xref: /openbmc/linux/kernel/sched/core.c (revision 9e81889c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = rq->hrtick_time;
359 
360 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 	struct rq_flags rf;
370 
371 	rq_lock(rq, &rf);
372 	__hrtick_restart(rq);
373 	rq_unlock(rq, &rf);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	if (rq == this_rq())
394 		__hrtick_restart(rq);
395 	else
396 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
397 }
398 
399 #else
400 /*
401  * Called to set the hrtick timer state.
402  *
403  * called with rq->lock held and irqs disabled
404  */
405 void hrtick_start(struct rq *rq, u64 delay)
406 {
407 	/*
408 	 * Don't schedule slices shorter than 10000ns, that just
409 	 * doesn't make sense. Rely on vruntime for fairness.
410 	 */
411 	delay = max_t(u64, delay, 10000LL);
412 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
413 		      HRTIMER_MODE_REL_PINNED_HARD);
414 }
415 
416 #endif /* CONFIG_SMP */
417 
418 static void hrtick_rq_init(struct rq *rq)
419 {
420 #ifdef CONFIG_SMP
421 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
422 #endif
423 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
424 	rq->hrtick_timer.function = hrtick;
425 }
426 #else	/* CONFIG_SCHED_HRTICK */
427 static inline void hrtick_clear(struct rq *rq)
428 {
429 }
430 
431 static inline void hrtick_rq_init(struct rq *rq)
432 {
433 }
434 #endif	/* CONFIG_SCHED_HRTICK */
435 
436 /*
437  * cmpxchg based fetch_or, macro so it works for different integer types
438  */
439 #define fetch_or(ptr, mask)						\
440 	({								\
441 		typeof(ptr) _ptr = (ptr);				\
442 		typeof(mask) _mask = (mask);				\
443 		typeof(*_ptr) _old, _val = *_ptr;			\
444 									\
445 		for (;;) {						\
446 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
447 			if (_old == _val)				\
448 				break;					\
449 			_val = _old;					\
450 		}							\
451 	_old;								\
452 })
453 
454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
455 /*
456  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457  * this avoids any races wrt polling state changes and thereby avoids
458  * spurious IPIs.
459  */
460 static bool set_nr_and_not_polling(struct task_struct *p)
461 {
462 	struct thread_info *ti = task_thread_info(p);
463 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464 }
465 
466 /*
467  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468  *
469  * If this returns true, then the idle task promises to call
470  * sched_ttwu_pending() and reschedule soon.
471  */
472 static bool set_nr_if_polling(struct task_struct *p)
473 {
474 	struct thread_info *ti = task_thread_info(p);
475 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
476 
477 	for (;;) {
478 		if (!(val & _TIF_POLLING_NRFLAG))
479 			return false;
480 		if (val & _TIF_NEED_RESCHED)
481 			return true;
482 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 		if (old == val)
484 			break;
485 		val = old;
486 	}
487 	return true;
488 }
489 
490 #else
491 static bool set_nr_and_not_polling(struct task_struct *p)
492 {
493 	set_tsk_need_resched(p);
494 	return true;
495 }
496 
497 #ifdef CONFIG_SMP
498 static bool set_nr_if_polling(struct task_struct *p)
499 {
500 	return false;
501 }
502 #endif
503 #endif
504 
505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
506 {
507 	struct wake_q_node *node = &task->wake_q;
508 
509 	/*
510 	 * Atomically grab the task, if ->wake_q is !nil already it means
511 	 * it's already queued (either by us or someone else) and will get the
512 	 * wakeup due to that.
513 	 *
514 	 * In order to ensure that a pending wakeup will observe our pending
515 	 * state, even in the failed case, an explicit smp_mb() must be used.
516 	 */
517 	smp_mb__before_atomic();
518 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
519 		return false;
520 
521 	/*
522 	 * The head is context local, there can be no concurrency.
523 	 */
524 	*head->lastp = node;
525 	head->lastp = &node->next;
526 	return true;
527 }
528 
529 /**
530  * wake_q_add() - queue a wakeup for 'later' waking.
531  * @head: the wake_q_head to add @task to
532  * @task: the task to queue for 'later' wakeup
533  *
534  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536  * instantly.
537  *
538  * This function must be used as-if it were wake_up_process(); IOW the task
539  * must be ready to be woken at this location.
540  */
541 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542 {
543 	if (__wake_q_add(head, task))
544 		get_task_struct(task);
545 }
546 
547 /**
548  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549  * @head: the wake_q_head to add @task to
550  * @task: the task to queue for 'later' wakeup
551  *
552  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554  * instantly.
555  *
556  * This function must be used as-if it were wake_up_process(); IOW the task
557  * must be ready to be woken at this location.
558  *
559  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560  * that already hold reference to @task can call the 'safe' version and trust
561  * wake_q to do the right thing depending whether or not the @task is already
562  * queued for wakeup.
563  */
564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565 {
566 	if (!__wake_q_add(head, task))
567 		put_task_struct(task);
568 }
569 
570 void wake_up_q(struct wake_q_head *head)
571 {
572 	struct wake_q_node *node = head->first;
573 
574 	while (node != WAKE_Q_TAIL) {
575 		struct task_struct *task;
576 
577 		task = container_of(node, struct task_struct, wake_q);
578 		BUG_ON(!task);
579 		/* Task can safely be re-inserted now: */
580 		node = node->next;
581 		task->wake_q.next = NULL;
582 
583 		/*
584 		 * wake_up_process() executes a full barrier, which pairs with
585 		 * the queueing in wake_q_add() so as not to miss wakeups.
586 		 */
587 		wake_up_process(task);
588 		put_task_struct(task);
589 	}
590 }
591 
592 /*
593  * resched_curr - mark rq's current task 'to be rescheduled now'.
594  *
595  * On UP this means the setting of the need_resched flag, on SMP it
596  * might also involve a cross-CPU call to trigger the scheduler on
597  * the target CPU.
598  */
599 void resched_curr(struct rq *rq)
600 {
601 	struct task_struct *curr = rq->curr;
602 	int cpu;
603 
604 	lockdep_assert_held(&rq->lock);
605 
606 	if (test_tsk_need_resched(curr))
607 		return;
608 
609 	cpu = cpu_of(rq);
610 
611 	if (cpu == smp_processor_id()) {
612 		set_tsk_need_resched(curr);
613 		set_preempt_need_resched();
614 		return;
615 	}
616 
617 	if (set_nr_and_not_polling(curr))
618 		smp_send_reschedule(cpu);
619 	else
620 		trace_sched_wake_idle_without_ipi(cpu);
621 }
622 
623 void resched_cpu(int cpu)
624 {
625 	struct rq *rq = cpu_rq(cpu);
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&rq->lock, flags);
629 	if (cpu_online(cpu) || cpu == smp_processor_id())
630 		resched_curr(rq);
631 	raw_spin_unlock_irqrestore(&rq->lock, flags);
632 }
633 
634 #ifdef CONFIG_SMP
635 #ifdef CONFIG_NO_HZ_COMMON
636 /*
637  * In the semi idle case, use the nearest busy CPU for migrating timers
638  * from an idle CPU.  This is good for power-savings.
639  *
640  * We don't do similar optimization for completely idle system, as
641  * selecting an idle CPU will add more delays to the timers than intended
642  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
643  */
644 int get_nohz_timer_target(void)
645 {
646 	int i, cpu = smp_processor_id(), default_cpu = -1;
647 	struct sched_domain *sd;
648 
649 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 		if (!idle_cpu(cpu))
651 			return cpu;
652 		default_cpu = cpu;
653 	}
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu_and(i, sched_domain_span(sd),
658 			housekeeping_cpumask(HK_FLAG_TIMER)) {
659 			if (cpu == i)
660 				continue;
661 
662 			if (!idle_cpu(i)) {
663 				cpu = i;
664 				goto unlock;
665 			}
666 		}
667 	}
668 
669 	if (default_cpu == -1)
670 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 	cpu = default_cpu;
672 unlock:
673 	rcu_read_unlock();
674 	return cpu;
675 }
676 
677 /*
678  * When add_timer_on() enqueues a timer into the timer wheel of an
679  * idle CPU then this timer might expire before the next timer event
680  * which is scheduled to wake up that CPU. In case of a completely
681  * idle system the next event might even be infinite time into the
682  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683  * leaves the inner idle loop so the newly added timer is taken into
684  * account when the CPU goes back to idle and evaluates the timer
685  * wheel for the next timer event.
686  */
687 static void wake_up_idle_cpu(int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 
691 	if (cpu == smp_processor_id())
692 		return;
693 
694 	if (set_nr_and_not_polling(rq->idle))
695 		smp_send_reschedule(cpu);
696 	else
697 		trace_sched_wake_idle_without_ipi(cpu);
698 }
699 
700 static bool wake_up_full_nohz_cpu(int cpu)
701 {
702 	/*
703 	 * We just need the target to call irq_exit() and re-evaluate
704 	 * the next tick. The nohz full kick at least implies that.
705 	 * If needed we can still optimize that later with an
706 	 * empty IRQ.
707 	 */
708 	if (cpu_is_offline(cpu))
709 		return true;  /* Don't try to wake offline CPUs. */
710 	if (tick_nohz_full_cpu(cpu)) {
711 		if (cpu != smp_processor_id() ||
712 		    tick_nohz_tick_stopped())
713 			tick_nohz_full_kick_cpu(cpu);
714 		return true;
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Wake up the specified CPU.  If the CPU is going offline, it is the
722  * caller's responsibility to deal with the lost wakeup, for example,
723  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724  */
725 void wake_up_nohz_cpu(int cpu)
726 {
727 	if (!wake_up_full_nohz_cpu(cpu))
728 		wake_up_idle_cpu(cpu);
729 }
730 
731 static void nohz_csd_func(void *info)
732 {
733 	struct rq *rq = info;
734 	int cpu = cpu_of(rq);
735 	unsigned int flags;
736 
737 	/*
738 	 * Release the rq::nohz_csd.
739 	 */
740 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 	WARN_ON(!(flags & NOHZ_KICK_MASK));
742 
743 	rq->idle_balance = idle_cpu(cpu);
744 	if (rq->idle_balance && !need_resched()) {
745 		rq->nohz_idle_balance = flags;
746 		raise_softirq_irqoff(SCHED_SOFTIRQ);
747 	}
748 }
749 
750 #endif /* CONFIG_NO_HZ_COMMON */
751 
752 #ifdef CONFIG_NO_HZ_FULL
753 bool sched_can_stop_tick(struct rq *rq)
754 {
755 	int fifo_nr_running;
756 
757 	/* Deadline tasks, even if single, need the tick */
758 	if (rq->dl.dl_nr_running)
759 		return false;
760 
761 	/*
762 	 * If there are more than one RR tasks, we need the tick to affect the
763 	 * actual RR behaviour.
764 	 */
765 	if (rq->rt.rr_nr_running) {
766 		if (rq->rt.rr_nr_running == 1)
767 			return true;
768 		else
769 			return false;
770 	}
771 
772 	/*
773 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 	 * forced preemption between FIFO tasks.
775 	 */
776 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 	if (fifo_nr_running)
778 		return true;
779 
780 	/*
781 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 	 * if there's more than one we need the tick for involuntary
783 	 * preemption.
784 	 */
785 	if (rq->nr_running > 1)
786 		return false;
787 
788 	return true;
789 }
790 #endif /* CONFIG_NO_HZ_FULL */
791 #endif /* CONFIG_SMP */
792 
793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
795 /*
796  * Iterate task_group tree rooted at *from, calling @down when first entering a
797  * node and @up when leaving it for the final time.
798  *
799  * Caller must hold rcu_lock or sufficient equivalent.
800  */
801 int walk_tg_tree_from(struct task_group *from,
802 			     tg_visitor down, tg_visitor up, void *data)
803 {
804 	struct task_group *parent, *child;
805 	int ret;
806 
807 	parent = from;
808 
809 down:
810 	ret = (*down)(parent, data);
811 	if (ret)
812 		goto out;
813 	list_for_each_entry_rcu(child, &parent->children, siblings) {
814 		parent = child;
815 		goto down;
816 
817 up:
818 		continue;
819 	}
820 	ret = (*up)(parent, data);
821 	if (ret || parent == from)
822 		goto out;
823 
824 	child = parent;
825 	parent = parent->parent;
826 	if (parent)
827 		goto up;
828 out:
829 	return ret;
830 }
831 
832 int tg_nop(struct task_group *tg, void *data)
833 {
834 	return 0;
835 }
836 #endif
837 
838 static void set_load_weight(struct task_struct *p, bool update_load)
839 {
840 	int prio = p->static_prio - MAX_RT_PRIO;
841 	struct load_weight *load = &p->se.load;
842 
843 	/*
844 	 * SCHED_IDLE tasks get minimal weight:
845 	 */
846 	if (task_has_idle_policy(p)) {
847 		load->weight = scale_load(WEIGHT_IDLEPRIO);
848 		load->inv_weight = WMULT_IDLEPRIO;
849 		return;
850 	}
851 
852 	/*
853 	 * SCHED_OTHER tasks have to update their load when changing their
854 	 * weight
855 	 */
856 	if (update_load && p->sched_class == &fair_sched_class) {
857 		reweight_task(p, prio);
858 	} else {
859 		load->weight = scale_load(sched_prio_to_weight[prio]);
860 		load->inv_weight = sched_prio_to_wmult[prio];
861 	}
862 }
863 
864 #ifdef CONFIG_UCLAMP_TASK
865 /*
866  * Serializes updates of utilization clamp values
867  *
868  * The (slow-path) user-space triggers utilization clamp value updates which
869  * can require updates on (fast-path) scheduler's data structures used to
870  * support enqueue/dequeue operations.
871  * While the per-CPU rq lock protects fast-path update operations, user-space
872  * requests are serialized using a mutex to reduce the risk of conflicting
873  * updates or API abuses.
874  */
875 static DEFINE_MUTEX(uclamp_mutex);
876 
877 /* Max allowed minimum utilization */
878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879 
880 /* Max allowed maximum utilization */
881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882 
883 /*
884  * By default RT tasks run at the maximum performance point/capacity of the
885  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886  * SCHED_CAPACITY_SCALE.
887  *
888  * This knob allows admins to change the default behavior when uclamp is being
889  * used. In battery powered devices, particularly, running at the maximum
890  * capacity and frequency will increase energy consumption and shorten the
891  * battery life.
892  *
893  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894  *
895  * This knob will not override the system default sched_util_clamp_min defined
896  * above.
897  */
898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899 
900 /* All clamps are required to be less or equal than these values */
901 static struct uclamp_se uclamp_default[UCLAMP_CNT];
902 
903 /*
904  * This static key is used to reduce the uclamp overhead in the fast path. It
905  * primarily disables the call to uclamp_rq_{inc, dec}() in
906  * enqueue/dequeue_task().
907  *
908  * This allows users to continue to enable uclamp in their kernel config with
909  * minimum uclamp overhead in the fast path.
910  *
911  * As soon as userspace modifies any of the uclamp knobs, the static key is
912  * enabled, since we have an actual users that make use of uclamp
913  * functionality.
914  *
915  * The knobs that would enable this static key are:
916  *
917  *   * A task modifying its uclamp value with sched_setattr().
918  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
920  */
921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922 
923 /* Integer rounded range for each bucket */
924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925 
926 #define for_each_clamp_id(clamp_id) \
927 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928 
929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930 {
931 	return clamp_value / UCLAMP_BUCKET_DELTA;
932 }
933 
934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
935 {
936 	if (clamp_id == UCLAMP_MIN)
937 		return 0;
938 	return SCHED_CAPACITY_SCALE;
939 }
940 
941 static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 				 unsigned int value, bool user_defined)
943 {
944 	uc_se->value = value;
945 	uc_se->bucket_id = uclamp_bucket_id(value);
946 	uc_se->user_defined = user_defined;
947 }
948 
949 static inline unsigned int
950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
951 		  unsigned int clamp_value)
952 {
953 	/*
954 	 * Avoid blocked utilization pushing up the frequency when we go
955 	 * idle (which drops the max-clamp) by retaining the last known
956 	 * max-clamp.
957 	 */
958 	if (clamp_id == UCLAMP_MAX) {
959 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 		return clamp_value;
961 	}
962 
963 	return uclamp_none(UCLAMP_MIN);
964 }
965 
966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
967 				     unsigned int clamp_value)
968 {
969 	/* Reset max-clamp retention only on idle exit */
970 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 		return;
972 
973 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974 }
975 
976 static inline
977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
978 				   unsigned int clamp_value)
979 {
980 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 	int bucket_id = UCLAMP_BUCKETS - 1;
982 
983 	/*
984 	 * Since both min and max clamps are max aggregated, find the
985 	 * top most bucket with tasks in.
986 	 */
987 	for ( ; bucket_id >= 0; bucket_id--) {
988 		if (!bucket[bucket_id].tasks)
989 			continue;
990 		return bucket[bucket_id].value;
991 	}
992 
993 	/* No tasks -- default clamp values */
994 	return uclamp_idle_value(rq, clamp_id, clamp_value);
995 }
996 
997 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998 {
999 	unsigned int default_util_min;
1000 	struct uclamp_se *uc_se;
1001 
1002 	lockdep_assert_held(&p->pi_lock);
1003 
1004 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1005 
1006 	/* Only sync if user didn't override the default */
1007 	if (uc_se->user_defined)
1008 		return;
1009 
1010 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 	uclamp_se_set(uc_se, default_util_min, false);
1012 }
1013 
1014 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015 {
1016 	struct rq_flags rf;
1017 	struct rq *rq;
1018 
1019 	if (!rt_task(p))
1020 		return;
1021 
1022 	/* Protect updates to p->uclamp_* */
1023 	rq = task_rq_lock(p, &rf);
1024 	__uclamp_update_util_min_rt_default(p);
1025 	task_rq_unlock(rq, p, &rf);
1026 }
1027 
1028 static void uclamp_sync_util_min_rt_default(void)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * copy_process()			sysctl_uclamp
1034 	 *					  uclamp_min_rt = X;
1035 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1036 	 *   // link thread			  smp_mb__after_spinlock()
1037 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1038 	 *   sched_post_fork()			  for_each_process_thread()
1039 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1040 	 *
1041 	 * Ensures that either sched_post_fork() will observe the new
1042 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 	 * task.
1044 	 */
1045 	read_lock(&tasklist_lock);
1046 	smp_mb__after_spinlock();
1047 	read_unlock(&tasklist_lock);
1048 
1049 	rcu_read_lock();
1050 	for_each_process_thread(g, p)
1051 		uclamp_update_util_min_rt_default(p);
1052 	rcu_read_unlock();
1053 }
1054 
1055 static inline struct uclamp_se
1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1057 {
1058 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059 #ifdef CONFIG_UCLAMP_TASK_GROUP
1060 	struct uclamp_se uc_max;
1061 
1062 	/*
1063 	 * Tasks in autogroups or root task group will be
1064 	 * restricted by system defaults.
1065 	 */
1066 	if (task_group_is_autogroup(task_group(p)))
1067 		return uc_req;
1068 	if (task_group(p) == &root_task_group)
1069 		return uc_req;
1070 
1071 	uc_max = task_group(p)->uclamp[clamp_id];
1072 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 		return uc_max;
1074 #endif
1075 
1076 	return uc_req;
1077 }
1078 
1079 /*
1080  * The effective clamp bucket index of a task depends on, by increasing
1081  * priority:
1082  * - the task specific clamp value, when explicitly requested from userspace
1083  * - the task group effective clamp value, for tasks not either in the root
1084  *   group or in an autogroup
1085  * - the system default clamp value, defined by the sysadmin
1086  */
1087 static inline struct uclamp_se
1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1089 {
1090 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1091 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1092 
1093 	/* System default restrictions always apply */
1094 	if (unlikely(uc_req.value > uc_max.value))
1095 		return uc_max;
1096 
1097 	return uc_req;
1098 }
1099 
1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1101 {
1102 	struct uclamp_se uc_eff;
1103 
1104 	/* Task currently refcounted: use back-annotated (effective) value */
1105 	if (p->uclamp[clamp_id].active)
1106 		return (unsigned long)p->uclamp[clamp_id].value;
1107 
1108 	uc_eff = uclamp_eff_get(p, clamp_id);
1109 
1110 	return (unsigned long)uc_eff.value;
1111 }
1112 
1113 /*
1114  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116  * updates the rq's clamp value if required.
1117  *
1118  * Tasks can have a task-specific value requested from user-space, track
1119  * within each bucket the maximum value for tasks refcounted in it.
1120  * This "local max aggregation" allows to track the exact "requested" value
1121  * for each bucket when all its RUNNABLE tasks require the same clamp.
1122  */
1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1124 				    enum uclamp_id clamp_id)
1125 {
1126 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 	struct uclamp_bucket *bucket;
1129 
1130 	lockdep_assert_held(&rq->lock);
1131 
1132 	/* Update task effective clamp */
1133 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134 
1135 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 	bucket->tasks++;
1137 	uc_se->active = true;
1138 
1139 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140 
1141 	/*
1142 	 * Local max aggregation: rq buckets always track the max
1143 	 * "requested" clamp value of its RUNNABLE tasks.
1144 	 */
1145 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 		bucket->value = uc_se->value;
1147 
1148 	if (uc_se->value > READ_ONCE(uc_rq->value))
1149 		WRITE_ONCE(uc_rq->value, uc_se->value);
1150 }
1151 
1152 /*
1153  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154  * is released. If this is the last task reference counting the rq's max
1155  * active clamp value, then the rq's clamp value is updated.
1156  *
1157  * Both refcounted tasks and rq's cached clamp values are expected to be
1158  * always valid. If it's detected they are not, as defensive programming,
1159  * enforce the expected state and warn.
1160  */
1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1162 				    enum uclamp_id clamp_id)
1163 {
1164 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 	struct uclamp_bucket *bucket;
1167 	unsigned int bkt_clamp;
1168 	unsigned int rq_clamp;
1169 
1170 	lockdep_assert_held(&rq->lock);
1171 
1172 	/*
1173 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 	 *
1176 	 * In this case the uc_se->active flag should be false since no uclamp
1177 	 * accounting was performed at enqueue time and we can just return
1178 	 * here.
1179 	 *
1180 	 * Need to be careful of the following enqueue/dequeue ordering
1181 	 * problem too
1182 	 *
1183 	 *	enqueue(taskA)
1184 	 *	// sched_uclamp_used gets enabled
1185 	 *	enqueue(taskB)
1186 	 *	dequeue(taskA)
1187 	 *	// Must not decrement bucket->tasks here
1188 	 *	dequeue(taskB)
1189 	 *
1190 	 * where we could end up with stale data in uc_se and
1191 	 * bucket[uc_se->bucket_id].
1192 	 *
1193 	 * The following check here eliminates the possibility of such race.
1194 	 */
1195 	if (unlikely(!uc_se->active))
1196 		return;
1197 
1198 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1199 
1200 	SCHED_WARN_ON(!bucket->tasks);
1201 	if (likely(bucket->tasks))
1202 		bucket->tasks--;
1203 
1204 	uc_se->active = false;
1205 
1206 	/*
1207 	 * Keep "local max aggregation" simple and accept to (possibly)
1208 	 * overboost some RUNNABLE tasks in the same bucket.
1209 	 * The rq clamp bucket value is reset to its base value whenever
1210 	 * there are no more RUNNABLE tasks refcounting it.
1211 	 */
1212 	if (likely(bucket->tasks))
1213 		return;
1214 
1215 	rq_clamp = READ_ONCE(uc_rq->value);
1216 	/*
1217 	 * Defensive programming: this should never happen. If it happens,
1218 	 * e.g. due to future modification, warn and fixup the expected value.
1219 	 */
1220 	SCHED_WARN_ON(bucket->value > rq_clamp);
1221 	if (bucket->value >= rq_clamp) {
1222 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 	}
1225 }
1226 
1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228 {
1229 	enum uclamp_id clamp_id;
1230 
1231 	/*
1232 	 * Avoid any overhead until uclamp is actually used by the userspace.
1233 	 *
1234 	 * The condition is constructed such that a NOP is generated when
1235 	 * sched_uclamp_used is disabled.
1236 	 */
1237 	if (!static_branch_unlikely(&sched_uclamp_used))
1238 		return;
1239 
1240 	if (unlikely(!p->sched_class->uclamp_enabled))
1241 		return;
1242 
1243 	for_each_clamp_id(clamp_id)
1244 		uclamp_rq_inc_id(rq, p, clamp_id);
1245 
1246 	/* Reset clamp idle holding when there is one RUNNABLE task */
1247 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1249 }
1250 
1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252 {
1253 	enum uclamp_id clamp_id;
1254 
1255 	/*
1256 	 * Avoid any overhead until uclamp is actually used by the userspace.
1257 	 *
1258 	 * The condition is constructed such that a NOP is generated when
1259 	 * sched_uclamp_used is disabled.
1260 	 */
1261 	if (!static_branch_unlikely(&sched_uclamp_used))
1262 		return;
1263 
1264 	if (unlikely(!p->sched_class->uclamp_enabled))
1265 		return;
1266 
1267 	for_each_clamp_id(clamp_id)
1268 		uclamp_rq_dec_id(rq, p, clamp_id);
1269 }
1270 
1271 static inline void
1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1273 {
1274 	struct rq_flags rf;
1275 	struct rq *rq;
1276 
1277 	/*
1278 	 * Lock the task and the rq where the task is (or was) queued.
1279 	 *
1280 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 	 * price to pay to safely serialize util_{min,max} updates with
1282 	 * enqueues, dequeues and migration operations.
1283 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 	 */
1285 	rq = task_rq_lock(p, &rf);
1286 
1287 	/*
1288 	 * Setting the clamp bucket is serialized by task_rq_lock().
1289 	 * If the task is not yet RUNNABLE and its task_struct is not
1290 	 * affecting a valid clamp bucket, the next time it's enqueued,
1291 	 * it will already see the updated clamp bucket value.
1292 	 */
1293 	if (p->uclamp[clamp_id].active) {
1294 		uclamp_rq_dec_id(rq, p, clamp_id);
1295 		uclamp_rq_inc_id(rq, p, clamp_id);
1296 	}
1297 
1298 	task_rq_unlock(rq, p, &rf);
1299 }
1300 
1301 #ifdef CONFIG_UCLAMP_TASK_GROUP
1302 static inline void
1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 			   unsigned int clamps)
1305 {
1306 	enum uclamp_id clamp_id;
1307 	struct css_task_iter it;
1308 	struct task_struct *p;
1309 
1310 	css_task_iter_start(css, 0, &it);
1311 	while ((p = css_task_iter_next(&it))) {
1312 		for_each_clamp_id(clamp_id) {
1313 			if ((0x1 << clamp_id) & clamps)
1314 				uclamp_update_active(p, clamp_id);
1315 		}
1316 	}
1317 	css_task_iter_end(&it);
1318 }
1319 
1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321 static void uclamp_update_root_tg(void)
1322 {
1323 	struct task_group *tg = &root_task_group;
1324 
1325 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 		      sysctl_sched_uclamp_util_min, false);
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 		      sysctl_sched_uclamp_util_max, false);
1329 
1330 	rcu_read_lock();
1331 	cpu_util_update_eff(&root_task_group.css);
1332 	rcu_read_unlock();
1333 }
1334 #else
1335 static void uclamp_update_root_tg(void) { }
1336 #endif
1337 
1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1339 				void *buffer, size_t *lenp, loff_t *ppos)
1340 {
1341 	bool update_root_tg = false;
1342 	int old_min, old_max, old_min_rt;
1343 	int result;
1344 
1345 	mutex_lock(&uclamp_mutex);
1346 	old_min = sysctl_sched_uclamp_util_min;
1347 	old_max = sysctl_sched_uclamp_util_max;
1348 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1349 
1350 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 	if (result)
1352 		goto undo;
1353 	if (!write)
1354 		goto done;
1355 
1356 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1357 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1358 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359 
1360 		result = -EINVAL;
1361 		goto undo;
1362 	}
1363 
1364 	if (old_min != sysctl_sched_uclamp_util_min) {
1365 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1366 			      sysctl_sched_uclamp_util_min, false);
1367 		update_root_tg = true;
1368 	}
1369 	if (old_max != sysctl_sched_uclamp_util_max) {
1370 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1371 			      sysctl_sched_uclamp_util_max, false);
1372 		update_root_tg = true;
1373 	}
1374 
1375 	if (update_root_tg) {
1376 		static_branch_enable(&sched_uclamp_used);
1377 		uclamp_update_root_tg();
1378 	}
1379 
1380 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 		static_branch_enable(&sched_uclamp_used);
1382 		uclamp_sync_util_min_rt_default();
1383 	}
1384 
1385 	/*
1386 	 * We update all RUNNABLE tasks only when task groups are in use.
1387 	 * Otherwise, keep it simple and do just a lazy update at each next
1388 	 * task enqueue time.
1389 	 */
1390 
1391 	goto done;
1392 
1393 undo:
1394 	sysctl_sched_uclamp_util_min = old_min;
1395 	sysctl_sched_uclamp_util_max = old_max;
1396 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1397 done:
1398 	mutex_unlock(&uclamp_mutex);
1399 
1400 	return result;
1401 }
1402 
1403 static int uclamp_validate(struct task_struct *p,
1404 			   const struct sched_attr *attr)
1405 {
1406 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1408 
1409 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 		util_min = attr->sched_util_min;
1411 
1412 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 			return -EINVAL;
1414 	}
1415 
1416 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 		util_max = attr->sched_util_max;
1418 
1419 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1424 		return -EINVAL;
1425 
1426 	/*
1427 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 	 *
1429 	 * We need to do that here, because enabling static branches is a
1430 	 * blocking operation which obviously cannot be done while holding
1431 	 * scheduler locks.
1432 	 */
1433 	static_branch_enable(&sched_uclamp_used);
1434 
1435 	return 0;
1436 }
1437 
1438 static bool uclamp_reset(const struct sched_attr *attr,
1439 			 enum uclamp_id clamp_id,
1440 			 struct uclamp_se *uc_se)
1441 {
1442 	/* Reset on sched class change for a non user-defined clamp value. */
1443 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 	    !uc_se->user_defined)
1445 		return true;
1446 
1447 	/* Reset on sched_util_{min,max} == -1. */
1448 	if (clamp_id == UCLAMP_MIN &&
1449 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 	    attr->sched_util_min == -1) {
1451 		return true;
1452 	}
1453 
1454 	if (clamp_id == UCLAMP_MAX &&
1455 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 	    attr->sched_util_max == -1) {
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 static void __setscheduler_uclamp(struct task_struct *p,
1464 				  const struct sched_attr *attr)
1465 {
1466 	enum uclamp_id clamp_id;
1467 
1468 	for_each_clamp_id(clamp_id) {
1469 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1470 		unsigned int value;
1471 
1472 		if (!uclamp_reset(attr, clamp_id, uc_se))
1473 			continue;
1474 
1475 		/*
1476 		 * RT by default have a 100% boost value that could be modified
1477 		 * at runtime.
1478 		 */
1479 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1480 			value = sysctl_sched_uclamp_util_min_rt_default;
1481 		else
1482 			value = uclamp_none(clamp_id);
1483 
1484 		uclamp_se_set(uc_se, value, false);
1485 
1486 	}
1487 
1488 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 		return;
1490 
1491 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 	    attr->sched_util_min != -1) {
1493 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 			      attr->sched_util_min, true);
1495 	}
1496 
1497 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 	    attr->sched_util_max != -1) {
1499 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 			      attr->sched_util_max, true);
1501 	}
1502 }
1503 
1504 static void uclamp_fork(struct task_struct *p)
1505 {
1506 	enum uclamp_id clamp_id;
1507 
1508 	/*
1509 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 	 * as the task is still at its early fork stages.
1511 	 */
1512 	for_each_clamp_id(clamp_id)
1513 		p->uclamp[clamp_id].active = false;
1514 
1515 	if (likely(!p->sched_reset_on_fork))
1516 		return;
1517 
1518 	for_each_clamp_id(clamp_id) {
1519 		uclamp_se_set(&p->uclamp_req[clamp_id],
1520 			      uclamp_none(clamp_id), false);
1521 	}
1522 }
1523 
1524 static void uclamp_post_fork(struct task_struct *p)
1525 {
1526 	uclamp_update_util_min_rt_default(p);
1527 }
1528 
1529 static void __init init_uclamp_rq(struct rq *rq)
1530 {
1531 	enum uclamp_id clamp_id;
1532 	struct uclamp_rq *uc_rq = rq->uclamp;
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uc_rq[clamp_id] = (struct uclamp_rq) {
1536 			.value = uclamp_none(clamp_id)
1537 		};
1538 	}
1539 
1540 	rq->uclamp_flags = 0;
1541 }
1542 
1543 static void __init init_uclamp(void)
1544 {
1545 	struct uclamp_se uc_max = {};
1546 	enum uclamp_id clamp_id;
1547 	int cpu;
1548 
1549 	for_each_possible_cpu(cpu)
1550 		init_uclamp_rq(cpu_rq(cpu));
1551 
1552 	for_each_clamp_id(clamp_id) {
1553 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1554 			      uclamp_none(clamp_id), false);
1555 	}
1556 
1557 	/* System defaults allow max clamp values for both indexes */
1558 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1559 	for_each_clamp_id(clamp_id) {
1560 		uclamp_default[clamp_id] = uc_max;
1561 #ifdef CONFIG_UCLAMP_TASK_GROUP
1562 		root_task_group.uclamp_req[clamp_id] = uc_max;
1563 		root_task_group.uclamp[clamp_id] = uc_max;
1564 #endif
1565 	}
1566 }
1567 
1568 #else /* CONFIG_UCLAMP_TASK */
1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1571 static inline int uclamp_validate(struct task_struct *p,
1572 				  const struct sched_attr *attr)
1573 {
1574 	return -EOPNOTSUPP;
1575 }
1576 static void __setscheduler_uclamp(struct task_struct *p,
1577 				  const struct sched_attr *attr) { }
1578 static inline void uclamp_fork(struct task_struct *p) { }
1579 static inline void uclamp_post_fork(struct task_struct *p) { }
1580 static inline void init_uclamp(void) { }
1581 #endif /* CONFIG_UCLAMP_TASK */
1582 
1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1584 {
1585 	if (!(flags & ENQUEUE_NOCLOCK))
1586 		update_rq_clock(rq);
1587 
1588 	if (!(flags & ENQUEUE_RESTORE)) {
1589 		sched_info_queued(rq, p);
1590 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 	}
1592 
1593 	uclamp_rq_inc(rq, p);
1594 	p->sched_class->enqueue_task(rq, p, flags);
1595 }
1596 
1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1598 {
1599 	if (!(flags & DEQUEUE_NOCLOCK))
1600 		update_rq_clock(rq);
1601 
1602 	if (!(flags & DEQUEUE_SAVE)) {
1603 		sched_info_dequeued(rq, p);
1604 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 	}
1606 
1607 	uclamp_rq_dec(rq, p);
1608 	p->sched_class->dequeue_task(rq, p, flags);
1609 }
1610 
1611 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 	enqueue_task(rq, p, flags);
1614 
1615 	p->on_rq = TASK_ON_RQ_QUEUED;
1616 }
1617 
1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1619 {
1620 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621 
1622 	dequeue_task(rq, p, flags);
1623 }
1624 
1625 /*
1626  * __normal_prio - return the priority that is based on the static prio
1627  */
1628 static inline int __normal_prio(struct task_struct *p)
1629 {
1630 	return p->static_prio;
1631 }
1632 
1633 /*
1634  * Calculate the expected normal priority: i.e. priority
1635  * without taking RT-inheritance into account. Might be
1636  * boosted by interactivity modifiers. Changes upon fork,
1637  * setprio syscalls, and whenever the interactivity
1638  * estimator recalculates.
1639  */
1640 static inline int normal_prio(struct task_struct *p)
1641 {
1642 	int prio;
1643 
1644 	if (task_has_dl_policy(p))
1645 		prio = MAX_DL_PRIO-1;
1646 	else if (task_has_rt_policy(p))
1647 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 	else
1649 		prio = __normal_prio(p);
1650 	return prio;
1651 }
1652 
1653 /*
1654  * Calculate the current priority, i.e. the priority
1655  * taken into account by the scheduler. This value might
1656  * be boosted by RT tasks, or might be boosted by
1657  * interactivity modifiers. Will be RT if the task got
1658  * RT-boosted. If not then it returns p->normal_prio.
1659  */
1660 static int effective_prio(struct task_struct *p)
1661 {
1662 	p->normal_prio = normal_prio(p);
1663 	/*
1664 	 * If we are RT tasks or we were boosted to RT priority,
1665 	 * keep the priority unchanged. Otherwise, update priority
1666 	 * to the normal priority:
1667 	 */
1668 	if (!rt_prio(p->prio))
1669 		return p->normal_prio;
1670 	return p->prio;
1671 }
1672 
1673 /**
1674  * task_curr - is this task currently executing on a CPU?
1675  * @p: the task in question.
1676  *
1677  * Return: 1 if the task is currently executing. 0 otherwise.
1678  */
1679 inline int task_curr(const struct task_struct *p)
1680 {
1681 	return cpu_curr(task_cpu(p)) == p;
1682 }
1683 
1684 /*
1685  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686  * use the balance_callback list if you want balancing.
1687  *
1688  * this means any call to check_class_changed() must be followed by a call to
1689  * balance_callback().
1690  */
1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 				       const struct sched_class *prev_class,
1693 				       int oldprio)
1694 {
1695 	if (prev_class != p->sched_class) {
1696 		if (prev_class->switched_from)
1697 			prev_class->switched_from(rq, p);
1698 
1699 		p->sched_class->switched_to(rq, p);
1700 	} else if (oldprio != p->prio || dl_task(p))
1701 		p->sched_class->prio_changed(rq, p, oldprio);
1702 }
1703 
1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1705 {
1706 	if (p->sched_class == rq->curr->sched_class)
1707 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1708 	else if (p->sched_class > rq->curr->sched_class)
1709 		resched_curr(rq);
1710 
1711 	/*
1712 	 * A queue event has occurred, and we're going to schedule.  In
1713 	 * this case, we can save a useless back to back clock update.
1714 	 */
1715 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1716 		rq_clock_skip_update(rq);
1717 }
1718 
1719 #ifdef CONFIG_SMP
1720 
1721 static void
1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723 
1724 static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 				  const struct cpumask *new_mask,
1726 				  u32 flags);
1727 
1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729 {
1730 	if (likely(!p->migration_disabled))
1731 		return;
1732 
1733 	if (p->cpus_ptr != &p->cpus_mask)
1734 		return;
1735 
1736 	/*
1737 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 	 */
1739 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740 }
1741 
1742 void migrate_disable(void)
1743 {
1744 	struct task_struct *p = current;
1745 
1746 	if (p->migration_disabled) {
1747 		p->migration_disabled++;
1748 		return;
1749 	}
1750 
1751 	preempt_disable();
1752 	this_rq()->nr_pinned++;
1753 	p->migration_disabled = 1;
1754 	preempt_enable();
1755 }
1756 EXPORT_SYMBOL_GPL(migrate_disable);
1757 
1758 void migrate_enable(void)
1759 {
1760 	struct task_struct *p = current;
1761 
1762 	if (p->migration_disabled > 1) {
1763 		p->migration_disabled--;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Ensure stop_task runs either before or after this, and that
1769 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 	 */
1771 	preempt_disable();
1772 	if (p->cpus_ptr != &p->cpus_mask)
1773 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 	/*
1775 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 	 * regular cpus_mask, otherwise things that race (eg.
1777 	 * select_fallback_rq) get confused.
1778 	 */
1779 	barrier();
1780 	p->migration_disabled = 0;
1781 	this_rq()->nr_pinned--;
1782 	preempt_enable();
1783 }
1784 EXPORT_SYMBOL_GPL(migrate_enable);
1785 
1786 static inline bool rq_has_pinned_tasks(struct rq *rq)
1787 {
1788 	return rq->nr_pinned;
1789 }
1790 
1791 /*
1792  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1793  * __set_cpus_allowed_ptr() and select_fallback_rq().
1794  */
1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796 {
1797 	/* When not in the task's cpumask, no point in looking further. */
1798 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1799 		return false;
1800 
1801 	/* migrate_disabled() must be allowed to finish. */
1802 	if (is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	/* Non kernel threads are not allowed during either online or offline. */
1806 	if (!(p->flags & PF_KTHREAD))
1807 		return cpu_active(cpu);
1808 
1809 	/* KTHREAD_IS_PER_CPU is always allowed. */
1810 	if (kthread_is_per_cpu(p))
1811 		return cpu_online(cpu);
1812 
1813 	/* Regular kernel threads don't get to stay during offline. */
1814 	if (cpu_rq(cpu)->balance_push)
1815 		return false;
1816 
1817 	/* But are allowed during online. */
1818 	return cpu_online(cpu);
1819 }
1820 
1821 /*
1822  * This is how migration works:
1823  *
1824  * 1) we invoke migration_cpu_stop() on the target CPU using
1825  *    stop_one_cpu().
1826  * 2) stopper starts to run (implicitly forcing the migrated thread
1827  *    off the CPU)
1828  * 3) it checks whether the migrated task is still in the wrong runqueue.
1829  * 4) if it's in the wrong runqueue then the migration thread removes
1830  *    it and puts it into the right queue.
1831  * 5) stopper completes and stop_one_cpu() returns and the migration
1832  *    is done.
1833  */
1834 
1835 /*
1836  * move_queued_task - move a queued task to new rq.
1837  *
1838  * Returns (locked) new rq. Old rq's lock is released.
1839  */
1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 				   struct task_struct *p, int new_cpu)
1842 {
1843 	lockdep_assert_held(&rq->lock);
1844 
1845 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1846 	set_task_cpu(p, new_cpu);
1847 	rq_unlock(rq, rf);
1848 
1849 	rq = cpu_rq(new_cpu);
1850 
1851 	rq_lock(rq, rf);
1852 	BUG_ON(task_cpu(p) != new_cpu);
1853 	activate_task(rq, p, 0);
1854 	check_preempt_curr(rq, p, 0);
1855 
1856 	return rq;
1857 }
1858 
1859 struct migration_arg {
1860 	struct task_struct		*task;
1861 	int				dest_cpu;
1862 	struct set_affinity_pending	*pending;
1863 };
1864 
1865 struct set_affinity_pending {
1866 	refcount_t		refs;
1867 	unsigned int		stop_pending;
1868 	struct completion	done;
1869 	struct cpu_stop_work	stop_work;
1870 	struct migration_arg	arg;
1871 };
1872 
1873 /*
1874  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1875  * this because either it can't run here any more (set_cpus_allowed()
1876  * away from this CPU, or CPU going down), or because we're
1877  * attempting to rebalance this task on exec (sched_exec).
1878  *
1879  * So we race with normal scheduler movements, but that's OK, as long
1880  * as the task is no longer on this CPU.
1881  */
1882 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1883 				 struct task_struct *p, int dest_cpu)
1884 {
1885 	/* Affinity changed (again). */
1886 	if (!is_cpu_allowed(p, dest_cpu))
1887 		return rq;
1888 
1889 	update_rq_clock(rq);
1890 	rq = move_queued_task(rq, rf, p, dest_cpu);
1891 
1892 	return rq;
1893 }
1894 
1895 /*
1896  * migration_cpu_stop - this will be executed by a highprio stopper thread
1897  * and performs thread migration by bumping thread off CPU then
1898  * 'pushing' onto another runqueue.
1899  */
1900 static int migration_cpu_stop(void *data)
1901 {
1902 	struct migration_arg *arg = data;
1903 	struct set_affinity_pending *pending = arg->pending;
1904 	struct task_struct *p = arg->task;
1905 	int dest_cpu = arg->dest_cpu;
1906 	struct rq *rq = this_rq();
1907 	bool complete = false;
1908 	struct rq_flags rf;
1909 
1910 	/*
1911 	 * The original target CPU might have gone down and we might
1912 	 * be on another CPU but it doesn't matter.
1913 	 */
1914 	local_irq_save(rf.flags);
1915 	/*
1916 	 * We need to explicitly wake pending tasks before running
1917 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1918 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1919 	 */
1920 	flush_smp_call_function_from_idle();
1921 
1922 	raw_spin_lock(&p->pi_lock);
1923 	rq_lock(rq, &rf);
1924 
1925 	/*
1926 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1927 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1928 	 * we're holding p->pi_lock.
1929 	 */
1930 	if (task_rq(p) == rq) {
1931 		if (is_migration_disabled(p))
1932 			goto out;
1933 
1934 		if (pending) {
1935 			if (p->migration_pending == pending)
1936 				p->migration_pending = NULL;
1937 			complete = true;
1938 		}
1939 
1940 		if (dest_cpu < 0) {
1941 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1942 				goto out;
1943 
1944 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1945 		}
1946 
1947 		if (task_on_rq_queued(p))
1948 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1949 		else
1950 			p->wake_cpu = dest_cpu;
1951 
1952 		/*
1953 		 * XXX __migrate_task() can fail, at which point we might end
1954 		 * up running on a dodgy CPU, AFAICT this can only happen
1955 		 * during CPU hotplug, at which point we'll get pushed out
1956 		 * anyway, so it's probably not a big deal.
1957 		 */
1958 
1959 	} else if (pending) {
1960 		/*
1961 		 * This happens when we get migrated between migrate_enable()'s
1962 		 * preempt_enable() and scheduling the stopper task. At that
1963 		 * point we're a regular task again and not current anymore.
1964 		 *
1965 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1966 		 * more likely.
1967 		 */
1968 
1969 		/*
1970 		 * The task moved before the stopper got to run. We're holding
1971 		 * ->pi_lock, so the allowed mask is stable - if it got
1972 		 * somewhere allowed, we're done.
1973 		 */
1974 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1975 			if (p->migration_pending == pending)
1976 				p->migration_pending = NULL;
1977 			complete = true;
1978 			goto out;
1979 		}
1980 
1981 		/*
1982 		 * When migrate_enable() hits a rq mis-match we can't reliably
1983 		 * determine is_migration_disabled() and so have to chase after
1984 		 * it.
1985 		 */
1986 		WARN_ON_ONCE(!pending->stop_pending);
1987 		task_rq_unlock(rq, p, &rf);
1988 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1989 				    &pending->arg, &pending->stop_work);
1990 		return 0;
1991 	}
1992 out:
1993 	if (pending)
1994 		pending->stop_pending = false;
1995 	task_rq_unlock(rq, p, &rf);
1996 
1997 	if (complete)
1998 		complete_all(&pending->done);
1999 
2000 	/* For pending->{arg,stop_work} */
2001 	if (pending && refcount_dec_and_test(&pending->refs))
2002 		wake_up_var(&pending->refs);
2003 
2004 	return 0;
2005 }
2006 
2007 int push_cpu_stop(void *arg)
2008 {
2009 	struct rq *lowest_rq = NULL, *rq = this_rq();
2010 	struct task_struct *p = arg;
2011 
2012 	raw_spin_lock_irq(&p->pi_lock);
2013 	raw_spin_lock(&rq->lock);
2014 
2015 	if (task_rq(p) != rq)
2016 		goto out_unlock;
2017 
2018 	if (is_migration_disabled(p)) {
2019 		p->migration_flags |= MDF_PUSH;
2020 		goto out_unlock;
2021 	}
2022 
2023 	p->migration_flags &= ~MDF_PUSH;
2024 
2025 	if (p->sched_class->find_lock_rq)
2026 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2027 
2028 	if (!lowest_rq)
2029 		goto out_unlock;
2030 
2031 	// XXX validate p is still the highest prio task
2032 	if (task_rq(p) == rq) {
2033 		deactivate_task(rq, p, 0);
2034 		set_task_cpu(p, lowest_rq->cpu);
2035 		activate_task(lowest_rq, p, 0);
2036 		resched_curr(lowest_rq);
2037 	}
2038 
2039 	double_unlock_balance(rq, lowest_rq);
2040 
2041 out_unlock:
2042 	rq->push_busy = false;
2043 	raw_spin_unlock(&rq->lock);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	put_task_struct(p);
2047 	return 0;
2048 }
2049 
2050 /*
2051  * sched_class::set_cpus_allowed must do the below, but is not required to
2052  * actually call this function.
2053  */
2054 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2055 {
2056 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2057 		p->cpus_ptr = new_mask;
2058 		return;
2059 	}
2060 
2061 	cpumask_copy(&p->cpus_mask, new_mask);
2062 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2063 }
2064 
2065 static void
2066 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2067 {
2068 	struct rq *rq = task_rq(p);
2069 	bool queued, running;
2070 
2071 	/*
2072 	 * This here violates the locking rules for affinity, since we're only
2073 	 * supposed to change these variables while holding both rq->lock and
2074 	 * p->pi_lock.
2075 	 *
2076 	 * HOWEVER, it magically works, because ttwu() is the only code that
2077 	 * accesses these variables under p->pi_lock and only does so after
2078 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2079 	 * before finish_task().
2080 	 *
2081 	 * XXX do further audits, this smells like something putrid.
2082 	 */
2083 	if (flags & SCA_MIGRATE_DISABLE)
2084 		SCHED_WARN_ON(!p->on_cpu);
2085 	else
2086 		lockdep_assert_held(&p->pi_lock);
2087 
2088 	queued = task_on_rq_queued(p);
2089 	running = task_current(rq, p);
2090 
2091 	if (queued) {
2092 		/*
2093 		 * Because __kthread_bind() calls this on blocked tasks without
2094 		 * holding rq->lock.
2095 		 */
2096 		lockdep_assert_held(&rq->lock);
2097 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2098 	}
2099 	if (running)
2100 		put_prev_task(rq, p);
2101 
2102 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2103 
2104 	if (queued)
2105 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2106 	if (running)
2107 		set_next_task(rq, p);
2108 }
2109 
2110 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2111 {
2112 	__do_set_cpus_allowed(p, new_mask, 0);
2113 }
2114 
2115 /*
2116  * This function is wildly self concurrent; here be dragons.
2117  *
2118  *
2119  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2120  * designated task is enqueued on an allowed CPU. If that task is currently
2121  * running, we have to kick it out using the CPU stopper.
2122  *
2123  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2124  * Consider:
2125  *
2126  *     Initial conditions: P0->cpus_mask = [0, 1]
2127  *
2128  *     P0@CPU0                  P1
2129  *
2130  *     migrate_disable();
2131  *     <preempted>
2132  *                              set_cpus_allowed_ptr(P0, [1]);
2133  *
2134  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2135  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2136  * This means we need the following scheme:
2137  *
2138  *     P0@CPU0                  P1
2139  *
2140  *     migrate_disable();
2141  *     <preempted>
2142  *                              set_cpus_allowed_ptr(P0, [1]);
2143  *                                <blocks>
2144  *     <resumes>
2145  *     migrate_enable();
2146  *       __set_cpus_allowed_ptr();
2147  *       <wakes local stopper>
2148  *                         `--> <woken on migration completion>
2149  *
2150  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2151  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2152  * task p are serialized by p->pi_lock, which we can leverage: the one that
2153  * should come into effect at the end of the Migrate-Disable region is the last
2154  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2155  * but we still need to properly signal those waiting tasks at the appropriate
2156  * moment.
2157  *
2158  * This is implemented using struct set_affinity_pending. The first
2159  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2160  * setup an instance of that struct and install it on the targeted task_struct.
2161  * Any and all further callers will reuse that instance. Those then wait for
2162  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2163  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2164  *
2165  *
2166  * (1) In the cases covered above. There is one more where the completion is
2167  * signaled within affine_move_task() itself: when a subsequent affinity request
2168  * cancels the need for an active migration. Consider:
2169  *
2170  *     Initial conditions: P0->cpus_mask = [0, 1]
2171  *
2172  *     P0@CPU0            P1                             P2
2173  *
2174  *     migrate_disable();
2175  *     <preempted>
2176  *                        set_cpus_allowed_ptr(P0, [1]);
2177  *                          <blocks>
2178  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2179  *                                                         <signal completion>
2180  *                          <awakes>
2181  *
2182  * Note that the above is safe vs a concurrent migrate_enable(), as any
2183  * pending affinity completion is preceded by an uninstallation of
2184  * p->migration_pending done with p->pi_lock held.
2185  */
2186 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2187 			    int dest_cpu, unsigned int flags)
2188 {
2189 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2190 	bool stop_pending, complete = false;
2191 
2192 	/* Can the task run on the task's current CPU? If so, we're done */
2193 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2194 		struct task_struct *push_task = NULL;
2195 
2196 		if ((flags & SCA_MIGRATE_ENABLE) &&
2197 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2198 			rq->push_busy = true;
2199 			push_task = get_task_struct(p);
2200 		}
2201 
2202 		pending = p->migration_pending;
2203 		if (pending) {
2204 			refcount_inc(&pending->refs);
2205 			p->migration_pending = NULL;
2206 			complete = true;
2207 		}
2208 		task_rq_unlock(rq, p, rf);
2209 
2210 		if (push_task) {
2211 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2212 					    p, &rq->push_work);
2213 		}
2214 
2215 		if (complete)
2216 			goto do_complete;
2217 
2218 		return 0;
2219 	}
2220 
2221 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2222 		/* serialized by p->pi_lock */
2223 		if (!p->migration_pending) {
2224 			/* Install the request */
2225 			refcount_set(&my_pending.refs, 1);
2226 			init_completion(&my_pending.done);
2227 			my_pending.arg = (struct migration_arg) {
2228 				.task = p,
2229 				.dest_cpu = -1,		/* any */
2230 				.pending = &my_pending,
2231 			};
2232 
2233 			p->migration_pending = &my_pending;
2234 		} else {
2235 			pending = p->migration_pending;
2236 			refcount_inc(&pending->refs);
2237 		}
2238 	}
2239 	pending = p->migration_pending;
2240 	/*
2241 	 * - !MIGRATE_ENABLE:
2242 	 *   we'll have installed a pending if there wasn't one already.
2243 	 *
2244 	 * - MIGRATE_ENABLE:
2245 	 *   we're here because the current CPU isn't matching anymore,
2246 	 *   the only way that can happen is because of a concurrent
2247 	 *   set_cpus_allowed_ptr() call, which should then still be
2248 	 *   pending completion.
2249 	 *
2250 	 * Either way, we really should have a @pending here.
2251 	 */
2252 	if (WARN_ON_ONCE(!pending)) {
2253 		task_rq_unlock(rq, p, rf);
2254 		return -EINVAL;
2255 	}
2256 
2257 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2258 		/*
2259 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2260 		 * anything else we cannot do is_migration_disabled(), punt
2261 		 * and have the stopper function handle it all race-free.
2262 		 */
2263 		stop_pending = pending->stop_pending;
2264 		if (!stop_pending)
2265 			pending->stop_pending = true;
2266 
2267 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2268 		if (flags & SCA_MIGRATE_ENABLE)
2269 			p->migration_flags &= ~MDF_PUSH;
2270 		task_rq_unlock(rq, p, rf);
2271 
2272 		if (!stop_pending) {
2273 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2274 					    &pending->arg, &pending->stop_work);
2275 		}
2276 
2277 		if (flags & SCA_MIGRATE_ENABLE)
2278 			return 0;
2279 	} else {
2280 
2281 		if (!is_migration_disabled(p)) {
2282 			if (task_on_rq_queued(p))
2283 				rq = move_queued_task(rq, rf, p, dest_cpu);
2284 
2285 			p->migration_pending = NULL;
2286 			complete = true;
2287 		}
2288 		task_rq_unlock(rq, p, rf);
2289 
2290 do_complete:
2291 		if (complete)
2292 			complete_all(&pending->done);
2293 	}
2294 
2295 	wait_for_completion(&pending->done);
2296 
2297 	if (refcount_dec_and_test(&pending->refs))
2298 		wake_up_var(&pending->refs);
2299 
2300 	/*
2301 	 * Block the original owner of &pending until all subsequent callers
2302 	 * have seen the completion and decremented the refcount
2303 	 */
2304 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2305 
2306 	return 0;
2307 }
2308 
2309 /*
2310  * Change a given task's CPU affinity. Migrate the thread to a
2311  * proper CPU and schedule it away if the CPU it's executing on
2312  * is removed from the allowed bitmask.
2313  *
2314  * NOTE: the caller must have a valid reference to the task, the
2315  * task must not exit() & deallocate itself prematurely. The
2316  * call is not atomic; no spinlocks may be held.
2317  */
2318 static int __set_cpus_allowed_ptr(struct task_struct *p,
2319 				  const struct cpumask *new_mask,
2320 				  u32 flags)
2321 {
2322 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2323 	unsigned int dest_cpu;
2324 	struct rq_flags rf;
2325 	struct rq *rq;
2326 	int ret = 0;
2327 
2328 	rq = task_rq_lock(p, &rf);
2329 	update_rq_clock(rq);
2330 
2331 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2332 		/*
2333 		 * Kernel threads are allowed on online && !active CPUs,
2334 		 * however, during cpu-hot-unplug, even these might get pushed
2335 		 * away if not KTHREAD_IS_PER_CPU.
2336 		 *
2337 		 * Specifically, migration_disabled() tasks must not fail the
2338 		 * cpumask_any_and_distribute() pick below, esp. so on
2339 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2340 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2341 		 */
2342 		cpu_valid_mask = cpu_online_mask;
2343 	}
2344 
2345 	/*
2346 	 * Must re-check here, to close a race against __kthread_bind(),
2347 	 * sched_setaffinity() is not guaranteed to observe the flag.
2348 	 */
2349 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2350 		ret = -EINVAL;
2351 		goto out;
2352 	}
2353 
2354 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2355 		if (cpumask_equal(&p->cpus_mask, new_mask))
2356 			goto out;
2357 
2358 		if (WARN_ON_ONCE(p == current &&
2359 				 is_migration_disabled(p) &&
2360 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2361 			ret = -EBUSY;
2362 			goto out;
2363 		}
2364 	}
2365 
2366 	/*
2367 	 * Picking a ~random cpu helps in cases where we are changing affinity
2368 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2369 	 * immediately required to distribute the tasks within their new mask.
2370 	 */
2371 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2372 	if (dest_cpu >= nr_cpu_ids) {
2373 		ret = -EINVAL;
2374 		goto out;
2375 	}
2376 
2377 	__do_set_cpus_allowed(p, new_mask, flags);
2378 
2379 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2380 
2381 out:
2382 	task_rq_unlock(rq, p, &rf);
2383 
2384 	return ret;
2385 }
2386 
2387 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2388 {
2389 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2390 }
2391 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2392 
2393 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2394 {
2395 #ifdef CONFIG_SCHED_DEBUG
2396 	/*
2397 	 * We should never call set_task_cpu() on a blocked task,
2398 	 * ttwu() will sort out the placement.
2399 	 */
2400 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2401 			!p->on_rq);
2402 
2403 	/*
2404 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2405 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2406 	 * time relying on p->on_rq.
2407 	 */
2408 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2409 		     p->sched_class == &fair_sched_class &&
2410 		     (p->on_rq && !task_on_rq_migrating(p)));
2411 
2412 #ifdef CONFIG_LOCKDEP
2413 	/*
2414 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2415 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2416 	 *
2417 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2418 	 * see task_group().
2419 	 *
2420 	 * Furthermore, all task_rq users should acquire both locks, see
2421 	 * task_rq_lock().
2422 	 */
2423 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2424 				      lockdep_is_held(&task_rq(p)->lock)));
2425 #endif
2426 	/*
2427 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2428 	 */
2429 	WARN_ON_ONCE(!cpu_online(new_cpu));
2430 
2431 	WARN_ON_ONCE(is_migration_disabled(p));
2432 #endif
2433 
2434 	trace_sched_migrate_task(p, new_cpu);
2435 
2436 	if (task_cpu(p) != new_cpu) {
2437 		if (p->sched_class->migrate_task_rq)
2438 			p->sched_class->migrate_task_rq(p, new_cpu);
2439 		p->se.nr_migrations++;
2440 		rseq_migrate(p);
2441 		perf_event_task_migrate(p);
2442 	}
2443 
2444 	__set_task_cpu(p, new_cpu);
2445 }
2446 
2447 #ifdef CONFIG_NUMA_BALANCING
2448 static void __migrate_swap_task(struct task_struct *p, int cpu)
2449 {
2450 	if (task_on_rq_queued(p)) {
2451 		struct rq *src_rq, *dst_rq;
2452 		struct rq_flags srf, drf;
2453 
2454 		src_rq = task_rq(p);
2455 		dst_rq = cpu_rq(cpu);
2456 
2457 		rq_pin_lock(src_rq, &srf);
2458 		rq_pin_lock(dst_rq, &drf);
2459 
2460 		deactivate_task(src_rq, p, 0);
2461 		set_task_cpu(p, cpu);
2462 		activate_task(dst_rq, p, 0);
2463 		check_preempt_curr(dst_rq, p, 0);
2464 
2465 		rq_unpin_lock(dst_rq, &drf);
2466 		rq_unpin_lock(src_rq, &srf);
2467 
2468 	} else {
2469 		/*
2470 		 * Task isn't running anymore; make it appear like we migrated
2471 		 * it before it went to sleep. This means on wakeup we make the
2472 		 * previous CPU our target instead of where it really is.
2473 		 */
2474 		p->wake_cpu = cpu;
2475 	}
2476 }
2477 
2478 struct migration_swap_arg {
2479 	struct task_struct *src_task, *dst_task;
2480 	int src_cpu, dst_cpu;
2481 };
2482 
2483 static int migrate_swap_stop(void *data)
2484 {
2485 	struct migration_swap_arg *arg = data;
2486 	struct rq *src_rq, *dst_rq;
2487 	int ret = -EAGAIN;
2488 
2489 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2490 		return -EAGAIN;
2491 
2492 	src_rq = cpu_rq(arg->src_cpu);
2493 	dst_rq = cpu_rq(arg->dst_cpu);
2494 
2495 	double_raw_lock(&arg->src_task->pi_lock,
2496 			&arg->dst_task->pi_lock);
2497 	double_rq_lock(src_rq, dst_rq);
2498 
2499 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2500 		goto unlock;
2501 
2502 	if (task_cpu(arg->src_task) != arg->src_cpu)
2503 		goto unlock;
2504 
2505 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2506 		goto unlock;
2507 
2508 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2509 		goto unlock;
2510 
2511 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2512 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2513 
2514 	ret = 0;
2515 
2516 unlock:
2517 	double_rq_unlock(src_rq, dst_rq);
2518 	raw_spin_unlock(&arg->dst_task->pi_lock);
2519 	raw_spin_unlock(&arg->src_task->pi_lock);
2520 
2521 	return ret;
2522 }
2523 
2524 /*
2525  * Cross migrate two tasks
2526  */
2527 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2528 		int target_cpu, int curr_cpu)
2529 {
2530 	struct migration_swap_arg arg;
2531 	int ret = -EINVAL;
2532 
2533 	arg = (struct migration_swap_arg){
2534 		.src_task = cur,
2535 		.src_cpu = curr_cpu,
2536 		.dst_task = p,
2537 		.dst_cpu = target_cpu,
2538 	};
2539 
2540 	if (arg.src_cpu == arg.dst_cpu)
2541 		goto out;
2542 
2543 	/*
2544 	 * These three tests are all lockless; this is OK since all of them
2545 	 * will be re-checked with proper locks held further down the line.
2546 	 */
2547 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2548 		goto out;
2549 
2550 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2551 		goto out;
2552 
2553 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2554 		goto out;
2555 
2556 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2557 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2558 
2559 out:
2560 	return ret;
2561 }
2562 #endif /* CONFIG_NUMA_BALANCING */
2563 
2564 /*
2565  * wait_task_inactive - wait for a thread to unschedule.
2566  *
2567  * If @match_state is nonzero, it's the @p->state value just checked and
2568  * not expected to change.  If it changes, i.e. @p might have woken up,
2569  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2570  * we return a positive number (its total switch count).  If a second call
2571  * a short while later returns the same number, the caller can be sure that
2572  * @p has remained unscheduled the whole time.
2573  *
2574  * The caller must ensure that the task *will* unschedule sometime soon,
2575  * else this function might spin for a *long* time. This function can't
2576  * be called with interrupts off, or it may introduce deadlock with
2577  * smp_call_function() if an IPI is sent by the same process we are
2578  * waiting to become inactive.
2579  */
2580 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2581 {
2582 	int running, queued;
2583 	struct rq_flags rf;
2584 	unsigned long ncsw;
2585 	struct rq *rq;
2586 
2587 	for (;;) {
2588 		/*
2589 		 * We do the initial early heuristics without holding
2590 		 * any task-queue locks at all. We'll only try to get
2591 		 * the runqueue lock when things look like they will
2592 		 * work out!
2593 		 */
2594 		rq = task_rq(p);
2595 
2596 		/*
2597 		 * If the task is actively running on another CPU
2598 		 * still, just relax and busy-wait without holding
2599 		 * any locks.
2600 		 *
2601 		 * NOTE! Since we don't hold any locks, it's not
2602 		 * even sure that "rq" stays as the right runqueue!
2603 		 * But we don't care, since "task_running()" will
2604 		 * return false if the runqueue has changed and p
2605 		 * is actually now running somewhere else!
2606 		 */
2607 		while (task_running(rq, p)) {
2608 			if (match_state && unlikely(p->state != match_state))
2609 				return 0;
2610 			cpu_relax();
2611 		}
2612 
2613 		/*
2614 		 * Ok, time to look more closely! We need the rq
2615 		 * lock now, to be *sure*. If we're wrong, we'll
2616 		 * just go back and repeat.
2617 		 */
2618 		rq = task_rq_lock(p, &rf);
2619 		trace_sched_wait_task(p);
2620 		running = task_running(rq, p);
2621 		queued = task_on_rq_queued(p);
2622 		ncsw = 0;
2623 		if (!match_state || p->state == match_state)
2624 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2625 		task_rq_unlock(rq, p, &rf);
2626 
2627 		/*
2628 		 * If it changed from the expected state, bail out now.
2629 		 */
2630 		if (unlikely(!ncsw))
2631 			break;
2632 
2633 		/*
2634 		 * Was it really running after all now that we
2635 		 * checked with the proper locks actually held?
2636 		 *
2637 		 * Oops. Go back and try again..
2638 		 */
2639 		if (unlikely(running)) {
2640 			cpu_relax();
2641 			continue;
2642 		}
2643 
2644 		/*
2645 		 * It's not enough that it's not actively running,
2646 		 * it must be off the runqueue _entirely_, and not
2647 		 * preempted!
2648 		 *
2649 		 * So if it was still runnable (but just not actively
2650 		 * running right now), it's preempted, and we should
2651 		 * yield - it could be a while.
2652 		 */
2653 		if (unlikely(queued)) {
2654 			ktime_t to = NSEC_PER_SEC / HZ;
2655 
2656 			set_current_state(TASK_UNINTERRUPTIBLE);
2657 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2658 			continue;
2659 		}
2660 
2661 		/*
2662 		 * Ahh, all good. It wasn't running, and it wasn't
2663 		 * runnable, which means that it will never become
2664 		 * running in the future either. We're all done!
2665 		 */
2666 		break;
2667 	}
2668 
2669 	return ncsw;
2670 }
2671 
2672 /***
2673  * kick_process - kick a running thread to enter/exit the kernel
2674  * @p: the to-be-kicked thread
2675  *
2676  * Cause a process which is running on another CPU to enter
2677  * kernel-mode, without any delay. (to get signals handled.)
2678  *
2679  * NOTE: this function doesn't have to take the runqueue lock,
2680  * because all it wants to ensure is that the remote task enters
2681  * the kernel. If the IPI races and the task has been migrated
2682  * to another CPU then no harm is done and the purpose has been
2683  * achieved as well.
2684  */
2685 void kick_process(struct task_struct *p)
2686 {
2687 	int cpu;
2688 
2689 	preempt_disable();
2690 	cpu = task_cpu(p);
2691 	if ((cpu != smp_processor_id()) && task_curr(p))
2692 		smp_send_reschedule(cpu);
2693 	preempt_enable();
2694 }
2695 EXPORT_SYMBOL_GPL(kick_process);
2696 
2697 /*
2698  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2699  *
2700  * A few notes on cpu_active vs cpu_online:
2701  *
2702  *  - cpu_active must be a subset of cpu_online
2703  *
2704  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2705  *    see __set_cpus_allowed_ptr(). At this point the newly online
2706  *    CPU isn't yet part of the sched domains, and balancing will not
2707  *    see it.
2708  *
2709  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2710  *    avoid the load balancer to place new tasks on the to be removed
2711  *    CPU. Existing tasks will remain running there and will be taken
2712  *    off.
2713  *
2714  * This means that fallback selection must not select !active CPUs.
2715  * And can assume that any active CPU must be online. Conversely
2716  * select_task_rq() below may allow selection of !active CPUs in order
2717  * to satisfy the above rules.
2718  */
2719 static int select_fallback_rq(int cpu, struct task_struct *p)
2720 {
2721 	int nid = cpu_to_node(cpu);
2722 	const struct cpumask *nodemask = NULL;
2723 	enum { cpuset, possible, fail } state = cpuset;
2724 	int dest_cpu;
2725 
2726 	/*
2727 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2728 	 * will return -1. There is no CPU on the node, and we should
2729 	 * select the CPU on the other node.
2730 	 */
2731 	if (nid != -1) {
2732 		nodemask = cpumask_of_node(nid);
2733 
2734 		/* Look for allowed, online CPU in same node. */
2735 		for_each_cpu(dest_cpu, nodemask) {
2736 			if (!cpu_active(dest_cpu))
2737 				continue;
2738 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2739 				return dest_cpu;
2740 		}
2741 	}
2742 
2743 	for (;;) {
2744 		/* Any allowed, online CPU? */
2745 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2746 			if (!is_cpu_allowed(p, dest_cpu))
2747 				continue;
2748 
2749 			goto out;
2750 		}
2751 
2752 		/* No more Mr. Nice Guy. */
2753 		switch (state) {
2754 		case cpuset:
2755 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2756 				cpuset_cpus_allowed_fallback(p);
2757 				state = possible;
2758 				break;
2759 			}
2760 			fallthrough;
2761 		case possible:
2762 			/*
2763 			 * XXX When called from select_task_rq() we only
2764 			 * hold p->pi_lock and again violate locking order.
2765 			 *
2766 			 * More yuck to audit.
2767 			 */
2768 			do_set_cpus_allowed(p, cpu_possible_mask);
2769 			state = fail;
2770 			break;
2771 
2772 		case fail:
2773 			BUG();
2774 			break;
2775 		}
2776 	}
2777 
2778 out:
2779 	if (state != cpuset) {
2780 		/*
2781 		 * Don't tell them about moving exiting tasks or
2782 		 * kernel threads (both mm NULL), since they never
2783 		 * leave kernel.
2784 		 */
2785 		if (p->mm && printk_ratelimit()) {
2786 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2787 					task_pid_nr(p), p->comm, cpu);
2788 		}
2789 	}
2790 
2791 	return dest_cpu;
2792 }
2793 
2794 /*
2795  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2796  */
2797 static inline
2798 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2799 {
2800 	lockdep_assert_held(&p->pi_lock);
2801 
2802 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2803 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2804 	else
2805 		cpu = cpumask_any(p->cpus_ptr);
2806 
2807 	/*
2808 	 * In order not to call set_task_cpu() on a blocking task we need
2809 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2810 	 * CPU.
2811 	 *
2812 	 * Since this is common to all placement strategies, this lives here.
2813 	 *
2814 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2815 	 *   not worry about this generic constraint ]
2816 	 */
2817 	if (unlikely(!is_cpu_allowed(p, cpu)))
2818 		cpu = select_fallback_rq(task_cpu(p), p);
2819 
2820 	return cpu;
2821 }
2822 
2823 void sched_set_stop_task(int cpu, struct task_struct *stop)
2824 {
2825 	static struct lock_class_key stop_pi_lock;
2826 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2827 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2828 
2829 	if (stop) {
2830 		/*
2831 		 * Make it appear like a SCHED_FIFO task, its something
2832 		 * userspace knows about and won't get confused about.
2833 		 *
2834 		 * Also, it will make PI more or less work without too
2835 		 * much confusion -- but then, stop work should not
2836 		 * rely on PI working anyway.
2837 		 */
2838 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2839 
2840 		stop->sched_class = &stop_sched_class;
2841 
2842 		/*
2843 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2844 		 * adjust the effective priority of a task. As a result,
2845 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2846 		 * which can then trigger wakeups of the stop thread to push
2847 		 * around the current task.
2848 		 *
2849 		 * The stop task itself will never be part of the PI-chain, it
2850 		 * never blocks, therefore that ->pi_lock recursion is safe.
2851 		 * Tell lockdep about this by placing the stop->pi_lock in its
2852 		 * own class.
2853 		 */
2854 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2855 	}
2856 
2857 	cpu_rq(cpu)->stop = stop;
2858 
2859 	if (old_stop) {
2860 		/*
2861 		 * Reset it back to a normal scheduling class so that
2862 		 * it can die in pieces.
2863 		 */
2864 		old_stop->sched_class = &rt_sched_class;
2865 	}
2866 }
2867 
2868 #else /* CONFIG_SMP */
2869 
2870 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2871 					 const struct cpumask *new_mask,
2872 					 u32 flags)
2873 {
2874 	return set_cpus_allowed_ptr(p, new_mask);
2875 }
2876 
2877 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2878 
2879 static inline bool rq_has_pinned_tasks(struct rq *rq)
2880 {
2881 	return false;
2882 }
2883 
2884 #endif /* !CONFIG_SMP */
2885 
2886 static void
2887 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2888 {
2889 	struct rq *rq;
2890 
2891 	if (!schedstat_enabled())
2892 		return;
2893 
2894 	rq = this_rq();
2895 
2896 #ifdef CONFIG_SMP
2897 	if (cpu == rq->cpu) {
2898 		__schedstat_inc(rq->ttwu_local);
2899 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2900 	} else {
2901 		struct sched_domain *sd;
2902 
2903 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2904 		rcu_read_lock();
2905 		for_each_domain(rq->cpu, sd) {
2906 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2907 				__schedstat_inc(sd->ttwu_wake_remote);
2908 				break;
2909 			}
2910 		}
2911 		rcu_read_unlock();
2912 	}
2913 
2914 	if (wake_flags & WF_MIGRATED)
2915 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2916 #endif /* CONFIG_SMP */
2917 
2918 	__schedstat_inc(rq->ttwu_count);
2919 	__schedstat_inc(p->se.statistics.nr_wakeups);
2920 
2921 	if (wake_flags & WF_SYNC)
2922 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2923 }
2924 
2925 /*
2926  * Mark the task runnable and perform wakeup-preemption.
2927  */
2928 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2929 			   struct rq_flags *rf)
2930 {
2931 	check_preempt_curr(rq, p, wake_flags);
2932 	p->state = TASK_RUNNING;
2933 	trace_sched_wakeup(p);
2934 
2935 #ifdef CONFIG_SMP
2936 	if (p->sched_class->task_woken) {
2937 		/*
2938 		 * Our task @p is fully woken up and running; so it's safe to
2939 		 * drop the rq->lock, hereafter rq is only used for statistics.
2940 		 */
2941 		rq_unpin_lock(rq, rf);
2942 		p->sched_class->task_woken(rq, p);
2943 		rq_repin_lock(rq, rf);
2944 	}
2945 
2946 	if (rq->idle_stamp) {
2947 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2948 		u64 max = 2*rq->max_idle_balance_cost;
2949 
2950 		update_avg(&rq->avg_idle, delta);
2951 
2952 		if (rq->avg_idle > max)
2953 			rq->avg_idle = max;
2954 
2955 		rq->idle_stamp = 0;
2956 	}
2957 #endif
2958 }
2959 
2960 static void
2961 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2962 		 struct rq_flags *rf)
2963 {
2964 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2965 
2966 	lockdep_assert_held(&rq->lock);
2967 
2968 	if (p->sched_contributes_to_load)
2969 		rq->nr_uninterruptible--;
2970 
2971 #ifdef CONFIG_SMP
2972 	if (wake_flags & WF_MIGRATED)
2973 		en_flags |= ENQUEUE_MIGRATED;
2974 	else
2975 #endif
2976 	if (p->in_iowait) {
2977 		delayacct_blkio_end(p);
2978 		atomic_dec(&task_rq(p)->nr_iowait);
2979 	}
2980 
2981 	activate_task(rq, p, en_flags);
2982 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2983 }
2984 
2985 /*
2986  * Consider @p being inside a wait loop:
2987  *
2988  *   for (;;) {
2989  *      set_current_state(TASK_UNINTERRUPTIBLE);
2990  *
2991  *      if (CONDITION)
2992  *         break;
2993  *
2994  *      schedule();
2995  *   }
2996  *   __set_current_state(TASK_RUNNING);
2997  *
2998  * between set_current_state() and schedule(). In this case @p is still
2999  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3000  * an atomic manner.
3001  *
3002  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3003  * then schedule() must still happen and p->state can be changed to
3004  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3005  * need to do a full wakeup with enqueue.
3006  *
3007  * Returns: %true when the wakeup is done,
3008  *          %false otherwise.
3009  */
3010 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3011 {
3012 	struct rq_flags rf;
3013 	struct rq *rq;
3014 	int ret = 0;
3015 
3016 	rq = __task_rq_lock(p, &rf);
3017 	if (task_on_rq_queued(p)) {
3018 		/* check_preempt_curr() may use rq clock */
3019 		update_rq_clock(rq);
3020 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3021 		ret = 1;
3022 	}
3023 	__task_rq_unlock(rq, &rf);
3024 
3025 	return ret;
3026 }
3027 
3028 #ifdef CONFIG_SMP
3029 void sched_ttwu_pending(void *arg)
3030 {
3031 	struct llist_node *llist = arg;
3032 	struct rq *rq = this_rq();
3033 	struct task_struct *p, *t;
3034 	struct rq_flags rf;
3035 
3036 	if (!llist)
3037 		return;
3038 
3039 	/*
3040 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3041 	 * Races such that false-negatives are possible, since they
3042 	 * are shorter lived that false-positives would be.
3043 	 */
3044 	WRITE_ONCE(rq->ttwu_pending, 0);
3045 
3046 	rq_lock_irqsave(rq, &rf);
3047 	update_rq_clock(rq);
3048 
3049 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3050 		if (WARN_ON_ONCE(p->on_cpu))
3051 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3052 
3053 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3054 			set_task_cpu(p, cpu_of(rq));
3055 
3056 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3057 	}
3058 
3059 	rq_unlock_irqrestore(rq, &rf);
3060 }
3061 
3062 void send_call_function_single_ipi(int cpu)
3063 {
3064 	struct rq *rq = cpu_rq(cpu);
3065 
3066 	if (!set_nr_if_polling(rq->idle))
3067 		arch_send_call_function_single_ipi(cpu);
3068 	else
3069 		trace_sched_wake_idle_without_ipi(cpu);
3070 }
3071 
3072 /*
3073  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3074  * necessary. The wakee CPU on receipt of the IPI will queue the task
3075  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3076  * of the wakeup instead of the waker.
3077  */
3078 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3079 {
3080 	struct rq *rq = cpu_rq(cpu);
3081 
3082 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3083 
3084 	WRITE_ONCE(rq->ttwu_pending, 1);
3085 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3086 }
3087 
3088 void wake_up_if_idle(int cpu)
3089 {
3090 	struct rq *rq = cpu_rq(cpu);
3091 	struct rq_flags rf;
3092 
3093 	rcu_read_lock();
3094 
3095 	if (!is_idle_task(rcu_dereference(rq->curr)))
3096 		goto out;
3097 
3098 	if (set_nr_if_polling(rq->idle)) {
3099 		trace_sched_wake_idle_without_ipi(cpu);
3100 	} else {
3101 		rq_lock_irqsave(rq, &rf);
3102 		if (is_idle_task(rq->curr))
3103 			smp_send_reschedule(cpu);
3104 		/* Else CPU is not idle, do nothing here: */
3105 		rq_unlock_irqrestore(rq, &rf);
3106 	}
3107 
3108 out:
3109 	rcu_read_unlock();
3110 }
3111 
3112 bool cpus_share_cache(int this_cpu, int that_cpu)
3113 {
3114 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3115 }
3116 
3117 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3118 {
3119 	/*
3120 	 * Do not complicate things with the async wake_list while the CPU is
3121 	 * in hotplug state.
3122 	 */
3123 	if (!cpu_active(cpu))
3124 		return false;
3125 
3126 	/*
3127 	 * If the CPU does not share cache, then queue the task on the
3128 	 * remote rqs wakelist to avoid accessing remote data.
3129 	 */
3130 	if (!cpus_share_cache(smp_processor_id(), cpu))
3131 		return true;
3132 
3133 	/*
3134 	 * If the task is descheduling and the only running task on the
3135 	 * CPU then use the wakelist to offload the task activation to
3136 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3137 	 * nr_running is checked to avoid unnecessary task stacking.
3138 	 */
3139 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3140 		return true;
3141 
3142 	return false;
3143 }
3144 
3145 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3146 {
3147 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3148 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3149 			return false;
3150 
3151 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3152 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3153 		return true;
3154 	}
3155 
3156 	return false;
3157 }
3158 
3159 #else /* !CONFIG_SMP */
3160 
3161 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3162 {
3163 	return false;
3164 }
3165 
3166 #endif /* CONFIG_SMP */
3167 
3168 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3169 {
3170 	struct rq *rq = cpu_rq(cpu);
3171 	struct rq_flags rf;
3172 
3173 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3174 		return;
3175 
3176 	rq_lock(rq, &rf);
3177 	update_rq_clock(rq);
3178 	ttwu_do_activate(rq, p, wake_flags, &rf);
3179 	rq_unlock(rq, &rf);
3180 }
3181 
3182 /*
3183  * Notes on Program-Order guarantees on SMP systems.
3184  *
3185  *  MIGRATION
3186  *
3187  * The basic program-order guarantee on SMP systems is that when a task [t]
3188  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3189  * execution on its new CPU [c1].
3190  *
3191  * For migration (of runnable tasks) this is provided by the following means:
3192  *
3193  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3194  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3195  *     rq(c1)->lock (if not at the same time, then in that order).
3196  *  C) LOCK of the rq(c1)->lock scheduling in task
3197  *
3198  * Release/acquire chaining guarantees that B happens after A and C after B.
3199  * Note: the CPU doing B need not be c0 or c1
3200  *
3201  * Example:
3202  *
3203  *   CPU0            CPU1            CPU2
3204  *
3205  *   LOCK rq(0)->lock
3206  *   sched-out X
3207  *   sched-in Y
3208  *   UNLOCK rq(0)->lock
3209  *
3210  *                                   LOCK rq(0)->lock // orders against CPU0
3211  *                                   dequeue X
3212  *                                   UNLOCK rq(0)->lock
3213  *
3214  *                                   LOCK rq(1)->lock
3215  *                                   enqueue X
3216  *                                   UNLOCK rq(1)->lock
3217  *
3218  *                   LOCK rq(1)->lock // orders against CPU2
3219  *                   sched-out Z
3220  *                   sched-in X
3221  *                   UNLOCK rq(1)->lock
3222  *
3223  *
3224  *  BLOCKING -- aka. SLEEP + WAKEUP
3225  *
3226  * For blocking we (obviously) need to provide the same guarantee as for
3227  * migration. However the means are completely different as there is no lock
3228  * chain to provide order. Instead we do:
3229  *
3230  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3231  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3232  *
3233  * Example:
3234  *
3235  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3236  *
3237  *   LOCK rq(0)->lock LOCK X->pi_lock
3238  *   dequeue X
3239  *   sched-out X
3240  *   smp_store_release(X->on_cpu, 0);
3241  *
3242  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3243  *                    X->state = WAKING
3244  *                    set_task_cpu(X,2)
3245  *
3246  *                    LOCK rq(2)->lock
3247  *                    enqueue X
3248  *                    X->state = RUNNING
3249  *                    UNLOCK rq(2)->lock
3250  *
3251  *                                          LOCK rq(2)->lock // orders against CPU1
3252  *                                          sched-out Z
3253  *                                          sched-in X
3254  *                                          UNLOCK rq(2)->lock
3255  *
3256  *                    UNLOCK X->pi_lock
3257  *   UNLOCK rq(0)->lock
3258  *
3259  *
3260  * However, for wakeups there is a second guarantee we must provide, namely we
3261  * must ensure that CONDITION=1 done by the caller can not be reordered with
3262  * accesses to the task state; see try_to_wake_up() and set_current_state().
3263  */
3264 
3265 /**
3266  * try_to_wake_up - wake up a thread
3267  * @p: the thread to be awakened
3268  * @state: the mask of task states that can be woken
3269  * @wake_flags: wake modifier flags (WF_*)
3270  *
3271  * Conceptually does:
3272  *
3273  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3274  *
3275  * If the task was not queued/runnable, also place it back on a runqueue.
3276  *
3277  * This function is atomic against schedule() which would dequeue the task.
3278  *
3279  * It issues a full memory barrier before accessing @p->state, see the comment
3280  * with set_current_state().
3281  *
3282  * Uses p->pi_lock to serialize against concurrent wake-ups.
3283  *
3284  * Relies on p->pi_lock stabilizing:
3285  *  - p->sched_class
3286  *  - p->cpus_ptr
3287  *  - p->sched_task_group
3288  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3289  *
3290  * Tries really hard to only take one task_rq(p)->lock for performance.
3291  * Takes rq->lock in:
3292  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3293  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3294  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3295  *
3296  * As a consequence we race really badly with just about everything. See the
3297  * many memory barriers and their comments for details.
3298  *
3299  * Return: %true if @p->state changes (an actual wakeup was done),
3300  *	   %false otherwise.
3301  */
3302 static int
3303 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3304 {
3305 	unsigned long flags;
3306 	int cpu, success = 0;
3307 
3308 	preempt_disable();
3309 	if (p == current) {
3310 		/*
3311 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3312 		 * == smp_processor_id()'. Together this means we can special
3313 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3314 		 * without taking any locks.
3315 		 *
3316 		 * In particular:
3317 		 *  - we rely on Program-Order guarantees for all the ordering,
3318 		 *  - we're serialized against set_special_state() by virtue of
3319 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3320 		 */
3321 		if (!(p->state & state))
3322 			goto out;
3323 
3324 		success = 1;
3325 		trace_sched_waking(p);
3326 		p->state = TASK_RUNNING;
3327 		trace_sched_wakeup(p);
3328 		goto out;
3329 	}
3330 
3331 	/*
3332 	 * If we are going to wake up a thread waiting for CONDITION we
3333 	 * need to ensure that CONDITION=1 done by the caller can not be
3334 	 * reordered with p->state check below. This pairs with smp_store_mb()
3335 	 * in set_current_state() that the waiting thread does.
3336 	 */
3337 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3338 	smp_mb__after_spinlock();
3339 	if (!(p->state & state))
3340 		goto unlock;
3341 
3342 	trace_sched_waking(p);
3343 
3344 	/* We're going to change ->state: */
3345 	success = 1;
3346 
3347 	/*
3348 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3349 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3350 	 * in smp_cond_load_acquire() below.
3351 	 *
3352 	 * sched_ttwu_pending()			try_to_wake_up()
3353 	 *   STORE p->on_rq = 1			  LOAD p->state
3354 	 *   UNLOCK rq->lock
3355 	 *
3356 	 * __schedule() (switch to task 'p')
3357 	 *   LOCK rq->lock			  smp_rmb();
3358 	 *   smp_mb__after_spinlock();
3359 	 *   UNLOCK rq->lock
3360 	 *
3361 	 * [task p]
3362 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3363 	 *
3364 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3365 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3366 	 *
3367 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3368 	 */
3369 	smp_rmb();
3370 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3371 		goto unlock;
3372 
3373 #ifdef CONFIG_SMP
3374 	/*
3375 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3376 	 * possible to, falsely, observe p->on_cpu == 0.
3377 	 *
3378 	 * One must be running (->on_cpu == 1) in order to remove oneself
3379 	 * from the runqueue.
3380 	 *
3381 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3382 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3383 	 *   UNLOCK rq->lock
3384 	 *
3385 	 * __schedule() (put 'p' to sleep)
3386 	 *   LOCK rq->lock			  smp_rmb();
3387 	 *   smp_mb__after_spinlock();
3388 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3389 	 *
3390 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3391 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3392 	 *
3393 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3394 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3395 	 * care about it's own p->state. See the comment in __schedule().
3396 	 */
3397 	smp_acquire__after_ctrl_dep();
3398 
3399 	/*
3400 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3401 	 * == 0), which means we need to do an enqueue, change p->state to
3402 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3403 	 * enqueue, such as ttwu_queue_wakelist().
3404 	 */
3405 	p->state = TASK_WAKING;
3406 
3407 	/*
3408 	 * If the owning (remote) CPU is still in the middle of schedule() with
3409 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3410 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3411 	 * let the waker make forward progress. This is safe because IRQs are
3412 	 * disabled and the IPI will deliver after on_cpu is cleared.
3413 	 *
3414 	 * Ensure we load task_cpu(p) after p->on_cpu:
3415 	 *
3416 	 * set_task_cpu(p, cpu);
3417 	 *   STORE p->cpu = @cpu
3418 	 * __schedule() (switch to task 'p')
3419 	 *   LOCK rq->lock
3420 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3421 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3422 	 *
3423 	 * to ensure we observe the correct CPU on which the task is currently
3424 	 * scheduling.
3425 	 */
3426 	if (smp_load_acquire(&p->on_cpu) &&
3427 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3428 		goto unlock;
3429 
3430 	/*
3431 	 * If the owning (remote) CPU is still in the middle of schedule() with
3432 	 * this task as prev, wait until it's done referencing the task.
3433 	 *
3434 	 * Pairs with the smp_store_release() in finish_task().
3435 	 *
3436 	 * This ensures that tasks getting woken will be fully ordered against
3437 	 * their previous state and preserve Program Order.
3438 	 */
3439 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3440 
3441 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3442 	if (task_cpu(p) != cpu) {
3443 		if (p->in_iowait) {
3444 			delayacct_blkio_end(p);
3445 			atomic_dec(&task_rq(p)->nr_iowait);
3446 		}
3447 
3448 		wake_flags |= WF_MIGRATED;
3449 		psi_ttwu_dequeue(p);
3450 		set_task_cpu(p, cpu);
3451 	}
3452 #else
3453 	cpu = task_cpu(p);
3454 #endif /* CONFIG_SMP */
3455 
3456 	ttwu_queue(p, cpu, wake_flags);
3457 unlock:
3458 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3459 out:
3460 	if (success)
3461 		ttwu_stat(p, task_cpu(p), wake_flags);
3462 	preempt_enable();
3463 
3464 	return success;
3465 }
3466 
3467 /**
3468  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3469  * @p: Process for which the function is to be invoked, can be @current.
3470  * @func: Function to invoke.
3471  * @arg: Argument to function.
3472  *
3473  * If the specified task can be quickly locked into a definite state
3474  * (either sleeping or on a given runqueue), arrange to keep it in that
3475  * state while invoking @func(@arg).  This function can use ->on_rq and
3476  * task_curr() to work out what the state is, if required.  Given that
3477  * @func can be invoked with a runqueue lock held, it had better be quite
3478  * lightweight.
3479  *
3480  * Returns:
3481  *	@false if the task slipped out from under the locks.
3482  *	@true if the task was locked onto a runqueue or is sleeping.
3483  *		However, @func can override this by returning @false.
3484  */
3485 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3486 {
3487 	struct rq_flags rf;
3488 	bool ret = false;
3489 	struct rq *rq;
3490 
3491 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3492 	if (p->on_rq) {
3493 		rq = __task_rq_lock(p, &rf);
3494 		if (task_rq(p) == rq)
3495 			ret = func(p, arg);
3496 		rq_unlock(rq, &rf);
3497 	} else {
3498 		switch (p->state) {
3499 		case TASK_RUNNING:
3500 		case TASK_WAKING:
3501 			break;
3502 		default:
3503 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3504 			if (!p->on_rq)
3505 				ret = func(p, arg);
3506 		}
3507 	}
3508 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3509 	return ret;
3510 }
3511 
3512 /**
3513  * wake_up_process - Wake up a specific process
3514  * @p: The process to be woken up.
3515  *
3516  * Attempt to wake up the nominated process and move it to the set of runnable
3517  * processes.
3518  *
3519  * Return: 1 if the process was woken up, 0 if it was already running.
3520  *
3521  * This function executes a full memory barrier before accessing the task state.
3522  */
3523 int wake_up_process(struct task_struct *p)
3524 {
3525 	return try_to_wake_up(p, TASK_NORMAL, 0);
3526 }
3527 EXPORT_SYMBOL(wake_up_process);
3528 
3529 int wake_up_state(struct task_struct *p, unsigned int state)
3530 {
3531 	return try_to_wake_up(p, state, 0);
3532 }
3533 
3534 /*
3535  * Perform scheduler related setup for a newly forked process p.
3536  * p is forked by current.
3537  *
3538  * __sched_fork() is basic setup used by init_idle() too:
3539  */
3540 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3541 {
3542 	p->on_rq			= 0;
3543 
3544 	p->se.on_rq			= 0;
3545 	p->se.exec_start		= 0;
3546 	p->se.sum_exec_runtime		= 0;
3547 	p->se.prev_sum_exec_runtime	= 0;
3548 	p->se.nr_migrations		= 0;
3549 	p->se.vruntime			= 0;
3550 	INIT_LIST_HEAD(&p->se.group_node);
3551 
3552 #ifdef CONFIG_FAIR_GROUP_SCHED
3553 	p->se.cfs_rq			= NULL;
3554 #endif
3555 
3556 #ifdef CONFIG_SCHEDSTATS
3557 	/* Even if schedstat is disabled, there should not be garbage */
3558 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3559 #endif
3560 
3561 	RB_CLEAR_NODE(&p->dl.rb_node);
3562 	init_dl_task_timer(&p->dl);
3563 	init_dl_inactive_task_timer(&p->dl);
3564 	__dl_clear_params(p);
3565 
3566 	INIT_LIST_HEAD(&p->rt.run_list);
3567 	p->rt.timeout		= 0;
3568 	p->rt.time_slice	= sched_rr_timeslice;
3569 	p->rt.on_rq		= 0;
3570 	p->rt.on_list		= 0;
3571 
3572 #ifdef CONFIG_PREEMPT_NOTIFIERS
3573 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3574 #endif
3575 
3576 #ifdef CONFIG_COMPACTION
3577 	p->capture_control = NULL;
3578 #endif
3579 	init_numa_balancing(clone_flags, p);
3580 #ifdef CONFIG_SMP
3581 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3582 	p->migration_pending = NULL;
3583 #endif
3584 }
3585 
3586 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3587 
3588 #ifdef CONFIG_NUMA_BALANCING
3589 
3590 void set_numabalancing_state(bool enabled)
3591 {
3592 	if (enabled)
3593 		static_branch_enable(&sched_numa_balancing);
3594 	else
3595 		static_branch_disable(&sched_numa_balancing);
3596 }
3597 
3598 #ifdef CONFIG_PROC_SYSCTL
3599 int sysctl_numa_balancing(struct ctl_table *table, int write,
3600 			  void *buffer, size_t *lenp, loff_t *ppos)
3601 {
3602 	struct ctl_table t;
3603 	int err;
3604 	int state = static_branch_likely(&sched_numa_balancing);
3605 
3606 	if (write && !capable(CAP_SYS_ADMIN))
3607 		return -EPERM;
3608 
3609 	t = *table;
3610 	t.data = &state;
3611 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3612 	if (err < 0)
3613 		return err;
3614 	if (write)
3615 		set_numabalancing_state(state);
3616 	return err;
3617 }
3618 #endif
3619 #endif
3620 
3621 #ifdef CONFIG_SCHEDSTATS
3622 
3623 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3624 static bool __initdata __sched_schedstats = false;
3625 
3626 static void set_schedstats(bool enabled)
3627 {
3628 	if (enabled)
3629 		static_branch_enable(&sched_schedstats);
3630 	else
3631 		static_branch_disable(&sched_schedstats);
3632 }
3633 
3634 void force_schedstat_enabled(void)
3635 {
3636 	if (!schedstat_enabled()) {
3637 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3638 		static_branch_enable(&sched_schedstats);
3639 	}
3640 }
3641 
3642 static int __init setup_schedstats(char *str)
3643 {
3644 	int ret = 0;
3645 	if (!str)
3646 		goto out;
3647 
3648 	/*
3649 	 * This code is called before jump labels have been set up, so we can't
3650 	 * change the static branch directly just yet.  Instead set a temporary
3651 	 * variable so init_schedstats() can do it later.
3652 	 */
3653 	if (!strcmp(str, "enable")) {
3654 		__sched_schedstats = true;
3655 		ret = 1;
3656 	} else if (!strcmp(str, "disable")) {
3657 		__sched_schedstats = false;
3658 		ret = 1;
3659 	}
3660 out:
3661 	if (!ret)
3662 		pr_warn("Unable to parse schedstats=\n");
3663 
3664 	return ret;
3665 }
3666 __setup("schedstats=", setup_schedstats);
3667 
3668 static void __init init_schedstats(void)
3669 {
3670 	set_schedstats(__sched_schedstats);
3671 }
3672 
3673 #ifdef CONFIG_PROC_SYSCTL
3674 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3675 		size_t *lenp, loff_t *ppos)
3676 {
3677 	struct ctl_table t;
3678 	int err;
3679 	int state = static_branch_likely(&sched_schedstats);
3680 
3681 	if (write && !capable(CAP_SYS_ADMIN))
3682 		return -EPERM;
3683 
3684 	t = *table;
3685 	t.data = &state;
3686 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3687 	if (err < 0)
3688 		return err;
3689 	if (write)
3690 		set_schedstats(state);
3691 	return err;
3692 }
3693 #endif /* CONFIG_PROC_SYSCTL */
3694 #else  /* !CONFIG_SCHEDSTATS */
3695 static inline void init_schedstats(void) {}
3696 #endif /* CONFIG_SCHEDSTATS */
3697 
3698 /*
3699  * fork()/clone()-time setup:
3700  */
3701 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3702 {
3703 	unsigned long flags;
3704 
3705 	__sched_fork(clone_flags, p);
3706 	/*
3707 	 * We mark the process as NEW here. This guarantees that
3708 	 * nobody will actually run it, and a signal or other external
3709 	 * event cannot wake it up and insert it on the runqueue either.
3710 	 */
3711 	p->state = TASK_NEW;
3712 
3713 	/*
3714 	 * Make sure we do not leak PI boosting priority to the child.
3715 	 */
3716 	p->prio = current->normal_prio;
3717 
3718 	uclamp_fork(p);
3719 
3720 	/*
3721 	 * Revert to default priority/policy on fork if requested.
3722 	 */
3723 	if (unlikely(p->sched_reset_on_fork)) {
3724 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3725 			p->policy = SCHED_NORMAL;
3726 			p->static_prio = NICE_TO_PRIO(0);
3727 			p->rt_priority = 0;
3728 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3729 			p->static_prio = NICE_TO_PRIO(0);
3730 
3731 		p->prio = p->normal_prio = __normal_prio(p);
3732 		set_load_weight(p, false);
3733 
3734 		/*
3735 		 * We don't need the reset flag anymore after the fork. It has
3736 		 * fulfilled its duty:
3737 		 */
3738 		p->sched_reset_on_fork = 0;
3739 	}
3740 
3741 	if (dl_prio(p->prio))
3742 		return -EAGAIN;
3743 	else if (rt_prio(p->prio))
3744 		p->sched_class = &rt_sched_class;
3745 	else
3746 		p->sched_class = &fair_sched_class;
3747 
3748 	init_entity_runnable_average(&p->se);
3749 
3750 	/*
3751 	 * The child is not yet in the pid-hash so no cgroup attach races,
3752 	 * and the cgroup is pinned to this child due to cgroup_fork()
3753 	 * is ran before sched_fork().
3754 	 *
3755 	 * Silence PROVE_RCU.
3756 	 */
3757 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3758 	rseq_migrate(p);
3759 	/*
3760 	 * We're setting the CPU for the first time, we don't migrate,
3761 	 * so use __set_task_cpu().
3762 	 */
3763 	__set_task_cpu(p, smp_processor_id());
3764 	if (p->sched_class->task_fork)
3765 		p->sched_class->task_fork(p);
3766 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3767 
3768 #ifdef CONFIG_SCHED_INFO
3769 	if (likely(sched_info_on()))
3770 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3771 #endif
3772 #if defined(CONFIG_SMP)
3773 	p->on_cpu = 0;
3774 #endif
3775 	init_task_preempt_count(p);
3776 #ifdef CONFIG_SMP
3777 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3778 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3779 #endif
3780 	return 0;
3781 }
3782 
3783 void sched_post_fork(struct task_struct *p)
3784 {
3785 	uclamp_post_fork(p);
3786 }
3787 
3788 unsigned long to_ratio(u64 period, u64 runtime)
3789 {
3790 	if (runtime == RUNTIME_INF)
3791 		return BW_UNIT;
3792 
3793 	/*
3794 	 * Doing this here saves a lot of checks in all
3795 	 * the calling paths, and returning zero seems
3796 	 * safe for them anyway.
3797 	 */
3798 	if (period == 0)
3799 		return 0;
3800 
3801 	return div64_u64(runtime << BW_SHIFT, period);
3802 }
3803 
3804 /*
3805  * wake_up_new_task - wake up a newly created task for the first time.
3806  *
3807  * This function will do some initial scheduler statistics housekeeping
3808  * that must be done for every newly created context, then puts the task
3809  * on the runqueue and wakes it.
3810  */
3811 void wake_up_new_task(struct task_struct *p)
3812 {
3813 	struct rq_flags rf;
3814 	struct rq *rq;
3815 
3816 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3817 	p->state = TASK_RUNNING;
3818 #ifdef CONFIG_SMP
3819 	/*
3820 	 * Fork balancing, do it here and not earlier because:
3821 	 *  - cpus_ptr can change in the fork path
3822 	 *  - any previously selected CPU might disappear through hotplug
3823 	 *
3824 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3825 	 * as we're not fully set-up yet.
3826 	 */
3827 	p->recent_used_cpu = task_cpu(p);
3828 	rseq_migrate(p);
3829 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3830 #endif
3831 	rq = __task_rq_lock(p, &rf);
3832 	update_rq_clock(rq);
3833 	post_init_entity_util_avg(p);
3834 
3835 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3836 	trace_sched_wakeup_new(p);
3837 	check_preempt_curr(rq, p, WF_FORK);
3838 #ifdef CONFIG_SMP
3839 	if (p->sched_class->task_woken) {
3840 		/*
3841 		 * Nothing relies on rq->lock after this, so it's fine to
3842 		 * drop it.
3843 		 */
3844 		rq_unpin_lock(rq, &rf);
3845 		p->sched_class->task_woken(rq, p);
3846 		rq_repin_lock(rq, &rf);
3847 	}
3848 #endif
3849 	task_rq_unlock(rq, p, &rf);
3850 }
3851 
3852 #ifdef CONFIG_PREEMPT_NOTIFIERS
3853 
3854 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3855 
3856 void preempt_notifier_inc(void)
3857 {
3858 	static_branch_inc(&preempt_notifier_key);
3859 }
3860 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3861 
3862 void preempt_notifier_dec(void)
3863 {
3864 	static_branch_dec(&preempt_notifier_key);
3865 }
3866 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3867 
3868 /**
3869  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3870  * @notifier: notifier struct to register
3871  */
3872 void preempt_notifier_register(struct preempt_notifier *notifier)
3873 {
3874 	if (!static_branch_unlikely(&preempt_notifier_key))
3875 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3876 
3877 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3878 }
3879 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3880 
3881 /**
3882  * preempt_notifier_unregister - no longer interested in preemption notifications
3883  * @notifier: notifier struct to unregister
3884  *
3885  * This is *not* safe to call from within a preemption notifier.
3886  */
3887 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3888 {
3889 	hlist_del(&notifier->link);
3890 }
3891 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3892 
3893 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3894 {
3895 	struct preempt_notifier *notifier;
3896 
3897 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3898 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3899 }
3900 
3901 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3902 {
3903 	if (static_branch_unlikely(&preempt_notifier_key))
3904 		__fire_sched_in_preempt_notifiers(curr);
3905 }
3906 
3907 static void
3908 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3909 				   struct task_struct *next)
3910 {
3911 	struct preempt_notifier *notifier;
3912 
3913 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3914 		notifier->ops->sched_out(notifier, next);
3915 }
3916 
3917 static __always_inline void
3918 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3919 				 struct task_struct *next)
3920 {
3921 	if (static_branch_unlikely(&preempt_notifier_key))
3922 		__fire_sched_out_preempt_notifiers(curr, next);
3923 }
3924 
3925 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3926 
3927 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3928 {
3929 }
3930 
3931 static inline void
3932 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3933 				 struct task_struct *next)
3934 {
3935 }
3936 
3937 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3938 
3939 static inline void prepare_task(struct task_struct *next)
3940 {
3941 #ifdef CONFIG_SMP
3942 	/*
3943 	 * Claim the task as running, we do this before switching to it
3944 	 * such that any running task will have this set.
3945 	 *
3946 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3947 	 */
3948 	WRITE_ONCE(next->on_cpu, 1);
3949 #endif
3950 }
3951 
3952 static inline void finish_task(struct task_struct *prev)
3953 {
3954 #ifdef CONFIG_SMP
3955 	/*
3956 	 * This must be the very last reference to @prev from this CPU. After
3957 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3958 	 * must ensure this doesn't happen until the switch is completely
3959 	 * finished.
3960 	 *
3961 	 * In particular, the load of prev->state in finish_task_switch() must
3962 	 * happen before this.
3963 	 *
3964 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3965 	 */
3966 	smp_store_release(&prev->on_cpu, 0);
3967 #endif
3968 }
3969 
3970 #ifdef CONFIG_SMP
3971 
3972 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3973 {
3974 	void (*func)(struct rq *rq);
3975 	struct callback_head *next;
3976 
3977 	lockdep_assert_held(&rq->lock);
3978 
3979 	while (head) {
3980 		func = (void (*)(struct rq *))head->func;
3981 		next = head->next;
3982 		head->next = NULL;
3983 		head = next;
3984 
3985 		func(rq);
3986 	}
3987 }
3988 
3989 static void balance_push(struct rq *rq);
3990 
3991 struct callback_head balance_push_callback = {
3992 	.next = NULL,
3993 	.func = (void (*)(struct callback_head *))balance_push,
3994 };
3995 
3996 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3997 {
3998 	struct callback_head *head = rq->balance_callback;
3999 
4000 	lockdep_assert_held(&rq->lock);
4001 	if (head)
4002 		rq->balance_callback = NULL;
4003 
4004 	return head;
4005 }
4006 
4007 static void __balance_callbacks(struct rq *rq)
4008 {
4009 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4010 }
4011 
4012 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4013 {
4014 	unsigned long flags;
4015 
4016 	if (unlikely(head)) {
4017 		raw_spin_lock_irqsave(&rq->lock, flags);
4018 		do_balance_callbacks(rq, head);
4019 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4020 	}
4021 }
4022 
4023 #else
4024 
4025 static inline void __balance_callbacks(struct rq *rq)
4026 {
4027 }
4028 
4029 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4030 {
4031 	return NULL;
4032 }
4033 
4034 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4035 {
4036 }
4037 
4038 #endif
4039 
4040 static inline void
4041 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4042 {
4043 	/*
4044 	 * Since the runqueue lock will be released by the next
4045 	 * task (which is an invalid locking op but in the case
4046 	 * of the scheduler it's an obvious special-case), so we
4047 	 * do an early lockdep release here:
4048 	 */
4049 	rq_unpin_lock(rq, rf);
4050 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4051 #ifdef CONFIG_DEBUG_SPINLOCK
4052 	/* this is a valid case when another task releases the spinlock */
4053 	rq->lock.owner = next;
4054 #endif
4055 }
4056 
4057 static inline void finish_lock_switch(struct rq *rq)
4058 {
4059 	/*
4060 	 * If we are tracking spinlock dependencies then we have to
4061 	 * fix up the runqueue lock - which gets 'carried over' from
4062 	 * prev into current:
4063 	 */
4064 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4065 	__balance_callbacks(rq);
4066 	raw_spin_unlock_irq(&rq->lock);
4067 }
4068 
4069 /*
4070  * NOP if the arch has not defined these:
4071  */
4072 
4073 #ifndef prepare_arch_switch
4074 # define prepare_arch_switch(next)	do { } while (0)
4075 #endif
4076 
4077 #ifndef finish_arch_post_lock_switch
4078 # define finish_arch_post_lock_switch()	do { } while (0)
4079 #endif
4080 
4081 static inline void kmap_local_sched_out(void)
4082 {
4083 #ifdef CONFIG_KMAP_LOCAL
4084 	if (unlikely(current->kmap_ctrl.idx))
4085 		__kmap_local_sched_out();
4086 #endif
4087 }
4088 
4089 static inline void kmap_local_sched_in(void)
4090 {
4091 #ifdef CONFIG_KMAP_LOCAL
4092 	if (unlikely(current->kmap_ctrl.idx))
4093 		__kmap_local_sched_in();
4094 #endif
4095 }
4096 
4097 /**
4098  * prepare_task_switch - prepare to switch tasks
4099  * @rq: the runqueue preparing to switch
4100  * @prev: the current task that is being switched out
4101  * @next: the task we are going to switch to.
4102  *
4103  * This is called with the rq lock held and interrupts off. It must
4104  * be paired with a subsequent finish_task_switch after the context
4105  * switch.
4106  *
4107  * prepare_task_switch sets up locking and calls architecture specific
4108  * hooks.
4109  */
4110 static inline void
4111 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4112 		    struct task_struct *next)
4113 {
4114 	kcov_prepare_switch(prev);
4115 	sched_info_switch(rq, prev, next);
4116 	perf_event_task_sched_out(prev, next);
4117 	rseq_preempt(prev);
4118 	fire_sched_out_preempt_notifiers(prev, next);
4119 	kmap_local_sched_out();
4120 	prepare_task(next);
4121 	prepare_arch_switch(next);
4122 }
4123 
4124 /**
4125  * finish_task_switch - clean up after a task-switch
4126  * @prev: the thread we just switched away from.
4127  *
4128  * finish_task_switch must be called after the context switch, paired
4129  * with a prepare_task_switch call before the context switch.
4130  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4131  * and do any other architecture-specific cleanup actions.
4132  *
4133  * Note that we may have delayed dropping an mm in context_switch(). If
4134  * so, we finish that here outside of the runqueue lock. (Doing it
4135  * with the lock held can cause deadlocks; see schedule() for
4136  * details.)
4137  *
4138  * The context switch have flipped the stack from under us and restored the
4139  * local variables which were saved when this task called schedule() in the
4140  * past. prev == current is still correct but we need to recalculate this_rq
4141  * because prev may have moved to another CPU.
4142  */
4143 static struct rq *finish_task_switch(struct task_struct *prev)
4144 	__releases(rq->lock)
4145 {
4146 	struct rq *rq = this_rq();
4147 	struct mm_struct *mm = rq->prev_mm;
4148 	long prev_state;
4149 
4150 	/*
4151 	 * The previous task will have left us with a preempt_count of 2
4152 	 * because it left us after:
4153 	 *
4154 	 *	schedule()
4155 	 *	  preempt_disable();			// 1
4156 	 *	  __schedule()
4157 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4158 	 *
4159 	 * Also, see FORK_PREEMPT_COUNT.
4160 	 */
4161 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4162 		      "corrupted preempt_count: %s/%d/0x%x\n",
4163 		      current->comm, current->pid, preempt_count()))
4164 		preempt_count_set(FORK_PREEMPT_COUNT);
4165 
4166 	rq->prev_mm = NULL;
4167 
4168 	/*
4169 	 * A task struct has one reference for the use as "current".
4170 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4171 	 * schedule one last time. The schedule call will never return, and
4172 	 * the scheduled task must drop that reference.
4173 	 *
4174 	 * We must observe prev->state before clearing prev->on_cpu (in
4175 	 * finish_task), otherwise a concurrent wakeup can get prev
4176 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4177 	 * transition, resulting in a double drop.
4178 	 */
4179 	prev_state = prev->state;
4180 	vtime_task_switch(prev);
4181 	perf_event_task_sched_in(prev, current);
4182 	finish_task(prev);
4183 	finish_lock_switch(rq);
4184 	finish_arch_post_lock_switch();
4185 	kcov_finish_switch(current);
4186 	/*
4187 	 * kmap_local_sched_out() is invoked with rq::lock held and
4188 	 * interrupts disabled. There is no requirement for that, but the
4189 	 * sched out code does not have an interrupt enabled section.
4190 	 * Restoring the maps on sched in does not require interrupts being
4191 	 * disabled either.
4192 	 */
4193 	kmap_local_sched_in();
4194 
4195 	fire_sched_in_preempt_notifiers(current);
4196 	/*
4197 	 * When switching through a kernel thread, the loop in
4198 	 * membarrier_{private,global}_expedited() may have observed that
4199 	 * kernel thread and not issued an IPI. It is therefore possible to
4200 	 * schedule between user->kernel->user threads without passing though
4201 	 * switch_mm(). Membarrier requires a barrier after storing to
4202 	 * rq->curr, before returning to userspace, so provide them here:
4203 	 *
4204 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4205 	 *   provided by mmdrop(),
4206 	 * - a sync_core for SYNC_CORE.
4207 	 */
4208 	if (mm) {
4209 		membarrier_mm_sync_core_before_usermode(mm);
4210 		mmdrop(mm);
4211 	}
4212 	if (unlikely(prev_state == TASK_DEAD)) {
4213 		if (prev->sched_class->task_dead)
4214 			prev->sched_class->task_dead(prev);
4215 
4216 		/*
4217 		 * Remove function-return probe instances associated with this
4218 		 * task and put them back on the free list.
4219 		 */
4220 		kprobe_flush_task(prev);
4221 
4222 		/* Task is done with its stack. */
4223 		put_task_stack(prev);
4224 
4225 		put_task_struct_rcu_user(prev);
4226 	}
4227 
4228 	tick_nohz_task_switch();
4229 	return rq;
4230 }
4231 
4232 /**
4233  * schedule_tail - first thing a freshly forked thread must call.
4234  * @prev: the thread we just switched away from.
4235  */
4236 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4237 	__releases(rq->lock)
4238 {
4239 	struct rq *rq;
4240 
4241 	/*
4242 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4243 	 * finish_task_switch() for details.
4244 	 *
4245 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4246 	 * and the preempt_enable() will end up enabling preemption (on
4247 	 * PREEMPT_COUNT kernels).
4248 	 */
4249 
4250 	rq = finish_task_switch(prev);
4251 	preempt_enable();
4252 
4253 	if (current->set_child_tid)
4254 		put_user(task_pid_vnr(current), current->set_child_tid);
4255 
4256 	calculate_sigpending();
4257 }
4258 
4259 /*
4260  * context_switch - switch to the new MM and the new thread's register state.
4261  */
4262 static __always_inline struct rq *
4263 context_switch(struct rq *rq, struct task_struct *prev,
4264 	       struct task_struct *next, struct rq_flags *rf)
4265 {
4266 	prepare_task_switch(rq, prev, next);
4267 
4268 	/*
4269 	 * For paravirt, this is coupled with an exit in switch_to to
4270 	 * combine the page table reload and the switch backend into
4271 	 * one hypercall.
4272 	 */
4273 	arch_start_context_switch(prev);
4274 
4275 	/*
4276 	 * kernel -> kernel   lazy + transfer active
4277 	 *   user -> kernel   lazy + mmgrab() active
4278 	 *
4279 	 * kernel ->   user   switch + mmdrop() active
4280 	 *   user ->   user   switch
4281 	 */
4282 	if (!next->mm) {                                // to kernel
4283 		enter_lazy_tlb(prev->active_mm, next);
4284 
4285 		next->active_mm = prev->active_mm;
4286 		if (prev->mm)                           // from user
4287 			mmgrab(prev->active_mm);
4288 		else
4289 			prev->active_mm = NULL;
4290 	} else {                                        // to user
4291 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4292 		/*
4293 		 * sys_membarrier() requires an smp_mb() between setting
4294 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4295 		 *
4296 		 * The below provides this either through switch_mm(), or in
4297 		 * case 'prev->active_mm == next->mm' through
4298 		 * finish_task_switch()'s mmdrop().
4299 		 */
4300 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4301 
4302 		if (!prev->mm) {                        // from kernel
4303 			/* will mmdrop() in finish_task_switch(). */
4304 			rq->prev_mm = prev->active_mm;
4305 			prev->active_mm = NULL;
4306 		}
4307 	}
4308 
4309 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4310 
4311 	prepare_lock_switch(rq, next, rf);
4312 
4313 	/* Here we just switch the register state and the stack. */
4314 	switch_to(prev, next, prev);
4315 	barrier();
4316 
4317 	return finish_task_switch(prev);
4318 }
4319 
4320 /*
4321  * nr_running and nr_context_switches:
4322  *
4323  * externally visible scheduler statistics: current number of runnable
4324  * threads, total number of context switches performed since bootup.
4325  */
4326 unsigned long nr_running(void)
4327 {
4328 	unsigned long i, sum = 0;
4329 
4330 	for_each_online_cpu(i)
4331 		sum += cpu_rq(i)->nr_running;
4332 
4333 	return sum;
4334 }
4335 
4336 /*
4337  * Check if only the current task is running on the CPU.
4338  *
4339  * Caution: this function does not check that the caller has disabled
4340  * preemption, thus the result might have a time-of-check-to-time-of-use
4341  * race.  The caller is responsible to use it correctly, for example:
4342  *
4343  * - from a non-preemptible section (of course)
4344  *
4345  * - from a thread that is bound to a single CPU
4346  *
4347  * - in a loop with very short iterations (e.g. a polling loop)
4348  */
4349 bool single_task_running(void)
4350 {
4351 	return raw_rq()->nr_running == 1;
4352 }
4353 EXPORT_SYMBOL(single_task_running);
4354 
4355 unsigned long long nr_context_switches(void)
4356 {
4357 	int i;
4358 	unsigned long long sum = 0;
4359 
4360 	for_each_possible_cpu(i)
4361 		sum += cpu_rq(i)->nr_switches;
4362 
4363 	return sum;
4364 }
4365 
4366 /*
4367  * Consumers of these two interfaces, like for example the cpuidle menu
4368  * governor, are using nonsensical data. Preferring shallow idle state selection
4369  * for a CPU that has IO-wait which might not even end up running the task when
4370  * it does become runnable.
4371  */
4372 
4373 unsigned long nr_iowait_cpu(int cpu)
4374 {
4375 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4376 }
4377 
4378 /*
4379  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4380  *
4381  * The idea behind IO-wait account is to account the idle time that we could
4382  * have spend running if it were not for IO. That is, if we were to improve the
4383  * storage performance, we'd have a proportional reduction in IO-wait time.
4384  *
4385  * This all works nicely on UP, where, when a task blocks on IO, we account
4386  * idle time as IO-wait, because if the storage were faster, it could've been
4387  * running and we'd not be idle.
4388  *
4389  * This has been extended to SMP, by doing the same for each CPU. This however
4390  * is broken.
4391  *
4392  * Imagine for instance the case where two tasks block on one CPU, only the one
4393  * CPU will have IO-wait accounted, while the other has regular idle. Even
4394  * though, if the storage were faster, both could've ran at the same time,
4395  * utilising both CPUs.
4396  *
4397  * This means, that when looking globally, the current IO-wait accounting on
4398  * SMP is a lower bound, by reason of under accounting.
4399  *
4400  * Worse, since the numbers are provided per CPU, they are sometimes
4401  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4402  * associated with any one particular CPU, it can wake to another CPU than it
4403  * blocked on. This means the per CPU IO-wait number is meaningless.
4404  *
4405  * Task CPU affinities can make all that even more 'interesting'.
4406  */
4407 
4408 unsigned long nr_iowait(void)
4409 {
4410 	unsigned long i, sum = 0;
4411 
4412 	for_each_possible_cpu(i)
4413 		sum += nr_iowait_cpu(i);
4414 
4415 	return sum;
4416 }
4417 
4418 #ifdef CONFIG_SMP
4419 
4420 /*
4421  * sched_exec - execve() is a valuable balancing opportunity, because at
4422  * this point the task has the smallest effective memory and cache footprint.
4423  */
4424 void sched_exec(void)
4425 {
4426 	struct task_struct *p = current;
4427 	unsigned long flags;
4428 	int dest_cpu;
4429 
4430 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4431 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4432 	if (dest_cpu == smp_processor_id())
4433 		goto unlock;
4434 
4435 	if (likely(cpu_active(dest_cpu))) {
4436 		struct migration_arg arg = { p, dest_cpu };
4437 
4438 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4439 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4440 		return;
4441 	}
4442 unlock:
4443 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4444 }
4445 
4446 #endif
4447 
4448 DEFINE_PER_CPU(struct kernel_stat, kstat);
4449 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4450 
4451 EXPORT_PER_CPU_SYMBOL(kstat);
4452 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4453 
4454 /*
4455  * The function fair_sched_class.update_curr accesses the struct curr
4456  * and its field curr->exec_start; when called from task_sched_runtime(),
4457  * we observe a high rate of cache misses in practice.
4458  * Prefetching this data results in improved performance.
4459  */
4460 static inline void prefetch_curr_exec_start(struct task_struct *p)
4461 {
4462 #ifdef CONFIG_FAIR_GROUP_SCHED
4463 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4464 #else
4465 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4466 #endif
4467 	prefetch(curr);
4468 	prefetch(&curr->exec_start);
4469 }
4470 
4471 /*
4472  * Return accounted runtime for the task.
4473  * In case the task is currently running, return the runtime plus current's
4474  * pending runtime that have not been accounted yet.
4475  */
4476 unsigned long long task_sched_runtime(struct task_struct *p)
4477 {
4478 	struct rq_flags rf;
4479 	struct rq *rq;
4480 	u64 ns;
4481 
4482 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4483 	/*
4484 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4485 	 * So we have a optimization chance when the task's delta_exec is 0.
4486 	 * Reading ->on_cpu is racy, but this is ok.
4487 	 *
4488 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4489 	 * If we race with it entering CPU, unaccounted time is 0. This is
4490 	 * indistinguishable from the read occurring a few cycles earlier.
4491 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4492 	 * been accounted, so we're correct here as well.
4493 	 */
4494 	if (!p->on_cpu || !task_on_rq_queued(p))
4495 		return p->se.sum_exec_runtime;
4496 #endif
4497 
4498 	rq = task_rq_lock(p, &rf);
4499 	/*
4500 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4501 	 * project cycles that may never be accounted to this
4502 	 * thread, breaking clock_gettime().
4503 	 */
4504 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4505 		prefetch_curr_exec_start(p);
4506 		update_rq_clock(rq);
4507 		p->sched_class->update_curr(rq);
4508 	}
4509 	ns = p->se.sum_exec_runtime;
4510 	task_rq_unlock(rq, p, &rf);
4511 
4512 	return ns;
4513 }
4514 
4515 /*
4516  * This function gets called by the timer code, with HZ frequency.
4517  * We call it with interrupts disabled.
4518  */
4519 void scheduler_tick(void)
4520 {
4521 	int cpu = smp_processor_id();
4522 	struct rq *rq = cpu_rq(cpu);
4523 	struct task_struct *curr = rq->curr;
4524 	struct rq_flags rf;
4525 	unsigned long thermal_pressure;
4526 
4527 	arch_scale_freq_tick();
4528 	sched_clock_tick();
4529 
4530 	rq_lock(rq, &rf);
4531 
4532 	update_rq_clock(rq);
4533 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4534 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4535 	curr->sched_class->task_tick(rq, curr, 0);
4536 	calc_global_load_tick(rq);
4537 	psi_task_tick(rq);
4538 
4539 	rq_unlock(rq, &rf);
4540 
4541 	perf_event_task_tick();
4542 
4543 #ifdef CONFIG_SMP
4544 	rq->idle_balance = idle_cpu(cpu);
4545 	trigger_load_balance(rq);
4546 #endif
4547 }
4548 
4549 #ifdef CONFIG_NO_HZ_FULL
4550 
4551 struct tick_work {
4552 	int			cpu;
4553 	atomic_t		state;
4554 	struct delayed_work	work;
4555 };
4556 /* Values for ->state, see diagram below. */
4557 #define TICK_SCHED_REMOTE_OFFLINE	0
4558 #define TICK_SCHED_REMOTE_OFFLINING	1
4559 #define TICK_SCHED_REMOTE_RUNNING	2
4560 
4561 /*
4562  * State diagram for ->state:
4563  *
4564  *
4565  *          TICK_SCHED_REMOTE_OFFLINE
4566  *                    |   ^
4567  *                    |   |
4568  *                    |   | sched_tick_remote()
4569  *                    |   |
4570  *                    |   |
4571  *                    +--TICK_SCHED_REMOTE_OFFLINING
4572  *                    |   ^
4573  *                    |   |
4574  * sched_tick_start() |   | sched_tick_stop()
4575  *                    |   |
4576  *                    V   |
4577  *          TICK_SCHED_REMOTE_RUNNING
4578  *
4579  *
4580  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4581  * and sched_tick_start() are happy to leave the state in RUNNING.
4582  */
4583 
4584 static struct tick_work __percpu *tick_work_cpu;
4585 
4586 static void sched_tick_remote(struct work_struct *work)
4587 {
4588 	struct delayed_work *dwork = to_delayed_work(work);
4589 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4590 	int cpu = twork->cpu;
4591 	struct rq *rq = cpu_rq(cpu);
4592 	struct task_struct *curr;
4593 	struct rq_flags rf;
4594 	u64 delta;
4595 	int os;
4596 
4597 	/*
4598 	 * Handle the tick only if it appears the remote CPU is running in full
4599 	 * dynticks mode. The check is racy by nature, but missing a tick or
4600 	 * having one too much is no big deal because the scheduler tick updates
4601 	 * statistics and checks timeslices in a time-independent way, regardless
4602 	 * of when exactly it is running.
4603 	 */
4604 	if (!tick_nohz_tick_stopped_cpu(cpu))
4605 		goto out_requeue;
4606 
4607 	rq_lock_irq(rq, &rf);
4608 	curr = rq->curr;
4609 	if (cpu_is_offline(cpu))
4610 		goto out_unlock;
4611 
4612 	update_rq_clock(rq);
4613 
4614 	if (!is_idle_task(curr)) {
4615 		/*
4616 		 * Make sure the next tick runs within a reasonable
4617 		 * amount of time.
4618 		 */
4619 		delta = rq_clock_task(rq) - curr->se.exec_start;
4620 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4621 	}
4622 	curr->sched_class->task_tick(rq, curr, 0);
4623 
4624 	calc_load_nohz_remote(rq);
4625 out_unlock:
4626 	rq_unlock_irq(rq, &rf);
4627 out_requeue:
4628 
4629 	/*
4630 	 * Run the remote tick once per second (1Hz). This arbitrary
4631 	 * frequency is large enough to avoid overload but short enough
4632 	 * to keep scheduler internal stats reasonably up to date.  But
4633 	 * first update state to reflect hotplug activity if required.
4634 	 */
4635 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4636 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4637 	if (os == TICK_SCHED_REMOTE_RUNNING)
4638 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4639 }
4640 
4641 static void sched_tick_start(int cpu)
4642 {
4643 	int os;
4644 	struct tick_work *twork;
4645 
4646 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4647 		return;
4648 
4649 	WARN_ON_ONCE(!tick_work_cpu);
4650 
4651 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4652 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4653 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4654 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4655 		twork->cpu = cpu;
4656 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4657 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4658 	}
4659 }
4660 
4661 #ifdef CONFIG_HOTPLUG_CPU
4662 static void sched_tick_stop(int cpu)
4663 {
4664 	struct tick_work *twork;
4665 	int os;
4666 
4667 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4668 		return;
4669 
4670 	WARN_ON_ONCE(!tick_work_cpu);
4671 
4672 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4673 	/* There cannot be competing actions, but don't rely on stop-machine. */
4674 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4675 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4676 	/* Don't cancel, as this would mess up the state machine. */
4677 }
4678 #endif /* CONFIG_HOTPLUG_CPU */
4679 
4680 int __init sched_tick_offload_init(void)
4681 {
4682 	tick_work_cpu = alloc_percpu(struct tick_work);
4683 	BUG_ON(!tick_work_cpu);
4684 	return 0;
4685 }
4686 
4687 #else /* !CONFIG_NO_HZ_FULL */
4688 static inline void sched_tick_start(int cpu) { }
4689 static inline void sched_tick_stop(int cpu) { }
4690 #endif
4691 
4692 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4693 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4694 /*
4695  * If the value passed in is equal to the current preempt count
4696  * then we just disabled preemption. Start timing the latency.
4697  */
4698 static inline void preempt_latency_start(int val)
4699 {
4700 	if (preempt_count() == val) {
4701 		unsigned long ip = get_lock_parent_ip();
4702 #ifdef CONFIG_DEBUG_PREEMPT
4703 		current->preempt_disable_ip = ip;
4704 #endif
4705 		trace_preempt_off(CALLER_ADDR0, ip);
4706 	}
4707 }
4708 
4709 void preempt_count_add(int val)
4710 {
4711 #ifdef CONFIG_DEBUG_PREEMPT
4712 	/*
4713 	 * Underflow?
4714 	 */
4715 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4716 		return;
4717 #endif
4718 	__preempt_count_add(val);
4719 #ifdef CONFIG_DEBUG_PREEMPT
4720 	/*
4721 	 * Spinlock count overflowing soon?
4722 	 */
4723 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4724 				PREEMPT_MASK - 10);
4725 #endif
4726 	preempt_latency_start(val);
4727 }
4728 EXPORT_SYMBOL(preempt_count_add);
4729 NOKPROBE_SYMBOL(preempt_count_add);
4730 
4731 /*
4732  * If the value passed in equals to the current preempt count
4733  * then we just enabled preemption. Stop timing the latency.
4734  */
4735 static inline void preempt_latency_stop(int val)
4736 {
4737 	if (preempt_count() == val)
4738 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4739 }
4740 
4741 void preempt_count_sub(int val)
4742 {
4743 #ifdef CONFIG_DEBUG_PREEMPT
4744 	/*
4745 	 * Underflow?
4746 	 */
4747 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4748 		return;
4749 	/*
4750 	 * Is the spinlock portion underflowing?
4751 	 */
4752 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4753 			!(preempt_count() & PREEMPT_MASK)))
4754 		return;
4755 #endif
4756 
4757 	preempt_latency_stop(val);
4758 	__preempt_count_sub(val);
4759 }
4760 EXPORT_SYMBOL(preempt_count_sub);
4761 NOKPROBE_SYMBOL(preempt_count_sub);
4762 
4763 #else
4764 static inline void preempt_latency_start(int val) { }
4765 static inline void preempt_latency_stop(int val) { }
4766 #endif
4767 
4768 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4769 {
4770 #ifdef CONFIG_DEBUG_PREEMPT
4771 	return p->preempt_disable_ip;
4772 #else
4773 	return 0;
4774 #endif
4775 }
4776 
4777 /*
4778  * Print scheduling while atomic bug:
4779  */
4780 static noinline void __schedule_bug(struct task_struct *prev)
4781 {
4782 	/* Save this before calling printk(), since that will clobber it */
4783 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4784 
4785 	if (oops_in_progress)
4786 		return;
4787 
4788 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4789 		prev->comm, prev->pid, preempt_count());
4790 
4791 	debug_show_held_locks(prev);
4792 	print_modules();
4793 	if (irqs_disabled())
4794 		print_irqtrace_events(prev);
4795 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4796 	    && in_atomic_preempt_off()) {
4797 		pr_err("Preemption disabled at:");
4798 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4799 	}
4800 	if (panic_on_warn)
4801 		panic("scheduling while atomic\n");
4802 
4803 	dump_stack();
4804 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4805 }
4806 
4807 /*
4808  * Various schedule()-time debugging checks and statistics:
4809  */
4810 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4811 {
4812 #ifdef CONFIG_SCHED_STACK_END_CHECK
4813 	if (task_stack_end_corrupted(prev))
4814 		panic("corrupted stack end detected inside scheduler\n");
4815 
4816 	if (task_scs_end_corrupted(prev))
4817 		panic("corrupted shadow stack detected inside scheduler\n");
4818 #endif
4819 
4820 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4821 	if (!preempt && prev->state && prev->non_block_count) {
4822 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4823 			prev->comm, prev->pid, prev->non_block_count);
4824 		dump_stack();
4825 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4826 	}
4827 #endif
4828 
4829 	if (unlikely(in_atomic_preempt_off())) {
4830 		__schedule_bug(prev);
4831 		preempt_count_set(PREEMPT_DISABLED);
4832 	}
4833 	rcu_sleep_check();
4834 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4835 
4836 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4837 
4838 	schedstat_inc(this_rq()->sched_count);
4839 }
4840 
4841 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4842 				  struct rq_flags *rf)
4843 {
4844 #ifdef CONFIG_SMP
4845 	const struct sched_class *class;
4846 	/*
4847 	 * We must do the balancing pass before put_prev_task(), such
4848 	 * that when we release the rq->lock the task is in the same
4849 	 * state as before we took rq->lock.
4850 	 *
4851 	 * We can terminate the balance pass as soon as we know there is
4852 	 * a runnable task of @class priority or higher.
4853 	 */
4854 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4855 		if (class->balance(rq, prev, rf))
4856 			break;
4857 	}
4858 #endif
4859 
4860 	put_prev_task(rq, prev);
4861 }
4862 
4863 /*
4864  * Pick up the highest-prio task:
4865  */
4866 static inline struct task_struct *
4867 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4868 {
4869 	const struct sched_class *class;
4870 	struct task_struct *p;
4871 
4872 	/*
4873 	 * Optimization: we know that if all tasks are in the fair class we can
4874 	 * call that function directly, but only if the @prev task wasn't of a
4875 	 * higher scheduling class, because otherwise those lose the
4876 	 * opportunity to pull in more work from other CPUs.
4877 	 */
4878 	if (likely(prev->sched_class <= &fair_sched_class &&
4879 		   rq->nr_running == rq->cfs.h_nr_running)) {
4880 
4881 		p = pick_next_task_fair(rq, prev, rf);
4882 		if (unlikely(p == RETRY_TASK))
4883 			goto restart;
4884 
4885 		/* Assumes fair_sched_class->next == idle_sched_class */
4886 		if (!p) {
4887 			put_prev_task(rq, prev);
4888 			p = pick_next_task_idle(rq);
4889 		}
4890 
4891 		return p;
4892 	}
4893 
4894 restart:
4895 	put_prev_task_balance(rq, prev, rf);
4896 
4897 	for_each_class(class) {
4898 		p = class->pick_next_task(rq);
4899 		if (p)
4900 			return p;
4901 	}
4902 
4903 	/* The idle class should always have a runnable task: */
4904 	BUG();
4905 }
4906 
4907 /*
4908  * __schedule() is the main scheduler function.
4909  *
4910  * The main means of driving the scheduler and thus entering this function are:
4911  *
4912  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4913  *
4914  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4915  *      paths. For example, see arch/x86/entry_64.S.
4916  *
4917  *      To drive preemption between tasks, the scheduler sets the flag in timer
4918  *      interrupt handler scheduler_tick().
4919  *
4920  *   3. Wakeups don't really cause entry into schedule(). They add a
4921  *      task to the run-queue and that's it.
4922  *
4923  *      Now, if the new task added to the run-queue preempts the current
4924  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4925  *      called on the nearest possible occasion:
4926  *
4927  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4928  *
4929  *         - in syscall or exception context, at the next outmost
4930  *           preempt_enable(). (this might be as soon as the wake_up()'s
4931  *           spin_unlock()!)
4932  *
4933  *         - in IRQ context, return from interrupt-handler to
4934  *           preemptible context
4935  *
4936  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4937  *         then at the next:
4938  *
4939  *          - cond_resched() call
4940  *          - explicit schedule() call
4941  *          - return from syscall or exception to user-space
4942  *          - return from interrupt-handler to user-space
4943  *
4944  * WARNING: must be called with preemption disabled!
4945  */
4946 static void __sched notrace __schedule(bool preempt)
4947 {
4948 	struct task_struct *prev, *next;
4949 	unsigned long *switch_count;
4950 	unsigned long prev_state;
4951 	struct rq_flags rf;
4952 	struct rq *rq;
4953 	int cpu;
4954 
4955 	cpu = smp_processor_id();
4956 	rq = cpu_rq(cpu);
4957 	prev = rq->curr;
4958 
4959 	schedule_debug(prev, preempt);
4960 
4961 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
4962 		hrtick_clear(rq);
4963 
4964 	local_irq_disable();
4965 	rcu_note_context_switch(preempt);
4966 
4967 	/*
4968 	 * Make sure that signal_pending_state()->signal_pending() below
4969 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4970 	 * done by the caller to avoid the race with signal_wake_up():
4971 	 *
4972 	 * __set_current_state(@state)		signal_wake_up()
4973 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4974 	 *					  wake_up_state(p, state)
4975 	 *   LOCK rq->lock			    LOCK p->pi_state
4976 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4977 	 *     if (signal_pending_state())	    if (p->state & @state)
4978 	 *
4979 	 * Also, the membarrier system call requires a full memory barrier
4980 	 * after coming from user-space, before storing to rq->curr.
4981 	 */
4982 	rq_lock(rq, &rf);
4983 	smp_mb__after_spinlock();
4984 
4985 	/* Promote REQ to ACT */
4986 	rq->clock_update_flags <<= 1;
4987 	update_rq_clock(rq);
4988 
4989 	switch_count = &prev->nivcsw;
4990 
4991 	/*
4992 	 * We must load prev->state once (task_struct::state is volatile), such
4993 	 * that:
4994 	 *
4995 	 *  - we form a control dependency vs deactivate_task() below.
4996 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4997 	 */
4998 	prev_state = prev->state;
4999 	if (!preempt && prev_state) {
5000 		if (signal_pending_state(prev_state, prev)) {
5001 			prev->state = TASK_RUNNING;
5002 		} else {
5003 			prev->sched_contributes_to_load =
5004 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5005 				!(prev_state & TASK_NOLOAD) &&
5006 				!(prev->flags & PF_FROZEN);
5007 
5008 			if (prev->sched_contributes_to_load)
5009 				rq->nr_uninterruptible++;
5010 
5011 			/*
5012 			 * __schedule()			ttwu()
5013 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5014 			 *   if (prev_state)		    goto out;
5015 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5016 			 *				  p->state = TASK_WAKING
5017 			 *
5018 			 * Where __schedule() and ttwu() have matching control dependencies.
5019 			 *
5020 			 * After this, schedule() must not care about p->state any more.
5021 			 */
5022 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5023 
5024 			if (prev->in_iowait) {
5025 				atomic_inc(&rq->nr_iowait);
5026 				delayacct_blkio_start();
5027 			}
5028 		}
5029 		switch_count = &prev->nvcsw;
5030 	}
5031 
5032 	next = pick_next_task(rq, prev, &rf);
5033 	clear_tsk_need_resched(prev);
5034 	clear_preempt_need_resched();
5035 
5036 	if (likely(prev != next)) {
5037 		rq->nr_switches++;
5038 		/*
5039 		 * RCU users of rcu_dereference(rq->curr) may not see
5040 		 * changes to task_struct made by pick_next_task().
5041 		 */
5042 		RCU_INIT_POINTER(rq->curr, next);
5043 		/*
5044 		 * The membarrier system call requires each architecture
5045 		 * to have a full memory barrier after updating
5046 		 * rq->curr, before returning to user-space.
5047 		 *
5048 		 * Here are the schemes providing that barrier on the
5049 		 * various architectures:
5050 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5051 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5052 		 * - finish_lock_switch() for weakly-ordered
5053 		 *   architectures where spin_unlock is a full barrier,
5054 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5055 		 *   is a RELEASE barrier),
5056 		 */
5057 		++*switch_count;
5058 
5059 		migrate_disable_switch(rq, prev);
5060 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5061 
5062 		trace_sched_switch(preempt, prev, next);
5063 
5064 		/* Also unlocks the rq: */
5065 		rq = context_switch(rq, prev, next, &rf);
5066 	} else {
5067 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5068 
5069 		rq_unpin_lock(rq, &rf);
5070 		__balance_callbacks(rq);
5071 		raw_spin_unlock_irq(&rq->lock);
5072 	}
5073 }
5074 
5075 void __noreturn do_task_dead(void)
5076 {
5077 	/* Causes final put_task_struct in finish_task_switch(): */
5078 	set_special_state(TASK_DEAD);
5079 
5080 	/* Tell freezer to ignore us: */
5081 	current->flags |= PF_NOFREEZE;
5082 
5083 	__schedule(false);
5084 	BUG();
5085 
5086 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5087 	for (;;)
5088 		cpu_relax();
5089 }
5090 
5091 static inline void sched_submit_work(struct task_struct *tsk)
5092 {
5093 	unsigned int task_flags;
5094 
5095 	if (!tsk->state)
5096 		return;
5097 
5098 	task_flags = tsk->flags;
5099 	/*
5100 	 * If a worker went to sleep, notify and ask workqueue whether
5101 	 * it wants to wake up a task to maintain concurrency.
5102 	 * As this function is called inside the schedule() context,
5103 	 * we disable preemption to avoid it calling schedule() again
5104 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5105 	 * requires it.
5106 	 */
5107 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5108 		preempt_disable();
5109 		if (task_flags & PF_WQ_WORKER)
5110 			wq_worker_sleeping(tsk);
5111 		else
5112 			io_wq_worker_sleeping(tsk);
5113 		preempt_enable_no_resched();
5114 	}
5115 
5116 	if (tsk_is_pi_blocked(tsk))
5117 		return;
5118 
5119 	/*
5120 	 * If we are going to sleep and we have plugged IO queued,
5121 	 * make sure to submit it to avoid deadlocks.
5122 	 */
5123 	if (blk_needs_flush_plug(tsk))
5124 		blk_schedule_flush_plug(tsk);
5125 }
5126 
5127 static void sched_update_worker(struct task_struct *tsk)
5128 {
5129 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5130 		if (tsk->flags & PF_WQ_WORKER)
5131 			wq_worker_running(tsk);
5132 		else
5133 			io_wq_worker_running(tsk);
5134 	}
5135 }
5136 
5137 asmlinkage __visible void __sched schedule(void)
5138 {
5139 	struct task_struct *tsk = current;
5140 
5141 	sched_submit_work(tsk);
5142 	do {
5143 		preempt_disable();
5144 		__schedule(false);
5145 		sched_preempt_enable_no_resched();
5146 	} while (need_resched());
5147 	sched_update_worker(tsk);
5148 }
5149 EXPORT_SYMBOL(schedule);
5150 
5151 /*
5152  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5153  * state (have scheduled out non-voluntarily) by making sure that all
5154  * tasks have either left the run queue or have gone into user space.
5155  * As idle tasks do not do either, they must not ever be preempted
5156  * (schedule out non-voluntarily).
5157  *
5158  * schedule_idle() is similar to schedule_preempt_disable() except that it
5159  * never enables preemption because it does not call sched_submit_work().
5160  */
5161 void __sched schedule_idle(void)
5162 {
5163 	/*
5164 	 * As this skips calling sched_submit_work(), which the idle task does
5165 	 * regardless because that function is a nop when the task is in a
5166 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5167 	 * current task can be in any other state. Note, idle is always in the
5168 	 * TASK_RUNNING state.
5169 	 */
5170 	WARN_ON_ONCE(current->state);
5171 	do {
5172 		__schedule(false);
5173 	} while (need_resched());
5174 }
5175 
5176 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5177 asmlinkage __visible void __sched schedule_user(void)
5178 {
5179 	/*
5180 	 * If we come here after a random call to set_need_resched(),
5181 	 * or we have been woken up remotely but the IPI has not yet arrived,
5182 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5183 	 * we find a better solution.
5184 	 *
5185 	 * NB: There are buggy callers of this function.  Ideally we
5186 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5187 	 * too frequently to make sense yet.
5188 	 */
5189 	enum ctx_state prev_state = exception_enter();
5190 	schedule();
5191 	exception_exit(prev_state);
5192 }
5193 #endif
5194 
5195 /**
5196  * schedule_preempt_disabled - called with preemption disabled
5197  *
5198  * Returns with preemption disabled. Note: preempt_count must be 1
5199  */
5200 void __sched schedule_preempt_disabled(void)
5201 {
5202 	sched_preempt_enable_no_resched();
5203 	schedule();
5204 	preempt_disable();
5205 }
5206 
5207 static void __sched notrace preempt_schedule_common(void)
5208 {
5209 	do {
5210 		/*
5211 		 * Because the function tracer can trace preempt_count_sub()
5212 		 * and it also uses preempt_enable/disable_notrace(), if
5213 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5214 		 * by the function tracer will call this function again and
5215 		 * cause infinite recursion.
5216 		 *
5217 		 * Preemption must be disabled here before the function
5218 		 * tracer can trace. Break up preempt_disable() into two
5219 		 * calls. One to disable preemption without fear of being
5220 		 * traced. The other to still record the preemption latency,
5221 		 * which can also be traced by the function tracer.
5222 		 */
5223 		preempt_disable_notrace();
5224 		preempt_latency_start(1);
5225 		__schedule(true);
5226 		preempt_latency_stop(1);
5227 		preempt_enable_no_resched_notrace();
5228 
5229 		/*
5230 		 * Check again in case we missed a preemption opportunity
5231 		 * between schedule and now.
5232 		 */
5233 	} while (need_resched());
5234 }
5235 
5236 #ifdef CONFIG_PREEMPTION
5237 /*
5238  * This is the entry point to schedule() from in-kernel preemption
5239  * off of preempt_enable.
5240  */
5241 asmlinkage __visible void __sched notrace preempt_schedule(void)
5242 {
5243 	/*
5244 	 * If there is a non-zero preempt_count or interrupts are disabled,
5245 	 * we do not want to preempt the current task. Just return..
5246 	 */
5247 	if (likely(!preemptible()))
5248 		return;
5249 
5250 	preempt_schedule_common();
5251 }
5252 NOKPROBE_SYMBOL(preempt_schedule);
5253 EXPORT_SYMBOL(preempt_schedule);
5254 
5255 #ifdef CONFIG_PREEMPT_DYNAMIC
5256 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5257 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5258 #endif
5259 
5260 
5261 /**
5262  * preempt_schedule_notrace - preempt_schedule called by tracing
5263  *
5264  * The tracing infrastructure uses preempt_enable_notrace to prevent
5265  * recursion and tracing preempt enabling caused by the tracing
5266  * infrastructure itself. But as tracing can happen in areas coming
5267  * from userspace or just about to enter userspace, a preempt enable
5268  * can occur before user_exit() is called. This will cause the scheduler
5269  * to be called when the system is still in usermode.
5270  *
5271  * To prevent this, the preempt_enable_notrace will use this function
5272  * instead of preempt_schedule() to exit user context if needed before
5273  * calling the scheduler.
5274  */
5275 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5276 {
5277 	enum ctx_state prev_ctx;
5278 
5279 	if (likely(!preemptible()))
5280 		return;
5281 
5282 	do {
5283 		/*
5284 		 * Because the function tracer can trace preempt_count_sub()
5285 		 * and it also uses preempt_enable/disable_notrace(), if
5286 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5287 		 * by the function tracer will call this function again and
5288 		 * cause infinite recursion.
5289 		 *
5290 		 * Preemption must be disabled here before the function
5291 		 * tracer can trace. Break up preempt_disable() into two
5292 		 * calls. One to disable preemption without fear of being
5293 		 * traced. The other to still record the preemption latency,
5294 		 * which can also be traced by the function tracer.
5295 		 */
5296 		preempt_disable_notrace();
5297 		preempt_latency_start(1);
5298 		/*
5299 		 * Needs preempt disabled in case user_exit() is traced
5300 		 * and the tracer calls preempt_enable_notrace() causing
5301 		 * an infinite recursion.
5302 		 */
5303 		prev_ctx = exception_enter();
5304 		__schedule(true);
5305 		exception_exit(prev_ctx);
5306 
5307 		preempt_latency_stop(1);
5308 		preempt_enable_no_resched_notrace();
5309 	} while (need_resched());
5310 }
5311 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5312 
5313 #ifdef CONFIG_PREEMPT_DYNAMIC
5314 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5315 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5316 #endif
5317 
5318 #endif /* CONFIG_PREEMPTION */
5319 
5320 #ifdef CONFIG_PREEMPT_DYNAMIC
5321 
5322 #include <linux/entry-common.h>
5323 
5324 /*
5325  * SC:cond_resched
5326  * SC:might_resched
5327  * SC:preempt_schedule
5328  * SC:preempt_schedule_notrace
5329  * SC:irqentry_exit_cond_resched
5330  *
5331  *
5332  * NONE:
5333  *   cond_resched               <- __cond_resched
5334  *   might_resched              <- RET0
5335  *   preempt_schedule           <- NOP
5336  *   preempt_schedule_notrace   <- NOP
5337  *   irqentry_exit_cond_resched <- NOP
5338  *
5339  * VOLUNTARY:
5340  *   cond_resched               <- __cond_resched
5341  *   might_resched              <- __cond_resched
5342  *   preempt_schedule           <- NOP
5343  *   preempt_schedule_notrace   <- NOP
5344  *   irqentry_exit_cond_resched <- NOP
5345  *
5346  * FULL:
5347  *   cond_resched               <- RET0
5348  *   might_resched              <- RET0
5349  *   preempt_schedule           <- preempt_schedule
5350  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5351  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5352  */
5353 
5354 enum {
5355 	preempt_dynamic_none = 0,
5356 	preempt_dynamic_voluntary,
5357 	preempt_dynamic_full,
5358 };
5359 
5360 static int preempt_dynamic_mode = preempt_dynamic_full;
5361 
5362 static int sched_dynamic_mode(const char *str)
5363 {
5364 	if (!strcmp(str, "none"))
5365 		return 0;
5366 
5367 	if (!strcmp(str, "voluntary"))
5368 		return 1;
5369 
5370 	if (!strcmp(str, "full"))
5371 		return 2;
5372 
5373 	return -1;
5374 }
5375 
5376 static void sched_dynamic_update(int mode)
5377 {
5378 	/*
5379 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5380 	 * the ZERO state, which is invalid.
5381 	 */
5382 	static_call_update(cond_resched, __cond_resched);
5383 	static_call_update(might_resched, __cond_resched);
5384 	static_call_update(preempt_schedule, __preempt_schedule_func);
5385 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5386 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5387 
5388 	switch (mode) {
5389 	case preempt_dynamic_none:
5390 		static_call_update(cond_resched, __cond_resched);
5391 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5392 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5393 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5394 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5395 		pr_info("Dynamic Preempt: none\n");
5396 		break;
5397 
5398 	case preempt_dynamic_voluntary:
5399 		static_call_update(cond_resched, __cond_resched);
5400 		static_call_update(might_resched, __cond_resched);
5401 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5402 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5403 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5404 		pr_info("Dynamic Preempt: voluntary\n");
5405 		break;
5406 
5407 	case preempt_dynamic_full:
5408 		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5409 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5410 		static_call_update(preempt_schedule, __preempt_schedule_func);
5411 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5412 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5413 		pr_info("Dynamic Preempt: full\n");
5414 		break;
5415 	}
5416 
5417 	preempt_dynamic_mode = mode;
5418 }
5419 
5420 static int __init setup_preempt_mode(char *str)
5421 {
5422 	int mode = sched_dynamic_mode(str);
5423 	if (mode < 0) {
5424 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5425 		return 1;
5426 	}
5427 
5428 	sched_dynamic_update(mode);
5429 	return 0;
5430 }
5431 __setup("preempt=", setup_preempt_mode);
5432 
5433 #ifdef CONFIG_SCHED_DEBUG
5434 
5435 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5436 				   size_t cnt, loff_t *ppos)
5437 {
5438 	char buf[16];
5439 	int mode;
5440 
5441 	if (cnt > 15)
5442 		cnt = 15;
5443 
5444 	if (copy_from_user(&buf, ubuf, cnt))
5445 		return -EFAULT;
5446 
5447 	buf[cnt] = 0;
5448 	mode = sched_dynamic_mode(strstrip(buf));
5449 	if (mode < 0)
5450 		return mode;
5451 
5452 	sched_dynamic_update(mode);
5453 
5454 	*ppos += cnt;
5455 
5456 	return cnt;
5457 }
5458 
5459 static int sched_dynamic_show(struct seq_file *m, void *v)
5460 {
5461 	static const char * preempt_modes[] = {
5462 		"none", "voluntary", "full"
5463 	};
5464 	int i;
5465 
5466 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5467 		if (preempt_dynamic_mode == i)
5468 			seq_puts(m, "(");
5469 		seq_puts(m, preempt_modes[i]);
5470 		if (preempt_dynamic_mode == i)
5471 			seq_puts(m, ")");
5472 
5473 		seq_puts(m, " ");
5474 	}
5475 
5476 	seq_puts(m, "\n");
5477 	return 0;
5478 }
5479 
5480 static int sched_dynamic_open(struct inode *inode, struct file *filp)
5481 {
5482 	return single_open(filp, sched_dynamic_show, NULL);
5483 }
5484 
5485 static const struct file_operations sched_dynamic_fops = {
5486 	.open		= sched_dynamic_open,
5487 	.write		= sched_dynamic_write,
5488 	.read		= seq_read,
5489 	.llseek		= seq_lseek,
5490 	.release	= single_release,
5491 };
5492 
5493 static __init int sched_init_debug_dynamic(void)
5494 {
5495 	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5496 	return 0;
5497 }
5498 late_initcall(sched_init_debug_dynamic);
5499 
5500 #endif /* CONFIG_SCHED_DEBUG */
5501 #endif /* CONFIG_PREEMPT_DYNAMIC */
5502 
5503 
5504 /*
5505  * This is the entry point to schedule() from kernel preemption
5506  * off of irq context.
5507  * Note, that this is called and return with irqs disabled. This will
5508  * protect us against recursive calling from irq.
5509  */
5510 asmlinkage __visible void __sched preempt_schedule_irq(void)
5511 {
5512 	enum ctx_state prev_state;
5513 
5514 	/* Catch callers which need to be fixed */
5515 	BUG_ON(preempt_count() || !irqs_disabled());
5516 
5517 	prev_state = exception_enter();
5518 
5519 	do {
5520 		preempt_disable();
5521 		local_irq_enable();
5522 		__schedule(true);
5523 		local_irq_disable();
5524 		sched_preempt_enable_no_resched();
5525 	} while (need_resched());
5526 
5527 	exception_exit(prev_state);
5528 }
5529 
5530 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5531 			  void *key)
5532 {
5533 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5534 	return try_to_wake_up(curr->private, mode, wake_flags);
5535 }
5536 EXPORT_SYMBOL(default_wake_function);
5537 
5538 #ifdef CONFIG_RT_MUTEXES
5539 
5540 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5541 {
5542 	if (pi_task)
5543 		prio = min(prio, pi_task->prio);
5544 
5545 	return prio;
5546 }
5547 
5548 static inline int rt_effective_prio(struct task_struct *p, int prio)
5549 {
5550 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5551 
5552 	return __rt_effective_prio(pi_task, prio);
5553 }
5554 
5555 /*
5556  * rt_mutex_setprio - set the current priority of a task
5557  * @p: task to boost
5558  * @pi_task: donor task
5559  *
5560  * This function changes the 'effective' priority of a task. It does
5561  * not touch ->normal_prio like __setscheduler().
5562  *
5563  * Used by the rt_mutex code to implement priority inheritance
5564  * logic. Call site only calls if the priority of the task changed.
5565  */
5566 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5567 {
5568 	int prio, oldprio, queued, running, queue_flag =
5569 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5570 	const struct sched_class *prev_class;
5571 	struct rq_flags rf;
5572 	struct rq *rq;
5573 
5574 	/* XXX used to be waiter->prio, not waiter->task->prio */
5575 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5576 
5577 	/*
5578 	 * If nothing changed; bail early.
5579 	 */
5580 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5581 		return;
5582 
5583 	rq = __task_rq_lock(p, &rf);
5584 	update_rq_clock(rq);
5585 	/*
5586 	 * Set under pi_lock && rq->lock, such that the value can be used under
5587 	 * either lock.
5588 	 *
5589 	 * Note that there is loads of tricky to make this pointer cache work
5590 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5591 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5592 	 * task is allowed to run again (and can exit). This ensures the pointer
5593 	 * points to a blocked task -- which guarantees the task is present.
5594 	 */
5595 	p->pi_top_task = pi_task;
5596 
5597 	/*
5598 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5599 	 */
5600 	if (prio == p->prio && !dl_prio(prio))
5601 		goto out_unlock;
5602 
5603 	/*
5604 	 * Idle task boosting is a nono in general. There is one
5605 	 * exception, when PREEMPT_RT and NOHZ is active:
5606 	 *
5607 	 * The idle task calls get_next_timer_interrupt() and holds
5608 	 * the timer wheel base->lock on the CPU and another CPU wants
5609 	 * to access the timer (probably to cancel it). We can safely
5610 	 * ignore the boosting request, as the idle CPU runs this code
5611 	 * with interrupts disabled and will complete the lock
5612 	 * protected section without being interrupted. So there is no
5613 	 * real need to boost.
5614 	 */
5615 	if (unlikely(p == rq->idle)) {
5616 		WARN_ON(p != rq->curr);
5617 		WARN_ON(p->pi_blocked_on);
5618 		goto out_unlock;
5619 	}
5620 
5621 	trace_sched_pi_setprio(p, pi_task);
5622 	oldprio = p->prio;
5623 
5624 	if (oldprio == prio)
5625 		queue_flag &= ~DEQUEUE_MOVE;
5626 
5627 	prev_class = p->sched_class;
5628 	queued = task_on_rq_queued(p);
5629 	running = task_current(rq, p);
5630 	if (queued)
5631 		dequeue_task(rq, p, queue_flag);
5632 	if (running)
5633 		put_prev_task(rq, p);
5634 
5635 	/*
5636 	 * Boosting condition are:
5637 	 * 1. -rt task is running and holds mutex A
5638 	 *      --> -dl task blocks on mutex A
5639 	 *
5640 	 * 2. -dl task is running and holds mutex A
5641 	 *      --> -dl task blocks on mutex A and could preempt the
5642 	 *          running task
5643 	 */
5644 	if (dl_prio(prio)) {
5645 		if (!dl_prio(p->normal_prio) ||
5646 		    (pi_task && dl_prio(pi_task->prio) &&
5647 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5648 			p->dl.pi_se = pi_task->dl.pi_se;
5649 			queue_flag |= ENQUEUE_REPLENISH;
5650 		} else {
5651 			p->dl.pi_se = &p->dl;
5652 		}
5653 		p->sched_class = &dl_sched_class;
5654 	} else if (rt_prio(prio)) {
5655 		if (dl_prio(oldprio))
5656 			p->dl.pi_se = &p->dl;
5657 		if (oldprio < prio)
5658 			queue_flag |= ENQUEUE_HEAD;
5659 		p->sched_class = &rt_sched_class;
5660 	} else {
5661 		if (dl_prio(oldprio))
5662 			p->dl.pi_se = &p->dl;
5663 		if (rt_prio(oldprio))
5664 			p->rt.timeout = 0;
5665 		p->sched_class = &fair_sched_class;
5666 	}
5667 
5668 	p->prio = prio;
5669 
5670 	if (queued)
5671 		enqueue_task(rq, p, queue_flag);
5672 	if (running)
5673 		set_next_task(rq, p);
5674 
5675 	check_class_changed(rq, p, prev_class, oldprio);
5676 out_unlock:
5677 	/* Avoid rq from going away on us: */
5678 	preempt_disable();
5679 
5680 	rq_unpin_lock(rq, &rf);
5681 	__balance_callbacks(rq);
5682 	raw_spin_unlock(&rq->lock);
5683 
5684 	preempt_enable();
5685 }
5686 #else
5687 static inline int rt_effective_prio(struct task_struct *p, int prio)
5688 {
5689 	return prio;
5690 }
5691 #endif
5692 
5693 void set_user_nice(struct task_struct *p, long nice)
5694 {
5695 	bool queued, running;
5696 	int old_prio;
5697 	struct rq_flags rf;
5698 	struct rq *rq;
5699 
5700 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5701 		return;
5702 	/*
5703 	 * We have to be careful, if called from sys_setpriority(),
5704 	 * the task might be in the middle of scheduling on another CPU.
5705 	 */
5706 	rq = task_rq_lock(p, &rf);
5707 	update_rq_clock(rq);
5708 
5709 	/*
5710 	 * The RT priorities are set via sched_setscheduler(), but we still
5711 	 * allow the 'normal' nice value to be set - but as expected
5712 	 * it won't have any effect on scheduling until the task is
5713 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5714 	 */
5715 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5716 		p->static_prio = NICE_TO_PRIO(nice);
5717 		goto out_unlock;
5718 	}
5719 	queued = task_on_rq_queued(p);
5720 	running = task_current(rq, p);
5721 	if (queued)
5722 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5723 	if (running)
5724 		put_prev_task(rq, p);
5725 
5726 	p->static_prio = NICE_TO_PRIO(nice);
5727 	set_load_weight(p, true);
5728 	old_prio = p->prio;
5729 	p->prio = effective_prio(p);
5730 
5731 	if (queued)
5732 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5733 	if (running)
5734 		set_next_task(rq, p);
5735 
5736 	/*
5737 	 * If the task increased its priority or is running and
5738 	 * lowered its priority, then reschedule its CPU:
5739 	 */
5740 	p->sched_class->prio_changed(rq, p, old_prio);
5741 
5742 out_unlock:
5743 	task_rq_unlock(rq, p, &rf);
5744 }
5745 EXPORT_SYMBOL(set_user_nice);
5746 
5747 /*
5748  * can_nice - check if a task can reduce its nice value
5749  * @p: task
5750  * @nice: nice value
5751  */
5752 int can_nice(const struct task_struct *p, const int nice)
5753 {
5754 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5755 	int nice_rlim = nice_to_rlimit(nice);
5756 
5757 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5758 		capable(CAP_SYS_NICE));
5759 }
5760 
5761 #ifdef __ARCH_WANT_SYS_NICE
5762 
5763 /*
5764  * sys_nice - change the priority of the current process.
5765  * @increment: priority increment
5766  *
5767  * sys_setpriority is a more generic, but much slower function that
5768  * does similar things.
5769  */
5770 SYSCALL_DEFINE1(nice, int, increment)
5771 {
5772 	long nice, retval;
5773 
5774 	/*
5775 	 * Setpriority might change our priority at the same moment.
5776 	 * We don't have to worry. Conceptually one call occurs first
5777 	 * and we have a single winner.
5778 	 */
5779 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5780 	nice = task_nice(current) + increment;
5781 
5782 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5783 	if (increment < 0 && !can_nice(current, nice))
5784 		return -EPERM;
5785 
5786 	retval = security_task_setnice(current, nice);
5787 	if (retval)
5788 		return retval;
5789 
5790 	set_user_nice(current, nice);
5791 	return 0;
5792 }
5793 
5794 #endif
5795 
5796 /**
5797  * task_prio - return the priority value of a given task.
5798  * @p: the task in question.
5799  *
5800  * Return: The priority value as seen by users in /proc.
5801  *
5802  * sched policy         return value   kernel prio    user prio/nice
5803  *
5804  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5805  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5806  * deadline                     -101             -1           0
5807  */
5808 int task_prio(const struct task_struct *p)
5809 {
5810 	return p->prio - MAX_RT_PRIO;
5811 }
5812 
5813 /**
5814  * idle_cpu - is a given CPU idle currently?
5815  * @cpu: the processor in question.
5816  *
5817  * Return: 1 if the CPU is currently idle. 0 otherwise.
5818  */
5819 int idle_cpu(int cpu)
5820 {
5821 	struct rq *rq = cpu_rq(cpu);
5822 
5823 	if (rq->curr != rq->idle)
5824 		return 0;
5825 
5826 	if (rq->nr_running)
5827 		return 0;
5828 
5829 #ifdef CONFIG_SMP
5830 	if (rq->ttwu_pending)
5831 		return 0;
5832 #endif
5833 
5834 	return 1;
5835 }
5836 
5837 /**
5838  * available_idle_cpu - is a given CPU idle for enqueuing work.
5839  * @cpu: the CPU in question.
5840  *
5841  * Return: 1 if the CPU is currently idle. 0 otherwise.
5842  */
5843 int available_idle_cpu(int cpu)
5844 {
5845 	if (!idle_cpu(cpu))
5846 		return 0;
5847 
5848 	if (vcpu_is_preempted(cpu))
5849 		return 0;
5850 
5851 	return 1;
5852 }
5853 
5854 /**
5855  * idle_task - return the idle task for a given CPU.
5856  * @cpu: the processor in question.
5857  *
5858  * Return: The idle task for the CPU @cpu.
5859  */
5860 struct task_struct *idle_task(int cpu)
5861 {
5862 	return cpu_rq(cpu)->idle;
5863 }
5864 
5865 #ifdef CONFIG_SMP
5866 /*
5867  * This function computes an effective utilization for the given CPU, to be
5868  * used for frequency selection given the linear relation: f = u * f_max.
5869  *
5870  * The scheduler tracks the following metrics:
5871  *
5872  *   cpu_util_{cfs,rt,dl,irq}()
5873  *   cpu_bw_dl()
5874  *
5875  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5876  * synchronized windows and are thus directly comparable.
5877  *
5878  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5879  * which excludes things like IRQ and steal-time. These latter are then accrued
5880  * in the irq utilization.
5881  *
5882  * The DL bandwidth number otoh is not a measured metric but a value computed
5883  * based on the task model parameters and gives the minimal utilization
5884  * required to meet deadlines.
5885  */
5886 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5887 				 unsigned long max, enum cpu_util_type type,
5888 				 struct task_struct *p)
5889 {
5890 	unsigned long dl_util, util, irq;
5891 	struct rq *rq = cpu_rq(cpu);
5892 
5893 	if (!uclamp_is_used() &&
5894 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5895 		return max;
5896 	}
5897 
5898 	/*
5899 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5900 	 * because of inaccuracies in how we track these -- see
5901 	 * update_irq_load_avg().
5902 	 */
5903 	irq = cpu_util_irq(rq);
5904 	if (unlikely(irq >= max))
5905 		return max;
5906 
5907 	/*
5908 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5909 	 * CFS tasks and we use the same metric to track the effective
5910 	 * utilization (PELT windows are synchronized) we can directly add them
5911 	 * to obtain the CPU's actual utilization.
5912 	 *
5913 	 * CFS and RT utilization can be boosted or capped, depending on
5914 	 * utilization clamp constraints requested by currently RUNNABLE
5915 	 * tasks.
5916 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5917 	 * frequency will be gracefully reduced with the utilization decay.
5918 	 */
5919 	util = util_cfs + cpu_util_rt(rq);
5920 	if (type == FREQUENCY_UTIL)
5921 		util = uclamp_rq_util_with(rq, util, p);
5922 
5923 	dl_util = cpu_util_dl(rq);
5924 
5925 	/*
5926 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5927 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5928 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5929 	 * that we select f_max when there is no idle time.
5930 	 *
5931 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5932 	 * saturation when we should -- something for later.
5933 	 */
5934 	if (util + dl_util >= max)
5935 		return max;
5936 
5937 	/*
5938 	 * OTOH, for energy computation we need the estimated running time, so
5939 	 * include util_dl and ignore dl_bw.
5940 	 */
5941 	if (type == ENERGY_UTIL)
5942 		util += dl_util;
5943 
5944 	/*
5945 	 * There is still idle time; further improve the number by using the
5946 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5947 	 * need to scale the task numbers:
5948 	 *
5949 	 *              max - irq
5950 	 *   U' = irq + --------- * U
5951 	 *                 max
5952 	 */
5953 	util = scale_irq_capacity(util, irq, max);
5954 	util += irq;
5955 
5956 	/*
5957 	 * Bandwidth required by DEADLINE must always be granted while, for
5958 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5959 	 * to gracefully reduce the frequency when no tasks show up for longer
5960 	 * periods of time.
5961 	 *
5962 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5963 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5964 	 * an interface. So, we only do the latter for now.
5965 	 */
5966 	if (type == FREQUENCY_UTIL)
5967 		util += cpu_bw_dl(rq);
5968 
5969 	return min(max, util);
5970 }
5971 
5972 unsigned long sched_cpu_util(int cpu, unsigned long max)
5973 {
5974 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5975 				  ENERGY_UTIL, NULL);
5976 }
5977 #endif /* CONFIG_SMP */
5978 
5979 /**
5980  * find_process_by_pid - find a process with a matching PID value.
5981  * @pid: the pid in question.
5982  *
5983  * The task of @pid, if found. %NULL otherwise.
5984  */
5985 static struct task_struct *find_process_by_pid(pid_t pid)
5986 {
5987 	return pid ? find_task_by_vpid(pid) : current;
5988 }
5989 
5990 /*
5991  * sched_setparam() passes in -1 for its policy, to let the functions
5992  * it calls know not to change it.
5993  */
5994 #define SETPARAM_POLICY	-1
5995 
5996 static void __setscheduler_params(struct task_struct *p,
5997 		const struct sched_attr *attr)
5998 {
5999 	int policy = attr->sched_policy;
6000 
6001 	if (policy == SETPARAM_POLICY)
6002 		policy = p->policy;
6003 
6004 	p->policy = policy;
6005 
6006 	if (dl_policy(policy))
6007 		__setparam_dl(p, attr);
6008 	else if (fair_policy(policy))
6009 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6010 
6011 	/*
6012 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6013 	 * !rt_policy. Always setting this ensures that things like
6014 	 * getparam()/getattr() don't report silly values for !rt tasks.
6015 	 */
6016 	p->rt_priority = attr->sched_priority;
6017 	p->normal_prio = normal_prio(p);
6018 	set_load_weight(p, true);
6019 }
6020 
6021 /* Actually do priority change: must hold pi & rq lock. */
6022 static void __setscheduler(struct rq *rq, struct task_struct *p,
6023 			   const struct sched_attr *attr, bool keep_boost)
6024 {
6025 	/*
6026 	 * If params can't change scheduling class changes aren't allowed
6027 	 * either.
6028 	 */
6029 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6030 		return;
6031 
6032 	__setscheduler_params(p, attr);
6033 
6034 	/*
6035 	 * Keep a potential priority boosting if called from
6036 	 * sched_setscheduler().
6037 	 */
6038 	p->prio = normal_prio(p);
6039 	if (keep_boost)
6040 		p->prio = rt_effective_prio(p, p->prio);
6041 
6042 	if (dl_prio(p->prio))
6043 		p->sched_class = &dl_sched_class;
6044 	else if (rt_prio(p->prio))
6045 		p->sched_class = &rt_sched_class;
6046 	else
6047 		p->sched_class = &fair_sched_class;
6048 }
6049 
6050 /*
6051  * Check the target process has a UID that matches the current process's:
6052  */
6053 static bool check_same_owner(struct task_struct *p)
6054 {
6055 	const struct cred *cred = current_cred(), *pcred;
6056 	bool match;
6057 
6058 	rcu_read_lock();
6059 	pcred = __task_cred(p);
6060 	match = (uid_eq(cred->euid, pcred->euid) ||
6061 		 uid_eq(cred->euid, pcred->uid));
6062 	rcu_read_unlock();
6063 	return match;
6064 }
6065 
6066 static int __sched_setscheduler(struct task_struct *p,
6067 				const struct sched_attr *attr,
6068 				bool user, bool pi)
6069 {
6070 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6071 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6072 	int retval, oldprio, oldpolicy = -1, queued, running;
6073 	int new_effective_prio, policy = attr->sched_policy;
6074 	const struct sched_class *prev_class;
6075 	struct callback_head *head;
6076 	struct rq_flags rf;
6077 	int reset_on_fork;
6078 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6079 	struct rq *rq;
6080 
6081 	/* The pi code expects interrupts enabled */
6082 	BUG_ON(pi && in_interrupt());
6083 recheck:
6084 	/* Double check policy once rq lock held: */
6085 	if (policy < 0) {
6086 		reset_on_fork = p->sched_reset_on_fork;
6087 		policy = oldpolicy = p->policy;
6088 	} else {
6089 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6090 
6091 		if (!valid_policy(policy))
6092 			return -EINVAL;
6093 	}
6094 
6095 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6096 		return -EINVAL;
6097 
6098 	/*
6099 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6100 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6101 	 * SCHED_BATCH and SCHED_IDLE is 0.
6102 	 */
6103 	if (attr->sched_priority > MAX_RT_PRIO-1)
6104 		return -EINVAL;
6105 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6106 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6107 		return -EINVAL;
6108 
6109 	/*
6110 	 * Allow unprivileged RT tasks to decrease priority:
6111 	 */
6112 	if (user && !capable(CAP_SYS_NICE)) {
6113 		if (fair_policy(policy)) {
6114 			if (attr->sched_nice < task_nice(p) &&
6115 			    !can_nice(p, attr->sched_nice))
6116 				return -EPERM;
6117 		}
6118 
6119 		if (rt_policy(policy)) {
6120 			unsigned long rlim_rtprio =
6121 					task_rlimit(p, RLIMIT_RTPRIO);
6122 
6123 			/* Can't set/change the rt policy: */
6124 			if (policy != p->policy && !rlim_rtprio)
6125 				return -EPERM;
6126 
6127 			/* Can't increase priority: */
6128 			if (attr->sched_priority > p->rt_priority &&
6129 			    attr->sched_priority > rlim_rtprio)
6130 				return -EPERM;
6131 		}
6132 
6133 		 /*
6134 		  * Can't set/change SCHED_DEADLINE policy at all for now
6135 		  * (safest behavior); in the future we would like to allow
6136 		  * unprivileged DL tasks to increase their relative deadline
6137 		  * or reduce their runtime (both ways reducing utilization)
6138 		  */
6139 		if (dl_policy(policy))
6140 			return -EPERM;
6141 
6142 		/*
6143 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6144 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6145 		 */
6146 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6147 			if (!can_nice(p, task_nice(p)))
6148 				return -EPERM;
6149 		}
6150 
6151 		/* Can't change other user's priorities: */
6152 		if (!check_same_owner(p))
6153 			return -EPERM;
6154 
6155 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6156 		if (p->sched_reset_on_fork && !reset_on_fork)
6157 			return -EPERM;
6158 	}
6159 
6160 	if (user) {
6161 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6162 			return -EINVAL;
6163 
6164 		retval = security_task_setscheduler(p);
6165 		if (retval)
6166 			return retval;
6167 	}
6168 
6169 	/* Update task specific "requested" clamps */
6170 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6171 		retval = uclamp_validate(p, attr);
6172 		if (retval)
6173 			return retval;
6174 	}
6175 
6176 	if (pi)
6177 		cpuset_read_lock();
6178 
6179 	/*
6180 	 * Make sure no PI-waiters arrive (or leave) while we are
6181 	 * changing the priority of the task:
6182 	 *
6183 	 * To be able to change p->policy safely, the appropriate
6184 	 * runqueue lock must be held.
6185 	 */
6186 	rq = task_rq_lock(p, &rf);
6187 	update_rq_clock(rq);
6188 
6189 	/*
6190 	 * Changing the policy of the stop threads its a very bad idea:
6191 	 */
6192 	if (p == rq->stop) {
6193 		retval = -EINVAL;
6194 		goto unlock;
6195 	}
6196 
6197 	/*
6198 	 * If not changing anything there's no need to proceed further,
6199 	 * but store a possible modification of reset_on_fork.
6200 	 */
6201 	if (unlikely(policy == p->policy)) {
6202 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6203 			goto change;
6204 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6205 			goto change;
6206 		if (dl_policy(policy) && dl_param_changed(p, attr))
6207 			goto change;
6208 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6209 			goto change;
6210 
6211 		p->sched_reset_on_fork = reset_on_fork;
6212 		retval = 0;
6213 		goto unlock;
6214 	}
6215 change:
6216 
6217 	if (user) {
6218 #ifdef CONFIG_RT_GROUP_SCHED
6219 		/*
6220 		 * Do not allow realtime tasks into groups that have no runtime
6221 		 * assigned.
6222 		 */
6223 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6224 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6225 				!task_group_is_autogroup(task_group(p))) {
6226 			retval = -EPERM;
6227 			goto unlock;
6228 		}
6229 #endif
6230 #ifdef CONFIG_SMP
6231 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6232 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6233 			cpumask_t *span = rq->rd->span;
6234 
6235 			/*
6236 			 * Don't allow tasks with an affinity mask smaller than
6237 			 * the entire root_domain to become SCHED_DEADLINE. We
6238 			 * will also fail if there's no bandwidth available.
6239 			 */
6240 			if (!cpumask_subset(span, p->cpus_ptr) ||
6241 			    rq->rd->dl_bw.bw == 0) {
6242 				retval = -EPERM;
6243 				goto unlock;
6244 			}
6245 		}
6246 #endif
6247 	}
6248 
6249 	/* Re-check policy now with rq lock held: */
6250 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6251 		policy = oldpolicy = -1;
6252 		task_rq_unlock(rq, p, &rf);
6253 		if (pi)
6254 			cpuset_read_unlock();
6255 		goto recheck;
6256 	}
6257 
6258 	/*
6259 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6260 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6261 	 * is available.
6262 	 */
6263 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6264 		retval = -EBUSY;
6265 		goto unlock;
6266 	}
6267 
6268 	p->sched_reset_on_fork = reset_on_fork;
6269 	oldprio = p->prio;
6270 
6271 	if (pi) {
6272 		/*
6273 		 * Take priority boosted tasks into account. If the new
6274 		 * effective priority is unchanged, we just store the new
6275 		 * normal parameters and do not touch the scheduler class and
6276 		 * the runqueue. This will be done when the task deboost
6277 		 * itself.
6278 		 */
6279 		new_effective_prio = rt_effective_prio(p, newprio);
6280 		if (new_effective_prio == oldprio)
6281 			queue_flags &= ~DEQUEUE_MOVE;
6282 	}
6283 
6284 	queued = task_on_rq_queued(p);
6285 	running = task_current(rq, p);
6286 	if (queued)
6287 		dequeue_task(rq, p, queue_flags);
6288 	if (running)
6289 		put_prev_task(rq, p);
6290 
6291 	prev_class = p->sched_class;
6292 
6293 	__setscheduler(rq, p, attr, pi);
6294 	__setscheduler_uclamp(p, attr);
6295 
6296 	if (queued) {
6297 		/*
6298 		 * We enqueue to tail when the priority of a task is
6299 		 * increased (user space view).
6300 		 */
6301 		if (oldprio < p->prio)
6302 			queue_flags |= ENQUEUE_HEAD;
6303 
6304 		enqueue_task(rq, p, queue_flags);
6305 	}
6306 	if (running)
6307 		set_next_task(rq, p);
6308 
6309 	check_class_changed(rq, p, prev_class, oldprio);
6310 
6311 	/* Avoid rq from going away on us: */
6312 	preempt_disable();
6313 	head = splice_balance_callbacks(rq);
6314 	task_rq_unlock(rq, p, &rf);
6315 
6316 	if (pi) {
6317 		cpuset_read_unlock();
6318 		rt_mutex_adjust_pi(p);
6319 	}
6320 
6321 	/* Run balance callbacks after we've adjusted the PI chain: */
6322 	balance_callbacks(rq, head);
6323 	preempt_enable();
6324 
6325 	return 0;
6326 
6327 unlock:
6328 	task_rq_unlock(rq, p, &rf);
6329 	if (pi)
6330 		cpuset_read_unlock();
6331 	return retval;
6332 }
6333 
6334 static int _sched_setscheduler(struct task_struct *p, int policy,
6335 			       const struct sched_param *param, bool check)
6336 {
6337 	struct sched_attr attr = {
6338 		.sched_policy   = policy,
6339 		.sched_priority = param->sched_priority,
6340 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6341 	};
6342 
6343 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6344 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6345 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6346 		policy &= ~SCHED_RESET_ON_FORK;
6347 		attr.sched_policy = policy;
6348 	}
6349 
6350 	return __sched_setscheduler(p, &attr, check, true);
6351 }
6352 /**
6353  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6354  * @p: the task in question.
6355  * @policy: new policy.
6356  * @param: structure containing the new RT priority.
6357  *
6358  * Use sched_set_fifo(), read its comment.
6359  *
6360  * Return: 0 on success. An error code otherwise.
6361  *
6362  * NOTE that the task may be already dead.
6363  */
6364 int sched_setscheduler(struct task_struct *p, int policy,
6365 		       const struct sched_param *param)
6366 {
6367 	return _sched_setscheduler(p, policy, param, true);
6368 }
6369 
6370 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6371 {
6372 	return __sched_setscheduler(p, attr, true, true);
6373 }
6374 
6375 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6376 {
6377 	return __sched_setscheduler(p, attr, false, true);
6378 }
6379 
6380 /**
6381  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6382  * @p: the task in question.
6383  * @policy: new policy.
6384  * @param: structure containing the new RT priority.
6385  *
6386  * Just like sched_setscheduler, only don't bother checking if the
6387  * current context has permission.  For example, this is needed in
6388  * stop_machine(): we create temporary high priority worker threads,
6389  * but our caller might not have that capability.
6390  *
6391  * Return: 0 on success. An error code otherwise.
6392  */
6393 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6394 			       const struct sched_param *param)
6395 {
6396 	return _sched_setscheduler(p, policy, param, false);
6397 }
6398 
6399 /*
6400  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6401  * incapable of resource management, which is the one thing an OS really should
6402  * be doing.
6403  *
6404  * This is of course the reason it is limited to privileged users only.
6405  *
6406  * Worse still; it is fundamentally impossible to compose static priority
6407  * workloads. You cannot take two correctly working static prio workloads
6408  * and smash them together and still expect them to work.
6409  *
6410  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6411  *
6412  *   MAX_RT_PRIO / 2
6413  *
6414  * The administrator _MUST_ configure the system, the kernel simply doesn't
6415  * know enough information to make a sensible choice.
6416  */
6417 void sched_set_fifo(struct task_struct *p)
6418 {
6419 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6420 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6421 }
6422 EXPORT_SYMBOL_GPL(sched_set_fifo);
6423 
6424 /*
6425  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6426  */
6427 void sched_set_fifo_low(struct task_struct *p)
6428 {
6429 	struct sched_param sp = { .sched_priority = 1 };
6430 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6431 }
6432 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6433 
6434 void sched_set_normal(struct task_struct *p, int nice)
6435 {
6436 	struct sched_attr attr = {
6437 		.sched_policy = SCHED_NORMAL,
6438 		.sched_nice = nice,
6439 	};
6440 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6441 }
6442 EXPORT_SYMBOL_GPL(sched_set_normal);
6443 
6444 static int
6445 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6446 {
6447 	struct sched_param lparam;
6448 	struct task_struct *p;
6449 	int retval;
6450 
6451 	if (!param || pid < 0)
6452 		return -EINVAL;
6453 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6454 		return -EFAULT;
6455 
6456 	rcu_read_lock();
6457 	retval = -ESRCH;
6458 	p = find_process_by_pid(pid);
6459 	if (likely(p))
6460 		get_task_struct(p);
6461 	rcu_read_unlock();
6462 
6463 	if (likely(p)) {
6464 		retval = sched_setscheduler(p, policy, &lparam);
6465 		put_task_struct(p);
6466 	}
6467 
6468 	return retval;
6469 }
6470 
6471 /*
6472  * Mimics kernel/events/core.c perf_copy_attr().
6473  */
6474 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6475 {
6476 	u32 size;
6477 	int ret;
6478 
6479 	/* Zero the full structure, so that a short copy will be nice: */
6480 	memset(attr, 0, sizeof(*attr));
6481 
6482 	ret = get_user(size, &uattr->size);
6483 	if (ret)
6484 		return ret;
6485 
6486 	/* ABI compatibility quirk: */
6487 	if (!size)
6488 		size = SCHED_ATTR_SIZE_VER0;
6489 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6490 		goto err_size;
6491 
6492 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6493 	if (ret) {
6494 		if (ret == -E2BIG)
6495 			goto err_size;
6496 		return ret;
6497 	}
6498 
6499 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6500 	    size < SCHED_ATTR_SIZE_VER1)
6501 		return -EINVAL;
6502 
6503 	/*
6504 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6505 	 * to be strict and return an error on out-of-bounds values?
6506 	 */
6507 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6508 
6509 	return 0;
6510 
6511 err_size:
6512 	put_user(sizeof(*attr), &uattr->size);
6513 	return -E2BIG;
6514 }
6515 
6516 /**
6517  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6518  * @pid: the pid in question.
6519  * @policy: new policy.
6520  * @param: structure containing the new RT priority.
6521  *
6522  * Return: 0 on success. An error code otherwise.
6523  */
6524 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6525 {
6526 	if (policy < 0)
6527 		return -EINVAL;
6528 
6529 	return do_sched_setscheduler(pid, policy, param);
6530 }
6531 
6532 /**
6533  * sys_sched_setparam - set/change the RT priority of a thread
6534  * @pid: the pid in question.
6535  * @param: structure containing the new RT priority.
6536  *
6537  * Return: 0 on success. An error code otherwise.
6538  */
6539 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6540 {
6541 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6542 }
6543 
6544 /**
6545  * sys_sched_setattr - same as above, but with extended sched_attr
6546  * @pid: the pid in question.
6547  * @uattr: structure containing the extended parameters.
6548  * @flags: for future extension.
6549  */
6550 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6551 			       unsigned int, flags)
6552 {
6553 	struct sched_attr attr;
6554 	struct task_struct *p;
6555 	int retval;
6556 
6557 	if (!uattr || pid < 0 || flags)
6558 		return -EINVAL;
6559 
6560 	retval = sched_copy_attr(uattr, &attr);
6561 	if (retval)
6562 		return retval;
6563 
6564 	if ((int)attr.sched_policy < 0)
6565 		return -EINVAL;
6566 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6567 		attr.sched_policy = SETPARAM_POLICY;
6568 
6569 	rcu_read_lock();
6570 	retval = -ESRCH;
6571 	p = find_process_by_pid(pid);
6572 	if (likely(p))
6573 		get_task_struct(p);
6574 	rcu_read_unlock();
6575 
6576 	if (likely(p)) {
6577 		retval = sched_setattr(p, &attr);
6578 		put_task_struct(p);
6579 	}
6580 
6581 	return retval;
6582 }
6583 
6584 /**
6585  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6586  * @pid: the pid in question.
6587  *
6588  * Return: On success, the policy of the thread. Otherwise, a negative error
6589  * code.
6590  */
6591 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6592 {
6593 	struct task_struct *p;
6594 	int retval;
6595 
6596 	if (pid < 0)
6597 		return -EINVAL;
6598 
6599 	retval = -ESRCH;
6600 	rcu_read_lock();
6601 	p = find_process_by_pid(pid);
6602 	if (p) {
6603 		retval = security_task_getscheduler(p);
6604 		if (!retval)
6605 			retval = p->policy
6606 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6607 	}
6608 	rcu_read_unlock();
6609 	return retval;
6610 }
6611 
6612 /**
6613  * sys_sched_getparam - get the RT priority of a thread
6614  * @pid: the pid in question.
6615  * @param: structure containing the RT priority.
6616  *
6617  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6618  * code.
6619  */
6620 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6621 {
6622 	struct sched_param lp = { .sched_priority = 0 };
6623 	struct task_struct *p;
6624 	int retval;
6625 
6626 	if (!param || pid < 0)
6627 		return -EINVAL;
6628 
6629 	rcu_read_lock();
6630 	p = find_process_by_pid(pid);
6631 	retval = -ESRCH;
6632 	if (!p)
6633 		goto out_unlock;
6634 
6635 	retval = security_task_getscheduler(p);
6636 	if (retval)
6637 		goto out_unlock;
6638 
6639 	if (task_has_rt_policy(p))
6640 		lp.sched_priority = p->rt_priority;
6641 	rcu_read_unlock();
6642 
6643 	/*
6644 	 * This one might sleep, we cannot do it with a spinlock held ...
6645 	 */
6646 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6647 
6648 	return retval;
6649 
6650 out_unlock:
6651 	rcu_read_unlock();
6652 	return retval;
6653 }
6654 
6655 /*
6656  * Copy the kernel size attribute structure (which might be larger
6657  * than what user-space knows about) to user-space.
6658  *
6659  * Note that all cases are valid: user-space buffer can be larger or
6660  * smaller than the kernel-space buffer. The usual case is that both
6661  * have the same size.
6662  */
6663 static int
6664 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6665 			struct sched_attr *kattr,
6666 			unsigned int usize)
6667 {
6668 	unsigned int ksize = sizeof(*kattr);
6669 
6670 	if (!access_ok(uattr, usize))
6671 		return -EFAULT;
6672 
6673 	/*
6674 	 * sched_getattr() ABI forwards and backwards compatibility:
6675 	 *
6676 	 * If usize == ksize then we just copy everything to user-space and all is good.
6677 	 *
6678 	 * If usize < ksize then we only copy as much as user-space has space for,
6679 	 * this keeps ABI compatibility as well. We skip the rest.
6680 	 *
6681 	 * If usize > ksize then user-space is using a newer version of the ABI,
6682 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6683 	 * detect the kernel's knowledge of attributes from the attr->size value
6684 	 * which is set to ksize in this case.
6685 	 */
6686 	kattr->size = min(usize, ksize);
6687 
6688 	if (copy_to_user(uattr, kattr, kattr->size))
6689 		return -EFAULT;
6690 
6691 	return 0;
6692 }
6693 
6694 /**
6695  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6696  * @pid: the pid in question.
6697  * @uattr: structure containing the extended parameters.
6698  * @usize: sizeof(attr) for fwd/bwd comp.
6699  * @flags: for future extension.
6700  */
6701 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6702 		unsigned int, usize, unsigned int, flags)
6703 {
6704 	struct sched_attr kattr = { };
6705 	struct task_struct *p;
6706 	int retval;
6707 
6708 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6709 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6710 		return -EINVAL;
6711 
6712 	rcu_read_lock();
6713 	p = find_process_by_pid(pid);
6714 	retval = -ESRCH;
6715 	if (!p)
6716 		goto out_unlock;
6717 
6718 	retval = security_task_getscheduler(p);
6719 	if (retval)
6720 		goto out_unlock;
6721 
6722 	kattr.sched_policy = p->policy;
6723 	if (p->sched_reset_on_fork)
6724 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6725 	if (task_has_dl_policy(p))
6726 		__getparam_dl(p, &kattr);
6727 	else if (task_has_rt_policy(p))
6728 		kattr.sched_priority = p->rt_priority;
6729 	else
6730 		kattr.sched_nice = task_nice(p);
6731 
6732 #ifdef CONFIG_UCLAMP_TASK
6733 	/*
6734 	 * This could race with another potential updater, but this is fine
6735 	 * because it'll correctly read the old or the new value. We don't need
6736 	 * to guarantee who wins the race as long as it doesn't return garbage.
6737 	 */
6738 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6739 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6740 #endif
6741 
6742 	rcu_read_unlock();
6743 
6744 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6745 
6746 out_unlock:
6747 	rcu_read_unlock();
6748 	return retval;
6749 }
6750 
6751 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6752 {
6753 	cpumask_var_t cpus_allowed, new_mask;
6754 	struct task_struct *p;
6755 	int retval;
6756 
6757 	rcu_read_lock();
6758 
6759 	p = find_process_by_pid(pid);
6760 	if (!p) {
6761 		rcu_read_unlock();
6762 		return -ESRCH;
6763 	}
6764 
6765 	/* Prevent p going away */
6766 	get_task_struct(p);
6767 	rcu_read_unlock();
6768 
6769 	if (p->flags & PF_NO_SETAFFINITY) {
6770 		retval = -EINVAL;
6771 		goto out_put_task;
6772 	}
6773 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6774 		retval = -ENOMEM;
6775 		goto out_put_task;
6776 	}
6777 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6778 		retval = -ENOMEM;
6779 		goto out_free_cpus_allowed;
6780 	}
6781 	retval = -EPERM;
6782 	if (!check_same_owner(p)) {
6783 		rcu_read_lock();
6784 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6785 			rcu_read_unlock();
6786 			goto out_free_new_mask;
6787 		}
6788 		rcu_read_unlock();
6789 	}
6790 
6791 	retval = security_task_setscheduler(p);
6792 	if (retval)
6793 		goto out_free_new_mask;
6794 
6795 
6796 	cpuset_cpus_allowed(p, cpus_allowed);
6797 	cpumask_and(new_mask, in_mask, cpus_allowed);
6798 
6799 	/*
6800 	 * Since bandwidth control happens on root_domain basis,
6801 	 * if admission test is enabled, we only admit -deadline
6802 	 * tasks allowed to run on all the CPUs in the task's
6803 	 * root_domain.
6804 	 */
6805 #ifdef CONFIG_SMP
6806 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6807 		rcu_read_lock();
6808 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6809 			retval = -EBUSY;
6810 			rcu_read_unlock();
6811 			goto out_free_new_mask;
6812 		}
6813 		rcu_read_unlock();
6814 	}
6815 #endif
6816 again:
6817 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6818 
6819 	if (!retval) {
6820 		cpuset_cpus_allowed(p, cpus_allowed);
6821 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6822 			/*
6823 			 * We must have raced with a concurrent cpuset
6824 			 * update. Just reset the cpus_allowed to the
6825 			 * cpuset's cpus_allowed
6826 			 */
6827 			cpumask_copy(new_mask, cpus_allowed);
6828 			goto again;
6829 		}
6830 	}
6831 out_free_new_mask:
6832 	free_cpumask_var(new_mask);
6833 out_free_cpus_allowed:
6834 	free_cpumask_var(cpus_allowed);
6835 out_put_task:
6836 	put_task_struct(p);
6837 	return retval;
6838 }
6839 
6840 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6841 			     struct cpumask *new_mask)
6842 {
6843 	if (len < cpumask_size())
6844 		cpumask_clear(new_mask);
6845 	else if (len > cpumask_size())
6846 		len = cpumask_size();
6847 
6848 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6849 }
6850 
6851 /**
6852  * sys_sched_setaffinity - set the CPU affinity of a process
6853  * @pid: pid of the process
6854  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6855  * @user_mask_ptr: user-space pointer to the new CPU mask
6856  *
6857  * Return: 0 on success. An error code otherwise.
6858  */
6859 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6860 		unsigned long __user *, user_mask_ptr)
6861 {
6862 	cpumask_var_t new_mask;
6863 	int retval;
6864 
6865 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6866 		return -ENOMEM;
6867 
6868 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6869 	if (retval == 0)
6870 		retval = sched_setaffinity(pid, new_mask);
6871 	free_cpumask_var(new_mask);
6872 	return retval;
6873 }
6874 
6875 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6876 {
6877 	struct task_struct *p;
6878 	unsigned long flags;
6879 	int retval;
6880 
6881 	rcu_read_lock();
6882 
6883 	retval = -ESRCH;
6884 	p = find_process_by_pid(pid);
6885 	if (!p)
6886 		goto out_unlock;
6887 
6888 	retval = security_task_getscheduler(p);
6889 	if (retval)
6890 		goto out_unlock;
6891 
6892 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6893 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6894 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6895 
6896 out_unlock:
6897 	rcu_read_unlock();
6898 
6899 	return retval;
6900 }
6901 
6902 /**
6903  * sys_sched_getaffinity - get the CPU affinity of a process
6904  * @pid: pid of the process
6905  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6906  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6907  *
6908  * Return: size of CPU mask copied to user_mask_ptr on success. An
6909  * error code otherwise.
6910  */
6911 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6912 		unsigned long __user *, user_mask_ptr)
6913 {
6914 	int ret;
6915 	cpumask_var_t mask;
6916 
6917 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6918 		return -EINVAL;
6919 	if (len & (sizeof(unsigned long)-1))
6920 		return -EINVAL;
6921 
6922 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6923 		return -ENOMEM;
6924 
6925 	ret = sched_getaffinity(pid, mask);
6926 	if (ret == 0) {
6927 		unsigned int retlen = min(len, cpumask_size());
6928 
6929 		if (copy_to_user(user_mask_ptr, mask, retlen))
6930 			ret = -EFAULT;
6931 		else
6932 			ret = retlen;
6933 	}
6934 	free_cpumask_var(mask);
6935 
6936 	return ret;
6937 }
6938 
6939 static void do_sched_yield(void)
6940 {
6941 	struct rq_flags rf;
6942 	struct rq *rq;
6943 
6944 	rq = this_rq_lock_irq(&rf);
6945 
6946 	schedstat_inc(rq->yld_count);
6947 	current->sched_class->yield_task(rq);
6948 
6949 	preempt_disable();
6950 	rq_unlock_irq(rq, &rf);
6951 	sched_preempt_enable_no_resched();
6952 
6953 	schedule();
6954 }
6955 
6956 /**
6957  * sys_sched_yield - yield the current processor to other threads.
6958  *
6959  * This function yields the current CPU to other tasks. If there are no
6960  * other threads running on this CPU then this function will return.
6961  *
6962  * Return: 0.
6963  */
6964 SYSCALL_DEFINE0(sched_yield)
6965 {
6966 	do_sched_yield();
6967 	return 0;
6968 }
6969 
6970 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6971 int __sched __cond_resched(void)
6972 {
6973 	if (should_resched(0)) {
6974 		preempt_schedule_common();
6975 		return 1;
6976 	}
6977 #ifndef CONFIG_PREEMPT_RCU
6978 	rcu_all_qs();
6979 #endif
6980 	return 0;
6981 }
6982 EXPORT_SYMBOL(__cond_resched);
6983 #endif
6984 
6985 #ifdef CONFIG_PREEMPT_DYNAMIC
6986 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
6987 EXPORT_STATIC_CALL_TRAMP(cond_resched);
6988 
6989 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
6990 EXPORT_STATIC_CALL_TRAMP(might_resched);
6991 #endif
6992 
6993 /*
6994  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6995  * call schedule, and on return reacquire the lock.
6996  *
6997  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6998  * operations here to prevent schedule() from being called twice (once via
6999  * spin_unlock(), once by hand).
7000  */
7001 int __cond_resched_lock(spinlock_t *lock)
7002 {
7003 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7004 	int ret = 0;
7005 
7006 	lockdep_assert_held(lock);
7007 
7008 	if (spin_needbreak(lock) || resched) {
7009 		spin_unlock(lock);
7010 		if (resched)
7011 			preempt_schedule_common();
7012 		else
7013 			cpu_relax();
7014 		ret = 1;
7015 		spin_lock(lock);
7016 	}
7017 	return ret;
7018 }
7019 EXPORT_SYMBOL(__cond_resched_lock);
7020 
7021 int __cond_resched_rwlock_read(rwlock_t *lock)
7022 {
7023 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7024 	int ret = 0;
7025 
7026 	lockdep_assert_held_read(lock);
7027 
7028 	if (rwlock_needbreak(lock) || resched) {
7029 		read_unlock(lock);
7030 		if (resched)
7031 			preempt_schedule_common();
7032 		else
7033 			cpu_relax();
7034 		ret = 1;
7035 		read_lock(lock);
7036 	}
7037 	return ret;
7038 }
7039 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7040 
7041 int __cond_resched_rwlock_write(rwlock_t *lock)
7042 {
7043 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7044 	int ret = 0;
7045 
7046 	lockdep_assert_held_write(lock);
7047 
7048 	if (rwlock_needbreak(lock) || resched) {
7049 		write_unlock(lock);
7050 		if (resched)
7051 			preempt_schedule_common();
7052 		else
7053 			cpu_relax();
7054 		ret = 1;
7055 		write_lock(lock);
7056 	}
7057 	return ret;
7058 }
7059 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7060 
7061 /**
7062  * yield - yield the current processor to other threads.
7063  *
7064  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7065  *
7066  * The scheduler is at all times free to pick the calling task as the most
7067  * eligible task to run, if removing the yield() call from your code breaks
7068  * it, it's already broken.
7069  *
7070  * Typical broken usage is:
7071  *
7072  * while (!event)
7073  *	yield();
7074  *
7075  * where one assumes that yield() will let 'the other' process run that will
7076  * make event true. If the current task is a SCHED_FIFO task that will never
7077  * happen. Never use yield() as a progress guarantee!!
7078  *
7079  * If you want to use yield() to wait for something, use wait_event().
7080  * If you want to use yield() to be 'nice' for others, use cond_resched().
7081  * If you still want to use yield(), do not!
7082  */
7083 void __sched yield(void)
7084 {
7085 	set_current_state(TASK_RUNNING);
7086 	do_sched_yield();
7087 }
7088 EXPORT_SYMBOL(yield);
7089 
7090 /**
7091  * yield_to - yield the current processor to another thread in
7092  * your thread group, or accelerate that thread toward the
7093  * processor it's on.
7094  * @p: target task
7095  * @preempt: whether task preemption is allowed or not
7096  *
7097  * It's the caller's job to ensure that the target task struct
7098  * can't go away on us before we can do any checks.
7099  *
7100  * Return:
7101  *	true (>0) if we indeed boosted the target task.
7102  *	false (0) if we failed to boost the target.
7103  *	-ESRCH if there's no task to yield to.
7104  */
7105 int __sched yield_to(struct task_struct *p, bool preempt)
7106 {
7107 	struct task_struct *curr = current;
7108 	struct rq *rq, *p_rq;
7109 	unsigned long flags;
7110 	int yielded = 0;
7111 
7112 	local_irq_save(flags);
7113 	rq = this_rq();
7114 
7115 again:
7116 	p_rq = task_rq(p);
7117 	/*
7118 	 * If we're the only runnable task on the rq and target rq also
7119 	 * has only one task, there's absolutely no point in yielding.
7120 	 */
7121 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7122 		yielded = -ESRCH;
7123 		goto out_irq;
7124 	}
7125 
7126 	double_rq_lock(rq, p_rq);
7127 	if (task_rq(p) != p_rq) {
7128 		double_rq_unlock(rq, p_rq);
7129 		goto again;
7130 	}
7131 
7132 	if (!curr->sched_class->yield_to_task)
7133 		goto out_unlock;
7134 
7135 	if (curr->sched_class != p->sched_class)
7136 		goto out_unlock;
7137 
7138 	if (task_running(p_rq, p) || p->state)
7139 		goto out_unlock;
7140 
7141 	yielded = curr->sched_class->yield_to_task(rq, p);
7142 	if (yielded) {
7143 		schedstat_inc(rq->yld_count);
7144 		/*
7145 		 * Make p's CPU reschedule; pick_next_entity takes care of
7146 		 * fairness.
7147 		 */
7148 		if (preempt && rq != p_rq)
7149 			resched_curr(p_rq);
7150 	}
7151 
7152 out_unlock:
7153 	double_rq_unlock(rq, p_rq);
7154 out_irq:
7155 	local_irq_restore(flags);
7156 
7157 	if (yielded > 0)
7158 		schedule();
7159 
7160 	return yielded;
7161 }
7162 EXPORT_SYMBOL_GPL(yield_to);
7163 
7164 int io_schedule_prepare(void)
7165 {
7166 	int old_iowait = current->in_iowait;
7167 
7168 	current->in_iowait = 1;
7169 	blk_schedule_flush_plug(current);
7170 
7171 	return old_iowait;
7172 }
7173 
7174 void io_schedule_finish(int token)
7175 {
7176 	current->in_iowait = token;
7177 }
7178 
7179 /*
7180  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7181  * that process accounting knows that this is a task in IO wait state.
7182  */
7183 long __sched io_schedule_timeout(long timeout)
7184 {
7185 	int token;
7186 	long ret;
7187 
7188 	token = io_schedule_prepare();
7189 	ret = schedule_timeout(timeout);
7190 	io_schedule_finish(token);
7191 
7192 	return ret;
7193 }
7194 EXPORT_SYMBOL(io_schedule_timeout);
7195 
7196 void __sched io_schedule(void)
7197 {
7198 	int token;
7199 
7200 	token = io_schedule_prepare();
7201 	schedule();
7202 	io_schedule_finish(token);
7203 }
7204 EXPORT_SYMBOL(io_schedule);
7205 
7206 /**
7207  * sys_sched_get_priority_max - return maximum RT priority.
7208  * @policy: scheduling class.
7209  *
7210  * Return: On success, this syscall returns the maximum
7211  * rt_priority that can be used by a given scheduling class.
7212  * On failure, a negative error code is returned.
7213  */
7214 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7215 {
7216 	int ret = -EINVAL;
7217 
7218 	switch (policy) {
7219 	case SCHED_FIFO:
7220 	case SCHED_RR:
7221 		ret = MAX_RT_PRIO-1;
7222 		break;
7223 	case SCHED_DEADLINE:
7224 	case SCHED_NORMAL:
7225 	case SCHED_BATCH:
7226 	case SCHED_IDLE:
7227 		ret = 0;
7228 		break;
7229 	}
7230 	return ret;
7231 }
7232 
7233 /**
7234  * sys_sched_get_priority_min - return minimum RT priority.
7235  * @policy: scheduling class.
7236  *
7237  * Return: On success, this syscall returns the minimum
7238  * rt_priority that can be used by a given scheduling class.
7239  * On failure, a negative error code is returned.
7240  */
7241 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7242 {
7243 	int ret = -EINVAL;
7244 
7245 	switch (policy) {
7246 	case SCHED_FIFO:
7247 	case SCHED_RR:
7248 		ret = 1;
7249 		break;
7250 	case SCHED_DEADLINE:
7251 	case SCHED_NORMAL:
7252 	case SCHED_BATCH:
7253 	case SCHED_IDLE:
7254 		ret = 0;
7255 	}
7256 	return ret;
7257 }
7258 
7259 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7260 {
7261 	struct task_struct *p;
7262 	unsigned int time_slice;
7263 	struct rq_flags rf;
7264 	struct rq *rq;
7265 	int retval;
7266 
7267 	if (pid < 0)
7268 		return -EINVAL;
7269 
7270 	retval = -ESRCH;
7271 	rcu_read_lock();
7272 	p = find_process_by_pid(pid);
7273 	if (!p)
7274 		goto out_unlock;
7275 
7276 	retval = security_task_getscheduler(p);
7277 	if (retval)
7278 		goto out_unlock;
7279 
7280 	rq = task_rq_lock(p, &rf);
7281 	time_slice = 0;
7282 	if (p->sched_class->get_rr_interval)
7283 		time_slice = p->sched_class->get_rr_interval(rq, p);
7284 	task_rq_unlock(rq, p, &rf);
7285 
7286 	rcu_read_unlock();
7287 	jiffies_to_timespec64(time_slice, t);
7288 	return 0;
7289 
7290 out_unlock:
7291 	rcu_read_unlock();
7292 	return retval;
7293 }
7294 
7295 /**
7296  * sys_sched_rr_get_interval - return the default timeslice of a process.
7297  * @pid: pid of the process.
7298  * @interval: userspace pointer to the timeslice value.
7299  *
7300  * this syscall writes the default timeslice value of a given process
7301  * into the user-space timespec buffer. A value of '0' means infinity.
7302  *
7303  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7304  * an error code.
7305  */
7306 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7307 		struct __kernel_timespec __user *, interval)
7308 {
7309 	struct timespec64 t;
7310 	int retval = sched_rr_get_interval(pid, &t);
7311 
7312 	if (retval == 0)
7313 		retval = put_timespec64(&t, interval);
7314 
7315 	return retval;
7316 }
7317 
7318 #ifdef CONFIG_COMPAT_32BIT_TIME
7319 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7320 		struct old_timespec32 __user *, interval)
7321 {
7322 	struct timespec64 t;
7323 	int retval = sched_rr_get_interval(pid, &t);
7324 
7325 	if (retval == 0)
7326 		retval = put_old_timespec32(&t, interval);
7327 	return retval;
7328 }
7329 #endif
7330 
7331 void sched_show_task(struct task_struct *p)
7332 {
7333 	unsigned long free = 0;
7334 	int ppid;
7335 
7336 	if (!try_get_task_stack(p))
7337 		return;
7338 
7339 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7340 
7341 	if (p->state == TASK_RUNNING)
7342 		pr_cont("  running task    ");
7343 #ifdef CONFIG_DEBUG_STACK_USAGE
7344 	free = stack_not_used(p);
7345 #endif
7346 	ppid = 0;
7347 	rcu_read_lock();
7348 	if (pid_alive(p))
7349 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7350 	rcu_read_unlock();
7351 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7352 		free, task_pid_nr(p), ppid,
7353 		(unsigned long)task_thread_info(p)->flags);
7354 
7355 	print_worker_info(KERN_INFO, p);
7356 	print_stop_info(KERN_INFO, p);
7357 	show_stack(p, NULL, KERN_INFO);
7358 	put_task_stack(p);
7359 }
7360 EXPORT_SYMBOL_GPL(sched_show_task);
7361 
7362 static inline bool
7363 state_filter_match(unsigned long state_filter, struct task_struct *p)
7364 {
7365 	/* no filter, everything matches */
7366 	if (!state_filter)
7367 		return true;
7368 
7369 	/* filter, but doesn't match */
7370 	if (!(p->state & state_filter))
7371 		return false;
7372 
7373 	/*
7374 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7375 	 * TASK_KILLABLE).
7376 	 */
7377 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7378 		return false;
7379 
7380 	return true;
7381 }
7382 
7383 
7384 void show_state_filter(unsigned long state_filter)
7385 {
7386 	struct task_struct *g, *p;
7387 
7388 	rcu_read_lock();
7389 	for_each_process_thread(g, p) {
7390 		/*
7391 		 * reset the NMI-timeout, listing all files on a slow
7392 		 * console might take a lot of time:
7393 		 * Also, reset softlockup watchdogs on all CPUs, because
7394 		 * another CPU might be blocked waiting for us to process
7395 		 * an IPI.
7396 		 */
7397 		touch_nmi_watchdog();
7398 		touch_all_softlockup_watchdogs();
7399 		if (state_filter_match(state_filter, p))
7400 			sched_show_task(p);
7401 	}
7402 
7403 #ifdef CONFIG_SCHED_DEBUG
7404 	if (!state_filter)
7405 		sysrq_sched_debug_show();
7406 #endif
7407 	rcu_read_unlock();
7408 	/*
7409 	 * Only show locks if all tasks are dumped:
7410 	 */
7411 	if (!state_filter)
7412 		debug_show_all_locks();
7413 }
7414 
7415 /**
7416  * init_idle - set up an idle thread for a given CPU
7417  * @idle: task in question
7418  * @cpu: CPU the idle task belongs to
7419  *
7420  * NOTE: this function does not set the idle thread's NEED_RESCHED
7421  * flag, to make booting more robust.
7422  */
7423 void init_idle(struct task_struct *idle, int cpu)
7424 {
7425 	struct rq *rq = cpu_rq(cpu);
7426 	unsigned long flags;
7427 
7428 	__sched_fork(0, idle);
7429 
7430 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7431 	raw_spin_lock(&rq->lock);
7432 
7433 	idle->state = TASK_RUNNING;
7434 	idle->se.exec_start = sched_clock();
7435 	idle->flags |= PF_IDLE;
7436 
7437 	scs_task_reset(idle);
7438 	kasan_unpoison_task_stack(idle);
7439 
7440 #ifdef CONFIG_SMP
7441 	/*
7442 	 * It's possible that init_idle() gets called multiple times on a task,
7443 	 * in that case do_set_cpus_allowed() will not do the right thing.
7444 	 *
7445 	 * And since this is boot we can forgo the serialization.
7446 	 */
7447 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7448 #endif
7449 	/*
7450 	 * We're having a chicken and egg problem, even though we are
7451 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7452 	 * lockdep check in task_group() will fail.
7453 	 *
7454 	 * Similar case to sched_fork(). / Alternatively we could
7455 	 * use task_rq_lock() here and obtain the other rq->lock.
7456 	 *
7457 	 * Silence PROVE_RCU
7458 	 */
7459 	rcu_read_lock();
7460 	__set_task_cpu(idle, cpu);
7461 	rcu_read_unlock();
7462 
7463 	rq->idle = idle;
7464 	rcu_assign_pointer(rq->curr, idle);
7465 	idle->on_rq = TASK_ON_RQ_QUEUED;
7466 #ifdef CONFIG_SMP
7467 	idle->on_cpu = 1;
7468 #endif
7469 	raw_spin_unlock(&rq->lock);
7470 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7471 
7472 	/* Set the preempt count _outside_ the spinlocks! */
7473 	init_idle_preempt_count(idle, cpu);
7474 
7475 	/*
7476 	 * The idle tasks have their own, simple scheduling class:
7477 	 */
7478 	idle->sched_class = &idle_sched_class;
7479 	ftrace_graph_init_idle_task(idle, cpu);
7480 	vtime_init_idle(idle, cpu);
7481 #ifdef CONFIG_SMP
7482 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7483 #endif
7484 }
7485 
7486 #ifdef CONFIG_SMP
7487 
7488 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7489 			      const struct cpumask *trial)
7490 {
7491 	int ret = 1;
7492 
7493 	if (!cpumask_weight(cur))
7494 		return ret;
7495 
7496 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7497 
7498 	return ret;
7499 }
7500 
7501 int task_can_attach(struct task_struct *p,
7502 		    const struct cpumask *cs_cpus_allowed)
7503 {
7504 	int ret = 0;
7505 
7506 	/*
7507 	 * Kthreads which disallow setaffinity shouldn't be moved
7508 	 * to a new cpuset; we don't want to change their CPU
7509 	 * affinity and isolating such threads by their set of
7510 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7511 	 * applicable for such threads.  This prevents checking for
7512 	 * success of set_cpus_allowed_ptr() on all attached tasks
7513 	 * before cpus_mask may be changed.
7514 	 */
7515 	if (p->flags & PF_NO_SETAFFINITY) {
7516 		ret = -EINVAL;
7517 		goto out;
7518 	}
7519 
7520 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7521 					      cs_cpus_allowed))
7522 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7523 
7524 out:
7525 	return ret;
7526 }
7527 
7528 bool sched_smp_initialized __read_mostly;
7529 
7530 #ifdef CONFIG_NUMA_BALANCING
7531 /* Migrate current task p to target_cpu */
7532 int migrate_task_to(struct task_struct *p, int target_cpu)
7533 {
7534 	struct migration_arg arg = { p, target_cpu };
7535 	int curr_cpu = task_cpu(p);
7536 
7537 	if (curr_cpu == target_cpu)
7538 		return 0;
7539 
7540 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7541 		return -EINVAL;
7542 
7543 	/* TODO: This is not properly updating schedstats */
7544 
7545 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7546 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7547 }
7548 
7549 /*
7550  * Requeue a task on a given node and accurately track the number of NUMA
7551  * tasks on the runqueues
7552  */
7553 void sched_setnuma(struct task_struct *p, int nid)
7554 {
7555 	bool queued, running;
7556 	struct rq_flags rf;
7557 	struct rq *rq;
7558 
7559 	rq = task_rq_lock(p, &rf);
7560 	queued = task_on_rq_queued(p);
7561 	running = task_current(rq, p);
7562 
7563 	if (queued)
7564 		dequeue_task(rq, p, DEQUEUE_SAVE);
7565 	if (running)
7566 		put_prev_task(rq, p);
7567 
7568 	p->numa_preferred_nid = nid;
7569 
7570 	if (queued)
7571 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7572 	if (running)
7573 		set_next_task(rq, p);
7574 	task_rq_unlock(rq, p, &rf);
7575 }
7576 #endif /* CONFIG_NUMA_BALANCING */
7577 
7578 #ifdef CONFIG_HOTPLUG_CPU
7579 /*
7580  * Ensure that the idle task is using init_mm right before its CPU goes
7581  * offline.
7582  */
7583 void idle_task_exit(void)
7584 {
7585 	struct mm_struct *mm = current->active_mm;
7586 
7587 	BUG_ON(cpu_online(smp_processor_id()));
7588 	BUG_ON(current != this_rq()->idle);
7589 
7590 	if (mm != &init_mm) {
7591 		switch_mm(mm, &init_mm, current);
7592 		finish_arch_post_lock_switch();
7593 	}
7594 
7595 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7596 }
7597 
7598 static int __balance_push_cpu_stop(void *arg)
7599 {
7600 	struct task_struct *p = arg;
7601 	struct rq *rq = this_rq();
7602 	struct rq_flags rf;
7603 	int cpu;
7604 
7605 	raw_spin_lock_irq(&p->pi_lock);
7606 	rq_lock(rq, &rf);
7607 
7608 	update_rq_clock(rq);
7609 
7610 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7611 		cpu = select_fallback_rq(rq->cpu, p);
7612 		rq = __migrate_task(rq, &rf, p, cpu);
7613 	}
7614 
7615 	rq_unlock(rq, &rf);
7616 	raw_spin_unlock_irq(&p->pi_lock);
7617 
7618 	put_task_struct(p);
7619 
7620 	return 0;
7621 }
7622 
7623 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7624 
7625 /*
7626  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7627  */
7628 static void balance_push(struct rq *rq)
7629 {
7630 	struct task_struct *push_task = rq->curr;
7631 
7632 	lockdep_assert_held(&rq->lock);
7633 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7634 	/*
7635 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7636 	 */
7637 	rq->balance_callback = &balance_push_callback;
7638 
7639 	/*
7640 	 * Both the cpu-hotplug and stop task are in this case and are
7641 	 * required to complete the hotplug process.
7642 	 *
7643 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7644 	 * histerical raisins.
7645 	 */
7646 	if (rq->idle == push_task ||
7647 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7648 	    is_migration_disabled(push_task)) {
7649 
7650 		/*
7651 		 * If this is the idle task on the outgoing CPU try to wake
7652 		 * up the hotplug control thread which might wait for the
7653 		 * last task to vanish. The rcuwait_active() check is
7654 		 * accurate here because the waiter is pinned on this CPU
7655 		 * and can't obviously be running in parallel.
7656 		 *
7657 		 * On RT kernels this also has to check whether there are
7658 		 * pinned and scheduled out tasks on the runqueue. They
7659 		 * need to leave the migrate disabled section first.
7660 		 */
7661 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7662 		    rcuwait_active(&rq->hotplug_wait)) {
7663 			raw_spin_unlock(&rq->lock);
7664 			rcuwait_wake_up(&rq->hotplug_wait);
7665 			raw_spin_lock(&rq->lock);
7666 		}
7667 		return;
7668 	}
7669 
7670 	get_task_struct(push_task);
7671 	/*
7672 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7673 	 * Both preemption and IRQs are still disabled.
7674 	 */
7675 	raw_spin_unlock(&rq->lock);
7676 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7677 			    this_cpu_ptr(&push_work));
7678 	/*
7679 	 * At this point need_resched() is true and we'll take the loop in
7680 	 * schedule(). The next pick is obviously going to be the stop task
7681 	 * which kthread_is_per_cpu() and will push this task away.
7682 	 */
7683 	raw_spin_lock(&rq->lock);
7684 }
7685 
7686 static void balance_push_set(int cpu, bool on)
7687 {
7688 	struct rq *rq = cpu_rq(cpu);
7689 	struct rq_flags rf;
7690 
7691 	rq_lock_irqsave(rq, &rf);
7692 	rq->balance_push = on;
7693 	if (on) {
7694 		WARN_ON_ONCE(rq->balance_callback);
7695 		rq->balance_callback = &balance_push_callback;
7696 	} else if (rq->balance_callback == &balance_push_callback) {
7697 		rq->balance_callback = NULL;
7698 	}
7699 	rq_unlock_irqrestore(rq, &rf);
7700 }
7701 
7702 /*
7703  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7704  * inactive. All tasks which are not per CPU kernel threads are either
7705  * pushed off this CPU now via balance_push() or placed on a different CPU
7706  * during wakeup. Wait until the CPU is quiescent.
7707  */
7708 static void balance_hotplug_wait(void)
7709 {
7710 	struct rq *rq = this_rq();
7711 
7712 	rcuwait_wait_event(&rq->hotplug_wait,
7713 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7714 			   TASK_UNINTERRUPTIBLE);
7715 }
7716 
7717 #else
7718 
7719 static inline void balance_push(struct rq *rq)
7720 {
7721 }
7722 
7723 static inline void balance_push_set(int cpu, bool on)
7724 {
7725 }
7726 
7727 static inline void balance_hotplug_wait(void)
7728 {
7729 }
7730 
7731 #endif /* CONFIG_HOTPLUG_CPU */
7732 
7733 void set_rq_online(struct rq *rq)
7734 {
7735 	if (!rq->online) {
7736 		const struct sched_class *class;
7737 
7738 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7739 		rq->online = 1;
7740 
7741 		for_each_class(class) {
7742 			if (class->rq_online)
7743 				class->rq_online(rq);
7744 		}
7745 	}
7746 }
7747 
7748 void set_rq_offline(struct rq *rq)
7749 {
7750 	if (rq->online) {
7751 		const struct sched_class *class;
7752 
7753 		for_each_class(class) {
7754 			if (class->rq_offline)
7755 				class->rq_offline(rq);
7756 		}
7757 
7758 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7759 		rq->online = 0;
7760 	}
7761 }
7762 
7763 /*
7764  * used to mark begin/end of suspend/resume:
7765  */
7766 static int num_cpus_frozen;
7767 
7768 /*
7769  * Update cpusets according to cpu_active mask.  If cpusets are
7770  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7771  * around partition_sched_domains().
7772  *
7773  * If we come here as part of a suspend/resume, don't touch cpusets because we
7774  * want to restore it back to its original state upon resume anyway.
7775  */
7776 static void cpuset_cpu_active(void)
7777 {
7778 	if (cpuhp_tasks_frozen) {
7779 		/*
7780 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7781 		 * resume sequence. As long as this is not the last online
7782 		 * operation in the resume sequence, just build a single sched
7783 		 * domain, ignoring cpusets.
7784 		 */
7785 		partition_sched_domains(1, NULL, NULL);
7786 		if (--num_cpus_frozen)
7787 			return;
7788 		/*
7789 		 * This is the last CPU online operation. So fall through and
7790 		 * restore the original sched domains by considering the
7791 		 * cpuset configurations.
7792 		 */
7793 		cpuset_force_rebuild();
7794 	}
7795 	cpuset_update_active_cpus();
7796 }
7797 
7798 static int cpuset_cpu_inactive(unsigned int cpu)
7799 {
7800 	if (!cpuhp_tasks_frozen) {
7801 		if (dl_cpu_busy(cpu))
7802 			return -EBUSY;
7803 		cpuset_update_active_cpus();
7804 	} else {
7805 		num_cpus_frozen++;
7806 		partition_sched_domains(1, NULL, NULL);
7807 	}
7808 	return 0;
7809 }
7810 
7811 int sched_cpu_activate(unsigned int cpu)
7812 {
7813 	struct rq *rq = cpu_rq(cpu);
7814 	struct rq_flags rf;
7815 
7816 	/*
7817 	 * Make sure that when the hotplug state machine does a roll-back
7818 	 * we clear balance_push. Ideally that would happen earlier...
7819 	 */
7820 	balance_push_set(cpu, false);
7821 
7822 #ifdef CONFIG_SCHED_SMT
7823 	/*
7824 	 * When going up, increment the number of cores with SMT present.
7825 	 */
7826 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7827 		static_branch_inc_cpuslocked(&sched_smt_present);
7828 #endif
7829 	set_cpu_active(cpu, true);
7830 
7831 	if (sched_smp_initialized) {
7832 		sched_domains_numa_masks_set(cpu);
7833 		cpuset_cpu_active();
7834 	}
7835 
7836 	/*
7837 	 * Put the rq online, if not already. This happens:
7838 	 *
7839 	 * 1) In the early boot process, because we build the real domains
7840 	 *    after all CPUs have been brought up.
7841 	 *
7842 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7843 	 *    domains.
7844 	 */
7845 	rq_lock_irqsave(rq, &rf);
7846 	if (rq->rd) {
7847 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7848 		set_rq_online(rq);
7849 	}
7850 	rq_unlock_irqrestore(rq, &rf);
7851 
7852 	return 0;
7853 }
7854 
7855 int sched_cpu_deactivate(unsigned int cpu)
7856 {
7857 	struct rq *rq = cpu_rq(cpu);
7858 	struct rq_flags rf;
7859 	int ret;
7860 
7861 	/*
7862 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7863 	 * load balancing when not active
7864 	 */
7865 	nohz_balance_exit_idle(rq);
7866 
7867 	set_cpu_active(cpu, false);
7868 
7869 	/*
7870 	 * From this point forward, this CPU will refuse to run any task that
7871 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7872 	 * push those tasks away until this gets cleared, see
7873 	 * sched_cpu_dying().
7874 	 */
7875 	balance_push_set(cpu, true);
7876 
7877 	/*
7878 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7879 	 * preempt-disabled and RCU users of this state to go away such that
7880 	 * all new such users will observe it.
7881 	 *
7882 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7883 	 * ttwu_queue_cond() and is_cpu_allowed().
7884 	 *
7885 	 * Do sync before park smpboot threads to take care the rcu boost case.
7886 	 */
7887 	synchronize_rcu();
7888 
7889 	rq_lock_irqsave(rq, &rf);
7890 	if (rq->rd) {
7891 		update_rq_clock(rq);
7892 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7893 		set_rq_offline(rq);
7894 	}
7895 	rq_unlock_irqrestore(rq, &rf);
7896 
7897 #ifdef CONFIG_SCHED_SMT
7898 	/*
7899 	 * When going down, decrement the number of cores with SMT present.
7900 	 */
7901 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7902 		static_branch_dec_cpuslocked(&sched_smt_present);
7903 #endif
7904 
7905 	if (!sched_smp_initialized)
7906 		return 0;
7907 
7908 	ret = cpuset_cpu_inactive(cpu);
7909 	if (ret) {
7910 		balance_push_set(cpu, false);
7911 		set_cpu_active(cpu, true);
7912 		return ret;
7913 	}
7914 	sched_domains_numa_masks_clear(cpu);
7915 	return 0;
7916 }
7917 
7918 static void sched_rq_cpu_starting(unsigned int cpu)
7919 {
7920 	struct rq *rq = cpu_rq(cpu);
7921 
7922 	rq->calc_load_update = calc_load_update;
7923 	update_max_interval();
7924 }
7925 
7926 int sched_cpu_starting(unsigned int cpu)
7927 {
7928 	sched_rq_cpu_starting(cpu);
7929 	sched_tick_start(cpu);
7930 	return 0;
7931 }
7932 
7933 #ifdef CONFIG_HOTPLUG_CPU
7934 
7935 /*
7936  * Invoked immediately before the stopper thread is invoked to bring the
7937  * CPU down completely. At this point all per CPU kthreads except the
7938  * hotplug thread (current) and the stopper thread (inactive) have been
7939  * either parked or have been unbound from the outgoing CPU. Ensure that
7940  * any of those which might be on the way out are gone.
7941  *
7942  * If after this point a bound task is being woken on this CPU then the
7943  * responsible hotplug callback has failed to do it's job.
7944  * sched_cpu_dying() will catch it with the appropriate fireworks.
7945  */
7946 int sched_cpu_wait_empty(unsigned int cpu)
7947 {
7948 	balance_hotplug_wait();
7949 	return 0;
7950 }
7951 
7952 /*
7953  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7954  * might have. Called from the CPU stopper task after ensuring that the
7955  * stopper is the last running task on the CPU, so nr_active count is
7956  * stable. We need to take the teardown thread which is calling this into
7957  * account, so we hand in adjust = 1 to the load calculation.
7958  *
7959  * Also see the comment "Global load-average calculations".
7960  */
7961 static void calc_load_migrate(struct rq *rq)
7962 {
7963 	long delta = calc_load_fold_active(rq, 1);
7964 
7965 	if (delta)
7966 		atomic_long_add(delta, &calc_load_tasks);
7967 }
7968 
7969 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7970 {
7971 	struct task_struct *g, *p;
7972 	int cpu = cpu_of(rq);
7973 
7974 	lockdep_assert_held(&rq->lock);
7975 
7976 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7977 	for_each_process_thread(g, p) {
7978 		if (task_cpu(p) != cpu)
7979 			continue;
7980 
7981 		if (!task_on_rq_queued(p))
7982 			continue;
7983 
7984 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7985 	}
7986 }
7987 
7988 int sched_cpu_dying(unsigned int cpu)
7989 {
7990 	struct rq *rq = cpu_rq(cpu);
7991 	struct rq_flags rf;
7992 
7993 	/* Handle pending wakeups and then migrate everything off */
7994 	sched_tick_stop(cpu);
7995 
7996 	rq_lock_irqsave(rq, &rf);
7997 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7998 		WARN(true, "Dying CPU not properly vacated!");
7999 		dump_rq_tasks(rq, KERN_WARNING);
8000 	}
8001 	rq_unlock_irqrestore(rq, &rf);
8002 
8003 	/*
8004 	 * Now that the CPU is offline, make sure we're welcome
8005 	 * to new tasks once we come back up.
8006 	 */
8007 	balance_push_set(cpu, false);
8008 
8009 	calc_load_migrate(rq);
8010 	update_max_interval();
8011 	hrtick_clear(rq);
8012 	return 0;
8013 }
8014 #endif
8015 
8016 void __init sched_init_smp(void)
8017 {
8018 	sched_init_numa();
8019 
8020 	/*
8021 	 * There's no userspace yet to cause hotplug operations; hence all the
8022 	 * CPU masks are stable and all blatant races in the below code cannot
8023 	 * happen.
8024 	 */
8025 	mutex_lock(&sched_domains_mutex);
8026 	sched_init_domains(cpu_active_mask);
8027 	mutex_unlock(&sched_domains_mutex);
8028 
8029 	/* Move init over to a non-isolated CPU */
8030 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8031 		BUG();
8032 	sched_init_granularity();
8033 
8034 	init_sched_rt_class();
8035 	init_sched_dl_class();
8036 
8037 	sched_smp_initialized = true;
8038 }
8039 
8040 static int __init migration_init(void)
8041 {
8042 	sched_cpu_starting(smp_processor_id());
8043 	return 0;
8044 }
8045 early_initcall(migration_init);
8046 
8047 #else
8048 void __init sched_init_smp(void)
8049 {
8050 	sched_init_granularity();
8051 }
8052 #endif /* CONFIG_SMP */
8053 
8054 int in_sched_functions(unsigned long addr)
8055 {
8056 	return in_lock_functions(addr) ||
8057 		(addr >= (unsigned long)__sched_text_start
8058 		&& addr < (unsigned long)__sched_text_end);
8059 }
8060 
8061 #ifdef CONFIG_CGROUP_SCHED
8062 /*
8063  * Default task group.
8064  * Every task in system belongs to this group at bootup.
8065  */
8066 struct task_group root_task_group;
8067 LIST_HEAD(task_groups);
8068 
8069 /* Cacheline aligned slab cache for task_group */
8070 static struct kmem_cache *task_group_cache __read_mostly;
8071 #endif
8072 
8073 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8074 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8075 
8076 void __init sched_init(void)
8077 {
8078 	unsigned long ptr = 0;
8079 	int i;
8080 
8081 	/* Make sure the linker didn't screw up */
8082 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8083 	       &fair_sched_class + 1 != &rt_sched_class ||
8084 	       &rt_sched_class + 1   != &dl_sched_class);
8085 #ifdef CONFIG_SMP
8086 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8087 #endif
8088 
8089 	wait_bit_init();
8090 
8091 #ifdef CONFIG_FAIR_GROUP_SCHED
8092 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8093 #endif
8094 #ifdef CONFIG_RT_GROUP_SCHED
8095 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8096 #endif
8097 	if (ptr) {
8098 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8099 
8100 #ifdef CONFIG_FAIR_GROUP_SCHED
8101 		root_task_group.se = (struct sched_entity **)ptr;
8102 		ptr += nr_cpu_ids * sizeof(void **);
8103 
8104 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8105 		ptr += nr_cpu_ids * sizeof(void **);
8106 
8107 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8108 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8109 #endif /* CONFIG_FAIR_GROUP_SCHED */
8110 #ifdef CONFIG_RT_GROUP_SCHED
8111 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8112 		ptr += nr_cpu_ids * sizeof(void **);
8113 
8114 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8115 		ptr += nr_cpu_ids * sizeof(void **);
8116 
8117 #endif /* CONFIG_RT_GROUP_SCHED */
8118 	}
8119 #ifdef CONFIG_CPUMASK_OFFSTACK
8120 	for_each_possible_cpu(i) {
8121 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8122 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8123 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8124 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8125 	}
8126 #endif /* CONFIG_CPUMASK_OFFSTACK */
8127 
8128 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8129 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8130 
8131 #ifdef CONFIG_SMP
8132 	init_defrootdomain();
8133 #endif
8134 
8135 #ifdef CONFIG_RT_GROUP_SCHED
8136 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8137 			global_rt_period(), global_rt_runtime());
8138 #endif /* CONFIG_RT_GROUP_SCHED */
8139 
8140 #ifdef CONFIG_CGROUP_SCHED
8141 	task_group_cache = KMEM_CACHE(task_group, 0);
8142 
8143 	list_add(&root_task_group.list, &task_groups);
8144 	INIT_LIST_HEAD(&root_task_group.children);
8145 	INIT_LIST_HEAD(&root_task_group.siblings);
8146 	autogroup_init(&init_task);
8147 #endif /* CONFIG_CGROUP_SCHED */
8148 
8149 	for_each_possible_cpu(i) {
8150 		struct rq *rq;
8151 
8152 		rq = cpu_rq(i);
8153 		raw_spin_lock_init(&rq->lock);
8154 		rq->nr_running = 0;
8155 		rq->calc_load_active = 0;
8156 		rq->calc_load_update = jiffies + LOAD_FREQ;
8157 		init_cfs_rq(&rq->cfs);
8158 		init_rt_rq(&rq->rt);
8159 		init_dl_rq(&rq->dl);
8160 #ifdef CONFIG_FAIR_GROUP_SCHED
8161 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8162 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8163 		/*
8164 		 * How much CPU bandwidth does root_task_group get?
8165 		 *
8166 		 * In case of task-groups formed thr' the cgroup filesystem, it
8167 		 * gets 100% of the CPU resources in the system. This overall
8168 		 * system CPU resource is divided among the tasks of
8169 		 * root_task_group and its child task-groups in a fair manner,
8170 		 * based on each entity's (task or task-group's) weight
8171 		 * (se->load.weight).
8172 		 *
8173 		 * In other words, if root_task_group has 10 tasks of weight
8174 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8175 		 * then A0's share of the CPU resource is:
8176 		 *
8177 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8178 		 *
8179 		 * We achieve this by letting root_task_group's tasks sit
8180 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8181 		 */
8182 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8183 #endif /* CONFIG_FAIR_GROUP_SCHED */
8184 
8185 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8186 #ifdef CONFIG_RT_GROUP_SCHED
8187 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8188 #endif
8189 #ifdef CONFIG_SMP
8190 		rq->sd = NULL;
8191 		rq->rd = NULL;
8192 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8193 		rq->balance_callback = NULL;
8194 		rq->active_balance = 0;
8195 		rq->next_balance = jiffies;
8196 		rq->push_cpu = 0;
8197 		rq->cpu = i;
8198 		rq->online = 0;
8199 		rq->idle_stamp = 0;
8200 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8201 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8202 
8203 		INIT_LIST_HEAD(&rq->cfs_tasks);
8204 
8205 		rq_attach_root(rq, &def_root_domain);
8206 #ifdef CONFIG_NO_HZ_COMMON
8207 		rq->last_blocked_load_update_tick = jiffies;
8208 		atomic_set(&rq->nohz_flags, 0);
8209 
8210 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8211 #endif
8212 #ifdef CONFIG_HOTPLUG_CPU
8213 		rcuwait_init(&rq->hotplug_wait);
8214 #endif
8215 #endif /* CONFIG_SMP */
8216 		hrtick_rq_init(rq);
8217 		atomic_set(&rq->nr_iowait, 0);
8218 	}
8219 
8220 	set_load_weight(&init_task, false);
8221 
8222 	/*
8223 	 * The boot idle thread does lazy MMU switching as well:
8224 	 */
8225 	mmgrab(&init_mm);
8226 	enter_lazy_tlb(&init_mm, current);
8227 
8228 	/*
8229 	 * Make us the idle thread. Technically, schedule() should not be
8230 	 * called from this thread, however somewhere below it might be,
8231 	 * but because we are the idle thread, we just pick up running again
8232 	 * when this runqueue becomes "idle".
8233 	 */
8234 	init_idle(current, smp_processor_id());
8235 
8236 	calc_load_update = jiffies + LOAD_FREQ;
8237 
8238 #ifdef CONFIG_SMP
8239 	idle_thread_set_boot_cpu();
8240 #endif
8241 	init_sched_fair_class();
8242 
8243 	init_schedstats();
8244 
8245 	psi_init();
8246 
8247 	init_uclamp();
8248 
8249 	scheduler_running = 1;
8250 }
8251 
8252 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8253 static inline int preempt_count_equals(int preempt_offset)
8254 {
8255 	int nested = preempt_count() + rcu_preempt_depth();
8256 
8257 	return (nested == preempt_offset);
8258 }
8259 
8260 void __might_sleep(const char *file, int line, int preempt_offset)
8261 {
8262 	/*
8263 	 * Blocking primitives will set (and therefore destroy) current->state,
8264 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8265 	 * otherwise we will destroy state.
8266 	 */
8267 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8268 			"do not call blocking ops when !TASK_RUNNING; "
8269 			"state=%lx set at [<%p>] %pS\n",
8270 			current->state,
8271 			(void *)current->task_state_change,
8272 			(void *)current->task_state_change);
8273 
8274 	___might_sleep(file, line, preempt_offset);
8275 }
8276 EXPORT_SYMBOL(__might_sleep);
8277 
8278 void ___might_sleep(const char *file, int line, int preempt_offset)
8279 {
8280 	/* Ratelimiting timestamp: */
8281 	static unsigned long prev_jiffy;
8282 
8283 	unsigned long preempt_disable_ip;
8284 
8285 	/* WARN_ON_ONCE() by default, no rate limit required: */
8286 	rcu_sleep_check();
8287 
8288 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8289 	     !is_idle_task(current) && !current->non_block_count) ||
8290 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8291 	    oops_in_progress)
8292 		return;
8293 
8294 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8295 		return;
8296 	prev_jiffy = jiffies;
8297 
8298 	/* Save this before calling printk(), since that will clobber it: */
8299 	preempt_disable_ip = get_preempt_disable_ip(current);
8300 
8301 	printk(KERN_ERR
8302 		"BUG: sleeping function called from invalid context at %s:%d\n",
8303 			file, line);
8304 	printk(KERN_ERR
8305 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8306 			in_atomic(), irqs_disabled(), current->non_block_count,
8307 			current->pid, current->comm);
8308 
8309 	if (task_stack_end_corrupted(current))
8310 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8311 
8312 	debug_show_held_locks(current);
8313 	if (irqs_disabled())
8314 		print_irqtrace_events(current);
8315 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8316 	    && !preempt_count_equals(preempt_offset)) {
8317 		pr_err("Preemption disabled at:");
8318 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8319 	}
8320 	dump_stack();
8321 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8322 }
8323 EXPORT_SYMBOL(___might_sleep);
8324 
8325 void __cant_sleep(const char *file, int line, int preempt_offset)
8326 {
8327 	static unsigned long prev_jiffy;
8328 
8329 	if (irqs_disabled())
8330 		return;
8331 
8332 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8333 		return;
8334 
8335 	if (preempt_count() > preempt_offset)
8336 		return;
8337 
8338 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8339 		return;
8340 	prev_jiffy = jiffies;
8341 
8342 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8343 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8344 			in_atomic(), irqs_disabled(),
8345 			current->pid, current->comm);
8346 
8347 	debug_show_held_locks(current);
8348 	dump_stack();
8349 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8350 }
8351 EXPORT_SYMBOL_GPL(__cant_sleep);
8352 
8353 #ifdef CONFIG_SMP
8354 void __cant_migrate(const char *file, int line)
8355 {
8356 	static unsigned long prev_jiffy;
8357 
8358 	if (irqs_disabled())
8359 		return;
8360 
8361 	if (is_migration_disabled(current))
8362 		return;
8363 
8364 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8365 		return;
8366 
8367 	if (preempt_count() > 0)
8368 		return;
8369 
8370 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8371 		return;
8372 	prev_jiffy = jiffies;
8373 
8374 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8375 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8376 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8377 	       current->pid, current->comm);
8378 
8379 	debug_show_held_locks(current);
8380 	dump_stack();
8381 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8382 }
8383 EXPORT_SYMBOL_GPL(__cant_migrate);
8384 #endif
8385 #endif
8386 
8387 #ifdef CONFIG_MAGIC_SYSRQ
8388 void normalize_rt_tasks(void)
8389 {
8390 	struct task_struct *g, *p;
8391 	struct sched_attr attr = {
8392 		.sched_policy = SCHED_NORMAL,
8393 	};
8394 
8395 	read_lock(&tasklist_lock);
8396 	for_each_process_thread(g, p) {
8397 		/*
8398 		 * Only normalize user tasks:
8399 		 */
8400 		if (p->flags & PF_KTHREAD)
8401 			continue;
8402 
8403 		p->se.exec_start = 0;
8404 		schedstat_set(p->se.statistics.wait_start,  0);
8405 		schedstat_set(p->se.statistics.sleep_start, 0);
8406 		schedstat_set(p->se.statistics.block_start, 0);
8407 
8408 		if (!dl_task(p) && !rt_task(p)) {
8409 			/*
8410 			 * Renice negative nice level userspace
8411 			 * tasks back to 0:
8412 			 */
8413 			if (task_nice(p) < 0)
8414 				set_user_nice(p, 0);
8415 			continue;
8416 		}
8417 
8418 		__sched_setscheduler(p, &attr, false, false);
8419 	}
8420 	read_unlock(&tasklist_lock);
8421 }
8422 
8423 #endif /* CONFIG_MAGIC_SYSRQ */
8424 
8425 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8426 /*
8427  * These functions are only useful for the IA64 MCA handling, or kdb.
8428  *
8429  * They can only be called when the whole system has been
8430  * stopped - every CPU needs to be quiescent, and no scheduling
8431  * activity can take place. Using them for anything else would
8432  * be a serious bug, and as a result, they aren't even visible
8433  * under any other configuration.
8434  */
8435 
8436 /**
8437  * curr_task - return the current task for a given CPU.
8438  * @cpu: the processor in question.
8439  *
8440  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441  *
8442  * Return: The current task for @cpu.
8443  */
8444 struct task_struct *curr_task(int cpu)
8445 {
8446 	return cpu_curr(cpu);
8447 }
8448 
8449 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8450 
8451 #ifdef CONFIG_IA64
8452 /**
8453  * ia64_set_curr_task - set the current task for a given CPU.
8454  * @cpu: the processor in question.
8455  * @p: the task pointer to set.
8456  *
8457  * Description: This function must only be used when non-maskable interrupts
8458  * are serviced on a separate stack. It allows the architecture to switch the
8459  * notion of the current task on a CPU in a non-blocking manner. This function
8460  * must be called with all CPU's synchronized, and interrupts disabled, the
8461  * and caller must save the original value of the current task (see
8462  * curr_task() above) and restore that value before reenabling interrupts and
8463  * re-starting the system.
8464  *
8465  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8466  */
8467 void ia64_set_curr_task(int cpu, struct task_struct *p)
8468 {
8469 	cpu_curr(cpu) = p;
8470 }
8471 
8472 #endif
8473 
8474 #ifdef CONFIG_CGROUP_SCHED
8475 /* task_group_lock serializes the addition/removal of task groups */
8476 static DEFINE_SPINLOCK(task_group_lock);
8477 
8478 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8479 					    struct task_group *parent)
8480 {
8481 #ifdef CONFIG_UCLAMP_TASK_GROUP
8482 	enum uclamp_id clamp_id;
8483 
8484 	for_each_clamp_id(clamp_id) {
8485 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8486 			      uclamp_none(clamp_id), false);
8487 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8488 	}
8489 #endif
8490 }
8491 
8492 static void sched_free_group(struct task_group *tg)
8493 {
8494 	free_fair_sched_group(tg);
8495 	free_rt_sched_group(tg);
8496 	autogroup_free(tg);
8497 	kmem_cache_free(task_group_cache, tg);
8498 }
8499 
8500 /* allocate runqueue etc for a new task group */
8501 struct task_group *sched_create_group(struct task_group *parent)
8502 {
8503 	struct task_group *tg;
8504 
8505 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8506 	if (!tg)
8507 		return ERR_PTR(-ENOMEM);
8508 
8509 	if (!alloc_fair_sched_group(tg, parent))
8510 		goto err;
8511 
8512 	if (!alloc_rt_sched_group(tg, parent))
8513 		goto err;
8514 
8515 	alloc_uclamp_sched_group(tg, parent);
8516 
8517 	return tg;
8518 
8519 err:
8520 	sched_free_group(tg);
8521 	return ERR_PTR(-ENOMEM);
8522 }
8523 
8524 void sched_online_group(struct task_group *tg, struct task_group *parent)
8525 {
8526 	unsigned long flags;
8527 
8528 	spin_lock_irqsave(&task_group_lock, flags);
8529 	list_add_rcu(&tg->list, &task_groups);
8530 
8531 	/* Root should already exist: */
8532 	WARN_ON(!parent);
8533 
8534 	tg->parent = parent;
8535 	INIT_LIST_HEAD(&tg->children);
8536 	list_add_rcu(&tg->siblings, &parent->children);
8537 	spin_unlock_irqrestore(&task_group_lock, flags);
8538 
8539 	online_fair_sched_group(tg);
8540 }
8541 
8542 /* rcu callback to free various structures associated with a task group */
8543 static void sched_free_group_rcu(struct rcu_head *rhp)
8544 {
8545 	/* Now it should be safe to free those cfs_rqs: */
8546 	sched_free_group(container_of(rhp, struct task_group, rcu));
8547 }
8548 
8549 void sched_destroy_group(struct task_group *tg)
8550 {
8551 	/* Wait for possible concurrent references to cfs_rqs complete: */
8552 	call_rcu(&tg->rcu, sched_free_group_rcu);
8553 }
8554 
8555 void sched_offline_group(struct task_group *tg)
8556 {
8557 	unsigned long flags;
8558 
8559 	/* End participation in shares distribution: */
8560 	unregister_fair_sched_group(tg);
8561 
8562 	spin_lock_irqsave(&task_group_lock, flags);
8563 	list_del_rcu(&tg->list);
8564 	list_del_rcu(&tg->siblings);
8565 	spin_unlock_irqrestore(&task_group_lock, flags);
8566 }
8567 
8568 static void sched_change_group(struct task_struct *tsk, int type)
8569 {
8570 	struct task_group *tg;
8571 
8572 	/*
8573 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8574 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8575 	 * to prevent lockdep warnings.
8576 	 */
8577 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8578 			  struct task_group, css);
8579 	tg = autogroup_task_group(tsk, tg);
8580 	tsk->sched_task_group = tg;
8581 
8582 #ifdef CONFIG_FAIR_GROUP_SCHED
8583 	if (tsk->sched_class->task_change_group)
8584 		tsk->sched_class->task_change_group(tsk, type);
8585 	else
8586 #endif
8587 		set_task_rq(tsk, task_cpu(tsk));
8588 }
8589 
8590 /*
8591  * Change task's runqueue when it moves between groups.
8592  *
8593  * The caller of this function should have put the task in its new group by
8594  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8595  * its new group.
8596  */
8597 void sched_move_task(struct task_struct *tsk)
8598 {
8599 	int queued, running, queue_flags =
8600 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8601 	struct rq_flags rf;
8602 	struct rq *rq;
8603 
8604 	rq = task_rq_lock(tsk, &rf);
8605 	update_rq_clock(rq);
8606 
8607 	running = task_current(rq, tsk);
8608 	queued = task_on_rq_queued(tsk);
8609 
8610 	if (queued)
8611 		dequeue_task(rq, tsk, queue_flags);
8612 	if (running)
8613 		put_prev_task(rq, tsk);
8614 
8615 	sched_change_group(tsk, TASK_MOVE_GROUP);
8616 
8617 	if (queued)
8618 		enqueue_task(rq, tsk, queue_flags);
8619 	if (running) {
8620 		set_next_task(rq, tsk);
8621 		/*
8622 		 * After changing group, the running task may have joined a
8623 		 * throttled one but it's still the running task. Trigger a
8624 		 * resched to make sure that task can still run.
8625 		 */
8626 		resched_curr(rq);
8627 	}
8628 
8629 	task_rq_unlock(rq, tsk, &rf);
8630 }
8631 
8632 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8633 {
8634 	return css ? container_of(css, struct task_group, css) : NULL;
8635 }
8636 
8637 static struct cgroup_subsys_state *
8638 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8639 {
8640 	struct task_group *parent = css_tg(parent_css);
8641 	struct task_group *tg;
8642 
8643 	if (!parent) {
8644 		/* This is early initialization for the top cgroup */
8645 		return &root_task_group.css;
8646 	}
8647 
8648 	tg = sched_create_group(parent);
8649 	if (IS_ERR(tg))
8650 		return ERR_PTR(-ENOMEM);
8651 
8652 	return &tg->css;
8653 }
8654 
8655 /* Expose task group only after completing cgroup initialization */
8656 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8657 {
8658 	struct task_group *tg = css_tg(css);
8659 	struct task_group *parent = css_tg(css->parent);
8660 
8661 	if (parent)
8662 		sched_online_group(tg, parent);
8663 
8664 #ifdef CONFIG_UCLAMP_TASK_GROUP
8665 	/* Propagate the effective uclamp value for the new group */
8666 	cpu_util_update_eff(css);
8667 #endif
8668 
8669 	return 0;
8670 }
8671 
8672 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8673 {
8674 	struct task_group *tg = css_tg(css);
8675 
8676 	sched_offline_group(tg);
8677 }
8678 
8679 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8680 {
8681 	struct task_group *tg = css_tg(css);
8682 
8683 	/*
8684 	 * Relies on the RCU grace period between css_released() and this.
8685 	 */
8686 	sched_free_group(tg);
8687 }
8688 
8689 /*
8690  * This is called before wake_up_new_task(), therefore we really only
8691  * have to set its group bits, all the other stuff does not apply.
8692  */
8693 static void cpu_cgroup_fork(struct task_struct *task)
8694 {
8695 	struct rq_flags rf;
8696 	struct rq *rq;
8697 
8698 	rq = task_rq_lock(task, &rf);
8699 
8700 	update_rq_clock(rq);
8701 	sched_change_group(task, TASK_SET_GROUP);
8702 
8703 	task_rq_unlock(rq, task, &rf);
8704 }
8705 
8706 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8707 {
8708 	struct task_struct *task;
8709 	struct cgroup_subsys_state *css;
8710 	int ret = 0;
8711 
8712 	cgroup_taskset_for_each(task, css, tset) {
8713 #ifdef CONFIG_RT_GROUP_SCHED
8714 		if (!sched_rt_can_attach(css_tg(css), task))
8715 			return -EINVAL;
8716 #endif
8717 		/*
8718 		 * Serialize against wake_up_new_task() such that if it's
8719 		 * running, we're sure to observe its full state.
8720 		 */
8721 		raw_spin_lock_irq(&task->pi_lock);
8722 		/*
8723 		 * Avoid calling sched_move_task() before wake_up_new_task()
8724 		 * has happened. This would lead to problems with PELT, due to
8725 		 * move wanting to detach+attach while we're not attached yet.
8726 		 */
8727 		if (task->state == TASK_NEW)
8728 			ret = -EINVAL;
8729 		raw_spin_unlock_irq(&task->pi_lock);
8730 
8731 		if (ret)
8732 			break;
8733 	}
8734 	return ret;
8735 }
8736 
8737 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8738 {
8739 	struct task_struct *task;
8740 	struct cgroup_subsys_state *css;
8741 
8742 	cgroup_taskset_for_each(task, css, tset)
8743 		sched_move_task(task);
8744 }
8745 
8746 #ifdef CONFIG_UCLAMP_TASK_GROUP
8747 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8748 {
8749 	struct cgroup_subsys_state *top_css = css;
8750 	struct uclamp_se *uc_parent = NULL;
8751 	struct uclamp_se *uc_se = NULL;
8752 	unsigned int eff[UCLAMP_CNT];
8753 	enum uclamp_id clamp_id;
8754 	unsigned int clamps;
8755 
8756 	css_for_each_descendant_pre(css, top_css) {
8757 		uc_parent = css_tg(css)->parent
8758 			? css_tg(css)->parent->uclamp : NULL;
8759 
8760 		for_each_clamp_id(clamp_id) {
8761 			/* Assume effective clamps matches requested clamps */
8762 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8763 			/* Cap effective clamps with parent's effective clamps */
8764 			if (uc_parent &&
8765 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8766 				eff[clamp_id] = uc_parent[clamp_id].value;
8767 			}
8768 		}
8769 		/* Ensure protection is always capped by limit */
8770 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8771 
8772 		/* Propagate most restrictive effective clamps */
8773 		clamps = 0x0;
8774 		uc_se = css_tg(css)->uclamp;
8775 		for_each_clamp_id(clamp_id) {
8776 			if (eff[clamp_id] == uc_se[clamp_id].value)
8777 				continue;
8778 			uc_se[clamp_id].value = eff[clamp_id];
8779 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8780 			clamps |= (0x1 << clamp_id);
8781 		}
8782 		if (!clamps) {
8783 			css = css_rightmost_descendant(css);
8784 			continue;
8785 		}
8786 
8787 		/* Immediately update descendants RUNNABLE tasks */
8788 		uclamp_update_active_tasks(css, clamps);
8789 	}
8790 }
8791 
8792 /*
8793  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8794  * C expression. Since there is no way to convert a macro argument (N) into a
8795  * character constant, use two levels of macros.
8796  */
8797 #define _POW10(exp) ((unsigned int)1e##exp)
8798 #define POW10(exp) _POW10(exp)
8799 
8800 struct uclamp_request {
8801 #define UCLAMP_PERCENT_SHIFT	2
8802 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8803 	s64 percent;
8804 	u64 util;
8805 	int ret;
8806 };
8807 
8808 static inline struct uclamp_request
8809 capacity_from_percent(char *buf)
8810 {
8811 	struct uclamp_request req = {
8812 		.percent = UCLAMP_PERCENT_SCALE,
8813 		.util = SCHED_CAPACITY_SCALE,
8814 		.ret = 0,
8815 	};
8816 
8817 	buf = strim(buf);
8818 	if (strcmp(buf, "max")) {
8819 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8820 					     &req.percent);
8821 		if (req.ret)
8822 			return req;
8823 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8824 			req.ret = -ERANGE;
8825 			return req;
8826 		}
8827 
8828 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8829 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8830 	}
8831 
8832 	return req;
8833 }
8834 
8835 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8836 				size_t nbytes, loff_t off,
8837 				enum uclamp_id clamp_id)
8838 {
8839 	struct uclamp_request req;
8840 	struct task_group *tg;
8841 
8842 	req = capacity_from_percent(buf);
8843 	if (req.ret)
8844 		return req.ret;
8845 
8846 	static_branch_enable(&sched_uclamp_used);
8847 
8848 	mutex_lock(&uclamp_mutex);
8849 	rcu_read_lock();
8850 
8851 	tg = css_tg(of_css(of));
8852 	if (tg->uclamp_req[clamp_id].value != req.util)
8853 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8854 
8855 	/*
8856 	 * Because of not recoverable conversion rounding we keep track of the
8857 	 * exact requested value
8858 	 */
8859 	tg->uclamp_pct[clamp_id] = req.percent;
8860 
8861 	/* Update effective clamps to track the most restrictive value */
8862 	cpu_util_update_eff(of_css(of));
8863 
8864 	rcu_read_unlock();
8865 	mutex_unlock(&uclamp_mutex);
8866 
8867 	return nbytes;
8868 }
8869 
8870 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8871 				    char *buf, size_t nbytes,
8872 				    loff_t off)
8873 {
8874 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8875 }
8876 
8877 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8878 				    char *buf, size_t nbytes,
8879 				    loff_t off)
8880 {
8881 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8882 }
8883 
8884 static inline void cpu_uclamp_print(struct seq_file *sf,
8885 				    enum uclamp_id clamp_id)
8886 {
8887 	struct task_group *tg;
8888 	u64 util_clamp;
8889 	u64 percent;
8890 	u32 rem;
8891 
8892 	rcu_read_lock();
8893 	tg = css_tg(seq_css(sf));
8894 	util_clamp = tg->uclamp_req[clamp_id].value;
8895 	rcu_read_unlock();
8896 
8897 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8898 		seq_puts(sf, "max\n");
8899 		return;
8900 	}
8901 
8902 	percent = tg->uclamp_pct[clamp_id];
8903 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8904 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8905 }
8906 
8907 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8908 {
8909 	cpu_uclamp_print(sf, UCLAMP_MIN);
8910 	return 0;
8911 }
8912 
8913 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8914 {
8915 	cpu_uclamp_print(sf, UCLAMP_MAX);
8916 	return 0;
8917 }
8918 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8919 
8920 #ifdef CONFIG_FAIR_GROUP_SCHED
8921 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8922 				struct cftype *cftype, u64 shareval)
8923 {
8924 	if (shareval > scale_load_down(ULONG_MAX))
8925 		shareval = MAX_SHARES;
8926 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8927 }
8928 
8929 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8930 			       struct cftype *cft)
8931 {
8932 	struct task_group *tg = css_tg(css);
8933 
8934 	return (u64) scale_load_down(tg->shares);
8935 }
8936 
8937 #ifdef CONFIG_CFS_BANDWIDTH
8938 static DEFINE_MUTEX(cfs_constraints_mutex);
8939 
8940 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8941 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8942 /* More than 203 days if BW_SHIFT equals 20. */
8943 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8944 
8945 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8946 
8947 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8948 {
8949 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8950 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8951 
8952 	if (tg == &root_task_group)
8953 		return -EINVAL;
8954 
8955 	/*
8956 	 * Ensure we have at some amount of bandwidth every period.  This is
8957 	 * to prevent reaching a state of large arrears when throttled via
8958 	 * entity_tick() resulting in prolonged exit starvation.
8959 	 */
8960 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8961 		return -EINVAL;
8962 
8963 	/*
8964 	 * Likewise, bound things on the otherside by preventing insane quota
8965 	 * periods.  This also allows us to normalize in computing quota
8966 	 * feasibility.
8967 	 */
8968 	if (period > max_cfs_quota_period)
8969 		return -EINVAL;
8970 
8971 	/*
8972 	 * Bound quota to defend quota against overflow during bandwidth shift.
8973 	 */
8974 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8975 		return -EINVAL;
8976 
8977 	/*
8978 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8979 	 * unthrottle_offline_cfs_rqs().
8980 	 */
8981 	get_online_cpus();
8982 	mutex_lock(&cfs_constraints_mutex);
8983 	ret = __cfs_schedulable(tg, period, quota);
8984 	if (ret)
8985 		goto out_unlock;
8986 
8987 	runtime_enabled = quota != RUNTIME_INF;
8988 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8989 	/*
8990 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8991 	 * before making related changes, and on->off must occur afterwards
8992 	 */
8993 	if (runtime_enabled && !runtime_was_enabled)
8994 		cfs_bandwidth_usage_inc();
8995 	raw_spin_lock_irq(&cfs_b->lock);
8996 	cfs_b->period = ns_to_ktime(period);
8997 	cfs_b->quota = quota;
8998 
8999 	__refill_cfs_bandwidth_runtime(cfs_b);
9000 
9001 	/* Restart the period timer (if active) to handle new period expiry: */
9002 	if (runtime_enabled)
9003 		start_cfs_bandwidth(cfs_b);
9004 
9005 	raw_spin_unlock_irq(&cfs_b->lock);
9006 
9007 	for_each_online_cpu(i) {
9008 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9009 		struct rq *rq = cfs_rq->rq;
9010 		struct rq_flags rf;
9011 
9012 		rq_lock_irq(rq, &rf);
9013 		cfs_rq->runtime_enabled = runtime_enabled;
9014 		cfs_rq->runtime_remaining = 0;
9015 
9016 		if (cfs_rq->throttled)
9017 			unthrottle_cfs_rq(cfs_rq);
9018 		rq_unlock_irq(rq, &rf);
9019 	}
9020 	if (runtime_was_enabled && !runtime_enabled)
9021 		cfs_bandwidth_usage_dec();
9022 out_unlock:
9023 	mutex_unlock(&cfs_constraints_mutex);
9024 	put_online_cpus();
9025 
9026 	return ret;
9027 }
9028 
9029 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9030 {
9031 	u64 quota, period;
9032 
9033 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9034 	if (cfs_quota_us < 0)
9035 		quota = RUNTIME_INF;
9036 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9037 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9038 	else
9039 		return -EINVAL;
9040 
9041 	return tg_set_cfs_bandwidth(tg, period, quota);
9042 }
9043 
9044 static long tg_get_cfs_quota(struct task_group *tg)
9045 {
9046 	u64 quota_us;
9047 
9048 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9049 		return -1;
9050 
9051 	quota_us = tg->cfs_bandwidth.quota;
9052 	do_div(quota_us, NSEC_PER_USEC);
9053 
9054 	return quota_us;
9055 }
9056 
9057 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9058 {
9059 	u64 quota, period;
9060 
9061 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9062 		return -EINVAL;
9063 
9064 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9065 	quota = tg->cfs_bandwidth.quota;
9066 
9067 	return tg_set_cfs_bandwidth(tg, period, quota);
9068 }
9069 
9070 static long tg_get_cfs_period(struct task_group *tg)
9071 {
9072 	u64 cfs_period_us;
9073 
9074 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9075 	do_div(cfs_period_us, NSEC_PER_USEC);
9076 
9077 	return cfs_period_us;
9078 }
9079 
9080 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9081 				  struct cftype *cft)
9082 {
9083 	return tg_get_cfs_quota(css_tg(css));
9084 }
9085 
9086 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9087 				   struct cftype *cftype, s64 cfs_quota_us)
9088 {
9089 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9090 }
9091 
9092 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9093 				   struct cftype *cft)
9094 {
9095 	return tg_get_cfs_period(css_tg(css));
9096 }
9097 
9098 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9099 				    struct cftype *cftype, u64 cfs_period_us)
9100 {
9101 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9102 }
9103 
9104 struct cfs_schedulable_data {
9105 	struct task_group *tg;
9106 	u64 period, quota;
9107 };
9108 
9109 /*
9110  * normalize group quota/period to be quota/max_period
9111  * note: units are usecs
9112  */
9113 static u64 normalize_cfs_quota(struct task_group *tg,
9114 			       struct cfs_schedulable_data *d)
9115 {
9116 	u64 quota, period;
9117 
9118 	if (tg == d->tg) {
9119 		period = d->period;
9120 		quota = d->quota;
9121 	} else {
9122 		period = tg_get_cfs_period(tg);
9123 		quota = tg_get_cfs_quota(tg);
9124 	}
9125 
9126 	/* note: these should typically be equivalent */
9127 	if (quota == RUNTIME_INF || quota == -1)
9128 		return RUNTIME_INF;
9129 
9130 	return to_ratio(period, quota);
9131 }
9132 
9133 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9134 {
9135 	struct cfs_schedulable_data *d = data;
9136 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9137 	s64 quota = 0, parent_quota = -1;
9138 
9139 	if (!tg->parent) {
9140 		quota = RUNTIME_INF;
9141 	} else {
9142 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9143 
9144 		quota = normalize_cfs_quota(tg, d);
9145 		parent_quota = parent_b->hierarchical_quota;
9146 
9147 		/*
9148 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9149 		 * always take the min.  On cgroup1, only inherit when no
9150 		 * limit is set:
9151 		 */
9152 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9153 			quota = min(quota, parent_quota);
9154 		} else {
9155 			if (quota == RUNTIME_INF)
9156 				quota = parent_quota;
9157 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9158 				return -EINVAL;
9159 		}
9160 	}
9161 	cfs_b->hierarchical_quota = quota;
9162 
9163 	return 0;
9164 }
9165 
9166 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9167 {
9168 	int ret;
9169 	struct cfs_schedulable_data data = {
9170 		.tg = tg,
9171 		.period = period,
9172 		.quota = quota,
9173 	};
9174 
9175 	if (quota != RUNTIME_INF) {
9176 		do_div(data.period, NSEC_PER_USEC);
9177 		do_div(data.quota, NSEC_PER_USEC);
9178 	}
9179 
9180 	rcu_read_lock();
9181 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9182 	rcu_read_unlock();
9183 
9184 	return ret;
9185 }
9186 
9187 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9188 {
9189 	struct task_group *tg = css_tg(seq_css(sf));
9190 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9191 
9192 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9193 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9194 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9195 
9196 	if (schedstat_enabled() && tg != &root_task_group) {
9197 		u64 ws = 0;
9198 		int i;
9199 
9200 		for_each_possible_cpu(i)
9201 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9202 
9203 		seq_printf(sf, "wait_sum %llu\n", ws);
9204 	}
9205 
9206 	return 0;
9207 }
9208 #endif /* CONFIG_CFS_BANDWIDTH */
9209 #endif /* CONFIG_FAIR_GROUP_SCHED */
9210 
9211 #ifdef CONFIG_RT_GROUP_SCHED
9212 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9213 				struct cftype *cft, s64 val)
9214 {
9215 	return sched_group_set_rt_runtime(css_tg(css), val);
9216 }
9217 
9218 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9219 			       struct cftype *cft)
9220 {
9221 	return sched_group_rt_runtime(css_tg(css));
9222 }
9223 
9224 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9225 				    struct cftype *cftype, u64 rt_period_us)
9226 {
9227 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9228 }
9229 
9230 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9231 				   struct cftype *cft)
9232 {
9233 	return sched_group_rt_period(css_tg(css));
9234 }
9235 #endif /* CONFIG_RT_GROUP_SCHED */
9236 
9237 static struct cftype cpu_legacy_files[] = {
9238 #ifdef CONFIG_FAIR_GROUP_SCHED
9239 	{
9240 		.name = "shares",
9241 		.read_u64 = cpu_shares_read_u64,
9242 		.write_u64 = cpu_shares_write_u64,
9243 	},
9244 #endif
9245 #ifdef CONFIG_CFS_BANDWIDTH
9246 	{
9247 		.name = "cfs_quota_us",
9248 		.read_s64 = cpu_cfs_quota_read_s64,
9249 		.write_s64 = cpu_cfs_quota_write_s64,
9250 	},
9251 	{
9252 		.name = "cfs_period_us",
9253 		.read_u64 = cpu_cfs_period_read_u64,
9254 		.write_u64 = cpu_cfs_period_write_u64,
9255 	},
9256 	{
9257 		.name = "stat",
9258 		.seq_show = cpu_cfs_stat_show,
9259 	},
9260 #endif
9261 #ifdef CONFIG_RT_GROUP_SCHED
9262 	{
9263 		.name = "rt_runtime_us",
9264 		.read_s64 = cpu_rt_runtime_read,
9265 		.write_s64 = cpu_rt_runtime_write,
9266 	},
9267 	{
9268 		.name = "rt_period_us",
9269 		.read_u64 = cpu_rt_period_read_uint,
9270 		.write_u64 = cpu_rt_period_write_uint,
9271 	},
9272 #endif
9273 #ifdef CONFIG_UCLAMP_TASK_GROUP
9274 	{
9275 		.name = "uclamp.min",
9276 		.flags = CFTYPE_NOT_ON_ROOT,
9277 		.seq_show = cpu_uclamp_min_show,
9278 		.write = cpu_uclamp_min_write,
9279 	},
9280 	{
9281 		.name = "uclamp.max",
9282 		.flags = CFTYPE_NOT_ON_ROOT,
9283 		.seq_show = cpu_uclamp_max_show,
9284 		.write = cpu_uclamp_max_write,
9285 	},
9286 #endif
9287 	{ }	/* Terminate */
9288 };
9289 
9290 static int cpu_extra_stat_show(struct seq_file *sf,
9291 			       struct cgroup_subsys_state *css)
9292 {
9293 #ifdef CONFIG_CFS_BANDWIDTH
9294 	{
9295 		struct task_group *tg = css_tg(css);
9296 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9297 		u64 throttled_usec;
9298 
9299 		throttled_usec = cfs_b->throttled_time;
9300 		do_div(throttled_usec, NSEC_PER_USEC);
9301 
9302 		seq_printf(sf, "nr_periods %d\n"
9303 			   "nr_throttled %d\n"
9304 			   "throttled_usec %llu\n",
9305 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9306 			   throttled_usec);
9307 	}
9308 #endif
9309 	return 0;
9310 }
9311 
9312 #ifdef CONFIG_FAIR_GROUP_SCHED
9313 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9314 			       struct cftype *cft)
9315 {
9316 	struct task_group *tg = css_tg(css);
9317 	u64 weight = scale_load_down(tg->shares);
9318 
9319 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9320 }
9321 
9322 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9323 				struct cftype *cft, u64 weight)
9324 {
9325 	/*
9326 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9327 	 * values which are 1, 100 and 10000 respectively.  While it loses
9328 	 * a bit of range on both ends, it maps pretty well onto the shares
9329 	 * value used by scheduler and the round-trip conversions preserve
9330 	 * the original value over the entire range.
9331 	 */
9332 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9333 		return -ERANGE;
9334 
9335 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9336 
9337 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9338 }
9339 
9340 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9341 				    struct cftype *cft)
9342 {
9343 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9344 	int last_delta = INT_MAX;
9345 	int prio, delta;
9346 
9347 	/* find the closest nice value to the current weight */
9348 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9349 		delta = abs(sched_prio_to_weight[prio] - weight);
9350 		if (delta >= last_delta)
9351 			break;
9352 		last_delta = delta;
9353 	}
9354 
9355 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9356 }
9357 
9358 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9359 				     struct cftype *cft, s64 nice)
9360 {
9361 	unsigned long weight;
9362 	int idx;
9363 
9364 	if (nice < MIN_NICE || nice > MAX_NICE)
9365 		return -ERANGE;
9366 
9367 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9368 	idx = array_index_nospec(idx, 40);
9369 	weight = sched_prio_to_weight[idx];
9370 
9371 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9372 }
9373 #endif
9374 
9375 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9376 						  long period, long quota)
9377 {
9378 	if (quota < 0)
9379 		seq_puts(sf, "max");
9380 	else
9381 		seq_printf(sf, "%ld", quota);
9382 
9383 	seq_printf(sf, " %ld\n", period);
9384 }
9385 
9386 /* caller should put the current value in *@periodp before calling */
9387 static int __maybe_unused cpu_period_quota_parse(char *buf,
9388 						 u64 *periodp, u64 *quotap)
9389 {
9390 	char tok[21];	/* U64_MAX */
9391 
9392 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9393 		return -EINVAL;
9394 
9395 	*periodp *= NSEC_PER_USEC;
9396 
9397 	if (sscanf(tok, "%llu", quotap))
9398 		*quotap *= NSEC_PER_USEC;
9399 	else if (!strcmp(tok, "max"))
9400 		*quotap = RUNTIME_INF;
9401 	else
9402 		return -EINVAL;
9403 
9404 	return 0;
9405 }
9406 
9407 #ifdef CONFIG_CFS_BANDWIDTH
9408 static int cpu_max_show(struct seq_file *sf, void *v)
9409 {
9410 	struct task_group *tg = css_tg(seq_css(sf));
9411 
9412 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9413 	return 0;
9414 }
9415 
9416 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9417 			     char *buf, size_t nbytes, loff_t off)
9418 {
9419 	struct task_group *tg = css_tg(of_css(of));
9420 	u64 period = tg_get_cfs_period(tg);
9421 	u64 quota;
9422 	int ret;
9423 
9424 	ret = cpu_period_quota_parse(buf, &period, &quota);
9425 	if (!ret)
9426 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9427 	return ret ?: nbytes;
9428 }
9429 #endif
9430 
9431 static struct cftype cpu_files[] = {
9432 #ifdef CONFIG_FAIR_GROUP_SCHED
9433 	{
9434 		.name = "weight",
9435 		.flags = CFTYPE_NOT_ON_ROOT,
9436 		.read_u64 = cpu_weight_read_u64,
9437 		.write_u64 = cpu_weight_write_u64,
9438 	},
9439 	{
9440 		.name = "weight.nice",
9441 		.flags = CFTYPE_NOT_ON_ROOT,
9442 		.read_s64 = cpu_weight_nice_read_s64,
9443 		.write_s64 = cpu_weight_nice_write_s64,
9444 	},
9445 #endif
9446 #ifdef CONFIG_CFS_BANDWIDTH
9447 	{
9448 		.name = "max",
9449 		.flags = CFTYPE_NOT_ON_ROOT,
9450 		.seq_show = cpu_max_show,
9451 		.write = cpu_max_write,
9452 	},
9453 #endif
9454 #ifdef CONFIG_UCLAMP_TASK_GROUP
9455 	{
9456 		.name = "uclamp.min",
9457 		.flags = CFTYPE_NOT_ON_ROOT,
9458 		.seq_show = cpu_uclamp_min_show,
9459 		.write = cpu_uclamp_min_write,
9460 	},
9461 	{
9462 		.name = "uclamp.max",
9463 		.flags = CFTYPE_NOT_ON_ROOT,
9464 		.seq_show = cpu_uclamp_max_show,
9465 		.write = cpu_uclamp_max_write,
9466 	},
9467 #endif
9468 	{ }	/* terminate */
9469 };
9470 
9471 struct cgroup_subsys cpu_cgrp_subsys = {
9472 	.css_alloc	= cpu_cgroup_css_alloc,
9473 	.css_online	= cpu_cgroup_css_online,
9474 	.css_released	= cpu_cgroup_css_released,
9475 	.css_free	= cpu_cgroup_css_free,
9476 	.css_extra_stat_show = cpu_extra_stat_show,
9477 	.fork		= cpu_cgroup_fork,
9478 	.can_attach	= cpu_cgroup_can_attach,
9479 	.attach		= cpu_cgroup_attach,
9480 	.legacy_cftypes	= cpu_legacy_files,
9481 	.dfl_cftypes	= cpu_files,
9482 	.early_init	= true,
9483 	.threaded	= true,
9484 };
9485 
9486 #endif	/* CONFIG_CGROUP_SCHED */
9487 
9488 void dump_cpu_task(int cpu)
9489 {
9490 	pr_info("Task dump for CPU %d:\n", cpu);
9491 	sched_show_task(cpu_curr(cpu));
9492 }
9493 
9494 /*
9495  * Nice levels are multiplicative, with a gentle 10% change for every
9496  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9497  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9498  * that remained on nice 0.
9499  *
9500  * The "10% effect" is relative and cumulative: from _any_ nice level,
9501  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9502  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9503  * If a task goes up by ~10% and another task goes down by ~10% then
9504  * the relative distance between them is ~25%.)
9505  */
9506 const int sched_prio_to_weight[40] = {
9507  /* -20 */     88761,     71755,     56483,     46273,     36291,
9508  /* -15 */     29154,     23254,     18705,     14949,     11916,
9509  /* -10 */      9548,      7620,      6100,      4904,      3906,
9510  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9511  /*   0 */      1024,       820,       655,       526,       423,
9512  /*   5 */       335,       272,       215,       172,       137,
9513  /*  10 */       110,        87,        70,        56,        45,
9514  /*  15 */        36,        29,        23,        18,        15,
9515 };
9516 
9517 /*
9518  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9519  *
9520  * In cases where the weight does not change often, we can use the
9521  * precalculated inverse to speed up arithmetics by turning divisions
9522  * into multiplications:
9523  */
9524 const u32 sched_prio_to_wmult[40] = {
9525  /* -20 */     48388,     59856,     76040,     92818,    118348,
9526  /* -15 */    147320,    184698,    229616,    287308,    360437,
9527  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9528  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9529  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9530  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9531  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9532  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9533 };
9534 
9535 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9536 {
9537         trace_sched_update_nr_running_tp(rq, count);
9538 }
9539