xref: /openbmc/linux/kernel/sched/core.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /*
310  * this_rq_lock - lock this runqueue and disable interrupts.
311  */
312 static struct rq *this_rq_lock(void)
313 	__acquires(rq->lock)
314 {
315 	struct rq *rq;
316 
317 	local_irq_disable();
318 	rq = this_rq();
319 	raw_spin_lock(&rq->lock);
320 
321 	return rq;
322 }
323 
324 #ifdef CONFIG_SCHED_HRTICK
325 /*
326  * Use HR-timers to deliver accurate preemption points.
327  */
328 
329 static void hrtick_clear(struct rq *rq)
330 {
331 	if (hrtimer_active(&rq->hrtick_timer))
332 		hrtimer_cancel(&rq->hrtick_timer);
333 }
334 
335 /*
336  * High-resolution timer tick.
337  * Runs from hardirq context with interrupts disabled.
338  */
339 static enum hrtimer_restart hrtick(struct hrtimer *timer)
340 {
341 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	raw_spin_lock(&rq->lock);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	raw_spin_unlock(&rq->lock);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static int __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = hrtimer_get_softexpires(timer);
359 
360 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 
370 	raw_spin_lock(&rq->lock);
371 	__hrtick_restart(rq);
372 	rq->hrtick_csd_pending = 0;
373 	raw_spin_unlock(&rq->lock);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	ktime_t time;
385 	s64 delta;
386 
387 	/*
388 	 * Don't schedule slices shorter than 10000ns, that just
389 	 * doesn't make sense and can cause timer DoS.
390 	 */
391 	delta = max_t(s64, delay, 10000LL);
392 	time = ktime_add_ns(timer->base->get_time(), delta);
393 
394 	hrtimer_set_expires(timer, time);
395 
396 	if (rq == this_rq()) {
397 		__hrtick_restart(rq);
398 	} else if (!rq->hrtick_csd_pending) {
399 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 		rq->hrtick_csd_pending = 1;
401 	}
402 }
403 
404 static int
405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
406 {
407 	int cpu = (int)(long)hcpu;
408 
409 	switch (action) {
410 	case CPU_UP_CANCELED:
411 	case CPU_UP_CANCELED_FROZEN:
412 	case CPU_DOWN_PREPARE:
413 	case CPU_DOWN_PREPARE_FROZEN:
414 	case CPU_DEAD:
415 	case CPU_DEAD_FROZEN:
416 		hrtick_clear(cpu_rq(cpu));
417 		return NOTIFY_OK;
418 	}
419 
420 	return NOTIFY_DONE;
421 }
422 
423 static __init void init_hrtick(void)
424 {
425 	hotcpu_notifier(hotplug_hrtick, 0);
426 }
427 #else
428 /*
429  * Called to set the hrtick timer state.
430  *
431  * called with rq->lock held and irqs disabled
432  */
433 void hrtick_start(struct rq *rq, u64 delay)
434 {
435 	/*
436 	 * Don't schedule slices shorter than 10000ns, that just
437 	 * doesn't make sense. Rely on vruntime for fairness.
438 	 */
439 	delay = max_t(u64, delay, 10000LL);
440 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441 			HRTIMER_MODE_REL_PINNED, 0);
442 }
443 
444 static inline void init_hrtick(void)
445 {
446 }
447 #endif /* CONFIG_SMP */
448 
449 static void init_rq_hrtick(struct rq *rq)
450 {
451 #ifdef CONFIG_SMP
452 	rq->hrtick_csd_pending = 0;
453 
454 	rq->hrtick_csd.flags = 0;
455 	rq->hrtick_csd.func = __hrtick_start;
456 	rq->hrtick_csd.info = rq;
457 #endif
458 
459 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 	rq->hrtick_timer.function = hrtick;
461 }
462 #else	/* CONFIG_SCHED_HRTICK */
463 static inline void hrtick_clear(struct rq *rq)
464 {
465 }
466 
467 static inline void init_rq_hrtick(struct rq *rq)
468 {
469 }
470 
471 static inline void init_hrtick(void)
472 {
473 }
474 #endif	/* CONFIG_SCHED_HRTICK */
475 
476 /*
477  * cmpxchg based fetch_or, macro so it works for different integer types
478  */
479 #define fetch_or(ptr, val)						\
480 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
481  	for (;;) {							\
482  		__old = cmpxchg((ptr), __val, __val | (val));		\
483  		if (__old == __val)					\
484  			break;						\
485  		__val = __old;						\
486  	}								\
487  	__old;								\
488 })
489 
490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 /*
492  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493  * this avoids any races wrt polling state changes and thereby avoids
494  * spurious IPIs.
495  */
496 static bool set_nr_and_not_polling(struct task_struct *p)
497 {
498 	struct thread_info *ti = task_thread_info(p);
499 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
500 }
501 
502 /*
503  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
504  *
505  * If this returns true, then the idle task promises to call
506  * sched_ttwu_pending() and reschedule soon.
507  */
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 	struct thread_info *ti = task_thread_info(p);
511 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
512 
513 	for (;;) {
514 		if (!(val & _TIF_POLLING_NRFLAG))
515 			return false;
516 		if (val & _TIF_NEED_RESCHED)
517 			return true;
518 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
519 		if (old == val)
520 			break;
521 		val = old;
522 	}
523 	return true;
524 }
525 
526 #else
527 static bool set_nr_and_not_polling(struct task_struct *p)
528 {
529 	set_tsk_need_resched(p);
530 	return true;
531 }
532 
533 #ifdef CONFIG_SMP
534 static bool set_nr_if_polling(struct task_struct *p)
535 {
536 	return false;
537 }
538 #endif
539 #endif
540 
541 /*
542  * resched_curr - mark rq's current task 'to be rescheduled now'.
543  *
544  * On UP this means the setting of the need_resched flag, on SMP it
545  * might also involve a cross-CPU call to trigger the scheduler on
546  * the target CPU.
547  */
548 void resched_curr(struct rq *rq)
549 {
550 	struct task_struct *curr = rq->curr;
551 	int cpu;
552 
553 	lockdep_assert_held(&rq->lock);
554 
555 	if (test_tsk_need_resched(curr))
556 		return;
557 
558 	cpu = cpu_of(rq);
559 
560 	if (cpu == smp_processor_id()) {
561 		set_tsk_need_resched(curr);
562 		set_preempt_need_resched();
563 		return;
564 	}
565 
566 	if (set_nr_and_not_polling(curr))
567 		smp_send_reschedule(cpu);
568 	else
569 		trace_sched_wake_idle_without_ipi(cpu);
570 }
571 
572 void resched_cpu(int cpu)
573 {
574 	struct rq *rq = cpu_rq(cpu);
575 	unsigned long flags;
576 
577 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
578 		return;
579 	resched_curr(rq);
580 	raw_spin_unlock_irqrestore(&rq->lock, flags);
581 }
582 
583 #ifdef CONFIG_SMP
584 #ifdef CONFIG_NO_HZ_COMMON
585 /*
586  * In the semi idle case, use the nearest busy cpu for migrating timers
587  * from an idle cpu.  This is good for power-savings.
588  *
589  * We don't do similar optimization for completely idle system, as
590  * selecting an idle cpu will add more delays to the timers than intended
591  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
592  */
593 int get_nohz_timer_target(int pinned)
594 {
595 	int cpu = smp_processor_id();
596 	int i;
597 	struct sched_domain *sd;
598 
599 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
600 		return cpu;
601 
602 	rcu_read_lock();
603 	for_each_domain(cpu, sd) {
604 		for_each_cpu(i, sched_domain_span(sd)) {
605 			if (!idle_cpu(i)) {
606 				cpu = i;
607 				goto unlock;
608 			}
609 		}
610 	}
611 unlock:
612 	rcu_read_unlock();
613 	return cpu;
614 }
615 /*
616  * When add_timer_on() enqueues a timer into the timer wheel of an
617  * idle CPU then this timer might expire before the next timer event
618  * which is scheduled to wake up that CPU. In case of a completely
619  * idle system the next event might even be infinite time into the
620  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621  * leaves the inner idle loop so the newly added timer is taken into
622  * account when the CPU goes back to idle and evaluates the timer
623  * wheel for the next timer event.
624  */
625 static void wake_up_idle_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 
629 	if (cpu == smp_processor_id())
630 		return;
631 
632 	if (set_nr_and_not_polling(rq->idle))
633 		smp_send_reschedule(cpu);
634 	else
635 		trace_sched_wake_idle_without_ipi(cpu);
636 }
637 
638 static bool wake_up_full_nohz_cpu(int cpu)
639 {
640 	/*
641 	 * We just need the target to call irq_exit() and re-evaluate
642 	 * the next tick. The nohz full kick at least implies that.
643 	 * If needed we can still optimize that later with an
644 	 * empty IRQ.
645 	 */
646 	if (tick_nohz_full_cpu(cpu)) {
647 		if (cpu != smp_processor_id() ||
648 		    tick_nohz_tick_stopped())
649 			tick_nohz_full_kick_cpu(cpu);
650 		return true;
651 	}
652 
653 	return false;
654 }
655 
656 void wake_up_nohz_cpu(int cpu)
657 {
658 	if (!wake_up_full_nohz_cpu(cpu))
659 		wake_up_idle_cpu(cpu);
660 }
661 
662 static inline bool got_nohz_idle_kick(void)
663 {
664 	int cpu = smp_processor_id();
665 
666 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
667 		return false;
668 
669 	if (idle_cpu(cpu) && !need_resched())
670 		return true;
671 
672 	/*
673 	 * We can't run Idle Load Balance on this CPU for this time so we
674 	 * cancel it and clear NOHZ_BALANCE_KICK
675 	 */
676 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
677 	return false;
678 }
679 
680 #else /* CONFIG_NO_HZ_COMMON */
681 
682 static inline bool got_nohz_idle_kick(void)
683 {
684 	return false;
685 }
686 
687 #endif /* CONFIG_NO_HZ_COMMON */
688 
689 #ifdef CONFIG_NO_HZ_FULL
690 bool sched_can_stop_tick(void)
691 {
692 	/*
693 	 * More than one running task need preemption.
694 	 * nr_running update is assumed to be visible
695 	 * after IPI is sent from wakers.
696 	 */
697 	if (this_rq()->nr_running > 1)
698 		return false;
699 
700 	return true;
701 }
702 #endif /* CONFIG_NO_HZ_FULL */
703 
704 void sched_avg_update(struct rq *rq)
705 {
706 	s64 period = sched_avg_period();
707 
708 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
709 		/*
710 		 * Inline assembly required to prevent the compiler
711 		 * optimising this loop into a divmod call.
712 		 * See __iter_div_u64_rem() for another example of this.
713 		 */
714 		asm("" : "+rm" (rq->age_stamp));
715 		rq->age_stamp += period;
716 		rq->rt_avg /= 2;
717 	}
718 }
719 
720 #endif /* CONFIG_SMP */
721 
722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
723 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
724 /*
725  * Iterate task_group tree rooted at *from, calling @down when first entering a
726  * node and @up when leaving it for the final time.
727  *
728  * Caller must hold rcu_lock or sufficient equivalent.
729  */
730 int walk_tg_tree_from(struct task_group *from,
731 			     tg_visitor down, tg_visitor up, void *data)
732 {
733 	struct task_group *parent, *child;
734 	int ret;
735 
736 	parent = from;
737 
738 down:
739 	ret = (*down)(parent, data);
740 	if (ret)
741 		goto out;
742 	list_for_each_entry_rcu(child, &parent->children, siblings) {
743 		parent = child;
744 		goto down;
745 
746 up:
747 		continue;
748 	}
749 	ret = (*up)(parent, data);
750 	if (ret || parent == from)
751 		goto out;
752 
753 	child = parent;
754 	parent = parent->parent;
755 	if (parent)
756 		goto up;
757 out:
758 	return ret;
759 }
760 
761 int tg_nop(struct task_group *tg, void *data)
762 {
763 	return 0;
764 }
765 #endif
766 
767 static void set_load_weight(struct task_struct *p)
768 {
769 	int prio = p->static_prio - MAX_RT_PRIO;
770 	struct load_weight *load = &p->se.load;
771 
772 	/*
773 	 * SCHED_IDLE tasks get minimal weight:
774 	 */
775 	if (p->policy == SCHED_IDLE) {
776 		load->weight = scale_load(WEIGHT_IDLEPRIO);
777 		load->inv_weight = WMULT_IDLEPRIO;
778 		return;
779 	}
780 
781 	load->weight = scale_load(prio_to_weight[prio]);
782 	load->inv_weight = prio_to_wmult[prio];
783 }
784 
785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 	update_rq_clock(rq);
788 	sched_info_queued(rq, p);
789 	p->sched_class->enqueue_task(rq, p, flags);
790 }
791 
792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
793 {
794 	update_rq_clock(rq);
795 	sched_info_dequeued(rq, p);
796 	p->sched_class->dequeue_task(rq, p, flags);
797 }
798 
799 void activate_task(struct rq *rq, struct task_struct *p, int flags)
800 {
801 	if (task_contributes_to_load(p))
802 		rq->nr_uninterruptible--;
803 
804 	enqueue_task(rq, p, flags);
805 }
806 
807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
808 {
809 	if (task_contributes_to_load(p))
810 		rq->nr_uninterruptible++;
811 
812 	dequeue_task(rq, p, flags);
813 }
814 
815 static void update_rq_clock_task(struct rq *rq, s64 delta)
816 {
817 /*
818  * In theory, the compile should just see 0 here, and optimize out the call
819  * to sched_rt_avg_update. But I don't trust it...
820  */
821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
822 	s64 steal = 0, irq_delta = 0;
823 #endif
824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
825 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
826 
827 	/*
828 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
829 	 * this case when a previous update_rq_clock() happened inside a
830 	 * {soft,}irq region.
831 	 *
832 	 * When this happens, we stop ->clock_task and only update the
833 	 * prev_irq_time stamp to account for the part that fit, so that a next
834 	 * update will consume the rest. This ensures ->clock_task is
835 	 * monotonic.
836 	 *
837 	 * It does however cause some slight miss-attribution of {soft,}irq
838 	 * time, a more accurate solution would be to update the irq_time using
839 	 * the current rq->clock timestamp, except that would require using
840 	 * atomic ops.
841 	 */
842 	if (irq_delta > delta)
843 		irq_delta = delta;
844 
845 	rq->prev_irq_time += irq_delta;
846 	delta -= irq_delta;
847 #endif
848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
849 	if (static_key_false((&paravirt_steal_rq_enabled))) {
850 		steal = paravirt_steal_clock(cpu_of(rq));
851 		steal -= rq->prev_steal_time_rq;
852 
853 		if (unlikely(steal > delta))
854 			steal = delta;
855 
856 		rq->prev_steal_time_rq += steal;
857 		delta -= steal;
858 	}
859 #endif
860 
861 	rq->clock_task += delta;
862 
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
865 		sched_rt_avg_update(rq, irq_delta + steal);
866 #endif
867 }
868 
869 void sched_set_stop_task(int cpu, struct task_struct *stop)
870 {
871 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
872 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
873 
874 	if (stop) {
875 		/*
876 		 * Make it appear like a SCHED_FIFO task, its something
877 		 * userspace knows about and won't get confused about.
878 		 *
879 		 * Also, it will make PI more or less work without too
880 		 * much confusion -- but then, stop work should not
881 		 * rely on PI working anyway.
882 		 */
883 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
884 
885 		stop->sched_class = &stop_sched_class;
886 	}
887 
888 	cpu_rq(cpu)->stop = stop;
889 
890 	if (old_stop) {
891 		/*
892 		 * Reset it back to a normal scheduling class so that
893 		 * it can die in pieces.
894 		 */
895 		old_stop->sched_class = &rt_sched_class;
896 	}
897 }
898 
899 /*
900  * __normal_prio - return the priority that is based on the static prio
901  */
902 static inline int __normal_prio(struct task_struct *p)
903 {
904 	return p->static_prio;
905 }
906 
907 /*
908  * Calculate the expected normal priority: i.e. priority
909  * without taking RT-inheritance into account. Might be
910  * boosted by interactivity modifiers. Changes upon fork,
911  * setprio syscalls, and whenever the interactivity
912  * estimator recalculates.
913  */
914 static inline int normal_prio(struct task_struct *p)
915 {
916 	int prio;
917 
918 	if (task_has_dl_policy(p))
919 		prio = MAX_DL_PRIO-1;
920 	else if (task_has_rt_policy(p))
921 		prio = MAX_RT_PRIO-1 - p->rt_priority;
922 	else
923 		prio = __normal_prio(p);
924 	return prio;
925 }
926 
927 /*
928  * Calculate the current priority, i.e. the priority
929  * taken into account by the scheduler. This value might
930  * be boosted by RT tasks, or might be boosted by
931  * interactivity modifiers. Will be RT if the task got
932  * RT-boosted. If not then it returns p->normal_prio.
933  */
934 static int effective_prio(struct task_struct *p)
935 {
936 	p->normal_prio = normal_prio(p);
937 	/*
938 	 * If we are RT tasks or we were boosted to RT priority,
939 	 * keep the priority unchanged. Otherwise, update priority
940 	 * to the normal priority:
941 	 */
942 	if (!rt_prio(p->prio))
943 		return p->normal_prio;
944 	return p->prio;
945 }
946 
947 /**
948  * task_curr - is this task currently executing on a CPU?
949  * @p: the task in question.
950  *
951  * Return: 1 if the task is currently executing. 0 otherwise.
952  */
953 inline int task_curr(const struct task_struct *p)
954 {
955 	return cpu_curr(task_cpu(p)) == p;
956 }
957 
958 /*
959  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
960  */
961 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
962 				       const struct sched_class *prev_class,
963 				       int oldprio)
964 {
965 	if (prev_class != p->sched_class) {
966 		if (prev_class->switched_from)
967 			prev_class->switched_from(rq, p);
968 		/* Possble rq->lock 'hole'.  */
969 		p->sched_class->switched_to(rq, p);
970 	} else if (oldprio != p->prio || dl_task(p))
971 		p->sched_class->prio_changed(rq, p, oldprio);
972 }
973 
974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
975 {
976 	const struct sched_class *class;
977 
978 	if (p->sched_class == rq->curr->sched_class) {
979 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
980 	} else {
981 		for_each_class(class) {
982 			if (class == rq->curr->sched_class)
983 				break;
984 			if (class == p->sched_class) {
985 				resched_curr(rq);
986 				break;
987 			}
988 		}
989 	}
990 
991 	/*
992 	 * A queue event has occurred, and we're going to schedule.  In
993 	 * this case, we can save a useless back to back clock update.
994 	 */
995 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
996 		rq_clock_skip_update(rq, true);
997 }
998 
999 #ifdef CONFIG_SMP
1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1001 {
1002 #ifdef CONFIG_SCHED_DEBUG
1003 	/*
1004 	 * We should never call set_task_cpu() on a blocked task,
1005 	 * ttwu() will sort out the placement.
1006 	 */
1007 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1008 			!p->on_rq);
1009 
1010 #ifdef CONFIG_LOCKDEP
1011 	/*
1012 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1013 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1014 	 *
1015 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1016 	 * see task_group().
1017 	 *
1018 	 * Furthermore, all task_rq users should acquire both locks, see
1019 	 * task_rq_lock().
1020 	 */
1021 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1022 				      lockdep_is_held(&task_rq(p)->lock)));
1023 #endif
1024 #endif
1025 
1026 	trace_sched_migrate_task(p, new_cpu);
1027 
1028 	if (task_cpu(p) != new_cpu) {
1029 		if (p->sched_class->migrate_task_rq)
1030 			p->sched_class->migrate_task_rq(p, new_cpu);
1031 		p->se.nr_migrations++;
1032 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1033 	}
1034 
1035 	__set_task_cpu(p, new_cpu);
1036 }
1037 
1038 static void __migrate_swap_task(struct task_struct *p, int cpu)
1039 {
1040 	if (task_on_rq_queued(p)) {
1041 		struct rq *src_rq, *dst_rq;
1042 
1043 		src_rq = task_rq(p);
1044 		dst_rq = cpu_rq(cpu);
1045 
1046 		deactivate_task(src_rq, p, 0);
1047 		set_task_cpu(p, cpu);
1048 		activate_task(dst_rq, p, 0);
1049 		check_preempt_curr(dst_rq, p, 0);
1050 	} else {
1051 		/*
1052 		 * Task isn't running anymore; make it appear like we migrated
1053 		 * it before it went to sleep. This means on wakeup we make the
1054 		 * previous cpu our targer instead of where it really is.
1055 		 */
1056 		p->wake_cpu = cpu;
1057 	}
1058 }
1059 
1060 struct migration_swap_arg {
1061 	struct task_struct *src_task, *dst_task;
1062 	int src_cpu, dst_cpu;
1063 };
1064 
1065 static int migrate_swap_stop(void *data)
1066 {
1067 	struct migration_swap_arg *arg = data;
1068 	struct rq *src_rq, *dst_rq;
1069 	int ret = -EAGAIN;
1070 
1071 	src_rq = cpu_rq(arg->src_cpu);
1072 	dst_rq = cpu_rq(arg->dst_cpu);
1073 
1074 	double_raw_lock(&arg->src_task->pi_lock,
1075 			&arg->dst_task->pi_lock);
1076 	double_rq_lock(src_rq, dst_rq);
1077 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1078 		goto unlock;
1079 
1080 	if (task_cpu(arg->src_task) != arg->src_cpu)
1081 		goto unlock;
1082 
1083 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1084 		goto unlock;
1085 
1086 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1087 		goto unlock;
1088 
1089 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1090 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1091 
1092 	ret = 0;
1093 
1094 unlock:
1095 	double_rq_unlock(src_rq, dst_rq);
1096 	raw_spin_unlock(&arg->dst_task->pi_lock);
1097 	raw_spin_unlock(&arg->src_task->pi_lock);
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * Cross migrate two tasks
1104  */
1105 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1106 {
1107 	struct migration_swap_arg arg;
1108 	int ret = -EINVAL;
1109 
1110 	arg = (struct migration_swap_arg){
1111 		.src_task = cur,
1112 		.src_cpu = task_cpu(cur),
1113 		.dst_task = p,
1114 		.dst_cpu = task_cpu(p),
1115 	};
1116 
1117 	if (arg.src_cpu == arg.dst_cpu)
1118 		goto out;
1119 
1120 	/*
1121 	 * These three tests are all lockless; this is OK since all of them
1122 	 * will be re-checked with proper locks held further down the line.
1123 	 */
1124 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1125 		goto out;
1126 
1127 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1128 		goto out;
1129 
1130 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1131 		goto out;
1132 
1133 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1134 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1135 
1136 out:
1137 	return ret;
1138 }
1139 
1140 struct migration_arg {
1141 	struct task_struct *task;
1142 	int dest_cpu;
1143 };
1144 
1145 static int migration_cpu_stop(void *data);
1146 
1147 /*
1148  * wait_task_inactive - wait for a thread to unschedule.
1149  *
1150  * If @match_state is nonzero, it's the @p->state value just checked and
1151  * not expected to change.  If it changes, i.e. @p might have woken up,
1152  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1153  * we return a positive number (its total switch count).  If a second call
1154  * a short while later returns the same number, the caller can be sure that
1155  * @p has remained unscheduled the whole time.
1156  *
1157  * The caller must ensure that the task *will* unschedule sometime soon,
1158  * else this function might spin for a *long* time. This function can't
1159  * be called with interrupts off, or it may introduce deadlock with
1160  * smp_call_function() if an IPI is sent by the same process we are
1161  * waiting to become inactive.
1162  */
1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1164 {
1165 	unsigned long flags;
1166 	int running, queued;
1167 	unsigned long ncsw;
1168 	struct rq *rq;
1169 
1170 	for (;;) {
1171 		/*
1172 		 * We do the initial early heuristics without holding
1173 		 * any task-queue locks at all. We'll only try to get
1174 		 * the runqueue lock when things look like they will
1175 		 * work out!
1176 		 */
1177 		rq = task_rq(p);
1178 
1179 		/*
1180 		 * If the task is actively running on another CPU
1181 		 * still, just relax and busy-wait without holding
1182 		 * any locks.
1183 		 *
1184 		 * NOTE! Since we don't hold any locks, it's not
1185 		 * even sure that "rq" stays as the right runqueue!
1186 		 * But we don't care, since "task_running()" will
1187 		 * return false if the runqueue has changed and p
1188 		 * is actually now running somewhere else!
1189 		 */
1190 		while (task_running(rq, p)) {
1191 			if (match_state && unlikely(p->state != match_state))
1192 				return 0;
1193 			cpu_relax();
1194 		}
1195 
1196 		/*
1197 		 * Ok, time to look more closely! We need the rq
1198 		 * lock now, to be *sure*. If we're wrong, we'll
1199 		 * just go back and repeat.
1200 		 */
1201 		rq = task_rq_lock(p, &flags);
1202 		trace_sched_wait_task(p);
1203 		running = task_running(rq, p);
1204 		queued = task_on_rq_queued(p);
1205 		ncsw = 0;
1206 		if (!match_state || p->state == match_state)
1207 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1208 		task_rq_unlock(rq, p, &flags);
1209 
1210 		/*
1211 		 * If it changed from the expected state, bail out now.
1212 		 */
1213 		if (unlikely(!ncsw))
1214 			break;
1215 
1216 		/*
1217 		 * Was it really running after all now that we
1218 		 * checked with the proper locks actually held?
1219 		 *
1220 		 * Oops. Go back and try again..
1221 		 */
1222 		if (unlikely(running)) {
1223 			cpu_relax();
1224 			continue;
1225 		}
1226 
1227 		/*
1228 		 * It's not enough that it's not actively running,
1229 		 * it must be off the runqueue _entirely_, and not
1230 		 * preempted!
1231 		 *
1232 		 * So if it was still runnable (but just not actively
1233 		 * running right now), it's preempted, and we should
1234 		 * yield - it could be a while.
1235 		 */
1236 		if (unlikely(queued)) {
1237 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1238 
1239 			set_current_state(TASK_UNINTERRUPTIBLE);
1240 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1241 			continue;
1242 		}
1243 
1244 		/*
1245 		 * Ahh, all good. It wasn't running, and it wasn't
1246 		 * runnable, which means that it will never become
1247 		 * running in the future either. We're all done!
1248 		 */
1249 		break;
1250 	}
1251 
1252 	return ncsw;
1253 }
1254 
1255 /***
1256  * kick_process - kick a running thread to enter/exit the kernel
1257  * @p: the to-be-kicked thread
1258  *
1259  * Cause a process which is running on another CPU to enter
1260  * kernel-mode, without any delay. (to get signals handled.)
1261  *
1262  * NOTE: this function doesn't have to take the runqueue lock,
1263  * because all it wants to ensure is that the remote task enters
1264  * the kernel. If the IPI races and the task has been migrated
1265  * to another CPU then no harm is done and the purpose has been
1266  * achieved as well.
1267  */
1268 void kick_process(struct task_struct *p)
1269 {
1270 	int cpu;
1271 
1272 	preempt_disable();
1273 	cpu = task_cpu(p);
1274 	if ((cpu != smp_processor_id()) && task_curr(p))
1275 		smp_send_reschedule(cpu);
1276 	preempt_enable();
1277 }
1278 EXPORT_SYMBOL_GPL(kick_process);
1279 #endif /* CONFIG_SMP */
1280 
1281 #ifdef CONFIG_SMP
1282 /*
1283  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1284  */
1285 static int select_fallback_rq(int cpu, struct task_struct *p)
1286 {
1287 	int nid = cpu_to_node(cpu);
1288 	const struct cpumask *nodemask = NULL;
1289 	enum { cpuset, possible, fail } state = cpuset;
1290 	int dest_cpu;
1291 
1292 	/*
1293 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1294 	 * will return -1. There is no cpu on the node, and we should
1295 	 * select the cpu on the other node.
1296 	 */
1297 	if (nid != -1) {
1298 		nodemask = cpumask_of_node(nid);
1299 
1300 		/* Look for allowed, online CPU in same node. */
1301 		for_each_cpu(dest_cpu, nodemask) {
1302 			if (!cpu_online(dest_cpu))
1303 				continue;
1304 			if (!cpu_active(dest_cpu))
1305 				continue;
1306 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1307 				return dest_cpu;
1308 		}
1309 	}
1310 
1311 	for (;;) {
1312 		/* Any allowed, online CPU? */
1313 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1314 			if (!cpu_online(dest_cpu))
1315 				continue;
1316 			if (!cpu_active(dest_cpu))
1317 				continue;
1318 			goto out;
1319 		}
1320 
1321 		switch (state) {
1322 		case cpuset:
1323 			/* No more Mr. Nice Guy. */
1324 			cpuset_cpus_allowed_fallback(p);
1325 			state = possible;
1326 			break;
1327 
1328 		case possible:
1329 			do_set_cpus_allowed(p, cpu_possible_mask);
1330 			state = fail;
1331 			break;
1332 
1333 		case fail:
1334 			BUG();
1335 			break;
1336 		}
1337 	}
1338 
1339 out:
1340 	if (state != cpuset) {
1341 		/*
1342 		 * Don't tell them about moving exiting tasks or
1343 		 * kernel threads (both mm NULL), since they never
1344 		 * leave kernel.
1345 		 */
1346 		if (p->mm && printk_ratelimit()) {
1347 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1348 					task_pid_nr(p), p->comm, cpu);
1349 		}
1350 	}
1351 
1352 	return dest_cpu;
1353 }
1354 
1355 /*
1356  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1357  */
1358 static inline
1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1360 {
1361 	if (p->nr_cpus_allowed > 1)
1362 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1363 
1364 	/*
1365 	 * In order not to call set_task_cpu() on a blocking task we need
1366 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1367 	 * cpu.
1368 	 *
1369 	 * Since this is common to all placement strategies, this lives here.
1370 	 *
1371 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1372 	 *   not worry about this generic constraint ]
1373 	 */
1374 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1375 		     !cpu_online(cpu)))
1376 		cpu = select_fallback_rq(task_cpu(p), p);
1377 
1378 	return cpu;
1379 }
1380 
1381 static void update_avg(u64 *avg, u64 sample)
1382 {
1383 	s64 diff = sample - *avg;
1384 	*avg += diff >> 3;
1385 }
1386 #endif
1387 
1388 static void
1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1390 {
1391 #ifdef CONFIG_SCHEDSTATS
1392 	struct rq *rq = this_rq();
1393 
1394 #ifdef CONFIG_SMP
1395 	int this_cpu = smp_processor_id();
1396 
1397 	if (cpu == this_cpu) {
1398 		schedstat_inc(rq, ttwu_local);
1399 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1400 	} else {
1401 		struct sched_domain *sd;
1402 
1403 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1404 		rcu_read_lock();
1405 		for_each_domain(this_cpu, sd) {
1406 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1407 				schedstat_inc(sd, ttwu_wake_remote);
1408 				break;
1409 			}
1410 		}
1411 		rcu_read_unlock();
1412 	}
1413 
1414 	if (wake_flags & WF_MIGRATED)
1415 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1416 
1417 #endif /* CONFIG_SMP */
1418 
1419 	schedstat_inc(rq, ttwu_count);
1420 	schedstat_inc(p, se.statistics.nr_wakeups);
1421 
1422 	if (wake_flags & WF_SYNC)
1423 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1424 
1425 #endif /* CONFIG_SCHEDSTATS */
1426 }
1427 
1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1429 {
1430 	activate_task(rq, p, en_flags);
1431 	p->on_rq = TASK_ON_RQ_QUEUED;
1432 
1433 	/* if a worker is waking up, notify workqueue */
1434 	if (p->flags & PF_WQ_WORKER)
1435 		wq_worker_waking_up(p, cpu_of(rq));
1436 }
1437 
1438 /*
1439  * Mark the task runnable and perform wakeup-preemption.
1440  */
1441 static void
1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 	check_preempt_curr(rq, p, wake_flags);
1445 	trace_sched_wakeup(p, true);
1446 
1447 	p->state = TASK_RUNNING;
1448 #ifdef CONFIG_SMP
1449 	if (p->sched_class->task_woken)
1450 		p->sched_class->task_woken(rq, p);
1451 
1452 	if (rq->idle_stamp) {
1453 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1454 		u64 max = 2*rq->max_idle_balance_cost;
1455 
1456 		update_avg(&rq->avg_idle, delta);
1457 
1458 		if (rq->avg_idle > max)
1459 			rq->avg_idle = max;
1460 
1461 		rq->idle_stamp = 0;
1462 	}
1463 #endif
1464 }
1465 
1466 static void
1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1468 {
1469 #ifdef CONFIG_SMP
1470 	if (p->sched_contributes_to_load)
1471 		rq->nr_uninterruptible--;
1472 #endif
1473 
1474 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1475 	ttwu_do_wakeup(rq, p, wake_flags);
1476 }
1477 
1478 /*
1479  * Called in case the task @p isn't fully descheduled from its runqueue,
1480  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1481  * since all we need to do is flip p->state to TASK_RUNNING, since
1482  * the task is still ->on_rq.
1483  */
1484 static int ttwu_remote(struct task_struct *p, int wake_flags)
1485 {
1486 	struct rq *rq;
1487 	int ret = 0;
1488 
1489 	rq = __task_rq_lock(p);
1490 	if (task_on_rq_queued(p)) {
1491 		/* check_preempt_curr() may use rq clock */
1492 		update_rq_clock(rq);
1493 		ttwu_do_wakeup(rq, p, wake_flags);
1494 		ret = 1;
1495 	}
1496 	__task_rq_unlock(rq);
1497 
1498 	return ret;
1499 }
1500 
1501 #ifdef CONFIG_SMP
1502 void sched_ttwu_pending(void)
1503 {
1504 	struct rq *rq = this_rq();
1505 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1506 	struct task_struct *p;
1507 	unsigned long flags;
1508 
1509 	if (!llist)
1510 		return;
1511 
1512 	raw_spin_lock_irqsave(&rq->lock, flags);
1513 
1514 	while (llist) {
1515 		p = llist_entry(llist, struct task_struct, wake_entry);
1516 		llist = llist_next(llist);
1517 		ttwu_do_activate(rq, p, 0);
1518 	}
1519 
1520 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1521 }
1522 
1523 void scheduler_ipi(void)
1524 {
1525 	/*
1526 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1527 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1528 	 * this IPI.
1529 	 */
1530 	preempt_fold_need_resched();
1531 
1532 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1533 		return;
1534 
1535 	/*
1536 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1537 	 * traditionally all their work was done from the interrupt return
1538 	 * path. Now that we actually do some work, we need to make sure
1539 	 * we do call them.
1540 	 *
1541 	 * Some archs already do call them, luckily irq_enter/exit nest
1542 	 * properly.
1543 	 *
1544 	 * Arguably we should visit all archs and update all handlers,
1545 	 * however a fair share of IPIs are still resched only so this would
1546 	 * somewhat pessimize the simple resched case.
1547 	 */
1548 	irq_enter();
1549 	sched_ttwu_pending();
1550 
1551 	/*
1552 	 * Check if someone kicked us for doing the nohz idle load balance.
1553 	 */
1554 	if (unlikely(got_nohz_idle_kick())) {
1555 		this_rq()->idle_balance = 1;
1556 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1557 	}
1558 	irq_exit();
1559 }
1560 
1561 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1562 {
1563 	struct rq *rq = cpu_rq(cpu);
1564 
1565 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1566 		if (!set_nr_if_polling(rq->idle))
1567 			smp_send_reschedule(cpu);
1568 		else
1569 			trace_sched_wake_idle_without_ipi(cpu);
1570 	}
1571 }
1572 
1573 void wake_up_if_idle(int cpu)
1574 {
1575 	struct rq *rq = cpu_rq(cpu);
1576 	unsigned long flags;
1577 
1578 	rcu_read_lock();
1579 
1580 	if (!is_idle_task(rcu_dereference(rq->curr)))
1581 		goto out;
1582 
1583 	if (set_nr_if_polling(rq->idle)) {
1584 		trace_sched_wake_idle_without_ipi(cpu);
1585 	} else {
1586 		raw_spin_lock_irqsave(&rq->lock, flags);
1587 		if (is_idle_task(rq->curr))
1588 			smp_send_reschedule(cpu);
1589 		/* Else cpu is not in idle, do nothing here */
1590 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1591 	}
1592 
1593 out:
1594 	rcu_read_unlock();
1595 }
1596 
1597 bool cpus_share_cache(int this_cpu, int that_cpu)
1598 {
1599 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1600 }
1601 #endif /* CONFIG_SMP */
1602 
1603 static void ttwu_queue(struct task_struct *p, int cpu)
1604 {
1605 	struct rq *rq = cpu_rq(cpu);
1606 
1607 #if defined(CONFIG_SMP)
1608 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1609 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1610 		ttwu_queue_remote(p, cpu);
1611 		return;
1612 	}
1613 #endif
1614 
1615 	raw_spin_lock(&rq->lock);
1616 	ttwu_do_activate(rq, p, 0);
1617 	raw_spin_unlock(&rq->lock);
1618 }
1619 
1620 /**
1621  * try_to_wake_up - wake up a thread
1622  * @p: the thread to be awakened
1623  * @state: the mask of task states that can be woken
1624  * @wake_flags: wake modifier flags (WF_*)
1625  *
1626  * Put it on the run-queue if it's not already there. The "current"
1627  * thread is always on the run-queue (except when the actual
1628  * re-schedule is in progress), and as such you're allowed to do
1629  * the simpler "current->state = TASK_RUNNING" to mark yourself
1630  * runnable without the overhead of this.
1631  *
1632  * Return: %true if @p was woken up, %false if it was already running.
1633  * or @state didn't match @p's state.
1634  */
1635 static int
1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1637 {
1638 	unsigned long flags;
1639 	int cpu, success = 0;
1640 
1641 	/*
1642 	 * If we are going to wake up a thread waiting for CONDITION we
1643 	 * need to ensure that CONDITION=1 done by the caller can not be
1644 	 * reordered with p->state check below. This pairs with mb() in
1645 	 * set_current_state() the waiting thread does.
1646 	 */
1647 	smp_mb__before_spinlock();
1648 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1649 	if (!(p->state & state))
1650 		goto out;
1651 
1652 	success = 1; /* we're going to change ->state */
1653 	cpu = task_cpu(p);
1654 
1655 	if (p->on_rq && ttwu_remote(p, wake_flags))
1656 		goto stat;
1657 
1658 #ifdef CONFIG_SMP
1659 	/*
1660 	 * If the owning (remote) cpu is still in the middle of schedule() with
1661 	 * this task as prev, wait until its done referencing the task.
1662 	 */
1663 	while (p->on_cpu)
1664 		cpu_relax();
1665 	/*
1666 	 * Pairs with the smp_wmb() in finish_lock_switch().
1667 	 */
1668 	smp_rmb();
1669 
1670 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1671 	p->state = TASK_WAKING;
1672 
1673 	if (p->sched_class->task_waking)
1674 		p->sched_class->task_waking(p);
1675 
1676 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1677 	if (task_cpu(p) != cpu) {
1678 		wake_flags |= WF_MIGRATED;
1679 		set_task_cpu(p, cpu);
1680 	}
1681 #endif /* CONFIG_SMP */
1682 
1683 	ttwu_queue(p, cpu);
1684 stat:
1685 	ttwu_stat(p, cpu, wake_flags);
1686 out:
1687 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1688 
1689 	return success;
1690 }
1691 
1692 /**
1693  * try_to_wake_up_local - try to wake up a local task with rq lock held
1694  * @p: the thread to be awakened
1695  *
1696  * Put @p on the run-queue if it's not already there. The caller must
1697  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1698  * the current task.
1699  */
1700 static void try_to_wake_up_local(struct task_struct *p)
1701 {
1702 	struct rq *rq = task_rq(p);
1703 
1704 	if (WARN_ON_ONCE(rq != this_rq()) ||
1705 	    WARN_ON_ONCE(p == current))
1706 		return;
1707 
1708 	lockdep_assert_held(&rq->lock);
1709 
1710 	if (!raw_spin_trylock(&p->pi_lock)) {
1711 		raw_spin_unlock(&rq->lock);
1712 		raw_spin_lock(&p->pi_lock);
1713 		raw_spin_lock(&rq->lock);
1714 	}
1715 
1716 	if (!(p->state & TASK_NORMAL))
1717 		goto out;
1718 
1719 	if (!task_on_rq_queued(p))
1720 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1721 
1722 	ttwu_do_wakeup(rq, p, 0);
1723 	ttwu_stat(p, smp_processor_id(), 0);
1724 out:
1725 	raw_spin_unlock(&p->pi_lock);
1726 }
1727 
1728 /**
1729  * wake_up_process - Wake up a specific process
1730  * @p: The process to be woken up.
1731  *
1732  * Attempt to wake up the nominated process and move it to the set of runnable
1733  * processes.
1734  *
1735  * Return: 1 if the process was woken up, 0 if it was already running.
1736  *
1737  * It may be assumed that this function implies a write memory barrier before
1738  * changing the task state if and only if any tasks are woken up.
1739  */
1740 int wake_up_process(struct task_struct *p)
1741 {
1742 	WARN_ON(task_is_stopped_or_traced(p));
1743 	return try_to_wake_up(p, TASK_NORMAL, 0);
1744 }
1745 EXPORT_SYMBOL(wake_up_process);
1746 
1747 int wake_up_state(struct task_struct *p, unsigned int state)
1748 {
1749 	return try_to_wake_up(p, state, 0);
1750 }
1751 
1752 /*
1753  * This function clears the sched_dl_entity static params.
1754  */
1755 void __dl_clear_params(struct task_struct *p)
1756 {
1757 	struct sched_dl_entity *dl_se = &p->dl;
1758 
1759 	dl_se->dl_runtime = 0;
1760 	dl_se->dl_deadline = 0;
1761 	dl_se->dl_period = 0;
1762 	dl_se->flags = 0;
1763 	dl_se->dl_bw = 0;
1764 
1765 	dl_se->dl_throttled = 0;
1766 	dl_se->dl_new = 1;
1767 	dl_se->dl_yielded = 0;
1768 }
1769 
1770 /*
1771  * Perform scheduler related setup for a newly forked process p.
1772  * p is forked by current.
1773  *
1774  * __sched_fork() is basic setup used by init_idle() too:
1775  */
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 	p->on_rq			= 0;
1779 
1780 	p->se.on_rq			= 0;
1781 	p->se.exec_start		= 0;
1782 	p->se.sum_exec_runtime		= 0;
1783 	p->se.prev_sum_exec_runtime	= 0;
1784 	p->se.nr_migrations		= 0;
1785 	p->se.vruntime			= 0;
1786 #ifdef CONFIG_SMP
1787 	p->se.avg.decay_count		= 0;
1788 #endif
1789 	INIT_LIST_HEAD(&p->se.group_node);
1790 
1791 #ifdef CONFIG_SCHEDSTATS
1792 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1793 #endif
1794 
1795 	RB_CLEAR_NODE(&p->dl.rb_node);
1796 	init_dl_task_timer(&p->dl);
1797 	__dl_clear_params(p);
1798 
1799 	INIT_LIST_HEAD(&p->rt.run_list);
1800 
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1803 #endif
1804 
1805 #ifdef CONFIG_NUMA_BALANCING
1806 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 		p->mm->numa_scan_seq = 0;
1809 	}
1810 
1811 	if (clone_flags & CLONE_VM)
1812 		p->numa_preferred_nid = current->numa_preferred_nid;
1813 	else
1814 		p->numa_preferred_nid = -1;
1815 
1816 	p->node_stamp = 0ULL;
1817 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 	p->numa_work.next = &p->numa_work;
1820 	p->numa_faults = NULL;
1821 	p->last_task_numa_placement = 0;
1822 	p->last_sum_exec_runtime = 0;
1823 
1824 	p->numa_group = NULL;
1825 #endif /* CONFIG_NUMA_BALANCING */
1826 }
1827 
1828 #ifdef CONFIG_NUMA_BALANCING
1829 #ifdef CONFIG_SCHED_DEBUG
1830 void set_numabalancing_state(bool enabled)
1831 {
1832 	if (enabled)
1833 		sched_feat_set("NUMA");
1834 	else
1835 		sched_feat_set("NO_NUMA");
1836 }
1837 #else
1838 __read_mostly bool numabalancing_enabled;
1839 
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 	numabalancing_enabled = enabled;
1843 }
1844 #endif /* CONFIG_SCHED_DEBUG */
1845 
1846 #ifdef CONFIG_PROC_SYSCTL
1847 int sysctl_numa_balancing(struct ctl_table *table, int write,
1848 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1849 {
1850 	struct ctl_table t;
1851 	int err;
1852 	int state = numabalancing_enabled;
1853 
1854 	if (write && !capable(CAP_SYS_ADMIN))
1855 		return -EPERM;
1856 
1857 	t = *table;
1858 	t.data = &state;
1859 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1860 	if (err < 0)
1861 		return err;
1862 	if (write)
1863 		set_numabalancing_state(state);
1864 	return err;
1865 }
1866 #endif
1867 #endif
1868 
1869 /*
1870  * fork()/clone()-time setup:
1871  */
1872 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1873 {
1874 	unsigned long flags;
1875 	int cpu = get_cpu();
1876 
1877 	__sched_fork(clone_flags, p);
1878 	/*
1879 	 * We mark the process as running here. This guarantees that
1880 	 * nobody will actually run it, and a signal or other external
1881 	 * event cannot wake it up and insert it on the runqueue either.
1882 	 */
1883 	p->state = TASK_RUNNING;
1884 
1885 	/*
1886 	 * Make sure we do not leak PI boosting priority to the child.
1887 	 */
1888 	p->prio = current->normal_prio;
1889 
1890 	/*
1891 	 * Revert to default priority/policy on fork if requested.
1892 	 */
1893 	if (unlikely(p->sched_reset_on_fork)) {
1894 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1895 			p->policy = SCHED_NORMAL;
1896 			p->static_prio = NICE_TO_PRIO(0);
1897 			p->rt_priority = 0;
1898 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1899 			p->static_prio = NICE_TO_PRIO(0);
1900 
1901 		p->prio = p->normal_prio = __normal_prio(p);
1902 		set_load_weight(p);
1903 
1904 		/*
1905 		 * We don't need the reset flag anymore after the fork. It has
1906 		 * fulfilled its duty:
1907 		 */
1908 		p->sched_reset_on_fork = 0;
1909 	}
1910 
1911 	if (dl_prio(p->prio)) {
1912 		put_cpu();
1913 		return -EAGAIN;
1914 	} else if (rt_prio(p->prio)) {
1915 		p->sched_class = &rt_sched_class;
1916 	} else {
1917 		p->sched_class = &fair_sched_class;
1918 	}
1919 
1920 	if (p->sched_class->task_fork)
1921 		p->sched_class->task_fork(p);
1922 
1923 	/*
1924 	 * The child is not yet in the pid-hash so no cgroup attach races,
1925 	 * and the cgroup is pinned to this child due to cgroup_fork()
1926 	 * is ran before sched_fork().
1927 	 *
1928 	 * Silence PROVE_RCU.
1929 	 */
1930 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1931 	set_task_cpu(p, cpu);
1932 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1933 
1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1935 	if (likely(sched_info_on()))
1936 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1937 #endif
1938 #if defined(CONFIG_SMP)
1939 	p->on_cpu = 0;
1940 #endif
1941 	init_task_preempt_count(p);
1942 #ifdef CONFIG_SMP
1943 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1944 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1945 #endif
1946 
1947 	put_cpu();
1948 	return 0;
1949 }
1950 
1951 unsigned long to_ratio(u64 period, u64 runtime)
1952 {
1953 	if (runtime == RUNTIME_INF)
1954 		return 1ULL << 20;
1955 
1956 	/*
1957 	 * Doing this here saves a lot of checks in all
1958 	 * the calling paths, and returning zero seems
1959 	 * safe for them anyway.
1960 	 */
1961 	if (period == 0)
1962 		return 0;
1963 
1964 	return div64_u64(runtime << 20, period);
1965 }
1966 
1967 #ifdef CONFIG_SMP
1968 inline struct dl_bw *dl_bw_of(int i)
1969 {
1970 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1971 			   "sched RCU must be held");
1972 	return &cpu_rq(i)->rd->dl_bw;
1973 }
1974 
1975 static inline int dl_bw_cpus(int i)
1976 {
1977 	struct root_domain *rd = cpu_rq(i)->rd;
1978 	int cpus = 0;
1979 
1980 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1981 			   "sched RCU must be held");
1982 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1983 		cpus++;
1984 
1985 	return cpus;
1986 }
1987 #else
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 	return &cpu_rq(i)->dl.dl_bw;
1991 }
1992 
1993 static inline int dl_bw_cpus(int i)
1994 {
1995 	return 1;
1996 }
1997 #endif
1998 
1999 /*
2000  * We must be sure that accepting a new task (or allowing changing the
2001  * parameters of an existing one) is consistent with the bandwidth
2002  * constraints. If yes, this function also accordingly updates the currently
2003  * allocated bandwidth to reflect the new situation.
2004  *
2005  * This function is called while holding p's rq->lock.
2006  *
2007  * XXX we should delay bw change until the task's 0-lag point, see
2008  * __setparam_dl().
2009  */
2010 static int dl_overflow(struct task_struct *p, int policy,
2011 		       const struct sched_attr *attr)
2012 {
2013 
2014 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2015 	u64 period = attr->sched_period ?: attr->sched_deadline;
2016 	u64 runtime = attr->sched_runtime;
2017 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2018 	int cpus, err = -1;
2019 
2020 	if (new_bw == p->dl.dl_bw)
2021 		return 0;
2022 
2023 	/*
2024 	 * Either if a task, enters, leave, or stays -deadline but changes
2025 	 * its parameters, we may need to update accordingly the total
2026 	 * allocated bandwidth of the container.
2027 	 */
2028 	raw_spin_lock(&dl_b->lock);
2029 	cpus = dl_bw_cpus(task_cpu(p));
2030 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2031 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2032 		__dl_add(dl_b, new_bw);
2033 		err = 0;
2034 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2035 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2036 		__dl_clear(dl_b, p->dl.dl_bw);
2037 		__dl_add(dl_b, new_bw);
2038 		err = 0;
2039 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2040 		__dl_clear(dl_b, p->dl.dl_bw);
2041 		err = 0;
2042 	}
2043 	raw_spin_unlock(&dl_b->lock);
2044 
2045 	return err;
2046 }
2047 
2048 extern void init_dl_bw(struct dl_bw *dl_b);
2049 
2050 /*
2051  * wake_up_new_task - wake up a newly created task for the first time.
2052  *
2053  * This function will do some initial scheduler statistics housekeeping
2054  * that must be done for every newly created context, then puts the task
2055  * on the runqueue and wakes it.
2056  */
2057 void wake_up_new_task(struct task_struct *p)
2058 {
2059 	unsigned long flags;
2060 	struct rq *rq;
2061 
2062 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2063 #ifdef CONFIG_SMP
2064 	/*
2065 	 * Fork balancing, do it here and not earlier because:
2066 	 *  - cpus_allowed can change in the fork path
2067 	 *  - any previously selected cpu might disappear through hotplug
2068 	 */
2069 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2070 #endif
2071 
2072 	/* Initialize new task's runnable average */
2073 	init_task_runnable_average(p);
2074 	rq = __task_rq_lock(p);
2075 	activate_task(rq, p, 0);
2076 	p->on_rq = TASK_ON_RQ_QUEUED;
2077 	trace_sched_wakeup_new(p, true);
2078 	check_preempt_curr(rq, p, WF_FORK);
2079 #ifdef CONFIG_SMP
2080 	if (p->sched_class->task_woken)
2081 		p->sched_class->task_woken(rq, p);
2082 #endif
2083 	task_rq_unlock(rq, p, &flags);
2084 }
2085 
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087 
2088 /**
2089  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2090  * @notifier: notifier struct to register
2091  */
2092 void preempt_notifier_register(struct preempt_notifier *notifier)
2093 {
2094 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2095 }
2096 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2097 
2098 /**
2099  * preempt_notifier_unregister - no longer interested in preemption notifications
2100  * @notifier: notifier struct to unregister
2101  *
2102  * This is safe to call from within a preemption notifier.
2103  */
2104 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2105 {
2106 	hlist_del(&notifier->link);
2107 }
2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2109 
2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2111 {
2112 	struct preempt_notifier *notifier;
2113 
2114 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2115 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2116 }
2117 
2118 static void
2119 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2120 				 struct task_struct *next)
2121 {
2122 	struct preempt_notifier *notifier;
2123 
2124 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2125 		notifier->ops->sched_out(notifier, next);
2126 }
2127 
2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2129 
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 }
2133 
2134 static void
2135 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2136 				 struct task_struct *next)
2137 {
2138 }
2139 
2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2141 
2142 /**
2143  * prepare_task_switch - prepare to switch tasks
2144  * @rq: the runqueue preparing to switch
2145  * @prev: the current task that is being switched out
2146  * @next: the task we are going to switch to.
2147  *
2148  * This is called with the rq lock held and interrupts off. It must
2149  * be paired with a subsequent finish_task_switch after the context
2150  * switch.
2151  *
2152  * prepare_task_switch sets up locking and calls architecture specific
2153  * hooks.
2154  */
2155 static inline void
2156 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2157 		    struct task_struct *next)
2158 {
2159 	trace_sched_switch(prev, next);
2160 	sched_info_switch(rq, prev, next);
2161 	perf_event_task_sched_out(prev, next);
2162 	fire_sched_out_preempt_notifiers(prev, next);
2163 	prepare_lock_switch(rq, next);
2164 	prepare_arch_switch(next);
2165 }
2166 
2167 /**
2168  * finish_task_switch - clean up after a task-switch
2169  * @prev: the thread we just switched away from.
2170  *
2171  * finish_task_switch must be called after the context switch, paired
2172  * with a prepare_task_switch call before the context switch.
2173  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2174  * and do any other architecture-specific cleanup actions.
2175  *
2176  * Note that we may have delayed dropping an mm in context_switch(). If
2177  * so, we finish that here outside of the runqueue lock. (Doing it
2178  * with the lock held can cause deadlocks; see schedule() for
2179  * details.)
2180  *
2181  * The context switch have flipped the stack from under us and restored the
2182  * local variables which were saved when this task called schedule() in the
2183  * past. prev == current is still correct but we need to recalculate this_rq
2184  * because prev may have moved to another CPU.
2185  */
2186 static struct rq *finish_task_switch(struct task_struct *prev)
2187 	__releases(rq->lock)
2188 {
2189 	struct rq *rq = this_rq();
2190 	struct mm_struct *mm = rq->prev_mm;
2191 	long prev_state;
2192 
2193 	rq->prev_mm = NULL;
2194 
2195 	/*
2196 	 * A task struct has one reference for the use as "current".
2197 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2198 	 * schedule one last time. The schedule call will never return, and
2199 	 * the scheduled task must drop that reference.
2200 	 * The test for TASK_DEAD must occur while the runqueue locks are
2201 	 * still held, otherwise prev could be scheduled on another cpu, die
2202 	 * there before we look at prev->state, and then the reference would
2203 	 * be dropped twice.
2204 	 *		Manfred Spraul <manfred@colorfullife.com>
2205 	 */
2206 	prev_state = prev->state;
2207 	vtime_task_switch(prev);
2208 	finish_arch_switch(prev);
2209 	perf_event_task_sched_in(prev, current);
2210 	finish_lock_switch(rq, prev);
2211 	finish_arch_post_lock_switch();
2212 
2213 	fire_sched_in_preempt_notifiers(current);
2214 	if (mm)
2215 		mmdrop(mm);
2216 	if (unlikely(prev_state == TASK_DEAD)) {
2217 		if (prev->sched_class->task_dead)
2218 			prev->sched_class->task_dead(prev);
2219 
2220 		/*
2221 		 * Remove function-return probe instances associated with this
2222 		 * task and put them back on the free list.
2223 		 */
2224 		kprobe_flush_task(prev);
2225 		put_task_struct(prev);
2226 	}
2227 
2228 	tick_nohz_task_switch(current);
2229 	return rq;
2230 }
2231 
2232 #ifdef CONFIG_SMP
2233 
2234 /* rq->lock is NOT held, but preemption is disabled */
2235 static inline void post_schedule(struct rq *rq)
2236 {
2237 	if (rq->post_schedule) {
2238 		unsigned long flags;
2239 
2240 		raw_spin_lock_irqsave(&rq->lock, flags);
2241 		if (rq->curr->sched_class->post_schedule)
2242 			rq->curr->sched_class->post_schedule(rq);
2243 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2244 
2245 		rq->post_schedule = 0;
2246 	}
2247 }
2248 
2249 #else
2250 
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 }
2254 
2255 #endif
2256 
2257 /**
2258  * schedule_tail - first thing a freshly forked thread must call.
2259  * @prev: the thread we just switched away from.
2260  */
2261 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2262 	__releases(rq->lock)
2263 {
2264 	struct rq *rq;
2265 
2266 	/* finish_task_switch() drops rq->lock and enables preemtion */
2267 	preempt_disable();
2268 	rq = finish_task_switch(prev);
2269 	post_schedule(rq);
2270 	preempt_enable();
2271 
2272 	if (current->set_child_tid)
2273 		put_user(task_pid_vnr(current), current->set_child_tid);
2274 }
2275 
2276 /*
2277  * context_switch - switch to the new MM and the new thread's register state.
2278  */
2279 static inline struct rq *
2280 context_switch(struct rq *rq, struct task_struct *prev,
2281 	       struct task_struct *next)
2282 {
2283 	struct mm_struct *mm, *oldmm;
2284 
2285 	prepare_task_switch(rq, prev, next);
2286 
2287 	mm = next->mm;
2288 	oldmm = prev->active_mm;
2289 	/*
2290 	 * For paravirt, this is coupled with an exit in switch_to to
2291 	 * combine the page table reload and the switch backend into
2292 	 * one hypercall.
2293 	 */
2294 	arch_start_context_switch(prev);
2295 
2296 	if (!mm) {
2297 		next->active_mm = oldmm;
2298 		atomic_inc(&oldmm->mm_count);
2299 		enter_lazy_tlb(oldmm, next);
2300 	} else
2301 		switch_mm(oldmm, mm, next);
2302 
2303 	if (!prev->mm) {
2304 		prev->active_mm = NULL;
2305 		rq->prev_mm = oldmm;
2306 	}
2307 	/*
2308 	 * Since the runqueue lock will be released by the next
2309 	 * task (which is an invalid locking op but in the case
2310 	 * of the scheduler it's an obvious special-case), so we
2311 	 * do an early lockdep release here:
2312 	 */
2313 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2314 
2315 	context_tracking_task_switch(prev, next);
2316 	/* Here we just switch the register state and the stack. */
2317 	switch_to(prev, next, prev);
2318 	barrier();
2319 
2320 	return finish_task_switch(prev);
2321 }
2322 
2323 /*
2324  * nr_running and nr_context_switches:
2325  *
2326  * externally visible scheduler statistics: current number of runnable
2327  * threads, total number of context switches performed since bootup.
2328  */
2329 unsigned long nr_running(void)
2330 {
2331 	unsigned long i, sum = 0;
2332 
2333 	for_each_online_cpu(i)
2334 		sum += cpu_rq(i)->nr_running;
2335 
2336 	return sum;
2337 }
2338 
2339 /*
2340  * Check if only the current task is running on the cpu.
2341  */
2342 bool single_task_running(void)
2343 {
2344 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2345 		return true;
2346 	else
2347 		return false;
2348 }
2349 EXPORT_SYMBOL(single_task_running);
2350 
2351 unsigned long long nr_context_switches(void)
2352 {
2353 	int i;
2354 	unsigned long long sum = 0;
2355 
2356 	for_each_possible_cpu(i)
2357 		sum += cpu_rq(i)->nr_switches;
2358 
2359 	return sum;
2360 }
2361 
2362 unsigned long nr_iowait(void)
2363 {
2364 	unsigned long i, sum = 0;
2365 
2366 	for_each_possible_cpu(i)
2367 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2368 
2369 	return sum;
2370 }
2371 
2372 unsigned long nr_iowait_cpu(int cpu)
2373 {
2374 	struct rq *this = cpu_rq(cpu);
2375 	return atomic_read(&this->nr_iowait);
2376 }
2377 
2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2379 {
2380 	struct rq *this = this_rq();
2381 	*nr_waiters = atomic_read(&this->nr_iowait);
2382 	*load = this->cpu_load[0];
2383 }
2384 
2385 #ifdef CONFIG_SMP
2386 
2387 /*
2388  * sched_exec - execve() is a valuable balancing opportunity, because at
2389  * this point the task has the smallest effective memory and cache footprint.
2390  */
2391 void sched_exec(void)
2392 {
2393 	struct task_struct *p = current;
2394 	unsigned long flags;
2395 	int dest_cpu;
2396 
2397 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2399 	if (dest_cpu == smp_processor_id())
2400 		goto unlock;
2401 
2402 	if (likely(cpu_active(dest_cpu))) {
2403 		struct migration_arg arg = { p, dest_cpu };
2404 
2405 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2407 		return;
2408 	}
2409 unlock:
2410 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2411 }
2412 
2413 #endif
2414 
2415 DEFINE_PER_CPU(struct kernel_stat, kstat);
2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2417 
2418 EXPORT_PER_CPU_SYMBOL(kstat);
2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2420 
2421 /*
2422  * Return accounted runtime for the task.
2423  * In case the task is currently running, return the runtime plus current's
2424  * pending runtime that have not been accounted yet.
2425  */
2426 unsigned long long task_sched_runtime(struct task_struct *p)
2427 {
2428 	unsigned long flags;
2429 	struct rq *rq;
2430 	u64 ns;
2431 
2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2433 	/*
2434 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2435 	 * So we have a optimization chance when the task's delta_exec is 0.
2436 	 * Reading ->on_cpu is racy, but this is ok.
2437 	 *
2438 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2439 	 * If we race with it entering cpu, unaccounted time is 0. This is
2440 	 * indistinguishable from the read occurring a few cycles earlier.
2441 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2442 	 * been accounted, so we're correct here as well.
2443 	 */
2444 	if (!p->on_cpu || !task_on_rq_queued(p))
2445 		return p->se.sum_exec_runtime;
2446 #endif
2447 
2448 	rq = task_rq_lock(p, &flags);
2449 	/*
2450 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2451 	 * project cycles that may never be accounted to this
2452 	 * thread, breaking clock_gettime().
2453 	 */
2454 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2455 		update_rq_clock(rq);
2456 		p->sched_class->update_curr(rq);
2457 	}
2458 	ns = p->se.sum_exec_runtime;
2459 	task_rq_unlock(rq, p, &flags);
2460 
2461 	return ns;
2462 }
2463 
2464 /*
2465  * This function gets called by the timer code, with HZ frequency.
2466  * We call it with interrupts disabled.
2467  */
2468 void scheduler_tick(void)
2469 {
2470 	int cpu = smp_processor_id();
2471 	struct rq *rq = cpu_rq(cpu);
2472 	struct task_struct *curr = rq->curr;
2473 
2474 	sched_clock_tick();
2475 
2476 	raw_spin_lock(&rq->lock);
2477 	update_rq_clock(rq);
2478 	curr->sched_class->task_tick(rq, curr, 0);
2479 	update_cpu_load_active(rq);
2480 	raw_spin_unlock(&rq->lock);
2481 
2482 	perf_event_task_tick();
2483 
2484 #ifdef CONFIG_SMP
2485 	rq->idle_balance = idle_cpu(cpu);
2486 	trigger_load_balance(rq);
2487 #endif
2488 	rq_last_tick_reset(rq);
2489 }
2490 
2491 #ifdef CONFIG_NO_HZ_FULL
2492 /**
2493  * scheduler_tick_max_deferment
2494  *
2495  * Keep at least one tick per second when a single
2496  * active task is running because the scheduler doesn't
2497  * yet completely support full dynticks environment.
2498  *
2499  * This makes sure that uptime, CFS vruntime, load
2500  * balancing, etc... continue to move forward, even
2501  * with a very low granularity.
2502  *
2503  * Return: Maximum deferment in nanoseconds.
2504  */
2505 u64 scheduler_tick_max_deferment(void)
2506 {
2507 	struct rq *rq = this_rq();
2508 	unsigned long next, now = ACCESS_ONCE(jiffies);
2509 
2510 	next = rq->last_sched_tick + HZ;
2511 
2512 	if (time_before_eq(next, now))
2513 		return 0;
2514 
2515 	return jiffies_to_nsecs(next - now);
2516 }
2517 #endif
2518 
2519 notrace unsigned long get_parent_ip(unsigned long addr)
2520 {
2521 	if (in_lock_functions(addr)) {
2522 		addr = CALLER_ADDR2;
2523 		if (in_lock_functions(addr))
2524 			addr = CALLER_ADDR3;
2525 	}
2526 	return addr;
2527 }
2528 
2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2530 				defined(CONFIG_PREEMPT_TRACER))
2531 
2532 void preempt_count_add(int val)
2533 {
2534 #ifdef CONFIG_DEBUG_PREEMPT
2535 	/*
2536 	 * Underflow?
2537 	 */
2538 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2539 		return;
2540 #endif
2541 	__preempt_count_add(val);
2542 #ifdef CONFIG_DEBUG_PREEMPT
2543 	/*
2544 	 * Spinlock count overflowing soon?
2545 	 */
2546 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2547 				PREEMPT_MASK - 10);
2548 #endif
2549 	if (preempt_count() == val) {
2550 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 		current->preempt_disable_ip = ip;
2553 #endif
2554 		trace_preempt_off(CALLER_ADDR0, ip);
2555 	}
2556 }
2557 EXPORT_SYMBOL(preempt_count_add);
2558 NOKPROBE_SYMBOL(preempt_count_add);
2559 
2560 void preempt_count_sub(int val)
2561 {
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563 	/*
2564 	 * Underflow?
2565 	 */
2566 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2567 		return;
2568 	/*
2569 	 * Is the spinlock portion underflowing?
2570 	 */
2571 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2572 			!(preempt_count() & PREEMPT_MASK)))
2573 		return;
2574 #endif
2575 
2576 	if (preempt_count() == val)
2577 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2578 	__preempt_count_sub(val);
2579 }
2580 EXPORT_SYMBOL(preempt_count_sub);
2581 NOKPROBE_SYMBOL(preempt_count_sub);
2582 
2583 #endif
2584 
2585 /*
2586  * Print scheduling while atomic bug:
2587  */
2588 static noinline void __schedule_bug(struct task_struct *prev)
2589 {
2590 	if (oops_in_progress)
2591 		return;
2592 
2593 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2594 		prev->comm, prev->pid, preempt_count());
2595 
2596 	debug_show_held_locks(prev);
2597 	print_modules();
2598 	if (irqs_disabled())
2599 		print_irqtrace_events(prev);
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 	if (in_atomic_preempt_off()) {
2602 		pr_err("Preemption disabled at:");
2603 		print_ip_sym(current->preempt_disable_ip);
2604 		pr_cont("\n");
2605 	}
2606 #endif
2607 	dump_stack();
2608 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2609 }
2610 
2611 /*
2612  * Various schedule()-time debugging checks and statistics:
2613  */
2614 static inline void schedule_debug(struct task_struct *prev)
2615 {
2616 #ifdef CONFIG_SCHED_STACK_END_CHECK
2617 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2618 #endif
2619 	/*
2620 	 * Test if we are atomic. Since do_exit() needs to call into
2621 	 * schedule() atomically, we ignore that path. Otherwise whine
2622 	 * if we are scheduling when we should not.
2623 	 */
2624 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2625 		__schedule_bug(prev);
2626 	rcu_sleep_check();
2627 
2628 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2629 
2630 	schedstat_inc(this_rq(), sched_count);
2631 }
2632 
2633 /*
2634  * Pick up the highest-prio task:
2635  */
2636 static inline struct task_struct *
2637 pick_next_task(struct rq *rq, struct task_struct *prev)
2638 {
2639 	const struct sched_class *class = &fair_sched_class;
2640 	struct task_struct *p;
2641 
2642 	/*
2643 	 * Optimization: we know that if all tasks are in
2644 	 * the fair class we can call that function directly:
2645 	 */
2646 	if (likely(prev->sched_class == class &&
2647 		   rq->nr_running == rq->cfs.h_nr_running)) {
2648 		p = fair_sched_class.pick_next_task(rq, prev);
2649 		if (unlikely(p == RETRY_TASK))
2650 			goto again;
2651 
2652 		/* assumes fair_sched_class->next == idle_sched_class */
2653 		if (unlikely(!p))
2654 			p = idle_sched_class.pick_next_task(rq, prev);
2655 
2656 		return p;
2657 	}
2658 
2659 again:
2660 	for_each_class(class) {
2661 		p = class->pick_next_task(rq, prev);
2662 		if (p) {
2663 			if (unlikely(p == RETRY_TASK))
2664 				goto again;
2665 			return p;
2666 		}
2667 	}
2668 
2669 	BUG(); /* the idle class will always have a runnable task */
2670 }
2671 
2672 /*
2673  * __schedule() is the main scheduler function.
2674  *
2675  * The main means of driving the scheduler and thus entering this function are:
2676  *
2677  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2678  *
2679  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2680  *      paths. For example, see arch/x86/entry_64.S.
2681  *
2682  *      To drive preemption between tasks, the scheduler sets the flag in timer
2683  *      interrupt handler scheduler_tick().
2684  *
2685  *   3. Wakeups don't really cause entry into schedule(). They add a
2686  *      task to the run-queue and that's it.
2687  *
2688  *      Now, if the new task added to the run-queue preempts the current
2689  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2690  *      called on the nearest possible occasion:
2691  *
2692  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2693  *
2694  *         - in syscall or exception context, at the next outmost
2695  *           preempt_enable(). (this might be as soon as the wake_up()'s
2696  *           spin_unlock()!)
2697  *
2698  *         - in IRQ context, return from interrupt-handler to
2699  *           preemptible context
2700  *
2701  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2702  *         then at the next:
2703  *
2704  *          - cond_resched() call
2705  *          - explicit schedule() call
2706  *          - return from syscall or exception to user-space
2707  *          - return from interrupt-handler to user-space
2708  *
2709  * WARNING: all callers must re-check need_resched() afterward and reschedule
2710  * accordingly in case an event triggered the need for rescheduling (such as
2711  * an interrupt waking up a task) while preemption was disabled in __schedule().
2712  */
2713 static void __sched __schedule(void)
2714 {
2715 	struct task_struct *prev, *next;
2716 	unsigned long *switch_count;
2717 	struct rq *rq;
2718 	int cpu;
2719 
2720 	preempt_disable();
2721 	cpu = smp_processor_id();
2722 	rq = cpu_rq(cpu);
2723 	rcu_note_context_switch();
2724 	prev = rq->curr;
2725 
2726 	schedule_debug(prev);
2727 
2728 	if (sched_feat(HRTICK))
2729 		hrtick_clear(rq);
2730 
2731 	/*
2732 	 * Make sure that signal_pending_state()->signal_pending() below
2733 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2734 	 * done by the caller to avoid the race with signal_wake_up().
2735 	 */
2736 	smp_mb__before_spinlock();
2737 	raw_spin_lock_irq(&rq->lock);
2738 
2739 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2740 
2741 	switch_count = &prev->nivcsw;
2742 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2743 		if (unlikely(signal_pending_state(prev->state, prev))) {
2744 			prev->state = TASK_RUNNING;
2745 		} else {
2746 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2747 			prev->on_rq = 0;
2748 
2749 			/*
2750 			 * If a worker went to sleep, notify and ask workqueue
2751 			 * whether it wants to wake up a task to maintain
2752 			 * concurrency.
2753 			 */
2754 			if (prev->flags & PF_WQ_WORKER) {
2755 				struct task_struct *to_wakeup;
2756 
2757 				to_wakeup = wq_worker_sleeping(prev, cpu);
2758 				if (to_wakeup)
2759 					try_to_wake_up_local(to_wakeup);
2760 			}
2761 		}
2762 		switch_count = &prev->nvcsw;
2763 	}
2764 
2765 	if (task_on_rq_queued(prev))
2766 		update_rq_clock(rq);
2767 
2768 	next = pick_next_task(rq, prev);
2769 	clear_tsk_need_resched(prev);
2770 	clear_preempt_need_resched();
2771 	rq->clock_skip_update = 0;
2772 
2773 	if (likely(prev != next)) {
2774 		rq->nr_switches++;
2775 		rq->curr = next;
2776 		++*switch_count;
2777 
2778 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2779 		cpu = cpu_of(rq);
2780 	} else
2781 		raw_spin_unlock_irq(&rq->lock);
2782 
2783 	post_schedule(rq);
2784 
2785 	sched_preempt_enable_no_resched();
2786 }
2787 
2788 static inline void sched_submit_work(struct task_struct *tsk)
2789 {
2790 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2791 		return;
2792 	/*
2793 	 * If we are going to sleep and we have plugged IO queued,
2794 	 * make sure to submit it to avoid deadlocks.
2795 	 */
2796 	if (blk_needs_flush_plug(tsk))
2797 		blk_schedule_flush_plug(tsk);
2798 }
2799 
2800 asmlinkage __visible void __sched schedule(void)
2801 {
2802 	struct task_struct *tsk = current;
2803 
2804 	sched_submit_work(tsk);
2805 	do {
2806 		__schedule();
2807 	} while (need_resched());
2808 }
2809 EXPORT_SYMBOL(schedule);
2810 
2811 #ifdef CONFIG_CONTEXT_TRACKING
2812 asmlinkage __visible void __sched schedule_user(void)
2813 {
2814 	/*
2815 	 * If we come here after a random call to set_need_resched(),
2816 	 * or we have been woken up remotely but the IPI has not yet arrived,
2817 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2818 	 * we find a better solution.
2819 	 *
2820 	 * NB: There are buggy callers of this function.  Ideally we
2821 	 * should warn if prev_state != IN_USER, but that will trigger
2822 	 * too frequently to make sense yet.
2823 	 */
2824 	enum ctx_state prev_state = exception_enter();
2825 	schedule();
2826 	exception_exit(prev_state);
2827 }
2828 #endif
2829 
2830 /**
2831  * schedule_preempt_disabled - called with preemption disabled
2832  *
2833  * Returns with preemption disabled. Note: preempt_count must be 1
2834  */
2835 void __sched schedule_preempt_disabled(void)
2836 {
2837 	sched_preempt_enable_no_resched();
2838 	schedule();
2839 	preempt_disable();
2840 }
2841 
2842 static void __sched notrace preempt_schedule_common(void)
2843 {
2844 	do {
2845 		__preempt_count_add(PREEMPT_ACTIVE);
2846 		__schedule();
2847 		__preempt_count_sub(PREEMPT_ACTIVE);
2848 
2849 		/*
2850 		 * Check again in case we missed a preemption opportunity
2851 		 * between schedule and now.
2852 		 */
2853 		barrier();
2854 	} while (need_resched());
2855 }
2856 
2857 #ifdef CONFIG_PREEMPT
2858 /*
2859  * this is the entry point to schedule() from in-kernel preemption
2860  * off of preempt_enable. Kernel preemptions off return from interrupt
2861  * occur there and call schedule directly.
2862  */
2863 asmlinkage __visible void __sched notrace preempt_schedule(void)
2864 {
2865 	/*
2866 	 * If there is a non-zero preempt_count or interrupts are disabled,
2867 	 * we do not want to preempt the current task. Just return..
2868 	 */
2869 	if (likely(!preemptible()))
2870 		return;
2871 
2872 	preempt_schedule_common();
2873 }
2874 NOKPROBE_SYMBOL(preempt_schedule);
2875 EXPORT_SYMBOL(preempt_schedule);
2876 
2877 #ifdef CONFIG_CONTEXT_TRACKING
2878 /**
2879  * preempt_schedule_context - preempt_schedule called by tracing
2880  *
2881  * The tracing infrastructure uses preempt_enable_notrace to prevent
2882  * recursion and tracing preempt enabling caused by the tracing
2883  * infrastructure itself. But as tracing can happen in areas coming
2884  * from userspace or just about to enter userspace, a preempt enable
2885  * can occur before user_exit() is called. This will cause the scheduler
2886  * to be called when the system is still in usermode.
2887  *
2888  * To prevent this, the preempt_enable_notrace will use this function
2889  * instead of preempt_schedule() to exit user context if needed before
2890  * calling the scheduler.
2891  */
2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2893 {
2894 	enum ctx_state prev_ctx;
2895 
2896 	if (likely(!preemptible()))
2897 		return;
2898 
2899 	do {
2900 		__preempt_count_add(PREEMPT_ACTIVE);
2901 		/*
2902 		 * Needs preempt disabled in case user_exit() is traced
2903 		 * and the tracer calls preempt_enable_notrace() causing
2904 		 * an infinite recursion.
2905 		 */
2906 		prev_ctx = exception_enter();
2907 		__schedule();
2908 		exception_exit(prev_ctx);
2909 
2910 		__preempt_count_sub(PREEMPT_ACTIVE);
2911 		barrier();
2912 	} while (need_resched());
2913 }
2914 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2915 #endif /* CONFIG_CONTEXT_TRACKING */
2916 
2917 #endif /* CONFIG_PREEMPT */
2918 
2919 /*
2920  * this is the entry point to schedule() from kernel preemption
2921  * off of irq context.
2922  * Note, that this is called and return with irqs disabled. This will
2923  * protect us against recursive calling from irq.
2924  */
2925 asmlinkage __visible void __sched preempt_schedule_irq(void)
2926 {
2927 	enum ctx_state prev_state;
2928 
2929 	/* Catch callers which need to be fixed */
2930 	BUG_ON(preempt_count() || !irqs_disabled());
2931 
2932 	prev_state = exception_enter();
2933 
2934 	do {
2935 		__preempt_count_add(PREEMPT_ACTIVE);
2936 		local_irq_enable();
2937 		__schedule();
2938 		local_irq_disable();
2939 		__preempt_count_sub(PREEMPT_ACTIVE);
2940 
2941 		/*
2942 		 * Check again in case we missed a preemption opportunity
2943 		 * between schedule and now.
2944 		 */
2945 		barrier();
2946 	} while (need_resched());
2947 
2948 	exception_exit(prev_state);
2949 }
2950 
2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2952 			  void *key)
2953 {
2954 	return try_to_wake_up(curr->private, mode, wake_flags);
2955 }
2956 EXPORT_SYMBOL(default_wake_function);
2957 
2958 #ifdef CONFIG_RT_MUTEXES
2959 
2960 /*
2961  * rt_mutex_setprio - set the current priority of a task
2962  * @p: task
2963  * @prio: prio value (kernel-internal form)
2964  *
2965  * This function changes the 'effective' priority of a task. It does
2966  * not touch ->normal_prio like __setscheduler().
2967  *
2968  * Used by the rt_mutex code to implement priority inheritance
2969  * logic. Call site only calls if the priority of the task changed.
2970  */
2971 void rt_mutex_setprio(struct task_struct *p, int prio)
2972 {
2973 	int oldprio, queued, running, enqueue_flag = 0;
2974 	struct rq *rq;
2975 	const struct sched_class *prev_class;
2976 
2977 	BUG_ON(prio > MAX_PRIO);
2978 
2979 	rq = __task_rq_lock(p);
2980 
2981 	/*
2982 	 * Idle task boosting is a nono in general. There is one
2983 	 * exception, when PREEMPT_RT and NOHZ is active:
2984 	 *
2985 	 * The idle task calls get_next_timer_interrupt() and holds
2986 	 * the timer wheel base->lock on the CPU and another CPU wants
2987 	 * to access the timer (probably to cancel it). We can safely
2988 	 * ignore the boosting request, as the idle CPU runs this code
2989 	 * with interrupts disabled and will complete the lock
2990 	 * protected section without being interrupted. So there is no
2991 	 * real need to boost.
2992 	 */
2993 	if (unlikely(p == rq->idle)) {
2994 		WARN_ON(p != rq->curr);
2995 		WARN_ON(p->pi_blocked_on);
2996 		goto out_unlock;
2997 	}
2998 
2999 	trace_sched_pi_setprio(p, prio);
3000 	oldprio = p->prio;
3001 	prev_class = p->sched_class;
3002 	queued = task_on_rq_queued(p);
3003 	running = task_current(rq, p);
3004 	if (queued)
3005 		dequeue_task(rq, p, 0);
3006 	if (running)
3007 		put_prev_task(rq, p);
3008 
3009 	/*
3010 	 * Boosting condition are:
3011 	 * 1. -rt task is running and holds mutex A
3012 	 *      --> -dl task blocks on mutex A
3013 	 *
3014 	 * 2. -dl task is running and holds mutex A
3015 	 *      --> -dl task blocks on mutex A and could preempt the
3016 	 *          running task
3017 	 */
3018 	if (dl_prio(prio)) {
3019 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3020 		if (!dl_prio(p->normal_prio) ||
3021 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3022 			p->dl.dl_boosted = 1;
3023 			p->dl.dl_throttled = 0;
3024 			enqueue_flag = ENQUEUE_REPLENISH;
3025 		} else
3026 			p->dl.dl_boosted = 0;
3027 		p->sched_class = &dl_sched_class;
3028 	} else if (rt_prio(prio)) {
3029 		if (dl_prio(oldprio))
3030 			p->dl.dl_boosted = 0;
3031 		if (oldprio < prio)
3032 			enqueue_flag = ENQUEUE_HEAD;
3033 		p->sched_class = &rt_sched_class;
3034 	} else {
3035 		if (dl_prio(oldprio))
3036 			p->dl.dl_boosted = 0;
3037 		p->sched_class = &fair_sched_class;
3038 	}
3039 
3040 	p->prio = prio;
3041 
3042 	if (running)
3043 		p->sched_class->set_curr_task(rq);
3044 	if (queued)
3045 		enqueue_task(rq, p, enqueue_flag);
3046 
3047 	check_class_changed(rq, p, prev_class, oldprio);
3048 out_unlock:
3049 	__task_rq_unlock(rq);
3050 }
3051 #endif
3052 
3053 void set_user_nice(struct task_struct *p, long nice)
3054 {
3055 	int old_prio, delta, queued;
3056 	unsigned long flags;
3057 	struct rq *rq;
3058 
3059 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3060 		return;
3061 	/*
3062 	 * We have to be careful, if called from sys_setpriority(),
3063 	 * the task might be in the middle of scheduling on another CPU.
3064 	 */
3065 	rq = task_rq_lock(p, &flags);
3066 	/*
3067 	 * The RT priorities are set via sched_setscheduler(), but we still
3068 	 * allow the 'normal' nice value to be set - but as expected
3069 	 * it wont have any effect on scheduling until the task is
3070 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3071 	 */
3072 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3073 		p->static_prio = NICE_TO_PRIO(nice);
3074 		goto out_unlock;
3075 	}
3076 	queued = task_on_rq_queued(p);
3077 	if (queued)
3078 		dequeue_task(rq, p, 0);
3079 
3080 	p->static_prio = NICE_TO_PRIO(nice);
3081 	set_load_weight(p);
3082 	old_prio = p->prio;
3083 	p->prio = effective_prio(p);
3084 	delta = p->prio - old_prio;
3085 
3086 	if (queued) {
3087 		enqueue_task(rq, p, 0);
3088 		/*
3089 		 * If the task increased its priority or is running and
3090 		 * lowered its priority, then reschedule its CPU:
3091 		 */
3092 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3093 			resched_curr(rq);
3094 	}
3095 out_unlock:
3096 	task_rq_unlock(rq, p, &flags);
3097 }
3098 EXPORT_SYMBOL(set_user_nice);
3099 
3100 /*
3101  * can_nice - check if a task can reduce its nice value
3102  * @p: task
3103  * @nice: nice value
3104  */
3105 int can_nice(const struct task_struct *p, const int nice)
3106 {
3107 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3108 	int nice_rlim = nice_to_rlimit(nice);
3109 
3110 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3111 		capable(CAP_SYS_NICE));
3112 }
3113 
3114 #ifdef __ARCH_WANT_SYS_NICE
3115 
3116 /*
3117  * sys_nice - change the priority of the current process.
3118  * @increment: priority increment
3119  *
3120  * sys_setpriority is a more generic, but much slower function that
3121  * does similar things.
3122  */
3123 SYSCALL_DEFINE1(nice, int, increment)
3124 {
3125 	long nice, retval;
3126 
3127 	/*
3128 	 * Setpriority might change our priority at the same moment.
3129 	 * We don't have to worry. Conceptually one call occurs first
3130 	 * and we have a single winner.
3131 	 */
3132 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3133 	nice = task_nice(current) + increment;
3134 
3135 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3136 	if (increment < 0 && !can_nice(current, nice))
3137 		return -EPERM;
3138 
3139 	retval = security_task_setnice(current, nice);
3140 	if (retval)
3141 		return retval;
3142 
3143 	set_user_nice(current, nice);
3144 	return 0;
3145 }
3146 
3147 #endif
3148 
3149 /**
3150  * task_prio - return the priority value of a given task.
3151  * @p: the task in question.
3152  *
3153  * Return: The priority value as seen by users in /proc.
3154  * RT tasks are offset by -200. Normal tasks are centered
3155  * around 0, value goes from -16 to +15.
3156  */
3157 int task_prio(const struct task_struct *p)
3158 {
3159 	return p->prio - MAX_RT_PRIO;
3160 }
3161 
3162 /**
3163  * idle_cpu - is a given cpu idle currently?
3164  * @cpu: the processor in question.
3165  *
3166  * Return: 1 if the CPU is currently idle. 0 otherwise.
3167  */
3168 int idle_cpu(int cpu)
3169 {
3170 	struct rq *rq = cpu_rq(cpu);
3171 
3172 	if (rq->curr != rq->idle)
3173 		return 0;
3174 
3175 	if (rq->nr_running)
3176 		return 0;
3177 
3178 #ifdef CONFIG_SMP
3179 	if (!llist_empty(&rq->wake_list))
3180 		return 0;
3181 #endif
3182 
3183 	return 1;
3184 }
3185 
3186 /**
3187  * idle_task - return the idle task for a given cpu.
3188  * @cpu: the processor in question.
3189  *
3190  * Return: The idle task for the cpu @cpu.
3191  */
3192 struct task_struct *idle_task(int cpu)
3193 {
3194 	return cpu_rq(cpu)->idle;
3195 }
3196 
3197 /**
3198  * find_process_by_pid - find a process with a matching PID value.
3199  * @pid: the pid in question.
3200  *
3201  * The task of @pid, if found. %NULL otherwise.
3202  */
3203 static struct task_struct *find_process_by_pid(pid_t pid)
3204 {
3205 	return pid ? find_task_by_vpid(pid) : current;
3206 }
3207 
3208 /*
3209  * This function initializes the sched_dl_entity of a newly becoming
3210  * SCHED_DEADLINE task.
3211  *
3212  * Only the static values are considered here, the actual runtime and the
3213  * absolute deadline will be properly calculated when the task is enqueued
3214  * for the first time with its new policy.
3215  */
3216 static void
3217 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3218 {
3219 	struct sched_dl_entity *dl_se = &p->dl;
3220 
3221 	dl_se->dl_runtime = attr->sched_runtime;
3222 	dl_se->dl_deadline = attr->sched_deadline;
3223 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3224 	dl_se->flags = attr->sched_flags;
3225 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3226 
3227 	/*
3228 	 * Changing the parameters of a task is 'tricky' and we're not doing
3229 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3230 	 *
3231 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3232 	 * point. This would include retaining the task_struct until that time
3233 	 * and change dl_overflow() to not immediately decrement the current
3234 	 * amount.
3235 	 *
3236 	 * Instead we retain the current runtime/deadline and let the new
3237 	 * parameters take effect after the current reservation period lapses.
3238 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3239 	 * before the current scheduling deadline.
3240 	 *
3241 	 * We can still have temporary overloads because we do not delay the
3242 	 * change in bandwidth until that time; so admission control is
3243 	 * not on the safe side. It does however guarantee tasks will never
3244 	 * consume more than promised.
3245 	 */
3246 }
3247 
3248 /*
3249  * sched_setparam() passes in -1 for its policy, to let the functions
3250  * it calls know not to change it.
3251  */
3252 #define SETPARAM_POLICY	-1
3253 
3254 static void __setscheduler_params(struct task_struct *p,
3255 		const struct sched_attr *attr)
3256 {
3257 	int policy = attr->sched_policy;
3258 
3259 	if (policy == SETPARAM_POLICY)
3260 		policy = p->policy;
3261 
3262 	p->policy = policy;
3263 
3264 	if (dl_policy(policy))
3265 		__setparam_dl(p, attr);
3266 	else if (fair_policy(policy))
3267 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3268 
3269 	/*
3270 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3271 	 * !rt_policy. Always setting this ensures that things like
3272 	 * getparam()/getattr() don't report silly values for !rt tasks.
3273 	 */
3274 	p->rt_priority = attr->sched_priority;
3275 	p->normal_prio = normal_prio(p);
3276 	set_load_weight(p);
3277 }
3278 
3279 /* Actually do priority change: must hold pi & rq lock. */
3280 static void __setscheduler(struct rq *rq, struct task_struct *p,
3281 			   const struct sched_attr *attr)
3282 {
3283 	__setscheduler_params(p, attr);
3284 
3285 	/*
3286 	 * If we get here, there was no pi waiters boosting the
3287 	 * task. It is safe to use the normal prio.
3288 	 */
3289 	p->prio = normal_prio(p);
3290 
3291 	if (dl_prio(p->prio))
3292 		p->sched_class = &dl_sched_class;
3293 	else if (rt_prio(p->prio))
3294 		p->sched_class = &rt_sched_class;
3295 	else
3296 		p->sched_class = &fair_sched_class;
3297 }
3298 
3299 static void
3300 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3301 {
3302 	struct sched_dl_entity *dl_se = &p->dl;
3303 
3304 	attr->sched_priority = p->rt_priority;
3305 	attr->sched_runtime = dl_se->dl_runtime;
3306 	attr->sched_deadline = dl_se->dl_deadline;
3307 	attr->sched_period = dl_se->dl_period;
3308 	attr->sched_flags = dl_se->flags;
3309 }
3310 
3311 /*
3312  * This function validates the new parameters of a -deadline task.
3313  * We ask for the deadline not being zero, and greater or equal
3314  * than the runtime, as well as the period of being zero or
3315  * greater than deadline. Furthermore, we have to be sure that
3316  * user parameters are above the internal resolution of 1us (we
3317  * check sched_runtime only since it is always the smaller one) and
3318  * below 2^63 ns (we have to check both sched_deadline and
3319  * sched_period, as the latter can be zero).
3320  */
3321 static bool
3322 __checkparam_dl(const struct sched_attr *attr)
3323 {
3324 	/* deadline != 0 */
3325 	if (attr->sched_deadline == 0)
3326 		return false;
3327 
3328 	/*
3329 	 * Since we truncate DL_SCALE bits, make sure we're at least
3330 	 * that big.
3331 	 */
3332 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3333 		return false;
3334 
3335 	/*
3336 	 * Since we use the MSB for wrap-around and sign issues, make
3337 	 * sure it's not set (mind that period can be equal to zero).
3338 	 */
3339 	if (attr->sched_deadline & (1ULL << 63) ||
3340 	    attr->sched_period & (1ULL << 63))
3341 		return false;
3342 
3343 	/* runtime <= deadline <= period (if period != 0) */
3344 	if ((attr->sched_period != 0 &&
3345 	     attr->sched_period < attr->sched_deadline) ||
3346 	    attr->sched_deadline < attr->sched_runtime)
3347 		return false;
3348 
3349 	return true;
3350 }
3351 
3352 /*
3353  * check the target process has a UID that matches the current process's
3354  */
3355 static bool check_same_owner(struct task_struct *p)
3356 {
3357 	const struct cred *cred = current_cred(), *pcred;
3358 	bool match;
3359 
3360 	rcu_read_lock();
3361 	pcred = __task_cred(p);
3362 	match = (uid_eq(cred->euid, pcred->euid) ||
3363 		 uid_eq(cred->euid, pcred->uid));
3364 	rcu_read_unlock();
3365 	return match;
3366 }
3367 
3368 static bool dl_param_changed(struct task_struct *p,
3369 		const struct sched_attr *attr)
3370 {
3371 	struct sched_dl_entity *dl_se = &p->dl;
3372 
3373 	if (dl_se->dl_runtime != attr->sched_runtime ||
3374 		dl_se->dl_deadline != attr->sched_deadline ||
3375 		dl_se->dl_period != attr->sched_period ||
3376 		dl_se->flags != attr->sched_flags)
3377 		return true;
3378 
3379 	return false;
3380 }
3381 
3382 static int __sched_setscheduler(struct task_struct *p,
3383 				const struct sched_attr *attr,
3384 				bool user)
3385 {
3386 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3387 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3388 	int retval, oldprio, oldpolicy = -1, queued, running;
3389 	int policy = attr->sched_policy;
3390 	unsigned long flags;
3391 	const struct sched_class *prev_class;
3392 	struct rq *rq;
3393 	int reset_on_fork;
3394 
3395 	/* may grab non-irq protected spin_locks */
3396 	BUG_ON(in_interrupt());
3397 recheck:
3398 	/* double check policy once rq lock held */
3399 	if (policy < 0) {
3400 		reset_on_fork = p->sched_reset_on_fork;
3401 		policy = oldpolicy = p->policy;
3402 	} else {
3403 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3404 
3405 		if (policy != SCHED_DEADLINE &&
3406 				policy != SCHED_FIFO && policy != SCHED_RR &&
3407 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3408 				policy != SCHED_IDLE)
3409 			return -EINVAL;
3410 	}
3411 
3412 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3413 		return -EINVAL;
3414 
3415 	/*
3416 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3417 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3418 	 * SCHED_BATCH and SCHED_IDLE is 0.
3419 	 */
3420 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3421 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3422 		return -EINVAL;
3423 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3424 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3425 		return -EINVAL;
3426 
3427 	/*
3428 	 * Allow unprivileged RT tasks to decrease priority:
3429 	 */
3430 	if (user && !capable(CAP_SYS_NICE)) {
3431 		if (fair_policy(policy)) {
3432 			if (attr->sched_nice < task_nice(p) &&
3433 			    !can_nice(p, attr->sched_nice))
3434 				return -EPERM;
3435 		}
3436 
3437 		if (rt_policy(policy)) {
3438 			unsigned long rlim_rtprio =
3439 					task_rlimit(p, RLIMIT_RTPRIO);
3440 
3441 			/* can't set/change the rt policy */
3442 			if (policy != p->policy && !rlim_rtprio)
3443 				return -EPERM;
3444 
3445 			/* can't increase priority */
3446 			if (attr->sched_priority > p->rt_priority &&
3447 			    attr->sched_priority > rlim_rtprio)
3448 				return -EPERM;
3449 		}
3450 
3451 		 /*
3452 		  * Can't set/change SCHED_DEADLINE policy at all for now
3453 		  * (safest behavior); in the future we would like to allow
3454 		  * unprivileged DL tasks to increase their relative deadline
3455 		  * or reduce their runtime (both ways reducing utilization)
3456 		  */
3457 		if (dl_policy(policy))
3458 			return -EPERM;
3459 
3460 		/*
3461 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3462 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3463 		 */
3464 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3465 			if (!can_nice(p, task_nice(p)))
3466 				return -EPERM;
3467 		}
3468 
3469 		/* can't change other user's priorities */
3470 		if (!check_same_owner(p))
3471 			return -EPERM;
3472 
3473 		/* Normal users shall not reset the sched_reset_on_fork flag */
3474 		if (p->sched_reset_on_fork && !reset_on_fork)
3475 			return -EPERM;
3476 	}
3477 
3478 	if (user) {
3479 		retval = security_task_setscheduler(p);
3480 		if (retval)
3481 			return retval;
3482 	}
3483 
3484 	/*
3485 	 * make sure no PI-waiters arrive (or leave) while we are
3486 	 * changing the priority of the task:
3487 	 *
3488 	 * To be able to change p->policy safely, the appropriate
3489 	 * runqueue lock must be held.
3490 	 */
3491 	rq = task_rq_lock(p, &flags);
3492 
3493 	/*
3494 	 * Changing the policy of the stop threads its a very bad idea
3495 	 */
3496 	if (p == rq->stop) {
3497 		task_rq_unlock(rq, p, &flags);
3498 		return -EINVAL;
3499 	}
3500 
3501 	/*
3502 	 * If not changing anything there's no need to proceed further,
3503 	 * but store a possible modification of reset_on_fork.
3504 	 */
3505 	if (unlikely(policy == p->policy)) {
3506 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3507 			goto change;
3508 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3509 			goto change;
3510 		if (dl_policy(policy) && dl_param_changed(p, attr))
3511 			goto change;
3512 
3513 		p->sched_reset_on_fork = reset_on_fork;
3514 		task_rq_unlock(rq, p, &flags);
3515 		return 0;
3516 	}
3517 change:
3518 
3519 	if (user) {
3520 #ifdef CONFIG_RT_GROUP_SCHED
3521 		/*
3522 		 * Do not allow realtime tasks into groups that have no runtime
3523 		 * assigned.
3524 		 */
3525 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3526 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3527 				!task_group_is_autogroup(task_group(p))) {
3528 			task_rq_unlock(rq, p, &flags);
3529 			return -EPERM;
3530 		}
3531 #endif
3532 #ifdef CONFIG_SMP
3533 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3534 			cpumask_t *span = rq->rd->span;
3535 
3536 			/*
3537 			 * Don't allow tasks with an affinity mask smaller than
3538 			 * the entire root_domain to become SCHED_DEADLINE. We
3539 			 * will also fail if there's no bandwidth available.
3540 			 */
3541 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3542 			    rq->rd->dl_bw.bw == 0) {
3543 				task_rq_unlock(rq, p, &flags);
3544 				return -EPERM;
3545 			}
3546 		}
3547 #endif
3548 	}
3549 
3550 	/* recheck policy now with rq lock held */
3551 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3552 		policy = oldpolicy = -1;
3553 		task_rq_unlock(rq, p, &flags);
3554 		goto recheck;
3555 	}
3556 
3557 	/*
3558 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3559 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3560 	 * is available.
3561 	 */
3562 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3563 		task_rq_unlock(rq, p, &flags);
3564 		return -EBUSY;
3565 	}
3566 
3567 	p->sched_reset_on_fork = reset_on_fork;
3568 	oldprio = p->prio;
3569 
3570 	/*
3571 	 * Special case for priority boosted tasks.
3572 	 *
3573 	 * If the new priority is lower or equal (user space view)
3574 	 * than the current (boosted) priority, we just store the new
3575 	 * normal parameters and do not touch the scheduler class and
3576 	 * the runqueue. This will be done when the task deboost
3577 	 * itself.
3578 	 */
3579 	if (rt_mutex_check_prio(p, newprio)) {
3580 		__setscheduler_params(p, attr);
3581 		task_rq_unlock(rq, p, &flags);
3582 		return 0;
3583 	}
3584 
3585 	queued = task_on_rq_queued(p);
3586 	running = task_current(rq, p);
3587 	if (queued)
3588 		dequeue_task(rq, p, 0);
3589 	if (running)
3590 		put_prev_task(rq, p);
3591 
3592 	prev_class = p->sched_class;
3593 	__setscheduler(rq, p, attr);
3594 
3595 	if (running)
3596 		p->sched_class->set_curr_task(rq);
3597 	if (queued) {
3598 		/*
3599 		 * We enqueue to tail when the priority of a task is
3600 		 * increased (user space view).
3601 		 */
3602 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3603 	}
3604 
3605 	check_class_changed(rq, p, prev_class, oldprio);
3606 	task_rq_unlock(rq, p, &flags);
3607 
3608 	rt_mutex_adjust_pi(p);
3609 
3610 	return 0;
3611 }
3612 
3613 static int _sched_setscheduler(struct task_struct *p, int policy,
3614 			       const struct sched_param *param, bool check)
3615 {
3616 	struct sched_attr attr = {
3617 		.sched_policy   = policy,
3618 		.sched_priority = param->sched_priority,
3619 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3620 	};
3621 
3622 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3623 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3624 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3625 		policy &= ~SCHED_RESET_ON_FORK;
3626 		attr.sched_policy = policy;
3627 	}
3628 
3629 	return __sched_setscheduler(p, &attr, check);
3630 }
3631 /**
3632  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3633  * @p: the task in question.
3634  * @policy: new policy.
3635  * @param: structure containing the new RT priority.
3636  *
3637  * Return: 0 on success. An error code otherwise.
3638  *
3639  * NOTE that the task may be already dead.
3640  */
3641 int sched_setscheduler(struct task_struct *p, int policy,
3642 		       const struct sched_param *param)
3643 {
3644 	return _sched_setscheduler(p, policy, param, true);
3645 }
3646 EXPORT_SYMBOL_GPL(sched_setscheduler);
3647 
3648 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3649 {
3650 	return __sched_setscheduler(p, attr, true);
3651 }
3652 EXPORT_SYMBOL_GPL(sched_setattr);
3653 
3654 /**
3655  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3656  * @p: the task in question.
3657  * @policy: new policy.
3658  * @param: structure containing the new RT priority.
3659  *
3660  * Just like sched_setscheduler, only don't bother checking if the
3661  * current context has permission.  For example, this is needed in
3662  * stop_machine(): we create temporary high priority worker threads,
3663  * but our caller might not have that capability.
3664  *
3665  * Return: 0 on success. An error code otherwise.
3666  */
3667 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3668 			       const struct sched_param *param)
3669 {
3670 	return _sched_setscheduler(p, policy, param, false);
3671 }
3672 
3673 static int
3674 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3675 {
3676 	struct sched_param lparam;
3677 	struct task_struct *p;
3678 	int retval;
3679 
3680 	if (!param || pid < 0)
3681 		return -EINVAL;
3682 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3683 		return -EFAULT;
3684 
3685 	rcu_read_lock();
3686 	retval = -ESRCH;
3687 	p = find_process_by_pid(pid);
3688 	if (p != NULL)
3689 		retval = sched_setscheduler(p, policy, &lparam);
3690 	rcu_read_unlock();
3691 
3692 	return retval;
3693 }
3694 
3695 /*
3696  * Mimics kernel/events/core.c perf_copy_attr().
3697  */
3698 static int sched_copy_attr(struct sched_attr __user *uattr,
3699 			   struct sched_attr *attr)
3700 {
3701 	u32 size;
3702 	int ret;
3703 
3704 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3705 		return -EFAULT;
3706 
3707 	/*
3708 	 * zero the full structure, so that a short copy will be nice.
3709 	 */
3710 	memset(attr, 0, sizeof(*attr));
3711 
3712 	ret = get_user(size, &uattr->size);
3713 	if (ret)
3714 		return ret;
3715 
3716 	if (size > PAGE_SIZE)	/* silly large */
3717 		goto err_size;
3718 
3719 	if (!size)		/* abi compat */
3720 		size = SCHED_ATTR_SIZE_VER0;
3721 
3722 	if (size < SCHED_ATTR_SIZE_VER0)
3723 		goto err_size;
3724 
3725 	/*
3726 	 * If we're handed a bigger struct than we know of,
3727 	 * ensure all the unknown bits are 0 - i.e. new
3728 	 * user-space does not rely on any kernel feature
3729 	 * extensions we dont know about yet.
3730 	 */
3731 	if (size > sizeof(*attr)) {
3732 		unsigned char __user *addr;
3733 		unsigned char __user *end;
3734 		unsigned char val;
3735 
3736 		addr = (void __user *)uattr + sizeof(*attr);
3737 		end  = (void __user *)uattr + size;
3738 
3739 		for (; addr < end; addr++) {
3740 			ret = get_user(val, addr);
3741 			if (ret)
3742 				return ret;
3743 			if (val)
3744 				goto err_size;
3745 		}
3746 		size = sizeof(*attr);
3747 	}
3748 
3749 	ret = copy_from_user(attr, uattr, size);
3750 	if (ret)
3751 		return -EFAULT;
3752 
3753 	/*
3754 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3755 	 * to be strict and return an error on out-of-bounds values?
3756 	 */
3757 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3758 
3759 	return 0;
3760 
3761 err_size:
3762 	put_user(sizeof(*attr), &uattr->size);
3763 	return -E2BIG;
3764 }
3765 
3766 /**
3767  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3768  * @pid: the pid in question.
3769  * @policy: new policy.
3770  * @param: structure containing the new RT priority.
3771  *
3772  * Return: 0 on success. An error code otherwise.
3773  */
3774 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3775 		struct sched_param __user *, param)
3776 {
3777 	/* negative values for policy are not valid */
3778 	if (policy < 0)
3779 		return -EINVAL;
3780 
3781 	return do_sched_setscheduler(pid, policy, param);
3782 }
3783 
3784 /**
3785  * sys_sched_setparam - set/change the RT priority of a thread
3786  * @pid: the pid in question.
3787  * @param: structure containing the new RT priority.
3788  *
3789  * Return: 0 on success. An error code otherwise.
3790  */
3791 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3792 {
3793 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3794 }
3795 
3796 /**
3797  * sys_sched_setattr - same as above, but with extended sched_attr
3798  * @pid: the pid in question.
3799  * @uattr: structure containing the extended parameters.
3800  * @flags: for future extension.
3801  */
3802 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3803 			       unsigned int, flags)
3804 {
3805 	struct sched_attr attr;
3806 	struct task_struct *p;
3807 	int retval;
3808 
3809 	if (!uattr || pid < 0 || flags)
3810 		return -EINVAL;
3811 
3812 	retval = sched_copy_attr(uattr, &attr);
3813 	if (retval)
3814 		return retval;
3815 
3816 	if ((int)attr.sched_policy < 0)
3817 		return -EINVAL;
3818 
3819 	rcu_read_lock();
3820 	retval = -ESRCH;
3821 	p = find_process_by_pid(pid);
3822 	if (p != NULL)
3823 		retval = sched_setattr(p, &attr);
3824 	rcu_read_unlock();
3825 
3826 	return retval;
3827 }
3828 
3829 /**
3830  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3831  * @pid: the pid in question.
3832  *
3833  * Return: On success, the policy of the thread. Otherwise, a negative error
3834  * code.
3835  */
3836 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3837 {
3838 	struct task_struct *p;
3839 	int retval;
3840 
3841 	if (pid < 0)
3842 		return -EINVAL;
3843 
3844 	retval = -ESRCH;
3845 	rcu_read_lock();
3846 	p = find_process_by_pid(pid);
3847 	if (p) {
3848 		retval = security_task_getscheduler(p);
3849 		if (!retval)
3850 			retval = p->policy
3851 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3852 	}
3853 	rcu_read_unlock();
3854 	return retval;
3855 }
3856 
3857 /**
3858  * sys_sched_getparam - get the RT priority of a thread
3859  * @pid: the pid in question.
3860  * @param: structure containing the RT priority.
3861  *
3862  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3863  * code.
3864  */
3865 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3866 {
3867 	struct sched_param lp = { .sched_priority = 0 };
3868 	struct task_struct *p;
3869 	int retval;
3870 
3871 	if (!param || pid < 0)
3872 		return -EINVAL;
3873 
3874 	rcu_read_lock();
3875 	p = find_process_by_pid(pid);
3876 	retval = -ESRCH;
3877 	if (!p)
3878 		goto out_unlock;
3879 
3880 	retval = security_task_getscheduler(p);
3881 	if (retval)
3882 		goto out_unlock;
3883 
3884 	if (task_has_rt_policy(p))
3885 		lp.sched_priority = p->rt_priority;
3886 	rcu_read_unlock();
3887 
3888 	/*
3889 	 * This one might sleep, we cannot do it with a spinlock held ...
3890 	 */
3891 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3892 
3893 	return retval;
3894 
3895 out_unlock:
3896 	rcu_read_unlock();
3897 	return retval;
3898 }
3899 
3900 static int sched_read_attr(struct sched_attr __user *uattr,
3901 			   struct sched_attr *attr,
3902 			   unsigned int usize)
3903 {
3904 	int ret;
3905 
3906 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3907 		return -EFAULT;
3908 
3909 	/*
3910 	 * If we're handed a smaller struct than we know of,
3911 	 * ensure all the unknown bits are 0 - i.e. old
3912 	 * user-space does not get uncomplete information.
3913 	 */
3914 	if (usize < sizeof(*attr)) {
3915 		unsigned char *addr;
3916 		unsigned char *end;
3917 
3918 		addr = (void *)attr + usize;
3919 		end  = (void *)attr + sizeof(*attr);
3920 
3921 		for (; addr < end; addr++) {
3922 			if (*addr)
3923 				return -EFBIG;
3924 		}
3925 
3926 		attr->size = usize;
3927 	}
3928 
3929 	ret = copy_to_user(uattr, attr, attr->size);
3930 	if (ret)
3931 		return -EFAULT;
3932 
3933 	return 0;
3934 }
3935 
3936 /**
3937  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3938  * @pid: the pid in question.
3939  * @uattr: structure containing the extended parameters.
3940  * @size: sizeof(attr) for fwd/bwd comp.
3941  * @flags: for future extension.
3942  */
3943 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3944 		unsigned int, size, unsigned int, flags)
3945 {
3946 	struct sched_attr attr = {
3947 		.size = sizeof(struct sched_attr),
3948 	};
3949 	struct task_struct *p;
3950 	int retval;
3951 
3952 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3953 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3954 		return -EINVAL;
3955 
3956 	rcu_read_lock();
3957 	p = find_process_by_pid(pid);
3958 	retval = -ESRCH;
3959 	if (!p)
3960 		goto out_unlock;
3961 
3962 	retval = security_task_getscheduler(p);
3963 	if (retval)
3964 		goto out_unlock;
3965 
3966 	attr.sched_policy = p->policy;
3967 	if (p->sched_reset_on_fork)
3968 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3969 	if (task_has_dl_policy(p))
3970 		__getparam_dl(p, &attr);
3971 	else if (task_has_rt_policy(p))
3972 		attr.sched_priority = p->rt_priority;
3973 	else
3974 		attr.sched_nice = task_nice(p);
3975 
3976 	rcu_read_unlock();
3977 
3978 	retval = sched_read_attr(uattr, &attr, size);
3979 	return retval;
3980 
3981 out_unlock:
3982 	rcu_read_unlock();
3983 	return retval;
3984 }
3985 
3986 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3987 {
3988 	cpumask_var_t cpus_allowed, new_mask;
3989 	struct task_struct *p;
3990 	int retval;
3991 
3992 	rcu_read_lock();
3993 
3994 	p = find_process_by_pid(pid);
3995 	if (!p) {
3996 		rcu_read_unlock();
3997 		return -ESRCH;
3998 	}
3999 
4000 	/* Prevent p going away */
4001 	get_task_struct(p);
4002 	rcu_read_unlock();
4003 
4004 	if (p->flags & PF_NO_SETAFFINITY) {
4005 		retval = -EINVAL;
4006 		goto out_put_task;
4007 	}
4008 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4009 		retval = -ENOMEM;
4010 		goto out_put_task;
4011 	}
4012 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4013 		retval = -ENOMEM;
4014 		goto out_free_cpus_allowed;
4015 	}
4016 	retval = -EPERM;
4017 	if (!check_same_owner(p)) {
4018 		rcu_read_lock();
4019 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4020 			rcu_read_unlock();
4021 			goto out_free_new_mask;
4022 		}
4023 		rcu_read_unlock();
4024 	}
4025 
4026 	retval = security_task_setscheduler(p);
4027 	if (retval)
4028 		goto out_free_new_mask;
4029 
4030 
4031 	cpuset_cpus_allowed(p, cpus_allowed);
4032 	cpumask_and(new_mask, in_mask, cpus_allowed);
4033 
4034 	/*
4035 	 * Since bandwidth control happens on root_domain basis,
4036 	 * if admission test is enabled, we only admit -deadline
4037 	 * tasks allowed to run on all the CPUs in the task's
4038 	 * root_domain.
4039 	 */
4040 #ifdef CONFIG_SMP
4041 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4042 		rcu_read_lock();
4043 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4044 			retval = -EBUSY;
4045 			rcu_read_unlock();
4046 			goto out_free_new_mask;
4047 		}
4048 		rcu_read_unlock();
4049 	}
4050 #endif
4051 again:
4052 	retval = set_cpus_allowed_ptr(p, new_mask);
4053 
4054 	if (!retval) {
4055 		cpuset_cpus_allowed(p, cpus_allowed);
4056 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4057 			/*
4058 			 * We must have raced with a concurrent cpuset
4059 			 * update. Just reset the cpus_allowed to the
4060 			 * cpuset's cpus_allowed
4061 			 */
4062 			cpumask_copy(new_mask, cpus_allowed);
4063 			goto again;
4064 		}
4065 	}
4066 out_free_new_mask:
4067 	free_cpumask_var(new_mask);
4068 out_free_cpus_allowed:
4069 	free_cpumask_var(cpus_allowed);
4070 out_put_task:
4071 	put_task_struct(p);
4072 	return retval;
4073 }
4074 
4075 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4076 			     struct cpumask *new_mask)
4077 {
4078 	if (len < cpumask_size())
4079 		cpumask_clear(new_mask);
4080 	else if (len > cpumask_size())
4081 		len = cpumask_size();
4082 
4083 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4084 }
4085 
4086 /**
4087  * sys_sched_setaffinity - set the cpu affinity of a process
4088  * @pid: pid of the process
4089  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4090  * @user_mask_ptr: user-space pointer to the new cpu mask
4091  *
4092  * Return: 0 on success. An error code otherwise.
4093  */
4094 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4095 		unsigned long __user *, user_mask_ptr)
4096 {
4097 	cpumask_var_t new_mask;
4098 	int retval;
4099 
4100 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4101 		return -ENOMEM;
4102 
4103 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4104 	if (retval == 0)
4105 		retval = sched_setaffinity(pid, new_mask);
4106 	free_cpumask_var(new_mask);
4107 	return retval;
4108 }
4109 
4110 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4111 {
4112 	struct task_struct *p;
4113 	unsigned long flags;
4114 	int retval;
4115 
4116 	rcu_read_lock();
4117 
4118 	retval = -ESRCH;
4119 	p = find_process_by_pid(pid);
4120 	if (!p)
4121 		goto out_unlock;
4122 
4123 	retval = security_task_getscheduler(p);
4124 	if (retval)
4125 		goto out_unlock;
4126 
4127 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4128 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4129 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4130 
4131 out_unlock:
4132 	rcu_read_unlock();
4133 
4134 	return retval;
4135 }
4136 
4137 /**
4138  * sys_sched_getaffinity - get the cpu affinity of a process
4139  * @pid: pid of the process
4140  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4141  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4142  *
4143  * Return: 0 on success. An error code otherwise.
4144  */
4145 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4146 		unsigned long __user *, user_mask_ptr)
4147 {
4148 	int ret;
4149 	cpumask_var_t mask;
4150 
4151 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4152 		return -EINVAL;
4153 	if (len & (sizeof(unsigned long)-1))
4154 		return -EINVAL;
4155 
4156 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4157 		return -ENOMEM;
4158 
4159 	ret = sched_getaffinity(pid, mask);
4160 	if (ret == 0) {
4161 		size_t retlen = min_t(size_t, len, cpumask_size());
4162 
4163 		if (copy_to_user(user_mask_ptr, mask, retlen))
4164 			ret = -EFAULT;
4165 		else
4166 			ret = retlen;
4167 	}
4168 	free_cpumask_var(mask);
4169 
4170 	return ret;
4171 }
4172 
4173 /**
4174  * sys_sched_yield - yield the current processor to other threads.
4175  *
4176  * This function yields the current CPU to other tasks. If there are no
4177  * other threads running on this CPU then this function will return.
4178  *
4179  * Return: 0.
4180  */
4181 SYSCALL_DEFINE0(sched_yield)
4182 {
4183 	struct rq *rq = this_rq_lock();
4184 
4185 	schedstat_inc(rq, yld_count);
4186 	current->sched_class->yield_task(rq);
4187 
4188 	/*
4189 	 * Since we are going to call schedule() anyway, there's
4190 	 * no need to preempt or enable interrupts:
4191 	 */
4192 	__release(rq->lock);
4193 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4194 	do_raw_spin_unlock(&rq->lock);
4195 	sched_preempt_enable_no_resched();
4196 
4197 	schedule();
4198 
4199 	return 0;
4200 }
4201 
4202 int __sched _cond_resched(void)
4203 {
4204 	if (should_resched()) {
4205 		preempt_schedule_common();
4206 		return 1;
4207 	}
4208 	return 0;
4209 }
4210 EXPORT_SYMBOL(_cond_resched);
4211 
4212 /*
4213  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4214  * call schedule, and on return reacquire the lock.
4215  *
4216  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4217  * operations here to prevent schedule() from being called twice (once via
4218  * spin_unlock(), once by hand).
4219  */
4220 int __cond_resched_lock(spinlock_t *lock)
4221 {
4222 	int resched = should_resched();
4223 	int ret = 0;
4224 
4225 	lockdep_assert_held(lock);
4226 
4227 	if (spin_needbreak(lock) || resched) {
4228 		spin_unlock(lock);
4229 		if (resched)
4230 			preempt_schedule_common();
4231 		else
4232 			cpu_relax();
4233 		ret = 1;
4234 		spin_lock(lock);
4235 	}
4236 	return ret;
4237 }
4238 EXPORT_SYMBOL(__cond_resched_lock);
4239 
4240 int __sched __cond_resched_softirq(void)
4241 {
4242 	BUG_ON(!in_softirq());
4243 
4244 	if (should_resched()) {
4245 		local_bh_enable();
4246 		preempt_schedule_common();
4247 		local_bh_disable();
4248 		return 1;
4249 	}
4250 	return 0;
4251 }
4252 EXPORT_SYMBOL(__cond_resched_softirq);
4253 
4254 /**
4255  * yield - yield the current processor to other threads.
4256  *
4257  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4258  *
4259  * The scheduler is at all times free to pick the calling task as the most
4260  * eligible task to run, if removing the yield() call from your code breaks
4261  * it, its already broken.
4262  *
4263  * Typical broken usage is:
4264  *
4265  * while (!event)
4266  * 	yield();
4267  *
4268  * where one assumes that yield() will let 'the other' process run that will
4269  * make event true. If the current task is a SCHED_FIFO task that will never
4270  * happen. Never use yield() as a progress guarantee!!
4271  *
4272  * If you want to use yield() to wait for something, use wait_event().
4273  * If you want to use yield() to be 'nice' for others, use cond_resched().
4274  * If you still want to use yield(), do not!
4275  */
4276 void __sched yield(void)
4277 {
4278 	set_current_state(TASK_RUNNING);
4279 	sys_sched_yield();
4280 }
4281 EXPORT_SYMBOL(yield);
4282 
4283 /**
4284  * yield_to - yield the current processor to another thread in
4285  * your thread group, or accelerate that thread toward the
4286  * processor it's on.
4287  * @p: target task
4288  * @preempt: whether task preemption is allowed or not
4289  *
4290  * It's the caller's job to ensure that the target task struct
4291  * can't go away on us before we can do any checks.
4292  *
4293  * Return:
4294  *	true (>0) if we indeed boosted the target task.
4295  *	false (0) if we failed to boost the target.
4296  *	-ESRCH if there's no task to yield to.
4297  */
4298 int __sched yield_to(struct task_struct *p, bool preempt)
4299 {
4300 	struct task_struct *curr = current;
4301 	struct rq *rq, *p_rq;
4302 	unsigned long flags;
4303 	int yielded = 0;
4304 
4305 	local_irq_save(flags);
4306 	rq = this_rq();
4307 
4308 again:
4309 	p_rq = task_rq(p);
4310 	/*
4311 	 * If we're the only runnable task on the rq and target rq also
4312 	 * has only one task, there's absolutely no point in yielding.
4313 	 */
4314 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4315 		yielded = -ESRCH;
4316 		goto out_irq;
4317 	}
4318 
4319 	double_rq_lock(rq, p_rq);
4320 	if (task_rq(p) != p_rq) {
4321 		double_rq_unlock(rq, p_rq);
4322 		goto again;
4323 	}
4324 
4325 	if (!curr->sched_class->yield_to_task)
4326 		goto out_unlock;
4327 
4328 	if (curr->sched_class != p->sched_class)
4329 		goto out_unlock;
4330 
4331 	if (task_running(p_rq, p) || p->state)
4332 		goto out_unlock;
4333 
4334 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4335 	if (yielded) {
4336 		schedstat_inc(rq, yld_count);
4337 		/*
4338 		 * Make p's CPU reschedule; pick_next_entity takes care of
4339 		 * fairness.
4340 		 */
4341 		if (preempt && rq != p_rq)
4342 			resched_curr(p_rq);
4343 	}
4344 
4345 out_unlock:
4346 	double_rq_unlock(rq, p_rq);
4347 out_irq:
4348 	local_irq_restore(flags);
4349 
4350 	if (yielded > 0)
4351 		schedule();
4352 
4353 	return yielded;
4354 }
4355 EXPORT_SYMBOL_GPL(yield_to);
4356 
4357 /*
4358  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4359  * that process accounting knows that this is a task in IO wait state.
4360  */
4361 long __sched io_schedule_timeout(long timeout)
4362 {
4363 	int old_iowait = current->in_iowait;
4364 	struct rq *rq;
4365 	long ret;
4366 
4367 	current->in_iowait = 1;
4368 	if (old_iowait)
4369 		blk_schedule_flush_plug(current);
4370 	else
4371 		blk_flush_plug(current);
4372 
4373 	delayacct_blkio_start();
4374 	rq = raw_rq();
4375 	atomic_inc(&rq->nr_iowait);
4376 	ret = schedule_timeout(timeout);
4377 	current->in_iowait = old_iowait;
4378 	atomic_dec(&rq->nr_iowait);
4379 	delayacct_blkio_end();
4380 
4381 	return ret;
4382 }
4383 EXPORT_SYMBOL(io_schedule_timeout);
4384 
4385 /**
4386  * sys_sched_get_priority_max - return maximum RT priority.
4387  * @policy: scheduling class.
4388  *
4389  * Return: On success, this syscall returns the maximum
4390  * rt_priority that can be used by a given scheduling class.
4391  * On failure, a negative error code is returned.
4392  */
4393 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4394 {
4395 	int ret = -EINVAL;
4396 
4397 	switch (policy) {
4398 	case SCHED_FIFO:
4399 	case SCHED_RR:
4400 		ret = MAX_USER_RT_PRIO-1;
4401 		break;
4402 	case SCHED_DEADLINE:
4403 	case SCHED_NORMAL:
4404 	case SCHED_BATCH:
4405 	case SCHED_IDLE:
4406 		ret = 0;
4407 		break;
4408 	}
4409 	return ret;
4410 }
4411 
4412 /**
4413  * sys_sched_get_priority_min - return minimum RT priority.
4414  * @policy: scheduling class.
4415  *
4416  * Return: On success, this syscall returns the minimum
4417  * rt_priority that can be used by a given scheduling class.
4418  * On failure, a negative error code is returned.
4419  */
4420 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4421 {
4422 	int ret = -EINVAL;
4423 
4424 	switch (policy) {
4425 	case SCHED_FIFO:
4426 	case SCHED_RR:
4427 		ret = 1;
4428 		break;
4429 	case SCHED_DEADLINE:
4430 	case SCHED_NORMAL:
4431 	case SCHED_BATCH:
4432 	case SCHED_IDLE:
4433 		ret = 0;
4434 	}
4435 	return ret;
4436 }
4437 
4438 /**
4439  * sys_sched_rr_get_interval - return the default timeslice of a process.
4440  * @pid: pid of the process.
4441  * @interval: userspace pointer to the timeslice value.
4442  *
4443  * this syscall writes the default timeslice value of a given process
4444  * into the user-space timespec buffer. A value of '0' means infinity.
4445  *
4446  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4447  * an error code.
4448  */
4449 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4450 		struct timespec __user *, interval)
4451 {
4452 	struct task_struct *p;
4453 	unsigned int time_slice;
4454 	unsigned long flags;
4455 	struct rq *rq;
4456 	int retval;
4457 	struct timespec t;
4458 
4459 	if (pid < 0)
4460 		return -EINVAL;
4461 
4462 	retval = -ESRCH;
4463 	rcu_read_lock();
4464 	p = find_process_by_pid(pid);
4465 	if (!p)
4466 		goto out_unlock;
4467 
4468 	retval = security_task_getscheduler(p);
4469 	if (retval)
4470 		goto out_unlock;
4471 
4472 	rq = task_rq_lock(p, &flags);
4473 	time_slice = 0;
4474 	if (p->sched_class->get_rr_interval)
4475 		time_slice = p->sched_class->get_rr_interval(rq, p);
4476 	task_rq_unlock(rq, p, &flags);
4477 
4478 	rcu_read_unlock();
4479 	jiffies_to_timespec(time_slice, &t);
4480 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4481 	return retval;
4482 
4483 out_unlock:
4484 	rcu_read_unlock();
4485 	return retval;
4486 }
4487 
4488 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4489 
4490 void sched_show_task(struct task_struct *p)
4491 {
4492 	unsigned long free = 0;
4493 	int ppid;
4494 	unsigned long state = p->state;
4495 
4496 	if (state)
4497 		state = __ffs(state) + 1;
4498 	printk(KERN_INFO "%-15.15s %c", p->comm,
4499 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4500 #if BITS_PER_LONG == 32
4501 	if (state == TASK_RUNNING)
4502 		printk(KERN_CONT " running  ");
4503 	else
4504 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4505 #else
4506 	if (state == TASK_RUNNING)
4507 		printk(KERN_CONT "  running task    ");
4508 	else
4509 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4510 #endif
4511 #ifdef CONFIG_DEBUG_STACK_USAGE
4512 	free = stack_not_used(p);
4513 #endif
4514 	ppid = 0;
4515 	rcu_read_lock();
4516 	if (pid_alive(p))
4517 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4518 	rcu_read_unlock();
4519 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4520 		task_pid_nr(p), ppid,
4521 		(unsigned long)task_thread_info(p)->flags);
4522 
4523 	print_worker_info(KERN_INFO, p);
4524 	show_stack(p, NULL);
4525 }
4526 
4527 void show_state_filter(unsigned long state_filter)
4528 {
4529 	struct task_struct *g, *p;
4530 
4531 #if BITS_PER_LONG == 32
4532 	printk(KERN_INFO
4533 		"  task                PC stack   pid father\n");
4534 #else
4535 	printk(KERN_INFO
4536 		"  task                        PC stack   pid father\n");
4537 #endif
4538 	rcu_read_lock();
4539 	for_each_process_thread(g, p) {
4540 		/*
4541 		 * reset the NMI-timeout, listing all files on a slow
4542 		 * console might take a lot of time:
4543 		 */
4544 		touch_nmi_watchdog();
4545 		if (!state_filter || (p->state & state_filter))
4546 			sched_show_task(p);
4547 	}
4548 
4549 	touch_all_softlockup_watchdogs();
4550 
4551 #ifdef CONFIG_SCHED_DEBUG
4552 	sysrq_sched_debug_show();
4553 #endif
4554 	rcu_read_unlock();
4555 	/*
4556 	 * Only show locks if all tasks are dumped:
4557 	 */
4558 	if (!state_filter)
4559 		debug_show_all_locks();
4560 }
4561 
4562 void init_idle_bootup_task(struct task_struct *idle)
4563 {
4564 	idle->sched_class = &idle_sched_class;
4565 }
4566 
4567 /**
4568  * init_idle - set up an idle thread for a given CPU
4569  * @idle: task in question
4570  * @cpu: cpu the idle task belongs to
4571  *
4572  * NOTE: this function does not set the idle thread's NEED_RESCHED
4573  * flag, to make booting more robust.
4574  */
4575 void init_idle(struct task_struct *idle, int cpu)
4576 {
4577 	struct rq *rq = cpu_rq(cpu);
4578 	unsigned long flags;
4579 
4580 	raw_spin_lock_irqsave(&rq->lock, flags);
4581 
4582 	__sched_fork(0, idle);
4583 	idle->state = TASK_RUNNING;
4584 	idle->se.exec_start = sched_clock();
4585 
4586 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4587 	/*
4588 	 * We're having a chicken and egg problem, even though we are
4589 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4590 	 * lockdep check in task_group() will fail.
4591 	 *
4592 	 * Similar case to sched_fork(). / Alternatively we could
4593 	 * use task_rq_lock() here and obtain the other rq->lock.
4594 	 *
4595 	 * Silence PROVE_RCU
4596 	 */
4597 	rcu_read_lock();
4598 	__set_task_cpu(idle, cpu);
4599 	rcu_read_unlock();
4600 
4601 	rq->curr = rq->idle = idle;
4602 	idle->on_rq = TASK_ON_RQ_QUEUED;
4603 #if defined(CONFIG_SMP)
4604 	idle->on_cpu = 1;
4605 #endif
4606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4607 
4608 	/* Set the preempt count _outside_ the spinlocks! */
4609 	init_idle_preempt_count(idle, cpu);
4610 
4611 	/*
4612 	 * The idle tasks have their own, simple scheduling class:
4613 	 */
4614 	idle->sched_class = &idle_sched_class;
4615 	ftrace_graph_init_idle_task(idle, cpu);
4616 	vtime_init_idle(idle, cpu);
4617 #if defined(CONFIG_SMP)
4618 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4619 #endif
4620 }
4621 
4622 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4623 			      const struct cpumask *trial)
4624 {
4625 	int ret = 1, trial_cpus;
4626 	struct dl_bw *cur_dl_b;
4627 	unsigned long flags;
4628 
4629 	if (!cpumask_weight(cur))
4630 		return ret;
4631 
4632 	rcu_read_lock_sched();
4633 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4634 	trial_cpus = cpumask_weight(trial);
4635 
4636 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4637 	if (cur_dl_b->bw != -1 &&
4638 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4639 		ret = 0;
4640 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4641 	rcu_read_unlock_sched();
4642 
4643 	return ret;
4644 }
4645 
4646 int task_can_attach(struct task_struct *p,
4647 		    const struct cpumask *cs_cpus_allowed)
4648 {
4649 	int ret = 0;
4650 
4651 	/*
4652 	 * Kthreads which disallow setaffinity shouldn't be moved
4653 	 * to a new cpuset; we don't want to change their cpu
4654 	 * affinity and isolating such threads by their set of
4655 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4656 	 * applicable for such threads.  This prevents checking for
4657 	 * success of set_cpus_allowed_ptr() on all attached tasks
4658 	 * before cpus_allowed may be changed.
4659 	 */
4660 	if (p->flags & PF_NO_SETAFFINITY) {
4661 		ret = -EINVAL;
4662 		goto out;
4663 	}
4664 
4665 #ifdef CONFIG_SMP
4666 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4667 					      cs_cpus_allowed)) {
4668 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4669 							cs_cpus_allowed);
4670 		struct dl_bw *dl_b;
4671 		bool overflow;
4672 		int cpus;
4673 		unsigned long flags;
4674 
4675 		rcu_read_lock_sched();
4676 		dl_b = dl_bw_of(dest_cpu);
4677 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4678 		cpus = dl_bw_cpus(dest_cpu);
4679 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4680 		if (overflow)
4681 			ret = -EBUSY;
4682 		else {
4683 			/*
4684 			 * We reserve space for this task in the destination
4685 			 * root_domain, as we can't fail after this point.
4686 			 * We will free resources in the source root_domain
4687 			 * later on (see set_cpus_allowed_dl()).
4688 			 */
4689 			__dl_add(dl_b, p->dl.dl_bw);
4690 		}
4691 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4692 		rcu_read_unlock_sched();
4693 
4694 	}
4695 #endif
4696 out:
4697 	return ret;
4698 }
4699 
4700 #ifdef CONFIG_SMP
4701 /*
4702  * move_queued_task - move a queued task to new rq.
4703  *
4704  * Returns (locked) new rq. Old rq's lock is released.
4705  */
4706 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4707 {
4708 	struct rq *rq = task_rq(p);
4709 
4710 	lockdep_assert_held(&rq->lock);
4711 
4712 	dequeue_task(rq, p, 0);
4713 	p->on_rq = TASK_ON_RQ_MIGRATING;
4714 	set_task_cpu(p, new_cpu);
4715 	raw_spin_unlock(&rq->lock);
4716 
4717 	rq = cpu_rq(new_cpu);
4718 
4719 	raw_spin_lock(&rq->lock);
4720 	BUG_ON(task_cpu(p) != new_cpu);
4721 	p->on_rq = TASK_ON_RQ_QUEUED;
4722 	enqueue_task(rq, p, 0);
4723 	check_preempt_curr(rq, p, 0);
4724 
4725 	return rq;
4726 }
4727 
4728 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4729 {
4730 	if (p->sched_class->set_cpus_allowed)
4731 		p->sched_class->set_cpus_allowed(p, new_mask);
4732 
4733 	cpumask_copy(&p->cpus_allowed, new_mask);
4734 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4735 }
4736 
4737 /*
4738  * This is how migration works:
4739  *
4740  * 1) we invoke migration_cpu_stop() on the target CPU using
4741  *    stop_one_cpu().
4742  * 2) stopper starts to run (implicitly forcing the migrated thread
4743  *    off the CPU)
4744  * 3) it checks whether the migrated task is still in the wrong runqueue.
4745  * 4) if it's in the wrong runqueue then the migration thread removes
4746  *    it and puts it into the right queue.
4747  * 5) stopper completes and stop_one_cpu() returns and the migration
4748  *    is done.
4749  */
4750 
4751 /*
4752  * Change a given task's CPU affinity. Migrate the thread to a
4753  * proper CPU and schedule it away if the CPU it's executing on
4754  * is removed from the allowed bitmask.
4755  *
4756  * NOTE: the caller must have a valid reference to the task, the
4757  * task must not exit() & deallocate itself prematurely. The
4758  * call is not atomic; no spinlocks may be held.
4759  */
4760 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4761 {
4762 	unsigned long flags;
4763 	struct rq *rq;
4764 	unsigned int dest_cpu;
4765 	int ret = 0;
4766 
4767 	rq = task_rq_lock(p, &flags);
4768 
4769 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4770 		goto out;
4771 
4772 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4773 		ret = -EINVAL;
4774 		goto out;
4775 	}
4776 
4777 	do_set_cpus_allowed(p, new_mask);
4778 
4779 	/* Can the task run on the task's current CPU? If so, we're done */
4780 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4781 		goto out;
4782 
4783 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4784 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4785 		struct migration_arg arg = { p, dest_cpu };
4786 		/* Need help from migration thread: drop lock and wait. */
4787 		task_rq_unlock(rq, p, &flags);
4788 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4789 		tlb_migrate_finish(p->mm);
4790 		return 0;
4791 	} else if (task_on_rq_queued(p))
4792 		rq = move_queued_task(p, dest_cpu);
4793 out:
4794 	task_rq_unlock(rq, p, &flags);
4795 
4796 	return ret;
4797 }
4798 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4799 
4800 /*
4801  * Move (not current) task off this cpu, onto dest cpu. We're doing
4802  * this because either it can't run here any more (set_cpus_allowed()
4803  * away from this CPU, or CPU going down), or because we're
4804  * attempting to rebalance this task on exec (sched_exec).
4805  *
4806  * So we race with normal scheduler movements, but that's OK, as long
4807  * as the task is no longer on this CPU.
4808  *
4809  * Returns non-zero if task was successfully migrated.
4810  */
4811 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4812 {
4813 	struct rq *rq;
4814 	int ret = 0;
4815 
4816 	if (unlikely(!cpu_active(dest_cpu)))
4817 		return ret;
4818 
4819 	rq = cpu_rq(src_cpu);
4820 
4821 	raw_spin_lock(&p->pi_lock);
4822 	raw_spin_lock(&rq->lock);
4823 	/* Already moved. */
4824 	if (task_cpu(p) != src_cpu)
4825 		goto done;
4826 
4827 	/* Affinity changed (again). */
4828 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4829 		goto fail;
4830 
4831 	/*
4832 	 * If we're not on a rq, the next wake-up will ensure we're
4833 	 * placed properly.
4834 	 */
4835 	if (task_on_rq_queued(p))
4836 		rq = move_queued_task(p, dest_cpu);
4837 done:
4838 	ret = 1;
4839 fail:
4840 	raw_spin_unlock(&rq->lock);
4841 	raw_spin_unlock(&p->pi_lock);
4842 	return ret;
4843 }
4844 
4845 #ifdef CONFIG_NUMA_BALANCING
4846 /* Migrate current task p to target_cpu */
4847 int migrate_task_to(struct task_struct *p, int target_cpu)
4848 {
4849 	struct migration_arg arg = { p, target_cpu };
4850 	int curr_cpu = task_cpu(p);
4851 
4852 	if (curr_cpu == target_cpu)
4853 		return 0;
4854 
4855 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4856 		return -EINVAL;
4857 
4858 	/* TODO: This is not properly updating schedstats */
4859 
4860 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4861 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4862 }
4863 
4864 /*
4865  * Requeue a task on a given node and accurately track the number of NUMA
4866  * tasks on the runqueues
4867  */
4868 void sched_setnuma(struct task_struct *p, int nid)
4869 {
4870 	struct rq *rq;
4871 	unsigned long flags;
4872 	bool queued, running;
4873 
4874 	rq = task_rq_lock(p, &flags);
4875 	queued = task_on_rq_queued(p);
4876 	running = task_current(rq, p);
4877 
4878 	if (queued)
4879 		dequeue_task(rq, p, 0);
4880 	if (running)
4881 		put_prev_task(rq, p);
4882 
4883 	p->numa_preferred_nid = nid;
4884 
4885 	if (running)
4886 		p->sched_class->set_curr_task(rq);
4887 	if (queued)
4888 		enqueue_task(rq, p, 0);
4889 	task_rq_unlock(rq, p, &flags);
4890 }
4891 #endif
4892 
4893 /*
4894  * migration_cpu_stop - this will be executed by a highprio stopper thread
4895  * and performs thread migration by bumping thread off CPU then
4896  * 'pushing' onto another runqueue.
4897  */
4898 static int migration_cpu_stop(void *data)
4899 {
4900 	struct migration_arg *arg = data;
4901 
4902 	/*
4903 	 * The original target cpu might have gone down and we might
4904 	 * be on another cpu but it doesn't matter.
4905 	 */
4906 	local_irq_disable();
4907 	/*
4908 	 * We need to explicitly wake pending tasks before running
4909 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4910 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4911 	 */
4912 	sched_ttwu_pending();
4913 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4914 	local_irq_enable();
4915 	return 0;
4916 }
4917 
4918 #ifdef CONFIG_HOTPLUG_CPU
4919 
4920 /*
4921  * Ensures that the idle task is using init_mm right before its cpu goes
4922  * offline.
4923  */
4924 void idle_task_exit(void)
4925 {
4926 	struct mm_struct *mm = current->active_mm;
4927 
4928 	BUG_ON(cpu_online(smp_processor_id()));
4929 
4930 	if (mm != &init_mm) {
4931 		switch_mm(mm, &init_mm, current);
4932 		finish_arch_post_lock_switch();
4933 	}
4934 	mmdrop(mm);
4935 }
4936 
4937 /*
4938  * Since this CPU is going 'away' for a while, fold any nr_active delta
4939  * we might have. Assumes we're called after migrate_tasks() so that the
4940  * nr_active count is stable.
4941  *
4942  * Also see the comment "Global load-average calculations".
4943  */
4944 static void calc_load_migrate(struct rq *rq)
4945 {
4946 	long delta = calc_load_fold_active(rq);
4947 	if (delta)
4948 		atomic_long_add(delta, &calc_load_tasks);
4949 }
4950 
4951 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4952 {
4953 }
4954 
4955 static const struct sched_class fake_sched_class = {
4956 	.put_prev_task = put_prev_task_fake,
4957 };
4958 
4959 static struct task_struct fake_task = {
4960 	/*
4961 	 * Avoid pull_{rt,dl}_task()
4962 	 */
4963 	.prio = MAX_PRIO + 1,
4964 	.sched_class = &fake_sched_class,
4965 };
4966 
4967 /*
4968  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4969  * try_to_wake_up()->select_task_rq().
4970  *
4971  * Called with rq->lock held even though we'er in stop_machine() and
4972  * there's no concurrency possible, we hold the required locks anyway
4973  * because of lock validation efforts.
4974  */
4975 static void migrate_tasks(unsigned int dead_cpu)
4976 {
4977 	struct rq *rq = cpu_rq(dead_cpu);
4978 	struct task_struct *next, *stop = rq->stop;
4979 	int dest_cpu;
4980 
4981 	/*
4982 	 * Fudge the rq selection such that the below task selection loop
4983 	 * doesn't get stuck on the currently eligible stop task.
4984 	 *
4985 	 * We're currently inside stop_machine() and the rq is either stuck
4986 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4987 	 * either way we should never end up calling schedule() until we're
4988 	 * done here.
4989 	 */
4990 	rq->stop = NULL;
4991 
4992 	/*
4993 	 * put_prev_task() and pick_next_task() sched
4994 	 * class method both need to have an up-to-date
4995 	 * value of rq->clock[_task]
4996 	 */
4997 	update_rq_clock(rq);
4998 
4999 	for ( ; ; ) {
5000 		/*
5001 		 * There's this thread running, bail when that's the only
5002 		 * remaining thread.
5003 		 */
5004 		if (rq->nr_running == 1)
5005 			break;
5006 
5007 		next = pick_next_task(rq, &fake_task);
5008 		BUG_ON(!next);
5009 		next->sched_class->put_prev_task(rq, next);
5010 
5011 		/* Find suitable destination for @next, with force if needed. */
5012 		dest_cpu = select_fallback_rq(dead_cpu, next);
5013 		raw_spin_unlock(&rq->lock);
5014 
5015 		__migrate_task(next, dead_cpu, dest_cpu);
5016 
5017 		raw_spin_lock(&rq->lock);
5018 	}
5019 
5020 	rq->stop = stop;
5021 }
5022 
5023 #endif /* CONFIG_HOTPLUG_CPU */
5024 
5025 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5026 
5027 static struct ctl_table sd_ctl_dir[] = {
5028 	{
5029 		.procname	= "sched_domain",
5030 		.mode		= 0555,
5031 	},
5032 	{}
5033 };
5034 
5035 static struct ctl_table sd_ctl_root[] = {
5036 	{
5037 		.procname	= "kernel",
5038 		.mode		= 0555,
5039 		.child		= sd_ctl_dir,
5040 	},
5041 	{}
5042 };
5043 
5044 static struct ctl_table *sd_alloc_ctl_entry(int n)
5045 {
5046 	struct ctl_table *entry =
5047 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5048 
5049 	return entry;
5050 }
5051 
5052 static void sd_free_ctl_entry(struct ctl_table **tablep)
5053 {
5054 	struct ctl_table *entry;
5055 
5056 	/*
5057 	 * In the intermediate directories, both the child directory and
5058 	 * procname are dynamically allocated and could fail but the mode
5059 	 * will always be set. In the lowest directory the names are
5060 	 * static strings and all have proc handlers.
5061 	 */
5062 	for (entry = *tablep; entry->mode; entry++) {
5063 		if (entry->child)
5064 			sd_free_ctl_entry(&entry->child);
5065 		if (entry->proc_handler == NULL)
5066 			kfree(entry->procname);
5067 	}
5068 
5069 	kfree(*tablep);
5070 	*tablep = NULL;
5071 }
5072 
5073 static int min_load_idx = 0;
5074 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5075 
5076 static void
5077 set_table_entry(struct ctl_table *entry,
5078 		const char *procname, void *data, int maxlen,
5079 		umode_t mode, proc_handler *proc_handler,
5080 		bool load_idx)
5081 {
5082 	entry->procname = procname;
5083 	entry->data = data;
5084 	entry->maxlen = maxlen;
5085 	entry->mode = mode;
5086 	entry->proc_handler = proc_handler;
5087 
5088 	if (load_idx) {
5089 		entry->extra1 = &min_load_idx;
5090 		entry->extra2 = &max_load_idx;
5091 	}
5092 }
5093 
5094 static struct ctl_table *
5095 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5096 {
5097 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5098 
5099 	if (table == NULL)
5100 		return NULL;
5101 
5102 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5103 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5104 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5105 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5106 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5107 		sizeof(int), 0644, proc_dointvec_minmax, true);
5108 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5109 		sizeof(int), 0644, proc_dointvec_minmax, true);
5110 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5111 		sizeof(int), 0644, proc_dointvec_minmax, true);
5112 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5113 		sizeof(int), 0644, proc_dointvec_minmax, true);
5114 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5115 		sizeof(int), 0644, proc_dointvec_minmax, true);
5116 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5117 		sizeof(int), 0644, proc_dointvec_minmax, false);
5118 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5119 		sizeof(int), 0644, proc_dointvec_minmax, false);
5120 	set_table_entry(&table[9], "cache_nice_tries",
5121 		&sd->cache_nice_tries,
5122 		sizeof(int), 0644, proc_dointvec_minmax, false);
5123 	set_table_entry(&table[10], "flags", &sd->flags,
5124 		sizeof(int), 0644, proc_dointvec_minmax, false);
5125 	set_table_entry(&table[11], "max_newidle_lb_cost",
5126 		&sd->max_newidle_lb_cost,
5127 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5128 	set_table_entry(&table[12], "name", sd->name,
5129 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5130 	/* &table[13] is terminator */
5131 
5132 	return table;
5133 }
5134 
5135 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5136 {
5137 	struct ctl_table *entry, *table;
5138 	struct sched_domain *sd;
5139 	int domain_num = 0, i;
5140 	char buf[32];
5141 
5142 	for_each_domain(cpu, sd)
5143 		domain_num++;
5144 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5145 	if (table == NULL)
5146 		return NULL;
5147 
5148 	i = 0;
5149 	for_each_domain(cpu, sd) {
5150 		snprintf(buf, 32, "domain%d", i);
5151 		entry->procname = kstrdup(buf, GFP_KERNEL);
5152 		entry->mode = 0555;
5153 		entry->child = sd_alloc_ctl_domain_table(sd);
5154 		entry++;
5155 		i++;
5156 	}
5157 	return table;
5158 }
5159 
5160 static struct ctl_table_header *sd_sysctl_header;
5161 static void register_sched_domain_sysctl(void)
5162 {
5163 	int i, cpu_num = num_possible_cpus();
5164 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5165 	char buf[32];
5166 
5167 	WARN_ON(sd_ctl_dir[0].child);
5168 	sd_ctl_dir[0].child = entry;
5169 
5170 	if (entry == NULL)
5171 		return;
5172 
5173 	for_each_possible_cpu(i) {
5174 		snprintf(buf, 32, "cpu%d", i);
5175 		entry->procname = kstrdup(buf, GFP_KERNEL);
5176 		entry->mode = 0555;
5177 		entry->child = sd_alloc_ctl_cpu_table(i);
5178 		entry++;
5179 	}
5180 
5181 	WARN_ON(sd_sysctl_header);
5182 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5183 }
5184 
5185 /* may be called multiple times per register */
5186 static void unregister_sched_domain_sysctl(void)
5187 {
5188 	if (sd_sysctl_header)
5189 		unregister_sysctl_table(sd_sysctl_header);
5190 	sd_sysctl_header = NULL;
5191 	if (sd_ctl_dir[0].child)
5192 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5193 }
5194 #else
5195 static void register_sched_domain_sysctl(void)
5196 {
5197 }
5198 static void unregister_sched_domain_sysctl(void)
5199 {
5200 }
5201 #endif
5202 
5203 static void set_rq_online(struct rq *rq)
5204 {
5205 	if (!rq->online) {
5206 		const struct sched_class *class;
5207 
5208 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5209 		rq->online = 1;
5210 
5211 		for_each_class(class) {
5212 			if (class->rq_online)
5213 				class->rq_online(rq);
5214 		}
5215 	}
5216 }
5217 
5218 static void set_rq_offline(struct rq *rq)
5219 {
5220 	if (rq->online) {
5221 		const struct sched_class *class;
5222 
5223 		for_each_class(class) {
5224 			if (class->rq_offline)
5225 				class->rq_offline(rq);
5226 		}
5227 
5228 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5229 		rq->online = 0;
5230 	}
5231 }
5232 
5233 /*
5234  * migration_call - callback that gets triggered when a CPU is added.
5235  * Here we can start up the necessary migration thread for the new CPU.
5236  */
5237 static int
5238 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5239 {
5240 	int cpu = (long)hcpu;
5241 	unsigned long flags;
5242 	struct rq *rq = cpu_rq(cpu);
5243 
5244 	switch (action & ~CPU_TASKS_FROZEN) {
5245 
5246 	case CPU_UP_PREPARE:
5247 		rq->calc_load_update = calc_load_update;
5248 		break;
5249 
5250 	case CPU_ONLINE:
5251 		/* Update our root-domain */
5252 		raw_spin_lock_irqsave(&rq->lock, flags);
5253 		if (rq->rd) {
5254 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5255 
5256 			set_rq_online(rq);
5257 		}
5258 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5259 		break;
5260 
5261 #ifdef CONFIG_HOTPLUG_CPU
5262 	case CPU_DYING:
5263 		sched_ttwu_pending();
5264 		/* Update our root-domain */
5265 		raw_spin_lock_irqsave(&rq->lock, flags);
5266 		if (rq->rd) {
5267 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5268 			set_rq_offline(rq);
5269 		}
5270 		migrate_tasks(cpu);
5271 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5272 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5273 		break;
5274 
5275 	case CPU_DEAD:
5276 		calc_load_migrate(rq);
5277 		break;
5278 #endif
5279 	}
5280 
5281 	update_max_interval();
5282 
5283 	return NOTIFY_OK;
5284 }
5285 
5286 /*
5287  * Register at high priority so that task migration (migrate_all_tasks)
5288  * happens before everything else.  This has to be lower priority than
5289  * the notifier in the perf_event subsystem, though.
5290  */
5291 static struct notifier_block migration_notifier = {
5292 	.notifier_call = migration_call,
5293 	.priority = CPU_PRI_MIGRATION,
5294 };
5295 
5296 static void __cpuinit set_cpu_rq_start_time(void)
5297 {
5298 	int cpu = smp_processor_id();
5299 	struct rq *rq = cpu_rq(cpu);
5300 	rq->age_stamp = sched_clock_cpu(cpu);
5301 }
5302 
5303 static int sched_cpu_active(struct notifier_block *nfb,
5304 				      unsigned long action, void *hcpu)
5305 {
5306 	switch (action & ~CPU_TASKS_FROZEN) {
5307 	case CPU_STARTING:
5308 		set_cpu_rq_start_time();
5309 		return NOTIFY_OK;
5310 	case CPU_DOWN_FAILED:
5311 		set_cpu_active((long)hcpu, true);
5312 		return NOTIFY_OK;
5313 	default:
5314 		return NOTIFY_DONE;
5315 	}
5316 }
5317 
5318 static int sched_cpu_inactive(struct notifier_block *nfb,
5319 					unsigned long action, void *hcpu)
5320 {
5321 	unsigned long flags;
5322 	long cpu = (long)hcpu;
5323 	struct dl_bw *dl_b;
5324 
5325 	switch (action & ~CPU_TASKS_FROZEN) {
5326 	case CPU_DOWN_PREPARE:
5327 		set_cpu_active(cpu, false);
5328 
5329 		/* explicitly allow suspend */
5330 		if (!(action & CPU_TASKS_FROZEN)) {
5331 			bool overflow;
5332 			int cpus;
5333 
5334 			rcu_read_lock_sched();
5335 			dl_b = dl_bw_of(cpu);
5336 
5337 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5338 			cpus = dl_bw_cpus(cpu);
5339 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5340 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5341 
5342 			rcu_read_unlock_sched();
5343 
5344 			if (overflow)
5345 				return notifier_from_errno(-EBUSY);
5346 		}
5347 		return NOTIFY_OK;
5348 	}
5349 
5350 	return NOTIFY_DONE;
5351 }
5352 
5353 static int __init migration_init(void)
5354 {
5355 	void *cpu = (void *)(long)smp_processor_id();
5356 	int err;
5357 
5358 	/* Initialize migration for the boot CPU */
5359 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5360 	BUG_ON(err == NOTIFY_BAD);
5361 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5362 	register_cpu_notifier(&migration_notifier);
5363 
5364 	/* Register cpu active notifiers */
5365 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5366 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5367 
5368 	return 0;
5369 }
5370 early_initcall(migration_init);
5371 #endif
5372 
5373 #ifdef CONFIG_SMP
5374 
5375 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5376 
5377 #ifdef CONFIG_SCHED_DEBUG
5378 
5379 static __read_mostly int sched_debug_enabled;
5380 
5381 static int __init sched_debug_setup(char *str)
5382 {
5383 	sched_debug_enabled = 1;
5384 
5385 	return 0;
5386 }
5387 early_param("sched_debug", sched_debug_setup);
5388 
5389 static inline bool sched_debug(void)
5390 {
5391 	return sched_debug_enabled;
5392 }
5393 
5394 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5395 				  struct cpumask *groupmask)
5396 {
5397 	struct sched_group *group = sd->groups;
5398 
5399 	cpumask_clear(groupmask);
5400 
5401 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5402 
5403 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5404 		printk("does not load-balance\n");
5405 		if (sd->parent)
5406 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5407 					" has parent");
5408 		return -1;
5409 	}
5410 
5411 	printk(KERN_CONT "span %*pbl level %s\n",
5412 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5413 
5414 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5415 		printk(KERN_ERR "ERROR: domain->span does not contain "
5416 				"CPU%d\n", cpu);
5417 	}
5418 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5419 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5420 				" CPU%d\n", cpu);
5421 	}
5422 
5423 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5424 	do {
5425 		if (!group) {
5426 			printk("\n");
5427 			printk(KERN_ERR "ERROR: group is NULL\n");
5428 			break;
5429 		}
5430 
5431 		/*
5432 		 * Even though we initialize ->capacity to something semi-sane,
5433 		 * we leave capacity_orig unset. This allows us to detect if
5434 		 * domain iteration is still funny without causing /0 traps.
5435 		 */
5436 		if (!group->sgc->capacity_orig) {
5437 			printk(KERN_CONT "\n");
5438 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5439 			break;
5440 		}
5441 
5442 		if (!cpumask_weight(sched_group_cpus(group))) {
5443 			printk(KERN_CONT "\n");
5444 			printk(KERN_ERR "ERROR: empty group\n");
5445 			break;
5446 		}
5447 
5448 		if (!(sd->flags & SD_OVERLAP) &&
5449 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5450 			printk(KERN_CONT "\n");
5451 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5452 			break;
5453 		}
5454 
5455 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5456 
5457 		printk(KERN_CONT " %*pbl",
5458 		       cpumask_pr_args(sched_group_cpus(group)));
5459 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5460 			printk(KERN_CONT " (cpu_capacity = %d)",
5461 				group->sgc->capacity);
5462 		}
5463 
5464 		group = group->next;
5465 	} while (group != sd->groups);
5466 	printk(KERN_CONT "\n");
5467 
5468 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5469 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5470 
5471 	if (sd->parent &&
5472 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5473 		printk(KERN_ERR "ERROR: parent span is not a superset "
5474 			"of domain->span\n");
5475 	return 0;
5476 }
5477 
5478 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5479 {
5480 	int level = 0;
5481 
5482 	if (!sched_debug_enabled)
5483 		return;
5484 
5485 	if (!sd) {
5486 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5487 		return;
5488 	}
5489 
5490 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5491 
5492 	for (;;) {
5493 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5494 			break;
5495 		level++;
5496 		sd = sd->parent;
5497 		if (!sd)
5498 			break;
5499 	}
5500 }
5501 #else /* !CONFIG_SCHED_DEBUG */
5502 # define sched_domain_debug(sd, cpu) do { } while (0)
5503 static inline bool sched_debug(void)
5504 {
5505 	return false;
5506 }
5507 #endif /* CONFIG_SCHED_DEBUG */
5508 
5509 static int sd_degenerate(struct sched_domain *sd)
5510 {
5511 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5512 		return 1;
5513 
5514 	/* Following flags need at least 2 groups */
5515 	if (sd->flags & (SD_LOAD_BALANCE |
5516 			 SD_BALANCE_NEWIDLE |
5517 			 SD_BALANCE_FORK |
5518 			 SD_BALANCE_EXEC |
5519 			 SD_SHARE_CPUCAPACITY |
5520 			 SD_SHARE_PKG_RESOURCES |
5521 			 SD_SHARE_POWERDOMAIN)) {
5522 		if (sd->groups != sd->groups->next)
5523 			return 0;
5524 	}
5525 
5526 	/* Following flags don't use groups */
5527 	if (sd->flags & (SD_WAKE_AFFINE))
5528 		return 0;
5529 
5530 	return 1;
5531 }
5532 
5533 static int
5534 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5535 {
5536 	unsigned long cflags = sd->flags, pflags = parent->flags;
5537 
5538 	if (sd_degenerate(parent))
5539 		return 1;
5540 
5541 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5542 		return 0;
5543 
5544 	/* Flags needing groups don't count if only 1 group in parent */
5545 	if (parent->groups == parent->groups->next) {
5546 		pflags &= ~(SD_LOAD_BALANCE |
5547 				SD_BALANCE_NEWIDLE |
5548 				SD_BALANCE_FORK |
5549 				SD_BALANCE_EXEC |
5550 				SD_SHARE_CPUCAPACITY |
5551 				SD_SHARE_PKG_RESOURCES |
5552 				SD_PREFER_SIBLING |
5553 				SD_SHARE_POWERDOMAIN);
5554 		if (nr_node_ids == 1)
5555 			pflags &= ~SD_SERIALIZE;
5556 	}
5557 	if (~cflags & pflags)
5558 		return 0;
5559 
5560 	return 1;
5561 }
5562 
5563 static void free_rootdomain(struct rcu_head *rcu)
5564 {
5565 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5566 
5567 	cpupri_cleanup(&rd->cpupri);
5568 	cpudl_cleanup(&rd->cpudl);
5569 	free_cpumask_var(rd->dlo_mask);
5570 	free_cpumask_var(rd->rto_mask);
5571 	free_cpumask_var(rd->online);
5572 	free_cpumask_var(rd->span);
5573 	kfree(rd);
5574 }
5575 
5576 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5577 {
5578 	struct root_domain *old_rd = NULL;
5579 	unsigned long flags;
5580 
5581 	raw_spin_lock_irqsave(&rq->lock, flags);
5582 
5583 	if (rq->rd) {
5584 		old_rd = rq->rd;
5585 
5586 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5587 			set_rq_offline(rq);
5588 
5589 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5590 
5591 		/*
5592 		 * If we dont want to free the old_rd yet then
5593 		 * set old_rd to NULL to skip the freeing later
5594 		 * in this function:
5595 		 */
5596 		if (!atomic_dec_and_test(&old_rd->refcount))
5597 			old_rd = NULL;
5598 	}
5599 
5600 	atomic_inc(&rd->refcount);
5601 	rq->rd = rd;
5602 
5603 	cpumask_set_cpu(rq->cpu, rd->span);
5604 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5605 		set_rq_online(rq);
5606 
5607 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5608 
5609 	if (old_rd)
5610 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5611 }
5612 
5613 static int init_rootdomain(struct root_domain *rd)
5614 {
5615 	memset(rd, 0, sizeof(*rd));
5616 
5617 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5618 		goto out;
5619 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5620 		goto free_span;
5621 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5622 		goto free_online;
5623 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5624 		goto free_dlo_mask;
5625 
5626 	init_dl_bw(&rd->dl_bw);
5627 	if (cpudl_init(&rd->cpudl) != 0)
5628 		goto free_dlo_mask;
5629 
5630 	if (cpupri_init(&rd->cpupri) != 0)
5631 		goto free_rto_mask;
5632 	return 0;
5633 
5634 free_rto_mask:
5635 	free_cpumask_var(rd->rto_mask);
5636 free_dlo_mask:
5637 	free_cpumask_var(rd->dlo_mask);
5638 free_online:
5639 	free_cpumask_var(rd->online);
5640 free_span:
5641 	free_cpumask_var(rd->span);
5642 out:
5643 	return -ENOMEM;
5644 }
5645 
5646 /*
5647  * By default the system creates a single root-domain with all cpus as
5648  * members (mimicking the global state we have today).
5649  */
5650 struct root_domain def_root_domain;
5651 
5652 static void init_defrootdomain(void)
5653 {
5654 	init_rootdomain(&def_root_domain);
5655 
5656 	atomic_set(&def_root_domain.refcount, 1);
5657 }
5658 
5659 static struct root_domain *alloc_rootdomain(void)
5660 {
5661 	struct root_domain *rd;
5662 
5663 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5664 	if (!rd)
5665 		return NULL;
5666 
5667 	if (init_rootdomain(rd) != 0) {
5668 		kfree(rd);
5669 		return NULL;
5670 	}
5671 
5672 	return rd;
5673 }
5674 
5675 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5676 {
5677 	struct sched_group *tmp, *first;
5678 
5679 	if (!sg)
5680 		return;
5681 
5682 	first = sg;
5683 	do {
5684 		tmp = sg->next;
5685 
5686 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5687 			kfree(sg->sgc);
5688 
5689 		kfree(sg);
5690 		sg = tmp;
5691 	} while (sg != first);
5692 }
5693 
5694 static void free_sched_domain(struct rcu_head *rcu)
5695 {
5696 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5697 
5698 	/*
5699 	 * If its an overlapping domain it has private groups, iterate and
5700 	 * nuke them all.
5701 	 */
5702 	if (sd->flags & SD_OVERLAP) {
5703 		free_sched_groups(sd->groups, 1);
5704 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5705 		kfree(sd->groups->sgc);
5706 		kfree(sd->groups);
5707 	}
5708 	kfree(sd);
5709 }
5710 
5711 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5712 {
5713 	call_rcu(&sd->rcu, free_sched_domain);
5714 }
5715 
5716 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5717 {
5718 	for (; sd; sd = sd->parent)
5719 		destroy_sched_domain(sd, cpu);
5720 }
5721 
5722 /*
5723  * Keep a special pointer to the highest sched_domain that has
5724  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5725  * allows us to avoid some pointer chasing select_idle_sibling().
5726  *
5727  * Also keep a unique ID per domain (we use the first cpu number in
5728  * the cpumask of the domain), this allows us to quickly tell if
5729  * two cpus are in the same cache domain, see cpus_share_cache().
5730  */
5731 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5732 DEFINE_PER_CPU(int, sd_llc_size);
5733 DEFINE_PER_CPU(int, sd_llc_id);
5734 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5735 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5736 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5737 
5738 static void update_top_cache_domain(int cpu)
5739 {
5740 	struct sched_domain *sd;
5741 	struct sched_domain *busy_sd = NULL;
5742 	int id = cpu;
5743 	int size = 1;
5744 
5745 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5746 	if (sd) {
5747 		id = cpumask_first(sched_domain_span(sd));
5748 		size = cpumask_weight(sched_domain_span(sd));
5749 		busy_sd = sd->parent; /* sd_busy */
5750 	}
5751 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5752 
5753 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5754 	per_cpu(sd_llc_size, cpu) = size;
5755 	per_cpu(sd_llc_id, cpu) = id;
5756 
5757 	sd = lowest_flag_domain(cpu, SD_NUMA);
5758 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5759 
5760 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5761 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5762 }
5763 
5764 /*
5765  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5766  * hold the hotplug lock.
5767  */
5768 static void
5769 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5770 {
5771 	struct rq *rq = cpu_rq(cpu);
5772 	struct sched_domain *tmp;
5773 
5774 	/* Remove the sched domains which do not contribute to scheduling. */
5775 	for (tmp = sd; tmp; ) {
5776 		struct sched_domain *parent = tmp->parent;
5777 		if (!parent)
5778 			break;
5779 
5780 		if (sd_parent_degenerate(tmp, parent)) {
5781 			tmp->parent = parent->parent;
5782 			if (parent->parent)
5783 				parent->parent->child = tmp;
5784 			/*
5785 			 * Transfer SD_PREFER_SIBLING down in case of a
5786 			 * degenerate parent; the spans match for this
5787 			 * so the property transfers.
5788 			 */
5789 			if (parent->flags & SD_PREFER_SIBLING)
5790 				tmp->flags |= SD_PREFER_SIBLING;
5791 			destroy_sched_domain(parent, cpu);
5792 		} else
5793 			tmp = tmp->parent;
5794 	}
5795 
5796 	if (sd && sd_degenerate(sd)) {
5797 		tmp = sd;
5798 		sd = sd->parent;
5799 		destroy_sched_domain(tmp, cpu);
5800 		if (sd)
5801 			sd->child = NULL;
5802 	}
5803 
5804 	sched_domain_debug(sd, cpu);
5805 
5806 	rq_attach_root(rq, rd);
5807 	tmp = rq->sd;
5808 	rcu_assign_pointer(rq->sd, sd);
5809 	destroy_sched_domains(tmp, cpu);
5810 
5811 	update_top_cache_domain(cpu);
5812 }
5813 
5814 /* cpus with isolated domains */
5815 static cpumask_var_t cpu_isolated_map;
5816 
5817 /* Setup the mask of cpus configured for isolated domains */
5818 static int __init isolated_cpu_setup(char *str)
5819 {
5820 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5821 	cpulist_parse(str, cpu_isolated_map);
5822 	return 1;
5823 }
5824 
5825 __setup("isolcpus=", isolated_cpu_setup);
5826 
5827 struct s_data {
5828 	struct sched_domain ** __percpu sd;
5829 	struct root_domain	*rd;
5830 };
5831 
5832 enum s_alloc {
5833 	sa_rootdomain,
5834 	sa_sd,
5835 	sa_sd_storage,
5836 	sa_none,
5837 };
5838 
5839 /*
5840  * Build an iteration mask that can exclude certain CPUs from the upwards
5841  * domain traversal.
5842  *
5843  * Asymmetric node setups can result in situations where the domain tree is of
5844  * unequal depth, make sure to skip domains that already cover the entire
5845  * range.
5846  *
5847  * In that case build_sched_domains() will have terminated the iteration early
5848  * and our sibling sd spans will be empty. Domains should always include the
5849  * cpu they're built on, so check that.
5850  *
5851  */
5852 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5853 {
5854 	const struct cpumask *span = sched_domain_span(sd);
5855 	struct sd_data *sdd = sd->private;
5856 	struct sched_domain *sibling;
5857 	int i;
5858 
5859 	for_each_cpu(i, span) {
5860 		sibling = *per_cpu_ptr(sdd->sd, i);
5861 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5862 			continue;
5863 
5864 		cpumask_set_cpu(i, sched_group_mask(sg));
5865 	}
5866 }
5867 
5868 /*
5869  * Return the canonical balance cpu for this group, this is the first cpu
5870  * of this group that's also in the iteration mask.
5871  */
5872 int group_balance_cpu(struct sched_group *sg)
5873 {
5874 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5875 }
5876 
5877 static int
5878 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5879 {
5880 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5881 	const struct cpumask *span = sched_domain_span(sd);
5882 	struct cpumask *covered = sched_domains_tmpmask;
5883 	struct sd_data *sdd = sd->private;
5884 	struct sched_domain *sibling;
5885 	int i;
5886 
5887 	cpumask_clear(covered);
5888 
5889 	for_each_cpu(i, span) {
5890 		struct cpumask *sg_span;
5891 
5892 		if (cpumask_test_cpu(i, covered))
5893 			continue;
5894 
5895 		sibling = *per_cpu_ptr(sdd->sd, i);
5896 
5897 		/* See the comment near build_group_mask(). */
5898 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5899 			continue;
5900 
5901 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5902 				GFP_KERNEL, cpu_to_node(cpu));
5903 
5904 		if (!sg)
5905 			goto fail;
5906 
5907 		sg_span = sched_group_cpus(sg);
5908 		if (sibling->child)
5909 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5910 		else
5911 			cpumask_set_cpu(i, sg_span);
5912 
5913 		cpumask_or(covered, covered, sg_span);
5914 
5915 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5916 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5917 			build_group_mask(sd, sg);
5918 
5919 		/*
5920 		 * Initialize sgc->capacity such that even if we mess up the
5921 		 * domains and no possible iteration will get us here, we won't
5922 		 * die on a /0 trap.
5923 		 */
5924 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5925 		sg->sgc->capacity_orig = sg->sgc->capacity;
5926 
5927 		/*
5928 		 * Make sure the first group of this domain contains the
5929 		 * canonical balance cpu. Otherwise the sched_domain iteration
5930 		 * breaks. See update_sg_lb_stats().
5931 		 */
5932 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5933 		    group_balance_cpu(sg) == cpu)
5934 			groups = sg;
5935 
5936 		if (!first)
5937 			first = sg;
5938 		if (last)
5939 			last->next = sg;
5940 		last = sg;
5941 		last->next = first;
5942 	}
5943 	sd->groups = groups;
5944 
5945 	return 0;
5946 
5947 fail:
5948 	free_sched_groups(first, 0);
5949 
5950 	return -ENOMEM;
5951 }
5952 
5953 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5954 {
5955 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5956 	struct sched_domain *child = sd->child;
5957 
5958 	if (child)
5959 		cpu = cpumask_first(sched_domain_span(child));
5960 
5961 	if (sg) {
5962 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5963 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5964 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5965 	}
5966 
5967 	return cpu;
5968 }
5969 
5970 /*
5971  * build_sched_groups will build a circular linked list of the groups
5972  * covered by the given span, and will set each group's ->cpumask correctly,
5973  * and ->cpu_capacity to 0.
5974  *
5975  * Assumes the sched_domain tree is fully constructed
5976  */
5977 static int
5978 build_sched_groups(struct sched_domain *sd, int cpu)
5979 {
5980 	struct sched_group *first = NULL, *last = NULL;
5981 	struct sd_data *sdd = sd->private;
5982 	const struct cpumask *span = sched_domain_span(sd);
5983 	struct cpumask *covered;
5984 	int i;
5985 
5986 	get_group(cpu, sdd, &sd->groups);
5987 	atomic_inc(&sd->groups->ref);
5988 
5989 	if (cpu != cpumask_first(span))
5990 		return 0;
5991 
5992 	lockdep_assert_held(&sched_domains_mutex);
5993 	covered = sched_domains_tmpmask;
5994 
5995 	cpumask_clear(covered);
5996 
5997 	for_each_cpu(i, span) {
5998 		struct sched_group *sg;
5999 		int group, j;
6000 
6001 		if (cpumask_test_cpu(i, covered))
6002 			continue;
6003 
6004 		group = get_group(i, sdd, &sg);
6005 		cpumask_setall(sched_group_mask(sg));
6006 
6007 		for_each_cpu(j, span) {
6008 			if (get_group(j, sdd, NULL) != group)
6009 				continue;
6010 
6011 			cpumask_set_cpu(j, covered);
6012 			cpumask_set_cpu(j, sched_group_cpus(sg));
6013 		}
6014 
6015 		if (!first)
6016 			first = sg;
6017 		if (last)
6018 			last->next = sg;
6019 		last = sg;
6020 	}
6021 	last->next = first;
6022 
6023 	return 0;
6024 }
6025 
6026 /*
6027  * Initialize sched groups cpu_capacity.
6028  *
6029  * cpu_capacity indicates the capacity of sched group, which is used while
6030  * distributing the load between different sched groups in a sched domain.
6031  * Typically cpu_capacity for all the groups in a sched domain will be same
6032  * unless there are asymmetries in the topology. If there are asymmetries,
6033  * group having more cpu_capacity will pickup more load compared to the
6034  * group having less cpu_capacity.
6035  */
6036 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6037 {
6038 	struct sched_group *sg = sd->groups;
6039 
6040 	WARN_ON(!sg);
6041 
6042 	do {
6043 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6044 		sg = sg->next;
6045 	} while (sg != sd->groups);
6046 
6047 	if (cpu != group_balance_cpu(sg))
6048 		return;
6049 
6050 	update_group_capacity(sd, cpu);
6051 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6052 }
6053 
6054 /*
6055  * Initializers for schedule domains
6056  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6057  */
6058 
6059 static int default_relax_domain_level = -1;
6060 int sched_domain_level_max;
6061 
6062 static int __init setup_relax_domain_level(char *str)
6063 {
6064 	if (kstrtoint(str, 0, &default_relax_domain_level))
6065 		pr_warn("Unable to set relax_domain_level\n");
6066 
6067 	return 1;
6068 }
6069 __setup("relax_domain_level=", setup_relax_domain_level);
6070 
6071 static void set_domain_attribute(struct sched_domain *sd,
6072 				 struct sched_domain_attr *attr)
6073 {
6074 	int request;
6075 
6076 	if (!attr || attr->relax_domain_level < 0) {
6077 		if (default_relax_domain_level < 0)
6078 			return;
6079 		else
6080 			request = default_relax_domain_level;
6081 	} else
6082 		request = attr->relax_domain_level;
6083 	if (request < sd->level) {
6084 		/* turn off idle balance on this domain */
6085 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6086 	} else {
6087 		/* turn on idle balance on this domain */
6088 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6089 	}
6090 }
6091 
6092 static void __sdt_free(const struct cpumask *cpu_map);
6093 static int __sdt_alloc(const struct cpumask *cpu_map);
6094 
6095 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6096 				 const struct cpumask *cpu_map)
6097 {
6098 	switch (what) {
6099 	case sa_rootdomain:
6100 		if (!atomic_read(&d->rd->refcount))
6101 			free_rootdomain(&d->rd->rcu); /* fall through */
6102 	case sa_sd:
6103 		free_percpu(d->sd); /* fall through */
6104 	case sa_sd_storage:
6105 		__sdt_free(cpu_map); /* fall through */
6106 	case sa_none:
6107 		break;
6108 	}
6109 }
6110 
6111 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6112 						   const struct cpumask *cpu_map)
6113 {
6114 	memset(d, 0, sizeof(*d));
6115 
6116 	if (__sdt_alloc(cpu_map))
6117 		return sa_sd_storage;
6118 	d->sd = alloc_percpu(struct sched_domain *);
6119 	if (!d->sd)
6120 		return sa_sd_storage;
6121 	d->rd = alloc_rootdomain();
6122 	if (!d->rd)
6123 		return sa_sd;
6124 	return sa_rootdomain;
6125 }
6126 
6127 /*
6128  * NULL the sd_data elements we've used to build the sched_domain and
6129  * sched_group structure so that the subsequent __free_domain_allocs()
6130  * will not free the data we're using.
6131  */
6132 static void claim_allocations(int cpu, struct sched_domain *sd)
6133 {
6134 	struct sd_data *sdd = sd->private;
6135 
6136 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6137 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6138 
6139 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6140 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6141 
6142 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6143 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6144 }
6145 
6146 #ifdef CONFIG_NUMA
6147 static int sched_domains_numa_levels;
6148 enum numa_topology_type sched_numa_topology_type;
6149 static int *sched_domains_numa_distance;
6150 int sched_max_numa_distance;
6151 static struct cpumask ***sched_domains_numa_masks;
6152 static int sched_domains_curr_level;
6153 #endif
6154 
6155 /*
6156  * SD_flags allowed in topology descriptions.
6157  *
6158  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6159  * SD_SHARE_PKG_RESOURCES - describes shared caches
6160  * SD_NUMA                - describes NUMA topologies
6161  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6162  *
6163  * Odd one out:
6164  * SD_ASYM_PACKING        - describes SMT quirks
6165  */
6166 #define TOPOLOGY_SD_FLAGS		\
6167 	(SD_SHARE_CPUCAPACITY |		\
6168 	 SD_SHARE_PKG_RESOURCES |	\
6169 	 SD_NUMA |			\
6170 	 SD_ASYM_PACKING |		\
6171 	 SD_SHARE_POWERDOMAIN)
6172 
6173 static struct sched_domain *
6174 sd_init(struct sched_domain_topology_level *tl, int cpu)
6175 {
6176 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6177 	int sd_weight, sd_flags = 0;
6178 
6179 #ifdef CONFIG_NUMA
6180 	/*
6181 	 * Ugly hack to pass state to sd_numa_mask()...
6182 	 */
6183 	sched_domains_curr_level = tl->numa_level;
6184 #endif
6185 
6186 	sd_weight = cpumask_weight(tl->mask(cpu));
6187 
6188 	if (tl->sd_flags)
6189 		sd_flags = (*tl->sd_flags)();
6190 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6191 			"wrong sd_flags in topology description\n"))
6192 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6193 
6194 	*sd = (struct sched_domain){
6195 		.min_interval		= sd_weight,
6196 		.max_interval		= 2*sd_weight,
6197 		.busy_factor		= 32,
6198 		.imbalance_pct		= 125,
6199 
6200 		.cache_nice_tries	= 0,
6201 		.busy_idx		= 0,
6202 		.idle_idx		= 0,
6203 		.newidle_idx		= 0,
6204 		.wake_idx		= 0,
6205 		.forkexec_idx		= 0,
6206 
6207 		.flags			= 1*SD_LOAD_BALANCE
6208 					| 1*SD_BALANCE_NEWIDLE
6209 					| 1*SD_BALANCE_EXEC
6210 					| 1*SD_BALANCE_FORK
6211 					| 0*SD_BALANCE_WAKE
6212 					| 1*SD_WAKE_AFFINE
6213 					| 0*SD_SHARE_CPUCAPACITY
6214 					| 0*SD_SHARE_PKG_RESOURCES
6215 					| 0*SD_SERIALIZE
6216 					| 0*SD_PREFER_SIBLING
6217 					| 0*SD_NUMA
6218 					| sd_flags
6219 					,
6220 
6221 		.last_balance		= jiffies,
6222 		.balance_interval	= sd_weight,
6223 		.smt_gain		= 0,
6224 		.max_newidle_lb_cost	= 0,
6225 		.next_decay_max_lb_cost	= jiffies,
6226 #ifdef CONFIG_SCHED_DEBUG
6227 		.name			= tl->name,
6228 #endif
6229 	};
6230 
6231 	/*
6232 	 * Convert topological properties into behaviour.
6233 	 */
6234 
6235 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6236 		sd->imbalance_pct = 110;
6237 		sd->smt_gain = 1178; /* ~15% */
6238 
6239 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6240 		sd->imbalance_pct = 117;
6241 		sd->cache_nice_tries = 1;
6242 		sd->busy_idx = 2;
6243 
6244 #ifdef CONFIG_NUMA
6245 	} else if (sd->flags & SD_NUMA) {
6246 		sd->cache_nice_tries = 2;
6247 		sd->busy_idx = 3;
6248 		sd->idle_idx = 2;
6249 
6250 		sd->flags |= SD_SERIALIZE;
6251 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6252 			sd->flags &= ~(SD_BALANCE_EXEC |
6253 				       SD_BALANCE_FORK |
6254 				       SD_WAKE_AFFINE);
6255 		}
6256 
6257 #endif
6258 	} else {
6259 		sd->flags |= SD_PREFER_SIBLING;
6260 		sd->cache_nice_tries = 1;
6261 		sd->busy_idx = 2;
6262 		sd->idle_idx = 1;
6263 	}
6264 
6265 	sd->private = &tl->data;
6266 
6267 	return sd;
6268 }
6269 
6270 /*
6271  * Topology list, bottom-up.
6272  */
6273 static struct sched_domain_topology_level default_topology[] = {
6274 #ifdef CONFIG_SCHED_SMT
6275 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6276 #endif
6277 #ifdef CONFIG_SCHED_MC
6278 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6279 #endif
6280 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6281 	{ NULL, },
6282 };
6283 
6284 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6285 
6286 #define for_each_sd_topology(tl)			\
6287 	for (tl = sched_domain_topology; tl->mask; tl++)
6288 
6289 void set_sched_topology(struct sched_domain_topology_level *tl)
6290 {
6291 	sched_domain_topology = tl;
6292 }
6293 
6294 #ifdef CONFIG_NUMA
6295 
6296 static const struct cpumask *sd_numa_mask(int cpu)
6297 {
6298 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6299 }
6300 
6301 static void sched_numa_warn(const char *str)
6302 {
6303 	static int done = false;
6304 	int i,j;
6305 
6306 	if (done)
6307 		return;
6308 
6309 	done = true;
6310 
6311 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6312 
6313 	for (i = 0; i < nr_node_ids; i++) {
6314 		printk(KERN_WARNING "  ");
6315 		for (j = 0; j < nr_node_ids; j++)
6316 			printk(KERN_CONT "%02d ", node_distance(i,j));
6317 		printk(KERN_CONT "\n");
6318 	}
6319 	printk(KERN_WARNING "\n");
6320 }
6321 
6322 bool find_numa_distance(int distance)
6323 {
6324 	int i;
6325 
6326 	if (distance == node_distance(0, 0))
6327 		return true;
6328 
6329 	for (i = 0; i < sched_domains_numa_levels; i++) {
6330 		if (sched_domains_numa_distance[i] == distance)
6331 			return true;
6332 	}
6333 
6334 	return false;
6335 }
6336 
6337 /*
6338  * A system can have three types of NUMA topology:
6339  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6340  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6341  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6342  *
6343  * The difference between a glueless mesh topology and a backplane
6344  * topology lies in whether communication between not directly
6345  * connected nodes goes through intermediary nodes (where programs
6346  * could run), or through backplane controllers. This affects
6347  * placement of programs.
6348  *
6349  * The type of topology can be discerned with the following tests:
6350  * - If the maximum distance between any nodes is 1 hop, the system
6351  *   is directly connected.
6352  * - If for two nodes A and B, located N > 1 hops away from each other,
6353  *   there is an intermediary node C, which is < N hops away from both
6354  *   nodes A and B, the system is a glueless mesh.
6355  */
6356 static void init_numa_topology_type(void)
6357 {
6358 	int a, b, c, n;
6359 
6360 	n = sched_max_numa_distance;
6361 
6362 	if (n <= 1)
6363 		sched_numa_topology_type = NUMA_DIRECT;
6364 
6365 	for_each_online_node(a) {
6366 		for_each_online_node(b) {
6367 			/* Find two nodes furthest removed from each other. */
6368 			if (node_distance(a, b) < n)
6369 				continue;
6370 
6371 			/* Is there an intermediary node between a and b? */
6372 			for_each_online_node(c) {
6373 				if (node_distance(a, c) < n &&
6374 				    node_distance(b, c) < n) {
6375 					sched_numa_topology_type =
6376 							NUMA_GLUELESS_MESH;
6377 					return;
6378 				}
6379 			}
6380 
6381 			sched_numa_topology_type = NUMA_BACKPLANE;
6382 			return;
6383 		}
6384 	}
6385 }
6386 
6387 static void sched_init_numa(void)
6388 {
6389 	int next_distance, curr_distance = node_distance(0, 0);
6390 	struct sched_domain_topology_level *tl;
6391 	int level = 0;
6392 	int i, j, k;
6393 
6394 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6395 	if (!sched_domains_numa_distance)
6396 		return;
6397 
6398 	/*
6399 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6400 	 * unique distances in the node_distance() table.
6401 	 *
6402 	 * Assumes node_distance(0,j) includes all distances in
6403 	 * node_distance(i,j) in order to avoid cubic time.
6404 	 */
6405 	next_distance = curr_distance;
6406 	for (i = 0; i < nr_node_ids; i++) {
6407 		for (j = 0; j < nr_node_ids; j++) {
6408 			for (k = 0; k < nr_node_ids; k++) {
6409 				int distance = node_distance(i, k);
6410 
6411 				if (distance > curr_distance &&
6412 				    (distance < next_distance ||
6413 				     next_distance == curr_distance))
6414 					next_distance = distance;
6415 
6416 				/*
6417 				 * While not a strong assumption it would be nice to know
6418 				 * about cases where if node A is connected to B, B is not
6419 				 * equally connected to A.
6420 				 */
6421 				if (sched_debug() && node_distance(k, i) != distance)
6422 					sched_numa_warn("Node-distance not symmetric");
6423 
6424 				if (sched_debug() && i && !find_numa_distance(distance))
6425 					sched_numa_warn("Node-0 not representative");
6426 			}
6427 			if (next_distance != curr_distance) {
6428 				sched_domains_numa_distance[level++] = next_distance;
6429 				sched_domains_numa_levels = level;
6430 				curr_distance = next_distance;
6431 			} else break;
6432 		}
6433 
6434 		/*
6435 		 * In case of sched_debug() we verify the above assumption.
6436 		 */
6437 		if (!sched_debug())
6438 			break;
6439 	}
6440 
6441 	if (!level)
6442 		return;
6443 
6444 	/*
6445 	 * 'level' contains the number of unique distances, excluding the
6446 	 * identity distance node_distance(i,i).
6447 	 *
6448 	 * The sched_domains_numa_distance[] array includes the actual distance
6449 	 * numbers.
6450 	 */
6451 
6452 	/*
6453 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6454 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6455 	 * the array will contain less then 'level' members. This could be
6456 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6457 	 * in other functions.
6458 	 *
6459 	 * We reset it to 'level' at the end of this function.
6460 	 */
6461 	sched_domains_numa_levels = 0;
6462 
6463 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6464 	if (!sched_domains_numa_masks)
6465 		return;
6466 
6467 	/*
6468 	 * Now for each level, construct a mask per node which contains all
6469 	 * cpus of nodes that are that many hops away from us.
6470 	 */
6471 	for (i = 0; i < level; i++) {
6472 		sched_domains_numa_masks[i] =
6473 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6474 		if (!sched_domains_numa_masks[i])
6475 			return;
6476 
6477 		for (j = 0; j < nr_node_ids; j++) {
6478 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6479 			if (!mask)
6480 				return;
6481 
6482 			sched_domains_numa_masks[i][j] = mask;
6483 
6484 			for (k = 0; k < nr_node_ids; k++) {
6485 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6486 					continue;
6487 
6488 				cpumask_or(mask, mask, cpumask_of_node(k));
6489 			}
6490 		}
6491 	}
6492 
6493 	/* Compute default topology size */
6494 	for (i = 0; sched_domain_topology[i].mask; i++);
6495 
6496 	tl = kzalloc((i + level + 1) *
6497 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6498 	if (!tl)
6499 		return;
6500 
6501 	/*
6502 	 * Copy the default topology bits..
6503 	 */
6504 	for (i = 0; sched_domain_topology[i].mask; i++)
6505 		tl[i] = sched_domain_topology[i];
6506 
6507 	/*
6508 	 * .. and append 'j' levels of NUMA goodness.
6509 	 */
6510 	for (j = 0; j < level; i++, j++) {
6511 		tl[i] = (struct sched_domain_topology_level){
6512 			.mask = sd_numa_mask,
6513 			.sd_flags = cpu_numa_flags,
6514 			.flags = SDTL_OVERLAP,
6515 			.numa_level = j,
6516 			SD_INIT_NAME(NUMA)
6517 		};
6518 	}
6519 
6520 	sched_domain_topology = tl;
6521 
6522 	sched_domains_numa_levels = level;
6523 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6524 
6525 	init_numa_topology_type();
6526 }
6527 
6528 static void sched_domains_numa_masks_set(int cpu)
6529 {
6530 	int i, j;
6531 	int node = cpu_to_node(cpu);
6532 
6533 	for (i = 0; i < sched_domains_numa_levels; i++) {
6534 		for (j = 0; j < nr_node_ids; j++) {
6535 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6536 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6537 		}
6538 	}
6539 }
6540 
6541 static void sched_domains_numa_masks_clear(int cpu)
6542 {
6543 	int i, j;
6544 	for (i = 0; i < sched_domains_numa_levels; i++) {
6545 		for (j = 0; j < nr_node_ids; j++)
6546 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6547 	}
6548 }
6549 
6550 /*
6551  * Update sched_domains_numa_masks[level][node] array when new cpus
6552  * are onlined.
6553  */
6554 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6555 					   unsigned long action,
6556 					   void *hcpu)
6557 {
6558 	int cpu = (long)hcpu;
6559 
6560 	switch (action & ~CPU_TASKS_FROZEN) {
6561 	case CPU_ONLINE:
6562 		sched_domains_numa_masks_set(cpu);
6563 		break;
6564 
6565 	case CPU_DEAD:
6566 		sched_domains_numa_masks_clear(cpu);
6567 		break;
6568 
6569 	default:
6570 		return NOTIFY_DONE;
6571 	}
6572 
6573 	return NOTIFY_OK;
6574 }
6575 #else
6576 static inline void sched_init_numa(void)
6577 {
6578 }
6579 
6580 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6581 					   unsigned long action,
6582 					   void *hcpu)
6583 {
6584 	return 0;
6585 }
6586 #endif /* CONFIG_NUMA */
6587 
6588 static int __sdt_alloc(const struct cpumask *cpu_map)
6589 {
6590 	struct sched_domain_topology_level *tl;
6591 	int j;
6592 
6593 	for_each_sd_topology(tl) {
6594 		struct sd_data *sdd = &tl->data;
6595 
6596 		sdd->sd = alloc_percpu(struct sched_domain *);
6597 		if (!sdd->sd)
6598 			return -ENOMEM;
6599 
6600 		sdd->sg = alloc_percpu(struct sched_group *);
6601 		if (!sdd->sg)
6602 			return -ENOMEM;
6603 
6604 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6605 		if (!sdd->sgc)
6606 			return -ENOMEM;
6607 
6608 		for_each_cpu(j, cpu_map) {
6609 			struct sched_domain *sd;
6610 			struct sched_group *sg;
6611 			struct sched_group_capacity *sgc;
6612 
6613 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6614 					GFP_KERNEL, cpu_to_node(j));
6615 			if (!sd)
6616 				return -ENOMEM;
6617 
6618 			*per_cpu_ptr(sdd->sd, j) = sd;
6619 
6620 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6621 					GFP_KERNEL, cpu_to_node(j));
6622 			if (!sg)
6623 				return -ENOMEM;
6624 
6625 			sg->next = sg;
6626 
6627 			*per_cpu_ptr(sdd->sg, j) = sg;
6628 
6629 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6630 					GFP_KERNEL, cpu_to_node(j));
6631 			if (!sgc)
6632 				return -ENOMEM;
6633 
6634 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6635 		}
6636 	}
6637 
6638 	return 0;
6639 }
6640 
6641 static void __sdt_free(const struct cpumask *cpu_map)
6642 {
6643 	struct sched_domain_topology_level *tl;
6644 	int j;
6645 
6646 	for_each_sd_topology(tl) {
6647 		struct sd_data *sdd = &tl->data;
6648 
6649 		for_each_cpu(j, cpu_map) {
6650 			struct sched_domain *sd;
6651 
6652 			if (sdd->sd) {
6653 				sd = *per_cpu_ptr(sdd->sd, j);
6654 				if (sd && (sd->flags & SD_OVERLAP))
6655 					free_sched_groups(sd->groups, 0);
6656 				kfree(*per_cpu_ptr(sdd->sd, j));
6657 			}
6658 
6659 			if (sdd->sg)
6660 				kfree(*per_cpu_ptr(sdd->sg, j));
6661 			if (sdd->sgc)
6662 				kfree(*per_cpu_ptr(sdd->sgc, j));
6663 		}
6664 		free_percpu(sdd->sd);
6665 		sdd->sd = NULL;
6666 		free_percpu(sdd->sg);
6667 		sdd->sg = NULL;
6668 		free_percpu(sdd->sgc);
6669 		sdd->sgc = NULL;
6670 	}
6671 }
6672 
6673 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6674 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6675 		struct sched_domain *child, int cpu)
6676 {
6677 	struct sched_domain *sd = sd_init(tl, cpu);
6678 	if (!sd)
6679 		return child;
6680 
6681 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6682 	if (child) {
6683 		sd->level = child->level + 1;
6684 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6685 		child->parent = sd;
6686 		sd->child = child;
6687 
6688 		if (!cpumask_subset(sched_domain_span(child),
6689 				    sched_domain_span(sd))) {
6690 			pr_err("BUG: arch topology borken\n");
6691 #ifdef CONFIG_SCHED_DEBUG
6692 			pr_err("     the %s domain not a subset of the %s domain\n",
6693 					child->name, sd->name);
6694 #endif
6695 			/* Fixup, ensure @sd has at least @child cpus. */
6696 			cpumask_or(sched_domain_span(sd),
6697 				   sched_domain_span(sd),
6698 				   sched_domain_span(child));
6699 		}
6700 
6701 	}
6702 	set_domain_attribute(sd, attr);
6703 
6704 	return sd;
6705 }
6706 
6707 /*
6708  * Build sched domains for a given set of cpus and attach the sched domains
6709  * to the individual cpus
6710  */
6711 static int build_sched_domains(const struct cpumask *cpu_map,
6712 			       struct sched_domain_attr *attr)
6713 {
6714 	enum s_alloc alloc_state;
6715 	struct sched_domain *sd;
6716 	struct s_data d;
6717 	int i, ret = -ENOMEM;
6718 
6719 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6720 	if (alloc_state != sa_rootdomain)
6721 		goto error;
6722 
6723 	/* Set up domains for cpus specified by the cpu_map. */
6724 	for_each_cpu(i, cpu_map) {
6725 		struct sched_domain_topology_level *tl;
6726 
6727 		sd = NULL;
6728 		for_each_sd_topology(tl) {
6729 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6730 			if (tl == sched_domain_topology)
6731 				*per_cpu_ptr(d.sd, i) = sd;
6732 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6733 				sd->flags |= SD_OVERLAP;
6734 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6735 				break;
6736 		}
6737 	}
6738 
6739 	/* Build the groups for the domains */
6740 	for_each_cpu(i, cpu_map) {
6741 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6742 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6743 			if (sd->flags & SD_OVERLAP) {
6744 				if (build_overlap_sched_groups(sd, i))
6745 					goto error;
6746 			} else {
6747 				if (build_sched_groups(sd, i))
6748 					goto error;
6749 			}
6750 		}
6751 	}
6752 
6753 	/* Calculate CPU capacity for physical packages and nodes */
6754 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6755 		if (!cpumask_test_cpu(i, cpu_map))
6756 			continue;
6757 
6758 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6759 			claim_allocations(i, sd);
6760 			init_sched_groups_capacity(i, sd);
6761 		}
6762 	}
6763 
6764 	/* Attach the domains */
6765 	rcu_read_lock();
6766 	for_each_cpu(i, cpu_map) {
6767 		sd = *per_cpu_ptr(d.sd, i);
6768 		cpu_attach_domain(sd, d.rd, i);
6769 	}
6770 	rcu_read_unlock();
6771 
6772 	ret = 0;
6773 error:
6774 	__free_domain_allocs(&d, alloc_state, cpu_map);
6775 	return ret;
6776 }
6777 
6778 static cpumask_var_t *doms_cur;	/* current sched domains */
6779 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6780 static struct sched_domain_attr *dattr_cur;
6781 				/* attribues of custom domains in 'doms_cur' */
6782 
6783 /*
6784  * Special case: If a kmalloc of a doms_cur partition (array of
6785  * cpumask) fails, then fallback to a single sched domain,
6786  * as determined by the single cpumask fallback_doms.
6787  */
6788 static cpumask_var_t fallback_doms;
6789 
6790 /*
6791  * arch_update_cpu_topology lets virtualized architectures update the
6792  * cpu core maps. It is supposed to return 1 if the topology changed
6793  * or 0 if it stayed the same.
6794  */
6795 int __weak arch_update_cpu_topology(void)
6796 {
6797 	return 0;
6798 }
6799 
6800 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6801 {
6802 	int i;
6803 	cpumask_var_t *doms;
6804 
6805 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6806 	if (!doms)
6807 		return NULL;
6808 	for (i = 0; i < ndoms; i++) {
6809 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6810 			free_sched_domains(doms, i);
6811 			return NULL;
6812 		}
6813 	}
6814 	return doms;
6815 }
6816 
6817 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6818 {
6819 	unsigned int i;
6820 	for (i = 0; i < ndoms; i++)
6821 		free_cpumask_var(doms[i]);
6822 	kfree(doms);
6823 }
6824 
6825 /*
6826  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6827  * For now this just excludes isolated cpus, but could be used to
6828  * exclude other special cases in the future.
6829  */
6830 static int init_sched_domains(const struct cpumask *cpu_map)
6831 {
6832 	int err;
6833 
6834 	arch_update_cpu_topology();
6835 	ndoms_cur = 1;
6836 	doms_cur = alloc_sched_domains(ndoms_cur);
6837 	if (!doms_cur)
6838 		doms_cur = &fallback_doms;
6839 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6840 	err = build_sched_domains(doms_cur[0], NULL);
6841 	register_sched_domain_sysctl();
6842 
6843 	return err;
6844 }
6845 
6846 /*
6847  * Detach sched domains from a group of cpus specified in cpu_map
6848  * These cpus will now be attached to the NULL domain
6849  */
6850 static void detach_destroy_domains(const struct cpumask *cpu_map)
6851 {
6852 	int i;
6853 
6854 	rcu_read_lock();
6855 	for_each_cpu(i, cpu_map)
6856 		cpu_attach_domain(NULL, &def_root_domain, i);
6857 	rcu_read_unlock();
6858 }
6859 
6860 /* handle null as "default" */
6861 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6862 			struct sched_domain_attr *new, int idx_new)
6863 {
6864 	struct sched_domain_attr tmp;
6865 
6866 	/* fast path */
6867 	if (!new && !cur)
6868 		return 1;
6869 
6870 	tmp = SD_ATTR_INIT;
6871 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6872 			new ? (new + idx_new) : &tmp,
6873 			sizeof(struct sched_domain_attr));
6874 }
6875 
6876 /*
6877  * Partition sched domains as specified by the 'ndoms_new'
6878  * cpumasks in the array doms_new[] of cpumasks. This compares
6879  * doms_new[] to the current sched domain partitioning, doms_cur[].
6880  * It destroys each deleted domain and builds each new domain.
6881  *
6882  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6883  * The masks don't intersect (don't overlap.) We should setup one
6884  * sched domain for each mask. CPUs not in any of the cpumasks will
6885  * not be load balanced. If the same cpumask appears both in the
6886  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6887  * it as it is.
6888  *
6889  * The passed in 'doms_new' should be allocated using
6890  * alloc_sched_domains.  This routine takes ownership of it and will
6891  * free_sched_domains it when done with it. If the caller failed the
6892  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6893  * and partition_sched_domains() will fallback to the single partition
6894  * 'fallback_doms', it also forces the domains to be rebuilt.
6895  *
6896  * If doms_new == NULL it will be replaced with cpu_online_mask.
6897  * ndoms_new == 0 is a special case for destroying existing domains,
6898  * and it will not create the default domain.
6899  *
6900  * Call with hotplug lock held
6901  */
6902 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6903 			     struct sched_domain_attr *dattr_new)
6904 {
6905 	int i, j, n;
6906 	int new_topology;
6907 
6908 	mutex_lock(&sched_domains_mutex);
6909 
6910 	/* always unregister in case we don't destroy any domains */
6911 	unregister_sched_domain_sysctl();
6912 
6913 	/* Let architecture update cpu core mappings. */
6914 	new_topology = arch_update_cpu_topology();
6915 
6916 	n = doms_new ? ndoms_new : 0;
6917 
6918 	/* Destroy deleted domains */
6919 	for (i = 0; i < ndoms_cur; i++) {
6920 		for (j = 0; j < n && !new_topology; j++) {
6921 			if (cpumask_equal(doms_cur[i], doms_new[j])
6922 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6923 				goto match1;
6924 		}
6925 		/* no match - a current sched domain not in new doms_new[] */
6926 		detach_destroy_domains(doms_cur[i]);
6927 match1:
6928 		;
6929 	}
6930 
6931 	n = ndoms_cur;
6932 	if (doms_new == NULL) {
6933 		n = 0;
6934 		doms_new = &fallback_doms;
6935 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6936 		WARN_ON_ONCE(dattr_new);
6937 	}
6938 
6939 	/* Build new domains */
6940 	for (i = 0; i < ndoms_new; i++) {
6941 		for (j = 0; j < n && !new_topology; j++) {
6942 			if (cpumask_equal(doms_new[i], doms_cur[j])
6943 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6944 				goto match2;
6945 		}
6946 		/* no match - add a new doms_new */
6947 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6948 match2:
6949 		;
6950 	}
6951 
6952 	/* Remember the new sched domains */
6953 	if (doms_cur != &fallback_doms)
6954 		free_sched_domains(doms_cur, ndoms_cur);
6955 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6956 	doms_cur = doms_new;
6957 	dattr_cur = dattr_new;
6958 	ndoms_cur = ndoms_new;
6959 
6960 	register_sched_domain_sysctl();
6961 
6962 	mutex_unlock(&sched_domains_mutex);
6963 }
6964 
6965 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6966 
6967 /*
6968  * Update cpusets according to cpu_active mask.  If cpusets are
6969  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6970  * around partition_sched_domains().
6971  *
6972  * If we come here as part of a suspend/resume, don't touch cpusets because we
6973  * want to restore it back to its original state upon resume anyway.
6974  */
6975 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6976 			     void *hcpu)
6977 {
6978 	switch (action) {
6979 	case CPU_ONLINE_FROZEN:
6980 	case CPU_DOWN_FAILED_FROZEN:
6981 
6982 		/*
6983 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6984 		 * resume sequence. As long as this is not the last online
6985 		 * operation in the resume sequence, just build a single sched
6986 		 * domain, ignoring cpusets.
6987 		 */
6988 		num_cpus_frozen--;
6989 		if (likely(num_cpus_frozen)) {
6990 			partition_sched_domains(1, NULL, NULL);
6991 			break;
6992 		}
6993 
6994 		/*
6995 		 * This is the last CPU online operation. So fall through and
6996 		 * restore the original sched domains by considering the
6997 		 * cpuset configurations.
6998 		 */
6999 
7000 	case CPU_ONLINE:
7001 	case CPU_DOWN_FAILED:
7002 		cpuset_update_active_cpus(true);
7003 		break;
7004 	default:
7005 		return NOTIFY_DONE;
7006 	}
7007 	return NOTIFY_OK;
7008 }
7009 
7010 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7011 			       void *hcpu)
7012 {
7013 	switch (action) {
7014 	case CPU_DOWN_PREPARE:
7015 		cpuset_update_active_cpus(false);
7016 		break;
7017 	case CPU_DOWN_PREPARE_FROZEN:
7018 		num_cpus_frozen++;
7019 		partition_sched_domains(1, NULL, NULL);
7020 		break;
7021 	default:
7022 		return NOTIFY_DONE;
7023 	}
7024 	return NOTIFY_OK;
7025 }
7026 
7027 void __init sched_init_smp(void)
7028 {
7029 	cpumask_var_t non_isolated_cpus;
7030 
7031 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7032 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7033 
7034 	sched_init_numa();
7035 
7036 	/*
7037 	 * There's no userspace yet to cause hotplug operations; hence all the
7038 	 * cpu masks are stable and all blatant races in the below code cannot
7039 	 * happen.
7040 	 */
7041 	mutex_lock(&sched_domains_mutex);
7042 	init_sched_domains(cpu_active_mask);
7043 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7044 	if (cpumask_empty(non_isolated_cpus))
7045 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7046 	mutex_unlock(&sched_domains_mutex);
7047 
7048 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7049 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7050 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7051 
7052 	init_hrtick();
7053 
7054 	/* Move init over to a non-isolated CPU */
7055 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7056 		BUG();
7057 	sched_init_granularity();
7058 	free_cpumask_var(non_isolated_cpus);
7059 
7060 	init_sched_rt_class();
7061 	init_sched_dl_class();
7062 }
7063 #else
7064 void __init sched_init_smp(void)
7065 {
7066 	sched_init_granularity();
7067 }
7068 #endif /* CONFIG_SMP */
7069 
7070 const_debug unsigned int sysctl_timer_migration = 1;
7071 
7072 int in_sched_functions(unsigned long addr)
7073 {
7074 	return in_lock_functions(addr) ||
7075 		(addr >= (unsigned long)__sched_text_start
7076 		&& addr < (unsigned long)__sched_text_end);
7077 }
7078 
7079 #ifdef CONFIG_CGROUP_SCHED
7080 /*
7081  * Default task group.
7082  * Every task in system belongs to this group at bootup.
7083  */
7084 struct task_group root_task_group;
7085 LIST_HEAD(task_groups);
7086 #endif
7087 
7088 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7089 
7090 void __init sched_init(void)
7091 {
7092 	int i, j;
7093 	unsigned long alloc_size = 0, ptr;
7094 
7095 #ifdef CONFIG_FAIR_GROUP_SCHED
7096 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7097 #endif
7098 #ifdef CONFIG_RT_GROUP_SCHED
7099 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7100 #endif
7101 	if (alloc_size) {
7102 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7103 
7104 #ifdef CONFIG_FAIR_GROUP_SCHED
7105 		root_task_group.se = (struct sched_entity **)ptr;
7106 		ptr += nr_cpu_ids * sizeof(void **);
7107 
7108 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7109 		ptr += nr_cpu_ids * sizeof(void **);
7110 
7111 #endif /* CONFIG_FAIR_GROUP_SCHED */
7112 #ifdef CONFIG_RT_GROUP_SCHED
7113 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7114 		ptr += nr_cpu_ids * sizeof(void **);
7115 
7116 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7117 		ptr += nr_cpu_ids * sizeof(void **);
7118 
7119 #endif /* CONFIG_RT_GROUP_SCHED */
7120 	}
7121 #ifdef CONFIG_CPUMASK_OFFSTACK
7122 	for_each_possible_cpu(i) {
7123 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7124 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7125 	}
7126 #endif /* CONFIG_CPUMASK_OFFSTACK */
7127 
7128 	init_rt_bandwidth(&def_rt_bandwidth,
7129 			global_rt_period(), global_rt_runtime());
7130 	init_dl_bandwidth(&def_dl_bandwidth,
7131 			global_rt_period(), global_rt_runtime());
7132 
7133 #ifdef CONFIG_SMP
7134 	init_defrootdomain();
7135 #endif
7136 
7137 #ifdef CONFIG_RT_GROUP_SCHED
7138 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7139 			global_rt_period(), global_rt_runtime());
7140 #endif /* CONFIG_RT_GROUP_SCHED */
7141 
7142 #ifdef CONFIG_CGROUP_SCHED
7143 	list_add(&root_task_group.list, &task_groups);
7144 	INIT_LIST_HEAD(&root_task_group.children);
7145 	INIT_LIST_HEAD(&root_task_group.siblings);
7146 	autogroup_init(&init_task);
7147 
7148 #endif /* CONFIG_CGROUP_SCHED */
7149 
7150 	for_each_possible_cpu(i) {
7151 		struct rq *rq;
7152 
7153 		rq = cpu_rq(i);
7154 		raw_spin_lock_init(&rq->lock);
7155 		rq->nr_running = 0;
7156 		rq->calc_load_active = 0;
7157 		rq->calc_load_update = jiffies + LOAD_FREQ;
7158 		init_cfs_rq(&rq->cfs);
7159 		init_rt_rq(&rq->rt, rq);
7160 		init_dl_rq(&rq->dl, rq);
7161 #ifdef CONFIG_FAIR_GROUP_SCHED
7162 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7163 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7164 		/*
7165 		 * How much cpu bandwidth does root_task_group get?
7166 		 *
7167 		 * In case of task-groups formed thr' the cgroup filesystem, it
7168 		 * gets 100% of the cpu resources in the system. This overall
7169 		 * system cpu resource is divided among the tasks of
7170 		 * root_task_group and its child task-groups in a fair manner,
7171 		 * based on each entity's (task or task-group's) weight
7172 		 * (se->load.weight).
7173 		 *
7174 		 * In other words, if root_task_group has 10 tasks of weight
7175 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7176 		 * then A0's share of the cpu resource is:
7177 		 *
7178 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7179 		 *
7180 		 * We achieve this by letting root_task_group's tasks sit
7181 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7182 		 */
7183 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7184 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7185 #endif /* CONFIG_FAIR_GROUP_SCHED */
7186 
7187 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7188 #ifdef CONFIG_RT_GROUP_SCHED
7189 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7190 #endif
7191 
7192 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7193 			rq->cpu_load[j] = 0;
7194 
7195 		rq->last_load_update_tick = jiffies;
7196 
7197 #ifdef CONFIG_SMP
7198 		rq->sd = NULL;
7199 		rq->rd = NULL;
7200 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7201 		rq->post_schedule = 0;
7202 		rq->active_balance = 0;
7203 		rq->next_balance = jiffies;
7204 		rq->push_cpu = 0;
7205 		rq->cpu = i;
7206 		rq->online = 0;
7207 		rq->idle_stamp = 0;
7208 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7209 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7210 
7211 		INIT_LIST_HEAD(&rq->cfs_tasks);
7212 
7213 		rq_attach_root(rq, &def_root_domain);
7214 #ifdef CONFIG_NO_HZ_COMMON
7215 		rq->nohz_flags = 0;
7216 #endif
7217 #ifdef CONFIG_NO_HZ_FULL
7218 		rq->last_sched_tick = 0;
7219 #endif
7220 #endif
7221 		init_rq_hrtick(rq);
7222 		atomic_set(&rq->nr_iowait, 0);
7223 	}
7224 
7225 	set_load_weight(&init_task);
7226 
7227 #ifdef CONFIG_PREEMPT_NOTIFIERS
7228 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7229 #endif
7230 
7231 	/*
7232 	 * The boot idle thread does lazy MMU switching as well:
7233 	 */
7234 	atomic_inc(&init_mm.mm_count);
7235 	enter_lazy_tlb(&init_mm, current);
7236 
7237 	/*
7238 	 * During early bootup we pretend to be a normal task:
7239 	 */
7240 	current->sched_class = &fair_sched_class;
7241 
7242 	/*
7243 	 * Make us the idle thread. Technically, schedule() should not be
7244 	 * called from this thread, however somewhere below it might be,
7245 	 * but because we are the idle thread, we just pick up running again
7246 	 * when this runqueue becomes "idle".
7247 	 */
7248 	init_idle(current, smp_processor_id());
7249 
7250 	calc_load_update = jiffies + LOAD_FREQ;
7251 
7252 #ifdef CONFIG_SMP
7253 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7254 	/* May be allocated at isolcpus cmdline parse time */
7255 	if (cpu_isolated_map == NULL)
7256 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7257 	idle_thread_set_boot_cpu();
7258 	set_cpu_rq_start_time();
7259 #endif
7260 	init_sched_fair_class();
7261 
7262 	scheduler_running = 1;
7263 }
7264 
7265 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7266 static inline int preempt_count_equals(int preempt_offset)
7267 {
7268 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7269 
7270 	return (nested == preempt_offset);
7271 }
7272 
7273 void __might_sleep(const char *file, int line, int preempt_offset)
7274 {
7275 	/*
7276 	 * Blocking primitives will set (and therefore destroy) current->state,
7277 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7278 	 * otherwise we will destroy state.
7279 	 */
7280 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7281 			"do not call blocking ops when !TASK_RUNNING; "
7282 			"state=%lx set at [<%p>] %pS\n",
7283 			current->state,
7284 			(void *)current->task_state_change,
7285 			(void *)current->task_state_change);
7286 
7287 	___might_sleep(file, line, preempt_offset);
7288 }
7289 EXPORT_SYMBOL(__might_sleep);
7290 
7291 void ___might_sleep(const char *file, int line, int preempt_offset)
7292 {
7293 	static unsigned long prev_jiffy;	/* ratelimiting */
7294 
7295 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7296 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7297 	     !is_idle_task(current)) ||
7298 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7299 		return;
7300 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7301 		return;
7302 	prev_jiffy = jiffies;
7303 
7304 	printk(KERN_ERR
7305 		"BUG: sleeping function called from invalid context at %s:%d\n",
7306 			file, line);
7307 	printk(KERN_ERR
7308 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7309 			in_atomic(), irqs_disabled(),
7310 			current->pid, current->comm);
7311 
7312 	if (task_stack_end_corrupted(current))
7313 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7314 
7315 	debug_show_held_locks(current);
7316 	if (irqs_disabled())
7317 		print_irqtrace_events(current);
7318 #ifdef CONFIG_DEBUG_PREEMPT
7319 	if (!preempt_count_equals(preempt_offset)) {
7320 		pr_err("Preemption disabled at:");
7321 		print_ip_sym(current->preempt_disable_ip);
7322 		pr_cont("\n");
7323 	}
7324 #endif
7325 	dump_stack();
7326 }
7327 EXPORT_SYMBOL(___might_sleep);
7328 #endif
7329 
7330 #ifdef CONFIG_MAGIC_SYSRQ
7331 static void normalize_task(struct rq *rq, struct task_struct *p)
7332 {
7333 	const struct sched_class *prev_class = p->sched_class;
7334 	struct sched_attr attr = {
7335 		.sched_policy = SCHED_NORMAL,
7336 	};
7337 	int old_prio = p->prio;
7338 	int queued;
7339 
7340 	queued = task_on_rq_queued(p);
7341 	if (queued)
7342 		dequeue_task(rq, p, 0);
7343 	__setscheduler(rq, p, &attr);
7344 	if (queued) {
7345 		enqueue_task(rq, p, 0);
7346 		resched_curr(rq);
7347 	}
7348 
7349 	check_class_changed(rq, p, prev_class, old_prio);
7350 }
7351 
7352 void normalize_rt_tasks(void)
7353 {
7354 	struct task_struct *g, *p;
7355 	unsigned long flags;
7356 	struct rq *rq;
7357 
7358 	read_lock(&tasklist_lock);
7359 	for_each_process_thread(g, p) {
7360 		/*
7361 		 * Only normalize user tasks:
7362 		 */
7363 		if (p->flags & PF_KTHREAD)
7364 			continue;
7365 
7366 		p->se.exec_start		= 0;
7367 #ifdef CONFIG_SCHEDSTATS
7368 		p->se.statistics.wait_start	= 0;
7369 		p->se.statistics.sleep_start	= 0;
7370 		p->se.statistics.block_start	= 0;
7371 #endif
7372 
7373 		if (!dl_task(p) && !rt_task(p)) {
7374 			/*
7375 			 * Renice negative nice level userspace
7376 			 * tasks back to 0:
7377 			 */
7378 			if (task_nice(p) < 0)
7379 				set_user_nice(p, 0);
7380 			continue;
7381 		}
7382 
7383 		rq = task_rq_lock(p, &flags);
7384 		normalize_task(rq, p);
7385 		task_rq_unlock(rq, p, &flags);
7386 	}
7387 	read_unlock(&tasklist_lock);
7388 }
7389 
7390 #endif /* CONFIG_MAGIC_SYSRQ */
7391 
7392 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7393 /*
7394  * These functions are only useful for the IA64 MCA handling, or kdb.
7395  *
7396  * They can only be called when the whole system has been
7397  * stopped - every CPU needs to be quiescent, and no scheduling
7398  * activity can take place. Using them for anything else would
7399  * be a serious bug, and as a result, they aren't even visible
7400  * under any other configuration.
7401  */
7402 
7403 /**
7404  * curr_task - return the current task for a given cpu.
7405  * @cpu: the processor in question.
7406  *
7407  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7408  *
7409  * Return: The current task for @cpu.
7410  */
7411 struct task_struct *curr_task(int cpu)
7412 {
7413 	return cpu_curr(cpu);
7414 }
7415 
7416 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7417 
7418 #ifdef CONFIG_IA64
7419 /**
7420  * set_curr_task - set the current task for a given cpu.
7421  * @cpu: the processor in question.
7422  * @p: the task pointer to set.
7423  *
7424  * Description: This function must only be used when non-maskable interrupts
7425  * are serviced on a separate stack. It allows the architecture to switch the
7426  * notion of the current task on a cpu in a non-blocking manner. This function
7427  * must be called with all CPU's synchronized, and interrupts disabled, the
7428  * and caller must save the original value of the current task (see
7429  * curr_task() above) and restore that value before reenabling interrupts and
7430  * re-starting the system.
7431  *
7432  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7433  */
7434 void set_curr_task(int cpu, struct task_struct *p)
7435 {
7436 	cpu_curr(cpu) = p;
7437 }
7438 
7439 #endif
7440 
7441 #ifdef CONFIG_CGROUP_SCHED
7442 /* task_group_lock serializes the addition/removal of task groups */
7443 static DEFINE_SPINLOCK(task_group_lock);
7444 
7445 static void free_sched_group(struct task_group *tg)
7446 {
7447 	free_fair_sched_group(tg);
7448 	free_rt_sched_group(tg);
7449 	autogroup_free(tg);
7450 	kfree(tg);
7451 }
7452 
7453 /* allocate runqueue etc for a new task group */
7454 struct task_group *sched_create_group(struct task_group *parent)
7455 {
7456 	struct task_group *tg;
7457 
7458 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7459 	if (!tg)
7460 		return ERR_PTR(-ENOMEM);
7461 
7462 	if (!alloc_fair_sched_group(tg, parent))
7463 		goto err;
7464 
7465 	if (!alloc_rt_sched_group(tg, parent))
7466 		goto err;
7467 
7468 	return tg;
7469 
7470 err:
7471 	free_sched_group(tg);
7472 	return ERR_PTR(-ENOMEM);
7473 }
7474 
7475 void sched_online_group(struct task_group *tg, struct task_group *parent)
7476 {
7477 	unsigned long flags;
7478 
7479 	spin_lock_irqsave(&task_group_lock, flags);
7480 	list_add_rcu(&tg->list, &task_groups);
7481 
7482 	WARN_ON(!parent); /* root should already exist */
7483 
7484 	tg->parent = parent;
7485 	INIT_LIST_HEAD(&tg->children);
7486 	list_add_rcu(&tg->siblings, &parent->children);
7487 	spin_unlock_irqrestore(&task_group_lock, flags);
7488 }
7489 
7490 /* rcu callback to free various structures associated with a task group */
7491 static void free_sched_group_rcu(struct rcu_head *rhp)
7492 {
7493 	/* now it should be safe to free those cfs_rqs */
7494 	free_sched_group(container_of(rhp, struct task_group, rcu));
7495 }
7496 
7497 /* Destroy runqueue etc associated with a task group */
7498 void sched_destroy_group(struct task_group *tg)
7499 {
7500 	/* wait for possible concurrent references to cfs_rqs complete */
7501 	call_rcu(&tg->rcu, free_sched_group_rcu);
7502 }
7503 
7504 void sched_offline_group(struct task_group *tg)
7505 {
7506 	unsigned long flags;
7507 	int i;
7508 
7509 	/* end participation in shares distribution */
7510 	for_each_possible_cpu(i)
7511 		unregister_fair_sched_group(tg, i);
7512 
7513 	spin_lock_irqsave(&task_group_lock, flags);
7514 	list_del_rcu(&tg->list);
7515 	list_del_rcu(&tg->siblings);
7516 	spin_unlock_irqrestore(&task_group_lock, flags);
7517 }
7518 
7519 /* change task's runqueue when it moves between groups.
7520  *	The caller of this function should have put the task in its new group
7521  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7522  *	reflect its new group.
7523  */
7524 void sched_move_task(struct task_struct *tsk)
7525 {
7526 	struct task_group *tg;
7527 	int queued, running;
7528 	unsigned long flags;
7529 	struct rq *rq;
7530 
7531 	rq = task_rq_lock(tsk, &flags);
7532 
7533 	running = task_current(rq, tsk);
7534 	queued = task_on_rq_queued(tsk);
7535 
7536 	if (queued)
7537 		dequeue_task(rq, tsk, 0);
7538 	if (unlikely(running))
7539 		put_prev_task(rq, tsk);
7540 
7541 	/*
7542 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7543 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7544 	 * to prevent lockdep warnings.
7545 	 */
7546 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7547 			  struct task_group, css);
7548 	tg = autogroup_task_group(tsk, tg);
7549 	tsk->sched_task_group = tg;
7550 
7551 #ifdef CONFIG_FAIR_GROUP_SCHED
7552 	if (tsk->sched_class->task_move_group)
7553 		tsk->sched_class->task_move_group(tsk, queued);
7554 	else
7555 #endif
7556 		set_task_rq(tsk, task_cpu(tsk));
7557 
7558 	if (unlikely(running))
7559 		tsk->sched_class->set_curr_task(rq);
7560 	if (queued)
7561 		enqueue_task(rq, tsk, 0);
7562 
7563 	task_rq_unlock(rq, tsk, &flags);
7564 }
7565 #endif /* CONFIG_CGROUP_SCHED */
7566 
7567 #ifdef CONFIG_RT_GROUP_SCHED
7568 /*
7569  * Ensure that the real time constraints are schedulable.
7570  */
7571 static DEFINE_MUTEX(rt_constraints_mutex);
7572 
7573 /* Must be called with tasklist_lock held */
7574 static inline int tg_has_rt_tasks(struct task_group *tg)
7575 {
7576 	struct task_struct *g, *p;
7577 
7578 	/*
7579 	 * Autogroups do not have RT tasks; see autogroup_create().
7580 	 */
7581 	if (task_group_is_autogroup(tg))
7582 		return 0;
7583 
7584 	for_each_process_thread(g, p) {
7585 		if (rt_task(p) && task_group(p) == tg)
7586 			return 1;
7587 	}
7588 
7589 	return 0;
7590 }
7591 
7592 struct rt_schedulable_data {
7593 	struct task_group *tg;
7594 	u64 rt_period;
7595 	u64 rt_runtime;
7596 };
7597 
7598 static int tg_rt_schedulable(struct task_group *tg, void *data)
7599 {
7600 	struct rt_schedulable_data *d = data;
7601 	struct task_group *child;
7602 	unsigned long total, sum = 0;
7603 	u64 period, runtime;
7604 
7605 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7606 	runtime = tg->rt_bandwidth.rt_runtime;
7607 
7608 	if (tg == d->tg) {
7609 		period = d->rt_period;
7610 		runtime = d->rt_runtime;
7611 	}
7612 
7613 	/*
7614 	 * Cannot have more runtime than the period.
7615 	 */
7616 	if (runtime > period && runtime != RUNTIME_INF)
7617 		return -EINVAL;
7618 
7619 	/*
7620 	 * Ensure we don't starve existing RT tasks.
7621 	 */
7622 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7623 		return -EBUSY;
7624 
7625 	total = to_ratio(period, runtime);
7626 
7627 	/*
7628 	 * Nobody can have more than the global setting allows.
7629 	 */
7630 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7631 		return -EINVAL;
7632 
7633 	/*
7634 	 * The sum of our children's runtime should not exceed our own.
7635 	 */
7636 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7637 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7638 		runtime = child->rt_bandwidth.rt_runtime;
7639 
7640 		if (child == d->tg) {
7641 			period = d->rt_period;
7642 			runtime = d->rt_runtime;
7643 		}
7644 
7645 		sum += to_ratio(period, runtime);
7646 	}
7647 
7648 	if (sum > total)
7649 		return -EINVAL;
7650 
7651 	return 0;
7652 }
7653 
7654 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7655 {
7656 	int ret;
7657 
7658 	struct rt_schedulable_data data = {
7659 		.tg = tg,
7660 		.rt_period = period,
7661 		.rt_runtime = runtime,
7662 	};
7663 
7664 	rcu_read_lock();
7665 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7666 	rcu_read_unlock();
7667 
7668 	return ret;
7669 }
7670 
7671 static int tg_set_rt_bandwidth(struct task_group *tg,
7672 		u64 rt_period, u64 rt_runtime)
7673 {
7674 	int i, err = 0;
7675 
7676 	/*
7677 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7678 	 * kernel creating (and or operating) RT threads.
7679 	 */
7680 	if (tg == &root_task_group && rt_runtime == 0)
7681 		return -EINVAL;
7682 
7683 	/* No period doesn't make any sense. */
7684 	if (rt_period == 0)
7685 		return -EINVAL;
7686 
7687 	mutex_lock(&rt_constraints_mutex);
7688 	read_lock(&tasklist_lock);
7689 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7690 	if (err)
7691 		goto unlock;
7692 
7693 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7694 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7695 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7696 
7697 	for_each_possible_cpu(i) {
7698 		struct rt_rq *rt_rq = tg->rt_rq[i];
7699 
7700 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7701 		rt_rq->rt_runtime = rt_runtime;
7702 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7703 	}
7704 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7705 unlock:
7706 	read_unlock(&tasklist_lock);
7707 	mutex_unlock(&rt_constraints_mutex);
7708 
7709 	return err;
7710 }
7711 
7712 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7713 {
7714 	u64 rt_runtime, rt_period;
7715 
7716 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7717 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7718 	if (rt_runtime_us < 0)
7719 		rt_runtime = RUNTIME_INF;
7720 
7721 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7722 }
7723 
7724 static long sched_group_rt_runtime(struct task_group *tg)
7725 {
7726 	u64 rt_runtime_us;
7727 
7728 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7729 		return -1;
7730 
7731 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7732 	do_div(rt_runtime_us, NSEC_PER_USEC);
7733 	return rt_runtime_us;
7734 }
7735 
7736 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7737 {
7738 	u64 rt_runtime, rt_period;
7739 
7740 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7741 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7742 
7743 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7744 }
7745 
7746 static long sched_group_rt_period(struct task_group *tg)
7747 {
7748 	u64 rt_period_us;
7749 
7750 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7751 	do_div(rt_period_us, NSEC_PER_USEC);
7752 	return rt_period_us;
7753 }
7754 #endif /* CONFIG_RT_GROUP_SCHED */
7755 
7756 #ifdef CONFIG_RT_GROUP_SCHED
7757 static int sched_rt_global_constraints(void)
7758 {
7759 	int ret = 0;
7760 
7761 	mutex_lock(&rt_constraints_mutex);
7762 	read_lock(&tasklist_lock);
7763 	ret = __rt_schedulable(NULL, 0, 0);
7764 	read_unlock(&tasklist_lock);
7765 	mutex_unlock(&rt_constraints_mutex);
7766 
7767 	return ret;
7768 }
7769 
7770 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7771 {
7772 	/* Don't accept realtime tasks when there is no way for them to run */
7773 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7774 		return 0;
7775 
7776 	return 1;
7777 }
7778 
7779 #else /* !CONFIG_RT_GROUP_SCHED */
7780 static int sched_rt_global_constraints(void)
7781 {
7782 	unsigned long flags;
7783 	int i, ret = 0;
7784 
7785 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7786 	for_each_possible_cpu(i) {
7787 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7788 
7789 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7790 		rt_rq->rt_runtime = global_rt_runtime();
7791 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7792 	}
7793 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7794 
7795 	return ret;
7796 }
7797 #endif /* CONFIG_RT_GROUP_SCHED */
7798 
7799 static int sched_dl_global_constraints(void)
7800 {
7801 	u64 runtime = global_rt_runtime();
7802 	u64 period = global_rt_period();
7803 	u64 new_bw = to_ratio(period, runtime);
7804 	struct dl_bw *dl_b;
7805 	int cpu, ret = 0;
7806 	unsigned long flags;
7807 
7808 	/*
7809 	 * Here we want to check the bandwidth not being set to some
7810 	 * value smaller than the currently allocated bandwidth in
7811 	 * any of the root_domains.
7812 	 *
7813 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7814 	 * cycling on root_domains... Discussion on different/better
7815 	 * solutions is welcome!
7816 	 */
7817 	for_each_possible_cpu(cpu) {
7818 		rcu_read_lock_sched();
7819 		dl_b = dl_bw_of(cpu);
7820 
7821 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7822 		if (new_bw < dl_b->total_bw)
7823 			ret = -EBUSY;
7824 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7825 
7826 		rcu_read_unlock_sched();
7827 
7828 		if (ret)
7829 			break;
7830 	}
7831 
7832 	return ret;
7833 }
7834 
7835 static void sched_dl_do_global(void)
7836 {
7837 	u64 new_bw = -1;
7838 	struct dl_bw *dl_b;
7839 	int cpu;
7840 	unsigned long flags;
7841 
7842 	def_dl_bandwidth.dl_period = global_rt_period();
7843 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7844 
7845 	if (global_rt_runtime() != RUNTIME_INF)
7846 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7847 
7848 	/*
7849 	 * FIXME: As above...
7850 	 */
7851 	for_each_possible_cpu(cpu) {
7852 		rcu_read_lock_sched();
7853 		dl_b = dl_bw_of(cpu);
7854 
7855 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7856 		dl_b->bw = new_bw;
7857 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7858 
7859 		rcu_read_unlock_sched();
7860 	}
7861 }
7862 
7863 static int sched_rt_global_validate(void)
7864 {
7865 	if (sysctl_sched_rt_period <= 0)
7866 		return -EINVAL;
7867 
7868 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7869 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7870 		return -EINVAL;
7871 
7872 	return 0;
7873 }
7874 
7875 static void sched_rt_do_global(void)
7876 {
7877 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7878 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7879 }
7880 
7881 int sched_rt_handler(struct ctl_table *table, int write,
7882 		void __user *buffer, size_t *lenp,
7883 		loff_t *ppos)
7884 {
7885 	int old_period, old_runtime;
7886 	static DEFINE_MUTEX(mutex);
7887 	int ret;
7888 
7889 	mutex_lock(&mutex);
7890 	old_period = sysctl_sched_rt_period;
7891 	old_runtime = sysctl_sched_rt_runtime;
7892 
7893 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7894 
7895 	if (!ret && write) {
7896 		ret = sched_rt_global_validate();
7897 		if (ret)
7898 			goto undo;
7899 
7900 		ret = sched_rt_global_constraints();
7901 		if (ret)
7902 			goto undo;
7903 
7904 		ret = sched_dl_global_constraints();
7905 		if (ret)
7906 			goto undo;
7907 
7908 		sched_rt_do_global();
7909 		sched_dl_do_global();
7910 	}
7911 	if (0) {
7912 undo:
7913 		sysctl_sched_rt_period = old_period;
7914 		sysctl_sched_rt_runtime = old_runtime;
7915 	}
7916 	mutex_unlock(&mutex);
7917 
7918 	return ret;
7919 }
7920 
7921 int sched_rr_handler(struct ctl_table *table, int write,
7922 		void __user *buffer, size_t *lenp,
7923 		loff_t *ppos)
7924 {
7925 	int ret;
7926 	static DEFINE_MUTEX(mutex);
7927 
7928 	mutex_lock(&mutex);
7929 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7930 	/* make sure that internally we keep jiffies */
7931 	/* also, writing zero resets timeslice to default */
7932 	if (!ret && write) {
7933 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7934 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7935 	}
7936 	mutex_unlock(&mutex);
7937 	return ret;
7938 }
7939 
7940 #ifdef CONFIG_CGROUP_SCHED
7941 
7942 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7943 {
7944 	return css ? container_of(css, struct task_group, css) : NULL;
7945 }
7946 
7947 static struct cgroup_subsys_state *
7948 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7949 {
7950 	struct task_group *parent = css_tg(parent_css);
7951 	struct task_group *tg;
7952 
7953 	if (!parent) {
7954 		/* This is early initialization for the top cgroup */
7955 		return &root_task_group.css;
7956 	}
7957 
7958 	tg = sched_create_group(parent);
7959 	if (IS_ERR(tg))
7960 		return ERR_PTR(-ENOMEM);
7961 
7962 	return &tg->css;
7963 }
7964 
7965 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7966 {
7967 	struct task_group *tg = css_tg(css);
7968 	struct task_group *parent = css_tg(css->parent);
7969 
7970 	if (parent)
7971 		sched_online_group(tg, parent);
7972 	return 0;
7973 }
7974 
7975 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7976 {
7977 	struct task_group *tg = css_tg(css);
7978 
7979 	sched_destroy_group(tg);
7980 }
7981 
7982 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7983 {
7984 	struct task_group *tg = css_tg(css);
7985 
7986 	sched_offline_group(tg);
7987 }
7988 
7989 static void cpu_cgroup_fork(struct task_struct *task)
7990 {
7991 	sched_move_task(task);
7992 }
7993 
7994 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7995 				 struct cgroup_taskset *tset)
7996 {
7997 	struct task_struct *task;
7998 
7999 	cgroup_taskset_for_each(task, tset) {
8000 #ifdef CONFIG_RT_GROUP_SCHED
8001 		if (!sched_rt_can_attach(css_tg(css), task))
8002 			return -EINVAL;
8003 #else
8004 		/* We don't support RT-tasks being in separate groups */
8005 		if (task->sched_class != &fair_sched_class)
8006 			return -EINVAL;
8007 #endif
8008 	}
8009 	return 0;
8010 }
8011 
8012 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8013 			      struct cgroup_taskset *tset)
8014 {
8015 	struct task_struct *task;
8016 
8017 	cgroup_taskset_for_each(task, tset)
8018 		sched_move_task(task);
8019 }
8020 
8021 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8022 			    struct cgroup_subsys_state *old_css,
8023 			    struct task_struct *task)
8024 {
8025 	/*
8026 	 * cgroup_exit() is called in the copy_process() failure path.
8027 	 * Ignore this case since the task hasn't ran yet, this avoids
8028 	 * trying to poke a half freed task state from generic code.
8029 	 */
8030 	if (!(task->flags & PF_EXITING))
8031 		return;
8032 
8033 	sched_move_task(task);
8034 }
8035 
8036 #ifdef CONFIG_FAIR_GROUP_SCHED
8037 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8038 				struct cftype *cftype, u64 shareval)
8039 {
8040 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8041 }
8042 
8043 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8044 			       struct cftype *cft)
8045 {
8046 	struct task_group *tg = css_tg(css);
8047 
8048 	return (u64) scale_load_down(tg->shares);
8049 }
8050 
8051 #ifdef CONFIG_CFS_BANDWIDTH
8052 static DEFINE_MUTEX(cfs_constraints_mutex);
8053 
8054 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8055 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8056 
8057 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8058 
8059 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8060 {
8061 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8062 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8063 
8064 	if (tg == &root_task_group)
8065 		return -EINVAL;
8066 
8067 	/*
8068 	 * Ensure we have at some amount of bandwidth every period.  This is
8069 	 * to prevent reaching a state of large arrears when throttled via
8070 	 * entity_tick() resulting in prolonged exit starvation.
8071 	 */
8072 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8073 		return -EINVAL;
8074 
8075 	/*
8076 	 * Likewise, bound things on the otherside by preventing insane quota
8077 	 * periods.  This also allows us to normalize in computing quota
8078 	 * feasibility.
8079 	 */
8080 	if (period > max_cfs_quota_period)
8081 		return -EINVAL;
8082 
8083 	/*
8084 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8085 	 * unthrottle_offline_cfs_rqs().
8086 	 */
8087 	get_online_cpus();
8088 	mutex_lock(&cfs_constraints_mutex);
8089 	ret = __cfs_schedulable(tg, period, quota);
8090 	if (ret)
8091 		goto out_unlock;
8092 
8093 	runtime_enabled = quota != RUNTIME_INF;
8094 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8095 	/*
8096 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8097 	 * before making related changes, and on->off must occur afterwards
8098 	 */
8099 	if (runtime_enabled && !runtime_was_enabled)
8100 		cfs_bandwidth_usage_inc();
8101 	raw_spin_lock_irq(&cfs_b->lock);
8102 	cfs_b->period = ns_to_ktime(period);
8103 	cfs_b->quota = quota;
8104 
8105 	__refill_cfs_bandwidth_runtime(cfs_b);
8106 	/* restart the period timer (if active) to handle new period expiry */
8107 	if (runtime_enabled && cfs_b->timer_active) {
8108 		/* force a reprogram */
8109 		__start_cfs_bandwidth(cfs_b, true);
8110 	}
8111 	raw_spin_unlock_irq(&cfs_b->lock);
8112 
8113 	for_each_online_cpu(i) {
8114 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8115 		struct rq *rq = cfs_rq->rq;
8116 
8117 		raw_spin_lock_irq(&rq->lock);
8118 		cfs_rq->runtime_enabled = runtime_enabled;
8119 		cfs_rq->runtime_remaining = 0;
8120 
8121 		if (cfs_rq->throttled)
8122 			unthrottle_cfs_rq(cfs_rq);
8123 		raw_spin_unlock_irq(&rq->lock);
8124 	}
8125 	if (runtime_was_enabled && !runtime_enabled)
8126 		cfs_bandwidth_usage_dec();
8127 out_unlock:
8128 	mutex_unlock(&cfs_constraints_mutex);
8129 	put_online_cpus();
8130 
8131 	return ret;
8132 }
8133 
8134 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8135 {
8136 	u64 quota, period;
8137 
8138 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8139 	if (cfs_quota_us < 0)
8140 		quota = RUNTIME_INF;
8141 	else
8142 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8143 
8144 	return tg_set_cfs_bandwidth(tg, period, quota);
8145 }
8146 
8147 long tg_get_cfs_quota(struct task_group *tg)
8148 {
8149 	u64 quota_us;
8150 
8151 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8152 		return -1;
8153 
8154 	quota_us = tg->cfs_bandwidth.quota;
8155 	do_div(quota_us, NSEC_PER_USEC);
8156 
8157 	return quota_us;
8158 }
8159 
8160 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8161 {
8162 	u64 quota, period;
8163 
8164 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8165 	quota = tg->cfs_bandwidth.quota;
8166 
8167 	return tg_set_cfs_bandwidth(tg, period, quota);
8168 }
8169 
8170 long tg_get_cfs_period(struct task_group *tg)
8171 {
8172 	u64 cfs_period_us;
8173 
8174 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8175 	do_div(cfs_period_us, NSEC_PER_USEC);
8176 
8177 	return cfs_period_us;
8178 }
8179 
8180 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8181 				  struct cftype *cft)
8182 {
8183 	return tg_get_cfs_quota(css_tg(css));
8184 }
8185 
8186 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8187 				   struct cftype *cftype, s64 cfs_quota_us)
8188 {
8189 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8190 }
8191 
8192 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8193 				   struct cftype *cft)
8194 {
8195 	return tg_get_cfs_period(css_tg(css));
8196 }
8197 
8198 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8199 				    struct cftype *cftype, u64 cfs_period_us)
8200 {
8201 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8202 }
8203 
8204 struct cfs_schedulable_data {
8205 	struct task_group *tg;
8206 	u64 period, quota;
8207 };
8208 
8209 /*
8210  * normalize group quota/period to be quota/max_period
8211  * note: units are usecs
8212  */
8213 static u64 normalize_cfs_quota(struct task_group *tg,
8214 			       struct cfs_schedulable_data *d)
8215 {
8216 	u64 quota, period;
8217 
8218 	if (tg == d->tg) {
8219 		period = d->period;
8220 		quota = d->quota;
8221 	} else {
8222 		period = tg_get_cfs_period(tg);
8223 		quota = tg_get_cfs_quota(tg);
8224 	}
8225 
8226 	/* note: these should typically be equivalent */
8227 	if (quota == RUNTIME_INF || quota == -1)
8228 		return RUNTIME_INF;
8229 
8230 	return to_ratio(period, quota);
8231 }
8232 
8233 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8234 {
8235 	struct cfs_schedulable_data *d = data;
8236 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8237 	s64 quota = 0, parent_quota = -1;
8238 
8239 	if (!tg->parent) {
8240 		quota = RUNTIME_INF;
8241 	} else {
8242 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8243 
8244 		quota = normalize_cfs_quota(tg, d);
8245 		parent_quota = parent_b->hierarchical_quota;
8246 
8247 		/*
8248 		 * ensure max(child_quota) <= parent_quota, inherit when no
8249 		 * limit is set
8250 		 */
8251 		if (quota == RUNTIME_INF)
8252 			quota = parent_quota;
8253 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8254 			return -EINVAL;
8255 	}
8256 	cfs_b->hierarchical_quota = quota;
8257 
8258 	return 0;
8259 }
8260 
8261 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8262 {
8263 	int ret;
8264 	struct cfs_schedulable_data data = {
8265 		.tg = tg,
8266 		.period = period,
8267 		.quota = quota,
8268 	};
8269 
8270 	if (quota != RUNTIME_INF) {
8271 		do_div(data.period, NSEC_PER_USEC);
8272 		do_div(data.quota, NSEC_PER_USEC);
8273 	}
8274 
8275 	rcu_read_lock();
8276 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8277 	rcu_read_unlock();
8278 
8279 	return ret;
8280 }
8281 
8282 static int cpu_stats_show(struct seq_file *sf, void *v)
8283 {
8284 	struct task_group *tg = css_tg(seq_css(sf));
8285 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8286 
8287 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8288 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8289 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8290 
8291 	return 0;
8292 }
8293 #endif /* CONFIG_CFS_BANDWIDTH */
8294 #endif /* CONFIG_FAIR_GROUP_SCHED */
8295 
8296 #ifdef CONFIG_RT_GROUP_SCHED
8297 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8298 				struct cftype *cft, s64 val)
8299 {
8300 	return sched_group_set_rt_runtime(css_tg(css), val);
8301 }
8302 
8303 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8304 			       struct cftype *cft)
8305 {
8306 	return sched_group_rt_runtime(css_tg(css));
8307 }
8308 
8309 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8310 				    struct cftype *cftype, u64 rt_period_us)
8311 {
8312 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8313 }
8314 
8315 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8316 				   struct cftype *cft)
8317 {
8318 	return sched_group_rt_period(css_tg(css));
8319 }
8320 #endif /* CONFIG_RT_GROUP_SCHED */
8321 
8322 static struct cftype cpu_files[] = {
8323 #ifdef CONFIG_FAIR_GROUP_SCHED
8324 	{
8325 		.name = "shares",
8326 		.read_u64 = cpu_shares_read_u64,
8327 		.write_u64 = cpu_shares_write_u64,
8328 	},
8329 #endif
8330 #ifdef CONFIG_CFS_BANDWIDTH
8331 	{
8332 		.name = "cfs_quota_us",
8333 		.read_s64 = cpu_cfs_quota_read_s64,
8334 		.write_s64 = cpu_cfs_quota_write_s64,
8335 	},
8336 	{
8337 		.name = "cfs_period_us",
8338 		.read_u64 = cpu_cfs_period_read_u64,
8339 		.write_u64 = cpu_cfs_period_write_u64,
8340 	},
8341 	{
8342 		.name = "stat",
8343 		.seq_show = cpu_stats_show,
8344 	},
8345 #endif
8346 #ifdef CONFIG_RT_GROUP_SCHED
8347 	{
8348 		.name = "rt_runtime_us",
8349 		.read_s64 = cpu_rt_runtime_read,
8350 		.write_s64 = cpu_rt_runtime_write,
8351 	},
8352 	{
8353 		.name = "rt_period_us",
8354 		.read_u64 = cpu_rt_period_read_uint,
8355 		.write_u64 = cpu_rt_period_write_uint,
8356 	},
8357 #endif
8358 	{ }	/* terminate */
8359 };
8360 
8361 struct cgroup_subsys cpu_cgrp_subsys = {
8362 	.css_alloc	= cpu_cgroup_css_alloc,
8363 	.css_free	= cpu_cgroup_css_free,
8364 	.css_online	= cpu_cgroup_css_online,
8365 	.css_offline	= cpu_cgroup_css_offline,
8366 	.fork		= cpu_cgroup_fork,
8367 	.can_attach	= cpu_cgroup_can_attach,
8368 	.attach		= cpu_cgroup_attach,
8369 	.exit		= cpu_cgroup_exit,
8370 	.legacy_cftypes	= cpu_files,
8371 	.early_init	= 1,
8372 };
8373 
8374 #endif	/* CONFIG_CGROUP_SCHED */
8375 
8376 void dump_cpu_task(int cpu)
8377 {
8378 	pr_info("Task dump for CPU %d:\n", cpu);
8379 	sched_show_task(cpu_curr(cpu));
8380 }
8381