1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most eligible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 #ifdef CONFIG_SCHED_HRTICK 324 /* 325 * Use HR-timers to deliver accurate preemption points. 326 */ 327 328 static void hrtick_clear(struct rq *rq) 329 { 330 if (hrtimer_active(&rq->hrtick_timer)) 331 hrtimer_cancel(&rq->hrtick_timer); 332 } 333 334 /* 335 * High-resolution timer tick. 336 * Runs from hardirq context with interrupts disabled. 337 */ 338 static enum hrtimer_restart hrtick(struct hrtimer *timer) 339 { 340 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 341 struct rq_flags rf; 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 rq_lock(rq, &rf); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 rq_unlock(rq, &rf); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static void __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = rq->hrtick_time; 359 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 struct rq_flags rf; 370 371 rq_lock(rq, &rf); 372 __hrtick_restart(rq); 373 rq_unlock(rq, &rf); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 s64 delta; 385 386 /* 387 * Don't schedule slices shorter than 10000ns, that just 388 * doesn't make sense and can cause timer DoS. 389 */ 390 delta = max_t(s64, delay, 10000LL); 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 392 393 if (rq == this_rq()) 394 __hrtick_restart(rq); 395 else 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 397 } 398 399 #else 400 /* 401 * Called to set the hrtick timer state. 402 * 403 * called with rq->lock held and irqs disabled 404 */ 405 void hrtick_start(struct rq *rq, u64 delay) 406 { 407 /* 408 * Don't schedule slices shorter than 10000ns, that just 409 * doesn't make sense. Rely on vruntime for fairness. 410 */ 411 delay = max_t(u64, delay, 10000LL); 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 413 HRTIMER_MODE_REL_PINNED_HARD); 414 } 415 416 #endif /* CONFIG_SMP */ 417 418 static void hrtick_rq_init(struct rq *rq) 419 { 420 #ifdef CONFIG_SMP 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 422 #endif 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 424 rq->hrtick_timer.function = hrtick; 425 } 426 #else /* CONFIG_SCHED_HRTICK */ 427 static inline void hrtick_clear(struct rq *rq) 428 { 429 } 430 431 static inline void hrtick_rq_init(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SCHED_HRTICK */ 435 436 /* 437 * cmpxchg based fetch_or, macro so it works for different integer types 438 */ 439 #define fetch_or(ptr, mask) \ 440 ({ \ 441 typeof(ptr) _ptr = (ptr); \ 442 typeof(mask) _mask = (mask); \ 443 typeof(*_ptr) _old, _val = *_ptr; \ 444 \ 445 for (;;) { \ 446 _old = cmpxchg(_ptr, _val, _val | _mask); \ 447 if (_old == _val) \ 448 break; \ 449 _val = _old; \ 450 } \ 451 _old; \ 452 }) 453 454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 455 /* 456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 457 * this avoids any races wrt polling state changes and thereby avoids 458 * spurious IPIs. 459 */ 460 static bool set_nr_and_not_polling(struct task_struct *p) 461 { 462 struct thread_info *ti = task_thread_info(p); 463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 464 } 465 466 /* 467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 468 * 469 * If this returns true, then the idle task promises to call 470 * sched_ttwu_pending() and reschedule soon. 471 */ 472 static bool set_nr_if_polling(struct task_struct *p) 473 { 474 struct thread_info *ti = task_thread_info(p); 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 476 477 for (;;) { 478 if (!(val & _TIF_POLLING_NRFLAG)) 479 return false; 480 if (val & _TIF_NEED_RESCHED) 481 return true; 482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 483 if (old == val) 484 break; 485 val = old; 486 } 487 return true; 488 } 489 490 #else 491 static bool set_nr_and_not_polling(struct task_struct *p) 492 { 493 set_tsk_need_resched(p); 494 return true; 495 } 496 497 #ifdef CONFIG_SMP 498 static bool set_nr_if_polling(struct task_struct *p) 499 { 500 return false; 501 } 502 #endif 503 #endif 504 505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 506 { 507 struct wake_q_node *node = &task->wake_q; 508 509 /* 510 * Atomically grab the task, if ->wake_q is !nil already it means 511 * it's already queued (either by us or someone else) and will get the 512 * wakeup due to that. 513 * 514 * In order to ensure that a pending wakeup will observe our pending 515 * state, even in the failed case, an explicit smp_mb() must be used. 516 */ 517 smp_mb__before_atomic(); 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 519 return false; 520 521 /* 522 * The head is context local, there can be no concurrency. 523 */ 524 *head->lastp = node; 525 head->lastp = &node->next; 526 return true; 527 } 528 529 /** 530 * wake_q_add() - queue a wakeup for 'later' waking. 531 * @head: the wake_q_head to add @task to 532 * @task: the task to queue for 'later' wakeup 533 * 534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 536 * instantly. 537 * 538 * This function must be used as-if it were wake_up_process(); IOW the task 539 * must be ready to be woken at this location. 540 */ 541 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 542 { 543 if (__wake_q_add(head, task)) 544 get_task_struct(task); 545 } 546 547 /** 548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 549 * @head: the wake_q_head to add @task to 550 * @task: the task to queue for 'later' wakeup 551 * 552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 554 * instantly. 555 * 556 * This function must be used as-if it were wake_up_process(); IOW the task 557 * must be ready to be woken at this location. 558 * 559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 560 * that already hold reference to @task can call the 'safe' version and trust 561 * wake_q to do the right thing depending whether or not the @task is already 562 * queued for wakeup. 563 */ 564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 565 { 566 if (!__wake_q_add(head, task)) 567 put_task_struct(task); 568 } 569 570 void wake_up_q(struct wake_q_head *head) 571 { 572 struct wake_q_node *node = head->first; 573 574 while (node != WAKE_Q_TAIL) { 575 struct task_struct *task; 576 577 task = container_of(node, struct task_struct, wake_q); 578 BUG_ON(!task); 579 /* Task can safely be re-inserted now: */ 580 node = node->next; 581 task->wake_q.next = NULL; 582 583 /* 584 * wake_up_process() executes a full barrier, which pairs with 585 * the queueing in wake_q_add() so as not to miss wakeups. 586 */ 587 wake_up_process(task); 588 put_task_struct(task); 589 } 590 } 591 592 /* 593 * resched_curr - mark rq's current task 'to be rescheduled now'. 594 * 595 * On UP this means the setting of the need_resched flag, on SMP it 596 * might also involve a cross-CPU call to trigger the scheduler on 597 * the target CPU. 598 */ 599 void resched_curr(struct rq *rq) 600 { 601 struct task_struct *curr = rq->curr; 602 int cpu; 603 604 lockdep_assert_held(&rq->lock); 605 606 if (test_tsk_need_resched(curr)) 607 return; 608 609 cpu = cpu_of(rq); 610 611 if (cpu == smp_processor_id()) { 612 set_tsk_need_resched(curr); 613 set_preempt_need_resched(); 614 return; 615 } 616 617 if (set_nr_and_not_polling(curr)) 618 smp_send_reschedule(cpu); 619 else 620 trace_sched_wake_idle_without_ipi(cpu); 621 } 622 623 void resched_cpu(int cpu) 624 { 625 struct rq *rq = cpu_rq(cpu); 626 unsigned long flags; 627 628 raw_spin_lock_irqsave(&rq->lock, flags); 629 if (cpu_online(cpu) || cpu == smp_processor_id()) 630 resched_curr(rq); 631 raw_spin_unlock_irqrestore(&rq->lock, flags); 632 } 633 634 #ifdef CONFIG_SMP 635 #ifdef CONFIG_NO_HZ_COMMON 636 /* 637 * In the semi idle case, use the nearest busy CPU for migrating timers 638 * from an idle CPU. This is good for power-savings. 639 * 640 * We don't do similar optimization for completely idle system, as 641 * selecting an idle CPU will add more delays to the timers than intended 642 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 643 */ 644 int get_nohz_timer_target(void) 645 { 646 int i, cpu = smp_processor_id(), default_cpu = -1; 647 struct sched_domain *sd; 648 649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 650 if (!idle_cpu(cpu)) 651 return cpu; 652 default_cpu = cpu; 653 } 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu_and(i, sched_domain_span(sd), 658 housekeeping_cpumask(HK_FLAG_TIMER)) { 659 if (cpu == i) 660 continue; 661 662 if (!idle_cpu(i)) { 663 cpu = i; 664 goto unlock; 665 } 666 } 667 } 668 669 if (default_cpu == -1) 670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 671 cpu = default_cpu; 672 unlock: 673 rcu_read_unlock(); 674 return cpu; 675 } 676 677 /* 678 * When add_timer_on() enqueues a timer into the timer wheel of an 679 * idle CPU then this timer might expire before the next timer event 680 * which is scheduled to wake up that CPU. In case of a completely 681 * idle system the next event might even be infinite time into the 682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 683 * leaves the inner idle loop so the newly added timer is taken into 684 * account when the CPU goes back to idle and evaluates the timer 685 * wheel for the next timer event. 686 */ 687 static void wake_up_idle_cpu(int cpu) 688 { 689 struct rq *rq = cpu_rq(cpu); 690 691 if (cpu == smp_processor_id()) 692 return; 693 694 if (set_nr_and_not_polling(rq->idle)) 695 smp_send_reschedule(cpu); 696 else 697 trace_sched_wake_idle_without_ipi(cpu); 698 } 699 700 static bool wake_up_full_nohz_cpu(int cpu) 701 { 702 /* 703 * We just need the target to call irq_exit() and re-evaluate 704 * the next tick. The nohz full kick at least implies that. 705 * If needed we can still optimize that later with an 706 * empty IRQ. 707 */ 708 if (cpu_is_offline(cpu)) 709 return true; /* Don't try to wake offline CPUs. */ 710 if (tick_nohz_full_cpu(cpu)) { 711 if (cpu != smp_processor_id() || 712 tick_nohz_tick_stopped()) 713 tick_nohz_full_kick_cpu(cpu); 714 return true; 715 } 716 717 return false; 718 } 719 720 /* 721 * Wake up the specified CPU. If the CPU is going offline, it is the 722 * caller's responsibility to deal with the lost wakeup, for example, 723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 724 */ 725 void wake_up_nohz_cpu(int cpu) 726 { 727 if (!wake_up_full_nohz_cpu(cpu)) 728 wake_up_idle_cpu(cpu); 729 } 730 731 static void nohz_csd_func(void *info) 732 { 733 struct rq *rq = info; 734 int cpu = cpu_of(rq); 735 unsigned int flags; 736 737 /* 738 * Release the rq::nohz_csd. 739 */ 740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 741 WARN_ON(!(flags & NOHZ_KICK_MASK)); 742 743 rq->idle_balance = idle_cpu(cpu); 744 if (rq->idle_balance && !need_resched()) { 745 rq->nohz_idle_balance = flags; 746 raise_softirq_irqoff(SCHED_SOFTIRQ); 747 } 748 } 749 750 #endif /* CONFIG_NO_HZ_COMMON */ 751 752 #ifdef CONFIG_NO_HZ_FULL 753 bool sched_can_stop_tick(struct rq *rq) 754 { 755 int fifo_nr_running; 756 757 /* Deadline tasks, even if single, need the tick */ 758 if (rq->dl.dl_nr_running) 759 return false; 760 761 /* 762 * If there are more than one RR tasks, we need the tick to affect the 763 * actual RR behaviour. 764 */ 765 if (rq->rt.rr_nr_running) { 766 if (rq->rt.rr_nr_running == 1) 767 return true; 768 else 769 return false; 770 } 771 772 /* 773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 774 * forced preemption between FIFO tasks. 775 */ 776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 777 if (fifo_nr_running) 778 return true; 779 780 /* 781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 782 * if there's more than one we need the tick for involuntary 783 * preemption. 784 */ 785 if (rq->nr_running > 1) 786 return false; 787 788 return true; 789 } 790 #endif /* CONFIG_NO_HZ_FULL */ 791 #endif /* CONFIG_SMP */ 792 793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 795 /* 796 * Iterate task_group tree rooted at *from, calling @down when first entering a 797 * node and @up when leaving it for the final time. 798 * 799 * Caller must hold rcu_lock or sufficient equivalent. 800 */ 801 int walk_tg_tree_from(struct task_group *from, 802 tg_visitor down, tg_visitor up, void *data) 803 { 804 struct task_group *parent, *child; 805 int ret; 806 807 parent = from; 808 809 down: 810 ret = (*down)(parent, data); 811 if (ret) 812 goto out; 813 list_for_each_entry_rcu(child, &parent->children, siblings) { 814 parent = child; 815 goto down; 816 817 up: 818 continue; 819 } 820 ret = (*up)(parent, data); 821 if (ret || parent == from) 822 goto out; 823 824 child = parent; 825 parent = parent->parent; 826 if (parent) 827 goto up; 828 out: 829 return ret; 830 } 831 832 int tg_nop(struct task_group *tg, void *data) 833 { 834 return 0; 835 } 836 #endif 837 838 static void set_load_weight(struct task_struct *p, bool update_load) 839 { 840 int prio = p->static_prio - MAX_RT_PRIO; 841 struct load_weight *load = &p->se.load; 842 843 /* 844 * SCHED_IDLE tasks get minimal weight: 845 */ 846 if (task_has_idle_policy(p)) { 847 load->weight = scale_load(WEIGHT_IDLEPRIO); 848 load->inv_weight = WMULT_IDLEPRIO; 849 return; 850 } 851 852 /* 853 * SCHED_OTHER tasks have to update their load when changing their 854 * weight 855 */ 856 if (update_load && p->sched_class == &fair_sched_class) { 857 reweight_task(p, prio); 858 } else { 859 load->weight = scale_load(sched_prio_to_weight[prio]); 860 load->inv_weight = sched_prio_to_wmult[prio]; 861 } 862 } 863 864 #ifdef CONFIG_UCLAMP_TASK 865 /* 866 * Serializes updates of utilization clamp values 867 * 868 * The (slow-path) user-space triggers utilization clamp value updates which 869 * can require updates on (fast-path) scheduler's data structures used to 870 * support enqueue/dequeue operations. 871 * While the per-CPU rq lock protects fast-path update operations, user-space 872 * requests are serialized using a mutex to reduce the risk of conflicting 873 * updates or API abuses. 874 */ 875 static DEFINE_MUTEX(uclamp_mutex); 876 877 /* Max allowed minimum utilization */ 878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 879 880 /* Max allowed maximum utilization */ 881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 882 883 /* 884 * By default RT tasks run at the maximum performance point/capacity of the 885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 886 * SCHED_CAPACITY_SCALE. 887 * 888 * This knob allows admins to change the default behavior when uclamp is being 889 * used. In battery powered devices, particularly, running at the maximum 890 * capacity and frequency will increase energy consumption and shorten the 891 * battery life. 892 * 893 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 894 * 895 * This knob will not override the system default sched_util_clamp_min defined 896 * above. 897 */ 898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 899 900 /* All clamps are required to be less or equal than these values */ 901 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 902 903 /* 904 * This static key is used to reduce the uclamp overhead in the fast path. It 905 * primarily disables the call to uclamp_rq_{inc, dec}() in 906 * enqueue/dequeue_task(). 907 * 908 * This allows users to continue to enable uclamp in their kernel config with 909 * minimum uclamp overhead in the fast path. 910 * 911 * As soon as userspace modifies any of the uclamp knobs, the static key is 912 * enabled, since we have an actual users that make use of uclamp 913 * functionality. 914 * 915 * The knobs that would enable this static key are: 916 * 917 * * A task modifying its uclamp value with sched_setattr(). 918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 919 * * An admin modifying the cgroup cpu.uclamp.{min, max} 920 */ 921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 922 923 /* Integer rounded range for each bucket */ 924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 925 926 #define for_each_clamp_id(clamp_id) \ 927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 928 929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 930 { 931 return clamp_value / UCLAMP_BUCKET_DELTA; 932 } 933 934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 935 { 936 if (clamp_id == UCLAMP_MIN) 937 return 0; 938 return SCHED_CAPACITY_SCALE; 939 } 940 941 static inline void uclamp_se_set(struct uclamp_se *uc_se, 942 unsigned int value, bool user_defined) 943 { 944 uc_se->value = value; 945 uc_se->bucket_id = uclamp_bucket_id(value); 946 uc_se->user_defined = user_defined; 947 } 948 949 static inline unsigned int 950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 951 unsigned int clamp_value) 952 { 953 /* 954 * Avoid blocked utilization pushing up the frequency when we go 955 * idle (which drops the max-clamp) by retaining the last known 956 * max-clamp. 957 */ 958 if (clamp_id == UCLAMP_MAX) { 959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 960 return clamp_value; 961 } 962 963 return uclamp_none(UCLAMP_MIN); 964 } 965 966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 967 unsigned int clamp_value) 968 { 969 /* Reset max-clamp retention only on idle exit */ 970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 971 return; 972 973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 974 } 975 976 static inline 977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 978 unsigned int clamp_value) 979 { 980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 981 int bucket_id = UCLAMP_BUCKETS - 1; 982 983 /* 984 * Since both min and max clamps are max aggregated, find the 985 * top most bucket with tasks in. 986 */ 987 for ( ; bucket_id >= 0; bucket_id--) { 988 if (!bucket[bucket_id].tasks) 989 continue; 990 return bucket[bucket_id].value; 991 } 992 993 /* No tasks -- default clamp values */ 994 return uclamp_idle_value(rq, clamp_id, clamp_value); 995 } 996 997 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 998 { 999 unsigned int default_util_min; 1000 struct uclamp_se *uc_se; 1001 1002 lockdep_assert_held(&p->pi_lock); 1003 1004 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1005 1006 /* Only sync if user didn't override the default */ 1007 if (uc_se->user_defined) 1008 return; 1009 1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1011 uclamp_se_set(uc_se, default_util_min, false); 1012 } 1013 1014 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1015 { 1016 struct rq_flags rf; 1017 struct rq *rq; 1018 1019 if (!rt_task(p)) 1020 return; 1021 1022 /* Protect updates to p->uclamp_* */ 1023 rq = task_rq_lock(p, &rf); 1024 __uclamp_update_util_min_rt_default(p); 1025 task_rq_unlock(rq, p, &rf); 1026 } 1027 1028 static void uclamp_sync_util_min_rt_default(void) 1029 { 1030 struct task_struct *g, *p; 1031 1032 /* 1033 * copy_process() sysctl_uclamp 1034 * uclamp_min_rt = X; 1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1036 * // link thread smp_mb__after_spinlock() 1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1038 * sched_post_fork() for_each_process_thread() 1039 * __uclamp_sync_rt() __uclamp_sync_rt() 1040 * 1041 * Ensures that either sched_post_fork() will observe the new 1042 * uclamp_min_rt or for_each_process_thread() will observe the new 1043 * task. 1044 */ 1045 read_lock(&tasklist_lock); 1046 smp_mb__after_spinlock(); 1047 read_unlock(&tasklist_lock); 1048 1049 rcu_read_lock(); 1050 for_each_process_thread(g, p) 1051 uclamp_update_util_min_rt_default(p); 1052 rcu_read_unlock(); 1053 } 1054 1055 static inline struct uclamp_se 1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1057 { 1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1059 #ifdef CONFIG_UCLAMP_TASK_GROUP 1060 struct uclamp_se uc_max; 1061 1062 /* 1063 * Tasks in autogroups or root task group will be 1064 * restricted by system defaults. 1065 */ 1066 if (task_group_is_autogroup(task_group(p))) 1067 return uc_req; 1068 if (task_group(p) == &root_task_group) 1069 return uc_req; 1070 1071 uc_max = task_group(p)->uclamp[clamp_id]; 1072 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1073 return uc_max; 1074 #endif 1075 1076 return uc_req; 1077 } 1078 1079 /* 1080 * The effective clamp bucket index of a task depends on, by increasing 1081 * priority: 1082 * - the task specific clamp value, when explicitly requested from userspace 1083 * - the task group effective clamp value, for tasks not either in the root 1084 * group or in an autogroup 1085 * - the system default clamp value, defined by the sysadmin 1086 */ 1087 static inline struct uclamp_se 1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1089 { 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1091 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1092 1093 /* System default restrictions always apply */ 1094 if (unlikely(uc_req.value > uc_max.value)) 1095 return uc_max; 1096 1097 return uc_req; 1098 } 1099 1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1101 { 1102 struct uclamp_se uc_eff; 1103 1104 /* Task currently refcounted: use back-annotated (effective) value */ 1105 if (p->uclamp[clamp_id].active) 1106 return (unsigned long)p->uclamp[clamp_id].value; 1107 1108 uc_eff = uclamp_eff_get(p, clamp_id); 1109 1110 return (unsigned long)uc_eff.value; 1111 } 1112 1113 /* 1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1116 * updates the rq's clamp value if required. 1117 * 1118 * Tasks can have a task-specific value requested from user-space, track 1119 * within each bucket the maximum value for tasks refcounted in it. 1120 * This "local max aggregation" allows to track the exact "requested" value 1121 * for each bucket when all its RUNNABLE tasks require the same clamp. 1122 */ 1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1124 enum uclamp_id clamp_id) 1125 { 1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1128 struct uclamp_bucket *bucket; 1129 1130 lockdep_assert_held(&rq->lock); 1131 1132 /* Update task effective clamp */ 1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1134 1135 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1136 bucket->tasks++; 1137 uc_se->active = true; 1138 1139 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1140 1141 /* 1142 * Local max aggregation: rq buckets always track the max 1143 * "requested" clamp value of its RUNNABLE tasks. 1144 */ 1145 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1146 bucket->value = uc_se->value; 1147 1148 if (uc_se->value > READ_ONCE(uc_rq->value)) 1149 WRITE_ONCE(uc_rq->value, uc_se->value); 1150 } 1151 1152 /* 1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1154 * is released. If this is the last task reference counting the rq's max 1155 * active clamp value, then the rq's clamp value is updated. 1156 * 1157 * Both refcounted tasks and rq's cached clamp values are expected to be 1158 * always valid. If it's detected they are not, as defensive programming, 1159 * enforce the expected state and warn. 1160 */ 1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1162 enum uclamp_id clamp_id) 1163 { 1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1166 struct uclamp_bucket *bucket; 1167 unsigned int bkt_clamp; 1168 unsigned int rq_clamp; 1169 1170 lockdep_assert_held(&rq->lock); 1171 1172 /* 1173 * If sched_uclamp_used was enabled after task @p was enqueued, 1174 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1175 * 1176 * In this case the uc_se->active flag should be false since no uclamp 1177 * accounting was performed at enqueue time and we can just return 1178 * here. 1179 * 1180 * Need to be careful of the following enqueue/dequeue ordering 1181 * problem too 1182 * 1183 * enqueue(taskA) 1184 * // sched_uclamp_used gets enabled 1185 * enqueue(taskB) 1186 * dequeue(taskA) 1187 * // Must not decrement bucket->tasks here 1188 * dequeue(taskB) 1189 * 1190 * where we could end up with stale data in uc_se and 1191 * bucket[uc_se->bucket_id]. 1192 * 1193 * The following check here eliminates the possibility of such race. 1194 */ 1195 if (unlikely(!uc_se->active)) 1196 return; 1197 1198 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1199 1200 SCHED_WARN_ON(!bucket->tasks); 1201 if (likely(bucket->tasks)) 1202 bucket->tasks--; 1203 1204 uc_se->active = false; 1205 1206 /* 1207 * Keep "local max aggregation" simple and accept to (possibly) 1208 * overboost some RUNNABLE tasks in the same bucket. 1209 * The rq clamp bucket value is reset to its base value whenever 1210 * there are no more RUNNABLE tasks refcounting it. 1211 */ 1212 if (likely(bucket->tasks)) 1213 return; 1214 1215 rq_clamp = READ_ONCE(uc_rq->value); 1216 /* 1217 * Defensive programming: this should never happen. If it happens, 1218 * e.g. due to future modification, warn and fixup the expected value. 1219 */ 1220 SCHED_WARN_ON(bucket->value > rq_clamp); 1221 if (bucket->value >= rq_clamp) { 1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1223 WRITE_ONCE(uc_rq->value, bkt_clamp); 1224 } 1225 } 1226 1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1228 { 1229 enum uclamp_id clamp_id; 1230 1231 /* 1232 * Avoid any overhead until uclamp is actually used by the userspace. 1233 * 1234 * The condition is constructed such that a NOP is generated when 1235 * sched_uclamp_used is disabled. 1236 */ 1237 if (!static_branch_unlikely(&sched_uclamp_used)) 1238 return; 1239 1240 if (unlikely(!p->sched_class->uclamp_enabled)) 1241 return; 1242 1243 for_each_clamp_id(clamp_id) 1244 uclamp_rq_inc_id(rq, p, clamp_id); 1245 1246 /* Reset clamp idle holding when there is one RUNNABLE task */ 1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1249 } 1250 1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1252 { 1253 enum uclamp_id clamp_id; 1254 1255 /* 1256 * Avoid any overhead until uclamp is actually used by the userspace. 1257 * 1258 * The condition is constructed such that a NOP is generated when 1259 * sched_uclamp_used is disabled. 1260 */ 1261 if (!static_branch_unlikely(&sched_uclamp_used)) 1262 return; 1263 1264 if (unlikely(!p->sched_class->uclamp_enabled)) 1265 return; 1266 1267 for_each_clamp_id(clamp_id) 1268 uclamp_rq_dec_id(rq, p, clamp_id); 1269 } 1270 1271 static inline void 1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1273 { 1274 struct rq_flags rf; 1275 struct rq *rq; 1276 1277 /* 1278 * Lock the task and the rq where the task is (or was) queued. 1279 * 1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1281 * price to pay to safely serialize util_{min,max} updates with 1282 * enqueues, dequeues and migration operations. 1283 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1284 */ 1285 rq = task_rq_lock(p, &rf); 1286 1287 /* 1288 * Setting the clamp bucket is serialized by task_rq_lock(). 1289 * If the task is not yet RUNNABLE and its task_struct is not 1290 * affecting a valid clamp bucket, the next time it's enqueued, 1291 * it will already see the updated clamp bucket value. 1292 */ 1293 if (p->uclamp[clamp_id].active) { 1294 uclamp_rq_dec_id(rq, p, clamp_id); 1295 uclamp_rq_inc_id(rq, p, clamp_id); 1296 } 1297 1298 task_rq_unlock(rq, p, &rf); 1299 } 1300 1301 #ifdef CONFIG_UCLAMP_TASK_GROUP 1302 static inline void 1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1304 unsigned int clamps) 1305 { 1306 enum uclamp_id clamp_id; 1307 struct css_task_iter it; 1308 struct task_struct *p; 1309 1310 css_task_iter_start(css, 0, &it); 1311 while ((p = css_task_iter_next(&it))) { 1312 for_each_clamp_id(clamp_id) { 1313 if ((0x1 << clamp_id) & clamps) 1314 uclamp_update_active(p, clamp_id); 1315 } 1316 } 1317 css_task_iter_end(&it); 1318 } 1319 1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1321 static void uclamp_update_root_tg(void) 1322 { 1323 struct task_group *tg = &root_task_group; 1324 1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1326 sysctl_sched_uclamp_util_min, false); 1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1328 sysctl_sched_uclamp_util_max, false); 1329 1330 rcu_read_lock(); 1331 cpu_util_update_eff(&root_task_group.css); 1332 rcu_read_unlock(); 1333 } 1334 #else 1335 static void uclamp_update_root_tg(void) { } 1336 #endif 1337 1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1339 void *buffer, size_t *lenp, loff_t *ppos) 1340 { 1341 bool update_root_tg = false; 1342 int old_min, old_max, old_min_rt; 1343 int result; 1344 1345 mutex_lock(&uclamp_mutex); 1346 old_min = sysctl_sched_uclamp_util_min; 1347 old_max = sysctl_sched_uclamp_util_max; 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1349 1350 result = proc_dointvec(table, write, buffer, lenp, ppos); 1351 if (result) 1352 goto undo; 1353 if (!write) 1354 goto done; 1355 1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1359 1360 result = -EINVAL; 1361 goto undo; 1362 } 1363 1364 if (old_min != sysctl_sched_uclamp_util_min) { 1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1366 sysctl_sched_uclamp_util_min, false); 1367 update_root_tg = true; 1368 } 1369 if (old_max != sysctl_sched_uclamp_util_max) { 1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1371 sysctl_sched_uclamp_util_max, false); 1372 update_root_tg = true; 1373 } 1374 1375 if (update_root_tg) { 1376 static_branch_enable(&sched_uclamp_used); 1377 uclamp_update_root_tg(); 1378 } 1379 1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1381 static_branch_enable(&sched_uclamp_used); 1382 uclamp_sync_util_min_rt_default(); 1383 } 1384 1385 /* 1386 * We update all RUNNABLE tasks only when task groups are in use. 1387 * Otherwise, keep it simple and do just a lazy update at each next 1388 * task enqueue time. 1389 */ 1390 1391 goto done; 1392 1393 undo: 1394 sysctl_sched_uclamp_util_min = old_min; 1395 sysctl_sched_uclamp_util_max = old_max; 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1397 done: 1398 mutex_unlock(&uclamp_mutex); 1399 1400 return result; 1401 } 1402 1403 static int uclamp_validate(struct task_struct *p, 1404 const struct sched_attr *attr) 1405 { 1406 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1407 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1408 1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1410 util_min = attr->sched_util_min; 1411 1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1413 return -EINVAL; 1414 } 1415 1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1417 util_max = attr->sched_util_max; 1418 1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1420 return -EINVAL; 1421 } 1422 1423 if (util_min != -1 && util_max != -1 && util_min > util_max) 1424 return -EINVAL; 1425 1426 /* 1427 * We have valid uclamp attributes; make sure uclamp is enabled. 1428 * 1429 * We need to do that here, because enabling static branches is a 1430 * blocking operation which obviously cannot be done while holding 1431 * scheduler locks. 1432 */ 1433 static_branch_enable(&sched_uclamp_used); 1434 1435 return 0; 1436 } 1437 1438 static bool uclamp_reset(const struct sched_attr *attr, 1439 enum uclamp_id clamp_id, 1440 struct uclamp_se *uc_se) 1441 { 1442 /* Reset on sched class change for a non user-defined clamp value. */ 1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1444 !uc_se->user_defined) 1445 return true; 1446 1447 /* Reset on sched_util_{min,max} == -1. */ 1448 if (clamp_id == UCLAMP_MIN && 1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1450 attr->sched_util_min == -1) { 1451 return true; 1452 } 1453 1454 if (clamp_id == UCLAMP_MAX && 1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1456 attr->sched_util_max == -1) { 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 static void __setscheduler_uclamp(struct task_struct *p, 1464 const struct sched_attr *attr) 1465 { 1466 enum uclamp_id clamp_id; 1467 1468 for_each_clamp_id(clamp_id) { 1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1470 unsigned int value; 1471 1472 if (!uclamp_reset(attr, clamp_id, uc_se)) 1473 continue; 1474 1475 /* 1476 * RT by default have a 100% boost value that could be modified 1477 * at runtime. 1478 */ 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1480 value = sysctl_sched_uclamp_util_min_rt_default; 1481 else 1482 value = uclamp_none(clamp_id); 1483 1484 uclamp_se_set(uc_se, value, false); 1485 1486 } 1487 1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1489 return; 1490 1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1492 attr->sched_util_min != -1) { 1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1494 attr->sched_util_min, true); 1495 } 1496 1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1498 attr->sched_util_max != -1) { 1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1500 attr->sched_util_max, true); 1501 } 1502 } 1503 1504 static void uclamp_fork(struct task_struct *p) 1505 { 1506 enum uclamp_id clamp_id; 1507 1508 /* 1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1510 * as the task is still at its early fork stages. 1511 */ 1512 for_each_clamp_id(clamp_id) 1513 p->uclamp[clamp_id].active = false; 1514 1515 if (likely(!p->sched_reset_on_fork)) 1516 return; 1517 1518 for_each_clamp_id(clamp_id) { 1519 uclamp_se_set(&p->uclamp_req[clamp_id], 1520 uclamp_none(clamp_id), false); 1521 } 1522 } 1523 1524 static void uclamp_post_fork(struct task_struct *p) 1525 { 1526 uclamp_update_util_min_rt_default(p); 1527 } 1528 1529 static void __init init_uclamp_rq(struct rq *rq) 1530 { 1531 enum uclamp_id clamp_id; 1532 struct uclamp_rq *uc_rq = rq->uclamp; 1533 1534 for_each_clamp_id(clamp_id) { 1535 uc_rq[clamp_id] = (struct uclamp_rq) { 1536 .value = uclamp_none(clamp_id) 1537 }; 1538 } 1539 1540 rq->uclamp_flags = 0; 1541 } 1542 1543 static void __init init_uclamp(void) 1544 { 1545 struct uclamp_se uc_max = {}; 1546 enum uclamp_id clamp_id; 1547 int cpu; 1548 1549 for_each_possible_cpu(cpu) 1550 init_uclamp_rq(cpu_rq(cpu)); 1551 1552 for_each_clamp_id(clamp_id) { 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1554 uclamp_none(clamp_id), false); 1555 } 1556 1557 /* System defaults allow max clamp values for both indexes */ 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1559 for_each_clamp_id(clamp_id) { 1560 uclamp_default[clamp_id] = uc_max; 1561 #ifdef CONFIG_UCLAMP_TASK_GROUP 1562 root_task_group.uclamp_req[clamp_id] = uc_max; 1563 root_task_group.uclamp[clamp_id] = uc_max; 1564 #endif 1565 } 1566 } 1567 1568 #else /* CONFIG_UCLAMP_TASK */ 1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1571 static inline int uclamp_validate(struct task_struct *p, 1572 const struct sched_attr *attr) 1573 { 1574 return -EOPNOTSUPP; 1575 } 1576 static void __setscheduler_uclamp(struct task_struct *p, 1577 const struct sched_attr *attr) { } 1578 static inline void uclamp_fork(struct task_struct *p) { } 1579 static inline void uclamp_post_fork(struct task_struct *p) { } 1580 static inline void init_uclamp(void) { } 1581 #endif /* CONFIG_UCLAMP_TASK */ 1582 1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1584 { 1585 if (!(flags & ENQUEUE_NOCLOCK)) 1586 update_rq_clock(rq); 1587 1588 if (!(flags & ENQUEUE_RESTORE)) { 1589 sched_info_queued(rq, p); 1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1591 } 1592 1593 uclamp_rq_inc(rq, p); 1594 p->sched_class->enqueue_task(rq, p, flags); 1595 } 1596 1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1598 { 1599 if (!(flags & DEQUEUE_NOCLOCK)) 1600 update_rq_clock(rq); 1601 1602 if (!(flags & DEQUEUE_SAVE)) { 1603 sched_info_dequeued(rq, p); 1604 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1605 } 1606 1607 uclamp_rq_dec(rq, p); 1608 p->sched_class->dequeue_task(rq, p, flags); 1609 } 1610 1611 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1612 { 1613 enqueue_task(rq, p, flags); 1614 1615 p->on_rq = TASK_ON_RQ_QUEUED; 1616 } 1617 1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1619 { 1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1621 1622 dequeue_task(rq, p, flags); 1623 } 1624 1625 /* 1626 * __normal_prio - return the priority that is based on the static prio 1627 */ 1628 static inline int __normal_prio(struct task_struct *p) 1629 { 1630 return p->static_prio; 1631 } 1632 1633 /* 1634 * Calculate the expected normal priority: i.e. priority 1635 * without taking RT-inheritance into account. Might be 1636 * boosted by interactivity modifiers. Changes upon fork, 1637 * setprio syscalls, and whenever the interactivity 1638 * estimator recalculates. 1639 */ 1640 static inline int normal_prio(struct task_struct *p) 1641 { 1642 int prio; 1643 1644 if (task_has_dl_policy(p)) 1645 prio = MAX_DL_PRIO-1; 1646 else if (task_has_rt_policy(p)) 1647 prio = MAX_RT_PRIO-1 - p->rt_priority; 1648 else 1649 prio = __normal_prio(p); 1650 return prio; 1651 } 1652 1653 /* 1654 * Calculate the current priority, i.e. the priority 1655 * taken into account by the scheduler. This value might 1656 * be boosted by RT tasks, or might be boosted by 1657 * interactivity modifiers. Will be RT if the task got 1658 * RT-boosted. If not then it returns p->normal_prio. 1659 */ 1660 static int effective_prio(struct task_struct *p) 1661 { 1662 p->normal_prio = normal_prio(p); 1663 /* 1664 * If we are RT tasks or we were boosted to RT priority, 1665 * keep the priority unchanged. Otherwise, update priority 1666 * to the normal priority: 1667 */ 1668 if (!rt_prio(p->prio)) 1669 return p->normal_prio; 1670 return p->prio; 1671 } 1672 1673 /** 1674 * task_curr - is this task currently executing on a CPU? 1675 * @p: the task in question. 1676 * 1677 * Return: 1 if the task is currently executing. 0 otherwise. 1678 */ 1679 inline int task_curr(const struct task_struct *p) 1680 { 1681 return cpu_curr(task_cpu(p)) == p; 1682 } 1683 1684 /* 1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1686 * use the balance_callback list if you want balancing. 1687 * 1688 * this means any call to check_class_changed() must be followed by a call to 1689 * balance_callback(). 1690 */ 1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1692 const struct sched_class *prev_class, 1693 int oldprio) 1694 { 1695 if (prev_class != p->sched_class) { 1696 if (prev_class->switched_from) 1697 prev_class->switched_from(rq, p); 1698 1699 p->sched_class->switched_to(rq, p); 1700 } else if (oldprio != p->prio || dl_task(p)) 1701 p->sched_class->prio_changed(rq, p, oldprio); 1702 } 1703 1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1705 { 1706 if (p->sched_class == rq->curr->sched_class) 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1708 else if (p->sched_class > rq->curr->sched_class) 1709 resched_curr(rq); 1710 1711 /* 1712 * A queue event has occurred, and we're going to schedule. In 1713 * this case, we can save a useless back to back clock update. 1714 */ 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1716 rq_clock_skip_update(rq); 1717 } 1718 1719 #ifdef CONFIG_SMP 1720 1721 static void 1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1723 1724 static int __set_cpus_allowed_ptr(struct task_struct *p, 1725 const struct cpumask *new_mask, 1726 u32 flags); 1727 1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1729 { 1730 if (likely(!p->migration_disabled)) 1731 return; 1732 1733 if (p->cpus_ptr != &p->cpus_mask) 1734 return; 1735 1736 /* 1737 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1738 */ 1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1740 } 1741 1742 void migrate_disable(void) 1743 { 1744 struct task_struct *p = current; 1745 1746 if (p->migration_disabled) { 1747 p->migration_disabled++; 1748 return; 1749 } 1750 1751 preempt_disable(); 1752 this_rq()->nr_pinned++; 1753 p->migration_disabled = 1; 1754 preempt_enable(); 1755 } 1756 EXPORT_SYMBOL_GPL(migrate_disable); 1757 1758 void migrate_enable(void) 1759 { 1760 struct task_struct *p = current; 1761 1762 if (p->migration_disabled > 1) { 1763 p->migration_disabled--; 1764 return; 1765 } 1766 1767 /* 1768 * Ensure stop_task runs either before or after this, and that 1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1770 */ 1771 preempt_disable(); 1772 if (p->cpus_ptr != &p->cpus_mask) 1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1774 /* 1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1776 * regular cpus_mask, otherwise things that race (eg. 1777 * select_fallback_rq) get confused. 1778 */ 1779 barrier(); 1780 p->migration_disabled = 0; 1781 this_rq()->nr_pinned--; 1782 preempt_enable(); 1783 } 1784 EXPORT_SYMBOL_GPL(migrate_enable); 1785 1786 static inline bool rq_has_pinned_tasks(struct rq *rq) 1787 { 1788 return rq->nr_pinned; 1789 } 1790 1791 /* 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1793 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1794 */ 1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1796 { 1797 /* When not in the task's cpumask, no point in looking further. */ 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1799 return false; 1800 1801 /* migrate_disabled() must be allowed to finish. */ 1802 if (is_migration_disabled(p)) 1803 return cpu_online(cpu); 1804 1805 /* Non kernel threads are not allowed during either online or offline. */ 1806 if (!(p->flags & PF_KTHREAD)) 1807 return cpu_active(cpu); 1808 1809 /* KTHREAD_IS_PER_CPU is always allowed. */ 1810 if (kthread_is_per_cpu(p)) 1811 return cpu_online(cpu); 1812 1813 /* Regular kernel threads don't get to stay during offline. */ 1814 if (cpu_rq(cpu)->balance_push) 1815 return false; 1816 1817 /* But are allowed during online. */ 1818 return cpu_online(cpu); 1819 } 1820 1821 /* 1822 * This is how migration works: 1823 * 1824 * 1) we invoke migration_cpu_stop() on the target CPU using 1825 * stop_one_cpu(). 1826 * 2) stopper starts to run (implicitly forcing the migrated thread 1827 * off the CPU) 1828 * 3) it checks whether the migrated task is still in the wrong runqueue. 1829 * 4) if it's in the wrong runqueue then the migration thread removes 1830 * it and puts it into the right queue. 1831 * 5) stopper completes and stop_one_cpu() returns and the migration 1832 * is done. 1833 */ 1834 1835 /* 1836 * move_queued_task - move a queued task to new rq. 1837 * 1838 * Returns (locked) new rq. Old rq's lock is released. 1839 */ 1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1841 struct task_struct *p, int new_cpu) 1842 { 1843 lockdep_assert_held(&rq->lock); 1844 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1846 set_task_cpu(p, new_cpu); 1847 rq_unlock(rq, rf); 1848 1849 rq = cpu_rq(new_cpu); 1850 1851 rq_lock(rq, rf); 1852 BUG_ON(task_cpu(p) != new_cpu); 1853 activate_task(rq, p, 0); 1854 check_preempt_curr(rq, p, 0); 1855 1856 return rq; 1857 } 1858 1859 struct migration_arg { 1860 struct task_struct *task; 1861 int dest_cpu; 1862 struct set_affinity_pending *pending; 1863 }; 1864 1865 struct set_affinity_pending { 1866 refcount_t refs; 1867 unsigned int stop_pending; 1868 struct completion done; 1869 struct cpu_stop_work stop_work; 1870 struct migration_arg arg; 1871 }; 1872 1873 /* 1874 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1875 * this because either it can't run here any more (set_cpus_allowed() 1876 * away from this CPU, or CPU going down), or because we're 1877 * attempting to rebalance this task on exec (sched_exec). 1878 * 1879 * So we race with normal scheduler movements, but that's OK, as long 1880 * as the task is no longer on this CPU. 1881 */ 1882 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1883 struct task_struct *p, int dest_cpu) 1884 { 1885 /* Affinity changed (again). */ 1886 if (!is_cpu_allowed(p, dest_cpu)) 1887 return rq; 1888 1889 update_rq_clock(rq); 1890 rq = move_queued_task(rq, rf, p, dest_cpu); 1891 1892 return rq; 1893 } 1894 1895 /* 1896 * migration_cpu_stop - this will be executed by a highprio stopper thread 1897 * and performs thread migration by bumping thread off CPU then 1898 * 'pushing' onto another runqueue. 1899 */ 1900 static int migration_cpu_stop(void *data) 1901 { 1902 struct migration_arg *arg = data; 1903 struct set_affinity_pending *pending = arg->pending; 1904 struct task_struct *p = arg->task; 1905 int dest_cpu = arg->dest_cpu; 1906 struct rq *rq = this_rq(); 1907 bool complete = false; 1908 struct rq_flags rf; 1909 1910 /* 1911 * The original target CPU might have gone down and we might 1912 * be on another CPU but it doesn't matter. 1913 */ 1914 local_irq_save(rf.flags); 1915 /* 1916 * We need to explicitly wake pending tasks before running 1917 * __migrate_task() such that we will not miss enforcing cpus_ptr 1918 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1919 */ 1920 flush_smp_call_function_from_idle(); 1921 1922 raw_spin_lock(&p->pi_lock); 1923 rq_lock(rq, &rf); 1924 1925 /* 1926 * If task_rq(p) != rq, it cannot be migrated here, because we're 1927 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1928 * we're holding p->pi_lock. 1929 */ 1930 if (task_rq(p) == rq) { 1931 if (is_migration_disabled(p)) 1932 goto out; 1933 1934 if (pending) { 1935 if (p->migration_pending == pending) 1936 p->migration_pending = NULL; 1937 complete = true; 1938 } 1939 1940 if (dest_cpu < 0) { 1941 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 1942 goto out; 1943 1944 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1945 } 1946 1947 if (task_on_rq_queued(p)) 1948 rq = __migrate_task(rq, &rf, p, dest_cpu); 1949 else 1950 p->wake_cpu = dest_cpu; 1951 1952 /* 1953 * XXX __migrate_task() can fail, at which point we might end 1954 * up running on a dodgy CPU, AFAICT this can only happen 1955 * during CPU hotplug, at which point we'll get pushed out 1956 * anyway, so it's probably not a big deal. 1957 */ 1958 1959 } else if (pending) { 1960 /* 1961 * This happens when we get migrated between migrate_enable()'s 1962 * preempt_enable() and scheduling the stopper task. At that 1963 * point we're a regular task again and not current anymore. 1964 * 1965 * A !PREEMPT kernel has a giant hole here, which makes it far 1966 * more likely. 1967 */ 1968 1969 /* 1970 * The task moved before the stopper got to run. We're holding 1971 * ->pi_lock, so the allowed mask is stable - if it got 1972 * somewhere allowed, we're done. 1973 */ 1974 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1975 if (p->migration_pending == pending) 1976 p->migration_pending = NULL; 1977 complete = true; 1978 goto out; 1979 } 1980 1981 /* 1982 * When migrate_enable() hits a rq mis-match we can't reliably 1983 * determine is_migration_disabled() and so have to chase after 1984 * it. 1985 */ 1986 WARN_ON_ONCE(!pending->stop_pending); 1987 task_rq_unlock(rq, p, &rf); 1988 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 1989 &pending->arg, &pending->stop_work); 1990 return 0; 1991 } 1992 out: 1993 if (pending) 1994 pending->stop_pending = false; 1995 task_rq_unlock(rq, p, &rf); 1996 1997 if (complete) 1998 complete_all(&pending->done); 1999 2000 /* For pending->{arg,stop_work} */ 2001 if (pending && refcount_dec_and_test(&pending->refs)) 2002 wake_up_var(&pending->refs); 2003 2004 return 0; 2005 } 2006 2007 int push_cpu_stop(void *arg) 2008 { 2009 struct rq *lowest_rq = NULL, *rq = this_rq(); 2010 struct task_struct *p = arg; 2011 2012 raw_spin_lock_irq(&p->pi_lock); 2013 raw_spin_lock(&rq->lock); 2014 2015 if (task_rq(p) != rq) 2016 goto out_unlock; 2017 2018 if (is_migration_disabled(p)) { 2019 p->migration_flags |= MDF_PUSH; 2020 goto out_unlock; 2021 } 2022 2023 p->migration_flags &= ~MDF_PUSH; 2024 2025 if (p->sched_class->find_lock_rq) 2026 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2027 2028 if (!lowest_rq) 2029 goto out_unlock; 2030 2031 // XXX validate p is still the highest prio task 2032 if (task_rq(p) == rq) { 2033 deactivate_task(rq, p, 0); 2034 set_task_cpu(p, lowest_rq->cpu); 2035 activate_task(lowest_rq, p, 0); 2036 resched_curr(lowest_rq); 2037 } 2038 2039 double_unlock_balance(rq, lowest_rq); 2040 2041 out_unlock: 2042 rq->push_busy = false; 2043 raw_spin_unlock(&rq->lock); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 put_task_struct(p); 2047 return 0; 2048 } 2049 2050 /* 2051 * sched_class::set_cpus_allowed must do the below, but is not required to 2052 * actually call this function. 2053 */ 2054 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2055 { 2056 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2057 p->cpus_ptr = new_mask; 2058 return; 2059 } 2060 2061 cpumask_copy(&p->cpus_mask, new_mask); 2062 p->nr_cpus_allowed = cpumask_weight(new_mask); 2063 } 2064 2065 static void 2066 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2067 { 2068 struct rq *rq = task_rq(p); 2069 bool queued, running; 2070 2071 /* 2072 * This here violates the locking rules for affinity, since we're only 2073 * supposed to change these variables while holding both rq->lock and 2074 * p->pi_lock. 2075 * 2076 * HOWEVER, it magically works, because ttwu() is the only code that 2077 * accesses these variables under p->pi_lock and only does so after 2078 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2079 * before finish_task(). 2080 * 2081 * XXX do further audits, this smells like something putrid. 2082 */ 2083 if (flags & SCA_MIGRATE_DISABLE) 2084 SCHED_WARN_ON(!p->on_cpu); 2085 else 2086 lockdep_assert_held(&p->pi_lock); 2087 2088 queued = task_on_rq_queued(p); 2089 running = task_current(rq, p); 2090 2091 if (queued) { 2092 /* 2093 * Because __kthread_bind() calls this on blocked tasks without 2094 * holding rq->lock. 2095 */ 2096 lockdep_assert_held(&rq->lock); 2097 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2098 } 2099 if (running) 2100 put_prev_task(rq, p); 2101 2102 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2103 2104 if (queued) 2105 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2106 if (running) 2107 set_next_task(rq, p); 2108 } 2109 2110 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2111 { 2112 __do_set_cpus_allowed(p, new_mask, 0); 2113 } 2114 2115 /* 2116 * This function is wildly self concurrent; here be dragons. 2117 * 2118 * 2119 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2120 * designated task is enqueued on an allowed CPU. If that task is currently 2121 * running, we have to kick it out using the CPU stopper. 2122 * 2123 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2124 * Consider: 2125 * 2126 * Initial conditions: P0->cpus_mask = [0, 1] 2127 * 2128 * P0@CPU0 P1 2129 * 2130 * migrate_disable(); 2131 * <preempted> 2132 * set_cpus_allowed_ptr(P0, [1]); 2133 * 2134 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2135 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2136 * This means we need the following scheme: 2137 * 2138 * P0@CPU0 P1 2139 * 2140 * migrate_disable(); 2141 * <preempted> 2142 * set_cpus_allowed_ptr(P0, [1]); 2143 * <blocks> 2144 * <resumes> 2145 * migrate_enable(); 2146 * __set_cpus_allowed_ptr(); 2147 * <wakes local stopper> 2148 * `--> <woken on migration completion> 2149 * 2150 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2151 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2152 * task p are serialized by p->pi_lock, which we can leverage: the one that 2153 * should come into effect at the end of the Migrate-Disable region is the last 2154 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2155 * but we still need to properly signal those waiting tasks at the appropriate 2156 * moment. 2157 * 2158 * This is implemented using struct set_affinity_pending. The first 2159 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2160 * setup an instance of that struct and install it on the targeted task_struct. 2161 * Any and all further callers will reuse that instance. Those then wait for 2162 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2163 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2164 * 2165 * 2166 * (1) In the cases covered above. There is one more where the completion is 2167 * signaled within affine_move_task() itself: when a subsequent affinity request 2168 * cancels the need for an active migration. Consider: 2169 * 2170 * Initial conditions: P0->cpus_mask = [0, 1] 2171 * 2172 * P0@CPU0 P1 P2 2173 * 2174 * migrate_disable(); 2175 * <preempted> 2176 * set_cpus_allowed_ptr(P0, [1]); 2177 * <blocks> 2178 * set_cpus_allowed_ptr(P0, [0, 1]); 2179 * <signal completion> 2180 * <awakes> 2181 * 2182 * Note that the above is safe vs a concurrent migrate_enable(), as any 2183 * pending affinity completion is preceded by an uninstallation of 2184 * p->migration_pending done with p->pi_lock held. 2185 */ 2186 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2187 int dest_cpu, unsigned int flags) 2188 { 2189 struct set_affinity_pending my_pending = { }, *pending = NULL; 2190 bool stop_pending, complete = false; 2191 2192 /* Can the task run on the task's current CPU? If so, we're done */ 2193 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2194 struct task_struct *push_task = NULL; 2195 2196 if ((flags & SCA_MIGRATE_ENABLE) && 2197 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2198 rq->push_busy = true; 2199 push_task = get_task_struct(p); 2200 } 2201 2202 pending = p->migration_pending; 2203 if (pending) { 2204 refcount_inc(&pending->refs); 2205 p->migration_pending = NULL; 2206 complete = true; 2207 } 2208 task_rq_unlock(rq, p, rf); 2209 2210 if (push_task) { 2211 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2212 p, &rq->push_work); 2213 } 2214 2215 if (complete) 2216 goto do_complete; 2217 2218 return 0; 2219 } 2220 2221 if (!(flags & SCA_MIGRATE_ENABLE)) { 2222 /* serialized by p->pi_lock */ 2223 if (!p->migration_pending) { 2224 /* Install the request */ 2225 refcount_set(&my_pending.refs, 1); 2226 init_completion(&my_pending.done); 2227 my_pending.arg = (struct migration_arg) { 2228 .task = p, 2229 .dest_cpu = -1, /* any */ 2230 .pending = &my_pending, 2231 }; 2232 2233 p->migration_pending = &my_pending; 2234 } else { 2235 pending = p->migration_pending; 2236 refcount_inc(&pending->refs); 2237 } 2238 } 2239 pending = p->migration_pending; 2240 /* 2241 * - !MIGRATE_ENABLE: 2242 * we'll have installed a pending if there wasn't one already. 2243 * 2244 * - MIGRATE_ENABLE: 2245 * we're here because the current CPU isn't matching anymore, 2246 * the only way that can happen is because of a concurrent 2247 * set_cpus_allowed_ptr() call, which should then still be 2248 * pending completion. 2249 * 2250 * Either way, we really should have a @pending here. 2251 */ 2252 if (WARN_ON_ONCE(!pending)) { 2253 task_rq_unlock(rq, p, rf); 2254 return -EINVAL; 2255 } 2256 2257 if (task_running(rq, p) || p->state == TASK_WAKING) { 2258 /* 2259 * MIGRATE_ENABLE gets here because 'p == current', but for 2260 * anything else we cannot do is_migration_disabled(), punt 2261 * and have the stopper function handle it all race-free. 2262 */ 2263 stop_pending = pending->stop_pending; 2264 if (!stop_pending) 2265 pending->stop_pending = true; 2266 2267 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */ 2268 if (flags & SCA_MIGRATE_ENABLE) 2269 p->migration_flags &= ~MDF_PUSH; 2270 task_rq_unlock(rq, p, rf); 2271 2272 if (!stop_pending) { 2273 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2274 &pending->arg, &pending->stop_work); 2275 } 2276 2277 if (flags & SCA_MIGRATE_ENABLE) 2278 return 0; 2279 } else { 2280 2281 if (!is_migration_disabled(p)) { 2282 if (task_on_rq_queued(p)) 2283 rq = move_queued_task(rq, rf, p, dest_cpu); 2284 2285 p->migration_pending = NULL; 2286 complete = true; 2287 } 2288 task_rq_unlock(rq, p, rf); 2289 2290 do_complete: 2291 if (complete) 2292 complete_all(&pending->done); 2293 } 2294 2295 wait_for_completion(&pending->done); 2296 2297 if (refcount_dec_and_test(&pending->refs)) 2298 wake_up_var(&pending->refs); 2299 2300 /* 2301 * Block the original owner of &pending until all subsequent callers 2302 * have seen the completion and decremented the refcount 2303 */ 2304 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2305 2306 return 0; 2307 } 2308 2309 /* 2310 * Change a given task's CPU affinity. Migrate the thread to a 2311 * proper CPU and schedule it away if the CPU it's executing on 2312 * is removed from the allowed bitmask. 2313 * 2314 * NOTE: the caller must have a valid reference to the task, the 2315 * task must not exit() & deallocate itself prematurely. The 2316 * call is not atomic; no spinlocks may be held. 2317 */ 2318 static int __set_cpus_allowed_ptr(struct task_struct *p, 2319 const struct cpumask *new_mask, 2320 u32 flags) 2321 { 2322 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2323 unsigned int dest_cpu; 2324 struct rq_flags rf; 2325 struct rq *rq; 2326 int ret = 0; 2327 2328 rq = task_rq_lock(p, &rf); 2329 update_rq_clock(rq); 2330 2331 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2332 /* 2333 * Kernel threads are allowed on online && !active CPUs, 2334 * however, during cpu-hot-unplug, even these might get pushed 2335 * away if not KTHREAD_IS_PER_CPU. 2336 * 2337 * Specifically, migration_disabled() tasks must not fail the 2338 * cpumask_any_and_distribute() pick below, esp. so on 2339 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2340 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2341 */ 2342 cpu_valid_mask = cpu_online_mask; 2343 } 2344 2345 /* 2346 * Must re-check here, to close a race against __kthread_bind(), 2347 * sched_setaffinity() is not guaranteed to observe the flag. 2348 */ 2349 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2350 ret = -EINVAL; 2351 goto out; 2352 } 2353 2354 if (!(flags & SCA_MIGRATE_ENABLE)) { 2355 if (cpumask_equal(&p->cpus_mask, new_mask)) 2356 goto out; 2357 2358 if (WARN_ON_ONCE(p == current && 2359 is_migration_disabled(p) && 2360 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2361 ret = -EBUSY; 2362 goto out; 2363 } 2364 } 2365 2366 /* 2367 * Picking a ~random cpu helps in cases where we are changing affinity 2368 * for groups of tasks (ie. cpuset), so that load balancing is not 2369 * immediately required to distribute the tasks within their new mask. 2370 */ 2371 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2372 if (dest_cpu >= nr_cpu_ids) { 2373 ret = -EINVAL; 2374 goto out; 2375 } 2376 2377 __do_set_cpus_allowed(p, new_mask, flags); 2378 2379 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2380 2381 out: 2382 task_rq_unlock(rq, p, &rf); 2383 2384 return ret; 2385 } 2386 2387 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2388 { 2389 return __set_cpus_allowed_ptr(p, new_mask, 0); 2390 } 2391 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2392 2393 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2394 { 2395 #ifdef CONFIG_SCHED_DEBUG 2396 /* 2397 * We should never call set_task_cpu() on a blocked task, 2398 * ttwu() will sort out the placement. 2399 */ 2400 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2401 !p->on_rq); 2402 2403 /* 2404 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2405 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2406 * time relying on p->on_rq. 2407 */ 2408 WARN_ON_ONCE(p->state == TASK_RUNNING && 2409 p->sched_class == &fair_sched_class && 2410 (p->on_rq && !task_on_rq_migrating(p))); 2411 2412 #ifdef CONFIG_LOCKDEP 2413 /* 2414 * The caller should hold either p->pi_lock or rq->lock, when changing 2415 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2416 * 2417 * sched_move_task() holds both and thus holding either pins the cgroup, 2418 * see task_group(). 2419 * 2420 * Furthermore, all task_rq users should acquire both locks, see 2421 * task_rq_lock(). 2422 */ 2423 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2424 lockdep_is_held(&task_rq(p)->lock))); 2425 #endif 2426 /* 2427 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2428 */ 2429 WARN_ON_ONCE(!cpu_online(new_cpu)); 2430 2431 WARN_ON_ONCE(is_migration_disabled(p)); 2432 #endif 2433 2434 trace_sched_migrate_task(p, new_cpu); 2435 2436 if (task_cpu(p) != new_cpu) { 2437 if (p->sched_class->migrate_task_rq) 2438 p->sched_class->migrate_task_rq(p, new_cpu); 2439 p->se.nr_migrations++; 2440 rseq_migrate(p); 2441 perf_event_task_migrate(p); 2442 } 2443 2444 __set_task_cpu(p, new_cpu); 2445 } 2446 2447 #ifdef CONFIG_NUMA_BALANCING 2448 static void __migrate_swap_task(struct task_struct *p, int cpu) 2449 { 2450 if (task_on_rq_queued(p)) { 2451 struct rq *src_rq, *dst_rq; 2452 struct rq_flags srf, drf; 2453 2454 src_rq = task_rq(p); 2455 dst_rq = cpu_rq(cpu); 2456 2457 rq_pin_lock(src_rq, &srf); 2458 rq_pin_lock(dst_rq, &drf); 2459 2460 deactivate_task(src_rq, p, 0); 2461 set_task_cpu(p, cpu); 2462 activate_task(dst_rq, p, 0); 2463 check_preempt_curr(dst_rq, p, 0); 2464 2465 rq_unpin_lock(dst_rq, &drf); 2466 rq_unpin_lock(src_rq, &srf); 2467 2468 } else { 2469 /* 2470 * Task isn't running anymore; make it appear like we migrated 2471 * it before it went to sleep. This means on wakeup we make the 2472 * previous CPU our target instead of where it really is. 2473 */ 2474 p->wake_cpu = cpu; 2475 } 2476 } 2477 2478 struct migration_swap_arg { 2479 struct task_struct *src_task, *dst_task; 2480 int src_cpu, dst_cpu; 2481 }; 2482 2483 static int migrate_swap_stop(void *data) 2484 { 2485 struct migration_swap_arg *arg = data; 2486 struct rq *src_rq, *dst_rq; 2487 int ret = -EAGAIN; 2488 2489 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2490 return -EAGAIN; 2491 2492 src_rq = cpu_rq(arg->src_cpu); 2493 dst_rq = cpu_rq(arg->dst_cpu); 2494 2495 double_raw_lock(&arg->src_task->pi_lock, 2496 &arg->dst_task->pi_lock); 2497 double_rq_lock(src_rq, dst_rq); 2498 2499 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2500 goto unlock; 2501 2502 if (task_cpu(arg->src_task) != arg->src_cpu) 2503 goto unlock; 2504 2505 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2506 goto unlock; 2507 2508 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2509 goto unlock; 2510 2511 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2512 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2513 2514 ret = 0; 2515 2516 unlock: 2517 double_rq_unlock(src_rq, dst_rq); 2518 raw_spin_unlock(&arg->dst_task->pi_lock); 2519 raw_spin_unlock(&arg->src_task->pi_lock); 2520 2521 return ret; 2522 } 2523 2524 /* 2525 * Cross migrate two tasks 2526 */ 2527 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2528 int target_cpu, int curr_cpu) 2529 { 2530 struct migration_swap_arg arg; 2531 int ret = -EINVAL; 2532 2533 arg = (struct migration_swap_arg){ 2534 .src_task = cur, 2535 .src_cpu = curr_cpu, 2536 .dst_task = p, 2537 .dst_cpu = target_cpu, 2538 }; 2539 2540 if (arg.src_cpu == arg.dst_cpu) 2541 goto out; 2542 2543 /* 2544 * These three tests are all lockless; this is OK since all of them 2545 * will be re-checked with proper locks held further down the line. 2546 */ 2547 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2548 goto out; 2549 2550 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2551 goto out; 2552 2553 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2554 goto out; 2555 2556 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2557 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2558 2559 out: 2560 return ret; 2561 } 2562 #endif /* CONFIG_NUMA_BALANCING */ 2563 2564 /* 2565 * wait_task_inactive - wait for a thread to unschedule. 2566 * 2567 * If @match_state is nonzero, it's the @p->state value just checked and 2568 * not expected to change. If it changes, i.e. @p might have woken up, 2569 * then return zero. When we succeed in waiting for @p to be off its CPU, 2570 * we return a positive number (its total switch count). If a second call 2571 * a short while later returns the same number, the caller can be sure that 2572 * @p has remained unscheduled the whole time. 2573 * 2574 * The caller must ensure that the task *will* unschedule sometime soon, 2575 * else this function might spin for a *long* time. This function can't 2576 * be called with interrupts off, or it may introduce deadlock with 2577 * smp_call_function() if an IPI is sent by the same process we are 2578 * waiting to become inactive. 2579 */ 2580 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2581 { 2582 int running, queued; 2583 struct rq_flags rf; 2584 unsigned long ncsw; 2585 struct rq *rq; 2586 2587 for (;;) { 2588 /* 2589 * We do the initial early heuristics without holding 2590 * any task-queue locks at all. We'll only try to get 2591 * the runqueue lock when things look like they will 2592 * work out! 2593 */ 2594 rq = task_rq(p); 2595 2596 /* 2597 * If the task is actively running on another CPU 2598 * still, just relax and busy-wait without holding 2599 * any locks. 2600 * 2601 * NOTE! Since we don't hold any locks, it's not 2602 * even sure that "rq" stays as the right runqueue! 2603 * But we don't care, since "task_running()" will 2604 * return false if the runqueue has changed and p 2605 * is actually now running somewhere else! 2606 */ 2607 while (task_running(rq, p)) { 2608 if (match_state && unlikely(p->state != match_state)) 2609 return 0; 2610 cpu_relax(); 2611 } 2612 2613 /* 2614 * Ok, time to look more closely! We need the rq 2615 * lock now, to be *sure*. If we're wrong, we'll 2616 * just go back and repeat. 2617 */ 2618 rq = task_rq_lock(p, &rf); 2619 trace_sched_wait_task(p); 2620 running = task_running(rq, p); 2621 queued = task_on_rq_queued(p); 2622 ncsw = 0; 2623 if (!match_state || p->state == match_state) 2624 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2625 task_rq_unlock(rq, p, &rf); 2626 2627 /* 2628 * If it changed from the expected state, bail out now. 2629 */ 2630 if (unlikely(!ncsw)) 2631 break; 2632 2633 /* 2634 * Was it really running after all now that we 2635 * checked with the proper locks actually held? 2636 * 2637 * Oops. Go back and try again.. 2638 */ 2639 if (unlikely(running)) { 2640 cpu_relax(); 2641 continue; 2642 } 2643 2644 /* 2645 * It's not enough that it's not actively running, 2646 * it must be off the runqueue _entirely_, and not 2647 * preempted! 2648 * 2649 * So if it was still runnable (but just not actively 2650 * running right now), it's preempted, and we should 2651 * yield - it could be a while. 2652 */ 2653 if (unlikely(queued)) { 2654 ktime_t to = NSEC_PER_SEC / HZ; 2655 2656 set_current_state(TASK_UNINTERRUPTIBLE); 2657 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2658 continue; 2659 } 2660 2661 /* 2662 * Ahh, all good. It wasn't running, and it wasn't 2663 * runnable, which means that it will never become 2664 * running in the future either. We're all done! 2665 */ 2666 break; 2667 } 2668 2669 return ncsw; 2670 } 2671 2672 /*** 2673 * kick_process - kick a running thread to enter/exit the kernel 2674 * @p: the to-be-kicked thread 2675 * 2676 * Cause a process which is running on another CPU to enter 2677 * kernel-mode, without any delay. (to get signals handled.) 2678 * 2679 * NOTE: this function doesn't have to take the runqueue lock, 2680 * because all it wants to ensure is that the remote task enters 2681 * the kernel. If the IPI races and the task has been migrated 2682 * to another CPU then no harm is done and the purpose has been 2683 * achieved as well. 2684 */ 2685 void kick_process(struct task_struct *p) 2686 { 2687 int cpu; 2688 2689 preempt_disable(); 2690 cpu = task_cpu(p); 2691 if ((cpu != smp_processor_id()) && task_curr(p)) 2692 smp_send_reschedule(cpu); 2693 preempt_enable(); 2694 } 2695 EXPORT_SYMBOL_GPL(kick_process); 2696 2697 /* 2698 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2699 * 2700 * A few notes on cpu_active vs cpu_online: 2701 * 2702 * - cpu_active must be a subset of cpu_online 2703 * 2704 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2705 * see __set_cpus_allowed_ptr(). At this point the newly online 2706 * CPU isn't yet part of the sched domains, and balancing will not 2707 * see it. 2708 * 2709 * - on CPU-down we clear cpu_active() to mask the sched domains and 2710 * avoid the load balancer to place new tasks on the to be removed 2711 * CPU. Existing tasks will remain running there and will be taken 2712 * off. 2713 * 2714 * This means that fallback selection must not select !active CPUs. 2715 * And can assume that any active CPU must be online. Conversely 2716 * select_task_rq() below may allow selection of !active CPUs in order 2717 * to satisfy the above rules. 2718 */ 2719 static int select_fallback_rq(int cpu, struct task_struct *p) 2720 { 2721 int nid = cpu_to_node(cpu); 2722 const struct cpumask *nodemask = NULL; 2723 enum { cpuset, possible, fail } state = cpuset; 2724 int dest_cpu; 2725 2726 /* 2727 * If the node that the CPU is on has been offlined, cpu_to_node() 2728 * will return -1. There is no CPU on the node, and we should 2729 * select the CPU on the other node. 2730 */ 2731 if (nid != -1) { 2732 nodemask = cpumask_of_node(nid); 2733 2734 /* Look for allowed, online CPU in same node. */ 2735 for_each_cpu(dest_cpu, nodemask) { 2736 if (!cpu_active(dest_cpu)) 2737 continue; 2738 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2739 return dest_cpu; 2740 } 2741 } 2742 2743 for (;;) { 2744 /* Any allowed, online CPU? */ 2745 for_each_cpu(dest_cpu, p->cpus_ptr) { 2746 if (!is_cpu_allowed(p, dest_cpu)) 2747 continue; 2748 2749 goto out; 2750 } 2751 2752 /* No more Mr. Nice Guy. */ 2753 switch (state) { 2754 case cpuset: 2755 if (IS_ENABLED(CONFIG_CPUSETS)) { 2756 cpuset_cpus_allowed_fallback(p); 2757 state = possible; 2758 break; 2759 } 2760 fallthrough; 2761 case possible: 2762 /* 2763 * XXX When called from select_task_rq() we only 2764 * hold p->pi_lock and again violate locking order. 2765 * 2766 * More yuck to audit. 2767 */ 2768 do_set_cpus_allowed(p, cpu_possible_mask); 2769 state = fail; 2770 break; 2771 2772 case fail: 2773 BUG(); 2774 break; 2775 } 2776 } 2777 2778 out: 2779 if (state != cpuset) { 2780 /* 2781 * Don't tell them about moving exiting tasks or 2782 * kernel threads (both mm NULL), since they never 2783 * leave kernel. 2784 */ 2785 if (p->mm && printk_ratelimit()) { 2786 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2787 task_pid_nr(p), p->comm, cpu); 2788 } 2789 } 2790 2791 return dest_cpu; 2792 } 2793 2794 /* 2795 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2796 */ 2797 static inline 2798 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2799 { 2800 lockdep_assert_held(&p->pi_lock); 2801 2802 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2803 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2804 else 2805 cpu = cpumask_any(p->cpus_ptr); 2806 2807 /* 2808 * In order not to call set_task_cpu() on a blocking task we need 2809 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2810 * CPU. 2811 * 2812 * Since this is common to all placement strategies, this lives here. 2813 * 2814 * [ this allows ->select_task() to simply return task_cpu(p) and 2815 * not worry about this generic constraint ] 2816 */ 2817 if (unlikely(!is_cpu_allowed(p, cpu))) 2818 cpu = select_fallback_rq(task_cpu(p), p); 2819 2820 return cpu; 2821 } 2822 2823 void sched_set_stop_task(int cpu, struct task_struct *stop) 2824 { 2825 static struct lock_class_key stop_pi_lock; 2826 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2827 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2828 2829 if (stop) { 2830 /* 2831 * Make it appear like a SCHED_FIFO task, its something 2832 * userspace knows about and won't get confused about. 2833 * 2834 * Also, it will make PI more or less work without too 2835 * much confusion -- but then, stop work should not 2836 * rely on PI working anyway. 2837 */ 2838 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2839 2840 stop->sched_class = &stop_sched_class; 2841 2842 /* 2843 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2844 * adjust the effective priority of a task. As a result, 2845 * rt_mutex_setprio() can trigger (RT) balancing operations, 2846 * which can then trigger wakeups of the stop thread to push 2847 * around the current task. 2848 * 2849 * The stop task itself will never be part of the PI-chain, it 2850 * never blocks, therefore that ->pi_lock recursion is safe. 2851 * Tell lockdep about this by placing the stop->pi_lock in its 2852 * own class. 2853 */ 2854 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2855 } 2856 2857 cpu_rq(cpu)->stop = stop; 2858 2859 if (old_stop) { 2860 /* 2861 * Reset it back to a normal scheduling class so that 2862 * it can die in pieces. 2863 */ 2864 old_stop->sched_class = &rt_sched_class; 2865 } 2866 } 2867 2868 #else /* CONFIG_SMP */ 2869 2870 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2871 const struct cpumask *new_mask, 2872 u32 flags) 2873 { 2874 return set_cpus_allowed_ptr(p, new_mask); 2875 } 2876 2877 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2878 2879 static inline bool rq_has_pinned_tasks(struct rq *rq) 2880 { 2881 return false; 2882 } 2883 2884 #endif /* !CONFIG_SMP */ 2885 2886 static void 2887 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2888 { 2889 struct rq *rq; 2890 2891 if (!schedstat_enabled()) 2892 return; 2893 2894 rq = this_rq(); 2895 2896 #ifdef CONFIG_SMP 2897 if (cpu == rq->cpu) { 2898 __schedstat_inc(rq->ttwu_local); 2899 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2900 } else { 2901 struct sched_domain *sd; 2902 2903 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2904 rcu_read_lock(); 2905 for_each_domain(rq->cpu, sd) { 2906 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2907 __schedstat_inc(sd->ttwu_wake_remote); 2908 break; 2909 } 2910 } 2911 rcu_read_unlock(); 2912 } 2913 2914 if (wake_flags & WF_MIGRATED) 2915 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2916 #endif /* CONFIG_SMP */ 2917 2918 __schedstat_inc(rq->ttwu_count); 2919 __schedstat_inc(p->se.statistics.nr_wakeups); 2920 2921 if (wake_flags & WF_SYNC) 2922 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2923 } 2924 2925 /* 2926 * Mark the task runnable and perform wakeup-preemption. 2927 */ 2928 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2929 struct rq_flags *rf) 2930 { 2931 check_preempt_curr(rq, p, wake_flags); 2932 p->state = TASK_RUNNING; 2933 trace_sched_wakeup(p); 2934 2935 #ifdef CONFIG_SMP 2936 if (p->sched_class->task_woken) { 2937 /* 2938 * Our task @p is fully woken up and running; so it's safe to 2939 * drop the rq->lock, hereafter rq is only used for statistics. 2940 */ 2941 rq_unpin_lock(rq, rf); 2942 p->sched_class->task_woken(rq, p); 2943 rq_repin_lock(rq, rf); 2944 } 2945 2946 if (rq->idle_stamp) { 2947 u64 delta = rq_clock(rq) - rq->idle_stamp; 2948 u64 max = 2*rq->max_idle_balance_cost; 2949 2950 update_avg(&rq->avg_idle, delta); 2951 2952 if (rq->avg_idle > max) 2953 rq->avg_idle = max; 2954 2955 rq->idle_stamp = 0; 2956 } 2957 #endif 2958 } 2959 2960 static void 2961 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2962 struct rq_flags *rf) 2963 { 2964 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2965 2966 lockdep_assert_held(&rq->lock); 2967 2968 if (p->sched_contributes_to_load) 2969 rq->nr_uninterruptible--; 2970 2971 #ifdef CONFIG_SMP 2972 if (wake_flags & WF_MIGRATED) 2973 en_flags |= ENQUEUE_MIGRATED; 2974 else 2975 #endif 2976 if (p->in_iowait) { 2977 delayacct_blkio_end(p); 2978 atomic_dec(&task_rq(p)->nr_iowait); 2979 } 2980 2981 activate_task(rq, p, en_flags); 2982 ttwu_do_wakeup(rq, p, wake_flags, rf); 2983 } 2984 2985 /* 2986 * Consider @p being inside a wait loop: 2987 * 2988 * for (;;) { 2989 * set_current_state(TASK_UNINTERRUPTIBLE); 2990 * 2991 * if (CONDITION) 2992 * break; 2993 * 2994 * schedule(); 2995 * } 2996 * __set_current_state(TASK_RUNNING); 2997 * 2998 * between set_current_state() and schedule(). In this case @p is still 2999 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3000 * an atomic manner. 3001 * 3002 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3003 * then schedule() must still happen and p->state can be changed to 3004 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3005 * need to do a full wakeup with enqueue. 3006 * 3007 * Returns: %true when the wakeup is done, 3008 * %false otherwise. 3009 */ 3010 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3011 { 3012 struct rq_flags rf; 3013 struct rq *rq; 3014 int ret = 0; 3015 3016 rq = __task_rq_lock(p, &rf); 3017 if (task_on_rq_queued(p)) { 3018 /* check_preempt_curr() may use rq clock */ 3019 update_rq_clock(rq); 3020 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3021 ret = 1; 3022 } 3023 __task_rq_unlock(rq, &rf); 3024 3025 return ret; 3026 } 3027 3028 #ifdef CONFIG_SMP 3029 void sched_ttwu_pending(void *arg) 3030 { 3031 struct llist_node *llist = arg; 3032 struct rq *rq = this_rq(); 3033 struct task_struct *p, *t; 3034 struct rq_flags rf; 3035 3036 if (!llist) 3037 return; 3038 3039 /* 3040 * rq::ttwu_pending racy indication of out-standing wakeups. 3041 * Races such that false-negatives are possible, since they 3042 * are shorter lived that false-positives would be. 3043 */ 3044 WRITE_ONCE(rq->ttwu_pending, 0); 3045 3046 rq_lock_irqsave(rq, &rf); 3047 update_rq_clock(rq); 3048 3049 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3050 if (WARN_ON_ONCE(p->on_cpu)) 3051 smp_cond_load_acquire(&p->on_cpu, !VAL); 3052 3053 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3054 set_task_cpu(p, cpu_of(rq)); 3055 3056 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3057 } 3058 3059 rq_unlock_irqrestore(rq, &rf); 3060 } 3061 3062 void send_call_function_single_ipi(int cpu) 3063 { 3064 struct rq *rq = cpu_rq(cpu); 3065 3066 if (!set_nr_if_polling(rq->idle)) 3067 arch_send_call_function_single_ipi(cpu); 3068 else 3069 trace_sched_wake_idle_without_ipi(cpu); 3070 } 3071 3072 /* 3073 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3074 * necessary. The wakee CPU on receipt of the IPI will queue the task 3075 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3076 * of the wakeup instead of the waker. 3077 */ 3078 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3079 { 3080 struct rq *rq = cpu_rq(cpu); 3081 3082 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3083 3084 WRITE_ONCE(rq->ttwu_pending, 1); 3085 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3086 } 3087 3088 void wake_up_if_idle(int cpu) 3089 { 3090 struct rq *rq = cpu_rq(cpu); 3091 struct rq_flags rf; 3092 3093 rcu_read_lock(); 3094 3095 if (!is_idle_task(rcu_dereference(rq->curr))) 3096 goto out; 3097 3098 if (set_nr_if_polling(rq->idle)) { 3099 trace_sched_wake_idle_without_ipi(cpu); 3100 } else { 3101 rq_lock_irqsave(rq, &rf); 3102 if (is_idle_task(rq->curr)) 3103 smp_send_reschedule(cpu); 3104 /* Else CPU is not idle, do nothing here: */ 3105 rq_unlock_irqrestore(rq, &rf); 3106 } 3107 3108 out: 3109 rcu_read_unlock(); 3110 } 3111 3112 bool cpus_share_cache(int this_cpu, int that_cpu) 3113 { 3114 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3115 } 3116 3117 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3118 { 3119 /* 3120 * Do not complicate things with the async wake_list while the CPU is 3121 * in hotplug state. 3122 */ 3123 if (!cpu_active(cpu)) 3124 return false; 3125 3126 /* 3127 * If the CPU does not share cache, then queue the task on the 3128 * remote rqs wakelist to avoid accessing remote data. 3129 */ 3130 if (!cpus_share_cache(smp_processor_id(), cpu)) 3131 return true; 3132 3133 /* 3134 * If the task is descheduling and the only running task on the 3135 * CPU then use the wakelist to offload the task activation to 3136 * the soon-to-be-idle CPU as the current CPU is likely busy. 3137 * nr_running is checked to avoid unnecessary task stacking. 3138 */ 3139 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3140 return true; 3141 3142 return false; 3143 } 3144 3145 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3146 { 3147 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3148 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3149 return false; 3150 3151 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3152 __ttwu_queue_wakelist(p, cpu, wake_flags); 3153 return true; 3154 } 3155 3156 return false; 3157 } 3158 3159 #else /* !CONFIG_SMP */ 3160 3161 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3162 { 3163 return false; 3164 } 3165 3166 #endif /* CONFIG_SMP */ 3167 3168 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3169 { 3170 struct rq *rq = cpu_rq(cpu); 3171 struct rq_flags rf; 3172 3173 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3174 return; 3175 3176 rq_lock(rq, &rf); 3177 update_rq_clock(rq); 3178 ttwu_do_activate(rq, p, wake_flags, &rf); 3179 rq_unlock(rq, &rf); 3180 } 3181 3182 /* 3183 * Notes on Program-Order guarantees on SMP systems. 3184 * 3185 * MIGRATION 3186 * 3187 * The basic program-order guarantee on SMP systems is that when a task [t] 3188 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3189 * execution on its new CPU [c1]. 3190 * 3191 * For migration (of runnable tasks) this is provided by the following means: 3192 * 3193 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3194 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3195 * rq(c1)->lock (if not at the same time, then in that order). 3196 * C) LOCK of the rq(c1)->lock scheduling in task 3197 * 3198 * Release/acquire chaining guarantees that B happens after A and C after B. 3199 * Note: the CPU doing B need not be c0 or c1 3200 * 3201 * Example: 3202 * 3203 * CPU0 CPU1 CPU2 3204 * 3205 * LOCK rq(0)->lock 3206 * sched-out X 3207 * sched-in Y 3208 * UNLOCK rq(0)->lock 3209 * 3210 * LOCK rq(0)->lock // orders against CPU0 3211 * dequeue X 3212 * UNLOCK rq(0)->lock 3213 * 3214 * LOCK rq(1)->lock 3215 * enqueue X 3216 * UNLOCK rq(1)->lock 3217 * 3218 * LOCK rq(1)->lock // orders against CPU2 3219 * sched-out Z 3220 * sched-in X 3221 * UNLOCK rq(1)->lock 3222 * 3223 * 3224 * BLOCKING -- aka. SLEEP + WAKEUP 3225 * 3226 * For blocking we (obviously) need to provide the same guarantee as for 3227 * migration. However the means are completely different as there is no lock 3228 * chain to provide order. Instead we do: 3229 * 3230 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3231 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3232 * 3233 * Example: 3234 * 3235 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3236 * 3237 * LOCK rq(0)->lock LOCK X->pi_lock 3238 * dequeue X 3239 * sched-out X 3240 * smp_store_release(X->on_cpu, 0); 3241 * 3242 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3243 * X->state = WAKING 3244 * set_task_cpu(X,2) 3245 * 3246 * LOCK rq(2)->lock 3247 * enqueue X 3248 * X->state = RUNNING 3249 * UNLOCK rq(2)->lock 3250 * 3251 * LOCK rq(2)->lock // orders against CPU1 3252 * sched-out Z 3253 * sched-in X 3254 * UNLOCK rq(2)->lock 3255 * 3256 * UNLOCK X->pi_lock 3257 * UNLOCK rq(0)->lock 3258 * 3259 * 3260 * However, for wakeups there is a second guarantee we must provide, namely we 3261 * must ensure that CONDITION=1 done by the caller can not be reordered with 3262 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3263 */ 3264 3265 /** 3266 * try_to_wake_up - wake up a thread 3267 * @p: the thread to be awakened 3268 * @state: the mask of task states that can be woken 3269 * @wake_flags: wake modifier flags (WF_*) 3270 * 3271 * Conceptually does: 3272 * 3273 * If (@state & @p->state) @p->state = TASK_RUNNING. 3274 * 3275 * If the task was not queued/runnable, also place it back on a runqueue. 3276 * 3277 * This function is atomic against schedule() which would dequeue the task. 3278 * 3279 * It issues a full memory barrier before accessing @p->state, see the comment 3280 * with set_current_state(). 3281 * 3282 * Uses p->pi_lock to serialize against concurrent wake-ups. 3283 * 3284 * Relies on p->pi_lock stabilizing: 3285 * - p->sched_class 3286 * - p->cpus_ptr 3287 * - p->sched_task_group 3288 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3289 * 3290 * Tries really hard to only take one task_rq(p)->lock for performance. 3291 * Takes rq->lock in: 3292 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3293 * - ttwu_queue() -- new rq, for enqueue of the task; 3294 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3295 * 3296 * As a consequence we race really badly with just about everything. See the 3297 * many memory barriers and their comments for details. 3298 * 3299 * Return: %true if @p->state changes (an actual wakeup was done), 3300 * %false otherwise. 3301 */ 3302 static int 3303 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3304 { 3305 unsigned long flags; 3306 int cpu, success = 0; 3307 3308 preempt_disable(); 3309 if (p == current) { 3310 /* 3311 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3312 * == smp_processor_id()'. Together this means we can special 3313 * case the whole 'p->on_rq && ttwu_runnable()' case below 3314 * without taking any locks. 3315 * 3316 * In particular: 3317 * - we rely on Program-Order guarantees for all the ordering, 3318 * - we're serialized against set_special_state() by virtue of 3319 * it disabling IRQs (this allows not taking ->pi_lock). 3320 */ 3321 if (!(p->state & state)) 3322 goto out; 3323 3324 success = 1; 3325 trace_sched_waking(p); 3326 p->state = TASK_RUNNING; 3327 trace_sched_wakeup(p); 3328 goto out; 3329 } 3330 3331 /* 3332 * If we are going to wake up a thread waiting for CONDITION we 3333 * need to ensure that CONDITION=1 done by the caller can not be 3334 * reordered with p->state check below. This pairs with smp_store_mb() 3335 * in set_current_state() that the waiting thread does. 3336 */ 3337 raw_spin_lock_irqsave(&p->pi_lock, flags); 3338 smp_mb__after_spinlock(); 3339 if (!(p->state & state)) 3340 goto unlock; 3341 3342 trace_sched_waking(p); 3343 3344 /* We're going to change ->state: */ 3345 success = 1; 3346 3347 /* 3348 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3349 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3350 * in smp_cond_load_acquire() below. 3351 * 3352 * sched_ttwu_pending() try_to_wake_up() 3353 * STORE p->on_rq = 1 LOAD p->state 3354 * UNLOCK rq->lock 3355 * 3356 * __schedule() (switch to task 'p') 3357 * LOCK rq->lock smp_rmb(); 3358 * smp_mb__after_spinlock(); 3359 * UNLOCK rq->lock 3360 * 3361 * [task p] 3362 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3363 * 3364 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3365 * __schedule(). See the comment for smp_mb__after_spinlock(). 3366 * 3367 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3368 */ 3369 smp_rmb(); 3370 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3371 goto unlock; 3372 3373 #ifdef CONFIG_SMP 3374 /* 3375 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3376 * possible to, falsely, observe p->on_cpu == 0. 3377 * 3378 * One must be running (->on_cpu == 1) in order to remove oneself 3379 * from the runqueue. 3380 * 3381 * __schedule() (switch to task 'p') try_to_wake_up() 3382 * STORE p->on_cpu = 1 LOAD p->on_rq 3383 * UNLOCK rq->lock 3384 * 3385 * __schedule() (put 'p' to sleep) 3386 * LOCK rq->lock smp_rmb(); 3387 * smp_mb__after_spinlock(); 3388 * STORE p->on_rq = 0 LOAD p->on_cpu 3389 * 3390 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3391 * __schedule(). See the comment for smp_mb__after_spinlock(). 3392 * 3393 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3394 * schedule()'s deactivate_task() has 'happened' and p will no longer 3395 * care about it's own p->state. See the comment in __schedule(). 3396 */ 3397 smp_acquire__after_ctrl_dep(); 3398 3399 /* 3400 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3401 * == 0), which means we need to do an enqueue, change p->state to 3402 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3403 * enqueue, such as ttwu_queue_wakelist(). 3404 */ 3405 p->state = TASK_WAKING; 3406 3407 /* 3408 * If the owning (remote) CPU is still in the middle of schedule() with 3409 * this task as prev, considering queueing p on the remote CPUs wake_list 3410 * which potentially sends an IPI instead of spinning on p->on_cpu to 3411 * let the waker make forward progress. This is safe because IRQs are 3412 * disabled and the IPI will deliver after on_cpu is cleared. 3413 * 3414 * Ensure we load task_cpu(p) after p->on_cpu: 3415 * 3416 * set_task_cpu(p, cpu); 3417 * STORE p->cpu = @cpu 3418 * __schedule() (switch to task 'p') 3419 * LOCK rq->lock 3420 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3421 * STORE p->on_cpu = 1 LOAD p->cpu 3422 * 3423 * to ensure we observe the correct CPU on which the task is currently 3424 * scheduling. 3425 */ 3426 if (smp_load_acquire(&p->on_cpu) && 3427 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3428 goto unlock; 3429 3430 /* 3431 * If the owning (remote) CPU is still in the middle of schedule() with 3432 * this task as prev, wait until it's done referencing the task. 3433 * 3434 * Pairs with the smp_store_release() in finish_task(). 3435 * 3436 * This ensures that tasks getting woken will be fully ordered against 3437 * their previous state and preserve Program Order. 3438 */ 3439 smp_cond_load_acquire(&p->on_cpu, !VAL); 3440 3441 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3442 if (task_cpu(p) != cpu) { 3443 if (p->in_iowait) { 3444 delayacct_blkio_end(p); 3445 atomic_dec(&task_rq(p)->nr_iowait); 3446 } 3447 3448 wake_flags |= WF_MIGRATED; 3449 psi_ttwu_dequeue(p); 3450 set_task_cpu(p, cpu); 3451 } 3452 #else 3453 cpu = task_cpu(p); 3454 #endif /* CONFIG_SMP */ 3455 3456 ttwu_queue(p, cpu, wake_flags); 3457 unlock: 3458 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3459 out: 3460 if (success) 3461 ttwu_stat(p, task_cpu(p), wake_flags); 3462 preempt_enable(); 3463 3464 return success; 3465 } 3466 3467 /** 3468 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3469 * @p: Process for which the function is to be invoked, can be @current. 3470 * @func: Function to invoke. 3471 * @arg: Argument to function. 3472 * 3473 * If the specified task can be quickly locked into a definite state 3474 * (either sleeping or on a given runqueue), arrange to keep it in that 3475 * state while invoking @func(@arg). This function can use ->on_rq and 3476 * task_curr() to work out what the state is, if required. Given that 3477 * @func can be invoked with a runqueue lock held, it had better be quite 3478 * lightweight. 3479 * 3480 * Returns: 3481 * @false if the task slipped out from under the locks. 3482 * @true if the task was locked onto a runqueue or is sleeping. 3483 * However, @func can override this by returning @false. 3484 */ 3485 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3486 { 3487 struct rq_flags rf; 3488 bool ret = false; 3489 struct rq *rq; 3490 3491 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3492 if (p->on_rq) { 3493 rq = __task_rq_lock(p, &rf); 3494 if (task_rq(p) == rq) 3495 ret = func(p, arg); 3496 rq_unlock(rq, &rf); 3497 } else { 3498 switch (p->state) { 3499 case TASK_RUNNING: 3500 case TASK_WAKING: 3501 break; 3502 default: 3503 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3504 if (!p->on_rq) 3505 ret = func(p, arg); 3506 } 3507 } 3508 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3509 return ret; 3510 } 3511 3512 /** 3513 * wake_up_process - Wake up a specific process 3514 * @p: The process to be woken up. 3515 * 3516 * Attempt to wake up the nominated process and move it to the set of runnable 3517 * processes. 3518 * 3519 * Return: 1 if the process was woken up, 0 if it was already running. 3520 * 3521 * This function executes a full memory barrier before accessing the task state. 3522 */ 3523 int wake_up_process(struct task_struct *p) 3524 { 3525 return try_to_wake_up(p, TASK_NORMAL, 0); 3526 } 3527 EXPORT_SYMBOL(wake_up_process); 3528 3529 int wake_up_state(struct task_struct *p, unsigned int state) 3530 { 3531 return try_to_wake_up(p, state, 0); 3532 } 3533 3534 /* 3535 * Perform scheduler related setup for a newly forked process p. 3536 * p is forked by current. 3537 * 3538 * __sched_fork() is basic setup used by init_idle() too: 3539 */ 3540 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3541 { 3542 p->on_rq = 0; 3543 3544 p->se.on_rq = 0; 3545 p->se.exec_start = 0; 3546 p->se.sum_exec_runtime = 0; 3547 p->se.prev_sum_exec_runtime = 0; 3548 p->se.nr_migrations = 0; 3549 p->se.vruntime = 0; 3550 INIT_LIST_HEAD(&p->se.group_node); 3551 3552 #ifdef CONFIG_FAIR_GROUP_SCHED 3553 p->se.cfs_rq = NULL; 3554 #endif 3555 3556 #ifdef CONFIG_SCHEDSTATS 3557 /* Even if schedstat is disabled, there should not be garbage */ 3558 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3559 #endif 3560 3561 RB_CLEAR_NODE(&p->dl.rb_node); 3562 init_dl_task_timer(&p->dl); 3563 init_dl_inactive_task_timer(&p->dl); 3564 __dl_clear_params(p); 3565 3566 INIT_LIST_HEAD(&p->rt.run_list); 3567 p->rt.timeout = 0; 3568 p->rt.time_slice = sched_rr_timeslice; 3569 p->rt.on_rq = 0; 3570 p->rt.on_list = 0; 3571 3572 #ifdef CONFIG_PREEMPT_NOTIFIERS 3573 INIT_HLIST_HEAD(&p->preempt_notifiers); 3574 #endif 3575 3576 #ifdef CONFIG_COMPACTION 3577 p->capture_control = NULL; 3578 #endif 3579 init_numa_balancing(clone_flags, p); 3580 #ifdef CONFIG_SMP 3581 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3582 p->migration_pending = NULL; 3583 #endif 3584 } 3585 3586 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3587 3588 #ifdef CONFIG_NUMA_BALANCING 3589 3590 void set_numabalancing_state(bool enabled) 3591 { 3592 if (enabled) 3593 static_branch_enable(&sched_numa_balancing); 3594 else 3595 static_branch_disable(&sched_numa_balancing); 3596 } 3597 3598 #ifdef CONFIG_PROC_SYSCTL 3599 int sysctl_numa_balancing(struct ctl_table *table, int write, 3600 void *buffer, size_t *lenp, loff_t *ppos) 3601 { 3602 struct ctl_table t; 3603 int err; 3604 int state = static_branch_likely(&sched_numa_balancing); 3605 3606 if (write && !capable(CAP_SYS_ADMIN)) 3607 return -EPERM; 3608 3609 t = *table; 3610 t.data = &state; 3611 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3612 if (err < 0) 3613 return err; 3614 if (write) 3615 set_numabalancing_state(state); 3616 return err; 3617 } 3618 #endif 3619 #endif 3620 3621 #ifdef CONFIG_SCHEDSTATS 3622 3623 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3624 static bool __initdata __sched_schedstats = false; 3625 3626 static void set_schedstats(bool enabled) 3627 { 3628 if (enabled) 3629 static_branch_enable(&sched_schedstats); 3630 else 3631 static_branch_disable(&sched_schedstats); 3632 } 3633 3634 void force_schedstat_enabled(void) 3635 { 3636 if (!schedstat_enabled()) { 3637 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3638 static_branch_enable(&sched_schedstats); 3639 } 3640 } 3641 3642 static int __init setup_schedstats(char *str) 3643 { 3644 int ret = 0; 3645 if (!str) 3646 goto out; 3647 3648 /* 3649 * This code is called before jump labels have been set up, so we can't 3650 * change the static branch directly just yet. Instead set a temporary 3651 * variable so init_schedstats() can do it later. 3652 */ 3653 if (!strcmp(str, "enable")) { 3654 __sched_schedstats = true; 3655 ret = 1; 3656 } else if (!strcmp(str, "disable")) { 3657 __sched_schedstats = false; 3658 ret = 1; 3659 } 3660 out: 3661 if (!ret) 3662 pr_warn("Unable to parse schedstats=\n"); 3663 3664 return ret; 3665 } 3666 __setup("schedstats=", setup_schedstats); 3667 3668 static void __init init_schedstats(void) 3669 { 3670 set_schedstats(__sched_schedstats); 3671 } 3672 3673 #ifdef CONFIG_PROC_SYSCTL 3674 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3675 size_t *lenp, loff_t *ppos) 3676 { 3677 struct ctl_table t; 3678 int err; 3679 int state = static_branch_likely(&sched_schedstats); 3680 3681 if (write && !capable(CAP_SYS_ADMIN)) 3682 return -EPERM; 3683 3684 t = *table; 3685 t.data = &state; 3686 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3687 if (err < 0) 3688 return err; 3689 if (write) 3690 set_schedstats(state); 3691 return err; 3692 } 3693 #endif /* CONFIG_PROC_SYSCTL */ 3694 #else /* !CONFIG_SCHEDSTATS */ 3695 static inline void init_schedstats(void) {} 3696 #endif /* CONFIG_SCHEDSTATS */ 3697 3698 /* 3699 * fork()/clone()-time setup: 3700 */ 3701 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3702 { 3703 unsigned long flags; 3704 3705 __sched_fork(clone_flags, p); 3706 /* 3707 * We mark the process as NEW here. This guarantees that 3708 * nobody will actually run it, and a signal or other external 3709 * event cannot wake it up and insert it on the runqueue either. 3710 */ 3711 p->state = TASK_NEW; 3712 3713 /* 3714 * Make sure we do not leak PI boosting priority to the child. 3715 */ 3716 p->prio = current->normal_prio; 3717 3718 uclamp_fork(p); 3719 3720 /* 3721 * Revert to default priority/policy on fork if requested. 3722 */ 3723 if (unlikely(p->sched_reset_on_fork)) { 3724 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3725 p->policy = SCHED_NORMAL; 3726 p->static_prio = NICE_TO_PRIO(0); 3727 p->rt_priority = 0; 3728 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3729 p->static_prio = NICE_TO_PRIO(0); 3730 3731 p->prio = p->normal_prio = __normal_prio(p); 3732 set_load_weight(p, false); 3733 3734 /* 3735 * We don't need the reset flag anymore after the fork. It has 3736 * fulfilled its duty: 3737 */ 3738 p->sched_reset_on_fork = 0; 3739 } 3740 3741 if (dl_prio(p->prio)) 3742 return -EAGAIN; 3743 else if (rt_prio(p->prio)) 3744 p->sched_class = &rt_sched_class; 3745 else 3746 p->sched_class = &fair_sched_class; 3747 3748 init_entity_runnable_average(&p->se); 3749 3750 /* 3751 * The child is not yet in the pid-hash so no cgroup attach races, 3752 * and the cgroup is pinned to this child due to cgroup_fork() 3753 * is ran before sched_fork(). 3754 * 3755 * Silence PROVE_RCU. 3756 */ 3757 raw_spin_lock_irqsave(&p->pi_lock, flags); 3758 rseq_migrate(p); 3759 /* 3760 * We're setting the CPU for the first time, we don't migrate, 3761 * so use __set_task_cpu(). 3762 */ 3763 __set_task_cpu(p, smp_processor_id()); 3764 if (p->sched_class->task_fork) 3765 p->sched_class->task_fork(p); 3766 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3767 3768 #ifdef CONFIG_SCHED_INFO 3769 if (likely(sched_info_on())) 3770 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3771 #endif 3772 #if defined(CONFIG_SMP) 3773 p->on_cpu = 0; 3774 #endif 3775 init_task_preempt_count(p); 3776 #ifdef CONFIG_SMP 3777 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3778 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3779 #endif 3780 return 0; 3781 } 3782 3783 void sched_post_fork(struct task_struct *p) 3784 { 3785 uclamp_post_fork(p); 3786 } 3787 3788 unsigned long to_ratio(u64 period, u64 runtime) 3789 { 3790 if (runtime == RUNTIME_INF) 3791 return BW_UNIT; 3792 3793 /* 3794 * Doing this here saves a lot of checks in all 3795 * the calling paths, and returning zero seems 3796 * safe for them anyway. 3797 */ 3798 if (period == 0) 3799 return 0; 3800 3801 return div64_u64(runtime << BW_SHIFT, period); 3802 } 3803 3804 /* 3805 * wake_up_new_task - wake up a newly created task for the first time. 3806 * 3807 * This function will do some initial scheduler statistics housekeeping 3808 * that must be done for every newly created context, then puts the task 3809 * on the runqueue and wakes it. 3810 */ 3811 void wake_up_new_task(struct task_struct *p) 3812 { 3813 struct rq_flags rf; 3814 struct rq *rq; 3815 3816 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3817 p->state = TASK_RUNNING; 3818 #ifdef CONFIG_SMP 3819 /* 3820 * Fork balancing, do it here and not earlier because: 3821 * - cpus_ptr can change in the fork path 3822 * - any previously selected CPU might disappear through hotplug 3823 * 3824 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3825 * as we're not fully set-up yet. 3826 */ 3827 p->recent_used_cpu = task_cpu(p); 3828 rseq_migrate(p); 3829 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3830 #endif 3831 rq = __task_rq_lock(p, &rf); 3832 update_rq_clock(rq); 3833 post_init_entity_util_avg(p); 3834 3835 activate_task(rq, p, ENQUEUE_NOCLOCK); 3836 trace_sched_wakeup_new(p); 3837 check_preempt_curr(rq, p, WF_FORK); 3838 #ifdef CONFIG_SMP 3839 if (p->sched_class->task_woken) { 3840 /* 3841 * Nothing relies on rq->lock after this, so it's fine to 3842 * drop it. 3843 */ 3844 rq_unpin_lock(rq, &rf); 3845 p->sched_class->task_woken(rq, p); 3846 rq_repin_lock(rq, &rf); 3847 } 3848 #endif 3849 task_rq_unlock(rq, p, &rf); 3850 } 3851 3852 #ifdef CONFIG_PREEMPT_NOTIFIERS 3853 3854 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3855 3856 void preempt_notifier_inc(void) 3857 { 3858 static_branch_inc(&preempt_notifier_key); 3859 } 3860 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3861 3862 void preempt_notifier_dec(void) 3863 { 3864 static_branch_dec(&preempt_notifier_key); 3865 } 3866 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3867 3868 /** 3869 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3870 * @notifier: notifier struct to register 3871 */ 3872 void preempt_notifier_register(struct preempt_notifier *notifier) 3873 { 3874 if (!static_branch_unlikely(&preempt_notifier_key)) 3875 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3876 3877 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3878 } 3879 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3880 3881 /** 3882 * preempt_notifier_unregister - no longer interested in preemption notifications 3883 * @notifier: notifier struct to unregister 3884 * 3885 * This is *not* safe to call from within a preemption notifier. 3886 */ 3887 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3888 { 3889 hlist_del(¬ifier->link); 3890 } 3891 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3892 3893 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3894 { 3895 struct preempt_notifier *notifier; 3896 3897 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3898 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3899 } 3900 3901 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3902 { 3903 if (static_branch_unlikely(&preempt_notifier_key)) 3904 __fire_sched_in_preempt_notifiers(curr); 3905 } 3906 3907 static void 3908 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3909 struct task_struct *next) 3910 { 3911 struct preempt_notifier *notifier; 3912 3913 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3914 notifier->ops->sched_out(notifier, next); 3915 } 3916 3917 static __always_inline void 3918 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3919 struct task_struct *next) 3920 { 3921 if (static_branch_unlikely(&preempt_notifier_key)) 3922 __fire_sched_out_preempt_notifiers(curr, next); 3923 } 3924 3925 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3926 3927 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3928 { 3929 } 3930 3931 static inline void 3932 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3933 struct task_struct *next) 3934 { 3935 } 3936 3937 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3938 3939 static inline void prepare_task(struct task_struct *next) 3940 { 3941 #ifdef CONFIG_SMP 3942 /* 3943 * Claim the task as running, we do this before switching to it 3944 * such that any running task will have this set. 3945 * 3946 * See the ttwu() WF_ON_CPU case and its ordering comment. 3947 */ 3948 WRITE_ONCE(next->on_cpu, 1); 3949 #endif 3950 } 3951 3952 static inline void finish_task(struct task_struct *prev) 3953 { 3954 #ifdef CONFIG_SMP 3955 /* 3956 * This must be the very last reference to @prev from this CPU. After 3957 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3958 * must ensure this doesn't happen until the switch is completely 3959 * finished. 3960 * 3961 * In particular, the load of prev->state in finish_task_switch() must 3962 * happen before this. 3963 * 3964 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3965 */ 3966 smp_store_release(&prev->on_cpu, 0); 3967 #endif 3968 } 3969 3970 #ifdef CONFIG_SMP 3971 3972 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 3973 { 3974 void (*func)(struct rq *rq); 3975 struct callback_head *next; 3976 3977 lockdep_assert_held(&rq->lock); 3978 3979 while (head) { 3980 func = (void (*)(struct rq *))head->func; 3981 next = head->next; 3982 head->next = NULL; 3983 head = next; 3984 3985 func(rq); 3986 } 3987 } 3988 3989 static void balance_push(struct rq *rq); 3990 3991 struct callback_head balance_push_callback = { 3992 .next = NULL, 3993 .func = (void (*)(struct callback_head *))balance_push, 3994 }; 3995 3996 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 3997 { 3998 struct callback_head *head = rq->balance_callback; 3999 4000 lockdep_assert_held(&rq->lock); 4001 if (head) 4002 rq->balance_callback = NULL; 4003 4004 return head; 4005 } 4006 4007 static void __balance_callbacks(struct rq *rq) 4008 { 4009 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4010 } 4011 4012 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4013 { 4014 unsigned long flags; 4015 4016 if (unlikely(head)) { 4017 raw_spin_lock_irqsave(&rq->lock, flags); 4018 do_balance_callbacks(rq, head); 4019 raw_spin_unlock_irqrestore(&rq->lock, flags); 4020 } 4021 } 4022 4023 #else 4024 4025 static inline void __balance_callbacks(struct rq *rq) 4026 { 4027 } 4028 4029 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4030 { 4031 return NULL; 4032 } 4033 4034 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4035 { 4036 } 4037 4038 #endif 4039 4040 static inline void 4041 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4042 { 4043 /* 4044 * Since the runqueue lock will be released by the next 4045 * task (which is an invalid locking op but in the case 4046 * of the scheduler it's an obvious special-case), so we 4047 * do an early lockdep release here: 4048 */ 4049 rq_unpin_lock(rq, rf); 4050 spin_release(&rq->lock.dep_map, _THIS_IP_); 4051 #ifdef CONFIG_DEBUG_SPINLOCK 4052 /* this is a valid case when another task releases the spinlock */ 4053 rq->lock.owner = next; 4054 #endif 4055 } 4056 4057 static inline void finish_lock_switch(struct rq *rq) 4058 { 4059 /* 4060 * If we are tracking spinlock dependencies then we have to 4061 * fix up the runqueue lock - which gets 'carried over' from 4062 * prev into current: 4063 */ 4064 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4065 __balance_callbacks(rq); 4066 raw_spin_unlock_irq(&rq->lock); 4067 } 4068 4069 /* 4070 * NOP if the arch has not defined these: 4071 */ 4072 4073 #ifndef prepare_arch_switch 4074 # define prepare_arch_switch(next) do { } while (0) 4075 #endif 4076 4077 #ifndef finish_arch_post_lock_switch 4078 # define finish_arch_post_lock_switch() do { } while (0) 4079 #endif 4080 4081 static inline void kmap_local_sched_out(void) 4082 { 4083 #ifdef CONFIG_KMAP_LOCAL 4084 if (unlikely(current->kmap_ctrl.idx)) 4085 __kmap_local_sched_out(); 4086 #endif 4087 } 4088 4089 static inline void kmap_local_sched_in(void) 4090 { 4091 #ifdef CONFIG_KMAP_LOCAL 4092 if (unlikely(current->kmap_ctrl.idx)) 4093 __kmap_local_sched_in(); 4094 #endif 4095 } 4096 4097 /** 4098 * prepare_task_switch - prepare to switch tasks 4099 * @rq: the runqueue preparing to switch 4100 * @prev: the current task that is being switched out 4101 * @next: the task we are going to switch to. 4102 * 4103 * This is called with the rq lock held and interrupts off. It must 4104 * be paired with a subsequent finish_task_switch after the context 4105 * switch. 4106 * 4107 * prepare_task_switch sets up locking and calls architecture specific 4108 * hooks. 4109 */ 4110 static inline void 4111 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4112 struct task_struct *next) 4113 { 4114 kcov_prepare_switch(prev); 4115 sched_info_switch(rq, prev, next); 4116 perf_event_task_sched_out(prev, next); 4117 rseq_preempt(prev); 4118 fire_sched_out_preempt_notifiers(prev, next); 4119 kmap_local_sched_out(); 4120 prepare_task(next); 4121 prepare_arch_switch(next); 4122 } 4123 4124 /** 4125 * finish_task_switch - clean up after a task-switch 4126 * @prev: the thread we just switched away from. 4127 * 4128 * finish_task_switch must be called after the context switch, paired 4129 * with a prepare_task_switch call before the context switch. 4130 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4131 * and do any other architecture-specific cleanup actions. 4132 * 4133 * Note that we may have delayed dropping an mm in context_switch(). If 4134 * so, we finish that here outside of the runqueue lock. (Doing it 4135 * with the lock held can cause deadlocks; see schedule() for 4136 * details.) 4137 * 4138 * The context switch have flipped the stack from under us and restored the 4139 * local variables which were saved when this task called schedule() in the 4140 * past. prev == current is still correct but we need to recalculate this_rq 4141 * because prev may have moved to another CPU. 4142 */ 4143 static struct rq *finish_task_switch(struct task_struct *prev) 4144 __releases(rq->lock) 4145 { 4146 struct rq *rq = this_rq(); 4147 struct mm_struct *mm = rq->prev_mm; 4148 long prev_state; 4149 4150 /* 4151 * The previous task will have left us with a preempt_count of 2 4152 * because it left us after: 4153 * 4154 * schedule() 4155 * preempt_disable(); // 1 4156 * __schedule() 4157 * raw_spin_lock_irq(&rq->lock) // 2 4158 * 4159 * Also, see FORK_PREEMPT_COUNT. 4160 */ 4161 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4162 "corrupted preempt_count: %s/%d/0x%x\n", 4163 current->comm, current->pid, preempt_count())) 4164 preempt_count_set(FORK_PREEMPT_COUNT); 4165 4166 rq->prev_mm = NULL; 4167 4168 /* 4169 * A task struct has one reference for the use as "current". 4170 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4171 * schedule one last time. The schedule call will never return, and 4172 * the scheduled task must drop that reference. 4173 * 4174 * We must observe prev->state before clearing prev->on_cpu (in 4175 * finish_task), otherwise a concurrent wakeup can get prev 4176 * running on another CPU and we could rave with its RUNNING -> DEAD 4177 * transition, resulting in a double drop. 4178 */ 4179 prev_state = prev->state; 4180 vtime_task_switch(prev); 4181 perf_event_task_sched_in(prev, current); 4182 finish_task(prev); 4183 finish_lock_switch(rq); 4184 finish_arch_post_lock_switch(); 4185 kcov_finish_switch(current); 4186 /* 4187 * kmap_local_sched_out() is invoked with rq::lock held and 4188 * interrupts disabled. There is no requirement for that, but the 4189 * sched out code does not have an interrupt enabled section. 4190 * Restoring the maps on sched in does not require interrupts being 4191 * disabled either. 4192 */ 4193 kmap_local_sched_in(); 4194 4195 fire_sched_in_preempt_notifiers(current); 4196 /* 4197 * When switching through a kernel thread, the loop in 4198 * membarrier_{private,global}_expedited() may have observed that 4199 * kernel thread and not issued an IPI. It is therefore possible to 4200 * schedule between user->kernel->user threads without passing though 4201 * switch_mm(). Membarrier requires a barrier after storing to 4202 * rq->curr, before returning to userspace, so provide them here: 4203 * 4204 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4205 * provided by mmdrop(), 4206 * - a sync_core for SYNC_CORE. 4207 */ 4208 if (mm) { 4209 membarrier_mm_sync_core_before_usermode(mm); 4210 mmdrop(mm); 4211 } 4212 if (unlikely(prev_state == TASK_DEAD)) { 4213 if (prev->sched_class->task_dead) 4214 prev->sched_class->task_dead(prev); 4215 4216 /* 4217 * Remove function-return probe instances associated with this 4218 * task and put them back on the free list. 4219 */ 4220 kprobe_flush_task(prev); 4221 4222 /* Task is done with its stack. */ 4223 put_task_stack(prev); 4224 4225 put_task_struct_rcu_user(prev); 4226 } 4227 4228 tick_nohz_task_switch(); 4229 return rq; 4230 } 4231 4232 /** 4233 * schedule_tail - first thing a freshly forked thread must call. 4234 * @prev: the thread we just switched away from. 4235 */ 4236 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4237 __releases(rq->lock) 4238 { 4239 struct rq *rq; 4240 4241 /* 4242 * New tasks start with FORK_PREEMPT_COUNT, see there and 4243 * finish_task_switch() for details. 4244 * 4245 * finish_task_switch() will drop rq->lock() and lower preempt_count 4246 * and the preempt_enable() will end up enabling preemption (on 4247 * PREEMPT_COUNT kernels). 4248 */ 4249 4250 rq = finish_task_switch(prev); 4251 preempt_enable(); 4252 4253 if (current->set_child_tid) 4254 put_user(task_pid_vnr(current), current->set_child_tid); 4255 4256 calculate_sigpending(); 4257 } 4258 4259 /* 4260 * context_switch - switch to the new MM and the new thread's register state. 4261 */ 4262 static __always_inline struct rq * 4263 context_switch(struct rq *rq, struct task_struct *prev, 4264 struct task_struct *next, struct rq_flags *rf) 4265 { 4266 prepare_task_switch(rq, prev, next); 4267 4268 /* 4269 * For paravirt, this is coupled with an exit in switch_to to 4270 * combine the page table reload and the switch backend into 4271 * one hypercall. 4272 */ 4273 arch_start_context_switch(prev); 4274 4275 /* 4276 * kernel -> kernel lazy + transfer active 4277 * user -> kernel lazy + mmgrab() active 4278 * 4279 * kernel -> user switch + mmdrop() active 4280 * user -> user switch 4281 */ 4282 if (!next->mm) { // to kernel 4283 enter_lazy_tlb(prev->active_mm, next); 4284 4285 next->active_mm = prev->active_mm; 4286 if (prev->mm) // from user 4287 mmgrab(prev->active_mm); 4288 else 4289 prev->active_mm = NULL; 4290 } else { // to user 4291 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4292 /* 4293 * sys_membarrier() requires an smp_mb() between setting 4294 * rq->curr / membarrier_switch_mm() and returning to userspace. 4295 * 4296 * The below provides this either through switch_mm(), or in 4297 * case 'prev->active_mm == next->mm' through 4298 * finish_task_switch()'s mmdrop(). 4299 */ 4300 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4301 4302 if (!prev->mm) { // from kernel 4303 /* will mmdrop() in finish_task_switch(). */ 4304 rq->prev_mm = prev->active_mm; 4305 prev->active_mm = NULL; 4306 } 4307 } 4308 4309 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4310 4311 prepare_lock_switch(rq, next, rf); 4312 4313 /* Here we just switch the register state and the stack. */ 4314 switch_to(prev, next, prev); 4315 barrier(); 4316 4317 return finish_task_switch(prev); 4318 } 4319 4320 /* 4321 * nr_running and nr_context_switches: 4322 * 4323 * externally visible scheduler statistics: current number of runnable 4324 * threads, total number of context switches performed since bootup. 4325 */ 4326 unsigned long nr_running(void) 4327 { 4328 unsigned long i, sum = 0; 4329 4330 for_each_online_cpu(i) 4331 sum += cpu_rq(i)->nr_running; 4332 4333 return sum; 4334 } 4335 4336 /* 4337 * Check if only the current task is running on the CPU. 4338 * 4339 * Caution: this function does not check that the caller has disabled 4340 * preemption, thus the result might have a time-of-check-to-time-of-use 4341 * race. The caller is responsible to use it correctly, for example: 4342 * 4343 * - from a non-preemptible section (of course) 4344 * 4345 * - from a thread that is bound to a single CPU 4346 * 4347 * - in a loop with very short iterations (e.g. a polling loop) 4348 */ 4349 bool single_task_running(void) 4350 { 4351 return raw_rq()->nr_running == 1; 4352 } 4353 EXPORT_SYMBOL(single_task_running); 4354 4355 unsigned long long nr_context_switches(void) 4356 { 4357 int i; 4358 unsigned long long sum = 0; 4359 4360 for_each_possible_cpu(i) 4361 sum += cpu_rq(i)->nr_switches; 4362 4363 return sum; 4364 } 4365 4366 /* 4367 * Consumers of these two interfaces, like for example the cpuidle menu 4368 * governor, are using nonsensical data. Preferring shallow idle state selection 4369 * for a CPU that has IO-wait which might not even end up running the task when 4370 * it does become runnable. 4371 */ 4372 4373 unsigned long nr_iowait_cpu(int cpu) 4374 { 4375 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4376 } 4377 4378 /* 4379 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4380 * 4381 * The idea behind IO-wait account is to account the idle time that we could 4382 * have spend running if it were not for IO. That is, if we were to improve the 4383 * storage performance, we'd have a proportional reduction in IO-wait time. 4384 * 4385 * This all works nicely on UP, where, when a task blocks on IO, we account 4386 * idle time as IO-wait, because if the storage were faster, it could've been 4387 * running and we'd not be idle. 4388 * 4389 * This has been extended to SMP, by doing the same for each CPU. This however 4390 * is broken. 4391 * 4392 * Imagine for instance the case where two tasks block on one CPU, only the one 4393 * CPU will have IO-wait accounted, while the other has regular idle. Even 4394 * though, if the storage were faster, both could've ran at the same time, 4395 * utilising both CPUs. 4396 * 4397 * This means, that when looking globally, the current IO-wait accounting on 4398 * SMP is a lower bound, by reason of under accounting. 4399 * 4400 * Worse, since the numbers are provided per CPU, they are sometimes 4401 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4402 * associated with any one particular CPU, it can wake to another CPU than it 4403 * blocked on. This means the per CPU IO-wait number is meaningless. 4404 * 4405 * Task CPU affinities can make all that even more 'interesting'. 4406 */ 4407 4408 unsigned long nr_iowait(void) 4409 { 4410 unsigned long i, sum = 0; 4411 4412 for_each_possible_cpu(i) 4413 sum += nr_iowait_cpu(i); 4414 4415 return sum; 4416 } 4417 4418 #ifdef CONFIG_SMP 4419 4420 /* 4421 * sched_exec - execve() is a valuable balancing opportunity, because at 4422 * this point the task has the smallest effective memory and cache footprint. 4423 */ 4424 void sched_exec(void) 4425 { 4426 struct task_struct *p = current; 4427 unsigned long flags; 4428 int dest_cpu; 4429 4430 raw_spin_lock_irqsave(&p->pi_lock, flags); 4431 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4432 if (dest_cpu == smp_processor_id()) 4433 goto unlock; 4434 4435 if (likely(cpu_active(dest_cpu))) { 4436 struct migration_arg arg = { p, dest_cpu }; 4437 4438 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4439 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4440 return; 4441 } 4442 unlock: 4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4444 } 4445 4446 #endif 4447 4448 DEFINE_PER_CPU(struct kernel_stat, kstat); 4449 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4450 4451 EXPORT_PER_CPU_SYMBOL(kstat); 4452 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4453 4454 /* 4455 * The function fair_sched_class.update_curr accesses the struct curr 4456 * and its field curr->exec_start; when called from task_sched_runtime(), 4457 * we observe a high rate of cache misses in practice. 4458 * Prefetching this data results in improved performance. 4459 */ 4460 static inline void prefetch_curr_exec_start(struct task_struct *p) 4461 { 4462 #ifdef CONFIG_FAIR_GROUP_SCHED 4463 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4464 #else 4465 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4466 #endif 4467 prefetch(curr); 4468 prefetch(&curr->exec_start); 4469 } 4470 4471 /* 4472 * Return accounted runtime for the task. 4473 * In case the task is currently running, return the runtime plus current's 4474 * pending runtime that have not been accounted yet. 4475 */ 4476 unsigned long long task_sched_runtime(struct task_struct *p) 4477 { 4478 struct rq_flags rf; 4479 struct rq *rq; 4480 u64 ns; 4481 4482 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4483 /* 4484 * 64-bit doesn't need locks to atomically read a 64-bit value. 4485 * So we have a optimization chance when the task's delta_exec is 0. 4486 * Reading ->on_cpu is racy, but this is ok. 4487 * 4488 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4489 * If we race with it entering CPU, unaccounted time is 0. This is 4490 * indistinguishable from the read occurring a few cycles earlier. 4491 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4492 * been accounted, so we're correct here as well. 4493 */ 4494 if (!p->on_cpu || !task_on_rq_queued(p)) 4495 return p->se.sum_exec_runtime; 4496 #endif 4497 4498 rq = task_rq_lock(p, &rf); 4499 /* 4500 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4501 * project cycles that may never be accounted to this 4502 * thread, breaking clock_gettime(). 4503 */ 4504 if (task_current(rq, p) && task_on_rq_queued(p)) { 4505 prefetch_curr_exec_start(p); 4506 update_rq_clock(rq); 4507 p->sched_class->update_curr(rq); 4508 } 4509 ns = p->se.sum_exec_runtime; 4510 task_rq_unlock(rq, p, &rf); 4511 4512 return ns; 4513 } 4514 4515 /* 4516 * This function gets called by the timer code, with HZ frequency. 4517 * We call it with interrupts disabled. 4518 */ 4519 void scheduler_tick(void) 4520 { 4521 int cpu = smp_processor_id(); 4522 struct rq *rq = cpu_rq(cpu); 4523 struct task_struct *curr = rq->curr; 4524 struct rq_flags rf; 4525 unsigned long thermal_pressure; 4526 4527 arch_scale_freq_tick(); 4528 sched_clock_tick(); 4529 4530 rq_lock(rq, &rf); 4531 4532 update_rq_clock(rq); 4533 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4534 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4535 curr->sched_class->task_tick(rq, curr, 0); 4536 calc_global_load_tick(rq); 4537 psi_task_tick(rq); 4538 4539 rq_unlock(rq, &rf); 4540 4541 perf_event_task_tick(); 4542 4543 #ifdef CONFIG_SMP 4544 rq->idle_balance = idle_cpu(cpu); 4545 trigger_load_balance(rq); 4546 #endif 4547 } 4548 4549 #ifdef CONFIG_NO_HZ_FULL 4550 4551 struct tick_work { 4552 int cpu; 4553 atomic_t state; 4554 struct delayed_work work; 4555 }; 4556 /* Values for ->state, see diagram below. */ 4557 #define TICK_SCHED_REMOTE_OFFLINE 0 4558 #define TICK_SCHED_REMOTE_OFFLINING 1 4559 #define TICK_SCHED_REMOTE_RUNNING 2 4560 4561 /* 4562 * State diagram for ->state: 4563 * 4564 * 4565 * TICK_SCHED_REMOTE_OFFLINE 4566 * | ^ 4567 * | | 4568 * | | sched_tick_remote() 4569 * | | 4570 * | | 4571 * +--TICK_SCHED_REMOTE_OFFLINING 4572 * | ^ 4573 * | | 4574 * sched_tick_start() | | sched_tick_stop() 4575 * | | 4576 * V | 4577 * TICK_SCHED_REMOTE_RUNNING 4578 * 4579 * 4580 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4581 * and sched_tick_start() are happy to leave the state in RUNNING. 4582 */ 4583 4584 static struct tick_work __percpu *tick_work_cpu; 4585 4586 static void sched_tick_remote(struct work_struct *work) 4587 { 4588 struct delayed_work *dwork = to_delayed_work(work); 4589 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4590 int cpu = twork->cpu; 4591 struct rq *rq = cpu_rq(cpu); 4592 struct task_struct *curr; 4593 struct rq_flags rf; 4594 u64 delta; 4595 int os; 4596 4597 /* 4598 * Handle the tick only if it appears the remote CPU is running in full 4599 * dynticks mode. The check is racy by nature, but missing a tick or 4600 * having one too much is no big deal because the scheduler tick updates 4601 * statistics and checks timeslices in a time-independent way, regardless 4602 * of when exactly it is running. 4603 */ 4604 if (!tick_nohz_tick_stopped_cpu(cpu)) 4605 goto out_requeue; 4606 4607 rq_lock_irq(rq, &rf); 4608 curr = rq->curr; 4609 if (cpu_is_offline(cpu)) 4610 goto out_unlock; 4611 4612 update_rq_clock(rq); 4613 4614 if (!is_idle_task(curr)) { 4615 /* 4616 * Make sure the next tick runs within a reasonable 4617 * amount of time. 4618 */ 4619 delta = rq_clock_task(rq) - curr->se.exec_start; 4620 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4621 } 4622 curr->sched_class->task_tick(rq, curr, 0); 4623 4624 calc_load_nohz_remote(rq); 4625 out_unlock: 4626 rq_unlock_irq(rq, &rf); 4627 out_requeue: 4628 4629 /* 4630 * Run the remote tick once per second (1Hz). This arbitrary 4631 * frequency is large enough to avoid overload but short enough 4632 * to keep scheduler internal stats reasonably up to date. But 4633 * first update state to reflect hotplug activity if required. 4634 */ 4635 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4636 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4637 if (os == TICK_SCHED_REMOTE_RUNNING) 4638 queue_delayed_work(system_unbound_wq, dwork, HZ); 4639 } 4640 4641 static void sched_tick_start(int cpu) 4642 { 4643 int os; 4644 struct tick_work *twork; 4645 4646 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4647 return; 4648 4649 WARN_ON_ONCE(!tick_work_cpu); 4650 4651 twork = per_cpu_ptr(tick_work_cpu, cpu); 4652 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4653 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4654 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4655 twork->cpu = cpu; 4656 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4657 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4658 } 4659 } 4660 4661 #ifdef CONFIG_HOTPLUG_CPU 4662 static void sched_tick_stop(int cpu) 4663 { 4664 struct tick_work *twork; 4665 int os; 4666 4667 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4668 return; 4669 4670 WARN_ON_ONCE(!tick_work_cpu); 4671 4672 twork = per_cpu_ptr(tick_work_cpu, cpu); 4673 /* There cannot be competing actions, but don't rely on stop-machine. */ 4674 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4675 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4676 /* Don't cancel, as this would mess up the state machine. */ 4677 } 4678 #endif /* CONFIG_HOTPLUG_CPU */ 4679 4680 int __init sched_tick_offload_init(void) 4681 { 4682 tick_work_cpu = alloc_percpu(struct tick_work); 4683 BUG_ON(!tick_work_cpu); 4684 return 0; 4685 } 4686 4687 #else /* !CONFIG_NO_HZ_FULL */ 4688 static inline void sched_tick_start(int cpu) { } 4689 static inline void sched_tick_stop(int cpu) { } 4690 #endif 4691 4692 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4693 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4694 /* 4695 * If the value passed in is equal to the current preempt count 4696 * then we just disabled preemption. Start timing the latency. 4697 */ 4698 static inline void preempt_latency_start(int val) 4699 { 4700 if (preempt_count() == val) { 4701 unsigned long ip = get_lock_parent_ip(); 4702 #ifdef CONFIG_DEBUG_PREEMPT 4703 current->preempt_disable_ip = ip; 4704 #endif 4705 trace_preempt_off(CALLER_ADDR0, ip); 4706 } 4707 } 4708 4709 void preempt_count_add(int val) 4710 { 4711 #ifdef CONFIG_DEBUG_PREEMPT 4712 /* 4713 * Underflow? 4714 */ 4715 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4716 return; 4717 #endif 4718 __preempt_count_add(val); 4719 #ifdef CONFIG_DEBUG_PREEMPT 4720 /* 4721 * Spinlock count overflowing soon? 4722 */ 4723 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4724 PREEMPT_MASK - 10); 4725 #endif 4726 preempt_latency_start(val); 4727 } 4728 EXPORT_SYMBOL(preempt_count_add); 4729 NOKPROBE_SYMBOL(preempt_count_add); 4730 4731 /* 4732 * If the value passed in equals to the current preempt count 4733 * then we just enabled preemption. Stop timing the latency. 4734 */ 4735 static inline void preempt_latency_stop(int val) 4736 { 4737 if (preempt_count() == val) 4738 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4739 } 4740 4741 void preempt_count_sub(int val) 4742 { 4743 #ifdef CONFIG_DEBUG_PREEMPT 4744 /* 4745 * Underflow? 4746 */ 4747 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4748 return; 4749 /* 4750 * Is the spinlock portion underflowing? 4751 */ 4752 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4753 !(preempt_count() & PREEMPT_MASK))) 4754 return; 4755 #endif 4756 4757 preempt_latency_stop(val); 4758 __preempt_count_sub(val); 4759 } 4760 EXPORT_SYMBOL(preempt_count_sub); 4761 NOKPROBE_SYMBOL(preempt_count_sub); 4762 4763 #else 4764 static inline void preempt_latency_start(int val) { } 4765 static inline void preempt_latency_stop(int val) { } 4766 #endif 4767 4768 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4769 { 4770 #ifdef CONFIG_DEBUG_PREEMPT 4771 return p->preempt_disable_ip; 4772 #else 4773 return 0; 4774 #endif 4775 } 4776 4777 /* 4778 * Print scheduling while atomic bug: 4779 */ 4780 static noinline void __schedule_bug(struct task_struct *prev) 4781 { 4782 /* Save this before calling printk(), since that will clobber it */ 4783 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4784 4785 if (oops_in_progress) 4786 return; 4787 4788 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4789 prev->comm, prev->pid, preempt_count()); 4790 4791 debug_show_held_locks(prev); 4792 print_modules(); 4793 if (irqs_disabled()) 4794 print_irqtrace_events(prev); 4795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4796 && in_atomic_preempt_off()) { 4797 pr_err("Preemption disabled at:"); 4798 print_ip_sym(KERN_ERR, preempt_disable_ip); 4799 } 4800 if (panic_on_warn) 4801 panic("scheduling while atomic\n"); 4802 4803 dump_stack(); 4804 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4805 } 4806 4807 /* 4808 * Various schedule()-time debugging checks and statistics: 4809 */ 4810 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4811 { 4812 #ifdef CONFIG_SCHED_STACK_END_CHECK 4813 if (task_stack_end_corrupted(prev)) 4814 panic("corrupted stack end detected inside scheduler\n"); 4815 4816 if (task_scs_end_corrupted(prev)) 4817 panic("corrupted shadow stack detected inside scheduler\n"); 4818 #endif 4819 4820 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4821 if (!preempt && prev->state && prev->non_block_count) { 4822 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4823 prev->comm, prev->pid, prev->non_block_count); 4824 dump_stack(); 4825 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4826 } 4827 #endif 4828 4829 if (unlikely(in_atomic_preempt_off())) { 4830 __schedule_bug(prev); 4831 preempt_count_set(PREEMPT_DISABLED); 4832 } 4833 rcu_sleep_check(); 4834 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4835 4836 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4837 4838 schedstat_inc(this_rq()->sched_count); 4839 } 4840 4841 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4842 struct rq_flags *rf) 4843 { 4844 #ifdef CONFIG_SMP 4845 const struct sched_class *class; 4846 /* 4847 * We must do the balancing pass before put_prev_task(), such 4848 * that when we release the rq->lock the task is in the same 4849 * state as before we took rq->lock. 4850 * 4851 * We can terminate the balance pass as soon as we know there is 4852 * a runnable task of @class priority or higher. 4853 */ 4854 for_class_range(class, prev->sched_class, &idle_sched_class) { 4855 if (class->balance(rq, prev, rf)) 4856 break; 4857 } 4858 #endif 4859 4860 put_prev_task(rq, prev); 4861 } 4862 4863 /* 4864 * Pick up the highest-prio task: 4865 */ 4866 static inline struct task_struct * 4867 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4868 { 4869 const struct sched_class *class; 4870 struct task_struct *p; 4871 4872 /* 4873 * Optimization: we know that if all tasks are in the fair class we can 4874 * call that function directly, but only if the @prev task wasn't of a 4875 * higher scheduling class, because otherwise those lose the 4876 * opportunity to pull in more work from other CPUs. 4877 */ 4878 if (likely(prev->sched_class <= &fair_sched_class && 4879 rq->nr_running == rq->cfs.h_nr_running)) { 4880 4881 p = pick_next_task_fair(rq, prev, rf); 4882 if (unlikely(p == RETRY_TASK)) 4883 goto restart; 4884 4885 /* Assumes fair_sched_class->next == idle_sched_class */ 4886 if (!p) { 4887 put_prev_task(rq, prev); 4888 p = pick_next_task_idle(rq); 4889 } 4890 4891 return p; 4892 } 4893 4894 restart: 4895 put_prev_task_balance(rq, prev, rf); 4896 4897 for_each_class(class) { 4898 p = class->pick_next_task(rq); 4899 if (p) 4900 return p; 4901 } 4902 4903 /* The idle class should always have a runnable task: */ 4904 BUG(); 4905 } 4906 4907 /* 4908 * __schedule() is the main scheduler function. 4909 * 4910 * The main means of driving the scheduler and thus entering this function are: 4911 * 4912 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4913 * 4914 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4915 * paths. For example, see arch/x86/entry_64.S. 4916 * 4917 * To drive preemption between tasks, the scheduler sets the flag in timer 4918 * interrupt handler scheduler_tick(). 4919 * 4920 * 3. Wakeups don't really cause entry into schedule(). They add a 4921 * task to the run-queue and that's it. 4922 * 4923 * Now, if the new task added to the run-queue preempts the current 4924 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4925 * called on the nearest possible occasion: 4926 * 4927 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4928 * 4929 * - in syscall or exception context, at the next outmost 4930 * preempt_enable(). (this might be as soon as the wake_up()'s 4931 * spin_unlock()!) 4932 * 4933 * - in IRQ context, return from interrupt-handler to 4934 * preemptible context 4935 * 4936 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4937 * then at the next: 4938 * 4939 * - cond_resched() call 4940 * - explicit schedule() call 4941 * - return from syscall or exception to user-space 4942 * - return from interrupt-handler to user-space 4943 * 4944 * WARNING: must be called with preemption disabled! 4945 */ 4946 static void __sched notrace __schedule(bool preempt) 4947 { 4948 struct task_struct *prev, *next; 4949 unsigned long *switch_count; 4950 unsigned long prev_state; 4951 struct rq_flags rf; 4952 struct rq *rq; 4953 int cpu; 4954 4955 cpu = smp_processor_id(); 4956 rq = cpu_rq(cpu); 4957 prev = rq->curr; 4958 4959 schedule_debug(prev, preempt); 4960 4961 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 4962 hrtick_clear(rq); 4963 4964 local_irq_disable(); 4965 rcu_note_context_switch(preempt); 4966 4967 /* 4968 * Make sure that signal_pending_state()->signal_pending() below 4969 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4970 * done by the caller to avoid the race with signal_wake_up(): 4971 * 4972 * __set_current_state(@state) signal_wake_up() 4973 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4974 * wake_up_state(p, state) 4975 * LOCK rq->lock LOCK p->pi_state 4976 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4977 * if (signal_pending_state()) if (p->state & @state) 4978 * 4979 * Also, the membarrier system call requires a full memory barrier 4980 * after coming from user-space, before storing to rq->curr. 4981 */ 4982 rq_lock(rq, &rf); 4983 smp_mb__after_spinlock(); 4984 4985 /* Promote REQ to ACT */ 4986 rq->clock_update_flags <<= 1; 4987 update_rq_clock(rq); 4988 4989 switch_count = &prev->nivcsw; 4990 4991 /* 4992 * We must load prev->state once (task_struct::state is volatile), such 4993 * that: 4994 * 4995 * - we form a control dependency vs deactivate_task() below. 4996 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 4997 */ 4998 prev_state = prev->state; 4999 if (!preempt && prev_state) { 5000 if (signal_pending_state(prev_state, prev)) { 5001 prev->state = TASK_RUNNING; 5002 } else { 5003 prev->sched_contributes_to_load = 5004 (prev_state & TASK_UNINTERRUPTIBLE) && 5005 !(prev_state & TASK_NOLOAD) && 5006 !(prev->flags & PF_FROZEN); 5007 5008 if (prev->sched_contributes_to_load) 5009 rq->nr_uninterruptible++; 5010 5011 /* 5012 * __schedule() ttwu() 5013 * prev_state = prev->state; if (p->on_rq && ...) 5014 * if (prev_state) goto out; 5015 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5016 * p->state = TASK_WAKING 5017 * 5018 * Where __schedule() and ttwu() have matching control dependencies. 5019 * 5020 * After this, schedule() must not care about p->state any more. 5021 */ 5022 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5023 5024 if (prev->in_iowait) { 5025 atomic_inc(&rq->nr_iowait); 5026 delayacct_blkio_start(); 5027 } 5028 } 5029 switch_count = &prev->nvcsw; 5030 } 5031 5032 next = pick_next_task(rq, prev, &rf); 5033 clear_tsk_need_resched(prev); 5034 clear_preempt_need_resched(); 5035 5036 if (likely(prev != next)) { 5037 rq->nr_switches++; 5038 /* 5039 * RCU users of rcu_dereference(rq->curr) may not see 5040 * changes to task_struct made by pick_next_task(). 5041 */ 5042 RCU_INIT_POINTER(rq->curr, next); 5043 /* 5044 * The membarrier system call requires each architecture 5045 * to have a full memory barrier after updating 5046 * rq->curr, before returning to user-space. 5047 * 5048 * Here are the schemes providing that barrier on the 5049 * various architectures: 5050 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5051 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5052 * - finish_lock_switch() for weakly-ordered 5053 * architectures where spin_unlock is a full barrier, 5054 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5055 * is a RELEASE barrier), 5056 */ 5057 ++*switch_count; 5058 5059 migrate_disable_switch(rq, prev); 5060 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5061 5062 trace_sched_switch(preempt, prev, next); 5063 5064 /* Also unlocks the rq: */ 5065 rq = context_switch(rq, prev, next, &rf); 5066 } else { 5067 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5068 5069 rq_unpin_lock(rq, &rf); 5070 __balance_callbacks(rq); 5071 raw_spin_unlock_irq(&rq->lock); 5072 } 5073 } 5074 5075 void __noreturn do_task_dead(void) 5076 { 5077 /* Causes final put_task_struct in finish_task_switch(): */ 5078 set_special_state(TASK_DEAD); 5079 5080 /* Tell freezer to ignore us: */ 5081 current->flags |= PF_NOFREEZE; 5082 5083 __schedule(false); 5084 BUG(); 5085 5086 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5087 for (;;) 5088 cpu_relax(); 5089 } 5090 5091 static inline void sched_submit_work(struct task_struct *tsk) 5092 { 5093 unsigned int task_flags; 5094 5095 if (!tsk->state) 5096 return; 5097 5098 task_flags = tsk->flags; 5099 /* 5100 * If a worker went to sleep, notify and ask workqueue whether 5101 * it wants to wake up a task to maintain concurrency. 5102 * As this function is called inside the schedule() context, 5103 * we disable preemption to avoid it calling schedule() again 5104 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5105 * requires it. 5106 */ 5107 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5108 preempt_disable(); 5109 if (task_flags & PF_WQ_WORKER) 5110 wq_worker_sleeping(tsk); 5111 else 5112 io_wq_worker_sleeping(tsk); 5113 preempt_enable_no_resched(); 5114 } 5115 5116 if (tsk_is_pi_blocked(tsk)) 5117 return; 5118 5119 /* 5120 * If we are going to sleep and we have plugged IO queued, 5121 * make sure to submit it to avoid deadlocks. 5122 */ 5123 if (blk_needs_flush_plug(tsk)) 5124 blk_schedule_flush_plug(tsk); 5125 } 5126 5127 static void sched_update_worker(struct task_struct *tsk) 5128 { 5129 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5130 if (tsk->flags & PF_WQ_WORKER) 5131 wq_worker_running(tsk); 5132 else 5133 io_wq_worker_running(tsk); 5134 } 5135 } 5136 5137 asmlinkage __visible void __sched schedule(void) 5138 { 5139 struct task_struct *tsk = current; 5140 5141 sched_submit_work(tsk); 5142 do { 5143 preempt_disable(); 5144 __schedule(false); 5145 sched_preempt_enable_no_resched(); 5146 } while (need_resched()); 5147 sched_update_worker(tsk); 5148 } 5149 EXPORT_SYMBOL(schedule); 5150 5151 /* 5152 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5153 * state (have scheduled out non-voluntarily) by making sure that all 5154 * tasks have either left the run queue or have gone into user space. 5155 * As idle tasks do not do either, they must not ever be preempted 5156 * (schedule out non-voluntarily). 5157 * 5158 * schedule_idle() is similar to schedule_preempt_disable() except that it 5159 * never enables preemption because it does not call sched_submit_work(). 5160 */ 5161 void __sched schedule_idle(void) 5162 { 5163 /* 5164 * As this skips calling sched_submit_work(), which the idle task does 5165 * regardless because that function is a nop when the task is in a 5166 * TASK_RUNNING state, make sure this isn't used someplace that the 5167 * current task can be in any other state. Note, idle is always in the 5168 * TASK_RUNNING state. 5169 */ 5170 WARN_ON_ONCE(current->state); 5171 do { 5172 __schedule(false); 5173 } while (need_resched()); 5174 } 5175 5176 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5177 asmlinkage __visible void __sched schedule_user(void) 5178 { 5179 /* 5180 * If we come here after a random call to set_need_resched(), 5181 * or we have been woken up remotely but the IPI has not yet arrived, 5182 * we haven't yet exited the RCU idle mode. Do it here manually until 5183 * we find a better solution. 5184 * 5185 * NB: There are buggy callers of this function. Ideally we 5186 * should warn if prev_state != CONTEXT_USER, but that will trigger 5187 * too frequently to make sense yet. 5188 */ 5189 enum ctx_state prev_state = exception_enter(); 5190 schedule(); 5191 exception_exit(prev_state); 5192 } 5193 #endif 5194 5195 /** 5196 * schedule_preempt_disabled - called with preemption disabled 5197 * 5198 * Returns with preemption disabled. Note: preempt_count must be 1 5199 */ 5200 void __sched schedule_preempt_disabled(void) 5201 { 5202 sched_preempt_enable_no_resched(); 5203 schedule(); 5204 preempt_disable(); 5205 } 5206 5207 static void __sched notrace preempt_schedule_common(void) 5208 { 5209 do { 5210 /* 5211 * Because the function tracer can trace preempt_count_sub() 5212 * and it also uses preempt_enable/disable_notrace(), if 5213 * NEED_RESCHED is set, the preempt_enable_notrace() called 5214 * by the function tracer will call this function again and 5215 * cause infinite recursion. 5216 * 5217 * Preemption must be disabled here before the function 5218 * tracer can trace. Break up preempt_disable() into two 5219 * calls. One to disable preemption without fear of being 5220 * traced. The other to still record the preemption latency, 5221 * which can also be traced by the function tracer. 5222 */ 5223 preempt_disable_notrace(); 5224 preempt_latency_start(1); 5225 __schedule(true); 5226 preempt_latency_stop(1); 5227 preempt_enable_no_resched_notrace(); 5228 5229 /* 5230 * Check again in case we missed a preemption opportunity 5231 * between schedule and now. 5232 */ 5233 } while (need_resched()); 5234 } 5235 5236 #ifdef CONFIG_PREEMPTION 5237 /* 5238 * This is the entry point to schedule() from in-kernel preemption 5239 * off of preempt_enable. 5240 */ 5241 asmlinkage __visible void __sched notrace preempt_schedule(void) 5242 { 5243 /* 5244 * If there is a non-zero preempt_count or interrupts are disabled, 5245 * we do not want to preempt the current task. Just return.. 5246 */ 5247 if (likely(!preemptible())) 5248 return; 5249 5250 preempt_schedule_common(); 5251 } 5252 NOKPROBE_SYMBOL(preempt_schedule); 5253 EXPORT_SYMBOL(preempt_schedule); 5254 5255 #ifdef CONFIG_PREEMPT_DYNAMIC 5256 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 5257 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 5258 #endif 5259 5260 5261 /** 5262 * preempt_schedule_notrace - preempt_schedule called by tracing 5263 * 5264 * The tracing infrastructure uses preempt_enable_notrace to prevent 5265 * recursion and tracing preempt enabling caused by the tracing 5266 * infrastructure itself. But as tracing can happen in areas coming 5267 * from userspace or just about to enter userspace, a preempt enable 5268 * can occur before user_exit() is called. This will cause the scheduler 5269 * to be called when the system is still in usermode. 5270 * 5271 * To prevent this, the preempt_enable_notrace will use this function 5272 * instead of preempt_schedule() to exit user context if needed before 5273 * calling the scheduler. 5274 */ 5275 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5276 { 5277 enum ctx_state prev_ctx; 5278 5279 if (likely(!preemptible())) 5280 return; 5281 5282 do { 5283 /* 5284 * Because the function tracer can trace preempt_count_sub() 5285 * and it also uses preempt_enable/disable_notrace(), if 5286 * NEED_RESCHED is set, the preempt_enable_notrace() called 5287 * by the function tracer will call this function again and 5288 * cause infinite recursion. 5289 * 5290 * Preemption must be disabled here before the function 5291 * tracer can trace. Break up preempt_disable() into two 5292 * calls. One to disable preemption without fear of being 5293 * traced. The other to still record the preemption latency, 5294 * which can also be traced by the function tracer. 5295 */ 5296 preempt_disable_notrace(); 5297 preempt_latency_start(1); 5298 /* 5299 * Needs preempt disabled in case user_exit() is traced 5300 * and the tracer calls preempt_enable_notrace() causing 5301 * an infinite recursion. 5302 */ 5303 prev_ctx = exception_enter(); 5304 __schedule(true); 5305 exception_exit(prev_ctx); 5306 5307 preempt_latency_stop(1); 5308 preempt_enable_no_resched_notrace(); 5309 } while (need_resched()); 5310 } 5311 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5312 5313 #ifdef CONFIG_PREEMPT_DYNAMIC 5314 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5315 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 5316 #endif 5317 5318 #endif /* CONFIG_PREEMPTION */ 5319 5320 #ifdef CONFIG_PREEMPT_DYNAMIC 5321 5322 #include <linux/entry-common.h> 5323 5324 /* 5325 * SC:cond_resched 5326 * SC:might_resched 5327 * SC:preempt_schedule 5328 * SC:preempt_schedule_notrace 5329 * SC:irqentry_exit_cond_resched 5330 * 5331 * 5332 * NONE: 5333 * cond_resched <- __cond_resched 5334 * might_resched <- RET0 5335 * preempt_schedule <- NOP 5336 * preempt_schedule_notrace <- NOP 5337 * irqentry_exit_cond_resched <- NOP 5338 * 5339 * VOLUNTARY: 5340 * cond_resched <- __cond_resched 5341 * might_resched <- __cond_resched 5342 * preempt_schedule <- NOP 5343 * preempt_schedule_notrace <- NOP 5344 * irqentry_exit_cond_resched <- NOP 5345 * 5346 * FULL: 5347 * cond_resched <- RET0 5348 * might_resched <- RET0 5349 * preempt_schedule <- preempt_schedule 5350 * preempt_schedule_notrace <- preempt_schedule_notrace 5351 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 5352 */ 5353 5354 enum { 5355 preempt_dynamic_none = 0, 5356 preempt_dynamic_voluntary, 5357 preempt_dynamic_full, 5358 }; 5359 5360 static int preempt_dynamic_mode = preempt_dynamic_full; 5361 5362 static int sched_dynamic_mode(const char *str) 5363 { 5364 if (!strcmp(str, "none")) 5365 return 0; 5366 5367 if (!strcmp(str, "voluntary")) 5368 return 1; 5369 5370 if (!strcmp(str, "full")) 5371 return 2; 5372 5373 return -1; 5374 } 5375 5376 static void sched_dynamic_update(int mode) 5377 { 5378 /* 5379 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 5380 * the ZERO state, which is invalid. 5381 */ 5382 static_call_update(cond_resched, __cond_resched); 5383 static_call_update(might_resched, __cond_resched); 5384 static_call_update(preempt_schedule, __preempt_schedule_func); 5385 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5386 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5387 5388 switch (mode) { 5389 case preempt_dynamic_none: 5390 static_call_update(cond_resched, __cond_resched); 5391 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5392 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5393 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5394 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5395 pr_info("Dynamic Preempt: none\n"); 5396 break; 5397 5398 case preempt_dynamic_voluntary: 5399 static_call_update(cond_resched, __cond_resched); 5400 static_call_update(might_resched, __cond_resched); 5401 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5402 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5403 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5404 pr_info("Dynamic Preempt: voluntary\n"); 5405 break; 5406 5407 case preempt_dynamic_full: 5408 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0); 5409 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5410 static_call_update(preempt_schedule, __preempt_schedule_func); 5411 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5412 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5413 pr_info("Dynamic Preempt: full\n"); 5414 break; 5415 } 5416 5417 preempt_dynamic_mode = mode; 5418 } 5419 5420 static int __init setup_preempt_mode(char *str) 5421 { 5422 int mode = sched_dynamic_mode(str); 5423 if (mode < 0) { 5424 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 5425 return 1; 5426 } 5427 5428 sched_dynamic_update(mode); 5429 return 0; 5430 } 5431 __setup("preempt=", setup_preempt_mode); 5432 5433 #ifdef CONFIG_SCHED_DEBUG 5434 5435 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 5436 size_t cnt, loff_t *ppos) 5437 { 5438 char buf[16]; 5439 int mode; 5440 5441 if (cnt > 15) 5442 cnt = 15; 5443 5444 if (copy_from_user(&buf, ubuf, cnt)) 5445 return -EFAULT; 5446 5447 buf[cnt] = 0; 5448 mode = sched_dynamic_mode(strstrip(buf)); 5449 if (mode < 0) 5450 return mode; 5451 5452 sched_dynamic_update(mode); 5453 5454 *ppos += cnt; 5455 5456 return cnt; 5457 } 5458 5459 static int sched_dynamic_show(struct seq_file *m, void *v) 5460 { 5461 static const char * preempt_modes[] = { 5462 "none", "voluntary", "full" 5463 }; 5464 int i; 5465 5466 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 5467 if (preempt_dynamic_mode == i) 5468 seq_puts(m, "("); 5469 seq_puts(m, preempt_modes[i]); 5470 if (preempt_dynamic_mode == i) 5471 seq_puts(m, ")"); 5472 5473 seq_puts(m, " "); 5474 } 5475 5476 seq_puts(m, "\n"); 5477 return 0; 5478 } 5479 5480 static int sched_dynamic_open(struct inode *inode, struct file *filp) 5481 { 5482 return single_open(filp, sched_dynamic_show, NULL); 5483 } 5484 5485 static const struct file_operations sched_dynamic_fops = { 5486 .open = sched_dynamic_open, 5487 .write = sched_dynamic_write, 5488 .read = seq_read, 5489 .llseek = seq_lseek, 5490 .release = single_release, 5491 }; 5492 5493 static __init int sched_init_debug_dynamic(void) 5494 { 5495 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops); 5496 return 0; 5497 } 5498 late_initcall(sched_init_debug_dynamic); 5499 5500 #endif /* CONFIG_SCHED_DEBUG */ 5501 #endif /* CONFIG_PREEMPT_DYNAMIC */ 5502 5503 5504 /* 5505 * This is the entry point to schedule() from kernel preemption 5506 * off of irq context. 5507 * Note, that this is called and return with irqs disabled. This will 5508 * protect us against recursive calling from irq. 5509 */ 5510 asmlinkage __visible void __sched preempt_schedule_irq(void) 5511 { 5512 enum ctx_state prev_state; 5513 5514 /* Catch callers which need to be fixed */ 5515 BUG_ON(preempt_count() || !irqs_disabled()); 5516 5517 prev_state = exception_enter(); 5518 5519 do { 5520 preempt_disable(); 5521 local_irq_enable(); 5522 __schedule(true); 5523 local_irq_disable(); 5524 sched_preempt_enable_no_resched(); 5525 } while (need_resched()); 5526 5527 exception_exit(prev_state); 5528 } 5529 5530 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5531 void *key) 5532 { 5533 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5534 return try_to_wake_up(curr->private, mode, wake_flags); 5535 } 5536 EXPORT_SYMBOL(default_wake_function); 5537 5538 #ifdef CONFIG_RT_MUTEXES 5539 5540 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5541 { 5542 if (pi_task) 5543 prio = min(prio, pi_task->prio); 5544 5545 return prio; 5546 } 5547 5548 static inline int rt_effective_prio(struct task_struct *p, int prio) 5549 { 5550 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5551 5552 return __rt_effective_prio(pi_task, prio); 5553 } 5554 5555 /* 5556 * rt_mutex_setprio - set the current priority of a task 5557 * @p: task to boost 5558 * @pi_task: donor task 5559 * 5560 * This function changes the 'effective' priority of a task. It does 5561 * not touch ->normal_prio like __setscheduler(). 5562 * 5563 * Used by the rt_mutex code to implement priority inheritance 5564 * logic. Call site only calls if the priority of the task changed. 5565 */ 5566 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5567 { 5568 int prio, oldprio, queued, running, queue_flag = 5569 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5570 const struct sched_class *prev_class; 5571 struct rq_flags rf; 5572 struct rq *rq; 5573 5574 /* XXX used to be waiter->prio, not waiter->task->prio */ 5575 prio = __rt_effective_prio(pi_task, p->normal_prio); 5576 5577 /* 5578 * If nothing changed; bail early. 5579 */ 5580 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5581 return; 5582 5583 rq = __task_rq_lock(p, &rf); 5584 update_rq_clock(rq); 5585 /* 5586 * Set under pi_lock && rq->lock, such that the value can be used under 5587 * either lock. 5588 * 5589 * Note that there is loads of tricky to make this pointer cache work 5590 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5591 * ensure a task is de-boosted (pi_task is set to NULL) before the 5592 * task is allowed to run again (and can exit). This ensures the pointer 5593 * points to a blocked task -- which guarantees the task is present. 5594 */ 5595 p->pi_top_task = pi_task; 5596 5597 /* 5598 * For FIFO/RR we only need to set prio, if that matches we're done. 5599 */ 5600 if (prio == p->prio && !dl_prio(prio)) 5601 goto out_unlock; 5602 5603 /* 5604 * Idle task boosting is a nono in general. There is one 5605 * exception, when PREEMPT_RT and NOHZ is active: 5606 * 5607 * The idle task calls get_next_timer_interrupt() and holds 5608 * the timer wheel base->lock on the CPU and another CPU wants 5609 * to access the timer (probably to cancel it). We can safely 5610 * ignore the boosting request, as the idle CPU runs this code 5611 * with interrupts disabled and will complete the lock 5612 * protected section without being interrupted. So there is no 5613 * real need to boost. 5614 */ 5615 if (unlikely(p == rq->idle)) { 5616 WARN_ON(p != rq->curr); 5617 WARN_ON(p->pi_blocked_on); 5618 goto out_unlock; 5619 } 5620 5621 trace_sched_pi_setprio(p, pi_task); 5622 oldprio = p->prio; 5623 5624 if (oldprio == prio) 5625 queue_flag &= ~DEQUEUE_MOVE; 5626 5627 prev_class = p->sched_class; 5628 queued = task_on_rq_queued(p); 5629 running = task_current(rq, p); 5630 if (queued) 5631 dequeue_task(rq, p, queue_flag); 5632 if (running) 5633 put_prev_task(rq, p); 5634 5635 /* 5636 * Boosting condition are: 5637 * 1. -rt task is running and holds mutex A 5638 * --> -dl task blocks on mutex A 5639 * 5640 * 2. -dl task is running and holds mutex A 5641 * --> -dl task blocks on mutex A and could preempt the 5642 * running task 5643 */ 5644 if (dl_prio(prio)) { 5645 if (!dl_prio(p->normal_prio) || 5646 (pi_task && dl_prio(pi_task->prio) && 5647 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5648 p->dl.pi_se = pi_task->dl.pi_se; 5649 queue_flag |= ENQUEUE_REPLENISH; 5650 } else { 5651 p->dl.pi_se = &p->dl; 5652 } 5653 p->sched_class = &dl_sched_class; 5654 } else if (rt_prio(prio)) { 5655 if (dl_prio(oldprio)) 5656 p->dl.pi_se = &p->dl; 5657 if (oldprio < prio) 5658 queue_flag |= ENQUEUE_HEAD; 5659 p->sched_class = &rt_sched_class; 5660 } else { 5661 if (dl_prio(oldprio)) 5662 p->dl.pi_se = &p->dl; 5663 if (rt_prio(oldprio)) 5664 p->rt.timeout = 0; 5665 p->sched_class = &fair_sched_class; 5666 } 5667 5668 p->prio = prio; 5669 5670 if (queued) 5671 enqueue_task(rq, p, queue_flag); 5672 if (running) 5673 set_next_task(rq, p); 5674 5675 check_class_changed(rq, p, prev_class, oldprio); 5676 out_unlock: 5677 /* Avoid rq from going away on us: */ 5678 preempt_disable(); 5679 5680 rq_unpin_lock(rq, &rf); 5681 __balance_callbacks(rq); 5682 raw_spin_unlock(&rq->lock); 5683 5684 preempt_enable(); 5685 } 5686 #else 5687 static inline int rt_effective_prio(struct task_struct *p, int prio) 5688 { 5689 return prio; 5690 } 5691 #endif 5692 5693 void set_user_nice(struct task_struct *p, long nice) 5694 { 5695 bool queued, running; 5696 int old_prio; 5697 struct rq_flags rf; 5698 struct rq *rq; 5699 5700 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5701 return; 5702 /* 5703 * We have to be careful, if called from sys_setpriority(), 5704 * the task might be in the middle of scheduling on another CPU. 5705 */ 5706 rq = task_rq_lock(p, &rf); 5707 update_rq_clock(rq); 5708 5709 /* 5710 * The RT priorities are set via sched_setscheduler(), but we still 5711 * allow the 'normal' nice value to be set - but as expected 5712 * it won't have any effect on scheduling until the task is 5713 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5714 */ 5715 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5716 p->static_prio = NICE_TO_PRIO(nice); 5717 goto out_unlock; 5718 } 5719 queued = task_on_rq_queued(p); 5720 running = task_current(rq, p); 5721 if (queued) 5722 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5723 if (running) 5724 put_prev_task(rq, p); 5725 5726 p->static_prio = NICE_TO_PRIO(nice); 5727 set_load_weight(p, true); 5728 old_prio = p->prio; 5729 p->prio = effective_prio(p); 5730 5731 if (queued) 5732 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5733 if (running) 5734 set_next_task(rq, p); 5735 5736 /* 5737 * If the task increased its priority or is running and 5738 * lowered its priority, then reschedule its CPU: 5739 */ 5740 p->sched_class->prio_changed(rq, p, old_prio); 5741 5742 out_unlock: 5743 task_rq_unlock(rq, p, &rf); 5744 } 5745 EXPORT_SYMBOL(set_user_nice); 5746 5747 /* 5748 * can_nice - check if a task can reduce its nice value 5749 * @p: task 5750 * @nice: nice value 5751 */ 5752 int can_nice(const struct task_struct *p, const int nice) 5753 { 5754 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5755 int nice_rlim = nice_to_rlimit(nice); 5756 5757 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5758 capable(CAP_SYS_NICE)); 5759 } 5760 5761 #ifdef __ARCH_WANT_SYS_NICE 5762 5763 /* 5764 * sys_nice - change the priority of the current process. 5765 * @increment: priority increment 5766 * 5767 * sys_setpriority is a more generic, but much slower function that 5768 * does similar things. 5769 */ 5770 SYSCALL_DEFINE1(nice, int, increment) 5771 { 5772 long nice, retval; 5773 5774 /* 5775 * Setpriority might change our priority at the same moment. 5776 * We don't have to worry. Conceptually one call occurs first 5777 * and we have a single winner. 5778 */ 5779 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5780 nice = task_nice(current) + increment; 5781 5782 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5783 if (increment < 0 && !can_nice(current, nice)) 5784 return -EPERM; 5785 5786 retval = security_task_setnice(current, nice); 5787 if (retval) 5788 return retval; 5789 5790 set_user_nice(current, nice); 5791 return 0; 5792 } 5793 5794 #endif 5795 5796 /** 5797 * task_prio - return the priority value of a given task. 5798 * @p: the task in question. 5799 * 5800 * Return: The priority value as seen by users in /proc. 5801 * 5802 * sched policy return value kernel prio user prio/nice 5803 * 5804 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 5805 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 5806 * deadline -101 -1 0 5807 */ 5808 int task_prio(const struct task_struct *p) 5809 { 5810 return p->prio - MAX_RT_PRIO; 5811 } 5812 5813 /** 5814 * idle_cpu - is a given CPU idle currently? 5815 * @cpu: the processor in question. 5816 * 5817 * Return: 1 if the CPU is currently idle. 0 otherwise. 5818 */ 5819 int idle_cpu(int cpu) 5820 { 5821 struct rq *rq = cpu_rq(cpu); 5822 5823 if (rq->curr != rq->idle) 5824 return 0; 5825 5826 if (rq->nr_running) 5827 return 0; 5828 5829 #ifdef CONFIG_SMP 5830 if (rq->ttwu_pending) 5831 return 0; 5832 #endif 5833 5834 return 1; 5835 } 5836 5837 /** 5838 * available_idle_cpu - is a given CPU idle for enqueuing work. 5839 * @cpu: the CPU in question. 5840 * 5841 * Return: 1 if the CPU is currently idle. 0 otherwise. 5842 */ 5843 int available_idle_cpu(int cpu) 5844 { 5845 if (!idle_cpu(cpu)) 5846 return 0; 5847 5848 if (vcpu_is_preempted(cpu)) 5849 return 0; 5850 5851 return 1; 5852 } 5853 5854 /** 5855 * idle_task - return the idle task for a given CPU. 5856 * @cpu: the processor in question. 5857 * 5858 * Return: The idle task for the CPU @cpu. 5859 */ 5860 struct task_struct *idle_task(int cpu) 5861 { 5862 return cpu_rq(cpu)->idle; 5863 } 5864 5865 #ifdef CONFIG_SMP 5866 /* 5867 * This function computes an effective utilization for the given CPU, to be 5868 * used for frequency selection given the linear relation: f = u * f_max. 5869 * 5870 * The scheduler tracks the following metrics: 5871 * 5872 * cpu_util_{cfs,rt,dl,irq}() 5873 * cpu_bw_dl() 5874 * 5875 * Where the cfs,rt and dl util numbers are tracked with the same metric and 5876 * synchronized windows and are thus directly comparable. 5877 * 5878 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 5879 * which excludes things like IRQ and steal-time. These latter are then accrued 5880 * in the irq utilization. 5881 * 5882 * The DL bandwidth number otoh is not a measured metric but a value computed 5883 * based on the task model parameters and gives the minimal utilization 5884 * required to meet deadlines. 5885 */ 5886 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 5887 unsigned long max, enum cpu_util_type type, 5888 struct task_struct *p) 5889 { 5890 unsigned long dl_util, util, irq; 5891 struct rq *rq = cpu_rq(cpu); 5892 5893 if (!uclamp_is_used() && 5894 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 5895 return max; 5896 } 5897 5898 /* 5899 * Early check to see if IRQ/steal time saturates the CPU, can be 5900 * because of inaccuracies in how we track these -- see 5901 * update_irq_load_avg(). 5902 */ 5903 irq = cpu_util_irq(rq); 5904 if (unlikely(irq >= max)) 5905 return max; 5906 5907 /* 5908 * Because the time spend on RT/DL tasks is visible as 'lost' time to 5909 * CFS tasks and we use the same metric to track the effective 5910 * utilization (PELT windows are synchronized) we can directly add them 5911 * to obtain the CPU's actual utilization. 5912 * 5913 * CFS and RT utilization can be boosted or capped, depending on 5914 * utilization clamp constraints requested by currently RUNNABLE 5915 * tasks. 5916 * When there are no CFS RUNNABLE tasks, clamps are released and 5917 * frequency will be gracefully reduced with the utilization decay. 5918 */ 5919 util = util_cfs + cpu_util_rt(rq); 5920 if (type == FREQUENCY_UTIL) 5921 util = uclamp_rq_util_with(rq, util, p); 5922 5923 dl_util = cpu_util_dl(rq); 5924 5925 /* 5926 * For frequency selection we do not make cpu_util_dl() a permanent part 5927 * of this sum because we want to use cpu_bw_dl() later on, but we need 5928 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 5929 * that we select f_max when there is no idle time. 5930 * 5931 * NOTE: numerical errors or stop class might cause us to not quite hit 5932 * saturation when we should -- something for later. 5933 */ 5934 if (util + dl_util >= max) 5935 return max; 5936 5937 /* 5938 * OTOH, for energy computation we need the estimated running time, so 5939 * include util_dl and ignore dl_bw. 5940 */ 5941 if (type == ENERGY_UTIL) 5942 util += dl_util; 5943 5944 /* 5945 * There is still idle time; further improve the number by using the 5946 * irq metric. Because IRQ/steal time is hidden from the task clock we 5947 * need to scale the task numbers: 5948 * 5949 * max - irq 5950 * U' = irq + --------- * U 5951 * max 5952 */ 5953 util = scale_irq_capacity(util, irq, max); 5954 util += irq; 5955 5956 /* 5957 * Bandwidth required by DEADLINE must always be granted while, for 5958 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 5959 * to gracefully reduce the frequency when no tasks show up for longer 5960 * periods of time. 5961 * 5962 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 5963 * bw_dl as requested freq. However, cpufreq is not yet ready for such 5964 * an interface. So, we only do the latter for now. 5965 */ 5966 if (type == FREQUENCY_UTIL) 5967 util += cpu_bw_dl(rq); 5968 5969 return min(max, util); 5970 } 5971 5972 unsigned long sched_cpu_util(int cpu, unsigned long max) 5973 { 5974 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 5975 ENERGY_UTIL, NULL); 5976 } 5977 #endif /* CONFIG_SMP */ 5978 5979 /** 5980 * find_process_by_pid - find a process with a matching PID value. 5981 * @pid: the pid in question. 5982 * 5983 * The task of @pid, if found. %NULL otherwise. 5984 */ 5985 static struct task_struct *find_process_by_pid(pid_t pid) 5986 { 5987 return pid ? find_task_by_vpid(pid) : current; 5988 } 5989 5990 /* 5991 * sched_setparam() passes in -1 for its policy, to let the functions 5992 * it calls know not to change it. 5993 */ 5994 #define SETPARAM_POLICY -1 5995 5996 static void __setscheduler_params(struct task_struct *p, 5997 const struct sched_attr *attr) 5998 { 5999 int policy = attr->sched_policy; 6000 6001 if (policy == SETPARAM_POLICY) 6002 policy = p->policy; 6003 6004 p->policy = policy; 6005 6006 if (dl_policy(policy)) 6007 __setparam_dl(p, attr); 6008 else if (fair_policy(policy)) 6009 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6010 6011 /* 6012 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6013 * !rt_policy. Always setting this ensures that things like 6014 * getparam()/getattr() don't report silly values for !rt tasks. 6015 */ 6016 p->rt_priority = attr->sched_priority; 6017 p->normal_prio = normal_prio(p); 6018 set_load_weight(p, true); 6019 } 6020 6021 /* Actually do priority change: must hold pi & rq lock. */ 6022 static void __setscheduler(struct rq *rq, struct task_struct *p, 6023 const struct sched_attr *attr, bool keep_boost) 6024 { 6025 /* 6026 * If params can't change scheduling class changes aren't allowed 6027 * either. 6028 */ 6029 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6030 return; 6031 6032 __setscheduler_params(p, attr); 6033 6034 /* 6035 * Keep a potential priority boosting if called from 6036 * sched_setscheduler(). 6037 */ 6038 p->prio = normal_prio(p); 6039 if (keep_boost) 6040 p->prio = rt_effective_prio(p, p->prio); 6041 6042 if (dl_prio(p->prio)) 6043 p->sched_class = &dl_sched_class; 6044 else if (rt_prio(p->prio)) 6045 p->sched_class = &rt_sched_class; 6046 else 6047 p->sched_class = &fair_sched_class; 6048 } 6049 6050 /* 6051 * Check the target process has a UID that matches the current process's: 6052 */ 6053 static bool check_same_owner(struct task_struct *p) 6054 { 6055 const struct cred *cred = current_cred(), *pcred; 6056 bool match; 6057 6058 rcu_read_lock(); 6059 pcred = __task_cred(p); 6060 match = (uid_eq(cred->euid, pcred->euid) || 6061 uid_eq(cred->euid, pcred->uid)); 6062 rcu_read_unlock(); 6063 return match; 6064 } 6065 6066 static int __sched_setscheduler(struct task_struct *p, 6067 const struct sched_attr *attr, 6068 bool user, bool pi) 6069 { 6070 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6071 MAX_RT_PRIO - 1 - attr->sched_priority; 6072 int retval, oldprio, oldpolicy = -1, queued, running; 6073 int new_effective_prio, policy = attr->sched_policy; 6074 const struct sched_class *prev_class; 6075 struct callback_head *head; 6076 struct rq_flags rf; 6077 int reset_on_fork; 6078 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6079 struct rq *rq; 6080 6081 /* The pi code expects interrupts enabled */ 6082 BUG_ON(pi && in_interrupt()); 6083 recheck: 6084 /* Double check policy once rq lock held: */ 6085 if (policy < 0) { 6086 reset_on_fork = p->sched_reset_on_fork; 6087 policy = oldpolicy = p->policy; 6088 } else { 6089 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6090 6091 if (!valid_policy(policy)) 6092 return -EINVAL; 6093 } 6094 6095 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6096 return -EINVAL; 6097 6098 /* 6099 * Valid priorities for SCHED_FIFO and SCHED_RR are 6100 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6101 * SCHED_BATCH and SCHED_IDLE is 0. 6102 */ 6103 if (attr->sched_priority > MAX_RT_PRIO-1) 6104 return -EINVAL; 6105 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6106 (rt_policy(policy) != (attr->sched_priority != 0))) 6107 return -EINVAL; 6108 6109 /* 6110 * Allow unprivileged RT tasks to decrease priority: 6111 */ 6112 if (user && !capable(CAP_SYS_NICE)) { 6113 if (fair_policy(policy)) { 6114 if (attr->sched_nice < task_nice(p) && 6115 !can_nice(p, attr->sched_nice)) 6116 return -EPERM; 6117 } 6118 6119 if (rt_policy(policy)) { 6120 unsigned long rlim_rtprio = 6121 task_rlimit(p, RLIMIT_RTPRIO); 6122 6123 /* Can't set/change the rt policy: */ 6124 if (policy != p->policy && !rlim_rtprio) 6125 return -EPERM; 6126 6127 /* Can't increase priority: */ 6128 if (attr->sched_priority > p->rt_priority && 6129 attr->sched_priority > rlim_rtprio) 6130 return -EPERM; 6131 } 6132 6133 /* 6134 * Can't set/change SCHED_DEADLINE policy at all for now 6135 * (safest behavior); in the future we would like to allow 6136 * unprivileged DL tasks to increase their relative deadline 6137 * or reduce their runtime (both ways reducing utilization) 6138 */ 6139 if (dl_policy(policy)) 6140 return -EPERM; 6141 6142 /* 6143 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6144 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6145 */ 6146 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6147 if (!can_nice(p, task_nice(p))) 6148 return -EPERM; 6149 } 6150 6151 /* Can't change other user's priorities: */ 6152 if (!check_same_owner(p)) 6153 return -EPERM; 6154 6155 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6156 if (p->sched_reset_on_fork && !reset_on_fork) 6157 return -EPERM; 6158 } 6159 6160 if (user) { 6161 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6162 return -EINVAL; 6163 6164 retval = security_task_setscheduler(p); 6165 if (retval) 6166 return retval; 6167 } 6168 6169 /* Update task specific "requested" clamps */ 6170 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6171 retval = uclamp_validate(p, attr); 6172 if (retval) 6173 return retval; 6174 } 6175 6176 if (pi) 6177 cpuset_read_lock(); 6178 6179 /* 6180 * Make sure no PI-waiters arrive (or leave) while we are 6181 * changing the priority of the task: 6182 * 6183 * To be able to change p->policy safely, the appropriate 6184 * runqueue lock must be held. 6185 */ 6186 rq = task_rq_lock(p, &rf); 6187 update_rq_clock(rq); 6188 6189 /* 6190 * Changing the policy of the stop threads its a very bad idea: 6191 */ 6192 if (p == rq->stop) { 6193 retval = -EINVAL; 6194 goto unlock; 6195 } 6196 6197 /* 6198 * If not changing anything there's no need to proceed further, 6199 * but store a possible modification of reset_on_fork. 6200 */ 6201 if (unlikely(policy == p->policy)) { 6202 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 6203 goto change; 6204 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 6205 goto change; 6206 if (dl_policy(policy) && dl_param_changed(p, attr)) 6207 goto change; 6208 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 6209 goto change; 6210 6211 p->sched_reset_on_fork = reset_on_fork; 6212 retval = 0; 6213 goto unlock; 6214 } 6215 change: 6216 6217 if (user) { 6218 #ifdef CONFIG_RT_GROUP_SCHED 6219 /* 6220 * Do not allow realtime tasks into groups that have no runtime 6221 * assigned. 6222 */ 6223 if (rt_bandwidth_enabled() && rt_policy(policy) && 6224 task_group(p)->rt_bandwidth.rt_runtime == 0 && 6225 !task_group_is_autogroup(task_group(p))) { 6226 retval = -EPERM; 6227 goto unlock; 6228 } 6229 #endif 6230 #ifdef CONFIG_SMP 6231 if (dl_bandwidth_enabled() && dl_policy(policy) && 6232 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 6233 cpumask_t *span = rq->rd->span; 6234 6235 /* 6236 * Don't allow tasks with an affinity mask smaller than 6237 * the entire root_domain to become SCHED_DEADLINE. We 6238 * will also fail if there's no bandwidth available. 6239 */ 6240 if (!cpumask_subset(span, p->cpus_ptr) || 6241 rq->rd->dl_bw.bw == 0) { 6242 retval = -EPERM; 6243 goto unlock; 6244 } 6245 } 6246 #endif 6247 } 6248 6249 /* Re-check policy now with rq lock held: */ 6250 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6251 policy = oldpolicy = -1; 6252 task_rq_unlock(rq, p, &rf); 6253 if (pi) 6254 cpuset_read_unlock(); 6255 goto recheck; 6256 } 6257 6258 /* 6259 * If setscheduling to SCHED_DEADLINE (or changing the parameters 6260 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 6261 * is available. 6262 */ 6263 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 6264 retval = -EBUSY; 6265 goto unlock; 6266 } 6267 6268 p->sched_reset_on_fork = reset_on_fork; 6269 oldprio = p->prio; 6270 6271 if (pi) { 6272 /* 6273 * Take priority boosted tasks into account. If the new 6274 * effective priority is unchanged, we just store the new 6275 * normal parameters and do not touch the scheduler class and 6276 * the runqueue. This will be done when the task deboost 6277 * itself. 6278 */ 6279 new_effective_prio = rt_effective_prio(p, newprio); 6280 if (new_effective_prio == oldprio) 6281 queue_flags &= ~DEQUEUE_MOVE; 6282 } 6283 6284 queued = task_on_rq_queued(p); 6285 running = task_current(rq, p); 6286 if (queued) 6287 dequeue_task(rq, p, queue_flags); 6288 if (running) 6289 put_prev_task(rq, p); 6290 6291 prev_class = p->sched_class; 6292 6293 __setscheduler(rq, p, attr, pi); 6294 __setscheduler_uclamp(p, attr); 6295 6296 if (queued) { 6297 /* 6298 * We enqueue to tail when the priority of a task is 6299 * increased (user space view). 6300 */ 6301 if (oldprio < p->prio) 6302 queue_flags |= ENQUEUE_HEAD; 6303 6304 enqueue_task(rq, p, queue_flags); 6305 } 6306 if (running) 6307 set_next_task(rq, p); 6308 6309 check_class_changed(rq, p, prev_class, oldprio); 6310 6311 /* Avoid rq from going away on us: */ 6312 preempt_disable(); 6313 head = splice_balance_callbacks(rq); 6314 task_rq_unlock(rq, p, &rf); 6315 6316 if (pi) { 6317 cpuset_read_unlock(); 6318 rt_mutex_adjust_pi(p); 6319 } 6320 6321 /* Run balance callbacks after we've adjusted the PI chain: */ 6322 balance_callbacks(rq, head); 6323 preempt_enable(); 6324 6325 return 0; 6326 6327 unlock: 6328 task_rq_unlock(rq, p, &rf); 6329 if (pi) 6330 cpuset_read_unlock(); 6331 return retval; 6332 } 6333 6334 static int _sched_setscheduler(struct task_struct *p, int policy, 6335 const struct sched_param *param, bool check) 6336 { 6337 struct sched_attr attr = { 6338 .sched_policy = policy, 6339 .sched_priority = param->sched_priority, 6340 .sched_nice = PRIO_TO_NICE(p->static_prio), 6341 }; 6342 6343 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6344 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6345 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6346 policy &= ~SCHED_RESET_ON_FORK; 6347 attr.sched_policy = policy; 6348 } 6349 6350 return __sched_setscheduler(p, &attr, check, true); 6351 } 6352 /** 6353 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6354 * @p: the task in question. 6355 * @policy: new policy. 6356 * @param: structure containing the new RT priority. 6357 * 6358 * Use sched_set_fifo(), read its comment. 6359 * 6360 * Return: 0 on success. An error code otherwise. 6361 * 6362 * NOTE that the task may be already dead. 6363 */ 6364 int sched_setscheduler(struct task_struct *p, int policy, 6365 const struct sched_param *param) 6366 { 6367 return _sched_setscheduler(p, policy, param, true); 6368 } 6369 6370 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6371 { 6372 return __sched_setscheduler(p, attr, true, true); 6373 } 6374 6375 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6376 { 6377 return __sched_setscheduler(p, attr, false, true); 6378 } 6379 6380 /** 6381 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6382 * @p: the task in question. 6383 * @policy: new policy. 6384 * @param: structure containing the new RT priority. 6385 * 6386 * Just like sched_setscheduler, only don't bother checking if the 6387 * current context has permission. For example, this is needed in 6388 * stop_machine(): we create temporary high priority worker threads, 6389 * but our caller might not have that capability. 6390 * 6391 * Return: 0 on success. An error code otherwise. 6392 */ 6393 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6394 const struct sched_param *param) 6395 { 6396 return _sched_setscheduler(p, policy, param, false); 6397 } 6398 6399 /* 6400 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6401 * incapable of resource management, which is the one thing an OS really should 6402 * be doing. 6403 * 6404 * This is of course the reason it is limited to privileged users only. 6405 * 6406 * Worse still; it is fundamentally impossible to compose static priority 6407 * workloads. You cannot take two correctly working static prio workloads 6408 * and smash them together and still expect them to work. 6409 * 6410 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6411 * 6412 * MAX_RT_PRIO / 2 6413 * 6414 * The administrator _MUST_ configure the system, the kernel simply doesn't 6415 * know enough information to make a sensible choice. 6416 */ 6417 void sched_set_fifo(struct task_struct *p) 6418 { 6419 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6420 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6421 } 6422 EXPORT_SYMBOL_GPL(sched_set_fifo); 6423 6424 /* 6425 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6426 */ 6427 void sched_set_fifo_low(struct task_struct *p) 6428 { 6429 struct sched_param sp = { .sched_priority = 1 }; 6430 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6431 } 6432 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6433 6434 void sched_set_normal(struct task_struct *p, int nice) 6435 { 6436 struct sched_attr attr = { 6437 .sched_policy = SCHED_NORMAL, 6438 .sched_nice = nice, 6439 }; 6440 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6441 } 6442 EXPORT_SYMBOL_GPL(sched_set_normal); 6443 6444 static int 6445 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6446 { 6447 struct sched_param lparam; 6448 struct task_struct *p; 6449 int retval; 6450 6451 if (!param || pid < 0) 6452 return -EINVAL; 6453 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6454 return -EFAULT; 6455 6456 rcu_read_lock(); 6457 retval = -ESRCH; 6458 p = find_process_by_pid(pid); 6459 if (likely(p)) 6460 get_task_struct(p); 6461 rcu_read_unlock(); 6462 6463 if (likely(p)) { 6464 retval = sched_setscheduler(p, policy, &lparam); 6465 put_task_struct(p); 6466 } 6467 6468 return retval; 6469 } 6470 6471 /* 6472 * Mimics kernel/events/core.c perf_copy_attr(). 6473 */ 6474 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6475 { 6476 u32 size; 6477 int ret; 6478 6479 /* Zero the full structure, so that a short copy will be nice: */ 6480 memset(attr, 0, sizeof(*attr)); 6481 6482 ret = get_user(size, &uattr->size); 6483 if (ret) 6484 return ret; 6485 6486 /* ABI compatibility quirk: */ 6487 if (!size) 6488 size = SCHED_ATTR_SIZE_VER0; 6489 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6490 goto err_size; 6491 6492 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6493 if (ret) { 6494 if (ret == -E2BIG) 6495 goto err_size; 6496 return ret; 6497 } 6498 6499 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6500 size < SCHED_ATTR_SIZE_VER1) 6501 return -EINVAL; 6502 6503 /* 6504 * XXX: Do we want to be lenient like existing syscalls; or do we want 6505 * to be strict and return an error on out-of-bounds values? 6506 */ 6507 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6508 6509 return 0; 6510 6511 err_size: 6512 put_user(sizeof(*attr), &uattr->size); 6513 return -E2BIG; 6514 } 6515 6516 /** 6517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6518 * @pid: the pid in question. 6519 * @policy: new policy. 6520 * @param: structure containing the new RT priority. 6521 * 6522 * Return: 0 on success. An error code otherwise. 6523 */ 6524 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6525 { 6526 if (policy < 0) 6527 return -EINVAL; 6528 6529 return do_sched_setscheduler(pid, policy, param); 6530 } 6531 6532 /** 6533 * sys_sched_setparam - set/change the RT priority of a thread 6534 * @pid: the pid in question. 6535 * @param: structure containing the new RT priority. 6536 * 6537 * Return: 0 on success. An error code otherwise. 6538 */ 6539 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6540 { 6541 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6542 } 6543 6544 /** 6545 * sys_sched_setattr - same as above, but with extended sched_attr 6546 * @pid: the pid in question. 6547 * @uattr: structure containing the extended parameters. 6548 * @flags: for future extension. 6549 */ 6550 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6551 unsigned int, flags) 6552 { 6553 struct sched_attr attr; 6554 struct task_struct *p; 6555 int retval; 6556 6557 if (!uattr || pid < 0 || flags) 6558 return -EINVAL; 6559 6560 retval = sched_copy_attr(uattr, &attr); 6561 if (retval) 6562 return retval; 6563 6564 if ((int)attr.sched_policy < 0) 6565 return -EINVAL; 6566 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6567 attr.sched_policy = SETPARAM_POLICY; 6568 6569 rcu_read_lock(); 6570 retval = -ESRCH; 6571 p = find_process_by_pid(pid); 6572 if (likely(p)) 6573 get_task_struct(p); 6574 rcu_read_unlock(); 6575 6576 if (likely(p)) { 6577 retval = sched_setattr(p, &attr); 6578 put_task_struct(p); 6579 } 6580 6581 return retval; 6582 } 6583 6584 /** 6585 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6586 * @pid: the pid in question. 6587 * 6588 * Return: On success, the policy of the thread. Otherwise, a negative error 6589 * code. 6590 */ 6591 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6592 { 6593 struct task_struct *p; 6594 int retval; 6595 6596 if (pid < 0) 6597 return -EINVAL; 6598 6599 retval = -ESRCH; 6600 rcu_read_lock(); 6601 p = find_process_by_pid(pid); 6602 if (p) { 6603 retval = security_task_getscheduler(p); 6604 if (!retval) 6605 retval = p->policy 6606 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6607 } 6608 rcu_read_unlock(); 6609 return retval; 6610 } 6611 6612 /** 6613 * sys_sched_getparam - get the RT priority of a thread 6614 * @pid: the pid in question. 6615 * @param: structure containing the RT priority. 6616 * 6617 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6618 * code. 6619 */ 6620 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6621 { 6622 struct sched_param lp = { .sched_priority = 0 }; 6623 struct task_struct *p; 6624 int retval; 6625 6626 if (!param || pid < 0) 6627 return -EINVAL; 6628 6629 rcu_read_lock(); 6630 p = find_process_by_pid(pid); 6631 retval = -ESRCH; 6632 if (!p) 6633 goto out_unlock; 6634 6635 retval = security_task_getscheduler(p); 6636 if (retval) 6637 goto out_unlock; 6638 6639 if (task_has_rt_policy(p)) 6640 lp.sched_priority = p->rt_priority; 6641 rcu_read_unlock(); 6642 6643 /* 6644 * This one might sleep, we cannot do it with a spinlock held ... 6645 */ 6646 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6647 6648 return retval; 6649 6650 out_unlock: 6651 rcu_read_unlock(); 6652 return retval; 6653 } 6654 6655 /* 6656 * Copy the kernel size attribute structure (which might be larger 6657 * than what user-space knows about) to user-space. 6658 * 6659 * Note that all cases are valid: user-space buffer can be larger or 6660 * smaller than the kernel-space buffer. The usual case is that both 6661 * have the same size. 6662 */ 6663 static int 6664 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6665 struct sched_attr *kattr, 6666 unsigned int usize) 6667 { 6668 unsigned int ksize = sizeof(*kattr); 6669 6670 if (!access_ok(uattr, usize)) 6671 return -EFAULT; 6672 6673 /* 6674 * sched_getattr() ABI forwards and backwards compatibility: 6675 * 6676 * If usize == ksize then we just copy everything to user-space and all is good. 6677 * 6678 * If usize < ksize then we only copy as much as user-space has space for, 6679 * this keeps ABI compatibility as well. We skip the rest. 6680 * 6681 * If usize > ksize then user-space is using a newer version of the ABI, 6682 * which part the kernel doesn't know about. Just ignore it - tooling can 6683 * detect the kernel's knowledge of attributes from the attr->size value 6684 * which is set to ksize in this case. 6685 */ 6686 kattr->size = min(usize, ksize); 6687 6688 if (copy_to_user(uattr, kattr, kattr->size)) 6689 return -EFAULT; 6690 6691 return 0; 6692 } 6693 6694 /** 6695 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6696 * @pid: the pid in question. 6697 * @uattr: structure containing the extended parameters. 6698 * @usize: sizeof(attr) for fwd/bwd comp. 6699 * @flags: for future extension. 6700 */ 6701 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6702 unsigned int, usize, unsigned int, flags) 6703 { 6704 struct sched_attr kattr = { }; 6705 struct task_struct *p; 6706 int retval; 6707 6708 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6709 usize < SCHED_ATTR_SIZE_VER0 || flags) 6710 return -EINVAL; 6711 6712 rcu_read_lock(); 6713 p = find_process_by_pid(pid); 6714 retval = -ESRCH; 6715 if (!p) 6716 goto out_unlock; 6717 6718 retval = security_task_getscheduler(p); 6719 if (retval) 6720 goto out_unlock; 6721 6722 kattr.sched_policy = p->policy; 6723 if (p->sched_reset_on_fork) 6724 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6725 if (task_has_dl_policy(p)) 6726 __getparam_dl(p, &kattr); 6727 else if (task_has_rt_policy(p)) 6728 kattr.sched_priority = p->rt_priority; 6729 else 6730 kattr.sched_nice = task_nice(p); 6731 6732 #ifdef CONFIG_UCLAMP_TASK 6733 /* 6734 * This could race with another potential updater, but this is fine 6735 * because it'll correctly read the old or the new value. We don't need 6736 * to guarantee who wins the race as long as it doesn't return garbage. 6737 */ 6738 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6739 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6740 #endif 6741 6742 rcu_read_unlock(); 6743 6744 return sched_attr_copy_to_user(uattr, &kattr, usize); 6745 6746 out_unlock: 6747 rcu_read_unlock(); 6748 return retval; 6749 } 6750 6751 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6752 { 6753 cpumask_var_t cpus_allowed, new_mask; 6754 struct task_struct *p; 6755 int retval; 6756 6757 rcu_read_lock(); 6758 6759 p = find_process_by_pid(pid); 6760 if (!p) { 6761 rcu_read_unlock(); 6762 return -ESRCH; 6763 } 6764 6765 /* Prevent p going away */ 6766 get_task_struct(p); 6767 rcu_read_unlock(); 6768 6769 if (p->flags & PF_NO_SETAFFINITY) { 6770 retval = -EINVAL; 6771 goto out_put_task; 6772 } 6773 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6774 retval = -ENOMEM; 6775 goto out_put_task; 6776 } 6777 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6778 retval = -ENOMEM; 6779 goto out_free_cpus_allowed; 6780 } 6781 retval = -EPERM; 6782 if (!check_same_owner(p)) { 6783 rcu_read_lock(); 6784 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6785 rcu_read_unlock(); 6786 goto out_free_new_mask; 6787 } 6788 rcu_read_unlock(); 6789 } 6790 6791 retval = security_task_setscheduler(p); 6792 if (retval) 6793 goto out_free_new_mask; 6794 6795 6796 cpuset_cpus_allowed(p, cpus_allowed); 6797 cpumask_and(new_mask, in_mask, cpus_allowed); 6798 6799 /* 6800 * Since bandwidth control happens on root_domain basis, 6801 * if admission test is enabled, we only admit -deadline 6802 * tasks allowed to run on all the CPUs in the task's 6803 * root_domain. 6804 */ 6805 #ifdef CONFIG_SMP 6806 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6807 rcu_read_lock(); 6808 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6809 retval = -EBUSY; 6810 rcu_read_unlock(); 6811 goto out_free_new_mask; 6812 } 6813 rcu_read_unlock(); 6814 } 6815 #endif 6816 again: 6817 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6818 6819 if (!retval) { 6820 cpuset_cpus_allowed(p, cpus_allowed); 6821 if (!cpumask_subset(new_mask, cpus_allowed)) { 6822 /* 6823 * We must have raced with a concurrent cpuset 6824 * update. Just reset the cpus_allowed to the 6825 * cpuset's cpus_allowed 6826 */ 6827 cpumask_copy(new_mask, cpus_allowed); 6828 goto again; 6829 } 6830 } 6831 out_free_new_mask: 6832 free_cpumask_var(new_mask); 6833 out_free_cpus_allowed: 6834 free_cpumask_var(cpus_allowed); 6835 out_put_task: 6836 put_task_struct(p); 6837 return retval; 6838 } 6839 6840 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6841 struct cpumask *new_mask) 6842 { 6843 if (len < cpumask_size()) 6844 cpumask_clear(new_mask); 6845 else if (len > cpumask_size()) 6846 len = cpumask_size(); 6847 6848 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6849 } 6850 6851 /** 6852 * sys_sched_setaffinity - set the CPU affinity of a process 6853 * @pid: pid of the process 6854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6855 * @user_mask_ptr: user-space pointer to the new CPU mask 6856 * 6857 * Return: 0 on success. An error code otherwise. 6858 */ 6859 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6860 unsigned long __user *, user_mask_ptr) 6861 { 6862 cpumask_var_t new_mask; 6863 int retval; 6864 6865 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6866 return -ENOMEM; 6867 6868 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6869 if (retval == 0) 6870 retval = sched_setaffinity(pid, new_mask); 6871 free_cpumask_var(new_mask); 6872 return retval; 6873 } 6874 6875 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6876 { 6877 struct task_struct *p; 6878 unsigned long flags; 6879 int retval; 6880 6881 rcu_read_lock(); 6882 6883 retval = -ESRCH; 6884 p = find_process_by_pid(pid); 6885 if (!p) 6886 goto out_unlock; 6887 6888 retval = security_task_getscheduler(p); 6889 if (retval) 6890 goto out_unlock; 6891 6892 raw_spin_lock_irqsave(&p->pi_lock, flags); 6893 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6894 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6895 6896 out_unlock: 6897 rcu_read_unlock(); 6898 6899 return retval; 6900 } 6901 6902 /** 6903 * sys_sched_getaffinity - get the CPU affinity of a process 6904 * @pid: pid of the process 6905 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6906 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6907 * 6908 * Return: size of CPU mask copied to user_mask_ptr on success. An 6909 * error code otherwise. 6910 */ 6911 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6912 unsigned long __user *, user_mask_ptr) 6913 { 6914 int ret; 6915 cpumask_var_t mask; 6916 6917 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6918 return -EINVAL; 6919 if (len & (sizeof(unsigned long)-1)) 6920 return -EINVAL; 6921 6922 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6923 return -ENOMEM; 6924 6925 ret = sched_getaffinity(pid, mask); 6926 if (ret == 0) { 6927 unsigned int retlen = min(len, cpumask_size()); 6928 6929 if (copy_to_user(user_mask_ptr, mask, retlen)) 6930 ret = -EFAULT; 6931 else 6932 ret = retlen; 6933 } 6934 free_cpumask_var(mask); 6935 6936 return ret; 6937 } 6938 6939 static void do_sched_yield(void) 6940 { 6941 struct rq_flags rf; 6942 struct rq *rq; 6943 6944 rq = this_rq_lock_irq(&rf); 6945 6946 schedstat_inc(rq->yld_count); 6947 current->sched_class->yield_task(rq); 6948 6949 preempt_disable(); 6950 rq_unlock_irq(rq, &rf); 6951 sched_preempt_enable_no_resched(); 6952 6953 schedule(); 6954 } 6955 6956 /** 6957 * sys_sched_yield - yield the current processor to other threads. 6958 * 6959 * This function yields the current CPU to other tasks. If there are no 6960 * other threads running on this CPU then this function will return. 6961 * 6962 * Return: 0. 6963 */ 6964 SYSCALL_DEFINE0(sched_yield) 6965 { 6966 do_sched_yield(); 6967 return 0; 6968 } 6969 6970 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 6971 int __sched __cond_resched(void) 6972 { 6973 if (should_resched(0)) { 6974 preempt_schedule_common(); 6975 return 1; 6976 } 6977 #ifndef CONFIG_PREEMPT_RCU 6978 rcu_all_qs(); 6979 #endif 6980 return 0; 6981 } 6982 EXPORT_SYMBOL(__cond_resched); 6983 #endif 6984 6985 #ifdef CONFIG_PREEMPT_DYNAMIC 6986 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 6987 EXPORT_STATIC_CALL_TRAMP(cond_resched); 6988 6989 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 6990 EXPORT_STATIC_CALL_TRAMP(might_resched); 6991 #endif 6992 6993 /* 6994 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 6995 * call schedule, and on return reacquire the lock. 6996 * 6997 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 6998 * operations here to prevent schedule() from being called twice (once via 6999 * spin_unlock(), once by hand). 7000 */ 7001 int __cond_resched_lock(spinlock_t *lock) 7002 { 7003 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7004 int ret = 0; 7005 7006 lockdep_assert_held(lock); 7007 7008 if (spin_needbreak(lock) || resched) { 7009 spin_unlock(lock); 7010 if (resched) 7011 preempt_schedule_common(); 7012 else 7013 cpu_relax(); 7014 ret = 1; 7015 spin_lock(lock); 7016 } 7017 return ret; 7018 } 7019 EXPORT_SYMBOL(__cond_resched_lock); 7020 7021 int __cond_resched_rwlock_read(rwlock_t *lock) 7022 { 7023 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7024 int ret = 0; 7025 7026 lockdep_assert_held_read(lock); 7027 7028 if (rwlock_needbreak(lock) || resched) { 7029 read_unlock(lock); 7030 if (resched) 7031 preempt_schedule_common(); 7032 else 7033 cpu_relax(); 7034 ret = 1; 7035 read_lock(lock); 7036 } 7037 return ret; 7038 } 7039 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7040 7041 int __cond_resched_rwlock_write(rwlock_t *lock) 7042 { 7043 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7044 int ret = 0; 7045 7046 lockdep_assert_held_write(lock); 7047 7048 if (rwlock_needbreak(lock) || resched) { 7049 write_unlock(lock); 7050 if (resched) 7051 preempt_schedule_common(); 7052 else 7053 cpu_relax(); 7054 ret = 1; 7055 write_lock(lock); 7056 } 7057 return ret; 7058 } 7059 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7060 7061 /** 7062 * yield - yield the current processor to other threads. 7063 * 7064 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7065 * 7066 * The scheduler is at all times free to pick the calling task as the most 7067 * eligible task to run, if removing the yield() call from your code breaks 7068 * it, it's already broken. 7069 * 7070 * Typical broken usage is: 7071 * 7072 * while (!event) 7073 * yield(); 7074 * 7075 * where one assumes that yield() will let 'the other' process run that will 7076 * make event true. If the current task is a SCHED_FIFO task that will never 7077 * happen. Never use yield() as a progress guarantee!! 7078 * 7079 * If you want to use yield() to wait for something, use wait_event(). 7080 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7081 * If you still want to use yield(), do not! 7082 */ 7083 void __sched yield(void) 7084 { 7085 set_current_state(TASK_RUNNING); 7086 do_sched_yield(); 7087 } 7088 EXPORT_SYMBOL(yield); 7089 7090 /** 7091 * yield_to - yield the current processor to another thread in 7092 * your thread group, or accelerate that thread toward the 7093 * processor it's on. 7094 * @p: target task 7095 * @preempt: whether task preemption is allowed or not 7096 * 7097 * It's the caller's job to ensure that the target task struct 7098 * can't go away on us before we can do any checks. 7099 * 7100 * Return: 7101 * true (>0) if we indeed boosted the target task. 7102 * false (0) if we failed to boost the target. 7103 * -ESRCH if there's no task to yield to. 7104 */ 7105 int __sched yield_to(struct task_struct *p, bool preempt) 7106 { 7107 struct task_struct *curr = current; 7108 struct rq *rq, *p_rq; 7109 unsigned long flags; 7110 int yielded = 0; 7111 7112 local_irq_save(flags); 7113 rq = this_rq(); 7114 7115 again: 7116 p_rq = task_rq(p); 7117 /* 7118 * If we're the only runnable task on the rq and target rq also 7119 * has only one task, there's absolutely no point in yielding. 7120 */ 7121 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7122 yielded = -ESRCH; 7123 goto out_irq; 7124 } 7125 7126 double_rq_lock(rq, p_rq); 7127 if (task_rq(p) != p_rq) { 7128 double_rq_unlock(rq, p_rq); 7129 goto again; 7130 } 7131 7132 if (!curr->sched_class->yield_to_task) 7133 goto out_unlock; 7134 7135 if (curr->sched_class != p->sched_class) 7136 goto out_unlock; 7137 7138 if (task_running(p_rq, p) || p->state) 7139 goto out_unlock; 7140 7141 yielded = curr->sched_class->yield_to_task(rq, p); 7142 if (yielded) { 7143 schedstat_inc(rq->yld_count); 7144 /* 7145 * Make p's CPU reschedule; pick_next_entity takes care of 7146 * fairness. 7147 */ 7148 if (preempt && rq != p_rq) 7149 resched_curr(p_rq); 7150 } 7151 7152 out_unlock: 7153 double_rq_unlock(rq, p_rq); 7154 out_irq: 7155 local_irq_restore(flags); 7156 7157 if (yielded > 0) 7158 schedule(); 7159 7160 return yielded; 7161 } 7162 EXPORT_SYMBOL_GPL(yield_to); 7163 7164 int io_schedule_prepare(void) 7165 { 7166 int old_iowait = current->in_iowait; 7167 7168 current->in_iowait = 1; 7169 blk_schedule_flush_plug(current); 7170 7171 return old_iowait; 7172 } 7173 7174 void io_schedule_finish(int token) 7175 { 7176 current->in_iowait = token; 7177 } 7178 7179 /* 7180 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7181 * that process accounting knows that this is a task in IO wait state. 7182 */ 7183 long __sched io_schedule_timeout(long timeout) 7184 { 7185 int token; 7186 long ret; 7187 7188 token = io_schedule_prepare(); 7189 ret = schedule_timeout(timeout); 7190 io_schedule_finish(token); 7191 7192 return ret; 7193 } 7194 EXPORT_SYMBOL(io_schedule_timeout); 7195 7196 void __sched io_schedule(void) 7197 { 7198 int token; 7199 7200 token = io_schedule_prepare(); 7201 schedule(); 7202 io_schedule_finish(token); 7203 } 7204 EXPORT_SYMBOL(io_schedule); 7205 7206 /** 7207 * sys_sched_get_priority_max - return maximum RT priority. 7208 * @policy: scheduling class. 7209 * 7210 * Return: On success, this syscall returns the maximum 7211 * rt_priority that can be used by a given scheduling class. 7212 * On failure, a negative error code is returned. 7213 */ 7214 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 7215 { 7216 int ret = -EINVAL; 7217 7218 switch (policy) { 7219 case SCHED_FIFO: 7220 case SCHED_RR: 7221 ret = MAX_RT_PRIO-1; 7222 break; 7223 case SCHED_DEADLINE: 7224 case SCHED_NORMAL: 7225 case SCHED_BATCH: 7226 case SCHED_IDLE: 7227 ret = 0; 7228 break; 7229 } 7230 return ret; 7231 } 7232 7233 /** 7234 * sys_sched_get_priority_min - return minimum RT priority. 7235 * @policy: scheduling class. 7236 * 7237 * Return: On success, this syscall returns the minimum 7238 * rt_priority that can be used by a given scheduling class. 7239 * On failure, a negative error code is returned. 7240 */ 7241 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 7242 { 7243 int ret = -EINVAL; 7244 7245 switch (policy) { 7246 case SCHED_FIFO: 7247 case SCHED_RR: 7248 ret = 1; 7249 break; 7250 case SCHED_DEADLINE: 7251 case SCHED_NORMAL: 7252 case SCHED_BATCH: 7253 case SCHED_IDLE: 7254 ret = 0; 7255 } 7256 return ret; 7257 } 7258 7259 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 7260 { 7261 struct task_struct *p; 7262 unsigned int time_slice; 7263 struct rq_flags rf; 7264 struct rq *rq; 7265 int retval; 7266 7267 if (pid < 0) 7268 return -EINVAL; 7269 7270 retval = -ESRCH; 7271 rcu_read_lock(); 7272 p = find_process_by_pid(pid); 7273 if (!p) 7274 goto out_unlock; 7275 7276 retval = security_task_getscheduler(p); 7277 if (retval) 7278 goto out_unlock; 7279 7280 rq = task_rq_lock(p, &rf); 7281 time_slice = 0; 7282 if (p->sched_class->get_rr_interval) 7283 time_slice = p->sched_class->get_rr_interval(rq, p); 7284 task_rq_unlock(rq, p, &rf); 7285 7286 rcu_read_unlock(); 7287 jiffies_to_timespec64(time_slice, t); 7288 return 0; 7289 7290 out_unlock: 7291 rcu_read_unlock(); 7292 return retval; 7293 } 7294 7295 /** 7296 * sys_sched_rr_get_interval - return the default timeslice of a process. 7297 * @pid: pid of the process. 7298 * @interval: userspace pointer to the timeslice value. 7299 * 7300 * this syscall writes the default timeslice value of a given process 7301 * into the user-space timespec buffer. A value of '0' means infinity. 7302 * 7303 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 7304 * an error code. 7305 */ 7306 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 7307 struct __kernel_timespec __user *, interval) 7308 { 7309 struct timespec64 t; 7310 int retval = sched_rr_get_interval(pid, &t); 7311 7312 if (retval == 0) 7313 retval = put_timespec64(&t, interval); 7314 7315 return retval; 7316 } 7317 7318 #ifdef CONFIG_COMPAT_32BIT_TIME 7319 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 7320 struct old_timespec32 __user *, interval) 7321 { 7322 struct timespec64 t; 7323 int retval = sched_rr_get_interval(pid, &t); 7324 7325 if (retval == 0) 7326 retval = put_old_timespec32(&t, interval); 7327 return retval; 7328 } 7329 #endif 7330 7331 void sched_show_task(struct task_struct *p) 7332 { 7333 unsigned long free = 0; 7334 int ppid; 7335 7336 if (!try_get_task_stack(p)) 7337 return; 7338 7339 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7340 7341 if (p->state == TASK_RUNNING) 7342 pr_cont(" running task "); 7343 #ifdef CONFIG_DEBUG_STACK_USAGE 7344 free = stack_not_used(p); 7345 #endif 7346 ppid = 0; 7347 rcu_read_lock(); 7348 if (pid_alive(p)) 7349 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7350 rcu_read_unlock(); 7351 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 7352 free, task_pid_nr(p), ppid, 7353 (unsigned long)task_thread_info(p)->flags); 7354 7355 print_worker_info(KERN_INFO, p); 7356 print_stop_info(KERN_INFO, p); 7357 show_stack(p, NULL, KERN_INFO); 7358 put_task_stack(p); 7359 } 7360 EXPORT_SYMBOL_GPL(sched_show_task); 7361 7362 static inline bool 7363 state_filter_match(unsigned long state_filter, struct task_struct *p) 7364 { 7365 /* no filter, everything matches */ 7366 if (!state_filter) 7367 return true; 7368 7369 /* filter, but doesn't match */ 7370 if (!(p->state & state_filter)) 7371 return false; 7372 7373 /* 7374 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7375 * TASK_KILLABLE). 7376 */ 7377 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7378 return false; 7379 7380 return true; 7381 } 7382 7383 7384 void show_state_filter(unsigned long state_filter) 7385 { 7386 struct task_struct *g, *p; 7387 7388 rcu_read_lock(); 7389 for_each_process_thread(g, p) { 7390 /* 7391 * reset the NMI-timeout, listing all files on a slow 7392 * console might take a lot of time: 7393 * Also, reset softlockup watchdogs on all CPUs, because 7394 * another CPU might be blocked waiting for us to process 7395 * an IPI. 7396 */ 7397 touch_nmi_watchdog(); 7398 touch_all_softlockup_watchdogs(); 7399 if (state_filter_match(state_filter, p)) 7400 sched_show_task(p); 7401 } 7402 7403 #ifdef CONFIG_SCHED_DEBUG 7404 if (!state_filter) 7405 sysrq_sched_debug_show(); 7406 #endif 7407 rcu_read_unlock(); 7408 /* 7409 * Only show locks if all tasks are dumped: 7410 */ 7411 if (!state_filter) 7412 debug_show_all_locks(); 7413 } 7414 7415 /** 7416 * init_idle - set up an idle thread for a given CPU 7417 * @idle: task in question 7418 * @cpu: CPU the idle task belongs to 7419 * 7420 * NOTE: this function does not set the idle thread's NEED_RESCHED 7421 * flag, to make booting more robust. 7422 */ 7423 void init_idle(struct task_struct *idle, int cpu) 7424 { 7425 struct rq *rq = cpu_rq(cpu); 7426 unsigned long flags; 7427 7428 __sched_fork(0, idle); 7429 7430 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7431 raw_spin_lock(&rq->lock); 7432 7433 idle->state = TASK_RUNNING; 7434 idle->se.exec_start = sched_clock(); 7435 idle->flags |= PF_IDLE; 7436 7437 scs_task_reset(idle); 7438 kasan_unpoison_task_stack(idle); 7439 7440 #ifdef CONFIG_SMP 7441 /* 7442 * It's possible that init_idle() gets called multiple times on a task, 7443 * in that case do_set_cpus_allowed() will not do the right thing. 7444 * 7445 * And since this is boot we can forgo the serialization. 7446 */ 7447 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7448 #endif 7449 /* 7450 * We're having a chicken and egg problem, even though we are 7451 * holding rq->lock, the CPU isn't yet set to this CPU so the 7452 * lockdep check in task_group() will fail. 7453 * 7454 * Similar case to sched_fork(). / Alternatively we could 7455 * use task_rq_lock() here and obtain the other rq->lock. 7456 * 7457 * Silence PROVE_RCU 7458 */ 7459 rcu_read_lock(); 7460 __set_task_cpu(idle, cpu); 7461 rcu_read_unlock(); 7462 7463 rq->idle = idle; 7464 rcu_assign_pointer(rq->curr, idle); 7465 idle->on_rq = TASK_ON_RQ_QUEUED; 7466 #ifdef CONFIG_SMP 7467 idle->on_cpu = 1; 7468 #endif 7469 raw_spin_unlock(&rq->lock); 7470 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7471 7472 /* Set the preempt count _outside_ the spinlocks! */ 7473 init_idle_preempt_count(idle, cpu); 7474 7475 /* 7476 * The idle tasks have their own, simple scheduling class: 7477 */ 7478 idle->sched_class = &idle_sched_class; 7479 ftrace_graph_init_idle_task(idle, cpu); 7480 vtime_init_idle(idle, cpu); 7481 #ifdef CONFIG_SMP 7482 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7483 #endif 7484 } 7485 7486 #ifdef CONFIG_SMP 7487 7488 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7489 const struct cpumask *trial) 7490 { 7491 int ret = 1; 7492 7493 if (!cpumask_weight(cur)) 7494 return ret; 7495 7496 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7497 7498 return ret; 7499 } 7500 7501 int task_can_attach(struct task_struct *p, 7502 const struct cpumask *cs_cpus_allowed) 7503 { 7504 int ret = 0; 7505 7506 /* 7507 * Kthreads which disallow setaffinity shouldn't be moved 7508 * to a new cpuset; we don't want to change their CPU 7509 * affinity and isolating such threads by their set of 7510 * allowed nodes is unnecessary. Thus, cpusets are not 7511 * applicable for such threads. This prevents checking for 7512 * success of set_cpus_allowed_ptr() on all attached tasks 7513 * before cpus_mask may be changed. 7514 */ 7515 if (p->flags & PF_NO_SETAFFINITY) { 7516 ret = -EINVAL; 7517 goto out; 7518 } 7519 7520 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7521 cs_cpus_allowed)) 7522 ret = dl_task_can_attach(p, cs_cpus_allowed); 7523 7524 out: 7525 return ret; 7526 } 7527 7528 bool sched_smp_initialized __read_mostly; 7529 7530 #ifdef CONFIG_NUMA_BALANCING 7531 /* Migrate current task p to target_cpu */ 7532 int migrate_task_to(struct task_struct *p, int target_cpu) 7533 { 7534 struct migration_arg arg = { p, target_cpu }; 7535 int curr_cpu = task_cpu(p); 7536 7537 if (curr_cpu == target_cpu) 7538 return 0; 7539 7540 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7541 return -EINVAL; 7542 7543 /* TODO: This is not properly updating schedstats */ 7544 7545 trace_sched_move_numa(p, curr_cpu, target_cpu); 7546 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7547 } 7548 7549 /* 7550 * Requeue a task on a given node and accurately track the number of NUMA 7551 * tasks on the runqueues 7552 */ 7553 void sched_setnuma(struct task_struct *p, int nid) 7554 { 7555 bool queued, running; 7556 struct rq_flags rf; 7557 struct rq *rq; 7558 7559 rq = task_rq_lock(p, &rf); 7560 queued = task_on_rq_queued(p); 7561 running = task_current(rq, p); 7562 7563 if (queued) 7564 dequeue_task(rq, p, DEQUEUE_SAVE); 7565 if (running) 7566 put_prev_task(rq, p); 7567 7568 p->numa_preferred_nid = nid; 7569 7570 if (queued) 7571 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7572 if (running) 7573 set_next_task(rq, p); 7574 task_rq_unlock(rq, p, &rf); 7575 } 7576 #endif /* CONFIG_NUMA_BALANCING */ 7577 7578 #ifdef CONFIG_HOTPLUG_CPU 7579 /* 7580 * Ensure that the idle task is using init_mm right before its CPU goes 7581 * offline. 7582 */ 7583 void idle_task_exit(void) 7584 { 7585 struct mm_struct *mm = current->active_mm; 7586 7587 BUG_ON(cpu_online(smp_processor_id())); 7588 BUG_ON(current != this_rq()->idle); 7589 7590 if (mm != &init_mm) { 7591 switch_mm(mm, &init_mm, current); 7592 finish_arch_post_lock_switch(); 7593 } 7594 7595 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7596 } 7597 7598 static int __balance_push_cpu_stop(void *arg) 7599 { 7600 struct task_struct *p = arg; 7601 struct rq *rq = this_rq(); 7602 struct rq_flags rf; 7603 int cpu; 7604 7605 raw_spin_lock_irq(&p->pi_lock); 7606 rq_lock(rq, &rf); 7607 7608 update_rq_clock(rq); 7609 7610 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7611 cpu = select_fallback_rq(rq->cpu, p); 7612 rq = __migrate_task(rq, &rf, p, cpu); 7613 } 7614 7615 rq_unlock(rq, &rf); 7616 raw_spin_unlock_irq(&p->pi_lock); 7617 7618 put_task_struct(p); 7619 7620 return 0; 7621 } 7622 7623 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7624 7625 /* 7626 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7627 */ 7628 static void balance_push(struct rq *rq) 7629 { 7630 struct task_struct *push_task = rq->curr; 7631 7632 lockdep_assert_held(&rq->lock); 7633 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7634 /* 7635 * Ensure the thing is persistent until balance_push_set(.on = false); 7636 */ 7637 rq->balance_callback = &balance_push_callback; 7638 7639 /* 7640 * Both the cpu-hotplug and stop task are in this case and are 7641 * required to complete the hotplug process. 7642 * 7643 * XXX: the idle task does not match kthread_is_per_cpu() due to 7644 * histerical raisins. 7645 */ 7646 if (rq->idle == push_task || 7647 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) || 7648 is_migration_disabled(push_task)) { 7649 7650 /* 7651 * If this is the idle task on the outgoing CPU try to wake 7652 * up the hotplug control thread which might wait for the 7653 * last task to vanish. The rcuwait_active() check is 7654 * accurate here because the waiter is pinned on this CPU 7655 * and can't obviously be running in parallel. 7656 * 7657 * On RT kernels this also has to check whether there are 7658 * pinned and scheduled out tasks on the runqueue. They 7659 * need to leave the migrate disabled section first. 7660 */ 7661 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7662 rcuwait_active(&rq->hotplug_wait)) { 7663 raw_spin_unlock(&rq->lock); 7664 rcuwait_wake_up(&rq->hotplug_wait); 7665 raw_spin_lock(&rq->lock); 7666 } 7667 return; 7668 } 7669 7670 get_task_struct(push_task); 7671 /* 7672 * Temporarily drop rq->lock such that we can wake-up the stop task. 7673 * Both preemption and IRQs are still disabled. 7674 */ 7675 raw_spin_unlock(&rq->lock); 7676 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7677 this_cpu_ptr(&push_work)); 7678 /* 7679 * At this point need_resched() is true and we'll take the loop in 7680 * schedule(). The next pick is obviously going to be the stop task 7681 * which kthread_is_per_cpu() and will push this task away. 7682 */ 7683 raw_spin_lock(&rq->lock); 7684 } 7685 7686 static void balance_push_set(int cpu, bool on) 7687 { 7688 struct rq *rq = cpu_rq(cpu); 7689 struct rq_flags rf; 7690 7691 rq_lock_irqsave(rq, &rf); 7692 rq->balance_push = on; 7693 if (on) { 7694 WARN_ON_ONCE(rq->balance_callback); 7695 rq->balance_callback = &balance_push_callback; 7696 } else if (rq->balance_callback == &balance_push_callback) { 7697 rq->balance_callback = NULL; 7698 } 7699 rq_unlock_irqrestore(rq, &rf); 7700 } 7701 7702 /* 7703 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7704 * inactive. All tasks which are not per CPU kernel threads are either 7705 * pushed off this CPU now via balance_push() or placed on a different CPU 7706 * during wakeup. Wait until the CPU is quiescent. 7707 */ 7708 static void balance_hotplug_wait(void) 7709 { 7710 struct rq *rq = this_rq(); 7711 7712 rcuwait_wait_event(&rq->hotplug_wait, 7713 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7714 TASK_UNINTERRUPTIBLE); 7715 } 7716 7717 #else 7718 7719 static inline void balance_push(struct rq *rq) 7720 { 7721 } 7722 7723 static inline void balance_push_set(int cpu, bool on) 7724 { 7725 } 7726 7727 static inline void balance_hotplug_wait(void) 7728 { 7729 } 7730 7731 #endif /* CONFIG_HOTPLUG_CPU */ 7732 7733 void set_rq_online(struct rq *rq) 7734 { 7735 if (!rq->online) { 7736 const struct sched_class *class; 7737 7738 cpumask_set_cpu(rq->cpu, rq->rd->online); 7739 rq->online = 1; 7740 7741 for_each_class(class) { 7742 if (class->rq_online) 7743 class->rq_online(rq); 7744 } 7745 } 7746 } 7747 7748 void set_rq_offline(struct rq *rq) 7749 { 7750 if (rq->online) { 7751 const struct sched_class *class; 7752 7753 for_each_class(class) { 7754 if (class->rq_offline) 7755 class->rq_offline(rq); 7756 } 7757 7758 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7759 rq->online = 0; 7760 } 7761 } 7762 7763 /* 7764 * used to mark begin/end of suspend/resume: 7765 */ 7766 static int num_cpus_frozen; 7767 7768 /* 7769 * Update cpusets according to cpu_active mask. If cpusets are 7770 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7771 * around partition_sched_domains(). 7772 * 7773 * If we come here as part of a suspend/resume, don't touch cpusets because we 7774 * want to restore it back to its original state upon resume anyway. 7775 */ 7776 static void cpuset_cpu_active(void) 7777 { 7778 if (cpuhp_tasks_frozen) { 7779 /* 7780 * num_cpus_frozen tracks how many CPUs are involved in suspend 7781 * resume sequence. As long as this is not the last online 7782 * operation in the resume sequence, just build a single sched 7783 * domain, ignoring cpusets. 7784 */ 7785 partition_sched_domains(1, NULL, NULL); 7786 if (--num_cpus_frozen) 7787 return; 7788 /* 7789 * This is the last CPU online operation. So fall through and 7790 * restore the original sched domains by considering the 7791 * cpuset configurations. 7792 */ 7793 cpuset_force_rebuild(); 7794 } 7795 cpuset_update_active_cpus(); 7796 } 7797 7798 static int cpuset_cpu_inactive(unsigned int cpu) 7799 { 7800 if (!cpuhp_tasks_frozen) { 7801 if (dl_cpu_busy(cpu)) 7802 return -EBUSY; 7803 cpuset_update_active_cpus(); 7804 } else { 7805 num_cpus_frozen++; 7806 partition_sched_domains(1, NULL, NULL); 7807 } 7808 return 0; 7809 } 7810 7811 int sched_cpu_activate(unsigned int cpu) 7812 { 7813 struct rq *rq = cpu_rq(cpu); 7814 struct rq_flags rf; 7815 7816 /* 7817 * Make sure that when the hotplug state machine does a roll-back 7818 * we clear balance_push. Ideally that would happen earlier... 7819 */ 7820 balance_push_set(cpu, false); 7821 7822 #ifdef CONFIG_SCHED_SMT 7823 /* 7824 * When going up, increment the number of cores with SMT present. 7825 */ 7826 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7827 static_branch_inc_cpuslocked(&sched_smt_present); 7828 #endif 7829 set_cpu_active(cpu, true); 7830 7831 if (sched_smp_initialized) { 7832 sched_domains_numa_masks_set(cpu); 7833 cpuset_cpu_active(); 7834 } 7835 7836 /* 7837 * Put the rq online, if not already. This happens: 7838 * 7839 * 1) In the early boot process, because we build the real domains 7840 * after all CPUs have been brought up. 7841 * 7842 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7843 * domains. 7844 */ 7845 rq_lock_irqsave(rq, &rf); 7846 if (rq->rd) { 7847 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7848 set_rq_online(rq); 7849 } 7850 rq_unlock_irqrestore(rq, &rf); 7851 7852 return 0; 7853 } 7854 7855 int sched_cpu_deactivate(unsigned int cpu) 7856 { 7857 struct rq *rq = cpu_rq(cpu); 7858 struct rq_flags rf; 7859 int ret; 7860 7861 /* 7862 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7863 * load balancing when not active 7864 */ 7865 nohz_balance_exit_idle(rq); 7866 7867 set_cpu_active(cpu, false); 7868 7869 /* 7870 * From this point forward, this CPU will refuse to run any task that 7871 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 7872 * push those tasks away until this gets cleared, see 7873 * sched_cpu_dying(). 7874 */ 7875 balance_push_set(cpu, true); 7876 7877 /* 7878 * We've cleared cpu_active_mask / set balance_push, wait for all 7879 * preempt-disabled and RCU users of this state to go away such that 7880 * all new such users will observe it. 7881 * 7882 * Specifically, we rely on ttwu to no longer target this CPU, see 7883 * ttwu_queue_cond() and is_cpu_allowed(). 7884 * 7885 * Do sync before park smpboot threads to take care the rcu boost case. 7886 */ 7887 synchronize_rcu(); 7888 7889 rq_lock_irqsave(rq, &rf); 7890 if (rq->rd) { 7891 update_rq_clock(rq); 7892 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7893 set_rq_offline(rq); 7894 } 7895 rq_unlock_irqrestore(rq, &rf); 7896 7897 #ifdef CONFIG_SCHED_SMT 7898 /* 7899 * When going down, decrement the number of cores with SMT present. 7900 */ 7901 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7902 static_branch_dec_cpuslocked(&sched_smt_present); 7903 #endif 7904 7905 if (!sched_smp_initialized) 7906 return 0; 7907 7908 ret = cpuset_cpu_inactive(cpu); 7909 if (ret) { 7910 balance_push_set(cpu, false); 7911 set_cpu_active(cpu, true); 7912 return ret; 7913 } 7914 sched_domains_numa_masks_clear(cpu); 7915 return 0; 7916 } 7917 7918 static void sched_rq_cpu_starting(unsigned int cpu) 7919 { 7920 struct rq *rq = cpu_rq(cpu); 7921 7922 rq->calc_load_update = calc_load_update; 7923 update_max_interval(); 7924 } 7925 7926 int sched_cpu_starting(unsigned int cpu) 7927 { 7928 sched_rq_cpu_starting(cpu); 7929 sched_tick_start(cpu); 7930 return 0; 7931 } 7932 7933 #ifdef CONFIG_HOTPLUG_CPU 7934 7935 /* 7936 * Invoked immediately before the stopper thread is invoked to bring the 7937 * CPU down completely. At this point all per CPU kthreads except the 7938 * hotplug thread (current) and the stopper thread (inactive) have been 7939 * either parked or have been unbound from the outgoing CPU. Ensure that 7940 * any of those which might be on the way out are gone. 7941 * 7942 * If after this point a bound task is being woken on this CPU then the 7943 * responsible hotplug callback has failed to do it's job. 7944 * sched_cpu_dying() will catch it with the appropriate fireworks. 7945 */ 7946 int sched_cpu_wait_empty(unsigned int cpu) 7947 { 7948 balance_hotplug_wait(); 7949 return 0; 7950 } 7951 7952 /* 7953 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7954 * might have. Called from the CPU stopper task after ensuring that the 7955 * stopper is the last running task on the CPU, so nr_active count is 7956 * stable. We need to take the teardown thread which is calling this into 7957 * account, so we hand in adjust = 1 to the load calculation. 7958 * 7959 * Also see the comment "Global load-average calculations". 7960 */ 7961 static void calc_load_migrate(struct rq *rq) 7962 { 7963 long delta = calc_load_fold_active(rq, 1); 7964 7965 if (delta) 7966 atomic_long_add(delta, &calc_load_tasks); 7967 } 7968 7969 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 7970 { 7971 struct task_struct *g, *p; 7972 int cpu = cpu_of(rq); 7973 7974 lockdep_assert_held(&rq->lock); 7975 7976 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 7977 for_each_process_thread(g, p) { 7978 if (task_cpu(p) != cpu) 7979 continue; 7980 7981 if (!task_on_rq_queued(p)) 7982 continue; 7983 7984 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 7985 } 7986 } 7987 7988 int sched_cpu_dying(unsigned int cpu) 7989 { 7990 struct rq *rq = cpu_rq(cpu); 7991 struct rq_flags rf; 7992 7993 /* Handle pending wakeups and then migrate everything off */ 7994 sched_tick_stop(cpu); 7995 7996 rq_lock_irqsave(rq, &rf); 7997 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 7998 WARN(true, "Dying CPU not properly vacated!"); 7999 dump_rq_tasks(rq, KERN_WARNING); 8000 } 8001 rq_unlock_irqrestore(rq, &rf); 8002 8003 /* 8004 * Now that the CPU is offline, make sure we're welcome 8005 * to new tasks once we come back up. 8006 */ 8007 balance_push_set(cpu, false); 8008 8009 calc_load_migrate(rq); 8010 update_max_interval(); 8011 hrtick_clear(rq); 8012 return 0; 8013 } 8014 #endif 8015 8016 void __init sched_init_smp(void) 8017 { 8018 sched_init_numa(); 8019 8020 /* 8021 * There's no userspace yet to cause hotplug operations; hence all the 8022 * CPU masks are stable and all blatant races in the below code cannot 8023 * happen. 8024 */ 8025 mutex_lock(&sched_domains_mutex); 8026 sched_init_domains(cpu_active_mask); 8027 mutex_unlock(&sched_domains_mutex); 8028 8029 /* Move init over to a non-isolated CPU */ 8030 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8031 BUG(); 8032 sched_init_granularity(); 8033 8034 init_sched_rt_class(); 8035 init_sched_dl_class(); 8036 8037 sched_smp_initialized = true; 8038 } 8039 8040 static int __init migration_init(void) 8041 { 8042 sched_cpu_starting(smp_processor_id()); 8043 return 0; 8044 } 8045 early_initcall(migration_init); 8046 8047 #else 8048 void __init sched_init_smp(void) 8049 { 8050 sched_init_granularity(); 8051 } 8052 #endif /* CONFIG_SMP */ 8053 8054 int in_sched_functions(unsigned long addr) 8055 { 8056 return in_lock_functions(addr) || 8057 (addr >= (unsigned long)__sched_text_start 8058 && addr < (unsigned long)__sched_text_end); 8059 } 8060 8061 #ifdef CONFIG_CGROUP_SCHED 8062 /* 8063 * Default task group. 8064 * Every task in system belongs to this group at bootup. 8065 */ 8066 struct task_group root_task_group; 8067 LIST_HEAD(task_groups); 8068 8069 /* Cacheline aligned slab cache for task_group */ 8070 static struct kmem_cache *task_group_cache __read_mostly; 8071 #endif 8072 8073 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8074 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8075 8076 void __init sched_init(void) 8077 { 8078 unsigned long ptr = 0; 8079 int i; 8080 8081 /* Make sure the linker didn't screw up */ 8082 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8083 &fair_sched_class + 1 != &rt_sched_class || 8084 &rt_sched_class + 1 != &dl_sched_class); 8085 #ifdef CONFIG_SMP 8086 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8087 #endif 8088 8089 wait_bit_init(); 8090 8091 #ifdef CONFIG_FAIR_GROUP_SCHED 8092 ptr += 2 * nr_cpu_ids * sizeof(void **); 8093 #endif 8094 #ifdef CONFIG_RT_GROUP_SCHED 8095 ptr += 2 * nr_cpu_ids * sizeof(void **); 8096 #endif 8097 if (ptr) { 8098 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8099 8100 #ifdef CONFIG_FAIR_GROUP_SCHED 8101 root_task_group.se = (struct sched_entity **)ptr; 8102 ptr += nr_cpu_ids * sizeof(void **); 8103 8104 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8105 ptr += nr_cpu_ids * sizeof(void **); 8106 8107 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8108 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8109 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8110 #ifdef CONFIG_RT_GROUP_SCHED 8111 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8112 ptr += nr_cpu_ids * sizeof(void **); 8113 8114 root_task_group.rt_rq = (struct rt_rq **)ptr; 8115 ptr += nr_cpu_ids * sizeof(void **); 8116 8117 #endif /* CONFIG_RT_GROUP_SCHED */ 8118 } 8119 #ifdef CONFIG_CPUMASK_OFFSTACK 8120 for_each_possible_cpu(i) { 8121 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8122 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8123 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8124 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8125 } 8126 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8127 8128 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8129 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8130 8131 #ifdef CONFIG_SMP 8132 init_defrootdomain(); 8133 #endif 8134 8135 #ifdef CONFIG_RT_GROUP_SCHED 8136 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8137 global_rt_period(), global_rt_runtime()); 8138 #endif /* CONFIG_RT_GROUP_SCHED */ 8139 8140 #ifdef CONFIG_CGROUP_SCHED 8141 task_group_cache = KMEM_CACHE(task_group, 0); 8142 8143 list_add(&root_task_group.list, &task_groups); 8144 INIT_LIST_HEAD(&root_task_group.children); 8145 INIT_LIST_HEAD(&root_task_group.siblings); 8146 autogroup_init(&init_task); 8147 #endif /* CONFIG_CGROUP_SCHED */ 8148 8149 for_each_possible_cpu(i) { 8150 struct rq *rq; 8151 8152 rq = cpu_rq(i); 8153 raw_spin_lock_init(&rq->lock); 8154 rq->nr_running = 0; 8155 rq->calc_load_active = 0; 8156 rq->calc_load_update = jiffies + LOAD_FREQ; 8157 init_cfs_rq(&rq->cfs); 8158 init_rt_rq(&rq->rt); 8159 init_dl_rq(&rq->dl); 8160 #ifdef CONFIG_FAIR_GROUP_SCHED 8161 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8162 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8163 /* 8164 * How much CPU bandwidth does root_task_group get? 8165 * 8166 * In case of task-groups formed thr' the cgroup filesystem, it 8167 * gets 100% of the CPU resources in the system. This overall 8168 * system CPU resource is divided among the tasks of 8169 * root_task_group and its child task-groups in a fair manner, 8170 * based on each entity's (task or task-group's) weight 8171 * (se->load.weight). 8172 * 8173 * In other words, if root_task_group has 10 tasks of weight 8174 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8175 * then A0's share of the CPU resource is: 8176 * 8177 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8178 * 8179 * We achieve this by letting root_task_group's tasks sit 8180 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8181 */ 8182 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8183 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8184 8185 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8186 #ifdef CONFIG_RT_GROUP_SCHED 8187 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8188 #endif 8189 #ifdef CONFIG_SMP 8190 rq->sd = NULL; 8191 rq->rd = NULL; 8192 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 8193 rq->balance_callback = NULL; 8194 rq->active_balance = 0; 8195 rq->next_balance = jiffies; 8196 rq->push_cpu = 0; 8197 rq->cpu = i; 8198 rq->online = 0; 8199 rq->idle_stamp = 0; 8200 rq->avg_idle = 2*sysctl_sched_migration_cost; 8201 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8202 8203 INIT_LIST_HEAD(&rq->cfs_tasks); 8204 8205 rq_attach_root(rq, &def_root_domain); 8206 #ifdef CONFIG_NO_HZ_COMMON 8207 rq->last_blocked_load_update_tick = jiffies; 8208 atomic_set(&rq->nohz_flags, 0); 8209 8210 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8211 #endif 8212 #ifdef CONFIG_HOTPLUG_CPU 8213 rcuwait_init(&rq->hotplug_wait); 8214 #endif 8215 #endif /* CONFIG_SMP */ 8216 hrtick_rq_init(rq); 8217 atomic_set(&rq->nr_iowait, 0); 8218 } 8219 8220 set_load_weight(&init_task, false); 8221 8222 /* 8223 * The boot idle thread does lazy MMU switching as well: 8224 */ 8225 mmgrab(&init_mm); 8226 enter_lazy_tlb(&init_mm, current); 8227 8228 /* 8229 * Make us the idle thread. Technically, schedule() should not be 8230 * called from this thread, however somewhere below it might be, 8231 * but because we are the idle thread, we just pick up running again 8232 * when this runqueue becomes "idle". 8233 */ 8234 init_idle(current, smp_processor_id()); 8235 8236 calc_load_update = jiffies + LOAD_FREQ; 8237 8238 #ifdef CONFIG_SMP 8239 idle_thread_set_boot_cpu(); 8240 #endif 8241 init_sched_fair_class(); 8242 8243 init_schedstats(); 8244 8245 psi_init(); 8246 8247 init_uclamp(); 8248 8249 scheduler_running = 1; 8250 } 8251 8252 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8253 static inline int preempt_count_equals(int preempt_offset) 8254 { 8255 int nested = preempt_count() + rcu_preempt_depth(); 8256 8257 return (nested == preempt_offset); 8258 } 8259 8260 void __might_sleep(const char *file, int line, int preempt_offset) 8261 { 8262 /* 8263 * Blocking primitives will set (and therefore destroy) current->state, 8264 * since we will exit with TASK_RUNNING make sure we enter with it, 8265 * otherwise we will destroy state. 8266 */ 8267 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 8268 "do not call blocking ops when !TASK_RUNNING; " 8269 "state=%lx set at [<%p>] %pS\n", 8270 current->state, 8271 (void *)current->task_state_change, 8272 (void *)current->task_state_change); 8273 8274 ___might_sleep(file, line, preempt_offset); 8275 } 8276 EXPORT_SYMBOL(__might_sleep); 8277 8278 void ___might_sleep(const char *file, int line, int preempt_offset) 8279 { 8280 /* Ratelimiting timestamp: */ 8281 static unsigned long prev_jiffy; 8282 8283 unsigned long preempt_disable_ip; 8284 8285 /* WARN_ON_ONCE() by default, no rate limit required: */ 8286 rcu_sleep_check(); 8287 8288 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 8289 !is_idle_task(current) && !current->non_block_count) || 8290 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8291 oops_in_progress) 8292 return; 8293 8294 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8295 return; 8296 prev_jiffy = jiffies; 8297 8298 /* Save this before calling printk(), since that will clobber it: */ 8299 preempt_disable_ip = get_preempt_disable_ip(current); 8300 8301 printk(KERN_ERR 8302 "BUG: sleeping function called from invalid context at %s:%d\n", 8303 file, line); 8304 printk(KERN_ERR 8305 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8306 in_atomic(), irqs_disabled(), current->non_block_count, 8307 current->pid, current->comm); 8308 8309 if (task_stack_end_corrupted(current)) 8310 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 8311 8312 debug_show_held_locks(current); 8313 if (irqs_disabled()) 8314 print_irqtrace_events(current); 8315 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 8316 && !preempt_count_equals(preempt_offset)) { 8317 pr_err("Preemption disabled at:"); 8318 print_ip_sym(KERN_ERR, preempt_disable_ip); 8319 } 8320 dump_stack(); 8321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8322 } 8323 EXPORT_SYMBOL(___might_sleep); 8324 8325 void __cant_sleep(const char *file, int line, int preempt_offset) 8326 { 8327 static unsigned long prev_jiffy; 8328 8329 if (irqs_disabled()) 8330 return; 8331 8332 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8333 return; 8334 8335 if (preempt_count() > preempt_offset) 8336 return; 8337 8338 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8339 return; 8340 prev_jiffy = jiffies; 8341 8342 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8343 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8344 in_atomic(), irqs_disabled(), 8345 current->pid, current->comm); 8346 8347 debug_show_held_locks(current); 8348 dump_stack(); 8349 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8350 } 8351 EXPORT_SYMBOL_GPL(__cant_sleep); 8352 8353 #ifdef CONFIG_SMP 8354 void __cant_migrate(const char *file, int line) 8355 { 8356 static unsigned long prev_jiffy; 8357 8358 if (irqs_disabled()) 8359 return; 8360 8361 if (is_migration_disabled(current)) 8362 return; 8363 8364 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8365 return; 8366 8367 if (preempt_count() > 0) 8368 return; 8369 8370 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8371 return; 8372 prev_jiffy = jiffies; 8373 8374 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8375 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8376 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8377 current->pid, current->comm); 8378 8379 debug_show_held_locks(current); 8380 dump_stack(); 8381 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8382 } 8383 EXPORT_SYMBOL_GPL(__cant_migrate); 8384 #endif 8385 #endif 8386 8387 #ifdef CONFIG_MAGIC_SYSRQ 8388 void normalize_rt_tasks(void) 8389 { 8390 struct task_struct *g, *p; 8391 struct sched_attr attr = { 8392 .sched_policy = SCHED_NORMAL, 8393 }; 8394 8395 read_lock(&tasklist_lock); 8396 for_each_process_thread(g, p) { 8397 /* 8398 * Only normalize user tasks: 8399 */ 8400 if (p->flags & PF_KTHREAD) 8401 continue; 8402 8403 p->se.exec_start = 0; 8404 schedstat_set(p->se.statistics.wait_start, 0); 8405 schedstat_set(p->se.statistics.sleep_start, 0); 8406 schedstat_set(p->se.statistics.block_start, 0); 8407 8408 if (!dl_task(p) && !rt_task(p)) { 8409 /* 8410 * Renice negative nice level userspace 8411 * tasks back to 0: 8412 */ 8413 if (task_nice(p) < 0) 8414 set_user_nice(p, 0); 8415 continue; 8416 } 8417 8418 __sched_setscheduler(p, &attr, false, false); 8419 } 8420 read_unlock(&tasklist_lock); 8421 } 8422 8423 #endif /* CONFIG_MAGIC_SYSRQ */ 8424 8425 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8426 /* 8427 * These functions are only useful for the IA64 MCA handling, or kdb. 8428 * 8429 * They can only be called when the whole system has been 8430 * stopped - every CPU needs to be quiescent, and no scheduling 8431 * activity can take place. Using them for anything else would 8432 * be a serious bug, and as a result, they aren't even visible 8433 * under any other configuration. 8434 */ 8435 8436 /** 8437 * curr_task - return the current task for a given CPU. 8438 * @cpu: the processor in question. 8439 * 8440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8441 * 8442 * Return: The current task for @cpu. 8443 */ 8444 struct task_struct *curr_task(int cpu) 8445 { 8446 return cpu_curr(cpu); 8447 } 8448 8449 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8450 8451 #ifdef CONFIG_IA64 8452 /** 8453 * ia64_set_curr_task - set the current task for a given CPU. 8454 * @cpu: the processor in question. 8455 * @p: the task pointer to set. 8456 * 8457 * Description: This function must only be used when non-maskable interrupts 8458 * are serviced on a separate stack. It allows the architecture to switch the 8459 * notion of the current task on a CPU in a non-blocking manner. This function 8460 * must be called with all CPU's synchronized, and interrupts disabled, the 8461 * and caller must save the original value of the current task (see 8462 * curr_task() above) and restore that value before reenabling interrupts and 8463 * re-starting the system. 8464 * 8465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8466 */ 8467 void ia64_set_curr_task(int cpu, struct task_struct *p) 8468 { 8469 cpu_curr(cpu) = p; 8470 } 8471 8472 #endif 8473 8474 #ifdef CONFIG_CGROUP_SCHED 8475 /* task_group_lock serializes the addition/removal of task groups */ 8476 static DEFINE_SPINLOCK(task_group_lock); 8477 8478 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8479 struct task_group *parent) 8480 { 8481 #ifdef CONFIG_UCLAMP_TASK_GROUP 8482 enum uclamp_id clamp_id; 8483 8484 for_each_clamp_id(clamp_id) { 8485 uclamp_se_set(&tg->uclamp_req[clamp_id], 8486 uclamp_none(clamp_id), false); 8487 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8488 } 8489 #endif 8490 } 8491 8492 static void sched_free_group(struct task_group *tg) 8493 { 8494 free_fair_sched_group(tg); 8495 free_rt_sched_group(tg); 8496 autogroup_free(tg); 8497 kmem_cache_free(task_group_cache, tg); 8498 } 8499 8500 /* allocate runqueue etc for a new task group */ 8501 struct task_group *sched_create_group(struct task_group *parent) 8502 { 8503 struct task_group *tg; 8504 8505 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8506 if (!tg) 8507 return ERR_PTR(-ENOMEM); 8508 8509 if (!alloc_fair_sched_group(tg, parent)) 8510 goto err; 8511 8512 if (!alloc_rt_sched_group(tg, parent)) 8513 goto err; 8514 8515 alloc_uclamp_sched_group(tg, parent); 8516 8517 return tg; 8518 8519 err: 8520 sched_free_group(tg); 8521 return ERR_PTR(-ENOMEM); 8522 } 8523 8524 void sched_online_group(struct task_group *tg, struct task_group *parent) 8525 { 8526 unsigned long flags; 8527 8528 spin_lock_irqsave(&task_group_lock, flags); 8529 list_add_rcu(&tg->list, &task_groups); 8530 8531 /* Root should already exist: */ 8532 WARN_ON(!parent); 8533 8534 tg->parent = parent; 8535 INIT_LIST_HEAD(&tg->children); 8536 list_add_rcu(&tg->siblings, &parent->children); 8537 spin_unlock_irqrestore(&task_group_lock, flags); 8538 8539 online_fair_sched_group(tg); 8540 } 8541 8542 /* rcu callback to free various structures associated with a task group */ 8543 static void sched_free_group_rcu(struct rcu_head *rhp) 8544 { 8545 /* Now it should be safe to free those cfs_rqs: */ 8546 sched_free_group(container_of(rhp, struct task_group, rcu)); 8547 } 8548 8549 void sched_destroy_group(struct task_group *tg) 8550 { 8551 /* Wait for possible concurrent references to cfs_rqs complete: */ 8552 call_rcu(&tg->rcu, sched_free_group_rcu); 8553 } 8554 8555 void sched_offline_group(struct task_group *tg) 8556 { 8557 unsigned long flags; 8558 8559 /* End participation in shares distribution: */ 8560 unregister_fair_sched_group(tg); 8561 8562 spin_lock_irqsave(&task_group_lock, flags); 8563 list_del_rcu(&tg->list); 8564 list_del_rcu(&tg->siblings); 8565 spin_unlock_irqrestore(&task_group_lock, flags); 8566 } 8567 8568 static void sched_change_group(struct task_struct *tsk, int type) 8569 { 8570 struct task_group *tg; 8571 8572 /* 8573 * All callers are synchronized by task_rq_lock(); we do not use RCU 8574 * which is pointless here. Thus, we pass "true" to task_css_check() 8575 * to prevent lockdep warnings. 8576 */ 8577 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8578 struct task_group, css); 8579 tg = autogroup_task_group(tsk, tg); 8580 tsk->sched_task_group = tg; 8581 8582 #ifdef CONFIG_FAIR_GROUP_SCHED 8583 if (tsk->sched_class->task_change_group) 8584 tsk->sched_class->task_change_group(tsk, type); 8585 else 8586 #endif 8587 set_task_rq(tsk, task_cpu(tsk)); 8588 } 8589 8590 /* 8591 * Change task's runqueue when it moves between groups. 8592 * 8593 * The caller of this function should have put the task in its new group by 8594 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8595 * its new group. 8596 */ 8597 void sched_move_task(struct task_struct *tsk) 8598 { 8599 int queued, running, queue_flags = 8600 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8601 struct rq_flags rf; 8602 struct rq *rq; 8603 8604 rq = task_rq_lock(tsk, &rf); 8605 update_rq_clock(rq); 8606 8607 running = task_current(rq, tsk); 8608 queued = task_on_rq_queued(tsk); 8609 8610 if (queued) 8611 dequeue_task(rq, tsk, queue_flags); 8612 if (running) 8613 put_prev_task(rq, tsk); 8614 8615 sched_change_group(tsk, TASK_MOVE_GROUP); 8616 8617 if (queued) 8618 enqueue_task(rq, tsk, queue_flags); 8619 if (running) { 8620 set_next_task(rq, tsk); 8621 /* 8622 * After changing group, the running task may have joined a 8623 * throttled one but it's still the running task. Trigger a 8624 * resched to make sure that task can still run. 8625 */ 8626 resched_curr(rq); 8627 } 8628 8629 task_rq_unlock(rq, tsk, &rf); 8630 } 8631 8632 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8633 { 8634 return css ? container_of(css, struct task_group, css) : NULL; 8635 } 8636 8637 static struct cgroup_subsys_state * 8638 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8639 { 8640 struct task_group *parent = css_tg(parent_css); 8641 struct task_group *tg; 8642 8643 if (!parent) { 8644 /* This is early initialization for the top cgroup */ 8645 return &root_task_group.css; 8646 } 8647 8648 tg = sched_create_group(parent); 8649 if (IS_ERR(tg)) 8650 return ERR_PTR(-ENOMEM); 8651 8652 return &tg->css; 8653 } 8654 8655 /* Expose task group only after completing cgroup initialization */ 8656 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8657 { 8658 struct task_group *tg = css_tg(css); 8659 struct task_group *parent = css_tg(css->parent); 8660 8661 if (parent) 8662 sched_online_group(tg, parent); 8663 8664 #ifdef CONFIG_UCLAMP_TASK_GROUP 8665 /* Propagate the effective uclamp value for the new group */ 8666 cpu_util_update_eff(css); 8667 #endif 8668 8669 return 0; 8670 } 8671 8672 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8673 { 8674 struct task_group *tg = css_tg(css); 8675 8676 sched_offline_group(tg); 8677 } 8678 8679 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8680 { 8681 struct task_group *tg = css_tg(css); 8682 8683 /* 8684 * Relies on the RCU grace period between css_released() and this. 8685 */ 8686 sched_free_group(tg); 8687 } 8688 8689 /* 8690 * This is called before wake_up_new_task(), therefore we really only 8691 * have to set its group bits, all the other stuff does not apply. 8692 */ 8693 static void cpu_cgroup_fork(struct task_struct *task) 8694 { 8695 struct rq_flags rf; 8696 struct rq *rq; 8697 8698 rq = task_rq_lock(task, &rf); 8699 8700 update_rq_clock(rq); 8701 sched_change_group(task, TASK_SET_GROUP); 8702 8703 task_rq_unlock(rq, task, &rf); 8704 } 8705 8706 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8707 { 8708 struct task_struct *task; 8709 struct cgroup_subsys_state *css; 8710 int ret = 0; 8711 8712 cgroup_taskset_for_each(task, css, tset) { 8713 #ifdef CONFIG_RT_GROUP_SCHED 8714 if (!sched_rt_can_attach(css_tg(css), task)) 8715 return -EINVAL; 8716 #endif 8717 /* 8718 * Serialize against wake_up_new_task() such that if it's 8719 * running, we're sure to observe its full state. 8720 */ 8721 raw_spin_lock_irq(&task->pi_lock); 8722 /* 8723 * Avoid calling sched_move_task() before wake_up_new_task() 8724 * has happened. This would lead to problems with PELT, due to 8725 * move wanting to detach+attach while we're not attached yet. 8726 */ 8727 if (task->state == TASK_NEW) 8728 ret = -EINVAL; 8729 raw_spin_unlock_irq(&task->pi_lock); 8730 8731 if (ret) 8732 break; 8733 } 8734 return ret; 8735 } 8736 8737 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8738 { 8739 struct task_struct *task; 8740 struct cgroup_subsys_state *css; 8741 8742 cgroup_taskset_for_each(task, css, tset) 8743 sched_move_task(task); 8744 } 8745 8746 #ifdef CONFIG_UCLAMP_TASK_GROUP 8747 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8748 { 8749 struct cgroup_subsys_state *top_css = css; 8750 struct uclamp_se *uc_parent = NULL; 8751 struct uclamp_se *uc_se = NULL; 8752 unsigned int eff[UCLAMP_CNT]; 8753 enum uclamp_id clamp_id; 8754 unsigned int clamps; 8755 8756 css_for_each_descendant_pre(css, top_css) { 8757 uc_parent = css_tg(css)->parent 8758 ? css_tg(css)->parent->uclamp : NULL; 8759 8760 for_each_clamp_id(clamp_id) { 8761 /* Assume effective clamps matches requested clamps */ 8762 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8763 /* Cap effective clamps with parent's effective clamps */ 8764 if (uc_parent && 8765 eff[clamp_id] > uc_parent[clamp_id].value) { 8766 eff[clamp_id] = uc_parent[clamp_id].value; 8767 } 8768 } 8769 /* Ensure protection is always capped by limit */ 8770 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8771 8772 /* Propagate most restrictive effective clamps */ 8773 clamps = 0x0; 8774 uc_se = css_tg(css)->uclamp; 8775 for_each_clamp_id(clamp_id) { 8776 if (eff[clamp_id] == uc_se[clamp_id].value) 8777 continue; 8778 uc_se[clamp_id].value = eff[clamp_id]; 8779 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8780 clamps |= (0x1 << clamp_id); 8781 } 8782 if (!clamps) { 8783 css = css_rightmost_descendant(css); 8784 continue; 8785 } 8786 8787 /* Immediately update descendants RUNNABLE tasks */ 8788 uclamp_update_active_tasks(css, clamps); 8789 } 8790 } 8791 8792 /* 8793 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8794 * C expression. Since there is no way to convert a macro argument (N) into a 8795 * character constant, use two levels of macros. 8796 */ 8797 #define _POW10(exp) ((unsigned int)1e##exp) 8798 #define POW10(exp) _POW10(exp) 8799 8800 struct uclamp_request { 8801 #define UCLAMP_PERCENT_SHIFT 2 8802 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8803 s64 percent; 8804 u64 util; 8805 int ret; 8806 }; 8807 8808 static inline struct uclamp_request 8809 capacity_from_percent(char *buf) 8810 { 8811 struct uclamp_request req = { 8812 .percent = UCLAMP_PERCENT_SCALE, 8813 .util = SCHED_CAPACITY_SCALE, 8814 .ret = 0, 8815 }; 8816 8817 buf = strim(buf); 8818 if (strcmp(buf, "max")) { 8819 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8820 &req.percent); 8821 if (req.ret) 8822 return req; 8823 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8824 req.ret = -ERANGE; 8825 return req; 8826 } 8827 8828 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8829 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8830 } 8831 8832 return req; 8833 } 8834 8835 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8836 size_t nbytes, loff_t off, 8837 enum uclamp_id clamp_id) 8838 { 8839 struct uclamp_request req; 8840 struct task_group *tg; 8841 8842 req = capacity_from_percent(buf); 8843 if (req.ret) 8844 return req.ret; 8845 8846 static_branch_enable(&sched_uclamp_used); 8847 8848 mutex_lock(&uclamp_mutex); 8849 rcu_read_lock(); 8850 8851 tg = css_tg(of_css(of)); 8852 if (tg->uclamp_req[clamp_id].value != req.util) 8853 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8854 8855 /* 8856 * Because of not recoverable conversion rounding we keep track of the 8857 * exact requested value 8858 */ 8859 tg->uclamp_pct[clamp_id] = req.percent; 8860 8861 /* Update effective clamps to track the most restrictive value */ 8862 cpu_util_update_eff(of_css(of)); 8863 8864 rcu_read_unlock(); 8865 mutex_unlock(&uclamp_mutex); 8866 8867 return nbytes; 8868 } 8869 8870 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8871 char *buf, size_t nbytes, 8872 loff_t off) 8873 { 8874 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8875 } 8876 8877 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8878 char *buf, size_t nbytes, 8879 loff_t off) 8880 { 8881 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8882 } 8883 8884 static inline void cpu_uclamp_print(struct seq_file *sf, 8885 enum uclamp_id clamp_id) 8886 { 8887 struct task_group *tg; 8888 u64 util_clamp; 8889 u64 percent; 8890 u32 rem; 8891 8892 rcu_read_lock(); 8893 tg = css_tg(seq_css(sf)); 8894 util_clamp = tg->uclamp_req[clamp_id].value; 8895 rcu_read_unlock(); 8896 8897 if (util_clamp == SCHED_CAPACITY_SCALE) { 8898 seq_puts(sf, "max\n"); 8899 return; 8900 } 8901 8902 percent = tg->uclamp_pct[clamp_id]; 8903 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8904 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8905 } 8906 8907 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8908 { 8909 cpu_uclamp_print(sf, UCLAMP_MIN); 8910 return 0; 8911 } 8912 8913 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8914 { 8915 cpu_uclamp_print(sf, UCLAMP_MAX); 8916 return 0; 8917 } 8918 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8919 8920 #ifdef CONFIG_FAIR_GROUP_SCHED 8921 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8922 struct cftype *cftype, u64 shareval) 8923 { 8924 if (shareval > scale_load_down(ULONG_MAX)) 8925 shareval = MAX_SHARES; 8926 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8927 } 8928 8929 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8930 struct cftype *cft) 8931 { 8932 struct task_group *tg = css_tg(css); 8933 8934 return (u64) scale_load_down(tg->shares); 8935 } 8936 8937 #ifdef CONFIG_CFS_BANDWIDTH 8938 static DEFINE_MUTEX(cfs_constraints_mutex); 8939 8940 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8941 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8942 /* More than 203 days if BW_SHIFT equals 20. */ 8943 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8944 8945 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8946 8947 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8948 { 8949 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8951 8952 if (tg == &root_task_group) 8953 return -EINVAL; 8954 8955 /* 8956 * Ensure we have at some amount of bandwidth every period. This is 8957 * to prevent reaching a state of large arrears when throttled via 8958 * entity_tick() resulting in prolonged exit starvation. 8959 */ 8960 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8961 return -EINVAL; 8962 8963 /* 8964 * Likewise, bound things on the otherside by preventing insane quota 8965 * periods. This also allows us to normalize in computing quota 8966 * feasibility. 8967 */ 8968 if (period > max_cfs_quota_period) 8969 return -EINVAL; 8970 8971 /* 8972 * Bound quota to defend quota against overflow during bandwidth shift. 8973 */ 8974 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 8975 return -EINVAL; 8976 8977 /* 8978 * Prevent race between setting of cfs_rq->runtime_enabled and 8979 * unthrottle_offline_cfs_rqs(). 8980 */ 8981 get_online_cpus(); 8982 mutex_lock(&cfs_constraints_mutex); 8983 ret = __cfs_schedulable(tg, period, quota); 8984 if (ret) 8985 goto out_unlock; 8986 8987 runtime_enabled = quota != RUNTIME_INF; 8988 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8989 /* 8990 * If we need to toggle cfs_bandwidth_used, off->on must occur 8991 * before making related changes, and on->off must occur afterwards 8992 */ 8993 if (runtime_enabled && !runtime_was_enabled) 8994 cfs_bandwidth_usage_inc(); 8995 raw_spin_lock_irq(&cfs_b->lock); 8996 cfs_b->period = ns_to_ktime(period); 8997 cfs_b->quota = quota; 8998 8999 __refill_cfs_bandwidth_runtime(cfs_b); 9000 9001 /* Restart the period timer (if active) to handle new period expiry: */ 9002 if (runtime_enabled) 9003 start_cfs_bandwidth(cfs_b); 9004 9005 raw_spin_unlock_irq(&cfs_b->lock); 9006 9007 for_each_online_cpu(i) { 9008 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9009 struct rq *rq = cfs_rq->rq; 9010 struct rq_flags rf; 9011 9012 rq_lock_irq(rq, &rf); 9013 cfs_rq->runtime_enabled = runtime_enabled; 9014 cfs_rq->runtime_remaining = 0; 9015 9016 if (cfs_rq->throttled) 9017 unthrottle_cfs_rq(cfs_rq); 9018 rq_unlock_irq(rq, &rf); 9019 } 9020 if (runtime_was_enabled && !runtime_enabled) 9021 cfs_bandwidth_usage_dec(); 9022 out_unlock: 9023 mutex_unlock(&cfs_constraints_mutex); 9024 put_online_cpus(); 9025 9026 return ret; 9027 } 9028 9029 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9030 { 9031 u64 quota, period; 9032 9033 period = ktime_to_ns(tg->cfs_bandwidth.period); 9034 if (cfs_quota_us < 0) 9035 quota = RUNTIME_INF; 9036 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9037 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9038 else 9039 return -EINVAL; 9040 9041 return tg_set_cfs_bandwidth(tg, period, quota); 9042 } 9043 9044 static long tg_get_cfs_quota(struct task_group *tg) 9045 { 9046 u64 quota_us; 9047 9048 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9049 return -1; 9050 9051 quota_us = tg->cfs_bandwidth.quota; 9052 do_div(quota_us, NSEC_PER_USEC); 9053 9054 return quota_us; 9055 } 9056 9057 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9058 { 9059 u64 quota, period; 9060 9061 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9062 return -EINVAL; 9063 9064 period = (u64)cfs_period_us * NSEC_PER_USEC; 9065 quota = tg->cfs_bandwidth.quota; 9066 9067 return tg_set_cfs_bandwidth(tg, period, quota); 9068 } 9069 9070 static long tg_get_cfs_period(struct task_group *tg) 9071 { 9072 u64 cfs_period_us; 9073 9074 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9075 do_div(cfs_period_us, NSEC_PER_USEC); 9076 9077 return cfs_period_us; 9078 } 9079 9080 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9081 struct cftype *cft) 9082 { 9083 return tg_get_cfs_quota(css_tg(css)); 9084 } 9085 9086 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9087 struct cftype *cftype, s64 cfs_quota_us) 9088 { 9089 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9090 } 9091 9092 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9093 struct cftype *cft) 9094 { 9095 return tg_get_cfs_period(css_tg(css)); 9096 } 9097 9098 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9099 struct cftype *cftype, u64 cfs_period_us) 9100 { 9101 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9102 } 9103 9104 struct cfs_schedulable_data { 9105 struct task_group *tg; 9106 u64 period, quota; 9107 }; 9108 9109 /* 9110 * normalize group quota/period to be quota/max_period 9111 * note: units are usecs 9112 */ 9113 static u64 normalize_cfs_quota(struct task_group *tg, 9114 struct cfs_schedulable_data *d) 9115 { 9116 u64 quota, period; 9117 9118 if (tg == d->tg) { 9119 period = d->period; 9120 quota = d->quota; 9121 } else { 9122 period = tg_get_cfs_period(tg); 9123 quota = tg_get_cfs_quota(tg); 9124 } 9125 9126 /* note: these should typically be equivalent */ 9127 if (quota == RUNTIME_INF || quota == -1) 9128 return RUNTIME_INF; 9129 9130 return to_ratio(period, quota); 9131 } 9132 9133 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9134 { 9135 struct cfs_schedulable_data *d = data; 9136 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9137 s64 quota = 0, parent_quota = -1; 9138 9139 if (!tg->parent) { 9140 quota = RUNTIME_INF; 9141 } else { 9142 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9143 9144 quota = normalize_cfs_quota(tg, d); 9145 parent_quota = parent_b->hierarchical_quota; 9146 9147 /* 9148 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9149 * always take the min. On cgroup1, only inherit when no 9150 * limit is set: 9151 */ 9152 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9153 quota = min(quota, parent_quota); 9154 } else { 9155 if (quota == RUNTIME_INF) 9156 quota = parent_quota; 9157 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9158 return -EINVAL; 9159 } 9160 } 9161 cfs_b->hierarchical_quota = quota; 9162 9163 return 0; 9164 } 9165 9166 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9167 { 9168 int ret; 9169 struct cfs_schedulable_data data = { 9170 .tg = tg, 9171 .period = period, 9172 .quota = quota, 9173 }; 9174 9175 if (quota != RUNTIME_INF) { 9176 do_div(data.period, NSEC_PER_USEC); 9177 do_div(data.quota, NSEC_PER_USEC); 9178 } 9179 9180 rcu_read_lock(); 9181 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9182 rcu_read_unlock(); 9183 9184 return ret; 9185 } 9186 9187 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9188 { 9189 struct task_group *tg = css_tg(seq_css(sf)); 9190 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9191 9192 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9193 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9194 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9195 9196 if (schedstat_enabled() && tg != &root_task_group) { 9197 u64 ws = 0; 9198 int i; 9199 9200 for_each_possible_cpu(i) 9201 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 9202 9203 seq_printf(sf, "wait_sum %llu\n", ws); 9204 } 9205 9206 return 0; 9207 } 9208 #endif /* CONFIG_CFS_BANDWIDTH */ 9209 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9210 9211 #ifdef CONFIG_RT_GROUP_SCHED 9212 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9213 struct cftype *cft, s64 val) 9214 { 9215 return sched_group_set_rt_runtime(css_tg(css), val); 9216 } 9217 9218 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9219 struct cftype *cft) 9220 { 9221 return sched_group_rt_runtime(css_tg(css)); 9222 } 9223 9224 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9225 struct cftype *cftype, u64 rt_period_us) 9226 { 9227 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9228 } 9229 9230 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9231 struct cftype *cft) 9232 { 9233 return sched_group_rt_period(css_tg(css)); 9234 } 9235 #endif /* CONFIG_RT_GROUP_SCHED */ 9236 9237 static struct cftype cpu_legacy_files[] = { 9238 #ifdef CONFIG_FAIR_GROUP_SCHED 9239 { 9240 .name = "shares", 9241 .read_u64 = cpu_shares_read_u64, 9242 .write_u64 = cpu_shares_write_u64, 9243 }, 9244 #endif 9245 #ifdef CONFIG_CFS_BANDWIDTH 9246 { 9247 .name = "cfs_quota_us", 9248 .read_s64 = cpu_cfs_quota_read_s64, 9249 .write_s64 = cpu_cfs_quota_write_s64, 9250 }, 9251 { 9252 .name = "cfs_period_us", 9253 .read_u64 = cpu_cfs_period_read_u64, 9254 .write_u64 = cpu_cfs_period_write_u64, 9255 }, 9256 { 9257 .name = "stat", 9258 .seq_show = cpu_cfs_stat_show, 9259 }, 9260 #endif 9261 #ifdef CONFIG_RT_GROUP_SCHED 9262 { 9263 .name = "rt_runtime_us", 9264 .read_s64 = cpu_rt_runtime_read, 9265 .write_s64 = cpu_rt_runtime_write, 9266 }, 9267 { 9268 .name = "rt_period_us", 9269 .read_u64 = cpu_rt_period_read_uint, 9270 .write_u64 = cpu_rt_period_write_uint, 9271 }, 9272 #endif 9273 #ifdef CONFIG_UCLAMP_TASK_GROUP 9274 { 9275 .name = "uclamp.min", 9276 .flags = CFTYPE_NOT_ON_ROOT, 9277 .seq_show = cpu_uclamp_min_show, 9278 .write = cpu_uclamp_min_write, 9279 }, 9280 { 9281 .name = "uclamp.max", 9282 .flags = CFTYPE_NOT_ON_ROOT, 9283 .seq_show = cpu_uclamp_max_show, 9284 .write = cpu_uclamp_max_write, 9285 }, 9286 #endif 9287 { } /* Terminate */ 9288 }; 9289 9290 static int cpu_extra_stat_show(struct seq_file *sf, 9291 struct cgroup_subsys_state *css) 9292 { 9293 #ifdef CONFIG_CFS_BANDWIDTH 9294 { 9295 struct task_group *tg = css_tg(css); 9296 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9297 u64 throttled_usec; 9298 9299 throttled_usec = cfs_b->throttled_time; 9300 do_div(throttled_usec, NSEC_PER_USEC); 9301 9302 seq_printf(sf, "nr_periods %d\n" 9303 "nr_throttled %d\n" 9304 "throttled_usec %llu\n", 9305 cfs_b->nr_periods, cfs_b->nr_throttled, 9306 throttled_usec); 9307 } 9308 #endif 9309 return 0; 9310 } 9311 9312 #ifdef CONFIG_FAIR_GROUP_SCHED 9313 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9314 struct cftype *cft) 9315 { 9316 struct task_group *tg = css_tg(css); 9317 u64 weight = scale_load_down(tg->shares); 9318 9319 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9320 } 9321 9322 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9323 struct cftype *cft, u64 weight) 9324 { 9325 /* 9326 * cgroup weight knobs should use the common MIN, DFL and MAX 9327 * values which are 1, 100 and 10000 respectively. While it loses 9328 * a bit of range on both ends, it maps pretty well onto the shares 9329 * value used by scheduler and the round-trip conversions preserve 9330 * the original value over the entire range. 9331 */ 9332 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9333 return -ERANGE; 9334 9335 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9336 9337 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9338 } 9339 9340 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9341 struct cftype *cft) 9342 { 9343 unsigned long weight = scale_load_down(css_tg(css)->shares); 9344 int last_delta = INT_MAX; 9345 int prio, delta; 9346 9347 /* find the closest nice value to the current weight */ 9348 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9349 delta = abs(sched_prio_to_weight[prio] - weight); 9350 if (delta >= last_delta) 9351 break; 9352 last_delta = delta; 9353 } 9354 9355 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9356 } 9357 9358 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9359 struct cftype *cft, s64 nice) 9360 { 9361 unsigned long weight; 9362 int idx; 9363 9364 if (nice < MIN_NICE || nice > MAX_NICE) 9365 return -ERANGE; 9366 9367 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9368 idx = array_index_nospec(idx, 40); 9369 weight = sched_prio_to_weight[idx]; 9370 9371 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9372 } 9373 #endif 9374 9375 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9376 long period, long quota) 9377 { 9378 if (quota < 0) 9379 seq_puts(sf, "max"); 9380 else 9381 seq_printf(sf, "%ld", quota); 9382 9383 seq_printf(sf, " %ld\n", period); 9384 } 9385 9386 /* caller should put the current value in *@periodp before calling */ 9387 static int __maybe_unused cpu_period_quota_parse(char *buf, 9388 u64 *periodp, u64 *quotap) 9389 { 9390 char tok[21]; /* U64_MAX */ 9391 9392 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9393 return -EINVAL; 9394 9395 *periodp *= NSEC_PER_USEC; 9396 9397 if (sscanf(tok, "%llu", quotap)) 9398 *quotap *= NSEC_PER_USEC; 9399 else if (!strcmp(tok, "max")) 9400 *quotap = RUNTIME_INF; 9401 else 9402 return -EINVAL; 9403 9404 return 0; 9405 } 9406 9407 #ifdef CONFIG_CFS_BANDWIDTH 9408 static int cpu_max_show(struct seq_file *sf, void *v) 9409 { 9410 struct task_group *tg = css_tg(seq_css(sf)); 9411 9412 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9413 return 0; 9414 } 9415 9416 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9417 char *buf, size_t nbytes, loff_t off) 9418 { 9419 struct task_group *tg = css_tg(of_css(of)); 9420 u64 period = tg_get_cfs_period(tg); 9421 u64 quota; 9422 int ret; 9423 9424 ret = cpu_period_quota_parse(buf, &period, "a); 9425 if (!ret) 9426 ret = tg_set_cfs_bandwidth(tg, period, quota); 9427 return ret ?: nbytes; 9428 } 9429 #endif 9430 9431 static struct cftype cpu_files[] = { 9432 #ifdef CONFIG_FAIR_GROUP_SCHED 9433 { 9434 .name = "weight", 9435 .flags = CFTYPE_NOT_ON_ROOT, 9436 .read_u64 = cpu_weight_read_u64, 9437 .write_u64 = cpu_weight_write_u64, 9438 }, 9439 { 9440 .name = "weight.nice", 9441 .flags = CFTYPE_NOT_ON_ROOT, 9442 .read_s64 = cpu_weight_nice_read_s64, 9443 .write_s64 = cpu_weight_nice_write_s64, 9444 }, 9445 #endif 9446 #ifdef CONFIG_CFS_BANDWIDTH 9447 { 9448 .name = "max", 9449 .flags = CFTYPE_NOT_ON_ROOT, 9450 .seq_show = cpu_max_show, 9451 .write = cpu_max_write, 9452 }, 9453 #endif 9454 #ifdef CONFIG_UCLAMP_TASK_GROUP 9455 { 9456 .name = "uclamp.min", 9457 .flags = CFTYPE_NOT_ON_ROOT, 9458 .seq_show = cpu_uclamp_min_show, 9459 .write = cpu_uclamp_min_write, 9460 }, 9461 { 9462 .name = "uclamp.max", 9463 .flags = CFTYPE_NOT_ON_ROOT, 9464 .seq_show = cpu_uclamp_max_show, 9465 .write = cpu_uclamp_max_write, 9466 }, 9467 #endif 9468 { } /* terminate */ 9469 }; 9470 9471 struct cgroup_subsys cpu_cgrp_subsys = { 9472 .css_alloc = cpu_cgroup_css_alloc, 9473 .css_online = cpu_cgroup_css_online, 9474 .css_released = cpu_cgroup_css_released, 9475 .css_free = cpu_cgroup_css_free, 9476 .css_extra_stat_show = cpu_extra_stat_show, 9477 .fork = cpu_cgroup_fork, 9478 .can_attach = cpu_cgroup_can_attach, 9479 .attach = cpu_cgroup_attach, 9480 .legacy_cftypes = cpu_legacy_files, 9481 .dfl_cftypes = cpu_files, 9482 .early_init = true, 9483 .threaded = true, 9484 }; 9485 9486 #endif /* CONFIG_CGROUP_SCHED */ 9487 9488 void dump_cpu_task(int cpu) 9489 { 9490 pr_info("Task dump for CPU %d:\n", cpu); 9491 sched_show_task(cpu_curr(cpu)); 9492 } 9493 9494 /* 9495 * Nice levels are multiplicative, with a gentle 10% change for every 9496 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9497 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9498 * that remained on nice 0. 9499 * 9500 * The "10% effect" is relative and cumulative: from _any_ nice level, 9501 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9502 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9503 * If a task goes up by ~10% and another task goes down by ~10% then 9504 * the relative distance between them is ~25%.) 9505 */ 9506 const int sched_prio_to_weight[40] = { 9507 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9508 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9509 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9510 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9511 /* 0 */ 1024, 820, 655, 526, 423, 9512 /* 5 */ 335, 272, 215, 172, 137, 9513 /* 10 */ 110, 87, 70, 56, 45, 9514 /* 15 */ 36, 29, 23, 18, 15, 9515 }; 9516 9517 /* 9518 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9519 * 9520 * In cases where the weight does not change often, we can use the 9521 * precalculated inverse to speed up arithmetics by turning divisions 9522 * into multiplications: 9523 */ 9524 const u32 sched_prio_to_wmult[40] = { 9525 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9526 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9527 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9528 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9529 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9530 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9531 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9532 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9533 }; 9534 9535 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9536 { 9537 trace_sched_update_nr_running_tp(rq, count); 9538 } 9539