xref: /openbmc/linux/kernel/sched/core.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <asm/switch_to.h>
11 #include <asm/tlb.h>
12 
13 #include "../workqueue_internal.h"
14 #include "../smpboot.h"
15 
16 #define CREATE_TRACE_POINTS
17 #include <trace/events/sched.h>
18 
19 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
20 
21 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
22 /*
23  * Debugging: various feature bits
24  *
25  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
26  * sysctl_sched_features, defined in sched.h, to allow constants propagation
27  * at compile time and compiler optimization based on features default.
28  */
29 #define SCHED_FEAT(name, enabled)	\
30 	(1UL << __SCHED_FEAT_##name) * enabled |
31 const_debug unsigned int sysctl_sched_features =
32 #include "features.h"
33 	0;
34 #undef SCHED_FEAT
35 #endif
36 
37 /*
38  * Number of tasks to iterate in a single balance run.
39  * Limited because this is done with IRQs disabled.
40  */
41 const_debug unsigned int sysctl_sched_nr_migrate = 32;
42 
43 /*
44  * period over which we average the RT time consumption, measured
45  * in ms.
46  *
47  * default: 1s
48  */
49 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
50 
51 /*
52  * period over which we measure -rt task CPU usage in us.
53  * default: 1s
54  */
55 unsigned int sysctl_sched_rt_period = 1000000;
56 
57 __read_mostly int scheduler_running;
58 
59 /*
60  * part of the period that we allow rt tasks to run in us.
61  * default: 0.95s
62  */
63 int sysctl_sched_rt_runtime = 950000;
64 
65 /*
66  * __task_rq_lock - lock the rq @p resides on.
67  */
68 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
69 	__acquires(rq->lock)
70 {
71 	struct rq *rq;
72 
73 	lockdep_assert_held(&p->pi_lock);
74 
75 	for (;;) {
76 		rq = task_rq(p);
77 		raw_spin_lock(&rq->lock);
78 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
79 			rq_pin_lock(rq, rf);
80 			return rq;
81 		}
82 		raw_spin_unlock(&rq->lock);
83 
84 		while (unlikely(task_on_rq_migrating(p)))
85 			cpu_relax();
86 	}
87 }
88 
89 /*
90  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
91  */
92 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 	__acquires(p->pi_lock)
94 	__acquires(rq->lock)
95 {
96 	struct rq *rq;
97 
98 	for (;;) {
99 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
100 		rq = task_rq(p);
101 		raw_spin_lock(&rq->lock);
102 		/*
103 		 *	move_queued_task()		task_rq_lock()
104 		 *
105 		 *	ACQUIRE (rq->lock)
106 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
107 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
108 		 *	[S] ->cpu = new_cpu		[L] task_rq()
109 		 *					[L] ->on_rq
110 		 *	RELEASE (rq->lock)
111 		 *
112 		 * If we observe the old CPU in task_rq_lock, the acquire of
113 		 * the old rq->lock will fully serialize against the stores.
114 		 *
115 		 * If we observe the new CPU in task_rq_lock, the acquire will
116 		 * pair with the WMB to ensure we must then also see migrating.
117 		 */
118 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
119 			rq_pin_lock(rq, rf);
120 			return rq;
121 		}
122 		raw_spin_unlock(&rq->lock);
123 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124 
125 		while (unlikely(task_on_rq_migrating(p)))
126 			cpu_relax();
127 	}
128 }
129 
130 /*
131  * RQ-clock updating methods:
132  */
133 
134 static void update_rq_clock_task(struct rq *rq, s64 delta)
135 {
136 /*
137  * In theory, the compile should just see 0 here, and optimize out the call
138  * to sched_rt_avg_update. But I don't trust it...
139  */
140 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
141 	s64 steal = 0, irq_delta = 0;
142 #endif
143 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
144 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145 
146 	/*
147 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
148 	 * this case when a previous update_rq_clock() happened inside a
149 	 * {soft,}irq region.
150 	 *
151 	 * When this happens, we stop ->clock_task and only update the
152 	 * prev_irq_time stamp to account for the part that fit, so that a next
153 	 * update will consume the rest. This ensures ->clock_task is
154 	 * monotonic.
155 	 *
156 	 * It does however cause some slight miss-attribution of {soft,}irq
157 	 * time, a more accurate solution would be to update the irq_time using
158 	 * the current rq->clock timestamp, except that would require using
159 	 * atomic ops.
160 	 */
161 	if (irq_delta > delta)
162 		irq_delta = delta;
163 
164 	rq->prev_irq_time += irq_delta;
165 	delta -= irq_delta;
166 #endif
167 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
168 	if (static_key_false((&paravirt_steal_rq_enabled))) {
169 		steal = paravirt_steal_clock(cpu_of(rq));
170 		steal -= rq->prev_steal_time_rq;
171 
172 		if (unlikely(steal > delta))
173 			steal = delta;
174 
175 		rq->prev_steal_time_rq += steal;
176 		delta -= steal;
177 	}
178 #endif
179 
180 	rq->clock_task += delta;
181 
182 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
183 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
184 		sched_rt_avg_update(rq, irq_delta + steal);
185 #endif
186 }
187 
188 void update_rq_clock(struct rq *rq)
189 {
190 	s64 delta;
191 
192 	lockdep_assert_held(&rq->lock);
193 
194 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 		return;
196 
197 #ifdef CONFIG_SCHED_DEBUG
198 	if (sched_feat(WARN_DOUBLE_CLOCK))
199 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
200 	rq->clock_update_flags |= RQCF_UPDATED;
201 #endif
202 
203 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
204 	if (delta < 0)
205 		return;
206 	rq->clock += delta;
207 	update_rq_clock_task(rq, delta);
208 }
209 
210 
211 #ifdef CONFIG_SCHED_HRTICK
212 /*
213  * Use HR-timers to deliver accurate preemption points.
214  */
215 
216 static void hrtick_clear(struct rq *rq)
217 {
218 	if (hrtimer_active(&rq->hrtick_timer))
219 		hrtimer_cancel(&rq->hrtick_timer);
220 }
221 
222 /*
223  * High-resolution timer tick.
224  * Runs from hardirq context with interrupts disabled.
225  */
226 static enum hrtimer_restart hrtick(struct hrtimer *timer)
227 {
228 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
229 	struct rq_flags rf;
230 
231 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
232 
233 	rq_lock(rq, &rf);
234 	update_rq_clock(rq);
235 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
236 	rq_unlock(rq, &rf);
237 
238 	return HRTIMER_NORESTART;
239 }
240 
241 #ifdef CONFIG_SMP
242 
243 static void __hrtick_restart(struct rq *rq)
244 {
245 	struct hrtimer *timer = &rq->hrtick_timer;
246 
247 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
248 }
249 
250 /*
251  * called from hardirq (IPI) context
252  */
253 static void __hrtick_start(void *arg)
254 {
255 	struct rq *rq = arg;
256 	struct rq_flags rf;
257 
258 	rq_lock(rq, &rf);
259 	__hrtick_restart(rq);
260 	rq->hrtick_csd_pending = 0;
261 	rq_unlock(rq, &rf);
262 }
263 
264 /*
265  * Called to set the hrtick timer state.
266  *
267  * called with rq->lock held and irqs disabled
268  */
269 void hrtick_start(struct rq *rq, u64 delay)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 	ktime_t time;
273 	s64 delta;
274 
275 	/*
276 	 * Don't schedule slices shorter than 10000ns, that just
277 	 * doesn't make sense and can cause timer DoS.
278 	 */
279 	delta = max_t(s64, delay, 10000LL);
280 	time = ktime_add_ns(timer->base->get_time(), delta);
281 
282 	hrtimer_set_expires(timer, time);
283 
284 	if (rq == this_rq()) {
285 		__hrtick_restart(rq);
286 	} else if (!rq->hrtick_csd_pending) {
287 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
288 		rq->hrtick_csd_pending = 1;
289 	}
290 }
291 
292 #else
293 /*
294  * Called to set the hrtick timer state.
295  *
296  * called with rq->lock held and irqs disabled
297  */
298 void hrtick_start(struct rq *rq, u64 delay)
299 {
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense. Rely on vruntime for fairness.
303 	 */
304 	delay = max_t(u64, delay, 10000LL);
305 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
306 		      HRTIMER_MODE_REL_PINNED);
307 }
308 #endif /* CONFIG_SMP */
309 
310 static void hrtick_rq_init(struct rq *rq)
311 {
312 #ifdef CONFIG_SMP
313 	rq->hrtick_csd_pending = 0;
314 
315 	rq->hrtick_csd.flags = 0;
316 	rq->hrtick_csd.func = __hrtick_start;
317 	rq->hrtick_csd.info = rq;
318 #endif
319 
320 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
321 	rq->hrtick_timer.function = hrtick;
322 }
323 #else	/* CONFIG_SCHED_HRTICK */
324 static inline void hrtick_clear(struct rq *rq)
325 {
326 }
327 
328 static inline void hrtick_rq_init(struct rq *rq)
329 {
330 }
331 #endif	/* CONFIG_SCHED_HRTICK */
332 
333 /*
334  * cmpxchg based fetch_or, macro so it works for different integer types
335  */
336 #define fetch_or(ptr, mask)						\
337 	({								\
338 		typeof(ptr) _ptr = (ptr);				\
339 		typeof(mask) _mask = (mask);				\
340 		typeof(*_ptr) _old, _val = *_ptr;			\
341 									\
342 		for (;;) {						\
343 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
344 			if (_old == _val)				\
345 				break;					\
346 			_val = _old;					\
347 		}							\
348 	_old;								\
349 })
350 
351 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
352 /*
353  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
354  * this avoids any races wrt polling state changes and thereby avoids
355  * spurious IPIs.
356  */
357 static bool set_nr_and_not_polling(struct task_struct *p)
358 {
359 	struct thread_info *ti = task_thread_info(p);
360 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361 }
362 
363 /*
364  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365  *
366  * If this returns true, then the idle task promises to call
367  * sched_ttwu_pending() and reschedule soon.
368  */
369 static bool set_nr_if_polling(struct task_struct *p)
370 {
371 	struct thread_info *ti = task_thread_info(p);
372 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
373 
374 	for (;;) {
375 		if (!(val & _TIF_POLLING_NRFLAG))
376 			return false;
377 		if (val & _TIF_NEED_RESCHED)
378 			return true;
379 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
380 		if (old == val)
381 			break;
382 		val = old;
383 	}
384 	return true;
385 }
386 
387 #else
388 static bool set_nr_and_not_polling(struct task_struct *p)
389 {
390 	set_tsk_need_resched(p);
391 	return true;
392 }
393 
394 #ifdef CONFIG_SMP
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	return false;
398 }
399 #endif
400 #endif
401 
402 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
403 {
404 	struct wake_q_node *node = &task->wake_q;
405 
406 	/*
407 	 * Atomically grab the task, if ->wake_q is !nil already it means
408 	 * its already queued (either by us or someone else) and will get the
409 	 * wakeup due to that.
410 	 *
411 	 * This cmpxchg() implies a full barrier, which pairs with the write
412 	 * barrier implied by the wakeup in wake_up_q().
413 	 */
414 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
415 		return;
416 
417 	get_task_struct(task);
418 
419 	/*
420 	 * The head is context local, there can be no concurrency.
421 	 */
422 	*head->lastp = node;
423 	head->lastp = &node->next;
424 }
425 
426 void wake_up_q(struct wake_q_head *head)
427 {
428 	struct wake_q_node *node = head->first;
429 
430 	while (node != WAKE_Q_TAIL) {
431 		struct task_struct *task;
432 
433 		task = container_of(node, struct task_struct, wake_q);
434 		BUG_ON(!task);
435 		/* Task can safely be re-inserted now: */
436 		node = node->next;
437 		task->wake_q.next = NULL;
438 
439 		/*
440 		 * wake_up_process() implies a wmb() to pair with the queueing
441 		 * in wake_q_add() so as not to miss wakeups.
442 		 */
443 		wake_up_process(task);
444 		put_task_struct(task);
445 	}
446 }
447 
448 /*
449  * resched_curr - mark rq's current task 'to be rescheduled now'.
450  *
451  * On UP this means the setting of the need_resched flag, on SMP it
452  * might also involve a cross-CPU call to trigger the scheduler on
453  * the target CPU.
454  */
455 void resched_curr(struct rq *rq)
456 {
457 	struct task_struct *curr = rq->curr;
458 	int cpu;
459 
460 	lockdep_assert_held(&rq->lock);
461 
462 	if (test_tsk_need_resched(curr))
463 		return;
464 
465 	cpu = cpu_of(rq);
466 
467 	if (cpu == smp_processor_id()) {
468 		set_tsk_need_resched(curr);
469 		set_preempt_need_resched();
470 		return;
471 	}
472 
473 	if (set_nr_and_not_polling(curr))
474 		smp_send_reschedule(cpu);
475 	else
476 		trace_sched_wake_idle_without_ipi(cpu);
477 }
478 
479 void resched_cpu(int cpu)
480 {
481 	struct rq *rq = cpu_rq(cpu);
482 	unsigned long flags;
483 
484 	raw_spin_lock_irqsave(&rq->lock, flags);
485 	if (cpu_online(cpu) || cpu == smp_processor_id())
486 		resched_curr(rq);
487 	raw_spin_unlock_irqrestore(&rq->lock, flags);
488 }
489 
490 #ifdef CONFIG_SMP
491 #ifdef CONFIG_NO_HZ_COMMON
492 /*
493  * In the semi idle case, use the nearest busy CPU for migrating timers
494  * from an idle CPU.  This is good for power-savings.
495  *
496  * We don't do similar optimization for completely idle system, as
497  * selecting an idle CPU will add more delays to the timers than intended
498  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
499  */
500 int get_nohz_timer_target(void)
501 {
502 	int i, cpu = smp_processor_id();
503 	struct sched_domain *sd;
504 
505 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
506 		return cpu;
507 
508 	rcu_read_lock();
509 	for_each_domain(cpu, sd) {
510 		for_each_cpu(i, sched_domain_span(sd)) {
511 			if (cpu == i)
512 				continue;
513 
514 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
515 				cpu = i;
516 				goto unlock;
517 			}
518 		}
519 	}
520 
521 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
522 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
523 unlock:
524 	rcu_read_unlock();
525 	return cpu;
526 }
527 
528 /*
529  * When add_timer_on() enqueues a timer into the timer wheel of an
530  * idle CPU then this timer might expire before the next timer event
531  * which is scheduled to wake up that CPU. In case of a completely
532  * idle system the next event might even be infinite time into the
533  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
534  * leaves the inner idle loop so the newly added timer is taken into
535  * account when the CPU goes back to idle and evaluates the timer
536  * wheel for the next timer event.
537  */
538 static void wake_up_idle_cpu(int cpu)
539 {
540 	struct rq *rq = cpu_rq(cpu);
541 
542 	if (cpu == smp_processor_id())
543 		return;
544 
545 	if (set_nr_and_not_polling(rq->idle))
546 		smp_send_reschedule(cpu);
547 	else
548 		trace_sched_wake_idle_without_ipi(cpu);
549 }
550 
551 static bool wake_up_full_nohz_cpu(int cpu)
552 {
553 	/*
554 	 * We just need the target to call irq_exit() and re-evaluate
555 	 * the next tick. The nohz full kick at least implies that.
556 	 * If needed we can still optimize that later with an
557 	 * empty IRQ.
558 	 */
559 	if (cpu_is_offline(cpu))
560 		return true;  /* Don't try to wake offline CPUs. */
561 	if (tick_nohz_full_cpu(cpu)) {
562 		if (cpu != smp_processor_id() ||
563 		    tick_nohz_tick_stopped())
564 			tick_nohz_full_kick_cpu(cpu);
565 		return true;
566 	}
567 
568 	return false;
569 }
570 
571 /*
572  * Wake up the specified CPU.  If the CPU is going offline, it is the
573  * caller's responsibility to deal with the lost wakeup, for example,
574  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
575  */
576 void wake_up_nohz_cpu(int cpu)
577 {
578 	if (!wake_up_full_nohz_cpu(cpu))
579 		wake_up_idle_cpu(cpu);
580 }
581 
582 static inline bool got_nohz_idle_kick(void)
583 {
584 	int cpu = smp_processor_id();
585 
586 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
587 		return false;
588 
589 	if (idle_cpu(cpu) && !need_resched())
590 		return true;
591 
592 	/*
593 	 * We can't run Idle Load Balance on this CPU for this time so we
594 	 * cancel it and clear NOHZ_BALANCE_KICK
595 	 */
596 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
597 	return false;
598 }
599 
600 #else /* CONFIG_NO_HZ_COMMON */
601 
602 static inline bool got_nohz_idle_kick(void)
603 {
604 	return false;
605 }
606 
607 #endif /* CONFIG_NO_HZ_COMMON */
608 
609 #ifdef CONFIG_NO_HZ_FULL
610 bool sched_can_stop_tick(struct rq *rq)
611 {
612 	int fifo_nr_running;
613 
614 	/* Deadline tasks, even if single, need the tick */
615 	if (rq->dl.dl_nr_running)
616 		return false;
617 
618 	/*
619 	 * If there are more than one RR tasks, we need the tick to effect the
620 	 * actual RR behaviour.
621 	 */
622 	if (rq->rt.rr_nr_running) {
623 		if (rq->rt.rr_nr_running == 1)
624 			return true;
625 		else
626 			return false;
627 	}
628 
629 	/*
630 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
631 	 * forced preemption between FIFO tasks.
632 	 */
633 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
634 	if (fifo_nr_running)
635 		return true;
636 
637 	/*
638 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
639 	 * if there's more than one we need the tick for involuntary
640 	 * preemption.
641 	 */
642 	if (rq->nr_running > 1)
643 		return false;
644 
645 	return true;
646 }
647 #endif /* CONFIG_NO_HZ_FULL */
648 
649 void sched_avg_update(struct rq *rq)
650 {
651 	s64 period = sched_avg_period();
652 
653 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
654 		/*
655 		 * Inline assembly required to prevent the compiler
656 		 * optimising this loop into a divmod call.
657 		 * See __iter_div_u64_rem() for another example of this.
658 		 */
659 		asm("" : "+rm" (rq->age_stamp));
660 		rq->age_stamp += period;
661 		rq->rt_avg /= 2;
662 	}
663 }
664 
665 #endif /* CONFIG_SMP */
666 
667 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
668 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
669 /*
670  * Iterate task_group tree rooted at *from, calling @down when first entering a
671  * node and @up when leaving it for the final time.
672  *
673  * Caller must hold rcu_lock or sufficient equivalent.
674  */
675 int walk_tg_tree_from(struct task_group *from,
676 			     tg_visitor down, tg_visitor up, void *data)
677 {
678 	struct task_group *parent, *child;
679 	int ret;
680 
681 	parent = from;
682 
683 down:
684 	ret = (*down)(parent, data);
685 	if (ret)
686 		goto out;
687 	list_for_each_entry_rcu(child, &parent->children, siblings) {
688 		parent = child;
689 		goto down;
690 
691 up:
692 		continue;
693 	}
694 	ret = (*up)(parent, data);
695 	if (ret || parent == from)
696 		goto out;
697 
698 	child = parent;
699 	parent = parent->parent;
700 	if (parent)
701 		goto up;
702 out:
703 	return ret;
704 }
705 
706 int tg_nop(struct task_group *tg, void *data)
707 {
708 	return 0;
709 }
710 #endif
711 
712 static void set_load_weight(struct task_struct *p, bool update_load)
713 {
714 	int prio = p->static_prio - MAX_RT_PRIO;
715 	struct load_weight *load = &p->se.load;
716 
717 	/*
718 	 * SCHED_IDLE tasks get minimal weight:
719 	 */
720 	if (idle_policy(p->policy)) {
721 		load->weight = scale_load(WEIGHT_IDLEPRIO);
722 		load->inv_weight = WMULT_IDLEPRIO;
723 		return;
724 	}
725 
726 	/*
727 	 * SCHED_OTHER tasks have to update their load when changing their
728 	 * weight
729 	 */
730 	if (update_load && p->sched_class == &fair_sched_class) {
731 		reweight_task(p, prio);
732 	} else {
733 		load->weight = scale_load(sched_prio_to_weight[prio]);
734 		load->inv_weight = sched_prio_to_wmult[prio];
735 	}
736 }
737 
738 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
739 {
740 	if (!(flags & ENQUEUE_NOCLOCK))
741 		update_rq_clock(rq);
742 
743 	if (!(flags & ENQUEUE_RESTORE))
744 		sched_info_queued(rq, p);
745 
746 	p->sched_class->enqueue_task(rq, p, flags);
747 }
748 
749 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
750 {
751 	if (!(flags & DEQUEUE_NOCLOCK))
752 		update_rq_clock(rq);
753 
754 	if (!(flags & DEQUEUE_SAVE))
755 		sched_info_dequeued(rq, p);
756 
757 	p->sched_class->dequeue_task(rq, p, flags);
758 }
759 
760 void activate_task(struct rq *rq, struct task_struct *p, int flags)
761 {
762 	if (task_contributes_to_load(p))
763 		rq->nr_uninterruptible--;
764 
765 	enqueue_task(rq, p, flags);
766 }
767 
768 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 	if (task_contributes_to_load(p))
771 		rq->nr_uninterruptible++;
772 
773 	dequeue_task(rq, p, flags);
774 }
775 
776 /*
777  * __normal_prio - return the priority that is based on the static prio
778  */
779 static inline int __normal_prio(struct task_struct *p)
780 {
781 	return p->static_prio;
782 }
783 
784 /*
785  * Calculate the expected normal priority: i.e. priority
786  * without taking RT-inheritance into account. Might be
787  * boosted by interactivity modifiers. Changes upon fork,
788  * setprio syscalls, and whenever the interactivity
789  * estimator recalculates.
790  */
791 static inline int normal_prio(struct task_struct *p)
792 {
793 	int prio;
794 
795 	if (task_has_dl_policy(p))
796 		prio = MAX_DL_PRIO-1;
797 	else if (task_has_rt_policy(p))
798 		prio = MAX_RT_PRIO-1 - p->rt_priority;
799 	else
800 		prio = __normal_prio(p);
801 	return prio;
802 }
803 
804 /*
805  * Calculate the current priority, i.e. the priority
806  * taken into account by the scheduler. This value might
807  * be boosted by RT tasks, or might be boosted by
808  * interactivity modifiers. Will be RT if the task got
809  * RT-boosted. If not then it returns p->normal_prio.
810  */
811 static int effective_prio(struct task_struct *p)
812 {
813 	p->normal_prio = normal_prio(p);
814 	/*
815 	 * If we are RT tasks or we were boosted to RT priority,
816 	 * keep the priority unchanged. Otherwise, update priority
817 	 * to the normal priority:
818 	 */
819 	if (!rt_prio(p->prio))
820 		return p->normal_prio;
821 	return p->prio;
822 }
823 
824 /**
825  * task_curr - is this task currently executing on a CPU?
826  * @p: the task in question.
827  *
828  * Return: 1 if the task is currently executing. 0 otherwise.
829  */
830 inline int task_curr(const struct task_struct *p)
831 {
832 	return cpu_curr(task_cpu(p)) == p;
833 }
834 
835 /*
836  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
837  * use the balance_callback list if you want balancing.
838  *
839  * this means any call to check_class_changed() must be followed by a call to
840  * balance_callback().
841  */
842 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
843 				       const struct sched_class *prev_class,
844 				       int oldprio)
845 {
846 	if (prev_class != p->sched_class) {
847 		if (prev_class->switched_from)
848 			prev_class->switched_from(rq, p);
849 
850 		p->sched_class->switched_to(rq, p);
851 	} else if (oldprio != p->prio || dl_task(p))
852 		p->sched_class->prio_changed(rq, p, oldprio);
853 }
854 
855 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
856 {
857 	const struct sched_class *class;
858 
859 	if (p->sched_class == rq->curr->sched_class) {
860 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
861 	} else {
862 		for_each_class(class) {
863 			if (class == rq->curr->sched_class)
864 				break;
865 			if (class == p->sched_class) {
866 				resched_curr(rq);
867 				break;
868 			}
869 		}
870 	}
871 
872 	/*
873 	 * A queue event has occurred, and we're going to schedule.  In
874 	 * this case, we can save a useless back to back clock update.
875 	 */
876 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
877 		rq_clock_skip_update(rq);
878 }
879 
880 #ifdef CONFIG_SMP
881 /*
882  * This is how migration works:
883  *
884  * 1) we invoke migration_cpu_stop() on the target CPU using
885  *    stop_one_cpu().
886  * 2) stopper starts to run (implicitly forcing the migrated thread
887  *    off the CPU)
888  * 3) it checks whether the migrated task is still in the wrong runqueue.
889  * 4) if it's in the wrong runqueue then the migration thread removes
890  *    it and puts it into the right queue.
891  * 5) stopper completes and stop_one_cpu() returns and the migration
892  *    is done.
893  */
894 
895 /*
896  * move_queued_task - move a queued task to new rq.
897  *
898  * Returns (locked) new rq. Old rq's lock is released.
899  */
900 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
901 				   struct task_struct *p, int new_cpu)
902 {
903 	lockdep_assert_held(&rq->lock);
904 
905 	p->on_rq = TASK_ON_RQ_MIGRATING;
906 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
907 	set_task_cpu(p, new_cpu);
908 	rq_unlock(rq, rf);
909 
910 	rq = cpu_rq(new_cpu);
911 
912 	rq_lock(rq, rf);
913 	BUG_ON(task_cpu(p) != new_cpu);
914 	enqueue_task(rq, p, 0);
915 	p->on_rq = TASK_ON_RQ_QUEUED;
916 	check_preempt_curr(rq, p, 0);
917 
918 	return rq;
919 }
920 
921 struct migration_arg {
922 	struct task_struct *task;
923 	int dest_cpu;
924 };
925 
926 /*
927  * Move (not current) task off this CPU, onto the destination CPU. We're doing
928  * this because either it can't run here any more (set_cpus_allowed()
929  * away from this CPU, or CPU going down), or because we're
930  * attempting to rebalance this task on exec (sched_exec).
931  *
932  * So we race with normal scheduler movements, but that's OK, as long
933  * as the task is no longer on this CPU.
934  */
935 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
936 				 struct task_struct *p, int dest_cpu)
937 {
938 	if (p->flags & PF_KTHREAD) {
939 		if (unlikely(!cpu_online(dest_cpu)))
940 			return rq;
941 	} else {
942 		if (unlikely(!cpu_active(dest_cpu)))
943 			return rq;
944 	}
945 
946 	/* Affinity changed (again). */
947 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
948 		return rq;
949 
950 	update_rq_clock(rq);
951 	rq = move_queued_task(rq, rf, p, dest_cpu);
952 
953 	return rq;
954 }
955 
956 /*
957  * migration_cpu_stop - this will be executed by a highprio stopper thread
958  * and performs thread migration by bumping thread off CPU then
959  * 'pushing' onto another runqueue.
960  */
961 static int migration_cpu_stop(void *data)
962 {
963 	struct migration_arg *arg = data;
964 	struct task_struct *p = arg->task;
965 	struct rq *rq = this_rq();
966 	struct rq_flags rf;
967 
968 	/*
969 	 * The original target CPU might have gone down and we might
970 	 * be on another CPU but it doesn't matter.
971 	 */
972 	local_irq_disable();
973 	/*
974 	 * We need to explicitly wake pending tasks before running
975 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 	 */
978 	sched_ttwu_pending();
979 
980 	raw_spin_lock(&p->pi_lock);
981 	rq_lock(rq, &rf);
982 	/*
983 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 	 * we're holding p->pi_lock.
986 	 */
987 	if (task_rq(p) == rq) {
988 		if (task_on_rq_queued(p))
989 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
990 		else
991 			p->wake_cpu = arg->dest_cpu;
992 	}
993 	rq_unlock(rq, &rf);
994 	raw_spin_unlock(&p->pi_lock);
995 
996 	local_irq_enable();
997 	return 0;
998 }
999 
1000 /*
1001  * sched_class::set_cpus_allowed must do the below, but is not required to
1002  * actually call this function.
1003  */
1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1005 {
1006 	cpumask_copy(&p->cpus_allowed, new_mask);
1007 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1008 }
1009 
1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011 {
1012 	struct rq *rq = task_rq(p);
1013 	bool queued, running;
1014 
1015 	lockdep_assert_held(&p->pi_lock);
1016 
1017 	queued = task_on_rq_queued(p);
1018 	running = task_current(rq, p);
1019 
1020 	if (queued) {
1021 		/*
1022 		 * Because __kthread_bind() calls this on blocked tasks without
1023 		 * holding rq->lock.
1024 		 */
1025 		lockdep_assert_held(&rq->lock);
1026 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027 	}
1028 	if (running)
1029 		put_prev_task(rq, p);
1030 
1031 	p->sched_class->set_cpus_allowed(p, new_mask);
1032 
1033 	if (queued)
1034 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035 	if (running)
1036 		set_curr_task(rq, p);
1037 }
1038 
1039 /*
1040  * Change a given task's CPU affinity. Migrate the thread to a
1041  * proper CPU and schedule it away if the CPU it's executing on
1042  * is removed from the allowed bitmask.
1043  *
1044  * NOTE: the caller must have a valid reference to the task, the
1045  * task must not exit() & deallocate itself prematurely. The
1046  * call is not atomic; no spinlocks may be held.
1047  */
1048 static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 				  const struct cpumask *new_mask, bool check)
1050 {
1051 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052 	unsigned int dest_cpu;
1053 	struct rq_flags rf;
1054 	struct rq *rq;
1055 	int ret = 0;
1056 
1057 	rq = task_rq_lock(p, &rf);
1058 	update_rq_clock(rq);
1059 
1060 	if (p->flags & PF_KTHREAD) {
1061 		/*
1062 		 * Kernel threads are allowed on online && !active CPUs
1063 		 */
1064 		cpu_valid_mask = cpu_online_mask;
1065 	}
1066 
1067 	/*
1068 	 * Must re-check here, to close a race against __kthread_bind(),
1069 	 * sched_setaffinity() is not guaranteed to observe the flag.
1070 	 */
1071 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 		ret = -EINVAL;
1073 		goto out;
1074 	}
1075 
1076 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 		goto out;
1078 
1079 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1080 		ret = -EINVAL;
1081 		goto out;
1082 	}
1083 
1084 	do_set_cpus_allowed(p, new_mask);
1085 
1086 	if (p->flags & PF_KTHREAD) {
1087 		/*
1088 		 * For kernel threads that do indeed end up on online &&
1089 		 * !active we want to ensure they are strict per-CPU threads.
1090 		 */
1091 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1093 			p->nr_cpus_allowed != 1);
1094 	}
1095 
1096 	/* Can the task run on the task's current CPU? If so, we're done */
1097 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 		goto out;
1099 
1100 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 		struct migration_arg arg = { p, dest_cpu };
1103 		/* Need help from migration thread: drop lock and wait. */
1104 		task_rq_unlock(rq, p, &rf);
1105 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 		tlb_migrate_finish(p->mm);
1107 		return 0;
1108 	} else if (task_on_rq_queued(p)) {
1109 		/*
1110 		 * OK, since we're going to drop the lock immediately
1111 		 * afterwards anyway.
1112 		 */
1113 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1114 	}
1115 out:
1116 	task_rq_unlock(rq, p, &rf);
1117 
1118 	return ret;
1119 }
1120 
1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122 {
1123 	return __set_cpus_allowed_ptr(p, new_mask, false);
1124 }
1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126 
1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1128 {
1129 #ifdef CONFIG_SCHED_DEBUG
1130 	/*
1131 	 * We should never call set_task_cpu() on a blocked task,
1132 	 * ttwu() will sort out the placement.
1133 	 */
1134 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1135 			!p->on_rq);
1136 
1137 	/*
1138 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 	 * time relying on p->on_rq.
1141 	 */
1142 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 		     p->sched_class == &fair_sched_class &&
1144 		     (p->on_rq && !task_on_rq_migrating(p)));
1145 
1146 #ifdef CONFIG_LOCKDEP
1147 	/*
1148 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 	 *
1151 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1152 	 * see task_group().
1153 	 *
1154 	 * Furthermore, all task_rq users should acquire both locks, see
1155 	 * task_rq_lock().
1156 	 */
1157 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 				      lockdep_is_held(&task_rq(p)->lock)));
1159 #endif
1160 	/*
1161 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 	 */
1163 	WARN_ON_ONCE(!cpu_online(new_cpu));
1164 #endif
1165 
1166 	trace_sched_migrate_task(p, new_cpu);
1167 
1168 	if (task_cpu(p) != new_cpu) {
1169 		if (p->sched_class->migrate_task_rq)
1170 			p->sched_class->migrate_task_rq(p);
1171 		p->se.nr_migrations++;
1172 		perf_event_task_migrate(p);
1173 	}
1174 
1175 	__set_task_cpu(p, new_cpu);
1176 }
1177 
1178 static void __migrate_swap_task(struct task_struct *p, int cpu)
1179 {
1180 	if (task_on_rq_queued(p)) {
1181 		struct rq *src_rq, *dst_rq;
1182 		struct rq_flags srf, drf;
1183 
1184 		src_rq = task_rq(p);
1185 		dst_rq = cpu_rq(cpu);
1186 
1187 		rq_pin_lock(src_rq, &srf);
1188 		rq_pin_lock(dst_rq, &drf);
1189 
1190 		p->on_rq = TASK_ON_RQ_MIGRATING;
1191 		deactivate_task(src_rq, p, 0);
1192 		set_task_cpu(p, cpu);
1193 		activate_task(dst_rq, p, 0);
1194 		p->on_rq = TASK_ON_RQ_QUEUED;
1195 		check_preempt_curr(dst_rq, p, 0);
1196 
1197 		rq_unpin_lock(dst_rq, &drf);
1198 		rq_unpin_lock(src_rq, &srf);
1199 
1200 	} else {
1201 		/*
1202 		 * Task isn't running anymore; make it appear like we migrated
1203 		 * it before it went to sleep. This means on wakeup we make the
1204 		 * previous CPU our target instead of where it really is.
1205 		 */
1206 		p->wake_cpu = cpu;
1207 	}
1208 }
1209 
1210 struct migration_swap_arg {
1211 	struct task_struct *src_task, *dst_task;
1212 	int src_cpu, dst_cpu;
1213 };
1214 
1215 static int migrate_swap_stop(void *data)
1216 {
1217 	struct migration_swap_arg *arg = data;
1218 	struct rq *src_rq, *dst_rq;
1219 	int ret = -EAGAIN;
1220 
1221 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1222 		return -EAGAIN;
1223 
1224 	src_rq = cpu_rq(arg->src_cpu);
1225 	dst_rq = cpu_rq(arg->dst_cpu);
1226 
1227 	double_raw_lock(&arg->src_task->pi_lock,
1228 			&arg->dst_task->pi_lock);
1229 	double_rq_lock(src_rq, dst_rq);
1230 
1231 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1232 		goto unlock;
1233 
1234 	if (task_cpu(arg->src_task) != arg->src_cpu)
1235 		goto unlock;
1236 
1237 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1238 		goto unlock;
1239 
1240 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1241 		goto unlock;
1242 
1243 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1244 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1245 
1246 	ret = 0;
1247 
1248 unlock:
1249 	double_rq_unlock(src_rq, dst_rq);
1250 	raw_spin_unlock(&arg->dst_task->pi_lock);
1251 	raw_spin_unlock(&arg->src_task->pi_lock);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Cross migrate two tasks
1258  */
1259 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1260 {
1261 	struct migration_swap_arg arg;
1262 	int ret = -EINVAL;
1263 
1264 	arg = (struct migration_swap_arg){
1265 		.src_task = cur,
1266 		.src_cpu = task_cpu(cur),
1267 		.dst_task = p,
1268 		.dst_cpu = task_cpu(p),
1269 	};
1270 
1271 	if (arg.src_cpu == arg.dst_cpu)
1272 		goto out;
1273 
1274 	/*
1275 	 * These three tests are all lockless; this is OK since all of them
1276 	 * will be re-checked with proper locks held further down the line.
1277 	 */
1278 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1279 		goto out;
1280 
1281 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1282 		goto out;
1283 
1284 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1285 		goto out;
1286 
1287 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1288 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1289 
1290 out:
1291 	return ret;
1292 }
1293 
1294 /*
1295  * wait_task_inactive - wait for a thread to unschedule.
1296  *
1297  * If @match_state is nonzero, it's the @p->state value just checked and
1298  * not expected to change.  If it changes, i.e. @p might have woken up,
1299  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1300  * we return a positive number (its total switch count).  If a second call
1301  * a short while later returns the same number, the caller can be sure that
1302  * @p has remained unscheduled the whole time.
1303  *
1304  * The caller must ensure that the task *will* unschedule sometime soon,
1305  * else this function might spin for a *long* time. This function can't
1306  * be called with interrupts off, or it may introduce deadlock with
1307  * smp_call_function() if an IPI is sent by the same process we are
1308  * waiting to become inactive.
1309  */
1310 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1311 {
1312 	int running, queued;
1313 	struct rq_flags rf;
1314 	unsigned long ncsw;
1315 	struct rq *rq;
1316 
1317 	for (;;) {
1318 		/*
1319 		 * We do the initial early heuristics without holding
1320 		 * any task-queue locks at all. We'll only try to get
1321 		 * the runqueue lock when things look like they will
1322 		 * work out!
1323 		 */
1324 		rq = task_rq(p);
1325 
1326 		/*
1327 		 * If the task is actively running on another CPU
1328 		 * still, just relax and busy-wait without holding
1329 		 * any locks.
1330 		 *
1331 		 * NOTE! Since we don't hold any locks, it's not
1332 		 * even sure that "rq" stays as the right runqueue!
1333 		 * But we don't care, since "task_running()" will
1334 		 * return false if the runqueue has changed and p
1335 		 * is actually now running somewhere else!
1336 		 */
1337 		while (task_running(rq, p)) {
1338 			if (match_state && unlikely(p->state != match_state))
1339 				return 0;
1340 			cpu_relax();
1341 		}
1342 
1343 		/*
1344 		 * Ok, time to look more closely! We need the rq
1345 		 * lock now, to be *sure*. If we're wrong, we'll
1346 		 * just go back and repeat.
1347 		 */
1348 		rq = task_rq_lock(p, &rf);
1349 		trace_sched_wait_task(p);
1350 		running = task_running(rq, p);
1351 		queued = task_on_rq_queued(p);
1352 		ncsw = 0;
1353 		if (!match_state || p->state == match_state)
1354 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1355 		task_rq_unlock(rq, p, &rf);
1356 
1357 		/*
1358 		 * If it changed from the expected state, bail out now.
1359 		 */
1360 		if (unlikely(!ncsw))
1361 			break;
1362 
1363 		/*
1364 		 * Was it really running after all now that we
1365 		 * checked with the proper locks actually held?
1366 		 *
1367 		 * Oops. Go back and try again..
1368 		 */
1369 		if (unlikely(running)) {
1370 			cpu_relax();
1371 			continue;
1372 		}
1373 
1374 		/*
1375 		 * It's not enough that it's not actively running,
1376 		 * it must be off the runqueue _entirely_, and not
1377 		 * preempted!
1378 		 *
1379 		 * So if it was still runnable (but just not actively
1380 		 * running right now), it's preempted, and we should
1381 		 * yield - it could be a while.
1382 		 */
1383 		if (unlikely(queued)) {
1384 			ktime_t to = NSEC_PER_SEC / HZ;
1385 
1386 			set_current_state(TASK_UNINTERRUPTIBLE);
1387 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1388 			continue;
1389 		}
1390 
1391 		/*
1392 		 * Ahh, all good. It wasn't running, and it wasn't
1393 		 * runnable, which means that it will never become
1394 		 * running in the future either. We're all done!
1395 		 */
1396 		break;
1397 	}
1398 
1399 	return ncsw;
1400 }
1401 
1402 /***
1403  * kick_process - kick a running thread to enter/exit the kernel
1404  * @p: the to-be-kicked thread
1405  *
1406  * Cause a process which is running on another CPU to enter
1407  * kernel-mode, without any delay. (to get signals handled.)
1408  *
1409  * NOTE: this function doesn't have to take the runqueue lock,
1410  * because all it wants to ensure is that the remote task enters
1411  * the kernel. If the IPI races and the task has been migrated
1412  * to another CPU then no harm is done and the purpose has been
1413  * achieved as well.
1414  */
1415 void kick_process(struct task_struct *p)
1416 {
1417 	int cpu;
1418 
1419 	preempt_disable();
1420 	cpu = task_cpu(p);
1421 	if ((cpu != smp_processor_id()) && task_curr(p))
1422 		smp_send_reschedule(cpu);
1423 	preempt_enable();
1424 }
1425 EXPORT_SYMBOL_GPL(kick_process);
1426 
1427 /*
1428  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1429  *
1430  * A few notes on cpu_active vs cpu_online:
1431  *
1432  *  - cpu_active must be a subset of cpu_online
1433  *
1434  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1435  *    see __set_cpus_allowed_ptr(). At this point the newly online
1436  *    CPU isn't yet part of the sched domains, and balancing will not
1437  *    see it.
1438  *
1439  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1440  *    avoid the load balancer to place new tasks on the to be removed
1441  *    CPU. Existing tasks will remain running there and will be taken
1442  *    off.
1443  *
1444  * This means that fallback selection must not select !active CPUs.
1445  * And can assume that any active CPU must be online. Conversely
1446  * select_task_rq() below may allow selection of !active CPUs in order
1447  * to satisfy the above rules.
1448  */
1449 static int select_fallback_rq(int cpu, struct task_struct *p)
1450 {
1451 	int nid = cpu_to_node(cpu);
1452 	const struct cpumask *nodemask = NULL;
1453 	enum { cpuset, possible, fail } state = cpuset;
1454 	int dest_cpu;
1455 
1456 	/*
1457 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1458 	 * will return -1. There is no CPU on the node, and we should
1459 	 * select the CPU on the other node.
1460 	 */
1461 	if (nid != -1) {
1462 		nodemask = cpumask_of_node(nid);
1463 
1464 		/* Look for allowed, online CPU in same node. */
1465 		for_each_cpu(dest_cpu, nodemask) {
1466 			if (!cpu_active(dest_cpu))
1467 				continue;
1468 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1469 				return dest_cpu;
1470 		}
1471 	}
1472 
1473 	for (;;) {
1474 		/* Any allowed, online CPU? */
1475 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1476 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1477 				continue;
1478 			if (!cpu_online(dest_cpu))
1479 				continue;
1480 			goto out;
1481 		}
1482 
1483 		/* No more Mr. Nice Guy. */
1484 		switch (state) {
1485 		case cpuset:
1486 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1487 				cpuset_cpus_allowed_fallback(p);
1488 				state = possible;
1489 				break;
1490 			}
1491 			/* Fall-through */
1492 		case possible:
1493 			do_set_cpus_allowed(p, cpu_possible_mask);
1494 			state = fail;
1495 			break;
1496 
1497 		case fail:
1498 			BUG();
1499 			break;
1500 		}
1501 	}
1502 
1503 out:
1504 	if (state != cpuset) {
1505 		/*
1506 		 * Don't tell them about moving exiting tasks or
1507 		 * kernel threads (both mm NULL), since they never
1508 		 * leave kernel.
1509 		 */
1510 		if (p->mm && printk_ratelimit()) {
1511 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1512 					task_pid_nr(p), p->comm, cpu);
1513 		}
1514 	}
1515 
1516 	return dest_cpu;
1517 }
1518 
1519 /*
1520  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1521  */
1522 static inline
1523 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1524 {
1525 	lockdep_assert_held(&p->pi_lock);
1526 
1527 	if (p->nr_cpus_allowed > 1)
1528 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1529 	else
1530 		cpu = cpumask_any(&p->cpus_allowed);
1531 
1532 	/*
1533 	 * In order not to call set_task_cpu() on a blocking task we need
1534 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1535 	 * CPU.
1536 	 *
1537 	 * Since this is common to all placement strategies, this lives here.
1538 	 *
1539 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1540 	 *   not worry about this generic constraint ]
1541 	 */
1542 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1543 		     !cpu_online(cpu)))
1544 		cpu = select_fallback_rq(task_cpu(p), p);
1545 
1546 	return cpu;
1547 }
1548 
1549 static void update_avg(u64 *avg, u64 sample)
1550 {
1551 	s64 diff = sample - *avg;
1552 	*avg += diff >> 3;
1553 }
1554 
1555 void sched_set_stop_task(int cpu, struct task_struct *stop)
1556 {
1557 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1558 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1559 
1560 	if (stop) {
1561 		/*
1562 		 * Make it appear like a SCHED_FIFO task, its something
1563 		 * userspace knows about and won't get confused about.
1564 		 *
1565 		 * Also, it will make PI more or less work without too
1566 		 * much confusion -- but then, stop work should not
1567 		 * rely on PI working anyway.
1568 		 */
1569 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1570 
1571 		stop->sched_class = &stop_sched_class;
1572 	}
1573 
1574 	cpu_rq(cpu)->stop = stop;
1575 
1576 	if (old_stop) {
1577 		/*
1578 		 * Reset it back to a normal scheduling class so that
1579 		 * it can die in pieces.
1580 		 */
1581 		old_stop->sched_class = &rt_sched_class;
1582 	}
1583 }
1584 
1585 #else
1586 
1587 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1588 					 const struct cpumask *new_mask, bool check)
1589 {
1590 	return set_cpus_allowed_ptr(p, new_mask);
1591 }
1592 
1593 #endif /* CONFIG_SMP */
1594 
1595 static void
1596 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1597 {
1598 	struct rq *rq;
1599 
1600 	if (!schedstat_enabled())
1601 		return;
1602 
1603 	rq = this_rq();
1604 
1605 #ifdef CONFIG_SMP
1606 	if (cpu == rq->cpu) {
1607 		__schedstat_inc(rq->ttwu_local);
1608 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1609 	} else {
1610 		struct sched_domain *sd;
1611 
1612 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1613 		rcu_read_lock();
1614 		for_each_domain(rq->cpu, sd) {
1615 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1616 				__schedstat_inc(sd->ttwu_wake_remote);
1617 				break;
1618 			}
1619 		}
1620 		rcu_read_unlock();
1621 	}
1622 
1623 	if (wake_flags & WF_MIGRATED)
1624 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1625 #endif /* CONFIG_SMP */
1626 
1627 	__schedstat_inc(rq->ttwu_count);
1628 	__schedstat_inc(p->se.statistics.nr_wakeups);
1629 
1630 	if (wake_flags & WF_SYNC)
1631 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1632 }
1633 
1634 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1635 {
1636 	activate_task(rq, p, en_flags);
1637 	p->on_rq = TASK_ON_RQ_QUEUED;
1638 
1639 	/* If a worker is waking up, notify the workqueue: */
1640 	if (p->flags & PF_WQ_WORKER)
1641 		wq_worker_waking_up(p, cpu_of(rq));
1642 }
1643 
1644 /*
1645  * Mark the task runnable and perform wakeup-preemption.
1646  */
1647 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1648 			   struct rq_flags *rf)
1649 {
1650 	check_preempt_curr(rq, p, wake_flags);
1651 	p->state = TASK_RUNNING;
1652 	trace_sched_wakeup(p);
1653 
1654 #ifdef CONFIG_SMP
1655 	if (p->sched_class->task_woken) {
1656 		/*
1657 		 * Our task @p is fully woken up and running; so its safe to
1658 		 * drop the rq->lock, hereafter rq is only used for statistics.
1659 		 */
1660 		rq_unpin_lock(rq, rf);
1661 		p->sched_class->task_woken(rq, p);
1662 		rq_repin_lock(rq, rf);
1663 	}
1664 
1665 	if (rq->idle_stamp) {
1666 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1667 		u64 max = 2*rq->max_idle_balance_cost;
1668 
1669 		update_avg(&rq->avg_idle, delta);
1670 
1671 		if (rq->avg_idle > max)
1672 			rq->avg_idle = max;
1673 
1674 		rq->idle_stamp = 0;
1675 	}
1676 #endif
1677 }
1678 
1679 static void
1680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1681 		 struct rq_flags *rf)
1682 {
1683 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1684 
1685 	lockdep_assert_held(&rq->lock);
1686 
1687 #ifdef CONFIG_SMP
1688 	if (p->sched_contributes_to_load)
1689 		rq->nr_uninterruptible--;
1690 
1691 	if (wake_flags & WF_MIGRATED)
1692 		en_flags |= ENQUEUE_MIGRATED;
1693 #endif
1694 
1695 	ttwu_activate(rq, p, en_flags);
1696 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1697 }
1698 
1699 /*
1700  * Called in case the task @p isn't fully descheduled from its runqueue,
1701  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702  * since all we need to do is flip p->state to TASK_RUNNING, since
1703  * the task is still ->on_rq.
1704  */
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1706 {
1707 	struct rq_flags rf;
1708 	struct rq *rq;
1709 	int ret = 0;
1710 
1711 	rq = __task_rq_lock(p, &rf);
1712 	if (task_on_rq_queued(p)) {
1713 		/* check_preempt_curr() may use rq clock */
1714 		update_rq_clock(rq);
1715 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1716 		ret = 1;
1717 	}
1718 	__task_rq_unlock(rq, &rf);
1719 
1720 	return ret;
1721 }
1722 
1723 #ifdef CONFIG_SMP
1724 void sched_ttwu_pending(void)
1725 {
1726 	struct rq *rq = this_rq();
1727 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1728 	struct task_struct *p, *t;
1729 	struct rq_flags rf;
1730 
1731 	if (!llist)
1732 		return;
1733 
1734 	rq_lock_irqsave(rq, &rf);
1735 	update_rq_clock(rq);
1736 
1737 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1738 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1739 
1740 	rq_unlock_irqrestore(rq, &rf);
1741 }
1742 
1743 void scheduler_ipi(void)
1744 {
1745 	/*
1746 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1747 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1748 	 * this IPI.
1749 	 */
1750 	preempt_fold_need_resched();
1751 
1752 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1753 		return;
1754 
1755 	/*
1756 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1757 	 * traditionally all their work was done from the interrupt return
1758 	 * path. Now that we actually do some work, we need to make sure
1759 	 * we do call them.
1760 	 *
1761 	 * Some archs already do call them, luckily irq_enter/exit nest
1762 	 * properly.
1763 	 *
1764 	 * Arguably we should visit all archs and update all handlers,
1765 	 * however a fair share of IPIs are still resched only so this would
1766 	 * somewhat pessimize the simple resched case.
1767 	 */
1768 	irq_enter();
1769 	sched_ttwu_pending();
1770 
1771 	/*
1772 	 * Check if someone kicked us for doing the nohz idle load balance.
1773 	 */
1774 	if (unlikely(got_nohz_idle_kick())) {
1775 		this_rq()->idle_balance = 1;
1776 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1777 	}
1778 	irq_exit();
1779 }
1780 
1781 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1782 {
1783 	struct rq *rq = cpu_rq(cpu);
1784 
1785 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1786 
1787 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1788 		if (!set_nr_if_polling(rq->idle))
1789 			smp_send_reschedule(cpu);
1790 		else
1791 			trace_sched_wake_idle_without_ipi(cpu);
1792 	}
1793 }
1794 
1795 void wake_up_if_idle(int cpu)
1796 {
1797 	struct rq *rq = cpu_rq(cpu);
1798 	struct rq_flags rf;
1799 
1800 	rcu_read_lock();
1801 
1802 	if (!is_idle_task(rcu_dereference(rq->curr)))
1803 		goto out;
1804 
1805 	if (set_nr_if_polling(rq->idle)) {
1806 		trace_sched_wake_idle_without_ipi(cpu);
1807 	} else {
1808 		rq_lock_irqsave(rq, &rf);
1809 		if (is_idle_task(rq->curr))
1810 			smp_send_reschedule(cpu);
1811 		/* Else CPU is not idle, do nothing here: */
1812 		rq_unlock_irqrestore(rq, &rf);
1813 	}
1814 
1815 out:
1816 	rcu_read_unlock();
1817 }
1818 
1819 bool cpus_share_cache(int this_cpu, int that_cpu)
1820 {
1821 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1822 }
1823 #endif /* CONFIG_SMP */
1824 
1825 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1826 {
1827 	struct rq *rq = cpu_rq(cpu);
1828 	struct rq_flags rf;
1829 
1830 #if defined(CONFIG_SMP)
1831 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1833 		ttwu_queue_remote(p, cpu, wake_flags);
1834 		return;
1835 	}
1836 #endif
1837 
1838 	rq_lock(rq, &rf);
1839 	update_rq_clock(rq);
1840 	ttwu_do_activate(rq, p, wake_flags, &rf);
1841 	rq_unlock(rq, &rf);
1842 }
1843 
1844 /*
1845  * Notes on Program-Order guarantees on SMP systems.
1846  *
1847  *  MIGRATION
1848  *
1849  * The basic program-order guarantee on SMP systems is that when a task [t]
1850  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1851  * execution on its new CPU [c1].
1852  *
1853  * For migration (of runnable tasks) this is provided by the following means:
1854  *
1855  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1856  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1857  *     rq(c1)->lock (if not at the same time, then in that order).
1858  *  C) LOCK of the rq(c1)->lock scheduling in task
1859  *
1860  * Transitivity guarantees that B happens after A and C after B.
1861  * Note: we only require RCpc transitivity.
1862  * Note: the CPU doing B need not be c0 or c1
1863  *
1864  * Example:
1865  *
1866  *   CPU0            CPU1            CPU2
1867  *
1868  *   LOCK rq(0)->lock
1869  *   sched-out X
1870  *   sched-in Y
1871  *   UNLOCK rq(0)->lock
1872  *
1873  *                                   LOCK rq(0)->lock // orders against CPU0
1874  *                                   dequeue X
1875  *                                   UNLOCK rq(0)->lock
1876  *
1877  *                                   LOCK rq(1)->lock
1878  *                                   enqueue X
1879  *                                   UNLOCK rq(1)->lock
1880  *
1881  *                   LOCK rq(1)->lock // orders against CPU2
1882  *                   sched-out Z
1883  *                   sched-in X
1884  *                   UNLOCK rq(1)->lock
1885  *
1886  *
1887  *  BLOCKING -- aka. SLEEP + WAKEUP
1888  *
1889  * For blocking we (obviously) need to provide the same guarantee as for
1890  * migration. However the means are completely different as there is no lock
1891  * chain to provide order. Instead we do:
1892  *
1893  *   1) smp_store_release(X->on_cpu, 0)
1894  *   2) smp_cond_load_acquire(!X->on_cpu)
1895  *
1896  * Example:
1897  *
1898  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1899  *
1900  *   LOCK rq(0)->lock LOCK X->pi_lock
1901  *   dequeue X
1902  *   sched-out X
1903  *   smp_store_release(X->on_cpu, 0);
1904  *
1905  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1906  *                    X->state = WAKING
1907  *                    set_task_cpu(X,2)
1908  *
1909  *                    LOCK rq(2)->lock
1910  *                    enqueue X
1911  *                    X->state = RUNNING
1912  *                    UNLOCK rq(2)->lock
1913  *
1914  *                                          LOCK rq(2)->lock // orders against CPU1
1915  *                                          sched-out Z
1916  *                                          sched-in X
1917  *                                          UNLOCK rq(2)->lock
1918  *
1919  *                    UNLOCK X->pi_lock
1920  *   UNLOCK rq(0)->lock
1921  *
1922  *
1923  * However; for wakeups there is a second guarantee we must provide, namely we
1924  * must observe the state that lead to our wakeup. That is, not only must our
1925  * task observe its own prior state, it must also observe the stores prior to
1926  * its wakeup.
1927  *
1928  * This means that any means of doing remote wakeups must order the CPU doing
1929  * the wakeup against the CPU the task is going to end up running on. This,
1930  * however, is already required for the regular Program-Order guarantee above,
1931  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1932  *
1933  */
1934 
1935 /**
1936  * try_to_wake_up - wake up a thread
1937  * @p: the thread to be awakened
1938  * @state: the mask of task states that can be woken
1939  * @wake_flags: wake modifier flags (WF_*)
1940  *
1941  * If (@state & @p->state) @p->state = TASK_RUNNING.
1942  *
1943  * If the task was not queued/runnable, also place it back on a runqueue.
1944  *
1945  * Atomic against schedule() which would dequeue a task, also see
1946  * set_current_state().
1947  *
1948  * Return: %true if @p->state changes (an actual wakeup was done),
1949  *	   %false otherwise.
1950  */
1951 static int
1952 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1953 {
1954 	unsigned long flags;
1955 	int cpu, success = 0;
1956 
1957 	/*
1958 	 * If we are going to wake up a thread waiting for CONDITION we
1959 	 * need to ensure that CONDITION=1 done by the caller can not be
1960 	 * reordered with p->state check below. This pairs with mb() in
1961 	 * set_current_state() the waiting thread does.
1962 	 */
1963 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1964 	smp_mb__after_spinlock();
1965 	if (!(p->state & state))
1966 		goto out;
1967 
1968 	trace_sched_waking(p);
1969 
1970 	/* We're going to change ->state: */
1971 	success = 1;
1972 	cpu = task_cpu(p);
1973 
1974 	/*
1975 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1976 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1977 	 * in smp_cond_load_acquire() below.
1978 	 *
1979 	 * sched_ttwu_pending()                 try_to_wake_up()
1980 	 *   [S] p->on_rq = 1;                  [L] P->state
1981 	 *       UNLOCK rq->lock  -----.
1982 	 *                              \
1983 	 *				 +---   RMB
1984 	 * schedule()                   /
1985 	 *       LOCK rq->lock    -----'
1986 	 *       UNLOCK rq->lock
1987 	 *
1988 	 * [task p]
1989 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
1990 	 *
1991 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
1992 	 * last wakeup of our task and the schedule that got our task
1993 	 * current.
1994 	 */
1995 	smp_rmb();
1996 	if (p->on_rq && ttwu_remote(p, wake_flags))
1997 		goto stat;
1998 
1999 #ifdef CONFIG_SMP
2000 	/*
2001 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2002 	 * possible to, falsely, observe p->on_cpu == 0.
2003 	 *
2004 	 * One must be running (->on_cpu == 1) in order to remove oneself
2005 	 * from the runqueue.
2006 	 *
2007 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2008 	 *      UNLOCK rq->lock
2009 	 *			RMB
2010 	 *      LOCK   rq->lock
2011 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2012 	 *
2013 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2014 	 * from the consecutive calls to schedule(); the first switching to our
2015 	 * task, the second putting it to sleep.
2016 	 */
2017 	smp_rmb();
2018 
2019 	/*
2020 	 * If the owning (remote) CPU is still in the middle of schedule() with
2021 	 * this task as prev, wait until its done referencing the task.
2022 	 *
2023 	 * Pairs with the smp_store_release() in finish_task().
2024 	 *
2025 	 * This ensures that tasks getting woken will be fully ordered against
2026 	 * their previous state and preserve Program Order.
2027 	 */
2028 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2029 
2030 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2031 	p->state = TASK_WAKING;
2032 
2033 	if (p->in_iowait) {
2034 		delayacct_blkio_end(p);
2035 		atomic_dec(&task_rq(p)->nr_iowait);
2036 	}
2037 
2038 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2039 	if (task_cpu(p) != cpu) {
2040 		wake_flags |= WF_MIGRATED;
2041 		set_task_cpu(p, cpu);
2042 	}
2043 
2044 #else /* CONFIG_SMP */
2045 
2046 	if (p->in_iowait) {
2047 		delayacct_blkio_end(p);
2048 		atomic_dec(&task_rq(p)->nr_iowait);
2049 	}
2050 
2051 #endif /* CONFIG_SMP */
2052 
2053 	ttwu_queue(p, cpu, wake_flags);
2054 stat:
2055 	ttwu_stat(p, cpu, wake_flags);
2056 out:
2057 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2058 
2059 	return success;
2060 }
2061 
2062 /**
2063  * try_to_wake_up_local - try to wake up a local task with rq lock held
2064  * @p: the thread to be awakened
2065  * @rf: request-queue flags for pinning
2066  *
2067  * Put @p on the run-queue if it's not already there. The caller must
2068  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2069  * the current task.
2070  */
2071 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2072 {
2073 	struct rq *rq = task_rq(p);
2074 
2075 	if (WARN_ON_ONCE(rq != this_rq()) ||
2076 	    WARN_ON_ONCE(p == current))
2077 		return;
2078 
2079 	lockdep_assert_held(&rq->lock);
2080 
2081 	if (!raw_spin_trylock(&p->pi_lock)) {
2082 		/*
2083 		 * This is OK, because current is on_cpu, which avoids it being
2084 		 * picked for load-balance and preemption/IRQs are still
2085 		 * disabled avoiding further scheduler activity on it and we've
2086 		 * not yet picked a replacement task.
2087 		 */
2088 		rq_unlock(rq, rf);
2089 		raw_spin_lock(&p->pi_lock);
2090 		rq_relock(rq, rf);
2091 	}
2092 
2093 	if (!(p->state & TASK_NORMAL))
2094 		goto out;
2095 
2096 	trace_sched_waking(p);
2097 
2098 	if (!task_on_rq_queued(p)) {
2099 		if (p->in_iowait) {
2100 			delayacct_blkio_end(p);
2101 			atomic_dec(&rq->nr_iowait);
2102 		}
2103 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2104 	}
2105 
2106 	ttwu_do_wakeup(rq, p, 0, rf);
2107 	ttwu_stat(p, smp_processor_id(), 0);
2108 out:
2109 	raw_spin_unlock(&p->pi_lock);
2110 }
2111 
2112 /**
2113  * wake_up_process - Wake up a specific process
2114  * @p: The process to be woken up.
2115  *
2116  * Attempt to wake up the nominated process and move it to the set of runnable
2117  * processes.
2118  *
2119  * Return: 1 if the process was woken up, 0 if it was already running.
2120  *
2121  * It may be assumed that this function implies a write memory barrier before
2122  * changing the task state if and only if any tasks are woken up.
2123  */
2124 int wake_up_process(struct task_struct *p)
2125 {
2126 	return try_to_wake_up(p, TASK_NORMAL, 0);
2127 }
2128 EXPORT_SYMBOL(wake_up_process);
2129 
2130 int wake_up_state(struct task_struct *p, unsigned int state)
2131 {
2132 	return try_to_wake_up(p, state, 0);
2133 }
2134 
2135 /*
2136  * Perform scheduler related setup for a newly forked process p.
2137  * p is forked by current.
2138  *
2139  * __sched_fork() is basic setup used by init_idle() too:
2140  */
2141 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2142 {
2143 	p->on_rq			= 0;
2144 
2145 	p->se.on_rq			= 0;
2146 	p->se.exec_start		= 0;
2147 	p->se.sum_exec_runtime		= 0;
2148 	p->se.prev_sum_exec_runtime	= 0;
2149 	p->se.nr_migrations		= 0;
2150 	p->se.vruntime			= 0;
2151 	INIT_LIST_HEAD(&p->se.group_node);
2152 
2153 #ifdef CONFIG_FAIR_GROUP_SCHED
2154 	p->se.cfs_rq			= NULL;
2155 #endif
2156 
2157 #ifdef CONFIG_SCHEDSTATS
2158 	/* Even if schedstat is disabled, there should not be garbage */
2159 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2160 #endif
2161 
2162 	RB_CLEAR_NODE(&p->dl.rb_node);
2163 	init_dl_task_timer(&p->dl);
2164 	init_dl_inactive_task_timer(&p->dl);
2165 	__dl_clear_params(p);
2166 
2167 	INIT_LIST_HEAD(&p->rt.run_list);
2168 	p->rt.timeout		= 0;
2169 	p->rt.time_slice	= sched_rr_timeslice;
2170 	p->rt.on_rq		= 0;
2171 	p->rt.on_list		= 0;
2172 
2173 #ifdef CONFIG_PREEMPT_NOTIFIERS
2174 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2175 #endif
2176 
2177 #ifdef CONFIG_NUMA_BALANCING
2178 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2179 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 		p->mm->numa_scan_seq = 0;
2181 	}
2182 
2183 	if (clone_flags & CLONE_VM)
2184 		p->numa_preferred_nid = current->numa_preferred_nid;
2185 	else
2186 		p->numa_preferred_nid = -1;
2187 
2188 	p->node_stamp = 0ULL;
2189 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2190 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2191 	p->numa_work.next = &p->numa_work;
2192 	p->numa_faults = NULL;
2193 	p->last_task_numa_placement = 0;
2194 	p->last_sum_exec_runtime = 0;
2195 
2196 	p->numa_group = NULL;
2197 #endif /* CONFIG_NUMA_BALANCING */
2198 }
2199 
2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2201 
2202 #ifdef CONFIG_NUMA_BALANCING
2203 
2204 void set_numabalancing_state(bool enabled)
2205 {
2206 	if (enabled)
2207 		static_branch_enable(&sched_numa_balancing);
2208 	else
2209 		static_branch_disable(&sched_numa_balancing);
2210 }
2211 
2212 #ifdef CONFIG_PROC_SYSCTL
2213 int sysctl_numa_balancing(struct ctl_table *table, int write,
2214 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 	struct ctl_table t;
2217 	int err;
2218 	int state = static_branch_likely(&sched_numa_balancing);
2219 
2220 	if (write && !capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 
2223 	t = *table;
2224 	t.data = &state;
2225 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2226 	if (err < 0)
2227 		return err;
2228 	if (write)
2229 		set_numabalancing_state(state);
2230 	return err;
2231 }
2232 #endif
2233 #endif
2234 
2235 #ifdef CONFIG_SCHEDSTATS
2236 
2237 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2238 static bool __initdata __sched_schedstats = false;
2239 
2240 static void set_schedstats(bool enabled)
2241 {
2242 	if (enabled)
2243 		static_branch_enable(&sched_schedstats);
2244 	else
2245 		static_branch_disable(&sched_schedstats);
2246 }
2247 
2248 void force_schedstat_enabled(void)
2249 {
2250 	if (!schedstat_enabled()) {
2251 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2252 		static_branch_enable(&sched_schedstats);
2253 	}
2254 }
2255 
2256 static int __init setup_schedstats(char *str)
2257 {
2258 	int ret = 0;
2259 	if (!str)
2260 		goto out;
2261 
2262 	/*
2263 	 * This code is called before jump labels have been set up, so we can't
2264 	 * change the static branch directly just yet.  Instead set a temporary
2265 	 * variable so init_schedstats() can do it later.
2266 	 */
2267 	if (!strcmp(str, "enable")) {
2268 		__sched_schedstats = true;
2269 		ret = 1;
2270 	} else if (!strcmp(str, "disable")) {
2271 		__sched_schedstats = false;
2272 		ret = 1;
2273 	}
2274 out:
2275 	if (!ret)
2276 		pr_warn("Unable to parse schedstats=\n");
2277 
2278 	return ret;
2279 }
2280 __setup("schedstats=", setup_schedstats);
2281 
2282 static void __init init_schedstats(void)
2283 {
2284 	set_schedstats(__sched_schedstats);
2285 }
2286 
2287 #ifdef CONFIG_PROC_SYSCTL
2288 int sysctl_schedstats(struct ctl_table *table, int write,
2289 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2290 {
2291 	struct ctl_table t;
2292 	int err;
2293 	int state = static_branch_likely(&sched_schedstats);
2294 
2295 	if (write && !capable(CAP_SYS_ADMIN))
2296 		return -EPERM;
2297 
2298 	t = *table;
2299 	t.data = &state;
2300 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2301 	if (err < 0)
2302 		return err;
2303 	if (write)
2304 		set_schedstats(state);
2305 	return err;
2306 }
2307 #endif /* CONFIG_PROC_SYSCTL */
2308 #else  /* !CONFIG_SCHEDSTATS */
2309 static inline void init_schedstats(void) {}
2310 #endif /* CONFIG_SCHEDSTATS */
2311 
2312 /*
2313  * fork()/clone()-time setup:
2314  */
2315 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2316 {
2317 	unsigned long flags;
2318 	int cpu = get_cpu();
2319 
2320 	__sched_fork(clone_flags, p);
2321 	/*
2322 	 * We mark the process as NEW here. This guarantees that
2323 	 * nobody will actually run it, and a signal or other external
2324 	 * event cannot wake it up and insert it on the runqueue either.
2325 	 */
2326 	p->state = TASK_NEW;
2327 
2328 	/*
2329 	 * Make sure we do not leak PI boosting priority to the child.
2330 	 */
2331 	p->prio = current->normal_prio;
2332 
2333 	/*
2334 	 * Revert to default priority/policy on fork if requested.
2335 	 */
2336 	if (unlikely(p->sched_reset_on_fork)) {
2337 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2338 			p->policy = SCHED_NORMAL;
2339 			p->static_prio = NICE_TO_PRIO(0);
2340 			p->rt_priority = 0;
2341 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2342 			p->static_prio = NICE_TO_PRIO(0);
2343 
2344 		p->prio = p->normal_prio = __normal_prio(p);
2345 		set_load_weight(p, false);
2346 
2347 		/*
2348 		 * We don't need the reset flag anymore after the fork. It has
2349 		 * fulfilled its duty:
2350 		 */
2351 		p->sched_reset_on_fork = 0;
2352 	}
2353 
2354 	if (dl_prio(p->prio)) {
2355 		put_cpu();
2356 		return -EAGAIN;
2357 	} else if (rt_prio(p->prio)) {
2358 		p->sched_class = &rt_sched_class;
2359 	} else {
2360 		p->sched_class = &fair_sched_class;
2361 	}
2362 
2363 	init_entity_runnable_average(&p->se);
2364 
2365 	/*
2366 	 * The child is not yet in the pid-hash so no cgroup attach races,
2367 	 * and the cgroup is pinned to this child due to cgroup_fork()
2368 	 * is ran before sched_fork().
2369 	 *
2370 	 * Silence PROVE_RCU.
2371 	 */
2372 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2373 	/*
2374 	 * We're setting the CPU for the first time, we don't migrate,
2375 	 * so use __set_task_cpu().
2376 	 */
2377 	__set_task_cpu(p, cpu);
2378 	if (p->sched_class->task_fork)
2379 		p->sched_class->task_fork(p);
2380 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2381 
2382 #ifdef CONFIG_SCHED_INFO
2383 	if (likely(sched_info_on()))
2384 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2385 #endif
2386 #if defined(CONFIG_SMP)
2387 	p->on_cpu = 0;
2388 #endif
2389 	init_task_preempt_count(p);
2390 #ifdef CONFIG_SMP
2391 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2392 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2393 #endif
2394 
2395 	put_cpu();
2396 	return 0;
2397 }
2398 
2399 unsigned long to_ratio(u64 period, u64 runtime)
2400 {
2401 	if (runtime == RUNTIME_INF)
2402 		return BW_UNIT;
2403 
2404 	/*
2405 	 * Doing this here saves a lot of checks in all
2406 	 * the calling paths, and returning zero seems
2407 	 * safe for them anyway.
2408 	 */
2409 	if (period == 0)
2410 		return 0;
2411 
2412 	return div64_u64(runtime << BW_SHIFT, period);
2413 }
2414 
2415 /*
2416  * wake_up_new_task - wake up a newly created task for the first time.
2417  *
2418  * This function will do some initial scheduler statistics housekeeping
2419  * that must be done for every newly created context, then puts the task
2420  * on the runqueue and wakes it.
2421  */
2422 void wake_up_new_task(struct task_struct *p)
2423 {
2424 	struct rq_flags rf;
2425 	struct rq *rq;
2426 
2427 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2428 	p->state = TASK_RUNNING;
2429 #ifdef CONFIG_SMP
2430 	/*
2431 	 * Fork balancing, do it here and not earlier because:
2432 	 *  - cpus_allowed can change in the fork path
2433 	 *  - any previously selected CPU might disappear through hotplug
2434 	 *
2435 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2436 	 * as we're not fully set-up yet.
2437 	 */
2438 	p->recent_used_cpu = task_cpu(p);
2439 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2440 #endif
2441 	rq = __task_rq_lock(p, &rf);
2442 	update_rq_clock(rq);
2443 	post_init_entity_util_avg(&p->se);
2444 
2445 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2446 	p->on_rq = TASK_ON_RQ_QUEUED;
2447 	trace_sched_wakeup_new(p);
2448 	check_preempt_curr(rq, p, WF_FORK);
2449 #ifdef CONFIG_SMP
2450 	if (p->sched_class->task_woken) {
2451 		/*
2452 		 * Nothing relies on rq->lock after this, so its fine to
2453 		 * drop it.
2454 		 */
2455 		rq_unpin_lock(rq, &rf);
2456 		p->sched_class->task_woken(rq, p);
2457 		rq_repin_lock(rq, &rf);
2458 	}
2459 #endif
2460 	task_rq_unlock(rq, p, &rf);
2461 }
2462 
2463 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464 
2465 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2466 
2467 void preempt_notifier_inc(void)
2468 {
2469 	static_branch_inc(&preempt_notifier_key);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472 
2473 void preempt_notifier_dec(void)
2474 {
2475 	static_branch_dec(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478 
2479 /**
2480  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2481  * @notifier: notifier struct to register
2482  */
2483 void preempt_notifier_register(struct preempt_notifier *notifier)
2484 {
2485 	if (!static_branch_unlikely(&preempt_notifier_key))
2486 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487 
2488 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489 }
2490 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491 
2492 /**
2493  * preempt_notifier_unregister - no longer interested in preemption notifications
2494  * @notifier: notifier struct to unregister
2495  *
2496  * This is *not* safe to call from within a preemption notifier.
2497  */
2498 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499 {
2500 	hlist_del(&notifier->link);
2501 }
2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503 
2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2505 {
2506 	struct preempt_notifier *notifier;
2507 
2508 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2509 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510 }
2511 
2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 	if (static_branch_unlikely(&preempt_notifier_key))
2515 		__fire_sched_in_preempt_notifiers(curr);
2516 }
2517 
2518 static void
2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 				   struct task_struct *next)
2521 {
2522 	struct preempt_notifier *notifier;
2523 
2524 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2525 		notifier->ops->sched_out(notifier, next);
2526 }
2527 
2528 static __always_inline void
2529 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 				 struct task_struct *next)
2531 {
2532 	if (static_branch_unlikely(&preempt_notifier_key))
2533 		__fire_sched_out_preempt_notifiers(curr, next);
2534 }
2535 
2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537 
2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 }
2541 
2542 static inline void
2543 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 				 struct task_struct *next)
2545 {
2546 }
2547 
2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2549 
2550 static inline void prepare_task(struct task_struct *next)
2551 {
2552 #ifdef CONFIG_SMP
2553 	/*
2554 	 * Claim the task as running, we do this before switching to it
2555 	 * such that any running task will have this set.
2556 	 */
2557 	next->on_cpu = 1;
2558 #endif
2559 }
2560 
2561 static inline void finish_task(struct task_struct *prev)
2562 {
2563 #ifdef CONFIG_SMP
2564 	/*
2565 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2566 	 * We must ensure this doesn't happen until the switch is completely
2567 	 * finished.
2568 	 *
2569 	 * In particular, the load of prev->state in finish_task_switch() must
2570 	 * happen before this.
2571 	 *
2572 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2573 	 */
2574 	smp_store_release(&prev->on_cpu, 0);
2575 #endif
2576 }
2577 
2578 static inline void
2579 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2580 {
2581 	/*
2582 	 * Since the runqueue lock will be released by the next
2583 	 * task (which is an invalid locking op but in the case
2584 	 * of the scheduler it's an obvious special-case), so we
2585 	 * do an early lockdep release here:
2586 	 */
2587 	rq_unpin_lock(rq, rf);
2588 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2589 #ifdef CONFIG_DEBUG_SPINLOCK
2590 	/* this is a valid case when another task releases the spinlock */
2591 	rq->lock.owner = next;
2592 #endif
2593 }
2594 
2595 static inline void finish_lock_switch(struct rq *rq)
2596 {
2597 	/*
2598 	 * If we are tracking spinlock dependencies then we have to
2599 	 * fix up the runqueue lock - which gets 'carried over' from
2600 	 * prev into current:
2601 	 */
2602 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2603 	raw_spin_unlock_irq(&rq->lock);
2604 }
2605 
2606 /*
2607  * NOP if the arch has not defined these:
2608  */
2609 
2610 #ifndef prepare_arch_switch
2611 # define prepare_arch_switch(next)	do { } while (0)
2612 #endif
2613 
2614 #ifndef finish_arch_post_lock_switch
2615 # define finish_arch_post_lock_switch()	do { } while (0)
2616 #endif
2617 
2618 /**
2619  * prepare_task_switch - prepare to switch tasks
2620  * @rq: the runqueue preparing to switch
2621  * @prev: the current task that is being switched out
2622  * @next: the task we are going to switch to.
2623  *
2624  * This is called with the rq lock held and interrupts off. It must
2625  * be paired with a subsequent finish_task_switch after the context
2626  * switch.
2627  *
2628  * prepare_task_switch sets up locking and calls architecture specific
2629  * hooks.
2630  */
2631 static inline void
2632 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 		    struct task_struct *next)
2634 {
2635 	sched_info_switch(rq, prev, next);
2636 	perf_event_task_sched_out(prev, next);
2637 	fire_sched_out_preempt_notifiers(prev, next);
2638 	prepare_task(next);
2639 	prepare_arch_switch(next);
2640 }
2641 
2642 /**
2643  * finish_task_switch - clean up after a task-switch
2644  * @prev: the thread we just switched away from.
2645  *
2646  * finish_task_switch must be called after the context switch, paired
2647  * with a prepare_task_switch call before the context switch.
2648  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2649  * and do any other architecture-specific cleanup actions.
2650  *
2651  * Note that we may have delayed dropping an mm in context_switch(). If
2652  * so, we finish that here outside of the runqueue lock. (Doing it
2653  * with the lock held can cause deadlocks; see schedule() for
2654  * details.)
2655  *
2656  * The context switch have flipped the stack from under us and restored the
2657  * local variables which were saved when this task called schedule() in the
2658  * past. prev == current is still correct but we need to recalculate this_rq
2659  * because prev may have moved to another CPU.
2660  */
2661 static struct rq *finish_task_switch(struct task_struct *prev)
2662 	__releases(rq->lock)
2663 {
2664 	struct rq *rq = this_rq();
2665 	struct mm_struct *mm = rq->prev_mm;
2666 	long prev_state;
2667 
2668 	/*
2669 	 * The previous task will have left us with a preempt_count of 2
2670 	 * because it left us after:
2671 	 *
2672 	 *	schedule()
2673 	 *	  preempt_disable();			// 1
2674 	 *	  __schedule()
2675 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2676 	 *
2677 	 * Also, see FORK_PREEMPT_COUNT.
2678 	 */
2679 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2680 		      "corrupted preempt_count: %s/%d/0x%x\n",
2681 		      current->comm, current->pid, preempt_count()))
2682 		preempt_count_set(FORK_PREEMPT_COUNT);
2683 
2684 	rq->prev_mm = NULL;
2685 
2686 	/*
2687 	 * A task struct has one reference for the use as "current".
2688 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2689 	 * schedule one last time. The schedule call will never return, and
2690 	 * the scheduled task must drop that reference.
2691 	 *
2692 	 * We must observe prev->state before clearing prev->on_cpu (in
2693 	 * finish_task), otherwise a concurrent wakeup can get prev
2694 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2695 	 * transition, resulting in a double drop.
2696 	 */
2697 	prev_state = prev->state;
2698 	vtime_task_switch(prev);
2699 	perf_event_task_sched_in(prev, current);
2700 	finish_task(prev);
2701 	finish_lock_switch(rq);
2702 	finish_arch_post_lock_switch();
2703 
2704 	fire_sched_in_preempt_notifiers(current);
2705 	/*
2706 	 * When switching through a kernel thread, the loop in
2707 	 * membarrier_{private,global}_expedited() may have observed that
2708 	 * kernel thread and not issued an IPI. It is therefore possible to
2709 	 * schedule between user->kernel->user threads without passing though
2710 	 * switch_mm(). Membarrier requires a barrier after storing to
2711 	 * rq->curr, before returning to userspace, so provide them here:
2712 	 *
2713 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2714 	 *   provided by mmdrop(),
2715 	 * - a sync_core for SYNC_CORE.
2716 	 */
2717 	if (mm) {
2718 		membarrier_mm_sync_core_before_usermode(mm);
2719 		mmdrop(mm);
2720 	}
2721 	if (unlikely(prev_state == TASK_DEAD)) {
2722 		if (prev->sched_class->task_dead)
2723 			prev->sched_class->task_dead(prev);
2724 
2725 		/*
2726 		 * Remove function-return probe instances associated with this
2727 		 * task and put them back on the free list.
2728 		 */
2729 		kprobe_flush_task(prev);
2730 
2731 		/* Task is done with its stack. */
2732 		put_task_stack(prev);
2733 
2734 		put_task_struct(prev);
2735 	}
2736 
2737 	tick_nohz_task_switch();
2738 	return rq;
2739 }
2740 
2741 #ifdef CONFIG_SMP
2742 
2743 /* rq->lock is NOT held, but preemption is disabled */
2744 static void __balance_callback(struct rq *rq)
2745 {
2746 	struct callback_head *head, *next;
2747 	void (*func)(struct rq *rq);
2748 	unsigned long flags;
2749 
2750 	raw_spin_lock_irqsave(&rq->lock, flags);
2751 	head = rq->balance_callback;
2752 	rq->balance_callback = NULL;
2753 	while (head) {
2754 		func = (void (*)(struct rq *))head->func;
2755 		next = head->next;
2756 		head->next = NULL;
2757 		head = next;
2758 
2759 		func(rq);
2760 	}
2761 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2762 }
2763 
2764 static inline void balance_callback(struct rq *rq)
2765 {
2766 	if (unlikely(rq->balance_callback))
2767 		__balance_callback(rq);
2768 }
2769 
2770 #else
2771 
2772 static inline void balance_callback(struct rq *rq)
2773 {
2774 }
2775 
2776 #endif
2777 
2778 /**
2779  * schedule_tail - first thing a freshly forked thread must call.
2780  * @prev: the thread we just switched away from.
2781  */
2782 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2783 	__releases(rq->lock)
2784 {
2785 	struct rq *rq;
2786 
2787 	/*
2788 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2789 	 * finish_task_switch() for details.
2790 	 *
2791 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2792 	 * and the preempt_enable() will end up enabling preemption (on
2793 	 * PREEMPT_COUNT kernels).
2794 	 */
2795 
2796 	rq = finish_task_switch(prev);
2797 	balance_callback(rq);
2798 	preempt_enable();
2799 
2800 	if (current->set_child_tid)
2801 		put_user(task_pid_vnr(current), current->set_child_tid);
2802 }
2803 
2804 /*
2805  * context_switch - switch to the new MM and the new thread's register state.
2806  */
2807 static __always_inline struct rq *
2808 context_switch(struct rq *rq, struct task_struct *prev,
2809 	       struct task_struct *next, struct rq_flags *rf)
2810 {
2811 	struct mm_struct *mm, *oldmm;
2812 
2813 	prepare_task_switch(rq, prev, next);
2814 
2815 	mm = next->mm;
2816 	oldmm = prev->active_mm;
2817 	/*
2818 	 * For paravirt, this is coupled with an exit in switch_to to
2819 	 * combine the page table reload and the switch backend into
2820 	 * one hypercall.
2821 	 */
2822 	arch_start_context_switch(prev);
2823 
2824 	/*
2825 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2826 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2827 	 * Both of these contain the full memory barrier required by
2828 	 * membarrier after storing to rq->curr, before returning to
2829 	 * user-space.
2830 	 */
2831 	if (!mm) {
2832 		next->active_mm = oldmm;
2833 		mmgrab(oldmm);
2834 		enter_lazy_tlb(oldmm, next);
2835 	} else
2836 		switch_mm_irqs_off(oldmm, mm, next);
2837 
2838 	if (!prev->mm) {
2839 		prev->active_mm = NULL;
2840 		rq->prev_mm = oldmm;
2841 	}
2842 
2843 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2844 
2845 	prepare_lock_switch(rq, next, rf);
2846 
2847 	/* Here we just switch the register state and the stack. */
2848 	switch_to(prev, next, prev);
2849 	barrier();
2850 
2851 	return finish_task_switch(prev);
2852 }
2853 
2854 /*
2855  * nr_running and nr_context_switches:
2856  *
2857  * externally visible scheduler statistics: current number of runnable
2858  * threads, total number of context switches performed since bootup.
2859  */
2860 unsigned long nr_running(void)
2861 {
2862 	unsigned long i, sum = 0;
2863 
2864 	for_each_online_cpu(i)
2865 		sum += cpu_rq(i)->nr_running;
2866 
2867 	return sum;
2868 }
2869 
2870 /*
2871  * Check if only the current task is running on the CPU.
2872  *
2873  * Caution: this function does not check that the caller has disabled
2874  * preemption, thus the result might have a time-of-check-to-time-of-use
2875  * race.  The caller is responsible to use it correctly, for example:
2876  *
2877  * - from a non-preemptable section (of course)
2878  *
2879  * - from a thread that is bound to a single CPU
2880  *
2881  * - in a loop with very short iterations (e.g. a polling loop)
2882  */
2883 bool single_task_running(void)
2884 {
2885 	return raw_rq()->nr_running == 1;
2886 }
2887 EXPORT_SYMBOL(single_task_running);
2888 
2889 unsigned long long nr_context_switches(void)
2890 {
2891 	int i;
2892 	unsigned long long sum = 0;
2893 
2894 	for_each_possible_cpu(i)
2895 		sum += cpu_rq(i)->nr_switches;
2896 
2897 	return sum;
2898 }
2899 
2900 /*
2901  * IO-wait accounting, and how its mostly bollocks (on SMP).
2902  *
2903  * The idea behind IO-wait account is to account the idle time that we could
2904  * have spend running if it were not for IO. That is, if we were to improve the
2905  * storage performance, we'd have a proportional reduction in IO-wait time.
2906  *
2907  * This all works nicely on UP, where, when a task blocks on IO, we account
2908  * idle time as IO-wait, because if the storage were faster, it could've been
2909  * running and we'd not be idle.
2910  *
2911  * This has been extended to SMP, by doing the same for each CPU. This however
2912  * is broken.
2913  *
2914  * Imagine for instance the case where two tasks block on one CPU, only the one
2915  * CPU will have IO-wait accounted, while the other has regular idle. Even
2916  * though, if the storage were faster, both could've ran at the same time,
2917  * utilising both CPUs.
2918  *
2919  * This means, that when looking globally, the current IO-wait accounting on
2920  * SMP is a lower bound, by reason of under accounting.
2921  *
2922  * Worse, since the numbers are provided per CPU, they are sometimes
2923  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2924  * associated with any one particular CPU, it can wake to another CPU than it
2925  * blocked on. This means the per CPU IO-wait number is meaningless.
2926  *
2927  * Task CPU affinities can make all that even more 'interesting'.
2928  */
2929 
2930 unsigned long nr_iowait(void)
2931 {
2932 	unsigned long i, sum = 0;
2933 
2934 	for_each_possible_cpu(i)
2935 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2936 
2937 	return sum;
2938 }
2939 
2940 /*
2941  * Consumers of these two interfaces, like for example the cpufreq menu
2942  * governor are using nonsensical data. Boosting frequency for a CPU that has
2943  * IO-wait which might not even end up running the task when it does become
2944  * runnable.
2945  */
2946 
2947 unsigned long nr_iowait_cpu(int cpu)
2948 {
2949 	struct rq *this = cpu_rq(cpu);
2950 	return atomic_read(&this->nr_iowait);
2951 }
2952 
2953 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2954 {
2955 	struct rq *rq = this_rq();
2956 	*nr_waiters = atomic_read(&rq->nr_iowait);
2957 	*load = rq->load.weight;
2958 }
2959 
2960 #ifdef CONFIG_SMP
2961 
2962 /*
2963  * sched_exec - execve() is a valuable balancing opportunity, because at
2964  * this point the task has the smallest effective memory and cache footprint.
2965  */
2966 void sched_exec(void)
2967 {
2968 	struct task_struct *p = current;
2969 	unsigned long flags;
2970 	int dest_cpu;
2971 
2972 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2973 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2974 	if (dest_cpu == smp_processor_id())
2975 		goto unlock;
2976 
2977 	if (likely(cpu_active(dest_cpu))) {
2978 		struct migration_arg arg = { p, dest_cpu };
2979 
2980 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2982 		return;
2983 	}
2984 unlock:
2985 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2986 }
2987 
2988 #endif
2989 
2990 DEFINE_PER_CPU(struct kernel_stat, kstat);
2991 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2992 
2993 EXPORT_PER_CPU_SYMBOL(kstat);
2994 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2995 
2996 /*
2997  * The function fair_sched_class.update_curr accesses the struct curr
2998  * and its field curr->exec_start; when called from task_sched_runtime(),
2999  * we observe a high rate of cache misses in practice.
3000  * Prefetching this data results in improved performance.
3001  */
3002 static inline void prefetch_curr_exec_start(struct task_struct *p)
3003 {
3004 #ifdef CONFIG_FAIR_GROUP_SCHED
3005 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3006 #else
3007 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3008 #endif
3009 	prefetch(curr);
3010 	prefetch(&curr->exec_start);
3011 }
3012 
3013 /*
3014  * Return accounted runtime for the task.
3015  * In case the task is currently running, return the runtime plus current's
3016  * pending runtime that have not been accounted yet.
3017  */
3018 unsigned long long task_sched_runtime(struct task_struct *p)
3019 {
3020 	struct rq_flags rf;
3021 	struct rq *rq;
3022 	u64 ns;
3023 
3024 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3025 	/*
3026 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3027 	 * So we have a optimization chance when the task's delta_exec is 0.
3028 	 * Reading ->on_cpu is racy, but this is ok.
3029 	 *
3030 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3031 	 * If we race with it entering CPU, unaccounted time is 0. This is
3032 	 * indistinguishable from the read occurring a few cycles earlier.
3033 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3034 	 * been accounted, so we're correct here as well.
3035 	 */
3036 	if (!p->on_cpu || !task_on_rq_queued(p))
3037 		return p->se.sum_exec_runtime;
3038 #endif
3039 
3040 	rq = task_rq_lock(p, &rf);
3041 	/*
3042 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3043 	 * project cycles that may never be accounted to this
3044 	 * thread, breaking clock_gettime().
3045 	 */
3046 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3047 		prefetch_curr_exec_start(p);
3048 		update_rq_clock(rq);
3049 		p->sched_class->update_curr(rq);
3050 	}
3051 	ns = p->se.sum_exec_runtime;
3052 	task_rq_unlock(rq, p, &rf);
3053 
3054 	return ns;
3055 }
3056 
3057 /*
3058  * This function gets called by the timer code, with HZ frequency.
3059  * We call it with interrupts disabled.
3060  */
3061 void scheduler_tick(void)
3062 {
3063 	int cpu = smp_processor_id();
3064 	struct rq *rq = cpu_rq(cpu);
3065 	struct task_struct *curr = rq->curr;
3066 	struct rq_flags rf;
3067 
3068 	sched_clock_tick();
3069 
3070 	rq_lock(rq, &rf);
3071 
3072 	update_rq_clock(rq);
3073 	curr->sched_class->task_tick(rq, curr, 0);
3074 	cpu_load_update_active(rq);
3075 	calc_global_load_tick(rq);
3076 
3077 	rq_unlock(rq, &rf);
3078 
3079 	perf_event_task_tick();
3080 
3081 #ifdef CONFIG_SMP
3082 	rq->idle_balance = idle_cpu(cpu);
3083 	trigger_load_balance(rq);
3084 #endif
3085 }
3086 
3087 #ifdef CONFIG_NO_HZ_FULL
3088 
3089 struct tick_work {
3090 	int			cpu;
3091 	struct delayed_work	work;
3092 };
3093 
3094 static struct tick_work __percpu *tick_work_cpu;
3095 
3096 static void sched_tick_remote(struct work_struct *work)
3097 {
3098 	struct delayed_work *dwork = to_delayed_work(work);
3099 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3100 	int cpu = twork->cpu;
3101 	struct rq *rq = cpu_rq(cpu);
3102 	struct rq_flags rf;
3103 
3104 	/*
3105 	 * Handle the tick only if it appears the remote CPU is running in full
3106 	 * dynticks mode. The check is racy by nature, but missing a tick or
3107 	 * having one too much is no big deal because the scheduler tick updates
3108 	 * statistics and checks timeslices in a time-independent way, regardless
3109 	 * of when exactly it is running.
3110 	 */
3111 	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3112 		struct task_struct *curr;
3113 		u64 delta;
3114 
3115 		rq_lock_irq(rq, &rf);
3116 		update_rq_clock(rq);
3117 		curr = rq->curr;
3118 		delta = rq_clock_task(rq) - curr->se.exec_start;
3119 
3120 		/*
3121 		 * Make sure the next tick runs within a reasonable
3122 		 * amount of time.
3123 		 */
3124 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3125 		curr->sched_class->task_tick(rq, curr, 0);
3126 		rq_unlock_irq(rq, &rf);
3127 	}
3128 
3129 	/*
3130 	 * Run the remote tick once per second (1Hz). This arbitrary
3131 	 * frequency is large enough to avoid overload but short enough
3132 	 * to keep scheduler internal stats reasonably up to date.
3133 	 */
3134 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3135 }
3136 
3137 static void sched_tick_start(int cpu)
3138 {
3139 	struct tick_work *twork;
3140 
3141 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3142 		return;
3143 
3144 	WARN_ON_ONCE(!tick_work_cpu);
3145 
3146 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3147 	twork->cpu = cpu;
3148 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3149 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3150 }
3151 
3152 #ifdef CONFIG_HOTPLUG_CPU
3153 static void sched_tick_stop(int cpu)
3154 {
3155 	struct tick_work *twork;
3156 
3157 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3158 		return;
3159 
3160 	WARN_ON_ONCE(!tick_work_cpu);
3161 
3162 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3163 	cancel_delayed_work_sync(&twork->work);
3164 }
3165 #endif /* CONFIG_HOTPLUG_CPU */
3166 
3167 int __init sched_tick_offload_init(void)
3168 {
3169 	tick_work_cpu = alloc_percpu(struct tick_work);
3170 	BUG_ON(!tick_work_cpu);
3171 
3172 	return 0;
3173 }
3174 
3175 #else /* !CONFIG_NO_HZ_FULL */
3176 static inline void sched_tick_start(int cpu) { }
3177 static inline void sched_tick_stop(int cpu) { }
3178 #endif
3179 
3180 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3181 				defined(CONFIG_PREEMPT_TRACER))
3182 /*
3183  * If the value passed in is equal to the current preempt count
3184  * then we just disabled preemption. Start timing the latency.
3185  */
3186 static inline void preempt_latency_start(int val)
3187 {
3188 	if (preempt_count() == val) {
3189 		unsigned long ip = get_lock_parent_ip();
3190 #ifdef CONFIG_DEBUG_PREEMPT
3191 		current->preempt_disable_ip = ip;
3192 #endif
3193 		trace_preempt_off(CALLER_ADDR0, ip);
3194 	}
3195 }
3196 
3197 void preempt_count_add(int val)
3198 {
3199 #ifdef CONFIG_DEBUG_PREEMPT
3200 	/*
3201 	 * Underflow?
3202 	 */
3203 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3204 		return;
3205 #endif
3206 	__preempt_count_add(val);
3207 #ifdef CONFIG_DEBUG_PREEMPT
3208 	/*
3209 	 * Spinlock count overflowing soon?
3210 	 */
3211 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3212 				PREEMPT_MASK - 10);
3213 #endif
3214 	preempt_latency_start(val);
3215 }
3216 EXPORT_SYMBOL(preempt_count_add);
3217 NOKPROBE_SYMBOL(preempt_count_add);
3218 
3219 /*
3220  * If the value passed in equals to the current preempt count
3221  * then we just enabled preemption. Stop timing the latency.
3222  */
3223 static inline void preempt_latency_stop(int val)
3224 {
3225 	if (preempt_count() == val)
3226 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3227 }
3228 
3229 void preempt_count_sub(int val)
3230 {
3231 #ifdef CONFIG_DEBUG_PREEMPT
3232 	/*
3233 	 * Underflow?
3234 	 */
3235 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3236 		return;
3237 	/*
3238 	 * Is the spinlock portion underflowing?
3239 	 */
3240 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3241 			!(preempt_count() & PREEMPT_MASK)))
3242 		return;
3243 #endif
3244 
3245 	preempt_latency_stop(val);
3246 	__preempt_count_sub(val);
3247 }
3248 EXPORT_SYMBOL(preempt_count_sub);
3249 NOKPROBE_SYMBOL(preempt_count_sub);
3250 
3251 #else
3252 static inline void preempt_latency_start(int val) { }
3253 static inline void preempt_latency_stop(int val) { }
3254 #endif
3255 
3256 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3257 {
3258 #ifdef CONFIG_DEBUG_PREEMPT
3259 	return p->preempt_disable_ip;
3260 #else
3261 	return 0;
3262 #endif
3263 }
3264 
3265 /*
3266  * Print scheduling while atomic bug:
3267  */
3268 static noinline void __schedule_bug(struct task_struct *prev)
3269 {
3270 	/* Save this before calling printk(), since that will clobber it */
3271 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3272 
3273 	if (oops_in_progress)
3274 		return;
3275 
3276 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3277 		prev->comm, prev->pid, preempt_count());
3278 
3279 	debug_show_held_locks(prev);
3280 	print_modules();
3281 	if (irqs_disabled())
3282 		print_irqtrace_events(prev);
3283 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3284 	    && in_atomic_preempt_off()) {
3285 		pr_err("Preemption disabled at:");
3286 		print_ip_sym(preempt_disable_ip);
3287 		pr_cont("\n");
3288 	}
3289 	if (panic_on_warn)
3290 		panic("scheduling while atomic\n");
3291 
3292 	dump_stack();
3293 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3294 }
3295 
3296 /*
3297  * Various schedule()-time debugging checks and statistics:
3298  */
3299 static inline void schedule_debug(struct task_struct *prev)
3300 {
3301 #ifdef CONFIG_SCHED_STACK_END_CHECK
3302 	if (task_stack_end_corrupted(prev))
3303 		panic("corrupted stack end detected inside scheduler\n");
3304 #endif
3305 
3306 	if (unlikely(in_atomic_preempt_off())) {
3307 		__schedule_bug(prev);
3308 		preempt_count_set(PREEMPT_DISABLED);
3309 	}
3310 	rcu_sleep_check();
3311 
3312 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3313 
3314 	schedstat_inc(this_rq()->sched_count);
3315 }
3316 
3317 /*
3318  * Pick up the highest-prio task:
3319  */
3320 static inline struct task_struct *
3321 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3322 {
3323 	const struct sched_class *class;
3324 	struct task_struct *p;
3325 
3326 	/*
3327 	 * Optimization: we know that if all tasks are in the fair class we can
3328 	 * call that function directly, but only if the @prev task wasn't of a
3329 	 * higher scheduling class, because otherwise those loose the
3330 	 * opportunity to pull in more work from other CPUs.
3331 	 */
3332 	if (likely((prev->sched_class == &idle_sched_class ||
3333 		    prev->sched_class == &fair_sched_class) &&
3334 		   rq->nr_running == rq->cfs.h_nr_running)) {
3335 
3336 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3337 		if (unlikely(p == RETRY_TASK))
3338 			goto again;
3339 
3340 		/* Assumes fair_sched_class->next == idle_sched_class */
3341 		if (unlikely(!p))
3342 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3343 
3344 		return p;
3345 	}
3346 
3347 again:
3348 	for_each_class(class) {
3349 		p = class->pick_next_task(rq, prev, rf);
3350 		if (p) {
3351 			if (unlikely(p == RETRY_TASK))
3352 				goto again;
3353 			return p;
3354 		}
3355 	}
3356 
3357 	/* The idle class should always have a runnable task: */
3358 	BUG();
3359 }
3360 
3361 /*
3362  * __schedule() is the main scheduler function.
3363  *
3364  * The main means of driving the scheduler and thus entering this function are:
3365  *
3366  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3367  *
3368  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3369  *      paths. For example, see arch/x86/entry_64.S.
3370  *
3371  *      To drive preemption between tasks, the scheduler sets the flag in timer
3372  *      interrupt handler scheduler_tick().
3373  *
3374  *   3. Wakeups don't really cause entry into schedule(). They add a
3375  *      task to the run-queue and that's it.
3376  *
3377  *      Now, if the new task added to the run-queue preempts the current
3378  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3379  *      called on the nearest possible occasion:
3380  *
3381  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3382  *
3383  *         - in syscall or exception context, at the next outmost
3384  *           preempt_enable(). (this might be as soon as the wake_up()'s
3385  *           spin_unlock()!)
3386  *
3387  *         - in IRQ context, return from interrupt-handler to
3388  *           preemptible context
3389  *
3390  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3391  *         then at the next:
3392  *
3393  *          - cond_resched() call
3394  *          - explicit schedule() call
3395  *          - return from syscall or exception to user-space
3396  *          - return from interrupt-handler to user-space
3397  *
3398  * WARNING: must be called with preemption disabled!
3399  */
3400 static void __sched notrace __schedule(bool preempt)
3401 {
3402 	struct task_struct *prev, *next;
3403 	unsigned long *switch_count;
3404 	struct rq_flags rf;
3405 	struct rq *rq;
3406 	int cpu;
3407 
3408 	cpu = smp_processor_id();
3409 	rq = cpu_rq(cpu);
3410 	prev = rq->curr;
3411 
3412 	schedule_debug(prev);
3413 
3414 	if (sched_feat(HRTICK))
3415 		hrtick_clear(rq);
3416 
3417 	local_irq_disable();
3418 	rcu_note_context_switch(preempt);
3419 
3420 	/*
3421 	 * Make sure that signal_pending_state()->signal_pending() below
3422 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3423 	 * done by the caller to avoid the race with signal_wake_up().
3424 	 *
3425 	 * The membarrier system call requires a full memory barrier
3426 	 * after coming from user-space, before storing to rq->curr.
3427 	 */
3428 	rq_lock(rq, &rf);
3429 	smp_mb__after_spinlock();
3430 
3431 	/* Promote REQ to ACT */
3432 	rq->clock_update_flags <<= 1;
3433 	update_rq_clock(rq);
3434 
3435 	switch_count = &prev->nivcsw;
3436 	if (!preempt && prev->state) {
3437 		if (unlikely(signal_pending_state(prev->state, prev))) {
3438 			prev->state = TASK_RUNNING;
3439 		} else {
3440 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3441 			prev->on_rq = 0;
3442 
3443 			if (prev->in_iowait) {
3444 				atomic_inc(&rq->nr_iowait);
3445 				delayacct_blkio_start();
3446 			}
3447 
3448 			/*
3449 			 * If a worker went to sleep, notify and ask workqueue
3450 			 * whether it wants to wake up a task to maintain
3451 			 * concurrency.
3452 			 */
3453 			if (prev->flags & PF_WQ_WORKER) {
3454 				struct task_struct *to_wakeup;
3455 
3456 				to_wakeup = wq_worker_sleeping(prev);
3457 				if (to_wakeup)
3458 					try_to_wake_up_local(to_wakeup, &rf);
3459 			}
3460 		}
3461 		switch_count = &prev->nvcsw;
3462 	}
3463 
3464 	next = pick_next_task(rq, prev, &rf);
3465 	clear_tsk_need_resched(prev);
3466 	clear_preempt_need_resched();
3467 
3468 	if (likely(prev != next)) {
3469 		rq->nr_switches++;
3470 		rq->curr = next;
3471 		/*
3472 		 * The membarrier system call requires each architecture
3473 		 * to have a full memory barrier after updating
3474 		 * rq->curr, before returning to user-space.
3475 		 *
3476 		 * Here are the schemes providing that barrier on the
3477 		 * various architectures:
3478 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3479 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3480 		 * - finish_lock_switch() for weakly-ordered
3481 		 *   architectures where spin_unlock is a full barrier,
3482 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3483 		 *   is a RELEASE barrier),
3484 		 */
3485 		++*switch_count;
3486 
3487 		trace_sched_switch(preempt, prev, next);
3488 
3489 		/* Also unlocks the rq: */
3490 		rq = context_switch(rq, prev, next, &rf);
3491 	} else {
3492 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3493 		rq_unlock_irq(rq, &rf);
3494 	}
3495 
3496 	balance_callback(rq);
3497 }
3498 
3499 void __noreturn do_task_dead(void)
3500 {
3501 	/*
3502 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3503 	 * when the following two conditions become true.
3504 	 *   - There is race condition of mmap_sem (It is acquired by
3505 	 *     exit_mm()), and
3506 	 *   - SMI occurs before setting TASK_RUNINNG.
3507 	 *     (or hypervisor of virtual machine switches to other guest)
3508 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3509 	 *
3510 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3511 	 * is held by try_to_wake_up()
3512 	 */
3513 	raw_spin_lock_irq(&current->pi_lock);
3514 	raw_spin_unlock_irq(&current->pi_lock);
3515 
3516 	/* Causes final put_task_struct in finish_task_switch(): */
3517 	__set_current_state(TASK_DEAD);
3518 
3519 	/* Tell freezer to ignore us: */
3520 	current->flags |= PF_NOFREEZE;
3521 
3522 	__schedule(false);
3523 	BUG();
3524 
3525 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3526 	for (;;)
3527 		cpu_relax();
3528 }
3529 
3530 static inline void sched_submit_work(struct task_struct *tsk)
3531 {
3532 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3533 		return;
3534 	/*
3535 	 * If we are going to sleep and we have plugged IO queued,
3536 	 * make sure to submit it to avoid deadlocks.
3537 	 */
3538 	if (blk_needs_flush_plug(tsk))
3539 		blk_schedule_flush_plug(tsk);
3540 }
3541 
3542 asmlinkage __visible void __sched schedule(void)
3543 {
3544 	struct task_struct *tsk = current;
3545 
3546 	sched_submit_work(tsk);
3547 	do {
3548 		preempt_disable();
3549 		__schedule(false);
3550 		sched_preempt_enable_no_resched();
3551 	} while (need_resched());
3552 }
3553 EXPORT_SYMBOL(schedule);
3554 
3555 /*
3556  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3557  * state (have scheduled out non-voluntarily) by making sure that all
3558  * tasks have either left the run queue or have gone into user space.
3559  * As idle tasks do not do either, they must not ever be preempted
3560  * (schedule out non-voluntarily).
3561  *
3562  * schedule_idle() is similar to schedule_preempt_disable() except that it
3563  * never enables preemption because it does not call sched_submit_work().
3564  */
3565 void __sched schedule_idle(void)
3566 {
3567 	/*
3568 	 * As this skips calling sched_submit_work(), which the idle task does
3569 	 * regardless because that function is a nop when the task is in a
3570 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3571 	 * current task can be in any other state. Note, idle is always in the
3572 	 * TASK_RUNNING state.
3573 	 */
3574 	WARN_ON_ONCE(current->state);
3575 	do {
3576 		__schedule(false);
3577 	} while (need_resched());
3578 }
3579 
3580 #ifdef CONFIG_CONTEXT_TRACKING
3581 asmlinkage __visible void __sched schedule_user(void)
3582 {
3583 	/*
3584 	 * If we come here after a random call to set_need_resched(),
3585 	 * or we have been woken up remotely but the IPI has not yet arrived,
3586 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3587 	 * we find a better solution.
3588 	 *
3589 	 * NB: There are buggy callers of this function.  Ideally we
3590 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3591 	 * too frequently to make sense yet.
3592 	 */
3593 	enum ctx_state prev_state = exception_enter();
3594 	schedule();
3595 	exception_exit(prev_state);
3596 }
3597 #endif
3598 
3599 /**
3600  * schedule_preempt_disabled - called with preemption disabled
3601  *
3602  * Returns with preemption disabled. Note: preempt_count must be 1
3603  */
3604 void __sched schedule_preempt_disabled(void)
3605 {
3606 	sched_preempt_enable_no_resched();
3607 	schedule();
3608 	preempt_disable();
3609 }
3610 
3611 static void __sched notrace preempt_schedule_common(void)
3612 {
3613 	do {
3614 		/*
3615 		 * Because the function tracer can trace preempt_count_sub()
3616 		 * and it also uses preempt_enable/disable_notrace(), if
3617 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3618 		 * by the function tracer will call this function again and
3619 		 * cause infinite recursion.
3620 		 *
3621 		 * Preemption must be disabled here before the function
3622 		 * tracer can trace. Break up preempt_disable() into two
3623 		 * calls. One to disable preemption without fear of being
3624 		 * traced. The other to still record the preemption latency,
3625 		 * which can also be traced by the function tracer.
3626 		 */
3627 		preempt_disable_notrace();
3628 		preempt_latency_start(1);
3629 		__schedule(true);
3630 		preempt_latency_stop(1);
3631 		preempt_enable_no_resched_notrace();
3632 
3633 		/*
3634 		 * Check again in case we missed a preemption opportunity
3635 		 * between schedule and now.
3636 		 */
3637 	} while (need_resched());
3638 }
3639 
3640 #ifdef CONFIG_PREEMPT
3641 /*
3642  * this is the entry point to schedule() from in-kernel preemption
3643  * off of preempt_enable. Kernel preemptions off return from interrupt
3644  * occur there and call schedule directly.
3645  */
3646 asmlinkage __visible void __sched notrace preempt_schedule(void)
3647 {
3648 	/*
3649 	 * If there is a non-zero preempt_count or interrupts are disabled,
3650 	 * we do not want to preempt the current task. Just return..
3651 	 */
3652 	if (likely(!preemptible()))
3653 		return;
3654 
3655 	preempt_schedule_common();
3656 }
3657 NOKPROBE_SYMBOL(preempt_schedule);
3658 EXPORT_SYMBOL(preempt_schedule);
3659 
3660 /**
3661  * preempt_schedule_notrace - preempt_schedule called by tracing
3662  *
3663  * The tracing infrastructure uses preempt_enable_notrace to prevent
3664  * recursion and tracing preempt enabling caused by the tracing
3665  * infrastructure itself. But as tracing can happen in areas coming
3666  * from userspace or just about to enter userspace, a preempt enable
3667  * can occur before user_exit() is called. This will cause the scheduler
3668  * to be called when the system is still in usermode.
3669  *
3670  * To prevent this, the preempt_enable_notrace will use this function
3671  * instead of preempt_schedule() to exit user context if needed before
3672  * calling the scheduler.
3673  */
3674 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3675 {
3676 	enum ctx_state prev_ctx;
3677 
3678 	if (likely(!preemptible()))
3679 		return;
3680 
3681 	do {
3682 		/*
3683 		 * Because the function tracer can trace preempt_count_sub()
3684 		 * and it also uses preempt_enable/disable_notrace(), if
3685 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3686 		 * by the function tracer will call this function again and
3687 		 * cause infinite recursion.
3688 		 *
3689 		 * Preemption must be disabled here before the function
3690 		 * tracer can trace. Break up preempt_disable() into two
3691 		 * calls. One to disable preemption without fear of being
3692 		 * traced. The other to still record the preemption latency,
3693 		 * which can also be traced by the function tracer.
3694 		 */
3695 		preempt_disable_notrace();
3696 		preempt_latency_start(1);
3697 		/*
3698 		 * Needs preempt disabled in case user_exit() is traced
3699 		 * and the tracer calls preempt_enable_notrace() causing
3700 		 * an infinite recursion.
3701 		 */
3702 		prev_ctx = exception_enter();
3703 		__schedule(true);
3704 		exception_exit(prev_ctx);
3705 
3706 		preempt_latency_stop(1);
3707 		preempt_enable_no_resched_notrace();
3708 	} while (need_resched());
3709 }
3710 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3711 
3712 #endif /* CONFIG_PREEMPT */
3713 
3714 /*
3715  * this is the entry point to schedule() from kernel preemption
3716  * off of irq context.
3717  * Note, that this is called and return with irqs disabled. This will
3718  * protect us against recursive calling from irq.
3719  */
3720 asmlinkage __visible void __sched preempt_schedule_irq(void)
3721 {
3722 	enum ctx_state prev_state;
3723 
3724 	/* Catch callers which need to be fixed */
3725 	BUG_ON(preempt_count() || !irqs_disabled());
3726 
3727 	prev_state = exception_enter();
3728 
3729 	do {
3730 		preempt_disable();
3731 		local_irq_enable();
3732 		__schedule(true);
3733 		local_irq_disable();
3734 		sched_preempt_enable_no_resched();
3735 	} while (need_resched());
3736 
3737 	exception_exit(prev_state);
3738 }
3739 
3740 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3741 			  void *key)
3742 {
3743 	return try_to_wake_up(curr->private, mode, wake_flags);
3744 }
3745 EXPORT_SYMBOL(default_wake_function);
3746 
3747 #ifdef CONFIG_RT_MUTEXES
3748 
3749 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3750 {
3751 	if (pi_task)
3752 		prio = min(prio, pi_task->prio);
3753 
3754 	return prio;
3755 }
3756 
3757 static inline int rt_effective_prio(struct task_struct *p, int prio)
3758 {
3759 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3760 
3761 	return __rt_effective_prio(pi_task, prio);
3762 }
3763 
3764 /*
3765  * rt_mutex_setprio - set the current priority of a task
3766  * @p: task to boost
3767  * @pi_task: donor task
3768  *
3769  * This function changes the 'effective' priority of a task. It does
3770  * not touch ->normal_prio like __setscheduler().
3771  *
3772  * Used by the rt_mutex code to implement priority inheritance
3773  * logic. Call site only calls if the priority of the task changed.
3774  */
3775 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3776 {
3777 	int prio, oldprio, queued, running, queue_flag =
3778 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3779 	const struct sched_class *prev_class;
3780 	struct rq_flags rf;
3781 	struct rq *rq;
3782 
3783 	/* XXX used to be waiter->prio, not waiter->task->prio */
3784 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3785 
3786 	/*
3787 	 * If nothing changed; bail early.
3788 	 */
3789 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3790 		return;
3791 
3792 	rq = __task_rq_lock(p, &rf);
3793 	update_rq_clock(rq);
3794 	/*
3795 	 * Set under pi_lock && rq->lock, such that the value can be used under
3796 	 * either lock.
3797 	 *
3798 	 * Note that there is loads of tricky to make this pointer cache work
3799 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3800 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3801 	 * task is allowed to run again (and can exit). This ensures the pointer
3802 	 * points to a blocked task -- which guaratees the task is present.
3803 	 */
3804 	p->pi_top_task = pi_task;
3805 
3806 	/*
3807 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3808 	 */
3809 	if (prio == p->prio && !dl_prio(prio))
3810 		goto out_unlock;
3811 
3812 	/*
3813 	 * Idle task boosting is a nono in general. There is one
3814 	 * exception, when PREEMPT_RT and NOHZ is active:
3815 	 *
3816 	 * The idle task calls get_next_timer_interrupt() and holds
3817 	 * the timer wheel base->lock on the CPU and another CPU wants
3818 	 * to access the timer (probably to cancel it). We can safely
3819 	 * ignore the boosting request, as the idle CPU runs this code
3820 	 * with interrupts disabled and will complete the lock
3821 	 * protected section without being interrupted. So there is no
3822 	 * real need to boost.
3823 	 */
3824 	if (unlikely(p == rq->idle)) {
3825 		WARN_ON(p != rq->curr);
3826 		WARN_ON(p->pi_blocked_on);
3827 		goto out_unlock;
3828 	}
3829 
3830 	trace_sched_pi_setprio(p, pi_task);
3831 	oldprio = p->prio;
3832 
3833 	if (oldprio == prio)
3834 		queue_flag &= ~DEQUEUE_MOVE;
3835 
3836 	prev_class = p->sched_class;
3837 	queued = task_on_rq_queued(p);
3838 	running = task_current(rq, p);
3839 	if (queued)
3840 		dequeue_task(rq, p, queue_flag);
3841 	if (running)
3842 		put_prev_task(rq, p);
3843 
3844 	/*
3845 	 * Boosting condition are:
3846 	 * 1. -rt task is running and holds mutex A
3847 	 *      --> -dl task blocks on mutex A
3848 	 *
3849 	 * 2. -dl task is running and holds mutex A
3850 	 *      --> -dl task blocks on mutex A and could preempt the
3851 	 *          running task
3852 	 */
3853 	if (dl_prio(prio)) {
3854 		if (!dl_prio(p->normal_prio) ||
3855 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3856 			p->dl.dl_boosted = 1;
3857 			queue_flag |= ENQUEUE_REPLENISH;
3858 		} else
3859 			p->dl.dl_boosted = 0;
3860 		p->sched_class = &dl_sched_class;
3861 	} else if (rt_prio(prio)) {
3862 		if (dl_prio(oldprio))
3863 			p->dl.dl_boosted = 0;
3864 		if (oldprio < prio)
3865 			queue_flag |= ENQUEUE_HEAD;
3866 		p->sched_class = &rt_sched_class;
3867 	} else {
3868 		if (dl_prio(oldprio))
3869 			p->dl.dl_boosted = 0;
3870 		if (rt_prio(oldprio))
3871 			p->rt.timeout = 0;
3872 		p->sched_class = &fair_sched_class;
3873 	}
3874 
3875 	p->prio = prio;
3876 
3877 	if (queued)
3878 		enqueue_task(rq, p, queue_flag);
3879 	if (running)
3880 		set_curr_task(rq, p);
3881 
3882 	check_class_changed(rq, p, prev_class, oldprio);
3883 out_unlock:
3884 	/* Avoid rq from going away on us: */
3885 	preempt_disable();
3886 	__task_rq_unlock(rq, &rf);
3887 
3888 	balance_callback(rq);
3889 	preempt_enable();
3890 }
3891 #else
3892 static inline int rt_effective_prio(struct task_struct *p, int prio)
3893 {
3894 	return prio;
3895 }
3896 #endif
3897 
3898 void set_user_nice(struct task_struct *p, long nice)
3899 {
3900 	bool queued, running;
3901 	int old_prio, delta;
3902 	struct rq_flags rf;
3903 	struct rq *rq;
3904 
3905 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3906 		return;
3907 	/*
3908 	 * We have to be careful, if called from sys_setpriority(),
3909 	 * the task might be in the middle of scheduling on another CPU.
3910 	 */
3911 	rq = task_rq_lock(p, &rf);
3912 	update_rq_clock(rq);
3913 
3914 	/*
3915 	 * The RT priorities are set via sched_setscheduler(), but we still
3916 	 * allow the 'normal' nice value to be set - but as expected
3917 	 * it wont have any effect on scheduling until the task is
3918 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3919 	 */
3920 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3921 		p->static_prio = NICE_TO_PRIO(nice);
3922 		goto out_unlock;
3923 	}
3924 	queued = task_on_rq_queued(p);
3925 	running = task_current(rq, p);
3926 	if (queued)
3927 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3928 	if (running)
3929 		put_prev_task(rq, p);
3930 
3931 	p->static_prio = NICE_TO_PRIO(nice);
3932 	set_load_weight(p, true);
3933 	old_prio = p->prio;
3934 	p->prio = effective_prio(p);
3935 	delta = p->prio - old_prio;
3936 
3937 	if (queued) {
3938 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3939 		/*
3940 		 * If the task increased its priority or is running and
3941 		 * lowered its priority, then reschedule its CPU:
3942 		 */
3943 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3944 			resched_curr(rq);
3945 	}
3946 	if (running)
3947 		set_curr_task(rq, p);
3948 out_unlock:
3949 	task_rq_unlock(rq, p, &rf);
3950 }
3951 EXPORT_SYMBOL(set_user_nice);
3952 
3953 /*
3954  * can_nice - check if a task can reduce its nice value
3955  * @p: task
3956  * @nice: nice value
3957  */
3958 int can_nice(const struct task_struct *p, const int nice)
3959 {
3960 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3961 	int nice_rlim = nice_to_rlimit(nice);
3962 
3963 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3964 		capable(CAP_SYS_NICE));
3965 }
3966 
3967 #ifdef __ARCH_WANT_SYS_NICE
3968 
3969 /*
3970  * sys_nice - change the priority of the current process.
3971  * @increment: priority increment
3972  *
3973  * sys_setpriority is a more generic, but much slower function that
3974  * does similar things.
3975  */
3976 SYSCALL_DEFINE1(nice, int, increment)
3977 {
3978 	long nice, retval;
3979 
3980 	/*
3981 	 * Setpriority might change our priority at the same moment.
3982 	 * We don't have to worry. Conceptually one call occurs first
3983 	 * and we have a single winner.
3984 	 */
3985 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3986 	nice = task_nice(current) + increment;
3987 
3988 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3989 	if (increment < 0 && !can_nice(current, nice))
3990 		return -EPERM;
3991 
3992 	retval = security_task_setnice(current, nice);
3993 	if (retval)
3994 		return retval;
3995 
3996 	set_user_nice(current, nice);
3997 	return 0;
3998 }
3999 
4000 #endif
4001 
4002 /**
4003  * task_prio - return the priority value of a given task.
4004  * @p: the task in question.
4005  *
4006  * Return: The priority value as seen by users in /proc.
4007  * RT tasks are offset by -200. Normal tasks are centered
4008  * around 0, value goes from -16 to +15.
4009  */
4010 int task_prio(const struct task_struct *p)
4011 {
4012 	return p->prio - MAX_RT_PRIO;
4013 }
4014 
4015 /**
4016  * idle_cpu - is a given CPU idle currently?
4017  * @cpu: the processor in question.
4018  *
4019  * Return: 1 if the CPU is currently idle. 0 otherwise.
4020  */
4021 int idle_cpu(int cpu)
4022 {
4023 	struct rq *rq = cpu_rq(cpu);
4024 
4025 	if (rq->curr != rq->idle)
4026 		return 0;
4027 
4028 	if (rq->nr_running)
4029 		return 0;
4030 
4031 #ifdef CONFIG_SMP
4032 	if (!llist_empty(&rq->wake_list))
4033 		return 0;
4034 #endif
4035 
4036 	return 1;
4037 }
4038 
4039 /**
4040  * idle_task - return the idle task for a given CPU.
4041  * @cpu: the processor in question.
4042  *
4043  * Return: The idle task for the CPU @cpu.
4044  */
4045 struct task_struct *idle_task(int cpu)
4046 {
4047 	return cpu_rq(cpu)->idle;
4048 }
4049 
4050 /**
4051  * find_process_by_pid - find a process with a matching PID value.
4052  * @pid: the pid in question.
4053  *
4054  * The task of @pid, if found. %NULL otherwise.
4055  */
4056 static struct task_struct *find_process_by_pid(pid_t pid)
4057 {
4058 	return pid ? find_task_by_vpid(pid) : current;
4059 }
4060 
4061 /*
4062  * sched_setparam() passes in -1 for its policy, to let the functions
4063  * it calls know not to change it.
4064  */
4065 #define SETPARAM_POLICY	-1
4066 
4067 static void __setscheduler_params(struct task_struct *p,
4068 		const struct sched_attr *attr)
4069 {
4070 	int policy = attr->sched_policy;
4071 
4072 	if (policy == SETPARAM_POLICY)
4073 		policy = p->policy;
4074 
4075 	p->policy = policy;
4076 
4077 	if (dl_policy(policy))
4078 		__setparam_dl(p, attr);
4079 	else if (fair_policy(policy))
4080 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4081 
4082 	/*
4083 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4084 	 * !rt_policy. Always setting this ensures that things like
4085 	 * getparam()/getattr() don't report silly values for !rt tasks.
4086 	 */
4087 	p->rt_priority = attr->sched_priority;
4088 	p->normal_prio = normal_prio(p);
4089 	set_load_weight(p, true);
4090 }
4091 
4092 /* Actually do priority change: must hold pi & rq lock. */
4093 static void __setscheduler(struct rq *rq, struct task_struct *p,
4094 			   const struct sched_attr *attr, bool keep_boost)
4095 {
4096 	__setscheduler_params(p, attr);
4097 
4098 	/*
4099 	 * Keep a potential priority boosting if called from
4100 	 * sched_setscheduler().
4101 	 */
4102 	p->prio = normal_prio(p);
4103 	if (keep_boost)
4104 		p->prio = rt_effective_prio(p, p->prio);
4105 
4106 	if (dl_prio(p->prio))
4107 		p->sched_class = &dl_sched_class;
4108 	else if (rt_prio(p->prio))
4109 		p->sched_class = &rt_sched_class;
4110 	else
4111 		p->sched_class = &fair_sched_class;
4112 }
4113 
4114 /*
4115  * Check the target process has a UID that matches the current process's:
4116  */
4117 static bool check_same_owner(struct task_struct *p)
4118 {
4119 	const struct cred *cred = current_cred(), *pcred;
4120 	bool match;
4121 
4122 	rcu_read_lock();
4123 	pcred = __task_cred(p);
4124 	match = (uid_eq(cred->euid, pcred->euid) ||
4125 		 uid_eq(cred->euid, pcred->uid));
4126 	rcu_read_unlock();
4127 	return match;
4128 }
4129 
4130 static int __sched_setscheduler(struct task_struct *p,
4131 				const struct sched_attr *attr,
4132 				bool user, bool pi)
4133 {
4134 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4135 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4136 	int retval, oldprio, oldpolicy = -1, queued, running;
4137 	int new_effective_prio, policy = attr->sched_policy;
4138 	const struct sched_class *prev_class;
4139 	struct rq_flags rf;
4140 	int reset_on_fork;
4141 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4142 	struct rq *rq;
4143 
4144 	/* The pi code expects interrupts enabled */
4145 	BUG_ON(pi && in_interrupt());
4146 recheck:
4147 	/* Double check policy once rq lock held: */
4148 	if (policy < 0) {
4149 		reset_on_fork = p->sched_reset_on_fork;
4150 		policy = oldpolicy = p->policy;
4151 	} else {
4152 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4153 
4154 		if (!valid_policy(policy))
4155 			return -EINVAL;
4156 	}
4157 
4158 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4159 		return -EINVAL;
4160 
4161 	/*
4162 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4163 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4164 	 * SCHED_BATCH and SCHED_IDLE is 0.
4165 	 */
4166 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4167 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4168 		return -EINVAL;
4169 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4170 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4171 		return -EINVAL;
4172 
4173 	/*
4174 	 * Allow unprivileged RT tasks to decrease priority:
4175 	 */
4176 	if (user && !capable(CAP_SYS_NICE)) {
4177 		if (fair_policy(policy)) {
4178 			if (attr->sched_nice < task_nice(p) &&
4179 			    !can_nice(p, attr->sched_nice))
4180 				return -EPERM;
4181 		}
4182 
4183 		if (rt_policy(policy)) {
4184 			unsigned long rlim_rtprio =
4185 					task_rlimit(p, RLIMIT_RTPRIO);
4186 
4187 			/* Can't set/change the rt policy: */
4188 			if (policy != p->policy && !rlim_rtprio)
4189 				return -EPERM;
4190 
4191 			/* Can't increase priority: */
4192 			if (attr->sched_priority > p->rt_priority &&
4193 			    attr->sched_priority > rlim_rtprio)
4194 				return -EPERM;
4195 		}
4196 
4197 		 /*
4198 		  * Can't set/change SCHED_DEADLINE policy at all for now
4199 		  * (safest behavior); in the future we would like to allow
4200 		  * unprivileged DL tasks to increase their relative deadline
4201 		  * or reduce their runtime (both ways reducing utilization)
4202 		  */
4203 		if (dl_policy(policy))
4204 			return -EPERM;
4205 
4206 		/*
4207 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4208 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4209 		 */
4210 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4211 			if (!can_nice(p, task_nice(p)))
4212 				return -EPERM;
4213 		}
4214 
4215 		/* Can't change other user's priorities: */
4216 		if (!check_same_owner(p))
4217 			return -EPERM;
4218 
4219 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4220 		if (p->sched_reset_on_fork && !reset_on_fork)
4221 			return -EPERM;
4222 	}
4223 
4224 	if (user) {
4225 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4226 			return -EINVAL;
4227 
4228 		retval = security_task_setscheduler(p);
4229 		if (retval)
4230 			return retval;
4231 	}
4232 
4233 	/*
4234 	 * Make sure no PI-waiters arrive (or leave) while we are
4235 	 * changing the priority of the task:
4236 	 *
4237 	 * To be able to change p->policy safely, the appropriate
4238 	 * runqueue lock must be held.
4239 	 */
4240 	rq = task_rq_lock(p, &rf);
4241 	update_rq_clock(rq);
4242 
4243 	/*
4244 	 * Changing the policy of the stop threads its a very bad idea:
4245 	 */
4246 	if (p == rq->stop) {
4247 		task_rq_unlock(rq, p, &rf);
4248 		return -EINVAL;
4249 	}
4250 
4251 	/*
4252 	 * If not changing anything there's no need to proceed further,
4253 	 * but store a possible modification of reset_on_fork.
4254 	 */
4255 	if (unlikely(policy == p->policy)) {
4256 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4257 			goto change;
4258 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4259 			goto change;
4260 		if (dl_policy(policy) && dl_param_changed(p, attr))
4261 			goto change;
4262 
4263 		p->sched_reset_on_fork = reset_on_fork;
4264 		task_rq_unlock(rq, p, &rf);
4265 		return 0;
4266 	}
4267 change:
4268 
4269 	if (user) {
4270 #ifdef CONFIG_RT_GROUP_SCHED
4271 		/*
4272 		 * Do not allow realtime tasks into groups that have no runtime
4273 		 * assigned.
4274 		 */
4275 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4276 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4277 				!task_group_is_autogroup(task_group(p))) {
4278 			task_rq_unlock(rq, p, &rf);
4279 			return -EPERM;
4280 		}
4281 #endif
4282 #ifdef CONFIG_SMP
4283 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4284 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4285 			cpumask_t *span = rq->rd->span;
4286 
4287 			/*
4288 			 * Don't allow tasks with an affinity mask smaller than
4289 			 * the entire root_domain to become SCHED_DEADLINE. We
4290 			 * will also fail if there's no bandwidth available.
4291 			 */
4292 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4293 			    rq->rd->dl_bw.bw == 0) {
4294 				task_rq_unlock(rq, p, &rf);
4295 				return -EPERM;
4296 			}
4297 		}
4298 #endif
4299 	}
4300 
4301 	/* Re-check policy now with rq lock held: */
4302 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4303 		policy = oldpolicy = -1;
4304 		task_rq_unlock(rq, p, &rf);
4305 		goto recheck;
4306 	}
4307 
4308 	/*
4309 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4310 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4311 	 * is available.
4312 	 */
4313 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4314 		task_rq_unlock(rq, p, &rf);
4315 		return -EBUSY;
4316 	}
4317 
4318 	p->sched_reset_on_fork = reset_on_fork;
4319 	oldprio = p->prio;
4320 
4321 	if (pi) {
4322 		/*
4323 		 * Take priority boosted tasks into account. If the new
4324 		 * effective priority is unchanged, we just store the new
4325 		 * normal parameters and do not touch the scheduler class and
4326 		 * the runqueue. This will be done when the task deboost
4327 		 * itself.
4328 		 */
4329 		new_effective_prio = rt_effective_prio(p, newprio);
4330 		if (new_effective_prio == oldprio)
4331 			queue_flags &= ~DEQUEUE_MOVE;
4332 	}
4333 
4334 	queued = task_on_rq_queued(p);
4335 	running = task_current(rq, p);
4336 	if (queued)
4337 		dequeue_task(rq, p, queue_flags);
4338 	if (running)
4339 		put_prev_task(rq, p);
4340 
4341 	prev_class = p->sched_class;
4342 	__setscheduler(rq, p, attr, pi);
4343 
4344 	if (queued) {
4345 		/*
4346 		 * We enqueue to tail when the priority of a task is
4347 		 * increased (user space view).
4348 		 */
4349 		if (oldprio < p->prio)
4350 			queue_flags |= ENQUEUE_HEAD;
4351 
4352 		enqueue_task(rq, p, queue_flags);
4353 	}
4354 	if (running)
4355 		set_curr_task(rq, p);
4356 
4357 	check_class_changed(rq, p, prev_class, oldprio);
4358 
4359 	/* Avoid rq from going away on us: */
4360 	preempt_disable();
4361 	task_rq_unlock(rq, p, &rf);
4362 
4363 	if (pi)
4364 		rt_mutex_adjust_pi(p);
4365 
4366 	/* Run balance callbacks after we've adjusted the PI chain: */
4367 	balance_callback(rq);
4368 	preempt_enable();
4369 
4370 	return 0;
4371 }
4372 
4373 static int _sched_setscheduler(struct task_struct *p, int policy,
4374 			       const struct sched_param *param, bool check)
4375 {
4376 	struct sched_attr attr = {
4377 		.sched_policy   = policy,
4378 		.sched_priority = param->sched_priority,
4379 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4380 	};
4381 
4382 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4383 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4384 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4385 		policy &= ~SCHED_RESET_ON_FORK;
4386 		attr.sched_policy = policy;
4387 	}
4388 
4389 	return __sched_setscheduler(p, &attr, check, true);
4390 }
4391 /**
4392  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4393  * @p: the task in question.
4394  * @policy: new policy.
4395  * @param: structure containing the new RT priority.
4396  *
4397  * Return: 0 on success. An error code otherwise.
4398  *
4399  * NOTE that the task may be already dead.
4400  */
4401 int sched_setscheduler(struct task_struct *p, int policy,
4402 		       const struct sched_param *param)
4403 {
4404 	return _sched_setscheduler(p, policy, param, true);
4405 }
4406 EXPORT_SYMBOL_GPL(sched_setscheduler);
4407 
4408 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4409 {
4410 	return __sched_setscheduler(p, attr, true, true);
4411 }
4412 EXPORT_SYMBOL_GPL(sched_setattr);
4413 
4414 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4415 {
4416 	return __sched_setscheduler(p, attr, false, true);
4417 }
4418 
4419 /**
4420  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4421  * @p: the task in question.
4422  * @policy: new policy.
4423  * @param: structure containing the new RT priority.
4424  *
4425  * Just like sched_setscheduler, only don't bother checking if the
4426  * current context has permission.  For example, this is needed in
4427  * stop_machine(): we create temporary high priority worker threads,
4428  * but our caller might not have that capability.
4429  *
4430  * Return: 0 on success. An error code otherwise.
4431  */
4432 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4433 			       const struct sched_param *param)
4434 {
4435 	return _sched_setscheduler(p, policy, param, false);
4436 }
4437 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4438 
4439 static int
4440 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4441 {
4442 	struct sched_param lparam;
4443 	struct task_struct *p;
4444 	int retval;
4445 
4446 	if (!param || pid < 0)
4447 		return -EINVAL;
4448 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4449 		return -EFAULT;
4450 
4451 	rcu_read_lock();
4452 	retval = -ESRCH;
4453 	p = find_process_by_pid(pid);
4454 	if (p != NULL)
4455 		retval = sched_setscheduler(p, policy, &lparam);
4456 	rcu_read_unlock();
4457 
4458 	return retval;
4459 }
4460 
4461 /*
4462  * Mimics kernel/events/core.c perf_copy_attr().
4463  */
4464 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4465 {
4466 	u32 size;
4467 	int ret;
4468 
4469 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4470 		return -EFAULT;
4471 
4472 	/* Zero the full structure, so that a short copy will be nice: */
4473 	memset(attr, 0, sizeof(*attr));
4474 
4475 	ret = get_user(size, &uattr->size);
4476 	if (ret)
4477 		return ret;
4478 
4479 	/* Bail out on silly large: */
4480 	if (size > PAGE_SIZE)
4481 		goto err_size;
4482 
4483 	/* ABI compatibility quirk: */
4484 	if (!size)
4485 		size = SCHED_ATTR_SIZE_VER0;
4486 
4487 	if (size < SCHED_ATTR_SIZE_VER0)
4488 		goto err_size;
4489 
4490 	/*
4491 	 * If we're handed a bigger struct than we know of,
4492 	 * ensure all the unknown bits are 0 - i.e. new
4493 	 * user-space does not rely on any kernel feature
4494 	 * extensions we dont know about yet.
4495 	 */
4496 	if (size > sizeof(*attr)) {
4497 		unsigned char __user *addr;
4498 		unsigned char __user *end;
4499 		unsigned char val;
4500 
4501 		addr = (void __user *)uattr + sizeof(*attr);
4502 		end  = (void __user *)uattr + size;
4503 
4504 		for (; addr < end; addr++) {
4505 			ret = get_user(val, addr);
4506 			if (ret)
4507 				return ret;
4508 			if (val)
4509 				goto err_size;
4510 		}
4511 		size = sizeof(*attr);
4512 	}
4513 
4514 	ret = copy_from_user(attr, uattr, size);
4515 	if (ret)
4516 		return -EFAULT;
4517 
4518 	/*
4519 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4520 	 * to be strict and return an error on out-of-bounds values?
4521 	 */
4522 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4523 
4524 	return 0;
4525 
4526 err_size:
4527 	put_user(sizeof(*attr), &uattr->size);
4528 	return -E2BIG;
4529 }
4530 
4531 /**
4532  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4533  * @pid: the pid in question.
4534  * @policy: new policy.
4535  * @param: structure containing the new RT priority.
4536  *
4537  * Return: 0 on success. An error code otherwise.
4538  */
4539 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4540 {
4541 	if (policy < 0)
4542 		return -EINVAL;
4543 
4544 	return do_sched_setscheduler(pid, policy, param);
4545 }
4546 
4547 /**
4548  * sys_sched_setparam - set/change the RT priority of a thread
4549  * @pid: the pid in question.
4550  * @param: structure containing the new RT priority.
4551  *
4552  * Return: 0 on success. An error code otherwise.
4553  */
4554 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4555 {
4556 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4557 }
4558 
4559 /**
4560  * sys_sched_setattr - same as above, but with extended sched_attr
4561  * @pid: the pid in question.
4562  * @uattr: structure containing the extended parameters.
4563  * @flags: for future extension.
4564  */
4565 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4566 			       unsigned int, flags)
4567 {
4568 	struct sched_attr attr;
4569 	struct task_struct *p;
4570 	int retval;
4571 
4572 	if (!uattr || pid < 0 || flags)
4573 		return -EINVAL;
4574 
4575 	retval = sched_copy_attr(uattr, &attr);
4576 	if (retval)
4577 		return retval;
4578 
4579 	if ((int)attr.sched_policy < 0)
4580 		return -EINVAL;
4581 
4582 	rcu_read_lock();
4583 	retval = -ESRCH;
4584 	p = find_process_by_pid(pid);
4585 	if (p != NULL)
4586 		retval = sched_setattr(p, &attr);
4587 	rcu_read_unlock();
4588 
4589 	return retval;
4590 }
4591 
4592 /**
4593  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4594  * @pid: the pid in question.
4595  *
4596  * Return: On success, the policy of the thread. Otherwise, a negative error
4597  * code.
4598  */
4599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4600 {
4601 	struct task_struct *p;
4602 	int retval;
4603 
4604 	if (pid < 0)
4605 		return -EINVAL;
4606 
4607 	retval = -ESRCH;
4608 	rcu_read_lock();
4609 	p = find_process_by_pid(pid);
4610 	if (p) {
4611 		retval = security_task_getscheduler(p);
4612 		if (!retval)
4613 			retval = p->policy
4614 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4615 	}
4616 	rcu_read_unlock();
4617 	return retval;
4618 }
4619 
4620 /**
4621  * sys_sched_getparam - get the RT priority of a thread
4622  * @pid: the pid in question.
4623  * @param: structure containing the RT priority.
4624  *
4625  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4626  * code.
4627  */
4628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4629 {
4630 	struct sched_param lp = { .sched_priority = 0 };
4631 	struct task_struct *p;
4632 	int retval;
4633 
4634 	if (!param || pid < 0)
4635 		return -EINVAL;
4636 
4637 	rcu_read_lock();
4638 	p = find_process_by_pid(pid);
4639 	retval = -ESRCH;
4640 	if (!p)
4641 		goto out_unlock;
4642 
4643 	retval = security_task_getscheduler(p);
4644 	if (retval)
4645 		goto out_unlock;
4646 
4647 	if (task_has_rt_policy(p))
4648 		lp.sched_priority = p->rt_priority;
4649 	rcu_read_unlock();
4650 
4651 	/*
4652 	 * This one might sleep, we cannot do it with a spinlock held ...
4653 	 */
4654 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4655 
4656 	return retval;
4657 
4658 out_unlock:
4659 	rcu_read_unlock();
4660 	return retval;
4661 }
4662 
4663 static int sched_read_attr(struct sched_attr __user *uattr,
4664 			   struct sched_attr *attr,
4665 			   unsigned int usize)
4666 {
4667 	int ret;
4668 
4669 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4670 		return -EFAULT;
4671 
4672 	/*
4673 	 * If we're handed a smaller struct than we know of,
4674 	 * ensure all the unknown bits are 0 - i.e. old
4675 	 * user-space does not get uncomplete information.
4676 	 */
4677 	if (usize < sizeof(*attr)) {
4678 		unsigned char *addr;
4679 		unsigned char *end;
4680 
4681 		addr = (void *)attr + usize;
4682 		end  = (void *)attr + sizeof(*attr);
4683 
4684 		for (; addr < end; addr++) {
4685 			if (*addr)
4686 				return -EFBIG;
4687 		}
4688 
4689 		attr->size = usize;
4690 	}
4691 
4692 	ret = copy_to_user(uattr, attr, attr->size);
4693 	if (ret)
4694 		return -EFAULT;
4695 
4696 	return 0;
4697 }
4698 
4699 /**
4700  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4701  * @pid: the pid in question.
4702  * @uattr: structure containing the extended parameters.
4703  * @size: sizeof(attr) for fwd/bwd comp.
4704  * @flags: for future extension.
4705  */
4706 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4707 		unsigned int, size, unsigned int, flags)
4708 {
4709 	struct sched_attr attr = {
4710 		.size = sizeof(struct sched_attr),
4711 	};
4712 	struct task_struct *p;
4713 	int retval;
4714 
4715 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4716 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4717 		return -EINVAL;
4718 
4719 	rcu_read_lock();
4720 	p = find_process_by_pid(pid);
4721 	retval = -ESRCH;
4722 	if (!p)
4723 		goto out_unlock;
4724 
4725 	retval = security_task_getscheduler(p);
4726 	if (retval)
4727 		goto out_unlock;
4728 
4729 	attr.sched_policy = p->policy;
4730 	if (p->sched_reset_on_fork)
4731 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4732 	if (task_has_dl_policy(p))
4733 		__getparam_dl(p, &attr);
4734 	else if (task_has_rt_policy(p))
4735 		attr.sched_priority = p->rt_priority;
4736 	else
4737 		attr.sched_nice = task_nice(p);
4738 
4739 	rcu_read_unlock();
4740 
4741 	retval = sched_read_attr(uattr, &attr, size);
4742 	return retval;
4743 
4744 out_unlock:
4745 	rcu_read_unlock();
4746 	return retval;
4747 }
4748 
4749 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4750 {
4751 	cpumask_var_t cpus_allowed, new_mask;
4752 	struct task_struct *p;
4753 	int retval;
4754 
4755 	rcu_read_lock();
4756 
4757 	p = find_process_by_pid(pid);
4758 	if (!p) {
4759 		rcu_read_unlock();
4760 		return -ESRCH;
4761 	}
4762 
4763 	/* Prevent p going away */
4764 	get_task_struct(p);
4765 	rcu_read_unlock();
4766 
4767 	if (p->flags & PF_NO_SETAFFINITY) {
4768 		retval = -EINVAL;
4769 		goto out_put_task;
4770 	}
4771 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4772 		retval = -ENOMEM;
4773 		goto out_put_task;
4774 	}
4775 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4776 		retval = -ENOMEM;
4777 		goto out_free_cpus_allowed;
4778 	}
4779 	retval = -EPERM;
4780 	if (!check_same_owner(p)) {
4781 		rcu_read_lock();
4782 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4783 			rcu_read_unlock();
4784 			goto out_free_new_mask;
4785 		}
4786 		rcu_read_unlock();
4787 	}
4788 
4789 	retval = security_task_setscheduler(p);
4790 	if (retval)
4791 		goto out_free_new_mask;
4792 
4793 
4794 	cpuset_cpus_allowed(p, cpus_allowed);
4795 	cpumask_and(new_mask, in_mask, cpus_allowed);
4796 
4797 	/*
4798 	 * Since bandwidth control happens on root_domain basis,
4799 	 * if admission test is enabled, we only admit -deadline
4800 	 * tasks allowed to run on all the CPUs in the task's
4801 	 * root_domain.
4802 	 */
4803 #ifdef CONFIG_SMP
4804 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4805 		rcu_read_lock();
4806 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4807 			retval = -EBUSY;
4808 			rcu_read_unlock();
4809 			goto out_free_new_mask;
4810 		}
4811 		rcu_read_unlock();
4812 	}
4813 #endif
4814 again:
4815 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4816 
4817 	if (!retval) {
4818 		cpuset_cpus_allowed(p, cpus_allowed);
4819 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4820 			/*
4821 			 * We must have raced with a concurrent cpuset
4822 			 * update. Just reset the cpus_allowed to the
4823 			 * cpuset's cpus_allowed
4824 			 */
4825 			cpumask_copy(new_mask, cpus_allowed);
4826 			goto again;
4827 		}
4828 	}
4829 out_free_new_mask:
4830 	free_cpumask_var(new_mask);
4831 out_free_cpus_allowed:
4832 	free_cpumask_var(cpus_allowed);
4833 out_put_task:
4834 	put_task_struct(p);
4835 	return retval;
4836 }
4837 
4838 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4839 			     struct cpumask *new_mask)
4840 {
4841 	if (len < cpumask_size())
4842 		cpumask_clear(new_mask);
4843 	else if (len > cpumask_size())
4844 		len = cpumask_size();
4845 
4846 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4847 }
4848 
4849 /**
4850  * sys_sched_setaffinity - set the CPU affinity of a process
4851  * @pid: pid of the process
4852  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4853  * @user_mask_ptr: user-space pointer to the new CPU mask
4854  *
4855  * Return: 0 on success. An error code otherwise.
4856  */
4857 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4858 		unsigned long __user *, user_mask_ptr)
4859 {
4860 	cpumask_var_t new_mask;
4861 	int retval;
4862 
4863 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4864 		return -ENOMEM;
4865 
4866 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4867 	if (retval == 0)
4868 		retval = sched_setaffinity(pid, new_mask);
4869 	free_cpumask_var(new_mask);
4870 	return retval;
4871 }
4872 
4873 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4874 {
4875 	struct task_struct *p;
4876 	unsigned long flags;
4877 	int retval;
4878 
4879 	rcu_read_lock();
4880 
4881 	retval = -ESRCH;
4882 	p = find_process_by_pid(pid);
4883 	if (!p)
4884 		goto out_unlock;
4885 
4886 	retval = security_task_getscheduler(p);
4887 	if (retval)
4888 		goto out_unlock;
4889 
4890 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4891 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4892 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4893 
4894 out_unlock:
4895 	rcu_read_unlock();
4896 
4897 	return retval;
4898 }
4899 
4900 /**
4901  * sys_sched_getaffinity - get the CPU affinity of a process
4902  * @pid: pid of the process
4903  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4904  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4905  *
4906  * Return: size of CPU mask copied to user_mask_ptr on success. An
4907  * error code otherwise.
4908  */
4909 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4910 		unsigned long __user *, user_mask_ptr)
4911 {
4912 	int ret;
4913 	cpumask_var_t mask;
4914 
4915 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4916 		return -EINVAL;
4917 	if (len & (sizeof(unsigned long)-1))
4918 		return -EINVAL;
4919 
4920 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4921 		return -ENOMEM;
4922 
4923 	ret = sched_getaffinity(pid, mask);
4924 	if (ret == 0) {
4925 		unsigned int retlen = min(len, cpumask_size());
4926 
4927 		if (copy_to_user(user_mask_ptr, mask, retlen))
4928 			ret = -EFAULT;
4929 		else
4930 			ret = retlen;
4931 	}
4932 	free_cpumask_var(mask);
4933 
4934 	return ret;
4935 }
4936 
4937 /**
4938  * sys_sched_yield - yield the current processor to other threads.
4939  *
4940  * This function yields the current CPU to other tasks. If there are no
4941  * other threads running on this CPU then this function will return.
4942  *
4943  * Return: 0.
4944  */
4945 static void do_sched_yield(void)
4946 {
4947 	struct rq_flags rf;
4948 	struct rq *rq;
4949 
4950 	local_irq_disable();
4951 	rq = this_rq();
4952 	rq_lock(rq, &rf);
4953 
4954 	schedstat_inc(rq->yld_count);
4955 	current->sched_class->yield_task(rq);
4956 
4957 	/*
4958 	 * Since we are going to call schedule() anyway, there's
4959 	 * no need to preempt or enable interrupts:
4960 	 */
4961 	preempt_disable();
4962 	rq_unlock(rq, &rf);
4963 	sched_preempt_enable_no_resched();
4964 
4965 	schedule();
4966 }
4967 
4968 SYSCALL_DEFINE0(sched_yield)
4969 {
4970 	do_sched_yield();
4971 	return 0;
4972 }
4973 
4974 #ifndef CONFIG_PREEMPT
4975 int __sched _cond_resched(void)
4976 {
4977 	if (should_resched(0)) {
4978 		preempt_schedule_common();
4979 		return 1;
4980 	}
4981 	rcu_all_qs();
4982 	return 0;
4983 }
4984 EXPORT_SYMBOL(_cond_resched);
4985 #endif
4986 
4987 /*
4988  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4989  * call schedule, and on return reacquire the lock.
4990  *
4991  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4992  * operations here to prevent schedule() from being called twice (once via
4993  * spin_unlock(), once by hand).
4994  */
4995 int __cond_resched_lock(spinlock_t *lock)
4996 {
4997 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4998 	int ret = 0;
4999 
5000 	lockdep_assert_held(lock);
5001 
5002 	if (spin_needbreak(lock) || resched) {
5003 		spin_unlock(lock);
5004 		if (resched)
5005 			preempt_schedule_common();
5006 		else
5007 			cpu_relax();
5008 		ret = 1;
5009 		spin_lock(lock);
5010 	}
5011 	return ret;
5012 }
5013 EXPORT_SYMBOL(__cond_resched_lock);
5014 
5015 int __sched __cond_resched_softirq(void)
5016 {
5017 	BUG_ON(!in_softirq());
5018 
5019 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5020 		local_bh_enable();
5021 		preempt_schedule_common();
5022 		local_bh_disable();
5023 		return 1;
5024 	}
5025 	return 0;
5026 }
5027 EXPORT_SYMBOL(__cond_resched_softirq);
5028 
5029 /**
5030  * yield - yield the current processor to other threads.
5031  *
5032  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5033  *
5034  * The scheduler is at all times free to pick the calling task as the most
5035  * eligible task to run, if removing the yield() call from your code breaks
5036  * it, its already broken.
5037  *
5038  * Typical broken usage is:
5039  *
5040  * while (!event)
5041  *	yield();
5042  *
5043  * where one assumes that yield() will let 'the other' process run that will
5044  * make event true. If the current task is a SCHED_FIFO task that will never
5045  * happen. Never use yield() as a progress guarantee!!
5046  *
5047  * If you want to use yield() to wait for something, use wait_event().
5048  * If you want to use yield() to be 'nice' for others, use cond_resched().
5049  * If you still want to use yield(), do not!
5050  */
5051 void __sched yield(void)
5052 {
5053 	set_current_state(TASK_RUNNING);
5054 	do_sched_yield();
5055 }
5056 EXPORT_SYMBOL(yield);
5057 
5058 /**
5059  * yield_to - yield the current processor to another thread in
5060  * your thread group, or accelerate that thread toward the
5061  * processor it's on.
5062  * @p: target task
5063  * @preempt: whether task preemption is allowed or not
5064  *
5065  * It's the caller's job to ensure that the target task struct
5066  * can't go away on us before we can do any checks.
5067  *
5068  * Return:
5069  *	true (>0) if we indeed boosted the target task.
5070  *	false (0) if we failed to boost the target.
5071  *	-ESRCH if there's no task to yield to.
5072  */
5073 int __sched yield_to(struct task_struct *p, bool preempt)
5074 {
5075 	struct task_struct *curr = current;
5076 	struct rq *rq, *p_rq;
5077 	unsigned long flags;
5078 	int yielded = 0;
5079 
5080 	local_irq_save(flags);
5081 	rq = this_rq();
5082 
5083 again:
5084 	p_rq = task_rq(p);
5085 	/*
5086 	 * If we're the only runnable task on the rq and target rq also
5087 	 * has only one task, there's absolutely no point in yielding.
5088 	 */
5089 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5090 		yielded = -ESRCH;
5091 		goto out_irq;
5092 	}
5093 
5094 	double_rq_lock(rq, p_rq);
5095 	if (task_rq(p) != p_rq) {
5096 		double_rq_unlock(rq, p_rq);
5097 		goto again;
5098 	}
5099 
5100 	if (!curr->sched_class->yield_to_task)
5101 		goto out_unlock;
5102 
5103 	if (curr->sched_class != p->sched_class)
5104 		goto out_unlock;
5105 
5106 	if (task_running(p_rq, p) || p->state)
5107 		goto out_unlock;
5108 
5109 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5110 	if (yielded) {
5111 		schedstat_inc(rq->yld_count);
5112 		/*
5113 		 * Make p's CPU reschedule; pick_next_entity takes care of
5114 		 * fairness.
5115 		 */
5116 		if (preempt && rq != p_rq)
5117 			resched_curr(p_rq);
5118 	}
5119 
5120 out_unlock:
5121 	double_rq_unlock(rq, p_rq);
5122 out_irq:
5123 	local_irq_restore(flags);
5124 
5125 	if (yielded > 0)
5126 		schedule();
5127 
5128 	return yielded;
5129 }
5130 EXPORT_SYMBOL_GPL(yield_to);
5131 
5132 int io_schedule_prepare(void)
5133 {
5134 	int old_iowait = current->in_iowait;
5135 
5136 	current->in_iowait = 1;
5137 	blk_schedule_flush_plug(current);
5138 
5139 	return old_iowait;
5140 }
5141 
5142 void io_schedule_finish(int token)
5143 {
5144 	current->in_iowait = token;
5145 }
5146 
5147 /*
5148  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5149  * that process accounting knows that this is a task in IO wait state.
5150  */
5151 long __sched io_schedule_timeout(long timeout)
5152 {
5153 	int token;
5154 	long ret;
5155 
5156 	token = io_schedule_prepare();
5157 	ret = schedule_timeout(timeout);
5158 	io_schedule_finish(token);
5159 
5160 	return ret;
5161 }
5162 EXPORT_SYMBOL(io_schedule_timeout);
5163 
5164 void io_schedule(void)
5165 {
5166 	int token;
5167 
5168 	token = io_schedule_prepare();
5169 	schedule();
5170 	io_schedule_finish(token);
5171 }
5172 EXPORT_SYMBOL(io_schedule);
5173 
5174 /**
5175  * sys_sched_get_priority_max - return maximum RT priority.
5176  * @policy: scheduling class.
5177  *
5178  * Return: On success, this syscall returns the maximum
5179  * rt_priority that can be used by a given scheduling class.
5180  * On failure, a negative error code is returned.
5181  */
5182 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5183 {
5184 	int ret = -EINVAL;
5185 
5186 	switch (policy) {
5187 	case SCHED_FIFO:
5188 	case SCHED_RR:
5189 		ret = MAX_USER_RT_PRIO-1;
5190 		break;
5191 	case SCHED_DEADLINE:
5192 	case SCHED_NORMAL:
5193 	case SCHED_BATCH:
5194 	case SCHED_IDLE:
5195 		ret = 0;
5196 		break;
5197 	}
5198 	return ret;
5199 }
5200 
5201 /**
5202  * sys_sched_get_priority_min - return minimum RT priority.
5203  * @policy: scheduling class.
5204  *
5205  * Return: On success, this syscall returns the minimum
5206  * rt_priority that can be used by a given scheduling class.
5207  * On failure, a negative error code is returned.
5208  */
5209 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5210 {
5211 	int ret = -EINVAL;
5212 
5213 	switch (policy) {
5214 	case SCHED_FIFO:
5215 	case SCHED_RR:
5216 		ret = 1;
5217 		break;
5218 	case SCHED_DEADLINE:
5219 	case SCHED_NORMAL:
5220 	case SCHED_BATCH:
5221 	case SCHED_IDLE:
5222 		ret = 0;
5223 	}
5224 	return ret;
5225 }
5226 
5227 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5228 {
5229 	struct task_struct *p;
5230 	unsigned int time_slice;
5231 	struct rq_flags rf;
5232 	struct rq *rq;
5233 	int retval;
5234 
5235 	if (pid < 0)
5236 		return -EINVAL;
5237 
5238 	retval = -ESRCH;
5239 	rcu_read_lock();
5240 	p = find_process_by_pid(pid);
5241 	if (!p)
5242 		goto out_unlock;
5243 
5244 	retval = security_task_getscheduler(p);
5245 	if (retval)
5246 		goto out_unlock;
5247 
5248 	rq = task_rq_lock(p, &rf);
5249 	time_slice = 0;
5250 	if (p->sched_class->get_rr_interval)
5251 		time_slice = p->sched_class->get_rr_interval(rq, p);
5252 	task_rq_unlock(rq, p, &rf);
5253 
5254 	rcu_read_unlock();
5255 	jiffies_to_timespec64(time_slice, t);
5256 	return 0;
5257 
5258 out_unlock:
5259 	rcu_read_unlock();
5260 	return retval;
5261 }
5262 
5263 /**
5264  * sys_sched_rr_get_interval - return the default timeslice of a process.
5265  * @pid: pid of the process.
5266  * @interval: userspace pointer to the timeslice value.
5267  *
5268  * this syscall writes the default timeslice value of a given process
5269  * into the user-space timespec buffer. A value of '0' means infinity.
5270  *
5271  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5272  * an error code.
5273  */
5274 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5275 		struct timespec __user *, interval)
5276 {
5277 	struct timespec64 t;
5278 	int retval = sched_rr_get_interval(pid, &t);
5279 
5280 	if (retval == 0)
5281 		retval = put_timespec64(&t, interval);
5282 
5283 	return retval;
5284 }
5285 
5286 #ifdef CONFIG_COMPAT
5287 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5288 		       compat_pid_t, pid,
5289 		       struct compat_timespec __user *, interval)
5290 {
5291 	struct timespec64 t;
5292 	int retval = sched_rr_get_interval(pid, &t);
5293 
5294 	if (retval == 0)
5295 		retval = compat_put_timespec64(&t, interval);
5296 	return retval;
5297 }
5298 #endif
5299 
5300 void sched_show_task(struct task_struct *p)
5301 {
5302 	unsigned long free = 0;
5303 	int ppid;
5304 
5305 	if (!try_get_task_stack(p))
5306 		return;
5307 
5308 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5309 
5310 	if (p->state == TASK_RUNNING)
5311 		printk(KERN_CONT "  running task    ");
5312 #ifdef CONFIG_DEBUG_STACK_USAGE
5313 	free = stack_not_used(p);
5314 #endif
5315 	ppid = 0;
5316 	rcu_read_lock();
5317 	if (pid_alive(p))
5318 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5319 	rcu_read_unlock();
5320 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5321 		task_pid_nr(p), ppid,
5322 		(unsigned long)task_thread_info(p)->flags);
5323 
5324 	print_worker_info(KERN_INFO, p);
5325 	show_stack(p, NULL);
5326 	put_task_stack(p);
5327 }
5328 EXPORT_SYMBOL_GPL(sched_show_task);
5329 
5330 static inline bool
5331 state_filter_match(unsigned long state_filter, struct task_struct *p)
5332 {
5333 	/* no filter, everything matches */
5334 	if (!state_filter)
5335 		return true;
5336 
5337 	/* filter, but doesn't match */
5338 	if (!(p->state & state_filter))
5339 		return false;
5340 
5341 	/*
5342 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5343 	 * TASK_KILLABLE).
5344 	 */
5345 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5346 		return false;
5347 
5348 	return true;
5349 }
5350 
5351 
5352 void show_state_filter(unsigned long state_filter)
5353 {
5354 	struct task_struct *g, *p;
5355 
5356 #if BITS_PER_LONG == 32
5357 	printk(KERN_INFO
5358 		"  task                PC stack   pid father\n");
5359 #else
5360 	printk(KERN_INFO
5361 		"  task                        PC stack   pid father\n");
5362 #endif
5363 	rcu_read_lock();
5364 	for_each_process_thread(g, p) {
5365 		/*
5366 		 * reset the NMI-timeout, listing all files on a slow
5367 		 * console might take a lot of time:
5368 		 * Also, reset softlockup watchdogs on all CPUs, because
5369 		 * another CPU might be blocked waiting for us to process
5370 		 * an IPI.
5371 		 */
5372 		touch_nmi_watchdog();
5373 		touch_all_softlockup_watchdogs();
5374 		if (state_filter_match(state_filter, p))
5375 			sched_show_task(p);
5376 	}
5377 
5378 #ifdef CONFIG_SCHED_DEBUG
5379 	if (!state_filter)
5380 		sysrq_sched_debug_show();
5381 #endif
5382 	rcu_read_unlock();
5383 	/*
5384 	 * Only show locks if all tasks are dumped:
5385 	 */
5386 	if (!state_filter)
5387 		debug_show_all_locks();
5388 }
5389 
5390 /**
5391  * init_idle - set up an idle thread for a given CPU
5392  * @idle: task in question
5393  * @cpu: CPU the idle task belongs to
5394  *
5395  * NOTE: this function does not set the idle thread's NEED_RESCHED
5396  * flag, to make booting more robust.
5397  */
5398 void init_idle(struct task_struct *idle, int cpu)
5399 {
5400 	struct rq *rq = cpu_rq(cpu);
5401 	unsigned long flags;
5402 
5403 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5404 	raw_spin_lock(&rq->lock);
5405 
5406 	__sched_fork(0, idle);
5407 	idle->state = TASK_RUNNING;
5408 	idle->se.exec_start = sched_clock();
5409 	idle->flags |= PF_IDLE;
5410 
5411 	kasan_unpoison_task_stack(idle);
5412 
5413 #ifdef CONFIG_SMP
5414 	/*
5415 	 * Its possible that init_idle() gets called multiple times on a task,
5416 	 * in that case do_set_cpus_allowed() will not do the right thing.
5417 	 *
5418 	 * And since this is boot we can forgo the serialization.
5419 	 */
5420 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5421 #endif
5422 	/*
5423 	 * We're having a chicken and egg problem, even though we are
5424 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5425 	 * lockdep check in task_group() will fail.
5426 	 *
5427 	 * Similar case to sched_fork(). / Alternatively we could
5428 	 * use task_rq_lock() here and obtain the other rq->lock.
5429 	 *
5430 	 * Silence PROVE_RCU
5431 	 */
5432 	rcu_read_lock();
5433 	__set_task_cpu(idle, cpu);
5434 	rcu_read_unlock();
5435 
5436 	rq->curr = rq->idle = idle;
5437 	idle->on_rq = TASK_ON_RQ_QUEUED;
5438 #ifdef CONFIG_SMP
5439 	idle->on_cpu = 1;
5440 #endif
5441 	raw_spin_unlock(&rq->lock);
5442 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5443 
5444 	/* Set the preempt count _outside_ the spinlocks! */
5445 	init_idle_preempt_count(idle, cpu);
5446 
5447 	/*
5448 	 * The idle tasks have their own, simple scheduling class:
5449 	 */
5450 	idle->sched_class = &idle_sched_class;
5451 	ftrace_graph_init_idle_task(idle, cpu);
5452 	vtime_init_idle(idle, cpu);
5453 #ifdef CONFIG_SMP
5454 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5455 #endif
5456 }
5457 
5458 #ifdef CONFIG_SMP
5459 
5460 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5461 			      const struct cpumask *trial)
5462 {
5463 	int ret = 1;
5464 
5465 	if (!cpumask_weight(cur))
5466 		return ret;
5467 
5468 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5469 
5470 	return ret;
5471 }
5472 
5473 int task_can_attach(struct task_struct *p,
5474 		    const struct cpumask *cs_cpus_allowed)
5475 {
5476 	int ret = 0;
5477 
5478 	/*
5479 	 * Kthreads which disallow setaffinity shouldn't be moved
5480 	 * to a new cpuset; we don't want to change their CPU
5481 	 * affinity and isolating such threads by their set of
5482 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5483 	 * applicable for such threads.  This prevents checking for
5484 	 * success of set_cpus_allowed_ptr() on all attached tasks
5485 	 * before cpus_allowed may be changed.
5486 	 */
5487 	if (p->flags & PF_NO_SETAFFINITY) {
5488 		ret = -EINVAL;
5489 		goto out;
5490 	}
5491 
5492 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5493 					      cs_cpus_allowed))
5494 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5495 
5496 out:
5497 	return ret;
5498 }
5499 
5500 bool sched_smp_initialized __read_mostly;
5501 
5502 #ifdef CONFIG_NUMA_BALANCING
5503 /* Migrate current task p to target_cpu */
5504 int migrate_task_to(struct task_struct *p, int target_cpu)
5505 {
5506 	struct migration_arg arg = { p, target_cpu };
5507 	int curr_cpu = task_cpu(p);
5508 
5509 	if (curr_cpu == target_cpu)
5510 		return 0;
5511 
5512 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5513 		return -EINVAL;
5514 
5515 	/* TODO: This is not properly updating schedstats */
5516 
5517 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5518 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5519 }
5520 
5521 /*
5522  * Requeue a task on a given node and accurately track the number of NUMA
5523  * tasks on the runqueues
5524  */
5525 void sched_setnuma(struct task_struct *p, int nid)
5526 {
5527 	bool queued, running;
5528 	struct rq_flags rf;
5529 	struct rq *rq;
5530 
5531 	rq = task_rq_lock(p, &rf);
5532 	queued = task_on_rq_queued(p);
5533 	running = task_current(rq, p);
5534 
5535 	if (queued)
5536 		dequeue_task(rq, p, DEQUEUE_SAVE);
5537 	if (running)
5538 		put_prev_task(rq, p);
5539 
5540 	p->numa_preferred_nid = nid;
5541 
5542 	if (queued)
5543 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5544 	if (running)
5545 		set_curr_task(rq, p);
5546 	task_rq_unlock(rq, p, &rf);
5547 }
5548 #endif /* CONFIG_NUMA_BALANCING */
5549 
5550 #ifdef CONFIG_HOTPLUG_CPU
5551 /*
5552  * Ensure that the idle task is using init_mm right before its CPU goes
5553  * offline.
5554  */
5555 void idle_task_exit(void)
5556 {
5557 	struct mm_struct *mm = current->active_mm;
5558 
5559 	BUG_ON(cpu_online(smp_processor_id()));
5560 
5561 	if (mm != &init_mm) {
5562 		switch_mm(mm, &init_mm, current);
5563 		current->active_mm = &init_mm;
5564 		finish_arch_post_lock_switch();
5565 	}
5566 	mmdrop(mm);
5567 }
5568 
5569 /*
5570  * Since this CPU is going 'away' for a while, fold any nr_active delta
5571  * we might have. Assumes we're called after migrate_tasks() so that the
5572  * nr_active count is stable. We need to take the teardown thread which
5573  * is calling this into account, so we hand in adjust = 1 to the load
5574  * calculation.
5575  *
5576  * Also see the comment "Global load-average calculations".
5577  */
5578 static void calc_load_migrate(struct rq *rq)
5579 {
5580 	long delta = calc_load_fold_active(rq, 1);
5581 	if (delta)
5582 		atomic_long_add(delta, &calc_load_tasks);
5583 }
5584 
5585 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5586 {
5587 }
5588 
5589 static const struct sched_class fake_sched_class = {
5590 	.put_prev_task = put_prev_task_fake,
5591 };
5592 
5593 static struct task_struct fake_task = {
5594 	/*
5595 	 * Avoid pull_{rt,dl}_task()
5596 	 */
5597 	.prio = MAX_PRIO + 1,
5598 	.sched_class = &fake_sched_class,
5599 };
5600 
5601 /*
5602  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5603  * try_to_wake_up()->select_task_rq().
5604  *
5605  * Called with rq->lock held even though we'er in stop_machine() and
5606  * there's no concurrency possible, we hold the required locks anyway
5607  * because of lock validation efforts.
5608  */
5609 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5610 {
5611 	struct rq *rq = dead_rq;
5612 	struct task_struct *next, *stop = rq->stop;
5613 	struct rq_flags orf = *rf;
5614 	int dest_cpu;
5615 
5616 	/*
5617 	 * Fudge the rq selection such that the below task selection loop
5618 	 * doesn't get stuck on the currently eligible stop task.
5619 	 *
5620 	 * We're currently inside stop_machine() and the rq is either stuck
5621 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5622 	 * either way we should never end up calling schedule() until we're
5623 	 * done here.
5624 	 */
5625 	rq->stop = NULL;
5626 
5627 	/*
5628 	 * put_prev_task() and pick_next_task() sched
5629 	 * class method both need to have an up-to-date
5630 	 * value of rq->clock[_task]
5631 	 */
5632 	update_rq_clock(rq);
5633 
5634 	for (;;) {
5635 		/*
5636 		 * There's this thread running, bail when that's the only
5637 		 * remaining thread:
5638 		 */
5639 		if (rq->nr_running == 1)
5640 			break;
5641 
5642 		/*
5643 		 * pick_next_task() assumes pinned rq->lock:
5644 		 */
5645 		next = pick_next_task(rq, &fake_task, rf);
5646 		BUG_ON(!next);
5647 		put_prev_task(rq, next);
5648 
5649 		/*
5650 		 * Rules for changing task_struct::cpus_allowed are holding
5651 		 * both pi_lock and rq->lock, such that holding either
5652 		 * stabilizes the mask.
5653 		 *
5654 		 * Drop rq->lock is not quite as disastrous as it usually is
5655 		 * because !cpu_active at this point, which means load-balance
5656 		 * will not interfere. Also, stop-machine.
5657 		 */
5658 		rq_unlock(rq, rf);
5659 		raw_spin_lock(&next->pi_lock);
5660 		rq_relock(rq, rf);
5661 
5662 		/*
5663 		 * Since we're inside stop-machine, _nothing_ should have
5664 		 * changed the task, WARN if weird stuff happened, because in
5665 		 * that case the above rq->lock drop is a fail too.
5666 		 */
5667 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5668 			raw_spin_unlock(&next->pi_lock);
5669 			continue;
5670 		}
5671 
5672 		/* Find suitable destination for @next, with force if needed. */
5673 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5674 		rq = __migrate_task(rq, rf, next, dest_cpu);
5675 		if (rq != dead_rq) {
5676 			rq_unlock(rq, rf);
5677 			rq = dead_rq;
5678 			*rf = orf;
5679 			rq_relock(rq, rf);
5680 		}
5681 		raw_spin_unlock(&next->pi_lock);
5682 	}
5683 
5684 	rq->stop = stop;
5685 }
5686 #endif /* CONFIG_HOTPLUG_CPU */
5687 
5688 void set_rq_online(struct rq *rq)
5689 {
5690 	if (!rq->online) {
5691 		const struct sched_class *class;
5692 
5693 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5694 		rq->online = 1;
5695 
5696 		for_each_class(class) {
5697 			if (class->rq_online)
5698 				class->rq_online(rq);
5699 		}
5700 	}
5701 }
5702 
5703 void set_rq_offline(struct rq *rq)
5704 {
5705 	if (rq->online) {
5706 		const struct sched_class *class;
5707 
5708 		for_each_class(class) {
5709 			if (class->rq_offline)
5710 				class->rq_offline(rq);
5711 		}
5712 
5713 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5714 		rq->online = 0;
5715 	}
5716 }
5717 
5718 static void set_cpu_rq_start_time(unsigned int cpu)
5719 {
5720 	struct rq *rq = cpu_rq(cpu);
5721 
5722 	rq->age_stamp = sched_clock_cpu(cpu);
5723 }
5724 
5725 /*
5726  * used to mark begin/end of suspend/resume:
5727  */
5728 static int num_cpus_frozen;
5729 
5730 /*
5731  * Update cpusets according to cpu_active mask.  If cpusets are
5732  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5733  * around partition_sched_domains().
5734  *
5735  * If we come here as part of a suspend/resume, don't touch cpusets because we
5736  * want to restore it back to its original state upon resume anyway.
5737  */
5738 static void cpuset_cpu_active(void)
5739 {
5740 	if (cpuhp_tasks_frozen) {
5741 		/*
5742 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5743 		 * resume sequence. As long as this is not the last online
5744 		 * operation in the resume sequence, just build a single sched
5745 		 * domain, ignoring cpusets.
5746 		 */
5747 		partition_sched_domains(1, NULL, NULL);
5748 		if (--num_cpus_frozen)
5749 			return;
5750 		/*
5751 		 * This is the last CPU online operation. So fall through and
5752 		 * restore the original sched domains by considering the
5753 		 * cpuset configurations.
5754 		 */
5755 		cpuset_force_rebuild();
5756 	}
5757 	cpuset_update_active_cpus();
5758 }
5759 
5760 static int cpuset_cpu_inactive(unsigned int cpu)
5761 {
5762 	if (!cpuhp_tasks_frozen) {
5763 		if (dl_cpu_busy(cpu))
5764 			return -EBUSY;
5765 		cpuset_update_active_cpus();
5766 	} else {
5767 		num_cpus_frozen++;
5768 		partition_sched_domains(1, NULL, NULL);
5769 	}
5770 	return 0;
5771 }
5772 
5773 int sched_cpu_activate(unsigned int cpu)
5774 {
5775 	struct rq *rq = cpu_rq(cpu);
5776 	struct rq_flags rf;
5777 
5778 	set_cpu_active(cpu, true);
5779 
5780 	if (sched_smp_initialized) {
5781 		sched_domains_numa_masks_set(cpu);
5782 		cpuset_cpu_active();
5783 	}
5784 
5785 	/*
5786 	 * Put the rq online, if not already. This happens:
5787 	 *
5788 	 * 1) In the early boot process, because we build the real domains
5789 	 *    after all CPUs have been brought up.
5790 	 *
5791 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5792 	 *    domains.
5793 	 */
5794 	rq_lock_irqsave(rq, &rf);
5795 	if (rq->rd) {
5796 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5797 		set_rq_online(rq);
5798 	}
5799 	rq_unlock_irqrestore(rq, &rf);
5800 
5801 	update_max_interval();
5802 
5803 	return 0;
5804 }
5805 
5806 int sched_cpu_deactivate(unsigned int cpu)
5807 {
5808 	int ret;
5809 
5810 	set_cpu_active(cpu, false);
5811 	/*
5812 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5813 	 * users of this state to go away such that all new such users will
5814 	 * observe it.
5815 	 *
5816 	 * Do sync before park smpboot threads to take care the rcu boost case.
5817 	 */
5818 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5819 
5820 	if (!sched_smp_initialized)
5821 		return 0;
5822 
5823 	ret = cpuset_cpu_inactive(cpu);
5824 	if (ret) {
5825 		set_cpu_active(cpu, true);
5826 		return ret;
5827 	}
5828 	sched_domains_numa_masks_clear(cpu);
5829 	return 0;
5830 }
5831 
5832 static void sched_rq_cpu_starting(unsigned int cpu)
5833 {
5834 	struct rq *rq = cpu_rq(cpu);
5835 
5836 	rq->calc_load_update = calc_load_update;
5837 	update_max_interval();
5838 }
5839 
5840 int sched_cpu_starting(unsigned int cpu)
5841 {
5842 	set_cpu_rq_start_time(cpu);
5843 	sched_rq_cpu_starting(cpu);
5844 	sched_tick_start(cpu);
5845 	return 0;
5846 }
5847 
5848 #ifdef CONFIG_HOTPLUG_CPU
5849 int sched_cpu_dying(unsigned int cpu)
5850 {
5851 	struct rq *rq = cpu_rq(cpu);
5852 	struct rq_flags rf;
5853 
5854 	/* Handle pending wakeups and then migrate everything off */
5855 	sched_ttwu_pending();
5856 	sched_tick_stop(cpu);
5857 
5858 	rq_lock_irqsave(rq, &rf);
5859 	if (rq->rd) {
5860 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5861 		set_rq_offline(rq);
5862 	}
5863 	migrate_tasks(rq, &rf);
5864 	BUG_ON(rq->nr_running != 1);
5865 	rq_unlock_irqrestore(rq, &rf);
5866 
5867 	calc_load_migrate(rq);
5868 	update_max_interval();
5869 	nohz_balance_exit_idle(rq);
5870 	hrtick_clear(rq);
5871 	return 0;
5872 }
5873 #endif
5874 
5875 #ifdef CONFIG_SCHED_SMT
5876 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5877 
5878 static void sched_init_smt(void)
5879 {
5880 	/*
5881 	 * We've enumerated all CPUs and will assume that if any CPU
5882 	 * has SMT siblings, CPU0 will too.
5883 	 */
5884 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5885 		static_branch_enable(&sched_smt_present);
5886 }
5887 #else
5888 static inline void sched_init_smt(void) { }
5889 #endif
5890 
5891 void __init sched_init_smp(void)
5892 {
5893 	sched_init_numa();
5894 
5895 	/*
5896 	 * There's no userspace yet to cause hotplug operations; hence all the
5897 	 * CPU masks are stable and all blatant races in the below code cannot
5898 	 * happen.
5899 	 */
5900 	mutex_lock(&sched_domains_mutex);
5901 	sched_init_domains(cpu_active_mask);
5902 	mutex_unlock(&sched_domains_mutex);
5903 
5904 	/* Move init over to a non-isolated CPU */
5905 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5906 		BUG();
5907 	sched_init_granularity();
5908 
5909 	init_sched_rt_class();
5910 	init_sched_dl_class();
5911 
5912 	sched_init_smt();
5913 
5914 	sched_smp_initialized = true;
5915 }
5916 
5917 static int __init migration_init(void)
5918 {
5919 	sched_rq_cpu_starting(smp_processor_id());
5920 	return 0;
5921 }
5922 early_initcall(migration_init);
5923 
5924 #else
5925 void __init sched_init_smp(void)
5926 {
5927 	sched_init_granularity();
5928 }
5929 #endif /* CONFIG_SMP */
5930 
5931 int in_sched_functions(unsigned long addr)
5932 {
5933 	return in_lock_functions(addr) ||
5934 		(addr >= (unsigned long)__sched_text_start
5935 		&& addr < (unsigned long)__sched_text_end);
5936 }
5937 
5938 #ifdef CONFIG_CGROUP_SCHED
5939 /*
5940  * Default task group.
5941  * Every task in system belongs to this group at bootup.
5942  */
5943 struct task_group root_task_group;
5944 LIST_HEAD(task_groups);
5945 
5946 /* Cacheline aligned slab cache for task_group */
5947 static struct kmem_cache *task_group_cache __read_mostly;
5948 #endif
5949 
5950 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5951 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5952 
5953 void __init sched_init(void)
5954 {
5955 	int i, j;
5956 	unsigned long alloc_size = 0, ptr;
5957 
5958 	sched_clock_init();
5959 	wait_bit_init();
5960 
5961 #ifdef CONFIG_FAIR_GROUP_SCHED
5962 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5963 #endif
5964 #ifdef CONFIG_RT_GROUP_SCHED
5965 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5966 #endif
5967 	if (alloc_size) {
5968 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5969 
5970 #ifdef CONFIG_FAIR_GROUP_SCHED
5971 		root_task_group.se = (struct sched_entity **)ptr;
5972 		ptr += nr_cpu_ids * sizeof(void **);
5973 
5974 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5975 		ptr += nr_cpu_ids * sizeof(void **);
5976 
5977 #endif /* CONFIG_FAIR_GROUP_SCHED */
5978 #ifdef CONFIG_RT_GROUP_SCHED
5979 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5980 		ptr += nr_cpu_ids * sizeof(void **);
5981 
5982 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5983 		ptr += nr_cpu_ids * sizeof(void **);
5984 
5985 #endif /* CONFIG_RT_GROUP_SCHED */
5986 	}
5987 #ifdef CONFIG_CPUMASK_OFFSTACK
5988 	for_each_possible_cpu(i) {
5989 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5990 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5991 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5992 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5993 	}
5994 #endif /* CONFIG_CPUMASK_OFFSTACK */
5995 
5996 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5997 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5998 
5999 #ifdef CONFIG_SMP
6000 	init_defrootdomain();
6001 #endif
6002 
6003 #ifdef CONFIG_RT_GROUP_SCHED
6004 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6005 			global_rt_period(), global_rt_runtime());
6006 #endif /* CONFIG_RT_GROUP_SCHED */
6007 
6008 #ifdef CONFIG_CGROUP_SCHED
6009 	task_group_cache = KMEM_CACHE(task_group, 0);
6010 
6011 	list_add(&root_task_group.list, &task_groups);
6012 	INIT_LIST_HEAD(&root_task_group.children);
6013 	INIT_LIST_HEAD(&root_task_group.siblings);
6014 	autogroup_init(&init_task);
6015 #endif /* CONFIG_CGROUP_SCHED */
6016 
6017 	for_each_possible_cpu(i) {
6018 		struct rq *rq;
6019 
6020 		rq = cpu_rq(i);
6021 		raw_spin_lock_init(&rq->lock);
6022 		rq->nr_running = 0;
6023 		rq->calc_load_active = 0;
6024 		rq->calc_load_update = jiffies + LOAD_FREQ;
6025 		init_cfs_rq(&rq->cfs);
6026 		init_rt_rq(&rq->rt);
6027 		init_dl_rq(&rq->dl);
6028 #ifdef CONFIG_FAIR_GROUP_SCHED
6029 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6030 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6031 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6032 		/*
6033 		 * How much CPU bandwidth does root_task_group get?
6034 		 *
6035 		 * In case of task-groups formed thr' the cgroup filesystem, it
6036 		 * gets 100% of the CPU resources in the system. This overall
6037 		 * system CPU resource is divided among the tasks of
6038 		 * root_task_group and its child task-groups in a fair manner,
6039 		 * based on each entity's (task or task-group's) weight
6040 		 * (se->load.weight).
6041 		 *
6042 		 * In other words, if root_task_group has 10 tasks of weight
6043 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6044 		 * then A0's share of the CPU resource is:
6045 		 *
6046 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6047 		 *
6048 		 * We achieve this by letting root_task_group's tasks sit
6049 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6050 		 */
6051 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6052 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6053 #endif /* CONFIG_FAIR_GROUP_SCHED */
6054 
6055 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6056 #ifdef CONFIG_RT_GROUP_SCHED
6057 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6058 #endif
6059 
6060 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6061 			rq->cpu_load[j] = 0;
6062 
6063 #ifdef CONFIG_SMP
6064 		rq->sd = NULL;
6065 		rq->rd = NULL;
6066 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6067 		rq->balance_callback = NULL;
6068 		rq->active_balance = 0;
6069 		rq->next_balance = jiffies;
6070 		rq->push_cpu = 0;
6071 		rq->cpu = i;
6072 		rq->online = 0;
6073 		rq->idle_stamp = 0;
6074 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6075 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6076 
6077 		INIT_LIST_HEAD(&rq->cfs_tasks);
6078 
6079 		rq_attach_root(rq, &def_root_domain);
6080 #ifdef CONFIG_NO_HZ_COMMON
6081 		rq->last_load_update_tick = jiffies;
6082 		rq->last_blocked_load_update_tick = jiffies;
6083 		atomic_set(&rq->nohz_flags, 0);
6084 #endif
6085 #endif /* CONFIG_SMP */
6086 		hrtick_rq_init(rq);
6087 		atomic_set(&rq->nr_iowait, 0);
6088 	}
6089 
6090 	set_load_weight(&init_task, false);
6091 
6092 	/*
6093 	 * The boot idle thread does lazy MMU switching as well:
6094 	 */
6095 	mmgrab(&init_mm);
6096 	enter_lazy_tlb(&init_mm, current);
6097 
6098 	/*
6099 	 * Make us the idle thread. Technically, schedule() should not be
6100 	 * called from this thread, however somewhere below it might be,
6101 	 * but because we are the idle thread, we just pick up running again
6102 	 * when this runqueue becomes "idle".
6103 	 */
6104 	init_idle(current, smp_processor_id());
6105 
6106 	calc_load_update = jiffies + LOAD_FREQ;
6107 
6108 #ifdef CONFIG_SMP
6109 	idle_thread_set_boot_cpu();
6110 	set_cpu_rq_start_time(smp_processor_id());
6111 #endif
6112 	init_sched_fair_class();
6113 
6114 	init_schedstats();
6115 
6116 	scheduler_running = 1;
6117 }
6118 
6119 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6120 static inline int preempt_count_equals(int preempt_offset)
6121 {
6122 	int nested = preempt_count() + rcu_preempt_depth();
6123 
6124 	return (nested == preempt_offset);
6125 }
6126 
6127 void __might_sleep(const char *file, int line, int preempt_offset)
6128 {
6129 	/*
6130 	 * Blocking primitives will set (and therefore destroy) current->state,
6131 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6132 	 * otherwise we will destroy state.
6133 	 */
6134 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6135 			"do not call blocking ops when !TASK_RUNNING; "
6136 			"state=%lx set at [<%p>] %pS\n",
6137 			current->state,
6138 			(void *)current->task_state_change,
6139 			(void *)current->task_state_change);
6140 
6141 	___might_sleep(file, line, preempt_offset);
6142 }
6143 EXPORT_SYMBOL(__might_sleep);
6144 
6145 void ___might_sleep(const char *file, int line, int preempt_offset)
6146 {
6147 	/* Ratelimiting timestamp: */
6148 	static unsigned long prev_jiffy;
6149 
6150 	unsigned long preempt_disable_ip;
6151 
6152 	/* WARN_ON_ONCE() by default, no rate limit required: */
6153 	rcu_sleep_check();
6154 
6155 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6156 	     !is_idle_task(current)) ||
6157 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6158 	    oops_in_progress)
6159 		return;
6160 
6161 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6162 		return;
6163 	prev_jiffy = jiffies;
6164 
6165 	/* Save this before calling printk(), since that will clobber it: */
6166 	preempt_disable_ip = get_preempt_disable_ip(current);
6167 
6168 	printk(KERN_ERR
6169 		"BUG: sleeping function called from invalid context at %s:%d\n",
6170 			file, line);
6171 	printk(KERN_ERR
6172 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6173 			in_atomic(), irqs_disabled(),
6174 			current->pid, current->comm);
6175 
6176 	if (task_stack_end_corrupted(current))
6177 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6178 
6179 	debug_show_held_locks(current);
6180 	if (irqs_disabled())
6181 		print_irqtrace_events(current);
6182 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6183 	    && !preempt_count_equals(preempt_offset)) {
6184 		pr_err("Preemption disabled at:");
6185 		print_ip_sym(preempt_disable_ip);
6186 		pr_cont("\n");
6187 	}
6188 	dump_stack();
6189 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6190 }
6191 EXPORT_SYMBOL(___might_sleep);
6192 #endif
6193 
6194 #ifdef CONFIG_MAGIC_SYSRQ
6195 void normalize_rt_tasks(void)
6196 {
6197 	struct task_struct *g, *p;
6198 	struct sched_attr attr = {
6199 		.sched_policy = SCHED_NORMAL,
6200 	};
6201 
6202 	read_lock(&tasklist_lock);
6203 	for_each_process_thread(g, p) {
6204 		/*
6205 		 * Only normalize user tasks:
6206 		 */
6207 		if (p->flags & PF_KTHREAD)
6208 			continue;
6209 
6210 		p->se.exec_start = 0;
6211 		schedstat_set(p->se.statistics.wait_start,  0);
6212 		schedstat_set(p->se.statistics.sleep_start, 0);
6213 		schedstat_set(p->se.statistics.block_start, 0);
6214 
6215 		if (!dl_task(p) && !rt_task(p)) {
6216 			/*
6217 			 * Renice negative nice level userspace
6218 			 * tasks back to 0:
6219 			 */
6220 			if (task_nice(p) < 0)
6221 				set_user_nice(p, 0);
6222 			continue;
6223 		}
6224 
6225 		__sched_setscheduler(p, &attr, false, false);
6226 	}
6227 	read_unlock(&tasklist_lock);
6228 }
6229 
6230 #endif /* CONFIG_MAGIC_SYSRQ */
6231 
6232 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6233 /*
6234  * These functions are only useful for the IA64 MCA handling, or kdb.
6235  *
6236  * They can only be called when the whole system has been
6237  * stopped - every CPU needs to be quiescent, and no scheduling
6238  * activity can take place. Using them for anything else would
6239  * be a serious bug, and as a result, they aren't even visible
6240  * under any other configuration.
6241  */
6242 
6243 /**
6244  * curr_task - return the current task for a given CPU.
6245  * @cpu: the processor in question.
6246  *
6247  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6248  *
6249  * Return: The current task for @cpu.
6250  */
6251 struct task_struct *curr_task(int cpu)
6252 {
6253 	return cpu_curr(cpu);
6254 }
6255 
6256 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6257 
6258 #ifdef CONFIG_IA64
6259 /**
6260  * set_curr_task - set the current task for a given CPU.
6261  * @cpu: the processor in question.
6262  * @p: the task pointer to set.
6263  *
6264  * Description: This function must only be used when non-maskable interrupts
6265  * are serviced on a separate stack. It allows the architecture to switch the
6266  * notion of the current task on a CPU in a non-blocking manner. This function
6267  * must be called with all CPU's synchronized, and interrupts disabled, the
6268  * and caller must save the original value of the current task (see
6269  * curr_task() above) and restore that value before reenabling interrupts and
6270  * re-starting the system.
6271  *
6272  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6273  */
6274 void ia64_set_curr_task(int cpu, struct task_struct *p)
6275 {
6276 	cpu_curr(cpu) = p;
6277 }
6278 
6279 #endif
6280 
6281 #ifdef CONFIG_CGROUP_SCHED
6282 /* task_group_lock serializes the addition/removal of task groups */
6283 static DEFINE_SPINLOCK(task_group_lock);
6284 
6285 static void sched_free_group(struct task_group *tg)
6286 {
6287 	free_fair_sched_group(tg);
6288 	free_rt_sched_group(tg);
6289 	autogroup_free(tg);
6290 	kmem_cache_free(task_group_cache, tg);
6291 }
6292 
6293 /* allocate runqueue etc for a new task group */
6294 struct task_group *sched_create_group(struct task_group *parent)
6295 {
6296 	struct task_group *tg;
6297 
6298 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6299 	if (!tg)
6300 		return ERR_PTR(-ENOMEM);
6301 
6302 	if (!alloc_fair_sched_group(tg, parent))
6303 		goto err;
6304 
6305 	if (!alloc_rt_sched_group(tg, parent))
6306 		goto err;
6307 
6308 	return tg;
6309 
6310 err:
6311 	sched_free_group(tg);
6312 	return ERR_PTR(-ENOMEM);
6313 }
6314 
6315 void sched_online_group(struct task_group *tg, struct task_group *parent)
6316 {
6317 	unsigned long flags;
6318 
6319 	spin_lock_irqsave(&task_group_lock, flags);
6320 	list_add_rcu(&tg->list, &task_groups);
6321 
6322 	/* Root should already exist: */
6323 	WARN_ON(!parent);
6324 
6325 	tg->parent = parent;
6326 	INIT_LIST_HEAD(&tg->children);
6327 	list_add_rcu(&tg->siblings, &parent->children);
6328 	spin_unlock_irqrestore(&task_group_lock, flags);
6329 
6330 	online_fair_sched_group(tg);
6331 }
6332 
6333 /* rcu callback to free various structures associated with a task group */
6334 static void sched_free_group_rcu(struct rcu_head *rhp)
6335 {
6336 	/* Now it should be safe to free those cfs_rqs: */
6337 	sched_free_group(container_of(rhp, struct task_group, rcu));
6338 }
6339 
6340 void sched_destroy_group(struct task_group *tg)
6341 {
6342 	/* Wait for possible concurrent references to cfs_rqs complete: */
6343 	call_rcu(&tg->rcu, sched_free_group_rcu);
6344 }
6345 
6346 void sched_offline_group(struct task_group *tg)
6347 {
6348 	unsigned long flags;
6349 
6350 	/* End participation in shares distribution: */
6351 	unregister_fair_sched_group(tg);
6352 
6353 	spin_lock_irqsave(&task_group_lock, flags);
6354 	list_del_rcu(&tg->list);
6355 	list_del_rcu(&tg->siblings);
6356 	spin_unlock_irqrestore(&task_group_lock, flags);
6357 }
6358 
6359 static void sched_change_group(struct task_struct *tsk, int type)
6360 {
6361 	struct task_group *tg;
6362 
6363 	/*
6364 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6365 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6366 	 * to prevent lockdep warnings.
6367 	 */
6368 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6369 			  struct task_group, css);
6370 	tg = autogroup_task_group(tsk, tg);
6371 	tsk->sched_task_group = tg;
6372 
6373 #ifdef CONFIG_FAIR_GROUP_SCHED
6374 	if (tsk->sched_class->task_change_group)
6375 		tsk->sched_class->task_change_group(tsk, type);
6376 	else
6377 #endif
6378 		set_task_rq(tsk, task_cpu(tsk));
6379 }
6380 
6381 /*
6382  * Change task's runqueue when it moves between groups.
6383  *
6384  * The caller of this function should have put the task in its new group by
6385  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6386  * its new group.
6387  */
6388 void sched_move_task(struct task_struct *tsk)
6389 {
6390 	int queued, running, queue_flags =
6391 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6392 	struct rq_flags rf;
6393 	struct rq *rq;
6394 
6395 	rq = task_rq_lock(tsk, &rf);
6396 	update_rq_clock(rq);
6397 
6398 	running = task_current(rq, tsk);
6399 	queued = task_on_rq_queued(tsk);
6400 
6401 	if (queued)
6402 		dequeue_task(rq, tsk, queue_flags);
6403 	if (running)
6404 		put_prev_task(rq, tsk);
6405 
6406 	sched_change_group(tsk, TASK_MOVE_GROUP);
6407 
6408 	if (queued)
6409 		enqueue_task(rq, tsk, queue_flags);
6410 	if (running)
6411 		set_curr_task(rq, tsk);
6412 
6413 	task_rq_unlock(rq, tsk, &rf);
6414 }
6415 
6416 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6417 {
6418 	return css ? container_of(css, struct task_group, css) : NULL;
6419 }
6420 
6421 static struct cgroup_subsys_state *
6422 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6423 {
6424 	struct task_group *parent = css_tg(parent_css);
6425 	struct task_group *tg;
6426 
6427 	if (!parent) {
6428 		/* This is early initialization for the top cgroup */
6429 		return &root_task_group.css;
6430 	}
6431 
6432 	tg = sched_create_group(parent);
6433 	if (IS_ERR(tg))
6434 		return ERR_PTR(-ENOMEM);
6435 
6436 	return &tg->css;
6437 }
6438 
6439 /* Expose task group only after completing cgroup initialization */
6440 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6441 {
6442 	struct task_group *tg = css_tg(css);
6443 	struct task_group *parent = css_tg(css->parent);
6444 
6445 	if (parent)
6446 		sched_online_group(tg, parent);
6447 	return 0;
6448 }
6449 
6450 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6451 {
6452 	struct task_group *tg = css_tg(css);
6453 
6454 	sched_offline_group(tg);
6455 }
6456 
6457 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6458 {
6459 	struct task_group *tg = css_tg(css);
6460 
6461 	/*
6462 	 * Relies on the RCU grace period between css_released() and this.
6463 	 */
6464 	sched_free_group(tg);
6465 }
6466 
6467 /*
6468  * This is called before wake_up_new_task(), therefore we really only
6469  * have to set its group bits, all the other stuff does not apply.
6470  */
6471 static void cpu_cgroup_fork(struct task_struct *task)
6472 {
6473 	struct rq_flags rf;
6474 	struct rq *rq;
6475 
6476 	rq = task_rq_lock(task, &rf);
6477 
6478 	update_rq_clock(rq);
6479 	sched_change_group(task, TASK_SET_GROUP);
6480 
6481 	task_rq_unlock(rq, task, &rf);
6482 }
6483 
6484 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6485 {
6486 	struct task_struct *task;
6487 	struct cgroup_subsys_state *css;
6488 	int ret = 0;
6489 
6490 	cgroup_taskset_for_each(task, css, tset) {
6491 #ifdef CONFIG_RT_GROUP_SCHED
6492 		if (!sched_rt_can_attach(css_tg(css), task))
6493 			return -EINVAL;
6494 #else
6495 		/* We don't support RT-tasks being in separate groups */
6496 		if (task->sched_class != &fair_sched_class)
6497 			return -EINVAL;
6498 #endif
6499 		/*
6500 		 * Serialize against wake_up_new_task() such that if its
6501 		 * running, we're sure to observe its full state.
6502 		 */
6503 		raw_spin_lock_irq(&task->pi_lock);
6504 		/*
6505 		 * Avoid calling sched_move_task() before wake_up_new_task()
6506 		 * has happened. This would lead to problems with PELT, due to
6507 		 * move wanting to detach+attach while we're not attached yet.
6508 		 */
6509 		if (task->state == TASK_NEW)
6510 			ret = -EINVAL;
6511 		raw_spin_unlock_irq(&task->pi_lock);
6512 
6513 		if (ret)
6514 			break;
6515 	}
6516 	return ret;
6517 }
6518 
6519 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6520 {
6521 	struct task_struct *task;
6522 	struct cgroup_subsys_state *css;
6523 
6524 	cgroup_taskset_for_each(task, css, tset)
6525 		sched_move_task(task);
6526 }
6527 
6528 #ifdef CONFIG_FAIR_GROUP_SCHED
6529 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6530 				struct cftype *cftype, u64 shareval)
6531 {
6532 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6533 }
6534 
6535 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6536 			       struct cftype *cft)
6537 {
6538 	struct task_group *tg = css_tg(css);
6539 
6540 	return (u64) scale_load_down(tg->shares);
6541 }
6542 
6543 #ifdef CONFIG_CFS_BANDWIDTH
6544 static DEFINE_MUTEX(cfs_constraints_mutex);
6545 
6546 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6547 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6548 
6549 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6550 
6551 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6552 {
6553 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6554 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6555 
6556 	if (tg == &root_task_group)
6557 		return -EINVAL;
6558 
6559 	/*
6560 	 * Ensure we have at some amount of bandwidth every period.  This is
6561 	 * to prevent reaching a state of large arrears when throttled via
6562 	 * entity_tick() resulting in prolonged exit starvation.
6563 	 */
6564 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6565 		return -EINVAL;
6566 
6567 	/*
6568 	 * Likewise, bound things on the otherside by preventing insane quota
6569 	 * periods.  This also allows us to normalize in computing quota
6570 	 * feasibility.
6571 	 */
6572 	if (period > max_cfs_quota_period)
6573 		return -EINVAL;
6574 
6575 	/*
6576 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6577 	 * unthrottle_offline_cfs_rqs().
6578 	 */
6579 	get_online_cpus();
6580 	mutex_lock(&cfs_constraints_mutex);
6581 	ret = __cfs_schedulable(tg, period, quota);
6582 	if (ret)
6583 		goto out_unlock;
6584 
6585 	runtime_enabled = quota != RUNTIME_INF;
6586 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6587 	/*
6588 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6589 	 * before making related changes, and on->off must occur afterwards
6590 	 */
6591 	if (runtime_enabled && !runtime_was_enabled)
6592 		cfs_bandwidth_usage_inc();
6593 	raw_spin_lock_irq(&cfs_b->lock);
6594 	cfs_b->period = ns_to_ktime(period);
6595 	cfs_b->quota = quota;
6596 
6597 	__refill_cfs_bandwidth_runtime(cfs_b);
6598 
6599 	/* Restart the period timer (if active) to handle new period expiry: */
6600 	if (runtime_enabled)
6601 		start_cfs_bandwidth(cfs_b);
6602 
6603 	raw_spin_unlock_irq(&cfs_b->lock);
6604 
6605 	for_each_online_cpu(i) {
6606 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6607 		struct rq *rq = cfs_rq->rq;
6608 		struct rq_flags rf;
6609 
6610 		rq_lock_irq(rq, &rf);
6611 		cfs_rq->runtime_enabled = runtime_enabled;
6612 		cfs_rq->runtime_remaining = 0;
6613 
6614 		if (cfs_rq->throttled)
6615 			unthrottle_cfs_rq(cfs_rq);
6616 		rq_unlock_irq(rq, &rf);
6617 	}
6618 	if (runtime_was_enabled && !runtime_enabled)
6619 		cfs_bandwidth_usage_dec();
6620 out_unlock:
6621 	mutex_unlock(&cfs_constraints_mutex);
6622 	put_online_cpus();
6623 
6624 	return ret;
6625 }
6626 
6627 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6628 {
6629 	u64 quota, period;
6630 
6631 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6632 	if (cfs_quota_us < 0)
6633 		quota = RUNTIME_INF;
6634 	else
6635 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6636 
6637 	return tg_set_cfs_bandwidth(tg, period, quota);
6638 }
6639 
6640 long tg_get_cfs_quota(struct task_group *tg)
6641 {
6642 	u64 quota_us;
6643 
6644 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6645 		return -1;
6646 
6647 	quota_us = tg->cfs_bandwidth.quota;
6648 	do_div(quota_us, NSEC_PER_USEC);
6649 
6650 	return quota_us;
6651 }
6652 
6653 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6654 {
6655 	u64 quota, period;
6656 
6657 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6658 	quota = tg->cfs_bandwidth.quota;
6659 
6660 	return tg_set_cfs_bandwidth(tg, period, quota);
6661 }
6662 
6663 long tg_get_cfs_period(struct task_group *tg)
6664 {
6665 	u64 cfs_period_us;
6666 
6667 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6668 	do_div(cfs_period_us, NSEC_PER_USEC);
6669 
6670 	return cfs_period_us;
6671 }
6672 
6673 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6674 				  struct cftype *cft)
6675 {
6676 	return tg_get_cfs_quota(css_tg(css));
6677 }
6678 
6679 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6680 				   struct cftype *cftype, s64 cfs_quota_us)
6681 {
6682 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6683 }
6684 
6685 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6686 				   struct cftype *cft)
6687 {
6688 	return tg_get_cfs_period(css_tg(css));
6689 }
6690 
6691 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6692 				    struct cftype *cftype, u64 cfs_period_us)
6693 {
6694 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6695 }
6696 
6697 struct cfs_schedulable_data {
6698 	struct task_group *tg;
6699 	u64 period, quota;
6700 };
6701 
6702 /*
6703  * normalize group quota/period to be quota/max_period
6704  * note: units are usecs
6705  */
6706 static u64 normalize_cfs_quota(struct task_group *tg,
6707 			       struct cfs_schedulable_data *d)
6708 {
6709 	u64 quota, period;
6710 
6711 	if (tg == d->tg) {
6712 		period = d->period;
6713 		quota = d->quota;
6714 	} else {
6715 		period = tg_get_cfs_period(tg);
6716 		quota = tg_get_cfs_quota(tg);
6717 	}
6718 
6719 	/* note: these should typically be equivalent */
6720 	if (quota == RUNTIME_INF || quota == -1)
6721 		return RUNTIME_INF;
6722 
6723 	return to_ratio(period, quota);
6724 }
6725 
6726 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6727 {
6728 	struct cfs_schedulable_data *d = data;
6729 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6730 	s64 quota = 0, parent_quota = -1;
6731 
6732 	if (!tg->parent) {
6733 		quota = RUNTIME_INF;
6734 	} else {
6735 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6736 
6737 		quota = normalize_cfs_quota(tg, d);
6738 		parent_quota = parent_b->hierarchical_quota;
6739 
6740 		/*
6741 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6742 		 * always take the min.  On cgroup1, only inherit when no
6743 		 * limit is set:
6744 		 */
6745 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6746 			quota = min(quota, parent_quota);
6747 		} else {
6748 			if (quota == RUNTIME_INF)
6749 				quota = parent_quota;
6750 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6751 				return -EINVAL;
6752 		}
6753 	}
6754 	cfs_b->hierarchical_quota = quota;
6755 
6756 	return 0;
6757 }
6758 
6759 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6760 {
6761 	int ret;
6762 	struct cfs_schedulable_data data = {
6763 		.tg = tg,
6764 		.period = period,
6765 		.quota = quota,
6766 	};
6767 
6768 	if (quota != RUNTIME_INF) {
6769 		do_div(data.period, NSEC_PER_USEC);
6770 		do_div(data.quota, NSEC_PER_USEC);
6771 	}
6772 
6773 	rcu_read_lock();
6774 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6775 	rcu_read_unlock();
6776 
6777 	return ret;
6778 }
6779 
6780 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6781 {
6782 	struct task_group *tg = css_tg(seq_css(sf));
6783 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6784 
6785 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6786 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6787 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6788 
6789 	return 0;
6790 }
6791 #endif /* CONFIG_CFS_BANDWIDTH */
6792 #endif /* CONFIG_FAIR_GROUP_SCHED */
6793 
6794 #ifdef CONFIG_RT_GROUP_SCHED
6795 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6796 				struct cftype *cft, s64 val)
6797 {
6798 	return sched_group_set_rt_runtime(css_tg(css), val);
6799 }
6800 
6801 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6802 			       struct cftype *cft)
6803 {
6804 	return sched_group_rt_runtime(css_tg(css));
6805 }
6806 
6807 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6808 				    struct cftype *cftype, u64 rt_period_us)
6809 {
6810 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6811 }
6812 
6813 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6814 				   struct cftype *cft)
6815 {
6816 	return sched_group_rt_period(css_tg(css));
6817 }
6818 #endif /* CONFIG_RT_GROUP_SCHED */
6819 
6820 static struct cftype cpu_legacy_files[] = {
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 	{
6823 		.name = "shares",
6824 		.read_u64 = cpu_shares_read_u64,
6825 		.write_u64 = cpu_shares_write_u64,
6826 	},
6827 #endif
6828 #ifdef CONFIG_CFS_BANDWIDTH
6829 	{
6830 		.name = "cfs_quota_us",
6831 		.read_s64 = cpu_cfs_quota_read_s64,
6832 		.write_s64 = cpu_cfs_quota_write_s64,
6833 	},
6834 	{
6835 		.name = "cfs_period_us",
6836 		.read_u64 = cpu_cfs_period_read_u64,
6837 		.write_u64 = cpu_cfs_period_write_u64,
6838 	},
6839 	{
6840 		.name = "stat",
6841 		.seq_show = cpu_cfs_stat_show,
6842 	},
6843 #endif
6844 #ifdef CONFIG_RT_GROUP_SCHED
6845 	{
6846 		.name = "rt_runtime_us",
6847 		.read_s64 = cpu_rt_runtime_read,
6848 		.write_s64 = cpu_rt_runtime_write,
6849 	},
6850 	{
6851 		.name = "rt_period_us",
6852 		.read_u64 = cpu_rt_period_read_uint,
6853 		.write_u64 = cpu_rt_period_write_uint,
6854 	},
6855 #endif
6856 	{ }	/* Terminate */
6857 };
6858 
6859 static int cpu_extra_stat_show(struct seq_file *sf,
6860 			       struct cgroup_subsys_state *css)
6861 {
6862 #ifdef CONFIG_CFS_BANDWIDTH
6863 	{
6864 		struct task_group *tg = css_tg(css);
6865 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6866 		u64 throttled_usec;
6867 
6868 		throttled_usec = cfs_b->throttled_time;
6869 		do_div(throttled_usec, NSEC_PER_USEC);
6870 
6871 		seq_printf(sf, "nr_periods %d\n"
6872 			   "nr_throttled %d\n"
6873 			   "throttled_usec %llu\n",
6874 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6875 			   throttled_usec);
6876 	}
6877 #endif
6878 	return 0;
6879 }
6880 
6881 #ifdef CONFIG_FAIR_GROUP_SCHED
6882 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6883 			       struct cftype *cft)
6884 {
6885 	struct task_group *tg = css_tg(css);
6886 	u64 weight = scale_load_down(tg->shares);
6887 
6888 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6889 }
6890 
6891 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6892 				struct cftype *cft, u64 weight)
6893 {
6894 	/*
6895 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6896 	 * values which are 1, 100 and 10000 respectively.  While it loses
6897 	 * a bit of range on both ends, it maps pretty well onto the shares
6898 	 * value used by scheduler and the round-trip conversions preserve
6899 	 * the original value over the entire range.
6900 	 */
6901 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6902 		return -ERANGE;
6903 
6904 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6905 
6906 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6907 }
6908 
6909 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6910 				    struct cftype *cft)
6911 {
6912 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6913 	int last_delta = INT_MAX;
6914 	int prio, delta;
6915 
6916 	/* find the closest nice value to the current weight */
6917 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6918 		delta = abs(sched_prio_to_weight[prio] - weight);
6919 		if (delta >= last_delta)
6920 			break;
6921 		last_delta = delta;
6922 	}
6923 
6924 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6925 }
6926 
6927 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6928 				     struct cftype *cft, s64 nice)
6929 {
6930 	unsigned long weight;
6931 
6932 	if (nice < MIN_NICE || nice > MAX_NICE)
6933 		return -ERANGE;
6934 
6935 	weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6936 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6937 }
6938 #endif
6939 
6940 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6941 						  long period, long quota)
6942 {
6943 	if (quota < 0)
6944 		seq_puts(sf, "max");
6945 	else
6946 		seq_printf(sf, "%ld", quota);
6947 
6948 	seq_printf(sf, " %ld\n", period);
6949 }
6950 
6951 /* caller should put the current value in *@periodp before calling */
6952 static int __maybe_unused cpu_period_quota_parse(char *buf,
6953 						 u64 *periodp, u64 *quotap)
6954 {
6955 	char tok[21];	/* U64_MAX */
6956 
6957 	if (!sscanf(buf, "%s %llu", tok, periodp))
6958 		return -EINVAL;
6959 
6960 	*periodp *= NSEC_PER_USEC;
6961 
6962 	if (sscanf(tok, "%llu", quotap))
6963 		*quotap *= NSEC_PER_USEC;
6964 	else if (!strcmp(tok, "max"))
6965 		*quotap = RUNTIME_INF;
6966 	else
6967 		return -EINVAL;
6968 
6969 	return 0;
6970 }
6971 
6972 #ifdef CONFIG_CFS_BANDWIDTH
6973 static int cpu_max_show(struct seq_file *sf, void *v)
6974 {
6975 	struct task_group *tg = css_tg(seq_css(sf));
6976 
6977 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6978 	return 0;
6979 }
6980 
6981 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6982 			     char *buf, size_t nbytes, loff_t off)
6983 {
6984 	struct task_group *tg = css_tg(of_css(of));
6985 	u64 period = tg_get_cfs_period(tg);
6986 	u64 quota;
6987 	int ret;
6988 
6989 	ret = cpu_period_quota_parse(buf, &period, &quota);
6990 	if (!ret)
6991 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6992 	return ret ?: nbytes;
6993 }
6994 #endif
6995 
6996 static struct cftype cpu_files[] = {
6997 #ifdef CONFIG_FAIR_GROUP_SCHED
6998 	{
6999 		.name = "weight",
7000 		.flags = CFTYPE_NOT_ON_ROOT,
7001 		.read_u64 = cpu_weight_read_u64,
7002 		.write_u64 = cpu_weight_write_u64,
7003 	},
7004 	{
7005 		.name = "weight.nice",
7006 		.flags = CFTYPE_NOT_ON_ROOT,
7007 		.read_s64 = cpu_weight_nice_read_s64,
7008 		.write_s64 = cpu_weight_nice_write_s64,
7009 	},
7010 #endif
7011 #ifdef CONFIG_CFS_BANDWIDTH
7012 	{
7013 		.name = "max",
7014 		.flags = CFTYPE_NOT_ON_ROOT,
7015 		.seq_show = cpu_max_show,
7016 		.write = cpu_max_write,
7017 	},
7018 #endif
7019 	{ }	/* terminate */
7020 };
7021 
7022 struct cgroup_subsys cpu_cgrp_subsys = {
7023 	.css_alloc	= cpu_cgroup_css_alloc,
7024 	.css_online	= cpu_cgroup_css_online,
7025 	.css_released	= cpu_cgroup_css_released,
7026 	.css_free	= cpu_cgroup_css_free,
7027 	.css_extra_stat_show = cpu_extra_stat_show,
7028 	.fork		= cpu_cgroup_fork,
7029 	.can_attach	= cpu_cgroup_can_attach,
7030 	.attach		= cpu_cgroup_attach,
7031 	.legacy_cftypes	= cpu_legacy_files,
7032 	.dfl_cftypes	= cpu_files,
7033 	.early_init	= true,
7034 	.threaded	= true,
7035 };
7036 
7037 #endif	/* CONFIG_CGROUP_SCHED */
7038 
7039 void dump_cpu_task(int cpu)
7040 {
7041 	pr_info("Task dump for CPU %d:\n", cpu);
7042 	sched_show_task(cpu_curr(cpu));
7043 }
7044 
7045 /*
7046  * Nice levels are multiplicative, with a gentle 10% change for every
7047  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7048  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7049  * that remained on nice 0.
7050  *
7051  * The "10% effect" is relative and cumulative: from _any_ nice level,
7052  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7053  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7054  * If a task goes up by ~10% and another task goes down by ~10% then
7055  * the relative distance between them is ~25%.)
7056  */
7057 const int sched_prio_to_weight[40] = {
7058  /* -20 */     88761,     71755,     56483,     46273,     36291,
7059  /* -15 */     29154,     23254,     18705,     14949,     11916,
7060  /* -10 */      9548,      7620,      6100,      4904,      3906,
7061  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7062  /*   0 */      1024,       820,       655,       526,       423,
7063  /*   5 */       335,       272,       215,       172,       137,
7064  /*  10 */       110,        87,        70,        56,        45,
7065  /*  15 */        36,        29,        23,        18,        15,
7066 };
7067 
7068 /*
7069  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7070  *
7071  * In cases where the weight does not change often, we can use the
7072  * precalculated inverse to speed up arithmetics by turning divisions
7073  * into multiplications:
7074  */
7075 const u32 sched_prio_to_wmult[40] = {
7076  /* -20 */     48388,     59856,     76040,     92818,    118348,
7077  /* -15 */    147320,    184698,    229616,    287308,    360437,
7078  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7079  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7080  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7081  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7082  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7083  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7084 };
7085 
7086 #undef CREATE_TRACE_POINTS
7087