xref: /openbmc/linux/kernel/sched/core.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 #include <linux/blkdev.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 #ifdef CONFIG_PREEMPT_RT
78 const_debug unsigned int sysctl_sched_nr_migrate = 8;
79 #else
80 const_debug unsigned int sysctl_sched_nr_migrate = 32;
81 #endif
82 
83 /*
84  * period over which we measure -rt task CPU usage in us.
85  * default: 1s
86  */
87 unsigned int sysctl_sched_rt_period = 1000000;
88 
89 __read_mostly int scheduler_running;
90 
91 #ifdef CONFIG_SCHED_CORE
92 
93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
94 
95 /* kernel prio, less is more */
96 static inline int __task_prio(struct task_struct *p)
97 {
98 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
99 		return -2;
100 
101 	if (rt_prio(p->prio)) /* includes deadline */
102 		return p->prio; /* [-1, 99] */
103 
104 	if (p->sched_class == &idle_sched_class)
105 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
106 
107 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
108 }
109 
110 /*
111  * l(a,b)
112  * le(a,b) := !l(b,a)
113  * g(a,b)  := l(b,a)
114  * ge(a,b) := !l(a,b)
115  */
116 
117 /* real prio, less is less */
118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
119 {
120 
121 	int pa = __task_prio(a), pb = __task_prio(b);
122 
123 	if (-pa < -pb)
124 		return true;
125 
126 	if (-pb < -pa)
127 		return false;
128 
129 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
130 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
131 
132 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
133 		return cfs_prio_less(a, b, in_fi);
134 
135 	return false;
136 }
137 
138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
139 {
140 	if (a->core_cookie < b->core_cookie)
141 		return true;
142 
143 	if (a->core_cookie > b->core_cookie)
144 		return false;
145 
146 	/* flip prio, so high prio is leftmost */
147 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
148 		return true;
149 
150 	return false;
151 }
152 
153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
154 
155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
156 {
157 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
158 }
159 
160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
161 {
162 	const struct task_struct *p = __node_2_sc(node);
163 	unsigned long cookie = (unsigned long)key;
164 
165 	if (cookie < p->core_cookie)
166 		return -1;
167 
168 	if (cookie > p->core_cookie)
169 		return 1;
170 
171 	return 0;
172 }
173 
174 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
175 {
176 	rq->core->core_task_seq++;
177 
178 	if (!p->core_cookie)
179 		return;
180 
181 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
182 }
183 
184 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
185 {
186 	rq->core->core_task_seq++;
187 
188 	if (!sched_core_enqueued(p))
189 		return;
190 
191 	rb_erase(&p->core_node, &rq->core_tree);
192 	RB_CLEAR_NODE(&p->core_node);
193 }
194 
195 /*
196  * Find left-most (aka, highest priority) task matching @cookie.
197  */
198 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
199 {
200 	struct rb_node *node;
201 
202 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
203 	/*
204 	 * The idle task always matches any cookie!
205 	 */
206 	if (!node)
207 		return idle_sched_class.pick_task(rq);
208 
209 	return __node_2_sc(node);
210 }
211 
212 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
213 {
214 	struct rb_node *node = &p->core_node;
215 
216 	node = rb_next(node);
217 	if (!node)
218 		return NULL;
219 
220 	p = container_of(node, struct task_struct, core_node);
221 	if (p->core_cookie != cookie)
222 		return NULL;
223 
224 	return p;
225 }
226 
227 /*
228  * Magic required such that:
229  *
230  *	raw_spin_rq_lock(rq);
231  *	...
232  *	raw_spin_rq_unlock(rq);
233  *
234  * ends up locking and unlocking the _same_ lock, and all CPUs
235  * always agree on what rq has what lock.
236  *
237  * XXX entirely possible to selectively enable cores, don't bother for now.
238  */
239 
240 static DEFINE_MUTEX(sched_core_mutex);
241 static atomic_t sched_core_count;
242 static struct cpumask sched_core_mask;
243 
244 static void sched_core_lock(int cpu, unsigned long *flags)
245 {
246 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
247 	int t, i = 0;
248 
249 	local_irq_save(*flags);
250 	for_each_cpu(t, smt_mask)
251 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
252 }
253 
254 static void sched_core_unlock(int cpu, unsigned long *flags)
255 {
256 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
257 	int t;
258 
259 	for_each_cpu(t, smt_mask)
260 		raw_spin_unlock(&cpu_rq(t)->__lock);
261 	local_irq_restore(*flags);
262 }
263 
264 static void __sched_core_flip(bool enabled)
265 {
266 	unsigned long flags;
267 	int cpu, t;
268 
269 	cpus_read_lock();
270 
271 	/*
272 	 * Toggle the online cores, one by one.
273 	 */
274 	cpumask_copy(&sched_core_mask, cpu_online_mask);
275 	for_each_cpu(cpu, &sched_core_mask) {
276 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
277 
278 		sched_core_lock(cpu, &flags);
279 
280 		for_each_cpu(t, smt_mask)
281 			cpu_rq(t)->core_enabled = enabled;
282 
283 		sched_core_unlock(cpu, &flags);
284 
285 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
286 	}
287 
288 	/*
289 	 * Toggle the offline CPUs.
290 	 */
291 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
292 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
293 
294 	for_each_cpu(cpu, &sched_core_mask)
295 		cpu_rq(cpu)->core_enabled = enabled;
296 
297 	cpus_read_unlock();
298 }
299 
300 static void sched_core_assert_empty(void)
301 {
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu)
305 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
306 }
307 
308 static void __sched_core_enable(void)
309 {
310 	static_branch_enable(&__sched_core_enabled);
311 	/*
312 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
313 	 * and future ones will observe !sched_core_disabled().
314 	 */
315 	synchronize_rcu();
316 	__sched_core_flip(true);
317 	sched_core_assert_empty();
318 }
319 
320 static void __sched_core_disable(void)
321 {
322 	sched_core_assert_empty();
323 	__sched_core_flip(false);
324 	static_branch_disable(&__sched_core_enabled);
325 }
326 
327 void sched_core_get(void)
328 {
329 	if (atomic_inc_not_zero(&sched_core_count))
330 		return;
331 
332 	mutex_lock(&sched_core_mutex);
333 	if (!atomic_read(&sched_core_count))
334 		__sched_core_enable();
335 
336 	smp_mb__before_atomic();
337 	atomic_inc(&sched_core_count);
338 	mutex_unlock(&sched_core_mutex);
339 }
340 
341 static void __sched_core_put(struct work_struct *work)
342 {
343 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
344 		__sched_core_disable();
345 		mutex_unlock(&sched_core_mutex);
346 	}
347 }
348 
349 void sched_core_put(void)
350 {
351 	static DECLARE_WORK(_work, __sched_core_put);
352 
353 	/*
354 	 * "There can be only one"
355 	 *
356 	 * Either this is the last one, or we don't actually need to do any
357 	 * 'work'. If it is the last *again*, we rely on
358 	 * WORK_STRUCT_PENDING_BIT.
359 	 */
360 	if (!atomic_add_unless(&sched_core_count, -1, 1))
361 		schedule_work(&_work);
362 }
363 
364 #else /* !CONFIG_SCHED_CORE */
365 
366 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
367 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
368 
369 #endif /* CONFIG_SCHED_CORE */
370 
371 /*
372  * part of the period that we allow rt tasks to run in us.
373  * default: 0.95s
374  */
375 int sysctl_sched_rt_runtime = 950000;
376 
377 
378 /*
379  * Serialization rules:
380  *
381  * Lock order:
382  *
383  *   p->pi_lock
384  *     rq->lock
385  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
386  *
387  *  rq1->lock
388  *    rq2->lock  where: rq1 < rq2
389  *
390  * Regular state:
391  *
392  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
393  * local CPU's rq->lock, it optionally removes the task from the runqueue and
394  * always looks at the local rq data structures to find the most eligible task
395  * to run next.
396  *
397  * Task enqueue is also under rq->lock, possibly taken from another CPU.
398  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
399  * the local CPU to avoid bouncing the runqueue state around [ see
400  * ttwu_queue_wakelist() ]
401  *
402  * Task wakeup, specifically wakeups that involve migration, are horribly
403  * complicated to avoid having to take two rq->locks.
404  *
405  * Special state:
406  *
407  * System-calls and anything external will use task_rq_lock() which acquires
408  * both p->pi_lock and rq->lock. As a consequence the state they change is
409  * stable while holding either lock:
410  *
411  *  - sched_setaffinity()/
412  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
413  *  - set_user_nice():		p->se.load, p->*prio
414  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
415  *				p->se.load, p->rt_priority,
416  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
417  *  - sched_setnuma():		p->numa_preferred_nid
418  *  - sched_move_task()/
419  *    cpu_cgroup_fork():	p->sched_task_group
420  *  - uclamp_update_active()	p->uclamp*
421  *
422  * p->state <- TASK_*:
423  *
424  *   is changed locklessly using set_current_state(), __set_current_state() or
425  *   set_special_state(), see their respective comments, or by
426  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
427  *   concurrent self.
428  *
429  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
430  *
431  *   is set by activate_task() and cleared by deactivate_task(), under
432  *   rq->lock. Non-zero indicates the task is runnable, the special
433  *   ON_RQ_MIGRATING state is used for migration without holding both
434  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
435  *
436  * p->on_cpu <- { 0, 1 }:
437  *
438  *   is set by prepare_task() and cleared by finish_task() such that it will be
439  *   set before p is scheduled-in and cleared after p is scheduled-out, both
440  *   under rq->lock. Non-zero indicates the task is running on its CPU.
441  *
442  *   [ The astute reader will observe that it is possible for two tasks on one
443  *     CPU to have ->on_cpu = 1 at the same time. ]
444  *
445  * task_cpu(p): is changed by set_task_cpu(), the rules are:
446  *
447  *  - Don't call set_task_cpu() on a blocked task:
448  *
449  *    We don't care what CPU we're not running on, this simplifies hotplug,
450  *    the CPU assignment of blocked tasks isn't required to be valid.
451  *
452  *  - for try_to_wake_up(), called under p->pi_lock:
453  *
454  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
455  *
456  *  - for migration called under rq->lock:
457  *    [ see task_on_rq_migrating() in task_rq_lock() ]
458  *
459  *    o move_queued_task()
460  *    o detach_task()
461  *
462  *  - for migration called under double_rq_lock():
463  *
464  *    o __migrate_swap_task()
465  *    o push_rt_task() / pull_rt_task()
466  *    o push_dl_task() / pull_dl_task()
467  *    o dl_task_offline_migration()
468  *
469  */
470 
471 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
472 {
473 	raw_spinlock_t *lock;
474 
475 	/* Matches synchronize_rcu() in __sched_core_enable() */
476 	preempt_disable();
477 	if (sched_core_disabled()) {
478 		raw_spin_lock_nested(&rq->__lock, subclass);
479 		/* preempt_count *MUST* be > 1 */
480 		preempt_enable_no_resched();
481 		return;
482 	}
483 
484 	for (;;) {
485 		lock = __rq_lockp(rq);
486 		raw_spin_lock_nested(lock, subclass);
487 		if (likely(lock == __rq_lockp(rq))) {
488 			/* preempt_count *MUST* be > 1 */
489 			preempt_enable_no_resched();
490 			return;
491 		}
492 		raw_spin_unlock(lock);
493 	}
494 }
495 
496 bool raw_spin_rq_trylock(struct rq *rq)
497 {
498 	raw_spinlock_t *lock;
499 	bool ret;
500 
501 	/* Matches synchronize_rcu() in __sched_core_enable() */
502 	preempt_disable();
503 	if (sched_core_disabled()) {
504 		ret = raw_spin_trylock(&rq->__lock);
505 		preempt_enable();
506 		return ret;
507 	}
508 
509 	for (;;) {
510 		lock = __rq_lockp(rq);
511 		ret = raw_spin_trylock(lock);
512 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
513 			preempt_enable();
514 			return ret;
515 		}
516 		raw_spin_unlock(lock);
517 	}
518 }
519 
520 void raw_spin_rq_unlock(struct rq *rq)
521 {
522 	raw_spin_unlock(rq_lockp(rq));
523 }
524 
525 #ifdef CONFIG_SMP
526 /*
527  * double_rq_lock - safely lock two runqueues
528  */
529 void double_rq_lock(struct rq *rq1, struct rq *rq2)
530 {
531 	lockdep_assert_irqs_disabled();
532 
533 	if (rq_order_less(rq2, rq1))
534 		swap(rq1, rq2);
535 
536 	raw_spin_rq_lock(rq1);
537 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
538 		return;
539 
540 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
541 }
542 #endif
543 
544 /*
545  * __task_rq_lock - lock the rq @p resides on.
546  */
547 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
548 	__acquires(rq->lock)
549 {
550 	struct rq *rq;
551 
552 	lockdep_assert_held(&p->pi_lock);
553 
554 	for (;;) {
555 		rq = task_rq(p);
556 		raw_spin_rq_lock(rq);
557 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
558 			rq_pin_lock(rq, rf);
559 			return rq;
560 		}
561 		raw_spin_rq_unlock(rq);
562 
563 		while (unlikely(task_on_rq_migrating(p)))
564 			cpu_relax();
565 	}
566 }
567 
568 /*
569  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
570  */
571 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
572 	__acquires(p->pi_lock)
573 	__acquires(rq->lock)
574 {
575 	struct rq *rq;
576 
577 	for (;;) {
578 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
579 		rq = task_rq(p);
580 		raw_spin_rq_lock(rq);
581 		/*
582 		 *	move_queued_task()		task_rq_lock()
583 		 *
584 		 *	ACQUIRE (rq->lock)
585 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
586 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
587 		 *	[S] ->cpu = new_cpu		[L] task_rq()
588 		 *					[L] ->on_rq
589 		 *	RELEASE (rq->lock)
590 		 *
591 		 * If we observe the old CPU in task_rq_lock(), the acquire of
592 		 * the old rq->lock will fully serialize against the stores.
593 		 *
594 		 * If we observe the new CPU in task_rq_lock(), the address
595 		 * dependency headed by '[L] rq = task_rq()' and the acquire
596 		 * will pair with the WMB to ensure we then also see migrating.
597 		 */
598 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
599 			rq_pin_lock(rq, rf);
600 			return rq;
601 		}
602 		raw_spin_rq_unlock(rq);
603 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
604 
605 		while (unlikely(task_on_rq_migrating(p)))
606 			cpu_relax();
607 	}
608 }
609 
610 /*
611  * RQ-clock updating methods:
612  */
613 
614 static void update_rq_clock_task(struct rq *rq, s64 delta)
615 {
616 /*
617  * In theory, the compile should just see 0 here, and optimize out the call
618  * to sched_rt_avg_update. But I don't trust it...
619  */
620 	s64 __maybe_unused steal = 0, irq_delta = 0;
621 
622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
624 
625 	/*
626 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
627 	 * this case when a previous update_rq_clock() happened inside a
628 	 * {soft,}irq region.
629 	 *
630 	 * When this happens, we stop ->clock_task and only update the
631 	 * prev_irq_time stamp to account for the part that fit, so that a next
632 	 * update will consume the rest. This ensures ->clock_task is
633 	 * monotonic.
634 	 *
635 	 * It does however cause some slight miss-attribution of {soft,}irq
636 	 * time, a more accurate solution would be to update the irq_time using
637 	 * the current rq->clock timestamp, except that would require using
638 	 * atomic ops.
639 	 */
640 	if (irq_delta > delta)
641 		irq_delta = delta;
642 
643 	rq->prev_irq_time += irq_delta;
644 	delta -= irq_delta;
645 #endif
646 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
647 	if (static_key_false((&paravirt_steal_rq_enabled))) {
648 		steal = paravirt_steal_clock(cpu_of(rq));
649 		steal -= rq->prev_steal_time_rq;
650 
651 		if (unlikely(steal > delta))
652 			steal = delta;
653 
654 		rq->prev_steal_time_rq += steal;
655 		delta -= steal;
656 	}
657 #endif
658 
659 	rq->clock_task += delta;
660 
661 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
662 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
663 		update_irq_load_avg(rq, irq_delta + steal);
664 #endif
665 	update_rq_clock_pelt(rq, delta);
666 }
667 
668 void update_rq_clock(struct rq *rq)
669 {
670 	s64 delta;
671 
672 	lockdep_assert_rq_held(rq);
673 
674 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
675 		return;
676 
677 #ifdef CONFIG_SCHED_DEBUG
678 	if (sched_feat(WARN_DOUBLE_CLOCK))
679 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
680 	rq->clock_update_flags |= RQCF_UPDATED;
681 #endif
682 
683 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
684 	if (delta < 0)
685 		return;
686 	rq->clock += delta;
687 	update_rq_clock_task(rq, delta);
688 }
689 
690 #ifdef CONFIG_SCHED_HRTICK
691 /*
692  * Use HR-timers to deliver accurate preemption points.
693  */
694 
695 static void hrtick_clear(struct rq *rq)
696 {
697 	if (hrtimer_active(&rq->hrtick_timer))
698 		hrtimer_cancel(&rq->hrtick_timer);
699 }
700 
701 /*
702  * High-resolution timer tick.
703  * Runs from hardirq context with interrupts disabled.
704  */
705 static enum hrtimer_restart hrtick(struct hrtimer *timer)
706 {
707 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
708 	struct rq_flags rf;
709 
710 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
711 
712 	rq_lock(rq, &rf);
713 	update_rq_clock(rq);
714 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
715 	rq_unlock(rq, &rf);
716 
717 	return HRTIMER_NORESTART;
718 }
719 
720 #ifdef CONFIG_SMP
721 
722 static void __hrtick_restart(struct rq *rq)
723 {
724 	struct hrtimer *timer = &rq->hrtick_timer;
725 	ktime_t time = rq->hrtick_time;
726 
727 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
728 }
729 
730 /*
731  * called from hardirq (IPI) context
732  */
733 static void __hrtick_start(void *arg)
734 {
735 	struct rq *rq = arg;
736 	struct rq_flags rf;
737 
738 	rq_lock(rq, &rf);
739 	__hrtick_restart(rq);
740 	rq_unlock(rq, &rf);
741 }
742 
743 /*
744  * Called to set the hrtick timer state.
745  *
746  * called with rq->lock held and irqs disabled
747  */
748 void hrtick_start(struct rq *rq, u64 delay)
749 {
750 	struct hrtimer *timer = &rq->hrtick_timer;
751 	s64 delta;
752 
753 	/*
754 	 * Don't schedule slices shorter than 10000ns, that just
755 	 * doesn't make sense and can cause timer DoS.
756 	 */
757 	delta = max_t(s64, delay, 10000LL);
758 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
759 
760 	if (rq == this_rq())
761 		__hrtick_restart(rq);
762 	else
763 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
764 }
765 
766 #else
767 /*
768  * Called to set the hrtick timer state.
769  *
770  * called with rq->lock held and irqs disabled
771  */
772 void hrtick_start(struct rq *rq, u64 delay)
773 {
774 	/*
775 	 * Don't schedule slices shorter than 10000ns, that just
776 	 * doesn't make sense. Rely on vruntime for fairness.
777 	 */
778 	delay = max_t(u64, delay, 10000LL);
779 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
780 		      HRTIMER_MODE_REL_PINNED_HARD);
781 }
782 
783 #endif /* CONFIG_SMP */
784 
785 static void hrtick_rq_init(struct rq *rq)
786 {
787 #ifdef CONFIG_SMP
788 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
789 #endif
790 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
791 	rq->hrtick_timer.function = hrtick;
792 }
793 #else	/* CONFIG_SCHED_HRTICK */
794 static inline void hrtick_clear(struct rq *rq)
795 {
796 }
797 
798 static inline void hrtick_rq_init(struct rq *rq)
799 {
800 }
801 #endif	/* CONFIG_SCHED_HRTICK */
802 
803 /*
804  * cmpxchg based fetch_or, macro so it works for different integer types
805  */
806 #define fetch_or(ptr, mask)						\
807 	({								\
808 		typeof(ptr) _ptr = (ptr);				\
809 		typeof(mask) _mask = (mask);				\
810 		typeof(*_ptr) _old, _val = *_ptr;			\
811 									\
812 		for (;;) {						\
813 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
814 			if (_old == _val)				\
815 				break;					\
816 			_val = _old;					\
817 		}							\
818 	_old;								\
819 })
820 
821 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
822 /*
823  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
824  * this avoids any races wrt polling state changes and thereby avoids
825  * spurious IPIs.
826  */
827 static bool set_nr_and_not_polling(struct task_struct *p)
828 {
829 	struct thread_info *ti = task_thread_info(p);
830 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
831 }
832 
833 /*
834  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
835  *
836  * If this returns true, then the idle task promises to call
837  * sched_ttwu_pending() and reschedule soon.
838  */
839 static bool set_nr_if_polling(struct task_struct *p)
840 {
841 	struct thread_info *ti = task_thread_info(p);
842 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
843 
844 	for (;;) {
845 		if (!(val & _TIF_POLLING_NRFLAG))
846 			return false;
847 		if (val & _TIF_NEED_RESCHED)
848 			return true;
849 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
850 		if (old == val)
851 			break;
852 		val = old;
853 	}
854 	return true;
855 }
856 
857 #else
858 static bool set_nr_and_not_polling(struct task_struct *p)
859 {
860 	set_tsk_need_resched(p);
861 	return true;
862 }
863 
864 #ifdef CONFIG_SMP
865 static bool set_nr_if_polling(struct task_struct *p)
866 {
867 	return false;
868 }
869 #endif
870 #endif
871 
872 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
873 {
874 	struct wake_q_node *node = &task->wake_q;
875 
876 	/*
877 	 * Atomically grab the task, if ->wake_q is !nil already it means
878 	 * it's already queued (either by us or someone else) and will get the
879 	 * wakeup due to that.
880 	 *
881 	 * In order to ensure that a pending wakeup will observe our pending
882 	 * state, even in the failed case, an explicit smp_mb() must be used.
883 	 */
884 	smp_mb__before_atomic();
885 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
886 		return false;
887 
888 	/*
889 	 * The head is context local, there can be no concurrency.
890 	 */
891 	*head->lastp = node;
892 	head->lastp = &node->next;
893 	return true;
894 }
895 
896 /**
897  * wake_q_add() - queue a wakeup for 'later' waking.
898  * @head: the wake_q_head to add @task to
899  * @task: the task to queue for 'later' wakeup
900  *
901  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903  * instantly.
904  *
905  * This function must be used as-if it were wake_up_process(); IOW the task
906  * must be ready to be woken at this location.
907  */
908 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
909 {
910 	if (__wake_q_add(head, task))
911 		get_task_struct(task);
912 }
913 
914 /**
915  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
916  * @head: the wake_q_head to add @task to
917  * @task: the task to queue for 'later' wakeup
918  *
919  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
920  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
921  * instantly.
922  *
923  * This function must be used as-if it were wake_up_process(); IOW the task
924  * must be ready to be woken at this location.
925  *
926  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
927  * that already hold reference to @task can call the 'safe' version and trust
928  * wake_q to do the right thing depending whether or not the @task is already
929  * queued for wakeup.
930  */
931 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
932 {
933 	if (!__wake_q_add(head, task))
934 		put_task_struct(task);
935 }
936 
937 void wake_up_q(struct wake_q_head *head)
938 {
939 	struct wake_q_node *node = head->first;
940 
941 	while (node != WAKE_Q_TAIL) {
942 		struct task_struct *task;
943 
944 		task = container_of(node, struct task_struct, wake_q);
945 		/* Task can safely be re-inserted now: */
946 		node = node->next;
947 		task->wake_q.next = NULL;
948 
949 		/*
950 		 * wake_up_process() executes a full barrier, which pairs with
951 		 * the queueing in wake_q_add() so as not to miss wakeups.
952 		 */
953 		wake_up_process(task);
954 		put_task_struct(task);
955 	}
956 }
957 
958 /*
959  * resched_curr - mark rq's current task 'to be rescheduled now'.
960  *
961  * On UP this means the setting of the need_resched flag, on SMP it
962  * might also involve a cross-CPU call to trigger the scheduler on
963  * the target CPU.
964  */
965 void resched_curr(struct rq *rq)
966 {
967 	struct task_struct *curr = rq->curr;
968 	int cpu;
969 
970 	lockdep_assert_rq_held(rq);
971 
972 	if (test_tsk_need_resched(curr))
973 		return;
974 
975 	cpu = cpu_of(rq);
976 
977 	if (cpu == smp_processor_id()) {
978 		set_tsk_need_resched(curr);
979 		set_preempt_need_resched();
980 		return;
981 	}
982 
983 	if (set_nr_and_not_polling(curr))
984 		smp_send_reschedule(cpu);
985 	else
986 		trace_sched_wake_idle_without_ipi(cpu);
987 }
988 
989 void resched_cpu(int cpu)
990 {
991 	struct rq *rq = cpu_rq(cpu);
992 	unsigned long flags;
993 
994 	raw_spin_rq_lock_irqsave(rq, flags);
995 	if (cpu_online(cpu) || cpu == smp_processor_id())
996 		resched_curr(rq);
997 	raw_spin_rq_unlock_irqrestore(rq, flags);
998 }
999 
1000 #ifdef CONFIG_SMP
1001 #ifdef CONFIG_NO_HZ_COMMON
1002 /*
1003  * In the semi idle case, use the nearest busy CPU for migrating timers
1004  * from an idle CPU.  This is good for power-savings.
1005  *
1006  * We don't do similar optimization for completely idle system, as
1007  * selecting an idle CPU will add more delays to the timers than intended
1008  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1009  */
1010 int get_nohz_timer_target(void)
1011 {
1012 	int i, cpu = smp_processor_id(), default_cpu = -1;
1013 	struct sched_domain *sd;
1014 	const struct cpumask *hk_mask;
1015 
1016 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1017 		if (!idle_cpu(cpu))
1018 			return cpu;
1019 		default_cpu = cpu;
1020 	}
1021 
1022 	hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1023 
1024 	rcu_read_lock();
1025 	for_each_domain(cpu, sd) {
1026 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1027 			if (cpu == i)
1028 				continue;
1029 
1030 			if (!idle_cpu(i)) {
1031 				cpu = i;
1032 				goto unlock;
1033 			}
1034 		}
1035 	}
1036 
1037 	if (default_cpu == -1)
1038 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1039 	cpu = default_cpu;
1040 unlock:
1041 	rcu_read_unlock();
1042 	return cpu;
1043 }
1044 
1045 /*
1046  * When add_timer_on() enqueues a timer into the timer wheel of an
1047  * idle CPU then this timer might expire before the next timer event
1048  * which is scheduled to wake up that CPU. In case of a completely
1049  * idle system the next event might even be infinite time into the
1050  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1051  * leaves the inner idle loop so the newly added timer is taken into
1052  * account when the CPU goes back to idle and evaluates the timer
1053  * wheel for the next timer event.
1054  */
1055 static void wake_up_idle_cpu(int cpu)
1056 {
1057 	struct rq *rq = cpu_rq(cpu);
1058 
1059 	if (cpu == smp_processor_id())
1060 		return;
1061 
1062 	if (set_nr_and_not_polling(rq->idle))
1063 		smp_send_reschedule(cpu);
1064 	else
1065 		trace_sched_wake_idle_without_ipi(cpu);
1066 }
1067 
1068 static bool wake_up_full_nohz_cpu(int cpu)
1069 {
1070 	/*
1071 	 * We just need the target to call irq_exit() and re-evaluate
1072 	 * the next tick. The nohz full kick at least implies that.
1073 	 * If needed we can still optimize that later with an
1074 	 * empty IRQ.
1075 	 */
1076 	if (cpu_is_offline(cpu))
1077 		return true;  /* Don't try to wake offline CPUs. */
1078 	if (tick_nohz_full_cpu(cpu)) {
1079 		if (cpu != smp_processor_id() ||
1080 		    tick_nohz_tick_stopped())
1081 			tick_nohz_full_kick_cpu(cpu);
1082 		return true;
1083 	}
1084 
1085 	return false;
1086 }
1087 
1088 /*
1089  * Wake up the specified CPU.  If the CPU is going offline, it is the
1090  * caller's responsibility to deal with the lost wakeup, for example,
1091  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1092  */
1093 void wake_up_nohz_cpu(int cpu)
1094 {
1095 	if (!wake_up_full_nohz_cpu(cpu))
1096 		wake_up_idle_cpu(cpu);
1097 }
1098 
1099 static void nohz_csd_func(void *info)
1100 {
1101 	struct rq *rq = info;
1102 	int cpu = cpu_of(rq);
1103 	unsigned int flags;
1104 
1105 	/*
1106 	 * Release the rq::nohz_csd.
1107 	 */
1108 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1109 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1110 
1111 	rq->idle_balance = idle_cpu(cpu);
1112 	if (rq->idle_balance && !need_resched()) {
1113 		rq->nohz_idle_balance = flags;
1114 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1115 	}
1116 }
1117 
1118 #endif /* CONFIG_NO_HZ_COMMON */
1119 
1120 #ifdef CONFIG_NO_HZ_FULL
1121 bool sched_can_stop_tick(struct rq *rq)
1122 {
1123 	int fifo_nr_running;
1124 
1125 	/* Deadline tasks, even if single, need the tick */
1126 	if (rq->dl.dl_nr_running)
1127 		return false;
1128 
1129 	/*
1130 	 * If there are more than one RR tasks, we need the tick to affect the
1131 	 * actual RR behaviour.
1132 	 */
1133 	if (rq->rt.rr_nr_running) {
1134 		if (rq->rt.rr_nr_running == 1)
1135 			return true;
1136 		else
1137 			return false;
1138 	}
1139 
1140 	/*
1141 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1142 	 * forced preemption between FIFO tasks.
1143 	 */
1144 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1145 	if (fifo_nr_running)
1146 		return true;
1147 
1148 	/*
1149 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1150 	 * if there's more than one we need the tick for involuntary
1151 	 * preemption.
1152 	 */
1153 	if (rq->nr_running > 1)
1154 		return false;
1155 
1156 	return true;
1157 }
1158 #endif /* CONFIG_NO_HZ_FULL */
1159 #endif /* CONFIG_SMP */
1160 
1161 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1162 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1163 /*
1164  * Iterate task_group tree rooted at *from, calling @down when first entering a
1165  * node and @up when leaving it for the final time.
1166  *
1167  * Caller must hold rcu_lock or sufficient equivalent.
1168  */
1169 int walk_tg_tree_from(struct task_group *from,
1170 			     tg_visitor down, tg_visitor up, void *data)
1171 {
1172 	struct task_group *parent, *child;
1173 	int ret;
1174 
1175 	parent = from;
1176 
1177 down:
1178 	ret = (*down)(parent, data);
1179 	if (ret)
1180 		goto out;
1181 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1182 		parent = child;
1183 		goto down;
1184 
1185 up:
1186 		continue;
1187 	}
1188 	ret = (*up)(parent, data);
1189 	if (ret || parent == from)
1190 		goto out;
1191 
1192 	child = parent;
1193 	parent = parent->parent;
1194 	if (parent)
1195 		goto up;
1196 out:
1197 	return ret;
1198 }
1199 
1200 int tg_nop(struct task_group *tg, void *data)
1201 {
1202 	return 0;
1203 }
1204 #endif
1205 
1206 static void set_load_weight(struct task_struct *p, bool update_load)
1207 {
1208 	int prio = p->static_prio - MAX_RT_PRIO;
1209 	struct load_weight *load = &p->se.load;
1210 
1211 	/*
1212 	 * SCHED_IDLE tasks get minimal weight:
1213 	 */
1214 	if (task_has_idle_policy(p)) {
1215 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1216 		load->inv_weight = WMULT_IDLEPRIO;
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * SCHED_OTHER tasks have to update their load when changing their
1222 	 * weight
1223 	 */
1224 	if (update_load && p->sched_class == &fair_sched_class) {
1225 		reweight_task(p, prio);
1226 	} else {
1227 		load->weight = scale_load(sched_prio_to_weight[prio]);
1228 		load->inv_weight = sched_prio_to_wmult[prio];
1229 	}
1230 }
1231 
1232 #ifdef CONFIG_UCLAMP_TASK
1233 /*
1234  * Serializes updates of utilization clamp values
1235  *
1236  * The (slow-path) user-space triggers utilization clamp value updates which
1237  * can require updates on (fast-path) scheduler's data structures used to
1238  * support enqueue/dequeue operations.
1239  * While the per-CPU rq lock protects fast-path update operations, user-space
1240  * requests are serialized using a mutex to reduce the risk of conflicting
1241  * updates or API abuses.
1242  */
1243 static DEFINE_MUTEX(uclamp_mutex);
1244 
1245 /* Max allowed minimum utilization */
1246 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1247 
1248 /* Max allowed maximum utilization */
1249 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1250 
1251 /*
1252  * By default RT tasks run at the maximum performance point/capacity of the
1253  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1254  * SCHED_CAPACITY_SCALE.
1255  *
1256  * This knob allows admins to change the default behavior when uclamp is being
1257  * used. In battery powered devices, particularly, running at the maximum
1258  * capacity and frequency will increase energy consumption and shorten the
1259  * battery life.
1260  *
1261  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1262  *
1263  * This knob will not override the system default sched_util_clamp_min defined
1264  * above.
1265  */
1266 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1267 
1268 /* All clamps are required to be less or equal than these values */
1269 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1270 
1271 /*
1272  * This static key is used to reduce the uclamp overhead in the fast path. It
1273  * primarily disables the call to uclamp_rq_{inc, dec}() in
1274  * enqueue/dequeue_task().
1275  *
1276  * This allows users to continue to enable uclamp in their kernel config with
1277  * minimum uclamp overhead in the fast path.
1278  *
1279  * As soon as userspace modifies any of the uclamp knobs, the static key is
1280  * enabled, since we have an actual users that make use of uclamp
1281  * functionality.
1282  *
1283  * The knobs that would enable this static key are:
1284  *
1285  *   * A task modifying its uclamp value with sched_setattr().
1286  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1287  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1288  */
1289 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1290 
1291 /* Integer rounded range for each bucket */
1292 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1293 
1294 #define for_each_clamp_id(clamp_id) \
1295 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1296 
1297 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1298 {
1299 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1300 }
1301 
1302 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1303 {
1304 	if (clamp_id == UCLAMP_MIN)
1305 		return 0;
1306 	return SCHED_CAPACITY_SCALE;
1307 }
1308 
1309 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1310 				 unsigned int value, bool user_defined)
1311 {
1312 	uc_se->value = value;
1313 	uc_se->bucket_id = uclamp_bucket_id(value);
1314 	uc_se->user_defined = user_defined;
1315 }
1316 
1317 static inline unsigned int
1318 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1319 		  unsigned int clamp_value)
1320 {
1321 	/*
1322 	 * Avoid blocked utilization pushing up the frequency when we go
1323 	 * idle (which drops the max-clamp) by retaining the last known
1324 	 * max-clamp.
1325 	 */
1326 	if (clamp_id == UCLAMP_MAX) {
1327 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1328 		return clamp_value;
1329 	}
1330 
1331 	return uclamp_none(UCLAMP_MIN);
1332 }
1333 
1334 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1335 				     unsigned int clamp_value)
1336 {
1337 	/* Reset max-clamp retention only on idle exit */
1338 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1339 		return;
1340 
1341 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1342 }
1343 
1344 static inline
1345 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1346 				   unsigned int clamp_value)
1347 {
1348 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1349 	int bucket_id = UCLAMP_BUCKETS - 1;
1350 
1351 	/*
1352 	 * Since both min and max clamps are max aggregated, find the
1353 	 * top most bucket with tasks in.
1354 	 */
1355 	for ( ; bucket_id >= 0; bucket_id--) {
1356 		if (!bucket[bucket_id].tasks)
1357 			continue;
1358 		return bucket[bucket_id].value;
1359 	}
1360 
1361 	/* No tasks -- default clamp values */
1362 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1363 }
1364 
1365 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1366 {
1367 	unsigned int default_util_min;
1368 	struct uclamp_se *uc_se;
1369 
1370 	lockdep_assert_held(&p->pi_lock);
1371 
1372 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1373 
1374 	/* Only sync if user didn't override the default */
1375 	if (uc_se->user_defined)
1376 		return;
1377 
1378 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1379 	uclamp_se_set(uc_se, default_util_min, false);
1380 }
1381 
1382 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1383 {
1384 	struct rq_flags rf;
1385 	struct rq *rq;
1386 
1387 	if (!rt_task(p))
1388 		return;
1389 
1390 	/* Protect updates to p->uclamp_* */
1391 	rq = task_rq_lock(p, &rf);
1392 	__uclamp_update_util_min_rt_default(p);
1393 	task_rq_unlock(rq, p, &rf);
1394 }
1395 
1396 static void uclamp_sync_util_min_rt_default(void)
1397 {
1398 	struct task_struct *g, *p;
1399 
1400 	/*
1401 	 * copy_process()			sysctl_uclamp
1402 	 *					  uclamp_min_rt = X;
1403 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1404 	 *   // link thread			  smp_mb__after_spinlock()
1405 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1406 	 *   sched_post_fork()			  for_each_process_thread()
1407 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1408 	 *
1409 	 * Ensures that either sched_post_fork() will observe the new
1410 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1411 	 * task.
1412 	 */
1413 	read_lock(&tasklist_lock);
1414 	smp_mb__after_spinlock();
1415 	read_unlock(&tasklist_lock);
1416 
1417 	rcu_read_lock();
1418 	for_each_process_thread(g, p)
1419 		uclamp_update_util_min_rt_default(p);
1420 	rcu_read_unlock();
1421 }
1422 
1423 static inline struct uclamp_se
1424 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1425 {
1426 	/* Copy by value as we could modify it */
1427 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1428 #ifdef CONFIG_UCLAMP_TASK_GROUP
1429 	unsigned int tg_min, tg_max, value;
1430 
1431 	/*
1432 	 * Tasks in autogroups or root task group will be
1433 	 * restricted by system defaults.
1434 	 */
1435 	if (task_group_is_autogroup(task_group(p)))
1436 		return uc_req;
1437 	if (task_group(p) == &root_task_group)
1438 		return uc_req;
1439 
1440 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1441 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1442 	value = uc_req.value;
1443 	value = clamp(value, tg_min, tg_max);
1444 	uclamp_se_set(&uc_req, value, false);
1445 #endif
1446 
1447 	return uc_req;
1448 }
1449 
1450 /*
1451  * The effective clamp bucket index of a task depends on, by increasing
1452  * priority:
1453  * - the task specific clamp value, when explicitly requested from userspace
1454  * - the task group effective clamp value, for tasks not either in the root
1455  *   group or in an autogroup
1456  * - the system default clamp value, defined by the sysadmin
1457  */
1458 static inline struct uclamp_se
1459 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1460 {
1461 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1462 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1463 
1464 	/* System default restrictions always apply */
1465 	if (unlikely(uc_req.value > uc_max.value))
1466 		return uc_max;
1467 
1468 	return uc_req;
1469 }
1470 
1471 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1472 {
1473 	struct uclamp_se uc_eff;
1474 
1475 	/* Task currently refcounted: use back-annotated (effective) value */
1476 	if (p->uclamp[clamp_id].active)
1477 		return (unsigned long)p->uclamp[clamp_id].value;
1478 
1479 	uc_eff = uclamp_eff_get(p, clamp_id);
1480 
1481 	return (unsigned long)uc_eff.value;
1482 }
1483 
1484 /*
1485  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1486  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1487  * updates the rq's clamp value if required.
1488  *
1489  * Tasks can have a task-specific value requested from user-space, track
1490  * within each bucket the maximum value for tasks refcounted in it.
1491  * This "local max aggregation" allows to track the exact "requested" value
1492  * for each bucket when all its RUNNABLE tasks require the same clamp.
1493  */
1494 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1495 				    enum uclamp_id clamp_id)
1496 {
1497 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1498 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1499 	struct uclamp_bucket *bucket;
1500 
1501 	lockdep_assert_rq_held(rq);
1502 
1503 	/* Update task effective clamp */
1504 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1505 
1506 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1507 	bucket->tasks++;
1508 	uc_se->active = true;
1509 
1510 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1511 
1512 	/*
1513 	 * Local max aggregation: rq buckets always track the max
1514 	 * "requested" clamp value of its RUNNABLE tasks.
1515 	 */
1516 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1517 		bucket->value = uc_se->value;
1518 
1519 	if (uc_se->value > READ_ONCE(uc_rq->value))
1520 		WRITE_ONCE(uc_rq->value, uc_se->value);
1521 }
1522 
1523 /*
1524  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1525  * is released. If this is the last task reference counting the rq's max
1526  * active clamp value, then the rq's clamp value is updated.
1527  *
1528  * Both refcounted tasks and rq's cached clamp values are expected to be
1529  * always valid. If it's detected they are not, as defensive programming,
1530  * enforce the expected state and warn.
1531  */
1532 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1533 				    enum uclamp_id clamp_id)
1534 {
1535 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1536 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1537 	struct uclamp_bucket *bucket;
1538 	unsigned int bkt_clamp;
1539 	unsigned int rq_clamp;
1540 
1541 	lockdep_assert_rq_held(rq);
1542 
1543 	/*
1544 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1545 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1546 	 *
1547 	 * In this case the uc_se->active flag should be false since no uclamp
1548 	 * accounting was performed at enqueue time and we can just return
1549 	 * here.
1550 	 *
1551 	 * Need to be careful of the following enqueue/dequeue ordering
1552 	 * problem too
1553 	 *
1554 	 *	enqueue(taskA)
1555 	 *	// sched_uclamp_used gets enabled
1556 	 *	enqueue(taskB)
1557 	 *	dequeue(taskA)
1558 	 *	// Must not decrement bucket->tasks here
1559 	 *	dequeue(taskB)
1560 	 *
1561 	 * where we could end up with stale data in uc_se and
1562 	 * bucket[uc_se->bucket_id].
1563 	 *
1564 	 * The following check here eliminates the possibility of such race.
1565 	 */
1566 	if (unlikely(!uc_se->active))
1567 		return;
1568 
1569 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1570 
1571 	SCHED_WARN_ON(!bucket->tasks);
1572 	if (likely(bucket->tasks))
1573 		bucket->tasks--;
1574 
1575 	uc_se->active = false;
1576 
1577 	/*
1578 	 * Keep "local max aggregation" simple and accept to (possibly)
1579 	 * overboost some RUNNABLE tasks in the same bucket.
1580 	 * The rq clamp bucket value is reset to its base value whenever
1581 	 * there are no more RUNNABLE tasks refcounting it.
1582 	 */
1583 	if (likely(bucket->tasks))
1584 		return;
1585 
1586 	rq_clamp = READ_ONCE(uc_rq->value);
1587 	/*
1588 	 * Defensive programming: this should never happen. If it happens,
1589 	 * e.g. due to future modification, warn and fixup the expected value.
1590 	 */
1591 	SCHED_WARN_ON(bucket->value > rq_clamp);
1592 	if (bucket->value >= rq_clamp) {
1593 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1594 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1595 	}
1596 }
1597 
1598 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1599 {
1600 	enum uclamp_id clamp_id;
1601 
1602 	/*
1603 	 * Avoid any overhead until uclamp is actually used by the userspace.
1604 	 *
1605 	 * The condition is constructed such that a NOP is generated when
1606 	 * sched_uclamp_used is disabled.
1607 	 */
1608 	if (!static_branch_unlikely(&sched_uclamp_used))
1609 		return;
1610 
1611 	if (unlikely(!p->sched_class->uclamp_enabled))
1612 		return;
1613 
1614 	for_each_clamp_id(clamp_id)
1615 		uclamp_rq_inc_id(rq, p, clamp_id);
1616 
1617 	/* Reset clamp idle holding when there is one RUNNABLE task */
1618 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1619 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1620 }
1621 
1622 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1623 {
1624 	enum uclamp_id clamp_id;
1625 
1626 	/*
1627 	 * Avoid any overhead until uclamp is actually used by the userspace.
1628 	 *
1629 	 * The condition is constructed such that a NOP is generated when
1630 	 * sched_uclamp_used is disabled.
1631 	 */
1632 	if (!static_branch_unlikely(&sched_uclamp_used))
1633 		return;
1634 
1635 	if (unlikely(!p->sched_class->uclamp_enabled))
1636 		return;
1637 
1638 	for_each_clamp_id(clamp_id)
1639 		uclamp_rq_dec_id(rq, p, clamp_id);
1640 }
1641 
1642 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1643 				      enum uclamp_id clamp_id)
1644 {
1645 	if (!p->uclamp[clamp_id].active)
1646 		return;
1647 
1648 	uclamp_rq_dec_id(rq, p, clamp_id);
1649 	uclamp_rq_inc_id(rq, p, clamp_id);
1650 
1651 	/*
1652 	 * Make sure to clear the idle flag if we've transiently reached 0
1653 	 * active tasks on rq.
1654 	 */
1655 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1656 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1657 }
1658 
1659 static inline void
1660 uclamp_update_active(struct task_struct *p)
1661 {
1662 	enum uclamp_id clamp_id;
1663 	struct rq_flags rf;
1664 	struct rq *rq;
1665 
1666 	/*
1667 	 * Lock the task and the rq where the task is (or was) queued.
1668 	 *
1669 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1670 	 * price to pay to safely serialize util_{min,max} updates with
1671 	 * enqueues, dequeues and migration operations.
1672 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1673 	 */
1674 	rq = task_rq_lock(p, &rf);
1675 
1676 	/*
1677 	 * Setting the clamp bucket is serialized by task_rq_lock().
1678 	 * If the task is not yet RUNNABLE and its task_struct is not
1679 	 * affecting a valid clamp bucket, the next time it's enqueued,
1680 	 * it will already see the updated clamp bucket value.
1681 	 */
1682 	for_each_clamp_id(clamp_id)
1683 		uclamp_rq_reinc_id(rq, p, clamp_id);
1684 
1685 	task_rq_unlock(rq, p, &rf);
1686 }
1687 
1688 #ifdef CONFIG_UCLAMP_TASK_GROUP
1689 static inline void
1690 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1691 {
1692 	struct css_task_iter it;
1693 	struct task_struct *p;
1694 
1695 	css_task_iter_start(css, 0, &it);
1696 	while ((p = css_task_iter_next(&it)))
1697 		uclamp_update_active(p);
1698 	css_task_iter_end(&it);
1699 }
1700 
1701 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1702 static void uclamp_update_root_tg(void)
1703 {
1704 	struct task_group *tg = &root_task_group;
1705 
1706 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1707 		      sysctl_sched_uclamp_util_min, false);
1708 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1709 		      sysctl_sched_uclamp_util_max, false);
1710 
1711 	rcu_read_lock();
1712 	cpu_util_update_eff(&root_task_group.css);
1713 	rcu_read_unlock();
1714 }
1715 #else
1716 static void uclamp_update_root_tg(void) { }
1717 #endif
1718 
1719 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1720 				void *buffer, size_t *lenp, loff_t *ppos)
1721 {
1722 	bool update_root_tg = false;
1723 	int old_min, old_max, old_min_rt;
1724 	int result;
1725 
1726 	mutex_lock(&uclamp_mutex);
1727 	old_min = sysctl_sched_uclamp_util_min;
1728 	old_max = sysctl_sched_uclamp_util_max;
1729 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1730 
1731 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1732 	if (result)
1733 		goto undo;
1734 	if (!write)
1735 		goto done;
1736 
1737 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1738 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1739 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1740 
1741 		result = -EINVAL;
1742 		goto undo;
1743 	}
1744 
1745 	if (old_min != sysctl_sched_uclamp_util_min) {
1746 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1747 			      sysctl_sched_uclamp_util_min, false);
1748 		update_root_tg = true;
1749 	}
1750 	if (old_max != sysctl_sched_uclamp_util_max) {
1751 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1752 			      sysctl_sched_uclamp_util_max, false);
1753 		update_root_tg = true;
1754 	}
1755 
1756 	if (update_root_tg) {
1757 		static_branch_enable(&sched_uclamp_used);
1758 		uclamp_update_root_tg();
1759 	}
1760 
1761 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1762 		static_branch_enable(&sched_uclamp_used);
1763 		uclamp_sync_util_min_rt_default();
1764 	}
1765 
1766 	/*
1767 	 * We update all RUNNABLE tasks only when task groups are in use.
1768 	 * Otherwise, keep it simple and do just a lazy update at each next
1769 	 * task enqueue time.
1770 	 */
1771 
1772 	goto done;
1773 
1774 undo:
1775 	sysctl_sched_uclamp_util_min = old_min;
1776 	sysctl_sched_uclamp_util_max = old_max;
1777 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1778 done:
1779 	mutex_unlock(&uclamp_mutex);
1780 
1781 	return result;
1782 }
1783 
1784 static int uclamp_validate(struct task_struct *p,
1785 			   const struct sched_attr *attr)
1786 {
1787 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1788 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1789 
1790 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1791 		util_min = attr->sched_util_min;
1792 
1793 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1794 			return -EINVAL;
1795 	}
1796 
1797 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1798 		util_max = attr->sched_util_max;
1799 
1800 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1801 			return -EINVAL;
1802 	}
1803 
1804 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1805 		return -EINVAL;
1806 
1807 	/*
1808 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1809 	 *
1810 	 * We need to do that here, because enabling static branches is a
1811 	 * blocking operation which obviously cannot be done while holding
1812 	 * scheduler locks.
1813 	 */
1814 	static_branch_enable(&sched_uclamp_used);
1815 
1816 	return 0;
1817 }
1818 
1819 static bool uclamp_reset(const struct sched_attr *attr,
1820 			 enum uclamp_id clamp_id,
1821 			 struct uclamp_se *uc_se)
1822 {
1823 	/* Reset on sched class change for a non user-defined clamp value. */
1824 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1825 	    !uc_se->user_defined)
1826 		return true;
1827 
1828 	/* Reset on sched_util_{min,max} == -1. */
1829 	if (clamp_id == UCLAMP_MIN &&
1830 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1831 	    attr->sched_util_min == -1) {
1832 		return true;
1833 	}
1834 
1835 	if (clamp_id == UCLAMP_MAX &&
1836 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1837 	    attr->sched_util_max == -1) {
1838 		return true;
1839 	}
1840 
1841 	return false;
1842 }
1843 
1844 static void __setscheduler_uclamp(struct task_struct *p,
1845 				  const struct sched_attr *attr)
1846 {
1847 	enum uclamp_id clamp_id;
1848 
1849 	for_each_clamp_id(clamp_id) {
1850 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1851 		unsigned int value;
1852 
1853 		if (!uclamp_reset(attr, clamp_id, uc_se))
1854 			continue;
1855 
1856 		/*
1857 		 * RT by default have a 100% boost value that could be modified
1858 		 * at runtime.
1859 		 */
1860 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1861 			value = sysctl_sched_uclamp_util_min_rt_default;
1862 		else
1863 			value = uclamp_none(clamp_id);
1864 
1865 		uclamp_se_set(uc_se, value, false);
1866 
1867 	}
1868 
1869 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1870 		return;
1871 
1872 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1873 	    attr->sched_util_min != -1) {
1874 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1875 			      attr->sched_util_min, true);
1876 	}
1877 
1878 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1879 	    attr->sched_util_max != -1) {
1880 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1881 			      attr->sched_util_max, true);
1882 	}
1883 }
1884 
1885 static void uclamp_fork(struct task_struct *p)
1886 {
1887 	enum uclamp_id clamp_id;
1888 
1889 	/*
1890 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1891 	 * as the task is still at its early fork stages.
1892 	 */
1893 	for_each_clamp_id(clamp_id)
1894 		p->uclamp[clamp_id].active = false;
1895 
1896 	if (likely(!p->sched_reset_on_fork))
1897 		return;
1898 
1899 	for_each_clamp_id(clamp_id) {
1900 		uclamp_se_set(&p->uclamp_req[clamp_id],
1901 			      uclamp_none(clamp_id), false);
1902 	}
1903 }
1904 
1905 static void uclamp_post_fork(struct task_struct *p)
1906 {
1907 	uclamp_update_util_min_rt_default(p);
1908 }
1909 
1910 static void __init init_uclamp_rq(struct rq *rq)
1911 {
1912 	enum uclamp_id clamp_id;
1913 	struct uclamp_rq *uc_rq = rq->uclamp;
1914 
1915 	for_each_clamp_id(clamp_id) {
1916 		uc_rq[clamp_id] = (struct uclamp_rq) {
1917 			.value = uclamp_none(clamp_id)
1918 		};
1919 	}
1920 
1921 	rq->uclamp_flags = 0;
1922 }
1923 
1924 static void __init init_uclamp(void)
1925 {
1926 	struct uclamp_se uc_max = {};
1927 	enum uclamp_id clamp_id;
1928 	int cpu;
1929 
1930 	for_each_possible_cpu(cpu)
1931 		init_uclamp_rq(cpu_rq(cpu));
1932 
1933 	for_each_clamp_id(clamp_id) {
1934 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1935 			      uclamp_none(clamp_id), false);
1936 	}
1937 
1938 	/* System defaults allow max clamp values for both indexes */
1939 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1940 	for_each_clamp_id(clamp_id) {
1941 		uclamp_default[clamp_id] = uc_max;
1942 #ifdef CONFIG_UCLAMP_TASK_GROUP
1943 		root_task_group.uclamp_req[clamp_id] = uc_max;
1944 		root_task_group.uclamp[clamp_id] = uc_max;
1945 #endif
1946 	}
1947 }
1948 
1949 #else /* CONFIG_UCLAMP_TASK */
1950 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1951 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1952 static inline int uclamp_validate(struct task_struct *p,
1953 				  const struct sched_attr *attr)
1954 {
1955 	return -EOPNOTSUPP;
1956 }
1957 static void __setscheduler_uclamp(struct task_struct *p,
1958 				  const struct sched_attr *attr) { }
1959 static inline void uclamp_fork(struct task_struct *p) { }
1960 static inline void uclamp_post_fork(struct task_struct *p) { }
1961 static inline void init_uclamp(void) { }
1962 #endif /* CONFIG_UCLAMP_TASK */
1963 
1964 bool sched_task_on_rq(struct task_struct *p)
1965 {
1966 	return task_on_rq_queued(p);
1967 }
1968 
1969 unsigned long get_wchan(struct task_struct *p)
1970 {
1971 	unsigned long ip = 0;
1972 	unsigned int state;
1973 
1974 	if (!p || p == current)
1975 		return 0;
1976 
1977 	/* Only get wchan if task is blocked and we can keep it that way. */
1978 	raw_spin_lock_irq(&p->pi_lock);
1979 	state = READ_ONCE(p->__state);
1980 	smp_rmb(); /* see try_to_wake_up() */
1981 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1982 		ip = __get_wchan(p);
1983 	raw_spin_unlock_irq(&p->pi_lock);
1984 
1985 	return ip;
1986 }
1987 
1988 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1989 {
1990 	if (!(flags & ENQUEUE_NOCLOCK))
1991 		update_rq_clock(rq);
1992 
1993 	if (!(flags & ENQUEUE_RESTORE)) {
1994 		sched_info_enqueue(rq, p);
1995 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1996 	}
1997 
1998 	uclamp_rq_inc(rq, p);
1999 	p->sched_class->enqueue_task(rq, p, flags);
2000 
2001 	if (sched_core_enabled(rq))
2002 		sched_core_enqueue(rq, p);
2003 }
2004 
2005 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2006 {
2007 	if (sched_core_enabled(rq))
2008 		sched_core_dequeue(rq, p);
2009 
2010 	if (!(flags & DEQUEUE_NOCLOCK))
2011 		update_rq_clock(rq);
2012 
2013 	if (!(flags & DEQUEUE_SAVE)) {
2014 		sched_info_dequeue(rq, p);
2015 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2016 	}
2017 
2018 	uclamp_rq_dec(rq, p);
2019 	p->sched_class->dequeue_task(rq, p, flags);
2020 }
2021 
2022 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2023 {
2024 	enqueue_task(rq, p, flags);
2025 
2026 	p->on_rq = TASK_ON_RQ_QUEUED;
2027 }
2028 
2029 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2030 {
2031 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2032 
2033 	dequeue_task(rq, p, flags);
2034 }
2035 
2036 static inline int __normal_prio(int policy, int rt_prio, int nice)
2037 {
2038 	int prio;
2039 
2040 	if (dl_policy(policy))
2041 		prio = MAX_DL_PRIO - 1;
2042 	else if (rt_policy(policy))
2043 		prio = MAX_RT_PRIO - 1 - rt_prio;
2044 	else
2045 		prio = NICE_TO_PRIO(nice);
2046 
2047 	return prio;
2048 }
2049 
2050 /*
2051  * Calculate the expected normal priority: i.e. priority
2052  * without taking RT-inheritance into account. Might be
2053  * boosted by interactivity modifiers. Changes upon fork,
2054  * setprio syscalls, and whenever the interactivity
2055  * estimator recalculates.
2056  */
2057 static inline int normal_prio(struct task_struct *p)
2058 {
2059 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2060 }
2061 
2062 /*
2063  * Calculate the current priority, i.e. the priority
2064  * taken into account by the scheduler. This value might
2065  * be boosted by RT tasks, or might be boosted by
2066  * interactivity modifiers. Will be RT if the task got
2067  * RT-boosted. If not then it returns p->normal_prio.
2068  */
2069 static int effective_prio(struct task_struct *p)
2070 {
2071 	p->normal_prio = normal_prio(p);
2072 	/*
2073 	 * If we are RT tasks or we were boosted to RT priority,
2074 	 * keep the priority unchanged. Otherwise, update priority
2075 	 * to the normal priority:
2076 	 */
2077 	if (!rt_prio(p->prio))
2078 		return p->normal_prio;
2079 	return p->prio;
2080 }
2081 
2082 /**
2083  * task_curr - is this task currently executing on a CPU?
2084  * @p: the task in question.
2085  *
2086  * Return: 1 if the task is currently executing. 0 otherwise.
2087  */
2088 inline int task_curr(const struct task_struct *p)
2089 {
2090 	return cpu_curr(task_cpu(p)) == p;
2091 }
2092 
2093 /*
2094  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2095  * use the balance_callback list if you want balancing.
2096  *
2097  * this means any call to check_class_changed() must be followed by a call to
2098  * balance_callback().
2099  */
2100 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2101 				       const struct sched_class *prev_class,
2102 				       int oldprio)
2103 {
2104 	if (prev_class != p->sched_class) {
2105 		if (prev_class->switched_from)
2106 			prev_class->switched_from(rq, p);
2107 
2108 		p->sched_class->switched_to(rq, p);
2109 	} else if (oldprio != p->prio || dl_task(p))
2110 		p->sched_class->prio_changed(rq, p, oldprio);
2111 }
2112 
2113 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2114 {
2115 	if (p->sched_class == rq->curr->sched_class)
2116 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 	else if (p->sched_class > rq->curr->sched_class)
2118 		resched_curr(rq);
2119 
2120 	/*
2121 	 * A queue event has occurred, and we're going to schedule.  In
2122 	 * this case, we can save a useless back to back clock update.
2123 	 */
2124 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2125 		rq_clock_skip_update(rq);
2126 }
2127 
2128 #ifdef CONFIG_SMP
2129 
2130 static void
2131 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2132 
2133 static int __set_cpus_allowed_ptr(struct task_struct *p,
2134 				  const struct cpumask *new_mask,
2135 				  u32 flags);
2136 
2137 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2138 {
2139 	if (likely(!p->migration_disabled))
2140 		return;
2141 
2142 	if (p->cpus_ptr != &p->cpus_mask)
2143 		return;
2144 
2145 	/*
2146 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2147 	 */
2148 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2149 }
2150 
2151 void migrate_disable(void)
2152 {
2153 	struct task_struct *p = current;
2154 
2155 	if (p->migration_disabled) {
2156 		p->migration_disabled++;
2157 		return;
2158 	}
2159 
2160 	preempt_disable();
2161 	this_rq()->nr_pinned++;
2162 	p->migration_disabled = 1;
2163 	preempt_enable();
2164 }
2165 EXPORT_SYMBOL_GPL(migrate_disable);
2166 
2167 void migrate_enable(void)
2168 {
2169 	struct task_struct *p = current;
2170 
2171 	if (p->migration_disabled > 1) {
2172 		p->migration_disabled--;
2173 		return;
2174 	}
2175 
2176 	/*
2177 	 * Ensure stop_task runs either before or after this, and that
2178 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2179 	 */
2180 	preempt_disable();
2181 	if (p->cpus_ptr != &p->cpus_mask)
2182 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2183 	/*
2184 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2185 	 * regular cpus_mask, otherwise things that race (eg.
2186 	 * select_fallback_rq) get confused.
2187 	 */
2188 	barrier();
2189 	p->migration_disabled = 0;
2190 	this_rq()->nr_pinned--;
2191 	preempt_enable();
2192 }
2193 EXPORT_SYMBOL_GPL(migrate_enable);
2194 
2195 static inline bool rq_has_pinned_tasks(struct rq *rq)
2196 {
2197 	return rq->nr_pinned;
2198 }
2199 
2200 /*
2201  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2202  * __set_cpus_allowed_ptr() and select_fallback_rq().
2203  */
2204 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2205 {
2206 	/* When not in the task's cpumask, no point in looking further. */
2207 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2208 		return false;
2209 
2210 	/* migrate_disabled() must be allowed to finish. */
2211 	if (is_migration_disabled(p))
2212 		return cpu_online(cpu);
2213 
2214 	/* Non kernel threads are not allowed during either online or offline. */
2215 	if (!(p->flags & PF_KTHREAD))
2216 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2217 
2218 	/* KTHREAD_IS_PER_CPU is always allowed. */
2219 	if (kthread_is_per_cpu(p))
2220 		return cpu_online(cpu);
2221 
2222 	/* Regular kernel threads don't get to stay during offline. */
2223 	if (cpu_dying(cpu))
2224 		return false;
2225 
2226 	/* But are allowed during online. */
2227 	return cpu_online(cpu);
2228 }
2229 
2230 /*
2231  * This is how migration works:
2232  *
2233  * 1) we invoke migration_cpu_stop() on the target CPU using
2234  *    stop_one_cpu().
2235  * 2) stopper starts to run (implicitly forcing the migrated thread
2236  *    off the CPU)
2237  * 3) it checks whether the migrated task is still in the wrong runqueue.
2238  * 4) if it's in the wrong runqueue then the migration thread removes
2239  *    it and puts it into the right queue.
2240  * 5) stopper completes and stop_one_cpu() returns and the migration
2241  *    is done.
2242  */
2243 
2244 /*
2245  * move_queued_task - move a queued task to new rq.
2246  *
2247  * Returns (locked) new rq. Old rq's lock is released.
2248  */
2249 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2250 				   struct task_struct *p, int new_cpu)
2251 {
2252 	lockdep_assert_rq_held(rq);
2253 
2254 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2255 	set_task_cpu(p, new_cpu);
2256 	rq_unlock(rq, rf);
2257 
2258 	rq = cpu_rq(new_cpu);
2259 
2260 	rq_lock(rq, rf);
2261 	BUG_ON(task_cpu(p) != new_cpu);
2262 	activate_task(rq, p, 0);
2263 	check_preempt_curr(rq, p, 0);
2264 
2265 	return rq;
2266 }
2267 
2268 struct migration_arg {
2269 	struct task_struct		*task;
2270 	int				dest_cpu;
2271 	struct set_affinity_pending	*pending;
2272 };
2273 
2274 /*
2275  * @refs: number of wait_for_completion()
2276  * @stop_pending: is @stop_work in use
2277  */
2278 struct set_affinity_pending {
2279 	refcount_t		refs;
2280 	unsigned int		stop_pending;
2281 	struct completion	done;
2282 	struct cpu_stop_work	stop_work;
2283 	struct migration_arg	arg;
2284 };
2285 
2286 /*
2287  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2288  * this because either it can't run here any more (set_cpus_allowed()
2289  * away from this CPU, or CPU going down), or because we're
2290  * attempting to rebalance this task on exec (sched_exec).
2291  *
2292  * So we race with normal scheduler movements, but that's OK, as long
2293  * as the task is no longer on this CPU.
2294  */
2295 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2296 				 struct task_struct *p, int dest_cpu)
2297 {
2298 	/* Affinity changed (again). */
2299 	if (!is_cpu_allowed(p, dest_cpu))
2300 		return rq;
2301 
2302 	update_rq_clock(rq);
2303 	rq = move_queued_task(rq, rf, p, dest_cpu);
2304 
2305 	return rq;
2306 }
2307 
2308 /*
2309  * migration_cpu_stop - this will be executed by a highprio stopper thread
2310  * and performs thread migration by bumping thread off CPU then
2311  * 'pushing' onto another runqueue.
2312  */
2313 static int migration_cpu_stop(void *data)
2314 {
2315 	struct migration_arg *arg = data;
2316 	struct set_affinity_pending *pending = arg->pending;
2317 	struct task_struct *p = arg->task;
2318 	struct rq *rq = this_rq();
2319 	bool complete = false;
2320 	struct rq_flags rf;
2321 
2322 	/*
2323 	 * The original target CPU might have gone down and we might
2324 	 * be on another CPU but it doesn't matter.
2325 	 */
2326 	local_irq_save(rf.flags);
2327 	/*
2328 	 * We need to explicitly wake pending tasks before running
2329 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2330 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2331 	 */
2332 	flush_smp_call_function_from_idle();
2333 
2334 	raw_spin_lock(&p->pi_lock);
2335 	rq_lock(rq, &rf);
2336 
2337 	/*
2338 	 * If we were passed a pending, then ->stop_pending was set, thus
2339 	 * p->migration_pending must have remained stable.
2340 	 */
2341 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2342 
2343 	/*
2344 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2345 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2346 	 * we're holding p->pi_lock.
2347 	 */
2348 	if (task_rq(p) == rq) {
2349 		if (is_migration_disabled(p))
2350 			goto out;
2351 
2352 		if (pending) {
2353 			p->migration_pending = NULL;
2354 			complete = true;
2355 
2356 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2357 				goto out;
2358 		}
2359 
2360 		if (task_on_rq_queued(p))
2361 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2362 		else
2363 			p->wake_cpu = arg->dest_cpu;
2364 
2365 		/*
2366 		 * XXX __migrate_task() can fail, at which point we might end
2367 		 * up running on a dodgy CPU, AFAICT this can only happen
2368 		 * during CPU hotplug, at which point we'll get pushed out
2369 		 * anyway, so it's probably not a big deal.
2370 		 */
2371 
2372 	} else if (pending) {
2373 		/*
2374 		 * This happens when we get migrated between migrate_enable()'s
2375 		 * preempt_enable() and scheduling the stopper task. At that
2376 		 * point we're a regular task again and not current anymore.
2377 		 *
2378 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2379 		 * more likely.
2380 		 */
2381 
2382 		/*
2383 		 * The task moved before the stopper got to run. We're holding
2384 		 * ->pi_lock, so the allowed mask is stable - if it got
2385 		 * somewhere allowed, we're done.
2386 		 */
2387 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2388 			p->migration_pending = NULL;
2389 			complete = true;
2390 			goto out;
2391 		}
2392 
2393 		/*
2394 		 * When migrate_enable() hits a rq mis-match we can't reliably
2395 		 * determine is_migration_disabled() and so have to chase after
2396 		 * it.
2397 		 */
2398 		WARN_ON_ONCE(!pending->stop_pending);
2399 		task_rq_unlock(rq, p, &rf);
2400 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2401 				    &pending->arg, &pending->stop_work);
2402 		return 0;
2403 	}
2404 out:
2405 	if (pending)
2406 		pending->stop_pending = false;
2407 	task_rq_unlock(rq, p, &rf);
2408 
2409 	if (complete)
2410 		complete_all(&pending->done);
2411 
2412 	return 0;
2413 }
2414 
2415 int push_cpu_stop(void *arg)
2416 {
2417 	struct rq *lowest_rq = NULL, *rq = this_rq();
2418 	struct task_struct *p = arg;
2419 
2420 	raw_spin_lock_irq(&p->pi_lock);
2421 	raw_spin_rq_lock(rq);
2422 
2423 	if (task_rq(p) != rq)
2424 		goto out_unlock;
2425 
2426 	if (is_migration_disabled(p)) {
2427 		p->migration_flags |= MDF_PUSH;
2428 		goto out_unlock;
2429 	}
2430 
2431 	p->migration_flags &= ~MDF_PUSH;
2432 
2433 	if (p->sched_class->find_lock_rq)
2434 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2435 
2436 	if (!lowest_rq)
2437 		goto out_unlock;
2438 
2439 	// XXX validate p is still the highest prio task
2440 	if (task_rq(p) == rq) {
2441 		deactivate_task(rq, p, 0);
2442 		set_task_cpu(p, lowest_rq->cpu);
2443 		activate_task(lowest_rq, p, 0);
2444 		resched_curr(lowest_rq);
2445 	}
2446 
2447 	double_unlock_balance(rq, lowest_rq);
2448 
2449 out_unlock:
2450 	rq->push_busy = false;
2451 	raw_spin_rq_unlock(rq);
2452 	raw_spin_unlock_irq(&p->pi_lock);
2453 
2454 	put_task_struct(p);
2455 	return 0;
2456 }
2457 
2458 /*
2459  * sched_class::set_cpus_allowed must do the below, but is not required to
2460  * actually call this function.
2461  */
2462 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2463 {
2464 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2465 		p->cpus_ptr = new_mask;
2466 		return;
2467 	}
2468 
2469 	cpumask_copy(&p->cpus_mask, new_mask);
2470 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2471 }
2472 
2473 static void
2474 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2475 {
2476 	struct rq *rq = task_rq(p);
2477 	bool queued, running;
2478 
2479 	/*
2480 	 * This here violates the locking rules for affinity, since we're only
2481 	 * supposed to change these variables while holding both rq->lock and
2482 	 * p->pi_lock.
2483 	 *
2484 	 * HOWEVER, it magically works, because ttwu() is the only code that
2485 	 * accesses these variables under p->pi_lock and only does so after
2486 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2487 	 * before finish_task().
2488 	 *
2489 	 * XXX do further audits, this smells like something putrid.
2490 	 */
2491 	if (flags & SCA_MIGRATE_DISABLE)
2492 		SCHED_WARN_ON(!p->on_cpu);
2493 	else
2494 		lockdep_assert_held(&p->pi_lock);
2495 
2496 	queued = task_on_rq_queued(p);
2497 	running = task_current(rq, p);
2498 
2499 	if (queued) {
2500 		/*
2501 		 * Because __kthread_bind() calls this on blocked tasks without
2502 		 * holding rq->lock.
2503 		 */
2504 		lockdep_assert_rq_held(rq);
2505 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2506 	}
2507 	if (running)
2508 		put_prev_task(rq, p);
2509 
2510 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2511 
2512 	if (queued)
2513 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2514 	if (running)
2515 		set_next_task(rq, p);
2516 }
2517 
2518 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2519 {
2520 	__do_set_cpus_allowed(p, new_mask, 0);
2521 }
2522 
2523 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2524 		      int node)
2525 {
2526 	if (!src->user_cpus_ptr)
2527 		return 0;
2528 
2529 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2530 	if (!dst->user_cpus_ptr)
2531 		return -ENOMEM;
2532 
2533 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2534 	return 0;
2535 }
2536 
2537 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2538 {
2539 	struct cpumask *user_mask = NULL;
2540 
2541 	swap(p->user_cpus_ptr, user_mask);
2542 
2543 	return user_mask;
2544 }
2545 
2546 void release_user_cpus_ptr(struct task_struct *p)
2547 {
2548 	kfree(clear_user_cpus_ptr(p));
2549 }
2550 
2551 /*
2552  * This function is wildly self concurrent; here be dragons.
2553  *
2554  *
2555  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2556  * designated task is enqueued on an allowed CPU. If that task is currently
2557  * running, we have to kick it out using the CPU stopper.
2558  *
2559  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2560  * Consider:
2561  *
2562  *     Initial conditions: P0->cpus_mask = [0, 1]
2563  *
2564  *     P0@CPU0                  P1
2565  *
2566  *     migrate_disable();
2567  *     <preempted>
2568  *                              set_cpus_allowed_ptr(P0, [1]);
2569  *
2570  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2571  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2572  * This means we need the following scheme:
2573  *
2574  *     P0@CPU0                  P1
2575  *
2576  *     migrate_disable();
2577  *     <preempted>
2578  *                              set_cpus_allowed_ptr(P0, [1]);
2579  *                                <blocks>
2580  *     <resumes>
2581  *     migrate_enable();
2582  *       __set_cpus_allowed_ptr();
2583  *       <wakes local stopper>
2584  *                         `--> <woken on migration completion>
2585  *
2586  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2587  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2588  * task p are serialized by p->pi_lock, which we can leverage: the one that
2589  * should come into effect at the end of the Migrate-Disable region is the last
2590  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2591  * but we still need to properly signal those waiting tasks at the appropriate
2592  * moment.
2593  *
2594  * This is implemented using struct set_affinity_pending. The first
2595  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2596  * setup an instance of that struct and install it on the targeted task_struct.
2597  * Any and all further callers will reuse that instance. Those then wait for
2598  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2599  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2600  *
2601  *
2602  * (1) In the cases covered above. There is one more where the completion is
2603  * signaled within affine_move_task() itself: when a subsequent affinity request
2604  * occurs after the stopper bailed out due to the targeted task still being
2605  * Migrate-Disable. Consider:
2606  *
2607  *     Initial conditions: P0->cpus_mask = [0, 1]
2608  *
2609  *     CPU0		  P1				P2
2610  *     <P0>
2611  *       migrate_disable();
2612  *       <preempted>
2613  *                        set_cpus_allowed_ptr(P0, [1]);
2614  *                          <blocks>
2615  *     <migration/0>
2616  *       migration_cpu_stop()
2617  *         is_migration_disabled()
2618  *           <bails>
2619  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2620  *                                                         <signal completion>
2621  *                          <awakes>
2622  *
2623  * Note that the above is safe vs a concurrent migrate_enable(), as any
2624  * pending affinity completion is preceded by an uninstallation of
2625  * p->migration_pending done with p->pi_lock held.
2626  */
2627 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2628 			    int dest_cpu, unsigned int flags)
2629 {
2630 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2631 	bool stop_pending, complete = false;
2632 
2633 	/* Can the task run on the task's current CPU? If so, we're done */
2634 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2635 		struct task_struct *push_task = NULL;
2636 
2637 		if ((flags & SCA_MIGRATE_ENABLE) &&
2638 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2639 			rq->push_busy = true;
2640 			push_task = get_task_struct(p);
2641 		}
2642 
2643 		/*
2644 		 * If there are pending waiters, but no pending stop_work,
2645 		 * then complete now.
2646 		 */
2647 		pending = p->migration_pending;
2648 		if (pending && !pending->stop_pending) {
2649 			p->migration_pending = NULL;
2650 			complete = true;
2651 		}
2652 
2653 		task_rq_unlock(rq, p, rf);
2654 
2655 		if (push_task) {
2656 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2657 					    p, &rq->push_work);
2658 		}
2659 
2660 		if (complete)
2661 			complete_all(&pending->done);
2662 
2663 		return 0;
2664 	}
2665 
2666 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2667 		/* serialized by p->pi_lock */
2668 		if (!p->migration_pending) {
2669 			/* Install the request */
2670 			refcount_set(&my_pending.refs, 1);
2671 			init_completion(&my_pending.done);
2672 			my_pending.arg = (struct migration_arg) {
2673 				.task = p,
2674 				.dest_cpu = dest_cpu,
2675 				.pending = &my_pending,
2676 			};
2677 
2678 			p->migration_pending = &my_pending;
2679 		} else {
2680 			pending = p->migration_pending;
2681 			refcount_inc(&pending->refs);
2682 			/*
2683 			 * Affinity has changed, but we've already installed a
2684 			 * pending. migration_cpu_stop() *must* see this, else
2685 			 * we risk a completion of the pending despite having a
2686 			 * task on a disallowed CPU.
2687 			 *
2688 			 * Serialized by p->pi_lock, so this is safe.
2689 			 */
2690 			pending->arg.dest_cpu = dest_cpu;
2691 		}
2692 	}
2693 	pending = p->migration_pending;
2694 	/*
2695 	 * - !MIGRATE_ENABLE:
2696 	 *   we'll have installed a pending if there wasn't one already.
2697 	 *
2698 	 * - MIGRATE_ENABLE:
2699 	 *   we're here because the current CPU isn't matching anymore,
2700 	 *   the only way that can happen is because of a concurrent
2701 	 *   set_cpus_allowed_ptr() call, which should then still be
2702 	 *   pending completion.
2703 	 *
2704 	 * Either way, we really should have a @pending here.
2705 	 */
2706 	if (WARN_ON_ONCE(!pending)) {
2707 		task_rq_unlock(rq, p, rf);
2708 		return -EINVAL;
2709 	}
2710 
2711 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2712 		/*
2713 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2714 		 * anything else we cannot do is_migration_disabled(), punt
2715 		 * and have the stopper function handle it all race-free.
2716 		 */
2717 		stop_pending = pending->stop_pending;
2718 		if (!stop_pending)
2719 			pending->stop_pending = true;
2720 
2721 		if (flags & SCA_MIGRATE_ENABLE)
2722 			p->migration_flags &= ~MDF_PUSH;
2723 
2724 		task_rq_unlock(rq, p, rf);
2725 
2726 		if (!stop_pending) {
2727 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2728 					    &pending->arg, &pending->stop_work);
2729 		}
2730 
2731 		if (flags & SCA_MIGRATE_ENABLE)
2732 			return 0;
2733 	} else {
2734 
2735 		if (!is_migration_disabled(p)) {
2736 			if (task_on_rq_queued(p))
2737 				rq = move_queued_task(rq, rf, p, dest_cpu);
2738 
2739 			if (!pending->stop_pending) {
2740 				p->migration_pending = NULL;
2741 				complete = true;
2742 			}
2743 		}
2744 		task_rq_unlock(rq, p, rf);
2745 
2746 		if (complete)
2747 			complete_all(&pending->done);
2748 	}
2749 
2750 	wait_for_completion(&pending->done);
2751 
2752 	if (refcount_dec_and_test(&pending->refs))
2753 		wake_up_var(&pending->refs); /* No UaF, just an address */
2754 
2755 	/*
2756 	 * Block the original owner of &pending until all subsequent callers
2757 	 * have seen the completion and decremented the refcount
2758 	 */
2759 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2760 
2761 	/* ARGH */
2762 	WARN_ON_ONCE(my_pending.stop_pending);
2763 
2764 	return 0;
2765 }
2766 
2767 /*
2768  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2769  */
2770 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2771 					 const struct cpumask *new_mask,
2772 					 u32 flags,
2773 					 struct rq *rq,
2774 					 struct rq_flags *rf)
2775 	__releases(rq->lock)
2776 	__releases(p->pi_lock)
2777 {
2778 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2779 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2780 	bool kthread = p->flags & PF_KTHREAD;
2781 	struct cpumask *user_mask = NULL;
2782 	unsigned int dest_cpu;
2783 	int ret = 0;
2784 
2785 	update_rq_clock(rq);
2786 
2787 	if (kthread || is_migration_disabled(p)) {
2788 		/*
2789 		 * Kernel threads are allowed on online && !active CPUs,
2790 		 * however, during cpu-hot-unplug, even these might get pushed
2791 		 * away if not KTHREAD_IS_PER_CPU.
2792 		 *
2793 		 * Specifically, migration_disabled() tasks must not fail the
2794 		 * cpumask_any_and_distribute() pick below, esp. so on
2795 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2796 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2797 		 */
2798 		cpu_valid_mask = cpu_online_mask;
2799 	}
2800 
2801 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2802 		ret = -EINVAL;
2803 		goto out;
2804 	}
2805 
2806 	/*
2807 	 * Must re-check here, to close a race against __kthread_bind(),
2808 	 * sched_setaffinity() is not guaranteed to observe the flag.
2809 	 */
2810 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2811 		ret = -EINVAL;
2812 		goto out;
2813 	}
2814 
2815 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2816 		if (cpumask_equal(&p->cpus_mask, new_mask))
2817 			goto out;
2818 
2819 		if (WARN_ON_ONCE(p == current &&
2820 				 is_migration_disabled(p) &&
2821 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2822 			ret = -EBUSY;
2823 			goto out;
2824 		}
2825 	}
2826 
2827 	/*
2828 	 * Picking a ~random cpu helps in cases where we are changing affinity
2829 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2830 	 * immediately required to distribute the tasks within their new mask.
2831 	 */
2832 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2833 	if (dest_cpu >= nr_cpu_ids) {
2834 		ret = -EINVAL;
2835 		goto out;
2836 	}
2837 
2838 	__do_set_cpus_allowed(p, new_mask, flags);
2839 
2840 	if (flags & SCA_USER)
2841 		user_mask = clear_user_cpus_ptr(p);
2842 
2843 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2844 
2845 	kfree(user_mask);
2846 
2847 	return ret;
2848 
2849 out:
2850 	task_rq_unlock(rq, p, rf);
2851 
2852 	return ret;
2853 }
2854 
2855 /*
2856  * Change a given task's CPU affinity. Migrate the thread to a
2857  * proper CPU and schedule it away if the CPU it's executing on
2858  * is removed from the allowed bitmask.
2859  *
2860  * NOTE: the caller must have a valid reference to the task, the
2861  * task must not exit() & deallocate itself prematurely. The
2862  * call is not atomic; no spinlocks may be held.
2863  */
2864 static int __set_cpus_allowed_ptr(struct task_struct *p,
2865 				  const struct cpumask *new_mask, u32 flags)
2866 {
2867 	struct rq_flags rf;
2868 	struct rq *rq;
2869 
2870 	rq = task_rq_lock(p, &rf);
2871 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2872 }
2873 
2874 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2875 {
2876 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2877 }
2878 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2879 
2880 /*
2881  * Change a given task's CPU affinity to the intersection of its current
2882  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2883  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2884  * If the resulting mask is empty, leave the affinity unchanged and return
2885  * -EINVAL.
2886  */
2887 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2888 				     struct cpumask *new_mask,
2889 				     const struct cpumask *subset_mask)
2890 {
2891 	struct cpumask *user_mask = NULL;
2892 	struct rq_flags rf;
2893 	struct rq *rq;
2894 	int err;
2895 
2896 	if (!p->user_cpus_ptr) {
2897 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2898 		if (!user_mask)
2899 			return -ENOMEM;
2900 	}
2901 
2902 	rq = task_rq_lock(p, &rf);
2903 
2904 	/*
2905 	 * Forcefully restricting the affinity of a deadline task is
2906 	 * likely to cause problems, so fail and noisily override the
2907 	 * mask entirely.
2908 	 */
2909 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2910 		err = -EPERM;
2911 		goto err_unlock;
2912 	}
2913 
2914 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2915 		err = -EINVAL;
2916 		goto err_unlock;
2917 	}
2918 
2919 	/*
2920 	 * We're about to butcher the task affinity, so keep track of what
2921 	 * the user asked for in case we're able to restore it later on.
2922 	 */
2923 	if (user_mask) {
2924 		cpumask_copy(user_mask, p->cpus_ptr);
2925 		p->user_cpus_ptr = user_mask;
2926 	}
2927 
2928 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2929 
2930 err_unlock:
2931 	task_rq_unlock(rq, p, &rf);
2932 	kfree(user_mask);
2933 	return err;
2934 }
2935 
2936 /*
2937  * Restrict the CPU affinity of task @p so that it is a subset of
2938  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2939  * old affinity mask. If the resulting mask is empty, we warn and walk
2940  * up the cpuset hierarchy until we find a suitable mask.
2941  */
2942 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2943 {
2944 	cpumask_var_t new_mask;
2945 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
2946 
2947 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
2948 
2949 	/*
2950 	 * __migrate_task() can fail silently in the face of concurrent
2951 	 * offlining of the chosen destination CPU, so take the hotplug
2952 	 * lock to ensure that the migration succeeds.
2953 	 */
2954 	cpus_read_lock();
2955 	if (!cpumask_available(new_mask))
2956 		goto out_set_mask;
2957 
2958 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2959 		goto out_free_mask;
2960 
2961 	/*
2962 	 * We failed to find a valid subset of the affinity mask for the
2963 	 * task, so override it based on its cpuset hierarchy.
2964 	 */
2965 	cpuset_cpus_allowed(p, new_mask);
2966 	override_mask = new_mask;
2967 
2968 out_set_mask:
2969 	if (printk_ratelimit()) {
2970 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2971 				task_pid_nr(p), p->comm,
2972 				cpumask_pr_args(override_mask));
2973 	}
2974 
2975 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2976 out_free_mask:
2977 	cpus_read_unlock();
2978 	free_cpumask_var(new_mask);
2979 }
2980 
2981 static int
2982 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2983 
2984 /*
2985  * Restore the affinity of a task @p which was previously restricted by a
2986  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2987  * @p->user_cpus_ptr.
2988  *
2989  * It is the caller's responsibility to serialise this with any calls to
2990  * force_compatible_cpus_allowed_ptr(@p).
2991  */
2992 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2993 {
2994 	struct cpumask *user_mask = p->user_cpus_ptr;
2995 	unsigned long flags;
2996 
2997 	/*
2998 	 * Try to restore the old affinity mask. If this fails, then
2999 	 * we free the mask explicitly to avoid it being inherited across
3000 	 * a subsequent fork().
3001 	 */
3002 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3003 		return;
3004 
3005 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3006 	user_mask = clear_user_cpus_ptr(p);
3007 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3008 
3009 	kfree(user_mask);
3010 }
3011 
3012 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3013 {
3014 #ifdef CONFIG_SCHED_DEBUG
3015 	unsigned int state = READ_ONCE(p->__state);
3016 
3017 	/*
3018 	 * We should never call set_task_cpu() on a blocked task,
3019 	 * ttwu() will sort out the placement.
3020 	 */
3021 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3022 
3023 	/*
3024 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3025 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3026 	 * time relying on p->on_rq.
3027 	 */
3028 	WARN_ON_ONCE(state == TASK_RUNNING &&
3029 		     p->sched_class == &fair_sched_class &&
3030 		     (p->on_rq && !task_on_rq_migrating(p)));
3031 
3032 #ifdef CONFIG_LOCKDEP
3033 	/*
3034 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3035 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3036 	 *
3037 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3038 	 * see task_group().
3039 	 *
3040 	 * Furthermore, all task_rq users should acquire both locks, see
3041 	 * task_rq_lock().
3042 	 */
3043 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3044 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3045 #endif
3046 	/*
3047 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3048 	 */
3049 	WARN_ON_ONCE(!cpu_online(new_cpu));
3050 
3051 	WARN_ON_ONCE(is_migration_disabled(p));
3052 #endif
3053 
3054 	trace_sched_migrate_task(p, new_cpu);
3055 
3056 	if (task_cpu(p) != new_cpu) {
3057 		if (p->sched_class->migrate_task_rq)
3058 			p->sched_class->migrate_task_rq(p, new_cpu);
3059 		p->se.nr_migrations++;
3060 		rseq_migrate(p);
3061 		perf_event_task_migrate(p);
3062 	}
3063 
3064 	__set_task_cpu(p, new_cpu);
3065 }
3066 
3067 #ifdef CONFIG_NUMA_BALANCING
3068 static void __migrate_swap_task(struct task_struct *p, int cpu)
3069 {
3070 	if (task_on_rq_queued(p)) {
3071 		struct rq *src_rq, *dst_rq;
3072 		struct rq_flags srf, drf;
3073 
3074 		src_rq = task_rq(p);
3075 		dst_rq = cpu_rq(cpu);
3076 
3077 		rq_pin_lock(src_rq, &srf);
3078 		rq_pin_lock(dst_rq, &drf);
3079 
3080 		deactivate_task(src_rq, p, 0);
3081 		set_task_cpu(p, cpu);
3082 		activate_task(dst_rq, p, 0);
3083 		check_preempt_curr(dst_rq, p, 0);
3084 
3085 		rq_unpin_lock(dst_rq, &drf);
3086 		rq_unpin_lock(src_rq, &srf);
3087 
3088 	} else {
3089 		/*
3090 		 * Task isn't running anymore; make it appear like we migrated
3091 		 * it before it went to sleep. This means on wakeup we make the
3092 		 * previous CPU our target instead of where it really is.
3093 		 */
3094 		p->wake_cpu = cpu;
3095 	}
3096 }
3097 
3098 struct migration_swap_arg {
3099 	struct task_struct *src_task, *dst_task;
3100 	int src_cpu, dst_cpu;
3101 };
3102 
3103 static int migrate_swap_stop(void *data)
3104 {
3105 	struct migration_swap_arg *arg = data;
3106 	struct rq *src_rq, *dst_rq;
3107 	int ret = -EAGAIN;
3108 
3109 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3110 		return -EAGAIN;
3111 
3112 	src_rq = cpu_rq(arg->src_cpu);
3113 	dst_rq = cpu_rq(arg->dst_cpu);
3114 
3115 	double_raw_lock(&arg->src_task->pi_lock,
3116 			&arg->dst_task->pi_lock);
3117 	double_rq_lock(src_rq, dst_rq);
3118 
3119 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3120 		goto unlock;
3121 
3122 	if (task_cpu(arg->src_task) != arg->src_cpu)
3123 		goto unlock;
3124 
3125 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3126 		goto unlock;
3127 
3128 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3129 		goto unlock;
3130 
3131 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3132 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3133 
3134 	ret = 0;
3135 
3136 unlock:
3137 	double_rq_unlock(src_rq, dst_rq);
3138 	raw_spin_unlock(&arg->dst_task->pi_lock);
3139 	raw_spin_unlock(&arg->src_task->pi_lock);
3140 
3141 	return ret;
3142 }
3143 
3144 /*
3145  * Cross migrate two tasks
3146  */
3147 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3148 		int target_cpu, int curr_cpu)
3149 {
3150 	struct migration_swap_arg arg;
3151 	int ret = -EINVAL;
3152 
3153 	arg = (struct migration_swap_arg){
3154 		.src_task = cur,
3155 		.src_cpu = curr_cpu,
3156 		.dst_task = p,
3157 		.dst_cpu = target_cpu,
3158 	};
3159 
3160 	if (arg.src_cpu == arg.dst_cpu)
3161 		goto out;
3162 
3163 	/*
3164 	 * These three tests are all lockless; this is OK since all of them
3165 	 * will be re-checked with proper locks held further down the line.
3166 	 */
3167 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3168 		goto out;
3169 
3170 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3171 		goto out;
3172 
3173 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3174 		goto out;
3175 
3176 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3177 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3178 
3179 out:
3180 	return ret;
3181 }
3182 #endif /* CONFIG_NUMA_BALANCING */
3183 
3184 /*
3185  * wait_task_inactive - wait for a thread to unschedule.
3186  *
3187  * If @match_state is nonzero, it's the @p->state value just checked and
3188  * not expected to change.  If it changes, i.e. @p might have woken up,
3189  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3190  * we return a positive number (its total switch count).  If a second call
3191  * a short while later returns the same number, the caller can be sure that
3192  * @p has remained unscheduled the whole time.
3193  *
3194  * The caller must ensure that the task *will* unschedule sometime soon,
3195  * else this function might spin for a *long* time. This function can't
3196  * be called with interrupts off, or it may introduce deadlock with
3197  * smp_call_function() if an IPI is sent by the same process we are
3198  * waiting to become inactive.
3199  */
3200 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3201 {
3202 	int running, queued;
3203 	struct rq_flags rf;
3204 	unsigned long ncsw;
3205 	struct rq *rq;
3206 
3207 	for (;;) {
3208 		/*
3209 		 * We do the initial early heuristics without holding
3210 		 * any task-queue locks at all. We'll only try to get
3211 		 * the runqueue lock when things look like they will
3212 		 * work out!
3213 		 */
3214 		rq = task_rq(p);
3215 
3216 		/*
3217 		 * If the task is actively running on another CPU
3218 		 * still, just relax and busy-wait without holding
3219 		 * any locks.
3220 		 *
3221 		 * NOTE! Since we don't hold any locks, it's not
3222 		 * even sure that "rq" stays as the right runqueue!
3223 		 * But we don't care, since "task_running()" will
3224 		 * return false if the runqueue has changed and p
3225 		 * is actually now running somewhere else!
3226 		 */
3227 		while (task_running(rq, p)) {
3228 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3229 				return 0;
3230 			cpu_relax();
3231 		}
3232 
3233 		/*
3234 		 * Ok, time to look more closely! We need the rq
3235 		 * lock now, to be *sure*. If we're wrong, we'll
3236 		 * just go back and repeat.
3237 		 */
3238 		rq = task_rq_lock(p, &rf);
3239 		trace_sched_wait_task(p);
3240 		running = task_running(rq, p);
3241 		queued = task_on_rq_queued(p);
3242 		ncsw = 0;
3243 		if (!match_state || READ_ONCE(p->__state) == match_state)
3244 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3245 		task_rq_unlock(rq, p, &rf);
3246 
3247 		/*
3248 		 * If it changed from the expected state, bail out now.
3249 		 */
3250 		if (unlikely(!ncsw))
3251 			break;
3252 
3253 		/*
3254 		 * Was it really running after all now that we
3255 		 * checked with the proper locks actually held?
3256 		 *
3257 		 * Oops. Go back and try again..
3258 		 */
3259 		if (unlikely(running)) {
3260 			cpu_relax();
3261 			continue;
3262 		}
3263 
3264 		/*
3265 		 * It's not enough that it's not actively running,
3266 		 * it must be off the runqueue _entirely_, and not
3267 		 * preempted!
3268 		 *
3269 		 * So if it was still runnable (but just not actively
3270 		 * running right now), it's preempted, and we should
3271 		 * yield - it could be a while.
3272 		 */
3273 		if (unlikely(queued)) {
3274 			ktime_t to = NSEC_PER_SEC / HZ;
3275 
3276 			set_current_state(TASK_UNINTERRUPTIBLE);
3277 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3278 			continue;
3279 		}
3280 
3281 		/*
3282 		 * Ahh, all good. It wasn't running, and it wasn't
3283 		 * runnable, which means that it will never become
3284 		 * running in the future either. We're all done!
3285 		 */
3286 		break;
3287 	}
3288 
3289 	return ncsw;
3290 }
3291 
3292 /***
3293  * kick_process - kick a running thread to enter/exit the kernel
3294  * @p: the to-be-kicked thread
3295  *
3296  * Cause a process which is running on another CPU to enter
3297  * kernel-mode, without any delay. (to get signals handled.)
3298  *
3299  * NOTE: this function doesn't have to take the runqueue lock,
3300  * because all it wants to ensure is that the remote task enters
3301  * the kernel. If the IPI races and the task has been migrated
3302  * to another CPU then no harm is done and the purpose has been
3303  * achieved as well.
3304  */
3305 void kick_process(struct task_struct *p)
3306 {
3307 	int cpu;
3308 
3309 	preempt_disable();
3310 	cpu = task_cpu(p);
3311 	if ((cpu != smp_processor_id()) && task_curr(p))
3312 		smp_send_reschedule(cpu);
3313 	preempt_enable();
3314 }
3315 EXPORT_SYMBOL_GPL(kick_process);
3316 
3317 /*
3318  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3319  *
3320  * A few notes on cpu_active vs cpu_online:
3321  *
3322  *  - cpu_active must be a subset of cpu_online
3323  *
3324  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3325  *    see __set_cpus_allowed_ptr(). At this point the newly online
3326  *    CPU isn't yet part of the sched domains, and balancing will not
3327  *    see it.
3328  *
3329  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3330  *    avoid the load balancer to place new tasks on the to be removed
3331  *    CPU. Existing tasks will remain running there and will be taken
3332  *    off.
3333  *
3334  * This means that fallback selection must not select !active CPUs.
3335  * And can assume that any active CPU must be online. Conversely
3336  * select_task_rq() below may allow selection of !active CPUs in order
3337  * to satisfy the above rules.
3338  */
3339 static int select_fallback_rq(int cpu, struct task_struct *p)
3340 {
3341 	int nid = cpu_to_node(cpu);
3342 	const struct cpumask *nodemask = NULL;
3343 	enum { cpuset, possible, fail } state = cpuset;
3344 	int dest_cpu;
3345 
3346 	/*
3347 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3348 	 * will return -1. There is no CPU on the node, and we should
3349 	 * select the CPU on the other node.
3350 	 */
3351 	if (nid != -1) {
3352 		nodemask = cpumask_of_node(nid);
3353 
3354 		/* Look for allowed, online CPU in same node. */
3355 		for_each_cpu(dest_cpu, nodemask) {
3356 			if (is_cpu_allowed(p, dest_cpu))
3357 				return dest_cpu;
3358 		}
3359 	}
3360 
3361 	for (;;) {
3362 		/* Any allowed, online CPU? */
3363 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3364 			if (!is_cpu_allowed(p, dest_cpu))
3365 				continue;
3366 
3367 			goto out;
3368 		}
3369 
3370 		/* No more Mr. Nice Guy. */
3371 		switch (state) {
3372 		case cpuset:
3373 			if (cpuset_cpus_allowed_fallback(p)) {
3374 				state = possible;
3375 				break;
3376 			}
3377 			fallthrough;
3378 		case possible:
3379 			/*
3380 			 * XXX When called from select_task_rq() we only
3381 			 * hold p->pi_lock and again violate locking order.
3382 			 *
3383 			 * More yuck to audit.
3384 			 */
3385 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3386 			state = fail;
3387 			break;
3388 		case fail:
3389 			BUG();
3390 			break;
3391 		}
3392 	}
3393 
3394 out:
3395 	if (state != cpuset) {
3396 		/*
3397 		 * Don't tell them about moving exiting tasks or
3398 		 * kernel threads (both mm NULL), since they never
3399 		 * leave kernel.
3400 		 */
3401 		if (p->mm && printk_ratelimit()) {
3402 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3403 					task_pid_nr(p), p->comm, cpu);
3404 		}
3405 	}
3406 
3407 	return dest_cpu;
3408 }
3409 
3410 /*
3411  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3412  */
3413 static inline
3414 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3415 {
3416 	lockdep_assert_held(&p->pi_lock);
3417 
3418 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3419 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3420 	else
3421 		cpu = cpumask_any(p->cpus_ptr);
3422 
3423 	/*
3424 	 * In order not to call set_task_cpu() on a blocking task we need
3425 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3426 	 * CPU.
3427 	 *
3428 	 * Since this is common to all placement strategies, this lives here.
3429 	 *
3430 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3431 	 *   not worry about this generic constraint ]
3432 	 */
3433 	if (unlikely(!is_cpu_allowed(p, cpu)))
3434 		cpu = select_fallback_rq(task_cpu(p), p);
3435 
3436 	return cpu;
3437 }
3438 
3439 void sched_set_stop_task(int cpu, struct task_struct *stop)
3440 {
3441 	static struct lock_class_key stop_pi_lock;
3442 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3443 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3444 
3445 	if (stop) {
3446 		/*
3447 		 * Make it appear like a SCHED_FIFO task, its something
3448 		 * userspace knows about and won't get confused about.
3449 		 *
3450 		 * Also, it will make PI more or less work without too
3451 		 * much confusion -- but then, stop work should not
3452 		 * rely on PI working anyway.
3453 		 */
3454 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3455 
3456 		stop->sched_class = &stop_sched_class;
3457 
3458 		/*
3459 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3460 		 * adjust the effective priority of a task. As a result,
3461 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3462 		 * which can then trigger wakeups of the stop thread to push
3463 		 * around the current task.
3464 		 *
3465 		 * The stop task itself will never be part of the PI-chain, it
3466 		 * never blocks, therefore that ->pi_lock recursion is safe.
3467 		 * Tell lockdep about this by placing the stop->pi_lock in its
3468 		 * own class.
3469 		 */
3470 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3471 	}
3472 
3473 	cpu_rq(cpu)->stop = stop;
3474 
3475 	if (old_stop) {
3476 		/*
3477 		 * Reset it back to a normal scheduling class so that
3478 		 * it can die in pieces.
3479 		 */
3480 		old_stop->sched_class = &rt_sched_class;
3481 	}
3482 }
3483 
3484 #else /* CONFIG_SMP */
3485 
3486 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3487 					 const struct cpumask *new_mask,
3488 					 u32 flags)
3489 {
3490 	return set_cpus_allowed_ptr(p, new_mask);
3491 }
3492 
3493 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3494 
3495 static inline bool rq_has_pinned_tasks(struct rq *rq)
3496 {
3497 	return false;
3498 }
3499 
3500 #endif /* !CONFIG_SMP */
3501 
3502 static void
3503 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3504 {
3505 	struct rq *rq;
3506 
3507 	if (!schedstat_enabled())
3508 		return;
3509 
3510 	rq = this_rq();
3511 
3512 #ifdef CONFIG_SMP
3513 	if (cpu == rq->cpu) {
3514 		__schedstat_inc(rq->ttwu_local);
3515 		__schedstat_inc(p->stats.nr_wakeups_local);
3516 	} else {
3517 		struct sched_domain *sd;
3518 
3519 		__schedstat_inc(p->stats.nr_wakeups_remote);
3520 		rcu_read_lock();
3521 		for_each_domain(rq->cpu, sd) {
3522 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3523 				__schedstat_inc(sd->ttwu_wake_remote);
3524 				break;
3525 			}
3526 		}
3527 		rcu_read_unlock();
3528 	}
3529 
3530 	if (wake_flags & WF_MIGRATED)
3531 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3532 #endif /* CONFIG_SMP */
3533 
3534 	__schedstat_inc(rq->ttwu_count);
3535 	__schedstat_inc(p->stats.nr_wakeups);
3536 
3537 	if (wake_flags & WF_SYNC)
3538 		__schedstat_inc(p->stats.nr_wakeups_sync);
3539 }
3540 
3541 /*
3542  * Mark the task runnable and perform wakeup-preemption.
3543  */
3544 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3545 			   struct rq_flags *rf)
3546 {
3547 	check_preempt_curr(rq, p, wake_flags);
3548 	WRITE_ONCE(p->__state, TASK_RUNNING);
3549 	trace_sched_wakeup(p);
3550 
3551 #ifdef CONFIG_SMP
3552 	if (p->sched_class->task_woken) {
3553 		/*
3554 		 * Our task @p is fully woken up and running; so it's safe to
3555 		 * drop the rq->lock, hereafter rq is only used for statistics.
3556 		 */
3557 		rq_unpin_lock(rq, rf);
3558 		p->sched_class->task_woken(rq, p);
3559 		rq_repin_lock(rq, rf);
3560 	}
3561 
3562 	if (rq->idle_stamp) {
3563 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3564 		u64 max = 2*rq->max_idle_balance_cost;
3565 
3566 		update_avg(&rq->avg_idle, delta);
3567 
3568 		if (rq->avg_idle > max)
3569 			rq->avg_idle = max;
3570 
3571 		rq->wake_stamp = jiffies;
3572 		rq->wake_avg_idle = rq->avg_idle / 2;
3573 
3574 		rq->idle_stamp = 0;
3575 	}
3576 #endif
3577 }
3578 
3579 static void
3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3581 		 struct rq_flags *rf)
3582 {
3583 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3584 
3585 	lockdep_assert_rq_held(rq);
3586 
3587 	if (p->sched_contributes_to_load)
3588 		rq->nr_uninterruptible--;
3589 
3590 #ifdef CONFIG_SMP
3591 	if (wake_flags & WF_MIGRATED)
3592 		en_flags |= ENQUEUE_MIGRATED;
3593 	else
3594 #endif
3595 	if (p->in_iowait) {
3596 		delayacct_blkio_end(p);
3597 		atomic_dec(&task_rq(p)->nr_iowait);
3598 	}
3599 
3600 	activate_task(rq, p, en_flags);
3601 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3602 }
3603 
3604 /*
3605  * Consider @p being inside a wait loop:
3606  *
3607  *   for (;;) {
3608  *      set_current_state(TASK_UNINTERRUPTIBLE);
3609  *
3610  *      if (CONDITION)
3611  *         break;
3612  *
3613  *      schedule();
3614  *   }
3615  *   __set_current_state(TASK_RUNNING);
3616  *
3617  * between set_current_state() and schedule(). In this case @p is still
3618  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3619  * an atomic manner.
3620  *
3621  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3622  * then schedule() must still happen and p->state can be changed to
3623  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3624  * need to do a full wakeup with enqueue.
3625  *
3626  * Returns: %true when the wakeup is done,
3627  *          %false otherwise.
3628  */
3629 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3630 {
3631 	struct rq_flags rf;
3632 	struct rq *rq;
3633 	int ret = 0;
3634 
3635 	rq = __task_rq_lock(p, &rf);
3636 	if (task_on_rq_queued(p)) {
3637 		/* check_preempt_curr() may use rq clock */
3638 		update_rq_clock(rq);
3639 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3640 		ret = 1;
3641 	}
3642 	__task_rq_unlock(rq, &rf);
3643 
3644 	return ret;
3645 }
3646 
3647 #ifdef CONFIG_SMP
3648 void sched_ttwu_pending(void *arg)
3649 {
3650 	struct llist_node *llist = arg;
3651 	struct rq *rq = this_rq();
3652 	struct task_struct *p, *t;
3653 	struct rq_flags rf;
3654 
3655 	if (!llist)
3656 		return;
3657 
3658 	/*
3659 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3660 	 * Races such that false-negatives are possible, since they
3661 	 * are shorter lived that false-positives would be.
3662 	 */
3663 	WRITE_ONCE(rq->ttwu_pending, 0);
3664 
3665 	rq_lock_irqsave(rq, &rf);
3666 	update_rq_clock(rq);
3667 
3668 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3669 		if (WARN_ON_ONCE(p->on_cpu))
3670 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3671 
3672 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3673 			set_task_cpu(p, cpu_of(rq));
3674 
3675 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3676 	}
3677 
3678 	rq_unlock_irqrestore(rq, &rf);
3679 }
3680 
3681 void send_call_function_single_ipi(int cpu)
3682 {
3683 	struct rq *rq = cpu_rq(cpu);
3684 
3685 	if (!set_nr_if_polling(rq->idle))
3686 		arch_send_call_function_single_ipi(cpu);
3687 	else
3688 		trace_sched_wake_idle_without_ipi(cpu);
3689 }
3690 
3691 /*
3692  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3693  * necessary. The wakee CPU on receipt of the IPI will queue the task
3694  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3695  * of the wakeup instead of the waker.
3696  */
3697 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3698 {
3699 	struct rq *rq = cpu_rq(cpu);
3700 
3701 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3702 
3703 	WRITE_ONCE(rq->ttwu_pending, 1);
3704 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3705 }
3706 
3707 void wake_up_if_idle(int cpu)
3708 {
3709 	struct rq *rq = cpu_rq(cpu);
3710 	struct rq_flags rf;
3711 
3712 	rcu_read_lock();
3713 
3714 	if (!is_idle_task(rcu_dereference(rq->curr)))
3715 		goto out;
3716 
3717 	rq_lock_irqsave(rq, &rf);
3718 	if (is_idle_task(rq->curr))
3719 		resched_curr(rq);
3720 	/* Else CPU is not idle, do nothing here: */
3721 	rq_unlock_irqrestore(rq, &rf);
3722 
3723 out:
3724 	rcu_read_unlock();
3725 }
3726 
3727 bool cpus_share_cache(int this_cpu, int that_cpu)
3728 {
3729 	if (this_cpu == that_cpu)
3730 		return true;
3731 
3732 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3733 }
3734 
3735 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3736 {
3737 	/*
3738 	 * Do not complicate things with the async wake_list while the CPU is
3739 	 * in hotplug state.
3740 	 */
3741 	if (!cpu_active(cpu))
3742 		return false;
3743 
3744 	/*
3745 	 * If the CPU does not share cache, then queue the task on the
3746 	 * remote rqs wakelist to avoid accessing remote data.
3747 	 */
3748 	if (!cpus_share_cache(smp_processor_id(), cpu))
3749 		return true;
3750 
3751 	/*
3752 	 * If the task is descheduling and the only running task on the
3753 	 * CPU then use the wakelist to offload the task activation to
3754 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3755 	 * nr_running is checked to avoid unnecessary task stacking.
3756 	 */
3757 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3758 		return true;
3759 
3760 	return false;
3761 }
3762 
3763 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3764 {
3765 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3766 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3767 			return false;
3768 
3769 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3770 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3771 		return true;
3772 	}
3773 
3774 	return false;
3775 }
3776 
3777 #else /* !CONFIG_SMP */
3778 
3779 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3780 {
3781 	return false;
3782 }
3783 
3784 #endif /* CONFIG_SMP */
3785 
3786 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3787 {
3788 	struct rq *rq = cpu_rq(cpu);
3789 	struct rq_flags rf;
3790 
3791 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3792 		return;
3793 
3794 	rq_lock(rq, &rf);
3795 	update_rq_clock(rq);
3796 	ttwu_do_activate(rq, p, wake_flags, &rf);
3797 	rq_unlock(rq, &rf);
3798 }
3799 
3800 /*
3801  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3802  *
3803  * The caller holds p::pi_lock if p != current or has preemption
3804  * disabled when p == current.
3805  *
3806  * The rules of PREEMPT_RT saved_state:
3807  *
3808  *   The related locking code always holds p::pi_lock when updating
3809  *   p::saved_state, which means the code is fully serialized in both cases.
3810  *
3811  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3812  *   bits set. This allows to distinguish all wakeup scenarios.
3813  */
3814 static __always_inline
3815 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3816 {
3817 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3818 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3819 			     state != TASK_RTLOCK_WAIT);
3820 	}
3821 
3822 	if (READ_ONCE(p->__state) & state) {
3823 		*success = 1;
3824 		return true;
3825 	}
3826 
3827 #ifdef CONFIG_PREEMPT_RT
3828 	/*
3829 	 * Saved state preserves the task state across blocking on
3830 	 * an RT lock.  If the state matches, set p::saved_state to
3831 	 * TASK_RUNNING, but do not wake the task because it waits
3832 	 * for a lock wakeup. Also indicate success because from
3833 	 * the regular waker's point of view this has succeeded.
3834 	 *
3835 	 * After acquiring the lock the task will restore p::__state
3836 	 * from p::saved_state which ensures that the regular
3837 	 * wakeup is not lost. The restore will also set
3838 	 * p::saved_state to TASK_RUNNING so any further tests will
3839 	 * not result in false positives vs. @success
3840 	 */
3841 	if (p->saved_state & state) {
3842 		p->saved_state = TASK_RUNNING;
3843 		*success = 1;
3844 	}
3845 #endif
3846 	return false;
3847 }
3848 
3849 /*
3850  * Notes on Program-Order guarantees on SMP systems.
3851  *
3852  *  MIGRATION
3853  *
3854  * The basic program-order guarantee on SMP systems is that when a task [t]
3855  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3856  * execution on its new CPU [c1].
3857  *
3858  * For migration (of runnable tasks) this is provided by the following means:
3859  *
3860  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3861  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3862  *     rq(c1)->lock (if not at the same time, then in that order).
3863  *  C) LOCK of the rq(c1)->lock scheduling in task
3864  *
3865  * Release/acquire chaining guarantees that B happens after A and C after B.
3866  * Note: the CPU doing B need not be c0 or c1
3867  *
3868  * Example:
3869  *
3870  *   CPU0            CPU1            CPU2
3871  *
3872  *   LOCK rq(0)->lock
3873  *   sched-out X
3874  *   sched-in Y
3875  *   UNLOCK rq(0)->lock
3876  *
3877  *                                   LOCK rq(0)->lock // orders against CPU0
3878  *                                   dequeue X
3879  *                                   UNLOCK rq(0)->lock
3880  *
3881  *                                   LOCK rq(1)->lock
3882  *                                   enqueue X
3883  *                                   UNLOCK rq(1)->lock
3884  *
3885  *                   LOCK rq(1)->lock // orders against CPU2
3886  *                   sched-out Z
3887  *                   sched-in X
3888  *                   UNLOCK rq(1)->lock
3889  *
3890  *
3891  *  BLOCKING -- aka. SLEEP + WAKEUP
3892  *
3893  * For blocking we (obviously) need to provide the same guarantee as for
3894  * migration. However the means are completely different as there is no lock
3895  * chain to provide order. Instead we do:
3896  *
3897  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3898  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3899  *
3900  * Example:
3901  *
3902  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3903  *
3904  *   LOCK rq(0)->lock LOCK X->pi_lock
3905  *   dequeue X
3906  *   sched-out X
3907  *   smp_store_release(X->on_cpu, 0);
3908  *
3909  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3910  *                    X->state = WAKING
3911  *                    set_task_cpu(X,2)
3912  *
3913  *                    LOCK rq(2)->lock
3914  *                    enqueue X
3915  *                    X->state = RUNNING
3916  *                    UNLOCK rq(2)->lock
3917  *
3918  *                                          LOCK rq(2)->lock // orders against CPU1
3919  *                                          sched-out Z
3920  *                                          sched-in X
3921  *                                          UNLOCK rq(2)->lock
3922  *
3923  *                    UNLOCK X->pi_lock
3924  *   UNLOCK rq(0)->lock
3925  *
3926  *
3927  * However, for wakeups there is a second guarantee we must provide, namely we
3928  * must ensure that CONDITION=1 done by the caller can not be reordered with
3929  * accesses to the task state; see try_to_wake_up() and set_current_state().
3930  */
3931 
3932 /**
3933  * try_to_wake_up - wake up a thread
3934  * @p: the thread to be awakened
3935  * @state: the mask of task states that can be woken
3936  * @wake_flags: wake modifier flags (WF_*)
3937  *
3938  * Conceptually does:
3939  *
3940  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3941  *
3942  * If the task was not queued/runnable, also place it back on a runqueue.
3943  *
3944  * This function is atomic against schedule() which would dequeue the task.
3945  *
3946  * It issues a full memory barrier before accessing @p->state, see the comment
3947  * with set_current_state().
3948  *
3949  * Uses p->pi_lock to serialize against concurrent wake-ups.
3950  *
3951  * Relies on p->pi_lock stabilizing:
3952  *  - p->sched_class
3953  *  - p->cpus_ptr
3954  *  - p->sched_task_group
3955  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3956  *
3957  * Tries really hard to only take one task_rq(p)->lock for performance.
3958  * Takes rq->lock in:
3959  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3960  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3961  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3962  *
3963  * As a consequence we race really badly with just about everything. See the
3964  * many memory barriers and their comments for details.
3965  *
3966  * Return: %true if @p->state changes (an actual wakeup was done),
3967  *	   %false otherwise.
3968  */
3969 static int
3970 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3971 {
3972 	unsigned long flags;
3973 	int cpu, success = 0;
3974 
3975 	preempt_disable();
3976 	if (p == current) {
3977 		/*
3978 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3979 		 * == smp_processor_id()'. Together this means we can special
3980 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3981 		 * without taking any locks.
3982 		 *
3983 		 * In particular:
3984 		 *  - we rely on Program-Order guarantees for all the ordering,
3985 		 *  - we're serialized against set_special_state() by virtue of
3986 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3987 		 */
3988 		if (!ttwu_state_match(p, state, &success))
3989 			goto out;
3990 
3991 		trace_sched_waking(p);
3992 		WRITE_ONCE(p->__state, TASK_RUNNING);
3993 		trace_sched_wakeup(p);
3994 		goto out;
3995 	}
3996 
3997 	/*
3998 	 * If we are going to wake up a thread waiting for CONDITION we
3999 	 * need to ensure that CONDITION=1 done by the caller can not be
4000 	 * reordered with p->state check below. This pairs with smp_store_mb()
4001 	 * in set_current_state() that the waiting thread does.
4002 	 */
4003 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 	smp_mb__after_spinlock();
4005 	if (!ttwu_state_match(p, state, &success))
4006 		goto unlock;
4007 
4008 	trace_sched_waking(p);
4009 
4010 	/*
4011 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4012 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4013 	 * in smp_cond_load_acquire() below.
4014 	 *
4015 	 * sched_ttwu_pending()			try_to_wake_up()
4016 	 *   STORE p->on_rq = 1			  LOAD p->state
4017 	 *   UNLOCK rq->lock
4018 	 *
4019 	 * __schedule() (switch to task 'p')
4020 	 *   LOCK rq->lock			  smp_rmb();
4021 	 *   smp_mb__after_spinlock();
4022 	 *   UNLOCK rq->lock
4023 	 *
4024 	 * [task p]
4025 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4026 	 *
4027 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4028 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4029 	 *
4030 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4031 	 */
4032 	smp_rmb();
4033 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4034 		goto unlock;
4035 
4036 #ifdef CONFIG_SMP
4037 	/*
4038 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4039 	 * possible to, falsely, observe p->on_cpu == 0.
4040 	 *
4041 	 * One must be running (->on_cpu == 1) in order to remove oneself
4042 	 * from the runqueue.
4043 	 *
4044 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4045 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4046 	 *   UNLOCK rq->lock
4047 	 *
4048 	 * __schedule() (put 'p' to sleep)
4049 	 *   LOCK rq->lock			  smp_rmb();
4050 	 *   smp_mb__after_spinlock();
4051 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4052 	 *
4053 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4054 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4055 	 *
4056 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4057 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4058 	 * care about it's own p->state. See the comment in __schedule().
4059 	 */
4060 	smp_acquire__after_ctrl_dep();
4061 
4062 	/*
4063 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4064 	 * == 0), which means we need to do an enqueue, change p->state to
4065 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4066 	 * enqueue, such as ttwu_queue_wakelist().
4067 	 */
4068 	WRITE_ONCE(p->__state, TASK_WAKING);
4069 
4070 	/*
4071 	 * If the owning (remote) CPU is still in the middle of schedule() with
4072 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4073 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4074 	 * let the waker make forward progress. This is safe because IRQs are
4075 	 * disabled and the IPI will deliver after on_cpu is cleared.
4076 	 *
4077 	 * Ensure we load task_cpu(p) after p->on_cpu:
4078 	 *
4079 	 * set_task_cpu(p, cpu);
4080 	 *   STORE p->cpu = @cpu
4081 	 * __schedule() (switch to task 'p')
4082 	 *   LOCK rq->lock
4083 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4084 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4085 	 *
4086 	 * to ensure we observe the correct CPU on which the task is currently
4087 	 * scheduling.
4088 	 */
4089 	if (smp_load_acquire(&p->on_cpu) &&
4090 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4091 		goto unlock;
4092 
4093 	/*
4094 	 * If the owning (remote) CPU is still in the middle of schedule() with
4095 	 * this task as prev, wait until it's done referencing the task.
4096 	 *
4097 	 * Pairs with the smp_store_release() in finish_task().
4098 	 *
4099 	 * This ensures that tasks getting woken will be fully ordered against
4100 	 * their previous state and preserve Program Order.
4101 	 */
4102 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4103 
4104 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4105 	if (task_cpu(p) != cpu) {
4106 		if (p->in_iowait) {
4107 			delayacct_blkio_end(p);
4108 			atomic_dec(&task_rq(p)->nr_iowait);
4109 		}
4110 
4111 		wake_flags |= WF_MIGRATED;
4112 		psi_ttwu_dequeue(p);
4113 		set_task_cpu(p, cpu);
4114 	}
4115 #else
4116 	cpu = task_cpu(p);
4117 #endif /* CONFIG_SMP */
4118 
4119 	ttwu_queue(p, cpu, wake_flags);
4120 unlock:
4121 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4122 out:
4123 	if (success)
4124 		ttwu_stat(p, task_cpu(p), wake_flags);
4125 	preempt_enable();
4126 
4127 	return success;
4128 }
4129 
4130 /**
4131  * task_call_func - Invoke a function on task in fixed state
4132  * @p: Process for which the function is to be invoked, can be @current.
4133  * @func: Function to invoke.
4134  * @arg: Argument to function.
4135  *
4136  * Fix the task in it's current state by avoiding wakeups and or rq operations
4137  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4138  * to work out what the state is, if required.  Given that @func can be invoked
4139  * with a runqueue lock held, it had better be quite lightweight.
4140  *
4141  * Returns:
4142  *   Whatever @func returns
4143  */
4144 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4145 {
4146 	struct rq *rq = NULL;
4147 	unsigned int state;
4148 	struct rq_flags rf;
4149 	int ret;
4150 
4151 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4152 
4153 	state = READ_ONCE(p->__state);
4154 
4155 	/*
4156 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4157 	 * possible to, falsely, observe p->on_rq == 0.
4158 	 *
4159 	 * See try_to_wake_up() for a longer comment.
4160 	 */
4161 	smp_rmb();
4162 
4163 	/*
4164 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4165 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4166 	 * locks at the end, see ttwu_queue_wakelist().
4167 	 */
4168 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4169 		rq = __task_rq_lock(p, &rf);
4170 
4171 	/*
4172 	 * At this point the task is pinned; either:
4173 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4174 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4175 	 *  - queued, and we're holding off schedule	 (rq->lock)
4176 	 *  - running, and we're holding off de-schedule (rq->lock)
4177 	 *
4178 	 * The called function (@func) can use: task_curr(), p->on_rq and
4179 	 * p->__state to differentiate between these states.
4180 	 */
4181 	ret = func(p, arg);
4182 
4183 	if (rq)
4184 		rq_unlock(rq, &rf);
4185 
4186 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4187 	return ret;
4188 }
4189 
4190 /**
4191  * wake_up_process - Wake up a specific process
4192  * @p: The process to be woken up.
4193  *
4194  * Attempt to wake up the nominated process and move it to the set of runnable
4195  * processes.
4196  *
4197  * Return: 1 if the process was woken up, 0 if it was already running.
4198  *
4199  * This function executes a full memory barrier before accessing the task state.
4200  */
4201 int wake_up_process(struct task_struct *p)
4202 {
4203 	return try_to_wake_up(p, TASK_NORMAL, 0);
4204 }
4205 EXPORT_SYMBOL(wake_up_process);
4206 
4207 int wake_up_state(struct task_struct *p, unsigned int state)
4208 {
4209 	return try_to_wake_up(p, state, 0);
4210 }
4211 
4212 /*
4213  * Perform scheduler related setup for a newly forked process p.
4214  * p is forked by current.
4215  *
4216  * __sched_fork() is basic setup used by init_idle() too:
4217  */
4218 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4219 {
4220 	p->on_rq			= 0;
4221 
4222 	p->se.on_rq			= 0;
4223 	p->se.exec_start		= 0;
4224 	p->se.sum_exec_runtime		= 0;
4225 	p->se.prev_sum_exec_runtime	= 0;
4226 	p->se.nr_migrations		= 0;
4227 	p->se.vruntime			= 0;
4228 	INIT_LIST_HEAD(&p->se.group_node);
4229 
4230 #ifdef CONFIG_FAIR_GROUP_SCHED
4231 	p->se.cfs_rq			= NULL;
4232 #endif
4233 
4234 #ifdef CONFIG_SCHEDSTATS
4235 	/* Even if schedstat is disabled, there should not be garbage */
4236 	memset(&p->stats, 0, sizeof(p->stats));
4237 #endif
4238 
4239 	RB_CLEAR_NODE(&p->dl.rb_node);
4240 	init_dl_task_timer(&p->dl);
4241 	init_dl_inactive_task_timer(&p->dl);
4242 	__dl_clear_params(p);
4243 
4244 	INIT_LIST_HEAD(&p->rt.run_list);
4245 	p->rt.timeout		= 0;
4246 	p->rt.time_slice	= sched_rr_timeslice;
4247 	p->rt.on_rq		= 0;
4248 	p->rt.on_list		= 0;
4249 
4250 #ifdef CONFIG_PREEMPT_NOTIFIERS
4251 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4252 #endif
4253 
4254 #ifdef CONFIG_COMPACTION
4255 	p->capture_control = NULL;
4256 #endif
4257 	init_numa_balancing(clone_flags, p);
4258 #ifdef CONFIG_SMP
4259 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4260 	p->migration_pending = NULL;
4261 #endif
4262 }
4263 
4264 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4265 
4266 #ifdef CONFIG_NUMA_BALANCING
4267 
4268 void set_numabalancing_state(bool enabled)
4269 {
4270 	if (enabled)
4271 		static_branch_enable(&sched_numa_balancing);
4272 	else
4273 		static_branch_disable(&sched_numa_balancing);
4274 }
4275 
4276 #ifdef CONFIG_PROC_SYSCTL
4277 int sysctl_numa_balancing(struct ctl_table *table, int write,
4278 			  void *buffer, size_t *lenp, loff_t *ppos)
4279 {
4280 	struct ctl_table t;
4281 	int err;
4282 	int state = static_branch_likely(&sched_numa_balancing);
4283 
4284 	if (write && !capable(CAP_SYS_ADMIN))
4285 		return -EPERM;
4286 
4287 	t = *table;
4288 	t.data = &state;
4289 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4290 	if (err < 0)
4291 		return err;
4292 	if (write)
4293 		set_numabalancing_state(state);
4294 	return err;
4295 }
4296 #endif
4297 #endif
4298 
4299 #ifdef CONFIG_SCHEDSTATS
4300 
4301 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4302 
4303 static void set_schedstats(bool enabled)
4304 {
4305 	if (enabled)
4306 		static_branch_enable(&sched_schedstats);
4307 	else
4308 		static_branch_disable(&sched_schedstats);
4309 }
4310 
4311 void force_schedstat_enabled(void)
4312 {
4313 	if (!schedstat_enabled()) {
4314 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4315 		static_branch_enable(&sched_schedstats);
4316 	}
4317 }
4318 
4319 static int __init setup_schedstats(char *str)
4320 {
4321 	int ret = 0;
4322 	if (!str)
4323 		goto out;
4324 
4325 	if (!strcmp(str, "enable")) {
4326 		set_schedstats(true);
4327 		ret = 1;
4328 	} else if (!strcmp(str, "disable")) {
4329 		set_schedstats(false);
4330 		ret = 1;
4331 	}
4332 out:
4333 	if (!ret)
4334 		pr_warn("Unable to parse schedstats=\n");
4335 
4336 	return ret;
4337 }
4338 __setup("schedstats=", setup_schedstats);
4339 
4340 #ifdef CONFIG_PROC_SYSCTL
4341 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4342 		size_t *lenp, loff_t *ppos)
4343 {
4344 	struct ctl_table t;
4345 	int err;
4346 	int state = static_branch_likely(&sched_schedstats);
4347 
4348 	if (write && !capable(CAP_SYS_ADMIN))
4349 		return -EPERM;
4350 
4351 	t = *table;
4352 	t.data = &state;
4353 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4354 	if (err < 0)
4355 		return err;
4356 	if (write)
4357 		set_schedstats(state);
4358 	return err;
4359 }
4360 #endif /* CONFIG_PROC_SYSCTL */
4361 #endif /* CONFIG_SCHEDSTATS */
4362 
4363 /*
4364  * fork()/clone()-time setup:
4365  */
4366 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4367 {
4368 	__sched_fork(clone_flags, p);
4369 	/*
4370 	 * We mark the process as NEW here. This guarantees that
4371 	 * nobody will actually run it, and a signal or other external
4372 	 * event cannot wake it up and insert it on the runqueue either.
4373 	 */
4374 	p->__state = TASK_NEW;
4375 
4376 	/*
4377 	 * Make sure we do not leak PI boosting priority to the child.
4378 	 */
4379 	p->prio = current->normal_prio;
4380 
4381 	uclamp_fork(p);
4382 
4383 	/*
4384 	 * Revert to default priority/policy on fork if requested.
4385 	 */
4386 	if (unlikely(p->sched_reset_on_fork)) {
4387 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4388 			p->policy = SCHED_NORMAL;
4389 			p->static_prio = NICE_TO_PRIO(0);
4390 			p->rt_priority = 0;
4391 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4392 			p->static_prio = NICE_TO_PRIO(0);
4393 
4394 		p->prio = p->normal_prio = p->static_prio;
4395 		set_load_weight(p, false);
4396 
4397 		/*
4398 		 * We don't need the reset flag anymore after the fork. It has
4399 		 * fulfilled its duty:
4400 		 */
4401 		p->sched_reset_on_fork = 0;
4402 	}
4403 
4404 	if (dl_prio(p->prio))
4405 		return -EAGAIN;
4406 	else if (rt_prio(p->prio))
4407 		p->sched_class = &rt_sched_class;
4408 	else
4409 		p->sched_class = &fair_sched_class;
4410 
4411 	init_entity_runnable_average(&p->se);
4412 
4413 #ifdef CONFIG_SCHED_INFO
4414 	if (likely(sched_info_on()))
4415 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4416 #endif
4417 #if defined(CONFIG_SMP)
4418 	p->on_cpu = 0;
4419 #endif
4420 	init_task_preempt_count(p);
4421 #ifdef CONFIG_SMP
4422 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4423 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4424 #endif
4425 	return 0;
4426 }
4427 
4428 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4429 {
4430 	unsigned long flags;
4431 #ifdef CONFIG_CGROUP_SCHED
4432 	struct task_group *tg;
4433 #endif
4434 
4435 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4436 #ifdef CONFIG_CGROUP_SCHED
4437 	tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4438 			  struct task_group, css);
4439 	p->sched_task_group = autogroup_task_group(p, tg);
4440 #endif
4441 	rseq_migrate(p);
4442 	/*
4443 	 * We're setting the CPU for the first time, we don't migrate,
4444 	 * so use __set_task_cpu().
4445 	 */
4446 	__set_task_cpu(p, smp_processor_id());
4447 	if (p->sched_class->task_fork)
4448 		p->sched_class->task_fork(p);
4449 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4450 
4451 	uclamp_post_fork(p);
4452 }
4453 
4454 unsigned long to_ratio(u64 period, u64 runtime)
4455 {
4456 	if (runtime == RUNTIME_INF)
4457 		return BW_UNIT;
4458 
4459 	/*
4460 	 * Doing this here saves a lot of checks in all
4461 	 * the calling paths, and returning zero seems
4462 	 * safe for them anyway.
4463 	 */
4464 	if (period == 0)
4465 		return 0;
4466 
4467 	return div64_u64(runtime << BW_SHIFT, period);
4468 }
4469 
4470 /*
4471  * wake_up_new_task - wake up a newly created task for the first time.
4472  *
4473  * This function will do some initial scheduler statistics housekeeping
4474  * that must be done for every newly created context, then puts the task
4475  * on the runqueue and wakes it.
4476  */
4477 void wake_up_new_task(struct task_struct *p)
4478 {
4479 	struct rq_flags rf;
4480 	struct rq *rq;
4481 
4482 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4483 	WRITE_ONCE(p->__state, TASK_RUNNING);
4484 #ifdef CONFIG_SMP
4485 	/*
4486 	 * Fork balancing, do it here and not earlier because:
4487 	 *  - cpus_ptr can change in the fork path
4488 	 *  - any previously selected CPU might disappear through hotplug
4489 	 *
4490 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4491 	 * as we're not fully set-up yet.
4492 	 */
4493 	p->recent_used_cpu = task_cpu(p);
4494 	rseq_migrate(p);
4495 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4496 #endif
4497 	rq = __task_rq_lock(p, &rf);
4498 	update_rq_clock(rq);
4499 	post_init_entity_util_avg(p);
4500 
4501 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4502 	trace_sched_wakeup_new(p);
4503 	check_preempt_curr(rq, p, WF_FORK);
4504 #ifdef CONFIG_SMP
4505 	if (p->sched_class->task_woken) {
4506 		/*
4507 		 * Nothing relies on rq->lock after this, so it's fine to
4508 		 * drop it.
4509 		 */
4510 		rq_unpin_lock(rq, &rf);
4511 		p->sched_class->task_woken(rq, p);
4512 		rq_repin_lock(rq, &rf);
4513 	}
4514 #endif
4515 	task_rq_unlock(rq, p, &rf);
4516 }
4517 
4518 #ifdef CONFIG_PREEMPT_NOTIFIERS
4519 
4520 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4521 
4522 void preempt_notifier_inc(void)
4523 {
4524 	static_branch_inc(&preempt_notifier_key);
4525 }
4526 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4527 
4528 void preempt_notifier_dec(void)
4529 {
4530 	static_branch_dec(&preempt_notifier_key);
4531 }
4532 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4533 
4534 /**
4535  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4536  * @notifier: notifier struct to register
4537  */
4538 void preempt_notifier_register(struct preempt_notifier *notifier)
4539 {
4540 	if (!static_branch_unlikely(&preempt_notifier_key))
4541 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4542 
4543 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4544 }
4545 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4546 
4547 /**
4548  * preempt_notifier_unregister - no longer interested in preemption notifications
4549  * @notifier: notifier struct to unregister
4550  *
4551  * This is *not* safe to call from within a preemption notifier.
4552  */
4553 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4554 {
4555 	hlist_del(&notifier->link);
4556 }
4557 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4558 
4559 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4560 {
4561 	struct preempt_notifier *notifier;
4562 
4563 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4564 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4565 }
4566 
4567 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4568 {
4569 	if (static_branch_unlikely(&preempt_notifier_key))
4570 		__fire_sched_in_preempt_notifiers(curr);
4571 }
4572 
4573 static void
4574 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4575 				   struct task_struct *next)
4576 {
4577 	struct preempt_notifier *notifier;
4578 
4579 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4580 		notifier->ops->sched_out(notifier, next);
4581 }
4582 
4583 static __always_inline void
4584 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4585 				 struct task_struct *next)
4586 {
4587 	if (static_branch_unlikely(&preempt_notifier_key))
4588 		__fire_sched_out_preempt_notifiers(curr, next);
4589 }
4590 
4591 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4592 
4593 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4594 {
4595 }
4596 
4597 static inline void
4598 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4599 				 struct task_struct *next)
4600 {
4601 }
4602 
4603 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4604 
4605 static inline void prepare_task(struct task_struct *next)
4606 {
4607 #ifdef CONFIG_SMP
4608 	/*
4609 	 * Claim the task as running, we do this before switching to it
4610 	 * such that any running task will have this set.
4611 	 *
4612 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4613 	 */
4614 	WRITE_ONCE(next->on_cpu, 1);
4615 #endif
4616 }
4617 
4618 static inline void finish_task(struct task_struct *prev)
4619 {
4620 #ifdef CONFIG_SMP
4621 	/*
4622 	 * This must be the very last reference to @prev from this CPU. After
4623 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4624 	 * must ensure this doesn't happen until the switch is completely
4625 	 * finished.
4626 	 *
4627 	 * In particular, the load of prev->state in finish_task_switch() must
4628 	 * happen before this.
4629 	 *
4630 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4631 	 */
4632 	smp_store_release(&prev->on_cpu, 0);
4633 #endif
4634 }
4635 
4636 #ifdef CONFIG_SMP
4637 
4638 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4639 {
4640 	void (*func)(struct rq *rq);
4641 	struct callback_head *next;
4642 
4643 	lockdep_assert_rq_held(rq);
4644 
4645 	while (head) {
4646 		func = (void (*)(struct rq *))head->func;
4647 		next = head->next;
4648 		head->next = NULL;
4649 		head = next;
4650 
4651 		func(rq);
4652 	}
4653 }
4654 
4655 static void balance_push(struct rq *rq);
4656 
4657 struct callback_head balance_push_callback = {
4658 	.next = NULL,
4659 	.func = (void (*)(struct callback_head *))balance_push,
4660 };
4661 
4662 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4663 {
4664 	struct callback_head *head = rq->balance_callback;
4665 
4666 	lockdep_assert_rq_held(rq);
4667 	if (head)
4668 		rq->balance_callback = NULL;
4669 
4670 	return head;
4671 }
4672 
4673 static void __balance_callbacks(struct rq *rq)
4674 {
4675 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4676 }
4677 
4678 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4679 {
4680 	unsigned long flags;
4681 
4682 	if (unlikely(head)) {
4683 		raw_spin_rq_lock_irqsave(rq, flags);
4684 		do_balance_callbacks(rq, head);
4685 		raw_spin_rq_unlock_irqrestore(rq, flags);
4686 	}
4687 }
4688 
4689 #else
4690 
4691 static inline void __balance_callbacks(struct rq *rq)
4692 {
4693 }
4694 
4695 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4696 {
4697 	return NULL;
4698 }
4699 
4700 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4701 {
4702 }
4703 
4704 #endif
4705 
4706 static inline void
4707 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4708 {
4709 	/*
4710 	 * Since the runqueue lock will be released by the next
4711 	 * task (which is an invalid locking op but in the case
4712 	 * of the scheduler it's an obvious special-case), so we
4713 	 * do an early lockdep release here:
4714 	 */
4715 	rq_unpin_lock(rq, rf);
4716 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4717 #ifdef CONFIG_DEBUG_SPINLOCK
4718 	/* this is a valid case when another task releases the spinlock */
4719 	rq_lockp(rq)->owner = next;
4720 #endif
4721 }
4722 
4723 static inline void finish_lock_switch(struct rq *rq)
4724 {
4725 	/*
4726 	 * If we are tracking spinlock dependencies then we have to
4727 	 * fix up the runqueue lock - which gets 'carried over' from
4728 	 * prev into current:
4729 	 */
4730 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4731 	__balance_callbacks(rq);
4732 	raw_spin_rq_unlock_irq(rq);
4733 }
4734 
4735 /*
4736  * NOP if the arch has not defined these:
4737  */
4738 
4739 #ifndef prepare_arch_switch
4740 # define prepare_arch_switch(next)	do { } while (0)
4741 #endif
4742 
4743 #ifndef finish_arch_post_lock_switch
4744 # define finish_arch_post_lock_switch()	do { } while (0)
4745 #endif
4746 
4747 static inline void kmap_local_sched_out(void)
4748 {
4749 #ifdef CONFIG_KMAP_LOCAL
4750 	if (unlikely(current->kmap_ctrl.idx))
4751 		__kmap_local_sched_out();
4752 #endif
4753 }
4754 
4755 static inline void kmap_local_sched_in(void)
4756 {
4757 #ifdef CONFIG_KMAP_LOCAL
4758 	if (unlikely(current->kmap_ctrl.idx))
4759 		__kmap_local_sched_in();
4760 #endif
4761 }
4762 
4763 /**
4764  * prepare_task_switch - prepare to switch tasks
4765  * @rq: the runqueue preparing to switch
4766  * @prev: the current task that is being switched out
4767  * @next: the task we are going to switch to.
4768  *
4769  * This is called with the rq lock held and interrupts off. It must
4770  * be paired with a subsequent finish_task_switch after the context
4771  * switch.
4772  *
4773  * prepare_task_switch sets up locking and calls architecture specific
4774  * hooks.
4775  */
4776 static inline void
4777 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4778 		    struct task_struct *next)
4779 {
4780 	kcov_prepare_switch(prev);
4781 	sched_info_switch(rq, prev, next);
4782 	perf_event_task_sched_out(prev, next);
4783 	rseq_preempt(prev);
4784 	fire_sched_out_preempt_notifiers(prev, next);
4785 	kmap_local_sched_out();
4786 	prepare_task(next);
4787 	prepare_arch_switch(next);
4788 }
4789 
4790 /**
4791  * finish_task_switch - clean up after a task-switch
4792  * @prev: the thread we just switched away from.
4793  *
4794  * finish_task_switch must be called after the context switch, paired
4795  * with a prepare_task_switch call before the context switch.
4796  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4797  * and do any other architecture-specific cleanup actions.
4798  *
4799  * Note that we may have delayed dropping an mm in context_switch(). If
4800  * so, we finish that here outside of the runqueue lock. (Doing it
4801  * with the lock held can cause deadlocks; see schedule() for
4802  * details.)
4803  *
4804  * The context switch have flipped the stack from under us and restored the
4805  * local variables which were saved when this task called schedule() in the
4806  * past. prev == current is still correct but we need to recalculate this_rq
4807  * because prev may have moved to another CPU.
4808  */
4809 static struct rq *finish_task_switch(struct task_struct *prev)
4810 	__releases(rq->lock)
4811 {
4812 	struct rq *rq = this_rq();
4813 	struct mm_struct *mm = rq->prev_mm;
4814 	long prev_state;
4815 
4816 	/*
4817 	 * The previous task will have left us with a preempt_count of 2
4818 	 * because it left us after:
4819 	 *
4820 	 *	schedule()
4821 	 *	  preempt_disable();			// 1
4822 	 *	  __schedule()
4823 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4824 	 *
4825 	 * Also, see FORK_PREEMPT_COUNT.
4826 	 */
4827 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4828 		      "corrupted preempt_count: %s/%d/0x%x\n",
4829 		      current->comm, current->pid, preempt_count()))
4830 		preempt_count_set(FORK_PREEMPT_COUNT);
4831 
4832 	rq->prev_mm = NULL;
4833 
4834 	/*
4835 	 * A task struct has one reference for the use as "current".
4836 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4837 	 * schedule one last time. The schedule call will never return, and
4838 	 * the scheduled task must drop that reference.
4839 	 *
4840 	 * We must observe prev->state before clearing prev->on_cpu (in
4841 	 * finish_task), otherwise a concurrent wakeup can get prev
4842 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4843 	 * transition, resulting in a double drop.
4844 	 */
4845 	prev_state = READ_ONCE(prev->__state);
4846 	vtime_task_switch(prev);
4847 	perf_event_task_sched_in(prev, current);
4848 	finish_task(prev);
4849 	tick_nohz_task_switch();
4850 	finish_lock_switch(rq);
4851 	finish_arch_post_lock_switch();
4852 	kcov_finish_switch(current);
4853 	/*
4854 	 * kmap_local_sched_out() is invoked with rq::lock held and
4855 	 * interrupts disabled. There is no requirement for that, but the
4856 	 * sched out code does not have an interrupt enabled section.
4857 	 * Restoring the maps on sched in does not require interrupts being
4858 	 * disabled either.
4859 	 */
4860 	kmap_local_sched_in();
4861 
4862 	fire_sched_in_preempt_notifiers(current);
4863 	/*
4864 	 * When switching through a kernel thread, the loop in
4865 	 * membarrier_{private,global}_expedited() may have observed that
4866 	 * kernel thread and not issued an IPI. It is therefore possible to
4867 	 * schedule between user->kernel->user threads without passing though
4868 	 * switch_mm(). Membarrier requires a barrier after storing to
4869 	 * rq->curr, before returning to userspace, so provide them here:
4870 	 *
4871 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4872 	 *   provided by mmdrop(),
4873 	 * - a sync_core for SYNC_CORE.
4874 	 */
4875 	if (mm) {
4876 		membarrier_mm_sync_core_before_usermode(mm);
4877 		mmdrop_sched(mm);
4878 	}
4879 	if (unlikely(prev_state == TASK_DEAD)) {
4880 		if (prev->sched_class->task_dead)
4881 			prev->sched_class->task_dead(prev);
4882 
4883 		/* Task is done with its stack. */
4884 		put_task_stack(prev);
4885 
4886 		put_task_struct_rcu_user(prev);
4887 	}
4888 
4889 	return rq;
4890 }
4891 
4892 /**
4893  * schedule_tail - first thing a freshly forked thread must call.
4894  * @prev: the thread we just switched away from.
4895  */
4896 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4897 	__releases(rq->lock)
4898 {
4899 	/*
4900 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4901 	 * finish_task_switch() for details.
4902 	 *
4903 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4904 	 * and the preempt_enable() will end up enabling preemption (on
4905 	 * PREEMPT_COUNT kernels).
4906 	 */
4907 
4908 	finish_task_switch(prev);
4909 	preempt_enable();
4910 
4911 	if (current->set_child_tid)
4912 		put_user(task_pid_vnr(current), current->set_child_tid);
4913 
4914 	calculate_sigpending();
4915 }
4916 
4917 /*
4918  * context_switch - switch to the new MM and the new thread's register state.
4919  */
4920 static __always_inline struct rq *
4921 context_switch(struct rq *rq, struct task_struct *prev,
4922 	       struct task_struct *next, struct rq_flags *rf)
4923 {
4924 	prepare_task_switch(rq, prev, next);
4925 
4926 	/*
4927 	 * For paravirt, this is coupled with an exit in switch_to to
4928 	 * combine the page table reload and the switch backend into
4929 	 * one hypercall.
4930 	 */
4931 	arch_start_context_switch(prev);
4932 
4933 	/*
4934 	 * kernel -> kernel   lazy + transfer active
4935 	 *   user -> kernel   lazy + mmgrab() active
4936 	 *
4937 	 * kernel ->   user   switch + mmdrop() active
4938 	 *   user ->   user   switch
4939 	 */
4940 	if (!next->mm) {                                // to kernel
4941 		enter_lazy_tlb(prev->active_mm, next);
4942 
4943 		next->active_mm = prev->active_mm;
4944 		if (prev->mm)                           // from user
4945 			mmgrab(prev->active_mm);
4946 		else
4947 			prev->active_mm = NULL;
4948 	} else {                                        // to user
4949 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4950 		/*
4951 		 * sys_membarrier() requires an smp_mb() between setting
4952 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4953 		 *
4954 		 * The below provides this either through switch_mm(), or in
4955 		 * case 'prev->active_mm == next->mm' through
4956 		 * finish_task_switch()'s mmdrop().
4957 		 */
4958 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4959 
4960 		if (!prev->mm) {                        // from kernel
4961 			/* will mmdrop() in finish_task_switch(). */
4962 			rq->prev_mm = prev->active_mm;
4963 			prev->active_mm = NULL;
4964 		}
4965 	}
4966 
4967 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4968 
4969 	prepare_lock_switch(rq, next, rf);
4970 
4971 	/* Here we just switch the register state and the stack. */
4972 	switch_to(prev, next, prev);
4973 	barrier();
4974 
4975 	return finish_task_switch(prev);
4976 }
4977 
4978 /*
4979  * nr_running and nr_context_switches:
4980  *
4981  * externally visible scheduler statistics: current number of runnable
4982  * threads, total number of context switches performed since bootup.
4983  */
4984 unsigned int nr_running(void)
4985 {
4986 	unsigned int i, sum = 0;
4987 
4988 	for_each_online_cpu(i)
4989 		sum += cpu_rq(i)->nr_running;
4990 
4991 	return sum;
4992 }
4993 
4994 /*
4995  * Check if only the current task is running on the CPU.
4996  *
4997  * Caution: this function does not check that the caller has disabled
4998  * preemption, thus the result might have a time-of-check-to-time-of-use
4999  * race.  The caller is responsible to use it correctly, for example:
5000  *
5001  * - from a non-preemptible section (of course)
5002  *
5003  * - from a thread that is bound to a single CPU
5004  *
5005  * - in a loop with very short iterations (e.g. a polling loop)
5006  */
5007 bool single_task_running(void)
5008 {
5009 	return raw_rq()->nr_running == 1;
5010 }
5011 EXPORT_SYMBOL(single_task_running);
5012 
5013 unsigned long long nr_context_switches(void)
5014 {
5015 	int i;
5016 	unsigned long long sum = 0;
5017 
5018 	for_each_possible_cpu(i)
5019 		sum += cpu_rq(i)->nr_switches;
5020 
5021 	return sum;
5022 }
5023 
5024 /*
5025  * Consumers of these two interfaces, like for example the cpuidle menu
5026  * governor, are using nonsensical data. Preferring shallow idle state selection
5027  * for a CPU that has IO-wait which might not even end up running the task when
5028  * it does become runnable.
5029  */
5030 
5031 unsigned int nr_iowait_cpu(int cpu)
5032 {
5033 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5034 }
5035 
5036 /*
5037  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5038  *
5039  * The idea behind IO-wait account is to account the idle time that we could
5040  * have spend running if it were not for IO. That is, if we were to improve the
5041  * storage performance, we'd have a proportional reduction in IO-wait time.
5042  *
5043  * This all works nicely on UP, where, when a task blocks on IO, we account
5044  * idle time as IO-wait, because if the storage were faster, it could've been
5045  * running and we'd not be idle.
5046  *
5047  * This has been extended to SMP, by doing the same for each CPU. This however
5048  * is broken.
5049  *
5050  * Imagine for instance the case where two tasks block on one CPU, only the one
5051  * CPU will have IO-wait accounted, while the other has regular idle. Even
5052  * though, if the storage were faster, both could've ran at the same time,
5053  * utilising both CPUs.
5054  *
5055  * This means, that when looking globally, the current IO-wait accounting on
5056  * SMP is a lower bound, by reason of under accounting.
5057  *
5058  * Worse, since the numbers are provided per CPU, they are sometimes
5059  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5060  * associated with any one particular CPU, it can wake to another CPU than it
5061  * blocked on. This means the per CPU IO-wait number is meaningless.
5062  *
5063  * Task CPU affinities can make all that even more 'interesting'.
5064  */
5065 
5066 unsigned int nr_iowait(void)
5067 {
5068 	unsigned int i, sum = 0;
5069 
5070 	for_each_possible_cpu(i)
5071 		sum += nr_iowait_cpu(i);
5072 
5073 	return sum;
5074 }
5075 
5076 #ifdef CONFIG_SMP
5077 
5078 /*
5079  * sched_exec - execve() is a valuable balancing opportunity, because at
5080  * this point the task has the smallest effective memory and cache footprint.
5081  */
5082 void sched_exec(void)
5083 {
5084 	struct task_struct *p = current;
5085 	unsigned long flags;
5086 	int dest_cpu;
5087 
5088 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5089 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5090 	if (dest_cpu == smp_processor_id())
5091 		goto unlock;
5092 
5093 	if (likely(cpu_active(dest_cpu))) {
5094 		struct migration_arg arg = { p, dest_cpu };
5095 
5096 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5097 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5098 		return;
5099 	}
5100 unlock:
5101 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5102 }
5103 
5104 #endif
5105 
5106 DEFINE_PER_CPU(struct kernel_stat, kstat);
5107 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5108 
5109 EXPORT_PER_CPU_SYMBOL(kstat);
5110 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5111 
5112 /*
5113  * The function fair_sched_class.update_curr accesses the struct curr
5114  * and its field curr->exec_start; when called from task_sched_runtime(),
5115  * we observe a high rate of cache misses in practice.
5116  * Prefetching this data results in improved performance.
5117  */
5118 static inline void prefetch_curr_exec_start(struct task_struct *p)
5119 {
5120 #ifdef CONFIG_FAIR_GROUP_SCHED
5121 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5122 #else
5123 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5124 #endif
5125 	prefetch(curr);
5126 	prefetch(&curr->exec_start);
5127 }
5128 
5129 /*
5130  * Return accounted runtime for the task.
5131  * In case the task is currently running, return the runtime plus current's
5132  * pending runtime that have not been accounted yet.
5133  */
5134 unsigned long long task_sched_runtime(struct task_struct *p)
5135 {
5136 	struct rq_flags rf;
5137 	struct rq *rq;
5138 	u64 ns;
5139 
5140 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5141 	/*
5142 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5143 	 * So we have a optimization chance when the task's delta_exec is 0.
5144 	 * Reading ->on_cpu is racy, but this is ok.
5145 	 *
5146 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5147 	 * If we race with it entering CPU, unaccounted time is 0. This is
5148 	 * indistinguishable from the read occurring a few cycles earlier.
5149 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5150 	 * been accounted, so we're correct here as well.
5151 	 */
5152 	if (!p->on_cpu || !task_on_rq_queued(p))
5153 		return p->se.sum_exec_runtime;
5154 #endif
5155 
5156 	rq = task_rq_lock(p, &rf);
5157 	/*
5158 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5159 	 * project cycles that may never be accounted to this
5160 	 * thread, breaking clock_gettime().
5161 	 */
5162 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5163 		prefetch_curr_exec_start(p);
5164 		update_rq_clock(rq);
5165 		p->sched_class->update_curr(rq);
5166 	}
5167 	ns = p->se.sum_exec_runtime;
5168 	task_rq_unlock(rq, p, &rf);
5169 
5170 	return ns;
5171 }
5172 
5173 #ifdef CONFIG_SCHED_DEBUG
5174 static u64 cpu_resched_latency(struct rq *rq)
5175 {
5176 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5177 	u64 resched_latency, now = rq_clock(rq);
5178 	static bool warned_once;
5179 
5180 	if (sysctl_resched_latency_warn_once && warned_once)
5181 		return 0;
5182 
5183 	if (!need_resched() || !latency_warn_ms)
5184 		return 0;
5185 
5186 	if (system_state == SYSTEM_BOOTING)
5187 		return 0;
5188 
5189 	if (!rq->last_seen_need_resched_ns) {
5190 		rq->last_seen_need_resched_ns = now;
5191 		rq->ticks_without_resched = 0;
5192 		return 0;
5193 	}
5194 
5195 	rq->ticks_without_resched++;
5196 	resched_latency = now - rq->last_seen_need_resched_ns;
5197 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5198 		return 0;
5199 
5200 	warned_once = true;
5201 
5202 	return resched_latency;
5203 }
5204 
5205 static int __init setup_resched_latency_warn_ms(char *str)
5206 {
5207 	long val;
5208 
5209 	if ((kstrtol(str, 0, &val))) {
5210 		pr_warn("Unable to set resched_latency_warn_ms\n");
5211 		return 1;
5212 	}
5213 
5214 	sysctl_resched_latency_warn_ms = val;
5215 	return 1;
5216 }
5217 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5218 #else
5219 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5220 #endif /* CONFIG_SCHED_DEBUG */
5221 
5222 /*
5223  * This function gets called by the timer code, with HZ frequency.
5224  * We call it with interrupts disabled.
5225  */
5226 void scheduler_tick(void)
5227 {
5228 	int cpu = smp_processor_id();
5229 	struct rq *rq = cpu_rq(cpu);
5230 	struct task_struct *curr = rq->curr;
5231 	struct rq_flags rf;
5232 	unsigned long thermal_pressure;
5233 	u64 resched_latency;
5234 
5235 	arch_scale_freq_tick();
5236 	sched_clock_tick();
5237 
5238 	rq_lock(rq, &rf);
5239 
5240 	update_rq_clock(rq);
5241 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5242 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5243 	curr->sched_class->task_tick(rq, curr, 0);
5244 	if (sched_feat(LATENCY_WARN))
5245 		resched_latency = cpu_resched_latency(rq);
5246 	calc_global_load_tick(rq);
5247 
5248 	rq_unlock(rq, &rf);
5249 
5250 	if (sched_feat(LATENCY_WARN) && resched_latency)
5251 		resched_latency_warn(cpu, resched_latency);
5252 
5253 	perf_event_task_tick();
5254 
5255 #ifdef CONFIG_SMP
5256 	rq->idle_balance = idle_cpu(cpu);
5257 	trigger_load_balance(rq);
5258 #endif
5259 }
5260 
5261 #ifdef CONFIG_NO_HZ_FULL
5262 
5263 struct tick_work {
5264 	int			cpu;
5265 	atomic_t		state;
5266 	struct delayed_work	work;
5267 };
5268 /* Values for ->state, see diagram below. */
5269 #define TICK_SCHED_REMOTE_OFFLINE	0
5270 #define TICK_SCHED_REMOTE_OFFLINING	1
5271 #define TICK_SCHED_REMOTE_RUNNING	2
5272 
5273 /*
5274  * State diagram for ->state:
5275  *
5276  *
5277  *          TICK_SCHED_REMOTE_OFFLINE
5278  *                    |   ^
5279  *                    |   |
5280  *                    |   | sched_tick_remote()
5281  *                    |   |
5282  *                    |   |
5283  *                    +--TICK_SCHED_REMOTE_OFFLINING
5284  *                    |   ^
5285  *                    |   |
5286  * sched_tick_start() |   | sched_tick_stop()
5287  *                    |   |
5288  *                    V   |
5289  *          TICK_SCHED_REMOTE_RUNNING
5290  *
5291  *
5292  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5293  * and sched_tick_start() are happy to leave the state in RUNNING.
5294  */
5295 
5296 static struct tick_work __percpu *tick_work_cpu;
5297 
5298 static void sched_tick_remote(struct work_struct *work)
5299 {
5300 	struct delayed_work *dwork = to_delayed_work(work);
5301 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5302 	int cpu = twork->cpu;
5303 	struct rq *rq = cpu_rq(cpu);
5304 	struct task_struct *curr;
5305 	struct rq_flags rf;
5306 	u64 delta;
5307 	int os;
5308 
5309 	/*
5310 	 * Handle the tick only if it appears the remote CPU is running in full
5311 	 * dynticks mode. The check is racy by nature, but missing a tick or
5312 	 * having one too much is no big deal because the scheduler tick updates
5313 	 * statistics and checks timeslices in a time-independent way, regardless
5314 	 * of when exactly it is running.
5315 	 */
5316 	if (!tick_nohz_tick_stopped_cpu(cpu))
5317 		goto out_requeue;
5318 
5319 	rq_lock_irq(rq, &rf);
5320 	curr = rq->curr;
5321 	if (cpu_is_offline(cpu))
5322 		goto out_unlock;
5323 
5324 	update_rq_clock(rq);
5325 
5326 	if (!is_idle_task(curr)) {
5327 		/*
5328 		 * Make sure the next tick runs within a reasonable
5329 		 * amount of time.
5330 		 */
5331 		delta = rq_clock_task(rq) - curr->se.exec_start;
5332 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5333 	}
5334 	curr->sched_class->task_tick(rq, curr, 0);
5335 
5336 	calc_load_nohz_remote(rq);
5337 out_unlock:
5338 	rq_unlock_irq(rq, &rf);
5339 out_requeue:
5340 
5341 	/*
5342 	 * Run the remote tick once per second (1Hz). This arbitrary
5343 	 * frequency is large enough to avoid overload but short enough
5344 	 * to keep scheduler internal stats reasonably up to date.  But
5345 	 * first update state to reflect hotplug activity if required.
5346 	 */
5347 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5348 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5349 	if (os == TICK_SCHED_REMOTE_RUNNING)
5350 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5351 }
5352 
5353 static void sched_tick_start(int cpu)
5354 {
5355 	int os;
5356 	struct tick_work *twork;
5357 
5358 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5359 		return;
5360 
5361 	WARN_ON_ONCE(!tick_work_cpu);
5362 
5363 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5364 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5365 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5366 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5367 		twork->cpu = cpu;
5368 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5369 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5370 	}
5371 }
5372 
5373 #ifdef CONFIG_HOTPLUG_CPU
5374 static void sched_tick_stop(int cpu)
5375 {
5376 	struct tick_work *twork;
5377 	int os;
5378 
5379 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5380 		return;
5381 
5382 	WARN_ON_ONCE(!tick_work_cpu);
5383 
5384 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5385 	/* There cannot be competing actions, but don't rely on stop-machine. */
5386 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5387 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5388 	/* Don't cancel, as this would mess up the state machine. */
5389 }
5390 #endif /* CONFIG_HOTPLUG_CPU */
5391 
5392 int __init sched_tick_offload_init(void)
5393 {
5394 	tick_work_cpu = alloc_percpu(struct tick_work);
5395 	BUG_ON(!tick_work_cpu);
5396 	return 0;
5397 }
5398 
5399 #else /* !CONFIG_NO_HZ_FULL */
5400 static inline void sched_tick_start(int cpu) { }
5401 static inline void sched_tick_stop(int cpu) { }
5402 #endif
5403 
5404 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5405 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5406 /*
5407  * If the value passed in is equal to the current preempt count
5408  * then we just disabled preemption. Start timing the latency.
5409  */
5410 static inline void preempt_latency_start(int val)
5411 {
5412 	if (preempt_count() == val) {
5413 		unsigned long ip = get_lock_parent_ip();
5414 #ifdef CONFIG_DEBUG_PREEMPT
5415 		current->preempt_disable_ip = ip;
5416 #endif
5417 		trace_preempt_off(CALLER_ADDR0, ip);
5418 	}
5419 }
5420 
5421 void preempt_count_add(int val)
5422 {
5423 #ifdef CONFIG_DEBUG_PREEMPT
5424 	/*
5425 	 * Underflow?
5426 	 */
5427 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5428 		return;
5429 #endif
5430 	__preempt_count_add(val);
5431 #ifdef CONFIG_DEBUG_PREEMPT
5432 	/*
5433 	 * Spinlock count overflowing soon?
5434 	 */
5435 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5436 				PREEMPT_MASK - 10);
5437 #endif
5438 	preempt_latency_start(val);
5439 }
5440 EXPORT_SYMBOL(preempt_count_add);
5441 NOKPROBE_SYMBOL(preempt_count_add);
5442 
5443 /*
5444  * If the value passed in equals to the current preempt count
5445  * then we just enabled preemption. Stop timing the latency.
5446  */
5447 static inline void preempt_latency_stop(int val)
5448 {
5449 	if (preempt_count() == val)
5450 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5451 }
5452 
5453 void preempt_count_sub(int val)
5454 {
5455 #ifdef CONFIG_DEBUG_PREEMPT
5456 	/*
5457 	 * Underflow?
5458 	 */
5459 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5460 		return;
5461 	/*
5462 	 * Is the spinlock portion underflowing?
5463 	 */
5464 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5465 			!(preempt_count() & PREEMPT_MASK)))
5466 		return;
5467 #endif
5468 
5469 	preempt_latency_stop(val);
5470 	__preempt_count_sub(val);
5471 }
5472 EXPORT_SYMBOL(preempt_count_sub);
5473 NOKPROBE_SYMBOL(preempt_count_sub);
5474 
5475 #else
5476 static inline void preempt_latency_start(int val) { }
5477 static inline void preempt_latency_stop(int val) { }
5478 #endif
5479 
5480 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5481 {
5482 #ifdef CONFIG_DEBUG_PREEMPT
5483 	return p->preempt_disable_ip;
5484 #else
5485 	return 0;
5486 #endif
5487 }
5488 
5489 /*
5490  * Print scheduling while atomic bug:
5491  */
5492 static noinline void __schedule_bug(struct task_struct *prev)
5493 {
5494 	/* Save this before calling printk(), since that will clobber it */
5495 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5496 
5497 	if (oops_in_progress)
5498 		return;
5499 
5500 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5501 		prev->comm, prev->pid, preempt_count());
5502 
5503 	debug_show_held_locks(prev);
5504 	print_modules();
5505 	if (irqs_disabled())
5506 		print_irqtrace_events(prev);
5507 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5508 	    && in_atomic_preempt_off()) {
5509 		pr_err("Preemption disabled at:");
5510 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5511 	}
5512 	if (panic_on_warn)
5513 		panic("scheduling while atomic\n");
5514 
5515 	dump_stack();
5516 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5517 }
5518 
5519 /*
5520  * Various schedule()-time debugging checks and statistics:
5521  */
5522 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5523 {
5524 #ifdef CONFIG_SCHED_STACK_END_CHECK
5525 	if (task_stack_end_corrupted(prev))
5526 		panic("corrupted stack end detected inside scheduler\n");
5527 
5528 	if (task_scs_end_corrupted(prev))
5529 		panic("corrupted shadow stack detected inside scheduler\n");
5530 #endif
5531 
5532 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5533 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5534 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5535 			prev->comm, prev->pid, prev->non_block_count);
5536 		dump_stack();
5537 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5538 	}
5539 #endif
5540 
5541 	if (unlikely(in_atomic_preempt_off())) {
5542 		__schedule_bug(prev);
5543 		preempt_count_set(PREEMPT_DISABLED);
5544 	}
5545 	rcu_sleep_check();
5546 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5547 
5548 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5549 
5550 	schedstat_inc(this_rq()->sched_count);
5551 }
5552 
5553 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5554 				  struct rq_flags *rf)
5555 {
5556 #ifdef CONFIG_SMP
5557 	const struct sched_class *class;
5558 	/*
5559 	 * We must do the balancing pass before put_prev_task(), such
5560 	 * that when we release the rq->lock the task is in the same
5561 	 * state as before we took rq->lock.
5562 	 *
5563 	 * We can terminate the balance pass as soon as we know there is
5564 	 * a runnable task of @class priority or higher.
5565 	 */
5566 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5567 		if (class->balance(rq, prev, rf))
5568 			break;
5569 	}
5570 #endif
5571 
5572 	put_prev_task(rq, prev);
5573 }
5574 
5575 /*
5576  * Pick up the highest-prio task:
5577  */
5578 static inline struct task_struct *
5579 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5580 {
5581 	const struct sched_class *class;
5582 	struct task_struct *p;
5583 
5584 	/*
5585 	 * Optimization: we know that if all tasks are in the fair class we can
5586 	 * call that function directly, but only if the @prev task wasn't of a
5587 	 * higher scheduling class, because otherwise those lose the
5588 	 * opportunity to pull in more work from other CPUs.
5589 	 */
5590 	if (likely(prev->sched_class <= &fair_sched_class &&
5591 		   rq->nr_running == rq->cfs.h_nr_running)) {
5592 
5593 		p = pick_next_task_fair(rq, prev, rf);
5594 		if (unlikely(p == RETRY_TASK))
5595 			goto restart;
5596 
5597 		/* Assume the next prioritized class is idle_sched_class */
5598 		if (!p) {
5599 			put_prev_task(rq, prev);
5600 			p = pick_next_task_idle(rq);
5601 		}
5602 
5603 		return p;
5604 	}
5605 
5606 restart:
5607 	put_prev_task_balance(rq, prev, rf);
5608 
5609 	for_each_class(class) {
5610 		p = class->pick_next_task(rq);
5611 		if (p)
5612 			return p;
5613 	}
5614 
5615 	BUG(); /* The idle class should always have a runnable task. */
5616 }
5617 
5618 #ifdef CONFIG_SCHED_CORE
5619 static inline bool is_task_rq_idle(struct task_struct *t)
5620 {
5621 	return (task_rq(t)->idle == t);
5622 }
5623 
5624 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5625 {
5626 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5627 }
5628 
5629 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5630 {
5631 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5632 		return true;
5633 
5634 	return a->core_cookie == b->core_cookie;
5635 }
5636 
5637 static inline struct task_struct *pick_task(struct rq *rq)
5638 {
5639 	const struct sched_class *class;
5640 	struct task_struct *p;
5641 
5642 	for_each_class(class) {
5643 		p = class->pick_task(rq);
5644 		if (p)
5645 			return p;
5646 	}
5647 
5648 	BUG(); /* The idle class should always have a runnable task. */
5649 }
5650 
5651 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5652 
5653 static struct task_struct *
5654 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5655 {
5656 	struct task_struct *next, *p, *max = NULL;
5657 	const struct cpumask *smt_mask;
5658 	bool fi_before = false;
5659 	unsigned long cookie;
5660 	int i, cpu, occ = 0;
5661 	struct rq *rq_i;
5662 	bool need_sync;
5663 
5664 	if (!sched_core_enabled(rq))
5665 		return __pick_next_task(rq, prev, rf);
5666 
5667 	cpu = cpu_of(rq);
5668 
5669 	/* Stopper task is switching into idle, no need core-wide selection. */
5670 	if (cpu_is_offline(cpu)) {
5671 		/*
5672 		 * Reset core_pick so that we don't enter the fastpath when
5673 		 * coming online. core_pick would already be migrated to
5674 		 * another cpu during offline.
5675 		 */
5676 		rq->core_pick = NULL;
5677 		return __pick_next_task(rq, prev, rf);
5678 	}
5679 
5680 	/*
5681 	 * If there were no {en,de}queues since we picked (IOW, the task
5682 	 * pointers are all still valid), and we haven't scheduled the last
5683 	 * pick yet, do so now.
5684 	 *
5685 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5686 	 * it was either offline or went offline during a sibling's core-wide
5687 	 * selection. In this case, do a core-wide selection.
5688 	 */
5689 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5690 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5691 	    rq->core_pick) {
5692 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5693 
5694 		next = rq->core_pick;
5695 		if (next != prev) {
5696 			put_prev_task(rq, prev);
5697 			set_next_task(rq, next);
5698 		}
5699 
5700 		rq->core_pick = NULL;
5701 		return next;
5702 	}
5703 
5704 	put_prev_task_balance(rq, prev, rf);
5705 
5706 	smt_mask = cpu_smt_mask(cpu);
5707 	need_sync = !!rq->core->core_cookie;
5708 
5709 	/* reset state */
5710 	rq->core->core_cookie = 0UL;
5711 	if (rq->core->core_forceidle) {
5712 		need_sync = true;
5713 		fi_before = true;
5714 		rq->core->core_forceidle = false;
5715 	}
5716 
5717 	/*
5718 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5719 	 *
5720 	 * @task_seq guards the task state ({en,de}queues)
5721 	 * @pick_seq is the @task_seq we did a selection on
5722 	 * @sched_seq is the @pick_seq we scheduled
5723 	 *
5724 	 * However, preemptions can cause multiple picks on the same task set.
5725 	 * 'Fix' this by also increasing @task_seq for every pick.
5726 	 */
5727 	rq->core->core_task_seq++;
5728 
5729 	/*
5730 	 * Optimize for common case where this CPU has no cookies
5731 	 * and there are no cookied tasks running on siblings.
5732 	 */
5733 	if (!need_sync) {
5734 		next = pick_task(rq);
5735 		if (!next->core_cookie) {
5736 			rq->core_pick = NULL;
5737 			/*
5738 			 * For robustness, update the min_vruntime_fi for
5739 			 * unconstrained picks as well.
5740 			 */
5741 			WARN_ON_ONCE(fi_before);
5742 			task_vruntime_update(rq, next, false);
5743 			goto done;
5744 		}
5745 	}
5746 
5747 	/*
5748 	 * For each thread: do the regular task pick and find the max prio task
5749 	 * amongst them.
5750 	 *
5751 	 * Tie-break prio towards the current CPU
5752 	 */
5753 	for_each_cpu_wrap(i, smt_mask, cpu) {
5754 		rq_i = cpu_rq(i);
5755 
5756 		if (i != cpu)
5757 			update_rq_clock(rq_i);
5758 
5759 		p = rq_i->core_pick = pick_task(rq_i);
5760 		if (!max || prio_less(max, p, fi_before))
5761 			max = p;
5762 	}
5763 
5764 	cookie = rq->core->core_cookie = max->core_cookie;
5765 
5766 	/*
5767 	 * For each thread: try and find a runnable task that matches @max or
5768 	 * force idle.
5769 	 */
5770 	for_each_cpu(i, smt_mask) {
5771 		rq_i = cpu_rq(i);
5772 		p = rq_i->core_pick;
5773 
5774 		if (!cookie_equals(p, cookie)) {
5775 			p = NULL;
5776 			if (cookie)
5777 				p = sched_core_find(rq_i, cookie);
5778 			if (!p)
5779 				p = idle_sched_class.pick_task(rq_i);
5780 		}
5781 
5782 		rq_i->core_pick = p;
5783 
5784 		if (p == rq_i->idle) {
5785 			if (rq_i->nr_running) {
5786 				rq->core->core_forceidle = true;
5787 				if (!fi_before)
5788 					rq->core->core_forceidle_seq++;
5789 			}
5790 		} else {
5791 			occ++;
5792 		}
5793 	}
5794 
5795 	rq->core->core_pick_seq = rq->core->core_task_seq;
5796 	next = rq->core_pick;
5797 	rq->core_sched_seq = rq->core->core_pick_seq;
5798 
5799 	/* Something should have been selected for current CPU */
5800 	WARN_ON_ONCE(!next);
5801 
5802 	/*
5803 	 * Reschedule siblings
5804 	 *
5805 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5806 	 * sending an IPI (below) ensures the sibling will no longer be running
5807 	 * their task. This ensures there is no inter-sibling overlap between
5808 	 * non-matching user state.
5809 	 */
5810 	for_each_cpu(i, smt_mask) {
5811 		rq_i = cpu_rq(i);
5812 
5813 		/*
5814 		 * An online sibling might have gone offline before a task
5815 		 * could be picked for it, or it might be offline but later
5816 		 * happen to come online, but its too late and nothing was
5817 		 * picked for it.  That's Ok - it will pick tasks for itself,
5818 		 * so ignore it.
5819 		 */
5820 		if (!rq_i->core_pick)
5821 			continue;
5822 
5823 		/*
5824 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5825 		 * fi_before     fi      update?
5826 		 *  0            0       1
5827 		 *  0            1       1
5828 		 *  1            0       1
5829 		 *  1            1       0
5830 		 */
5831 		if (!(fi_before && rq->core->core_forceidle))
5832 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5833 
5834 		rq_i->core_pick->core_occupation = occ;
5835 
5836 		if (i == cpu) {
5837 			rq_i->core_pick = NULL;
5838 			continue;
5839 		}
5840 
5841 		/* Did we break L1TF mitigation requirements? */
5842 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5843 
5844 		if (rq_i->curr == rq_i->core_pick) {
5845 			rq_i->core_pick = NULL;
5846 			continue;
5847 		}
5848 
5849 		resched_curr(rq_i);
5850 	}
5851 
5852 done:
5853 	set_next_task(rq, next);
5854 	return next;
5855 }
5856 
5857 static bool try_steal_cookie(int this, int that)
5858 {
5859 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5860 	struct task_struct *p;
5861 	unsigned long cookie;
5862 	bool success = false;
5863 
5864 	local_irq_disable();
5865 	double_rq_lock(dst, src);
5866 
5867 	cookie = dst->core->core_cookie;
5868 	if (!cookie)
5869 		goto unlock;
5870 
5871 	if (dst->curr != dst->idle)
5872 		goto unlock;
5873 
5874 	p = sched_core_find(src, cookie);
5875 	if (p == src->idle)
5876 		goto unlock;
5877 
5878 	do {
5879 		if (p == src->core_pick || p == src->curr)
5880 			goto next;
5881 
5882 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5883 			goto next;
5884 
5885 		if (p->core_occupation > dst->idle->core_occupation)
5886 			goto next;
5887 
5888 		deactivate_task(src, p, 0);
5889 		set_task_cpu(p, this);
5890 		activate_task(dst, p, 0);
5891 
5892 		resched_curr(dst);
5893 
5894 		success = true;
5895 		break;
5896 
5897 next:
5898 		p = sched_core_next(p, cookie);
5899 	} while (p);
5900 
5901 unlock:
5902 	double_rq_unlock(dst, src);
5903 	local_irq_enable();
5904 
5905 	return success;
5906 }
5907 
5908 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5909 {
5910 	int i;
5911 
5912 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5913 		if (i == cpu)
5914 			continue;
5915 
5916 		if (need_resched())
5917 			break;
5918 
5919 		if (try_steal_cookie(cpu, i))
5920 			return true;
5921 	}
5922 
5923 	return false;
5924 }
5925 
5926 static void sched_core_balance(struct rq *rq)
5927 {
5928 	struct sched_domain *sd;
5929 	int cpu = cpu_of(rq);
5930 
5931 	preempt_disable();
5932 	rcu_read_lock();
5933 	raw_spin_rq_unlock_irq(rq);
5934 	for_each_domain(cpu, sd) {
5935 		if (need_resched())
5936 			break;
5937 
5938 		if (steal_cookie_task(cpu, sd))
5939 			break;
5940 	}
5941 	raw_spin_rq_lock_irq(rq);
5942 	rcu_read_unlock();
5943 	preempt_enable();
5944 }
5945 
5946 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5947 
5948 void queue_core_balance(struct rq *rq)
5949 {
5950 	if (!sched_core_enabled(rq))
5951 		return;
5952 
5953 	if (!rq->core->core_cookie)
5954 		return;
5955 
5956 	if (!rq->nr_running) /* not forced idle */
5957 		return;
5958 
5959 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5960 }
5961 
5962 static void sched_core_cpu_starting(unsigned int cpu)
5963 {
5964 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5965 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5966 	unsigned long flags;
5967 	int t;
5968 
5969 	sched_core_lock(cpu, &flags);
5970 
5971 	WARN_ON_ONCE(rq->core != rq);
5972 
5973 	/* if we're the first, we'll be our own leader */
5974 	if (cpumask_weight(smt_mask) == 1)
5975 		goto unlock;
5976 
5977 	/* find the leader */
5978 	for_each_cpu(t, smt_mask) {
5979 		if (t == cpu)
5980 			continue;
5981 		rq = cpu_rq(t);
5982 		if (rq->core == rq) {
5983 			core_rq = rq;
5984 			break;
5985 		}
5986 	}
5987 
5988 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5989 		goto unlock;
5990 
5991 	/* install and validate core_rq */
5992 	for_each_cpu(t, smt_mask) {
5993 		rq = cpu_rq(t);
5994 
5995 		if (t == cpu)
5996 			rq->core = core_rq;
5997 
5998 		WARN_ON_ONCE(rq->core != core_rq);
5999 	}
6000 
6001 unlock:
6002 	sched_core_unlock(cpu, &flags);
6003 }
6004 
6005 static void sched_core_cpu_deactivate(unsigned int cpu)
6006 {
6007 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6008 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6009 	unsigned long flags;
6010 	int t;
6011 
6012 	sched_core_lock(cpu, &flags);
6013 
6014 	/* if we're the last man standing, nothing to do */
6015 	if (cpumask_weight(smt_mask) == 1) {
6016 		WARN_ON_ONCE(rq->core != rq);
6017 		goto unlock;
6018 	}
6019 
6020 	/* if we're not the leader, nothing to do */
6021 	if (rq->core != rq)
6022 		goto unlock;
6023 
6024 	/* find a new leader */
6025 	for_each_cpu(t, smt_mask) {
6026 		if (t == cpu)
6027 			continue;
6028 		core_rq = cpu_rq(t);
6029 		break;
6030 	}
6031 
6032 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6033 		goto unlock;
6034 
6035 	/* copy the shared state to the new leader */
6036 	core_rq->core_task_seq      = rq->core_task_seq;
6037 	core_rq->core_pick_seq      = rq->core_pick_seq;
6038 	core_rq->core_cookie        = rq->core_cookie;
6039 	core_rq->core_forceidle     = rq->core_forceidle;
6040 	core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6041 
6042 	/* install new leader */
6043 	for_each_cpu(t, smt_mask) {
6044 		rq = cpu_rq(t);
6045 		rq->core = core_rq;
6046 	}
6047 
6048 unlock:
6049 	sched_core_unlock(cpu, &flags);
6050 }
6051 
6052 static inline void sched_core_cpu_dying(unsigned int cpu)
6053 {
6054 	struct rq *rq = cpu_rq(cpu);
6055 
6056 	if (rq->core != rq)
6057 		rq->core = rq;
6058 }
6059 
6060 #else /* !CONFIG_SCHED_CORE */
6061 
6062 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6063 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6064 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6065 
6066 static struct task_struct *
6067 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6068 {
6069 	return __pick_next_task(rq, prev, rf);
6070 }
6071 
6072 #endif /* CONFIG_SCHED_CORE */
6073 
6074 /*
6075  * Constants for the sched_mode argument of __schedule().
6076  *
6077  * The mode argument allows RT enabled kernels to differentiate a
6078  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6079  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6080  * optimize the AND operation out and just check for zero.
6081  */
6082 #define SM_NONE			0x0
6083 #define SM_PREEMPT		0x1
6084 #define SM_RTLOCK_WAIT		0x2
6085 
6086 #ifndef CONFIG_PREEMPT_RT
6087 # define SM_MASK_PREEMPT	(~0U)
6088 #else
6089 # define SM_MASK_PREEMPT	SM_PREEMPT
6090 #endif
6091 
6092 /*
6093  * __schedule() is the main scheduler function.
6094  *
6095  * The main means of driving the scheduler and thus entering this function are:
6096  *
6097  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6098  *
6099  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6100  *      paths. For example, see arch/x86/entry_64.S.
6101  *
6102  *      To drive preemption between tasks, the scheduler sets the flag in timer
6103  *      interrupt handler scheduler_tick().
6104  *
6105  *   3. Wakeups don't really cause entry into schedule(). They add a
6106  *      task to the run-queue and that's it.
6107  *
6108  *      Now, if the new task added to the run-queue preempts the current
6109  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6110  *      called on the nearest possible occasion:
6111  *
6112  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6113  *
6114  *         - in syscall or exception context, at the next outmost
6115  *           preempt_enable(). (this might be as soon as the wake_up()'s
6116  *           spin_unlock()!)
6117  *
6118  *         - in IRQ context, return from interrupt-handler to
6119  *           preemptible context
6120  *
6121  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6122  *         then at the next:
6123  *
6124  *          - cond_resched() call
6125  *          - explicit schedule() call
6126  *          - return from syscall or exception to user-space
6127  *          - return from interrupt-handler to user-space
6128  *
6129  * WARNING: must be called with preemption disabled!
6130  */
6131 static void __sched notrace __schedule(unsigned int sched_mode)
6132 {
6133 	struct task_struct *prev, *next;
6134 	unsigned long *switch_count;
6135 	unsigned long prev_state;
6136 	struct rq_flags rf;
6137 	struct rq *rq;
6138 	int cpu;
6139 
6140 	cpu = smp_processor_id();
6141 	rq = cpu_rq(cpu);
6142 	prev = rq->curr;
6143 
6144 	schedule_debug(prev, !!sched_mode);
6145 
6146 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6147 		hrtick_clear(rq);
6148 
6149 	local_irq_disable();
6150 	rcu_note_context_switch(!!sched_mode);
6151 
6152 	/*
6153 	 * Make sure that signal_pending_state()->signal_pending() below
6154 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6155 	 * done by the caller to avoid the race with signal_wake_up():
6156 	 *
6157 	 * __set_current_state(@state)		signal_wake_up()
6158 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6159 	 *					  wake_up_state(p, state)
6160 	 *   LOCK rq->lock			    LOCK p->pi_state
6161 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6162 	 *     if (signal_pending_state())	    if (p->state & @state)
6163 	 *
6164 	 * Also, the membarrier system call requires a full memory barrier
6165 	 * after coming from user-space, before storing to rq->curr.
6166 	 */
6167 	rq_lock(rq, &rf);
6168 	smp_mb__after_spinlock();
6169 
6170 	/* Promote REQ to ACT */
6171 	rq->clock_update_flags <<= 1;
6172 	update_rq_clock(rq);
6173 
6174 	switch_count = &prev->nivcsw;
6175 
6176 	/*
6177 	 * We must load prev->state once (task_struct::state is volatile), such
6178 	 * that:
6179 	 *
6180 	 *  - we form a control dependency vs deactivate_task() below.
6181 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6182 	 */
6183 	prev_state = READ_ONCE(prev->__state);
6184 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6185 		if (signal_pending_state(prev_state, prev)) {
6186 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6187 		} else {
6188 			prev->sched_contributes_to_load =
6189 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6190 				!(prev_state & TASK_NOLOAD) &&
6191 				!(prev->flags & PF_FROZEN);
6192 
6193 			if (prev->sched_contributes_to_load)
6194 				rq->nr_uninterruptible++;
6195 
6196 			/*
6197 			 * __schedule()			ttwu()
6198 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6199 			 *   if (prev_state)		    goto out;
6200 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6201 			 *				  p->state = TASK_WAKING
6202 			 *
6203 			 * Where __schedule() and ttwu() have matching control dependencies.
6204 			 *
6205 			 * After this, schedule() must not care about p->state any more.
6206 			 */
6207 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6208 
6209 			if (prev->in_iowait) {
6210 				atomic_inc(&rq->nr_iowait);
6211 				delayacct_blkio_start();
6212 			}
6213 		}
6214 		switch_count = &prev->nvcsw;
6215 	}
6216 
6217 	next = pick_next_task(rq, prev, &rf);
6218 	clear_tsk_need_resched(prev);
6219 	clear_preempt_need_resched();
6220 #ifdef CONFIG_SCHED_DEBUG
6221 	rq->last_seen_need_resched_ns = 0;
6222 #endif
6223 
6224 	if (likely(prev != next)) {
6225 		rq->nr_switches++;
6226 		/*
6227 		 * RCU users of rcu_dereference(rq->curr) may not see
6228 		 * changes to task_struct made by pick_next_task().
6229 		 */
6230 		RCU_INIT_POINTER(rq->curr, next);
6231 		/*
6232 		 * The membarrier system call requires each architecture
6233 		 * to have a full memory barrier after updating
6234 		 * rq->curr, before returning to user-space.
6235 		 *
6236 		 * Here are the schemes providing that barrier on the
6237 		 * various architectures:
6238 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6239 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6240 		 * - finish_lock_switch() for weakly-ordered
6241 		 *   architectures where spin_unlock is a full barrier,
6242 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6243 		 *   is a RELEASE barrier),
6244 		 */
6245 		++*switch_count;
6246 
6247 		migrate_disable_switch(rq, prev);
6248 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6249 
6250 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6251 
6252 		/* Also unlocks the rq: */
6253 		rq = context_switch(rq, prev, next, &rf);
6254 	} else {
6255 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6256 
6257 		rq_unpin_lock(rq, &rf);
6258 		__balance_callbacks(rq);
6259 		raw_spin_rq_unlock_irq(rq);
6260 	}
6261 }
6262 
6263 void __noreturn do_task_dead(void)
6264 {
6265 	/* Causes final put_task_struct in finish_task_switch(): */
6266 	set_special_state(TASK_DEAD);
6267 
6268 	/* Tell freezer to ignore us: */
6269 	current->flags |= PF_NOFREEZE;
6270 
6271 	__schedule(SM_NONE);
6272 	BUG();
6273 
6274 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6275 	for (;;)
6276 		cpu_relax();
6277 }
6278 
6279 static inline void sched_submit_work(struct task_struct *tsk)
6280 {
6281 	unsigned int task_flags;
6282 
6283 	if (task_is_running(tsk))
6284 		return;
6285 
6286 	task_flags = tsk->flags;
6287 	/*
6288 	 * If a worker goes to sleep, notify and ask workqueue whether it
6289 	 * wants to wake up a task to maintain concurrency.
6290 	 */
6291 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6292 		if (task_flags & PF_WQ_WORKER)
6293 			wq_worker_sleeping(tsk);
6294 		else
6295 			io_wq_worker_sleeping(tsk);
6296 	}
6297 
6298 	if (tsk_is_pi_blocked(tsk))
6299 		return;
6300 
6301 	/*
6302 	 * If we are going to sleep and we have plugged IO queued,
6303 	 * make sure to submit it to avoid deadlocks.
6304 	 */
6305 	if (blk_needs_flush_plug(tsk))
6306 		blk_flush_plug(tsk->plug, true);
6307 }
6308 
6309 static void sched_update_worker(struct task_struct *tsk)
6310 {
6311 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6312 		if (tsk->flags & PF_WQ_WORKER)
6313 			wq_worker_running(tsk);
6314 		else
6315 			io_wq_worker_running(tsk);
6316 	}
6317 }
6318 
6319 asmlinkage __visible void __sched schedule(void)
6320 {
6321 	struct task_struct *tsk = current;
6322 
6323 	sched_submit_work(tsk);
6324 	do {
6325 		preempt_disable();
6326 		__schedule(SM_NONE);
6327 		sched_preempt_enable_no_resched();
6328 	} while (need_resched());
6329 	sched_update_worker(tsk);
6330 }
6331 EXPORT_SYMBOL(schedule);
6332 
6333 /*
6334  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6335  * state (have scheduled out non-voluntarily) by making sure that all
6336  * tasks have either left the run queue or have gone into user space.
6337  * As idle tasks do not do either, they must not ever be preempted
6338  * (schedule out non-voluntarily).
6339  *
6340  * schedule_idle() is similar to schedule_preempt_disable() except that it
6341  * never enables preemption because it does not call sched_submit_work().
6342  */
6343 void __sched schedule_idle(void)
6344 {
6345 	/*
6346 	 * As this skips calling sched_submit_work(), which the idle task does
6347 	 * regardless because that function is a nop when the task is in a
6348 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6349 	 * current task can be in any other state. Note, idle is always in the
6350 	 * TASK_RUNNING state.
6351 	 */
6352 	WARN_ON_ONCE(current->__state);
6353 	do {
6354 		__schedule(SM_NONE);
6355 	} while (need_resched());
6356 }
6357 
6358 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6359 asmlinkage __visible void __sched schedule_user(void)
6360 {
6361 	/*
6362 	 * If we come here after a random call to set_need_resched(),
6363 	 * or we have been woken up remotely but the IPI has not yet arrived,
6364 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6365 	 * we find a better solution.
6366 	 *
6367 	 * NB: There are buggy callers of this function.  Ideally we
6368 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6369 	 * too frequently to make sense yet.
6370 	 */
6371 	enum ctx_state prev_state = exception_enter();
6372 	schedule();
6373 	exception_exit(prev_state);
6374 }
6375 #endif
6376 
6377 /**
6378  * schedule_preempt_disabled - called with preemption disabled
6379  *
6380  * Returns with preemption disabled. Note: preempt_count must be 1
6381  */
6382 void __sched schedule_preempt_disabled(void)
6383 {
6384 	sched_preempt_enable_no_resched();
6385 	schedule();
6386 	preempt_disable();
6387 }
6388 
6389 #ifdef CONFIG_PREEMPT_RT
6390 void __sched notrace schedule_rtlock(void)
6391 {
6392 	do {
6393 		preempt_disable();
6394 		__schedule(SM_RTLOCK_WAIT);
6395 		sched_preempt_enable_no_resched();
6396 	} while (need_resched());
6397 }
6398 NOKPROBE_SYMBOL(schedule_rtlock);
6399 #endif
6400 
6401 static void __sched notrace preempt_schedule_common(void)
6402 {
6403 	do {
6404 		/*
6405 		 * Because the function tracer can trace preempt_count_sub()
6406 		 * and it also uses preempt_enable/disable_notrace(), if
6407 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6408 		 * by the function tracer will call this function again and
6409 		 * cause infinite recursion.
6410 		 *
6411 		 * Preemption must be disabled here before the function
6412 		 * tracer can trace. Break up preempt_disable() into two
6413 		 * calls. One to disable preemption without fear of being
6414 		 * traced. The other to still record the preemption latency,
6415 		 * which can also be traced by the function tracer.
6416 		 */
6417 		preempt_disable_notrace();
6418 		preempt_latency_start(1);
6419 		__schedule(SM_PREEMPT);
6420 		preempt_latency_stop(1);
6421 		preempt_enable_no_resched_notrace();
6422 
6423 		/*
6424 		 * Check again in case we missed a preemption opportunity
6425 		 * between schedule and now.
6426 		 */
6427 	} while (need_resched());
6428 }
6429 
6430 #ifdef CONFIG_PREEMPTION
6431 /*
6432  * This is the entry point to schedule() from in-kernel preemption
6433  * off of preempt_enable.
6434  */
6435 asmlinkage __visible void __sched notrace preempt_schedule(void)
6436 {
6437 	/*
6438 	 * If there is a non-zero preempt_count or interrupts are disabled,
6439 	 * we do not want to preempt the current task. Just return..
6440 	 */
6441 	if (likely(!preemptible()))
6442 		return;
6443 
6444 	preempt_schedule_common();
6445 }
6446 NOKPROBE_SYMBOL(preempt_schedule);
6447 EXPORT_SYMBOL(preempt_schedule);
6448 
6449 #ifdef CONFIG_PREEMPT_DYNAMIC
6450 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6451 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6452 #endif
6453 
6454 
6455 /**
6456  * preempt_schedule_notrace - preempt_schedule called by tracing
6457  *
6458  * The tracing infrastructure uses preempt_enable_notrace to prevent
6459  * recursion and tracing preempt enabling caused by the tracing
6460  * infrastructure itself. But as tracing can happen in areas coming
6461  * from userspace or just about to enter userspace, a preempt enable
6462  * can occur before user_exit() is called. This will cause the scheduler
6463  * to be called when the system is still in usermode.
6464  *
6465  * To prevent this, the preempt_enable_notrace will use this function
6466  * instead of preempt_schedule() to exit user context if needed before
6467  * calling the scheduler.
6468  */
6469 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6470 {
6471 	enum ctx_state prev_ctx;
6472 
6473 	if (likely(!preemptible()))
6474 		return;
6475 
6476 	do {
6477 		/*
6478 		 * Because the function tracer can trace preempt_count_sub()
6479 		 * and it also uses preempt_enable/disable_notrace(), if
6480 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6481 		 * by the function tracer will call this function again and
6482 		 * cause infinite recursion.
6483 		 *
6484 		 * Preemption must be disabled here before the function
6485 		 * tracer can trace. Break up preempt_disable() into two
6486 		 * calls. One to disable preemption without fear of being
6487 		 * traced. The other to still record the preemption latency,
6488 		 * which can also be traced by the function tracer.
6489 		 */
6490 		preempt_disable_notrace();
6491 		preempt_latency_start(1);
6492 		/*
6493 		 * Needs preempt disabled in case user_exit() is traced
6494 		 * and the tracer calls preempt_enable_notrace() causing
6495 		 * an infinite recursion.
6496 		 */
6497 		prev_ctx = exception_enter();
6498 		__schedule(SM_PREEMPT);
6499 		exception_exit(prev_ctx);
6500 
6501 		preempt_latency_stop(1);
6502 		preempt_enable_no_resched_notrace();
6503 	} while (need_resched());
6504 }
6505 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6506 
6507 #ifdef CONFIG_PREEMPT_DYNAMIC
6508 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6509 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6510 #endif
6511 
6512 #endif /* CONFIG_PREEMPTION */
6513 
6514 #ifdef CONFIG_PREEMPT_DYNAMIC
6515 
6516 #include <linux/entry-common.h>
6517 
6518 /*
6519  * SC:cond_resched
6520  * SC:might_resched
6521  * SC:preempt_schedule
6522  * SC:preempt_schedule_notrace
6523  * SC:irqentry_exit_cond_resched
6524  *
6525  *
6526  * NONE:
6527  *   cond_resched               <- __cond_resched
6528  *   might_resched              <- RET0
6529  *   preempt_schedule           <- NOP
6530  *   preempt_schedule_notrace   <- NOP
6531  *   irqentry_exit_cond_resched <- NOP
6532  *
6533  * VOLUNTARY:
6534  *   cond_resched               <- __cond_resched
6535  *   might_resched              <- __cond_resched
6536  *   preempt_schedule           <- NOP
6537  *   preempt_schedule_notrace   <- NOP
6538  *   irqentry_exit_cond_resched <- NOP
6539  *
6540  * FULL:
6541  *   cond_resched               <- RET0
6542  *   might_resched              <- RET0
6543  *   preempt_schedule           <- preempt_schedule
6544  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6545  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6546  */
6547 
6548 enum {
6549 	preempt_dynamic_undefined = -1,
6550 	preempt_dynamic_none,
6551 	preempt_dynamic_voluntary,
6552 	preempt_dynamic_full,
6553 };
6554 
6555 int preempt_dynamic_mode = preempt_dynamic_undefined;
6556 
6557 int sched_dynamic_mode(const char *str)
6558 {
6559 	if (!strcmp(str, "none"))
6560 		return preempt_dynamic_none;
6561 
6562 	if (!strcmp(str, "voluntary"))
6563 		return preempt_dynamic_voluntary;
6564 
6565 	if (!strcmp(str, "full"))
6566 		return preempt_dynamic_full;
6567 
6568 	return -EINVAL;
6569 }
6570 
6571 void sched_dynamic_update(int mode)
6572 {
6573 	/*
6574 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6575 	 * the ZERO state, which is invalid.
6576 	 */
6577 	static_call_update(cond_resched, __cond_resched);
6578 	static_call_update(might_resched, __cond_resched);
6579 	static_call_update(preempt_schedule, __preempt_schedule_func);
6580 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6581 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6582 
6583 	switch (mode) {
6584 	case preempt_dynamic_none:
6585 		static_call_update(cond_resched, __cond_resched);
6586 		static_call_update(might_resched, (void *)&__static_call_return0);
6587 		static_call_update(preempt_schedule, NULL);
6588 		static_call_update(preempt_schedule_notrace, NULL);
6589 		static_call_update(irqentry_exit_cond_resched, NULL);
6590 		pr_info("Dynamic Preempt: none\n");
6591 		break;
6592 
6593 	case preempt_dynamic_voluntary:
6594 		static_call_update(cond_resched, __cond_resched);
6595 		static_call_update(might_resched, __cond_resched);
6596 		static_call_update(preempt_schedule, NULL);
6597 		static_call_update(preempt_schedule_notrace, NULL);
6598 		static_call_update(irqentry_exit_cond_resched, NULL);
6599 		pr_info("Dynamic Preempt: voluntary\n");
6600 		break;
6601 
6602 	case preempt_dynamic_full:
6603 		static_call_update(cond_resched, (void *)&__static_call_return0);
6604 		static_call_update(might_resched, (void *)&__static_call_return0);
6605 		static_call_update(preempt_schedule, __preempt_schedule_func);
6606 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6607 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6608 		pr_info("Dynamic Preempt: full\n");
6609 		break;
6610 	}
6611 
6612 	preempt_dynamic_mode = mode;
6613 }
6614 
6615 static int __init setup_preempt_mode(char *str)
6616 {
6617 	int mode = sched_dynamic_mode(str);
6618 	if (mode < 0) {
6619 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6620 		return 1;
6621 	}
6622 
6623 	sched_dynamic_update(mode);
6624 	return 0;
6625 }
6626 __setup("preempt=", setup_preempt_mode);
6627 
6628 static void __init preempt_dynamic_init(void)
6629 {
6630 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
6631 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
6632 			sched_dynamic_update(preempt_dynamic_none);
6633 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
6634 			sched_dynamic_update(preempt_dynamic_voluntary);
6635 		} else {
6636 			/* Default static call setting, nothing to do */
6637 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
6638 			preempt_dynamic_mode = preempt_dynamic_full;
6639 			pr_info("Dynamic Preempt: full\n");
6640 		}
6641 	}
6642 }
6643 
6644 #else /* !CONFIG_PREEMPT_DYNAMIC */
6645 
6646 static inline void preempt_dynamic_init(void) { }
6647 
6648 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
6649 
6650 /*
6651  * This is the entry point to schedule() from kernel preemption
6652  * off of irq context.
6653  * Note, that this is called and return with irqs disabled. This will
6654  * protect us against recursive calling from irq.
6655  */
6656 asmlinkage __visible void __sched preempt_schedule_irq(void)
6657 {
6658 	enum ctx_state prev_state;
6659 
6660 	/* Catch callers which need to be fixed */
6661 	BUG_ON(preempt_count() || !irqs_disabled());
6662 
6663 	prev_state = exception_enter();
6664 
6665 	do {
6666 		preempt_disable();
6667 		local_irq_enable();
6668 		__schedule(SM_PREEMPT);
6669 		local_irq_disable();
6670 		sched_preempt_enable_no_resched();
6671 	} while (need_resched());
6672 
6673 	exception_exit(prev_state);
6674 }
6675 
6676 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6677 			  void *key)
6678 {
6679 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6680 	return try_to_wake_up(curr->private, mode, wake_flags);
6681 }
6682 EXPORT_SYMBOL(default_wake_function);
6683 
6684 static void __setscheduler_prio(struct task_struct *p, int prio)
6685 {
6686 	if (dl_prio(prio))
6687 		p->sched_class = &dl_sched_class;
6688 	else if (rt_prio(prio))
6689 		p->sched_class = &rt_sched_class;
6690 	else
6691 		p->sched_class = &fair_sched_class;
6692 
6693 	p->prio = prio;
6694 }
6695 
6696 #ifdef CONFIG_RT_MUTEXES
6697 
6698 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6699 {
6700 	if (pi_task)
6701 		prio = min(prio, pi_task->prio);
6702 
6703 	return prio;
6704 }
6705 
6706 static inline int rt_effective_prio(struct task_struct *p, int prio)
6707 {
6708 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6709 
6710 	return __rt_effective_prio(pi_task, prio);
6711 }
6712 
6713 /*
6714  * rt_mutex_setprio - set the current priority of a task
6715  * @p: task to boost
6716  * @pi_task: donor task
6717  *
6718  * This function changes the 'effective' priority of a task. It does
6719  * not touch ->normal_prio like __setscheduler().
6720  *
6721  * Used by the rt_mutex code to implement priority inheritance
6722  * logic. Call site only calls if the priority of the task changed.
6723  */
6724 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6725 {
6726 	int prio, oldprio, queued, running, queue_flag =
6727 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6728 	const struct sched_class *prev_class;
6729 	struct rq_flags rf;
6730 	struct rq *rq;
6731 
6732 	/* XXX used to be waiter->prio, not waiter->task->prio */
6733 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6734 
6735 	/*
6736 	 * If nothing changed; bail early.
6737 	 */
6738 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6739 		return;
6740 
6741 	rq = __task_rq_lock(p, &rf);
6742 	update_rq_clock(rq);
6743 	/*
6744 	 * Set under pi_lock && rq->lock, such that the value can be used under
6745 	 * either lock.
6746 	 *
6747 	 * Note that there is loads of tricky to make this pointer cache work
6748 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6749 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6750 	 * task is allowed to run again (and can exit). This ensures the pointer
6751 	 * points to a blocked task -- which guarantees the task is present.
6752 	 */
6753 	p->pi_top_task = pi_task;
6754 
6755 	/*
6756 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6757 	 */
6758 	if (prio == p->prio && !dl_prio(prio))
6759 		goto out_unlock;
6760 
6761 	/*
6762 	 * Idle task boosting is a nono in general. There is one
6763 	 * exception, when PREEMPT_RT and NOHZ is active:
6764 	 *
6765 	 * The idle task calls get_next_timer_interrupt() and holds
6766 	 * the timer wheel base->lock on the CPU and another CPU wants
6767 	 * to access the timer (probably to cancel it). We can safely
6768 	 * ignore the boosting request, as the idle CPU runs this code
6769 	 * with interrupts disabled and will complete the lock
6770 	 * protected section without being interrupted. So there is no
6771 	 * real need to boost.
6772 	 */
6773 	if (unlikely(p == rq->idle)) {
6774 		WARN_ON(p != rq->curr);
6775 		WARN_ON(p->pi_blocked_on);
6776 		goto out_unlock;
6777 	}
6778 
6779 	trace_sched_pi_setprio(p, pi_task);
6780 	oldprio = p->prio;
6781 
6782 	if (oldprio == prio)
6783 		queue_flag &= ~DEQUEUE_MOVE;
6784 
6785 	prev_class = p->sched_class;
6786 	queued = task_on_rq_queued(p);
6787 	running = task_current(rq, p);
6788 	if (queued)
6789 		dequeue_task(rq, p, queue_flag);
6790 	if (running)
6791 		put_prev_task(rq, p);
6792 
6793 	/*
6794 	 * Boosting condition are:
6795 	 * 1. -rt task is running and holds mutex A
6796 	 *      --> -dl task blocks on mutex A
6797 	 *
6798 	 * 2. -dl task is running and holds mutex A
6799 	 *      --> -dl task blocks on mutex A and could preempt the
6800 	 *          running task
6801 	 */
6802 	if (dl_prio(prio)) {
6803 		if (!dl_prio(p->normal_prio) ||
6804 		    (pi_task && dl_prio(pi_task->prio) &&
6805 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6806 			p->dl.pi_se = pi_task->dl.pi_se;
6807 			queue_flag |= ENQUEUE_REPLENISH;
6808 		} else {
6809 			p->dl.pi_se = &p->dl;
6810 		}
6811 	} else if (rt_prio(prio)) {
6812 		if (dl_prio(oldprio))
6813 			p->dl.pi_se = &p->dl;
6814 		if (oldprio < prio)
6815 			queue_flag |= ENQUEUE_HEAD;
6816 	} else {
6817 		if (dl_prio(oldprio))
6818 			p->dl.pi_se = &p->dl;
6819 		if (rt_prio(oldprio))
6820 			p->rt.timeout = 0;
6821 	}
6822 
6823 	__setscheduler_prio(p, prio);
6824 
6825 	if (queued)
6826 		enqueue_task(rq, p, queue_flag);
6827 	if (running)
6828 		set_next_task(rq, p);
6829 
6830 	check_class_changed(rq, p, prev_class, oldprio);
6831 out_unlock:
6832 	/* Avoid rq from going away on us: */
6833 	preempt_disable();
6834 
6835 	rq_unpin_lock(rq, &rf);
6836 	__balance_callbacks(rq);
6837 	raw_spin_rq_unlock(rq);
6838 
6839 	preempt_enable();
6840 }
6841 #else
6842 static inline int rt_effective_prio(struct task_struct *p, int prio)
6843 {
6844 	return prio;
6845 }
6846 #endif
6847 
6848 void set_user_nice(struct task_struct *p, long nice)
6849 {
6850 	bool queued, running;
6851 	int old_prio;
6852 	struct rq_flags rf;
6853 	struct rq *rq;
6854 
6855 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6856 		return;
6857 	/*
6858 	 * We have to be careful, if called from sys_setpriority(),
6859 	 * the task might be in the middle of scheduling on another CPU.
6860 	 */
6861 	rq = task_rq_lock(p, &rf);
6862 	update_rq_clock(rq);
6863 
6864 	/*
6865 	 * The RT priorities are set via sched_setscheduler(), but we still
6866 	 * allow the 'normal' nice value to be set - but as expected
6867 	 * it won't have any effect on scheduling until the task is
6868 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6869 	 */
6870 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6871 		p->static_prio = NICE_TO_PRIO(nice);
6872 		goto out_unlock;
6873 	}
6874 	queued = task_on_rq_queued(p);
6875 	running = task_current(rq, p);
6876 	if (queued)
6877 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6878 	if (running)
6879 		put_prev_task(rq, p);
6880 
6881 	p->static_prio = NICE_TO_PRIO(nice);
6882 	set_load_weight(p, true);
6883 	old_prio = p->prio;
6884 	p->prio = effective_prio(p);
6885 
6886 	if (queued)
6887 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6888 	if (running)
6889 		set_next_task(rq, p);
6890 
6891 	/*
6892 	 * If the task increased its priority or is running and
6893 	 * lowered its priority, then reschedule its CPU:
6894 	 */
6895 	p->sched_class->prio_changed(rq, p, old_prio);
6896 
6897 out_unlock:
6898 	task_rq_unlock(rq, p, &rf);
6899 }
6900 EXPORT_SYMBOL(set_user_nice);
6901 
6902 /*
6903  * can_nice - check if a task can reduce its nice value
6904  * @p: task
6905  * @nice: nice value
6906  */
6907 int can_nice(const struct task_struct *p, const int nice)
6908 {
6909 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6910 	int nice_rlim = nice_to_rlimit(nice);
6911 
6912 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6913 		capable(CAP_SYS_NICE));
6914 }
6915 
6916 #ifdef __ARCH_WANT_SYS_NICE
6917 
6918 /*
6919  * sys_nice - change the priority of the current process.
6920  * @increment: priority increment
6921  *
6922  * sys_setpriority is a more generic, but much slower function that
6923  * does similar things.
6924  */
6925 SYSCALL_DEFINE1(nice, int, increment)
6926 {
6927 	long nice, retval;
6928 
6929 	/*
6930 	 * Setpriority might change our priority at the same moment.
6931 	 * We don't have to worry. Conceptually one call occurs first
6932 	 * and we have a single winner.
6933 	 */
6934 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6935 	nice = task_nice(current) + increment;
6936 
6937 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6938 	if (increment < 0 && !can_nice(current, nice))
6939 		return -EPERM;
6940 
6941 	retval = security_task_setnice(current, nice);
6942 	if (retval)
6943 		return retval;
6944 
6945 	set_user_nice(current, nice);
6946 	return 0;
6947 }
6948 
6949 #endif
6950 
6951 /**
6952  * task_prio - return the priority value of a given task.
6953  * @p: the task in question.
6954  *
6955  * Return: The priority value as seen by users in /proc.
6956  *
6957  * sched policy         return value   kernel prio    user prio/nice
6958  *
6959  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6960  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6961  * deadline                     -101             -1           0
6962  */
6963 int task_prio(const struct task_struct *p)
6964 {
6965 	return p->prio - MAX_RT_PRIO;
6966 }
6967 
6968 /**
6969  * idle_cpu - is a given CPU idle currently?
6970  * @cpu: the processor in question.
6971  *
6972  * Return: 1 if the CPU is currently idle. 0 otherwise.
6973  */
6974 int idle_cpu(int cpu)
6975 {
6976 	struct rq *rq = cpu_rq(cpu);
6977 
6978 	if (rq->curr != rq->idle)
6979 		return 0;
6980 
6981 	if (rq->nr_running)
6982 		return 0;
6983 
6984 #ifdef CONFIG_SMP
6985 	if (rq->ttwu_pending)
6986 		return 0;
6987 #endif
6988 
6989 	return 1;
6990 }
6991 
6992 /**
6993  * available_idle_cpu - is a given CPU idle for enqueuing work.
6994  * @cpu: the CPU in question.
6995  *
6996  * Return: 1 if the CPU is currently idle. 0 otherwise.
6997  */
6998 int available_idle_cpu(int cpu)
6999 {
7000 	if (!idle_cpu(cpu))
7001 		return 0;
7002 
7003 	if (vcpu_is_preempted(cpu))
7004 		return 0;
7005 
7006 	return 1;
7007 }
7008 
7009 /**
7010  * idle_task - return the idle task for a given CPU.
7011  * @cpu: the processor in question.
7012  *
7013  * Return: The idle task for the CPU @cpu.
7014  */
7015 struct task_struct *idle_task(int cpu)
7016 {
7017 	return cpu_rq(cpu)->idle;
7018 }
7019 
7020 #ifdef CONFIG_SMP
7021 /*
7022  * This function computes an effective utilization for the given CPU, to be
7023  * used for frequency selection given the linear relation: f = u * f_max.
7024  *
7025  * The scheduler tracks the following metrics:
7026  *
7027  *   cpu_util_{cfs,rt,dl,irq}()
7028  *   cpu_bw_dl()
7029  *
7030  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7031  * synchronized windows and are thus directly comparable.
7032  *
7033  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7034  * which excludes things like IRQ and steal-time. These latter are then accrued
7035  * in the irq utilization.
7036  *
7037  * The DL bandwidth number otoh is not a measured metric but a value computed
7038  * based on the task model parameters and gives the minimal utilization
7039  * required to meet deadlines.
7040  */
7041 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7042 				 unsigned long max, enum cpu_util_type type,
7043 				 struct task_struct *p)
7044 {
7045 	unsigned long dl_util, util, irq;
7046 	struct rq *rq = cpu_rq(cpu);
7047 
7048 	if (!uclamp_is_used() &&
7049 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7050 		return max;
7051 	}
7052 
7053 	/*
7054 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7055 	 * because of inaccuracies in how we track these -- see
7056 	 * update_irq_load_avg().
7057 	 */
7058 	irq = cpu_util_irq(rq);
7059 	if (unlikely(irq >= max))
7060 		return max;
7061 
7062 	/*
7063 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7064 	 * CFS tasks and we use the same metric to track the effective
7065 	 * utilization (PELT windows are synchronized) we can directly add them
7066 	 * to obtain the CPU's actual utilization.
7067 	 *
7068 	 * CFS and RT utilization can be boosted or capped, depending on
7069 	 * utilization clamp constraints requested by currently RUNNABLE
7070 	 * tasks.
7071 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7072 	 * frequency will be gracefully reduced with the utilization decay.
7073 	 */
7074 	util = util_cfs + cpu_util_rt(rq);
7075 	if (type == FREQUENCY_UTIL)
7076 		util = uclamp_rq_util_with(rq, util, p);
7077 
7078 	dl_util = cpu_util_dl(rq);
7079 
7080 	/*
7081 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7082 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7083 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7084 	 * that we select f_max when there is no idle time.
7085 	 *
7086 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7087 	 * saturation when we should -- something for later.
7088 	 */
7089 	if (util + dl_util >= max)
7090 		return max;
7091 
7092 	/*
7093 	 * OTOH, for energy computation we need the estimated running time, so
7094 	 * include util_dl and ignore dl_bw.
7095 	 */
7096 	if (type == ENERGY_UTIL)
7097 		util += dl_util;
7098 
7099 	/*
7100 	 * There is still idle time; further improve the number by using the
7101 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7102 	 * need to scale the task numbers:
7103 	 *
7104 	 *              max - irq
7105 	 *   U' = irq + --------- * U
7106 	 *                 max
7107 	 */
7108 	util = scale_irq_capacity(util, irq, max);
7109 	util += irq;
7110 
7111 	/*
7112 	 * Bandwidth required by DEADLINE must always be granted while, for
7113 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7114 	 * to gracefully reduce the frequency when no tasks show up for longer
7115 	 * periods of time.
7116 	 *
7117 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7118 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7119 	 * an interface. So, we only do the latter for now.
7120 	 */
7121 	if (type == FREQUENCY_UTIL)
7122 		util += cpu_bw_dl(rq);
7123 
7124 	return min(max, util);
7125 }
7126 
7127 unsigned long sched_cpu_util(int cpu, unsigned long max)
7128 {
7129 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7130 				  ENERGY_UTIL, NULL);
7131 }
7132 #endif /* CONFIG_SMP */
7133 
7134 /**
7135  * find_process_by_pid - find a process with a matching PID value.
7136  * @pid: the pid in question.
7137  *
7138  * The task of @pid, if found. %NULL otherwise.
7139  */
7140 static struct task_struct *find_process_by_pid(pid_t pid)
7141 {
7142 	return pid ? find_task_by_vpid(pid) : current;
7143 }
7144 
7145 /*
7146  * sched_setparam() passes in -1 for its policy, to let the functions
7147  * it calls know not to change it.
7148  */
7149 #define SETPARAM_POLICY	-1
7150 
7151 static void __setscheduler_params(struct task_struct *p,
7152 		const struct sched_attr *attr)
7153 {
7154 	int policy = attr->sched_policy;
7155 
7156 	if (policy == SETPARAM_POLICY)
7157 		policy = p->policy;
7158 
7159 	p->policy = policy;
7160 
7161 	if (dl_policy(policy))
7162 		__setparam_dl(p, attr);
7163 	else if (fair_policy(policy))
7164 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7165 
7166 	/*
7167 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7168 	 * !rt_policy. Always setting this ensures that things like
7169 	 * getparam()/getattr() don't report silly values for !rt tasks.
7170 	 */
7171 	p->rt_priority = attr->sched_priority;
7172 	p->normal_prio = normal_prio(p);
7173 	set_load_weight(p, true);
7174 }
7175 
7176 /*
7177  * Check the target process has a UID that matches the current process's:
7178  */
7179 static bool check_same_owner(struct task_struct *p)
7180 {
7181 	const struct cred *cred = current_cred(), *pcred;
7182 	bool match;
7183 
7184 	rcu_read_lock();
7185 	pcred = __task_cred(p);
7186 	match = (uid_eq(cred->euid, pcred->euid) ||
7187 		 uid_eq(cred->euid, pcred->uid));
7188 	rcu_read_unlock();
7189 	return match;
7190 }
7191 
7192 static int __sched_setscheduler(struct task_struct *p,
7193 				const struct sched_attr *attr,
7194 				bool user, bool pi)
7195 {
7196 	int oldpolicy = -1, policy = attr->sched_policy;
7197 	int retval, oldprio, newprio, queued, running;
7198 	const struct sched_class *prev_class;
7199 	struct callback_head *head;
7200 	struct rq_flags rf;
7201 	int reset_on_fork;
7202 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7203 	struct rq *rq;
7204 
7205 	/* The pi code expects interrupts enabled */
7206 	BUG_ON(pi && in_interrupt());
7207 recheck:
7208 	/* Double check policy once rq lock held: */
7209 	if (policy < 0) {
7210 		reset_on_fork = p->sched_reset_on_fork;
7211 		policy = oldpolicy = p->policy;
7212 	} else {
7213 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7214 
7215 		if (!valid_policy(policy))
7216 			return -EINVAL;
7217 	}
7218 
7219 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7220 		return -EINVAL;
7221 
7222 	/*
7223 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7224 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7225 	 * SCHED_BATCH and SCHED_IDLE is 0.
7226 	 */
7227 	if (attr->sched_priority > MAX_RT_PRIO-1)
7228 		return -EINVAL;
7229 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7230 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7231 		return -EINVAL;
7232 
7233 	/*
7234 	 * Allow unprivileged RT tasks to decrease priority:
7235 	 */
7236 	if (user && !capable(CAP_SYS_NICE)) {
7237 		if (fair_policy(policy)) {
7238 			if (attr->sched_nice < task_nice(p) &&
7239 			    !can_nice(p, attr->sched_nice))
7240 				return -EPERM;
7241 		}
7242 
7243 		if (rt_policy(policy)) {
7244 			unsigned long rlim_rtprio =
7245 					task_rlimit(p, RLIMIT_RTPRIO);
7246 
7247 			/* Can't set/change the rt policy: */
7248 			if (policy != p->policy && !rlim_rtprio)
7249 				return -EPERM;
7250 
7251 			/* Can't increase priority: */
7252 			if (attr->sched_priority > p->rt_priority &&
7253 			    attr->sched_priority > rlim_rtprio)
7254 				return -EPERM;
7255 		}
7256 
7257 		 /*
7258 		  * Can't set/change SCHED_DEADLINE policy at all for now
7259 		  * (safest behavior); in the future we would like to allow
7260 		  * unprivileged DL tasks to increase their relative deadline
7261 		  * or reduce their runtime (both ways reducing utilization)
7262 		  */
7263 		if (dl_policy(policy))
7264 			return -EPERM;
7265 
7266 		/*
7267 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7268 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7269 		 */
7270 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7271 			if (!can_nice(p, task_nice(p)))
7272 				return -EPERM;
7273 		}
7274 
7275 		/* Can't change other user's priorities: */
7276 		if (!check_same_owner(p))
7277 			return -EPERM;
7278 
7279 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7280 		if (p->sched_reset_on_fork && !reset_on_fork)
7281 			return -EPERM;
7282 	}
7283 
7284 	if (user) {
7285 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7286 			return -EINVAL;
7287 
7288 		retval = security_task_setscheduler(p);
7289 		if (retval)
7290 			return retval;
7291 	}
7292 
7293 	/* Update task specific "requested" clamps */
7294 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7295 		retval = uclamp_validate(p, attr);
7296 		if (retval)
7297 			return retval;
7298 	}
7299 
7300 	if (pi)
7301 		cpuset_read_lock();
7302 
7303 	/*
7304 	 * Make sure no PI-waiters arrive (or leave) while we are
7305 	 * changing the priority of the task:
7306 	 *
7307 	 * To be able to change p->policy safely, the appropriate
7308 	 * runqueue lock must be held.
7309 	 */
7310 	rq = task_rq_lock(p, &rf);
7311 	update_rq_clock(rq);
7312 
7313 	/*
7314 	 * Changing the policy of the stop threads its a very bad idea:
7315 	 */
7316 	if (p == rq->stop) {
7317 		retval = -EINVAL;
7318 		goto unlock;
7319 	}
7320 
7321 	/*
7322 	 * If not changing anything there's no need to proceed further,
7323 	 * but store a possible modification of reset_on_fork.
7324 	 */
7325 	if (unlikely(policy == p->policy)) {
7326 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7327 			goto change;
7328 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7329 			goto change;
7330 		if (dl_policy(policy) && dl_param_changed(p, attr))
7331 			goto change;
7332 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7333 			goto change;
7334 
7335 		p->sched_reset_on_fork = reset_on_fork;
7336 		retval = 0;
7337 		goto unlock;
7338 	}
7339 change:
7340 
7341 	if (user) {
7342 #ifdef CONFIG_RT_GROUP_SCHED
7343 		/*
7344 		 * Do not allow realtime tasks into groups that have no runtime
7345 		 * assigned.
7346 		 */
7347 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7348 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7349 				!task_group_is_autogroup(task_group(p))) {
7350 			retval = -EPERM;
7351 			goto unlock;
7352 		}
7353 #endif
7354 #ifdef CONFIG_SMP
7355 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7356 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7357 			cpumask_t *span = rq->rd->span;
7358 
7359 			/*
7360 			 * Don't allow tasks with an affinity mask smaller than
7361 			 * the entire root_domain to become SCHED_DEADLINE. We
7362 			 * will also fail if there's no bandwidth available.
7363 			 */
7364 			if (!cpumask_subset(span, p->cpus_ptr) ||
7365 			    rq->rd->dl_bw.bw == 0) {
7366 				retval = -EPERM;
7367 				goto unlock;
7368 			}
7369 		}
7370 #endif
7371 	}
7372 
7373 	/* Re-check policy now with rq lock held: */
7374 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7375 		policy = oldpolicy = -1;
7376 		task_rq_unlock(rq, p, &rf);
7377 		if (pi)
7378 			cpuset_read_unlock();
7379 		goto recheck;
7380 	}
7381 
7382 	/*
7383 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7384 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7385 	 * is available.
7386 	 */
7387 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7388 		retval = -EBUSY;
7389 		goto unlock;
7390 	}
7391 
7392 	p->sched_reset_on_fork = reset_on_fork;
7393 	oldprio = p->prio;
7394 
7395 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7396 	if (pi) {
7397 		/*
7398 		 * Take priority boosted tasks into account. If the new
7399 		 * effective priority is unchanged, we just store the new
7400 		 * normal parameters and do not touch the scheduler class and
7401 		 * the runqueue. This will be done when the task deboost
7402 		 * itself.
7403 		 */
7404 		newprio = rt_effective_prio(p, newprio);
7405 		if (newprio == oldprio)
7406 			queue_flags &= ~DEQUEUE_MOVE;
7407 	}
7408 
7409 	queued = task_on_rq_queued(p);
7410 	running = task_current(rq, p);
7411 	if (queued)
7412 		dequeue_task(rq, p, queue_flags);
7413 	if (running)
7414 		put_prev_task(rq, p);
7415 
7416 	prev_class = p->sched_class;
7417 
7418 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7419 		__setscheduler_params(p, attr);
7420 		__setscheduler_prio(p, newprio);
7421 	}
7422 	__setscheduler_uclamp(p, attr);
7423 
7424 	if (queued) {
7425 		/*
7426 		 * We enqueue to tail when the priority of a task is
7427 		 * increased (user space view).
7428 		 */
7429 		if (oldprio < p->prio)
7430 			queue_flags |= ENQUEUE_HEAD;
7431 
7432 		enqueue_task(rq, p, queue_flags);
7433 	}
7434 	if (running)
7435 		set_next_task(rq, p);
7436 
7437 	check_class_changed(rq, p, prev_class, oldprio);
7438 
7439 	/* Avoid rq from going away on us: */
7440 	preempt_disable();
7441 	head = splice_balance_callbacks(rq);
7442 	task_rq_unlock(rq, p, &rf);
7443 
7444 	if (pi) {
7445 		cpuset_read_unlock();
7446 		rt_mutex_adjust_pi(p);
7447 	}
7448 
7449 	/* Run balance callbacks after we've adjusted the PI chain: */
7450 	balance_callbacks(rq, head);
7451 	preempt_enable();
7452 
7453 	return 0;
7454 
7455 unlock:
7456 	task_rq_unlock(rq, p, &rf);
7457 	if (pi)
7458 		cpuset_read_unlock();
7459 	return retval;
7460 }
7461 
7462 static int _sched_setscheduler(struct task_struct *p, int policy,
7463 			       const struct sched_param *param, bool check)
7464 {
7465 	struct sched_attr attr = {
7466 		.sched_policy   = policy,
7467 		.sched_priority = param->sched_priority,
7468 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7469 	};
7470 
7471 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7472 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7473 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7474 		policy &= ~SCHED_RESET_ON_FORK;
7475 		attr.sched_policy = policy;
7476 	}
7477 
7478 	return __sched_setscheduler(p, &attr, check, true);
7479 }
7480 /**
7481  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7482  * @p: the task in question.
7483  * @policy: new policy.
7484  * @param: structure containing the new RT priority.
7485  *
7486  * Use sched_set_fifo(), read its comment.
7487  *
7488  * Return: 0 on success. An error code otherwise.
7489  *
7490  * NOTE that the task may be already dead.
7491  */
7492 int sched_setscheduler(struct task_struct *p, int policy,
7493 		       const struct sched_param *param)
7494 {
7495 	return _sched_setscheduler(p, policy, param, true);
7496 }
7497 
7498 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7499 {
7500 	return __sched_setscheduler(p, attr, true, true);
7501 }
7502 
7503 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7504 {
7505 	return __sched_setscheduler(p, attr, false, true);
7506 }
7507 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7508 
7509 /**
7510  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7511  * @p: the task in question.
7512  * @policy: new policy.
7513  * @param: structure containing the new RT priority.
7514  *
7515  * Just like sched_setscheduler, only don't bother checking if the
7516  * current context has permission.  For example, this is needed in
7517  * stop_machine(): we create temporary high priority worker threads,
7518  * but our caller might not have that capability.
7519  *
7520  * Return: 0 on success. An error code otherwise.
7521  */
7522 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7523 			       const struct sched_param *param)
7524 {
7525 	return _sched_setscheduler(p, policy, param, false);
7526 }
7527 
7528 /*
7529  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7530  * incapable of resource management, which is the one thing an OS really should
7531  * be doing.
7532  *
7533  * This is of course the reason it is limited to privileged users only.
7534  *
7535  * Worse still; it is fundamentally impossible to compose static priority
7536  * workloads. You cannot take two correctly working static prio workloads
7537  * and smash them together and still expect them to work.
7538  *
7539  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7540  *
7541  *   MAX_RT_PRIO / 2
7542  *
7543  * The administrator _MUST_ configure the system, the kernel simply doesn't
7544  * know enough information to make a sensible choice.
7545  */
7546 void sched_set_fifo(struct task_struct *p)
7547 {
7548 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7549 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7550 }
7551 EXPORT_SYMBOL_GPL(sched_set_fifo);
7552 
7553 /*
7554  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7555  */
7556 void sched_set_fifo_low(struct task_struct *p)
7557 {
7558 	struct sched_param sp = { .sched_priority = 1 };
7559 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7560 }
7561 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7562 
7563 void sched_set_normal(struct task_struct *p, int nice)
7564 {
7565 	struct sched_attr attr = {
7566 		.sched_policy = SCHED_NORMAL,
7567 		.sched_nice = nice,
7568 	};
7569 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7570 }
7571 EXPORT_SYMBOL_GPL(sched_set_normal);
7572 
7573 static int
7574 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7575 {
7576 	struct sched_param lparam;
7577 	struct task_struct *p;
7578 	int retval;
7579 
7580 	if (!param || pid < 0)
7581 		return -EINVAL;
7582 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7583 		return -EFAULT;
7584 
7585 	rcu_read_lock();
7586 	retval = -ESRCH;
7587 	p = find_process_by_pid(pid);
7588 	if (likely(p))
7589 		get_task_struct(p);
7590 	rcu_read_unlock();
7591 
7592 	if (likely(p)) {
7593 		retval = sched_setscheduler(p, policy, &lparam);
7594 		put_task_struct(p);
7595 	}
7596 
7597 	return retval;
7598 }
7599 
7600 /*
7601  * Mimics kernel/events/core.c perf_copy_attr().
7602  */
7603 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7604 {
7605 	u32 size;
7606 	int ret;
7607 
7608 	/* Zero the full structure, so that a short copy will be nice: */
7609 	memset(attr, 0, sizeof(*attr));
7610 
7611 	ret = get_user(size, &uattr->size);
7612 	if (ret)
7613 		return ret;
7614 
7615 	/* ABI compatibility quirk: */
7616 	if (!size)
7617 		size = SCHED_ATTR_SIZE_VER0;
7618 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7619 		goto err_size;
7620 
7621 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7622 	if (ret) {
7623 		if (ret == -E2BIG)
7624 			goto err_size;
7625 		return ret;
7626 	}
7627 
7628 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7629 	    size < SCHED_ATTR_SIZE_VER1)
7630 		return -EINVAL;
7631 
7632 	/*
7633 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7634 	 * to be strict and return an error on out-of-bounds values?
7635 	 */
7636 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7637 
7638 	return 0;
7639 
7640 err_size:
7641 	put_user(sizeof(*attr), &uattr->size);
7642 	return -E2BIG;
7643 }
7644 
7645 static void get_params(struct task_struct *p, struct sched_attr *attr)
7646 {
7647 	if (task_has_dl_policy(p))
7648 		__getparam_dl(p, attr);
7649 	else if (task_has_rt_policy(p))
7650 		attr->sched_priority = p->rt_priority;
7651 	else
7652 		attr->sched_nice = task_nice(p);
7653 }
7654 
7655 /**
7656  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7657  * @pid: the pid in question.
7658  * @policy: new policy.
7659  * @param: structure containing the new RT priority.
7660  *
7661  * Return: 0 on success. An error code otherwise.
7662  */
7663 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7664 {
7665 	if (policy < 0)
7666 		return -EINVAL;
7667 
7668 	return do_sched_setscheduler(pid, policy, param);
7669 }
7670 
7671 /**
7672  * sys_sched_setparam - set/change the RT priority of a thread
7673  * @pid: the pid in question.
7674  * @param: structure containing the new RT priority.
7675  *
7676  * Return: 0 on success. An error code otherwise.
7677  */
7678 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7679 {
7680 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7681 }
7682 
7683 /**
7684  * sys_sched_setattr - same as above, but with extended sched_attr
7685  * @pid: the pid in question.
7686  * @uattr: structure containing the extended parameters.
7687  * @flags: for future extension.
7688  */
7689 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7690 			       unsigned int, flags)
7691 {
7692 	struct sched_attr attr;
7693 	struct task_struct *p;
7694 	int retval;
7695 
7696 	if (!uattr || pid < 0 || flags)
7697 		return -EINVAL;
7698 
7699 	retval = sched_copy_attr(uattr, &attr);
7700 	if (retval)
7701 		return retval;
7702 
7703 	if ((int)attr.sched_policy < 0)
7704 		return -EINVAL;
7705 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7706 		attr.sched_policy = SETPARAM_POLICY;
7707 
7708 	rcu_read_lock();
7709 	retval = -ESRCH;
7710 	p = find_process_by_pid(pid);
7711 	if (likely(p))
7712 		get_task_struct(p);
7713 	rcu_read_unlock();
7714 
7715 	if (likely(p)) {
7716 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7717 			get_params(p, &attr);
7718 		retval = sched_setattr(p, &attr);
7719 		put_task_struct(p);
7720 	}
7721 
7722 	return retval;
7723 }
7724 
7725 /**
7726  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7727  * @pid: the pid in question.
7728  *
7729  * Return: On success, the policy of the thread. Otherwise, a negative error
7730  * code.
7731  */
7732 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7733 {
7734 	struct task_struct *p;
7735 	int retval;
7736 
7737 	if (pid < 0)
7738 		return -EINVAL;
7739 
7740 	retval = -ESRCH;
7741 	rcu_read_lock();
7742 	p = find_process_by_pid(pid);
7743 	if (p) {
7744 		retval = security_task_getscheduler(p);
7745 		if (!retval)
7746 			retval = p->policy
7747 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7748 	}
7749 	rcu_read_unlock();
7750 	return retval;
7751 }
7752 
7753 /**
7754  * sys_sched_getparam - get the RT priority of a thread
7755  * @pid: the pid in question.
7756  * @param: structure containing the RT priority.
7757  *
7758  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7759  * code.
7760  */
7761 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7762 {
7763 	struct sched_param lp = { .sched_priority = 0 };
7764 	struct task_struct *p;
7765 	int retval;
7766 
7767 	if (!param || pid < 0)
7768 		return -EINVAL;
7769 
7770 	rcu_read_lock();
7771 	p = find_process_by_pid(pid);
7772 	retval = -ESRCH;
7773 	if (!p)
7774 		goto out_unlock;
7775 
7776 	retval = security_task_getscheduler(p);
7777 	if (retval)
7778 		goto out_unlock;
7779 
7780 	if (task_has_rt_policy(p))
7781 		lp.sched_priority = p->rt_priority;
7782 	rcu_read_unlock();
7783 
7784 	/*
7785 	 * This one might sleep, we cannot do it with a spinlock held ...
7786 	 */
7787 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7788 
7789 	return retval;
7790 
7791 out_unlock:
7792 	rcu_read_unlock();
7793 	return retval;
7794 }
7795 
7796 /*
7797  * Copy the kernel size attribute structure (which might be larger
7798  * than what user-space knows about) to user-space.
7799  *
7800  * Note that all cases are valid: user-space buffer can be larger or
7801  * smaller than the kernel-space buffer. The usual case is that both
7802  * have the same size.
7803  */
7804 static int
7805 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7806 			struct sched_attr *kattr,
7807 			unsigned int usize)
7808 {
7809 	unsigned int ksize = sizeof(*kattr);
7810 
7811 	if (!access_ok(uattr, usize))
7812 		return -EFAULT;
7813 
7814 	/*
7815 	 * sched_getattr() ABI forwards and backwards compatibility:
7816 	 *
7817 	 * If usize == ksize then we just copy everything to user-space and all is good.
7818 	 *
7819 	 * If usize < ksize then we only copy as much as user-space has space for,
7820 	 * this keeps ABI compatibility as well. We skip the rest.
7821 	 *
7822 	 * If usize > ksize then user-space is using a newer version of the ABI,
7823 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7824 	 * detect the kernel's knowledge of attributes from the attr->size value
7825 	 * which is set to ksize in this case.
7826 	 */
7827 	kattr->size = min(usize, ksize);
7828 
7829 	if (copy_to_user(uattr, kattr, kattr->size))
7830 		return -EFAULT;
7831 
7832 	return 0;
7833 }
7834 
7835 /**
7836  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7837  * @pid: the pid in question.
7838  * @uattr: structure containing the extended parameters.
7839  * @usize: sizeof(attr) for fwd/bwd comp.
7840  * @flags: for future extension.
7841  */
7842 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7843 		unsigned int, usize, unsigned int, flags)
7844 {
7845 	struct sched_attr kattr = { };
7846 	struct task_struct *p;
7847 	int retval;
7848 
7849 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7850 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7851 		return -EINVAL;
7852 
7853 	rcu_read_lock();
7854 	p = find_process_by_pid(pid);
7855 	retval = -ESRCH;
7856 	if (!p)
7857 		goto out_unlock;
7858 
7859 	retval = security_task_getscheduler(p);
7860 	if (retval)
7861 		goto out_unlock;
7862 
7863 	kattr.sched_policy = p->policy;
7864 	if (p->sched_reset_on_fork)
7865 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7866 	get_params(p, &kattr);
7867 	kattr.sched_flags &= SCHED_FLAG_ALL;
7868 
7869 #ifdef CONFIG_UCLAMP_TASK
7870 	/*
7871 	 * This could race with another potential updater, but this is fine
7872 	 * because it'll correctly read the old or the new value. We don't need
7873 	 * to guarantee who wins the race as long as it doesn't return garbage.
7874 	 */
7875 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7876 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7877 #endif
7878 
7879 	rcu_read_unlock();
7880 
7881 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7882 
7883 out_unlock:
7884 	rcu_read_unlock();
7885 	return retval;
7886 }
7887 
7888 #ifdef CONFIG_SMP
7889 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7890 {
7891 	int ret = 0;
7892 
7893 	/*
7894 	 * If the task isn't a deadline task or admission control is
7895 	 * disabled then we don't care about affinity changes.
7896 	 */
7897 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7898 		return 0;
7899 
7900 	/*
7901 	 * Since bandwidth control happens on root_domain basis,
7902 	 * if admission test is enabled, we only admit -deadline
7903 	 * tasks allowed to run on all the CPUs in the task's
7904 	 * root_domain.
7905 	 */
7906 	rcu_read_lock();
7907 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7908 		ret = -EBUSY;
7909 	rcu_read_unlock();
7910 	return ret;
7911 }
7912 #endif
7913 
7914 static int
7915 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7916 {
7917 	int retval;
7918 	cpumask_var_t cpus_allowed, new_mask;
7919 
7920 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7921 		return -ENOMEM;
7922 
7923 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7924 		retval = -ENOMEM;
7925 		goto out_free_cpus_allowed;
7926 	}
7927 
7928 	cpuset_cpus_allowed(p, cpus_allowed);
7929 	cpumask_and(new_mask, mask, cpus_allowed);
7930 
7931 	retval = dl_task_check_affinity(p, new_mask);
7932 	if (retval)
7933 		goto out_free_new_mask;
7934 again:
7935 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7936 	if (retval)
7937 		goto out_free_new_mask;
7938 
7939 	cpuset_cpus_allowed(p, cpus_allowed);
7940 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7941 		/*
7942 		 * We must have raced with a concurrent cpuset update.
7943 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7944 		 */
7945 		cpumask_copy(new_mask, cpus_allowed);
7946 		goto again;
7947 	}
7948 
7949 out_free_new_mask:
7950 	free_cpumask_var(new_mask);
7951 out_free_cpus_allowed:
7952 	free_cpumask_var(cpus_allowed);
7953 	return retval;
7954 }
7955 
7956 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7957 {
7958 	struct task_struct *p;
7959 	int retval;
7960 
7961 	rcu_read_lock();
7962 
7963 	p = find_process_by_pid(pid);
7964 	if (!p) {
7965 		rcu_read_unlock();
7966 		return -ESRCH;
7967 	}
7968 
7969 	/* Prevent p going away */
7970 	get_task_struct(p);
7971 	rcu_read_unlock();
7972 
7973 	if (p->flags & PF_NO_SETAFFINITY) {
7974 		retval = -EINVAL;
7975 		goto out_put_task;
7976 	}
7977 
7978 	if (!check_same_owner(p)) {
7979 		rcu_read_lock();
7980 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7981 			rcu_read_unlock();
7982 			retval = -EPERM;
7983 			goto out_put_task;
7984 		}
7985 		rcu_read_unlock();
7986 	}
7987 
7988 	retval = security_task_setscheduler(p);
7989 	if (retval)
7990 		goto out_put_task;
7991 
7992 	retval = __sched_setaffinity(p, in_mask);
7993 out_put_task:
7994 	put_task_struct(p);
7995 	return retval;
7996 }
7997 
7998 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7999 			     struct cpumask *new_mask)
8000 {
8001 	if (len < cpumask_size())
8002 		cpumask_clear(new_mask);
8003 	else if (len > cpumask_size())
8004 		len = cpumask_size();
8005 
8006 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8007 }
8008 
8009 /**
8010  * sys_sched_setaffinity - set the CPU affinity of a process
8011  * @pid: pid of the process
8012  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8013  * @user_mask_ptr: user-space pointer to the new CPU mask
8014  *
8015  * Return: 0 on success. An error code otherwise.
8016  */
8017 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8018 		unsigned long __user *, user_mask_ptr)
8019 {
8020 	cpumask_var_t new_mask;
8021 	int retval;
8022 
8023 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8024 		return -ENOMEM;
8025 
8026 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8027 	if (retval == 0)
8028 		retval = sched_setaffinity(pid, new_mask);
8029 	free_cpumask_var(new_mask);
8030 	return retval;
8031 }
8032 
8033 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8034 {
8035 	struct task_struct *p;
8036 	unsigned long flags;
8037 	int retval;
8038 
8039 	rcu_read_lock();
8040 
8041 	retval = -ESRCH;
8042 	p = find_process_by_pid(pid);
8043 	if (!p)
8044 		goto out_unlock;
8045 
8046 	retval = security_task_getscheduler(p);
8047 	if (retval)
8048 		goto out_unlock;
8049 
8050 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8051 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8052 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8053 
8054 out_unlock:
8055 	rcu_read_unlock();
8056 
8057 	return retval;
8058 }
8059 
8060 /**
8061  * sys_sched_getaffinity - get the CPU affinity of a process
8062  * @pid: pid of the process
8063  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8064  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8065  *
8066  * Return: size of CPU mask copied to user_mask_ptr on success. An
8067  * error code otherwise.
8068  */
8069 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8070 		unsigned long __user *, user_mask_ptr)
8071 {
8072 	int ret;
8073 	cpumask_var_t mask;
8074 
8075 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8076 		return -EINVAL;
8077 	if (len & (sizeof(unsigned long)-1))
8078 		return -EINVAL;
8079 
8080 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8081 		return -ENOMEM;
8082 
8083 	ret = sched_getaffinity(pid, mask);
8084 	if (ret == 0) {
8085 		unsigned int retlen = min(len, cpumask_size());
8086 
8087 		if (copy_to_user(user_mask_ptr, mask, retlen))
8088 			ret = -EFAULT;
8089 		else
8090 			ret = retlen;
8091 	}
8092 	free_cpumask_var(mask);
8093 
8094 	return ret;
8095 }
8096 
8097 static void do_sched_yield(void)
8098 {
8099 	struct rq_flags rf;
8100 	struct rq *rq;
8101 
8102 	rq = this_rq_lock_irq(&rf);
8103 
8104 	schedstat_inc(rq->yld_count);
8105 	current->sched_class->yield_task(rq);
8106 
8107 	preempt_disable();
8108 	rq_unlock_irq(rq, &rf);
8109 	sched_preempt_enable_no_resched();
8110 
8111 	schedule();
8112 }
8113 
8114 /**
8115  * sys_sched_yield - yield the current processor to other threads.
8116  *
8117  * This function yields the current CPU to other tasks. If there are no
8118  * other threads running on this CPU then this function will return.
8119  *
8120  * Return: 0.
8121  */
8122 SYSCALL_DEFINE0(sched_yield)
8123 {
8124 	do_sched_yield();
8125 	return 0;
8126 }
8127 
8128 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8129 int __sched __cond_resched(void)
8130 {
8131 	if (should_resched(0)) {
8132 		preempt_schedule_common();
8133 		return 1;
8134 	}
8135 	/*
8136 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8137 	 * whether the current CPU is in an RCU read-side critical section,
8138 	 * so the tick can report quiescent states even for CPUs looping
8139 	 * in kernel context.  In contrast, in non-preemptible kernels,
8140 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8141 	 * processes executing in kernel context might never report an
8142 	 * RCU quiescent state.  Therefore, the following code causes
8143 	 * cond_resched() to report a quiescent state, but only when RCU
8144 	 * is in urgent need of one.
8145 	 */
8146 #ifndef CONFIG_PREEMPT_RCU
8147 	rcu_all_qs();
8148 #endif
8149 	return 0;
8150 }
8151 EXPORT_SYMBOL(__cond_resched);
8152 #endif
8153 
8154 #ifdef CONFIG_PREEMPT_DYNAMIC
8155 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8156 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8157 
8158 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8159 EXPORT_STATIC_CALL_TRAMP(might_resched);
8160 #endif
8161 
8162 /*
8163  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8164  * call schedule, and on return reacquire the lock.
8165  *
8166  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8167  * operations here to prevent schedule() from being called twice (once via
8168  * spin_unlock(), once by hand).
8169  */
8170 int __cond_resched_lock(spinlock_t *lock)
8171 {
8172 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8173 	int ret = 0;
8174 
8175 	lockdep_assert_held(lock);
8176 
8177 	if (spin_needbreak(lock) || resched) {
8178 		spin_unlock(lock);
8179 		if (resched)
8180 			preempt_schedule_common();
8181 		else
8182 			cpu_relax();
8183 		ret = 1;
8184 		spin_lock(lock);
8185 	}
8186 	return ret;
8187 }
8188 EXPORT_SYMBOL(__cond_resched_lock);
8189 
8190 int __cond_resched_rwlock_read(rwlock_t *lock)
8191 {
8192 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8193 	int ret = 0;
8194 
8195 	lockdep_assert_held_read(lock);
8196 
8197 	if (rwlock_needbreak(lock) || resched) {
8198 		read_unlock(lock);
8199 		if (resched)
8200 			preempt_schedule_common();
8201 		else
8202 			cpu_relax();
8203 		ret = 1;
8204 		read_lock(lock);
8205 	}
8206 	return ret;
8207 }
8208 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8209 
8210 int __cond_resched_rwlock_write(rwlock_t *lock)
8211 {
8212 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8213 	int ret = 0;
8214 
8215 	lockdep_assert_held_write(lock);
8216 
8217 	if (rwlock_needbreak(lock) || resched) {
8218 		write_unlock(lock);
8219 		if (resched)
8220 			preempt_schedule_common();
8221 		else
8222 			cpu_relax();
8223 		ret = 1;
8224 		write_lock(lock);
8225 	}
8226 	return ret;
8227 }
8228 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8229 
8230 /**
8231  * yield - yield the current processor to other threads.
8232  *
8233  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8234  *
8235  * The scheduler is at all times free to pick the calling task as the most
8236  * eligible task to run, if removing the yield() call from your code breaks
8237  * it, it's already broken.
8238  *
8239  * Typical broken usage is:
8240  *
8241  * while (!event)
8242  *	yield();
8243  *
8244  * where one assumes that yield() will let 'the other' process run that will
8245  * make event true. If the current task is a SCHED_FIFO task that will never
8246  * happen. Never use yield() as a progress guarantee!!
8247  *
8248  * If you want to use yield() to wait for something, use wait_event().
8249  * If you want to use yield() to be 'nice' for others, use cond_resched().
8250  * If you still want to use yield(), do not!
8251  */
8252 void __sched yield(void)
8253 {
8254 	set_current_state(TASK_RUNNING);
8255 	do_sched_yield();
8256 }
8257 EXPORT_SYMBOL(yield);
8258 
8259 /**
8260  * yield_to - yield the current processor to another thread in
8261  * your thread group, or accelerate that thread toward the
8262  * processor it's on.
8263  * @p: target task
8264  * @preempt: whether task preemption is allowed or not
8265  *
8266  * It's the caller's job to ensure that the target task struct
8267  * can't go away on us before we can do any checks.
8268  *
8269  * Return:
8270  *	true (>0) if we indeed boosted the target task.
8271  *	false (0) if we failed to boost the target.
8272  *	-ESRCH if there's no task to yield to.
8273  */
8274 int __sched yield_to(struct task_struct *p, bool preempt)
8275 {
8276 	struct task_struct *curr = current;
8277 	struct rq *rq, *p_rq;
8278 	unsigned long flags;
8279 	int yielded = 0;
8280 
8281 	local_irq_save(flags);
8282 	rq = this_rq();
8283 
8284 again:
8285 	p_rq = task_rq(p);
8286 	/*
8287 	 * If we're the only runnable task on the rq and target rq also
8288 	 * has only one task, there's absolutely no point in yielding.
8289 	 */
8290 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8291 		yielded = -ESRCH;
8292 		goto out_irq;
8293 	}
8294 
8295 	double_rq_lock(rq, p_rq);
8296 	if (task_rq(p) != p_rq) {
8297 		double_rq_unlock(rq, p_rq);
8298 		goto again;
8299 	}
8300 
8301 	if (!curr->sched_class->yield_to_task)
8302 		goto out_unlock;
8303 
8304 	if (curr->sched_class != p->sched_class)
8305 		goto out_unlock;
8306 
8307 	if (task_running(p_rq, p) || !task_is_running(p))
8308 		goto out_unlock;
8309 
8310 	yielded = curr->sched_class->yield_to_task(rq, p);
8311 	if (yielded) {
8312 		schedstat_inc(rq->yld_count);
8313 		/*
8314 		 * Make p's CPU reschedule; pick_next_entity takes care of
8315 		 * fairness.
8316 		 */
8317 		if (preempt && rq != p_rq)
8318 			resched_curr(p_rq);
8319 	}
8320 
8321 out_unlock:
8322 	double_rq_unlock(rq, p_rq);
8323 out_irq:
8324 	local_irq_restore(flags);
8325 
8326 	if (yielded > 0)
8327 		schedule();
8328 
8329 	return yielded;
8330 }
8331 EXPORT_SYMBOL_GPL(yield_to);
8332 
8333 int io_schedule_prepare(void)
8334 {
8335 	int old_iowait = current->in_iowait;
8336 
8337 	current->in_iowait = 1;
8338 	if (current->plug)
8339 		blk_flush_plug(current->plug, true);
8340 
8341 	return old_iowait;
8342 }
8343 
8344 void io_schedule_finish(int token)
8345 {
8346 	current->in_iowait = token;
8347 }
8348 
8349 /*
8350  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8351  * that process accounting knows that this is a task in IO wait state.
8352  */
8353 long __sched io_schedule_timeout(long timeout)
8354 {
8355 	int token;
8356 	long ret;
8357 
8358 	token = io_schedule_prepare();
8359 	ret = schedule_timeout(timeout);
8360 	io_schedule_finish(token);
8361 
8362 	return ret;
8363 }
8364 EXPORT_SYMBOL(io_schedule_timeout);
8365 
8366 void __sched io_schedule(void)
8367 {
8368 	int token;
8369 
8370 	token = io_schedule_prepare();
8371 	schedule();
8372 	io_schedule_finish(token);
8373 }
8374 EXPORT_SYMBOL(io_schedule);
8375 
8376 /**
8377  * sys_sched_get_priority_max - return maximum RT priority.
8378  * @policy: scheduling class.
8379  *
8380  * Return: On success, this syscall returns the maximum
8381  * rt_priority that can be used by a given scheduling class.
8382  * On failure, a negative error code is returned.
8383  */
8384 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8385 {
8386 	int ret = -EINVAL;
8387 
8388 	switch (policy) {
8389 	case SCHED_FIFO:
8390 	case SCHED_RR:
8391 		ret = MAX_RT_PRIO-1;
8392 		break;
8393 	case SCHED_DEADLINE:
8394 	case SCHED_NORMAL:
8395 	case SCHED_BATCH:
8396 	case SCHED_IDLE:
8397 		ret = 0;
8398 		break;
8399 	}
8400 	return ret;
8401 }
8402 
8403 /**
8404  * sys_sched_get_priority_min - return minimum RT priority.
8405  * @policy: scheduling class.
8406  *
8407  * Return: On success, this syscall returns the minimum
8408  * rt_priority that can be used by a given scheduling class.
8409  * On failure, a negative error code is returned.
8410  */
8411 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8412 {
8413 	int ret = -EINVAL;
8414 
8415 	switch (policy) {
8416 	case SCHED_FIFO:
8417 	case SCHED_RR:
8418 		ret = 1;
8419 		break;
8420 	case SCHED_DEADLINE:
8421 	case SCHED_NORMAL:
8422 	case SCHED_BATCH:
8423 	case SCHED_IDLE:
8424 		ret = 0;
8425 	}
8426 	return ret;
8427 }
8428 
8429 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8430 {
8431 	struct task_struct *p;
8432 	unsigned int time_slice;
8433 	struct rq_flags rf;
8434 	struct rq *rq;
8435 	int retval;
8436 
8437 	if (pid < 0)
8438 		return -EINVAL;
8439 
8440 	retval = -ESRCH;
8441 	rcu_read_lock();
8442 	p = find_process_by_pid(pid);
8443 	if (!p)
8444 		goto out_unlock;
8445 
8446 	retval = security_task_getscheduler(p);
8447 	if (retval)
8448 		goto out_unlock;
8449 
8450 	rq = task_rq_lock(p, &rf);
8451 	time_slice = 0;
8452 	if (p->sched_class->get_rr_interval)
8453 		time_slice = p->sched_class->get_rr_interval(rq, p);
8454 	task_rq_unlock(rq, p, &rf);
8455 
8456 	rcu_read_unlock();
8457 	jiffies_to_timespec64(time_slice, t);
8458 	return 0;
8459 
8460 out_unlock:
8461 	rcu_read_unlock();
8462 	return retval;
8463 }
8464 
8465 /**
8466  * sys_sched_rr_get_interval - return the default timeslice of a process.
8467  * @pid: pid of the process.
8468  * @interval: userspace pointer to the timeslice value.
8469  *
8470  * this syscall writes the default timeslice value of a given process
8471  * into the user-space timespec buffer. A value of '0' means infinity.
8472  *
8473  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8474  * an error code.
8475  */
8476 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8477 		struct __kernel_timespec __user *, interval)
8478 {
8479 	struct timespec64 t;
8480 	int retval = sched_rr_get_interval(pid, &t);
8481 
8482 	if (retval == 0)
8483 		retval = put_timespec64(&t, interval);
8484 
8485 	return retval;
8486 }
8487 
8488 #ifdef CONFIG_COMPAT_32BIT_TIME
8489 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8490 		struct old_timespec32 __user *, interval)
8491 {
8492 	struct timespec64 t;
8493 	int retval = sched_rr_get_interval(pid, &t);
8494 
8495 	if (retval == 0)
8496 		retval = put_old_timespec32(&t, interval);
8497 	return retval;
8498 }
8499 #endif
8500 
8501 void sched_show_task(struct task_struct *p)
8502 {
8503 	unsigned long free = 0;
8504 	int ppid;
8505 
8506 	if (!try_get_task_stack(p))
8507 		return;
8508 
8509 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8510 
8511 	if (task_is_running(p))
8512 		pr_cont("  running task    ");
8513 #ifdef CONFIG_DEBUG_STACK_USAGE
8514 	free = stack_not_used(p);
8515 #endif
8516 	ppid = 0;
8517 	rcu_read_lock();
8518 	if (pid_alive(p))
8519 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8520 	rcu_read_unlock();
8521 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8522 		free, task_pid_nr(p), ppid,
8523 		(unsigned long)task_thread_info(p)->flags);
8524 
8525 	print_worker_info(KERN_INFO, p);
8526 	print_stop_info(KERN_INFO, p);
8527 	show_stack(p, NULL, KERN_INFO);
8528 	put_task_stack(p);
8529 }
8530 EXPORT_SYMBOL_GPL(sched_show_task);
8531 
8532 static inline bool
8533 state_filter_match(unsigned long state_filter, struct task_struct *p)
8534 {
8535 	unsigned int state = READ_ONCE(p->__state);
8536 
8537 	/* no filter, everything matches */
8538 	if (!state_filter)
8539 		return true;
8540 
8541 	/* filter, but doesn't match */
8542 	if (!(state & state_filter))
8543 		return false;
8544 
8545 	/*
8546 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8547 	 * TASK_KILLABLE).
8548 	 */
8549 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8550 		return false;
8551 
8552 	return true;
8553 }
8554 
8555 
8556 void show_state_filter(unsigned int state_filter)
8557 {
8558 	struct task_struct *g, *p;
8559 
8560 	rcu_read_lock();
8561 	for_each_process_thread(g, p) {
8562 		/*
8563 		 * reset the NMI-timeout, listing all files on a slow
8564 		 * console might take a lot of time:
8565 		 * Also, reset softlockup watchdogs on all CPUs, because
8566 		 * another CPU might be blocked waiting for us to process
8567 		 * an IPI.
8568 		 */
8569 		touch_nmi_watchdog();
8570 		touch_all_softlockup_watchdogs();
8571 		if (state_filter_match(state_filter, p))
8572 			sched_show_task(p);
8573 	}
8574 
8575 #ifdef CONFIG_SCHED_DEBUG
8576 	if (!state_filter)
8577 		sysrq_sched_debug_show();
8578 #endif
8579 	rcu_read_unlock();
8580 	/*
8581 	 * Only show locks if all tasks are dumped:
8582 	 */
8583 	if (!state_filter)
8584 		debug_show_all_locks();
8585 }
8586 
8587 /**
8588  * init_idle - set up an idle thread for a given CPU
8589  * @idle: task in question
8590  * @cpu: CPU the idle task belongs to
8591  *
8592  * NOTE: this function does not set the idle thread's NEED_RESCHED
8593  * flag, to make booting more robust.
8594  */
8595 void __init init_idle(struct task_struct *idle, int cpu)
8596 {
8597 	struct rq *rq = cpu_rq(cpu);
8598 	unsigned long flags;
8599 
8600 	__sched_fork(0, idle);
8601 
8602 	/*
8603 	 * The idle task doesn't need the kthread struct to function, but it
8604 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8605 	 * if we want to avoid special-casing it in code that deals with per-CPU
8606 	 * kthreads.
8607 	 */
8608 	set_kthread_struct(idle);
8609 
8610 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8611 	raw_spin_rq_lock(rq);
8612 
8613 	idle->__state = TASK_RUNNING;
8614 	idle->se.exec_start = sched_clock();
8615 	/*
8616 	 * PF_KTHREAD should already be set at this point; regardless, make it
8617 	 * look like a proper per-CPU kthread.
8618 	 */
8619 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8620 	kthread_set_per_cpu(idle, cpu);
8621 
8622 #ifdef CONFIG_SMP
8623 	/*
8624 	 * It's possible that init_idle() gets called multiple times on a task,
8625 	 * in that case do_set_cpus_allowed() will not do the right thing.
8626 	 *
8627 	 * And since this is boot we can forgo the serialization.
8628 	 */
8629 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8630 #endif
8631 	/*
8632 	 * We're having a chicken and egg problem, even though we are
8633 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8634 	 * lockdep check in task_group() will fail.
8635 	 *
8636 	 * Similar case to sched_fork(). / Alternatively we could
8637 	 * use task_rq_lock() here and obtain the other rq->lock.
8638 	 *
8639 	 * Silence PROVE_RCU
8640 	 */
8641 	rcu_read_lock();
8642 	__set_task_cpu(idle, cpu);
8643 	rcu_read_unlock();
8644 
8645 	rq->idle = idle;
8646 	rcu_assign_pointer(rq->curr, idle);
8647 	idle->on_rq = TASK_ON_RQ_QUEUED;
8648 #ifdef CONFIG_SMP
8649 	idle->on_cpu = 1;
8650 #endif
8651 	raw_spin_rq_unlock(rq);
8652 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8653 
8654 	/* Set the preempt count _outside_ the spinlocks! */
8655 	init_idle_preempt_count(idle, cpu);
8656 
8657 	/*
8658 	 * The idle tasks have their own, simple scheduling class:
8659 	 */
8660 	idle->sched_class = &idle_sched_class;
8661 	ftrace_graph_init_idle_task(idle, cpu);
8662 	vtime_init_idle(idle, cpu);
8663 #ifdef CONFIG_SMP
8664 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8665 #endif
8666 }
8667 
8668 #ifdef CONFIG_SMP
8669 
8670 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8671 			      const struct cpumask *trial)
8672 {
8673 	int ret = 1;
8674 
8675 	if (!cpumask_weight(cur))
8676 		return ret;
8677 
8678 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8679 
8680 	return ret;
8681 }
8682 
8683 int task_can_attach(struct task_struct *p,
8684 		    const struct cpumask *cs_cpus_allowed)
8685 {
8686 	int ret = 0;
8687 
8688 	/*
8689 	 * Kthreads which disallow setaffinity shouldn't be moved
8690 	 * to a new cpuset; we don't want to change their CPU
8691 	 * affinity and isolating such threads by their set of
8692 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8693 	 * applicable for such threads.  This prevents checking for
8694 	 * success of set_cpus_allowed_ptr() on all attached tasks
8695 	 * before cpus_mask may be changed.
8696 	 */
8697 	if (p->flags & PF_NO_SETAFFINITY) {
8698 		ret = -EINVAL;
8699 		goto out;
8700 	}
8701 
8702 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8703 					      cs_cpus_allowed))
8704 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8705 
8706 out:
8707 	return ret;
8708 }
8709 
8710 bool sched_smp_initialized __read_mostly;
8711 
8712 #ifdef CONFIG_NUMA_BALANCING
8713 /* Migrate current task p to target_cpu */
8714 int migrate_task_to(struct task_struct *p, int target_cpu)
8715 {
8716 	struct migration_arg arg = { p, target_cpu };
8717 	int curr_cpu = task_cpu(p);
8718 
8719 	if (curr_cpu == target_cpu)
8720 		return 0;
8721 
8722 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8723 		return -EINVAL;
8724 
8725 	/* TODO: This is not properly updating schedstats */
8726 
8727 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8728 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8729 }
8730 
8731 /*
8732  * Requeue a task on a given node and accurately track the number of NUMA
8733  * tasks on the runqueues
8734  */
8735 void sched_setnuma(struct task_struct *p, int nid)
8736 {
8737 	bool queued, running;
8738 	struct rq_flags rf;
8739 	struct rq *rq;
8740 
8741 	rq = task_rq_lock(p, &rf);
8742 	queued = task_on_rq_queued(p);
8743 	running = task_current(rq, p);
8744 
8745 	if (queued)
8746 		dequeue_task(rq, p, DEQUEUE_SAVE);
8747 	if (running)
8748 		put_prev_task(rq, p);
8749 
8750 	p->numa_preferred_nid = nid;
8751 
8752 	if (queued)
8753 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8754 	if (running)
8755 		set_next_task(rq, p);
8756 	task_rq_unlock(rq, p, &rf);
8757 }
8758 #endif /* CONFIG_NUMA_BALANCING */
8759 
8760 #ifdef CONFIG_HOTPLUG_CPU
8761 /*
8762  * Ensure that the idle task is using init_mm right before its CPU goes
8763  * offline.
8764  */
8765 void idle_task_exit(void)
8766 {
8767 	struct mm_struct *mm = current->active_mm;
8768 
8769 	BUG_ON(cpu_online(smp_processor_id()));
8770 	BUG_ON(current != this_rq()->idle);
8771 
8772 	if (mm != &init_mm) {
8773 		switch_mm(mm, &init_mm, current);
8774 		finish_arch_post_lock_switch();
8775 	}
8776 
8777 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8778 }
8779 
8780 static int __balance_push_cpu_stop(void *arg)
8781 {
8782 	struct task_struct *p = arg;
8783 	struct rq *rq = this_rq();
8784 	struct rq_flags rf;
8785 	int cpu;
8786 
8787 	raw_spin_lock_irq(&p->pi_lock);
8788 	rq_lock(rq, &rf);
8789 
8790 	update_rq_clock(rq);
8791 
8792 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8793 		cpu = select_fallback_rq(rq->cpu, p);
8794 		rq = __migrate_task(rq, &rf, p, cpu);
8795 	}
8796 
8797 	rq_unlock(rq, &rf);
8798 	raw_spin_unlock_irq(&p->pi_lock);
8799 
8800 	put_task_struct(p);
8801 
8802 	return 0;
8803 }
8804 
8805 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8806 
8807 /*
8808  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8809  *
8810  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8811  * effective when the hotplug motion is down.
8812  */
8813 static void balance_push(struct rq *rq)
8814 {
8815 	struct task_struct *push_task = rq->curr;
8816 
8817 	lockdep_assert_rq_held(rq);
8818 
8819 	/*
8820 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8821 	 */
8822 	rq->balance_callback = &balance_push_callback;
8823 
8824 	/*
8825 	 * Only active while going offline and when invoked on the outgoing
8826 	 * CPU.
8827 	 */
8828 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8829 		return;
8830 
8831 	/*
8832 	 * Both the cpu-hotplug and stop task are in this case and are
8833 	 * required to complete the hotplug process.
8834 	 */
8835 	if (kthread_is_per_cpu(push_task) ||
8836 	    is_migration_disabled(push_task)) {
8837 
8838 		/*
8839 		 * If this is the idle task on the outgoing CPU try to wake
8840 		 * up the hotplug control thread which might wait for the
8841 		 * last task to vanish. The rcuwait_active() check is
8842 		 * accurate here because the waiter is pinned on this CPU
8843 		 * and can't obviously be running in parallel.
8844 		 *
8845 		 * On RT kernels this also has to check whether there are
8846 		 * pinned and scheduled out tasks on the runqueue. They
8847 		 * need to leave the migrate disabled section first.
8848 		 */
8849 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8850 		    rcuwait_active(&rq->hotplug_wait)) {
8851 			raw_spin_rq_unlock(rq);
8852 			rcuwait_wake_up(&rq->hotplug_wait);
8853 			raw_spin_rq_lock(rq);
8854 		}
8855 		return;
8856 	}
8857 
8858 	get_task_struct(push_task);
8859 	/*
8860 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8861 	 * Both preemption and IRQs are still disabled.
8862 	 */
8863 	raw_spin_rq_unlock(rq);
8864 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8865 			    this_cpu_ptr(&push_work));
8866 	/*
8867 	 * At this point need_resched() is true and we'll take the loop in
8868 	 * schedule(). The next pick is obviously going to be the stop task
8869 	 * which kthread_is_per_cpu() and will push this task away.
8870 	 */
8871 	raw_spin_rq_lock(rq);
8872 }
8873 
8874 static void balance_push_set(int cpu, bool on)
8875 {
8876 	struct rq *rq = cpu_rq(cpu);
8877 	struct rq_flags rf;
8878 
8879 	rq_lock_irqsave(rq, &rf);
8880 	if (on) {
8881 		WARN_ON_ONCE(rq->balance_callback);
8882 		rq->balance_callback = &balance_push_callback;
8883 	} else if (rq->balance_callback == &balance_push_callback) {
8884 		rq->balance_callback = NULL;
8885 	}
8886 	rq_unlock_irqrestore(rq, &rf);
8887 }
8888 
8889 /*
8890  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8891  * inactive. All tasks which are not per CPU kernel threads are either
8892  * pushed off this CPU now via balance_push() or placed on a different CPU
8893  * during wakeup. Wait until the CPU is quiescent.
8894  */
8895 static void balance_hotplug_wait(void)
8896 {
8897 	struct rq *rq = this_rq();
8898 
8899 	rcuwait_wait_event(&rq->hotplug_wait,
8900 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8901 			   TASK_UNINTERRUPTIBLE);
8902 }
8903 
8904 #else
8905 
8906 static inline void balance_push(struct rq *rq)
8907 {
8908 }
8909 
8910 static inline void balance_push_set(int cpu, bool on)
8911 {
8912 }
8913 
8914 static inline void balance_hotplug_wait(void)
8915 {
8916 }
8917 
8918 #endif /* CONFIG_HOTPLUG_CPU */
8919 
8920 void set_rq_online(struct rq *rq)
8921 {
8922 	if (!rq->online) {
8923 		const struct sched_class *class;
8924 
8925 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8926 		rq->online = 1;
8927 
8928 		for_each_class(class) {
8929 			if (class->rq_online)
8930 				class->rq_online(rq);
8931 		}
8932 	}
8933 }
8934 
8935 void set_rq_offline(struct rq *rq)
8936 {
8937 	if (rq->online) {
8938 		const struct sched_class *class;
8939 
8940 		for_each_class(class) {
8941 			if (class->rq_offline)
8942 				class->rq_offline(rq);
8943 		}
8944 
8945 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8946 		rq->online = 0;
8947 	}
8948 }
8949 
8950 /*
8951  * used to mark begin/end of suspend/resume:
8952  */
8953 static int num_cpus_frozen;
8954 
8955 /*
8956  * Update cpusets according to cpu_active mask.  If cpusets are
8957  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8958  * around partition_sched_domains().
8959  *
8960  * If we come here as part of a suspend/resume, don't touch cpusets because we
8961  * want to restore it back to its original state upon resume anyway.
8962  */
8963 static void cpuset_cpu_active(void)
8964 {
8965 	if (cpuhp_tasks_frozen) {
8966 		/*
8967 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8968 		 * resume sequence. As long as this is not the last online
8969 		 * operation in the resume sequence, just build a single sched
8970 		 * domain, ignoring cpusets.
8971 		 */
8972 		partition_sched_domains(1, NULL, NULL);
8973 		if (--num_cpus_frozen)
8974 			return;
8975 		/*
8976 		 * This is the last CPU online operation. So fall through and
8977 		 * restore the original sched domains by considering the
8978 		 * cpuset configurations.
8979 		 */
8980 		cpuset_force_rebuild();
8981 	}
8982 	cpuset_update_active_cpus();
8983 }
8984 
8985 static int cpuset_cpu_inactive(unsigned int cpu)
8986 {
8987 	if (!cpuhp_tasks_frozen) {
8988 		if (dl_cpu_busy(cpu))
8989 			return -EBUSY;
8990 		cpuset_update_active_cpus();
8991 	} else {
8992 		num_cpus_frozen++;
8993 		partition_sched_domains(1, NULL, NULL);
8994 	}
8995 	return 0;
8996 }
8997 
8998 int sched_cpu_activate(unsigned int cpu)
8999 {
9000 	struct rq *rq = cpu_rq(cpu);
9001 	struct rq_flags rf;
9002 
9003 	/*
9004 	 * Clear the balance_push callback and prepare to schedule
9005 	 * regular tasks.
9006 	 */
9007 	balance_push_set(cpu, false);
9008 
9009 #ifdef CONFIG_SCHED_SMT
9010 	/*
9011 	 * When going up, increment the number of cores with SMT present.
9012 	 */
9013 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9014 		static_branch_inc_cpuslocked(&sched_smt_present);
9015 #endif
9016 	set_cpu_active(cpu, true);
9017 
9018 	if (sched_smp_initialized) {
9019 		sched_domains_numa_masks_set(cpu);
9020 		cpuset_cpu_active();
9021 	}
9022 
9023 	/*
9024 	 * Put the rq online, if not already. This happens:
9025 	 *
9026 	 * 1) In the early boot process, because we build the real domains
9027 	 *    after all CPUs have been brought up.
9028 	 *
9029 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9030 	 *    domains.
9031 	 */
9032 	rq_lock_irqsave(rq, &rf);
9033 	if (rq->rd) {
9034 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9035 		set_rq_online(rq);
9036 	}
9037 	rq_unlock_irqrestore(rq, &rf);
9038 
9039 	return 0;
9040 }
9041 
9042 int sched_cpu_deactivate(unsigned int cpu)
9043 {
9044 	struct rq *rq = cpu_rq(cpu);
9045 	struct rq_flags rf;
9046 	int ret;
9047 
9048 	/*
9049 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9050 	 * load balancing when not active
9051 	 */
9052 	nohz_balance_exit_idle(rq);
9053 
9054 	set_cpu_active(cpu, false);
9055 
9056 	/*
9057 	 * From this point forward, this CPU will refuse to run any task that
9058 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9059 	 * push those tasks away until this gets cleared, see
9060 	 * sched_cpu_dying().
9061 	 */
9062 	balance_push_set(cpu, true);
9063 
9064 	/*
9065 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9066 	 * preempt-disabled and RCU users of this state to go away such that
9067 	 * all new such users will observe it.
9068 	 *
9069 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9070 	 * ttwu_queue_cond() and is_cpu_allowed().
9071 	 *
9072 	 * Do sync before park smpboot threads to take care the rcu boost case.
9073 	 */
9074 	synchronize_rcu();
9075 
9076 	rq_lock_irqsave(rq, &rf);
9077 	if (rq->rd) {
9078 		update_rq_clock(rq);
9079 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9080 		set_rq_offline(rq);
9081 	}
9082 	rq_unlock_irqrestore(rq, &rf);
9083 
9084 #ifdef CONFIG_SCHED_SMT
9085 	/*
9086 	 * When going down, decrement the number of cores with SMT present.
9087 	 */
9088 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9089 		static_branch_dec_cpuslocked(&sched_smt_present);
9090 
9091 	sched_core_cpu_deactivate(cpu);
9092 #endif
9093 
9094 	if (!sched_smp_initialized)
9095 		return 0;
9096 
9097 	ret = cpuset_cpu_inactive(cpu);
9098 	if (ret) {
9099 		balance_push_set(cpu, false);
9100 		set_cpu_active(cpu, true);
9101 		return ret;
9102 	}
9103 	sched_domains_numa_masks_clear(cpu);
9104 	return 0;
9105 }
9106 
9107 static void sched_rq_cpu_starting(unsigned int cpu)
9108 {
9109 	struct rq *rq = cpu_rq(cpu);
9110 
9111 	rq->calc_load_update = calc_load_update;
9112 	update_max_interval();
9113 }
9114 
9115 int sched_cpu_starting(unsigned int cpu)
9116 {
9117 	sched_core_cpu_starting(cpu);
9118 	sched_rq_cpu_starting(cpu);
9119 	sched_tick_start(cpu);
9120 	return 0;
9121 }
9122 
9123 #ifdef CONFIG_HOTPLUG_CPU
9124 
9125 /*
9126  * Invoked immediately before the stopper thread is invoked to bring the
9127  * CPU down completely. At this point all per CPU kthreads except the
9128  * hotplug thread (current) and the stopper thread (inactive) have been
9129  * either parked or have been unbound from the outgoing CPU. Ensure that
9130  * any of those which might be on the way out are gone.
9131  *
9132  * If after this point a bound task is being woken on this CPU then the
9133  * responsible hotplug callback has failed to do it's job.
9134  * sched_cpu_dying() will catch it with the appropriate fireworks.
9135  */
9136 int sched_cpu_wait_empty(unsigned int cpu)
9137 {
9138 	balance_hotplug_wait();
9139 	return 0;
9140 }
9141 
9142 /*
9143  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9144  * might have. Called from the CPU stopper task after ensuring that the
9145  * stopper is the last running task on the CPU, so nr_active count is
9146  * stable. We need to take the teardown thread which is calling this into
9147  * account, so we hand in adjust = 1 to the load calculation.
9148  *
9149  * Also see the comment "Global load-average calculations".
9150  */
9151 static void calc_load_migrate(struct rq *rq)
9152 {
9153 	long delta = calc_load_fold_active(rq, 1);
9154 
9155 	if (delta)
9156 		atomic_long_add(delta, &calc_load_tasks);
9157 }
9158 
9159 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9160 {
9161 	struct task_struct *g, *p;
9162 	int cpu = cpu_of(rq);
9163 
9164 	lockdep_assert_rq_held(rq);
9165 
9166 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9167 	for_each_process_thread(g, p) {
9168 		if (task_cpu(p) != cpu)
9169 			continue;
9170 
9171 		if (!task_on_rq_queued(p))
9172 			continue;
9173 
9174 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9175 	}
9176 }
9177 
9178 int sched_cpu_dying(unsigned int cpu)
9179 {
9180 	struct rq *rq = cpu_rq(cpu);
9181 	struct rq_flags rf;
9182 
9183 	/* Handle pending wakeups and then migrate everything off */
9184 	sched_tick_stop(cpu);
9185 
9186 	rq_lock_irqsave(rq, &rf);
9187 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9188 		WARN(true, "Dying CPU not properly vacated!");
9189 		dump_rq_tasks(rq, KERN_WARNING);
9190 	}
9191 	rq_unlock_irqrestore(rq, &rf);
9192 
9193 	calc_load_migrate(rq);
9194 	update_max_interval();
9195 	hrtick_clear(rq);
9196 	sched_core_cpu_dying(cpu);
9197 	return 0;
9198 }
9199 #endif
9200 
9201 void __init sched_init_smp(void)
9202 {
9203 	sched_init_numa();
9204 
9205 	/*
9206 	 * There's no userspace yet to cause hotplug operations; hence all the
9207 	 * CPU masks are stable and all blatant races in the below code cannot
9208 	 * happen.
9209 	 */
9210 	mutex_lock(&sched_domains_mutex);
9211 	sched_init_domains(cpu_active_mask);
9212 	mutex_unlock(&sched_domains_mutex);
9213 
9214 	/* Move init over to a non-isolated CPU */
9215 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9216 		BUG();
9217 	current->flags &= ~PF_NO_SETAFFINITY;
9218 	sched_init_granularity();
9219 
9220 	init_sched_rt_class();
9221 	init_sched_dl_class();
9222 
9223 	sched_smp_initialized = true;
9224 }
9225 
9226 static int __init migration_init(void)
9227 {
9228 	sched_cpu_starting(smp_processor_id());
9229 	return 0;
9230 }
9231 early_initcall(migration_init);
9232 
9233 #else
9234 void __init sched_init_smp(void)
9235 {
9236 	sched_init_granularity();
9237 }
9238 #endif /* CONFIG_SMP */
9239 
9240 int in_sched_functions(unsigned long addr)
9241 {
9242 	return in_lock_functions(addr) ||
9243 		(addr >= (unsigned long)__sched_text_start
9244 		&& addr < (unsigned long)__sched_text_end);
9245 }
9246 
9247 #ifdef CONFIG_CGROUP_SCHED
9248 /*
9249  * Default task group.
9250  * Every task in system belongs to this group at bootup.
9251  */
9252 struct task_group root_task_group;
9253 LIST_HEAD(task_groups);
9254 
9255 /* Cacheline aligned slab cache for task_group */
9256 static struct kmem_cache *task_group_cache __read_mostly;
9257 #endif
9258 
9259 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9260 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9261 
9262 void __init sched_init(void)
9263 {
9264 	unsigned long ptr = 0;
9265 	int i;
9266 
9267 	/* Make sure the linker didn't screw up */
9268 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9269 	       &fair_sched_class + 1 != &rt_sched_class ||
9270 	       &rt_sched_class + 1   != &dl_sched_class);
9271 #ifdef CONFIG_SMP
9272 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9273 #endif
9274 
9275 	wait_bit_init();
9276 
9277 #ifdef CONFIG_FAIR_GROUP_SCHED
9278 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9279 #endif
9280 #ifdef CONFIG_RT_GROUP_SCHED
9281 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9282 #endif
9283 	if (ptr) {
9284 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9285 
9286 #ifdef CONFIG_FAIR_GROUP_SCHED
9287 		root_task_group.se = (struct sched_entity **)ptr;
9288 		ptr += nr_cpu_ids * sizeof(void **);
9289 
9290 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9291 		ptr += nr_cpu_ids * sizeof(void **);
9292 
9293 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9294 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9295 #endif /* CONFIG_FAIR_GROUP_SCHED */
9296 #ifdef CONFIG_RT_GROUP_SCHED
9297 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9298 		ptr += nr_cpu_ids * sizeof(void **);
9299 
9300 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9301 		ptr += nr_cpu_ids * sizeof(void **);
9302 
9303 #endif /* CONFIG_RT_GROUP_SCHED */
9304 	}
9305 #ifdef CONFIG_CPUMASK_OFFSTACK
9306 	for_each_possible_cpu(i) {
9307 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9308 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9309 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9310 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9311 	}
9312 #endif /* CONFIG_CPUMASK_OFFSTACK */
9313 
9314 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9315 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9316 
9317 #ifdef CONFIG_SMP
9318 	init_defrootdomain();
9319 #endif
9320 
9321 #ifdef CONFIG_RT_GROUP_SCHED
9322 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9323 			global_rt_period(), global_rt_runtime());
9324 #endif /* CONFIG_RT_GROUP_SCHED */
9325 
9326 #ifdef CONFIG_CGROUP_SCHED
9327 	task_group_cache = KMEM_CACHE(task_group, 0);
9328 
9329 	list_add(&root_task_group.list, &task_groups);
9330 	INIT_LIST_HEAD(&root_task_group.children);
9331 	INIT_LIST_HEAD(&root_task_group.siblings);
9332 	autogroup_init(&init_task);
9333 #endif /* CONFIG_CGROUP_SCHED */
9334 
9335 	for_each_possible_cpu(i) {
9336 		struct rq *rq;
9337 
9338 		rq = cpu_rq(i);
9339 		raw_spin_lock_init(&rq->__lock);
9340 		rq->nr_running = 0;
9341 		rq->calc_load_active = 0;
9342 		rq->calc_load_update = jiffies + LOAD_FREQ;
9343 		init_cfs_rq(&rq->cfs);
9344 		init_rt_rq(&rq->rt);
9345 		init_dl_rq(&rq->dl);
9346 #ifdef CONFIG_FAIR_GROUP_SCHED
9347 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9348 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9349 		/*
9350 		 * How much CPU bandwidth does root_task_group get?
9351 		 *
9352 		 * In case of task-groups formed thr' the cgroup filesystem, it
9353 		 * gets 100% of the CPU resources in the system. This overall
9354 		 * system CPU resource is divided among the tasks of
9355 		 * root_task_group and its child task-groups in a fair manner,
9356 		 * based on each entity's (task or task-group's) weight
9357 		 * (se->load.weight).
9358 		 *
9359 		 * In other words, if root_task_group has 10 tasks of weight
9360 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9361 		 * then A0's share of the CPU resource is:
9362 		 *
9363 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9364 		 *
9365 		 * We achieve this by letting root_task_group's tasks sit
9366 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9367 		 */
9368 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9369 #endif /* CONFIG_FAIR_GROUP_SCHED */
9370 
9371 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9372 #ifdef CONFIG_RT_GROUP_SCHED
9373 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9374 #endif
9375 #ifdef CONFIG_SMP
9376 		rq->sd = NULL;
9377 		rq->rd = NULL;
9378 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9379 		rq->balance_callback = &balance_push_callback;
9380 		rq->active_balance = 0;
9381 		rq->next_balance = jiffies;
9382 		rq->push_cpu = 0;
9383 		rq->cpu = i;
9384 		rq->online = 0;
9385 		rq->idle_stamp = 0;
9386 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9387 		rq->wake_stamp = jiffies;
9388 		rq->wake_avg_idle = rq->avg_idle;
9389 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9390 
9391 		INIT_LIST_HEAD(&rq->cfs_tasks);
9392 
9393 		rq_attach_root(rq, &def_root_domain);
9394 #ifdef CONFIG_NO_HZ_COMMON
9395 		rq->last_blocked_load_update_tick = jiffies;
9396 		atomic_set(&rq->nohz_flags, 0);
9397 
9398 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9399 #endif
9400 #ifdef CONFIG_HOTPLUG_CPU
9401 		rcuwait_init(&rq->hotplug_wait);
9402 #endif
9403 #endif /* CONFIG_SMP */
9404 		hrtick_rq_init(rq);
9405 		atomic_set(&rq->nr_iowait, 0);
9406 
9407 #ifdef CONFIG_SCHED_CORE
9408 		rq->core = rq;
9409 		rq->core_pick = NULL;
9410 		rq->core_enabled = 0;
9411 		rq->core_tree = RB_ROOT;
9412 		rq->core_forceidle = false;
9413 
9414 		rq->core_cookie = 0UL;
9415 #endif
9416 	}
9417 
9418 	set_load_weight(&init_task, false);
9419 
9420 	/*
9421 	 * The boot idle thread does lazy MMU switching as well:
9422 	 */
9423 	mmgrab(&init_mm);
9424 	enter_lazy_tlb(&init_mm, current);
9425 
9426 	/*
9427 	 * Make us the idle thread. Technically, schedule() should not be
9428 	 * called from this thread, however somewhere below it might be,
9429 	 * but because we are the idle thread, we just pick up running again
9430 	 * when this runqueue becomes "idle".
9431 	 */
9432 	init_idle(current, smp_processor_id());
9433 
9434 	calc_load_update = jiffies + LOAD_FREQ;
9435 
9436 #ifdef CONFIG_SMP
9437 	idle_thread_set_boot_cpu();
9438 	balance_push_set(smp_processor_id(), false);
9439 #endif
9440 	init_sched_fair_class();
9441 
9442 	psi_init();
9443 
9444 	init_uclamp();
9445 
9446 	preempt_dynamic_init();
9447 
9448 	scheduler_running = 1;
9449 }
9450 
9451 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9452 
9453 void __might_sleep(const char *file, int line)
9454 {
9455 	unsigned int state = get_current_state();
9456 	/*
9457 	 * Blocking primitives will set (and therefore destroy) current->state,
9458 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9459 	 * otherwise we will destroy state.
9460 	 */
9461 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9462 			"do not call blocking ops when !TASK_RUNNING; "
9463 			"state=%x set at [<%p>] %pS\n", state,
9464 			(void *)current->task_state_change,
9465 			(void *)current->task_state_change);
9466 
9467 	__might_resched(file, line, 0);
9468 }
9469 EXPORT_SYMBOL(__might_sleep);
9470 
9471 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9472 {
9473 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9474 		return;
9475 
9476 	if (preempt_count() == preempt_offset)
9477 		return;
9478 
9479 	pr_err("Preemption disabled at:");
9480 	print_ip_sym(KERN_ERR, ip);
9481 }
9482 
9483 static inline bool resched_offsets_ok(unsigned int offsets)
9484 {
9485 	unsigned int nested = preempt_count();
9486 
9487 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9488 
9489 	return nested == offsets;
9490 }
9491 
9492 void __might_resched(const char *file, int line, unsigned int offsets)
9493 {
9494 	/* Ratelimiting timestamp: */
9495 	static unsigned long prev_jiffy;
9496 
9497 	unsigned long preempt_disable_ip;
9498 
9499 	/* WARN_ON_ONCE() by default, no rate limit required: */
9500 	rcu_sleep_check();
9501 
9502 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9503 	     !is_idle_task(current) && !current->non_block_count) ||
9504 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9505 	    oops_in_progress)
9506 		return;
9507 
9508 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9509 		return;
9510 	prev_jiffy = jiffies;
9511 
9512 	/* Save this before calling printk(), since that will clobber it: */
9513 	preempt_disable_ip = get_preempt_disable_ip(current);
9514 
9515 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9516 	       file, line);
9517 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9518 	       in_atomic(), irqs_disabled(), current->non_block_count,
9519 	       current->pid, current->comm);
9520 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9521 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9522 
9523 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9524 		pr_err("RCU nest depth: %d, expected: %u\n",
9525 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9526 	}
9527 
9528 	if (task_stack_end_corrupted(current))
9529 		pr_emerg("Thread overran stack, or stack corrupted\n");
9530 
9531 	debug_show_held_locks(current);
9532 	if (irqs_disabled())
9533 		print_irqtrace_events(current);
9534 
9535 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9536 				 preempt_disable_ip);
9537 
9538 	dump_stack();
9539 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9540 }
9541 EXPORT_SYMBOL(__might_resched);
9542 
9543 void __cant_sleep(const char *file, int line, int preempt_offset)
9544 {
9545 	static unsigned long prev_jiffy;
9546 
9547 	if (irqs_disabled())
9548 		return;
9549 
9550 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9551 		return;
9552 
9553 	if (preempt_count() > preempt_offset)
9554 		return;
9555 
9556 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9557 		return;
9558 	prev_jiffy = jiffies;
9559 
9560 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9561 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9562 			in_atomic(), irqs_disabled(),
9563 			current->pid, current->comm);
9564 
9565 	debug_show_held_locks(current);
9566 	dump_stack();
9567 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9568 }
9569 EXPORT_SYMBOL_GPL(__cant_sleep);
9570 
9571 #ifdef CONFIG_SMP
9572 void __cant_migrate(const char *file, int line)
9573 {
9574 	static unsigned long prev_jiffy;
9575 
9576 	if (irqs_disabled())
9577 		return;
9578 
9579 	if (is_migration_disabled(current))
9580 		return;
9581 
9582 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9583 		return;
9584 
9585 	if (preempt_count() > 0)
9586 		return;
9587 
9588 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9589 		return;
9590 	prev_jiffy = jiffies;
9591 
9592 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9593 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9594 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9595 	       current->pid, current->comm);
9596 
9597 	debug_show_held_locks(current);
9598 	dump_stack();
9599 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9600 }
9601 EXPORT_SYMBOL_GPL(__cant_migrate);
9602 #endif
9603 #endif
9604 
9605 #ifdef CONFIG_MAGIC_SYSRQ
9606 void normalize_rt_tasks(void)
9607 {
9608 	struct task_struct *g, *p;
9609 	struct sched_attr attr = {
9610 		.sched_policy = SCHED_NORMAL,
9611 	};
9612 
9613 	read_lock(&tasklist_lock);
9614 	for_each_process_thread(g, p) {
9615 		/*
9616 		 * Only normalize user tasks:
9617 		 */
9618 		if (p->flags & PF_KTHREAD)
9619 			continue;
9620 
9621 		p->se.exec_start = 0;
9622 		schedstat_set(p->stats.wait_start,  0);
9623 		schedstat_set(p->stats.sleep_start, 0);
9624 		schedstat_set(p->stats.block_start, 0);
9625 
9626 		if (!dl_task(p) && !rt_task(p)) {
9627 			/*
9628 			 * Renice negative nice level userspace
9629 			 * tasks back to 0:
9630 			 */
9631 			if (task_nice(p) < 0)
9632 				set_user_nice(p, 0);
9633 			continue;
9634 		}
9635 
9636 		__sched_setscheduler(p, &attr, false, false);
9637 	}
9638 	read_unlock(&tasklist_lock);
9639 }
9640 
9641 #endif /* CONFIG_MAGIC_SYSRQ */
9642 
9643 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9644 /*
9645  * These functions are only useful for the IA64 MCA handling, or kdb.
9646  *
9647  * They can only be called when the whole system has been
9648  * stopped - every CPU needs to be quiescent, and no scheduling
9649  * activity can take place. Using them for anything else would
9650  * be a serious bug, and as a result, they aren't even visible
9651  * under any other configuration.
9652  */
9653 
9654 /**
9655  * curr_task - return the current task for a given CPU.
9656  * @cpu: the processor in question.
9657  *
9658  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9659  *
9660  * Return: The current task for @cpu.
9661  */
9662 struct task_struct *curr_task(int cpu)
9663 {
9664 	return cpu_curr(cpu);
9665 }
9666 
9667 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9668 
9669 #ifdef CONFIG_IA64
9670 /**
9671  * ia64_set_curr_task - set the current task for a given CPU.
9672  * @cpu: the processor in question.
9673  * @p: the task pointer to set.
9674  *
9675  * Description: This function must only be used when non-maskable interrupts
9676  * are serviced on a separate stack. It allows the architecture to switch the
9677  * notion of the current task on a CPU in a non-blocking manner. This function
9678  * must be called with all CPU's synchronized, and interrupts disabled, the
9679  * and caller must save the original value of the current task (see
9680  * curr_task() above) and restore that value before reenabling interrupts and
9681  * re-starting the system.
9682  *
9683  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684  */
9685 void ia64_set_curr_task(int cpu, struct task_struct *p)
9686 {
9687 	cpu_curr(cpu) = p;
9688 }
9689 
9690 #endif
9691 
9692 #ifdef CONFIG_CGROUP_SCHED
9693 /* task_group_lock serializes the addition/removal of task groups */
9694 static DEFINE_SPINLOCK(task_group_lock);
9695 
9696 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9697 					    struct task_group *parent)
9698 {
9699 #ifdef CONFIG_UCLAMP_TASK_GROUP
9700 	enum uclamp_id clamp_id;
9701 
9702 	for_each_clamp_id(clamp_id) {
9703 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9704 			      uclamp_none(clamp_id), false);
9705 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9706 	}
9707 #endif
9708 }
9709 
9710 static void sched_free_group(struct task_group *tg)
9711 {
9712 	free_fair_sched_group(tg);
9713 	free_rt_sched_group(tg);
9714 	autogroup_free(tg);
9715 	kmem_cache_free(task_group_cache, tg);
9716 }
9717 
9718 static void sched_free_group_rcu(struct rcu_head *rcu)
9719 {
9720 	sched_free_group(container_of(rcu, struct task_group, rcu));
9721 }
9722 
9723 static void sched_unregister_group(struct task_group *tg)
9724 {
9725 	unregister_fair_sched_group(tg);
9726 	unregister_rt_sched_group(tg);
9727 	/*
9728 	 * We have to wait for yet another RCU grace period to expire, as
9729 	 * print_cfs_stats() might run concurrently.
9730 	 */
9731 	call_rcu(&tg->rcu, sched_free_group_rcu);
9732 }
9733 
9734 /* allocate runqueue etc for a new task group */
9735 struct task_group *sched_create_group(struct task_group *parent)
9736 {
9737 	struct task_group *tg;
9738 
9739 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9740 	if (!tg)
9741 		return ERR_PTR(-ENOMEM);
9742 
9743 	if (!alloc_fair_sched_group(tg, parent))
9744 		goto err;
9745 
9746 	if (!alloc_rt_sched_group(tg, parent))
9747 		goto err;
9748 
9749 	alloc_uclamp_sched_group(tg, parent);
9750 
9751 	return tg;
9752 
9753 err:
9754 	sched_free_group(tg);
9755 	return ERR_PTR(-ENOMEM);
9756 }
9757 
9758 void sched_online_group(struct task_group *tg, struct task_group *parent)
9759 {
9760 	unsigned long flags;
9761 
9762 	spin_lock_irqsave(&task_group_lock, flags);
9763 	list_add_rcu(&tg->list, &task_groups);
9764 
9765 	/* Root should already exist: */
9766 	WARN_ON(!parent);
9767 
9768 	tg->parent = parent;
9769 	INIT_LIST_HEAD(&tg->children);
9770 	list_add_rcu(&tg->siblings, &parent->children);
9771 	spin_unlock_irqrestore(&task_group_lock, flags);
9772 
9773 	online_fair_sched_group(tg);
9774 }
9775 
9776 /* rcu callback to free various structures associated with a task group */
9777 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9778 {
9779 	/* Now it should be safe to free those cfs_rqs: */
9780 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9781 }
9782 
9783 void sched_destroy_group(struct task_group *tg)
9784 {
9785 	/* Wait for possible concurrent references to cfs_rqs complete: */
9786 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9787 }
9788 
9789 void sched_release_group(struct task_group *tg)
9790 {
9791 	unsigned long flags;
9792 
9793 	/*
9794 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9795 	 * sched_cfs_period_timer()).
9796 	 *
9797 	 * For this to be effective, we have to wait for all pending users of
9798 	 * this task group to leave their RCU critical section to ensure no new
9799 	 * user will see our dying task group any more. Specifically ensure
9800 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9801 	 *
9802 	 * We therefore defer calling unregister_fair_sched_group() to
9803 	 * sched_unregister_group() which is guarantied to get called only after the
9804 	 * current RCU grace period has expired.
9805 	 */
9806 	spin_lock_irqsave(&task_group_lock, flags);
9807 	list_del_rcu(&tg->list);
9808 	list_del_rcu(&tg->siblings);
9809 	spin_unlock_irqrestore(&task_group_lock, flags);
9810 }
9811 
9812 static void sched_change_group(struct task_struct *tsk, int type)
9813 {
9814 	struct task_group *tg;
9815 
9816 	/*
9817 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9818 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9819 	 * to prevent lockdep warnings.
9820 	 */
9821 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9822 			  struct task_group, css);
9823 	tg = autogroup_task_group(tsk, tg);
9824 	tsk->sched_task_group = tg;
9825 
9826 #ifdef CONFIG_FAIR_GROUP_SCHED
9827 	if (tsk->sched_class->task_change_group)
9828 		tsk->sched_class->task_change_group(tsk, type);
9829 	else
9830 #endif
9831 		set_task_rq(tsk, task_cpu(tsk));
9832 }
9833 
9834 /*
9835  * Change task's runqueue when it moves between groups.
9836  *
9837  * The caller of this function should have put the task in its new group by
9838  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9839  * its new group.
9840  */
9841 void sched_move_task(struct task_struct *tsk)
9842 {
9843 	int queued, running, queue_flags =
9844 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9845 	struct rq_flags rf;
9846 	struct rq *rq;
9847 
9848 	rq = task_rq_lock(tsk, &rf);
9849 	update_rq_clock(rq);
9850 
9851 	running = task_current(rq, tsk);
9852 	queued = task_on_rq_queued(tsk);
9853 
9854 	if (queued)
9855 		dequeue_task(rq, tsk, queue_flags);
9856 	if (running)
9857 		put_prev_task(rq, tsk);
9858 
9859 	sched_change_group(tsk, TASK_MOVE_GROUP);
9860 
9861 	if (queued)
9862 		enqueue_task(rq, tsk, queue_flags);
9863 	if (running) {
9864 		set_next_task(rq, tsk);
9865 		/*
9866 		 * After changing group, the running task may have joined a
9867 		 * throttled one but it's still the running task. Trigger a
9868 		 * resched to make sure that task can still run.
9869 		 */
9870 		resched_curr(rq);
9871 	}
9872 
9873 	task_rq_unlock(rq, tsk, &rf);
9874 }
9875 
9876 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9877 {
9878 	return css ? container_of(css, struct task_group, css) : NULL;
9879 }
9880 
9881 static struct cgroup_subsys_state *
9882 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9883 {
9884 	struct task_group *parent = css_tg(parent_css);
9885 	struct task_group *tg;
9886 
9887 	if (!parent) {
9888 		/* This is early initialization for the top cgroup */
9889 		return &root_task_group.css;
9890 	}
9891 
9892 	tg = sched_create_group(parent);
9893 	if (IS_ERR(tg))
9894 		return ERR_PTR(-ENOMEM);
9895 
9896 	return &tg->css;
9897 }
9898 
9899 /* Expose task group only after completing cgroup initialization */
9900 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9901 {
9902 	struct task_group *tg = css_tg(css);
9903 	struct task_group *parent = css_tg(css->parent);
9904 
9905 	if (parent)
9906 		sched_online_group(tg, parent);
9907 
9908 #ifdef CONFIG_UCLAMP_TASK_GROUP
9909 	/* Propagate the effective uclamp value for the new group */
9910 	mutex_lock(&uclamp_mutex);
9911 	rcu_read_lock();
9912 	cpu_util_update_eff(css);
9913 	rcu_read_unlock();
9914 	mutex_unlock(&uclamp_mutex);
9915 #endif
9916 
9917 	return 0;
9918 }
9919 
9920 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9921 {
9922 	struct task_group *tg = css_tg(css);
9923 
9924 	sched_release_group(tg);
9925 }
9926 
9927 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9928 {
9929 	struct task_group *tg = css_tg(css);
9930 
9931 	/*
9932 	 * Relies on the RCU grace period between css_released() and this.
9933 	 */
9934 	sched_unregister_group(tg);
9935 }
9936 
9937 /*
9938  * This is called before wake_up_new_task(), therefore we really only
9939  * have to set its group bits, all the other stuff does not apply.
9940  */
9941 static void cpu_cgroup_fork(struct task_struct *task)
9942 {
9943 	struct rq_flags rf;
9944 	struct rq *rq;
9945 
9946 	rq = task_rq_lock(task, &rf);
9947 
9948 	update_rq_clock(rq);
9949 	sched_change_group(task, TASK_SET_GROUP);
9950 
9951 	task_rq_unlock(rq, task, &rf);
9952 }
9953 
9954 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9955 {
9956 	struct task_struct *task;
9957 	struct cgroup_subsys_state *css;
9958 	int ret = 0;
9959 
9960 	cgroup_taskset_for_each(task, css, tset) {
9961 #ifdef CONFIG_RT_GROUP_SCHED
9962 		if (!sched_rt_can_attach(css_tg(css), task))
9963 			return -EINVAL;
9964 #endif
9965 		/*
9966 		 * Serialize against wake_up_new_task() such that if it's
9967 		 * running, we're sure to observe its full state.
9968 		 */
9969 		raw_spin_lock_irq(&task->pi_lock);
9970 		/*
9971 		 * Avoid calling sched_move_task() before wake_up_new_task()
9972 		 * has happened. This would lead to problems with PELT, due to
9973 		 * move wanting to detach+attach while we're not attached yet.
9974 		 */
9975 		if (READ_ONCE(task->__state) == TASK_NEW)
9976 			ret = -EINVAL;
9977 		raw_spin_unlock_irq(&task->pi_lock);
9978 
9979 		if (ret)
9980 			break;
9981 	}
9982 	return ret;
9983 }
9984 
9985 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9986 {
9987 	struct task_struct *task;
9988 	struct cgroup_subsys_state *css;
9989 
9990 	cgroup_taskset_for_each(task, css, tset)
9991 		sched_move_task(task);
9992 }
9993 
9994 #ifdef CONFIG_UCLAMP_TASK_GROUP
9995 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9996 {
9997 	struct cgroup_subsys_state *top_css = css;
9998 	struct uclamp_se *uc_parent = NULL;
9999 	struct uclamp_se *uc_se = NULL;
10000 	unsigned int eff[UCLAMP_CNT];
10001 	enum uclamp_id clamp_id;
10002 	unsigned int clamps;
10003 
10004 	lockdep_assert_held(&uclamp_mutex);
10005 	SCHED_WARN_ON(!rcu_read_lock_held());
10006 
10007 	css_for_each_descendant_pre(css, top_css) {
10008 		uc_parent = css_tg(css)->parent
10009 			? css_tg(css)->parent->uclamp : NULL;
10010 
10011 		for_each_clamp_id(clamp_id) {
10012 			/* Assume effective clamps matches requested clamps */
10013 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10014 			/* Cap effective clamps with parent's effective clamps */
10015 			if (uc_parent &&
10016 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10017 				eff[clamp_id] = uc_parent[clamp_id].value;
10018 			}
10019 		}
10020 		/* Ensure protection is always capped by limit */
10021 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10022 
10023 		/* Propagate most restrictive effective clamps */
10024 		clamps = 0x0;
10025 		uc_se = css_tg(css)->uclamp;
10026 		for_each_clamp_id(clamp_id) {
10027 			if (eff[clamp_id] == uc_se[clamp_id].value)
10028 				continue;
10029 			uc_se[clamp_id].value = eff[clamp_id];
10030 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10031 			clamps |= (0x1 << clamp_id);
10032 		}
10033 		if (!clamps) {
10034 			css = css_rightmost_descendant(css);
10035 			continue;
10036 		}
10037 
10038 		/* Immediately update descendants RUNNABLE tasks */
10039 		uclamp_update_active_tasks(css);
10040 	}
10041 }
10042 
10043 /*
10044  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10045  * C expression. Since there is no way to convert a macro argument (N) into a
10046  * character constant, use two levels of macros.
10047  */
10048 #define _POW10(exp) ((unsigned int)1e##exp)
10049 #define POW10(exp) _POW10(exp)
10050 
10051 struct uclamp_request {
10052 #define UCLAMP_PERCENT_SHIFT	2
10053 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10054 	s64 percent;
10055 	u64 util;
10056 	int ret;
10057 };
10058 
10059 static inline struct uclamp_request
10060 capacity_from_percent(char *buf)
10061 {
10062 	struct uclamp_request req = {
10063 		.percent = UCLAMP_PERCENT_SCALE,
10064 		.util = SCHED_CAPACITY_SCALE,
10065 		.ret = 0,
10066 	};
10067 
10068 	buf = strim(buf);
10069 	if (strcmp(buf, "max")) {
10070 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10071 					     &req.percent);
10072 		if (req.ret)
10073 			return req;
10074 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10075 			req.ret = -ERANGE;
10076 			return req;
10077 		}
10078 
10079 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10080 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10081 	}
10082 
10083 	return req;
10084 }
10085 
10086 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10087 				size_t nbytes, loff_t off,
10088 				enum uclamp_id clamp_id)
10089 {
10090 	struct uclamp_request req;
10091 	struct task_group *tg;
10092 
10093 	req = capacity_from_percent(buf);
10094 	if (req.ret)
10095 		return req.ret;
10096 
10097 	static_branch_enable(&sched_uclamp_used);
10098 
10099 	mutex_lock(&uclamp_mutex);
10100 	rcu_read_lock();
10101 
10102 	tg = css_tg(of_css(of));
10103 	if (tg->uclamp_req[clamp_id].value != req.util)
10104 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10105 
10106 	/*
10107 	 * Because of not recoverable conversion rounding we keep track of the
10108 	 * exact requested value
10109 	 */
10110 	tg->uclamp_pct[clamp_id] = req.percent;
10111 
10112 	/* Update effective clamps to track the most restrictive value */
10113 	cpu_util_update_eff(of_css(of));
10114 
10115 	rcu_read_unlock();
10116 	mutex_unlock(&uclamp_mutex);
10117 
10118 	return nbytes;
10119 }
10120 
10121 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10122 				    char *buf, size_t nbytes,
10123 				    loff_t off)
10124 {
10125 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10126 }
10127 
10128 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10129 				    char *buf, size_t nbytes,
10130 				    loff_t off)
10131 {
10132 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10133 }
10134 
10135 static inline void cpu_uclamp_print(struct seq_file *sf,
10136 				    enum uclamp_id clamp_id)
10137 {
10138 	struct task_group *tg;
10139 	u64 util_clamp;
10140 	u64 percent;
10141 	u32 rem;
10142 
10143 	rcu_read_lock();
10144 	tg = css_tg(seq_css(sf));
10145 	util_clamp = tg->uclamp_req[clamp_id].value;
10146 	rcu_read_unlock();
10147 
10148 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10149 		seq_puts(sf, "max\n");
10150 		return;
10151 	}
10152 
10153 	percent = tg->uclamp_pct[clamp_id];
10154 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10155 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10156 }
10157 
10158 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10159 {
10160 	cpu_uclamp_print(sf, UCLAMP_MIN);
10161 	return 0;
10162 }
10163 
10164 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10165 {
10166 	cpu_uclamp_print(sf, UCLAMP_MAX);
10167 	return 0;
10168 }
10169 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10170 
10171 #ifdef CONFIG_FAIR_GROUP_SCHED
10172 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10173 				struct cftype *cftype, u64 shareval)
10174 {
10175 	if (shareval > scale_load_down(ULONG_MAX))
10176 		shareval = MAX_SHARES;
10177 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10178 }
10179 
10180 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10181 			       struct cftype *cft)
10182 {
10183 	struct task_group *tg = css_tg(css);
10184 
10185 	return (u64) scale_load_down(tg->shares);
10186 }
10187 
10188 #ifdef CONFIG_CFS_BANDWIDTH
10189 static DEFINE_MUTEX(cfs_constraints_mutex);
10190 
10191 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10192 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10193 /* More than 203 days if BW_SHIFT equals 20. */
10194 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10195 
10196 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10197 
10198 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10199 				u64 burst)
10200 {
10201 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10202 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10203 
10204 	if (tg == &root_task_group)
10205 		return -EINVAL;
10206 
10207 	/*
10208 	 * Ensure we have at some amount of bandwidth every period.  This is
10209 	 * to prevent reaching a state of large arrears when throttled via
10210 	 * entity_tick() resulting in prolonged exit starvation.
10211 	 */
10212 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10213 		return -EINVAL;
10214 
10215 	/*
10216 	 * Likewise, bound things on the other side by preventing insane quota
10217 	 * periods.  This also allows us to normalize in computing quota
10218 	 * feasibility.
10219 	 */
10220 	if (period > max_cfs_quota_period)
10221 		return -EINVAL;
10222 
10223 	/*
10224 	 * Bound quota to defend quota against overflow during bandwidth shift.
10225 	 */
10226 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10227 		return -EINVAL;
10228 
10229 	if (quota != RUNTIME_INF && (burst > quota ||
10230 				     burst + quota > max_cfs_runtime))
10231 		return -EINVAL;
10232 
10233 	/*
10234 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10235 	 * unthrottle_offline_cfs_rqs().
10236 	 */
10237 	cpus_read_lock();
10238 	mutex_lock(&cfs_constraints_mutex);
10239 	ret = __cfs_schedulable(tg, period, quota);
10240 	if (ret)
10241 		goto out_unlock;
10242 
10243 	runtime_enabled = quota != RUNTIME_INF;
10244 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10245 	/*
10246 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10247 	 * before making related changes, and on->off must occur afterwards
10248 	 */
10249 	if (runtime_enabled && !runtime_was_enabled)
10250 		cfs_bandwidth_usage_inc();
10251 	raw_spin_lock_irq(&cfs_b->lock);
10252 	cfs_b->period = ns_to_ktime(period);
10253 	cfs_b->quota = quota;
10254 	cfs_b->burst = burst;
10255 
10256 	__refill_cfs_bandwidth_runtime(cfs_b);
10257 
10258 	/* Restart the period timer (if active) to handle new period expiry: */
10259 	if (runtime_enabled)
10260 		start_cfs_bandwidth(cfs_b);
10261 
10262 	raw_spin_unlock_irq(&cfs_b->lock);
10263 
10264 	for_each_online_cpu(i) {
10265 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10266 		struct rq *rq = cfs_rq->rq;
10267 		struct rq_flags rf;
10268 
10269 		rq_lock_irq(rq, &rf);
10270 		cfs_rq->runtime_enabled = runtime_enabled;
10271 		cfs_rq->runtime_remaining = 0;
10272 
10273 		if (cfs_rq->throttled)
10274 			unthrottle_cfs_rq(cfs_rq);
10275 		rq_unlock_irq(rq, &rf);
10276 	}
10277 	if (runtime_was_enabled && !runtime_enabled)
10278 		cfs_bandwidth_usage_dec();
10279 out_unlock:
10280 	mutex_unlock(&cfs_constraints_mutex);
10281 	cpus_read_unlock();
10282 
10283 	return ret;
10284 }
10285 
10286 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10287 {
10288 	u64 quota, period, burst;
10289 
10290 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10291 	burst = tg->cfs_bandwidth.burst;
10292 	if (cfs_quota_us < 0)
10293 		quota = RUNTIME_INF;
10294 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10295 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10296 	else
10297 		return -EINVAL;
10298 
10299 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10300 }
10301 
10302 static long tg_get_cfs_quota(struct task_group *tg)
10303 {
10304 	u64 quota_us;
10305 
10306 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10307 		return -1;
10308 
10309 	quota_us = tg->cfs_bandwidth.quota;
10310 	do_div(quota_us, NSEC_PER_USEC);
10311 
10312 	return quota_us;
10313 }
10314 
10315 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10316 {
10317 	u64 quota, period, burst;
10318 
10319 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10320 		return -EINVAL;
10321 
10322 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10323 	quota = tg->cfs_bandwidth.quota;
10324 	burst = tg->cfs_bandwidth.burst;
10325 
10326 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10327 }
10328 
10329 static long tg_get_cfs_period(struct task_group *tg)
10330 {
10331 	u64 cfs_period_us;
10332 
10333 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10334 	do_div(cfs_period_us, NSEC_PER_USEC);
10335 
10336 	return cfs_period_us;
10337 }
10338 
10339 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10340 {
10341 	u64 quota, period, burst;
10342 
10343 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10344 		return -EINVAL;
10345 
10346 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10347 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10348 	quota = tg->cfs_bandwidth.quota;
10349 
10350 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10351 }
10352 
10353 static long tg_get_cfs_burst(struct task_group *tg)
10354 {
10355 	u64 burst_us;
10356 
10357 	burst_us = tg->cfs_bandwidth.burst;
10358 	do_div(burst_us, NSEC_PER_USEC);
10359 
10360 	return burst_us;
10361 }
10362 
10363 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10364 				  struct cftype *cft)
10365 {
10366 	return tg_get_cfs_quota(css_tg(css));
10367 }
10368 
10369 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10370 				   struct cftype *cftype, s64 cfs_quota_us)
10371 {
10372 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10373 }
10374 
10375 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10376 				   struct cftype *cft)
10377 {
10378 	return tg_get_cfs_period(css_tg(css));
10379 }
10380 
10381 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10382 				    struct cftype *cftype, u64 cfs_period_us)
10383 {
10384 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10385 }
10386 
10387 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10388 				  struct cftype *cft)
10389 {
10390 	return tg_get_cfs_burst(css_tg(css));
10391 }
10392 
10393 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10394 				   struct cftype *cftype, u64 cfs_burst_us)
10395 {
10396 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10397 }
10398 
10399 struct cfs_schedulable_data {
10400 	struct task_group *tg;
10401 	u64 period, quota;
10402 };
10403 
10404 /*
10405  * normalize group quota/period to be quota/max_period
10406  * note: units are usecs
10407  */
10408 static u64 normalize_cfs_quota(struct task_group *tg,
10409 			       struct cfs_schedulable_data *d)
10410 {
10411 	u64 quota, period;
10412 
10413 	if (tg == d->tg) {
10414 		period = d->period;
10415 		quota = d->quota;
10416 	} else {
10417 		period = tg_get_cfs_period(tg);
10418 		quota = tg_get_cfs_quota(tg);
10419 	}
10420 
10421 	/* note: these should typically be equivalent */
10422 	if (quota == RUNTIME_INF || quota == -1)
10423 		return RUNTIME_INF;
10424 
10425 	return to_ratio(period, quota);
10426 }
10427 
10428 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10429 {
10430 	struct cfs_schedulable_data *d = data;
10431 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10432 	s64 quota = 0, parent_quota = -1;
10433 
10434 	if (!tg->parent) {
10435 		quota = RUNTIME_INF;
10436 	} else {
10437 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10438 
10439 		quota = normalize_cfs_quota(tg, d);
10440 		parent_quota = parent_b->hierarchical_quota;
10441 
10442 		/*
10443 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10444 		 * always take the min.  On cgroup1, only inherit when no
10445 		 * limit is set:
10446 		 */
10447 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10448 			quota = min(quota, parent_quota);
10449 		} else {
10450 			if (quota == RUNTIME_INF)
10451 				quota = parent_quota;
10452 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10453 				return -EINVAL;
10454 		}
10455 	}
10456 	cfs_b->hierarchical_quota = quota;
10457 
10458 	return 0;
10459 }
10460 
10461 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10462 {
10463 	int ret;
10464 	struct cfs_schedulable_data data = {
10465 		.tg = tg,
10466 		.period = period,
10467 		.quota = quota,
10468 	};
10469 
10470 	if (quota != RUNTIME_INF) {
10471 		do_div(data.period, NSEC_PER_USEC);
10472 		do_div(data.quota, NSEC_PER_USEC);
10473 	}
10474 
10475 	rcu_read_lock();
10476 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10477 	rcu_read_unlock();
10478 
10479 	return ret;
10480 }
10481 
10482 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10483 {
10484 	struct task_group *tg = css_tg(seq_css(sf));
10485 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10486 
10487 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10488 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10489 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10490 
10491 	if (schedstat_enabled() && tg != &root_task_group) {
10492 		struct sched_statistics *stats;
10493 		u64 ws = 0;
10494 		int i;
10495 
10496 		for_each_possible_cpu(i) {
10497 			stats = __schedstats_from_se(tg->se[i]);
10498 			ws += schedstat_val(stats->wait_sum);
10499 		}
10500 
10501 		seq_printf(sf, "wait_sum %llu\n", ws);
10502 	}
10503 
10504 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10505 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10506 
10507 	return 0;
10508 }
10509 #endif /* CONFIG_CFS_BANDWIDTH */
10510 #endif /* CONFIG_FAIR_GROUP_SCHED */
10511 
10512 #ifdef CONFIG_RT_GROUP_SCHED
10513 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10514 				struct cftype *cft, s64 val)
10515 {
10516 	return sched_group_set_rt_runtime(css_tg(css), val);
10517 }
10518 
10519 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10520 			       struct cftype *cft)
10521 {
10522 	return sched_group_rt_runtime(css_tg(css));
10523 }
10524 
10525 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10526 				    struct cftype *cftype, u64 rt_period_us)
10527 {
10528 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10529 }
10530 
10531 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10532 				   struct cftype *cft)
10533 {
10534 	return sched_group_rt_period(css_tg(css));
10535 }
10536 #endif /* CONFIG_RT_GROUP_SCHED */
10537 
10538 #ifdef CONFIG_FAIR_GROUP_SCHED
10539 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10540 			       struct cftype *cft)
10541 {
10542 	return css_tg(css)->idle;
10543 }
10544 
10545 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10546 				struct cftype *cft, s64 idle)
10547 {
10548 	return sched_group_set_idle(css_tg(css), idle);
10549 }
10550 #endif
10551 
10552 static struct cftype cpu_legacy_files[] = {
10553 #ifdef CONFIG_FAIR_GROUP_SCHED
10554 	{
10555 		.name = "shares",
10556 		.read_u64 = cpu_shares_read_u64,
10557 		.write_u64 = cpu_shares_write_u64,
10558 	},
10559 	{
10560 		.name = "idle",
10561 		.read_s64 = cpu_idle_read_s64,
10562 		.write_s64 = cpu_idle_write_s64,
10563 	},
10564 #endif
10565 #ifdef CONFIG_CFS_BANDWIDTH
10566 	{
10567 		.name = "cfs_quota_us",
10568 		.read_s64 = cpu_cfs_quota_read_s64,
10569 		.write_s64 = cpu_cfs_quota_write_s64,
10570 	},
10571 	{
10572 		.name = "cfs_period_us",
10573 		.read_u64 = cpu_cfs_period_read_u64,
10574 		.write_u64 = cpu_cfs_period_write_u64,
10575 	},
10576 	{
10577 		.name = "cfs_burst_us",
10578 		.read_u64 = cpu_cfs_burst_read_u64,
10579 		.write_u64 = cpu_cfs_burst_write_u64,
10580 	},
10581 	{
10582 		.name = "stat",
10583 		.seq_show = cpu_cfs_stat_show,
10584 	},
10585 #endif
10586 #ifdef CONFIG_RT_GROUP_SCHED
10587 	{
10588 		.name = "rt_runtime_us",
10589 		.read_s64 = cpu_rt_runtime_read,
10590 		.write_s64 = cpu_rt_runtime_write,
10591 	},
10592 	{
10593 		.name = "rt_period_us",
10594 		.read_u64 = cpu_rt_period_read_uint,
10595 		.write_u64 = cpu_rt_period_write_uint,
10596 	},
10597 #endif
10598 #ifdef CONFIG_UCLAMP_TASK_GROUP
10599 	{
10600 		.name = "uclamp.min",
10601 		.flags = CFTYPE_NOT_ON_ROOT,
10602 		.seq_show = cpu_uclamp_min_show,
10603 		.write = cpu_uclamp_min_write,
10604 	},
10605 	{
10606 		.name = "uclamp.max",
10607 		.flags = CFTYPE_NOT_ON_ROOT,
10608 		.seq_show = cpu_uclamp_max_show,
10609 		.write = cpu_uclamp_max_write,
10610 	},
10611 #endif
10612 	{ }	/* Terminate */
10613 };
10614 
10615 static int cpu_extra_stat_show(struct seq_file *sf,
10616 			       struct cgroup_subsys_state *css)
10617 {
10618 #ifdef CONFIG_CFS_BANDWIDTH
10619 	{
10620 		struct task_group *tg = css_tg(css);
10621 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10622 		u64 throttled_usec, burst_usec;
10623 
10624 		throttled_usec = cfs_b->throttled_time;
10625 		do_div(throttled_usec, NSEC_PER_USEC);
10626 		burst_usec = cfs_b->burst_time;
10627 		do_div(burst_usec, NSEC_PER_USEC);
10628 
10629 		seq_printf(sf, "nr_periods %d\n"
10630 			   "nr_throttled %d\n"
10631 			   "throttled_usec %llu\n"
10632 			   "nr_bursts %d\n"
10633 			   "burst_usec %llu\n",
10634 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10635 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10636 	}
10637 #endif
10638 	return 0;
10639 }
10640 
10641 #ifdef CONFIG_FAIR_GROUP_SCHED
10642 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10643 			       struct cftype *cft)
10644 {
10645 	struct task_group *tg = css_tg(css);
10646 	u64 weight = scale_load_down(tg->shares);
10647 
10648 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10649 }
10650 
10651 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10652 				struct cftype *cft, u64 weight)
10653 {
10654 	/*
10655 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10656 	 * values which are 1, 100 and 10000 respectively.  While it loses
10657 	 * a bit of range on both ends, it maps pretty well onto the shares
10658 	 * value used by scheduler and the round-trip conversions preserve
10659 	 * the original value over the entire range.
10660 	 */
10661 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10662 		return -ERANGE;
10663 
10664 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10665 
10666 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10667 }
10668 
10669 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10670 				    struct cftype *cft)
10671 {
10672 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10673 	int last_delta = INT_MAX;
10674 	int prio, delta;
10675 
10676 	/* find the closest nice value to the current weight */
10677 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10678 		delta = abs(sched_prio_to_weight[prio] - weight);
10679 		if (delta >= last_delta)
10680 			break;
10681 		last_delta = delta;
10682 	}
10683 
10684 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10685 }
10686 
10687 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10688 				     struct cftype *cft, s64 nice)
10689 {
10690 	unsigned long weight;
10691 	int idx;
10692 
10693 	if (nice < MIN_NICE || nice > MAX_NICE)
10694 		return -ERANGE;
10695 
10696 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10697 	idx = array_index_nospec(idx, 40);
10698 	weight = sched_prio_to_weight[idx];
10699 
10700 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10701 }
10702 #endif
10703 
10704 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10705 						  long period, long quota)
10706 {
10707 	if (quota < 0)
10708 		seq_puts(sf, "max");
10709 	else
10710 		seq_printf(sf, "%ld", quota);
10711 
10712 	seq_printf(sf, " %ld\n", period);
10713 }
10714 
10715 /* caller should put the current value in *@periodp before calling */
10716 static int __maybe_unused cpu_period_quota_parse(char *buf,
10717 						 u64 *periodp, u64 *quotap)
10718 {
10719 	char tok[21];	/* U64_MAX */
10720 
10721 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10722 		return -EINVAL;
10723 
10724 	*periodp *= NSEC_PER_USEC;
10725 
10726 	if (sscanf(tok, "%llu", quotap))
10727 		*quotap *= NSEC_PER_USEC;
10728 	else if (!strcmp(tok, "max"))
10729 		*quotap = RUNTIME_INF;
10730 	else
10731 		return -EINVAL;
10732 
10733 	return 0;
10734 }
10735 
10736 #ifdef CONFIG_CFS_BANDWIDTH
10737 static int cpu_max_show(struct seq_file *sf, void *v)
10738 {
10739 	struct task_group *tg = css_tg(seq_css(sf));
10740 
10741 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10742 	return 0;
10743 }
10744 
10745 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10746 			     char *buf, size_t nbytes, loff_t off)
10747 {
10748 	struct task_group *tg = css_tg(of_css(of));
10749 	u64 period = tg_get_cfs_period(tg);
10750 	u64 burst = tg_get_cfs_burst(tg);
10751 	u64 quota;
10752 	int ret;
10753 
10754 	ret = cpu_period_quota_parse(buf, &period, &quota);
10755 	if (!ret)
10756 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10757 	return ret ?: nbytes;
10758 }
10759 #endif
10760 
10761 static struct cftype cpu_files[] = {
10762 #ifdef CONFIG_FAIR_GROUP_SCHED
10763 	{
10764 		.name = "weight",
10765 		.flags = CFTYPE_NOT_ON_ROOT,
10766 		.read_u64 = cpu_weight_read_u64,
10767 		.write_u64 = cpu_weight_write_u64,
10768 	},
10769 	{
10770 		.name = "weight.nice",
10771 		.flags = CFTYPE_NOT_ON_ROOT,
10772 		.read_s64 = cpu_weight_nice_read_s64,
10773 		.write_s64 = cpu_weight_nice_write_s64,
10774 	},
10775 	{
10776 		.name = "idle",
10777 		.flags = CFTYPE_NOT_ON_ROOT,
10778 		.read_s64 = cpu_idle_read_s64,
10779 		.write_s64 = cpu_idle_write_s64,
10780 	},
10781 #endif
10782 #ifdef CONFIG_CFS_BANDWIDTH
10783 	{
10784 		.name = "max",
10785 		.flags = CFTYPE_NOT_ON_ROOT,
10786 		.seq_show = cpu_max_show,
10787 		.write = cpu_max_write,
10788 	},
10789 	{
10790 		.name = "max.burst",
10791 		.flags = CFTYPE_NOT_ON_ROOT,
10792 		.read_u64 = cpu_cfs_burst_read_u64,
10793 		.write_u64 = cpu_cfs_burst_write_u64,
10794 	},
10795 #endif
10796 #ifdef CONFIG_UCLAMP_TASK_GROUP
10797 	{
10798 		.name = "uclamp.min",
10799 		.flags = CFTYPE_NOT_ON_ROOT,
10800 		.seq_show = cpu_uclamp_min_show,
10801 		.write = cpu_uclamp_min_write,
10802 	},
10803 	{
10804 		.name = "uclamp.max",
10805 		.flags = CFTYPE_NOT_ON_ROOT,
10806 		.seq_show = cpu_uclamp_max_show,
10807 		.write = cpu_uclamp_max_write,
10808 	},
10809 #endif
10810 	{ }	/* terminate */
10811 };
10812 
10813 struct cgroup_subsys cpu_cgrp_subsys = {
10814 	.css_alloc	= cpu_cgroup_css_alloc,
10815 	.css_online	= cpu_cgroup_css_online,
10816 	.css_released	= cpu_cgroup_css_released,
10817 	.css_free	= cpu_cgroup_css_free,
10818 	.css_extra_stat_show = cpu_extra_stat_show,
10819 	.fork		= cpu_cgroup_fork,
10820 	.can_attach	= cpu_cgroup_can_attach,
10821 	.attach		= cpu_cgroup_attach,
10822 	.legacy_cftypes	= cpu_legacy_files,
10823 	.dfl_cftypes	= cpu_files,
10824 	.early_init	= true,
10825 	.threaded	= true,
10826 };
10827 
10828 #endif	/* CONFIG_CGROUP_SCHED */
10829 
10830 void dump_cpu_task(int cpu)
10831 {
10832 	pr_info("Task dump for CPU %d:\n", cpu);
10833 	sched_show_task(cpu_curr(cpu));
10834 }
10835 
10836 /*
10837  * Nice levels are multiplicative, with a gentle 10% change for every
10838  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10839  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10840  * that remained on nice 0.
10841  *
10842  * The "10% effect" is relative and cumulative: from _any_ nice level,
10843  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10844  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10845  * If a task goes up by ~10% and another task goes down by ~10% then
10846  * the relative distance between them is ~25%.)
10847  */
10848 const int sched_prio_to_weight[40] = {
10849  /* -20 */     88761,     71755,     56483,     46273,     36291,
10850  /* -15 */     29154,     23254,     18705,     14949,     11916,
10851  /* -10 */      9548,      7620,      6100,      4904,      3906,
10852  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10853  /*   0 */      1024,       820,       655,       526,       423,
10854  /*   5 */       335,       272,       215,       172,       137,
10855  /*  10 */       110,        87,        70,        56,        45,
10856  /*  15 */        36,        29,        23,        18,        15,
10857 };
10858 
10859 /*
10860  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10861  *
10862  * In cases where the weight does not change often, we can use the
10863  * precalculated inverse to speed up arithmetics by turning divisions
10864  * into multiplications:
10865  */
10866 const u32 sched_prio_to_wmult[40] = {
10867  /* -20 */     48388,     59856,     76040,     92818,    118348,
10868  /* -15 */    147320,    184698,    229616,    287308,    360437,
10869  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10870  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10871  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10872  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10873  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10874  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10875 };
10876 
10877 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10878 {
10879         trace_sched_update_nr_running_tp(rq, count);
10880 }
10881