xref: /openbmc/linux/kernel/sched/core.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15 
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18 
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22 
23 #include "pelt.h"
24 #include "smp.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
28 
29 /*
30  * Export tracepoints that act as a bare tracehook (ie: have no trace event
31  * associated with them) to allow external modules to probe them.
32  */
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
39 
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
41 
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
43 /*
44  * Debugging: various feature bits
45  *
46  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47  * sysctl_sched_features, defined in sched.h, to allow constants propagation
48  * at compile time and compiler optimization based on features default.
49  */
50 #define SCHED_FEAT(name, enabled)	\
51 	(1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 #undef SCHED_FEAT
56 #endif
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we measure -rt task CPU usage in us.
66  * default: 1s
67  */
68 unsigned int sysctl_sched_rt_period = 1000000;
69 
70 __read_mostly int scheduler_running;
71 
72 /*
73  * part of the period that we allow rt tasks to run in us.
74  * default: 0.95s
75  */
76 int sysctl_sched_rt_runtime = 950000;
77 
78 /*
79  * __task_rq_lock - lock the rq @p resides on.
80  */
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 	__acquires(rq->lock)
83 {
84 	struct rq *rq;
85 
86 	lockdep_assert_held(&p->pi_lock);
87 
88 	for (;;) {
89 		rq = task_rq(p);
90 		raw_spin_lock(&rq->lock);
91 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 			rq_pin_lock(rq, rf);
93 			return rq;
94 		}
95 		raw_spin_unlock(&rq->lock);
96 
97 		while (unlikely(task_on_rq_migrating(p)))
98 			cpu_relax();
99 	}
100 }
101 
102 /*
103  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
104  */
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 	__acquires(p->pi_lock)
107 	__acquires(rq->lock)
108 {
109 	struct rq *rq;
110 
111 	for (;;) {
112 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 		rq = task_rq(p);
114 		raw_spin_lock(&rq->lock);
115 		/*
116 		 *	move_queued_task()		task_rq_lock()
117 		 *
118 		 *	ACQUIRE (rq->lock)
119 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
120 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
121 		 *	[S] ->cpu = new_cpu		[L] task_rq()
122 		 *					[L] ->on_rq
123 		 *	RELEASE (rq->lock)
124 		 *
125 		 * If we observe the old CPU in task_rq_lock(), the acquire of
126 		 * the old rq->lock will fully serialize against the stores.
127 		 *
128 		 * If we observe the new CPU in task_rq_lock(), the address
129 		 * dependency headed by '[L] rq = task_rq()' and the acquire
130 		 * will pair with the WMB to ensure we then also see migrating.
131 		 */
132 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 			rq_pin_lock(rq, rf);
134 			return rq;
135 		}
136 		raw_spin_unlock(&rq->lock);
137 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
138 
139 		while (unlikely(task_on_rq_migrating(p)))
140 			cpu_relax();
141 	}
142 }
143 
144 /*
145  * RQ-clock updating methods:
146  */
147 
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 {
150 /*
151  * In theory, the compile should just see 0 here, and optimize out the call
152  * to sched_rt_avg_update. But I don't trust it...
153  */
154 	s64 __maybe_unused steal = 0, irq_delta = 0;
155 
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158 
159 	/*
160 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 	 * this case when a previous update_rq_clock() happened inside a
162 	 * {soft,}irq region.
163 	 *
164 	 * When this happens, we stop ->clock_task and only update the
165 	 * prev_irq_time stamp to account for the part that fit, so that a next
166 	 * update will consume the rest. This ensures ->clock_task is
167 	 * monotonic.
168 	 *
169 	 * It does however cause some slight miss-attribution of {soft,}irq
170 	 * time, a more accurate solution would be to update the irq_time using
171 	 * the current rq->clock timestamp, except that would require using
172 	 * atomic ops.
173 	 */
174 	if (irq_delta > delta)
175 		irq_delta = delta;
176 
177 	rq->prev_irq_time += irq_delta;
178 	delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 	if (static_key_false((&paravirt_steal_rq_enabled))) {
182 		steal = paravirt_steal_clock(cpu_of(rq));
183 		steal -= rq->prev_steal_time_rq;
184 
185 		if (unlikely(steal > delta))
186 			steal = delta;
187 
188 		rq->prev_steal_time_rq += steal;
189 		delta -= steal;
190 	}
191 #endif
192 
193 	rq->clock_task += delta;
194 
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 		update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 	update_rq_clock_pelt(rq, delta);
200 }
201 
202 void update_rq_clock(struct rq *rq)
203 {
204 	s64 delta;
205 
206 	lockdep_assert_held(&rq->lock);
207 
208 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 		return;
210 
211 #ifdef CONFIG_SCHED_DEBUG
212 	if (sched_feat(WARN_DOUBLE_CLOCK))
213 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 	rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
216 
217 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 	if (delta < 0)
219 		return;
220 	rq->clock += delta;
221 	update_rq_clock_task(rq, delta);
222 }
223 
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
226 {
227 	csd->flags = 0;
228 	csd->func = func;
229 	csd->info = rq;
230 }
231 
232 #ifdef CONFIG_SCHED_HRTICK
233 /*
234  * Use HR-timers to deliver accurate preemption points.
235  */
236 
237 static void hrtick_clear(struct rq *rq)
238 {
239 	if (hrtimer_active(&rq->hrtick_timer))
240 		hrtimer_cancel(&rq->hrtick_timer);
241 }
242 
243 /*
244  * High-resolution timer tick.
245  * Runs from hardirq context with interrupts disabled.
246  */
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
248 {
249 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 	struct rq_flags rf;
251 
252 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
253 
254 	rq_lock(rq, &rf);
255 	update_rq_clock(rq);
256 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 	rq_unlock(rq, &rf);
258 
259 	return HRTIMER_NORESTART;
260 }
261 
262 #ifdef CONFIG_SMP
263 
264 static void __hrtick_restart(struct rq *rq)
265 {
266 	struct hrtimer *timer = &rq->hrtick_timer;
267 
268 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
269 }
270 
271 /*
272  * called from hardirq (IPI) context
273  */
274 static void __hrtick_start(void *arg)
275 {
276 	struct rq *rq = arg;
277 	struct rq_flags rf;
278 
279 	rq_lock(rq, &rf);
280 	__hrtick_restart(rq);
281 	rq_unlock(rq, &rf);
282 }
283 
284 /*
285  * Called to set the hrtick timer state.
286  *
287  * called with rq->lock held and irqs disabled
288  */
289 void hrtick_start(struct rq *rq, u64 delay)
290 {
291 	struct hrtimer *timer = &rq->hrtick_timer;
292 	ktime_t time;
293 	s64 delta;
294 
295 	/*
296 	 * Don't schedule slices shorter than 10000ns, that just
297 	 * doesn't make sense and can cause timer DoS.
298 	 */
299 	delta = max_t(s64, delay, 10000LL);
300 	time = ktime_add_ns(timer->base->get_time(), delta);
301 
302 	hrtimer_set_expires(timer, time);
303 
304 	if (rq == this_rq())
305 		__hrtick_restart(rq);
306 	else
307 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
308 }
309 
310 #else
311 /*
312  * Called to set the hrtick timer state.
313  *
314  * called with rq->lock held and irqs disabled
315  */
316 void hrtick_start(struct rq *rq, u64 delay)
317 {
318 	/*
319 	 * Don't schedule slices shorter than 10000ns, that just
320 	 * doesn't make sense. Rely on vruntime for fairness.
321 	 */
322 	delay = max_t(u64, delay, 10000LL);
323 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 		      HRTIMER_MODE_REL_PINNED_HARD);
325 }
326 
327 #endif /* CONFIG_SMP */
328 
329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 	rq->hrtick_timer.function = hrtick;
336 }
337 #else	/* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
339 {
340 }
341 
342 static inline void hrtick_rq_init(struct rq *rq)
343 {
344 }
345 #endif	/* CONFIG_SCHED_HRTICK */
346 
347 /*
348  * cmpxchg based fetch_or, macro so it works for different integer types
349  */
350 #define fetch_or(ptr, mask)						\
351 	({								\
352 		typeof(ptr) _ptr = (ptr);				\
353 		typeof(mask) _mask = (mask);				\
354 		typeof(*_ptr) _old, _val = *_ptr;			\
355 									\
356 		for (;;) {						\
357 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
358 			if (_old == _val)				\
359 				break;					\
360 			_val = _old;					\
361 		}							\
362 	_old;								\
363 })
364 
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
366 /*
367  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368  * this avoids any races wrt polling state changes and thereby avoids
369  * spurious IPIs.
370  */
371 static bool set_nr_and_not_polling(struct task_struct *p)
372 {
373 	struct thread_info *ti = task_thread_info(p);
374 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 }
376 
377 /*
378  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
379  *
380  * If this returns true, then the idle task promises to call
381  * sched_ttwu_pending() and reschedule soon.
382  */
383 static bool set_nr_if_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
387 
388 	for (;;) {
389 		if (!(val & _TIF_POLLING_NRFLAG))
390 			return false;
391 		if (val & _TIF_NEED_RESCHED)
392 			return true;
393 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 		if (old == val)
395 			break;
396 		val = old;
397 	}
398 	return true;
399 }
400 
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
403 {
404 	set_tsk_need_resched(p);
405 	return true;
406 }
407 
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 	return false;
412 }
413 #endif
414 #endif
415 
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
417 {
418 	struct wake_q_node *node = &task->wake_q;
419 
420 	/*
421 	 * Atomically grab the task, if ->wake_q is !nil already it means
422 	 * its already queued (either by us or someone else) and will get the
423 	 * wakeup due to that.
424 	 *
425 	 * In order to ensure that a pending wakeup will observe our pending
426 	 * state, even in the failed case, an explicit smp_mb() must be used.
427 	 */
428 	smp_mb__before_atomic();
429 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 		return false;
431 
432 	/*
433 	 * The head is context local, there can be no concurrency.
434 	 */
435 	*head->lastp = node;
436 	head->lastp = &node->next;
437 	return true;
438 }
439 
440 /**
441  * wake_q_add() - queue a wakeup for 'later' waking.
442  * @head: the wake_q_head to add @task to
443  * @task: the task to queue for 'later' wakeup
444  *
445  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447  * instantly.
448  *
449  * This function must be used as-if it were wake_up_process(); IOW the task
450  * must be ready to be woken at this location.
451  */
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
453 {
454 	if (__wake_q_add(head, task))
455 		get_task_struct(task);
456 }
457 
458 /**
459  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460  * @head: the wake_q_head to add @task to
461  * @task: the task to queue for 'later' wakeup
462  *
463  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465  * instantly.
466  *
467  * This function must be used as-if it were wake_up_process(); IOW the task
468  * must be ready to be woken at this location.
469  *
470  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471  * that already hold reference to @task can call the 'safe' version and trust
472  * wake_q to do the right thing depending whether or not the @task is already
473  * queued for wakeup.
474  */
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
476 {
477 	if (!__wake_q_add(head, task))
478 		put_task_struct(task);
479 }
480 
481 void wake_up_q(struct wake_q_head *head)
482 {
483 	struct wake_q_node *node = head->first;
484 
485 	while (node != WAKE_Q_TAIL) {
486 		struct task_struct *task;
487 
488 		task = container_of(node, struct task_struct, wake_q);
489 		BUG_ON(!task);
490 		/* Task can safely be re-inserted now: */
491 		node = node->next;
492 		task->wake_q.next = NULL;
493 
494 		/*
495 		 * wake_up_process() executes a full barrier, which pairs with
496 		 * the queueing in wake_q_add() so as not to miss wakeups.
497 		 */
498 		wake_up_process(task);
499 		put_task_struct(task);
500 	}
501 }
502 
503 /*
504  * resched_curr - mark rq's current task 'to be rescheduled now'.
505  *
506  * On UP this means the setting of the need_resched flag, on SMP it
507  * might also involve a cross-CPU call to trigger the scheduler on
508  * the target CPU.
509  */
510 void resched_curr(struct rq *rq)
511 {
512 	struct task_struct *curr = rq->curr;
513 	int cpu;
514 
515 	lockdep_assert_held(&rq->lock);
516 
517 	if (test_tsk_need_resched(curr))
518 		return;
519 
520 	cpu = cpu_of(rq);
521 
522 	if (cpu == smp_processor_id()) {
523 		set_tsk_need_resched(curr);
524 		set_preempt_need_resched();
525 		return;
526 	}
527 
528 	if (set_nr_and_not_polling(curr))
529 		smp_send_reschedule(cpu);
530 	else
531 		trace_sched_wake_idle_without_ipi(cpu);
532 }
533 
534 void resched_cpu(int cpu)
535 {
536 	struct rq *rq = cpu_rq(cpu);
537 	unsigned long flags;
538 
539 	raw_spin_lock_irqsave(&rq->lock, flags);
540 	if (cpu_online(cpu) || cpu == smp_processor_id())
541 		resched_curr(rq);
542 	raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544 
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
547 /*
548  * In the semi idle case, use the nearest busy CPU for migrating timers
549  * from an idle CPU.  This is good for power-savings.
550  *
551  * We don't do similar optimization for completely idle system, as
552  * selecting an idle CPU will add more delays to the timers than intended
553  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
554  */
555 int get_nohz_timer_target(void)
556 {
557 	int i, cpu = smp_processor_id(), default_cpu = -1;
558 	struct sched_domain *sd;
559 
560 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 		if (!idle_cpu(cpu))
562 			return cpu;
563 		default_cpu = cpu;
564 	}
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu_and(i, sched_domain_span(sd),
569 			housekeeping_cpumask(HK_FLAG_TIMER)) {
570 			if (cpu == i)
571 				continue;
572 
573 			if (!idle_cpu(i)) {
574 				cpu = i;
575 				goto unlock;
576 			}
577 		}
578 	}
579 
580 	if (default_cpu == -1)
581 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 	cpu = default_cpu;
583 unlock:
584 	rcu_read_unlock();
585 	return cpu;
586 }
587 
588 /*
589  * When add_timer_on() enqueues a timer into the timer wheel of an
590  * idle CPU then this timer might expire before the next timer event
591  * which is scheduled to wake up that CPU. In case of a completely
592  * idle system the next event might even be infinite time into the
593  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594  * leaves the inner idle loop so the newly added timer is taken into
595  * account when the CPU goes back to idle and evaluates the timer
596  * wheel for the next timer event.
597  */
598 static void wake_up_idle_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 
602 	if (cpu == smp_processor_id())
603 		return;
604 
605 	if (set_nr_and_not_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 	else
608 		trace_sched_wake_idle_without_ipi(cpu);
609 }
610 
611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 	/*
614 	 * We just need the target to call irq_exit() and re-evaluate
615 	 * the next tick. The nohz full kick at least implies that.
616 	 * If needed we can still optimize that later with an
617 	 * empty IRQ.
618 	 */
619 	if (cpu_is_offline(cpu))
620 		return true;  /* Don't try to wake offline CPUs. */
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			tick_nohz_full_kick_cpu(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 /*
632  * Wake up the specified CPU.  If the CPU is going offline, it is the
633  * caller's responsibility to deal with the lost wakeup, for example,
634  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635  */
636 void wake_up_nohz_cpu(int cpu)
637 {
638 	if (!wake_up_full_nohz_cpu(cpu))
639 		wake_up_idle_cpu(cpu);
640 }
641 
642 static void nohz_csd_func(void *info)
643 {
644 	struct rq *rq = info;
645 	int cpu = cpu_of(rq);
646 	unsigned int flags;
647 
648 	/*
649 	 * Release the rq::nohz_csd.
650 	 */
651 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 	WARN_ON(!(flags & NOHZ_KICK_MASK));
653 
654 	rq->idle_balance = idle_cpu(cpu);
655 	if (rq->idle_balance && !need_resched()) {
656 		rq->nohz_idle_balance = flags;
657 		raise_softirq_irqoff(SCHED_SOFTIRQ);
658 	}
659 }
660 
661 #endif /* CONFIG_NO_HZ_COMMON */
662 
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 	int fifo_nr_running;
667 
668 	/* Deadline tasks, even if single, need the tick */
669 	if (rq->dl.dl_nr_running)
670 		return false;
671 
672 	/*
673 	 * If there are more than one RR tasks, we need the tick to effect the
674 	 * actual RR behaviour.
675 	 */
676 	if (rq->rt.rr_nr_running) {
677 		if (rq->rt.rr_nr_running == 1)
678 			return true;
679 		else
680 			return false;
681 	}
682 
683 	/*
684 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 	 * forced preemption between FIFO tasks.
686 	 */
687 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 	if (fifo_nr_running)
689 		return true;
690 
691 	/*
692 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 	 * if there's more than one we need the tick for involuntary
694 	 * preemption.
695 	 */
696 	if (rq->nr_running > 1)
697 		return false;
698 
699 	return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (task_has_idle_policy(p)) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return (unsigned long)p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return (unsigned long)uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 			   unsigned int clamps)
1080 {
1081 	enum uclamp_id clamp_id;
1082 	struct css_task_iter it;
1083 	struct task_struct *p;
1084 
1085 	css_task_iter_start(css, 0, &it);
1086 	while ((p = css_task_iter_next(&it))) {
1087 		for_each_clamp_id(clamp_id) {
1088 			if ((0x1 << clamp_id) & clamps)
1089 				uclamp_update_active(p, clamp_id);
1090 		}
1091 	}
1092 	css_task_iter_end(&it);
1093 }
1094 
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void *buffer, size_t *lenp, loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		uclamp_se_set(&p->uclamp_req[clamp_id],
1236 			      uclamp_none(clamp_id), false);
1237 	}
1238 }
1239 
1240 static void __init init_uclamp(void)
1241 {
1242 	struct uclamp_se uc_max = {};
1243 	enum uclamp_id clamp_id;
1244 	int cpu;
1245 
1246 	mutex_init(&uclamp_mutex);
1247 
1248 	for_each_possible_cpu(cpu) {
1249 		memset(&cpu_rq(cpu)->uclamp, 0,
1250 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 		cpu_rq(cpu)->uclamp_flags = 0;
1252 	}
1253 
1254 	for_each_clamp_id(clamp_id) {
1255 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 			      uclamp_none(clamp_id), false);
1257 	}
1258 
1259 	/* System defaults allow max clamp values for both indexes */
1260 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 		root_task_group.uclamp_req[clamp_id] = uc_max;
1265 		root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 	}
1268 }
1269 
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 				  const struct sched_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 				  const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283 
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 	if (!(flags & ENQUEUE_NOCLOCK))
1287 		update_rq_clock(rq);
1288 
1289 	if (!(flags & ENQUEUE_RESTORE)) {
1290 		sched_info_queued(rq, p);
1291 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 	}
1293 
1294 	uclamp_rq_inc(rq, p);
1295 	p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297 
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 	if (!(flags & DEQUEUE_NOCLOCK))
1301 		update_rq_clock(rq);
1302 
1303 	if (!(flags & DEQUEUE_SAVE)) {
1304 		sched_info_dequeued(rq, p);
1305 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 	}
1307 
1308 	uclamp_rq_dec(rq, p);
1309 	p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311 
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 	if (task_contributes_to_load(p))
1315 		rq->nr_uninterruptible--;
1316 
1317 	enqueue_task(rq, p, flags);
1318 
1319 	p->on_rq = TASK_ON_RQ_QUEUED;
1320 }
1321 
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325 
1326 	if (task_contributes_to_load(p))
1327 		rq->nr_uninterruptible++;
1328 
1329 	dequeue_task(rq, p, flags);
1330 }
1331 
1332 /*
1333  * __normal_prio - return the priority that is based on the static prio
1334  */
1335 static inline int __normal_prio(struct task_struct *p)
1336 {
1337 	return p->static_prio;
1338 }
1339 
1340 /*
1341  * Calculate the expected normal priority: i.e. priority
1342  * without taking RT-inheritance into account. Might be
1343  * boosted by interactivity modifiers. Changes upon fork,
1344  * setprio syscalls, and whenever the interactivity
1345  * estimator recalculates.
1346  */
1347 static inline int normal_prio(struct task_struct *p)
1348 {
1349 	int prio;
1350 
1351 	if (task_has_dl_policy(p))
1352 		prio = MAX_DL_PRIO-1;
1353 	else if (task_has_rt_policy(p))
1354 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 	else
1356 		prio = __normal_prio(p);
1357 	return prio;
1358 }
1359 
1360 /*
1361  * Calculate the current priority, i.e. the priority
1362  * taken into account by the scheduler. This value might
1363  * be boosted by RT tasks, or might be boosted by
1364  * interactivity modifiers. Will be RT if the task got
1365  * RT-boosted. If not then it returns p->normal_prio.
1366  */
1367 static int effective_prio(struct task_struct *p)
1368 {
1369 	p->normal_prio = normal_prio(p);
1370 	/*
1371 	 * If we are RT tasks or we were boosted to RT priority,
1372 	 * keep the priority unchanged. Otherwise, update priority
1373 	 * to the normal priority:
1374 	 */
1375 	if (!rt_prio(p->prio))
1376 		return p->normal_prio;
1377 	return p->prio;
1378 }
1379 
1380 /**
1381  * task_curr - is this task currently executing on a CPU?
1382  * @p: the task in question.
1383  *
1384  * Return: 1 if the task is currently executing. 0 otherwise.
1385  */
1386 inline int task_curr(const struct task_struct *p)
1387 {
1388 	return cpu_curr(task_cpu(p)) == p;
1389 }
1390 
1391 /*
1392  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393  * use the balance_callback list if you want balancing.
1394  *
1395  * this means any call to check_class_changed() must be followed by a call to
1396  * balance_callback().
1397  */
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 				       const struct sched_class *prev_class,
1400 				       int oldprio)
1401 {
1402 	if (prev_class != p->sched_class) {
1403 		if (prev_class->switched_from)
1404 			prev_class->switched_from(rq, p);
1405 
1406 		p->sched_class->switched_to(rq, p);
1407 	} else if (oldprio != p->prio || dl_task(p))
1408 		p->sched_class->prio_changed(rq, p, oldprio);
1409 }
1410 
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 	const struct sched_class *class;
1414 
1415 	if (p->sched_class == rq->curr->sched_class) {
1416 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 	} else {
1418 		for_each_class(class) {
1419 			if (class == rq->curr->sched_class)
1420 				break;
1421 			if (class == p->sched_class) {
1422 				resched_curr(rq);
1423 				break;
1424 			}
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * A queue event has occurred, and we're going to schedule.  In
1430 	 * this case, we can save a useless back to back clock update.
1431 	 */
1432 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 		rq_clock_skip_update(rq);
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 
1438 /*
1439  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440  * __set_cpus_allowed_ptr() and select_fallback_rq().
1441  */
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443 {
1444 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 		return false;
1446 
1447 	if (is_per_cpu_kthread(p))
1448 		return cpu_online(cpu);
1449 
1450 	return cpu_active(cpu);
1451 }
1452 
1453 /*
1454  * This is how migration works:
1455  *
1456  * 1) we invoke migration_cpu_stop() on the target CPU using
1457  *    stop_one_cpu().
1458  * 2) stopper starts to run (implicitly forcing the migrated thread
1459  *    off the CPU)
1460  * 3) it checks whether the migrated task is still in the wrong runqueue.
1461  * 4) if it's in the wrong runqueue then the migration thread removes
1462  *    it and puts it into the right queue.
1463  * 5) stopper completes and stop_one_cpu() returns and the migration
1464  *    is done.
1465  */
1466 
1467 /*
1468  * move_queued_task - move a queued task to new rq.
1469  *
1470  * Returns (locked) new rq. Old rq's lock is released.
1471  */
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 				   struct task_struct *p, int new_cpu)
1474 {
1475 	lockdep_assert_held(&rq->lock);
1476 
1477 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 	set_task_cpu(p, new_cpu);
1480 	rq_unlock(rq, rf);
1481 
1482 	rq = cpu_rq(new_cpu);
1483 
1484 	rq_lock(rq, rf);
1485 	BUG_ON(task_cpu(p) != new_cpu);
1486 	enqueue_task(rq, p, 0);
1487 	p->on_rq = TASK_ON_RQ_QUEUED;
1488 	check_preempt_curr(rq, p, 0);
1489 
1490 	return rq;
1491 }
1492 
1493 struct migration_arg {
1494 	struct task_struct *task;
1495 	int dest_cpu;
1496 };
1497 
1498 /*
1499  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500  * this because either it can't run here any more (set_cpus_allowed()
1501  * away from this CPU, or CPU going down), or because we're
1502  * attempting to rebalance this task on exec (sched_exec).
1503  *
1504  * So we race with normal scheduler movements, but that's OK, as long
1505  * as the task is no longer on this CPU.
1506  */
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 				 struct task_struct *p, int dest_cpu)
1509 {
1510 	/* Affinity changed (again). */
1511 	if (!is_cpu_allowed(p, dest_cpu))
1512 		return rq;
1513 
1514 	update_rq_clock(rq);
1515 	rq = move_queued_task(rq, rf, p, dest_cpu);
1516 
1517 	return rq;
1518 }
1519 
1520 /*
1521  * migration_cpu_stop - this will be executed by a highprio stopper thread
1522  * and performs thread migration by bumping thread off CPU then
1523  * 'pushing' onto another runqueue.
1524  */
1525 static int migration_cpu_stop(void *data)
1526 {
1527 	struct migration_arg *arg = data;
1528 	struct task_struct *p = arg->task;
1529 	struct rq *rq = this_rq();
1530 	struct rq_flags rf;
1531 
1532 	/*
1533 	 * The original target CPU might have gone down and we might
1534 	 * be on another CPU but it doesn't matter.
1535 	 */
1536 	local_irq_disable();
1537 	/*
1538 	 * We need to explicitly wake pending tasks before running
1539 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 	 */
1542 	flush_smp_call_function_from_idle();
1543 
1544 	raw_spin_lock(&p->pi_lock);
1545 	rq_lock(rq, &rf);
1546 	/*
1547 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 	 * we're holding p->pi_lock.
1550 	 */
1551 	if (task_rq(p) == rq) {
1552 		if (task_on_rq_queued(p))
1553 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 		else
1555 			p->wake_cpu = arg->dest_cpu;
1556 	}
1557 	rq_unlock(rq, &rf);
1558 	raw_spin_unlock(&p->pi_lock);
1559 
1560 	local_irq_enable();
1561 	return 0;
1562 }
1563 
1564 /*
1565  * sched_class::set_cpus_allowed must do the below, but is not required to
1566  * actually call this function.
1567  */
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 	cpumask_copy(&p->cpus_mask, new_mask);
1571 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1572 }
1573 
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575 {
1576 	struct rq *rq = task_rq(p);
1577 	bool queued, running;
1578 
1579 	lockdep_assert_held(&p->pi_lock);
1580 
1581 	queued = task_on_rq_queued(p);
1582 	running = task_current(rq, p);
1583 
1584 	if (queued) {
1585 		/*
1586 		 * Because __kthread_bind() calls this on blocked tasks without
1587 		 * holding rq->lock.
1588 		 */
1589 		lockdep_assert_held(&rq->lock);
1590 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1591 	}
1592 	if (running)
1593 		put_prev_task(rq, p);
1594 
1595 	p->sched_class->set_cpus_allowed(p, new_mask);
1596 
1597 	if (queued)
1598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 	if (running)
1600 		set_next_task(rq, p);
1601 }
1602 
1603 /*
1604  * Change a given task's CPU affinity. Migrate the thread to a
1605  * proper CPU and schedule it away if the CPU it's executing on
1606  * is removed from the allowed bitmask.
1607  *
1608  * NOTE: the caller must have a valid reference to the task, the
1609  * task must not exit() & deallocate itself prematurely. The
1610  * call is not atomic; no spinlocks may be held.
1611  */
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 				  const struct cpumask *new_mask, bool check)
1614 {
1615 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 	unsigned int dest_cpu;
1617 	struct rq_flags rf;
1618 	struct rq *rq;
1619 	int ret = 0;
1620 
1621 	rq = task_rq_lock(p, &rf);
1622 	update_rq_clock(rq);
1623 
1624 	if (p->flags & PF_KTHREAD) {
1625 		/*
1626 		 * Kernel threads are allowed on online && !active CPUs
1627 		 */
1628 		cpu_valid_mask = cpu_online_mask;
1629 	}
1630 
1631 	/*
1632 	 * Must re-check here, to close a race against __kthread_bind(),
1633 	 * sched_setaffinity() is not guaranteed to observe the flag.
1634 	 */
1635 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 		ret = -EINVAL;
1637 		goto out;
1638 	}
1639 
1640 	if (cpumask_equal(p->cpus_ptr, new_mask))
1641 		goto out;
1642 
1643 	/*
1644 	 * Picking a ~random cpu helps in cases where we are changing affinity
1645 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 	 * immediately required to distribute the tasks within their new mask.
1647 	 */
1648 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 	if (dest_cpu >= nr_cpu_ids) {
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	do_set_cpus_allowed(p, new_mask);
1655 
1656 	if (p->flags & PF_KTHREAD) {
1657 		/*
1658 		 * For kernel threads that do indeed end up on online &&
1659 		 * !active we want to ensure they are strict per-CPU threads.
1660 		 */
1661 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1663 			p->nr_cpus_allowed != 1);
1664 	}
1665 
1666 	/* Can the task run on the task's current CPU? If so, we're done */
1667 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 		goto out;
1669 
1670 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 		struct migration_arg arg = { p, dest_cpu };
1672 		/* Need help from migration thread: drop lock and wait. */
1673 		task_rq_unlock(rq, p, &rf);
1674 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 		return 0;
1676 	} else if (task_on_rq_queued(p)) {
1677 		/*
1678 		 * OK, since we're going to drop the lock immediately
1679 		 * afterwards anyway.
1680 		 */
1681 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1682 	}
1683 out:
1684 	task_rq_unlock(rq, p, &rf);
1685 
1686 	return ret;
1687 }
1688 
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690 {
1691 	return __set_cpus_allowed_ptr(p, new_mask, false);
1692 }
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694 
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1696 {
1697 #ifdef CONFIG_SCHED_DEBUG
1698 	/*
1699 	 * We should never call set_task_cpu() on a blocked task,
1700 	 * ttwu() will sort out the placement.
1701 	 */
1702 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 			!p->on_rq);
1704 
1705 	/*
1706 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 	 * time relying on p->on_rq.
1709 	 */
1710 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 		     p->sched_class == &fair_sched_class &&
1712 		     (p->on_rq && !task_on_rq_migrating(p)));
1713 
1714 #ifdef CONFIG_LOCKDEP
1715 	/*
1716 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 	 *
1719 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 	 * see task_group().
1721 	 *
1722 	 * Furthermore, all task_rq users should acquire both locks, see
1723 	 * task_rq_lock().
1724 	 */
1725 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 				      lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1728 	/*
1729 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 	 */
1731 	WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1733 
1734 	trace_sched_migrate_task(p, new_cpu);
1735 
1736 	if (task_cpu(p) != new_cpu) {
1737 		if (p->sched_class->migrate_task_rq)
1738 			p->sched_class->migrate_task_rq(p, new_cpu);
1739 		p->se.nr_migrations++;
1740 		rseq_migrate(p);
1741 		perf_event_task_migrate(p);
1742 	}
1743 
1744 	__set_task_cpu(p, new_cpu);
1745 }
1746 
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1749 {
1750 	if (task_on_rq_queued(p)) {
1751 		struct rq *src_rq, *dst_rq;
1752 		struct rq_flags srf, drf;
1753 
1754 		src_rq = task_rq(p);
1755 		dst_rq = cpu_rq(cpu);
1756 
1757 		rq_pin_lock(src_rq, &srf);
1758 		rq_pin_lock(dst_rq, &drf);
1759 
1760 		deactivate_task(src_rq, p, 0);
1761 		set_task_cpu(p, cpu);
1762 		activate_task(dst_rq, p, 0);
1763 		check_preempt_curr(dst_rq, p, 0);
1764 
1765 		rq_unpin_lock(dst_rq, &drf);
1766 		rq_unpin_lock(src_rq, &srf);
1767 
1768 	} else {
1769 		/*
1770 		 * Task isn't running anymore; make it appear like we migrated
1771 		 * it before it went to sleep. This means on wakeup we make the
1772 		 * previous CPU our target instead of where it really is.
1773 		 */
1774 		p->wake_cpu = cpu;
1775 	}
1776 }
1777 
1778 struct migration_swap_arg {
1779 	struct task_struct *src_task, *dst_task;
1780 	int src_cpu, dst_cpu;
1781 };
1782 
1783 static int migrate_swap_stop(void *data)
1784 {
1785 	struct migration_swap_arg *arg = data;
1786 	struct rq *src_rq, *dst_rq;
1787 	int ret = -EAGAIN;
1788 
1789 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 		return -EAGAIN;
1791 
1792 	src_rq = cpu_rq(arg->src_cpu);
1793 	dst_rq = cpu_rq(arg->dst_cpu);
1794 
1795 	double_raw_lock(&arg->src_task->pi_lock,
1796 			&arg->dst_task->pi_lock);
1797 	double_rq_lock(src_rq, dst_rq);
1798 
1799 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 		goto unlock;
1801 
1802 	if (task_cpu(arg->src_task) != arg->src_cpu)
1803 		goto unlock;
1804 
1805 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 		goto unlock;
1807 
1808 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 		goto unlock;
1810 
1811 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1813 
1814 	ret = 0;
1815 
1816 unlock:
1817 	double_rq_unlock(src_rq, dst_rq);
1818 	raw_spin_unlock(&arg->dst_task->pi_lock);
1819 	raw_spin_unlock(&arg->src_task->pi_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Cross migrate two tasks
1826  */
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 		int target_cpu, int curr_cpu)
1829 {
1830 	struct migration_swap_arg arg;
1831 	int ret = -EINVAL;
1832 
1833 	arg = (struct migration_swap_arg){
1834 		.src_task = cur,
1835 		.src_cpu = curr_cpu,
1836 		.dst_task = p,
1837 		.dst_cpu = target_cpu,
1838 	};
1839 
1840 	if (arg.src_cpu == arg.dst_cpu)
1841 		goto out;
1842 
1843 	/*
1844 	 * These three tests are all lockless; this is OK since all of them
1845 	 * will be re-checked with proper locks held further down the line.
1846 	 */
1847 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 		goto out;
1849 
1850 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 		goto out;
1852 
1853 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 		goto out;
1855 
1856 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858 
1859 out:
1860 	return ret;
1861 }
1862 #endif /* CONFIG_NUMA_BALANCING */
1863 
1864 /*
1865  * wait_task_inactive - wait for a thread to unschedule.
1866  *
1867  * If @match_state is nonzero, it's the @p->state value just checked and
1868  * not expected to change.  If it changes, i.e. @p might have woken up,
1869  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1870  * we return a positive number (its total switch count).  If a second call
1871  * a short while later returns the same number, the caller can be sure that
1872  * @p has remained unscheduled the whole time.
1873  *
1874  * The caller must ensure that the task *will* unschedule sometime soon,
1875  * else this function might spin for a *long* time. This function can't
1876  * be called with interrupts off, or it may introduce deadlock with
1877  * smp_call_function() if an IPI is sent by the same process we are
1878  * waiting to become inactive.
1879  */
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1881 {
1882 	int running, queued;
1883 	struct rq_flags rf;
1884 	unsigned long ncsw;
1885 	struct rq *rq;
1886 
1887 	for (;;) {
1888 		/*
1889 		 * We do the initial early heuristics without holding
1890 		 * any task-queue locks at all. We'll only try to get
1891 		 * the runqueue lock when things look like they will
1892 		 * work out!
1893 		 */
1894 		rq = task_rq(p);
1895 
1896 		/*
1897 		 * If the task is actively running on another CPU
1898 		 * still, just relax and busy-wait without holding
1899 		 * any locks.
1900 		 *
1901 		 * NOTE! Since we don't hold any locks, it's not
1902 		 * even sure that "rq" stays as the right runqueue!
1903 		 * But we don't care, since "task_running()" will
1904 		 * return false if the runqueue has changed and p
1905 		 * is actually now running somewhere else!
1906 		 */
1907 		while (task_running(rq, p)) {
1908 			if (match_state && unlikely(p->state != match_state))
1909 				return 0;
1910 			cpu_relax();
1911 		}
1912 
1913 		/*
1914 		 * Ok, time to look more closely! We need the rq
1915 		 * lock now, to be *sure*. If we're wrong, we'll
1916 		 * just go back and repeat.
1917 		 */
1918 		rq = task_rq_lock(p, &rf);
1919 		trace_sched_wait_task(p);
1920 		running = task_running(rq, p);
1921 		queued = task_on_rq_queued(p);
1922 		ncsw = 0;
1923 		if (!match_state || p->state == match_state)
1924 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 		task_rq_unlock(rq, p, &rf);
1926 
1927 		/*
1928 		 * If it changed from the expected state, bail out now.
1929 		 */
1930 		if (unlikely(!ncsw))
1931 			break;
1932 
1933 		/*
1934 		 * Was it really running after all now that we
1935 		 * checked with the proper locks actually held?
1936 		 *
1937 		 * Oops. Go back and try again..
1938 		 */
1939 		if (unlikely(running)) {
1940 			cpu_relax();
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * It's not enough that it's not actively running,
1946 		 * it must be off the runqueue _entirely_, and not
1947 		 * preempted!
1948 		 *
1949 		 * So if it was still runnable (but just not actively
1950 		 * running right now), it's preempted, and we should
1951 		 * yield - it could be a while.
1952 		 */
1953 		if (unlikely(queued)) {
1954 			ktime_t to = NSEC_PER_SEC / HZ;
1955 
1956 			set_current_state(TASK_UNINTERRUPTIBLE);
1957 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 			continue;
1959 		}
1960 
1961 		/*
1962 		 * Ahh, all good. It wasn't running, and it wasn't
1963 		 * runnable, which means that it will never become
1964 		 * running in the future either. We're all done!
1965 		 */
1966 		break;
1967 	}
1968 
1969 	return ncsw;
1970 }
1971 
1972 /***
1973  * kick_process - kick a running thread to enter/exit the kernel
1974  * @p: the to-be-kicked thread
1975  *
1976  * Cause a process which is running on another CPU to enter
1977  * kernel-mode, without any delay. (to get signals handled.)
1978  *
1979  * NOTE: this function doesn't have to take the runqueue lock,
1980  * because all it wants to ensure is that the remote task enters
1981  * the kernel. If the IPI races and the task has been migrated
1982  * to another CPU then no harm is done and the purpose has been
1983  * achieved as well.
1984  */
1985 void kick_process(struct task_struct *p)
1986 {
1987 	int cpu;
1988 
1989 	preempt_disable();
1990 	cpu = task_cpu(p);
1991 	if ((cpu != smp_processor_id()) && task_curr(p))
1992 		smp_send_reschedule(cpu);
1993 	preempt_enable();
1994 }
1995 EXPORT_SYMBOL_GPL(kick_process);
1996 
1997 /*
1998  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1999  *
2000  * A few notes on cpu_active vs cpu_online:
2001  *
2002  *  - cpu_active must be a subset of cpu_online
2003  *
2004  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005  *    see __set_cpus_allowed_ptr(). At this point the newly online
2006  *    CPU isn't yet part of the sched domains, and balancing will not
2007  *    see it.
2008  *
2009  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2010  *    avoid the load balancer to place new tasks on the to be removed
2011  *    CPU. Existing tasks will remain running there and will be taken
2012  *    off.
2013  *
2014  * This means that fallback selection must not select !active CPUs.
2015  * And can assume that any active CPU must be online. Conversely
2016  * select_task_rq() below may allow selection of !active CPUs in order
2017  * to satisfy the above rules.
2018  */
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2020 {
2021 	int nid = cpu_to_node(cpu);
2022 	const struct cpumask *nodemask = NULL;
2023 	enum { cpuset, possible, fail } state = cpuset;
2024 	int dest_cpu;
2025 
2026 	/*
2027 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 	 * will return -1. There is no CPU on the node, and we should
2029 	 * select the CPU on the other node.
2030 	 */
2031 	if (nid != -1) {
2032 		nodemask = cpumask_of_node(nid);
2033 
2034 		/* Look for allowed, online CPU in same node. */
2035 		for_each_cpu(dest_cpu, nodemask) {
2036 			if (!cpu_active(dest_cpu))
2037 				continue;
2038 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 				return dest_cpu;
2040 		}
2041 	}
2042 
2043 	for (;;) {
2044 		/* Any allowed, online CPU? */
2045 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 			if (!is_cpu_allowed(p, dest_cpu))
2047 				continue;
2048 
2049 			goto out;
2050 		}
2051 
2052 		/* No more Mr. Nice Guy. */
2053 		switch (state) {
2054 		case cpuset:
2055 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 				cpuset_cpus_allowed_fallback(p);
2057 				state = possible;
2058 				break;
2059 			}
2060 			/* Fall-through */
2061 		case possible:
2062 			do_set_cpus_allowed(p, cpu_possible_mask);
2063 			state = fail;
2064 			break;
2065 
2066 		case fail:
2067 			BUG();
2068 			break;
2069 		}
2070 	}
2071 
2072 out:
2073 	if (state != cpuset) {
2074 		/*
2075 		 * Don't tell them about moving exiting tasks or
2076 		 * kernel threads (both mm NULL), since they never
2077 		 * leave kernel.
2078 		 */
2079 		if (p->mm && printk_ratelimit()) {
2080 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 					task_pid_nr(p), p->comm, cpu);
2082 		}
2083 	}
2084 
2085 	return dest_cpu;
2086 }
2087 
2088 /*
2089  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2090  */
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2093 {
2094 	lockdep_assert_held(&p->pi_lock);
2095 
2096 	if (p->nr_cpus_allowed > 1)
2097 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 	else
2099 		cpu = cpumask_any(p->cpus_ptr);
2100 
2101 	/*
2102 	 * In order not to call set_task_cpu() on a blocking task we need
2103 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 	 * CPU.
2105 	 *
2106 	 * Since this is common to all placement strategies, this lives here.
2107 	 *
2108 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 	 *   not worry about this generic constraint ]
2110 	 */
2111 	if (unlikely(!is_cpu_allowed(p, cpu)))
2112 		cpu = select_fallback_rq(task_cpu(p), p);
2113 
2114 	return cpu;
2115 }
2116 
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2118 {
2119 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121 
2122 	if (stop) {
2123 		/*
2124 		 * Make it appear like a SCHED_FIFO task, its something
2125 		 * userspace knows about and won't get confused about.
2126 		 *
2127 		 * Also, it will make PI more or less work without too
2128 		 * much confusion -- but then, stop work should not
2129 		 * rely on PI working anyway.
2130 		 */
2131 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132 
2133 		stop->sched_class = &stop_sched_class;
2134 	}
2135 
2136 	cpu_rq(cpu)->stop = stop;
2137 
2138 	if (old_stop) {
2139 		/*
2140 		 * Reset it back to a normal scheduling class so that
2141 		 * it can die in pieces.
2142 		 */
2143 		old_stop->sched_class = &rt_sched_class;
2144 	}
2145 }
2146 
2147 #else
2148 
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 					 const struct cpumask *new_mask, bool check)
2151 {
2152 	return set_cpus_allowed_ptr(p, new_mask);
2153 }
2154 
2155 #endif /* CONFIG_SMP */
2156 
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2159 {
2160 	struct rq *rq;
2161 
2162 	if (!schedstat_enabled())
2163 		return;
2164 
2165 	rq = this_rq();
2166 
2167 #ifdef CONFIG_SMP
2168 	if (cpu == rq->cpu) {
2169 		__schedstat_inc(rq->ttwu_local);
2170 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 	} else {
2172 		struct sched_domain *sd;
2173 
2174 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 		rcu_read_lock();
2176 		for_each_domain(rq->cpu, sd) {
2177 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 				__schedstat_inc(sd->ttwu_wake_remote);
2179 				break;
2180 			}
2181 		}
2182 		rcu_read_unlock();
2183 	}
2184 
2185 	if (wake_flags & WF_MIGRATED)
2186 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2188 
2189 	__schedstat_inc(rq->ttwu_count);
2190 	__schedstat_inc(p->se.statistics.nr_wakeups);
2191 
2192 	if (wake_flags & WF_SYNC)
2193 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2194 }
2195 
2196 /*
2197  * Mark the task runnable and perform wakeup-preemption.
2198  */
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 			   struct rq_flags *rf)
2201 {
2202 	check_preempt_curr(rq, p, wake_flags);
2203 	p->state = TASK_RUNNING;
2204 	trace_sched_wakeup(p);
2205 
2206 #ifdef CONFIG_SMP
2207 	if (p->sched_class->task_woken) {
2208 		/*
2209 		 * Our task @p is fully woken up and running; so its safe to
2210 		 * drop the rq->lock, hereafter rq is only used for statistics.
2211 		 */
2212 		rq_unpin_lock(rq, rf);
2213 		p->sched_class->task_woken(rq, p);
2214 		rq_repin_lock(rq, rf);
2215 	}
2216 
2217 	if (rq->idle_stamp) {
2218 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 		u64 max = 2*rq->max_idle_balance_cost;
2220 
2221 		update_avg(&rq->avg_idle, delta);
2222 
2223 		if (rq->avg_idle > max)
2224 			rq->avg_idle = max;
2225 
2226 		rq->idle_stamp = 0;
2227 	}
2228 #endif
2229 }
2230 
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 		 struct rq_flags *rf)
2234 {
2235 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2236 
2237 	lockdep_assert_held(&rq->lock);
2238 
2239 #ifdef CONFIG_SMP
2240 	if (p->sched_contributes_to_load)
2241 		rq->nr_uninterruptible--;
2242 
2243 	if (wake_flags & WF_MIGRATED)
2244 		en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2246 
2247 	activate_task(rq, p, en_flags);
2248 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2249 }
2250 
2251 /*
2252  * Called in case the task @p isn't fully descheduled from its runqueue,
2253  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254  * since all we need to do is flip p->state to TASK_RUNNING, since
2255  * the task is still ->on_rq.
2256  */
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2258 {
2259 	struct rq_flags rf;
2260 	struct rq *rq;
2261 	int ret = 0;
2262 
2263 	rq = __task_rq_lock(p, &rf);
2264 	if (task_on_rq_queued(p)) {
2265 		/* check_preempt_curr() may use rq clock */
2266 		update_rq_clock(rq);
2267 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 		ret = 1;
2269 	}
2270 	__task_rq_unlock(rq, &rf);
2271 
2272 	return ret;
2273 }
2274 
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void *arg)
2277 {
2278 	struct llist_node *llist = arg;
2279 	struct rq *rq = this_rq();
2280 	struct task_struct *p, *t;
2281 	struct rq_flags rf;
2282 
2283 	if (!llist)
2284 		return;
2285 
2286 	/*
2287 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2288 	 * Races such that false-negatives are possible, since they
2289 	 * are shorter lived that false-positives would be.
2290 	 */
2291 	WRITE_ONCE(rq->ttwu_pending, 0);
2292 
2293 	rq_lock_irqsave(rq, &rf);
2294 	update_rq_clock(rq);
2295 
2296 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2297 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2298 
2299 	rq_unlock_irqrestore(rq, &rf);
2300 }
2301 
2302 void send_call_function_single_ipi(int cpu)
2303 {
2304 	struct rq *rq = cpu_rq(cpu);
2305 
2306 	if (!set_nr_if_polling(rq->idle))
2307 		arch_send_call_function_single_ipi(cpu);
2308 	else
2309 		trace_sched_wake_idle_without_ipi(cpu);
2310 }
2311 
2312 /*
2313  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2314  * necessary. The wakee CPU on receipt of the IPI will queue the task
2315  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2316  * of the wakeup instead of the waker.
2317  */
2318 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2319 {
2320 	struct rq *rq = cpu_rq(cpu);
2321 
2322 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2323 
2324 	WRITE_ONCE(rq->ttwu_pending, 1);
2325 	__smp_call_single_queue(cpu, &p->wake_entry);
2326 }
2327 
2328 void wake_up_if_idle(int cpu)
2329 {
2330 	struct rq *rq = cpu_rq(cpu);
2331 	struct rq_flags rf;
2332 
2333 	rcu_read_lock();
2334 
2335 	if (!is_idle_task(rcu_dereference(rq->curr)))
2336 		goto out;
2337 
2338 	if (set_nr_if_polling(rq->idle)) {
2339 		trace_sched_wake_idle_without_ipi(cpu);
2340 	} else {
2341 		rq_lock_irqsave(rq, &rf);
2342 		if (is_idle_task(rq->curr))
2343 			smp_send_reschedule(cpu);
2344 		/* Else CPU is not idle, do nothing here: */
2345 		rq_unlock_irqrestore(rq, &rf);
2346 	}
2347 
2348 out:
2349 	rcu_read_unlock();
2350 }
2351 
2352 bool cpus_share_cache(int this_cpu, int that_cpu)
2353 {
2354 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2355 }
2356 
2357 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2358 {
2359 	/*
2360 	 * If the CPU does not share cache, then queue the task on the
2361 	 * remote rqs wakelist to avoid accessing remote data.
2362 	 */
2363 	if (!cpus_share_cache(smp_processor_id(), cpu))
2364 		return true;
2365 
2366 	/*
2367 	 * If the task is descheduling and the only running task on the
2368 	 * CPU then use the wakelist to offload the task activation to
2369 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2370 	 * nr_running is checked to avoid unnecessary task stacking.
2371 	 */
2372 	if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2373 		return true;
2374 
2375 	return false;
2376 }
2377 
2378 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2379 {
2380 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2381 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2382 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2383 		return true;
2384 	}
2385 
2386 	return false;
2387 }
2388 #endif /* CONFIG_SMP */
2389 
2390 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2391 {
2392 	struct rq *rq = cpu_rq(cpu);
2393 	struct rq_flags rf;
2394 
2395 #if defined(CONFIG_SMP)
2396 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2397 		return;
2398 #endif
2399 
2400 	rq_lock(rq, &rf);
2401 	update_rq_clock(rq);
2402 	ttwu_do_activate(rq, p, wake_flags, &rf);
2403 	rq_unlock(rq, &rf);
2404 }
2405 
2406 /*
2407  * Notes on Program-Order guarantees on SMP systems.
2408  *
2409  *  MIGRATION
2410  *
2411  * The basic program-order guarantee on SMP systems is that when a task [t]
2412  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2413  * execution on its new CPU [c1].
2414  *
2415  * For migration (of runnable tasks) this is provided by the following means:
2416  *
2417  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2418  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2419  *     rq(c1)->lock (if not at the same time, then in that order).
2420  *  C) LOCK of the rq(c1)->lock scheduling in task
2421  *
2422  * Release/acquire chaining guarantees that B happens after A and C after B.
2423  * Note: the CPU doing B need not be c0 or c1
2424  *
2425  * Example:
2426  *
2427  *   CPU0            CPU1            CPU2
2428  *
2429  *   LOCK rq(0)->lock
2430  *   sched-out X
2431  *   sched-in Y
2432  *   UNLOCK rq(0)->lock
2433  *
2434  *                                   LOCK rq(0)->lock // orders against CPU0
2435  *                                   dequeue X
2436  *                                   UNLOCK rq(0)->lock
2437  *
2438  *                                   LOCK rq(1)->lock
2439  *                                   enqueue X
2440  *                                   UNLOCK rq(1)->lock
2441  *
2442  *                   LOCK rq(1)->lock // orders against CPU2
2443  *                   sched-out Z
2444  *                   sched-in X
2445  *                   UNLOCK rq(1)->lock
2446  *
2447  *
2448  *  BLOCKING -- aka. SLEEP + WAKEUP
2449  *
2450  * For blocking we (obviously) need to provide the same guarantee as for
2451  * migration. However the means are completely different as there is no lock
2452  * chain to provide order. Instead we do:
2453  *
2454  *   1) smp_store_release(X->on_cpu, 0)
2455  *   2) smp_cond_load_acquire(!X->on_cpu)
2456  *
2457  * Example:
2458  *
2459  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2460  *
2461  *   LOCK rq(0)->lock LOCK X->pi_lock
2462  *   dequeue X
2463  *   sched-out X
2464  *   smp_store_release(X->on_cpu, 0);
2465  *
2466  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2467  *                    X->state = WAKING
2468  *                    set_task_cpu(X,2)
2469  *
2470  *                    LOCK rq(2)->lock
2471  *                    enqueue X
2472  *                    X->state = RUNNING
2473  *                    UNLOCK rq(2)->lock
2474  *
2475  *                                          LOCK rq(2)->lock // orders against CPU1
2476  *                                          sched-out Z
2477  *                                          sched-in X
2478  *                                          UNLOCK rq(2)->lock
2479  *
2480  *                    UNLOCK X->pi_lock
2481  *   UNLOCK rq(0)->lock
2482  *
2483  *
2484  * However, for wakeups there is a second guarantee we must provide, namely we
2485  * must ensure that CONDITION=1 done by the caller can not be reordered with
2486  * accesses to the task state; see try_to_wake_up() and set_current_state().
2487  */
2488 
2489 /**
2490  * try_to_wake_up - wake up a thread
2491  * @p: the thread to be awakened
2492  * @state: the mask of task states that can be woken
2493  * @wake_flags: wake modifier flags (WF_*)
2494  *
2495  * If (@state & @p->state) @p->state = TASK_RUNNING.
2496  *
2497  * If the task was not queued/runnable, also place it back on a runqueue.
2498  *
2499  * Atomic against schedule() which would dequeue a task, also see
2500  * set_current_state().
2501  *
2502  * This function executes a full memory barrier before accessing the task
2503  * state; see set_current_state().
2504  *
2505  * Return: %true if @p->state changes (an actual wakeup was done),
2506  *	   %false otherwise.
2507  */
2508 static int
2509 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2510 {
2511 	unsigned long flags;
2512 	int cpu, success = 0;
2513 
2514 	preempt_disable();
2515 	if (p == current) {
2516 		/*
2517 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2518 		 * == smp_processor_id()'. Together this means we can special
2519 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2520 		 * without taking any locks.
2521 		 *
2522 		 * In particular:
2523 		 *  - we rely on Program-Order guarantees for all the ordering,
2524 		 *  - we're serialized against set_special_state() by virtue of
2525 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2526 		 */
2527 		if (!(p->state & state))
2528 			goto out;
2529 
2530 		success = 1;
2531 		cpu = task_cpu(p);
2532 		trace_sched_waking(p);
2533 		p->state = TASK_RUNNING;
2534 		trace_sched_wakeup(p);
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * If we are going to wake up a thread waiting for CONDITION we
2540 	 * need to ensure that CONDITION=1 done by the caller can not be
2541 	 * reordered with p->state check below. This pairs with mb() in
2542 	 * set_current_state() the waiting thread does.
2543 	 */
2544 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2545 	smp_mb__after_spinlock();
2546 	if (!(p->state & state))
2547 		goto unlock;
2548 
2549 	trace_sched_waking(p);
2550 
2551 	/* We're going to change ->state: */
2552 	success = 1;
2553 	cpu = task_cpu(p);
2554 
2555 	/*
2556 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2557 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2558 	 * in smp_cond_load_acquire() below.
2559 	 *
2560 	 * sched_ttwu_pending()			try_to_wake_up()
2561 	 *   STORE p->on_rq = 1			  LOAD p->state
2562 	 *   UNLOCK rq->lock
2563 	 *
2564 	 * __schedule() (switch to task 'p')
2565 	 *   LOCK rq->lock			  smp_rmb();
2566 	 *   smp_mb__after_spinlock();
2567 	 *   UNLOCK rq->lock
2568 	 *
2569 	 * [task p]
2570 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2571 	 *
2572 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2573 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2574 	 *
2575 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2576 	 */
2577 	smp_rmb();
2578 	if (p->on_rq && ttwu_remote(p, wake_flags))
2579 		goto unlock;
2580 
2581 	if (p->in_iowait) {
2582 		delayacct_blkio_end(p);
2583 		atomic_dec(&task_rq(p)->nr_iowait);
2584 	}
2585 
2586 #ifdef CONFIG_SMP
2587 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2588 	p->state = TASK_WAKING;
2589 
2590 	/*
2591 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2592 	 * possible to, falsely, observe p->on_cpu == 0.
2593 	 *
2594 	 * One must be running (->on_cpu == 1) in order to remove oneself
2595 	 * from the runqueue.
2596 	 *
2597 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2598 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2599 	 *   UNLOCK rq->lock
2600 	 *
2601 	 * __schedule() (put 'p' to sleep)
2602 	 *   LOCK rq->lock			  smp_rmb();
2603 	 *   smp_mb__after_spinlock();
2604 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2605 	 *
2606 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2607 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2608 	 */
2609 	smp_rmb();
2610 
2611 	/*
2612 	 * If the owning (remote) CPU is still in the middle of schedule() with
2613 	 * this task as prev, considering queueing p on the remote CPUs wake_list
2614 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2615 	 * let the waker make forward progress. This is safe because IRQs are
2616 	 * disabled and the IPI will deliver after on_cpu is cleared.
2617 	 */
2618 	if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2619 		goto unlock;
2620 
2621 	/*
2622 	 * If the owning (remote) CPU is still in the middle of schedule() with
2623 	 * this task as prev, wait until its done referencing the task.
2624 	 *
2625 	 * Pairs with the smp_store_release() in finish_task().
2626 	 *
2627 	 * This ensures that tasks getting woken will be fully ordered against
2628 	 * their previous state and preserve Program Order.
2629 	 */
2630 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2631 
2632 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2633 	if (task_cpu(p) != cpu) {
2634 		wake_flags |= WF_MIGRATED;
2635 		psi_ttwu_dequeue(p);
2636 		set_task_cpu(p, cpu);
2637 	}
2638 #endif /* CONFIG_SMP */
2639 
2640 	ttwu_queue(p, cpu, wake_flags);
2641 unlock:
2642 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2643 out:
2644 	if (success)
2645 		ttwu_stat(p, cpu, wake_flags);
2646 	preempt_enable();
2647 
2648 	return success;
2649 }
2650 
2651 /**
2652  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2653  * @p: Process for which the function is to be invoked.
2654  * @func: Function to invoke.
2655  * @arg: Argument to function.
2656  *
2657  * If the specified task can be quickly locked into a definite state
2658  * (either sleeping or on a given runqueue), arrange to keep it in that
2659  * state while invoking @func(@arg).  This function can use ->on_rq and
2660  * task_curr() to work out what the state is, if required.  Given that
2661  * @func can be invoked with a runqueue lock held, it had better be quite
2662  * lightweight.
2663  *
2664  * Returns:
2665  *	@false if the task slipped out from under the locks.
2666  *	@true if the task was locked onto a runqueue or is sleeping.
2667  *		However, @func can override this by returning @false.
2668  */
2669 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2670 {
2671 	bool ret = false;
2672 	struct rq_flags rf;
2673 	struct rq *rq;
2674 
2675 	lockdep_assert_irqs_enabled();
2676 	raw_spin_lock_irq(&p->pi_lock);
2677 	if (p->on_rq) {
2678 		rq = __task_rq_lock(p, &rf);
2679 		if (task_rq(p) == rq)
2680 			ret = func(p, arg);
2681 		rq_unlock(rq, &rf);
2682 	} else {
2683 		switch (p->state) {
2684 		case TASK_RUNNING:
2685 		case TASK_WAKING:
2686 			break;
2687 		default:
2688 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2689 			if (!p->on_rq)
2690 				ret = func(p, arg);
2691 		}
2692 	}
2693 	raw_spin_unlock_irq(&p->pi_lock);
2694 	return ret;
2695 }
2696 
2697 /**
2698  * wake_up_process - Wake up a specific process
2699  * @p: The process to be woken up.
2700  *
2701  * Attempt to wake up the nominated process and move it to the set of runnable
2702  * processes.
2703  *
2704  * Return: 1 if the process was woken up, 0 if it was already running.
2705  *
2706  * This function executes a full memory barrier before accessing the task state.
2707  */
2708 int wake_up_process(struct task_struct *p)
2709 {
2710 	return try_to_wake_up(p, TASK_NORMAL, 0);
2711 }
2712 EXPORT_SYMBOL(wake_up_process);
2713 
2714 int wake_up_state(struct task_struct *p, unsigned int state)
2715 {
2716 	return try_to_wake_up(p, state, 0);
2717 }
2718 
2719 /*
2720  * Perform scheduler related setup for a newly forked process p.
2721  * p is forked by current.
2722  *
2723  * __sched_fork() is basic setup used by init_idle() too:
2724  */
2725 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2726 {
2727 	p->on_rq			= 0;
2728 
2729 	p->se.on_rq			= 0;
2730 	p->se.exec_start		= 0;
2731 	p->se.sum_exec_runtime		= 0;
2732 	p->se.prev_sum_exec_runtime	= 0;
2733 	p->se.nr_migrations		= 0;
2734 	p->se.vruntime			= 0;
2735 	INIT_LIST_HEAD(&p->se.group_node);
2736 
2737 #ifdef CONFIG_FAIR_GROUP_SCHED
2738 	p->se.cfs_rq			= NULL;
2739 #endif
2740 
2741 #ifdef CONFIG_SCHEDSTATS
2742 	/* Even if schedstat is disabled, there should not be garbage */
2743 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2744 #endif
2745 
2746 	RB_CLEAR_NODE(&p->dl.rb_node);
2747 	init_dl_task_timer(&p->dl);
2748 	init_dl_inactive_task_timer(&p->dl);
2749 	__dl_clear_params(p);
2750 
2751 	INIT_LIST_HEAD(&p->rt.run_list);
2752 	p->rt.timeout		= 0;
2753 	p->rt.time_slice	= sched_rr_timeslice;
2754 	p->rt.on_rq		= 0;
2755 	p->rt.on_list		= 0;
2756 
2757 #ifdef CONFIG_PREEMPT_NOTIFIERS
2758 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2759 #endif
2760 
2761 #ifdef CONFIG_COMPACTION
2762 	p->capture_control = NULL;
2763 #endif
2764 	init_numa_balancing(clone_flags, p);
2765 #ifdef CONFIG_SMP
2766 	p->wake_entry_type = CSD_TYPE_TTWU;
2767 #endif
2768 }
2769 
2770 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2771 
2772 #ifdef CONFIG_NUMA_BALANCING
2773 
2774 void set_numabalancing_state(bool enabled)
2775 {
2776 	if (enabled)
2777 		static_branch_enable(&sched_numa_balancing);
2778 	else
2779 		static_branch_disable(&sched_numa_balancing);
2780 }
2781 
2782 #ifdef CONFIG_PROC_SYSCTL
2783 int sysctl_numa_balancing(struct ctl_table *table, int write,
2784 			  void *buffer, size_t *lenp, loff_t *ppos)
2785 {
2786 	struct ctl_table t;
2787 	int err;
2788 	int state = static_branch_likely(&sched_numa_balancing);
2789 
2790 	if (write && !capable(CAP_SYS_ADMIN))
2791 		return -EPERM;
2792 
2793 	t = *table;
2794 	t.data = &state;
2795 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2796 	if (err < 0)
2797 		return err;
2798 	if (write)
2799 		set_numabalancing_state(state);
2800 	return err;
2801 }
2802 #endif
2803 #endif
2804 
2805 #ifdef CONFIG_SCHEDSTATS
2806 
2807 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2808 static bool __initdata __sched_schedstats = false;
2809 
2810 static void set_schedstats(bool enabled)
2811 {
2812 	if (enabled)
2813 		static_branch_enable(&sched_schedstats);
2814 	else
2815 		static_branch_disable(&sched_schedstats);
2816 }
2817 
2818 void force_schedstat_enabled(void)
2819 {
2820 	if (!schedstat_enabled()) {
2821 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2822 		static_branch_enable(&sched_schedstats);
2823 	}
2824 }
2825 
2826 static int __init setup_schedstats(char *str)
2827 {
2828 	int ret = 0;
2829 	if (!str)
2830 		goto out;
2831 
2832 	/*
2833 	 * This code is called before jump labels have been set up, so we can't
2834 	 * change the static branch directly just yet.  Instead set a temporary
2835 	 * variable so init_schedstats() can do it later.
2836 	 */
2837 	if (!strcmp(str, "enable")) {
2838 		__sched_schedstats = true;
2839 		ret = 1;
2840 	} else if (!strcmp(str, "disable")) {
2841 		__sched_schedstats = false;
2842 		ret = 1;
2843 	}
2844 out:
2845 	if (!ret)
2846 		pr_warn("Unable to parse schedstats=\n");
2847 
2848 	return ret;
2849 }
2850 __setup("schedstats=", setup_schedstats);
2851 
2852 static void __init init_schedstats(void)
2853 {
2854 	set_schedstats(__sched_schedstats);
2855 }
2856 
2857 #ifdef CONFIG_PROC_SYSCTL
2858 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2859 		size_t *lenp, loff_t *ppos)
2860 {
2861 	struct ctl_table t;
2862 	int err;
2863 	int state = static_branch_likely(&sched_schedstats);
2864 
2865 	if (write && !capable(CAP_SYS_ADMIN))
2866 		return -EPERM;
2867 
2868 	t = *table;
2869 	t.data = &state;
2870 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2871 	if (err < 0)
2872 		return err;
2873 	if (write)
2874 		set_schedstats(state);
2875 	return err;
2876 }
2877 #endif /* CONFIG_PROC_SYSCTL */
2878 #else  /* !CONFIG_SCHEDSTATS */
2879 static inline void init_schedstats(void) {}
2880 #endif /* CONFIG_SCHEDSTATS */
2881 
2882 /*
2883  * fork()/clone()-time setup:
2884  */
2885 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2886 {
2887 	unsigned long flags;
2888 
2889 	__sched_fork(clone_flags, p);
2890 	/*
2891 	 * We mark the process as NEW here. This guarantees that
2892 	 * nobody will actually run it, and a signal or other external
2893 	 * event cannot wake it up and insert it on the runqueue either.
2894 	 */
2895 	p->state = TASK_NEW;
2896 
2897 	/*
2898 	 * Make sure we do not leak PI boosting priority to the child.
2899 	 */
2900 	p->prio = current->normal_prio;
2901 
2902 	uclamp_fork(p);
2903 
2904 	/*
2905 	 * Revert to default priority/policy on fork if requested.
2906 	 */
2907 	if (unlikely(p->sched_reset_on_fork)) {
2908 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2909 			p->policy = SCHED_NORMAL;
2910 			p->static_prio = NICE_TO_PRIO(0);
2911 			p->rt_priority = 0;
2912 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2913 			p->static_prio = NICE_TO_PRIO(0);
2914 
2915 		p->prio = p->normal_prio = __normal_prio(p);
2916 		set_load_weight(p, false);
2917 
2918 		/*
2919 		 * We don't need the reset flag anymore after the fork. It has
2920 		 * fulfilled its duty:
2921 		 */
2922 		p->sched_reset_on_fork = 0;
2923 	}
2924 
2925 	if (dl_prio(p->prio))
2926 		return -EAGAIN;
2927 	else if (rt_prio(p->prio))
2928 		p->sched_class = &rt_sched_class;
2929 	else
2930 		p->sched_class = &fair_sched_class;
2931 
2932 	init_entity_runnable_average(&p->se);
2933 
2934 	/*
2935 	 * The child is not yet in the pid-hash so no cgroup attach races,
2936 	 * and the cgroup is pinned to this child due to cgroup_fork()
2937 	 * is ran before sched_fork().
2938 	 *
2939 	 * Silence PROVE_RCU.
2940 	 */
2941 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2942 	/*
2943 	 * We're setting the CPU for the first time, we don't migrate,
2944 	 * so use __set_task_cpu().
2945 	 */
2946 	__set_task_cpu(p, smp_processor_id());
2947 	if (p->sched_class->task_fork)
2948 		p->sched_class->task_fork(p);
2949 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2950 
2951 #ifdef CONFIG_SCHED_INFO
2952 	if (likely(sched_info_on()))
2953 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2954 #endif
2955 #if defined(CONFIG_SMP)
2956 	p->on_cpu = 0;
2957 #endif
2958 	init_task_preempt_count(p);
2959 #ifdef CONFIG_SMP
2960 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2961 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2962 #endif
2963 	return 0;
2964 }
2965 
2966 unsigned long to_ratio(u64 period, u64 runtime)
2967 {
2968 	if (runtime == RUNTIME_INF)
2969 		return BW_UNIT;
2970 
2971 	/*
2972 	 * Doing this here saves a lot of checks in all
2973 	 * the calling paths, and returning zero seems
2974 	 * safe for them anyway.
2975 	 */
2976 	if (period == 0)
2977 		return 0;
2978 
2979 	return div64_u64(runtime << BW_SHIFT, period);
2980 }
2981 
2982 /*
2983  * wake_up_new_task - wake up a newly created task for the first time.
2984  *
2985  * This function will do some initial scheduler statistics housekeeping
2986  * that must be done for every newly created context, then puts the task
2987  * on the runqueue and wakes it.
2988  */
2989 void wake_up_new_task(struct task_struct *p)
2990 {
2991 	struct rq_flags rf;
2992 	struct rq *rq;
2993 
2994 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2995 	p->state = TASK_RUNNING;
2996 #ifdef CONFIG_SMP
2997 	/*
2998 	 * Fork balancing, do it here and not earlier because:
2999 	 *  - cpus_ptr can change in the fork path
3000 	 *  - any previously selected CPU might disappear through hotplug
3001 	 *
3002 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3003 	 * as we're not fully set-up yet.
3004 	 */
3005 	p->recent_used_cpu = task_cpu(p);
3006 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3007 #endif
3008 	rq = __task_rq_lock(p, &rf);
3009 	update_rq_clock(rq);
3010 	post_init_entity_util_avg(p);
3011 
3012 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3013 	trace_sched_wakeup_new(p);
3014 	check_preempt_curr(rq, p, WF_FORK);
3015 #ifdef CONFIG_SMP
3016 	if (p->sched_class->task_woken) {
3017 		/*
3018 		 * Nothing relies on rq->lock after this, so its fine to
3019 		 * drop it.
3020 		 */
3021 		rq_unpin_lock(rq, &rf);
3022 		p->sched_class->task_woken(rq, p);
3023 		rq_repin_lock(rq, &rf);
3024 	}
3025 #endif
3026 	task_rq_unlock(rq, p, &rf);
3027 }
3028 
3029 #ifdef CONFIG_PREEMPT_NOTIFIERS
3030 
3031 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3032 
3033 void preempt_notifier_inc(void)
3034 {
3035 	static_branch_inc(&preempt_notifier_key);
3036 }
3037 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3038 
3039 void preempt_notifier_dec(void)
3040 {
3041 	static_branch_dec(&preempt_notifier_key);
3042 }
3043 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3044 
3045 /**
3046  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3047  * @notifier: notifier struct to register
3048  */
3049 void preempt_notifier_register(struct preempt_notifier *notifier)
3050 {
3051 	if (!static_branch_unlikely(&preempt_notifier_key))
3052 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3053 
3054 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3055 }
3056 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3057 
3058 /**
3059  * preempt_notifier_unregister - no longer interested in preemption notifications
3060  * @notifier: notifier struct to unregister
3061  *
3062  * This is *not* safe to call from within a preemption notifier.
3063  */
3064 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3065 {
3066 	hlist_del(&notifier->link);
3067 }
3068 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3069 
3070 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3071 {
3072 	struct preempt_notifier *notifier;
3073 
3074 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3075 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3076 }
3077 
3078 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3079 {
3080 	if (static_branch_unlikely(&preempt_notifier_key))
3081 		__fire_sched_in_preempt_notifiers(curr);
3082 }
3083 
3084 static void
3085 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3086 				   struct task_struct *next)
3087 {
3088 	struct preempt_notifier *notifier;
3089 
3090 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3091 		notifier->ops->sched_out(notifier, next);
3092 }
3093 
3094 static __always_inline void
3095 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3096 				 struct task_struct *next)
3097 {
3098 	if (static_branch_unlikely(&preempt_notifier_key))
3099 		__fire_sched_out_preempt_notifiers(curr, next);
3100 }
3101 
3102 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3103 
3104 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3105 {
3106 }
3107 
3108 static inline void
3109 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3110 				 struct task_struct *next)
3111 {
3112 }
3113 
3114 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3115 
3116 static inline void prepare_task(struct task_struct *next)
3117 {
3118 #ifdef CONFIG_SMP
3119 	/*
3120 	 * Claim the task as running, we do this before switching to it
3121 	 * such that any running task will have this set.
3122 	 */
3123 	next->on_cpu = 1;
3124 #endif
3125 }
3126 
3127 static inline void finish_task(struct task_struct *prev)
3128 {
3129 #ifdef CONFIG_SMP
3130 	/*
3131 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3132 	 * We must ensure this doesn't happen until the switch is completely
3133 	 * finished.
3134 	 *
3135 	 * In particular, the load of prev->state in finish_task_switch() must
3136 	 * happen before this.
3137 	 *
3138 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3139 	 */
3140 	smp_store_release(&prev->on_cpu, 0);
3141 #endif
3142 }
3143 
3144 static inline void
3145 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3146 {
3147 	/*
3148 	 * Since the runqueue lock will be released by the next
3149 	 * task (which is an invalid locking op but in the case
3150 	 * of the scheduler it's an obvious special-case), so we
3151 	 * do an early lockdep release here:
3152 	 */
3153 	rq_unpin_lock(rq, rf);
3154 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3155 #ifdef CONFIG_DEBUG_SPINLOCK
3156 	/* this is a valid case when another task releases the spinlock */
3157 	rq->lock.owner = next;
3158 #endif
3159 }
3160 
3161 static inline void finish_lock_switch(struct rq *rq)
3162 {
3163 	/*
3164 	 * If we are tracking spinlock dependencies then we have to
3165 	 * fix up the runqueue lock - which gets 'carried over' from
3166 	 * prev into current:
3167 	 */
3168 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3169 	raw_spin_unlock_irq(&rq->lock);
3170 }
3171 
3172 /*
3173  * NOP if the arch has not defined these:
3174  */
3175 
3176 #ifndef prepare_arch_switch
3177 # define prepare_arch_switch(next)	do { } while (0)
3178 #endif
3179 
3180 #ifndef finish_arch_post_lock_switch
3181 # define finish_arch_post_lock_switch()	do { } while (0)
3182 #endif
3183 
3184 /**
3185  * prepare_task_switch - prepare to switch tasks
3186  * @rq: the runqueue preparing to switch
3187  * @prev: the current task that is being switched out
3188  * @next: the task we are going to switch to.
3189  *
3190  * This is called with the rq lock held and interrupts off. It must
3191  * be paired with a subsequent finish_task_switch after the context
3192  * switch.
3193  *
3194  * prepare_task_switch sets up locking and calls architecture specific
3195  * hooks.
3196  */
3197 static inline void
3198 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3199 		    struct task_struct *next)
3200 {
3201 	kcov_prepare_switch(prev);
3202 	sched_info_switch(rq, prev, next);
3203 	perf_event_task_sched_out(prev, next);
3204 	rseq_preempt(prev);
3205 	fire_sched_out_preempt_notifiers(prev, next);
3206 	prepare_task(next);
3207 	prepare_arch_switch(next);
3208 }
3209 
3210 /**
3211  * finish_task_switch - clean up after a task-switch
3212  * @prev: the thread we just switched away from.
3213  *
3214  * finish_task_switch must be called after the context switch, paired
3215  * with a prepare_task_switch call before the context switch.
3216  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3217  * and do any other architecture-specific cleanup actions.
3218  *
3219  * Note that we may have delayed dropping an mm in context_switch(). If
3220  * so, we finish that here outside of the runqueue lock. (Doing it
3221  * with the lock held can cause deadlocks; see schedule() for
3222  * details.)
3223  *
3224  * The context switch have flipped the stack from under us and restored the
3225  * local variables which were saved when this task called schedule() in the
3226  * past. prev == current is still correct but we need to recalculate this_rq
3227  * because prev may have moved to another CPU.
3228  */
3229 static struct rq *finish_task_switch(struct task_struct *prev)
3230 	__releases(rq->lock)
3231 {
3232 	struct rq *rq = this_rq();
3233 	struct mm_struct *mm = rq->prev_mm;
3234 	long prev_state;
3235 
3236 	/*
3237 	 * The previous task will have left us with a preempt_count of 2
3238 	 * because it left us after:
3239 	 *
3240 	 *	schedule()
3241 	 *	  preempt_disable();			// 1
3242 	 *	  __schedule()
3243 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3244 	 *
3245 	 * Also, see FORK_PREEMPT_COUNT.
3246 	 */
3247 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3248 		      "corrupted preempt_count: %s/%d/0x%x\n",
3249 		      current->comm, current->pid, preempt_count()))
3250 		preempt_count_set(FORK_PREEMPT_COUNT);
3251 
3252 	rq->prev_mm = NULL;
3253 
3254 	/*
3255 	 * A task struct has one reference for the use as "current".
3256 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3257 	 * schedule one last time. The schedule call will never return, and
3258 	 * the scheduled task must drop that reference.
3259 	 *
3260 	 * We must observe prev->state before clearing prev->on_cpu (in
3261 	 * finish_task), otherwise a concurrent wakeup can get prev
3262 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3263 	 * transition, resulting in a double drop.
3264 	 */
3265 	prev_state = prev->state;
3266 	vtime_task_switch(prev);
3267 	perf_event_task_sched_in(prev, current);
3268 	finish_task(prev);
3269 	finish_lock_switch(rq);
3270 	finish_arch_post_lock_switch();
3271 	kcov_finish_switch(current);
3272 
3273 	fire_sched_in_preempt_notifiers(current);
3274 	/*
3275 	 * When switching through a kernel thread, the loop in
3276 	 * membarrier_{private,global}_expedited() may have observed that
3277 	 * kernel thread and not issued an IPI. It is therefore possible to
3278 	 * schedule between user->kernel->user threads without passing though
3279 	 * switch_mm(). Membarrier requires a barrier after storing to
3280 	 * rq->curr, before returning to userspace, so provide them here:
3281 	 *
3282 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3283 	 *   provided by mmdrop(),
3284 	 * - a sync_core for SYNC_CORE.
3285 	 */
3286 	if (mm) {
3287 		membarrier_mm_sync_core_before_usermode(mm);
3288 		mmdrop(mm);
3289 	}
3290 	if (unlikely(prev_state == TASK_DEAD)) {
3291 		if (prev->sched_class->task_dead)
3292 			prev->sched_class->task_dead(prev);
3293 
3294 		/*
3295 		 * Remove function-return probe instances associated with this
3296 		 * task and put them back on the free list.
3297 		 */
3298 		kprobe_flush_task(prev);
3299 
3300 		/* Task is done with its stack. */
3301 		put_task_stack(prev);
3302 
3303 		put_task_struct_rcu_user(prev);
3304 	}
3305 
3306 	tick_nohz_task_switch();
3307 	return rq;
3308 }
3309 
3310 #ifdef CONFIG_SMP
3311 
3312 /* rq->lock is NOT held, but preemption is disabled */
3313 static void __balance_callback(struct rq *rq)
3314 {
3315 	struct callback_head *head, *next;
3316 	void (*func)(struct rq *rq);
3317 	unsigned long flags;
3318 
3319 	raw_spin_lock_irqsave(&rq->lock, flags);
3320 	head = rq->balance_callback;
3321 	rq->balance_callback = NULL;
3322 	while (head) {
3323 		func = (void (*)(struct rq *))head->func;
3324 		next = head->next;
3325 		head->next = NULL;
3326 		head = next;
3327 
3328 		func(rq);
3329 	}
3330 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3331 }
3332 
3333 static inline void balance_callback(struct rq *rq)
3334 {
3335 	if (unlikely(rq->balance_callback))
3336 		__balance_callback(rq);
3337 }
3338 
3339 #else
3340 
3341 static inline void balance_callback(struct rq *rq)
3342 {
3343 }
3344 
3345 #endif
3346 
3347 /**
3348  * schedule_tail - first thing a freshly forked thread must call.
3349  * @prev: the thread we just switched away from.
3350  */
3351 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3352 	__releases(rq->lock)
3353 {
3354 	struct rq *rq;
3355 
3356 	/*
3357 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3358 	 * finish_task_switch() for details.
3359 	 *
3360 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3361 	 * and the preempt_enable() will end up enabling preemption (on
3362 	 * PREEMPT_COUNT kernels).
3363 	 */
3364 
3365 	rq = finish_task_switch(prev);
3366 	balance_callback(rq);
3367 	preempt_enable();
3368 
3369 	if (current->set_child_tid)
3370 		put_user(task_pid_vnr(current), current->set_child_tid);
3371 
3372 	calculate_sigpending();
3373 }
3374 
3375 /*
3376  * context_switch - switch to the new MM and the new thread's register state.
3377  */
3378 static __always_inline struct rq *
3379 context_switch(struct rq *rq, struct task_struct *prev,
3380 	       struct task_struct *next, struct rq_flags *rf)
3381 {
3382 	prepare_task_switch(rq, prev, next);
3383 
3384 	/*
3385 	 * For paravirt, this is coupled with an exit in switch_to to
3386 	 * combine the page table reload and the switch backend into
3387 	 * one hypercall.
3388 	 */
3389 	arch_start_context_switch(prev);
3390 
3391 	/*
3392 	 * kernel -> kernel   lazy + transfer active
3393 	 *   user -> kernel   lazy + mmgrab() active
3394 	 *
3395 	 * kernel ->   user   switch + mmdrop() active
3396 	 *   user ->   user   switch
3397 	 */
3398 	if (!next->mm) {                                // to kernel
3399 		enter_lazy_tlb(prev->active_mm, next);
3400 
3401 		next->active_mm = prev->active_mm;
3402 		if (prev->mm)                           // from user
3403 			mmgrab(prev->active_mm);
3404 		else
3405 			prev->active_mm = NULL;
3406 	} else {                                        // to user
3407 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3408 		/*
3409 		 * sys_membarrier() requires an smp_mb() between setting
3410 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3411 		 *
3412 		 * The below provides this either through switch_mm(), or in
3413 		 * case 'prev->active_mm == next->mm' through
3414 		 * finish_task_switch()'s mmdrop().
3415 		 */
3416 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3417 
3418 		if (!prev->mm) {                        // from kernel
3419 			/* will mmdrop() in finish_task_switch(). */
3420 			rq->prev_mm = prev->active_mm;
3421 			prev->active_mm = NULL;
3422 		}
3423 	}
3424 
3425 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3426 
3427 	prepare_lock_switch(rq, next, rf);
3428 
3429 	/* Here we just switch the register state and the stack. */
3430 	switch_to(prev, next, prev);
3431 	barrier();
3432 
3433 	return finish_task_switch(prev);
3434 }
3435 
3436 /*
3437  * nr_running and nr_context_switches:
3438  *
3439  * externally visible scheduler statistics: current number of runnable
3440  * threads, total number of context switches performed since bootup.
3441  */
3442 unsigned long nr_running(void)
3443 {
3444 	unsigned long i, sum = 0;
3445 
3446 	for_each_online_cpu(i)
3447 		sum += cpu_rq(i)->nr_running;
3448 
3449 	return sum;
3450 }
3451 
3452 /*
3453  * Check if only the current task is running on the CPU.
3454  *
3455  * Caution: this function does not check that the caller has disabled
3456  * preemption, thus the result might have a time-of-check-to-time-of-use
3457  * race.  The caller is responsible to use it correctly, for example:
3458  *
3459  * - from a non-preemptible section (of course)
3460  *
3461  * - from a thread that is bound to a single CPU
3462  *
3463  * - in a loop with very short iterations (e.g. a polling loop)
3464  */
3465 bool single_task_running(void)
3466 {
3467 	return raw_rq()->nr_running == 1;
3468 }
3469 EXPORT_SYMBOL(single_task_running);
3470 
3471 unsigned long long nr_context_switches(void)
3472 {
3473 	int i;
3474 	unsigned long long sum = 0;
3475 
3476 	for_each_possible_cpu(i)
3477 		sum += cpu_rq(i)->nr_switches;
3478 
3479 	return sum;
3480 }
3481 
3482 /*
3483  * Consumers of these two interfaces, like for example the cpuidle menu
3484  * governor, are using nonsensical data. Preferring shallow idle state selection
3485  * for a CPU that has IO-wait which might not even end up running the task when
3486  * it does become runnable.
3487  */
3488 
3489 unsigned long nr_iowait_cpu(int cpu)
3490 {
3491 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3492 }
3493 
3494 /*
3495  * IO-wait accounting, and how its mostly bollocks (on SMP).
3496  *
3497  * The idea behind IO-wait account is to account the idle time that we could
3498  * have spend running if it were not for IO. That is, if we were to improve the
3499  * storage performance, we'd have a proportional reduction in IO-wait time.
3500  *
3501  * This all works nicely on UP, where, when a task blocks on IO, we account
3502  * idle time as IO-wait, because if the storage were faster, it could've been
3503  * running and we'd not be idle.
3504  *
3505  * This has been extended to SMP, by doing the same for each CPU. This however
3506  * is broken.
3507  *
3508  * Imagine for instance the case where two tasks block on one CPU, only the one
3509  * CPU will have IO-wait accounted, while the other has regular idle. Even
3510  * though, if the storage were faster, both could've ran at the same time,
3511  * utilising both CPUs.
3512  *
3513  * This means, that when looking globally, the current IO-wait accounting on
3514  * SMP is a lower bound, by reason of under accounting.
3515  *
3516  * Worse, since the numbers are provided per CPU, they are sometimes
3517  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3518  * associated with any one particular CPU, it can wake to another CPU than it
3519  * blocked on. This means the per CPU IO-wait number is meaningless.
3520  *
3521  * Task CPU affinities can make all that even more 'interesting'.
3522  */
3523 
3524 unsigned long nr_iowait(void)
3525 {
3526 	unsigned long i, sum = 0;
3527 
3528 	for_each_possible_cpu(i)
3529 		sum += nr_iowait_cpu(i);
3530 
3531 	return sum;
3532 }
3533 
3534 #ifdef CONFIG_SMP
3535 
3536 /*
3537  * sched_exec - execve() is a valuable balancing opportunity, because at
3538  * this point the task has the smallest effective memory and cache footprint.
3539  */
3540 void sched_exec(void)
3541 {
3542 	struct task_struct *p = current;
3543 	unsigned long flags;
3544 	int dest_cpu;
3545 
3546 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3547 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3548 	if (dest_cpu == smp_processor_id())
3549 		goto unlock;
3550 
3551 	if (likely(cpu_active(dest_cpu))) {
3552 		struct migration_arg arg = { p, dest_cpu };
3553 
3554 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3555 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3556 		return;
3557 	}
3558 unlock:
3559 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3560 }
3561 
3562 #endif
3563 
3564 DEFINE_PER_CPU(struct kernel_stat, kstat);
3565 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3566 
3567 EXPORT_PER_CPU_SYMBOL(kstat);
3568 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3569 
3570 /*
3571  * The function fair_sched_class.update_curr accesses the struct curr
3572  * and its field curr->exec_start; when called from task_sched_runtime(),
3573  * we observe a high rate of cache misses in practice.
3574  * Prefetching this data results in improved performance.
3575  */
3576 static inline void prefetch_curr_exec_start(struct task_struct *p)
3577 {
3578 #ifdef CONFIG_FAIR_GROUP_SCHED
3579 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3580 #else
3581 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3582 #endif
3583 	prefetch(curr);
3584 	prefetch(&curr->exec_start);
3585 }
3586 
3587 /*
3588  * Return accounted runtime for the task.
3589  * In case the task is currently running, return the runtime plus current's
3590  * pending runtime that have not been accounted yet.
3591  */
3592 unsigned long long task_sched_runtime(struct task_struct *p)
3593 {
3594 	struct rq_flags rf;
3595 	struct rq *rq;
3596 	u64 ns;
3597 
3598 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3599 	/*
3600 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3601 	 * So we have a optimization chance when the task's delta_exec is 0.
3602 	 * Reading ->on_cpu is racy, but this is ok.
3603 	 *
3604 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3605 	 * If we race with it entering CPU, unaccounted time is 0. This is
3606 	 * indistinguishable from the read occurring a few cycles earlier.
3607 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3608 	 * been accounted, so we're correct here as well.
3609 	 */
3610 	if (!p->on_cpu || !task_on_rq_queued(p))
3611 		return p->se.sum_exec_runtime;
3612 #endif
3613 
3614 	rq = task_rq_lock(p, &rf);
3615 	/*
3616 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3617 	 * project cycles that may never be accounted to this
3618 	 * thread, breaking clock_gettime().
3619 	 */
3620 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3621 		prefetch_curr_exec_start(p);
3622 		update_rq_clock(rq);
3623 		p->sched_class->update_curr(rq);
3624 	}
3625 	ns = p->se.sum_exec_runtime;
3626 	task_rq_unlock(rq, p, &rf);
3627 
3628 	return ns;
3629 }
3630 
3631 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3632 
3633 void arch_set_thermal_pressure(struct cpumask *cpus,
3634 			       unsigned long th_pressure)
3635 {
3636 	int cpu;
3637 
3638 	for_each_cpu(cpu, cpus)
3639 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3640 }
3641 
3642 /*
3643  * This function gets called by the timer code, with HZ frequency.
3644  * We call it with interrupts disabled.
3645  */
3646 void scheduler_tick(void)
3647 {
3648 	int cpu = smp_processor_id();
3649 	struct rq *rq = cpu_rq(cpu);
3650 	struct task_struct *curr = rq->curr;
3651 	struct rq_flags rf;
3652 	unsigned long thermal_pressure;
3653 
3654 	arch_scale_freq_tick();
3655 	sched_clock_tick();
3656 
3657 	rq_lock(rq, &rf);
3658 
3659 	update_rq_clock(rq);
3660 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3661 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3662 	curr->sched_class->task_tick(rq, curr, 0);
3663 	calc_global_load_tick(rq);
3664 	psi_task_tick(rq);
3665 
3666 	rq_unlock(rq, &rf);
3667 
3668 	perf_event_task_tick();
3669 
3670 #ifdef CONFIG_SMP
3671 	rq->idle_balance = idle_cpu(cpu);
3672 	trigger_load_balance(rq);
3673 #endif
3674 }
3675 
3676 #ifdef CONFIG_NO_HZ_FULL
3677 
3678 struct tick_work {
3679 	int			cpu;
3680 	atomic_t		state;
3681 	struct delayed_work	work;
3682 };
3683 /* Values for ->state, see diagram below. */
3684 #define TICK_SCHED_REMOTE_OFFLINE	0
3685 #define TICK_SCHED_REMOTE_OFFLINING	1
3686 #define TICK_SCHED_REMOTE_RUNNING	2
3687 
3688 /*
3689  * State diagram for ->state:
3690  *
3691  *
3692  *          TICK_SCHED_REMOTE_OFFLINE
3693  *                    |   ^
3694  *                    |   |
3695  *                    |   | sched_tick_remote()
3696  *                    |   |
3697  *                    |   |
3698  *                    +--TICK_SCHED_REMOTE_OFFLINING
3699  *                    |   ^
3700  *                    |   |
3701  * sched_tick_start() |   | sched_tick_stop()
3702  *                    |   |
3703  *                    V   |
3704  *          TICK_SCHED_REMOTE_RUNNING
3705  *
3706  *
3707  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3708  * and sched_tick_start() are happy to leave the state in RUNNING.
3709  */
3710 
3711 static struct tick_work __percpu *tick_work_cpu;
3712 
3713 static void sched_tick_remote(struct work_struct *work)
3714 {
3715 	struct delayed_work *dwork = to_delayed_work(work);
3716 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3717 	int cpu = twork->cpu;
3718 	struct rq *rq = cpu_rq(cpu);
3719 	struct task_struct *curr;
3720 	struct rq_flags rf;
3721 	u64 delta;
3722 	int os;
3723 
3724 	/*
3725 	 * Handle the tick only if it appears the remote CPU is running in full
3726 	 * dynticks mode. The check is racy by nature, but missing a tick or
3727 	 * having one too much is no big deal because the scheduler tick updates
3728 	 * statistics and checks timeslices in a time-independent way, regardless
3729 	 * of when exactly it is running.
3730 	 */
3731 	if (!tick_nohz_tick_stopped_cpu(cpu))
3732 		goto out_requeue;
3733 
3734 	rq_lock_irq(rq, &rf);
3735 	curr = rq->curr;
3736 	if (cpu_is_offline(cpu))
3737 		goto out_unlock;
3738 
3739 	update_rq_clock(rq);
3740 
3741 	if (!is_idle_task(curr)) {
3742 		/*
3743 		 * Make sure the next tick runs within a reasonable
3744 		 * amount of time.
3745 		 */
3746 		delta = rq_clock_task(rq) - curr->se.exec_start;
3747 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3748 	}
3749 	curr->sched_class->task_tick(rq, curr, 0);
3750 
3751 	calc_load_nohz_remote(rq);
3752 out_unlock:
3753 	rq_unlock_irq(rq, &rf);
3754 out_requeue:
3755 
3756 	/*
3757 	 * Run the remote tick once per second (1Hz). This arbitrary
3758 	 * frequency is large enough to avoid overload but short enough
3759 	 * to keep scheduler internal stats reasonably up to date.  But
3760 	 * first update state to reflect hotplug activity if required.
3761 	 */
3762 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3763 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3764 	if (os == TICK_SCHED_REMOTE_RUNNING)
3765 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3766 }
3767 
3768 static void sched_tick_start(int cpu)
3769 {
3770 	int os;
3771 	struct tick_work *twork;
3772 
3773 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3774 		return;
3775 
3776 	WARN_ON_ONCE(!tick_work_cpu);
3777 
3778 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3779 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3780 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3781 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3782 		twork->cpu = cpu;
3783 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3784 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3785 	}
3786 }
3787 
3788 #ifdef CONFIG_HOTPLUG_CPU
3789 static void sched_tick_stop(int cpu)
3790 {
3791 	struct tick_work *twork;
3792 	int os;
3793 
3794 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3795 		return;
3796 
3797 	WARN_ON_ONCE(!tick_work_cpu);
3798 
3799 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3800 	/* There cannot be competing actions, but don't rely on stop-machine. */
3801 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3802 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3803 	/* Don't cancel, as this would mess up the state machine. */
3804 }
3805 #endif /* CONFIG_HOTPLUG_CPU */
3806 
3807 int __init sched_tick_offload_init(void)
3808 {
3809 	tick_work_cpu = alloc_percpu(struct tick_work);
3810 	BUG_ON(!tick_work_cpu);
3811 	return 0;
3812 }
3813 
3814 #else /* !CONFIG_NO_HZ_FULL */
3815 static inline void sched_tick_start(int cpu) { }
3816 static inline void sched_tick_stop(int cpu) { }
3817 #endif
3818 
3819 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3820 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3821 /*
3822  * If the value passed in is equal to the current preempt count
3823  * then we just disabled preemption. Start timing the latency.
3824  */
3825 static inline void preempt_latency_start(int val)
3826 {
3827 	if (preempt_count() == val) {
3828 		unsigned long ip = get_lock_parent_ip();
3829 #ifdef CONFIG_DEBUG_PREEMPT
3830 		current->preempt_disable_ip = ip;
3831 #endif
3832 		trace_preempt_off(CALLER_ADDR0, ip);
3833 	}
3834 }
3835 
3836 void preempt_count_add(int val)
3837 {
3838 #ifdef CONFIG_DEBUG_PREEMPT
3839 	/*
3840 	 * Underflow?
3841 	 */
3842 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3843 		return;
3844 #endif
3845 	__preempt_count_add(val);
3846 #ifdef CONFIG_DEBUG_PREEMPT
3847 	/*
3848 	 * Spinlock count overflowing soon?
3849 	 */
3850 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3851 				PREEMPT_MASK - 10);
3852 #endif
3853 	preempt_latency_start(val);
3854 }
3855 EXPORT_SYMBOL(preempt_count_add);
3856 NOKPROBE_SYMBOL(preempt_count_add);
3857 
3858 /*
3859  * If the value passed in equals to the current preempt count
3860  * then we just enabled preemption. Stop timing the latency.
3861  */
3862 static inline void preempt_latency_stop(int val)
3863 {
3864 	if (preempt_count() == val)
3865 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3866 }
3867 
3868 void preempt_count_sub(int val)
3869 {
3870 #ifdef CONFIG_DEBUG_PREEMPT
3871 	/*
3872 	 * Underflow?
3873 	 */
3874 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3875 		return;
3876 	/*
3877 	 * Is the spinlock portion underflowing?
3878 	 */
3879 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3880 			!(preempt_count() & PREEMPT_MASK)))
3881 		return;
3882 #endif
3883 
3884 	preempt_latency_stop(val);
3885 	__preempt_count_sub(val);
3886 }
3887 EXPORT_SYMBOL(preempt_count_sub);
3888 NOKPROBE_SYMBOL(preempt_count_sub);
3889 
3890 #else
3891 static inline void preempt_latency_start(int val) { }
3892 static inline void preempt_latency_stop(int val) { }
3893 #endif
3894 
3895 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3896 {
3897 #ifdef CONFIG_DEBUG_PREEMPT
3898 	return p->preempt_disable_ip;
3899 #else
3900 	return 0;
3901 #endif
3902 }
3903 
3904 /*
3905  * Print scheduling while atomic bug:
3906  */
3907 static noinline void __schedule_bug(struct task_struct *prev)
3908 {
3909 	/* Save this before calling printk(), since that will clobber it */
3910 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3911 
3912 	if (oops_in_progress)
3913 		return;
3914 
3915 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3916 		prev->comm, prev->pid, preempt_count());
3917 
3918 	debug_show_held_locks(prev);
3919 	print_modules();
3920 	if (irqs_disabled())
3921 		print_irqtrace_events(prev);
3922 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3923 	    && in_atomic_preempt_off()) {
3924 		pr_err("Preemption disabled at:");
3925 		print_ip_sym(preempt_disable_ip);
3926 		pr_cont("\n");
3927 	}
3928 	if (panic_on_warn)
3929 		panic("scheduling while atomic\n");
3930 
3931 	dump_stack();
3932 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3933 }
3934 
3935 /*
3936  * Various schedule()-time debugging checks and statistics:
3937  */
3938 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3939 {
3940 #ifdef CONFIG_SCHED_STACK_END_CHECK
3941 	if (task_stack_end_corrupted(prev))
3942 		panic("corrupted stack end detected inside scheduler\n");
3943 
3944 	if (task_scs_end_corrupted(prev))
3945 		panic("corrupted shadow stack detected inside scheduler\n");
3946 #endif
3947 
3948 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3949 	if (!preempt && prev->state && prev->non_block_count) {
3950 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3951 			prev->comm, prev->pid, prev->non_block_count);
3952 		dump_stack();
3953 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3954 	}
3955 #endif
3956 
3957 	if (unlikely(in_atomic_preempt_off())) {
3958 		__schedule_bug(prev);
3959 		preempt_count_set(PREEMPT_DISABLED);
3960 	}
3961 	rcu_sleep_check();
3962 
3963 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3964 
3965 	schedstat_inc(this_rq()->sched_count);
3966 }
3967 
3968 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3969 				  struct rq_flags *rf)
3970 {
3971 #ifdef CONFIG_SMP
3972 	const struct sched_class *class;
3973 	/*
3974 	 * We must do the balancing pass before put_prev_task(), such
3975 	 * that when we release the rq->lock the task is in the same
3976 	 * state as before we took rq->lock.
3977 	 *
3978 	 * We can terminate the balance pass as soon as we know there is
3979 	 * a runnable task of @class priority or higher.
3980 	 */
3981 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3982 		if (class->balance(rq, prev, rf))
3983 			break;
3984 	}
3985 #endif
3986 
3987 	put_prev_task(rq, prev);
3988 }
3989 
3990 /*
3991  * Pick up the highest-prio task:
3992  */
3993 static inline struct task_struct *
3994 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3995 {
3996 	const struct sched_class *class;
3997 	struct task_struct *p;
3998 
3999 	/*
4000 	 * Optimization: we know that if all tasks are in the fair class we can
4001 	 * call that function directly, but only if the @prev task wasn't of a
4002 	 * higher scheduling class, because otherwise those loose the
4003 	 * opportunity to pull in more work from other CPUs.
4004 	 */
4005 	if (likely((prev->sched_class == &idle_sched_class ||
4006 		    prev->sched_class == &fair_sched_class) &&
4007 		   rq->nr_running == rq->cfs.h_nr_running)) {
4008 
4009 		p = pick_next_task_fair(rq, prev, rf);
4010 		if (unlikely(p == RETRY_TASK))
4011 			goto restart;
4012 
4013 		/* Assumes fair_sched_class->next == idle_sched_class */
4014 		if (!p) {
4015 			put_prev_task(rq, prev);
4016 			p = pick_next_task_idle(rq);
4017 		}
4018 
4019 		return p;
4020 	}
4021 
4022 restart:
4023 	put_prev_task_balance(rq, prev, rf);
4024 
4025 	for_each_class(class) {
4026 		p = class->pick_next_task(rq);
4027 		if (p)
4028 			return p;
4029 	}
4030 
4031 	/* The idle class should always have a runnable task: */
4032 	BUG();
4033 }
4034 
4035 /*
4036  * __schedule() is the main scheduler function.
4037  *
4038  * The main means of driving the scheduler and thus entering this function are:
4039  *
4040  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4041  *
4042  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4043  *      paths. For example, see arch/x86/entry_64.S.
4044  *
4045  *      To drive preemption between tasks, the scheduler sets the flag in timer
4046  *      interrupt handler scheduler_tick().
4047  *
4048  *   3. Wakeups don't really cause entry into schedule(). They add a
4049  *      task to the run-queue and that's it.
4050  *
4051  *      Now, if the new task added to the run-queue preempts the current
4052  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4053  *      called on the nearest possible occasion:
4054  *
4055  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4056  *
4057  *         - in syscall or exception context, at the next outmost
4058  *           preempt_enable(). (this might be as soon as the wake_up()'s
4059  *           spin_unlock()!)
4060  *
4061  *         - in IRQ context, return from interrupt-handler to
4062  *           preemptible context
4063  *
4064  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4065  *         then at the next:
4066  *
4067  *          - cond_resched() call
4068  *          - explicit schedule() call
4069  *          - return from syscall or exception to user-space
4070  *          - return from interrupt-handler to user-space
4071  *
4072  * WARNING: must be called with preemption disabled!
4073  */
4074 static void __sched notrace __schedule(bool preempt)
4075 {
4076 	struct task_struct *prev, *next;
4077 	unsigned long *switch_count;
4078 	struct rq_flags rf;
4079 	struct rq *rq;
4080 	int cpu;
4081 
4082 	cpu = smp_processor_id();
4083 	rq = cpu_rq(cpu);
4084 	prev = rq->curr;
4085 
4086 	schedule_debug(prev, preempt);
4087 
4088 	if (sched_feat(HRTICK))
4089 		hrtick_clear(rq);
4090 
4091 	local_irq_disable();
4092 	rcu_note_context_switch(preempt);
4093 
4094 	/*
4095 	 * Make sure that signal_pending_state()->signal_pending() below
4096 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4097 	 * done by the caller to avoid the race with signal_wake_up().
4098 	 *
4099 	 * The membarrier system call requires a full memory barrier
4100 	 * after coming from user-space, before storing to rq->curr.
4101 	 */
4102 	rq_lock(rq, &rf);
4103 	smp_mb__after_spinlock();
4104 
4105 	/* Promote REQ to ACT */
4106 	rq->clock_update_flags <<= 1;
4107 	update_rq_clock(rq);
4108 
4109 	switch_count = &prev->nivcsw;
4110 	if (!preempt && prev->state) {
4111 		if (signal_pending_state(prev->state, prev)) {
4112 			prev->state = TASK_RUNNING;
4113 		} else {
4114 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4115 
4116 			if (prev->in_iowait) {
4117 				atomic_inc(&rq->nr_iowait);
4118 				delayacct_blkio_start();
4119 			}
4120 		}
4121 		switch_count = &prev->nvcsw;
4122 	}
4123 
4124 	next = pick_next_task(rq, prev, &rf);
4125 	clear_tsk_need_resched(prev);
4126 	clear_preempt_need_resched();
4127 
4128 	if (likely(prev != next)) {
4129 		rq->nr_switches++;
4130 		/*
4131 		 * RCU users of rcu_dereference(rq->curr) may not see
4132 		 * changes to task_struct made by pick_next_task().
4133 		 */
4134 		RCU_INIT_POINTER(rq->curr, next);
4135 		/*
4136 		 * The membarrier system call requires each architecture
4137 		 * to have a full memory barrier after updating
4138 		 * rq->curr, before returning to user-space.
4139 		 *
4140 		 * Here are the schemes providing that barrier on the
4141 		 * various architectures:
4142 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4143 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4144 		 * - finish_lock_switch() for weakly-ordered
4145 		 *   architectures where spin_unlock is a full barrier,
4146 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4147 		 *   is a RELEASE barrier),
4148 		 */
4149 		++*switch_count;
4150 
4151 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4152 
4153 		trace_sched_switch(preempt, prev, next);
4154 
4155 		/* Also unlocks the rq: */
4156 		rq = context_switch(rq, prev, next, &rf);
4157 	} else {
4158 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4159 		rq_unlock_irq(rq, &rf);
4160 	}
4161 
4162 	balance_callback(rq);
4163 }
4164 
4165 void __noreturn do_task_dead(void)
4166 {
4167 	/* Causes final put_task_struct in finish_task_switch(): */
4168 	set_special_state(TASK_DEAD);
4169 
4170 	/* Tell freezer to ignore us: */
4171 	current->flags |= PF_NOFREEZE;
4172 
4173 	__schedule(false);
4174 	BUG();
4175 
4176 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4177 	for (;;)
4178 		cpu_relax();
4179 }
4180 
4181 static inline void sched_submit_work(struct task_struct *tsk)
4182 {
4183 	if (!tsk->state)
4184 		return;
4185 
4186 	/*
4187 	 * If a worker went to sleep, notify and ask workqueue whether
4188 	 * it wants to wake up a task to maintain concurrency.
4189 	 * As this function is called inside the schedule() context,
4190 	 * we disable preemption to avoid it calling schedule() again
4191 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4192 	 * requires it.
4193 	 */
4194 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4195 		preempt_disable();
4196 		if (tsk->flags & PF_WQ_WORKER)
4197 			wq_worker_sleeping(tsk);
4198 		else
4199 			io_wq_worker_sleeping(tsk);
4200 		preempt_enable_no_resched();
4201 	}
4202 
4203 	if (tsk_is_pi_blocked(tsk))
4204 		return;
4205 
4206 	/*
4207 	 * If we are going to sleep and we have plugged IO queued,
4208 	 * make sure to submit it to avoid deadlocks.
4209 	 */
4210 	if (blk_needs_flush_plug(tsk))
4211 		blk_schedule_flush_plug(tsk);
4212 }
4213 
4214 static void sched_update_worker(struct task_struct *tsk)
4215 {
4216 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4217 		if (tsk->flags & PF_WQ_WORKER)
4218 			wq_worker_running(tsk);
4219 		else
4220 			io_wq_worker_running(tsk);
4221 	}
4222 }
4223 
4224 asmlinkage __visible void __sched schedule(void)
4225 {
4226 	struct task_struct *tsk = current;
4227 
4228 	sched_submit_work(tsk);
4229 	do {
4230 		preempt_disable();
4231 		__schedule(false);
4232 		sched_preempt_enable_no_resched();
4233 	} while (need_resched());
4234 	sched_update_worker(tsk);
4235 }
4236 EXPORT_SYMBOL(schedule);
4237 
4238 /*
4239  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4240  * state (have scheduled out non-voluntarily) by making sure that all
4241  * tasks have either left the run queue or have gone into user space.
4242  * As idle tasks do not do either, they must not ever be preempted
4243  * (schedule out non-voluntarily).
4244  *
4245  * schedule_idle() is similar to schedule_preempt_disable() except that it
4246  * never enables preemption because it does not call sched_submit_work().
4247  */
4248 void __sched schedule_idle(void)
4249 {
4250 	/*
4251 	 * As this skips calling sched_submit_work(), which the idle task does
4252 	 * regardless because that function is a nop when the task is in a
4253 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4254 	 * current task can be in any other state. Note, idle is always in the
4255 	 * TASK_RUNNING state.
4256 	 */
4257 	WARN_ON_ONCE(current->state);
4258 	do {
4259 		__schedule(false);
4260 	} while (need_resched());
4261 }
4262 
4263 #ifdef CONFIG_CONTEXT_TRACKING
4264 asmlinkage __visible void __sched schedule_user(void)
4265 {
4266 	/*
4267 	 * If we come here after a random call to set_need_resched(),
4268 	 * or we have been woken up remotely but the IPI has not yet arrived,
4269 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4270 	 * we find a better solution.
4271 	 *
4272 	 * NB: There are buggy callers of this function.  Ideally we
4273 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4274 	 * too frequently to make sense yet.
4275 	 */
4276 	enum ctx_state prev_state = exception_enter();
4277 	schedule();
4278 	exception_exit(prev_state);
4279 }
4280 #endif
4281 
4282 /**
4283  * schedule_preempt_disabled - called with preemption disabled
4284  *
4285  * Returns with preemption disabled. Note: preempt_count must be 1
4286  */
4287 void __sched schedule_preempt_disabled(void)
4288 {
4289 	sched_preempt_enable_no_resched();
4290 	schedule();
4291 	preempt_disable();
4292 }
4293 
4294 static void __sched notrace preempt_schedule_common(void)
4295 {
4296 	do {
4297 		/*
4298 		 * Because the function tracer can trace preempt_count_sub()
4299 		 * and it also uses preempt_enable/disable_notrace(), if
4300 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4301 		 * by the function tracer will call this function again and
4302 		 * cause infinite recursion.
4303 		 *
4304 		 * Preemption must be disabled here before the function
4305 		 * tracer can trace. Break up preempt_disable() into two
4306 		 * calls. One to disable preemption without fear of being
4307 		 * traced. The other to still record the preemption latency,
4308 		 * which can also be traced by the function tracer.
4309 		 */
4310 		preempt_disable_notrace();
4311 		preempt_latency_start(1);
4312 		__schedule(true);
4313 		preempt_latency_stop(1);
4314 		preempt_enable_no_resched_notrace();
4315 
4316 		/*
4317 		 * Check again in case we missed a preemption opportunity
4318 		 * between schedule and now.
4319 		 */
4320 	} while (need_resched());
4321 }
4322 
4323 #ifdef CONFIG_PREEMPTION
4324 /*
4325  * This is the entry point to schedule() from in-kernel preemption
4326  * off of preempt_enable.
4327  */
4328 asmlinkage __visible void __sched notrace preempt_schedule(void)
4329 {
4330 	/*
4331 	 * If there is a non-zero preempt_count or interrupts are disabled,
4332 	 * we do not want to preempt the current task. Just return..
4333 	 */
4334 	if (likely(!preemptible()))
4335 		return;
4336 
4337 	preempt_schedule_common();
4338 }
4339 NOKPROBE_SYMBOL(preempt_schedule);
4340 EXPORT_SYMBOL(preempt_schedule);
4341 
4342 /**
4343  * preempt_schedule_notrace - preempt_schedule called by tracing
4344  *
4345  * The tracing infrastructure uses preempt_enable_notrace to prevent
4346  * recursion and tracing preempt enabling caused by the tracing
4347  * infrastructure itself. But as tracing can happen in areas coming
4348  * from userspace or just about to enter userspace, a preempt enable
4349  * can occur before user_exit() is called. This will cause the scheduler
4350  * to be called when the system is still in usermode.
4351  *
4352  * To prevent this, the preempt_enable_notrace will use this function
4353  * instead of preempt_schedule() to exit user context if needed before
4354  * calling the scheduler.
4355  */
4356 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4357 {
4358 	enum ctx_state prev_ctx;
4359 
4360 	if (likely(!preemptible()))
4361 		return;
4362 
4363 	do {
4364 		/*
4365 		 * Because the function tracer can trace preempt_count_sub()
4366 		 * and it also uses preempt_enable/disable_notrace(), if
4367 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4368 		 * by the function tracer will call this function again and
4369 		 * cause infinite recursion.
4370 		 *
4371 		 * Preemption must be disabled here before the function
4372 		 * tracer can trace. Break up preempt_disable() into two
4373 		 * calls. One to disable preemption without fear of being
4374 		 * traced. The other to still record the preemption latency,
4375 		 * which can also be traced by the function tracer.
4376 		 */
4377 		preempt_disable_notrace();
4378 		preempt_latency_start(1);
4379 		/*
4380 		 * Needs preempt disabled in case user_exit() is traced
4381 		 * and the tracer calls preempt_enable_notrace() causing
4382 		 * an infinite recursion.
4383 		 */
4384 		prev_ctx = exception_enter();
4385 		__schedule(true);
4386 		exception_exit(prev_ctx);
4387 
4388 		preempt_latency_stop(1);
4389 		preempt_enable_no_resched_notrace();
4390 	} while (need_resched());
4391 }
4392 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4393 
4394 #endif /* CONFIG_PREEMPTION */
4395 
4396 /*
4397  * This is the entry point to schedule() from kernel preemption
4398  * off of irq context.
4399  * Note, that this is called and return with irqs disabled. This will
4400  * protect us against recursive calling from irq.
4401  */
4402 asmlinkage __visible void __sched preempt_schedule_irq(void)
4403 {
4404 	enum ctx_state prev_state;
4405 
4406 	/* Catch callers which need to be fixed */
4407 	BUG_ON(preempt_count() || !irqs_disabled());
4408 
4409 	prev_state = exception_enter();
4410 
4411 	do {
4412 		preempt_disable();
4413 		local_irq_enable();
4414 		__schedule(true);
4415 		local_irq_disable();
4416 		sched_preempt_enable_no_resched();
4417 	} while (need_resched());
4418 
4419 	exception_exit(prev_state);
4420 }
4421 
4422 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4423 			  void *key)
4424 {
4425 	return try_to_wake_up(curr->private, mode, wake_flags);
4426 }
4427 EXPORT_SYMBOL(default_wake_function);
4428 
4429 #ifdef CONFIG_RT_MUTEXES
4430 
4431 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4432 {
4433 	if (pi_task)
4434 		prio = min(prio, pi_task->prio);
4435 
4436 	return prio;
4437 }
4438 
4439 static inline int rt_effective_prio(struct task_struct *p, int prio)
4440 {
4441 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4442 
4443 	return __rt_effective_prio(pi_task, prio);
4444 }
4445 
4446 /*
4447  * rt_mutex_setprio - set the current priority of a task
4448  * @p: task to boost
4449  * @pi_task: donor task
4450  *
4451  * This function changes the 'effective' priority of a task. It does
4452  * not touch ->normal_prio like __setscheduler().
4453  *
4454  * Used by the rt_mutex code to implement priority inheritance
4455  * logic. Call site only calls if the priority of the task changed.
4456  */
4457 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4458 {
4459 	int prio, oldprio, queued, running, queue_flag =
4460 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4461 	const struct sched_class *prev_class;
4462 	struct rq_flags rf;
4463 	struct rq *rq;
4464 
4465 	/* XXX used to be waiter->prio, not waiter->task->prio */
4466 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4467 
4468 	/*
4469 	 * If nothing changed; bail early.
4470 	 */
4471 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4472 		return;
4473 
4474 	rq = __task_rq_lock(p, &rf);
4475 	update_rq_clock(rq);
4476 	/*
4477 	 * Set under pi_lock && rq->lock, such that the value can be used under
4478 	 * either lock.
4479 	 *
4480 	 * Note that there is loads of tricky to make this pointer cache work
4481 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4482 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4483 	 * task is allowed to run again (and can exit). This ensures the pointer
4484 	 * points to a blocked task -- which guaratees the task is present.
4485 	 */
4486 	p->pi_top_task = pi_task;
4487 
4488 	/*
4489 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4490 	 */
4491 	if (prio == p->prio && !dl_prio(prio))
4492 		goto out_unlock;
4493 
4494 	/*
4495 	 * Idle task boosting is a nono in general. There is one
4496 	 * exception, when PREEMPT_RT and NOHZ is active:
4497 	 *
4498 	 * The idle task calls get_next_timer_interrupt() and holds
4499 	 * the timer wheel base->lock on the CPU and another CPU wants
4500 	 * to access the timer (probably to cancel it). We can safely
4501 	 * ignore the boosting request, as the idle CPU runs this code
4502 	 * with interrupts disabled and will complete the lock
4503 	 * protected section without being interrupted. So there is no
4504 	 * real need to boost.
4505 	 */
4506 	if (unlikely(p == rq->idle)) {
4507 		WARN_ON(p != rq->curr);
4508 		WARN_ON(p->pi_blocked_on);
4509 		goto out_unlock;
4510 	}
4511 
4512 	trace_sched_pi_setprio(p, pi_task);
4513 	oldprio = p->prio;
4514 
4515 	if (oldprio == prio)
4516 		queue_flag &= ~DEQUEUE_MOVE;
4517 
4518 	prev_class = p->sched_class;
4519 	queued = task_on_rq_queued(p);
4520 	running = task_current(rq, p);
4521 	if (queued)
4522 		dequeue_task(rq, p, queue_flag);
4523 	if (running)
4524 		put_prev_task(rq, p);
4525 
4526 	/*
4527 	 * Boosting condition are:
4528 	 * 1. -rt task is running and holds mutex A
4529 	 *      --> -dl task blocks on mutex A
4530 	 *
4531 	 * 2. -dl task is running and holds mutex A
4532 	 *      --> -dl task blocks on mutex A and could preempt the
4533 	 *          running task
4534 	 */
4535 	if (dl_prio(prio)) {
4536 		if (!dl_prio(p->normal_prio) ||
4537 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4538 			p->dl.dl_boosted = 1;
4539 			queue_flag |= ENQUEUE_REPLENISH;
4540 		} else
4541 			p->dl.dl_boosted = 0;
4542 		p->sched_class = &dl_sched_class;
4543 	} else if (rt_prio(prio)) {
4544 		if (dl_prio(oldprio))
4545 			p->dl.dl_boosted = 0;
4546 		if (oldprio < prio)
4547 			queue_flag |= ENQUEUE_HEAD;
4548 		p->sched_class = &rt_sched_class;
4549 	} else {
4550 		if (dl_prio(oldprio))
4551 			p->dl.dl_boosted = 0;
4552 		if (rt_prio(oldprio))
4553 			p->rt.timeout = 0;
4554 		p->sched_class = &fair_sched_class;
4555 	}
4556 
4557 	p->prio = prio;
4558 
4559 	if (queued)
4560 		enqueue_task(rq, p, queue_flag);
4561 	if (running)
4562 		set_next_task(rq, p);
4563 
4564 	check_class_changed(rq, p, prev_class, oldprio);
4565 out_unlock:
4566 	/* Avoid rq from going away on us: */
4567 	preempt_disable();
4568 	__task_rq_unlock(rq, &rf);
4569 
4570 	balance_callback(rq);
4571 	preempt_enable();
4572 }
4573 #else
4574 static inline int rt_effective_prio(struct task_struct *p, int prio)
4575 {
4576 	return prio;
4577 }
4578 #endif
4579 
4580 void set_user_nice(struct task_struct *p, long nice)
4581 {
4582 	bool queued, running;
4583 	int old_prio;
4584 	struct rq_flags rf;
4585 	struct rq *rq;
4586 
4587 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4588 		return;
4589 	/*
4590 	 * We have to be careful, if called from sys_setpriority(),
4591 	 * the task might be in the middle of scheduling on another CPU.
4592 	 */
4593 	rq = task_rq_lock(p, &rf);
4594 	update_rq_clock(rq);
4595 
4596 	/*
4597 	 * The RT priorities are set via sched_setscheduler(), but we still
4598 	 * allow the 'normal' nice value to be set - but as expected
4599 	 * it wont have any effect on scheduling until the task is
4600 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4601 	 */
4602 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4603 		p->static_prio = NICE_TO_PRIO(nice);
4604 		goto out_unlock;
4605 	}
4606 	queued = task_on_rq_queued(p);
4607 	running = task_current(rq, p);
4608 	if (queued)
4609 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4610 	if (running)
4611 		put_prev_task(rq, p);
4612 
4613 	p->static_prio = NICE_TO_PRIO(nice);
4614 	set_load_weight(p, true);
4615 	old_prio = p->prio;
4616 	p->prio = effective_prio(p);
4617 
4618 	if (queued)
4619 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4620 	if (running)
4621 		set_next_task(rq, p);
4622 
4623 	/*
4624 	 * If the task increased its priority or is running and
4625 	 * lowered its priority, then reschedule its CPU:
4626 	 */
4627 	p->sched_class->prio_changed(rq, p, old_prio);
4628 
4629 out_unlock:
4630 	task_rq_unlock(rq, p, &rf);
4631 }
4632 EXPORT_SYMBOL(set_user_nice);
4633 
4634 /*
4635  * can_nice - check if a task can reduce its nice value
4636  * @p: task
4637  * @nice: nice value
4638  */
4639 int can_nice(const struct task_struct *p, const int nice)
4640 {
4641 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4642 	int nice_rlim = nice_to_rlimit(nice);
4643 
4644 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4645 		capable(CAP_SYS_NICE));
4646 }
4647 
4648 #ifdef __ARCH_WANT_SYS_NICE
4649 
4650 /*
4651  * sys_nice - change the priority of the current process.
4652  * @increment: priority increment
4653  *
4654  * sys_setpriority is a more generic, but much slower function that
4655  * does similar things.
4656  */
4657 SYSCALL_DEFINE1(nice, int, increment)
4658 {
4659 	long nice, retval;
4660 
4661 	/*
4662 	 * Setpriority might change our priority at the same moment.
4663 	 * We don't have to worry. Conceptually one call occurs first
4664 	 * and we have a single winner.
4665 	 */
4666 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4667 	nice = task_nice(current) + increment;
4668 
4669 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4670 	if (increment < 0 && !can_nice(current, nice))
4671 		return -EPERM;
4672 
4673 	retval = security_task_setnice(current, nice);
4674 	if (retval)
4675 		return retval;
4676 
4677 	set_user_nice(current, nice);
4678 	return 0;
4679 }
4680 
4681 #endif
4682 
4683 /**
4684  * task_prio - return the priority value of a given task.
4685  * @p: the task in question.
4686  *
4687  * Return: The priority value as seen by users in /proc.
4688  * RT tasks are offset by -200. Normal tasks are centered
4689  * around 0, value goes from -16 to +15.
4690  */
4691 int task_prio(const struct task_struct *p)
4692 {
4693 	return p->prio - MAX_RT_PRIO;
4694 }
4695 
4696 /**
4697  * idle_cpu - is a given CPU idle currently?
4698  * @cpu: the processor in question.
4699  *
4700  * Return: 1 if the CPU is currently idle. 0 otherwise.
4701  */
4702 int idle_cpu(int cpu)
4703 {
4704 	struct rq *rq = cpu_rq(cpu);
4705 
4706 	if (rq->curr != rq->idle)
4707 		return 0;
4708 
4709 	if (rq->nr_running)
4710 		return 0;
4711 
4712 #ifdef CONFIG_SMP
4713 	if (rq->ttwu_pending)
4714 		return 0;
4715 #endif
4716 
4717 	return 1;
4718 }
4719 
4720 /**
4721  * available_idle_cpu - is a given CPU idle for enqueuing work.
4722  * @cpu: the CPU in question.
4723  *
4724  * Return: 1 if the CPU is currently idle. 0 otherwise.
4725  */
4726 int available_idle_cpu(int cpu)
4727 {
4728 	if (!idle_cpu(cpu))
4729 		return 0;
4730 
4731 	if (vcpu_is_preempted(cpu))
4732 		return 0;
4733 
4734 	return 1;
4735 }
4736 
4737 /**
4738  * idle_task - return the idle task for a given CPU.
4739  * @cpu: the processor in question.
4740  *
4741  * Return: The idle task for the CPU @cpu.
4742  */
4743 struct task_struct *idle_task(int cpu)
4744 {
4745 	return cpu_rq(cpu)->idle;
4746 }
4747 
4748 /**
4749  * find_process_by_pid - find a process with a matching PID value.
4750  * @pid: the pid in question.
4751  *
4752  * The task of @pid, if found. %NULL otherwise.
4753  */
4754 static struct task_struct *find_process_by_pid(pid_t pid)
4755 {
4756 	return pid ? find_task_by_vpid(pid) : current;
4757 }
4758 
4759 /*
4760  * sched_setparam() passes in -1 for its policy, to let the functions
4761  * it calls know not to change it.
4762  */
4763 #define SETPARAM_POLICY	-1
4764 
4765 static void __setscheduler_params(struct task_struct *p,
4766 		const struct sched_attr *attr)
4767 {
4768 	int policy = attr->sched_policy;
4769 
4770 	if (policy == SETPARAM_POLICY)
4771 		policy = p->policy;
4772 
4773 	p->policy = policy;
4774 
4775 	if (dl_policy(policy))
4776 		__setparam_dl(p, attr);
4777 	else if (fair_policy(policy))
4778 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4779 
4780 	/*
4781 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4782 	 * !rt_policy. Always setting this ensures that things like
4783 	 * getparam()/getattr() don't report silly values for !rt tasks.
4784 	 */
4785 	p->rt_priority = attr->sched_priority;
4786 	p->normal_prio = normal_prio(p);
4787 	set_load_weight(p, true);
4788 }
4789 
4790 /* Actually do priority change: must hold pi & rq lock. */
4791 static void __setscheduler(struct rq *rq, struct task_struct *p,
4792 			   const struct sched_attr *attr, bool keep_boost)
4793 {
4794 	/*
4795 	 * If params can't change scheduling class changes aren't allowed
4796 	 * either.
4797 	 */
4798 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4799 		return;
4800 
4801 	__setscheduler_params(p, attr);
4802 
4803 	/*
4804 	 * Keep a potential priority boosting if called from
4805 	 * sched_setscheduler().
4806 	 */
4807 	p->prio = normal_prio(p);
4808 	if (keep_boost)
4809 		p->prio = rt_effective_prio(p, p->prio);
4810 
4811 	if (dl_prio(p->prio))
4812 		p->sched_class = &dl_sched_class;
4813 	else if (rt_prio(p->prio))
4814 		p->sched_class = &rt_sched_class;
4815 	else
4816 		p->sched_class = &fair_sched_class;
4817 }
4818 
4819 /*
4820  * Check the target process has a UID that matches the current process's:
4821  */
4822 static bool check_same_owner(struct task_struct *p)
4823 {
4824 	const struct cred *cred = current_cred(), *pcred;
4825 	bool match;
4826 
4827 	rcu_read_lock();
4828 	pcred = __task_cred(p);
4829 	match = (uid_eq(cred->euid, pcred->euid) ||
4830 		 uid_eq(cred->euid, pcred->uid));
4831 	rcu_read_unlock();
4832 	return match;
4833 }
4834 
4835 static int __sched_setscheduler(struct task_struct *p,
4836 				const struct sched_attr *attr,
4837 				bool user, bool pi)
4838 {
4839 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4840 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4841 	int retval, oldprio, oldpolicy = -1, queued, running;
4842 	int new_effective_prio, policy = attr->sched_policy;
4843 	const struct sched_class *prev_class;
4844 	struct rq_flags rf;
4845 	int reset_on_fork;
4846 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4847 	struct rq *rq;
4848 
4849 	/* The pi code expects interrupts enabled */
4850 	BUG_ON(pi && in_interrupt());
4851 recheck:
4852 	/* Double check policy once rq lock held: */
4853 	if (policy < 0) {
4854 		reset_on_fork = p->sched_reset_on_fork;
4855 		policy = oldpolicy = p->policy;
4856 	} else {
4857 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4858 
4859 		if (!valid_policy(policy))
4860 			return -EINVAL;
4861 	}
4862 
4863 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4864 		return -EINVAL;
4865 
4866 	/*
4867 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4868 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4869 	 * SCHED_BATCH and SCHED_IDLE is 0.
4870 	 */
4871 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4872 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4873 		return -EINVAL;
4874 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4875 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4876 		return -EINVAL;
4877 
4878 	/*
4879 	 * Allow unprivileged RT tasks to decrease priority:
4880 	 */
4881 	if (user && !capable(CAP_SYS_NICE)) {
4882 		if (fair_policy(policy)) {
4883 			if (attr->sched_nice < task_nice(p) &&
4884 			    !can_nice(p, attr->sched_nice))
4885 				return -EPERM;
4886 		}
4887 
4888 		if (rt_policy(policy)) {
4889 			unsigned long rlim_rtprio =
4890 					task_rlimit(p, RLIMIT_RTPRIO);
4891 
4892 			/* Can't set/change the rt policy: */
4893 			if (policy != p->policy && !rlim_rtprio)
4894 				return -EPERM;
4895 
4896 			/* Can't increase priority: */
4897 			if (attr->sched_priority > p->rt_priority &&
4898 			    attr->sched_priority > rlim_rtprio)
4899 				return -EPERM;
4900 		}
4901 
4902 		 /*
4903 		  * Can't set/change SCHED_DEADLINE policy at all for now
4904 		  * (safest behavior); in the future we would like to allow
4905 		  * unprivileged DL tasks to increase their relative deadline
4906 		  * or reduce their runtime (both ways reducing utilization)
4907 		  */
4908 		if (dl_policy(policy))
4909 			return -EPERM;
4910 
4911 		/*
4912 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4913 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4914 		 */
4915 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4916 			if (!can_nice(p, task_nice(p)))
4917 				return -EPERM;
4918 		}
4919 
4920 		/* Can't change other user's priorities: */
4921 		if (!check_same_owner(p))
4922 			return -EPERM;
4923 
4924 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4925 		if (p->sched_reset_on_fork && !reset_on_fork)
4926 			return -EPERM;
4927 	}
4928 
4929 	if (user) {
4930 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4931 			return -EINVAL;
4932 
4933 		retval = security_task_setscheduler(p);
4934 		if (retval)
4935 			return retval;
4936 	}
4937 
4938 	/* Update task specific "requested" clamps */
4939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4940 		retval = uclamp_validate(p, attr);
4941 		if (retval)
4942 			return retval;
4943 	}
4944 
4945 	if (pi)
4946 		cpuset_read_lock();
4947 
4948 	/*
4949 	 * Make sure no PI-waiters arrive (or leave) while we are
4950 	 * changing the priority of the task:
4951 	 *
4952 	 * To be able to change p->policy safely, the appropriate
4953 	 * runqueue lock must be held.
4954 	 */
4955 	rq = task_rq_lock(p, &rf);
4956 	update_rq_clock(rq);
4957 
4958 	/*
4959 	 * Changing the policy of the stop threads its a very bad idea:
4960 	 */
4961 	if (p == rq->stop) {
4962 		retval = -EINVAL;
4963 		goto unlock;
4964 	}
4965 
4966 	/*
4967 	 * If not changing anything there's no need to proceed further,
4968 	 * but store a possible modification of reset_on_fork.
4969 	 */
4970 	if (unlikely(policy == p->policy)) {
4971 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4972 			goto change;
4973 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4974 			goto change;
4975 		if (dl_policy(policy) && dl_param_changed(p, attr))
4976 			goto change;
4977 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4978 			goto change;
4979 
4980 		p->sched_reset_on_fork = reset_on_fork;
4981 		retval = 0;
4982 		goto unlock;
4983 	}
4984 change:
4985 
4986 	if (user) {
4987 #ifdef CONFIG_RT_GROUP_SCHED
4988 		/*
4989 		 * Do not allow realtime tasks into groups that have no runtime
4990 		 * assigned.
4991 		 */
4992 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4993 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4994 				!task_group_is_autogroup(task_group(p))) {
4995 			retval = -EPERM;
4996 			goto unlock;
4997 		}
4998 #endif
4999 #ifdef CONFIG_SMP
5000 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5001 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5002 			cpumask_t *span = rq->rd->span;
5003 
5004 			/*
5005 			 * Don't allow tasks with an affinity mask smaller than
5006 			 * the entire root_domain to become SCHED_DEADLINE. We
5007 			 * will also fail if there's no bandwidth available.
5008 			 */
5009 			if (!cpumask_subset(span, p->cpus_ptr) ||
5010 			    rq->rd->dl_bw.bw == 0) {
5011 				retval = -EPERM;
5012 				goto unlock;
5013 			}
5014 		}
5015 #endif
5016 	}
5017 
5018 	/* Re-check policy now with rq lock held: */
5019 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5020 		policy = oldpolicy = -1;
5021 		task_rq_unlock(rq, p, &rf);
5022 		if (pi)
5023 			cpuset_read_unlock();
5024 		goto recheck;
5025 	}
5026 
5027 	/*
5028 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5029 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5030 	 * is available.
5031 	 */
5032 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5033 		retval = -EBUSY;
5034 		goto unlock;
5035 	}
5036 
5037 	p->sched_reset_on_fork = reset_on_fork;
5038 	oldprio = p->prio;
5039 
5040 	if (pi) {
5041 		/*
5042 		 * Take priority boosted tasks into account. If the new
5043 		 * effective priority is unchanged, we just store the new
5044 		 * normal parameters and do not touch the scheduler class and
5045 		 * the runqueue. This will be done when the task deboost
5046 		 * itself.
5047 		 */
5048 		new_effective_prio = rt_effective_prio(p, newprio);
5049 		if (new_effective_prio == oldprio)
5050 			queue_flags &= ~DEQUEUE_MOVE;
5051 	}
5052 
5053 	queued = task_on_rq_queued(p);
5054 	running = task_current(rq, p);
5055 	if (queued)
5056 		dequeue_task(rq, p, queue_flags);
5057 	if (running)
5058 		put_prev_task(rq, p);
5059 
5060 	prev_class = p->sched_class;
5061 
5062 	__setscheduler(rq, p, attr, pi);
5063 	__setscheduler_uclamp(p, attr);
5064 
5065 	if (queued) {
5066 		/*
5067 		 * We enqueue to tail when the priority of a task is
5068 		 * increased (user space view).
5069 		 */
5070 		if (oldprio < p->prio)
5071 			queue_flags |= ENQUEUE_HEAD;
5072 
5073 		enqueue_task(rq, p, queue_flags);
5074 	}
5075 	if (running)
5076 		set_next_task(rq, p);
5077 
5078 	check_class_changed(rq, p, prev_class, oldprio);
5079 
5080 	/* Avoid rq from going away on us: */
5081 	preempt_disable();
5082 	task_rq_unlock(rq, p, &rf);
5083 
5084 	if (pi) {
5085 		cpuset_read_unlock();
5086 		rt_mutex_adjust_pi(p);
5087 	}
5088 
5089 	/* Run balance callbacks after we've adjusted the PI chain: */
5090 	balance_callback(rq);
5091 	preempt_enable();
5092 
5093 	return 0;
5094 
5095 unlock:
5096 	task_rq_unlock(rq, p, &rf);
5097 	if (pi)
5098 		cpuset_read_unlock();
5099 	return retval;
5100 }
5101 
5102 static int _sched_setscheduler(struct task_struct *p, int policy,
5103 			       const struct sched_param *param, bool check)
5104 {
5105 	struct sched_attr attr = {
5106 		.sched_policy   = policy,
5107 		.sched_priority = param->sched_priority,
5108 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5109 	};
5110 
5111 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5112 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5113 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5114 		policy &= ~SCHED_RESET_ON_FORK;
5115 		attr.sched_policy = policy;
5116 	}
5117 
5118 	return __sched_setscheduler(p, &attr, check, true);
5119 }
5120 /**
5121  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5122  * @p: the task in question.
5123  * @policy: new policy.
5124  * @param: structure containing the new RT priority.
5125  *
5126  * Return: 0 on success. An error code otherwise.
5127  *
5128  * NOTE that the task may be already dead.
5129  */
5130 int sched_setscheduler(struct task_struct *p, int policy,
5131 		       const struct sched_param *param)
5132 {
5133 	return _sched_setscheduler(p, policy, param, true);
5134 }
5135 EXPORT_SYMBOL_GPL(sched_setscheduler);
5136 
5137 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5138 {
5139 	return __sched_setscheduler(p, attr, true, true);
5140 }
5141 EXPORT_SYMBOL_GPL(sched_setattr);
5142 
5143 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5144 {
5145 	return __sched_setscheduler(p, attr, false, true);
5146 }
5147 
5148 /**
5149  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5150  * @p: the task in question.
5151  * @policy: new policy.
5152  * @param: structure containing the new RT priority.
5153  *
5154  * Just like sched_setscheduler, only don't bother checking if the
5155  * current context has permission.  For example, this is needed in
5156  * stop_machine(): we create temporary high priority worker threads,
5157  * but our caller might not have that capability.
5158  *
5159  * Return: 0 on success. An error code otherwise.
5160  */
5161 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5162 			       const struct sched_param *param)
5163 {
5164 	return _sched_setscheduler(p, policy, param, false);
5165 }
5166 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5167 
5168 static int
5169 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5170 {
5171 	struct sched_param lparam;
5172 	struct task_struct *p;
5173 	int retval;
5174 
5175 	if (!param || pid < 0)
5176 		return -EINVAL;
5177 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5178 		return -EFAULT;
5179 
5180 	rcu_read_lock();
5181 	retval = -ESRCH;
5182 	p = find_process_by_pid(pid);
5183 	if (likely(p))
5184 		get_task_struct(p);
5185 	rcu_read_unlock();
5186 
5187 	if (likely(p)) {
5188 		retval = sched_setscheduler(p, policy, &lparam);
5189 		put_task_struct(p);
5190 	}
5191 
5192 	return retval;
5193 }
5194 
5195 /*
5196  * Mimics kernel/events/core.c perf_copy_attr().
5197  */
5198 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5199 {
5200 	u32 size;
5201 	int ret;
5202 
5203 	/* Zero the full structure, so that a short copy will be nice: */
5204 	memset(attr, 0, sizeof(*attr));
5205 
5206 	ret = get_user(size, &uattr->size);
5207 	if (ret)
5208 		return ret;
5209 
5210 	/* ABI compatibility quirk: */
5211 	if (!size)
5212 		size = SCHED_ATTR_SIZE_VER0;
5213 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5214 		goto err_size;
5215 
5216 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5217 	if (ret) {
5218 		if (ret == -E2BIG)
5219 			goto err_size;
5220 		return ret;
5221 	}
5222 
5223 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5224 	    size < SCHED_ATTR_SIZE_VER1)
5225 		return -EINVAL;
5226 
5227 	/*
5228 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5229 	 * to be strict and return an error on out-of-bounds values?
5230 	 */
5231 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5232 
5233 	return 0;
5234 
5235 err_size:
5236 	put_user(sizeof(*attr), &uattr->size);
5237 	return -E2BIG;
5238 }
5239 
5240 /**
5241  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5242  * @pid: the pid in question.
5243  * @policy: new policy.
5244  * @param: structure containing the new RT priority.
5245  *
5246  * Return: 0 on success. An error code otherwise.
5247  */
5248 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5249 {
5250 	if (policy < 0)
5251 		return -EINVAL;
5252 
5253 	return do_sched_setscheduler(pid, policy, param);
5254 }
5255 
5256 /**
5257  * sys_sched_setparam - set/change the RT priority of a thread
5258  * @pid: the pid in question.
5259  * @param: structure containing the new RT priority.
5260  *
5261  * Return: 0 on success. An error code otherwise.
5262  */
5263 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5264 {
5265 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5266 }
5267 
5268 /**
5269  * sys_sched_setattr - same as above, but with extended sched_attr
5270  * @pid: the pid in question.
5271  * @uattr: structure containing the extended parameters.
5272  * @flags: for future extension.
5273  */
5274 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5275 			       unsigned int, flags)
5276 {
5277 	struct sched_attr attr;
5278 	struct task_struct *p;
5279 	int retval;
5280 
5281 	if (!uattr || pid < 0 || flags)
5282 		return -EINVAL;
5283 
5284 	retval = sched_copy_attr(uattr, &attr);
5285 	if (retval)
5286 		return retval;
5287 
5288 	if ((int)attr.sched_policy < 0)
5289 		return -EINVAL;
5290 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5291 		attr.sched_policy = SETPARAM_POLICY;
5292 
5293 	rcu_read_lock();
5294 	retval = -ESRCH;
5295 	p = find_process_by_pid(pid);
5296 	if (likely(p))
5297 		get_task_struct(p);
5298 	rcu_read_unlock();
5299 
5300 	if (likely(p)) {
5301 		retval = sched_setattr(p, &attr);
5302 		put_task_struct(p);
5303 	}
5304 
5305 	return retval;
5306 }
5307 
5308 /**
5309  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5310  * @pid: the pid in question.
5311  *
5312  * Return: On success, the policy of the thread. Otherwise, a negative error
5313  * code.
5314  */
5315 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5316 {
5317 	struct task_struct *p;
5318 	int retval;
5319 
5320 	if (pid < 0)
5321 		return -EINVAL;
5322 
5323 	retval = -ESRCH;
5324 	rcu_read_lock();
5325 	p = find_process_by_pid(pid);
5326 	if (p) {
5327 		retval = security_task_getscheduler(p);
5328 		if (!retval)
5329 			retval = p->policy
5330 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5331 	}
5332 	rcu_read_unlock();
5333 	return retval;
5334 }
5335 
5336 /**
5337  * sys_sched_getparam - get the RT priority of a thread
5338  * @pid: the pid in question.
5339  * @param: structure containing the RT priority.
5340  *
5341  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5342  * code.
5343  */
5344 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5345 {
5346 	struct sched_param lp = { .sched_priority = 0 };
5347 	struct task_struct *p;
5348 	int retval;
5349 
5350 	if (!param || pid < 0)
5351 		return -EINVAL;
5352 
5353 	rcu_read_lock();
5354 	p = find_process_by_pid(pid);
5355 	retval = -ESRCH;
5356 	if (!p)
5357 		goto out_unlock;
5358 
5359 	retval = security_task_getscheduler(p);
5360 	if (retval)
5361 		goto out_unlock;
5362 
5363 	if (task_has_rt_policy(p))
5364 		lp.sched_priority = p->rt_priority;
5365 	rcu_read_unlock();
5366 
5367 	/*
5368 	 * This one might sleep, we cannot do it with a spinlock held ...
5369 	 */
5370 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5371 
5372 	return retval;
5373 
5374 out_unlock:
5375 	rcu_read_unlock();
5376 	return retval;
5377 }
5378 
5379 /*
5380  * Copy the kernel size attribute structure (which might be larger
5381  * than what user-space knows about) to user-space.
5382  *
5383  * Note that all cases are valid: user-space buffer can be larger or
5384  * smaller than the kernel-space buffer. The usual case is that both
5385  * have the same size.
5386  */
5387 static int
5388 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5389 			struct sched_attr *kattr,
5390 			unsigned int usize)
5391 {
5392 	unsigned int ksize = sizeof(*kattr);
5393 
5394 	if (!access_ok(uattr, usize))
5395 		return -EFAULT;
5396 
5397 	/*
5398 	 * sched_getattr() ABI forwards and backwards compatibility:
5399 	 *
5400 	 * If usize == ksize then we just copy everything to user-space and all is good.
5401 	 *
5402 	 * If usize < ksize then we only copy as much as user-space has space for,
5403 	 * this keeps ABI compatibility as well. We skip the rest.
5404 	 *
5405 	 * If usize > ksize then user-space is using a newer version of the ABI,
5406 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5407 	 * detect the kernel's knowledge of attributes from the attr->size value
5408 	 * which is set to ksize in this case.
5409 	 */
5410 	kattr->size = min(usize, ksize);
5411 
5412 	if (copy_to_user(uattr, kattr, kattr->size))
5413 		return -EFAULT;
5414 
5415 	return 0;
5416 }
5417 
5418 /**
5419  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5420  * @pid: the pid in question.
5421  * @uattr: structure containing the extended parameters.
5422  * @usize: sizeof(attr) for fwd/bwd comp.
5423  * @flags: for future extension.
5424  */
5425 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5426 		unsigned int, usize, unsigned int, flags)
5427 {
5428 	struct sched_attr kattr = { };
5429 	struct task_struct *p;
5430 	int retval;
5431 
5432 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5433 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5434 		return -EINVAL;
5435 
5436 	rcu_read_lock();
5437 	p = find_process_by_pid(pid);
5438 	retval = -ESRCH;
5439 	if (!p)
5440 		goto out_unlock;
5441 
5442 	retval = security_task_getscheduler(p);
5443 	if (retval)
5444 		goto out_unlock;
5445 
5446 	kattr.sched_policy = p->policy;
5447 	if (p->sched_reset_on_fork)
5448 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5449 	if (task_has_dl_policy(p))
5450 		__getparam_dl(p, &kattr);
5451 	else if (task_has_rt_policy(p))
5452 		kattr.sched_priority = p->rt_priority;
5453 	else
5454 		kattr.sched_nice = task_nice(p);
5455 
5456 #ifdef CONFIG_UCLAMP_TASK
5457 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5458 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5459 #endif
5460 
5461 	rcu_read_unlock();
5462 
5463 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5464 
5465 out_unlock:
5466 	rcu_read_unlock();
5467 	return retval;
5468 }
5469 
5470 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5471 {
5472 	cpumask_var_t cpus_allowed, new_mask;
5473 	struct task_struct *p;
5474 	int retval;
5475 
5476 	rcu_read_lock();
5477 
5478 	p = find_process_by_pid(pid);
5479 	if (!p) {
5480 		rcu_read_unlock();
5481 		return -ESRCH;
5482 	}
5483 
5484 	/* Prevent p going away */
5485 	get_task_struct(p);
5486 	rcu_read_unlock();
5487 
5488 	if (p->flags & PF_NO_SETAFFINITY) {
5489 		retval = -EINVAL;
5490 		goto out_put_task;
5491 	}
5492 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5493 		retval = -ENOMEM;
5494 		goto out_put_task;
5495 	}
5496 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5497 		retval = -ENOMEM;
5498 		goto out_free_cpus_allowed;
5499 	}
5500 	retval = -EPERM;
5501 	if (!check_same_owner(p)) {
5502 		rcu_read_lock();
5503 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5504 			rcu_read_unlock();
5505 			goto out_free_new_mask;
5506 		}
5507 		rcu_read_unlock();
5508 	}
5509 
5510 	retval = security_task_setscheduler(p);
5511 	if (retval)
5512 		goto out_free_new_mask;
5513 
5514 
5515 	cpuset_cpus_allowed(p, cpus_allowed);
5516 	cpumask_and(new_mask, in_mask, cpus_allowed);
5517 
5518 	/*
5519 	 * Since bandwidth control happens on root_domain basis,
5520 	 * if admission test is enabled, we only admit -deadline
5521 	 * tasks allowed to run on all the CPUs in the task's
5522 	 * root_domain.
5523 	 */
5524 #ifdef CONFIG_SMP
5525 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5526 		rcu_read_lock();
5527 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5528 			retval = -EBUSY;
5529 			rcu_read_unlock();
5530 			goto out_free_new_mask;
5531 		}
5532 		rcu_read_unlock();
5533 	}
5534 #endif
5535 again:
5536 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5537 
5538 	if (!retval) {
5539 		cpuset_cpus_allowed(p, cpus_allowed);
5540 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5541 			/*
5542 			 * We must have raced with a concurrent cpuset
5543 			 * update. Just reset the cpus_allowed to the
5544 			 * cpuset's cpus_allowed
5545 			 */
5546 			cpumask_copy(new_mask, cpus_allowed);
5547 			goto again;
5548 		}
5549 	}
5550 out_free_new_mask:
5551 	free_cpumask_var(new_mask);
5552 out_free_cpus_allowed:
5553 	free_cpumask_var(cpus_allowed);
5554 out_put_task:
5555 	put_task_struct(p);
5556 	return retval;
5557 }
5558 
5559 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5560 			     struct cpumask *new_mask)
5561 {
5562 	if (len < cpumask_size())
5563 		cpumask_clear(new_mask);
5564 	else if (len > cpumask_size())
5565 		len = cpumask_size();
5566 
5567 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5568 }
5569 
5570 /**
5571  * sys_sched_setaffinity - set the CPU affinity of a process
5572  * @pid: pid of the process
5573  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5574  * @user_mask_ptr: user-space pointer to the new CPU mask
5575  *
5576  * Return: 0 on success. An error code otherwise.
5577  */
5578 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5579 		unsigned long __user *, user_mask_ptr)
5580 {
5581 	cpumask_var_t new_mask;
5582 	int retval;
5583 
5584 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5585 		return -ENOMEM;
5586 
5587 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5588 	if (retval == 0)
5589 		retval = sched_setaffinity(pid, new_mask);
5590 	free_cpumask_var(new_mask);
5591 	return retval;
5592 }
5593 
5594 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5595 {
5596 	struct task_struct *p;
5597 	unsigned long flags;
5598 	int retval;
5599 
5600 	rcu_read_lock();
5601 
5602 	retval = -ESRCH;
5603 	p = find_process_by_pid(pid);
5604 	if (!p)
5605 		goto out_unlock;
5606 
5607 	retval = security_task_getscheduler(p);
5608 	if (retval)
5609 		goto out_unlock;
5610 
5611 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5612 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5613 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5614 
5615 out_unlock:
5616 	rcu_read_unlock();
5617 
5618 	return retval;
5619 }
5620 
5621 /**
5622  * sys_sched_getaffinity - get the CPU affinity of a process
5623  * @pid: pid of the process
5624  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5625  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5626  *
5627  * Return: size of CPU mask copied to user_mask_ptr on success. An
5628  * error code otherwise.
5629  */
5630 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5631 		unsigned long __user *, user_mask_ptr)
5632 {
5633 	int ret;
5634 	cpumask_var_t mask;
5635 
5636 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5637 		return -EINVAL;
5638 	if (len & (sizeof(unsigned long)-1))
5639 		return -EINVAL;
5640 
5641 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5642 		return -ENOMEM;
5643 
5644 	ret = sched_getaffinity(pid, mask);
5645 	if (ret == 0) {
5646 		unsigned int retlen = min(len, cpumask_size());
5647 
5648 		if (copy_to_user(user_mask_ptr, mask, retlen))
5649 			ret = -EFAULT;
5650 		else
5651 			ret = retlen;
5652 	}
5653 	free_cpumask_var(mask);
5654 
5655 	return ret;
5656 }
5657 
5658 /**
5659  * sys_sched_yield - yield the current processor to other threads.
5660  *
5661  * This function yields the current CPU to other tasks. If there are no
5662  * other threads running on this CPU then this function will return.
5663  *
5664  * Return: 0.
5665  */
5666 static void do_sched_yield(void)
5667 {
5668 	struct rq_flags rf;
5669 	struct rq *rq;
5670 
5671 	rq = this_rq_lock_irq(&rf);
5672 
5673 	schedstat_inc(rq->yld_count);
5674 	current->sched_class->yield_task(rq);
5675 
5676 	/*
5677 	 * Since we are going to call schedule() anyway, there's
5678 	 * no need to preempt or enable interrupts:
5679 	 */
5680 	preempt_disable();
5681 	rq_unlock(rq, &rf);
5682 	sched_preempt_enable_no_resched();
5683 
5684 	schedule();
5685 }
5686 
5687 SYSCALL_DEFINE0(sched_yield)
5688 {
5689 	do_sched_yield();
5690 	return 0;
5691 }
5692 
5693 #ifndef CONFIG_PREEMPTION
5694 int __sched _cond_resched(void)
5695 {
5696 	if (should_resched(0)) {
5697 		preempt_schedule_common();
5698 		return 1;
5699 	}
5700 	rcu_all_qs();
5701 	return 0;
5702 }
5703 EXPORT_SYMBOL(_cond_resched);
5704 #endif
5705 
5706 /*
5707  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5708  * call schedule, and on return reacquire the lock.
5709  *
5710  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5711  * operations here to prevent schedule() from being called twice (once via
5712  * spin_unlock(), once by hand).
5713  */
5714 int __cond_resched_lock(spinlock_t *lock)
5715 {
5716 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5717 	int ret = 0;
5718 
5719 	lockdep_assert_held(lock);
5720 
5721 	if (spin_needbreak(lock) || resched) {
5722 		spin_unlock(lock);
5723 		if (resched)
5724 			preempt_schedule_common();
5725 		else
5726 			cpu_relax();
5727 		ret = 1;
5728 		spin_lock(lock);
5729 	}
5730 	return ret;
5731 }
5732 EXPORT_SYMBOL(__cond_resched_lock);
5733 
5734 /**
5735  * yield - yield the current processor to other threads.
5736  *
5737  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5738  *
5739  * The scheduler is at all times free to pick the calling task as the most
5740  * eligible task to run, if removing the yield() call from your code breaks
5741  * it, its already broken.
5742  *
5743  * Typical broken usage is:
5744  *
5745  * while (!event)
5746  *	yield();
5747  *
5748  * where one assumes that yield() will let 'the other' process run that will
5749  * make event true. If the current task is a SCHED_FIFO task that will never
5750  * happen. Never use yield() as a progress guarantee!!
5751  *
5752  * If you want to use yield() to wait for something, use wait_event().
5753  * If you want to use yield() to be 'nice' for others, use cond_resched().
5754  * If you still want to use yield(), do not!
5755  */
5756 void __sched yield(void)
5757 {
5758 	set_current_state(TASK_RUNNING);
5759 	do_sched_yield();
5760 }
5761 EXPORT_SYMBOL(yield);
5762 
5763 /**
5764  * yield_to - yield the current processor to another thread in
5765  * your thread group, or accelerate that thread toward the
5766  * processor it's on.
5767  * @p: target task
5768  * @preempt: whether task preemption is allowed or not
5769  *
5770  * It's the caller's job to ensure that the target task struct
5771  * can't go away on us before we can do any checks.
5772  *
5773  * Return:
5774  *	true (>0) if we indeed boosted the target task.
5775  *	false (0) if we failed to boost the target.
5776  *	-ESRCH if there's no task to yield to.
5777  */
5778 int __sched yield_to(struct task_struct *p, bool preempt)
5779 {
5780 	struct task_struct *curr = current;
5781 	struct rq *rq, *p_rq;
5782 	unsigned long flags;
5783 	int yielded = 0;
5784 
5785 	local_irq_save(flags);
5786 	rq = this_rq();
5787 
5788 again:
5789 	p_rq = task_rq(p);
5790 	/*
5791 	 * If we're the only runnable task on the rq and target rq also
5792 	 * has only one task, there's absolutely no point in yielding.
5793 	 */
5794 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5795 		yielded = -ESRCH;
5796 		goto out_irq;
5797 	}
5798 
5799 	double_rq_lock(rq, p_rq);
5800 	if (task_rq(p) != p_rq) {
5801 		double_rq_unlock(rq, p_rq);
5802 		goto again;
5803 	}
5804 
5805 	if (!curr->sched_class->yield_to_task)
5806 		goto out_unlock;
5807 
5808 	if (curr->sched_class != p->sched_class)
5809 		goto out_unlock;
5810 
5811 	if (task_running(p_rq, p) || p->state)
5812 		goto out_unlock;
5813 
5814 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5815 	if (yielded) {
5816 		schedstat_inc(rq->yld_count);
5817 		/*
5818 		 * Make p's CPU reschedule; pick_next_entity takes care of
5819 		 * fairness.
5820 		 */
5821 		if (preempt && rq != p_rq)
5822 			resched_curr(p_rq);
5823 	}
5824 
5825 out_unlock:
5826 	double_rq_unlock(rq, p_rq);
5827 out_irq:
5828 	local_irq_restore(flags);
5829 
5830 	if (yielded > 0)
5831 		schedule();
5832 
5833 	return yielded;
5834 }
5835 EXPORT_SYMBOL_GPL(yield_to);
5836 
5837 int io_schedule_prepare(void)
5838 {
5839 	int old_iowait = current->in_iowait;
5840 
5841 	current->in_iowait = 1;
5842 	blk_schedule_flush_plug(current);
5843 
5844 	return old_iowait;
5845 }
5846 
5847 void io_schedule_finish(int token)
5848 {
5849 	current->in_iowait = token;
5850 }
5851 
5852 /*
5853  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5854  * that process accounting knows that this is a task in IO wait state.
5855  */
5856 long __sched io_schedule_timeout(long timeout)
5857 {
5858 	int token;
5859 	long ret;
5860 
5861 	token = io_schedule_prepare();
5862 	ret = schedule_timeout(timeout);
5863 	io_schedule_finish(token);
5864 
5865 	return ret;
5866 }
5867 EXPORT_SYMBOL(io_schedule_timeout);
5868 
5869 void __sched io_schedule(void)
5870 {
5871 	int token;
5872 
5873 	token = io_schedule_prepare();
5874 	schedule();
5875 	io_schedule_finish(token);
5876 }
5877 EXPORT_SYMBOL(io_schedule);
5878 
5879 /**
5880  * sys_sched_get_priority_max - return maximum RT priority.
5881  * @policy: scheduling class.
5882  *
5883  * Return: On success, this syscall returns the maximum
5884  * rt_priority that can be used by a given scheduling class.
5885  * On failure, a negative error code is returned.
5886  */
5887 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5888 {
5889 	int ret = -EINVAL;
5890 
5891 	switch (policy) {
5892 	case SCHED_FIFO:
5893 	case SCHED_RR:
5894 		ret = MAX_USER_RT_PRIO-1;
5895 		break;
5896 	case SCHED_DEADLINE:
5897 	case SCHED_NORMAL:
5898 	case SCHED_BATCH:
5899 	case SCHED_IDLE:
5900 		ret = 0;
5901 		break;
5902 	}
5903 	return ret;
5904 }
5905 
5906 /**
5907  * sys_sched_get_priority_min - return minimum RT priority.
5908  * @policy: scheduling class.
5909  *
5910  * Return: On success, this syscall returns the minimum
5911  * rt_priority that can be used by a given scheduling class.
5912  * On failure, a negative error code is returned.
5913  */
5914 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5915 {
5916 	int ret = -EINVAL;
5917 
5918 	switch (policy) {
5919 	case SCHED_FIFO:
5920 	case SCHED_RR:
5921 		ret = 1;
5922 		break;
5923 	case SCHED_DEADLINE:
5924 	case SCHED_NORMAL:
5925 	case SCHED_BATCH:
5926 	case SCHED_IDLE:
5927 		ret = 0;
5928 	}
5929 	return ret;
5930 }
5931 
5932 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5933 {
5934 	struct task_struct *p;
5935 	unsigned int time_slice;
5936 	struct rq_flags rf;
5937 	struct rq *rq;
5938 	int retval;
5939 
5940 	if (pid < 0)
5941 		return -EINVAL;
5942 
5943 	retval = -ESRCH;
5944 	rcu_read_lock();
5945 	p = find_process_by_pid(pid);
5946 	if (!p)
5947 		goto out_unlock;
5948 
5949 	retval = security_task_getscheduler(p);
5950 	if (retval)
5951 		goto out_unlock;
5952 
5953 	rq = task_rq_lock(p, &rf);
5954 	time_slice = 0;
5955 	if (p->sched_class->get_rr_interval)
5956 		time_slice = p->sched_class->get_rr_interval(rq, p);
5957 	task_rq_unlock(rq, p, &rf);
5958 
5959 	rcu_read_unlock();
5960 	jiffies_to_timespec64(time_slice, t);
5961 	return 0;
5962 
5963 out_unlock:
5964 	rcu_read_unlock();
5965 	return retval;
5966 }
5967 
5968 /**
5969  * sys_sched_rr_get_interval - return the default timeslice of a process.
5970  * @pid: pid of the process.
5971  * @interval: userspace pointer to the timeslice value.
5972  *
5973  * this syscall writes the default timeslice value of a given process
5974  * into the user-space timespec buffer. A value of '0' means infinity.
5975  *
5976  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5977  * an error code.
5978  */
5979 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5980 		struct __kernel_timespec __user *, interval)
5981 {
5982 	struct timespec64 t;
5983 	int retval = sched_rr_get_interval(pid, &t);
5984 
5985 	if (retval == 0)
5986 		retval = put_timespec64(&t, interval);
5987 
5988 	return retval;
5989 }
5990 
5991 #ifdef CONFIG_COMPAT_32BIT_TIME
5992 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5993 		struct old_timespec32 __user *, interval)
5994 {
5995 	struct timespec64 t;
5996 	int retval = sched_rr_get_interval(pid, &t);
5997 
5998 	if (retval == 0)
5999 		retval = put_old_timespec32(&t, interval);
6000 	return retval;
6001 }
6002 #endif
6003 
6004 void sched_show_task(struct task_struct *p)
6005 {
6006 	unsigned long free = 0;
6007 	int ppid;
6008 
6009 	if (!try_get_task_stack(p))
6010 		return;
6011 
6012 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6013 
6014 	if (p->state == TASK_RUNNING)
6015 		printk(KERN_CONT "  running task    ");
6016 #ifdef CONFIG_DEBUG_STACK_USAGE
6017 	free = stack_not_used(p);
6018 #endif
6019 	ppid = 0;
6020 	rcu_read_lock();
6021 	if (pid_alive(p))
6022 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6023 	rcu_read_unlock();
6024 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6025 		task_pid_nr(p), ppid,
6026 		(unsigned long)task_thread_info(p)->flags);
6027 
6028 	print_worker_info(KERN_INFO, p);
6029 	show_stack(p, NULL);
6030 	put_task_stack(p);
6031 }
6032 EXPORT_SYMBOL_GPL(sched_show_task);
6033 
6034 static inline bool
6035 state_filter_match(unsigned long state_filter, struct task_struct *p)
6036 {
6037 	/* no filter, everything matches */
6038 	if (!state_filter)
6039 		return true;
6040 
6041 	/* filter, but doesn't match */
6042 	if (!(p->state & state_filter))
6043 		return false;
6044 
6045 	/*
6046 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6047 	 * TASK_KILLABLE).
6048 	 */
6049 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6050 		return false;
6051 
6052 	return true;
6053 }
6054 
6055 
6056 void show_state_filter(unsigned long state_filter)
6057 {
6058 	struct task_struct *g, *p;
6059 
6060 #if BITS_PER_LONG == 32
6061 	printk(KERN_INFO
6062 		"  task                PC stack   pid father\n");
6063 #else
6064 	printk(KERN_INFO
6065 		"  task                        PC stack   pid father\n");
6066 #endif
6067 	rcu_read_lock();
6068 	for_each_process_thread(g, p) {
6069 		/*
6070 		 * reset the NMI-timeout, listing all files on a slow
6071 		 * console might take a lot of time:
6072 		 * Also, reset softlockup watchdogs on all CPUs, because
6073 		 * another CPU might be blocked waiting for us to process
6074 		 * an IPI.
6075 		 */
6076 		touch_nmi_watchdog();
6077 		touch_all_softlockup_watchdogs();
6078 		if (state_filter_match(state_filter, p))
6079 			sched_show_task(p);
6080 	}
6081 
6082 #ifdef CONFIG_SCHED_DEBUG
6083 	if (!state_filter)
6084 		sysrq_sched_debug_show();
6085 #endif
6086 	rcu_read_unlock();
6087 	/*
6088 	 * Only show locks if all tasks are dumped:
6089 	 */
6090 	if (!state_filter)
6091 		debug_show_all_locks();
6092 }
6093 
6094 /**
6095  * init_idle - set up an idle thread for a given CPU
6096  * @idle: task in question
6097  * @cpu: CPU the idle task belongs to
6098  *
6099  * NOTE: this function does not set the idle thread's NEED_RESCHED
6100  * flag, to make booting more robust.
6101  */
6102 void init_idle(struct task_struct *idle, int cpu)
6103 {
6104 	struct rq *rq = cpu_rq(cpu);
6105 	unsigned long flags;
6106 
6107 	__sched_fork(0, idle);
6108 
6109 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6110 	raw_spin_lock(&rq->lock);
6111 
6112 	idle->state = TASK_RUNNING;
6113 	idle->se.exec_start = sched_clock();
6114 	idle->flags |= PF_IDLE;
6115 
6116 	scs_task_reset(idle);
6117 	kasan_unpoison_task_stack(idle);
6118 
6119 #ifdef CONFIG_SMP
6120 	/*
6121 	 * Its possible that init_idle() gets called multiple times on a task,
6122 	 * in that case do_set_cpus_allowed() will not do the right thing.
6123 	 *
6124 	 * And since this is boot we can forgo the serialization.
6125 	 */
6126 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6127 #endif
6128 	/*
6129 	 * We're having a chicken and egg problem, even though we are
6130 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6131 	 * lockdep check in task_group() will fail.
6132 	 *
6133 	 * Similar case to sched_fork(). / Alternatively we could
6134 	 * use task_rq_lock() here and obtain the other rq->lock.
6135 	 *
6136 	 * Silence PROVE_RCU
6137 	 */
6138 	rcu_read_lock();
6139 	__set_task_cpu(idle, cpu);
6140 	rcu_read_unlock();
6141 
6142 	rq->idle = idle;
6143 	rcu_assign_pointer(rq->curr, idle);
6144 	idle->on_rq = TASK_ON_RQ_QUEUED;
6145 #ifdef CONFIG_SMP
6146 	idle->on_cpu = 1;
6147 #endif
6148 	raw_spin_unlock(&rq->lock);
6149 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6150 
6151 	/* Set the preempt count _outside_ the spinlocks! */
6152 	init_idle_preempt_count(idle, cpu);
6153 
6154 	/*
6155 	 * The idle tasks have their own, simple scheduling class:
6156 	 */
6157 	idle->sched_class = &idle_sched_class;
6158 	ftrace_graph_init_idle_task(idle, cpu);
6159 	vtime_init_idle(idle, cpu);
6160 #ifdef CONFIG_SMP
6161 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6162 #endif
6163 }
6164 
6165 #ifdef CONFIG_SMP
6166 
6167 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6168 			      const struct cpumask *trial)
6169 {
6170 	int ret = 1;
6171 
6172 	if (!cpumask_weight(cur))
6173 		return ret;
6174 
6175 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6176 
6177 	return ret;
6178 }
6179 
6180 int task_can_attach(struct task_struct *p,
6181 		    const struct cpumask *cs_cpus_allowed)
6182 {
6183 	int ret = 0;
6184 
6185 	/*
6186 	 * Kthreads which disallow setaffinity shouldn't be moved
6187 	 * to a new cpuset; we don't want to change their CPU
6188 	 * affinity and isolating such threads by their set of
6189 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6190 	 * applicable for such threads.  This prevents checking for
6191 	 * success of set_cpus_allowed_ptr() on all attached tasks
6192 	 * before cpus_mask may be changed.
6193 	 */
6194 	if (p->flags & PF_NO_SETAFFINITY) {
6195 		ret = -EINVAL;
6196 		goto out;
6197 	}
6198 
6199 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6200 					      cs_cpus_allowed))
6201 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6202 
6203 out:
6204 	return ret;
6205 }
6206 
6207 bool sched_smp_initialized __read_mostly;
6208 
6209 #ifdef CONFIG_NUMA_BALANCING
6210 /* Migrate current task p to target_cpu */
6211 int migrate_task_to(struct task_struct *p, int target_cpu)
6212 {
6213 	struct migration_arg arg = { p, target_cpu };
6214 	int curr_cpu = task_cpu(p);
6215 
6216 	if (curr_cpu == target_cpu)
6217 		return 0;
6218 
6219 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6220 		return -EINVAL;
6221 
6222 	/* TODO: This is not properly updating schedstats */
6223 
6224 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6225 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6226 }
6227 
6228 /*
6229  * Requeue a task on a given node and accurately track the number of NUMA
6230  * tasks on the runqueues
6231  */
6232 void sched_setnuma(struct task_struct *p, int nid)
6233 {
6234 	bool queued, running;
6235 	struct rq_flags rf;
6236 	struct rq *rq;
6237 
6238 	rq = task_rq_lock(p, &rf);
6239 	queued = task_on_rq_queued(p);
6240 	running = task_current(rq, p);
6241 
6242 	if (queued)
6243 		dequeue_task(rq, p, DEQUEUE_SAVE);
6244 	if (running)
6245 		put_prev_task(rq, p);
6246 
6247 	p->numa_preferred_nid = nid;
6248 
6249 	if (queued)
6250 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6251 	if (running)
6252 		set_next_task(rq, p);
6253 	task_rq_unlock(rq, p, &rf);
6254 }
6255 #endif /* CONFIG_NUMA_BALANCING */
6256 
6257 #ifdef CONFIG_HOTPLUG_CPU
6258 /*
6259  * Ensure that the idle task is using init_mm right before its CPU goes
6260  * offline.
6261  */
6262 void idle_task_exit(void)
6263 {
6264 	struct mm_struct *mm = current->active_mm;
6265 
6266 	BUG_ON(cpu_online(smp_processor_id()));
6267 	BUG_ON(current != this_rq()->idle);
6268 
6269 	if (mm != &init_mm) {
6270 		switch_mm(mm, &init_mm, current);
6271 		finish_arch_post_lock_switch();
6272 	}
6273 
6274 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6275 }
6276 
6277 /*
6278  * Since this CPU is going 'away' for a while, fold any nr_active delta
6279  * we might have. Assumes we're called after migrate_tasks() so that the
6280  * nr_active count is stable. We need to take the teardown thread which
6281  * is calling this into account, so we hand in adjust = 1 to the load
6282  * calculation.
6283  *
6284  * Also see the comment "Global load-average calculations".
6285  */
6286 static void calc_load_migrate(struct rq *rq)
6287 {
6288 	long delta = calc_load_fold_active(rq, 1);
6289 	if (delta)
6290 		atomic_long_add(delta, &calc_load_tasks);
6291 }
6292 
6293 static struct task_struct *__pick_migrate_task(struct rq *rq)
6294 {
6295 	const struct sched_class *class;
6296 	struct task_struct *next;
6297 
6298 	for_each_class(class) {
6299 		next = class->pick_next_task(rq);
6300 		if (next) {
6301 			next->sched_class->put_prev_task(rq, next);
6302 			return next;
6303 		}
6304 	}
6305 
6306 	/* The idle class should always have a runnable task */
6307 	BUG();
6308 }
6309 
6310 /*
6311  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6312  * try_to_wake_up()->select_task_rq().
6313  *
6314  * Called with rq->lock held even though we'er in stop_machine() and
6315  * there's no concurrency possible, we hold the required locks anyway
6316  * because of lock validation efforts.
6317  */
6318 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6319 {
6320 	struct rq *rq = dead_rq;
6321 	struct task_struct *next, *stop = rq->stop;
6322 	struct rq_flags orf = *rf;
6323 	int dest_cpu;
6324 
6325 	/*
6326 	 * Fudge the rq selection such that the below task selection loop
6327 	 * doesn't get stuck on the currently eligible stop task.
6328 	 *
6329 	 * We're currently inside stop_machine() and the rq is either stuck
6330 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6331 	 * either way we should never end up calling schedule() until we're
6332 	 * done here.
6333 	 */
6334 	rq->stop = NULL;
6335 
6336 	/*
6337 	 * put_prev_task() and pick_next_task() sched
6338 	 * class method both need to have an up-to-date
6339 	 * value of rq->clock[_task]
6340 	 */
6341 	update_rq_clock(rq);
6342 
6343 	for (;;) {
6344 		/*
6345 		 * There's this thread running, bail when that's the only
6346 		 * remaining thread:
6347 		 */
6348 		if (rq->nr_running == 1)
6349 			break;
6350 
6351 		next = __pick_migrate_task(rq);
6352 
6353 		/*
6354 		 * Rules for changing task_struct::cpus_mask are holding
6355 		 * both pi_lock and rq->lock, such that holding either
6356 		 * stabilizes the mask.
6357 		 *
6358 		 * Drop rq->lock is not quite as disastrous as it usually is
6359 		 * because !cpu_active at this point, which means load-balance
6360 		 * will not interfere. Also, stop-machine.
6361 		 */
6362 		rq_unlock(rq, rf);
6363 		raw_spin_lock(&next->pi_lock);
6364 		rq_relock(rq, rf);
6365 
6366 		/*
6367 		 * Since we're inside stop-machine, _nothing_ should have
6368 		 * changed the task, WARN if weird stuff happened, because in
6369 		 * that case the above rq->lock drop is a fail too.
6370 		 */
6371 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6372 			raw_spin_unlock(&next->pi_lock);
6373 			continue;
6374 		}
6375 
6376 		/* Find suitable destination for @next, with force if needed. */
6377 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6378 		rq = __migrate_task(rq, rf, next, dest_cpu);
6379 		if (rq != dead_rq) {
6380 			rq_unlock(rq, rf);
6381 			rq = dead_rq;
6382 			*rf = orf;
6383 			rq_relock(rq, rf);
6384 		}
6385 		raw_spin_unlock(&next->pi_lock);
6386 	}
6387 
6388 	rq->stop = stop;
6389 }
6390 #endif /* CONFIG_HOTPLUG_CPU */
6391 
6392 void set_rq_online(struct rq *rq)
6393 {
6394 	if (!rq->online) {
6395 		const struct sched_class *class;
6396 
6397 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6398 		rq->online = 1;
6399 
6400 		for_each_class(class) {
6401 			if (class->rq_online)
6402 				class->rq_online(rq);
6403 		}
6404 	}
6405 }
6406 
6407 void set_rq_offline(struct rq *rq)
6408 {
6409 	if (rq->online) {
6410 		const struct sched_class *class;
6411 
6412 		for_each_class(class) {
6413 			if (class->rq_offline)
6414 				class->rq_offline(rq);
6415 		}
6416 
6417 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6418 		rq->online = 0;
6419 	}
6420 }
6421 
6422 /*
6423  * used to mark begin/end of suspend/resume:
6424  */
6425 static int num_cpus_frozen;
6426 
6427 /*
6428  * Update cpusets according to cpu_active mask.  If cpusets are
6429  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6430  * around partition_sched_domains().
6431  *
6432  * If we come here as part of a suspend/resume, don't touch cpusets because we
6433  * want to restore it back to its original state upon resume anyway.
6434  */
6435 static void cpuset_cpu_active(void)
6436 {
6437 	if (cpuhp_tasks_frozen) {
6438 		/*
6439 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6440 		 * resume sequence. As long as this is not the last online
6441 		 * operation in the resume sequence, just build a single sched
6442 		 * domain, ignoring cpusets.
6443 		 */
6444 		partition_sched_domains(1, NULL, NULL);
6445 		if (--num_cpus_frozen)
6446 			return;
6447 		/*
6448 		 * This is the last CPU online operation. So fall through and
6449 		 * restore the original sched domains by considering the
6450 		 * cpuset configurations.
6451 		 */
6452 		cpuset_force_rebuild();
6453 	}
6454 	cpuset_update_active_cpus();
6455 }
6456 
6457 static int cpuset_cpu_inactive(unsigned int cpu)
6458 {
6459 	if (!cpuhp_tasks_frozen) {
6460 		if (dl_cpu_busy(cpu))
6461 			return -EBUSY;
6462 		cpuset_update_active_cpus();
6463 	} else {
6464 		num_cpus_frozen++;
6465 		partition_sched_domains(1, NULL, NULL);
6466 	}
6467 	return 0;
6468 }
6469 
6470 int sched_cpu_activate(unsigned int cpu)
6471 {
6472 	struct rq *rq = cpu_rq(cpu);
6473 	struct rq_flags rf;
6474 
6475 #ifdef CONFIG_SCHED_SMT
6476 	/*
6477 	 * When going up, increment the number of cores with SMT present.
6478 	 */
6479 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6480 		static_branch_inc_cpuslocked(&sched_smt_present);
6481 #endif
6482 	set_cpu_active(cpu, true);
6483 
6484 	if (sched_smp_initialized) {
6485 		sched_domains_numa_masks_set(cpu);
6486 		cpuset_cpu_active();
6487 	}
6488 
6489 	/*
6490 	 * Put the rq online, if not already. This happens:
6491 	 *
6492 	 * 1) In the early boot process, because we build the real domains
6493 	 *    after all CPUs have been brought up.
6494 	 *
6495 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6496 	 *    domains.
6497 	 */
6498 	rq_lock_irqsave(rq, &rf);
6499 	if (rq->rd) {
6500 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6501 		set_rq_online(rq);
6502 	}
6503 	rq_unlock_irqrestore(rq, &rf);
6504 
6505 	return 0;
6506 }
6507 
6508 int sched_cpu_deactivate(unsigned int cpu)
6509 {
6510 	int ret;
6511 
6512 	set_cpu_active(cpu, false);
6513 	/*
6514 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6515 	 * users of this state to go away such that all new such users will
6516 	 * observe it.
6517 	 *
6518 	 * Do sync before park smpboot threads to take care the rcu boost case.
6519 	 */
6520 	synchronize_rcu();
6521 
6522 #ifdef CONFIG_SCHED_SMT
6523 	/*
6524 	 * When going down, decrement the number of cores with SMT present.
6525 	 */
6526 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6527 		static_branch_dec_cpuslocked(&sched_smt_present);
6528 #endif
6529 
6530 	if (!sched_smp_initialized)
6531 		return 0;
6532 
6533 	ret = cpuset_cpu_inactive(cpu);
6534 	if (ret) {
6535 		set_cpu_active(cpu, true);
6536 		return ret;
6537 	}
6538 	sched_domains_numa_masks_clear(cpu);
6539 	return 0;
6540 }
6541 
6542 static void sched_rq_cpu_starting(unsigned int cpu)
6543 {
6544 	struct rq *rq = cpu_rq(cpu);
6545 
6546 	rq->calc_load_update = calc_load_update;
6547 	update_max_interval();
6548 }
6549 
6550 int sched_cpu_starting(unsigned int cpu)
6551 {
6552 	sched_rq_cpu_starting(cpu);
6553 	sched_tick_start(cpu);
6554 	return 0;
6555 }
6556 
6557 #ifdef CONFIG_HOTPLUG_CPU
6558 int sched_cpu_dying(unsigned int cpu)
6559 {
6560 	struct rq *rq = cpu_rq(cpu);
6561 	struct rq_flags rf;
6562 
6563 	/* Handle pending wakeups and then migrate everything off */
6564 	sched_tick_stop(cpu);
6565 
6566 	rq_lock_irqsave(rq, &rf);
6567 	if (rq->rd) {
6568 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6569 		set_rq_offline(rq);
6570 	}
6571 	migrate_tasks(rq, &rf);
6572 	BUG_ON(rq->nr_running != 1);
6573 	rq_unlock_irqrestore(rq, &rf);
6574 
6575 	calc_load_migrate(rq);
6576 	update_max_interval();
6577 	nohz_balance_exit_idle(rq);
6578 	hrtick_clear(rq);
6579 	return 0;
6580 }
6581 #endif
6582 
6583 void __init sched_init_smp(void)
6584 {
6585 	sched_init_numa();
6586 
6587 	/*
6588 	 * There's no userspace yet to cause hotplug operations; hence all the
6589 	 * CPU masks are stable and all blatant races in the below code cannot
6590 	 * happen.
6591 	 */
6592 	mutex_lock(&sched_domains_mutex);
6593 	sched_init_domains(cpu_active_mask);
6594 	mutex_unlock(&sched_domains_mutex);
6595 
6596 	/* Move init over to a non-isolated CPU */
6597 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6598 		BUG();
6599 	sched_init_granularity();
6600 
6601 	init_sched_rt_class();
6602 	init_sched_dl_class();
6603 
6604 	sched_smp_initialized = true;
6605 }
6606 
6607 static int __init migration_init(void)
6608 {
6609 	sched_cpu_starting(smp_processor_id());
6610 	return 0;
6611 }
6612 early_initcall(migration_init);
6613 
6614 #else
6615 void __init sched_init_smp(void)
6616 {
6617 	sched_init_granularity();
6618 }
6619 #endif /* CONFIG_SMP */
6620 
6621 int in_sched_functions(unsigned long addr)
6622 {
6623 	return in_lock_functions(addr) ||
6624 		(addr >= (unsigned long)__sched_text_start
6625 		&& addr < (unsigned long)__sched_text_end);
6626 }
6627 
6628 #ifdef CONFIG_CGROUP_SCHED
6629 /*
6630  * Default task group.
6631  * Every task in system belongs to this group at bootup.
6632  */
6633 struct task_group root_task_group;
6634 LIST_HEAD(task_groups);
6635 
6636 /* Cacheline aligned slab cache for task_group */
6637 static struct kmem_cache *task_group_cache __read_mostly;
6638 #endif
6639 
6640 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6641 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6642 
6643 void __init sched_init(void)
6644 {
6645 	unsigned long ptr = 0;
6646 	int i;
6647 
6648 	wait_bit_init();
6649 
6650 #ifdef CONFIG_FAIR_GROUP_SCHED
6651 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6652 #endif
6653 #ifdef CONFIG_RT_GROUP_SCHED
6654 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6655 #endif
6656 	if (ptr) {
6657 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6658 
6659 #ifdef CONFIG_FAIR_GROUP_SCHED
6660 		root_task_group.se = (struct sched_entity **)ptr;
6661 		ptr += nr_cpu_ids * sizeof(void **);
6662 
6663 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6664 		ptr += nr_cpu_ids * sizeof(void **);
6665 
6666 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6667 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6668 #endif /* CONFIG_FAIR_GROUP_SCHED */
6669 #ifdef CONFIG_RT_GROUP_SCHED
6670 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6671 		ptr += nr_cpu_ids * sizeof(void **);
6672 
6673 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6674 		ptr += nr_cpu_ids * sizeof(void **);
6675 
6676 #endif /* CONFIG_RT_GROUP_SCHED */
6677 	}
6678 #ifdef CONFIG_CPUMASK_OFFSTACK
6679 	for_each_possible_cpu(i) {
6680 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6681 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6682 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6683 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6684 	}
6685 #endif /* CONFIG_CPUMASK_OFFSTACK */
6686 
6687 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6688 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6689 
6690 #ifdef CONFIG_SMP
6691 	init_defrootdomain();
6692 #endif
6693 
6694 #ifdef CONFIG_RT_GROUP_SCHED
6695 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6696 			global_rt_period(), global_rt_runtime());
6697 #endif /* CONFIG_RT_GROUP_SCHED */
6698 
6699 #ifdef CONFIG_CGROUP_SCHED
6700 	task_group_cache = KMEM_CACHE(task_group, 0);
6701 
6702 	list_add(&root_task_group.list, &task_groups);
6703 	INIT_LIST_HEAD(&root_task_group.children);
6704 	INIT_LIST_HEAD(&root_task_group.siblings);
6705 	autogroup_init(&init_task);
6706 #endif /* CONFIG_CGROUP_SCHED */
6707 
6708 	for_each_possible_cpu(i) {
6709 		struct rq *rq;
6710 
6711 		rq = cpu_rq(i);
6712 		raw_spin_lock_init(&rq->lock);
6713 		rq->nr_running = 0;
6714 		rq->calc_load_active = 0;
6715 		rq->calc_load_update = jiffies + LOAD_FREQ;
6716 		init_cfs_rq(&rq->cfs);
6717 		init_rt_rq(&rq->rt);
6718 		init_dl_rq(&rq->dl);
6719 #ifdef CONFIG_FAIR_GROUP_SCHED
6720 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6721 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6722 		/*
6723 		 * How much CPU bandwidth does root_task_group get?
6724 		 *
6725 		 * In case of task-groups formed thr' the cgroup filesystem, it
6726 		 * gets 100% of the CPU resources in the system. This overall
6727 		 * system CPU resource is divided among the tasks of
6728 		 * root_task_group and its child task-groups in a fair manner,
6729 		 * based on each entity's (task or task-group's) weight
6730 		 * (se->load.weight).
6731 		 *
6732 		 * In other words, if root_task_group has 10 tasks of weight
6733 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6734 		 * then A0's share of the CPU resource is:
6735 		 *
6736 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6737 		 *
6738 		 * We achieve this by letting root_task_group's tasks sit
6739 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6740 		 */
6741 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6742 #endif /* CONFIG_FAIR_GROUP_SCHED */
6743 
6744 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6745 #ifdef CONFIG_RT_GROUP_SCHED
6746 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6747 #endif
6748 #ifdef CONFIG_SMP
6749 		rq->sd = NULL;
6750 		rq->rd = NULL;
6751 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6752 		rq->balance_callback = NULL;
6753 		rq->active_balance = 0;
6754 		rq->next_balance = jiffies;
6755 		rq->push_cpu = 0;
6756 		rq->cpu = i;
6757 		rq->online = 0;
6758 		rq->idle_stamp = 0;
6759 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6760 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6761 
6762 		INIT_LIST_HEAD(&rq->cfs_tasks);
6763 
6764 		rq_attach_root(rq, &def_root_domain);
6765 #ifdef CONFIG_NO_HZ_COMMON
6766 		rq->last_blocked_load_update_tick = jiffies;
6767 		atomic_set(&rq->nohz_flags, 0);
6768 
6769 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6770 #endif
6771 #endif /* CONFIG_SMP */
6772 		hrtick_rq_init(rq);
6773 		atomic_set(&rq->nr_iowait, 0);
6774 	}
6775 
6776 	set_load_weight(&init_task, false);
6777 
6778 	/*
6779 	 * The boot idle thread does lazy MMU switching as well:
6780 	 */
6781 	mmgrab(&init_mm);
6782 	enter_lazy_tlb(&init_mm, current);
6783 
6784 	/*
6785 	 * Make us the idle thread. Technically, schedule() should not be
6786 	 * called from this thread, however somewhere below it might be,
6787 	 * but because we are the idle thread, we just pick up running again
6788 	 * when this runqueue becomes "idle".
6789 	 */
6790 	init_idle(current, smp_processor_id());
6791 
6792 	calc_load_update = jiffies + LOAD_FREQ;
6793 
6794 #ifdef CONFIG_SMP
6795 	idle_thread_set_boot_cpu();
6796 #endif
6797 	init_sched_fair_class();
6798 
6799 	init_schedstats();
6800 
6801 	psi_init();
6802 
6803 	init_uclamp();
6804 
6805 	scheduler_running = 1;
6806 }
6807 
6808 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6809 static inline int preempt_count_equals(int preempt_offset)
6810 {
6811 	int nested = preempt_count() + rcu_preempt_depth();
6812 
6813 	return (nested == preempt_offset);
6814 }
6815 
6816 void __might_sleep(const char *file, int line, int preempt_offset)
6817 {
6818 	/*
6819 	 * Blocking primitives will set (and therefore destroy) current->state,
6820 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6821 	 * otherwise we will destroy state.
6822 	 */
6823 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6824 			"do not call blocking ops when !TASK_RUNNING; "
6825 			"state=%lx set at [<%p>] %pS\n",
6826 			current->state,
6827 			(void *)current->task_state_change,
6828 			(void *)current->task_state_change);
6829 
6830 	___might_sleep(file, line, preempt_offset);
6831 }
6832 EXPORT_SYMBOL(__might_sleep);
6833 
6834 void ___might_sleep(const char *file, int line, int preempt_offset)
6835 {
6836 	/* Ratelimiting timestamp: */
6837 	static unsigned long prev_jiffy;
6838 
6839 	unsigned long preempt_disable_ip;
6840 
6841 	/* WARN_ON_ONCE() by default, no rate limit required: */
6842 	rcu_sleep_check();
6843 
6844 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6845 	     !is_idle_task(current) && !current->non_block_count) ||
6846 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6847 	    oops_in_progress)
6848 		return;
6849 
6850 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6851 		return;
6852 	prev_jiffy = jiffies;
6853 
6854 	/* Save this before calling printk(), since that will clobber it: */
6855 	preempt_disable_ip = get_preempt_disable_ip(current);
6856 
6857 	printk(KERN_ERR
6858 		"BUG: sleeping function called from invalid context at %s:%d\n",
6859 			file, line);
6860 	printk(KERN_ERR
6861 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6862 			in_atomic(), irqs_disabled(), current->non_block_count,
6863 			current->pid, current->comm);
6864 
6865 	if (task_stack_end_corrupted(current))
6866 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6867 
6868 	debug_show_held_locks(current);
6869 	if (irqs_disabled())
6870 		print_irqtrace_events(current);
6871 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6872 	    && !preempt_count_equals(preempt_offset)) {
6873 		pr_err("Preemption disabled at:");
6874 		print_ip_sym(preempt_disable_ip);
6875 		pr_cont("\n");
6876 	}
6877 	dump_stack();
6878 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6879 }
6880 EXPORT_SYMBOL(___might_sleep);
6881 
6882 void __cant_sleep(const char *file, int line, int preempt_offset)
6883 {
6884 	static unsigned long prev_jiffy;
6885 
6886 	if (irqs_disabled())
6887 		return;
6888 
6889 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6890 		return;
6891 
6892 	if (preempt_count() > preempt_offset)
6893 		return;
6894 
6895 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6896 		return;
6897 	prev_jiffy = jiffies;
6898 
6899 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6900 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6901 			in_atomic(), irqs_disabled(),
6902 			current->pid, current->comm);
6903 
6904 	debug_show_held_locks(current);
6905 	dump_stack();
6906 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6907 }
6908 EXPORT_SYMBOL_GPL(__cant_sleep);
6909 #endif
6910 
6911 #ifdef CONFIG_MAGIC_SYSRQ
6912 void normalize_rt_tasks(void)
6913 {
6914 	struct task_struct *g, *p;
6915 	struct sched_attr attr = {
6916 		.sched_policy = SCHED_NORMAL,
6917 	};
6918 
6919 	read_lock(&tasklist_lock);
6920 	for_each_process_thread(g, p) {
6921 		/*
6922 		 * Only normalize user tasks:
6923 		 */
6924 		if (p->flags & PF_KTHREAD)
6925 			continue;
6926 
6927 		p->se.exec_start = 0;
6928 		schedstat_set(p->se.statistics.wait_start,  0);
6929 		schedstat_set(p->se.statistics.sleep_start, 0);
6930 		schedstat_set(p->se.statistics.block_start, 0);
6931 
6932 		if (!dl_task(p) && !rt_task(p)) {
6933 			/*
6934 			 * Renice negative nice level userspace
6935 			 * tasks back to 0:
6936 			 */
6937 			if (task_nice(p) < 0)
6938 				set_user_nice(p, 0);
6939 			continue;
6940 		}
6941 
6942 		__sched_setscheduler(p, &attr, false, false);
6943 	}
6944 	read_unlock(&tasklist_lock);
6945 }
6946 
6947 #endif /* CONFIG_MAGIC_SYSRQ */
6948 
6949 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6950 /*
6951  * These functions are only useful for the IA64 MCA handling, or kdb.
6952  *
6953  * They can only be called when the whole system has been
6954  * stopped - every CPU needs to be quiescent, and no scheduling
6955  * activity can take place. Using them for anything else would
6956  * be a serious bug, and as a result, they aren't even visible
6957  * under any other configuration.
6958  */
6959 
6960 /**
6961  * curr_task - return the current task for a given CPU.
6962  * @cpu: the processor in question.
6963  *
6964  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6965  *
6966  * Return: The current task for @cpu.
6967  */
6968 struct task_struct *curr_task(int cpu)
6969 {
6970 	return cpu_curr(cpu);
6971 }
6972 
6973 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6974 
6975 #ifdef CONFIG_IA64
6976 /**
6977  * ia64_set_curr_task - set the current task for a given CPU.
6978  * @cpu: the processor in question.
6979  * @p: the task pointer to set.
6980  *
6981  * Description: This function must only be used when non-maskable interrupts
6982  * are serviced on a separate stack. It allows the architecture to switch the
6983  * notion of the current task on a CPU in a non-blocking manner. This function
6984  * must be called with all CPU's synchronized, and interrupts disabled, the
6985  * and caller must save the original value of the current task (see
6986  * curr_task() above) and restore that value before reenabling interrupts and
6987  * re-starting the system.
6988  *
6989  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6990  */
6991 void ia64_set_curr_task(int cpu, struct task_struct *p)
6992 {
6993 	cpu_curr(cpu) = p;
6994 }
6995 
6996 #endif
6997 
6998 #ifdef CONFIG_CGROUP_SCHED
6999 /* task_group_lock serializes the addition/removal of task groups */
7000 static DEFINE_SPINLOCK(task_group_lock);
7001 
7002 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7003 					    struct task_group *parent)
7004 {
7005 #ifdef CONFIG_UCLAMP_TASK_GROUP
7006 	enum uclamp_id clamp_id;
7007 
7008 	for_each_clamp_id(clamp_id) {
7009 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7010 			      uclamp_none(clamp_id), false);
7011 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7012 	}
7013 #endif
7014 }
7015 
7016 static void sched_free_group(struct task_group *tg)
7017 {
7018 	free_fair_sched_group(tg);
7019 	free_rt_sched_group(tg);
7020 	autogroup_free(tg);
7021 	kmem_cache_free(task_group_cache, tg);
7022 }
7023 
7024 /* allocate runqueue etc for a new task group */
7025 struct task_group *sched_create_group(struct task_group *parent)
7026 {
7027 	struct task_group *tg;
7028 
7029 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7030 	if (!tg)
7031 		return ERR_PTR(-ENOMEM);
7032 
7033 	if (!alloc_fair_sched_group(tg, parent))
7034 		goto err;
7035 
7036 	if (!alloc_rt_sched_group(tg, parent))
7037 		goto err;
7038 
7039 	alloc_uclamp_sched_group(tg, parent);
7040 
7041 	return tg;
7042 
7043 err:
7044 	sched_free_group(tg);
7045 	return ERR_PTR(-ENOMEM);
7046 }
7047 
7048 void sched_online_group(struct task_group *tg, struct task_group *parent)
7049 {
7050 	unsigned long flags;
7051 
7052 	spin_lock_irqsave(&task_group_lock, flags);
7053 	list_add_rcu(&tg->list, &task_groups);
7054 
7055 	/* Root should already exist: */
7056 	WARN_ON(!parent);
7057 
7058 	tg->parent = parent;
7059 	INIT_LIST_HEAD(&tg->children);
7060 	list_add_rcu(&tg->siblings, &parent->children);
7061 	spin_unlock_irqrestore(&task_group_lock, flags);
7062 
7063 	online_fair_sched_group(tg);
7064 }
7065 
7066 /* rcu callback to free various structures associated with a task group */
7067 static void sched_free_group_rcu(struct rcu_head *rhp)
7068 {
7069 	/* Now it should be safe to free those cfs_rqs: */
7070 	sched_free_group(container_of(rhp, struct task_group, rcu));
7071 }
7072 
7073 void sched_destroy_group(struct task_group *tg)
7074 {
7075 	/* Wait for possible concurrent references to cfs_rqs complete: */
7076 	call_rcu(&tg->rcu, sched_free_group_rcu);
7077 }
7078 
7079 void sched_offline_group(struct task_group *tg)
7080 {
7081 	unsigned long flags;
7082 
7083 	/* End participation in shares distribution: */
7084 	unregister_fair_sched_group(tg);
7085 
7086 	spin_lock_irqsave(&task_group_lock, flags);
7087 	list_del_rcu(&tg->list);
7088 	list_del_rcu(&tg->siblings);
7089 	spin_unlock_irqrestore(&task_group_lock, flags);
7090 }
7091 
7092 static void sched_change_group(struct task_struct *tsk, int type)
7093 {
7094 	struct task_group *tg;
7095 
7096 	/*
7097 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7098 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7099 	 * to prevent lockdep warnings.
7100 	 */
7101 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7102 			  struct task_group, css);
7103 	tg = autogroup_task_group(tsk, tg);
7104 	tsk->sched_task_group = tg;
7105 
7106 #ifdef CONFIG_FAIR_GROUP_SCHED
7107 	if (tsk->sched_class->task_change_group)
7108 		tsk->sched_class->task_change_group(tsk, type);
7109 	else
7110 #endif
7111 		set_task_rq(tsk, task_cpu(tsk));
7112 }
7113 
7114 /*
7115  * Change task's runqueue when it moves between groups.
7116  *
7117  * The caller of this function should have put the task in its new group by
7118  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7119  * its new group.
7120  */
7121 void sched_move_task(struct task_struct *tsk)
7122 {
7123 	int queued, running, queue_flags =
7124 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7125 	struct rq_flags rf;
7126 	struct rq *rq;
7127 
7128 	rq = task_rq_lock(tsk, &rf);
7129 	update_rq_clock(rq);
7130 
7131 	running = task_current(rq, tsk);
7132 	queued = task_on_rq_queued(tsk);
7133 
7134 	if (queued)
7135 		dequeue_task(rq, tsk, queue_flags);
7136 	if (running)
7137 		put_prev_task(rq, tsk);
7138 
7139 	sched_change_group(tsk, TASK_MOVE_GROUP);
7140 
7141 	if (queued)
7142 		enqueue_task(rq, tsk, queue_flags);
7143 	if (running) {
7144 		set_next_task(rq, tsk);
7145 		/*
7146 		 * After changing group, the running task may have joined a
7147 		 * throttled one but it's still the running task. Trigger a
7148 		 * resched to make sure that task can still run.
7149 		 */
7150 		resched_curr(rq);
7151 	}
7152 
7153 	task_rq_unlock(rq, tsk, &rf);
7154 }
7155 
7156 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7157 {
7158 	return css ? container_of(css, struct task_group, css) : NULL;
7159 }
7160 
7161 static struct cgroup_subsys_state *
7162 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7163 {
7164 	struct task_group *parent = css_tg(parent_css);
7165 	struct task_group *tg;
7166 
7167 	if (!parent) {
7168 		/* This is early initialization for the top cgroup */
7169 		return &root_task_group.css;
7170 	}
7171 
7172 	tg = sched_create_group(parent);
7173 	if (IS_ERR(tg))
7174 		return ERR_PTR(-ENOMEM);
7175 
7176 	return &tg->css;
7177 }
7178 
7179 /* Expose task group only after completing cgroup initialization */
7180 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7181 {
7182 	struct task_group *tg = css_tg(css);
7183 	struct task_group *parent = css_tg(css->parent);
7184 
7185 	if (parent)
7186 		sched_online_group(tg, parent);
7187 
7188 #ifdef CONFIG_UCLAMP_TASK_GROUP
7189 	/* Propagate the effective uclamp value for the new group */
7190 	cpu_util_update_eff(css);
7191 #endif
7192 
7193 	return 0;
7194 }
7195 
7196 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7197 {
7198 	struct task_group *tg = css_tg(css);
7199 
7200 	sched_offline_group(tg);
7201 }
7202 
7203 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7204 {
7205 	struct task_group *tg = css_tg(css);
7206 
7207 	/*
7208 	 * Relies on the RCU grace period between css_released() and this.
7209 	 */
7210 	sched_free_group(tg);
7211 }
7212 
7213 /*
7214  * This is called before wake_up_new_task(), therefore we really only
7215  * have to set its group bits, all the other stuff does not apply.
7216  */
7217 static void cpu_cgroup_fork(struct task_struct *task)
7218 {
7219 	struct rq_flags rf;
7220 	struct rq *rq;
7221 
7222 	rq = task_rq_lock(task, &rf);
7223 
7224 	update_rq_clock(rq);
7225 	sched_change_group(task, TASK_SET_GROUP);
7226 
7227 	task_rq_unlock(rq, task, &rf);
7228 }
7229 
7230 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7231 {
7232 	struct task_struct *task;
7233 	struct cgroup_subsys_state *css;
7234 	int ret = 0;
7235 
7236 	cgroup_taskset_for_each(task, css, tset) {
7237 #ifdef CONFIG_RT_GROUP_SCHED
7238 		if (!sched_rt_can_attach(css_tg(css), task))
7239 			return -EINVAL;
7240 #endif
7241 		/*
7242 		 * Serialize against wake_up_new_task() such that if its
7243 		 * running, we're sure to observe its full state.
7244 		 */
7245 		raw_spin_lock_irq(&task->pi_lock);
7246 		/*
7247 		 * Avoid calling sched_move_task() before wake_up_new_task()
7248 		 * has happened. This would lead to problems with PELT, due to
7249 		 * move wanting to detach+attach while we're not attached yet.
7250 		 */
7251 		if (task->state == TASK_NEW)
7252 			ret = -EINVAL;
7253 		raw_spin_unlock_irq(&task->pi_lock);
7254 
7255 		if (ret)
7256 			break;
7257 	}
7258 	return ret;
7259 }
7260 
7261 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7262 {
7263 	struct task_struct *task;
7264 	struct cgroup_subsys_state *css;
7265 
7266 	cgroup_taskset_for_each(task, css, tset)
7267 		sched_move_task(task);
7268 }
7269 
7270 #ifdef CONFIG_UCLAMP_TASK_GROUP
7271 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7272 {
7273 	struct cgroup_subsys_state *top_css = css;
7274 	struct uclamp_se *uc_parent = NULL;
7275 	struct uclamp_se *uc_se = NULL;
7276 	unsigned int eff[UCLAMP_CNT];
7277 	enum uclamp_id clamp_id;
7278 	unsigned int clamps;
7279 
7280 	css_for_each_descendant_pre(css, top_css) {
7281 		uc_parent = css_tg(css)->parent
7282 			? css_tg(css)->parent->uclamp : NULL;
7283 
7284 		for_each_clamp_id(clamp_id) {
7285 			/* Assume effective clamps matches requested clamps */
7286 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7287 			/* Cap effective clamps with parent's effective clamps */
7288 			if (uc_parent &&
7289 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7290 				eff[clamp_id] = uc_parent[clamp_id].value;
7291 			}
7292 		}
7293 		/* Ensure protection is always capped by limit */
7294 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7295 
7296 		/* Propagate most restrictive effective clamps */
7297 		clamps = 0x0;
7298 		uc_se = css_tg(css)->uclamp;
7299 		for_each_clamp_id(clamp_id) {
7300 			if (eff[clamp_id] == uc_se[clamp_id].value)
7301 				continue;
7302 			uc_se[clamp_id].value = eff[clamp_id];
7303 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7304 			clamps |= (0x1 << clamp_id);
7305 		}
7306 		if (!clamps) {
7307 			css = css_rightmost_descendant(css);
7308 			continue;
7309 		}
7310 
7311 		/* Immediately update descendants RUNNABLE tasks */
7312 		uclamp_update_active_tasks(css, clamps);
7313 	}
7314 }
7315 
7316 /*
7317  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7318  * C expression. Since there is no way to convert a macro argument (N) into a
7319  * character constant, use two levels of macros.
7320  */
7321 #define _POW10(exp) ((unsigned int)1e##exp)
7322 #define POW10(exp) _POW10(exp)
7323 
7324 struct uclamp_request {
7325 #define UCLAMP_PERCENT_SHIFT	2
7326 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7327 	s64 percent;
7328 	u64 util;
7329 	int ret;
7330 };
7331 
7332 static inline struct uclamp_request
7333 capacity_from_percent(char *buf)
7334 {
7335 	struct uclamp_request req = {
7336 		.percent = UCLAMP_PERCENT_SCALE,
7337 		.util = SCHED_CAPACITY_SCALE,
7338 		.ret = 0,
7339 	};
7340 
7341 	buf = strim(buf);
7342 	if (strcmp(buf, "max")) {
7343 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7344 					     &req.percent);
7345 		if (req.ret)
7346 			return req;
7347 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7348 			req.ret = -ERANGE;
7349 			return req;
7350 		}
7351 
7352 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7353 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7354 	}
7355 
7356 	return req;
7357 }
7358 
7359 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7360 				size_t nbytes, loff_t off,
7361 				enum uclamp_id clamp_id)
7362 {
7363 	struct uclamp_request req;
7364 	struct task_group *tg;
7365 
7366 	req = capacity_from_percent(buf);
7367 	if (req.ret)
7368 		return req.ret;
7369 
7370 	mutex_lock(&uclamp_mutex);
7371 	rcu_read_lock();
7372 
7373 	tg = css_tg(of_css(of));
7374 	if (tg->uclamp_req[clamp_id].value != req.util)
7375 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7376 
7377 	/*
7378 	 * Because of not recoverable conversion rounding we keep track of the
7379 	 * exact requested value
7380 	 */
7381 	tg->uclamp_pct[clamp_id] = req.percent;
7382 
7383 	/* Update effective clamps to track the most restrictive value */
7384 	cpu_util_update_eff(of_css(of));
7385 
7386 	rcu_read_unlock();
7387 	mutex_unlock(&uclamp_mutex);
7388 
7389 	return nbytes;
7390 }
7391 
7392 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7393 				    char *buf, size_t nbytes,
7394 				    loff_t off)
7395 {
7396 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7397 }
7398 
7399 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7400 				    char *buf, size_t nbytes,
7401 				    loff_t off)
7402 {
7403 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7404 }
7405 
7406 static inline void cpu_uclamp_print(struct seq_file *sf,
7407 				    enum uclamp_id clamp_id)
7408 {
7409 	struct task_group *tg;
7410 	u64 util_clamp;
7411 	u64 percent;
7412 	u32 rem;
7413 
7414 	rcu_read_lock();
7415 	tg = css_tg(seq_css(sf));
7416 	util_clamp = tg->uclamp_req[clamp_id].value;
7417 	rcu_read_unlock();
7418 
7419 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7420 		seq_puts(sf, "max\n");
7421 		return;
7422 	}
7423 
7424 	percent = tg->uclamp_pct[clamp_id];
7425 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7426 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7427 }
7428 
7429 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7430 {
7431 	cpu_uclamp_print(sf, UCLAMP_MIN);
7432 	return 0;
7433 }
7434 
7435 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7436 {
7437 	cpu_uclamp_print(sf, UCLAMP_MAX);
7438 	return 0;
7439 }
7440 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7441 
7442 #ifdef CONFIG_FAIR_GROUP_SCHED
7443 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7444 				struct cftype *cftype, u64 shareval)
7445 {
7446 	if (shareval > scale_load_down(ULONG_MAX))
7447 		shareval = MAX_SHARES;
7448 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7449 }
7450 
7451 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7452 			       struct cftype *cft)
7453 {
7454 	struct task_group *tg = css_tg(css);
7455 
7456 	return (u64) scale_load_down(tg->shares);
7457 }
7458 
7459 #ifdef CONFIG_CFS_BANDWIDTH
7460 static DEFINE_MUTEX(cfs_constraints_mutex);
7461 
7462 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7463 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7464 /* More than 203 days if BW_SHIFT equals 20. */
7465 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7466 
7467 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7468 
7469 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7470 {
7471 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7472 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7473 
7474 	if (tg == &root_task_group)
7475 		return -EINVAL;
7476 
7477 	/*
7478 	 * Ensure we have at some amount of bandwidth every period.  This is
7479 	 * to prevent reaching a state of large arrears when throttled via
7480 	 * entity_tick() resulting in prolonged exit starvation.
7481 	 */
7482 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7483 		return -EINVAL;
7484 
7485 	/*
7486 	 * Likewise, bound things on the otherside by preventing insane quota
7487 	 * periods.  This also allows us to normalize in computing quota
7488 	 * feasibility.
7489 	 */
7490 	if (period > max_cfs_quota_period)
7491 		return -EINVAL;
7492 
7493 	/*
7494 	 * Bound quota to defend quota against overflow during bandwidth shift.
7495 	 */
7496 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7497 		return -EINVAL;
7498 
7499 	/*
7500 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7501 	 * unthrottle_offline_cfs_rqs().
7502 	 */
7503 	get_online_cpus();
7504 	mutex_lock(&cfs_constraints_mutex);
7505 	ret = __cfs_schedulable(tg, period, quota);
7506 	if (ret)
7507 		goto out_unlock;
7508 
7509 	runtime_enabled = quota != RUNTIME_INF;
7510 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7511 	/*
7512 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7513 	 * before making related changes, and on->off must occur afterwards
7514 	 */
7515 	if (runtime_enabled && !runtime_was_enabled)
7516 		cfs_bandwidth_usage_inc();
7517 	raw_spin_lock_irq(&cfs_b->lock);
7518 	cfs_b->period = ns_to_ktime(period);
7519 	cfs_b->quota = quota;
7520 
7521 	__refill_cfs_bandwidth_runtime(cfs_b);
7522 
7523 	/* Restart the period timer (if active) to handle new period expiry: */
7524 	if (runtime_enabled)
7525 		start_cfs_bandwidth(cfs_b);
7526 
7527 	raw_spin_unlock_irq(&cfs_b->lock);
7528 
7529 	for_each_online_cpu(i) {
7530 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7531 		struct rq *rq = cfs_rq->rq;
7532 		struct rq_flags rf;
7533 
7534 		rq_lock_irq(rq, &rf);
7535 		cfs_rq->runtime_enabled = runtime_enabled;
7536 		cfs_rq->runtime_remaining = 0;
7537 
7538 		if (cfs_rq->throttled)
7539 			unthrottle_cfs_rq(cfs_rq);
7540 		rq_unlock_irq(rq, &rf);
7541 	}
7542 	if (runtime_was_enabled && !runtime_enabled)
7543 		cfs_bandwidth_usage_dec();
7544 out_unlock:
7545 	mutex_unlock(&cfs_constraints_mutex);
7546 	put_online_cpus();
7547 
7548 	return ret;
7549 }
7550 
7551 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7552 {
7553 	u64 quota, period;
7554 
7555 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7556 	if (cfs_quota_us < 0)
7557 		quota = RUNTIME_INF;
7558 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7559 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7560 	else
7561 		return -EINVAL;
7562 
7563 	return tg_set_cfs_bandwidth(tg, period, quota);
7564 }
7565 
7566 static long tg_get_cfs_quota(struct task_group *tg)
7567 {
7568 	u64 quota_us;
7569 
7570 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7571 		return -1;
7572 
7573 	quota_us = tg->cfs_bandwidth.quota;
7574 	do_div(quota_us, NSEC_PER_USEC);
7575 
7576 	return quota_us;
7577 }
7578 
7579 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7580 {
7581 	u64 quota, period;
7582 
7583 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7584 		return -EINVAL;
7585 
7586 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7587 	quota = tg->cfs_bandwidth.quota;
7588 
7589 	return tg_set_cfs_bandwidth(tg, period, quota);
7590 }
7591 
7592 static long tg_get_cfs_period(struct task_group *tg)
7593 {
7594 	u64 cfs_period_us;
7595 
7596 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7597 	do_div(cfs_period_us, NSEC_PER_USEC);
7598 
7599 	return cfs_period_us;
7600 }
7601 
7602 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7603 				  struct cftype *cft)
7604 {
7605 	return tg_get_cfs_quota(css_tg(css));
7606 }
7607 
7608 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7609 				   struct cftype *cftype, s64 cfs_quota_us)
7610 {
7611 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7612 }
7613 
7614 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7615 				   struct cftype *cft)
7616 {
7617 	return tg_get_cfs_period(css_tg(css));
7618 }
7619 
7620 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7621 				    struct cftype *cftype, u64 cfs_period_us)
7622 {
7623 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7624 }
7625 
7626 struct cfs_schedulable_data {
7627 	struct task_group *tg;
7628 	u64 period, quota;
7629 };
7630 
7631 /*
7632  * normalize group quota/period to be quota/max_period
7633  * note: units are usecs
7634  */
7635 static u64 normalize_cfs_quota(struct task_group *tg,
7636 			       struct cfs_schedulable_data *d)
7637 {
7638 	u64 quota, period;
7639 
7640 	if (tg == d->tg) {
7641 		period = d->period;
7642 		quota = d->quota;
7643 	} else {
7644 		period = tg_get_cfs_period(tg);
7645 		quota = tg_get_cfs_quota(tg);
7646 	}
7647 
7648 	/* note: these should typically be equivalent */
7649 	if (quota == RUNTIME_INF || quota == -1)
7650 		return RUNTIME_INF;
7651 
7652 	return to_ratio(period, quota);
7653 }
7654 
7655 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7656 {
7657 	struct cfs_schedulable_data *d = data;
7658 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7659 	s64 quota = 0, parent_quota = -1;
7660 
7661 	if (!tg->parent) {
7662 		quota = RUNTIME_INF;
7663 	} else {
7664 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7665 
7666 		quota = normalize_cfs_quota(tg, d);
7667 		parent_quota = parent_b->hierarchical_quota;
7668 
7669 		/*
7670 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7671 		 * always take the min.  On cgroup1, only inherit when no
7672 		 * limit is set:
7673 		 */
7674 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7675 			quota = min(quota, parent_quota);
7676 		} else {
7677 			if (quota == RUNTIME_INF)
7678 				quota = parent_quota;
7679 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7680 				return -EINVAL;
7681 		}
7682 	}
7683 	cfs_b->hierarchical_quota = quota;
7684 
7685 	return 0;
7686 }
7687 
7688 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7689 {
7690 	int ret;
7691 	struct cfs_schedulable_data data = {
7692 		.tg = tg,
7693 		.period = period,
7694 		.quota = quota,
7695 	};
7696 
7697 	if (quota != RUNTIME_INF) {
7698 		do_div(data.period, NSEC_PER_USEC);
7699 		do_div(data.quota, NSEC_PER_USEC);
7700 	}
7701 
7702 	rcu_read_lock();
7703 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7704 	rcu_read_unlock();
7705 
7706 	return ret;
7707 }
7708 
7709 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7710 {
7711 	struct task_group *tg = css_tg(seq_css(sf));
7712 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7713 
7714 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7715 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7716 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7717 
7718 	if (schedstat_enabled() && tg != &root_task_group) {
7719 		u64 ws = 0;
7720 		int i;
7721 
7722 		for_each_possible_cpu(i)
7723 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7724 
7725 		seq_printf(sf, "wait_sum %llu\n", ws);
7726 	}
7727 
7728 	return 0;
7729 }
7730 #endif /* CONFIG_CFS_BANDWIDTH */
7731 #endif /* CONFIG_FAIR_GROUP_SCHED */
7732 
7733 #ifdef CONFIG_RT_GROUP_SCHED
7734 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7735 				struct cftype *cft, s64 val)
7736 {
7737 	return sched_group_set_rt_runtime(css_tg(css), val);
7738 }
7739 
7740 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7741 			       struct cftype *cft)
7742 {
7743 	return sched_group_rt_runtime(css_tg(css));
7744 }
7745 
7746 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7747 				    struct cftype *cftype, u64 rt_period_us)
7748 {
7749 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7750 }
7751 
7752 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7753 				   struct cftype *cft)
7754 {
7755 	return sched_group_rt_period(css_tg(css));
7756 }
7757 #endif /* CONFIG_RT_GROUP_SCHED */
7758 
7759 static struct cftype cpu_legacy_files[] = {
7760 #ifdef CONFIG_FAIR_GROUP_SCHED
7761 	{
7762 		.name = "shares",
7763 		.read_u64 = cpu_shares_read_u64,
7764 		.write_u64 = cpu_shares_write_u64,
7765 	},
7766 #endif
7767 #ifdef CONFIG_CFS_BANDWIDTH
7768 	{
7769 		.name = "cfs_quota_us",
7770 		.read_s64 = cpu_cfs_quota_read_s64,
7771 		.write_s64 = cpu_cfs_quota_write_s64,
7772 	},
7773 	{
7774 		.name = "cfs_period_us",
7775 		.read_u64 = cpu_cfs_period_read_u64,
7776 		.write_u64 = cpu_cfs_period_write_u64,
7777 	},
7778 	{
7779 		.name = "stat",
7780 		.seq_show = cpu_cfs_stat_show,
7781 	},
7782 #endif
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 	{
7785 		.name = "rt_runtime_us",
7786 		.read_s64 = cpu_rt_runtime_read,
7787 		.write_s64 = cpu_rt_runtime_write,
7788 	},
7789 	{
7790 		.name = "rt_period_us",
7791 		.read_u64 = cpu_rt_period_read_uint,
7792 		.write_u64 = cpu_rt_period_write_uint,
7793 	},
7794 #endif
7795 #ifdef CONFIG_UCLAMP_TASK_GROUP
7796 	{
7797 		.name = "uclamp.min",
7798 		.flags = CFTYPE_NOT_ON_ROOT,
7799 		.seq_show = cpu_uclamp_min_show,
7800 		.write = cpu_uclamp_min_write,
7801 	},
7802 	{
7803 		.name = "uclamp.max",
7804 		.flags = CFTYPE_NOT_ON_ROOT,
7805 		.seq_show = cpu_uclamp_max_show,
7806 		.write = cpu_uclamp_max_write,
7807 	},
7808 #endif
7809 	{ }	/* Terminate */
7810 };
7811 
7812 static int cpu_extra_stat_show(struct seq_file *sf,
7813 			       struct cgroup_subsys_state *css)
7814 {
7815 #ifdef CONFIG_CFS_BANDWIDTH
7816 	{
7817 		struct task_group *tg = css_tg(css);
7818 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7819 		u64 throttled_usec;
7820 
7821 		throttled_usec = cfs_b->throttled_time;
7822 		do_div(throttled_usec, NSEC_PER_USEC);
7823 
7824 		seq_printf(sf, "nr_periods %d\n"
7825 			   "nr_throttled %d\n"
7826 			   "throttled_usec %llu\n",
7827 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7828 			   throttled_usec);
7829 	}
7830 #endif
7831 	return 0;
7832 }
7833 
7834 #ifdef CONFIG_FAIR_GROUP_SCHED
7835 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7836 			       struct cftype *cft)
7837 {
7838 	struct task_group *tg = css_tg(css);
7839 	u64 weight = scale_load_down(tg->shares);
7840 
7841 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7842 }
7843 
7844 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7845 				struct cftype *cft, u64 weight)
7846 {
7847 	/*
7848 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7849 	 * values which are 1, 100 and 10000 respectively.  While it loses
7850 	 * a bit of range on both ends, it maps pretty well onto the shares
7851 	 * value used by scheduler and the round-trip conversions preserve
7852 	 * the original value over the entire range.
7853 	 */
7854 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7855 		return -ERANGE;
7856 
7857 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7858 
7859 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7860 }
7861 
7862 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7863 				    struct cftype *cft)
7864 {
7865 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7866 	int last_delta = INT_MAX;
7867 	int prio, delta;
7868 
7869 	/* find the closest nice value to the current weight */
7870 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7871 		delta = abs(sched_prio_to_weight[prio] - weight);
7872 		if (delta >= last_delta)
7873 			break;
7874 		last_delta = delta;
7875 	}
7876 
7877 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7878 }
7879 
7880 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7881 				     struct cftype *cft, s64 nice)
7882 {
7883 	unsigned long weight;
7884 	int idx;
7885 
7886 	if (nice < MIN_NICE || nice > MAX_NICE)
7887 		return -ERANGE;
7888 
7889 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7890 	idx = array_index_nospec(idx, 40);
7891 	weight = sched_prio_to_weight[idx];
7892 
7893 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7894 }
7895 #endif
7896 
7897 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7898 						  long period, long quota)
7899 {
7900 	if (quota < 0)
7901 		seq_puts(sf, "max");
7902 	else
7903 		seq_printf(sf, "%ld", quota);
7904 
7905 	seq_printf(sf, " %ld\n", period);
7906 }
7907 
7908 /* caller should put the current value in *@periodp before calling */
7909 static int __maybe_unused cpu_period_quota_parse(char *buf,
7910 						 u64 *periodp, u64 *quotap)
7911 {
7912 	char tok[21];	/* U64_MAX */
7913 
7914 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7915 		return -EINVAL;
7916 
7917 	*periodp *= NSEC_PER_USEC;
7918 
7919 	if (sscanf(tok, "%llu", quotap))
7920 		*quotap *= NSEC_PER_USEC;
7921 	else if (!strcmp(tok, "max"))
7922 		*quotap = RUNTIME_INF;
7923 	else
7924 		return -EINVAL;
7925 
7926 	return 0;
7927 }
7928 
7929 #ifdef CONFIG_CFS_BANDWIDTH
7930 static int cpu_max_show(struct seq_file *sf, void *v)
7931 {
7932 	struct task_group *tg = css_tg(seq_css(sf));
7933 
7934 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7935 	return 0;
7936 }
7937 
7938 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7939 			     char *buf, size_t nbytes, loff_t off)
7940 {
7941 	struct task_group *tg = css_tg(of_css(of));
7942 	u64 period = tg_get_cfs_period(tg);
7943 	u64 quota;
7944 	int ret;
7945 
7946 	ret = cpu_period_quota_parse(buf, &period, &quota);
7947 	if (!ret)
7948 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7949 	return ret ?: nbytes;
7950 }
7951 #endif
7952 
7953 static struct cftype cpu_files[] = {
7954 #ifdef CONFIG_FAIR_GROUP_SCHED
7955 	{
7956 		.name = "weight",
7957 		.flags = CFTYPE_NOT_ON_ROOT,
7958 		.read_u64 = cpu_weight_read_u64,
7959 		.write_u64 = cpu_weight_write_u64,
7960 	},
7961 	{
7962 		.name = "weight.nice",
7963 		.flags = CFTYPE_NOT_ON_ROOT,
7964 		.read_s64 = cpu_weight_nice_read_s64,
7965 		.write_s64 = cpu_weight_nice_write_s64,
7966 	},
7967 #endif
7968 #ifdef CONFIG_CFS_BANDWIDTH
7969 	{
7970 		.name = "max",
7971 		.flags = CFTYPE_NOT_ON_ROOT,
7972 		.seq_show = cpu_max_show,
7973 		.write = cpu_max_write,
7974 	},
7975 #endif
7976 #ifdef CONFIG_UCLAMP_TASK_GROUP
7977 	{
7978 		.name = "uclamp.min",
7979 		.flags = CFTYPE_NOT_ON_ROOT,
7980 		.seq_show = cpu_uclamp_min_show,
7981 		.write = cpu_uclamp_min_write,
7982 	},
7983 	{
7984 		.name = "uclamp.max",
7985 		.flags = CFTYPE_NOT_ON_ROOT,
7986 		.seq_show = cpu_uclamp_max_show,
7987 		.write = cpu_uclamp_max_write,
7988 	},
7989 #endif
7990 	{ }	/* terminate */
7991 };
7992 
7993 struct cgroup_subsys cpu_cgrp_subsys = {
7994 	.css_alloc	= cpu_cgroup_css_alloc,
7995 	.css_online	= cpu_cgroup_css_online,
7996 	.css_released	= cpu_cgroup_css_released,
7997 	.css_free	= cpu_cgroup_css_free,
7998 	.css_extra_stat_show = cpu_extra_stat_show,
7999 	.fork		= cpu_cgroup_fork,
8000 	.can_attach	= cpu_cgroup_can_attach,
8001 	.attach		= cpu_cgroup_attach,
8002 	.legacy_cftypes	= cpu_legacy_files,
8003 	.dfl_cftypes	= cpu_files,
8004 	.early_init	= true,
8005 	.threaded	= true,
8006 };
8007 
8008 #endif	/* CONFIG_CGROUP_SCHED */
8009 
8010 void dump_cpu_task(int cpu)
8011 {
8012 	pr_info("Task dump for CPU %d:\n", cpu);
8013 	sched_show_task(cpu_curr(cpu));
8014 }
8015 
8016 /*
8017  * Nice levels are multiplicative, with a gentle 10% change for every
8018  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8019  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8020  * that remained on nice 0.
8021  *
8022  * The "10% effect" is relative and cumulative: from _any_ nice level,
8023  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8024  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8025  * If a task goes up by ~10% and another task goes down by ~10% then
8026  * the relative distance between them is ~25%.)
8027  */
8028 const int sched_prio_to_weight[40] = {
8029  /* -20 */     88761,     71755,     56483,     46273,     36291,
8030  /* -15 */     29154,     23254,     18705,     14949,     11916,
8031  /* -10 */      9548,      7620,      6100,      4904,      3906,
8032  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8033  /*   0 */      1024,       820,       655,       526,       423,
8034  /*   5 */       335,       272,       215,       172,       137,
8035  /*  10 */       110,        87,        70,        56,        45,
8036  /*  15 */        36,        29,        23,        18,        15,
8037 };
8038 
8039 /*
8040  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8041  *
8042  * In cases where the weight does not change often, we can use the
8043  * precalculated inverse to speed up arithmetics by turning divisions
8044  * into multiplications:
8045  */
8046 const u32 sched_prio_to_wmult[40] = {
8047  /* -20 */     48388,     59856,     76040,     92818,    118348,
8048  /* -15 */    147320,    184698,    229616,    287308,    360437,
8049  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8050  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8051  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8052  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8053  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8054  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8055 };
8056 
8057 #undef CREATE_TRACE_POINTS
8058