xref: /openbmc/linux/kernel/sched/core.c (revision 9b9c2cd4)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	mutex_lock(&inode->i_mutex);
226 	i = sched_feat_set(cmp);
227 	mutex_unlock(&inode->i_mutex);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 
637 	if (!is_housekeeping_cpu(cpu))
638 		cpu = housekeeping_any_cpu();
639 unlock:
640 	rcu_read_unlock();
641 	return cpu;
642 }
643 /*
644  * When add_timer_on() enqueues a timer into the timer wheel of an
645  * idle CPU then this timer might expire before the next timer event
646  * which is scheduled to wake up that CPU. In case of a completely
647  * idle system the next event might even be infinite time into the
648  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649  * leaves the inner idle loop so the newly added timer is taken into
650  * account when the CPU goes back to idle and evaluates the timer
651  * wheel for the next timer event.
652  */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 	struct rq *rq = cpu_rq(cpu);
656 
657 	if (cpu == smp_processor_id())
658 		return;
659 
660 	if (set_nr_and_not_polling(rq->idle))
661 		smp_send_reschedule(cpu);
662 	else
663 		trace_sched_wake_idle_without_ipi(cpu);
664 }
665 
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 	/*
669 	 * We just need the target to call irq_exit() and re-evaluate
670 	 * the next tick. The nohz full kick at least implies that.
671 	 * If needed we can still optimize that later with an
672 	 * empty IRQ.
673 	 */
674 	if (tick_nohz_full_cpu(cpu)) {
675 		if (cpu != smp_processor_id() ||
676 		    tick_nohz_tick_stopped())
677 			tick_nohz_full_kick_cpu(cpu);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
684 void wake_up_nohz_cpu(int cpu)
685 {
686 	if (!wake_up_full_nohz_cpu(cpu))
687 		wake_up_idle_cpu(cpu);
688 }
689 
690 static inline bool got_nohz_idle_kick(void)
691 {
692 	int cpu = smp_processor_id();
693 
694 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 		return false;
696 
697 	if (idle_cpu(cpu) && !need_resched())
698 		return true;
699 
700 	/*
701 	 * We can't run Idle Load Balance on this CPU for this time so we
702 	 * cancel it and clear NOHZ_BALANCE_KICK
703 	 */
704 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 	return false;
706 }
707 
708 #else /* CONFIG_NO_HZ_COMMON */
709 
710 static inline bool got_nohz_idle_kick(void)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_NO_HZ_COMMON */
716 
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 	/*
721 	 * FIFO realtime policy runs the highest priority task. Other runnable
722 	 * tasks are of a lower priority. The scheduler tick does nothing.
723 	 */
724 	if (current->policy == SCHED_FIFO)
725 		return true;
726 
727 	/*
728 	 * Round-robin realtime tasks time slice with other tasks at the same
729 	 * realtime priority. Is this task the only one at this priority?
730 	 */
731 	if (current->policy == SCHED_RR) {
732 		struct sched_rt_entity *rt_se = &current->rt;
733 
734 		return rt_se->run_list.prev == rt_se->run_list.next;
735 	}
736 
737 	/*
738 	 * More than one running task need preemption.
739 	 * nr_running update is assumed to be visible
740 	 * after IPI is sent from wakers.
741 	 */
742 	if (this_rq()->nr_running > 1)
743 		return false;
744 
745 	return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748 
749 void sched_avg_update(struct rq *rq)
750 {
751 	s64 period = sched_avg_period();
752 
753 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 		/*
755 		 * Inline assembly required to prevent the compiler
756 		 * optimising this loop into a divmod call.
757 		 * See __iter_div_u64_rem() for another example of this.
758 		 */
759 		asm("" : "+rm" (rq->age_stamp));
760 		rq->age_stamp += period;
761 		rq->rt_avg /= 2;
762 	}
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770  * Iterate task_group tree rooted at *from, calling @down when first entering a
771  * node and @up when leaving it for the final time.
772  *
773  * Caller must hold rcu_lock or sufficient equivalent.
774  */
775 int walk_tg_tree_from(struct task_group *from,
776 			     tg_visitor down, tg_visitor up, void *data)
777 {
778 	struct task_group *parent, *child;
779 	int ret;
780 
781 	parent = from;
782 
783 down:
784 	ret = (*down)(parent, data);
785 	if (ret)
786 		goto out;
787 	list_for_each_entry_rcu(child, &parent->children, siblings) {
788 		parent = child;
789 		goto down;
790 
791 up:
792 		continue;
793 	}
794 	ret = (*up)(parent, data);
795 	if (ret || parent == from)
796 		goto out;
797 
798 	child = parent;
799 	parent = parent->parent;
800 	if (parent)
801 		goto up;
802 out:
803 	return ret;
804 }
805 
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 	return 0;
809 }
810 #endif
811 
812 static void set_load_weight(struct task_struct *p)
813 {
814 	int prio = p->static_prio - MAX_RT_PRIO;
815 	struct load_weight *load = &p->se.load;
816 
817 	/*
818 	 * SCHED_IDLE tasks get minimal weight:
819 	 */
820 	if (idle_policy(p->policy)) {
821 		load->weight = scale_load(WEIGHT_IDLEPRIO);
822 		load->inv_weight = WMULT_IDLEPRIO;
823 		return;
824 	}
825 
826 	load->weight = scale_load(prio_to_weight[prio]);
827 	load->inv_weight = prio_to_wmult[prio];
828 }
829 
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 	update_rq_clock(rq);
833 	if (!(flags & ENQUEUE_RESTORE))
834 		sched_info_queued(rq, p);
835 	p->sched_class->enqueue_task(rq, p, flags);
836 }
837 
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	if (!(flags & DEQUEUE_SAVE))
842 		sched_info_dequeued(rq, p);
843 	p->sched_class->dequeue_task(rq, p, flags);
844 }
845 
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 	if (task_contributes_to_load(p))
849 		rq->nr_uninterruptible--;
850 
851 	enqueue_task(rq, p, flags);
852 }
853 
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	if (task_contributes_to_load(p))
857 		rq->nr_uninterruptible++;
858 
859 	dequeue_task(rq, p, flags);
860 }
861 
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865  * In theory, the compile should just see 0 here, and optimize out the call
866  * to sched_rt_avg_update. But I don't trust it...
867  */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 	s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 
874 	/*
875 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 	 * this case when a previous update_rq_clock() happened inside a
877 	 * {soft,}irq region.
878 	 *
879 	 * When this happens, we stop ->clock_task and only update the
880 	 * prev_irq_time stamp to account for the part that fit, so that a next
881 	 * update will consume the rest. This ensures ->clock_task is
882 	 * monotonic.
883 	 *
884 	 * It does however cause some slight miss-attribution of {soft,}irq
885 	 * time, a more accurate solution would be to update the irq_time using
886 	 * the current rq->clock timestamp, except that would require using
887 	 * atomic ops.
888 	 */
889 	if (irq_delta > delta)
890 		irq_delta = delta;
891 
892 	rq->prev_irq_time += irq_delta;
893 	delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 		steal = paravirt_steal_clock(cpu_of(rq));
898 		steal -= rq->prev_steal_time_rq;
899 
900 		if (unlikely(steal > delta))
901 			steal = delta;
902 
903 		rq->prev_steal_time_rq += steal;
904 		delta -= steal;
905 	}
906 #endif
907 
908 	rq->clock_task += delta;
909 
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 		sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915 
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
920 
921 	if (stop) {
922 		/*
923 		 * Make it appear like a SCHED_FIFO task, its something
924 		 * userspace knows about and won't get confused about.
925 		 *
926 		 * Also, it will make PI more or less work without too
927 		 * much confusion -- but then, stop work should not
928 		 * rely on PI working anyway.
929 		 */
930 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931 
932 		stop->sched_class = &stop_sched_class;
933 	}
934 
935 	cpu_rq(cpu)->stop = stop;
936 
937 	if (old_stop) {
938 		/*
939 		 * Reset it back to a normal scheduling class so that
940 		 * it can die in pieces.
941 		 */
942 		old_stop->sched_class = &rt_sched_class;
943 	}
944 }
945 
946 /*
947  * __normal_prio - return the priority that is based on the static prio
948  */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 	return p->static_prio;
952 }
953 
954 /*
955  * Calculate the expected normal priority: i.e. priority
956  * without taking RT-inheritance into account. Might be
957  * boosted by interactivity modifiers. Changes upon fork,
958  * setprio syscalls, and whenever the interactivity
959  * estimator recalculates.
960  */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 	int prio;
964 
965 	if (task_has_dl_policy(p))
966 		prio = MAX_DL_PRIO-1;
967 	else if (task_has_rt_policy(p))
968 		prio = MAX_RT_PRIO-1 - p->rt_priority;
969 	else
970 		prio = __normal_prio(p);
971 	return prio;
972 }
973 
974 /*
975  * Calculate the current priority, i.e. the priority
976  * taken into account by the scheduler. This value might
977  * be boosted by RT tasks, or might be boosted by
978  * interactivity modifiers. Will be RT if the task got
979  * RT-boosted. If not then it returns p->normal_prio.
980  */
981 static int effective_prio(struct task_struct *p)
982 {
983 	p->normal_prio = normal_prio(p);
984 	/*
985 	 * If we are RT tasks or we were boosted to RT priority,
986 	 * keep the priority unchanged. Otherwise, update priority
987 	 * to the normal priority:
988 	 */
989 	if (!rt_prio(p->prio))
990 		return p->normal_prio;
991 	return p->prio;
992 }
993 
994 /**
995  * task_curr - is this task currently executing on a CPU?
996  * @p: the task in question.
997  *
998  * Return: 1 if the task is currently executing. 0 otherwise.
999  */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 	return cpu_curr(task_cpu(p)) == p;
1003 }
1004 
1005 /*
1006  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007  * use the balance_callback list if you want balancing.
1008  *
1009  * this means any call to check_class_changed() must be followed by a call to
1010  * balance_callback().
1011  */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 				       const struct sched_class *prev_class,
1014 				       int oldprio)
1015 {
1016 	if (prev_class != p->sched_class) {
1017 		if (prev_class->switched_from)
1018 			prev_class->switched_from(rq, p);
1019 
1020 		p->sched_class->switched_to(rq, p);
1021 	} else if (oldprio != p->prio || dl_task(p))
1022 		p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024 
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 	const struct sched_class *class;
1028 
1029 	if (p->sched_class == rq->curr->sched_class) {
1030 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 	} else {
1032 		for_each_class(class) {
1033 			if (class == rq->curr->sched_class)
1034 				break;
1035 			if (class == p->sched_class) {
1036 				resched_curr(rq);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * A queue event has occurred, and we're going to schedule.  In
1044 	 * this case, we can save a useless back to back clock update.
1045 	 */
1046 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 		rq_clock_skip_update(rq, true);
1048 }
1049 
1050 #ifdef CONFIG_SMP
1051 /*
1052  * This is how migration works:
1053  *
1054  * 1) we invoke migration_cpu_stop() on the target CPU using
1055  *    stop_one_cpu().
1056  * 2) stopper starts to run (implicitly forcing the migrated thread
1057  *    off the CPU)
1058  * 3) it checks whether the migrated task is still in the wrong runqueue.
1059  * 4) if it's in the wrong runqueue then the migration thread removes
1060  *    it and puts it into the right queue.
1061  * 5) stopper completes and stop_one_cpu() returns and the migration
1062  *    is done.
1063  */
1064 
1065 /*
1066  * move_queued_task - move a queued task to new rq.
1067  *
1068  * Returns (locked) new rq. Old rq's lock is released.
1069  */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 	lockdep_assert_held(&rq->lock);
1073 
1074 	dequeue_task(rq, p, 0);
1075 	p->on_rq = TASK_ON_RQ_MIGRATING;
1076 	set_task_cpu(p, new_cpu);
1077 	raw_spin_unlock(&rq->lock);
1078 
1079 	rq = cpu_rq(new_cpu);
1080 
1081 	raw_spin_lock(&rq->lock);
1082 	BUG_ON(task_cpu(p) != new_cpu);
1083 	p->on_rq = TASK_ON_RQ_QUEUED;
1084 	enqueue_task(rq, p, 0);
1085 	check_preempt_curr(rq, p, 0);
1086 
1087 	return rq;
1088 }
1089 
1090 struct migration_arg {
1091 	struct task_struct *task;
1092 	int dest_cpu;
1093 };
1094 
1095 /*
1096  * Move (not current) task off this cpu, onto dest cpu. We're doing
1097  * this because either it can't run here any more (set_cpus_allowed()
1098  * away from this CPU, or CPU going down), or because we're
1099  * attempting to rebalance this task on exec (sched_exec).
1100  *
1101  * So we race with normal scheduler movements, but that's OK, as long
1102  * as the task is no longer on this CPU.
1103  */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 	if (unlikely(!cpu_active(dest_cpu)))
1107 		return rq;
1108 
1109 	/* Affinity changed (again). */
1110 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 		return rq;
1112 
1113 	rq = move_queued_task(rq, p, dest_cpu);
1114 
1115 	return rq;
1116 }
1117 
1118 /*
1119  * migration_cpu_stop - this will be executed by a highprio stopper thread
1120  * and performs thread migration by bumping thread off CPU then
1121  * 'pushing' onto another runqueue.
1122  */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 	struct migration_arg *arg = data;
1126 	struct task_struct *p = arg->task;
1127 	struct rq *rq = this_rq();
1128 
1129 	/*
1130 	 * The original target cpu might have gone down and we might
1131 	 * be on another cpu but it doesn't matter.
1132 	 */
1133 	local_irq_disable();
1134 	/*
1135 	 * We need to explicitly wake pending tasks before running
1136 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 	 */
1139 	sched_ttwu_pending();
1140 
1141 	raw_spin_lock(&p->pi_lock);
1142 	raw_spin_lock(&rq->lock);
1143 	/*
1144 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 	 * we're holding p->pi_lock.
1147 	 */
1148 	if (task_rq(p) == rq && task_on_rq_queued(p))
1149 		rq = __migrate_task(rq, p, arg->dest_cpu);
1150 	raw_spin_unlock(&rq->lock);
1151 	raw_spin_unlock(&p->pi_lock);
1152 
1153 	local_irq_enable();
1154 	return 0;
1155 }
1156 
1157 /*
1158  * sched_class::set_cpus_allowed must do the below, but is not required to
1159  * actually call this function.
1160  */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 	cpumask_copy(&p->cpus_allowed, new_mask);
1164 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166 
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 	struct rq *rq = task_rq(p);
1170 	bool queued, running;
1171 
1172 	lockdep_assert_held(&p->pi_lock);
1173 
1174 	queued = task_on_rq_queued(p);
1175 	running = task_current(rq, p);
1176 
1177 	if (queued) {
1178 		/*
1179 		 * Because __kthread_bind() calls this on blocked tasks without
1180 		 * holding rq->lock.
1181 		 */
1182 		lockdep_assert_held(&rq->lock);
1183 		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 	}
1185 	if (running)
1186 		put_prev_task(rq, p);
1187 
1188 	p->sched_class->set_cpus_allowed(p, new_mask);
1189 
1190 	if (running)
1191 		p->sched_class->set_curr_task(rq);
1192 	if (queued)
1193 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195 
1196 /*
1197  * Change a given task's CPU affinity. Migrate the thread to a
1198  * proper CPU and schedule it away if the CPU it's executing on
1199  * is removed from the allowed bitmask.
1200  *
1201  * NOTE: the caller must have a valid reference to the task, the
1202  * task must not exit() & deallocate itself prematurely. The
1203  * call is not atomic; no spinlocks may be held.
1204  */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 				  const struct cpumask *new_mask, bool check)
1207 {
1208 	unsigned long flags;
1209 	struct rq *rq;
1210 	unsigned int dest_cpu;
1211 	int ret = 0;
1212 
1213 	rq = task_rq_lock(p, &flags);
1214 
1215 	/*
1216 	 * Must re-check here, to close a race against __kthread_bind(),
1217 	 * sched_setaffinity() is not guaranteed to observe the flag.
1218 	 */
1219 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 		ret = -EINVAL;
1221 		goto out;
1222 	}
1223 
1224 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 		goto out;
1226 
1227 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 		ret = -EINVAL;
1229 		goto out;
1230 	}
1231 
1232 	do_set_cpus_allowed(p, new_mask);
1233 
1234 	/* Can the task run on the task's current CPU? If so, we're done */
1235 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 		goto out;
1237 
1238 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 		struct migration_arg arg = { p, dest_cpu };
1241 		/* Need help from migration thread: drop lock and wait. */
1242 		task_rq_unlock(rq, p, &flags);
1243 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 		tlb_migrate_finish(p->mm);
1245 		return 0;
1246 	} else if (task_on_rq_queued(p)) {
1247 		/*
1248 		 * OK, since we're going to drop the lock immediately
1249 		 * afterwards anyway.
1250 		 */
1251 		lockdep_unpin_lock(&rq->lock);
1252 		rq = move_queued_task(rq, p, dest_cpu);
1253 		lockdep_pin_lock(&rq->lock);
1254 	}
1255 out:
1256 	task_rq_unlock(rq, p, &flags);
1257 
1258 	return ret;
1259 }
1260 
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 	return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266 
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 	/*
1271 	 * We should never call set_task_cpu() on a blocked task,
1272 	 * ttwu() will sort out the placement.
1273 	 */
1274 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 			!p->on_rq);
1276 
1277 #ifdef CONFIG_LOCKDEP
1278 	/*
1279 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 	 *
1282 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1283 	 * see task_group().
1284 	 *
1285 	 * Furthermore, all task_rq users should acquire both locks, see
1286 	 * task_rq_lock().
1287 	 */
1288 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 				      lockdep_is_held(&task_rq(p)->lock)));
1290 #endif
1291 #endif
1292 
1293 	trace_sched_migrate_task(p, new_cpu);
1294 
1295 	if (task_cpu(p) != new_cpu) {
1296 		if (p->sched_class->migrate_task_rq)
1297 			p->sched_class->migrate_task_rq(p);
1298 		p->se.nr_migrations++;
1299 		perf_event_task_migrate(p);
1300 	}
1301 
1302 	__set_task_cpu(p, new_cpu);
1303 }
1304 
1305 static void __migrate_swap_task(struct task_struct *p, int cpu)
1306 {
1307 	if (task_on_rq_queued(p)) {
1308 		struct rq *src_rq, *dst_rq;
1309 
1310 		src_rq = task_rq(p);
1311 		dst_rq = cpu_rq(cpu);
1312 
1313 		deactivate_task(src_rq, p, 0);
1314 		set_task_cpu(p, cpu);
1315 		activate_task(dst_rq, p, 0);
1316 		check_preempt_curr(dst_rq, p, 0);
1317 	} else {
1318 		/*
1319 		 * Task isn't running anymore; make it appear like we migrated
1320 		 * it before it went to sleep. This means on wakeup we make the
1321 		 * previous cpu our targer instead of where it really is.
1322 		 */
1323 		p->wake_cpu = cpu;
1324 	}
1325 }
1326 
1327 struct migration_swap_arg {
1328 	struct task_struct *src_task, *dst_task;
1329 	int src_cpu, dst_cpu;
1330 };
1331 
1332 static int migrate_swap_stop(void *data)
1333 {
1334 	struct migration_swap_arg *arg = data;
1335 	struct rq *src_rq, *dst_rq;
1336 	int ret = -EAGAIN;
1337 
1338 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1339 		return -EAGAIN;
1340 
1341 	src_rq = cpu_rq(arg->src_cpu);
1342 	dst_rq = cpu_rq(arg->dst_cpu);
1343 
1344 	double_raw_lock(&arg->src_task->pi_lock,
1345 			&arg->dst_task->pi_lock);
1346 	double_rq_lock(src_rq, dst_rq);
1347 
1348 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1349 		goto unlock;
1350 
1351 	if (task_cpu(arg->src_task) != arg->src_cpu)
1352 		goto unlock;
1353 
1354 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1355 		goto unlock;
1356 
1357 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1358 		goto unlock;
1359 
1360 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1361 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1362 
1363 	ret = 0;
1364 
1365 unlock:
1366 	double_rq_unlock(src_rq, dst_rq);
1367 	raw_spin_unlock(&arg->dst_task->pi_lock);
1368 	raw_spin_unlock(&arg->src_task->pi_lock);
1369 
1370 	return ret;
1371 }
1372 
1373 /*
1374  * Cross migrate two tasks
1375  */
1376 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1377 {
1378 	struct migration_swap_arg arg;
1379 	int ret = -EINVAL;
1380 
1381 	arg = (struct migration_swap_arg){
1382 		.src_task = cur,
1383 		.src_cpu = task_cpu(cur),
1384 		.dst_task = p,
1385 		.dst_cpu = task_cpu(p),
1386 	};
1387 
1388 	if (arg.src_cpu == arg.dst_cpu)
1389 		goto out;
1390 
1391 	/*
1392 	 * These three tests are all lockless; this is OK since all of them
1393 	 * will be re-checked with proper locks held further down the line.
1394 	 */
1395 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1396 		goto out;
1397 
1398 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1399 		goto out;
1400 
1401 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1402 		goto out;
1403 
1404 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1405 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1406 
1407 out:
1408 	return ret;
1409 }
1410 
1411 /*
1412  * wait_task_inactive - wait for a thread to unschedule.
1413  *
1414  * If @match_state is nonzero, it's the @p->state value just checked and
1415  * not expected to change.  If it changes, i.e. @p might have woken up,
1416  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1417  * we return a positive number (its total switch count).  If a second call
1418  * a short while later returns the same number, the caller can be sure that
1419  * @p has remained unscheduled the whole time.
1420  *
1421  * The caller must ensure that the task *will* unschedule sometime soon,
1422  * else this function might spin for a *long* time. This function can't
1423  * be called with interrupts off, or it may introduce deadlock with
1424  * smp_call_function() if an IPI is sent by the same process we are
1425  * waiting to become inactive.
1426  */
1427 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1428 {
1429 	unsigned long flags;
1430 	int running, queued;
1431 	unsigned long ncsw;
1432 	struct rq *rq;
1433 
1434 	for (;;) {
1435 		/*
1436 		 * We do the initial early heuristics without holding
1437 		 * any task-queue locks at all. We'll only try to get
1438 		 * the runqueue lock when things look like they will
1439 		 * work out!
1440 		 */
1441 		rq = task_rq(p);
1442 
1443 		/*
1444 		 * If the task is actively running on another CPU
1445 		 * still, just relax and busy-wait without holding
1446 		 * any locks.
1447 		 *
1448 		 * NOTE! Since we don't hold any locks, it's not
1449 		 * even sure that "rq" stays as the right runqueue!
1450 		 * But we don't care, since "task_running()" will
1451 		 * return false if the runqueue has changed and p
1452 		 * is actually now running somewhere else!
1453 		 */
1454 		while (task_running(rq, p)) {
1455 			if (match_state && unlikely(p->state != match_state))
1456 				return 0;
1457 			cpu_relax();
1458 		}
1459 
1460 		/*
1461 		 * Ok, time to look more closely! We need the rq
1462 		 * lock now, to be *sure*. If we're wrong, we'll
1463 		 * just go back and repeat.
1464 		 */
1465 		rq = task_rq_lock(p, &flags);
1466 		trace_sched_wait_task(p);
1467 		running = task_running(rq, p);
1468 		queued = task_on_rq_queued(p);
1469 		ncsw = 0;
1470 		if (!match_state || p->state == match_state)
1471 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1472 		task_rq_unlock(rq, p, &flags);
1473 
1474 		/*
1475 		 * If it changed from the expected state, bail out now.
1476 		 */
1477 		if (unlikely(!ncsw))
1478 			break;
1479 
1480 		/*
1481 		 * Was it really running after all now that we
1482 		 * checked with the proper locks actually held?
1483 		 *
1484 		 * Oops. Go back and try again..
1485 		 */
1486 		if (unlikely(running)) {
1487 			cpu_relax();
1488 			continue;
1489 		}
1490 
1491 		/*
1492 		 * It's not enough that it's not actively running,
1493 		 * it must be off the runqueue _entirely_, and not
1494 		 * preempted!
1495 		 *
1496 		 * So if it was still runnable (but just not actively
1497 		 * running right now), it's preempted, and we should
1498 		 * yield - it could be a while.
1499 		 */
1500 		if (unlikely(queued)) {
1501 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1502 
1503 			set_current_state(TASK_UNINTERRUPTIBLE);
1504 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1505 			continue;
1506 		}
1507 
1508 		/*
1509 		 * Ahh, all good. It wasn't running, and it wasn't
1510 		 * runnable, which means that it will never become
1511 		 * running in the future either. We're all done!
1512 		 */
1513 		break;
1514 	}
1515 
1516 	return ncsw;
1517 }
1518 
1519 /***
1520  * kick_process - kick a running thread to enter/exit the kernel
1521  * @p: the to-be-kicked thread
1522  *
1523  * Cause a process which is running on another CPU to enter
1524  * kernel-mode, without any delay. (to get signals handled.)
1525  *
1526  * NOTE: this function doesn't have to take the runqueue lock,
1527  * because all it wants to ensure is that the remote task enters
1528  * the kernel. If the IPI races and the task has been migrated
1529  * to another CPU then no harm is done and the purpose has been
1530  * achieved as well.
1531  */
1532 void kick_process(struct task_struct *p)
1533 {
1534 	int cpu;
1535 
1536 	preempt_disable();
1537 	cpu = task_cpu(p);
1538 	if ((cpu != smp_processor_id()) && task_curr(p))
1539 		smp_send_reschedule(cpu);
1540 	preempt_enable();
1541 }
1542 EXPORT_SYMBOL_GPL(kick_process);
1543 
1544 /*
1545  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1546  */
1547 static int select_fallback_rq(int cpu, struct task_struct *p)
1548 {
1549 	int nid = cpu_to_node(cpu);
1550 	const struct cpumask *nodemask = NULL;
1551 	enum { cpuset, possible, fail } state = cpuset;
1552 	int dest_cpu;
1553 
1554 	/*
1555 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1556 	 * will return -1. There is no cpu on the node, and we should
1557 	 * select the cpu on the other node.
1558 	 */
1559 	if (nid != -1) {
1560 		nodemask = cpumask_of_node(nid);
1561 
1562 		/* Look for allowed, online CPU in same node. */
1563 		for_each_cpu(dest_cpu, nodemask) {
1564 			if (!cpu_online(dest_cpu))
1565 				continue;
1566 			if (!cpu_active(dest_cpu))
1567 				continue;
1568 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1569 				return dest_cpu;
1570 		}
1571 	}
1572 
1573 	for (;;) {
1574 		/* Any allowed, online CPU? */
1575 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1576 			if (!cpu_online(dest_cpu))
1577 				continue;
1578 			if (!cpu_active(dest_cpu))
1579 				continue;
1580 			goto out;
1581 		}
1582 
1583 		/* No more Mr. Nice Guy. */
1584 		switch (state) {
1585 		case cpuset:
1586 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1587 				cpuset_cpus_allowed_fallback(p);
1588 				state = possible;
1589 				break;
1590 			}
1591 			/* fall-through */
1592 		case possible:
1593 			do_set_cpus_allowed(p, cpu_possible_mask);
1594 			state = fail;
1595 			break;
1596 
1597 		case fail:
1598 			BUG();
1599 			break;
1600 		}
1601 	}
1602 
1603 out:
1604 	if (state != cpuset) {
1605 		/*
1606 		 * Don't tell them about moving exiting tasks or
1607 		 * kernel threads (both mm NULL), since they never
1608 		 * leave kernel.
1609 		 */
1610 		if (p->mm && printk_ratelimit()) {
1611 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1612 					task_pid_nr(p), p->comm, cpu);
1613 		}
1614 	}
1615 
1616 	return dest_cpu;
1617 }
1618 
1619 /*
1620  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1621  */
1622 static inline
1623 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1624 {
1625 	lockdep_assert_held(&p->pi_lock);
1626 
1627 	if (p->nr_cpus_allowed > 1)
1628 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1629 
1630 	/*
1631 	 * In order not to call set_task_cpu() on a blocking task we need
1632 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1633 	 * cpu.
1634 	 *
1635 	 * Since this is common to all placement strategies, this lives here.
1636 	 *
1637 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1638 	 *   not worry about this generic constraint ]
1639 	 */
1640 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1641 		     !cpu_online(cpu)))
1642 		cpu = select_fallback_rq(task_cpu(p), p);
1643 
1644 	return cpu;
1645 }
1646 
1647 static void update_avg(u64 *avg, u64 sample)
1648 {
1649 	s64 diff = sample - *avg;
1650 	*avg += diff >> 3;
1651 }
1652 
1653 #else
1654 
1655 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1656 					 const struct cpumask *new_mask, bool check)
1657 {
1658 	return set_cpus_allowed_ptr(p, new_mask);
1659 }
1660 
1661 #endif /* CONFIG_SMP */
1662 
1663 static void
1664 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1665 {
1666 #ifdef CONFIG_SCHEDSTATS
1667 	struct rq *rq = this_rq();
1668 
1669 #ifdef CONFIG_SMP
1670 	int this_cpu = smp_processor_id();
1671 
1672 	if (cpu == this_cpu) {
1673 		schedstat_inc(rq, ttwu_local);
1674 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1675 	} else {
1676 		struct sched_domain *sd;
1677 
1678 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1679 		rcu_read_lock();
1680 		for_each_domain(this_cpu, sd) {
1681 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 				schedstat_inc(sd, ttwu_wake_remote);
1683 				break;
1684 			}
1685 		}
1686 		rcu_read_unlock();
1687 	}
1688 
1689 	if (wake_flags & WF_MIGRATED)
1690 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1691 
1692 #endif /* CONFIG_SMP */
1693 
1694 	schedstat_inc(rq, ttwu_count);
1695 	schedstat_inc(p, se.statistics.nr_wakeups);
1696 
1697 	if (wake_flags & WF_SYNC)
1698 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1699 
1700 #endif /* CONFIG_SCHEDSTATS */
1701 }
1702 
1703 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1704 {
1705 	activate_task(rq, p, en_flags);
1706 	p->on_rq = TASK_ON_RQ_QUEUED;
1707 
1708 	/* if a worker is waking up, notify workqueue */
1709 	if (p->flags & PF_WQ_WORKER)
1710 		wq_worker_waking_up(p, cpu_of(rq));
1711 }
1712 
1713 /*
1714  * Mark the task runnable and perform wakeup-preemption.
1715  */
1716 static void
1717 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1718 {
1719 	check_preempt_curr(rq, p, wake_flags);
1720 	p->state = TASK_RUNNING;
1721 	trace_sched_wakeup(p);
1722 
1723 #ifdef CONFIG_SMP
1724 	if (p->sched_class->task_woken) {
1725 		/*
1726 		 * Our task @p is fully woken up and running; so its safe to
1727 		 * drop the rq->lock, hereafter rq is only used for statistics.
1728 		 */
1729 		lockdep_unpin_lock(&rq->lock);
1730 		p->sched_class->task_woken(rq, p);
1731 		lockdep_pin_lock(&rq->lock);
1732 	}
1733 
1734 	if (rq->idle_stamp) {
1735 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1736 		u64 max = 2*rq->max_idle_balance_cost;
1737 
1738 		update_avg(&rq->avg_idle, delta);
1739 
1740 		if (rq->avg_idle > max)
1741 			rq->avg_idle = max;
1742 
1743 		rq->idle_stamp = 0;
1744 	}
1745 #endif
1746 }
1747 
1748 static void
1749 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1750 {
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 #ifdef CONFIG_SMP
1754 	if (p->sched_contributes_to_load)
1755 		rq->nr_uninterruptible--;
1756 #endif
1757 
1758 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1759 	ttwu_do_wakeup(rq, p, wake_flags);
1760 }
1761 
1762 /*
1763  * Called in case the task @p isn't fully descheduled from its runqueue,
1764  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1765  * since all we need to do is flip p->state to TASK_RUNNING, since
1766  * the task is still ->on_rq.
1767  */
1768 static int ttwu_remote(struct task_struct *p, int wake_flags)
1769 {
1770 	struct rq *rq;
1771 	int ret = 0;
1772 
1773 	rq = __task_rq_lock(p);
1774 	if (task_on_rq_queued(p)) {
1775 		/* check_preempt_curr() may use rq clock */
1776 		update_rq_clock(rq);
1777 		ttwu_do_wakeup(rq, p, wake_flags);
1778 		ret = 1;
1779 	}
1780 	__task_rq_unlock(rq);
1781 
1782 	return ret;
1783 }
1784 
1785 #ifdef CONFIG_SMP
1786 void sched_ttwu_pending(void)
1787 {
1788 	struct rq *rq = this_rq();
1789 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1790 	struct task_struct *p;
1791 	unsigned long flags;
1792 
1793 	if (!llist)
1794 		return;
1795 
1796 	raw_spin_lock_irqsave(&rq->lock, flags);
1797 	lockdep_pin_lock(&rq->lock);
1798 
1799 	while (llist) {
1800 		p = llist_entry(llist, struct task_struct, wake_entry);
1801 		llist = llist_next(llist);
1802 		ttwu_do_activate(rq, p, 0);
1803 	}
1804 
1805 	lockdep_unpin_lock(&rq->lock);
1806 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1807 }
1808 
1809 void scheduler_ipi(void)
1810 {
1811 	/*
1812 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1813 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1814 	 * this IPI.
1815 	 */
1816 	preempt_fold_need_resched();
1817 
1818 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1819 		return;
1820 
1821 	/*
1822 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1823 	 * traditionally all their work was done from the interrupt return
1824 	 * path. Now that we actually do some work, we need to make sure
1825 	 * we do call them.
1826 	 *
1827 	 * Some archs already do call them, luckily irq_enter/exit nest
1828 	 * properly.
1829 	 *
1830 	 * Arguably we should visit all archs and update all handlers,
1831 	 * however a fair share of IPIs are still resched only so this would
1832 	 * somewhat pessimize the simple resched case.
1833 	 */
1834 	irq_enter();
1835 	sched_ttwu_pending();
1836 
1837 	/*
1838 	 * Check if someone kicked us for doing the nohz idle load balance.
1839 	 */
1840 	if (unlikely(got_nohz_idle_kick())) {
1841 		this_rq()->idle_balance = 1;
1842 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1843 	}
1844 	irq_exit();
1845 }
1846 
1847 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1848 {
1849 	struct rq *rq = cpu_rq(cpu);
1850 
1851 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1852 		if (!set_nr_if_polling(rq->idle))
1853 			smp_send_reschedule(cpu);
1854 		else
1855 			trace_sched_wake_idle_without_ipi(cpu);
1856 	}
1857 }
1858 
1859 void wake_up_if_idle(int cpu)
1860 {
1861 	struct rq *rq = cpu_rq(cpu);
1862 	unsigned long flags;
1863 
1864 	rcu_read_lock();
1865 
1866 	if (!is_idle_task(rcu_dereference(rq->curr)))
1867 		goto out;
1868 
1869 	if (set_nr_if_polling(rq->idle)) {
1870 		trace_sched_wake_idle_without_ipi(cpu);
1871 	} else {
1872 		raw_spin_lock_irqsave(&rq->lock, flags);
1873 		if (is_idle_task(rq->curr))
1874 			smp_send_reschedule(cpu);
1875 		/* Else cpu is not in idle, do nothing here */
1876 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 	}
1878 
1879 out:
1880 	rcu_read_unlock();
1881 }
1882 
1883 bool cpus_share_cache(int this_cpu, int that_cpu)
1884 {
1885 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1886 }
1887 #endif /* CONFIG_SMP */
1888 
1889 static void ttwu_queue(struct task_struct *p, int cpu)
1890 {
1891 	struct rq *rq = cpu_rq(cpu);
1892 
1893 #if defined(CONFIG_SMP)
1894 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1895 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1896 		ttwu_queue_remote(p, cpu);
1897 		return;
1898 	}
1899 #endif
1900 
1901 	raw_spin_lock(&rq->lock);
1902 	lockdep_pin_lock(&rq->lock);
1903 	ttwu_do_activate(rq, p, 0);
1904 	lockdep_unpin_lock(&rq->lock);
1905 	raw_spin_unlock(&rq->lock);
1906 }
1907 
1908 /**
1909  * try_to_wake_up - wake up a thread
1910  * @p: the thread to be awakened
1911  * @state: the mask of task states that can be woken
1912  * @wake_flags: wake modifier flags (WF_*)
1913  *
1914  * Put it on the run-queue if it's not already there. The "current"
1915  * thread is always on the run-queue (except when the actual
1916  * re-schedule is in progress), and as such you're allowed to do
1917  * the simpler "current->state = TASK_RUNNING" to mark yourself
1918  * runnable without the overhead of this.
1919  *
1920  * Return: %true if @p was woken up, %false if it was already running.
1921  * or @state didn't match @p's state.
1922  */
1923 static int
1924 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1925 {
1926 	unsigned long flags;
1927 	int cpu, success = 0;
1928 
1929 	/*
1930 	 * If we are going to wake up a thread waiting for CONDITION we
1931 	 * need to ensure that CONDITION=1 done by the caller can not be
1932 	 * reordered with p->state check below. This pairs with mb() in
1933 	 * set_current_state() the waiting thread does.
1934 	 */
1935 	smp_mb__before_spinlock();
1936 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1937 	if (!(p->state & state))
1938 		goto out;
1939 
1940 	trace_sched_waking(p);
1941 
1942 	success = 1; /* we're going to change ->state */
1943 	cpu = task_cpu(p);
1944 
1945 	if (p->on_rq && ttwu_remote(p, wake_flags))
1946 		goto stat;
1947 
1948 #ifdef CONFIG_SMP
1949 	/*
1950 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1951 	 * possible to, falsely, observe p->on_cpu == 0.
1952 	 *
1953 	 * One must be running (->on_cpu == 1) in order to remove oneself
1954 	 * from the runqueue.
1955 	 *
1956 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1957 	 *      UNLOCK rq->lock
1958 	 *			RMB
1959 	 *      LOCK   rq->lock
1960 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1961 	 *
1962 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1963 	 * from the consecutive calls to schedule(); the first switching to our
1964 	 * task, the second putting it to sleep.
1965 	 */
1966 	smp_rmb();
1967 
1968 	/*
1969 	 * If the owning (remote) cpu is still in the middle of schedule() with
1970 	 * this task as prev, wait until its done referencing the task.
1971 	 */
1972 	while (p->on_cpu)
1973 		cpu_relax();
1974 	/*
1975 	 * Combined with the control dependency above, we have an effective
1976 	 * smp_load_acquire() without the need for full barriers.
1977 	 *
1978 	 * Pairs with the smp_store_release() in finish_lock_switch().
1979 	 *
1980 	 * This ensures that tasks getting woken will be fully ordered against
1981 	 * their previous state and preserve Program Order.
1982 	 */
1983 	smp_rmb();
1984 
1985 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1986 	p->state = TASK_WAKING;
1987 
1988 	if (p->sched_class->task_waking)
1989 		p->sched_class->task_waking(p);
1990 
1991 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1992 	if (task_cpu(p) != cpu) {
1993 		wake_flags |= WF_MIGRATED;
1994 		set_task_cpu(p, cpu);
1995 	}
1996 #endif /* CONFIG_SMP */
1997 
1998 	ttwu_queue(p, cpu);
1999 stat:
2000 	ttwu_stat(p, cpu, wake_flags);
2001 out:
2002 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2003 
2004 	return success;
2005 }
2006 
2007 /**
2008  * try_to_wake_up_local - try to wake up a local task with rq lock held
2009  * @p: the thread to be awakened
2010  *
2011  * Put @p on the run-queue if it's not already there. The caller must
2012  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2013  * the current task.
2014  */
2015 static void try_to_wake_up_local(struct task_struct *p)
2016 {
2017 	struct rq *rq = task_rq(p);
2018 
2019 	if (WARN_ON_ONCE(rq != this_rq()) ||
2020 	    WARN_ON_ONCE(p == current))
2021 		return;
2022 
2023 	lockdep_assert_held(&rq->lock);
2024 
2025 	if (!raw_spin_trylock(&p->pi_lock)) {
2026 		/*
2027 		 * This is OK, because current is on_cpu, which avoids it being
2028 		 * picked for load-balance and preemption/IRQs are still
2029 		 * disabled avoiding further scheduler activity on it and we've
2030 		 * not yet picked a replacement task.
2031 		 */
2032 		lockdep_unpin_lock(&rq->lock);
2033 		raw_spin_unlock(&rq->lock);
2034 		raw_spin_lock(&p->pi_lock);
2035 		raw_spin_lock(&rq->lock);
2036 		lockdep_pin_lock(&rq->lock);
2037 	}
2038 
2039 	if (!(p->state & TASK_NORMAL))
2040 		goto out;
2041 
2042 	trace_sched_waking(p);
2043 
2044 	if (!task_on_rq_queued(p))
2045 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2046 
2047 	ttwu_do_wakeup(rq, p, 0);
2048 	ttwu_stat(p, smp_processor_id(), 0);
2049 out:
2050 	raw_spin_unlock(&p->pi_lock);
2051 }
2052 
2053 /**
2054  * wake_up_process - Wake up a specific process
2055  * @p: The process to be woken up.
2056  *
2057  * Attempt to wake up the nominated process and move it to the set of runnable
2058  * processes.
2059  *
2060  * Return: 1 if the process was woken up, 0 if it was already running.
2061  *
2062  * It may be assumed that this function implies a write memory barrier before
2063  * changing the task state if and only if any tasks are woken up.
2064  */
2065 int wake_up_process(struct task_struct *p)
2066 {
2067 	return try_to_wake_up(p, TASK_NORMAL, 0);
2068 }
2069 EXPORT_SYMBOL(wake_up_process);
2070 
2071 int wake_up_state(struct task_struct *p, unsigned int state)
2072 {
2073 	return try_to_wake_up(p, state, 0);
2074 }
2075 
2076 /*
2077  * This function clears the sched_dl_entity static params.
2078  */
2079 void __dl_clear_params(struct task_struct *p)
2080 {
2081 	struct sched_dl_entity *dl_se = &p->dl;
2082 
2083 	dl_se->dl_runtime = 0;
2084 	dl_se->dl_deadline = 0;
2085 	dl_se->dl_period = 0;
2086 	dl_se->flags = 0;
2087 	dl_se->dl_bw = 0;
2088 
2089 	dl_se->dl_throttled = 0;
2090 	dl_se->dl_new = 1;
2091 	dl_se->dl_yielded = 0;
2092 }
2093 
2094 /*
2095  * Perform scheduler related setup for a newly forked process p.
2096  * p is forked by current.
2097  *
2098  * __sched_fork() is basic setup used by init_idle() too:
2099  */
2100 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2101 {
2102 	p->on_rq			= 0;
2103 
2104 	p->se.on_rq			= 0;
2105 	p->se.exec_start		= 0;
2106 	p->se.sum_exec_runtime		= 0;
2107 	p->se.prev_sum_exec_runtime	= 0;
2108 	p->se.nr_migrations		= 0;
2109 	p->se.vruntime			= 0;
2110 	INIT_LIST_HEAD(&p->se.group_node);
2111 
2112 #ifdef CONFIG_SCHEDSTATS
2113 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2114 #endif
2115 
2116 	RB_CLEAR_NODE(&p->dl.rb_node);
2117 	init_dl_task_timer(&p->dl);
2118 	__dl_clear_params(p);
2119 
2120 	INIT_LIST_HEAD(&p->rt.run_list);
2121 
2122 #ifdef CONFIG_PREEMPT_NOTIFIERS
2123 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2124 #endif
2125 
2126 #ifdef CONFIG_NUMA_BALANCING
2127 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2128 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2129 		p->mm->numa_scan_seq = 0;
2130 	}
2131 
2132 	if (clone_flags & CLONE_VM)
2133 		p->numa_preferred_nid = current->numa_preferred_nid;
2134 	else
2135 		p->numa_preferred_nid = -1;
2136 
2137 	p->node_stamp = 0ULL;
2138 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2139 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2140 	p->numa_work.next = &p->numa_work;
2141 	p->numa_faults = NULL;
2142 	p->last_task_numa_placement = 0;
2143 	p->last_sum_exec_runtime = 0;
2144 
2145 	p->numa_group = NULL;
2146 #endif /* CONFIG_NUMA_BALANCING */
2147 }
2148 
2149 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2150 
2151 #ifdef CONFIG_NUMA_BALANCING
2152 
2153 void set_numabalancing_state(bool enabled)
2154 {
2155 	if (enabled)
2156 		static_branch_enable(&sched_numa_balancing);
2157 	else
2158 		static_branch_disable(&sched_numa_balancing);
2159 }
2160 
2161 #ifdef CONFIG_PROC_SYSCTL
2162 int sysctl_numa_balancing(struct ctl_table *table, int write,
2163 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2164 {
2165 	struct ctl_table t;
2166 	int err;
2167 	int state = static_branch_likely(&sched_numa_balancing);
2168 
2169 	if (write && !capable(CAP_SYS_ADMIN))
2170 		return -EPERM;
2171 
2172 	t = *table;
2173 	t.data = &state;
2174 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2175 	if (err < 0)
2176 		return err;
2177 	if (write)
2178 		set_numabalancing_state(state);
2179 	return err;
2180 }
2181 #endif
2182 #endif
2183 
2184 /*
2185  * fork()/clone()-time setup:
2186  */
2187 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2188 {
2189 	unsigned long flags;
2190 	int cpu = get_cpu();
2191 
2192 	__sched_fork(clone_flags, p);
2193 	/*
2194 	 * We mark the process as running here. This guarantees that
2195 	 * nobody will actually run it, and a signal or other external
2196 	 * event cannot wake it up and insert it on the runqueue either.
2197 	 */
2198 	p->state = TASK_RUNNING;
2199 
2200 	/*
2201 	 * Make sure we do not leak PI boosting priority to the child.
2202 	 */
2203 	p->prio = current->normal_prio;
2204 
2205 	/*
2206 	 * Revert to default priority/policy on fork if requested.
2207 	 */
2208 	if (unlikely(p->sched_reset_on_fork)) {
2209 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2210 			p->policy = SCHED_NORMAL;
2211 			p->static_prio = NICE_TO_PRIO(0);
2212 			p->rt_priority = 0;
2213 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2214 			p->static_prio = NICE_TO_PRIO(0);
2215 
2216 		p->prio = p->normal_prio = __normal_prio(p);
2217 		set_load_weight(p);
2218 
2219 		/*
2220 		 * We don't need the reset flag anymore after the fork. It has
2221 		 * fulfilled its duty:
2222 		 */
2223 		p->sched_reset_on_fork = 0;
2224 	}
2225 
2226 	if (dl_prio(p->prio)) {
2227 		put_cpu();
2228 		return -EAGAIN;
2229 	} else if (rt_prio(p->prio)) {
2230 		p->sched_class = &rt_sched_class;
2231 	} else {
2232 		p->sched_class = &fair_sched_class;
2233 	}
2234 
2235 	if (p->sched_class->task_fork)
2236 		p->sched_class->task_fork(p);
2237 
2238 	/*
2239 	 * The child is not yet in the pid-hash so no cgroup attach races,
2240 	 * and the cgroup is pinned to this child due to cgroup_fork()
2241 	 * is ran before sched_fork().
2242 	 *
2243 	 * Silence PROVE_RCU.
2244 	 */
2245 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2246 	set_task_cpu(p, cpu);
2247 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2248 
2249 #ifdef CONFIG_SCHED_INFO
2250 	if (likely(sched_info_on()))
2251 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2252 #endif
2253 #if defined(CONFIG_SMP)
2254 	p->on_cpu = 0;
2255 #endif
2256 	init_task_preempt_count(p);
2257 #ifdef CONFIG_SMP
2258 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2259 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2260 #endif
2261 
2262 	put_cpu();
2263 	return 0;
2264 }
2265 
2266 unsigned long to_ratio(u64 period, u64 runtime)
2267 {
2268 	if (runtime == RUNTIME_INF)
2269 		return 1ULL << 20;
2270 
2271 	/*
2272 	 * Doing this here saves a lot of checks in all
2273 	 * the calling paths, and returning zero seems
2274 	 * safe for them anyway.
2275 	 */
2276 	if (period == 0)
2277 		return 0;
2278 
2279 	return div64_u64(runtime << 20, period);
2280 }
2281 
2282 #ifdef CONFIG_SMP
2283 inline struct dl_bw *dl_bw_of(int i)
2284 {
2285 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2286 			 "sched RCU must be held");
2287 	return &cpu_rq(i)->rd->dl_bw;
2288 }
2289 
2290 static inline int dl_bw_cpus(int i)
2291 {
2292 	struct root_domain *rd = cpu_rq(i)->rd;
2293 	int cpus = 0;
2294 
2295 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2296 			 "sched RCU must be held");
2297 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2298 		cpus++;
2299 
2300 	return cpus;
2301 }
2302 #else
2303 inline struct dl_bw *dl_bw_of(int i)
2304 {
2305 	return &cpu_rq(i)->dl.dl_bw;
2306 }
2307 
2308 static inline int dl_bw_cpus(int i)
2309 {
2310 	return 1;
2311 }
2312 #endif
2313 
2314 /*
2315  * We must be sure that accepting a new task (or allowing changing the
2316  * parameters of an existing one) is consistent with the bandwidth
2317  * constraints. If yes, this function also accordingly updates the currently
2318  * allocated bandwidth to reflect the new situation.
2319  *
2320  * This function is called while holding p's rq->lock.
2321  *
2322  * XXX we should delay bw change until the task's 0-lag point, see
2323  * __setparam_dl().
2324  */
2325 static int dl_overflow(struct task_struct *p, int policy,
2326 		       const struct sched_attr *attr)
2327 {
2328 
2329 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2330 	u64 period = attr->sched_period ?: attr->sched_deadline;
2331 	u64 runtime = attr->sched_runtime;
2332 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2333 	int cpus, err = -1;
2334 
2335 	if (new_bw == p->dl.dl_bw)
2336 		return 0;
2337 
2338 	/*
2339 	 * Either if a task, enters, leave, or stays -deadline but changes
2340 	 * its parameters, we may need to update accordingly the total
2341 	 * allocated bandwidth of the container.
2342 	 */
2343 	raw_spin_lock(&dl_b->lock);
2344 	cpus = dl_bw_cpus(task_cpu(p));
2345 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2346 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2347 		__dl_add(dl_b, new_bw);
2348 		err = 0;
2349 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2350 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2351 		__dl_clear(dl_b, p->dl.dl_bw);
2352 		__dl_add(dl_b, new_bw);
2353 		err = 0;
2354 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2355 		__dl_clear(dl_b, p->dl.dl_bw);
2356 		err = 0;
2357 	}
2358 	raw_spin_unlock(&dl_b->lock);
2359 
2360 	return err;
2361 }
2362 
2363 extern void init_dl_bw(struct dl_bw *dl_b);
2364 
2365 /*
2366  * wake_up_new_task - wake up a newly created task for the first time.
2367  *
2368  * This function will do some initial scheduler statistics housekeeping
2369  * that must be done for every newly created context, then puts the task
2370  * on the runqueue and wakes it.
2371  */
2372 void wake_up_new_task(struct task_struct *p)
2373 {
2374 	unsigned long flags;
2375 	struct rq *rq;
2376 
2377 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2378 	/* Initialize new task's runnable average */
2379 	init_entity_runnable_average(&p->se);
2380 #ifdef CONFIG_SMP
2381 	/*
2382 	 * Fork balancing, do it here and not earlier because:
2383 	 *  - cpus_allowed can change in the fork path
2384 	 *  - any previously selected cpu might disappear through hotplug
2385 	 */
2386 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2387 #endif
2388 
2389 	rq = __task_rq_lock(p);
2390 	activate_task(rq, p, 0);
2391 	p->on_rq = TASK_ON_RQ_QUEUED;
2392 	trace_sched_wakeup_new(p);
2393 	check_preempt_curr(rq, p, WF_FORK);
2394 #ifdef CONFIG_SMP
2395 	if (p->sched_class->task_woken) {
2396 		/*
2397 		 * Nothing relies on rq->lock after this, so its fine to
2398 		 * drop it.
2399 		 */
2400 		lockdep_unpin_lock(&rq->lock);
2401 		p->sched_class->task_woken(rq, p);
2402 		lockdep_pin_lock(&rq->lock);
2403 	}
2404 #endif
2405 	task_rq_unlock(rq, p, &flags);
2406 }
2407 
2408 #ifdef CONFIG_PREEMPT_NOTIFIERS
2409 
2410 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2411 
2412 void preempt_notifier_inc(void)
2413 {
2414 	static_key_slow_inc(&preempt_notifier_key);
2415 }
2416 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2417 
2418 void preempt_notifier_dec(void)
2419 {
2420 	static_key_slow_dec(&preempt_notifier_key);
2421 }
2422 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2423 
2424 /**
2425  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2426  * @notifier: notifier struct to register
2427  */
2428 void preempt_notifier_register(struct preempt_notifier *notifier)
2429 {
2430 	if (!static_key_false(&preempt_notifier_key))
2431 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2432 
2433 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2434 }
2435 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2436 
2437 /**
2438  * preempt_notifier_unregister - no longer interested in preemption notifications
2439  * @notifier: notifier struct to unregister
2440  *
2441  * This is *not* safe to call from within a preemption notifier.
2442  */
2443 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2444 {
2445 	hlist_del(&notifier->link);
2446 }
2447 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2448 
2449 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2450 {
2451 	struct preempt_notifier *notifier;
2452 
2453 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2454 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2455 }
2456 
2457 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2458 {
2459 	if (static_key_false(&preempt_notifier_key))
2460 		__fire_sched_in_preempt_notifiers(curr);
2461 }
2462 
2463 static void
2464 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 				   struct task_struct *next)
2466 {
2467 	struct preempt_notifier *notifier;
2468 
2469 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2470 		notifier->ops->sched_out(notifier, next);
2471 }
2472 
2473 static __always_inline void
2474 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2475 				 struct task_struct *next)
2476 {
2477 	if (static_key_false(&preempt_notifier_key))
2478 		__fire_sched_out_preempt_notifiers(curr, next);
2479 }
2480 
2481 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2482 
2483 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2484 {
2485 }
2486 
2487 static inline void
2488 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2489 				 struct task_struct *next)
2490 {
2491 }
2492 
2493 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2494 
2495 /**
2496  * prepare_task_switch - prepare to switch tasks
2497  * @rq: the runqueue preparing to switch
2498  * @prev: the current task that is being switched out
2499  * @next: the task we are going to switch to.
2500  *
2501  * This is called with the rq lock held and interrupts off. It must
2502  * be paired with a subsequent finish_task_switch after the context
2503  * switch.
2504  *
2505  * prepare_task_switch sets up locking and calls architecture specific
2506  * hooks.
2507  */
2508 static inline void
2509 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2510 		    struct task_struct *next)
2511 {
2512 	sched_info_switch(rq, prev, next);
2513 	perf_event_task_sched_out(prev, next);
2514 	fire_sched_out_preempt_notifiers(prev, next);
2515 	prepare_lock_switch(rq, next);
2516 	prepare_arch_switch(next);
2517 }
2518 
2519 /**
2520  * finish_task_switch - clean up after a task-switch
2521  * @prev: the thread we just switched away from.
2522  *
2523  * finish_task_switch must be called after the context switch, paired
2524  * with a prepare_task_switch call before the context switch.
2525  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2526  * and do any other architecture-specific cleanup actions.
2527  *
2528  * Note that we may have delayed dropping an mm in context_switch(). If
2529  * so, we finish that here outside of the runqueue lock. (Doing it
2530  * with the lock held can cause deadlocks; see schedule() for
2531  * details.)
2532  *
2533  * The context switch have flipped the stack from under us and restored the
2534  * local variables which were saved when this task called schedule() in the
2535  * past. prev == current is still correct but we need to recalculate this_rq
2536  * because prev may have moved to another CPU.
2537  */
2538 static struct rq *finish_task_switch(struct task_struct *prev)
2539 	__releases(rq->lock)
2540 {
2541 	struct rq *rq = this_rq();
2542 	struct mm_struct *mm = rq->prev_mm;
2543 	long prev_state;
2544 
2545 	/*
2546 	 * The previous task will have left us with a preempt_count of 2
2547 	 * because it left us after:
2548 	 *
2549 	 *	schedule()
2550 	 *	  preempt_disable();			// 1
2551 	 *	  __schedule()
2552 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2553 	 *
2554 	 * Also, see FORK_PREEMPT_COUNT.
2555 	 */
2556 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2557 		      "corrupted preempt_count: %s/%d/0x%x\n",
2558 		      current->comm, current->pid, preempt_count()))
2559 		preempt_count_set(FORK_PREEMPT_COUNT);
2560 
2561 	rq->prev_mm = NULL;
2562 
2563 	/*
2564 	 * A task struct has one reference for the use as "current".
2565 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2566 	 * schedule one last time. The schedule call will never return, and
2567 	 * the scheduled task must drop that reference.
2568 	 *
2569 	 * We must observe prev->state before clearing prev->on_cpu (in
2570 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2571 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2572 	 * transition, resulting in a double drop.
2573 	 */
2574 	prev_state = prev->state;
2575 	vtime_task_switch(prev);
2576 	perf_event_task_sched_in(prev, current);
2577 	finish_lock_switch(rq, prev);
2578 	finish_arch_post_lock_switch();
2579 
2580 	fire_sched_in_preempt_notifiers(current);
2581 	if (mm)
2582 		mmdrop(mm);
2583 	if (unlikely(prev_state == TASK_DEAD)) {
2584 		if (prev->sched_class->task_dead)
2585 			prev->sched_class->task_dead(prev);
2586 
2587 		/*
2588 		 * Remove function-return probe instances associated with this
2589 		 * task and put them back on the free list.
2590 		 */
2591 		kprobe_flush_task(prev);
2592 		put_task_struct(prev);
2593 	}
2594 
2595 	tick_nohz_task_switch();
2596 	return rq;
2597 }
2598 
2599 #ifdef CONFIG_SMP
2600 
2601 /* rq->lock is NOT held, but preemption is disabled */
2602 static void __balance_callback(struct rq *rq)
2603 {
2604 	struct callback_head *head, *next;
2605 	void (*func)(struct rq *rq);
2606 	unsigned long flags;
2607 
2608 	raw_spin_lock_irqsave(&rq->lock, flags);
2609 	head = rq->balance_callback;
2610 	rq->balance_callback = NULL;
2611 	while (head) {
2612 		func = (void (*)(struct rq *))head->func;
2613 		next = head->next;
2614 		head->next = NULL;
2615 		head = next;
2616 
2617 		func(rq);
2618 	}
2619 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2620 }
2621 
2622 static inline void balance_callback(struct rq *rq)
2623 {
2624 	if (unlikely(rq->balance_callback))
2625 		__balance_callback(rq);
2626 }
2627 
2628 #else
2629 
2630 static inline void balance_callback(struct rq *rq)
2631 {
2632 }
2633 
2634 #endif
2635 
2636 /**
2637  * schedule_tail - first thing a freshly forked thread must call.
2638  * @prev: the thread we just switched away from.
2639  */
2640 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2641 	__releases(rq->lock)
2642 {
2643 	struct rq *rq;
2644 
2645 	/*
2646 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2647 	 * finish_task_switch() for details.
2648 	 *
2649 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2650 	 * and the preempt_enable() will end up enabling preemption (on
2651 	 * PREEMPT_COUNT kernels).
2652 	 */
2653 
2654 	rq = finish_task_switch(prev);
2655 	balance_callback(rq);
2656 	preempt_enable();
2657 
2658 	if (current->set_child_tid)
2659 		put_user(task_pid_vnr(current), current->set_child_tid);
2660 }
2661 
2662 /*
2663  * context_switch - switch to the new MM and the new thread's register state.
2664  */
2665 static inline struct rq *
2666 context_switch(struct rq *rq, struct task_struct *prev,
2667 	       struct task_struct *next)
2668 {
2669 	struct mm_struct *mm, *oldmm;
2670 
2671 	prepare_task_switch(rq, prev, next);
2672 
2673 	mm = next->mm;
2674 	oldmm = prev->active_mm;
2675 	/*
2676 	 * For paravirt, this is coupled with an exit in switch_to to
2677 	 * combine the page table reload and the switch backend into
2678 	 * one hypercall.
2679 	 */
2680 	arch_start_context_switch(prev);
2681 
2682 	if (!mm) {
2683 		next->active_mm = oldmm;
2684 		atomic_inc(&oldmm->mm_count);
2685 		enter_lazy_tlb(oldmm, next);
2686 	} else
2687 		switch_mm(oldmm, mm, next);
2688 
2689 	if (!prev->mm) {
2690 		prev->active_mm = NULL;
2691 		rq->prev_mm = oldmm;
2692 	}
2693 	/*
2694 	 * Since the runqueue lock will be released by the next
2695 	 * task (which is an invalid locking op but in the case
2696 	 * of the scheduler it's an obvious special-case), so we
2697 	 * do an early lockdep release here:
2698 	 */
2699 	lockdep_unpin_lock(&rq->lock);
2700 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2701 
2702 	/* Here we just switch the register state and the stack. */
2703 	switch_to(prev, next, prev);
2704 	barrier();
2705 
2706 	return finish_task_switch(prev);
2707 }
2708 
2709 /*
2710  * nr_running and nr_context_switches:
2711  *
2712  * externally visible scheduler statistics: current number of runnable
2713  * threads, total number of context switches performed since bootup.
2714  */
2715 unsigned long nr_running(void)
2716 {
2717 	unsigned long i, sum = 0;
2718 
2719 	for_each_online_cpu(i)
2720 		sum += cpu_rq(i)->nr_running;
2721 
2722 	return sum;
2723 }
2724 
2725 /*
2726  * Check if only the current task is running on the cpu.
2727  *
2728  * Caution: this function does not check that the caller has disabled
2729  * preemption, thus the result might have a time-of-check-to-time-of-use
2730  * race.  The caller is responsible to use it correctly, for example:
2731  *
2732  * - from a non-preemptable section (of course)
2733  *
2734  * - from a thread that is bound to a single CPU
2735  *
2736  * - in a loop with very short iterations (e.g. a polling loop)
2737  */
2738 bool single_task_running(void)
2739 {
2740 	return raw_rq()->nr_running == 1;
2741 }
2742 EXPORT_SYMBOL(single_task_running);
2743 
2744 unsigned long long nr_context_switches(void)
2745 {
2746 	int i;
2747 	unsigned long long sum = 0;
2748 
2749 	for_each_possible_cpu(i)
2750 		sum += cpu_rq(i)->nr_switches;
2751 
2752 	return sum;
2753 }
2754 
2755 unsigned long nr_iowait(void)
2756 {
2757 	unsigned long i, sum = 0;
2758 
2759 	for_each_possible_cpu(i)
2760 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2761 
2762 	return sum;
2763 }
2764 
2765 unsigned long nr_iowait_cpu(int cpu)
2766 {
2767 	struct rq *this = cpu_rq(cpu);
2768 	return atomic_read(&this->nr_iowait);
2769 }
2770 
2771 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2772 {
2773 	struct rq *rq = this_rq();
2774 	*nr_waiters = atomic_read(&rq->nr_iowait);
2775 	*load = rq->load.weight;
2776 }
2777 
2778 #ifdef CONFIG_SMP
2779 
2780 /*
2781  * sched_exec - execve() is a valuable balancing opportunity, because at
2782  * this point the task has the smallest effective memory and cache footprint.
2783  */
2784 void sched_exec(void)
2785 {
2786 	struct task_struct *p = current;
2787 	unsigned long flags;
2788 	int dest_cpu;
2789 
2790 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2791 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2792 	if (dest_cpu == smp_processor_id())
2793 		goto unlock;
2794 
2795 	if (likely(cpu_active(dest_cpu))) {
2796 		struct migration_arg arg = { p, dest_cpu };
2797 
2798 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2799 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2800 		return;
2801 	}
2802 unlock:
2803 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2804 }
2805 
2806 #endif
2807 
2808 DEFINE_PER_CPU(struct kernel_stat, kstat);
2809 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2810 
2811 EXPORT_PER_CPU_SYMBOL(kstat);
2812 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2813 
2814 /*
2815  * Return accounted runtime for the task.
2816  * In case the task is currently running, return the runtime plus current's
2817  * pending runtime that have not been accounted yet.
2818  */
2819 unsigned long long task_sched_runtime(struct task_struct *p)
2820 {
2821 	unsigned long flags;
2822 	struct rq *rq;
2823 	u64 ns;
2824 
2825 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2826 	/*
2827 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2828 	 * So we have a optimization chance when the task's delta_exec is 0.
2829 	 * Reading ->on_cpu is racy, but this is ok.
2830 	 *
2831 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2832 	 * If we race with it entering cpu, unaccounted time is 0. This is
2833 	 * indistinguishable from the read occurring a few cycles earlier.
2834 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2835 	 * been accounted, so we're correct here as well.
2836 	 */
2837 	if (!p->on_cpu || !task_on_rq_queued(p))
2838 		return p->se.sum_exec_runtime;
2839 #endif
2840 
2841 	rq = task_rq_lock(p, &flags);
2842 	/*
2843 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2844 	 * project cycles that may never be accounted to this
2845 	 * thread, breaking clock_gettime().
2846 	 */
2847 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2848 		update_rq_clock(rq);
2849 		p->sched_class->update_curr(rq);
2850 	}
2851 	ns = p->se.sum_exec_runtime;
2852 	task_rq_unlock(rq, p, &flags);
2853 
2854 	return ns;
2855 }
2856 
2857 /*
2858  * This function gets called by the timer code, with HZ frequency.
2859  * We call it with interrupts disabled.
2860  */
2861 void scheduler_tick(void)
2862 {
2863 	int cpu = smp_processor_id();
2864 	struct rq *rq = cpu_rq(cpu);
2865 	struct task_struct *curr = rq->curr;
2866 
2867 	sched_clock_tick();
2868 
2869 	raw_spin_lock(&rq->lock);
2870 	update_rq_clock(rq);
2871 	curr->sched_class->task_tick(rq, curr, 0);
2872 	update_cpu_load_active(rq);
2873 	calc_global_load_tick(rq);
2874 	raw_spin_unlock(&rq->lock);
2875 
2876 	perf_event_task_tick();
2877 
2878 #ifdef CONFIG_SMP
2879 	rq->idle_balance = idle_cpu(cpu);
2880 	trigger_load_balance(rq);
2881 #endif
2882 	rq_last_tick_reset(rq);
2883 }
2884 
2885 #ifdef CONFIG_NO_HZ_FULL
2886 /**
2887  * scheduler_tick_max_deferment
2888  *
2889  * Keep at least one tick per second when a single
2890  * active task is running because the scheduler doesn't
2891  * yet completely support full dynticks environment.
2892  *
2893  * This makes sure that uptime, CFS vruntime, load
2894  * balancing, etc... continue to move forward, even
2895  * with a very low granularity.
2896  *
2897  * Return: Maximum deferment in nanoseconds.
2898  */
2899 u64 scheduler_tick_max_deferment(void)
2900 {
2901 	struct rq *rq = this_rq();
2902 	unsigned long next, now = READ_ONCE(jiffies);
2903 
2904 	next = rq->last_sched_tick + HZ;
2905 
2906 	if (time_before_eq(next, now))
2907 		return 0;
2908 
2909 	return jiffies_to_nsecs(next - now);
2910 }
2911 #endif
2912 
2913 notrace unsigned long get_parent_ip(unsigned long addr)
2914 {
2915 	if (in_lock_functions(addr)) {
2916 		addr = CALLER_ADDR2;
2917 		if (in_lock_functions(addr))
2918 			addr = CALLER_ADDR3;
2919 	}
2920 	return addr;
2921 }
2922 
2923 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2924 				defined(CONFIG_PREEMPT_TRACER))
2925 
2926 void preempt_count_add(int val)
2927 {
2928 #ifdef CONFIG_DEBUG_PREEMPT
2929 	/*
2930 	 * Underflow?
2931 	 */
2932 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2933 		return;
2934 #endif
2935 	__preempt_count_add(val);
2936 #ifdef CONFIG_DEBUG_PREEMPT
2937 	/*
2938 	 * Spinlock count overflowing soon?
2939 	 */
2940 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2941 				PREEMPT_MASK - 10);
2942 #endif
2943 	if (preempt_count() == val) {
2944 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2945 #ifdef CONFIG_DEBUG_PREEMPT
2946 		current->preempt_disable_ip = ip;
2947 #endif
2948 		trace_preempt_off(CALLER_ADDR0, ip);
2949 	}
2950 }
2951 EXPORT_SYMBOL(preempt_count_add);
2952 NOKPROBE_SYMBOL(preempt_count_add);
2953 
2954 void preempt_count_sub(int val)
2955 {
2956 #ifdef CONFIG_DEBUG_PREEMPT
2957 	/*
2958 	 * Underflow?
2959 	 */
2960 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2961 		return;
2962 	/*
2963 	 * Is the spinlock portion underflowing?
2964 	 */
2965 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2966 			!(preempt_count() & PREEMPT_MASK)))
2967 		return;
2968 #endif
2969 
2970 	if (preempt_count() == val)
2971 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2972 	__preempt_count_sub(val);
2973 }
2974 EXPORT_SYMBOL(preempt_count_sub);
2975 NOKPROBE_SYMBOL(preempt_count_sub);
2976 
2977 #endif
2978 
2979 /*
2980  * Print scheduling while atomic bug:
2981  */
2982 static noinline void __schedule_bug(struct task_struct *prev)
2983 {
2984 	if (oops_in_progress)
2985 		return;
2986 
2987 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2988 		prev->comm, prev->pid, preempt_count());
2989 
2990 	debug_show_held_locks(prev);
2991 	print_modules();
2992 	if (irqs_disabled())
2993 		print_irqtrace_events(prev);
2994 #ifdef CONFIG_DEBUG_PREEMPT
2995 	if (in_atomic_preempt_off()) {
2996 		pr_err("Preemption disabled at:");
2997 		print_ip_sym(current->preempt_disable_ip);
2998 		pr_cont("\n");
2999 	}
3000 #endif
3001 	dump_stack();
3002 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3003 }
3004 
3005 /*
3006  * Various schedule()-time debugging checks and statistics:
3007  */
3008 static inline void schedule_debug(struct task_struct *prev)
3009 {
3010 #ifdef CONFIG_SCHED_STACK_END_CHECK
3011 	BUG_ON(task_stack_end_corrupted(prev));
3012 #endif
3013 
3014 	if (unlikely(in_atomic_preempt_off())) {
3015 		__schedule_bug(prev);
3016 		preempt_count_set(PREEMPT_DISABLED);
3017 	}
3018 	rcu_sleep_check();
3019 
3020 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3021 
3022 	schedstat_inc(this_rq(), sched_count);
3023 }
3024 
3025 /*
3026  * Pick up the highest-prio task:
3027  */
3028 static inline struct task_struct *
3029 pick_next_task(struct rq *rq, struct task_struct *prev)
3030 {
3031 	const struct sched_class *class = &fair_sched_class;
3032 	struct task_struct *p;
3033 
3034 	/*
3035 	 * Optimization: we know that if all tasks are in
3036 	 * the fair class we can call that function directly:
3037 	 */
3038 	if (likely(prev->sched_class == class &&
3039 		   rq->nr_running == rq->cfs.h_nr_running)) {
3040 		p = fair_sched_class.pick_next_task(rq, prev);
3041 		if (unlikely(p == RETRY_TASK))
3042 			goto again;
3043 
3044 		/* assumes fair_sched_class->next == idle_sched_class */
3045 		if (unlikely(!p))
3046 			p = idle_sched_class.pick_next_task(rq, prev);
3047 
3048 		return p;
3049 	}
3050 
3051 again:
3052 	for_each_class(class) {
3053 		p = class->pick_next_task(rq, prev);
3054 		if (p) {
3055 			if (unlikely(p == RETRY_TASK))
3056 				goto again;
3057 			return p;
3058 		}
3059 	}
3060 
3061 	BUG(); /* the idle class will always have a runnable task */
3062 }
3063 
3064 /*
3065  * __schedule() is the main scheduler function.
3066  *
3067  * The main means of driving the scheduler and thus entering this function are:
3068  *
3069  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3070  *
3071  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3072  *      paths. For example, see arch/x86/entry_64.S.
3073  *
3074  *      To drive preemption between tasks, the scheduler sets the flag in timer
3075  *      interrupt handler scheduler_tick().
3076  *
3077  *   3. Wakeups don't really cause entry into schedule(). They add a
3078  *      task to the run-queue and that's it.
3079  *
3080  *      Now, if the new task added to the run-queue preempts the current
3081  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3082  *      called on the nearest possible occasion:
3083  *
3084  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3085  *
3086  *         - in syscall or exception context, at the next outmost
3087  *           preempt_enable(). (this might be as soon as the wake_up()'s
3088  *           spin_unlock()!)
3089  *
3090  *         - in IRQ context, return from interrupt-handler to
3091  *           preemptible context
3092  *
3093  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3094  *         then at the next:
3095  *
3096  *          - cond_resched() call
3097  *          - explicit schedule() call
3098  *          - return from syscall or exception to user-space
3099  *          - return from interrupt-handler to user-space
3100  *
3101  * WARNING: must be called with preemption disabled!
3102  */
3103 static void __sched notrace __schedule(bool preempt)
3104 {
3105 	struct task_struct *prev, *next;
3106 	unsigned long *switch_count;
3107 	struct rq *rq;
3108 	int cpu;
3109 
3110 	cpu = smp_processor_id();
3111 	rq = cpu_rq(cpu);
3112 	rcu_note_context_switch();
3113 	prev = rq->curr;
3114 
3115 	/*
3116 	 * do_exit() calls schedule() with preemption disabled as an exception;
3117 	 * however we must fix that up, otherwise the next task will see an
3118 	 * inconsistent (higher) preempt count.
3119 	 *
3120 	 * It also avoids the below schedule_debug() test from complaining
3121 	 * about this.
3122 	 */
3123 	if (unlikely(prev->state == TASK_DEAD))
3124 		preempt_enable_no_resched_notrace();
3125 
3126 	schedule_debug(prev);
3127 
3128 	if (sched_feat(HRTICK))
3129 		hrtick_clear(rq);
3130 
3131 	/*
3132 	 * Make sure that signal_pending_state()->signal_pending() below
3133 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3134 	 * done by the caller to avoid the race with signal_wake_up().
3135 	 */
3136 	smp_mb__before_spinlock();
3137 	raw_spin_lock_irq(&rq->lock);
3138 	lockdep_pin_lock(&rq->lock);
3139 
3140 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3141 
3142 	switch_count = &prev->nivcsw;
3143 	if (!preempt && prev->state) {
3144 		if (unlikely(signal_pending_state(prev->state, prev))) {
3145 			prev->state = TASK_RUNNING;
3146 		} else {
3147 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3148 			prev->on_rq = 0;
3149 
3150 			/*
3151 			 * If a worker went to sleep, notify and ask workqueue
3152 			 * whether it wants to wake up a task to maintain
3153 			 * concurrency.
3154 			 */
3155 			if (prev->flags & PF_WQ_WORKER) {
3156 				struct task_struct *to_wakeup;
3157 
3158 				to_wakeup = wq_worker_sleeping(prev, cpu);
3159 				if (to_wakeup)
3160 					try_to_wake_up_local(to_wakeup);
3161 			}
3162 		}
3163 		switch_count = &prev->nvcsw;
3164 	}
3165 
3166 	if (task_on_rq_queued(prev))
3167 		update_rq_clock(rq);
3168 
3169 	next = pick_next_task(rq, prev);
3170 	clear_tsk_need_resched(prev);
3171 	clear_preempt_need_resched();
3172 	rq->clock_skip_update = 0;
3173 
3174 	if (likely(prev != next)) {
3175 		rq->nr_switches++;
3176 		rq->curr = next;
3177 		++*switch_count;
3178 
3179 		trace_sched_switch(preempt, prev, next);
3180 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3181 		cpu = cpu_of(rq);
3182 	} else {
3183 		lockdep_unpin_lock(&rq->lock);
3184 		raw_spin_unlock_irq(&rq->lock);
3185 	}
3186 
3187 	balance_callback(rq);
3188 }
3189 
3190 static inline void sched_submit_work(struct task_struct *tsk)
3191 {
3192 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3193 		return;
3194 	/*
3195 	 * If we are going to sleep and we have plugged IO queued,
3196 	 * make sure to submit it to avoid deadlocks.
3197 	 */
3198 	if (blk_needs_flush_plug(tsk))
3199 		blk_schedule_flush_plug(tsk);
3200 }
3201 
3202 asmlinkage __visible void __sched schedule(void)
3203 {
3204 	struct task_struct *tsk = current;
3205 
3206 	sched_submit_work(tsk);
3207 	do {
3208 		preempt_disable();
3209 		__schedule(false);
3210 		sched_preempt_enable_no_resched();
3211 	} while (need_resched());
3212 }
3213 EXPORT_SYMBOL(schedule);
3214 
3215 #ifdef CONFIG_CONTEXT_TRACKING
3216 asmlinkage __visible void __sched schedule_user(void)
3217 {
3218 	/*
3219 	 * If we come here after a random call to set_need_resched(),
3220 	 * or we have been woken up remotely but the IPI has not yet arrived,
3221 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3222 	 * we find a better solution.
3223 	 *
3224 	 * NB: There are buggy callers of this function.  Ideally we
3225 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3226 	 * too frequently to make sense yet.
3227 	 */
3228 	enum ctx_state prev_state = exception_enter();
3229 	schedule();
3230 	exception_exit(prev_state);
3231 }
3232 #endif
3233 
3234 /**
3235  * schedule_preempt_disabled - called with preemption disabled
3236  *
3237  * Returns with preemption disabled. Note: preempt_count must be 1
3238  */
3239 void __sched schedule_preempt_disabled(void)
3240 {
3241 	sched_preempt_enable_no_resched();
3242 	schedule();
3243 	preempt_disable();
3244 }
3245 
3246 static void __sched notrace preempt_schedule_common(void)
3247 {
3248 	do {
3249 		preempt_disable_notrace();
3250 		__schedule(true);
3251 		preempt_enable_no_resched_notrace();
3252 
3253 		/*
3254 		 * Check again in case we missed a preemption opportunity
3255 		 * between schedule and now.
3256 		 */
3257 	} while (need_resched());
3258 }
3259 
3260 #ifdef CONFIG_PREEMPT
3261 /*
3262  * this is the entry point to schedule() from in-kernel preemption
3263  * off of preempt_enable. Kernel preemptions off return from interrupt
3264  * occur there and call schedule directly.
3265  */
3266 asmlinkage __visible void __sched notrace preempt_schedule(void)
3267 {
3268 	/*
3269 	 * If there is a non-zero preempt_count or interrupts are disabled,
3270 	 * we do not want to preempt the current task. Just return..
3271 	 */
3272 	if (likely(!preemptible()))
3273 		return;
3274 
3275 	preempt_schedule_common();
3276 }
3277 NOKPROBE_SYMBOL(preempt_schedule);
3278 EXPORT_SYMBOL(preempt_schedule);
3279 
3280 /**
3281  * preempt_schedule_notrace - preempt_schedule called by tracing
3282  *
3283  * The tracing infrastructure uses preempt_enable_notrace to prevent
3284  * recursion and tracing preempt enabling caused by the tracing
3285  * infrastructure itself. But as tracing can happen in areas coming
3286  * from userspace or just about to enter userspace, a preempt enable
3287  * can occur before user_exit() is called. This will cause the scheduler
3288  * to be called when the system is still in usermode.
3289  *
3290  * To prevent this, the preempt_enable_notrace will use this function
3291  * instead of preempt_schedule() to exit user context if needed before
3292  * calling the scheduler.
3293  */
3294 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3295 {
3296 	enum ctx_state prev_ctx;
3297 
3298 	if (likely(!preemptible()))
3299 		return;
3300 
3301 	do {
3302 		preempt_disable_notrace();
3303 		/*
3304 		 * Needs preempt disabled in case user_exit() is traced
3305 		 * and the tracer calls preempt_enable_notrace() causing
3306 		 * an infinite recursion.
3307 		 */
3308 		prev_ctx = exception_enter();
3309 		__schedule(true);
3310 		exception_exit(prev_ctx);
3311 
3312 		preempt_enable_no_resched_notrace();
3313 	} while (need_resched());
3314 }
3315 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3316 
3317 #endif /* CONFIG_PREEMPT */
3318 
3319 /*
3320  * this is the entry point to schedule() from kernel preemption
3321  * off of irq context.
3322  * Note, that this is called and return with irqs disabled. This will
3323  * protect us against recursive calling from irq.
3324  */
3325 asmlinkage __visible void __sched preempt_schedule_irq(void)
3326 {
3327 	enum ctx_state prev_state;
3328 
3329 	/* Catch callers which need to be fixed */
3330 	BUG_ON(preempt_count() || !irqs_disabled());
3331 
3332 	prev_state = exception_enter();
3333 
3334 	do {
3335 		preempt_disable();
3336 		local_irq_enable();
3337 		__schedule(true);
3338 		local_irq_disable();
3339 		sched_preempt_enable_no_resched();
3340 	} while (need_resched());
3341 
3342 	exception_exit(prev_state);
3343 }
3344 
3345 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3346 			  void *key)
3347 {
3348 	return try_to_wake_up(curr->private, mode, wake_flags);
3349 }
3350 EXPORT_SYMBOL(default_wake_function);
3351 
3352 #ifdef CONFIG_RT_MUTEXES
3353 
3354 /*
3355  * rt_mutex_setprio - set the current priority of a task
3356  * @p: task
3357  * @prio: prio value (kernel-internal form)
3358  *
3359  * This function changes the 'effective' priority of a task. It does
3360  * not touch ->normal_prio like __setscheduler().
3361  *
3362  * Used by the rt_mutex code to implement priority inheritance
3363  * logic. Call site only calls if the priority of the task changed.
3364  */
3365 void rt_mutex_setprio(struct task_struct *p, int prio)
3366 {
3367 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3368 	struct rq *rq;
3369 	const struct sched_class *prev_class;
3370 
3371 	BUG_ON(prio > MAX_PRIO);
3372 
3373 	rq = __task_rq_lock(p);
3374 
3375 	/*
3376 	 * Idle task boosting is a nono in general. There is one
3377 	 * exception, when PREEMPT_RT and NOHZ is active:
3378 	 *
3379 	 * The idle task calls get_next_timer_interrupt() and holds
3380 	 * the timer wheel base->lock on the CPU and another CPU wants
3381 	 * to access the timer (probably to cancel it). We can safely
3382 	 * ignore the boosting request, as the idle CPU runs this code
3383 	 * with interrupts disabled and will complete the lock
3384 	 * protected section without being interrupted. So there is no
3385 	 * real need to boost.
3386 	 */
3387 	if (unlikely(p == rq->idle)) {
3388 		WARN_ON(p != rq->curr);
3389 		WARN_ON(p->pi_blocked_on);
3390 		goto out_unlock;
3391 	}
3392 
3393 	trace_sched_pi_setprio(p, prio);
3394 	oldprio = p->prio;
3395 	prev_class = p->sched_class;
3396 	queued = task_on_rq_queued(p);
3397 	running = task_current(rq, p);
3398 	if (queued)
3399 		dequeue_task(rq, p, DEQUEUE_SAVE);
3400 	if (running)
3401 		put_prev_task(rq, p);
3402 
3403 	/*
3404 	 * Boosting condition are:
3405 	 * 1. -rt task is running and holds mutex A
3406 	 *      --> -dl task blocks on mutex A
3407 	 *
3408 	 * 2. -dl task is running and holds mutex A
3409 	 *      --> -dl task blocks on mutex A and could preempt the
3410 	 *          running task
3411 	 */
3412 	if (dl_prio(prio)) {
3413 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3414 		if (!dl_prio(p->normal_prio) ||
3415 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3416 			p->dl.dl_boosted = 1;
3417 			enqueue_flag |= ENQUEUE_REPLENISH;
3418 		} else
3419 			p->dl.dl_boosted = 0;
3420 		p->sched_class = &dl_sched_class;
3421 	} else if (rt_prio(prio)) {
3422 		if (dl_prio(oldprio))
3423 			p->dl.dl_boosted = 0;
3424 		if (oldprio < prio)
3425 			enqueue_flag |= ENQUEUE_HEAD;
3426 		p->sched_class = &rt_sched_class;
3427 	} else {
3428 		if (dl_prio(oldprio))
3429 			p->dl.dl_boosted = 0;
3430 		if (rt_prio(oldprio))
3431 			p->rt.timeout = 0;
3432 		p->sched_class = &fair_sched_class;
3433 	}
3434 
3435 	p->prio = prio;
3436 
3437 	if (running)
3438 		p->sched_class->set_curr_task(rq);
3439 	if (queued)
3440 		enqueue_task(rq, p, enqueue_flag);
3441 
3442 	check_class_changed(rq, p, prev_class, oldprio);
3443 out_unlock:
3444 	preempt_disable(); /* avoid rq from going away on us */
3445 	__task_rq_unlock(rq);
3446 
3447 	balance_callback(rq);
3448 	preempt_enable();
3449 }
3450 #endif
3451 
3452 void set_user_nice(struct task_struct *p, long nice)
3453 {
3454 	int old_prio, delta, queued;
3455 	unsigned long flags;
3456 	struct rq *rq;
3457 
3458 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3459 		return;
3460 	/*
3461 	 * We have to be careful, if called from sys_setpriority(),
3462 	 * the task might be in the middle of scheduling on another CPU.
3463 	 */
3464 	rq = task_rq_lock(p, &flags);
3465 	/*
3466 	 * The RT priorities are set via sched_setscheduler(), but we still
3467 	 * allow the 'normal' nice value to be set - but as expected
3468 	 * it wont have any effect on scheduling until the task is
3469 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3470 	 */
3471 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3472 		p->static_prio = NICE_TO_PRIO(nice);
3473 		goto out_unlock;
3474 	}
3475 	queued = task_on_rq_queued(p);
3476 	if (queued)
3477 		dequeue_task(rq, p, DEQUEUE_SAVE);
3478 
3479 	p->static_prio = NICE_TO_PRIO(nice);
3480 	set_load_weight(p);
3481 	old_prio = p->prio;
3482 	p->prio = effective_prio(p);
3483 	delta = p->prio - old_prio;
3484 
3485 	if (queued) {
3486 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3487 		/*
3488 		 * If the task increased its priority or is running and
3489 		 * lowered its priority, then reschedule its CPU:
3490 		 */
3491 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3492 			resched_curr(rq);
3493 	}
3494 out_unlock:
3495 	task_rq_unlock(rq, p, &flags);
3496 }
3497 EXPORT_SYMBOL(set_user_nice);
3498 
3499 /*
3500  * can_nice - check if a task can reduce its nice value
3501  * @p: task
3502  * @nice: nice value
3503  */
3504 int can_nice(const struct task_struct *p, const int nice)
3505 {
3506 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3507 	int nice_rlim = nice_to_rlimit(nice);
3508 
3509 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3510 		capable(CAP_SYS_NICE));
3511 }
3512 
3513 #ifdef __ARCH_WANT_SYS_NICE
3514 
3515 /*
3516  * sys_nice - change the priority of the current process.
3517  * @increment: priority increment
3518  *
3519  * sys_setpriority is a more generic, but much slower function that
3520  * does similar things.
3521  */
3522 SYSCALL_DEFINE1(nice, int, increment)
3523 {
3524 	long nice, retval;
3525 
3526 	/*
3527 	 * Setpriority might change our priority at the same moment.
3528 	 * We don't have to worry. Conceptually one call occurs first
3529 	 * and we have a single winner.
3530 	 */
3531 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3532 	nice = task_nice(current) + increment;
3533 
3534 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3535 	if (increment < 0 && !can_nice(current, nice))
3536 		return -EPERM;
3537 
3538 	retval = security_task_setnice(current, nice);
3539 	if (retval)
3540 		return retval;
3541 
3542 	set_user_nice(current, nice);
3543 	return 0;
3544 }
3545 
3546 #endif
3547 
3548 /**
3549  * task_prio - return the priority value of a given task.
3550  * @p: the task in question.
3551  *
3552  * Return: The priority value as seen by users in /proc.
3553  * RT tasks are offset by -200. Normal tasks are centered
3554  * around 0, value goes from -16 to +15.
3555  */
3556 int task_prio(const struct task_struct *p)
3557 {
3558 	return p->prio - MAX_RT_PRIO;
3559 }
3560 
3561 /**
3562  * idle_cpu - is a given cpu idle currently?
3563  * @cpu: the processor in question.
3564  *
3565  * Return: 1 if the CPU is currently idle. 0 otherwise.
3566  */
3567 int idle_cpu(int cpu)
3568 {
3569 	struct rq *rq = cpu_rq(cpu);
3570 
3571 	if (rq->curr != rq->idle)
3572 		return 0;
3573 
3574 	if (rq->nr_running)
3575 		return 0;
3576 
3577 #ifdef CONFIG_SMP
3578 	if (!llist_empty(&rq->wake_list))
3579 		return 0;
3580 #endif
3581 
3582 	return 1;
3583 }
3584 
3585 /**
3586  * idle_task - return the idle task for a given cpu.
3587  * @cpu: the processor in question.
3588  *
3589  * Return: The idle task for the cpu @cpu.
3590  */
3591 struct task_struct *idle_task(int cpu)
3592 {
3593 	return cpu_rq(cpu)->idle;
3594 }
3595 
3596 /**
3597  * find_process_by_pid - find a process with a matching PID value.
3598  * @pid: the pid in question.
3599  *
3600  * The task of @pid, if found. %NULL otherwise.
3601  */
3602 static struct task_struct *find_process_by_pid(pid_t pid)
3603 {
3604 	return pid ? find_task_by_vpid(pid) : current;
3605 }
3606 
3607 /*
3608  * This function initializes the sched_dl_entity of a newly becoming
3609  * SCHED_DEADLINE task.
3610  *
3611  * Only the static values are considered here, the actual runtime and the
3612  * absolute deadline will be properly calculated when the task is enqueued
3613  * for the first time with its new policy.
3614  */
3615 static void
3616 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3617 {
3618 	struct sched_dl_entity *dl_se = &p->dl;
3619 
3620 	dl_se->dl_runtime = attr->sched_runtime;
3621 	dl_se->dl_deadline = attr->sched_deadline;
3622 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3623 	dl_se->flags = attr->sched_flags;
3624 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3625 
3626 	/*
3627 	 * Changing the parameters of a task is 'tricky' and we're not doing
3628 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3629 	 *
3630 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3631 	 * point. This would include retaining the task_struct until that time
3632 	 * and change dl_overflow() to not immediately decrement the current
3633 	 * amount.
3634 	 *
3635 	 * Instead we retain the current runtime/deadline and let the new
3636 	 * parameters take effect after the current reservation period lapses.
3637 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3638 	 * before the current scheduling deadline.
3639 	 *
3640 	 * We can still have temporary overloads because we do not delay the
3641 	 * change in bandwidth until that time; so admission control is
3642 	 * not on the safe side. It does however guarantee tasks will never
3643 	 * consume more than promised.
3644 	 */
3645 }
3646 
3647 /*
3648  * sched_setparam() passes in -1 for its policy, to let the functions
3649  * it calls know not to change it.
3650  */
3651 #define SETPARAM_POLICY	-1
3652 
3653 static void __setscheduler_params(struct task_struct *p,
3654 		const struct sched_attr *attr)
3655 {
3656 	int policy = attr->sched_policy;
3657 
3658 	if (policy == SETPARAM_POLICY)
3659 		policy = p->policy;
3660 
3661 	p->policy = policy;
3662 
3663 	if (dl_policy(policy))
3664 		__setparam_dl(p, attr);
3665 	else if (fair_policy(policy))
3666 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3667 
3668 	/*
3669 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3670 	 * !rt_policy. Always setting this ensures that things like
3671 	 * getparam()/getattr() don't report silly values for !rt tasks.
3672 	 */
3673 	p->rt_priority = attr->sched_priority;
3674 	p->normal_prio = normal_prio(p);
3675 	set_load_weight(p);
3676 }
3677 
3678 /* Actually do priority change: must hold pi & rq lock. */
3679 static void __setscheduler(struct rq *rq, struct task_struct *p,
3680 			   const struct sched_attr *attr, bool keep_boost)
3681 {
3682 	__setscheduler_params(p, attr);
3683 
3684 	/*
3685 	 * Keep a potential priority boosting if called from
3686 	 * sched_setscheduler().
3687 	 */
3688 	if (keep_boost)
3689 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3690 	else
3691 		p->prio = normal_prio(p);
3692 
3693 	if (dl_prio(p->prio))
3694 		p->sched_class = &dl_sched_class;
3695 	else if (rt_prio(p->prio))
3696 		p->sched_class = &rt_sched_class;
3697 	else
3698 		p->sched_class = &fair_sched_class;
3699 }
3700 
3701 static void
3702 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3703 {
3704 	struct sched_dl_entity *dl_se = &p->dl;
3705 
3706 	attr->sched_priority = p->rt_priority;
3707 	attr->sched_runtime = dl_se->dl_runtime;
3708 	attr->sched_deadline = dl_se->dl_deadline;
3709 	attr->sched_period = dl_se->dl_period;
3710 	attr->sched_flags = dl_se->flags;
3711 }
3712 
3713 /*
3714  * This function validates the new parameters of a -deadline task.
3715  * We ask for the deadline not being zero, and greater or equal
3716  * than the runtime, as well as the period of being zero or
3717  * greater than deadline. Furthermore, we have to be sure that
3718  * user parameters are above the internal resolution of 1us (we
3719  * check sched_runtime only since it is always the smaller one) and
3720  * below 2^63 ns (we have to check both sched_deadline and
3721  * sched_period, as the latter can be zero).
3722  */
3723 static bool
3724 __checkparam_dl(const struct sched_attr *attr)
3725 {
3726 	/* deadline != 0 */
3727 	if (attr->sched_deadline == 0)
3728 		return false;
3729 
3730 	/*
3731 	 * Since we truncate DL_SCALE bits, make sure we're at least
3732 	 * that big.
3733 	 */
3734 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3735 		return false;
3736 
3737 	/*
3738 	 * Since we use the MSB for wrap-around and sign issues, make
3739 	 * sure it's not set (mind that period can be equal to zero).
3740 	 */
3741 	if (attr->sched_deadline & (1ULL << 63) ||
3742 	    attr->sched_period & (1ULL << 63))
3743 		return false;
3744 
3745 	/* runtime <= deadline <= period (if period != 0) */
3746 	if ((attr->sched_period != 0 &&
3747 	     attr->sched_period < attr->sched_deadline) ||
3748 	    attr->sched_deadline < attr->sched_runtime)
3749 		return false;
3750 
3751 	return true;
3752 }
3753 
3754 /*
3755  * check the target process has a UID that matches the current process's
3756  */
3757 static bool check_same_owner(struct task_struct *p)
3758 {
3759 	const struct cred *cred = current_cred(), *pcred;
3760 	bool match;
3761 
3762 	rcu_read_lock();
3763 	pcred = __task_cred(p);
3764 	match = (uid_eq(cred->euid, pcred->euid) ||
3765 		 uid_eq(cred->euid, pcred->uid));
3766 	rcu_read_unlock();
3767 	return match;
3768 }
3769 
3770 static bool dl_param_changed(struct task_struct *p,
3771 		const struct sched_attr *attr)
3772 {
3773 	struct sched_dl_entity *dl_se = &p->dl;
3774 
3775 	if (dl_se->dl_runtime != attr->sched_runtime ||
3776 		dl_se->dl_deadline != attr->sched_deadline ||
3777 		dl_se->dl_period != attr->sched_period ||
3778 		dl_se->flags != attr->sched_flags)
3779 		return true;
3780 
3781 	return false;
3782 }
3783 
3784 static int __sched_setscheduler(struct task_struct *p,
3785 				const struct sched_attr *attr,
3786 				bool user, bool pi)
3787 {
3788 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3789 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3790 	int retval, oldprio, oldpolicy = -1, queued, running;
3791 	int new_effective_prio, policy = attr->sched_policy;
3792 	unsigned long flags;
3793 	const struct sched_class *prev_class;
3794 	struct rq *rq;
3795 	int reset_on_fork;
3796 
3797 	/* may grab non-irq protected spin_locks */
3798 	BUG_ON(in_interrupt());
3799 recheck:
3800 	/* double check policy once rq lock held */
3801 	if (policy < 0) {
3802 		reset_on_fork = p->sched_reset_on_fork;
3803 		policy = oldpolicy = p->policy;
3804 	} else {
3805 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3806 
3807 		if (!valid_policy(policy))
3808 			return -EINVAL;
3809 	}
3810 
3811 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3812 		return -EINVAL;
3813 
3814 	/*
3815 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3816 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3817 	 * SCHED_BATCH and SCHED_IDLE is 0.
3818 	 */
3819 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3820 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3821 		return -EINVAL;
3822 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3823 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3824 		return -EINVAL;
3825 
3826 	/*
3827 	 * Allow unprivileged RT tasks to decrease priority:
3828 	 */
3829 	if (user && !capable(CAP_SYS_NICE)) {
3830 		if (fair_policy(policy)) {
3831 			if (attr->sched_nice < task_nice(p) &&
3832 			    !can_nice(p, attr->sched_nice))
3833 				return -EPERM;
3834 		}
3835 
3836 		if (rt_policy(policy)) {
3837 			unsigned long rlim_rtprio =
3838 					task_rlimit(p, RLIMIT_RTPRIO);
3839 
3840 			/* can't set/change the rt policy */
3841 			if (policy != p->policy && !rlim_rtprio)
3842 				return -EPERM;
3843 
3844 			/* can't increase priority */
3845 			if (attr->sched_priority > p->rt_priority &&
3846 			    attr->sched_priority > rlim_rtprio)
3847 				return -EPERM;
3848 		}
3849 
3850 		 /*
3851 		  * Can't set/change SCHED_DEADLINE policy at all for now
3852 		  * (safest behavior); in the future we would like to allow
3853 		  * unprivileged DL tasks to increase their relative deadline
3854 		  * or reduce their runtime (both ways reducing utilization)
3855 		  */
3856 		if (dl_policy(policy))
3857 			return -EPERM;
3858 
3859 		/*
3860 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3861 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3862 		 */
3863 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3864 			if (!can_nice(p, task_nice(p)))
3865 				return -EPERM;
3866 		}
3867 
3868 		/* can't change other user's priorities */
3869 		if (!check_same_owner(p))
3870 			return -EPERM;
3871 
3872 		/* Normal users shall not reset the sched_reset_on_fork flag */
3873 		if (p->sched_reset_on_fork && !reset_on_fork)
3874 			return -EPERM;
3875 	}
3876 
3877 	if (user) {
3878 		retval = security_task_setscheduler(p);
3879 		if (retval)
3880 			return retval;
3881 	}
3882 
3883 	/*
3884 	 * make sure no PI-waiters arrive (or leave) while we are
3885 	 * changing the priority of the task:
3886 	 *
3887 	 * To be able to change p->policy safely, the appropriate
3888 	 * runqueue lock must be held.
3889 	 */
3890 	rq = task_rq_lock(p, &flags);
3891 
3892 	/*
3893 	 * Changing the policy of the stop threads its a very bad idea
3894 	 */
3895 	if (p == rq->stop) {
3896 		task_rq_unlock(rq, p, &flags);
3897 		return -EINVAL;
3898 	}
3899 
3900 	/*
3901 	 * If not changing anything there's no need to proceed further,
3902 	 * but store a possible modification of reset_on_fork.
3903 	 */
3904 	if (unlikely(policy == p->policy)) {
3905 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3906 			goto change;
3907 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3908 			goto change;
3909 		if (dl_policy(policy) && dl_param_changed(p, attr))
3910 			goto change;
3911 
3912 		p->sched_reset_on_fork = reset_on_fork;
3913 		task_rq_unlock(rq, p, &flags);
3914 		return 0;
3915 	}
3916 change:
3917 
3918 	if (user) {
3919 #ifdef CONFIG_RT_GROUP_SCHED
3920 		/*
3921 		 * Do not allow realtime tasks into groups that have no runtime
3922 		 * assigned.
3923 		 */
3924 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3925 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3926 				!task_group_is_autogroup(task_group(p))) {
3927 			task_rq_unlock(rq, p, &flags);
3928 			return -EPERM;
3929 		}
3930 #endif
3931 #ifdef CONFIG_SMP
3932 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3933 			cpumask_t *span = rq->rd->span;
3934 
3935 			/*
3936 			 * Don't allow tasks with an affinity mask smaller than
3937 			 * the entire root_domain to become SCHED_DEADLINE. We
3938 			 * will also fail if there's no bandwidth available.
3939 			 */
3940 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3941 			    rq->rd->dl_bw.bw == 0) {
3942 				task_rq_unlock(rq, p, &flags);
3943 				return -EPERM;
3944 			}
3945 		}
3946 #endif
3947 	}
3948 
3949 	/* recheck policy now with rq lock held */
3950 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3951 		policy = oldpolicy = -1;
3952 		task_rq_unlock(rq, p, &flags);
3953 		goto recheck;
3954 	}
3955 
3956 	/*
3957 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3958 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3959 	 * is available.
3960 	 */
3961 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3962 		task_rq_unlock(rq, p, &flags);
3963 		return -EBUSY;
3964 	}
3965 
3966 	p->sched_reset_on_fork = reset_on_fork;
3967 	oldprio = p->prio;
3968 
3969 	if (pi) {
3970 		/*
3971 		 * Take priority boosted tasks into account. If the new
3972 		 * effective priority is unchanged, we just store the new
3973 		 * normal parameters and do not touch the scheduler class and
3974 		 * the runqueue. This will be done when the task deboost
3975 		 * itself.
3976 		 */
3977 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3978 		if (new_effective_prio == oldprio) {
3979 			__setscheduler_params(p, attr);
3980 			task_rq_unlock(rq, p, &flags);
3981 			return 0;
3982 		}
3983 	}
3984 
3985 	queued = task_on_rq_queued(p);
3986 	running = task_current(rq, p);
3987 	if (queued)
3988 		dequeue_task(rq, p, DEQUEUE_SAVE);
3989 	if (running)
3990 		put_prev_task(rq, p);
3991 
3992 	prev_class = p->sched_class;
3993 	__setscheduler(rq, p, attr, pi);
3994 
3995 	if (running)
3996 		p->sched_class->set_curr_task(rq);
3997 	if (queued) {
3998 		int enqueue_flags = ENQUEUE_RESTORE;
3999 		/*
4000 		 * We enqueue to tail when the priority of a task is
4001 		 * increased (user space view).
4002 		 */
4003 		if (oldprio <= p->prio)
4004 			enqueue_flags |= ENQUEUE_HEAD;
4005 
4006 		enqueue_task(rq, p, enqueue_flags);
4007 	}
4008 
4009 	check_class_changed(rq, p, prev_class, oldprio);
4010 	preempt_disable(); /* avoid rq from going away on us */
4011 	task_rq_unlock(rq, p, &flags);
4012 
4013 	if (pi)
4014 		rt_mutex_adjust_pi(p);
4015 
4016 	/*
4017 	 * Run balance callbacks after we've adjusted the PI chain.
4018 	 */
4019 	balance_callback(rq);
4020 	preempt_enable();
4021 
4022 	return 0;
4023 }
4024 
4025 static int _sched_setscheduler(struct task_struct *p, int policy,
4026 			       const struct sched_param *param, bool check)
4027 {
4028 	struct sched_attr attr = {
4029 		.sched_policy   = policy,
4030 		.sched_priority = param->sched_priority,
4031 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4032 	};
4033 
4034 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4035 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4036 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4037 		policy &= ~SCHED_RESET_ON_FORK;
4038 		attr.sched_policy = policy;
4039 	}
4040 
4041 	return __sched_setscheduler(p, &attr, check, true);
4042 }
4043 /**
4044  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4045  * @p: the task in question.
4046  * @policy: new policy.
4047  * @param: structure containing the new RT priority.
4048  *
4049  * Return: 0 on success. An error code otherwise.
4050  *
4051  * NOTE that the task may be already dead.
4052  */
4053 int sched_setscheduler(struct task_struct *p, int policy,
4054 		       const struct sched_param *param)
4055 {
4056 	return _sched_setscheduler(p, policy, param, true);
4057 }
4058 EXPORT_SYMBOL_GPL(sched_setscheduler);
4059 
4060 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4061 {
4062 	return __sched_setscheduler(p, attr, true, true);
4063 }
4064 EXPORT_SYMBOL_GPL(sched_setattr);
4065 
4066 /**
4067  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4068  * @p: the task in question.
4069  * @policy: new policy.
4070  * @param: structure containing the new RT priority.
4071  *
4072  * Just like sched_setscheduler, only don't bother checking if the
4073  * current context has permission.  For example, this is needed in
4074  * stop_machine(): we create temporary high priority worker threads,
4075  * but our caller might not have that capability.
4076  *
4077  * Return: 0 on success. An error code otherwise.
4078  */
4079 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4080 			       const struct sched_param *param)
4081 {
4082 	return _sched_setscheduler(p, policy, param, false);
4083 }
4084 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4085 
4086 static int
4087 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4088 {
4089 	struct sched_param lparam;
4090 	struct task_struct *p;
4091 	int retval;
4092 
4093 	if (!param || pid < 0)
4094 		return -EINVAL;
4095 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4096 		return -EFAULT;
4097 
4098 	rcu_read_lock();
4099 	retval = -ESRCH;
4100 	p = find_process_by_pid(pid);
4101 	if (p != NULL)
4102 		retval = sched_setscheduler(p, policy, &lparam);
4103 	rcu_read_unlock();
4104 
4105 	return retval;
4106 }
4107 
4108 /*
4109  * Mimics kernel/events/core.c perf_copy_attr().
4110  */
4111 static int sched_copy_attr(struct sched_attr __user *uattr,
4112 			   struct sched_attr *attr)
4113 {
4114 	u32 size;
4115 	int ret;
4116 
4117 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4118 		return -EFAULT;
4119 
4120 	/*
4121 	 * zero the full structure, so that a short copy will be nice.
4122 	 */
4123 	memset(attr, 0, sizeof(*attr));
4124 
4125 	ret = get_user(size, &uattr->size);
4126 	if (ret)
4127 		return ret;
4128 
4129 	if (size > PAGE_SIZE)	/* silly large */
4130 		goto err_size;
4131 
4132 	if (!size)		/* abi compat */
4133 		size = SCHED_ATTR_SIZE_VER0;
4134 
4135 	if (size < SCHED_ATTR_SIZE_VER0)
4136 		goto err_size;
4137 
4138 	/*
4139 	 * If we're handed a bigger struct than we know of,
4140 	 * ensure all the unknown bits are 0 - i.e. new
4141 	 * user-space does not rely on any kernel feature
4142 	 * extensions we dont know about yet.
4143 	 */
4144 	if (size > sizeof(*attr)) {
4145 		unsigned char __user *addr;
4146 		unsigned char __user *end;
4147 		unsigned char val;
4148 
4149 		addr = (void __user *)uattr + sizeof(*attr);
4150 		end  = (void __user *)uattr + size;
4151 
4152 		for (; addr < end; addr++) {
4153 			ret = get_user(val, addr);
4154 			if (ret)
4155 				return ret;
4156 			if (val)
4157 				goto err_size;
4158 		}
4159 		size = sizeof(*attr);
4160 	}
4161 
4162 	ret = copy_from_user(attr, uattr, size);
4163 	if (ret)
4164 		return -EFAULT;
4165 
4166 	/*
4167 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4168 	 * to be strict and return an error on out-of-bounds values?
4169 	 */
4170 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4171 
4172 	return 0;
4173 
4174 err_size:
4175 	put_user(sizeof(*attr), &uattr->size);
4176 	return -E2BIG;
4177 }
4178 
4179 /**
4180  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4181  * @pid: the pid in question.
4182  * @policy: new policy.
4183  * @param: structure containing the new RT priority.
4184  *
4185  * Return: 0 on success. An error code otherwise.
4186  */
4187 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4188 		struct sched_param __user *, param)
4189 {
4190 	/* negative values for policy are not valid */
4191 	if (policy < 0)
4192 		return -EINVAL;
4193 
4194 	return do_sched_setscheduler(pid, policy, param);
4195 }
4196 
4197 /**
4198  * sys_sched_setparam - set/change the RT priority of a thread
4199  * @pid: the pid in question.
4200  * @param: structure containing the new RT priority.
4201  *
4202  * Return: 0 on success. An error code otherwise.
4203  */
4204 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4205 {
4206 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4207 }
4208 
4209 /**
4210  * sys_sched_setattr - same as above, but with extended sched_attr
4211  * @pid: the pid in question.
4212  * @uattr: structure containing the extended parameters.
4213  * @flags: for future extension.
4214  */
4215 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4216 			       unsigned int, flags)
4217 {
4218 	struct sched_attr attr;
4219 	struct task_struct *p;
4220 	int retval;
4221 
4222 	if (!uattr || pid < 0 || flags)
4223 		return -EINVAL;
4224 
4225 	retval = sched_copy_attr(uattr, &attr);
4226 	if (retval)
4227 		return retval;
4228 
4229 	if ((int)attr.sched_policy < 0)
4230 		return -EINVAL;
4231 
4232 	rcu_read_lock();
4233 	retval = -ESRCH;
4234 	p = find_process_by_pid(pid);
4235 	if (p != NULL)
4236 		retval = sched_setattr(p, &attr);
4237 	rcu_read_unlock();
4238 
4239 	return retval;
4240 }
4241 
4242 /**
4243  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4244  * @pid: the pid in question.
4245  *
4246  * Return: On success, the policy of the thread. Otherwise, a negative error
4247  * code.
4248  */
4249 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4250 {
4251 	struct task_struct *p;
4252 	int retval;
4253 
4254 	if (pid < 0)
4255 		return -EINVAL;
4256 
4257 	retval = -ESRCH;
4258 	rcu_read_lock();
4259 	p = find_process_by_pid(pid);
4260 	if (p) {
4261 		retval = security_task_getscheduler(p);
4262 		if (!retval)
4263 			retval = p->policy
4264 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4265 	}
4266 	rcu_read_unlock();
4267 	return retval;
4268 }
4269 
4270 /**
4271  * sys_sched_getparam - get the RT priority of a thread
4272  * @pid: the pid in question.
4273  * @param: structure containing the RT priority.
4274  *
4275  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4276  * code.
4277  */
4278 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4279 {
4280 	struct sched_param lp = { .sched_priority = 0 };
4281 	struct task_struct *p;
4282 	int retval;
4283 
4284 	if (!param || pid < 0)
4285 		return -EINVAL;
4286 
4287 	rcu_read_lock();
4288 	p = find_process_by_pid(pid);
4289 	retval = -ESRCH;
4290 	if (!p)
4291 		goto out_unlock;
4292 
4293 	retval = security_task_getscheduler(p);
4294 	if (retval)
4295 		goto out_unlock;
4296 
4297 	if (task_has_rt_policy(p))
4298 		lp.sched_priority = p->rt_priority;
4299 	rcu_read_unlock();
4300 
4301 	/*
4302 	 * This one might sleep, we cannot do it with a spinlock held ...
4303 	 */
4304 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4305 
4306 	return retval;
4307 
4308 out_unlock:
4309 	rcu_read_unlock();
4310 	return retval;
4311 }
4312 
4313 static int sched_read_attr(struct sched_attr __user *uattr,
4314 			   struct sched_attr *attr,
4315 			   unsigned int usize)
4316 {
4317 	int ret;
4318 
4319 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4320 		return -EFAULT;
4321 
4322 	/*
4323 	 * If we're handed a smaller struct than we know of,
4324 	 * ensure all the unknown bits are 0 - i.e. old
4325 	 * user-space does not get uncomplete information.
4326 	 */
4327 	if (usize < sizeof(*attr)) {
4328 		unsigned char *addr;
4329 		unsigned char *end;
4330 
4331 		addr = (void *)attr + usize;
4332 		end  = (void *)attr + sizeof(*attr);
4333 
4334 		for (; addr < end; addr++) {
4335 			if (*addr)
4336 				return -EFBIG;
4337 		}
4338 
4339 		attr->size = usize;
4340 	}
4341 
4342 	ret = copy_to_user(uattr, attr, attr->size);
4343 	if (ret)
4344 		return -EFAULT;
4345 
4346 	return 0;
4347 }
4348 
4349 /**
4350  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4351  * @pid: the pid in question.
4352  * @uattr: structure containing the extended parameters.
4353  * @size: sizeof(attr) for fwd/bwd comp.
4354  * @flags: for future extension.
4355  */
4356 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4357 		unsigned int, size, unsigned int, flags)
4358 {
4359 	struct sched_attr attr = {
4360 		.size = sizeof(struct sched_attr),
4361 	};
4362 	struct task_struct *p;
4363 	int retval;
4364 
4365 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4366 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4367 		return -EINVAL;
4368 
4369 	rcu_read_lock();
4370 	p = find_process_by_pid(pid);
4371 	retval = -ESRCH;
4372 	if (!p)
4373 		goto out_unlock;
4374 
4375 	retval = security_task_getscheduler(p);
4376 	if (retval)
4377 		goto out_unlock;
4378 
4379 	attr.sched_policy = p->policy;
4380 	if (p->sched_reset_on_fork)
4381 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4382 	if (task_has_dl_policy(p))
4383 		__getparam_dl(p, &attr);
4384 	else if (task_has_rt_policy(p))
4385 		attr.sched_priority = p->rt_priority;
4386 	else
4387 		attr.sched_nice = task_nice(p);
4388 
4389 	rcu_read_unlock();
4390 
4391 	retval = sched_read_attr(uattr, &attr, size);
4392 	return retval;
4393 
4394 out_unlock:
4395 	rcu_read_unlock();
4396 	return retval;
4397 }
4398 
4399 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4400 {
4401 	cpumask_var_t cpus_allowed, new_mask;
4402 	struct task_struct *p;
4403 	int retval;
4404 
4405 	rcu_read_lock();
4406 
4407 	p = find_process_by_pid(pid);
4408 	if (!p) {
4409 		rcu_read_unlock();
4410 		return -ESRCH;
4411 	}
4412 
4413 	/* Prevent p going away */
4414 	get_task_struct(p);
4415 	rcu_read_unlock();
4416 
4417 	if (p->flags & PF_NO_SETAFFINITY) {
4418 		retval = -EINVAL;
4419 		goto out_put_task;
4420 	}
4421 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4422 		retval = -ENOMEM;
4423 		goto out_put_task;
4424 	}
4425 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4426 		retval = -ENOMEM;
4427 		goto out_free_cpus_allowed;
4428 	}
4429 	retval = -EPERM;
4430 	if (!check_same_owner(p)) {
4431 		rcu_read_lock();
4432 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4433 			rcu_read_unlock();
4434 			goto out_free_new_mask;
4435 		}
4436 		rcu_read_unlock();
4437 	}
4438 
4439 	retval = security_task_setscheduler(p);
4440 	if (retval)
4441 		goto out_free_new_mask;
4442 
4443 
4444 	cpuset_cpus_allowed(p, cpus_allowed);
4445 	cpumask_and(new_mask, in_mask, cpus_allowed);
4446 
4447 	/*
4448 	 * Since bandwidth control happens on root_domain basis,
4449 	 * if admission test is enabled, we only admit -deadline
4450 	 * tasks allowed to run on all the CPUs in the task's
4451 	 * root_domain.
4452 	 */
4453 #ifdef CONFIG_SMP
4454 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4455 		rcu_read_lock();
4456 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4457 			retval = -EBUSY;
4458 			rcu_read_unlock();
4459 			goto out_free_new_mask;
4460 		}
4461 		rcu_read_unlock();
4462 	}
4463 #endif
4464 again:
4465 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4466 
4467 	if (!retval) {
4468 		cpuset_cpus_allowed(p, cpus_allowed);
4469 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4470 			/*
4471 			 * We must have raced with a concurrent cpuset
4472 			 * update. Just reset the cpus_allowed to the
4473 			 * cpuset's cpus_allowed
4474 			 */
4475 			cpumask_copy(new_mask, cpus_allowed);
4476 			goto again;
4477 		}
4478 	}
4479 out_free_new_mask:
4480 	free_cpumask_var(new_mask);
4481 out_free_cpus_allowed:
4482 	free_cpumask_var(cpus_allowed);
4483 out_put_task:
4484 	put_task_struct(p);
4485 	return retval;
4486 }
4487 
4488 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4489 			     struct cpumask *new_mask)
4490 {
4491 	if (len < cpumask_size())
4492 		cpumask_clear(new_mask);
4493 	else if (len > cpumask_size())
4494 		len = cpumask_size();
4495 
4496 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4497 }
4498 
4499 /**
4500  * sys_sched_setaffinity - set the cpu affinity of a process
4501  * @pid: pid of the process
4502  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4503  * @user_mask_ptr: user-space pointer to the new cpu mask
4504  *
4505  * Return: 0 on success. An error code otherwise.
4506  */
4507 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4508 		unsigned long __user *, user_mask_ptr)
4509 {
4510 	cpumask_var_t new_mask;
4511 	int retval;
4512 
4513 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4514 		return -ENOMEM;
4515 
4516 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4517 	if (retval == 0)
4518 		retval = sched_setaffinity(pid, new_mask);
4519 	free_cpumask_var(new_mask);
4520 	return retval;
4521 }
4522 
4523 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4524 {
4525 	struct task_struct *p;
4526 	unsigned long flags;
4527 	int retval;
4528 
4529 	rcu_read_lock();
4530 
4531 	retval = -ESRCH;
4532 	p = find_process_by_pid(pid);
4533 	if (!p)
4534 		goto out_unlock;
4535 
4536 	retval = security_task_getscheduler(p);
4537 	if (retval)
4538 		goto out_unlock;
4539 
4540 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4541 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4542 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4543 
4544 out_unlock:
4545 	rcu_read_unlock();
4546 
4547 	return retval;
4548 }
4549 
4550 /**
4551  * sys_sched_getaffinity - get the cpu affinity of a process
4552  * @pid: pid of the process
4553  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4554  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4555  *
4556  * Return: 0 on success. An error code otherwise.
4557  */
4558 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4559 		unsigned long __user *, user_mask_ptr)
4560 {
4561 	int ret;
4562 	cpumask_var_t mask;
4563 
4564 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4565 		return -EINVAL;
4566 	if (len & (sizeof(unsigned long)-1))
4567 		return -EINVAL;
4568 
4569 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4570 		return -ENOMEM;
4571 
4572 	ret = sched_getaffinity(pid, mask);
4573 	if (ret == 0) {
4574 		size_t retlen = min_t(size_t, len, cpumask_size());
4575 
4576 		if (copy_to_user(user_mask_ptr, mask, retlen))
4577 			ret = -EFAULT;
4578 		else
4579 			ret = retlen;
4580 	}
4581 	free_cpumask_var(mask);
4582 
4583 	return ret;
4584 }
4585 
4586 /**
4587  * sys_sched_yield - yield the current processor to other threads.
4588  *
4589  * This function yields the current CPU to other tasks. If there are no
4590  * other threads running on this CPU then this function will return.
4591  *
4592  * Return: 0.
4593  */
4594 SYSCALL_DEFINE0(sched_yield)
4595 {
4596 	struct rq *rq = this_rq_lock();
4597 
4598 	schedstat_inc(rq, yld_count);
4599 	current->sched_class->yield_task(rq);
4600 
4601 	/*
4602 	 * Since we are going to call schedule() anyway, there's
4603 	 * no need to preempt or enable interrupts:
4604 	 */
4605 	__release(rq->lock);
4606 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4607 	do_raw_spin_unlock(&rq->lock);
4608 	sched_preempt_enable_no_resched();
4609 
4610 	schedule();
4611 
4612 	return 0;
4613 }
4614 
4615 int __sched _cond_resched(void)
4616 {
4617 	if (should_resched(0)) {
4618 		preempt_schedule_common();
4619 		return 1;
4620 	}
4621 	return 0;
4622 }
4623 EXPORT_SYMBOL(_cond_resched);
4624 
4625 /*
4626  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4627  * call schedule, and on return reacquire the lock.
4628  *
4629  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4630  * operations here to prevent schedule() from being called twice (once via
4631  * spin_unlock(), once by hand).
4632  */
4633 int __cond_resched_lock(spinlock_t *lock)
4634 {
4635 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4636 	int ret = 0;
4637 
4638 	lockdep_assert_held(lock);
4639 
4640 	if (spin_needbreak(lock) || resched) {
4641 		spin_unlock(lock);
4642 		if (resched)
4643 			preempt_schedule_common();
4644 		else
4645 			cpu_relax();
4646 		ret = 1;
4647 		spin_lock(lock);
4648 	}
4649 	return ret;
4650 }
4651 EXPORT_SYMBOL(__cond_resched_lock);
4652 
4653 int __sched __cond_resched_softirq(void)
4654 {
4655 	BUG_ON(!in_softirq());
4656 
4657 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4658 		local_bh_enable();
4659 		preempt_schedule_common();
4660 		local_bh_disable();
4661 		return 1;
4662 	}
4663 	return 0;
4664 }
4665 EXPORT_SYMBOL(__cond_resched_softirq);
4666 
4667 /**
4668  * yield - yield the current processor to other threads.
4669  *
4670  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4671  *
4672  * The scheduler is at all times free to pick the calling task as the most
4673  * eligible task to run, if removing the yield() call from your code breaks
4674  * it, its already broken.
4675  *
4676  * Typical broken usage is:
4677  *
4678  * while (!event)
4679  * 	yield();
4680  *
4681  * where one assumes that yield() will let 'the other' process run that will
4682  * make event true. If the current task is a SCHED_FIFO task that will never
4683  * happen. Never use yield() as a progress guarantee!!
4684  *
4685  * If you want to use yield() to wait for something, use wait_event().
4686  * If you want to use yield() to be 'nice' for others, use cond_resched().
4687  * If you still want to use yield(), do not!
4688  */
4689 void __sched yield(void)
4690 {
4691 	set_current_state(TASK_RUNNING);
4692 	sys_sched_yield();
4693 }
4694 EXPORT_SYMBOL(yield);
4695 
4696 /**
4697  * yield_to - yield the current processor to another thread in
4698  * your thread group, or accelerate that thread toward the
4699  * processor it's on.
4700  * @p: target task
4701  * @preempt: whether task preemption is allowed or not
4702  *
4703  * It's the caller's job to ensure that the target task struct
4704  * can't go away on us before we can do any checks.
4705  *
4706  * Return:
4707  *	true (>0) if we indeed boosted the target task.
4708  *	false (0) if we failed to boost the target.
4709  *	-ESRCH if there's no task to yield to.
4710  */
4711 int __sched yield_to(struct task_struct *p, bool preempt)
4712 {
4713 	struct task_struct *curr = current;
4714 	struct rq *rq, *p_rq;
4715 	unsigned long flags;
4716 	int yielded = 0;
4717 
4718 	local_irq_save(flags);
4719 	rq = this_rq();
4720 
4721 again:
4722 	p_rq = task_rq(p);
4723 	/*
4724 	 * If we're the only runnable task on the rq and target rq also
4725 	 * has only one task, there's absolutely no point in yielding.
4726 	 */
4727 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4728 		yielded = -ESRCH;
4729 		goto out_irq;
4730 	}
4731 
4732 	double_rq_lock(rq, p_rq);
4733 	if (task_rq(p) != p_rq) {
4734 		double_rq_unlock(rq, p_rq);
4735 		goto again;
4736 	}
4737 
4738 	if (!curr->sched_class->yield_to_task)
4739 		goto out_unlock;
4740 
4741 	if (curr->sched_class != p->sched_class)
4742 		goto out_unlock;
4743 
4744 	if (task_running(p_rq, p) || p->state)
4745 		goto out_unlock;
4746 
4747 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4748 	if (yielded) {
4749 		schedstat_inc(rq, yld_count);
4750 		/*
4751 		 * Make p's CPU reschedule; pick_next_entity takes care of
4752 		 * fairness.
4753 		 */
4754 		if (preempt && rq != p_rq)
4755 			resched_curr(p_rq);
4756 	}
4757 
4758 out_unlock:
4759 	double_rq_unlock(rq, p_rq);
4760 out_irq:
4761 	local_irq_restore(flags);
4762 
4763 	if (yielded > 0)
4764 		schedule();
4765 
4766 	return yielded;
4767 }
4768 EXPORT_SYMBOL_GPL(yield_to);
4769 
4770 /*
4771  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4772  * that process accounting knows that this is a task in IO wait state.
4773  */
4774 long __sched io_schedule_timeout(long timeout)
4775 {
4776 	int old_iowait = current->in_iowait;
4777 	struct rq *rq;
4778 	long ret;
4779 
4780 	current->in_iowait = 1;
4781 	blk_schedule_flush_plug(current);
4782 
4783 	delayacct_blkio_start();
4784 	rq = raw_rq();
4785 	atomic_inc(&rq->nr_iowait);
4786 	ret = schedule_timeout(timeout);
4787 	current->in_iowait = old_iowait;
4788 	atomic_dec(&rq->nr_iowait);
4789 	delayacct_blkio_end();
4790 
4791 	return ret;
4792 }
4793 EXPORT_SYMBOL(io_schedule_timeout);
4794 
4795 /**
4796  * sys_sched_get_priority_max - return maximum RT priority.
4797  * @policy: scheduling class.
4798  *
4799  * Return: On success, this syscall returns the maximum
4800  * rt_priority that can be used by a given scheduling class.
4801  * On failure, a negative error code is returned.
4802  */
4803 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4804 {
4805 	int ret = -EINVAL;
4806 
4807 	switch (policy) {
4808 	case SCHED_FIFO:
4809 	case SCHED_RR:
4810 		ret = MAX_USER_RT_PRIO-1;
4811 		break;
4812 	case SCHED_DEADLINE:
4813 	case SCHED_NORMAL:
4814 	case SCHED_BATCH:
4815 	case SCHED_IDLE:
4816 		ret = 0;
4817 		break;
4818 	}
4819 	return ret;
4820 }
4821 
4822 /**
4823  * sys_sched_get_priority_min - return minimum RT priority.
4824  * @policy: scheduling class.
4825  *
4826  * Return: On success, this syscall returns the minimum
4827  * rt_priority that can be used by a given scheduling class.
4828  * On failure, a negative error code is returned.
4829  */
4830 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4831 {
4832 	int ret = -EINVAL;
4833 
4834 	switch (policy) {
4835 	case SCHED_FIFO:
4836 	case SCHED_RR:
4837 		ret = 1;
4838 		break;
4839 	case SCHED_DEADLINE:
4840 	case SCHED_NORMAL:
4841 	case SCHED_BATCH:
4842 	case SCHED_IDLE:
4843 		ret = 0;
4844 	}
4845 	return ret;
4846 }
4847 
4848 /**
4849  * sys_sched_rr_get_interval - return the default timeslice of a process.
4850  * @pid: pid of the process.
4851  * @interval: userspace pointer to the timeslice value.
4852  *
4853  * this syscall writes the default timeslice value of a given process
4854  * into the user-space timespec buffer. A value of '0' means infinity.
4855  *
4856  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4857  * an error code.
4858  */
4859 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4860 		struct timespec __user *, interval)
4861 {
4862 	struct task_struct *p;
4863 	unsigned int time_slice;
4864 	unsigned long flags;
4865 	struct rq *rq;
4866 	int retval;
4867 	struct timespec t;
4868 
4869 	if (pid < 0)
4870 		return -EINVAL;
4871 
4872 	retval = -ESRCH;
4873 	rcu_read_lock();
4874 	p = find_process_by_pid(pid);
4875 	if (!p)
4876 		goto out_unlock;
4877 
4878 	retval = security_task_getscheduler(p);
4879 	if (retval)
4880 		goto out_unlock;
4881 
4882 	rq = task_rq_lock(p, &flags);
4883 	time_slice = 0;
4884 	if (p->sched_class->get_rr_interval)
4885 		time_slice = p->sched_class->get_rr_interval(rq, p);
4886 	task_rq_unlock(rq, p, &flags);
4887 
4888 	rcu_read_unlock();
4889 	jiffies_to_timespec(time_slice, &t);
4890 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4891 	return retval;
4892 
4893 out_unlock:
4894 	rcu_read_unlock();
4895 	return retval;
4896 }
4897 
4898 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4899 
4900 void sched_show_task(struct task_struct *p)
4901 {
4902 	unsigned long free = 0;
4903 	int ppid;
4904 	unsigned long state = p->state;
4905 
4906 	if (state)
4907 		state = __ffs(state) + 1;
4908 	printk(KERN_INFO "%-15.15s %c", p->comm,
4909 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4910 #if BITS_PER_LONG == 32
4911 	if (state == TASK_RUNNING)
4912 		printk(KERN_CONT " running  ");
4913 	else
4914 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4915 #else
4916 	if (state == TASK_RUNNING)
4917 		printk(KERN_CONT "  running task    ");
4918 	else
4919 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4920 #endif
4921 #ifdef CONFIG_DEBUG_STACK_USAGE
4922 	free = stack_not_used(p);
4923 #endif
4924 	ppid = 0;
4925 	rcu_read_lock();
4926 	if (pid_alive(p))
4927 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4928 	rcu_read_unlock();
4929 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4930 		task_pid_nr(p), ppid,
4931 		(unsigned long)task_thread_info(p)->flags);
4932 
4933 	print_worker_info(KERN_INFO, p);
4934 	show_stack(p, NULL);
4935 }
4936 
4937 void show_state_filter(unsigned long state_filter)
4938 {
4939 	struct task_struct *g, *p;
4940 
4941 #if BITS_PER_LONG == 32
4942 	printk(KERN_INFO
4943 		"  task                PC stack   pid father\n");
4944 #else
4945 	printk(KERN_INFO
4946 		"  task                        PC stack   pid father\n");
4947 #endif
4948 	rcu_read_lock();
4949 	for_each_process_thread(g, p) {
4950 		/*
4951 		 * reset the NMI-timeout, listing all files on a slow
4952 		 * console might take a lot of time:
4953 		 */
4954 		touch_nmi_watchdog();
4955 		if (!state_filter || (p->state & state_filter))
4956 			sched_show_task(p);
4957 	}
4958 
4959 	touch_all_softlockup_watchdogs();
4960 
4961 #ifdef CONFIG_SCHED_DEBUG
4962 	sysrq_sched_debug_show();
4963 #endif
4964 	rcu_read_unlock();
4965 	/*
4966 	 * Only show locks if all tasks are dumped:
4967 	 */
4968 	if (!state_filter)
4969 		debug_show_all_locks();
4970 }
4971 
4972 void init_idle_bootup_task(struct task_struct *idle)
4973 {
4974 	idle->sched_class = &idle_sched_class;
4975 }
4976 
4977 /**
4978  * init_idle - set up an idle thread for a given CPU
4979  * @idle: task in question
4980  * @cpu: cpu the idle task belongs to
4981  *
4982  * NOTE: this function does not set the idle thread's NEED_RESCHED
4983  * flag, to make booting more robust.
4984  */
4985 void init_idle(struct task_struct *idle, int cpu)
4986 {
4987 	struct rq *rq = cpu_rq(cpu);
4988 	unsigned long flags;
4989 
4990 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4991 	raw_spin_lock(&rq->lock);
4992 
4993 	__sched_fork(0, idle);
4994 	idle->state = TASK_RUNNING;
4995 	idle->se.exec_start = sched_clock();
4996 
4997 #ifdef CONFIG_SMP
4998 	/*
4999 	 * Its possible that init_idle() gets called multiple times on a task,
5000 	 * in that case do_set_cpus_allowed() will not do the right thing.
5001 	 *
5002 	 * And since this is boot we can forgo the serialization.
5003 	 */
5004 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5005 #endif
5006 	/*
5007 	 * We're having a chicken and egg problem, even though we are
5008 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5009 	 * lockdep check in task_group() will fail.
5010 	 *
5011 	 * Similar case to sched_fork(). / Alternatively we could
5012 	 * use task_rq_lock() here and obtain the other rq->lock.
5013 	 *
5014 	 * Silence PROVE_RCU
5015 	 */
5016 	rcu_read_lock();
5017 	__set_task_cpu(idle, cpu);
5018 	rcu_read_unlock();
5019 
5020 	rq->curr = rq->idle = idle;
5021 	idle->on_rq = TASK_ON_RQ_QUEUED;
5022 #ifdef CONFIG_SMP
5023 	idle->on_cpu = 1;
5024 #endif
5025 	raw_spin_unlock(&rq->lock);
5026 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5027 
5028 	/* Set the preempt count _outside_ the spinlocks! */
5029 	init_idle_preempt_count(idle, cpu);
5030 
5031 	/*
5032 	 * The idle tasks have their own, simple scheduling class:
5033 	 */
5034 	idle->sched_class = &idle_sched_class;
5035 	ftrace_graph_init_idle_task(idle, cpu);
5036 	vtime_init_idle(idle, cpu);
5037 #ifdef CONFIG_SMP
5038 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5039 #endif
5040 }
5041 
5042 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5043 			      const struct cpumask *trial)
5044 {
5045 	int ret = 1, trial_cpus;
5046 	struct dl_bw *cur_dl_b;
5047 	unsigned long flags;
5048 
5049 	if (!cpumask_weight(cur))
5050 		return ret;
5051 
5052 	rcu_read_lock_sched();
5053 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5054 	trial_cpus = cpumask_weight(trial);
5055 
5056 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5057 	if (cur_dl_b->bw != -1 &&
5058 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5059 		ret = 0;
5060 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5061 	rcu_read_unlock_sched();
5062 
5063 	return ret;
5064 }
5065 
5066 int task_can_attach(struct task_struct *p,
5067 		    const struct cpumask *cs_cpus_allowed)
5068 {
5069 	int ret = 0;
5070 
5071 	/*
5072 	 * Kthreads which disallow setaffinity shouldn't be moved
5073 	 * to a new cpuset; we don't want to change their cpu
5074 	 * affinity and isolating such threads by their set of
5075 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5076 	 * applicable for such threads.  This prevents checking for
5077 	 * success of set_cpus_allowed_ptr() on all attached tasks
5078 	 * before cpus_allowed may be changed.
5079 	 */
5080 	if (p->flags & PF_NO_SETAFFINITY) {
5081 		ret = -EINVAL;
5082 		goto out;
5083 	}
5084 
5085 #ifdef CONFIG_SMP
5086 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5087 					      cs_cpus_allowed)) {
5088 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5089 							cs_cpus_allowed);
5090 		struct dl_bw *dl_b;
5091 		bool overflow;
5092 		int cpus;
5093 		unsigned long flags;
5094 
5095 		rcu_read_lock_sched();
5096 		dl_b = dl_bw_of(dest_cpu);
5097 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5098 		cpus = dl_bw_cpus(dest_cpu);
5099 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5100 		if (overflow)
5101 			ret = -EBUSY;
5102 		else {
5103 			/*
5104 			 * We reserve space for this task in the destination
5105 			 * root_domain, as we can't fail after this point.
5106 			 * We will free resources in the source root_domain
5107 			 * later on (see set_cpus_allowed_dl()).
5108 			 */
5109 			__dl_add(dl_b, p->dl.dl_bw);
5110 		}
5111 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5112 		rcu_read_unlock_sched();
5113 
5114 	}
5115 #endif
5116 out:
5117 	return ret;
5118 }
5119 
5120 #ifdef CONFIG_SMP
5121 
5122 #ifdef CONFIG_NUMA_BALANCING
5123 /* Migrate current task p to target_cpu */
5124 int migrate_task_to(struct task_struct *p, int target_cpu)
5125 {
5126 	struct migration_arg arg = { p, target_cpu };
5127 	int curr_cpu = task_cpu(p);
5128 
5129 	if (curr_cpu == target_cpu)
5130 		return 0;
5131 
5132 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5133 		return -EINVAL;
5134 
5135 	/* TODO: This is not properly updating schedstats */
5136 
5137 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5138 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5139 }
5140 
5141 /*
5142  * Requeue a task on a given node and accurately track the number of NUMA
5143  * tasks on the runqueues
5144  */
5145 void sched_setnuma(struct task_struct *p, int nid)
5146 {
5147 	struct rq *rq;
5148 	unsigned long flags;
5149 	bool queued, running;
5150 
5151 	rq = task_rq_lock(p, &flags);
5152 	queued = task_on_rq_queued(p);
5153 	running = task_current(rq, p);
5154 
5155 	if (queued)
5156 		dequeue_task(rq, p, DEQUEUE_SAVE);
5157 	if (running)
5158 		put_prev_task(rq, p);
5159 
5160 	p->numa_preferred_nid = nid;
5161 
5162 	if (running)
5163 		p->sched_class->set_curr_task(rq);
5164 	if (queued)
5165 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5166 	task_rq_unlock(rq, p, &flags);
5167 }
5168 #endif /* CONFIG_NUMA_BALANCING */
5169 
5170 #ifdef CONFIG_HOTPLUG_CPU
5171 /*
5172  * Ensures that the idle task is using init_mm right before its cpu goes
5173  * offline.
5174  */
5175 void idle_task_exit(void)
5176 {
5177 	struct mm_struct *mm = current->active_mm;
5178 
5179 	BUG_ON(cpu_online(smp_processor_id()));
5180 
5181 	if (mm != &init_mm) {
5182 		switch_mm(mm, &init_mm, current);
5183 		finish_arch_post_lock_switch();
5184 	}
5185 	mmdrop(mm);
5186 }
5187 
5188 /*
5189  * Since this CPU is going 'away' for a while, fold any nr_active delta
5190  * we might have. Assumes we're called after migrate_tasks() so that the
5191  * nr_active count is stable.
5192  *
5193  * Also see the comment "Global load-average calculations".
5194  */
5195 static void calc_load_migrate(struct rq *rq)
5196 {
5197 	long delta = calc_load_fold_active(rq);
5198 	if (delta)
5199 		atomic_long_add(delta, &calc_load_tasks);
5200 }
5201 
5202 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5203 {
5204 }
5205 
5206 static const struct sched_class fake_sched_class = {
5207 	.put_prev_task = put_prev_task_fake,
5208 };
5209 
5210 static struct task_struct fake_task = {
5211 	/*
5212 	 * Avoid pull_{rt,dl}_task()
5213 	 */
5214 	.prio = MAX_PRIO + 1,
5215 	.sched_class = &fake_sched_class,
5216 };
5217 
5218 /*
5219  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5220  * try_to_wake_up()->select_task_rq().
5221  *
5222  * Called with rq->lock held even though we'er in stop_machine() and
5223  * there's no concurrency possible, we hold the required locks anyway
5224  * because of lock validation efforts.
5225  */
5226 static void migrate_tasks(struct rq *dead_rq)
5227 {
5228 	struct rq *rq = dead_rq;
5229 	struct task_struct *next, *stop = rq->stop;
5230 	int dest_cpu;
5231 
5232 	/*
5233 	 * Fudge the rq selection such that the below task selection loop
5234 	 * doesn't get stuck on the currently eligible stop task.
5235 	 *
5236 	 * We're currently inside stop_machine() and the rq is either stuck
5237 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5238 	 * either way we should never end up calling schedule() until we're
5239 	 * done here.
5240 	 */
5241 	rq->stop = NULL;
5242 
5243 	/*
5244 	 * put_prev_task() and pick_next_task() sched
5245 	 * class method both need to have an up-to-date
5246 	 * value of rq->clock[_task]
5247 	 */
5248 	update_rq_clock(rq);
5249 
5250 	for (;;) {
5251 		/*
5252 		 * There's this thread running, bail when that's the only
5253 		 * remaining thread.
5254 		 */
5255 		if (rq->nr_running == 1)
5256 			break;
5257 
5258 		/*
5259 		 * pick_next_task assumes pinned rq->lock.
5260 		 */
5261 		lockdep_pin_lock(&rq->lock);
5262 		next = pick_next_task(rq, &fake_task);
5263 		BUG_ON(!next);
5264 		next->sched_class->put_prev_task(rq, next);
5265 
5266 		/*
5267 		 * Rules for changing task_struct::cpus_allowed are holding
5268 		 * both pi_lock and rq->lock, such that holding either
5269 		 * stabilizes the mask.
5270 		 *
5271 		 * Drop rq->lock is not quite as disastrous as it usually is
5272 		 * because !cpu_active at this point, which means load-balance
5273 		 * will not interfere. Also, stop-machine.
5274 		 */
5275 		lockdep_unpin_lock(&rq->lock);
5276 		raw_spin_unlock(&rq->lock);
5277 		raw_spin_lock(&next->pi_lock);
5278 		raw_spin_lock(&rq->lock);
5279 
5280 		/*
5281 		 * Since we're inside stop-machine, _nothing_ should have
5282 		 * changed the task, WARN if weird stuff happened, because in
5283 		 * that case the above rq->lock drop is a fail too.
5284 		 */
5285 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5286 			raw_spin_unlock(&next->pi_lock);
5287 			continue;
5288 		}
5289 
5290 		/* Find suitable destination for @next, with force if needed. */
5291 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5292 
5293 		rq = __migrate_task(rq, next, dest_cpu);
5294 		if (rq != dead_rq) {
5295 			raw_spin_unlock(&rq->lock);
5296 			rq = dead_rq;
5297 			raw_spin_lock(&rq->lock);
5298 		}
5299 		raw_spin_unlock(&next->pi_lock);
5300 	}
5301 
5302 	rq->stop = stop;
5303 }
5304 #endif /* CONFIG_HOTPLUG_CPU */
5305 
5306 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5307 
5308 static struct ctl_table sd_ctl_dir[] = {
5309 	{
5310 		.procname	= "sched_domain",
5311 		.mode		= 0555,
5312 	},
5313 	{}
5314 };
5315 
5316 static struct ctl_table sd_ctl_root[] = {
5317 	{
5318 		.procname	= "kernel",
5319 		.mode		= 0555,
5320 		.child		= sd_ctl_dir,
5321 	},
5322 	{}
5323 };
5324 
5325 static struct ctl_table *sd_alloc_ctl_entry(int n)
5326 {
5327 	struct ctl_table *entry =
5328 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5329 
5330 	return entry;
5331 }
5332 
5333 static void sd_free_ctl_entry(struct ctl_table **tablep)
5334 {
5335 	struct ctl_table *entry;
5336 
5337 	/*
5338 	 * In the intermediate directories, both the child directory and
5339 	 * procname are dynamically allocated and could fail but the mode
5340 	 * will always be set. In the lowest directory the names are
5341 	 * static strings and all have proc handlers.
5342 	 */
5343 	for (entry = *tablep; entry->mode; entry++) {
5344 		if (entry->child)
5345 			sd_free_ctl_entry(&entry->child);
5346 		if (entry->proc_handler == NULL)
5347 			kfree(entry->procname);
5348 	}
5349 
5350 	kfree(*tablep);
5351 	*tablep = NULL;
5352 }
5353 
5354 static int min_load_idx = 0;
5355 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5356 
5357 static void
5358 set_table_entry(struct ctl_table *entry,
5359 		const char *procname, void *data, int maxlen,
5360 		umode_t mode, proc_handler *proc_handler,
5361 		bool load_idx)
5362 {
5363 	entry->procname = procname;
5364 	entry->data = data;
5365 	entry->maxlen = maxlen;
5366 	entry->mode = mode;
5367 	entry->proc_handler = proc_handler;
5368 
5369 	if (load_idx) {
5370 		entry->extra1 = &min_load_idx;
5371 		entry->extra2 = &max_load_idx;
5372 	}
5373 }
5374 
5375 static struct ctl_table *
5376 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5377 {
5378 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5379 
5380 	if (table == NULL)
5381 		return NULL;
5382 
5383 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5384 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5385 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5386 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5387 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5388 		sizeof(int), 0644, proc_dointvec_minmax, true);
5389 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5390 		sizeof(int), 0644, proc_dointvec_minmax, true);
5391 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5392 		sizeof(int), 0644, proc_dointvec_minmax, true);
5393 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5394 		sizeof(int), 0644, proc_dointvec_minmax, true);
5395 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5396 		sizeof(int), 0644, proc_dointvec_minmax, true);
5397 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5398 		sizeof(int), 0644, proc_dointvec_minmax, false);
5399 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5400 		sizeof(int), 0644, proc_dointvec_minmax, false);
5401 	set_table_entry(&table[9], "cache_nice_tries",
5402 		&sd->cache_nice_tries,
5403 		sizeof(int), 0644, proc_dointvec_minmax, false);
5404 	set_table_entry(&table[10], "flags", &sd->flags,
5405 		sizeof(int), 0644, proc_dointvec_minmax, false);
5406 	set_table_entry(&table[11], "max_newidle_lb_cost",
5407 		&sd->max_newidle_lb_cost,
5408 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5409 	set_table_entry(&table[12], "name", sd->name,
5410 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5411 	/* &table[13] is terminator */
5412 
5413 	return table;
5414 }
5415 
5416 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5417 {
5418 	struct ctl_table *entry, *table;
5419 	struct sched_domain *sd;
5420 	int domain_num = 0, i;
5421 	char buf[32];
5422 
5423 	for_each_domain(cpu, sd)
5424 		domain_num++;
5425 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5426 	if (table == NULL)
5427 		return NULL;
5428 
5429 	i = 0;
5430 	for_each_domain(cpu, sd) {
5431 		snprintf(buf, 32, "domain%d", i);
5432 		entry->procname = kstrdup(buf, GFP_KERNEL);
5433 		entry->mode = 0555;
5434 		entry->child = sd_alloc_ctl_domain_table(sd);
5435 		entry++;
5436 		i++;
5437 	}
5438 	return table;
5439 }
5440 
5441 static struct ctl_table_header *sd_sysctl_header;
5442 static void register_sched_domain_sysctl(void)
5443 {
5444 	int i, cpu_num = num_possible_cpus();
5445 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5446 	char buf[32];
5447 
5448 	WARN_ON(sd_ctl_dir[0].child);
5449 	sd_ctl_dir[0].child = entry;
5450 
5451 	if (entry == NULL)
5452 		return;
5453 
5454 	for_each_possible_cpu(i) {
5455 		snprintf(buf, 32, "cpu%d", i);
5456 		entry->procname = kstrdup(buf, GFP_KERNEL);
5457 		entry->mode = 0555;
5458 		entry->child = sd_alloc_ctl_cpu_table(i);
5459 		entry++;
5460 	}
5461 
5462 	WARN_ON(sd_sysctl_header);
5463 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5464 }
5465 
5466 /* may be called multiple times per register */
5467 static void unregister_sched_domain_sysctl(void)
5468 {
5469 	unregister_sysctl_table(sd_sysctl_header);
5470 	sd_sysctl_header = NULL;
5471 	if (sd_ctl_dir[0].child)
5472 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5473 }
5474 #else
5475 static void register_sched_domain_sysctl(void)
5476 {
5477 }
5478 static void unregister_sched_domain_sysctl(void)
5479 {
5480 }
5481 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5482 
5483 static void set_rq_online(struct rq *rq)
5484 {
5485 	if (!rq->online) {
5486 		const struct sched_class *class;
5487 
5488 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5489 		rq->online = 1;
5490 
5491 		for_each_class(class) {
5492 			if (class->rq_online)
5493 				class->rq_online(rq);
5494 		}
5495 	}
5496 }
5497 
5498 static void set_rq_offline(struct rq *rq)
5499 {
5500 	if (rq->online) {
5501 		const struct sched_class *class;
5502 
5503 		for_each_class(class) {
5504 			if (class->rq_offline)
5505 				class->rq_offline(rq);
5506 		}
5507 
5508 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5509 		rq->online = 0;
5510 	}
5511 }
5512 
5513 /*
5514  * migration_call - callback that gets triggered when a CPU is added.
5515  * Here we can start up the necessary migration thread for the new CPU.
5516  */
5517 static int
5518 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5519 {
5520 	int cpu = (long)hcpu;
5521 	unsigned long flags;
5522 	struct rq *rq = cpu_rq(cpu);
5523 
5524 	switch (action & ~CPU_TASKS_FROZEN) {
5525 
5526 	case CPU_UP_PREPARE:
5527 		rq->calc_load_update = calc_load_update;
5528 		break;
5529 
5530 	case CPU_ONLINE:
5531 		/* Update our root-domain */
5532 		raw_spin_lock_irqsave(&rq->lock, flags);
5533 		if (rq->rd) {
5534 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5535 
5536 			set_rq_online(rq);
5537 		}
5538 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5539 		break;
5540 
5541 #ifdef CONFIG_HOTPLUG_CPU
5542 	case CPU_DYING:
5543 		sched_ttwu_pending();
5544 		/* Update our root-domain */
5545 		raw_spin_lock_irqsave(&rq->lock, flags);
5546 		if (rq->rd) {
5547 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5548 			set_rq_offline(rq);
5549 		}
5550 		migrate_tasks(rq);
5551 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5552 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5553 		break;
5554 
5555 	case CPU_DEAD:
5556 		calc_load_migrate(rq);
5557 		break;
5558 #endif
5559 	}
5560 
5561 	update_max_interval();
5562 
5563 	return NOTIFY_OK;
5564 }
5565 
5566 /*
5567  * Register at high priority so that task migration (migrate_all_tasks)
5568  * happens before everything else.  This has to be lower priority than
5569  * the notifier in the perf_event subsystem, though.
5570  */
5571 static struct notifier_block migration_notifier = {
5572 	.notifier_call = migration_call,
5573 	.priority = CPU_PRI_MIGRATION,
5574 };
5575 
5576 static void set_cpu_rq_start_time(void)
5577 {
5578 	int cpu = smp_processor_id();
5579 	struct rq *rq = cpu_rq(cpu);
5580 	rq->age_stamp = sched_clock_cpu(cpu);
5581 }
5582 
5583 static int sched_cpu_active(struct notifier_block *nfb,
5584 				      unsigned long action, void *hcpu)
5585 {
5586 	int cpu = (long)hcpu;
5587 
5588 	switch (action & ~CPU_TASKS_FROZEN) {
5589 	case CPU_STARTING:
5590 		set_cpu_rq_start_time();
5591 		return NOTIFY_OK;
5592 
5593 	case CPU_ONLINE:
5594 		/*
5595 		 * At this point a starting CPU has marked itself as online via
5596 		 * set_cpu_online(). But it might not yet have marked itself
5597 		 * as active, which is essential from here on.
5598 		 */
5599 		set_cpu_active(cpu, true);
5600 		stop_machine_unpark(cpu);
5601 		return NOTIFY_OK;
5602 
5603 	case CPU_DOWN_FAILED:
5604 		set_cpu_active(cpu, true);
5605 		return NOTIFY_OK;
5606 
5607 	default:
5608 		return NOTIFY_DONE;
5609 	}
5610 }
5611 
5612 static int sched_cpu_inactive(struct notifier_block *nfb,
5613 					unsigned long action, void *hcpu)
5614 {
5615 	switch (action & ~CPU_TASKS_FROZEN) {
5616 	case CPU_DOWN_PREPARE:
5617 		set_cpu_active((long)hcpu, false);
5618 		return NOTIFY_OK;
5619 	default:
5620 		return NOTIFY_DONE;
5621 	}
5622 }
5623 
5624 static int __init migration_init(void)
5625 {
5626 	void *cpu = (void *)(long)smp_processor_id();
5627 	int err;
5628 
5629 	/* Initialize migration for the boot CPU */
5630 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5631 	BUG_ON(err == NOTIFY_BAD);
5632 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5633 	register_cpu_notifier(&migration_notifier);
5634 
5635 	/* Register cpu active notifiers */
5636 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5637 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5638 
5639 	return 0;
5640 }
5641 early_initcall(migration_init);
5642 
5643 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5644 
5645 #ifdef CONFIG_SCHED_DEBUG
5646 
5647 static __read_mostly int sched_debug_enabled;
5648 
5649 static int __init sched_debug_setup(char *str)
5650 {
5651 	sched_debug_enabled = 1;
5652 
5653 	return 0;
5654 }
5655 early_param("sched_debug", sched_debug_setup);
5656 
5657 static inline bool sched_debug(void)
5658 {
5659 	return sched_debug_enabled;
5660 }
5661 
5662 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5663 				  struct cpumask *groupmask)
5664 {
5665 	struct sched_group *group = sd->groups;
5666 
5667 	cpumask_clear(groupmask);
5668 
5669 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5670 
5671 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5672 		printk("does not load-balance\n");
5673 		if (sd->parent)
5674 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5675 					" has parent");
5676 		return -1;
5677 	}
5678 
5679 	printk(KERN_CONT "span %*pbl level %s\n",
5680 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5681 
5682 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5683 		printk(KERN_ERR "ERROR: domain->span does not contain "
5684 				"CPU%d\n", cpu);
5685 	}
5686 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5687 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5688 				" CPU%d\n", cpu);
5689 	}
5690 
5691 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5692 	do {
5693 		if (!group) {
5694 			printk("\n");
5695 			printk(KERN_ERR "ERROR: group is NULL\n");
5696 			break;
5697 		}
5698 
5699 		if (!cpumask_weight(sched_group_cpus(group))) {
5700 			printk(KERN_CONT "\n");
5701 			printk(KERN_ERR "ERROR: empty group\n");
5702 			break;
5703 		}
5704 
5705 		if (!(sd->flags & SD_OVERLAP) &&
5706 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5707 			printk(KERN_CONT "\n");
5708 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5709 			break;
5710 		}
5711 
5712 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5713 
5714 		printk(KERN_CONT " %*pbl",
5715 		       cpumask_pr_args(sched_group_cpus(group)));
5716 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5717 			printk(KERN_CONT " (cpu_capacity = %d)",
5718 				group->sgc->capacity);
5719 		}
5720 
5721 		group = group->next;
5722 	} while (group != sd->groups);
5723 	printk(KERN_CONT "\n");
5724 
5725 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5726 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5727 
5728 	if (sd->parent &&
5729 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5730 		printk(KERN_ERR "ERROR: parent span is not a superset "
5731 			"of domain->span\n");
5732 	return 0;
5733 }
5734 
5735 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5736 {
5737 	int level = 0;
5738 
5739 	if (!sched_debug_enabled)
5740 		return;
5741 
5742 	if (!sd) {
5743 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5744 		return;
5745 	}
5746 
5747 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5748 
5749 	for (;;) {
5750 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5751 			break;
5752 		level++;
5753 		sd = sd->parent;
5754 		if (!sd)
5755 			break;
5756 	}
5757 }
5758 #else /* !CONFIG_SCHED_DEBUG */
5759 # define sched_domain_debug(sd, cpu) do { } while (0)
5760 static inline bool sched_debug(void)
5761 {
5762 	return false;
5763 }
5764 #endif /* CONFIG_SCHED_DEBUG */
5765 
5766 static int sd_degenerate(struct sched_domain *sd)
5767 {
5768 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5769 		return 1;
5770 
5771 	/* Following flags need at least 2 groups */
5772 	if (sd->flags & (SD_LOAD_BALANCE |
5773 			 SD_BALANCE_NEWIDLE |
5774 			 SD_BALANCE_FORK |
5775 			 SD_BALANCE_EXEC |
5776 			 SD_SHARE_CPUCAPACITY |
5777 			 SD_SHARE_PKG_RESOURCES |
5778 			 SD_SHARE_POWERDOMAIN)) {
5779 		if (sd->groups != sd->groups->next)
5780 			return 0;
5781 	}
5782 
5783 	/* Following flags don't use groups */
5784 	if (sd->flags & (SD_WAKE_AFFINE))
5785 		return 0;
5786 
5787 	return 1;
5788 }
5789 
5790 static int
5791 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5792 {
5793 	unsigned long cflags = sd->flags, pflags = parent->flags;
5794 
5795 	if (sd_degenerate(parent))
5796 		return 1;
5797 
5798 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5799 		return 0;
5800 
5801 	/* Flags needing groups don't count if only 1 group in parent */
5802 	if (parent->groups == parent->groups->next) {
5803 		pflags &= ~(SD_LOAD_BALANCE |
5804 				SD_BALANCE_NEWIDLE |
5805 				SD_BALANCE_FORK |
5806 				SD_BALANCE_EXEC |
5807 				SD_SHARE_CPUCAPACITY |
5808 				SD_SHARE_PKG_RESOURCES |
5809 				SD_PREFER_SIBLING |
5810 				SD_SHARE_POWERDOMAIN);
5811 		if (nr_node_ids == 1)
5812 			pflags &= ~SD_SERIALIZE;
5813 	}
5814 	if (~cflags & pflags)
5815 		return 0;
5816 
5817 	return 1;
5818 }
5819 
5820 static void free_rootdomain(struct rcu_head *rcu)
5821 {
5822 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5823 
5824 	cpupri_cleanup(&rd->cpupri);
5825 	cpudl_cleanup(&rd->cpudl);
5826 	free_cpumask_var(rd->dlo_mask);
5827 	free_cpumask_var(rd->rto_mask);
5828 	free_cpumask_var(rd->online);
5829 	free_cpumask_var(rd->span);
5830 	kfree(rd);
5831 }
5832 
5833 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5834 {
5835 	struct root_domain *old_rd = NULL;
5836 	unsigned long flags;
5837 
5838 	raw_spin_lock_irqsave(&rq->lock, flags);
5839 
5840 	if (rq->rd) {
5841 		old_rd = rq->rd;
5842 
5843 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5844 			set_rq_offline(rq);
5845 
5846 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5847 
5848 		/*
5849 		 * If we dont want to free the old_rd yet then
5850 		 * set old_rd to NULL to skip the freeing later
5851 		 * in this function:
5852 		 */
5853 		if (!atomic_dec_and_test(&old_rd->refcount))
5854 			old_rd = NULL;
5855 	}
5856 
5857 	atomic_inc(&rd->refcount);
5858 	rq->rd = rd;
5859 
5860 	cpumask_set_cpu(rq->cpu, rd->span);
5861 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5862 		set_rq_online(rq);
5863 
5864 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5865 
5866 	if (old_rd)
5867 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5868 }
5869 
5870 static int init_rootdomain(struct root_domain *rd)
5871 {
5872 	memset(rd, 0, sizeof(*rd));
5873 
5874 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5875 		goto out;
5876 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5877 		goto free_span;
5878 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5879 		goto free_online;
5880 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5881 		goto free_dlo_mask;
5882 
5883 	init_dl_bw(&rd->dl_bw);
5884 	if (cpudl_init(&rd->cpudl) != 0)
5885 		goto free_dlo_mask;
5886 
5887 	if (cpupri_init(&rd->cpupri) != 0)
5888 		goto free_rto_mask;
5889 	return 0;
5890 
5891 free_rto_mask:
5892 	free_cpumask_var(rd->rto_mask);
5893 free_dlo_mask:
5894 	free_cpumask_var(rd->dlo_mask);
5895 free_online:
5896 	free_cpumask_var(rd->online);
5897 free_span:
5898 	free_cpumask_var(rd->span);
5899 out:
5900 	return -ENOMEM;
5901 }
5902 
5903 /*
5904  * By default the system creates a single root-domain with all cpus as
5905  * members (mimicking the global state we have today).
5906  */
5907 struct root_domain def_root_domain;
5908 
5909 static void init_defrootdomain(void)
5910 {
5911 	init_rootdomain(&def_root_domain);
5912 
5913 	atomic_set(&def_root_domain.refcount, 1);
5914 }
5915 
5916 static struct root_domain *alloc_rootdomain(void)
5917 {
5918 	struct root_domain *rd;
5919 
5920 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5921 	if (!rd)
5922 		return NULL;
5923 
5924 	if (init_rootdomain(rd) != 0) {
5925 		kfree(rd);
5926 		return NULL;
5927 	}
5928 
5929 	return rd;
5930 }
5931 
5932 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5933 {
5934 	struct sched_group *tmp, *first;
5935 
5936 	if (!sg)
5937 		return;
5938 
5939 	first = sg;
5940 	do {
5941 		tmp = sg->next;
5942 
5943 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5944 			kfree(sg->sgc);
5945 
5946 		kfree(sg);
5947 		sg = tmp;
5948 	} while (sg != first);
5949 }
5950 
5951 static void free_sched_domain(struct rcu_head *rcu)
5952 {
5953 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5954 
5955 	/*
5956 	 * If its an overlapping domain it has private groups, iterate and
5957 	 * nuke them all.
5958 	 */
5959 	if (sd->flags & SD_OVERLAP) {
5960 		free_sched_groups(sd->groups, 1);
5961 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5962 		kfree(sd->groups->sgc);
5963 		kfree(sd->groups);
5964 	}
5965 	kfree(sd);
5966 }
5967 
5968 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5969 {
5970 	call_rcu(&sd->rcu, free_sched_domain);
5971 }
5972 
5973 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5974 {
5975 	for (; sd; sd = sd->parent)
5976 		destroy_sched_domain(sd, cpu);
5977 }
5978 
5979 /*
5980  * Keep a special pointer to the highest sched_domain that has
5981  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5982  * allows us to avoid some pointer chasing select_idle_sibling().
5983  *
5984  * Also keep a unique ID per domain (we use the first cpu number in
5985  * the cpumask of the domain), this allows us to quickly tell if
5986  * two cpus are in the same cache domain, see cpus_share_cache().
5987  */
5988 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5989 DEFINE_PER_CPU(int, sd_llc_size);
5990 DEFINE_PER_CPU(int, sd_llc_id);
5991 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5992 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5993 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5994 
5995 static void update_top_cache_domain(int cpu)
5996 {
5997 	struct sched_domain *sd;
5998 	struct sched_domain *busy_sd = NULL;
5999 	int id = cpu;
6000 	int size = 1;
6001 
6002 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6003 	if (sd) {
6004 		id = cpumask_first(sched_domain_span(sd));
6005 		size = cpumask_weight(sched_domain_span(sd));
6006 		busy_sd = sd->parent; /* sd_busy */
6007 	}
6008 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6009 
6010 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6011 	per_cpu(sd_llc_size, cpu) = size;
6012 	per_cpu(sd_llc_id, cpu) = id;
6013 
6014 	sd = lowest_flag_domain(cpu, SD_NUMA);
6015 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6016 
6017 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6018 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6019 }
6020 
6021 /*
6022  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6023  * hold the hotplug lock.
6024  */
6025 static void
6026 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6027 {
6028 	struct rq *rq = cpu_rq(cpu);
6029 	struct sched_domain *tmp;
6030 
6031 	/* Remove the sched domains which do not contribute to scheduling. */
6032 	for (tmp = sd; tmp; ) {
6033 		struct sched_domain *parent = tmp->parent;
6034 		if (!parent)
6035 			break;
6036 
6037 		if (sd_parent_degenerate(tmp, parent)) {
6038 			tmp->parent = parent->parent;
6039 			if (parent->parent)
6040 				parent->parent->child = tmp;
6041 			/*
6042 			 * Transfer SD_PREFER_SIBLING down in case of a
6043 			 * degenerate parent; the spans match for this
6044 			 * so the property transfers.
6045 			 */
6046 			if (parent->flags & SD_PREFER_SIBLING)
6047 				tmp->flags |= SD_PREFER_SIBLING;
6048 			destroy_sched_domain(parent, cpu);
6049 		} else
6050 			tmp = tmp->parent;
6051 	}
6052 
6053 	if (sd && sd_degenerate(sd)) {
6054 		tmp = sd;
6055 		sd = sd->parent;
6056 		destroy_sched_domain(tmp, cpu);
6057 		if (sd)
6058 			sd->child = NULL;
6059 	}
6060 
6061 	sched_domain_debug(sd, cpu);
6062 
6063 	rq_attach_root(rq, rd);
6064 	tmp = rq->sd;
6065 	rcu_assign_pointer(rq->sd, sd);
6066 	destroy_sched_domains(tmp, cpu);
6067 
6068 	update_top_cache_domain(cpu);
6069 }
6070 
6071 /* Setup the mask of cpus configured for isolated domains */
6072 static int __init isolated_cpu_setup(char *str)
6073 {
6074 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6075 	cpulist_parse(str, cpu_isolated_map);
6076 	return 1;
6077 }
6078 
6079 __setup("isolcpus=", isolated_cpu_setup);
6080 
6081 struct s_data {
6082 	struct sched_domain ** __percpu sd;
6083 	struct root_domain	*rd;
6084 };
6085 
6086 enum s_alloc {
6087 	sa_rootdomain,
6088 	sa_sd,
6089 	sa_sd_storage,
6090 	sa_none,
6091 };
6092 
6093 /*
6094  * Build an iteration mask that can exclude certain CPUs from the upwards
6095  * domain traversal.
6096  *
6097  * Asymmetric node setups can result in situations where the domain tree is of
6098  * unequal depth, make sure to skip domains that already cover the entire
6099  * range.
6100  *
6101  * In that case build_sched_domains() will have terminated the iteration early
6102  * and our sibling sd spans will be empty. Domains should always include the
6103  * cpu they're built on, so check that.
6104  *
6105  */
6106 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6107 {
6108 	const struct cpumask *span = sched_domain_span(sd);
6109 	struct sd_data *sdd = sd->private;
6110 	struct sched_domain *sibling;
6111 	int i;
6112 
6113 	for_each_cpu(i, span) {
6114 		sibling = *per_cpu_ptr(sdd->sd, i);
6115 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6116 			continue;
6117 
6118 		cpumask_set_cpu(i, sched_group_mask(sg));
6119 	}
6120 }
6121 
6122 /*
6123  * Return the canonical balance cpu for this group, this is the first cpu
6124  * of this group that's also in the iteration mask.
6125  */
6126 int group_balance_cpu(struct sched_group *sg)
6127 {
6128 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6129 }
6130 
6131 static int
6132 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6133 {
6134 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6135 	const struct cpumask *span = sched_domain_span(sd);
6136 	struct cpumask *covered = sched_domains_tmpmask;
6137 	struct sd_data *sdd = sd->private;
6138 	struct sched_domain *sibling;
6139 	int i;
6140 
6141 	cpumask_clear(covered);
6142 
6143 	for_each_cpu(i, span) {
6144 		struct cpumask *sg_span;
6145 
6146 		if (cpumask_test_cpu(i, covered))
6147 			continue;
6148 
6149 		sibling = *per_cpu_ptr(sdd->sd, i);
6150 
6151 		/* See the comment near build_group_mask(). */
6152 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6153 			continue;
6154 
6155 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6156 				GFP_KERNEL, cpu_to_node(cpu));
6157 
6158 		if (!sg)
6159 			goto fail;
6160 
6161 		sg_span = sched_group_cpus(sg);
6162 		if (sibling->child)
6163 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6164 		else
6165 			cpumask_set_cpu(i, sg_span);
6166 
6167 		cpumask_or(covered, covered, sg_span);
6168 
6169 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6170 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6171 			build_group_mask(sd, sg);
6172 
6173 		/*
6174 		 * Initialize sgc->capacity such that even if we mess up the
6175 		 * domains and no possible iteration will get us here, we won't
6176 		 * die on a /0 trap.
6177 		 */
6178 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6179 
6180 		/*
6181 		 * Make sure the first group of this domain contains the
6182 		 * canonical balance cpu. Otherwise the sched_domain iteration
6183 		 * breaks. See update_sg_lb_stats().
6184 		 */
6185 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6186 		    group_balance_cpu(sg) == cpu)
6187 			groups = sg;
6188 
6189 		if (!first)
6190 			first = sg;
6191 		if (last)
6192 			last->next = sg;
6193 		last = sg;
6194 		last->next = first;
6195 	}
6196 	sd->groups = groups;
6197 
6198 	return 0;
6199 
6200 fail:
6201 	free_sched_groups(first, 0);
6202 
6203 	return -ENOMEM;
6204 }
6205 
6206 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6207 {
6208 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6209 	struct sched_domain *child = sd->child;
6210 
6211 	if (child)
6212 		cpu = cpumask_first(sched_domain_span(child));
6213 
6214 	if (sg) {
6215 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6216 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6217 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6218 	}
6219 
6220 	return cpu;
6221 }
6222 
6223 /*
6224  * build_sched_groups will build a circular linked list of the groups
6225  * covered by the given span, and will set each group's ->cpumask correctly,
6226  * and ->cpu_capacity to 0.
6227  *
6228  * Assumes the sched_domain tree is fully constructed
6229  */
6230 static int
6231 build_sched_groups(struct sched_domain *sd, int cpu)
6232 {
6233 	struct sched_group *first = NULL, *last = NULL;
6234 	struct sd_data *sdd = sd->private;
6235 	const struct cpumask *span = sched_domain_span(sd);
6236 	struct cpumask *covered;
6237 	int i;
6238 
6239 	get_group(cpu, sdd, &sd->groups);
6240 	atomic_inc(&sd->groups->ref);
6241 
6242 	if (cpu != cpumask_first(span))
6243 		return 0;
6244 
6245 	lockdep_assert_held(&sched_domains_mutex);
6246 	covered = sched_domains_tmpmask;
6247 
6248 	cpumask_clear(covered);
6249 
6250 	for_each_cpu(i, span) {
6251 		struct sched_group *sg;
6252 		int group, j;
6253 
6254 		if (cpumask_test_cpu(i, covered))
6255 			continue;
6256 
6257 		group = get_group(i, sdd, &sg);
6258 		cpumask_setall(sched_group_mask(sg));
6259 
6260 		for_each_cpu(j, span) {
6261 			if (get_group(j, sdd, NULL) != group)
6262 				continue;
6263 
6264 			cpumask_set_cpu(j, covered);
6265 			cpumask_set_cpu(j, sched_group_cpus(sg));
6266 		}
6267 
6268 		if (!first)
6269 			first = sg;
6270 		if (last)
6271 			last->next = sg;
6272 		last = sg;
6273 	}
6274 	last->next = first;
6275 
6276 	return 0;
6277 }
6278 
6279 /*
6280  * Initialize sched groups cpu_capacity.
6281  *
6282  * cpu_capacity indicates the capacity of sched group, which is used while
6283  * distributing the load between different sched groups in a sched domain.
6284  * Typically cpu_capacity for all the groups in a sched domain will be same
6285  * unless there are asymmetries in the topology. If there are asymmetries,
6286  * group having more cpu_capacity will pickup more load compared to the
6287  * group having less cpu_capacity.
6288  */
6289 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6290 {
6291 	struct sched_group *sg = sd->groups;
6292 
6293 	WARN_ON(!sg);
6294 
6295 	do {
6296 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6297 		sg = sg->next;
6298 	} while (sg != sd->groups);
6299 
6300 	if (cpu != group_balance_cpu(sg))
6301 		return;
6302 
6303 	update_group_capacity(sd, cpu);
6304 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6305 }
6306 
6307 /*
6308  * Initializers for schedule domains
6309  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6310  */
6311 
6312 static int default_relax_domain_level = -1;
6313 int sched_domain_level_max;
6314 
6315 static int __init setup_relax_domain_level(char *str)
6316 {
6317 	if (kstrtoint(str, 0, &default_relax_domain_level))
6318 		pr_warn("Unable to set relax_domain_level\n");
6319 
6320 	return 1;
6321 }
6322 __setup("relax_domain_level=", setup_relax_domain_level);
6323 
6324 static void set_domain_attribute(struct sched_domain *sd,
6325 				 struct sched_domain_attr *attr)
6326 {
6327 	int request;
6328 
6329 	if (!attr || attr->relax_domain_level < 0) {
6330 		if (default_relax_domain_level < 0)
6331 			return;
6332 		else
6333 			request = default_relax_domain_level;
6334 	} else
6335 		request = attr->relax_domain_level;
6336 	if (request < sd->level) {
6337 		/* turn off idle balance on this domain */
6338 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6339 	} else {
6340 		/* turn on idle balance on this domain */
6341 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6342 	}
6343 }
6344 
6345 static void __sdt_free(const struct cpumask *cpu_map);
6346 static int __sdt_alloc(const struct cpumask *cpu_map);
6347 
6348 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6349 				 const struct cpumask *cpu_map)
6350 {
6351 	switch (what) {
6352 	case sa_rootdomain:
6353 		if (!atomic_read(&d->rd->refcount))
6354 			free_rootdomain(&d->rd->rcu); /* fall through */
6355 	case sa_sd:
6356 		free_percpu(d->sd); /* fall through */
6357 	case sa_sd_storage:
6358 		__sdt_free(cpu_map); /* fall through */
6359 	case sa_none:
6360 		break;
6361 	}
6362 }
6363 
6364 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6365 						   const struct cpumask *cpu_map)
6366 {
6367 	memset(d, 0, sizeof(*d));
6368 
6369 	if (__sdt_alloc(cpu_map))
6370 		return sa_sd_storage;
6371 	d->sd = alloc_percpu(struct sched_domain *);
6372 	if (!d->sd)
6373 		return sa_sd_storage;
6374 	d->rd = alloc_rootdomain();
6375 	if (!d->rd)
6376 		return sa_sd;
6377 	return sa_rootdomain;
6378 }
6379 
6380 /*
6381  * NULL the sd_data elements we've used to build the sched_domain and
6382  * sched_group structure so that the subsequent __free_domain_allocs()
6383  * will not free the data we're using.
6384  */
6385 static void claim_allocations(int cpu, struct sched_domain *sd)
6386 {
6387 	struct sd_data *sdd = sd->private;
6388 
6389 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6390 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6391 
6392 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6393 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6394 
6395 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6396 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6397 }
6398 
6399 #ifdef CONFIG_NUMA
6400 static int sched_domains_numa_levels;
6401 enum numa_topology_type sched_numa_topology_type;
6402 static int *sched_domains_numa_distance;
6403 int sched_max_numa_distance;
6404 static struct cpumask ***sched_domains_numa_masks;
6405 static int sched_domains_curr_level;
6406 #endif
6407 
6408 /*
6409  * SD_flags allowed in topology descriptions.
6410  *
6411  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6412  * SD_SHARE_PKG_RESOURCES - describes shared caches
6413  * SD_NUMA                - describes NUMA topologies
6414  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6415  *
6416  * Odd one out:
6417  * SD_ASYM_PACKING        - describes SMT quirks
6418  */
6419 #define TOPOLOGY_SD_FLAGS		\
6420 	(SD_SHARE_CPUCAPACITY |		\
6421 	 SD_SHARE_PKG_RESOURCES |	\
6422 	 SD_NUMA |			\
6423 	 SD_ASYM_PACKING |		\
6424 	 SD_SHARE_POWERDOMAIN)
6425 
6426 static struct sched_domain *
6427 sd_init(struct sched_domain_topology_level *tl, int cpu)
6428 {
6429 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6430 	int sd_weight, sd_flags = 0;
6431 
6432 #ifdef CONFIG_NUMA
6433 	/*
6434 	 * Ugly hack to pass state to sd_numa_mask()...
6435 	 */
6436 	sched_domains_curr_level = tl->numa_level;
6437 #endif
6438 
6439 	sd_weight = cpumask_weight(tl->mask(cpu));
6440 
6441 	if (tl->sd_flags)
6442 		sd_flags = (*tl->sd_flags)();
6443 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6444 			"wrong sd_flags in topology description\n"))
6445 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6446 
6447 	*sd = (struct sched_domain){
6448 		.min_interval		= sd_weight,
6449 		.max_interval		= 2*sd_weight,
6450 		.busy_factor		= 32,
6451 		.imbalance_pct		= 125,
6452 
6453 		.cache_nice_tries	= 0,
6454 		.busy_idx		= 0,
6455 		.idle_idx		= 0,
6456 		.newidle_idx		= 0,
6457 		.wake_idx		= 0,
6458 		.forkexec_idx		= 0,
6459 
6460 		.flags			= 1*SD_LOAD_BALANCE
6461 					| 1*SD_BALANCE_NEWIDLE
6462 					| 1*SD_BALANCE_EXEC
6463 					| 1*SD_BALANCE_FORK
6464 					| 0*SD_BALANCE_WAKE
6465 					| 1*SD_WAKE_AFFINE
6466 					| 0*SD_SHARE_CPUCAPACITY
6467 					| 0*SD_SHARE_PKG_RESOURCES
6468 					| 0*SD_SERIALIZE
6469 					| 0*SD_PREFER_SIBLING
6470 					| 0*SD_NUMA
6471 					| sd_flags
6472 					,
6473 
6474 		.last_balance		= jiffies,
6475 		.balance_interval	= sd_weight,
6476 		.smt_gain		= 0,
6477 		.max_newidle_lb_cost	= 0,
6478 		.next_decay_max_lb_cost	= jiffies,
6479 #ifdef CONFIG_SCHED_DEBUG
6480 		.name			= tl->name,
6481 #endif
6482 	};
6483 
6484 	/*
6485 	 * Convert topological properties into behaviour.
6486 	 */
6487 
6488 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6489 		sd->flags |= SD_PREFER_SIBLING;
6490 		sd->imbalance_pct = 110;
6491 		sd->smt_gain = 1178; /* ~15% */
6492 
6493 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6494 		sd->imbalance_pct = 117;
6495 		sd->cache_nice_tries = 1;
6496 		sd->busy_idx = 2;
6497 
6498 #ifdef CONFIG_NUMA
6499 	} else if (sd->flags & SD_NUMA) {
6500 		sd->cache_nice_tries = 2;
6501 		sd->busy_idx = 3;
6502 		sd->idle_idx = 2;
6503 
6504 		sd->flags |= SD_SERIALIZE;
6505 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6506 			sd->flags &= ~(SD_BALANCE_EXEC |
6507 				       SD_BALANCE_FORK |
6508 				       SD_WAKE_AFFINE);
6509 		}
6510 
6511 #endif
6512 	} else {
6513 		sd->flags |= SD_PREFER_SIBLING;
6514 		sd->cache_nice_tries = 1;
6515 		sd->busy_idx = 2;
6516 		sd->idle_idx = 1;
6517 	}
6518 
6519 	sd->private = &tl->data;
6520 
6521 	return sd;
6522 }
6523 
6524 /*
6525  * Topology list, bottom-up.
6526  */
6527 static struct sched_domain_topology_level default_topology[] = {
6528 #ifdef CONFIG_SCHED_SMT
6529 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6530 #endif
6531 #ifdef CONFIG_SCHED_MC
6532 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6533 #endif
6534 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6535 	{ NULL, },
6536 };
6537 
6538 static struct sched_domain_topology_level *sched_domain_topology =
6539 	default_topology;
6540 
6541 #define for_each_sd_topology(tl)			\
6542 	for (tl = sched_domain_topology; tl->mask; tl++)
6543 
6544 void set_sched_topology(struct sched_domain_topology_level *tl)
6545 {
6546 	sched_domain_topology = tl;
6547 }
6548 
6549 #ifdef CONFIG_NUMA
6550 
6551 static const struct cpumask *sd_numa_mask(int cpu)
6552 {
6553 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6554 }
6555 
6556 static void sched_numa_warn(const char *str)
6557 {
6558 	static int done = false;
6559 	int i,j;
6560 
6561 	if (done)
6562 		return;
6563 
6564 	done = true;
6565 
6566 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6567 
6568 	for (i = 0; i < nr_node_ids; i++) {
6569 		printk(KERN_WARNING "  ");
6570 		for (j = 0; j < nr_node_ids; j++)
6571 			printk(KERN_CONT "%02d ", node_distance(i,j));
6572 		printk(KERN_CONT "\n");
6573 	}
6574 	printk(KERN_WARNING "\n");
6575 }
6576 
6577 bool find_numa_distance(int distance)
6578 {
6579 	int i;
6580 
6581 	if (distance == node_distance(0, 0))
6582 		return true;
6583 
6584 	for (i = 0; i < sched_domains_numa_levels; i++) {
6585 		if (sched_domains_numa_distance[i] == distance)
6586 			return true;
6587 	}
6588 
6589 	return false;
6590 }
6591 
6592 /*
6593  * A system can have three types of NUMA topology:
6594  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6595  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6596  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6597  *
6598  * The difference between a glueless mesh topology and a backplane
6599  * topology lies in whether communication between not directly
6600  * connected nodes goes through intermediary nodes (where programs
6601  * could run), or through backplane controllers. This affects
6602  * placement of programs.
6603  *
6604  * The type of topology can be discerned with the following tests:
6605  * - If the maximum distance between any nodes is 1 hop, the system
6606  *   is directly connected.
6607  * - If for two nodes A and B, located N > 1 hops away from each other,
6608  *   there is an intermediary node C, which is < N hops away from both
6609  *   nodes A and B, the system is a glueless mesh.
6610  */
6611 static void init_numa_topology_type(void)
6612 {
6613 	int a, b, c, n;
6614 
6615 	n = sched_max_numa_distance;
6616 
6617 	if (sched_domains_numa_levels <= 1) {
6618 		sched_numa_topology_type = NUMA_DIRECT;
6619 		return;
6620 	}
6621 
6622 	for_each_online_node(a) {
6623 		for_each_online_node(b) {
6624 			/* Find two nodes furthest removed from each other. */
6625 			if (node_distance(a, b) < n)
6626 				continue;
6627 
6628 			/* Is there an intermediary node between a and b? */
6629 			for_each_online_node(c) {
6630 				if (node_distance(a, c) < n &&
6631 				    node_distance(b, c) < n) {
6632 					sched_numa_topology_type =
6633 							NUMA_GLUELESS_MESH;
6634 					return;
6635 				}
6636 			}
6637 
6638 			sched_numa_topology_type = NUMA_BACKPLANE;
6639 			return;
6640 		}
6641 	}
6642 }
6643 
6644 static void sched_init_numa(void)
6645 {
6646 	int next_distance, curr_distance = node_distance(0, 0);
6647 	struct sched_domain_topology_level *tl;
6648 	int level = 0;
6649 	int i, j, k;
6650 
6651 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6652 	if (!sched_domains_numa_distance)
6653 		return;
6654 
6655 	/*
6656 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6657 	 * unique distances in the node_distance() table.
6658 	 *
6659 	 * Assumes node_distance(0,j) includes all distances in
6660 	 * node_distance(i,j) in order to avoid cubic time.
6661 	 */
6662 	next_distance = curr_distance;
6663 	for (i = 0; i < nr_node_ids; i++) {
6664 		for (j = 0; j < nr_node_ids; j++) {
6665 			for (k = 0; k < nr_node_ids; k++) {
6666 				int distance = node_distance(i, k);
6667 
6668 				if (distance > curr_distance &&
6669 				    (distance < next_distance ||
6670 				     next_distance == curr_distance))
6671 					next_distance = distance;
6672 
6673 				/*
6674 				 * While not a strong assumption it would be nice to know
6675 				 * about cases where if node A is connected to B, B is not
6676 				 * equally connected to A.
6677 				 */
6678 				if (sched_debug() && node_distance(k, i) != distance)
6679 					sched_numa_warn("Node-distance not symmetric");
6680 
6681 				if (sched_debug() && i && !find_numa_distance(distance))
6682 					sched_numa_warn("Node-0 not representative");
6683 			}
6684 			if (next_distance != curr_distance) {
6685 				sched_domains_numa_distance[level++] = next_distance;
6686 				sched_domains_numa_levels = level;
6687 				curr_distance = next_distance;
6688 			} else break;
6689 		}
6690 
6691 		/*
6692 		 * In case of sched_debug() we verify the above assumption.
6693 		 */
6694 		if (!sched_debug())
6695 			break;
6696 	}
6697 
6698 	if (!level)
6699 		return;
6700 
6701 	/*
6702 	 * 'level' contains the number of unique distances, excluding the
6703 	 * identity distance node_distance(i,i).
6704 	 *
6705 	 * The sched_domains_numa_distance[] array includes the actual distance
6706 	 * numbers.
6707 	 */
6708 
6709 	/*
6710 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6711 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6712 	 * the array will contain less then 'level' members. This could be
6713 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6714 	 * in other functions.
6715 	 *
6716 	 * We reset it to 'level' at the end of this function.
6717 	 */
6718 	sched_domains_numa_levels = 0;
6719 
6720 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6721 	if (!sched_domains_numa_masks)
6722 		return;
6723 
6724 	/*
6725 	 * Now for each level, construct a mask per node which contains all
6726 	 * cpus of nodes that are that many hops away from us.
6727 	 */
6728 	for (i = 0; i < level; i++) {
6729 		sched_domains_numa_masks[i] =
6730 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6731 		if (!sched_domains_numa_masks[i])
6732 			return;
6733 
6734 		for (j = 0; j < nr_node_ids; j++) {
6735 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6736 			if (!mask)
6737 				return;
6738 
6739 			sched_domains_numa_masks[i][j] = mask;
6740 
6741 			for (k = 0; k < nr_node_ids; k++) {
6742 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6743 					continue;
6744 
6745 				cpumask_or(mask, mask, cpumask_of_node(k));
6746 			}
6747 		}
6748 	}
6749 
6750 	/* Compute default topology size */
6751 	for (i = 0; sched_domain_topology[i].mask; i++);
6752 
6753 	tl = kzalloc((i + level + 1) *
6754 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6755 	if (!tl)
6756 		return;
6757 
6758 	/*
6759 	 * Copy the default topology bits..
6760 	 */
6761 	for (i = 0; sched_domain_topology[i].mask; i++)
6762 		tl[i] = sched_domain_topology[i];
6763 
6764 	/*
6765 	 * .. and append 'j' levels of NUMA goodness.
6766 	 */
6767 	for (j = 0; j < level; i++, j++) {
6768 		tl[i] = (struct sched_domain_topology_level){
6769 			.mask = sd_numa_mask,
6770 			.sd_flags = cpu_numa_flags,
6771 			.flags = SDTL_OVERLAP,
6772 			.numa_level = j,
6773 			SD_INIT_NAME(NUMA)
6774 		};
6775 	}
6776 
6777 	sched_domain_topology = tl;
6778 
6779 	sched_domains_numa_levels = level;
6780 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6781 
6782 	init_numa_topology_type();
6783 }
6784 
6785 static void sched_domains_numa_masks_set(int cpu)
6786 {
6787 	int i, j;
6788 	int node = cpu_to_node(cpu);
6789 
6790 	for (i = 0; i < sched_domains_numa_levels; i++) {
6791 		for (j = 0; j < nr_node_ids; j++) {
6792 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6793 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6794 		}
6795 	}
6796 }
6797 
6798 static void sched_domains_numa_masks_clear(int cpu)
6799 {
6800 	int i, j;
6801 	for (i = 0; i < sched_domains_numa_levels; i++) {
6802 		for (j = 0; j < nr_node_ids; j++)
6803 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6804 	}
6805 }
6806 
6807 /*
6808  * Update sched_domains_numa_masks[level][node] array when new cpus
6809  * are onlined.
6810  */
6811 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6812 					   unsigned long action,
6813 					   void *hcpu)
6814 {
6815 	int cpu = (long)hcpu;
6816 
6817 	switch (action & ~CPU_TASKS_FROZEN) {
6818 	case CPU_ONLINE:
6819 		sched_domains_numa_masks_set(cpu);
6820 		break;
6821 
6822 	case CPU_DEAD:
6823 		sched_domains_numa_masks_clear(cpu);
6824 		break;
6825 
6826 	default:
6827 		return NOTIFY_DONE;
6828 	}
6829 
6830 	return NOTIFY_OK;
6831 }
6832 #else
6833 static inline void sched_init_numa(void)
6834 {
6835 }
6836 
6837 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6838 					   unsigned long action,
6839 					   void *hcpu)
6840 {
6841 	return 0;
6842 }
6843 #endif /* CONFIG_NUMA */
6844 
6845 static int __sdt_alloc(const struct cpumask *cpu_map)
6846 {
6847 	struct sched_domain_topology_level *tl;
6848 	int j;
6849 
6850 	for_each_sd_topology(tl) {
6851 		struct sd_data *sdd = &tl->data;
6852 
6853 		sdd->sd = alloc_percpu(struct sched_domain *);
6854 		if (!sdd->sd)
6855 			return -ENOMEM;
6856 
6857 		sdd->sg = alloc_percpu(struct sched_group *);
6858 		if (!sdd->sg)
6859 			return -ENOMEM;
6860 
6861 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6862 		if (!sdd->sgc)
6863 			return -ENOMEM;
6864 
6865 		for_each_cpu(j, cpu_map) {
6866 			struct sched_domain *sd;
6867 			struct sched_group *sg;
6868 			struct sched_group_capacity *sgc;
6869 
6870 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6871 					GFP_KERNEL, cpu_to_node(j));
6872 			if (!sd)
6873 				return -ENOMEM;
6874 
6875 			*per_cpu_ptr(sdd->sd, j) = sd;
6876 
6877 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6878 					GFP_KERNEL, cpu_to_node(j));
6879 			if (!sg)
6880 				return -ENOMEM;
6881 
6882 			sg->next = sg;
6883 
6884 			*per_cpu_ptr(sdd->sg, j) = sg;
6885 
6886 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6887 					GFP_KERNEL, cpu_to_node(j));
6888 			if (!sgc)
6889 				return -ENOMEM;
6890 
6891 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6892 		}
6893 	}
6894 
6895 	return 0;
6896 }
6897 
6898 static void __sdt_free(const struct cpumask *cpu_map)
6899 {
6900 	struct sched_domain_topology_level *tl;
6901 	int j;
6902 
6903 	for_each_sd_topology(tl) {
6904 		struct sd_data *sdd = &tl->data;
6905 
6906 		for_each_cpu(j, cpu_map) {
6907 			struct sched_domain *sd;
6908 
6909 			if (sdd->sd) {
6910 				sd = *per_cpu_ptr(sdd->sd, j);
6911 				if (sd && (sd->flags & SD_OVERLAP))
6912 					free_sched_groups(sd->groups, 0);
6913 				kfree(*per_cpu_ptr(sdd->sd, j));
6914 			}
6915 
6916 			if (sdd->sg)
6917 				kfree(*per_cpu_ptr(sdd->sg, j));
6918 			if (sdd->sgc)
6919 				kfree(*per_cpu_ptr(sdd->sgc, j));
6920 		}
6921 		free_percpu(sdd->sd);
6922 		sdd->sd = NULL;
6923 		free_percpu(sdd->sg);
6924 		sdd->sg = NULL;
6925 		free_percpu(sdd->sgc);
6926 		sdd->sgc = NULL;
6927 	}
6928 }
6929 
6930 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6931 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6932 		struct sched_domain *child, int cpu)
6933 {
6934 	struct sched_domain *sd = sd_init(tl, cpu);
6935 	if (!sd)
6936 		return child;
6937 
6938 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6939 	if (child) {
6940 		sd->level = child->level + 1;
6941 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6942 		child->parent = sd;
6943 		sd->child = child;
6944 
6945 		if (!cpumask_subset(sched_domain_span(child),
6946 				    sched_domain_span(sd))) {
6947 			pr_err("BUG: arch topology borken\n");
6948 #ifdef CONFIG_SCHED_DEBUG
6949 			pr_err("     the %s domain not a subset of the %s domain\n",
6950 					child->name, sd->name);
6951 #endif
6952 			/* Fixup, ensure @sd has at least @child cpus. */
6953 			cpumask_or(sched_domain_span(sd),
6954 				   sched_domain_span(sd),
6955 				   sched_domain_span(child));
6956 		}
6957 
6958 	}
6959 	set_domain_attribute(sd, attr);
6960 
6961 	return sd;
6962 }
6963 
6964 /*
6965  * Build sched domains for a given set of cpus and attach the sched domains
6966  * to the individual cpus
6967  */
6968 static int build_sched_domains(const struct cpumask *cpu_map,
6969 			       struct sched_domain_attr *attr)
6970 {
6971 	enum s_alloc alloc_state;
6972 	struct sched_domain *sd;
6973 	struct s_data d;
6974 	int i, ret = -ENOMEM;
6975 
6976 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6977 	if (alloc_state != sa_rootdomain)
6978 		goto error;
6979 
6980 	/* Set up domains for cpus specified by the cpu_map. */
6981 	for_each_cpu(i, cpu_map) {
6982 		struct sched_domain_topology_level *tl;
6983 
6984 		sd = NULL;
6985 		for_each_sd_topology(tl) {
6986 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6987 			if (tl == sched_domain_topology)
6988 				*per_cpu_ptr(d.sd, i) = sd;
6989 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6990 				sd->flags |= SD_OVERLAP;
6991 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6992 				break;
6993 		}
6994 	}
6995 
6996 	/* Build the groups for the domains */
6997 	for_each_cpu(i, cpu_map) {
6998 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6999 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7000 			if (sd->flags & SD_OVERLAP) {
7001 				if (build_overlap_sched_groups(sd, i))
7002 					goto error;
7003 			} else {
7004 				if (build_sched_groups(sd, i))
7005 					goto error;
7006 			}
7007 		}
7008 	}
7009 
7010 	/* Calculate CPU capacity for physical packages and nodes */
7011 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7012 		if (!cpumask_test_cpu(i, cpu_map))
7013 			continue;
7014 
7015 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7016 			claim_allocations(i, sd);
7017 			init_sched_groups_capacity(i, sd);
7018 		}
7019 	}
7020 
7021 	/* Attach the domains */
7022 	rcu_read_lock();
7023 	for_each_cpu(i, cpu_map) {
7024 		sd = *per_cpu_ptr(d.sd, i);
7025 		cpu_attach_domain(sd, d.rd, i);
7026 	}
7027 	rcu_read_unlock();
7028 
7029 	ret = 0;
7030 error:
7031 	__free_domain_allocs(&d, alloc_state, cpu_map);
7032 	return ret;
7033 }
7034 
7035 static cpumask_var_t *doms_cur;	/* current sched domains */
7036 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7037 static struct sched_domain_attr *dattr_cur;
7038 				/* attribues of custom domains in 'doms_cur' */
7039 
7040 /*
7041  * Special case: If a kmalloc of a doms_cur partition (array of
7042  * cpumask) fails, then fallback to a single sched domain,
7043  * as determined by the single cpumask fallback_doms.
7044  */
7045 static cpumask_var_t fallback_doms;
7046 
7047 /*
7048  * arch_update_cpu_topology lets virtualized architectures update the
7049  * cpu core maps. It is supposed to return 1 if the topology changed
7050  * or 0 if it stayed the same.
7051  */
7052 int __weak arch_update_cpu_topology(void)
7053 {
7054 	return 0;
7055 }
7056 
7057 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7058 {
7059 	int i;
7060 	cpumask_var_t *doms;
7061 
7062 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7063 	if (!doms)
7064 		return NULL;
7065 	for (i = 0; i < ndoms; i++) {
7066 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7067 			free_sched_domains(doms, i);
7068 			return NULL;
7069 		}
7070 	}
7071 	return doms;
7072 }
7073 
7074 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7075 {
7076 	unsigned int i;
7077 	for (i = 0; i < ndoms; i++)
7078 		free_cpumask_var(doms[i]);
7079 	kfree(doms);
7080 }
7081 
7082 /*
7083  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7084  * For now this just excludes isolated cpus, but could be used to
7085  * exclude other special cases in the future.
7086  */
7087 static int init_sched_domains(const struct cpumask *cpu_map)
7088 {
7089 	int err;
7090 
7091 	arch_update_cpu_topology();
7092 	ndoms_cur = 1;
7093 	doms_cur = alloc_sched_domains(ndoms_cur);
7094 	if (!doms_cur)
7095 		doms_cur = &fallback_doms;
7096 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7097 	err = build_sched_domains(doms_cur[0], NULL);
7098 	register_sched_domain_sysctl();
7099 
7100 	return err;
7101 }
7102 
7103 /*
7104  * Detach sched domains from a group of cpus specified in cpu_map
7105  * These cpus will now be attached to the NULL domain
7106  */
7107 static void detach_destroy_domains(const struct cpumask *cpu_map)
7108 {
7109 	int i;
7110 
7111 	rcu_read_lock();
7112 	for_each_cpu(i, cpu_map)
7113 		cpu_attach_domain(NULL, &def_root_domain, i);
7114 	rcu_read_unlock();
7115 }
7116 
7117 /* handle null as "default" */
7118 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7119 			struct sched_domain_attr *new, int idx_new)
7120 {
7121 	struct sched_domain_attr tmp;
7122 
7123 	/* fast path */
7124 	if (!new && !cur)
7125 		return 1;
7126 
7127 	tmp = SD_ATTR_INIT;
7128 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7129 			new ? (new + idx_new) : &tmp,
7130 			sizeof(struct sched_domain_attr));
7131 }
7132 
7133 /*
7134  * Partition sched domains as specified by the 'ndoms_new'
7135  * cpumasks in the array doms_new[] of cpumasks. This compares
7136  * doms_new[] to the current sched domain partitioning, doms_cur[].
7137  * It destroys each deleted domain and builds each new domain.
7138  *
7139  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7140  * The masks don't intersect (don't overlap.) We should setup one
7141  * sched domain for each mask. CPUs not in any of the cpumasks will
7142  * not be load balanced. If the same cpumask appears both in the
7143  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7144  * it as it is.
7145  *
7146  * The passed in 'doms_new' should be allocated using
7147  * alloc_sched_domains.  This routine takes ownership of it and will
7148  * free_sched_domains it when done with it. If the caller failed the
7149  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7150  * and partition_sched_domains() will fallback to the single partition
7151  * 'fallback_doms', it also forces the domains to be rebuilt.
7152  *
7153  * If doms_new == NULL it will be replaced with cpu_online_mask.
7154  * ndoms_new == 0 is a special case for destroying existing domains,
7155  * and it will not create the default domain.
7156  *
7157  * Call with hotplug lock held
7158  */
7159 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7160 			     struct sched_domain_attr *dattr_new)
7161 {
7162 	int i, j, n;
7163 	int new_topology;
7164 
7165 	mutex_lock(&sched_domains_mutex);
7166 
7167 	/* always unregister in case we don't destroy any domains */
7168 	unregister_sched_domain_sysctl();
7169 
7170 	/* Let architecture update cpu core mappings. */
7171 	new_topology = arch_update_cpu_topology();
7172 
7173 	n = doms_new ? ndoms_new : 0;
7174 
7175 	/* Destroy deleted domains */
7176 	for (i = 0; i < ndoms_cur; i++) {
7177 		for (j = 0; j < n && !new_topology; j++) {
7178 			if (cpumask_equal(doms_cur[i], doms_new[j])
7179 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7180 				goto match1;
7181 		}
7182 		/* no match - a current sched domain not in new doms_new[] */
7183 		detach_destroy_domains(doms_cur[i]);
7184 match1:
7185 		;
7186 	}
7187 
7188 	n = ndoms_cur;
7189 	if (doms_new == NULL) {
7190 		n = 0;
7191 		doms_new = &fallback_doms;
7192 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7193 		WARN_ON_ONCE(dattr_new);
7194 	}
7195 
7196 	/* Build new domains */
7197 	for (i = 0; i < ndoms_new; i++) {
7198 		for (j = 0; j < n && !new_topology; j++) {
7199 			if (cpumask_equal(doms_new[i], doms_cur[j])
7200 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7201 				goto match2;
7202 		}
7203 		/* no match - add a new doms_new */
7204 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7205 match2:
7206 		;
7207 	}
7208 
7209 	/* Remember the new sched domains */
7210 	if (doms_cur != &fallback_doms)
7211 		free_sched_domains(doms_cur, ndoms_cur);
7212 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7213 	doms_cur = doms_new;
7214 	dattr_cur = dattr_new;
7215 	ndoms_cur = ndoms_new;
7216 
7217 	register_sched_domain_sysctl();
7218 
7219 	mutex_unlock(&sched_domains_mutex);
7220 }
7221 
7222 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7223 
7224 /*
7225  * Update cpusets according to cpu_active mask.  If cpusets are
7226  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7227  * around partition_sched_domains().
7228  *
7229  * If we come here as part of a suspend/resume, don't touch cpusets because we
7230  * want to restore it back to its original state upon resume anyway.
7231  */
7232 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7233 			     void *hcpu)
7234 {
7235 	switch (action) {
7236 	case CPU_ONLINE_FROZEN:
7237 	case CPU_DOWN_FAILED_FROZEN:
7238 
7239 		/*
7240 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7241 		 * resume sequence. As long as this is not the last online
7242 		 * operation in the resume sequence, just build a single sched
7243 		 * domain, ignoring cpusets.
7244 		 */
7245 		num_cpus_frozen--;
7246 		if (likely(num_cpus_frozen)) {
7247 			partition_sched_domains(1, NULL, NULL);
7248 			break;
7249 		}
7250 
7251 		/*
7252 		 * This is the last CPU online operation. So fall through and
7253 		 * restore the original sched domains by considering the
7254 		 * cpuset configurations.
7255 		 */
7256 
7257 	case CPU_ONLINE:
7258 		cpuset_update_active_cpus(true);
7259 		break;
7260 	default:
7261 		return NOTIFY_DONE;
7262 	}
7263 	return NOTIFY_OK;
7264 }
7265 
7266 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7267 			       void *hcpu)
7268 {
7269 	unsigned long flags;
7270 	long cpu = (long)hcpu;
7271 	struct dl_bw *dl_b;
7272 	bool overflow;
7273 	int cpus;
7274 
7275 	switch (action) {
7276 	case CPU_DOWN_PREPARE:
7277 		rcu_read_lock_sched();
7278 		dl_b = dl_bw_of(cpu);
7279 
7280 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7281 		cpus = dl_bw_cpus(cpu);
7282 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7283 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7284 
7285 		rcu_read_unlock_sched();
7286 
7287 		if (overflow)
7288 			return notifier_from_errno(-EBUSY);
7289 		cpuset_update_active_cpus(false);
7290 		break;
7291 	case CPU_DOWN_PREPARE_FROZEN:
7292 		num_cpus_frozen++;
7293 		partition_sched_domains(1, NULL, NULL);
7294 		break;
7295 	default:
7296 		return NOTIFY_DONE;
7297 	}
7298 	return NOTIFY_OK;
7299 }
7300 
7301 void __init sched_init_smp(void)
7302 {
7303 	cpumask_var_t non_isolated_cpus;
7304 
7305 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7306 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7307 
7308 	sched_init_numa();
7309 
7310 	/*
7311 	 * There's no userspace yet to cause hotplug operations; hence all the
7312 	 * cpu masks are stable and all blatant races in the below code cannot
7313 	 * happen.
7314 	 */
7315 	mutex_lock(&sched_domains_mutex);
7316 	init_sched_domains(cpu_active_mask);
7317 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7318 	if (cpumask_empty(non_isolated_cpus))
7319 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7320 	mutex_unlock(&sched_domains_mutex);
7321 
7322 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7323 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7324 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7325 
7326 	init_hrtick();
7327 
7328 	/* Move init over to a non-isolated CPU */
7329 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7330 		BUG();
7331 	sched_init_granularity();
7332 	free_cpumask_var(non_isolated_cpus);
7333 
7334 	init_sched_rt_class();
7335 	init_sched_dl_class();
7336 }
7337 #else
7338 void __init sched_init_smp(void)
7339 {
7340 	sched_init_granularity();
7341 }
7342 #endif /* CONFIG_SMP */
7343 
7344 int in_sched_functions(unsigned long addr)
7345 {
7346 	return in_lock_functions(addr) ||
7347 		(addr >= (unsigned long)__sched_text_start
7348 		&& addr < (unsigned long)__sched_text_end);
7349 }
7350 
7351 #ifdef CONFIG_CGROUP_SCHED
7352 /*
7353  * Default task group.
7354  * Every task in system belongs to this group at bootup.
7355  */
7356 struct task_group root_task_group;
7357 LIST_HEAD(task_groups);
7358 #endif
7359 
7360 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7361 
7362 void __init sched_init(void)
7363 {
7364 	int i, j;
7365 	unsigned long alloc_size = 0, ptr;
7366 
7367 #ifdef CONFIG_FAIR_GROUP_SCHED
7368 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7369 #endif
7370 #ifdef CONFIG_RT_GROUP_SCHED
7371 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7372 #endif
7373 	if (alloc_size) {
7374 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7375 
7376 #ifdef CONFIG_FAIR_GROUP_SCHED
7377 		root_task_group.se = (struct sched_entity **)ptr;
7378 		ptr += nr_cpu_ids * sizeof(void **);
7379 
7380 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7381 		ptr += nr_cpu_ids * sizeof(void **);
7382 
7383 #endif /* CONFIG_FAIR_GROUP_SCHED */
7384 #ifdef CONFIG_RT_GROUP_SCHED
7385 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7386 		ptr += nr_cpu_ids * sizeof(void **);
7387 
7388 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7389 		ptr += nr_cpu_ids * sizeof(void **);
7390 
7391 #endif /* CONFIG_RT_GROUP_SCHED */
7392 	}
7393 #ifdef CONFIG_CPUMASK_OFFSTACK
7394 	for_each_possible_cpu(i) {
7395 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7396 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7397 	}
7398 #endif /* CONFIG_CPUMASK_OFFSTACK */
7399 
7400 	init_rt_bandwidth(&def_rt_bandwidth,
7401 			global_rt_period(), global_rt_runtime());
7402 	init_dl_bandwidth(&def_dl_bandwidth,
7403 			global_rt_period(), global_rt_runtime());
7404 
7405 #ifdef CONFIG_SMP
7406 	init_defrootdomain();
7407 #endif
7408 
7409 #ifdef CONFIG_RT_GROUP_SCHED
7410 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7411 			global_rt_period(), global_rt_runtime());
7412 #endif /* CONFIG_RT_GROUP_SCHED */
7413 
7414 #ifdef CONFIG_CGROUP_SCHED
7415 	list_add(&root_task_group.list, &task_groups);
7416 	INIT_LIST_HEAD(&root_task_group.children);
7417 	INIT_LIST_HEAD(&root_task_group.siblings);
7418 	autogroup_init(&init_task);
7419 
7420 #endif /* CONFIG_CGROUP_SCHED */
7421 
7422 	for_each_possible_cpu(i) {
7423 		struct rq *rq;
7424 
7425 		rq = cpu_rq(i);
7426 		raw_spin_lock_init(&rq->lock);
7427 		rq->nr_running = 0;
7428 		rq->calc_load_active = 0;
7429 		rq->calc_load_update = jiffies + LOAD_FREQ;
7430 		init_cfs_rq(&rq->cfs);
7431 		init_rt_rq(&rq->rt);
7432 		init_dl_rq(&rq->dl);
7433 #ifdef CONFIG_FAIR_GROUP_SCHED
7434 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7435 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7436 		/*
7437 		 * How much cpu bandwidth does root_task_group get?
7438 		 *
7439 		 * In case of task-groups formed thr' the cgroup filesystem, it
7440 		 * gets 100% of the cpu resources in the system. This overall
7441 		 * system cpu resource is divided among the tasks of
7442 		 * root_task_group and its child task-groups in a fair manner,
7443 		 * based on each entity's (task or task-group's) weight
7444 		 * (se->load.weight).
7445 		 *
7446 		 * In other words, if root_task_group has 10 tasks of weight
7447 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7448 		 * then A0's share of the cpu resource is:
7449 		 *
7450 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7451 		 *
7452 		 * We achieve this by letting root_task_group's tasks sit
7453 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7454 		 */
7455 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7456 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7457 #endif /* CONFIG_FAIR_GROUP_SCHED */
7458 
7459 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7460 #ifdef CONFIG_RT_GROUP_SCHED
7461 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7462 #endif
7463 
7464 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7465 			rq->cpu_load[j] = 0;
7466 
7467 		rq->last_load_update_tick = jiffies;
7468 
7469 #ifdef CONFIG_SMP
7470 		rq->sd = NULL;
7471 		rq->rd = NULL;
7472 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7473 		rq->balance_callback = NULL;
7474 		rq->active_balance = 0;
7475 		rq->next_balance = jiffies;
7476 		rq->push_cpu = 0;
7477 		rq->cpu = i;
7478 		rq->online = 0;
7479 		rq->idle_stamp = 0;
7480 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7481 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7482 
7483 		INIT_LIST_HEAD(&rq->cfs_tasks);
7484 
7485 		rq_attach_root(rq, &def_root_domain);
7486 #ifdef CONFIG_NO_HZ_COMMON
7487 		rq->nohz_flags = 0;
7488 #endif
7489 #ifdef CONFIG_NO_HZ_FULL
7490 		rq->last_sched_tick = 0;
7491 #endif
7492 #endif
7493 		init_rq_hrtick(rq);
7494 		atomic_set(&rq->nr_iowait, 0);
7495 	}
7496 
7497 	set_load_weight(&init_task);
7498 
7499 #ifdef CONFIG_PREEMPT_NOTIFIERS
7500 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7501 #endif
7502 
7503 	/*
7504 	 * The boot idle thread does lazy MMU switching as well:
7505 	 */
7506 	atomic_inc(&init_mm.mm_count);
7507 	enter_lazy_tlb(&init_mm, current);
7508 
7509 	/*
7510 	 * During early bootup we pretend to be a normal task:
7511 	 */
7512 	current->sched_class = &fair_sched_class;
7513 
7514 	/*
7515 	 * Make us the idle thread. Technically, schedule() should not be
7516 	 * called from this thread, however somewhere below it might be,
7517 	 * but because we are the idle thread, we just pick up running again
7518 	 * when this runqueue becomes "idle".
7519 	 */
7520 	init_idle(current, smp_processor_id());
7521 
7522 	calc_load_update = jiffies + LOAD_FREQ;
7523 
7524 #ifdef CONFIG_SMP
7525 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7526 	/* May be allocated at isolcpus cmdline parse time */
7527 	if (cpu_isolated_map == NULL)
7528 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7529 	idle_thread_set_boot_cpu();
7530 	set_cpu_rq_start_time();
7531 #endif
7532 	init_sched_fair_class();
7533 
7534 	scheduler_running = 1;
7535 }
7536 
7537 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7538 static inline int preempt_count_equals(int preempt_offset)
7539 {
7540 	int nested = preempt_count() + rcu_preempt_depth();
7541 
7542 	return (nested == preempt_offset);
7543 }
7544 
7545 void __might_sleep(const char *file, int line, int preempt_offset)
7546 {
7547 	/*
7548 	 * Blocking primitives will set (and therefore destroy) current->state,
7549 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7550 	 * otherwise we will destroy state.
7551 	 */
7552 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7553 			"do not call blocking ops when !TASK_RUNNING; "
7554 			"state=%lx set at [<%p>] %pS\n",
7555 			current->state,
7556 			(void *)current->task_state_change,
7557 			(void *)current->task_state_change);
7558 
7559 	___might_sleep(file, line, preempt_offset);
7560 }
7561 EXPORT_SYMBOL(__might_sleep);
7562 
7563 void ___might_sleep(const char *file, int line, int preempt_offset)
7564 {
7565 	static unsigned long prev_jiffy;	/* ratelimiting */
7566 
7567 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7568 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7569 	     !is_idle_task(current)) ||
7570 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7571 		return;
7572 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7573 		return;
7574 	prev_jiffy = jiffies;
7575 
7576 	printk(KERN_ERR
7577 		"BUG: sleeping function called from invalid context at %s:%d\n",
7578 			file, line);
7579 	printk(KERN_ERR
7580 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7581 			in_atomic(), irqs_disabled(),
7582 			current->pid, current->comm);
7583 
7584 	if (task_stack_end_corrupted(current))
7585 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7586 
7587 	debug_show_held_locks(current);
7588 	if (irqs_disabled())
7589 		print_irqtrace_events(current);
7590 #ifdef CONFIG_DEBUG_PREEMPT
7591 	if (!preempt_count_equals(preempt_offset)) {
7592 		pr_err("Preemption disabled at:");
7593 		print_ip_sym(current->preempt_disable_ip);
7594 		pr_cont("\n");
7595 	}
7596 #endif
7597 	dump_stack();
7598 }
7599 EXPORT_SYMBOL(___might_sleep);
7600 #endif
7601 
7602 #ifdef CONFIG_MAGIC_SYSRQ
7603 void normalize_rt_tasks(void)
7604 {
7605 	struct task_struct *g, *p;
7606 	struct sched_attr attr = {
7607 		.sched_policy = SCHED_NORMAL,
7608 	};
7609 
7610 	read_lock(&tasklist_lock);
7611 	for_each_process_thread(g, p) {
7612 		/*
7613 		 * Only normalize user tasks:
7614 		 */
7615 		if (p->flags & PF_KTHREAD)
7616 			continue;
7617 
7618 		p->se.exec_start		= 0;
7619 #ifdef CONFIG_SCHEDSTATS
7620 		p->se.statistics.wait_start	= 0;
7621 		p->se.statistics.sleep_start	= 0;
7622 		p->se.statistics.block_start	= 0;
7623 #endif
7624 
7625 		if (!dl_task(p) && !rt_task(p)) {
7626 			/*
7627 			 * Renice negative nice level userspace
7628 			 * tasks back to 0:
7629 			 */
7630 			if (task_nice(p) < 0)
7631 				set_user_nice(p, 0);
7632 			continue;
7633 		}
7634 
7635 		__sched_setscheduler(p, &attr, false, false);
7636 	}
7637 	read_unlock(&tasklist_lock);
7638 }
7639 
7640 #endif /* CONFIG_MAGIC_SYSRQ */
7641 
7642 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7643 /*
7644  * These functions are only useful for the IA64 MCA handling, or kdb.
7645  *
7646  * They can only be called when the whole system has been
7647  * stopped - every CPU needs to be quiescent, and no scheduling
7648  * activity can take place. Using them for anything else would
7649  * be a serious bug, and as a result, they aren't even visible
7650  * under any other configuration.
7651  */
7652 
7653 /**
7654  * curr_task - return the current task for a given cpu.
7655  * @cpu: the processor in question.
7656  *
7657  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7658  *
7659  * Return: The current task for @cpu.
7660  */
7661 struct task_struct *curr_task(int cpu)
7662 {
7663 	return cpu_curr(cpu);
7664 }
7665 
7666 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7667 
7668 #ifdef CONFIG_IA64
7669 /**
7670  * set_curr_task - set the current task for a given cpu.
7671  * @cpu: the processor in question.
7672  * @p: the task pointer to set.
7673  *
7674  * Description: This function must only be used when non-maskable interrupts
7675  * are serviced on a separate stack. It allows the architecture to switch the
7676  * notion of the current task on a cpu in a non-blocking manner. This function
7677  * must be called with all CPU's synchronized, and interrupts disabled, the
7678  * and caller must save the original value of the current task (see
7679  * curr_task() above) and restore that value before reenabling interrupts and
7680  * re-starting the system.
7681  *
7682  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7683  */
7684 void set_curr_task(int cpu, struct task_struct *p)
7685 {
7686 	cpu_curr(cpu) = p;
7687 }
7688 
7689 #endif
7690 
7691 #ifdef CONFIG_CGROUP_SCHED
7692 /* task_group_lock serializes the addition/removal of task groups */
7693 static DEFINE_SPINLOCK(task_group_lock);
7694 
7695 static void free_sched_group(struct task_group *tg)
7696 {
7697 	free_fair_sched_group(tg);
7698 	free_rt_sched_group(tg);
7699 	autogroup_free(tg);
7700 	kfree(tg);
7701 }
7702 
7703 /* allocate runqueue etc for a new task group */
7704 struct task_group *sched_create_group(struct task_group *parent)
7705 {
7706 	struct task_group *tg;
7707 
7708 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7709 	if (!tg)
7710 		return ERR_PTR(-ENOMEM);
7711 
7712 	if (!alloc_fair_sched_group(tg, parent))
7713 		goto err;
7714 
7715 	if (!alloc_rt_sched_group(tg, parent))
7716 		goto err;
7717 
7718 	return tg;
7719 
7720 err:
7721 	free_sched_group(tg);
7722 	return ERR_PTR(-ENOMEM);
7723 }
7724 
7725 void sched_online_group(struct task_group *tg, struct task_group *parent)
7726 {
7727 	unsigned long flags;
7728 
7729 	spin_lock_irqsave(&task_group_lock, flags);
7730 	list_add_rcu(&tg->list, &task_groups);
7731 
7732 	WARN_ON(!parent); /* root should already exist */
7733 
7734 	tg->parent = parent;
7735 	INIT_LIST_HEAD(&tg->children);
7736 	list_add_rcu(&tg->siblings, &parent->children);
7737 	spin_unlock_irqrestore(&task_group_lock, flags);
7738 }
7739 
7740 /* rcu callback to free various structures associated with a task group */
7741 static void free_sched_group_rcu(struct rcu_head *rhp)
7742 {
7743 	/* now it should be safe to free those cfs_rqs */
7744 	free_sched_group(container_of(rhp, struct task_group, rcu));
7745 }
7746 
7747 /* Destroy runqueue etc associated with a task group */
7748 void sched_destroy_group(struct task_group *tg)
7749 {
7750 	/* wait for possible concurrent references to cfs_rqs complete */
7751 	call_rcu(&tg->rcu, free_sched_group_rcu);
7752 }
7753 
7754 void sched_offline_group(struct task_group *tg)
7755 {
7756 	unsigned long flags;
7757 	int i;
7758 
7759 	/* end participation in shares distribution */
7760 	for_each_possible_cpu(i)
7761 		unregister_fair_sched_group(tg, i);
7762 
7763 	spin_lock_irqsave(&task_group_lock, flags);
7764 	list_del_rcu(&tg->list);
7765 	list_del_rcu(&tg->siblings);
7766 	spin_unlock_irqrestore(&task_group_lock, flags);
7767 }
7768 
7769 /* change task's runqueue when it moves between groups.
7770  *	The caller of this function should have put the task in its new group
7771  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7772  *	reflect its new group.
7773  */
7774 void sched_move_task(struct task_struct *tsk)
7775 {
7776 	struct task_group *tg;
7777 	int queued, running;
7778 	unsigned long flags;
7779 	struct rq *rq;
7780 
7781 	rq = task_rq_lock(tsk, &flags);
7782 
7783 	running = task_current(rq, tsk);
7784 	queued = task_on_rq_queued(tsk);
7785 
7786 	if (queued)
7787 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7788 	if (unlikely(running))
7789 		put_prev_task(rq, tsk);
7790 
7791 	/*
7792 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7793 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7794 	 * to prevent lockdep warnings.
7795 	 */
7796 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7797 			  struct task_group, css);
7798 	tg = autogroup_task_group(tsk, tg);
7799 	tsk->sched_task_group = tg;
7800 
7801 #ifdef CONFIG_FAIR_GROUP_SCHED
7802 	if (tsk->sched_class->task_move_group)
7803 		tsk->sched_class->task_move_group(tsk);
7804 	else
7805 #endif
7806 		set_task_rq(tsk, task_cpu(tsk));
7807 
7808 	if (unlikely(running))
7809 		tsk->sched_class->set_curr_task(rq);
7810 	if (queued)
7811 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7812 
7813 	task_rq_unlock(rq, tsk, &flags);
7814 }
7815 #endif /* CONFIG_CGROUP_SCHED */
7816 
7817 #ifdef CONFIG_RT_GROUP_SCHED
7818 /*
7819  * Ensure that the real time constraints are schedulable.
7820  */
7821 static DEFINE_MUTEX(rt_constraints_mutex);
7822 
7823 /* Must be called with tasklist_lock held */
7824 static inline int tg_has_rt_tasks(struct task_group *tg)
7825 {
7826 	struct task_struct *g, *p;
7827 
7828 	/*
7829 	 * Autogroups do not have RT tasks; see autogroup_create().
7830 	 */
7831 	if (task_group_is_autogroup(tg))
7832 		return 0;
7833 
7834 	for_each_process_thread(g, p) {
7835 		if (rt_task(p) && task_group(p) == tg)
7836 			return 1;
7837 	}
7838 
7839 	return 0;
7840 }
7841 
7842 struct rt_schedulable_data {
7843 	struct task_group *tg;
7844 	u64 rt_period;
7845 	u64 rt_runtime;
7846 };
7847 
7848 static int tg_rt_schedulable(struct task_group *tg, void *data)
7849 {
7850 	struct rt_schedulable_data *d = data;
7851 	struct task_group *child;
7852 	unsigned long total, sum = 0;
7853 	u64 period, runtime;
7854 
7855 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7856 	runtime = tg->rt_bandwidth.rt_runtime;
7857 
7858 	if (tg == d->tg) {
7859 		period = d->rt_period;
7860 		runtime = d->rt_runtime;
7861 	}
7862 
7863 	/*
7864 	 * Cannot have more runtime than the period.
7865 	 */
7866 	if (runtime > period && runtime != RUNTIME_INF)
7867 		return -EINVAL;
7868 
7869 	/*
7870 	 * Ensure we don't starve existing RT tasks.
7871 	 */
7872 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7873 		return -EBUSY;
7874 
7875 	total = to_ratio(period, runtime);
7876 
7877 	/*
7878 	 * Nobody can have more than the global setting allows.
7879 	 */
7880 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7881 		return -EINVAL;
7882 
7883 	/*
7884 	 * The sum of our children's runtime should not exceed our own.
7885 	 */
7886 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7887 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7888 		runtime = child->rt_bandwidth.rt_runtime;
7889 
7890 		if (child == d->tg) {
7891 			period = d->rt_period;
7892 			runtime = d->rt_runtime;
7893 		}
7894 
7895 		sum += to_ratio(period, runtime);
7896 	}
7897 
7898 	if (sum > total)
7899 		return -EINVAL;
7900 
7901 	return 0;
7902 }
7903 
7904 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7905 {
7906 	int ret;
7907 
7908 	struct rt_schedulable_data data = {
7909 		.tg = tg,
7910 		.rt_period = period,
7911 		.rt_runtime = runtime,
7912 	};
7913 
7914 	rcu_read_lock();
7915 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7916 	rcu_read_unlock();
7917 
7918 	return ret;
7919 }
7920 
7921 static int tg_set_rt_bandwidth(struct task_group *tg,
7922 		u64 rt_period, u64 rt_runtime)
7923 {
7924 	int i, err = 0;
7925 
7926 	/*
7927 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7928 	 * kernel creating (and or operating) RT threads.
7929 	 */
7930 	if (tg == &root_task_group && rt_runtime == 0)
7931 		return -EINVAL;
7932 
7933 	/* No period doesn't make any sense. */
7934 	if (rt_period == 0)
7935 		return -EINVAL;
7936 
7937 	mutex_lock(&rt_constraints_mutex);
7938 	read_lock(&tasklist_lock);
7939 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7940 	if (err)
7941 		goto unlock;
7942 
7943 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7944 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7945 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7946 
7947 	for_each_possible_cpu(i) {
7948 		struct rt_rq *rt_rq = tg->rt_rq[i];
7949 
7950 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7951 		rt_rq->rt_runtime = rt_runtime;
7952 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7953 	}
7954 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7955 unlock:
7956 	read_unlock(&tasklist_lock);
7957 	mutex_unlock(&rt_constraints_mutex);
7958 
7959 	return err;
7960 }
7961 
7962 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7963 {
7964 	u64 rt_runtime, rt_period;
7965 
7966 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7967 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7968 	if (rt_runtime_us < 0)
7969 		rt_runtime = RUNTIME_INF;
7970 
7971 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7972 }
7973 
7974 static long sched_group_rt_runtime(struct task_group *tg)
7975 {
7976 	u64 rt_runtime_us;
7977 
7978 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7979 		return -1;
7980 
7981 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7982 	do_div(rt_runtime_us, NSEC_PER_USEC);
7983 	return rt_runtime_us;
7984 }
7985 
7986 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7987 {
7988 	u64 rt_runtime, rt_period;
7989 
7990 	rt_period = rt_period_us * NSEC_PER_USEC;
7991 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7992 
7993 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7994 }
7995 
7996 static long sched_group_rt_period(struct task_group *tg)
7997 {
7998 	u64 rt_period_us;
7999 
8000 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8001 	do_div(rt_period_us, NSEC_PER_USEC);
8002 	return rt_period_us;
8003 }
8004 #endif /* CONFIG_RT_GROUP_SCHED */
8005 
8006 #ifdef CONFIG_RT_GROUP_SCHED
8007 static int sched_rt_global_constraints(void)
8008 {
8009 	int ret = 0;
8010 
8011 	mutex_lock(&rt_constraints_mutex);
8012 	read_lock(&tasklist_lock);
8013 	ret = __rt_schedulable(NULL, 0, 0);
8014 	read_unlock(&tasklist_lock);
8015 	mutex_unlock(&rt_constraints_mutex);
8016 
8017 	return ret;
8018 }
8019 
8020 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8021 {
8022 	/* Don't accept realtime tasks when there is no way for them to run */
8023 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8024 		return 0;
8025 
8026 	return 1;
8027 }
8028 
8029 #else /* !CONFIG_RT_GROUP_SCHED */
8030 static int sched_rt_global_constraints(void)
8031 {
8032 	unsigned long flags;
8033 	int i, ret = 0;
8034 
8035 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8036 	for_each_possible_cpu(i) {
8037 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8038 
8039 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8040 		rt_rq->rt_runtime = global_rt_runtime();
8041 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8042 	}
8043 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8044 
8045 	return ret;
8046 }
8047 #endif /* CONFIG_RT_GROUP_SCHED */
8048 
8049 static int sched_dl_global_validate(void)
8050 {
8051 	u64 runtime = global_rt_runtime();
8052 	u64 period = global_rt_period();
8053 	u64 new_bw = to_ratio(period, runtime);
8054 	struct dl_bw *dl_b;
8055 	int cpu, ret = 0;
8056 	unsigned long flags;
8057 
8058 	/*
8059 	 * Here we want to check the bandwidth not being set to some
8060 	 * value smaller than the currently allocated bandwidth in
8061 	 * any of the root_domains.
8062 	 *
8063 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8064 	 * cycling on root_domains... Discussion on different/better
8065 	 * solutions is welcome!
8066 	 */
8067 	for_each_possible_cpu(cpu) {
8068 		rcu_read_lock_sched();
8069 		dl_b = dl_bw_of(cpu);
8070 
8071 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8072 		if (new_bw < dl_b->total_bw)
8073 			ret = -EBUSY;
8074 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8075 
8076 		rcu_read_unlock_sched();
8077 
8078 		if (ret)
8079 			break;
8080 	}
8081 
8082 	return ret;
8083 }
8084 
8085 static void sched_dl_do_global(void)
8086 {
8087 	u64 new_bw = -1;
8088 	struct dl_bw *dl_b;
8089 	int cpu;
8090 	unsigned long flags;
8091 
8092 	def_dl_bandwidth.dl_period = global_rt_period();
8093 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8094 
8095 	if (global_rt_runtime() != RUNTIME_INF)
8096 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8097 
8098 	/*
8099 	 * FIXME: As above...
8100 	 */
8101 	for_each_possible_cpu(cpu) {
8102 		rcu_read_lock_sched();
8103 		dl_b = dl_bw_of(cpu);
8104 
8105 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8106 		dl_b->bw = new_bw;
8107 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8108 
8109 		rcu_read_unlock_sched();
8110 	}
8111 }
8112 
8113 static int sched_rt_global_validate(void)
8114 {
8115 	if (sysctl_sched_rt_period <= 0)
8116 		return -EINVAL;
8117 
8118 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8119 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8120 		return -EINVAL;
8121 
8122 	return 0;
8123 }
8124 
8125 static void sched_rt_do_global(void)
8126 {
8127 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8128 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8129 }
8130 
8131 int sched_rt_handler(struct ctl_table *table, int write,
8132 		void __user *buffer, size_t *lenp,
8133 		loff_t *ppos)
8134 {
8135 	int old_period, old_runtime;
8136 	static DEFINE_MUTEX(mutex);
8137 	int ret;
8138 
8139 	mutex_lock(&mutex);
8140 	old_period = sysctl_sched_rt_period;
8141 	old_runtime = sysctl_sched_rt_runtime;
8142 
8143 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8144 
8145 	if (!ret && write) {
8146 		ret = sched_rt_global_validate();
8147 		if (ret)
8148 			goto undo;
8149 
8150 		ret = sched_dl_global_validate();
8151 		if (ret)
8152 			goto undo;
8153 
8154 		ret = sched_rt_global_constraints();
8155 		if (ret)
8156 			goto undo;
8157 
8158 		sched_rt_do_global();
8159 		sched_dl_do_global();
8160 	}
8161 	if (0) {
8162 undo:
8163 		sysctl_sched_rt_period = old_period;
8164 		sysctl_sched_rt_runtime = old_runtime;
8165 	}
8166 	mutex_unlock(&mutex);
8167 
8168 	return ret;
8169 }
8170 
8171 int sched_rr_handler(struct ctl_table *table, int write,
8172 		void __user *buffer, size_t *lenp,
8173 		loff_t *ppos)
8174 {
8175 	int ret;
8176 	static DEFINE_MUTEX(mutex);
8177 
8178 	mutex_lock(&mutex);
8179 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8180 	/* make sure that internally we keep jiffies */
8181 	/* also, writing zero resets timeslice to default */
8182 	if (!ret && write) {
8183 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8184 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8185 	}
8186 	mutex_unlock(&mutex);
8187 	return ret;
8188 }
8189 
8190 #ifdef CONFIG_CGROUP_SCHED
8191 
8192 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8193 {
8194 	return css ? container_of(css, struct task_group, css) : NULL;
8195 }
8196 
8197 static struct cgroup_subsys_state *
8198 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8199 {
8200 	struct task_group *parent = css_tg(parent_css);
8201 	struct task_group *tg;
8202 
8203 	if (!parent) {
8204 		/* This is early initialization for the top cgroup */
8205 		return &root_task_group.css;
8206 	}
8207 
8208 	tg = sched_create_group(parent);
8209 	if (IS_ERR(tg))
8210 		return ERR_PTR(-ENOMEM);
8211 
8212 	return &tg->css;
8213 }
8214 
8215 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8216 {
8217 	struct task_group *tg = css_tg(css);
8218 	struct task_group *parent = css_tg(css->parent);
8219 
8220 	if (parent)
8221 		sched_online_group(tg, parent);
8222 	return 0;
8223 }
8224 
8225 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8226 {
8227 	struct task_group *tg = css_tg(css);
8228 
8229 	sched_destroy_group(tg);
8230 }
8231 
8232 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8233 {
8234 	struct task_group *tg = css_tg(css);
8235 
8236 	sched_offline_group(tg);
8237 }
8238 
8239 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8240 {
8241 	sched_move_task(task);
8242 }
8243 
8244 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8245 {
8246 	struct task_struct *task;
8247 	struct cgroup_subsys_state *css;
8248 
8249 	cgroup_taskset_for_each(task, css, tset) {
8250 #ifdef CONFIG_RT_GROUP_SCHED
8251 		if (!sched_rt_can_attach(css_tg(css), task))
8252 			return -EINVAL;
8253 #else
8254 		/* We don't support RT-tasks being in separate groups */
8255 		if (task->sched_class != &fair_sched_class)
8256 			return -EINVAL;
8257 #endif
8258 	}
8259 	return 0;
8260 }
8261 
8262 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8263 {
8264 	struct task_struct *task;
8265 	struct cgroup_subsys_state *css;
8266 
8267 	cgroup_taskset_for_each(task, css, tset)
8268 		sched_move_task(task);
8269 }
8270 
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8273 				struct cftype *cftype, u64 shareval)
8274 {
8275 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8276 }
8277 
8278 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8279 			       struct cftype *cft)
8280 {
8281 	struct task_group *tg = css_tg(css);
8282 
8283 	return (u64) scale_load_down(tg->shares);
8284 }
8285 
8286 #ifdef CONFIG_CFS_BANDWIDTH
8287 static DEFINE_MUTEX(cfs_constraints_mutex);
8288 
8289 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8290 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8291 
8292 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8293 
8294 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8295 {
8296 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8297 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8298 
8299 	if (tg == &root_task_group)
8300 		return -EINVAL;
8301 
8302 	/*
8303 	 * Ensure we have at some amount of bandwidth every period.  This is
8304 	 * to prevent reaching a state of large arrears when throttled via
8305 	 * entity_tick() resulting in prolonged exit starvation.
8306 	 */
8307 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8308 		return -EINVAL;
8309 
8310 	/*
8311 	 * Likewise, bound things on the otherside by preventing insane quota
8312 	 * periods.  This also allows us to normalize in computing quota
8313 	 * feasibility.
8314 	 */
8315 	if (period > max_cfs_quota_period)
8316 		return -EINVAL;
8317 
8318 	/*
8319 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8320 	 * unthrottle_offline_cfs_rqs().
8321 	 */
8322 	get_online_cpus();
8323 	mutex_lock(&cfs_constraints_mutex);
8324 	ret = __cfs_schedulable(tg, period, quota);
8325 	if (ret)
8326 		goto out_unlock;
8327 
8328 	runtime_enabled = quota != RUNTIME_INF;
8329 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8330 	/*
8331 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8332 	 * before making related changes, and on->off must occur afterwards
8333 	 */
8334 	if (runtime_enabled && !runtime_was_enabled)
8335 		cfs_bandwidth_usage_inc();
8336 	raw_spin_lock_irq(&cfs_b->lock);
8337 	cfs_b->period = ns_to_ktime(period);
8338 	cfs_b->quota = quota;
8339 
8340 	__refill_cfs_bandwidth_runtime(cfs_b);
8341 	/* restart the period timer (if active) to handle new period expiry */
8342 	if (runtime_enabled)
8343 		start_cfs_bandwidth(cfs_b);
8344 	raw_spin_unlock_irq(&cfs_b->lock);
8345 
8346 	for_each_online_cpu(i) {
8347 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8348 		struct rq *rq = cfs_rq->rq;
8349 
8350 		raw_spin_lock_irq(&rq->lock);
8351 		cfs_rq->runtime_enabled = runtime_enabled;
8352 		cfs_rq->runtime_remaining = 0;
8353 
8354 		if (cfs_rq->throttled)
8355 			unthrottle_cfs_rq(cfs_rq);
8356 		raw_spin_unlock_irq(&rq->lock);
8357 	}
8358 	if (runtime_was_enabled && !runtime_enabled)
8359 		cfs_bandwidth_usage_dec();
8360 out_unlock:
8361 	mutex_unlock(&cfs_constraints_mutex);
8362 	put_online_cpus();
8363 
8364 	return ret;
8365 }
8366 
8367 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8368 {
8369 	u64 quota, period;
8370 
8371 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8372 	if (cfs_quota_us < 0)
8373 		quota = RUNTIME_INF;
8374 	else
8375 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8376 
8377 	return tg_set_cfs_bandwidth(tg, period, quota);
8378 }
8379 
8380 long tg_get_cfs_quota(struct task_group *tg)
8381 {
8382 	u64 quota_us;
8383 
8384 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8385 		return -1;
8386 
8387 	quota_us = tg->cfs_bandwidth.quota;
8388 	do_div(quota_us, NSEC_PER_USEC);
8389 
8390 	return quota_us;
8391 }
8392 
8393 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8394 {
8395 	u64 quota, period;
8396 
8397 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8398 	quota = tg->cfs_bandwidth.quota;
8399 
8400 	return tg_set_cfs_bandwidth(tg, period, quota);
8401 }
8402 
8403 long tg_get_cfs_period(struct task_group *tg)
8404 {
8405 	u64 cfs_period_us;
8406 
8407 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8408 	do_div(cfs_period_us, NSEC_PER_USEC);
8409 
8410 	return cfs_period_us;
8411 }
8412 
8413 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8414 				  struct cftype *cft)
8415 {
8416 	return tg_get_cfs_quota(css_tg(css));
8417 }
8418 
8419 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8420 				   struct cftype *cftype, s64 cfs_quota_us)
8421 {
8422 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8423 }
8424 
8425 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8426 				   struct cftype *cft)
8427 {
8428 	return tg_get_cfs_period(css_tg(css));
8429 }
8430 
8431 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8432 				    struct cftype *cftype, u64 cfs_period_us)
8433 {
8434 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8435 }
8436 
8437 struct cfs_schedulable_data {
8438 	struct task_group *tg;
8439 	u64 period, quota;
8440 };
8441 
8442 /*
8443  * normalize group quota/period to be quota/max_period
8444  * note: units are usecs
8445  */
8446 static u64 normalize_cfs_quota(struct task_group *tg,
8447 			       struct cfs_schedulable_data *d)
8448 {
8449 	u64 quota, period;
8450 
8451 	if (tg == d->tg) {
8452 		period = d->period;
8453 		quota = d->quota;
8454 	} else {
8455 		period = tg_get_cfs_period(tg);
8456 		quota = tg_get_cfs_quota(tg);
8457 	}
8458 
8459 	/* note: these should typically be equivalent */
8460 	if (quota == RUNTIME_INF || quota == -1)
8461 		return RUNTIME_INF;
8462 
8463 	return to_ratio(period, quota);
8464 }
8465 
8466 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8467 {
8468 	struct cfs_schedulable_data *d = data;
8469 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8470 	s64 quota = 0, parent_quota = -1;
8471 
8472 	if (!tg->parent) {
8473 		quota = RUNTIME_INF;
8474 	} else {
8475 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8476 
8477 		quota = normalize_cfs_quota(tg, d);
8478 		parent_quota = parent_b->hierarchical_quota;
8479 
8480 		/*
8481 		 * ensure max(child_quota) <= parent_quota, inherit when no
8482 		 * limit is set
8483 		 */
8484 		if (quota == RUNTIME_INF)
8485 			quota = parent_quota;
8486 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8487 			return -EINVAL;
8488 	}
8489 	cfs_b->hierarchical_quota = quota;
8490 
8491 	return 0;
8492 }
8493 
8494 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8495 {
8496 	int ret;
8497 	struct cfs_schedulable_data data = {
8498 		.tg = tg,
8499 		.period = period,
8500 		.quota = quota,
8501 	};
8502 
8503 	if (quota != RUNTIME_INF) {
8504 		do_div(data.period, NSEC_PER_USEC);
8505 		do_div(data.quota, NSEC_PER_USEC);
8506 	}
8507 
8508 	rcu_read_lock();
8509 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8510 	rcu_read_unlock();
8511 
8512 	return ret;
8513 }
8514 
8515 static int cpu_stats_show(struct seq_file *sf, void *v)
8516 {
8517 	struct task_group *tg = css_tg(seq_css(sf));
8518 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8519 
8520 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8521 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8522 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8523 
8524 	return 0;
8525 }
8526 #endif /* CONFIG_CFS_BANDWIDTH */
8527 #endif /* CONFIG_FAIR_GROUP_SCHED */
8528 
8529 #ifdef CONFIG_RT_GROUP_SCHED
8530 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8531 				struct cftype *cft, s64 val)
8532 {
8533 	return sched_group_set_rt_runtime(css_tg(css), val);
8534 }
8535 
8536 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8537 			       struct cftype *cft)
8538 {
8539 	return sched_group_rt_runtime(css_tg(css));
8540 }
8541 
8542 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8543 				    struct cftype *cftype, u64 rt_period_us)
8544 {
8545 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8546 }
8547 
8548 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8549 				   struct cftype *cft)
8550 {
8551 	return sched_group_rt_period(css_tg(css));
8552 }
8553 #endif /* CONFIG_RT_GROUP_SCHED */
8554 
8555 static struct cftype cpu_files[] = {
8556 #ifdef CONFIG_FAIR_GROUP_SCHED
8557 	{
8558 		.name = "shares",
8559 		.read_u64 = cpu_shares_read_u64,
8560 		.write_u64 = cpu_shares_write_u64,
8561 	},
8562 #endif
8563 #ifdef CONFIG_CFS_BANDWIDTH
8564 	{
8565 		.name = "cfs_quota_us",
8566 		.read_s64 = cpu_cfs_quota_read_s64,
8567 		.write_s64 = cpu_cfs_quota_write_s64,
8568 	},
8569 	{
8570 		.name = "cfs_period_us",
8571 		.read_u64 = cpu_cfs_period_read_u64,
8572 		.write_u64 = cpu_cfs_period_write_u64,
8573 	},
8574 	{
8575 		.name = "stat",
8576 		.seq_show = cpu_stats_show,
8577 	},
8578 #endif
8579 #ifdef CONFIG_RT_GROUP_SCHED
8580 	{
8581 		.name = "rt_runtime_us",
8582 		.read_s64 = cpu_rt_runtime_read,
8583 		.write_s64 = cpu_rt_runtime_write,
8584 	},
8585 	{
8586 		.name = "rt_period_us",
8587 		.read_u64 = cpu_rt_period_read_uint,
8588 		.write_u64 = cpu_rt_period_write_uint,
8589 	},
8590 #endif
8591 	{ }	/* terminate */
8592 };
8593 
8594 struct cgroup_subsys cpu_cgrp_subsys = {
8595 	.css_alloc	= cpu_cgroup_css_alloc,
8596 	.css_free	= cpu_cgroup_css_free,
8597 	.css_online	= cpu_cgroup_css_online,
8598 	.css_offline	= cpu_cgroup_css_offline,
8599 	.fork		= cpu_cgroup_fork,
8600 	.can_attach	= cpu_cgroup_can_attach,
8601 	.attach		= cpu_cgroup_attach,
8602 	.legacy_cftypes	= cpu_files,
8603 	.early_init	= 1,
8604 };
8605 
8606 #endif	/* CONFIG_CGROUP_SCHED */
8607 
8608 void dump_cpu_task(int cpu)
8609 {
8610 	pr_info("Task dump for CPU %d:\n", cpu);
8611 	sched_show_task(cpu_curr(cpu));
8612 }
8613