1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #include <trace/events/ipi.h> 84 #undef CREATE_TRACE_POINTS 85 86 #include "sched.h" 87 #include "stats.h" 88 #include "autogroup.h" 89 90 #include "autogroup.h" 91 #include "pelt.h" 92 #include "smp.h" 93 #include "stats.h" 94 95 #include "../workqueue_internal.h" 96 #include "../../io_uring/io-wq.h" 97 #include "../smpboot.h" 98 99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 101 102 /* 103 * Export tracepoints that act as a bare tracehook (ie: have no trace event 104 * associated with them) to allow external modules to probe them. 105 */ 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 117 118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 119 120 #ifdef CONFIG_SCHED_DEBUG 121 /* 122 * Debugging: various feature bits 123 * 124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 125 * sysctl_sched_features, defined in sched.h, to allow constants propagation 126 * at compile time and compiler optimization based on features default. 127 */ 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 const_debug unsigned int sysctl_sched_features = 131 #include "features.h" 132 0; 133 #undef SCHED_FEAT 134 135 /* 136 * Print a warning if need_resched is set for the given duration (if 137 * LATENCY_WARN is enabled). 138 * 139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 140 * per boot. 141 */ 142 __read_mostly int sysctl_resched_latency_warn_ms = 100; 143 __read_mostly int sysctl_resched_latency_warn_once = 1; 144 #endif /* CONFIG_SCHED_DEBUG */ 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (rt_prio(p->prio)) /* includes deadline */ 165 return p->prio; /* [-1, 99] */ 166 167 if (p->sched_class == &idle_sched_class) 168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 169 170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 171 } 172 173 /* 174 * l(a,b) 175 * le(a,b) := !l(b,a) 176 * g(a,b) := l(b,a) 177 * ge(a,b) := !l(a,b) 178 */ 179 180 /* real prio, less is less */ 181 static inline bool prio_less(const struct task_struct *a, 182 const struct task_struct *b, bool in_fi) 183 { 184 185 int pa = __task_prio(a), pb = __task_prio(b); 186 187 if (-pa < -pb) 188 return true; 189 190 if (-pb < -pa) 191 return false; 192 193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 194 return !dl_time_before(a->dl.deadline, b->dl.deadline); 195 196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 197 return cfs_prio_less(a, b, in_fi); 198 199 return false; 200 } 201 202 static inline bool __sched_core_less(const struct task_struct *a, 203 const struct task_struct *b) 204 { 205 if (a->core_cookie < b->core_cookie) 206 return true; 207 208 if (a->core_cookie > b->core_cookie) 209 return false; 210 211 /* flip prio, so high prio is leftmost */ 212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 213 return true; 214 215 return false; 216 } 217 218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 219 220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 221 { 222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 223 } 224 225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 226 { 227 const struct task_struct *p = __node_2_sc(node); 228 unsigned long cookie = (unsigned long)key; 229 230 if (cookie < p->core_cookie) 231 return -1; 232 233 if (cookie > p->core_cookie) 234 return 1; 235 236 return 0; 237 } 238 239 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 240 { 241 rq->core->core_task_seq++; 242 243 if (!p->core_cookie) 244 return; 245 246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 247 } 248 249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 250 { 251 rq->core->core_task_seq++; 252 253 if (sched_core_enqueued(p)) { 254 rb_erase(&p->core_node, &rq->core_tree); 255 RB_CLEAR_NODE(&p->core_node); 256 } 257 258 /* 259 * Migrating the last task off the cpu, with the cpu in forced idle 260 * state. Reschedule to create an accounting edge for forced idle, 261 * and re-examine whether the core is still in forced idle state. 262 */ 263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 264 rq->core->core_forceidle_count && rq->curr == rq->idle) 265 resched_curr(rq); 266 } 267 268 static int sched_task_is_throttled(struct task_struct *p, int cpu) 269 { 270 if (p->sched_class->task_is_throttled) 271 return p->sched_class->task_is_throttled(p, cpu); 272 273 return 0; 274 } 275 276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 277 { 278 struct rb_node *node = &p->core_node; 279 int cpu = task_cpu(p); 280 281 do { 282 node = rb_next(node); 283 if (!node) 284 return NULL; 285 286 p = __node_2_sc(node); 287 if (p->core_cookie != cookie) 288 return NULL; 289 290 } while (sched_task_is_throttled(p, cpu)); 291 292 return p; 293 } 294 295 /* 296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 297 * If no suitable task is found, NULL will be returned. 298 */ 299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 300 { 301 struct task_struct *p; 302 struct rb_node *node; 303 304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 305 if (!node) 306 return NULL; 307 308 p = __node_2_sc(node); 309 if (!sched_task_is_throttled(p, rq->cpu)) 310 return p; 311 312 return sched_core_next(p, cookie); 313 } 314 315 /* 316 * Magic required such that: 317 * 318 * raw_spin_rq_lock(rq); 319 * ... 320 * raw_spin_rq_unlock(rq); 321 * 322 * ends up locking and unlocking the _same_ lock, and all CPUs 323 * always agree on what rq has what lock. 324 * 325 * XXX entirely possible to selectively enable cores, don't bother for now. 326 */ 327 328 static DEFINE_MUTEX(sched_core_mutex); 329 static atomic_t sched_core_count; 330 static struct cpumask sched_core_mask; 331 332 static void sched_core_lock(int cpu, unsigned long *flags) 333 { 334 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 335 int t, i = 0; 336 337 local_irq_save(*flags); 338 for_each_cpu(t, smt_mask) 339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 340 } 341 342 static void sched_core_unlock(int cpu, unsigned long *flags) 343 { 344 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 345 int t; 346 347 for_each_cpu(t, smt_mask) 348 raw_spin_unlock(&cpu_rq(t)->__lock); 349 local_irq_restore(*flags); 350 } 351 352 static void __sched_core_flip(bool enabled) 353 { 354 unsigned long flags; 355 int cpu, t; 356 357 cpus_read_lock(); 358 359 /* 360 * Toggle the online cores, one by one. 361 */ 362 cpumask_copy(&sched_core_mask, cpu_online_mask); 363 for_each_cpu(cpu, &sched_core_mask) { 364 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 365 366 sched_core_lock(cpu, &flags); 367 368 for_each_cpu(t, smt_mask) 369 cpu_rq(t)->core_enabled = enabled; 370 371 cpu_rq(cpu)->core->core_forceidle_start = 0; 372 373 sched_core_unlock(cpu, &flags); 374 375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 376 } 377 378 /* 379 * Toggle the offline CPUs. 380 */ 381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 382 cpu_rq(cpu)->core_enabled = enabled; 383 384 cpus_read_unlock(); 385 } 386 387 static void sched_core_assert_empty(void) 388 { 389 int cpu; 390 391 for_each_possible_cpu(cpu) 392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 393 } 394 395 static void __sched_core_enable(void) 396 { 397 static_branch_enable(&__sched_core_enabled); 398 /* 399 * Ensure all previous instances of raw_spin_rq_*lock() have finished 400 * and future ones will observe !sched_core_disabled(). 401 */ 402 synchronize_rcu(); 403 __sched_core_flip(true); 404 sched_core_assert_empty(); 405 } 406 407 static void __sched_core_disable(void) 408 { 409 sched_core_assert_empty(); 410 __sched_core_flip(false); 411 static_branch_disable(&__sched_core_enabled); 412 } 413 414 void sched_core_get(void) 415 { 416 if (atomic_inc_not_zero(&sched_core_count)) 417 return; 418 419 mutex_lock(&sched_core_mutex); 420 if (!atomic_read(&sched_core_count)) 421 __sched_core_enable(); 422 423 smp_mb__before_atomic(); 424 atomic_inc(&sched_core_count); 425 mutex_unlock(&sched_core_mutex); 426 } 427 428 static void __sched_core_put(struct work_struct *work) 429 { 430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 431 __sched_core_disable(); 432 mutex_unlock(&sched_core_mutex); 433 } 434 } 435 436 void sched_core_put(void) 437 { 438 static DECLARE_WORK(_work, __sched_core_put); 439 440 /* 441 * "There can be only one" 442 * 443 * Either this is the last one, or we don't actually need to do any 444 * 'work'. If it is the last *again*, we rely on 445 * WORK_STRUCT_PENDING_BIT. 446 */ 447 if (!atomic_add_unless(&sched_core_count, -1, 1)) 448 schedule_work(&_work); 449 } 450 451 #else /* !CONFIG_SCHED_CORE */ 452 453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 454 static inline void 455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 456 457 #endif /* CONFIG_SCHED_CORE */ 458 459 /* 460 * Serialization rules: 461 * 462 * Lock order: 463 * 464 * p->pi_lock 465 * rq->lock 466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 467 * 468 * rq1->lock 469 * rq2->lock where: rq1 < rq2 470 * 471 * Regular state: 472 * 473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 474 * local CPU's rq->lock, it optionally removes the task from the runqueue and 475 * always looks at the local rq data structures to find the most eligible task 476 * to run next. 477 * 478 * Task enqueue is also under rq->lock, possibly taken from another CPU. 479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 480 * the local CPU to avoid bouncing the runqueue state around [ see 481 * ttwu_queue_wakelist() ] 482 * 483 * Task wakeup, specifically wakeups that involve migration, are horribly 484 * complicated to avoid having to take two rq->locks. 485 * 486 * Special state: 487 * 488 * System-calls and anything external will use task_rq_lock() which acquires 489 * both p->pi_lock and rq->lock. As a consequence the state they change is 490 * stable while holding either lock: 491 * 492 * - sched_setaffinity()/ 493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 494 * - set_user_nice(): p->se.load, p->*prio 495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 496 * p->se.load, p->rt_priority, 497 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 498 * - sched_setnuma(): p->numa_preferred_nid 499 * - sched_move_task(): p->sched_task_group 500 * - uclamp_update_active() p->uclamp* 501 * 502 * p->state <- TASK_*: 503 * 504 * is changed locklessly using set_current_state(), __set_current_state() or 505 * set_special_state(), see their respective comments, or by 506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 507 * concurrent self. 508 * 509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 510 * 511 * is set by activate_task() and cleared by deactivate_task(), under 512 * rq->lock. Non-zero indicates the task is runnable, the special 513 * ON_RQ_MIGRATING state is used for migration without holding both 514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 515 * 516 * p->on_cpu <- { 0, 1 }: 517 * 518 * is set by prepare_task() and cleared by finish_task() such that it will be 519 * set before p is scheduled-in and cleared after p is scheduled-out, both 520 * under rq->lock. Non-zero indicates the task is running on its CPU. 521 * 522 * [ The astute reader will observe that it is possible for two tasks on one 523 * CPU to have ->on_cpu = 1 at the same time. ] 524 * 525 * task_cpu(p): is changed by set_task_cpu(), the rules are: 526 * 527 * - Don't call set_task_cpu() on a blocked task: 528 * 529 * We don't care what CPU we're not running on, this simplifies hotplug, 530 * the CPU assignment of blocked tasks isn't required to be valid. 531 * 532 * - for try_to_wake_up(), called under p->pi_lock: 533 * 534 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 535 * 536 * - for migration called under rq->lock: 537 * [ see task_on_rq_migrating() in task_rq_lock() ] 538 * 539 * o move_queued_task() 540 * o detach_task() 541 * 542 * - for migration called under double_rq_lock(): 543 * 544 * o __migrate_swap_task() 545 * o push_rt_task() / pull_rt_task() 546 * o push_dl_task() / pull_dl_task() 547 * o dl_task_offline_migration() 548 * 549 */ 550 551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 552 { 553 raw_spinlock_t *lock; 554 555 /* Matches synchronize_rcu() in __sched_core_enable() */ 556 preempt_disable(); 557 if (sched_core_disabled()) { 558 raw_spin_lock_nested(&rq->__lock, subclass); 559 /* preempt_count *MUST* be > 1 */ 560 preempt_enable_no_resched(); 561 return; 562 } 563 564 for (;;) { 565 lock = __rq_lockp(rq); 566 raw_spin_lock_nested(lock, subclass); 567 if (likely(lock == __rq_lockp(rq))) { 568 /* preempt_count *MUST* be > 1 */ 569 preempt_enable_no_resched(); 570 return; 571 } 572 raw_spin_unlock(lock); 573 } 574 } 575 576 bool raw_spin_rq_trylock(struct rq *rq) 577 { 578 raw_spinlock_t *lock; 579 bool ret; 580 581 /* Matches synchronize_rcu() in __sched_core_enable() */ 582 preempt_disable(); 583 if (sched_core_disabled()) { 584 ret = raw_spin_trylock(&rq->__lock); 585 preempt_enable(); 586 return ret; 587 } 588 589 for (;;) { 590 lock = __rq_lockp(rq); 591 ret = raw_spin_trylock(lock); 592 if (!ret || (likely(lock == __rq_lockp(rq)))) { 593 preempt_enable(); 594 return ret; 595 } 596 raw_spin_unlock(lock); 597 } 598 } 599 600 void raw_spin_rq_unlock(struct rq *rq) 601 { 602 raw_spin_unlock(rq_lockp(rq)); 603 } 604 605 #ifdef CONFIG_SMP 606 /* 607 * double_rq_lock - safely lock two runqueues 608 */ 609 void double_rq_lock(struct rq *rq1, struct rq *rq2) 610 { 611 lockdep_assert_irqs_disabled(); 612 613 if (rq_order_less(rq2, rq1)) 614 swap(rq1, rq2); 615 616 raw_spin_rq_lock(rq1); 617 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 619 620 double_rq_clock_clear_update(rq1, rq2); 621 } 622 #endif 623 624 /* 625 * __task_rq_lock - lock the rq @p resides on. 626 */ 627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 628 __acquires(rq->lock) 629 { 630 struct rq *rq; 631 632 lockdep_assert_held(&p->pi_lock); 633 634 for (;;) { 635 rq = task_rq(p); 636 raw_spin_rq_lock(rq); 637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 638 rq_pin_lock(rq, rf); 639 return rq; 640 } 641 raw_spin_rq_unlock(rq); 642 643 while (unlikely(task_on_rq_migrating(p))) 644 cpu_relax(); 645 } 646 } 647 648 /* 649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 650 */ 651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 652 __acquires(p->pi_lock) 653 __acquires(rq->lock) 654 { 655 struct rq *rq; 656 657 for (;;) { 658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 659 rq = task_rq(p); 660 raw_spin_rq_lock(rq); 661 /* 662 * move_queued_task() task_rq_lock() 663 * 664 * ACQUIRE (rq->lock) 665 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 667 * [S] ->cpu = new_cpu [L] task_rq() 668 * [L] ->on_rq 669 * RELEASE (rq->lock) 670 * 671 * If we observe the old CPU in task_rq_lock(), the acquire of 672 * the old rq->lock will fully serialize against the stores. 673 * 674 * If we observe the new CPU in task_rq_lock(), the address 675 * dependency headed by '[L] rq = task_rq()' and the acquire 676 * will pair with the WMB to ensure we then also see migrating. 677 */ 678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 679 rq_pin_lock(rq, rf); 680 return rq; 681 } 682 raw_spin_rq_unlock(rq); 683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 684 685 while (unlikely(task_on_rq_migrating(p))) 686 cpu_relax(); 687 } 688 } 689 690 /* 691 * RQ-clock updating methods: 692 */ 693 694 static void update_rq_clock_task(struct rq *rq, s64 delta) 695 { 696 /* 697 * In theory, the compile should just see 0 here, and optimize out the call 698 * to sched_rt_avg_update. But I don't trust it... 699 */ 700 s64 __maybe_unused steal = 0, irq_delta = 0; 701 702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 704 705 /* 706 * Since irq_time is only updated on {soft,}irq_exit, we might run into 707 * this case when a previous update_rq_clock() happened inside a 708 * {soft,}irq region. 709 * 710 * When this happens, we stop ->clock_task and only update the 711 * prev_irq_time stamp to account for the part that fit, so that a next 712 * update will consume the rest. This ensures ->clock_task is 713 * monotonic. 714 * 715 * It does however cause some slight miss-attribution of {soft,}irq 716 * time, a more accurate solution would be to update the irq_time using 717 * the current rq->clock timestamp, except that would require using 718 * atomic ops. 719 */ 720 if (irq_delta > delta) 721 irq_delta = delta; 722 723 rq->prev_irq_time += irq_delta; 724 delta -= irq_delta; 725 psi_account_irqtime(rq->curr, irq_delta); 726 delayacct_irq(rq->curr, irq_delta); 727 #endif 728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 729 if (static_key_false((¶virt_steal_rq_enabled))) { 730 steal = paravirt_steal_clock(cpu_of(rq)); 731 steal -= rq->prev_steal_time_rq; 732 733 if (unlikely(steal > delta)) 734 steal = delta; 735 736 rq->prev_steal_time_rq += steal; 737 delta -= steal; 738 } 739 #endif 740 741 rq->clock_task += delta; 742 743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 745 update_irq_load_avg(rq, irq_delta + steal); 746 #endif 747 update_rq_clock_pelt(rq, delta); 748 } 749 750 void update_rq_clock(struct rq *rq) 751 { 752 s64 delta; 753 754 lockdep_assert_rq_held(rq); 755 756 if (rq->clock_update_flags & RQCF_ACT_SKIP) 757 return; 758 759 #ifdef CONFIG_SCHED_DEBUG 760 if (sched_feat(WARN_DOUBLE_CLOCK)) 761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 762 rq->clock_update_flags |= RQCF_UPDATED; 763 #endif 764 765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 766 if (delta < 0) 767 return; 768 rq->clock += delta; 769 update_rq_clock_task(rq, delta); 770 } 771 772 #ifdef CONFIG_SCHED_HRTICK 773 /* 774 * Use HR-timers to deliver accurate preemption points. 775 */ 776 777 static void hrtick_clear(struct rq *rq) 778 { 779 if (hrtimer_active(&rq->hrtick_timer)) 780 hrtimer_cancel(&rq->hrtick_timer); 781 } 782 783 /* 784 * High-resolution timer tick. 785 * Runs from hardirq context with interrupts disabled. 786 */ 787 static enum hrtimer_restart hrtick(struct hrtimer *timer) 788 { 789 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 790 struct rq_flags rf; 791 792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 793 794 rq_lock(rq, &rf); 795 update_rq_clock(rq); 796 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 797 rq_unlock(rq, &rf); 798 799 return HRTIMER_NORESTART; 800 } 801 802 #ifdef CONFIG_SMP 803 804 static void __hrtick_restart(struct rq *rq) 805 { 806 struct hrtimer *timer = &rq->hrtick_timer; 807 ktime_t time = rq->hrtick_time; 808 809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 810 } 811 812 /* 813 * called from hardirq (IPI) context 814 */ 815 static void __hrtick_start(void *arg) 816 { 817 struct rq *rq = arg; 818 struct rq_flags rf; 819 820 rq_lock(rq, &rf); 821 __hrtick_restart(rq); 822 rq_unlock(rq, &rf); 823 } 824 825 /* 826 * Called to set the hrtick timer state. 827 * 828 * called with rq->lock held and irqs disabled 829 */ 830 void hrtick_start(struct rq *rq, u64 delay) 831 { 832 struct hrtimer *timer = &rq->hrtick_timer; 833 s64 delta; 834 835 /* 836 * Don't schedule slices shorter than 10000ns, that just 837 * doesn't make sense and can cause timer DoS. 838 */ 839 delta = max_t(s64, delay, 10000LL); 840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 841 842 if (rq == this_rq()) 843 __hrtick_restart(rq); 844 else 845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 846 } 847 848 #else 849 /* 850 * Called to set the hrtick timer state. 851 * 852 * called with rq->lock held and irqs disabled 853 */ 854 void hrtick_start(struct rq *rq, u64 delay) 855 { 856 /* 857 * Don't schedule slices shorter than 10000ns, that just 858 * doesn't make sense. Rely on vruntime for fairness. 859 */ 860 delay = max_t(u64, delay, 10000LL); 861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 862 HRTIMER_MODE_REL_PINNED_HARD); 863 } 864 865 #endif /* CONFIG_SMP */ 866 867 static void hrtick_rq_init(struct rq *rq) 868 { 869 #ifdef CONFIG_SMP 870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 871 #endif 872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 873 rq->hrtick_timer.function = hrtick; 874 } 875 #else /* CONFIG_SCHED_HRTICK */ 876 static inline void hrtick_clear(struct rq *rq) 877 { 878 } 879 880 static inline void hrtick_rq_init(struct rq *rq) 881 { 882 } 883 #endif /* CONFIG_SCHED_HRTICK */ 884 885 /* 886 * cmpxchg based fetch_or, macro so it works for different integer types 887 */ 888 #define fetch_or(ptr, mask) \ 889 ({ \ 890 typeof(ptr) _ptr = (ptr); \ 891 typeof(mask) _mask = (mask); \ 892 typeof(*_ptr) _val = *_ptr; \ 893 \ 894 do { \ 895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 896 _val; \ 897 }) 898 899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 900 /* 901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 902 * this avoids any races wrt polling state changes and thereby avoids 903 * spurious IPIs. 904 */ 905 static inline bool set_nr_and_not_polling(struct task_struct *p) 906 { 907 struct thread_info *ti = task_thread_info(p); 908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 909 } 910 911 /* 912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 913 * 914 * If this returns true, then the idle task promises to call 915 * sched_ttwu_pending() and reschedule soon. 916 */ 917 static bool set_nr_if_polling(struct task_struct *p) 918 { 919 struct thread_info *ti = task_thread_info(p); 920 typeof(ti->flags) val = READ_ONCE(ti->flags); 921 922 for (;;) { 923 if (!(val & _TIF_POLLING_NRFLAG)) 924 return false; 925 if (val & _TIF_NEED_RESCHED) 926 return true; 927 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 928 break; 929 } 930 return true; 931 } 932 933 #else 934 static inline bool set_nr_and_not_polling(struct task_struct *p) 935 { 936 set_tsk_need_resched(p); 937 return true; 938 } 939 940 #ifdef CONFIG_SMP 941 static inline bool set_nr_if_polling(struct task_struct *p) 942 { 943 return false; 944 } 945 #endif 946 #endif 947 948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 949 { 950 struct wake_q_node *node = &task->wake_q; 951 952 /* 953 * Atomically grab the task, if ->wake_q is !nil already it means 954 * it's already queued (either by us or someone else) and will get the 955 * wakeup due to that. 956 * 957 * In order to ensure that a pending wakeup will observe our pending 958 * state, even in the failed case, an explicit smp_mb() must be used. 959 */ 960 smp_mb__before_atomic(); 961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 962 return false; 963 964 /* 965 * The head is context local, there can be no concurrency. 966 */ 967 *head->lastp = node; 968 head->lastp = &node->next; 969 return true; 970 } 971 972 /** 973 * wake_q_add() - queue a wakeup for 'later' waking. 974 * @head: the wake_q_head to add @task to 975 * @task: the task to queue for 'later' wakeup 976 * 977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 979 * instantly. 980 * 981 * This function must be used as-if it were wake_up_process(); IOW the task 982 * must be ready to be woken at this location. 983 */ 984 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 985 { 986 if (__wake_q_add(head, task)) 987 get_task_struct(task); 988 } 989 990 /** 991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 992 * @head: the wake_q_head to add @task to 993 * @task: the task to queue for 'later' wakeup 994 * 995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 997 * instantly. 998 * 999 * This function must be used as-if it were wake_up_process(); IOW the task 1000 * must be ready to be woken at this location. 1001 * 1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1003 * that already hold reference to @task can call the 'safe' version and trust 1004 * wake_q to do the right thing depending whether or not the @task is already 1005 * queued for wakeup. 1006 */ 1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1008 { 1009 if (!__wake_q_add(head, task)) 1010 put_task_struct(task); 1011 } 1012 1013 void wake_up_q(struct wake_q_head *head) 1014 { 1015 struct wake_q_node *node = head->first; 1016 1017 while (node != WAKE_Q_TAIL) { 1018 struct task_struct *task; 1019 1020 task = container_of(node, struct task_struct, wake_q); 1021 /* Task can safely be re-inserted now: */ 1022 node = node->next; 1023 task->wake_q.next = NULL; 1024 1025 /* 1026 * wake_up_process() executes a full barrier, which pairs with 1027 * the queueing in wake_q_add() so as not to miss wakeups. 1028 */ 1029 wake_up_process(task); 1030 put_task_struct(task); 1031 } 1032 } 1033 1034 /* 1035 * resched_curr - mark rq's current task 'to be rescheduled now'. 1036 * 1037 * On UP this means the setting of the need_resched flag, on SMP it 1038 * might also involve a cross-CPU call to trigger the scheduler on 1039 * the target CPU. 1040 */ 1041 void resched_curr(struct rq *rq) 1042 { 1043 struct task_struct *curr = rq->curr; 1044 int cpu; 1045 1046 lockdep_assert_rq_held(rq); 1047 1048 if (test_tsk_need_resched(curr)) 1049 return; 1050 1051 cpu = cpu_of(rq); 1052 1053 if (cpu == smp_processor_id()) { 1054 set_tsk_need_resched(curr); 1055 set_preempt_need_resched(); 1056 return; 1057 } 1058 1059 if (set_nr_and_not_polling(curr)) 1060 smp_send_reschedule(cpu); 1061 else 1062 trace_sched_wake_idle_without_ipi(cpu); 1063 } 1064 1065 void resched_cpu(int cpu) 1066 { 1067 struct rq *rq = cpu_rq(cpu); 1068 unsigned long flags; 1069 1070 raw_spin_rq_lock_irqsave(rq, flags); 1071 if (cpu_online(cpu) || cpu == smp_processor_id()) 1072 resched_curr(rq); 1073 raw_spin_rq_unlock_irqrestore(rq, flags); 1074 } 1075 1076 #ifdef CONFIG_SMP 1077 #ifdef CONFIG_NO_HZ_COMMON 1078 /* 1079 * In the semi idle case, use the nearest busy CPU for migrating timers 1080 * from an idle CPU. This is good for power-savings. 1081 * 1082 * We don't do similar optimization for completely idle system, as 1083 * selecting an idle CPU will add more delays to the timers than intended 1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1085 */ 1086 int get_nohz_timer_target(void) 1087 { 1088 int i, cpu = smp_processor_id(), default_cpu = -1; 1089 struct sched_domain *sd; 1090 const struct cpumask *hk_mask; 1091 1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1093 if (!idle_cpu(cpu)) 1094 return cpu; 1095 default_cpu = cpu; 1096 } 1097 1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1099 1100 rcu_read_lock(); 1101 for_each_domain(cpu, sd) { 1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1103 if (cpu == i) 1104 continue; 1105 1106 if (!idle_cpu(i)) { 1107 cpu = i; 1108 goto unlock; 1109 } 1110 } 1111 } 1112 1113 if (default_cpu == -1) 1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1115 cpu = default_cpu; 1116 unlock: 1117 rcu_read_unlock(); 1118 return cpu; 1119 } 1120 1121 /* 1122 * When add_timer_on() enqueues a timer into the timer wheel of an 1123 * idle CPU then this timer might expire before the next timer event 1124 * which is scheduled to wake up that CPU. In case of a completely 1125 * idle system the next event might even be infinite time into the 1126 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1127 * leaves the inner idle loop so the newly added timer is taken into 1128 * account when the CPU goes back to idle and evaluates the timer 1129 * wheel for the next timer event. 1130 */ 1131 static void wake_up_idle_cpu(int cpu) 1132 { 1133 struct rq *rq = cpu_rq(cpu); 1134 1135 if (cpu == smp_processor_id()) 1136 return; 1137 1138 if (set_nr_and_not_polling(rq->idle)) 1139 smp_send_reschedule(cpu); 1140 else 1141 trace_sched_wake_idle_without_ipi(cpu); 1142 } 1143 1144 static bool wake_up_full_nohz_cpu(int cpu) 1145 { 1146 /* 1147 * We just need the target to call irq_exit() and re-evaluate 1148 * the next tick. The nohz full kick at least implies that. 1149 * If needed we can still optimize that later with an 1150 * empty IRQ. 1151 */ 1152 if (cpu_is_offline(cpu)) 1153 return true; /* Don't try to wake offline CPUs. */ 1154 if (tick_nohz_full_cpu(cpu)) { 1155 if (cpu != smp_processor_id() || 1156 tick_nohz_tick_stopped()) 1157 tick_nohz_full_kick_cpu(cpu); 1158 return true; 1159 } 1160 1161 return false; 1162 } 1163 1164 /* 1165 * Wake up the specified CPU. If the CPU is going offline, it is the 1166 * caller's responsibility to deal with the lost wakeup, for example, 1167 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1168 */ 1169 void wake_up_nohz_cpu(int cpu) 1170 { 1171 if (!wake_up_full_nohz_cpu(cpu)) 1172 wake_up_idle_cpu(cpu); 1173 } 1174 1175 static void nohz_csd_func(void *info) 1176 { 1177 struct rq *rq = info; 1178 int cpu = cpu_of(rq); 1179 unsigned int flags; 1180 1181 /* 1182 * Release the rq::nohz_csd. 1183 */ 1184 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1185 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1186 1187 rq->idle_balance = idle_cpu(cpu); 1188 if (rq->idle_balance && !need_resched()) { 1189 rq->nohz_idle_balance = flags; 1190 raise_softirq_irqoff(SCHED_SOFTIRQ); 1191 } 1192 } 1193 1194 #endif /* CONFIG_NO_HZ_COMMON */ 1195 1196 #ifdef CONFIG_NO_HZ_FULL 1197 bool sched_can_stop_tick(struct rq *rq) 1198 { 1199 int fifo_nr_running; 1200 1201 /* Deadline tasks, even if single, need the tick */ 1202 if (rq->dl.dl_nr_running) 1203 return false; 1204 1205 /* 1206 * If there are more than one RR tasks, we need the tick to affect the 1207 * actual RR behaviour. 1208 */ 1209 if (rq->rt.rr_nr_running) { 1210 if (rq->rt.rr_nr_running == 1) 1211 return true; 1212 else 1213 return false; 1214 } 1215 1216 /* 1217 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1218 * forced preemption between FIFO tasks. 1219 */ 1220 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1221 if (fifo_nr_running) 1222 return true; 1223 1224 /* 1225 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1226 * if there's more than one we need the tick for involuntary 1227 * preemption. 1228 */ 1229 if (rq->nr_running > 1) 1230 return false; 1231 1232 return true; 1233 } 1234 #endif /* CONFIG_NO_HZ_FULL */ 1235 #endif /* CONFIG_SMP */ 1236 1237 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1238 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1239 /* 1240 * Iterate task_group tree rooted at *from, calling @down when first entering a 1241 * node and @up when leaving it for the final time. 1242 * 1243 * Caller must hold rcu_lock or sufficient equivalent. 1244 */ 1245 int walk_tg_tree_from(struct task_group *from, 1246 tg_visitor down, tg_visitor up, void *data) 1247 { 1248 struct task_group *parent, *child; 1249 int ret; 1250 1251 parent = from; 1252 1253 down: 1254 ret = (*down)(parent, data); 1255 if (ret) 1256 goto out; 1257 list_for_each_entry_rcu(child, &parent->children, siblings) { 1258 parent = child; 1259 goto down; 1260 1261 up: 1262 continue; 1263 } 1264 ret = (*up)(parent, data); 1265 if (ret || parent == from) 1266 goto out; 1267 1268 child = parent; 1269 parent = parent->parent; 1270 if (parent) 1271 goto up; 1272 out: 1273 return ret; 1274 } 1275 1276 int tg_nop(struct task_group *tg, void *data) 1277 { 1278 return 0; 1279 } 1280 #endif 1281 1282 static void set_load_weight(struct task_struct *p, bool update_load) 1283 { 1284 int prio = p->static_prio - MAX_RT_PRIO; 1285 struct load_weight *load = &p->se.load; 1286 1287 /* 1288 * SCHED_IDLE tasks get minimal weight: 1289 */ 1290 if (task_has_idle_policy(p)) { 1291 load->weight = scale_load(WEIGHT_IDLEPRIO); 1292 load->inv_weight = WMULT_IDLEPRIO; 1293 return; 1294 } 1295 1296 /* 1297 * SCHED_OTHER tasks have to update their load when changing their 1298 * weight 1299 */ 1300 if (update_load && p->sched_class == &fair_sched_class) { 1301 reweight_task(p, prio); 1302 } else { 1303 load->weight = scale_load(sched_prio_to_weight[prio]); 1304 load->inv_weight = sched_prio_to_wmult[prio]; 1305 } 1306 } 1307 1308 #ifdef CONFIG_UCLAMP_TASK 1309 /* 1310 * Serializes updates of utilization clamp values 1311 * 1312 * The (slow-path) user-space triggers utilization clamp value updates which 1313 * can require updates on (fast-path) scheduler's data structures used to 1314 * support enqueue/dequeue operations. 1315 * While the per-CPU rq lock protects fast-path update operations, user-space 1316 * requests are serialized using a mutex to reduce the risk of conflicting 1317 * updates or API abuses. 1318 */ 1319 static DEFINE_MUTEX(uclamp_mutex); 1320 1321 /* Max allowed minimum utilization */ 1322 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1323 1324 /* Max allowed maximum utilization */ 1325 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1326 1327 /* 1328 * By default RT tasks run at the maximum performance point/capacity of the 1329 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1330 * SCHED_CAPACITY_SCALE. 1331 * 1332 * This knob allows admins to change the default behavior when uclamp is being 1333 * used. In battery powered devices, particularly, running at the maximum 1334 * capacity and frequency will increase energy consumption and shorten the 1335 * battery life. 1336 * 1337 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1338 * 1339 * This knob will not override the system default sched_util_clamp_min defined 1340 * above. 1341 */ 1342 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1343 1344 /* All clamps are required to be less or equal than these values */ 1345 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1346 1347 /* 1348 * This static key is used to reduce the uclamp overhead in the fast path. It 1349 * primarily disables the call to uclamp_rq_{inc, dec}() in 1350 * enqueue/dequeue_task(). 1351 * 1352 * This allows users to continue to enable uclamp in their kernel config with 1353 * minimum uclamp overhead in the fast path. 1354 * 1355 * As soon as userspace modifies any of the uclamp knobs, the static key is 1356 * enabled, since we have an actual users that make use of uclamp 1357 * functionality. 1358 * 1359 * The knobs that would enable this static key are: 1360 * 1361 * * A task modifying its uclamp value with sched_setattr(). 1362 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1363 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1364 */ 1365 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1366 1367 /* Integer rounded range for each bucket */ 1368 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1369 1370 #define for_each_clamp_id(clamp_id) \ 1371 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1372 1373 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1374 { 1375 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1376 } 1377 1378 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1379 { 1380 if (clamp_id == UCLAMP_MIN) 1381 return 0; 1382 return SCHED_CAPACITY_SCALE; 1383 } 1384 1385 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1386 unsigned int value, bool user_defined) 1387 { 1388 uc_se->value = value; 1389 uc_se->bucket_id = uclamp_bucket_id(value); 1390 uc_se->user_defined = user_defined; 1391 } 1392 1393 static inline unsigned int 1394 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1395 unsigned int clamp_value) 1396 { 1397 /* 1398 * Avoid blocked utilization pushing up the frequency when we go 1399 * idle (which drops the max-clamp) by retaining the last known 1400 * max-clamp. 1401 */ 1402 if (clamp_id == UCLAMP_MAX) { 1403 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1404 return clamp_value; 1405 } 1406 1407 return uclamp_none(UCLAMP_MIN); 1408 } 1409 1410 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1411 unsigned int clamp_value) 1412 { 1413 /* Reset max-clamp retention only on idle exit */ 1414 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1415 return; 1416 1417 uclamp_rq_set(rq, clamp_id, clamp_value); 1418 } 1419 1420 static inline 1421 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1422 unsigned int clamp_value) 1423 { 1424 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1425 int bucket_id = UCLAMP_BUCKETS - 1; 1426 1427 /* 1428 * Since both min and max clamps are max aggregated, find the 1429 * top most bucket with tasks in. 1430 */ 1431 for ( ; bucket_id >= 0; bucket_id--) { 1432 if (!bucket[bucket_id].tasks) 1433 continue; 1434 return bucket[bucket_id].value; 1435 } 1436 1437 /* No tasks -- default clamp values */ 1438 return uclamp_idle_value(rq, clamp_id, clamp_value); 1439 } 1440 1441 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1442 { 1443 unsigned int default_util_min; 1444 struct uclamp_se *uc_se; 1445 1446 lockdep_assert_held(&p->pi_lock); 1447 1448 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1449 1450 /* Only sync if user didn't override the default */ 1451 if (uc_se->user_defined) 1452 return; 1453 1454 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1455 uclamp_se_set(uc_se, default_util_min, false); 1456 } 1457 1458 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1459 { 1460 struct rq_flags rf; 1461 struct rq *rq; 1462 1463 if (!rt_task(p)) 1464 return; 1465 1466 /* Protect updates to p->uclamp_* */ 1467 rq = task_rq_lock(p, &rf); 1468 __uclamp_update_util_min_rt_default(p); 1469 task_rq_unlock(rq, p, &rf); 1470 } 1471 1472 static inline struct uclamp_se 1473 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1474 { 1475 /* Copy by value as we could modify it */ 1476 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1477 #ifdef CONFIG_UCLAMP_TASK_GROUP 1478 unsigned int tg_min, tg_max, value; 1479 1480 /* 1481 * Tasks in autogroups or root task group will be 1482 * restricted by system defaults. 1483 */ 1484 if (task_group_is_autogroup(task_group(p))) 1485 return uc_req; 1486 if (task_group(p) == &root_task_group) 1487 return uc_req; 1488 1489 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1490 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1491 value = uc_req.value; 1492 value = clamp(value, tg_min, tg_max); 1493 uclamp_se_set(&uc_req, value, false); 1494 #endif 1495 1496 return uc_req; 1497 } 1498 1499 /* 1500 * The effective clamp bucket index of a task depends on, by increasing 1501 * priority: 1502 * - the task specific clamp value, when explicitly requested from userspace 1503 * - the task group effective clamp value, for tasks not either in the root 1504 * group or in an autogroup 1505 * - the system default clamp value, defined by the sysadmin 1506 */ 1507 static inline struct uclamp_se 1508 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1509 { 1510 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1511 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1512 1513 /* System default restrictions always apply */ 1514 if (unlikely(uc_req.value > uc_max.value)) 1515 return uc_max; 1516 1517 return uc_req; 1518 } 1519 1520 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1521 { 1522 struct uclamp_se uc_eff; 1523 1524 /* Task currently refcounted: use back-annotated (effective) value */ 1525 if (p->uclamp[clamp_id].active) 1526 return (unsigned long)p->uclamp[clamp_id].value; 1527 1528 uc_eff = uclamp_eff_get(p, clamp_id); 1529 1530 return (unsigned long)uc_eff.value; 1531 } 1532 1533 /* 1534 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1535 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1536 * updates the rq's clamp value if required. 1537 * 1538 * Tasks can have a task-specific value requested from user-space, track 1539 * within each bucket the maximum value for tasks refcounted in it. 1540 * This "local max aggregation" allows to track the exact "requested" value 1541 * for each bucket when all its RUNNABLE tasks require the same clamp. 1542 */ 1543 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1544 enum uclamp_id clamp_id) 1545 { 1546 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1547 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1548 struct uclamp_bucket *bucket; 1549 1550 lockdep_assert_rq_held(rq); 1551 1552 /* Update task effective clamp */ 1553 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1554 1555 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1556 bucket->tasks++; 1557 uc_se->active = true; 1558 1559 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1560 1561 /* 1562 * Local max aggregation: rq buckets always track the max 1563 * "requested" clamp value of its RUNNABLE tasks. 1564 */ 1565 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1566 bucket->value = uc_se->value; 1567 1568 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1569 uclamp_rq_set(rq, clamp_id, uc_se->value); 1570 } 1571 1572 /* 1573 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1574 * is released. If this is the last task reference counting the rq's max 1575 * active clamp value, then the rq's clamp value is updated. 1576 * 1577 * Both refcounted tasks and rq's cached clamp values are expected to be 1578 * always valid. If it's detected they are not, as defensive programming, 1579 * enforce the expected state and warn. 1580 */ 1581 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1582 enum uclamp_id clamp_id) 1583 { 1584 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1585 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1586 struct uclamp_bucket *bucket; 1587 unsigned int bkt_clamp; 1588 unsigned int rq_clamp; 1589 1590 lockdep_assert_rq_held(rq); 1591 1592 /* 1593 * If sched_uclamp_used was enabled after task @p was enqueued, 1594 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1595 * 1596 * In this case the uc_se->active flag should be false since no uclamp 1597 * accounting was performed at enqueue time and we can just return 1598 * here. 1599 * 1600 * Need to be careful of the following enqueue/dequeue ordering 1601 * problem too 1602 * 1603 * enqueue(taskA) 1604 * // sched_uclamp_used gets enabled 1605 * enqueue(taskB) 1606 * dequeue(taskA) 1607 * // Must not decrement bucket->tasks here 1608 * dequeue(taskB) 1609 * 1610 * where we could end up with stale data in uc_se and 1611 * bucket[uc_se->bucket_id]. 1612 * 1613 * The following check here eliminates the possibility of such race. 1614 */ 1615 if (unlikely(!uc_se->active)) 1616 return; 1617 1618 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1619 1620 SCHED_WARN_ON(!bucket->tasks); 1621 if (likely(bucket->tasks)) 1622 bucket->tasks--; 1623 1624 uc_se->active = false; 1625 1626 /* 1627 * Keep "local max aggregation" simple and accept to (possibly) 1628 * overboost some RUNNABLE tasks in the same bucket. 1629 * The rq clamp bucket value is reset to its base value whenever 1630 * there are no more RUNNABLE tasks refcounting it. 1631 */ 1632 if (likely(bucket->tasks)) 1633 return; 1634 1635 rq_clamp = uclamp_rq_get(rq, clamp_id); 1636 /* 1637 * Defensive programming: this should never happen. If it happens, 1638 * e.g. due to future modification, warn and fixup the expected value. 1639 */ 1640 SCHED_WARN_ON(bucket->value > rq_clamp); 1641 if (bucket->value >= rq_clamp) { 1642 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1643 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1644 } 1645 } 1646 1647 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1648 { 1649 enum uclamp_id clamp_id; 1650 1651 /* 1652 * Avoid any overhead until uclamp is actually used by the userspace. 1653 * 1654 * The condition is constructed such that a NOP is generated when 1655 * sched_uclamp_used is disabled. 1656 */ 1657 if (!static_branch_unlikely(&sched_uclamp_used)) 1658 return; 1659 1660 if (unlikely(!p->sched_class->uclamp_enabled)) 1661 return; 1662 1663 for_each_clamp_id(clamp_id) 1664 uclamp_rq_inc_id(rq, p, clamp_id); 1665 1666 /* Reset clamp idle holding when there is one RUNNABLE task */ 1667 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1668 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1669 } 1670 1671 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1672 { 1673 enum uclamp_id clamp_id; 1674 1675 /* 1676 * Avoid any overhead until uclamp is actually used by the userspace. 1677 * 1678 * The condition is constructed such that a NOP is generated when 1679 * sched_uclamp_used is disabled. 1680 */ 1681 if (!static_branch_unlikely(&sched_uclamp_used)) 1682 return; 1683 1684 if (unlikely(!p->sched_class->uclamp_enabled)) 1685 return; 1686 1687 for_each_clamp_id(clamp_id) 1688 uclamp_rq_dec_id(rq, p, clamp_id); 1689 } 1690 1691 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1692 enum uclamp_id clamp_id) 1693 { 1694 if (!p->uclamp[clamp_id].active) 1695 return; 1696 1697 uclamp_rq_dec_id(rq, p, clamp_id); 1698 uclamp_rq_inc_id(rq, p, clamp_id); 1699 1700 /* 1701 * Make sure to clear the idle flag if we've transiently reached 0 1702 * active tasks on rq. 1703 */ 1704 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1705 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1706 } 1707 1708 static inline void 1709 uclamp_update_active(struct task_struct *p) 1710 { 1711 enum uclamp_id clamp_id; 1712 struct rq_flags rf; 1713 struct rq *rq; 1714 1715 /* 1716 * Lock the task and the rq where the task is (or was) queued. 1717 * 1718 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1719 * price to pay to safely serialize util_{min,max} updates with 1720 * enqueues, dequeues and migration operations. 1721 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1722 */ 1723 rq = task_rq_lock(p, &rf); 1724 1725 /* 1726 * Setting the clamp bucket is serialized by task_rq_lock(). 1727 * If the task is not yet RUNNABLE and its task_struct is not 1728 * affecting a valid clamp bucket, the next time it's enqueued, 1729 * it will already see the updated clamp bucket value. 1730 */ 1731 for_each_clamp_id(clamp_id) 1732 uclamp_rq_reinc_id(rq, p, clamp_id); 1733 1734 task_rq_unlock(rq, p, &rf); 1735 } 1736 1737 #ifdef CONFIG_UCLAMP_TASK_GROUP 1738 static inline void 1739 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1740 { 1741 struct css_task_iter it; 1742 struct task_struct *p; 1743 1744 css_task_iter_start(css, 0, &it); 1745 while ((p = css_task_iter_next(&it))) 1746 uclamp_update_active(p); 1747 css_task_iter_end(&it); 1748 } 1749 1750 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1751 #endif 1752 1753 #ifdef CONFIG_SYSCTL 1754 #ifdef CONFIG_UCLAMP_TASK 1755 #ifdef CONFIG_UCLAMP_TASK_GROUP 1756 static void uclamp_update_root_tg(void) 1757 { 1758 struct task_group *tg = &root_task_group; 1759 1760 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1761 sysctl_sched_uclamp_util_min, false); 1762 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1763 sysctl_sched_uclamp_util_max, false); 1764 1765 rcu_read_lock(); 1766 cpu_util_update_eff(&root_task_group.css); 1767 rcu_read_unlock(); 1768 } 1769 #else 1770 static void uclamp_update_root_tg(void) { } 1771 #endif 1772 1773 static void uclamp_sync_util_min_rt_default(void) 1774 { 1775 struct task_struct *g, *p; 1776 1777 /* 1778 * copy_process() sysctl_uclamp 1779 * uclamp_min_rt = X; 1780 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1781 * // link thread smp_mb__after_spinlock() 1782 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1783 * sched_post_fork() for_each_process_thread() 1784 * __uclamp_sync_rt() __uclamp_sync_rt() 1785 * 1786 * Ensures that either sched_post_fork() will observe the new 1787 * uclamp_min_rt or for_each_process_thread() will observe the new 1788 * task. 1789 */ 1790 read_lock(&tasklist_lock); 1791 smp_mb__after_spinlock(); 1792 read_unlock(&tasklist_lock); 1793 1794 rcu_read_lock(); 1795 for_each_process_thread(g, p) 1796 uclamp_update_util_min_rt_default(p); 1797 rcu_read_unlock(); 1798 } 1799 1800 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1801 void *buffer, size_t *lenp, loff_t *ppos) 1802 { 1803 bool update_root_tg = false; 1804 int old_min, old_max, old_min_rt; 1805 int result; 1806 1807 mutex_lock(&uclamp_mutex); 1808 old_min = sysctl_sched_uclamp_util_min; 1809 old_max = sysctl_sched_uclamp_util_max; 1810 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1811 1812 result = proc_dointvec(table, write, buffer, lenp, ppos); 1813 if (result) 1814 goto undo; 1815 if (!write) 1816 goto done; 1817 1818 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1819 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1820 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1821 1822 result = -EINVAL; 1823 goto undo; 1824 } 1825 1826 if (old_min != sysctl_sched_uclamp_util_min) { 1827 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1828 sysctl_sched_uclamp_util_min, false); 1829 update_root_tg = true; 1830 } 1831 if (old_max != sysctl_sched_uclamp_util_max) { 1832 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1833 sysctl_sched_uclamp_util_max, false); 1834 update_root_tg = true; 1835 } 1836 1837 if (update_root_tg) { 1838 static_branch_enable(&sched_uclamp_used); 1839 uclamp_update_root_tg(); 1840 } 1841 1842 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1843 static_branch_enable(&sched_uclamp_used); 1844 uclamp_sync_util_min_rt_default(); 1845 } 1846 1847 /* 1848 * We update all RUNNABLE tasks only when task groups are in use. 1849 * Otherwise, keep it simple and do just a lazy update at each next 1850 * task enqueue time. 1851 */ 1852 1853 goto done; 1854 1855 undo: 1856 sysctl_sched_uclamp_util_min = old_min; 1857 sysctl_sched_uclamp_util_max = old_max; 1858 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1859 done: 1860 mutex_unlock(&uclamp_mutex); 1861 1862 return result; 1863 } 1864 #endif 1865 #endif 1866 1867 static int uclamp_validate(struct task_struct *p, 1868 const struct sched_attr *attr) 1869 { 1870 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1871 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1872 1873 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1874 util_min = attr->sched_util_min; 1875 1876 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1877 return -EINVAL; 1878 } 1879 1880 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1881 util_max = attr->sched_util_max; 1882 1883 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1884 return -EINVAL; 1885 } 1886 1887 if (util_min != -1 && util_max != -1 && util_min > util_max) 1888 return -EINVAL; 1889 1890 /* 1891 * We have valid uclamp attributes; make sure uclamp is enabled. 1892 * 1893 * We need to do that here, because enabling static branches is a 1894 * blocking operation which obviously cannot be done while holding 1895 * scheduler locks. 1896 */ 1897 static_branch_enable(&sched_uclamp_used); 1898 1899 return 0; 1900 } 1901 1902 static bool uclamp_reset(const struct sched_attr *attr, 1903 enum uclamp_id clamp_id, 1904 struct uclamp_se *uc_se) 1905 { 1906 /* Reset on sched class change for a non user-defined clamp value. */ 1907 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1908 !uc_se->user_defined) 1909 return true; 1910 1911 /* Reset on sched_util_{min,max} == -1. */ 1912 if (clamp_id == UCLAMP_MIN && 1913 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1914 attr->sched_util_min == -1) { 1915 return true; 1916 } 1917 1918 if (clamp_id == UCLAMP_MAX && 1919 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1920 attr->sched_util_max == -1) { 1921 return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 static void __setscheduler_uclamp(struct task_struct *p, 1928 const struct sched_attr *attr) 1929 { 1930 enum uclamp_id clamp_id; 1931 1932 for_each_clamp_id(clamp_id) { 1933 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1934 unsigned int value; 1935 1936 if (!uclamp_reset(attr, clamp_id, uc_se)) 1937 continue; 1938 1939 /* 1940 * RT by default have a 100% boost value that could be modified 1941 * at runtime. 1942 */ 1943 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1944 value = sysctl_sched_uclamp_util_min_rt_default; 1945 else 1946 value = uclamp_none(clamp_id); 1947 1948 uclamp_se_set(uc_se, value, false); 1949 1950 } 1951 1952 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1953 return; 1954 1955 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1956 attr->sched_util_min != -1) { 1957 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1958 attr->sched_util_min, true); 1959 } 1960 1961 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1962 attr->sched_util_max != -1) { 1963 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1964 attr->sched_util_max, true); 1965 } 1966 } 1967 1968 static void uclamp_fork(struct task_struct *p) 1969 { 1970 enum uclamp_id clamp_id; 1971 1972 /* 1973 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1974 * as the task is still at its early fork stages. 1975 */ 1976 for_each_clamp_id(clamp_id) 1977 p->uclamp[clamp_id].active = false; 1978 1979 if (likely(!p->sched_reset_on_fork)) 1980 return; 1981 1982 for_each_clamp_id(clamp_id) { 1983 uclamp_se_set(&p->uclamp_req[clamp_id], 1984 uclamp_none(clamp_id), false); 1985 } 1986 } 1987 1988 static void uclamp_post_fork(struct task_struct *p) 1989 { 1990 uclamp_update_util_min_rt_default(p); 1991 } 1992 1993 static void __init init_uclamp_rq(struct rq *rq) 1994 { 1995 enum uclamp_id clamp_id; 1996 struct uclamp_rq *uc_rq = rq->uclamp; 1997 1998 for_each_clamp_id(clamp_id) { 1999 uc_rq[clamp_id] = (struct uclamp_rq) { 2000 .value = uclamp_none(clamp_id) 2001 }; 2002 } 2003 2004 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2005 } 2006 2007 static void __init init_uclamp(void) 2008 { 2009 struct uclamp_se uc_max = {}; 2010 enum uclamp_id clamp_id; 2011 int cpu; 2012 2013 for_each_possible_cpu(cpu) 2014 init_uclamp_rq(cpu_rq(cpu)); 2015 2016 for_each_clamp_id(clamp_id) { 2017 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2018 uclamp_none(clamp_id), false); 2019 } 2020 2021 /* System defaults allow max clamp values for both indexes */ 2022 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2023 for_each_clamp_id(clamp_id) { 2024 uclamp_default[clamp_id] = uc_max; 2025 #ifdef CONFIG_UCLAMP_TASK_GROUP 2026 root_task_group.uclamp_req[clamp_id] = uc_max; 2027 root_task_group.uclamp[clamp_id] = uc_max; 2028 #endif 2029 } 2030 } 2031 2032 #else /* CONFIG_UCLAMP_TASK */ 2033 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2035 static inline int uclamp_validate(struct task_struct *p, 2036 const struct sched_attr *attr) 2037 { 2038 return -EOPNOTSUPP; 2039 } 2040 static void __setscheduler_uclamp(struct task_struct *p, 2041 const struct sched_attr *attr) { } 2042 static inline void uclamp_fork(struct task_struct *p) { } 2043 static inline void uclamp_post_fork(struct task_struct *p) { } 2044 static inline void init_uclamp(void) { } 2045 #endif /* CONFIG_UCLAMP_TASK */ 2046 2047 bool sched_task_on_rq(struct task_struct *p) 2048 { 2049 return task_on_rq_queued(p); 2050 } 2051 2052 unsigned long get_wchan(struct task_struct *p) 2053 { 2054 unsigned long ip = 0; 2055 unsigned int state; 2056 2057 if (!p || p == current) 2058 return 0; 2059 2060 /* Only get wchan if task is blocked and we can keep it that way. */ 2061 raw_spin_lock_irq(&p->pi_lock); 2062 state = READ_ONCE(p->__state); 2063 smp_rmb(); /* see try_to_wake_up() */ 2064 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2065 ip = __get_wchan(p); 2066 raw_spin_unlock_irq(&p->pi_lock); 2067 2068 return ip; 2069 } 2070 2071 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2072 { 2073 if (!(flags & ENQUEUE_NOCLOCK)) 2074 update_rq_clock(rq); 2075 2076 if (!(flags & ENQUEUE_RESTORE)) { 2077 sched_info_enqueue(rq, p); 2078 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2079 } 2080 2081 uclamp_rq_inc(rq, p); 2082 p->sched_class->enqueue_task(rq, p, flags); 2083 2084 if (sched_core_enabled(rq)) 2085 sched_core_enqueue(rq, p); 2086 } 2087 2088 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2089 { 2090 if (sched_core_enabled(rq)) 2091 sched_core_dequeue(rq, p, flags); 2092 2093 if (!(flags & DEQUEUE_NOCLOCK)) 2094 update_rq_clock(rq); 2095 2096 if (!(flags & DEQUEUE_SAVE)) { 2097 sched_info_dequeue(rq, p); 2098 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2099 } 2100 2101 uclamp_rq_dec(rq, p); 2102 p->sched_class->dequeue_task(rq, p, flags); 2103 } 2104 2105 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2106 { 2107 if (task_on_rq_migrating(p)) 2108 flags |= ENQUEUE_MIGRATED; 2109 if (flags & ENQUEUE_MIGRATED) 2110 sched_mm_cid_migrate_to(rq, p); 2111 2112 enqueue_task(rq, p, flags); 2113 2114 p->on_rq = TASK_ON_RQ_QUEUED; 2115 } 2116 2117 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2118 { 2119 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2120 2121 dequeue_task(rq, p, flags); 2122 } 2123 2124 static inline int __normal_prio(int policy, int rt_prio, int nice) 2125 { 2126 int prio; 2127 2128 if (dl_policy(policy)) 2129 prio = MAX_DL_PRIO - 1; 2130 else if (rt_policy(policy)) 2131 prio = MAX_RT_PRIO - 1 - rt_prio; 2132 else 2133 prio = NICE_TO_PRIO(nice); 2134 2135 return prio; 2136 } 2137 2138 /* 2139 * Calculate the expected normal priority: i.e. priority 2140 * without taking RT-inheritance into account. Might be 2141 * boosted by interactivity modifiers. Changes upon fork, 2142 * setprio syscalls, and whenever the interactivity 2143 * estimator recalculates. 2144 */ 2145 static inline int normal_prio(struct task_struct *p) 2146 { 2147 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2148 } 2149 2150 /* 2151 * Calculate the current priority, i.e. the priority 2152 * taken into account by the scheduler. This value might 2153 * be boosted by RT tasks, or might be boosted by 2154 * interactivity modifiers. Will be RT if the task got 2155 * RT-boosted. If not then it returns p->normal_prio. 2156 */ 2157 static int effective_prio(struct task_struct *p) 2158 { 2159 p->normal_prio = normal_prio(p); 2160 /* 2161 * If we are RT tasks or we were boosted to RT priority, 2162 * keep the priority unchanged. Otherwise, update priority 2163 * to the normal priority: 2164 */ 2165 if (!rt_prio(p->prio)) 2166 return p->normal_prio; 2167 return p->prio; 2168 } 2169 2170 /** 2171 * task_curr - is this task currently executing on a CPU? 2172 * @p: the task in question. 2173 * 2174 * Return: 1 if the task is currently executing. 0 otherwise. 2175 */ 2176 inline int task_curr(const struct task_struct *p) 2177 { 2178 return cpu_curr(task_cpu(p)) == p; 2179 } 2180 2181 /* 2182 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2183 * use the balance_callback list if you want balancing. 2184 * 2185 * this means any call to check_class_changed() must be followed by a call to 2186 * balance_callback(). 2187 */ 2188 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2189 const struct sched_class *prev_class, 2190 int oldprio) 2191 { 2192 if (prev_class != p->sched_class) { 2193 if (prev_class->switched_from) 2194 prev_class->switched_from(rq, p); 2195 2196 p->sched_class->switched_to(rq, p); 2197 } else if (oldprio != p->prio || dl_task(p)) 2198 p->sched_class->prio_changed(rq, p, oldprio); 2199 } 2200 2201 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2202 { 2203 if (p->sched_class == rq->curr->sched_class) 2204 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2205 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2206 resched_curr(rq); 2207 2208 /* 2209 * A queue event has occurred, and we're going to schedule. In 2210 * this case, we can save a useless back to back clock update. 2211 */ 2212 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2213 rq_clock_skip_update(rq); 2214 } 2215 2216 static __always_inline 2217 int __task_state_match(struct task_struct *p, unsigned int state) 2218 { 2219 if (READ_ONCE(p->__state) & state) 2220 return 1; 2221 2222 #ifdef CONFIG_PREEMPT_RT 2223 if (READ_ONCE(p->saved_state) & state) 2224 return -1; 2225 #endif 2226 return 0; 2227 } 2228 2229 static __always_inline 2230 int task_state_match(struct task_struct *p, unsigned int state) 2231 { 2232 #ifdef CONFIG_PREEMPT_RT 2233 int match; 2234 2235 /* 2236 * Serialize against current_save_and_set_rtlock_wait_state() and 2237 * current_restore_rtlock_saved_state(). 2238 */ 2239 raw_spin_lock_irq(&p->pi_lock); 2240 match = __task_state_match(p, state); 2241 raw_spin_unlock_irq(&p->pi_lock); 2242 2243 return match; 2244 #else 2245 return __task_state_match(p, state); 2246 #endif 2247 } 2248 2249 /* 2250 * wait_task_inactive - wait for a thread to unschedule. 2251 * 2252 * Wait for the thread to block in any of the states set in @match_state. 2253 * If it changes, i.e. @p might have woken up, then return zero. When we 2254 * succeed in waiting for @p to be off its CPU, we return a positive number 2255 * (its total switch count). If a second call a short while later returns the 2256 * same number, the caller can be sure that @p has remained unscheduled the 2257 * whole time. 2258 * 2259 * The caller must ensure that the task *will* unschedule sometime soon, 2260 * else this function might spin for a *long* time. This function can't 2261 * be called with interrupts off, or it may introduce deadlock with 2262 * smp_call_function() if an IPI is sent by the same process we are 2263 * waiting to become inactive. 2264 */ 2265 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2266 { 2267 int running, queued, match; 2268 struct rq_flags rf; 2269 unsigned long ncsw; 2270 struct rq *rq; 2271 2272 for (;;) { 2273 /* 2274 * We do the initial early heuristics without holding 2275 * any task-queue locks at all. We'll only try to get 2276 * the runqueue lock when things look like they will 2277 * work out! 2278 */ 2279 rq = task_rq(p); 2280 2281 /* 2282 * If the task is actively running on another CPU 2283 * still, just relax and busy-wait without holding 2284 * any locks. 2285 * 2286 * NOTE! Since we don't hold any locks, it's not 2287 * even sure that "rq" stays as the right runqueue! 2288 * But we don't care, since "task_on_cpu()" will 2289 * return false if the runqueue has changed and p 2290 * is actually now running somewhere else! 2291 */ 2292 while (task_on_cpu(rq, p)) { 2293 if (!task_state_match(p, match_state)) 2294 return 0; 2295 cpu_relax(); 2296 } 2297 2298 /* 2299 * Ok, time to look more closely! We need the rq 2300 * lock now, to be *sure*. If we're wrong, we'll 2301 * just go back and repeat. 2302 */ 2303 rq = task_rq_lock(p, &rf); 2304 trace_sched_wait_task(p); 2305 running = task_on_cpu(rq, p); 2306 queued = task_on_rq_queued(p); 2307 ncsw = 0; 2308 if ((match = __task_state_match(p, match_state))) { 2309 /* 2310 * When matching on p->saved_state, consider this task 2311 * still queued so it will wait. 2312 */ 2313 if (match < 0) 2314 queued = 1; 2315 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2316 } 2317 task_rq_unlock(rq, p, &rf); 2318 2319 /* 2320 * If it changed from the expected state, bail out now. 2321 */ 2322 if (unlikely(!ncsw)) 2323 break; 2324 2325 /* 2326 * Was it really running after all now that we 2327 * checked with the proper locks actually held? 2328 * 2329 * Oops. Go back and try again.. 2330 */ 2331 if (unlikely(running)) { 2332 cpu_relax(); 2333 continue; 2334 } 2335 2336 /* 2337 * It's not enough that it's not actively running, 2338 * it must be off the runqueue _entirely_, and not 2339 * preempted! 2340 * 2341 * So if it was still runnable (but just not actively 2342 * running right now), it's preempted, and we should 2343 * yield - it could be a while. 2344 */ 2345 if (unlikely(queued)) { 2346 ktime_t to = NSEC_PER_SEC / HZ; 2347 2348 set_current_state(TASK_UNINTERRUPTIBLE); 2349 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2350 continue; 2351 } 2352 2353 /* 2354 * Ahh, all good. It wasn't running, and it wasn't 2355 * runnable, which means that it will never become 2356 * running in the future either. We're all done! 2357 */ 2358 break; 2359 } 2360 2361 return ncsw; 2362 } 2363 2364 #ifdef CONFIG_SMP 2365 2366 static void 2367 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2368 2369 static int __set_cpus_allowed_ptr(struct task_struct *p, 2370 struct affinity_context *ctx); 2371 2372 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2373 { 2374 struct affinity_context ac = { 2375 .new_mask = cpumask_of(rq->cpu), 2376 .flags = SCA_MIGRATE_DISABLE, 2377 }; 2378 2379 if (likely(!p->migration_disabled)) 2380 return; 2381 2382 if (p->cpus_ptr != &p->cpus_mask) 2383 return; 2384 2385 /* 2386 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2387 */ 2388 __do_set_cpus_allowed(p, &ac); 2389 } 2390 2391 void migrate_disable(void) 2392 { 2393 struct task_struct *p = current; 2394 2395 if (p->migration_disabled) { 2396 p->migration_disabled++; 2397 return; 2398 } 2399 2400 preempt_disable(); 2401 this_rq()->nr_pinned++; 2402 p->migration_disabled = 1; 2403 preempt_enable(); 2404 } 2405 EXPORT_SYMBOL_GPL(migrate_disable); 2406 2407 void migrate_enable(void) 2408 { 2409 struct task_struct *p = current; 2410 struct affinity_context ac = { 2411 .new_mask = &p->cpus_mask, 2412 .flags = SCA_MIGRATE_ENABLE, 2413 }; 2414 2415 if (p->migration_disabled > 1) { 2416 p->migration_disabled--; 2417 return; 2418 } 2419 2420 if (WARN_ON_ONCE(!p->migration_disabled)) 2421 return; 2422 2423 /* 2424 * Ensure stop_task runs either before or after this, and that 2425 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2426 */ 2427 preempt_disable(); 2428 if (p->cpus_ptr != &p->cpus_mask) 2429 __set_cpus_allowed_ptr(p, &ac); 2430 /* 2431 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2432 * regular cpus_mask, otherwise things that race (eg. 2433 * select_fallback_rq) get confused. 2434 */ 2435 barrier(); 2436 p->migration_disabled = 0; 2437 this_rq()->nr_pinned--; 2438 preempt_enable(); 2439 } 2440 EXPORT_SYMBOL_GPL(migrate_enable); 2441 2442 static inline bool rq_has_pinned_tasks(struct rq *rq) 2443 { 2444 return rq->nr_pinned; 2445 } 2446 2447 /* 2448 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2449 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2450 */ 2451 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2452 { 2453 /* When not in the task's cpumask, no point in looking further. */ 2454 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2455 return false; 2456 2457 /* migrate_disabled() must be allowed to finish. */ 2458 if (is_migration_disabled(p)) 2459 return cpu_online(cpu); 2460 2461 /* Non kernel threads are not allowed during either online or offline. */ 2462 if (!(p->flags & PF_KTHREAD)) 2463 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2464 2465 /* KTHREAD_IS_PER_CPU is always allowed. */ 2466 if (kthread_is_per_cpu(p)) 2467 return cpu_online(cpu); 2468 2469 /* Regular kernel threads don't get to stay during offline. */ 2470 if (cpu_dying(cpu)) 2471 return false; 2472 2473 /* But are allowed during online. */ 2474 return cpu_online(cpu); 2475 } 2476 2477 /* 2478 * This is how migration works: 2479 * 2480 * 1) we invoke migration_cpu_stop() on the target CPU using 2481 * stop_one_cpu(). 2482 * 2) stopper starts to run (implicitly forcing the migrated thread 2483 * off the CPU) 2484 * 3) it checks whether the migrated task is still in the wrong runqueue. 2485 * 4) if it's in the wrong runqueue then the migration thread removes 2486 * it and puts it into the right queue. 2487 * 5) stopper completes and stop_one_cpu() returns and the migration 2488 * is done. 2489 */ 2490 2491 /* 2492 * move_queued_task - move a queued task to new rq. 2493 * 2494 * Returns (locked) new rq. Old rq's lock is released. 2495 */ 2496 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2497 struct task_struct *p, int new_cpu) 2498 { 2499 lockdep_assert_rq_held(rq); 2500 2501 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2502 set_task_cpu(p, new_cpu); 2503 rq_unlock(rq, rf); 2504 2505 rq = cpu_rq(new_cpu); 2506 2507 rq_lock(rq, rf); 2508 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2509 activate_task(rq, p, 0); 2510 check_preempt_curr(rq, p, 0); 2511 2512 return rq; 2513 } 2514 2515 struct migration_arg { 2516 struct task_struct *task; 2517 int dest_cpu; 2518 struct set_affinity_pending *pending; 2519 }; 2520 2521 /* 2522 * @refs: number of wait_for_completion() 2523 * @stop_pending: is @stop_work in use 2524 */ 2525 struct set_affinity_pending { 2526 refcount_t refs; 2527 unsigned int stop_pending; 2528 struct completion done; 2529 struct cpu_stop_work stop_work; 2530 struct migration_arg arg; 2531 }; 2532 2533 /* 2534 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2535 * this because either it can't run here any more (set_cpus_allowed() 2536 * away from this CPU, or CPU going down), or because we're 2537 * attempting to rebalance this task on exec (sched_exec). 2538 * 2539 * So we race with normal scheduler movements, but that's OK, as long 2540 * as the task is no longer on this CPU. 2541 */ 2542 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2543 struct task_struct *p, int dest_cpu) 2544 { 2545 /* Affinity changed (again). */ 2546 if (!is_cpu_allowed(p, dest_cpu)) 2547 return rq; 2548 2549 rq = move_queued_task(rq, rf, p, dest_cpu); 2550 2551 return rq; 2552 } 2553 2554 /* 2555 * migration_cpu_stop - this will be executed by a highprio stopper thread 2556 * and performs thread migration by bumping thread off CPU then 2557 * 'pushing' onto another runqueue. 2558 */ 2559 static int migration_cpu_stop(void *data) 2560 { 2561 struct migration_arg *arg = data; 2562 struct set_affinity_pending *pending = arg->pending; 2563 struct task_struct *p = arg->task; 2564 struct rq *rq = this_rq(); 2565 bool complete = false; 2566 struct rq_flags rf; 2567 2568 /* 2569 * The original target CPU might have gone down and we might 2570 * be on another CPU but it doesn't matter. 2571 */ 2572 local_irq_save(rf.flags); 2573 /* 2574 * We need to explicitly wake pending tasks before running 2575 * __migrate_task() such that we will not miss enforcing cpus_ptr 2576 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2577 */ 2578 flush_smp_call_function_queue(); 2579 2580 raw_spin_lock(&p->pi_lock); 2581 rq_lock(rq, &rf); 2582 2583 /* 2584 * If we were passed a pending, then ->stop_pending was set, thus 2585 * p->migration_pending must have remained stable. 2586 */ 2587 WARN_ON_ONCE(pending && pending != p->migration_pending); 2588 2589 /* 2590 * If task_rq(p) != rq, it cannot be migrated here, because we're 2591 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2592 * we're holding p->pi_lock. 2593 */ 2594 if (task_rq(p) == rq) { 2595 if (is_migration_disabled(p)) 2596 goto out; 2597 2598 if (pending) { 2599 p->migration_pending = NULL; 2600 complete = true; 2601 2602 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2603 goto out; 2604 } 2605 2606 if (task_on_rq_queued(p)) { 2607 update_rq_clock(rq); 2608 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2609 } else { 2610 p->wake_cpu = arg->dest_cpu; 2611 } 2612 2613 /* 2614 * XXX __migrate_task() can fail, at which point we might end 2615 * up running on a dodgy CPU, AFAICT this can only happen 2616 * during CPU hotplug, at which point we'll get pushed out 2617 * anyway, so it's probably not a big deal. 2618 */ 2619 2620 } else if (pending) { 2621 /* 2622 * This happens when we get migrated between migrate_enable()'s 2623 * preempt_enable() and scheduling the stopper task. At that 2624 * point we're a regular task again and not current anymore. 2625 * 2626 * A !PREEMPT kernel has a giant hole here, which makes it far 2627 * more likely. 2628 */ 2629 2630 /* 2631 * The task moved before the stopper got to run. We're holding 2632 * ->pi_lock, so the allowed mask is stable - if it got 2633 * somewhere allowed, we're done. 2634 */ 2635 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2636 p->migration_pending = NULL; 2637 complete = true; 2638 goto out; 2639 } 2640 2641 /* 2642 * When migrate_enable() hits a rq mis-match we can't reliably 2643 * determine is_migration_disabled() and so have to chase after 2644 * it. 2645 */ 2646 WARN_ON_ONCE(!pending->stop_pending); 2647 task_rq_unlock(rq, p, &rf); 2648 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2649 &pending->arg, &pending->stop_work); 2650 return 0; 2651 } 2652 out: 2653 if (pending) 2654 pending->stop_pending = false; 2655 task_rq_unlock(rq, p, &rf); 2656 2657 if (complete) 2658 complete_all(&pending->done); 2659 2660 return 0; 2661 } 2662 2663 int push_cpu_stop(void *arg) 2664 { 2665 struct rq *lowest_rq = NULL, *rq = this_rq(); 2666 struct task_struct *p = arg; 2667 2668 raw_spin_lock_irq(&p->pi_lock); 2669 raw_spin_rq_lock(rq); 2670 2671 if (task_rq(p) != rq) 2672 goto out_unlock; 2673 2674 if (is_migration_disabled(p)) { 2675 p->migration_flags |= MDF_PUSH; 2676 goto out_unlock; 2677 } 2678 2679 p->migration_flags &= ~MDF_PUSH; 2680 2681 if (p->sched_class->find_lock_rq) 2682 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2683 2684 if (!lowest_rq) 2685 goto out_unlock; 2686 2687 // XXX validate p is still the highest prio task 2688 if (task_rq(p) == rq) { 2689 deactivate_task(rq, p, 0); 2690 set_task_cpu(p, lowest_rq->cpu); 2691 activate_task(lowest_rq, p, 0); 2692 resched_curr(lowest_rq); 2693 } 2694 2695 double_unlock_balance(rq, lowest_rq); 2696 2697 out_unlock: 2698 rq->push_busy = false; 2699 raw_spin_rq_unlock(rq); 2700 raw_spin_unlock_irq(&p->pi_lock); 2701 2702 put_task_struct(p); 2703 return 0; 2704 } 2705 2706 /* 2707 * sched_class::set_cpus_allowed must do the below, but is not required to 2708 * actually call this function. 2709 */ 2710 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2711 { 2712 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2713 p->cpus_ptr = ctx->new_mask; 2714 return; 2715 } 2716 2717 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2718 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2719 2720 /* 2721 * Swap in a new user_cpus_ptr if SCA_USER flag set 2722 */ 2723 if (ctx->flags & SCA_USER) 2724 swap(p->user_cpus_ptr, ctx->user_mask); 2725 } 2726 2727 static void 2728 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2729 { 2730 struct rq *rq = task_rq(p); 2731 bool queued, running; 2732 2733 /* 2734 * This here violates the locking rules for affinity, since we're only 2735 * supposed to change these variables while holding both rq->lock and 2736 * p->pi_lock. 2737 * 2738 * HOWEVER, it magically works, because ttwu() is the only code that 2739 * accesses these variables under p->pi_lock and only does so after 2740 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2741 * before finish_task(). 2742 * 2743 * XXX do further audits, this smells like something putrid. 2744 */ 2745 if (ctx->flags & SCA_MIGRATE_DISABLE) 2746 SCHED_WARN_ON(!p->on_cpu); 2747 else 2748 lockdep_assert_held(&p->pi_lock); 2749 2750 queued = task_on_rq_queued(p); 2751 running = task_current(rq, p); 2752 2753 if (queued) { 2754 /* 2755 * Because __kthread_bind() calls this on blocked tasks without 2756 * holding rq->lock. 2757 */ 2758 lockdep_assert_rq_held(rq); 2759 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2760 } 2761 if (running) 2762 put_prev_task(rq, p); 2763 2764 p->sched_class->set_cpus_allowed(p, ctx); 2765 2766 if (queued) 2767 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2768 if (running) 2769 set_next_task(rq, p); 2770 } 2771 2772 /* 2773 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2774 * affinity (if any) should be destroyed too. 2775 */ 2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2777 { 2778 struct affinity_context ac = { 2779 .new_mask = new_mask, 2780 .user_mask = NULL, 2781 .flags = SCA_USER, /* clear the user requested mask */ 2782 }; 2783 union cpumask_rcuhead { 2784 cpumask_t cpumask; 2785 struct rcu_head rcu; 2786 }; 2787 2788 __do_set_cpus_allowed(p, &ac); 2789 2790 /* 2791 * Because this is called with p->pi_lock held, it is not possible 2792 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2793 * kfree_rcu(). 2794 */ 2795 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2796 } 2797 2798 static cpumask_t *alloc_user_cpus_ptr(int node) 2799 { 2800 /* 2801 * See do_set_cpus_allowed() above for the rcu_head usage. 2802 */ 2803 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2804 2805 return kmalloc_node(size, GFP_KERNEL, node); 2806 } 2807 2808 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2809 int node) 2810 { 2811 cpumask_t *user_mask; 2812 unsigned long flags; 2813 2814 /* 2815 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2816 * may differ by now due to racing. 2817 */ 2818 dst->user_cpus_ptr = NULL; 2819 2820 /* 2821 * This check is racy and losing the race is a valid situation. 2822 * It is not worth the extra overhead of taking the pi_lock on 2823 * every fork/clone. 2824 */ 2825 if (data_race(!src->user_cpus_ptr)) 2826 return 0; 2827 2828 user_mask = alloc_user_cpus_ptr(node); 2829 if (!user_mask) 2830 return -ENOMEM; 2831 2832 /* 2833 * Use pi_lock to protect content of user_cpus_ptr 2834 * 2835 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2836 * do_set_cpus_allowed(). 2837 */ 2838 raw_spin_lock_irqsave(&src->pi_lock, flags); 2839 if (src->user_cpus_ptr) { 2840 swap(dst->user_cpus_ptr, user_mask); 2841 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2842 } 2843 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2844 2845 if (unlikely(user_mask)) 2846 kfree(user_mask); 2847 2848 return 0; 2849 } 2850 2851 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2852 { 2853 struct cpumask *user_mask = NULL; 2854 2855 swap(p->user_cpus_ptr, user_mask); 2856 2857 return user_mask; 2858 } 2859 2860 void release_user_cpus_ptr(struct task_struct *p) 2861 { 2862 kfree(clear_user_cpus_ptr(p)); 2863 } 2864 2865 /* 2866 * This function is wildly self concurrent; here be dragons. 2867 * 2868 * 2869 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2870 * designated task is enqueued on an allowed CPU. If that task is currently 2871 * running, we have to kick it out using the CPU stopper. 2872 * 2873 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2874 * Consider: 2875 * 2876 * Initial conditions: P0->cpus_mask = [0, 1] 2877 * 2878 * P0@CPU0 P1 2879 * 2880 * migrate_disable(); 2881 * <preempted> 2882 * set_cpus_allowed_ptr(P0, [1]); 2883 * 2884 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2885 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2886 * This means we need the following scheme: 2887 * 2888 * P0@CPU0 P1 2889 * 2890 * migrate_disable(); 2891 * <preempted> 2892 * set_cpus_allowed_ptr(P0, [1]); 2893 * <blocks> 2894 * <resumes> 2895 * migrate_enable(); 2896 * __set_cpus_allowed_ptr(); 2897 * <wakes local stopper> 2898 * `--> <woken on migration completion> 2899 * 2900 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2901 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2902 * task p are serialized by p->pi_lock, which we can leverage: the one that 2903 * should come into effect at the end of the Migrate-Disable region is the last 2904 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2905 * but we still need to properly signal those waiting tasks at the appropriate 2906 * moment. 2907 * 2908 * This is implemented using struct set_affinity_pending. The first 2909 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2910 * setup an instance of that struct and install it on the targeted task_struct. 2911 * Any and all further callers will reuse that instance. Those then wait for 2912 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2913 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2914 * 2915 * 2916 * (1) In the cases covered above. There is one more where the completion is 2917 * signaled within affine_move_task() itself: when a subsequent affinity request 2918 * occurs after the stopper bailed out due to the targeted task still being 2919 * Migrate-Disable. Consider: 2920 * 2921 * Initial conditions: P0->cpus_mask = [0, 1] 2922 * 2923 * CPU0 P1 P2 2924 * <P0> 2925 * migrate_disable(); 2926 * <preempted> 2927 * set_cpus_allowed_ptr(P0, [1]); 2928 * <blocks> 2929 * <migration/0> 2930 * migration_cpu_stop() 2931 * is_migration_disabled() 2932 * <bails> 2933 * set_cpus_allowed_ptr(P0, [0, 1]); 2934 * <signal completion> 2935 * <awakes> 2936 * 2937 * Note that the above is safe vs a concurrent migrate_enable(), as any 2938 * pending affinity completion is preceded by an uninstallation of 2939 * p->migration_pending done with p->pi_lock held. 2940 */ 2941 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2942 int dest_cpu, unsigned int flags) 2943 __releases(rq->lock) 2944 __releases(p->pi_lock) 2945 { 2946 struct set_affinity_pending my_pending = { }, *pending = NULL; 2947 bool stop_pending, complete = false; 2948 2949 /* Can the task run on the task's current CPU? If so, we're done */ 2950 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2951 struct task_struct *push_task = NULL; 2952 2953 if ((flags & SCA_MIGRATE_ENABLE) && 2954 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2955 rq->push_busy = true; 2956 push_task = get_task_struct(p); 2957 } 2958 2959 /* 2960 * If there are pending waiters, but no pending stop_work, 2961 * then complete now. 2962 */ 2963 pending = p->migration_pending; 2964 if (pending && !pending->stop_pending) { 2965 p->migration_pending = NULL; 2966 complete = true; 2967 } 2968 2969 task_rq_unlock(rq, p, rf); 2970 2971 if (push_task) { 2972 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2973 p, &rq->push_work); 2974 } 2975 2976 if (complete) 2977 complete_all(&pending->done); 2978 2979 return 0; 2980 } 2981 2982 if (!(flags & SCA_MIGRATE_ENABLE)) { 2983 /* serialized by p->pi_lock */ 2984 if (!p->migration_pending) { 2985 /* Install the request */ 2986 refcount_set(&my_pending.refs, 1); 2987 init_completion(&my_pending.done); 2988 my_pending.arg = (struct migration_arg) { 2989 .task = p, 2990 .dest_cpu = dest_cpu, 2991 .pending = &my_pending, 2992 }; 2993 2994 p->migration_pending = &my_pending; 2995 } else { 2996 pending = p->migration_pending; 2997 refcount_inc(&pending->refs); 2998 /* 2999 * Affinity has changed, but we've already installed a 3000 * pending. migration_cpu_stop() *must* see this, else 3001 * we risk a completion of the pending despite having a 3002 * task on a disallowed CPU. 3003 * 3004 * Serialized by p->pi_lock, so this is safe. 3005 */ 3006 pending->arg.dest_cpu = dest_cpu; 3007 } 3008 } 3009 pending = p->migration_pending; 3010 /* 3011 * - !MIGRATE_ENABLE: 3012 * we'll have installed a pending if there wasn't one already. 3013 * 3014 * - MIGRATE_ENABLE: 3015 * we're here because the current CPU isn't matching anymore, 3016 * the only way that can happen is because of a concurrent 3017 * set_cpus_allowed_ptr() call, which should then still be 3018 * pending completion. 3019 * 3020 * Either way, we really should have a @pending here. 3021 */ 3022 if (WARN_ON_ONCE(!pending)) { 3023 task_rq_unlock(rq, p, rf); 3024 return -EINVAL; 3025 } 3026 3027 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3028 /* 3029 * MIGRATE_ENABLE gets here because 'p == current', but for 3030 * anything else we cannot do is_migration_disabled(), punt 3031 * and have the stopper function handle it all race-free. 3032 */ 3033 stop_pending = pending->stop_pending; 3034 if (!stop_pending) 3035 pending->stop_pending = true; 3036 3037 if (flags & SCA_MIGRATE_ENABLE) 3038 p->migration_flags &= ~MDF_PUSH; 3039 3040 task_rq_unlock(rq, p, rf); 3041 3042 if (!stop_pending) { 3043 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3044 &pending->arg, &pending->stop_work); 3045 } 3046 3047 if (flags & SCA_MIGRATE_ENABLE) 3048 return 0; 3049 } else { 3050 3051 if (!is_migration_disabled(p)) { 3052 if (task_on_rq_queued(p)) 3053 rq = move_queued_task(rq, rf, p, dest_cpu); 3054 3055 if (!pending->stop_pending) { 3056 p->migration_pending = NULL; 3057 complete = true; 3058 } 3059 } 3060 task_rq_unlock(rq, p, rf); 3061 3062 if (complete) 3063 complete_all(&pending->done); 3064 } 3065 3066 wait_for_completion(&pending->done); 3067 3068 if (refcount_dec_and_test(&pending->refs)) 3069 wake_up_var(&pending->refs); /* No UaF, just an address */ 3070 3071 /* 3072 * Block the original owner of &pending until all subsequent callers 3073 * have seen the completion and decremented the refcount 3074 */ 3075 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3076 3077 /* ARGH */ 3078 WARN_ON_ONCE(my_pending.stop_pending); 3079 3080 return 0; 3081 } 3082 3083 /* 3084 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3085 */ 3086 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3087 struct affinity_context *ctx, 3088 struct rq *rq, 3089 struct rq_flags *rf) 3090 __releases(rq->lock) 3091 __releases(p->pi_lock) 3092 { 3093 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3094 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3095 bool kthread = p->flags & PF_KTHREAD; 3096 unsigned int dest_cpu; 3097 int ret = 0; 3098 3099 update_rq_clock(rq); 3100 3101 if (kthread || is_migration_disabled(p)) { 3102 /* 3103 * Kernel threads are allowed on online && !active CPUs, 3104 * however, during cpu-hot-unplug, even these might get pushed 3105 * away if not KTHREAD_IS_PER_CPU. 3106 * 3107 * Specifically, migration_disabled() tasks must not fail the 3108 * cpumask_any_and_distribute() pick below, esp. so on 3109 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3110 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3111 */ 3112 cpu_valid_mask = cpu_online_mask; 3113 } 3114 3115 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3116 ret = -EINVAL; 3117 goto out; 3118 } 3119 3120 /* 3121 * Must re-check here, to close a race against __kthread_bind(), 3122 * sched_setaffinity() is not guaranteed to observe the flag. 3123 */ 3124 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3125 ret = -EINVAL; 3126 goto out; 3127 } 3128 3129 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3130 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3131 if (ctx->flags & SCA_USER) 3132 swap(p->user_cpus_ptr, ctx->user_mask); 3133 goto out; 3134 } 3135 3136 if (WARN_ON_ONCE(p == current && 3137 is_migration_disabled(p) && 3138 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3139 ret = -EBUSY; 3140 goto out; 3141 } 3142 } 3143 3144 /* 3145 * Picking a ~random cpu helps in cases where we are changing affinity 3146 * for groups of tasks (ie. cpuset), so that load balancing is not 3147 * immediately required to distribute the tasks within their new mask. 3148 */ 3149 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3150 if (dest_cpu >= nr_cpu_ids) { 3151 ret = -EINVAL; 3152 goto out; 3153 } 3154 3155 __do_set_cpus_allowed(p, ctx); 3156 3157 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3158 3159 out: 3160 task_rq_unlock(rq, p, rf); 3161 3162 return ret; 3163 } 3164 3165 /* 3166 * Change a given task's CPU affinity. Migrate the thread to a 3167 * proper CPU and schedule it away if the CPU it's executing on 3168 * is removed from the allowed bitmask. 3169 * 3170 * NOTE: the caller must have a valid reference to the task, the 3171 * task must not exit() & deallocate itself prematurely. The 3172 * call is not atomic; no spinlocks may be held. 3173 */ 3174 static int __set_cpus_allowed_ptr(struct task_struct *p, 3175 struct affinity_context *ctx) 3176 { 3177 struct rq_flags rf; 3178 struct rq *rq; 3179 3180 rq = task_rq_lock(p, &rf); 3181 /* 3182 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3183 * flags are set. 3184 */ 3185 if (p->user_cpus_ptr && 3186 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3187 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3188 ctx->new_mask = rq->scratch_mask; 3189 3190 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3191 } 3192 3193 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3194 { 3195 struct affinity_context ac = { 3196 .new_mask = new_mask, 3197 .flags = 0, 3198 }; 3199 3200 return __set_cpus_allowed_ptr(p, &ac); 3201 } 3202 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3203 3204 /* 3205 * Change a given task's CPU affinity to the intersection of its current 3206 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3207 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3208 * affinity or use cpu_online_mask instead. 3209 * 3210 * If the resulting mask is empty, leave the affinity unchanged and return 3211 * -EINVAL. 3212 */ 3213 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3214 struct cpumask *new_mask, 3215 const struct cpumask *subset_mask) 3216 { 3217 struct affinity_context ac = { 3218 .new_mask = new_mask, 3219 .flags = 0, 3220 }; 3221 struct rq_flags rf; 3222 struct rq *rq; 3223 int err; 3224 3225 rq = task_rq_lock(p, &rf); 3226 3227 /* 3228 * Forcefully restricting the affinity of a deadline task is 3229 * likely to cause problems, so fail and noisily override the 3230 * mask entirely. 3231 */ 3232 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3233 err = -EPERM; 3234 goto err_unlock; 3235 } 3236 3237 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3238 err = -EINVAL; 3239 goto err_unlock; 3240 } 3241 3242 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3243 3244 err_unlock: 3245 task_rq_unlock(rq, p, &rf); 3246 return err; 3247 } 3248 3249 /* 3250 * Restrict the CPU affinity of task @p so that it is a subset of 3251 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3252 * old affinity mask. If the resulting mask is empty, we warn and walk 3253 * up the cpuset hierarchy until we find a suitable mask. 3254 */ 3255 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3256 { 3257 cpumask_var_t new_mask; 3258 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3259 3260 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3261 3262 /* 3263 * __migrate_task() can fail silently in the face of concurrent 3264 * offlining of the chosen destination CPU, so take the hotplug 3265 * lock to ensure that the migration succeeds. 3266 */ 3267 cpus_read_lock(); 3268 if (!cpumask_available(new_mask)) 3269 goto out_set_mask; 3270 3271 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3272 goto out_free_mask; 3273 3274 /* 3275 * We failed to find a valid subset of the affinity mask for the 3276 * task, so override it based on its cpuset hierarchy. 3277 */ 3278 cpuset_cpus_allowed(p, new_mask); 3279 override_mask = new_mask; 3280 3281 out_set_mask: 3282 if (printk_ratelimit()) { 3283 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3284 task_pid_nr(p), p->comm, 3285 cpumask_pr_args(override_mask)); 3286 } 3287 3288 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3289 out_free_mask: 3290 cpus_read_unlock(); 3291 free_cpumask_var(new_mask); 3292 } 3293 3294 static int 3295 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3296 3297 /* 3298 * Restore the affinity of a task @p which was previously restricted by a 3299 * call to force_compatible_cpus_allowed_ptr(). 3300 * 3301 * It is the caller's responsibility to serialise this with any calls to 3302 * force_compatible_cpus_allowed_ptr(@p). 3303 */ 3304 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3305 { 3306 struct affinity_context ac = { 3307 .new_mask = task_user_cpus(p), 3308 .flags = 0, 3309 }; 3310 int ret; 3311 3312 /* 3313 * Try to restore the old affinity mask with __sched_setaffinity(). 3314 * Cpuset masking will be done there too. 3315 */ 3316 ret = __sched_setaffinity(p, &ac); 3317 WARN_ON_ONCE(ret); 3318 } 3319 3320 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3321 { 3322 #ifdef CONFIG_SCHED_DEBUG 3323 unsigned int state = READ_ONCE(p->__state); 3324 3325 /* 3326 * We should never call set_task_cpu() on a blocked task, 3327 * ttwu() will sort out the placement. 3328 */ 3329 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3330 3331 /* 3332 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3333 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3334 * time relying on p->on_rq. 3335 */ 3336 WARN_ON_ONCE(state == TASK_RUNNING && 3337 p->sched_class == &fair_sched_class && 3338 (p->on_rq && !task_on_rq_migrating(p))); 3339 3340 #ifdef CONFIG_LOCKDEP 3341 /* 3342 * The caller should hold either p->pi_lock or rq->lock, when changing 3343 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3344 * 3345 * sched_move_task() holds both and thus holding either pins the cgroup, 3346 * see task_group(). 3347 * 3348 * Furthermore, all task_rq users should acquire both locks, see 3349 * task_rq_lock(). 3350 */ 3351 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3352 lockdep_is_held(__rq_lockp(task_rq(p))))); 3353 #endif 3354 /* 3355 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3356 */ 3357 WARN_ON_ONCE(!cpu_online(new_cpu)); 3358 3359 WARN_ON_ONCE(is_migration_disabled(p)); 3360 #endif 3361 3362 trace_sched_migrate_task(p, new_cpu); 3363 3364 if (task_cpu(p) != new_cpu) { 3365 if (p->sched_class->migrate_task_rq) 3366 p->sched_class->migrate_task_rq(p, new_cpu); 3367 p->se.nr_migrations++; 3368 rseq_migrate(p); 3369 sched_mm_cid_migrate_from(p); 3370 perf_event_task_migrate(p); 3371 } 3372 3373 __set_task_cpu(p, new_cpu); 3374 } 3375 3376 #ifdef CONFIG_NUMA_BALANCING 3377 static void __migrate_swap_task(struct task_struct *p, int cpu) 3378 { 3379 if (task_on_rq_queued(p)) { 3380 struct rq *src_rq, *dst_rq; 3381 struct rq_flags srf, drf; 3382 3383 src_rq = task_rq(p); 3384 dst_rq = cpu_rq(cpu); 3385 3386 rq_pin_lock(src_rq, &srf); 3387 rq_pin_lock(dst_rq, &drf); 3388 3389 deactivate_task(src_rq, p, 0); 3390 set_task_cpu(p, cpu); 3391 activate_task(dst_rq, p, 0); 3392 check_preempt_curr(dst_rq, p, 0); 3393 3394 rq_unpin_lock(dst_rq, &drf); 3395 rq_unpin_lock(src_rq, &srf); 3396 3397 } else { 3398 /* 3399 * Task isn't running anymore; make it appear like we migrated 3400 * it before it went to sleep. This means on wakeup we make the 3401 * previous CPU our target instead of where it really is. 3402 */ 3403 p->wake_cpu = cpu; 3404 } 3405 } 3406 3407 struct migration_swap_arg { 3408 struct task_struct *src_task, *dst_task; 3409 int src_cpu, dst_cpu; 3410 }; 3411 3412 static int migrate_swap_stop(void *data) 3413 { 3414 struct migration_swap_arg *arg = data; 3415 struct rq *src_rq, *dst_rq; 3416 int ret = -EAGAIN; 3417 3418 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3419 return -EAGAIN; 3420 3421 src_rq = cpu_rq(arg->src_cpu); 3422 dst_rq = cpu_rq(arg->dst_cpu); 3423 3424 double_raw_lock(&arg->src_task->pi_lock, 3425 &arg->dst_task->pi_lock); 3426 double_rq_lock(src_rq, dst_rq); 3427 3428 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3429 goto unlock; 3430 3431 if (task_cpu(arg->src_task) != arg->src_cpu) 3432 goto unlock; 3433 3434 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3435 goto unlock; 3436 3437 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3438 goto unlock; 3439 3440 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3441 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3442 3443 ret = 0; 3444 3445 unlock: 3446 double_rq_unlock(src_rq, dst_rq); 3447 raw_spin_unlock(&arg->dst_task->pi_lock); 3448 raw_spin_unlock(&arg->src_task->pi_lock); 3449 3450 return ret; 3451 } 3452 3453 /* 3454 * Cross migrate two tasks 3455 */ 3456 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3457 int target_cpu, int curr_cpu) 3458 { 3459 struct migration_swap_arg arg; 3460 int ret = -EINVAL; 3461 3462 arg = (struct migration_swap_arg){ 3463 .src_task = cur, 3464 .src_cpu = curr_cpu, 3465 .dst_task = p, 3466 .dst_cpu = target_cpu, 3467 }; 3468 3469 if (arg.src_cpu == arg.dst_cpu) 3470 goto out; 3471 3472 /* 3473 * These three tests are all lockless; this is OK since all of them 3474 * will be re-checked with proper locks held further down the line. 3475 */ 3476 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3477 goto out; 3478 3479 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3480 goto out; 3481 3482 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3483 goto out; 3484 3485 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3486 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3487 3488 out: 3489 return ret; 3490 } 3491 #endif /* CONFIG_NUMA_BALANCING */ 3492 3493 /*** 3494 * kick_process - kick a running thread to enter/exit the kernel 3495 * @p: the to-be-kicked thread 3496 * 3497 * Cause a process which is running on another CPU to enter 3498 * kernel-mode, without any delay. (to get signals handled.) 3499 * 3500 * NOTE: this function doesn't have to take the runqueue lock, 3501 * because all it wants to ensure is that the remote task enters 3502 * the kernel. If the IPI races and the task has been migrated 3503 * to another CPU then no harm is done and the purpose has been 3504 * achieved as well. 3505 */ 3506 void kick_process(struct task_struct *p) 3507 { 3508 int cpu; 3509 3510 preempt_disable(); 3511 cpu = task_cpu(p); 3512 if ((cpu != smp_processor_id()) && task_curr(p)) 3513 smp_send_reschedule(cpu); 3514 preempt_enable(); 3515 } 3516 EXPORT_SYMBOL_GPL(kick_process); 3517 3518 /* 3519 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3520 * 3521 * A few notes on cpu_active vs cpu_online: 3522 * 3523 * - cpu_active must be a subset of cpu_online 3524 * 3525 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3526 * see __set_cpus_allowed_ptr(). At this point the newly online 3527 * CPU isn't yet part of the sched domains, and balancing will not 3528 * see it. 3529 * 3530 * - on CPU-down we clear cpu_active() to mask the sched domains and 3531 * avoid the load balancer to place new tasks on the to be removed 3532 * CPU. Existing tasks will remain running there and will be taken 3533 * off. 3534 * 3535 * This means that fallback selection must not select !active CPUs. 3536 * And can assume that any active CPU must be online. Conversely 3537 * select_task_rq() below may allow selection of !active CPUs in order 3538 * to satisfy the above rules. 3539 */ 3540 static int select_fallback_rq(int cpu, struct task_struct *p) 3541 { 3542 int nid = cpu_to_node(cpu); 3543 const struct cpumask *nodemask = NULL; 3544 enum { cpuset, possible, fail } state = cpuset; 3545 int dest_cpu; 3546 3547 /* 3548 * If the node that the CPU is on has been offlined, cpu_to_node() 3549 * will return -1. There is no CPU on the node, and we should 3550 * select the CPU on the other node. 3551 */ 3552 if (nid != -1) { 3553 nodemask = cpumask_of_node(nid); 3554 3555 /* Look for allowed, online CPU in same node. */ 3556 for_each_cpu(dest_cpu, nodemask) { 3557 if (is_cpu_allowed(p, dest_cpu)) 3558 return dest_cpu; 3559 } 3560 } 3561 3562 for (;;) { 3563 /* Any allowed, online CPU? */ 3564 for_each_cpu(dest_cpu, p->cpus_ptr) { 3565 if (!is_cpu_allowed(p, dest_cpu)) 3566 continue; 3567 3568 goto out; 3569 } 3570 3571 /* No more Mr. Nice Guy. */ 3572 switch (state) { 3573 case cpuset: 3574 if (cpuset_cpus_allowed_fallback(p)) { 3575 state = possible; 3576 break; 3577 } 3578 fallthrough; 3579 case possible: 3580 /* 3581 * XXX When called from select_task_rq() we only 3582 * hold p->pi_lock and again violate locking order. 3583 * 3584 * More yuck to audit. 3585 */ 3586 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3587 state = fail; 3588 break; 3589 case fail: 3590 BUG(); 3591 break; 3592 } 3593 } 3594 3595 out: 3596 if (state != cpuset) { 3597 /* 3598 * Don't tell them about moving exiting tasks or 3599 * kernel threads (both mm NULL), since they never 3600 * leave kernel. 3601 */ 3602 if (p->mm && printk_ratelimit()) { 3603 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3604 task_pid_nr(p), p->comm, cpu); 3605 } 3606 } 3607 3608 return dest_cpu; 3609 } 3610 3611 /* 3612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3613 */ 3614 static inline 3615 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3616 { 3617 lockdep_assert_held(&p->pi_lock); 3618 3619 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3620 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3621 else 3622 cpu = cpumask_any(p->cpus_ptr); 3623 3624 /* 3625 * In order not to call set_task_cpu() on a blocking task we need 3626 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3627 * CPU. 3628 * 3629 * Since this is common to all placement strategies, this lives here. 3630 * 3631 * [ this allows ->select_task() to simply return task_cpu(p) and 3632 * not worry about this generic constraint ] 3633 */ 3634 if (unlikely(!is_cpu_allowed(p, cpu))) 3635 cpu = select_fallback_rq(task_cpu(p), p); 3636 3637 return cpu; 3638 } 3639 3640 void sched_set_stop_task(int cpu, struct task_struct *stop) 3641 { 3642 static struct lock_class_key stop_pi_lock; 3643 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3644 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3645 3646 if (stop) { 3647 /* 3648 * Make it appear like a SCHED_FIFO task, its something 3649 * userspace knows about and won't get confused about. 3650 * 3651 * Also, it will make PI more or less work without too 3652 * much confusion -- but then, stop work should not 3653 * rely on PI working anyway. 3654 */ 3655 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3656 3657 stop->sched_class = &stop_sched_class; 3658 3659 /* 3660 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3661 * adjust the effective priority of a task. As a result, 3662 * rt_mutex_setprio() can trigger (RT) balancing operations, 3663 * which can then trigger wakeups of the stop thread to push 3664 * around the current task. 3665 * 3666 * The stop task itself will never be part of the PI-chain, it 3667 * never blocks, therefore that ->pi_lock recursion is safe. 3668 * Tell lockdep about this by placing the stop->pi_lock in its 3669 * own class. 3670 */ 3671 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3672 } 3673 3674 cpu_rq(cpu)->stop = stop; 3675 3676 if (old_stop) { 3677 /* 3678 * Reset it back to a normal scheduling class so that 3679 * it can die in pieces. 3680 */ 3681 old_stop->sched_class = &rt_sched_class; 3682 } 3683 } 3684 3685 #else /* CONFIG_SMP */ 3686 3687 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3688 struct affinity_context *ctx) 3689 { 3690 return set_cpus_allowed_ptr(p, ctx->new_mask); 3691 } 3692 3693 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3694 3695 static inline bool rq_has_pinned_tasks(struct rq *rq) 3696 { 3697 return false; 3698 } 3699 3700 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3701 { 3702 return NULL; 3703 } 3704 3705 #endif /* !CONFIG_SMP */ 3706 3707 static void 3708 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3709 { 3710 struct rq *rq; 3711 3712 if (!schedstat_enabled()) 3713 return; 3714 3715 rq = this_rq(); 3716 3717 #ifdef CONFIG_SMP 3718 if (cpu == rq->cpu) { 3719 __schedstat_inc(rq->ttwu_local); 3720 __schedstat_inc(p->stats.nr_wakeups_local); 3721 } else { 3722 struct sched_domain *sd; 3723 3724 __schedstat_inc(p->stats.nr_wakeups_remote); 3725 rcu_read_lock(); 3726 for_each_domain(rq->cpu, sd) { 3727 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3728 __schedstat_inc(sd->ttwu_wake_remote); 3729 break; 3730 } 3731 } 3732 rcu_read_unlock(); 3733 } 3734 3735 if (wake_flags & WF_MIGRATED) 3736 __schedstat_inc(p->stats.nr_wakeups_migrate); 3737 #endif /* CONFIG_SMP */ 3738 3739 __schedstat_inc(rq->ttwu_count); 3740 __schedstat_inc(p->stats.nr_wakeups); 3741 3742 if (wake_flags & WF_SYNC) 3743 __schedstat_inc(p->stats.nr_wakeups_sync); 3744 } 3745 3746 /* 3747 * Mark the task runnable. 3748 */ 3749 static inline void ttwu_do_wakeup(struct task_struct *p) 3750 { 3751 WRITE_ONCE(p->__state, TASK_RUNNING); 3752 trace_sched_wakeup(p); 3753 } 3754 3755 static void 3756 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3757 struct rq_flags *rf) 3758 { 3759 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3760 3761 lockdep_assert_rq_held(rq); 3762 3763 if (p->sched_contributes_to_load) 3764 rq->nr_uninterruptible--; 3765 3766 #ifdef CONFIG_SMP 3767 if (wake_flags & WF_MIGRATED) 3768 en_flags |= ENQUEUE_MIGRATED; 3769 else 3770 #endif 3771 if (p->in_iowait) { 3772 delayacct_blkio_end(p); 3773 atomic_dec(&task_rq(p)->nr_iowait); 3774 } 3775 3776 activate_task(rq, p, en_flags); 3777 check_preempt_curr(rq, p, wake_flags); 3778 3779 ttwu_do_wakeup(p); 3780 3781 #ifdef CONFIG_SMP 3782 if (p->sched_class->task_woken) { 3783 /* 3784 * Our task @p is fully woken up and running; so it's safe to 3785 * drop the rq->lock, hereafter rq is only used for statistics. 3786 */ 3787 rq_unpin_lock(rq, rf); 3788 p->sched_class->task_woken(rq, p); 3789 rq_repin_lock(rq, rf); 3790 } 3791 3792 if (rq->idle_stamp) { 3793 u64 delta = rq_clock(rq) - rq->idle_stamp; 3794 u64 max = 2*rq->max_idle_balance_cost; 3795 3796 update_avg(&rq->avg_idle, delta); 3797 3798 if (rq->avg_idle > max) 3799 rq->avg_idle = max; 3800 3801 rq->wake_stamp = jiffies; 3802 rq->wake_avg_idle = rq->avg_idle / 2; 3803 3804 rq->idle_stamp = 0; 3805 } 3806 #endif 3807 } 3808 3809 /* 3810 * Consider @p being inside a wait loop: 3811 * 3812 * for (;;) { 3813 * set_current_state(TASK_UNINTERRUPTIBLE); 3814 * 3815 * if (CONDITION) 3816 * break; 3817 * 3818 * schedule(); 3819 * } 3820 * __set_current_state(TASK_RUNNING); 3821 * 3822 * between set_current_state() and schedule(). In this case @p is still 3823 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3824 * an atomic manner. 3825 * 3826 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3827 * then schedule() must still happen and p->state can be changed to 3828 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3829 * need to do a full wakeup with enqueue. 3830 * 3831 * Returns: %true when the wakeup is done, 3832 * %false otherwise. 3833 */ 3834 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3835 { 3836 struct rq_flags rf; 3837 struct rq *rq; 3838 int ret = 0; 3839 3840 rq = __task_rq_lock(p, &rf); 3841 if (task_on_rq_queued(p)) { 3842 if (!task_on_cpu(rq, p)) { 3843 /* 3844 * When on_rq && !on_cpu the task is preempted, see if 3845 * it should preempt the task that is current now. 3846 */ 3847 update_rq_clock(rq); 3848 check_preempt_curr(rq, p, wake_flags); 3849 } 3850 ttwu_do_wakeup(p); 3851 ret = 1; 3852 } 3853 __task_rq_unlock(rq, &rf); 3854 3855 return ret; 3856 } 3857 3858 #ifdef CONFIG_SMP 3859 void sched_ttwu_pending(void *arg) 3860 { 3861 struct llist_node *llist = arg; 3862 struct rq *rq = this_rq(); 3863 struct task_struct *p, *t; 3864 struct rq_flags rf; 3865 3866 if (!llist) 3867 return; 3868 3869 rq_lock_irqsave(rq, &rf); 3870 update_rq_clock(rq); 3871 3872 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3873 if (WARN_ON_ONCE(p->on_cpu)) 3874 smp_cond_load_acquire(&p->on_cpu, !VAL); 3875 3876 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3877 set_task_cpu(p, cpu_of(rq)); 3878 3879 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3880 } 3881 3882 /* 3883 * Must be after enqueueing at least once task such that 3884 * idle_cpu() does not observe a false-negative -- if it does, 3885 * it is possible for select_idle_siblings() to stack a number 3886 * of tasks on this CPU during that window. 3887 * 3888 * It is ok to clear ttwu_pending when another task pending. 3889 * We will receive IPI after local irq enabled and then enqueue it. 3890 * Since now nr_running > 0, idle_cpu() will always get correct result. 3891 */ 3892 WRITE_ONCE(rq->ttwu_pending, 0); 3893 rq_unlock_irqrestore(rq, &rf); 3894 } 3895 3896 /* 3897 * Prepare the scene for sending an IPI for a remote smp_call 3898 * 3899 * Returns true if the caller can proceed with sending the IPI. 3900 * Returns false otherwise. 3901 */ 3902 bool call_function_single_prep_ipi(int cpu) 3903 { 3904 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3905 trace_sched_wake_idle_without_ipi(cpu); 3906 return false; 3907 } 3908 3909 return true; 3910 } 3911 3912 /* 3913 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3914 * necessary. The wakee CPU on receipt of the IPI will queue the task 3915 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3916 * of the wakeup instead of the waker. 3917 */ 3918 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3919 { 3920 struct rq *rq = cpu_rq(cpu); 3921 3922 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3923 3924 WRITE_ONCE(rq->ttwu_pending, 1); 3925 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3926 } 3927 3928 void wake_up_if_idle(int cpu) 3929 { 3930 struct rq *rq = cpu_rq(cpu); 3931 struct rq_flags rf; 3932 3933 rcu_read_lock(); 3934 3935 if (!is_idle_task(rcu_dereference(rq->curr))) 3936 goto out; 3937 3938 rq_lock_irqsave(rq, &rf); 3939 if (is_idle_task(rq->curr)) 3940 resched_curr(rq); 3941 /* Else CPU is not idle, do nothing here: */ 3942 rq_unlock_irqrestore(rq, &rf); 3943 3944 out: 3945 rcu_read_unlock(); 3946 } 3947 3948 bool cpus_share_cache(int this_cpu, int that_cpu) 3949 { 3950 if (this_cpu == that_cpu) 3951 return true; 3952 3953 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3954 } 3955 3956 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3957 { 3958 /* 3959 * Do not complicate things with the async wake_list while the CPU is 3960 * in hotplug state. 3961 */ 3962 if (!cpu_active(cpu)) 3963 return false; 3964 3965 /* Ensure the task will still be allowed to run on the CPU. */ 3966 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3967 return false; 3968 3969 /* 3970 * If the CPU does not share cache, then queue the task on the 3971 * remote rqs wakelist to avoid accessing remote data. 3972 */ 3973 if (!cpus_share_cache(smp_processor_id(), cpu)) 3974 return true; 3975 3976 if (cpu == smp_processor_id()) 3977 return false; 3978 3979 /* 3980 * If the wakee cpu is idle, or the task is descheduling and the 3981 * only running task on the CPU, then use the wakelist to offload 3982 * the task activation to the idle (or soon-to-be-idle) CPU as 3983 * the current CPU is likely busy. nr_running is checked to 3984 * avoid unnecessary task stacking. 3985 * 3986 * Note that we can only get here with (wakee) p->on_rq=0, 3987 * p->on_cpu can be whatever, we've done the dequeue, so 3988 * the wakee has been accounted out of ->nr_running. 3989 */ 3990 if (!cpu_rq(cpu)->nr_running) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3997 { 3998 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3999 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 4000 __ttwu_queue_wakelist(p, cpu, wake_flags); 4001 return true; 4002 } 4003 4004 return false; 4005 } 4006 4007 #else /* !CONFIG_SMP */ 4008 4009 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 4010 { 4011 return false; 4012 } 4013 4014 #endif /* CONFIG_SMP */ 4015 4016 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 4017 { 4018 struct rq *rq = cpu_rq(cpu); 4019 struct rq_flags rf; 4020 4021 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4022 return; 4023 4024 rq_lock(rq, &rf); 4025 update_rq_clock(rq); 4026 ttwu_do_activate(rq, p, wake_flags, &rf); 4027 rq_unlock(rq, &rf); 4028 } 4029 4030 /* 4031 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4032 * 4033 * The caller holds p::pi_lock if p != current or has preemption 4034 * disabled when p == current. 4035 * 4036 * The rules of PREEMPT_RT saved_state: 4037 * 4038 * The related locking code always holds p::pi_lock when updating 4039 * p::saved_state, which means the code is fully serialized in both cases. 4040 * 4041 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 4042 * bits set. This allows to distinguish all wakeup scenarios. 4043 */ 4044 static __always_inline 4045 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4046 { 4047 int match; 4048 4049 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4050 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4051 state != TASK_RTLOCK_WAIT); 4052 } 4053 4054 *success = !!(match = __task_state_match(p, state)); 4055 4056 #ifdef CONFIG_PREEMPT_RT 4057 /* 4058 * Saved state preserves the task state across blocking on 4059 * an RT lock. If the state matches, set p::saved_state to 4060 * TASK_RUNNING, but do not wake the task because it waits 4061 * for a lock wakeup. Also indicate success because from 4062 * the regular waker's point of view this has succeeded. 4063 * 4064 * After acquiring the lock the task will restore p::__state 4065 * from p::saved_state which ensures that the regular 4066 * wakeup is not lost. The restore will also set 4067 * p::saved_state to TASK_RUNNING so any further tests will 4068 * not result in false positives vs. @success 4069 */ 4070 if (match < 0) 4071 p->saved_state = TASK_RUNNING; 4072 #endif 4073 return match > 0; 4074 } 4075 4076 /* 4077 * Notes on Program-Order guarantees on SMP systems. 4078 * 4079 * MIGRATION 4080 * 4081 * The basic program-order guarantee on SMP systems is that when a task [t] 4082 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4083 * execution on its new CPU [c1]. 4084 * 4085 * For migration (of runnable tasks) this is provided by the following means: 4086 * 4087 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4088 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4089 * rq(c1)->lock (if not at the same time, then in that order). 4090 * C) LOCK of the rq(c1)->lock scheduling in task 4091 * 4092 * Release/acquire chaining guarantees that B happens after A and C after B. 4093 * Note: the CPU doing B need not be c0 or c1 4094 * 4095 * Example: 4096 * 4097 * CPU0 CPU1 CPU2 4098 * 4099 * LOCK rq(0)->lock 4100 * sched-out X 4101 * sched-in Y 4102 * UNLOCK rq(0)->lock 4103 * 4104 * LOCK rq(0)->lock // orders against CPU0 4105 * dequeue X 4106 * UNLOCK rq(0)->lock 4107 * 4108 * LOCK rq(1)->lock 4109 * enqueue X 4110 * UNLOCK rq(1)->lock 4111 * 4112 * LOCK rq(1)->lock // orders against CPU2 4113 * sched-out Z 4114 * sched-in X 4115 * UNLOCK rq(1)->lock 4116 * 4117 * 4118 * BLOCKING -- aka. SLEEP + WAKEUP 4119 * 4120 * For blocking we (obviously) need to provide the same guarantee as for 4121 * migration. However the means are completely different as there is no lock 4122 * chain to provide order. Instead we do: 4123 * 4124 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4125 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4126 * 4127 * Example: 4128 * 4129 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4130 * 4131 * LOCK rq(0)->lock LOCK X->pi_lock 4132 * dequeue X 4133 * sched-out X 4134 * smp_store_release(X->on_cpu, 0); 4135 * 4136 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4137 * X->state = WAKING 4138 * set_task_cpu(X,2) 4139 * 4140 * LOCK rq(2)->lock 4141 * enqueue X 4142 * X->state = RUNNING 4143 * UNLOCK rq(2)->lock 4144 * 4145 * LOCK rq(2)->lock // orders against CPU1 4146 * sched-out Z 4147 * sched-in X 4148 * UNLOCK rq(2)->lock 4149 * 4150 * UNLOCK X->pi_lock 4151 * UNLOCK rq(0)->lock 4152 * 4153 * 4154 * However, for wakeups there is a second guarantee we must provide, namely we 4155 * must ensure that CONDITION=1 done by the caller can not be reordered with 4156 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4157 */ 4158 4159 /** 4160 * try_to_wake_up - wake up a thread 4161 * @p: the thread to be awakened 4162 * @state: the mask of task states that can be woken 4163 * @wake_flags: wake modifier flags (WF_*) 4164 * 4165 * Conceptually does: 4166 * 4167 * If (@state & @p->state) @p->state = TASK_RUNNING. 4168 * 4169 * If the task was not queued/runnable, also place it back on a runqueue. 4170 * 4171 * This function is atomic against schedule() which would dequeue the task. 4172 * 4173 * It issues a full memory barrier before accessing @p->state, see the comment 4174 * with set_current_state(). 4175 * 4176 * Uses p->pi_lock to serialize against concurrent wake-ups. 4177 * 4178 * Relies on p->pi_lock stabilizing: 4179 * - p->sched_class 4180 * - p->cpus_ptr 4181 * - p->sched_task_group 4182 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4183 * 4184 * Tries really hard to only take one task_rq(p)->lock for performance. 4185 * Takes rq->lock in: 4186 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4187 * - ttwu_queue() -- new rq, for enqueue of the task; 4188 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4189 * 4190 * As a consequence we race really badly with just about everything. See the 4191 * many memory barriers and their comments for details. 4192 * 4193 * Return: %true if @p->state changes (an actual wakeup was done), 4194 * %false otherwise. 4195 */ 4196 static int 4197 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4198 { 4199 unsigned long flags; 4200 int cpu, success = 0; 4201 4202 preempt_disable(); 4203 if (p == current) { 4204 /* 4205 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4206 * == smp_processor_id()'. Together this means we can special 4207 * case the whole 'p->on_rq && ttwu_runnable()' case below 4208 * without taking any locks. 4209 * 4210 * In particular: 4211 * - we rely on Program-Order guarantees for all the ordering, 4212 * - we're serialized against set_special_state() by virtue of 4213 * it disabling IRQs (this allows not taking ->pi_lock). 4214 */ 4215 if (!ttwu_state_match(p, state, &success)) 4216 goto out; 4217 4218 trace_sched_waking(p); 4219 ttwu_do_wakeup(p); 4220 goto out; 4221 } 4222 4223 /* 4224 * If we are going to wake up a thread waiting for CONDITION we 4225 * need to ensure that CONDITION=1 done by the caller can not be 4226 * reordered with p->state check below. This pairs with smp_store_mb() 4227 * in set_current_state() that the waiting thread does. 4228 */ 4229 raw_spin_lock_irqsave(&p->pi_lock, flags); 4230 smp_mb__after_spinlock(); 4231 if (!ttwu_state_match(p, state, &success)) 4232 goto unlock; 4233 4234 trace_sched_waking(p); 4235 4236 /* 4237 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4238 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4239 * in smp_cond_load_acquire() below. 4240 * 4241 * sched_ttwu_pending() try_to_wake_up() 4242 * STORE p->on_rq = 1 LOAD p->state 4243 * UNLOCK rq->lock 4244 * 4245 * __schedule() (switch to task 'p') 4246 * LOCK rq->lock smp_rmb(); 4247 * smp_mb__after_spinlock(); 4248 * UNLOCK rq->lock 4249 * 4250 * [task p] 4251 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4252 * 4253 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4254 * __schedule(). See the comment for smp_mb__after_spinlock(). 4255 * 4256 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4257 */ 4258 smp_rmb(); 4259 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4260 goto unlock; 4261 4262 #ifdef CONFIG_SMP 4263 /* 4264 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4265 * possible to, falsely, observe p->on_cpu == 0. 4266 * 4267 * One must be running (->on_cpu == 1) in order to remove oneself 4268 * from the runqueue. 4269 * 4270 * __schedule() (switch to task 'p') try_to_wake_up() 4271 * STORE p->on_cpu = 1 LOAD p->on_rq 4272 * UNLOCK rq->lock 4273 * 4274 * __schedule() (put 'p' to sleep) 4275 * LOCK rq->lock smp_rmb(); 4276 * smp_mb__after_spinlock(); 4277 * STORE p->on_rq = 0 LOAD p->on_cpu 4278 * 4279 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4280 * __schedule(). See the comment for smp_mb__after_spinlock(). 4281 * 4282 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4283 * schedule()'s deactivate_task() has 'happened' and p will no longer 4284 * care about it's own p->state. See the comment in __schedule(). 4285 */ 4286 smp_acquire__after_ctrl_dep(); 4287 4288 /* 4289 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4290 * == 0), which means we need to do an enqueue, change p->state to 4291 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4292 * enqueue, such as ttwu_queue_wakelist(). 4293 */ 4294 WRITE_ONCE(p->__state, TASK_WAKING); 4295 4296 /* 4297 * If the owning (remote) CPU is still in the middle of schedule() with 4298 * this task as prev, considering queueing p on the remote CPUs wake_list 4299 * which potentially sends an IPI instead of spinning on p->on_cpu to 4300 * let the waker make forward progress. This is safe because IRQs are 4301 * disabled and the IPI will deliver after on_cpu is cleared. 4302 * 4303 * Ensure we load task_cpu(p) after p->on_cpu: 4304 * 4305 * set_task_cpu(p, cpu); 4306 * STORE p->cpu = @cpu 4307 * __schedule() (switch to task 'p') 4308 * LOCK rq->lock 4309 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4310 * STORE p->on_cpu = 1 LOAD p->cpu 4311 * 4312 * to ensure we observe the correct CPU on which the task is currently 4313 * scheduling. 4314 */ 4315 if (smp_load_acquire(&p->on_cpu) && 4316 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4317 goto unlock; 4318 4319 /* 4320 * If the owning (remote) CPU is still in the middle of schedule() with 4321 * this task as prev, wait until it's done referencing the task. 4322 * 4323 * Pairs with the smp_store_release() in finish_task(). 4324 * 4325 * This ensures that tasks getting woken will be fully ordered against 4326 * their previous state and preserve Program Order. 4327 */ 4328 smp_cond_load_acquire(&p->on_cpu, !VAL); 4329 4330 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4331 if (task_cpu(p) != cpu) { 4332 if (p->in_iowait) { 4333 delayacct_blkio_end(p); 4334 atomic_dec(&task_rq(p)->nr_iowait); 4335 } 4336 4337 wake_flags |= WF_MIGRATED; 4338 psi_ttwu_dequeue(p); 4339 set_task_cpu(p, cpu); 4340 } 4341 #else 4342 cpu = task_cpu(p); 4343 #endif /* CONFIG_SMP */ 4344 4345 ttwu_queue(p, cpu, wake_flags); 4346 unlock: 4347 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4348 out: 4349 if (success) 4350 ttwu_stat(p, task_cpu(p), wake_flags); 4351 preempt_enable(); 4352 4353 return success; 4354 } 4355 4356 static bool __task_needs_rq_lock(struct task_struct *p) 4357 { 4358 unsigned int state = READ_ONCE(p->__state); 4359 4360 /* 4361 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4362 * the task is blocked. Make sure to check @state since ttwu() can drop 4363 * locks at the end, see ttwu_queue_wakelist(). 4364 */ 4365 if (state == TASK_RUNNING || state == TASK_WAKING) 4366 return true; 4367 4368 /* 4369 * Ensure we load p->on_rq after p->__state, otherwise it would be 4370 * possible to, falsely, observe p->on_rq == 0. 4371 * 4372 * See try_to_wake_up() for a longer comment. 4373 */ 4374 smp_rmb(); 4375 if (p->on_rq) 4376 return true; 4377 4378 #ifdef CONFIG_SMP 4379 /* 4380 * Ensure the task has finished __schedule() and will not be referenced 4381 * anymore. Again, see try_to_wake_up() for a longer comment. 4382 */ 4383 smp_rmb(); 4384 smp_cond_load_acquire(&p->on_cpu, !VAL); 4385 #endif 4386 4387 return false; 4388 } 4389 4390 /** 4391 * task_call_func - Invoke a function on task in fixed state 4392 * @p: Process for which the function is to be invoked, can be @current. 4393 * @func: Function to invoke. 4394 * @arg: Argument to function. 4395 * 4396 * Fix the task in it's current state by avoiding wakeups and or rq operations 4397 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4398 * to work out what the state is, if required. Given that @func can be invoked 4399 * with a runqueue lock held, it had better be quite lightweight. 4400 * 4401 * Returns: 4402 * Whatever @func returns 4403 */ 4404 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4405 { 4406 struct rq *rq = NULL; 4407 struct rq_flags rf; 4408 int ret; 4409 4410 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4411 4412 if (__task_needs_rq_lock(p)) 4413 rq = __task_rq_lock(p, &rf); 4414 4415 /* 4416 * At this point the task is pinned; either: 4417 * - blocked and we're holding off wakeups (pi->lock) 4418 * - woken, and we're holding off enqueue (rq->lock) 4419 * - queued, and we're holding off schedule (rq->lock) 4420 * - running, and we're holding off de-schedule (rq->lock) 4421 * 4422 * The called function (@func) can use: task_curr(), p->on_rq and 4423 * p->__state to differentiate between these states. 4424 */ 4425 ret = func(p, arg); 4426 4427 if (rq) 4428 rq_unlock(rq, &rf); 4429 4430 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4431 return ret; 4432 } 4433 4434 /** 4435 * cpu_curr_snapshot - Return a snapshot of the currently running task 4436 * @cpu: The CPU on which to snapshot the task. 4437 * 4438 * Returns the task_struct pointer of the task "currently" running on 4439 * the specified CPU. If the same task is running on that CPU throughout, 4440 * the return value will be a pointer to that task's task_struct structure. 4441 * If the CPU did any context switches even vaguely concurrently with the 4442 * execution of this function, the return value will be a pointer to the 4443 * task_struct structure of a randomly chosen task that was running on 4444 * that CPU somewhere around the time that this function was executing. 4445 * 4446 * If the specified CPU was offline, the return value is whatever it 4447 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4448 * task, but there is no guarantee. Callers wishing a useful return 4449 * value must take some action to ensure that the specified CPU remains 4450 * online throughout. 4451 * 4452 * This function executes full memory barriers before and after fetching 4453 * the pointer, which permits the caller to confine this function's fetch 4454 * with respect to the caller's accesses to other shared variables. 4455 */ 4456 struct task_struct *cpu_curr_snapshot(int cpu) 4457 { 4458 struct task_struct *t; 4459 4460 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4461 t = rcu_dereference(cpu_curr(cpu)); 4462 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4463 return t; 4464 } 4465 4466 /** 4467 * wake_up_process - Wake up a specific process 4468 * @p: The process to be woken up. 4469 * 4470 * Attempt to wake up the nominated process and move it to the set of runnable 4471 * processes. 4472 * 4473 * Return: 1 if the process was woken up, 0 if it was already running. 4474 * 4475 * This function executes a full memory barrier before accessing the task state. 4476 */ 4477 int wake_up_process(struct task_struct *p) 4478 { 4479 return try_to_wake_up(p, TASK_NORMAL, 0); 4480 } 4481 EXPORT_SYMBOL(wake_up_process); 4482 4483 int wake_up_state(struct task_struct *p, unsigned int state) 4484 { 4485 return try_to_wake_up(p, state, 0); 4486 } 4487 4488 /* 4489 * Perform scheduler related setup for a newly forked process p. 4490 * p is forked by current. 4491 * 4492 * __sched_fork() is basic setup used by init_idle() too: 4493 */ 4494 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4495 { 4496 p->on_rq = 0; 4497 4498 p->se.on_rq = 0; 4499 p->se.exec_start = 0; 4500 p->se.sum_exec_runtime = 0; 4501 p->se.prev_sum_exec_runtime = 0; 4502 p->se.nr_migrations = 0; 4503 p->se.vruntime = 0; 4504 INIT_LIST_HEAD(&p->se.group_node); 4505 4506 #ifdef CONFIG_FAIR_GROUP_SCHED 4507 p->se.cfs_rq = NULL; 4508 #endif 4509 4510 #ifdef CONFIG_SCHEDSTATS 4511 /* Even if schedstat is disabled, there should not be garbage */ 4512 memset(&p->stats, 0, sizeof(p->stats)); 4513 #endif 4514 4515 RB_CLEAR_NODE(&p->dl.rb_node); 4516 init_dl_task_timer(&p->dl); 4517 init_dl_inactive_task_timer(&p->dl); 4518 __dl_clear_params(p); 4519 4520 INIT_LIST_HEAD(&p->rt.run_list); 4521 p->rt.timeout = 0; 4522 p->rt.time_slice = sched_rr_timeslice; 4523 p->rt.on_rq = 0; 4524 p->rt.on_list = 0; 4525 4526 #ifdef CONFIG_PREEMPT_NOTIFIERS 4527 INIT_HLIST_HEAD(&p->preempt_notifiers); 4528 #endif 4529 4530 #ifdef CONFIG_COMPACTION 4531 p->capture_control = NULL; 4532 #endif 4533 init_numa_balancing(clone_flags, p); 4534 #ifdef CONFIG_SMP 4535 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4536 p->migration_pending = NULL; 4537 #endif 4538 init_sched_mm_cid(p); 4539 } 4540 4541 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4542 4543 #ifdef CONFIG_NUMA_BALANCING 4544 4545 int sysctl_numa_balancing_mode; 4546 4547 static void __set_numabalancing_state(bool enabled) 4548 { 4549 if (enabled) 4550 static_branch_enable(&sched_numa_balancing); 4551 else 4552 static_branch_disable(&sched_numa_balancing); 4553 } 4554 4555 void set_numabalancing_state(bool enabled) 4556 { 4557 if (enabled) 4558 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4559 else 4560 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4561 __set_numabalancing_state(enabled); 4562 } 4563 4564 #ifdef CONFIG_PROC_SYSCTL 4565 static void reset_memory_tiering(void) 4566 { 4567 struct pglist_data *pgdat; 4568 4569 for_each_online_pgdat(pgdat) { 4570 pgdat->nbp_threshold = 0; 4571 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4572 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4573 } 4574 } 4575 4576 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4577 void *buffer, size_t *lenp, loff_t *ppos) 4578 { 4579 struct ctl_table t; 4580 int err; 4581 int state = sysctl_numa_balancing_mode; 4582 4583 if (write && !capable(CAP_SYS_ADMIN)) 4584 return -EPERM; 4585 4586 t = *table; 4587 t.data = &state; 4588 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4589 if (err < 0) 4590 return err; 4591 if (write) { 4592 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4593 (state & NUMA_BALANCING_MEMORY_TIERING)) 4594 reset_memory_tiering(); 4595 sysctl_numa_balancing_mode = state; 4596 __set_numabalancing_state(state); 4597 } 4598 return err; 4599 } 4600 #endif 4601 #endif 4602 4603 #ifdef CONFIG_SCHEDSTATS 4604 4605 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4606 4607 static void set_schedstats(bool enabled) 4608 { 4609 if (enabled) 4610 static_branch_enable(&sched_schedstats); 4611 else 4612 static_branch_disable(&sched_schedstats); 4613 } 4614 4615 void force_schedstat_enabled(void) 4616 { 4617 if (!schedstat_enabled()) { 4618 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4619 static_branch_enable(&sched_schedstats); 4620 } 4621 } 4622 4623 static int __init setup_schedstats(char *str) 4624 { 4625 int ret = 0; 4626 if (!str) 4627 goto out; 4628 4629 if (!strcmp(str, "enable")) { 4630 set_schedstats(true); 4631 ret = 1; 4632 } else if (!strcmp(str, "disable")) { 4633 set_schedstats(false); 4634 ret = 1; 4635 } 4636 out: 4637 if (!ret) 4638 pr_warn("Unable to parse schedstats=\n"); 4639 4640 return ret; 4641 } 4642 __setup("schedstats=", setup_schedstats); 4643 4644 #ifdef CONFIG_PROC_SYSCTL 4645 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4646 size_t *lenp, loff_t *ppos) 4647 { 4648 struct ctl_table t; 4649 int err; 4650 int state = static_branch_likely(&sched_schedstats); 4651 4652 if (write && !capable(CAP_SYS_ADMIN)) 4653 return -EPERM; 4654 4655 t = *table; 4656 t.data = &state; 4657 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4658 if (err < 0) 4659 return err; 4660 if (write) 4661 set_schedstats(state); 4662 return err; 4663 } 4664 #endif /* CONFIG_PROC_SYSCTL */ 4665 #endif /* CONFIG_SCHEDSTATS */ 4666 4667 #ifdef CONFIG_SYSCTL 4668 static struct ctl_table sched_core_sysctls[] = { 4669 #ifdef CONFIG_SCHEDSTATS 4670 { 4671 .procname = "sched_schedstats", 4672 .data = NULL, 4673 .maxlen = sizeof(unsigned int), 4674 .mode = 0644, 4675 .proc_handler = sysctl_schedstats, 4676 .extra1 = SYSCTL_ZERO, 4677 .extra2 = SYSCTL_ONE, 4678 }, 4679 #endif /* CONFIG_SCHEDSTATS */ 4680 #ifdef CONFIG_UCLAMP_TASK 4681 { 4682 .procname = "sched_util_clamp_min", 4683 .data = &sysctl_sched_uclamp_util_min, 4684 .maxlen = sizeof(unsigned int), 4685 .mode = 0644, 4686 .proc_handler = sysctl_sched_uclamp_handler, 4687 }, 4688 { 4689 .procname = "sched_util_clamp_max", 4690 .data = &sysctl_sched_uclamp_util_max, 4691 .maxlen = sizeof(unsigned int), 4692 .mode = 0644, 4693 .proc_handler = sysctl_sched_uclamp_handler, 4694 }, 4695 { 4696 .procname = "sched_util_clamp_min_rt_default", 4697 .data = &sysctl_sched_uclamp_util_min_rt_default, 4698 .maxlen = sizeof(unsigned int), 4699 .mode = 0644, 4700 .proc_handler = sysctl_sched_uclamp_handler, 4701 }, 4702 #endif /* CONFIG_UCLAMP_TASK */ 4703 #ifdef CONFIG_NUMA_BALANCING 4704 { 4705 .procname = "numa_balancing", 4706 .data = NULL, /* filled in by handler */ 4707 .maxlen = sizeof(unsigned int), 4708 .mode = 0644, 4709 .proc_handler = sysctl_numa_balancing, 4710 .extra1 = SYSCTL_ZERO, 4711 .extra2 = SYSCTL_FOUR, 4712 }, 4713 #endif /* CONFIG_NUMA_BALANCING */ 4714 {} 4715 }; 4716 static int __init sched_core_sysctl_init(void) 4717 { 4718 register_sysctl_init("kernel", sched_core_sysctls); 4719 return 0; 4720 } 4721 late_initcall(sched_core_sysctl_init); 4722 #endif /* CONFIG_SYSCTL */ 4723 4724 /* 4725 * fork()/clone()-time setup: 4726 */ 4727 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4728 { 4729 __sched_fork(clone_flags, p); 4730 /* 4731 * We mark the process as NEW here. This guarantees that 4732 * nobody will actually run it, and a signal or other external 4733 * event cannot wake it up and insert it on the runqueue either. 4734 */ 4735 p->__state = TASK_NEW; 4736 4737 /* 4738 * Make sure we do not leak PI boosting priority to the child. 4739 */ 4740 p->prio = current->normal_prio; 4741 4742 uclamp_fork(p); 4743 4744 /* 4745 * Revert to default priority/policy on fork if requested. 4746 */ 4747 if (unlikely(p->sched_reset_on_fork)) { 4748 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4749 p->policy = SCHED_NORMAL; 4750 p->static_prio = NICE_TO_PRIO(0); 4751 p->rt_priority = 0; 4752 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4753 p->static_prio = NICE_TO_PRIO(0); 4754 4755 p->prio = p->normal_prio = p->static_prio; 4756 set_load_weight(p, false); 4757 4758 /* 4759 * We don't need the reset flag anymore after the fork. It has 4760 * fulfilled its duty: 4761 */ 4762 p->sched_reset_on_fork = 0; 4763 } 4764 4765 if (dl_prio(p->prio)) 4766 return -EAGAIN; 4767 else if (rt_prio(p->prio)) 4768 p->sched_class = &rt_sched_class; 4769 else 4770 p->sched_class = &fair_sched_class; 4771 4772 init_entity_runnable_average(&p->se); 4773 4774 4775 #ifdef CONFIG_SCHED_INFO 4776 if (likely(sched_info_on())) 4777 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4778 #endif 4779 #if defined(CONFIG_SMP) 4780 p->on_cpu = 0; 4781 #endif 4782 init_task_preempt_count(p); 4783 #ifdef CONFIG_SMP 4784 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4785 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4786 #endif 4787 return 0; 4788 } 4789 4790 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4791 { 4792 unsigned long flags; 4793 4794 /* 4795 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4796 * required yet, but lockdep gets upset if rules are violated. 4797 */ 4798 raw_spin_lock_irqsave(&p->pi_lock, flags); 4799 #ifdef CONFIG_CGROUP_SCHED 4800 if (1) { 4801 struct task_group *tg; 4802 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4803 struct task_group, css); 4804 tg = autogroup_task_group(p, tg); 4805 p->sched_task_group = tg; 4806 } 4807 #endif 4808 rseq_migrate(p); 4809 /* 4810 * We're setting the CPU for the first time, we don't migrate, 4811 * so use __set_task_cpu(). 4812 */ 4813 __set_task_cpu(p, smp_processor_id()); 4814 if (p->sched_class->task_fork) 4815 p->sched_class->task_fork(p); 4816 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4817 } 4818 4819 void sched_post_fork(struct task_struct *p) 4820 { 4821 uclamp_post_fork(p); 4822 } 4823 4824 unsigned long to_ratio(u64 period, u64 runtime) 4825 { 4826 if (runtime == RUNTIME_INF) 4827 return BW_UNIT; 4828 4829 /* 4830 * Doing this here saves a lot of checks in all 4831 * the calling paths, and returning zero seems 4832 * safe for them anyway. 4833 */ 4834 if (period == 0) 4835 return 0; 4836 4837 return div64_u64(runtime << BW_SHIFT, period); 4838 } 4839 4840 /* 4841 * wake_up_new_task - wake up a newly created task for the first time. 4842 * 4843 * This function will do some initial scheduler statistics housekeeping 4844 * that must be done for every newly created context, then puts the task 4845 * on the runqueue and wakes it. 4846 */ 4847 void wake_up_new_task(struct task_struct *p) 4848 { 4849 struct rq_flags rf; 4850 struct rq *rq; 4851 4852 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4853 WRITE_ONCE(p->__state, TASK_RUNNING); 4854 #ifdef CONFIG_SMP 4855 /* 4856 * Fork balancing, do it here and not earlier because: 4857 * - cpus_ptr can change in the fork path 4858 * - any previously selected CPU might disappear through hotplug 4859 * 4860 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4861 * as we're not fully set-up yet. 4862 */ 4863 p->recent_used_cpu = task_cpu(p); 4864 rseq_migrate(p); 4865 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4866 #endif 4867 rq = __task_rq_lock(p, &rf); 4868 update_rq_clock(rq); 4869 post_init_entity_util_avg(p); 4870 4871 activate_task(rq, p, ENQUEUE_NOCLOCK); 4872 trace_sched_wakeup_new(p); 4873 check_preempt_curr(rq, p, WF_FORK); 4874 #ifdef CONFIG_SMP 4875 if (p->sched_class->task_woken) { 4876 /* 4877 * Nothing relies on rq->lock after this, so it's fine to 4878 * drop it. 4879 */ 4880 rq_unpin_lock(rq, &rf); 4881 p->sched_class->task_woken(rq, p); 4882 rq_repin_lock(rq, &rf); 4883 } 4884 #endif 4885 task_rq_unlock(rq, p, &rf); 4886 } 4887 4888 #ifdef CONFIG_PREEMPT_NOTIFIERS 4889 4890 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4891 4892 void preempt_notifier_inc(void) 4893 { 4894 static_branch_inc(&preempt_notifier_key); 4895 } 4896 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4897 4898 void preempt_notifier_dec(void) 4899 { 4900 static_branch_dec(&preempt_notifier_key); 4901 } 4902 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4903 4904 /** 4905 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4906 * @notifier: notifier struct to register 4907 */ 4908 void preempt_notifier_register(struct preempt_notifier *notifier) 4909 { 4910 if (!static_branch_unlikely(&preempt_notifier_key)) 4911 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4912 4913 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4914 } 4915 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4916 4917 /** 4918 * preempt_notifier_unregister - no longer interested in preemption notifications 4919 * @notifier: notifier struct to unregister 4920 * 4921 * This is *not* safe to call from within a preemption notifier. 4922 */ 4923 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4924 { 4925 hlist_del(¬ifier->link); 4926 } 4927 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4928 4929 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4930 { 4931 struct preempt_notifier *notifier; 4932 4933 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4934 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4935 } 4936 4937 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4938 { 4939 if (static_branch_unlikely(&preempt_notifier_key)) 4940 __fire_sched_in_preempt_notifiers(curr); 4941 } 4942 4943 static void 4944 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4945 struct task_struct *next) 4946 { 4947 struct preempt_notifier *notifier; 4948 4949 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4950 notifier->ops->sched_out(notifier, next); 4951 } 4952 4953 static __always_inline void 4954 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4955 struct task_struct *next) 4956 { 4957 if (static_branch_unlikely(&preempt_notifier_key)) 4958 __fire_sched_out_preempt_notifiers(curr, next); 4959 } 4960 4961 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4962 4963 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4964 { 4965 } 4966 4967 static inline void 4968 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4969 struct task_struct *next) 4970 { 4971 } 4972 4973 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4974 4975 static inline void prepare_task(struct task_struct *next) 4976 { 4977 #ifdef CONFIG_SMP 4978 /* 4979 * Claim the task as running, we do this before switching to it 4980 * such that any running task will have this set. 4981 * 4982 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4983 * its ordering comment. 4984 */ 4985 WRITE_ONCE(next->on_cpu, 1); 4986 #endif 4987 } 4988 4989 static inline void finish_task(struct task_struct *prev) 4990 { 4991 #ifdef CONFIG_SMP 4992 /* 4993 * This must be the very last reference to @prev from this CPU. After 4994 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4995 * must ensure this doesn't happen until the switch is completely 4996 * finished. 4997 * 4998 * In particular, the load of prev->state in finish_task_switch() must 4999 * happen before this. 5000 * 5001 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5002 */ 5003 smp_store_release(&prev->on_cpu, 0); 5004 #endif 5005 } 5006 5007 #ifdef CONFIG_SMP 5008 5009 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5010 { 5011 void (*func)(struct rq *rq); 5012 struct balance_callback *next; 5013 5014 lockdep_assert_rq_held(rq); 5015 5016 while (head) { 5017 func = (void (*)(struct rq *))head->func; 5018 next = head->next; 5019 head->next = NULL; 5020 head = next; 5021 5022 func(rq); 5023 } 5024 } 5025 5026 static void balance_push(struct rq *rq); 5027 5028 /* 5029 * balance_push_callback is a right abuse of the callback interface and plays 5030 * by significantly different rules. 5031 * 5032 * Where the normal balance_callback's purpose is to be ran in the same context 5033 * that queued it (only later, when it's safe to drop rq->lock again), 5034 * balance_push_callback is specifically targeted at __schedule(). 5035 * 5036 * This abuse is tolerated because it places all the unlikely/odd cases behind 5037 * a single test, namely: rq->balance_callback == NULL. 5038 */ 5039 struct balance_callback balance_push_callback = { 5040 .next = NULL, 5041 .func = balance_push, 5042 }; 5043 5044 static inline struct balance_callback * 5045 __splice_balance_callbacks(struct rq *rq, bool split) 5046 { 5047 struct balance_callback *head = rq->balance_callback; 5048 5049 if (likely(!head)) 5050 return NULL; 5051 5052 lockdep_assert_rq_held(rq); 5053 /* 5054 * Must not take balance_push_callback off the list when 5055 * splice_balance_callbacks() and balance_callbacks() are not 5056 * in the same rq->lock section. 5057 * 5058 * In that case it would be possible for __schedule() to interleave 5059 * and observe the list empty. 5060 */ 5061 if (split && head == &balance_push_callback) 5062 head = NULL; 5063 else 5064 rq->balance_callback = NULL; 5065 5066 return head; 5067 } 5068 5069 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5070 { 5071 return __splice_balance_callbacks(rq, true); 5072 } 5073 5074 static void __balance_callbacks(struct rq *rq) 5075 { 5076 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5077 } 5078 5079 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5080 { 5081 unsigned long flags; 5082 5083 if (unlikely(head)) { 5084 raw_spin_rq_lock_irqsave(rq, flags); 5085 do_balance_callbacks(rq, head); 5086 raw_spin_rq_unlock_irqrestore(rq, flags); 5087 } 5088 } 5089 5090 #else 5091 5092 static inline void __balance_callbacks(struct rq *rq) 5093 { 5094 } 5095 5096 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5097 { 5098 return NULL; 5099 } 5100 5101 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5102 { 5103 } 5104 5105 #endif 5106 5107 static inline void 5108 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5109 { 5110 /* 5111 * Since the runqueue lock will be released by the next 5112 * task (which is an invalid locking op but in the case 5113 * of the scheduler it's an obvious special-case), so we 5114 * do an early lockdep release here: 5115 */ 5116 rq_unpin_lock(rq, rf); 5117 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5118 #ifdef CONFIG_DEBUG_SPINLOCK 5119 /* this is a valid case when another task releases the spinlock */ 5120 rq_lockp(rq)->owner = next; 5121 #endif 5122 } 5123 5124 static inline void finish_lock_switch(struct rq *rq) 5125 { 5126 /* 5127 * If we are tracking spinlock dependencies then we have to 5128 * fix up the runqueue lock - which gets 'carried over' from 5129 * prev into current: 5130 */ 5131 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5132 __balance_callbacks(rq); 5133 raw_spin_rq_unlock_irq(rq); 5134 } 5135 5136 /* 5137 * NOP if the arch has not defined these: 5138 */ 5139 5140 #ifndef prepare_arch_switch 5141 # define prepare_arch_switch(next) do { } while (0) 5142 #endif 5143 5144 #ifndef finish_arch_post_lock_switch 5145 # define finish_arch_post_lock_switch() do { } while (0) 5146 #endif 5147 5148 static inline void kmap_local_sched_out(void) 5149 { 5150 #ifdef CONFIG_KMAP_LOCAL 5151 if (unlikely(current->kmap_ctrl.idx)) 5152 __kmap_local_sched_out(); 5153 #endif 5154 } 5155 5156 static inline void kmap_local_sched_in(void) 5157 { 5158 #ifdef CONFIG_KMAP_LOCAL 5159 if (unlikely(current->kmap_ctrl.idx)) 5160 __kmap_local_sched_in(); 5161 #endif 5162 } 5163 5164 /** 5165 * prepare_task_switch - prepare to switch tasks 5166 * @rq: the runqueue preparing to switch 5167 * @prev: the current task that is being switched out 5168 * @next: the task we are going to switch to. 5169 * 5170 * This is called with the rq lock held and interrupts off. It must 5171 * be paired with a subsequent finish_task_switch after the context 5172 * switch. 5173 * 5174 * prepare_task_switch sets up locking and calls architecture specific 5175 * hooks. 5176 */ 5177 static inline void 5178 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5179 struct task_struct *next) 5180 { 5181 kcov_prepare_switch(prev); 5182 sched_info_switch(rq, prev, next); 5183 perf_event_task_sched_out(prev, next); 5184 rseq_preempt(prev); 5185 fire_sched_out_preempt_notifiers(prev, next); 5186 kmap_local_sched_out(); 5187 prepare_task(next); 5188 prepare_arch_switch(next); 5189 } 5190 5191 /** 5192 * finish_task_switch - clean up after a task-switch 5193 * @prev: the thread we just switched away from. 5194 * 5195 * finish_task_switch must be called after the context switch, paired 5196 * with a prepare_task_switch call before the context switch. 5197 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5198 * and do any other architecture-specific cleanup actions. 5199 * 5200 * Note that we may have delayed dropping an mm in context_switch(). If 5201 * so, we finish that here outside of the runqueue lock. (Doing it 5202 * with the lock held can cause deadlocks; see schedule() for 5203 * details.) 5204 * 5205 * The context switch have flipped the stack from under us and restored the 5206 * local variables which were saved when this task called schedule() in the 5207 * past. prev == current is still correct but we need to recalculate this_rq 5208 * because prev may have moved to another CPU. 5209 */ 5210 static struct rq *finish_task_switch(struct task_struct *prev) 5211 __releases(rq->lock) 5212 { 5213 struct rq *rq = this_rq(); 5214 struct mm_struct *mm = rq->prev_mm; 5215 unsigned int prev_state; 5216 5217 /* 5218 * The previous task will have left us with a preempt_count of 2 5219 * because it left us after: 5220 * 5221 * schedule() 5222 * preempt_disable(); // 1 5223 * __schedule() 5224 * raw_spin_lock_irq(&rq->lock) // 2 5225 * 5226 * Also, see FORK_PREEMPT_COUNT. 5227 */ 5228 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5229 "corrupted preempt_count: %s/%d/0x%x\n", 5230 current->comm, current->pid, preempt_count())) 5231 preempt_count_set(FORK_PREEMPT_COUNT); 5232 5233 rq->prev_mm = NULL; 5234 5235 /* 5236 * A task struct has one reference for the use as "current". 5237 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5238 * schedule one last time. The schedule call will never return, and 5239 * the scheduled task must drop that reference. 5240 * 5241 * We must observe prev->state before clearing prev->on_cpu (in 5242 * finish_task), otherwise a concurrent wakeup can get prev 5243 * running on another CPU and we could rave with its RUNNING -> DEAD 5244 * transition, resulting in a double drop. 5245 */ 5246 prev_state = READ_ONCE(prev->__state); 5247 vtime_task_switch(prev); 5248 perf_event_task_sched_in(prev, current); 5249 finish_task(prev); 5250 tick_nohz_task_switch(); 5251 finish_lock_switch(rq); 5252 finish_arch_post_lock_switch(); 5253 kcov_finish_switch(current); 5254 /* 5255 * kmap_local_sched_out() is invoked with rq::lock held and 5256 * interrupts disabled. There is no requirement for that, but the 5257 * sched out code does not have an interrupt enabled section. 5258 * Restoring the maps on sched in does not require interrupts being 5259 * disabled either. 5260 */ 5261 kmap_local_sched_in(); 5262 5263 fire_sched_in_preempt_notifiers(current); 5264 /* 5265 * When switching through a kernel thread, the loop in 5266 * membarrier_{private,global}_expedited() may have observed that 5267 * kernel thread and not issued an IPI. It is therefore possible to 5268 * schedule between user->kernel->user threads without passing though 5269 * switch_mm(). Membarrier requires a barrier after storing to 5270 * rq->curr, before returning to userspace, so provide them here: 5271 * 5272 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5273 * provided by mmdrop_lazy_tlb(), 5274 * - a sync_core for SYNC_CORE. 5275 */ 5276 if (mm) { 5277 membarrier_mm_sync_core_before_usermode(mm); 5278 mmdrop_lazy_tlb_sched(mm); 5279 } 5280 5281 if (unlikely(prev_state == TASK_DEAD)) { 5282 if (prev->sched_class->task_dead) 5283 prev->sched_class->task_dead(prev); 5284 5285 /* Task is done with its stack. */ 5286 put_task_stack(prev); 5287 5288 put_task_struct_rcu_user(prev); 5289 } 5290 5291 return rq; 5292 } 5293 5294 /** 5295 * schedule_tail - first thing a freshly forked thread must call. 5296 * @prev: the thread we just switched away from. 5297 */ 5298 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5299 __releases(rq->lock) 5300 { 5301 /* 5302 * New tasks start with FORK_PREEMPT_COUNT, see there and 5303 * finish_task_switch() for details. 5304 * 5305 * finish_task_switch() will drop rq->lock() and lower preempt_count 5306 * and the preempt_enable() will end up enabling preemption (on 5307 * PREEMPT_COUNT kernels). 5308 */ 5309 5310 finish_task_switch(prev); 5311 preempt_enable(); 5312 5313 if (current->set_child_tid) 5314 put_user(task_pid_vnr(current), current->set_child_tid); 5315 5316 calculate_sigpending(); 5317 } 5318 5319 /* 5320 * context_switch - switch to the new MM and the new thread's register state. 5321 */ 5322 static __always_inline struct rq * 5323 context_switch(struct rq *rq, struct task_struct *prev, 5324 struct task_struct *next, struct rq_flags *rf) 5325 { 5326 prepare_task_switch(rq, prev, next); 5327 5328 /* 5329 * For paravirt, this is coupled with an exit in switch_to to 5330 * combine the page table reload and the switch backend into 5331 * one hypercall. 5332 */ 5333 arch_start_context_switch(prev); 5334 5335 /* 5336 * kernel -> kernel lazy + transfer active 5337 * user -> kernel lazy + mmgrab_lazy_tlb() active 5338 * 5339 * kernel -> user switch + mmdrop_lazy_tlb() active 5340 * user -> user switch 5341 * 5342 * switch_mm_cid() needs to be updated if the barriers provided 5343 * by context_switch() are modified. 5344 */ 5345 if (!next->mm) { // to kernel 5346 enter_lazy_tlb(prev->active_mm, next); 5347 5348 next->active_mm = prev->active_mm; 5349 if (prev->mm) // from user 5350 mmgrab_lazy_tlb(prev->active_mm); 5351 else 5352 prev->active_mm = NULL; 5353 } else { // to user 5354 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5355 /* 5356 * sys_membarrier() requires an smp_mb() between setting 5357 * rq->curr / membarrier_switch_mm() and returning to userspace. 5358 * 5359 * The below provides this either through switch_mm(), or in 5360 * case 'prev->active_mm == next->mm' through 5361 * finish_task_switch()'s mmdrop(). 5362 */ 5363 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5364 lru_gen_use_mm(next->mm); 5365 5366 if (!prev->mm) { // from kernel 5367 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5368 rq->prev_mm = prev->active_mm; 5369 prev->active_mm = NULL; 5370 } 5371 } 5372 5373 /* switch_mm_cid() requires the memory barriers above. */ 5374 switch_mm_cid(rq, prev, next); 5375 5376 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5377 5378 prepare_lock_switch(rq, next, rf); 5379 5380 /* Here we just switch the register state and the stack. */ 5381 switch_to(prev, next, prev); 5382 barrier(); 5383 5384 return finish_task_switch(prev); 5385 } 5386 5387 /* 5388 * nr_running and nr_context_switches: 5389 * 5390 * externally visible scheduler statistics: current number of runnable 5391 * threads, total number of context switches performed since bootup. 5392 */ 5393 unsigned int nr_running(void) 5394 { 5395 unsigned int i, sum = 0; 5396 5397 for_each_online_cpu(i) 5398 sum += cpu_rq(i)->nr_running; 5399 5400 return sum; 5401 } 5402 5403 /* 5404 * Check if only the current task is running on the CPU. 5405 * 5406 * Caution: this function does not check that the caller has disabled 5407 * preemption, thus the result might have a time-of-check-to-time-of-use 5408 * race. The caller is responsible to use it correctly, for example: 5409 * 5410 * - from a non-preemptible section (of course) 5411 * 5412 * - from a thread that is bound to a single CPU 5413 * 5414 * - in a loop with very short iterations (e.g. a polling loop) 5415 */ 5416 bool single_task_running(void) 5417 { 5418 return raw_rq()->nr_running == 1; 5419 } 5420 EXPORT_SYMBOL(single_task_running); 5421 5422 unsigned long long nr_context_switches_cpu(int cpu) 5423 { 5424 return cpu_rq(cpu)->nr_switches; 5425 } 5426 5427 unsigned long long nr_context_switches(void) 5428 { 5429 int i; 5430 unsigned long long sum = 0; 5431 5432 for_each_possible_cpu(i) 5433 sum += cpu_rq(i)->nr_switches; 5434 5435 return sum; 5436 } 5437 5438 /* 5439 * Consumers of these two interfaces, like for example the cpuidle menu 5440 * governor, are using nonsensical data. Preferring shallow idle state selection 5441 * for a CPU that has IO-wait which might not even end up running the task when 5442 * it does become runnable. 5443 */ 5444 5445 unsigned int nr_iowait_cpu(int cpu) 5446 { 5447 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5448 } 5449 5450 /* 5451 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5452 * 5453 * The idea behind IO-wait account is to account the idle time that we could 5454 * have spend running if it were not for IO. That is, if we were to improve the 5455 * storage performance, we'd have a proportional reduction in IO-wait time. 5456 * 5457 * This all works nicely on UP, where, when a task blocks on IO, we account 5458 * idle time as IO-wait, because if the storage were faster, it could've been 5459 * running and we'd not be idle. 5460 * 5461 * This has been extended to SMP, by doing the same for each CPU. This however 5462 * is broken. 5463 * 5464 * Imagine for instance the case where two tasks block on one CPU, only the one 5465 * CPU will have IO-wait accounted, while the other has regular idle. Even 5466 * though, if the storage were faster, both could've ran at the same time, 5467 * utilising both CPUs. 5468 * 5469 * This means, that when looking globally, the current IO-wait accounting on 5470 * SMP is a lower bound, by reason of under accounting. 5471 * 5472 * Worse, since the numbers are provided per CPU, they are sometimes 5473 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5474 * associated with any one particular CPU, it can wake to another CPU than it 5475 * blocked on. This means the per CPU IO-wait number is meaningless. 5476 * 5477 * Task CPU affinities can make all that even more 'interesting'. 5478 */ 5479 5480 unsigned int nr_iowait(void) 5481 { 5482 unsigned int i, sum = 0; 5483 5484 for_each_possible_cpu(i) 5485 sum += nr_iowait_cpu(i); 5486 5487 return sum; 5488 } 5489 5490 #ifdef CONFIG_SMP 5491 5492 /* 5493 * sched_exec - execve() is a valuable balancing opportunity, because at 5494 * this point the task has the smallest effective memory and cache footprint. 5495 */ 5496 void sched_exec(void) 5497 { 5498 struct task_struct *p = current; 5499 unsigned long flags; 5500 int dest_cpu; 5501 5502 raw_spin_lock_irqsave(&p->pi_lock, flags); 5503 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5504 if (dest_cpu == smp_processor_id()) 5505 goto unlock; 5506 5507 if (likely(cpu_active(dest_cpu))) { 5508 struct migration_arg arg = { p, dest_cpu }; 5509 5510 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5511 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5512 return; 5513 } 5514 unlock: 5515 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5516 } 5517 5518 #endif 5519 5520 DEFINE_PER_CPU(struct kernel_stat, kstat); 5521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5522 5523 EXPORT_PER_CPU_SYMBOL(kstat); 5524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5525 5526 /* 5527 * The function fair_sched_class.update_curr accesses the struct curr 5528 * and its field curr->exec_start; when called from task_sched_runtime(), 5529 * we observe a high rate of cache misses in practice. 5530 * Prefetching this data results in improved performance. 5531 */ 5532 static inline void prefetch_curr_exec_start(struct task_struct *p) 5533 { 5534 #ifdef CONFIG_FAIR_GROUP_SCHED 5535 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5536 #else 5537 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5538 #endif 5539 prefetch(curr); 5540 prefetch(&curr->exec_start); 5541 } 5542 5543 /* 5544 * Return accounted runtime for the task. 5545 * In case the task is currently running, return the runtime plus current's 5546 * pending runtime that have not been accounted yet. 5547 */ 5548 unsigned long long task_sched_runtime(struct task_struct *p) 5549 { 5550 struct rq_flags rf; 5551 struct rq *rq; 5552 u64 ns; 5553 5554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5555 /* 5556 * 64-bit doesn't need locks to atomically read a 64-bit value. 5557 * So we have a optimization chance when the task's delta_exec is 0. 5558 * Reading ->on_cpu is racy, but this is ok. 5559 * 5560 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5561 * If we race with it entering CPU, unaccounted time is 0. This is 5562 * indistinguishable from the read occurring a few cycles earlier. 5563 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5564 * been accounted, so we're correct here as well. 5565 */ 5566 if (!p->on_cpu || !task_on_rq_queued(p)) 5567 return p->se.sum_exec_runtime; 5568 #endif 5569 5570 rq = task_rq_lock(p, &rf); 5571 /* 5572 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5573 * project cycles that may never be accounted to this 5574 * thread, breaking clock_gettime(). 5575 */ 5576 if (task_current(rq, p) && task_on_rq_queued(p)) { 5577 prefetch_curr_exec_start(p); 5578 update_rq_clock(rq); 5579 p->sched_class->update_curr(rq); 5580 } 5581 ns = p->se.sum_exec_runtime; 5582 task_rq_unlock(rq, p, &rf); 5583 5584 return ns; 5585 } 5586 5587 #ifdef CONFIG_SCHED_DEBUG 5588 static u64 cpu_resched_latency(struct rq *rq) 5589 { 5590 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5591 u64 resched_latency, now = rq_clock(rq); 5592 static bool warned_once; 5593 5594 if (sysctl_resched_latency_warn_once && warned_once) 5595 return 0; 5596 5597 if (!need_resched() || !latency_warn_ms) 5598 return 0; 5599 5600 if (system_state == SYSTEM_BOOTING) 5601 return 0; 5602 5603 if (!rq->last_seen_need_resched_ns) { 5604 rq->last_seen_need_resched_ns = now; 5605 rq->ticks_without_resched = 0; 5606 return 0; 5607 } 5608 5609 rq->ticks_without_resched++; 5610 resched_latency = now - rq->last_seen_need_resched_ns; 5611 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5612 return 0; 5613 5614 warned_once = true; 5615 5616 return resched_latency; 5617 } 5618 5619 static int __init setup_resched_latency_warn_ms(char *str) 5620 { 5621 long val; 5622 5623 if ((kstrtol(str, 0, &val))) { 5624 pr_warn("Unable to set resched_latency_warn_ms\n"); 5625 return 1; 5626 } 5627 5628 sysctl_resched_latency_warn_ms = val; 5629 return 1; 5630 } 5631 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5632 #else 5633 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5634 #endif /* CONFIG_SCHED_DEBUG */ 5635 5636 /* 5637 * This function gets called by the timer code, with HZ frequency. 5638 * We call it with interrupts disabled. 5639 */ 5640 void scheduler_tick(void) 5641 { 5642 int cpu = smp_processor_id(); 5643 struct rq *rq = cpu_rq(cpu); 5644 struct task_struct *curr = rq->curr; 5645 struct rq_flags rf; 5646 unsigned long thermal_pressure; 5647 u64 resched_latency; 5648 5649 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5650 arch_scale_freq_tick(); 5651 5652 sched_clock_tick(); 5653 5654 rq_lock(rq, &rf); 5655 5656 update_rq_clock(rq); 5657 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5658 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5659 curr->sched_class->task_tick(rq, curr, 0); 5660 if (sched_feat(LATENCY_WARN)) 5661 resched_latency = cpu_resched_latency(rq); 5662 calc_global_load_tick(rq); 5663 sched_core_tick(rq); 5664 task_tick_mm_cid(rq, curr); 5665 5666 rq_unlock(rq, &rf); 5667 5668 if (sched_feat(LATENCY_WARN) && resched_latency) 5669 resched_latency_warn(cpu, resched_latency); 5670 5671 perf_event_task_tick(); 5672 5673 if (curr->flags & PF_WQ_WORKER) 5674 wq_worker_tick(curr); 5675 5676 #ifdef CONFIG_SMP 5677 rq->idle_balance = idle_cpu(cpu); 5678 trigger_load_balance(rq); 5679 #endif 5680 } 5681 5682 #ifdef CONFIG_NO_HZ_FULL 5683 5684 struct tick_work { 5685 int cpu; 5686 atomic_t state; 5687 struct delayed_work work; 5688 }; 5689 /* Values for ->state, see diagram below. */ 5690 #define TICK_SCHED_REMOTE_OFFLINE 0 5691 #define TICK_SCHED_REMOTE_OFFLINING 1 5692 #define TICK_SCHED_REMOTE_RUNNING 2 5693 5694 /* 5695 * State diagram for ->state: 5696 * 5697 * 5698 * TICK_SCHED_REMOTE_OFFLINE 5699 * | ^ 5700 * | | 5701 * | | sched_tick_remote() 5702 * | | 5703 * | | 5704 * +--TICK_SCHED_REMOTE_OFFLINING 5705 * | ^ 5706 * | | 5707 * sched_tick_start() | | sched_tick_stop() 5708 * | | 5709 * V | 5710 * TICK_SCHED_REMOTE_RUNNING 5711 * 5712 * 5713 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5714 * and sched_tick_start() are happy to leave the state in RUNNING. 5715 */ 5716 5717 static struct tick_work __percpu *tick_work_cpu; 5718 5719 static void sched_tick_remote(struct work_struct *work) 5720 { 5721 struct delayed_work *dwork = to_delayed_work(work); 5722 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5723 int cpu = twork->cpu; 5724 struct rq *rq = cpu_rq(cpu); 5725 struct task_struct *curr; 5726 struct rq_flags rf; 5727 u64 delta; 5728 int os; 5729 5730 /* 5731 * Handle the tick only if it appears the remote CPU is running in full 5732 * dynticks mode. The check is racy by nature, but missing a tick or 5733 * having one too much is no big deal because the scheduler tick updates 5734 * statistics and checks timeslices in a time-independent way, regardless 5735 * of when exactly it is running. 5736 */ 5737 if (!tick_nohz_tick_stopped_cpu(cpu)) 5738 goto out_requeue; 5739 5740 rq_lock_irq(rq, &rf); 5741 curr = rq->curr; 5742 if (cpu_is_offline(cpu)) 5743 goto out_unlock; 5744 5745 update_rq_clock(rq); 5746 5747 if (!is_idle_task(curr)) { 5748 /* 5749 * Make sure the next tick runs within a reasonable 5750 * amount of time. 5751 */ 5752 delta = rq_clock_task(rq) - curr->se.exec_start; 5753 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5754 } 5755 curr->sched_class->task_tick(rq, curr, 0); 5756 5757 calc_load_nohz_remote(rq); 5758 out_unlock: 5759 rq_unlock_irq(rq, &rf); 5760 out_requeue: 5761 5762 /* 5763 * Run the remote tick once per second (1Hz). This arbitrary 5764 * frequency is large enough to avoid overload but short enough 5765 * to keep scheduler internal stats reasonably up to date. But 5766 * first update state to reflect hotplug activity if required. 5767 */ 5768 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5769 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5770 if (os == TICK_SCHED_REMOTE_RUNNING) 5771 queue_delayed_work(system_unbound_wq, dwork, HZ); 5772 } 5773 5774 static void sched_tick_start(int cpu) 5775 { 5776 int os; 5777 struct tick_work *twork; 5778 5779 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5780 return; 5781 5782 WARN_ON_ONCE(!tick_work_cpu); 5783 5784 twork = per_cpu_ptr(tick_work_cpu, cpu); 5785 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5786 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5787 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5788 twork->cpu = cpu; 5789 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5790 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5791 } 5792 } 5793 5794 #ifdef CONFIG_HOTPLUG_CPU 5795 static void sched_tick_stop(int cpu) 5796 { 5797 struct tick_work *twork; 5798 int os; 5799 5800 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5801 return; 5802 5803 WARN_ON_ONCE(!tick_work_cpu); 5804 5805 twork = per_cpu_ptr(tick_work_cpu, cpu); 5806 /* There cannot be competing actions, but don't rely on stop-machine. */ 5807 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5808 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5809 /* Don't cancel, as this would mess up the state machine. */ 5810 } 5811 #endif /* CONFIG_HOTPLUG_CPU */ 5812 5813 int __init sched_tick_offload_init(void) 5814 { 5815 tick_work_cpu = alloc_percpu(struct tick_work); 5816 BUG_ON(!tick_work_cpu); 5817 return 0; 5818 } 5819 5820 #else /* !CONFIG_NO_HZ_FULL */ 5821 static inline void sched_tick_start(int cpu) { } 5822 static inline void sched_tick_stop(int cpu) { } 5823 #endif 5824 5825 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5826 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5827 /* 5828 * If the value passed in is equal to the current preempt count 5829 * then we just disabled preemption. Start timing the latency. 5830 */ 5831 static inline void preempt_latency_start(int val) 5832 { 5833 if (preempt_count() == val) { 5834 unsigned long ip = get_lock_parent_ip(); 5835 #ifdef CONFIG_DEBUG_PREEMPT 5836 current->preempt_disable_ip = ip; 5837 #endif 5838 trace_preempt_off(CALLER_ADDR0, ip); 5839 } 5840 } 5841 5842 void preempt_count_add(int val) 5843 { 5844 #ifdef CONFIG_DEBUG_PREEMPT 5845 /* 5846 * Underflow? 5847 */ 5848 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5849 return; 5850 #endif 5851 __preempt_count_add(val); 5852 #ifdef CONFIG_DEBUG_PREEMPT 5853 /* 5854 * Spinlock count overflowing soon? 5855 */ 5856 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5857 PREEMPT_MASK - 10); 5858 #endif 5859 preempt_latency_start(val); 5860 } 5861 EXPORT_SYMBOL(preempt_count_add); 5862 NOKPROBE_SYMBOL(preempt_count_add); 5863 5864 /* 5865 * If the value passed in equals to the current preempt count 5866 * then we just enabled preemption. Stop timing the latency. 5867 */ 5868 static inline void preempt_latency_stop(int val) 5869 { 5870 if (preempt_count() == val) 5871 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5872 } 5873 5874 void preempt_count_sub(int val) 5875 { 5876 #ifdef CONFIG_DEBUG_PREEMPT 5877 /* 5878 * Underflow? 5879 */ 5880 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5881 return; 5882 /* 5883 * Is the spinlock portion underflowing? 5884 */ 5885 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5886 !(preempt_count() & PREEMPT_MASK))) 5887 return; 5888 #endif 5889 5890 preempt_latency_stop(val); 5891 __preempt_count_sub(val); 5892 } 5893 EXPORT_SYMBOL(preempt_count_sub); 5894 NOKPROBE_SYMBOL(preempt_count_sub); 5895 5896 #else 5897 static inline void preempt_latency_start(int val) { } 5898 static inline void preempt_latency_stop(int val) { } 5899 #endif 5900 5901 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5902 { 5903 #ifdef CONFIG_DEBUG_PREEMPT 5904 return p->preempt_disable_ip; 5905 #else 5906 return 0; 5907 #endif 5908 } 5909 5910 /* 5911 * Print scheduling while atomic bug: 5912 */ 5913 static noinline void __schedule_bug(struct task_struct *prev) 5914 { 5915 /* Save this before calling printk(), since that will clobber it */ 5916 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5917 5918 if (oops_in_progress) 5919 return; 5920 5921 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5922 prev->comm, prev->pid, preempt_count()); 5923 5924 debug_show_held_locks(prev); 5925 print_modules(); 5926 if (irqs_disabled()) 5927 print_irqtrace_events(prev); 5928 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5929 && in_atomic_preempt_off()) { 5930 pr_err("Preemption disabled at:"); 5931 print_ip_sym(KERN_ERR, preempt_disable_ip); 5932 } 5933 check_panic_on_warn("scheduling while atomic"); 5934 5935 dump_stack(); 5936 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5937 } 5938 5939 /* 5940 * Various schedule()-time debugging checks and statistics: 5941 */ 5942 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5943 { 5944 #ifdef CONFIG_SCHED_STACK_END_CHECK 5945 if (task_stack_end_corrupted(prev)) 5946 panic("corrupted stack end detected inside scheduler\n"); 5947 5948 if (task_scs_end_corrupted(prev)) 5949 panic("corrupted shadow stack detected inside scheduler\n"); 5950 #endif 5951 5952 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5953 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5954 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5955 prev->comm, prev->pid, prev->non_block_count); 5956 dump_stack(); 5957 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5958 } 5959 #endif 5960 5961 if (unlikely(in_atomic_preempt_off())) { 5962 __schedule_bug(prev); 5963 preempt_count_set(PREEMPT_DISABLED); 5964 } 5965 rcu_sleep_check(); 5966 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5967 5968 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5969 5970 schedstat_inc(this_rq()->sched_count); 5971 } 5972 5973 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5974 struct rq_flags *rf) 5975 { 5976 #ifdef CONFIG_SMP 5977 const struct sched_class *class; 5978 /* 5979 * We must do the balancing pass before put_prev_task(), such 5980 * that when we release the rq->lock the task is in the same 5981 * state as before we took rq->lock. 5982 * 5983 * We can terminate the balance pass as soon as we know there is 5984 * a runnable task of @class priority or higher. 5985 */ 5986 for_class_range(class, prev->sched_class, &idle_sched_class) { 5987 if (class->balance(rq, prev, rf)) 5988 break; 5989 } 5990 #endif 5991 5992 put_prev_task(rq, prev); 5993 } 5994 5995 /* 5996 * Pick up the highest-prio task: 5997 */ 5998 static inline struct task_struct * 5999 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6000 { 6001 const struct sched_class *class; 6002 struct task_struct *p; 6003 6004 /* 6005 * Optimization: we know that if all tasks are in the fair class we can 6006 * call that function directly, but only if the @prev task wasn't of a 6007 * higher scheduling class, because otherwise those lose the 6008 * opportunity to pull in more work from other CPUs. 6009 */ 6010 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6011 rq->nr_running == rq->cfs.h_nr_running)) { 6012 6013 p = pick_next_task_fair(rq, prev, rf); 6014 if (unlikely(p == RETRY_TASK)) 6015 goto restart; 6016 6017 /* Assume the next prioritized class is idle_sched_class */ 6018 if (!p) { 6019 put_prev_task(rq, prev); 6020 p = pick_next_task_idle(rq); 6021 } 6022 6023 return p; 6024 } 6025 6026 restart: 6027 put_prev_task_balance(rq, prev, rf); 6028 6029 for_each_class(class) { 6030 p = class->pick_next_task(rq); 6031 if (p) 6032 return p; 6033 } 6034 6035 BUG(); /* The idle class should always have a runnable task. */ 6036 } 6037 6038 #ifdef CONFIG_SCHED_CORE 6039 static inline bool is_task_rq_idle(struct task_struct *t) 6040 { 6041 return (task_rq(t)->idle == t); 6042 } 6043 6044 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6045 { 6046 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6047 } 6048 6049 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6050 { 6051 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6052 return true; 6053 6054 return a->core_cookie == b->core_cookie; 6055 } 6056 6057 static inline struct task_struct *pick_task(struct rq *rq) 6058 { 6059 const struct sched_class *class; 6060 struct task_struct *p; 6061 6062 for_each_class(class) { 6063 p = class->pick_task(rq); 6064 if (p) 6065 return p; 6066 } 6067 6068 BUG(); /* The idle class should always have a runnable task. */ 6069 } 6070 6071 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6072 6073 static void queue_core_balance(struct rq *rq); 6074 6075 static struct task_struct * 6076 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6077 { 6078 struct task_struct *next, *p, *max = NULL; 6079 const struct cpumask *smt_mask; 6080 bool fi_before = false; 6081 bool core_clock_updated = (rq == rq->core); 6082 unsigned long cookie; 6083 int i, cpu, occ = 0; 6084 struct rq *rq_i; 6085 bool need_sync; 6086 6087 if (!sched_core_enabled(rq)) 6088 return __pick_next_task(rq, prev, rf); 6089 6090 cpu = cpu_of(rq); 6091 6092 /* Stopper task is switching into idle, no need core-wide selection. */ 6093 if (cpu_is_offline(cpu)) { 6094 /* 6095 * Reset core_pick so that we don't enter the fastpath when 6096 * coming online. core_pick would already be migrated to 6097 * another cpu during offline. 6098 */ 6099 rq->core_pick = NULL; 6100 return __pick_next_task(rq, prev, rf); 6101 } 6102 6103 /* 6104 * If there were no {en,de}queues since we picked (IOW, the task 6105 * pointers are all still valid), and we haven't scheduled the last 6106 * pick yet, do so now. 6107 * 6108 * rq->core_pick can be NULL if no selection was made for a CPU because 6109 * it was either offline or went offline during a sibling's core-wide 6110 * selection. In this case, do a core-wide selection. 6111 */ 6112 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6113 rq->core->core_pick_seq != rq->core_sched_seq && 6114 rq->core_pick) { 6115 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6116 6117 next = rq->core_pick; 6118 if (next != prev) { 6119 put_prev_task(rq, prev); 6120 set_next_task(rq, next); 6121 } 6122 6123 rq->core_pick = NULL; 6124 goto out; 6125 } 6126 6127 put_prev_task_balance(rq, prev, rf); 6128 6129 smt_mask = cpu_smt_mask(cpu); 6130 need_sync = !!rq->core->core_cookie; 6131 6132 /* reset state */ 6133 rq->core->core_cookie = 0UL; 6134 if (rq->core->core_forceidle_count) { 6135 if (!core_clock_updated) { 6136 update_rq_clock(rq->core); 6137 core_clock_updated = true; 6138 } 6139 sched_core_account_forceidle(rq); 6140 /* reset after accounting force idle */ 6141 rq->core->core_forceidle_start = 0; 6142 rq->core->core_forceidle_count = 0; 6143 rq->core->core_forceidle_occupation = 0; 6144 need_sync = true; 6145 fi_before = true; 6146 } 6147 6148 /* 6149 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6150 * 6151 * @task_seq guards the task state ({en,de}queues) 6152 * @pick_seq is the @task_seq we did a selection on 6153 * @sched_seq is the @pick_seq we scheduled 6154 * 6155 * However, preemptions can cause multiple picks on the same task set. 6156 * 'Fix' this by also increasing @task_seq for every pick. 6157 */ 6158 rq->core->core_task_seq++; 6159 6160 /* 6161 * Optimize for common case where this CPU has no cookies 6162 * and there are no cookied tasks running on siblings. 6163 */ 6164 if (!need_sync) { 6165 next = pick_task(rq); 6166 if (!next->core_cookie) { 6167 rq->core_pick = NULL; 6168 /* 6169 * For robustness, update the min_vruntime_fi for 6170 * unconstrained picks as well. 6171 */ 6172 WARN_ON_ONCE(fi_before); 6173 task_vruntime_update(rq, next, false); 6174 goto out_set_next; 6175 } 6176 } 6177 6178 /* 6179 * For each thread: do the regular task pick and find the max prio task 6180 * amongst them. 6181 * 6182 * Tie-break prio towards the current CPU 6183 */ 6184 for_each_cpu_wrap(i, smt_mask, cpu) { 6185 rq_i = cpu_rq(i); 6186 6187 /* 6188 * Current cpu always has its clock updated on entrance to 6189 * pick_next_task(). If the current cpu is not the core, 6190 * the core may also have been updated above. 6191 */ 6192 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6193 update_rq_clock(rq_i); 6194 6195 p = rq_i->core_pick = pick_task(rq_i); 6196 if (!max || prio_less(max, p, fi_before)) 6197 max = p; 6198 } 6199 6200 cookie = rq->core->core_cookie = max->core_cookie; 6201 6202 /* 6203 * For each thread: try and find a runnable task that matches @max or 6204 * force idle. 6205 */ 6206 for_each_cpu(i, smt_mask) { 6207 rq_i = cpu_rq(i); 6208 p = rq_i->core_pick; 6209 6210 if (!cookie_equals(p, cookie)) { 6211 p = NULL; 6212 if (cookie) 6213 p = sched_core_find(rq_i, cookie); 6214 if (!p) 6215 p = idle_sched_class.pick_task(rq_i); 6216 } 6217 6218 rq_i->core_pick = p; 6219 6220 if (p == rq_i->idle) { 6221 if (rq_i->nr_running) { 6222 rq->core->core_forceidle_count++; 6223 if (!fi_before) 6224 rq->core->core_forceidle_seq++; 6225 } 6226 } else { 6227 occ++; 6228 } 6229 } 6230 6231 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6232 rq->core->core_forceidle_start = rq_clock(rq->core); 6233 rq->core->core_forceidle_occupation = occ; 6234 } 6235 6236 rq->core->core_pick_seq = rq->core->core_task_seq; 6237 next = rq->core_pick; 6238 rq->core_sched_seq = rq->core->core_pick_seq; 6239 6240 /* Something should have been selected for current CPU */ 6241 WARN_ON_ONCE(!next); 6242 6243 /* 6244 * Reschedule siblings 6245 * 6246 * NOTE: L1TF -- at this point we're no longer running the old task and 6247 * sending an IPI (below) ensures the sibling will no longer be running 6248 * their task. This ensures there is no inter-sibling overlap between 6249 * non-matching user state. 6250 */ 6251 for_each_cpu(i, smt_mask) { 6252 rq_i = cpu_rq(i); 6253 6254 /* 6255 * An online sibling might have gone offline before a task 6256 * could be picked for it, or it might be offline but later 6257 * happen to come online, but its too late and nothing was 6258 * picked for it. That's Ok - it will pick tasks for itself, 6259 * so ignore it. 6260 */ 6261 if (!rq_i->core_pick) 6262 continue; 6263 6264 /* 6265 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6266 * fi_before fi update? 6267 * 0 0 1 6268 * 0 1 1 6269 * 1 0 1 6270 * 1 1 0 6271 */ 6272 if (!(fi_before && rq->core->core_forceidle_count)) 6273 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6274 6275 rq_i->core_pick->core_occupation = occ; 6276 6277 if (i == cpu) { 6278 rq_i->core_pick = NULL; 6279 continue; 6280 } 6281 6282 /* Did we break L1TF mitigation requirements? */ 6283 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6284 6285 if (rq_i->curr == rq_i->core_pick) { 6286 rq_i->core_pick = NULL; 6287 continue; 6288 } 6289 6290 resched_curr(rq_i); 6291 } 6292 6293 out_set_next: 6294 set_next_task(rq, next); 6295 out: 6296 if (rq->core->core_forceidle_count && next == rq->idle) 6297 queue_core_balance(rq); 6298 6299 return next; 6300 } 6301 6302 static bool try_steal_cookie(int this, int that) 6303 { 6304 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6305 struct task_struct *p; 6306 unsigned long cookie; 6307 bool success = false; 6308 6309 local_irq_disable(); 6310 double_rq_lock(dst, src); 6311 6312 cookie = dst->core->core_cookie; 6313 if (!cookie) 6314 goto unlock; 6315 6316 if (dst->curr != dst->idle) 6317 goto unlock; 6318 6319 p = sched_core_find(src, cookie); 6320 if (!p) 6321 goto unlock; 6322 6323 do { 6324 if (p == src->core_pick || p == src->curr) 6325 goto next; 6326 6327 if (!is_cpu_allowed(p, this)) 6328 goto next; 6329 6330 if (p->core_occupation > dst->idle->core_occupation) 6331 goto next; 6332 /* 6333 * sched_core_find() and sched_core_next() will ensure that task @p 6334 * is not throttled now, we also need to check whether the runqueue 6335 * of the destination CPU is being throttled. 6336 */ 6337 if (sched_task_is_throttled(p, this)) 6338 goto next; 6339 6340 deactivate_task(src, p, 0); 6341 set_task_cpu(p, this); 6342 activate_task(dst, p, 0); 6343 6344 resched_curr(dst); 6345 6346 success = true; 6347 break; 6348 6349 next: 6350 p = sched_core_next(p, cookie); 6351 } while (p); 6352 6353 unlock: 6354 double_rq_unlock(dst, src); 6355 local_irq_enable(); 6356 6357 return success; 6358 } 6359 6360 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6361 { 6362 int i; 6363 6364 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6365 if (i == cpu) 6366 continue; 6367 6368 if (need_resched()) 6369 break; 6370 6371 if (try_steal_cookie(cpu, i)) 6372 return true; 6373 } 6374 6375 return false; 6376 } 6377 6378 static void sched_core_balance(struct rq *rq) 6379 { 6380 struct sched_domain *sd; 6381 int cpu = cpu_of(rq); 6382 6383 preempt_disable(); 6384 rcu_read_lock(); 6385 raw_spin_rq_unlock_irq(rq); 6386 for_each_domain(cpu, sd) { 6387 if (need_resched()) 6388 break; 6389 6390 if (steal_cookie_task(cpu, sd)) 6391 break; 6392 } 6393 raw_spin_rq_lock_irq(rq); 6394 rcu_read_unlock(); 6395 preempt_enable(); 6396 } 6397 6398 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6399 6400 static void queue_core_balance(struct rq *rq) 6401 { 6402 if (!sched_core_enabled(rq)) 6403 return; 6404 6405 if (!rq->core->core_cookie) 6406 return; 6407 6408 if (!rq->nr_running) /* not forced idle */ 6409 return; 6410 6411 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6412 } 6413 6414 static void sched_core_cpu_starting(unsigned int cpu) 6415 { 6416 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6417 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6418 unsigned long flags; 6419 int t; 6420 6421 sched_core_lock(cpu, &flags); 6422 6423 WARN_ON_ONCE(rq->core != rq); 6424 6425 /* if we're the first, we'll be our own leader */ 6426 if (cpumask_weight(smt_mask) == 1) 6427 goto unlock; 6428 6429 /* find the leader */ 6430 for_each_cpu(t, smt_mask) { 6431 if (t == cpu) 6432 continue; 6433 rq = cpu_rq(t); 6434 if (rq->core == rq) { 6435 core_rq = rq; 6436 break; 6437 } 6438 } 6439 6440 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6441 goto unlock; 6442 6443 /* install and validate core_rq */ 6444 for_each_cpu(t, smt_mask) { 6445 rq = cpu_rq(t); 6446 6447 if (t == cpu) 6448 rq->core = core_rq; 6449 6450 WARN_ON_ONCE(rq->core != core_rq); 6451 } 6452 6453 unlock: 6454 sched_core_unlock(cpu, &flags); 6455 } 6456 6457 static void sched_core_cpu_deactivate(unsigned int cpu) 6458 { 6459 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6460 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6461 unsigned long flags; 6462 int t; 6463 6464 sched_core_lock(cpu, &flags); 6465 6466 /* if we're the last man standing, nothing to do */ 6467 if (cpumask_weight(smt_mask) == 1) { 6468 WARN_ON_ONCE(rq->core != rq); 6469 goto unlock; 6470 } 6471 6472 /* if we're not the leader, nothing to do */ 6473 if (rq->core != rq) 6474 goto unlock; 6475 6476 /* find a new leader */ 6477 for_each_cpu(t, smt_mask) { 6478 if (t == cpu) 6479 continue; 6480 core_rq = cpu_rq(t); 6481 break; 6482 } 6483 6484 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6485 goto unlock; 6486 6487 /* copy the shared state to the new leader */ 6488 core_rq->core_task_seq = rq->core_task_seq; 6489 core_rq->core_pick_seq = rq->core_pick_seq; 6490 core_rq->core_cookie = rq->core_cookie; 6491 core_rq->core_forceidle_count = rq->core_forceidle_count; 6492 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6493 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6494 6495 /* 6496 * Accounting edge for forced idle is handled in pick_next_task(). 6497 * Don't need another one here, since the hotplug thread shouldn't 6498 * have a cookie. 6499 */ 6500 core_rq->core_forceidle_start = 0; 6501 6502 /* install new leader */ 6503 for_each_cpu(t, smt_mask) { 6504 rq = cpu_rq(t); 6505 rq->core = core_rq; 6506 } 6507 6508 unlock: 6509 sched_core_unlock(cpu, &flags); 6510 } 6511 6512 static inline void sched_core_cpu_dying(unsigned int cpu) 6513 { 6514 struct rq *rq = cpu_rq(cpu); 6515 6516 if (rq->core != rq) 6517 rq->core = rq; 6518 } 6519 6520 #else /* !CONFIG_SCHED_CORE */ 6521 6522 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6523 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6524 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6525 6526 static struct task_struct * 6527 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6528 { 6529 return __pick_next_task(rq, prev, rf); 6530 } 6531 6532 #endif /* CONFIG_SCHED_CORE */ 6533 6534 /* 6535 * Constants for the sched_mode argument of __schedule(). 6536 * 6537 * The mode argument allows RT enabled kernels to differentiate a 6538 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6539 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6540 * optimize the AND operation out and just check for zero. 6541 */ 6542 #define SM_NONE 0x0 6543 #define SM_PREEMPT 0x1 6544 #define SM_RTLOCK_WAIT 0x2 6545 6546 #ifndef CONFIG_PREEMPT_RT 6547 # define SM_MASK_PREEMPT (~0U) 6548 #else 6549 # define SM_MASK_PREEMPT SM_PREEMPT 6550 #endif 6551 6552 /* 6553 * __schedule() is the main scheduler function. 6554 * 6555 * The main means of driving the scheduler and thus entering this function are: 6556 * 6557 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6558 * 6559 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6560 * paths. For example, see arch/x86/entry_64.S. 6561 * 6562 * To drive preemption between tasks, the scheduler sets the flag in timer 6563 * interrupt handler scheduler_tick(). 6564 * 6565 * 3. Wakeups don't really cause entry into schedule(). They add a 6566 * task to the run-queue and that's it. 6567 * 6568 * Now, if the new task added to the run-queue preempts the current 6569 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6570 * called on the nearest possible occasion: 6571 * 6572 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6573 * 6574 * - in syscall or exception context, at the next outmost 6575 * preempt_enable(). (this might be as soon as the wake_up()'s 6576 * spin_unlock()!) 6577 * 6578 * - in IRQ context, return from interrupt-handler to 6579 * preemptible context 6580 * 6581 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6582 * then at the next: 6583 * 6584 * - cond_resched() call 6585 * - explicit schedule() call 6586 * - return from syscall or exception to user-space 6587 * - return from interrupt-handler to user-space 6588 * 6589 * WARNING: must be called with preemption disabled! 6590 */ 6591 static void __sched notrace __schedule(unsigned int sched_mode) 6592 { 6593 struct task_struct *prev, *next; 6594 unsigned long *switch_count; 6595 unsigned long prev_state; 6596 struct rq_flags rf; 6597 struct rq *rq; 6598 int cpu; 6599 6600 cpu = smp_processor_id(); 6601 rq = cpu_rq(cpu); 6602 prev = rq->curr; 6603 6604 schedule_debug(prev, !!sched_mode); 6605 6606 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6607 hrtick_clear(rq); 6608 6609 local_irq_disable(); 6610 rcu_note_context_switch(!!sched_mode); 6611 6612 /* 6613 * Make sure that signal_pending_state()->signal_pending() below 6614 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6615 * done by the caller to avoid the race with signal_wake_up(): 6616 * 6617 * __set_current_state(@state) signal_wake_up() 6618 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6619 * wake_up_state(p, state) 6620 * LOCK rq->lock LOCK p->pi_state 6621 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6622 * if (signal_pending_state()) if (p->state & @state) 6623 * 6624 * Also, the membarrier system call requires a full memory barrier 6625 * after coming from user-space, before storing to rq->curr. 6626 */ 6627 rq_lock(rq, &rf); 6628 smp_mb__after_spinlock(); 6629 6630 /* Promote REQ to ACT */ 6631 rq->clock_update_flags <<= 1; 6632 update_rq_clock(rq); 6633 6634 switch_count = &prev->nivcsw; 6635 6636 /* 6637 * We must load prev->state once (task_struct::state is volatile), such 6638 * that we form a control dependency vs deactivate_task() below. 6639 */ 6640 prev_state = READ_ONCE(prev->__state); 6641 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6642 if (signal_pending_state(prev_state, prev)) { 6643 WRITE_ONCE(prev->__state, TASK_RUNNING); 6644 } else { 6645 prev->sched_contributes_to_load = 6646 (prev_state & TASK_UNINTERRUPTIBLE) && 6647 !(prev_state & TASK_NOLOAD) && 6648 !(prev_state & TASK_FROZEN); 6649 6650 if (prev->sched_contributes_to_load) 6651 rq->nr_uninterruptible++; 6652 6653 /* 6654 * __schedule() ttwu() 6655 * prev_state = prev->state; if (p->on_rq && ...) 6656 * if (prev_state) goto out; 6657 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6658 * p->state = TASK_WAKING 6659 * 6660 * Where __schedule() and ttwu() have matching control dependencies. 6661 * 6662 * After this, schedule() must not care about p->state any more. 6663 */ 6664 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6665 6666 if (prev->in_iowait) { 6667 atomic_inc(&rq->nr_iowait); 6668 delayacct_blkio_start(); 6669 } 6670 } 6671 switch_count = &prev->nvcsw; 6672 } 6673 6674 next = pick_next_task(rq, prev, &rf); 6675 clear_tsk_need_resched(prev); 6676 clear_preempt_need_resched(); 6677 #ifdef CONFIG_SCHED_DEBUG 6678 rq->last_seen_need_resched_ns = 0; 6679 #endif 6680 6681 if (likely(prev != next)) { 6682 rq->nr_switches++; 6683 /* 6684 * RCU users of rcu_dereference(rq->curr) may not see 6685 * changes to task_struct made by pick_next_task(). 6686 */ 6687 RCU_INIT_POINTER(rq->curr, next); 6688 /* 6689 * The membarrier system call requires each architecture 6690 * to have a full memory barrier after updating 6691 * rq->curr, before returning to user-space. 6692 * 6693 * Here are the schemes providing that barrier on the 6694 * various architectures: 6695 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6696 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6697 * - finish_lock_switch() for weakly-ordered 6698 * architectures where spin_unlock is a full barrier, 6699 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6700 * is a RELEASE barrier), 6701 */ 6702 ++*switch_count; 6703 6704 migrate_disable_switch(rq, prev); 6705 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6706 6707 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6708 6709 /* Also unlocks the rq: */ 6710 rq = context_switch(rq, prev, next, &rf); 6711 } else { 6712 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6713 6714 rq_unpin_lock(rq, &rf); 6715 __balance_callbacks(rq); 6716 raw_spin_rq_unlock_irq(rq); 6717 } 6718 } 6719 6720 void __noreturn do_task_dead(void) 6721 { 6722 /* Causes final put_task_struct in finish_task_switch(): */ 6723 set_special_state(TASK_DEAD); 6724 6725 /* Tell freezer to ignore us: */ 6726 current->flags |= PF_NOFREEZE; 6727 6728 __schedule(SM_NONE); 6729 BUG(); 6730 6731 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6732 for (;;) 6733 cpu_relax(); 6734 } 6735 6736 static inline void sched_submit_work(struct task_struct *tsk) 6737 { 6738 unsigned int task_flags; 6739 6740 if (task_is_running(tsk)) 6741 return; 6742 6743 task_flags = tsk->flags; 6744 /* 6745 * If a worker goes to sleep, notify and ask workqueue whether it 6746 * wants to wake up a task to maintain concurrency. 6747 */ 6748 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6749 if (task_flags & PF_WQ_WORKER) 6750 wq_worker_sleeping(tsk); 6751 else 6752 io_wq_worker_sleeping(tsk); 6753 } 6754 6755 /* 6756 * spinlock and rwlock must not flush block requests. This will 6757 * deadlock if the callback attempts to acquire a lock which is 6758 * already acquired. 6759 */ 6760 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6761 6762 /* 6763 * If we are going to sleep and we have plugged IO queued, 6764 * make sure to submit it to avoid deadlocks. 6765 */ 6766 blk_flush_plug(tsk->plug, true); 6767 } 6768 6769 static void sched_update_worker(struct task_struct *tsk) 6770 { 6771 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6772 if (tsk->flags & PF_WQ_WORKER) 6773 wq_worker_running(tsk); 6774 else 6775 io_wq_worker_running(tsk); 6776 } 6777 } 6778 6779 asmlinkage __visible void __sched schedule(void) 6780 { 6781 struct task_struct *tsk = current; 6782 6783 sched_submit_work(tsk); 6784 do { 6785 preempt_disable(); 6786 __schedule(SM_NONE); 6787 sched_preempt_enable_no_resched(); 6788 } while (need_resched()); 6789 sched_update_worker(tsk); 6790 } 6791 EXPORT_SYMBOL(schedule); 6792 6793 /* 6794 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6795 * state (have scheduled out non-voluntarily) by making sure that all 6796 * tasks have either left the run queue or have gone into user space. 6797 * As idle tasks do not do either, they must not ever be preempted 6798 * (schedule out non-voluntarily). 6799 * 6800 * schedule_idle() is similar to schedule_preempt_disable() except that it 6801 * never enables preemption because it does not call sched_submit_work(). 6802 */ 6803 void __sched schedule_idle(void) 6804 { 6805 /* 6806 * As this skips calling sched_submit_work(), which the idle task does 6807 * regardless because that function is a nop when the task is in a 6808 * TASK_RUNNING state, make sure this isn't used someplace that the 6809 * current task can be in any other state. Note, idle is always in the 6810 * TASK_RUNNING state. 6811 */ 6812 WARN_ON_ONCE(current->__state); 6813 do { 6814 __schedule(SM_NONE); 6815 } while (need_resched()); 6816 } 6817 6818 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6819 asmlinkage __visible void __sched schedule_user(void) 6820 { 6821 /* 6822 * If we come here after a random call to set_need_resched(), 6823 * or we have been woken up remotely but the IPI has not yet arrived, 6824 * we haven't yet exited the RCU idle mode. Do it here manually until 6825 * we find a better solution. 6826 * 6827 * NB: There are buggy callers of this function. Ideally we 6828 * should warn if prev_state != CONTEXT_USER, but that will trigger 6829 * too frequently to make sense yet. 6830 */ 6831 enum ctx_state prev_state = exception_enter(); 6832 schedule(); 6833 exception_exit(prev_state); 6834 } 6835 #endif 6836 6837 /** 6838 * schedule_preempt_disabled - called with preemption disabled 6839 * 6840 * Returns with preemption disabled. Note: preempt_count must be 1 6841 */ 6842 void __sched schedule_preempt_disabled(void) 6843 { 6844 sched_preempt_enable_no_resched(); 6845 schedule(); 6846 preempt_disable(); 6847 } 6848 6849 #ifdef CONFIG_PREEMPT_RT 6850 void __sched notrace schedule_rtlock(void) 6851 { 6852 do { 6853 preempt_disable(); 6854 __schedule(SM_RTLOCK_WAIT); 6855 sched_preempt_enable_no_resched(); 6856 } while (need_resched()); 6857 } 6858 NOKPROBE_SYMBOL(schedule_rtlock); 6859 #endif 6860 6861 static void __sched notrace preempt_schedule_common(void) 6862 { 6863 do { 6864 /* 6865 * Because the function tracer can trace preempt_count_sub() 6866 * and it also uses preempt_enable/disable_notrace(), if 6867 * NEED_RESCHED is set, the preempt_enable_notrace() called 6868 * by the function tracer will call this function again and 6869 * cause infinite recursion. 6870 * 6871 * Preemption must be disabled here before the function 6872 * tracer can trace. Break up preempt_disable() into two 6873 * calls. One to disable preemption without fear of being 6874 * traced. The other to still record the preemption latency, 6875 * which can also be traced by the function tracer. 6876 */ 6877 preempt_disable_notrace(); 6878 preempt_latency_start(1); 6879 __schedule(SM_PREEMPT); 6880 preempt_latency_stop(1); 6881 preempt_enable_no_resched_notrace(); 6882 6883 /* 6884 * Check again in case we missed a preemption opportunity 6885 * between schedule and now. 6886 */ 6887 } while (need_resched()); 6888 } 6889 6890 #ifdef CONFIG_PREEMPTION 6891 /* 6892 * This is the entry point to schedule() from in-kernel preemption 6893 * off of preempt_enable. 6894 */ 6895 asmlinkage __visible void __sched notrace preempt_schedule(void) 6896 { 6897 /* 6898 * If there is a non-zero preempt_count or interrupts are disabled, 6899 * we do not want to preempt the current task. Just return.. 6900 */ 6901 if (likely(!preemptible())) 6902 return; 6903 preempt_schedule_common(); 6904 } 6905 NOKPROBE_SYMBOL(preempt_schedule); 6906 EXPORT_SYMBOL(preempt_schedule); 6907 6908 #ifdef CONFIG_PREEMPT_DYNAMIC 6909 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6910 #ifndef preempt_schedule_dynamic_enabled 6911 #define preempt_schedule_dynamic_enabled preempt_schedule 6912 #define preempt_schedule_dynamic_disabled NULL 6913 #endif 6914 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6915 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6916 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6917 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6918 void __sched notrace dynamic_preempt_schedule(void) 6919 { 6920 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6921 return; 6922 preempt_schedule(); 6923 } 6924 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6925 EXPORT_SYMBOL(dynamic_preempt_schedule); 6926 #endif 6927 #endif 6928 6929 /** 6930 * preempt_schedule_notrace - preempt_schedule called by tracing 6931 * 6932 * The tracing infrastructure uses preempt_enable_notrace to prevent 6933 * recursion and tracing preempt enabling caused by the tracing 6934 * infrastructure itself. But as tracing can happen in areas coming 6935 * from userspace or just about to enter userspace, a preempt enable 6936 * can occur before user_exit() is called. This will cause the scheduler 6937 * to be called when the system is still in usermode. 6938 * 6939 * To prevent this, the preempt_enable_notrace will use this function 6940 * instead of preempt_schedule() to exit user context if needed before 6941 * calling the scheduler. 6942 */ 6943 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6944 { 6945 enum ctx_state prev_ctx; 6946 6947 if (likely(!preemptible())) 6948 return; 6949 6950 do { 6951 /* 6952 * Because the function tracer can trace preempt_count_sub() 6953 * and it also uses preempt_enable/disable_notrace(), if 6954 * NEED_RESCHED is set, the preempt_enable_notrace() called 6955 * by the function tracer will call this function again and 6956 * cause infinite recursion. 6957 * 6958 * Preemption must be disabled here before the function 6959 * tracer can trace. Break up preempt_disable() into two 6960 * calls. One to disable preemption without fear of being 6961 * traced. The other to still record the preemption latency, 6962 * which can also be traced by the function tracer. 6963 */ 6964 preempt_disable_notrace(); 6965 preempt_latency_start(1); 6966 /* 6967 * Needs preempt disabled in case user_exit() is traced 6968 * and the tracer calls preempt_enable_notrace() causing 6969 * an infinite recursion. 6970 */ 6971 prev_ctx = exception_enter(); 6972 __schedule(SM_PREEMPT); 6973 exception_exit(prev_ctx); 6974 6975 preempt_latency_stop(1); 6976 preempt_enable_no_resched_notrace(); 6977 } while (need_resched()); 6978 } 6979 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6980 6981 #ifdef CONFIG_PREEMPT_DYNAMIC 6982 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6983 #ifndef preempt_schedule_notrace_dynamic_enabled 6984 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6985 #define preempt_schedule_notrace_dynamic_disabled NULL 6986 #endif 6987 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6988 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6989 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6990 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6991 void __sched notrace dynamic_preempt_schedule_notrace(void) 6992 { 6993 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6994 return; 6995 preempt_schedule_notrace(); 6996 } 6997 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6998 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6999 #endif 7000 #endif 7001 7002 #endif /* CONFIG_PREEMPTION */ 7003 7004 /* 7005 * This is the entry point to schedule() from kernel preemption 7006 * off of irq context. 7007 * Note, that this is called and return with irqs disabled. This will 7008 * protect us against recursive calling from irq. 7009 */ 7010 asmlinkage __visible void __sched preempt_schedule_irq(void) 7011 { 7012 enum ctx_state prev_state; 7013 7014 /* Catch callers which need to be fixed */ 7015 BUG_ON(preempt_count() || !irqs_disabled()); 7016 7017 prev_state = exception_enter(); 7018 7019 do { 7020 preempt_disable(); 7021 local_irq_enable(); 7022 __schedule(SM_PREEMPT); 7023 local_irq_disable(); 7024 sched_preempt_enable_no_resched(); 7025 } while (need_resched()); 7026 7027 exception_exit(prev_state); 7028 } 7029 7030 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7031 void *key) 7032 { 7033 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 7034 return try_to_wake_up(curr->private, mode, wake_flags); 7035 } 7036 EXPORT_SYMBOL(default_wake_function); 7037 7038 static void __setscheduler_prio(struct task_struct *p, int prio) 7039 { 7040 if (dl_prio(prio)) 7041 p->sched_class = &dl_sched_class; 7042 else if (rt_prio(prio)) 7043 p->sched_class = &rt_sched_class; 7044 else 7045 p->sched_class = &fair_sched_class; 7046 7047 p->prio = prio; 7048 } 7049 7050 #ifdef CONFIG_RT_MUTEXES 7051 7052 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 7053 { 7054 if (pi_task) 7055 prio = min(prio, pi_task->prio); 7056 7057 return prio; 7058 } 7059 7060 static inline int rt_effective_prio(struct task_struct *p, int prio) 7061 { 7062 struct task_struct *pi_task = rt_mutex_get_top_task(p); 7063 7064 return __rt_effective_prio(pi_task, prio); 7065 } 7066 7067 /* 7068 * rt_mutex_setprio - set the current priority of a task 7069 * @p: task to boost 7070 * @pi_task: donor task 7071 * 7072 * This function changes the 'effective' priority of a task. It does 7073 * not touch ->normal_prio like __setscheduler(). 7074 * 7075 * Used by the rt_mutex code to implement priority inheritance 7076 * logic. Call site only calls if the priority of the task changed. 7077 */ 7078 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7079 { 7080 int prio, oldprio, queued, running, queue_flag = 7081 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7082 const struct sched_class *prev_class; 7083 struct rq_flags rf; 7084 struct rq *rq; 7085 7086 /* XXX used to be waiter->prio, not waiter->task->prio */ 7087 prio = __rt_effective_prio(pi_task, p->normal_prio); 7088 7089 /* 7090 * If nothing changed; bail early. 7091 */ 7092 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7093 return; 7094 7095 rq = __task_rq_lock(p, &rf); 7096 update_rq_clock(rq); 7097 /* 7098 * Set under pi_lock && rq->lock, such that the value can be used under 7099 * either lock. 7100 * 7101 * Note that there is loads of tricky to make this pointer cache work 7102 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7103 * ensure a task is de-boosted (pi_task is set to NULL) before the 7104 * task is allowed to run again (and can exit). This ensures the pointer 7105 * points to a blocked task -- which guarantees the task is present. 7106 */ 7107 p->pi_top_task = pi_task; 7108 7109 /* 7110 * For FIFO/RR we only need to set prio, if that matches we're done. 7111 */ 7112 if (prio == p->prio && !dl_prio(prio)) 7113 goto out_unlock; 7114 7115 /* 7116 * Idle task boosting is a nono in general. There is one 7117 * exception, when PREEMPT_RT and NOHZ is active: 7118 * 7119 * The idle task calls get_next_timer_interrupt() and holds 7120 * the timer wheel base->lock on the CPU and another CPU wants 7121 * to access the timer (probably to cancel it). We can safely 7122 * ignore the boosting request, as the idle CPU runs this code 7123 * with interrupts disabled and will complete the lock 7124 * protected section without being interrupted. So there is no 7125 * real need to boost. 7126 */ 7127 if (unlikely(p == rq->idle)) { 7128 WARN_ON(p != rq->curr); 7129 WARN_ON(p->pi_blocked_on); 7130 goto out_unlock; 7131 } 7132 7133 trace_sched_pi_setprio(p, pi_task); 7134 oldprio = p->prio; 7135 7136 if (oldprio == prio) 7137 queue_flag &= ~DEQUEUE_MOVE; 7138 7139 prev_class = p->sched_class; 7140 queued = task_on_rq_queued(p); 7141 running = task_current(rq, p); 7142 if (queued) 7143 dequeue_task(rq, p, queue_flag); 7144 if (running) 7145 put_prev_task(rq, p); 7146 7147 /* 7148 * Boosting condition are: 7149 * 1. -rt task is running and holds mutex A 7150 * --> -dl task blocks on mutex A 7151 * 7152 * 2. -dl task is running and holds mutex A 7153 * --> -dl task blocks on mutex A and could preempt the 7154 * running task 7155 */ 7156 if (dl_prio(prio)) { 7157 if (!dl_prio(p->normal_prio) || 7158 (pi_task && dl_prio(pi_task->prio) && 7159 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7160 p->dl.pi_se = pi_task->dl.pi_se; 7161 queue_flag |= ENQUEUE_REPLENISH; 7162 } else { 7163 p->dl.pi_se = &p->dl; 7164 } 7165 } else if (rt_prio(prio)) { 7166 if (dl_prio(oldprio)) 7167 p->dl.pi_se = &p->dl; 7168 if (oldprio < prio) 7169 queue_flag |= ENQUEUE_HEAD; 7170 } else { 7171 if (dl_prio(oldprio)) 7172 p->dl.pi_se = &p->dl; 7173 if (rt_prio(oldprio)) 7174 p->rt.timeout = 0; 7175 } 7176 7177 __setscheduler_prio(p, prio); 7178 7179 if (queued) 7180 enqueue_task(rq, p, queue_flag); 7181 if (running) 7182 set_next_task(rq, p); 7183 7184 check_class_changed(rq, p, prev_class, oldprio); 7185 out_unlock: 7186 /* Avoid rq from going away on us: */ 7187 preempt_disable(); 7188 7189 rq_unpin_lock(rq, &rf); 7190 __balance_callbacks(rq); 7191 raw_spin_rq_unlock(rq); 7192 7193 preempt_enable(); 7194 } 7195 #else 7196 static inline int rt_effective_prio(struct task_struct *p, int prio) 7197 { 7198 return prio; 7199 } 7200 #endif 7201 7202 void set_user_nice(struct task_struct *p, long nice) 7203 { 7204 bool queued, running; 7205 int old_prio; 7206 struct rq_flags rf; 7207 struct rq *rq; 7208 7209 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7210 return; 7211 /* 7212 * We have to be careful, if called from sys_setpriority(), 7213 * the task might be in the middle of scheduling on another CPU. 7214 */ 7215 rq = task_rq_lock(p, &rf); 7216 update_rq_clock(rq); 7217 7218 /* 7219 * The RT priorities are set via sched_setscheduler(), but we still 7220 * allow the 'normal' nice value to be set - but as expected 7221 * it won't have any effect on scheduling until the task is 7222 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7223 */ 7224 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7225 p->static_prio = NICE_TO_PRIO(nice); 7226 goto out_unlock; 7227 } 7228 queued = task_on_rq_queued(p); 7229 running = task_current(rq, p); 7230 if (queued) 7231 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7232 if (running) 7233 put_prev_task(rq, p); 7234 7235 p->static_prio = NICE_TO_PRIO(nice); 7236 set_load_weight(p, true); 7237 old_prio = p->prio; 7238 p->prio = effective_prio(p); 7239 7240 if (queued) 7241 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7242 if (running) 7243 set_next_task(rq, p); 7244 7245 /* 7246 * If the task increased its priority or is running and 7247 * lowered its priority, then reschedule its CPU: 7248 */ 7249 p->sched_class->prio_changed(rq, p, old_prio); 7250 7251 out_unlock: 7252 task_rq_unlock(rq, p, &rf); 7253 } 7254 EXPORT_SYMBOL(set_user_nice); 7255 7256 /* 7257 * is_nice_reduction - check if nice value is an actual reduction 7258 * 7259 * Similar to can_nice() but does not perform a capability check. 7260 * 7261 * @p: task 7262 * @nice: nice value 7263 */ 7264 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7265 { 7266 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7267 int nice_rlim = nice_to_rlimit(nice); 7268 7269 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7270 } 7271 7272 /* 7273 * can_nice - check if a task can reduce its nice value 7274 * @p: task 7275 * @nice: nice value 7276 */ 7277 int can_nice(const struct task_struct *p, const int nice) 7278 { 7279 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7280 } 7281 7282 #ifdef __ARCH_WANT_SYS_NICE 7283 7284 /* 7285 * sys_nice - change the priority of the current process. 7286 * @increment: priority increment 7287 * 7288 * sys_setpriority is a more generic, but much slower function that 7289 * does similar things. 7290 */ 7291 SYSCALL_DEFINE1(nice, int, increment) 7292 { 7293 long nice, retval; 7294 7295 /* 7296 * Setpriority might change our priority at the same moment. 7297 * We don't have to worry. Conceptually one call occurs first 7298 * and we have a single winner. 7299 */ 7300 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7301 nice = task_nice(current) + increment; 7302 7303 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7304 if (increment < 0 && !can_nice(current, nice)) 7305 return -EPERM; 7306 7307 retval = security_task_setnice(current, nice); 7308 if (retval) 7309 return retval; 7310 7311 set_user_nice(current, nice); 7312 return 0; 7313 } 7314 7315 #endif 7316 7317 /** 7318 * task_prio - return the priority value of a given task. 7319 * @p: the task in question. 7320 * 7321 * Return: The priority value as seen by users in /proc. 7322 * 7323 * sched policy return value kernel prio user prio/nice 7324 * 7325 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7326 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7327 * deadline -101 -1 0 7328 */ 7329 int task_prio(const struct task_struct *p) 7330 { 7331 return p->prio - MAX_RT_PRIO; 7332 } 7333 7334 /** 7335 * idle_cpu - is a given CPU idle currently? 7336 * @cpu: the processor in question. 7337 * 7338 * Return: 1 if the CPU is currently idle. 0 otherwise. 7339 */ 7340 int idle_cpu(int cpu) 7341 { 7342 struct rq *rq = cpu_rq(cpu); 7343 7344 if (rq->curr != rq->idle) 7345 return 0; 7346 7347 if (rq->nr_running) 7348 return 0; 7349 7350 #ifdef CONFIG_SMP 7351 if (rq->ttwu_pending) 7352 return 0; 7353 #endif 7354 7355 return 1; 7356 } 7357 7358 /** 7359 * available_idle_cpu - is a given CPU idle for enqueuing work. 7360 * @cpu: the CPU in question. 7361 * 7362 * Return: 1 if the CPU is currently idle. 0 otherwise. 7363 */ 7364 int available_idle_cpu(int cpu) 7365 { 7366 if (!idle_cpu(cpu)) 7367 return 0; 7368 7369 if (vcpu_is_preempted(cpu)) 7370 return 0; 7371 7372 return 1; 7373 } 7374 7375 /** 7376 * idle_task - return the idle task for a given CPU. 7377 * @cpu: the processor in question. 7378 * 7379 * Return: The idle task for the CPU @cpu. 7380 */ 7381 struct task_struct *idle_task(int cpu) 7382 { 7383 return cpu_rq(cpu)->idle; 7384 } 7385 7386 #ifdef CONFIG_SMP 7387 /* 7388 * This function computes an effective utilization for the given CPU, to be 7389 * used for frequency selection given the linear relation: f = u * f_max. 7390 * 7391 * The scheduler tracks the following metrics: 7392 * 7393 * cpu_util_{cfs,rt,dl,irq}() 7394 * cpu_bw_dl() 7395 * 7396 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7397 * synchronized windows and are thus directly comparable. 7398 * 7399 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7400 * which excludes things like IRQ and steal-time. These latter are then accrued 7401 * in the irq utilization. 7402 * 7403 * The DL bandwidth number otoh is not a measured metric but a value computed 7404 * based on the task model parameters and gives the minimal utilization 7405 * required to meet deadlines. 7406 */ 7407 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7408 enum cpu_util_type type, 7409 struct task_struct *p) 7410 { 7411 unsigned long dl_util, util, irq, max; 7412 struct rq *rq = cpu_rq(cpu); 7413 7414 max = arch_scale_cpu_capacity(cpu); 7415 7416 if (!uclamp_is_used() && 7417 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7418 return max; 7419 } 7420 7421 /* 7422 * Early check to see if IRQ/steal time saturates the CPU, can be 7423 * because of inaccuracies in how we track these -- see 7424 * update_irq_load_avg(). 7425 */ 7426 irq = cpu_util_irq(rq); 7427 if (unlikely(irq >= max)) 7428 return max; 7429 7430 /* 7431 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7432 * CFS tasks and we use the same metric to track the effective 7433 * utilization (PELT windows are synchronized) we can directly add them 7434 * to obtain the CPU's actual utilization. 7435 * 7436 * CFS and RT utilization can be boosted or capped, depending on 7437 * utilization clamp constraints requested by currently RUNNABLE 7438 * tasks. 7439 * When there are no CFS RUNNABLE tasks, clamps are released and 7440 * frequency will be gracefully reduced with the utilization decay. 7441 */ 7442 util = util_cfs + cpu_util_rt(rq); 7443 if (type == FREQUENCY_UTIL) 7444 util = uclamp_rq_util_with(rq, util, p); 7445 7446 dl_util = cpu_util_dl(rq); 7447 7448 /* 7449 * For frequency selection we do not make cpu_util_dl() a permanent part 7450 * of this sum because we want to use cpu_bw_dl() later on, but we need 7451 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7452 * that we select f_max when there is no idle time. 7453 * 7454 * NOTE: numerical errors or stop class might cause us to not quite hit 7455 * saturation when we should -- something for later. 7456 */ 7457 if (util + dl_util >= max) 7458 return max; 7459 7460 /* 7461 * OTOH, for energy computation we need the estimated running time, so 7462 * include util_dl and ignore dl_bw. 7463 */ 7464 if (type == ENERGY_UTIL) 7465 util += dl_util; 7466 7467 /* 7468 * There is still idle time; further improve the number by using the 7469 * irq metric. Because IRQ/steal time is hidden from the task clock we 7470 * need to scale the task numbers: 7471 * 7472 * max - irq 7473 * U' = irq + --------- * U 7474 * max 7475 */ 7476 util = scale_irq_capacity(util, irq, max); 7477 util += irq; 7478 7479 /* 7480 * Bandwidth required by DEADLINE must always be granted while, for 7481 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7482 * to gracefully reduce the frequency when no tasks show up for longer 7483 * periods of time. 7484 * 7485 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7486 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7487 * an interface. So, we only do the latter for now. 7488 */ 7489 if (type == FREQUENCY_UTIL) 7490 util += cpu_bw_dl(rq); 7491 7492 return min(max, util); 7493 } 7494 7495 unsigned long sched_cpu_util(int cpu) 7496 { 7497 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7498 } 7499 #endif /* CONFIG_SMP */ 7500 7501 /** 7502 * find_process_by_pid - find a process with a matching PID value. 7503 * @pid: the pid in question. 7504 * 7505 * The task of @pid, if found. %NULL otherwise. 7506 */ 7507 static struct task_struct *find_process_by_pid(pid_t pid) 7508 { 7509 return pid ? find_task_by_vpid(pid) : current; 7510 } 7511 7512 /* 7513 * sched_setparam() passes in -1 for its policy, to let the functions 7514 * it calls know not to change it. 7515 */ 7516 #define SETPARAM_POLICY -1 7517 7518 static void __setscheduler_params(struct task_struct *p, 7519 const struct sched_attr *attr) 7520 { 7521 int policy = attr->sched_policy; 7522 7523 if (policy == SETPARAM_POLICY) 7524 policy = p->policy; 7525 7526 p->policy = policy; 7527 7528 if (dl_policy(policy)) 7529 __setparam_dl(p, attr); 7530 else if (fair_policy(policy)) 7531 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7532 7533 /* 7534 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7535 * !rt_policy. Always setting this ensures that things like 7536 * getparam()/getattr() don't report silly values for !rt tasks. 7537 */ 7538 p->rt_priority = attr->sched_priority; 7539 p->normal_prio = normal_prio(p); 7540 set_load_weight(p, true); 7541 } 7542 7543 /* 7544 * Check the target process has a UID that matches the current process's: 7545 */ 7546 static bool check_same_owner(struct task_struct *p) 7547 { 7548 const struct cred *cred = current_cred(), *pcred; 7549 bool match; 7550 7551 rcu_read_lock(); 7552 pcred = __task_cred(p); 7553 match = (uid_eq(cred->euid, pcred->euid) || 7554 uid_eq(cred->euid, pcred->uid)); 7555 rcu_read_unlock(); 7556 return match; 7557 } 7558 7559 /* 7560 * Allow unprivileged RT tasks to decrease priority. 7561 * Only issue a capable test if needed and only once to avoid an audit 7562 * event on permitted non-privileged operations: 7563 */ 7564 static int user_check_sched_setscheduler(struct task_struct *p, 7565 const struct sched_attr *attr, 7566 int policy, int reset_on_fork) 7567 { 7568 if (fair_policy(policy)) { 7569 if (attr->sched_nice < task_nice(p) && 7570 !is_nice_reduction(p, attr->sched_nice)) 7571 goto req_priv; 7572 } 7573 7574 if (rt_policy(policy)) { 7575 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7576 7577 /* Can't set/change the rt policy: */ 7578 if (policy != p->policy && !rlim_rtprio) 7579 goto req_priv; 7580 7581 /* Can't increase priority: */ 7582 if (attr->sched_priority > p->rt_priority && 7583 attr->sched_priority > rlim_rtprio) 7584 goto req_priv; 7585 } 7586 7587 /* 7588 * Can't set/change SCHED_DEADLINE policy at all for now 7589 * (safest behavior); in the future we would like to allow 7590 * unprivileged DL tasks to increase their relative deadline 7591 * or reduce their runtime (both ways reducing utilization) 7592 */ 7593 if (dl_policy(policy)) 7594 goto req_priv; 7595 7596 /* 7597 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7598 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7599 */ 7600 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7601 if (!is_nice_reduction(p, task_nice(p))) 7602 goto req_priv; 7603 } 7604 7605 /* Can't change other user's priorities: */ 7606 if (!check_same_owner(p)) 7607 goto req_priv; 7608 7609 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7610 if (p->sched_reset_on_fork && !reset_on_fork) 7611 goto req_priv; 7612 7613 return 0; 7614 7615 req_priv: 7616 if (!capable(CAP_SYS_NICE)) 7617 return -EPERM; 7618 7619 return 0; 7620 } 7621 7622 static int __sched_setscheduler(struct task_struct *p, 7623 const struct sched_attr *attr, 7624 bool user, bool pi) 7625 { 7626 int oldpolicy = -1, policy = attr->sched_policy; 7627 int retval, oldprio, newprio, queued, running; 7628 const struct sched_class *prev_class; 7629 struct balance_callback *head; 7630 struct rq_flags rf; 7631 int reset_on_fork; 7632 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7633 struct rq *rq; 7634 bool cpuset_locked = false; 7635 7636 /* The pi code expects interrupts enabled */ 7637 BUG_ON(pi && in_interrupt()); 7638 recheck: 7639 /* Double check policy once rq lock held: */ 7640 if (policy < 0) { 7641 reset_on_fork = p->sched_reset_on_fork; 7642 policy = oldpolicy = p->policy; 7643 } else { 7644 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7645 7646 if (!valid_policy(policy)) 7647 return -EINVAL; 7648 } 7649 7650 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7651 return -EINVAL; 7652 7653 /* 7654 * Valid priorities for SCHED_FIFO and SCHED_RR are 7655 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7656 * SCHED_BATCH and SCHED_IDLE is 0. 7657 */ 7658 if (attr->sched_priority > MAX_RT_PRIO-1) 7659 return -EINVAL; 7660 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7661 (rt_policy(policy) != (attr->sched_priority != 0))) 7662 return -EINVAL; 7663 7664 if (user) { 7665 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7666 if (retval) 7667 return retval; 7668 7669 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7670 return -EINVAL; 7671 7672 retval = security_task_setscheduler(p); 7673 if (retval) 7674 return retval; 7675 } 7676 7677 /* Update task specific "requested" clamps */ 7678 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7679 retval = uclamp_validate(p, attr); 7680 if (retval) 7681 return retval; 7682 } 7683 7684 /* 7685 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 7686 * information. 7687 */ 7688 if (dl_policy(policy) || dl_policy(p->policy)) { 7689 cpuset_locked = true; 7690 cpuset_lock(); 7691 } 7692 7693 /* 7694 * Make sure no PI-waiters arrive (or leave) while we are 7695 * changing the priority of the task: 7696 * 7697 * To be able to change p->policy safely, the appropriate 7698 * runqueue lock must be held. 7699 */ 7700 rq = task_rq_lock(p, &rf); 7701 update_rq_clock(rq); 7702 7703 /* 7704 * Changing the policy of the stop threads its a very bad idea: 7705 */ 7706 if (p == rq->stop) { 7707 retval = -EINVAL; 7708 goto unlock; 7709 } 7710 7711 /* 7712 * If not changing anything there's no need to proceed further, 7713 * but store a possible modification of reset_on_fork. 7714 */ 7715 if (unlikely(policy == p->policy)) { 7716 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7717 goto change; 7718 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7719 goto change; 7720 if (dl_policy(policy) && dl_param_changed(p, attr)) 7721 goto change; 7722 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7723 goto change; 7724 7725 p->sched_reset_on_fork = reset_on_fork; 7726 retval = 0; 7727 goto unlock; 7728 } 7729 change: 7730 7731 if (user) { 7732 #ifdef CONFIG_RT_GROUP_SCHED 7733 /* 7734 * Do not allow realtime tasks into groups that have no runtime 7735 * assigned. 7736 */ 7737 if (rt_bandwidth_enabled() && rt_policy(policy) && 7738 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7739 !task_group_is_autogroup(task_group(p))) { 7740 retval = -EPERM; 7741 goto unlock; 7742 } 7743 #endif 7744 #ifdef CONFIG_SMP 7745 if (dl_bandwidth_enabled() && dl_policy(policy) && 7746 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7747 cpumask_t *span = rq->rd->span; 7748 7749 /* 7750 * Don't allow tasks with an affinity mask smaller than 7751 * the entire root_domain to become SCHED_DEADLINE. We 7752 * will also fail if there's no bandwidth available. 7753 */ 7754 if (!cpumask_subset(span, p->cpus_ptr) || 7755 rq->rd->dl_bw.bw == 0) { 7756 retval = -EPERM; 7757 goto unlock; 7758 } 7759 } 7760 #endif 7761 } 7762 7763 /* Re-check policy now with rq lock held: */ 7764 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7765 policy = oldpolicy = -1; 7766 task_rq_unlock(rq, p, &rf); 7767 if (cpuset_locked) 7768 cpuset_unlock(); 7769 goto recheck; 7770 } 7771 7772 /* 7773 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7774 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7775 * is available. 7776 */ 7777 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7778 retval = -EBUSY; 7779 goto unlock; 7780 } 7781 7782 p->sched_reset_on_fork = reset_on_fork; 7783 oldprio = p->prio; 7784 7785 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7786 if (pi) { 7787 /* 7788 * Take priority boosted tasks into account. If the new 7789 * effective priority is unchanged, we just store the new 7790 * normal parameters and do not touch the scheduler class and 7791 * the runqueue. This will be done when the task deboost 7792 * itself. 7793 */ 7794 newprio = rt_effective_prio(p, newprio); 7795 if (newprio == oldprio) 7796 queue_flags &= ~DEQUEUE_MOVE; 7797 } 7798 7799 queued = task_on_rq_queued(p); 7800 running = task_current(rq, p); 7801 if (queued) 7802 dequeue_task(rq, p, queue_flags); 7803 if (running) 7804 put_prev_task(rq, p); 7805 7806 prev_class = p->sched_class; 7807 7808 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7809 __setscheduler_params(p, attr); 7810 __setscheduler_prio(p, newprio); 7811 } 7812 __setscheduler_uclamp(p, attr); 7813 7814 if (queued) { 7815 /* 7816 * We enqueue to tail when the priority of a task is 7817 * increased (user space view). 7818 */ 7819 if (oldprio < p->prio) 7820 queue_flags |= ENQUEUE_HEAD; 7821 7822 enqueue_task(rq, p, queue_flags); 7823 } 7824 if (running) 7825 set_next_task(rq, p); 7826 7827 check_class_changed(rq, p, prev_class, oldprio); 7828 7829 /* Avoid rq from going away on us: */ 7830 preempt_disable(); 7831 head = splice_balance_callbacks(rq); 7832 task_rq_unlock(rq, p, &rf); 7833 7834 if (pi) { 7835 if (cpuset_locked) 7836 cpuset_unlock(); 7837 rt_mutex_adjust_pi(p); 7838 } 7839 7840 /* Run balance callbacks after we've adjusted the PI chain: */ 7841 balance_callbacks(rq, head); 7842 preempt_enable(); 7843 7844 return 0; 7845 7846 unlock: 7847 task_rq_unlock(rq, p, &rf); 7848 if (cpuset_locked) 7849 cpuset_unlock(); 7850 return retval; 7851 } 7852 7853 static int _sched_setscheduler(struct task_struct *p, int policy, 7854 const struct sched_param *param, bool check) 7855 { 7856 struct sched_attr attr = { 7857 .sched_policy = policy, 7858 .sched_priority = param->sched_priority, 7859 .sched_nice = PRIO_TO_NICE(p->static_prio), 7860 }; 7861 7862 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7863 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7864 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7865 policy &= ~SCHED_RESET_ON_FORK; 7866 attr.sched_policy = policy; 7867 } 7868 7869 return __sched_setscheduler(p, &attr, check, true); 7870 } 7871 /** 7872 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7873 * @p: the task in question. 7874 * @policy: new policy. 7875 * @param: structure containing the new RT priority. 7876 * 7877 * Use sched_set_fifo(), read its comment. 7878 * 7879 * Return: 0 on success. An error code otherwise. 7880 * 7881 * NOTE that the task may be already dead. 7882 */ 7883 int sched_setscheduler(struct task_struct *p, int policy, 7884 const struct sched_param *param) 7885 { 7886 return _sched_setscheduler(p, policy, param, true); 7887 } 7888 7889 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7890 { 7891 return __sched_setscheduler(p, attr, true, true); 7892 } 7893 7894 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7895 { 7896 return __sched_setscheduler(p, attr, false, true); 7897 } 7898 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7899 7900 /** 7901 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7902 * @p: the task in question. 7903 * @policy: new policy. 7904 * @param: structure containing the new RT priority. 7905 * 7906 * Just like sched_setscheduler, only don't bother checking if the 7907 * current context has permission. For example, this is needed in 7908 * stop_machine(): we create temporary high priority worker threads, 7909 * but our caller might not have that capability. 7910 * 7911 * Return: 0 on success. An error code otherwise. 7912 */ 7913 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7914 const struct sched_param *param) 7915 { 7916 return _sched_setscheduler(p, policy, param, false); 7917 } 7918 7919 /* 7920 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7921 * incapable of resource management, which is the one thing an OS really should 7922 * be doing. 7923 * 7924 * This is of course the reason it is limited to privileged users only. 7925 * 7926 * Worse still; it is fundamentally impossible to compose static priority 7927 * workloads. You cannot take two correctly working static prio workloads 7928 * and smash them together and still expect them to work. 7929 * 7930 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7931 * 7932 * MAX_RT_PRIO / 2 7933 * 7934 * The administrator _MUST_ configure the system, the kernel simply doesn't 7935 * know enough information to make a sensible choice. 7936 */ 7937 void sched_set_fifo(struct task_struct *p) 7938 { 7939 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7940 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7941 } 7942 EXPORT_SYMBOL_GPL(sched_set_fifo); 7943 7944 /* 7945 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7946 */ 7947 void sched_set_fifo_low(struct task_struct *p) 7948 { 7949 struct sched_param sp = { .sched_priority = 1 }; 7950 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7951 } 7952 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7953 7954 void sched_set_normal(struct task_struct *p, int nice) 7955 { 7956 struct sched_attr attr = { 7957 .sched_policy = SCHED_NORMAL, 7958 .sched_nice = nice, 7959 }; 7960 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7961 } 7962 EXPORT_SYMBOL_GPL(sched_set_normal); 7963 7964 static int 7965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7966 { 7967 struct sched_param lparam; 7968 struct task_struct *p; 7969 int retval; 7970 7971 if (!param || pid < 0) 7972 return -EINVAL; 7973 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7974 return -EFAULT; 7975 7976 rcu_read_lock(); 7977 retval = -ESRCH; 7978 p = find_process_by_pid(pid); 7979 if (likely(p)) 7980 get_task_struct(p); 7981 rcu_read_unlock(); 7982 7983 if (likely(p)) { 7984 retval = sched_setscheduler(p, policy, &lparam); 7985 put_task_struct(p); 7986 } 7987 7988 return retval; 7989 } 7990 7991 /* 7992 * Mimics kernel/events/core.c perf_copy_attr(). 7993 */ 7994 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7995 { 7996 u32 size; 7997 int ret; 7998 7999 /* Zero the full structure, so that a short copy will be nice: */ 8000 memset(attr, 0, sizeof(*attr)); 8001 8002 ret = get_user(size, &uattr->size); 8003 if (ret) 8004 return ret; 8005 8006 /* ABI compatibility quirk: */ 8007 if (!size) 8008 size = SCHED_ATTR_SIZE_VER0; 8009 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 8010 goto err_size; 8011 8012 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 8013 if (ret) { 8014 if (ret == -E2BIG) 8015 goto err_size; 8016 return ret; 8017 } 8018 8019 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 8020 size < SCHED_ATTR_SIZE_VER1) 8021 return -EINVAL; 8022 8023 /* 8024 * XXX: Do we want to be lenient like existing syscalls; or do we want 8025 * to be strict and return an error on out-of-bounds values? 8026 */ 8027 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 8028 8029 return 0; 8030 8031 err_size: 8032 put_user(sizeof(*attr), &uattr->size); 8033 return -E2BIG; 8034 } 8035 8036 static void get_params(struct task_struct *p, struct sched_attr *attr) 8037 { 8038 if (task_has_dl_policy(p)) 8039 __getparam_dl(p, attr); 8040 else if (task_has_rt_policy(p)) 8041 attr->sched_priority = p->rt_priority; 8042 else 8043 attr->sched_nice = task_nice(p); 8044 } 8045 8046 /** 8047 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 8048 * @pid: the pid in question. 8049 * @policy: new policy. 8050 * @param: structure containing the new RT priority. 8051 * 8052 * Return: 0 on success. An error code otherwise. 8053 */ 8054 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 8055 { 8056 if (policy < 0) 8057 return -EINVAL; 8058 8059 return do_sched_setscheduler(pid, policy, param); 8060 } 8061 8062 /** 8063 * sys_sched_setparam - set/change the RT priority of a thread 8064 * @pid: the pid in question. 8065 * @param: structure containing the new RT priority. 8066 * 8067 * Return: 0 on success. An error code otherwise. 8068 */ 8069 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 8070 { 8071 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 8072 } 8073 8074 /** 8075 * sys_sched_setattr - same as above, but with extended sched_attr 8076 * @pid: the pid in question. 8077 * @uattr: structure containing the extended parameters. 8078 * @flags: for future extension. 8079 */ 8080 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 8081 unsigned int, flags) 8082 { 8083 struct sched_attr attr; 8084 struct task_struct *p; 8085 int retval; 8086 8087 if (!uattr || pid < 0 || flags) 8088 return -EINVAL; 8089 8090 retval = sched_copy_attr(uattr, &attr); 8091 if (retval) 8092 return retval; 8093 8094 if ((int)attr.sched_policy < 0) 8095 return -EINVAL; 8096 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 8097 attr.sched_policy = SETPARAM_POLICY; 8098 8099 rcu_read_lock(); 8100 retval = -ESRCH; 8101 p = find_process_by_pid(pid); 8102 if (likely(p)) 8103 get_task_struct(p); 8104 rcu_read_unlock(); 8105 8106 if (likely(p)) { 8107 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 8108 get_params(p, &attr); 8109 retval = sched_setattr(p, &attr); 8110 put_task_struct(p); 8111 } 8112 8113 return retval; 8114 } 8115 8116 /** 8117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8118 * @pid: the pid in question. 8119 * 8120 * Return: On success, the policy of the thread. Otherwise, a negative error 8121 * code. 8122 */ 8123 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8124 { 8125 struct task_struct *p; 8126 int retval; 8127 8128 if (pid < 0) 8129 return -EINVAL; 8130 8131 retval = -ESRCH; 8132 rcu_read_lock(); 8133 p = find_process_by_pid(pid); 8134 if (p) { 8135 retval = security_task_getscheduler(p); 8136 if (!retval) 8137 retval = p->policy 8138 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8139 } 8140 rcu_read_unlock(); 8141 return retval; 8142 } 8143 8144 /** 8145 * sys_sched_getparam - get the RT priority of a thread 8146 * @pid: the pid in question. 8147 * @param: structure containing the RT priority. 8148 * 8149 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8150 * code. 8151 */ 8152 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8153 { 8154 struct sched_param lp = { .sched_priority = 0 }; 8155 struct task_struct *p; 8156 int retval; 8157 8158 if (!param || pid < 0) 8159 return -EINVAL; 8160 8161 rcu_read_lock(); 8162 p = find_process_by_pid(pid); 8163 retval = -ESRCH; 8164 if (!p) 8165 goto out_unlock; 8166 8167 retval = security_task_getscheduler(p); 8168 if (retval) 8169 goto out_unlock; 8170 8171 if (task_has_rt_policy(p)) 8172 lp.sched_priority = p->rt_priority; 8173 rcu_read_unlock(); 8174 8175 /* 8176 * This one might sleep, we cannot do it with a spinlock held ... 8177 */ 8178 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8179 8180 return retval; 8181 8182 out_unlock: 8183 rcu_read_unlock(); 8184 return retval; 8185 } 8186 8187 /* 8188 * Copy the kernel size attribute structure (which might be larger 8189 * than what user-space knows about) to user-space. 8190 * 8191 * Note that all cases are valid: user-space buffer can be larger or 8192 * smaller than the kernel-space buffer. The usual case is that both 8193 * have the same size. 8194 */ 8195 static int 8196 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8197 struct sched_attr *kattr, 8198 unsigned int usize) 8199 { 8200 unsigned int ksize = sizeof(*kattr); 8201 8202 if (!access_ok(uattr, usize)) 8203 return -EFAULT; 8204 8205 /* 8206 * sched_getattr() ABI forwards and backwards compatibility: 8207 * 8208 * If usize == ksize then we just copy everything to user-space and all is good. 8209 * 8210 * If usize < ksize then we only copy as much as user-space has space for, 8211 * this keeps ABI compatibility as well. We skip the rest. 8212 * 8213 * If usize > ksize then user-space is using a newer version of the ABI, 8214 * which part the kernel doesn't know about. Just ignore it - tooling can 8215 * detect the kernel's knowledge of attributes from the attr->size value 8216 * which is set to ksize in this case. 8217 */ 8218 kattr->size = min(usize, ksize); 8219 8220 if (copy_to_user(uattr, kattr, kattr->size)) 8221 return -EFAULT; 8222 8223 return 0; 8224 } 8225 8226 /** 8227 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8228 * @pid: the pid in question. 8229 * @uattr: structure containing the extended parameters. 8230 * @usize: sizeof(attr) for fwd/bwd comp. 8231 * @flags: for future extension. 8232 */ 8233 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8234 unsigned int, usize, unsigned int, flags) 8235 { 8236 struct sched_attr kattr = { }; 8237 struct task_struct *p; 8238 int retval; 8239 8240 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8241 usize < SCHED_ATTR_SIZE_VER0 || flags) 8242 return -EINVAL; 8243 8244 rcu_read_lock(); 8245 p = find_process_by_pid(pid); 8246 retval = -ESRCH; 8247 if (!p) 8248 goto out_unlock; 8249 8250 retval = security_task_getscheduler(p); 8251 if (retval) 8252 goto out_unlock; 8253 8254 kattr.sched_policy = p->policy; 8255 if (p->sched_reset_on_fork) 8256 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8257 get_params(p, &kattr); 8258 kattr.sched_flags &= SCHED_FLAG_ALL; 8259 8260 #ifdef CONFIG_UCLAMP_TASK 8261 /* 8262 * This could race with another potential updater, but this is fine 8263 * because it'll correctly read the old or the new value. We don't need 8264 * to guarantee who wins the race as long as it doesn't return garbage. 8265 */ 8266 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8267 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8268 #endif 8269 8270 rcu_read_unlock(); 8271 8272 return sched_attr_copy_to_user(uattr, &kattr, usize); 8273 8274 out_unlock: 8275 rcu_read_unlock(); 8276 return retval; 8277 } 8278 8279 #ifdef CONFIG_SMP 8280 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8281 { 8282 int ret = 0; 8283 8284 /* 8285 * If the task isn't a deadline task or admission control is 8286 * disabled then we don't care about affinity changes. 8287 */ 8288 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8289 return 0; 8290 8291 /* 8292 * Since bandwidth control happens on root_domain basis, 8293 * if admission test is enabled, we only admit -deadline 8294 * tasks allowed to run on all the CPUs in the task's 8295 * root_domain. 8296 */ 8297 rcu_read_lock(); 8298 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8299 ret = -EBUSY; 8300 rcu_read_unlock(); 8301 return ret; 8302 } 8303 #endif 8304 8305 static int 8306 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8307 { 8308 int retval; 8309 cpumask_var_t cpus_allowed, new_mask; 8310 8311 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8312 return -ENOMEM; 8313 8314 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8315 retval = -ENOMEM; 8316 goto out_free_cpus_allowed; 8317 } 8318 8319 cpuset_cpus_allowed(p, cpus_allowed); 8320 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8321 8322 ctx->new_mask = new_mask; 8323 ctx->flags |= SCA_CHECK; 8324 8325 retval = dl_task_check_affinity(p, new_mask); 8326 if (retval) 8327 goto out_free_new_mask; 8328 8329 retval = __set_cpus_allowed_ptr(p, ctx); 8330 if (retval) 8331 goto out_free_new_mask; 8332 8333 cpuset_cpus_allowed(p, cpus_allowed); 8334 if (!cpumask_subset(new_mask, cpus_allowed)) { 8335 /* 8336 * We must have raced with a concurrent cpuset update. 8337 * Just reset the cpumask to the cpuset's cpus_allowed. 8338 */ 8339 cpumask_copy(new_mask, cpus_allowed); 8340 8341 /* 8342 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8343 * will restore the previous user_cpus_ptr value. 8344 * 8345 * In the unlikely event a previous user_cpus_ptr exists, 8346 * we need to further restrict the mask to what is allowed 8347 * by that old user_cpus_ptr. 8348 */ 8349 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8350 bool empty = !cpumask_and(new_mask, new_mask, 8351 ctx->user_mask); 8352 8353 if (WARN_ON_ONCE(empty)) 8354 cpumask_copy(new_mask, cpus_allowed); 8355 } 8356 __set_cpus_allowed_ptr(p, ctx); 8357 retval = -EINVAL; 8358 } 8359 8360 out_free_new_mask: 8361 free_cpumask_var(new_mask); 8362 out_free_cpus_allowed: 8363 free_cpumask_var(cpus_allowed); 8364 return retval; 8365 } 8366 8367 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8368 { 8369 struct affinity_context ac; 8370 struct cpumask *user_mask; 8371 struct task_struct *p; 8372 int retval; 8373 8374 rcu_read_lock(); 8375 8376 p = find_process_by_pid(pid); 8377 if (!p) { 8378 rcu_read_unlock(); 8379 return -ESRCH; 8380 } 8381 8382 /* Prevent p going away */ 8383 get_task_struct(p); 8384 rcu_read_unlock(); 8385 8386 if (p->flags & PF_NO_SETAFFINITY) { 8387 retval = -EINVAL; 8388 goto out_put_task; 8389 } 8390 8391 if (!check_same_owner(p)) { 8392 rcu_read_lock(); 8393 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8394 rcu_read_unlock(); 8395 retval = -EPERM; 8396 goto out_put_task; 8397 } 8398 rcu_read_unlock(); 8399 } 8400 8401 retval = security_task_setscheduler(p); 8402 if (retval) 8403 goto out_put_task; 8404 8405 /* 8406 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8407 * alloc_user_cpus_ptr() returns NULL. 8408 */ 8409 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8410 if (user_mask) { 8411 cpumask_copy(user_mask, in_mask); 8412 } else if (IS_ENABLED(CONFIG_SMP)) { 8413 retval = -ENOMEM; 8414 goto out_put_task; 8415 } 8416 8417 ac = (struct affinity_context){ 8418 .new_mask = in_mask, 8419 .user_mask = user_mask, 8420 .flags = SCA_USER, 8421 }; 8422 8423 retval = __sched_setaffinity(p, &ac); 8424 kfree(ac.user_mask); 8425 8426 out_put_task: 8427 put_task_struct(p); 8428 return retval; 8429 } 8430 8431 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8432 struct cpumask *new_mask) 8433 { 8434 if (len < cpumask_size()) 8435 cpumask_clear(new_mask); 8436 else if (len > cpumask_size()) 8437 len = cpumask_size(); 8438 8439 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8440 } 8441 8442 /** 8443 * sys_sched_setaffinity - set the CPU affinity of a process 8444 * @pid: pid of the process 8445 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8446 * @user_mask_ptr: user-space pointer to the new CPU mask 8447 * 8448 * Return: 0 on success. An error code otherwise. 8449 */ 8450 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8451 unsigned long __user *, user_mask_ptr) 8452 { 8453 cpumask_var_t new_mask; 8454 int retval; 8455 8456 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8457 return -ENOMEM; 8458 8459 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8460 if (retval == 0) 8461 retval = sched_setaffinity(pid, new_mask); 8462 free_cpumask_var(new_mask); 8463 return retval; 8464 } 8465 8466 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8467 { 8468 struct task_struct *p; 8469 unsigned long flags; 8470 int retval; 8471 8472 rcu_read_lock(); 8473 8474 retval = -ESRCH; 8475 p = find_process_by_pid(pid); 8476 if (!p) 8477 goto out_unlock; 8478 8479 retval = security_task_getscheduler(p); 8480 if (retval) 8481 goto out_unlock; 8482 8483 raw_spin_lock_irqsave(&p->pi_lock, flags); 8484 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8485 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8486 8487 out_unlock: 8488 rcu_read_unlock(); 8489 8490 return retval; 8491 } 8492 8493 /** 8494 * sys_sched_getaffinity - get the CPU affinity of a process 8495 * @pid: pid of the process 8496 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8497 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8498 * 8499 * Return: size of CPU mask copied to user_mask_ptr on success. An 8500 * error code otherwise. 8501 */ 8502 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8503 unsigned long __user *, user_mask_ptr) 8504 { 8505 int ret; 8506 cpumask_var_t mask; 8507 8508 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8509 return -EINVAL; 8510 if (len & (sizeof(unsigned long)-1)) 8511 return -EINVAL; 8512 8513 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 8514 return -ENOMEM; 8515 8516 ret = sched_getaffinity(pid, mask); 8517 if (ret == 0) { 8518 unsigned int retlen = min(len, cpumask_size()); 8519 8520 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 8521 ret = -EFAULT; 8522 else 8523 ret = retlen; 8524 } 8525 free_cpumask_var(mask); 8526 8527 return ret; 8528 } 8529 8530 static void do_sched_yield(void) 8531 { 8532 struct rq_flags rf; 8533 struct rq *rq; 8534 8535 rq = this_rq_lock_irq(&rf); 8536 8537 schedstat_inc(rq->yld_count); 8538 current->sched_class->yield_task(rq); 8539 8540 preempt_disable(); 8541 rq_unlock_irq(rq, &rf); 8542 sched_preempt_enable_no_resched(); 8543 8544 schedule(); 8545 } 8546 8547 /** 8548 * sys_sched_yield - yield the current processor to other threads. 8549 * 8550 * This function yields the current CPU to other tasks. If there are no 8551 * other threads running on this CPU then this function will return. 8552 * 8553 * Return: 0. 8554 */ 8555 SYSCALL_DEFINE0(sched_yield) 8556 { 8557 do_sched_yield(); 8558 return 0; 8559 } 8560 8561 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8562 int __sched __cond_resched(void) 8563 { 8564 if (should_resched(0)) { 8565 preempt_schedule_common(); 8566 return 1; 8567 } 8568 /* 8569 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8570 * whether the current CPU is in an RCU read-side critical section, 8571 * so the tick can report quiescent states even for CPUs looping 8572 * in kernel context. In contrast, in non-preemptible kernels, 8573 * RCU readers leave no in-memory hints, which means that CPU-bound 8574 * processes executing in kernel context might never report an 8575 * RCU quiescent state. Therefore, the following code causes 8576 * cond_resched() to report a quiescent state, but only when RCU 8577 * is in urgent need of one. 8578 */ 8579 #ifndef CONFIG_PREEMPT_RCU 8580 rcu_all_qs(); 8581 #endif 8582 return 0; 8583 } 8584 EXPORT_SYMBOL(__cond_resched); 8585 #endif 8586 8587 #ifdef CONFIG_PREEMPT_DYNAMIC 8588 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8589 #define cond_resched_dynamic_enabled __cond_resched 8590 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8591 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8592 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8593 8594 #define might_resched_dynamic_enabled __cond_resched 8595 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8596 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8597 EXPORT_STATIC_CALL_TRAMP(might_resched); 8598 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8599 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8600 int __sched dynamic_cond_resched(void) 8601 { 8602 klp_sched_try_switch(); 8603 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8604 return 0; 8605 return __cond_resched(); 8606 } 8607 EXPORT_SYMBOL(dynamic_cond_resched); 8608 8609 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8610 int __sched dynamic_might_resched(void) 8611 { 8612 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8613 return 0; 8614 return __cond_resched(); 8615 } 8616 EXPORT_SYMBOL(dynamic_might_resched); 8617 #endif 8618 #endif 8619 8620 /* 8621 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8622 * call schedule, and on return reacquire the lock. 8623 * 8624 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8625 * operations here to prevent schedule() from being called twice (once via 8626 * spin_unlock(), once by hand). 8627 */ 8628 int __cond_resched_lock(spinlock_t *lock) 8629 { 8630 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8631 int ret = 0; 8632 8633 lockdep_assert_held(lock); 8634 8635 if (spin_needbreak(lock) || resched) { 8636 spin_unlock(lock); 8637 if (!_cond_resched()) 8638 cpu_relax(); 8639 ret = 1; 8640 spin_lock(lock); 8641 } 8642 return ret; 8643 } 8644 EXPORT_SYMBOL(__cond_resched_lock); 8645 8646 int __cond_resched_rwlock_read(rwlock_t *lock) 8647 { 8648 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8649 int ret = 0; 8650 8651 lockdep_assert_held_read(lock); 8652 8653 if (rwlock_needbreak(lock) || resched) { 8654 read_unlock(lock); 8655 if (!_cond_resched()) 8656 cpu_relax(); 8657 ret = 1; 8658 read_lock(lock); 8659 } 8660 return ret; 8661 } 8662 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8663 8664 int __cond_resched_rwlock_write(rwlock_t *lock) 8665 { 8666 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8667 int ret = 0; 8668 8669 lockdep_assert_held_write(lock); 8670 8671 if (rwlock_needbreak(lock) || resched) { 8672 write_unlock(lock); 8673 if (!_cond_resched()) 8674 cpu_relax(); 8675 ret = 1; 8676 write_lock(lock); 8677 } 8678 return ret; 8679 } 8680 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8681 8682 #ifdef CONFIG_PREEMPT_DYNAMIC 8683 8684 #ifdef CONFIG_GENERIC_ENTRY 8685 #include <linux/entry-common.h> 8686 #endif 8687 8688 /* 8689 * SC:cond_resched 8690 * SC:might_resched 8691 * SC:preempt_schedule 8692 * SC:preempt_schedule_notrace 8693 * SC:irqentry_exit_cond_resched 8694 * 8695 * 8696 * NONE: 8697 * cond_resched <- __cond_resched 8698 * might_resched <- RET0 8699 * preempt_schedule <- NOP 8700 * preempt_schedule_notrace <- NOP 8701 * irqentry_exit_cond_resched <- NOP 8702 * 8703 * VOLUNTARY: 8704 * cond_resched <- __cond_resched 8705 * might_resched <- __cond_resched 8706 * preempt_schedule <- NOP 8707 * preempt_schedule_notrace <- NOP 8708 * irqentry_exit_cond_resched <- NOP 8709 * 8710 * FULL: 8711 * cond_resched <- RET0 8712 * might_resched <- RET0 8713 * preempt_schedule <- preempt_schedule 8714 * preempt_schedule_notrace <- preempt_schedule_notrace 8715 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8716 */ 8717 8718 enum { 8719 preempt_dynamic_undefined = -1, 8720 preempt_dynamic_none, 8721 preempt_dynamic_voluntary, 8722 preempt_dynamic_full, 8723 }; 8724 8725 int preempt_dynamic_mode = preempt_dynamic_undefined; 8726 8727 int sched_dynamic_mode(const char *str) 8728 { 8729 if (!strcmp(str, "none")) 8730 return preempt_dynamic_none; 8731 8732 if (!strcmp(str, "voluntary")) 8733 return preempt_dynamic_voluntary; 8734 8735 if (!strcmp(str, "full")) 8736 return preempt_dynamic_full; 8737 8738 return -EINVAL; 8739 } 8740 8741 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8742 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8743 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8744 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8745 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8746 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8747 #else 8748 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8749 #endif 8750 8751 static DEFINE_MUTEX(sched_dynamic_mutex); 8752 static bool klp_override; 8753 8754 static void __sched_dynamic_update(int mode) 8755 { 8756 /* 8757 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8758 * the ZERO state, which is invalid. 8759 */ 8760 if (!klp_override) 8761 preempt_dynamic_enable(cond_resched); 8762 preempt_dynamic_enable(might_resched); 8763 preempt_dynamic_enable(preempt_schedule); 8764 preempt_dynamic_enable(preempt_schedule_notrace); 8765 preempt_dynamic_enable(irqentry_exit_cond_resched); 8766 8767 switch (mode) { 8768 case preempt_dynamic_none: 8769 if (!klp_override) 8770 preempt_dynamic_enable(cond_resched); 8771 preempt_dynamic_disable(might_resched); 8772 preempt_dynamic_disable(preempt_schedule); 8773 preempt_dynamic_disable(preempt_schedule_notrace); 8774 preempt_dynamic_disable(irqentry_exit_cond_resched); 8775 if (mode != preempt_dynamic_mode) 8776 pr_info("Dynamic Preempt: none\n"); 8777 break; 8778 8779 case preempt_dynamic_voluntary: 8780 if (!klp_override) 8781 preempt_dynamic_enable(cond_resched); 8782 preempt_dynamic_enable(might_resched); 8783 preempt_dynamic_disable(preempt_schedule); 8784 preempt_dynamic_disable(preempt_schedule_notrace); 8785 preempt_dynamic_disable(irqentry_exit_cond_resched); 8786 if (mode != preempt_dynamic_mode) 8787 pr_info("Dynamic Preempt: voluntary\n"); 8788 break; 8789 8790 case preempt_dynamic_full: 8791 if (!klp_override) 8792 preempt_dynamic_disable(cond_resched); 8793 preempt_dynamic_disable(might_resched); 8794 preempt_dynamic_enable(preempt_schedule); 8795 preempt_dynamic_enable(preempt_schedule_notrace); 8796 preempt_dynamic_enable(irqentry_exit_cond_resched); 8797 if (mode != preempt_dynamic_mode) 8798 pr_info("Dynamic Preempt: full\n"); 8799 break; 8800 } 8801 8802 preempt_dynamic_mode = mode; 8803 } 8804 8805 void sched_dynamic_update(int mode) 8806 { 8807 mutex_lock(&sched_dynamic_mutex); 8808 __sched_dynamic_update(mode); 8809 mutex_unlock(&sched_dynamic_mutex); 8810 } 8811 8812 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 8813 8814 static int klp_cond_resched(void) 8815 { 8816 __klp_sched_try_switch(); 8817 return __cond_resched(); 8818 } 8819 8820 void sched_dynamic_klp_enable(void) 8821 { 8822 mutex_lock(&sched_dynamic_mutex); 8823 8824 klp_override = true; 8825 static_call_update(cond_resched, klp_cond_resched); 8826 8827 mutex_unlock(&sched_dynamic_mutex); 8828 } 8829 8830 void sched_dynamic_klp_disable(void) 8831 { 8832 mutex_lock(&sched_dynamic_mutex); 8833 8834 klp_override = false; 8835 __sched_dynamic_update(preempt_dynamic_mode); 8836 8837 mutex_unlock(&sched_dynamic_mutex); 8838 } 8839 8840 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 8841 8842 static int __init setup_preempt_mode(char *str) 8843 { 8844 int mode = sched_dynamic_mode(str); 8845 if (mode < 0) { 8846 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8847 return 0; 8848 } 8849 8850 sched_dynamic_update(mode); 8851 return 1; 8852 } 8853 __setup("preempt=", setup_preempt_mode); 8854 8855 static void __init preempt_dynamic_init(void) 8856 { 8857 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8858 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8859 sched_dynamic_update(preempt_dynamic_none); 8860 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8861 sched_dynamic_update(preempt_dynamic_voluntary); 8862 } else { 8863 /* Default static call setting, nothing to do */ 8864 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8865 preempt_dynamic_mode = preempt_dynamic_full; 8866 pr_info("Dynamic Preempt: full\n"); 8867 } 8868 } 8869 } 8870 8871 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8872 bool preempt_model_##mode(void) \ 8873 { \ 8874 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8875 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8876 } \ 8877 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8878 8879 PREEMPT_MODEL_ACCESSOR(none); 8880 PREEMPT_MODEL_ACCESSOR(voluntary); 8881 PREEMPT_MODEL_ACCESSOR(full); 8882 8883 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8884 8885 static inline void preempt_dynamic_init(void) { } 8886 8887 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8888 8889 /** 8890 * yield - yield the current processor to other threads. 8891 * 8892 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8893 * 8894 * The scheduler is at all times free to pick the calling task as the most 8895 * eligible task to run, if removing the yield() call from your code breaks 8896 * it, it's already broken. 8897 * 8898 * Typical broken usage is: 8899 * 8900 * while (!event) 8901 * yield(); 8902 * 8903 * where one assumes that yield() will let 'the other' process run that will 8904 * make event true. If the current task is a SCHED_FIFO task that will never 8905 * happen. Never use yield() as a progress guarantee!! 8906 * 8907 * If you want to use yield() to wait for something, use wait_event(). 8908 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8909 * If you still want to use yield(), do not! 8910 */ 8911 void __sched yield(void) 8912 { 8913 set_current_state(TASK_RUNNING); 8914 do_sched_yield(); 8915 } 8916 EXPORT_SYMBOL(yield); 8917 8918 /** 8919 * yield_to - yield the current processor to another thread in 8920 * your thread group, or accelerate that thread toward the 8921 * processor it's on. 8922 * @p: target task 8923 * @preempt: whether task preemption is allowed or not 8924 * 8925 * It's the caller's job to ensure that the target task struct 8926 * can't go away on us before we can do any checks. 8927 * 8928 * Return: 8929 * true (>0) if we indeed boosted the target task. 8930 * false (0) if we failed to boost the target. 8931 * -ESRCH if there's no task to yield to. 8932 */ 8933 int __sched yield_to(struct task_struct *p, bool preempt) 8934 { 8935 struct task_struct *curr = current; 8936 struct rq *rq, *p_rq; 8937 unsigned long flags; 8938 int yielded = 0; 8939 8940 local_irq_save(flags); 8941 rq = this_rq(); 8942 8943 again: 8944 p_rq = task_rq(p); 8945 /* 8946 * If we're the only runnable task on the rq and target rq also 8947 * has only one task, there's absolutely no point in yielding. 8948 */ 8949 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8950 yielded = -ESRCH; 8951 goto out_irq; 8952 } 8953 8954 double_rq_lock(rq, p_rq); 8955 if (task_rq(p) != p_rq) { 8956 double_rq_unlock(rq, p_rq); 8957 goto again; 8958 } 8959 8960 if (!curr->sched_class->yield_to_task) 8961 goto out_unlock; 8962 8963 if (curr->sched_class != p->sched_class) 8964 goto out_unlock; 8965 8966 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8967 goto out_unlock; 8968 8969 yielded = curr->sched_class->yield_to_task(rq, p); 8970 if (yielded) { 8971 schedstat_inc(rq->yld_count); 8972 /* 8973 * Make p's CPU reschedule; pick_next_entity takes care of 8974 * fairness. 8975 */ 8976 if (preempt && rq != p_rq) 8977 resched_curr(p_rq); 8978 } 8979 8980 out_unlock: 8981 double_rq_unlock(rq, p_rq); 8982 out_irq: 8983 local_irq_restore(flags); 8984 8985 if (yielded > 0) 8986 schedule(); 8987 8988 return yielded; 8989 } 8990 EXPORT_SYMBOL_GPL(yield_to); 8991 8992 int io_schedule_prepare(void) 8993 { 8994 int old_iowait = current->in_iowait; 8995 8996 current->in_iowait = 1; 8997 blk_flush_plug(current->plug, true); 8998 return old_iowait; 8999 } 9000 9001 void io_schedule_finish(int token) 9002 { 9003 current->in_iowait = token; 9004 } 9005 9006 /* 9007 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 9008 * that process accounting knows that this is a task in IO wait state. 9009 */ 9010 long __sched io_schedule_timeout(long timeout) 9011 { 9012 int token; 9013 long ret; 9014 9015 token = io_schedule_prepare(); 9016 ret = schedule_timeout(timeout); 9017 io_schedule_finish(token); 9018 9019 return ret; 9020 } 9021 EXPORT_SYMBOL(io_schedule_timeout); 9022 9023 void __sched io_schedule(void) 9024 { 9025 int token; 9026 9027 token = io_schedule_prepare(); 9028 schedule(); 9029 io_schedule_finish(token); 9030 } 9031 EXPORT_SYMBOL(io_schedule); 9032 9033 /** 9034 * sys_sched_get_priority_max - return maximum RT priority. 9035 * @policy: scheduling class. 9036 * 9037 * Return: On success, this syscall returns the maximum 9038 * rt_priority that can be used by a given scheduling class. 9039 * On failure, a negative error code is returned. 9040 */ 9041 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 9042 { 9043 int ret = -EINVAL; 9044 9045 switch (policy) { 9046 case SCHED_FIFO: 9047 case SCHED_RR: 9048 ret = MAX_RT_PRIO-1; 9049 break; 9050 case SCHED_DEADLINE: 9051 case SCHED_NORMAL: 9052 case SCHED_BATCH: 9053 case SCHED_IDLE: 9054 ret = 0; 9055 break; 9056 } 9057 return ret; 9058 } 9059 9060 /** 9061 * sys_sched_get_priority_min - return minimum RT priority. 9062 * @policy: scheduling class. 9063 * 9064 * Return: On success, this syscall returns the minimum 9065 * rt_priority that can be used by a given scheduling class. 9066 * On failure, a negative error code is returned. 9067 */ 9068 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 9069 { 9070 int ret = -EINVAL; 9071 9072 switch (policy) { 9073 case SCHED_FIFO: 9074 case SCHED_RR: 9075 ret = 1; 9076 break; 9077 case SCHED_DEADLINE: 9078 case SCHED_NORMAL: 9079 case SCHED_BATCH: 9080 case SCHED_IDLE: 9081 ret = 0; 9082 } 9083 return ret; 9084 } 9085 9086 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 9087 { 9088 struct task_struct *p; 9089 unsigned int time_slice; 9090 struct rq_flags rf; 9091 struct rq *rq; 9092 int retval; 9093 9094 if (pid < 0) 9095 return -EINVAL; 9096 9097 retval = -ESRCH; 9098 rcu_read_lock(); 9099 p = find_process_by_pid(pid); 9100 if (!p) 9101 goto out_unlock; 9102 9103 retval = security_task_getscheduler(p); 9104 if (retval) 9105 goto out_unlock; 9106 9107 rq = task_rq_lock(p, &rf); 9108 time_slice = 0; 9109 if (p->sched_class->get_rr_interval) 9110 time_slice = p->sched_class->get_rr_interval(rq, p); 9111 task_rq_unlock(rq, p, &rf); 9112 9113 rcu_read_unlock(); 9114 jiffies_to_timespec64(time_slice, t); 9115 return 0; 9116 9117 out_unlock: 9118 rcu_read_unlock(); 9119 return retval; 9120 } 9121 9122 /** 9123 * sys_sched_rr_get_interval - return the default timeslice of a process. 9124 * @pid: pid of the process. 9125 * @interval: userspace pointer to the timeslice value. 9126 * 9127 * this syscall writes the default timeslice value of a given process 9128 * into the user-space timespec buffer. A value of '0' means infinity. 9129 * 9130 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 9131 * an error code. 9132 */ 9133 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 9134 struct __kernel_timespec __user *, interval) 9135 { 9136 struct timespec64 t; 9137 int retval = sched_rr_get_interval(pid, &t); 9138 9139 if (retval == 0) 9140 retval = put_timespec64(&t, interval); 9141 9142 return retval; 9143 } 9144 9145 #ifdef CONFIG_COMPAT_32BIT_TIME 9146 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 9147 struct old_timespec32 __user *, interval) 9148 { 9149 struct timespec64 t; 9150 int retval = sched_rr_get_interval(pid, &t); 9151 9152 if (retval == 0) 9153 retval = put_old_timespec32(&t, interval); 9154 return retval; 9155 } 9156 #endif 9157 9158 void sched_show_task(struct task_struct *p) 9159 { 9160 unsigned long free = 0; 9161 int ppid; 9162 9163 if (!try_get_task_stack(p)) 9164 return; 9165 9166 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9167 9168 if (task_is_running(p)) 9169 pr_cont(" running task "); 9170 #ifdef CONFIG_DEBUG_STACK_USAGE 9171 free = stack_not_used(p); 9172 #endif 9173 ppid = 0; 9174 rcu_read_lock(); 9175 if (pid_alive(p)) 9176 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9177 rcu_read_unlock(); 9178 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9179 free, task_pid_nr(p), ppid, 9180 read_task_thread_flags(p)); 9181 9182 print_worker_info(KERN_INFO, p); 9183 print_stop_info(KERN_INFO, p); 9184 show_stack(p, NULL, KERN_INFO); 9185 put_task_stack(p); 9186 } 9187 EXPORT_SYMBOL_GPL(sched_show_task); 9188 9189 static inline bool 9190 state_filter_match(unsigned long state_filter, struct task_struct *p) 9191 { 9192 unsigned int state = READ_ONCE(p->__state); 9193 9194 /* no filter, everything matches */ 9195 if (!state_filter) 9196 return true; 9197 9198 /* filter, but doesn't match */ 9199 if (!(state & state_filter)) 9200 return false; 9201 9202 /* 9203 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9204 * TASK_KILLABLE). 9205 */ 9206 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9207 return false; 9208 9209 return true; 9210 } 9211 9212 9213 void show_state_filter(unsigned int state_filter) 9214 { 9215 struct task_struct *g, *p; 9216 9217 rcu_read_lock(); 9218 for_each_process_thread(g, p) { 9219 /* 9220 * reset the NMI-timeout, listing all files on a slow 9221 * console might take a lot of time: 9222 * Also, reset softlockup watchdogs on all CPUs, because 9223 * another CPU might be blocked waiting for us to process 9224 * an IPI. 9225 */ 9226 touch_nmi_watchdog(); 9227 touch_all_softlockup_watchdogs(); 9228 if (state_filter_match(state_filter, p)) 9229 sched_show_task(p); 9230 } 9231 9232 #ifdef CONFIG_SCHED_DEBUG 9233 if (!state_filter) 9234 sysrq_sched_debug_show(); 9235 #endif 9236 rcu_read_unlock(); 9237 /* 9238 * Only show locks if all tasks are dumped: 9239 */ 9240 if (!state_filter) 9241 debug_show_all_locks(); 9242 } 9243 9244 /** 9245 * init_idle - set up an idle thread for a given CPU 9246 * @idle: task in question 9247 * @cpu: CPU the idle task belongs to 9248 * 9249 * NOTE: this function does not set the idle thread's NEED_RESCHED 9250 * flag, to make booting more robust. 9251 */ 9252 void __init init_idle(struct task_struct *idle, int cpu) 9253 { 9254 #ifdef CONFIG_SMP 9255 struct affinity_context ac = (struct affinity_context) { 9256 .new_mask = cpumask_of(cpu), 9257 .flags = 0, 9258 }; 9259 #endif 9260 struct rq *rq = cpu_rq(cpu); 9261 unsigned long flags; 9262 9263 __sched_fork(0, idle); 9264 9265 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9266 raw_spin_rq_lock(rq); 9267 9268 idle->__state = TASK_RUNNING; 9269 idle->se.exec_start = sched_clock(); 9270 /* 9271 * PF_KTHREAD should already be set at this point; regardless, make it 9272 * look like a proper per-CPU kthread. 9273 */ 9274 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9275 kthread_set_per_cpu(idle, cpu); 9276 9277 #ifdef CONFIG_SMP 9278 /* 9279 * It's possible that init_idle() gets called multiple times on a task, 9280 * in that case do_set_cpus_allowed() will not do the right thing. 9281 * 9282 * And since this is boot we can forgo the serialization. 9283 */ 9284 set_cpus_allowed_common(idle, &ac); 9285 #endif 9286 /* 9287 * We're having a chicken and egg problem, even though we are 9288 * holding rq->lock, the CPU isn't yet set to this CPU so the 9289 * lockdep check in task_group() will fail. 9290 * 9291 * Similar case to sched_fork(). / Alternatively we could 9292 * use task_rq_lock() here and obtain the other rq->lock. 9293 * 9294 * Silence PROVE_RCU 9295 */ 9296 rcu_read_lock(); 9297 __set_task_cpu(idle, cpu); 9298 rcu_read_unlock(); 9299 9300 rq->idle = idle; 9301 rcu_assign_pointer(rq->curr, idle); 9302 idle->on_rq = TASK_ON_RQ_QUEUED; 9303 #ifdef CONFIG_SMP 9304 idle->on_cpu = 1; 9305 #endif 9306 raw_spin_rq_unlock(rq); 9307 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9308 9309 /* Set the preempt count _outside_ the spinlocks! */ 9310 init_idle_preempt_count(idle, cpu); 9311 9312 /* 9313 * The idle tasks have their own, simple scheduling class: 9314 */ 9315 idle->sched_class = &idle_sched_class; 9316 ftrace_graph_init_idle_task(idle, cpu); 9317 vtime_init_idle(idle, cpu); 9318 #ifdef CONFIG_SMP 9319 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9320 #endif 9321 } 9322 9323 #ifdef CONFIG_SMP 9324 9325 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9326 const struct cpumask *trial) 9327 { 9328 int ret = 1; 9329 9330 if (cpumask_empty(cur)) 9331 return ret; 9332 9333 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9334 9335 return ret; 9336 } 9337 9338 int task_can_attach(struct task_struct *p) 9339 { 9340 int ret = 0; 9341 9342 /* 9343 * Kthreads which disallow setaffinity shouldn't be moved 9344 * to a new cpuset; we don't want to change their CPU 9345 * affinity and isolating such threads by their set of 9346 * allowed nodes is unnecessary. Thus, cpusets are not 9347 * applicable for such threads. This prevents checking for 9348 * success of set_cpus_allowed_ptr() on all attached tasks 9349 * before cpus_mask may be changed. 9350 */ 9351 if (p->flags & PF_NO_SETAFFINITY) 9352 ret = -EINVAL; 9353 9354 return ret; 9355 } 9356 9357 bool sched_smp_initialized __read_mostly; 9358 9359 #ifdef CONFIG_NUMA_BALANCING 9360 /* Migrate current task p to target_cpu */ 9361 int migrate_task_to(struct task_struct *p, int target_cpu) 9362 { 9363 struct migration_arg arg = { p, target_cpu }; 9364 int curr_cpu = task_cpu(p); 9365 9366 if (curr_cpu == target_cpu) 9367 return 0; 9368 9369 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9370 return -EINVAL; 9371 9372 /* TODO: This is not properly updating schedstats */ 9373 9374 trace_sched_move_numa(p, curr_cpu, target_cpu); 9375 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9376 } 9377 9378 /* 9379 * Requeue a task on a given node and accurately track the number of NUMA 9380 * tasks on the runqueues 9381 */ 9382 void sched_setnuma(struct task_struct *p, int nid) 9383 { 9384 bool queued, running; 9385 struct rq_flags rf; 9386 struct rq *rq; 9387 9388 rq = task_rq_lock(p, &rf); 9389 queued = task_on_rq_queued(p); 9390 running = task_current(rq, p); 9391 9392 if (queued) 9393 dequeue_task(rq, p, DEQUEUE_SAVE); 9394 if (running) 9395 put_prev_task(rq, p); 9396 9397 p->numa_preferred_nid = nid; 9398 9399 if (queued) 9400 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9401 if (running) 9402 set_next_task(rq, p); 9403 task_rq_unlock(rq, p, &rf); 9404 } 9405 #endif /* CONFIG_NUMA_BALANCING */ 9406 9407 #ifdef CONFIG_HOTPLUG_CPU 9408 /* 9409 * Ensure that the idle task is using init_mm right before its CPU goes 9410 * offline. 9411 */ 9412 void idle_task_exit(void) 9413 { 9414 struct mm_struct *mm = current->active_mm; 9415 9416 BUG_ON(cpu_online(smp_processor_id())); 9417 BUG_ON(current != this_rq()->idle); 9418 9419 if (mm != &init_mm) { 9420 switch_mm(mm, &init_mm, current); 9421 finish_arch_post_lock_switch(); 9422 } 9423 9424 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9425 } 9426 9427 static int __balance_push_cpu_stop(void *arg) 9428 { 9429 struct task_struct *p = arg; 9430 struct rq *rq = this_rq(); 9431 struct rq_flags rf; 9432 int cpu; 9433 9434 raw_spin_lock_irq(&p->pi_lock); 9435 rq_lock(rq, &rf); 9436 9437 update_rq_clock(rq); 9438 9439 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9440 cpu = select_fallback_rq(rq->cpu, p); 9441 rq = __migrate_task(rq, &rf, p, cpu); 9442 } 9443 9444 rq_unlock(rq, &rf); 9445 raw_spin_unlock_irq(&p->pi_lock); 9446 9447 put_task_struct(p); 9448 9449 return 0; 9450 } 9451 9452 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9453 9454 /* 9455 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9456 * 9457 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9458 * effective when the hotplug motion is down. 9459 */ 9460 static void balance_push(struct rq *rq) 9461 { 9462 struct task_struct *push_task = rq->curr; 9463 9464 lockdep_assert_rq_held(rq); 9465 9466 /* 9467 * Ensure the thing is persistent until balance_push_set(.on = false); 9468 */ 9469 rq->balance_callback = &balance_push_callback; 9470 9471 /* 9472 * Only active while going offline and when invoked on the outgoing 9473 * CPU. 9474 */ 9475 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9476 return; 9477 9478 /* 9479 * Both the cpu-hotplug and stop task are in this case and are 9480 * required to complete the hotplug process. 9481 */ 9482 if (kthread_is_per_cpu(push_task) || 9483 is_migration_disabled(push_task)) { 9484 9485 /* 9486 * If this is the idle task on the outgoing CPU try to wake 9487 * up the hotplug control thread which might wait for the 9488 * last task to vanish. The rcuwait_active() check is 9489 * accurate here because the waiter is pinned on this CPU 9490 * and can't obviously be running in parallel. 9491 * 9492 * On RT kernels this also has to check whether there are 9493 * pinned and scheduled out tasks on the runqueue. They 9494 * need to leave the migrate disabled section first. 9495 */ 9496 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9497 rcuwait_active(&rq->hotplug_wait)) { 9498 raw_spin_rq_unlock(rq); 9499 rcuwait_wake_up(&rq->hotplug_wait); 9500 raw_spin_rq_lock(rq); 9501 } 9502 return; 9503 } 9504 9505 get_task_struct(push_task); 9506 /* 9507 * Temporarily drop rq->lock such that we can wake-up the stop task. 9508 * Both preemption and IRQs are still disabled. 9509 */ 9510 raw_spin_rq_unlock(rq); 9511 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9512 this_cpu_ptr(&push_work)); 9513 /* 9514 * At this point need_resched() is true and we'll take the loop in 9515 * schedule(). The next pick is obviously going to be the stop task 9516 * which kthread_is_per_cpu() and will push this task away. 9517 */ 9518 raw_spin_rq_lock(rq); 9519 } 9520 9521 static void balance_push_set(int cpu, bool on) 9522 { 9523 struct rq *rq = cpu_rq(cpu); 9524 struct rq_flags rf; 9525 9526 rq_lock_irqsave(rq, &rf); 9527 if (on) { 9528 WARN_ON_ONCE(rq->balance_callback); 9529 rq->balance_callback = &balance_push_callback; 9530 } else if (rq->balance_callback == &balance_push_callback) { 9531 rq->balance_callback = NULL; 9532 } 9533 rq_unlock_irqrestore(rq, &rf); 9534 } 9535 9536 /* 9537 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9538 * inactive. All tasks which are not per CPU kernel threads are either 9539 * pushed off this CPU now via balance_push() or placed on a different CPU 9540 * during wakeup. Wait until the CPU is quiescent. 9541 */ 9542 static void balance_hotplug_wait(void) 9543 { 9544 struct rq *rq = this_rq(); 9545 9546 rcuwait_wait_event(&rq->hotplug_wait, 9547 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9548 TASK_UNINTERRUPTIBLE); 9549 } 9550 9551 #else 9552 9553 static inline void balance_push(struct rq *rq) 9554 { 9555 } 9556 9557 static inline void balance_push_set(int cpu, bool on) 9558 { 9559 } 9560 9561 static inline void balance_hotplug_wait(void) 9562 { 9563 } 9564 9565 #endif /* CONFIG_HOTPLUG_CPU */ 9566 9567 void set_rq_online(struct rq *rq) 9568 { 9569 if (!rq->online) { 9570 const struct sched_class *class; 9571 9572 cpumask_set_cpu(rq->cpu, rq->rd->online); 9573 rq->online = 1; 9574 9575 for_each_class(class) { 9576 if (class->rq_online) 9577 class->rq_online(rq); 9578 } 9579 } 9580 } 9581 9582 void set_rq_offline(struct rq *rq) 9583 { 9584 if (rq->online) { 9585 const struct sched_class *class; 9586 9587 update_rq_clock(rq); 9588 for_each_class(class) { 9589 if (class->rq_offline) 9590 class->rq_offline(rq); 9591 } 9592 9593 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9594 rq->online = 0; 9595 } 9596 } 9597 9598 /* 9599 * used to mark begin/end of suspend/resume: 9600 */ 9601 static int num_cpus_frozen; 9602 9603 /* 9604 * Update cpusets according to cpu_active mask. If cpusets are 9605 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9606 * around partition_sched_domains(). 9607 * 9608 * If we come here as part of a suspend/resume, don't touch cpusets because we 9609 * want to restore it back to its original state upon resume anyway. 9610 */ 9611 static void cpuset_cpu_active(void) 9612 { 9613 if (cpuhp_tasks_frozen) { 9614 /* 9615 * num_cpus_frozen tracks how many CPUs are involved in suspend 9616 * resume sequence. As long as this is not the last online 9617 * operation in the resume sequence, just build a single sched 9618 * domain, ignoring cpusets. 9619 */ 9620 partition_sched_domains(1, NULL, NULL); 9621 if (--num_cpus_frozen) 9622 return; 9623 /* 9624 * This is the last CPU online operation. So fall through and 9625 * restore the original sched domains by considering the 9626 * cpuset configurations. 9627 */ 9628 cpuset_force_rebuild(); 9629 } 9630 cpuset_update_active_cpus(); 9631 } 9632 9633 static int cpuset_cpu_inactive(unsigned int cpu) 9634 { 9635 if (!cpuhp_tasks_frozen) { 9636 int ret = dl_bw_check_overflow(cpu); 9637 9638 if (ret) 9639 return ret; 9640 cpuset_update_active_cpus(); 9641 } else { 9642 num_cpus_frozen++; 9643 partition_sched_domains(1, NULL, NULL); 9644 } 9645 return 0; 9646 } 9647 9648 int sched_cpu_activate(unsigned int cpu) 9649 { 9650 struct rq *rq = cpu_rq(cpu); 9651 struct rq_flags rf; 9652 9653 /* 9654 * Clear the balance_push callback and prepare to schedule 9655 * regular tasks. 9656 */ 9657 balance_push_set(cpu, false); 9658 9659 #ifdef CONFIG_SCHED_SMT 9660 /* 9661 * When going up, increment the number of cores with SMT present. 9662 */ 9663 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9664 static_branch_inc_cpuslocked(&sched_smt_present); 9665 #endif 9666 set_cpu_active(cpu, true); 9667 9668 if (sched_smp_initialized) { 9669 sched_update_numa(cpu, true); 9670 sched_domains_numa_masks_set(cpu); 9671 cpuset_cpu_active(); 9672 } 9673 9674 /* 9675 * Put the rq online, if not already. This happens: 9676 * 9677 * 1) In the early boot process, because we build the real domains 9678 * after all CPUs have been brought up. 9679 * 9680 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9681 * domains. 9682 */ 9683 rq_lock_irqsave(rq, &rf); 9684 if (rq->rd) { 9685 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9686 set_rq_online(rq); 9687 } 9688 rq_unlock_irqrestore(rq, &rf); 9689 9690 return 0; 9691 } 9692 9693 int sched_cpu_deactivate(unsigned int cpu) 9694 { 9695 struct rq *rq = cpu_rq(cpu); 9696 struct rq_flags rf; 9697 int ret; 9698 9699 /* 9700 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9701 * load balancing when not active 9702 */ 9703 nohz_balance_exit_idle(rq); 9704 9705 set_cpu_active(cpu, false); 9706 9707 /* 9708 * From this point forward, this CPU will refuse to run any task that 9709 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9710 * push those tasks away until this gets cleared, see 9711 * sched_cpu_dying(). 9712 */ 9713 balance_push_set(cpu, true); 9714 9715 /* 9716 * We've cleared cpu_active_mask / set balance_push, wait for all 9717 * preempt-disabled and RCU users of this state to go away such that 9718 * all new such users will observe it. 9719 * 9720 * Specifically, we rely on ttwu to no longer target this CPU, see 9721 * ttwu_queue_cond() and is_cpu_allowed(). 9722 * 9723 * Do sync before park smpboot threads to take care the rcu boost case. 9724 */ 9725 synchronize_rcu(); 9726 9727 rq_lock_irqsave(rq, &rf); 9728 if (rq->rd) { 9729 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9730 set_rq_offline(rq); 9731 } 9732 rq_unlock_irqrestore(rq, &rf); 9733 9734 #ifdef CONFIG_SCHED_SMT 9735 /* 9736 * When going down, decrement the number of cores with SMT present. 9737 */ 9738 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9739 static_branch_dec_cpuslocked(&sched_smt_present); 9740 9741 sched_core_cpu_deactivate(cpu); 9742 #endif 9743 9744 if (!sched_smp_initialized) 9745 return 0; 9746 9747 sched_update_numa(cpu, false); 9748 ret = cpuset_cpu_inactive(cpu); 9749 if (ret) { 9750 balance_push_set(cpu, false); 9751 set_cpu_active(cpu, true); 9752 sched_update_numa(cpu, true); 9753 return ret; 9754 } 9755 sched_domains_numa_masks_clear(cpu); 9756 return 0; 9757 } 9758 9759 static void sched_rq_cpu_starting(unsigned int cpu) 9760 { 9761 struct rq *rq = cpu_rq(cpu); 9762 9763 rq->calc_load_update = calc_load_update; 9764 update_max_interval(); 9765 } 9766 9767 int sched_cpu_starting(unsigned int cpu) 9768 { 9769 sched_core_cpu_starting(cpu); 9770 sched_rq_cpu_starting(cpu); 9771 sched_tick_start(cpu); 9772 return 0; 9773 } 9774 9775 #ifdef CONFIG_HOTPLUG_CPU 9776 9777 /* 9778 * Invoked immediately before the stopper thread is invoked to bring the 9779 * CPU down completely. At this point all per CPU kthreads except the 9780 * hotplug thread (current) and the stopper thread (inactive) have been 9781 * either parked or have been unbound from the outgoing CPU. Ensure that 9782 * any of those which might be on the way out are gone. 9783 * 9784 * If after this point a bound task is being woken on this CPU then the 9785 * responsible hotplug callback has failed to do it's job. 9786 * sched_cpu_dying() will catch it with the appropriate fireworks. 9787 */ 9788 int sched_cpu_wait_empty(unsigned int cpu) 9789 { 9790 balance_hotplug_wait(); 9791 return 0; 9792 } 9793 9794 /* 9795 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9796 * might have. Called from the CPU stopper task after ensuring that the 9797 * stopper is the last running task on the CPU, so nr_active count is 9798 * stable. We need to take the teardown thread which is calling this into 9799 * account, so we hand in adjust = 1 to the load calculation. 9800 * 9801 * Also see the comment "Global load-average calculations". 9802 */ 9803 static void calc_load_migrate(struct rq *rq) 9804 { 9805 long delta = calc_load_fold_active(rq, 1); 9806 9807 if (delta) 9808 atomic_long_add(delta, &calc_load_tasks); 9809 } 9810 9811 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9812 { 9813 struct task_struct *g, *p; 9814 int cpu = cpu_of(rq); 9815 9816 lockdep_assert_rq_held(rq); 9817 9818 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9819 for_each_process_thread(g, p) { 9820 if (task_cpu(p) != cpu) 9821 continue; 9822 9823 if (!task_on_rq_queued(p)) 9824 continue; 9825 9826 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9827 } 9828 } 9829 9830 int sched_cpu_dying(unsigned int cpu) 9831 { 9832 struct rq *rq = cpu_rq(cpu); 9833 struct rq_flags rf; 9834 9835 /* Handle pending wakeups and then migrate everything off */ 9836 sched_tick_stop(cpu); 9837 9838 rq_lock_irqsave(rq, &rf); 9839 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9840 WARN(true, "Dying CPU not properly vacated!"); 9841 dump_rq_tasks(rq, KERN_WARNING); 9842 } 9843 rq_unlock_irqrestore(rq, &rf); 9844 9845 calc_load_migrate(rq); 9846 update_max_interval(); 9847 hrtick_clear(rq); 9848 sched_core_cpu_dying(cpu); 9849 return 0; 9850 } 9851 #endif 9852 9853 void __init sched_init_smp(void) 9854 { 9855 sched_init_numa(NUMA_NO_NODE); 9856 9857 /* 9858 * There's no userspace yet to cause hotplug operations; hence all the 9859 * CPU masks are stable and all blatant races in the below code cannot 9860 * happen. 9861 */ 9862 mutex_lock(&sched_domains_mutex); 9863 sched_init_domains(cpu_active_mask); 9864 mutex_unlock(&sched_domains_mutex); 9865 9866 /* Move init over to a non-isolated CPU */ 9867 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9868 BUG(); 9869 current->flags &= ~PF_NO_SETAFFINITY; 9870 sched_init_granularity(); 9871 9872 init_sched_rt_class(); 9873 init_sched_dl_class(); 9874 9875 sched_smp_initialized = true; 9876 } 9877 9878 static int __init migration_init(void) 9879 { 9880 sched_cpu_starting(smp_processor_id()); 9881 return 0; 9882 } 9883 early_initcall(migration_init); 9884 9885 #else 9886 void __init sched_init_smp(void) 9887 { 9888 sched_init_granularity(); 9889 } 9890 #endif /* CONFIG_SMP */ 9891 9892 int in_sched_functions(unsigned long addr) 9893 { 9894 return in_lock_functions(addr) || 9895 (addr >= (unsigned long)__sched_text_start 9896 && addr < (unsigned long)__sched_text_end); 9897 } 9898 9899 #ifdef CONFIG_CGROUP_SCHED 9900 /* 9901 * Default task group. 9902 * Every task in system belongs to this group at bootup. 9903 */ 9904 struct task_group root_task_group; 9905 LIST_HEAD(task_groups); 9906 9907 /* Cacheline aligned slab cache for task_group */ 9908 static struct kmem_cache *task_group_cache __read_mostly; 9909 #endif 9910 9911 void __init sched_init(void) 9912 { 9913 unsigned long ptr = 0; 9914 int i; 9915 9916 /* Make sure the linker didn't screw up */ 9917 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9918 &fair_sched_class != &rt_sched_class + 1 || 9919 &rt_sched_class != &dl_sched_class + 1); 9920 #ifdef CONFIG_SMP 9921 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9922 #endif 9923 9924 wait_bit_init(); 9925 9926 #ifdef CONFIG_FAIR_GROUP_SCHED 9927 ptr += 2 * nr_cpu_ids * sizeof(void **); 9928 #endif 9929 #ifdef CONFIG_RT_GROUP_SCHED 9930 ptr += 2 * nr_cpu_ids * sizeof(void **); 9931 #endif 9932 if (ptr) { 9933 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9934 9935 #ifdef CONFIG_FAIR_GROUP_SCHED 9936 root_task_group.se = (struct sched_entity **)ptr; 9937 ptr += nr_cpu_ids * sizeof(void **); 9938 9939 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9940 ptr += nr_cpu_ids * sizeof(void **); 9941 9942 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9943 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9944 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9945 #ifdef CONFIG_RT_GROUP_SCHED 9946 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9947 ptr += nr_cpu_ids * sizeof(void **); 9948 9949 root_task_group.rt_rq = (struct rt_rq **)ptr; 9950 ptr += nr_cpu_ids * sizeof(void **); 9951 9952 #endif /* CONFIG_RT_GROUP_SCHED */ 9953 } 9954 9955 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9956 9957 #ifdef CONFIG_SMP 9958 init_defrootdomain(); 9959 #endif 9960 9961 #ifdef CONFIG_RT_GROUP_SCHED 9962 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9963 global_rt_period(), global_rt_runtime()); 9964 #endif /* CONFIG_RT_GROUP_SCHED */ 9965 9966 #ifdef CONFIG_CGROUP_SCHED 9967 task_group_cache = KMEM_CACHE(task_group, 0); 9968 9969 list_add(&root_task_group.list, &task_groups); 9970 INIT_LIST_HEAD(&root_task_group.children); 9971 INIT_LIST_HEAD(&root_task_group.siblings); 9972 autogroup_init(&init_task); 9973 #endif /* CONFIG_CGROUP_SCHED */ 9974 9975 for_each_possible_cpu(i) { 9976 struct rq *rq; 9977 9978 rq = cpu_rq(i); 9979 raw_spin_lock_init(&rq->__lock); 9980 rq->nr_running = 0; 9981 rq->calc_load_active = 0; 9982 rq->calc_load_update = jiffies + LOAD_FREQ; 9983 init_cfs_rq(&rq->cfs); 9984 init_rt_rq(&rq->rt); 9985 init_dl_rq(&rq->dl); 9986 #ifdef CONFIG_FAIR_GROUP_SCHED 9987 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9988 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9989 /* 9990 * How much CPU bandwidth does root_task_group get? 9991 * 9992 * In case of task-groups formed thr' the cgroup filesystem, it 9993 * gets 100% of the CPU resources in the system. This overall 9994 * system CPU resource is divided among the tasks of 9995 * root_task_group and its child task-groups in a fair manner, 9996 * based on each entity's (task or task-group's) weight 9997 * (se->load.weight). 9998 * 9999 * In other words, if root_task_group has 10 tasks of weight 10000 * 1024) and two child groups A0 and A1 (of weight 1024 each), 10001 * then A0's share of the CPU resource is: 10002 * 10003 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 10004 * 10005 * We achieve this by letting root_task_group's tasks sit 10006 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 10007 */ 10008 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 10009 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10010 10011 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 10012 #ifdef CONFIG_RT_GROUP_SCHED 10013 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 10014 #endif 10015 #ifdef CONFIG_SMP 10016 rq->sd = NULL; 10017 rq->rd = NULL; 10018 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 10019 rq->balance_callback = &balance_push_callback; 10020 rq->active_balance = 0; 10021 rq->next_balance = jiffies; 10022 rq->push_cpu = 0; 10023 rq->cpu = i; 10024 rq->online = 0; 10025 rq->idle_stamp = 0; 10026 rq->avg_idle = 2*sysctl_sched_migration_cost; 10027 rq->wake_stamp = jiffies; 10028 rq->wake_avg_idle = rq->avg_idle; 10029 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 10030 10031 INIT_LIST_HEAD(&rq->cfs_tasks); 10032 10033 rq_attach_root(rq, &def_root_domain); 10034 #ifdef CONFIG_NO_HZ_COMMON 10035 rq->last_blocked_load_update_tick = jiffies; 10036 atomic_set(&rq->nohz_flags, 0); 10037 10038 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 10039 #endif 10040 #ifdef CONFIG_HOTPLUG_CPU 10041 rcuwait_init(&rq->hotplug_wait); 10042 #endif 10043 #endif /* CONFIG_SMP */ 10044 hrtick_rq_init(rq); 10045 atomic_set(&rq->nr_iowait, 0); 10046 10047 #ifdef CONFIG_SCHED_CORE 10048 rq->core = rq; 10049 rq->core_pick = NULL; 10050 rq->core_enabled = 0; 10051 rq->core_tree = RB_ROOT; 10052 rq->core_forceidle_count = 0; 10053 rq->core_forceidle_occupation = 0; 10054 rq->core_forceidle_start = 0; 10055 10056 rq->core_cookie = 0UL; 10057 #endif 10058 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 10059 } 10060 10061 set_load_weight(&init_task, false); 10062 10063 /* 10064 * The boot idle thread does lazy MMU switching as well: 10065 */ 10066 mmgrab_lazy_tlb(&init_mm); 10067 enter_lazy_tlb(&init_mm, current); 10068 10069 /* 10070 * The idle task doesn't need the kthread struct to function, but it 10071 * is dressed up as a per-CPU kthread and thus needs to play the part 10072 * if we want to avoid special-casing it in code that deals with per-CPU 10073 * kthreads. 10074 */ 10075 WARN_ON(!set_kthread_struct(current)); 10076 10077 /* 10078 * Make us the idle thread. Technically, schedule() should not be 10079 * called from this thread, however somewhere below it might be, 10080 * but because we are the idle thread, we just pick up running again 10081 * when this runqueue becomes "idle". 10082 */ 10083 init_idle(current, smp_processor_id()); 10084 10085 calc_load_update = jiffies + LOAD_FREQ; 10086 10087 #ifdef CONFIG_SMP 10088 idle_thread_set_boot_cpu(); 10089 balance_push_set(smp_processor_id(), false); 10090 #endif 10091 init_sched_fair_class(); 10092 10093 psi_init(); 10094 10095 init_uclamp(); 10096 10097 preempt_dynamic_init(); 10098 10099 scheduler_running = 1; 10100 } 10101 10102 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 10103 10104 void __might_sleep(const char *file, int line) 10105 { 10106 unsigned int state = get_current_state(); 10107 /* 10108 * Blocking primitives will set (and therefore destroy) current->state, 10109 * since we will exit with TASK_RUNNING make sure we enter with it, 10110 * otherwise we will destroy state. 10111 */ 10112 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 10113 "do not call blocking ops when !TASK_RUNNING; " 10114 "state=%x set at [<%p>] %pS\n", state, 10115 (void *)current->task_state_change, 10116 (void *)current->task_state_change); 10117 10118 __might_resched(file, line, 0); 10119 } 10120 EXPORT_SYMBOL(__might_sleep); 10121 10122 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 10123 { 10124 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 10125 return; 10126 10127 if (preempt_count() == preempt_offset) 10128 return; 10129 10130 pr_err("Preemption disabled at:"); 10131 print_ip_sym(KERN_ERR, ip); 10132 } 10133 10134 static inline bool resched_offsets_ok(unsigned int offsets) 10135 { 10136 unsigned int nested = preempt_count(); 10137 10138 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 10139 10140 return nested == offsets; 10141 } 10142 10143 void __might_resched(const char *file, int line, unsigned int offsets) 10144 { 10145 /* Ratelimiting timestamp: */ 10146 static unsigned long prev_jiffy; 10147 10148 unsigned long preempt_disable_ip; 10149 10150 /* WARN_ON_ONCE() by default, no rate limit required: */ 10151 rcu_sleep_check(); 10152 10153 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10154 !is_idle_task(current) && !current->non_block_count) || 10155 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10156 oops_in_progress) 10157 return; 10158 10159 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10160 return; 10161 prev_jiffy = jiffies; 10162 10163 /* Save this before calling printk(), since that will clobber it: */ 10164 preempt_disable_ip = get_preempt_disable_ip(current); 10165 10166 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10167 file, line); 10168 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10169 in_atomic(), irqs_disabled(), current->non_block_count, 10170 current->pid, current->comm); 10171 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10172 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10173 10174 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10175 pr_err("RCU nest depth: %d, expected: %u\n", 10176 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10177 } 10178 10179 if (task_stack_end_corrupted(current)) 10180 pr_emerg("Thread overran stack, or stack corrupted\n"); 10181 10182 debug_show_held_locks(current); 10183 if (irqs_disabled()) 10184 print_irqtrace_events(current); 10185 10186 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10187 preempt_disable_ip); 10188 10189 dump_stack(); 10190 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10191 } 10192 EXPORT_SYMBOL(__might_resched); 10193 10194 void __cant_sleep(const char *file, int line, int preempt_offset) 10195 { 10196 static unsigned long prev_jiffy; 10197 10198 if (irqs_disabled()) 10199 return; 10200 10201 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10202 return; 10203 10204 if (preempt_count() > preempt_offset) 10205 return; 10206 10207 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10208 return; 10209 prev_jiffy = jiffies; 10210 10211 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10212 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10213 in_atomic(), irqs_disabled(), 10214 current->pid, current->comm); 10215 10216 debug_show_held_locks(current); 10217 dump_stack(); 10218 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10219 } 10220 EXPORT_SYMBOL_GPL(__cant_sleep); 10221 10222 #ifdef CONFIG_SMP 10223 void __cant_migrate(const char *file, int line) 10224 { 10225 static unsigned long prev_jiffy; 10226 10227 if (irqs_disabled()) 10228 return; 10229 10230 if (is_migration_disabled(current)) 10231 return; 10232 10233 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10234 return; 10235 10236 if (preempt_count() > 0) 10237 return; 10238 10239 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10240 return; 10241 prev_jiffy = jiffies; 10242 10243 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10244 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10245 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10246 current->pid, current->comm); 10247 10248 debug_show_held_locks(current); 10249 dump_stack(); 10250 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10251 } 10252 EXPORT_SYMBOL_GPL(__cant_migrate); 10253 #endif 10254 #endif 10255 10256 #ifdef CONFIG_MAGIC_SYSRQ 10257 void normalize_rt_tasks(void) 10258 { 10259 struct task_struct *g, *p; 10260 struct sched_attr attr = { 10261 .sched_policy = SCHED_NORMAL, 10262 }; 10263 10264 read_lock(&tasklist_lock); 10265 for_each_process_thread(g, p) { 10266 /* 10267 * Only normalize user tasks: 10268 */ 10269 if (p->flags & PF_KTHREAD) 10270 continue; 10271 10272 p->se.exec_start = 0; 10273 schedstat_set(p->stats.wait_start, 0); 10274 schedstat_set(p->stats.sleep_start, 0); 10275 schedstat_set(p->stats.block_start, 0); 10276 10277 if (!dl_task(p) && !rt_task(p)) { 10278 /* 10279 * Renice negative nice level userspace 10280 * tasks back to 0: 10281 */ 10282 if (task_nice(p) < 0) 10283 set_user_nice(p, 0); 10284 continue; 10285 } 10286 10287 __sched_setscheduler(p, &attr, false, false); 10288 } 10289 read_unlock(&tasklist_lock); 10290 } 10291 10292 #endif /* CONFIG_MAGIC_SYSRQ */ 10293 10294 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10295 /* 10296 * These functions are only useful for the IA64 MCA handling, or kdb. 10297 * 10298 * They can only be called when the whole system has been 10299 * stopped - every CPU needs to be quiescent, and no scheduling 10300 * activity can take place. Using them for anything else would 10301 * be a serious bug, and as a result, they aren't even visible 10302 * under any other configuration. 10303 */ 10304 10305 /** 10306 * curr_task - return the current task for a given CPU. 10307 * @cpu: the processor in question. 10308 * 10309 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10310 * 10311 * Return: The current task for @cpu. 10312 */ 10313 struct task_struct *curr_task(int cpu) 10314 { 10315 return cpu_curr(cpu); 10316 } 10317 10318 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10319 10320 #ifdef CONFIG_IA64 10321 /** 10322 * ia64_set_curr_task - set the current task for a given CPU. 10323 * @cpu: the processor in question. 10324 * @p: the task pointer to set. 10325 * 10326 * Description: This function must only be used when non-maskable interrupts 10327 * are serviced on a separate stack. It allows the architecture to switch the 10328 * notion of the current task on a CPU in a non-blocking manner. This function 10329 * must be called with all CPU's synchronized, and interrupts disabled, the 10330 * and caller must save the original value of the current task (see 10331 * curr_task() above) and restore that value before reenabling interrupts and 10332 * re-starting the system. 10333 * 10334 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10335 */ 10336 void ia64_set_curr_task(int cpu, struct task_struct *p) 10337 { 10338 cpu_curr(cpu) = p; 10339 } 10340 10341 #endif 10342 10343 #ifdef CONFIG_CGROUP_SCHED 10344 /* task_group_lock serializes the addition/removal of task groups */ 10345 static DEFINE_SPINLOCK(task_group_lock); 10346 10347 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10348 struct task_group *parent) 10349 { 10350 #ifdef CONFIG_UCLAMP_TASK_GROUP 10351 enum uclamp_id clamp_id; 10352 10353 for_each_clamp_id(clamp_id) { 10354 uclamp_se_set(&tg->uclamp_req[clamp_id], 10355 uclamp_none(clamp_id), false); 10356 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10357 } 10358 #endif 10359 } 10360 10361 static void sched_free_group(struct task_group *tg) 10362 { 10363 free_fair_sched_group(tg); 10364 free_rt_sched_group(tg); 10365 autogroup_free(tg); 10366 kmem_cache_free(task_group_cache, tg); 10367 } 10368 10369 static void sched_free_group_rcu(struct rcu_head *rcu) 10370 { 10371 sched_free_group(container_of(rcu, struct task_group, rcu)); 10372 } 10373 10374 static void sched_unregister_group(struct task_group *tg) 10375 { 10376 unregister_fair_sched_group(tg); 10377 unregister_rt_sched_group(tg); 10378 /* 10379 * We have to wait for yet another RCU grace period to expire, as 10380 * print_cfs_stats() might run concurrently. 10381 */ 10382 call_rcu(&tg->rcu, sched_free_group_rcu); 10383 } 10384 10385 /* allocate runqueue etc for a new task group */ 10386 struct task_group *sched_create_group(struct task_group *parent) 10387 { 10388 struct task_group *tg; 10389 10390 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10391 if (!tg) 10392 return ERR_PTR(-ENOMEM); 10393 10394 if (!alloc_fair_sched_group(tg, parent)) 10395 goto err; 10396 10397 if (!alloc_rt_sched_group(tg, parent)) 10398 goto err; 10399 10400 alloc_uclamp_sched_group(tg, parent); 10401 10402 return tg; 10403 10404 err: 10405 sched_free_group(tg); 10406 return ERR_PTR(-ENOMEM); 10407 } 10408 10409 void sched_online_group(struct task_group *tg, struct task_group *parent) 10410 { 10411 unsigned long flags; 10412 10413 spin_lock_irqsave(&task_group_lock, flags); 10414 list_add_rcu(&tg->list, &task_groups); 10415 10416 /* Root should already exist: */ 10417 WARN_ON(!parent); 10418 10419 tg->parent = parent; 10420 INIT_LIST_HEAD(&tg->children); 10421 list_add_rcu(&tg->siblings, &parent->children); 10422 spin_unlock_irqrestore(&task_group_lock, flags); 10423 10424 online_fair_sched_group(tg); 10425 } 10426 10427 /* rcu callback to free various structures associated with a task group */ 10428 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10429 { 10430 /* Now it should be safe to free those cfs_rqs: */ 10431 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10432 } 10433 10434 void sched_destroy_group(struct task_group *tg) 10435 { 10436 /* Wait for possible concurrent references to cfs_rqs complete: */ 10437 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10438 } 10439 10440 void sched_release_group(struct task_group *tg) 10441 { 10442 unsigned long flags; 10443 10444 /* 10445 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10446 * sched_cfs_period_timer()). 10447 * 10448 * For this to be effective, we have to wait for all pending users of 10449 * this task group to leave their RCU critical section to ensure no new 10450 * user will see our dying task group any more. Specifically ensure 10451 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10452 * 10453 * We therefore defer calling unregister_fair_sched_group() to 10454 * sched_unregister_group() which is guarantied to get called only after the 10455 * current RCU grace period has expired. 10456 */ 10457 spin_lock_irqsave(&task_group_lock, flags); 10458 list_del_rcu(&tg->list); 10459 list_del_rcu(&tg->siblings); 10460 spin_unlock_irqrestore(&task_group_lock, flags); 10461 } 10462 10463 static struct task_group *sched_get_task_group(struct task_struct *tsk) 10464 { 10465 struct task_group *tg; 10466 10467 /* 10468 * All callers are synchronized by task_rq_lock(); we do not use RCU 10469 * which is pointless here. Thus, we pass "true" to task_css_check() 10470 * to prevent lockdep warnings. 10471 */ 10472 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10473 struct task_group, css); 10474 tg = autogroup_task_group(tsk, tg); 10475 10476 return tg; 10477 } 10478 10479 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 10480 { 10481 tsk->sched_task_group = group; 10482 10483 #ifdef CONFIG_FAIR_GROUP_SCHED 10484 if (tsk->sched_class->task_change_group) 10485 tsk->sched_class->task_change_group(tsk); 10486 else 10487 #endif 10488 set_task_rq(tsk, task_cpu(tsk)); 10489 } 10490 10491 /* 10492 * Change task's runqueue when it moves between groups. 10493 * 10494 * The caller of this function should have put the task in its new group by 10495 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10496 * its new group. 10497 */ 10498 void sched_move_task(struct task_struct *tsk) 10499 { 10500 int queued, running, queue_flags = 10501 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10502 struct task_group *group; 10503 struct rq_flags rf; 10504 struct rq *rq; 10505 10506 rq = task_rq_lock(tsk, &rf); 10507 /* 10508 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 10509 * group changes. 10510 */ 10511 group = sched_get_task_group(tsk); 10512 if (group == tsk->sched_task_group) 10513 goto unlock; 10514 10515 update_rq_clock(rq); 10516 10517 running = task_current(rq, tsk); 10518 queued = task_on_rq_queued(tsk); 10519 10520 if (queued) 10521 dequeue_task(rq, tsk, queue_flags); 10522 if (running) 10523 put_prev_task(rq, tsk); 10524 10525 sched_change_group(tsk, group); 10526 10527 if (queued) 10528 enqueue_task(rq, tsk, queue_flags); 10529 if (running) { 10530 set_next_task(rq, tsk); 10531 /* 10532 * After changing group, the running task may have joined a 10533 * throttled one but it's still the running task. Trigger a 10534 * resched to make sure that task can still run. 10535 */ 10536 resched_curr(rq); 10537 } 10538 10539 unlock: 10540 task_rq_unlock(rq, tsk, &rf); 10541 } 10542 10543 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10544 { 10545 return css ? container_of(css, struct task_group, css) : NULL; 10546 } 10547 10548 static struct cgroup_subsys_state * 10549 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10550 { 10551 struct task_group *parent = css_tg(parent_css); 10552 struct task_group *tg; 10553 10554 if (!parent) { 10555 /* This is early initialization for the top cgroup */ 10556 return &root_task_group.css; 10557 } 10558 10559 tg = sched_create_group(parent); 10560 if (IS_ERR(tg)) 10561 return ERR_PTR(-ENOMEM); 10562 10563 return &tg->css; 10564 } 10565 10566 /* Expose task group only after completing cgroup initialization */ 10567 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10568 { 10569 struct task_group *tg = css_tg(css); 10570 struct task_group *parent = css_tg(css->parent); 10571 10572 if (parent) 10573 sched_online_group(tg, parent); 10574 10575 #ifdef CONFIG_UCLAMP_TASK_GROUP 10576 /* Propagate the effective uclamp value for the new group */ 10577 mutex_lock(&uclamp_mutex); 10578 rcu_read_lock(); 10579 cpu_util_update_eff(css); 10580 rcu_read_unlock(); 10581 mutex_unlock(&uclamp_mutex); 10582 #endif 10583 10584 return 0; 10585 } 10586 10587 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10588 { 10589 struct task_group *tg = css_tg(css); 10590 10591 sched_release_group(tg); 10592 } 10593 10594 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10595 { 10596 struct task_group *tg = css_tg(css); 10597 10598 /* 10599 * Relies on the RCU grace period between css_released() and this. 10600 */ 10601 sched_unregister_group(tg); 10602 } 10603 10604 #ifdef CONFIG_RT_GROUP_SCHED 10605 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10606 { 10607 struct task_struct *task; 10608 struct cgroup_subsys_state *css; 10609 10610 cgroup_taskset_for_each(task, css, tset) { 10611 if (!sched_rt_can_attach(css_tg(css), task)) 10612 return -EINVAL; 10613 } 10614 return 0; 10615 } 10616 #endif 10617 10618 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10619 { 10620 struct task_struct *task; 10621 struct cgroup_subsys_state *css; 10622 10623 cgroup_taskset_for_each(task, css, tset) 10624 sched_move_task(task); 10625 } 10626 10627 #ifdef CONFIG_UCLAMP_TASK_GROUP 10628 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10629 { 10630 struct cgroup_subsys_state *top_css = css; 10631 struct uclamp_se *uc_parent = NULL; 10632 struct uclamp_se *uc_se = NULL; 10633 unsigned int eff[UCLAMP_CNT]; 10634 enum uclamp_id clamp_id; 10635 unsigned int clamps; 10636 10637 lockdep_assert_held(&uclamp_mutex); 10638 SCHED_WARN_ON(!rcu_read_lock_held()); 10639 10640 css_for_each_descendant_pre(css, top_css) { 10641 uc_parent = css_tg(css)->parent 10642 ? css_tg(css)->parent->uclamp : NULL; 10643 10644 for_each_clamp_id(clamp_id) { 10645 /* Assume effective clamps matches requested clamps */ 10646 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10647 /* Cap effective clamps with parent's effective clamps */ 10648 if (uc_parent && 10649 eff[clamp_id] > uc_parent[clamp_id].value) { 10650 eff[clamp_id] = uc_parent[clamp_id].value; 10651 } 10652 } 10653 /* Ensure protection is always capped by limit */ 10654 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10655 10656 /* Propagate most restrictive effective clamps */ 10657 clamps = 0x0; 10658 uc_se = css_tg(css)->uclamp; 10659 for_each_clamp_id(clamp_id) { 10660 if (eff[clamp_id] == uc_se[clamp_id].value) 10661 continue; 10662 uc_se[clamp_id].value = eff[clamp_id]; 10663 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10664 clamps |= (0x1 << clamp_id); 10665 } 10666 if (!clamps) { 10667 css = css_rightmost_descendant(css); 10668 continue; 10669 } 10670 10671 /* Immediately update descendants RUNNABLE tasks */ 10672 uclamp_update_active_tasks(css); 10673 } 10674 } 10675 10676 /* 10677 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10678 * C expression. Since there is no way to convert a macro argument (N) into a 10679 * character constant, use two levels of macros. 10680 */ 10681 #define _POW10(exp) ((unsigned int)1e##exp) 10682 #define POW10(exp) _POW10(exp) 10683 10684 struct uclamp_request { 10685 #define UCLAMP_PERCENT_SHIFT 2 10686 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10687 s64 percent; 10688 u64 util; 10689 int ret; 10690 }; 10691 10692 static inline struct uclamp_request 10693 capacity_from_percent(char *buf) 10694 { 10695 struct uclamp_request req = { 10696 .percent = UCLAMP_PERCENT_SCALE, 10697 .util = SCHED_CAPACITY_SCALE, 10698 .ret = 0, 10699 }; 10700 10701 buf = strim(buf); 10702 if (strcmp(buf, "max")) { 10703 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10704 &req.percent); 10705 if (req.ret) 10706 return req; 10707 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10708 req.ret = -ERANGE; 10709 return req; 10710 } 10711 10712 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10713 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10714 } 10715 10716 return req; 10717 } 10718 10719 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10720 size_t nbytes, loff_t off, 10721 enum uclamp_id clamp_id) 10722 { 10723 struct uclamp_request req; 10724 struct task_group *tg; 10725 10726 req = capacity_from_percent(buf); 10727 if (req.ret) 10728 return req.ret; 10729 10730 static_branch_enable(&sched_uclamp_used); 10731 10732 mutex_lock(&uclamp_mutex); 10733 rcu_read_lock(); 10734 10735 tg = css_tg(of_css(of)); 10736 if (tg->uclamp_req[clamp_id].value != req.util) 10737 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10738 10739 /* 10740 * Because of not recoverable conversion rounding we keep track of the 10741 * exact requested value 10742 */ 10743 tg->uclamp_pct[clamp_id] = req.percent; 10744 10745 /* Update effective clamps to track the most restrictive value */ 10746 cpu_util_update_eff(of_css(of)); 10747 10748 rcu_read_unlock(); 10749 mutex_unlock(&uclamp_mutex); 10750 10751 return nbytes; 10752 } 10753 10754 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10755 char *buf, size_t nbytes, 10756 loff_t off) 10757 { 10758 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10759 } 10760 10761 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10762 char *buf, size_t nbytes, 10763 loff_t off) 10764 { 10765 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10766 } 10767 10768 static inline void cpu_uclamp_print(struct seq_file *sf, 10769 enum uclamp_id clamp_id) 10770 { 10771 struct task_group *tg; 10772 u64 util_clamp; 10773 u64 percent; 10774 u32 rem; 10775 10776 rcu_read_lock(); 10777 tg = css_tg(seq_css(sf)); 10778 util_clamp = tg->uclamp_req[clamp_id].value; 10779 rcu_read_unlock(); 10780 10781 if (util_clamp == SCHED_CAPACITY_SCALE) { 10782 seq_puts(sf, "max\n"); 10783 return; 10784 } 10785 10786 percent = tg->uclamp_pct[clamp_id]; 10787 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10788 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10789 } 10790 10791 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10792 { 10793 cpu_uclamp_print(sf, UCLAMP_MIN); 10794 return 0; 10795 } 10796 10797 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10798 { 10799 cpu_uclamp_print(sf, UCLAMP_MAX); 10800 return 0; 10801 } 10802 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10803 10804 #ifdef CONFIG_FAIR_GROUP_SCHED 10805 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10806 struct cftype *cftype, u64 shareval) 10807 { 10808 if (shareval > scale_load_down(ULONG_MAX)) 10809 shareval = MAX_SHARES; 10810 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10811 } 10812 10813 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10814 struct cftype *cft) 10815 { 10816 struct task_group *tg = css_tg(css); 10817 10818 return (u64) scale_load_down(tg->shares); 10819 } 10820 10821 #ifdef CONFIG_CFS_BANDWIDTH 10822 static DEFINE_MUTEX(cfs_constraints_mutex); 10823 10824 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10825 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10826 /* More than 203 days if BW_SHIFT equals 20. */ 10827 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10828 10829 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10830 10831 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10832 u64 burst) 10833 { 10834 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10836 10837 if (tg == &root_task_group) 10838 return -EINVAL; 10839 10840 /* 10841 * Ensure we have at some amount of bandwidth every period. This is 10842 * to prevent reaching a state of large arrears when throttled via 10843 * entity_tick() resulting in prolonged exit starvation. 10844 */ 10845 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10846 return -EINVAL; 10847 10848 /* 10849 * Likewise, bound things on the other side by preventing insane quota 10850 * periods. This also allows us to normalize in computing quota 10851 * feasibility. 10852 */ 10853 if (period > max_cfs_quota_period) 10854 return -EINVAL; 10855 10856 /* 10857 * Bound quota to defend quota against overflow during bandwidth shift. 10858 */ 10859 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10860 return -EINVAL; 10861 10862 if (quota != RUNTIME_INF && (burst > quota || 10863 burst + quota > max_cfs_runtime)) 10864 return -EINVAL; 10865 10866 /* 10867 * Prevent race between setting of cfs_rq->runtime_enabled and 10868 * unthrottle_offline_cfs_rqs(). 10869 */ 10870 cpus_read_lock(); 10871 mutex_lock(&cfs_constraints_mutex); 10872 ret = __cfs_schedulable(tg, period, quota); 10873 if (ret) 10874 goto out_unlock; 10875 10876 runtime_enabled = quota != RUNTIME_INF; 10877 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10878 /* 10879 * If we need to toggle cfs_bandwidth_used, off->on must occur 10880 * before making related changes, and on->off must occur afterwards 10881 */ 10882 if (runtime_enabled && !runtime_was_enabled) 10883 cfs_bandwidth_usage_inc(); 10884 raw_spin_lock_irq(&cfs_b->lock); 10885 cfs_b->period = ns_to_ktime(period); 10886 cfs_b->quota = quota; 10887 cfs_b->burst = burst; 10888 10889 __refill_cfs_bandwidth_runtime(cfs_b); 10890 10891 /* Restart the period timer (if active) to handle new period expiry: */ 10892 if (runtime_enabled) 10893 start_cfs_bandwidth(cfs_b); 10894 10895 raw_spin_unlock_irq(&cfs_b->lock); 10896 10897 for_each_online_cpu(i) { 10898 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10899 struct rq *rq = cfs_rq->rq; 10900 struct rq_flags rf; 10901 10902 rq_lock_irq(rq, &rf); 10903 cfs_rq->runtime_enabled = runtime_enabled; 10904 cfs_rq->runtime_remaining = 0; 10905 10906 if (cfs_rq->throttled) 10907 unthrottle_cfs_rq(cfs_rq); 10908 rq_unlock_irq(rq, &rf); 10909 } 10910 if (runtime_was_enabled && !runtime_enabled) 10911 cfs_bandwidth_usage_dec(); 10912 out_unlock: 10913 mutex_unlock(&cfs_constraints_mutex); 10914 cpus_read_unlock(); 10915 10916 return ret; 10917 } 10918 10919 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10920 { 10921 u64 quota, period, burst; 10922 10923 period = ktime_to_ns(tg->cfs_bandwidth.period); 10924 burst = tg->cfs_bandwidth.burst; 10925 if (cfs_quota_us < 0) 10926 quota = RUNTIME_INF; 10927 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10928 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10929 else 10930 return -EINVAL; 10931 10932 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10933 } 10934 10935 static long tg_get_cfs_quota(struct task_group *tg) 10936 { 10937 u64 quota_us; 10938 10939 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10940 return -1; 10941 10942 quota_us = tg->cfs_bandwidth.quota; 10943 do_div(quota_us, NSEC_PER_USEC); 10944 10945 return quota_us; 10946 } 10947 10948 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10949 { 10950 u64 quota, period, burst; 10951 10952 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10953 return -EINVAL; 10954 10955 period = (u64)cfs_period_us * NSEC_PER_USEC; 10956 quota = tg->cfs_bandwidth.quota; 10957 burst = tg->cfs_bandwidth.burst; 10958 10959 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10960 } 10961 10962 static long tg_get_cfs_period(struct task_group *tg) 10963 { 10964 u64 cfs_period_us; 10965 10966 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10967 do_div(cfs_period_us, NSEC_PER_USEC); 10968 10969 return cfs_period_us; 10970 } 10971 10972 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10973 { 10974 u64 quota, period, burst; 10975 10976 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10977 return -EINVAL; 10978 10979 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10980 period = ktime_to_ns(tg->cfs_bandwidth.period); 10981 quota = tg->cfs_bandwidth.quota; 10982 10983 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10984 } 10985 10986 static long tg_get_cfs_burst(struct task_group *tg) 10987 { 10988 u64 burst_us; 10989 10990 burst_us = tg->cfs_bandwidth.burst; 10991 do_div(burst_us, NSEC_PER_USEC); 10992 10993 return burst_us; 10994 } 10995 10996 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10997 struct cftype *cft) 10998 { 10999 return tg_get_cfs_quota(css_tg(css)); 11000 } 11001 11002 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 11003 struct cftype *cftype, s64 cfs_quota_us) 11004 { 11005 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 11006 } 11007 11008 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 11009 struct cftype *cft) 11010 { 11011 return tg_get_cfs_period(css_tg(css)); 11012 } 11013 11014 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 11015 struct cftype *cftype, u64 cfs_period_us) 11016 { 11017 return tg_set_cfs_period(css_tg(css), cfs_period_us); 11018 } 11019 11020 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 11021 struct cftype *cft) 11022 { 11023 return tg_get_cfs_burst(css_tg(css)); 11024 } 11025 11026 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 11027 struct cftype *cftype, u64 cfs_burst_us) 11028 { 11029 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 11030 } 11031 11032 struct cfs_schedulable_data { 11033 struct task_group *tg; 11034 u64 period, quota; 11035 }; 11036 11037 /* 11038 * normalize group quota/period to be quota/max_period 11039 * note: units are usecs 11040 */ 11041 static u64 normalize_cfs_quota(struct task_group *tg, 11042 struct cfs_schedulable_data *d) 11043 { 11044 u64 quota, period; 11045 11046 if (tg == d->tg) { 11047 period = d->period; 11048 quota = d->quota; 11049 } else { 11050 period = tg_get_cfs_period(tg); 11051 quota = tg_get_cfs_quota(tg); 11052 } 11053 11054 /* note: these should typically be equivalent */ 11055 if (quota == RUNTIME_INF || quota == -1) 11056 return RUNTIME_INF; 11057 11058 return to_ratio(period, quota); 11059 } 11060 11061 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 11062 { 11063 struct cfs_schedulable_data *d = data; 11064 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11065 s64 quota = 0, parent_quota = -1; 11066 11067 if (!tg->parent) { 11068 quota = RUNTIME_INF; 11069 } else { 11070 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 11071 11072 quota = normalize_cfs_quota(tg, d); 11073 parent_quota = parent_b->hierarchical_quota; 11074 11075 /* 11076 * Ensure max(child_quota) <= parent_quota. On cgroup2, 11077 * always take the min. On cgroup1, only inherit when no 11078 * limit is set: 11079 */ 11080 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 11081 quota = min(quota, parent_quota); 11082 } else { 11083 if (quota == RUNTIME_INF) 11084 quota = parent_quota; 11085 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 11086 return -EINVAL; 11087 } 11088 } 11089 cfs_b->hierarchical_quota = quota; 11090 11091 return 0; 11092 } 11093 11094 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 11095 { 11096 int ret; 11097 struct cfs_schedulable_data data = { 11098 .tg = tg, 11099 .period = period, 11100 .quota = quota, 11101 }; 11102 11103 if (quota != RUNTIME_INF) { 11104 do_div(data.period, NSEC_PER_USEC); 11105 do_div(data.quota, NSEC_PER_USEC); 11106 } 11107 11108 rcu_read_lock(); 11109 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 11110 rcu_read_unlock(); 11111 11112 return ret; 11113 } 11114 11115 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 11116 { 11117 struct task_group *tg = css_tg(seq_css(sf)); 11118 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11119 11120 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 11121 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 11122 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 11123 11124 if (schedstat_enabled() && tg != &root_task_group) { 11125 struct sched_statistics *stats; 11126 u64 ws = 0; 11127 int i; 11128 11129 for_each_possible_cpu(i) { 11130 stats = __schedstats_from_se(tg->se[i]); 11131 ws += schedstat_val(stats->wait_sum); 11132 } 11133 11134 seq_printf(sf, "wait_sum %llu\n", ws); 11135 } 11136 11137 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 11138 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 11139 11140 return 0; 11141 } 11142 #endif /* CONFIG_CFS_BANDWIDTH */ 11143 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11144 11145 #ifdef CONFIG_RT_GROUP_SCHED 11146 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 11147 struct cftype *cft, s64 val) 11148 { 11149 return sched_group_set_rt_runtime(css_tg(css), val); 11150 } 11151 11152 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 11153 struct cftype *cft) 11154 { 11155 return sched_group_rt_runtime(css_tg(css)); 11156 } 11157 11158 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 11159 struct cftype *cftype, u64 rt_period_us) 11160 { 11161 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11162 } 11163 11164 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11165 struct cftype *cft) 11166 { 11167 return sched_group_rt_period(css_tg(css)); 11168 } 11169 #endif /* CONFIG_RT_GROUP_SCHED */ 11170 11171 #ifdef CONFIG_FAIR_GROUP_SCHED 11172 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11173 struct cftype *cft) 11174 { 11175 return css_tg(css)->idle; 11176 } 11177 11178 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11179 struct cftype *cft, s64 idle) 11180 { 11181 return sched_group_set_idle(css_tg(css), idle); 11182 } 11183 #endif 11184 11185 static struct cftype cpu_legacy_files[] = { 11186 #ifdef CONFIG_FAIR_GROUP_SCHED 11187 { 11188 .name = "shares", 11189 .read_u64 = cpu_shares_read_u64, 11190 .write_u64 = cpu_shares_write_u64, 11191 }, 11192 { 11193 .name = "idle", 11194 .read_s64 = cpu_idle_read_s64, 11195 .write_s64 = cpu_idle_write_s64, 11196 }, 11197 #endif 11198 #ifdef CONFIG_CFS_BANDWIDTH 11199 { 11200 .name = "cfs_quota_us", 11201 .read_s64 = cpu_cfs_quota_read_s64, 11202 .write_s64 = cpu_cfs_quota_write_s64, 11203 }, 11204 { 11205 .name = "cfs_period_us", 11206 .read_u64 = cpu_cfs_period_read_u64, 11207 .write_u64 = cpu_cfs_period_write_u64, 11208 }, 11209 { 11210 .name = "cfs_burst_us", 11211 .read_u64 = cpu_cfs_burst_read_u64, 11212 .write_u64 = cpu_cfs_burst_write_u64, 11213 }, 11214 { 11215 .name = "stat", 11216 .seq_show = cpu_cfs_stat_show, 11217 }, 11218 #endif 11219 #ifdef CONFIG_RT_GROUP_SCHED 11220 { 11221 .name = "rt_runtime_us", 11222 .read_s64 = cpu_rt_runtime_read, 11223 .write_s64 = cpu_rt_runtime_write, 11224 }, 11225 { 11226 .name = "rt_period_us", 11227 .read_u64 = cpu_rt_period_read_uint, 11228 .write_u64 = cpu_rt_period_write_uint, 11229 }, 11230 #endif 11231 #ifdef CONFIG_UCLAMP_TASK_GROUP 11232 { 11233 .name = "uclamp.min", 11234 .flags = CFTYPE_NOT_ON_ROOT, 11235 .seq_show = cpu_uclamp_min_show, 11236 .write = cpu_uclamp_min_write, 11237 }, 11238 { 11239 .name = "uclamp.max", 11240 .flags = CFTYPE_NOT_ON_ROOT, 11241 .seq_show = cpu_uclamp_max_show, 11242 .write = cpu_uclamp_max_write, 11243 }, 11244 #endif 11245 { } /* Terminate */ 11246 }; 11247 11248 static int cpu_extra_stat_show(struct seq_file *sf, 11249 struct cgroup_subsys_state *css) 11250 { 11251 #ifdef CONFIG_CFS_BANDWIDTH 11252 { 11253 struct task_group *tg = css_tg(css); 11254 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11255 u64 throttled_usec, burst_usec; 11256 11257 throttled_usec = cfs_b->throttled_time; 11258 do_div(throttled_usec, NSEC_PER_USEC); 11259 burst_usec = cfs_b->burst_time; 11260 do_div(burst_usec, NSEC_PER_USEC); 11261 11262 seq_printf(sf, "nr_periods %d\n" 11263 "nr_throttled %d\n" 11264 "throttled_usec %llu\n" 11265 "nr_bursts %d\n" 11266 "burst_usec %llu\n", 11267 cfs_b->nr_periods, cfs_b->nr_throttled, 11268 throttled_usec, cfs_b->nr_burst, burst_usec); 11269 } 11270 #endif 11271 return 0; 11272 } 11273 11274 #ifdef CONFIG_FAIR_GROUP_SCHED 11275 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11276 struct cftype *cft) 11277 { 11278 struct task_group *tg = css_tg(css); 11279 u64 weight = scale_load_down(tg->shares); 11280 11281 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11282 } 11283 11284 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11285 struct cftype *cft, u64 weight) 11286 { 11287 /* 11288 * cgroup weight knobs should use the common MIN, DFL and MAX 11289 * values which are 1, 100 and 10000 respectively. While it loses 11290 * a bit of range on both ends, it maps pretty well onto the shares 11291 * value used by scheduler and the round-trip conversions preserve 11292 * the original value over the entire range. 11293 */ 11294 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11295 return -ERANGE; 11296 11297 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11298 11299 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11300 } 11301 11302 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11303 struct cftype *cft) 11304 { 11305 unsigned long weight = scale_load_down(css_tg(css)->shares); 11306 int last_delta = INT_MAX; 11307 int prio, delta; 11308 11309 /* find the closest nice value to the current weight */ 11310 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11311 delta = abs(sched_prio_to_weight[prio] - weight); 11312 if (delta >= last_delta) 11313 break; 11314 last_delta = delta; 11315 } 11316 11317 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11318 } 11319 11320 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11321 struct cftype *cft, s64 nice) 11322 { 11323 unsigned long weight; 11324 int idx; 11325 11326 if (nice < MIN_NICE || nice > MAX_NICE) 11327 return -ERANGE; 11328 11329 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11330 idx = array_index_nospec(idx, 40); 11331 weight = sched_prio_to_weight[idx]; 11332 11333 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11334 } 11335 #endif 11336 11337 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11338 long period, long quota) 11339 { 11340 if (quota < 0) 11341 seq_puts(sf, "max"); 11342 else 11343 seq_printf(sf, "%ld", quota); 11344 11345 seq_printf(sf, " %ld\n", period); 11346 } 11347 11348 /* caller should put the current value in *@periodp before calling */ 11349 static int __maybe_unused cpu_period_quota_parse(char *buf, 11350 u64 *periodp, u64 *quotap) 11351 { 11352 char tok[21]; /* U64_MAX */ 11353 11354 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11355 return -EINVAL; 11356 11357 *periodp *= NSEC_PER_USEC; 11358 11359 if (sscanf(tok, "%llu", quotap)) 11360 *quotap *= NSEC_PER_USEC; 11361 else if (!strcmp(tok, "max")) 11362 *quotap = RUNTIME_INF; 11363 else 11364 return -EINVAL; 11365 11366 return 0; 11367 } 11368 11369 #ifdef CONFIG_CFS_BANDWIDTH 11370 static int cpu_max_show(struct seq_file *sf, void *v) 11371 { 11372 struct task_group *tg = css_tg(seq_css(sf)); 11373 11374 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11375 return 0; 11376 } 11377 11378 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11379 char *buf, size_t nbytes, loff_t off) 11380 { 11381 struct task_group *tg = css_tg(of_css(of)); 11382 u64 period = tg_get_cfs_period(tg); 11383 u64 burst = tg_get_cfs_burst(tg); 11384 u64 quota; 11385 int ret; 11386 11387 ret = cpu_period_quota_parse(buf, &period, "a); 11388 if (!ret) 11389 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11390 return ret ?: nbytes; 11391 } 11392 #endif 11393 11394 static struct cftype cpu_files[] = { 11395 #ifdef CONFIG_FAIR_GROUP_SCHED 11396 { 11397 .name = "weight", 11398 .flags = CFTYPE_NOT_ON_ROOT, 11399 .read_u64 = cpu_weight_read_u64, 11400 .write_u64 = cpu_weight_write_u64, 11401 }, 11402 { 11403 .name = "weight.nice", 11404 .flags = CFTYPE_NOT_ON_ROOT, 11405 .read_s64 = cpu_weight_nice_read_s64, 11406 .write_s64 = cpu_weight_nice_write_s64, 11407 }, 11408 { 11409 .name = "idle", 11410 .flags = CFTYPE_NOT_ON_ROOT, 11411 .read_s64 = cpu_idle_read_s64, 11412 .write_s64 = cpu_idle_write_s64, 11413 }, 11414 #endif 11415 #ifdef CONFIG_CFS_BANDWIDTH 11416 { 11417 .name = "max", 11418 .flags = CFTYPE_NOT_ON_ROOT, 11419 .seq_show = cpu_max_show, 11420 .write = cpu_max_write, 11421 }, 11422 { 11423 .name = "max.burst", 11424 .flags = CFTYPE_NOT_ON_ROOT, 11425 .read_u64 = cpu_cfs_burst_read_u64, 11426 .write_u64 = cpu_cfs_burst_write_u64, 11427 }, 11428 #endif 11429 #ifdef CONFIG_UCLAMP_TASK_GROUP 11430 { 11431 .name = "uclamp.min", 11432 .flags = CFTYPE_NOT_ON_ROOT, 11433 .seq_show = cpu_uclamp_min_show, 11434 .write = cpu_uclamp_min_write, 11435 }, 11436 { 11437 .name = "uclamp.max", 11438 .flags = CFTYPE_NOT_ON_ROOT, 11439 .seq_show = cpu_uclamp_max_show, 11440 .write = cpu_uclamp_max_write, 11441 }, 11442 #endif 11443 { } /* terminate */ 11444 }; 11445 11446 struct cgroup_subsys cpu_cgrp_subsys = { 11447 .css_alloc = cpu_cgroup_css_alloc, 11448 .css_online = cpu_cgroup_css_online, 11449 .css_released = cpu_cgroup_css_released, 11450 .css_free = cpu_cgroup_css_free, 11451 .css_extra_stat_show = cpu_extra_stat_show, 11452 #ifdef CONFIG_RT_GROUP_SCHED 11453 .can_attach = cpu_cgroup_can_attach, 11454 #endif 11455 .attach = cpu_cgroup_attach, 11456 .legacy_cftypes = cpu_legacy_files, 11457 .dfl_cftypes = cpu_files, 11458 .early_init = true, 11459 .threaded = true, 11460 }; 11461 11462 #endif /* CONFIG_CGROUP_SCHED */ 11463 11464 void dump_cpu_task(int cpu) 11465 { 11466 if (cpu == smp_processor_id() && in_hardirq()) { 11467 struct pt_regs *regs; 11468 11469 regs = get_irq_regs(); 11470 if (regs) { 11471 show_regs(regs); 11472 return; 11473 } 11474 } 11475 11476 if (trigger_single_cpu_backtrace(cpu)) 11477 return; 11478 11479 pr_info("Task dump for CPU %d:\n", cpu); 11480 sched_show_task(cpu_curr(cpu)); 11481 } 11482 11483 /* 11484 * Nice levels are multiplicative, with a gentle 10% change for every 11485 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11486 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11487 * that remained on nice 0. 11488 * 11489 * The "10% effect" is relative and cumulative: from _any_ nice level, 11490 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11491 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11492 * If a task goes up by ~10% and another task goes down by ~10% then 11493 * the relative distance between them is ~25%.) 11494 */ 11495 const int sched_prio_to_weight[40] = { 11496 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11497 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11498 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11499 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11500 /* 0 */ 1024, 820, 655, 526, 423, 11501 /* 5 */ 335, 272, 215, 172, 137, 11502 /* 10 */ 110, 87, 70, 56, 45, 11503 /* 15 */ 36, 29, 23, 18, 15, 11504 }; 11505 11506 /* 11507 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11508 * 11509 * In cases where the weight does not change often, we can use the 11510 * precalculated inverse to speed up arithmetics by turning divisions 11511 * into multiplications: 11512 */ 11513 const u32 sched_prio_to_wmult[40] = { 11514 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11515 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11516 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11517 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11518 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11519 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11520 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11521 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11522 }; 11523 11524 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11525 { 11526 trace_sched_update_nr_running_tp(rq, count); 11527 } 11528 11529 #ifdef CONFIG_SCHED_MM_CID 11530 11531 /* 11532 * @cid_lock: Guarantee forward-progress of cid allocation. 11533 * 11534 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 11535 * is only used when contention is detected by the lock-free allocation so 11536 * forward progress can be guaranteed. 11537 */ 11538 DEFINE_RAW_SPINLOCK(cid_lock); 11539 11540 /* 11541 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 11542 * 11543 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 11544 * detected, it is set to 1 to ensure that all newly coming allocations are 11545 * serialized by @cid_lock until the allocation which detected contention 11546 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 11547 * of a cid allocation. 11548 */ 11549 int use_cid_lock; 11550 11551 /* 11552 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 11553 * concurrently with respect to the execution of the source runqueue context 11554 * switch. 11555 * 11556 * There is one basic properties we want to guarantee here: 11557 * 11558 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 11559 * used by a task. That would lead to concurrent allocation of the cid and 11560 * userspace corruption. 11561 * 11562 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 11563 * that a pair of loads observe at least one of a pair of stores, which can be 11564 * shown as: 11565 * 11566 * X = Y = 0 11567 * 11568 * w[X]=1 w[Y]=1 11569 * MB MB 11570 * r[Y]=y r[X]=x 11571 * 11572 * Which guarantees that x==0 && y==0 is impossible. But rather than using 11573 * values 0 and 1, this algorithm cares about specific state transitions of the 11574 * runqueue current task (as updated by the scheduler context switch), and the 11575 * per-mm/cpu cid value. 11576 * 11577 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 11578 * task->mm != mm for the rest of the discussion. There are two scheduler state 11579 * transitions on context switch we care about: 11580 * 11581 * (TSA) Store to rq->curr with transition from (N) to (Y) 11582 * 11583 * (TSB) Store to rq->curr with transition from (Y) to (N) 11584 * 11585 * On the remote-clear side, there is one transition we care about: 11586 * 11587 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 11588 * 11589 * There is also a transition to UNSET state which can be performed from all 11590 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 11591 * guarantees that only a single thread will succeed: 11592 * 11593 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 11594 * 11595 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 11596 * when a thread is actively using the cid (property (1)). 11597 * 11598 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 11599 * 11600 * Scenario A) (TSA)+(TMA) (from next task perspective) 11601 * 11602 * CPU0 CPU1 11603 * 11604 * Context switch CS-1 Remote-clear 11605 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 11606 * (implied barrier after cmpxchg) 11607 * - switch_mm_cid() 11608 * - memory barrier (see switch_mm_cid() 11609 * comment explaining how this barrier 11610 * is combined with other scheduler 11611 * barriers) 11612 * - mm_cid_get (next) 11613 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 11614 * 11615 * This Dekker ensures that either task (Y) is observed by the 11616 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 11617 * observed. 11618 * 11619 * If task (Y) store is observed by rcu_dereference(), it means that there is 11620 * still an active task on the cpu. Remote-clear will therefore not transition 11621 * to UNSET, which fulfills property (1). 11622 * 11623 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 11624 * it will move its state to UNSET, which clears the percpu cid perhaps 11625 * uselessly (which is not an issue for correctness). Because task (Y) is not 11626 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 11627 * state to UNSET is done with a cmpxchg expecting that the old state has the 11628 * LAZY flag set, only one thread will successfully UNSET. 11629 * 11630 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 11631 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 11632 * CPU1 will observe task (Y) and do nothing more, which is fine. 11633 * 11634 * What we are effectively preventing with this Dekker is a scenario where 11635 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 11636 * because this would UNSET a cid which is actively used. 11637 */ 11638 11639 void sched_mm_cid_migrate_from(struct task_struct *t) 11640 { 11641 t->migrate_from_cpu = task_cpu(t); 11642 } 11643 11644 static 11645 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 11646 struct task_struct *t, 11647 struct mm_cid *src_pcpu_cid) 11648 { 11649 struct mm_struct *mm = t->mm; 11650 struct task_struct *src_task; 11651 int src_cid, last_mm_cid; 11652 11653 if (!mm) 11654 return -1; 11655 11656 last_mm_cid = t->last_mm_cid; 11657 /* 11658 * If the migrated task has no last cid, or if the current 11659 * task on src rq uses the cid, it means the source cid does not need 11660 * to be moved to the destination cpu. 11661 */ 11662 if (last_mm_cid == -1) 11663 return -1; 11664 src_cid = READ_ONCE(src_pcpu_cid->cid); 11665 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 11666 return -1; 11667 11668 /* 11669 * If we observe an active task using the mm on this rq, it means we 11670 * are not the last task to be migrated from this cpu for this mm, so 11671 * there is no need to move src_cid to the destination cpu. 11672 */ 11673 rcu_read_lock(); 11674 src_task = rcu_dereference(src_rq->curr); 11675 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11676 rcu_read_unlock(); 11677 t->last_mm_cid = -1; 11678 return -1; 11679 } 11680 rcu_read_unlock(); 11681 11682 return src_cid; 11683 } 11684 11685 static 11686 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 11687 struct task_struct *t, 11688 struct mm_cid *src_pcpu_cid, 11689 int src_cid) 11690 { 11691 struct task_struct *src_task; 11692 struct mm_struct *mm = t->mm; 11693 int lazy_cid; 11694 11695 if (src_cid == -1) 11696 return -1; 11697 11698 /* 11699 * Attempt to clear the source cpu cid to move it to the destination 11700 * cpu. 11701 */ 11702 lazy_cid = mm_cid_set_lazy_put(src_cid); 11703 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 11704 return -1; 11705 11706 /* 11707 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11708 * rq->curr->mm matches the scheduler barrier in context_switch() 11709 * between store to rq->curr and load of prev and next task's 11710 * per-mm/cpu cid. 11711 * 11712 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11713 * rq->curr->mm_cid_active matches the barrier in 11714 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11715 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11716 * load of per-mm/cpu cid. 11717 */ 11718 11719 /* 11720 * If we observe an active task using the mm on this rq after setting 11721 * the lazy-put flag, this task will be responsible for transitioning 11722 * from lazy-put flag set to MM_CID_UNSET. 11723 */ 11724 rcu_read_lock(); 11725 src_task = rcu_dereference(src_rq->curr); 11726 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11727 rcu_read_unlock(); 11728 /* 11729 * We observed an active task for this mm, there is therefore 11730 * no point in moving this cid to the destination cpu. 11731 */ 11732 t->last_mm_cid = -1; 11733 return -1; 11734 } 11735 rcu_read_unlock(); 11736 11737 /* 11738 * The src_cid is unused, so it can be unset. 11739 */ 11740 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11741 return -1; 11742 return src_cid; 11743 } 11744 11745 /* 11746 * Migration to dst cpu. Called with dst_rq lock held. 11747 * Interrupts are disabled, which keeps the window of cid ownership without the 11748 * source rq lock held small. 11749 */ 11750 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 11751 { 11752 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 11753 struct mm_struct *mm = t->mm; 11754 int src_cid, dst_cid, src_cpu; 11755 struct rq *src_rq; 11756 11757 lockdep_assert_rq_held(dst_rq); 11758 11759 if (!mm) 11760 return; 11761 src_cpu = t->migrate_from_cpu; 11762 if (src_cpu == -1) { 11763 t->last_mm_cid = -1; 11764 return; 11765 } 11766 /* 11767 * Move the src cid if the dst cid is unset. This keeps id 11768 * allocation closest to 0 in cases where few threads migrate around 11769 * many cpus. 11770 * 11771 * If destination cid is already set, we may have to just clear 11772 * the src cid to ensure compactness in frequent migrations 11773 * scenarios. 11774 * 11775 * It is not useful to clear the src cid when the number of threads is 11776 * greater or equal to the number of allowed cpus, because user-space 11777 * can expect that the number of allowed cids can reach the number of 11778 * allowed cpus. 11779 */ 11780 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 11781 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 11782 if (!mm_cid_is_unset(dst_cid) && 11783 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 11784 return; 11785 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 11786 src_rq = cpu_rq(src_cpu); 11787 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 11788 if (src_cid == -1) 11789 return; 11790 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 11791 src_cid); 11792 if (src_cid == -1) 11793 return; 11794 if (!mm_cid_is_unset(dst_cid)) { 11795 __mm_cid_put(mm, src_cid); 11796 return; 11797 } 11798 /* Move src_cid to dst cpu. */ 11799 mm_cid_snapshot_time(dst_rq, mm); 11800 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 11801 } 11802 11803 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 11804 int cpu) 11805 { 11806 struct rq *rq = cpu_rq(cpu); 11807 struct task_struct *t; 11808 unsigned long flags; 11809 int cid, lazy_cid; 11810 11811 cid = READ_ONCE(pcpu_cid->cid); 11812 if (!mm_cid_is_valid(cid)) 11813 return; 11814 11815 /* 11816 * Clear the cpu cid if it is set to keep cid allocation compact. If 11817 * there happens to be other tasks left on the source cpu using this 11818 * mm, the next task using this mm will reallocate its cid on context 11819 * switch. 11820 */ 11821 lazy_cid = mm_cid_set_lazy_put(cid); 11822 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 11823 return; 11824 11825 /* 11826 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11827 * rq->curr->mm matches the scheduler barrier in context_switch() 11828 * between store to rq->curr and load of prev and next task's 11829 * per-mm/cpu cid. 11830 * 11831 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11832 * rq->curr->mm_cid_active matches the barrier in 11833 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11834 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11835 * load of per-mm/cpu cid. 11836 */ 11837 11838 /* 11839 * If we observe an active task using the mm on this rq after setting 11840 * the lazy-put flag, that task will be responsible for transitioning 11841 * from lazy-put flag set to MM_CID_UNSET. 11842 */ 11843 rcu_read_lock(); 11844 t = rcu_dereference(rq->curr); 11845 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) { 11846 rcu_read_unlock(); 11847 return; 11848 } 11849 rcu_read_unlock(); 11850 11851 /* 11852 * The cid is unused, so it can be unset. 11853 * Disable interrupts to keep the window of cid ownership without rq 11854 * lock small. 11855 */ 11856 local_irq_save(flags); 11857 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11858 __mm_cid_put(mm, cid); 11859 local_irq_restore(flags); 11860 } 11861 11862 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 11863 { 11864 struct rq *rq = cpu_rq(cpu); 11865 struct mm_cid *pcpu_cid; 11866 struct task_struct *curr; 11867 u64 rq_clock; 11868 11869 /* 11870 * rq->clock load is racy on 32-bit but one spurious clear once in a 11871 * while is irrelevant. 11872 */ 11873 rq_clock = READ_ONCE(rq->clock); 11874 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11875 11876 /* 11877 * In order to take care of infrequently scheduled tasks, bump the time 11878 * snapshot associated with this cid if an active task using the mm is 11879 * observed on this rq. 11880 */ 11881 rcu_read_lock(); 11882 curr = rcu_dereference(rq->curr); 11883 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 11884 WRITE_ONCE(pcpu_cid->time, rq_clock); 11885 rcu_read_unlock(); 11886 return; 11887 } 11888 rcu_read_unlock(); 11889 11890 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 11891 return; 11892 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11893 } 11894 11895 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 11896 int weight) 11897 { 11898 struct mm_cid *pcpu_cid; 11899 int cid; 11900 11901 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11902 cid = READ_ONCE(pcpu_cid->cid); 11903 if (!mm_cid_is_valid(cid) || cid < weight) 11904 return; 11905 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11906 } 11907 11908 static void task_mm_cid_work(struct callback_head *work) 11909 { 11910 unsigned long now = jiffies, old_scan, next_scan; 11911 struct task_struct *t = current; 11912 struct cpumask *cidmask; 11913 struct mm_struct *mm; 11914 int weight, cpu; 11915 11916 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 11917 11918 work->next = work; /* Prevent double-add */ 11919 if (t->flags & PF_EXITING) 11920 return; 11921 mm = t->mm; 11922 if (!mm) 11923 return; 11924 old_scan = READ_ONCE(mm->mm_cid_next_scan); 11925 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 11926 if (!old_scan) { 11927 unsigned long res; 11928 11929 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 11930 if (res != old_scan) 11931 old_scan = res; 11932 else 11933 old_scan = next_scan; 11934 } 11935 if (time_before(now, old_scan)) 11936 return; 11937 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 11938 return; 11939 cidmask = mm_cidmask(mm); 11940 /* Clear cids that were not recently used. */ 11941 for_each_possible_cpu(cpu) 11942 sched_mm_cid_remote_clear_old(mm, cpu); 11943 weight = cpumask_weight(cidmask); 11944 /* 11945 * Clear cids that are greater or equal to the cidmask weight to 11946 * recompact it. 11947 */ 11948 for_each_possible_cpu(cpu) 11949 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 11950 } 11951 11952 void init_sched_mm_cid(struct task_struct *t) 11953 { 11954 struct mm_struct *mm = t->mm; 11955 int mm_users = 0; 11956 11957 if (mm) { 11958 mm_users = atomic_read(&mm->mm_users); 11959 if (mm_users == 1) 11960 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 11961 } 11962 t->cid_work.next = &t->cid_work; /* Protect against double add */ 11963 init_task_work(&t->cid_work, task_mm_cid_work); 11964 } 11965 11966 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 11967 { 11968 struct callback_head *work = &curr->cid_work; 11969 unsigned long now = jiffies; 11970 11971 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 11972 work->next != work) 11973 return; 11974 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 11975 return; 11976 task_work_add(curr, work, TWA_RESUME); 11977 } 11978 11979 void sched_mm_cid_exit_signals(struct task_struct *t) 11980 { 11981 struct mm_struct *mm = t->mm; 11982 struct rq_flags rf; 11983 struct rq *rq; 11984 11985 if (!mm) 11986 return; 11987 11988 preempt_disable(); 11989 rq = this_rq(); 11990 rq_lock_irqsave(rq, &rf); 11991 preempt_enable_no_resched(); /* holding spinlock */ 11992 WRITE_ONCE(t->mm_cid_active, 0); 11993 /* 11994 * Store t->mm_cid_active before loading per-mm/cpu cid. 11995 * Matches barrier in sched_mm_cid_remote_clear_old(). 11996 */ 11997 smp_mb(); 11998 mm_cid_put(mm); 11999 t->last_mm_cid = t->mm_cid = -1; 12000 rq_unlock_irqrestore(rq, &rf); 12001 } 12002 12003 void sched_mm_cid_before_execve(struct task_struct *t) 12004 { 12005 struct mm_struct *mm = t->mm; 12006 struct rq_flags rf; 12007 struct rq *rq; 12008 12009 if (!mm) 12010 return; 12011 12012 preempt_disable(); 12013 rq = this_rq(); 12014 rq_lock_irqsave(rq, &rf); 12015 preempt_enable_no_resched(); /* holding spinlock */ 12016 WRITE_ONCE(t->mm_cid_active, 0); 12017 /* 12018 * Store t->mm_cid_active before loading per-mm/cpu cid. 12019 * Matches barrier in sched_mm_cid_remote_clear_old(). 12020 */ 12021 smp_mb(); 12022 mm_cid_put(mm); 12023 t->last_mm_cid = t->mm_cid = -1; 12024 rq_unlock_irqrestore(rq, &rf); 12025 } 12026 12027 void sched_mm_cid_after_execve(struct task_struct *t) 12028 { 12029 struct mm_struct *mm = t->mm; 12030 struct rq_flags rf; 12031 struct rq *rq; 12032 12033 if (!mm) 12034 return; 12035 12036 preempt_disable(); 12037 rq = this_rq(); 12038 rq_lock_irqsave(rq, &rf); 12039 preempt_enable_no_resched(); /* holding spinlock */ 12040 WRITE_ONCE(t->mm_cid_active, 1); 12041 /* 12042 * Store t->mm_cid_active before loading per-mm/cpu cid. 12043 * Matches barrier in sched_mm_cid_remote_clear_old(). 12044 */ 12045 smp_mb(); 12046 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 12047 rq_unlock_irqrestore(rq, &rf); 12048 rseq_set_notify_resume(t); 12049 } 12050 12051 void sched_mm_cid_fork(struct task_struct *t) 12052 { 12053 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 12054 t->mm_cid_active = 1; 12055 } 12056 #endif 12057