431 {
5432 	if (!rq->online) {
5433 		const struct sched_class *class;
5434 
5435 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5436 		rq->online = 1;
5437 
5438 		for_each_class(class) {
5439 			if (class->rq_online)
5440 				class->rq_online(rq);
5441 		}
5442 	}
5443 }
5444 
5445 static void set_rq_offline(struct rq *rq)
5446 {
5447 	if (rq->online) {
5448 		const struct sched_class *class;
5449 
5450 		for_each_class(class) {
5451 			if (class->rq_offline)
5452 				class->rq_offline(rq);
5453 		}
5454 
5455 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5456 		rq->online = 0;
5457 	}
5458 }
5459 
5460 /*
5461  * migration_call - callback that gets triggered when a CPU is added.
5462  * Here we can start up the necessary migration thread for the new CPU.
5463  */
5464 static int
5465 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5466 {
5467 	int cpu = (long)hcpu;
5468 	unsigned long flags;
5469 	struct rq *rq = cpu_rq(cpu);
5470 
5471 	switch (action & ~CPU_TASKS_FROZEN) {
5472 
5473 	case CPU_UP_PREPARE:
5474 		rq->calc_load_update = calc_load_update;
5475 		break;
5476 
5477 	case CPU_ONLINE:
5478 		/* Update our root-domain */
5479 		raw_spin_lock_irqsave(&rq->lock, flags);
5480 		if (rq->rd) {
5481 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5482 
5483 			set_rq_online(rq);
5484 		}
5485 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5486 		break;
5487 
5488 #ifdef CONFIG_HOTPLUG_CPU
5489 	case CPU_DYING:
5490 		sched_ttwu_pending();
5491 		/* Update our root-domain */
5492 		raw_spin_lock_irqsave(&rq->lock, flags);
5493 		if (rq->rd) {
5494 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5495 			set_rq_offline(rq);
5496 		}
5497 		migrate_tasks(rq);
5498 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5499 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5500 		break;
5501 
5502 	case CPU_DEAD:
5503 		calc_load_migrate(rq);
5504 		break;
5505 #endif
5506 	}
5507 
5508 	update_max_interval();
5509 
5510 	return NOTIFY_OK;
5511 }
5512 
5513 /*
5514  * Register at high priority so that task migration (migrate_all_tasks)
5515  * happens before everything else.  This has to be lower priority than
5516  * the notifier in the perf_event subsystem, though.
5517  */
5518 static struct notifier_block migration_notifier = {
5519 	.notifier_call = migration_call,
5520 	.priority = CPU_PRI_MIGRATION,
5521 };
5522 
5523 static void set_cpu_rq_start_time(void)
5524 {
5525 	int cpu = smp_processor_id();
5526 	struct rq *rq = cpu_rq(cpu);
5527 	rq->age_stamp = sched_clock_cpu(cpu);
5528 }
5529 
5530 static int sched_cpu_active(struct notifier_block *nfb,
5531 				      unsigned long action, void *hcpu)
5532 {
5533 	switch (action & ~CPU_TASKS_FROZEN) {
5534 	case CPU_STARTING:
5535 		set_cpu_rq_start_time();
5536 		return NOTIFY_OK;
5537 	case CPU_ONLINE:
5538 		/*
5539 		 * At this point a starting CPU has marked itself as online via
5540 		 * set_cpu_online(). But it might not yet have marked itself
5541 		 * as active, which is essential from here on.
5542 		 *
5543 		 * Thus, fall-through and help the starting CPU along.
5544 		 */
5545 	case CPU_DOWN_FAILED:
5546 		set_cpu_active((long)hcpu, true);
5547 		return NOTIFY_OK;
5548 	default:
5549 		return NOTIFY_DONE;
5550 	}
5551 }
5552 
5553 static int sched_cpu_inactive(struct notifier_block *nfb,
5554 					unsigned long action, void *hcpu)
5555 {
5556 	switch (action & ~CPU_TASKS_FROZEN) {
5557 	case CPU_DOWN_PREPARE:
5558 		set_cpu_active((long)hcpu, false);
5559 		return NOTIFY_OK;
5560 	default:
5561 		return NOTIFY_DONE;
5562 	}
5563 }
5564 
5565 static int __init migration_init(void)
5566 {
5567 	void *cpu = (void *)(long)smp_processor_id();
5568 	int err;
5569 
5570 	/* Initialize migration for the boot CPU */
5571 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5572 	BUG_ON(err == NOTIFY_BAD);
5573 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5574 	register_cpu_notifier(&migration_notifier);
5575 
5576 	/* Register cpu active notifiers */
5577 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5578 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5579 
5580 	return 0;
5581 }
5582 early_initcall(migration_init);
5583 
5584 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5585 
5586 #ifdef CONFIG_SCHED_DEBUG
5587 
5588 static __read_mostly int sched_debug_enabled;
5589 
5590 static int __init sched_debug_setup(char *str)
5591 {
5592 	sched_debug_enabled = 1;
5593 
5594 	return 0;
5595 }
5596 early_param("sched_debug", sched_debug_setup);
5597 
5598 static inline bool sched_debug(void)
5599 {
5600 	return sched_debug_enabled;
5601 }
5602 
5603 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5604 				  struct cpumask *groupmask)
5605 {
5606 	struct sched_group *group = sd->groups;
5607 
5608 	cpumask_clear(groupmask);
5609 
5610 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5611 
5612 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5613 		printk("does not load-balance\n");
5614 		if (sd->parent)
5615 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5616 					" has parent");
5617 		return -1;
5618 	}
5619 
5620 	printk(KERN_CONT "span %*pbl level %s\n",
5621 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5622 
5623 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5624 		printk(KERN_ERR "ERROR: domain->span does not contain "
5625 				"CPU%d\n", cpu);
5626 	}
5627 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5628 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5629 				" CPU%d\n", cpu);
5630 	}
5631 
5632 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5633 	do {
5634 		if (!group) {
5635 			printk("\n");
5636 			printk(KERN_ERR "ERROR: group is NULL\n");
5637 			break;
5638 		}
5639 
5640 		if (!cpumask_weight(sched_group_cpus(group))) {
5641 			printk(KERN_CONT "\n");
5642 			printk(KERN_ERR "ERROR: empty group\n");
5643 			break;
5644 		}
5645 
5646 		if (!(sd->flags & SD_OVERLAP) &&
5647 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5648 			printk(KERN_CONT "\n");
5649 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5650 			break;
5651 		}
5652 
5653 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5654 
5655 		printk(KERN_CONT " %*pbl",
5656 		       cpumask_pr_args(sched_group_cpus(group)));
5657 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5658 			printk(KERN_CONT " (cpu_capacity = %d)",
5659 				group->sgc->capacity);
5660 		}
5661 
5662 		group = group->next;
5663 	} while (group != sd->groups);
5664 	printk(KERN_CONT "\n");
5665 
5666 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5667 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5668 
5669 	if (sd->parent &&
5670 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5671 		printk(KERN_ERR "ERROR: parent span is not a superset "
5672 			"of domain->span\n");
5673 	return 0;
5674 }
5675 
5676 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5677 {
5678 	int level = 0;
5679 
5680 	if (!sched_debug_enabled)
5681 		return;
5682 
5683 	if (!sd) {
5684 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5685 		return;
5686 	}
5687 
5688 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5689 
5690 	for (;;) {
5691 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5692 			break;
5693 		level++;
5694 		sd = sd->parent;
5695 		if (!sd)
5696 			break;
5697 	}
5698 }
5699 #else /* !CONFIG_SCHED_DEBUG */
5700 # define sched_domain_debug(sd, cpu) do { } while (0)
5701 static inline bool sched_debug(void)
5702 {
5703 	return false;
5704 }
5705 #endif /* CONFIG_SCHED_DEBUG */
5706 
5707 static int sd_degenerate(struct sched_domain *sd)
5708 {
5709 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5710 		return 1;
5711 
5712 	/* Following flags need at least 2 groups */
5713 	if (sd->flags & (SD_LOAD_BALANCE |
5714 			 SD_BALANCE_NEWIDLE |
5715 			 SD_BALANCE_FORK |
5716 			 SD_BALANCE_EXEC |
5717 			 SD_SHARE_CPUCAPACITY |
5718 			 SD_SHARE_PKG_RESOURCES |
5719 			 SD_SHARE_POWERDOMAIN)) {
5720 		if (sd->groups != sd->groups->next)
5721 			return 0;
5722 	}
5723 
5724 	/* Following flags don't use groups */
5725 	if (sd->flags & (SD_WAKE_AFFINE))
5726 		return 0;
5727 
5728 	return 1;
5729 }
5730 
5731 static int
5732 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5733 {
5734 	unsigned long cflags = sd->flags, pflags = parent->flags;
5735 
5736 	if (sd_degenerate(parent))
5737 		return 1;
5738 
5739 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5740 		return 0;
5741 
5742 	/* Flags needing groups don't count if only 1 group in parent */
5743 	if (parent->groups == parent->groups->next) {
5744 		pflags &= ~(SD_LOAD_BALANCE |
5745 				SD_BALANCE_NEWIDLE |
5746 				SD_BALANCE_FORK |
5747 				SD_BALANCE_EXEC |
5748 				SD_SHARE_CPUCAPACITY |
5749 				SD_SHARE_PKG_RESOURCES |
5750 				SD_PREFER_SIBLING |
5751 				SD_SHARE_POWERDOMAIN);
5752 		if (nr_node_ids == 1)
5753 			pflags &= ~SD_SERIALIZE;
5754 	}
5755 	if (~cflags & pflags)
5756 		return 0;
5757 
5758 	return 1;
5759 }
5760 
5761 static void free_rootdomain(struct rcu_head *rcu)
5762 {
5763 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5764 
5765 	cpupri_cleanup(&rd->cpupri);
5766 	cpudl_cleanup(&rd->cpudl);
5767 	free_cpumask_var(rd->dlo_mask);
5768 	free_cpumask_var(rd->rto_mask);
5769 	free_cpumask_var(rd->online);
5770 	free_cpumask_var(rd->span);
5771 	kfree(rd);
5772 }
5773 
5774 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5775 {
5776 	struct root_domain *old_rd = NULL;
5777 	unsigned long flags;
5778 
5779 	raw_spin_lock_irqsave(&rq->lock, flags);
5780 
5781 	if (rq->rd) {
5782 		old_rd = rq->rd;
5783 
5784 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5785 			set_rq_offline(rq);
5786 
5787 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5788 
5789 		/*
5790 		 * If we dont want to free the old_rd yet then
5791 		 * set old_rd to NULL to skip the freeing later
5792 		 * in this function:
5793 		 */
5794 		if (!atomic_dec_and_test(&old_rd->refcount))
5795 			old_rd = NULL;
5796 	}
5797 
5798 	atomic_inc(&rd->refcount);
5799 	rq->rd = rd;
5800 
5801 	cpumask_set_cpu(rq->cpu, rd->span);
5802 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5803 		set_rq_online(rq);
5804 
5805 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5806 
5807 	if (old_rd)
5808 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5809 }
5810 
5811 static int init_rootdomain(struct root_domain *rd)
5812 {
5813 	memset(rd, 0, sizeof(*rd));
5814 
5815 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5816 		goto out;
5817 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5818 		goto free_span;
5819 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5820 		goto free_online;
5821 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5822 		goto free_dlo_mask;
5823 
5824 	init_dl_bw(&rd->dl_bw);
5825 	if (cpudl_init(&rd->cpudl) != 0)
5826 		goto free_dlo_mask;
5827 
5828 	if (cpupri_init(&rd->cpupri) != 0)
5829 		goto free_rto_mask;
5830 	return 0;
5831 
5832 free_rto_mask:
5833 	free_cpumask_var(rd->rto_mask);
5834 free_dlo_mask:
5835 	free_cpumask_var(rd->dlo_mask);
5836 free_online:
5837 	free_cpumask_var(rd->online);
5838 free_span:
5839 	free_cpumask_var(rd->span);
5840 out:
5841 	return -ENOMEM;
5842 }
5843 
5844 /*
5845  * By default the system creates a single root-domain with all cpus as
5846  * members (mimicking the global state we have today).
5847  */
5848 struct root_domain def_root_domain;
5849 
5850 static void init_defrootdomain(void)
5851 {
5852 	init_rootdomain(&def_root_domain);
5853 
5854 	atomic_set(&def_root_domain.refcount, 1);
5855 }
5856 
5857 static struct root_domain *alloc_rootdomain(void)
5858 {
5859 	struct root_domain *rd;
5860 
5861 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5862 	if (!rd)
5863 		return NULL;
5864 
5865 	if (init_rootdomain(rd) != 0) {
5866 		kfree(rd);
5867 		return NULL;
5868 	}
5869 
5870 	return rd;
5871 }
5872 
5873 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5874 {
5875 	struct sched_group *tmp, *first;
5876 
5877 	if (!sg)
5878 		return;
5879 
5880 	first = sg;
5881 	do {
5882 		tmp = sg->next;
5883 
5884 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5885 			kfree(sg->sgc);
5886 
5887 		kfree(sg);
5888 		sg = tmp;
5889 	} while (sg != first);
5890 }
5891 
5892 static void free_sched_domain(struct rcu_head *rcu)
5893 {
5894 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5895 
5896 	/*
5897 	 * If its an overlapping domain it has private groups, iterate and
5898 	 * nuke them all.
5899 	 */
5900 	if (sd->flags & SD_OVERLAP) {
5901 		free_sched_groups(sd->groups, 1);
5902 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5903 		kfree(sd->groups->sgc);
5904 		kfree(sd->groups);
5905 	}
5906 	kfree(sd);
5907 }
5908 
5909 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5910 {
5911 	call_rcu(&sd->rcu, free_sched_domain);
5912 }
5913 
5914 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5915 {
5916 	for (; sd; sd = sd->parent)
5917 		destroy_sched_domain(sd, cpu);
5918 }
5919 
5920 /*
5921  * Keep a special pointer to the highest sched_domain that has
5922  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5923  * allows us to avoid some pointer chasing select_idle_sibling().
5924  *
5925  * Also keep a unique ID per domain (we use the first cpu number in
5926  * the cpumask of the domain), this allows us to quickly tell if
5927  * two cpus are in the same cache domain, see cpus_share_cache().
5928  */
5929 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5930 DEFINE_PER_CPU(int, sd_llc_size);
5931 DEFINE_PER_CPU(int, sd_llc_id);
5932 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5933 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5934 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5935 
5936 static void update_top_cache_domain(int cpu)
5937 {
5938 	struct sched_domain *sd;
5939 	struct sched_domain *busy_sd = NULL;
5940 	int id = cpu;
5941 	int size = 1;
5942 
5943 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5944 	if (sd) {
5945 		id = cpumask_first(sched_domain_span(sd));
5946 		size = cpumask_weight(sched_domain_span(sd));
5947 		busy_sd = sd->parent; /* sd_busy */
5948 	}
5949 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5950 
5951 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5952 	per_cpu(sd_llc_size, cpu) = size;
5953 	per_cpu(sd_llc_id, cpu) = id;
5954 
5955 	sd = lowest_flag_domain(cpu, SD_NUMA);
5956 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5957 
5958 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5959 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5960 }
5961 
5962 /*
5963  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5964  * hold the hotplug lock.
5965  */
5966 static void
5967 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5968 {
5969 	struct rq *rq = cpu_rq(cpu);
5970 	struct sched_domain *tmp;
5971 
5972 	/* Remove the sched domains which do not contribute to scheduling. */
5973 	for (tmp = sd; tmp; ) {
5974 		struct sched_domain *parent = tmp->parent;
5975 		if (!parent)
5976 			break;
5977 
5978 		if (sd_parent_degenerate(tmp, parent)) {
5979 			tmp->parent = parent->parent;
5980 			if (parent->parent)
5981 				parent->parent->child = tmp;
5982 			/*
5983 			 * Transfer SD_PREFER_SIBLING down in case of a
5984 			 * degenerate parent; the spans match for this
5985 			 * so the property transfers.
5986 			 */
5987 			if (parent->flags & SD_PREFER_SIBLING)
5988 				tmp->flags |= SD_PREFER_SIBLING;
5989 			destroy_sched_domain(parent, cpu);
5990 		} else
5991 			tmp = tmp->parent;
5992 	}
5993 
5994 	if (sd && sd_degenerate(sd)) {
5995 		tmp = sd;
5996 		sd = sd->parent;
5997 		destroy_sched_domain(tmp, cpu);
5998 		if (sd)
5999 			sd->child = NULL;
6000 	}
6001 
6002 	sched_domain_debug(sd, cpu);
6003 
6004 	rq_attach_root(rq, rd);
6005 	tmp = rq->sd;
6006 	rcu_assign_pointer(rq->sd, sd);
6007 	destroy_sched_domains(tmp, cpu);
6008 
6009 	update_top_cache_domain(cpu);
6010 }
6011 
6012 /* Setup the mask of cpus configured for isolated domains */
6013 static int __init isolated_cpu_setup(char *str)
6014 {
6015 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6016 	cpulist_parse(str, cpu_isolated_map);
6017 	return 1;
6018 }
6019 
6020 __setup("isolcpus=", isolated_cpu_setup);
6021 
6022 struct s_data {
6023 	struct sched_domain ** __percpu sd;
6024 	struct root_domain	*rd;
6025 };
6026 
6027 enum s_alloc {
6028 	sa_rootdomain,
6029 	sa_sd,
6030 	sa_sd_storage,
6031 	sa_none,
6032 };
6033 
6034 /*
6035  * Build an iteration mask that can exclude certain CPUs from the upwards
6036  * domain traversal.
6037  *
6038  * Asymmetric node setups can result in situations where the domain tree is of
6039  * unequal depth, make sure to skip domains that already cover the entire
6040  * range.
6041  *
6042  * In that case build_sched_domains() will have terminated the iteration early
6043  * and our sibling sd spans will be empty. Domains should always include the
6044  * cpu they're built on, so check that.
6045  *
6046  */
6047 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6048 {
6049 	const struct cpumask *span = sched_domain_span(sd);
6050 	struct sd_data *sdd = sd->private;
6051 	struct sched_domain *sibling;
6052 	int i;
6053 
6054 	for_each_cpu(i, span) {
6055 		sibling = *per_cpu_ptr(sdd->sd, i);
6056 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6057 			continue;
6058 
6059 		cpumask_set_cpu(i, sched_group_mask(sg));
6060 	}
6061 }
6062 
6063 /*
6064  * Return the canonical balance cpu for this group, this is the first cpu
6065  * of this group that's also in the iteration mask.
6066  */
6067 int group_balance_cpu(struct sched_group *sg)
6068 {
6069 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6070 }
6071 
6072 static int
6073 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6074 {
6075 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6076 	const struct cpumask *span = sched_domain_span(sd);
6077 	struct cpumask *covered = sched_domains_tmpmask;
6078 	struct sd_data *sdd = sd->private;
6079 	struct sched_domain *sibling;
6080 	int i;
6081 
6082 	cpumask_clear(covered);
6083 
6084 	for_each_cpu(i, span) {
6085 		struct cpumask *sg_span;
6086 
6087 		if (cpumask_test_cpu(i, covered))
6088 			continue;
6089 
6090 		sibling = *per_cpu_ptr(sdd->sd, i);
6091 
6092 		/* See the comment near build_group_mask(). */
6093 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6094 			continue;
6095 
6096 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6097 				GFP_KERNEL, cpu_to_node(cpu));
6098 
6099 		if (!sg)
6100 			goto fail;
6101 
6102 		sg_span = sched_group_cpus(sg);
6103 		if (sibling->child)
6104 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6105 		else
6106 			cpumask_set_cpu(i, sg_span);
6107 
6108 		cpumask_or(covered, covered, sg_span);
6109 
6110 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6111 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6112 			build_group_mask(sd, sg);
6113 
6114 		/*
6115 		 * Initialize sgc->capacity such that even if we mess up the
6116 		 * domains and no possible iteration will get us here, we won't
6117 		 * die on a /0 trap.
6118 		 */
6119 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6120 
6121 		/*
6122 		 * Make sure the first group of this domain contains the
6123 		 * canonical balance cpu. Otherwise the sched_domain iteration
6124 		 * breaks. See update_sg_lb_stats().
6125 		 */
6126 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6127 		    group_balance_cpu(sg) == cpu)
6128 			groups = sg;
6129 
6130 		if (!first)
6131 			first = sg;
6132 		if (last)
6133 			last->next = sg;
6134 		last = sg;
6135 		last->next = first;
6136 	}
6137 	sd->groups = groups;
6138 
6139 	return 0;
6140 
6141 fail:
6142 	free_sched_groups(first, 0);
6143 
6144 	return -ENOMEM;
6145 }
6146 
6147 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6148 {
6149 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6150 	struct sched_domain *child = sd->child;
6151 
6152 	if (child)
6153 		cpu = cpumask_first(sched_domain_span(child));
6154 
6155 	if (sg) {
6156 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6157 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6158 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6159 	}
6160 
6161 	return cpu;
6162 }
6163 
6164 /*
6165  * build_sched_groups will build a circular linked list of the groups
6166  * covered by the given span, and will set each group's ->cpumask correctly,
6167  * and ->cpu_capacity to 0.
6168  *
6169  * Assumes the sched_domain tree is fully constructed
6170  */
6171 static int
6172 build_sched_groups(struct sched_domain *sd, int cpu)
6173 {
6174 	struct sched_group *first = NULL, *last = NULL;
6175 	struct sd_data *sdd = sd->private;
6176 	const struct cpumask *span = sched_domain_span(sd);
6177 	struct cpumask *covered;
6178 	int i;
6179 
6180 	get_group(cpu, sdd, &sd->groups);
6181 	atomic_inc(&sd->groups->ref);
6182 
6183 	if (cpu != cpumask_first(span))
6184 		return 0;
6185 
6186 	lockdep_assert_held(&sched_domains_mutex);
6187 	covered = sched_domains_tmpmask;
6188 
6189 	cpumask_clear(covered);
6190 
6191 	for_each_cpu(i, span) {
6192 		struct sched_group *sg;
6193 		int group, j;
6194 
6195 		if (cpumask_test_cpu(i, covered))
6196 			continue;
6197 
6198 		group = get_group(i, sdd, &sg);
6199 		cpumask_setall(sched_group_mask(sg));
6200 
6201 		for_each_cpu(j, span) {
6202 			if (get_group(j, sdd, NULL) != group)
6203 				continue;
6204 
6205 			cpumask_set_cpu(j, covered);
6206 			cpumask_set_cpu(j, sched_group_cpus(sg));
6207 		}
6208 
6209 		if (!first)
6210 			first = sg;
6211 		if (last)
6212 			last->next = sg;
6213 		last = sg;
6214 	}
6215 	last->next = first;
6216 
6217 	return 0;
6218 }
6219 
6220 /*
6221  * Initialize sched groups cpu_capacity.
6222  *
6223  * cpu_capacity indicates the capacity of sched group, which is used while
6224  * distributing the load between different sched groups in a sched domain.
6225  * Typically cpu_capacity for all the groups in a sched domain will be same
6226  * unless there are asymmetries in the topology. If there are asymmetries,
6227  * group having more cpu_capacity will pickup more load compared to the
6228  * group having less cpu_capacity.
6229  */
6230 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6231 {
6232 	struct sched_group *sg = sd->groups;
6233 
6234 	WARN_ON(!sg);
6235 
6236 	do {
6237 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6238 		sg = sg->next;
6239 	} while (sg != sd->groups);
6240 
6241 	if (cpu != group_balance_cpu(sg))
6242 		return;
6243 
6244 	update_group_capacity(sd, cpu);
6245 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6246 }
6247 
6248 /*
6249  * Initializers for schedule domains
6250  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6251  */
6252 
6253 static int default_relax_domain_level = -1;
6254 int sched_domain_level_max;
6255 
6256 static int __init setup_relax_domain_level(char *str)
6257 {
6258 	if (kstrtoint(str, 0, &default_relax_domain_level))
6259 		pr_warn("Unable to set relax_domain_level\n");
6260 
6261 	return 1;
6262 }
6263 __setup("relax_domain_level=", setup_relax_domain_level);
6264 
6265 static void set_domain_attribute(struct sched_domain *sd,
6266 				 struct sched_domain_attr *attr)
6267 {
6268 	int request;
6269 
6270 	if (!attr || attr->relax_domain_level < 0) {
6271 		if (default_relax_domain_level < 0)
6272 			return;
6273 		else
6274 			request = default_relax_domain_level;
6275 	} else
6276 		request = attr->relax_domain_level;
6277 	if (request < sd->level) {
6278 		/* turn off idle balance on this domain */
6279 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6280 	} else {
6281 		/* turn on idle balance on this domain */
6282 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6283 	}
6284 }
6285 
6286 static void __sdt_free(const struct cpumask *cpu_map);
6287 static int __sdt_alloc(const struct cpumask *cpu_map);
6288 
6289 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6290 				 const struct cpumask *cpu_map)
6291 {
6292 	switch (what) {
6293 	case sa_rootdomain:
6294 		if (!atomic_read(&d->rd->refcount))
6295 			free_rootdomain(&d->rd->rcu); /* fall through */
6296 	case sa_sd:
6297 		free_percpu(d->sd); /* fall through */
6298 	case sa_sd_storage:
6299 		__sdt_free(cpu_map); /* fall through */
6300 	case sa_none:
6301 		break;
6302 	}
6303 }
6304 
6305 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6306 						   const struct cpumask *cpu_map)
6307 {
6308 	memset(d, 0, sizeof(*d));
6309 
6310 	if (__sdt_alloc(cpu_map))
6311 		return sa_sd_storage;
6312 	d->sd = alloc_percpu(struct sched_domain *);
6313 	if (!d->sd)
6314 		return sa_sd_storage;
6315 	d->rd = alloc_rootdomain();
6316 	if (!d->rd)
6317 		return sa_sd;
6318 	return sa_rootdomain;
6319 }
6320 
6321 /*
6322  * NULL the sd_data elements we've used to build the sched_domain and
6323  * sched_group structure so that the subsequent __free_domain_allocs()
6324  * will not free the data we're using.
6325  */
6326 static void claim_allocations(int cpu, struct sched_domain *sd)
6327 {
6328 	struct sd_data *sdd = sd->private;
6329 
6330 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6331 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6332 
6333 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6334 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6335 
6336 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6337 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6338 }
6339 
6340 #ifdef CONFIG_NUMA
6341 static int sched_domains_numa_levels;
6342 enum numa_topology_type sched_numa_topology_type;
6343 static int *sched_domains_numa_distance;
6344 int sched_max_numa_distance;
6345 static struct cpumask ***sched_domains_numa_masks;
6346 static int sched_domains_curr_level;
6347 #endif
6348 
6349 /*
6350  * SD_flags allowed in topology descriptions.
6351  *
6352  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6353  * SD_SHARE_PKG_RESOURCES - describes shared caches
6354  * SD_NUMA                - describes NUMA topologies
6355  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6356  *
6357  * Odd one out:
6358  * SD_ASYM_PACKING        - describes SMT quirks
6359  */
6360 #define TOPOLOGY_SD_FLAGS		\
6361 	(SD_SHARE_CPUCAPACITY |		\
6362 	 SD_SHARE_PKG_RESOURCES |	\
6363 	 SD_NUMA |			\
6364 	 SD_ASYM_PACKING |		\
6365 	 SD_SHARE_POWERDOMAIN)
6366 
6367 static struct sched_domain *
6368 sd_init(struct sched_domain_topology_level *tl, int cpu)
6369 {
6370 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6371 	int sd_weight, sd_flags = 0;
6372 
6373 #ifdef CONFIG_NUMA
6374 	/*
6375 	 * Ugly hack to pass state to sd_numa_mask()...
6376 	 */
6377 	sched_domains_curr_level = tl->numa_level;
6378 #endif
6379 
6380 	sd_weight = cpumask_weight(tl->mask(cpu));
6381 
6382 	if (tl->sd_flags)
6383 		sd_flags = (*tl->sd_flags)();
6384 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6385 			"wrong sd_flags in topology description\n"))
6386 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6387 
6388 	*sd = (struct sched_domain){
6389 		.min_interval		= sd_weight,
6390 		.max_interval		= 2*sd_weight,
6391 		.busy_factor		= 32,
6392 		.imbalance_pct		= 125,
6393 
6394 		.cache_nice_tries	= 0,
6395 		.busy_idx		= 0,
6396 		.idle_idx		= 0,
6397 		.newidle_idx		= 0,
6398 		.wake_idx		= 0,
6399 		.forkexec_idx		= 0,
6400 
6401 		.flags			= 1*SD_LOAD_BALANCE
6402 					| 1*SD_BALANCE_NEWIDLE
6403 					| 1*SD_BALANCE_EXEC
6404 					| 1*SD_BALANCE_FORK
6405 					| 0*SD_BALANCE_WAKE
6406 					| 1*SD_WAKE_AFFINE
6407 					| 0*SD_SHARE_CPUCAPACITY
6408 					| 0*SD_SHARE_PKG_RESOURCES
6409 					| 0*SD_SERIALIZE
6410 					| 0*SD_PREFER_SIBLING
6411 					| 0*SD_NUMA
6412 					| sd_flags
6413 					,
6414 
6415 		.last_balance		= jiffies,
6416 		.balance_interval	= sd_weight,
6417 		.smt_gain		= 0,
6418 		.max_newidle_lb_cost	= 0,
6419 		.next_decay_max_lb_cost	= jiffies,
6420 #ifdef CONFIG_SCHED_DEBUG
6421 		.name			= tl->name,
6422 #endif
6423 	};
6424 
6425 	/*
6426 	 * Convert topological properties into behaviour.
6427 	 */
6428 
6429 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6430 		sd->flags |= SD_PREFER_SIBLING;
6431 		sd->imbalance_pct = 110;
6432 		sd->smt_gain = 1178; /* ~15% */
6433 
6434 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6435 		sd->imbalance_pct = 117;
6436 		sd->cache_nice_tries = 1;
6437 		sd->busy_idx = 2;
6438 
6439 #ifdef CONFIG_NUMA
6440 	} else if (sd->flags & SD_NUMA) {
6441 		sd->cache_nice_tries = 2;
6442 		sd->busy_idx = 3;
6443 		sd->idle_idx = 2;
6444 
6445 		sd->flags |= SD_SERIALIZE;
6446 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6447 			sd->flags &= ~(SD_BALANCE_EXEC |
6448 				       SD_BALANCE_FORK |
6449 				       SD_WAKE_AFFINE);
6450 		}
6451 
6452 #endif
6453 	} else {
6454 		sd->flags |= SD_PREFER_SIBLING;
6455 		sd->cache_nice_tries = 1;
6456 		sd->busy_idx = 2;
6457 		sd->idle_idx = 1;
6458 	}
6459 
6460 	sd->private = &tl->data;
6461 
6462 	return sd;
6463 }
6464 
6465 /*
6466  * Topology list, bottom-up.
6467  */
6468 static struct sched_domain_topology_level default_topology[] = {
6469 #ifdef CONFIG_SCHED_SMT
6470 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6471 #endif
6472 #ifdef CONFIG_SCHED_MC
6473 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6474 #endif
6475 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6476 	{ NULL, },
6477 };
6478 
6479 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6480 
6481 #define for_each_sd_topology(tl)			\
6482 	for (tl = sched_domain_topology; tl->mask; tl++)
6483 
6484 void set_sched_topology(struct sched_domain_topology_level *tl)
6485 {
6486 	sched_domain_topology = tl;
6487 }
6488 
6489 #ifdef CONFIG_NUMA
6490 
6491 static const struct cpumask *sd_numa_mask(int cpu)
6492 {
6493 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6494 }
6495 
6496 static void sched_numa_warn(const char *str)
6497 {
6498 	static int done = false;
6499 	int i,j;
6500 
6501 	if (done)
6502 		return;
6503 
6504 	done = true;
6505 
6506 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6507 
6508 	for (i = 0; i < nr_node_ids; i++) {
6509 		printk(KERN_WARNING "  ");
6510 		for (j = 0; j < nr_node_ids; j++)
6511 			printk(KERN_CONT "%02d ", node_distance(i,j));
6512 		printk(KERN_CONT "\n");
6513 	}
6514 	printk(KERN_WARNING "\n");
6515 }
6516 
6517 bool find_numa_distance(int distance)
6518 {
6519 	int i;
6520 
6521 	if (distance == node_distance(0, 0))
6522 		return true;
6523 
6524 	for (i = 0; i < sched_domains_numa_levels; i++) {
6525 		if (sched_domains_numa_distance[i] == distance)
6526 			return true;
6527 	}
6528 
6529 	return false;
6530 }
6531 
6532 /*
6533  * A system can have three types of NUMA topology:
6534  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6535  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6536  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6537  *
6538  * The difference between a glueless mesh topology and a backplane
6539  * topology lies in whether communication between not directly
6540  * connected nodes goes through intermediary nodes (where programs
6541  * could run), or through backplane controllers. This affects
6542  * placement of programs.
6543  *
6544  * The type of topology can be discerned with the following tests:
6545  * - If the maximum distance between any nodes is 1 hop, the system
6546  *   is directly connected.
6547  * - If for two nodes A and B, located N > 1 hops away from each other,
6548  *   there is an intermediary node C, which is < N hops away from both
6549  *   nodes A and B, the system is a glueless mesh.
6550  */
6551 static void init_numa_topology_type(void)
6552 {
6553 	int a, b, c, n;
6554 
6555 	n = sched_max_numa_distance;
6556 
6557 	if (sched_domains_numa_levels <= 1) {
6558 		sched_numa_topology_type = NUMA_DIRECT;
6559 		return;
6560 	}
6561 
6562 	for_each_online_node(a) {
6563 		for_each_online_node(b) {
6564 			/* Find two nodes furthest removed from each other. */
6565 			if (node_distance(a, b) < n)
6566 				continue;
6567 
6568 			/* Is there an intermediary node between a and b? */
6569 			for_each_online_node(c) {
6570 				if (node_distance(a, c) < n &&
6571 				    node_distance(b, c) < n) {
6572 					sched_numa_topology_type =
6573 							NUMA_GLUELESS_MESH;
6574 					return;
6575 				}
6576 			}
6577 
6578 			sched_numa_topology_type = NUMA_BACKPLANE;
6579 			return;
6580 		}
6581 	}
6582 }
6583 
6584 static void sched_init_numa(void)
6585 {
6586 	int next_distance, curr_distance = node_distance(0, 0);
6587 	struct sched_domain_topology_level *tl;
6588 	int level = 0;
6589 	int i, j, k;
6590 
6591 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6592 	if (!sched_domains_numa_distance)
6593 		return;
6594 
6595 	/*
6596 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6597 	 * unique distances in the node_distance() table.
6598 	 *
6599 	 * Assumes node_distance(0,j) includes all distances in
6600 	 * node_distance(i,j) in order to avoid cubic time.
6601 	 */
6602 	next_distance = curr_distance;
6603 	for (i = 0; i < nr_node_ids; i++) {
6604 		for (j = 0; j < nr_node_ids; j++) {
6605 			for (k = 0; k < nr_node_ids; k++) {
6606 				int distance = node_distance(i, k);
6607 
6608 				if (distance > curr_distance &&
6609 				    (distance < next_distance ||
6610 				     next_distance == curr_distance))
6611 					next_distance = distance;
6612 
6613 				/*
6614 				 * While not a strong assumption it would be nice to know
6615 				 * about cases where if node A is connected to B, B is not
6616 				 * equally connected to A.
6617 				 */
6618 				if (sched_debug() && node_distance(k, i) != distance)
6619 					sched_numa_warn("Node-distance not symmetric");
6620 
6621 				if (sched_debug() && i && !find_numa_distance(distance))
6622 					sched_numa_warn("Node-0 not representative");
6623 			}
6624 			if (next_distance != curr_distance) {
6625 				sched_domains_numa_distance[level++] = next_distance;
6626 				sched_domains_numa_levels = level;
6627 				curr_distance = next_distance;
6628 			} else break;
6629 		}
6630 
6631 		/*
6632 		 * In case of sched_debug() we verify the above assumption.
6633 		 */
6634 		if (!sched_debug())
6635 			break;
6636 	}
6637 
6638 	if (!level)
6639 		return;
6640 
6641 	/*
6642 	 * 'level' contains the number of unique distances, excluding the
6643 	 * identity distance node_distance(i,i).
6644 	 *
6645 	 * The sched_domains_numa_distance[] array includes the actual distance
6646 	 * numbers.
6647 	 */
6648 
6649 	/*
6650 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6651 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6652 	 * the array will contain less then 'level' members. This could be
6653 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6654 	 * in other functions.
6655 	 *
6656 	 * We reset it to 'level' at the end of this function.
6657 	 */
6658 	sched_domains_numa_levels = 0;
6659 
6660 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6661 	if (!sched_domains_numa_masks)
6662 		return;
6663 
6664 	/*
6665 	 * Now for each level, construct a mask per node which contains all
6666 	 * cpus of nodes that are that many hops away from us.
6667 	 */
6668 	for (i = 0; i < level; i++) {
6669 		sched_domains_numa_masks[i] =
6670 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6671 		if (!sched_domains_numa_masks[i])
6672 			return;
6673 
6674 		for (j = 0; j < nr_node_ids; j++) {
6675 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6676 			if (!mask)
6677 				return;
6678 
6679 			sched_domains_numa_masks[i][j] = mask;
6680 
6681 			for (k = 0; k < nr_node_ids; k++) {
6682 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6683 					continue;
6684 
6685 				cpumask_or(mask, mask, cpumask_of_node(k));
6686 			}
6687 		}
6688 	}
6689 
6690 	/* Compute default topology size */
6691 	for (i = 0; sched_domain_topology[i].mask; i++);
6692 
6693 	tl = kzalloc((i + level + 1) *
6694 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6695 	if (!tl)
6696 		return;
6697 
6698 	/*
6699 	 * Copy the default topology bits..
6700 	 */
6701 	for (i = 0; sched_domain_topology[i].mask; i++)
6702 		tl[i] = sched_domain_topology[i];
6703 
6704 	/*
6705 	 * .. and append 'j' levels of NUMA goodness.
6706 	 */
6707 	for (j = 0; j < level; i++, j++) {
6708 		tl[i] = (struct sched_domain_topology_level){
6709 			.mask = sd_numa_mask,
6710 			.sd_flags = cpu_numa_flags,
6711 			.flags = SDTL_OVERLAP,
6712 			.numa_level = j,
6713 			SD_INIT_NAME(NUMA)
6714 		};
6715 	}
6716 
6717 	sched_domain_topology = tl;
6718 
6719 	sched_domains_numa_levels = level;
6720 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6721 
6722 	init_numa_topology_type();
6723 }
6724 
6725 static void sched_domains_numa_masks_set(int cpu)
6726 {
6727 	int i, j;
6728 	int node = cpu_to_node(cpu);
6729 
6730 	for (i = 0; i < sched_domains_numa_levels; i++) {
6731 		for (j = 0; j < nr_node_ids; j++) {
6732 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6733 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6734 		}
6735 	}
6736 }
6737 
6738 static void sched_domains_numa_masks_clear(int cpu)
6739 {
6740 	int i, j;
6741 	for (i = 0; i < sched_domains_numa_levels; i++) {
6742 		for (j = 0; j < nr_node_ids; j++)
6743 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6744 	}
6745 }
6746 
6747 /*
6748  * Update sched_domains_numa_masks[level][node] array when new cpus
6749  * are onlined.
6750  */
6751 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6752 					   unsigned long action,
6753 					   void *hcpu)
6754 {
6755 	int cpu = (long)hcpu;
6756 
6757 	switch (action & ~CPU_TASKS_FROZEN) {
6758 	case CPU_ONLINE:
6759 		sched_domains_numa_masks_set(cpu);
6760 		break;
6761 
6762 	case CPU_DEAD:
6763 		sched_domains_numa_masks_clear(cpu);
6764 		break;
6765 
6766 	default:
6767 		return NOTIFY_DONE;
6768 	}
6769 
6770 	return NOTIFY_OK;
6771 }
6772 #else
6773 static inline void sched_init_numa(void)
6774 {
6775 }
6776 
6777 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6778 					   unsigned long action,
6779 					   void *hcpu)
6780 {
6781 	return 0;
6782 }
6783 #endif /* CONFIG_NUMA */
6784 
6785 static int __sdt_alloc(const struct cpumask *cpu_map)
6786 {
6787 	struct sched_domain_topology_level *tl;
6788 	int j;
6789 
6790 	for_each_sd_topology(tl) {
6791 		struct sd_data *sdd = &tl->data;
6792 
6793 		sdd->sd = alloc_percpu(struct sched_domain *);
6794 		if (!sdd->sd)
6795 			return -ENOMEM;
6796 
6797 		sdd->sg = alloc_percpu(struct sched_group *);
6798 		if (!sdd->sg)
6799 			return -ENOMEM;
6800 
6801 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6802 		if (!sdd->sgc)
6803 			return -ENOMEM;
6804 
6805 		for_each_cpu(j, cpu_map) {
6806 			struct sched_domain *sd;
6807 			struct sched_group *sg;
6808 			struct sched_group_capacity *sgc;
6809 
6810 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6811 					GFP_KERNEL, cpu_to_node(j));
6812 			if (!sd)
6813 				return -ENOMEM;
6814 
6815 			*per_cpu_ptr(sdd->sd, j) = sd;
6816 
6817 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6818 					GFP_KERNEL, cpu_to_node(j));
6819 			if (!sg)
6820 				return -ENOMEM;
6821 
6822 			sg->next = sg;
6823 
6824 			*per_cpu_ptr(sdd->sg, j) = sg;
6825 
6826 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6827 					GFP_KERNEL, cpu_to_node(j));
6828 			if (!sgc)
6829 				return -ENOMEM;
6830 
6831 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6832 		}
6833 	}
6834 
6835 	return 0;
6836 }
6837 
6838 static void __sdt_free(const struct cpumask *cpu_map)
6839 {
6840 	struct sched_domain_topology_level *tl;
6841 	int j;
6842 
6843 	for_each_sd_topology(tl) {
6844 		struct sd_data *sdd = &tl->data;
6845 
6846 		for_each_cpu(j, cpu_map) {
6847 			struct sched_domain *sd;
6848 
6849 			if (sdd->sd) {
6850 				sd = *per_cpu_ptr(sdd->sd, j);
6851 				if (sd && (sd->flags & SD_OVERLAP))
6852 					free_sched_groups(sd->groups, 0);
6853 				kfree(*per_cpu_ptr(sdd->sd, j));
6854 			}
6855 
6856 			if (sdd->sg)
6857 				kfree(*per_cpu_ptr(sdd->sg, j));
6858 			if (sdd->sgc)
6859 				kfree(*per_cpu_ptr(sdd->sgc, j));
6860 		}
6861 		free_percpu(sdd->sd);
6862 		sdd->sd = NULL;
6863 		free_percpu(sdd->sg);
6864 		sdd->sg = NULL;
6865 		free_percpu(sdd->sgc);
6866 		sdd->sgc = NULL;
6867 	}
6868 }
6869 
6870 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6871 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6872 		struct sched_domain *child, int cpu)
6873 {
6874 	struct sched_domain *sd = sd_init(tl, cpu);
6875 	if (!sd)
6876 		return child;
6877 
6878 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6879 	if (child) {
6880 		sd->level = child->level + 1;
6881 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6882 		child->parent = sd;
6883 		sd->child = child;
6884 
6885 		if (!cpumask_subset(sched_domain_span(child),
6886 				    sched_domain_span(sd))) {
6887 			pr_err("BUG: arch topology borken\n");
6888 #ifdef CONFIG_SCHED_DEBUG
6889 			pr_err("     the %s domain not a subset of the %s domain\n",
6890 					child->name, sd->name);
6891 #endif
6892 			/* Fixup, ensure @sd has at least @child cpus. */
6893 			cpumask_or(sched_domain_span(sd),
6894 				   sched_domain_span(sd),
6895 				   sched_domain_span(child));
6896 		}
6897 
6898 	}
6899 	set_domain_attribute(sd, attr);
6900 
6901 	return sd;
6902 }
6903 
6904 /*
6905  * Build sched domains for a given set of cpus and attach the sched domains
6906  * to the individual cpus
6907  */
6908 static int build_sched_domains(const struct cpumask *cpu_map,
6909 			       struct sched_domain_attr *attr)
6910 {
6911 	enum s_alloc alloc_state;
6912 	struct sched_domain *sd;
6913 	struct s_data d;
6914 	int i, ret = -ENOMEM;
6915 
6916 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6917 	if (alloc_state != sa_rootdomain)
6918 		goto error;
6919 
6920 	/* Set up domains for cpus specified by the cpu_map. */
6921 	for_each_cpu(i, cpu_map) {
6922 		struct sched_domain_topology_level *tl;
6923 
6924 		sd = NULL;
6925 		for_each_sd_topology(tl) {
6926 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6927 			if (tl == sched_domain_topology)
6928 				*per_cpu_ptr(d.sd, i) = sd;
6929 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6930 				sd->flags |= SD_OVERLAP;
6931 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6932 				break;
6933 		}
6934 	}
6935 
6936 	/* Build the groups for the domains */
6937 	for_each_cpu(i, cpu_map) {
6938 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6939 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6940 			if (sd->flags & SD_OVERLAP) {
6941 				if (build_overlap_sched_groups(sd, i))
6942 					goto error;
6943 			} else {
6944 				if (build_sched_groups(sd, i))
6945 					goto error;
6946 			}
6947 		}
6948 	}
6949 
6950 	/* Calculate CPU capacity for physical packages and nodes */
6951 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6952 		if (!cpumask_test_cpu(i, cpu_map))
6953 			continue;
6954 
6955 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6956 			claim_allocations(i, sd);
6957 			init_sched_groups_capacity(i, sd);
6958 		}
6959 	}
6960 
6961 	/* Attach the domains */
6962 	rcu_read_lock();
6963 	for_each_cpu(i, cpu_map) {
6964 		sd = *per_cpu_ptr(d.sd, i);
6965 		cpu_attach_domain(sd, d.rd, i);
6966 	}
6967 	rcu_read_unlock();
6968 
6969 	ret = 0;
6970 error:
6971 	__free_domain_allocs(&d, alloc_state, cpu_map);
6972 	return ret;
6973 }
6974 
6975 static cpumask_var_t *doms_cur;	/* current sched domains */
6976 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6977 static struct sched_domain_attr *dattr_cur;
6978 				/* attribues of custom domains in 'doms_cur' */
6979 
6980 /*
6981  * Special case: If a kmalloc of a doms_cur partition (array of
6982  * cpumask) fails, then fallback to a single sched domain,
6983  * as determined by the single cpumask fallback_doms.
6984  */
6985 static cpumask_var_t fallback_doms;
6986 
6987 /*
6988  * arch_update_cpu_topology lets virtualized architectures update the
6989  * cpu core maps. It is supposed to return 1 if the topology changed
6990  * or 0 if it stayed the same.
6991  */
6992 int __weak arch_update_cpu_topology(void)
6993 {
6994 	return 0;
6995 }
6996 
6997 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6998 {
6999 	int i;
7000 	cpumask_var_t *doms;
7001 
7002 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7003 	if (!doms)
7004 		return NULL;
7005 	for (i = 0; i < ndoms; i++) {
7006 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7007 			free_sched_domains(doms, i);
7008 			return NULL;
7009 		}
7010 	}
7011 	return doms;
7012 }
7013 
7014 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7015 {
7016 	unsigned int i;
7017 	for (i = 0; i < ndoms; i++)
7018 		free_cpumask_var(doms[i]);
7019 	kfree(doms);
7020 }
7021 
7022 /*
7023  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7024  * For now this just excludes isolated cpus, but could be used to
7025  * exclude other special cases in the future.
7026  */
7027 static int init_sched_domains(const struct cpumask *cpu_map)
7028 {
7029 	int err;
7030 
7031 	arch_update_cpu_topology();
7032 	ndoms_cur = 1;
7033 	doms_cur = alloc_sched_domains(ndoms_cur);
7034 	if (!doms_cur)
7035 		doms_cur = &fallback_doms;
7036 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7037 	err = build_sched_domains(doms_cur[0], NULL);
7038 	register_sched_domain_sysctl();
7039 
7040 	return err;
7041 }
7042 
7043 /*
7044  * Detach sched domains from a group of cpus specified in cpu_map
7045  * These cpus will now be attached to the NULL domain
7046  */
7047 static void detach_destroy_domains(const struct cpumask *cpu_map)
7048 {
7049 	int i;
7050 
7051 	rcu_read_lock();
7052 	for_each_cpu(i, cpu_map)
7053 		cpu_attach_domain(NULL, &def_root_domain, i);
7054 	rcu_read_unlock();
7055 }
7056 
7057 /* handle null as "default" */
7058 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7059 			struct sched_domain_attr *new, int idx_new)
7060 {
7061 	struct sched_domain_attr tmp;
7062 
7063 	/* fast path */
7064 	if (!new && !cur)
7065 		return 1;
7066 
7067 	tmp = SD_ATTR_INIT;
7068 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7069 			new ? (new + idx_new) : &tmp,
7070 			sizeof(struct sched_domain_attr));
7071 }
7072 
7073 /*
7074  * Partition sched domains as specified by the 'ndoms_new'
7075  * cpumasks in the array doms_new[] of cpumasks. This compares
7076  * doms_new[] to the current sched domain partitioning, doms_cur[].
7077  * It destroys each deleted domain and builds each new domain.
7078  *
7079  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7080  * The masks don't intersect (don't overlap.) We should setup one
7081  * sched domain for each mask. CPUs not in any of the cpumasks will
7082  * not be load balanced. If the same cpumask appears both in the
7083  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7084  * it as it is.
7085  *
7086  * The passed in 'doms_new' should be allocated using
7087  * alloc_sched_domains.  This routine takes ownership of it and will
7088  * free_sched_domains it when done with it. If the caller failed the
7089  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7090  * and partition_sched_domains() will fallback to the single partition
7091  * 'fallback_doms', it also forces the domains to be rebuilt.
7092  *
7093  * If doms_new == NULL it will be replaced with cpu_online_mask.
7094  * ndoms_new == 0 is a special case for destroying existing domains,
7095  * and it will not create the default domain.
7096  *
7097  * Call with hotplug lock held
7098  */
7099 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7100 			     struct sched_domain_attr *dattr_new)
7101 {
7102 	int i, j, n;
7103 	int new_topology;
7104 
7105 	mutex_lock(&sched_domains_mutex);
7106 
7107 	/* always unregister in case we don't destroy any domains */
7108 	unregister_sched_domain_sysctl();
7109 
7110 	/* Let architecture update cpu core mappings. */
7111 	new_topology = arch_update_cpu_topology();
7112 
7113 	n = doms_new ? ndoms_new : 0;
7114 
7115 	/* Destroy deleted domains */
7116 	for (i = 0; i < ndoms_cur; i++) {
7117 		for (j = 0; j < n && !new_topology; j++) {
7118 			if (cpumask_equal(doms_cur[i], doms_new[j])
7119 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7120 				goto match1;
7121 		}
7122 		/* no match - a current sched domain not in new doms_new[] */
7123 		detach_destroy_domains(doms_cur[i]);
7124 match1:
7125 		;
7126 	}
7127 
7128 	n = ndoms_cur;
7129 	if (doms_new == NULL) {
7130 		n = 0;
7131 		doms_new = &fallback_doms;
7132 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7133 		WARN_ON_ONCE(dattr_new);
7134 	}
7135 
7136 	/* Build new domains */
7137 	for (i = 0; i < ndoms_new; i++) {
7138 		for (j = 0; j < n && !new_topology; j++) {
7139 			if (cpumask_equal(doms_new[i], doms_cur[j])
7140 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7141 				goto match2;
7142 		}
7143 		/* no match - add a new doms_new */
7144 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7145 match2:
7146 		;
7147 	}
7148 
7149 	/* Remember the new sched domains */
7150 	if (doms_cur != &fallback_doms)
7151 		free_sched_domains(doms_cur, ndoms_cur);
7152 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7153 	doms_cur = doms_new;
7154 	dattr_cur = dattr_new;
7155 	ndoms_cur = ndoms_new;
7156 
7157 	register_sched_domain_sysctl();
7158 
7159 	mutex_unlock(&sched_domains_mutex);
7160 }
7161 
7162 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7163 
7164 /*
7165  * Update cpusets according to cpu_active mask.  If cpusets are
7166  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7167  * around partition_sched_domains().
7168  *
7169  * If we come here as part of a suspend/resume, don't touch cpusets because we
7170  * want to restore it back to its original state upon resume anyway.
7171  */
7172 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7173 			     void *hcpu)
7174 {
7175 	switch (action) {
7176 	case CPU_ONLINE_FROZEN:
7177 	case CPU_DOWN_FAILED_FROZEN:
7178 
7179 		/*
7180 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7181 		 * resume sequence. As long as this is not the last online
7182 		 * operation in the resume sequence, just build a single sched
7183 		 * domain, ignoring cpusets.
7184 		 */
7185 		num_cpus_frozen--;
7186 		if (likely(num_cpus_frozen)) {
7187 			partition_sched_domains(1, NULL, NULL);
7188 			break;
7189 		}
7190 
7191 		/*
7192 		 * This is the last CPU online operation. So fall through and
7193 		 * restore the original sched domains by considering the
7194 		 * cpuset configurations.
7195 		 */
7196 
7197 	case CPU_ONLINE:
7198 		cpuset_update_active_cpus(true);
7199 		break;
7200 	default:
7201 		return NOTIFY_DONE;
7202 	}
7203 	return NOTIFY_OK;
7204 }
7205 
7206 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7207 			       void *hcpu)
7208 {
7209 	unsigned long flags;
7210 	long cpu = (long)hcpu;
7211 	struct dl_bw *dl_b;
7212 	bool overflow;
7213 	int cpus;
7214 
7215 	switch (action) {
7216 	case CPU_DOWN_PREPARE:
7217 		rcu_read_lock_sched();
7218 		dl_b = dl_bw_of(cpu);
7219 
7220 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7221 		cpus = dl_bw_cpus(cpu);
7222 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7223 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7224 
7225 		rcu_read_unlock_sched();
7226 
7227 		if (overflow)
7228 			return notifier_from_errno(-EBUSY);
7229 		cpuset_update_active_cpus(false);
7230 		break;
7231 	case CPU_DOWN_PREPARE_FROZEN:
7232 		num_cpus_frozen++;
7233 		partition_sched_domains(1, NULL, NULL);
7234 		break;
7235 	default:
7236 		return NOTIFY_DONE;
7237 	}
7238 	return NOTIFY_OK;
7239 }
7240 
7241 void __init sched_init_smp(void)
7242 {
7243 	cpumask_var_t non_isolated_cpus;
7244 
7245 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7246 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7247 
7248 	sched_init_numa();
7249 
7250 	/*
7251 	 * There's no userspace yet to cause hotplug operations; hence all the
7252 	 * cpu masks are stable and all blatant races in the below code cannot
7253 	 * happen.
7254 	 */
7255 	mutex_lock(&sched_domains_mutex);
7256 	init_sched_domains(cpu_active_mask);
7257 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7258 	if (cpumask_empty(non_isolated_cpus))
7259 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7260 	mutex_unlock(&sched_domains_mutex);
7261 
7262 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7263 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7264 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7265 
7266 	init_hrtick();
7267 
7268 	/* Move init over to a non-isolated CPU */
7269 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7270 		BUG();
7271 	sched_init_granularity();
7272 	free_cpumask_var(non_isolated_cpus);
7273 
7274 	init_sched_rt_class();
7275 	init_sched_dl_class();
7276 }
7277 #else
7278 void __init sched_init_smp(void)
7279 {
7280 	sched_init_granularity();
7281 }
7282 #endif /* CONFIG_SMP */
7283 
7284 int in_sched_functions(unsigned long addr)
7285 {
7286 	return in_lock_functions(addr) ||
7287 		(addr >= (unsigned long)__sched_text_start
7288 		&& addr < (unsigned long)__sched_text_end);
7289 }
7290 
7291 #ifdef CONFIG_CGROUP_SCHED
7292 /*
7293  * Default task group.
7294  * Every task in system belongs to this group at bootup.
7295  */
7296 struct task_group root_task_group;
7297 LIST_HEAD(task_groups);
7298 #endif
7299 
7300 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7301 
7302 void __init sched_init(void)
7303 {
7304 	int i, j;
7305 	unsigned long alloc_size = 0, ptr;
7306 
7307 #ifdef CONFIG_FAIR_GROUP_SCHED
7308 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7309 #endif
7310 #ifdef CONFIG_RT_GROUP_SCHED
7311 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7312 #endif
7313 	if (alloc_size) {
7314 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7315 
7316 #ifdef CONFIG_FAIR_GROUP_SCHED
7317 		root_task_group.se = (struct sched_entity **)ptr;
7318 		ptr += nr_cpu_ids * sizeof(void **);
7319 
7320 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7321 		ptr += nr_cpu_ids * sizeof(void **);
7322 
7323 #endif /* CONFIG_FAIR_GROUP_SCHED */
7324 #ifdef CONFIG_RT_GROUP_SCHED
7325 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7326 		ptr += nr_cpu_ids * sizeof(void **);
7327 
7328 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7329 		ptr += nr_cpu_ids * sizeof(void **);
7330 
7331 #endif /* CONFIG_RT_GROUP_SCHED */
7332 	}
7333 #ifdef CONFIG_CPUMASK_OFFSTACK
7334 	for_each_possible_cpu(i) {
7335 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7336 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7337 	}
7338 #endif /* CONFIG_CPUMASK_OFFSTACK */
7339 
7340 	init_rt_bandwidth(&def_rt_bandwidth,
7341 			global_rt_period(), global_rt_runtime());
7342 	init_dl_bandwidth(&def_dl_bandwidth,
7343 			global_rt_period(), global_rt_runtime());
7344 
7345 #ifdef CONFIG_SMP
7346 	init_defrootdomain();
7347 #endif
7348 
7349 #ifdef CONFIG_RT_GROUP_SCHED
7350 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7351 			global_rt_period(), global_rt_runtime());
7352 #endif /* CONFIG_RT_GROUP_SCHED */
7353 
7354 #ifdef CONFIG_CGROUP_SCHED
7355 	list_add(&root_task_group.list, &task_groups);
7356 	INIT_LIST_HEAD(&root_task_group.children);
7357 	INIT_LIST_HEAD(&root_task_group.siblings);
7358 	autogroup_init(&init_task);
7359 
7360 #endif /* CONFIG_CGROUP_SCHED */
7361 
7362 	for_each_possible_cpu(i) {
7363 		struct rq *rq;
7364 
7365 		rq = cpu_rq(i);
7366 		raw_spin_lock_init(&rq->lock);
7367 		rq->nr_running = 0;
7368 		rq->calc_load_active = 0;
7369 		rq->calc_load_update = jiffies + LOAD_FREQ;
7370 		init_cfs_rq(&rq->cfs);
7371 		init_rt_rq(&rq->rt);
7372 		init_dl_rq(&rq->dl);
7373 #ifdef CONFIG_FAIR_GROUP_SCHED
7374 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7375 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7376 		/*
7377 		 * How much cpu bandwidth does root_task_group get?
7378 		 *
7379 		 * In case of task-groups formed thr' the cgroup filesystem, it
7380 		 * gets 100% of the cpu resources in the system. This overall
7381 		 * system cpu resource is divided among the tasks of
7382 		 * root_task_group and its child task-groups in a fair manner,
7383 		 * based on each entity's (task or task-group's) weight
7384 		 * (se->load.weight).
7385 		 *
7386 		 * In other words, if root_task_group has 10 tasks of weight
7387 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7388 		 * then A0's share of the cpu resource is:
7389 		 *
7390 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7391 		 *
7392 		 * We achieve this by letting root_task_group's tasks sit
7393 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7394 		 */
7395 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7396 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7397 #endif /* CONFIG_FAIR_GROUP_SCHED */
7398 
7399 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7400 #ifdef CONFIG_RT_GROUP_SCHED
7401 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7402 #endif
7403 
7404 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7405 			rq->cpu_load[j] = 0;
7406 
7407 		rq->last_load_update_tick = jiffies;
7408 
7409 #ifdef CONFIG_SMP
7410 		rq->sd = NULL;
7411 		rq->rd = NULL;
7412 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7413 		rq->balance_callback = NULL;
7414 		rq->active_balance = 0;
7415 		rq->next_balance = jiffies;
7416 		rq->push_cpu = 0;
7417 		rq->cpu = i;
7418 		rq->online = 0;
7419 		rq->idle_stamp = 0;
7420 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7421 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7422 
7423 		INIT_LIST_HEAD(&rq->cfs_tasks);
7424 
7425 		rq_attach_root(rq, &def_root_domain);
7426 #ifdef CONFIG_NO_HZ_COMMON
7427 		rq->nohz_flags = 0;
7428 #endif
7429 #ifdef CONFIG_NO_HZ_FULL
7430 		rq->last_sched_tick = 0;
7431 #endif
7432 #endif
7433 		init_rq_hrtick(rq);
7434 		atomic_set(&rq->nr_iowait, 0);
7435 	}
7436 
7437 	set_load_weight(&init_task);
7438 
7439 #ifdef CONFIG_PREEMPT_NOTIFIERS
7440 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7441 #endif
7442 
7443 	/*
7444 	 * The boot idle thread does lazy MMU switching as well:
7445 	 */
7446 	atomic_inc(&init_mm.mm_count);
7447 	enter_lazy_tlb(&init_mm, current);
7448 
7449 	/*
7450 	 * During early bootup we pretend to be a normal task:
7451 	 */
7452 	current->sched_class = &fair_sched_class;
7453 
7454 	/*
7455 	 * Make us the idle thread. Technically, schedule() should not be
7456 	 * called from this thread, however somewhere below it might be,
7457 	 * but because we are the idle thread, we just pick up running again
7458 	 * when this runqueue becomes "idle".
7459 	 */
7460 	init_idle(current, smp_processor_id());
7461 
7462 	calc_load_update = jiffies + LOAD_FREQ;
7463 
7464 #ifdef CONFIG_SMP
7465 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7466 	/* May be allocated at isolcpus cmdline parse time */
7467 	if (cpu_isolated_map == NULL)
7468 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7469 	idle_thread_set_boot_cpu();
7470 	set_cpu_rq_start_time();
7471 #endif
7472 	init_sched_fair_class();
7473 
7474 	scheduler_running = 1;
7475 }
7476 
7477 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7478 static inline int preempt_count_equals(int preempt_offset)
7479 {
7480 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7481 
7482 	return (nested == preempt_offset);
7483 }
7484 
7485 void __might_sleep(const char *file, int line, int preempt_offset)
7486 {
7487 	/*
7488 	 * Blocking primitives will set (and therefore destroy) current->state,
7489 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7490 	 * otherwise we will destroy state.
7491 	 */
7492 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7493 			"do not call blocking ops when !TASK_RUNNING; "
7494 			"state=%lx set at [<%p>] %pS\n",
7495 			current->state,
7496 			(void *)current->task_state_change,
7497 			(void *)current->task_state_change);
7498 
7499 	___might_sleep(file, line, preempt_offset);
7500 }
7501 EXPORT_SYMBOL(__might_sleep);
7502 
7503 void ___might_sleep(const char *file, int line, int preempt_offset)
7504 {
7505 	static unsigned long prev_jiffy;	/* ratelimiting */
7506 
7507 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7508 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7509 	     !is_idle_task(current)) ||
7510 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7511 		return;
7512 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7513 		return;
7514 	prev_jiffy = jiffies;
7515 
7516 	printk(KERN_ERR
7517 		"BUG: sleeping function called from invalid context at %s:%d\n",
7518 			file, line);
7519 	printk(KERN_ERR
7520 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7521 			in_atomic(), irqs_disabled(),
7522 			current->pid, current->comm);
7523 
7524 	if (task_stack_end_corrupted(current))
7525 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7526 
7527 	debug_show_held_locks(current);
7528 	if (irqs_disabled())
7529 		print_irqtrace_events(current);
7530 #ifdef CONFIG_DEBUG_PREEMPT
7531 	if (!preempt_count_equals(preempt_offset)) {
7532 		pr_err("Preemption disabled at:");
7533 		print_ip_sym(current->preempt_disable_ip);
7534 		pr_cont("\n");
7535 	}
7536 #endif
7537 	dump_stack();
7538 }
7539 EXPORT_SYMBOL(___might_sleep);
7540 #endif
7541 
7542 #ifdef CONFIG_MAGIC_SYSRQ
7543 void normalize_rt_tasks(void)
7544 {
7545 	struct task_struct *g, *p;
7546 	struct sched_attr attr = {
7547 		.sched_policy = SCHED_NORMAL,
7548 	};
7549 
7550 	read_lock(&tasklist_lock);
7551 	for_each_process_thread(g, p) {
7552 		/*
7553 		 * Only normalize user tasks:
7554 		 */
7555 		if (p->flags & PF_KTHREAD)
7556 			continue;
7557 
7558 		p->se.exec_start		= 0;
7559 #ifdef CONFIG_SCHEDSTATS
7560 		p->se.statistics.wait_start	= 0;
7561 		p->se.statistics.sleep_start	= 0;
7562 		p->se.statistics.block_start	= 0;
7563 #endif
7564 
7565 		if (!dl_task(p) && !rt_task(p)) {
7566 			/*
7567 			 * Renice negative nice level userspace
7568 			 * tasks back to 0:
7569 			 */
7570 			if (task_nice(p) < 0)
7571 				set_user_nice(p, 0);
7572 			continue;
7573 		}
7574 
7575 		__sched_setscheduler(p, &attr, false, false);
7576 	}
7577 	read_unlock(&tasklist_lock);
7578 }
7579 
7580 #endif /* CONFIG_MAGIC_SYSRQ */
7581 
7582 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7583 /*
7584  * These functions are only useful for the IA64 MCA handling, or kdb.
7585  *
7586  * They can only be called when the whole system has been
7587  * stopped - every CPU needs to be quiescent, and no scheduling
7588  * activity can take place. Using them for anything else would
7589  * be a serious bug, and as a result, they aren't even visible
7590  * under any other configuration.
7591  */
7592 
7593 /**
7594  * curr_task - return the current task for a given cpu.
7595  * @cpu: the processor in question.
7596  *
7597  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7598  *
7599  * Return: The current task for @cpu.
7600  */
7601 struct task_struct *curr_task(int cpu)
7602 {
7603 	return cpu_curr(cpu);
7604 }
7605 
7606 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7607 
7608 #ifdef CONFIG_IA64
7609 /**
7610  * set_curr_task - set the current task for a given cpu.
7611  * @cpu: the processor in question.
7612  * @p: the task pointer to set.
7613  *
7614  * Description: This function must only be used when non-maskable interrupts
7615  * are serviced on a separate stack. It allows the architecture to switch the
7616  * notion of the current task on a cpu in a non-blocking manner. This function
7617  * must be called with all CPU's synchronized, and interrupts disabled, the
7618  * and caller must save the original value of the current task (see
7619  * curr_task() above) and restore that value before reenabling interrupts and
7620  * re-starting the system.
7621  *
7622  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7623  */
7624 void set_curr_task(int cpu, struct task_struct *p)
7625 {
7626 	cpu_curr(cpu) = p;
7627 }
7628 
7629 #endif
7630 
7631 #ifdef CONFIG_CGROUP_SCHED
7632 /* task_group_lock serializes the addition/removal of task groups */
7633 static DEFINE_SPINLOCK(task_group_lock);
7634 
7635 static void free_sched_group(struct task_group *tg)
7636 {
7637 	free_fair_sched_group(tg);
7638 	free_rt_sched_group(tg);
7639 	autogroup_free(tg);
7640 	kfree(tg);
7641 }
7642 
7643 /* allocate runqueue etc for a new task group */
7644 struct task_group *sched_create_group(struct task_group *parent)
7645 {
7646 	struct task_group *tg;
7647 
7648 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7649 	if (!tg)
7650 		return ERR_PTR(-ENOMEM);
7651 
7652 	if (!alloc_fair_sched_group(tg, parent))
7653 		goto err;
7654 
7655 	if (!alloc_rt_sched_group(tg, parent))
7656 		goto err;
7657 
7658 	return tg;
7659 
7660 err:
7661 	free_sched_group(tg);
7662 	return ERR_PTR(-ENOMEM);
7663 }
7664 
7665 void sched_online_group(struct task_group *tg, struct task_group *parent)
7666 {
7667 	unsigned long flags;
7668 
7669 	spin_lock_irqsave(&task_group_lock, flags);
7670 	list_add_rcu(&tg->list, &task_groups);
7671 
7672 	WARN_ON(!parent); /* root should already exist */
7673 
7674 	tg->parent = parent;
7675 	INIT_LIST_HEAD(&tg->children);
7676 	list_add_rcu(&tg->siblings, &parent->children);
7677 	spin_unlock_irqrestore(&task_group_lock, flags);
7678 }
7679 
7680 /* rcu callback to free various structures associated with a task group */
7681 static void free_sched_group_rcu(struct rcu_head *rhp)
7682 {
7683 	/* now it should be safe to free those cfs_rqs */
7684 	free_sched_group(container_of(rhp, struct task_group, rcu));
7685 }
7686 
7687 /* Destroy runqueue etc associated with a task group */
7688 void sched_destroy_group(struct task_group *tg)
7689 {
7690 	/* wait for possible concurrent references to cfs_rqs complete */
7691 	call_rcu(&tg->rcu, free_sched_group_rcu);
7692 }
7693 
7694 void sched_offline_group(struct task_group *tg)
7695 {
7696 	unsigned long flags;
7697 	int i;
7698 
7699 	/* end participation in shares distribution */
7700 	for_each_possible_cpu(i)
7701 		unregister_fair_sched_group(tg, i);
7702 
7703 	spin_lock_irqsave(&task_group_lock, flags);
7704 	list_del_rcu(&tg->list);
7705 	list_del_rcu(&tg->siblings);
7706 	spin_unlock_irqrestore(&task_group_lock, flags);
7707 }
7708 
7709 /* change task's runqueue when it moves between groups.
7710  *	The caller of this function should have put the task in its new group
7711  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7712  *	reflect its new group.
7713  */
7714 void sched_move_task(struct task_struct *tsk)
7715 {
7716 	struct task_group *tg;
7717 	int queued, running;
7718 	unsigned long flags;
7719 	struct rq *rq;
7720 
7721 	rq = task_rq_lock(tsk, &flags);
7722 
7723 	running = task_current(rq, tsk);
7724 	queued = task_on_rq_queued(tsk);
7725 
7726 	if (queued)
7727 		dequeue_task(rq, tsk, 0);
7728 	if (unlikely(running))
7729 		put_prev_task(rq, tsk);
7730 
7731 	/*
7732 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7733 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7734 	 * to prevent lockdep warnings.
7735 	 */
7736 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7737 			  struct task_group, css);
7738 	tg = autogroup_task_group(tsk, tg);
7739 	tsk->sched_task_group = tg;
7740 
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7742 	if (tsk->sched_class->task_move_group)
7743 		tsk->sched_class->task_move_group(tsk, queued);
7744 	else
7745 #endif
7746 		set_task_rq(tsk, task_cpu(tsk));
7747 
7748 	if (unlikely(running))
7749 		tsk->sched_class->set_curr_task(rq);
7750 	if (queued)
7751 		enqueue_task(rq, tsk, 0);
7752 
7753 	task_rq_unlock(rq, tsk, &flags);
7754 }
7755 #endif /* CONFIG_CGROUP_SCHED */
7756 
7757 #ifdef CONFIG_RT_GROUP_SCHED
7758 /*
7759  * Ensure that the real time constraints are schedulable.
7760  */
7761 static DEFINE_MUTEX(rt_constraints_mutex);
7762 
7763 /* Must be called with tasklist_lock held */
7764 static inline int tg_has_rt_tasks(struct task_group *tg)
7765 {
7766 	struct task_struct *g, *p;
7767 
7768 	/*
7769 	 * Autogroups do not have RT tasks; see autogroup_create().
7770 	 */
7771 	if (task_group_is_autogroup(tg))
7772 		return 0;
7773 
7774 	for_each_process_thread(g, p) {
7775 		if (rt_task(p) && task_group(p) == tg)
7776 			return 1;
7777 	}
7778 
7779 	return 0;
7780 }
7781 
7782 struct rt_schedulable_data {
7783 	struct task_group *tg;
7784 	u64 rt_period;
7785 	u64 rt_runtime;
7786 };
7787 
7788 static int tg_rt_schedulable(struct task_group *tg, void *data)
7789 {
7790 	struct rt_schedulable_data *d = data;
7791 	struct task_group *child;
7792 	unsigned long total, sum = 0;
7793 	u64 period, runtime;
7794 
7795 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7796 	runtime = tg->rt_bandwidth.rt_runtime;
7797 
7798 	if (tg == d->tg) {
7799 		period = d->rt_period;
7800 		runtime = d->rt_runtime;
7801 	}
7802 
7803 	/*
7804 	 * Cannot have more runtime than the period.
7805 	 */
7806 	if (runtime > period && runtime != RUNTIME_INF)
7807 		return -EINVAL;
7808 
7809 	/*
7810 	 * Ensure we don't starve existing RT tasks.
7811 	 */
7812 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7813 		return -EBUSY;
7814 
7815 	total = to_ratio(period, runtime);
7816 
7817 	/*
7818 	 * Nobody can have more than the global setting allows.
7819 	 */
7820 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7821 		return -EINVAL;
7822 
7823 	/*
7824 	 * The sum of our children's runtime should not exceed our own.
7825 	 */
7826 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7827 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7828 		runtime = child->rt_bandwidth.rt_runtime;
7829 
7830 		if (child == d->tg) {
7831 			period = d->rt_period;
7832 			runtime = d->rt_runtime;
7833 		}
7834 
7835 		sum += to_ratio(period, runtime);
7836 	}
7837 
7838 	if (sum > total)
7839 		return -EINVAL;
7840 
7841 	return 0;
7842 }
7843 
7844 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7845 {
7846 	int ret;
7847 
7848 	struct rt_schedulable_data data = {
7849 		.tg = tg,
7850 		.rt_period = period,
7851 		.rt_runtime = runtime,
7852 	};
7853 
7854 	rcu_read_lock();
7855 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7856 	rcu_read_unlock();
7857 
7858 	return ret;
7859 }
7860 
7861 static int tg_set_rt_bandwidth(struct task_group *tg,
7862 		u64 rt_period, u64 rt_runtime)
7863 {
7864 	int i, err = 0;
7865 
7866 	/*
7867 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7868 	 * kernel creating (and or operating) RT threads.
7869 	 */
7870 	if (tg == &root_task_group && rt_runtime == 0)
7871 		return -EINVAL;
7872 
7873 	/* No period doesn't make any sense. */
7874 	if (rt_period == 0)
7875 		return -EINVAL;
7876 
7877 	mutex_lock(&rt_constraints_mutex);
7878 	read_lock(&tasklist_lock);
7879 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7880 	if (err)
7881 		goto unlock;
7882 
7883 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7884 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7885 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7886 
7887 	for_each_possible_cpu(i) {
7888 		struct rt_rq *rt_rq = tg->rt_rq[i];
7889 
7890 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7891 		rt_rq->rt_runtime = rt_runtime;
7892 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7893 	}
7894 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7895 unlock:
7896 	read_unlock(&tasklist_lock);
7897 	mutex_unlock(&rt_constraints_mutex);
7898 
7899 	return err;
7900 }
7901 
7902 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7903 {
7904 	u64 rt_runtime, rt_period;
7905 
7906 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7907 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7908 	if (rt_runtime_us < 0)
7909 		rt_runtime = RUNTIME_INF;
7910 
7911 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7912 }
7913 
7914 static long sched_group_rt_runtime(struct task_group *tg)
7915 {
7916 	u64 rt_runtime_us;
7917 
7918 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7919 		return -1;
7920 
7921 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7922 	do_div(rt_runtime_us, NSEC_PER_USEC);
7923 	return rt_runtime_us;
7924 }
7925 
7926 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7927 {
7928 	u64 rt_runtime, rt_period;
7929 
7930 	rt_period = rt_period_us * NSEC_PER_USEC;
7931 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7932 
7933 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7934 }
7935 
7936 static long sched_group_rt_period(struct task_group *tg)
7937 {
7938 	u64 rt_period_us;
7939 
7940 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7941 	do_div(rt_period_us, NSEC_PER_USEC);
7942 	return rt_period_us;
7943 }
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7945 
7946 #ifdef CONFIG_RT_GROUP_SCHED
7947 static int sched_rt_global_constraints(void)
7948 {
7949 	int ret = 0;
7950 
7951 	mutex_lock(&rt_constraints_mutex);
7952 	read_lock(&tasklist_lock);
7953 	ret = __rt_schedulable(NULL, 0, 0);
7954 	read_unlock(&tasklist_lock);
7955 	mutex_unlock(&rt_constraints_mutex);
7956 
7957 	return ret;
7958 }
7959 
7960 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7961 {
7962 	/* Don't accept realtime tasks when there is no way for them to run */
7963 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7964 		return 0;
7965 
7966 	return 1;
7967 }
7968 
7969 #else /* !CONFIG_RT_GROUP_SCHED */
7970 static int sched_rt_global_constraints(void)
7971 {
7972 	unsigned long flags;
7973 	int i, ret = 0;
7974 
7975 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7976 	for_each_possible_cpu(i) {
7977 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7978 
7979 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7980 		rt_rq->rt_runtime = global_rt_runtime();
7981 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7982 	}
7983 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7984 
7985 	return ret;
7986 }
7987 #endif /* CONFIG_RT_GROUP_SCHED */
7988 
7989 static int sched_dl_global_validate(void)
7990 {
7991 	u64 runtime = global_rt_runtime();
7992 	u64 period = global_rt_period();
7993 	u64 new_bw = to_ratio(period, runtime);
7994 	struct dl_bw *dl_b;
7995 	int cpu, ret = 0;
7996 	unsigned long flags;
7997 
7998 	/*
7999 	 * Here we want to check the bandwidth not being set to some
8000 	 * value smaller than the currently allocated bandwidth in
8001 	 * any of the root_domains.
8002 	 *
8003 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8004 	 * cycling on root_domains... Discussion on different/better
8005 	 * solutions is welcome!
8006 	 */
8007 	for_each_possible_cpu(cpu) {
8008 		rcu_read_lock_sched();
8009 		dl_b = dl_bw_of(cpu);
8010 
8011 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8012 		if (new_bw < dl_b->total_bw)
8013 			ret = -EBUSY;
8014 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8015 
8016 		rcu_read_unlock_sched();
8017 
8018 		if (ret)
8019 			break;
8020 	}
8021 
8022 	return ret;
8023 }
8024 
8025 static void sched_dl_do_global(void)
8026 {
8027 	u64 new_bw = -1;
8028 	struct dl_bw *dl_b;
8029 	int cpu;
8030 	unsigned long flags;
8031 
8032 	def_dl_bandwidth.dl_period = global_rt_period();
8033 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8034 
8035 	if (global_rt_runtime() != RUNTIME_INF)
8036 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8037 
8038 	/*
8039 	 * FIXME: As above...
8040 	 */
8041 	for_each_possible_cpu(cpu) {
8042 		rcu_read_lock_sched();
8043 		dl_b = dl_bw_of(cpu);
8044 
8045 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8046 		dl_b->bw = new_bw;
8047 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8048 
8049 		rcu_read_unlock_sched();
8050 	}
8051 }
8052 
8053 static int sched_rt_global_validate(void)
8054 {
8055 	if (sysctl_sched_rt_period <= 0)
8056 		return -EINVAL;
8057 
8058 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8059 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8060 		return -EINVAL;
8061 
8062 	return 0;
8063 }
8064 
8065 static void sched_rt_do_global(void)
8066 {
8067 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8068 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8069 }
8070 
8071 int sched_rt_handler(struct ctl_table *table, int write,
8072 		void __user *buffer, size_t *lenp,
8073 		loff_t *ppos)
8074 {
8075 	int old_period, old_runtime;
8076 	static DEFINE_MUTEX(mutex);
8077 	int ret;
8078 
8079 	mutex_lock(&mutex);
8080 	old_period = sysctl_sched_rt_period;
8081 	old_runtime = sysctl_sched_rt_runtime;
8082 
8083 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8084 
8085 	if (!ret && write) {
8086 		ret = sched_rt_global_validate();
8087 		if (ret)
8088 			goto undo;
8089 
8090 		ret = sched_dl_global_validate();
8091 		if (ret)
8092 			goto undo;
8093 
8094 		ret = sched_rt_global_constraints();
8095 		if (ret)
8096 			goto undo;
8097 
8098 		sched_rt_do_global();
8099 		sched_dl_do_global();
8100 	}
8101 	if (0) {
8102 undo:
8103 		sysctl_sched_rt_period = old_period;
8104 		sysctl_sched_rt_runtime = old_runtime;
8105 	}
8106 	mutex_unlock(&mutex);
8107 
8108 	return ret;
8109 }
8110 
8111 int sched_rr_handler(struct ctl_table *table, int write,
8112 		void __user *buffer, size_t *lenp,
8113 		loff_t *ppos)
8114 {
8115 	int ret;
8116 	static DEFINE_MUTEX(mutex);
8117 
8118 	mutex_lock(&mutex);
8119 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8120 	/* make sure that internally we keep jiffies */
8121 	/* also, writing zero resets timeslice to default */
8122 	if (!ret && write) {
8123 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8124 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8125 	}
8126 	mutex_unlock(&mutex);
8127 	return ret;
8128 }
8129 
8130 #ifdef CONFIG_CGROUP_SCHED
8131 
8132 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8133 {
8134 	return css ? container_of(css, struct task_group, css) : NULL;
8135 }
8136 
8137 static struct cgroup_subsys_state *
8138 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8139 {
8140 	struct task_group *parent = css_tg(parent_css);
8141 	struct task_group *tg;
8142 
8143 	if (!parent) {
8144 		/* This is early initialization for the top cgroup */
8145 		return &root_task_group.css;
8146 	}
8147 
8148 	tg = sched_create_group(parent);
8149 	if (IS_ERR(tg))
8150 		return ERR_PTR(-ENOMEM);
8151 
8152 	return &tg->css;
8153 }
8154 
8155 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8156 {
8157 	struct task_group *tg = css_tg(css);
8158 	struct task_group *parent = css_tg(css->parent);
8159 
8160 	if (parent)
8161 		sched_online_group(tg, parent);
8162 	return 0;
8163 }
8164 
8165 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8166 {
8167 	struct task_group *tg = css_tg(css);
8168 
8169 	sched_destroy_group(tg);
8170 }
8171 
8172 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8173 {
8174 	struct task_group *tg = css_tg(css);
8175 
8176 	sched_offline_group(tg);
8177 }
8178 
8179 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8180 {
8181 	sched_move_task(task);
8182 }
8183 
8184 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8185 				 struct cgroup_taskset *tset)
8186 {
8187 	struct task_struct *task;
8188 
8189 	cgroup_taskset_for_each(task, tset) {
8190 #ifdef CONFIG_RT_GROUP_SCHED
8191 		if (!sched_rt_can_attach(css_tg(css), task))
8192 			return -EINVAL;
8193 #else
8194 		/* We don't support RT-tasks being in separate groups */
8195 		if (task->sched_class != &fair_sched_class)
8196 			return -EINVAL;
8197 #endif
8198 	}
8199 	return 0;
8200 }
8201 
8202 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8203 			      struct cgroup_taskset *tset)
8204 {
8205 	struct task_struct *task;
8206 
8207 	cgroup_taskset_for_each(task, tset)
8208 		sched_move_task(task);
8209 }
8210 
8211 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8212 			    struct cgroup_subsys_state *old_css,
8213 			    struct task_struct *task)
8214 {
8215 	/*
8216 	 * cgroup_exit() is called in the copy_process() failure path.
8217 	 * Ignore this case since the task hasn't ran yet, this avoids
8218 	 * trying to poke a half freed task state from generic code.
8219 	 */
8220 	if (!(task->flags & PF_EXITING))
8221 		return;
8222 
8223 	sched_move_task(task);
8224 }
8225 
8226 #ifdef CONFIG_FAIR_GROUP_SCHED
8227 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8228 				struct cftype *cftype, u64 shareval)
8229 {
8230 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8231 }
8232 
8233 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8234 			       struct cftype *cft)
8235 {
8236 	struct task_group *tg = css_tg(css);
8237 
8238 	return (u64) scale_load_down(tg->shares);
8239 }
8240 
8241 #ifdef CONFIG_CFS_BANDWIDTH
8242 static DEFINE_MUTEX(cfs_constraints_mutex);
8243 
8244 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8245 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8246 
8247 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8248 
8249 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8250 {
8251 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8252 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8253 
8254 	if (tg == &root_task_group)
8255 		return -EINVAL;
8256 
8257 	/*
8258 	 * Ensure we have at some amount of bandwidth every period.  This is
8259 	 * to prevent reaching a state of large arrears when throttled via
8260 	 * entity_tick() resulting in prolonged exit starvation.
8261 	 */
8262 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8263 		return -EINVAL;
8264 
8265 	/*
8266 	 * Likewise, bound things on the otherside by preventing insane quota
8267 	 * periods.  This also allows us to normalize in computing quota
8268 	 * feasibility.
8269 	 */
8270 	if (period > max_cfs_quota_period)
8271 		return -EINVAL;
8272 
8273 	/*
8274 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8275 	 * unthrottle_offline_cfs_rqs().
8276 	 */
8277 	get_online_cpus();
8278 	mutex_lock(&cfs_constraints_mutex);
8279 	ret = __cfs_schedulable(tg, period, quota);
8280 	if (ret)
8281 		goto out_unlock;
8282 
8283 	runtime_enabled = quota != RUNTIME_INF;
8284 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8285 	/*
8286 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8287 	 * before making related changes, and on->off must occur afterwards
8288 	 */
8289 	if (runtime_enabled && !runtime_was_enabled)
8290 		cfs_bandwidth_usage_inc();
8291 	raw_spin_lock_irq(&cfs_b->lock);
8292 	cfs_b->period = ns_to_ktime(period);
8293 	cfs_b->quota = quota;
8294 
8295 	__refill_cfs_bandwidth_runtime(cfs_b);
8296 	/* restart the period timer (if active) to handle new period expiry */
8297 	if (runtime_enabled)
8298 		start_cfs_bandwidth(cfs_b);
8299 	raw_spin_unlock_irq(&cfs_b->lock);
8300 
8301 	for_each_online_cpu(i) {
8302 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8303 		struct rq *rq = cfs_rq->rq;
8304 
8305 		raw_spin_lock_irq(&rq->lock);
8306 		cfs_rq->runtime_enabled = runtime_enabled;
8307 		cfs_rq->runtime_remaining = 0;
8308 
8309 		if (cfs_rq->throttled)
8310 			unthrottle_cfs_rq(cfs_rq);
8311 		raw_spin_unlock_irq(&rq->lock);
8312 	}
8313 	if (runtime_was_enabled && !runtime_enabled)
8314 		cfs_bandwidth_usage_dec();
8315 out_unlock:
8316 	mutex_unlock(&cfs_constraints_mutex);
8317 	put_online_cpus();
8318 
8319 	return ret;
8320 }
8321 
8322 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8323 {
8324 	u64 quota, period;
8325 
8326 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8327 	if (cfs_quota_us < 0)
8328 		quota = RUNTIME_INF;
8329 	else
8330 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8331 
8332 	return tg_set_cfs_bandwidth(tg, period, quota);
8333 }
8334 
8335 long tg_get_cfs_quota(struct task_group *tg)
8336 {
8337 	u64 quota_us;
8338 
8339 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8340 		return -1;
8341 
8342 	quota_us = tg->cfs_bandwidth.quota;
8343 	do_div(quota_us, NSEC_PER_USEC);
8344 
8345 	return quota_us;
8346 }
8347 
8348 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8349 {
8350 	u64 quota, period;
8351 
8352 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8353 	quota = tg->cfs_bandwidth.quota;
8354 
8355 	return tg_set_cfs_bandwidth(tg, period, quota);
8356 }
8357 
8358 long tg_get_cfs_period(struct task_group *tg)
8359 {
8360 	u64 cfs_period_us;
8361 
8362 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8363 	do_div(cfs_period_us, NSEC_PER_USEC);
8364 
8365 	return cfs_period_us;
8366 }
8367 
8368 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8369 				  struct cftype *cft)
8370 {
8371 	return tg_get_cfs_quota(css_tg(css));
8372 }
8373 
8374 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8375 				   struct cftype *cftype, s64 cfs_quota_us)
8376 {
8377 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8378 }
8379 
8380 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8381 				   struct cftype *cft)
8382 {
8383 	return tg_get_cfs_period(css_tg(css));
8384 }
8385 
8386 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8387 				    struct cftype *cftype, u64 cfs_period_us)
8388 {
8389 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8390 }
8391 
8392 struct cfs_schedulable_data {
8393 	struct task_group *tg;
8394 	u64 period, quota;
8395 };
8396 
8397 /*
8398  * normalize group quota/period to be quota/max_period
8399  * note: units are usecs
8400  */
8401 static u64 normalize_cfs_quota(struct task_group *tg,
8402 			       struct cfs_schedulable_data *d)
8403 {
8404 	u64 quota, period;
8405 
8406 	if (tg == d->tg) {
8407 		period = d->period;
8408 		quota = d->quota;
8409 	} else {
8410 		period = tg_get_cfs_period(tg);
8411 		quota = tg_get_cfs_quota(tg);
8412 	}
8413 
8414 	/* note: these should typically be equivalent */
8415 	if (quota == RUNTIME_INF || quota == -1)
8416 		return RUNTIME_INF;
8417 
8418 	return to_ratio(period, quota);
8419 }
8420 
8421 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8422 {
8423 	struct cfs_schedulable_data *d = data;
8424 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8425 	s64 quota = 0, parent_quota = -1;
8426 
8427 	if (!tg->parent) {
8428 		quota = RUNTIME_INF;
8429 	} else {
8430 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8431 
8432 		quota = normalize_cfs_quota(tg, d);
8433 		parent_quota = parent_b->hierarchical_quota;
8434 
8435 		/*
8436 		 * ensure max(child_quota) <= parent_quota, inherit when no
8437 		 * limit is set
8438 		 */
8439 		if (quota == RUNTIME_INF)
8440 			quota = parent_quota;
8441 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8442 			return -EINVAL;
8443 	}
8444 	cfs_b->hierarchical_quota = quota;
8445 
8446 	return 0;
8447 }
8448 
8449 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8450 {
8451 	int ret;
8452 	struct cfs_schedulable_data data = {
8453 		.tg = tg,
8454 		.period = period,
8455 		.quota = quota,
8456 	};
8457 
8458 	if (quota != RUNTIME_INF) {
8459 		do_div(data.period, NSEC_PER_USEC);
8460 		do_div(data.quota, NSEC_PER_USEC);
8461 	}
8462 
8463 	rcu_read_lock();
8464 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8465 	rcu_read_unlock();
8466 
8467 	return ret;
8468 }
8469 
8470 static int cpu_stats_show(struct seq_file *sf, void *v)
8471 {
8472 	struct task_group *tg = css_tg(seq_css(sf));
8473 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8474 
8475 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8476 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8477 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8478 
8479 	return 0;
8480 }
8481 #endif /* CONFIG_CFS_BANDWIDTH */
8482 #endif /* CONFIG_FAIR_GROUP_SCHED */
8483 
8484 #ifdef CONFIG_RT_GROUP_SCHED
8485 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8486 				struct cftype *cft, s64 val)
8487 {
8488 	return sched_group_set_rt_runtime(css_tg(css), val);
8489 }
8490 
8491 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8492 			       struct cftype *cft)
8493 {
8494 	return sched_group_rt_runtime(css_tg(css));
8495 }
8496 
8497 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8498 				    struct cftype *cftype, u64 rt_period_us)
8499 {
8500 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8501 }
8502 
8503 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8504 				   struct cftype *cft)
8505 {
8506 	return sched_group_rt_period(css_tg(css));
8507 }
8508 #endif /* CONFIG_RT_GROUP_SCHED */
8509 
8510 static struct cftype cpu_files[] = {
8511 #ifdef CONFIG_FAIR_GROUP_SCHED
8512 	{
8513 		.name = "shares",
8514 		.read_u64 = cpu_shares_read_u64,
8515 		.write_u64 = cpu_shares_write_u64,
8516 	},
8517 #endif
8518 #ifdef CONFIG_CFS_BANDWIDTH
8519 	{
8520 		.name = "cfs_quota_us",
8521 		.read_s64 = cpu_cfs_quota_read_s64,
8522 		.write_s64 = cpu_cfs_quota_write_s64,
8523 	},
8524 	{
8525 		.name = "cfs_period_us",
8526 		.read_u64 = cpu_cfs_period_read_u64,
8527 		.write_u64 = cpu_cfs_period_write_u64,
8528 	},
8529 	{
8530 		.name = "stat",
8531 		.seq_show = cpu_stats_show,
8532 	},
8533 #endif
8534 #ifdef CONFIG_RT_GROUP_SCHED
8535 	{
8536 		.name = "rt_runtime_us",
8537 		.read_s64 = cpu_rt_runtime_read,
8538 		.write_s64 = cpu_rt_runtime_write,
8539 	},
8540 	{
8541 		.name = "rt_period_us",
8542 		.read_u64 = cpu_rt_period_read_uint,
8543 		.write_u64 = cpu_rt_period_write_uint,
8544 	},
8545 #endif
8546 	{ }	/* terminate */
8547 };
8548 
8549 struct cgroup_subsys cpu_cgrp_subsys = {
8550 	.css_alloc	= cpu_cgroup_css_alloc,
8551 	.css_free	= cpu_cgroup_css_free,
8552 	.css_online	= cpu_cgroup_css_online,
8553 	.css_offline	= cpu_cgroup_css_offline,
8554 	.fork		= cpu_cgroup_fork,
8555 	.can_attach	= cpu_cgroup_can_attach,
8556 	.attach		= cpu_cgroup_attach,
8557 	.exit		= cpu_cgroup_exit,
8558 	.legacy_cftypes	= cpu_files,
8559 	.early_init	= 1,
8560 };
8561 
8562 #endif	/* CONFIG_CGROUP_SCHED */
8563 
8564 void dump_cpu_task(int cpu)
8565 {
8566 	pr_info("Task dump for CPU %d:\n", cpu);
8567 	sched_show_task(cpu_curr(cpu));
8568 }
8569