xref: /openbmc/linux/kernel/sched/core.c (revision adb57164)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq())
296 		__hrtick_restart(rq);
297 	else
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 }
300 
301 #else
302 /*
303  * Called to set the hrtick timer state.
304  *
305  * called with rq->lock held and irqs disabled
306  */
307 void hrtick_start(struct rq *rq, u64 delay)
308 {
309 	/*
310 	 * Don't schedule slices shorter than 10000ns, that just
311 	 * doesn't make sense. Rely on vruntime for fairness.
312 	 */
313 	delay = max_t(u64, delay, 10000LL);
314 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 		      HRTIMER_MODE_REL_PINNED_HARD);
316 }
317 #endif /* CONFIG_SMP */
318 
319 static void hrtick_rq_init(struct rq *rq)
320 {
321 #ifdef CONFIG_SMP
322 	rq->hrtick_csd.flags = 0;
323 	rq->hrtick_csd.func = __hrtick_start;
324 	rq->hrtick_csd.info = rq;
325 #endif
326 
327 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 	rq->hrtick_timer.function = hrtick;
329 }
330 #else	/* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
332 {
333 }
334 
335 static inline void hrtick_rq_init(struct rq *rq)
336 {
337 }
338 #endif	/* CONFIG_SCHED_HRTICK */
339 
340 /*
341  * cmpxchg based fetch_or, macro so it works for different integer types
342  */
343 #define fetch_or(ptr, mask)						\
344 	({								\
345 		typeof(ptr) _ptr = (ptr);				\
346 		typeof(mask) _mask = (mask);				\
347 		typeof(*_ptr) _old, _val = *_ptr;			\
348 									\
349 		for (;;) {						\
350 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
351 			if (_old == _val)				\
352 				break;					\
353 			_val = _old;					\
354 		}							\
355 	_old;								\
356 })
357 
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
359 /*
360  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361  * this avoids any races wrt polling state changes and thereby avoids
362  * spurious IPIs.
363  */
364 static bool set_nr_and_not_polling(struct task_struct *p)
365 {
366 	struct thread_info *ti = task_thread_info(p);
367 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368 }
369 
370 /*
371  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372  *
373  * If this returns true, then the idle task promises to call
374  * sched_ttwu_pending() and reschedule soon.
375  */
376 static bool set_nr_if_polling(struct task_struct *p)
377 {
378 	struct thread_info *ti = task_thread_info(p);
379 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
380 
381 	for (;;) {
382 		if (!(val & _TIF_POLLING_NRFLAG))
383 			return false;
384 		if (val & _TIF_NEED_RESCHED)
385 			return true;
386 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 		if (old == val)
388 			break;
389 		val = old;
390 	}
391 	return true;
392 }
393 
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
396 {
397 	set_tsk_need_resched(p);
398 	return true;
399 }
400 
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 	return false;
405 }
406 #endif
407 #endif
408 
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
410 {
411 	struct wake_q_node *node = &task->wake_q;
412 
413 	/*
414 	 * Atomically grab the task, if ->wake_q is !nil already it means
415 	 * its already queued (either by us or someone else) and will get the
416 	 * wakeup due to that.
417 	 *
418 	 * In order to ensure that a pending wakeup will observe our pending
419 	 * state, even in the failed case, an explicit smp_mb() must be used.
420 	 */
421 	smp_mb__before_atomic();
422 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 		return false;
424 
425 	/*
426 	 * The head is context local, there can be no concurrency.
427 	 */
428 	*head->lastp = node;
429 	head->lastp = &node->next;
430 	return true;
431 }
432 
433 /**
434  * wake_q_add() - queue a wakeup for 'later' waking.
435  * @head: the wake_q_head to add @task to
436  * @task: the task to queue for 'later' wakeup
437  *
438  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440  * instantly.
441  *
442  * This function must be used as-if it were wake_up_process(); IOW the task
443  * must be ready to be woken at this location.
444  */
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446 {
447 	if (__wake_q_add(head, task))
448 		get_task_struct(task);
449 }
450 
451 /**
452  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453  * @head: the wake_q_head to add @task to
454  * @task: the task to queue for 'later' wakeup
455  *
456  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458  * instantly.
459  *
460  * This function must be used as-if it were wake_up_process(); IOW the task
461  * must be ready to be woken at this location.
462  *
463  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464  * that already hold reference to @task can call the 'safe' version and trust
465  * wake_q to do the right thing depending whether or not the @task is already
466  * queued for wakeup.
467  */
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469 {
470 	if (!__wake_q_add(head, task))
471 		put_task_struct(task);
472 }
473 
474 void wake_up_q(struct wake_q_head *head)
475 {
476 	struct wake_q_node *node = head->first;
477 
478 	while (node != WAKE_Q_TAIL) {
479 		struct task_struct *task;
480 
481 		task = container_of(node, struct task_struct, wake_q);
482 		BUG_ON(!task);
483 		/* Task can safely be re-inserted now: */
484 		node = node->next;
485 		task->wake_q.next = NULL;
486 
487 		/*
488 		 * wake_up_process() executes a full barrier, which pairs with
489 		 * the queueing in wake_q_add() so as not to miss wakeups.
490 		 */
491 		wake_up_process(task);
492 		put_task_struct(task);
493 	}
494 }
495 
496 /*
497  * resched_curr - mark rq's current task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 void resched_curr(struct rq *rq)
504 {
505 	struct task_struct *curr = rq->curr;
506 	int cpu;
507 
508 	lockdep_assert_held(&rq->lock);
509 
510 	if (test_tsk_need_resched(curr))
511 		return;
512 
513 	cpu = cpu_of(rq);
514 
515 	if (cpu == smp_processor_id()) {
516 		set_tsk_need_resched(curr);
517 		set_preempt_need_resched();
518 		return;
519 	}
520 
521 	if (set_nr_and_not_polling(curr))
522 		smp_send_reschedule(cpu);
523 	else
524 		trace_sched_wake_idle_without_ipi(cpu);
525 }
526 
527 void resched_cpu(int cpu)
528 {
529 	struct rq *rq = cpu_rq(cpu);
530 	unsigned long flags;
531 
532 	raw_spin_lock_irqsave(&rq->lock, flags);
533 	if (cpu_online(cpu) || cpu == smp_processor_id())
534 		resched_curr(rq);
535 	raw_spin_unlock_irqrestore(&rq->lock, flags);
536 }
537 
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
540 /*
541  * In the semi idle case, use the nearest busy CPU for migrating timers
542  * from an idle CPU.  This is good for power-savings.
543  *
544  * We don't do similar optimization for completely idle system, as
545  * selecting an idle CPU will add more delays to the timers than intended
546  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
547  */
548 int get_nohz_timer_target(void)
549 {
550 	int i, cpu = smp_processor_id(), default_cpu = -1;
551 	struct sched_domain *sd;
552 
553 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 		if (!idle_cpu(cpu))
555 			return cpu;
556 		default_cpu = cpu;
557 	}
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu_and(i, sched_domain_span(sd),
562 			housekeeping_cpumask(HK_FLAG_TIMER)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (default_cpu == -1)
574 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 	cpu = default_cpu;
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	if (set_nr_and_not_polling(rq->idle))
599 		smp_send_reschedule(cpu);
600 	else
601 		trace_sched_wake_idle_without_ipi(cpu);
602 }
603 
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 	/*
607 	 * We just need the target to call irq_exit() and re-evaluate
608 	 * the next tick. The nohz full kick at least implies that.
609 	 * If needed we can still optimize that later with an
610 	 * empty IRQ.
611 	 */
612 	if (cpu_is_offline(cpu))
613 		return true;  /* Don't try to wake offline CPUs. */
614 	if (tick_nohz_full_cpu(cpu)) {
615 		if (cpu != smp_processor_id() ||
616 		    tick_nohz_tick_stopped())
617 			tick_nohz_full_kick_cpu(cpu);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 /*
625  * Wake up the specified CPU.  If the CPU is going offline, it is the
626  * caller's responsibility to deal with the lost wakeup, for example,
627  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628  */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 	int fifo_nr_running;
666 
667 	/* Deadline tasks, even if single, need the tick */
668 	if (rq->dl.dl_nr_running)
669 		return false;
670 
671 	/*
672 	 * If there are more than one RR tasks, we need the tick to effect the
673 	 * actual RR behaviour.
674 	 */
675 	if (rq->rt.rr_nr_running) {
676 		if (rq->rt.rr_nr_running == 1)
677 			return true;
678 		else
679 			return false;
680 	}
681 
682 	/*
683 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 	 * forced preemption between FIFO tasks.
685 	 */
686 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 	if (fifo_nr_running)
688 		return true;
689 
690 	/*
691 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 	 * if there's more than one we need the tick for involuntary
693 	 * preemption.
694 	 */
695 	if (rq->nr_running > 1)
696 		return false;
697 
698 	return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702 
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706  * Iterate task_group tree rooted at *from, calling @down when first entering a
707  * node and @up when leaving it for the final time.
708  *
709  * Caller must hold rcu_lock or sufficient equivalent.
710  */
711 int walk_tg_tree_from(struct task_group *from,
712 			     tg_visitor down, tg_visitor up, void *data)
713 {
714 	struct task_group *parent, *child;
715 	int ret;
716 
717 	parent = from;
718 
719 down:
720 	ret = (*down)(parent, data);
721 	if (ret)
722 		goto out;
723 	list_for_each_entry_rcu(child, &parent->children, siblings) {
724 		parent = child;
725 		goto down;
726 
727 up:
728 		continue;
729 	}
730 	ret = (*up)(parent, data);
731 	if (ret || parent == from)
732 		goto out;
733 
734 	child = parent;
735 	parent = parent->parent;
736 	if (parent)
737 		goto up;
738 out:
739 	return ret;
740 }
741 
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 	int prio = p->static_prio - MAX_RT_PRIO;
751 	struct load_weight *load = &p->se.load;
752 
753 	/*
754 	 * SCHED_IDLE tasks get minimal weight:
755 	 */
756 	if (task_has_idle_policy(p)) {
757 		load->weight = scale_load(WEIGHT_IDLEPRIO);
758 		load->inv_weight = WMULT_IDLEPRIO;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 	}
772 }
773 
774 #ifdef CONFIG_UCLAMP_TASK
775 /*
776  * Serializes updates of utilization clamp values
777  *
778  * The (slow-path) user-space triggers utilization clamp value updates which
779  * can require updates on (fast-path) scheduler's data structures used to
780  * support enqueue/dequeue operations.
781  * While the per-CPU rq lock protects fast-path update operations, user-space
782  * requests are serialized using a mutex to reduce the risk of conflicting
783  * updates or API abuses.
784  */
785 static DEFINE_MUTEX(uclamp_mutex);
786 
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789 
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792 
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
795 
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798 
799 #define for_each_clamp_id(clamp_id) \
800 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801 
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803 {
804 	return clamp_value / UCLAMP_BUCKET_DELTA;
805 }
806 
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808 {
809 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810 }
811 
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
813 {
814 	if (clamp_id == UCLAMP_MIN)
815 		return 0;
816 	return SCHED_CAPACITY_SCALE;
817 }
818 
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 				 unsigned int value, bool user_defined)
821 {
822 	uc_se->value = value;
823 	uc_se->bucket_id = uclamp_bucket_id(value);
824 	uc_se->user_defined = user_defined;
825 }
826 
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 		  unsigned int clamp_value)
830 {
831 	/*
832 	 * Avoid blocked utilization pushing up the frequency when we go
833 	 * idle (which drops the max-clamp) by retaining the last known
834 	 * max-clamp.
835 	 */
836 	if (clamp_id == UCLAMP_MAX) {
837 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 		return clamp_value;
839 	}
840 
841 	return uclamp_none(UCLAMP_MIN);
842 }
843 
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 				     unsigned int clamp_value)
846 {
847 	/* Reset max-clamp retention only on idle exit */
848 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 		return;
850 
851 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852 }
853 
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 				   unsigned int clamp_value)
857 {
858 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 	int bucket_id = UCLAMP_BUCKETS - 1;
860 
861 	/*
862 	 * Since both min and max clamps are max aggregated, find the
863 	 * top most bucket with tasks in.
864 	 */
865 	for ( ; bucket_id >= 0; bucket_id--) {
866 		if (!bucket[bucket_id].tasks)
867 			continue;
868 		return bucket[bucket_id].value;
869 	}
870 
871 	/* No tasks -- default clamp values */
872 	return uclamp_idle_value(rq, clamp_id, clamp_value);
873 }
874 
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
877 {
878 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 	struct uclamp_se uc_max;
881 
882 	/*
883 	 * Tasks in autogroups or root task group will be
884 	 * restricted by system defaults.
885 	 */
886 	if (task_group_is_autogroup(task_group(p)))
887 		return uc_req;
888 	if (task_group(p) == &root_task_group)
889 		return uc_req;
890 
891 	uc_max = task_group(p)->uclamp[clamp_id];
892 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 		return uc_max;
894 #endif
895 
896 	return uc_req;
897 }
898 
899 /*
900  * The effective clamp bucket index of a task depends on, by increasing
901  * priority:
902  * - the task specific clamp value, when explicitly requested from userspace
903  * - the task group effective clamp value, for tasks not either in the root
904  *   group or in an autogroup
905  * - the system default clamp value, defined by the sysadmin
906  */
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
909 {
910 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 	struct uclamp_se uc_max = uclamp_default[clamp_id];
912 
913 	/* System default restrictions always apply */
914 	if (unlikely(uc_req.value > uc_max.value))
915 		return uc_max;
916 
917 	return uc_req;
918 }
919 
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
921 {
922 	struct uclamp_se uc_eff;
923 
924 	/* Task currently refcounted: use back-annotated (effective) value */
925 	if (p->uclamp[clamp_id].active)
926 		return (unsigned long)p->uclamp[clamp_id].value;
927 
928 	uc_eff = uclamp_eff_get(p, clamp_id);
929 
930 	return (unsigned long)uc_eff.value;
931 }
932 
933 /*
934  * When a task is enqueued on a rq, the clamp bucket currently defined by the
935  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936  * updates the rq's clamp value if required.
937  *
938  * Tasks can have a task-specific value requested from user-space, track
939  * within each bucket the maximum value for tasks refcounted in it.
940  * This "local max aggregation" allows to track the exact "requested" value
941  * for each bucket when all its RUNNABLE tasks require the same clamp.
942  */
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 				    enum uclamp_id clamp_id)
945 {
946 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 	struct uclamp_bucket *bucket;
949 
950 	lockdep_assert_held(&rq->lock);
951 
952 	/* Update task effective clamp */
953 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	bucket->tasks++;
957 	uc_se->active = true;
958 
959 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
960 
961 	/*
962 	 * Local max aggregation: rq buckets always track the max
963 	 * "requested" clamp value of its RUNNABLE tasks.
964 	 */
965 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 		bucket->value = uc_se->value;
967 
968 	if (uc_se->value > READ_ONCE(uc_rq->value))
969 		WRITE_ONCE(uc_rq->value, uc_se->value);
970 }
971 
972 /*
973  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974  * is released. If this is the last task reference counting the rq's max
975  * active clamp value, then the rq's clamp value is updated.
976  *
977  * Both refcounted tasks and rq's cached clamp values are expected to be
978  * always valid. If it's detected they are not, as defensive programming,
979  * enforce the expected state and warn.
980  */
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 				    enum uclamp_id clamp_id)
983 {
984 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 	struct uclamp_bucket *bucket;
987 	unsigned int bkt_clamp;
988 	unsigned int rq_clamp;
989 
990 	lockdep_assert_held(&rq->lock);
991 
992 	bucket = &uc_rq->bucket[uc_se->bucket_id];
993 	SCHED_WARN_ON(!bucket->tasks);
994 	if (likely(bucket->tasks))
995 		bucket->tasks--;
996 	uc_se->active = false;
997 
998 	/*
999 	 * Keep "local max aggregation" simple and accept to (possibly)
1000 	 * overboost some RUNNABLE tasks in the same bucket.
1001 	 * The rq clamp bucket value is reset to its base value whenever
1002 	 * there are no more RUNNABLE tasks refcounting it.
1003 	 */
1004 	if (likely(bucket->tasks))
1005 		return;
1006 
1007 	rq_clamp = READ_ONCE(uc_rq->value);
1008 	/*
1009 	 * Defensive programming: this should never happen. If it happens,
1010 	 * e.g. due to future modification, warn and fixup the expected value.
1011 	 */
1012 	SCHED_WARN_ON(bucket->value > rq_clamp);
1013 	if (bucket->value >= rq_clamp) {
1014 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 	}
1017 }
1018 
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020 {
1021 	enum uclamp_id clamp_id;
1022 
1023 	if (unlikely(!p->sched_class->uclamp_enabled))
1024 		return;
1025 
1026 	for_each_clamp_id(clamp_id)
1027 		uclamp_rq_inc_id(rq, p, clamp_id);
1028 
1029 	/* Reset clamp idle holding when there is one RUNNABLE task */
1030 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1032 }
1033 
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035 {
1036 	enum uclamp_id clamp_id;
1037 
1038 	if (unlikely(!p->sched_class->uclamp_enabled))
1039 		return;
1040 
1041 	for_each_clamp_id(clamp_id)
1042 		uclamp_rq_dec_id(rq, p, clamp_id);
1043 }
1044 
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1047 {
1048 	struct rq_flags rf;
1049 	struct rq *rq;
1050 
1051 	/*
1052 	 * Lock the task and the rq where the task is (or was) queued.
1053 	 *
1054 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 	 * price to pay to safely serialize util_{min,max} updates with
1056 	 * enqueues, dequeues and migration operations.
1057 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 	 */
1059 	rq = task_rq_lock(p, &rf);
1060 
1061 	/*
1062 	 * Setting the clamp bucket is serialized by task_rq_lock().
1063 	 * If the task is not yet RUNNABLE and its task_struct is not
1064 	 * affecting a valid clamp bucket, the next time it's enqueued,
1065 	 * it will already see the updated clamp bucket value.
1066 	 */
1067 	if (p->uclamp[clamp_id].active) {
1068 		uclamp_rq_dec_id(rq, p, clamp_id);
1069 		uclamp_rq_inc_id(rq, p, clamp_id);
1070 	}
1071 
1072 	task_rq_unlock(rq, p, &rf);
1073 }
1074 
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 			   unsigned int clamps)
1079 {
1080 	enum uclamp_id clamp_id;
1081 	struct css_task_iter it;
1082 	struct task_struct *p;
1083 
1084 	css_task_iter_start(css, 0, &it);
1085 	while ((p = css_task_iter_next(&it))) {
1086 		for_each_clamp_id(clamp_id) {
1087 			if ((0x1 << clamp_id) & clamps)
1088 				uclamp_update_active(p, clamp_id);
1089 		}
1090 	}
1091 	css_task_iter_end(&it);
1092 }
1093 
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1096 {
1097 	struct task_group *tg = &root_task_group;
1098 
1099 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 		      sysctl_sched_uclamp_util_min, false);
1101 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 		      sysctl_sched_uclamp_util_max, false);
1103 
1104 	rcu_read_lock();
1105 	cpu_util_update_eff(&root_task_group.css);
1106 	rcu_read_unlock();
1107 }
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1111 
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 				void __user *buffer, size_t *lenp,
1114 				loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		uclamp_se_set(&p->uclamp_req[clamp_id],
1236 			      uclamp_none(clamp_id), false);
1237 	}
1238 }
1239 
1240 static void __init init_uclamp(void)
1241 {
1242 	struct uclamp_se uc_max = {};
1243 	enum uclamp_id clamp_id;
1244 	int cpu;
1245 
1246 	mutex_init(&uclamp_mutex);
1247 
1248 	for_each_possible_cpu(cpu) {
1249 		memset(&cpu_rq(cpu)->uclamp, 0,
1250 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 		cpu_rq(cpu)->uclamp_flags = 0;
1252 	}
1253 
1254 	for_each_clamp_id(clamp_id) {
1255 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 			      uclamp_none(clamp_id), false);
1257 	}
1258 
1259 	/* System defaults allow max clamp values for both indexes */
1260 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 		root_task_group.uclamp_req[clamp_id] = uc_max;
1265 		root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 	}
1268 }
1269 
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 				  const struct sched_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 				  const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283 
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 	if (!(flags & ENQUEUE_NOCLOCK))
1287 		update_rq_clock(rq);
1288 
1289 	if (!(flags & ENQUEUE_RESTORE)) {
1290 		sched_info_queued(rq, p);
1291 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 	}
1293 
1294 	uclamp_rq_inc(rq, p);
1295 	p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297 
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 	if (!(flags & DEQUEUE_NOCLOCK))
1301 		update_rq_clock(rq);
1302 
1303 	if (!(flags & DEQUEUE_SAVE)) {
1304 		sched_info_dequeued(rq, p);
1305 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 	}
1307 
1308 	uclamp_rq_dec(rq, p);
1309 	p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311 
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 	if (task_contributes_to_load(p))
1315 		rq->nr_uninterruptible--;
1316 
1317 	enqueue_task(rq, p, flags);
1318 
1319 	p->on_rq = TASK_ON_RQ_QUEUED;
1320 }
1321 
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325 
1326 	if (task_contributes_to_load(p))
1327 		rq->nr_uninterruptible++;
1328 
1329 	dequeue_task(rq, p, flags);
1330 }
1331 
1332 /*
1333  * __normal_prio - return the priority that is based on the static prio
1334  */
1335 static inline int __normal_prio(struct task_struct *p)
1336 {
1337 	return p->static_prio;
1338 }
1339 
1340 /*
1341  * Calculate the expected normal priority: i.e. priority
1342  * without taking RT-inheritance into account. Might be
1343  * boosted by interactivity modifiers. Changes upon fork,
1344  * setprio syscalls, and whenever the interactivity
1345  * estimator recalculates.
1346  */
1347 static inline int normal_prio(struct task_struct *p)
1348 {
1349 	int prio;
1350 
1351 	if (task_has_dl_policy(p))
1352 		prio = MAX_DL_PRIO-1;
1353 	else if (task_has_rt_policy(p))
1354 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 	else
1356 		prio = __normal_prio(p);
1357 	return prio;
1358 }
1359 
1360 /*
1361  * Calculate the current priority, i.e. the priority
1362  * taken into account by the scheduler. This value might
1363  * be boosted by RT tasks, or might be boosted by
1364  * interactivity modifiers. Will be RT if the task got
1365  * RT-boosted. If not then it returns p->normal_prio.
1366  */
1367 static int effective_prio(struct task_struct *p)
1368 {
1369 	p->normal_prio = normal_prio(p);
1370 	/*
1371 	 * If we are RT tasks or we were boosted to RT priority,
1372 	 * keep the priority unchanged. Otherwise, update priority
1373 	 * to the normal priority:
1374 	 */
1375 	if (!rt_prio(p->prio))
1376 		return p->normal_prio;
1377 	return p->prio;
1378 }
1379 
1380 /**
1381  * task_curr - is this task currently executing on a CPU?
1382  * @p: the task in question.
1383  *
1384  * Return: 1 if the task is currently executing. 0 otherwise.
1385  */
1386 inline int task_curr(const struct task_struct *p)
1387 {
1388 	return cpu_curr(task_cpu(p)) == p;
1389 }
1390 
1391 /*
1392  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393  * use the balance_callback list if you want balancing.
1394  *
1395  * this means any call to check_class_changed() must be followed by a call to
1396  * balance_callback().
1397  */
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 				       const struct sched_class *prev_class,
1400 				       int oldprio)
1401 {
1402 	if (prev_class != p->sched_class) {
1403 		if (prev_class->switched_from)
1404 			prev_class->switched_from(rq, p);
1405 
1406 		p->sched_class->switched_to(rq, p);
1407 	} else if (oldprio != p->prio || dl_task(p))
1408 		p->sched_class->prio_changed(rq, p, oldprio);
1409 }
1410 
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 	const struct sched_class *class;
1414 
1415 	if (p->sched_class == rq->curr->sched_class) {
1416 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 	} else {
1418 		for_each_class(class) {
1419 			if (class == rq->curr->sched_class)
1420 				break;
1421 			if (class == p->sched_class) {
1422 				resched_curr(rq);
1423 				break;
1424 			}
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * A queue event has occurred, and we're going to schedule.  In
1430 	 * this case, we can save a useless back to back clock update.
1431 	 */
1432 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 		rq_clock_skip_update(rq);
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 
1438 /*
1439  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440  * __set_cpus_allowed_ptr() and select_fallback_rq().
1441  */
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443 {
1444 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 		return false;
1446 
1447 	if (is_per_cpu_kthread(p))
1448 		return cpu_online(cpu);
1449 
1450 	return cpu_active(cpu);
1451 }
1452 
1453 /*
1454  * This is how migration works:
1455  *
1456  * 1) we invoke migration_cpu_stop() on the target CPU using
1457  *    stop_one_cpu().
1458  * 2) stopper starts to run (implicitly forcing the migrated thread
1459  *    off the CPU)
1460  * 3) it checks whether the migrated task is still in the wrong runqueue.
1461  * 4) if it's in the wrong runqueue then the migration thread removes
1462  *    it and puts it into the right queue.
1463  * 5) stopper completes and stop_one_cpu() returns and the migration
1464  *    is done.
1465  */
1466 
1467 /*
1468  * move_queued_task - move a queued task to new rq.
1469  *
1470  * Returns (locked) new rq. Old rq's lock is released.
1471  */
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 				   struct task_struct *p, int new_cpu)
1474 {
1475 	lockdep_assert_held(&rq->lock);
1476 
1477 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 	set_task_cpu(p, new_cpu);
1480 	rq_unlock(rq, rf);
1481 
1482 	rq = cpu_rq(new_cpu);
1483 
1484 	rq_lock(rq, rf);
1485 	BUG_ON(task_cpu(p) != new_cpu);
1486 	enqueue_task(rq, p, 0);
1487 	p->on_rq = TASK_ON_RQ_QUEUED;
1488 	check_preempt_curr(rq, p, 0);
1489 
1490 	return rq;
1491 }
1492 
1493 struct migration_arg {
1494 	struct task_struct *task;
1495 	int dest_cpu;
1496 };
1497 
1498 /*
1499  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500  * this because either it can't run here any more (set_cpus_allowed()
1501  * away from this CPU, or CPU going down), or because we're
1502  * attempting to rebalance this task on exec (sched_exec).
1503  *
1504  * So we race with normal scheduler movements, but that's OK, as long
1505  * as the task is no longer on this CPU.
1506  */
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 				 struct task_struct *p, int dest_cpu)
1509 {
1510 	/* Affinity changed (again). */
1511 	if (!is_cpu_allowed(p, dest_cpu))
1512 		return rq;
1513 
1514 	update_rq_clock(rq);
1515 	rq = move_queued_task(rq, rf, p, dest_cpu);
1516 
1517 	return rq;
1518 }
1519 
1520 /*
1521  * migration_cpu_stop - this will be executed by a highprio stopper thread
1522  * and performs thread migration by bumping thread off CPU then
1523  * 'pushing' onto another runqueue.
1524  */
1525 static int migration_cpu_stop(void *data)
1526 {
1527 	struct migration_arg *arg = data;
1528 	struct task_struct *p = arg->task;
1529 	struct rq *rq = this_rq();
1530 	struct rq_flags rf;
1531 
1532 	/*
1533 	 * The original target CPU might have gone down and we might
1534 	 * be on another CPU but it doesn't matter.
1535 	 */
1536 	local_irq_disable();
1537 	/*
1538 	 * We need to explicitly wake pending tasks before running
1539 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 	 */
1542 	sched_ttwu_pending();
1543 
1544 	raw_spin_lock(&p->pi_lock);
1545 	rq_lock(rq, &rf);
1546 	/*
1547 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 	 * we're holding p->pi_lock.
1550 	 */
1551 	if (task_rq(p) == rq) {
1552 		if (task_on_rq_queued(p))
1553 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 		else
1555 			p->wake_cpu = arg->dest_cpu;
1556 	}
1557 	rq_unlock(rq, &rf);
1558 	raw_spin_unlock(&p->pi_lock);
1559 
1560 	local_irq_enable();
1561 	return 0;
1562 }
1563 
1564 /*
1565  * sched_class::set_cpus_allowed must do the below, but is not required to
1566  * actually call this function.
1567  */
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 	cpumask_copy(&p->cpus_mask, new_mask);
1571 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1572 }
1573 
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575 {
1576 	struct rq *rq = task_rq(p);
1577 	bool queued, running;
1578 
1579 	lockdep_assert_held(&p->pi_lock);
1580 
1581 	queued = task_on_rq_queued(p);
1582 	running = task_current(rq, p);
1583 
1584 	if (queued) {
1585 		/*
1586 		 * Because __kthread_bind() calls this on blocked tasks without
1587 		 * holding rq->lock.
1588 		 */
1589 		lockdep_assert_held(&rq->lock);
1590 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1591 	}
1592 	if (running)
1593 		put_prev_task(rq, p);
1594 
1595 	p->sched_class->set_cpus_allowed(p, new_mask);
1596 
1597 	if (queued)
1598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 	if (running)
1600 		set_next_task(rq, p);
1601 }
1602 
1603 /*
1604  * Change a given task's CPU affinity. Migrate the thread to a
1605  * proper CPU and schedule it away if the CPU it's executing on
1606  * is removed from the allowed bitmask.
1607  *
1608  * NOTE: the caller must have a valid reference to the task, the
1609  * task must not exit() & deallocate itself prematurely. The
1610  * call is not atomic; no spinlocks may be held.
1611  */
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 				  const struct cpumask *new_mask, bool check)
1614 {
1615 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 	unsigned int dest_cpu;
1617 	struct rq_flags rf;
1618 	struct rq *rq;
1619 	int ret = 0;
1620 
1621 	rq = task_rq_lock(p, &rf);
1622 	update_rq_clock(rq);
1623 
1624 	if (p->flags & PF_KTHREAD) {
1625 		/*
1626 		 * Kernel threads are allowed on online && !active CPUs
1627 		 */
1628 		cpu_valid_mask = cpu_online_mask;
1629 	}
1630 
1631 	/*
1632 	 * Must re-check here, to close a race against __kthread_bind(),
1633 	 * sched_setaffinity() is not guaranteed to observe the flag.
1634 	 */
1635 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 		ret = -EINVAL;
1637 		goto out;
1638 	}
1639 
1640 	if (cpumask_equal(p->cpus_ptr, new_mask))
1641 		goto out;
1642 
1643 	/*
1644 	 * Picking a ~random cpu helps in cases where we are changing affinity
1645 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 	 * immediately required to distribute the tasks within their new mask.
1647 	 */
1648 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 	if (dest_cpu >= nr_cpu_ids) {
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	do_set_cpus_allowed(p, new_mask);
1655 
1656 	if (p->flags & PF_KTHREAD) {
1657 		/*
1658 		 * For kernel threads that do indeed end up on online &&
1659 		 * !active we want to ensure they are strict per-CPU threads.
1660 		 */
1661 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1663 			p->nr_cpus_allowed != 1);
1664 	}
1665 
1666 	/* Can the task run on the task's current CPU? If so, we're done */
1667 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 		goto out;
1669 
1670 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 		struct migration_arg arg = { p, dest_cpu };
1672 		/* Need help from migration thread: drop lock and wait. */
1673 		task_rq_unlock(rq, p, &rf);
1674 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 		return 0;
1676 	} else if (task_on_rq_queued(p)) {
1677 		/*
1678 		 * OK, since we're going to drop the lock immediately
1679 		 * afterwards anyway.
1680 		 */
1681 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1682 	}
1683 out:
1684 	task_rq_unlock(rq, p, &rf);
1685 
1686 	return ret;
1687 }
1688 
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690 {
1691 	return __set_cpus_allowed_ptr(p, new_mask, false);
1692 }
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694 
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1696 {
1697 #ifdef CONFIG_SCHED_DEBUG
1698 	/*
1699 	 * We should never call set_task_cpu() on a blocked task,
1700 	 * ttwu() will sort out the placement.
1701 	 */
1702 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 			!p->on_rq);
1704 
1705 	/*
1706 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 	 * time relying on p->on_rq.
1709 	 */
1710 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 		     p->sched_class == &fair_sched_class &&
1712 		     (p->on_rq && !task_on_rq_migrating(p)));
1713 
1714 #ifdef CONFIG_LOCKDEP
1715 	/*
1716 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 	 *
1719 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 	 * see task_group().
1721 	 *
1722 	 * Furthermore, all task_rq users should acquire both locks, see
1723 	 * task_rq_lock().
1724 	 */
1725 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 				      lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1728 	/*
1729 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 	 */
1731 	WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1733 
1734 	trace_sched_migrate_task(p, new_cpu);
1735 
1736 	if (task_cpu(p) != new_cpu) {
1737 		if (p->sched_class->migrate_task_rq)
1738 			p->sched_class->migrate_task_rq(p, new_cpu);
1739 		p->se.nr_migrations++;
1740 		rseq_migrate(p);
1741 		perf_event_task_migrate(p);
1742 	}
1743 
1744 	__set_task_cpu(p, new_cpu);
1745 }
1746 
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1749 {
1750 	if (task_on_rq_queued(p)) {
1751 		struct rq *src_rq, *dst_rq;
1752 		struct rq_flags srf, drf;
1753 
1754 		src_rq = task_rq(p);
1755 		dst_rq = cpu_rq(cpu);
1756 
1757 		rq_pin_lock(src_rq, &srf);
1758 		rq_pin_lock(dst_rq, &drf);
1759 
1760 		deactivate_task(src_rq, p, 0);
1761 		set_task_cpu(p, cpu);
1762 		activate_task(dst_rq, p, 0);
1763 		check_preempt_curr(dst_rq, p, 0);
1764 
1765 		rq_unpin_lock(dst_rq, &drf);
1766 		rq_unpin_lock(src_rq, &srf);
1767 
1768 	} else {
1769 		/*
1770 		 * Task isn't running anymore; make it appear like we migrated
1771 		 * it before it went to sleep. This means on wakeup we make the
1772 		 * previous CPU our target instead of where it really is.
1773 		 */
1774 		p->wake_cpu = cpu;
1775 	}
1776 }
1777 
1778 struct migration_swap_arg {
1779 	struct task_struct *src_task, *dst_task;
1780 	int src_cpu, dst_cpu;
1781 };
1782 
1783 static int migrate_swap_stop(void *data)
1784 {
1785 	struct migration_swap_arg *arg = data;
1786 	struct rq *src_rq, *dst_rq;
1787 	int ret = -EAGAIN;
1788 
1789 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 		return -EAGAIN;
1791 
1792 	src_rq = cpu_rq(arg->src_cpu);
1793 	dst_rq = cpu_rq(arg->dst_cpu);
1794 
1795 	double_raw_lock(&arg->src_task->pi_lock,
1796 			&arg->dst_task->pi_lock);
1797 	double_rq_lock(src_rq, dst_rq);
1798 
1799 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 		goto unlock;
1801 
1802 	if (task_cpu(arg->src_task) != arg->src_cpu)
1803 		goto unlock;
1804 
1805 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 		goto unlock;
1807 
1808 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 		goto unlock;
1810 
1811 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1813 
1814 	ret = 0;
1815 
1816 unlock:
1817 	double_rq_unlock(src_rq, dst_rq);
1818 	raw_spin_unlock(&arg->dst_task->pi_lock);
1819 	raw_spin_unlock(&arg->src_task->pi_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Cross migrate two tasks
1826  */
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 		int target_cpu, int curr_cpu)
1829 {
1830 	struct migration_swap_arg arg;
1831 	int ret = -EINVAL;
1832 
1833 	arg = (struct migration_swap_arg){
1834 		.src_task = cur,
1835 		.src_cpu = curr_cpu,
1836 		.dst_task = p,
1837 		.dst_cpu = target_cpu,
1838 	};
1839 
1840 	if (arg.src_cpu == arg.dst_cpu)
1841 		goto out;
1842 
1843 	/*
1844 	 * These three tests are all lockless; this is OK since all of them
1845 	 * will be re-checked with proper locks held further down the line.
1846 	 */
1847 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 		goto out;
1849 
1850 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 		goto out;
1852 
1853 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 		goto out;
1855 
1856 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858 
1859 out:
1860 	return ret;
1861 }
1862 #endif /* CONFIG_NUMA_BALANCING */
1863 
1864 /*
1865  * wait_task_inactive - wait for a thread to unschedule.
1866  *
1867  * If @match_state is nonzero, it's the @p->state value just checked and
1868  * not expected to change.  If it changes, i.e. @p might have woken up,
1869  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1870  * we return a positive number (its total switch count).  If a second call
1871  * a short while later returns the same number, the caller can be sure that
1872  * @p has remained unscheduled the whole time.
1873  *
1874  * The caller must ensure that the task *will* unschedule sometime soon,
1875  * else this function might spin for a *long* time. This function can't
1876  * be called with interrupts off, or it may introduce deadlock with
1877  * smp_call_function() if an IPI is sent by the same process we are
1878  * waiting to become inactive.
1879  */
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1881 {
1882 	int running, queued;
1883 	struct rq_flags rf;
1884 	unsigned long ncsw;
1885 	struct rq *rq;
1886 
1887 	for (;;) {
1888 		/*
1889 		 * We do the initial early heuristics without holding
1890 		 * any task-queue locks at all. We'll only try to get
1891 		 * the runqueue lock when things look like they will
1892 		 * work out!
1893 		 */
1894 		rq = task_rq(p);
1895 
1896 		/*
1897 		 * If the task is actively running on another CPU
1898 		 * still, just relax and busy-wait without holding
1899 		 * any locks.
1900 		 *
1901 		 * NOTE! Since we don't hold any locks, it's not
1902 		 * even sure that "rq" stays as the right runqueue!
1903 		 * But we don't care, since "task_running()" will
1904 		 * return false if the runqueue has changed and p
1905 		 * is actually now running somewhere else!
1906 		 */
1907 		while (task_running(rq, p)) {
1908 			if (match_state && unlikely(p->state != match_state))
1909 				return 0;
1910 			cpu_relax();
1911 		}
1912 
1913 		/*
1914 		 * Ok, time to look more closely! We need the rq
1915 		 * lock now, to be *sure*. If we're wrong, we'll
1916 		 * just go back and repeat.
1917 		 */
1918 		rq = task_rq_lock(p, &rf);
1919 		trace_sched_wait_task(p);
1920 		running = task_running(rq, p);
1921 		queued = task_on_rq_queued(p);
1922 		ncsw = 0;
1923 		if (!match_state || p->state == match_state)
1924 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 		task_rq_unlock(rq, p, &rf);
1926 
1927 		/*
1928 		 * If it changed from the expected state, bail out now.
1929 		 */
1930 		if (unlikely(!ncsw))
1931 			break;
1932 
1933 		/*
1934 		 * Was it really running after all now that we
1935 		 * checked with the proper locks actually held?
1936 		 *
1937 		 * Oops. Go back and try again..
1938 		 */
1939 		if (unlikely(running)) {
1940 			cpu_relax();
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * It's not enough that it's not actively running,
1946 		 * it must be off the runqueue _entirely_, and not
1947 		 * preempted!
1948 		 *
1949 		 * So if it was still runnable (but just not actively
1950 		 * running right now), it's preempted, and we should
1951 		 * yield - it could be a while.
1952 		 */
1953 		if (unlikely(queued)) {
1954 			ktime_t to = NSEC_PER_SEC / HZ;
1955 
1956 			set_current_state(TASK_UNINTERRUPTIBLE);
1957 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 			continue;
1959 		}
1960 
1961 		/*
1962 		 * Ahh, all good. It wasn't running, and it wasn't
1963 		 * runnable, which means that it will never become
1964 		 * running in the future either. We're all done!
1965 		 */
1966 		break;
1967 	}
1968 
1969 	return ncsw;
1970 }
1971 
1972 /***
1973  * kick_process - kick a running thread to enter/exit the kernel
1974  * @p: the to-be-kicked thread
1975  *
1976  * Cause a process which is running on another CPU to enter
1977  * kernel-mode, without any delay. (to get signals handled.)
1978  *
1979  * NOTE: this function doesn't have to take the runqueue lock,
1980  * because all it wants to ensure is that the remote task enters
1981  * the kernel. If the IPI races and the task has been migrated
1982  * to another CPU then no harm is done and the purpose has been
1983  * achieved as well.
1984  */
1985 void kick_process(struct task_struct *p)
1986 {
1987 	int cpu;
1988 
1989 	preempt_disable();
1990 	cpu = task_cpu(p);
1991 	if ((cpu != smp_processor_id()) && task_curr(p))
1992 		smp_send_reschedule(cpu);
1993 	preempt_enable();
1994 }
1995 EXPORT_SYMBOL_GPL(kick_process);
1996 
1997 /*
1998  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1999  *
2000  * A few notes on cpu_active vs cpu_online:
2001  *
2002  *  - cpu_active must be a subset of cpu_online
2003  *
2004  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005  *    see __set_cpus_allowed_ptr(). At this point the newly online
2006  *    CPU isn't yet part of the sched domains, and balancing will not
2007  *    see it.
2008  *
2009  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2010  *    avoid the load balancer to place new tasks on the to be removed
2011  *    CPU. Existing tasks will remain running there and will be taken
2012  *    off.
2013  *
2014  * This means that fallback selection must not select !active CPUs.
2015  * And can assume that any active CPU must be online. Conversely
2016  * select_task_rq() below may allow selection of !active CPUs in order
2017  * to satisfy the above rules.
2018  */
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2020 {
2021 	int nid = cpu_to_node(cpu);
2022 	const struct cpumask *nodemask = NULL;
2023 	enum { cpuset, possible, fail } state = cpuset;
2024 	int dest_cpu;
2025 
2026 	/*
2027 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 	 * will return -1. There is no CPU on the node, and we should
2029 	 * select the CPU on the other node.
2030 	 */
2031 	if (nid != -1) {
2032 		nodemask = cpumask_of_node(nid);
2033 
2034 		/* Look for allowed, online CPU in same node. */
2035 		for_each_cpu(dest_cpu, nodemask) {
2036 			if (!cpu_active(dest_cpu))
2037 				continue;
2038 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 				return dest_cpu;
2040 		}
2041 	}
2042 
2043 	for (;;) {
2044 		/* Any allowed, online CPU? */
2045 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 			if (!is_cpu_allowed(p, dest_cpu))
2047 				continue;
2048 
2049 			goto out;
2050 		}
2051 
2052 		/* No more Mr. Nice Guy. */
2053 		switch (state) {
2054 		case cpuset:
2055 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 				cpuset_cpus_allowed_fallback(p);
2057 				state = possible;
2058 				break;
2059 			}
2060 			/* Fall-through */
2061 		case possible:
2062 			do_set_cpus_allowed(p, cpu_possible_mask);
2063 			state = fail;
2064 			break;
2065 
2066 		case fail:
2067 			BUG();
2068 			break;
2069 		}
2070 	}
2071 
2072 out:
2073 	if (state != cpuset) {
2074 		/*
2075 		 * Don't tell them about moving exiting tasks or
2076 		 * kernel threads (both mm NULL), since they never
2077 		 * leave kernel.
2078 		 */
2079 		if (p->mm && printk_ratelimit()) {
2080 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 					task_pid_nr(p), p->comm, cpu);
2082 		}
2083 	}
2084 
2085 	return dest_cpu;
2086 }
2087 
2088 /*
2089  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2090  */
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2093 {
2094 	lockdep_assert_held(&p->pi_lock);
2095 
2096 	if (p->nr_cpus_allowed > 1)
2097 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 	else
2099 		cpu = cpumask_any(p->cpus_ptr);
2100 
2101 	/*
2102 	 * In order not to call set_task_cpu() on a blocking task we need
2103 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 	 * CPU.
2105 	 *
2106 	 * Since this is common to all placement strategies, this lives here.
2107 	 *
2108 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 	 *   not worry about this generic constraint ]
2110 	 */
2111 	if (unlikely(!is_cpu_allowed(p, cpu)))
2112 		cpu = select_fallback_rq(task_cpu(p), p);
2113 
2114 	return cpu;
2115 }
2116 
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2118 {
2119 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121 
2122 	if (stop) {
2123 		/*
2124 		 * Make it appear like a SCHED_FIFO task, its something
2125 		 * userspace knows about and won't get confused about.
2126 		 *
2127 		 * Also, it will make PI more or less work without too
2128 		 * much confusion -- but then, stop work should not
2129 		 * rely on PI working anyway.
2130 		 */
2131 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132 
2133 		stop->sched_class = &stop_sched_class;
2134 	}
2135 
2136 	cpu_rq(cpu)->stop = stop;
2137 
2138 	if (old_stop) {
2139 		/*
2140 		 * Reset it back to a normal scheduling class so that
2141 		 * it can die in pieces.
2142 		 */
2143 		old_stop->sched_class = &rt_sched_class;
2144 	}
2145 }
2146 
2147 #else
2148 
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 					 const struct cpumask *new_mask, bool check)
2151 {
2152 	return set_cpus_allowed_ptr(p, new_mask);
2153 }
2154 
2155 #endif /* CONFIG_SMP */
2156 
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2159 {
2160 	struct rq *rq;
2161 
2162 	if (!schedstat_enabled())
2163 		return;
2164 
2165 	rq = this_rq();
2166 
2167 #ifdef CONFIG_SMP
2168 	if (cpu == rq->cpu) {
2169 		__schedstat_inc(rq->ttwu_local);
2170 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 	} else {
2172 		struct sched_domain *sd;
2173 
2174 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 		rcu_read_lock();
2176 		for_each_domain(rq->cpu, sd) {
2177 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 				__schedstat_inc(sd->ttwu_wake_remote);
2179 				break;
2180 			}
2181 		}
2182 		rcu_read_unlock();
2183 	}
2184 
2185 	if (wake_flags & WF_MIGRATED)
2186 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2188 
2189 	__schedstat_inc(rq->ttwu_count);
2190 	__schedstat_inc(p->se.statistics.nr_wakeups);
2191 
2192 	if (wake_flags & WF_SYNC)
2193 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2194 }
2195 
2196 /*
2197  * Mark the task runnable and perform wakeup-preemption.
2198  */
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 			   struct rq_flags *rf)
2201 {
2202 	check_preempt_curr(rq, p, wake_flags);
2203 	p->state = TASK_RUNNING;
2204 	trace_sched_wakeup(p);
2205 
2206 #ifdef CONFIG_SMP
2207 	if (p->sched_class->task_woken) {
2208 		/*
2209 		 * Our task @p is fully woken up and running; so its safe to
2210 		 * drop the rq->lock, hereafter rq is only used for statistics.
2211 		 */
2212 		rq_unpin_lock(rq, rf);
2213 		p->sched_class->task_woken(rq, p);
2214 		rq_repin_lock(rq, rf);
2215 	}
2216 
2217 	if (rq->idle_stamp) {
2218 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 		u64 max = 2*rq->max_idle_balance_cost;
2220 
2221 		update_avg(&rq->avg_idle, delta);
2222 
2223 		if (rq->avg_idle > max)
2224 			rq->avg_idle = max;
2225 
2226 		rq->idle_stamp = 0;
2227 	}
2228 #endif
2229 }
2230 
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 		 struct rq_flags *rf)
2234 {
2235 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2236 
2237 	lockdep_assert_held(&rq->lock);
2238 
2239 #ifdef CONFIG_SMP
2240 	if (p->sched_contributes_to_load)
2241 		rq->nr_uninterruptible--;
2242 
2243 	if (wake_flags & WF_MIGRATED)
2244 		en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2246 
2247 	activate_task(rq, p, en_flags);
2248 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2249 }
2250 
2251 /*
2252  * Called in case the task @p isn't fully descheduled from its runqueue,
2253  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254  * since all we need to do is flip p->state to TASK_RUNNING, since
2255  * the task is still ->on_rq.
2256  */
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2258 {
2259 	struct rq_flags rf;
2260 	struct rq *rq;
2261 	int ret = 0;
2262 
2263 	rq = __task_rq_lock(p, &rf);
2264 	if (task_on_rq_queued(p)) {
2265 		/* check_preempt_curr() may use rq clock */
2266 		update_rq_clock(rq);
2267 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 		ret = 1;
2269 	}
2270 	__task_rq_unlock(rq, &rf);
2271 
2272 	return ret;
2273 }
2274 
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void)
2277 {
2278 	struct rq *rq = this_rq();
2279 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2280 	struct task_struct *p, *t;
2281 	struct rq_flags rf;
2282 
2283 	if (!llist)
2284 		return;
2285 
2286 	rq_lock_irqsave(rq, &rf);
2287 	update_rq_clock(rq);
2288 
2289 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2290 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2291 
2292 	rq_unlock_irqrestore(rq, &rf);
2293 }
2294 
2295 void scheduler_ipi(void)
2296 {
2297 	/*
2298 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2299 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2300 	 * this IPI.
2301 	 */
2302 	preempt_fold_need_resched();
2303 
2304 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2305 		return;
2306 
2307 	/*
2308 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2309 	 * traditionally all their work was done from the interrupt return
2310 	 * path. Now that we actually do some work, we need to make sure
2311 	 * we do call them.
2312 	 *
2313 	 * Some archs already do call them, luckily irq_enter/exit nest
2314 	 * properly.
2315 	 *
2316 	 * Arguably we should visit all archs and update all handlers,
2317 	 * however a fair share of IPIs are still resched only so this would
2318 	 * somewhat pessimize the simple resched case.
2319 	 */
2320 	irq_enter();
2321 	sched_ttwu_pending();
2322 
2323 	/*
2324 	 * Check if someone kicked us for doing the nohz idle load balance.
2325 	 */
2326 	if (unlikely(got_nohz_idle_kick())) {
2327 		this_rq()->idle_balance = 1;
2328 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2329 	}
2330 	irq_exit();
2331 }
2332 
2333 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2334 {
2335 	struct rq *rq = cpu_rq(cpu);
2336 
2337 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2338 
2339 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2340 		if (!set_nr_if_polling(rq->idle))
2341 			smp_send_reschedule(cpu);
2342 		else
2343 			trace_sched_wake_idle_without_ipi(cpu);
2344 	}
2345 }
2346 
2347 void wake_up_if_idle(int cpu)
2348 {
2349 	struct rq *rq = cpu_rq(cpu);
2350 	struct rq_flags rf;
2351 
2352 	rcu_read_lock();
2353 
2354 	if (!is_idle_task(rcu_dereference(rq->curr)))
2355 		goto out;
2356 
2357 	if (set_nr_if_polling(rq->idle)) {
2358 		trace_sched_wake_idle_without_ipi(cpu);
2359 	} else {
2360 		rq_lock_irqsave(rq, &rf);
2361 		if (is_idle_task(rq->curr))
2362 			smp_send_reschedule(cpu);
2363 		/* Else CPU is not idle, do nothing here: */
2364 		rq_unlock_irqrestore(rq, &rf);
2365 	}
2366 
2367 out:
2368 	rcu_read_unlock();
2369 }
2370 
2371 bool cpus_share_cache(int this_cpu, int that_cpu)
2372 {
2373 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2374 }
2375 #endif /* CONFIG_SMP */
2376 
2377 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2378 {
2379 	struct rq *rq = cpu_rq(cpu);
2380 	struct rq_flags rf;
2381 
2382 #if defined(CONFIG_SMP)
2383 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2384 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2385 		ttwu_queue_remote(p, cpu, wake_flags);
2386 		return;
2387 	}
2388 #endif
2389 
2390 	rq_lock(rq, &rf);
2391 	update_rq_clock(rq);
2392 	ttwu_do_activate(rq, p, wake_flags, &rf);
2393 	rq_unlock(rq, &rf);
2394 }
2395 
2396 /*
2397  * Notes on Program-Order guarantees on SMP systems.
2398  *
2399  *  MIGRATION
2400  *
2401  * The basic program-order guarantee on SMP systems is that when a task [t]
2402  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2403  * execution on its new CPU [c1].
2404  *
2405  * For migration (of runnable tasks) this is provided by the following means:
2406  *
2407  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2408  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2409  *     rq(c1)->lock (if not at the same time, then in that order).
2410  *  C) LOCK of the rq(c1)->lock scheduling in task
2411  *
2412  * Release/acquire chaining guarantees that B happens after A and C after B.
2413  * Note: the CPU doing B need not be c0 or c1
2414  *
2415  * Example:
2416  *
2417  *   CPU0            CPU1            CPU2
2418  *
2419  *   LOCK rq(0)->lock
2420  *   sched-out X
2421  *   sched-in Y
2422  *   UNLOCK rq(0)->lock
2423  *
2424  *                                   LOCK rq(0)->lock // orders against CPU0
2425  *                                   dequeue X
2426  *                                   UNLOCK rq(0)->lock
2427  *
2428  *                                   LOCK rq(1)->lock
2429  *                                   enqueue X
2430  *                                   UNLOCK rq(1)->lock
2431  *
2432  *                   LOCK rq(1)->lock // orders against CPU2
2433  *                   sched-out Z
2434  *                   sched-in X
2435  *                   UNLOCK rq(1)->lock
2436  *
2437  *
2438  *  BLOCKING -- aka. SLEEP + WAKEUP
2439  *
2440  * For blocking we (obviously) need to provide the same guarantee as for
2441  * migration. However the means are completely different as there is no lock
2442  * chain to provide order. Instead we do:
2443  *
2444  *   1) smp_store_release(X->on_cpu, 0)
2445  *   2) smp_cond_load_acquire(!X->on_cpu)
2446  *
2447  * Example:
2448  *
2449  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2450  *
2451  *   LOCK rq(0)->lock LOCK X->pi_lock
2452  *   dequeue X
2453  *   sched-out X
2454  *   smp_store_release(X->on_cpu, 0);
2455  *
2456  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2457  *                    X->state = WAKING
2458  *                    set_task_cpu(X,2)
2459  *
2460  *                    LOCK rq(2)->lock
2461  *                    enqueue X
2462  *                    X->state = RUNNING
2463  *                    UNLOCK rq(2)->lock
2464  *
2465  *                                          LOCK rq(2)->lock // orders against CPU1
2466  *                                          sched-out Z
2467  *                                          sched-in X
2468  *                                          UNLOCK rq(2)->lock
2469  *
2470  *                    UNLOCK X->pi_lock
2471  *   UNLOCK rq(0)->lock
2472  *
2473  *
2474  * However, for wakeups there is a second guarantee we must provide, namely we
2475  * must ensure that CONDITION=1 done by the caller can not be reordered with
2476  * accesses to the task state; see try_to_wake_up() and set_current_state().
2477  */
2478 
2479 /**
2480  * try_to_wake_up - wake up a thread
2481  * @p: the thread to be awakened
2482  * @state: the mask of task states that can be woken
2483  * @wake_flags: wake modifier flags (WF_*)
2484  *
2485  * If (@state & @p->state) @p->state = TASK_RUNNING.
2486  *
2487  * If the task was not queued/runnable, also place it back on a runqueue.
2488  *
2489  * Atomic against schedule() which would dequeue a task, also see
2490  * set_current_state().
2491  *
2492  * This function executes a full memory barrier before accessing the task
2493  * state; see set_current_state().
2494  *
2495  * Return: %true if @p->state changes (an actual wakeup was done),
2496  *	   %false otherwise.
2497  */
2498 static int
2499 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2500 {
2501 	unsigned long flags;
2502 	int cpu, success = 0;
2503 
2504 	preempt_disable();
2505 	if (p == current) {
2506 		/*
2507 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2508 		 * == smp_processor_id()'. Together this means we can special
2509 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2510 		 * without taking any locks.
2511 		 *
2512 		 * In particular:
2513 		 *  - we rely on Program-Order guarantees for all the ordering,
2514 		 *  - we're serialized against set_special_state() by virtue of
2515 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2516 		 */
2517 		if (!(p->state & state))
2518 			goto out;
2519 
2520 		success = 1;
2521 		cpu = task_cpu(p);
2522 		trace_sched_waking(p);
2523 		p->state = TASK_RUNNING;
2524 		trace_sched_wakeup(p);
2525 		goto out;
2526 	}
2527 
2528 	/*
2529 	 * If we are going to wake up a thread waiting for CONDITION we
2530 	 * need to ensure that CONDITION=1 done by the caller can not be
2531 	 * reordered with p->state check below. This pairs with mb() in
2532 	 * set_current_state() the waiting thread does.
2533 	 */
2534 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2535 	smp_mb__after_spinlock();
2536 	if (!(p->state & state))
2537 		goto unlock;
2538 
2539 	trace_sched_waking(p);
2540 
2541 	/* We're going to change ->state: */
2542 	success = 1;
2543 	cpu = task_cpu(p);
2544 
2545 	/*
2546 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2547 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2548 	 * in smp_cond_load_acquire() below.
2549 	 *
2550 	 * sched_ttwu_pending()			try_to_wake_up()
2551 	 *   STORE p->on_rq = 1			  LOAD p->state
2552 	 *   UNLOCK rq->lock
2553 	 *
2554 	 * __schedule() (switch to task 'p')
2555 	 *   LOCK rq->lock			  smp_rmb();
2556 	 *   smp_mb__after_spinlock();
2557 	 *   UNLOCK rq->lock
2558 	 *
2559 	 * [task p]
2560 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2561 	 *
2562 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2563 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2564 	 */
2565 	smp_rmb();
2566 	if (p->on_rq && ttwu_remote(p, wake_flags))
2567 		goto unlock;
2568 
2569 #ifdef CONFIG_SMP
2570 	/*
2571 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2572 	 * possible to, falsely, observe p->on_cpu == 0.
2573 	 *
2574 	 * One must be running (->on_cpu == 1) in order to remove oneself
2575 	 * from the runqueue.
2576 	 *
2577 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2578 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2579 	 *   UNLOCK rq->lock
2580 	 *
2581 	 * __schedule() (put 'p' to sleep)
2582 	 *   LOCK rq->lock			  smp_rmb();
2583 	 *   smp_mb__after_spinlock();
2584 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2585 	 *
2586 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2587 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2588 	 */
2589 	smp_rmb();
2590 
2591 	/*
2592 	 * If the owning (remote) CPU is still in the middle of schedule() with
2593 	 * this task as prev, wait until its done referencing the task.
2594 	 *
2595 	 * Pairs with the smp_store_release() in finish_task().
2596 	 *
2597 	 * This ensures that tasks getting woken will be fully ordered against
2598 	 * their previous state and preserve Program Order.
2599 	 */
2600 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2601 
2602 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2603 	p->state = TASK_WAKING;
2604 
2605 	if (p->in_iowait) {
2606 		delayacct_blkio_end(p);
2607 		atomic_dec(&task_rq(p)->nr_iowait);
2608 	}
2609 
2610 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2611 	if (task_cpu(p) != cpu) {
2612 		wake_flags |= WF_MIGRATED;
2613 		psi_ttwu_dequeue(p);
2614 		set_task_cpu(p, cpu);
2615 	}
2616 
2617 #else /* CONFIG_SMP */
2618 
2619 	if (p->in_iowait) {
2620 		delayacct_blkio_end(p);
2621 		atomic_dec(&task_rq(p)->nr_iowait);
2622 	}
2623 
2624 #endif /* CONFIG_SMP */
2625 
2626 	ttwu_queue(p, cpu, wake_flags);
2627 unlock:
2628 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2629 out:
2630 	if (success)
2631 		ttwu_stat(p, cpu, wake_flags);
2632 	preempt_enable();
2633 
2634 	return success;
2635 }
2636 
2637 /**
2638  * wake_up_process - Wake up a specific process
2639  * @p: The process to be woken up.
2640  *
2641  * Attempt to wake up the nominated process and move it to the set of runnable
2642  * processes.
2643  *
2644  * Return: 1 if the process was woken up, 0 if it was already running.
2645  *
2646  * This function executes a full memory barrier before accessing the task state.
2647  */
2648 int wake_up_process(struct task_struct *p)
2649 {
2650 	return try_to_wake_up(p, TASK_NORMAL, 0);
2651 }
2652 EXPORT_SYMBOL(wake_up_process);
2653 
2654 int wake_up_state(struct task_struct *p, unsigned int state)
2655 {
2656 	return try_to_wake_up(p, state, 0);
2657 }
2658 
2659 /*
2660  * Perform scheduler related setup for a newly forked process p.
2661  * p is forked by current.
2662  *
2663  * __sched_fork() is basic setup used by init_idle() too:
2664  */
2665 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2666 {
2667 	p->on_rq			= 0;
2668 
2669 	p->se.on_rq			= 0;
2670 	p->se.exec_start		= 0;
2671 	p->se.sum_exec_runtime		= 0;
2672 	p->se.prev_sum_exec_runtime	= 0;
2673 	p->se.nr_migrations		= 0;
2674 	p->se.vruntime			= 0;
2675 	INIT_LIST_HEAD(&p->se.group_node);
2676 
2677 #ifdef CONFIG_FAIR_GROUP_SCHED
2678 	p->se.cfs_rq			= NULL;
2679 #endif
2680 
2681 #ifdef CONFIG_SCHEDSTATS
2682 	/* Even if schedstat is disabled, there should not be garbage */
2683 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2684 #endif
2685 
2686 	RB_CLEAR_NODE(&p->dl.rb_node);
2687 	init_dl_task_timer(&p->dl);
2688 	init_dl_inactive_task_timer(&p->dl);
2689 	__dl_clear_params(p);
2690 
2691 	INIT_LIST_HEAD(&p->rt.run_list);
2692 	p->rt.timeout		= 0;
2693 	p->rt.time_slice	= sched_rr_timeslice;
2694 	p->rt.on_rq		= 0;
2695 	p->rt.on_list		= 0;
2696 
2697 #ifdef CONFIG_PREEMPT_NOTIFIERS
2698 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2699 #endif
2700 
2701 #ifdef CONFIG_COMPACTION
2702 	p->capture_control = NULL;
2703 #endif
2704 	init_numa_balancing(clone_flags, p);
2705 }
2706 
2707 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2708 
2709 #ifdef CONFIG_NUMA_BALANCING
2710 
2711 void set_numabalancing_state(bool enabled)
2712 {
2713 	if (enabled)
2714 		static_branch_enable(&sched_numa_balancing);
2715 	else
2716 		static_branch_disable(&sched_numa_balancing);
2717 }
2718 
2719 #ifdef CONFIG_PROC_SYSCTL
2720 int sysctl_numa_balancing(struct ctl_table *table, int write,
2721 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2722 {
2723 	struct ctl_table t;
2724 	int err;
2725 	int state = static_branch_likely(&sched_numa_balancing);
2726 
2727 	if (write && !capable(CAP_SYS_ADMIN))
2728 		return -EPERM;
2729 
2730 	t = *table;
2731 	t.data = &state;
2732 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2733 	if (err < 0)
2734 		return err;
2735 	if (write)
2736 		set_numabalancing_state(state);
2737 	return err;
2738 }
2739 #endif
2740 #endif
2741 
2742 #ifdef CONFIG_SCHEDSTATS
2743 
2744 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2745 static bool __initdata __sched_schedstats = false;
2746 
2747 static void set_schedstats(bool enabled)
2748 {
2749 	if (enabled)
2750 		static_branch_enable(&sched_schedstats);
2751 	else
2752 		static_branch_disable(&sched_schedstats);
2753 }
2754 
2755 void force_schedstat_enabled(void)
2756 {
2757 	if (!schedstat_enabled()) {
2758 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2759 		static_branch_enable(&sched_schedstats);
2760 	}
2761 }
2762 
2763 static int __init setup_schedstats(char *str)
2764 {
2765 	int ret = 0;
2766 	if (!str)
2767 		goto out;
2768 
2769 	/*
2770 	 * This code is called before jump labels have been set up, so we can't
2771 	 * change the static branch directly just yet.  Instead set a temporary
2772 	 * variable so init_schedstats() can do it later.
2773 	 */
2774 	if (!strcmp(str, "enable")) {
2775 		__sched_schedstats = true;
2776 		ret = 1;
2777 	} else if (!strcmp(str, "disable")) {
2778 		__sched_schedstats = false;
2779 		ret = 1;
2780 	}
2781 out:
2782 	if (!ret)
2783 		pr_warn("Unable to parse schedstats=\n");
2784 
2785 	return ret;
2786 }
2787 __setup("schedstats=", setup_schedstats);
2788 
2789 static void __init init_schedstats(void)
2790 {
2791 	set_schedstats(__sched_schedstats);
2792 }
2793 
2794 #ifdef CONFIG_PROC_SYSCTL
2795 int sysctl_schedstats(struct ctl_table *table, int write,
2796 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2797 {
2798 	struct ctl_table t;
2799 	int err;
2800 	int state = static_branch_likely(&sched_schedstats);
2801 
2802 	if (write && !capable(CAP_SYS_ADMIN))
2803 		return -EPERM;
2804 
2805 	t = *table;
2806 	t.data = &state;
2807 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2808 	if (err < 0)
2809 		return err;
2810 	if (write)
2811 		set_schedstats(state);
2812 	return err;
2813 }
2814 #endif /* CONFIG_PROC_SYSCTL */
2815 #else  /* !CONFIG_SCHEDSTATS */
2816 static inline void init_schedstats(void) {}
2817 #endif /* CONFIG_SCHEDSTATS */
2818 
2819 /*
2820  * fork()/clone()-time setup:
2821  */
2822 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2823 {
2824 	unsigned long flags;
2825 
2826 	__sched_fork(clone_flags, p);
2827 	/*
2828 	 * We mark the process as NEW here. This guarantees that
2829 	 * nobody will actually run it, and a signal or other external
2830 	 * event cannot wake it up and insert it on the runqueue either.
2831 	 */
2832 	p->state = TASK_NEW;
2833 
2834 	/*
2835 	 * Make sure we do not leak PI boosting priority to the child.
2836 	 */
2837 	p->prio = current->normal_prio;
2838 
2839 	uclamp_fork(p);
2840 
2841 	/*
2842 	 * Revert to default priority/policy on fork if requested.
2843 	 */
2844 	if (unlikely(p->sched_reset_on_fork)) {
2845 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2846 			p->policy = SCHED_NORMAL;
2847 			p->static_prio = NICE_TO_PRIO(0);
2848 			p->rt_priority = 0;
2849 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2850 			p->static_prio = NICE_TO_PRIO(0);
2851 
2852 		p->prio = p->normal_prio = __normal_prio(p);
2853 		set_load_weight(p, false);
2854 
2855 		/*
2856 		 * We don't need the reset flag anymore after the fork. It has
2857 		 * fulfilled its duty:
2858 		 */
2859 		p->sched_reset_on_fork = 0;
2860 	}
2861 
2862 	if (dl_prio(p->prio))
2863 		return -EAGAIN;
2864 	else if (rt_prio(p->prio))
2865 		p->sched_class = &rt_sched_class;
2866 	else
2867 		p->sched_class = &fair_sched_class;
2868 
2869 	init_entity_runnable_average(&p->se);
2870 
2871 	/*
2872 	 * The child is not yet in the pid-hash so no cgroup attach races,
2873 	 * and the cgroup is pinned to this child due to cgroup_fork()
2874 	 * is ran before sched_fork().
2875 	 *
2876 	 * Silence PROVE_RCU.
2877 	 */
2878 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2879 	/*
2880 	 * We're setting the CPU for the first time, we don't migrate,
2881 	 * so use __set_task_cpu().
2882 	 */
2883 	__set_task_cpu(p, smp_processor_id());
2884 	if (p->sched_class->task_fork)
2885 		p->sched_class->task_fork(p);
2886 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2887 
2888 #ifdef CONFIG_SCHED_INFO
2889 	if (likely(sched_info_on()))
2890 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2891 #endif
2892 #if defined(CONFIG_SMP)
2893 	p->on_cpu = 0;
2894 #endif
2895 	init_task_preempt_count(p);
2896 #ifdef CONFIG_SMP
2897 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2898 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2899 #endif
2900 	return 0;
2901 }
2902 
2903 unsigned long to_ratio(u64 period, u64 runtime)
2904 {
2905 	if (runtime == RUNTIME_INF)
2906 		return BW_UNIT;
2907 
2908 	/*
2909 	 * Doing this here saves a lot of checks in all
2910 	 * the calling paths, and returning zero seems
2911 	 * safe for them anyway.
2912 	 */
2913 	if (period == 0)
2914 		return 0;
2915 
2916 	return div64_u64(runtime << BW_SHIFT, period);
2917 }
2918 
2919 /*
2920  * wake_up_new_task - wake up a newly created task for the first time.
2921  *
2922  * This function will do some initial scheduler statistics housekeeping
2923  * that must be done for every newly created context, then puts the task
2924  * on the runqueue and wakes it.
2925  */
2926 void wake_up_new_task(struct task_struct *p)
2927 {
2928 	struct rq_flags rf;
2929 	struct rq *rq;
2930 
2931 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2932 	p->state = TASK_RUNNING;
2933 #ifdef CONFIG_SMP
2934 	/*
2935 	 * Fork balancing, do it here and not earlier because:
2936 	 *  - cpus_ptr can change in the fork path
2937 	 *  - any previously selected CPU might disappear through hotplug
2938 	 *
2939 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2940 	 * as we're not fully set-up yet.
2941 	 */
2942 	p->recent_used_cpu = task_cpu(p);
2943 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2944 #endif
2945 	rq = __task_rq_lock(p, &rf);
2946 	update_rq_clock(rq);
2947 	post_init_entity_util_avg(p);
2948 
2949 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2950 	trace_sched_wakeup_new(p);
2951 	check_preempt_curr(rq, p, WF_FORK);
2952 #ifdef CONFIG_SMP
2953 	if (p->sched_class->task_woken) {
2954 		/*
2955 		 * Nothing relies on rq->lock after this, so its fine to
2956 		 * drop it.
2957 		 */
2958 		rq_unpin_lock(rq, &rf);
2959 		p->sched_class->task_woken(rq, p);
2960 		rq_repin_lock(rq, &rf);
2961 	}
2962 #endif
2963 	task_rq_unlock(rq, p, &rf);
2964 }
2965 
2966 #ifdef CONFIG_PREEMPT_NOTIFIERS
2967 
2968 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2969 
2970 void preempt_notifier_inc(void)
2971 {
2972 	static_branch_inc(&preempt_notifier_key);
2973 }
2974 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2975 
2976 void preempt_notifier_dec(void)
2977 {
2978 	static_branch_dec(&preempt_notifier_key);
2979 }
2980 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2981 
2982 /**
2983  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2984  * @notifier: notifier struct to register
2985  */
2986 void preempt_notifier_register(struct preempt_notifier *notifier)
2987 {
2988 	if (!static_branch_unlikely(&preempt_notifier_key))
2989 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2990 
2991 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2994 
2995 /**
2996  * preempt_notifier_unregister - no longer interested in preemption notifications
2997  * @notifier: notifier struct to unregister
2998  *
2999  * This is *not* safe to call from within a preemption notifier.
3000  */
3001 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3002 {
3003 	hlist_del(&notifier->link);
3004 }
3005 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3006 
3007 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3008 {
3009 	struct preempt_notifier *notifier;
3010 
3011 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3012 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3013 }
3014 
3015 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3016 {
3017 	if (static_branch_unlikely(&preempt_notifier_key))
3018 		__fire_sched_in_preempt_notifiers(curr);
3019 }
3020 
3021 static void
3022 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3023 				   struct task_struct *next)
3024 {
3025 	struct preempt_notifier *notifier;
3026 
3027 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3028 		notifier->ops->sched_out(notifier, next);
3029 }
3030 
3031 static __always_inline void
3032 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3033 				 struct task_struct *next)
3034 {
3035 	if (static_branch_unlikely(&preempt_notifier_key))
3036 		__fire_sched_out_preempt_notifiers(curr, next);
3037 }
3038 
3039 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3040 
3041 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3042 {
3043 }
3044 
3045 static inline void
3046 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3047 				 struct task_struct *next)
3048 {
3049 }
3050 
3051 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3052 
3053 static inline void prepare_task(struct task_struct *next)
3054 {
3055 #ifdef CONFIG_SMP
3056 	/*
3057 	 * Claim the task as running, we do this before switching to it
3058 	 * such that any running task will have this set.
3059 	 */
3060 	next->on_cpu = 1;
3061 #endif
3062 }
3063 
3064 static inline void finish_task(struct task_struct *prev)
3065 {
3066 #ifdef CONFIG_SMP
3067 	/*
3068 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3069 	 * We must ensure this doesn't happen until the switch is completely
3070 	 * finished.
3071 	 *
3072 	 * In particular, the load of prev->state in finish_task_switch() must
3073 	 * happen before this.
3074 	 *
3075 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3076 	 */
3077 	smp_store_release(&prev->on_cpu, 0);
3078 #endif
3079 }
3080 
3081 static inline void
3082 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3083 {
3084 	/*
3085 	 * Since the runqueue lock will be released by the next
3086 	 * task (which is an invalid locking op but in the case
3087 	 * of the scheduler it's an obvious special-case), so we
3088 	 * do an early lockdep release here:
3089 	 */
3090 	rq_unpin_lock(rq, rf);
3091 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3092 #ifdef CONFIG_DEBUG_SPINLOCK
3093 	/* this is a valid case when another task releases the spinlock */
3094 	rq->lock.owner = next;
3095 #endif
3096 }
3097 
3098 static inline void finish_lock_switch(struct rq *rq)
3099 {
3100 	/*
3101 	 * If we are tracking spinlock dependencies then we have to
3102 	 * fix up the runqueue lock - which gets 'carried over' from
3103 	 * prev into current:
3104 	 */
3105 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3106 	raw_spin_unlock_irq(&rq->lock);
3107 }
3108 
3109 /*
3110  * NOP if the arch has not defined these:
3111  */
3112 
3113 #ifndef prepare_arch_switch
3114 # define prepare_arch_switch(next)	do { } while (0)
3115 #endif
3116 
3117 #ifndef finish_arch_post_lock_switch
3118 # define finish_arch_post_lock_switch()	do { } while (0)
3119 #endif
3120 
3121 /**
3122  * prepare_task_switch - prepare to switch tasks
3123  * @rq: the runqueue preparing to switch
3124  * @prev: the current task that is being switched out
3125  * @next: the task we are going to switch to.
3126  *
3127  * This is called with the rq lock held and interrupts off. It must
3128  * be paired with a subsequent finish_task_switch after the context
3129  * switch.
3130  *
3131  * prepare_task_switch sets up locking and calls architecture specific
3132  * hooks.
3133  */
3134 static inline void
3135 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3136 		    struct task_struct *next)
3137 {
3138 	kcov_prepare_switch(prev);
3139 	sched_info_switch(rq, prev, next);
3140 	perf_event_task_sched_out(prev, next);
3141 	rseq_preempt(prev);
3142 	fire_sched_out_preempt_notifiers(prev, next);
3143 	prepare_task(next);
3144 	prepare_arch_switch(next);
3145 }
3146 
3147 /**
3148  * finish_task_switch - clean up after a task-switch
3149  * @prev: the thread we just switched away from.
3150  *
3151  * finish_task_switch must be called after the context switch, paired
3152  * with a prepare_task_switch call before the context switch.
3153  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3154  * and do any other architecture-specific cleanup actions.
3155  *
3156  * Note that we may have delayed dropping an mm in context_switch(). If
3157  * so, we finish that here outside of the runqueue lock. (Doing it
3158  * with the lock held can cause deadlocks; see schedule() for
3159  * details.)
3160  *
3161  * The context switch have flipped the stack from under us and restored the
3162  * local variables which were saved when this task called schedule() in the
3163  * past. prev == current is still correct but we need to recalculate this_rq
3164  * because prev may have moved to another CPU.
3165  */
3166 static struct rq *finish_task_switch(struct task_struct *prev)
3167 	__releases(rq->lock)
3168 {
3169 	struct rq *rq = this_rq();
3170 	struct mm_struct *mm = rq->prev_mm;
3171 	long prev_state;
3172 
3173 	/*
3174 	 * The previous task will have left us with a preempt_count of 2
3175 	 * because it left us after:
3176 	 *
3177 	 *	schedule()
3178 	 *	  preempt_disable();			// 1
3179 	 *	  __schedule()
3180 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3181 	 *
3182 	 * Also, see FORK_PREEMPT_COUNT.
3183 	 */
3184 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3185 		      "corrupted preempt_count: %s/%d/0x%x\n",
3186 		      current->comm, current->pid, preempt_count()))
3187 		preempt_count_set(FORK_PREEMPT_COUNT);
3188 
3189 	rq->prev_mm = NULL;
3190 
3191 	/*
3192 	 * A task struct has one reference for the use as "current".
3193 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3194 	 * schedule one last time. The schedule call will never return, and
3195 	 * the scheduled task must drop that reference.
3196 	 *
3197 	 * We must observe prev->state before clearing prev->on_cpu (in
3198 	 * finish_task), otherwise a concurrent wakeup can get prev
3199 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3200 	 * transition, resulting in a double drop.
3201 	 */
3202 	prev_state = prev->state;
3203 	vtime_task_switch(prev);
3204 	perf_event_task_sched_in(prev, current);
3205 	finish_task(prev);
3206 	finish_lock_switch(rq);
3207 	finish_arch_post_lock_switch();
3208 	kcov_finish_switch(current);
3209 
3210 	fire_sched_in_preempt_notifiers(current);
3211 	/*
3212 	 * When switching through a kernel thread, the loop in
3213 	 * membarrier_{private,global}_expedited() may have observed that
3214 	 * kernel thread and not issued an IPI. It is therefore possible to
3215 	 * schedule between user->kernel->user threads without passing though
3216 	 * switch_mm(). Membarrier requires a barrier after storing to
3217 	 * rq->curr, before returning to userspace, so provide them here:
3218 	 *
3219 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3220 	 *   provided by mmdrop(),
3221 	 * - a sync_core for SYNC_CORE.
3222 	 */
3223 	if (mm) {
3224 		membarrier_mm_sync_core_before_usermode(mm);
3225 		mmdrop(mm);
3226 	}
3227 	if (unlikely(prev_state == TASK_DEAD)) {
3228 		if (prev->sched_class->task_dead)
3229 			prev->sched_class->task_dead(prev);
3230 
3231 		/*
3232 		 * Remove function-return probe instances associated with this
3233 		 * task and put them back on the free list.
3234 		 */
3235 		kprobe_flush_task(prev);
3236 
3237 		/* Task is done with its stack. */
3238 		put_task_stack(prev);
3239 
3240 		put_task_struct_rcu_user(prev);
3241 	}
3242 
3243 	tick_nohz_task_switch();
3244 	return rq;
3245 }
3246 
3247 #ifdef CONFIG_SMP
3248 
3249 /* rq->lock is NOT held, but preemption is disabled */
3250 static void __balance_callback(struct rq *rq)
3251 {
3252 	struct callback_head *head, *next;
3253 	void (*func)(struct rq *rq);
3254 	unsigned long flags;
3255 
3256 	raw_spin_lock_irqsave(&rq->lock, flags);
3257 	head = rq->balance_callback;
3258 	rq->balance_callback = NULL;
3259 	while (head) {
3260 		func = (void (*)(struct rq *))head->func;
3261 		next = head->next;
3262 		head->next = NULL;
3263 		head = next;
3264 
3265 		func(rq);
3266 	}
3267 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3268 }
3269 
3270 static inline void balance_callback(struct rq *rq)
3271 {
3272 	if (unlikely(rq->balance_callback))
3273 		__balance_callback(rq);
3274 }
3275 
3276 #else
3277 
3278 static inline void balance_callback(struct rq *rq)
3279 {
3280 }
3281 
3282 #endif
3283 
3284 /**
3285  * schedule_tail - first thing a freshly forked thread must call.
3286  * @prev: the thread we just switched away from.
3287  */
3288 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3289 	__releases(rq->lock)
3290 {
3291 	struct rq *rq;
3292 
3293 	/*
3294 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3295 	 * finish_task_switch() for details.
3296 	 *
3297 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3298 	 * and the preempt_enable() will end up enabling preemption (on
3299 	 * PREEMPT_COUNT kernels).
3300 	 */
3301 
3302 	rq = finish_task_switch(prev);
3303 	balance_callback(rq);
3304 	preempt_enable();
3305 
3306 	if (current->set_child_tid)
3307 		put_user(task_pid_vnr(current), current->set_child_tid);
3308 
3309 	calculate_sigpending();
3310 }
3311 
3312 /*
3313  * context_switch - switch to the new MM and the new thread's register state.
3314  */
3315 static __always_inline struct rq *
3316 context_switch(struct rq *rq, struct task_struct *prev,
3317 	       struct task_struct *next, struct rq_flags *rf)
3318 {
3319 	prepare_task_switch(rq, prev, next);
3320 
3321 	/*
3322 	 * For paravirt, this is coupled with an exit in switch_to to
3323 	 * combine the page table reload and the switch backend into
3324 	 * one hypercall.
3325 	 */
3326 	arch_start_context_switch(prev);
3327 
3328 	/*
3329 	 * kernel -> kernel   lazy + transfer active
3330 	 *   user -> kernel   lazy + mmgrab() active
3331 	 *
3332 	 * kernel ->   user   switch + mmdrop() active
3333 	 *   user ->   user   switch
3334 	 */
3335 	if (!next->mm) {                                // to kernel
3336 		enter_lazy_tlb(prev->active_mm, next);
3337 
3338 		next->active_mm = prev->active_mm;
3339 		if (prev->mm)                           // from user
3340 			mmgrab(prev->active_mm);
3341 		else
3342 			prev->active_mm = NULL;
3343 	} else {                                        // to user
3344 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3345 		/*
3346 		 * sys_membarrier() requires an smp_mb() between setting
3347 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3348 		 *
3349 		 * The below provides this either through switch_mm(), or in
3350 		 * case 'prev->active_mm == next->mm' through
3351 		 * finish_task_switch()'s mmdrop().
3352 		 */
3353 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3354 
3355 		if (!prev->mm) {                        // from kernel
3356 			/* will mmdrop() in finish_task_switch(). */
3357 			rq->prev_mm = prev->active_mm;
3358 			prev->active_mm = NULL;
3359 		}
3360 	}
3361 
3362 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3363 
3364 	prepare_lock_switch(rq, next, rf);
3365 
3366 	/* Here we just switch the register state and the stack. */
3367 	switch_to(prev, next, prev);
3368 	barrier();
3369 
3370 	return finish_task_switch(prev);
3371 }
3372 
3373 /*
3374  * nr_running and nr_context_switches:
3375  *
3376  * externally visible scheduler statistics: current number of runnable
3377  * threads, total number of context switches performed since bootup.
3378  */
3379 unsigned long nr_running(void)
3380 {
3381 	unsigned long i, sum = 0;
3382 
3383 	for_each_online_cpu(i)
3384 		sum += cpu_rq(i)->nr_running;
3385 
3386 	return sum;
3387 }
3388 
3389 /*
3390  * Check if only the current task is running on the CPU.
3391  *
3392  * Caution: this function does not check that the caller has disabled
3393  * preemption, thus the result might have a time-of-check-to-time-of-use
3394  * race.  The caller is responsible to use it correctly, for example:
3395  *
3396  * - from a non-preemptible section (of course)
3397  *
3398  * - from a thread that is bound to a single CPU
3399  *
3400  * - in a loop with very short iterations (e.g. a polling loop)
3401  */
3402 bool single_task_running(void)
3403 {
3404 	return raw_rq()->nr_running == 1;
3405 }
3406 EXPORT_SYMBOL(single_task_running);
3407 
3408 unsigned long long nr_context_switches(void)
3409 {
3410 	int i;
3411 	unsigned long long sum = 0;
3412 
3413 	for_each_possible_cpu(i)
3414 		sum += cpu_rq(i)->nr_switches;
3415 
3416 	return sum;
3417 }
3418 
3419 /*
3420  * Consumers of these two interfaces, like for example the cpuidle menu
3421  * governor, are using nonsensical data. Preferring shallow idle state selection
3422  * for a CPU that has IO-wait which might not even end up running the task when
3423  * it does become runnable.
3424  */
3425 
3426 unsigned long nr_iowait_cpu(int cpu)
3427 {
3428 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3429 }
3430 
3431 /*
3432  * IO-wait accounting, and how its mostly bollocks (on SMP).
3433  *
3434  * The idea behind IO-wait account is to account the idle time that we could
3435  * have spend running if it were not for IO. That is, if we were to improve the
3436  * storage performance, we'd have a proportional reduction in IO-wait time.
3437  *
3438  * This all works nicely on UP, where, when a task blocks on IO, we account
3439  * idle time as IO-wait, because if the storage were faster, it could've been
3440  * running and we'd not be idle.
3441  *
3442  * This has been extended to SMP, by doing the same for each CPU. This however
3443  * is broken.
3444  *
3445  * Imagine for instance the case where two tasks block on one CPU, only the one
3446  * CPU will have IO-wait accounted, while the other has regular idle. Even
3447  * though, if the storage were faster, both could've ran at the same time,
3448  * utilising both CPUs.
3449  *
3450  * This means, that when looking globally, the current IO-wait accounting on
3451  * SMP is a lower bound, by reason of under accounting.
3452  *
3453  * Worse, since the numbers are provided per CPU, they are sometimes
3454  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3455  * associated with any one particular CPU, it can wake to another CPU than it
3456  * blocked on. This means the per CPU IO-wait number is meaningless.
3457  *
3458  * Task CPU affinities can make all that even more 'interesting'.
3459  */
3460 
3461 unsigned long nr_iowait(void)
3462 {
3463 	unsigned long i, sum = 0;
3464 
3465 	for_each_possible_cpu(i)
3466 		sum += nr_iowait_cpu(i);
3467 
3468 	return sum;
3469 }
3470 
3471 #ifdef CONFIG_SMP
3472 
3473 /*
3474  * sched_exec - execve() is a valuable balancing opportunity, because at
3475  * this point the task has the smallest effective memory and cache footprint.
3476  */
3477 void sched_exec(void)
3478 {
3479 	struct task_struct *p = current;
3480 	unsigned long flags;
3481 	int dest_cpu;
3482 
3483 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3484 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3485 	if (dest_cpu == smp_processor_id())
3486 		goto unlock;
3487 
3488 	if (likely(cpu_active(dest_cpu))) {
3489 		struct migration_arg arg = { p, dest_cpu };
3490 
3491 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3492 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3493 		return;
3494 	}
3495 unlock:
3496 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3497 }
3498 
3499 #endif
3500 
3501 DEFINE_PER_CPU(struct kernel_stat, kstat);
3502 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3503 
3504 EXPORT_PER_CPU_SYMBOL(kstat);
3505 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3506 
3507 /*
3508  * The function fair_sched_class.update_curr accesses the struct curr
3509  * and its field curr->exec_start; when called from task_sched_runtime(),
3510  * we observe a high rate of cache misses in practice.
3511  * Prefetching this data results in improved performance.
3512  */
3513 static inline void prefetch_curr_exec_start(struct task_struct *p)
3514 {
3515 #ifdef CONFIG_FAIR_GROUP_SCHED
3516 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3517 #else
3518 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3519 #endif
3520 	prefetch(curr);
3521 	prefetch(&curr->exec_start);
3522 }
3523 
3524 /*
3525  * Return accounted runtime for the task.
3526  * In case the task is currently running, return the runtime plus current's
3527  * pending runtime that have not been accounted yet.
3528  */
3529 unsigned long long task_sched_runtime(struct task_struct *p)
3530 {
3531 	struct rq_flags rf;
3532 	struct rq *rq;
3533 	u64 ns;
3534 
3535 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3536 	/*
3537 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3538 	 * So we have a optimization chance when the task's delta_exec is 0.
3539 	 * Reading ->on_cpu is racy, but this is ok.
3540 	 *
3541 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3542 	 * If we race with it entering CPU, unaccounted time is 0. This is
3543 	 * indistinguishable from the read occurring a few cycles earlier.
3544 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3545 	 * been accounted, so we're correct here as well.
3546 	 */
3547 	if (!p->on_cpu || !task_on_rq_queued(p))
3548 		return p->se.sum_exec_runtime;
3549 #endif
3550 
3551 	rq = task_rq_lock(p, &rf);
3552 	/*
3553 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3554 	 * project cycles that may never be accounted to this
3555 	 * thread, breaking clock_gettime().
3556 	 */
3557 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3558 		prefetch_curr_exec_start(p);
3559 		update_rq_clock(rq);
3560 		p->sched_class->update_curr(rq);
3561 	}
3562 	ns = p->se.sum_exec_runtime;
3563 	task_rq_unlock(rq, p, &rf);
3564 
3565 	return ns;
3566 }
3567 
3568 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3569 
3570 void arch_set_thermal_pressure(struct cpumask *cpus,
3571 			       unsigned long th_pressure)
3572 {
3573 	int cpu;
3574 
3575 	for_each_cpu(cpu, cpus)
3576 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3577 }
3578 
3579 /*
3580  * This function gets called by the timer code, with HZ frequency.
3581  * We call it with interrupts disabled.
3582  */
3583 void scheduler_tick(void)
3584 {
3585 	int cpu = smp_processor_id();
3586 	struct rq *rq = cpu_rq(cpu);
3587 	struct task_struct *curr = rq->curr;
3588 	struct rq_flags rf;
3589 	unsigned long thermal_pressure;
3590 
3591 	arch_scale_freq_tick();
3592 	sched_clock_tick();
3593 
3594 	rq_lock(rq, &rf);
3595 
3596 	update_rq_clock(rq);
3597 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3598 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3599 	curr->sched_class->task_tick(rq, curr, 0);
3600 	calc_global_load_tick(rq);
3601 	psi_task_tick(rq);
3602 
3603 	rq_unlock(rq, &rf);
3604 
3605 	perf_event_task_tick();
3606 
3607 #ifdef CONFIG_SMP
3608 	rq->idle_balance = idle_cpu(cpu);
3609 	trigger_load_balance(rq);
3610 #endif
3611 }
3612 
3613 #ifdef CONFIG_NO_HZ_FULL
3614 
3615 struct tick_work {
3616 	int			cpu;
3617 	atomic_t		state;
3618 	struct delayed_work	work;
3619 };
3620 /* Values for ->state, see diagram below. */
3621 #define TICK_SCHED_REMOTE_OFFLINE	0
3622 #define TICK_SCHED_REMOTE_OFFLINING	1
3623 #define TICK_SCHED_REMOTE_RUNNING	2
3624 
3625 /*
3626  * State diagram for ->state:
3627  *
3628  *
3629  *          TICK_SCHED_REMOTE_OFFLINE
3630  *                    |   ^
3631  *                    |   |
3632  *                    |   | sched_tick_remote()
3633  *                    |   |
3634  *                    |   |
3635  *                    +--TICK_SCHED_REMOTE_OFFLINING
3636  *                    |   ^
3637  *                    |   |
3638  * sched_tick_start() |   | sched_tick_stop()
3639  *                    |   |
3640  *                    V   |
3641  *          TICK_SCHED_REMOTE_RUNNING
3642  *
3643  *
3644  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3645  * and sched_tick_start() are happy to leave the state in RUNNING.
3646  */
3647 
3648 static struct tick_work __percpu *tick_work_cpu;
3649 
3650 static void sched_tick_remote(struct work_struct *work)
3651 {
3652 	struct delayed_work *dwork = to_delayed_work(work);
3653 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3654 	int cpu = twork->cpu;
3655 	struct rq *rq = cpu_rq(cpu);
3656 	struct task_struct *curr;
3657 	struct rq_flags rf;
3658 	u64 delta;
3659 	int os;
3660 
3661 	/*
3662 	 * Handle the tick only if it appears the remote CPU is running in full
3663 	 * dynticks mode. The check is racy by nature, but missing a tick or
3664 	 * having one too much is no big deal because the scheduler tick updates
3665 	 * statistics and checks timeslices in a time-independent way, regardless
3666 	 * of when exactly it is running.
3667 	 */
3668 	if (!tick_nohz_tick_stopped_cpu(cpu))
3669 		goto out_requeue;
3670 
3671 	rq_lock_irq(rq, &rf);
3672 	curr = rq->curr;
3673 	if (cpu_is_offline(cpu))
3674 		goto out_unlock;
3675 
3676 	update_rq_clock(rq);
3677 
3678 	if (!is_idle_task(curr)) {
3679 		/*
3680 		 * Make sure the next tick runs within a reasonable
3681 		 * amount of time.
3682 		 */
3683 		delta = rq_clock_task(rq) - curr->se.exec_start;
3684 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3685 	}
3686 	curr->sched_class->task_tick(rq, curr, 0);
3687 
3688 	calc_load_nohz_remote(rq);
3689 out_unlock:
3690 	rq_unlock_irq(rq, &rf);
3691 out_requeue:
3692 
3693 	/*
3694 	 * Run the remote tick once per second (1Hz). This arbitrary
3695 	 * frequency is large enough to avoid overload but short enough
3696 	 * to keep scheduler internal stats reasonably up to date.  But
3697 	 * first update state to reflect hotplug activity if required.
3698 	 */
3699 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3700 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3701 	if (os == TICK_SCHED_REMOTE_RUNNING)
3702 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3703 }
3704 
3705 static void sched_tick_start(int cpu)
3706 {
3707 	int os;
3708 	struct tick_work *twork;
3709 
3710 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3711 		return;
3712 
3713 	WARN_ON_ONCE(!tick_work_cpu);
3714 
3715 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3716 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3717 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3718 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3719 		twork->cpu = cpu;
3720 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3721 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3722 	}
3723 }
3724 
3725 #ifdef CONFIG_HOTPLUG_CPU
3726 static void sched_tick_stop(int cpu)
3727 {
3728 	struct tick_work *twork;
3729 	int os;
3730 
3731 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3732 		return;
3733 
3734 	WARN_ON_ONCE(!tick_work_cpu);
3735 
3736 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3737 	/* There cannot be competing actions, but don't rely on stop-machine. */
3738 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3739 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3740 	/* Don't cancel, as this would mess up the state machine. */
3741 }
3742 #endif /* CONFIG_HOTPLUG_CPU */
3743 
3744 int __init sched_tick_offload_init(void)
3745 {
3746 	tick_work_cpu = alloc_percpu(struct tick_work);
3747 	BUG_ON(!tick_work_cpu);
3748 	return 0;
3749 }
3750 
3751 #else /* !CONFIG_NO_HZ_FULL */
3752 static inline void sched_tick_start(int cpu) { }
3753 static inline void sched_tick_stop(int cpu) { }
3754 #endif
3755 
3756 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3757 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3758 /*
3759  * If the value passed in is equal to the current preempt count
3760  * then we just disabled preemption. Start timing the latency.
3761  */
3762 static inline void preempt_latency_start(int val)
3763 {
3764 	if (preempt_count() == val) {
3765 		unsigned long ip = get_lock_parent_ip();
3766 #ifdef CONFIG_DEBUG_PREEMPT
3767 		current->preempt_disable_ip = ip;
3768 #endif
3769 		trace_preempt_off(CALLER_ADDR0, ip);
3770 	}
3771 }
3772 
3773 void preempt_count_add(int val)
3774 {
3775 #ifdef CONFIG_DEBUG_PREEMPT
3776 	/*
3777 	 * Underflow?
3778 	 */
3779 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3780 		return;
3781 #endif
3782 	__preempt_count_add(val);
3783 #ifdef CONFIG_DEBUG_PREEMPT
3784 	/*
3785 	 * Spinlock count overflowing soon?
3786 	 */
3787 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3788 				PREEMPT_MASK - 10);
3789 #endif
3790 	preempt_latency_start(val);
3791 }
3792 EXPORT_SYMBOL(preempt_count_add);
3793 NOKPROBE_SYMBOL(preempt_count_add);
3794 
3795 /*
3796  * If the value passed in equals to the current preempt count
3797  * then we just enabled preemption. Stop timing the latency.
3798  */
3799 static inline void preempt_latency_stop(int val)
3800 {
3801 	if (preempt_count() == val)
3802 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3803 }
3804 
3805 void preempt_count_sub(int val)
3806 {
3807 #ifdef CONFIG_DEBUG_PREEMPT
3808 	/*
3809 	 * Underflow?
3810 	 */
3811 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3812 		return;
3813 	/*
3814 	 * Is the spinlock portion underflowing?
3815 	 */
3816 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3817 			!(preempt_count() & PREEMPT_MASK)))
3818 		return;
3819 #endif
3820 
3821 	preempt_latency_stop(val);
3822 	__preempt_count_sub(val);
3823 }
3824 EXPORT_SYMBOL(preempt_count_sub);
3825 NOKPROBE_SYMBOL(preempt_count_sub);
3826 
3827 #else
3828 static inline void preempt_latency_start(int val) { }
3829 static inline void preempt_latency_stop(int val) { }
3830 #endif
3831 
3832 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3833 {
3834 #ifdef CONFIG_DEBUG_PREEMPT
3835 	return p->preempt_disable_ip;
3836 #else
3837 	return 0;
3838 #endif
3839 }
3840 
3841 /*
3842  * Print scheduling while atomic bug:
3843  */
3844 static noinline void __schedule_bug(struct task_struct *prev)
3845 {
3846 	/* Save this before calling printk(), since that will clobber it */
3847 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3848 
3849 	if (oops_in_progress)
3850 		return;
3851 
3852 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3853 		prev->comm, prev->pid, preempt_count());
3854 
3855 	debug_show_held_locks(prev);
3856 	print_modules();
3857 	if (irqs_disabled())
3858 		print_irqtrace_events(prev);
3859 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3860 	    && in_atomic_preempt_off()) {
3861 		pr_err("Preemption disabled at:");
3862 		print_ip_sym(preempt_disable_ip);
3863 		pr_cont("\n");
3864 	}
3865 	if (panic_on_warn)
3866 		panic("scheduling while atomic\n");
3867 
3868 	dump_stack();
3869 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3870 }
3871 
3872 /*
3873  * Various schedule()-time debugging checks and statistics:
3874  */
3875 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3876 {
3877 #ifdef CONFIG_SCHED_STACK_END_CHECK
3878 	if (task_stack_end_corrupted(prev))
3879 		panic("corrupted stack end detected inside scheduler\n");
3880 #endif
3881 
3882 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3883 	if (!preempt && prev->state && prev->non_block_count) {
3884 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3885 			prev->comm, prev->pid, prev->non_block_count);
3886 		dump_stack();
3887 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3888 	}
3889 #endif
3890 
3891 	if (unlikely(in_atomic_preempt_off())) {
3892 		__schedule_bug(prev);
3893 		preempt_count_set(PREEMPT_DISABLED);
3894 	}
3895 	rcu_sleep_check();
3896 
3897 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3898 
3899 	schedstat_inc(this_rq()->sched_count);
3900 }
3901 
3902 /*
3903  * Pick up the highest-prio task:
3904  */
3905 static inline struct task_struct *
3906 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3907 {
3908 	const struct sched_class *class;
3909 	struct task_struct *p;
3910 
3911 	/*
3912 	 * Optimization: we know that if all tasks are in the fair class we can
3913 	 * call that function directly, but only if the @prev task wasn't of a
3914 	 * higher scheduling class, because otherwise those loose the
3915 	 * opportunity to pull in more work from other CPUs.
3916 	 */
3917 	if (likely((prev->sched_class == &idle_sched_class ||
3918 		    prev->sched_class == &fair_sched_class) &&
3919 		   rq->nr_running == rq->cfs.h_nr_running)) {
3920 
3921 		p = pick_next_task_fair(rq, prev, rf);
3922 		if (unlikely(p == RETRY_TASK))
3923 			goto restart;
3924 
3925 		/* Assumes fair_sched_class->next == idle_sched_class */
3926 		if (!p) {
3927 			put_prev_task(rq, prev);
3928 			p = pick_next_task_idle(rq);
3929 		}
3930 
3931 		return p;
3932 	}
3933 
3934 restart:
3935 #ifdef CONFIG_SMP
3936 	/*
3937 	 * We must do the balancing pass before put_next_task(), such
3938 	 * that when we release the rq->lock the task is in the same
3939 	 * state as before we took rq->lock.
3940 	 *
3941 	 * We can terminate the balance pass as soon as we know there is
3942 	 * a runnable task of @class priority or higher.
3943 	 */
3944 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3945 		if (class->balance(rq, prev, rf))
3946 			break;
3947 	}
3948 #endif
3949 
3950 	put_prev_task(rq, prev);
3951 
3952 	for_each_class(class) {
3953 		p = class->pick_next_task(rq);
3954 		if (p)
3955 			return p;
3956 	}
3957 
3958 	/* The idle class should always have a runnable task: */
3959 	BUG();
3960 }
3961 
3962 /*
3963  * __schedule() is the main scheduler function.
3964  *
3965  * The main means of driving the scheduler and thus entering this function are:
3966  *
3967  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3968  *
3969  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3970  *      paths. For example, see arch/x86/entry_64.S.
3971  *
3972  *      To drive preemption between tasks, the scheduler sets the flag in timer
3973  *      interrupt handler scheduler_tick().
3974  *
3975  *   3. Wakeups don't really cause entry into schedule(). They add a
3976  *      task to the run-queue and that's it.
3977  *
3978  *      Now, if the new task added to the run-queue preempts the current
3979  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3980  *      called on the nearest possible occasion:
3981  *
3982  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3983  *
3984  *         - in syscall or exception context, at the next outmost
3985  *           preempt_enable(). (this might be as soon as the wake_up()'s
3986  *           spin_unlock()!)
3987  *
3988  *         - in IRQ context, return from interrupt-handler to
3989  *           preemptible context
3990  *
3991  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3992  *         then at the next:
3993  *
3994  *          - cond_resched() call
3995  *          - explicit schedule() call
3996  *          - return from syscall or exception to user-space
3997  *          - return from interrupt-handler to user-space
3998  *
3999  * WARNING: must be called with preemption disabled!
4000  */
4001 static void __sched notrace __schedule(bool preempt)
4002 {
4003 	struct task_struct *prev, *next;
4004 	unsigned long *switch_count;
4005 	struct rq_flags rf;
4006 	struct rq *rq;
4007 	int cpu;
4008 
4009 	cpu = smp_processor_id();
4010 	rq = cpu_rq(cpu);
4011 	prev = rq->curr;
4012 
4013 	schedule_debug(prev, preempt);
4014 
4015 	if (sched_feat(HRTICK))
4016 		hrtick_clear(rq);
4017 
4018 	local_irq_disable();
4019 	rcu_note_context_switch(preempt);
4020 
4021 	/*
4022 	 * Make sure that signal_pending_state()->signal_pending() below
4023 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4024 	 * done by the caller to avoid the race with signal_wake_up().
4025 	 *
4026 	 * The membarrier system call requires a full memory barrier
4027 	 * after coming from user-space, before storing to rq->curr.
4028 	 */
4029 	rq_lock(rq, &rf);
4030 	smp_mb__after_spinlock();
4031 
4032 	/* Promote REQ to ACT */
4033 	rq->clock_update_flags <<= 1;
4034 	update_rq_clock(rq);
4035 
4036 	switch_count = &prev->nivcsw;
4037 	if (!preempt && prev->state) {
4038 		if (signal_pending_state(prev->state, prev)) {
4039 			prev->state = TASK_RUNNING;
4040 		} else {
4041 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4042 
4043 			if (prev->in_iowait) {
4044 				atomic_inc(&rq->nr_iowait);
4045 				delayacct_blkio_start();
4046 			}
4047 		}
4048 		switch_count = &prev->nvcsw;
4049 	}
4050 
4051 	next = pick_next_task(rq, prev, &rf);
4052 	clear_tsk_need_resched(prev);
4053 	clear_preempt_need_resched();
4054 
4055 	if (likely(prev != next)) {
4056 		rq->nr_switches++;
4057 		/*
4058 		 * RCU users of rcu_dereference(rq->curr) may not see
4059 		 * changes to task_struct made by pick_next_task().
4060 		 */
4061 		RCU_INIT_POINTER(rq->curr, next);
4062 		/*
4063 		 * The membarrier system call requires each architecture
4064 		 * to have a full memory barrier after updating
4065 		 * rq->curr, before returning to user-space.
4066 		 *
4067 		 * Here are the schemes providing that barrier on the
4068 		 * various architectures:
4069 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4070 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4071 		 * - finish_lock_switch() for weakly-ordered
4072 		 *   architectures where spin_unlock is a full barrier,
4073 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4074 		 *   is a RELEASE barrier),
4075 		 */
4076 		++*switch_count;
4077 
4078 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4079 
4080 		trace_sched_switch(preempt, prev, next);
4081 
4082 		/* Also unlocks the rq: */
4083 		rq = context_switch(rq, prev, next, &rf);
4084 	} else {
4085 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4086 		rq_unlock_irq(rq, &rf);
4087 	}
4088 
4089 	balance_callback(rq);
4090 }
4091 
4092 void __noreturn do_task_dead(void)
4093 {
4094 	/* Causes final put_task_struct in finish_task_switch(): */
4095 	set_special_state(TASK_DEAD);
4096 
4097 	/* Tell freezer to ignore us: */
4098 	current->flags |= PF_NOFREEZE;
4099 
4100 	__schedule(false);
4101 	BUG();
4102 
4103 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4104 	for (;;)
4105 		cpu_relax();
4106 }
4107 
4108 static inline void sched_submit_work(struct task_struct *tsk)
4109 {
4110 	if (!tsk->state)
4111 		return;
4112 
4113 	/*
4114 	 * If a worker went to sleep, notify and ask workqueue whether
4115 	 * it wants to wake up a task to maintain concurrency.
4116 	 * As this function is called inside the schedule() context,
4117 	 * we disable preemption to avoid it calling schedule() again
4118 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4119 	 * requires it.
4120 	 */
4121 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4122 		preempt_disable();
4123 		if (tsk->flags & PF_WQ_WORKER)
4124 			wq_worker_sleeping(tsk);
4125 		else
4126 			io_wq_worker_sleeping(tsk);
4127 		preempt_enable_no_resched();
4128 	}
4129 
4130 	if (tsk_is_pi_blocked(tsk))
4131 		return;
4132 
4133 	/*
4134 	 * If we are going to sleep and we have plugged IO queued,
4135 	 * make sure to submit it to avoid deadlocks.
4136 	 */
4137 	if (blk_needs_flush_plug(tsk))
4138 		blk_schedule_flush_plug(tsk);
4139 }
4140 
4141 static void sched_update_worker(struct task_struct *tsk)
4142 {
4143 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4144 		if (tsk->flags & PF_WQ_WORKER)
4145 			wq_worker_running(tsk);
4146 		else
4147 			io_wq_worker_running(tsk);
4148 	}
4149 }
4150 
4151 asmlinkage __visible void __sched schedule(void)
4152 {
4153 	struct task_struct *tsk = current;
4154 
4155 	sched_submit_work(tsk);
4156 	do {
4157 		preempt_disable();
4158 		__schedule(false);
4159 		sched_preempt_enable_no_resched();
4160 	} while (need_resched());
4161 	sched_update_worker(tsk);
4162 }
4163 EXPORT_SYMBOL(schedule);
4164 
4165 /*
4166  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4167  * state (have scheduled out non-voluntarily) by making sure that all
4168  * tasks have either left the run queue or have gone into user space.
4169  * As idle tasks do not do either, they must not ever be preempted
4170  * (schedule out non-voluntarily).
4171  *
4172  * schedule_idle() is similar to schedule_preempt_disable() except that it
4173  * never enables preemption because it does not call sched_submit_work().
4174  */
4175 void __sched schedule_idle(void)
4176 {
4177 	/*
4178 	 * As this skips calling sched_submit_work(), which the idle task does
4179 	 * regardless because that function is a nop when the task is in a
4180 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4181 	 * current task can be in any other state. Note, idle is always in the
4182 	 * TASK_RUNNING state.
4183 	 */
4184 	WARN_ON_ONCE(current->state);
4185 	do {
4186 		__schedule(false);
4187 	} while (need_resched());
4188 }
4189 
4190 #ifdef CONFIG_CONTEXT_TRACKING
4191 asmlinkage __visible void __sched schedule_user(void)
4192 {
4193 	/*
4194 	 * If we come here after a random call to set_need_resched(),
4195 	 * or we have been woken up remotely but the IPI has not yet arrived,
4196 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4197 	 * we find a better solution.
4198 	 *
4199 	 * NB: There are buggy callers of this function.  Ideally we
4200 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4201 	 * too frequently to make sense yet.
4202 	 */
4203 	enum ctx_state prev_state = exception_enter();
4204 	schedule();
4205 	exception_exit(prev_state);
4206 }
4207 #endif
4208 
4209 /**
4210  * schedule_preempt_disabled - called with preemption disabled
4211  *
4212  * Returns with preemption disabled. Note: preempt_count must be 1
4213  */
4214 void __sched schedule_preempt_disabled(void)
4215 {
4216 	sched_preempt_enable_no_resched();
4217 	schedule();
4218 	preempt_disable();
4219 }
4220 
4221 static void __sched notrace preempt_schedule_common(void)
4222 {
4223 	do {
4224 		/*
4225 		 * Because the function tracer can trace preempt_count_sub()
4226 		 * and it also uses preempt_enable/disable_notrace(), if
4227 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4228 		 * by the function tracer will call this function again and
4229 		 * cause infinite recursion.
4230 		 *
4231 		 * Preemption must be disabled here before the function
4232 		 * tracer can trace. Break up preempt_disable() into two
4233 		 * calls. One to disable preemption without fear of being
4234 		 * traced. The other to still record the preemption latency,
4235 		 * which can also be traced by the function tracer.
4236 		 */
4237 		preempt_disable_notrace();
4238 		preempt_latency_start(1);
4239 		__schedule(true);
4240 		preempt_latency_stop(1);
4241 		preempt_enable_no_resched_notrace();
4242 
4243 		/*
4244 		 * Check again in case we missed a preemption opportunity
4245 		 * between schedule and now.
4246 		 */
4247 	} while (need_resched());
4248 }
4249 
4250 #ifdef CONFIG_PREEMPTION
4251 /*
4252  * This is the entry point to schedule() from in-kernel preemption
4253  * off of preempt_enable.
4254  */
4255 asmlinkage __visible void __sched notrace preempt_schedule(void)
4256 {
4257 	/*
4258 	 * If there is a non-zero preempt_count or interrupts are disabled,
4259 	 * we do not want to preempt the current task. Just return..
4260 	 */
4261 	if (likely(!preemptible()))
4262 		return;
4263 
4264 	preempt_schedule_common();
4265 }
4266 NOKPROBE_SYMBOL(preempt_schedule);
4267 EXPORT_SYMBOL(preempt_schedule);
4268 
4269 /**
4270  * preempt_schedule_notrace - preempt_schedule called by tracing
4271  *
4272  * The tracing infrastructure uses preempt_enable_notrace to prevent
4273  * recursion and tracing preempt enabling caused by the tracing
4274  * infrastructure itself. But as tracing can happen in areas coming
4275  * from userspace or just about to enter userspace, a preempt enable
4276  * can occur before user_exit() is called. This will cause the scheduler
4277  * to be called when the system is still in usermode.
4278  *
4279  * To prevent this, the preempt_enable_notrace will use this function
4280  * instead of preempt_schedule() to exit user context if needed before
4281  * calling the scheduler.
4282  */
4283 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4284 {
4285 	enum ctx_state prev_ctx;
4286 
4287 	if (likely(!preemptible()))
4288 		return;
4289 
4290 	do {
4291 		/*
4292 		 * Because the function tracer can trace preempt_count_sub()
4293 		 * and it also uses preempt_enable/disable_notrace(), if
4294 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4295 		 * by the function tracer will call this function again and
4296 		 * cause infinite recursion.
4297 		 *
4298 		 * Preemption must be disabled here before the function
4299 		 * tracer can trace. Break up preempt_disable() into two
4300 		 * calls. One to disable preemption without fear of being
4301 		 * traced. The other to still record the preemption latency,
4302 		 * which can also be traced by the function tracer.
4303 		 */
4304 		preempt_disable_notrace();
4305 		preempt_latency_start(1);
4306 		/*
4307 		 * Needs preempt disabled in case user_exit() is traced
4308 		 * and the tracer calls preempt_enable_notrace() causing
4309 		 * an infinite recursion.
4310 		 */
4311 		prev_ctx = exception_enter();
4312 		__schedule(true);
4313 		exception_exit(prev_ctx);
4314 
4315 		preempt_latency_stop(1);
4316 		preempt_enable_no_resched_notrace();
4317 	} while (need_resched());
4318 }
4319 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4320 
4321 #endif /* CONFIG_PREEMPTION */
4322 
4323 /*
4324  * This is the entry point to schedule() from kernel preemption
4325  * off of irq context.
4326  * Note, that this is called and return with irqs disabled. This will
4327  * protect us against recursive calling from irq.
4328  */
4329 asmlinkage __visible void __sched preempt_schedule_irq(void)
4330 {
4331 	enum ctx_state prev_state;
4332 
4333 	/* Catch callers which need to be fixed */
4334 	BUG_ON(preempt_count() || !irqs_disabled());
4335 
4336 	prev_state = exception_enter();
4337 
4338 	do {
4339 		preempt_disable();
4340 		local_irq_enable();
4341 		__schedule(true);
4342 		local_irq_disable();
4343 		sched_preempt_enable_no_resched();
4344 	} while (need_resched());
4345 
4346 	exception_exit(prev_state);
4347 }
4348 
4349 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4350 			  void *key)
4351 {
4352 	return try_to_wake_up(curr->private, mode, wake_flags);
4353 }
4354 EXPORT_SYMBOL(default_wake_function);
4355 
4356 #ifdef CONFIG_RT_MUTEXES
4357 
4358 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4359 {
4360 	if (pi_task)
4361 		prio = min(prio, pi_task->prio);
4362 
4363 	return prio;
4364 }
4365 
4366 static inline int rt_effective_prio(struct task_struct *p, int prio)
4367 {
4368 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4369 
4370 	return __rt_effective_prio(pi_task, prio);
4371 }
4372 
4373 /*
4374  * rt_mutex_setprio - set the current priority of a task
4375  * @p: task to boost
4376  * @pi_task: donor task
4377  *
4378  * This function changes the 'effective' priority of a task. It does
4379  * not touch ->normal_prio like __setscheduler().
4380  *
4381  * Used by the rt_mutex code to implement priority inheritance
4382  * logic. Call site only calls if the priority of the task changed.
4383  */
4384 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4385 {
4386 	int prio, oldprio, queued, running, queue_flag =
4387 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4388 	const struct sched_class *prev_class;
4389 	struct rq_flags rf;
4390 	struct rq *rq;
4391 
4392 	/* XXX used to be waiter->prio, not waiter->task->prio */
4393 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4394 
4395 	/*
4396 	 * If nothing changed; bail early.
4397 	 */
4398 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4399 		return;
4400 
4401 	rq = __task_rq_lock(p, &rf);
4402 	update_rq_clock(rq);
4403 	/*
4404 	 * Set under pi_lock && rq->lock, such that the value can be used under
4405 	 * either lock.
4406 	 *
4407 	 * Note that there is loads of tricky to make this pointer cache work
4408 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4409 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4410 	 * task is allowed to run again (and can exit). This ensures the pointer
4411 	 * points to a blocked task -- which guaratees the task is present.
4412 	 */
4413 	p->pi_top_task = pi_task;
4414 
4415 	/*
4416 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4417 	 */
4418 	if (prio == p->prio && !dl_prio(prio))
4419 		goto out_unlock;
4420 
4421 	/*
4422 	 * Idle task boosting is a nono in general. There is one
4423 	 * exception, when PREEMPT_RT and NOHZ is active:
4424 	 *
4425 	 * The idle task calls get_next_timer_interrupt() and holds
4426 	 * the timer wheel base->lock on the CPU and another CPU wants
4427 	 * to access the timer (probably to cancel it). We can safely
4428 	 * ignore the boosting request, as the idle CPU runs this code
4429 	 * with interrupts disabled and will complete the lock
4430 	 * protected section without being interrupted. So there is no
4431 	 * real need to boost.
4432 	 */
4433 	if (unlikely(p == rq->idle)) {
4434 		WARN_ON(p != rq->curr);
4435 		WARN_ON(p->pi_blocked_on);
4436 		goto out_unlock;
4437 	}
4438 
4439 	trace_sched_pi_setprio(p, pi_task);
4440 	oldprio = p->prio;
4441 
4442 	if (oldprio == prio)
4443 		queue_flag &= ~DEQUEUE_MOVE;
4444 
4445 	prev_class = p->sched_class;
4446 	queued = task_on_rq_queued(p);
4447 	running = task_current(rq, p);
4448 	if (queued)
4449 		dequeue_task(rq, p, queue_flag);
4450 	if (running)
4451 		put_prev_task(rq, p);
4452 
4453 	/*
4454 	 * Boosting condition are:
4455 	 * 1. -rt task is running and holds mutex A
4456 	 *      --> -dl task blocks on mutex A
4457 	 *
4458 	 * 2. -dl task is running and holds mutex A
4459 	 *      --> -dl task blocks on mutex A and could preempt the
4460 	 *          running task
4461 	 */
4462 	if (dl_prio(prio)) {
4463 		if (!dl_prio(p->normal_prio) ||
4464 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4465 			p->dl.dl_boosted = 1;
4466 			queue_flag |= ENQUEUE_REPLENISH;
4467 		} else
4468 			p->dl.dl_boosted = 0;
4469 		p->sched_class = &dl_sched_class;
4470 	} else if (rt_prio(prio)) {
4471 		if (dl_prio(oldprio))
4472 			p->dl.dl_boosted = 0;
4473 		if (oldprio < prio)
4474 			queue_flag |= ENQUEUE_HEAD;
4475 		p->sched_class = &rt_sched_class;
4476 	} else {
4477 		if (dl_prio(oldprio))
4478 			p->dl.dl_boosted = 0;
4479 		if (rt_prio(oldprio))
4480 			p->rt.timeout = 0;
4481 		p->sched_class = &fair_sched_class;
4482 	}
4483 
4484 	p->prio = prio;
4485 
4486 	if (queued)
4487 		enqueue_task(rq, p, queue_flag);
4488 	if (running)
4489 		set_next_task(rq, p);
4490 
4491 	check_class_changed(rq, p, prev_class, oldprio);
4492 out_unlock:
4493 	/* Avoid rq from going away on us: */
4494 	preempt_disable();
4495 	__task_rq_unlock(rq, &rf);
4496 
4497 	balance_callback(rq);
4498 	preempt_enable();
4499 }
4500 #else
4501 static inline int rt_effective_prio(struct task_struct *p, int prio)
4502 {
4503 	return prio;
4504 }
4505 #endif
4506 
4507 void set_user_nice(struct task_struct *p, long nice)
4508 {
4509 	bool queued, running;
4510 	int old_prio;
4511 	struct rq_flags rf;
4512 	struct rq *rq;
4513 
4514 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4515 		return;
4516 	/*
4517 	 * We have to be careful, if called from sys_setpriority(),
4518 	 * the task might be in the middle of scheduling on another CPU.
4519 	 */
4520 	rq = task_rq_lock(p, &rf);
4521 	update_rq_clock(rq);
4522 
4523 	/*
4524 	 * The RT priorities are set via sched_setscheduler(), but we still
4525 	 * allow the 'normal' nice value to be set - but as expected
4526 	 * it wont have any effect on scheduling until the task is
4527 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4528 	 */
4529 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4530 		p->static_prio = NICE_TO_PRIO(nice);
4531 		goto out_unlock;
4532 	}
4533 	queued = task_on_rq_queued(p);
4534 	running = task_current(rq, p);
4535 	if (queued)
4536 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4537 	if (running)
4538 		put_prev_task(rq, p);
4539 
4540 	p->static_prio = NICE_TO_PRIO(nice);
4541 	set_load_weight(p, true);
4542 	old_prio = p->prio;
4543 	p->prio = effective_prio(p);
4544 
4545 	if (queued)
4546 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4547 	if (running)
4548 		set_next_task(rq, p);
4549 
4550 	/*
4551 	 * If the task increased its priority or is running and
4552 	 * lowered its priority, then reschedule its CPU:
4553 	 */
4554 	p->sched_class->prio_changed(rq, p, old_prio);
4555 
4556 out_unlock:
4557 	task_rq_unlock(rq, p, &rf);
4558 }
4559 EXPORT_SYMBOL(set_user_nice);
4560 
4561 /*
4562  * can_nice - check if a task can reduce its nice value
4563  * @p: task
4564  * @nice: nice value
4565  */
4566 int can_nice(const struct task_struct *p, const int nice)
4567 {
4568 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4569 	int nice_rlim = nice_to_rlimit(nice);
4570 
4571 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4572 		capable(CAP_SYS_NICE));
4573 }
4574 
4575 #ifdef __ARCH_WANT_SYS_NICE
4576 
4577 /*
4578  * sys_nice - change the priority of the current process.
4579  * @increment: priority increment
4580  *
4581  * sys_setpriority is a more generic, but much slower function that
4582  * does similar things.
4583  */
4584 SYSCALL_DEFINE1(nice, int, increment)
4585 {
4586 	long nice, retval;
4587 
4588 	/*
4589 	 * Setpriority might change our priority at the same moment.
4590 	 * We don't have to worry. Conceptually one call occurs first
4591 	 * and we have a single winner.
4592 	 */
4593 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4594 	nice = task_nice(current) + increment;
4595 
4596 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4597 	if (increment < 0 && !can_nice(current, nice))
4598 		return -EPERM;
4599 
4600 	retval = security_task_setnice(current, nice);
4601 	if (retval)
4602 		return retval;
4603 
4604 	set_user_nice(current, nice);
4605 	return 0;
4606 }
4607 
4608 #endif
4609 
4610 /**
4611  * task_prio - return the priority value of a given task.
4612  * @p: the task in question.
4613  *
4614  * Return: The priority value as seen by users in /proc.
4615  * RT tasks are offset by -200. Normal tasks are centered
4616  * around 0, value goes from -16 to +15.
4617  */
4618 int task_prio(const struct task_struct *p)
4619 {
4620 	return p->prio - MAX_RT_PRIO;
4621 }
4622 
4623 /**
4624  * idle_cpu - is a given CPU idle currently?
4625  * @cpu: the processor in question.
4626  *
4627  * Return: 1 if the CPU is currently idle. 0 otherwise.
4628  */
4629 int idle_cpu(int cpu)
4630 {
4631 	struct rq *rq = cpu_rq(cpu);
4632 
4633 	if (rq->curr != rq->idle)
4634 		return 0;
4635 
4636 	if (rq->nr_running)
4637 		return 0;
4638 
4639 #ifdef CONFIG_SMP
4640 	if (!llist_empty(&rq->wake_list))
4641 		return 0;
4642 #endif
4643 
4644 	return 1;
4645 }
4646 
4647 /**
4648  * available_idle_cpu - is a given CPU idle for enqueuing work.
4649  * @cpu: the CPU in question.
4650  *
4651  * Return: 1 if the CPU is currently idle. 0 otherwise.
4652  */
4653 int available_idle_cpu(int cpu)
4654 {
4655 	if (!idle_cpu(cpu))
4656 		return 0;
4657 
4658 	if (vcpu_is_preempted(cpu))
4659 		return 0;
4660 
4661 	return 1;
4662 }
4663 
4664 /**
4665  * idle_task - return the idle task for a given CPU.
4666  * @cpu: the processor in question.
4667  *
4668  * Return: The idle task for the CPU @cpu.
4669  */
4670 struct task_struct *idle_task(int cpu)
4671 {
4672 	return cpu_rq(cpu)->idle;
4673 }
4674 
4675 /**
4676  * find_process_by_pid - find a process with a matching PID value.
4677  * @pid: the pid in question.
4678  *
4679  * The task of @pid, if found. %NULL otherwise.
4680  */
4681 static struct task_struct *find_process_by_pid(pid_t pid)
4682 {
4683 	return pid ? find_task_by_vpid(pid) : current;
4684 }
4685 
4686 /*
4687  * sched_setparam() passes in -1 for its policy, to let the functions
4688  * it calls know not to change it.
4689  */
4690 #define SETPARAM_POLICY	-1
4691 
4692 static void __setscheduler_params(struct task_struct *p,
4693 		const struct sched_attr *attr)
4694 {
4695 	int policy = attr->sched_policy;
4696 
4697 	if (policy == SETPARAM_POLICY)
4698 		policy = p->policy;
4699 
4700 	p->policy = policy;
4701 
4702 	if (dl_policy(policy))
4703 		__setparam_dl(p, attr);
4704 	else if (fair_policy(policy))
4705 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4706 
4707 	/*
4708 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4709 	 * !rt_policy. Always setting this ensures that things like
4710 	 * getparam()/getattr() don't report silly values for !rt tasks.
4711 	 */
4712 	p->rt_priority = attr->sched_priority;
4713 	p->normal_prio = normal_prio(p);
4714 	set_load_weight(p, true);
4715 }
4716 
4717 /* Actually do priority change: must hold pi & rq lock. */
4718 static void __setscheduler(struct rq *rq, struct task_struct *p,
4719 			   const struct sched_attr *attr, bool keep_boost)
4720 {
4721 	/*
4722 	 * If params can't change scheduling class changes aren't allowed
4723 	 * either.
4724 	 */
4725 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4726 		return;
4727 
4728 	__setscheduler_params(p, attr);
4729 
4730 	/*
4731 	 * Keep a potential priority boosting if called from
4732 	 * sched_setscheduler().
4733 	 */
4734 	p->prio = normal_prio(p);
4735 	if (keep_boost)
4736 		p->prio = rt_effective_prio(p, p->prio);
4737 
4738 	if (dl_prio(p->prio))
4739 		p->sched_class = &dl_sched_class;
4740 	else if (rt_prio(p->prio))
4741 		p->sched_class = &rt_sched_class;
4742 	else
4743 		p->sched_class = &fair_sched_class;
4744 }
4745 
4746 /*
4747  * Check the target process has a UID that matches the current process's:
4748  */
4749 static bool check_same_owner(struct task_struct *p)
4750 {
4751 	const struct cred *cred = current_cred(), *pcred;
4752 	bool match;
4753 
4754 	rcu_read_lock();
4755 	pcred = __task_cred(p);
4756 	match = (uid_eq(cred->euid, pcred->euid) ||
4757 		 uid_eq(cred->euid, pcred->uid));
4758 	rcu_read_unlock();
4759 	return match;
4760 }
4761 
4762 static int __sched_setscheduler(struct task_struct *p,
4763 				const struct sched_attr *attr,
4764 				bool user, bool pi)
4765 {
4766 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4767 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4768 	int retval, oldprio, oldpolicy = -1, queued, running;
4769 	int new_effective_prio, policy = attr->sched_policy;
4770 	const struct sched_class *prev_class;
4771 	struct rq_flags rf;
4772 	int reset_on_fork;
4773 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4774 	struct rq *rq;
4775 
4776 	/* The pi code expects interrupts enabled */
4777 	BUG_ON(pi && in_interrupt());
4778 recheck:
4779 	/* Double check policy once rq lock held: */
4780 	if (policy < 0) {
4781 		reset_on_fork = p->sched_reset_on_fork;
4782 		policy = oldpolicy = p->policy;
4783 	} else {
4784 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4785 
4786 		if (!valid_policy(policy))
4787 			return -EINVAL;
4788 	}
4789 
4790 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4791 		return -EINVAL;
4792 
4793 	/*
4794 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4795 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4796 	 * SCHED_BATCH and SCHED_IDLE is 0.
4797 	 */
4798 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4799 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4800 		return -EINVAL;
4801 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4802 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4803 		return -EINVAL;
4804 
4805 	/*
4806 	 * Allow unprivileged RT tasks to decrease priority:
4807 	 */
4808 	if (user && !capable(CAP_SYS_NICE)) {
4809 		if (fair_policy(policy)) {
4810 			if (attr->sched_nice < task_nice(p) &&
4811 			    !can_nice(p, attr->sched_nice))
4812 				return -EPERM;
4813 		}
4814 
4815 		if (rt_policy(policy)) {
4816 			unsigned long rlim_rtprio =
4817 					task_rlimit(p, RLIMIT_RTPRIO);
4818 
4819 			/* Can't set/change the rt policy: */
4820 			if (policy != p->policy && !rlim_rtprio)
4821 				return -EPERM;
4822 
4823 			/* Can't increase priority: */
4824 			if (attr->sched_priority > p->rt_priority &&
4825 			    attr->sched_priority > rlim_rtprio)
4826 				return -EPERM;
4827 		}
4828 
4829 		 /*
4830 		  * Can't set/change SCHED_DEADLINE policy at all for now
4831 		  * (safest behavior); in the future we would like to allow
4832 		  * unprivileged DL tasks to increase their relative deadline
4833 		  * or reduce their runtime (both ways reducing utilization)
4834 		  */
4835 		if (dl_policy(policy))
4836 			return -EPERM;
4837 
4838 		/*
4839 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4840 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4841 		 */
4842 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4843 			if (!can_nice(p, task_nice(p)))
4844 				return -EPERM;
4845 		}
4846 
4847 		/* Can't change other user's priorities: */
4848 		if (!check_same_owner(p))
4849 			return -EPERM;
4850 
4851 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4852 		if (p->sched_reset_on_fork && !reset_on_fork)
4853 			return -EPERM;
4854 	}
4855 
4856 	if (user) {
4857 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4858 			return -EINVAL;
4859 
4860 		retval = security_task_setscheduler(p);
4861 		if (retval)
4862 			return retval;
4863 	}
4864 
4865 	/* Update task specific "requested" clamps */
4866 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4867 		retval = uclamp_validate(p, attr);
4868 		if (retval)
4869 			return retval;
4870 	}
4871 
4872 	if (pi)
4873 		cpuset_read_lock();
4874 
4875 	/*
4876 	 * Make sure no PI-waiters arrive (or leave) while we are
4877 	 * changing the priority of the task:
4878 	 *
4879 	 * To be able to change p->policy safely, the appropriate
4880 	 * runqueue lock must be held.
4881 	 */
4882 	rq = task_rq_lock(p, &rf);
4883 	update_rq_clock(rq);
4884 
4885 	/*
4886 	 * Changing the policy of the stop threads its a very bad idea:
4887 	 */
4888 	if (p == rq->stop) {
4889 		retval = -EINVAL;
4890 		goto unlock;
4891 	}
4892 
4893 	/*
4894 	 * If not changing anything there's no need to proceed further,
4895 	 * but store a possible modification of reset_on_fork.
4896 	 */
4897 	if (unlikely(policy == p->policy)) {
4898 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4899 			goto change;
4900 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4901 			goto change;
4902 		if (dl_policy(policy) && dl_param_changed(p, attr))
4903 			goto change;
4904 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4905 			goto change;
4906 
4907 		p->sched_reset_on_fork = reset_on_fork;
4908 		retval = 0;
4909 		goto unlock;
4910 	}
4911 change:
4912 
4913 	if (user) {
4914 #ifdef CONFIG_RT_GROUP_SCHED
4915 		/*
4916 		 * Do not allow realtime tasks into groups that have no runtime
4917 		 * assigned.
4918 		 */
4919 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4920 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4921 				!task_group_is_autogroup(task_group(p))) {
4922 			retval = -EPERM;
4923 			goto unlock;
4924 		}
4925 #endif
4926 #ifdef CONFIG_SMP
4927 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4928 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4929 			cpumask_t *span = rq->rd->span;
4930 
4931 			/*
4932 			 * Don't allow tasks with an affinity mask smaller than
4933 			 * the entire root_domain to become SCHED_DEADLINE. We
4934 			 * will also fail if there's no bandwidth available.
4935 			 */
4936 			if (!cpumask_subset(span, p->cpus_ptr) ||
4937 			    rq->rd->dl_bw.bw == 0) {
4938 				retval = -EPERM;
4939 				goto unlock;
4940 			}
4941 		}
4942 #endif
4943 	}
4944 
4945 	/* Re-check policy now with rq lock held: */
4946 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4947 		policy = oldpolicy = -1;
4948 		task_rq_unlock(rq, p, &rf);
4949 		if (pi)
4950 			cpuset_read_unlock();
4951 		goto recheck;
4952 	}
4953 
4954 	/*
4955 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4956 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4957 	 * is available.
4958 	 */
4959 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4960 		retval = -EBUSY;
4961 		goto unlock;
4962 	}
4963 
4964 	p->sched_reset_on_fork = reset_on_fork;
4965 	oldprio = p->prio;
4966 
4967 	if (pi) {
4968 		/*
4969 		 * Take priority boosted tasks into account. If the new
4970 		 * effective priority is unchanged, we just store the new
4971 		 * normal parameters and do not touch the scheduler class and
4972 		 * the runqueue. This will be done when the task deboost
4973 		 * itself.
4974 		 */
4975 		new_effective_prio = rt_effective_prio(p, newprio);
4976 		if (new_effective_prio == oldprio)
4977 			queue_flags &= ~DEQUEUE_MOVE;
4978 	}
4979 
4980 	queued = task_on_rq_queued(p);
4981 	running = task_current(rq, p);
4982 	if (queued)
4983 		dequeue_task(rq, p, queue_flags);
4984 	if (running)
4985 		put_prev_task(rq, p);
4986 
4987 	prev_class = p->sched_class;
4988 
4989 	__setscheduler(rq, p, attr, pi);
4990 	__setscheduler_uclamp(p, attr);
4991 
4992 	if (queued) {
4993 		/*
4994 		 * We enqueue to tail when the priority of a task is
4995 		 * increased (user space view).
4996 		 */
4997 		if (oldprio < p->prio)
4998 			queue_flags |= ENQUEUE_HEAD;
4999 
5000 		enqueue_task(rq, p, queue_flags);
5001 	}
5002 	if (running)
5003 		set_next_task(rq, p);
5004 
5005 	check_class_changed(rq, p, prev_class, oldprio);
5006 
5007 	/* Avoid rq from going away on us: */
5008 	preempt_disable();
5009 	task_rq_unlock(rq, p, &rf);
5010 
5011 	if (pi) {
5012 		cpuset_read_unlock();
5013 		rt_mutex_adjust_pi(p);
5014 	}
5015 
5016 	/* Run balance callbacks after we've adjusted the PI chain: */
5017 	balance_callback(rq);
5018 	preempt_enable();
5019 
5020 	return 0;
5021 
5022 unlock:
5023 	task_rq_unlock(rq, p, &rf);
5024 	if (pi)
5025 		cpuset_read_unlock();
5026 	return retval;
5027 }
5028 
5029 static int _sched_setscheduler(struct task_struct *p, int policy,
5030 			       const struct sched_param *param, bool check)
5031 {
5032 	struct sched_attr attr = {
5033 		.sched_policy   = policy,
5034 		.sched_priority = param->sched_priority,
5035 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5036 	};
5037 
5038 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5039 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5040 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5041 		policy &= ~SCHED_RESET_ON_FORK;
5042 		attr.sched_policy = policy;
5043 	}
5044 
5045 	return __sched_setscheduler(p, &attr, check, true);
5046 }
5047 /**
5048  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5049  * @p: the task in question.
5050  * @policy: new policy.
5051  * @param: structure containing the new RT priority.
5052  *
5053  * Return: 0 on success. An error code otherwise.
5054  *
5055  * NOTE that the task may be already dead.
5056  */
5057 int sched_setscheduler(struct task_struct *p, int policy,
5058 		       const struct sched_param *param)
5059 {
5060 	return _sched_setscheduler(p, policy, param, true);
5061 }
5062 EXPORT_SYMBOL_GPL(sched_setscheduler);
5063 
5064 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5065 {
5066 	return __sched_setscheduler(p, attr, true, true);
5067 }
5068 EXPORT_SYMBOL_GPL(sched_setattr);
5069 
5070 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5071 {
5072 	return __sched_setscheduler(p, attr, false, true);
5073 }
5074 
5075 /**
5076  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5077  * @p: the task in question.
5078  * @policy: new policy.
5079  * @param: structure containing the new RT priority.
5080  *
5081  * Just like sched_setscheduler, only don't bother checking if the
5082  * current context has permission.  For example, this is needed in
5083  * stop_machine(): we create temporary high priority worker threads,
5084  * but our caller might not have that capability.
5085  *
5086  * Return: 0 on success. An error code otherwise.
5087  */
5088 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5089 			       const struct sched_param *param)
5090 {
5091 	return _sched_setscheduler(p, policy, param, false);
5092 }
5093 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5094 
5095 static int
5096 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5097 {
5098 	struct sched_param lparam;
5099 	struct task_struct *p;
5100 	int retval;
5101 
5102 	if (!param || pid < 0)
5103 		return -EINVAL;
5104 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5105 		return -EFAULT;
5106 
5107 	rcu_read_lock();
5108 	retval = -ESRCH;
5109 	p = find_process_by_pid(pid);
5110 	if (likely(p))
5111 		get_task_struct(p);
5112 	rcu_read_unlock();
5113 
5114 	if (likely(p)) {
5115 		retval = sched_setscheduler(p, policy, &lparam);
5116 		put_task_struct(p);
5117 	}
5118 
5119 	return retval;
5120 }
5121 
5122 /*
5123  * Mimics kernel/events/core.c perf_copy_attr().
5124  */
5125 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5126 {
5127 	u32 size;
5128 	int ret;
5129 
5130 	/* Zero the full structure, so that a short copy will be nice: */
5131 	memset(attr, 0, sizeof(*attr));
5132 
5133 	ret = get_user(size, &uattr->size);
5134 	if (ret)
5135 		return ret;
5136 
5137 	/* ABI compatibility quirk: */
5138 	if (!size)
5139 		size = SCHED_ATTR_SIZE_VER0;
5140 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5141 		goto err_size;
5142 
5143 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5144 	if (ret) {
5145 		if (ret == -E2BIG)
5146 			goto err_size;
5147 		return ret;
5148 	}
5149 
5150 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5151 	    size < SCHED_ATTR_SIZE_VER1)
5152 		return -EINVAL;
5153 
5154 	/*
5155 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5156 	 * to be strict and return an error on out-of-bounds values?
5157 	 */
5158 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5159 
5160 	return 0;
5161 
5162 err_size:
5163 	put_user(sizeof(*attr), &uattr->size);
5164 	return -E2BIG;
5165 }
5166 
5167 /**
5168  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5169  * @pid: the pid in question.
5170  * @policy: new policy.
5171  * @param: structure containing the new RT priority.
5172  *
5173  * Return: 0 on success. An error code otherwise.
5174  */
5175 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5176 {
5177 	if (policy < 0)
5178 		return -EINVAL;
5179 
5180 	return do_sched_setscheduler(pid, policy, param);
5181 }
5182 
5183 /**
5184  * sys_sched_setparam - set/change the RT priority of a thread
5185  * @pid: the pid in question.
5186  * @param: structure containing the new RT priority.
5187  *
5188  * Return: 0 on success. An error code otherwise.
5189  */
5190 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5191 {
5192 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5193 }
5194 
5195 /**
5196  * sys_sched_setattr - same as above, but with extended sched_attr
5197  * @pid: the pid in question.
5198  * @uattr: structure containing the extended parameters.
5199  * @flags: for future extension.
5200  */
5201 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5202 			       unsigned int, flags)
5203 {
5204 	struct sched_attr attr;
5205 	struct task_struct *p;
5206 	int retval;
5207 
5208 	if (!uattr || pid < 0 || flags)
5209 		return -EINVAL;
5210 
5211 	retval = sched_copy_attr(uattr, &attr);
5212 	if (retval)
5213 		return retval;
5214 
5215 	if ((int)attr.sched_policy < 0)
5216 		return -EINVAL;
5217 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5218 		attr.sched_policy = SETPARAM_POLICY;
5219 
5220 	rcu_read_lock();
5221 	retval = -ESRCH;
5222 	p = find_process_by_pid(pid);
5223 	if (likely(p))
5224 		get_task_struct(p);
5225 	rcu_read_unlock();
5226 
5227 	if (likely(p)) {
5228 		retval = sched_setattr(p, &attr);
5229 		put_task_struct(p);
5230 	}
5231 
5232 	return retval;
5233 }
5234 
5235 /**
5236  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5237  * @pid: the pid in question.
5238  *
5239  * Return: On success, the policy of the thread. Otherwise, a negative error
5240  * code.
5241  */
5242 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5243 {
5244 	struct task_struct *p;
5245 	int retval;
5246 
5247 	if (pid < 0)
5248 		return -EINVAL;
5249 
5250 	retval = -ESRCH;
5251 	rcu_read_lock();
5252 	p = find_process_by_pid(pid);
5253 	if (p) {
5254 		retval = security_task_getscheduler(p);
5255 		if (!retval)
5256 			retval = p->policy
5257 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5258 	}
5259 	rcu_read_unlock();
5260 	return retval;
5261 }
5262 
5263 /**
5264  * sys_sched_getparam - get the RT priority of a thread
5265  * @pid: the pid in question.
5266  * @param: structure containing the RT priority.
5267  *
5268  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5269  * code.
5270  */
5271 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5272 {
5273 	struct sched_param lp = { .sched_priority = 0 };
5274 	struct task_struct *p;
5275 	int retval;
5276 
5277 	if (!param || pid < 0)
5278 		return -EINVAL;
5279 
5280 	rcu_read_lock();
5281 	p = find_process_by_pid(pid);
5282 	retval = -ESRCH;
5283 	if (!p)
5284 		goto out_unlock;
5285 
5286 	retval = security_task_getscheduler(p);
5287 	if (retval)
5288 		goto out_unlock;
5289 
5290 	if (task_has_rt_policy(p))
5291 		lp.sched_priority = p->rt_priority;
5292 	rcu_read_unlock();
5293 
5294 	/*
5295 	 * This one might sleep, we cannot do it with a spinlock held ...
5296 	 */
5297 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5298 
5299 	return retval;
5300 
5301 out_unlock:
5302 	rcu_read_unlock();
5303 	return retval;
5304 }
5305 
5306 /*
5307  * Copy the kernel size attribute structure (which might be larger
5308  * than what user-space knows about) to user-space.
5309  *
5310  * Note that all cases are valid: user-space buffer can be larger or
5311  * smaller than the kernel-space buffer. The usual case is that both
5312  * have the same size.
5313  */
5314 static int
5315 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5316 			struct sched_attr *kattr,
5317 			unsigned int usize)
5318 {
5319 	unsigned int ksize = sizeof(*kattr);
5320 
5321 	if (!access_ok(uattr, usize))
5322 		return -EFAULT;
5323 
5324 	/*
5325 	 * sched_getattr() ABI forwards and backwards compatibility:
5326 	 *
5327 	 * If usize == ksize then we just copy everything to user-space and all is good.
5328 	 *
5329 	 * If usize < ksize then we only copy as much as user-space has space for,
5330 	 * this keeps ABI compatibility as well. We skip the rest.
5331 	 *
5332 	 * If usize > ksize then user-space is using a newer version of the ABI,
5333 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5334 	 * detect the kernel's knowledge of attributes from the attr->size value
5335 	 * which is set to ksize in this case.
5336 	 */
5337 	kattr->size = min(usize, ksize);
5338 
5339 	if (copy_to_user(uattr, kattr, kattr->size))
5340 		return -EFAULT;
5341 
5342 	return 0;
5343 }
5344 
5345 /**
5346  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5347  * @pid: the pid in question.
5348  * @uattr: structure containing the extended parameters.
5349  * @usize: sizeof(attr) for fwd/bwd comp.
5350  * @flags: for future extension.
5351  */
5352 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5353 		unsigned int, usize, unsigned int, flags)
5354 {
5355 	struct sched_attr kattr = { };
5356 	struct task_struct *p;
5357 	int retval;
5358 
5359 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5360 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5361 		return -EINVAL;
5362 
5363 	rcu_read_lock();
5364 	p = find_process_by_pid(pid);
5365 	retval = -ESRCH;
5366 	if (!p)
5367 		goto out_unlock;
5368 
5369 	retval = security_task_getscheduler(p);
5370 	if (retval)
5371 		goto out_unlock;
5372 
5373 	kattr.sched_policy = p->policy;
5374 	if (p->sched_reset_on_fork)
5375 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5376 	if (task_has_dl_policy(p))
5377 		__getparam_dl(p, &kattr);
5378 	else if (task_has_rt_policy(p))
5379 		kattr.sched_priority = p->rt_priority;
5380 	else
5381 		kattr.sched_nice = task_nice(p);
5382 
5383 #ifdef CONFIG_UCLAMP_TASK
5384 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5385 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5386 #endif
5387 
5388 	rcu_read_unlock();
5389 
5390 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5391 
5392 out_unlock:
5393 	rcu_read_unlock();
5394 	return retval;
5395 }
5396 
5397 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5398 {
5399 	cpumask_var_t cpus_allowed, new_mask;
5400 	struct task_struct *p;
5401 	int retval;
5402 
5403 	rcu_read_lock();
5404 
5405 	p = find_process_by_pid(pid);
5406 	if (!p) {
5407 		rcu_read_unlock();
5408 		return -ESRCH;
5409 	}
5410 
5411 	/* Prevent p going away */
5412 	get_task_struct(p);
5413 	rcu_read_unlock();
5414 
5415 	if (p->flags & PF_NO_SETAFFINITY) {
5416 		retval = -EINVAL;
5417 		goto out_put_task;
5418 	}
5419 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5420 		retval = -ENOMEM;
5421 		goto out_put_task;
5422 	}
5423 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5424 		retval = -ENOMEM;
5425 		goto out_free_cpus_allowed;
5426 	}
5427 	retval = -EPERM;
5428 	if (!check_same_owner(p)) {
5429 		rcu_read_lock();
5430 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5431 			rcu_read_unlock();
5432 			goto out_free_new_mask;
5433 		}
5434 		rcu_read_unlock();
5435 	}
5436 
5437 	retval = security_task_setscheduler(p);
5438 	if (retval)
5439 		goto out_free_new_mask;
5440 
5441 
5442 	cpuset_cpus_allowed(p, cpus_allowed);
5443 	cpumask_and(new_mask, in_mask, cpus_allowed);
5444 
5445 	/*
5446 	 * Since bandwidth control happens on root_domain basis,
5447 	 * if admission test is enabled, we only admit -deadline
5448 	 * tasks allowed to run on all the CPUs in the task's
5449 	 * root_domain.
5450 	 */
5451 #ifdef CONFIG_SMP
5452 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5453 		rcu_read_lock();
5454 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5455 			retval = -EBUSY;
5456 			rcu_read_unlock();
5457 			goto out_free_new_mask;
5458 		}
5459 		rcu_read_unlock();
5460 	}
5461 #endif
5462 again:
5463 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5464 
5465 	if (!retval) {
5466 		cpuset_cpus_allowed(p, cpus_allowed);
5467 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5468 			/*
5469 			 * We must have raced with a concurrent cpuset
5470 			 * update. Just reset the cpus_allowed to the
5471 			 * cpuset's cpus_allowed
5472 			 */
5473 			cpumask_copy(new_mask, cpus_allowed);
5474 			goto again;
5475 		}
5476 	}
5477 out_free_new_mask:
5478 	free_cpumask_var(new_mask);
5479 out_free_cpus_allowed:
5480 	free_cpumask_var(cpus_allowed);
5481 out_put_task:
5482 	put_task_struct(p);
5483 	return retval;
5484 }
5485 
5486 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5487 			     struct cpumask *new_mask)
5488 {
5489 	if (len < cpumask_size())
5490 		cpumask_clear(new_mask);
5491 	else if (len > cpumask_size())
5492 		len = cpumask_size();
5493 
5494 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5495 }
5496 
5497 /**
5498  * sys_sched_setaffinity - set the CPU affinity of a process
5499  * @pid: pid of the process
5500  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5501  * @user_mask_ptr: user-space pointer to the new CPU mask
5502  *
5503  * Return: 0 on success. An error code otherwise.
5504  */
5505 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5506 		unsigned long __user *, user_mask_ptr)
5507 {
5508 	cpumask_var_t new_mask;
5509 	int retval;
5510 
5511 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5512 		return -ENOMEM;
5513 
5514 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5515 	if (retval == 0)
5516 		retval = sched_setaffinity(pid, new_mask);
5517 	free_cpumask_var(new_mask);
5518 	return retval;
5519 }
5520 
5521 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5522 {
5523 	struct task_struct *p;
5524 	unsigned long flags;
5525 	int retval;
5526 
5527 	rcu_read_lock();
5528 
5529 	retval = -ESRCH;
5530 	p = find_process_by_pid(pid);
5531 	if (!p)
5532 		goto out_unlock;
5533 
5534 	retval = security_task_getscheduler(p);
5535 	if (retval)
5536 		goto out_unlock;
5537 
5538 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5539 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5540 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5541 
5542 out_unlock:
5543 	rcu_read_unlock();
5544 
5545 	return retval;
5546 }
5547 
5548 /**
5549  * sys_sched_getaffinity - get the CPU affinity of a process
5550  * @pid: pid of the process
5551  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5552  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5553  *
5554  * Return: size of CPU mask copied to user_mask_ptr on success. An
5555  * error code otherwise.
5556  */
5557 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5558 		unsigned long __user *, user_mask_ptr)
5559 {
5560 	int ret;
5561 	cpumask_var_t mask;
5562 
5563 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5564 		return -EINVAL;
5565 	if (len & (sizeof(unsigned long)-1))
5566 		return -EINVAL;
5567 
5568 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5569 		return -ENOMEM;
5570 
5571 	ret = sched_getaffinity(pid, mask);
5572 	if (ret == 0) {
5573 		unsigned int retlen = min(len, cpumask_size());
5574 
5575 		if (copy_to_user(user_mask_ptr, mask, retlen))
5576 			ret = -EFAULT;
5577 		else
5578 			ret = retlen;
5579 	}
5580 	free_cpumask_var(mask);
5581 
5582 	return ret;
5583 }
5584 
5585 /**
5586  * sys_sched_yield - yield the current processor to other threads.
5587  *
5588  * This function yields the current CPU to other tasks. If there are no
5589  * other threads running on this CPU then this function will return.
5590  *
5591  * Return: 0.
5592  */
5593 static void do_sched_yield(void)
5594 {
5595 	struct rq_flags rf;
5596 	struct rq *rq;
5597 
5598 	rq = this_rq_lock_irq(&rf);
5599 
5600 	schedstat_inc(rq->yld_count);
5601 	current->sched_class->yield_task(rq);
5602 
5603 	/*
5604 	 * Since we are going to call schedule() anyway, there's
5605 	 * no need to preempt or enable interrupts:
5606 	 */
5607 	preempt_disable();
5608 	rq_unlock(rq, &rf);
5609 	sched_preempt_enable_no_resched();
5610 
5611 	schedule();
5612 }
5613 
5614 SYSCALL_DEFINE0(sched_yield)
5615 {
5616 	do_sched_yield();
5617 	return 0;
5618 }
5619 
5620 #ifndef CONFIG_PREEMPTION
5621 int __sched _cond_resched(void)
5622 {
5623 	if (should_resched(0)) {
5624 		preempt_schedule_common();
5625 		return 1;
5626 	}
5627 	rcu_all_qs();
5628 	return 0;
5629 }
5630 EXPORT_SYMBOL(_cond_resched);
5631 #endif
5632 
5633 /*
5634  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5635  * call schedule, and on return reacquire the lock.
5636  *
5637  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5638  * operations here to prevent schedule() from being called twice (once via
5639  * spin_unlock(), once by hand).
5640  */
5641 int __cond_resched_lock(spinlock_t *lock)
5642 {
5643 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5644 	int ret = 0;
5645 
5646 	lockdep_assert_held(lock);
5647 
5648 	if (spin_needbreak(lock) || resched) {
5649 		spin_unlock(lock);
5650 		if (resched)
5651 			preempt_schedule_common();
5652 		else
5653 			cpu_relax();
5654 		ret = 1;
5655 		spin_lock(lock);
5656 	}
5657 	return ret;
5658 }
5659 EXPORT_SYMBOL(__cond_resched_lock);
5660 
5661 /**
5662  * yield - yield the current processor to other threads.
5663  *
5664  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5665  *
5666  * The scheduler is at all times free to pick the calling task as the most
5667  * eligible task to run, if removing the yield() call from your code breaks
5668  * it, its already broken.
5669  *
5670  * Typical broken usage is:
5671  *
5672  * while (!event)
5673  *	yield();
5674  *
5675  * where one assumes that yield() will let 'the other' process run that will
5676  * make event true. If the current task is a SCHED_FIFO task that will never
5677  * happen. Never use yield() as a progress guarantee!!
5678  *
5679  * If you want to use yield() to wait for something, use wait_event().
5680  * If you want to use yield() to be 'nice' for others, use cond_resched().
5681  * If you still want to use yield(), do not!
5682  */
5683 void __sched yield(void)
5684 {
5685 	set_current_state(TASK_RUNNING);
5686 	do_sched_yield();
5687 }
5688 EXPORT_SYMBOL(yield);
5689 
5690 /**
5691  * yield_to - yield the current processor to another thread in
5692  * your thread group, or accelerate that thread toward the
5693  * processor it's on.
5694  * @p: target task
5695  * @preempt: whether task preemption is allowed or not
5696  *
5697  * It's the caller's job to ensure that the target task struct
5698  * can't go away on us before we can do any checks.
5699  *
5700  * Return:
5701  *	true (>0) if we indeed boosted the target task.
5702  *	false (0) if we failed to boost the target.
5703  *	-ESRCH if there's no task to yield to.
5704  */
5705 int __sched yield_to(struct task_struct *p, bool preempt)
5706 {
5707 	struct task_struct *curr = current;
5708 	struct rq *rq, *p_rq;
5709 	unsigned long flags;
5710 	int yielded = 0;
5711 
5712 	local_irq_save(flags);
5713 	rq = this_rq();
5714 
5715 again:
5716 	p_rq = task_rq(p);
5717 	/*
5718 	 * If we're the only runnable task on the rq and target rq also
5719 	 * has only one task, there's absolutely no point in yielding.
5720 	 */
5721 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5722 		yielded = -ESRCH;
5723 		goto out_irq;
5724 	}
5725 
5726 	double_rq_lock(rq, p_rq);
5727 	if (task_rq(p) != p_rq) {
5728 		double_rq_unlock(rq, p_rq);
5729 		goto again;
5730 	}
5731 
5732 	if (!curr->sched_class->yield_to_task)
5733 		goto out_unlock;
5734 
5735 	if (curr->sched_class != p->sched_class)
5736 		goto out_unlock;
5737 
5738 	if (task_running(p_rq, p) || p->state)
5739 		goto out_unlock;
5740 
5741 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5742 	if (yielded) {
5743 		schedstat_inc(rq->yld_count);
5744 		/*
5745 		 * Make p's CPU reschedule; pick_next_entity takes care of
5746 		 * fairness.
5747 		 */
5748 		if (preempt && rq != p_rq)
5749 			resched_curr(p_rq);
5750 	}
5751 
5752 out_unlock:
5753 	double_rq_unlock(rq, p_rq);
5754 out_irq:
5755 	local_irq_restore(flags);
5756 
5757 	if (yielded > 0)
5758 		schedule();
5759 
5760 	return yielded;
5761 }
5762 EXPORT_SYMBOL_GPL(yield_to);
5763 
5764 int io_schedule_prepare(void)
5765 {
5766 	int old_iowait = current->in_iowait;
5767 
5768 	current->in_iowait = 1;
5769 	blk_schedule_flush_plug(current);
5770 
5771 	return old_iowait;
5772 }
5773 
5774 void io_schedule_finish(int token)
5775 {
5776 	current->in_iowait = token;
5777 }
5778 
5779 /*
5780  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5781  * that process accounting knows that this is a task in IO wait state.
5782  */
5783 long __sched io_schedule_timeout(long timeout)
5784 {
5785 	int token;
5786 	long ret;
5787 
5788 	token = io_schedule_prepare();
5789 	ret = schedule_timeout(timeout);
5790 	io_schedule_finish(token);
5791 
5792 	return ret;
5793 }
5794 EXPORT_SYMBOL(io_schedule_timeout);
5795 
5796 void __sched io_schedule(void)
5797 {
5798 	int token;
5799 
5800 	token = io_schedule_prepare();
5801 	schedule();
5802 	io_schedule_finish(token);
5803 }
5804 EXPORT_SYMBOL(io_schedule);
5805 
5806 /**
5807  * sys_sched_get_priority_max - return maximum RT priority.
5808  * @policy: scheduling class.
5809  *
5810  * Return: On success, this syscall returns the maximum
5811  * rt_priority that can be used by a given scheduling class.
5812  * On failure, a negative error code is returned.
5813  */
5814 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5815 {
5816 	int ret = -EINVAL;
5817 
5818 	switch (policy) {
5819 	case SCHED_FIFO:
5820 	case SCHED_RR:
5821 		ret = MAX_USER_RT_PRIO-1;
5822 		break;
5823 	case SCHED_DEADLINE:
5824 	case SCHED_NORMAL:
5825 	case SCHED_BATCH:
5826 	case SCHED_IDLE:
5827 		ret = 0;
5828 		break;
5829 	}
5830 	return ret;
5831 }
5832 
5833 /**
5834  * sys_sched_get_priority_min - return minimum RT priority.
5835  * @policy: scheduling class.
5836  *
5837  * Return: On success, this syscall returns the minimum
5838  * rt_priority that can be used by a given scheduling class.
5839  * On failure, a negative error code is returned.
5840  */
5841 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5842 {
5843 	int ret = -EINVAL;
5844 
5845 	switch (policy) {
5846 	case SCHED_FIFO:
5847 	case SCHED_RR:
5848 		ret = 1;
5849 		break;
5850 	case SCHED_DEADLINE:
5851 	case SCHED_NORMAL:
5852 	case SCHED_BATCH:
5853 	case SCHED_IDLE:
5854 		ret = 0;
5855 	}
5856 	return ret;
5857 }
5858 
5859 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5860 {
5861 	struct task_struct *p;
5862 	unsigned int time_slice;
5863 	struct rq_flags rf;
5864 	struct rq *rq;
5865 	int retval;
5866 
5867 	if (pid < 0)
5868 		return -EINVAL;
5869 
5870 	retval = -ESRCH;
5871 	rcu_read_lock();
5872 	p = find_process_by_pid(pid);
5873 	if (!p)
5874 		goto out_unlock;
5875 
5876 	retval = security_task_getscheduler(p);
5877 	if (retval)
5878 		goto out_unlock;
5879 
5880 	rq = task_rq_lock(p, &rf);
5881 	time_slice = 0;
5882 	if (p->sched_class->get_rr_interval)
5883 		time_slice = p->sched_class->get_rr_interval(rq, p);
5884 	task_rq_unlock(rq, p, &rf);
5885 
5886 	rcu_read_unlock();
5887 	jiffies_to_timespec64(time_slice, t);
5888 	return 0;
5889 
5890 out_unlock:
5891 	rcu_read_unlock();
5892 	return retval;
5893 }
5894 
5895 /**
5896  * sys_sched_rr_get_interval - return the default timeslice of a process.
5897  * @pid: pid of the process.
5898  * @interval: userspace pointer to the timeslice value.
5899  *
5900  * this syscall writes the default timeslice value of a given process
5901  * into the user-space timespec buffer. A value of '0' means infinity.
5902  *
5903  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5904  * an error code.
5905  */
5906 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5907 		struct __kernel_timespec __user *, interval)
5908 {
5909 	struct timespec64 t;
5910 	int retval = sched_rr_get_interval(pid, &t);
5911 
5912 	if (retval == 0)
5913 		retval = put_timespec64(&t, interval);
5914 
5915 	return retval;
5916 }
5917 
5918 #ifdef CONFIG_COMPAT_32BIT_TIME
5919 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5920 		struct old_timespec32 __user *, interval)
5921 {
5922 	struct timespec64 t;
5923 	int retval = sched_rr_get_interval(pid, &t);
5924 
5925 	if (retval == 0)
5926 		retval = put_old_timespec32(&t, interval);
5927 	return retval;
5928 }
5929 #endif
5930 
5931 void sched_show_task(struct task_struct *p)
5932 {
5933 	unsigned long free = 0;
5934 	int ppid;
5935 
5936 	if (!try_get_task_stack(p))
5937 		return;
5938 
5939 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5940 
5941 	if (p->state == TASK_RUNNING)
5942 		printk(KERN_CONT "  running task    ");
5943 #ifdef CONFIG_DEBUG_STACK_USAGE
5944 	free = stack_not_used(p);
5945 #endif
5946 	ppid = 0;
5947 	rcu_read_lock();
5948 	if (pid_alive(p))
5949 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5950 	rcu_read_unlock();
5951 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5952 		task_pid_nr(p), ppid,
5953 		(unsigned long)task_thread_info(p)->flags);
5954 
5955 	print_worker_info(KERN_INFO, p);
5956 	show_stack(p, NULL);
5957 	put_task_stack(p);
5958 }
5959 EXPORT_SYMBOL_GPL(sched_show_task);
5960 
5961 static inline bool
5962 state_filter_match(unsigned long state_filter, struct task_struct *p)
5963 {
5964 	/* no filter, everything matches */
5965 	if (!state_filter)
5966 		return true;
5967 
5968 	/* filter, but doesn't match */
5969 	if (!(p->state & state_filter))
5970 		return false;
5971 
5972 	/*
5973 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5974 	 * TASK_KILLABLE).
5975 	 */
5976 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5977 		return false;
5978 
5979 	return true;
5980 }
5981 
5982 
5983 void show_state_filter(unsigned long state_filter)
5984 {
5985 	struct task_struct *g, *p;
5986 
5987 #if BITS_PER_LONG == 32
5988 	printk(KERN_INFO
5989 		"  task                PC stack   pid father\n");
5990 #else
5991 	printk(KERN_INFO
5992 		"  task                        PC stack   pid father\n");
5993 #endif
5994 	rcu_read_lock();
5995 	for_each_process_thread(g, p) {
5996 		/*
5997 		 * reset the NMI-timeout, listing all files on a slow
5998 		 * console might take a lot of time:
5999 		 * Also, reset softlockup watchdogs on all CPUs, because
6000 		 * another CPU might be blocked waiting for us to process
6001 		 * an IPI.
6002 		 */
6003 		touch_nmi_watchdog();
6004 		touch_all_softlockup_watchdogs();
6005 		if (state_filter_match(state_filter, p))
6006 			sched_show_task(p);
6007 	}
6008 
6009 #ifdef CONFIG_SCHED_DEBUG
6010 	if (!state_filter)
6011 		sysrq_sched_debug_show();
6012 #endif
6013 	rcu_read_unlock();
6014 	/*
6015 	 * Only show locks if all tasks are dumped:
6016 	 */
6017 	if (!state_filter)
6018 		debug_show_all_locks();
6019 }
6020 
6021 /**
6022  * init_idle - set up an idle thread for a given CPU
6023  * @idle: task in question
6024  * @cpu: CPU the idle task belongs to
6025  *
6026  * NOTE: this function does not set the idle thread's NEED_RESCHED
6027  * flag, to make booting more robust.
6028  */
6029 void init_idle(struct task_struct *idle, int cpu)
6030 {
6031 	struct rq *rq = cpu_rq(cpu);
6032 	unsigned long flags;
6033 
6034 	__sched_fork(0, idle);
6035 
6036 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6037 	raw_spin_lock(&rq->lock);
6038 
6039 	idle->state = TASK_RUNNING;
6040 	idle->se.exec_start = sched_clock();
6041 	idle->flags |= PF_IDLE;
6042 
6043 	kasan_unpoison_task_stack(idle);
6044 
6045 #ifdef CONFIG_SMP
6046 	/*
6047 	 * Its possible that init_idle() gets called multiple times on a task,
6048 	 * in that case do_set_cpus_allowed() will not do the right thing.
6049 	 *
6050 	 * And since this is boot we can forgo the serialization.
6051 	 */
6052 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6053 #endif
6054 	/*
6055 	 * We're having a chicken and egg problem, even though we are
6056 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6057 	 * lockdep check in task_group() will fail.
6058 	 *
6059 	 * Similar case to sched_fork(). / Alternatively we could
6060 	 * use task_rq_lock() here and obtain the other rq->lock.
6061 	 *
6062 	 * Silence PROVE_RCU
6063 	 */
6064 	rcu_read_lock();
6065 	__set_task_cpu(idle, cpu);
6066 	rcu_read_unlock();
6067 
6068 	rq->idle = idle;
6069 	rcu_assign_pointer(rq->curr, idle);
6070 	idle->on_rq = TASK_ON_RQ_QUEUED;
6071 #ifdef CONFIG_SMP
6072 	idle->on_cpu = 1;
6073 #endif
6074 	raw_spin_unlock(&rq->lock);
6075 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6076 
6077 	/* Set the preempt count _outside_ the spinlocks! */
6078 	init_idle_preempt_count(idle, cpu);
6079 
6080 	/*
6081 	 * The idle tasks have their own, simple scheduling class:
6082 	 */
6083 	idle->sched_class = &idle_sched_class;
6084 	ftrace_graph_init_idle_task(idle, cpu);
6085 	vtime_init_idle(idle, cpu);
6086 #ifdef CONFIG_SMP
6087 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6088 #endif
6089 }
6090 
6091 #ifdef CONFIG_SMP
6092 
6093 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6094 			      const struct cpumask *trial)
6095 {
6096 	int ret = 1;
6097 
6098 	if (!cpumask_weight(cur))
6099 		return ret;
6100 
6101 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6102 
6103 	return ret;
6104 }
6105 
6106 int task_can_attach(struct task_struct *p,
6107 		    const struct cpumask *cs_cpus_allowed)
6108 {
6109 	int ret = 0;
6110 
6111 	/*
6112 	 * Kthreads which disallow setaffinity shouldn't be moved
6113 	 * to a new cpuset; we don't want to change their CPU
6114 	 * affinity and isolating such threads by their set of
6115 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6116 	 * applicable for such threads.  This prevents checking for
6117 	 * success of set_cpus_allowed_ptr() on all attached tasks
6118 	 * before cpus_mask may be changed.
6119 	 */
6120 	if (p->flags & PF_NO_SETAFFINITY) {
6121 		ret = -EINVAL;
6122 		goto out;
6123 	}
6124 
6125 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6126 					      cs_cpus_allowed))
6127 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6128 
6129 out:
6130 	return ret;
6131 }
6132 
6133 bool sched_smp_initialized __read_mostly;
6134 
6135 #ifdef CONFIG_NUMA_BALANCING
6136 /* Migrate current task p to target_cpu */
6137 int migrate_task_to(struct task_struct *p, int target_cpu)
6138 {
6139 	struct migration_arg arg = { p, target_cpu };
6140 	int curr_cpu = task_cpu(p);
6141 
6142 	if (curr_cpu == target_cpu)
6143 		return 0;
6144 
6145 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6146 		return -EINVAL;
6147 
6148 	/* TODO: This is not properly updating schedstats */
6149 
6150 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6151 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6152 }
6153 
6154 /*
6155  * Requeue a task on a given node and accurately track the number of NUMA
6156  * tasks on the runqueues
6157  */
6158 void sched_setnuma(struct task_struct *p, int nid)
6159 {
6160 	bool queued, running;
6161 	struct rq_flags rf;
6162 	struct rq *rq;
6163 
6164 	rq = task_rq_lock(p, &rf);
6165 	queued = task_on_rq_queued(p);
6166 	running = task_current(rq, p);
6167 
6168 	if (queued)
6169 		dequeue_task(rq, p, DEQUEUE_SAVE);
6170 	if (running)
6171 		put_prev_task(rq, p);
6172 
6173 	p->numa_preferred_nid = nid;
6174 
6175 	if (queued)
6176 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6177 	if (running)
6178 		set_next_task(rq, p);
6179 	task_rq_unlock(rq, p, &rf);
6180 }
6181 #endif /* CONFIG_NUMA_BALANCING */
6182 
6183 #ifdef CONFIG_HOTPLUG_CPU
6184 /*
6185  * Ensure that the idle task is using init_mm right before its CPU goes
6186  * offline.
6187  */
6188 void idle_task_exit(void)
6189 {
6190 	struct mm_struct *mm = current->active_mm;
6191 
6192 	BUG_ON(cpu_online(smp_processor_id()));
6193 
6194 	if (mm != &init_mm) {
6195 		switch_mm(mm, &init_mm, current);
6196 		current->active_mm = &init_mm;
6197 		finish_arch_post_lock_switch();
6198 	}
6199 	mmdrop(mm);
6200 }
6201 
6202 /*
6203  * Since this CPU is going 'away' for a while, fold any nr_active delta
6204  * we might have. Assumes we're called after migrate_tasks() so that the
6205  * nr_active count is stable. We need to take the teardown thread which
6206  * is calling this into account, so we hand in adjust = 1 to the load
6207  * calculation.
6208  *
6209  * Also see the comment "Global load-average calculations".
6210  */
6211 static void calc_load_migrate(struct rq *rq)
6212 {
6213 	long delta = calc_load_fold_active(rq, 1);
6214 	if (delta)
6215 		atomic_long_add(delta, &calc_load_tasks);
6216 }
6217 
6218 static struct task_struct *__pick_migrate_task(struct rq *rq)
6219 {
6220 	const struct sched_class *class;
6221 	struct task_struct *next;
6222 
6223 	for_each_class(class) {
6224 		next = class->pick_next_task(rq);
6225 		if (next) {
6226 			next->sched_class->put_prev_task(rq, next);
6227 			return next;
6228 		}
6229 	}
6230 
6231 	/* The idle class should always have a runnable task */
6232 	BUG();
6233 }
6234 
6235 /*
6236  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6237  * try_to_wake_up()->select_task_rq().
6238  *
6239  * Called with rq->lock held even though we'er in stop_machine() and
6240  * there's no concurrency possible, we hold the required locks anyway
6241  * because of lock validation efforts.
6242  */
6243 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6244 {
6245 	struct rq *rq = dead_rq;
6246 	struct task_struct *next, *stop = rq->stop;
6247 	struct rq_flags orf = *rf;
6248 	int dest_cpu;
6249 
6250 	/*
6251 	 * Fudge the rq selection such that the below task selection loop
6252 	 * doesn't get stuck on the currently eligible stop task.
6253 	 *
6254 	 * We're currently inside stop_machine() and the rq is either stuck
6255 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6256 	 * either way we should never end up calling schedule() until we're
6257 	 * done here.
6258 	 */
6259 	rq->stop = NULL;
6260 
6261 	/*
6262 	 * put_prev_task() and pick_next_task() sched
6263 	 * class method both need to have an up-to-date
6264 	 * value of rq->clock[_task]
6265 	 */
6266 	update_rq_clock(rq);
6267 
6268 	for (;;) {
6269 		/*
6270 		 * There's this thread running, bail when that's the only
6271 		 * remaining thread:
6272 		 */
6273 		if (rq->nr_running == 1)
6274 			break;
6275 
6276 		next = __pick_migrate_task(rq);
6277 
6278 		/*
6279 		 * Rules for changing task_struct::cpus_mask are holding
6280 		 * both pi_lock and rq->lock, such that holding either
6281 		 * stabilizes the mask.
6282 		 *
6283 		 * Drop rq->lock is not quite as disastrous as it usually is
6284 		 * because !cpu_active at this point, which means load-balance
6285 		 * will not interfere. Also, stop-machine.
6286 		 */
6287 		rq_unlock(rq, rf);
6288 		raw_spin_lock(&next->pi_lock);
6289 		rq_relock(rq, rf);
6290 
6291 		/*
6292 		 * Since we're inside stop-machine, _nothing_ should have
6293 		 * changed the task, WARN if weird stuff happened, because in
6294 		 * that case the above rq->lock drop is a fail too.
6295 		 */
6296 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6297 			raw_spin_unlock(&next->pi_lock);
6298 			continue;
6299 		}
6300 
6301 		/* Find suitable destination for @next, with force if needed. */
6302 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6303 		rq = __migrate_task(rq, rf, next, dest_cpu);
6304 		if (rq != dead_rq) {
6305 			rq_unlock(rq, rf);
6306 			rq = dead_rq;
6307 			*rf = orf;
6308 			rq_relock(rq, rf);
6309 		}
6310 		raw_spin_unlock(&next->pi_lock);
6311 	}
6312 
6313 	rq->stop = stop;
6314 }
6315 #endif /* CONFIG_HOTPLUG_CPU */
6316 
6317 void set_rq_online(struct rq *rq)
6318 {
6319 	if (!rq->online) {
6320 		const struct sched_class *class;
6321 
6322 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6323 		rq->online = 1;
6324 
6325 		for_each_class(class) {
6326 			if (class->rq_online)
6327 				class->rq_online(rq);
6328 		}
6329 	}
6330 }
6331 
6332 void set_rq_offline(struct rq *rq)
6333 {
6334 	if (rq->online) {
6335 		const struct sched_class *class;
6336 
6337 		for_each_class(class) {
6338 			if (class->rq_offline)
6339 				class->rq_offline(rq);
6340 		}
6341 
6342 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6343 		rq->online = 0;
6344 	}
6345 }
6346 
6347 /*
6348  * used to mark begin/end of suspend/resume:
6349  */
6350 static int num_cpus_frozen;
6351 
6352 /*
6353  * Update cpusets according to cpu_active mask.  If cpusets are
6354  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6355  * around partition_sched_domains().
6356  *
6357  * If we come here as part of a suspend/resume, don't touch cpusets because we
6358  * want to restore it back to its original state upon resume anyway.
6359  */
6360 static void cpuset_cpu_active(void)
6361 {
6362 	if (cpuhp_tasks_frozen) {
6363 		/*
6364 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6365 		 * resume sequence. As long as this is not the last online
6366 		 * operation in the resume sequence, just build a single sched
6367 		 * domain, ignoring cpusets.
6368 		 */
6369 		partition_sched_domains(1, NULL, NULL);
6370 		if (--num_cpus_frozen)
6371 			return;
6372 		/*
6373 		 * This is the last CPU online operation. So fall through and
6374 		 * restore the original sched domains by considering the
6375 		 * cpuset configurations.
6376 		 */
6377 		cpuset_force_rebuild();
6378 	}
6379 	cpuset_update_active_cpus();
6380 }
6381 
6382 static int cpuset_cpu_inactive(unsigned int cpu)
6383 {
6384 	if (!cpuhp_tasks_frozen) {
6385 		if (dl_cpu_busy(cpu))
6386 			return -EBUSY;
6387 		cpuset_update_active_cpus();
6388 	} else {
6389 		num_cpus_frozen++;
6390 		partition_sched_domains(1, NULL, NULL);
6391 	}
6392 	return 0;
6393 }
6394 
6395 int sched_cpu_activate(unsigned int cpu)
6396 {
6397 	struct rq *rq = cpu_rq(cpu);
6398 	struct rq_flags rf;
6399 
6400 #ifdef CONFIG_SCHED_SMT
6401 	/*
6402 	 * When going up, increment the number of cores with SMT present.
6403 	 */
6404 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6405 		static_branch_inc_cpuslocked(&sched_smt_present);
6406 #endif
6407 	set_cpu_active(cpu, true);
6408 
6409 	if (sched_smp_initialized) {
6410 		sched_domains_numa_masks_set(cpu);
6411 		cpuset_cpu_active();
6412 	}
6413 
6414 	/*
6415 	 * Put the rq online, if not already. This happens:
6416 	 *
6417 	 * 1) In the early boot process, because we build the real domains
6418 	 *    after all CPUs have been brought up.
6419 	 *
6420 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6421 	 *    domains.
6422 	 */
6423 	rq_lock_irqsave(rq, &rf);
6424 	if (rq->rd) {
6425 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6426 		set_rq_online(rq);
6427 	}
6428 	rq_unlock_irqrestore(rq, &rf);
6429 
6430 	return 0;
6431 }
6432 
6433 int sched_cpu_deactivate(unsigned int cpu)
6434 {
6435 	int ret;
6436 
6437 	set_cpu_active(cpu, false);
6438 	/*
6439 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6440 	 * users of this state to go away such that all new such users will
6441 	 * observe it.
6442 	 *
6443 	 * Do sync before park smpboot threads to take care the rcu boost case.
6444 	 */
6445 	synchronize_rcu();
6446 
6447 #ifdef CONFIG_SCHED_SMT
6448 	/*
6449 	 * When going down, decrement the number of cores with SMT present.
6450 	 */
6451 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6452 		static_branch_dec_cpuslocked(&sched_smt_present);
6453 #endif
6454 
6455 	if (!sched_smp_initialized)
6456 		return 0;
6457 
6458 	ret = cpuset_cpu_inactive(cpu);
6459 	if (ret) {
6460 		set_cpu_active(cpu, true);
6461 		return ret;
6462 	}
6463 	sched_domains_numa_masks_clear(cpu);
6464 	return 0;
6465 }
6466 
6467 static void sched_rq_cpu_starting(unsigned int cpu)
6468 {
6469 	struct rq *rq = cpu_rq(cpu);
6470 
6471 	rq->calc_load_update = calc_load_update;
6472 	update_max_interval();
6473 }
6474 
6475 int sched_cpu_starting(unsigned int cpu)
6476 {
6477 	sched_rq_cpu_starting(cpu);
6478 	sched_tick_start(cpu);
6479 	return 0;
6480 }
6481 
6482 #ifdef CONFIG_HOTPLUG_CPU
6483 int sched_cpu_dying(unsigned int cpu)
6484 {
6485 	struct rq *rq = cpu_rq(cpu);
6486 	struct rq_flags rf;
6487 
6488 	/* Handle pending wakeups and then migrate everything off */
6489 	sched_ttwu_pending();
6490 	sched_tick_stop(cpu);
6491 
6492 	rq_lock_irqsave(rq, &rf);
6493 	if (rq->rd) {
6494 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6495 		set_rq_offline(rq);
6496 	}
6497 	migrate_tasks(rq, &rf);
6498 	BUG_ON(rq->nr_running != 1);
6499 	rq_unlock_irqrestore(rq, &rf);
6500 
6501 	calc_load_migrate(rq);
6502 	update_max_interval();
6503 	nohz_balance_exit_idle(rq);
6504 	hrtick_clear(rq);
6505 	return 0;
6506 }
6507 #endif
6508 
6509 void __init sched_init_smp(void)
6510 {
6511 	sched_init_numa();
6512 
6513 	/*
6514 	 * There's no userspace yet to cause hotplug operations; hence all the
6515 	 * CPU masks are stable and all blatant races in the below code cannot
6516 	 * happen.
6517 	 */
6518 	mutex_lock(&sched_domains_mutex);
6519 	sched_init_domains(cpu_active_mask);
6520 	mutex_unlock(&sched_domains_mutex);
6521 
6522 	/* Move init over to a non-isolated CPU */
6523 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6524 		BUG();
6525 	sched_init_granularity();
6526 
6527 	init_sched_rt_class();
6528 	init_sched_dl_class();
6529 
6530 	sched_smp_initialized = true;
6531 }
6532 
6533 static int __init migration_init(void)
6534 {
6535 	sched_cpu_starting(smp_processor_id());
6536 	return 0;
6537 }
6538 early_initcall(migration_init);
6539 
6540 #else
6541 void __init sched_init_smp(void)
6542 {
6543 	sched_init_granularity();
6544 }
6545 #endif /* CONFIG_SMP */
6546 
6547 int in_sched_functions(unsigned long addr)
6548 {
6549 	return in_lock_functions(addr) ||
6550 		(addr >= (unsigned long)__sched_text_start
6551 		&& addr < (unsigned long)__sched_text_end);
6552 }
6553 
6554 #ifdef CONFIG_CGROUP_SCHED
6555 /*
6556  * Default task group.
6557  * Every task in system belongs to this group at bootup.
6558  */
6559 struct task_group root_task_group;
6560 LIST_HEAD(task_groups);
6561 
6562 /* Cacheline aligned slab cache for task_group */
6563 static struct kmem_cache *task_group_cache __read_mostly;
6564 #endif
6565 
6566 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6567 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6568 
6569 void __init sched_init(void)
6570 {
6571 	unsigned long ptr = 0;
6572 	int i;
6573 
6574 	wait_bit_init();
6575 
6576 #ifdef CONFIG_FAIR_GROUP_SCHED
6577 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6578 #endif
6579 #ifdef CONFIG_RT_GROUP_SCHED
6580 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6581 #endif
6582 	if (ptr) {
6583 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6584 
6585 #ifdef CONFIG_FAIR_GROUP_SCHED
6586 		root_task_group.se = (struct sched_entity **)ptr;
6587 		ptr += nr_cpu_ids * sizeof(void **);
6588 
6589 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6590 		ptr += nr_cpu_ids * sizeof(void **);
6591 
6592 #endif /* CONFIG_FAIR_GROUP_SCHED */
6593 #ifdef CONFIG_RT_GROUP_SCHED
6594 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6595 		ptr += nr_cpu_ids * sizeof(void **);
6596 
6597 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6598 		ptr += nr_cpu_ids * sizeof(void **);
6599 
6600 #endif /* CONFIG_RT_GROUP_SCHED */
6601 	}
6602 #ifdef CONFIG_CPUMASK_OFFSTACK
6603 	for_each_possible_cpu(i) {
6604 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6605 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6606 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6607 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6608 	}
6609 #endif /* CONFIG_CPUMASK_OFFSTACK */
6610 
6611 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6612 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6613 
6614 #ifdef CONFIG_SMP
6615 	init_defrootdomain();
6616 #endif
6617 
6618 #ifdef CONFIG_RT_GROUP_SCHED
6619 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6620 			global_rt_period(), global_rt_runtime());
6621 #endif /* CONFIG_RT_GROUP_SCHED */
6622 
6623 #ifdef CONFIG_CGROUP_SCHED
6624 	task_group_cache = KMEM_CACHE(task_group, 0);
6625 
6626 	list_add(&root_task_group.list, &task_groups);
6627 	INIT_LIST_HEAD(&root_task_group.children);
6628 	INIT_LIST_HEAD(&root_task_group.siblings);
6629 	autogroup_init(&init_task);
6630 #endif /* CONFIG_CGROUP_SCHED */
6631 
6632 	for_each_possible_cpu(i) {
6633 		struct rq *rq;
6634 
6635 		rq = cpu_rq(i);
6636 		raw_spin_lock_init(&rq->lock);
6637 		rq->nr_running = 0;
6638 		rq->calc_load_active = 0;
6639 		rq->calc_load_update = jiffies + LOAD_FREQ;
6640 		init_cfs_rq(&rq->cfs);
6641 		init_rt_rq(&rq->rt);
6642 		init_dl_rq(&rq->dl);
6643 #ifdef CONFIG_FAIR_GROUP_SCHED
6644 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6645 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6646 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6647 		/*
6648 		 * How much CPU bandwidth does root_task_group get?
6649 		 *
6650 		 * In case of task-groups formed thr' the cgroup filesystem, it
6651 		 * gets 100% of the CPU resources in the system. This overall
6652 		 * system CPU resource is divided among the tasks of
6653 		 * root_task_group and its child task-groups in a fair manner,
6654 		 * based on each entity's (task or task-group's) weight
6655 		 * (se->load.weight).
6656 		 *
6657 		 * In other words, if root_task_group has 10 tasks of weight
6658 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6659 		 * then A0's share of the CPU resource is:
6660 		 *
6661 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6662 		 *
6663 		 * We achieve this by letting root_task_group's tasks sit
6664 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6665 		 */
6666 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6667 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6668 #endif /* CONFIG_FAIR_GROUP_SCHED */
6669 
6670 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6671 #ifdef CONFIG_RT_GROUP_SCHED
6672 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6673 #endif
6674 #ifdef CONFIG_SMP
6675 		rq->sd = NULL;
6676 		rq->rd = NULL;
6677 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6678 		rq->balance_callback = NULL;
6679 		rq->active_balance = 0;
6680 		rq->next_balance = jiffies;
6681 		rq->push_cpu = 0;
6682 		rq->cpu = i;
6683 		rq->online = 0;
6684 		rq->idle_stamp = 0;
6685 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6686 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6687 
6688 		INIT_LIST_HEAD(&rq->cfs_tasks);
6689 
6690 		rq_attach_root(rq, &def_root_domain);
6691 #ifdef CONFIG_NO_HZ_COMMON
6692 		rq->last_blocked_load_update_tick = jiffies;
6693 		atomic_set(&rq->nohz_flags, 0);
6694 #endif
6695 #endif /* CONFIG_SMP */
6696 		hrtick_rq_init(rq);
6697 		atomic_set(&rq->nr_iowait, 0);
6698 	}
6699 
6700 	set_load_weight(&init_task, false);
6701 
6702 	/*
6703 	 * The boot idle thread does lazy MMU switching as well:
6704 	 */
6705 	mmgrab(&init_mm);
6706 	enter_lazy_tlb(&init_mm, current);
6707 
6708 	/*
6709 	 * Make us the idle thread. Technically, schedule() should not be
6710 	 * called from this thread, however somewhere below it might be,
6711 	 * but because we are the idle thread, we just pick up running again
6712 	 * when this runqueue becomes "idle".
6713 	 */
6714 	init_idle(current, smp_processor_id());
6715 
6716 	calc_load_update = jiffies + LOAD_FREQ;
6717 
6718 #ifdef CONFIG_SMP
6719 	idle_thread_set_boot_cpu();
6720 #endif
6721 	init_sched_fair_class();
6722 
6723 	init_schedstats();
6724 
6725 	psi_init();
6726 
6727 	init_uclamp();
6728 
6729 	scheduler_running = 1;
6730 }
6731 
6732 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6733 static inline int preempt_count_equals(int preempt_offset)
6734 {
6735 	int nested = preempt_count() + rcu_preempt_depth();
6736 
6737 	return (nested == preempt_offset);
6738 }
6739 
6740 void __might_sleep(const char *file, int line, int preempt_offset)
6741 {
6742 	/*
6743 	 * Blocking primitives will set (and therefore destroy) current->state,
6744 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6745 	 * otherwise we will destroy state.
6746 	 */
6747 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6748 			"do not call blocking ops when !TASK_RUNNING; "
6749 			"state=%lx set at [<%p>] %pS\n",
6750 			current->state,
6751 			(void *)current->task_state_change,
6752 			(void *)current->task_state_change);
6753 
6754 	___might_sleep(file, line, preempt_offset);
6755 }
6756 EXPORT_SYMBOL(__might_sleep);
6757 
6758 void ___might_sleep(const char *file, int line, int preempt_offset)
6759 {
6760 	/* Ratelimiting timestamp: */
6761 	static unsigned long prev_jiffy;
6762 
6763 	unsigned long preempt_disable_ip;
6764 
6765 	/* WARN_ON_ONCE() by default, no rate limit required: */
6766 	rcu_sleep_check();
6767 
6768 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6769 	     !is_idle_task(current) && !current->non_block_count) ||
6770 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6771 	    oops_in_progress)
6772 		return;
6773 
6774 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6775 		return;
6776 	prev_jiffy = jiffies;
6777 
6778 	/* Save this before calling printk(), since that will clobber it: */
6779 	preempt_disable_ip = get_preempt_disable_ip(current);
6780 
6781 	printk(KERN_ERR
6782 		"BUG: sleeping function called from invalid context at %s:%d\n",
6783 			file, line);
6784 	printk(KERN_ERR
6785 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6786 			in_atomic(), irqs_disabled(), current->non_block_count,
6787 			current->pid, current->comm);
6788 
6789 	if (task_stack_end_corrupted(current))
6790 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6791 
6792 	debug_show_held_locks(current);
6793 	if (irqs_disabled())
6794 		print_irqtrace_events(current);
6795 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6796 	    && !preempt_count_equals(preempt_offset)) {
6797 		pr_err("Preemption disabled at:");
6798 		print_ip_sym(preempt_disable_ip);
6799 		pr_cont("\n");
6800 	}
6801 	dump_stack();
6802 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6803 }
6804 EXPORT_SYMBOL(___might_sleep);
6805 
6806 void __cant_sleep(const char *file, int line, int preempt_offset)
6807 {
6808 	static unsigned long prev_jiffy;
6809 
6810 	if (irqs_disabled())
6811 		return;
6812 
6813 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6814 		return;
6815 
6816 	if (preempt_count() > preempt_offset)
6817 		return;
6818 
6819 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6820 		return;
6821 	prev_jiffy = jiffies;
6822 
6823 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6824 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6825 			in_atomic(), irqs_disabled(),
6826 			current->pid, current->comm);
6827 
6828 	debug_show_held_locks(current);
6829 	dump_stack();
6830 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6831 }
6832 EXPORT_SYMBOL_GPL(__cant_sleep);
6833 #endif
6834 
6835 #ifdef CONFIG_MAGIC_SYSRQ
6836 void normalize_rt_tasks(void)
6837 {
6838 	struct task_struct *g, *p;
6839 	struct sched_attr attr = {
6840 		.sched_policy = SCHED_NORMAL,
6841 	};
6842 
6843 	read_lock(&tasklist_lock);
6844 	for_each_process_thread(g, p) {
6845 		/*
6846 		 * Only normalize user tasks:
6847 		 */
6848 		if (p->flags & PF_KTHREAD)
6849 			continue;
6850 
6851 		p->se.exec_start = 0;
6852 		schedstat_set(p->se.statistics.wait_start,  0);
6853 		schedstat_set(p->se.statistics.sleep_start, 0);
6854 		schedstat_set(p->se.statistics.block_start, 0);
6855 
6856 		if (!dl_task(p) && !rt_task(p)) {
6857 			/*
6858 			 * Renice negative nice level userspace
6859 			 * tasks back to 0:
6860 			 */
6861 			if (task_nice(p) < 0)
6862 				set_user_nice(p, 0);
6863 			continue;
6864 		}
6865 
6866 		__sched_setscheduler(p, &attr, false, false);
6867 	}
6868 	read_unlock(&tasklist_lock);
6869 }
6870 
6871 #endif /* CONFIG_MAGIC_SYSRQ */
6872 
6873 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6874 /*
6875  * These functions are only useful for the IA64 MCA handling, or kdb.
6876  *
6877  * They can only be called when the whole system has been
6878  * stopped - every CPU needs to be quiescent, and no scheduling
6879  * activity can take place. Using them for anything else would
6880  * be a serious bug, and as a result, they aren't even visible
6881  * under any other configuration.
6882  */
6883 
6884 /**
6885  * curr_task - return the current task for a given CPU.
6886  * @cpu: the processor in question.
6887  *
6888  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6889  *
6890  * Return: The current task for @cpu.
6891  */
6892 struct task_struct *curr_task(int cpu)
6893 {
6894 	return cpu_curr(cpu);
6895 }
6896 
6897 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6898 
6899 #ifdef CONFIG_IA64
6900 /**
6901  * ia64_set_curr_task - set the current task for a given CPU.
6902  * @cpu: the processor in question.
6903  * @p: the task pointer to set.
6904  *
6905  * Description: This function must only be used when non-maskable interrupts
6906  * are serviced on a separate stack. It allows the architecture to switch the
6907  * notion of the current task on a CPU in a non-blocking manner. This function
6908  * must be called with all CPU's synchronized, and interrupts disabled, the
6909  * and caller must save the original value of the current task (see
6910  * curr_task() above) and restore that value before reenabling interrupts and
6911  * re-starting the system.
6912  *
6913  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6914  */
6915 void ia64_set_curr_task(int cpu, struct task_struct *p)
6916 {
6917 	cpu_curr(cpu) = p;
6918 }
6919 
6920 #endif
6921 
6922 #ifdef CONFIG_CGROUP_SCHED
6923 /* task_group_lock serializes the addition/removal of task groups */
6924 static DEFINE_SPINLOCK(task_group_lock);
6925 
6926 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6927 					    struct task_group *parent)
6928 {
6929 #ifdef CONFIG_UCLAMP_TASK_GROUP
6930 	enum uclamp_id clamp_id;
6931 
6932 	for_each_clamp_id(clamp_id) {
6933 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6934 			      uclamp_none(clamp_id), false);
6935 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6936 	}
6937 #endif
6938 }
6939 
6940 static void sched_free_group(struct task_group *tg)
6941 {
6942 	free_fair_sched_group(tg);
6943 	free_rt_sched_group(tg);
6944 	autogroup_free(tg);
6945 	kmem_cache_free(task_group_cache, tg);
6946 }
6947 
6948 /* allocate runqueue etc for a new task group */
6949 struct task_group *sched_create_group(struct task_group *parent)
6950 {
6951 	struct task_group *tg;
6952 
6953 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6954 	if (!tg)
6955 		return ERR_PTR(-ENOMEM);
6956 
6957 	if (!alloc_fair_sched_group(tg, parent))
6958 		goto err;
6959 
6960 	if (!alloc_rt_sched_group(tg, parent))
6961 		goto err;
6962 
6963 	alloc_uclamp_sched_group(tg, parent);
6964 
6965 	return tg;
6966 
6967 err:
6968 	sched_free_group(tg);
6969 	return ERR_PTR(-ENOMEM);
6970 }
6971 
6972 void sched_online_group(struct task_group *tg, struct task_group *parent)
6973 {
6974 	unsigned long flags;
6975 
6976 	spin_lock_irqsave(&task_group_lock, flags);
6977 	list_add_rcu(&tg->list, &task_groups);
6978 
6979 	/* Root should already exist: */
6980 	WARN_ON(!parent);
6981 
6982 	tg->parent = parent;
6983 	INIT_LIST_HEAD(&tg->children);
6984 	list_add_rcu(&tg->siblings, &parent->children);
6985 	spin_unlock_irqrestore(&task_group_lock, flags);
6986 
6987 	online_fair_sched_group(tg);
6988 }
6989 
6990 /* rcu callback to free various structures associated with a task group */
6991 static void sched_free_group_rcu(struct rcu_head *rhp)
6992 {
6993 	/* Now it should be safe to free those cfs_rqs: */
6994 	sched_free_group(container_of(rhp, struct task_group, rcu));
6995 }
6996 
6997 void sched_destroy_group(struct task_group *tg)
6998 {
6999 	/* Wait for possible concurrent references to cfs_rqs complete: */
7000 	call_rcu(&tg->rcu, sched_free_group_rcu);
7001 }
7002 
7003 void sched_offline_group(struct task_group *tg)
7004 {
7005 	unsigned long flags;
7006 
7007 	/* End participation in shares distribution: */
7008 	unregister_fair_sched_group(tg);
7009 
7010 	spin_lock_irqsave(&task_group_lock, flags);
7011 	list_del_rcu(&tg->list);
7012 	list_del_rcu(&tg->siblings);
7013 	spin_unlock_irqrestore(&task_group_lock, flags);
7014 }
7015 
7016 static void sched_change_group(struct task_struct *tsk, int type)
7017 {
7018 	struct task_group *tg;
7019 
7020 	/*
7021 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7022 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7023 	 * to prevent lockdep warnings.
7024 	 */
7025 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7026 			  struct task_group, css);
7027 	tg = autogroup_task_group(tsk, tg);
7028 	tsk->sched_task_group = tg;
7029 
7030 #ifdef CONFIG_FAIR_GROUP_SCHED
7031 	if (tsk->sched_class->task_change_group)
7032 		tsk->sched_class->task_change_group(tsk, type);
7033 	else
7034 #endif
7035 		set_task_rq(tsk, task_cpu(tsk));
7036 }
7037 
7038 /*
7039  * Change task's runqueue when it moves between groups.
7040  *
7041  * The caller of this function should have put the task in its new group by
7042  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7043  * its new group.
7044  */
7045 void sched_move_task(struct task_struct *tsk)
7046 {
7047 	int queued, running, queue_flags =
7048 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7049 	struct rq_flags rf;
7050 	struct rq *rq;
7051 
7052 	rq = task_rq_lock(tsk, &rf);
7053 	update_rq_clock(rq);
7054 
7055 	running = task_current(rq, tsk);
7056 	queued = task_on_rq_queued(tsk);
7057 
7058 	if (queued)
7059 		dequeue_task(rq, tsk, queue_flags);
7060 	if (running)
7061 		put_prev_task(rq, tsk);
7062 
7063 	sched_change_group(tsk, TASK_MOVE_GROUP);
7064 
7065 	if (queued)
7066 		enqueue_task(rq, tsk, queue_flags);
7067 	if (running) {
7068 		set_next_task(rq, tsk);
7069 		/*
7070 		 * After changing group, the running task may have joined a
7071 		 * throttled one but it's still the running task. Trigger a
7072 		 * resched to make sure that task can still run.
7073 		 */
7074 		resched_curr(rq);
7075 	}
7076 
7077 	task_rq_unlock(rq, tsk, &rf);
7078 }
7079 
7080 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7081 {
7082 	return css ? container_of(css, struct task_group, css) : NULL;
7083 }
7084 
7085 static struct cgroup_subsys_state *
7086 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7087 {
7088 	struct task_group *parent = css_tg(parent_css);
7089 	struct task_group *tg;
7090 
7091 	if (!parent) {
7092 		/* This is early initialization for the top cgroup */
7093 		return &root_task_group.css;
7094 	}
7095 
7096 	tg = sched_create_group(parent);
7097 	if (IS_ERR(tg))
7098 		return ERR_PTR(-ENOMEM);
7099 
7100 	return &tg->css;
7101 }
7102 
7103 /* Expose task group only after completing cgroup initialization */
7104 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7105 {
7106 	struct task_group *tg = css_tg(css);
7107 	struct task_group *parent = css_tg(css->parent);
7108 
7109 	if (parent)
7110 		sched_online_group(tg, parent);
7111 
7112 #ifdef CONFIG_UCLAMP_TASK_GROUP
7113 	/* Propagate the effective uclamp value for the new group */
7114 	cpu_util_update_eff(css);
7115 #endif
7116 
7117 	return 0;
7118 }
7119 
7120 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7121 {
7122 	struct task_group *tg = css_tg(css);
7123 
7124 	sched_offline_group(tg);
7125 }
7126 
7127 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7128 {
7129 	struct task_group *tg = css_tg(css);
7130 
7131 	/*
7132 	 * Relies on the RCU grace period between css_released() and this.
7133 	 */
7134 	sched_free_group(tg);
7135 }
7136 
7137 /*
7138  * This is called before wake_up_new_task(), therefore we really only
7139  * have to set its group bits, all the other stuff does not apply.
7140  */
7141 static void cpu_cgroup_fork(struct task_struct *task)
7142 {
7143 	struct rq_flags rf;
7144 	struct rq *rq;
7145 
7146 	rq = task_rq_lock(task, &rf);
7147 
7148 	update_rq_clock(rq);
7149 	sched_change_group(task, TASK_SET_GROUP);
7150 
7151 	task_rq_unlock(rq, task, &rf);
7152 }
7153 
7154 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7155 {
7156 	struct task_struct *task;
7157 	struct cgroup_subsys_state *css;
7158 	int ret = 0;
7159 
7160 	cgroup_taskset_for_each(task, css, tset) {
7161 #ifdef CONFIG_RT_GROUP_SCHED
7162 		if (!sched_rt_can_attach(css_tg(css), task))
7163 			return -EINVAL;
7164 #endif
7165 		/*
7166 		 * Serialize against wake_up_new_task() such that if its
7167 		 * running, we're sure to observe its full state.
7168 		 */
7169 		raw_spin_lock_irq(&task->pi_lock);
7170 		/*
7171 		 * Avoid calling sched_move_task() before wake_up_new_task()
7172 		 * has happened. This would lead to problems with PELT, due to
7173 		 * move wanting to detach+attach while we're not attached yet.
7174 		 */
7175 		if (task->state == TASK_NEW)
7176 			ret = -EINVAL;
7177 		raw_spin_unlock_irq(&task->pi_lock);
7178 
7179 		if (ret)
7180 			break;
7181 	}
7182 	return ret;
7183 }
7184 
7185 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7186 {
7187 	struct task_struct *task;
7188 	struct cgroup_subsys_state *css;
7189 
7190 	cgroup_taskset_for_each(task, css, tset)
7191 		sched_move_task(task);
7192 }
7193 
7194 #ifdef CONFIG_UCLAMP_TASK_GROUP
7195 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7196 {
7197 	struct cgroup_subsys_state *top_css = css;
7198 	struct uclamp_se *uc_parent = NULL;
7199 	struct uclamp_se *uc_se = NULL;
7200 	unsigned int eff[UCLAMP_CNT];
7201 	enum uclamp_id clamp_id;
7202 	unsigned int clamps;
7203 
7204 	css_for_each_descendant_pre(css, top_css) {
7205 		uc_parent = css_tg(css)->parent
7206 			? css_tg(css)->parent->uclamp : NULL;
7207 
7208 		for_each_clamp_id(clamp_id) {
7209 			/* Assume effective clamps matches requested clamps */
7210 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7211 			/* Cap effective clamps with parent's effective clamps */
7212 			if (uc_parent &&
7213 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7214 				eff[clamp_id] = uc_parent[clamp_id].value;
7215 			}
7216 		}
7217 		/* Ensure protection is always capped by limit */
7218 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7219 
7220 		/* Propagate most restrictive effective clamps */
7221 		clamps = 0x0;
7222 		uc_se = css_tg(css)->uclamp;
7223 		for_each_clamp_id(clamp_id) {
7224 			if (eff[clamp_id] == uc_se[clamp_id].value)
7225 				continue;
7226 			uc_se[clamp_id].value = eff[clamp_id];
7227 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7228 			clamps |= (0x1 << clamp_id);
7229 		}
7230 		if (!clamps) {
7231 			css = css_rightmost_descendant(css);
7232 			continue;
7233 		}
7234 
7235 		/* Immediately update descendants RUNNABLE tasks */
7236 		uclamp_update_active_tasks(css, clamps);
7237 	}
7238 }
7239 
7240 /*
7241  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7242  * C expression. Since there is no way to convert a macro argument (N) into a
7243  * character constant, use two levels of macros.
7244  */
7245 #define _POW10(exp) ((unsigned int)1e##exp)
7246 #define POW10(exp) _POW10(exp)
7247 
7248 struct uclamp_request {
7249 #define UCLAMP_PERCENT_SHIFT	2
7250 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7251 	s64 percent;
7252 	u64 util;
7253 	int ret;
7254 };
7255 
7256 static inline struct uclamp_request
7257 capacity_from_percent(char *buf)
7258 {
7259 	struct uclamp_request req = {
7260 		.percent = UCLAMP_PERCENT_SCALE,
7261 		.util = SCHED_CAPACITY_SCALE,
7262 		.ret = 0,
7263 	};
7264 
7265 	buf = strim(buf);
7266 	if (strcmp(buf, "max")) {
7267 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7268 					     &req.percent);
7269 		if (req.ret)
7270 			return req;
7271 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7272 			req.ret = -ERANGE;
7273 			return req;
7274 		}
7275 
7276 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7277 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7278 	}
7279 
7280 	return req;
7281 }
7282 
7283 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7284 				size_t nbytes, loff_t off,
7285 				enum uclamp_id clamp_id)
7286 {
7287 	struct uclamp_request req;
7288 	struct task_group *tg;
7289 
7290 	req = capacity_from_percent(buf);
7291 	if (req.ret)
7292 		return req.ret;
7293 
7294 	mutex_lock(&uclamp_mutex);
7295 	rcu_read_lock();
7296 
7297 	tg = css_tg(of_css(of));
7298 	if (tg->uclamp_req[clamp_id].value != req.util)
7299 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7300 
7301 	/*
7302 	 * Because of not recoverable conversion rounding we keep track of the
7303 	 * exact requested value
7304 	 */
7305 	tg->uclamp_pct[clamp_id] = req.percent;
7306 
7307 	/* Update effective clamps to track the most restrictive value */
7308 	cpu_util_update_eff(of_css(of));
7309 
7310 	rcu_read_unlock();
7311 	mutex_unlock(&uclamp_mutex);
7312 
7313 	return nbytes;
7314 }
7315 
7316 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7317 				    char *buf, size_t nbytes,
7318 				    loff_t off)
7319 {
7320 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7321 }
7322 
7323 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7324 				    char *buf, size_t nbytes,
7325 				    loff_t off)
7326 {
7327 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7328 }
7329 
7330 static inline void cpu_uclamp_print(struct seq_file *sf,
7331 				    enum uclamp_id clamp_id)
7332 {
7333 	struct task_group *tg;
7334 	u64 util_clamp;
7335 	u64 percent;
7336 	u32 rem;
7337 
7338 	rcu_read_lock();
7339 	tg = css_tg(seq_css(sf));
7340 	util_clamp = tg->uclamp_req[clamp_id].value;
7341 	rcu_read_unlock();
7342 
7343 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7344 		seq_puts(sf, "max\n");
7345 		return;
7346 	}
7347 
7348 	percent = tg->uclamp_pct[clamp_id];
7349 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7350 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7351 }
7352 
7353 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7354 {
7355 	cpu_uclamp_print(sf, UCLAMP_MIN);
7356 	return 0;
7357 }
7358 
7359 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7360 {
7361 	cpu_uclamp_print(sf, UCLAMP_MAX);
7362 	return 0;
7363 }
7364 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7365 
7366 #ifdef CONFIG_FAIR_GROUP_SCHED
7367 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7368 				struct cftype *cftype, u64 shareval)
7369 {
7370 	if (shareval > scale_load_down(ULONG_MAX))
7371 		shareval = MAX_SHARES;
7372 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7373 }
7374 
7375 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7376 			       struct cftype *cft)
7377 {
7378 	struct task_group *tg = css_tg(css);
7379 
7380 	return (u64) scale_load_down(tg->shares);
7381 }
7382 
7383 #ifdef CONFIG_CFS_BANDWIDTH
7384 static DEFINE_MUTEX(cfs_constraints_mutex);
7385 
7386 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7387 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7388 
7389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7390 
7391 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7392 {
7393 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7394 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7395 
7396 	if (tg == &root_task_group)
7397 		return -EINVAL;
7398 
7399 	/*
7400 	 * Ensure we have at some amount of bandwidth every period.  This is
7401 	 * to prevent reaching a state of large arrears when throttled via
7402 	 * entity_tick() resulting in prolonged exit starvation.
7403 	 */
7404 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7405 		return -EINVAL;
7406 
7407 	/*
7408 	 * Likewise, bound things on the otherside by preventing insane quota
7409 	 * periods.  This also allows us to normalize in computing quota
7410 	 * feasibility.
7411 	 */
7412 	if (period > max_cfs_quota_period)
7413 		return -EINVAL;
7414 
7415 	/*
7416 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7417 	 * unthrottle_offline_cfs_rqs().
7418 	 */
7419 	get_online_cpus();
7420 	mutex_lock(&cfs_constraints_mutex);
7421 	ret = __cfs_schedulable(tg, period, quota);
7422 	if (ret)
7423 		goto out_unlock;
7424 
7425 	runtime_enabled = quota != RUNTIME_INF;
7426 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7427 	/*
7428 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7429 	 * before making related changes, and on->off must occur afterwards
7430 	 */
7431 	if (runtime_enabled && !runtime_was_enabled)
7432 		cfs_bandwidth_usage_inc();
7433 	raw_spin_lock_irq(&cfs_b->lock);
7434 	cfs_b->period = ns_to_ktime(period);
7435 	cfs_b->quota = quota;
7436 
7437 	__refill_cfs_bandwidth_runtime(cfs_b);
7438 
7439 	/* Restart the period timer (if active) to handle new period expiry: */
7440 	if (runtime_enabled)
7441 		start_cfs_bandwidth(cfs_b);
7442 
7443 	raw_spin_unlock_irq(&cfs_b->lock);
7444 
7445 	for_each_online_cpu(i) {
7446 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7447 		struct rq *rq = cfs_rq->rq;
7448 		struct rq_flags rf;
7449 
7450 		rq_lock_irq(rq, &rf);
7451 		cfs_rq->runtime_enabled = runtime_enabled;
7452 		cfs_rq->runtime_remaining = 0;
7453 
7454 		if (cfs_rq->throttled)
7455 			unthrottle_cfs_rq(cfs_rq);
7456 		rq_unlock_irq(rq, &rf);
7457 	}
7458 	if (runtime_was_enabled && !runtime_enabled)
7459 		cfs_bandwidth_usage_dec();
7460 out_unlock:
7461 	mutex_unlock(&cfs_constraints_mutex);
7462 	put_online_cpus();
7463 
7464 	return ret;
7465 }
7466 
7467 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7468 {
7469 	u64 quota, period;
7470 
7471 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7472 	if (cfs_quota_us < 0)
7473 		quota = RUNTIME_INF;
7474 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7475 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7476 	else
7477 		return -EINVAL;
7478 
7479 	return tg_set_cfs_bandwidth(tg, period, quota);
7480 }
7481 
7482 static long tg_get_cfs_quota(struct task_group *tg)
7483 {
7484 	u64 quota_us;
7485 
7486 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7487 		return -1;
7488 
7489 	quota_us = tg->cfs_bandwidth.quota;
7490 	do_div(quota_us, NSEC_PER_USEC);
7491 
7492 	return quota_us;
7493 }
7494 
7495 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7496 {
7497 	u64 quota, period;
7498 
7499 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7500 		return -EINVAL;
7501 
7502 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7503 	quota = tg->cfs_bandwidth.quota;
7504 
7505 	return tg_set_cfs_bandwidth(tg, period, quota);
7506 }
7507 
7508 static long tg_get_cfs_period(struct task_group *tg)
7509 {
7510 	u64 cfs_period_us;
7511 
7512 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7513 	do_div(cfs_period_us, NSEC_PER_USEC);
7514 
7515 	return cfs_period_us;
7516 }
7517 
7518 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7519 				  struct cftype *cft)
7520 {
7521 	return tg_get_cfs_quota(css_tg(css));
7522 }
7523 
7524 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7525 				   struct cftype *cftype, s64 cfs_quota_us)
7526 {
7527 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7528 }
7529 
7530 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7531 				   struct cftype *cft)
7532 {
7533 	return tg_get_cfs_period(css_tg(css));
7534 }
7535 
7536 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7537 				    struct cftype *cftype, u64 cfs_period_us)
7538 {
7539 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7540 }
7541 
7542 struct cfs_schedulable_data {
7543 	struct task_group *tg;
7544 	u64 period, quota;
7545 };
7546 
7547 /*
7548  * normalize group quota/period to be quota/max_period
7549  * note: units are usecs
7550  */
7551 static u64 normalize_cfs_quota(struct task_group *tg,
7552 			       struct cfs_schedulable_data *d)
7553 {
7554 	u64 quota, period;
7555 
7556 	if (tg == d->tg) {
7557 		period = d->period;
7558 		quota = d->quota;
7559 	} else {
7560 		period = tg_get_cfs_period(tg);
7561 		quota = tg_get_cfs_quota(tg);
7562 	}
7563 
7564 	/* note: these should typically be equivalent */
7565 	if (quota == RUNTIME_INF || quota == -1)
7566 		return RUNTIME_INF;
7567 
7568 	return to_ratio(period, quota);
7569 }
7570 
7571 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7572 {
7573 	struct cfs_schedulable_data *d = data;
7574 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7575 	s64 quota = 0, parent_quota = -1;
7576 
7577 	if (!tg->parent) {
7578 		quota = RUNTIME_INF;
7579 	} else {
7580 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7581 
7582 		quota = normalize_cfs_quota(tg, d);
7583 		parent_quota = parent_b->hierarchical_quota;
7584 
7585 		/*
7586 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7587 		 * always take the min.  On cgroup1, only inherit when no
7588 		 * limit is set:
7589 		 */
7590 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7591 			quota = min(quota, parent_quota);
7592 		} else {
7593 			if (quota == RUNTIME_INF)
7594 				quota = parent_quota;
7595 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7596 				return -EINVAL;
7597 		}
7598 	}
7599 	cfs_b->hierarchical_quota = quota;
7600 
7601 	return 0;
7602 }
7603 
7604 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7605 {
7606 	int ret;
7607 	struct cfs_schedulable_data data = {
7608 		.tg = tg,
7609 		.period = period,
7610 		.quota = quota,
7611 	};
7612 
7613 	if (quota != RUNTIME_INF) {
7614 		do_div(data.period, NSEC_PER_USEC);
7615 		do_div(data.quota, NSEC_PER_USEC);
7616 	}
7617 
7618 	rcu_read_lock();
7619 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7620 	rcu_read_unlock();
7621 
7622 	return ret;
7623 }
7624 
7625 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7626 {
7627 	struct task_group *tg = css_tg(seq_css(sf));
7628 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7629 
7630 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7631 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7632 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7633 
7634 	if (schedstat_enabled() && tg != &root_task_group) {
7635 		u64 ws = 0;
7636 		int i;
7637 
7638 		for_each_possible_cpu(i)
7639 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7640 
7641 		seq_printf(sf, "wait_sum %llu\n", ws);
7642 	}
7643 
7644 	return 0;
7645 }
7646 #endif /* CONFIG_CFS_BANDWIDTH */
7647 #endif /* CONFIG_FAIR_GROUP_SCHED */
7648 
7649 #ifdef CONFIG_RT_GROUP_SCHED
7650 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7651 				struct cftype *cft, s64 val)
7652 {
7653 	return sched_group_set_rt_runtime(css_tg(css), val);
7654 }
7655 
7656 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7657 			       struct cftype *cft)
7658 {
7659 	return sched_group_rt_runtime(css_tg(css));
7660 }
7661 
7662 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7663 				    struct cftype *cftype, u64 rt_period_us)
7664 {
7665 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7666 }
7667 
7668 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7669 				   struct cftype *cft)
7670 {
7671 	return sched_group_rt_period(css_tg(css));
7672 }
7673 #endif /* CONFIG_RT_GROUP_SCHED */
7674 
7675 static struct cftype cpu_legacy_files[] = {
7676 #ifdef CONFIG_FAIR_GROUP_SCHED
7677 	{
7678 		.name = "shares",
7679 		.read_u64 = cpu_shares_read_u64,
7680 		.write_u64 = cpu_shares_write_u64,
7681 	},
7682 #endif
7683 #ifdef CONFIG_CFS_BANDWIDTH
7684 	{
7685 		.name = "cfs_quota_us",
7686 		.read_s64 = cpu_cfs_quota_read_s64,
7687 		.write_s64 = cpu_cfs_quota_write_s64,
7688 	},
7689 	{
7690 		.name = "cfs_period_us",
7691 		.read_u64 = cpu_cfs_period_read_u64,
7692 		.write_u64 = cpu_cfs_period_write_u64,
7693 	},
7694 	{
7695 		.name = "stat",
7696 		.seq_show = cpu_cfs_stat_show,
7697 	},
7698 #endif
7699 #ifdef CONFIG_RT_GROUP_SCHED
7700 	{
7701 		.name = "rt_runtime_us",
7702 		.read_s64 = cpu_rt_runtime_read,
7703 		.write_s64 = cpu_rt_runtime_write,
7704 	},
7705 	{
7706 		.name = "rt_period_us",
7707 		.read_u64 = cpu_rt_period_read_uint,
7708 		.write_u64 = cpu_rt_period_write_uint,
7709 	},
7710 #endif
7711 #ifdef CONFIG_UCLAMP_TASK_GROUP
7712 	{
7713 		.name = "uclamp.min",
7714 		.flags = CFTYPE_NOT_ON_ROOT,
7715 		.seq_show = cpu_uclamp_min_show,
7716 		.write = cpu_uclamp_min_write,
7717 	},
7718 	{
7719 		.name = "uclamp.max",
7720 		.flags = CFTYPE_NOT_ON_ROOT,
7721 		.seq_show = cpu_uclamp_max_show,
7722 		.write = cpu_uclamp_max_write,
7723 	},
7724 #endif
7725 	{ }	/* Terminate */
7726 };
7727 
7728 static int cpu_extra_stat_show(struct seq_file *sf,
7729 			       struct cgroup_subsys_state *css)
7730 {
7731 #ifdef CONFIG_CFS_BANDWIDTH
7732 	{
7733 		struct task_group *tg = css_tg(css);
7734 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7735 		u64 throttled_usec;
7736 
7737 		throttled_usec = cfs_b->throttled_time;
7738 		do_div(throttled_usec, NSEC_PER_USEC);
7739 
7740 		seq_printf(sf, "nr_periods %d\n"
7741 			   "nr_throttled %d\n"
7742 			   "throttled_usec %llu\n",
7743 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7744 			   throttled_usec);
7745 	}
7746 #endif
7747 	return 0;
7748 }
7749 
7750 #ifdef CONFIG_FAIR_GROUP_SCHED
7751 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7752 			       struct cftype *cft)
7753 {
7754 	struct task_group *tg = css_tg(css);
7755 	u64 weight = scale_load_down(tg->shares);
7756 
7757 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7758 }
7759 
7760 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7761 				struct cftype *cft, u64 weight)
7762 {
7763 	/*
7764 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7765 	 * values which are 1, 100 and 10000 respectively.  While it loses
7766 	 * a bit of range on both ends, it maps pretty well onto the shares
7767 	 * value used by scheduler and the round-trip conversions preserve
7768 	 * the original value over the entire range.
7769 	 */
7770 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7771 		return -ERANGE;
7772 
7773 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7774 
7775 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7776 }
7777 
7778 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7779 				    struct cftype *cft)
7780 {
7781 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7782 	int last_delta = INT_MAX;
7783 	int prio, delta;
7784 
7785 	/* find the closest nice value to the current weight */
7786 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7787 		delta = abs(sched_prio_to_weight[prio] - weight);
7788 		if (delta >= last_delta)
7789 			break;
7790 		last_delta = delta;
7791 	}
7792 
7793 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7794 }
7795 
7796 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7797 				     struct cftype *cft, s64 nice)
7798 {
7799 	unsigned long weight;
7800 	int idx;
7801 
7802 	if (nice < MIN_NICE || nice > MAX_NICE)
7803 		return -ERANGE;
7804 
7805 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7806 	idx = array_index_nospec(idx, 40);
7807 	weight = sched_prio_to_weight[idx];
7808 
7809 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7810 }
7811 #endif
7812 
7813 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7814 						  long period, long quota)
7815 {
7816 	if (quota < 0)
7817 		seq_puts(sf, "max");
7818 	else
7819 		seq_printf(sf, "%ld", quota);
7820 
7821 	seq_printf(sf, " %ld\n", period);
7822 }
7823 
7824 /* caller should put the current value in *@periodp before calling */
7825 static int __maybe_unused cpu_period_quota_parse(char *buf,
7826 						 u64 *periodp, u64 *quotap)
7827 {
7828 	char tok[21];	/* U64_MAX */
7829 
7830 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7831 		return -EINVAL;
7832 
7833 	*periodp *= NSEC_PER_USEC;
7834 
7835 	if (sscanf(tok, "%llu", quotap))
7836 		*quotap *= NSEC_PER_USEC;
7837 	else if (!strcmp(tok, "max"))
7838 		*quotap = RUNTIME_INF;
7839 	else
7840 		return -EINVAL;
7841 
7842 	return 0;
7843 }
7844 
7845 #ifdef CONFIG_CFS_BANDWIDTH
7846 static int cpu_max_show(struct seq_file *sf, void *v)
7847 {
7848 	struct task_group *tg = css_tg(seq_css(sf));
7849 
7850 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7851 	return 0;
7852 }
7853 
7854 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7855 			     char *buf, size_t nbytes, loff_t off)
7856 {
7857 	struct task_group *tg = css_tg(of_css(of));
7858 	u64 period = tg_get_cfs_period(tg);
7859 	u64 quota;
7860 	int ret;
7861 
7862 	ret = cpu_period_quota_parse(buf, &period, &quota);
7863 	if (!ret)
7864 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7865 	return ret ?: nbytes;
7866 }
7867 #endif
7868 
7869 static struct cftype cpu_files[] = {
7870 #ifdef CONFIG_FAIR_GROUP_SCHED
7871 	{
7872 		.name = "weight",
7873 		.flags = CFTYPE_NOT_ON_ROOT,
7874 		.read_u64 = cpu_weight_read_u64,
7875 		.write_u64 = cpu_weight_write_u64,
7876 	},
7877 	{
7878 		.name = "weight.nice",
7879 		.flags = CFTYPE_NOT_ON_ROOT,
7880 		.read_s64 = cpu_weight_nice_read_s64,
7881 		.write_s64 = cpu_weight_nice_write_s64,
7882 	},
7883 #endif
7884 #ifdef CONFIG_CFS_BANDWIDTH
7885 	{
7886 		.name = "max",
7887 		.flags = CFTYPE_NOT_ON_ROOT,
7888 		.seq_show = cpu_max_show,
7889 		.write = cpu_max_write,
7890 	},
7891 #endif
7892 #ifdef CONFIG_UCLAMP_TASK_GROUP
7893 	{
7894 		.name = "uclamp.min",
7895 		.flags = CFTYPE_NOT_ON_ROOT,
7896 		.seq_show = cpu_uclamp_min_show,
7897 		.write = cpu_uclamp_min_write,
7898 	},
7899 	{
7900 		.name = "uclamp.max",
7901 		.flags = CFTYPE_NOT_ON_ROOT,
7902 		.seq_show = cpu_uclamp_max_show,
7903 		.write = cpu_uclamp_max_write,
7904 	},
7905 #endif
7906 	{ }	/* terminate */
7907 };
7908 
7909 struct cgroup_subsys cpu_cgrp_subsys = {
7910 	.css_alloc	= cpu_cgroup_css_alloc,
7911 	.css_online	= cpu_cgroup_css_online,
7912 	.css_released	= cpu_cgroup_css_released,
7913 	.css_free	= cpu_cgroup_css_free,
7914 	.css_extra_stat_show = cpu_extra_stat_show,
7915 	.fork		= cpu_cgroup_fork,
7916 	.can_attach	= cpu_cgroup_can_attach,
7917 	.attach		= cpu_cgroup_attach,
7918 	.legacy_cftypes	= cpu_legacy_files,
7919 	.dfl_cftypes	= cpu_files,
7920 	.early_init	= true,
7921 	.threaded	= true,
7922 };
7923 
7924 #endif	/* CONFIG_CGROUP_SCHED */
7925 
7926 void dump_cpu_task(int cpu)
7927 {
7928 	pr_info("Task dump for CPU %d:\n", cpu);
7929 	sched_show_task(cpu_curr(cpu));
7930 }
7931 
7932 /*
7933  * Nice levels are multiplicative, with a gentle 10% change for every
7934  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7935  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7936  * that remained on nice 0.
7937  *
7938  * The "10% effect" is relative and cumulative: from _any_ nice level,
7939  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7940  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7941  * If a task goes up by ~10% and another task goes down by ~10% then
7942  * the relative distance between them is ~25%.)
7943  */
7944 const int sched_prio_to_weight[40] = {
7945  /* -20 */     88761,     71755,     56483,     46273,     36291,
7946  /* -15 */     29154,     23254,     18705,     14949,     11916,
7947  /* -10 */      9548,      7620,      6100,      4904,      3906,
7948  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7949  /*   0 */      1024,       820,       655,       526,       423,
7950  /*   5 */       335,       272,       215,       172,       137,
7951  /*  10 */       110,        87,        70,        56,        45,
7952  /*  15 */        36,        29,        23,        18,        15,
7953 };
7954 
7955 /*
7956  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7957  *
7958  * In cases where the weight does not change often, we can use the
7959  * precalculated inverse to speed up arithmetics by turning divisions
7960  * into multiplications:
7961  */
7962 const u32 sched_prio_to_wmult[40] = {
7963  /* -20 */     48388,     59856,     76040,     92818,    118348,
7964  /* -15 */    147320,    184698,    229616,    287308,    360437,
7965  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7966  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7967  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7968  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7969  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7970  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7971 };
7972 
7973 #undef CREATE_TRACE_POINTS
7974