1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 lockdep_assert_held(&rq->lock); 123 124 if (rq->clock_skip_update & RQCF_ACT_SKIP) 125 return; 126 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 128 if (delta < 0) 129 return; 130 rq->clock += delta; 131 update_rq_clock_task(rq, delta); 132 } 133 134 /* 135 * Debugging: various feature bits 136 */ 137 138 #define SCHED_FEAT(name, enabled) \ 139 (1UL << __SCHED_FEAT_##name) * enabled | 140 141 const_debug unsigned int sysctl_sched_features = 142 #include "features.h" 143 0; 144 145 #undef SCHED_FEAT 146 147 #ifdef CONFIG_SCHED_DEBUG 148 #define SCHED_FEAT(name, enabled) \ 149 #name , 150 151 static const char * const sched_feat_names[] = { 152 #include "features.h" 153 }; 154 155 #undef SCHED_FEAT 156 157 static int sched_feat_show(struct seq_file *m, void *v) 158 { 159 int i; 160 161 for (i = 0; i < __SCHED_FEAT_NR; i++) { 162 if (!(sysctl_sched_features & (1UL << i))) 163 seq_puts(m, "NO_"); 164 seq_printf(m, "%s ", sched_feat_names[i]); 165 } 166 seq_puts(m, "\n"); 167 168 return 0; 169 } 170 171 #ifdef HAVE_JUMP_LABEL 172 173 #define jump_label_key__true STATIC_KEY_INIT_TRUE 174 #define jump_label_key__false STATIC_KEY_INIT_FALSE 175 176 #define SCHED_FEAT(name, enabled) \ 177 jump_label_key__##enabled , 178 179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 180 #include "features.h" 181 }; 182 183 #undef SCHED_FEAT 184 185 static void sched_feat_disable(int i) 186 { 187 if (static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_dec(&sched_feat_keys[i]); 189 } 190 191 static void sched_feat_enable(int i) 192 { 193 if (!static_key_enabled(&sched_feat_keys[i])) 194 static_key_slow_inc(&sched_feat_keys[i]); 195 } 196 #else 197 static void sched_feat_disable(int i) { }; 198 static void sched_feat_enable(int i) { }; 199 #endif /* HAVE_JUMP_LABEL */ 200 201 static int sched_feat_set(char *cmp) 202 { 203 int i; 204 int neg = 0; 205 206 if (strncmp(cmp, "NO_", 3) == 0) { 207 neg = 1; 208 cmp += 3; 209 } 210 211 for (i = 0; i < __SCHED_FEAT_NR; i++) { 212 if (strcmp(cmp, sched_feat_names[i]) == 0) { 213 if (neg) { 214 sysctl_sched_features &= ~(1UL << i); 215 sched_feat_disable(i); 216 } else { 217 sysctl_sched_features |= (1UL << i); 218 sched_feat_enable(i); 219 } 220 break; 221 } 222 } 223 224 return i; 225 } 226 227 static ssize_t 228 sched_feat_write(struct file *filp, const char __user *ubuf, 229 size_t cnt, loff_t *ppos) 230 { 231 char buf[64]; 232 char *cmp; 233 int i; 234 struct inode *inode; 235 236 if (cnt > 63) 237 cnt = 63; 238 239 if (copy_from_user(&buf, ubuf, cnt)) 240 return -EFAULT; 241 242 buf[cnt] = 0; 243 cmp = strstrip(buf); 244 245 /* Ensure the static_key remains in a consistent state */ 246 inode = file_inode(filp); 247 mutex_lock(&inode->i_mutex); 248 i = sched_feat_set(cmp); 249 mutex_unlock(&inode->i_mutex); 250 if (i == __SCHED_FEAT_NR) 251 return -EINVAL; 252 253 *ppos += cnt; 254 255 return cnt; 256 } 257 258 static int sched_feat_open(struct inode *inode, struct file *filp) 259 { 260 return single_open(filp, sched_feat_show, NULL); 261 } 262 263 static const struct file_operations sched_feat_fops = { 264 .open = sched_feat_open, 265 .write = sched_feat_write, 266 .read = seq_read, 267 .llseek = seq_lseek, 268 .release = single_release, 269 }; 270 271 static __init int sched_init_debug(void) 272 { 273 debugfs_create_file("sched_features", 0644, NULL, NULL, 274 &sched_feat_fops); 275 276 return 0; 277 } 278 late_initcall(sched_init_debug); 279 #endif /* CONFIG_SCHED_DEBUG */ 280 281 /* 282 * Number of tasks to iterate in a single balance run. 283 * Limited because this is done with IRQs disabled. 284 */ 285 const_debug unsigned int sysctl_sched_nr_migrate = 32; 286 287 /* 288 * period over which we average the RT time consumption, measured 289 * in ms. 290 * 291 * default: 1s 292 */ 293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 294 295 /* 296 * period over which we measure -rt task cpu usage in us. 297 * default: 1s 298 */ 299 unsigned int sysctl_sched_rt_period = 1000000; 300 301 __read_mostly int scheduler_running; 302 303 /* 304 * part of the period that we allow rt tasks to run in us. 305 * default: 0.95s 306 */ 307 int sysctl_sched_rt_runtime = 950000; 308 309 /* 310 * this_rq_lock - lock this runqueue and disable interrupts. 311 */ 312 static struct rq *this_rq_lock(void) 313 __acquires(rq->lock) 314 { 315 struct rq *rq; 316 317 local_irq_disable(); 318 rq = this_rq(); 319 raw_spin_lock(&rq->lock); 320 321 return rq; 322 } 323 324 #ifdef CONFIG_SCHED_HRTICK 325 /* 326 * Use HR-timers to deliver accurate preemption points. 327 */ 328 329 static void hrtick_clear(struct rq *rq) 330 { 331 if (hrtimer_active(&rq->hrtick_timer)) 332 hrtimer_cancel(&rq->hrtick_timer); 333 } 334 335 /* 336 * High-resolution timer tick. 337 * Runs from hardirq context with interrupts disabled. 338 */ 339 static enum hrtimer_restart hrtick(struct hrtimer *timer) 340 { 341 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 raw_spin_lock(&rq->lock); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 raw_spin_unlock(&rq->lock); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static int __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = hrtimer_get_softexpires(timer); 359 360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 370 raw_spin_lock(&rq->lock); 371 __hrtick_restart(rq); 372 rq->hrtick_csd_pending = 0; 373 raw_spin_unlock(&rq->lock); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 ktime_t time; 385 s64 delta; 386 387 /* 388 * Don't schedule slices shorter than 10000ns, that just 389 * doesn't make sense and can cause timer DoS. 390 */ 391 delta = max_t(s64, delay, 10000LL); 392 time = ktime_add_ns(timer->base->get_time(), delta); 393 394 hrtimer_set_expires(timer, time); 395 396 if (rq == this_rq()) { 397 __hrtick_restart(rq); 398 } else if (!rq->hrtick_csd_pending) { 399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 400 rq->hrtick_csd_pending = 1; 401 } 402 } 403 404 static int 405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 406 { 407 int cpu = (int)(long)hcpu; 408 409 switch (action) { 410 case CPU_UP_CANCELED: 411 case CPU_UP_CANCELED_FROZEN: 412 case CPU_DOWN_PREPARE: 413 case CPU_DOWN_PREPARE_FROZEN: 414 case CPU_DEAD: 415 case CPU_DEAD_FROZEN: 416 hrtick_clear(cpu_rq(cpu)); 417 return NOTIFY_OK; 418 } 419 420 return NOTIFY_DONE; 421 } 422 423 static __init void init_hrtick(void) 424 { 425 hotcpu_notifier(hotplug_hrtick, 0); 426 } 427 #else 428 /* 429 * Called to set the hrtick timer state. 430 * 431 * called with rq->lock held and irqs disabled 432 */ 433 void hrtick_start(struct rq *rq, u64 delay) 434 { 435 /* 436 * Don't schedule slices shorter than 10000ns, that just 437 * doesn't make sense. Rely on vruntime for fairness. 438 */ 439 delay = max_t(u64, delay, 10000LL); 440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 441 HRTIMER_MODE_REL_PINNED, 0); 442 } 443 444 static inline void init_hrtick(void) 445 { 446 } 447 #endif /* CONFIG_SMP */ 448 449 static void init_rq_hrtick(struct rq *rq) 450 { 451 #ifdef CONFIG_SMP 452 rq->hrtick_csd_pending = 0; 453 454 rq->hrtick_csd.flags = 0; 455 rq->hrtick_csd.func = __hrtick_start; 456 rq->hrtick_csd.info = rq; 457 #endif 458 459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 460 rq->hrtick_timer.function = hrtick; 461 } 462 #else /* CONFIG_SCHED_HRTICK */ 463 static inline void hrtick_clear(struct rq *rq) 464 { 465 } 466 467 static inline void init_rq_hrtick(struct rq *rq) 468 { 469 } 470 471 static inline void init_hrtick(void) 472 { 473 } 474 #endif /* CONFIG_SCHED_HRTICK */ 475 476 /* 477 * cmpxchg based fetch_or, macro so it works for different integer types 478 */ 479 #define fetch_or(ptr, val) \ 480 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 481 for (;;) { \ 482 __old = cmpxchg((ptr), __val, __val | (val)); \ 483 if (__old == __val) \ 484 break; \ 485 __val = __old; \ 486 } \ 487 __old; \ 488 }) 489 490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 491 /* 492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 493 * this avoids any races wrt polling state changes and thereby avoids 494 * spurious IPIs. 495 */ 496 static bool set_nr_and_not_polling(struct task_struct *p) 497 { 498 struct thread_info *ti = task_thread_info(p); 499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 500 } 501 502 /* 503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 504 * 505 * If this returns true, then the idle task promises to call 506 * sched_ttwu_pending() and reschedule soon. 507 */ 508 static bool set_nr_if_polling(struct task_struct *p) 509 { 510 struct thread_info *ti = task_thread_info(p); 511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 512 513 for (;;) { 514 if (!(val & _TIF_POLLING_NRFLAG)) 515 return false; 516 if (val & _TIF_NEED_RESCHED) 517 return true; 518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 519 if (old == val) 520 break; 521 val = old; 522 } 523 return true; 524 } 525 526 #else 527 static bool set_nr_and_not_polling(struct task_struct *p) 528 { 529 set_tsk_need_resched(p); 530 return true; 531 } 532 533 #ifdef CONFIG_SMP 534 static bool set_nr_if_polling(struct task_struct *p) 535 { 536 return false; 537 } 538 #endif 539 #endif 540 541 /* 542 * resched_curr - mark rq's current task 'to be rescheduled now'. 543 * 544 * On UP this means the setting of the need_resched flag, on SMP it 545 * might also involve a cross-CPU call to trigger the scheduler on 546 * the target CPU. 547 */ 548 void resched_curr(struct rq *rq) 549 { 550 struct task_struct *curr = rq->curr; 551 int cpu; 552 553 lockdep_assert_held(&rq->lock); 554 555 if (test_tsk_need_resched(curr)) 556 return; 557 558 cpu = cpu_of(rq); 559 560 if (cpu == smp_processor_id()) { 561 set_tsk_need_resched(curr); 562 set_preempt_need_resched(); 563 return; 564 } 565 566 if (set_nr_and_not_polling(curr)) 567 smp_send_reschedule(cpu); 568 else 569 trace_sched_wake_idle_without_ipi(cpu); 570 } 571 572 void resched_cpu(int cpu) 573 { 574 struct rq *rq = cpu_rq(cpu); 575 unsigned long flags; 576 577 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 578 return; 579 resched_curr(rq); 580 raw_spin_unlock_irqrestore(&rq->lock, flags); 581 } 582 583 #ifdef CONFIG_SMP 584 #ifdef CONFIG_NO_HZ_COMMON 585 /* 586 * In the semi idle case, use the nearest busy cpu for migrating timers 587 * from an idle cpu. This is good for power-savings. 588 * 589 * We don't do similar optimization for completely idle system, as 590 * selecting an idle cpu will add more delays to the timers than intended 591 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 592 */ 593 int get_nohz_timer_target(int pinned) 594 { 595 int cpu = smp_processor_id(); 596 int i; 597 struct sched_domain *sd; 598 599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 600 return cpu; 601 602 rcu_read_lock(); 603 for_each_domain(cpu, sd) { 604 for_each_cpu(i, sched_domain_span(sd)) { 605 if (!idle_cpu(i)) { 606 cpu = i; 607 goto unlock; 608 } 609 } 610 } 611 unlock: 612 rcu_read_unlock(); 613 return cpu; 614 } 615 /* 616 * When add_timer_on() enqueues a timer into the timer wheel of an 617 * idle CPU then this timer might expire before the next timer event 618 * which is scheduled to wake up that CPU. In case of a completely 619 * idle system the next event might even be infinite time into the 620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 621 * leaves the inner idle loop so the newly added timer is taken into 622 * account when the CPU goes back to idle and evaluates the timer 623 * wheel for the next timer event. 624 */ 625 static void wake_up_idle_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 629 if (cpu == smp_processor_id()) 630 return; 631 632 if (set_nr_and_not_polling(rq->idle)) 633 smp_send_reschedule(cpu); 634 else 635 trace_sched_wake_idle_without_ipi(cpu); 636 } 637 638 static bool wake_up_full_nohz_cpu(int cpu) 639 { 640 /* 641 * We just need the target to call irq_exit() and re-evaluate 642 * the next tick. The nohz full kick at least implies that. 643 * If needed we can still optimize that later with an 644 * empty IRQ. 645 */ 646 if (tick_nohz_full_cpu(cpu)) { 647 if (cpu != smp_processor_id() || 648 tick_nohz_tick_stopped()) 649 tick_nohz_full_kick_cpu(cpu); 650 return true; 651 } 652 653 return false; 654 } 655 656 void wake_up_nohz_cpu(int cpu) 657 { 658 if (!wake_up_full_nohz_cpu(cpu)) 659 wake_up_idle_cpu(cpu); 660 } 661 662 static inline bool got_nohz_idle_kick(void) 663 { 664 int cpu = smp_processor_id(); 665 666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 667 return false; 668 669 if (idle_cpu(cpu) && !need_resched()) 670 return true; 671 672 /* 673 * We can't run Idle Load Balance on this CPU for this time so we 674 * cancel it and clear NOHZ_BALANCE_KICK 675 */ 676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 677 return false; 678 } 679 680 #else /* CONFIG_NO_HZ_COMMON */ 681 682 static inline bool got_nohz_idle_kick(void) 683 { 684 return false; 685 } 686 687 #endif /* CONFIG_NO_HZ_COMMON */ 688 689 #ifdef CONFIG_NO_HZ_FULL 690 bool sched_can_stop_tick(void) 691 { 692 /* 693 * More than one running task need preemption. 694 * nr_running update is assumed to be visible 695 * after IPI is sent from wakers. 696 */ 697 if (this_rq()->nr_running > 1) 698 return false; 699 700 return true; 701 } 702 #endif /* CONFIG_NO_HZ_FULL */ 703 704 void sched_avg_update(struct rq *rq) 705 { 706 s64 period = sched_avg_period(); 707 708 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 709 /* 710 * Inline assembly required to prevent the compiler 711 * optimising this loop into a divmod call. 712 * See __iter_div_u64_rem() for another example of this. 713 */ 714 asm("" : "+rm" (rq->age_stamp)); 715 rq->age_stamp += period; 716 rq->rt_avg /= 2; 717 } 718 } 719 720 #endif /* CONFIG_SMP */ 721 722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 723 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 724 /* 725 * Iterate task_group tree rooted at *from, calling @down when first entering a 726 * node and @up when leaving it for the final time. 727 * 728 * Caller must hold rcu_lock or sufficient equivalent. 729 */ 730 int walk_tg_tree_from(struct task_group *from, 731 tg_visitor down, tg_visitor up, void *data) 732 { 733 struct task_group *parent, *child; 734 int ret; 735 736 parent = from; 737 738 down: 739 ret = (*down)(parent, data); 740 if (ret) 741 goto out; 742 list_for_each_entry_rcu(child, &parent->children, siblings) { 743 parent = child; 744 goto down; 745 746 up: 747 continue; 748 } 749 ret = (*up)(parent, data); 750 if (ret || parent == from) 751 goto out; 752 753 child = parent; 754 parent = parent->parent; 755 if (parent) 756 goto up; 757 out: 758 return ret; 759 } 760 761 int tg_nop(struct task_group *tg, void *data) 762 { 763 return 0; 764 } 765 #endif 766 767 static void set_load_weight(struct task_struct *p) 768 { 769 int prio = p->static_prio - MAX_RT_PRIO; 770 struct load_weight *load = &p->se.load; 771 772 /* 773 * SCHED_IDLE tasks get minimal weight: 774 */ 775 if (p->policy == SCHED_IDLE) { 776 load->weight = scale_load(WEIGHT_IDLEPRIO); 777 load->inv_weight = WMULT_IDLEPRIO; 778 return; 779 } 780 781 load->weight = scale_load(prio_to_weight[prio]); 782 load->inv_weight = prio_to_wmult[prio]; 783 } 784 785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 786 { 787 update_rq_clock(rq); 788 sched_info_queued(rq, p); 789 p->sched_class->enqueue_task(rq, p, flags); 790 } 791 792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 793 { 794 update_rq_clock(rq); 795 sched_info_dequeued(rq, p); 796 p->sched_class->dequeue_task(rq, p, flags); 797 } 798 799 void activate_task(struct rq *rq, struct task_struct *p, int flags) 800 { 801 if (task_contributes_to_load(p)) 802 rq->nr_uninterruptible--; 803 804 enqueue_task(rq, p, flags); 805 } 806 807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 808 { 809 if (task_contributes_to_load(p)) 810 rq->nr_uninterruptible++; 811 812 dequeue_task(rq, p, flags); 813 } 814 815 static void update_rq_clock_task(struct rq *rq, s64 delta) 816 { 817 /* 818 * In theory, the compile should just see 0 here, and optimize out the call 819 * to sched_rt_avg_update. But I don't trust it... 820 */ 821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 822 s64 steal = 0, irq_delta = 0; 823 #endif 824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 825 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 826 827 /* 828 * Since irq_time is only updated on {soft,}irq_exit, we might run into 829 * this case when a previous update_rq_clock() happened inside a 830 * {soft,}irq region. 831 * 832 * When this happens, we stop ->clock_task and only update the 833 * prev_irq_time stamp to account for the part that fit, so that a next 834 * update will consume the rest. This ensures ->clock_task is 835 * monotonic. 836 * 837 * It does however cause some slight miss-attribution of {soft,}irq 838 * time, a more accurate solution would be to update the irq_time using 839 * the current rq->clock timestamp, except that would require using 840 * atomic ops. 841 */ 842 if (irq_delta > delta) 843 irq_delta = delta; 844 845 rq->prev_irq_time += irq_delta; 846 delta -= irq_delta; 847 #endif 848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 849 if (static_key_false((¶virt_steal_rq_enabled))) { 850 steal = paravirt_steal_clock(cpu_of(rq)); 851 steal -= rq->prev_steal_time_rq; 852 853 if (unlikely(steal > delta)) 854 steal = delta; 855 856 rq->prev_steal_time_rq += steal; 857 delta -= steal; 858 } 859 #endif 860 861 rq->clock_task += delta; 862 863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 864 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 865 sched_rt_avg_update(rq, irq_delta + steal); 866 #endif 867 } 868 869 void sched_set_stop_task(int cpu, struct task_struct *stop) 870 { 871 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 872 struct task_struct *old_stop = cpu_rq(cpu)->stop; 873 874 if (stop) { 875 /* 876 * Make it appear like a SCHED_FIFO task, its something 877 * userspace knows about and won't get confused about. 878 * 879 * Also, it will make PI more or less work without too 880 * much confusion -- but then, stop work should not 881 * rely on PI working anyway. 882 */ 883 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 884 885 stop->sched_class = &stop_sched_class; 886 } 887 888 cpu_rq(cpu)->stop = stop; 889 890 if (old_stop) { 891 /* 892 * Reset it back to a normal scheduling class so that 893 * it can die in pieces. 894 */ 895 old_stop->sched_class = &rt_sched_class; 896 } 897 } 898 899 /* 900 * __normal_prio - return the priority that is based on the static prio 901 */ 902 static inline int __normal_prio(struct task_struct *p) 903 { 904 return p->static_prio; 905 } 906 907 /* 908 * Calculate the expected normal priority: i.e. priority 909 * without taking RT-inheritance into account. Might be 910 * boosted by interactivity modifiers. Changes upon fork, 911 * setprio syscalls, and whenever the interactivity 912 * estimator recalculates. 913 */ 914 static inline int normal_prio(struct task_struct *p) 915 { 916 int prio; 917 918 if (task_has_dl_policy(p)) 919 prio = MAX_DL_PRIO-1; 920 else if (task_has_rt_policy(p)) 921 prio = MAX_RT_PRIO-1 - p->rt_priority; 922 else 923 prio = __normal_prio(p); 924 return prio; 925 } 926 927 /* 928 * Calculate the current priority, i.e. the priority 929 * taken into account by the scheduler. This value might 930 * be boosted by RT tasks, or might be boosted by 931 * interactivity modifiers. Will be RT if the task got 932 * RT-boosted. If not then it returns p->normal_prio. 933 */ 934 static int effective_prio(struct task_struct *p) 935 { 936 p->normal_prio = normal_prio(p); 937 /* 938 * If we are RT tasks or we were boosted to RT priority, 939 * keep the priority unchanged. Otherwise, update priority 940 * to the normal priority: 941 */ 942 if (!rt_prio(p->prio)) 943 return p->normal_prio; 944 return p->prio; 945 } 946 947 /** 948 * task_curr - is this task currently executing on a CPU? 949 * @p: the task in question. 950 * 951 * Return: 1 if the task is currently executing. 0 otherwise. 952 */ 953 inline int task_curr(const struct task_struct *p) 954 { 955 return cpu_curr(task_cpu(p)) == p; 956 } 957 958 /* 959 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 960 */ 961 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 962 const struct sched_class *prev_class, 963 int oldprio) 964 { 965 if (prev_class != p->sched_class) { 966 if (prev_class->switched_from) 967 prev_class->switched_from(rq, p); 968 /* Possble rq->lock 'hole'. */ 969 p->sched_class->switched_to(rq, p); 970 } else if (oldprio != p->prio || dl_task(p)) 971 p->sched_class->prio_changed(rq, p, oldprio); 972 } 973 974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 975 { 976 const struct sched_class *class; 977 978 if (p->sched_class == rq->curr->sched_class) { 979 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 980 } else { 981 for_each_class(class) { 982 if (class == rq->curr->sched_class) 983 break; 984 if (class == p->sched_class) { 985 resched_curr(rq); 986 break; 987 } 988 } 989 } 990 991 /* 992 * A queue event has occurred, and we're going to schedule. In 993 * this case, we can save a useless back to back clock update. 994 */ 995 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 996 rq_clock_skip_update(rq, true); 997 } 998 999 #ifdef CONFIG_SMP 1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1001 { 1002 #ifdef CONFIG_SCHED_DEBUG 1003 /* 1004 * We should never call set_task_cpu() on a blocked task, 1005 * ttwu() will sort out the placement. 1006 */ 1007 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1008 !p->on_rq); 1009 1010 #ifdef CONFIG_LOCKDEP 1011 /* 1012 * The caller should hold either p->pi_lock or rq->lock, when changing 1013 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1014 * 1015 * sched_move_task() holds both and thus holding either pins the cgroup, 1016 * see task_group(). 1017 * 1018 * Furthermore, all task_rq users should acquire both locks, see 1019 * task_rq_lock(). 1020 */ 1021 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1022 lockdep_is_held(&task_rq(p)->lock))); 1023 #endif 1024 #endif 1025 1026 trace_sched_migrate_task(p, new_cpu); 1027 1028 if (task_cpu(p) != new_cpu) { 1029 if (p->sched_class->migrate_task_rq) 1030 p->sched_class->migrate_task_rq(p, new_cpu); 1031 p->se.nr_migrations++; 1032 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1033 } 1034 1035 __set_task_cpu(p, new_cpu); 1036 } 1037 1038 static void __migrate_swap_task(struct task_struct *p, int cpu) 1039 { 1040 if (task_on_rq_queued(p)) { 1041 struct rq *src_rq, *dst_rq; 1042 1043 src_rq = task_rq(p); 1044 dst_rq = cpu_rq(cpu); 1045 1046 deactivate_task(src_rq, p, 0); 1047 set_task_cpu(p, cpu); 1048 activate_task(dst_rq, p, 0); 1049 check_preempt_curr(dst_rq, p, 0); 1050 } else { 1051 /* 1052 * Task isn't running anymore; make it appear like we migrated 1053 * it before it went to sleep. This means on wakeup we make the 1054 * previous cpu our targer instead of where it really is. 1055 */ 1056 p->wake_cpu = cpu; 1057 } 1058 } 1059 1060 struct migration_swap_arg { 1061 struct task_struct *src_task, *dst_task; 1062 int src_cpu, dst_cpu; 1063 }; 1064 1065 static int migrate_swap_stop(void *data) 1066 { 1067 struct migration_swap_arg *arg = data; 1068 struct rq *src_rq, *dst_rq; 1069 int ret = -EAGAIN; 1070 1071 src_rq = cpu_rq(arg->src_cpu); 1072 dst_rq = cpu_rq(arg->dst_cpu); 1073 1074 double_raw_lock(&arg->src_task->pi_lock, 1075 &arg->dst_task->pi_lock); 1076 double_rq_lock(src_rq, dst_rq); 1077 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1078 goto unlock; 1079 1080 if (task_cpu(arg->src_task) != arg->src_cpu) 1081 goto unlock; 1082 1083 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1084 goto unlock; 1085 1086 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1087 goto unlock; 1088 1089 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1090 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1091 1092 ret = 0; 1093 1094 unlock: 1095 double_rq_unlock(src_rq, dst_rq); 1096 raw_spin_unlock(&arg->dst_task->pi_lock); 1097 raw_spin_unlock(&arg->src_task->pi_lock); 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * Cross migrate two tasks 1104 */ 1105 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1106 { 1107 struct migration_swap_arg arg; 1108 int ret = -EINVAL; 1109 1110 arg = (struct migration_swap_arg){ 1111 .src_task = cur, 1112 .src_cpu = task_cpu(cur), 1113 .dst_task = p, 1114 .dst_cpu = task_cpu(p), 1115 }; 1116 1117 if (arg.src_cpu == arg.dst_cpu) 1118 goto out; 1119 1120 /* 1121 * These three tests are all lockless; this is OK since all of them 1122 * will be re-checked with proper locks held further down the line. 1123 */ 1124 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1125 goto out; 1126 1127 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1128 goto out; 1129 1130 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1131 goto out; 1132 1133 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1134 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1135 1136 out: 1137 return ret; 1138 } 1139 1140 struct migration_arg { 1141 struct task_struct *task; 1142 int dest_cpu; 1143 }; 1144 1145 static int migration_cpu_stop(void *data); 1146 1147 /* 1148 * wait_task_inactive - wait for a thread to unschedule. 1149 * 1150 * If @match_state is nonzero, it's the @p->state value just checked and 1151 * not expected to change. If it changes, i.e. @p might have woken up, 1152 * then return zero. When we succeed in waiting for @p to be off its CPU, 1153 * we return a positive number (its total switch count). If a second call 1154 * a short while later returns the same number, the caller can be sure that 1155 * @p has remained unscheduled the whole time. 1156 * 1157 * The caller must ensure that the task *will* unschedule sometime soon, 1158 * else this function might spin for a *long* time. This function can't 1159 * be called with interrupts off, or it may introduce deadlock with 1160 * smp_call_function() if an IPI is sent by the same process we are 1161 * waiting to become inactive. 1162 */ 1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1164 { 1165 unsigned long flags; 1166 int running, queued; 1167 unsigned long ncsw; 1168 struct rq *rq; 1169 1170 for (;;) { 1171 /* 1172 * We do the initial early heuristics without holding 1173 * any task-queue locks at all. We'll only try to get 1174 * the runqueue lock when things look like they will 1175 * work out! 1176 */ 1177 rq = task_rq(p); 1178 1179 /* 1180 * If the task is actively running on another CPU 1181 * still, just relax and busy-wait without holding 1182 * any locks. 1183 * 1184 * NOTE! Since we don't hold any locks, it's not 1185 * even sure that "rq" stays as the right runqueue! 1186 * But we don't care, since "task_running()" will 1187 * return false if the runqueue has changed and p 1188 * is actually now running somewhere else! 1189 */ 1190 while (task_running(rq, p)) { 1191 if (match_state && unlikely(p->state != match_state)) 1192 return 0; 1193 cpu_relax(); 1194 } 1195 1196 /* 1197 * Ok, time to look more closely! We need the rq 1198 * lock now, to be *sure*. If we're wrong, we'll 1199 * just go back and repeat. 1200 */ 1201 rq = task_rq_lock(p, &flags); 1202 trace_sched_wait_task(p); 1203 running = task_running(rq, p); 1204 queued = task_on_rq_queued(p); 1205 ncsw = 0; 1206 if (!match_state || p->state == match_state) 1207 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1208 task_rq_unlock(rq, p, &flags); 1209 1210 /* 1211 * If it changed from the expected state, bail out now. 1212 */ 1213 if (unlikely(!ncsw)) 1214 break; 1215 1216 /* 1217 * Was it really running after all now that we 1218 * checked with the proper locks actually held? 1219 * 1220 * Oops. Go back and try again.. 1221 */ 1222 if (unlikely(running)) { 1223 cpu_relax(); 1224 continue; 1225 } 1226 1227 /* 1228 * It's not enough that it's not actively running, 1229 * it must be off the runqueue _entirely_, and not 1230 * preempted! 1231 * 1232 * So if it was still runnable (but just not actively 1233 * running right now), it's preempted, and we should 1234 * yield - it could be a while. 1235 */ 1236 if (unlikely(queued)) { 1237 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1238 1239 set_current_state(TASK_UNINTERRUPTIBLE); 1240 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1241 continue; 1242 } 1243 1244 /* 1245 * Ahh, all good. It wasn't running, and it wasn't 1246 * runnable, which means that it will never become 1247 * running in the future either. We're all done! 1248 */ 1249 break; 1250 } 1251 1252 return ncsw; 1253 } 1254 1255 /*** 1256 * kick_process - kick a running thread to enter/exit the kernel 1257 * @p: the to-be-kicked thread 1258 * 1259 * Cause a process which is running on another CPU to enter 1260 * kernel-mode, without any delay. (to get signals handled.) 1261 * 1262 * NOTE: this function doesn't have to take the runqueue lock, 1263 * because all it wants to ensure is that the remote task enters 1264 * the kernel. If the IPI races and the task has been migrated 1265 * to another CPU then no harm is done and the purpose has been 1266 * achieved as well. 1267 */ 1268 void kick_process(struct task_struct *p) 1269 { 1270 int cpu; 1271 1272 preempt_disable(); 1273 cpu = task_cpu(p); 1274 if ((cpu != smp_processor_id()) && task_curr(p)) 1275 smp_send_reschedule(cpu); 1276 preempt_enable(); 1277 } 1278 EXPORT_SYMBOL_GPL(kick_process); 1279 #endif /* CONFIG_SMP */ 1280 1281 #ifdef CONFIG_SMP 1282 /* 1283 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1284 */ 1285 static int select_fallback_rq(int cpu, struct task_struct *p) 1286 { 1287 int nid = cpu_to_node(cpu); 1288 const struct cpumask *nodemask = NULL; 1289 enum { cpuset, possible, fail } state = cpuset; 1290 int dest_cpu; 1291 1292 /* 1293 * If the node that the cpu is on has been offlined, cpu_to_node() 1294 * will return -1. There is no cpu on the node, and we should 1295 * select the cpu on the other node. 1296 */ 1297 if (nid != -1) { 1298 nodemask = cpumask_of_node(nid); 1299 1300 /* Look for allowed, online CPU in same node. */ 1301 for_each_cpu(dest_cpu, nodemask) { 1302 if (!cpu_online(dest_cpu)) 1303 continue; 1304 if (!cpu_active(dest_cpu)) 1305 continue; 1306 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1307 return dest_cpu; 1308 } 1309 } 1310 1311 for (;;) { 1312 /* Any allowed, online CPU? */ 1313 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1314 if (!cpu_online(dest_cpu)) 1315 continue; 1316 if (!cpu_active(dest_cpu)) 1317 continue; 1318 goto out; 1319 } 1320 1321 switch (state) { 1322 case cpuset: 1323 /* No more Mr. Nice Guy. */ 1324 cpuset_cpus_allowed_fallback(p); 1325 state = possible; 1326 break; 1327 1328 case possible: 1329 do_set_cpus_allowed(p, cpu_possible_mask); 1330 state = fail; 1331 break; 1332 1333 case fail: 1334 BUG(); 1335 break; 1336 } 1337 } 1338 1339 out: 1340 if (state != cpuset) { 1341 /* 1342 * Don't tell them about moving exiting tasks or 1343 * kernel threads (both mm NULL), since they never 1344 * leave kernel. 1345 */ 1346 if (p->mm && printk_ratelimit()) { 1347 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1348 task_pid_nr(p), p->comm, cpu); 1349 } 1350 } 1351 1352 return dest_cpu; 1353 } 1354 1355 /* 1356 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1357 */ 1358 static inline 1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1360 { 1361 if (p->nr_cpus_allowed > 1) 1362 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1363 1364 /* 1365 * In order not to call set_task_cpu() on a blocking task we need 1366 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1367 * cpu. 1368 * 1369 * Since this is common to all placement strategies, this lives here. 1370 * 1371 * [ this allows ->select_task() to simply return task_cpu(p) and 1372 * not worry about this generic constraint ] 1373 */ 1374 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1375 !cpu_online(cpu))) 1376 cpu = select_fallback_rq(task_cpu(p), p); 1377 1378 return cpu; 1379 } 1380 1381 static void update_avg(u64 *avg, u64 sample) 1382 { 1383 s64 diff = sample - *avg; 1384 *avg += diff >> 3; 1385 } 1386 #endif 1387 1388 static void 1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1390 { 1391 #ifdef CONFIG_SCHEDSTATS 1392 struct rq *rq = this_rq(); 1393 1394 #ifdef CONFIG_SMP 1395 int this_cpu = smp_processor_id(); 1396 1397 if (cpu == this_cpu) { 1398 schedstat_inc(rq, ttwu_local); 1399 schedstat_inc(p, se.statistics.nr_wakeups_local); 1400 } else { 1401 struct sched_domain *sd; 1402 1403 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1404 rcu_read_lock(); 1405 for_each_domain(this_cpu, sd) { 1406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1407 schedstat_inc(sd, ttwu_wake_remote); 1408 break; 1409 } 1410 } 1411 rcu_read_unlock(); 1412 } 1413 1414 if (wake_flags & WF_MIGRATED) 1415 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1416 1417 #endif /* CONFIG_SMP */ 1418 1419 schedstat_inc(rq, ttwu_count); 1420 schedstat_inc(p, se.statistics.nr_wakeups); 1421 1422 if (wake_flags & WF_SYNC) 1423 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1424 1425 #endif /* CONFIG_SCHEDSTATS */ 1426 } 1427 1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1429 { 1430 activate_task(rq, p, en_flags); 1431 p->on_rq = TASK_ON_RQ_QUEUED; 1432 1433 /* if a worker is waking up, notify workqueue */ 1434 if (p->flags & PF_WQ_WORKER) 1435 wq_worker_waking_up(p, cpu_of(rq)); 1436 } 1437 1438 /* 1439 * Mark the task runnable and perform wakeup-preemption. 1440 */ 1441 static void 1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1443 { 1444 check_preempt_curr(rq, p, wake_flags); 1445 trace_sched_wakeup(p, true); 1446 1447 p->state = TASK_RUNNING; 1448 #ifdef CONFIG_SMP 1449 if (p->sched_class->task_woken) 1450 p->sched_class->task_woken(rq, p); 1451 1452 if (rq->idle_stamp) { 1453 u64 delta = rq_clock(rq) - rq->idle_stamp; 1454 u64 max = 2*rq->max_idle_balance_cost; 1455 1456 update_avg(&rq->avg_idle, delta); 1457 1458 if (rq->avg_idle > max) 1459 rq->avg_idle = max; 1460 1461 rq->idle_stamp = 0; 1462 } 1463 #endif 1464 } 1465 1466 static void 1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1468 { 1469 #ifdef CONFIG_SMP 1470 if (p->sched_contributes_to_load) 1471 rq->nr_uninterruptible--; 1472 #endif 1473 1474 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1475 ttwu_do_wakeup(rq, p, wake_flags); 1476 } 1477 1478 /* 1479 * Called in case the task @p isn't fully descheduled from its runqueue, 1480 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1481 * since all we need to do is flip p->state to TASK_RUNNING, since 1482 * the task is still ->on_rq. 1483 */ 1484 static int ttwu_remote(struct task_struct *p, int wake_flags) 1485 { 1486 struct rq *rq; 1487 int ret = 0; 1488 1489 rq = __task_rq_lock(p); 1490 if (task_on_rq_queued(p)) { 1491 /* check_preempt_curr() may use rq clock */ 1492 update_rq_clock(rq); 1493 ttwu_do_wakeup(rq, p, wake_flags); 1494 ret = 1; 1495 } 1496 __task_rq_unlock(rq); 1497 1498 return ret; 1499 } 1500 1501 #ifdef CONFIG_SMP 1502 void sched_ttwu_pending(void) 1503 { 1504 struct rq *rq = this_rq(); 1505 struct llist_node *llist = llist_del_all(&rq->wake_list); 1506 struct task_struct *p; 1507 unsigned long flags; 1508 1509 if (!llist) 1510 return; 1511 1512 raw_spin_lock_irqsave(&rq->lock, flags); 1513 1514 while (llist) { 1515 p = llist_entry(llist, struct task_struct, wake_entry); 1516 llist = llist_next(llist); 1517 ttwu_do_activate(rq, p, 0); 1518 } 1519 1520 raw_spin_unlock_irqrestore(&rq->lock, flags); 1521 } 1522 1523 void scheduler_ipi(void) 1524 { 1525 /* 1526 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1527 * TIF_NEED_RESCHED remotely (for the first time) will also send 1528 * this IPI. 1529 */ 1530 preempt_fold_need_resched(); 1531 1532 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1533 return; 1534 1535 /* 1536 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1537 * traditionally all their work was done from the interrupt return 1538 * path. Now that we actually do some work, we need to make sure 1539 * we do call them. 1540 * 1541 * Some archs already do call them, luckily irq_enter/exit nest 1542 * properly. 1543 * 1544 * Arguably we should visit all archs and update all handlers, 1545 * however a fair share of IPIs are still resched only so this would 1546 * somewhat pessimize the simple resched case. 1547 */ 1548 irq_enter(); 1549 sched_ttwu_pending(); 1550 1551 /* 1552 * Check if someone kicked us for doing the nohz idle load balance. 1553 */ 1554 if (unlikely(got_nohz_idle_kick())) { 1555 this_rq()->idle_balance = 1; 1556 raise_softirq_irqoff(SCHED_SOFTIRQ); 1557 } 1558 irq_exit(); 1559 } 1560 1561 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1562 { 1563 struct rq *rq = cpu_rq(cpu); 1564 1565 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1566 if (!set_nr_if_polling(rq->idle)) 1567 smp_send_reschedule(cpu); 1568 else 1569 trace_sched_wake_idle_without_ipi(cpu); 1570 } 1571 } 1572 1573 void wake_up_if_idle(int cpu) 1574 { 1575 struct rq *rq = cpu_rq(cpu); 1576 unsigned long flags; 1577 1578 rcu_read_lock(); 1579 1580 if (!is_idle_task(rcu_dereference(rq->curr))) 1581 goto out; 1582 1583 if (set_nr_if_polling(rq->idle)) { 1584 trace_sched_wake_idle_without_ipi(cpu); 1585 } else { 1586 raw_spin_lock_irqsave(&rq->lock, flags); 1587 if (is_idle_task(rq->curr)) 1588 smp_send_reschedule(cpu); 1589 /* Else cpu is not in idle, do nothing here */ 1590 raw_spin_unlock_irqrestore(&rq->lock, flags); 1591 } 1592 1593 out: 1594 rcu_read_unlock(); 1595 } 1596 1597 bool cpus_share_cache(int this_cpu, int that_cpu) 1598 { 1599 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1600 } 1601 #endif /* CONFIG_SMP */ 1602 1603 static void ttwu_queue(struct task_struct *p, int cpu) 1604 { 1605 struct rq *rq = cpu_rq(cpu); 1606 1607 #if defined(CONFIG_SMP) 1608 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1609 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1610 ttwu_queue_remote(p, cpu); 1611 return; 1612 } 1613 #endif 1614 1615 raw_spin_lock(&rq->lock); 1616 ttwu_do_activate(rq, p, 0); 1617 raw_spin_unlock(&rq->lock); 1618 } 1619 1620 /** 1621 * try_to_wake_up - wake up a thread 1622 * @p: the thread to be awakened 1623 * @state: the mask of task states that can be woken 1624 * @wake_flags: wake modifier flags (WF_*) 1625 * 1626 * Put it on the run-queue if it's not already there. The "current" 1627 * thread is always on the run-queue (except when the actual 1628 * re-schedule is in progress), and as such you're allowed to do 1629 * the simpler "current->state = TASK_RUNNING" to mark yourself 1630 * runnable without the overhead of this. 1631 * 1632 * Return: %true if @p was woken up, %false if it was already running. 1633 * or @state didn't match @p's state. 1634 */ 1635 static int 1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1637 { 1638 unsigned long flags; 1639 int cpu, success = 0; 1640 1641 /* 1642 * If we are going to wake up a thread waiting for CONDITION we 1643 * need to ensure that CONDITION=1 done by the caller can not be 1644 * reordered with p->state check below. This pairs with mb() in 1645 * set_current_state() the waiting thread does. 1646 */ 1647 smp_mb__before_spinlock(); 1648 raw_spin_lock_irqsave(&p->pi_lock, flags); 1649 if (!(p->state & state)) 1650 goto out; 1651 1652 success = 1; /* we're going to change ->state */ 1653 cpu = task_cpu(p); 1654 1655 if (p->on_rq && ttwu_remote(p, wake_flags)) 1656 goto stat; 1657 1658 #ifdef CONFIG_SMP 1659 /* 1660 * If the owning (remote) cpu is still in the middle of schedule() with 1661 * this task as prev, wait until its done referencing the task. 1662 */ 1663 while (p->on_cpu) 1664 cpu_relax(); 1665 /* 1666 * Pairs with the smp_wmb() in finish_lock_switch(). 1667 */ 1668 smp_rmb(); 1669 1670 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1671 p->state = TASK_WAKING; 1672 1673 if (p->sched_class->task_waking) 1674 p->sched_class->task_waking(p); 1675 1676 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1677 if (task_cpu(p) != cpu) { 1678 wake_flags |= WF_MIGRATED; 1679 set_task_cpu(p, cpu); 1680 } 1681 #endif /* CONFIG_SMP */ 1682 1683 ttwu_queue(p, cpu); 1684 stat: 1685 ttwu_stat(p, cpu, wake_flags); 1686 out: 1687 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1688 1689 return success; 1690 } 1691 1692 /** 1693 * try_to_wake_up_local - try to wake up a local task with rq lock held 1694 * @p: the thread to be awakened 1695 * 1696 * Put @p on the run-queue if it's not already there. The caller must 1697 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1698 * the current task. 1699 */ 1700 static void try_to_wake_up_local(struct task_struct *p) 1701 { 1702 struct rq *rq = task_rq(p); 1703 1704 if (WARN_ON_ONCE(rq != this_rq()) || 1705 WARN_ON_ONCE(p == current)) 1706 return; 1707 1708 lockdep_assert_held(&rq->lock); 1709 1710 if (!raw_spin_trylock(&p->pi_lock)) { 1711 raw_spin_unlock(&rq->lock); 1712 raw_spin_lock(&p->pi_lock); 1713 raw_spin_lock(&rq->lock); 1714 } 1715 1716 if (!(p->state & TASK_NORMAL)) 1717 goto out; 1718 1719 if (!task_on_rq_queued(p)) 1720 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1721 1722 ttwu_do_wakeup(rq, p, 0); 1723 ttwu_stat(p, smp_processor_id(), 0); 1724 out: 1725 raw_spin_unlock(&p->pi_lock); 1726 } 1727 1728 /** 1729 * wake_up_process - Wake up a specific process 1730 * @p: The process to be woken up. 1731 * 1732 * Attempt to wake up the nominated process and move it to the set of runnable 1733 * processes. 1734 * 1735 * Return: 1 if the process was woken up, 0 if it was already running. 1736 * 1737 * It may be assumed that this function implies a write memory barrier before 1738 * changing the task state if and only if any tasks are woken up. 1739 */ 1740 int wake_up_process(struct task_struct *p) 1741 { 1742 WARN_ON(task_is_stopped_or_traced(p)); 1743 return try_to_wake_up(p, TASK_NORMAL, 0); 1744 } 1745 EXPORT_SYMBOL(wake_up_process); 1746 1747 int wake_up_state(struct task_struct *p, unsigned int state) 1748 { 1749 return try_to_wake_up(p, state, 0); 1750 } 1751 1752 /* 1753 * This function clears the sched_dl_entity static params. 1754 */ 1755 void __dl_clear_params(struct task_struct *p) 1756 { 1757 struct sched_dl_entity *dl_se = &p->dl; 1758 1759 dl_se->dl_runtime = 0; 1760 dl_se->dl_deadline = 0; 1761 dl_se->dl_period = 0; 1762 dl_se->flags = 0; 1763 dl_se->dl_bw = 0; 1764 1765 dl_se->dl_throttled = 0; 1766 dl_se->dl_new = 1; 1767 dl_se->dl_yielded = 0; 1768 } 1769 1770 /* 1771 * Perform scheduler related setup for a newly forked process p. 1772 * p is forked by current. 1773 * 1774 * __sched_fork() is basic setup used by init_idle() too: 1775 */ 1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1777 { 1778 p->on_rq = 0; 1779 1780 p->se.on_rq = 0; 1781 p->se.exec_start = 0; 1782 p->se.sum_exec_runtime = 0; 1783 p->se.prev_sum_exec_runtime = 0; 1784 p->se.nr_migrations = 0; 1785 p->se.vruntime = 0; 1786 #ifdef CONFIG_SMP 1787 p->se.avg.decay_count = 0; 1788 #endif 1789 INIT_LIST_HEAD(&p->se.group_node); 1790 1791 #ifdef CONFIG_SCHEDSTATS 1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1793 #endif 1794 1795 RB_CLEAR_NODE(&p->dl.rb_node); 1796 init_dl_task_timer(&p->dl); 1797 __dl_clear_params(p); 1798 1799 INIT_LIST_HEAD(&p->rt.run_list); 1800 1801 #ifdef CONFIG_PREEMPT_NOTIFIERS 1802 INIT_HLIST_HEAD(&p->preempt_notifiers); 1803 #endif 1804 1805 #ifdef CONFIG_NUMA_BALANCING 1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1808 p->mm->numa_scan_seq = 0; 1809 } 1810 1811 if (clone_flags & CLONE_VM) 1812 p->numa_preferred_nid = current->numa_preferred_nid; 1813 else 1814 p->numa_preferred_nid = -1; 1815 1816 p->node_stamp = 0ULL; 1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1819 p->numa_work.next = &p->numa_work; 1820 p->numa_faults = NULL; 1821 p->last_task_numa_placement = 0; 1822 p->last_sum_exec_runtime = 0; 1823 1824 p->numa_group = NULL; 1825 #endif /* CONFIG_NUMA_BALANCING */ 1826 } 1827 1828 #ifdef CONFIG_NUMA_BALANCING 1829 #ifdef CONFIG_SCHED_DEBUG 1830 void set_numabalancing_state(bool enabled) 1831 { 1832 if (enabled) 1833 sched_feat_set("NUMA"); 1834 else 1835 sched_feat_set("NO_NUMA"); 1836 } 1837 #else 1838 __read_mostly bool numabalancing_enabled; 1839 1840 void set_numabalancing_state(bool enabled) 1841 { 1842 numabalancing_enabled = enabled; 1843 } 1844 #endif /* CONFIG_SCHED_DEBUG */ 1845 1846 #ifdef CONFIG_PROC_SYSCTL 1847 int sysctl_numa_balancing(struct ctl_table *table, int write, 1848 void __user *buffer, size_t *lenp, loff_t *ppos) 1849 { 1850 struct ctl_table t; 1851 int err; 1852 int state = numabalancing_enabled; 1853 1854 if (write && !capable(CAP_SYS_ADMIN)) 1855 return -EPERM; 1856 1857 t = *table; 1858 t.data = &state; 1859 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1860 if (err < 0) 1861 return err; 1862 if (write) 1863 set_numabalancing_state(state); 1864 return err; 1865 } 1866 #endif 1867 #endif 1868 1869 /* 1870 * fork()/clone()-time setup: 1871 */ 1872 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1873 { 1874 unsigned long flags; 1875 int cpu = get_cpu(); 1876 1877 __sched_fork(clone_flags, p); 1878 /* 1879 * We mark the process as running here. This guarantees that 1880 * nobody will actually run it, and a signal or other external 1881 * event cannot wake it up and insert it on the runqueue either. 1882 */ 1883 p->state = TASK_RUNNING; 1884 1885 /* 1886 * Make sure we do not leak PI boosting priority to the child. 1887 */ 1888 p->prio = current->normal_prio; 1889 1890 /* 1891 * Revert to default priority/policy on fork if requested. 1892 */ 1893 if (unlikely(p->sched_reset_on_fork)) { 1894 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1895 p->policy = SCHED_NORMAL; 1896 p->static_prio = NICE_TO_PRIO(0); 1897 p->rt_priority = 0; 1898 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1899 p->static_prio = NICE_TO_PRIO(0); 1900 1901 p->prio = p->normal_prio = __normal_prio(p); 1902 set_load_weight(p); 1903 1904 /* 1905 * We don't need the reset flag anymore after the fork. It has 1906 * fulfilled its duty: 1907 */ 1908 p->sched_reset_on_fork = 0; 1909 } 1910 1911 if (dl_prio(p->prio)) { 1912 put_cpu(); 1913 return -EAGAIN; 1914 } else if (rt_prio(p->prio)) { 1915 p->sched_class = &rt_sched_class; 1916 } else { 1917 p->sched_class = &fair_sched_class; 1918 } 1919 1920 if (p->sched_class->task_fork) 1921 p->sched_class->task_fork(p); 1922 1923 /* 1924 * The child is not yet in the pid-hash so no cgroup attach races, 1925 * and the cgroup is pinned to this child due to cgroup_fork() 1926 * is ran before sched_fork(). 1927 * 1928 * Silence PROVE_RCU. 1929 */ 1930 raw_spin_lock_irqsave(&p->pi_lock, flags); 1931 set_task_cpu(p, cpu); 1932 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1933 1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1935 if (likely(sched_info_on())) 1936 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1937 #endif 1938 #if defined(CONFIG_SMP) 1939 p->on_cpu = 0; 1940 #endif 1941 init_task_preempt_count(p); 1942 #ifdef CONFIG_SMP 1943 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1944 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1945 #endif 1946 1947 put_cpu(); 1948 return 0; 1949 } 1950 1951 unsigned long to_ratio(u64 period, u64 runtime) 1952 { 1953 if (runtime == RUNTIME_INF) 1954 return 1ULL << 20; 1955 1956 /* 1957 * Doing this here saves a lot of checks in all 1958 * the calling paths, and returning zero seems 1959 * safe for them anyway. 1960 */ 1961 if (period == 0) 1962 return 0; 1963 1964 return div64_u64(runtime << 20, period); 1965 } 1966 1967 #ifdef CONFIG_SMP 1968 inline struct dl_bw *dl_bw_of(int i) 1969 { 1970 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1971 "sched RCU must be held"); 1972 return &cpu_rq(i)->rd->dl_bw; 1973 } 1974 1975 static inline int dl_bw_cpus(int i) 1976 { 1977 struct root_domain *rd = cpu_rq(i)->rd; 1978 int cpus = 0; 1979 1980 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1981 "sched RCU must be held"); 1982 for_each_cpu_and(i, rd->span, cpu_active_mask) 1983 cpus++; 1984 1985 return cpus; 1986 } 1987 #else 1988 inline struct dl_bw *dl_bw_of(int i) 1989 { 1990 return &cpu_rq(i)->dl.dl_bw; 1991 } 1992 1993 static inline int dl_bw_cpus(int i) 1994 { 1995 return 1; 1996 } 1997 #endif 1998 1999 /* 2000 * We must be sure that accepting a new task (or allowing changing the 2001 * parameters of an existing one) is consistent with the bandwidth 2002 * constraints. If yes, this function also accordingly updates the currently 2003 * allocated bandwidth to reflect the new situation. 2004 * 2005 * This function is called while holding p's rq->lock. 2006 * 2007 * XXX we should delay bw change until the task's 0-lag point, see 2008 * __setparam_dl(). 2009 */ 2010 static int dl_overflow(struct task_struct *p, int policy, 2011 const struct sched_attr *attr) 2012 { 2013 2014 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2015 u64 period = attr->sched_period ?: attr->sched_deadline; 2016 u64 runtime = attr->sched_runtime; 2017 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2018 int cpus, err = -1; 2019 2020 if (new_bw == p->dl.dl_bw) 2021 return 0; 2022 2023 /* 2024 * Either if a task, enters, leave, or stays -deadline but changes 2025 * its parameters, we may need to update accordingly the total 2026 * allocated bandwidth of the container. 2027 */ 2028 raw_spin_lock(&dl_b->lock); 2029 cpus = dl_bw_cpus(task_cpu(p)); 2030 if (dl_policy(policy) && !task_has_dl_policy(p) && 2031 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2032 __dl_add(dl_b, new_bw); 2033 err = 0; 2034 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2035 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2036 __dl_clear(dl_b, p->dl.dl_bw); 2037 __dl_add(dl_b, new_bw); 2038 err = 0; 2039 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2040 __dl_clear(dl_b, p->dl.dl_bw); 2041 err = 0; 2042 } 2043 raw_spin_unlock(&dl_b->lock); 2044 2045 return err; 2046 } 2047 2048 extern void init_dl_bw(struct dl_bw *dl_b); 2049 2050 /* 2051 * wake_up_new_task - wake up a newly created task for the first time. 2052 * 2053 * This function will do some initial scheduler statistics housekeeping 2054 * that must be done for every newly created context, then puts the task 2055 * on the runqueue and wakes it. 2056 */ 2057 void wake_up_new_task(struct task_struct *p) 2058 { 2059 unsigned long flags; 2060 struct rq *rq; 2061 2062 raw_spin_lock_irqsave(&p->pi_lock, flags); 2063 #ifdef CONFIG_SMP 2064 /* 2065 * Fork balancing, do it here and not earlier because: 2066 * - cpus_allowed can change in the fork path 2067 * - any previously selected cpu might disappear through hotplug 2068 */ 2069 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2070 #endif 2071 2072 /* Initialize new task's runnable average */ 2073 init_task_runnable_average(p); 2074 rq = __task_rq_lock(p); 2075 activate_task(rq, p, 0); 2076 p->on_rq = TASK_ON_RQ_QUEUED; 2077 trace_sched_wakeup_new(p, true); 2078 check_preempt_curr(rq, p, WF_FORK); 2079 #ifdef CONFIG_SMP 2080 if (p->sched_class->task_woken) 2081 p->sched_class->task_woken(rq, p); 2082 #endif 2083 task_rq_unlock(rq, p, &flags); 2084 } 2085 2086 #ifdef CONFIG_PREEMPT_NOTIFIERS 2087 2088 /** 2089 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2090 * @notifier: notifier struct to register 2091 */ 2092 void preempt_notifier_register(struct preempt_notifier *notifier) 2093 { 2094 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2095 } 2096 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2097 2098 /** 2099 * preempt_notifier_unregister - no longer interested in preemption notifications 2100 * @notifier: notifier struct to unregister 2101 * 2102 * This is safe to call from within a preemption notifier. 2103 */ 2104 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2105 { 2106 hlist_del(¬ifier->link); 2107 } 2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2109 2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2111 { 2112 struct preempt_notifier *notifier; 2113 2114 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2115 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2116 } 2117 2118 static void 2119 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2120 struct task_struct *next) 2121 { 2122 struct preempt_notifier *notifier; 2123 2124 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2125 notifier->ops->sched_out(notifier, next); 2126 } 2127 2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2129 2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2131 { 2132 } 2133 2134 static void 2135 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2136 struct task_struct *next) 2137 { 2138 } 2139 2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2141 2142 /** 2143 * prepare_task_switch - prepare to switch tasks 2144 * @rq: the runqueue preparing to switch 2145 * @prev: the current task that is being switched out 2146 * @next: the task we are going to switch to. 2147 * 2148 * This is called with the rq lock held and interrupts off. It must 2149 * be paired with a subsequent finish_task_switch after the context 2150 * switch. 2151 * 2152 * prepare_task_switch sets up locking and calls architecture specific 2153 * hooks. 2154 */ 2155 static inline void 2156 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2157 struct task_struct *next) 2158 { 2159 trace_sched_switch(prev, next); 2160 sched_info_switch(rq, prev, next); 2161 perf_event_task_sched_out(prev, next); 2162 fire_sched_out_preempt_notifiers(prev, next); 2163 prepare_lock_switch(rq, next); 2164 prepare_arch_switch(next); 2165 } 2166 2167 /** 2168 * finish_task_switch - clean up after a task-switch 2169 * @prev: the thread we just switched away from. 2170 * 2171 * finish_task_switch must be called after the context switch, paired 2172 * with a prepare_task_switch call before the context switch. 2173 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2174 * and do any other architecture-specific cleanup actions. 2175 * 2176 * Note that we may have delayed dropping an mm in context_switch(). If 2177 * so, we finish that here outside of the runqueue lock. (Doing it 2178 * with the lock held can cause deadlocks; see schedule() for 2179 * details.) 2180 * 2181 * The context switch have flipped the stack from under us and restored the 2182 * local variables which were saved when this task called schedule() in the 2183 * past. prev == current is still correct but we need to recalculate this_rq 2184 * because prev may have moved to another CPU. 2185 */ 2186 static struct rq *finish_task_switch(struct task_struct *prev) 2187 __releases(rq->lock) 2188 { 2189 struct rq *rq = this_rq(); 2190 struct mm_struct *mm = rq->prev_mm; 2191 long prev_state; 2192 2193 rq->prev_mm = NULL; 2194 2195 /* 2196 * A task struct has one reference for the use as "current". 2197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2198 * schedule one last time. The schedule call will never return, and 2199 * the scheduled task must drop that reference. 2200 * The test for TASK_DEAD must occur while the runqueue locks are 2201 * still held, otherwise prev could be scheduled on another cpu, die 2202 * there before we look at prev->state, and then the reference would 2203 * be dropped twice. 2204 * Manfred Spraul <manfred@colorfullife.com> 2205 */ 2206 prev_state = prev->state; 2207 vtime_task_switch(prev); 2208 finish_arch_switch(prev); 2209 perf_event_task_sched_in(prev, current); 2210 finish_lock_switch(rq, prev); 2211 finish_arch_post_lock_switch(); 2212 2213 fire_sched_in_preempt_notifiers(current); 2214 if (mm) 2215 mmdrop(mm); 2216 if (unlikely(prev_state == TASK_DEAD)) { 2217 if (prev->sched_class->task_dead) 2218 prev->sched_class->task_dead(prev); 2219 2220 /* 2221 * Remove function-return probe instances associated with this 2222 * task and put them back on the free list. 2223 */ 2224 kprobe_flush_task(prev); 2225 put_task_struct(prev); 2226 } 2227 2228 tick_nohz_task_switch(current); 2229 return rq; 2230 } 2231 2232 #ifdef CONFIG_SMP 2233 2234 /* rq->lock is NOT held, but preemption is disabled */ 2235 static inline void post_schedule(struct rq *rq) 2236 { 2237 if (rq->post_schedule) { 2238 unsigned long flags; 2239 2240 raw_spin_lock_irqsave(&rq->lock, flags); 2241 if (rq->curr->sched_class->post_schedule) 2242 rq->curr->sched_class->post_schedule(rq); 2243 raw_spin_unlock_irqrestore(&rq->lock, flags); 2244 2245 rq->post_schedule = 0; 2246 } 2247 } 2248 2249 #else 2250 2251 static inline void post_schedule(struct rq *rq) 2252 { 2253 } 2254 2255 #endif 2256 2257 /** 2258 * schedule_tail - first thing a freshly forked thread must call. 2259 * @prev: the thread we just switched away from. 2260 */ 2261 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2262 __releases(rq->lock) 2263 { 2264 struct rq *rq; 2265 2266 /* finish_task_switch() drops rq->lock and enables preemtion */ 2267 preempt_disable(); 2268 rq = finish_task_switch(prev); 2269 post_schedule(rq); 2270 preempt_enable(); 2271 2272 if (current->set_child_tid) 2273 put_user(task_pid_vnr(current), current->set_child_tid); 2274 } 2275 2276 /* 2277 * context_switch - switch to the new MM and the new thread's register state. 2278 */ 2279 static inline struct rq * 2280 context_switch(struct rq *rq, struct task_struct *prev, 2281 struct task_struct *next) 2282 { 2283 struct mm_struct *mm, *oldmm; 2284 2285 prepare_task_switch(rq, prev, next); 2286 2287 mm = next->mm; 2288 oldmm = prev->active_mm; 2289 /* 2290 * For paravirt, this is coupled with an exit in switch_to to 2291 * combine the page table reload and the switch backend into 2292 * one hypercall. 2293 */ 2294 arch_start_context_switch(prev); 2295 2296 if (!mm) { 2297 next->active_mm = oldmm; 2298 atomic_inc(&oldmm->mm_count); 2299 enter_lazy_tlb(oldmm, next); 2300 } else 2301 switch_mm(oldmm, mm, next); 2302 2303 if (!prev->mm) { 2304 prev->active_mm = NULL; 2305 rq->prev_mm = oldmm; 2306 } 2307 /* 2308 * Since the runqueue lock will be released by the next 2309 * task (which is an invalid locking op but in the case 2310 * of the scheduler it's an obvious special-case), so we 2311 * do an early lockdep release here: 2312 */ 2313 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2314 2315 context_tracking_task_switch(prev, next); 2316 /* Here we just switch the register state and the stack. */ 2317 switch_to(prev, next, prev); 2318 barrier(); 2319 2320 return finish_task_switch(prev); 2321 } 2322 2323 /* 2324 * nr_running and nr_context_switches: 2325 * 2326 * externally visible scheduler statistics: current number of runnable 2327 * threads, total number of context switches performed since bootup. 2328 */ 2329 unsigned long nr_running(void) 2330 { 2331 unsigned long i, sum = 0; 2332 2333 for_each_online_cpu(i) 2334 sum += cpu_rq(i)->nr_running; 2335 2336 return sum; 2337 } 2338 2339 /* 2340 * Check if only the current task is running on the cpu. 2341 */ 2342 bool single_task_running(void) 2343 { 2344 if (cpu_rq(smp_processor_id())->nr_running == 1) 2345 return true; 2346 else 2347 return false; 2348 } 2349 EXPORT_SYMBOL(single_task_running); 2350 2351 unsigned long long nr_context_switches(void) 2352 { 2353 int i; 2354 unsigned long long sum = 0; 2355 2356 for_each_possible_cpu(i) 2357 sum += cpu_rq(i)->nr_switches; 2358 2359 return sum; 2360 } 2361 2362 unsigned long nr_iowait(void) 2363 { 2364 unsigned long i, sum = 0; 2365 2366 for_each_possible_cpu(i) 2367 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2368 2369 return sum; 2370 } 2371 2372 unsigned long nr_iowait_cpu(int cpu) 2373 { 2374 struct rq *this = cpu_rq(cpu); 2375 return atomic_read(&this->nr_iowait); 2376 } 2377 2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2379 { 2380 struct rq *this = this_rq(); 2381 *nr_waiters = atomic_read(&this->nr_iowait); 2382 *load = this->cpu_load[0]; 2383 } 2384 2385 #ifdef CONFIG_SMP 2386 2387 /* 2388 * sched_exec - execve() is a valuable balancing opportunity, because at 2389 * this point the task has the smallest effective memory and cache footprint. 2390 */ 2391 void sched_exec(void) 2392 { 2393 struct task_struct *p = current; 2394 unsigned long flags; 2395 int dest_cpu; 2396 2397 raw_spin_lock_irqsave(&p->pi_lock, flags); 2398 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2399 if (dest_cpu == smp_processor_id()) 2400 goto unlock; 2401 2402 if (likely(cpu_active(dest_cpu))) { 2403 struct migration_arg arg = { p, dest_cpu }; 2404 2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2406 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2407 return; 2408 } 2409 unlock: 2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2411 } 2412 2413 #endif 2414 2415 DEFINE_PER_CPU(struct kernel_stat, kstat); 2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2417 2418 EXPORT_PER_CPU_SYMBOL(kstat); 2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2420 2421 /* 2422 * Return accounted runtime for the task. 2423 * In case the task is currently running, return the runtime plus current's 2424 * pending runtime that have not been accounted yet. 2425 */ 2426 unsigned long long task_sched_runtime(struct task_struct *p) 2427 { 2428 unsigned long flags; 2429 struct rq *rq; 2430 u64 ns; 2431 2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2433 /* 2434 * 64-bit doesn't need locks to atomically read a 64bit value. 2435 * So we have a optimization chance when the task's delta_exec is 0. 2436 * Reading ->on_cpu is racy, but this is ok. 2437 * 2438 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2439 * If we race with it entering cpu, unaccounted time is 0. This is 2440 * indistinguishable from the read occurring a few cycles earlier. 2441 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2442 * been accounted, so we're correct here as well. 2443 */ 2444 if (!p->on_cpu || !task_on_rq_queued(p)) 2445 return p->se.sum_exec_runtime; 2446 #endif 2447 2448 rq = task_rq_lock(p, &flags); 2449 /* 2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2451 * project cycles that may never be accounted to this 2452 * thread, breaking clock_gettime(). 2453 */ 2454 if (task_current(rq, p) && task_on_rq_queued(p)) { 2455 update_rq_clock(rq); 2456 p->sched_class->update_curr(rq); 2457 } 2458 ns = p->se.sum_exec_runtime; 2459 task_rq_unlock(rq, p, &flags); 2460 2461 return ns; 2462 } 2463 2464 /* 2465 * This function gets called by the timer code, with HZ frequency. 2466 * We call it with interrupts disabled. 2467 */ 2468 void scheduler_tick(void) 2469 { 2470 int cpu = smp_processor_id(); 2471 struct rq *rq = cpu_rq(cpu); 2472 struct task_struct *curr = rq->curr; 2473 2474 sched_clock_tick(); 2475 2476 raw_spin_lock(&rq->lock); 2477 update_rq_clock(rq); 2478 curr->sched_class->task_tick(rq, curr, 0); 2479 update_cpu_load_active(rq); 2480 raw_spin_unlock(&rq->lock); 2481 2482 perf_event_task_tick(); 2483 2484 #ifdef CONFIG_SMP 2485 rq->idle_balance = idle_cpu(cpu); 2486 trigger_load_balance(rq); 2487 #endif 2488 rq_last_tick_reset(rq); 2489 } 2490 2491 #ifdef CONFIG_NO_HZ_FULL 2492 /** 2493 * scheduler_tick_max_deferment 2494 * 2495 * Keep at least one tick per second when a single 2496 * active task is running because the scheduler doesn't 2497 * yet completely support full dynticks environment. 2498 * 2499 * This makes sure that uptime, CFS vruntime, load 2500 * balancing, etc... continue to move forward, even 2501 * with a very low granularity. 2502 * 2503 * Return: Maximum deferment in nanoseconds. 2504 */ 2505 u64 scheduler_tick_max_deferment(void) 2506 { 2507 struct rq *rq = this_rq(); 2508 unsigned long next, now = ACCESS_ONCE(jiffies); 2509 2510 next = rq->last_sched_tick + HZ; 2511 2512 if (time_before_eq(next, now)) 2513 return 0; 2514 2515 return jiffies_to_nsecs(next - now); 2516 } 2517 #endif 2518 2519 notrace unsigned long get_parent_ip(unsigned long addr) 2520 { 2521 if (in_lock_functions(addr)) { 2522 addr = CALLER_ADDR2; 2523 if (in_lock_functions(addr)) 2524 addr = CALLER_ADDR3; 2525 } 2526 return addr; 2527 } 2528 2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2530 defined(CONFIG_PREEMPT_TRACER)) 2531 2532 void preempt_count_add(int val) 2533 { 2534 #ifdef CONFIG_DEBUG_PREEMPT 2535 /* 2536 * Underflow? 2537 */ 2538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2539 return; 2540 #endif 2541 __preempt_count_add(val); 2542 #ifdef CONFIG_DEBUG_PREEMPT 2543 /* 2544 * Spinlock count overflowing soon? 2545 */ 2546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2547 PREEMPT_MASK - 10); 2548 #endif 2549 if (preempt_count() == val) { 2550 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2551 #ifdef CONFIG_DEBUG_PREEMPT 2552 current->preempt_disable_ip = ip; 2553 #endif 2554 trace_preempt_off(CALLER_ADDR0, ip); 2555 } 2556 } 2557 EXPORT_SYMBOL(preempt_count_add); 2558 NOKPROBE_SYMBOL(preempt_count_add); 2559 2560 void preempt_count_sub(int val) 2561 { 2562 #ifdef CONFIG_DEBUG_PREEMPT 2563 /* 2564 * Underflow? 2565 */ 2566 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2567 return; 2568 /* 2569 * Is the spinlock portion underflowing? 2570 */ 2571 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2572 !(preempt_count() & PREEMPT_MASK))) 2573 return; 2574 #endif 2575 2576 if (preempt_count() == val) 2577 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2578 __preempt_count_sub(val); 2579 } 2580 EXPORT_SYMBOL(preempt_count_sub); 2581 NOKPROBE_SYMBOL(preempt_count_sub); 2582 2583 #endif 2584 2585 /* 2586 * Print scheduling while atomic bug: 2587 */ 2588 static noinline void __schedule_bug(struct task_struct *prev) 2589 { 2590 if (oops_in_progress) 2591 return; 2592 2593 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2594 prev->comm, prev->pid, preempt_count()); 2595 2596 debug_show_held_locks(prev); 2597 print_modules(); 2598 if (irqs_disabled()) 2599 print_irqtrace_events(prev); 2600 #ifdef CONFIG_DEBUG_PREEMPT 2601 if (in_atomic_preempt_off()) { 2602 pr_err("Preemption disabled at:"); 2603 print_ip_sym(current->preempt_disable_ip); 2604 pr_cont("\n"); 2605 } 2606 #endif 2607 dump_stack(); 2608 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2609 } 2610 2611 /* 2612 * Various schedule()-time debugging checks and statistics: 2613 */ 2614 static inline void schedule_debug(struct task_struct *prev) 2615 { 2616 #ifdef CONFIG_SCHED_STACK_END_CHECK 2617 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2618 #endif 2619 /* 2620 * Test if we are atomic. Since do_exit() needs to call into 2621 * schedule() atomically, we ignore that path. Otherwise whine 2622 * if we are scheduling when we should not. 2623 */ 2624 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2625 __schedule_bug(prev); 2626 rcu_sleep_check(); 2627 2628 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2629 2630 schedstat_inc(this_rq(), sched_count); 2631 } 2632 2633 /* 2634 * Pick up the highest-prio task: 2635 */ 2636 static inline struct task_struct * 2637 pick_next_task(struct rq *rq, struct task_struct *prev) 2638 { 2639 const struct sched_class *class = &fair_sched_class; 2640 struct task_struct *p; 2641 2642 /* 2643 * Optimization: we know that if all tasks are in 2644 * the fair class we can call that function directly: 2645 */ 2646 if (likely(prev->sched_class == class && 2647 rq->nr_running == rq->cfs.h_nr_running)) { 2648 p = fair_sched_class.pick_next_task(rq, prev); 2649 if (unlikely(p == RETRY_TASK)) 2650 goto again; 2651 2652 /* assumes fair_sched_class->next == idle_sched_class */ 2653 if (unlikely(!p)) 2654 p = idle_sched_class.pick_next_task(rq, prev); 2655 2656 return p; 2657 } 2658 2659 again: 2660 for_each_class(class) { 2661 p = class->pick_next_task(rq, prev); 2662 if (p) { 2663 if (unlikely(p == RETRY_TASK)) 2664 goto again; 2665 return p; 2666 } 2667 } 2668 2669 BUG(); /* the idle class will always have a runnable task */ 2670 } 2671 2672 /* 2673 * __schedule() is the main scheduler function. 2674 * 2675 * The main means of driving the scheduler and thus entering this function are: 2676 * 2677 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2678 * 2679 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2680 * paths. For example, see arch/x86/entry_64.S. 2681 * 2682 * To drive preemption between tasks, the scheduler sets the flag in timer 2683 * interrupt handler scheduler_tick(). 2684 * 2685 * 3. Wakeups don't really cause entry into schedule(). They add a 2686 * task to the run-queue and that's it. 2687 * 2688 * Now, if the new task added to the run-queue preempts the current 2689 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2690 * called on the nearest possible occasion: 2691 * 2692 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2693 * 2694 * - in syscall or exception context, at the next outmost 2695 * preempt_enable(). (this might be as soon as the wake_up()'s 2696 * spin_unlock()!) 2697 * 2698 * - in IRQ context, return from interrupt-handler to 2699 * preemptible context 2700 * 2701 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2702 * then at the next: 2703 * 2704 * - cond_resched() call 2705 * - explicit schedule() call 2706 * - return from syscall or exception to user-space 2707 * - return from interrupt-handler to user-space 2708 * 2709 * WARNING: all callers must re-check need_resched() afterward and reschedule 2710 * accordingly in case an event triggered the need for rescheduling (such as 2711 * an interrupt waking up a task) while preemption was disabled in __schedule(). 2712 */ 2713 static void __sched __schedule(void) 2714 { 2715 struct task_struct *prev, *next; 2716 unsigned long *switch_count; 2717 struct rq *rq; 2718 int cpu; 2719 2720 preempt_disable(); 2721 cpu = smp_processor_id(); 2722 rq = cpu_rq(cpu); 2723 rcu_note_context_switch(); 2724 prev = rq->curr; 2725 2726 schedule_debug(prev); 2727 2728 if (sched_feat(HRTICK)) 2729 hrtick_clear(rq); 2730 2731 /* 2732 * Make sure that signal_pending_state()->signal_pending() below 2733 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2734 * done by the caller to avoid the race with signal_wake_up(). 2735 */ 2736 smp_mb__before_spinlock(); 2737 raw_spin_lock_irq(&rq->lock); 2738 2739 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 2740 2741 switch_count = &prev->nivcsw; 2742 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2743 if (unlikely(signal_pending_state(prev->state, prev))) { 2744 prev->state = TASK_RUNNING; 2745 } else { 2746 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2747 prev->on_rq = 0; 2748 2749 /* 2750 * If a worker went to sleep, notify and ask workqueue 2751 * whether it wants to wake up a task to maintain 2752 * concurrency. 2753 */ 2754 if (prev->flags & PF_WQ_WORKER) { 2755 struct task_struct *to_wakeup; 2756 2757 to_wakeup = wq_worker_sleeping(prev, cpu); 2758 if (to_wakeup) 2759 try_to_wake_up_local(to_wakeup); 2760 } 2761 } 2762 switch_count = &prev->nvcsw; 2763 } 2764 2765 if (task_on_rq_queued(prev)) 2766 update_rq_clock(rq); 2767 2768 next = pick_next_task(rq, prev); 2769 clear_tsk_need_resched(prev); 2770 clear_preempt_need_resched(); 2771 rq->clock_skip_update = 0; 2772 2773 if (likely(prev != next)) { 2774 rq->nr_switches++; 2775 rq->curr = next; 2776 ++*switch_count; 2777 2778 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2779 cpu = cpu_of(rq); 2780 } else 2781 raw_spin_unlock_irq(&rq->lock); 2782 2783 post_schedule(rq); 2784 2785 sched_preempt_enable_no_resched(); 2786 } 2787 2788 static inline void sched_submit_work(struct task_struct *tsk) 2789 { 2790 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2791 return; 2792 /* 2793 * If we are going to sleep and we have plugged IO queued, 2794 * make sure to submit it to avoid deadlocks. 2795 */ 2796 if (blk_needs_flush_plug(tsk)) 2797 blk_schedule_flush_plug(tsk); 2798 } 2799 2800 asmlinkage __visible void __sched schedule(void) 2801 { 2802 struct task_struct *tsk = current; 2803 2804 sched_submit_work(tsk); 2805 do { 2806 __schedule(); 2807 } while (need_resched()); 2808 } 2809 EXPORT_SYMBOL(schedule); 2810 2811 #ifdef CONFIG_CONTEXT_TRACKING 2812 asmlinkage __visible void __sched schedule_user(void) 2813 { 2814 /* 2815 * If we come here after a random call to set_need_resched(), 2816 * or we have been woken up remotely but the IPI has not yet arrived, 2817 * we haven't yet exited the RCU idle mode. Do it here manually until 2818 * we find a better solution. 2819 * 2820 * NB: There are buggy callers of this function. Ideally we 2821 * should warn if prev_state != IN_USER, but that will trigger 2822 * too frequently to make sense yet. 2823 */ 2824 enum ctx_state prev_state = exception_enter(); 2825 schedule(); 2826 exception_exit(prev_state); 2827 } 2828 #endif 2829 2830 /** 2831 * schedule_preempt_disabled - called with preemption disabled 2832 * 2833 * Returns with preemption disabled. Note: preempt_count must be 1 2834 */ 2835 void __sched schedule_preempt_disabled(void) 2836 { 2837 sched_preempt_enable_no_resched(); 2838 schedule(); 2839 preempt_disable(); 2840 } 2841 2842 static void __sched notrace preempt_schedule_common(void) 2843 { 2844 do { 2845 __preempt_count_add(PREEMPT_ACTIVE); 2846 __schedule(); 2847 __preempt_count_sub(PREEMPT_ACTIVE); 2848 2849 /* 2850 * Check again in case we missed a preemption opportunity 2851 * between schedule and now. 2852 */ 2853 barrier(); 2854 } while (need_resched()); 2855 } 2856 2857 #ifdef CONFIG_PREEMPT 2858 /* 2859 * this is the entry point to schedule() from in-kernel preemption 2860 * off of preempt_enable. Kernel preemptions off return from interrupt 2861 * occur there and call schedule directly. 2862 */ 2863 asmlinkage __visible void __sched notrace preempt_schedule(void) 2864 { 2865 /* 2866 * If there is a non-zero preempt_count or interrupts are disabled, 2867 * we do not want to preempt the current task. Just return.. 2868 */ 2869 if (likely(!preemptible())) 2870 return; 2871 2872 preempt_schedule_common(); 2873 } 2874 NOKPROBE_SYMBOL(preempt_schedule); 2875 EXPORT_SYMBOL(preempt_schedule); 2876 2877 #ifdef CONFIG_CONTEXT_TRACKING 2878 /** 2879 * preempt_schedule_context - preempt_schedule called by tracing 2880 * 2881 * The tracing infrastructure uses preempt_enable_notrace to prevent 2882 * recursion and tracing preempt enabling caused by the tracing 2883 * infrastructure itself. But as tracing can happen in areas coming 2884 * from userspace or just about to enter userspace, a preempt enable 2885 * can occur before user_exit() is called. This will cause the scheduler 2886 * to be called when the system is still in usermode. 2887 * 2888 * To prevent this, the preempt_enable_notrace will use this function 2889 * instead of preempt_schedule() to exit user context if needed before 2890 * calling the scheduler. 2891 */ 2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2893 { 2894 enum ctx_state prev_ctx; 2895 2896 if (likely(!preemptible())) 2897 return; 2898 2899 do { 2900 __preempt_count_add(PREEMPT_ACTIVE); 2901 /* 2902 * Needs preempt disabled in case user_exit() is traced 2903 * and the tracer calls preempt_enable_notrace() causing 2904 * an infinite recursion. 2905 */ 2906 prev_ctx = exception_enter(); 2907 __schedule(); 2908 exception_exit(prev_ctx); 2909 2910 __preempt_count_sub(PREEMPT_ACTIVE); 2911 barrier(); 2912 } while (need_resched()); 2913 } 2914 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2915 #endif /* CONFIG_CONTEXT_TRACKING */ 2916 2917 #endif /* CONFIG_PREEMPT */ 2918 2919 /* 2920 * this is the entry point to schedule() from kernel preemption 2921 * off of irq context. 2922 * Note, that this is called and return with irqs disabled. This will 2923 * protect us against recursive calling from irq. 2924 */ 2925 asmlinkage __visible void __sched preempt_schedule_irq(void) 2926 { 2927 enum ctx_state prev_state; 2928 2929 /* Catch callers which need to be fixed */ 2930 BUG_ON(preempt_count() || !irqs_disabled()); 2931 2932 prev_state = exception_enter(); 2933 2934 do { 2935 __preempt_count_add(PREEMPT_ACTIVE); 2936 local_irq_enable(); 2937 __schedule(); 2938 local_irq_disable(); 2939 __preempt_count_sub(PREEMPT_ACTIVE); 2940 2941 /* 2942 * Check again in case we missed a preemption opportunity 2943 * between schedule and now. 2944 */ 2945 barrier(); 2946 } while (need_resched()); 2947 2948 exception_exit(prev_state); 2949 } 2950 2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2952 void *key) 2953 { 2954 return try_to_wake_up(curr->private, mode, wake_flags); 2955 } 2956 EXPORT_SYMBOL(default_wake_function); 2957 2958 #ifdef CONFIG_RT_MUTEXES 2959 2960 /* 2961 * rt_mutex_setprio - set the current priority of a task 2962 * @p: task 2963 * @prio: prio value (kernel-internal form) 2964 * 2965 * This function changes the 'effective' priority of a task. It does 2966 * not touch ->normal_prio like __setscheduler(). 2967 * 2968 * Used by the rt_mutex code to implement priority inheritance 2969 * logic. Call site only calls if the priority of the task changed. 2970 */ 2971 void rt_mutex_setprio(struct task_struct *p, int prio) 2972 { 2973 int oldprio, queued, running, enqueue_flag = 0; 2974 struct rq *rq; 2975 const struct sched_class *prev_class; 2976 2977 BUG_ON(prio > MAX_PRIO); 2978 2979 rq = __task_rq_lock(p); 2980 2981 /* 2982 * Idle task boosting is a nono in general. There is one 2983 * exception, when PREEMPT_RT and NOHZ is active: 2984 * 2985 * The idle task calls get_next_timer_interrupt() and holds 2986 * the timer wheel base->lock on the CPU and another CPU wants 2987 * to access the timer (probably to cancel it). We can safely 2988 * ignore the boosting request, as the idle CPU runs this code 2989 * with interrupts disabled and will complete the lock 2990 * protected section without being interrupted. So there is no 2991 * real need to boost. 2992 */ 2993 if (unlikely(p == rq->idle)) { 2994 WARN_ON(p != rq->curr); 2995 WARN_ON(p->pi_blocked_on); 2996 goto out_unlock; 2997 } 2998 2999 trace_sched_pi_setprio(p, prio); 3000 oldprio = p->prio; 3001 prev_class = p->sched_class; 3002 queued = task_on_rq_queued(p); 3003 running = task_current(rq, p); 3004 if (queued) 3005 dequeue_task(rq, p, 0); 3006 if (running) 3007 put_prev_task(rq, p); 3008 3009 /* 3010 * Boosting condition are: 3011 * 1. -rt task is running and holds mutex A 3012 * --> -dl task blocks on mutex A 3013 * 3014 * 2. -dl task is running and holds mutex A 3015 * --> -dl task blocks on mutex A and could preempt the 3016 * running task 3017 */ 3018 if (dl_prio(prio)) { 3019 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3020 if (!dl_prio(p->normal_prio) || 3021 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3022 p->dl.dl_boosted = 1; 3023 p->dl.dl_throttled = 0; 3024 enqueue_flag = ENQUEUE_REPLENISH; 3025 } else 3026 p->dl.dl_boosted = 0; 3027 p->sched_class = &dl_sched_class; 3028 } else if (rt_prio(prio)) { 3029 if (dl_prio(oldprio)) 3030 p->dl.dl_boosted = 0; 3031 if (oldprio < prio) 3032 enqueue_flag = ENQUEUE_HEAD; 3033 p->sched_class = &rt_sched_class; 3034 } else { 3035 if (dl_prio(oldprio)) 3036 p->dl.dl_boosted = 0; 3037 p->sched_class = &fair_sched_class; 3038 } 3039 3040 p->prio = prio; 3041 3042 if (running) 3043 p->sched_class->set_curr_task(rq); 3044 if (queued) 3045 enqueue_task(rq, p, enqueue_flag); 3046 3047 check_class_changed(rq, p, prev_class, oldprio); 3048 out_unlock: 3049 __task_rq_unlock(rq); 3050 } 3051 #endif 3052 3053 void set_user_nice(struct task_struct *p, long nice) 3054 { 3055 int old_prio, delta, queued; 3056 unsigned long flags; 3057 struct rq *rq; 3058 3059 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3060 return; 3061 /* 3062 * We have to be careful, if called from sys_setpriority(), 3063 * the task might be in the middle of scheduling on another CPU. 3064 */ 3065 rq = task_rq_lock(p, &flags); 3066 /* 3067 * The RT priorities are set via sched_setscheduler(), but we still 3068 * allow the 'normal' nice value to be set - but as expected 3069 * it wont have any effect on scheduling until the task is 3070 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3071 */ 3072 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3073 p->static_prio = NICE_TO_PRIO(nice); 3074 goto out_unlock; 3075 } 3076 queued = task_on_rq_queued(p); 3077 if (queued) 3078 dequeue_task(rq, p, 0); 3079 3080 p->static_prio = NICE_TO_PRIO(nice); 3081 set_load_weight(p); 3082 old_prio = p->prio; 3083 p->prio = effective_prio(p); 3084 delta = p->prio - old_prio; 3085 3086 if (queued) { 3087 enqueue_task(rq, p, 0); 3088 /* 3089 * If the task increased its priority or is running and 3090 * lowered its priority, then reschedule its CPU: 3091 */ 3092 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3093 resched_curr(rq); 3094 } 3095 out_unlock: 3096 task_rq_unlock(rq, p, &flags); 3097 } 3098 EXPORT_SYMBOL(set_user_nice); 3099 3100 /* 3101 * can_nice - check if a task can reduce its nice value 3102 * @p: task 3103 * @nice: nice value 3104 */ 3105 int can_nice(const struct task_struct *p, const int nice) 3106 { 3107 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3108 int nice_rlim = nice_to_rlimit(nice); 3109 3110 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3111 capable(CAP_SYS_NICE)); 3112 } 3113 3114 #ifdef __ARCH_WANT_SYS_NICE 3115 3116 /* 3117 * sys_nice - change the priority of the current process. 3118 * @increment: priority increment 3119 * 3120 * sys_setpriority is a more generic, but much slower function that 3121 * does similar things. 3122 */ 3123 SYSCALL_DEFINE1(nice, int, increment) 3124 { 3125 long nice, retval; 3126 3127 /* 3128 * Setpriority might change our priority at the same moment. 3129 * We don't have to worry. Conceptually one call occurs first 3130 * and we have a single winner. 3131 */ 3132 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3133 nice = task_nice(current) + increment; 3134 3135 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3136 if (increment < 0 && !can_nice(current, nice)) 3137 return -EPERM; 3138 3139 retval = security_task_setnice(current, nice); 3140 if (retval) 3141 return retval; 3142 3143 set_user_nice(current, nice); 3144 return 0; 3145 } 3146 3147 #endif 3148 3149 /** 3150 * task_prio - return the priority value of a given task. 3151 * @p: the task in question. 3152 * 3153 * Return: The priority value as seen by users in /proc. 3154 * RT tasks are offset by -200. Normal tasks are centered 3155 * around 0, value goes from -16 to +15. 3156 */ 3157 int task_prio(const struct task_struct *p) 3158 { 3159 return p->prio - MAX_RT_PRIO; 3160 } 3161 3162 /** 3163 * idle_cpu - is a given cpu idle currently? 3164 * @cpu: the processor in question. 3165 * 3166 * Return: 1 if the CPU is currently idle. 0 otherwise. 3167 */ 3168 int idle_cpu(int cpu) 3169 { 3170 struct rq *rq = cpu_rq(cpu); 3171 3172 if (rq->curr != rq->idle) 3173 return 0; 3174 3175 if (rq->nr_running) 3176 return 0; 3177 3178 #ifdef CONFIG_SMP 3179 if (!llist_empty(&rq->wake_list)) 3180 return 0; 3181 #endif 3182 3183 return 1; 3184 } 3185 3186 /** 3187 * idle_task - return the idle task for a given cpu. 3188 * @cpu: the processor in question. 3189 * 3190 * Return: The idle task for the cpu @cpu. 3191 */ 3192 struct task_struct *idle_task(int cpu) 3193 { 3194 return cpu_rq(cpu)->idle; 3195 } 3196 3197 /** 3198 * find_process_by_pid - find a process with a matching PID value. 3199 * @pid: the pid in question. 3200 * 3201 * The task of @pid, if found. %NULL otherwise. 3202 */ 3203 static struct task_struct *find_process_by_pid(pid_t pid) 3204 { 3205 return pid ? find_task_by_vpid(pid) : current; 3206 } 3207 3208 /* 3209 * This function initializes the sched_dl_entity of a newly becoming 3210 * SCHED_DEADLINE task. 3211 * 3212 * Only the static values are considered here, the actual runtime and the 3213 * absolute deadline will be properly calculated when the task is enqueued 3214 * for the first time with its new policy. 3215 */ 3216 static void 3217 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3218 { 3219 struct sched_dl_entity *dl_se = &p->dl; 3220 3221 dl_se->dl_runtime = attr->sched_runtime; 3222 dl_se->dl_deadline = attr->sched_deadline; 3223 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3224 dl_se->flags = attr->sched_flags; 3225 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3226 3227 /* 3228 * Changing the parameters of a task is 'tricky' and we're not doing 3229 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3230 * 3231 * What we SHOULD do is delay the bandwidth release until the 0-lag 3232 * point. This would include retaining the task_struct until that time 3233 * and change dl_overflow() to not immediately decrement the current 3234 * amount. 3235 * 3236 * Instead we retain the current runtime/deadline and let the new 3237 * parameters take effect after the current reservation period lapses. 3238 * This is safe (albeit pessimistic) because the 0-lag point is always 3239 * before the current scheduling deadline. 3240 * 3241 * We can still have temporary overloads because we do not delay the 3242 * change in bandwidth until that time; so admission control is 3243 * not on the safe side. It does however guarantee tasks will never 3244 * consume more than promised. 3245 */ 3246 } 3247 3248 /* 3249 * sched_setparam() passes in -1 for its policy, to let the functions 3250 * it calls know not to change it. 3251 */ 3252 #define SETPARAM_POLICY -1 3253 3254 static void __setscheduler_params(struct task_struct *p, 3255 const struct sched_attr *attr) 3256 { 3257 int policy = attr->sched_policy; 3258 3259 if (policy == SETPARAM_POLICY) 3260 policy = p->policy; 3261 3262 p->policy = policy; 3263 3264 if (dl_policy(policy)) 3265 __setparam_dl(p, attr); 3266 else if (fair_policy(policy)) 3267 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3268 3269 /* 3270 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3271 * !rt_policy. Always setting this ensures that things like 3272 * getparam()/getattr() don't report silly values for !rt tasks. 3273 */ 3274 p->rt_priority = attr->sched_priority; 3275 p->normal_prio = normal_prio(p); 3276 set_load_weight(p); 3277 } 3278 3279 /* Actually do priority change: must hold pi & rq lock. */ 3280 static void __setscheduler(struct rq *rq, struct task_struct *p, 3281 const struct sched_attr *attr) 3282 { 3283 __setscheduler_params(p, attr); 3284 3285 /* 3286 * If we get here, there was no pi waiters boosting the 3287 * task. It is safe to use the normal prio. 3288 */ 3289 p->prio = normal_prio(p); 3290 3291 if (dl_prio(p->prio)) 3292 p->sched_class = &dl_sched_class; 3293 else if (rt_prio(p->prio)) 3294 p->sched_class = &rt_sched_class; 3295 else 3296 p->sched_class = &fair_sched_class; 3297 } 3298 3299 static void 3300 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3301 { 3302 struct sched_dl_entity *dl_se = &p->dl; 3303 3304 attr->sched_priority = p->rt_priority; 3305 attr->sched_runtime = dl_se->dl_runtime; 3306 attr->sched_deadline = dl_se->dl_deadline; 3307 attr->sched_period = dl_se->dl_period; 3308 attr->sched_flags = dl_se->flags; 3309 } 3310 3311 /* 3312 * This function validates the new parameters of a -deadline task. 3313 * We ask for the deadline not being zero, and greater or equal 3314 * than the runtime, as well as the period of being zero or 3315 * greater than deadline. Furthermore, we have to be sure that 3316 * user parameters are above the internal resolution of 1us (we 3317 * check sched_runtime only since it is always the smaller one) and 3318 * below 2^63 ns (we have to check both sched_deadline and 3319 * sched_period, as the latter can be zero). 3320 */ 3321 static bool 3322 __checkparam_dl(const struct sched_attr *attr) 3323 { 3324 /* deadline != 0 */ 3325 if (attr->sched_deadline == 0) 3326 return false; 3327 3328 /* 3329 * Since we truncate DL_SCALE bits, make sure we're at least 3330 * that big. 3331 */ 3332 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3333 return false; 3334 3335 /* 3336 * Since we use the MSB for wrap-around and sign issues, make 3337 * sure it's not set (mind that period can be equal to zero). 3338 */ 3339 if (attr->sched_deadline & (1ULL << 63) || 3340 attr->sched_period & (1ULL << 63)) 3341 return false; 3342 3343 /* runtime <= deadline <= period (if period != 0) */ 3344 if ((attr->sched_period != 0 && 3345 attr->sched_period < attr->sched_deadline) || 3346 attr->sched_deadline < attr->sched_runtime) 3347 return false; 3348 3349 return true; 3350 } 3351 3352 /* 3353 * check the target process has a UID that matches the current process's 3354 */ 3355 static bool check_same_owner(struct task_struct *p) 3356 { 3357 const struct cred *cred = current_cred(), *pcred; 3358 bool match; 3359 3360 rcu_read_lock(); 3361 pcred = __task_cred(p); 3362 match = (uid_eq(cred->euid, pcred->euid) || 3363 uid_eq(cred->euid, pcred->uid)); 3364 rcu_read_unlock(); 3365 return match; 3366 } 3367 3368 static bool dl_param_changed(struct task_struct *p, 3369 const struct sched_attr *attr) 3370 { 3371 struct sched_dl_entity *dl_se = &p->dl; 3372 3373 if (dl_se->dl_runtime != attr->sched_runtime || 3374 dl_se->dl_deadline != attr->sched_deadline || 3375 dl_se->dl_period != attr->sched_period || 3376 dl_se->flags != attr->sched_flags) 3377 return true; 3378 3379 return false; 3380 } 3381 3382 static int __sched_setscheduler(struct task_struct *p, 3383 const struct sched_attr *attr, 3384 bool user) 3385 { 3386 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3387 MAX_RT_PRIO - 1 - attr->sched_priority; 3388 int retval, oldprio, oldpolicy = -1, queued, running; 3389 int policy = attr->sched_policy; 3390 unsigned long flags; 3391 const struct sched_class *prev_class; 3392 struct rq *rq; 3393 int reset_on_fork; 3394 3395 /* may grab non-irq protected spin_locks */ 3396 BUG_ON(in_interrupt()); 3397 recheck: 3398 /* double check policy once rq lock held */ 3399 if (policy < 0) { 3400 reset_on_fork = p->sched_reset_on_fork; 3401 policy = oldpolicy = p->policy; 3402 } else { 3403 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3404 3405 if (policy != SCHED_DEADLINE && 3406 policy != SCHED_FIFO && policy != SCHED_RR && 3407 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3408 policy != SCHED_IDLE) 3409 return -EINVAL; 3410 } 3411 3412 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3413 return -EINVAL; 3414 3415 /* 3416 * Valid priorities for SCHED_FIFO and SCHED_RR are 3417 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3418 * SCHED_BATCH and SCHED_IDLE is 0. 3419 */ 3420 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3421 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3422 return -EINVAL; 3423 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3424 (rt_policy(policy) != (attr->sched_priority != 0))) 3425 return -EINVAL; 3426 3427 /* 3428 * Allow unprivileged RT tasks to decrease priority: 3429 */ 3430 if (user && !capable(CAP_SYS_NICE)) { 3431 if (fair_policy(policy)) { 3432 if (attr->sched_nice < task_nice(p) && 3433 !can_nice(p, attr->sched_nice)) 3434 return -EPERM; 3435 } 3436 3437 if (rt_policy(policy)) { 3438 unsigned long rlim_rtprio = 3439 task_rlimit(p, RLIMIT_RTPRIO); 3440 3441 /* can't set/change the rt policy */ 3442 if (policy != p->policy && !rlim_rtprio) 3443 return -EPERM; 3444 3445 /* can't increase priority */ 3446 if (attr->sched_priority > p->rt_priority && 3447 attr->sched_priority > rlim_rtprio) 3448 return -EPERM; 3449 } 3450 3451 /* 3452 * Can't set/change SCHED_DEADLINE policy at all for now 3453 * (safest behavior); in the future we would like to allow 3454 * unprivileged DL tasks to increase their relative deadline 3455 * or reduce their runtime (both ways reducing utilization) 3456 */ 3457 if (dl_policy(policy)) 3458 return -EPERM; 3459 3460 /* 3461 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3462 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3463 */ 3464 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3465 if (!can_nice(p, task_nice(p))) 3466 return -EPERM; 3467 } 3468 3469 /* can't change other user's priorities */ 3470 if (!check_same_owner(p)) 3471 return -EPERM; 3472 3473 /* Normal users shall not reset the sched_reset_on_fork flag */ 3474 if (p->sched_reset_on_fork && !reset_on_fork) 3475 return -EPERM; 3476 } 3477 3478 if (user) { 3479 retval = security_task_setscheduler(p); 3480 if (retval) 3481 return retval; 3482 } 3483 3484 /* 3485 * make sure no PI-waiters arrive (or leave) while we are 3486 * changing the priority of the task: 3487 * 3488 * To be able to change p->policy safely, the appropriate 3489 * runqueue lock must be held. 3490 */ 3491 rq = task_rq_lock(p, &flags); 3492 3493 /* 3494 * Changing the policy of the stop threads its a very bad idea 3495 */ 3496 if (p == rq->stop) { 3497 task_rq_unlock(rq, p, &flags); 3498 return -EINVAL; 3499 } 3500 3501 /* 3502 * If not changing anything there's no need to proceed further, 3503 * but store a possible modification of reset_on_fork. 3504 */ 3505 if (unlikely(policy == p->policy)) { 3506 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3507 goto change; 3508 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3509 goto change; 3510 if (dl_policy(policy) && dl_param_changed(p, attr)) 3511 goto change; 3512 3513 p->sched_reset_on_fork = reset_on_fork; 3514 task_rq_unlock(rq, p, &flags); 3515 return 0; 3516 } 3517 change: 3518 3519 if (user) { 3520 #ifdef CONFIG_RT_GROUP_SCHED 3521 /* 3522 * Do not allow realtime tasks into groups that have no runtime 3523 * assigned. 3524 */ 3525 if (rt_bandwidth_enabled() && rt_policy(policy) && 3526 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3527 !task_group_is_autogroup(task_group(p))) { 3528 task_rq_unlock(rq, p, &flags); 3529 return -EPERM; 3530 } 3531 #endif 3532 #ifdef CONFIG_SMP 3533 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3534 cpumask_t *span = rq->rd->span; 3535 3536 /* 3537 * Don't allow tasks with an affinity mask smaller than 3538 * the entire root_domain to become SCHED_DEADLINE. We 3539 * will also fail if there's no bandwidth available. 3540 */ 3541 if (!cpumask_subset(span, &p->cpus_allowed) || 3542 rq->rd->dl_bw.bw == 0) { 3543 task_rq_unlock(rq, p, &flags); 3544 return -EPERM; 3545 } 3546 } 3547 #endif 3548 } 3549 3550 /* recheck policy now with rq lock held */ 3551 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3552 policy = oldpolicy = -1; 3553 task_rq_unlock(rq, p, &flags); 3554 goto recheck; 3555 } 3556 3557 /* 3558 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3559 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3560 * is available. 3561 */ 3562 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3563 task_rq_unlock(rq, p, &flags); 3564 return -EBUSY; 3565 } 3566 3567 p->sched_reset_on_fork = reset_on_fork; 3568 oldprio = p->prio; 3569 3570 /* 3571 * Special case for priority boosted tasks. 3572 * 3573 * If the new priority is lower or equal (user space view) 3574 * than the current (boosted) priority, we just store the new 3575 * normal parameters and do not touch the scheduler class and 3576 * the runqueue. This will be done when the task deboost 3577 * itself. 3578 */ 3579 if (rt_mutex_check_prio(p, newprio)) { 3580 __setscheduler_params(p, attr); 3581 task_rq_unlock(rq, p, &flags); 3582 return 0; 3583 } 3584 3585 queued = task_on_rq_queued(p); 3586 running = task_current(rq, p); 3587 if (queued) 3588 dequeue_task(rq, p, 0); 3589 if (running) 3590 put_prev_task(rq, p); 3591 3592 prev_class = p->sched_class; 3593 __setscheduler(rq, p, attr); 3594 3595 if (running) 3596 p->sched_class->set_curr_task(rq); 3597 if (queued) { 3598 /* 3599 * We enqueue to tail when the priority of a task is 3600 * increased (user space view). 3601 */ 3602 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3603 } 3604 3605 check_class_changed(rq, p, prev_class, oldprio); 3606 task_rq_unlock(rq, p, &flags); 3607 3608 rt_mutex_adjust_pi(p); 3609 3610 return 0; 3611 } 3612 3613 static int _sched_setscheduler(struct task_struct *p, int policy, 3614 const struct sched_param *param, bool check) 3615 { 3616 struct sched_attr attr = { 3617 .sched_policy = policy, 3618 .sched_priority = param->sched_priority, 3619 .sched_nice = PRIO_TO_NICE(p->static_prio), 3620 }; 3621 3622 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3623 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3624 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3625 policy &= ~SCHED_RESET_ON_FORK; 3626 attr.sched_policy = policy; 3627 } 3628 3629 return __sched_setscheduler(p, &attr, check); 3630 } 3631 /** 3632 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3633 * @p: the task in question. 3634 * @policy: new policy. 3635 * @param: structure containing the new RT priority. 3636 * 3637 * Return: 0 on success. An error code otherwise. 3638 * 3639 * NOTE that the task may be already dead. 3640 */ 3641 int sched_setscheduler(struct task_struct *p, int policy, 3642 const struct sched_param *param) 3643 { 3644 return _sched_setscheduler(p, policy, param, true); 3645 } 3646 EXPORT_SYMBOL_GPL(sched_setscheduler); 3647 3648 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3649 { 3650 return __sched_setscheduler(p, attr, true); 3651 } 3652 EXPORT_SYMBOL_GPL(sched_setattr); 3653 3654 /** 3655 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3656 * @p: the task in question. 3657 * @policy: new policy. 3658 * @param: structure containing the new RT priority. 3659 * 3660 * Just like sched_setscheduler, only don't bother checking if the 3661 * current context has permission. For example, this is needed in 3662 * stop_machine(): we create temporary high priority worker threads, 3663 * but our caller might not have that capability. 3664 * 3665 * Return: 0 on success. An error code otherwise. 3666 */ 3667 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3668 const struct sched_param *param) 3669 { 3670 return _sched_setscheduler(p, policy, param, false); 3671 } 3672 3673 static int 3674 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3675 { 3676 struct sched_param lparam; 3677 struct task_struct *p; 3678 int retval; 3679 3680 if (!param || pid < 0) 3681 return -EINVAL; 3682 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3683 return -EFAULT; 3684 3685 rcu_read_lock(); 3686 retval = -ESRCH; 3687 p = find_process_by_pid(pid); 3688 if (p != NULL) 3689 retval = sched_setscheduler(p, policy, &lparam); 3690 rcu_read_unlock(); 3691 3692 return retval; 3693 } 3694 3695 /* 3696 * Mimics kernel/events/core.c perf_copy_attr(). 3697 */ 3698 static int sched_copy_attr(struct sched_attr __user *uattr, 3699 struct sched_attr *attr) 3700 { 3701 u32 size; 3702 int ret; 3703 3704 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3705 return -EFAULT; 3706 3707 /* 3708 * zero the full structure, so that a short copy will be nice. 3709 */ 3710 memset(attr, 0, sizeof(*attr)); 3711 3712 ret = get_user(size, &uattr->size); 3713 if (ret) 3714 return ret; 3715 3716 if (size > PAGE_SIZE) /* silly large */ 3717 goto err_size; 3718 3719 if (!size) /* abi compat */ 3720 size = SCHED_ATTR_SIZE_VER0; 3721 3722 if (size < SCHED_ATTR_SIZE_VER0) 3723 goto err_size; 3724 3725 /* 3726 * If we're handed a bigger struct than we know of, 3727 * ensure all the unknown bits are 0 - i.e. new 3728 * user-space does not rely on any kernel feature 3729 * extensions we dont know about yet. 3730 */ 3731 if (size > sizeof(*attr)) { 3732 unsigned char __user *addr; 3733 unsigned char __user *end; 3734 unsigned char val; 3735 3736 addr = (void __user *)uattr + sizeof(*attr); 3737 end = (void __user *)uattr + size; 3738 3739 for (; addr < end; addr++) { 3740 ret = get_user(val, addr); 3741 if (ret) 3742 return ret; 3743 if (val) 3744 goto err_size; 3745 } 3746 size = sizeof(*attr); 3747 } 3748 3749 ret = copy_from_user(attr, uattr, size); 3750 if (ret) 3751 return -EFAULT; 3752 3753 /* 3754 * XXX: do we want to be lenient like existing syscalls; or do we want 3755 * to be strict and return an error on out-of-bounds values? 3756 */ 3757 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3758 3759 return 0; 3760 3761 err_size: 3762 put_user(sizeof(*attr), &uattr->size); 3763 return -E2BIG; 3764 } 3765 3766 /** 3767 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3768 * @pid: the pid in question. 3769 * @policy: new policy. 3770 * @param: structure containing the new RT priority. 3771 * 3772 * Return: 0 on success. An error code otherwise. 3773 */ 3774 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3775 struct sched_param __user *, param) 3776 { 3777 /* negative values for policy are not valid */ 3778 if (policy < 0) 3779 return -EINVAL; 3780 3781 return do_sched_setscheduler(pid, policy, param); 3782 } 3783 3784 /** 3785 * sys_sched_setparam - set/change the RT priority of a thread 3786 * @pid: the pid in question. 3787 * @param: structure containing the new RT priority. 3788 * 3789 * Return: 0 on success. An error code otherwise. 3790 */ 3791 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3792 { 3793 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3794 } 3795 3796 /** 3797 * sys_sched_setattr - same as above, but with extended sched_attr 3798 * @pid: the pid in question. 3799 * @uattr: structure containing the extended parameters. 3800 * @flags: for future extension. 3801 */ 3802 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3803 unsigned int, flags) 3804 { 3805 struct sched_attr attr; 3806 struct task_struct *p; 3807 int retval; 3808 3809 if (!uattr || pid < 0 || flags) 3810 return -EINVAL; 3811 3812 retval = sched_copy_attr(uattr, &attr); 3813 if (retval) 3814 return retval; 3815 3816 if ((int)attr.sched_policy < 0) 3817 return -EINVAL; 3818 3819 rcu_read_lock(); 3820 retval = -ESRCH; 3821 p = find_process_by_pid(pid); 3822 if (p != NULL) 3823 retval = sched_setattr(p, &attr); 3824 rcu_read_unlock(); 3825 3826 return retval; 3827 } 3828 3829 /** 3830 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3831 * @pid: the pid in question. 3832 * 3833 * Return: On success, the policy of the thread. Otherwise, a negative error 3834 * code. 3835 */ 3836 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3837 { 3838 struct task_struct *p; 3839 int retval; 3840 3841 if (pid < 0) 3842 return -EINVAL; 3843 3844 retval = -ESRCH; 3845 rcu_read_lock(); 3846 p = find_process_by_pid(pid); 3847 if (p) { 3848 retval = security_task_getscheduler(p); 3849 if (!retval) 3850 retval = p->policy 3851 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3852 } 3853 rcu_read_unlock(); 3854 return retval; 3855 } 3856 3857 /** 3858 * sys_sched_getparam - get the RT priority of a thread 3859 * @pid: the pid in question. 3860 * @param: structure containing the RT priority. 3861 * 3862 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3863 * code. 3864 */ 3865 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3866 { 3867 struct sched_param lp = { .sched_priority = 0 }; 3868 struct task_struct *p; 3869 int retval; 3870 3871 if (!param || pid < 0) 3872 return -EINVAL; 3873 3874 rcu_read_lock(); 3875 p = find_process_by_pid(pid); 3876 retval = -ESRCH; 3877 if (!p) 3878 goto out_unlock; 3879 3880 retval = security_task_getscheduler(p); 3881 if (retval) 3882 goto out_unlock; 3883 3884 if (task_has_rt_policy(p)) 3885 lp.sched_priority = p->rt_priority; 3886 rcu_read_unlock(); 3887 3888 /* 3889 * This one might sleep, we cannot do it with a spinlock held ... 3890 */ 3891 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3892 3893 return retval; 3894 3895 out_unlock: 3896 rcu_read_unlock(); 3897 return retval; 3898 } 3899 3900 static int sched_read_attr(struct sched_attr __user *uattr, 3901 struct sched_attr *attr, 3902 unsigned int usize) 3903 { 3904 int ret; 3905 3906 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3907 return -EFAULT; 3908 3909 /* 3910 * If we're handed a smaller struct than we know of, 3911 * ensure all the unknown bits are 0 - i.e. old 3912 * user-space does not get uncomplete information. 3913 */ 3914 if (usize < sizeof(*attr)) { 3915 unsigned char *addr; 3916 unsigned char *end; 3917 3918 addr = (void *)attr + usize; 3919 end = (void *)attr + sizeof(*attr); 3920 3921 for (; addr < end; addr++) { 3922 if (*addr) 3923 return -EFBIG; 3924 } 3925 3926 attr->size = usize; 3927 } 3928 3929 ret = copy_to_user(uattr, attr, attr->size); 3930 if (ret) 3931 return -EFAULT; 3932 3933 return 0; 3934 } 3935 3936 /** 3937 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3938 * @pid: the pid in question. 3939 * @uattr: structure containing the extended parameters. 3940 * @size: sizeof(attr) for fwd/bwd comp. 3941 * @flags: for future extension. 3942 */ 3943 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3944 unsigned int, size, unsigned int, flags) 3945 { 3946 struct sched_attr attr = { 3947 .size = sizeof(struct sched_attr), 3948 }; 3949 struct task_struct *p; 3950 int retval; 3951 3952 if (!uattr || pid < 0 || size > PAGE_SIZE || 3953 size < SCHED_ATTR_SIZE_VER0 || flags) 3954 return -EINVAL; 3955 3956 rcu_read_lock(); 3957 p = find_process_by_pid(pid); 3958 retval = -ESRCH; 3959 if (!p) 3960 goto out_unlock; 3961 3962 retval = security_task_getscheduler(p); 3963 if (retval) 3964 goto out_unlock; 3965 3966 attr.sched_policy = p->policy; 3967 if (p->sched_reset_on_fork) 3968 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3969 if (task_has_dl_policy(p)) 3970 __getparam_dl(p, &attr); 3971 else if (task_has_rt_policy(p)) 3972 attr.sched_priority = p->rt_priority; 3973 else 3974 attr.sched_nice = task_nice(p); 3975 3976 rcu_read_unlock(); 3977 3978 retval = sched_read_attr(uattr, &attr, size); 3979 return retval; 3980 3981 out_unlock: 3982 rcu_read_unlock(); 3983 return retval; 3984 } 3985 3986 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3987 { 3988 cpumask_var_t cpus_allowed, new_mask; 3989 struct task_struct *p; 3990 int retval; 3991 3992 rcu_read_lock(); 3993 3994 p = find_process_by_pid(pid); 3995 if (!p) { 3996 rcu_read_unlock(); 3997 return -ESRCH; 3998 } 3999 4000 /* Prevent p going away */ 4001 get_task_struct(p); 4002 rcu_read_unlock(); 4003 4004 if (p->flags & PF_NO_SETAFFINITY) { 4005 retval = -EINVAL; 4006 goto out_put_task; 4007 } 4008 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4009 retval = -ENOMEM; 4010 goto out_put_task; 4011 } 4012 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4013 retval = -ENOMEM; 4014 goto out_free_cpus_allowed; 4015 } 4016 retval = -EPERM; 4017 if (!check_same_owner(p)) { 4018 rcu_read_lock(); 4019 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4020 rcu_read_unlock(); 4021 goto out_free_new_mask; 4022 } 4023 rcu_read_unlock(); 4024 } 4025 4026 retval = security_task_setscheduler(p); 4027 if (retval) 4028 goto out_free_new_mask; 4029 4030 4031 cpuset_cpus_allowed(p, cpus_allowed); 4032 cpumask_and(new_mask, in_mask, cpus_allowed); 4033 4034 /* 4035 * Since bandwidth control happens on root_domain basis, 4036 * if admission test is enabled, we only admit -deadline 4037 * tasks allowed to run on all the CPUs in the task's 4038 * root_domain. 4039 */ 4040 #ifdef CONFIG_SMP 4041 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4042 rcu_read_lock(); 4043 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4044 retval = -EBUSY; 4045 rcu_read_unlock(); 4046 goto out_free_new_mask; 4047 } 4048 rcu_read_unlock(); 4049 } 4050 #endif 4051 again: 4052 retval = set_cpus_allowed_ptr(p, new_mask); 4053 4054 if (!retval) { 4055 cpuset_cpus_allowed(p, cpus_allowed); 4056 if (!cpumask_subset(new_mask, cpus_allowed)) { 4057 /* 4058 * We must have raced with a concurrent cpuset 4059 * update. Just reset the cpus_allowed to the 4060 * cpuset's cpus_allowed 4061 */ 4062 cpumask_copy(new_mask, cpus_allowed); 4063 goto again; 4064 } 4065 } 4066 out_free_new_mask: 4067 free_cpumask_var(new_mask); 4068 out_free_cpus_allowed: 4069 free_cpumask_var(cpus_allowed); 4070 out_put_task: 4071 put_task_struct(p); 4072 return retval; 4073 } 4074 4075 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4076 struct cpumask *new_mask) 4077 { 4078 if (len < cpumask_size()) 4079 cpumask_clear(new_mask); 4080 else if (len > cpumask_size()) 4081 len = cpumask_size(); 4082 4083 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4084 } 4085 4086 /** 4087 * sys_sched_setaffinity - set the cpu affinity of a process 4088 * @pid: pid of the process 4089 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4090 * @user_mask_ptr: user-space pointer to the new cpu mask 4091 * 4092 * Return: 0 on success. An error code otherwise. 4093 */ 4094 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4095 unsigned long __user *, user_mask_ptr) 4096 { 4097 cpumask_var_t new_mask; 4098 int retval; 4099 4100 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4101 return -ENOMEM; 4102 4103 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4104 if (retval == 0) 4105 retval = sched_setaffinity(pid, new_mask); 4106 free_cpumask_var(new_mask); 4107 return retval; 4108 } 4109 4110 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4111 { 4112 struct task_struct *p; 4113 unsigned long flags; 4114 int retval; 4115 4116 rcu_read_lock(); 4117 4118 retval = -ESRCH; 4119 p = find_process_by_pid(pid); 4120 if (!p) 4121 goto out_unlock; 4122 4123 retval = security_task_getscheduler(p); 4124 if (retval) 4125 goto out_unlock; 4126 4127 raw_spin_lock_irqsave(&p->pi_lock, flags); 4128 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4129 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4130 4131 out_unlock: 4132 rcu_read_unlock(); 4133 4134 return retval; 4135 } 4136 4137 /** 4138 * sys_sched_getaffinity - get the cpu affinity of a process 4139 * @pid: pid of the process 4140 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4141 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4142 * 4143 * Return: 0 on success. An error code otherwise. 4144 */ 4145 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4146 unsigned long __user *, user_mask_ptr) 4147 { 4148 int ret; 4149 cpumask_var_t mask; 4150 4151 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4152 return -EINVAL; 4153 if (len & (sizeof(unsigned long)-1)) 4154 return -EINVAL; 4155 4156 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4157 return -ENOMEM; 4158 4159 ret = sched_getaffinity(pid, mask); 4160 if (ret == 0) { 4161 size_t retlen = min_t(size_t, len, cpumask_size()); 4162 4163 if (copy_to_user(user_mask_ptr, mask, retlen)) 4164 ret = -EFAULT; 4165 else 4166 ret = retlen; 4167 } 4168 free_cpumask_var(mask); 4169 4170 return ret; 4171 } 4172 4173 /** 4174 * sys_sched_yield - yield the current processor to other threads. 4175 * 4176 * This function yields the current CPU to other tasks. If there are no 4177 * other threads running on this CPU then this function will return. 4178 * 4179 * Return: 0. 4180 */ 4181 SYSCALL_DEFINE0(sched_yield) 4182 { 4183 struct rq *rq = this_rq_lock(); 4184 4185 schedstat_inc(rq, yld_count); 4186 current->sched_class->yield_task(rq); 4187 4188 /* 4189 * Since we are going to call schedule() anyway, there's 4190 * no need to preempt or enable interrupts: 4191 */ 4192 __release(rq->lock); 4193 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4194 do_raw_spin_unlock(&rq->lock); 4195 sched_preempt_enable_no_resched(); 4196 4197 schedule(); 4198 4199 return 0; 4200 } 4201 4202 int __sched _cond_resched(void) 4203 { 4204 if (should_resched()) { 4205 preempt_schedule_common(); 4206 return 1; 4207 } 4208 return 0; 4209 } 4210 EXPORT_SYMBOL(_cond_resched); 4211 4212 /* 4213 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4214 * call schedule, and on return reacquire the lock. 4215 * 4216 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4217 * operations here to prevent schedule() from being called twice (once via 4218 * spin_unlock(), once by hand). 4219 */ 4220 int __cond_resched_lock(spinlock_t *lock) 4221 { 4222 int resched = should_resched(); 4223 int ret = 0; 4224 4225 lockdep_assert_held(lock); 4226 4227 if (spin_needbreak(lock) || resched) { 4228 spin_unlock(lock); 4229 if (resched) 4230 preempt_schedule_common(); 4231 else 4232 cpu_relax(); 4233 ret = 1; 4234 spin_lock(lock); 4235 } 4236 return ret; 4237 } 4238 EXPORT_SYMBOL(__cond_resched_lock); 4239 4240 int __sched __cond_resched_softirq(void) 4241 { 4242 BUG_ON(!in_softirq()); 4243 4244 if (should_resched()) { 4245 local_bh_enable(); 4246 preempt_schedule_common(); 4247 local_bh_disable(); 4248 return 1; 4249 } 4250 return 0; 4251 } 4252 EXPORT_SYMBOL(__cond_resched_softirq); 4253 4254 /** 4255 * yield - yield the current processor to other threads. 4256 * 4257 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4258 * 4259 * The scheduler is at all times free to pick the calling task as the most 4260 * eligible task to run, if removing the yield() call from your code breaks 4261 * it, its already broken. 4262 * 4263 * Typical broken usage is: 4264 * 4265 * while (!event) 4266 * yield(); 4267 * 4268 * where one assumes that yield() will let 'the other' process run that will 4269 * make event true. If the current task is a SCHED_FIFO task that will never 4270 * happen. Never use yield() as a progress guarantee!! 4271 * 4272 * If you want to use yield() to wait for something, use wait_event(). 4273 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4274 * If you still want to use yield(), do not! 4275 */ 4276 void __sched yield(void) 4277 { 4278 set_current_state(TASK_RUNNING); 4279 sys_sched_yield(); 4280 } 4281 EXPORT_SYMBOL(yield); 4282 4283 /** 4284 * yield_to - yield the current processor to another thread in 4285 * your thread group, or accelerate that thread toward the 4286 * processor it's on. 4287 * @p: target task 4288 * @preempt: whether task preemption is allowed or not 4289 * 4290 * It's the caller's job to ensure that the target task struct 4291 * can't go away on us before we can do any checks. 4292 * 4293 * Return: 4294 * true (>0) if we indeed boosted the target task. 4295 * false (0) if we failed to boost the target. 4296 * -ESRCH if there's no task to yield to. 4297 */ 4298 int __sched yield_to(struct task_struct *p, bool preempt) 4299 { 4300 struct task_struct *curr = current; 4301 struct rq *rq, *p_rq; 4302 unsigned long flags; 4303 int yielded = 0; 4304 4305 local_irq_save(flags); 4306 rq = this_rq(); 4307 4308 again: 4309 p_rq = task_rq(p); 4310 /* 4311 * If we're the only runnable task on the rq and target rq also 4312 * has only one task, there's absolutely no point in yielding. 4313 */ 4314 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4315 yielded = -ESRCH; 4316 goto out_irq; 4317 } 4318 4319 double_rq_lock(rq, p_rq); 4320 if (task_rq(p) != p_rq) { 4321 double_rq_unlock(rq, p_rq); 4322 goto again; 4323 } 4324 4325 if (!curr->sched_class->yield_to_task) 4326 goto out_unlock; 4327 4328 if (curr->sched_class != p->sched_class) 4329 goto out_unlock; 4330 4331 if (task_running(p_rq, p) || p->state) 4332 goto out_unlock; 4333 4334 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4335 if (yielded) { 4336 schedstat_inc(rq, yld_count); 4337 /* 4338 * Make p's CPU reschedule; pick_next_entity takes care of 4339 * fairness. 4340 */ 4341 if (preempt && rq != p_rq) 4342 resched_curr(p_rq); 4343 } 4344 4345 out_unlock: 4346 double_rq_unlock(rq, p_rq); 4347 out_irq: 4348 local_irq_restore(flags); 4349 4350 if (yielded > 0) 4351 schedule(); 4352 4353 return yielded; 4354 } 4355 EXPORT_SYMBOL_GPL(yield_to); 4356 4357 /* 4358 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4359 * that process accounting knows that this is a task in IO wait state. 4360 */ 4361 long __sched io_schedule_timeout(long timeout) 4362 { 4363 int old_iowait = current->in_iowait; 4364 struct rq *rq; 4365 long ret; 4366 4367 current->in_iowait = 1; 4368 if (old_iowait) 4369 blk_schedule_flush_plug(current); 4370 else 4371 blk_flush_plug(current); 4372 4373 delayacct_blkio_start(); 4374 rq = raw_rq(); 4375 atomic_inc(&rq->nr_iowait); 4376 ret = schedule_timeout(timeout); 4377 current->in_iowait = old_iowait; 4378 atomic_dec(&rq->nr_iowait); 4379 delayacct_blkio_end(); 4380 4381 return ret; 4382 } 4383 EXPORT_SYMBOL(io_schedule_timeout); 4384 4385 /** 4386 * sys_sched_get_priority_max - return maximum RT priority. 4387 * @policy: scheduling class. 4388 * 4389 * Return: On success, this syscall returns the maximum 4390 * rt_priority that can be used by a given scheduling class. 4391 * On failure, a negative error code is returned. 4392 */ 4393 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4394 { 4395 int ret = -EINVAL; 4396 4397 switch (policy) { 4398 case SCHED_FIFO: 4399 case SCHED_RR: 4400 ret = MAX_USER_RT_PRIO-1; 4401 break; 4402 case SCHED_DEADLINE: 4403 case SCHED_NORMAL: 4404 case SCHED_BATCH: 4405 case SCHED_IDLE: 4406 ret = 0; 4407 break; 4408 } 4409 return ret; 4410 } 4411 4412 /** 4413 * sys_sched_get_priority_min - return minimum RT priority. 4414 * @policy: scheduling class. 4415 * 4416 * Return: On success, this syscall returns the minimum 4417 * rt_priority that can be used by a given scheduling class. 4418 * On failure, a negative error code is returned. 4419 */ 4420 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4421 { 4422 int ret = -EINVAL; 4423 4424 switch (policy) { 4425 case SCHED_FIFO: 4426 case SCHED_RR: 4427 ret = 1; 4428 break; 4429 case SCHED_DEADLINE: 4430 case SCHED_NORMAL: 4431 case SCHED_BATCH: 4432 case SCHED_IDLE: 4433 ret = 0; 4434 } 4435 return ret; 4436 } 4437 4438 /** 4439 * sys_sched_rr_get_interval - return the default timeslice of a process. 4440 * @pid: pid of the process. 4441 * @interval: userspace pointer to the timeslice value. 4442 * 4443 * this syscall writes the default timeslice value of a given process 4444 * into the user-space timespec buffer. A value of '0' means infinity. 4445 * 4446 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4447 * an error code. 4448 */ 4449 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4450 struct timespec __user *, interval) 4451 { 4452 struct task_struct *p; 4453 unsigned int time_slice; 4454 unsigned long flags; 4455 struct rq *rq; 4456 int retval; 4457 struct timespec t; 4458 4459 if (pid < 0) 4460 return -EINVAL; 4461 4462 retval = -ESRCH; 4463 rcu_read_lock(); 4464 p = find_process_by_pid(pid); 4465 if (!p) 4466 goto out_unlock; 4467 4468 retval = security_task_getscheduler(p); 4469 if (retval) 4470 goto out_unlock; 4471 4472 rq = task_rq_lock(p, &flags); 4473 time_slice = 0; 4474 if (p->sched_class->get_rr_interval) 4475 time_slice = p->sched_class->get_rr_interval(rq, p); 4476 task_rq_unlock(rq, p, &flags); 4477 4478 rcu_read_unlock(); 4479 jiffies_to_timespec(time_slice, &t); 4480 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4481 return retval; 4482 4483 out_unlock: 4484 rcu_read_unlock(); 4485 return retval; 4486 } 4487 4488 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4489 4490 void sched_show_task(struct task_struct *p) 4491 { 4492 unsigned long free = 0; 4493 int ppid; 4494 unsigned long state = p->state; 4495 4496 if (state) 4497 state = __ffs(state) + 1; 4498 printk(KERN_INFO "%-15.15s %c", p->comm, 4499 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4500 #if BITS_PER_LONG == 32 4501 if (state == TASK_RUNNING) 4502 printk(KERN_CONT " running "); 4503 else 4504 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4505 #else 4506 if (state == TASK_RUNNING) 4507 printk(KERN_CONT " running task "); 4508 else 4509 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4510 #endif 4511 #ifdef CONFIG_DEBUG_STACK_USAGE 4512 free = stack_not_used(p); 4513 #endif 4514 ppid = 0; 4515 rcu_read_lock(); 4516 if (pid_alive(p)) 4517 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4518 rcu_read_unlock(); 4519 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4520 task_pid_nr(p), ppid, 4521 (unsigned long)task_thread_info(p)->flags); 4522 4523 print_worker_info(KERN_INFO, p); 4524 show_stack(p, NULL); 4525 } 4526 4527 void show_state_filter(unsigned long state_filter) 4528 { 4529 struct task_struct *g, *p; 4530 4531 #if BITS_PER_LONG == 32 4532 printk(KERN_INFO 4533 " task PC stack pid father\n"); 4534 #else 4535 printk(KERN_INFO 4536 " task PC stack pid father\n"); 4537 #endif 4538 rcu_read_lock(); 4539 for_each_process_thread(g, p) { 4540 /* 4541 * reset the NMI-timeout, listing all files on a slow 4542 * console might take a lot of time: 4543 */ 4544 touch_nmi_watchdog(); 4545 if (!state_filter || (p->state & state_filter)) 4546 sched_show_task(p); 4547 } 4548 4549 touch_all_softlockup_watchdogs(); 4550 4551 #ifdef CONFIG_SCHED_DEBUG 4552 sysrq_sched_debug_show(); 4553 #endif 4554 rcu_read_unlock(); 4555 /* 4556 * Only show locks if all tasks are dumped: 4557 */ 4558 if (!state_filter) 4559 debug_show_all_locks(); 4560 } 4561 4562 void init_idle_bootup_task(struct task_struct *idle) 4563 { 4564 idle->sched_class = &idle_sched_class; 4565 } 4566 4567 /** 4568 * init_idle - set up an idle thread for a given CPU 4569 * @idle: task in question 4570 * @cpu: cpu the idle task belongs to 4571 * 4572 * NOTE: this function does not set the idle thread's NEED_RESCHED 4573 * flag, to make booting more robust. 4574 */ 4575 void init_idle(struct task_struct *idle, int cpu) 4576 { 4577 struct rq *rq = cpu_rq(cpu); 4578 unsigned long flags; 4579 4580 raw_spin_lock_irqsave(&rq->lock, flags); 4581 4582 __sched_fork(0, idle); 4583 idle->state = TASK_RUNNING; 4584 idle->se.exec_start = sched_clock(); 4585 4586 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4587 /* 4588 * We're having a chicken and egg problem, even though we are 4589 * holding rq->lock, the cpu isn't yet set to this cpu so the 4590 * lockdep check in task_group() will fail. 4591 * 4592 * Similar case to sched_fork(). / Alternatively we could 4593 * use task_rq_lock() here and obtain the other rq->lock. 4594 * 4595 * Silence PROVE_RCU 4596 */ 4597 rcu_read_lock(); 4598 __set_task_cpu(idle, cpu); 4599 rcu_read_unlock(); 4600 4601 rq->curr = rq->idle = idle; 4602 idle->on_rq = TASK_ON_RQ_QUEUED; 4603 #if defined(CONFIG_SMP) 4604 idle->on_cpu = 1; 4605 #endif 4606 raw_spin_unlock_irqrestore(&rq->lock, flags); 4607 4608 /* Set the preempt count _outside_ the spinlocks! */ 4609 init_idle_preempt_count(idle, cpu); 4610 4611 /* 4612 * The idle tasks have their own, simple scheduling class: 4613 */ 4614 idle->sched_class = &idle_sched_class; 4615 ftrace_graph_init_idle_task(idle, cpu); 4616 vtime_init_idle(idle, cpu); 4617 #if defined(CONFIG_SMP) 4618 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4619 #endif 4620 } 4621 4622 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4623 const struct cpumask *trial) 4624 { 4625 int ret = 1, trial_cpus; 4626 struct dl_bw *cur_dl_b; 4627 unsigned long flags; 4628 4629 if (!cpumask_weight(cur)) 4630 return ret; 4631 4632 rcu_read_lock_sched(); 4633 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4634 trial_cpus = cpumask_weight(trial); 4635 4636 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4637 if (cur_dl_b->bw != -1 && 4638 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4639 ret = 0; 4640 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4641 rcu_read_unlock_sched(); 4642 4643 return ret; 4644 } 4645 4646 int task_can_attach(struct task_struct *p, 4647 const struct cpumask *cs_cpus_allowed) 4648 { 4649 int ret = 0; 4650 4651 /* 4652 * Kthreads which disallow setaffinity shouldn't be moved 4653 * to a new cpuset; we don't want to change their cpu 4654 * affinity and isolating such threads by their set of 4655 * allowed nodes is unnecessary. Thus, cpusets are not 4656 * applicable for such threads. This prevents checking for 4657 * success of set_cpus_allowed_ptr() on all attached tasks 4658 * before cpus_allowed may be changed. 4659 */ 4660 if (p->flags & PF_NO_SETAFFINITY) { 4661 ret = -EINVAL; 4662 goto out; 4663 } 4664 4665 #ifdef CONFIG_SMP 4666 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4667 cs_cpus_allowed)) { 4668 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4669 cs_cpus_allowed); 4670 struct dl_bw *dl_b; 4671 bool overflow; 4672 int cpus; 4673 unsigned long flags; 4674 4675 rcu_read_lock_sched(); 4676 dl_b = dl_bw_of(dest_cpu); 4677 raw_spin_lock_irqsave(&dl_b->lock, flags); 4678 cpus = dl_bw_cpus(dest_cpu); 4679 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4680 if (overflow) 4681 ret = -EBUSY; 4682 else { 4683 /* 4684 * We reserve space for this task in the destination 4685 * root_domain, as we can't fail after this point. 4686 * We will free resources in the source root_domain 4687 * later on (see set_cpus_allowed_dl()). 4688 */ 4689 __dl_add(dl_b, p->dl.dl_bw); 4690 } 4691 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4692 rcu_read_unlock_sched(); 4693 4694 } 4695 #endif 4696 out: 4697 return ret; 4698 } 4699 4700 #ifdef CONFIG_SMP 4701 /* 4702 * move_queued_task - move a queued task to new rq. 4703 * 4704 * Returns (locked) new rq. Old rq's lock is released. 4705 */ 4706 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4707 { 4708 struct rq *rq = task_rq(p); 4709 4710 lockdep_assert_held(&rq->lock); 4711 4712 dequeue_task(rq, p, 0); 4713 p->on_rq = TASK_ON_RQ_MIGRATING; 4714 set_task_cpu(p, new_cpu); 4715 raw_spin_unlock(&rq->lock); 4716 4717 rq = cpu_rq(new_cpu); 4718 4719 raw_spin_lock(&rq->lock); 4720 BUG_ON(task_cpu(p) != new_cpu); 4721 p->on_rq = TASK_ON_RQ_QUEUED; 4722 enqueue_task(rq, p, 0); 4723 check_preempt_curr(rq, p, 0); 4724 4725 return rq; 4726 } 4727 4728 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4729 { 4730 if (p->sched_class->set_cpus_allowed) 4731 p->sched_class->set_cpus_allowed(p, new_mask); 4732 4733 cpumask_copy(&p->cpus_allowed, new_mask); 4734 p->nr_cpus_allowed = cpumask_weight(new_mask); 4735 } 4736 4737 /* 4738 * This is how migration works: 4739 * 4740 * 1) we invoke migration_cpu_stop() on the target CPU using 4741 * stop_one_cpu(). 4742 * 2) stopper starts to run (implicitly forcing the migrated thread 4743 * off the CPU) 4744 * 3) it checks whether the migrated task is still in the wrong runqueue. 4745 * 4) if it's in the wrong runqueue then the migration thread removes 4746 * it and puts it into the right queue. 4747 * 5) stopper completes and stop_one_cpu() returns and the migration 4748 * is done. 4749 */ 4750 4751 /* 4752 * Change a given task's CPU affinity. Migrate the thread to a 4753 * proper CPU and schedule it away if the CPU it's executing on 4754 * is removed from the allowed bitmask. 4755 * 4756 * NOTE: the caller must have a valid reference to the task, the 4757 * task must not exit() & deallocate itself prematurely. The 4758 * call is not atomic; no spinlocks may be held. 4759 */ 4760 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4761 { 4762 unsigned long flags; 4763 struct rq *rq; 4764 unsigned int dest_cpu; 4765 int ret = 0; 4766 4767 rq = task_rq_lock(p, &flags); 4768 4769 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4770 goto out; 4771 4772 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4773 ret = -EINVAL; 4774 goto out; 4775 } 4776 4777 do_set_cpus_allowed(p, new_mask); 4778 4779 /* Can the task run on the task's current CPU? If so, we're done */ 4780 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4781 goto out; 4782 4783 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4784 if (task_running(rq, p) || p->state == TASK_WAKING) { 4785 struct migration_arg arg = { p, dest_cpu }; 4786 /* Need help from migration thread: drop lock and wait. */ 4787 task_rq_unlock(rq, p, &flags); 4788 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4789 tlb_migrate_finish(p->mm); 4790 return 0; 4791 } else if (task_on_rq_queued(p)) 4792 rq = move_queued_task(p, dest_cpu); 4793 out: 4794 task_rq_unlock(rq, p, &flags); 4795 4796 return ret; 4797 } 4798 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4799 4800 /* 4801 * Move (not current) task off this cpu, onto dest cpu. We're doing 4802 * this because either it can't run here any more (set_cpus_allowed() 4803 * away from this CPU, or CPU going down), or because we're 4804 * attempting to rebalance this task on exec (sched_exec). 4805 * 4806 * So we race with normal scheduler movements, but that's OK, as long 4807 * as the task is no longer on this CPU. 4808 * 4809 * Returns non-zero if task was successfully migrated. 4810 */ 4811 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4812 { 4813 struct rq *rq; 4814 int ret = 0; 4815 4816 if (unlikely(!cpu_active(dest_cpu))) 4817 return ret; 4818 4819 rq = cpu_rq(src_cpu); 4820 4821 raw_spin_lock(&p->pi_lock); 4822 raw_spin_lock(&rq->lock); 4823 /* Already moved. */ 4824 if (task_cpu(p) != src_cpu) 4825 goto done; 4826 4827 /* Affinity changed (again). */ 4828 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4829 goto fail; 4830 4831 /* 4832 * If we're not on a rq, the next wake-up will ensure we're 4833 * placed properly. 4834 */ 4835 if (task_on_rq_queued(p)) 4836 rq = move_queued_task(p, dest_cpu); 4837 done: 4838 ret = 1; 4839 fail: 4840 raw_spin_unlock(&rq->lock); 4841 raw_spin_unlock(&p->pi_lock); 4842 return ret; 4843 } 4844 4845 #ifdef CONFIG_NUMA_BALANCING 4846 /* Migrate current task p to target_cpu */ 4847 int migrate_task_to(struct task_struct *p, int target_cpu) 4848 { 4849 struct migration_arg arg = { p, target_cpu }; 4850 int curr_cpu = task_cpu(p); 4851 4852 if (curr_cpu == target_cpu) 4853 return 0; 4854 4855 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4856 return -EINVAL; 4857 4858 /* TODO: This is not properly updating schedstats */ 4859 4860 trace_sched_move_numa(p, curr_cpu, target_cpu); 4861 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4862 } 4863 4864 /* 4865 * Requeue a task on a given node and accurately track the number of NUMA 4866 * tasks on the runqueues 4867 */ 4868 void sched_setnuma(struct task_struct *p, int nid) 4869 { 4870 struct rq *rq; 4871 unsigned long flags; 4872 bool queued, running; 4873 4874 rq = task_rq_lock(p, &flags); 4875 queued = task_on_rq_queued(p); 4876 running = task_current(rq, p); 4877 4878 if (queued) 4879 dequeue_task(rq, p, 0); 4880 if (running) 4881 put_prev_task(rq, p); 4882 4883 p->numa_preferred_nid = nid; 4884 4885 if (running) 4886 p->sched_class->set_curr_task(rq); 4887 if (queued) 4888 enqueue_task(rq, p, 0); 4889 task_rq_unlock(rq, p, &flags); 4890 } 4891 #endif 4892 4893 /* 4894 * migration_cpu_stop - this will be executed by a highprio stopper thread 4895 * and performs thread migration by bumping thread off CPU then 4896 * 'pushing' onto another runqueue. 4897 */ 4898 static int migration_cpu_stop(void *data) 4899 { 4900 struct migration_arg *arg = data; 4901 4902 /* 4903 * The original target cpu might have gone down and we might 4904 * be on another cpu but it doesn't matter. 4905 */ 4906 local_irq_disable(); 4907 /* 4908 * We need to explicitly wake pending tasks before running 4909 * __migrate_task() such that we will not miss enforcing cpus_allowed 4910 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4911 */ 4912 sched_ttwu_pending(); 4913 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4914 local_irq_enable(); 4915 return 0; 4916 } 4917 4918 #ifdef CONFIG_HOTPLUG_CPU 4919 4920 /* 4921 * Ensures that the idle task is using init_mm right before its cpu goes 4922 * offline. 4923 */ 4924 void idle_task_exit(void) 4925 { 4926 struct mm_struct *mm = current->active_mm; 4927 4928 BUG_ON(cpu_online(smp_processor_id())); 4929 4930 if (mm != &init_mm) { 4931 switch_mm(mm, &init_mm, current); 4932 finish_arch_post_lock_switch(); 4933 } 4934 mmdrop(mm); 4935 } 4936 4937 /* 4938 * Since this CPU is going 'away' for a while, fold any nr_active delta 4939 * we might have. Assumes we're called after migrate_tasks() so that the 4940 * nr_active count is stable. 4941 * 4942 * Also see the comment "Global load-average calculations". 4943 */ 4944 static void calc_load_migrate(struct rq *rq) 4945 { 4946 long delta = calc_load_fold_active(rq); 4947 if (delta) 4948 atomic_long_add(delta, &calc_load_tasks); 4949 } 4950 4951 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4952 { 4953 } 4954 4955 static const struct sched_class fake_sched_class = { 4956 .put_prev_task = put_prev_task_fake, 4957 }; 4958 4959 static struct task_struct fake_task = { 4960 /* 4961 * Avoid pull_{rt,dl}_task() 4962 */ 4963 .prio = MAX_PRIO + 1, 4964 .sched_class = &fake_sched_class, 4965 }; 4966 4967 /* 4968 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4969 * try_to_wake_up()->select_task_rq(). 4970 * 4971 * Called with rq->lock held even though we'er in stop_machine() and 4972 * there's no concurrency possible, we hold the required locks anyway 4973 * because of lock validation efforts. 4974 */ 4975 static void migrate_tasks(unsigned int dead_cpu) 4976 { 4977 struct rq *rq = cpu_rq(dead_cpu); 4978 struct task_struct *next, *stop = rq->stop; 4979 int dest_cpu; 4980 4981 /* 4982 * Fudge the rq selection such that the below task selection loop 4983 * doesn't get stuck on the currently eligible stop task. 4984 * 4985 * We're currently inside stop_machine() and the rq is either stuck 4986 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4987 * either way we should never end up calling schedule() until we're 4988 * done here. 4989 */ 4990 rq->stop = NULL; 4991 4992 /* 4993 * put_prev_task() and pick_next_task() sched 4994 * class method both need to have an up-to-date 4995 * value of rq->clock[_task] 4996 */ 4997 update_rq_clock(rq); 4998 4999 for ( ; ; ) { 5000 /* 5001 * There's this thread running, bail when that's the only 5002 * remaining thread. 5003 */ 5004 if (rq->nr_running == 1) 5005 break; 5006 5007 next = pick_next_task(rq, &fake_task); 5008 BUG_ON(!next); 5009 next->sched_class->put_prev_task(rq, next); 5010 5011 /* Find suitable destination for @next, with force if needed. */ 5012 dest_cpu = select_fallback_rq(dead_cpu, next); 5013 raw_spin_unlock(&rq->lock); 5014 5015 __migrate_task(next, dead_cpu, dest_cpu); 5016 5017 raw_spin_lock(&rq->lock); 5018 } 5019 5020 rq->stop = stop; 5021 } 5022 5023 #endif /* CONFIG_HOTPLUG_CPU */ 5024 5025 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5026 5027 static struct ctl_table sd_ctl_dir[] = { 5028 { 5029 .procname = "sched_domain", 5030 .mode = 0555, 5031 }, 5032 {} 5033 }; 5034 5035 static struct ctl_table sd_ctl_root[] = { 5036 { 5037 .procname = "kernel", 5038 .mode = 0555, 5039 .child = sd_ctl_dir, 5040 }, 5041 {} 5042 }; 5043 5044 static struct ctl_table *sd_alloc_ctl_entry(int n) 5045 { 5046 struct ctl_table *entry = 5047 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5048 5049 return entry; 5050 } 5051 5052 static void sd_free_ctl_entry(struct ctl_table **tablep) 5053 { 5054 struct ctl_table *entry; 5055 5056 /* 5057 * In the intermediate directories, both the child directory and 5058 * procname are dynamically allocated and could fail but the mode 5059 * will always be set. In the lowest directory the names are 5060 * static strings and all have proc handlers. 5061 */ 5062 for (entry = *tablep; entry->mode; entry++) { 5063 if (entry->child) 5064 sd_free_ctl_entry(&entry->child); 5065 if (entry->proc_handler == NULL) 5066 kfree(entry->procname); 5067 } 5068 5069 kfree(*tablep); 5070 *tablep = NULL; 5071 } 5072 5073 static int min_load_idx = 0; 5074 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5075 5076 static void 5077 set_table_entry(struct ctl_table *entry, 5078 const char *procname, void *data, int maxlen, 5079 umode_t mode, proc_handler *proc_handler, 5080 bool load_idx) 5081 { 5082 entry->procname = procname; 5083 entry->data = data; 5084 entry->maxlen = maxlen; 5085 entry->mode = mode; 5086 entry->proc_handler = proc_handler; 5087 5088 if (load_idx) { 5089 entry->extra1 = &min_load_idx; 5090 entry->extra2 = &max_load_idx; 5091 } 5092 } 5093 5094 static struct ctl_table * 5095 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5096 { 5097 struct ctl_table *table = sd_alloc_ctl_entry(14); 5098 5099 if (table == NULL) 5100 return NULL; 5101 5102 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5103 sizeof(long), 0644, proc_doulongvec_minmax, false); 5104 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5105 sizeof(long), 0644, proc_doulongvec_minmax, false); 5106 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5107 sizeof(int), 0644, proc_dointvec_minmax, true); 5108 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5109 sizeof(int), 0644, proc_dointvec_minmax, true); 5110 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5111 sizeof(int), 0644, proc_dointvec_minmax, true); 5112 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5113 sizeof(int), 0644, proc_dointvec_minmax, true); 5114 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5115 sizeof(int), 0644, proc_dointvec_minmax, true); 5116 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5117 sizeof(int), 0644, proc_dointvec_minmax, false); 5118 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5119 sizeof(int), 0644, proc_dointvec_minmax, false); 5120 set_table_entry(&table[9], "cache_nice_tries", 5121 &sd->cache_nice_tries, 5122 sizeof(int), 0644, proc_dointvec_minmax, false); 5123 set_table_entry(&table[10], "flags", &sd->flags, 5124 sizeof(int), 0644, proc_dointvec_minmax, false); 5125 set_table_entry(&table[11], "max_newidle_lb_cost", 5126 &sd->max_newidle_lb_cost, 5127 sizeof(long), 0644, proc_doulongvec_minmax, false); 5128 set_table_entry(&table[12], "name", sd->name, 5129 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5130 /* &table[13] is terminator */ 5131 5132 return table; 5133 } 5134 5135 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5136 { 5137 struct ctl_table *entry, *table; 5138 struct sched_domain *sd; 5139 int domain_num = 0, i; 5140 char buf[32]; 5141 5142 for_each_domain(cpu, sd) 5143 domain_num++; 5144 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5145 if (table == NULL) 5146 return NULL; 5147 5148 i = 0; 5149 for_each_domain(cpu, sd) { 5150 snprintf(buf, 32, "domain%d", i); 5151 entry->procname = kstrdup(buf, GFP_KERNEL); 5152 entry->mode = 0555; 5153 entry->child = sd_alloc_ctl_domain_table(sd); 5154 entry++; 5155 i++; 5156 } 5157 return table; 5158 } 5159 5160 static struct ctl_table_header *sd_sysctl_header; 5161 static void register_sched_domain_sysctl(void) 5162 { 5163 int i, cpu_num = num_possible_cpus(); 5164 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5165 char buf[32]; 5166 5167 WARN_ON(sd_ctl_dir[0].child); 5168 sd_ctl_dir[0].child = entry; 5169 5170 if (entry == NULL) 5171 return; 5172 5173 for_each_possible_cpu(i) { 5174 snprintf(buf, 32, "cpu%d", i); 5175 entry->procname = kstrdup(buf, GFP_KERNEL); 5176 entry->mode = 0555; 5177 entry->child = sd_alloc_ctl_cpu_table(i); 5178 entry++; 5179 } 5180 5181 WARN_ON(sd_sysctl_header); 5182 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5183 } 5184 5185 /* may be called multiple times per register */ 5186 static void unregister_sched_domain_sysctl(void) 5187 { 5188 if (sd_sysctl_header) 5189 unregister_sysctl_table(sd_sysctl_header); 5190 sd_sysctl_header = NULL; 5191 if (sd_ctl_dir[0].child) 5192 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5193 } 5194 #else 5195 static void register_sched_domain_sysctl(void) 5196 { 5197 } 5198 static void unregister_sched_domain_sysctl(void) 5199 { 5200 } 5201 #endif 5202 5203 static void set_rq_online(struct rq *rq) 5204 { 5205 if (!rq->online) { 5206 const struct sched_class *class; 5207 5208 cpumask_set_cpu(rq->cpu, rq->rd->online); 5209 rq->online = 1; 5210 5211 for_each_class(class) { 5212 if (class->rq_online) 5213 class->rq_online(rq); 5214 } 5215 } 5216 } 5217 5218 static void set_rq_offline(struct rq *rq) 5219 { 5220 if (rq->online) { 5221 const struct sched_class *class; 5222 5223 for_each_class(class) { 5224 if (class->rq_offline) 5225 class->rq_offline(rq); 5226 } 5227 5228 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5229 rq->online = 0; 5230 } 5231 } 5232 5233 /* 5234 * migration_call - callback that gets triggered when a CPU is added. 5235 * Here we can start up the necessary migration thread for the new CPU. 5236 */ 5237 static int 5238 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5239 { 5240 int cpu = (long)hcpu; 5241 unsigned long flags; 5242 struct rq *rq = cpu_rq(cpu); 5243 5244 switch (action & ~CPU_TASKS_FROZEN) { 5245 5246 case CPU_UP_PREPARE: 5247 rq->calc_load_update = calc_load_update; 5248 break; 5249 5250 case CPU_ONLINE: 5251 /* Update our root-domain */ 5252 raw_spin_lock_irqsave(&rq->lock, flags); 5253 if (rq->rd) { 5254 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5255 5256 set_rq_online(rq); 5257 } 5258 raw_spin_unlock_irqrestore(&rq->lock, flags); 5259 break; 5260 5261 #ifdef CONFIG_HOTPLUG_CPU 5262 case CPU_DYING: 5263 sched_ttwu_pending(); 5264 /* Update our root-domain */ 5265 raw_spin_lock_irqsave(&rq->lock, flags); 5266 if (rq->rd) { 5267 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5268 set_rq_offline(rq); 5269 } 5270 migrate_tasks(cpu); 5271 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5272 raw_spin_unlock_irqrestore(&rq->lock, flags); 5273 break; 5274 5275 case CPU_DEAD: 5276 calc_load_migrate(rq); 5277 break; 5278 #endif 5279 } 5280 5281 update_max_interval(); 5282 5283 return NOTIFY_OK; 5284 } 5285 5286 /* 5287 * Register at high priority so that task migration (migrate_all_tasks) 5288 * happens before everything else. This has to be lower priority than 5289 * the notifier in the perf_event subsystem, though. 5290 */ 5291 static struct notifier_block migration_notifier = { 5292 .notifier_call = migration_call, 5293 .priority = CPU_PRI_MIGRATION, 5294 }; 5295 5296 static void __cpuinit set_cpu_rq_start_time(void) 5297 { 5298 int cpu = smp_processor_id(); 5299 struct rq *rq = cpu_rq(cpu); 5300 rq->age_stamp = sched_clock_cpu(cpu); 5301 } 5302 5303 static int sched_cpu_active(struct notifier_block *nfb, 5304 unsigned long action, void *hcpu) 5305 { 5306 switch (action & ~CPU_TASKS_FROZEN) { 5307 case CPU_STARTING: 5308 set_cpu_rq_start_time(); 5309 return NOTIFY_OK; 5310 case CPU_DOWN_FAILED: 5311 set_cpu_active((long)hcpu, true); 5312 return NOTIFY_OK; 5313 default: 5314 return NOTIFY_DONE; 5315 } 5316 } 5317 5318 static int sched_cpu_inactive(struct notifier_block *nfb, 5319 unsigned long action, void *hcpu) 5320 { 5321 unsigned long flags; 5322 long cpu = (long)hcpu; 5323 struct dl_bw *dl_b; 5324 5325 switch (action & ~CPU_TASKS_FROZEN) { 5326 case CPU_DOWN_PREPARE: 5327 set_cpu_active(cpu, false); 5328 5329 /* explicitly allow suspend */ 5330 if (!(action & CPU_TASKS_FROZEN)) { 5331 bool overflow; 5332 int cpus; 5333 5334 rcu_read_lock_sched(); 5335 dl_b = dl_bw_of(cpu); 5336 5337 raw_spin_lock_irqsave(&dl_b->lock, flags); 5338 cpus = dl_bw_cpus(cpu); 5339 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5340 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5341 5342 rcu_read_unlock_sched(); 5343 5344 if (overflow) 5345 return notifier_from_errno(-EBUSY); 5346 } 5347 return NOTIFY_OK; 5348 } 5349 5350 return NOTIFY_DONE; 5351 } 5352 5353 static int __init migration_init(void) 5354 { 5355 void *cpu = (void *)(long)smp_processor_id(); 5356 int err; 5357 5358 /* Initialize migration for the boot CPU */ 5359 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5360 BUG_ON(err == NOTIFY_BAD); 5361 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5362 register_cpu_notifier(&migration_notifier); 5363 5364 /* Register cpu active notifiers */ 5365 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5366 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5367 5368 return 0; 5369 } 5370 early_initcall(migration_init); 5371 #endif 5372 5373 #ifdef CONFIG_SMP 5374 5375 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5376 5377 #ifdef CONFIG_SCHED_DEBUG 5378 5379 static __read_mostly int sched_debug_enabled; 5380 5381 static int __init sched_debug_setup(char *str) 5382 { 5383 sched_debug_enabled = 1; 5384 5385 return 0; 5386 } 5387 early_param("sched_debug", sched_debug_setup); 5388 5389 static inline bool sched_debug(void) 5390 { 5391 return sched_debug_enabled; 5392 } 5393 5394 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5395 struct cpumask *groupmask) 5396 { 5397 struct sched_group *group = sd->groups; 5398 5399 cpumask_clear(groupmask); 5400 5401 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5402 5403 if (!(sd->flags & SD_LOAD_BALANCE)) { 5404 printk("does not load-balance\n"); 5405 if (sd->parent) 5406 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5407 " has parent"); 5408 return -1; 5409 } 5410 5411 printk(KERN_CONT "span %*pbl level %s\n", 5412 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5413 5414 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5415 printk(KERN_ERR "ERROR: domain->span does not contain " 5416 "CPU%d\n", cpu); 5417 } 5418 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5419 printk(KERN_ERR "ERROR: domain->groups does not contain" 5420 " CPU%d\n", cpu); 5421 } 5422 5423 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5424 do { 5425 if (!group) { 5426 printk("\n"); 5427 printk(KERN_ERR "ERROR: group is NULL\n"); 5428 break; 5429 } 5430 5431 /* 5432 * Even though we initialize ->capacity to something semi-sane, 5433 * we leave capacity_orig unset. This allows us to detect if 5434 * domain iteration is still funny without causing /0 traps. 5435 */ 5436 if (!group->sgc->capacity_orig) { 5437 printk(KERN_CONT "\n"); 5438 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5439 break; 5440 } 5441 5442 if (!cpumask_weight(sched_group_cpus(group))) { 5443 printk(KERN_CONT "\n"); 5444 printk(KERN_ERR "ERROR: empty group\n"); 5445 break; 5446 } 5447 5448 if (!(sd->flags & SD_OVERLAP) && 5449 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5450 printk(KERN_CONT "\n"); 5451 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5452 break; 5453 } 5454 5455 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5456 5457 printk(KERN_CONT " %*pbl", 5458 cpumask_pr_args(sched_group_cpus(group))); 5459 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5460 printk(KERN_CONT " (cpu_capacity = %d)", 5461 group->sgc->capacity); 5462 } 5463 5464 group = group->next; 5465 } while (group != sd->groups); 5466 printk(KERN_CONT "\n"); 5467 5468 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5469 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5470 5471 if (sd->parent && 5472 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5473 printk(KERN_ERR "ERROR: parent span is not a superset " 5474 "of domain->span\n"); 5475 return 0; 5476 } 5477 5478 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5479 { 5480 int level = 0; 5481 5482 if (!sched_debug_enabled) 5483 return; 5484 5485 if (!sd) { 5486 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5487 return; 5488 } 5489 5490 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5491 5492 for (;;) { 5493 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5494 break; 5495 level++; 5496 sd = sd->parent; 5497 if (!sd) 5498 break; 5499 } 5500 } 5501 #else /* !CONFIG_SCHED_DEBUG */ 5502 # define sched_domain_debug(sd, cpu) do { } while (0) 5503 static inline bool sched_debug(void) 5504 { 5505 return false; 5506 } 5507 #endif /* CONFIG_SCHED_DEBUG */ 5508 5509 static int sd_degenerate(struct sched_domain *sd) 5510 { 5511 if (cpumask_weight(sched_domain_span(sd)) == 1) 5512 return 1; 5513 5514 /* Following flags need at least 2 groups */ 5515 if (sd->flags & (SD_LOAD_BALANCE | 5516 SD_BALANCE_NEWIDLE | 5517 SD_BALANCE_FORK | 5518 SD_BALANCE_EXEC | 5519 SD_SHARE_CPUCAPACITY | 5520 SD_SHARE_PKG_RESOURCES | 5521 SD_SHARE_POWERDOMAIN)) { 5522 if (sd->groups != sd->groups->next) 5523 return 0; 5524 } 5525 5526 /* Following flags don't use groups */ 5527 if (sd->flags & (SD_WAKE_AFFINE)) 5528 return 0; 5529 5530 return 1; 5531 } 5532 5533 static int 5534 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5535 { 5536 unsigned long cflags = sd->flags, pflags = parent->flags; 5537 5538 if (sd_degenerate(parent)) 5539 return 1; 5540 5541 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5542 return 0; 5543 5544 /* Flags needing groups don't count if only 1 group in parent */ 5545 if (parent->groups == parent->groups->next) { 5546 pflags &= ~(SD_LOAD_BALANCE | 5547 SD_BALANCE_NEWIDLE | 5548 SD_BALANCE_FORK | 5549 SD_BALANCE_EXEC | 5550 SD_SHARE_CPUCAPACITY | 5551 SD_SHARE_PKG_RESOURCES | 5552 SD_PREFER_SIBLING | 5553 SD_SHARE_POWERDOMAIN); 5554 if (nr_node_ids == 1) 5555 pflags &= ~SD_SERIALIZE; 5556 } 5557 if (~cflags & pflags) 5558 return 0; 5559 5560 return 1; 5561 } 5562 5563 static void free_rootdomain(struct rcu_head *rcu) 5564 { 5565 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5566 5567 cpupri_cleanup(&rd->cpupri); 5568 cpudl_cleanup(&rd->cpudl); 5569 free_cpumask_var(rd->dlo_mask); 5570 free_cpumask_var(rd->rto_mask); 5571 free_cpumask_var(rd->online); 5572 free_cpumask_var(rd->span); 5573 kfree(rd); 5574 } 5575 5576 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5577 { 5578 struct root_domain *old_rd = NULL; 5579 unsigned long flags; 5580 5581 raw_spin_lock_irqsave(&rq->lock, flags); 5582 5583 if (rq->rd) { 5584 old_rd = rq->rd; 5585 5586 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5587 set_rq_offline(rq); 5588 5589 cpumask_clear_cpu(rq->cpu, old_rd->span); 5590 5591 /* 5592 * If we dont want to free the old_rd yet then 5593 * set old_rd to NULL to skip the freeing later 5594 * in this function: 5595 */ 5596 if (!atomic_dec_and_test(&old_rd->refcount)) 5597 old_rd = NULL; 5598 } 5599 5600 atomic_inc(&rd->refcount); 5601 rq->rd = rd; 5602 5603 cpumask_set_cpu(rq->cpu, rd->span); 5604 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5605 set_rq_online(rq); 5606 5607 raw_spin_unlock_irqrestore(&rq->lock, flags); 5608 5609 if (old_rd) 5610 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5611 } 5612 5613 static int init_rootdomain(struct root_domain *rd) 5614 { 5615 memset(rd, 0, sizeof(*rd)); 5616 5617 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5618 goto out; 5619 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5620 goto free_span; 5621 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5622 goto free_online; 5623 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5624 goto free_dlo_mask; 5625 5626 init_dl_bw(&rd->dl_bw); 5627 if (cpudl_init(&rd->cpudl) != 0) 5628 goto free_dlo_mask; 5629 5630 if (cpupri_init(&rd->cpupri) != 0) 5631 goto free_rto_mask; 5632 return 0; 5633 5634 free_rto_mask: 5635 free_cpumask_var(rd->rto_mask); 5636 free_dlo_mask: 5637 free_cpumask_var(rd->dlo_mask); 5638 free_online: 5639 free_cpumask_var(rd->online); 5640 free_span: 5641 free_cpumask_var(rd->span); 5642 out: 5643 return -ENOMEM; 5644 } 5645 5646 /* 5647 * By default the system creates a single root-domain with all cpus as 5648 * members (mimicking the global state we have today). 5649 */ 5650 struct root_domain def_root_domain; 5651 5652 static void init_defrootdomain(void) 5653 { 5654 init_rootdomain(&def_root_domain); 5655 5656 atomic_set(&def_root_domain.refcount, 1); 5657 } 5658 5659 static struct root_domain *alloc_rootdomain(void) 5660 { 5661 struct root_domain *rd; 5662 5663 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5664 if (!rd) 5665 return NULL; 5666 5667 if (init_rootdomain(rd) != 0) { 5668 kfree(rd); 5669 return NULL; 5670 } 5671 5672 return rd; 5673 } 5674 5675 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5676 { 5677 struct sched_group *tmp, *first; 5678 5679 if (!sg) 5680 return; 5681 5682 first = sg; 5683 do { 5684 tmp = sg->next; 5685 5686 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5687 kfree(sg->sgc); 5688 5689 kfree(sg); 5690 sg = tmp; 5691 } while (sg != first); 5692 } 5693 5694 static void free_sched_domain(struct rcu_head *rcu) 5695 { 5696 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5697 5698 /* 5699 * If its an overlapping domain it has private groups, iterate and 5700 * nuke them all. 5701 */ 5702 if (sd->flags & SD_OVERLAP) { 5703 free_sched_groups(sd->groups, 1); 5704 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5705 kfree(sd->groups->sgc); 5706 kfree(sd->groups); 5707 } 5708 kfree(sd); 5709 } 5710 5711 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5712 { 5713 call_rcu(&sd->rcu, free_sched_domain); 5714 } 5715 5716 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5717 { 5718 for (; sd; sd = sd->parent) 5719 destroy_sched_domain(sd, cpu); 5720 } 5721 5722 /* 5723 * Keep a special pointer to the highest sched_domain that has 5724 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5725 * allows us to avoid some pointer chasing select_idle_sibling(). 5726 * 5727 * Also keep a unique ID per domain (we use the first cpu number in 5728 * the cpumask of the domain), this allows us to quickly tell if 5729 * two cpus are in the same cache domain, see cpus_share_cache(). 5730 */ 5731 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5732 DEFINE_PER_CPU(int, sd_llc_size); 5733 DEFINE_PER_CPU(int, sd_llc_id); 5734 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5735 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5736 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5737 5738 static void update_top_cache_domain(int cpu) 5739 { 5740 struct sched_domain *sd; 5741 struct sched_domain *busy_sd = NULL; 5742 int id = cpu; 5743 int size = 1; 5744 5745 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5746 if (sd) { 5747 id = cpumask_first(sched_domain_span(sd)); 5748 size = cpumask_weight(sched_domain_span(sd)); 5749 busy_sd = sd->parent; /* sd_busy */ 5750 } 5751 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5752 5753 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5754 per_cpu(sd_llc_size, cpu) = size; 5755 per_cpu(sd_llc_id, cpu) = id; 5756 5757 sd = lowest_flag_domain(cpu, SD_NUMA); 5758 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5759 5760 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5761 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5762 } 5763 5764 /* 5765 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5766 * hold the hotplug lock. 5767 */ 5768 static void 5769 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5770 { 5771 struct rq *rq = cpu_rq(cpu); 5772 struct sched_domain *tmp; 5773 5774 /* Remove the sched domains which do not contribute to scheduling. */ 5775 for (tmp = sd; tmp; ) { 5776 struct sched_domain *parent = tmp->parent; 5777 if (!parent) 5778 break; 5779 5780 if (sd_parent_degenerate(tmp, parent)) { 5781 tmp->parent = parent->parent; 5782 if (parent->parent) 5783 parent->parent->child = tmp; 5784 /* 5785 * Transfer SD_PREFER_SIBLING down in case of a 5786 * degenerate parent; the spans match for this 5787 * so the property transfers. 5788 */ 5789 if (parent->flags & SD_PREFER_SIBLING) 5790 tmp->flags |= SD_PREFER_SIBLING; 5791 destroy_sched_domain(parent, cpu); 5792 } else 5793 tmp = tmp->parent; 5794 } 5795 5796 if (sd && sd_degenerate(sd)) { 5797 tmp = sd; 5798 sd = sd->parent; 5799 destroy_sched_domain(tmp, cpu); 5800 if (sd) 5801 sd->child = NULL; 5802 } 5803 5804 sched_domain_debug(sd, cpu); 5805 5806 rq_attach_root(rq, rd); 5807 tmp = rq->sd; 5808 rcu_assign_pointer(rq->sd, sd); 5809 destroy_sched_domains(tmp, cpu); 5810 5811 update_top_cache_domain(cpu); 5812 } 5813 5814 /* cpus with isolated domains */ 5815 static cpumask_var_t cpu_isolated_map; 5816 5817 /* Setup the mask of cpus configured for isolated domains */ 5818 static int __init isolated_cpu_setup(char *str) 5819 { 5820 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5821 cpulist_parse(str, cpu_isolated_map); 5822 return 1; 5823 } 5824 5825 __setup("isolcpus=", isolated_cpu_setup); 5826 5827 struct s_data { 5828 struct sched_domain ** __percpu sd; 5829 struct root_domain *rd; 5830 }; 5831 5832 enum s_alloc { 5833 sa_rootdomain, 5834 sa_sd, 5835 sa_sd_storage, 5836 sa_none, 5837 }; 5838 5839 /* 5840 * Build an iteration mask that can exclude certain CPUs from the upwards 5841 * domain traversal. 5842 * 5843 * Asymmetric node setups can result in situations where the domain tree is of 5844 * unequal depth, make sure to skip domains that already cover the entire 5845 * range. 5846 * 5847 * In that case build_sched_domains() will have terminated the iteration early 5848 * and our sibling sd spans will be empty. Domains should always include the 5849 * cpu they're built on, so check that. 5850 * 5851 */ 5852 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5853 { 5854 const struct cpumask *span = sched_domain_span(sd); 5855 struct sd_data *sdd = sd->private; 5856 struct sched_domain *sibling; 5857 int i; 5858 5859 for_each_cpu(i, span) { 5860 sibling = *per_cpu_ptr(sdd->sd, i); 5861 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5862 continue; 5863 5864 cpumask_set_cpu(i, sched_group_mask(sg)); 5865 } 5866 } 5867 5868 /* 5869 * Return the canonical balance cpu for this group, this is the first cpu 5870 * of this group that's also in the iteration mask. 5871 */ 5872 int group_balance_cpu(struct sched_group *sg) 5873 { 5874 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5875 } 5876 5877 static int 5878 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5879 { 5880 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5881 const struct cpumask *span = sched_domain_span(sd); 5882 struct cpumask *covered = sched_domains_tmpmask; 5883 struct sd_data *sdd = sd->private; 5884 struct sched_domain *sibling; 5885 int i; 5886 5887 cpumask_clear(covered); 5888 5889 for_each_cpu(i, span) { 5890 struct cpumask *sg_span; 5891 5892 if (cpumask_test_cpu(i, covered)) 5893 continue; 5894 5895 sibling = *per_cpu_ptr(sdd->sd, i); 5896 5897 /* See the comment near build_group_mask(). */ 5898 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5899 continue; 5900 5901 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5902 GFP_KERNEL, cpu_to_node(cpu)); 5903 5904 if (!sg) 5905 goto fail; 5906 5907 sg_span = sched_group_cpus(sg); 5908 if (sibling->child) 5909 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5910 else 5911 cpumask_set_cpu(i, sg_span); 5912 5913 cpumask_or(covered, covered, sg_span); 5914 5915 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5916 if (atomic_inc_return(&sg->sgc->ref) == 1) 5917 build_group_mask(sd, sg); 5918 5919 /* 5920 * Initialize sgc->capacity such that even if we mess up the 5921 * domains and no possible iteration will get us here, we won't 5922 * die on a /0 trap. 5923 */ 5924 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5925 sg->sgc->capacity_orig = sg->sgc->capacity; 5926 5927 /* 5928 * Make sure the first group of this domain contains the 5929 * canonical balance cpu. Otherwise the sched_domain iteration 5930 * breaks. See update_sg_lb_stats(). 5931 */ 5932 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5933 group_balance_cpu(sg) == cpu) 5934 groups = sg; 5935 5936 if (!first) 5937 first = sg; 5938 if (last) 5939 last->next = sg; 5940 last = sg; 5941 last->next = first; 5942 } 5943 sd->groups = groups; 5944 5945 return 0; 5946 5947 fail: 5948 free_sched_groups(first, 0); 5949 5950 return -ENOMEM; 5951 } 5952 5953 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5954 { 5955 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5956 struct sched_domain *child = sd->child; 5957 5958 if (child) 5959 cpu = cpumask_first(sched_domain_span(child)); 5960 5961 if (sg) { 5962 *sg = *per_cpu_ptr(sdd->sg, cpu); 5963 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5964 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5965 } 5966 5967 return cpu; 5968 } 5969 5970 /* 5971 * build_sched_groups will build a circular linked list of the groups 5972 * covered by the given span, and will set each group's ->cpumask correctly, 5973 * and ->cpu_capacity to 0. 5974 * 5975 * Assumes the sched_domain tree is fully constructed 5976 */ 5977 static int 5978 build_sched_groups(struct sched_domain *sd, int cpu) 5979 { 5980 struct sched_group *first = NULL, *last = NULL; 5981 struct sd_data *sdd = sd->private; 5982 const struct cpumask *span = sched_domain_span(sd); 5983 struct cpumask *covered; 5984 int i; 5985 5986 get_group(cpu, sdd, &sd->groups); 5987 atomic_inc(&sd->groups->ref); 5988 5989 if (cpu != cpumask_first(span)) 5990 return 0; 5991 5992 lockdep_assert_held(&sched_domains_mutex); 5993 covered = sched_domains_tmpmask; 5994 5995 cpumask_clear(covered); 5996 5997 for_each_cpu(i, span) { 5998 struct sched_group *sg; 5999 int group, j; 6000 6001 if (cpumask_test_cpu(i, covered)) 6002 continue; 6003 6004 group = get_group(i, sdd, &sg); 6005 cpumask_setall(sched_group_mask(sg)); 6006 6007 for_each_cpu(j, span) { 6008 if (get_group(j, sdd, NULL) != group) 6009 continue; 6010 6011 cpumask_set_cpu(j, covered); 6012 cpumask_set_cpu(j, sched_group_cpus(sg)); 6013 } 6014 6015 if (!first) 6016 first = sg; 6017 if (last) 6018 last->next = sg; 6019 last = sg; 6020 } 6021 last->next = first; 6022 6023 return 0; 6024 } 6025 6026 /* 6027 * Initialize sched groups cpu_capacity. 6028 * 6029 * cpu_capacity indicates the capacity of sched group, which is used while 6030 * distributing the load between different sched groups in a sched domain. 6031 * Typically cpu_capacity for all the groups in a sched domain will be same 6032 * unless there are asymmetries in the topology. If there are asymmetries, 6033 * group having more cpu_capacity will pickup more load compared to the 6034 * group having less cpu_capacity. 6035 */ 6036 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6037 { 6038 struct sched_group *sg = sd->groups; 6039 6040 WARN_ON(!sg); 6041 6042 do { 6043 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6044 sg = sg->next; 6045 } while (sg != sd->groups); 6046 6047 if (cpu != group_balance_cpu(sg)) 6048 return; 6049 6050 update_group_capacity(sd, cpu); 6051 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6052 } 6053 6054 /* 6055 * Initializers for schedule domains 6056 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6057 */ 6058 6059 static int default_relax_domain_level = -1; 6060 int sched_domain_level_max; 6061 6062 static int __init setup_relax_domain_level(char *str) 6063 { 6064 if (kstrtoint(str, 0, &default_relax_domain_level)) 6065 pr_warn("Unable to set relax_domain_level\n"); 6066 6067 return 1; 6068 } 6069 __setup("relax_domain_level=", setup_relax_domain_level); 6070 6071 static void set_domain_attribute(struct sched_domain *sd, 6072 struct sched_domain_attr *attr) 6073 { 6074 int request; 6075 6076 if (!attr || attr->relax_domain_level < 0) { 6077 if (default_relax_domain_level < 0) 6078 return; 6079 else 6080 request = default_relax_domain_level; 6081 } else 6082 request = attr->relax_domain_level; 6083 if (request < sd->level) { 6084 /* turn off idle balance on this domain */ 6085 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6086 } else { 6087 /* turn on idle balance on this domain */ 6088 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6089 } 6090 } 6091 6092 static void __sdt_free(const struct cpumask *cpu_map); 6093 static int __sdt_alloc(const struct cpumask *cpu_map); 6094 6095 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6096 const struct cpumask *cpu_map) 6097 { 6098 switch (what) { 6099 case sa_rootdomain: 6100 if (!atomic_read(&d->rd->refcount)) 6101 free_rootdomain(&d->rd->rcu); /* fall through */ 6102 case sa_sd: 6103 free_percpu(d->sd); /* fall through */ 6104 case sa_sd_storage: 6105 __sdt_free(cpu_map); /* fall through */ 6106 case sa_none: 6107 break; 6108 } 6109 } 6110 6111 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6112 const struct cpumask *cpu_map) 6113 { 6114 memset(d, 0, sizeof(*d)); 6115 6116 if (__sdt_alloc(cpu_map)) 6117 return sa_sd_storage; 6118 d->sd = alloc_percpu(struct sched_domain *); 6119 if (!d->sd) 6120 return sa_sd_storage; 6121 d->rd = alloc_rootdomain(); 6122 if (!d->rd) 6123 return sa_sd; 6124 return sa_rootdomain; 6125 } 6126 6127 /* 6128 * NULL the sd_data elements we've used to build the sched_domain and 6129 * sched_group structure so that the subsequent __free_domain_allocs() 6130 * will not free the data we're using. 6131 */ 6132 static void claim_allocations(int cpu, struct sched_domain *sd) 6133 { 6134 struct sd_data *sdd = sd->private; 6135 6136 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6137 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6138 6139 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6140 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6141 6142 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6143 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6144 } 6145 6146 #ifdef CONFIG_NUMA 6147 static int sched_domains_numa_levels; 6148 enum numa_topology_type sched_numa_topology_type; 6149 static int *sched_domains_numa_distance; 6150 int sched_max_numa_distance; 6151 static struct cpumask ***sched_domains_numa_masks; 6152 static int sched_domains_curr_level; 6153 #endif 6154 6155 /* 6156 * SD_flags allowed in topology descriptions. 6157 * 6158 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6159 * SD_SHARE_PKG_RESOURCES - describes shared caches 6160 * SD_NUMA - describes NUMA topologies 6161 * SD_SHARE_POWERDOMAIN - describes shared power domain 6162 * 6163 * Odd one out: 6164 * SD_ASYM_PACKING - describes SMT quirks 6165 */ 6166 #define TOPOLOGY_SD_FLAGS \ 6167 (SD_SHARE_CPUCAPACITY | \ 6168 SD_SHARE_PKG_RESOURCES | \ 6169 SD_NUMA | \ 6170 SD_ASYM_PACKING | \ 6171 SD_SHARE_POWERDOMAIN) 6172 6173 static struct sched_domain * 6174 sd_init(struct sched_domain_topology_level *tl, int cpu) 6175 { 6176 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6177 int sd_weight, sd_flags = 0; 6178 6179 #ifdef CONFIG_NUMA 6180 /* 6181 * Ugly hack to pass state to sd_numa_mask()... 6182 */ 6183 sched_domains_curr_level = tl->numa_level; 6184 #endif 6185 6186 sd_weight = cpumask_weight(tl->mask(cpu)); 6187 6188 if (tl->sd_flags) 6189 sd_flags = (*tl->sd_flags)(); 6190 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6191 "wrong sd_flags in topology description\n")) 6192 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6193 6194 *sd = (struct sched_domain){ 6195 .min_interval = sd_weight, 6196 .max_interval = 2*sd_weight, 6197 .busy_factor = 32, 6198 .imbalance_pct = 125, 6199 6200 .cache_nice_tries = 0, 6201 .busy_idx = 0, 6202 .idle_idx = 0, 6203 .newidle_idx = 0, 6204 .wake_idx = 0, 6205 .forkexec_idx = 0, 6206 6207 .flags = 1*SD_LOAD_BALANCE 6208 | 1*SD_BALANCE_NEWIDLE 6209 | 1*SD_BALANCE_EXEC 6210 | 1*SD_BALANCE_FORK 6211 | 0*SD_BALANCE_WAKE 6212 | 1*SD_WAKE_AFFINE 6213 | 0*SD_SHARE_CPUCAPACITY 6214 | 0*SD_SHARE_PKG_RESOURCES 6215 | 0*SD_SERIALIZE 6216 | 0*SD_PREFER_SIBLING 6217 | 0*SD_NUMA 6218 | sd_flags 6219 , 6220 6221 .last_balance = jiffies, 6222 .balance_interval = sd_weight, 6223 .smt_gain = 0, 6224 .max_newidle_lb_cost = 0, 6225 .next_decay_max_lb_cost = jiffies, 6226 #ifdef CONFIG_SCHED_DEBUG 6227 .name = tl->name, 6228 #endif 6229 }; 6230 6231 /* 6232 * Convert topological properties into behaviour. 6233 */ 6234 6235 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6236 sd->imbalance_pct = 110; 6237 sd->smt_gain = 1178; /* ~15% */ 6238 6239 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6240 sd->imbalance_pct = 117; 6241 sd->cache_nice_tries = 1; 6242 sd->busy_idx = 2; 6243 6244 #ifdef CONFIG_NUMA 6245 } else if (sd->flags & SD_NUMA) { 6246 sd->cache_nice_tries = 2; 6247 sd->busy_idx = 3; 6248 sd->idle_idx = 2; 6249 6250 sd->flags |= SD_SERIALIZE; 6251 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6252 sd->flags &= ~(SD_BALANCE_EXEC | 6253 SD_BALANCE_FORK | 6254 SD_WAKE_AFFINE); 6255 } 6256 6257 #endif 6258 } else { 6259 sd->flags |= SD_PREFER_SIBLING; 6260 sd->cache_nice_tries = 1; 6261 sd->busy_idx = 2; 6262 sd->idle_idx = 1; 6263 } 6264 6265 sd->private = &tl->data; 6266 6267 return sd; 6268 } 6269 6270 /* 6271 * Topology list, bottom-up. 6272 */ 6273 static struct sched_domain_topology_level default_topology[] = { 6274 #ifdef CONFIG_SCHED_SMT 6275 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6276 #endif 6277 #ifdef CONFIG_SCHED_MC 6278 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6279 #endif 6280 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6281 { NULL, }, 6282 }; 6283 6284 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6285 6286 #define for_each_sd_topology(tl) \ 6287 for (tl = sched_domain_topology; tl->mask; tl++) 6288 6289 void set_sched_topology(struct sched_domain_topology_level *tl) 6290 { 6291 sched_domain_topology = tl; 6292 } 6293 6294 #ifdef CONFIG_NUMA 6295 6296 static const struct cpumask *sd_numa_mask(int cpu) 6297 { 6298 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6299 } 6300 6301 static void sched_numa_warn(const char *str) 6302 { 6303 static int done = false; 6304 int i,j; 6305 6306 if (done) 6307 return; 6308 6309 done = true; 6310 6311 printk(KERN_WARNING "ERROR: %s\n\n", str); 6312 6313 for (i = 0; i < nr_node_ids; i++) { 6314 printk(KERN_WARNING " "); 6315 for (j = 0; j < nr_node_ids; j++) 6316 printk(KERN_CONT "%02d ", node_distance(i,j)); 6317 printk(KERN_CONT "\n"); 6318 } 6319 printk(KERN_WARNING "\n"); 6320 } 6321 6322 bool find_numa_distance(int distance) 6323 { 6324 int i; 6325 6326 if (distance == node_distance(0, 0)) 6327 return true; 6328 6329 for (i = 0; i < sched_domains_numa_levels; i++) { 6330 if (sched_domains_numa_distance[i] == distance) 6331 return true; 6332 } 6333 6334 return false; 6335 } 6336 6337 /* 6338 * A system can have three types of NUMA topology: 6339 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6340 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6341 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6342 * 6343 * The difference between a glueless mesh topology and a backplane 6344 * topology lies in whether communication between not directly 6345 * connected nodes goes through intermediary nodes (where programs 6346 * could run), or through backplane controllers. This affects 6347 * placement of programs. 6348 * 6349 * The type of topology can be discerned with the following tests: 6350 * - If the maximum distance between any nodes is 1 hop, the system 6351 * is directly connected. 6352 * - If for two nodes A and B, located N > 1 hops away from each other, 6353 * there is an intermediary node C, which is < N hops away from both 6354 * nodes A and B, the system is a glueless mesh. 6355 */ 6356 static void init_numa_topology_type(void) 6357 { 6358 int a, b, c, n; 6359 6360 n = sched_max_numa_distance; 6361 6362 if (n <= 1) 6363 sched_numa_topology_type = NUMA_DIRECT; 6364 6365 for_each_online_node(a) { 6366 for_each_online_node(b) { 6367 /* Find two nodes furthest removed from each other. */ 6368 if (node_distance(a, b) < n) 6369 continue; 6370 6371 /* Is there an intermediary node between a and b? */ 6372 for_each_online_node(c) { 6373 if (node_distance(a, c) < n && 6374 node_distance(b, c) < n) { 6375 sched_numa_topology_type = 6376 NUMA_GLUELESS_MESH; 6377 return; 6378 } 6379 } 6380 6381 sched_numa_topology_type = NUMA_BACKPLANE; 6382 return; 6383 } 6384 } 6385 } 6386 6387 static void sched_init_numa(void) 6388 { 6389 int next_distance, curr_distance = node_distance(0, 0); 6390 struct sched_domain_topology_level *tl; 6391 int level = 0; 6392 int i, j, k; 6393 6394 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6395 if (!sched_domains_numa_distance) 6396 return; 6397 6398 /* 6399 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6400 * unique distances in the node_distance() table. 6401 * 6402 * Assumes node_distance(0,j) includes all distances in 6403 * node_distance(i,j) in order to avoid cubic time. 6404 */ 6405 next_distance = curr_distance; 6406 for (i = 0; i < nr_node_ids; i++) { 6407 for (j = 0; j < nr_node_ids; j++) { 6408 for (k = 0; k < nr_node_ids; k++) { 6409 int distance = node_distance(i, k); 6410 6411 if (distance > curr_distance && 6412 (distance < next_distance || 6413 next_distance == curr_distance)) 6414 next_distance = distance; 6415 6416 /* 6417 * While not a strong assumption it would be nice to know 6418 * about cases where if node A is connected to B, B is not 6419 * equally connected to A. 6420 */ 6421 if (sched_debug() && node_distance(k, i) != distance) 6422 sched_numa_warn("Node-distance not symmetric"); 6423 6424 if (sched_debug() && i && !find_numa_distance(distance)) 6425 sched_numa_warn("Node-0 not representative"); 6426 } 6427 if (next_distance != curr_distance) { 6428 sched_domains_numa_distance[level++] = next_distance; 6429 sched_domains_numa_levels = level; 6430 curr_distance = next_distance; 6431 } else break; 6432 } 6433 6434 /* 6435 * In case of sched_debug() we verify the above assumption. 6436 */ 6437 if (!sched_debug()) 6438 break; 6439 } 6440 6441 if (!level) 6442 return; 6443 6444 /* 6445 * 'level' contains the number of unique distances, excluding the 6446 * identity distance node_distance(i,i). 6447 * 6448 * The sched_domains_numa_distance[] array includes the actual distance 6449 * numbers. 6450 */ 6451 6452 /* 6453 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6454 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6455 * the array will contain less then 'level' members. This could be 6456 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6457 * in other functions. 6458 * 6459 * We reset it to 'level' at the end of this function. 6460 */ 6461 sched_domains_numa_levels = 0; 6462 6463 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6464 if (!sched_domains_numa_masks) 6465 return; 6466 6467 /* 6468 * Now for each level, construct a mask per node which contains all 6469 * cpus of nodes that are that many hops away from us. 6470 */ 6471 for (i = 0; i < level; i++) { 6472 sched_domains_numa_masks[i] = 6473 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6474 if (!sched_domains_numa_masks[i]) 6475 return; 6476 6477 for (j = 0; j < nr_node_ids; j++) { 6478 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6479 if (!mask) 6480 return; 6481 6482 sched_domains_numa_masks[i][j] = mask; 6483 6484 for (k = 0; k < nr_node_ids; k++) { 6485 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6486 continue; 6487 6488 cpumask_or(mask, mask, cpumask_of_node(k)); 6489 } 6490 } 6491 } 6492 6493 /* Compute default topology size */ 6494 for (i = 0; sched_domain_topology[i].mask; i++); 6495 6496 tl = kzalloc((i + level + 1) * 6497 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6498 if (!tl) 6499 return; 6500 6501 /* 6502 * Copy the default topology bits.. 6503 */ 6504 for (i = 0; sched_domain_topology[i].mask; i++) 6505 tl[i] = sched_domain_topology[i]; 6506 6507 /* 6508 * .. and append 'j' levels of NUMA goodness. 6509 */ 6510 for (j = 0; j < level; i++, j++) { 6511 tl[i] = (struct sched_domain_topology_level){ 6512 .mask = sd_numa_mask, 6513 .sd_flags = cpu_numa_flags, 6514 .flags = SDTL_OVERLAP, 6515 .numa_level = j, 6516 SD_INIT_NAME(NUMA) 6517 }; 6518 } 6519 6520 sched_domain_topology = tl; 6521 6522 sched_domains_numa_levels = level; 6523 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6524 6525 init_numa_topology_type(); 6526 } 6527 6528 static void sched_domains_numa_masks_set(int cpu) 6529 { 6530 int i, j; 6531 int node = cpu_to_node(cpu); 6532 6533 for (i = 0; i < sched_domains_numa_levels; i++) { 6534 for (j = 0; j < nr_node_ids; j++) { 6535 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6536 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6537 } 6538 } 6539 } 6540 6541 static void sched_domains_numa_masks_clear(int cpu) 6542 { 6543 int i, j; 6544 for (i = 0; i < sched_domains_numa_levels; i++) { 6545 for (j = 0; j < nr_node_ids; j++) 6546 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6547 } 6548 } 6549 6550 /* 6551 * Update sched_domains_numa_masks[level][node] array when new cpus 6552 * are onlined. 6553 */ 6554 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6555 unsigned long action, 6556 void *hcpu) 6557 { 6558 int cpu = (long)hcpu; 6559 6560 switch (action & ~CPU_TASKS_FROZEN) { 6561 case CPU_ONLINE: 6562 sched_domains_numa_masks_set(cpu); 6563 break; 6564 6565 case CPU_DEAD: 6566 sched_domains_numa_masks_clear(cpu); 6567 break; 6568 6569 default: 6570 return NOTIFY_DONE; 6571 } 6572 6573 return NOTIFY_OK; 6574 } 6575 #else 6576 static inline void sched_init_numa(void) 6577 { 6578 } 6579 6580 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6581 unsigned long action, 6582 void *hcpu) 6583 { 6584 return 0; 6585 } 6586 #endif /* CONFIG_NUMA */ 6587 6588 static int __sdt_alloc(const struct cpumask *cpu_map) 6589 { 6590 struct sched_domain_topology_level *tl; 6591 int j; 6592 6593 for_each_sd_topology(tl) { 6594 struct sd_data *sdd = &tl->data; 6595 6596 sdd->sd = alloc_percpu(struct sched_domain *); 6597 if (!sdd->sd) 6598 return -ENOMEM; 6599 6600 sdd->sg = alloc_percpu(struct sched_group *); 6601 if (!sdd->sg) 6602 return -ENOMEM; 6603 6604 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6605 if (!sdd->sgc) 6606 return -ENOMEM; 6607 6608 for_each_cpu(j, cpu_map) { 6609 struct sched_domain *sd; 6610 struct sched_group *sg; 6611 struct sched_group_capacity *sgc; 6612 6613 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6614 GFP_KERNEL, cpu_to_node(j)); 6615 if (!sd) 6616 return -ENOMEM; 6617 6618 *per_cpu_ptr(sdd->sd, j) = sd; 6619 6620 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6621 GFP_KERNEL, cpu_to_node(j)); 6622 if (!sg) 6623 return -ENOMEM; 6624 6625 sg->next = sg; 6626 6627 *per_cpu_ptr(sdd->sg, j) = sg; 6628 6629 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6630 GFP_KERNEL, cpu_to_node(j)); 6631 if (!sgc) 6632 return -ENOMEM; 6633 6634 *per_cpu_ptr(sdd->sgc, j) = sgc; 6635 } 6636 } 6637 6638 return 0; 6639 } 6640 6641 static void __sdt_free(const struct cpumask *cpu_map) 6642 { 6643 struct sched_domain_topology_level *tl; 6644 int j; 6645 6646 for_each_sd_topology(tl) { 6647 struct sd_data *sdd = &tl->data; 6648 6649 for_each_cpu(j, cpu_map) { 6650 struct sched_domain *sd; 6651 6652 if (sdd->sd) { 6653 sd = *per_cpu_ptr(sdd->sd, j); 6654 if (sd && (sd->flags & SD_OVERLAP)) 6655 free_sched_groups(sd->groups, 0); 6656 kfree(*per_cpu_ptr(sdd->sd, j)); 6657 } 6658 6659 if (sdd->sg) 6660 kfree(*per_cpu_ptr(sdd->sg, j)); 6661 if (sdd->sgc) 6662 kfree(*per_cpu_ptr(sdd->sgc, j)); 6663 } 6664 free_percpu(sdd->sd); 6665 sdd->sd = NULL; 6666 free_percpu(sdd->sg); 6667 sdd->sg = NULL; 6668 free_percpu(sdd->sgc); 6669 sdd->sgc = NULL; 6670 } 6671 } 6672 6673 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6674 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6675 struct sched_domain *child, int cpu) 6676 { 6677 struct sched_domain *sd = sd_init(tl, cpu); 6678 if (!sd) 6679 return child; 6680 6681 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6682 if (child) { 6683 sd->level = child->level + 1; 6684 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6685 child->parent = sd; 6686 sd->child = child; 6687 6688 if (!cpumask_subset(sched_domain_span(child), 6689 sched_domain_span(sd))) { 6690 pr_err("BUG: arch topology borken\n"); 6691 #ifdef CONFIG_SCHED_DEBUG 6692 pr_err(" the %s domain not a subset of the %s domain\n", 6693 child->name, sd->name); 6694 #endif 6695 /* Fixup, ensure @sd has at least @child cpus. */ 6696 cpumask_or(sched_domain_span(sd), 6697 sched_domain_span(sd), 6698 sched_domain_span(child)); 6699 } 6700 6701 } 6702 set_domain_attribute(sd, attr); 6703 6704 return sd; 6705 } 6706 6707 /* 6708 * Build sched domains for a given set of cpus and attach the sched domains 6709 * to the individual cpus 6710 */ 6711 static int build_sched_domains(const struct cpumask *cpu_map, 6712 struct sched_domain_attr *attr) 6713 { 6714 enum s_alloc alloc_state; 6715 struct sched_domain *sd; 6716 struct s_data d; 6717 int i, ret = -ENOMEM; 6718 6719 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6720 if (alloc_state != sa_rootdomain) 6721 goto error; 6722 6723 /* Set up domains for cpus specified by the cpu_map. */ 6724 for_each_cpu(i, cpu_map) { 6725 struct sched_domain_topology_level *tl; 6726 6727 sd = NULL; 6728 for_each_sd_topology(tl) { 6729 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6730 if (tl == sched_domain_topology) 6731 *per_cpu_ptr(d.sd, i) = sd; 6732 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6733 sd->flags |= SD_OVERLAP; 6734 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6735 break; 6736 } 6737 } 6738 6739 /* Build the groups for the domains */ 6740 for_each_cpu(i, cpu_map) { 6741 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6742 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6743 if (sd->flags & SD_OVERLAP) { 6744 if (build_overlap_sched_groups(sd, i)) 6745 goto error; 6746 } else { 6747 if (build_sched_groups(sd, i)) 6748 goto error; 6749 } 6750 } 6751 } 6752 6753 /* Calculate CPU capacity for physical packages and nodes */ 6754 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6755 if (!cpumask_test_cpu(i, cpu_map)) 6756 continue; 6757 6758 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6759 claim_allocations(i, sd); 6760 init_sched_groups_capacity(i, sd); 6761 } 6762 } 6763 6764 /* Attach the domains */ 6765 rcu_read_lock(); 6766 for_each_cpu(i, cpu_map) { 6767 sd = *per_cpu_ptr(d.sd, i); 6768 cpu_attach_domain(sd, d.rd, i); 6769 } 6770 rcu_read_unlock(); 6771 6772 ret = 0; 6773 error: 6774 __free_domain_allocs(&d, alloc_state, cpu_map); 6775 return ret; 6776 } 6777 6778 static cpumask_var_t *doms_cur; /* current sched domains */ 6779 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6780 static struct sched_domain_attr *dattr_cur; 6781 /* attribues of custom domains in 'doms_cur' */ 6782 6783 /* 6784 * Special case: If a kmalloc of a doms_cur partition (array of 6785 * cpumask) fails, then fallback to a single sched domain, 6786 * as determined by the single cpumask fallback_doms. 6787 */ 6788 static cpumask_var_t fallback_doms; 6789 6790 /* 6791 * arch_update_cpu_topology lets virtualized architectures update the 6792 * cpu core maps. It is supposed to return 1 if the topology changed 6793 * or 0 if it stayed the same. 6794 */ 6795 int __weak arch_update_cpu_topology(void) 6796 { 6797 return 0; 6798 } 6799 6800 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6801 { 6802 int i; 6803 cpumask_var_t *doms; 6804 6805 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6806 if (!doms) 6807 return NULL; 6808 for (i = 0; i < ndoms; i++) { 6809 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6810 free_sched_domains(doms, i); 6811 return NULL; 6812 } 6813 } 6814 return doms; 6815 } 6816 6817 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6818 { 6819 unsigned int i; 6820 for (i = 0; i < ndoms; i++) 6821 free_cpumask_var(doms[i]); 6822 kfree(doms); 6823 } 6824 6825 /* 6826 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6827 * For now this just excludes isolated cpus, but could be used to 6828 * exclude other special cases in the future. 6829 */ 6830 static int init_sched_domains(const struct cpumask *cpu_map) 6831 { 6832 int err; 6833 6834 arch_update_cpu_topology(); 6835 ndoms_cur = 1; 6836 doms_cur = alloc_sched_domains(ndoms_cur); 6837 if (!doms_cur) 6838 doms_cur = &fallback_doms; 6839 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6840 err = build_sched_domains(doms_cur[0], NULL); 6841 register_sched_domain_sysctl(); 6842 6843 return err; 6844 } 6845 6846 /* 6847 * Detach sched domains from a group of cpus specified in cpu_map 6848 * These cpus will now be attached to the NULL domain 6849 */ 6850 static void detach_destroy_domains(const struct cpumask *cpu_map) 6851 { 6852 int i; 6853 6854 rcu_read_lock(); 6855 for_each_cpu(i, cpu_map) 6856 cpu_attach_domain(NULL, &def_root_domain, i); 6857 rcu_read_unlock(); 6858 } 6859 6860 /* handle null as "default" */ 6861 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6862 struct sched_domain_attr *new, int idx_new) 6863 { 6864 struct sched_domain_attr tmp; 6865 6866 /* fast path */ 6867 if (!new && !cur) 6868 return 1; 6869 6870 tmp = SD_ATTR_INIT; 6871 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6872 new ? (new + idx_new) : &tmp, 6873 sizeof(struct sched_domain_attr)); 6874 } 6875 6876 /* 6877 * Partition sched domains as specified by the 'ndoms_new' 6878 * cpumasks in the array doms_new[] of cpumasks. This compares 6879 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6880 * It destroys each deleted domain and builds each new domain. 6881 * 6882 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6883 * The masks don't intersect (don't overlap.) We should setup one 6884 * sched domain for each mask. CPUs not in any of the cpumasks will 6885 * not be load balanced. If the same cpumask appears both in the 6886 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6887 * it as it is. 6888 * 6889 * The passed in 'doms_new' should be allocated using 6890 * alloc_sched_domains. This routine takes ownership of it and will 6891 * free_sched_domains it when done with it. If the caller failed the 6892 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6893 * and partition_sched_domains() will fallback to the single partition 6894 * 'fallback_doms', it also forces the domains to be rebuilt. 6895 * 6896 * If doms_new == NULL it will be replaced with cpu_online_mask. 6897 * ndoms_new == 0 is a special case for destroying existing domains, 6898 * and it will not create the default domain. 6899 * 6900 * Call with hotplug lock held 6901 */ 6902 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6903 struct sched_domain_attr *dattr_new) 6904 { 6905 int i, j, n; 6906 int new_topology; 6907 6908 mutex_lock(&sched_domains_mutex); 6909 6910 /* always unregister in case we don't destroy any domains */ 6911 unregister_sched_domain_sysctl(); 6912 6913 /* Let architecture update cpu core mappings. */ 6914 new_topology = arch_update_cpu_topology(); 6915 6916 n = doms_new ? ndoms_new : 0; 6917 6918 /* Destroy deleted domains */ 6919 for (i = 0; i < ndoms_cur; i++) { 6920 for (j = 0; j < n && !new_topology; j++) { 6921 if (cpumask_equal(doms_cur[i], doms_new[j]) 6922 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6923 goto match1; 6924 } 6925 /* no match - a current sched domain not in new doms_new[] */ 6926 detach_destroy_domains(doms_cur[i]); 6927 match1: 6928 ; 6929 } 6930 6931 n = ndoms_cur; 6932 if (doms_new == NULL) { 6933 n = 0; 6934 doms_new = &fallback_doms; 6935 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6936 WARN_ON_ONCE(dattr_new); 6937 } 6938 6939 /* Build new domains */ 6940 for (i = 0; i < ndoms_new; i++) { 6941 for (j = 0; j < n && !new_topology; j++) { 6942 if (cpumask_equal(doms_new[i], doms_cur[j]) 6943 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6944 goto match2; 6945 } 6946 /* no match - add a new doms_new */ 6947 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6948 match2: 6949 ; 6950 } 6951 6952 /* Remember the new sched domains */ 6953 if (doms_cur != &fallback_doms) 6954 free_sched_domains(doms_cur, ndoms_cur); 6955 kfree(dattr_cur); /* kfree(NULL) is safe */ 6956 doms_cur = doms_new; 6957 dattr_cur = dattr_new; 6958 ndoms_cur = ndoms_new; 6959 6960 register_sched_domain_sysctl(); 6961 6962 mutex_unlock(&sched_domains_mutex); 6963 } 6964 6965 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6966 6967 /* 6968 * Update cpusets according to cpu_active mask. If cpusets are 6969 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6970 * around partition_sched_domains(). 6971 * 6972 * If we come here as part of a suspend/resume, don't touch cpusets because we 6973 * want to restore it back to its original state upon resume anyway. 6974 */ 6975 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6976 void *hcpu) 6977 { 6978 switch (action) { 6979 case CPU_ONLINE_FROZEN: 6980 case CPU_DOWN_FAILED_FROZEN: 6981 6982 /* 6983 * num_cpus_frozen tracks how many CPUs are involved in suspend 6984 * resume sequence. As long as this is not the last online 6985 * operation in the resume sequence, just build a single sched 6986 * domain, ignoring cpusets. 6987 */ 6988 num_cpus_frozen--; 6989 if (likely(num_cpus_frozen)) { 6990 partition_sched_domains(1, NULL, NULL); 6991 break; 6992 } 6993 6994 /* 6995 * This is the last CPU online operation. So fall through and 6996 * restore the original sched domains by considering the 6997 * cpuset configurations. 6998 */ 6999 7000 case CPU_ONLINE: 7001 case CPU_DOWN_FAILED: 7002 cpuset_update_active_cpus(true); 7003 break; 7004 default: 7005 return NOTIFY_DONE; 7006 } 7007 return NOTIFY_OK; 7008 } 7009 7010 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7011 void *hcpu) 7012 { 7013 switch (action) { 7014 case CPU_DOWN_PREPARE: 7015 cpuset_update_active_cpus(false); 7016 break; 7017 case CPU_DOWN_PREPARE_FROZEN: 7018 num_cpus_frozen++; 7019 partition_sched_domains(1, NULL, NULL); 7020 break; 7021 default: 7022 return NOTIFY_DONE; 7023 } 7024 return NOTIFY_OK; 7025 } 7026 7027 void __init sched_init_smp(void) 7028 { 7029 cpumask_var_t non_isolated_cpus; 7030 7031 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7032 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7033 7034 sched_init_numa(); 7035 7036 /* 7037 * There's no userspace yet to cause hotplug operations; hence all the 7038 * cpu masks are stable and all blatant races in the below code cannot 7039 * happen. 7040 */ 7041 mutex_lock(&sched_domains_mutex); 7042 init_sched_domains(cpu_active_mask); 7043 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7044 if (cpumask_empty(non_isolated_cpus)) 7045 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7046 mutex_unlock(&sched_domains_mutex); 7047 7048 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7049 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7050 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7051 7052 init_hrtick(); 7053 7054 /* Move init over to a non-isolated CPU */ 7055 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7056 BUG(); 7057 sched_init_granularity(); 7058 free_cpumask_var(non_isolated_cpus); 7059 7060 init_sched_rt_class(); 7061 init_sched_dl_class(); 7062 } 7063 #else 7064 void __init sched_init_smp(void) 7065 { 7066 sched_init_granularity(); 7067 } 7068 #endif /* CONFIG_SMP */ 7069 7070 const_debug unsigned int sysctl_timer_migration = 1; 7071 7072 int in_sched_functions(unsigned long addr) 7073 { 7074 return in_lock_functions(addr) || 7075 (addr >= (unsigned long)__sched_text_start 7076 && addr < (unsigned long)__sched_text_end); 7077 } 7078 7079 #ifdef CONFIG_CGROUP_SCHED 7080 /* 7081 * Default task group. 7082 * Every task in system belongs to this group at bootup. 7083 */ 7084 struct task_group root_task_group; 7085 LIST_HEAD(task_groups); 7086 #endif 7087 7088 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7089 7090 void __init sched_init(void) 7091 { 7092 int i, j; 7093 unsigned long alloc_size = 0, ptr; 7094 7095 #ifdef CONFIG_FAIR_GROUP_SCHED 7096 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7097 #endif 7098 #ifdef CONFIG_RT_GROUP_SCHED 7099 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7100 #endif 7101 if (alloc_size) { 7102 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7103 7104 #ifdef CONFIG_FAIR_GROUP_SCHED 7105 root_task_group.se = (struct sched_entity **)ptr; 7106 ptr += nr_cpu_ids * sizeof(void **); 7107 7108 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7109 ptr += nr_cpu_ids * sizeof(void **); 7110 7111 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7112 #ifdef CONFIG_RT_GROUP_SCHED 7113 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7114 ptr += nr_cpu_ids * sizeof(void **); 7115 7116 root_task_group.rt_rq = (struct rt_rq **)ptr; 7117 ptr += nr_cpu_ids * sizeof(void **); 7118 7119 #endif /* CONFIG_RT_GROUP_SCHED */ 7120 } 7121 #ifdef CONFIG_CPUMASK_OFFSTACK 7122 for_each_possible_cpu(i) { 7123 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7124 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7125 } 7126 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7127 7128 init_rt_bandwidth(&def_rt_bandwidth, 7129 global_rt_period(), global_rt_runtime()); 7130 init_dl_bandwidth(&def_dl_bandwidth, 7131 global_rt_period(), global_rt_runtime()); 7132 7133 #ifdef CONFIG_SMP 7134 init_defrootdomain(); 7135 #endif 7136 7137 #ifdef CONFIG_RT_GROUP_SCHED 7138 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7139 global_rt_period(), global_rt_runtime()); 7140 #endif /* CONFIG_RT_GROUP_SCHED */ 7141 7142 #ifdef CONFIG_CGROUP_SCHED 7143 list_add(&root_task_group.list, &task_groups); 7144 INIT_LIST_HEAD(&root_task_group.children); 7145 INIT_LIST_HEAD(&root_task_group.siblings); 7146 autogroup_init(&init_task); 7147 7148 #endif /* CONFIG_CGROUP_SCHED */ 7149 7150 for_each_possible_cpu(i) { 7151 struct rq *rq; 7152 7153 rq = cpu_rq(i); 7154 raw_spin_lock_init(&rq->lock); 7155 rq->nr_running = 0; 7156 rq->calc_load_active = 0; 7157 rq->calc_load_update = jiffies + LOAD_FREQ; 7158 init_cfs_rq(&rq->cfs); 7159 init_rt_rq(&rq->rt, rq); 7160 init_dl_rq(&rq->dl, rq); 7161 #ifdef CONFIG_FAIR_GROUP_SCHED 7162 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7163 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7164 /* 7165 * How much cpu bandwidth does root_task_group get? 7166 * 7167 * In case of task-groups formed thr' the cgroup filesystem, it 7168 * gets 100% of the cpu resources in the system. This overall 7169 * system cpu resource is divided among the tasks of 7170 * root_task_group and its child task-groups in a fair manner, 7171 * based on each entity's (task or task-group's) weight 7172 * (se->load.weight). 7173 * 7174 * In other words, if root_task_group has 10 tasks of weight 7175 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7176 * then A0's share of the cpu resource is: 7177 * 7178 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7179 * 7180 * We achieve this by letting root_task_group's tasks sit 7181 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7182 */ 7183 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7184 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7185 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7186 7187 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7188 #ifdef CONFIG_RT_GROUP_SCHED 7189 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7190 #endif 7191 7192 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7193 rq->cpu_load[j] = 0; 7194 7195 rq->last_load_update_tick = jiffies; 7196 7197 #ifdef CONFIG_SMP 7198 rq->sd = NULL; 7199 rq->rd = NULL; 7200 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7201 rq->post_schedule = 0; 7202 rq->active_balance = 0; 7203 rq->next_balance = jiffies; 7204 rq->push_cpu = 0; 7205 rq->cpu = i; 7206 rq->online = 0; 7207 rq->idle_stamp = 0; 7208 rq->avg_idle = 2*sysctl_sched_migration_cost; 7209 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7210 7211 INIT_LIST_HEAD(&rq->cfs_tasks); 7212 7213 rq_attach_root(rq, &def_root_domain); 7214 #ifdef CONFIG_NO_HZ_COMMON 7215 rq->nohz_flags = 0; 7216 #endif 7217 #ifdef CONFIG_NO_HZ_FULL 7218 rq->last_sched_tick = 0; 7219 #endif 7220 #endif 7221 init_rq_hrtick(rq); 7222 atomic_set(&rq->nr_iowait, 0); 7223 } 7224 7225 set_load_weight(&init_task); 7226 7227 #ifdef CONFIG_PREEMPT_NOTIFIERS 7228 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7229 #endif 7230 7231 /* 7232 * The boot idle thread does lazy MMU switching as well: 7233 */ 7234 atomic_inc(&init_mm.mm_count); 7235 enter_lazy_tlb(&init_mm, current); 7236 7237 /* 7238 * During early bootup we pretend to be a normal task: 7239 */ 7240 current->sched_class = &fair_sched_class; 7241 7242 /* 7243 * Make us the idle thread. Technically, schedule() should not be 7244 * called from this thread, however somewhere below it might be, 7245 * but because we are the idle thread, we just pick up running again 7246 * when this runqueue becomes "idle". 7247 */ 7248 init_idle(current, smp_processor_id()); 7249 7250 calc_load_update = jiffies + LOAD_FREQ; 7251 7252 #ifdef CONFIG_SMP 7253 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7254 /* May be allocated at isolcpus cmdline parse time */ 7255 if (cpu_isolated_map == NULL) 7256 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7257 idle_thread_set_boot_cpu(); 7258 set_cpu_rq_start_time(); 7259 #endif 7260 init_sched_fair_class(); 7261 7262 scheduler_running = 1; 7263 } 7264 7265 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7266 static inline int preempt_count_equals(int preempt_offset) 7267 { 7268 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7269 7270 return (nested == preempt_offset); 7271 } 7272 7273 void __might_sleep(const char *file, int line, int preempt_offset) 7274 { 7275 /* 7276 * Blocking primitives will set (and therefore destroy) current->state, 7277 * since we will exit with TASK_RUNNING make sure we enter with it, 7278 * otherwise we will destroy state. 7279 */ 7280 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7281 "do not call blocking ops when !TASK_RUNNING; " 7282 "state=%lx set at [<%p>] %pS\n", 7283 current->state, 7284 (void *)current->task_state_change, 7285 (void *)current->task_state_change); 7286 7287 ___might_sleep(file, line, preempt_offset); 7288 } 7289 EXPORT_SYMBOL(__might_sleep); 7290 7291 void ___might_sleep(const char *file, int line, int preempt_offset) 7292 { 7293 static unsigned long prev_jiffy; /* ratelimiting */ 7294 7295 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7296 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7297 !is_idle_task(current)) || 7298 system_state != SYSTEM_RUNNING || oops_in_progress) 7299 return; 7300 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7301 return; 7302 prev_jiffy = jiffies; 7303 7304 printk(KERN_ERR 7305 "BUG: sleeping function called from invalid context at %s:%d\n", 7306 file, line); 7307 printk(KERN_ERR 7308 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7309 in_atomic(), irqs_disabled(), 7310 current->pid, current->comm); 7311 7312 if (task_stack_end_corrupted(current)) 7313 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7314 7315 debug_show_held_locks(current); 7316 if (irqs_disabled()) 7317 print_irqtrace_events(current); 7318 #ifdef CONFIG_DEBUG_PREEMPT 7319 if (!preempt_count_equals(preempt_offset)) { 7320 pr_err("Preemption disabled at:"); 7321 print_ip_sym(current->preempt_disable_ip); 7322 pr_cont("\n"); 7323 } 7324 #endif 7325 dump_stack(); 7326 } 7327 EXPORT_SYMBOL(___might_sleep); 7328 #endif 7329 7330 #ifdef CONFIG_MAGIC_SYSRQ 7331 static void normalize_task(struct rq *rq, struct task_struct *p) 7332 { 7333 const struct sched_class *prev_class = p->sched_class; 7334 struct sched_attr attr = { 7335 .sched_policy = SCHED_NORMAL, 7336 }; 7337 int old_prio = p->prio; 7338 int queued; 7339 7340 queued = task_on_rq_queued(p); 7341 if (queued) 7342 dequeue_task(rq, p, 0); 7343 __setscheduler(rq, p, &attr); 7344 if (queued) { 7345 enqueue_task(rq, p, 0); 7346 resched_curr(rq); 7347 } 7348 7349 check_class_changed(rq, p, prev_class, old_prio); 7350 } 7351 7352 void normalize_rt_tasks(void) 7353 { 7354 struct task_struct *g, *p; 7355 unsigned long flags; 7356 struct rq *rq; 7357 7358 read_lock(&tasklist_lock); 7359 for_each_process_thread(g, p) { 7360 /* 7361 * Only normalize user tasks: 7362 */ 7363 if (p->flags & PF_KTHREAD) 7364 continue; 7365 7366 p->se.exec_start = 0; 7367 #ifdef CONFIG_SCHEDSTATS 7368 p->se.statistics.wait_start = 0; 7369 p->se.statistics.sleep_start = 0; 7370 p->se.statistics.block_start = 0; 7371 #endif 7372 7373 if (!dl_task(p) && !rt_task(p)) { 7374 /* 7375 * Renice negative nice level userspace 7376 * tasks back to 0: 7377 */ 7378 if (task_nice(p) < 0) 7379 set_user_nice(p, 0); 7380 continue; 7381 } 7382 7383 rq = task_rq_lock(p, &flags); 7384 normalize_task(rq, p); 7385 task_rq_unlock(rq, p, &flags); 7386 } 7387 read_unlock(&tasklist_lock); 7388 } 7389 7390 #endif /* CONFIG_MAGIC_SYSRQ */ 7391 7392 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7393 /* 7394 * These functions are only useful for the IA64 MCA handling, or kdb. 7395 * 7396 * They can only be called when the whole system has been 7397 * stopped - every CPU needs to be quiescent, and no scheduling 7398 * activity can take place. Using them for anything else would 7399 * be a serious bug, and as a result, they aren't even visible 7400 * under any other configuration. 7401 */ 7402 7403 /** 7404 * curr_task - return the current task for a given cpu. 7405 * @cpu: the processor in question. 7406 * 7407 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7408 * 7409 * Return: The current task for @cpu. 7410 */ 7411 struct task_struct *curr_task(int cpu) 7412 { 7413 return cpu_curr(cpu); 7414 } 7415 7416 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7417 7418 #ifdef CONFIG_IA64 7419 /** 7420 * set_curr_task - set the current task for a given cpu. 7421 * @cpu: the processor in question. 7422 * @p: the task pointer to set. 7423 * 7424 * Description: This function must only be used when non-maskable interrupts 7425 * are serviced on a separate stack. It allows the architecture to switch the 7426 * notion of the current task on a cpu in a non-blocking manner. This function 7427 * must be called with all CPU's synchronized, and interrupts disabled, the 7428 * and caller must save the original value of the current task (see 7429 * curr_task() above) and restore that value before reenabling interrupts and 7430 * re-starting the system. 7431 * 7432 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7433 */ 7434 void set_curr_task(int cpu, struct task_struct *p) 7435 { 7436 cpu_curr(cpu) = p; 7437 } 7438 7439 #endif 7440 7441 #ifdef CONFIG_CGROUP_SCHED 7442 /* task_group_lock serializes the addition/removal of task groups */ 7443 static DEFINE_SPINLOCK(task_group_lock); 7444 7445 static void free_sched_group(struct task_group *tg) 7446 { 7447 free_fair_sched_group(tg); 7448 free_rt_sched_group(tg); 7449 autogroup_free(tg); 7450 kfree(tg); 7451 } 7452 7453 /* allocate runqueue etc for a new task group */ 7454 struct task_group *sched_create_group(struct task_group *parent) 7455 { 7456 struct task_group *tg; 7457 7458 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7459 if (!tg) 7460 return ERR_PTR(-ENOMEM); 7461 7462 if (!alloc_fair_sched_group(tg, parent)) 7463 goto err; 7464 7465 if (!alloc_rt_sched_group(tg, parent)) 7466 goto err; 7467 7468 return tg; 7469 7470 err: 7471 free_sched_group(tg); 7472 return ERR_PTR(-ENOMEM); 7473 } 7474 7475 void sched_online_group(struct task_group *tg, struct task_group *parent) 7476 { 7477 unsigned long flags; 7478 7479 spin_lock_irqsave(&task_group_lock, flags); 7480 list_add_rcu(&tg->list, &task_groups); 7481 7482 WARN_ON(!parent); /* root should already exist */ 7483 7484 tg->parent = parent; 7485 INIT_LIST_HEAD(&tg->children); 7486 list_add_rcu(&tg->siblings, &parent->children); 7487 spin_unlock_irqrestore(&task_group_lock, flags); 7488 } 7489 7490 /* rcu callback to free various structures associated with a task group */ 7491 static void free_sched_group_rcu(struct rcu_head *rhp) 7492 { 7493 /* now it should be safe to free those cfs_rqs */ 7494 free_sched_group(container_of(rhp, struct task_group, rcu)); 7495 } 7496 7497 /* Destroy runqueue etc associated with a task group */ 7498 void sched_destroy_group(struct task_group *tg) 7499 { 7500 /* wait for possible concurrent references to cfs_rqs complete */ 7501 call_rcu(&tg->rcu, free_sched_group_rcu); 7502 } 7503 7504 void sched_offline_group(struct task_group *tg) 7505 { 7506 unsigned long flags; 7507 int i; 7508 7509 /* end participation in shares distribution */ 7510 for_each_possible_cpu(i) 7511 unregister_fair_sched_group(tg, i); 7512 7513 spin_lock_irqsave(&task_group_lock, flags); 7514 list_del_rcu(&tg->list); 7515 list_del_rcu(&tg->siblings); 7516 spin_unlock_irqrestore(&task_group_lock, flags); 7517 } 7518 7519 /* change task's runqueue when it moves between groups. 7520 * The caller of this function should have put the task in its new group 7521 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7522 * reflect its new group. 7523 */ 7524 void sched_move_task(struct task_struct *tsk) 7525 { 7526 struct task_group *tg; 7527 int queued, running; 7528 unsigned long flags; 7529 struct rq *rq; 7530 7531 rq = task_rq_lock(tsk, &flags); 7532 7533 running = task_current(rq, tsk); 7534 queued = task_on_rq_queued(tsk); 7535 7536 if (queued) 7537 dequeue_task(rq, tsk, 0); 7538 if (unlikely(running)) 7539 put_prev_task(rq, tsk); 7540 7541 /* 7542 * All callers are synchronized by task_rq_lock(); we do not use RCU 7543 * which is pointless here. Thus, we pass "true" to task_css_check() 7544 * to prevent lockdep warnings. 7545 */ 7546 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7547 struct task_group, css); 7548 tg = autogroup_task_group(tsk, tg); 7549 tsk->sched_task_group = tg; 7550 7551 #ifdef CONFIG_FAIR_GROUP_SCHED 7552 if (tsk->sched_class->task_move_group) 7553 tsk->sched_class->task_move_group(tsk, queued); 7554 else 7555 #endif 7556 set_task_rq(tsk, task_cpu(tsk)); 7557 7558 if (unlikely(running)) 7559 tsk->sched_class->set_curr_task(rq); 7560 if (queued) 7561 enqueue_task(rq, tsk, 0); 7562 7563 task_rq_unlock(rq, tsk, &flags); 7564 } 7565 #endif /* CONFIG_CGROUP_SCHED */ 7566 7567 #ifdef CONFIG_RT_GROUP_SCHED 7568 /* 7569 * Ensure that the real time constraints are schedulable. 7570 */ 7571 static DEFINE_MUTEX(rt_constraints_mutex); 7572 7573 /* Must be called with tasklist_lock held */ 7574 static inline int tg_has_rt_tasks(struct task_group *tg) 7575 { 7576 struct task_struct *g, *p; 7577 7578 /* 7579 * Autogroups do not have RT tasks; see autogroup_create(). 7580 */ 7581 if (task_group_is_autogroup(tg)) 7582 return 0; 7583 7584 for_each_process_thread(g, p) { 7585 if (rt_task(p) && task_group(p) == tg) 7586 return 1; 7587 } 7588 7589 return 0; 7590 } 7591 7592 struct rt_schedulable_data { 7593 struct task_group *tg; 7594 u64 rt_period; 7595 u64 rt_runtime; 7596 }; 7597 7598 static int tg_rt_schedulable(struct task_group *tg, void *data) 7599 { 7600 struct rt_schedulable_data *d = data; 7601 struct task_group *child; 7602 unsigned long total, sum = 0; 7603 u64 period, runtime; 7604 7605 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7606 runtime = tg->rt_bandwidth.rt_runtime; 7607 7608 if (tg == d->tg) { 7609 period = d->rt_period; 7610 runtime = d->rt_runtime; 7611 } 7612 7613 /* 7614 * Cannot have more runtime than the period. 7615 */ 7616 if (runtime > period && runtime != RUNTIME_INF) 7617 return -EINVAL; 7618 7619 /* 7620 * Ensure we don't starve existing RT tasks. 7621 */ 7622 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7623 return -EBUSY; 7624 7625 total = to_ratio(period, runtime); 7626 7627 /* 7628 * Nobody can have more than the global setting allows. 7629 */ 7630 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7631 return -EINVAL; 7632 7633 /* 7634 * The sum of our children's runtime should not exceed our own. 7635 */ 7636 list_for_each_entry_rcu(child, &tg->children, siblings) { 7637 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7638 runtime = child->rt_bandwidth.rt_runtime; 7639 7640 if (child == d->tg) { 7641 period = d->rt_period; 7642 runtime = d->rt_runtime; 7643 } 7644 7645 sum += to_ratio(period, runtime); 7646 } 7647 7648 if (sum > total) 7649 return -EINVAL; 7650 7651 return 0; 7652 } 7653 7654 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7655 { 7656 int ret; 7657 7658 struct rt_schedulable_data data = { 7659 .tg = tg, 7660 .rt_period = period, 7661 .rt_runtime = runtime, 7662 }; 7663 7664 rcu_read_lock(); 7665 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7666 rcu_read_unlock(); 7667 7668 return ret; 7669 } 7670 7671 static int tg_set_rt_bandwidth(struct task_group *tg, 7672 u64 rt_period, u64 rt_runtime) 7673 { 7674 int i, err = 0; 7675 7676 /* 7677 * Disallowing the root group RT runtime is BAD, it would disallow the 7678 * kernel creating (and or operating) RT threads. 7679 */ 7680 if (tg == &root_task_group && rt_runtime == 0) 7681 return -EINVAL; 7682 7683 /* No period doesn't make any sense. */ 7684 if (rt_period == 0) 7685 return -EINVAL; 7686 7687 mutex_lock(&rt_constraints_mutex); 7688 read_lock(&tasklist_lock); 7689 err = __rt_schedulable(tg, rt_period, rt_runtime); 7690 if (err) 7691 goto unlock; 7692 7693 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7694 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7695 tg->rt_bandwidth.rt_runtime = rt_runtime; 7696 7697 for_each_possible_cpu(i) { 7698 struct rt_rq *rt_rq = tg->rt_rq[i]; 7699 7700 raw_spin_lock(&rt_rq->rt_runtime_lock); 7701 rt_rq->rt_runtime = rt_runtime; 7702 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7703 } 7704 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7705 unlock: 7706 read_unlock(&tasklist_lock); 7707 mutex_unlock(&rt_constraints_mutex); 7708 7709 return err; 7710 } 7711 7712 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7713 { 7714 u64 rt_runtime, rt_period; 7715 7716 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7717 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7718 if (rt_runtime_us < 0) 7719 rt_runtime = RUNTIME_INF; 7720 7721 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7722 } 7723 7724 static long sched_group_rt_runtime(struct task_group *tg) 7725 { 7726 u64 rt_runtime_us; 7727 7728 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7729 return -1; 7730 7731 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7732 do_div(rt_runtime_us, NSEC_PER_USEC); 7733 return rt_runtime_us; 7734 } 7735 7736 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7737 { 7738 u64 rt_runtime, rt_period; 7739 7740 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7741 rt_runtime = tg->rt_bandwidth.rt_runtime; 7742 7743 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7744 } 7745 7746 static long sched_group_rt_period(struct task_group *tg) 7747 { 7748 u64 rt_period_us; 7749 7750 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7751 do_div(rt_period_us, NSEC_PER_USEC); 7752 return rt_period_us; 7753 } 7754 #endif /* CONFIG_RT_GROUP_SCHED */ 7755 7756 #ifdef CONFIG_RT_GROUP_SCHED 7757 static int sched_rt_global_constraints(void) 7758 { 7759 int ret = 0; 7760 7761 mutex_lock(&rt_constraints_mutex); 7762 read_lock(&tasklist_lock); 7763 ret = __rt_schedulable(NULL, 0, 0); 7764 read_unlock(&tasklist_lock); 7765 mutex_unlock(&rt_constraints_mutex); 7766 7767 return ret; 7768 } 7769 7770 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7771 { 7772 /* Don't accept realtime tasks when there is no way for them to run */ 7773 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7774 return 0; 7775 7776 return 1; 7777 } 7778 7779 #else /* !CONFIG_RT_GROUP_SCHED */ 7780 static int sched_rt_global_constraints(void) 7781 { 7782 unsigned long flags; 7783 int i, ret = 0; 7784 7785 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7786 for_each_possible_cpu(i) { 7787 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7788 7789 raw_spin_lock(&rt_rq->rt_runtime_lock); 7790 rt_rq->rt_runtime = global_rt_runtime(); 7791 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7792 } 7793 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7794 7795 return ret; 7796 } 7797 #endif /* CONFIG_RT_GROUP_SCHED */ 7798 7799 static int sched_dl_global_constraints(void) 7800 { 7801 u64 runtime = global_rt_runtime(); 7802 u64 period = global_rt_period(); 7803 u64 new_bw = to_ratio(period, runtime); 7804 struct dl_bw *dl_b; 7805 int cpu, ret = 0; 7806 unsigned long flags; 7807 7808 /* 7809 * Here we want to check the bandwidth not being set to some 7810 * value smaller than the currently allocated bandwidth in 7811 * any of the root_domains. 7812 * 7813 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7814 * cycling on root_domains... Discussion on different/better 7815 * solutions is welcome! 7816 */ 7817 for_each_possible_cpu(cpu) { 7818 rcu_read_lock_sched(); 7819 dl_b = dl_bw_of(cpu); 7820 7821 raw_spin_lock_irqsave(&dl_b->lock, flags); 7822 if (new_bw < dl_b->total_bw) 7823 ret = -EBUSY; 7824 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7825 7826 rcu_read_unlock_sched(); 7827 7828 if (ret) 7829 break; 7830 } 7831 7832 return ret; 7833 } 7834 7835 static void sched_dl_do_global(void) 7836 { 7837 u64 new_bw = -1; 7838 struct dl_bw *dl_b; 7839 int cpu; 7840 unsigned long flags; 7841 7842 def_dl_bandwidth.dl_period = global_rt_period(); 7843 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7844 7845 if (global_rt_runtime() != RUNTIME_INF) 7846 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7847 7848 /* 7849 * FIXME: As above... 7850 */ 7851 for_each_possible_cpu(cpu) { 7852 rcu_read_lock_sched(); 7853 dl_b = dl_bw_of(cpu); 7854 7855 raw_spin_lock_irqsave(&dl_b->lock, flags); 7856 dl_b->bw = new_bw; 7857 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7858 7859 rcu_read_unlock_sched(); 7860 } 7861 } 7862 7863 static int sched_rt_global_validate(void) 7864 { 7865 if (sysctl_sched_rt_period <= 0) 7866 return -EINVAL; 7867 7868 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7869 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7870 return -EINVAL; 7871 7872 return 0; 7873 } 7874 7875 static void sched_rt_do_global(void) 7876 { 7877 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7878 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7879 } 7880 7881 int sched_rt_handler(struct ctl_table *table, int write, 7882 void __user *buffer, size_t *lenp, 7883 loff_t *ppos) 7884 { 7885 int old_period, old_runtime; 7886 static DEFINE_MUTEX(mutex); 7887 int ret; 7888 7889 mutex_lock(&mutex); 7890 old_period = sysctl_sched_rt_period; 7891 old_runtime = sysctl_sched_rt_runtime; 7892 7893 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7894 7895 if (!ret && write) { 7896 ret = sched_rt_global_validate(); 7897 if (ret) 7898 goto undo; 7899 7900 ret = sched_rt_global_constraints(); 7901 if (ret) 7902 goto undo; 7903 7904 ret = sched_dl_global_constraints(); 7905 if (ret) 7906 goto undo; 7907 7908 sched_rt_do_global(); 7909 sched_dl_do_global(); 7910 } 7911 if (0) { 7912 undo: 7913 sysctl_sched_rt_period = old_period; 7914 sysctl_sched_rt_runtime = old_runtime; 7915 } 7916 mutex_unlock(&mutex); 7917 7918 return ret; 7919 } 7920 7921 int sched_rr_handler(struct ctl_table *table, int write, 7922 void __user *buffer, size_t *lenp, 7923 loff_t *ppos) 7924 { 7925 int ret; 7926 static DEFINE_MUTEX(mutex); 7927 7928 mutex_lock(&mutex); 7929 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7930 /* make sure that internally we keep jiffies */ 7931 /* also, writing zero resets timeslice to default */ 7932 if (!ret && write) { 7933 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7934 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7935 } 7936 mutex_unlock(&mutex); 7937 return ret; 7938 } 7939 7940 #ifdef CONFIG_CGROUP_SCHED 7941 7942 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7943 { 7944 return css ? container_of(css, struct task_group, css) : NULL; 7945 } 7946 7947 static struct cgroup_subsys_state * 7948 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7949 { 7950 struct task_group *parent = css_tg(parent_css); 7951 struct task_group *tg; 7952 7953 if (!parent) { 7954 /* This is early initialization for the top cgroup */ 7955 return &root_task_group.css; 7956 } 7957 7958 tg = sched_create_group(parent); 7959 if (IS_ERR(tg)) 7960 return ERR_PTR(-ENOMEM); 7961 7962 return &tg->css; 7963 } 7964 7965 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7966 { 7967 struct task_group *tg = css_tg(css); 7968 struct task_group *parent = css_tg(css->parent); 7969 7970 if (parent) 7971 sched_online_group(tg, parent); 7972 return 0; 7973 } 7974 7975 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7976 { 7977 struct task_group *tg = css_tg(css); 7978 7979 sched_destroy_group(tg); 7980 } 7981 7982 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7983 { 7984 struct task_group *tg = css_tg(css); 7985 7986 sched_offline_group(tg); 7987 } 7988 7989 static void cpu_cgroup_fork(struct task_struct *task) 7990 { 7991 sched_move_task(task); 7992 } 7993 7994 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7995 struct cgroup_taskset *tset) 7996 { 7997 struct task_struct *task; 7998 7999 cgroup_taskset_for_each(task, tset) { 8000 #ifdef CONFIG_RT_GROUP_SCHED 8001 if (!sched_rt_can_attach(css_tg(css), task)) 8002 return -EINVAL; 8003 #else 8004 /* We don't support RT-tasks being in separate groups */ 8005 if (task->sched_class != &fair_sched_class) 8006 return -EINVAL; 8007 #endif 8008 } 8009 return 0; 8010 } 8011 8012 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8013 struct cgroup_taskset *tset) 8014 { 8015 struct task_struct *task; 8016 8017 cgroup_taskset_for_each(task, tset) 8018 sched_move_task(task); 8019 } 8020 8021 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8022 struct cgroup_subsys_state *old_css, 8023 struct task_struct *task) 8024 { 8025 /* 8026 * cgroup_exit() is called in the copy_process() failure path. 8027 * Ignore this case since the task hasn't ran yet, this avoids 8028 * trying to poke a half freed task state from generic code. 8029 */ 8030 if (!(task->flags & PF_EXITING)) 8031 return; 8032 8033 sched_move_task(task); 8034 } 8035 8036 #ifdef CONFIG_FAIR_GROUP_SCHED 8037 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8038 struct cftype *cftype, u64 shareval) 8039 { 8040 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8041 } 8042 8043 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8044 struct cftype *cft) 8045 { 8046 struct task_group *tg = css_tg(css); 8047 8048 return (u64) scale_load_down(tg->shares); 8049 } 8050 8051 #ifdef CONFIG_CFS_BANDWIDTH 8052 static DEFINE_MUTEX(cfs_constraints_mutex); 8053 8054 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8055 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8056 8057 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8058 8059 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8060 { 8061 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8062 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8063 8064 if (tg == &root_task_group) 8065 return -EINVAL; 8066 8067 /* 8068 * Ensure we have at some amount of bandwidth every period. This is 8069 * to prevent reaching a state of large arrears when throttled via 8070 * entity_tick() resulting in prolonged exit starvation. 8071 */ 8072 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8073 return -EINVAL; 8074 8075 /* 8076 * Likewise, bound things on the otherside by preventing insane quota 8077 * periods. This also allows us to normalize in computing quota 8078 * feasibility. 8079 */ 8080 if (period > max_cfs_quota_period) 8081 return -EINVAL; 8082 8083 /* 8084 * Prevent race between setting of cfs_rq->runtime_enabled and 8085 * unthrottle_offline_cfs_rqs(). 8086 */ 8087 get_online_cpus(); 8088 mutex_lock(&cfs_constraints_mutex); 8089 ret = __cfs_schedulable(tg, period, quota); 8090 if (ret) 8091 goto out_unlock; 8092 8093 runtime_enabled = quota != RUNTIME_INF; 8094 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8095 /* 8096 * If we need to toggle cfs_bandwidth_used, off->on must occur 8097 * before making related changes, and on->off must occur afterwards 8098 */ 8099 if (runtime_enabled && !runtime_was_enabled) 8100 cfs_bandwidth_usage_inc(); 8101 raw_spin_lock_irq(&cfs_b->lock); 8102 cfs_b->period = ns_to_ktime(period); 8103 cfs_b->quota = quota; 8104 8105 __refill_cfs_bandwidth_runtime(cfs_b); 8106 /* restart the period timer (if active) to handle new period expiry */ 8107 if (runtime_enabled && cfs_b->timer_active) { 8108 /* force a reprogram */ 8109 __start_cfs_bandwidth(cfs_b, true); 8110 } 8111 raw_spin_unlock_irq(&cfs_b->lock); 8112 8113 for_each_online_cpu(i) { 8114 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8115 struct rq *rq = cfs_rq->rq; 8116 8117 raw_spin_lock_irq(&rq->lock); 8118 cfs_rq->runtime_enabled = runtime_enabled; 8119 cfs_rq->runtime_remaining = 0; 8120 8121 if (cfs_rq->throttled) 8122 unthrottle_cfs_rq(cfs_rq); 8123 raw_spin_unlock_irq(&rq->lock); 8124 } 8125 if (runtime_was_enabled && !runtime_enabled) 8126 cfs_bandwidth_usage_dec(); 8127 out_unlock: 8128 mutex_unlock(&cfs_constraints_mutex); 8129 put_online_cpus(); 8130 8131 return ret; 8132 } 8133 8134 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8135 { 8136 u64 quota, period; 8137 8138 period = ktime_to_ns(tg->cfs_bandwidth.period); 8139 if (cfs_quota_us < 0) 8140 quota = RUNTIME_INF; 8141 else 8142 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8143 8144 return tg_set_cfs_bandwidth(tg, period, quota); 8145 } 8146 8147 long tg_get_cfs_quota(struct task_group *tg) 8148 { 8149 u64 quota_us; 8150 8151 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8152 return -1; 8153 8154 quota_us = tg->cfs_bandwidth.quota; 8155 do_div(quota_us, NSEC_PER_USEC); 8156 8157 return quota_us; 8158 } 8159 8160 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8161 { 8162 u64 quota, period; 8163 8164 period = (u64)cfs_period_us * NSEC_PER_USEC; 8165 quota = tg->cfs_bandwidth.quota; 8166 8167 return tg_set_cfs_bandwidth(tg, period, quota); 8168 } 8169 8170 long tg_get_cfs_period(struct task_group *tg) 8171 { 8172 u64 cfs_period_us; 8173 8174 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8175 do_div(cfs_period_us, NSEC_PER_USEC); 8176 8177 return cfs_period_us; 8178 } 8179 8180 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8181 struct cftype *cft) 8182 { 8183 return tg_get_cfs_quota(css_tg(css)); 8184 } 8185 8186 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8187 struct cftype *cftype, s64 cfs_quota_us) 8188 { 8189 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8190 } 8191 8192 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8193 struct cftype *cft) 8194 { 8195 return tg_get_cfs_period(css_tg(css)); 8196 } 8197 8198 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8199 struct cftype *cftype, u64 cfs_period_us) 8200 { 8201 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8202 } 8203 8204 struct cfs_schedulable_data { 8205 struct task_group *tg; 8206 u64 period, quota; 8207 }; 8208 8209 /* 8210 * normalize group quota/period to be quota/max_period 8211 * note: units are usecs 8212 */ 8213 static u64 normalize_cfs_quota(struct task_group *tg, 8214 struct cfs_schedulable_data *d) 8215 { 8216 u64 quota, period; 8217 8218 if (tg == d->tg) { 8219 period = d->period; 8220 quota = d->quota; 8221 } else { 8222 period = tg_get_cfs_period(tg); 8223 quota = tg_get_cfs_quota(tg); 8224 } 8225 8226 /* note: these should typically be equivalent */ 8227 if (quota == RUNTIME_INF || quota == -1) 8228 return RUNTIME_INF; 8229 8230 return to_ratio(period, quota); 8231 } 8232 8233 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8234 { 8235 struct cfs_schedulable_data *d = data; 8236 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8237 s64 quota = 0, parent_quota = -1; 8238 8239 if (!tg->parent) { 8240 quota = RUNTIME_INF; 8241 } else { 8242 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8243 8244 quota = normalize_cfs_quota(tg, d); 8245 parent_quota = parent_b->hierarchical_quota; 8246 8247 /* 8248 * ensure max(child_quota) <= parent_quota, inherit when no 8249 * limit is set 8250 */ 8251 if (quota == RUNTIME_INF) 8252 quota = parent_quota; 8253 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8254 return -EINVAL; 8255 } 8256 cfs_b->hierarchical_quota = quota; 8257 8258 return 0; 8259 } 8260 8261 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8262 { 8263 int ret; 8264 struct cfs_schedulable_data data = { 8265 .tg = tg, 8266 .period = period, 8267 .quota = quota, 8268 }; 8269 8270 if (quota != RUNTIME_INF) { 8271 do_div(data.period, NSEC_PER_USEC); 8272 do_div(data.quota, NSEC_PER_USEC); 8273 } 8274 8275 rcu_read_lock(); 8276 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8277 rcu_read_unlock(); 8278 8279 return ret; 8280 } 8281 8282 static int cpu_stats_show(struct seq_file *sf, void *v) 8283 { 8284 struct task_group *tg = css_tg(seq_css(sf)); 8285 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8286 8287 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8288 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8289 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8290 8291 return 0; 8292 } 8293 #endif /* CONFIG_CFS_BANDWIDTH */ 8294 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8295 8296 #ifdef CONFIG_RT_GROUP_SCHED 8297 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8298 struct cftype *cft, s64 val) 8299 { 8300 return sched_group_set_rt_runtime(css_tg(css), val); 8301 } 8302 8303 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8304 struct cftype *cft) 8305 { 8306 return sched_group_rt_runtime(css_tg(css)); 8307 } 8308 8309 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8310 struct cftype *cftype, u64 rt_period_us) 8311 { 8312 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8313 } 8314 8315 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8316 struct cftype *cft) 8317 { 8318 return sched_group_rt_period(css_tg(css)); 8319 } 8320 #endif /* CONFIG_RT_GROUP_SCHED */ 8321 8322 static struct cftype cpu_files[] = { 8323 #ifdef CONFIG_FAIR_GROUP_SCHED 8324 { 8325 .name = "shares", 8326 .read_u64 = cpu_shares_read_u64, 8327 .write_u64 = cpu_shares_write_u64, 8328 }, 8329 #endif 8330 #ifdef CONFIG_CFS_BANDWIDTH 8331 { 8332 .name = "cfs_quota_us", 8333 .read_s64 = cpu_cfs_quota_read_s64, 8334 .write_s64 = cpu_cfs_quota_write_s64, 8335 }, 8336 { 8337 .name = "cfs_period_us", 8338 .read_u64 = cpu_cfs_period_read_u64, 8339 .write_u64 = cpu_cfs_period_write_u64, 8340 }, 8341 { 8342 .name = "stat", 8343 .seq_show = cpu_stats_show, 8344 }, 8345 #endif 8346 #ifdef CONFIG_RT_GROUP_SCHED 8347 { 8348 .name = "rt_runtime_us", 8349 .read_s64 = cpu_rt_runtime_read, 8350 .write_s64 = cpu_rt_runtime_write, 8351 }, 8352 { 8353 .name = "rt_period_us", 8354 .read_u64 = cpu_rt_period_read_uint, 8355 .write_u64 = cpu_rt_period_write_uint, 8356 }, 8357 #endif 8358 { } /* terminate */ 8359 }; 8360 8361 struct cgroup_subsys cpu_cgrp_subsys = { 8362 .css_alloc = cpu_cgroup_css_alloc, 8363 .css_free = cpu_cgroup_css_free, 8364 .css_online = cpu_cgroup_css_online, 8365 .css_offline = cpu_cgroup_css_offline, 8366 .fork = cpu_cgroup_fork, 8367 .can_attach = cpu_cgroup_can_attach, 8368 .attach = cpu_cgroup_attach, 8369 .exit = cpu_cgroup_exit, 8370 .legacy_cftypes = cpu_files, 8371 .early_init = 1, 8372 }; 8373 8374 #endif /* CONFIG_CGROUP_SCHED */ 8375 8376 void dump_cpu_task(int cpu) 8377 { 8378 pr_info("Task dump for CPU %d:\n", cpu); 8379 sched_show_task(cpu_curr(cpu)); 8380 } 8381