1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 /* 300 * __task_rq_lock - lock the rq @p resides on. 301 */ 302 static inline struct rq *__task_rq_lock(struct task_struct *p) 303 __acquires(rq->lock) 304 { 305 struct rq *rq; 306 307 lockdep_assert_held(&p->pi_lock); 308 309 for (;;) { 310 rq = task_rq(p); 311 raw_spin_lock(&rq->lock); 312 if (likely(rq == task_rq(p))) 313 return rq; 314 raw_spin_unlock(&rq->lock); 315 } 316 } 317 318 /* 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 320 */ 321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 322 __acquires(p->pi_lock) 323 __acquires(rq->lock) 324 { 325 struct rq *rq; 326 327 for (;;) { 328 raw_spin_lock_irqsave(&p->pi_lock, *flags); 329 rq = task_rq(p); 330 raw_spin_lock(&rq->lock); 331 if (likely(rq == task_rq(p))) 332 return rq; 333 raw_spin_unlock(&rq->lock); 334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 335 } 336 } 337 338 static void __task_rq_unlock(struct rq *rq) 339 __releases(rq->lock) 340 { 341 raw_spin_unlock(&rq->lock); 342 } 343 344 static inline void 345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 346 __releases(rq->lock) 347 __releases(p->pi_lock) 348 { 349 raw_spin_unlock(&rq->lock); 350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 351 } 352 353 /* 354 * this_rq_lock - lock this runqueue and disable interrupts. 355 */ 356 static struct rq *this_rq_lock(void) 357 __acquires(rq->lock) 358 { 359 struct rq *rq; 360 361 local_irq_disable(); 362 rq = this_rq(); 363 raw_spin_lock(&rq->lock); 364 365 return rq; 366 } 367 368 #ifdef CONFIG_SCHED_HRTICK 369 /* 370 * Use HR-timers to deliver accurate preemption points. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 399 static int __hrtick_restart(struct rq *rq) 400 { 401 struct hrtimer *timer = &rq->hrtick_timer; 402 ktime_t time = hrtimer_get_softexpires(timer); 403 404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 405 } 406 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 __hrtick_restart(rq); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 __hrtick_restart(rq); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 void resched_task(struct task_struct *p) 515 { 516 int cpu; 517 518 lockdep_assert_held(&task_rq(p)->lock); 519 520 if (test_tsk_need_resched(p)) 521 return; 522 523 set_tsk_need_resched(p); 524 525 cpu = task_cpu(p); 526 if (cpu == smp_processor_id()) { 527 set_preempt_need_resched(); 528 return; 529 } 530 531 /* NEED_RESCHED must be visible before we test polling */ 532 smp_mb(); 533 if (!tsk_is_polling(p)) 534 smp_send_reschedule(cpu); 535 } 536 537 void resched_cpu(int cpu) 538 { 539 struct rq *rq = cpu_rq(cpu); 540 unsigned long flags; 541 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 543 return; 544 resched_task(cpu_curr(cpu)); 545 raw_spin_unlock_irqrestore(&rq->lock, flags); 546 } 547 548 #ifdef CONFIG_SMP 549 #ifdef CONFIG_NO_HZ_COMMON 550 /* 551 * In the semi idle case, use the nearest busy cpu for migrating timers 552 * from an idle cpu. This is good for power-savings. 553 * 554 * We don't do similar optimization for completely idle system, as 555 * selecting an idle cpu will add more delays to the timers than intended 556 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 557 */ 558 int get_nohz_timer_target(void) 559 { 560 int cpu = smp_processor_id(); 561 int i; 562 struct sched_domain *sd; 563 564 rcu_read_lock(); 565 for_each_domain(cpu, sd) { 566 for_each_cpu(i, sched_domain_span(sd)) { 567 if (!idle_cpu(i)) { 568 cpu = i; 569 goto unlock; 570 } 571 } 572 } 573 unlock: 574 rcu_read_unlock(); 575 return cpu; 576 } 577 /* 578 * When add_timer_on() enqueues a timer into the timer wheel of an 579 * idle CPU then this timer might expire before the next timer event 580 * which is scheduled to wake up that CPU. In case of a completely 581 * idle system the next event might even be infinite time into the 582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 583 * leaves the inner idle loop so the newly added timer is taken into 584 * account when the CPU goes back to idle and evaluates the timer 585 * wheel for the next timer event. 586 */ 587 static void wake_up_idle_cpu(int cpu) 588 { 589 struct rq *rq = cpu_rq(cpu); 590 591 if (cpu == smp_processor_id()) 592 return; 593 594 /* 595 * This is safe, as this function is called with the timer 596 * wheel base lock of (cpu) held. When the CPU is on the way 597 * to idle and has not yet set rq->curr to idle then it will 598 * be serialized on the timer wheel base lock and take the new 599 * timer into account automatically. 600 */ 601 if (rq->curr != rq->idle) 602 return; 603 604 /* 605 * We can set TIF_RESCHED on the idle task of the other CPU 606 * lockless. The worst case is that the other CPU runs the 607 * idle task through an additional NOOP schedule() 608 */ 609 set_tsk_need_resched(rq->idle); 610 611 /* NEED_RESCHED must be visible before we test polling */ 612 smp_mb(); 613 if (!tsk_is_polling(rq->idle)) 614 smp_send_reschedule(cpu); 615 } 616 617 static bool wake_up_full_nohz_cpu(int cpu) 618 { 619 if (tick_nohz_full_cpu(cpu)) { 620 if (cpu != smp_processor_id() || 621 tick_nohz_tick_stopped()) 622 smp_send_reschedule(cpu); 623 return true; 624 } 625 626 return false; 627 } 628 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(void) 664 { 665 struct rq *rq; 666 667 rq = this_rq(); 668 669 /* Make sure rq->nr_running update is visible after the IPI */ 670 smp_rmb(); 671 672 /* More than one running task need preemption */ 673 if (rq->nr_running > 1) 674 return false; 675 676 return true; 677 } 678 #endif /* CONFIG_NO_HZ_FULL */ 679 680 void sched_avg_update(struct rq *rq) 681 { 682 s64 period = sched_avg_period(); 683 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 685 /* 686 * Inline assembly required to prevent the compiler 687 * optimising this loop into a divmod call. 688 * See __iter_div_u64_rem() for another example of this. 689 */ 690 asm("" : "+rm" (rq->age_stamp)); 691 rq->age_stamp += period; 692 rq->rt_avg /= 2; 693 } 694 } 695 696 #endif /* CONFIG_SMP */ 697 698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 700 /* 701 * Iterate task_group tree rooted at *from, calling @down when first entering a 702 * node and @up when leaving it for the final time. 703 * 704 * Caller must hold rcu_lock or sufficient equivalent. 705 */ 706 int walk_tg_tree_from(struct task_group *from, 707 tg_visitor down, tg_visitor up, void *data) 708 { 709 struct task_group *parent, *child; 710 int ret; 711 712 parent = from; 713 714 down: 715 ret = (*down)(parent, data); 716 if (ret) 717 goto out; 718 list_for_each_entry_rcu(child, &parent->children, siblings) { 719 parent = child; 720 goto down; 721 722 up: 723 continue; 724 } 725 ret = (*up)(parent, data); 726 if (ret || parent == from) 727 goto out; 728 729 child = parent; 730 parent = parent->parent; 731 if (parent) 732 goto up; 733 out: 734 return ret; 735 } 736 737 int tg_nop(struct task_group *tg, void *data) 738 { 739 return 0; 740 } 741 #endif 742 743 static void set_load_weight(struct task_struct *p) 744 { 745 int prio = p->static_prio - MAX_RT_PRIO; 746 struct load_weight *load = &p->se.load; 747 748 /* 749 * SCHED_IDLE tasks get minimal weight: 750 */ 751 if (p->policy == SCHED_IDLE) { 752 load->weight = scale_load(WEIGHT_IDLEPRIO); 753 load->inv_weight = WMULT_IDLEPRIO; 754 return; 755 } 756 757 load->weight = scale_load(prio_to_weight[prio]); 758 load->inv_weight = prio_to_wmult[prio]; 759 } 760 761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 762 { 763 update_rq_clock(rq); 764 sched_info_queued(rq, p); 765 p->sched_class->enqueue_task(rq, p, flags); 766 } 767 768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 769 { 770 update_rq_clock(rq); 771 sched_info_dequeued(rq, p); 772 p->sched_class->dequeue_task(rq, p, flags); 773 } 774 775 void activate_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (task_contributes_to_load(p)) 778 rq->nr_uninterruptible--; 779 780 enqueue_task(rq, p, flags); 781 } 782 783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 784 { 785 if (task_contributes_to_load(p)) 786 rq->nr_uninterruptible++; 787 788 dequeue_task(rq, p, flags); 789 } 790 791 static void update_rq_clock_task(struct rq *rq, s64 delta) 792 { 793 /* 794 * In theory, the compile should just see 0 here, and optimize out the call 795 * to sched_rt_avg_update. But I don't trust it... 796 */ 797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 798 s64 steal = 0, irq_delta = 0; 799 #endif 800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 802 803 /* 804 * Since irq_time is only updated on {soft,}irq_exit, we might run into 805 * this case when a previous update_rq_clock() happened inside a 806 * {soft,}irq region. 807 * 808 * When this happens, we stop ->clock_task and only update the 809 * prev_irq_time stamp to account for the part that fit, so that a next 810 * update will consume the rest. This ensures ->clock_task is 811 * monotonic. 812 * 813 * It does however cause some slight miss-attribution of {soft,}irq 814 * time, a more accurate solution would be to update the irq_time using 815 * the current rq->clock timestamp, except that would require using 816 * atomic ops. 817 */ 818 if (irq_delta > delta) 819 irq_delta = delta; 820 821 rq->prev_irq_time += irq_delta; 822 delta -= irq_delta; 823 #endif 824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 825 if (static_key_false((¶virt_steal_rq_enabled))) { 826 u64 st; 827 828 steal = paravirt_steal_clock(cpu_of(rq)); 829 steal -= rq->prev_steal_time_rq; 830 831 if (unlikely(steal > delta)) 832 steal = delta; 833 834 st = steal_ticks(steal); 835 steal = st * TICK_NSEC; 836 837 rq->prev_steal_time_rq += steal; 838 839 delta -= steal; 840 } 841 #endif 842 843 rq->clock_task += delta; 844 845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 847 sched_rt_avg_update(rq, irq_delta + steal); 848 #endif 849 } 850 851 void sched_set_stop_task(int cpu, struct task_struct *stop) 852 { 853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 854 struct task_struct *old_stop = cpu_rq(cpu)->stop; 855 856 if (stop) { 857 /* 858 * Make it appear like a SCHED_FIFO task, its something 859 * userspace knows about and won't get confused about. 860 * 861 * Also, it will make PI more or less work without too 862 * much confusion -- but then, stop work should not 863 * rely on PI working anyway. 864 */ 865 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 866 867 stop->sched_class = &stop_sched_class; 868 } 869 870 cpu_rq(cpu)->stop = stop; 871 872 if (old_stop) { 873 /* 874 * Reset it back to a normal scheduling class so that 875 * it can die in pieces. 876 */ 877 old_stop->sched_class = &rt_sched_class; 878 } 879 } 880 881 /* 882 * __normal_prio - return the priority that is based on the static prio 883 */ 884 static inline int __normal_prio(struct task_struct *p) 885 { 886 return p->static_prio; 887 } 888 889 /* 890 * Calculate the expected normal priority: i.e. priority 891 * without taking RT-inheritance into account. Might be 892 * boosted by interactivity modifiers. Changes upon fork, 893 * setprio syscalls, and whenever the interactivity 894 * estimator recalculates. 895 */ 896 static inline int normal_prio(struct task_struct *p) 897 { 898 int prio; 899 900 if (task_has_dl_policy(p)) 901 prio = MAX_DL_PRIO-1; 902 else if (task_has_rt_policy(p)) 903 prio = MAX_RT_PRIO-1 - p->rt_priority; 904 else 905 prio = __normal_prio(p); 906 return prio; 907 } 908 909 /* 910 * Calculate the current priority, i.e. the priority 911 * taken into account by the scheduler. This value might 912 * be boosted by RT tasks, or might be boosted by 913 * interactivity modifiers. Will be RT if the task got 914 * RT-boosted. If not then it returns p->normal_prio. 915 */ 916 static int effective_prio(struct task_struct *p) 917 { 918 p->normal_prio = normal_prio(p); 919 /* 920 * If we are RT tasks or we were boosted to RT priority, 921 * keep the priority unchanged. Otherwise, update priority 922 * to the normal priority: 923 */ 924 if (!rt_prio(p->prio)) 925 return p->normal_prio; 926 return p->prio; 927 } 928 929 /** 930 * task_curr - is this task currently executing on a CPU? 931 * @p: the task in question. 932 * 933 * Return: 1 if the task is currently executing. 0 otherwise. 934 */ 935 inline int task_curr(const struct task_struct *p) 936 { 937 return cpu_curr(task_cpu(p)) == p; 938 } 939 940 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 941 const struct sched_class *prev_class, 942 int oldprio) 943 { 944 if (prev_class != p->sched_class) { 945 if (prev_class->switched_from) 946 prev_class->switched_from(rq, p); 947 p->sched_class->switched_to(rq, p); 948 } else if (oldprio != p->prio || dl_task(p)) 949 p->sched_class->prio_changed(rq, p, oldprio); 950 } 951 952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 953 { 954 const struct sched_class *class; 955 956 if (p->sched_class == rq->curr->sched_class) { 957 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 958 } else { 959 for_each_class(class) { 960 if (class == rq->curr->sched_class) 961 break; 962 if (class == p->sched_class) { 963 resched_task(rq->curr); 964 break; 965 } 966 } 967 } 968 969 /* 970 * A queue event has occurred, and we're going to schedule. In 971 * this case, we can save a useless back to back clock update. 972 */ 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 974 rq->skip_clock_update = 1; 975 } 976 977 #ifdef CONFIG_SMP 978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 979 { 980 #ifdef CONFIG_SCHED_DEBUG 981 /* 982 * We should never call set_task_cpu() on a blocked task, 983 * ttwu() will sort out the placement. 984 */ 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 986 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 987 988 #ifdef CONFIG_LOCKDEP 989 /* 990 * The caller should hold either p->pi_lock or rq->lock, when changing 991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 992 * 993 * sched_move_task() holds both and thus holding either pins the cgroup, 994 * see task_group(). 995 * 996 * Furthermore, all task_rq users should acquire both locks, see 997 * task_rq_lock(). 998 */ 999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1000 lockdep_is_held(&task_rq(p)->lock))); 1001 #endif 1002 #endif 1003 1004 trace_sched_migrate_task(p, new_cpu); 1005 1006 if (task_cpu(p) != new_cpu) { 1007 if (p->sched_class->migrate_task_rq) 1008 p->sched_class->migrate_task_rq(p, new_cpu); 1009 p->se.nr_migrations++; 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1011 } 1012 1013 __set_task_cpu(p, new_cpu); 1014 } 1015 1016 static void __migrate_swap_task(struct task_struct *p, int cpu) 1017 { 1018 if (p->on_rq) { 1019 struct rq *src_rq, *dst_rq; 1020 1021 src_rq = task_rq(p); 1022 dst_rq = cpu_rq(cpu); 1023 1024 deactivate_task(src_rq, p, 0); 1025 set_task_cpu(p, cpu); 1026 activate_task(dst_rq, p, 0); 1027 check_preempt_curr(dst_rq, p, 0); 1028 } else { 1029 /* 1030 * Task isn't running anymore; make it appear like we migrated 1031 * it before it went to sleep. This means on wakeup we make the 1032 * previous cpu our targer instead of where it really is. 1033 */ 1034 p->wake_cpu = cpu; 1035 } 1036 } 1037 1038 struct migration_swap_arg { 1039 struct task_struct *src_task, *dst_task; 1040 int src_cpu, dst_cpu; 1041 }; 1042 1043 static int migrate_swap_stop(void *data) 1044 { 1045 struct migration_swap_arg *arg = data; 1046 struct rq *src_rq, *dst_rq; 1047 int ret = -EAGAIN; 1048 1049 src_rq = cpu_rq(arg->src_cpu); 1050 dst_rq = cpu_rq(arg->dst_cpu); 1051 1052 double_raw_lock(&arg->src_task->pi_lock, 1053 &arg->dst_task->pi_lock); 1054 double_rq_lock(src_rq, dst_rq); 1055 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1056 goto unlock; 1057 1058 if (task_cpu(arg->src_task) != arg->src_cpu) 1059 goto unlock; 1060 1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1062 goto unlock; 1063 1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1065 goto unlock; 1066 1067 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1068 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1069 1070 ret = 0; 1071 1072 unlock: 1073 double_rq_unlock(src_rq, dst_rq); 1074 raw_spin_unlock(&arg->dst_task->pi_lock); 1075 raw_spin_unlock(&arg->src_task->pi_lock); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Cross migrate two tasks 1082 */ 1083 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1084 { 1085 struct migration_swap_arg arg; 1086 int ret = -EINVAL; 1087 1088 arg = (struct migration_swap_arg){ 1089 .src_task = cur, 1090 .src_cpu = task_cpu(cur), 1091 .dst_task = p, 1092 .dst_cpu = task_cpu(p), 1093 }; 1094 1095 if (arg.src_cpu == arg.dst_cpu) 1096 goto out; 1097 1098 /* 1099 * These three tests are all lockless; this is OK since all of them 1100 * will be re-checked with proper locks held further down the line. 1101 */ 1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1103 goto out; 1104 1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1106 goto out; 1107 1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1109 goto out; 1110 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1113 1114 out: 1115 return ret; 1116 } 1117 1118 struct migration_arg { 1119 struct task_struct *task; 1120 int dest_cpu; 1121 }; 1122 1123 static int migration_cpu_stop(void *data); 1124 1125 /* 1126 * wait_task_inactive - wait for a thread to unschedule. 1127 * 1128 * If @match_state is nonzero, it's the @p->state value just checked and 1129 * not expected to change. If it changes, i.e. @p might have woken up, 1130 * then return zero. When we succeed in waiting for @p to be off its CPU, 1131 * we return a positive number (its total switch count). If a second call 1132 * a short while later returns the same number, the caller can be sure that 1133 * @p has remained unscheduled the whole time. 1134 * 1135 * The caller must ensure that the task *will* unschedule sometime soon, 1136 * else this function might spin for a *long* time. This function can't 1137 * be called with interrupts off, or it may introduce deadlock with 1138 * smp_call_function() if an IPI is sent by the same process we are 1139 * waiting to become inactive. 1140 */ 1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1142 { 1143 unsigned long flags; 1144 int running, on_rq; 1145 unsigned long ncsw; 1146 struct rq *rq; 1147 1148 for (;;) { 1149 /* 1150 * We do the initial early heuristics without holding 1151 * any task-queue locks at all. We'll only try to get 1152 * the runqueue lock when things look like they will 1153 * work out! 1154 */ 1155 rq = task_rq(p); 1156 1157 /* 1158 * If the task is actively running on another CPU 1159 * still, just relax and busy-wait without holding 1160 * any locks. 1161 * 1162 * NOTE! Since we don't hold any locks, it's not 1163 * even sure that "rq" stays as the right runqueue! 1164 * But we don't care, since "task_running()" will 1165 * return false if the runqueue has changed and p 1166 * is actually now running somewhere else! 1167 */ 1168 while (task_running(rq, p)) { 1169 if (match_state && unlikely(p->state != match_state)) 1170 return 0; 1171 cpu_relax(); 1172 } 1173 1174 /* 1175 * Ok, time to look more closely! We need the rq 1176 * lock now, to be *sure*. If we're wrong, we'll 1177 * just go back and repeat. 1178 */ 1179 rq = task_rq_lock(p, &flags); 1180 trace_sched_wait_task(p); 1181 running = task_running(rq, p); 1182 on_rq = p->on_rq; 1183 ncsw = 0; 1184 if (!match_state || p->state == match_state) 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1186 task_rq_unlock(rq, p, &flags); 1187 1188 /* 1189 * If it changed from the expected state, bail out now. 1190 */ 1191 if (unlikely(!ncsw)) 1192 break; 1193 1194 /* 1195 * Was it really running after all now that we 1196 * checked with the proper locks actually held? 1197 * 1198 * Oops. Go back and try again.. 1199 */ 1200 if (unlikely(running)) { 1201 cpu_relax(); 1202 continue; 1203 } 1204 1205 /* 1206 * It's not enough that it's not actively running, 1207 * it must be off the runqueue _entirely_, and not 1208 * preempted! 1209 * 1210 * So if it was still runnable (but just not actively 1211 * running right now), it's preempted, and we should 1212 * yield - it could be a while. 1213 */ 1214 if (unlikely(on_rq)) { 1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1216 1217 set_current_state(TASK_UNINTERRUPTIBLE); 1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1219 continue; 1220 } 1221 1222 /* 1223 * Ahh, all good. It wasn't running, and it wasn't 1224 * runnable, which means that it will never become 1225 * running in the future either. We're all done! 1226 */ 1227 break; 1228 } 1229 1230 return ncsw; 1231 } 1232 1233 /*** 1234 * kick_process - kick a running thread to enter/exit the kernel 1235 * @p: the to-be-kicked thread 1236 * 1237 * Cause a process which is running on another CPU to enter 1238 * kernel-mode, without any delay. (to get signals handled.) 1239 * 1240 * NOTE: this function doesn't have to take the runqueue lock, 1241 * because all it wants to ensure is that the remote task enters 1242 * the kernel. If the IPI races and the task has been migrated 1243 * to another CPU then no harm is done and the purpose has been 1244 * achieved as well. 1245 */ 1246 void kick_process(struct task_struct *p) 1247 { 1248 int cpu; 1249 1250 preempt_disable(); 1251 cpu = task_cpu(p); 1252 if ((cpu != smp_processor_id()) && task_curr(p)) 1253 smp_send_reschedule(cpu); 1254 preempt_enable(); 1255 } 1256 EXPORT_SYMBOL_GPL(kick_process); 1257 #endif /* CONFIG_SMP */ 1258 1259 #ifdef CONFIG_SMP 1260 /* 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1262 */ 1263 static int select_fallback_rq(int cpu, struct task_struct *p) 1264 { 1265 int nid = cpu_to_node(cpu); 1266 const struct cpumask *nodemask = NULL; 1267 enum { cpuset, possible, fail } state = cpuset; 1268 int dest_cpu; 1269 1270 /* 1271 * If the node that the cpu is on has been offlined, cpu_to_node() 1272 * will return -1. There is no cpu on the node, and we should 1273 * select the cpu on the other node. 1274 */ 1275 if (nid != -1) { 1276 nodemask = cpumask_of_node(nid); 1277 1278 /* Look for allowed, online CPU in same node. */ 1279 for_each_cpu(dest_cpu, nodemask) { 1280 if (!cpu_online(dest_cpu)) 1281 continue; 1282 if (!cpu_active(dest_cpu)) 1283 continue; 1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1285 return dest_cpu; 1286 } 1287 } 1288 1289 for (;;) { 1290 /* Any allowed, online CPU? */ 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1292 if (!cpu_online(dest_cpu)) 1293 continue; 1294 if (!cpu_active(dest_cpu)) 1295 continue; 1296 goto out; 1297 } 1298 1299 switch (state) { 1300 case cpuset: 1301 /* No more Mr. Nice Guy. */ 1302 cpuset_cpus_allowed_fallback(p); 1303 state = possible; 1304 break; 1305 1306 case possible: 1307 do_set_cpus_allowed(p, cpu_possible_mask); 1308 state = fail; 1309 break; 1310 1311 case fail: 1312 BUG(); 1313 break; 1314 } 1315 } 1316 1317 out: 1318 if (state != cpuset) { 1319 /* 1320 * Don't tell them about moving exiting tasks or 1321 * kernel threads (both mm NULL), since they never 1322 * leave kernel. 1323 */ 1324 if (p->mm && printk_ratelimit()) { 1325 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1326 task_pid_nr(p), p->comm, cpu); 1327 } 1328 } 1329 1330 return dest_cpu; 1331 } 1332 1333 /* 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1335 */ 1336 static inline 1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1338 { 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1340 1341 /* 1342 * In order not to call set_task_cpu() on a blocking task we need 1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1344 * cpu. 1345 * 1346 * Since this is common to all placement strategies, this lives here. 1347 * 1348 * [ this allows ->select_task() to simply return task_cpu(p) and 1349 * not worry about this generic constraint ] 1350 */ 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1352 !cpu_online(cpu))) 1353 cpu = select_fallback_rq(task_cpu(p), p); 1354 1355 return cpu; 1356 } 1357 1358 static void update_avg(u64 *avg, u64 sample) 1359 { 1360 s64 diff = sample - *avg; 1361 *avg += diff >> 3; 1362 } 1363 #endif 1364 1365 static void 1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1367 { 1368 #ifdef CONFIG_SCHEDSTATS 1369 struct rq *rq = this_rq(); 1370 1371 #ifdef CONFIG_SMP 1372 int this_cpu = smp_processor_id(); 1373 1374 if (cpu == this_cpu) { 1375 schedstat_inc(rq, ttwu_local); 1376 schedstat_inc(p, se.statistics.nr_wakeups_local); 1377 } else { 1378 struct sched_domain *sd; 1379 1380 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1381 rcu_read_lock(); 1382 for_each_domain(this_cpu, sd) { 1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1384 schedstat_inc(sd, ttwu_wake_remote); 1385 break; 1386 } 1387 } 1388 rcu_read_unlock(); 1389 } 1390 1391 if (wake_flags & WF_MIGRATED) 1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1393 1394 #endif /* CONFIG_SMP */ 1395 1396 schedstat_inc(rq, ttwu_count); 1397 schedstat_inc(p, se.statistics.nr_wakeups); 1398 1399 if (wake_flags & WF_SYNC) 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1401 1402 #endif /* CONFIG_SCHEDSTATS */ 1403 } 1404 1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1406 { 1407 activate_task(rq, p, en_flags); 1408 p->on_rq = 1; 1409 1410 /* if a worker is waking up, notify workqueue */ 1411 if (p->flags & PF_WQ_WORKER) 1412 wq_worker_waking_up(p, cpu_of(rq)); 1413 } 1414 1415 /* 1416 * Mark the task runnable and perform wakeup-preemption. 1417 */ 1418 static void 1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1420 { 1421 check_preempt_curr(rq, p, wake_flags); 1422 trace_sched_wakeup(p, true); 1423 1424 p->state = TASK_RUNNING; 1425 #ifdef CONFIG_SMP 1426 if (p->sched_class->task_woken) 1427 p->sched_class->task_woken(rq, p); 1428 1429 if (rq->idle_stamp) { 1430 u64 delta = rq_clock(rq) - rq->idle_stamp; 1431 u64 max = 2*rq->max_idle_balance_cost; 1432 1433 update_avg(&rq->avg_idle, delta); 1434 1435 if (rq->avg_idle > max) 1436 rq->avg_idle = max; 1437 1438 rq->idle_stamp = 0; 1439 } 1440 #endif 1441 } 1442 1443 static void 1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1445 { 1446 #ifdef CONFIG_SMP 1447 if (p->sched_contributes_to_load) 1448 rq->nr_uninterruptible--; 1449 #endif 1450 1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1452 ttwu_do_wakeup(rq, p, wake_flags); 1453 } 1454 1455 /* 1456 * Called in case the task @p isn't fully descheduled from its runqueue, 1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1458 * since all we need to do is flip p->state to TASK_RUNNING, since 1459 * the task is still ->on_rq. 1460 */ 1461 static int ttwu_remote(struct task_struct *p, int wake_flags) 1462 { 1463 struct rq *rq; 1464 int ret = 0; 1465 1466 rq = __task_rq_lock(p); 1467 if (p->on_rq) { 1468 /* check_preempt_curr() may use rq clock */ 1469 update_rq_clock(rq); 1470 ttwu_do_wakeup(rq, p, wake_flags); 1471 ret = 1; 1472 } 1473 __task_rq_unlock(rq); 1474 1475 return ret; 1476 } 1477 1478 #ifdef CONFIG_SMP 1479 static void sched_ttwu_pending(void) 1480 { 1481 struct rq *rq = this_rq(); 1482 struct llist_node *llist = llist_del_all(&rq->wake_list); 1483 struct task_struct *p; 1484 1485 raw_spin_lock(&rq->lock); 1486 1487 while (llist) { 1488 p = llist_entry(llist, struct task_struct, wake_entry); 1489 llist = llist_next(llist); 1490 ttwu_do_activate(rq, p, 0); 1491 } 1492 1493 raw_spin_unlock(&rq->lock); 1494 } 1495 1496 void scheduler_ipi(void) 1497 { 1498 /* 1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1500 * TIF_NEED_RESCHED remotely (for the first time) will also send 1501 * this IPI. 1502 */ 1503 preempt_fold_need_resched(); 1504 1505 if (llist_empty(&this_rq()->wake_list) 1506 && !tick_nohz_full_cpu(smp_processor_id()) 1507 && !got_nohz_idle_kick()) 1508 return; 1509 1510 /* 1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1512 * traditionally all their work was done from the interrupt return 1513 * path. Now that we actually do some work, we need to make sure 1514 * we do call them. 1515 * 1516 * Some archs already do call them, luckily irq_enter/exit nest 1517 * properly. 1518 * 1519 * Arguably we should visit all archs and update all handlers, 1520 * however a fair share of IPIs are still resched only so this would 1521 * somewhat pessimize the simple resched case. 1522 */ 1523 irq_enter(); 1524 tick_nohz_full_check(); 1525 sched_ttwu_pending(); 1526 1527 /* 1528 * Check if someone kicked us for doing the nohz idle load balance. 1529 */ 1530 if (unlikely(got_nohz_idle_kick())) { 1531 this_rq()->idle_balance = 1; 1532 raise_softirq_irqoff(SCHED_SOFTIRQ); 1533 } 1534 irq_exit(); 1535 } 1536 1537 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1538 { 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1540 smp_send_reschedule(cpu); 1541 } 1542 1543 bool cpus_share_cache(int this_cpu, int that_cpu) 1544 { 1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1546 } 1547 #endif /* CONFIG_SMP */ 1548 1549 static void ttwu_queue(struct task_struct *p, int cpu) 1550 { 1551 struct rq *rq = cpu_rq(cpu); 1552 1553 #if defined(CONFIG_SMP) 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1556 ttwu_queue_remote(p, cpu); 1557 return; 1558 } 1559 #endif 1560 1561 raw_spin_lock(&rq->lock); 1562 ttwu_do_activate(rq, p, 0); 1563 raw_spin_unlock(&rq->lock); 1564 } 1565 1566 /** 1567 * try_to_wake_up - wake up a thread 1568 * @p: the thread to be awakened 1569 * @state: the mask of task states that can be woken 1570 * @wake_flags: wake modifier flags (WF_*) 1571 * 1572 * Put it on the run-queue if it's not already there. The "current" 1573 * thread is always on the run-queue (except when the actual 1574 * re-schedule is in progress), and as such you're allowed to do 1575 * the simpler "current->state = TASK_RUNNING" to mark yourself 1576 * runnable without the overhead of this. 1577 * 1578 * Return: %true if @p was woken up, %false if it was already running. 1579 * or @state didn't match @p's state. 1580 */ 1581 static int 1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1583 { 1584 unsigned long flags; 1585 int cpu, success = 0; 1586 1587 /* 1588 * If we are going to wake up a thread waiting for CONDITION we 1589 * need to ensure that CONDITION=1 done by the caller can not be 1590 * reordered with p->state check below. This pairs with mb() in 1591 * set_current_state() the waiting thread does. 1592 */ 1593 smp_mb__before_spinlock(); 1594 raw_spin_lock_irqsave(&p->pi_lock, flags); 1595 if (!(p->state & state)) 1596 goto out; 1597 1598 success = 1; /* we're going to change ->state */ 1599 cpu = task_cpu(p); 1600 1601 if (p->on_rq && ttwu_remote(p, wake_flags)) 1602 goto stat; 1603 1604 #ifdef CONFIG_SMP 1605 /* 1606 * If the owning (remote) cpu is still in the middle of schedule() with 1607 * this task as prev, wait until its done referencing the task. 1608 */ 1609 while (p->on_cpu) 1610 cpu_relax(); 1611 /* 1612 * Pairs with the smp_wmb() in finish_lock_switch(). 1613 */ 1614 smp_rmb(); 1615 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1617 p->state = TASK_WAKING; 1618 1619 if (p->sched_class->task_waking) 1620 p->sched_class->task_waking(p); 1621 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1623 if (task_cpu(p) != cpu) { 1624 wake_flags |= WF_MIGRATED; 1625 set_task_cpu(p, cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 ttwu_queue(p, cpu); 1630 stat: 1631 ttwu_stat(p, cpu, wake_flags); 1632 out: 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1634 1635 return success; 1636 } 1637 1638 /** 1639 * try_to_wake_up_local - try to wake up a local task with rq lock held 1640 * @p: the thread to be awakened 1641 * 1642 * Put @p on the run-queue if it's not already there. The caller must 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1644 * the current task. 1645 */ 1646 static void try_to_wake_up_local(struct task_struct *p) 1647 { 1648 struct rq *rq = task_rq(p); 1649 1650 if (WARN_ON_ONCE(rq != this_rq()) || 1651 WARN_ON_ONCE(p == current)) 1652 return; 1653 1654 lockdep_assert_held(&rq->lock); 1655 1656 if (!raw_spin_trylock(&p->pi_lock)) { 1657 raw_spin_unlock(&rq->lock); 1658 raw_spin_lock(&p->pi_lock); 1659 raw_spin_lock(&rq->lock); 1660 } 1661 1662 if (!(p->state & TASK_NORMAL)) 1663 goto out; 1664 1665 if (!p->on_rq) 1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1667 1668 ttwu_do_wakeup(rq, p, 0); 1669 ttwu_stat(p, smp_processor_id(), 0); 1670 out: 1671 raw_spin_unlock(&p->pi_lock); 1672 } 1673 1674 /** 1675 * wake_up_process - Wake up a specific process 1676 * @p: The process to be woken up. 1677 * 1678 * Attempt to wake up the nominated process and move it to the set of runnable 1679 * processes. 1680 * 1681 * Return: 1 if the process was woken up, 0 if it was already running. 1682 * 1683 * It may be assumed that this function implies a write memory barrier before 1684 * changing the task state if and only if any tasks are woken up. 1685 */ 1686 int wake_up_process(struct task_struct *p) 1687 { 1688 WARN_ON(task_is_stopped_or_traced(p)); 1689 return try_to_wake_up(p, TASK_NORMAL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 RB_CLEAR_NODE(&p->dl.rb_node); 1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1722 p->dl.dl_runtime = p->dl.runtime = 0; 1723 p->dl.dl_deadline = p->dl.deadline = 0; 1724 p->dl.dl_period = 0; 1725 p->dl.flags = 0; 1726 1727 INIT_LIST_HEAD(&p->rt.run_list); 1728 1729 #ifdef CONFIG_PREEMPT_NOTIFIERS 1730 INIT_HLIST_HEAD(&p->preempt_notifiers); 1731 #endif 1732 1733 #ifdef CONFIG_NUMA_BALANCING 1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1736 p->mm->numa_scan_seq = 0; 1737 } 1738 1739 if (clone_flags & CLONE_VM) 1740 p->numa_preferred_nid = current->numa_preferred_nid; 1741 else 1742 p->numa_preferred_nid = -1; 1743 1744 p->node_stamp = 0ULL; 1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1747 p->numa_work.next = &p->numa_work; 1748 p->numa_faults = NULL; 1749 p->numa_faults_buffer = NULL; 1750 1751 INIT_LIST_HEAD(&p->numa_entry); 1752 p->numa_group = NULL; 1753 #endif /* CONFIG_NUMA_BALANCING */ 1754 } 1755 1756 #ifdef CONFIG_NUMA_BALANCING 1757 #ifdef CONFIG_SCHED_DEBUG 1758 void set_numabalancing_state(bool enabled) 1759 { 1760 if (enabled) 1761 sched_feat_set("NUMA"); 1762 else 1763 sched_feat_set("NO_NUMA"); 1764 } 1765 #else 1766 __read_mostly bool numabalancing_enabled; 1767 1768 void set_numabalancing_state(bool enabled) 1769 { 1770 numabalancing_enabled = enabled; 1771 } 1772 #endif /* CONFIG_SCHED_DEBUG */ 1773 1774 #ifdef CONFIG_PROC_SYSCTL 1775 int sysctl_numa_balancing(struct ctl_table *table, int write, 1776 void __user *buffer, size_t *lenp, loff_t *ppos) 1777 { 1778 struct ctl_table t; 1779 int err; 1780 int state = numabalancing_enabled; 1781 1782 if (write && !capable(CAP_SYS_ADMIN)) 1783 return -EPERM; 1784 1785 t = *table; 1786 t.data = &state; 1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1788 if (err < 0) 1789 return err; 1790 if (write) 1791 set_numabalancing_state(state); 1792 return err; 1793 } 1794 #endif 1795 #endif 1796 1797 /* 1798 * fork()/clone()-time setup: 1799 */ 1800 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1801 { 1802 unsigned long flags; 1803 int cpu = get_cpu(); 1804 1805 __sched_fork(clone_flags, p); 1806 /* 1807 * We mark the process as running here. This guarantees that 1808 * nobody will actually run it, and a signal or other external 1809 * event cannot wake it up and insert it on the runqueue either. 1810 */ 1811 p->state = TASK_RUNNING; 1812 1813 /* 1814 * Make sure we do not leak PI boosting priority to the child. 1815 */ 1816 p->prio = current->normal_prio; 1817 1818 /* 1819 * Revert to default priority/policy on fork if requested. 1820 */ 1821 if (unlikely(p->sched_reset_on_fork)) { 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1823 p->policy = SCHED_NORMAL; 1824 p->static_prio = NICE_TO_PRIO(0); 1825 p->rt_priority = 0; 1826 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1827 p->static_prio = NICE_TO_PRIO(0); 1828 1829 p->prio = p->normal_prio = __normal_prio(p); 1830 set_load_weight(p); 1831 1832 /* 1833 * We don't need the reset flag anymore after the fork. It has 1834 * fulfilled its duty: 1835 */ 1836 p->sched_reset_on_fork = 0; 1837 } 1838 1839 if (dl_prio(p->prio)) { 1840 put_cpu(); 1841 return -EAGAIN; 1842 } else if (rt_prio(p->prio)) { 1843 p->sched_class = &rt_sched_class; 1844 } else { 1845 p->sched_class = &fair_sched_class; 1846 } 1847 1848 if (p->sched_class->task_fork) 1849 p->sched_class->task_fork(p); 1850 1851 /* 1852 * The child is not yet in the pid-hash so no cgroup attach races, 1853 * and the cgroup is pinned to this child due to cgroup_fork() 1854 * is ran before sched_fork(). 1855 * 1856 * Silence PROVE_RCU. 1857 */ 1858 raw_spin_lock_irqsave(&p->pi_lock, flags); 1859 set_task_cpu(p, cpu); 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1861 1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1863 if (likely(sched_info_on())) 1864 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1865 #endif 1866 #if defined(CONFIG_SMP) 1867 p->on_cpu = 0; 1868 #endif 1869 init_task_preempt_count(p); 1870 #ifdef CONFIG_SMP 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1873 #endif 1874 1875 put_cpu(); 1876 return 0; 1877 } 1878 1879 unsigned long to_ratio(u64 period, u64 runtime) 1880 { 1881 if (runtime == RUNTIME_INF) 1882 return 1ULL << 20; 1883 1884 /* 1885 * Doing this here saves a lot of checks in all 1886 * the calling paths, and returning zero seems 1887 * safe for them anyway. 1888 */ 1889 if (period == 0) 1890 return 0; 1891 1892 return div64_u64(runtime << 20, period); 1893 } 1894 1895 #ifdef CONFIG_SMP 1896 inline struct dl_bw *dl_bw_of(int i) 1897 { 1898 return &cpu_rq(i)->rd->dl_bw; 1899 } 1900 1901 static inline int dl_bw_cpus(int i) 1902 { 1903 struct root_domain *rd = cpu_rq(i)->rd; 1904 int cpus = 0; 1905 1906 for_each_cpu_and(i, rd->span, cpu_active_mask) 1907 cpus++; 1908 1909 return cpus; 1910 } 1911 #else 1912 inline struct dl_bw *dl_bw_of(int i) 1913 { 1914 return &cpu_rq(i)->dl.dl_bw; 1915 } 1916 1917 static inline int dl_bw_cpus(int i) 1918 { 1919 return 1; 1920 } 1921 #endif 1922 1923 static inline 1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 1925 { 1926 dl_b->total_bw -= tsk_bw; 1927 } 1928 1929 static inline 1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 1931 { 1932 dl_b->total_bw += tsk_bw; 1933 } 1934 1935 static inline 1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 1937 { 1938 return dl_b->bw != -1 && 1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 1940 } 1941 1942 /* 1943 * We must be sure that accepting a new task (or allowing changing the 1944 * parameters of an existing one) is consistent with the bandwidth 1945 * constraints. If yes, this function also accordingly updates the currently 1946 * allocated bandwidth to reflect the new situation. 1947 * 1948 * This function is called while holding p's rq->lock. 1949 */ 1950 static int dl_overflow(struct task_struct *p, int policy, 1951 const struct sched_attr *attr) 1952 { 1953 1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1955 u64 period = attr->sched_period ?: attr->sched_deadline; 1956 u64 runtime = attr->sched_runtime; 1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 1958 int cpus, err = -1; 1959 1960 if (new_bw == p->dl.dl_bw) 1961 return 0; 1962 1963 /* 1964 * Either if a task, enters, leave, or stays -deadline but changes 1965 * its parameters, we may need to update accordingly the total 1966 * allocated bandwidth of the container. 1967 */ 1968 raw_spin_lock(&dl_b->lock); 1969 cpus = dl_bw_cpus(task_cpu(p)); 1970 if (dl_policy(policy) && !task_has_dl_policy(p) && 1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 1972 __dl_add(dl_b, new_bw); 1973 err = 0; 1974 } else if (dl_policy(policy) && task_has_dl_policy(p) && 1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 1976 __dl_clear(dl_b, p->dl.dl_bw); 1977 __dl_add(dl_b, new_bw); 1978 err = 0; 1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 1980 __dl_clear(dl_b, p->dl.dl_bw); 1981 err = 0; 1982 } 1983 raw_spin_unlock(&dl_b->lock); 1984 1985 return err; 1986 } 1987 1988 extern void init_dl_bw(struct dl_bw *dl_b); 1989 1990 /* 1991 * wake_up_new_task - wake up a newly created task for the first time. 1992 * 1993 * This function will do some initial scheduler statistics housekeeping 1994 * that must be done for every newly created context, then puts the task 1995 * on the runqueue and wakes it. 1996 */ 1997 void wake_up_new_task(struct task_struct *p) 1998 { 1999 unsigned long flags; 2000 struct rq *rq; 2001 2002 raw_spin_lock_irqsave(&p->pi_lock, flags); 2003 #ifdef CONFIG_SMP 2004 /* 2005 * Fork balancing, do it here and not earlier because: 2006 * - cpus_allowed can change in the fork path 2007 * - any previously selected cpu might disappear through hotplug 2008 */ 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2010 #endif 2011 2012 /* Initialize new task's runnable average */ 2013 init_task_runnable_average(p); 2014 rq = __task_rq_lock(p); 2015 activate_task(rq, p, 0); 2016 p->on_rq = 1; 2017 trace_sched_wakeup_new(p, true); 2018 check_preempt_curr(rq, p, WF_FORK); 2019 #ifdef CONFIG_SMP 2020 if (p->sched_class->task_woken) 2021 p->sched_class->task_woken(rq, p); 2022 #endif 2023 task_rq_unlock(rq, p, &flags); 2024 } 2025 2026 #ifdef CONFIG_PREEMPT_NOTIFIERS 2027 2028 /** 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2030 * @notifier: notifier struct to register 2031 */ 2032 void preempt_notifier_register(struct preempt_notifier *notifier) 2033 { 2034 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2035 } 2036 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2037 2038 /** 2039 * preempt_notifier_unregister - no longer interested in preemption notifications 2040 * @notifier: notifier struct to unregister 2041 * 2042 * This is safe to call from within a preemption notifier. 2043 */ 2044 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2045 { 2046 hlist_del(¬ifier->link); 2047 } 2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2049 2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2051 { 2052 struct preempt_notifier *notifier; 2053 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2055 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2056 } 2057 2058 static void 2059 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2060 struct task_struct *next) 2061 { 2062 struct preempt_notifier *notifier; 2063 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2065 notifier->ops->sched_out(notifier, next); 2066 } 2067 2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2069 2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2071 { 2072 } 2073 2074 static void 2075 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2076 struct task_struct *next) 2077 { 2078 } 2079 2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2081 2082 /** 2083 * prepare_task_switch - prepare to switch tasks 2084 * @rq: the runqueue preparing to switch 2085 * @prev: the current task that is being switched out 2086 * @next: the task we are going to switch to. 2087 * 2088 * This is called with the rq lock held and interrupts off. It must 2089 * be paired with a subsequent finish_task_switch after the context 2090 * switch. 2091 * 2092 * prepare_task_switch sets up locking and calls architecture specific 2093 * hooks. 2094 */ 2095 static inline void 2096 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2097 struct task_struct *next) 2098 { 2099 trace_sched_switch(prev, next); 2100 sched_info_switch(rq, prev, next); 2101 perf_event_task_sched_out(prev, next); 2102 fire_sched_out_preempt_notifiers(prev, next); 2103 prepare_lock_switch(rq, next); 2104 prepare_arch_switch(next); 2105 } 2106 2107 /** 2108 * finish_task_switch - clean up after a task-switch 2109 * @rq: runqueue associated with task-switch 2110 * @prev: the thread we just switched away from. 2111 * 2112 * finish_task_switch must be called after the context switch, paired 2113 * with a prepare_task_switch call before the context switch. 2114 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2115 * and do any other architecture-specific cleanup actions. 2116 * 2117 * Note that we may have delayed dropping an mm in context_switch(). If 2118 * so, we finish that here outside of the runqueue lock. (Doing it 2119 * with the lock held can cause deadlocks; see schedule() for 2120 * details.) 2121 */ 2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2123 __releases(rq->lock) 2124 { 2125 struct mm_struct *mm = rq->prev_mm; 2126 long prev_state; 2127 2128 rq->prev_mm = NULL; 2129 2130 /* 2131 * A task struct has one reference for the use as "current". 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2133 * schedule one last time. The schedule call will never return, and 2134 * the scheduled task must drop that reference. 2135 * The test for TASK_DEAD must occur while the runqueue locks are 2136 * still held, otherwise prev could be scheduled on another cpu, die 2137 * there before we look at prev->state, and then the reference would 2138 * be dropped twice. 2139 * Manfred Spraul <manfred@colorfullife.com> 2140 */ 2141 prev_state = prev->state; 2142 vtime_task_switch(prev); 2143 finish_arch_switch(prev); 2144 perf_event_task_sched_in(prev, current); 2145 finish_lock_switch(rq, prev); 2146 finish_arch_post_lock_switch(); 2147 2148 fire_sched_in_preempt_notifiers(current); 2149 if (mm) 2150 mmdrop(mm); 2151 if (unlikely(prev_state == TASK_DEAD)) { 2152 task_numa_free(prev); 2153 2154 if (prev->sched_class->task_dead) 2155 prev->sched_class->task_dead(prev); 2156 2157 /* 2158 * Remove function-return probe instances associated with this 2159 * task and put them back on the free list. 2160 */ 2161 kprobe_flush_task(prev); 2162 put_task_struct(prev); 2163 } 2164 2165 tick_nohz_task_switch(current); 2166 } 2167 2168 #ifdef CONFIG_SMP 2169 2170 /* assumes rq->lock is held */ 2171 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 2172 { 2173 if (prev->sched_class->pre_schedule) 2174 prev->sched_class->pre_schedule(rq, prev); 2175 } 2176 2177 /* rq->lock is NOT held, but preemption is disabled */ 2178 static inline void post_schedule(struct rq *rq) 2179 { 2180 if (rq->post_schedule) { 2181 unsigned long flags; 2182 2183 raw_spin_lock_irqsave(&rq->lock, flags); 2184 if (rq->curr->sched_class->post_schedule) 2185 rq->curr->sched_class->post_schedule(rq); 2186 raw_spin_unlock_irqrestore(&rq->lock, flags); 2187 2188 rq->post_schedule = 0; 2189 } 2190 } 2191 2192 #else 2193 2194 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2195 { 2196 } 2197 2198 static inline void post_schedule(struct rq *rq) 2199 { 2200 } 2201 2202 #endif 2203 2204 /** 2205 * schedule_tail - first thing a freshly forked thread must call. 2206 * @prev: the thread we just switched away from. 2207 */ 2208 asmlinkage void schedule_tail(struct task_struct *prev) 2209 __releases(rq->lock) 2210 { 2211 struct rq *rq = this_rq(); 2212 2213 finish_task_switch(rq, prev); 2214 2215 /* 2216 * FIXME: do we need to worry about rq being invalidated by the 2217 * task_switch? 2218 */ 2219 post_schedule(rq); 2220 2221 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2222 /* In this case, finish_task_switch does not reenable preemption */ 2223 preempt_enable(); 2224 #endif 2225 if (current->set_child_tid) 2226 put_user(task_pid_vnr(current), current->set_child_tid); 2227 } 2228 2229 /* 2230 * context_switch - switch to the new MM and the new 2231 * thread's register state. 2232 */ 2233 static inline void 2234 context_switch(struct rq *rq, struct task_struct *prev, 2235 struct task_struct *next) 2236 { 2237 struct mm_struct *mm, *oldmm; 2238 2239 prepare_task_switch(rq, prev, next); 2240 2241 mm = next->mm; 2242 oldmm = prev->active_mm; 2243 /* 2244 * For paravirt, this is coupled with an exit in switch_to to 2245 * combine the page table reload and the switch backend into 2246 * one hypercall. 2247 */ 2248 arch_start_context_switch(prev); 2249 2250 if (!mm) { 2251 next->active_mm = oldmm; 2252 atomic_inc(&oldmm->mm_count); 2253 enter_lazy_tlb(oldmm, next); 2254 } else 2255 switch_mm(oldmm, mm, next); 2256 2257 if (!prev->mm) { 2258 prev->active_mm = NULL; 2259 rq->prev_mm = oldmm; 2260 } 2261 /* 2262 * Since the runqueue lock will be released by the next 2263 * task (which is an invalid locking op but in the case 2264 * of the scheduler it's an obvious special-case), so we 2265 * do an early lockdep release here: 2266 */ 2267 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2269 #endif 2270 2271 context_tracking_task_switch(prev, next); 2272 /* Here we just switch the register state and the stack. */ 2273 switch_to(prev, next, prev); 2274 2275 barrier(); 2276 /* 2277 * this_rq must be evaluated again because prev may have moved 2278 * CPUs since it called schedule(), thus the 'rq' on its stack 2279 * frame will be invalid. 2280 */ 2281 finish_task_switch(this_rq(), prev); 2282 } 2283 2284 /* 2285 * nr_running and nr_context_switches: 2286 * 2287 * externally visible scheduler statistics: current number of runnable 2288 * threads, total number of context switches performed since bootup. 2289 */ 2290 unsigned long nr_running(void) 2291 { 2292 unsigned long i, sum = 0; 2293 2294 for_each_online_cpu(i) 2295 sum += cpu_rq(i)->nr_running; 2296 2297 return sum; 2298 } 2299 2300 unsigned long long nr_context_switches(void) 2301 { 2302 int i; 2303 unsigned long long sum = 0; 2304 2305 for_each_possible_cpu(i) 2306 sum += cpu_rq(i)->nr_switches; 2307 2308 return sum; 2309 } 2310 2311 unsigned long nr_iowait(void) 2312 { 2313 unsigned long i, sum = 0; 2314 2315 for_each_possible_cpu(i) 2316 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2317 2318 return sum; 2319 } 2320 2321 unsigned long nr_iowait_cpu(int cpu) 2322 { 2323 struct rq *this = cpu_rq(cpu); 2324 return atomic_read(&this->nr_iowait); 2325 } 2326 2327 #ifdef CONFIG_SMP 2328 2329 /* 2330 * sched_exec - execve() is a valuable balancing opportunity, because at 2331 * this point the task has the smallest effective memory and cache footprint. 2332 */ 2333 void sched_exec(void) 2334 { 2335 struct task_struct *p = current; 2336 unsigned long flags; 2337 int dest_cpu; 2338 2339 raw_spin_lock_irqsave(&p->pi_lock, flags); 2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2341 if (dest_cpu == smp_processor_id()) 2342 goto unlock; 2343 2344 if (likely(cpu_active(dest_cpu))) { 2345 struct migration_arg arg = { p, dest_cpu }; 2346 2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2349 return; 2350 } 2351 unlock: 2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2353 } 2354 2355 #endif 2356 2357 DEFINE_PER_CPU(struct kernel_stat, kstat); 2358 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2359 2360 EXPORT_PER_CPU_SYMBOL(kstat); 2361 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2362 2363 /* 2364 * Return any ns on the sched_clock that have not yet been accounted in 2365 * @p in case that task is currently running. 2366 * 2367 * Called with task_rq_lock() held on @rq. 2368 */ 2369 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2370 { 2371 u64 ns = 0; 2372 2373 if (task_current(rq, p)) { 2374 update_rq_clock(rq); 2375 ns = rq_clock_task(rq) - p->se.exec_start; 2376 if ((s64)ns < 0) 2377 ns = 0; 2378 } 2379 2380 return ns; 2381 } 2382 2383 unsigned long long task_delta_exec(struct task_struct *p) 2384 { 2385 unsigned long flags; 2386 struct rq *rq; 2387 u64 ns = 0; 2388 2389 rq = task_rq_lock(p, &flags); 2390 ns = do_task_delta_exec(p, rq); 2391 task_rq_unlock(rq, p, &flags); 2392 2393 return ns; 2394 } 2395 2396 /* 2397 * Return accounted runtime for the task. 2398 * In case the task is currently running, return the runtime plus current's 2399 * pending runtime that have not been accounted yet. 2400 */ 2401 unsigned long long task_sched_runtime(struct task_struct *p) 2402 { 2403 unsigned long flags; 2404 struct rq *rq; 2405 u64 ns = 0; 2406 2407 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2408 /* 2409 * 64-bit doesn't need locks to atomically read a 64bit value. 2410 * So we have a optimization chance when the task's delta_exec is 0. 2411 * Reading ->on_cpu is racy, but this is ok. 2412 * 2413 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2414 * If we race with it entering cpu, unaccounted time is 0. This is 2415 * indistinguishable from the read occurring a few cycles earlier. 2416 */ 2417 if (!p->on_cpu) 2418 return p->se.sum_exec_runtime; 2419 #endif 2420 2421 rq = task_rq_lock(p, &flags); 2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2423 task_rq_unlock(rq, p, &flags); 2424 2425 return ns; 2426 } 2427 2428 /* 2429 * This function gets called by the timer code, with HZ frequency. 2430 * We call it with interrupts disabled. 2431 */ 2432 void scheduler_tick(void) 2433 { 2434 int cpu = smp_processor_id(); 2435 struct rq *rq = cpu_rq(cpu); 2436 struct task_struct *curr = rq->curr; 2437 2438 sched_clock_tick(); 2439 2440 raw_spin_lock(&rq->lock); 2441 update_rq_clock(rq); 2442 curr->sched_class->task_tick(rq, curr, 0); 2443 update_cpu_load_active(rq); 2444 raw_spin_unlock(&rq->lock); 2445 2446 perf_event_task_tick(); 2447 2448 #ifdef CONFIG_SMP 2449 rq->idle_balance = idle_cpu(cpu); 2450 trigger_load_balance(rq); 2451 #endif 2452 rq_last_tick_reset(rq); 2453 } 2454 2455 #ifdef CONFIG_NO_HZ_FULL 2456 /** 2457 * scheduler_tick_max_deferment 2458 * 2459 * Keep at least one tick per second when a single 2460 * active task is running because the scheduler doesn't 2461 * yet completely support full dynticks environment. 2462 * 2463 * This makes sure that uptime, CFS vruntime, load 2464 * balancing, etc... continue to move forward, even 2465 * with a very low granularity. 2466 * 2467 * Return: Maximum deferment in nanoseconds. 2468 */ 2469 u64 scheduler_tick_max_deferment(void) 2470 { 2471 struct rq *rq = this_rq(); 2472 unsigned long next, now = ACCESS_ONCE(jiffies); 2473 2474 next = rq->last_sched_tick + HZ; 2475 2476 if (time_before_eq(next, now)) 2477 return 0; 2478 2479 return jiffies_to_nsecs(next - now); 2480 } 2481 #endif 2482 2483 notrace unsigned long get_parent_ip(unsigned long addr) 2484 { 2485 if (in_lock_functions(addr)) { 2486 addr = CALLER_ADDR2; 2487 if (in_lock_functions(addr)) 2488 addr = CALLER_ADDR3; 2489 } 2490 return addr; 2491 } 2492 2493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2494 defined(CONFIG_PREEMPT_TRACER)) 2495 2496 void __kprobes preempt_count_add(int val) 2497 { 2498 #ifdef CONFIG_DEBUG_PREEMPT 2499 /* 2500 * Underflow? 2501 */ 2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2503 return; 2504 #endif 2505 __preempt_count_add(val); 2506 #ifdef CONFIG_DEBUG_PREEMPT 2507 /* 2508 * Spinlock count overflowing soon? 2509 */ 2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2511 PREEMPT_MASK - 10); 2512 #endif 2513 if (preempt_count() == val) 2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2515 } 2516 EXPORT_SYMBOL(preempt_count_add); 2517 2518 void __kprobes preempt_count_sub(int val) 2519 { 2520 #ifdef CONFIG_DEBUG_PREEMPT 2521 /* 2522 * Underflow? 2523 */ 2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2525 return; 2526 /* 2527 * Is the spinlock portion underflowing? 2528 */ 2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2530 !(preempt_count() & PREEMPT_MASK))) 2531 return; 2532 #endif 2533 2534 if (preempt_count() == val) 2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2536 __preempt_count_sub(val); 2537 } 2538 EXPORT_SYMBOL(preempt_count_sub); 2539 2540 #endif 2541 2542 /* 2543 * Print scheduling while atomic bug: 2544 */ 2545 static noinline void __schedule_bug(struct task_struct *prev) 2546 { 2547 if (oops_in_progress) 2548 return; 2549 2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2551 prev->comm, prev->pid, preempt_count()); 2552 2553 debug_show_held_locks(prev); 2554 print_modules(); 2555 if (irqs_disabled()) 2556 print_irqtrace_events(prev); 2557 dump_stack(); 2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2559 } 2560 2561 /* 2562 * Various schedule()-time debugging checks and statistics: 2563 */ 2564 static inline void schedule_debug(struct task_struct *prev) 2565 { 2566 /* 2567 * Test if we are atomic. Since do_exit() needs to call into 2568 * schedule() atomically, we ignore that path. Otherwise whine 2569 * if we are scheduling when we should not. 2570 */ 2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2572 __schedule_bug(prev); 2573 rcu_sleep_check(); 2574 2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2576 2577 schedstat_inc(this_rq(), sched_count); 2578 } 2579 2580 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2581 { 2582 if (prev->on_rq || rq->skip_clock_update < 0) 2583 update_rq_clock(rq); 2584 prev->sched_class->put_prev_task(rq, prev); 2585 } 2586 2587 /* 2588 * Pick up the highest-prio task: 2589 */ 2590 static inline struct task_struct * 2591 pick_next_task(struct rq *rq) 2592 { 2593 const struct sched_class *class; 2594 struct task_struct *p; 2595 2596 /* 2597 * Optimization: we know that if all tasks are in 2598 * the fair class we can call that function directly: 2599 */ 2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2601 p = fair_sched_class.pick_next_task(rq); 2602 if (likely(p)) 2603 return p; 2604 } 2605 2606 for_each_class(class) { 2607 p = class->pick_next_task(rq); 2608 if (p) 2609 return p; 2610 } 2611 2612 BUG(); /* the idle class will always have a runnable task */ 2613 } 2614 2615 /* 2616 * __schedule() is the main scheduler function. 2617 * 2618 * The main means of driving the scheduler and thus entering this function are: 2619 * 2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2621 * 2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2623 * paths. For example, see arch/x86/entry_64.S. 2624 * 2625 * To drive preemption between tasks, the scheduler sets the flag in timer 2626 * interrupt handler scheduler_tick(). 2627 * 2628 * 3. Wakeups don't really cause entry into schedule(). They add a 2629 * task to the run-queue and that's it. 2630 * 2631 * Now, if the new task added to the run-queue preempts the current 2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2633 * called on the nearest possible occasion: 2634 * 2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2636 * 2637 * - in syscall or exception context, at the next outmost 2638 * preempt_enable(). (this might be as soon as the wake_up()'s 2639 * spin_unlock()!) 2640 * 2641 * - in IRQ context, return from interrupt-handler to 2642 * preemptible context 2643 * 2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2645 * then at the next: 2646 * 2647 * - cond_resched() call 2648 * - explicit schedule() call 2649 * - return from syscall or exception to user-space 2650 * - return from interrupt-handler to user-space 2651 */ 2652 static void __sched __schedule(void) 2653 { 2654 struct task_struct *prev, *next; 2655 unsigned long *switch_count; 2656 struct rq *rq; 2657 int cpu; 2658 2659 need_resched: 2660 preempt_disable(); 2661 cpu = smp_processor_id(); 2662 rq = cpu_rq(cpu); 2663 rcu_note_context_switch(cpu); 2664 prev = rq->curr; 2665 2666 schedule_debug(prev); 2667 2668 if (sched_feat(HRTICK)) 2669 hrtick_clear(rq); 2670 2671 /* 2672 * Make sure that signal_pending_state()->signal_pending() below 2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2674 * done by the caller to avoid the race with signal_wake_up(). 2675 */ 2676 smp_mb__before_spinlock(); 2677 raw_spin_lock_irq(&rq->lock); 2678 2679 switch_count = &prev->nivcsw; 2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2681 if (unlikely(signal_pending_state(prev->state, prev))) { 2682 prev->state = TASK_RUNNING; 2683 } else { 2684 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2685 prev->on_rq = 0; 2686 2687 /* 2688 * If a worker went to sleep, notify and ask workqueue 2689 * whether it wants to wake up a task to maintain 2690 * concurrency. 2691 */ 2692 if (prev->flags & PF_WQ_WORKER) { 2693 struct task_struct *to_wakeup; 2694 2695 to_wakeup = wq_worker_sleeping(prev, cpu); 2696 if (to_wakeup) 2697 try_to_wake_up_local(to_wakeup); 2698 } 2699 } 2700 switch_count = &prev->nvcsw; 2701 } 2702 2703 pre_schedule(rq, prev); 2704 2705 if (unlikely(!rq->nr_running)) 2706 idle_balance(cpu, rq); 2707 2708 put_prev_task(rq, prev); 2709 next = pick_next_task(rq); 2710 clear_tsk_need_resched(prev); 2711 clear_preempt_need_resched(); 2712 rq->skip_clock_update = 0; 2713 2714 if (likely(prev != next)) { 2715 rq->nr_switches++; 2716 rq->curr = next; 2717 ++*switch_count; 2718 2719 context_switch(rq, prev, next); /* unlocks the rq */ 2720 /* 2721 * The context switch have flipped the stack from under us 2722 * and restored the local variables which were saved when 2723 * this task called schedule() in the past. prev == current 2724 * is still correct, but it can be moved to another cpu/rq. 2725 */ 2726 cpu = smp_processor_id(); 2727 rq = cpu_rq(cpu); 2728 } else 2729 raw_spin_unlock_irq(&rq->lock); 2730 2731 post_schedule(rq); 2732 2733 sched_preempt_enable_no_resched(); 2734 if (need_resched()) 2735 goto need_resched; 2736 } 2737 2738 static inline void sched_submit_work(struct task_struct *tsk) 2739 { 2740 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2741 return; 2742 /* 2743 * If we are going to sleep and we have plugged IO queued, 2744 * make sure to submit it to avoid deadlocks. 2745 */ 2746 if (blk_needs_flush_plug(tsk)) 2747 blk_schedule_flush_plug(tsk); 2748 } 2749 2750 asmlinkage void __sched schedule(void) 2751 { 2752 struct task_struct *tsk = current; 2753 2754 sched_submit_work(tsk); 2755 __schedule(); 2756 } 2757 EXPORT_SYMBOL(schedule); 2758 2759 #ifdef CONFIG_CONTEXT_TRACKING 2760 asmlinkage void __sched schedule_user(void) 2761 { 2762 /* 2763 * If we come here after a random call to set_need_resched(), 2764 * or we have been woken up remotely but the IPI has not yet arrived, 2765 * we haven't yet exited the RCU idle mode. Do it here manually until 2766 * we find a better solution. 2767 */ 2768 user_exit(); 2769 schedule(); 2770 user_enter(); 2771 } 2772 #endif 2773 2774 /** 2775 * schedule_preempt_disabled - called with preemption disabled 2776 * 2777 * Returns with preemption disabled. Note: preempt_count must be 1 2778 */ 2779 void __sched schedule_preempt_disabled(void) 2780 { 2781 sched_preempt_enable_no_resched(); 2782 schedule(); 2783 preempt_disable(); 2784 } 2785 2786 #ifdef CONFIG_PREEMPT 2787 /* 2788 * this is the entry point to schedule() from in-kernel preemption 2789 * off of preempt_enable. Kernel preemptions off return from interrupt 2790 * occur there and call schedule directly. 2791 */ 2792 asmlinkage void __sched notrace preempt_schedule(void) 2793 { 2794 /* 2795 * If there is a non-zero preempt_count or interrupts are disabled, 2796 * we do not want to preempt the current task. Just return.. 2797 */ 2798 if (likely(!preemptible())) 2799 return; 2800 2801 do { 2802 __preempt_count_add(PREEMPT_ACTIVE); 2803 __schedule(); 2804 __preempt_count_sub(PREEMPT_ACTIVE); 2805 2806 /* 2807 * Check again in case we missed a preemption opportunity 2808 * between schedule and now. 2809 */ 2810 barrier(); 2811 } while (need_resched()); 2812 } 2813 EXPORT_SYMBOL(preempt_schedule); 2814 #endif /* CONFIG_PREEMPT */ 2815 2816 /* 2817 * this is the entry point to schedule() from kernel preemption 2818 * off of irq context. 2819 * Note, that this is called and return with irqs disabled. This will 2820 * protect us against recursive calling from irq. 2821 */ 2822 asmlinkage void __sched preempt_schedule_irq(void) 2823 { 2824 enum ctx_state prev_state; 2825 2826 /* Catch callers which need to be fixed */ 2827 BUG_ON(preempt_count() || !irqs_disabled()); 2828 2829 prev_state = exception_enter(); 2830 2831 do { 2832 __preempt_count_add(PREEMPT_ACTIVE); 2833 local_irq_enable(); 2834 __schedule(); 2835 local_irq_disable(); 2836 __preempt_count_sub(PREEMPT_ACTIVE); 2837 2838 /* 2839 * Check again in case we missed a preemption opportunity 2840 * between schedule and now. 2841 */ 2842 barrier(); 2843 } while (need_resched()); 2844 2845 exception_exit(prev_state); 2846 } 2847 2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2849 void *key) 2850 { 2851 return try_to_wake_up(curr->private, mode, wake_flags); 2852 } 2853 EXPORT_SYMBOL(default_wake_function); 2854 2855 static long __sched 2856 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 2857 { 2858 unsigned long flags; 2859 wait_queue_t wait; 2860 2861 init_waitqueue_entry(&wait, current); 2862 2863 __set_current_state(state); 2864 2865 spin_lock_irqsave(&q->lock, flags); 2866 __add_wait_queue(q, &wait); 2867 spin_unlock(&q->lock); 2868 timeout = schedule_timeout(timeout); 2869 spin_lock_irq(&q->lock); 2870 __remove_wait_queue(q, &wait); 2871 spin_unlock_irqrestore(&q->lock, flags); 2872 2873 return timeout; 2874 } 2875 2876 void __sched interruptible_sleep_on(wait_queue_head_t *q) 2877 { 2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2879 } 2880 EXPORT_SYMBOL(interruptible_sleep_on); 2881 2882 long __sched 2883 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 2884 { 2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 2886 } 2887 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 2888 2889 void __sched sleep_on(wait_queue_head_t *q) 2890 { 2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2892 } 2893 EXPORT_SYMBOL(sleep_on); 2894 2895 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 2896 { 2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 2898 } 2899 EXPORT_SYMBOL(sleep_on_timeout); 2900 2901 #ifdef CONFIG_RT_MUTEXES 2902 2903 /* 2904 * rt_mutex_setprio - set the current priority of a task 2905 * @p: task 2906 * @prio: prio value (kernel-internal form) 2907 * 2908 * This function changes the 'effective' priority of a task. It does 2909 * not touch ->normal_prio like __setscheduler(). 2910 * 2911 * Used by the rt_mutex code to implement priority inheritance logic. 2912 */ 2913 void rt_mutex_setprio(struct task_struct *p, int prio) 2914 { 2915 int oldprio, on_rq, running, enqueue_flag = 0; 2916 struct rq *rq; 2917 const struct sched_class *prev_class; 2918 2919 BUG_ON(prio > MAX_PRIO); 2920 2921 rq = __task_rq_lock(p); 2922 2923 /* 2924 * Idle task boosting is a nono in general. There is one 2925 * exception, when PREEMPT_RT and NOHZ is active: 2926 * 2927 * The idle task calls get_next_timer_interrupt() and holds 2928 * the timer wheel base->lock on the CPU and another CPU wants 2929 * to access the timer (probably to cancel it). We can safely 2930 * ignore the boosting request, as the idle CPU runs this code 2931 * with interrupts disabled and will complete the lock 2932 * protected section without being interrupted. So there is no 2933 * real need to boost. 2934 */ 2935 if (unlikely(p == rq->idle)) { 2936 WARN_ON(p != rq->curr); 2937 WARN_ON(p->pi_blocked_on); 2938 goto out_unlock; 2939 } 2940 2941 trace_sched_pi_setprio(p, prio); 2942 p->pi_top_task = rt_mutex_get_top_task(p); 2943 oldprio = p->prio; 2944 prev_class = p->sched_class; 2945 on_rq = p->on_rq; 2946 running = task_current(rq, p); 2947 if (on_rq) 2948 dequeue_task(rq, p, 0); 2949 if (running) 2950 p->sched_class->put_prev_task(rq, p); 2951 2952 /* 2953 * Boosting condition are: 2954 * 1. -rt task is running and holds mutex A 2955 * --> -dl task blocks on mutex A 2956 * 2957 * 2. -dl task is running and holds mutex A 2958 * --> -dl task blocks on mutex A and could preempt the 2959 * running task 2960 */ 2961 if (dl_prio(prio)) { 2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task && 2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { 2964 p->dl.dl_boosted = 1; 2965 p->dl.dl_throttled = 0; 2966 enqueue_flag = ENQUEUE_REPLENISH; 2967 } else 2968 p->dl.dl_boosted = 0; 2969 p->sched_class = &dl_sched_class; 2970 } else if (rt_prio(prio)) { 2971 if (dl_prio(oldprio)) 2972 p->dl.dl_boosted = 0; 2973 if (oldprio < prio) 2974 enqueue_flag = ENQUEUE_HEAD; 2975 p->sched_class = &rt_sched_class; 2976 } else { 2977 if (dl_prio(oldprio)) 2978 p->dl.dl_boosted = 0; 2979 p->sched_class = &fair_sched_class; 2980 } 2981 2982 p->prio = prio; 2983 2984 if (running) 2985 p->sched_class->set_curr_task(rq); 2986 if (on_rq) 2987 enqueue_task(rq, p, enqueue_flag); 2988 2989 check_class_changed(rq, p, prev_class, oldprio); 2990 out_unlock: 2991 __task_rq_unlock(rq); 2992 } 2993 #endif 2994 2995 void set_user_nice(struct task_struct *p, long nice) 2996 { 2997 int old_prio, delta, on_rq; 2998 unsigned long flags; 2999 struct rq *rq; 3000 3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3002 return; 3003 /* 3004 * We have to be careful, if called from sys_setpriority(), 3005 * the task might be in the middle of scheduling on another CPU. 3006 */ 3007 rq = task_rq_lock(p, &flags); 3008 /* 3009 * The RT priorities are set via sched_setscheduler(), but we still 3010 * allow the 'normal' nice value to be set - but as expected 3011 * it wont have any effect on scheduling until the task is 3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3013 */ 3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3015 p->static_prio = NICE_TO_PRIO(nice); 3016 goto out_unlock; 3017 } 3018 on_rq = p->on_rq; 3019 if (on_rq) 3020 dequeue_task(rq, p, 0); 3021 3022 p->static_prio = NICE_TO_PRIO(nice); 3023 set_load_weight(p); 3024 old_prio = p->prio; 3025 p->prio = effective_prio(p); 3026 delta = p->prio - old_prio; 3027 3028 if (on_rq) { 3029 enqueue_task(rq, p, 0); 3030 /* 3031 * If the task increased its priority or is running and 3032 * lowered its priority, then reschedule its CPU: 3033 */ 3034 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3035 resched_task(rq->curr); 3036 } 3037 out_unlock: 3038 task_rq_unlock(rq, p, &flags); 3039 } 3040 EXPORT_SYMBOL(set_user_nice); 3041 3042 /* 3043 * can_nice - check if a task can reduce its nice value 3044 * @p: task 3045 * @nice: nice value 3046 */ 3047 int can_nice(const struct task_struct *p, const int nice) 3048 { 3049 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3050 int nice_rlim = 20 - nice; 3051 3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3053 capable(CAP_SYS_NICE)); 3054 } 3055 3056 #ifdef __ARCH_WANT_SYS_NICE 3057 3058 /* 3059 * sys_nice - change the priority of the current process. 3060 * @increment: priority increment 3061 * 3062 * sys_setpriority is a more generic, but much slower function that 3063 * does similar things. 3064 */ 3065 SYSCALL_DEFINE1(nice, int, increment) 3066 { 3067 long nice, retval; 3068 3069 /* 3070 * Setpriority might change our priority at the same moment. 3071 * We don't have to worry. Conceptually one call occurs first 3072 * and we have a single winner. 3073 */ 3074 if (increment < -40) 3075 increment = -40; 3076 if (increment > 40) 3077 increment = 40; 3078 3079 nice = TASK_NICE(current) + increment; 3080 if (nice < -20) 3081 nice = -20; 3082 if (nice > 19) 3083 nice = 19; 3084 3085 if (increment < 0 && !can_nice(current, nice)) 3086 return -EPERM; 3087 3088 retval = security_task_setnice(current, nice); 3089 if (retval) 3090 return retval; 3091 3092 set_user_nice(current, nice); 3093 return 0; 3094 } 3095 3096 #endif 3097 3098 /** 3099 * task_prio - return the priority value of a given task. 3100 * @p: the task in question. 3101 * 3102 * Return: The priority value as seen by users in /proc. 3103 * RT tasks are offset by -200. Normal tasks are centered 3104 * around 0, value goes from -16 to +15. 3105 */ 3106 int task_prio(const struct task_struct *p) 3107 { 3108 return p->prio - MAX_RT_PRIO; 3109 } 3110 3111 /** 3112 * task_nice - return the nice value of a given task. 3113 * @p: the task in question. 3114 * 3115 * Return: The nice value [ -20 ... 0 ... 19 ]. 3116 */ 3117 int task_nice(const struct task_struct *p) 3118 { 3119 return TASK_NICE(p); 3120 } 3121 EXPORT_SYMBOL(task_nice); 3122 3123 /** 3124 * idle_cpu - is a given cpu idle currently? 3125 * @cpu: the processor in question. 3126 * 3127 * Return: 1 if the CPU is currently idle. 0 otherwise. 3128 */ 3129 int idle_cpu(int cpu) 3130 { 3131 struct rq *rq = cpu_rq(cpu); 3132 3133 if (rq->curr != rq->idle) 3134 return 0; 3135 3136 if (rq->nr_running) 3137 return 0; 3138 3139 #ifdef CONFIG_SMP 3140 if (!llist_empty(&rq->wake_list)) 3141 return 0; 3142 #endif 3143 3144 return 1; 3145 } 3146 3147 /** 3148 * idle_task - return the idle task for a given cpu. 3149 * @cpu: the processor in question. 3150 * 3151 * Return: The idle task for the cpu @cpu. 3152 */ 3153 struct task_struct *idle_task(int cpu) 3154 { 3155 return cpu_rq(cpu)->idle; 3156 } 3157 3158 /** 3159 * find_process_by_pid - find a process with a matching PID value. 3160 * @pid: the pid in question. 3161 * 3162 * The task of @pid, if found. %NULL otherwise. 3163 */ 3164 static struct task_struct *find_process_by_pid(pid_t pid) 3165 { 3166 return pid ? find_task_by_vpid(pid) : current; 3167 } 3168 3169 /* 3170 * This function initializes the sched_dl_entity of a newly becoming 3171 * SCHED_DEADLINE task. 3172 * 3173 * Only the static values are considered here, the actual runtime and the 3174 * absolute deadline will be properly calculated when the task is enqueued 3175 * for the first time with its new policy. 3176 */ 3177 static void 3178 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3179 { 3180 struct sched_dl_entity *dl_se = &p->dl; 3181 3182 init_dl_task_timer(dl_se); 3183 dl_se->dl_runtime = attr->sched_runtime; 3184 dl_se->dl_deadline = attr->sched_deadline; 3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3186 dl_se->flags = attr->sched_flags; 3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3188 dl_se->dl_throttled = 0; 3189 dl_se->dl_new = 1; 3190 } 3191 3192 /* Actually do priority change: must hold pi & rq lock. */ 3193 static void __setscheduler(struct rq *rq, struct task_struct *p, 3194 const struct sched_attr *attr) 3195 { 3196 int policy = attr->sched_policy; 3197 3198 if (policy == -1) /* setparam */ 3199 policy = p->policy; 3200 3201 p->policy = policy; 3202 3203 if (dl_policy(policy)) 3204 __setparam_dl(p, attr); 3205 else if (fair_policy(policy)) 3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3207 3208 /* 3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3210 * !rt_policy. Always setting this ensures that things like 3211 * getparam()/getattr() don't report silly values for !rt tasks. 3212 */ 3213 p->rt_priority = attr->sched_priority; 3214 3215 p->normal_prio = normal_prio(p); 3216 p->prio = rt_mutex_getprio(p); 3217 3218 if (dl_prio(p->prio)) 3219 p->sched_class = &dl_sched_class; 3220 else if (rt_prio(p->prio)) 3221 p->sched_class = &rt_sched_class; 3222 else 3223 p->sched_class = &fair_sched_class; 3224 3225 set_load_weight(p); 3226 } 3227 3228 static void 3229 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3230 { 3231 struct sched_dl_entity *dl_se = &p->dl; 3232 3233 attr->sched_priority = p->rt_priority; 3234 attr->sched_runtime = dl_se->dl_runtime; 3235 attr->sched_deadline = dl_se->dl_deadline; 3236 attr->sched_period = dl_se->dl_period; 3237 attr->sched_flags = dl_se->flags; 3238 } 3239 3240 /* 3241 * This function validates the new parameters of a -deadline task. 3242 * We ask for the deadline not being zero, and greater or equal 3243 * than the runtime, as well as the period of being zero or 3244 * greater than deadline. Furthermore, we have to be sure that 3245 * user parameters are above the internal resolution (1us); we 3246 * check sched_runtime only since it is always the smaller one. 3247 */ 3248 static bool 3249 __checkparam_dl(const struct sched_attr *attr) 3250 { 3251 return attr && attr->sched_deadline != 0 && 3252 (attr->sched_period == 0 || 3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) && 3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 && 3255 attr->sched_runtime >= (2 << (DL_SCALE - 1)); 3256 } 3257 3258 /* 3259 * check the target process has a UID that matches the current process's 3260 */ 3261 static bool check_same_owner(struct task_struct *p) 3262 { 3263 const struct cred *cred = current_cred(), *pcred; 3264 bool match; 3265 3266 rcu_read_lock(); 3267 pcred = __task_cred(p); 3268 match = (uid_eq(cred->euid, pcred->euid) || 3269 uid_eq(cred->euid, pcred->uid)); 3270 rcu_read_unlock(); 3271 return match; 3272 } 3273 3274 static int __sched_setscheduler(struct task_struct *p, 3275 const struct sched_attr *attr, 3276 bool user) 3277 { 3278 int retval, oldprio, oldpolicy = -1, on_rq, running; 3279 int policy = attr->sched_policy; 3280 unsigned long flags; 3281 const struct sched_class *prev_class; 3282 struct rq *rq; 3283 int reset_on_fork; 3284 3285 /* may grab non-irq protected spin_locks */ 3286 BUG_ON(in_interrupt()); 3287 recheck: 3288 /* double check policy once rq lock held */ 3289 if (policy < 0) { 3290 reset_on_fork = p->sched_reset_on_fork; 3291 policy = oldpolicy = p->policy; 3292 } else { 3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3294 3295 if (policy != SCHED_DEADLINE && 3296 policy != SCHED_FIFO && policy != SCHED_RR && 3297 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3298 policy != SCHED_IDLE) 3299 return -EINVAL; 3300 } 3301 3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3303 return -EINVAL; 3304 3305 /* 3306 * Valid priorities for SCHED_FIFO and SCHED_RR are 3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3308 * SCHED_BATCH and SCHED_IDLE is 0. 3309 */ 3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3312 return -EINVAL; 3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3314 (rt_policy(policy) != (attr->sched_priority != 0))) 3315 return -EINVAL; 3316 3317 /* 3318 * Allow unprivileged RT tasks to decrease priority: 3319 */ 3320 if (user && !capable(CAP_SYS_NICE)) { 3321 if (fair_policy(policy)) { 3322 if (attr->sched_nice < TASK_NICE(p) && 3323 !can_nice(p, attr->sched_nice)) 3324 return -EPERM; 3325 } 3326 3327 if (rt_policy(policy)) { 3328 unsigned long rlim_rtprio = 3329 task_rlimit(p, RLIMIT_RTPRIO); 3330 3331 /* can't set/change the rt policy */ 3332 if (policy != p->policy && !rlim_rtprio) 3333 return -EPERM; 3334 3335 /* can't increase priority */ 3336 if (attr->sched_priority > p->rt_priority && 3337 attr->sched_priority > rlim_rtprio) 3338 return -EPERM; 3339 } 3340 3341 /* 3342 * Can't set/change SCHED_DEADLINE policy at all for now 3343 * (safest behavior); in the future we would like to allow 3344 * unprivileged DL tasks to increase their relative deadline 3345 * or reduce their runtime (both ways reducing utilization) 3346 */ 3347 if (dl_policy(policy)) 3348 return -EPERM; 3349 3350 /* 3351 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3352 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3353 */ 3354 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3355 if (!can_nice(p, TASK_NICE(p))) 3356 return -EPERM; 3357 } 3358 3359 /* can't change other user's priorities */ 3360 if (!check_same_owner(p)) 3361 return -EPERM; 3362 3363 /* Normal users shall not reset the sched_reset_on_fork flag */ 3364 if (p->sched_reset_on_fork && !reset_on_fork) 3365 return -EPERM; 3366 } 3367 3368 if (user) { 3369 retval = security_task_setscheduler(p); 3370 if (retval) 3371 return retval; 3372 } 3373 3374 /* 3375 * make sure no PI-waiters arrive (or leave) while we are 3376 * changing the priority of the task: 3377 * 3378 * To be able to change p->policy safely, the appropriate 3379 * runqueue lock must be held. 3380 */ 3381 rq = task_rq_lock(p, &flags); 3382 3383 /* 3384 * Changing the policy of the stop threads its a very bad idea 3385 */ 3386 if (p == rq->stop) { 3387 task_rq_unlock(rq, p, &flags); 3388 return -EINVAL; 3389 } 3390 3391 /* 3392 * If not changing anything there's no need to proceed further: 3393 */ 3394 if (unlikely(policy == p->policy)) { 3395 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p)) 3396 goto change; 3397 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3398 goto change; 3399 if (dl_policy(policy)) 3400 goto change; 3401 3402 task_rq_unlock(rq, p, &flags); 3403 return 0; 3404 } 3405 change: 3406 3407 if (user) { 3408 #ifdef CONFIG_RT_GROUP_SCHED 3409 /* 3410 * Do not allow realtime tasks into groups that have no runtime 3411 * assigned. 3412 */ 3413 if (rt_bandwidth_enabled() && rt_policy(policy) && 3414 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3415 !task_group_is_autogroup(task_group(p))) { 3416 task_rq_unlock(rq, p, &flags); 3417 return -EPERM; 3418 } 3419 #endif 3420 #ifdef CONFIG_SMP 3421 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3422 cpumask_t *span = rq->rd->span; 3423 3424 /* 3425 * Don't allow tasks with an affinity mask smaller than 3426 * the entire root_domain to become SCHED_DEADLINE. We 3427 * will also fail if there's no bandwidth available. 3428 */ 3429 if (!cpumask_subset(span, &p->cpus_allowed) || 3430 rq->rd->dl_bw.bw == 0) { 3431 task_rq_unlock(rq, p, &flags); 3432 return -EPERM; 3433 } 3434 } 3435 #endif 3436 } 3437 3438 /* recheck policy now with rq lock held */ 3439 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3440 policy = oldpolicy = -1; 3441 task_rq_unlock(rq, p, &flags); 3442 goto recheck; 3443 } 3444 3445 /* 3446 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3447 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3448 * is available. 3449 */ 3450 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3451 task_rq_unlock(rq, p, &flags); 3452 return -EBUSY; 3453 } 3454 3455 on_rq = p->on_rq; 3456 running = task_current(rq, p); 3457 if (on_rq) 3458 dequeue_task(rq, p, 0); 3459 if (running) 3460 p->sched_class->put_prev_task(rq, p); 3461 3462 p->sched_reset_on_fork = reset_on_fork; 3463 3464 oldprio = p->prio; 3465 prev_class = p->sched_class; 3466 __setscheduler(rq, p, attr); 3467 3468 if (running) 3469 p->sched_class->set_curr_task(rq); 3470 if (on_rq) 3471 enqueue_task(rq, p, 0); 3472 3473 check_class_changed(rq, p, prev_class, oldprio); 3474 task_rq_unlock(rq, p, &flags); 3475 3476 rt_mutex_adjust_pi(p); 3477 3478 return 0; 3479 } 3480 3481 static int _sched_setscheduler(struct task_struct *p, int policy, 3482 const struct sched_param *param, bool check) 3483 { 3484 struct sched_attr attr = { 3485 .sched_policy = policy, 3486 .sched_priority = param->sched_priority, 3487 .sched_nice = PRIO_TO_NICE(p->static_prio), 3488 }; 3489 3490 /* 3491 * Fixup the legacy SCHED_RESET_ON_FORK hack 3492 */ 3493 if (policy & SCHED_RESET_ON_FORK) { 3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3495 policy &= ~SCHED_RESET_ON_FORK; 3496 attr.sched_policy = policy; 3497 } 3498 3499 return __sched_setscheduler(p, &attr, check); 3500 } 3501 /** 3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3503 * @p: the task in question. 3504 * @policy: new policy. 3505 * @param: structure containing the new RT priority. 3506 * 3507 * Return: 0 on success. An error code otherwise. 3508 * 3509 * NOTE that the task may be already dead. 3510 */ 3511 int sched_setscheduler(struct task_struct *p, int policy, 3512 const struct sched_param *param) 3513 { 3514 return _sched_setscheduler(p, policy, param, true); 3515 } 3516 EXPORT_SYMBOL_GPL(sched_setscheduler); 3517 3518 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3519 { 3520 return __sched_setscheduler(p, attr, true); 3521 } 3522 EXPORT_SYMBOL_GPL(sched_setattr); 3523 3524 /** 3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3526 * @p: the task in question. 3527 * @policy: new policy. 3528 * @param: structure containing the new RT priority. 3529 * 3530 * Just like sched_setscheduler, only don't bother checking if the 3531 * current context has permission. For example, this is needed in 3532 * stop_machine(): we create temporary high priority worker threads, 3533 * but our caller might not have that capability. 3534 * 3535 * Return: 0 on success. An error code otherwise. 3536 */ 3537 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3538 const struct sched_param *param) 3539 { 3540 return _sched_setscheduler(p, policy, param, false); 3541 } 3542 3543 static int 3544 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3545 { 3546 struct sched_param lparam; 3547 struct task_struct *p; 3548 int retval; 3549 3550 if (!param || pid < 0) 3551 return -EINVAL; 3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3553 return -EFAULT; 3554 3555 rcu_read_lock(); 3556 retval = -ESRCH; 3557 p = find_process_by_pid(pid); 3558 if (p != NULL) 3559 retval = sched_setscheduler(p, policy, &lparam); 3560 rcu_read_unlock(); 3561 3562 return retval; 3563 } 3564 3565 /* 3566 * Mimics kernel/events/core.c perf_copy_attr(). 3567 */ 3568 static int sched_copy_attr(struct sched_attr __user *uattr, 3569 struct sched_attr *attr) 3570 { 3571 u32 size; 3572 int ret; 3573 3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3575 return -EFAULT; 3576 3577 /* 3578 * zero the full structure, so that a short copy will be nice. 3579 */ 3580 memset(attr, 0, sizeof(*attr)); 3581 3582 ret = get_user(size, &uattr->size); 3583 if (ret) 3584 return ret; 3585 3586 if (size > PAGE_SIZE) /* silly large */ 3587 goto err_size; 3588 3589 if (!size) /* abi compat */ 3590 size = SCHED_ATTR_SIZE_VER0; 3591 3592 if (size < SCHED_ATTR_SIZE_VER0) 3593 goto err_size; 3594 3595 /* 3596 * If we're handed a bigger struct than we know of, 3597 * ensure all the unknown bits are 0 - i.e. new 3598 * user-space does not rely on any kernel feature 3599 * extensions we dont know about yet. 3600 */ 3601 if (size > sizeof(*attr)) { 3602 unsigned char __user *addr; 3603 unsigned char __user *end; 3604 unsigned char val; 3605 3606 addr = (void __user *)uattr + sizeof(*attr); 3607 end = (void __user *)uattr + size; 3608 3609 for (; addr < end; addr++) { 3610 ret = get_user(val, addr); 3611 if (ret) 3612 return ret; 3613 if (val) 3614 goto err_size; 3615 } 3616 size = sizeof(*attr); 3617 } 3618 3619 ret = copy_from_user(attr, uattr, size); 3620 if (ret) 3621 return -EFAULT; 3622 3623 /* 3624 * XXX: do we want to be lenient like existing syscalls; or do we want 3625 * to be strict and return an error on out-of-bounds values? 3626 */ 3627 attr->sched_nice = clamp(attr->sched_nice, -20, 19); 3628 3629 out: 3630 return ret; 3631 3632 err_size: 3633 put_user(sizeof(*attr), &uattr->size); 3634 ret = -E2BIG; 3635 goto out; 3636 } 3637 3638 /** 3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3640 * @pid: the pid in question. 3641 * @policy: new policy. 3642 * @param: structure containing the new RT priority. 3643 * 3644 * Return: 0 on success. An error code otherwise. 3645 */ 3646 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3647 struct sched_param __user *, param) 3648 { 3649 /* negative values for policy are not valid */ 3650 if (policy < 0) 3651 return -EINVAL; 3652 3653 return do_sched_setscheduler(pid, policy, param); 3654 } 3655 3656 /** 3657 * sys_sched_setparam - set/change the RT priority of a thread 3658 * @pid: the pid in question. 3659 * @param: structure containing the new RT priority. 3660 * 3661 * Return: 0 on success. An error code otherwise. 3662 */ 3663 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3664 { 3665 return do_sched_setscheduler(pid, -1, param); 3666 } 3667 3668 /** 3669 * sys_sched_setattr - same as above, but with extended sched_attr 3670 * @pid: the pid in question. 3671 * @uattr: structure containing the extended parameters. 3672 */ 3673 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3674 unsigned int, flags) 3675 { 3676 struct sched_attr attr; 3677 struct task_struct *p; 3678 int retval; 3679 3680 if (!uattr || pid < 0 || flags) 3681 return -EINVAL; 3682 3683 if (sched_copy_attr(uattr, &attr)) 3684 return -EFAULT; 3685 3686 rcu_read_lock(); 3687 retval = -ESRCH; 3688 p = find_process_by_pid(pid); 3689 if (p != NULL) 3690 retval = sched_setattr(p, &attr); 3691 rcu_read_unlock(); 3692 3693 return retval; 3694 } 3695 3696 /** 3697 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3698 * @pid: the pid in question. 3699 * 3700 * Return: On success, the policy of the thread. Otherwise, a negative error 3701 * code. 3702 */ 3703 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3704 { 3705 struct task_struct *p; 3706 int retval; 3707 3708 if (pid < 0) 3709 return -EINVAL; 3710 3711 retval = -ESRCH; 3712 rcu_read_lock(); 3713 p = find_process_by_pid(pid); 3714 if (p) { 3715 retval = security_task_getscheduler(p); 3716 if (!retval) 3717 retval = p->policy 3718 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3719 } 3720 rcu_read_unlock(); 3721 return retval; 3722 } 3723 3724 /** 3725 * sys_sched_getparam - get the RT priority of a thread 3726 * @pid: the pid in question. 3727 * @param: structure containing the RT priority. 3728 * 3729 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3730 * code. 3731 */ 3732 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3733 { 3734 struct sched_param lp; 3735 struct task_struct *p; 3736 int retval; 3737 3738 if (!param || pid < 0) 3739 return -EINVAL; 3740 3741 rcu_read_lock(); 3742 p = find_process_by_pid(pid); 3743 retval = -ESRCH; 3744 if (!p) 3745 goto out_unlock; 3746 3747 retval = security_task_getscheduler(p); 3748 if (retval) 3749 goto out_unlock; 3750 3751 if (task_has_dl_policy(p)) { 3752 retval = -EINVAL; 3753 goto out_unlock; 3754 } 3755 lp.sched_priority = p->rt_priority; 3756 rcu_read_unlock(); 3757 3758 /* 3759 * This one might sleep, we cannot do it with a spinlock held ... 3760 */ 3761 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3762 3763 return retval; 3764 3765 out_unlock: 3766 rcu_read_unlock(); 3767 return retval; 3768 } 3769 3770 static int sched_read_attr(struct sched_attr __user *uattr, 3771 struct sched_attr *attr, 3772 unsigned int usize) 3773 { 3774 int ret; 3775 3776 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3777 return -EFAULT; 3778 3779 /* 3780 * If we're handed a smaller struct than we know of, 3781 * ensure all the unknown bits are 0 - i.e. old 3782 * user-space does not get uncomplete information. 3783 */ 3784 if (usize < sizeof(*attr)) { 3785 unsigned char *addr; 3786 unsigned char *end; 3787 3788 addr = (void *)attr + usize; 3789 end = (void *)attr + sizeof(*attr); 3790 3791 for (; addr < end; addr++) { 3792 if (*addr) 3793 goto err_size; 3794 } 3795 3796 attr->size = usize; 3797 } 3798 3799 ret = copy_to_user(uattr, attr, attr->size); 3800 if (ret) 3801 return -EFAULT; 3802 3803 out: 3804 return ret; 3805 3806 err_size: 3807 ret = -E2BIG; 3808 goto out; 3809 } 3810 3811 /** 3812 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3813 * @pid: the pid in question. 3814 * @uattr: structure containing the extended parameters. 3815 * @size: sizeof(attr) for fwd/bwd comp. 3816 */ 3817 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3818 unsigned int, size, unsigned int, flags) 3819 { 3820 struct sched_attr attr = { 3821 .size = sizeof(struct sched_attr), 3822 }; 3823 struct task_struct *p; 3824 int retval; 3825 3826 if (!uattr || pid < 0 || size > PAGE_SIZE || 3827 size < SCHED_ATTR_SIZE_VER0 || flags) 3828 return -EINVAL; 3829 3830 rcu_read_lock(); 3831 p = find_process_by_pid(pid); 3832 retval = -ESRCH; 3833 if (!p) 3834 goto out_unlock; 3835 3836 retval = security_task_getscheduler(p); 3837 if (retval) 3838 goto out_unlock; 3839 3840 attr.sched_policy = p->policy; 3841 if (p->sched_reset_on_fork) 3842 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3843 if (task_has_dl_policy(p)) 3844 __getparam_dl(p, &attr); 3845 else if (task_has_rt_policy(p)) 3846 attr.sched_priority = p->rt_priority; 3847 else 3848 attr.sched_nice = TASK_NICE(p); 3849 3850 rcu_read_unlock(); 3851 3852 retval = sched_read_attr(uattr, &attr, size); 3853 return retval; 3854 3855 out_unlock: 3856 rcu_read_unlock(); 3857 return retval; 3858 } 3859 3860 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3861 { 3862 cpumask_var_t cpus_allowed, new_mask; 3863 struct task_struct *p; 3864 int retval; 3865 3866 rcu_read_lock(); 3867 3868 p = find_process_by_pid(pid); 3869 if (!p) { 3870 rcu_read_unlock(); 3871 return -ESRCH; 3872 } 3873 3874 /* Prevent p going away */ 3875 get_task_struct(p); 3876 rcu_read_unlock(); 3877 3878 if (p->flags & PF_NO_SETAFFINITY) { 3879 retval = -EINVAL; 3880 goto out_put_task; 3881 } 3882 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3883 retval = -ENOMEM; 3884 goto out_put_task; 3885 } 3886 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3887 retval = -ENOMEM; 3888 goto out_free_cpus_allowed; 3889 } 3890 retval = -EPERM; 3891 if (!check_same_owner(p)) { 3892 rcu_read_lock(); 3893 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3894 rcu_read_unlock(); 3895 goto out_unlock; 3896 } 3897 rcu_read_unlock(); 3898 } 3899 3900 retval = security_task_setscheduler(p); 3901 if (retval) 3902 goto out_unlock; 3903 3904 3905 cpuset_cpus_allowed(p, cpus_allowed); 3906 cpumask_and(new_mask, in_mask, cpus_allowed); 3907 3908 /* 3909 * Since bandwidth control happens on root_domain basis, 3910 * if admission test is enabled, we only admit -deadline 3911 * tasks allowed to run on all the CPUs in the task's 3912 * root_domain. 3913 */ 3914 #ifdef CONFIG_SMP 3915 if (task_has_dl_policy(p)) { 3916 const struct cpumask *span = task_rq(p)->rd->span; 3917 3918 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 3919 retval = -EBUSY; 3920 goto out_unlock; 3921 } 3922 } 3923 #endif 3924 again: 3925 retval = set_cpus_allowed_ptr(p, new_mask); 3926 3927 if (!retval) { 3928 cpuset_cpus_allowed(p, cpus_allowed); 3929 if (!cpumask_subset(new_mask, cpus_allowed)) { 3930 /* 3931 * We must have raced with a concurrent cpuset 3932 * update. Just reset the cpus_allowed to the 3933 * cpuset's cpus_allowed 3934 */ 3935 cpumask_copy(new_mask, cpus_allowed); 3936 goto again; 3937 } 3938 } 3939 out_unlock: 3940 free_cpumask_var(new_mask); 3941 out_free_cpus_allowed: 3942 free_cpumask_var(cpus_allowed); 3943 out_put_task: 3944 put_task_struct(p); 3945 return retval; 3946 } 3947 3948 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3949 struct cpumask *new_mask) 3950 { 3951 if (len < cpumask_size()) 3952 cpumask_clear(new_mask); 3953 else if (len > cpumask_size()) 3954 len = cpumask_size(); 3955 3956 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3957 } 3958 3959 /** 3960 * sys_sched_setaffinity - set the cpu affinity of a process 3961 * @pid: pid of the process 3962 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3963 * @user_mask_ptr: user-space pointer to the new cpu mask 3964 * 3965 * Return: 0 on success. An error code otherwise. 3966 */ 3967 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3968 unsigned long __user *, user_mask_ptr) 3969 { 3970 cpumask_var_t new_mask; 3971 int retval; 3972 3973 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3974 return -ENOMEM; 3975 3976 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3977 if (retval == 0) 3978 retval = sched_setaffinity(pid, new_mask); 3979 free_cpumask_var(new_mask); 3980 return retval; 3981 } 3982 3983 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3984 { 3985 struct task_struct *p; 3986 unsigned long flags; 3987 int retval; 3988 3989 rcu_read_lock(); 3990 3991 retval = -ESRCH; 3992 p = find_process_by_pid(pid); 3993 if (!p) 3994 goto out_unlock; 3995 3996 retval = security_task_getscheduler(p); 3997 if (retval) 3998 goto out_unlock; 3999 4000 raw_spin_lock_irqsave(&p->pi_lock, flags); 4001 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4002 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4003 4004 out_unlock: 4005 rcu_read_unlock(); 4006 4007 return retval; 4008 } 4009 4010 /** 4011 * sys_sched_getaffinity - get the cpu affinity of a process 4012 * @pid: pid of the process 4013 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4014 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4015 * 4016 * Return: 0 on success. An error code otherwise. 4017 */ 4018 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4019 unsigned long __user *, user_mask_ptr) 4020 { 4021 int ret; 4022 cpumask_var_t mask; 4023 4024 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4025 return -EINVAL; 4026 if (len & (sizeof(unsigned long)-1)) 4027 return -EINVAL; 4028 4029 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4030 return -ENOMEM; 4031 4032 ret = sched_getaffinity(pid, mask); 4033 if (ret == 0) { 4034 size_t retlen = min_t(size_t, len, cpumask_size()); 4035 4036 if (copy_to_user(user_mask_ptr, mask, retlen)) 4037 ret = -EFAULT; 4038 else 4039 ret = retlen; 4040 } 4041 free_cpumask_var(mask); 4042 4043 return ret; 4044 } 4045 4046 /** 4047 * sys_sched_yield - yield the current processor to other threads. 4048 * 4049 * This function yields the current CPU to other tasks. If there are no 4050 * other threads running on this CPU then this function will return. 4051 * 4052 * Return: 0. 4053 */ 4054 SYSCALL_DEFINE0(sched_yield) 4055 { 4056 struct rq *rq = this_rq_lock(); 4057 4058 schedstat_inc(rq, yld_count); 4059 current->sched_class->yield_task(rq); 4060 4061 /* 4062 * Since we are going to call schedule() anyway, there's 4063 * no need to preempt or enable interrupts: 4064 */ 4065 __release(rq->lock); 4066 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4067 do_raw_spin_unlock(&rq->lock); 4068 sched_preempt_enable_no_resched(); 4069 4070 schedule(); 4071 4072 return 0; 4073 } 4074 4075 static void __cond_resched(void) 4076 { 4077 __preempt_count_add(PREEMPT_ACTIVE); 4078 __schedule(); 4079 __preempt_count_sub(PREEMPT_ACTIVE); 4080 } 4081 4082 int __sched _cond_resched(void) 4083 { 4084 if (should_resched()) { 4085 __cond_resched(); 4086 return 1; 4087 } 4088 return 0; 4089 } 4090 EXPORT_SYMBOL(_cond_resched); 4091 4092 /* 4093 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4094 * call schedule, and on return reacquire the lock. 4095 * 4096 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4097 * operations here to prevent schedule() from being called twice (once via 4098 * spin_unlock(), once by hand). 4099 */ 4100 int __cond_resched_lock(spinlock_t *lock) 4101 { 4102 int resched = should_resched(); 4103 int ret = 0; 4104 4105 lockdep_assert_held(lock); 4106 4107 if (spin_needbreak(lock) || resched) { 4108 spin_unlock(lock); 4109 if (resched) 4110 __cond_resched(); 4111 else 4112 cpu_relax(); 4113 ret = 1; 4114 spin_lock(lock); 4115 } 4116 return ret; 4117 } 4118 EXPORT_SYMBOL(__cond_resched_lock); 4119 4120 int __sched __cond_resched_softirq(void) 4121 { 4122 BUG_ON(!in_softirq()); 4123 4124 if (should_resched()) { 4125 local_bh_enable(); 4126 __cond_resched(); 4127 local_bh_disable(); 4128 return 1; 4129 } 4130 return 0; 4131 } 4132 EXPORT_SYMBOL(__cond_resched_softirq); 4133 4134 /** 4135 * yield - yield the current processor to other threads. 4136 * 4137 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4138 * 4139 * The scheduler is at all times free to pick the calling task as the most 4140 * eligible task to run, if removing the yield() call from your code breaks 4141 * it, its already broken. 4142 * 4143 * Typical broken usage is: 4144 * 4145 * while (!event) 4146 * yield(); 4147 * 4148 * where one assumes that yield() will let 'the other' process run that will 4149 * make event true. If the current task is a SCHED_FIFO task that will never 4150 * happen. Never use yield() as a progress guarantee!! 4151 * 4152 * If you want to use yield() to wait for something, use wait_event(). 4153 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4154 * If you still want to use yield(), do not! 4155 */ 4156 void __sched yield(void) 4157 { 4158 set_current_state(TASK_RUNNING); 4159 sys_sched_yield(); 4160 } 4161 EXPORT_SYMBOL(yield); 4162 4163 /** 4164 * yield_to - yield the current processor to another thread in 4165 * your thread group, or accelerate that thread toward the 4166 * processor it's on. 4167 * @p: target task 4168 * @preempt: whether task preemption is allowed or not 4169 * 4170 * It's the caller's job to ensure that the target task struct 4171 * can't go away on us before we can do any checks. 4172 * 4173 * Return: 4174 * true (>0) if we indeed boosted the target task. 4175 * false (0) if we failed to boost the target. 4176 * -ESRCH if there's no task to yield to. 4177 */ 4178 bool __sched yield_to(struct task_struct *p, bool preempt) 4179 { 4180 struct task_struct *curr = current; 4181 struct rq *rq, *p_rq; 4182 unsigned long flags; 4183 int yielded = 0; 4184 4185 local_irq_save(flags); 4186 rq = this_rq(); 4187 4188 again: 4189 p_rq = task_rq(p); 4190 /* 4191 * If we're the only runnable task on the rq and target rq also 4192 * has only one task, there's absolutely no point in yielding. 4193 */ 4194 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4195 yielded = -ESRCH; 4196 goto out_irq; 4197 } 4198 4199 double_rq_lock(rq, p_rq); 4200 if (task_rq(p) != p_rq) { 4201 double_rq_unlock(rq, p_rq); 4202 goto again; 4203 } 4204 4205 if (!curr->sched_class->yield_to_task) 4206 goto out_unlock; 4207 4208 if (curr->sched_class != p->sched_class) 4209 goto out_unlock; 4210 4211 if (task_running(p_rq, p) || p->state) 4212 goto out_unlock; 4213 4214 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4215 if (yielded) { 4216 schedstat_inc(rq, yld_count); 4217 /* 4218 * Make p's CPU reschedule; pick_next_entity takes care of 4219 * fairness. 4220 */ 4221 if (preempt && rq != p_rq) 4222 resched_task(p_rq->curr); 4223 } 4224 4225 out_unlock: 4226 double_rq_unlock(rq, p_rq); 4227 out_irq: 4228 local_irq_restore(flags); 4229 4230 if (yielded > 0) 4231 schedule(); 4232 4233 return yielded; 4234 } 4235 EXPORT_SYMBOL_GPL(yield_to); 4236 4237 /* 4238 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4239 * that process accounting knows that this is a task in IO wait state. 4240 */ 4241 void __sched io_schedule(void) 4242 { 4243 struct rq *rq = raw_rq(); 4244 4245 delayacct_blkio_start(); 4246 atomic_inc(&rq->nr_iowait); 4247 blk_flush_plug(current); 4248 current->in_iowait = 1; 4249 schedule(); 4250 current->in_iowait = 0; 4251 atomic_dec(&rq->nr_iowait); 4252 delayacct_blkio_end(); 4253 } 4254 EXPORT_SYMBOL(io_schedule); 4255 4256 long __sched io_schedule_timeout(long timeout) 4257 { 4258 struct rq *rq = raw_rq(); 4259 long ret; 4260 4261 delayacct_blkio_start(); 4262 atomic_inc(&rq->nr_iowait); 4263 blk_flush_plug(current); 4264 current->in_iowait = 1; 4265 ret = schedule_timeout(timeout); 4266 current->in_iowait = 0; 4267 atomic_dec(&rq->nr_iowait); 4268 delayacct_blkio_end(); 4269 return ret; 4270 } 4271 4272 /** 4273 * sys_sched_get_priority_max - return maximum RT priority. 4274 * @policy: scheduling class. 4275 * 4276 * Return: On success, this syscall returns the maximum 4277 * rt_priority that can be used by a given scheduling class. 4278 * On failure, a negative error code is returned. 4279 */ 4280 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4281 { 4282 int ret = -EINVAL; 4283 4284 switch (policy) { 4285 case SCHED_FIFO: 4286 case SCHED_RR: 4287 ret = MAX_USER_RT_PRIO-1; 4288 break; 4289 case SCHED_DEADLINE: 4290 case SCHED_NORMAL: 4291 case SCHED_BATCH: 4292 case SCHED_IDLE: 4293 ret = 0; 4294 break; 4295 } 4296 return ret; 4297 } 4298 4299 /** 4300 * sys_sched_get_priority_min - return minimum RT priority. 4301 * @policy: scheduling class. 4302 * 4303 * Return: On success, this syscall returns the minimum 4304 * rt_priority that can be used by a given scheduling class. 4305 * On failure, a negative error code is returned. 4306 */ 4307 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4308 { 4309 int ret = -EINVAL; 4310 4311 switch (policy) { 4312 case SCHED_FIFO: 4313 case SCHED_RR: 4314 ret = 1; 4315 break; 4316 case SCHED_DEADLINE: 4317 case SCHED_NORMAL: 4318 case SCHED_BATCH: 4319 case SCHED_IDLE: 4320 ret = 0; 4321 } 4322 return ret; 4323 } 4324 4325 /** 4326 * sys_sched_rr_get_interval - return the default timeslice of a process. 4327 * @pid: pid of the process. 4328 * @interval: userspace pointer to the timeslice value. 4329 * 4330 * this syscall writes the default timeslice value of a given process 4331 * into the user-space timespec buffer. A value of '0' means infinity. 4332 * 4333 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4334 * an error code. 4335 */ 4336 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4337 struct timespec __user *, interval) 4338 { 4339 struct task_struct *p; 4340 unsigned int time_slice; 4341 unsigned long flags; 4342 struct rq *rq; 4343 int retval; 4344 struct timespec t; 4345 4346 if (pid < 0) 4347 return -EINVAL; 4348 4349 retval = -ESRCH; 4350 rcu_read_lock(); 4351 p = find_process_by_pid(pid); 4352 if (!p) 4353 goto out_unlock; 4354 4355 retval = security_task_getscheduler(p); 4356 if (retval) 4357 goto out_unlock; 4358 4359 rq = task_rq_lock(p, &flags); 4360 time_slice = 0; 4361 if (p->sched_class->get_rr_interval) 4362 time_slice = p->sched_class->get_rr_interval(rq, p); 4363 task_rq_unlock(rq, p, &flags); 4364 4365 rcu_read_unlock(); 4366 jiffies_to_timespec(time_slice, &t); 4367 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4368 return retval; 4369 4370 out_unlock: 4371 rcu_read_unlock(); 4372 return retval; 4373 } 4374 4375 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4376 4377 void sched_show_task(struct task_struct *p) 4378 { 4379 unsigned long free = 0; 4380 int ppid; 4381 unsigned state; 4382 4383 state = p->state ? __ffs(p->state) + 1 : 0; 4384 printk(KERN_INFO "%-15.15s %c", p->comm, 4385 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4386 #if BITS_PER_LONG == 32 4387 if (state == TASK_RUNNING) 4388 printk(KERN_CONT " running "); 4389 else 4390 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4391 #else 4392 if (state == TASK_RUNNING) 4393 printk(KERN_CONT " running task "); 4394 else 4395 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4396 #endif 4397 #ifdef CONFIG_DEBUG_STACK_USAGE 4398 free = stack_not_used(p); 4399 #endif 4400 rcu_read_lock(); 4401 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4402 rcu_read_unlock(); 4403 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4404 task_pid_nr(p), ppid, 4405 (unsigned long)task_thread_info(p)->flags); 4406 4407 print_worker_info(KERN_INFO, p); 4408 show_stack(p, NULL); 4409 } 4410 4411 void show_state_filter(unsigned long state_filter) 4412 { 4413 struct task_struct *g, *p; 4414 4415 #if BITS_PER_LONG == 32 4416 printk(KERN_INFO 4417 " task PC stack pid father\n"); 4418 #else 4419 printk(KERN_INFO 4420 " task PC stack pid father\n"); 4421 #endif 4422 rcu_read_lock(); 4423 do_each_thread(g, p) { 4424 /* 4425 * reset the NMI-timeout, listing all files on a slow 4426 * console might take a lot of time: 4427 */ 4428 touch_nmi_watchdog(); 4429 if (!state_filter || (p->state & state_filter)) 4430 sched_show_task(p); 4431 } while_each_thread(g, p); 4432 4433 touch_all_softlockup_watchdogs(); 4434 4435 #ifdef CONFIG_SCHED_DEBUG 4436 sysrq_sched_debug_show(); 4437 #endif 4438 rcu_read_unlock(); 4439 /* 4440 * Only show locks if all tasks are dumped: 4441 */ 4442 if (!state_filter) 4443 debug_show_all_locks(); 4444 } 4445 4446 void init_idle_bootup_task(struct task_struct *idle) 4447 { 4448 idle->sched_class = &idle_sched_class; 4449 } 4450 4451 /** 4452 * init_idle - set up an idle thread for a given CPU 4453 * @idle: task in question 4454 * @cpu: cpu the idle task belongs to 4455 * 4456 * NOTE: this function does not set the idle thread's NEED_RESCHED 4457 * flag, to make booting more robust. 4458 */ 4459 void init_idle(struct task_struct *idle, int cpu) 4460 { 4461 struct rq *rq = cpu_rq(cpu); 4462 unsigned long flags; 4463 4464 raw_spin_lock_irqsave(&rq->lock, flags); 4465 4466 __sched_fork(0, idle); 4467 idle->state = TASK_RUNNING; 4468 idle->se.exec_start = sched_clock(); 4469 4470 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4471 /* 4472 * We're having a chicken and egg problem, even though we are 4473 * holding rq->lock, the cpu isn't yet set to this cpu so the 4474 * lockdep check in task_group() will fail. 4475 * 4476 * Similar case to sched_fork(). / Alternatively we could 4477 * use task_rq_lock() here and obtain the other rq->lock. 4478 * 4479 * Silence PROVE_RCU 4480 */ 4481 rcu_read_lock(); 4482 __set_task_cpu(idle, cpu); 4483 rcu_read_unlock(); 4484 4485 rq->curr = rq->idle = idle; 4486 #if defined(CONFIG_SMP) 4487 idle->on_cpu = 1; 4488 #endif 4489 raw_spin_unlock_irqrestore(&rq->lock, flags); 4490 4491 /* Set the preempt count _outside_ the spinlocks! */ 4492 init_idle_preempt_count(idle, cpu); 4493 4494 /* 4495 * The idle tasks have their own, simple scheduling class: 4496 */ 4497 idle->sched_class = &idle_sched_class; 4498 ftrace_graph_init_idle_task(idle, cpu); 4499 vtime_init_idle(idle, cpu); 4500 #if defined(CONFIG_SMP) 4501 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4502 #endif 4503 } 4504 4505 #ifdef CONFIG_SMP 4506 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4507 { 4508 if (p->sched_class && p->sched_class->set_cpus_allowed) 4509 p->sched_class->set_cpus_allowed(p, new_mask); 4510 4511 cpumask_copy(&p->cpus_allowed, new_mask); 4512 p->nr_cpus_allowed = cpumask_weight(new_mask); 4513 } 4514 4515 /* 4516 * This is how migration works: 4517 * 4518 * 1) we invoke migration_cpu_stop() on the target CPU using 4519 * stop_one_cpu(). 4520 * 2) stopper starts to run (implicitly forcing the migrated thread 4521 * off the CPU) 4522 * 3) it checks whether the migrated task is still in the wrong runqueue. 4523 * 4) if it's in the wrong runqueue then the migration thread removes 4524 * it and puts it into the right queue. 4525 * 5) stopper completes and stop_one_cpu() returns and the migration 4526 * is done. 4527 */ 4528 4529 /* 4530 * Change a given task's CPU affinity. Migrate the thread to a 4531 * proper CPU and schedule it away if the CPU it's executing on 4532 * is removed from the allowed bitmask. 4533 * 4534 * NOTE: the caller must have a valid reference to the task, the 4535 * task must not exit() & deallocate itself prematurely. The 4536 * call is not atomic; no spinlocks may be held. 4537 */ 4538 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4539 { 4540 unsigned long flags; 4541 struct rq *rq; 4542 unsigned int dest_cpu; 4543 int ret = 0; 4544 4545 rq = task_rq_lock(p, &flags); 4546 4547 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4548 goto out; 4549 4550 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4551 ret = -EINVAL; 4552 goto out; 4553 } 4554 4555 do_set_cpus_allowed(p, new_mask); 4556 4557 /* Can the task run on the task's current CPU? If so, we're done */ 4558 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4559 goto out; 4560 4561 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4562 if (p->on_rq) { 4563 struct migration_arg arg = { p, dest_cpu }; 4564 /* Need help from migration thread: drop lock and wait. */ 4565 task_rq_unlock(rq, p, &flags); 4566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4567 tlb_migrate_finish(p->mm); 4568 return 0; 4569 } 4570 out: 4571 task_rq_unlock(rq, p, &flags); 4572 4573 return ret; 4574 } 4575 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4576 4577 /* 4578 * Move (not current) task off this cpu, onto dest cpu. We're doing 4579 * this because either it can't run here any more (set_cpus_allowed() 4580 * away from this CPU, or CPU going down), or because we're 4581 * attempting to rebalance this task on exec (sched_exec). 4582 * 4583 * So we race with normal scheduler movements, but that's OK, as long 4584 * as the task is no longer on this CPU. 4585 * 4586 * Returns non-zero if task was successfully migrated. 4587 */ 4588 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4589 { 4590 struct rq *rq_dest, *rq_src; 4591 int ret = 0; 4592 4593 if (unlikely(!cpu_active(dest_cpu))) 4594 return ret; 4595 4596 rq_src = cpu_rq(src_cpu); 4597 rq_dest = cpu_rq(dest_cpu); 4598 4599 raw_spin_lock(&p->pi_lock); 4600 double_rq_lock(rq_src, rq_dest); 4601 /* Already moved. */ 4602 if (task_cpu(p) != src_cpu) 4603 goto done; 4604 /* Affinity changed (again). */ 4605 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4606 goto fail; 4607 4608 /* 4609 * If we're not on a rq, the next wake-up will ensure we're 4610 * placed properly. 4611 */ 4612 if (p->on_rq) { 4613 dequeue_task(rq_src, p, 0); 4614 set_task_cpu(p, dest_cpu); 4615 enqueue_task(rq_dest, p, 0); 4616 check_preempt_curr(rq_dest, p, 0); 4617 } 4618 done: 4619 ret = 1; 4620 fail: 4621 double_rq_unlock(rq_src, rq_dest); 4622 raw_spin_unlock(&p->pi_lock); 4623 return ret; 4624 } 4625 4626 #ifdef CONFIG_NUMA_BALANCING 4627 /* Migrate current task p to target_cpu */ 4628 int migrate_task_to(struct task_struct *p, int target_cpu) 4629 { 4630 struct migration_arg arg = { p, target_cpu }; 4631 int curr_cpu = task_cpu(p); 4632 4633 if (curr_cpu == target_cpu) 4634 return 0; 4635 4636 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4637 return -EINVAL; 4638 4639 /* TODO: This is not properly updating schedstats */ 4640 4641 trace_sched_move_numa(p, curr_cpu, target_cpu); 4642 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4643 } 4644 4645 /* 4646 * Requeue a task on a given node and accurately track the number of NUMA 4647 * tasks on the runqueues 4648 */ 4649 void sched_setnuma(struct task_struct *p, int nid) 4650 { 4651 struct rq *rq; 4652 unsigned long flags; 4653 bool on_rq, running; 4654 4655 rq = task_rq_lock(p, &flags); 4656 on_rq = p->on_rq; 4657 running = task_current(rq, p); 4658 4659 if (on_rq) 4660 dequeue_task(rq, p, 0); 4661 if (running) 4662 p->sched_class->put_prev_task(rq, p); 4663 4664 p->numa_preferred_nid = nid; 4665 4666 if (running) 4667 p->sched_class->set_curr_task(rq); 4668 if (on_rq) 4669 enqueue_task(rq, p, 0); 4670 task_rq_unlock(rq, p, &flags); 4671 } 4672 #endif 4673 4674 /* 4675 * migration_cpu_stop - this will be executed by a highprio stopper thread 4676 * and performs thread migration by bumping thread off CPU then 4677 * 'pushing' onto another runqueue. 4678 */ 4679 static int migration_cpu_stop(void *data) 4680 { 4681 struct migration_arg *arg = data; 4682 4683 /* 4684 * The original target cpu might have gone down and we might 4685 * be on another cpu but it doesn't matter. 4686 */ 4687 local_irq_disable(); 4688 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4689 local_irq_enable(); 4690 return 0; 4691 } 4692 4693 #ifdef CONFIG_HOTPLUG_CPU 4694 4695 /* 4696 * Ensures that the idle task is using init_mm right before its cpu goes 4697 * offline. 4698 */ 4699 void idle_task_exit(void) 4700 { 4701 struct mm_struct *mm = current->active_mm; 4702 4703 BUG_ON(cpu_online(smp_processor_id())); 4704 4705 if (mm != &init_mm) 4706 switch_mm(mm, &init_mm, current); 4707 mmdrop(mm); 4708 } 4709 4710 /* 4711 * Since this CPU is going 'away' for a while, fold any nr_active delta 4712 * we might have. Assumes we're called after migrate_tasks() so that the 4713 * nr_active count is stable. 4714 * 4715 * Also see the comment "Global load-average calculations". 4716 */ 4717 static void calc_load_migrate(struct rq *rq) 4718 { 4719 long delta = calc_load_fold_active(rq); 4720 if (delta) 4721 atomic_long_add(delta, &calc_load_tasks); 4722 } 4723 4724 /* 4725 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4726 * try_to_wake_up()->select_task_rq(). 4727 * 4728 * Called with rq->lock held even though we'er in stop_machine() and 4729 * there's no concurrency possible, we hold the required locks anyway 4730 * because of lock validation efforts. 4731 */ 4732 static void migrate_tasks(unsigned int dead_cpu) 4733 { 4734 struct rq *rq = cpu_rq(dead_cpu); 4735 struct task_struct *next, *stop = rq->stop; 4736 int dest_cpu; 4737 4738 /* 4739 * Fudge the rq selection such that the below task selection loop 4740 * doesn't get stuck on the currently eligible stop task. 4741 * 4742 * We're currently inside stop_machine() and the rq is either stuck 4743 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4744 * either way we should never end up calling schedule() until we're 4745 * done here. 4746 */ 4747 rq->stop = NULL; 4748 4749 /* 4750 * put_prev_task() and pick_next_task() sched 4751 * class method both need to have an up-to-date 4752 * value of rq->clock[_task] 4753 */ 4754 update_rq_clock(rq); 4755 4756 for ( ; ; ) { 4757 /* 4758 * There's this thread running, bail when that's the only 4759 * remaining thread. 4760 */ 4761 if (rq->nr_running == 1) 4762 break; 4763 4764 next = pick_next_task(rq); 4765 BUG_ON(!next); 4766 next->sched_class->put_prev_task(rq, next); 4767 4768 /* Find suitable destination for @next, with force if needed. */ 4769 dest_cpu = select_fallback_rq(dead_cpu, next); 4770 raw_spin_unlock(&rq->lock); 4771 4772 __migrate_task(next, dead_cpu, dest_cpu); 4773 4774 raw_spin_lock(&rq->lock); 4775 } 4776 4777 rq->stop = stop; 4778 } 4779 4780 #endif /* CONFIG_HOTPLUG_CPU */ 4781 4782 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4783 4784 static struct ctl_table sd_ctl_dir[] = { 4785 { 4786 .procname = "sched_domain", 4787 .mode = 0555, 4788 }, 4789 {} 4790 }; 4791 4792 static struct ctl_table sd_ctl_root[] = { 4793 { 4794 .procname = "kernel", 4795 .mode = 0555, 4796 .child = sd_ctl_dir, 4797 }, 4798 {} 4799 }; 4800 4801 static struct ctl_table *sd_alloc_ctl_entry(int n) 4802 { 4803 struct ctl_table *entry = 4804 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4805 4806 return entry; 4807 } 4808 4809 static void sd_free_ctl_entry(struct ctl_table **tablep) 4810 { 4811 struct ctl_table *entry; 4812 4813 /* 4814 * In the intermediate directories, both the child directory and 4815 * procname are dynamically allocated and could fail but the mode 4816 * will always be set. In the lowest directory the names are 4817 * static strings and all have proc handlers. 4818 */ 4819 for (entry = *tablep; entry->mode; entry++) { 4820 if (entry->child) 4821 sd_free_ctl_entry(&entry->child); 4822 if (entry->proc_handler == NULL) 4823 kfree(entry->procname); 4824 } 4825 4826 kfree(*tablep); 4827 *tablep = NULL; 4828 } 4829 4830 static int min_load_idx = 0; 4831 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4832 4833 static void 4834 set_table_entry(struct ctl_table *entry, 4835 const char *procname, void *data, int maxlen, 4836 umode_t mode, proc_handler *proc_handler, 4837 bool load_idx) 4838 { 4839 entry->procname = procname; 4840 entry->data = data; 4841 entry->maxlen = maxlen; 4842 entry->mode = mode; 4843 entry->proc_handler = proc_handler; 4844 4845 if (load_idx) { 4846 entry->extra1 = &min_load_idx; 4847 entry->extra2 = &max_load_idx; 4848 } 4849 } 4850 4851 static struct ctl_table * 4852 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4853 { 4854 struct ctl_table *table = sd_alloc_ctl_entry(13); 4855 4856 if (table == NULL) 4857 return NULL; 4858 4859 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4860 sizeof(long), 0644, proc_doulongvec_minmax, false); 4861 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4862 sizeof(long), 0644, proc_doulongvec_minmax, false); 4863 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4864 sizeof(int), 0644, proc_dointvec_minmax, true); 4865 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4866 sizeof(int), 0644, proc_dointvec_minmax, true); 4867 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4868 sizeof(int), 0644, proc_dointvec_minmax, true); 4869 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4870 sizeof(int), 0644, proc_dointvec_minmax, true); 4871 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4872 sizeof(int), 0644, proc_dointvec_minmax, true); 4873 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4874 sizeof(int), 0644, proc_dointvec_minmax, false); 4875 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4876 sizeof(int), 0644, proc_dointvec_minmax, false); 4877 set_table_entry(&table[9], "cache_nice_tries", 4878 &sd->cache_nice_tries, 4879 sizeof(int), 0644, proc_dointvec_minmax, false); 4880 set_table_entry(&table[10], "flags", &sd->flags, 4881 sizeof(int), 0644, proc_dointvec_minmax, false); 4882 set_table_entry(&table[11], "name", sd->name, 4883 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4884 /* &table[12] is terminator */ 4885 4886 return table; 4887 } 4888 4889 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4890 { 4891 struct ctl_table *entry, *table; 4892 struct sched_domain *sd; 4893 int domain_num = 0, i; 4894 char buf[32]; 4895 4896 for_each_domain(cpu, sd) 4897 domain_num++; 4898 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4899 if (table == NULL) 4900 return NULL; 4901 4902 i = 0; 4903 for_each_domain(cpu, sd) { 4904 snprintf(buf, 32, "domain%d", i); 4905 entry->procname = kstrdup(buf, GFP_KERNEL); 4906 entry->mode = 0555; 4907 entry->child = sd_alloc_ctl_domain_table(sd); 4908 entry++; 4909 i++; 4910 } 4911 return table; 4912 } 4913 4914 static struct ctl_table_header *sd_sysctl_header; 4915 static void register_sched_domain_sysctl(void) 4916 { 4917 int i, cpu_num = num_possible_cpus(); 4918 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4919 char buf[32]; 4920 4921 WARN_ON(sd_ctl_dir[0].child); 4922 sd_ctl_dir[0].child = entry; 4923 4924 if (entry == NULL) 4925 return; 4926 4927 for_each_possible_cpu(i) { 4928 snprintf(buf, 32, "cpu%d", i); 4929 entry->procname = kstrdup(buf, GFP_KERNEL); 4930 entry->mode = 0555; 4931 entry->child = sd_alloc_ctl_cpu_table(i); 4932 entry++; 4933 } 4934 4935 WARN_ON(sd_sysctl_header); 4936 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4937 } 4938 4939 /* may be called multiple times per register */ 4940 static void unregister_sched_domain_sysctl(void) 4941 { 4942 if (sd_sysctl_header) 4943 unregister_sysctl_table(sd_sysctl_header); 4944 sd_sysctl_header = NULL; 4945 if (sd_ctl_dir[0].child) 4946 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4947 } 4948 #else 4949 static void register_sched_domain_sysctl(void) 4950 { 4951 } 4952 static void unregister_sched_domain_sysctl(void) 4953 { 4954 } 4955 #endif 4956 4957 static void set_rq_online(struct rq *rq) 4958 { 4959 if (!rq->online) { 4960 const struct sched_class *class; 4961 4962 cpumask_set_cpu(rq->cpu, rq->rd->online); 4963 rq->online = 1; 4964 4965 for_each_class(class) { 4966 if (class->rq_online) 4967 class->rq_online(rq); 4968 } 4969 } 4970 } 4971 4972 static void set_rq_offline(struct rq *rq) 4973 { 4974 if (rq->online) { 4975 const struct sched_class *class; 4976 4977 for_each_class(class) { 4978 if (class->rq_offline) 4979 class->rq_offline(rq); 4980 } 4981 4982 cpumask_clear_cpu(rq->cpu, rq->rd->online); 4983 rq->online = 0; 4984 } 4985 } 4986 4987 /* 4988 * migration_call - callback that gets triggered when a CPU is added. 4989 * Here we can start up the necessary migration thread for the new CPU. 4990 */ 4991 static int 4992 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 4993 { 4994 int cpu = (long)hcpu; 4995 unsigned long flags; 4996 struct rq *rq = cpu_rq(cpu); 4997 4998 switch (action & ~CPU_TASKS_FROZEN) { 4999 5000 case CPU_UP_PREPARE: 5001 rq->calc_load_update = calc_load_update; 5002 break; 5003 5004 case CPU_ONLINE: 5005 /* Update our root-domain */ 5006 raw_spin_lock_irqsave(&rq->lock, flags); 5007 if (rq->rd) { 5008 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5009 5010 set_rq_online(rq); 5011 } 5012 raw_spin_unlock_irqrestore(&rq->lock, flags); 5013 break; 5014 5015 #ifdef CONFIG_HOTPLUG_CPU 5016 case CPU_DYING: 5017 sched_ttwu_pending(); 5018 /* Update our root-domain */ 5019 raw_spin_lock_irqsave(&rq->lock, flags); 5020 if (rq->rd) { 5021 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5022 set_rq_offline(rq); 5023 } 5024 migrate_tasks(cpu); 5025 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5026 raw_spin_unlock_irqrestore(&rq->lock, flags); 5027 break; 5028 5029 case CPU_DEAD: 5030 calc_load_migrate(rq); 5031 break; 5032 #endif 5033 } 5034 5035 update_max_interval(); 5036 5037 return NOTIFY_OK; 5038 } 5039 5040 /* 5041 * Register at high priority so that task migration (migrate_all_tasks) 5042 * happens before everything else. This has to be lower priority than 5043 * the notifier in the perf_event subsystem, though. 5044 */ 5045 static struct notifier_block migration_notifier = { 5046 .notifier_call = migration_call, 5047 .priority = CPU_PRI_MIGRATION, 5048 }; 5049 5050 static int sched_cpu_active(struct notifier_block *nfb, 5051 unsigned long action, void *hcpu) 5052 { 5053 switch (action & ~CPU_TASKS_FROZEN) { 5054 case CPU_STARTING: 5055 case CPU_DOWN_FAILED: 5056 set_cpu_active((long)hcpu, true); 5057 return NOTIFY_OK; 5058 default: 5059 return NOTIFY_DONE; 5060 } 5061 } 5062 5063 static int sched_cpu_inactive(struct notifier_block *nfb, 5064 unsigned long action, void *hcpu) 5065 { 5066 unsigned long flags; 5067 long cpu = (long)hcpu; 5068 5069 switch (action & ~CPU_TASKS_FROZEN) { 5070 case CPU_DOWN_PREPARE: 5071 set_cpu_active(cpu, false); 5072 5073 /* explicitly allow suspend */ 5074 if (!(action & CPU_TASKS_FROZEN)) { 5075 struct dl_bw *dl_b = dl_bw_of(cpu); 5076 bool overflow; 5077 int cpus; 5078 5079 raw_spin_lock_irqsave(&dl_b->lock, flags); 5080 cpus = dl_bw_cpus(cpu); 5081 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5082 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5083 5084 if (overflow) 5085 return notifier_from_errno(-EBUSY); 5086 } 5087 return NOTIFY_OK; 5088 } 5089 5090 return NOTIFY_DONE; 5091 } 5092 5093 static int __init migration_init(void) 5094 { 5095 void *cpu = (void *)(long)smp_processor_id(); 5096 int err; 5097 5098 /* Initialize migration for the boot CPU */ 5099 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5100 BUG_ON(err == NOTIFY_BAD); 5101 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5102 register_cpu_notifier(&migration_notifier); 5103 5104 /* Register cpu active notifiers */ 5105 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5106 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5107 5108 return 0; 5109 } 5110 early_initcall(migration_init); 5111 #endif 5112 5113 #ifdef CONFIG_SMP 5114 5115 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5116 5117 #ifdef CONFIG_SCHED_DEBUG 5118 5119 static __read_mostly int sched_debug_enabled; 5120 5121 static int __init sched_debug_setup(char *str) 5122 { 5123 sched_debug_enabled = 1; 5124 5125 return 0; 5126 } 5127 early_param("sched_debug", sched_debug_setup); 5128 5129 static inline bool sched_debug(void) 5130 { 5131 return sched_debug_enabled; 5132 } 5133 5134 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5135 struct cpumask *groupmask) 5136 { 5137 struct sched_group *group = sd->groups; 5138 char str[256]; 5139 5140 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5141 cpumask_clear(groupmask); 5142 5143 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5144 5145 if (!(sd->flags & SD_LOAD_BALANCE)) { 5146 printk("does not load-balance\n"); 5147 if (sd->parent) 5148 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5149 " has parent"); 5150 return -1; 5151 } 5152 5153 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5154 5155 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5156 printk(KERN_ERR "ERROR: domain->span does not contain " 5157 "CPU%d\n", cpu); 5158 } 5159 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5160 printk(KERN_ERR "ERROR: domain->groups does not contain" 5161 " CPU%d\n", cpu); 5162 } 5163 5164 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5165 do { 5166 if (!group) { 5167 printk("\n"); 5168 printk(KERN_ERR "ERROR: group is NULL\n"); 5169 break; 5170 } 5171 5172 /* 5173 * Even though we initialize ->power to something semi-sane, 5174 * we leave power_orig unset. This allows us to detect if 5175 * domain iteration is still funny without causing /0 traps. 5176 */ 5177 if (!group->sgp->power_orig) { 5178 printk(KERN_CONT "\n"); 5179 printk(KERN_ERR "ERROR: domain->cpu_power not " 5180 "set\n"); 5181 break; 5182 } 5183 5184 if (!cpumask_weight(sched_group_cpus(group))) { 5185 printk(KERN_CONT "\n"); 5186 printk(KERN_ERR "ERROR: empty group\n"); 5187 break; 5188 } 5189 5190 if (!(sd->flags & SD_OVERLAP) && 5191 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5192 printk(KERN_CONT "\n"); 5193 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5194 break; 5195 } 5196 5197 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5198 5199 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5200 5201 printk(KERN_CONT " %s", str); 5202 if (group->sgp->power != SCHED_POWER_SCALE) { 5203 printk(KERN_CONT " (cpu_power = %d)", 5204 group->sgp->power); 5205 } 5206 5207 group = group->next; 5208 } while (group != sd->groups); 5209 printk(KERN_CONT "\n"); 5210 5211 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5212 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5213 5214 if (sd->parent && 5215 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5216 printk(KERN_ERR "ERROR: parent span is not a superset " 5217 "of domain->span\n"); 5218 return 0; 5219 } 5220 5221 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5222 { 5223 int level = 0; 5224 5225 if (!sched_debug_enabled) 5226 return; 5227 5228 if (!sd) { 5229 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5230 return; 5231 } 5232 5233 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5234 5235 for (;;) { 5236 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5237 break; 5238 level++; 5239 sd = sd->parent; 5240 if (!sd) 5241 break; 5242 } 5243 } 5244 #else /* !CONFIG_SCHED_DEBUG */ 5245 # define sched_domain_debug(sd, cpu) do { } while (0) 5246 static inline bool sched_debug(void) 5247 { 5248 return false; 5249 } 5250 #endif /* CONFIG_SCHED_DEBUG */ 5251 5252 static int sd_degenerate(struct sched_domain *sd) 5253 { 5254 if (cpumask_weight(sched_domain_span(sd)) == 1) 5255 return 1; 5256 5257 /* Following flags need at least 2 groups */ 5258 if (sd->flags & (SD_LOAD_BALANCE | 5259 SD_BALANCE_NEWIDLE | 5260 SD_BALANCE_FORK | 5261 SD_BALANCE_EXEC | 5262 SD_SHARE_CPUPOWER | 5263 SD_SHARE_PKG_RESOURCES)) { 5264 if (sd->groups != sd->groups->next) 5265 return 0; 5266 } 5267 5268 /* Following flags don't use groups */ 5269 if (sd->flags & (SD_WAKE_AFFINE)) 5270 return 0; 5271 5272 return 1; 5273 } 5274 5275 static int 5276 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5277 { 5278 unsigned long cflags = sd->flags, pflags = parent->flags; 5279 5280 if (sd_degenerate(parent)) 5281 return 1; 5282 5283 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5284 return 0; 5285 5286 /* Flags needing groups don't count if only 1 group in parent */ 5287 if (parent->groups == parent->groups->next) { 5288 pflags &= ~(SD_LOAD_BALANCE | 5289 SD_BALANCE_NEWIDLE | 5290 SD_BALANCE_FORK | 5291 SD_BALANCE_EXEC | 5292 SD_SHARE_CPUPOWER | 5293 SD_SHARE_PKG_RESOURCES | 5294 SD_PREFER_SIBLING); 5295 if (nr_node_ids == 1) 5296 pflags &= ~SD_SERIALIZE; 5297 } 5298 if (~cflags & pflags) 5299 return 0; 5300 5301 return 1; 5302 } 5303 5304 static void free_rootdomain(struct rcu_head *rcu) 5305 { 5306 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5307 5308 cpupri_cleanup(&rd->cpupri); 5309 cpudl_cleanup(&rd->cpudl); 5310 free_cpumask_var(rd->dlo_mask); 5311 free_cpumask_var(rd->rto_mask); 5312 free_cpumask_var(rd->online); 5313 free_cpumask_var(rd->span); 5314 kfree(rd); 5315 } 5316 5317 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5318 { 5319 struct root_domain *old_rd = NULL; 5320 unsigned long flags; 5321 5322 raw_spin_lock_irqsave(&rq->lock, flags); 5323 5324 if (rq->rd) { 5325 old_rd = rq->rd; 5326 5327 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5328 set_rq_offline(rq); 5329 5330 cpumask_clear_cpu(rq->cpu, old_rd->span); 5331 5332 /* 5333 * If we dont want to free the old_rd yet then 5334 * set old_rd to NULL to skip the freeing later 5335 * in this function: 5336 */ 5337 if (!atomic_dec_and_test(&old_rd->refcount)) 5338 old_rd = NULL; 5339 } 5340 5341 atomic_inc(&rd->refcount); 5342 rq->rd = rd; 5343 5344 cpumask_set_cpu(rq->cpu, rd->span); 5345 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5346 set_rq_online(rq); 5347 5348 raw_spin_unlock_irqrestore(&rq->lock, flags); 5349 5350 if (old_rd) 5351 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5352 } 5353 5354 static int init_rootdomain(struct root_domain *rd) 5355 { 5356 memset(rd, 0, sizeof(*rd)); 5357 5358 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5359 goto out; 5360 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5361 goto free_span; 5362 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5363 goto free_online; 5364 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5365 goto free_dlo_mask; 5366 5367 init_dl_bw(&rd->dl_bw); 5368 if (cpudl_init(&rd->cpudl) != 0) 5369 goto free_dlo_mask; 5370 5371 if (cpupri_init(&rd->cpupri) != 0) 5372 goto free_rto_mask; 5373 return 0; 5374 5375 free_rto_mask: 5376 free_cpumask_var(rd->rto_mask); 5377 free_dlo_mask: 5378 free_cpumask_var(rd->dlo_mask); 5379 free_online: 5380 free_cpumask_var(rd->online); 5381 free_span: 5382 free_cpumask_var(rd->span); 5383 out: 5384 return -ENOMEM; 5385 } 5386 5387 /* 5388 * By default the system creates a single root-domain with all cpus as 5389 * members (mimicking the global state we have today). 5390 */ 5391 struct root_domain def_root_domain; 5392 5393 static void init_defrootdomain(void) 5394 { 5395 init_rootdomain(&def_root_domain); 5396 5397 atomic_set(&def_root_domain.refcount, 1); 5398 } 5399 5400 static struct root_domain *alloc_rootdomain(void) 5401 { 5402 struct root_domain *rd; 5403 5404 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5405 if (!rd) 5406 return NULL; 5407 5408 if (init_rootdomain(rd) != 0) { 5409 kfree(rd); 5410 return NULL; 5411 } 5412 5413 return rd; 5414 } 5415 5416 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5417 { 5418 struct sched_group *tmp, *first; 5419 5420 if (!sg) 5421 return; 5422 5423 first = sg; 5424 do { 5425 tmp = sg->next; 5426 5427 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5428 kfree(sg->sgp); 5429 5430 kfree(sg); 5431 sg = tmp; 5432 } while (sg != first); 5433 } 5434 5435 static void free_sched_domain(struct rcu_head *rcu) 5436 { 5437 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5438 5439 /* 5440 * If its an overlapping domain it has private groups, iterate and 5441 * nuke them all. 5442 */ 5443 if (sd->flags & SD_OVERLAP) { 5444 free_sched_groups(sd->groups, 1); 5445 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5446 kfree(sd->groups->sgp); 5447 kfree(sd->groups); 5448 } 5449 kfree(sd); 5450 } 5451 5452 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5453 { 5454 call_rcu(&sd->rcu, free_sched_domain); 5455 } 5456 5457 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5458 { 5459 for (; sd; sd = sd->parent) 5460 destroy_sched_domain(sd, cpu); 5461 } 5462 5463 /* 5464 * Keep a special pointer to the highest sched_domain that has 5465 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5466 * allows us to avoid some pointer chasing select_idle_sibling(). 5467 * 5468 * Also keep a unique ID per domain (we use the first cpu number in 5469 * the cpumask of the domain), this allows us to quickly tell if 5470 * two cpus are in the same cache domain, see cpus_share_cache(). 5471 */ 5472 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5473 DEFINE_PER_CPU(int, sd_llc_size); 5474 DEFINE_PER_CPU(int, sd_llc_id); 5475 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5476 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5477 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5478 5479 static void update_top_cache_domain(int cpu) 5480 { 5481 struct sched_domain *sd; 5482 struct sched_domain *busy_sd = NULL; 5483 int id = cpu; 5484 int size = 1; 5485 5486 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5487 if (sd) { 5488 id = cpumask_first(sched_domain_span(sd)); 5489 size = cpumask_weight(sched_domain_span(sd)); 5490 busy_sd = sd->parent; /* sd_busy */ 5491 } 5492 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5493 5494 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5495 per_cpu(sd_llc_size, cpu) = size; 5496 per_cpu(sd_llc_id, cpu) = id; 5497 5498 sd = lowest_flag_domain(cpu, SD_NUMA); 5499 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5500 5501 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5502 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5503 } 5504 5505 /* 5506 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5507 * hold the hotplug lock. 5508 */ 5509 static void 5510 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5511 { 5512 struct rq *rq = cpu_rq(cpu); 5513 struct sched_domain *tmp; 5514 5515 /* Remove the sched domains which do not contribute to scheduling. */ 5516 for (tmp = sd; tmp; ) { 5517 struct sched_domain *parent = tmp->parent; 5518 if (!parent) 5519 break; 5520 5521 if (sd_parent_degenerate(tmp, parent)) { 5522 tmp->parent = parent->parent; 5523 if (parent->parent) 5524 parent->parent->child = tmp; 5525 /* 5526 * Transfer SD_PREFER_SIBLING down in case of a 5527 * degenerate parent; the spans match for this 5528 * so the property transfers. 5529 */ 5530 if (parent->flags & SD_PREFER_SIBLING) 5531 tmp->flags |= SD_PREFER_SIBLING; 5532 destroy_sched_domain(parent, cpu); 5533 } else 5534 tmp = tmp->parent; 5535 } 5536 5537 if (sd && sd_degenerate(sd)) { 5538 tmp = sd; 5539 sd = sd->parent; 5540 destroy_sched_domain(tmp, cpu); 5541 if (sd) 5542 sd->child = NULL; 5543 } 5544 5545 sched_domain_debug(sd, cpu); 5546 5547 rq_attach_root(rq, rd); 5548 tmp = rq->sd; 5549 rcu_assign_pointer(rq->sd, sd); 5550 destroy_sched_domains(tmp, cpu); 5551 5552 update_top_cache_domain(cpu); 5553 } 5554 5555 /* cpus with isolated domains */ 5556 static cpumask_var_t cpu_isolated_map; 5557 5558 /* Setup the mask of cpus configured for isolated domains */ 5559 static int __init isolated_cpu_setup(char *str) 5560 { 5561 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5562 cpulist_parse(str, cpu_isolated_map); 5563 return 1; 5564 } 5565 5566 __setup("isolcpus=", isolated_cpu_setup); 5567 5568 static const struct cpumask *cpu_cpu_mask(int cpu) 5569 { 5570 return cpumask_of_node(cpu_to_node(cpu)); 5571 } 5572 5573 struct sd_data { 5574 struct sched_domain **__percpu sd; 5575 struct sched_group **__percpu sg; 5576 struct sched_group_power **__percpu sgp; 5577 }; 5578 5579 struct s_data { 5580 struct sched_domain ** __percpu sd; 5581 struct root_domain *rd; 5582 }; 5583 5584 enum s_alloc { 5585 sa_rootdomain, 5586 sa_sd, 5587 sa_sd_storage, 5588 sa_none, 5589 }; 5590 5591 struct sched_domain_topology_level; 5592 5593 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5594 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5595 5596 #define SDTL_OVERLAP 0x01 5597 5598 struct sched_domain_topology_level { 5599 sched_domain_init_f init; 5600 sched_domain_mask_f mask; 5601 int flags; 5602 int numa_level; 5603 struct sd_data data; 5604 }; 5605 5606 /* 5607 * Build an iteration mask that can exclude certain CPUs from the upwards 5608 * domain traversal. 5609 * 5610 * Asymmetric node setups can result in situations where the domain tree is of 5611 * unequal depth, make sure to skip domains that already cover the entire 5612 * range. 5613 * 5614 * In that case build_sched_domains() will have terminated the iteration early 5615 * and our sibling sd spans will be empty. Domains should always include the 5616 * cpu they're built on, so check that. 5617 * 5618 */ 5619 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5620 { 5621 const struct cpumask *span = sched_domain_span(sd); 5622 struct sd_data *sdd = sd->private; 5623 struct sched_domain *sibling; 5624 int i; 5625 5626 for_each_cpu(i, span) { 5627 sibling = *per_cpu_ptr(sdd->sd, i); 5628 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5629 continue; 5630 5631 cpumask_set_cpu(i, sched_group_mask(sg)); 5632 } 5633 } 5634 5635 /* 5636 * Return the canonical balance cpu for this group, this is the first cpu 5637 * of this group that's also in the iteration mask. 5638 */ 5639 int group_balance_cpu(struct sched_group *sg) 5640 { 5641 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5642 } 5643 5644 static int 5645 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5646 { 5647 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5648 const struct cpumask *span = sched_domain_span(sd); 5649 struct cpumask *covered = sched_domains_tmpmask; 5650 struct sd_data *sdd = sd->private; 5651 struct sched_domain *child; 5652 int i; 5653 5654 cpumask_clear(covered); 5655 5656 for_each_cpu(i, span) { 5657 struct cpumask *sg_span; 5658 5659 if (cpumask_test_cpu(i, covered)) 5660 continue; 5661 5662 child = *per_cpu_ptr(sdd->sd, i); 5663 5664 /* See the comment near build_group_mask(). */ 5665 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5666 continue; 5667 5668 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5669 GFP_KERNEL, cpu_to_node(cpu)); 5670 5671 if (!sg) 5672 goto fail; 5673 5674 sg_span = sched_group_cpus(sg); 5675 if (child->child) { 5676 child = child->child; 5677 cpumask_copy(sg_span, sched_domain_span(child)); 5678 } else 5679 cpumask_set_cpu(i, sg_span); 5680 5681 cpumask_or(covered, covered, sg_span); 5682 5683 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5684 if (atomic_inc_return(&sg->sgp->ref) == 1) 5685 build_group_mask(sd, sg); 5686 5687 /* 5688 * Initialize sgp->power such that even if we mess up the 5689 * domains and no possible iteration will get us here, we won't 5690 * die on a /0 trap. 5691 */ 5692 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5693 sg->sgp->power_orig = sg->sgp->power; 5694 5695 /* 5696 * Make sure the first group of this domain contains the 5697 * canonical balance cpu. Otherwise the sched_domain iteration 5698 * breaks. See update_sg_lb_stats(). 5699 */ 5700 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5701 group_balance_cpu(sg) == cpu) 5702 groups = sg; 5703 5704 if (!first) 5705 first = sg; 5706 if (last) 5707 last->next = sg; 5708 last = sg; 5709 last->next = first; 5710 } 5711 sd->groups = groups; 5712 5713 return 0; 5714 5715 fail: 5716 free_sched_groups(first, 0); 5717 5718 return -ENOMEM; 5719 } 5720 5721 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5722 { 5723 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5724 struct sched_domain *child = sd->child; 5725 5726 if (child) 5727 cpu = cpumask_first(sched_domain_span(child)); 5728 5729 if (sg) { 5730 *sg = *per_cpu_ptr(sdd->sg, cpu); 5731 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5732 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5733 } 5734 5735 return cpu; 5736 } 5737 5738 /* 5739 * build_sched_groups will build a circular linked list of the groups 5740 * covered by the given span, and will set each group's ->cpumask correctly, 5741 * and ->cpu_power to 0. 5742 * 5743 * Assumes the sched_domain tree is fully constructed 5744 */ 5745 static int 5746 build_sched_groups(struct sched_domain *sd, int cpu) 5747 { 5748 struct sched_group *first = NULL, *last = NULL; 5749 struct sd_data *sdd = sd->private; 5750 const struct cpumask *span = sched_domain_span(sd); 5751 struct cpumask *covered; 5752 int i; 5753 5754 get_group(cpu, sdd, &sd->groups); 5755 atomic_inc(&sd->groups->ref); 5756 5757 if (cpu != cpumask_first(span)) 5758 return 0; 5759 5760 lockdep_assert_held(&sched_domains_mutex); 5761 covered = sched_domains_tmpmask; 5762 5763 cpumask_clear(covered); 5764 5765 for_each_cpu(i, span) { 5766 struct sched_group *sg; 5767 int group, j; 5768 5769 if (cpumask_test_cpu(i, covered)) 5770 continue; 5771 5772 group = get_group(i, sdd, &sg); 5773 cpumask_clear(sched_group_cpus(sg)); 5774 sg->sgp->power = 0; 5775 cpumask_setall(sched_group_mask(sg)); 5776 5777 for_each_cpu(j, span) { 5778 if (get_group(j, sdd, NULL) != group) 5779 continue; 5780 5781 cpumask_set_cpu(j, covered); 5782 cpumask_set_cpu(j, sched_group_cpus(sg)); 5783 } 5784 5785 if (!first) 5786 first = sg; 5787 if (last) 5788 last->next = sg; 5789 last = sg; 5790 } 5791 last->next = first; 5792 5793 return 0; 5794 } 5795 5796 /* 5797 * Initialize sched groups cpu_power. 5798 * 5799 * cpu_power indicates the capacity of sched group, which is used while 5800 * distributing the load between different sched groups in a sched domain. 5801 * Typically cpu_power for all the groups in a sched domain will be same unless 5802 * there are asymmetries in the topology. If there are asymmetries, group 5803 * having more cpu_power will pickup more load compared to the group having 5804 * less cpu_power. 5805 */ 5806 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5807 { 5808 struct sched_group *sg = sd->groups; 5809 5810 WARN_ON(!sg); 5811 5812 do { 5813 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5814 sg = sg->next; 5815 } while (sg != sd->groups); 5816 5817 if (cpu != group_balance_cpu(sg)) 5818 return; 5819 5820 update_group_power(sd, cpu); 5821 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5822 } 5823 5824 int __weak arch_sd_sibling_asym_packing(void) 5825 { 5826 return 0*SD_ASYM_PACKING; 5827 } 5828 5829 /* 5830 * Initializers for schedule domains 5831 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5832 */ 5833 5834 #ifdef CONFIG_SCHED_DEBUG 5835 # define SD_INIT_NAME(sd, type) sd->name = #type 5836 #else 5837 # define SD_INIT_NAME(sd, type) do { } while (0) 5838 #endif 5839 5840 #define SD_INIT_FUNC(type) \ 5841 static noinline struct sched_domain * \ 5842 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5843 { \ 5844 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5845 *sd = SD_##type##_INIT; \ 5846 SD_INIT_NAME(sd, type); \ 5847 sd->private = &tl->data; \ 5848 return sd; \ 5849 } 5850 5851 SD_INIT_FUNC(CPU) 5852 #ifdef CONFIG_SCHED_SMT 5853 SD_INIT_FUNC(SIBLING) 5854 #endif 5855 #ifdef CONFIG_SCHED_MC 5856 SD_INIT_FUNC(MC) 5857 #endif 5858 #ifdef CONFIG_SCHED_BOOK 5859 SD_INIT_FUNC(BOOK) 5860 #endif 5861 5862 static int default_relax_domain_level = -1; 5863 int sched_domain_level_max; 5864 5865 static int __init setup_relax_domain_level(char *str) 5866 { 5867 if (kstrtoint(str, 0, &default_relax_domain_level)) 5868 pr_warn("Unable to set relax_domain_level\n"); 5869 5870 return 1; 5871 } 5872 __setup("relax_domain_level=", setup_relax_domain_level); 5873 5874 static void set_domain_attribute(struct sched_domain *sd, 5875 struct sched_domain_attr *attr) 5876 { 5877 int request; 5878 5879 if (!attr || attr->relax_domain_level < 0) { 5880 if (default_relax_domain_level < 0) 5881 return; 5882 else 5883 request = default_relax_domain_level; 5884 } else 5885 request = attr->relax_domain_level; 5886 if (request < sd->level) { 5887 /* turn off idle balance on this domain */ 5888 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5889 } else { 5890 /* turn on idle balance on this domain */ 5891 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5892 } 5893 } 5894 5895 static void __sdt_free(const struct cpumask *cpu_map); 5896 static int __sdt_alloc(const struct cpumask *cpu_map); 5897 5898 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5899 const struct cpumask *cpu_map) 5900 { 5901 switch (what) { 5902 case sa_rootdomain: 5903 if (!atomic_read(&d->rd->refcount)) 5904 free_rootdomain(&d->rd->rcu); /* fall through */ 5905 case sa_sd: 5906 free_percpu(d->sd); /* fall through */ 5907 case sa_sd_storage: 5908 __sdt_free(cpu_map); /* fall through */ 5909 case sa_none: 5910 break; 5911 } 5912 } 5913 5914 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5915 const struct cpumask *cpu_map) 5916 { 5917 memset(d, 0, sizeof(*d)); 5918 5919 if (__sdt_alloc(cpu_map)) 5920 return sa_sd_storage; 5921 d->sd = alloc_percpu(struct sched_domain *); 5922 if (!d->sd) 5923 return sa_sd_storage; 5924 d->rd = alloc_rootdomain(); 5925 if (!d->rd) 5926 return sa_sd; 5927 return sa_rootdomain; 5928 } 5929 5930 /* 5931 * NULL the sd_data elements we've used to build the sched_domain and 5932 * sched_group structure so that the subsequent __free_domain_allocs() 5933 * will not free the data we're using. 5934 */ 5935 static void claim_allocations(int cpu, struct sched_domain *sd) 5936 { 5937 struct sd_data *sdd = sd->private; 5938 5939 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5940 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5941 5942 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5943 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5944 5945 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5946 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5947 } 5948 5949 #ifdef CONFIG_SCHED_SMT 5950 static const struct cpumask *cpu_smt_mask(int cpu) 5951 { 5952 return topology_thread_cpumask(cpu); 5953 } 5954 #endif 5955 5956 /* 5957 * Topology list, bottom-up. 5958 */ 5959 static struct sched_domain_topology_level default_topology[] = { 5960 #ifdef CONFIG_SCHED_SMT 5961 { sd_init_SIBLING, cpu_smt_mask, }, 5962 #endif 5963 #ifdef CONFIG_SCHED_MC 5964 { sd_init_MC, cpu_coregroup_mask, }, 5965 #endif 5966 #ifdef CONFIG_SCHED_BOOK 5967 { sd_init_BOOK, cpu_book_mask, }, 5968 #endif 5969 { sd_init_CPU, cpu_cpu_mask, }, 5970 { NULL, }, 5971 }; 5972 5973 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5974 5975 #define for_each_sd_topology(tl) \ 5976 for (tl = sched_domain_topology; tl->init; tl++) 5977 5978 #ifdef CONFIG_NUMA 5979 5980 static int sched_domains_numa_levels; 5981 static int *sched_domains_numa_distance; 5982 static struct cpumask ***sched_domains_numa_masks; 5983 static int sched_domains_curr_level; 5984 5985 static inline int sd_local_flags(int level) 5986 { 5987 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 5988 return 0; 5989 5990 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 5991 } 5992 5993 static struct sched_domain * 5994 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 5995 { 5996 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 5997 int level = tl->numa_level; 5998 int sd_weight = cpumask_weight( 5999 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6000 6001 *sd = (struct sched_domain){ 6002 .min_interval = sd_weight, 6003 .max_interval = 2*sd_weight, 6004 .busy_factor = 32, 6005 .imbalance_pct = 125, 6006 .cache_nice_tries = 2, 6007 .busy_idx = 3, 6008 .idle_idx = 2, 6009 .newidle_idx = 0, 6010 .wake_idx = 0, 6011 .forkexec_idx = 0, 6012 6013 .flags = 1*SD_LOAD_BALANCE 6014 | 1*SD_BALANCE_NEWIDLE 6015 | 0*SD_BALANCE_EXEC 6016 | 0*SD_BALANCE_FORK 6017 | 0*SD_BALANCE_WAKE 6018 | 0*SD_WAKE_AFFINE 6019 | 0*SD_SHARE_CPUPOWER 6020 | 0*SD_SHARE_PKG_RESOURCES 6021 | 1*SD_SERIALIZE 6022 | 0*SD_PREFER_SIBLING 6023 | 1*SD_NUMA 6024 | sd_local_flags(level) 6025 , 6026 .last_balance = jiffies, 6027 .balance_interval = sd_weight, 6028 }; 6029 SD_INIT_NAME(sd, NUMA); 6030 sd->private = &tl->data; 6031 6032 /* 6033 * Ugly hack to pass state to sd_numa_mask()... 6034 */ 6035 sched_domains_curr_level = tl->numa_level; 6036 6037 return sd; 6038 } 6039 6040 static const struct cpumask *sd_numa_mask(int cpu) 6041 { 6042 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6043 } 6044 6045 static void sched_numa_warn(const char *str) 6046 { 6047 static int done = false; 6048 int i,j; 6049 6050 if (done) 6051 return; 6052 6053 done = true; 6054 6055 printk(KERN_WARNING "ERROR: %s\n\n", str); 6056 6057 for (i = 0; i < nr_node_ids; i++) { 6058 printk(KERN_WARNING " "); 6059 for (j = 0; j < nr_node_ids; j++) 6060 printk(KERN_CONT "%02d ", node_distance(i,j)); 6061 printk(KERN_CONT "\n"); 6062 } 6063 printk(KERN_WARNING "\n"); 6064 } 6065 6066 static bool find_numa_distance(int distance) 6067 { 6068 int i; 6069 6070 if (distance == node_distance(0, 0)) 6071 return true; 6072 6073 for (i = 0; i < sched_domains_numa_levels; i++) { 6074 if (sched_domains_numa_distance[i] == distance) 6075 return true; 6076 } 6077 6078 return false; 6079 } 6080 6081 static void sched_init_numa(void) 6082 { 6083 int next_distance, curr_distance = node_distance(0, 0); 6084 struct sched_domain_topology_level *tl; 6085 int level = 0; 6086 int i, j, k; 6087 6088 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6089 if (!sched_domains_numa_distance) 6090 return; 6091 6092 /* 6093 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6094 * unique distances in the node_distance() table. 6095 * 6096 * Assumes node_distance(0,j) includes all distances in 6097 * node_distance(i,j) in order to avoid cubic time. 6098 */ 6099 next_distance = curr_distance; 6100 for (i = 0; i < nr_node_ids; i++) { 6101 for (j = 0; j < nr_node_ids; j++) { 6102 for (k = 0; k < nr_node_ids; k++) { 6103 int distance = node_distance(i, k); 6104 6105 if (distance > curr_distance && 6106 (distance < next_distance || 6107 next_distance == curr_distance)) 6108 next_distance = distance; 6109 6110 /* 6111 * While not a strong assumption it would be nice to know 6112 * about cases where if node A is connected to B, B is not 6113 * equally connected to A. 6114 */ 6115 if (sched_debug() && node_distance(k, i) != distance) 6116 sched_numa_warn("Node-distance not symmetric"); 6117 6118 if (sched_debug() && i && !find_numa_distance(distance)) 6119 sched_numa_warn("Node-0 not representative"); 6120 } 6121 if (next_distance != curr_distance) { 6122 sched_domains_numa_distance[level++] = next_distance; 6123 sched_domains_numa_levels = level; 6124 curr_distance = next_distance; 6125 } else break; 6126 } 6127 6128 /* 6129 * In case of sched_debug() we verify the above assumption. 6130 */ 6131 if (!sched_debug()) 6132 break; 6133 } 6134 /* 6135 * 'level' contains the number of unique distances, excluding the 6136 * identity distance node_distance(i,i). 6137 * 6138 * The sched_domains_numa_distance[] array includes the actual distance 6139 * numbers. 6140 */ 6141 6142 /* 6143 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6144 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6145 * the array will contain less then 'level' members. This could be 6146 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6147 * in other functions. 6148 * 6149 * We reset it to 'level' at the end of this function. 6150 */ 6151 sched_domains_numa_levels = 0; 6152 6153 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6154 if (!sched_domains_numa_masks) 6155 return; 6156 6157 /* 6158 * Now for each level, construct a mask per node which contains all 6159 * cpus of nodes that are that many hops away from us. 6160 */ 6161 for (i = 0; i < level; i++) { 6162 sched_domains_numa_masks[i] = 6163 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6164 if (!sched_domains_numa_masks[i]) 6165 return; 6166 6167 for (j = 0; j < nr_node_ids; j++) { 6168 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6169 if (!mask) 6170 return; 6171 6172 sched_domains_numa_masks[i][j] = mask; 6173 6174 for (k = 0; k < nr_node_ids; k++) { 6175 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6176 continue; 6177 6178 cpumask_or(mask, mask, cpumask_of_node(k)); 6179 } 6180 } 6181 } 6182 6183 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6184 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6185 if (!tl) 6186 return; 6187 6188 /* 6189 * Copy the default topology bits.. 6190 */ 6191 for (i = 0; default_topology[i].init; i++) 6192 tl[i] = default_topology[i]; 6193 6194 /* 6195 * .. and append 'j' levels of NUMA goodness. 6196 */ 6197 for (j = 0; j < level; i++, j++) { 6198 tl[i] = (struct sched_domain_topology_level){ 6199 .init = sd_numa_init, 6200 .mask = sd_numa_mask, 6201 .flags = SDTL_OVERLAP, 6202 .numa_level = j, 6203 }; 6204 } 6205 6206 sched_domain_topology = tl; 6207 6208 sched_domains_numa_levels = level; 6209 } 6210 6211 static void sched_domains_numa_masks_set(int cpu) 6212 { 6213 int i, j; 6214 int node = cpu_to_node(cpu); 6215 6216 for (i = 0; i < sched_domains_numa_levels; i++) { 6217 for (j = 0; j < nr_node_ids; j++) { 6218 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6219 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6220 } 6221 } 6222 } 6223 6224 static void sched_domains_numa_masks_clear(int cpu) 6225 { 6226 int i, j; 6227 for (i = 0; i < sched_domains_numa_levels; i++) { 6228 for (j = 0; j < nr_node_ids; j++) 6229 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6230 } 6231 } 6232 6233 /* 6234 * Update sched_domains_numa_masks[level][node] array when new cpus 6235 * are onlined. 6236 */ 6237 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6238 unsigned long action, 6239 void *hcpu) 6240 { 6241 int cpu = (long)hcpu; 6242 6243 switch (action & ~CPU_TASKS_FROZEN) { 6244 case CPU_ONLINE: 6245 sched_domains_numa_masks_set(cpu); 6246 break; 6247 6248 case CPU_DEAD: 6249 sched_domains_numa_masks_clear(cpu); 6250 break; 6251 6252 default: 6253 return NOTIFY_DONE; 6254 } 6255 6256 return NOTIFY_OK; 6257 } 6258 #else 6259 static inline void sched_init_numa(void) 6260 { 6261 } 6262 6263 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6264 unsigned long action, 6265 void *hcpu) 6266 { 6267 return 0; 6268 } 6269 #endif /* CONFIG_NUMA */ 6270 6271 static int __sdt_alloc(const struct cpumask *cpu_map) 6272 { 6273 struct sched_domain_topology_level *tl; 6274 int j; 6275 6276 for_each_sd_topology(tl) { 6277 struct sd_data *sdd = &tl->data; 6278 6279 sdd->sd = alloc_percpu(struct sched_domain *); 6280 if (!sdd->sd) 6281 return -ENOMEM; 6282 6283 sdd->sg = alloc_percpu(struct sched_group *); 6284 if (!sdd->sg) 6285 return -ENOMEM; 6286 6287 sdd->sgp = alloc_percpu(struct sched_group_power *); 6288 if (!sdd->sgp) 6289 return -ENOMEM; 6290 6291 for_each_cpu(j, cpu_map) { 6292 struct sched_domain *sd; 6293 struct sched_group *sg; 6294 struct sched_group_power *sgp; 6295 6296 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6297 GFP_KERNEL, cpu_to_node(j)); 6298 if (!sd) 6299 return -ENOMEM; 6300 6301 *per_cpu_ptr(sdd->sd, j) = sd; 6302 6303 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6304 GFP_KERNEL, cpu_to_node(j)); 6305 if (!sg) 6306 return -ENOMEM; 6307 6308 sg->next = sg; 6309 6310 *per_cpu_ptr(sdd->sg, j) = sg; 6311 6312 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6313 GFP_KERNEL, cpu_to_node(j)); 6314 if (!sgp) 6315 return -ENOMEM; 6316 6317 *per_cpu_ptr(sdd->sgp, j) = sgp; 6318 } 6319 } 6320 6321 return 0; 6322 } 6323 6324 static void __sdt_free(const struct cpumask *cpu_map) 6325 { 6326 struct sched_domain_topology_level *tl; 6327 int j; 6328 6329 for_each_sd_topology(tl) { 6330 struct sd_data *sdd = &tl->data; 6331 6332 for_each_cpu(j, cpu_map) { 6333 struct sched_domain *sd; 6334 6335 if (sdd->sd) { 6336 sd = *per_cpu_ptr(sdd->sd, j); 6337 if (sd && (sd->flags & SD_OVERLAP)) 6338 free_sched_groups(sd->groups, 0); 6339 kfree(*per_cpu_ptr(sdd->sd, j)); 6340 } 6341 6342 if (sdd->sg) 6343 kfree(*per_cpu_ptr(sdd->sg, j)); 6344 if (sdd->sgp) 6345 kfree(*per_cpu_ptr(sdd->sgp, j)); 6346 } 6347 free_percpu(sdd->sd); 6348 sdd->sd = NULL; 6349 free_percpu(sdd->sg); 6350 sdd->sg = NULL; 6351 free_percpu(sdd->sgp); 6352 sdd->sgp = NULL; 6353 } 6354 } 6355 6356 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6357 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6358 struct sched_domain *child, int cpu) 6359 { 6360 struct sched_domain *sd = tl->init(tl, cpu); 6361 if (!sd) 6362 return child; 6363 6364 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6365 if (child) { 6366 sd->level = child->level + 1; 6367 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6368 child->parent = sd; 6369 sd->child = child; 6370 } 6371 set_domain_attribute(sd, attr); 6372 6373 return sd; 6374 } 6375 6376 /* 6377 * Build sched domains for a given set of cpus and attach the sched domains 6378 * to the individual cpus 6379 */ 6380 static int build_sched_domains(const struct cpumask *cpu_map, 6381 struct sched_domain_attr *attr) 6382 { 6383 enum s_alloc alloc_state; 6384 struct sched_domain *sd; 6385 struct s_data d; 6386 int i, ret = -ENOMEM; 6387 6388 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6389 if (alloc_state != sa_rootdomain) 6390 goto error; 6391 6392 /* Set up domains for cpus specified by the cpu_map. */ 6393 for_each_cpu(i, cpu_map) { 6394 struct sched_domain_topology_level *tl; 6395 6396 sd = NULL; 6397 for_each_sd_topology(tl) { 6398 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6399 if (tl == sched_domain_topology) 6400 *per_cpu_ptr(d.sd, i) = sd; 6401 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6402 sd->flags |= SD_OVERLAP; 6403 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6404 break; 6405 } 6406 } 6407 6408 /* Build the groups for the domains */ 6409 for_each_cpu(i, cpu_map) { 6410 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6411 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6412 if (sd->flags & SD_OVERLAP) { 6413 if (build_overlap_sched_groups(sd, i)) 6414 goto error; 6415 } else { 6416 if (build_sched_groups(sd, i)) 6417 goto error; 6418 } 6419 } 6420 } 6421 6422 /* Calculate CPU power for physical packages and nodes */ 6423 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6424 if (!cpumask_test_cpu(i, cpu_map)) 6425 continue; 6426 6427 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6428 claim_allocations(i, sd); 6429 init_sched_groups_power(i, sd); 6430 } 6431 } 6432 6433 /* Attach the domains */ 6434 rcu_read_lock(); 6435 for_each_cpu(i, cpu_map) { 6436 sd = *per_cpu_ptr(d.sd, i); 6437 cpu_attach_domain(sd, d.rd, i); 6438 } 6439 rcu_read_unlock(); 6440 6441 ret = 0; 6442 error: 6443 __free_domain_allocs(&d, alloc_state, cpu_map); 6444 return ret; 6445 } 6446 6447 static cpumask_var_t *doms_cur; /* current sched domains */ 6448 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6449 static struct sched_domain_attr *dattr_cur; 6450 /* attribues of custom domains in 'doms_cur' */ 6451 6452 /* 6453 * Special case: If a kmalloc of a doms_cur partition (array of 6454 * cpumask) fails, then fallback to a single sched domain, 6455 * as determined by the single cpumask fallback_doms. 6456 */ 6457 static cpumask_var_t fallback_doms; 6458 6459 /* 6460 * arch_update_cpu_topology lets virtualized architectures update the 6461 * cpu core maps. It is supposed to return 1 if the topology changed 6462 * or 0 if it stayed the same. 6463 */ 6464 int __attribute__((weak)) arch_update_cpu_topology(void) 6465 { 6466 return 0; 6467 } 6468 6469 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6470 { 6471 int i; 6472 cpumask_var_t *doms; 6473 6474 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6475 if (!doms) 6476 return NULL; 6477 for (i = 0; i < ndoms; i++) { 6478 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6479 free_sched_domains(doms, i); 6480 return NULL; 6481 } 6482 } 6483 return doms; 6484 } 6485 6486 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6487 { 6488 unsigned int i; 6489 for (i = 0; i < ndoms; i++) 6490 free_cpumask_var(doms[i]); 6491 kfree(doms); 6492 } 6493 6494 /* 6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6496 * For now this just excludes isolated cpus, but could be used to 6497 * exclude other special cases in the future. 6498 */ 6499 static int init_sched_domains(const struct cpumask *cpu_map) 6500 { 6501 int err; 6502 6503 arch_update_cpu_topology(); 6504 ndoms_cur = 1; 6505 doms_cur = alloc_sched_domains(ndoms_cur); 6506 if (!doms_cur) 6507 doms_cur = &fallback_doms; 6508 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6509 err = build_sched_domains(doms_cur[0], NULL); 6510 register_sched_domain_sysctl(); 6511 6512 return err; 6513 } 6514 6515 /* 6516 * Detach sched domains from a group of cpus specified in cpu_map 6517 * These cpus will now be attached to the NULL domain 6518 */ 6519 static void detach_destroy_domains(const struct cpumask *cpu_map) 6520 { 6521 int i; 6522 6523 rcu_read_lock(); 6524 for_each_cpu(i, cpu_map) 6525 cpu_attach_domain(NULL, &def_root_domain, i); 6526 rcu_read_unlock(); 6527 } 6528 6529 /* handle null as "default" */ 6530 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6531 struct sched_domain_attr *new, int idx_new) 6532 { 6533 struct sched_domain_attr tmp; 6534 6535 /* fast path */ 6536 if (!new && !cur) 6537 return 1; 6538 6539 tmp = SD_ATTR_INIT; 6540 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6541 new ? (new + idx_new) : &tmp, 6542 sizeof(struct sched_domain_attr)); 6543 } 6544 6545 /* 6546 * Partition sched domains as specified by the 'ndoms_new' 6547 * cpumasks in the array doms_new[] of cpumasks. This compares 6548 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6549 * It destroys each deleted domain and builds each new domain. 6550 * 6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6552 * The masks don't intersect (don't overlap.) We should setup one 6553 * sched domain for each mask. CPUs not in any of the cpumasks will 6554 * not be load balanced. If the same cpumask appears both in the 6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6556 * it as it is. 6557 * 6558 * The passed in 'doms_new' should be allocated using 6559 * alloc_sched_domains. This routine takes ownership of it and will 6560 * free_sched_domains it when done with it. If the caller failed the 6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6562 * and partition_sched_domains() will fallback to the single partition 6563 * 'fallback_doms', it also forces the domains to be rebuilt. 6564 * 6565 * If doms_new == NULL it will be replaced with cpu_online_mask. 6566 * ndoms_new == 0 is a special case for destroying existing domains, 6567 * and it will not create the default domain. 6568 * 6569 * Call with hotplug lock held 6570 */ 6571 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6572 struct sched_domain_attr *dattr_new) 6573 { 6574 int i, j, n; 6575 int new_topology; 6576 6577 mutex_lock(&sched_domains_mutex); 6578 6579 /* always unregister in case we don't destroy any domains */ 6580 unregister_sched_domain_sysctl(); 6581 6582 /* Let architecture update cpu core mappings. */ 6583 new_topology = arch_update_cpu_topology(); 6584 6585 n = doms_new ? ndoms_new : 0; 6586 6587 /* Destroy deleted domains */ 6588 for (i = 0; i < ndoms_cur; i++) { 6589 for (j = 0; j < n && !new_topology; j++) { 6590 if (cpumask_equal(doms_cur[i], doms_new[j]) 6591 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6592 goto match1; 6593 } 6594 /* no match - a current sched domain not in new doms_new[] */ 6595 detach_destroy_domains(doms_cur[i]); 6596 match1: 6597 ; 6598 } 6599 6600 n = ndoms_cur; 6601 if (doms_new == NULL) { 6602 n = 0; 6603 doms_new = &fallback_doms; 6604 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6605 WARN_ON_ONCE(dattr_new); 6606 } 6607 6608 /* Build new domains */ 6609 for (i = 0; i < ndoms_new; i++) { 6610 for (j = 0; j < n && !new_topology; j++) { 6611 if (cpumask_equal(doms_new[i], doms_cur[j]) 6612 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6613 goto match2; 6614 } 6615 /* no match - add a new doms_new */ 6616 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6617 match2: 6618 ; 6619 } 6620 6621 /* Remember the new sched domains */ 6622 if (doms_cur != &fallback_doms) 6623 free_sched_domains(doms_cur, ndoms_cur); 6624 kfree(dattr_cur); /* kfree(NULL) is safe */ 6625 doms_cur = doms_new; 6626 dattr_cur = dattr_new; 6627 ndoms_cur = ndoms_new; 6628 6629 register_sched_domain_sysctl(); 6630 6631 mutex_unlock(&sched_domains_mutex); 6632 } 6633 6634 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6635 6636 /* 6637 * Update cpusets according to cpu_active mask. If cpusets are 6638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6639 * around partition_sched_domains(). 6640 * 6641 * If we come here as part of a suspend/resume, don't touch cpusets because we 6642 * want to restore it back to its original state upon resume anyway. 6643 */ 6644 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6645 void *hcpu) 6646 { 6647 switch (action) { 6648 case CPU_ONLINE_FROZEN: 6649 case CPU_DOWN_FAILED_FROZEN: 6650 6651 /* 6652 * num_cpus_frozen tracks how many CPUs are involved in suspend 6653 * resume sequence. As long as this is not the last online 6654 * operation in the resume sequence, just build a single sched 6655 * domain, ignoring cpusets. 6656 */ 6657 num_cpus_frozen--; 6658 if (likely(num_cpus_frozen)) { 6659 partition_sched_domains(1, NULL, NULL); 6660 break; 6661 } 6662 6663 /* 6664 * This is the last CPU online operation. So fall through and 6665 * restore the original sched domains by considering the 6666 * cpuset configurations. 6667 */ 6668 6669 case CPU_ONLINE: 6670 case CPU_DOWN_FAILED: 6671 cpuset_update_active_cpus(true); 6672 break; 6673 default: 6674 return NOTIFY_DONE; 6675 } 6676 return NOTIFY_OK; 6677 } 6678 6679 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6680 void *hcpu) 6681 { 6682 switch (action) { 6683 case CPU_DOWN_PREPARE: 6684 cpuset_update_active_cpus(false); 6685 break; 6686 case CPU_DOWN_PREPARE_FROZEN: 6687 num_cpus_frozen++; 6688 partition_sched_domains(1, NULL, NULL); 6689 break; 6690 default: 6691 return NOTIFY_DONE; 6692 } 6693 return NOTIFY_OK; 6694 } 6695 6696 void __init sched_init_smp(void) 6697 { 6698 cpumask_var_t non_isolated_cpus; 6699 6700 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6701 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6702 6703 sched_init_numa(); 6704 6705 /* 6706 * There's no userspace yet to cause hotplug operations; hence all the 6707 * cpu masks are stable and all blatant races in the below code cannot 6708 * happen. 6709 */ 6710 mutex_lock(&sched_domains_mutex); 6711 init_sched_domains(cpu_active_mask); 6712 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6713 if (cpumask_empty(non_isolated_cpus)) 6714 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6715 mutex_unlock(&sched_domains_mutex); 6716 6717 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6718 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6719 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6720 6721 init_hrtick(); 6722 6723 /* Move init over to a non-isolated CPU */ 6724 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6725 BUG(); 6726 sched_init_granularity(); 6727 free_cpumask_var(non_isolated_cpus); 6728 6729 init_sched_rt_class(); 6730 init_sched_dl_class(); 6731 } 6732 #else 6733 void __init sched_init_smp(void) 6734 { 6735 sched_init_granularity(); 6736 } 6737 #endif /* CONFIG_SMP */ 6738 6739 const_debug unsigned int sysctl_timer_migration = 1; 6740 6741 int in_sched_functions(unsigned long addr) 6742 { 6743 return in_lock_functions(addr) || 6744 (addr >= (unsigned long)__sched_text_start 6745 && addr < (unsigned long)__sched_text_end); 6746 } 6747 6748 #ifdef CONFIG_CGROUP_SCHED 6749 /* 6750 * Default task group. 6751 * Every task in system belongs to this group at bootup. 6752 */ 6753 struct task_group root_task_group; 6754 LIST_HEAD(task_groups); 6755 #endif 6756 6757 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6758 6759 void __init sched_init(void) 6760 { 6761 int i, j; 6762 unsigned long alloc_size = 0, ptr; 6763 6764 #ifdef CONFIG_FAIR_GROUP_SCHED 6765 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6766 #endif 6767 #ifdef CONFIG_RT_GROUP_SCHED 6768 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6769 #endif 6770 #ifdef CONFIG_CPUMASK_OFFSTACK 6771 alloc_size += num_possible_cpus() * cpumask_size(); 6772 #endif 6773 if (alloc_size) { 6774 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6775 6776 #ifdef CONFIG_FAIR_GROUP_SCHED 6777 root_task_group.se = (struct sched_entity **)ptr; 6778 ptr += nr_cpu_ids * sizeof(void **); 6779 6780 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6781 ptr += nr_cpu_ids * sizeof(void **); 6782 6783 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6784 #ifdef CONFIG_RT_GROUP_SCHED 6785 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6786 ptr += nr_cpu_ids * sizeof(void **); 6787 6788 root_task_group.rt_rq = (struct rt_rq **)ptr; 6789 ptr += nr_cpu_ids * sizeof(void **); 6790 6791 #endif /* CONFIG_RT_GROUP_SCHED */ 6792 #ifdef CONFIG_CPUMASK_OFFSTACK 6793 for_each_possible_cpu(i) { 6794 per_cpu(load_balance_mask, i) = (void *)ptr; 6795 ptr += cpumask_size(); 6796 } 6797 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6798 } 6799 6800 init_rt_bandwidth(&def_rt_bandwidth, 6801 global_rt_period(), global_rt_runtime()); 6802 init_dl_bandwidth(&def_dl_bandwidth, 6803 global_rt_period(), global_rt_runtime()); 6804 6805 #ifdef CONFIG_SMP 6806 init_defrootdomain(); 6807 #endif 6808 6809 #ifdef CONFIG_RT_GROUP_SCHED 6810 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6811 global_rt_period(), global_rt_runtime()); 6812 #endif /* CONFIG_RT_GROUP_SCHED */ 6813 6814 #ifdef CONFIG_CGROUP_SCHED 6815 list_add(&root_task_group.list, &task_groups); 6816 INIT_LIST_HEAD(&root_task_group.children); 6817 INIT_LIST_HEAD(&root_task_group.siblings); 6818 autogroup_init(&init_task); 6819 6820 #endif /* CONFIG_CGROUP_SCHED */ 6821 6822 for_each_possible_cpu(i) { 6823 struct rq *rq; 6824 6825 rq = cpu_rq(i); 6826 raw_spin_lock_init(&rq->lock); 6827 rq->nr_running = 0; 6828 rq->calc_load_active = 0; 6829 rq->calc_load_update = jiffies + LOAD_FREQ; 6830 init_cfs_rq(&rq->cfs); 6831 init_rt_rq(&rq->rt, rq); 6832 init_dl_rq(&rq->dl, rq); 6833 #ifdef CONFIG_FAIR_GROUP_SCHED 6834 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6835 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6836 /* 6837 * How much cpu bandwidth does root_task_group get? 6838 * 6839 * In case of task-groups formed thr' the cgroup filesystem, it 6840 * gets 100% of the cpu resources in the system. This overall 6841 * system cpu resource is divided among the tasks of 6842 * root_task_group and its child task-groups in a fair manner, 6843 * based on each entity's (task or task-group's) weight 6844 * (se->load.weight). 6845 * 6846 * In other words, if root_task_group has 10 tasks of weight 6847 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6848 * then A0's share of the cpu resource is: 6849 * 6850 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6851 * 6852 * We achieve this by letting root_task_group's tasks sit 6853 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6854 */ 6855 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6856 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6857 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6858 6859 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6860 #ifdef CONFIG_RT_GROUP_SCHED 6861 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6862 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6863 #endif 6864 6865 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6866 rq->cpu_load[j] = 0; 6867 6868 rq->last_load_update_tick = jiffies; 6869 6870 #ifdef CONFIG_SMP 6871 rq->sd = NULL; 6872 rq->rd = NULL; 6873 rq->cpu_power = SCHED_POWER_SCALE; 6874 rq->post_schedule = 0; 6875 rq->active_balance = 0; 6876 rq->next_balance = jiffies; 6877 rq->push_cpu = 0; 6878 rq->cpu = i; 6879 rq->online = 0; 6880 rq->idle_stamp = 0; 6881 rq->avg_idle = 2*sysctl_sched_migration_cost; 6882 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6883 6884 INIT_LIST_HEAD(&rq->cfs_tasks); 6885 6886 rq_attach_root(rq, &def_root_domain); 6887 #ifdef CONFIG_NO_HZ_COMMON 6888 rq->nohz_flags = 0; 6889 #endif 6890 #ifdef CONFIG_NO_HZ_FULL 6891 rq->last_sched_tick = 0; 6892 #endif 6893 #endif 6894 init_rq_hrtick(rq); 6895 atomic_set(&rq->nr_iowait, 0); 6896 } 6897 6898 set_load_weight(&init_task); 6899 6900 #ifdef CONFIG_PREEMPT_NOTIFIERS 6901 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6902 #endif 6903 6904 /* 6905 * The boot idle thread does lazy MMU switching as well: 6906 */ 6907 atomic_inc(&init_mm.mm_count); 6908 enter_lazy_tlb(&init_mm, current); 6909 6910 /* 6911 * Make us the idle thread. Technically, schedule() should not be 6912 * called from this thread, however somewhere below it might be, 6913 * but because we are the idle thread, we just pick up running again 6914 * when this runqueue becomes "idle". 6915 */ 6916 init_idle(current, smp_processor_id()); 6917 6918 calc_load_update = jiffies + LOAD_FREQ; 6919 6920 /* 6921 * During early bootup we pretend to be a normal task: 6922 */ 6923 current->sched_class = &fair_sched_class; 6924 6925 #ifdef CONFIG_SMP 6926 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6927 /* May be allocated at isolcpus cmdline parse time */ 6928 if (cpu_isolated_map == NULL) 6929 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6930 idle_thread_set_boot_cpu(); 6931 #endif 6932 init_sched_fair_class(); 6933 6934 scheduler_running = 1; 6935 } 6936 6937 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6938 static inline int preempt_count_equals(int preempt_offset) 6939 { 6940 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6941 6942 return (nested == preempt_offset); 6943 } 6944 6945 void __might_sleep(const char *file, int line, int preempt_offset) 6946 { 6947 static unsigned long prev_jiffy; /* ratelimiting */ 6948 6949 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6950 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 6951 system_state != SYSTEM_RUNNING || oops_in_progress) 6952 return; 6953 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6954 return; 6955 prev_jiffy = jiffies; 6956 6957 printk(KERN_ERR 6958 "BUG: sleeping function called from invalid context at %s:%d\n", 6959 file, line); 6960 printk(KERN_ERR 6961 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6962 in_atomic(), irqs_disabled(), 6963 current->pid, current->comm); 6964 6965 debug_show_held_locks(current); 6966 if (irqs_disabled()) 6967 print_irqtrace_events(current); 6968 dump_stack(); 6969 } 6970 EXPORT_SYMBOL(__might_sleep); 6971 #endif 6972 6973 #ifdef CONFIG_MAGIC_SYSRQ 6974 static void normalize_task(struct rq *rq, struct task_struct *p) 6975 { 6976 const struct sched_class *prev_class = p->sched_class; 6977 struct sched_attr attr = { 6978 .sched_policy = SCHED_NORMAL, 6979 }; 6980 int old_prio = p->prio; 6981 int on_rq; 6982 6983 on_rq = p->on_rq; 6984 if (on_rq) 6985 dequeue_task(rq, p, 0); 6986 __setscheduler(rq, p, &attr); 6987 if (on_rq) { 6988 enqueue_task(rq, p, 0); 6989 resched_task(rq->curr); 6990 } 6991 6992 check_class_changed(rq, p, prev_class, old_prio); 6993 } 6994 6995 void normalize_rt_tasks(void) 6996 { 6997 struct task_struct *g, *p; 6998 unsigned long flags; 6999 struct rq *rq; 7000 7001 read_lock_irqsave(&tasklist_lock, flags); 7002 do_each_thread(g, p) { 7003 /* 7004 * Only normalize user tasks: 7005 */ 7006 if (!p->mm) 7007 continue; 7008 7009 p->se.exec_start = 0; 7010 #ifdef CONFIG_SCHEDSTATS 7011 p->se.statistics.wait_start = 0; 7012 p->se.statistics.sleep_start = 0; 7013 p->se.statistics.block_start = 0; 7014 #endif 7015 7016 if (!dl_task(p) && !rt_task(p)) { 7017 /* 7018 * Renice negative nice level userspace 7019 * tasks back to 0: 7020 */ 7021 if (TASK_NICE(p) < 0 && p->mm) 7022 set_user_nice(p, 0); 7023 continue; 7024 } 7025 7026 raw_spin_lock(&p->pi_lock); 7027 rq = __task_rq_lock(p); 7028 7029 normalize_task(rq, p); 7030 7031 __task_rq_unlock(rq); 7032 raw_spin_unlock(&p->pi_lock); 7033 } while_each_thread(g, p); 7034 7035 read_unlock_irqrestore(&tasklist_lock, flags); 7036 } 7037 7038 #endif /* CONFIG_MAGIC_SYSRQ */ 7039 7040 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7041 /* 7042 * These functions are only useful for the IA64 MCA handling, or kdb. 7043 * 7044 * They can only be called when the whole system has been 7045 * stopped - every CPU needs to be quiescent, and no scheduling 7046 * activity can take place. Using them for anything else would 7047 * be a serious bug, and as a result, they aren't even visible 7048 * under any other configuration. 7049 */ 7050 7051 /** 7052 * curr_task - return the current task for a given cpu. 7053 * @cpu: the processor in question. 7054 * 7055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7056 * 7057 * Return: The current task for @cpu. 7058 */ 7059 struct task_struct *curr_task(int cpu) 7060 { 7061 return cpu_curr(cpu); 7062 } 7063 7064 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7065 7066 #ifdef CONFIG_IA64 7067 /** 7068 * set_curr_task - set the current task for a given cpu. 7069 * @cpu: the processor in question. 7070 * @p: the task pointer to set. 7071 * 7072 * Description: This function must only be used when non-maskable interrupts 7073 * are serviced on a separate stack. It allows the architecture to switch the 7074 * notion of the current task on a cpu in a non-blocking manner. This function 7075 * must be called with all CPU's synchronized, and interrupts disabled, the 7076 * and caller must save the original value of the current task (see 7077 * curr_task() above) and restore that value before reenabling interrupts and 7078 * re-starting the system. 7079 * 7080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7081 */ 7082 void set_curr_task(int cpu, struct task_struct *p) 7083 { 7084 cpu_curr(cpu) = p; 7085 } 7086 7087 #endif 7088 7089 #ifdef CONFIG_CGROUP_SCHED 7090 /* task_group_lock serializes the addition/removal of task groups */ 7091 static DEFINE_SPINLOCK(task_group_lock); 7092 7093 static void free_sched_group(struct task_group *tg) 7094 { 7095 free_fair_sched_group(tg); 7096 free_rt_sched_group(tg); 7097 autogroup_free(tg); 7098 kfree(tg); 7099 } 7100 7101 /* allocate runqueue etc for a new task group */ 7102 struct task_group *sched_create_group(struct task_group *parent) 7103 { 7104 struct task_group *tg; 7105 7106 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7107 if (!tg) 7108 return ERR_PTR(-ENOMEM); 7109 7110 if (!alloc_fair_sched_group(tg, parent)) 7111 goto err; 7112 7113 if (!alloc_rt_sched_group(tg, parent)) 7114 goto err; 7115 7116 return tg; 7117 7118 err: 7119 free_sched_group(tg); 7120 return ERR_PTR(-ENOMEM); 7121 } 7122 7123 void sched_online_group(struct task_group *tg, struct task_group *parent) 7124 { 7125 unsigned long flags; 7126 7127 spin_lock_irqsave(&task_group_lock, flags); 7128 list_add_rcu(&tg->list, &task_groups); 7129 7130 WARN_ON(!parent); /* root should already exist */ 7131 7132 tg->parent = parent; 7133 INIT_LIST_HEAD(&tg->children); 7134 list_add_rcu(&tg->siblings, &parent->children); 7135 spin_unlock_irqrestore(&task_group_lock, flags); 7136 } 7137 7138 /* rcu callback to free various structures associated with a task group */ 7139 static void free_sched_group_rcu(struct rcu_head *rhp) 7140 { 7141 /* now it should be safe to free those cfs_rqs */ 7142 free_sched_group(container_of(rhp, struct task_group, rcu)); 7143 } 7144 7145 /* Destroy runqueue etc associated with a task group */ 7146 void sched_destroy_group(struct task_group *tg) 7147 { 7148 /* wait for possible concurrent references to cfs_rqs complete */ 7149 call_rcu(&tg->rcu, free_sched_group_rcu); 7150 } 7151 7152 void sched_offline_group(struct task_group *tg) 7153 { 7154 unsigned long flags; 7155 int i; 7156 7157 /* end participation in shares distribution */ 7158 for_each_possible_cpu(i) 7159 unregister_fair_sched_group(tg, i); 7160 7161 spin_lock_irqsave(&task_group_lock, flags); 7162 list_del_rcu(&tg->list); 7163 list_del_rcu(&tg->siblings); 7164 spin_unlock_irqrestore(&task_group_lock, flags); 7165 } 7166 7167 /* change task's runqueue when it moves between groups. 7168 * The caller of this function should have put the task in its new group 7169 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7170 * reflect its new group. 7171 */ 7172 void sched_move_task(struct task_struct *tsk) 7173 { 7174 struct task_group *tg; 7175 int on_rq, running; 7176 unsigned long flags; 7177 struct rq *rq; 7178 7179 rq = task_rq_lock(tsk, &flags); 7180 7181 running = task_current(rq, tsk); 7182 on_rq = tsk->on_rq; 7183 7184 if (on_rq) 7185 dequeue_task(rq, tsk, 0); 7186 if (unlikely(running)) 7187 tsk->sched_class->put_prev_task(rq, tsk); 7188 7189 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id, 7190 lockdep_is_held(&tsk->sighand->siglock)), 7191 struct task_group, css); 7192 tg = autogroup_task_group(tsk, tg); 7193 tsk->sched_task_group = tg; 7194 7195 #ifdef CONFIG_FAIR_GROUP_SCHED 7196 if (tsk->sched_class->task_move_group) 7197 tsk->sched_class->task_move_group(tsk, on_rq); 7198 else 7199 #endif 7200 set_task_rq(tsk, task_cpu(tsk)); 7201 7202 if (unlikely(running)) 7203 tsk->sched_class->set_curr_task(rq); 7204 if (on_rq) 7205 enqueue_task(rq, tsk, 0); 7206 7207 task_rq_unlock(rq, tsk, &flags); 7208 } 7209 #endif /* CONFIG_CGROUP_SCHED */ 7210 7211 #ifdef CONFIG_RT_GROUP_SCHED 7212 /* 7213 * Ensure that the real time constraints are schedulable. 7214 */ 7215 static DEFINE_MUTEX(rt_constraints_mutex); 7216 7217 /* Must be called with tasklist_lock held */ 7218 static inline int tg_has_rt_tasks(struct task_group *tg) 7219 { 7220 struct task_struct *g, *p; 7221 7222 do_each_thread(g, p) { 7223 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7224 return 1; 7225 } while_each_thread(g, p); 7226 7227 return 0; 7228 } 7229 7230 struct rt_schedulable_data { 7231 struct task_group *tg; 7232 u64 rt_period; 7233 u64 rt_runtime; 7234 }; 7235 7236 static int tg_rt_schedulable(struct task_group *tg, void *data) 7237 { 7238 struct rt_schedulable_data *d = data; 7239 struct task_group *child; 7240 unsigned long total, sum = 0; 7241 u64 period, runtime; 7242 7243 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7244 runtime = tg->rt_bandwidth.rt_runtime; 7245 7246 if (tg == d->tg) { 7247 period = d->rt_period; 7248 runtime = d->rt_runtime; 7249 } 7250 7251 /* 7252 * Cannot have more runtime than the period. 7253 */ 7254 if (runtime > period && runtime != RUNTIME_INF) 7255 return -EINVAL; 7256 7257 /* 7258 * Ensure we don't starve existing RT tasks. 7259 */ 7260 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7261 return -EBUSY; 7262 7263 total = to_ratio(period, runtime); 7264 7265 /* 7266 * Nobody can have more than the global setting allows. 7267 */ 7268 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7269 return -EINVAL; 7270 7271 /* 7272 * The sum of our children's runtime should not exceed our own. 7273 */ 7274 list_for_each_entry_rcu(child, &tg->children, siblings) { 7275 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7276 runtime = child->rt_bandwidth.rt_runtime; 7277 7278 if (child == d->tg) { 7279 period = d->rt_period; 7280 runtime = d->rt_runtime; 7281 } 7282 7283 sum += to_ratio(period, runtime); 7284 } 7285 7286 if (sum > total) 7287 return -EINVAL; 7288 7289 return 0; 7290 } 7291 7292 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7293 { 7294 int ret; 7295 7296 struct rt_schedulable_data data = { 7297 .tg = tg, 7298 .rt_period = period, 7299 .rt_runtime = runtime, 7300 }; 7301 7302 rcu_read_lock(); 7303 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7304 rcu_read_unlock(); 7305 7306 return ret; 7307 } 7308 7309 static int tg_set_rt_bandwidth(struct task_group *tg, 7310 u64 rt_period, u64 rt_runtime) 7311 { 7312 int i, err = 0; 7313 7314 mutex_lock(&rt_constraints_mutex); 7315 read_lock(&tasklist_lock); 7316 err = __rt_schedulable(tg, rt_period, rt_runtime); 7317 if (err) 7318 goto unlock; 7319 7320 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7321 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7322 tg->rt_bandwidth.rt_runtime = rt_runtime; 7323 7324 for_each_possible_cpu(i) { 7325 struct rt_rq *rt_rq = tg->rt_rq[i]; 7326 7327 raw_spin_lock(&rt_rq->rt_runtime_lock); 7328 rt_rq->rt_runtime = rt_runtime; 7329 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7330 } 7331 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7332 unlock: 7333 read_unlock(&tasklist_lock); 7334 mutex_unlock(&rt_constraints_mutex); 7335 7336 return err; 7337 } 7338 7339 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7340 { 7341 u64 rt_runtime, rt_period; 7342 7343 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7344 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7345 if (rt_runtime_us < 0) 7346 rt_runtime = RUNTIME_INF; 7347 7348 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7349 } 7350 7351 static long sched_group_rt_runtime(struct task_group *tg) 7352 { 7353 u64 rt_runtime_us; 7354 7355 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7356 return -1; 7357 7358 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7359 do_div(rt_runtime_us, NSEC_PER_USEC); 7360 return rt_runtime_us; 7361 } 7362 7363 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7364 { 7365 u64 rt_runtime, rt_period; 7366 7367 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7368 rt_runtime = tg->rt_bandwidth.rt_runtime; 7369 7370 if (rt_period == 0) 7371 return -EINVAL; 7372 7373 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7374 } 7375 7376 static long sched_group_rt_period(struct task_group *tg) 7377 { 7378 u64 rt_period_us; 7379 7380 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7381 do_div(rt_period_us, NSEC_PER_USEC); 7382 return rt_period_us; 7383 } 7384 #endif /* CONFIG_RT_GROUP_SCHED */ 7385 7386 #ifdef CONFIG_RT_GROUP_SCHED 7387 static int sched_rt_global_constraints(void) 7388 { 7389 int ret = 0; 7390 7391 mutex_lock(&rt_constraints_mutex); 7392 read_lock(&tasklist_lock); 7393 ret = __rt_schedulable(NULL, 0, 0); 7394 read_unlock(&tasklist_lock); 7395 mutex_unlock(&rt_constraints_mutex); 7396 7397 return ret; 7398 } 7399 7400 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7401 { 7402 /* Don't accept realtime tasks when there is no way for them to run */ 7403 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7404 return 0; 7405 7406 return 1; 7407 } 7408 7409 #else /* !CONFIG_RT_GROUP_SCHED */ 7410 static int sched_rt_global_constraints(void) 7411 { 7412 unsigned long flags; 7413 int i, ret = 0; 7414 7415 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7416 for_each_possible_cpu(i) { 7417 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7418 7419 raw_spin_lock(&rt_rq->rt_runtime_lock); 7420 rt_rq->rt_runtime = global_rt_runtime(); 7421 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7422 } 7423 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7424 7425 return ret; 7426 } 7427 #endif /* CONFIG_RT_GROUP_SCHED */ 7428 7429 static int sched_dl_global_constraints(void) 7430 { 7431 u64 runtime = global_rt_runtime(); 7432 u64 period = global_rt_period(); 7433 u64 new_bw = to_ratio(period, runtime); 7434 int cpu, ret = 0; 7435 unsigned long flags; 7436 7437 /* 7438 * Here we want to check the bandwidth not being set to some 7439 * value smaller than the currently allocated bandwidth in 7440 * any of the root_domains. 7441 * 7442 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7443 * cycling on root_domains... Discussion on different/better 7444 * solutions is welcome! 7445 */ 7446 for_each_possible_cpu(cpu) { 7447 struct dl_bw *dl_b = dl_bw_of(cpu); 7448 7449 raw_spin_lock_irqsave(&dl_b->lock, flags); 7450 if (new_bw < dl_b->total_bw) 7451 ret = -EBUSY; 7452 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7453 7454 if (ret) 7455 break; 7456 } 7457 7458 return ret; 7459 } 7460 7461 static void sched_dl_do_global(void) 7462 { 7463 u64 new_bw = -1; 7464 int cpu; 7465 unsigned long flags; 7466 7467 def_dl_bandwidth.dl_period = global_rt_period(); 7468 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7469 7470 if (global_rt_runtime() != RUNTIME_INF) 7471 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7472 7473 /* 7474 * FIXME: As above... 7475 */ 7476 for_each_possible_cpu(cpu) { 7477 struct dl_bw *dl_b = dl_bw_of(cpu); 7478 7479 raw_spin_lock_irqsave(&dl_b->lock, flags); 7480 dl_b->bw = new_bw; 7481 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7482 } 7483 } 7484 7485 static int sched_rt_global_validate(void) 7486 { 7487 if (sysctl_sched_rt_period <= 0) 7488 return -EINVAL; 7489 7490 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7491 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7492 return -EINVAL; 7493 7494 return 0; 7495 } 7496 7497 static void sched_rt_do_global(void) 7498 { 7499 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7500 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7501 } 7502 7503 int sched_rt_handler(struct ctl_table *table, int write, 7504 void __user *buffer, size_t *lenp, 7505 loff_t *ppos) 7506 { 7507 int old_period, old_runtime; 7508 static DEFINE_MUTEX(mutex); 7509 int ret; 7510 7511 mutex_lock(&mutex); 7512 old_period = sysctl_sched_rt_period; 7513 old_runtime = sysctl_sched_rt_runtime; 7514 7515 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7516 7517 if (!ret && write) { 7518 ret = sched_rt_global_validate(); 7519 if (ret) 7520 goto undo; 7521 7522 ret = sched_rt_global_constraints(); 7523 if (ret) 7524 goto undo; 7525 7526 ret = sched_dl_global_constraints(); 7527 if (ret) 7528 goto undo; 7529 7530 sched_rt_do_global(); 7531 sched_dl_do_global(); 7532 } 7533 if (0) { 7534 undo: 7535 sysctl_sched_rt_period = old_period; 7536 sysctl_sched_rt_runtime = old_runtime; 7537 } 7538 mutex_unlock(&mutex); 7539 7540 return ret; 7541 } 7542 7543 int sched_rr_handler(struct ctl_table *table, int write, 7544 void __user *buffer, size_t *lenp, 7545 loff_t *ppos) 7546 { 7547 int ret; 7548 static DEFINE_MUTEX(mutex); 7549 7550 mutex_lock(&mutex); 7551 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7552 /* make sure that internally we keep jiffies */ 7553 /* also, writing zero resets timeslice to default */ 7554 if (!ret && write) { 7555 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7556 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7557 } 7558 mutex_unlock(&mutex); 7559 return ret; 7560 } 7561 7562 #ifdef CONFIG_CGROUP_SCHED 7563 7564 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7565 { 7566 return css ? container_of(css, struct task_group, css) : NULL; 7567 } 7568 7569 static struct cgroup_subsys_state * 7570 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7571 { 7572 struct task_group *parent = css_tg(parent_css); 7573 struct task_group *tg; 7574 7575 if (!parent) { 7576 /* This is early initialization for the top cgroup */ 7577 return &root_task_group.css; 7578 } 7579 7580 tg = sched_create_group(parent); 7581 if (IS_ERR(tg)) 7582 return ERR_PTR(-ENOMEM); 7583 7584 return &tg->css; 7585 } 7586 7587 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7588 { 7589 struct task_group *tg = css_tg(css); 7590 struct task_group *parent = css_tg(css_parent(css)); 7591 7592 if (parent) 7593 sched_online_group(tg, parent); 7594 return 0; 7595 } 7596 7597 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7598 { 7599 struct task_group *tg = css_tg(css); 7600 7601 sched_destroy_group(tg); 7602 } 7603 7604 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7605 { 7606 struct task_group *tg = css_tg(css); 7607 7608 sched_offline_group(tg); 7609 } 7610 7611 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7612 struct cgroup_taskset *tset) 7613 { 7614 struct task_struct *task; 7615 7616 cgroup_taskset_for_each(task, css, tset) { 7617 #ifdef CONFIG_RT_GROUP_SCHED 7618 if (!sched_rt_can_attach(css_tg(css), task)) 7619 return -EINVAL; 7620 #else 7621 /* We don't support RT-tasks being in separate groups */ 7622 if (task->sched_class != &fair_sched_class) 7623 return -EINVAL; 7624 #endif 7625 } 7626 return 0; 7627 } 7628 7629 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7630 struct cgroup_taskset *tset) 7631 { 7632 struct task_struct *task; 7633 7634 cgroup_taskset_for_each(task, css, tset) 7635 sched_move_task(task); 7636 } 7637 7638 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7639 struct cgroup_subsys_state *old_css, 7640 struct task_struct *task) 7641 { 7642 /* 7643 * cgroup_exit() is called in the copy_process() failure path. 7644 * Ignore this case since the task hasn't ran yet, this avoids 7645 * trying to poke a half freed task state from generic code. 7646 */ 7647 if (!(task->flags & PF_EXITING)) 7648 return; 7649 7650 sched_move_task(task); 7651 } 7652 7653 #ifdef CONFIG_FAIR_GROUP_SCHED 7654 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7655 struct cftype *cftype, u64 shareval) 7656 { 7657 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7658 } 7659 7660 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7661 struct cftype *cft) 7662 { 7663 struct task_group *tg = css_tg(css); 7664 7665 return (u64) scale_load_down(tg->shares); 7666 } 7667 7668 #ifdef CONFIG_CFS_BANDWIDTH 7669 static DEFINE_MUTEX(cfs_constraints_mutex); 7670 7671 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7672 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7673 7674 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7675 7676 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7677 { 7678 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7679 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7680 7681 if (tg == &root_task_group) 7682 return -EINVAL; 7683 7684 /* 7685 * Ensure we have at some amount of bandwidth every period. This is 7686 * to prevent reaching a state of large arrears when throttled via 7687 * entity_tick() resulting in prolonged exit starvation. 7688 */ 7689 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7690 return -EINVAL; 7691 7692 /* 7693 * Likewise, bound things on the otherside by preventing insane quota 7694 * periods. This also allows us to normalize in computing quota 7695 * feasibility. 7696 */ 7697 if (period > max_cfs_quota_period) 7698 return -EINVAL; 7699 7700 mutex_lock(&cfs_constraints_mutex); 7701 ret = __cfs_schedulable(tg, period, quota); 7702 if (ret) 7703 goto out_unlock; 7704 7705 runtime_enabled = quota != RUNTIME_INF; 7706 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7707 /* 7708 * If we need to toggle cfs_bandwidth_used, off->on must occur 7709 * before making related changes, and on->off must occur afterwards 7710 */ 7711 if (runtime_enabled && !runtime_was_enabled) 7712 cfs_bandwidth_usage_inc(); 7713 raw_spin_lock_irq(&cfs_b->lock); 7714 cfs_b->period = ns_to_ktime(period); 7715 cfs_b->quota = quota; 7716 7717 __refill_cfs_bandwidth_runtime(cfs_b); 7718 /* restart the period timer (if active) to handle new period expiry */ 7719 if (runtime_enabled && cfs_b->timer_active) { 7720 /* force a reprogram */ 7721 cfs_b->timer_active = 0; 7722 __start_cfs_bandwidth(cfs_b); 7723 } 7724 raw_spin_unlock_irq(&cfs_b->lock); 7725 7726 for_each_possible_cpu(i) { 7727 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7728 struct rq *rq = cfs_rq->rq; 7729 7730 raw_spin_lock_irq(&rq->lock); 7731 cfs_rq->runtime_enabled = runtime_enabled; 7732 cfs_rq->runtime_remaining = 0; 7733 7734 if (cfs_rq->throttled) 7735 unthrottle_cfs_rq(cfs_rq); 7736 raw_spin_unlock_irq(&rq->lock); 7737 } 7738 if (runtime_was_enabled && !runtime_enabled) 7739 cfs_bandwidth_usage_dec(); 7740 out_unlock: 7741 mutex_unlock(&cfs_constraints_mutex); 7742 7743 return ret; 7744 } 7745 7746 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7747 { 7748 u64 quota, period; 7749 7750 period = ktime_to_ns(tg->cfs_bandwidth.period); 7751 if (cfs_quota_us < 0) 7752 quota = RUNTIME_INF; 7753 else 7754 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7755 7756 return tg_set_cfs_bandwidth(tg, period, quota); 7757 } 7758 7759 long tg_get_cfs_quota(struct task_group *tg) 7760 { 7761 u64 quota_us; 7762 7763 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7764 return -1; 7765 7766 quota_us = tg->cfs_bandwidth.quota; 7767 do_div(quota_us, NSEC_PER_USEC); 7768 7769 return quota_us; 7770 } 7771 7772 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7773 { 7774 u64 quota, period; 7775 7776 period = (u64)cfs_period_us * NSEC_PER_USEC; 7777 quota = tg->cfs_bandwidth.quota; 7778 7779 return tg_set_cfs_bandwidth(tg, period, quota); 7780 } 7781 7782 long tg_get_cfs_period(struct task_group *tg) 7783 { 7784 u64 cfs_period_us; 7785 7786 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7787 do_div(cfs_period_us, NSEC_PER_USEC); 7788 7789 return cfs_period_us; 7790 } 7791 7792 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7793 struct cftype *cft) 7794 { 7795 return tg_get_cfs_quota(css_tg(css)); 7796 } 7797 7798 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7799 struct cftype *cftype, s64 cfs_quota_us) 7800 { 7801 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7802 } 7803 7804 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7805 struct cftype *cft) 7806 { 7807 return tg_get_cfs_period(css_tg(css)); 7808 } 7809 7810 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7811 struct cftype *cftype, u64 cfs_period_us) 7812 { 7813 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7814 } 7815 7816 struct cfs_schedulable_data { 7817 struct task_group *tg; 7818 u64 period, quota; 7819 }; 7820 7821 /* 7822 * normalize group quota/period to be quota/max_period 7823 * note: units are usecs 7824 */ 7825 static u64 normalize_cfs_quota(struct task_group *tg, 7826 struct cfs_schedulable_data *d) 7827 { 7828 u64 quota, period; 7829 7830 if (tg == d->tg) { 7831 period = d->period; 7832 quota = d->quota; 7833 } else { 7834 period = tg_get_cfs_period(tg); 7835 quota = tg_get_cfs_quota(tg); 7836 } 7837 7838 /* note: these should typically be equivalent */ 7839 if (quota == RUNTIME_INF || quota == -1) 7840 return RUNTIME_INF; 7841 7842 return to_ratio(period, quota); 7843 } 7844 7845 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7846 { 7847 struct cfs_schedulable_data *d = data; 7848 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7849 s64 quota = 0, parent_quota = -1; 7850 7851 if (!tg->parent) { 7852 quota = RUNTIME_INF; 7853 } else { 7854 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7855 7856 quota = normalize_cfs_quota(tg, d); 7857 parent_quota = parent_b->hierarchal_quota; 7858 7859 /* 7860 * ensure max(child_quota) <= parent_quota, inherit when no 7861 * limit is set 7862 */ 7863 if (quota == RUNTIME_INF) 7864 quota = parent_quota; 7865 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7866 return -EINVAL; 7867 } 7868 cfs_b->hierarchal_quota = quota; 7869 7870 return 0; 7871 } 7872 7873 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7874 { 7875 int ret; 7876 struct cfs_schedulable_data data = { 7877 .tg = tg, 7878 .period = period, 7879 .quota = quota, 7880 }; 7881 7882 if (quota != RUNTIME_INF) { 7883 do_div(data.period, NSEC_PER_USEC); 7884 do_div(data.quota, NSEC_PER_USEC); 7885 } 7886 7887 rcu_read_lock(); 7888 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7889 rcu_read_unlock(); 7890 7891 return ret; 7892 } 7893 7894 static int cpu_stats_show(struct seq_file *sf, void *v) 7895 { 7896 struct task_group *tg = css_tg(seq_css(sf)); 7897 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7898 7899 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7900 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7901 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7902 7903 return 0; 7904 } 7905 #endif /* CONFIG_CFS_BANDWIDTH */ 7906 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7907 7908 #ifdef CONFIG_RT_GROUP_SCHED 7909 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7910 struct cftype *cft, s64 val) 7911 { 7912 return sched_group_set_rt_runtime(css_tg(css), val); 7913 } 7914 7915 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7916 struct cftype *cft) 7917 { 7918 return sched_group_rt_runtime(css_tg(css)); 7919 } 7920 7921 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7922 struct cftype *cftype, u64 rt_period_us) 7923 { 7924 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7925 } 7926 7927 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7928 struct cftype *cft) 7929 { 7930 return sched_group_rt_period(css_tg(css)); 7931 } 7932 #endif /* CONFIG_RT_GROUP_SCHED */ 7933 7934 static struct cftype cpu_files[] = { 7935 #ifdef CONFIG_FAIR_GROUP_SCHED 7936 { 7937 .name = "shares", 7938 .read_u64 = cpu_shares_read_u64, 7939 .write_u64 = cpu_shares_write_u64, 7940 }, 7941 #endif 7942 #ifdef CONFIG_CFS_BANDWIDTH 7943 { 7944 .name = "cfs_quota_us", 7945 .read_s64 = cpu_cfs_quota_read_s64, 7946 .write_s64 = cpu_cfs_quota_write_s64, 7947 }, 7948 { 7949 .name = "cfs_period_us", 7950 .read_u64 = cpu_cfs_period_read_u64, 7951 .write_u64 = cpu_cfs_period_write_u64, 7952 }, 7953 { 7954 .name = "stat", 7955 .seq_show = cpu_stats_show, 7956 }, 7957 #endif 7958 #ifdef CONFIG_RT_GROUP_SCHED 7959 { 7960 .name = "rt_runtime_us", 7961 .read_s64 = cpu_rt_runtime_read, 7962 .write_s64 = cpu_rt_runtime_write, 7963 }, 7964 { 7965 .name = "rt_period_us", 7966 .read_u64 = cpu_rt_period_read_uint, 7967 .write_u64 = cpu_rt_period_write_uint, 7968 }, 7969 #endif 7970 { } /* terminate */ 7971 }; 7972 7973 struct cgroup_subsys cpu_cgroup_subsys = { 7974 .name = "cpu", 7975 .css_alloc = cpu_cgroup_css_alloc, 7976 .css_free = cpu_cgroup_css_free, 7977 .css_online = cpu_cgroup_css_online, 7978 .css_offline = cpu_cgroup_css_offline, 7979 .can_attach = cpu_cgroup_can_attach, 7980 .attach = cpu_cgroup_attach, 7981 .exit = cpu_cgroup_exit, 7982 .subsys_id = cpu_cgroup_subsys_id, 7983 .base_cftypes = cpu_files, 7984 .early_init = 1, 7985 }; 7986 7987 #endif /* CONFIG_CGROUP_SCHED */ 7988 7989 void dump_cpu_task(int cpu) 7990 { 7991 pr_info("Task dump for CPU %d:\n", cpu); 7992 sched_show_task(cpu_curr(cpu)); 7993 } 7994