1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #include <trace/events/ipi.h> 84 #undef CREATE_TRACE_POINTS 85 86 #include "sched.h" 87 #include "stats.h" 88 #include "autogroup.h" 89 90 #include "autogroup.h" 91 #include "pelt.h" 92 #include "smp.h" 93 #include "stats.h" 94 95 #include "../workqueue_internal.h" 96 #include "../../io_uring/io-wq.h" 97 #include "../smpboot.h" 98 99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 101 102 /* 103 * Export tracepoints that act as a bare tracehook (ie: have no trace event 104 * associated with them) to allow external modules to probe them. 105 */ 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 117 118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 119 120 #ifdef CONFIG_SCHED_DEBUG 121 /* 122 * Debugging: various feature bits 123 * 124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 125 * sysctl_sched_features, defined in sched.h, to allow constants propagation 126 * at compile time and compiler optimization based on features default. 127 */ 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 const_debug unsigned int sysctl_sched_features = 131 #include "features.h" 132 0; 133 #undef SCHED_FEAT 134 135 /* 136 * Print a warning if need_resched is set for the given duration (if 137 * LATENCY_WARN is enabled). 138 * 139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 140 * per boot. 141 */ 142 __read_mostly int sysctl_resched_latency_warn_ms = 100; 143 __read_mostly int sysctl_resched_latency_warn_once = 1; 144 #endif /* CONFIG_SCHED_DEBUG */ 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (rt_prio(p->prio)) /* includes deadline */ 165 return p->prio; /* [-1, 99] */ 166 167 if (p->sched_class == &idle_sched_class) 168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 169 170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 171 } 172 173 /* 174 * l(a,b) 175 * le(a,b) := !l(b,a) 176 * g(a,b) := l(b,a) 177 * ge(a,b) := !l(a,b) 178 */ 179 180 /* real prio, less is less */ 181 static inline bool prio_less(const struct task_struct *a, 182 const struct task_struct *b, bool in_fi) 183 { 184 185 int pa = __task_prio(a), pb = __task_prio(b); 186 187 if (-pa < -pb) 188 return true; 189 190 if (-pb < -pa) 191 return false; 192 193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 194 return !dl_time_before(a->dl.deadline, b->dl.deadline); 195 196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 197 return cfs_prio_less(a, b, in_fi); 198 199 return false; 200 } 201 202 static inline bool __sched_core_less(const struct task_struct *a, 203 const struct task_struct *b) 204 { 205 if (a->core_cookie < b->core_cookie) 206 return true; 207 208 if (a->core_cookie > b->core_cookie) 209 return false; 210 211 /* flip prio, so high prio is leftmost */ 212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 213 return true; 214 215 return false; 216 } 217 218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 219 220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 221 { 222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 223 } 224 225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 226 { 227 const struct task_struct *p = __node_2_sc(node); 228 unsigned long cookie = (unsigned long)key; 229 230 if (cookie < p->core_cookie) 231 return -1; 232 233 if (cookie > p->core_cookie) 234 return 1; 235 236 return 0; 237 } 238 239 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 240 { 241 rq->core->core_task_seq++; 242 243 if (!p->core_cookie) 244 return; 245 246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 247 } 248 249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 250 { 251 rq->core->core_task_seq++; 252 253 if (sched_core_enqueued(p)) { 254 rb_erase(&p->core_node, &rq->core_tree); 255 RB_CLEAR_NODE(&p->core_node); 256 } 257 258 /* 259 * Migrating the last task off the cpu, with the cpu in forced idle 260 * state. Reschedule to create an accounting edge for forced idle, 261 * and re-examine whether the core is still in forced idle state. 262 */ 263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 264 rq->core->core_forceidle_count && rq->curr == rq->idle) 265 resched_curr(rq); 266 } 267 268 static int sched_task_is_throttled(struct task_struct *p, int cpu) 269 { 270 if (p->sched_class->task_is_throttled) 271 return p->sched_class->task_is_throttled(p, cpu); 272 273 return 0; 274 } 275 276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 277 { 278 struct rb_node *node = &p->core_node; 279 int cpu = task_cpu(p); 280 281 do { 282 node = rb_next(node); 283 if (!node) 284 return NULL; 285 286 p = __node_2_sc(node); 287 if (p->core_cookie != cookie) 288 return NULL; 289 290 } while (sched_task_is_throttled(p, cpu)); 291 292 return p; 293 } 294 295 /* 296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 297 * If no suitable task is found, NULL will be returned. 298 */ 299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 300 { 301 struct task_struct *p; 302 struct rb_node *node; 303 304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 305 if (!node) 306 return NULL; 307 308 p = __node_2_sc(node); 309 if (!sched_task_is_throttled(p, rq->cpu)) 310 return p; 311 312 return sched_core_next(p, cookie); 313 } 314 315 /* 316 * Magic required such that: 317 * 318 * raw_spin_rq_lock(rq); 319 * ... 320 * raw_spin_rq_unlock(rq); 321 * 322 * ends up locking and unlocking the _same_ lock, and all CPUs 323 * always agree on what rq has what lock. 324 * 325 * XXX entirely possible to selectively enable cores, don't bother for now. 326 */ 327 328 static DEFINE_MUTEX(sched_core_mutex); 329 static atomic_t sched_core_count; 330 static struct cpumask sched_core_mask; 331 332 static void sched_core_lock(int cpu, unsigned long *flags) 333 { 334 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 335 int t, i = 0; 336 337 local_irq_save(*flags); 338 for_each_cpu(t, smt_mask) 339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 340 } 341 342 static void sched_core_unlock(int cpu, unsigned long *flags) 343 { 344 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 345 int t; 346 347 for_each_cpu(t, smt_mask) 348 raw_spin_unlock(&cpu_rq(t)->__lock); 349 local_irq_restore(*flags); 350 } 351 352 static void __sched_core_flip(bool enabled) 353 { 354 unsigned long flags; 355 int cpu, t; 356 357 cpus_read_lock(); 358 359 /* 360 * Toggle the online cores, one by one. 361 */ 362 cpumask_copy(&sched_core_mask, cpu_online_mask); 363 for_each_cpu(cpu, &sched_core_mask) { 364 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 365 366 sched_core_lock(cpu, &flags); 367 368 for_each_cpu(t, smt_mask) 369 cpu_rq(t)->core_enabled = enabled; 370 371 cpu_rq(cpu)->core->core_forceidle_start = 0; 372 373 sched_core_unlock(cpu, &flags); 374 375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 376 } 377 378 /* 379 * Toggle the offline CPUs. 380 */ 381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 382 cpu_rq(cpu)->core_enabled = enabled; 383 384 cpus_read_unlock(); 385 } 386 387 static void sched_core_assert_empty(void) 388 { 389 int cpu; 390 391 for_each_possible_cpu(cpu) 392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 393 } 394 395 static void __sched_core_enable(void) 396 { 397 static_branch_enable(&__sched_core_enabled); 398 /* 399 * Ensure all previous instances of raw_spin_rq_*lock() have finished 400 * and future ones will observe !sched_core_disabled(). 401 */ 402 synchronize_rcu(); 403 __sched_core_flip(true); 404 sched_core_assert_empty(); 405 } 406 407 static void __sched_core_disable(void) 408 { 409 sched_core_assert_empty(); 410 __sched_core_flip(false); 411 static_branch_disable(&__sched_core_enabled); 412 } 413 414 void sched_core_get(void) 415 { 416 if (atomic_inc_not_zero(&sched_core_count)) 417 return; 418 419 mutex_lock(&sched_core_mutex); 420 if (!atomic_read(&sched_core_count)) 421 __sched_core_enable(); 422 423 smp_mb__before_atomic(); 424 atomic_inc(&sched_core_count); 425 mutex_unlock(&sched_core_mutex); 426 } 427 428 static void __sched_core_put(struct work_struct *work) 429 { 430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 431 __sched_core_disable(); 432 mutex_unlock(&sched_core_mutex); 433 } 434 } 435 436 void sched_core_put(void) 437 { 438 static DECLARE_WORK(_work, __sched_core_put); 439 440 /* 441 * "There can be only one" 442 * 443 * Either this is the last one, or we don't actually need to do any 444 * 'work'. If it is the last *again*, we rely on 445 * WORK_STRUCT_PENDING_BIT. 446 */ 447 if (!atomic_add_unless(&sched_core_count, -1, 1)) 448 schedule_work(&_work); 449 } 450 451 #else /* !CONFIG_SCHED_CORE */ 452 453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 454 static inline void 455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 456 457 #endif /* CONFIG_SCHED_CORE */ 458 459 /* 460 * Serialization rules: 461 * 462 * Lock order: 463 * 464 * p->pi_lock 465 * rq->lock 466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 467 * 468 * rq1->lock 469 * rq2->lock where: rq1 < rq2 470 * 471 * Regular state: 472 * 473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 474 * local CPU's rq->lock, it optionally removes the task from the runqueue and 475 * always looks at the local rq data structures to find the most eligible task 476 * to run next. 477 * 478 * Task enqueue is also under rq->lock, possibly taken from another CPU. 479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 480 * the local CPU to avoid bouncing the runqueue state around [ see 481 * ttwu_queue_wakelist() ] 482 * 483 * Task wakeup, specifically wakeups that involve migration, are horribly 484 * complicated to avoid having to take two rq->locks. 485 * 486 * Special state: 487 * 488 * System-calls and anything external will use task_rq_lock() which acquires 489 * both p->pi_lock and rq->lock. As a consequence the state they change is 490 * stable while holding either lock: 491 * 492 * - sched_setaffinity()/ 493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 494 * - set_user_nice(): p->se.load, p->*prio 495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 496 * p->se.load, p->rt_priority, 497 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 498 * - sched_setnuma(): p->numa_preferred_nid 499 * - sched_move_task(): p->sched_task_group 500 * - uclamp_update_active() p->uclamp* 501 * 502 * p->state <- TASK_*: 503 * 504 * is changed locklessly using set_current_state(), __set_current_state() or 505 * set_special_state(), see their respective comments, or by 506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 507 * concurrent self. 508 * 509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 510 * 511 * is set by activate_task() and cleared by deactivate_task(), under 512 * rq->lock. Non-zero indicates the task is runnable, the special 513 * ON_RQ_MIGRATING state is used for migration without holding both 514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 515 * 516 * p->on_cpu <- { 0, 1 }: 517 * 518 * is set by prepare_task() and cleared by finish_task() such that it will be 519 * set before p is scheduled-in and cleared after p is scheduled-out, both 520 * under rq->lock. Non-zero indicates the task is running on its CPU. 521 * 522 * [ The astute reader will observe that it is possible for two tasks on one 523 * CPU to have ->on_cpu = 1 at the same time. ] 524 * 525 * task_cpu(p): is changed by set_task_cpu(), the rules are: 526 * 527 * - Don't call set_task_cpu() on a blocked task: 528 * 529 * We don't care what CPU we're not running on, this simplifies hotplug, 530 * the CPU assignment of blocked tasks isn't required to be valid. 531 * 532 * - for try_to_wake_up(), called under p->pi_lock: 533 * 534 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 535 * 536 * - for migration called under rq->lock: 537 * [ see task_on_rq_migrating() in task_rq_lock() ] 538 * 539 * o move_queued_task() 540 * o detach_task() 541 * 542 * - for migration called under double_rq_lock(): 543 * 544 * o __migrate_swap_task() 545 * o push_rt_task() / pull_rt_task() 546 * o push_dl_task() / pull_dl_task() 547 * o dl_task_offline_migration() 548 * 549 */ 550 551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 552 { 553 raw_spinlock_t *lock; 554 555 /* Matches synchronize_rcu() in __sched_core_enable() */ 556 preempt_disable(); 557 if (sched_core_disabled()) { 558 raw_spin_lock_nested(&rq->__lock, subclass); 559 /* preempt_count *MUST* be > 1 */ 560 preempt_enable_no_resched(); 561 return; 562 } 563 564 for (;;) { 565 lock = __rq_lockp(rq); 566 raw_spin_lock_nested(lock, subclass); 567 if (likely(lock == __rq_lockp(rq))) { 568 /* preempt_count *MUST* be > 1 */ 569 preempt_enable_no_resched(); 570 return; 571 } 572 raw_spin_unlock(lock); 573 } 574 } 575 576 bool raw_spin_rq_trylock(struct rq *rq) 577 { 578 raw_spinlock_t *lock; 579 bool ret; 580 581 /* Matches synchronize_rcu() in __sched_core_enable() */ 582 preempt_disable(); 583 if (sched_core_disabled()) { 584 ret = raw_spin_trylock(&rq->__lock); 585 preempt_enable(); 586 return ret; 587 } 588 589 for (;;) { 590 lock = __rq_lockp(rq); 591 ret = raw_spin_trylock(lock); 592 if (!ret || (likely(lock == __rq_lockp(rq)))) { 593 preempt_enable(); 594 return ret; 595 } 596 raw_spin_unlock(lock); 597 } 598 } 599 600 void raw_spin_rq_unlock(struct rq *rq) 601 { 602 raw_spin_unlock(rq_lockp(rq)); 603 } 604 605 #ifdef CONFIG_SMP 606 /* 607 * double_rq_lock - safely lock two runqueues 608 */ 609 void double_rq_lock(struct rq *rq1, struct rq *rq2) 610 { 611 lockdep_assert_irqs_disabled(); 612 613 if (rq_order_less(rq2, rq1)) 614 swap(rq1, rq2); 615 616 raw_spin_rq_lock(rq1); 617 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 619 620 double_rq_clock_clear_update(rq1, rq2); 621 } 622 #endif 623 624 /* 625 * __task_rq_lock - lock the rq @p resides on. 626 */ 627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 628 __acquires(rq->lock) 629 { 630 struct rq *rq; 631 632 lockdep_assert_held(&p->pi_lock); 633 634 for (;;) { 635 rq = task_rq(p); 636 raw_spin_rq_lock(rq); 637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 638 rq_pin_lock(rq, rf); 639 return rq; 640 } 641 raw_spin_rq_unlock(rq); 642 643 while (unlikely(task_on_rq_migrating(p))) 644 cpu_relax(); 645 } 646 } 647 648 /* 649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 650 */ 651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 652 __acquires(p->pi_lock) 653 __acquires(rq->lock) 654 { 655 struct rq *rq; 656 657 for (;;) { 658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 659 rq = task_rq(p); 660 raw_spin_rq_lock(rq); 661 /* 662 * move_queued_task() task_rq_lock() 663 * 664 * ACQUIRE (rq->lock) 665 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 667 * [S] ->cpu = new_cpu [L] task_rq() 668 * [L] ->on_rq 669 * RELEASE (rq->lock) 670 * 671 * If we observe the old CPU in task_rq_lock(), the acquire of 672 * the old rq->lock will fully serialize against the stores. 673 * 674 * If we observe the new CPU in task_rq_lock(), the address 675 * dependency headed by '[L] rq = task_rq()' and the acquire 676 * will pair with the WMB to ensure we then also see migrating. 677 */ 678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 679 rq_pin_lock(rq, rf); 680 return rq; 681 } 682 raw_spin_rq_unlock(rq); 683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 684 685 while (unlikely(task_on_rq_migrating(p))) 686 cpu_relax(); 687 } 688 } 689 690 /* 691 * RQ-clock updating methods: 692 */ 693 694 static void update_rq_clock_task(struct rq *rq, s64 delta) 695 { 696 /* 697 * In theory, the compile should just see 0 here, and optimize out the call 698 * to sched_rt_avg_update. But I don't trust it... 699 */ 700 s64 __maybe_unused steal = 0, irq_delta = 0; 701 702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 704 705 /* 706 * Since irq_time is only updated on {soft,}irq_exit, we might run into 707 * this case when a previous update_rq_clock() happened inside a 708 * {soft,}irq region. 709 * 710 * When this happens, we stop ->clock_task and only update the 711 * prev_irq_time stamp to account for the part that fit, so that a next 712 * update will consume the rest. This ensures ->clock_task is 713 * monotonic. 714 * 715 * It does however cause some slight miss-attribution of {soft,}irq 716 * time, a more accurate solution would be to update the irq_time using 717 * the current rq->clock timestamp, except that would require using 718 * atomic ops. 719 */ 720 if (irq_delta > delta) 721 irq_delta = delta; 722 723 rq->prev_irq_time += irq_delta; 724 delta -= irq_delta; 725 delayacct_irq(rq->curr, irq_delta); 726 #endif 727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 728 if (static_key_false((¶virt_steal_rq_enabled))) { 729 steal = paravirt_steal_clock(cpu_of(rq)); 730 steal -= rq->prev_steal_time_rq; 731 732 if (unlikely(steal > delta)) 733 steal = delta; 734 735 rq->prev_steal_time_rq += steal; 736 delta -= steal; 737 } 738 #endif 739 740 rq->clock_task += delta; 741 742 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 743 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 744 update_irq_load_avg(rq, irq_delta + steal); 745 #endif 746 update_rq_clock_pelt(rq, delta); 747 } 748 749 void update_rq_clock(struct rq *rq) 750 { 751 s64 delta; 752 753 lockdep_assert_rq_held(rq); 754 755 if (rq->clock_update_flags & RQCF_ACT_SKIP) 756 return; 757 758 #ifdef CONFIG_SCHED_DEBUG 759 if (sched_feat(WARN_DOUBLE_CLOCK)) 760 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 761 rq->clock_update_flags |= RQCF_UPDATED; 762 #endif 763 764 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 765 if (delta < 0) 766 return; 767 rq->clock += delta; 768 update_rq_clock_task(rq, delta); 769 } 770 771 #ifdef CONFIG_SCHED_HRTICK 772 /* 773 * Use HR-timers to deliver accurate preemption points. 774 */ 775 776 static void hrtick_clear(struct rq *rq) 777 { 778 if (hrtimer_active(&rq->hrtick_timer)) 779 hrtimer_cancel(&rq->hrtick_timer); 780 } 781 782 /* 783 * High-resolution timer tick. 784 * Runs from hardirq context with interrupts disabled. 785 */ 786 static enum hrtimer_restart hrtick(struct hrtimer *timer) 787 { 788 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 789 struct rq_flags rf; 790 791 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 792 793 rq_lock(rq, &rf); 794 update_rq_clock(rq); 795 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 796 rq_unlock(rq, &rf); 797 798 return HRTIMER_NORESTART; 799 } 800 801 #ifdef CONFIG_SMP 802 803 static void __hrtick_restart(struct rq *rq) 804 { 805 struct hrtimer *timer = &rq->hrtick_timer; 806 ktime_t time = rq->hrtick_time; 807 808 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 809 } 810 811 /* 812 * called from hardirq (IPI) context 813 */ 814 static void __hrtick_start(void *arg) 815 { 816 struct rq *rq = arg; 817 struct rq_flags rf; 818 819 rq_lock(rq, &rf); 820 __hrtick_restart(rq); 821 rq_unlock(rq, &rf); 822 } 823 824 /* 825 * Called to set the hrtick timer state. 826 * 827 * called with rq->lock held and irqs disabled 828 */ 829 void hrtick_start(struct rq *rq, u64 delay) 830 { 831 struct hrtimer *timer = &rq->hrtick_timer; 832 s64 delta; 833 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense and can cause timer DoS. 837 */ 838 delta = max_t(s64, delay, 10000LL); 839 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 840 841 if (rq == this_rq()) 842 __hrtick_restart(rq); 843 else 844 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 845 } 846 847 #else 848 /* 849 * Called to set the hrtick timer state. 850 * 851 * called with rq->lock held and irqs disabled 852 */ 853 void hrtick_start(struct rq *rq, u64 delay) 854 { 855 /* 856 * Don't schedule slices shorter than 10000ns, that just 857 * doesn't make sense. Rely on vruntime for fairness. 858 */ 859 delay = max_t(u64, delay, 10000LL); 860 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 861 HRTIMER_MODE_REL_PINNED_HARD); 862 } 863 864 #endif /* CONFIG_SMP */ 865 866 static void hrtick_rq_init(struct rq *rq) 867 { 868 #ifdef CONFIG_SMP 869 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 870 #endif 871 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 872 rq->hrtick_timer.function = hrtick; 873 } 874 #else /* CONFIG_SCHED_HRTICK */ 875 static inline void hrtick_clear(struct rq *rq) 876 { 877 } 878 879 static inline void hrtick_rq_init(struct rq *rq) 880 { 881 } 882 #endif /* CONFIG_SCHED_HRTICK */ 883 884 /* 885 * cmpxchg based fetch_or, macro so it works for different integer types 886 */ 887 #define fetch_or(ptr, mask) \ 888 ({ \ 889 typeof(ptr) _ptr = (ptr); \ 890 typeof(mask) _mask = (mask); \ 891 typeof(*_ptr) _val = *_ptr; \ 892 \ 893 do { \ 894 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 895 _val; \ 896 }) 897 898 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 899 /* 900 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 901 * this avoids any races wrt polling state changes and thereby avoids 902 * spurious IPIs. 903 */ 904 static inline bool set_nr_and_not_polling(struct task_struct *p) 905 { 906 struct thread_info *ti = task_thread_info(p); 907 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 908 } 909 910 /* 911 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 912 * 913 * If this returns true, then the idle task promises to call 914 * sched_ttwu_pending() and reschedule soon. 915 */ 916 static bool set_nr_if_polling(struct task_struct *p) 917 { 918 struct thread_info *ti = task_thread_info(p); 919 typeof(ti->flags) val = READ_ONCE(ti->flags); 920 921 for (;;) { 922 if (!(val & _TIF_POLLING_NRFLAG)) 923 return false; 924 if (val & _TIF_NEED_RESCHED) 925 return true; 926 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 927 break; 928 } 929 return true; 930 } 931 932 #else 933 static inline bool set_nr_and_not_polling(struct task_struct *p) 934 { 935 set_tsk_need_resched(p); 936 return true; 937 } 938 939 #ifdef CONFIG_SMP 940 static inline bool set_nr_if_polling(struct task_struct *p) 941 { 942 return false; 943 } 944 #endif 945 #endif 946 947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 948 { 949 struct wake_q_node *node = &task->wake_q; 950 951 /* 952 * Atomically grab the task, if ->wake_q is !nil already it means 953 * it's already queued (either by us or someone else) and will get the 954 * wakeup due to that. 955 * 956 * In order to ensure that a pending wakeup will observe our pending 957 * state, even in the failed case, an explicit smp_mb() must be used. 958 */ 959 smp_mb__before_atomic(); 960 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 961 return false; 962 963 /* 964 * The head is context local, there can be no concurrency. 965 */ 966 *head->lastp = node; 967 head->lastp = &node->next; 968 return true; 969 } 970 971 /** 972 * wake_q_add() - queue a wakeup for 'later' waking. 973 * @head: the wake_q_head to add @task to 974 * @task: the task to queue for 'later' wakeup 975 * 976 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 977 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 978 * instantly. 979 * 980 * This function must be used as-if it were wake_up_process(); IOW the task 981 * must be ready to be woken at this location. 982 */ 983 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 984 { 985 if (__wake_q_add(head, task)) 986 get_task_struct(task); 987 } 988 989 /** 990 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 991 * @head: the wake_q_head to add @task to 992 * @task: the task to queue for 'later' wakeup 993 * 994 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 995 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 996 * instantly. 997 * 998 * This function must be used as-if it were wake_up_process(); IOW the task 999 * must be ready to be woken at this location. 1000 * 1001 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1002 * that already hold reference to @task can call the 'safe' version and trust 1003 * wake_q to do the right thing depending whether or not the @task is already 1004 * queued for wakeup. 1005 */ 1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1007 { 1008 if (!__wake_q_add(head, task)) 1009 put_task_struct(task); 1010 } 1011 1012 void wake_up_q(struct wake_q_head *head) 1013 { 1014 struct wake_q_node *node = head->first; 1015 1016 while (node != WAKE_Q_TAIL) { 1017 struct task_struct *task; 1018 1019 task = container_of(node, struct task_struct, wake_q); 1020 /* Task can safely be re-inserted now: */ 1021 node = node->next; 1022 task->wake_q.next = NULL; 1023 1024 /* 1025 * wake_up_process() executes a full barrier, which pairs with 1026 * the queueing in wake_q_add() so as not to miss wakeups. 1027 */ 1028 wake_up_process(task); 1029 put_task_struct(task); 1030 } 1031 } 1032 1033 /* 1034 * resched_curr - mark rq's current task 'to be rescheduled now'. 1035 * 1036 * On UP this means the setting of the need_resched flag, on SMP it 1037 * might also involve a cross-CPU call to trigger the scheduler on 1038 * the target CPU. 1039 */ 1040 void resched_curr(struct rq *rq) 1041 { 1042 struct task_struct *curr = rq->curr; 1043 int cpu; 1044 1045 lockdep_assert_rq_held(rq); 1046 1047 if (test_tsk_need_resched(curr)) 1048 return; 1049 1050 cpu = cpu_of(rq); 1051 1052 if (cpu == smp_processor_id()) { 1053 set_tsk_need_resched(curr); 1054 set_preempt_need_resched(); 1055 return; 1056 } 1057 1058 if (set_nr_and_not_polling(curr)) 1059 smp_send_reschedule(cpu); 1060 else 1061 trace_sched_wake_idle_without_ipi(cpu); 1062 } 1063 1064 void resched_cpu(int cpu) 1065 { 1066 struct rq *rq = cpu_rq(cpu); 1067 unsigned long flags; 1068 1069 raw_spin_rq_lock_irqsave(rq, flags); 1070 if (cpu_online(cpu) || cpu == smp_processor_id()) 1071 resched_curr(rq); 1072 raw_spin_rq_unlock_irqrestore(rq, flags); 1073 } 1074 1075 #ifdef CONFIG_SMP 1076 #ifdef CONFIG_NO_HZ_COMMON 1077 /* 1078 * In the semi idle case, use the nearest busy CPU for migrating timers 1079 * from an idle CPU. This is good for power-savings. 1080 * 1081 * We don't do similar optimization for completely idle system, as 1082 * selecting an idle CPU will add more delays to the timers than intended 1083 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1084 */ 1085 int get_nohz_timer_target(void) 1086 { 1087 int i, cpu = smp_processor_id(), default_cpu = -1; 1088 struct sched_domain *sd; 1089 const struct cpumask *hk_mask; 1090 1091 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1092 if (!idle_cpu(cpu)) 1093 return cpu; 1094 default_cpu = cpu; 1095 } 1096 1097 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1098 1099 guard(rcu)(); 1100 1101 for_each_domain(cpu, sd) { 1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1103 if (cpu == i) 1104 continue; 1105 1106 if (!idle_cpu(i)) 1107 return i; 1108 } 1109 } 1110 1111 if (default_cpu == -1) 1112 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1113 1114 return default_cpu; 1115 } 1116 1117 /* 1118 * When add_timer_on() enqueues a timer into the timer wheel of an 1119 * idle CPU then this timer might expire before the next timer event 1120 * which is scheduled to wake up that CPU. In case of a completely 1121 * idle system the next event might even be infinite time into the 1122 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1123 * leaves the inner idle loop so the newly added timer is taken into 1124 * account when the CPU goes back to idle and evaluates the timer 1125 * wheel for the next timer event. 1126 */ 1127 static void wake_up_idle_cpu(int cpu) 1128 { 1129 struct rq *rq = cpu_rq(cpu); 1130 1131 if (cpu == smp_processor_id()) 1132 return; 1133 1134 if (set_nr_and_not_polling(rq->idle)) 1135 smp_send_reschedule(cpu); 1136 else 1137 trace_sched_wake_idle_without_ipi(cpu); 1138 } 1139 1140 static bool wake_up_full_nohz_cpu(int cpu) 1141 { 1142 /* 1143 * We just need the target to call irq_exit() and re-evaluate 1144 * the next tick. The nohz full kick at least implies that. 1145 * If needed we can still optimize that later with an 1146 * empty IRQ. 1147 */ 1148 if (cpu_is_offline(cpu)) 1149 return true; /* Don't try to wake offline CPUs. */ 1150 if (tick_nohz_full_cpu(cpu)) { 1151 if (cpu != smp_processor_id() || 1152 tick_nohz_tick_stopped()) 1153 tick_nohz_full_kick_cpu(cpu); 1154 return true; 1155 } 1156 1157 return false; 1158 } 1159 1160 /* 1161 * Wake up the specified CPU. If the CPU is going offline, it is the 1162 * caller's responsibility to deal with the lost wakeup, for example, 1163 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1164 */ 1165 void wake_up_nohz_cpu(int cpu) 1166 { 1167 if (!wake_up_full_nohz_cpu(cpu)) 1168 wake_up_idle_cpu(cpu); 1169 } 1170 1171 static void nohz_csd_func(void *info) 1172 { 1173 struct rq *rq = info; 1174 int cpu = cpu_of(rq); 1175 unsigned int flags; 1176 1177 /* 1178 * Release the rq::nohz_csd. 1179 */ 1180 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1181 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1182 1183 rq->idle_balance = idle_cpu(cpu); 1184 if (rq->idle_balance && !need_resched()) { 1185 rq->nohz_idle_balance = flags; 1186 raise_softirq_irqoff(SCHED_SOFTIRQ); 1187 } 1188 } 1189 1190 #endif /* CONFIG_NO_HZ_COMMON */ 1191 1192 #ifdef CONFIG_NO_HZ_FULL 1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1194 { 1195 if (rq->nr_running != 1) 1196 return false; 1197 1198 if (p->sched_class != &fair_sched_class) 1199 return false; 1200 1201 if (!task_on_rq_queued(p)) 1202 return false; 1203 1204 return true; 1205 } 1206 1207 bool sched_can_stop_tick(struct rq *rq) 1208 { 1209 int fifo_nr_running; 1210 1211 /* Deadline tasks, even if single, need the tick */ 1212 if (rq->dl.dl_nr_running) 1213 return false; 1214 1215 /* 1216 * If there are more than one RR tasks, we need the tick to affect the 1217 * actual RR behaviour. 1218 */ 1219 if (rq->rt.rr_nr_running) { 1220 if (rq->rt.rr_nr_running == 1) 1221 return true; 1222 else 1223 return false; 1224 } 1225 1226 /* 1227 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1228 * forced preemption between FIFO tasks. 1229 */ 1230 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1231 if (fifo_nr_running) 1232 return true; 1233 1234 /* 1235 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1236 * if there's more than one we need the tick for involuntary 1237 * preemption. 1238 */ 1239 if (rq->nr_running > 1) 1240 return false; 1241 1242 /* 1243 * If there is one task and it has CFS runtime bandwidth constraints 1244 * and it's on the cpu now we don't want to stop the tick. 1245 * This check prevents clearing the bit if a newly enqueued task here is 1246 * dequeued by migrating while the constrained task continues to run. 1247 * E.g. going from 2->1 without going through pick_next_task(). 1248 */ 1249 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1250 if (cfs_task_bw_constrained(rq->curr)) 1251 return false; 1252 } 1253 1254 return true; 1255 } 1256 #endif /* CONFIG_NO_HZ_FULL */ 1257 #endif /* CONFIG_SMP */ 1258 1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1260 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1261 /* 1262 * Iterate task_group tree rooted at *from, calling @down when first entering a 1263 * node and @up when leaving it for the final time. 1264 * 1265 * Caller must hold rcu_lock or sufficient equivalent. 1266 */ 1267 int walk_tg_tree_from(struct task_group *from, 1268 tg_visitor down, tg_visitor up, void *data) 1269 { 1270 struct task_group *parent, *child; 1271 int ret; 1272 1273 parent = from; 1274 1275 down: 1276 ret = (*down)(parent, data); 1277 if (ret) 1278 goto out; 1279 list_for_each_entry_rcu(child, &parent->children, siblings) { 1280 parent = child; 1281 goto down; 1282 1283 up: 1284 continue; 1285 } 1286 ret = (*up)(parent, data); 1287 if (ret || parent == from) 1288 goto out; 1289 1290 child = parent; 1291 parent = parent->parent; 1292 if (parent) 1293 goto up; 1294 out: 1295 return ret; 1296 } 1297 1298 int tg_nop(struct task_group *tg, void *data) 1299 { 1300 return 0; 1301 } 1302 #endif 1303 1304 static void set_load_weight(struct task_struct *p, bool update_load) 1305 { 1306 int prio = p->static_prio - MAX_RT_PRIO; 1307 struct load_weight *load = &p->se.load; 1308 1309 /* 1310 * SCHED_IDLE tasks get minimal weight: 1311 */ 1312 if (task_has_idle_policy(p)) { 1313 load->weight = scale_load(WEIGHT_IDLEPRIO); 1314 load->inv_weight = WMULT_IDLEPRIO; 1315 return; 1316 } 1317 1318 /* 1319 * SCHED_OTHER tasks have to update their load when changing their 1320 * weight 1321 */ 1322 if (update_load && p->sched_class == &fair_sched_class) { 1323 reweight_task(p, prio); 1324 } else { 1325 load->weight = scale_load(sched_prio_to_weight[prio]); 1326 load->inv_weight = sched_prio_to_wmult[prio]; 1327 } 1328 } 1329 1330 #ifdef CONFIG_UCLAMP_TASK 1331 /* 1332 * Serializes updates of utilization clamp values 1333 * 1334 * The (slow-path) user-space triggers utilization clamp value updates which 1335 * can require updates on (fast-path) scheduler's data structures used to 1336 * support enqueue/dequeue operations. 1337 * While the per-CPU rq lock protects fast-path update operations, user-space 1338 * requests are serialized using a mutex to reduce the risk of conflicting 1339 * updates or API abuses. 1340 */ 1341 static DEFINE_MUTEX(uclamp_mutex); 1342 1343 /* Max allowed minimum utilization */ 1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1345 1346 /* Max allowed maximum utilization */ 1347 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1348 1349 /* 1350 * By default RT tasks run at the maximum performance point/capacity of the 1351 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1352 * SCHED_CAPACITY_SCALE. 1353 * 1354 * This knob allows admins to change the default behavior when uclamp is being 1355 * used. In battery powered devices, particularly, running at the maximum 1356 * capacity and frequency will increase energy consumption and shorten the 1357 * battery life. 1358 * 1359 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1360 * 1361 * This knob will not override the system default sched_util_clamp_min defined 1362 * above. 1363 */ 1364 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1365 1366 /* All clamps are required to be less or equal than these values */ 1367 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1368 1369 /* 1370 * This static key is used to reduce the uclamp overhead in the fast path. It 1371 * primarily disables the call to uclamp_rq_{inc, dec}() in 1372 * enqueue/dequeue_task(). 1373 * 1374 * This allows users to continue to enable uclamp in their kernel config with 1375 * minimum uclamp overhead in the fast path. 1376 * 1377 * As soon as userspace modifies any of the uclamp knobs, the static key is 1378 * enabled, since we have an actual users that make use of uclamp 1379 * functionality. 1380 * 1381 * The knobs that would enable this static key are: 1382 * 1383 * * A task modifying its uclamp value with sched_setattr(). 1384 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1385 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1386 */ 1387 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1388 1389 /* Integer rounded range for each bucket */ 1390 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1391 1392 #define for_each_clamp_id(clamp_id) \ 1393 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1394 1395 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1396 { 1397 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1398 } 1399 1400 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1401 { 1402 if (clamp_id == UCLAMP_MIN) 1403 return 0; 1404 return SCHED_CAPACITY_SCALE; 1405 } 1406 1407 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1408 unsigned int value, bool user_defined) 1409 { 1410 uc_se->value = value; 1411 uc_se->bucket_id = uclamp_bucket_id(value); 1412 uc_se->user_defined = user_defined; 1413 } 1414 1415 static inline unsigned int 1416 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1417 unsigned int clamp_value) 1418 { 1419 /* 1420 * Avoid blocked utilization pushing up the frequency when we go 1421 * idle (which drops the max-clamp) by retaining the last known 1422 * max-clamp. 1423 */ 1424 if (clamp_id == UCLAMP_MAX) { 1425 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1426 return clamp_value; 1427 } 1428 1429 return uclamp_none(UCLAMP_MIN); 1430 } 1431 1432 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1433 unsigned int clamp_value) 1434 { 1435 /* Reset max-clamp retention only on idle exit */ 1436 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1437 return; 1438 1439 uclamp_rq_set(rq, clamp_id, clamp_value); 1440 } 1441 1442 static inline 1443 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1444 unsigned int clamp_value) 1445 { 1446 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1447 int bucket_id = UCLAMP_BUCKETS - 1; 1448 1449 /* 1450 * Since both min and max clamps are max aggregated, find the 1451 * top most bucket with tasks in. 1452 */ 1453 for ( ; bucket_id >= 0; bucket_id--) { 1454 if (!bucket[bucket_id].tasks) 1455 continue; 1456 return bucket[bucket_id].value; 1457 } 1458 1459 /* No tasks -- default clamp values */ 1460 return uclamp_idle_value(rq, clamp_id, clamp_value); 1461 } 1462 1463 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1464 { 1465 unsigned int default_util_min; 1466 struct uclamp_se *uc_se; 1467 1468 lockdep_assert_held(&p->pi_lock); 1469 1470 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1471 1472 /* Only sync if user didn't override the default */ 1473 if (uc_se->user_defined) 1474 return; 1475 1476 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1477 uclamp_se_set(uc_se, default_util_min, false); 1478 } 1479 1480 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1481 { 1482 struct rq_flags rf; 1483 struct rq *rq; 1484 1485 if (!rt_task(p)) 1486 return; 1487 1488 /* Protect updates to p->uclamp_* */ 1489 rq = task_rq_lock(p, &rf); 1490 __uclamp_update_util_min_rt_default(p); 1491 task_rq_unlock(rq, p, &rf); 1492 } 1493 1494 static inline struct uclamp_se 1495 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1496 { 1497 /* Copy by value as we could modify it */ 1498 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1499 #ifdef CONFIG_UCLAMP_TASK_GROUP 1500 unsigned int tg_min, tg_max, value; 1501 1502 /* 1503 * Tasks in autogroups or root task group will be 1504 * restricted by system defaults. 1505 */ 1506 if (task_group_is_autogroup(task_group(p))) 1507 return uc_req; 1508 if (task_group(p) == &root_task_group) 1509 return uc_req; 1510 1511 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1512 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1513 value = uc_req.value; 1514 value = clamp(value, tg_min, tg_max); 1515 uclamp_se_set(&uc_req, value, false); 1516 #endif 1517 1518 return uc_req; 1519 } 1520 1521 /* 1522 * The effective clamp bucket index of a task depends on, by increasing 1523 * priority: 1524 * - the task specific clamp value, when explicitly requested from userspace 1525 * - the task group effective clamp value, for tasks not either in the root 1526 * group or in an autogroup 1527 * - the system default clamp value, defined by the sysadmin 1528 */ 1529 static inline struct uclamp_se 1530 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1531 { 1532 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1533 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1534 1535 /* System default restrictions always apply */ 1536 if (unlikely(uc_req.value > uc_max.value)) 1537 return uc_max; 1538 1539 return uc_req; 1540 } 1541 1542 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1543 { 1544 struct uclamp_se uc_eff; 1545 1546 /* Task currently refcounted: use back-annotated (effective) value */ 1547 if (p->uclamp[clamp_id].active) 1548 return (unsigned long)p->uclamp[clamp_id].value; 1549 1550 uc_eff = uclamp_eff_get(p, clamp_id); 1551 1552 return (unsigned long)uc_eff.value; 1553 } 1554 1555 /* 1556 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1557 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1558 * updates the rq's clamp value if required. 1559 * 1560 * Tasks can have a task-specific value requested from user-space, track 1561 * within each bucket the maximum value for tasks refcounted in it. 1562 * This "local max aggregation" allows to track the exact "requested" value 1563 * for each bucket when all its RUNNABLE tasks require the same clamp. 1564 */ 1565 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1566 enum uclamp_id clamp_id) 1567 { 1568 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1569 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1570 struct uclamp_bucket *bucket; 1571 1572 lockdep_assert_rq_held(rq); 1573 1574 /* Update task effective clamp */ 1575 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1576 1577 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1578 bucket->tasks++; 1579 uc_se->active = true; 1580 1581 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1582 1583 /* 1584 * Local max aggregation: rq buckets always track the max 1585 * "requested" clamp value of its RUNNABLE tasks. 1586 */ 1587 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1588 bucket->value = uc_se->value; 1589 1590 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1591 uclamp_rq_set(rq, clamp_id, uc_se->value); 1592 } 1593 1594 /* 1595 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1596 * is released. If this is the last task reference counting the rq's max 1597 * active clamp value, then the rq's clamp value is updated. 1598 * 1599 * Both refcounted tasks and rq's cached clamp values are expected to be 1600 * always valid. If it's detected they are not, as defensive programming, 1601 * enforce the expected state and warn. 1602 */ 1603 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1604 enum uclamp_id clamp_id) 1605 { 1606 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1607 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1608 struct uclamp_bucket *bucket; 1609 unsigned int bkt_clamp; 1610 unsigned int rq_clamp; 1611 1612 lockdep_assert_rq_held(rq); 1613 1614 /* 1615 * If sched_uclamp_used was enabled after task @p was enqueued, 1616 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1617 * 1618 * In this case the uc_se->active flag should be false since no uclamp 1619 * accounting was performed at enqueue time and we can just return 1620 * here. 1621 * 1622 * Need to be careful of the following enqueue/dequeue ordering 1623 * problem too 1624 * 1625 * enqueue(taskA) 1626 * // sched_uclamp_used gets enabled 1627 * enqueue(taskB) 1628 * dequeue(taskA) 1629 * // Must not decrement bucket->tasks here 1630 * dequeue(taskB) 1631 * 1632 * where we could end up with stale data in uc_se and 1633 * bucket[uc_se->bucket_id]. 1634 * 1635 * The following check here eliminates the possibility of such race. 1636 */ 1637 if (unlikely(!uc_se->active)) 1638 return; 1639 1640 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1641 1642 SCHED_WARN_ON(!bucket->tasks); 1643 if (likely(bucket->tasks)) 1644 bucket->tasks--; 1645 1646 uc_se->active = false; 1647 1648 /* 1649 * Keep "local max aggregation" simple and accept to (possibly) 1650 * overboost some RUNNABLE tasks in the same bucket. 1651 * The rq clamp bucket value is reset to its base value whenever 1652 * there are no more RUNNABLE tasks refcounting it. 1653 */ 1654 if (likely(bucket->tasks)) 1655 return; 1656 1657 rq_clamp = uclamp_rq_get(rq, clamp_id); 1658 /* 1659 * Defensive programming: this should never happen. If it happens, 1660 * e.g. due to future modification, warn and fixup the expected value. 1661 */ 1662 SCHED_WARN_ON(bucket->value > rq_clamp); 1663 if (bucket->value >= rq_clamp) { 1664 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1665 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1666 } 1667 } 1668 1669 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1670 { 1671 enum uclamp_id clamp_id; 1672 1673 /* 1674 * Avoid any overhead until uclamp is actually used by the userspace. 1675 * 1676 * The condition is constructed such that a NOP is generated when 1677 * sched_uclamp_used is disabled. 1678 */ 1679 if (!static_branch_unlikely(&sched_uclamp_used)) 1680 return; 1681 1682 if (unlikely(!p->sched_class->uclamp_enabled)) 1683 return; 1684 1685 for_each_clamp_id(clamp_id) 1686 uclamp_rq_inc_id(rq, p, clamp_id); 1687 1688 /* Reset clamp idle holding when there is one RUNNABLE task */ 1689 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1690 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1691 } 1692 1693 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1694 { 1695 enum uclamp_id clamp_id; 1696 1697 /* 1698 * Avoid any overhead until uclamp is actually used by the userspace. 1699 * 1700 * The condition is constructed such that a NOP is generated when 1701 * sched_uclamp_used is disabled. 1702 */ 1703 if (!static_branch_unlikely(&sched_uclamp_used)) 1704 return; 1705 1706 if (unlikely(!p->sched_class->uclamp_enabled)) 1707 return; 1708 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_dec_id(rq, p, clamp_id); 1711 } 1712 1713 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1714 enum uclamp_id clamp_id) 1715 { 1716 if (!p->uclamp[clamp_id].active) 1717 return; 1718 1719 uclamp_rq_dec_id(rq, p, clamp_id); 1720 uclamp_rq_inc_id(rq, p, clamp_id); 1721 1722 /* 1723 * Make sure to clear the idle flag if we've transiently reached 0 1724 * active tasks on rq. 1725 */ 1726 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1727 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1728 } 1729 1730 static inline void 1731 uclamp_update_active(struct task_struct *p) 1732 { 1733 enum uclamp_id clamp_id; 1734 struct rq_flags rf; 1735 struct rq *rq; 1736 1737 /* 1738 * Lock the task and the rq where the task is (or was) queued. 1739 * 1740 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1741 * price to pay to safely serialize util_{min,max} updates with 1742 * enqueues, dequeues and migration operations. 1743 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1744 */ 1745 rq = task_rq_lock(p, &rf); 1746 1747 /* 1748 * Setting the clamp bucket is serialized by task_rq_lock(). 1749 * If the task is not yet RUNNABLE and its task_struct is not 1750 * affecting a valid clamp bucket, the next time it's enqueued, 1751 * it will already see the updated clamp bucket value. 1752 */ 1753 for_each_clamp_id(clamp_id) 1754 uclamp_rq_reinc_id(rq, p, clamp_id); 1755 1756 task_rq_unlock(rq, p, &rf); 1757 } 1758 1759 #ifdef CONFIG_UCLAMP_TASK_GROUP 1760 static inline void 1761 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1762 { 1763 struct css_task_iter it; 1764 struct task_struct *p; 1765 1766 css_task_iter_start(css, 0, &it); 1767 while ((p = css_task_iter_next(&it))) 1768 uclamp_update_active(p); 1769 css_task_iter_end(&it); 1770 } 1771 1772 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1773 #endif 1774 1775 #ifdef CONFIG_SYSCTL 1776 #ifdef CONFIG_UCLAMP_TASK 1777 #ifdef CONFIG_UCLAMP_TASK_GROUP 1778 static void uclamp_update_root_tg(void) 1779 { 1780 struct task_group *tg = &root_task_group; 1781 1782 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1783 sysctl_sched_uclamp_util_min, false); 1784 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1785 sysctl_sched_uclamp_util_max, false); 1786 1787 rcu_read_lock(); 1788 cpu_util_update_eff(&root_task_group.css); 1789 rcu_read_unlock(); 1790 } 1791 #else 1792 static void uclamp_update_root_tg(void) { } 1793 #endif 1794 1795 static void uclamp_sync_util_min_rt_default(void) 1796 { 1797 struct task_struct *g, *p; 1798 1799 /* 1800 * copy_process() sysctl_uclamp 1801 * uclamp_min_rt = X; 1802 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1803 * // link thread smp_mb__after_spinlock() 1804 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1805 * sched_post_fork() for_each_process_thread() 1806 * __uclamp_sync_rt() __uclamp_sync_rt() 1807 * 1808 * Ensures that either sched_post_fork() will observe the new 1809 * uclamp_min_rt or for_each_process_thread() will observe the new 1810 * task. 1811 */ 1812 read_lock(&tasklist_lock); 1813 smp_mb__after_spinlock(); 1814 read_unlock(&tasklist_lock); 1815 1816 rcu_read_lock(); 1817 for_each_process_thread(g, p) 1818 uclamp_update_util_min_rt_default(p); 1819 rcu_read_unlock(); 1820 } 1821 1822 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1823 void *buffer, size_t *lenp, loff_t *ppos) 1824 { 1825 bool update_root_tg = false; 1826 int old_min, old_max, old_min_rt; 1827 int result; 1828 1829 guard(mutex)(&uclamp_mutex); 1830 1831 old_min = sysctl_sched_uclamp_util_min; 1832 old_max = sysctl_sched_uclamp_util_max; 1833 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1834 1835 result = proc_dointvec(table, write, buffer, lenp, ppos); 1836 if (result) 1837 goto undo; 1838 if (!write) 1839 return 0; 1840 1841 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1842 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1843 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1844 1845 result = -EINVAL; 1846 goto undo; 1847 } 1848 1849 if (old_min != sysctl_sched_uclamp_util_min) { 1850 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1851 sysctl_sched_uclamp_util_min, false); 1852 update_root_tg = true; 1853 } 1854 if (old_max != sysctl_sched_uclamp_util_max) { 1855 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1856 sysctl_sched_uclamp_util_max, false); 1857 update_root_tg = true; 1858 } 1859 1860 if (update_root_tg) { 1861 static_branch_enable(&sched_uclamp_used); 1862 uclamp_update_root_tg(); 1863 } 1864 1865 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1866 static_branch_enable(&sched_uclamp_used); 1867 uclamp_sync_util_min_rt_default(); 1868 } 1869 1870 /* 1871 * We update all RUNNABLE tasks only when task groups are in use. 1872 * Otherwise, keep it simple and do just a lazy update at each next 1873 * task enqueue time. 1874 */ 1875 return 0; 1876 1877 undo: 1878 sysctl_sched_uclamp_util_min = old_min; 1879 sysctl_sched_uclamp_util_max = old_max; 1880 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1881 return result; 1882 } 1883 #endif 1884 #endif 1885 1886 static int uclamp_validate(struct task_struct *p, 1887 const struct sched_attr *attr) 1888 { 1889 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1890 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1891 1892 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1893 util_min = attr->sched_util_min; 1894 1895 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1896 return -EINVAL; 1897 } 1898 1899 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1900 util_max = attr->sched_util_max; 1901 1902 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1903 return -EINVAL; 1904 } 1905 1906 if (util_min != -1 && util_max != -1 && util_min > util_max) 1907 return -EINVAL; 1908 1909 /* 1910 * We have valid uclamp attributes; make sure uclamp is enabled. 1911 * 1912 * We need to do that here, because enabling static branches is a 1913 * blocking operation which obviously cannot be done while holding 1914 * scheduler locks. 1915 */ 1916 static_branch_enable(&sched_uclamp_used); 1917 1918 return 0; 1919 } 1920 1921 static bool uclamp_reset(const struct sched_attr *attr, 1922 enum uclamp_id clamp_id, 1923 struct uclamp_se *uc_se) 1924 { 1925 /* Reset on sched class change for a non user-defined clamp value. */ 1926 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1927 !uc_se->user_defined) 1928 return true; 1929 1930 /* Reset on sched_util_{min,max} == -1. */ 1931 if (clamp_id == UCLAMP_MIN && 1932 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1933 attr->sched_util_min == -1) { 1934 return true; 1935 } 1936 1937 if (clamp_id == UCLAMP_MAX && 1938 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1939 attr->sched_util_max == -1) { 1940 return true; 1941 } 1942 1943 return false; 1944 } 1945 1946 static void __setscheduler_uclamp(struct task_struct *p, 1947 const struct sched_attr *attr) 1948 { 1949 enum uclamp_id clamp_id; 1950 1951 for_each_clamp_id(clamp_id) { 1952 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1953 unsigned int value; 1954 1955 if (!uclamp_reset(attr, clamp_id, uc_se)) 1956 continue; 1957 1958 /* 1959 * RT by default have a 100% boost value that could be modified 1960 * at runtime. 1961 */ 1962 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1963 value = sysctl_sched_uclamp_util_min_rt_default; 1964 else 1965 value = uclamp_none(clamp_id); 1966 1967 uclamp_se_set(uc_se, value, false); 1968 1969 } 1970 1971 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1972 return; 1973 1974 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1975 attr->sched_util_min != -1) { 1976 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1977 attr->sched_util_min, true); 1978 } 1979 1980 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1981 attr->sched_util_max != -1) { 1982 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1983 attr->sched_util_max, true); 1984 } 1985 } 1986 1987 static void uclamp_fork(struct task_struct *p) 1988 { 1989 enum uclamp_id clamp_id; 1990 1991 /* 1992 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1993 * as the task is still at its early fork stages. 1994 */ 1995 for_each_clamp_id(clamp_id) 1996 p->uclamp[clamp_id].active = false; 1997 1998 if (likely(!p->sched_reset_on_fork)) 1999 return; 2000 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_se_set(&p->uclamp_req[clamp_id], 2003 uclamp_none(clamp_id), false); 2004 } 2005 } 2006 2007 static void uclamp_post_fork(struct task_struct *p) 2008 { 2009 uclamp_update_util_min_rt_default(p); 2010 } 2011 2012 static void __init init_uclamp_rq(struct rq *rq) 2013 { 2014 enum uclamp_id clamp_id; 2015 struct uclamp_rq *uc_rq = rq->uclamp; 2016 2017 for_each_clamp_id(clamp_id) { 2018 uc_rq[clamp_id] = (struct uclamp_rq) { 2019 .value = uclamp_none(clamp_id) 2020 }; 2021 } 2022 2023 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2024 } 2025 2026 static void __init init_uclamp(void) 2027 { 2028 struct uclamp_se uc_max = {}; 2029 enum uclamp_id clamp_id; 2030 int cpu; 2031 2032 for_each_possible_cpu(cpu) 2033 init_uclamp_rq(cpu_rq(cpu)); 2034 2035 for_each_clamp_id(clamp_id) { 2036 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2037 uclamp_none(clamp_id), false); 2038 } 2039 2040 /* System defaults allow max clamp values for both indexes */ 2041 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2042 for_each_clamp_id(clamp_id) { 2043 uclamp_default[clamp_id] = uc_max; 2044 #ifdef CONFIG_UCLAMP_TASK_GROUP 2045 root_task_group.uclamp_req[clamp_id] = uc_max; 2046 root_task_group.uclamp[clamp_id] = uc_max; 2047 #endif 2048 } 2049 } 2050 2051 #else /* CONFIG_UCLAMP_TASK */ 2052 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2053 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2054 static inline int uclamp_validate(struct task_struct *p, 2055 const struct sched_attr *attr) 2056 { 2057 return -EOPNOTSUPP; 2058 } 2059 static void __setscheduler_uclamp(struct task_struct *p, 2060 const struct sched_attr *attr) { } 2061 static inline void uclamp_fork(struct task_struct *p) { } 2062 static inline void uclamp_post_fork(struct task_struct *p) { } 2063 static inline void init_uclamp(void) { } 2064 #endif /* CONFIG_UCLAMP_TASK */ 2065 2066 bool sched_task_on_rq(struct task_struct *p) 2067 { 2068 return task_on_rq_queued(p); 2069 } 2070 2071 unsigned long get_wchan(struct task_struct *p) 2072 { 2073 unsigned long ip = 0; 2074 unsigned int state; 2075 2076 if (!p || p == current) 2077 return 0; 2078 2079 /* Only get wchan if task is blocked and we can keep it that way. */ 2080 raw_spin_lock_irq(&p->pi_lock); 2081 state = READ_ONCE(p->__state); 2082 smp_rmb(); /* see try_to_wake_up() */ 2083 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2084 ip = __get_wchan(p); 2085 raw_spin_unlock_irq(&p->pi_lock); 2086 2087 return ip; 2088 } 2089 2090 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 if (!(flags & ENQUEUE_NOCLOCK)) 2093 update_rq_clock(rq); 2094 2095 if (!(flags & ENQUEUE_RESTORE)) { 2096 sched_info_enqueue(rq, p); 2097 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2098 } 2099 2100 uclamp_rq_inc(rq, p); 2101 p->sched_class->enqueue_task(rq, p, flags); 2102 2103 if (sched_core_enabled(rq)) 2104 sched_core_enqueue(rq, p); 2105 } 2106 2107 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2108 { 2109 if (sched_core_enabled(rq)) 2110 sched_core_dequeue(rq, p, flags); 2111 2112 if (!(flags & DEQUEUE_NOCLOCK)) 2113 update_rq_clock(rq); 2114 2115 if (!(flags & DEQUEUE_SAVE)) { 2116 sched_info_dequeue(rq, p); 2117 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2118 } 2119 2120 uclamp_rq_dec(rq, p); 2121 p->sched_class->dequeue_task(rq, p, flags); 2122 } 2123 2124 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2125 { 2126 if (task_on_rq_migrating(p)) 2127 flags |= ENQUEUE_MIGRATED; 2128 if (flags & ENQUEUE_MIGRATED) 2129 sched_mm_cid_migrate_to(rq, p); 2130 2131 enqueue_task(rq, p, flags); 2132 2133 p->on_rq = TASK_ON_RQ_QUEUED; 2134 } 2135 2136 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2137 { 2138 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2139 2140 dequeue_task(rq, p, flags); 2141 } 2142 2143 static inline int __normal_prio(int policy, int rt_prio, int nice) 2144 { 2145 int prio; 2146 2147 if (dl_policy(policy)) 2148 prio = MAX_DL_PRIO - 1; 2149 else if (rt_policy(policy)) 2150 prio = MAX_RT_PRIO - 1 - rt_prio; 2151 else 2152 prio = NICE_TO_PRIO(nice); 2153 2154 return prio; 2155 } 2156 2157 /* 2158 * Calculate the expected normal priority: i.e. priority 2159 * without taking RT-inheritance into account. Might be 2160 * boosted by interactivity modifiers. Changes upon fork, 2161 * setprio syscalls, and whenever the interactivity 2162 * estimator recalculates. 2163 */ 2164 static inline int normal_prio(struct task_struct *p) 2165 { 2166 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2167 } 2168 2169 /* 2170 * Calculate the current priority, i.e. the priority 2171 * taken into account by the scheduler. This value might 2172 * be boosted by RT tasks, or might be boosted by 2173 * interactivity modifiers. Will be RT if the task got 2174 * RT-boosted. If not then it returns p->normal_prio. 2175 */ 2176 static int effective_prio(struct task_struct *p) 2177 { 2178 p->normal_prio = normal_prio(p); 2179 /* 2180 * If we are RT tasks or we were boosted to RT priority, 2181 * keep the priority unchanged. Otherwise, update priority 2182 * to the normal priority: 2183 */ 2184 if (!rt_prio(p->prio)) 2185 return p->normal_prio; 2186 return p->prio; 2187 } 2188 2189 /** 2190 * task_curr - is this task currently executing on a CPU? 2191 * @p: the task in question. 2192 * 2193 * Return: 1 if the task is currently executing. 0 otherwise. 2194 */ 2195 inline int task_curr(const struct task_struct *p) 2196 { 2197 return cpu_curr(task_cpu(p)) == p; 2198 } 2199 2200 /* 2201 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2202 * use the balance_callback list if you want balancing. 2203 * 2204 * this means any call to check_class_changed() must be followed by a call to 2205 * balance_callback(). 2206 */ 2207 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2208 const struct sched_class *prev_class, 2209 int oldprio) 2210 { 2211 if (prev_class != p->sched_class) { 2212 if (prev_class->switched_from) 2213 prev_class->switched_from(rq, p); 2214 2215 p->sched_class->switched_to(rq, p); 2216 } else if (oldprio != p->prio || dl_task(p)) 2217 p->sched_class->prio_changed(rq, p, oldprio); 2218 } 2219 2220 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2221 { 2222 if (p->sched_class == rq->curr->sched_class) 2223 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2224 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2225 resched_curr(rq); 2226 2227 /* 2228 * A queue event has occurred, and we're going to schedule. In 2229 * this case, we can save a useless back to back clock update. 2230 */ 2231 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2232 rq_clock_skip_update(rq); 2233 } 2234 2235 static __always_inline 2236 int __task_state_match(struct task_struct *p, unsigned int state) 2237 { 2238 if (READ_ONCE(p->__state) & state) 2239 return 1; 2240 2241 #ifdef CONFIG_PREEMPT_RT 2242 if (READ_ONCE(p->saved_state) & state) 2243 return -1; 2244 #endif 2245 return 0; 2246 } 2247 2248 static __always_inline 2249 int task_state_match(struct task_struct *p, unsigned int state) 2250 { 2251 #ifdef CONFIG_PREEMPT_RT 2252 int match; 2253 2254 /* 2255 * Serialize against current_save_and_set_rtlock_wait_state() and 2256 * current_restore_rtlock_saved_state(). 2257 */ 2258 raw_spin_lock_irq(&p->pi_lock); 2259 match = __task_state_match(p, state); 2260 raw_spin_unlock_irq(&p->pi_lock); 2261 2262 return match; 2263 #else 2264 return __task_state_match(p, state); 2265 #endif 2266 } 2267 2268 /* 2269 * wait_task_inactive - wait for a thread to unschedule. 2270 * 2271 * Wait for the thread to block in any of the states set in @match_state. 2272 * If it changes, i.e. @p might have woken up, then return zero. When we 2273 * succeed in waiting for @p to be off its CPU, we return a positive number 2274 * (its total switch count). If a second call a short while later returns the 2275 * same number, the caller can be sure that @p has remained unscheduled the 2276 * whole time. 2277 * 2278 * The caller must ensure that the task *will* unschedule sometime soon, 2279 * else this function might spin for a *long* time. This function can't 2280 * be called with interrupts off, or it may introduce deadlock with 2281 * smp_call_function() if an IPI is sent by the same process we are 2282 * waiting to become inactive. 2283 */ 2284 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2285 { 2286 int running, queued, match; 2287 struct rq_flags rf; 2288 unsigned long ncsw; 2289 struct rq *rq; 2290 2291 for (;;) { 2292 /* 2293 * We do the initial early heuristics without holding 2294 * any task-queue locks at all. We'll only try to get 2295 * the runqueue lock when things look like they will 2296 * work out! 2297 */ 2298 rq = task_rq(p); 2299 2300 /* 2301 * If the task is actively running on another CPU 2302 * still, just relax and busy-wait without holding 2303 * any locks. 2304 * 2305 * NOTE! Since we don't hold any locks, it's not 2306 * even sure that "rq" stays as the right runqueue! 2307 * But we don't care, since "task_on_cpu()" will 2308 * return false if the runqueue has changed and p 2309 * is actually now running somewhere else! 2310 */ 2311 while (task_on_cpu(rq, p)) { 2312 if (!task_state_match(p, match_state)) 2313 return 0; 2314 cpu_relax(); 2315 } 2316 2317 /* 2318 * Ok, time to look more closely! We need the rq 2319 * lock now, to be *sure*. If we're wrong, we'll 2320 * just go back and repeat. 2321 */ 2322 rq = task_rq_lock(p, &rf); 2323 trace_sched_wait_task(p); 2324 running = task_on_cpu(rq, p); 2325 queued = task_on_rq_queued(p); 2326 ncsw = 0; 2327 if ((match = __task_state_match(p, match_state))) { 2328 /* 2329 * When matching on p->saved_state, consider this task 2330 * still queued so it will wait. 2331 */ 2332 if (match < 0) 2333 queued = 1; 2334 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2335 } 2336 task_rq_unlock(rq, p, &rf); 2337 2338 /* 2339 * If it changed from the expected state, bail out now. 2340 */ 2341 if (unlikely(!ncsw)) 2342 break; 2343 2344 /* 2345 * Was it really running after all now that we 2346 * checked with the proper locks actually held? 2347 * 2348 * Oops. Go back and try again.. 2349 */ 2350 if (unlikely(running)) { 2351 cpu_relax(); 2352 continue; 2353 } 2354 2355 /* 2356 * It's not enough that it's not actively running, 2357 * it must be off the runqueue _entirely_, and not 2358 * preempted! 2359 * 2360 * So if it was still runnable (but just not actively 2361 * running right now), it's preempted, and we should 2362 * yield - it could be a while. 2363 */ 2364 if (unlikely(queued)) { 2365 ktime_t to = NSEC_PER_SEC / HZ; 2366 2367 set_current_state(TASK_UNINTERRUPTIBLE); 2368 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2369 continue; 2370 } 2371 2372 /* 2373 * Ahh, all good. It wasn't running, and it wasn't 2374 * runnable, which means that it will never become 2375 * running in the future either. We're all done! 2376 */ 2377 break; 2378 } 2379 2380 return ncsw; 2381 } 2382 2383 #ifdef CONFIG_SMP 2384 2385 static void 2386 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2387 2388 static int __set_cpus_allowed_ptr(struct task_struct *p, 2389 struct affinity_context *ctx); 2390 2391 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2392 { 2393 struct affinity_context ac = { 2394 .new_mask = cpumask_of(rq->cpu), 2395 .flags = SCA_MIGRATE_DISABLE, 2396 }; 2397 2398 if (likely(!p->migration_disabled)) 2399 return; 2400 2401 if (p->cpus_ptr != &p->cpus_mask) 2402 return; 2403 2404 /* 2405 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2406 */ 2407 __do_set_cpus_allowed(p, &ac); 2408 } 2409 2410 void migrate_disable(void) 2411 { 2412 struct task_struct *p = current; 2413 2414 if (p->migration_disabled) { 2415 p->migration_disabled++; 2416 return; 2417 } 2418 2419 preempt_disable(); 2420 this_rq()->nr_pinned++; 2421 p->migration_disabled = 1; 2422 preempt_enable(); 2423 } 2424 EXPORT_SYMBOL_GPL(migrate_disable); 2425 2426 void migrate_enable(void) 2427 { 2428 struct task_struct *p = current; 2429 struct affinity_context ac = { 2430 .new_mask = &p->cpus_mask, 2431 .flags = SCA_MIGRATE_ENABLE, 2432 }; 2433 2434 if (p->migration_disabled > 1) { 2435 p->migration_disabled--; 2436 return; 2437 } 2438 2439 if (WARN_ON_ONCE(!p->migration_disabled)) 2440 return; 2441 2442 /* 2443 * Ensure stop_task runs either before or after this, and that 2444 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2445 */ 2446 preempt_disable(); 2447 if (p->cpus_ptr != &p->cpus_mask) 2448 __set_cpus_allowed_ptr(p, &ac); 2449 /* 2450 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2451 * regular cpus_mask, otherwise things that race (eg. 2452 * select_fallback_rq) get confused. 2453 */ 2454 barrier(); 2455 p->migration_disabled = 0; 2456 this_rq()->nr_pinned--; 2457 preempt_enable(); 2458 } 2459 EXPORT_SYMBOL_GPL(migrate_enable); 2460 2461 static inline bool rq_has_pinned_tasks(struct rq *rq) 2462 { 2463 return rq->nr_pinned; 2464 } 2465 2466 /* 2467 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2468 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2469 */ 2470 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2471 { 2472 /* When not in the task's cpumask, no point in looking further. */ 2473 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2474 return false; 2475 2476 /* migrate_disabled() must be allowed to finish. */ 2477 if (is_migration_disabled(p)) 2478 return cpu_online(cpu); 2479 2480 /* Non kernel threads are not allowed during either online or offline. */ 2481 if (!(p->flags & PF_KTHREAD)) 2482 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2483 2484 /* KTHREAD_IS_PER_CPU is always allowed. */ 2485 if (kthread_is_per_cpu(p)) 2486 return cpu_online(cpu); 2487 2488 /* Regular kernel threads don't get to stay during offline. */ 2489 if (cpu_dying(cpu)) 2490 return false; 2491 2492 /* But are allowed during online. */ 2493 return cpu_online(cpu); 2494 } 2495 2496 /* 2497 * This is how migration works: 2498 * 2499 * 1) we invoke migration_cpu_stop() on the target CPU using 2500 * stop_one_cpu(). 2501 * 2) stopper starts to run (implicitly forcing the migrated thread 2502 * off the CPU) 2503 * 3) it checks whether the migrated task is still in the wrong runqueue. 2504 * 4) if it's in the wrong runqueue then the migration thread removes 2505 * it and puts it into the right queue. 2506 * 5) stopper completes and stop_one_cpu() returns and the migration 2507 * is done. 2508 */ 2509 2510 /* 2511 * move_queued_task - move a queued task to new rq. 2512 * 2513 * Returns (locked) new rq. Old rq's lock is released. 2514 */ 2515 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2516 struct task_struct *p, int new_cpu) 2517 { 2518 lockdep_assert_rq_held(rq); 2519 2520 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2521 set_task_cpu(p, new_cpu); 2522 rq_unlock(rq, rf); 2523 2524 rq = cpu_rq(new_cpu); 2525 2526 rq_lock(rq, rf); 2527 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2528 activate_task(rq, p, 0); 2529 check_preempt_curr(rq, p, 0); 2530 2531 return rq; 2532 } 2533 2534 struct migration_arg { 2535 struct task_struct *task; 2536 int dest_cpu; 2537 struct set_affinity_pending *pending; 2538 }; 2539 2540 /* 2541 * @refs: number of wait_for_completion() 2542 * @stop_pending: is @stop_work in use 2543 */ 2544 struct set_affinity_pending { 2545 refcount_t refs; 2546 unsigned int stop_pending; 2547 struct completion done; 2548 struct cpu_stop_work stop_work; 2549 struct migration_arg arg; 2550 }; 2551 2552 /* 2553 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2554 * this because either it can't run here any more (set_cpus_allowed() 2555 * away from this CPU, or CPU going down), or because we're 2556 * attempting to rebalance this task on exec (sched_exec). 2557 * 2558 * So we race with normal scheduler movements, but that's OK, as long 2559 * as the task is no longer on this CPU. 2560 */ 2561 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2562 struct task_struct *p, int dest_cpu) 2563 { 2564 /* Affinity changed (again). */ 2565 if (!is_cpu_allowed(p, dest_cpu)) 2566 return rq; 2567 2568 rq = move_queued_task(rq, rf, p, dest_cpu); 2569 2570 return rq; 2571 } 2572 2573 /* 2574 * migration_cpu_stop - this will be executed by a highprio stopper thread 2575 * and performs thread migration by bumping thread off CPU then 2576 * 'pushing' onto another runqueue. 2577 */ 2578 static int migration_cpu_stop(void *data) 2579 { 2580 struct migration_arg *arg = data; 2581 struct set_affinity_pending *pending = arg->pending; 2582 struct task_struct *p = arg->task; 2583 struct rq *rq = this_rq(); 2584 bool complete = false; 2585 struct rq_flags rf; 2586 2587 /* 2588 * The original target CPU might have gone down and we might 2589 * be on another CPU but it doesn't matter. 2590 */ 2591 local_irq_save(rf.flags); 2592 /* 2593 * We need to explicitly wake pending tasks before running 2594 * __migrate_task() such that we will not miss enforcing cpus_ptr 2595 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2596 */ 2597 flush_smp_call_function_queue(); 2598 2599 raw_spin_lock(&p->pi_lock); 2600 rq_lock(rq, &rf); 2601 2602 /* 2603 * If we were passed a pending, then ->stop_pending was set, thus 2604 * p->migration_pending must have remained stable. 2605 */ 2606 WARN_ON_ONCE(pending && pending != p->migration_pending); 2607 2608 /* 2609 * If task_rq(p) != rq, it cannot be migrated here, because we're 2610 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2611 * we're holding p->pi_lock. 2612 */ 2613 if (task_rq(p) == rq) { 2614 if (is_migration_disabled(p)) 2615 goto out; 2616 2617 if (pending) { 2618 p->migration_pending = NULL; 2619 complete = true; 2620 2621 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2622 goto out; 2623 } 2624 2625 if (task_on_rq_queued(p)) { 2626 update_rq_clock(rq); 2627 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2628 } else { 2629 p->wake_cpu = arg->dest_cpu; 2630 } 2631 2632 /* 2633 * XXX __migrate_task() can fail, at which point we might end 2634 * up running on a dodgy CPU, AFAICT this can only happen 2635 * during CPU hotplug, at which point we'll get pushed out 2636 * anyway, so it's probably not a big deal. 2637 */ 2638 2639 } else if (pending) { 2640 /* 2641 * This happens when we get migrated between migrate_enable()'s 2642 * preempt_enable() and scheduling the stopper task. At that 2643 * point we're a regular task again and not current anymore. 2644 * 2645 * A !PREEMPT kernel has a giant hole here, which makes it far 2646 * more likely. 2647 */ 2648 2649 /* 2650 * The task moved before the stopper got to run. We're holding 2651 * ->pi_lock, so the allowed mask is stable - if it got 2652 * somewhere allowed, we're done. 2653 */ 2654 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2655 p->migration_pending = NULL; 2656 complete = true; 2657 goto out; 2658 } 2659 2660 /* 2661 * When migrate_enable() hits a rq mis-match we can't reliably 2662 * determine is_migration_disabled() and so have to chase after 2663 * it. 2664 */ 2665 WARN_ON_ONCE(!pending->stop_pending); 2666 preempt_disable(); 2667 task_rq_unlock(rq, p, &rf); 2668 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2669 &pending->arg, &pending->stop_work); 2670 preempt_enable(); 2671 return 0; 2672 } 2673 out: 2674 if (pending) 2675 pending->stop_pending = false; 2676 task_rq_unlock(rq, p, &rf); 2677 2678 if (complete) 2679 complete_all(&pending->done); 2680 2681 return 0; 2682 } 2683 2684 int push_cpu_stop(void *arg) 2685 { 2686 struct rq *lowest_rq = NULL, *rq = this_rq(); 2687 struct task_struct *p = arg; 2688 2689 raw_spin_lock_irq(&p->pi_lock); 2690 raw_spin_rq_lock(rq); 2691 2692 if (task_rq(p) != rq) 2693 goto out_unlock; 2694 2695 if (is_migration_disabled(p)) { 2696 p->migration_flags |= MDF_PUSH; 2697 goto out_unlock; 2698 } 2699 2700 p->migration_flags &= ~MDF_PUSH; 2701 2702 if (p->sched_class->find_lock_rq) 2703 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2704 2705 if (!lowest_rq) 2706 goto out_unlock; 2707 2708 // XXX validate p is still the highest prio task 2709 if (task_rq(p) == rq) { 2710 deactivate_task(rq, p, 0); 2711 set_task_cpu(p, lowest_rq->cpu); 2712 activate_task(lowest_rq, p, 0); 2713 resched_curr(lowest_rq); 2714 } 2715 2716 double_unlock_balance(rq, lowest_rq); 2717 2718 out_unlock: 2719 rq->push_busy = false; 2720 raw_spin_rq_unlock(rq); 2721 raw_spin_unlock_irq(&p->pi_lock); 2722 2723 put_task_struct(p); 2724 return 0; 2725 } 2726 2727 /* 2728 * sched_class::set_cpus_allowed must do the below, but is not required to 2729 * actually call this function. 2730 */ 2731 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2732 { 2733 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2734 p->cpus_ptr = ctx->new_mask; 2735 return; 2736 } 2737 2738 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2739 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2740 2741 /* 2742 * Swap in a new user_cpus_ptr if SCA_USER flag set 2743 */ 2744 if (ctx->flags & SCA_USER) 2745 swap(p->user_cpus_ptr, ctx->user_mask); 2746 } 2747 2748 static void 2749 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2750 { 2751 struct rq *rq = task_rq(p); 2752 bool queued, running; 2753 2754 /* 2755 * This here violates the locking rules for affinity, since we're only 2756 * supposed to change these variables while holding both rq->lock and 2757 * p->pi_lock. 2758 * 2759 * HOWEVER, it magically works, because ttwu() is the only code that 2760 * accesses these variables under p->pi_lock and only does so after 2761 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2762 * before finish_task(). 2763 * 2764 * XXX do further audits, this smells like something putrid. 2765 */ 2766 if (ctx->flags & SCA_MIGRATE_DISABLE) 2767 SCHED_WARN_ON(!p->on_cpu); 2768 else 2769 lockdep_assert_held(&p->pi_lock); 2770 2771 queued = task_on_rq_queued(p); 2772 running = task_current(rq, p); 2773 2774 if (queued) { 2775 /* 2776 * Because __kthread_bind() calls this on blocked tasks without 2777 * holding rq->lock. 2778 */ 2779 lockdep_assert_rq_held(rq); 2780 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2781 } 2782 if (running) 2783 put_prev_task(rq, p); 2784 2785 p->sched_class->set_cpus_allowed(p, ctx); 2786 2787 if (queued) 2788 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2789 if (running) 2790 set_next_task(rq, p); 2791 } 2792 2793 /* 2794 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2795 * affinity (if any) should be destroyed too. 2796 */ 2797 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2798 { 2799 struct affinity_context ac = { 2800 .new_mask = new_mask, 2801 .user_mask = NULL, 2802 .flags = SCA_USER, /* clear the user requested mask */ 2803 }; 2804 union cpumask_rcuhead { 2805 cpumask_t cpumask; 2806 struct rcu_head rcu; 2807 }; 2808 2809 __do_set_cpus_allowed(p, &ac); 2810 2811 /* 2812 * Because this is called with p->pi_lock held, it is not possible 2813 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2814 * kfree_rcu(). 2815 */ 2816 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2817 } 2818 2819 static cpumask_t *alloc_user_cpus_ptr(int node) 2820 { 2821 /* 2822 * See do_set_cpus_allowed() above for the rcu_head usage. 2823 */ 2824 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2825 2826 return kmalloc_node(size, GFP_KERNEL, node); 2827 } 2828 2829 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2830 int node) 2831 { 2832 cpumask_t *user_mask; 2833 unsigned long flags; 2834 2835 /* 2836 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2837 * may differ by now due to racing. 2838 */ 2839 dst->user_cpus_ptr = NULL; 2840 2841 /* 2842 * This check is racy and losing the race is a valid situation. 2843 * It is not worth the extra overhead of taking the pi_lock on 2844 * every fork/clone. 2845 */ 2846 if (data_race(!src->user_cpus_ptr)) 2847 return 0; 2848 2849 user_mask = alloc_user_cpus_ptr(node); 2850 if (!user_mask) 2851 return -ENOMEM; 2852 2853 /* 2854 * Use pi_lock to protect content of user_cpus_ptr 2855 * 2856 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2857 * do_set_cpus_allowed(). 2858 */ 2859 raw_spin_lock_irqsave(&src->pi_lock, flags); 2860 if (src->user_cpus_ptr) { 2861 swap(dst->user_cpus_ptr, user_mask); 2862 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2863 } 2864 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2865 2866 if (unlikely(user_mask)) 2867 kfree(user_mask); 2868 2869 return 0; 2870 } 2871 2872 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2873 { 2874 struct cpumask *user_mask = NULL; 2875 2876 swap(p->user_cpus_ptr, user_mask); 2877 2878 return user_mask; 2879 } 2880 2881 void release_user_cpus_ptr(struct task_struct *p) 2882 { 2883 kfree(clear_user_cpus_ptr(p)); 2884 } 2885 2886 /* 2887 * This function is wildly self concurrent; here be dragons. 2888 * 2889 * 2890 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2891 * designated task is enqueued on an allowed CPU. If that task is currently 2892 * running, we have to kick it out using the CPU stopper. 2893 * 2894 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2895 * Consider: 2896 * 2897 * Initial conditions: P0->cpus_mask = [0, 1] 2898 * 2899 * P0@CPU0 P1 2900 * 2901 * migrate_disable(); 2902 * <preempted> 2903 * set_cpus_allowed_ptr(P0, [1]); 2904 * 2905 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2906 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2907 * This means we need the following scheme: 2908 * 2909 * P0@CPU0 P1 2910 * 2911 * migrate_disable(); 2912 * <preempted> 2913 * set_cpus_allowed_ptr(P0, [1]); 2914 * <blocks> 2915 * <resumes> 2916 * migrate_enable(); 2917 * __set_cpus_allowed_ptr(); 2918 * <wakes local stopper> 2919 * `--> <woken on migration completion> 2920 * 2921 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2922 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2923 * task p are serialized by p->pi_lock, which we can leverage: the one that 2924 * should come into effect at the end of the Migrate-Disable region is the last 2925 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2926 * but we still need to properly signal those waiting tasks at the appropriate 2927 * moment. 2928 * 2929 * This is implemented using struct set_affinity_pending. The first 2930 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2931 * setup an instance of that struct and install it on the targeted task_struct. 2932 * Any and all further callers will reuse that instance. Those then wait for 2933 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2934 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2935 * 2936 * 2937 * (1) In the cases covered above. There is one more where the completion is 2938 * signaled within affine_move_task() itself: when a subsequent affinity request 2939 * occurs after the stopper bailed out due to the targeted task still being 2940 * Migrate-Disable. Consider: 2941 * 2942 * Initial conditions: P0->cpus_mask = [0, 1] 2943 * 2944 * CPU0 P1 P2 2945 * <P0> 2946 * migrate_disable(); 2947 * <preempted> 2948 * set_cpus_allowed_ptr(P0, [1]); 2949 * <blocks> 2950 * <migration/0> 2951 * migration_cpu_stop() 2952 * is_migration_disabled() 2953 * <bails> 2954 * set_cpus_allowed_ptr(P0, [0, 1]); 2955 * <signal completion> 2956 * <awakes> 2957 * 2958 * Note that the above is safe vs a concurrent migrate_enable(), as any 2959 * pending affinity completion is preceded by an uninstallation of 2960 * p->migration_pending done with p->pi_lock held. 2961 */ 2962 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2963 int dest_cpu, unsigned int flags) 2964 __releases(rq->lock) 2965 __releases(p->pi_lock) 2966 { 2967 struct set_affinity_pending my_pending = { }, *pending = NULL; 2968 bool stop_pending, complete = false; 2969 2970 /* Can the task run on the task's current CPU? If so, we're done */ 2971 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2972 struct task_struct *push_task = NULL; 2973 2974 if ((flags & SCA_MIGRATE_ENABLE) && 2975 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2976 rq->push_busy = true; 2977 push_task = get_task_struct(p); 2978 } 2979 2980 /* 2981 * If there are pending waiters, but no pending stop_work, 2982 * then complete now. 2983 */ 2984 pending = p->migration_pending; 2985 if (pending && !pending->stop_pending) { 2986 p->migration_pending = NULL; 2987 complete = true; 2988 } 2989 2990 preempt_disable(); 2991 task_rq_unlock(rq, p, rf); 2992 if (push_task) { 2993 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2994 p, &rq->push_work); 2995 } 2996 preempt_enable(); 2997 2998 if (complete) 2999 complete_all(&pending->done); 3000 3001 return 0; 3002 } 3003 3004 if (!(flags & SCA_MIGRATE_ENABLE)) { 3005 /* serialized by p->pi_lock */ 3006 if (!p->migration_pending) { 3007 /* Install the request */ 3008 refcount_set(&my_pending.refs, 1); 3009 init_completion(&my_pending.done); 3010 my_pending.arg = (struct migration_arg) { 3011 .task = p, 3012 .dest_cpu = dest_cpu, 3013 .pending = &my_pending, 3014 }; 3015 3016 p->migration_pending = &my_pending; 3017 } else { 3018 pending = p->migration_pending; 3019 refcount_inc(&pending->refs); 3020 /* 3021 * Affinity has changed, but we've already installed a 3022 * pending. migration_cpu_stop() *must* see this, else 3023 * we risk a completion of the pending despite having a 3024 * task on a disallowed CPU. 3025 * 3026 * Serialized by p->pi_lock, so this is safe. 3027 */ 3028 pending->arg.dest_cpu = dest_cpu; 3029 } 3030 } 3031 pending = p->migration_pending; 3032 /* 3033 * - !MIGRATE_ENABLE: 3034 * we'll have installed a pending if there wasn't one already. 3035 * 3036 * - MIGRATE_ENABLE: 3037 * we're here because the current CPU isn't matching anymore, 3038 * the only way that can happen is because of a concurrent 3039 * set_cpus_allowed_ptr() call, which should then still be 3040 * pending completion. 3041 * 3042 * Either way, we really should have a @pending here. 3043 */ 3044 if (WARN_ON_ONCE(!pending)) { 3045 task_rq_unlock(rq, p, rf); 3046 return -EINVAL; 3047 } 3048 3049 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3050 /* 3051 * MIGRATE_ENABLE gets here because 'p == current', but for 3052 * anything else we cannot do is_migration_disabled(), punt 3053 * and have the stopper function handle it all race-free. 3054 */ 3055 stop_pending = pending->stop_pending; 3056 if (!stop_pending) 3057 pending->stop_pending = true; 3058 3059 if (flags & SCA_MIGRATE_ENABLE) 3060 p->migration_flags &= ~MDF_PUSH; 3061 3062 preempt_disable(); 3063 task_rq_unlock(rq, p, rf); 3064 if (!stop_pending) { 3065 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3066 &pending->arg, &pending->stop_work); 3067 } 3068 preempt_enable(); 3069 3070 if (flags & SCA_MIGRATE_ENABLE) 3071 return 0; 3072 } else { 3073 3074 if (!is_migration_disabled(p)) { 3075 if (task_on_rq_queued(p)) 3076 rq = move_queued_task(rq, rf, p, dest_cpu); 3077 3078 if (!pending->stop_pending) { 3079 p->migration_pending = NULL; 3080 complete = true; 3081 } 3082 } 3083 task_rq_unlock(rq, p, rf); 3084 3085 if (complete) 3086 complete_all(&pending->done); 3087 } 3088 3089 wait_for_completion(&pending->done); 3090 3091 if (refcount_dec_and_test(&pending->refs)) 3092 wake_up_var(&pending->refs); /* No UaF, just an address */ 3093 3094 /* 3095 * Block the original owner of &pending until all subsequent callers 3096 * have seen the completion and decremented the refcount 3097 */ 3098 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3099 3100 /* ARGH */ 3101 WARN_ON_ONCE(my_pending.stop_pending); 3102 3103 return 0; 3104 } 3105 3106 /* 3107 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3108 */ 3109 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3110 struct affinity_context *ctx, 3111 struct rq *rq, 3112 struct rq_flags *rf) 3113 __releases(rq->lock) 3114 __releases(p->pi_lock) 3115 { 3116 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3117 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3118 bool kthread = p->flags & PF_KTHREAD; 3119 unsigned int dest_cpu; 3120 int ret = 0; 3121 3122 update_rq_clock(rq); 3123 3124 if (kthread || is_migration_disabled(p)) { 3125 /* 3126 * Kernel threads are allowed on online && !active CPUs, 3127 * however, during cpu-hot-unplug, even these might get pushed 3128 * away if not KTHREAD_IS_PER_CPU. 3129 * 3130 * Specifically, migration_disabled() tasks must not fail the 3131 * cpumask_any_and_distribute() pick below, esp. so on 3132 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3133 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3134 */ 3135 cpu_valid_mask = cpu_online_mask; 3136 } 3137 3138 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3139 ret = -EINVAL; 3140 goto out; 3141 } 3142 3143 /* 3144 * Must re-check here, to close a race against __kthread_bind(), 3145 * sched_setaffinity() is not guaranteed to observe the flag. 3146 */ 3147 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3148 ret = -EINVAL; 3149 goto out; 3150 } 3151 3152 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3153 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3154 if (ctx->flags & SCA_USER) 3155 swap(p->user_cpus_ptr, ctx->user_mask); 3156 goto out; 3157 } 3158 3159 if (WARN_ON_ONCE(p == current && 3160 is_migration_disabled(p) && 3161 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3162 ret = -EBUSY; 3163 goto out; 3164 } 3165 } 3166 3167 /* 3168 * Picking a ~random cpu helps in cases where we are changing affinity 3169 * for groups of tasks (ie. cpuset), so that load balancing is not 3170 * immediately required to distribute the tasks within their new mask. 3171 */ 3172 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3173 if (dest_cpu >= nr_cpu_ids) { 3174 ret = -EINVAL; 3175 goto out; 3176 } 3177 3178 __do_set_cpus_allowed(p, ctx); 3179 3180 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3181 3182 out: 3183 task_rq_unlock(rq, p, rf); 3184 3185 return ret; 3186 } 3187 3188 /* 3189 * Change a given task's CPU affinity. Migrate the thread to a 3190 * proper CPU and schedule it away if the CPU it's executing on 3191 * is removed from the allowed bitmask. 3192 * 3193 * NOTE: the caller must have a valid reference to the task, the 3194 * task must not exit() & deallocate itself prematurely. The 3195 * call is not atomic; no spinlocks may be held. 3196 */ 3197 static int __set_cpus_allowed_ptr(struct task_struct *p, 3198 struct affinity_context *ctx) 3199 { 3200 struct rq_flags rf; 3201 struct rq *rq; 3202 3203 rq = task_rq_lock(p, &rf); 3204 /* 3205 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3206 * flags are set. 3207 */ 3208 if (p->user_cpus_ptr && 3209 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3210 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3211 ctx->new_mask = rq->scratch_mask; 3212 3213 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3214 } 3215 3216 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3217 { 3218 struct affinity_context ac = { 3219 .new_mask = new_mask, 3220 .flags = 0, 3221 }; 3222 3223 return __set_cpus_allowed_ptr(p, &ac); 3224 } 3225 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3226 3227 /* 3228 * Change a given task's CPU affinity to the intersection of its current 3229 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3230 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3231 * affinity or use cpu_online_mask instead. 3232 * 3233 * If the resulting mask is empty, leave the affinity unchanged and return 3234 * -EINVAL. 3235 */ 3236 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3237 struct cpumask *new_mask, 3238 const struct cpumask *subset_mask) 3239 { 3240 struct affinity_context ac = { 3241 .new_mask = new_mask, 3242 .flags = 0, 3243 }; 3244 struct rq_flags rf; 3245 struct rq *rq; 3246 int err; 3247 3248 rq = task_rq_lock(p, &rf); 3249 3250 /* 3251 * Forcefully restricting the affinity of a deadline task is 3252 * likely to cause problems, so fail and noisily override the 3253 * mask entirely. 3254 */ 3255 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3256 err = -EPERM; 3257 goto err_unlock; 3258 } 3259 3260 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3261 err = -EINVAL; 3262 goto err_unlock; 3263 } 3264 3265 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3266 3267 err_unlock: 3268 task_rq_unlock(rq, p, &rf); 3269 return err; 3270 } 3271 3272 /* 3273 * Restrict the CPU affinity of task @p so that it is a subset of 3274 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3275 * old affinity mask. If the resulting mask is empty, we warn and walk 3276 * up the cpuset hierarchy until we find a suitable mask. 3277 */ 3278 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3279 { 3280 cpumask_var_t new_mask; 3281 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3282 3283 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3284 3285 /* 3286 * __migrate_task() can fail silently in the face of concurrent 3287 * offlining of the chosen destination CPU, so take the hotplug 3288 * lock to ensure that the migration succeeds. 3289 */ 3290 cpus_read_lock(); 3291 if (!cpumask_available(new_mask)) 3292 goto out_set_mask; 3293 3294 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3295 goto out_free_mask; 3296 3297 /* 3298 * We failed to find a valid subset of the affinity mask for the 3299 * task, so override it based on its cpuset hierarchy. 3300 */ 3301 cpuset_cpus_allowed(p, new_mask); 3302 override_mask = new_mask; 3303 3304 out_set_mask: 3305 if (printk_ratelimit()) { 3306 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3307 task_pid_nr(p), p->comm, 3308 cpumask_pr_args(override_mask)); 3309 } 3310 3311 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3312 out_free_mask: 3313 cpus_read_unlock(); 3314 free_cpumask_var(new_mask); 3315 } 3316 3317 static int 3318 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3319 3320 /* 3321 * Restore the affinity of a task @p which was previously restricted by a 3322 * call to force_compatible_cpus_allowed_ptr(). 3323 * 3324 * It is the caller's responsibility to serialise this with any calls to 3325 * force_compatible_cpus_allowed_ptr(@p). 3326 */ 3327 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3328 { 3329 struct affinity_context ac = { 3330 .new_mask = task_user_cpus(p), 3331 .flags = 0, 3332 }; 3333 int ret; 3334 3335 /* 3336 * Try to restore the old affinity mask with __sched_setaffinity(). 3337 * Cpuset masking will be done there too. 3338 */ 3339 ret = __sched_setaffinity(p, &ac); 3340 WARN_ON_ONCE(ret); 3341 } 3342 3343 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3344 { 3345 #ifdef CONFIG_SCHED_DEBUG 3346 unsigned int state = READ_ONCE(p->__state); 3347 3348 /* 3349 * We should never call set_task_cpu() on a blocked task, 3350 * ttwu() will sort out the placement. 3351 */ 3352 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3353 3354 /* 3355 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3356 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3357 * time relying on p->on_rq. 3358 */ 3359 WARN_ON_ONCE(state == TASK_RUNNING && 3360 p->sched_class == &fair_sched_class && 3361 (p->on_rq && !task_on_rq_migrating(p))); 3362 3363 #ifdef CONFIG_LOCKDEP 3364 /* 3365 * The caller should hold either p->pi_lock or rq->lock, when changing 3366 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3367 * 3368 * sched_move_task() holds both and thus holding either pins the cgroup, 3369 * see task_group(). 3370 * 3371 * Furthermore, all task_rq users should acquire both locks, see 3372 * task_rq_lock(). 3373 */ 3374 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3375 lockdep_is_held(__rq_lockp(task_rq(p))))); 3376 #endif 3377 /* 3378 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3379 */ 3380 WARN_ON_ONCE(!cpu_online(new_cpu)); 3381 3382 WARN_ON_ONCE(is_migration_disabled(p)); 3383 #endif 3384 3385 trace_sched_migrate_task(p, new_cpu); 3386 3387 if (task_cpu(p) != new_cpu) { 3388 if (p->sched_class->migrate_task_rq) 3389 p->sched_class->migrate_task_rq(p, new_cpu); 3390 p->se.nr_migrations++; 3391 rseq_migrate(p); 3392 sched_mm_cid_migrate_from(p); 3393 perf_event_task_migrate(p); 3394 } 3395 3396 __set_task_cpu(p, new_cpu); 3397 } 3398 3399 #ifdef CONFIG_NUMA_BALANCING 3400 static void __migrate_swap_task(struct task_struct *p, int cpu) 3401 { 3402 if (task_on_rq_queued(p)) { 3403 struct rq *src_rq, *dst_rq; 3404 struct rq_flags srf, drf; 3405 3406 src_rq = task_rq(p); 3407 dst_rq = cpu_rq(cpu); 3408 3409 rq_pin_lock(src_rq, &srf); 3410 rq_pin_lock(dst_rq, &drf); 3411 3412 deactivate_task(src_rq, p, 0); 3413 set_task_cpu(p, cpu); 3414 activate_task(dst_rq, p, 0); 3415 check_preempt_curr(dst_rq, p, 0); 3416 3417 rq_unpin_lock(dst_rq, &drf); 3418 rq_unpin_lock(src_rq, &srf); 3419 3420 } else { 3421 /* 3422 * Task isn't running anymore; make it appear like we migrated 3423 * it before it went to sleep. This means on wakeup we make the 3424 * previous CPU our target instead of where it really is. 3425 */ 3426 p->wake_cpu = cpu; 3427 } 3428 } 3429 3430 struct migration_swap_arg { 3431 struct task_struct *src_task, *dst_task; 3432 int src_cpu, dst_cpu; 3433 }; 3434 3435 static int migrate_swap_stop(void *data) 3436 { 3437 struct migration_swap_arg *arg = data; 3438 struct rq *src_rq, *dst_rq; 3439 3440 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3441 return -EAGAIN; 3442 3443 src_rq = cpu_rq(arg->src_cpu); 3444 dst_rq = cpu_rq(arg->dst_cpu); 3445 3446 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3447 guard(double_rq_lock)(src_rq, dst_rq); 3448 3449 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3450 return -EAGAIN; 3451 3452 if (task_cpu(arg->src_task) != arg->src_cpu) 3453 return -EAGAIN; 3454 3455 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3456 return -EAGAIN; 3457 3458 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3459 return -EAGAIN; 3460 3461 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3462 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3463 3464 return 0; 3465 } 3466 3467 /* 3468 * Cross migrate two tasks 3469 */ 3470 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3471 int target_cpu, int curr_cpu) 3472 { 3473 struct migration_swap_arg arg; 3474 int ret = -EINVAL; 3475 3476 arg = (struct migration_swap_arg){ 3477 .src_task = cur, 3478 .src_cpu = curr_cpu, 3479 .dst_task = p, 3480 .dst_cpu = target_cpu, 3481 }; 3482 3483 if (arg.src_cpu == arg.dst_cpu) 3484 goto out; 3485 3486 /* 3487 * These three tests are all lockless; this is OK since all of them 3488 * will be re-checked with proper locks held further down the line. 3489 */ 3490 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3491 goto out; 3492 3493 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3494 goto out; 3495 3496 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3497 goto out; 3498 3499 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3500 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3501 3502 out: 3503 return ret; 3504 } 3505 #endif /* CONFIG_NUMA_BALANCING */ 3506 3507 /*** 3508 * kick_process - kick a running thread to enter/exit the kernel 3509 * @p: the to-be-kicked thread 3510 * 3511 * Cause a process which is running on another CPU to enter 3512 * kernel-mode, without any delay. (to get signals handled.) 3513 * 3514 * NOTE: this function doesn't have to take the runqueue lock, 3515 * because all it wants to ensure is that the remote task enters 3516 * the kernel. If the IPI races and the task has been migrated 3517 * to another CPU then no harm is done and the purpose has been 3518 * achieved as well. 3519 */ 3520 void kick_process(struct task_struct *p) 3521 { 3522 int cpu; 3523 3524 preempt_disable(); 3525 cpu = task_cpu(p); 3526 if ((cpu != smp_processor_id()) && task_curr(p)) 3527 smp_send_reschedule(cpu); 3528 preempt_enable(); 3529 } 3530 EXPORT_SYMBOL_GPL(kick_process); 3531 3532 /* 3533 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3534 * 3535 * A few notes on cpu_active vs cpu_online: 3536 * 3537 * - cpu_active must be a subset of cpu_online 3538 * 3539 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3540 * see __set_cpus_allowed_ptr(). At this point the newly online 3541 * CPU isn't yet part of the sched domains, and balancing will not 3542 * see it. 3543 * 3544 * - on CPU-down we clear cpu_active() to mask the sched domains and 3545 * avoid the load balancer to place new tasks on the to be removed 3546 * CPU. Existing tasks will remain running there and will be taken 3547 * off. 3548 * 3549 * This means that fallback selection must not select !active CPUs. 3550 * And can assume that any active CPU must be online. Conversely 3551 * select_task_rq() below may allow selection of !active CPUs in order 3552 * to satisfy the above rules. 3553 */ 3554 static int select_fallback_rq(int cpu, struct task_struct *p) 3555 { 3556 int nid = cpu_to_node(cpu); 3557 const struct cpumask *nodemask = NULL; 3558 enum { cpuset, possible, fail } state = cpuset; 3559 int dest_cpu; 3560 3561 /* 3562 * If the node that the CPU is on has been offlined, cpu_to_node() 3563 * will return -1. There is no CPU on the node, and we should 3564 * select the CPU on the other node. 3565 */ 3566 if (nid != -1) { 3567 nodemask = cpumask_of_node(nid); 3568 3569 /* Look for allowed, online CPU in same node. */ 3570 for_each_cpu(dest_cpu, nodemask) { 3571 if (is_cpu_allowed(p, dest_cpu)) 3572 return dest_cpu; 3573 } 3574 } 3575 3576 for (;;) { 3577 /* Any allowed, online CPU? */ 3578 for_each_cpu(dest_cpu, p->cpus_ptr) { 3579 if (!is_cpu_allowed(p, dest_cpu)) 3580 continue; 3581 3582 goto out; 3583 } 3584 3585 /* No more Mr. Nice Guy. */ 3586 switch (state) { 3587 case cpuset: 3588 if (cpuset_cpus_allowed_fallback(p)) { 3589 state = possible; 3590 break; 3591 } 3592 fallthrough; 3593 case possible: 3594 /* 3595 * XXX When called from select_task_rq() we only 3596 * hold p->pi_lock and again violate locking order. 3597 * 3598 * More yuck to audit. 3599 */ 3600 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3601 state = fail; 3602 break; 3603 case fail: 3604 BUG(); 3605 break; 3606 } 3607 } 3608 3609 out: 3610 if (state != cpuset) { 3611 /* 3612 * Don't tell them about moving exiting tasks or 3613 * kernel threads (both mm NULL), since they never 3614 * leave kernel. 3615 */ 3616 if (p->mm && printk_ratelimit()) { 3617 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3618 task_pid_nr(p), p->comm, cpu); 3619 } 3620 } 3621 3622 return dest_cpu; 3623 } 3624 3625 /* 3626 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3627 */ 3628 static inline 3629 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3630 { 3631 lockdep_assert_held(&p->pi_lock); 3632 3633 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3634 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3635 else 3636 cpu = cpumask_any(p->cpus_ptr); 3637 3638 /* 3639 * In order not to call set_task_cpu() on a blocking task we need 3640 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3641 * CPU. 3642 * 3643 * Since this is common to all placement strategies, this lives here. 3644 * 3645 * [ this allows ->select_task() to simply return task_cpu(p) and 3646 * not worry about this generic constraint ] 3647 */ 3648 if (unlikely(!is_cpu_allowed(p, cpu))) 3649 cpu = select_fallback_rq(task_cpu(p), p); 3650 3651 return cpu; 3652 } 3653 3654 void sched_set_stop_task(int cpu, struct task_struct *stop) 3655 { 3656 static struct lock_class_key stop_pi_lock; 3657 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3658 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3659 3660 if (stop) { 3661 /* 3662 * Make it appear like a SCHED_FIFO task, its something 3663 * userspace knows about and won't get confused about. 3664 * 3665 * Also, it will make PI more or less work without too 3666 * much confusion -- but then, stop work should not 3667 * rely on PI working anyway. 3668 */ 3669 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3670 3671 stop->sched_class = &stop_sched_class; 3672 3673 /* 3674 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3675 * adjust the effective priority of a task. As a result, 3676 * rt_mutex_setprio() can trigger (RT) balancing operations, 3677 * which can then trigger wakeups of the stop thread to push 3678 * around the current task. 3679 * 3680 * The stop task itself will never be part of the PI-chain, it 3681 * never blocks, therefore that ->pi_lock recursion is safe. 3682 * Tell lockdep about this by placing the stop->pi_lock in its 3683 * own class. 3684 */ 3685 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3686 } 3687 3688 cpu_rq(cpu)->stop = stop; 3689 3690 if (old_stop) { 3691 /* 3692 * Reset it back to a normal scheduling class so that 3693 * it can die in pieces. 3694 */ 3695 old_stop->sched_class = &rt_sched_class; 3696 } 3697 } 3698 3699 #else /* CONFIG_SMP */ 3700 3701 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3702 struct affinity_context *ctx) 3703 { 3704 return set_cpus_allowed_ptr(p, ctx->new_mask); 3705 } 3706 3707 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3708 3709 static inline bool rq_has_pinned_tasks(struct rq *rq) 3710 { 3711 return false; 3712 } 3713 3714 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3715 { 3716 return NULL; 3717 } 3718 3719 #endif /* !CONFIG_SMP */ 3720 3721 static void 3722 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3723 { 3724 struct rq *rq; 3725 3726 if (!schedstat_enabled()) 3727 return; 3728 3729 rq = this_rq(); 3730 3731 #ifdef CONFIG_SMP 3732 if (cpu == rq->cpu) { 3733 __schedstat_inc(rq->ttwu_local); 3734 __schedstat_inc(p->stats.nr_wakeups_local); 3735 } else { 3736 struct sched_domain *sd; 3737 3738 __schedstat_inc(p->stats.nr_wakeups_remote); 3739 3740 guard(rcu)(); 3741 for_each_domain(rq->cpu, sd) { 3742 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3743 __schedstat_inc(sd->ttwu_wake_remote); 3744 break; 3745 } 3746 } 3747 } 3748 3749 if (wake_flags & WF_MIGRATED) 3750 __schedstat_inc(p->stats.nr_wakeups_migrate); 3751 #endif /* CONFIG_SMP */ 3752 3753 __schedstat_inc(rq->ttwu_count); 3754 __schedstat_inc(p->stats.nr_wakeups); 3755 3756 if (wake_flags & WF_SYNC) 3757 __schedstat_inc(p->stats.nr_wakeups_sync); 3758 } 3759 3760 /* 3761 * Mark the task runnable. 3762 */ 3763 static inline void ttwu_do_wakeup(struct task_struct *p) 3764 { 3765 WRITE_ONCE(p->__state, TASK_RUNNING); 3766 trace_sched_wakeup(p); 3767 } 3768 3769 static void 3770 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3771 struct rq_flags *rf) 3772 { 3773 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3774 3775 lockdep_assert_rq_held(rq); 3776 3777 if (p->sched_contributes_to_load) 3778 rq->nr_uninterruptible--; 3779 3780 #ifdef CONFIG_SMP 3781 if (wake_flags & WF_MIGRATED) 3782 en_flags |= ENQUEUE_MIGRATED; 3783 else 3784 #endif 3785 if (p->in_iowait) { 3786 delayacct_blkio_end(p); 3787 atomic_dec(&task_rq(p)->nr_iowait); 3788 } 3789 3790 activate_task(rq, p, en_flags); 3791 check_preempt_curr(rq, p, wake_flags); 3792 3793 ttwu_do_wakeup(p); 3794 3795 #ifdef CONFIG_SMP 3796 if (p->sched_class->task_woken) { 3797 /* 3798 * Our task @p is fully woken up and running; so it's safe to 3799 * drop the rq->lock, hereafter rq is only used for statistics. 3800 */ 3801 rq_unpin_lock(rq, rf); 3802 p->sched_class->task_woken(rq, p); 3803 rq_repin_lock(rq, rf); 3804 } 3805 3806 if (rq->idle_stamp) { 3807 u64 delta = rq_clock(rq) - rq->idle_stamp; 3808 u64 max = 2*rq->max_idle_balance_cost; 3809 3810 update_avg(&rq->avg_idle, delta); 3811 3812 if (rq->avg_idle > max) 3813 rq->avg_idle = max; 3814 3815 rq->wake_stamp = jiffies; 3816 rq->wake_avg_idle = rq->avg_idle / 2; 3817 3818 rq->idle_stamp = 0; 3819 } 3820 #endif 3821 } 3822 3823 /* 3824 * Consider @p being inside a wait loop: 3825 * 3826 * for (;;) { 3827 * set_current_state(TASK_UNINTERRUPTIBLE); 3828 * 3829 * if (CONDITION) 3830 * break; 3831 * 3832 * schedule(); 3833 * } 3834 * __set_current_state(TASK_RUNNING); 3835 * 3836 * between set_current_state() and schedule(). In this case @p is still 3837 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3838 * an atomic manner. 3839 * 3840 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3841 * then schedule() must still happen and p->state can be changed to 3842 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3843 * need to do a full wakeup with enqueue. 3844 * 3845 * Returns: %true when the wakeup is done, 3846 * %false otherwise. 3847 */ 3848 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3849 { 3850 struct rq_flags rf; 3851 struct rq *rq; 3852 int ret = 0; 3853 3854 rq = __task_rq_lock(p, &rf); 3855 if (task_on_rq_queued(p)) { 3856 if (!task_on_cpu(rq, p)) { 3857 /* 3858 * When on_rq && !on_cpu the task is preempted, see if 3859 * it should preempt the task that is current now. 3860 */ 3861 update_rq_clock(rq); 3862 check_preempt_curr(rq, p, wake_flags); 3863 } 3864 ttwu_do_wakeup(p); 3865 ret = 1; 3866 } 3867 __task_rq_unlock(rq, &rf); 3868 3869 return ret; 3870 } 3871 3872 #ifdef CONFIG_SMP 3873 void sched_ttwu_pending(void *arg) 3874 { 3875 struct llist_node *llist = arg; 3876 struct rq *rq = this_rq(); 3877 struct task_struct *p, *t; 3878 struct rq_flags rf; 3879 3880 if (!llist) 3881 return; 3882 3883 rq_lock_irqsave(rq, &rf); 3884 update_rq_clock(rq); 3885 3886 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3887 if (WARN_ON_ONCE(p->on_cpu)) 3888 smp_cond_load_acquire(&p->on_cpu, !VAL); 3889 3890 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3891 set_task_cpu(p, cpu_of(rq)); 3892 3893 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3894 } 3895 3896 /* 3897 * Must be after enqueueing at least once task such that 3898 * idle_cpu() does not observe a false-negative -- if it does, 3899 * it is possible for select_idle_siblings() to stack a number 3900 * of tasks on this CPU during that window. 3901 * 3902 * It is ok to clear ttwu_pending when another task pending. 3903 * We will receive IPI after local irq enabled and then enqueue it. 3904 * Since now nr_running > 0, idle_cpu() will always get correct result. 3905 */ 3906 WRITE_ONCE(rq->ttwu_pending, 0); 3907 rq_unlock_irqrestore(rq, &rf); 3908 } 3909 3910 /* 3911 * Prepare the scene for sending an IPI for a remote smp_call 3912 * 3913 * Returns true if the caller can proceed with sending the IPI. 3914 * Returns false otherwise. 3915 */ 3916 bool call_function_single_prep_ipi(int cpu) 3917 { 3918 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3919 trace_sched_wake_idle_without_ipi(cpu); 3920 return false; 3921 } 3922 3923 return true; 3924 } 3925 3926 /* 3927 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3928 * necessary. The wakee CPU on receipt of the IPI will queue the task 3929 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3930 * of the wakeup instead of the waker. 3931 */ 3932 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3933 { 3934 struct rq *rq = cpu_rq(cpu); 3935 3936 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3937 3938 WRITE_ONCE(rq->ttwu_pending, 1); 3939 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3940 } 3941 3942 void wake_up_if_idle(int cpu) 3943 { 3944 struct rq *rq = cpu_rq(cpu); 3945 3946 guard(rcu)(); 3947 if (is_idle_task(rcu_dereference(rq->curr))) { 3948 guard(rq_lock_irqsave)(rq); 3949 if (is_idle_task(rq->curr)) 3950 resched_curr(rq); 3951 } 3952 } 3953 3954 bool cpus_share_cache(int this_cpu, int that_cpu) 3955 { 3956 if (this_cpu == that_cpu) 3957 return true; 3958 3959 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3960 } 3961 3962 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3963 { 3964 /* 3965 * Do not complicate things with the async wake_list while the CPU is 3966 * in hotplug state. 3967 */ 3968 if (!cpu_active(cpu)) 3969 return false; 3970 3971 /* Ensure the task will still be allowed to run on the CPU. */ 3972 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3973 return false; 3974 3975 /* 3976 * If the CPU does not share cache, then queue the task on the 3977 * remote rqs wakelist to avoid accessing remote data. 3978 */ 3979 if (!cpus_share_cache(smp_processor_id(), cpu)) 3980 return true; 3981 3982 if (cpu == smp_processor_id()) 3983 return false; 3984 3985 /* 3986 * If the wakee cpu is idle, or the task is descheduling and the 3987 * only running task on the CPU, then use the wakelist to offload 3988 * the task activation to the idle (or soon-to-be-idle) CPU as 3989 * the current CPU is likely busy. nr_running is checked to 3990 * avoid unnecessary task stacking. 3991 * 3992 * Note that we can only get here with (wakee) p->on_rq=0, 3993 * p->on_cpu can be whatever, we've done the dequeue, so 3994 * the wakee has been accounted out of ->nr_running. 3995 */ 3996 if (!cpu_rq(cpu)->nr_running) 3997 return true; 3998 3999 return false; 4000 } 4001 4002 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 4003 { 4004 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 4005 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 4006 __ttwu_queue_wakelist(p, cpu, wake_flags); 4007 return true; 4008 } 4009 4010 return false; 4011 } 4012 4013 #else /* !CONFIG_SMP */ 4014 4015 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 4016 { 4017 return false; 4018 } 4019 4020 #endif /* CONFIG_SMP */ 4021 4022 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 4023 { 4024 struct rq *rq = cpu_rq(cpu); 4025 struct rq_flags rf; 4026 4027 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4028 return; 4029 4030 rq_lock(rq, &rf); 4031 update_rq_clock(rq); 4032 ttwu_do_activate(rq, p, wake_flags, &rf); 4033 rq_unlock(rq, &rf); 4034 } 4035 4036 /* 4037 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4038 * 4039 * The caller holds p::pi_lock if p != current or has preemption 4040 * disabled when p == current. 4041 * 4042 * The rules of PREEMPT_RT saved_state: 4043 * 4044 * The related locking code always holds p::pi_lock when updating 4045 * p::saved_state, which means the code is fully serialized in both cases. 4046 * 4047 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 4048 * bits set. This allows to distinguish all wakeup scenarios. 4049 */ 4050 static __always_inline 4051 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4052 { 4053 int match; 4054 4055 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4056 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4057 state != TASK_RTLOCK_WAIT); 4058 } 4059 4060 *success = !!(match = __task_state_match(p, state)); 4061 4062 #ifdef CONFIG_PREEMPT_RT 4063 /* 4064 * Saved state preserves the task state across blocking on 4065 * an RT lock. If the state matches, set p::saved_state to 4066 * TASK_RUNNING, but do not wake the task because it waits 4067 * for a lock wakeup. Also indicate success because from 4068 * the regular waker's point of view this has succeeded. 4069 * 4070 * After acquiring the lock the task will restore p::__state 4071 * from p::saved_state which ensures that the regular 4072 * wakeup is not lost. The restore will also set 4073 * p::saved_state to TASK_RUNNING so any further tests will 4074 * not result in false positives vs. @success 4075 */ 4076 if (match < 0) 4077 p->saved_state = TASK_RUNNING; 4078 #endif 4079 return match > 0; 4080 } 4081 4082 /* 4083 * Notes on Program-Order guarantees on SMP systems. 4084 * 4085 * MIGRATION 4086 * 4087 * The basic program-order guarantee on SMP systems is that when a task [t] 4088 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4089 * execution on its new CPU [c1]. 4090 * 4091 * For migration (of runnable tasks) this is provided by the following means: 4092 * 4093 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4094 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4095 * rq(c1)->lock (if not at the same time, then in that order). 4096 * C) LOCK of the rq(c1)->lock scheduling in task 4097 * 4098 * Release/acquire chaining guarantees that B happens after A and C after B. 4099 * Note: the CPU doing B need not be c0 or c1 4100 * 4101 * Example: 4102 * 4103 * CPU0 CPU1 CPU2 4104 * 4105 * LOCK rq(0)->lock 4106 * sched-out X 4107 * sched-in Y 4108 * UNLOCK rq(0)->lock 4109 * 4110 * LOCK rq(0)->lock // orders against CPU0 4111 * dequeue X 4112 * UNLOCK rq(0)->lock 4113 * 4114 * LOCK rq(1)->lock 4115 * enqueue X 4116 * UNLOCK rq(1)->lock 4117 * 4118 * LOCK rq(1)->lock // orders against CPU2 4119 * sched-out Z 4120 * sched-in X 4121 * UNLOCK rq(1)->lock 4122 * 4123 * 4124 * BLOCKING -- aka. SLEEP + WAKEUP 4125 * 4126 * For blocking we (obviously) need to provide the same guarantee as for 4127 * migration. However the means are completely different as there is no lock 4128 * chain to provide order. Instead we do: 4129 * 4130 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4131 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4132 * 4133 * Example: 4134 * 4135 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4136 * 4137 * LOCK rq(0)->lock LOCK X->pi_lock 4138 * dequeue X 4139 * sched-out X 4140 * smp_store_release(X->on_cpu, 0); 4141 * 4142 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4143 * X->state = WAKING 4144 * set_task_cpu(X,2) 4145 * 4146 * LOCK rq(2)->lock 4147 * enqueue X 4148 * X->state = RUNNING 4149 * UNLOCK rq(2)->lock 4150 * 4151 * LOCK rq(2)->lock // orders against CPU1 4152 * sched-out Z 4153 * sched-in X 4154 * UNLOCK rq(2)->lock 4155 * 4156 * UNLOCK X->pi_lock 4157 * UNLOCK rq(0)->lock 4158 * 4159 * 4160 * However, for wakeups there is a second guarantee we must provide, namely we 4161 * must ensure that CONDITION=1 done by the caller can not be reordered with 4162 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4163 */ 4164 4165 /** 4166 * try_to_wake_up - wake up a thread 4167 * @p: the thread to be awakened 4168 * @state: the mask of task states that can be woken 4169 * @wake_flags: wake modifier flags (WF_*) 4170 * 4171 * Conceptually does: 4172 * 4173 * If (@state & @p->state) @p->state = TASK_RUNNING. 4174 * 4175 * If the task was not queued/runnable, also place it back on a runqueue. 4176 * 4177 * This function is atomic against schedule() which would dequeue the task. 4178 * 4179 * It issues a full memory barrier before accessing @p->state, see the comment 4180 * with set_current_state(). 4181 * 4182 * Uses p->pi_lock to serialize against concurrent wake-ups. 4183 * 4184 * Relies on p->pi_lock stabilizing: 4185 * - p->sched_class 4186 * - p->cpus_ptr 4187 * - p->sched_task_group 4188 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4189 * 4190 * Tries really hard to only take one task_rq(p)->lock for performance. 4191 * Takes rq->lock in: 4192 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4193 * - ttwu_queue() -- new rq, for enqueue of the task; 4194 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4195 * 4196 * As a consequence we race really badly with just about everything. See the 4197 * many memory barriers and their comments for details. 4198 * 4199 * Return: %true if @p->state changes (an actual wakeup was done), 4200 * %false otherwise. 4201 */ 4202 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4203 { 4204 guard(preempt)(); 4205 int cpu, success = 0; 4206 4207 if (p == current) { 4208 /* 4209 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4210 * == smp_processor_id()'. Together this means we can special 4211 * case the whole 'p->on_rq && ttwu_runnable()' case below 4212 * without taking any locks. 4213 * 4214 * In particular: 4215 * - we rely on Program-Order guarantees for all the ordering, 4216 * - we're serialized against set_special_state() by virtue of 4217 * it disabling IRQs (this allows not taking ->pi_lock). 4218 */ 4219 if (!ttwu_state_match(p, state, &success)) 4220 goto out; 4221 4222 trace_sched_waking(p); 4223 ttwu_do_wakeup(p); 4224 goto out; 4225 } 4226 4227 /* 4228 * If we are going to wake up a thread waiting for CONDITION we 4229 * need to ensure that CONDITION=1 done by the caller can not be 4230 * reordered with p->state check below. This pairs with smp_store_mb() 4231 * in set_current_state() that the waiting thread does. 4232 */ 4233 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4234 smp_mb__after_spinlock(); 4235 if (!ttwu_state_match(p, state, &success)) 4236 break; 4237 4238 trace_sched_waking(p); 4239 4240 /* 4241 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4242 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4243 * in smp_cond_load_acquire() below. 4244 * 4245 * sched_ttwu_pending() try_to_wake_up() 4246 * STORE p->on_rq = 1 LOAD p->state 4247 * UNLOCK rq->lock 4248 * 4249 * __schedule() (switch to task 'p') 4250 * LOCK rq->lock smp_rmb(); 4251 * smp_mb__after_spinlock(); 4252 * UNLOCK rq->lock 4253 * 4254 * [task p] 4255 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4256 * 4257 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4258 * __schedule(). See the comment for smp_mb__after_spinlock(). 4259 * 4260 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4261 */ 4262 smp_rmb(); 4263 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4264 break; 4265 4266 #ifdef CONFIG_SMP 4267 /* 4268 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4269 * possible to, falsely, observe p->on_cpu == 0. 4270 * 4271 * One must be running (->on_cpu == 1) in order to remove oneself 4272 * from the runqueue. 4273 * 4274 * __schedule() (switch to task 'p') try_to_wake_up() 4275 * STORE p->on_cpu = 1 LOAD p->on_rq 4276 * UNLOCK rq->lock 4277 * 4278 * __schedule() (put 'p' to sleep) 4279 * LOCK rq->lock smp_rmb(); 4280 * smp_mb__after_spinlock(); 4281 * STORE p->on_rq = 0 LOAD p->on_cpu 4282 * 4283 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4284 * __schedule(). See the comment for smp_mb__after_spinlock(). 4285 * 4286 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4287 * schedule()'s deactivate_task() has 'happened' and p will no longer 4288 * care about it's own p->state. See the comment in __schedule(). 4289 */ 4290 smp_acquire__after_ctrl_dep(); 4291 4292 /* 4293 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4294 * == 0), which means we need to do an enqueue, change p->state to 4295 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4296 * enqueue, such as ttwu_queue_wakelist(). 4297 */ 4298 WRITE_ONCE(p->__state, TASK_WAKING); 4299 4300 /* 4301 * If the owning (remote) CPU is still in the middle of schedule() with 4302 * this task as prev, considering queueing p on the remote CPUs wake_list 4303 * which potentially sends an IPI instead of spinning on p->on_cpu to 4304 * let the waker make forward progress. This is safe because IRQs are 4305 * disabled and the IPI will deliver after on_cpu is cleared. 4306 * 4307 * Ensure we load task_cpu(p) after p->on_cpu: 4308 * 4309 * set_task_cpu(p, cpu); 4310 * STORE p->cpu = @cpu 4311 * __schedule() (switch to task 'p') 4312 * LOCK rq->lock 4313 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4314 * STORE p->on_cpu = 1 LOAD p->cpu 4315 * 4316 * to ensure we observe the correct CPU on which the task is currently 4317 * scheduling. 4318 */ 4319 if (smp_load_acquire(&p->on_cpu) && 4320 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4321 break; 4322 4323 /* 4324 * If the owning (remote) CPU is still in the middle of schedule() with 4325 * this task as prev, wait until it's done referencing the task. 4326 * 4327 * Pairs with the smp_store_release() in finish_task(). 4328 * 4329 * This ensures that tasks getting woken will be fully ordered against 4330 * their previous state and preserve Program Order. 4331 */ 4332 smp_cond_load_acquire(&p->on_cpu, !VAL); 4333 4334 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4335 if (task_cpu(p) != cpu) { 4336 if (p->in_iowait) { 4337 delayacct_blkio_end(p); 4338 atomic_dec(&task_rq(p)->nr_iowait); 4339 } 4340 4341 wake_flags |= WF_MIGRATED; 4342 psi_ttwu_dequeue(p); 4343 set_task_cpu(p, cpu); 4344 } 4345 #else 4346 cpu = task_cpu(p); 4347 #endif /* CONFIG_SMP */ 4348 4349 ttwu_queue(p, cpu, wake_flags); 4350 } 4351 out: 4352 if (success) 4353 ttwu_stat(p, task_cpu(p), wake_flags); 4354 4355 return success; 4356 } 4357 4358 static bool __task_needs_rq_lock(struct task_struct *p) 4359 { 4360 unsigned int state = READ_ONCE(p->__state); 4361 4362 /* 4363 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4364 * the task is blocked. Make sure to check @state since ttwu() can drop 4365 * locks at the end, see ttwu_queue_wakelist(). 4366 */ 4367 if (state == TASK_RUNNING || state == TASK_WAKING) 4368 return true; 4369 4370 /* 4371 * Ensure we load p->on_rq after p->__state, otherwise it would be 4372 * possible to, falsely, observe p->on_rq == 0. 4373 * 4374 * See try_to_wake_up() for a longer comment. 4375 */ 4376 smp_rmb(); 4377 if (p->on_rq) 4378 return true; 4379 4380 #ifdef CONFIG_SMP 4381 /* 4382 * Ensure the task has finished __schedule() and will not be referenced 4383 * anymore. Again, see try_to_wake_up() for a longer comment. 4384 */ 4385 smp_rmb(); 4386 smp_cond_load_acquire(&p->on_cpu, !VAL); 4387 #endif 4388 4389 return false; 4390 } 4391 4392 /** 4393 * task_call_func - Invoke a function on task in fixed state 4394 * @p: Process for which the function is to be invoked, can be @current. 4395 * @func: Function to invoke. 4396 * @arg: Argument to function. 4397 * 4398 * Fix the task in it's current state by avoiding wakeups and or rq operations 4399 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4400 * to work out what the state is, if required. Given that @func can be invoked 4401 * with a runqueue lock held, it had better be quite lightweight. 4402 * 4403 * Returns: 4404 * Whatever @func returns 4405 */ 4406 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4407 { 4408 struct rq *rq = NULL; 4409 struct rq_flags rf; 4410 int ret; 4411 4412 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4413 4414 if (__task_needs_rq_lock(p)) 4415 rq = __task_rq_lock(p, &rf); 4416 4417 /* 4418 * At this point the task is pinned; either: 4419 * - blocked and we're holding off wakeups (pi->lock) 4420 * - woken, and we're holding off enqueue (rq->lock) 4421 * - queued, and we're holding off schedule (rq->lock) 4422 * - running, and we're holding off de-schedule (rq->lock) 4423 * 4424 * The called function (@func) can use: task_curr(), p->on_rq and 4425 * p->__state to differentiate between these states. 4426 */ 4427 ret = func(p, arg); 4428 4429 if (rq) 4430 rq_unlock(rq, &rf); 4431 4432 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4433 return ret; 4434 } 4435 4436 /** 4437 * cpu_curr_snapshot - Return a snapshot of the currently running task 4438 * @cpu: The CPU on which to snapshot the task. 4439 * 4440 * Returns the task_struct pointer of the task "currently" running on 4441 * the specified CPU. 4442 * 4443 * If the specified CPU was offline, the return value is whatever it 4444 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4445 * task, but there is no guarantee. Callers wishing a useful return 4446 * value must take some action to ensure that the specified CPU remains 4447 * online throughout. 4448 * 4449 * This function executes full memory barriers before and after fetching 4450 * the pointer, which permits the caller to confine this function's fetch 4451 * with respect to the caller's accesses to other shared variables. 4452 */ 4453 struct task_struct *cpu_curr_snapshot(int cpu) 4454 { 4455 struct rq *rq = cpu_rq(cpu); 4456 struct task_struct *t; 4457 struct rq_flags rf; 4458 4459 rq_lock_irqsave(rq, &rf); 4460 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4461 t = rcu_dereference(cpu_curr(cpu)); 4462 rq_unlock_irqrestore(rq, &rf); 4463 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4464 4465 return t; 4466 } 4467 4468 /** 4469 * wake_up_process - Wake up a specific process 4470 * @p: The process to be woken up. 4471 * 4472 * Attempt to wake up the nominated process and move it to the set of runnable 4473 * processes. 4474 * 4475 * Return: 1 if the process was woken up, 0 if it was already running. 4476 * 4477 * This function executes a full memory barrier before accessing the task state. 4478 */ 4479 int wake_up_process(struct task_struct *p) 4480 { 4481 return try_to_wake_up(p, TASK_NORMAL, 0); 4482 } 4483 EXPORT_SYMBOL(wake_up_process); 4484 4485 int wake_up_state(struct task_struct *p, unsigned int state) 4486 { 4487 return try_to_wake_up(p, state, 0); 4488 } 4489 4490 /* 4491 * Perform scheduler related setup for a newly forked process p. 4492 * p is forked by current. 4493 * 4494 * __sched_fork() is basic setup used by init_idle() too: 4495 */ 4496 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4497 { 4498 p->on_rq = 0; 4499 4500 p->se.on_rq = 0; 4501 p->se.exec_start = 0; 4502 p->se.sum_exec_runtime = 0; 4503 p->se.prev_sum_exec_runtime = 0; 4504 p->se.nr_migrations = 0; 4505 p->se.vruntime = 0; 4506 p->se.vlag = 0; 4507 p->se.slice = sysctl_sched_base_slice; 4508 INIT_LIST_HEAD(&p->se.group_node); 4509 4510 #ifdef CONFIG_FAIR_GROUP_SCHED 4511 p->se.cfs_rq = NULL; 4512 #endif 4513 4514 #ifdef CONFIG_SCHEDSTATS 4515 /* Even if schedstat is disabled, there should not be garbage */ 4516 memset(&p->stats, 0, sizeof(p->stats)); 4517 #endif 4518 4519 RB_CLEAR_NODE(&p->dl.rb_node); 4520 init_dl_task_timer(&p->dl); 4521 init_dl_inactive_task_timer(&p->dl); 4522 __dl_clear_params(p); 4523 4524 INIT_LIST_HEAD(&p->rt.run_list); 4525 p->rt.timeout = 0; 4526 p->rt.time_slice = sched_rr_timeslice; 4527 p->rt.on_rq = 0; 4528 p->rt.on_list = 0; 4529 4530 #ifdef CONFIG_PREEMPT_NOTIFIERS 4531 INIT_HLIST_HEAD(&p->preempt_notifiers); 4532 #endif 4533 4534 #ifdef CONFIG_COMPACTION 4535 p->capture_control = NULL; 4536 #endif 4537 init_numa_balancing(clone_flags, p); 4538 #ifdef CONFIG_SMP 4539 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4540 p->migration_pending = NULL; 4541 #endif 4542 init_sched_mm_cid(p); 4543 } 4544 4545 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4546 4547 #ifdef CONFIG_NUMA_BALANCING 4548 4549 int sysctl_numa_balancing_mode; 4550 4551 static void __set_numabalancing_state(bool enabled) 4552 { 4553 if (enabled) 4554 static_branch_enable(&sched_numa_balancing); 4555 else 4556 static_branch_disable(&sched_numa_balancing); 4557 } 4558 4559 void set_numabalancing_state(bool enabled) 4560 { 4561 if (enabled) 4562 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4563 else 4564 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4565 __set_numabalancing_state(enabled); 4566 } 4567 4568 #ifdef CONFIG_PROC_SYSCTL 4569 static void reset_memory_tiering(void) 4570 { 4571 struct pglist_data *pgdat; 4572 4573 for_each_online_pgdat(pgdat) { 4574 pgdat->nbp_threshold = 0; 4575 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4576 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4577 } 4578 } 4579 4580 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4581 void *buffer, size_t *lenp, loff_t *ppos) 4582 { 4583 struct ctl_table t; 4584 int err; 4585 int state = sysctl_numa_balancing_mode; 4586 4587 if (write && !capable(CAP_SYS_ADMIN)) 4588 return -EPERM; 4589 4590 t = *table; 4591 t.data = &state; 4592 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4593 if (err < 0) 4594 return err; 4595 if (write) { 4596 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4597 (state & NUMA_BALANCING_MEMORY_TIERING)) 4598 reset_memory_tiering(); 4599 sysctl_numa_balancing_mode = state; 4600 __set_numabalancing_state(state); 4601 } 4602 return err; 4603 } 4604 #endif 4605 #endif 4606 4607 #ifdef CONFIG_SCHEDSTATS 4608 4609 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4610 4611 static void set_schedstats(bool enabled) 4612 { 4613 if (enabled) 4614 static_branch_enable(&sched_schedstats); 4615 else 4616 static_branch_disable(&sched_schedstats); 4617 } 4618 4619 void force_schedstat_enabled(void) 4620 { 4621 if (!schedstat_enabled()) { 4622 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4623 static_branch_enable(&sched_schedstats); 4624 } 4625 } 4626 4627 static int __init setup_schedstats(char *str) 4628 { 4629 int ret = 0; 4630 if (!str) 4631 goto out; 4632 4633 if (!strcmp(str, "enable")) { 4634 set_schedstats(true); 4635 ret = 1; 4636 } else if (!strcmp(str, "disable")) { 4637 set_schedstats(false); 4638 ret = 1; 4639 } 4640 out: 4641 if (!ret) 4642 pr_warn("Unable to parse schedstats=\n"); 4643 4644 return ret; 4645 } 4646 __setup("schedstats=", setup_schedstats); 4647 4648 #ifdef CONFIG_PROC_SYSCTL 4649 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4650 size_t *lenp, loff_t *ppos) 4651 { 4652 struct ctl_table t; 4653 int err; 4654 int state = static_branch_likely(&sched_schedstats); 4655 4656 if (write && !capable(CAP_SYS_ADMIN)) 4657 return -EPERM; 4658 4659 t = *table; 4660 t.data = &state; 4661 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4662 if (err < 0) 4663 return err; 4664 if (write) 4665 set_schedstats(state); 4666 return err; 4667 } 4668 #endif /* CONFIG_PROC_SYSCTL */ 4669 #endif /* CONFIG_SCHEDSTATS */ 4670 4671 #ifdef CONFIG_SYSCTL 4672 static struct ctl_table sched_core_sysctls[] = { 4673 #ifdef CONFIG_SCHEDSTATS 4674 { 4675 .procname = "sched_schedstats", 4676 .data = NULL, 4677 .maxlen = sizeof(unsigned int), 4678 .mode = 0644, 4679 .proc_handler = sysctl_schedstats, 4680 .extra1 = SYSCTL_ZERO, 4681 .extra2 = SYSCTL_ONE, 4682 }, 4683 #endif /* CONFIG_SCHEDSTATS */ 4684 #ifdef CONFIG_UCLAMP_TASK 4685 { 4686 .procname = "sched_util_clamp_min", 4687 .data = &sysctl_sched_uclamp_util_min, 4688 .maxlen = sizeof(unsigned int), 4689 .mode = 0644, 4690 .proc_handler = sysctl_sched_uclamp_handler, 4691 }, 4692 { 4693 .procname = "sched_util_clamp_max", 4694 .data = &sysctl_sched_uclamp_util_max, 4695 .maxlen = sizeof(unsigned int), 4696 .mode = 0644, 4697 .proc_handler = sysctl_sched_uclamp_handler, 4698 }, 4699 { 4700 .procname = "sched_util_clamp_min_rt_default", 4701 .data = &sysctl_sched_uclamp_util_min_rt_default, 4702 .maxlen = sizeof(unsigned int), 4703 .mode = 0644, 4704 .proc_handler = sysctl_sched_uclamp_handler, 4705 }, 4706 #endif /* CONFIG_UCLAMP_TASK */ 4707 #ifdef CONFIG_NUMA_BALANCING 4708 { 4709 .procname = "numa_balancing", 4710 .data = NULL, /* filled in by handler */ 4711 .maxlen = sizeof(unsigned int), 4712 .mode = 0644, 4713 .proc_handler = sysctl_numa_balancing, 4714 .extra1 = SYSCTL_ZERO, 4715 .extra2 = SYSCTL_FOUR, 4716 }, 4717 #endif /* CONFIG_NUMA_BALANCING */ 4718 {} 4719 }; 4720 static int __init sched_core_sysctl_init(void) 4721 { 4722 register_sysctl_init("kernel", sched_core_sysctls); 4723 return 0; 4724 } 4725 late_initcall(sched_core_sysctl_init); 4726 #endif /* CONFIG_SYSCTL */ 4727 4728 /* 4729 * fork()/clone()-time setup: 4730 */ 4731 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4732 { 4733 __sched_fork(clone_flags, p); 4734 /* 4735 * We mark the process as NEW here. This guarantees that 4736 * nobody will actually run it, and a signal or other external 4737 * event cannot wake it up and insert it on the runqueue either. 4738 */ 4739 p->__state = TASK_NEW; 4740 4741 /* 4742 * Make sure we do not leak PI boosting priority to the child. 4743 */ 4744 p->prio = current->normal_prio; 4745 4746 uclamp_fork(p); 4747 4748 /* 4749 * Revert to default priority/policy on fork if requested. 4750 */ 4751 if (unlikely(p->sched_reset_on_fork)) { 4752 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4753 p->policy = SCHED_NORMAL; 4754 p->static_prio = NICE_TO_PRIO(0); 4755 p->rt_priority = 0; 4756 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4757 p->static_prio = NICE_TO_PRIO(0); 4758 4759 p->prio = p->normal_prio = p->static_prio; 4760 set_load_weight(p, false); 4761 4762 /* 4763 * We don't need the reset flag anymore after the fork. It has 4764 * fulfilled its duty: 4765 */ 4766 p->sched_reset_on_fork = 0; 4767 } 4768 4769 if (dl_prio(p->prio)) 4770 return -EAGAIN; 4771 else if (rt_prio(p->prio)) 4772 p->sched_class = &rt_sched_class; 4773 else 4774 p->sched_class = &fair_sched_class; 4775 4776 init_entity_runnable_average(&p->se); 4777 4778 4779 #ifdef CONFIG_SCHED_INFO 4780 if (likely(sched_info_on())) 4781 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4782 #endif 4783 #if defined(CONFIG_SMP) 4784 p->on_cpu = 0; 4785 #endif 4786 init_task_preempt_count(p); 4787 #ifdef CONFIG_SMP 4788 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4789 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4790 #endif 4791 return 0; 4792 } 4793 4794 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4795 { 4796 unsigned long flags; 4797 4798 /* 4799 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4800 * required yet, but lockdep gets upset if rules are violated. 4801 */ 4802 raw_spin_lock_irqsave(&p->pi_lock, flags); 4803 #ifdef CONFIG_CGROUP_SCHED 4804 if (1) { 4805 struct task_group *tg; 4806 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4807 struct task_group, css); 4808 tg = autogroup_task_group(p, tg); 4809 p->sched_task_group = tg; 4810 } 4811 #endif 4812 rseq_migrate(p); 4813 /* 4814 * We're setting the CPU for the first time, we don't migrate, 4815 * so use __set_task_cpu(). 4816 */ 4817 __set_task_cpu(p, smp_processor_id()); 4818 if (p->sched_class->task_fork) 4819 p->sched_class->task_fork(p); 4820 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4821 } 4822 4823 void sched_post_fork(struct task_struct *p) 4824 { 4825 uclamp_post_fork(p); 4826 } 4827 4828 unsigned long to_ratio(u64 period, u64 runtime) 4829 { 4830 if (runtime == RUNTIME_INF) 4831 return BW_UNIT; 4832 4833 /* 4834 * Doing this here saves a lot of checks in all 4835 * the calling paths, and returning zero seems 4836 * safe for them anyway. 4837 */ 4838 if (period == 0) 4839 return 0; 4840 4841 return div64_u64(runtime << BW_SHIFT, period); 4842 } 4843 4844 /* 4845 * wake_up_new_task - wake up a newly created task for the first time. 4846 * 4847 * This function will do some initial scheduler statistics housekeeping 4848 * that must be done for every newly created context, then puts the task 4849 * on the runqueue and wakes it. 4850 */ 4851 void wake_up_new_task(struct task_struct *p) 4852 { 4853 struct rq_flags rf; 4854 struct rq *rq; 4855 4856 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4857 WRITE_ONCE(p->__state, TASK_RUNNING); 4858 #ifdef CONFIG_SMP 4859 /* 4860 * Fork balancing, do it here and not earlier because: 4861 * - cpus_ptr can change in the fork path 4862 * - any previously selected CPU might disappear through hotplug 4863 * 4864 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4865 * as we're not fully set-up yet. 4866 */ 4867 p->recent_used_cpu = task_cpu(p); 4868 rseq_migrate(p); 4869 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4870 #endif 4871 rq = __task_rq_lock(p, &rf); 4872 update_rq_clock(rq); 4873 post_init_entity_util_avg(p); 4874 4875 activate_task(rq, p, ENQUEUE_NOCLOCK); 4876 trace_sched_wakeup_new(p); 4877 check_preempt_curr(rq, p, WF_FORK); 4878 #ifdef CONFIG_SMP 4879 if (p->sched_class->task_woken) { 4880 /* 4881 * Nothing relies on rq->lock after this, so it's fine to 4882 * drop it. 4883 */ 4884 rq_unpin_lock(rq, &rf); 4885 p->sched_class->task_woken(rq, p); 4886 rq_repin_lock(rq, &rf); 4887 } 4888 #endif 4889 task_rq_unlock(rq, p, &rf); 4890 } 4891 4892 #ifdef CONFIG_PREEMPT_NOTIFIERS 4893 4894 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4895 4896 void preempt_notifier_inc(void) 4897 { 4898 static_branch_inc(&preempt_notifier_key); 4899 } 4900 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4901 4902 void preempt_notifier_dec(void) 4903 { 4904 static_branch_dec(&preempt_notifier_key); 4905 } 4906 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4907 4908 /** 4909 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4910 * @notifier: notifier struct to register 4911 */ 4912 void preempt_notifier_register(struct preempt_notifier *notifier) 4913 { 4914 if (!static_branch_unlikely(&preempt_notifier_key)) 4915 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4916 4917 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4918 } 4919 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4920 4921 /** 4922 * preempt_notifier_unregister - no longer interested in preemption notifications 4923 * @notifier: notifier struct to unregister 4924 * 4925 * This is *not* safe to call from within a preemption notifier. 4926 */ 4927 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4928 { 4929 hlist_del(¬ifier->link); 4930 } 4931 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4932 4933 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4934 { 4935 struct preempt_notifier *notifier; 4936 4937 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4938 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4939 } 4940 4941 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4942 { 4943 if (static_branch_unlikely(&preempt_notifier_key)) 4944 __fire_sched_in_preempt_notifiers(curr); 4945 } 4946 4947 static void 4948 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4949 struct task_struct *next) 4950 { 4951 struct preempt_notifier *notifier; 4952 4953 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4954 notifier->ops->sched_out(notifier, next); 4955 } 4956 4957 static __always_inline void 4958 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4959 struct task_struct *next) 4960 { 4961 if (static_branch_unlikely(&preempt_notifier_key)) 4962 __fire_sched_out_preempt_notifiers(curr, next); 4963 } 4964 4965 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4966 4967 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4968 { 4969 } 4970 4971 static inline void 4972 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4973 struct task_struct *next) 4974 { 4975 } 4976 4977 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4978 4979 static inline void prepare_task(struct task_struct *next) 4980 { 4981 #ifdef CONFIG_SMP 4982 /* 4983 * Claim the task as running, we do this before switching to it 4984 * such that any running task will have this set. 4985 * 4986 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4987 * its ordering comment. 4988 */ 4989 WRITE_ONCE(next->on_cpu, 1); 4990 #endif 4991 } 4992 4993 static inline void finish_task(struct task_struct *prev) 4994 { 4995 #ifdef CONFIG_SMP 4996 /* 4997 * This must be the very last reference to @prev from this CPU. After 4998 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4999 * must ensure this doesn't happen until the switch is completely 5000 * finished. 5001 * 5002 * In particular, the load of prev->state in finish_task_switch() must 5003 * happen before this. 5004 * 5005 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5006 */ 5007 smp_store_release(&prev->on_cpu, 0); 5008 #endif 5009 } 5010 5011 #ifdef CONFIG_SMP 5012 5013 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5014 { 5015 void (*func)(struct rq *rq); 5016 struct balance_callback *next; 5017 5018 lockdep_assert_rq_held(rq); 5019 5020 while (head) { 5021 func = (void (*)(struct rq *))head->func; 5022 next = head->next; 5023 head->next = NULL; 5024 head = next; 5025 5026 func(rq); 5027 } 5028 } 5029 5030 static void balance_push(struct rq *rq); 5031 5032 /* 5033 * balance_push_callback is a right abuse of the callback interface and plays 5034 * by significantly different rules. 5035 * 5036 * Where the normal balance_callback's purpose is to be ran in the same context 5037 * that queued it (only later, when it's safe to drop rq->lock again), 5038 * balance_push_callback is specifically targeted at __schedule(). 5039 * 5040 * This abuse is tolerated because it places all the unlikely/odd cases behind 5041 * a single test, namely: rq->balance_callback == NULL. 5042 */ 5043 struct balance_callback balance_push_callback = { 5044 .next = NULL, 5045 .func = balance_push, 5046 }; 5047 5048 static inline struct balance_callback * 5049 __splice_balance_callbacks(struct rq *rq, bool split) 5050 { 5051 struct balance_callback *head = rq->balance_callback; 5052 5053 if (likely(!head)) 5054 return NULL; 5055 5056 lockdep_assert_rq_held(rq); 5057 /* 5058 * Must not take balance_push_callback off the list when 5059 * splice_balance_callbacks() and balance_callbacks() are not 5060 * in the same rq->lock section. 5061 * 5062 * In that case it would be possible for __schedule() to interleave 5063 * and observe the list empty. 5064 */ 5065 if (split && head == &balance_push_callback) 5066 head = NULL; 5067 else 5068 rq->balance_callback = NULL; 5069 5070 return head; 5071 } 5072 5073 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5074 { 5075 return __splice_balance_callbacks(rq, true); 5076 } 5077 5078 static void __balance_callbacks(struct rq *rq) 5079 { 5080 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5081 } 5082 5083 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5084 { 5085 unsigned long flags; 5086 5087 if (unlikely(head)) { 5088 raw_spin_rq_lock_irqsave(rq, flags); 5089 do_balance_callbacks(rq, head); 5090 raw_spin_rq_unlock_irqrestore(rq, flags); 5091 } 5092 } 5093 5094 #else 5095 5096 static inline void __balance_callbacks(struct rq *rq) 5097 { 5098 } 5099 5100 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5101 { 5102 return NULL; 5103 } 5104 5105 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5106 { 5107 } 5108 5109 #endif 5110 5111 static inline void 5112 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5113 { 5114 /* 5115 * Since the runqueue lock will be released by the next 5116 * task (which is an invalid locking op but in the case 5117 * of the scheduler it's an obvious special-case), so we 5118 * do an early lockdep release here: 5119 */ 5120 rq_unpin_lock(rq, rf); 5121 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5122 #ifdef CONFIG_DEBUG_SPINLOCK 5123 /* this is a valid case when another task releases the spinlock */ 5124 rq_lockp(rq)->owner = next; 5125 #endif 5126 } 5127 5128 static inline void finish_lock_switch(struct rq *rq) 5129 { 5130 /* 5131 * If we are tracking spinlock dependencies then we have to 5132 * fix up the runqueue lock - which gets 'carried over' from 5133 * prev into current: 5134 */ 5135 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5136 __balance_callbacks(rq); 5137 raw_spin_rq_unlock_irq(rq); 5138 } 5139 5140 /* 5141 * NOP if the arch has not defined these: 5142 */ 5143 5144 #ifndef prepare_arch_switch 5145 # define prepare_arch_switch(next) do { } while (0) 5146 #endif 5147 5148 #ifndef finish_arch_post_lock_switch 5149 # define finish_arch_post_lock_switch() do { } while (0) 5150 #endif 5151 5152 static inline void kmap_local_sched_out(void) 5153 { 5154 #ifdef CONFIG_KMAP_LOCAL 5155 if (unlikely(current->kmap_ctrl.idx)) 5156 __kmap_local_sched_out(); 5157 #endif 5158 } 5159 5160 static inline void kmap_local_sched_in(void) 5161 { 5162 #ifdef CONFIG_KMAP_LOCAL 5163 if (unlikely(current->kmap_ctrl.idx)) 5164 __kmap_local_sched_in(); 5165 #endif 5166 } 5167 5168 /** 5169 * prepare_task_switch - prepare to switch tasks 5170 * @rq: the runqueue preparing to switch 5171 * @prev: the current task that is being switched out 5172 * @next: the task we are going to switch to. 5173 * 5174 * This is called with the rq lock held and interrupts off. It must 5175 * be paired with a subsequent finish_task_switch after the context 5176 * switch. 5177 * 5178 * prepare_task_switch sets up locking and calls architecture specific 5179 * hooks. 5180 */ 5181 static inline void 5182 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5183 struct task_struct *next) 5184 { 5185 kcov_prepare_switch(prev); 5186 sched_info_switch(rq, prev, next); 5187 perf_event_task_sched_out(prev, next); 5188 rseq_preempt(prev); 5189 fire_sched_out_preempt_notifiers(prev, next); 5190 kmap_local_sched_out(); 5191 prepare_task(next); 5192 prepare_arch_switch(next); 5193 } 5194 5195 /** 5196 * finish_task_switch - clean up after a task-switch 5197 * @prev: the thread we just switched away from. 5198 * 5199 * finish_task_switch must be called after the context switch, paired 5200 * with a prepare_task_switch call before the context switch. 5201 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5202 * and do any other architecture-specific cleanup actions. 5203 * 5204 * Note that we may have delayed dropping an mm in context_switch(). If 5205 * so, we finish that here outside of the runqueue lock. (Doing it 5206 * with the lock held can cause deadlocks; see schedule() for 5207 * details.) 5208 * 5209 * The context switch have flipped the stack from under us and restored the 5210 * local variables which were saved when this task called schedule() in the 5211 * past. prev == current is still correct but we need to recalculate this_rq 5212 * because prev may have moved to another CPU. 5213 */ 5214 static struct rq *finish_task_switch(struct task_struct *prev) 5215 __releases(rq->lock) 5216 { 5217 struct rq *rq = this_rq(); 5218 struct mm_struct *mm = rq->prev_mm; 5219 unsigned int prev_state; 5220 5221 /* 5222 * The previous task will have left us with a preempt_count of 2 5223 * because it left us after: 5224 * 5225 * schedule() 5226 * preempt_disable(); // 1 5227 * __schedule() 5228 * raw_spin_lock_irq(&rq->lock) // 2 5229 * 5230 * Also, see FORK_PREEMPT_COUNT. 5231 */ 5232 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5233 "corrupted preempt_count: %s/%d/0x%x\n", 5234 current->comm, current->pid, preempt_count())) 5235 preempt_count_set(FORK_PREEMPT_COUNT); 5236 5237 rq->prev_mm = NULL; 5238 5239 /* 5240 * A task struct has one reference for the use as "current". 5241 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5242 * schedule one last time. The schedule call will never return, and 5243 * the scheduled task must drop that reference. 5244 * 5245 * We must observe prev->state before clearing prev->on_cpu (in 5246 * finish_task), otherwise a concurrent wakeup can get prev 5247 * running on another CPU and we could rave with its RUNNING -> DEAD 5248 * transition, resulting in a double drop. 5249 */ 5250 prev_state = READ_ONCE(prev->__state); 5251 vtime_task_switch(prev); 5252 perf_event_task_sched_in(prev, current); 5253 finish_task(prev); 5254 tick_nohz_task_switch(); 5255 finish_lock_switch(rq); 5256 finish_arch_post_lock_switch(); 5257 kcov_finish_switch(current); 5258 /* 5259 * kmap_local_sched_out() is invoked with rq::lock held and 5260 * interrupts disabled. There is no requirement for that, but the 5261 * sched out code does not have an interrupt enabled section. 5262 * Restoring the maps on sched in does not require interrupts being 5263 * disabled either. 5264 */ 5265 kmap_local_sched_in(); 5266 5267 fire_sched_in_preempt_notifiers(current); 5268 /* 5269 * When switching through a kernel thread, the loop in 5270 * membarrier_{private,global}_expedited() may have observed that 5271 * kernel thread and not issued an IPI. It is therefore possible to 5272 * schedule between user->kernel->user threads without passing though 5273 * switch_mm(). Membarrier requires a barrier after storing to 5274 * rq->curr, before returning to userspace, so provide them here: 5275 * 5276 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5277 * provided by mmdrop_lazy_tlb(), 5278 * - a sync_core for SYNC_CORE. 5279 */ 5280 if (mm) { 5281 membarrier_mm_sync_core_before_usermode(mm); 5282 mmdrop_lazy_tlb_sched(mm); 5283 } 5284 5285 if (unlikely(prev_state == TASK_DEAD)) { 5286 if (prev->sched_class->task_dead) 5287 prev->sched_class->task_dead(prev); 5288 5289 /* Task is done with its stack. */ 5290 put_task_stack(prev); 5291 5292 put_task_struct_rcu_user(prev); 5293 } 5294 5295 return rq; 5296 } 5297 5298 /** 5299 * schedule_tail - first thing a freshly forked thread must call. 5300 * @prev: the thread we just switched away from. 5301 */ 5302 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5303 __releases(rq->lock) 5304 { 5305 /* 5306 * New tasks start with FORK_PREEMPT_COUNT, see there and 5307 * finish_task_switch() for details. 5308 * 5309 * finish_task_switch() will drop rq->lock() and lower preempt_count 5310 * and the preempt_enable() will end up enabling preemption (on 5311 * PREEMPT_COUNT kernels). 5312 */ 5313 5314 finish_task_switch(prev); 5315 preempt_enable(); 5316 5317 if (current->set_child_tid) 5318 put_user(task_pid_vnr(current), current->set_child_tid); 5319 5320 calculate_sigpending(); 5321 } 5322 5323 /* 5324 * context_switch - switch to the new MM and the new thread's register state. 5325 */ 5326 static __always_inline struct rq * 5327 context_switch(struct rq *rq, struct task_struct *prev, 5328 struct task_struct *next, struct rq_flags *rf) 5329 { 5330 prepare_task_switch(rq, prev, next); 5331 5332 /* 5333 * For paravirt, this is coupled with an exit in switch_to to 5334 * combine the page table reload and the switch backend into 5335 * one hypercall. 5336 */ 5337 arch_start_context_switch(prev); 5338 5339 /* 5340 * kernel -> kernel lazy + transfer active 5341 * user -> kernel lazy + mmgrab_lazy_tlb() active 5342 * 5343 * kernel -> user switch + mmdrop_lazy_tlb() active 5344 * user -> user switch 5345 * 5346 * switch_mm_cid() needs to be updated if the barriers provided 5347 * by context_switch() are modified. 5348 */ 5349 if (!next->mm) { // to kernel 5350 enter_lazy_tlb(prev->active_mm, next); 5351 5352 next->active_mm = prev->active_mm; 5353 if (prev->mm) // from user 5354 mmgrab_lazy_tlb(prev->active_mm); 5355 else 5356 prev->active_mm = NULL; 5357 } else { // to user 5358 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5359 /* 5360 * sys_membarrier() requires an smp_mb() between setting 5361 * rq->curr / membarrier_switch_mm() and returning to userspace. 5362 * 5363 * The below provides this either through switch_mm(), or in 5364 * case 'prev->active_mm == next->mm' through 5365 * finish_task_switch()'s mmdrop(). 5366 */ 5367 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5368 lru_gen_use_mm(next->mm); 5369 5370 if (!prev->mm) { // from kernel 5371 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5372 rq->prev_mm = prev->active_mm; 5373 prev->active_mm = NULL; 5374 } 5375 } 5376 5377 /* switch_mm_cid() requires the memory barriers above. */ 5378 switch_mm_cid(rq, prev, next); 5379 5380 prepare_lock_switch(rq, next, rf); 5381 5382 /* Here we just switch the register state and the stack. */ 5383 switch_to(prev, next, prev); 5384 barrier(); 5385 5386 return finish_task_switch(prev); 5387 } 5388 5389 /* 5390 * nr_running and nr_context_switches: 5391 * 5392 * externally visible scheduler statistics: current number of runnable 5393 * threads, total number of context switches performed since bootup. 5394 */ 5395 unsigned int nr_running(void) 5396 { 5397 unsigned int i, sum = 0; 5398 5399 for_each_online_cpu(i) 5400 sum += cpu_rq(i)->nr_running; 5401 5402 return sum; 5403 } 5404 5405 /* 5406 * Check if only the current task is running on the CPU. 5407 * 5408 * Caution: this function does not check that the caller has disabled 5409 * preemption, thus the result might have a time-of-check-to-time-of-use 5410 * race. The caller is responsible to use it correctly, for example: 5411 * 5412 * - from a non-preemptible section (of course) 5413 * 5414 * - from a thread that is bound to a single CPU 5415 * 5416 * - in a loop with very short iterations (e.g. a polling loop) 5417 */ 5418 bool single_task_running(void) 5419 { 5420 return raw_rq()->nr_running == 1; 5421 } 5422 EXPORT_SYMBOL(single_task_running); 5423 5424 unsigned long long nr_context_switches_cpu(int cpu) 5425 { 5426 return cpu_rq(cpu)->nr_switches; 5427 } 5428 5429 unsigned long long nr_context_switches(void) 5430 { 5431 int i; 5432 unsigned long long sum = 0; 5433 5434 for_each_possible_cpu(i) 5435 sum += cpu_rq(i)->nr_switches; 5436 5437 return sum; 5438 } 5439 5440 /* 5441 * Consumers of these two interfaces, like for example the cpuidle menu 5442 * governor, are using nonsensical data. Preferring shallow idle state selection 5443 * for a CPU that has IO-wait which might not even end up running the task when 5444 * it does become runnable. 5445 */ 5446 5447 unsigned int nr_iowait_cpu(int cpu) 5448 { 5449 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5450 } 5451 5452 /* 5453 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5454 * 5455 * The idea behind IO-wait account is to account the idle time that we could 5456 * have spend running if it were not for IO. That is, if we were to improve the 5457 * storage performance, we'd have a proportional reduction in IO-wait time. 5458 * 5459 * This all works nicely on UP, where, when a task blocks on IO, we account 5460 * idle time as IO-wait, because if the storage were faster, it could've been 5461 * running and we'd not be idle. 5462 * 5463 * This has been extended to SMP, by doing the same for each CPU. This however 5464 * is broken. 5465 * 5466 * Imagine for instance the case where two tasks block on one CPU, only the one 5467 * CPU will have IO-wait accounted, while the other has regular idle. Even 5468 * though, if the storage were faster, both could've ran at the same time, 5469 * utilising both CPUs. 5470 * 5471 * This means, that when looking globally, the current IO-wait accounting on 5472 * SMP is a lower bound, by reason of under accounting. 5473 * 5474 * Worse, since the numbers are provided per CPU, they are sometimes 5475 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5476 * associated with any one particular CPU, it can wake to another CPU than it 5477 * blocked on. This means the per CPU IO-wait number is meaningless. 5478 * 5479 * Task CPU affinities can make all that even more 'interesting'. 5480 */ 5481 5482 unsigned int nr_iowait(void) 5483 { 5484 unsigned int i, sum = 0; 5485 5486 for_each_possible_cpu(i) 5487 sum += nr_iowait_cpu(i); 5488 5489 return sum; 5490 } 5491 5492 #ifdef CONFIG_SMP 5493 5494 /* 5495 * sched_exec - execve() is a valuable balancing opportunity, because at 5496 * this point the task has the smallest effective memory and cache footprint. 5497 */ 5498 void sched_exec(void) 5499 { 5500 struct task_struct *p = current; 5501 struct migration_arg arg; 5502 int dest_cpu; 5503 5504 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5505 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5506 if (dest_cpu == smp_processor_id()) 5507 return; 5508 5509 if (unlikely(!cpu_active(dest_cpu))) 5510 return; 5511 5512 arg = (struct migration_arg){ p, dest_cpu }; 5513 } 5514 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5515 } 5516 5517 #endif 5518 5519 DEFINE_PER_CPU(struct kernel_stat, kstat); 5520 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5521 5522 EXPORT_PER_CPU_SYMBOL(kstat); 5523 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5524 5525 /* 5526 * The function fair_sched_class.update_curr accesses the struct curr 5527 * and its field curr->exec_start; when called from task_sched_runtime(), 5528 * we observe a high rate of cache misses in practice. 5529 * Prefetching this data results in improved performance. 5530 */ 5531 static inline void prefetch_curr_exec_start(struct task_struct *p) 5532 { 5533 #ifdef CONFIG_FAIR_GROUP_SCHED 5534 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5535 #else 5536 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5537 #endif 5538 prefetch(curr); 5539 prefetch(&curr->exec_start); 5540 } 5541 5542 /* 5543 * Return accounted runtime for the task. 5544 * In case the task is currently running, return the runtime plus current's 5545 * pending runtime that have not been accounted yet. 5546 */ 5547 unsigned long long task_sched_runtime(struct task_struct *p) 5548 { 5549 struct rq_flags rf; 5550 struct rq *rq; 5551 u64 ns; 5552 5553 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5554 /* 5555 * 64-bit doesn't need locks to atomically read a 64-bit value. 5556 * So we have a optimization chance when the task's delta_exec is 0. 5557 * Reading ->on_cpu is racy, but this is ok. 5558 * 5559 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5560 * If we race with it entering CPU, unaccounted time is 0. This is 5561 * indistinguishable from the read occurring a few cycles earlier. 5562 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5563 * been accounted, so we're correct here as well. 5564 */ 5565 if (!p->on_cpu || !task_on_rq_queued(p)) 5566 return p->se.sum_exec_runtime; 5567 #endif 5568 5569 rq = task_rq_lock(p, &rf); 5570 /* 5571 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5572 * project cycles that may never be accounted to this 5573 * thread, breaking clock_gettime(). 5574 */ 5575 if (task_current(rq, p) && task_on_rq_queued(p)) { 5576 prefetch_curr_exec_start(p); 5577 update_rq_clock(rq); 5578 p->sched_class->update_curr(rq); 5579 } 5580 ns = p->se.sum_exec_runtime; 5581 task_rq_unlock(rq, p, &rf); 5582 5583 return ns; 5584 } 5585 5586 #ifdef CONFIG_SCHED_DEBUG 5587 static u64 cpu_resched_latency(struct rq *rq) 5588 { 5589 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5590 u64 resched_latency, now = rq_clock(rq); 5591 static bool warned_once; 5592 5593 if (sysctl_resched_latency_warn_once && warned_once) 5594 return 0; 5595 5596 if (!need_resched() || !latency_warn_ms) 5597 return 0; 5598 5599 if (system_state == SYSTEM_BOOTING) 5600 return 0; 5601 5602 if (!rq->last_seen_need_resched_ns) { 5603 rq->last_seen_need_resched_ns = now; 5604 rq->ticks_without_resched = 0; 5605 return 0; 5606 } 5607 5608 rq->ticks_without_resched++; 5609 resched_latency = now - rq->last_seen_need_resched_ns; 5610 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5611 return 0; 5612 5613 warned_once = true; 5614 5615 return resched_latency; 5616 } 5617 5618 static int __init setup_resched_latency_warn_ms(char *str) 5619 { 5620 long val; 5621 5622 if ((kstrtol(str, 0, &val))) { 5623 pr_warn("Unable to set resched_latency_warn_ms\n"); 5624 return 1; 5625 } 5626 5627 sysctl_resched_latency_warn_ms = val; 5628 return 1; 5629 } 5630 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5631 #else 5632 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5633 #endif /* CONFIG_SCHED_DEBUG */ 5634 5635 /* 5636 * This function gets called by the timer code, with HZ frequency. 5637 * We call it with interrupts disabled. 5638 */ 5639 void scheduler_tick(void) 5640 { 5641 int cpu = smp_processor_id(); 5642 struct rq *rq = cpu_rq(cpu); 5643 struct task_struct *curr; 5644 struct rq_flags rf; 5645 unsigned long thermal_pressure; 5646 u64 resched_latency; 5647 5648 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5649 arch_scale_freq_tick(); 5650 5651 sched_clock_tick(); 5652 5653 rq_lock(rq, &rf); 5654 5655 curr = rq->curr; 5656 psi_account_irqtime(rq, curr, NULL); 5657 5658 update_rq_clock(rq); 5659 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5660 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5661 curr->sched_class->task_tick(rq, curr, 0); 5662 if (sched_feat(LATENCY_WARN)) 5663 resched_latency = cpu_resched_latency(rq); 5664 calc_global_load_tick(rq); 5665 sched_core_tick(rq); 5666 task_tick_mm_cid(rq, curr); 5667 5668 rq_unlock(rq, &rf); 5669 5670 if (sched_feat(LATENCY_WARN) && resched_latency) 5671 resched_latency_warn(cpu, resched_latency); 5672 5673 perf_event_task_tick(); 5674 5675 if (curr->flags & PF_WQ_WORKER) 5676 wq_worker_tick(curr); 5677 5678 #ifdef CONFIG_SMP 5679 rq->idle_balance = idle_cpu(cpu); 5680 trigger_load_balance(rq); 5681 #endif 5682 } 5683 5684 #ifdef CONFIG_NO_HZ_FULL 5685 5686 struct tick_work { 5687 int cpu; 5688 atomic_t state; 5689 struct delayed_work work; 5690 }; 5691 /* Values for ->state, see diagram below. */ 5692 #define TICK_SCHED_REMOTE_OFFLINE 0 5693 #define TICK_SCHED_REMOTE_OFFLINING 1 5694 #define TICK_SCHED_REMOTE_RUNNING 2 5695 5696 /* 5697 * State diagram for ->state: 5698 * 5699 * 5700 * TICK_SCHED_REMOTE_OFFLINE 5701 * | ^ 5702 * | | 5703 * | | sched_tick_remote() 5704 * | | 5705 * | | 5706 * +--TICK_SCHED_REMOTE_OFFLINING 5707 * | ^ 5708 * | | 5709 * sched_tick_start() | | sched_tick_stop() 5710 * | | 5711 * V | 5712 * TICK_SCHED_REMOTE_RUNNING 5713 * 5714 * 5715 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5716 * and sched_tick_start() are happy to leave the state in RUNNING. 5717 */ 5718 5719 static struct tick_work __percpu *tick_work_cpu; 5720 5721 static void sched_tick_remote(struct work_struct *work) 5722 { 5723 struct delayed_work *dwork = to_delayed_work(work); 5724 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5725 int cpu = twork->cpu; 5726 struct rq *rq = cpu_rq(cpu); 5727 int os; 5728 5729 /* 5730 * Handle the tick only if it appears the remote CPU is running in full 5731 * dynticks mode. The check is racy by nature, but missing a tick or 5732 * having one too much is no big deal because the scheduler tick updates 5733 * statistics and checks timeslices in a time-independent way, regardless 5734 * of when exactly it is running. 5735 */ 5736 if (tick_nohz_tick_stopped_cpu(cpu)) { 5737 guard(rq_lock_irq)(rq); 5738 struct task_struct *curr = rq->curr; 5739 5740 if (cpu_online(cpu)) { 5741 update_rq_clock(rq); 5742 5743 if (!is_idle_task(curr)) { 5744 /* 5745 * Make sure the next tick runs within a 5746 * reasonable amount of time. 5747 */ 5748 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5749 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5750 } 5751 curr->sched_class->task_tick(rq, curr, 0); 5752 5753 calc_load_nohz_remote(rq); 5754 } 5755 } 5756 5757 /* 5758 * Run the remote tick once per second (1Hz). This arbitrary 5759 * frequency is large enough to avoid overload but short enough 5760 * to keep scheduler internal stats reasonably up to date. But 5761 * first update state to reflect hotplug activity if required. 5762 */ 5763 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5764 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5765 if (os == TICK_SCHED_REMOTE_RUNNING) 5766 queue_delayed_work(system_unbound_wq, dwork, HZ); 5767 } 5768 5769 static void sched_tick_start(int cpu) 5770 { 5771 int os; 5772 struct tick_work *twork; 5773 5774 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5775 return; 5776 5777 WARN_ON_ONCE(!tick_work_cpu); 5778 5779 twork = per_cpu_ptr(tick_work_cpu, cpu); 5780 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5781 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5782 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5783 twork->cpu = cpu; 5784 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5785 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5786 } 5787 } 5788 5789 #ifdef CONFIG_HOTPLUG_CPU 5790 static void sched_tick_stop(int cpu) 5791 { 5792 struct tick_work *twork; 5793 int os; 5794 5795 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5796 return; 5797 5798 WARN_ON_ONCE(!tick_work_cpu); 5799 5800 twork = per_cpu_ptr(tick_work_cpu, cpu); 5801 /* There cannot be competing actions, but don't rely on stop-machine. */ 5802 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5803 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5804 /* Don't cancel, as this would mess up the state machine. */ 5805 } 5806 #endif /* CONFIG_HOTPLUG_CPU */ 5807 5808 int __init sched_tick_offload_init(void) 5809 { 5810 tick_work_cpu = alloc_percpu(struct tick_work); 5811 BUG_ON(!tick_work_cpu); 5812 return 0; 5813 } 5814 5815 #else /* !CONFIG_NO_HZ_FULL */ 5816 static inline void sched_tick_start(int cpu) { } 5817 static inline void sched_tick_stop(int cpu) { } 5818 #endif 5819 5820 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5821 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5822 /* 5823 * If the value passed in is equal to the current preempt count 5824 * then we just disabled preemption. Start timing the latency. 5825 */ 5826 static inline void preempt_latency_start(int val) 5827 { 5828 if (preempt_count() == val) { 5829 unsigned long ip = get_lock_parent_ip(); 5830 #ifdef CONFIG_DEBUG_PREEMPT 5831 current->preempt_disable_ip = ip; 5832 #endif 5833 trace_preempt_off(CALLER_ADDR0, ip); 5834 } 5835 } 5836 5837 void preempt_count_add(int val) 5838 { 5839 #ifdef CONFIG_DEBUG_PREEMPT 5840 /* 5841 * Underflow? 5842 */ 5843 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5844 return; 5845 #endif 5846 __preempt_count_add(val); 5847 #ifdef CONFIG_DEBUG_PREEMPT 5848 /* 5849 * Spinlock count overflowing soon? 5850 */ 5851 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5852 PREEMPT_MASK - 10); 5853 #endif 5854 preempt_latency_start(val); 5855 } 5856 EXPORT_SYMBOL(preempt_count_add); 5857 NOKPROBE_SYMBOL(preempt_count_add); 5858 5859 /* 5860 * If the value passed in equals to the current preempt count 5861 * then we just enabled preemption. Stop timing the latency. 5862 */ 5863 static inline void preempt_latency_stop(int val) 5864 { 5865 if (preempt_count() == val) 5866 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5867 } 5868 5869 void preempt_count_sub(int val) 5870 { 5871 #ifdef CONFIG_DEBUG_PREEMPT 5872 /* 5873 * Underflow? 5874 */ 5875 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5876 return; 5877 /* 5878 * Is the spinlock portion underflowing? 5879 */ 5880 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5881 !(preempt_count() & PREEMPT_MASK))) 5882 return; 5883 #endif 5884 5885 preempt_latency_stop(val); 5886 __preempt_count_sub(val); 5887 } 5888 EXPORT_SYMBOL(preempt_count_sub); 5889 NOKPROBE_SYMBOL(preempt_count_sub); 5890 5891 #else 5892 static inline void preempt_latency_start(int val) { } 5893 static inline void preempt_latency_stop(int val) { } 5894 #endif 5895 5896 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5897 { 5898 #ifdef CONFIG_DEBUG_PREEMPT 5899 return p->preempt_disable_ip; 5900 #else 5901 return 0; 5902 #endif 5903 } 5904 5905 /* 5906 * Print scheduling while atomic bug: 5907 */ 5908 static noinline void __schedule_bug(struct task_struct *prev) 5909 { 5910 /* Save this before calling printk(), since that will clobber it */ 5911 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5912 5913 if (oops_in_progress) 5914 return; 5915 5916 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5917 prev->comm, prev->pid, preempt_count()); 5918 5919 debug_show_held_locks(prev); 5920 print_modules(); 5921 if (irqs_disabled()) 5922 print_irqtrace_events(prev); 5923 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5924 && in_atomic_preempt_off()) { 5925 pr_err("Preemption disabled at:"); 5926 print_ip_sym(KERN_ERR, preempt_disable_ip); 5927 } 5928 check_panic_on_warn("scheduling while atomic"); 5929 5930 dump_stack(); 5931 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5932 } 5933 5934 /* 5935 * Various schedule()-time debugging checks and statistics: 5936 */ 5937 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5938 { 5939 #ifdef CONFIG_SCHED_STACK_END_CHECK 5940 if (task_stack_end_corrupted(prev)) 5941 panic("corrupted stack end detected inside scheduler\n"); 5942 5943 if (task_scs_end_corrupted(prev)) 5944 panic("corrupted shadow stack detected inside scheduler\n"); 5945 #endif 5946 5947 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5948 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5949 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5950 prev->comm, prev->pid, prev->non_block_count); 5951 dump_stack(); 5952 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5953 } 5954 #endif 5955 5956 if (unlikely(in_atomic_preempt_off())) { 5957 __schedule_bug(prev); 5958 preempt_count_set(PREEMPT_DISABLED); 5959 } 5960 rcu_sleep_check(); 5961 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5962 5963 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5964 5965 schedstat_inc(this_rq()->sched_count); 5966 } 5967 5968 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5969 struct rq_flags *rf) 5970 { 5971 #ifdef CONFIG_SMP 5972 const struct sched_class *class; 5973 /* 5974 * We must do the balancing pass before put_prev_task(), such 5975 * that when we release the rq->lock the task is in the same 5976 * state as before we took rq->lock. 5977 * 5978 * We can terminate the balance pass as soon as we know there is 5979 * a runnable task of @class priority or higher. 5980 */ 5981 for_class_range(class, prev->sched_class, &idle_sched_class) { 5982 if (class->balance(rq, prev, rf)) 5983 break; 5984 } 5985 #endif 5986 5987 put_prev_task(rq, prev); 5988 } 5989 5990 /* 5991 * Pick up the highest-prio task: 5992 */ 5993 static inline struct task_struct * 5994 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5995 { 5996 const struct sched_class *class; 5997 struct task_struct *p; 5998 5999 /* 6000 * Optimization: we know that if all tasks are in the fair class we can 6001 * call that function directly, but only if the @prev task wasn't of a 6002 * higher scheduling class, because otherwise those lose the 6003 * opportunity to pull in more work from other CPUs. 6004 */ 6005 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6006 rq->nr_running == rq->cfs.h_nr_running)) { 6007 6008 p = pick_next_task_fair(rq, prev, rf); 6009 if (unlikely(p == RETRY_TASK)) 6010 goto restart; 6011 6012 /* Assume the next prioritized class is idle_sched_class */ 6013 if (!p) { 6014 put_prev_task(rq, prev); 6015 p = pick_next_task_idle(rq); 6016 } 6017 6018 return p; 6019 } 6020 6021 restart: 6022 put_prev_task_balance(rq, prev, rf); 6023 6024 for_each_class(class) { 6025 p = class->pick_next_task(rq); 6026 if (p) 6027 return p; 6028 } 6029 6030 BUG(); /* The idle class should always have a runnable task. */ 6031 } 6032 6033 #ifdef CONFIG_SCHED_CORE 6034 static inline bool is_task_rq_idle(struct task_struct *t) 6035 { 6036 return (task_rq(t)->idle == t); 6037 } 6038 6039 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6040 { 6041 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6042 } 6043 6044 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6045 { 6046 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6047 return true; 6048 6049 return a->core_cookie == b->core_cookie; 6050 } 6051 6052 static inline struct task_struct *pick_task(struct rq *rq) 6053 { 6054 const struct sched_class *class; 6055 struct task_struct *p; 6056 6057 for_each_class(class) { 6058 p = class->pick_task(rq); 6059 if (p) 6060 return p; 6061 } 6062 6063 BUG(); /* The idle class should always have a runnable task. */ 6064 } 6065 6066 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6067 6068 static void queue_core_balance(struct rq *rq); 6069 6070 static struct task_struct * 6071 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6072 { 6073 struct task_struct *next, *p, *max = NULL; 6074 const struct cpumask *smt_mask; 6075 bool fi_before = false; 6076 bool core_clock_updated = (rq == rq->core); 6077 unsigned long cookie; 6078 int i, cpu, occ = 0; 6079 struct rq *rq_i; 6080 bool need_sync; 6081 6082 if (!sched_core_enabled(rq)) 6083 return __pick_next_task(rq, prev, rf); 6084 6085 cpu = cpu_of(rq); 6086 6087 /* Stopper task is switching into idle, no need core-wide selection. */ 6088 if (cpu_is_offline(cpu)) { 6089 /* 6090 * Reset core_pick so that we don't enter the fastpath when 6091 * coming online. core_pick would already be migrated to 6092 * another cpu during offline. 6093 */ 6094 rq->core_pick = NULL; 6095 return __pick_next_task(rq, prev, rf); 6096 } 6097 6098 /* 6099 * If there were no {en,de}queues since we picked (IOW, the task 6100 * pointers are all still valid), and we haven't scheduled the last 6101 * pick yet, do so now. 6102 * 6103 * rq->core_pick can be NULL if no selection was made for a CPU because 6104 * it was either offline or went offline during a sibling's core-wide 6105 * selection. In this case, do a core-wide selection. 6106 */ 6107 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6108 rq->core->core_pick_seq != rq->core_sched_seq && 6109 rq->core_pick) { 6110 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6111 6112 next = rq->core_pick; 6113 if (next != prev) { 6114 put_prev_task(rq, prev); 6115 set_next_task(rq, next); 6116 } 6117 6118 rq->core_pick = NULL; 6119 goto out; 6120 } 6121 6122 put_prev_task_balance(rq, prev, rf); 6123 6124 smt_mask = cpu_smt_mask(cpu); 6125 need_sync = !!rq->core->core_cookie; 6126 6127 /* reset state */ 6128 rq->core->core_cookie = 0UL; 6129 if (rq->core->core_forceidle_count) { 6130 if (!core_clock_updated) { 6131 update_rq_clock(rq->core); 6132 core_clock_updated = true; 6133 } 6134 sched_core_account_forceidle(rq); 6135 /* reset after accounting force idle */ 6136 rq->core->core_forceidle_start = 0; 6137 rq->core->core_forceidle_count = 0; 6138 rq->core->core_forceidle_occupation = 0; 6139 need_sync = true; 6140 fi_before = true; 6141 } 6142 6143 /* 6144 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6145 * 6146 * @task_seq guards the task state ({en,de}queues) 6147 * @pick_seq is the @task_seq we did a selection on 6148 * @sched_seq is the @pick_seq we scheduled 6149 * 6150 * However, preemptions can cause multiple picks on the same task set. 6151 * 'Fix' this by also increasing @task_seq for every pick. 6152 */ 6153 rq->core->core_task_seq++; 6154 6155 /* 6156 * Optimize for common case where this CPU has no cookies 6157 * and there are no cookied tasks running on siblings. 6158 */ 6159 if (!need_sync) { 6160 next = pick_task(rq); 6161 if (!next->core_cookie) { 6162 rq->core_pick = NULL; 6163 /* 6164 * For robustness, update the min_vruntime_fi for 6165 * unconstrained picks as well. 6166 */ 6167 WARN_ON_ONCE(fi_before); 6168 task_vruntime_update(rq, next, false); 6169 goto out_set_next; 6170 } 6171 } 6172 6173 /* 6174 * For each thread: do the regular task pick and find the max prio task 6175 * amongst them. 6176 * 6177 * Tie-break prio towards the current CPU 6178 */ 6179 for_each_cpu_wrap(i, smt_mask, cpu) { 6180 rq_i = cpu_rq(i); 6181 6182 /* 6183 * Current cpu always has its clock updated on entrance to 6184 * pick_next_task(). If the current cpu is not the core, 6185 * the core may also have been updated above. 6186 */ 6187 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6188 update_rq_clock(rq_i); 6189 6190 p = rq_i->core_pick = pick_task(rq_i); 6191 if (!max || prio_less(max, p, fi_before)) 6192 max = p; 6193 } 6194 6195 cookie = rq->core->core_cookie = max->core_cookie; 6196 6197 /* 6198 * For each thread: try and find a runnable task that matches @max or 6199 * force idle. 6200 */ 6201 for_each_cpu(i, smt_mask) { 6202 rq_i = cpu_rq(i); 6203 p = rq_i->core_pick; 6204 6205 if (!cookie_equals(p, cookie)) { 6206 p = NULL; 6207 if (cookie) 6208 p = sched_core_find(rq_i, cookie); 6209 if (!p) 6210 p = idle_sched_class.pick_task(rq_i); 6211 } 6212 6213 rq_i->core_pick = p; 6214 6215 if (p == rq_i->idle) { 6216 if (rq_i->nr_running) { 6217 rq->core->core_forceidle_count++; 6218 if (!fi_before) 6219 rq->core->core_forceidle_seq++; 6220 } 6221 } else { 6222 occ++; 6223 } 6224 } 6225 6226 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6227 rq->core->core_forceidle_start = rq_clock(rq->core); 6228 rq->core->core_forceidle_occupation = occ; 6229 } 6230 6231 rq->core->core_pick_seq = rq->core->core_task_seq; 6232 next = rq->core_pick; 6233 rq->core_sched_seq = rq->core->core_pick_seq; 6234 6235 /* Something should have been selected for current CPU */ 6236 WARN_ON_ONCE(!next); 6237 6238 /* 6239 * Reschedule siblings 6240 * 6241 * NOTE: L1TF -- at this point we're no longer running the old task and 6242 * sending an IPI (below) ensures the sibling will no longer be running 6243 * their task. This ensures there is no inter-sibling overlap between 6244 * non-matching user state. 6245 */ 6246 for_each_cpu(i, smt_mask) { 6247 rq_i = cpu_rq(i); 6248 6249 /* 6250 * An online sibling might have gone offline before a task 6251 * could be picked for it, or it might be offline but later 6252 * happen to come online, but its too late and nothing was 6253 * picked for it. That's Ok - it will pick tasks for itself, 6254 * so ignore it. 6255 */ 6256 if (!rq_i->core_pick) 6257 continue; 6258 6259 /* 6260 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6261 * fi_before fi update? 6262 * 0 0 1 6263 * 0 1 1 6264 * 1 0 1 6265 * 1 1 0 6266 */ 6267 if (!(fi_before && rq->core->core_forceidle_count)) 6268 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6269 6270 rq_i->core_pick->core_occupation = occ; 6271 6272 if (i == cpu) { 6273 rq_i->core_pick = NULL; 6274 continue; 6275 } 6276 6277 /* Did we break L1TF mitigation requirements? */ 6278 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6279 6280 if (rq_i->curr == rq_i->core_pick) { 6281 rq_i->core_pick = NULL; 6282 continue; 6283 } 6284 6285 resched_curr(rq_i); 6286 } 6287 6288 out_set_next: 6289 set_next_task(rq, next); 6290 out: 6291 if (rq->core->core_forceidle_count && next == rq->idle) 6292 queue_core_balance(rq); 6293 6294 return next; 6295 } 6296 6297 static bool try_steal_cookie(int this, int that) 6298 { 6299 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6300 struct task_struct *p; 6301 unsigned long cookie; 6302 bool success = false; 6303 6304 guard(irq)(); 6305 guard(double_rq_lock)(dst, src); 6306 6307 cookie = dst->core->core_cookie; 6308 if (!cookie) 6309 return false; 6310 6311 if (dst->curr != dst->idle) 6312 return false; 6313 6314 p = sched_core_find(src, cookie); 6315 if (!p) 6316 return false; 6317 6318 do { 6319 if (p == src->core_pick || p == src->curr) 6320 goto next; 6321 6322 if (!is_cpu_allowed(p, this)) 6323 goto next; 6324 6325 if (p->core_occupation > dst->idle->core_occupation) 6326 goto next; 6327 /* 6328 * sched_core_find() and sched_core_next() will ensure 6329 * that task @p is not throttled now, we also need to 6330 * check whether the runqueue of the destination CPU is 6331 * being throttled. 6332 */ 6333 if (sched_task_is_throttled(p, this)) 6334 goto next; 6335 6336 deactivate_task(src, p, 0); 6337 set_task_cpu(p, this); 6338 activate_task(dst, p, 0); 6339 6340 resched_curr(dst); 6341 6342 success = true; 6343 break; 6344 6345 next: 6346 p = sched_core_next(p, cookie); 6347 } while (p); 6348 6349 return success; 6350 } 6351 6352 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6353 { 6354 int i; 6355 6356 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6357 if (i == cpu) 6358 continue; 6359 6360 if (need_resched()) 6361 break; 6362 6363 if (try_steal_cookie(cpu, i)) 6364 return true; 6365 } 6366 6367 return false; 6368 } 6369 6370 static void sched_core_balance(struct rq *rq) 6371 { 6372 struct sched_domain *sd; 6373 int cpu = cpu_of(rq); 6374 6375 preempt_disable(); 6376 rcu_read_lock(); 6377 raw_spin_rq_unlock_irq(rq); 6378 for_each_domain(cpu, sd) { 6379 if (need_resched()) 6380 break; 6381 6382 if (steal_cookie_task(cpu, sd)) 6383 break; 6384 } 6385 raw_spin_rq_lock_irq(rq); 6386 rcu_read_unlock(); 6387 preempt_enable(); 6388 } 6389 6390 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6391 6392 static void queue_core_balance(struct rq *rq) 6393 { 6394 if (!sched_core_enabled(rq)) 6395 return; 6396 6397 if (!rq->core->core_cookie) 6398 return; 6399 6400 if (!rq->nr_running) /* not forced idle */ 6401 return; 6402 6403 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6404 } 6405 6406 DEFINE_LOCK_GUARD_1(core_lock, int, 6407 sched_core_lock(*_T->lock, &_T->flags), 6408 sched_core_unlock(*_T->lock, &_T->flags), 6409 unsigned long flags) 6410 6411 static void sched_core_cpu_starting(unsigned int cpu) 6412 { 6413 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6414 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6415 int t; 6416 6417 guard(core_lock)(&cpu); 6418 6419 WARN_ON_ONCE(rq->core != rq); 6420 6421 /* if we're the first, we'll be our own leader */ 6422 if (cpumask_weight(smt_mask) == 1) 6423 return; 6424 6425 /* find the leader */ 6426 for_each_cpu(t, smt_mask) { 6427 if (t == cpu) 6428 continue; 6429 rq = cpu_rq(t); 6430 if (rq->core == rq) { 6431 core_rq = rq; 6432 break; 6433 } 6434 } 6435 6436 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6437 return; 6438 6439 /* install and validate core_rq */ 6440 for_each_cpu(t, smt_mask) { 6441 rq = cpu_rq(t); 6442 6443 if (t == cpu) 6444 rq->core = core_rq; 6445 6446 WARN_ON_ONCE(rq->core != core_rq); 6447 } 6448 } 6449 6450 static void sched_core_cpu_deactivate(unsigned int cpu) 6451 { 6452 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6453 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6454 int t; 6455 6456 guard(core_lock)(&cpu); 6457 6458 /* if we're the last man standing, nothing to do */ 6459 if (cpumask_weight(smt_mask) == 1) { 6460 WARN_ON_ONCE(rq->core != rq); 6461 return; 6462 } 6463 6464 /* if we're not the leader, nothing to do */ 6465 if (rq->core != rq) 6466 return; 6467 6468 /* find a new leader */ 6469 for_each_cpu(t, smt_mask) { 6470 if (t == cpu) 6471 continue; 6472 core_rq = cpu_rq(t); 6473 break; 6474 } 6475 6476 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6477 return; 6478 6479 /* copy the shared state to the new leader */ 6480 core_rq->core_task_seq = rq->core_task_seq; 6481 core_rq->core_pick_seq = rq->core_pick_seq; 6482 core_rq->core_cookie = rq->core_cookie; 6483 core_rq->core_forceidle_count = rq->core_forceidle_count; 6484 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6485 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6486 6487 /* 6488 * Accounting edge for forced idle is handled in pick_next_task(). 6489 * Don't need another one here, since the hotplug thread shouldn't 6490 * have a cookie. 6491 */ 6492 core_rq->core_forceidle_start = 0; 6493 6494 /* install new leader */ 6495 for_each_cpu(t, smt_mask) { 6496 rq = cpu_rq(t); 6497 rq->core = core_rq; 6498 } 6499 } 6500 6501 static inline void sched_core_cpu_dying(unsigned int cpu) 6502 { 6503 struct rq *rq = cpu_rq(cpu); 6504 6505 if (rq->core != rq) 6506 rq->core = rq; 6507 } 6508 6509 #else /* !CONFIG_SCHED_CORE */ 6510 6511 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6512 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6513 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6514 6515 static struct task_struct * 6516 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6517 { 6518 return __pick_next_task(rq, prev, rf); 6519 } 6520 6521 #endif /* CONFIG_SCHED_CORE */ 6522 6523 /* 6524 * Constants for the sched_mode argument of __schedule(). 6525 * 6526 * The mode argument allows RT enabled kernels to differentiate a 6527 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6528 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6529 * optimize the AND operation out and just check for zero. 6530 */ 6531 #define SM_NONE 0x0 6532 #define SM_PREEMPT 0x1 6533 #define SM_RTLOCK_WAIT 0x2 6534 6535 #ifndef CONFIG_PREEMPT_RT 6536 # define SM_MASK_PREEMPT (~0U) 6537 #else 6538 # define SM_MASK_PREEMPT SM_PREEMPT 6539 #endif 6540 6541 /* 6542 * __schedule() is the main scheduler function. 6543 * 6544 * The main means of driving the scheduler and thus entering this function are: 6545 * 6546 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6547 * 6548 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6549 * paths. For example, see arch/x86/entry_64.S. 6550 * 6551 * To drive preemption between tasks, the scheduler sets the flag in timer 6552 * interrupt handler scheduler_tick(). 6553 * 6554 * 3. Wakeups don't really cause entry into schedule(). They add a 6555 * task to the run-queue and that's it. 6556 * 6557 * Now, if the new task added to the run-queue preempts the current 6558 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6559 * called on the nearest possible occasion: 6560 * 6561 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6562 * 6563 * - in syscall or exception context, at the next outmost 6564 * preempt_enable(). (this might be as soon as the wake_up()'s 6565 * spin_unlock()!) 6566 * 6567 * - in IRQ context, return from interrupt-handler to 6568 * preemptible context 6569 * 6570 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6571 * then at the next: 6572 * 6573 * - cond_resched() call 6574 * - explicit schedule() call 6575 * - return from syscall or exception to user-space 6576 * - return from interrupt-handler to user-space 6577 * 6578 * WARNING: must be called with preemption disabled! 6579 */ 6580 static void __sched notrace __schedule(unsigned int sched_mode) 6581 { 6582 struct task_struct *prev, *next; 6583 unsigned long *switch_count; 6584 unsigned long prev_state; 6585 struct rq_flags rf; 6586 struct rq *rq; 6587 int cpu; 6588 6589 cpu = smp_processor_id(); 6590 rq = cpu_rq(cpu); 6591 prev = rq->curr; 6592 6593 schedule_debug(prev, !!sched_mode); 6594 6595 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6596 hrtick_clear(rq); 6597 6598 local_irq_disable(); 6599 rcu_note_context_switch(!!sched_mode); 6600 6601 /* 6602 * Make sure that signal_pending_state()->signal_pending() below 6603 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6604 * done by the caller to avoid the race with signal_wake_up(): 6605 * 6606 * __set_current_state(@state) signal_wake_up() 6607 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6608 * wake_up_state(p, state) 6609 * LOCK rq->lock LOCK p->pi_state 6610 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6611 * if (signal_pending_state()) if (p->state & @state) 6612 * 6613 * Also, the membarrier system call requires a full memory barrier 6614 * after coming from user-space, before storing to rq->curr. 6615 */ 6616 rq_lock(rq, &rf); 6617 smp_mb__after_spinlock(); 6618 6619 /* Promote REQ to ACT */ 6620 rq->clock_update_flags <<= 1; 6621 update_rq_clock(rq); 6622 rq->clock_update_flags = RQCF_UPDATED; 6623 6624 switch_count = &prev->nivcsw; 6625 6626 /* 6627 * We must load prev->state once (task_struct::state is volatile), such 6628 * that we form a control dependency vs deactivate_task() below. 6629 */ 6630 prev_state = READ_ONCE(prev->__state); 6631 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6632 if (signal_pending_state(prev_state, prev)) { 6633 WRITE_ONCE(prev->__state, TASK_RUNNING); 6634 } else { 6635 prev->sched_contributes_to_load = 6636 (prev_state & TASK_UNINTERRUPTIBLE) && 6637 !(prev_state & TASK_NOLOAD) && 6638 !(prev_state & TASK_FROZEN); 6639 6640 if (prev->sched_contributes_to_load) 6641 rq->nr_uninterruptible++; 6642 6643 /* 6644 * __schedule() ttwu() 6645 * prev_state = prev->state; if (p->on_rq && ...) 6646 * if (prev_state) goto out; 6647 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6648 * p->state = TASK_WAKING 6649 * 6650 * Where __schedule() and ttwu() have matching control dependencies. 6651 * 6652 * After this, schedule() must not care about p->state any more. 6653 */ 6654 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6655 6656 if (prev->in_iowait) { 6657 atomic_inc(&rq->nr_iowait); 6658 delayacct_blkio_start(); 6659 } 6660 } 6661 switch_count = &prev->nvcsw; 6662 } 6663 6664 next = pick_next_task(rq, prev, &rf); 6665 clear_tsk_need_resched(prev); 6666 clear_preempt_need_resched(); 6667 #ifdef CONFIG_SCHED_DEBUG 6668 rq->last_seen_need_resched_ns = 0; 6669 #endif 6670 6671 if (likely(prev != next)) { 6672 rq->nr_switches++; 6673 /* 6674 * RCU users of rcu_dereference(rq->curr) may not see 6675 * changes to task_struct made by pick_next_task(). 6676 */ 6677 RCU_INIT_POINTER(rq->curr, next); 6678 /* 6679 * The membarrier system call requires each architecture 6680 * to have a full memory barrier after updating 6681 * rq->curr, before returning to user-space. 6682 * 6683 * Here are the schemes providing that barrier on the 6684 * various architectures: 6685 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6686 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6687 * - finish_lock_switch() for weakly-ordered 6688 * architectures where spin_unlock is a full barrier, 6689 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6690 * is a RELEASE barrier), 6691 */ 6692 ++*switch_count; 6693 6694 migrate_disable_switch(rq, prev); 6695 psi_account_irqtime(rq, prev, next); 6696 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6697 6698 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6699 6700 /* Also unlocks the rq: */ 6701 rq = context_switch(rq, prev, next, &rf); 6702 } else { 6703 rq_unpin_lock(rq, &rf); 6704 __balance_callbacks(rq); 6705 raw_spin_rq_unlock_irq(rq); 6706 } 6707 } 6708 6709 void __noreturn do_task_dead(void) 6710 { 6711 /* Causes final put_task_struct in finish_task_switch(): */ 6712 set_special_state(TASK_DEAD); 6713 6714 /* Tell freezer to ignore us: */ 6715 current->flags |= PF_NOFREEZE; 6716 6717 __schedule(SM_NONE); 6718 BUG(); 6719 6720 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6721 for (;;) 6722 cpu_relax(); 6723 } 6724 6725 static inline void sched_submit_work(struct task_struct *tsk) 6726 { 6727 unsigned int task_flags; 6728 6729 if (task_is_running(tsk)) 6730 return; 6731 6732 task_flags = tsk->flags; 6733 /* 6734 * If a worker goes to sleep, notify and ask workqueue whether it 6735 * wants to wake up a task to maintain concurrency. 6736 */ 6737 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6738 if (task_flags & PF_WQ_WORKER) 6739 wq_worker_sleeping(tsk); 6740 else 6741 io_wq_worker_sleeping(tsk); 6742 } 6743 6744 /* 6745 * spinlock and rwlock must not flush block requests. This will 6746 * deadlock if the callback attempts to acquire a lock which is 6747 * already acquired. 6748 */ 6749 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6750 6751 /* 6752 * If we are going to sleep and we have plugged IO queued, 6753 * make sure to submit it to avoid deadlocks. 6754 */ 6755 blk_flush_plug(tsk->plug, true); 6756 } 6757 6758 static void sched_update_worker(struct task_struct *tsk) 6759 { 6760 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6761 if (tsk->flags & PF_WQ_WORKER) 6762 wq_worker_running(tsk); 6763 else 6764 io_wq_worker_running(tsk); 6765 } 6766 } 6767 6768 asmlinkage __visible void __sched schedule(void) 6769 { 6770 struct task_struct *tsk = current; 6771 6772 sched_submit_work(tsk); 6773 do { 6774 preempt_disable(); 6775 __schedule(SM_NONE); 6776 sched_preempt_enable_no_resched(); 6777 } while (need_resched()); 6778 sched_update_worker(tsk); 6779 } 6780 EXPORT_SYMBOL(schedule); 6781 6782 /* 6783 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6784 * state (have scheduled out non-voluntarily) by making sure that all 6785 * tasks have either left the run queue or have gone into user space. 6786 * As idle tasks do not do either, they must not ever be preempted 6787 * (schedule out non-voluntarily). 6788 * 6789 * schedule_idle() is similar to schedule_preempt_disable() except that it 6790 * never enables preemption because it does not call sched_submit_work(). 6791 */ 6792 void __sched schedule_idle(void) 6793 { 6794 /* 6795 * As this skips calling sched_submit_work(), which the idle task does 6796 * regardless because that function is a nop when the task is in a 6797 * TASK_RUNNING state, make sure this isn't used someplace that the 6798 * current task can be in any other state. Note, idle is always in the 6799 * TASK_RUNNING state. 6800 */ 6801 WARN_ON_ONCE(current->__state); 6802 do { 6803 __schedule(SM_NONE); 6804 } while (need_resched()); 6805 } 6806 6807 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6808 asmlinkage __visible void __sched schedule_user(void) 6809 { 6810 /* 6811 * If we come here after a random call to set_need_resched(), 6812 * or we have been woken up remotely but the IPI has not yet arrived, 6813 * we haven't yet exited the RCU idle mode. Do it here manually until 6814 * we find a better solution. 6815 * 6816 * NB: There are buggy callers of this function. Ideally we 6817 * should warn if prev_state != CONTEXT_USER, but that will trigger 6818 * too frequently to make sense yet. 6819 */ 6820 enum ctx_state prev_state = exception_enter(); 6821 schedule(); 6822 exception_exit(prev_state); 6823 } 6824 #endif 6825 6826 /** 6827 * schedule_preempt_disabled - called with preemption disabled 6828 * 6829 * Returns with preemption disabled. Note: preempt_count must be 1 6830 */ 6831 void __sched schedule_preempt_disabled(void) 6832 { 6833 sched_preempt_enable_no_resched(); 6834 schedule(); 6835 preempt_disable(); 6836 } 6837 6838 #ifdef CONFIG_PREEMPT_RT 6839 void __sched notrace schedule_rtlock(void) 6840 { 6841 do { 6842 preempt_disable(); 6843 __schedule(SM_RTLOCK_WAIT); 6844 sched_preempt_enable_no_resched(); 6845 } while (need_resched()); 6846 } 6847 NOKPROBE_SYMBOL(schedule_rtlock); 6848 #endif 6849 6850 static void __sched notrace preempt_schedule_common(void) 6851 { 6852 do { 6853 /* 6854 * Because the function tracer can trace preempt_count_sub() 6855 * and it also uses preempt_enable/disable_notrace(), if 6856 * NEED_RESCHED is set, the preempt_enable_notrace() called 6857 * by the function tracer will call this function again and 6858 * cause infinite recursion. 6859 * 6860 * Preemption must be disabled here before the function 6861 * tracer can trace. Break up preempt_disable() into two 6862 * calls. One to disable preemption without fear of being 6863 * traced. The other to still record the preemption latency, 6864 * which can also be traced by the function tracer. 6865 */ 6866 preempt_disable_notrace(); 6867 preempt_latency_start(1); 6868 __schedule(SM_PREEMPT); 6869 preempt_latency_stop(1); 6870 preempt_enable_no_resched_notrace(); 6871 6872 /* 6873 * Check again in case we missed a preemption opportunity 6874 * between schedule and now. 6875 */ 6876 } while (need_resched()); 6877 } 6878 6879 #ifdef CONFIG_PREEMPTION 6880 /* 6881 * This is the entry point to schedule() from in-kernel preemption 6882 * off of preempt_enable. 6883 */ 6884 asmlinkage __visible void __sched notrace preempt_schedule(void) 6885 { 6886 /* 6887 * If there is a non-zero preempt_count or interrupts are disabled, 6888 * we do not want to preempt the current task. Just return.. 6889 */ 6890 if (likely(!preemptible())) 6891 return; 6892 preempt_schedule_common(); 6893 } 6894 NOKPROBE_SYMBOL(preempt_schedule); 6895 EXPORT_SYMBOL(preempt_schedule); 6896 6897 #ifdef CONFIG_PREEMPT_DYNAMIC 6898 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6899 #ifndef preempt_schedule_dynamic_enabled 6900 #define preempt_schedule_dynamic_enabled preempt_schedule 6901 #define preempt_schedule_dynamic_disabled NULL 6902 #endif 6903 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6904 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6905 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6906 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6907 void __sched notrace dynamic_preempt_schedule(void) 6908 { 6909 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6910 return; 6911 preempt_schedule(); 6912 } 6913 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6914 EXPORT_SYMBOL(dynamic_preempt_schedule); 6915 #endif 6916 #endif 6917 6918 /** 6919 * preempt_schedule_notrace - preempt_schedule called by tracing 6920 * 6921 * The tracing infrastructure uses preempt_enable_notrace to prevent 6922 * recursion and tracing preempt enabling caused by the tracing 6923 * infrastructure itself. But as tracing can happen in areas coming 6924 * from userspace or just about to enter userspace, a preempt enable 6925 * can occur before user_exit() is called. This will cause the scheduler 6926 * to be called when the system is still in usermode. 6927 * 6928 * To prevent this, the preempt_enable_notrace will use this function 6929 * instead of preempt_schedule() to exit user context if needed before 6930 * calling the scheduler. 6931 */ 6932 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6933 { 6934 enum ctx_state prev_ctx; 6935 6936 if (likely(!preemptible())) 6937 return; 6938 6939 do { 6940 /* 6941 * Because the function tracer can trace preempt_count_sub() 6942 * and it also uses preempt_enable/disable_notrace(), if 6943 * NEED_RESCHED is set, the preempt_enable_notrace() called 6944 * by the function tracer will call this function again and 6945 * cause infinite recursion. 6946 * 6947 * Preemption must be disabled here before the function 6948 * tracer can trace. Break up preempt_disable() into two 6949 * calls. One to disable preemption without fear of being 6950 * traced. The other to still record the preemption latency, 6951 * which can also be traced by the function tracer. 6952 */ 6953 preempt_disable_notrace(); 6954 preempt_latency_start(1); 6955 /* 6956 * Needs preempt disabled in case user_exit() is traced 6957 * and the tracer calls preempt_enable_notrace() causing 6958 * an infinite recursion. 6959 */ 6960 prev_ctx = exception_enter(); 6961 __schedule(SM_PREEMPT); 6962 exception_exit(prev_ctx); 6963 6964 preempt_latency_stop(1); 6965 preempt_enable_no_resched_notrace(); 6966 } while (need_resched()); 6967 } 6968 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6969 6970 #ifdef CONFIG_PREEMPT_DYNAMIC 6971 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6972 #ifndef preempt_schedule_notrace_dynamic_enabled 6973 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6974 #define preempt_schedule_notrace_dynamic_disabled NULL 6975 #endif 6976 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6977 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6978 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6979 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6980 void __sched notrace dynamic_preempt_schedule_notrace(void) 6981 { 6982 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6983 return; 6984 preempt_schedule_notrace(); 6985 } 6986 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6987 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6988 #endif 6989 #endif 6990 6991 #endif /* CONFIG_PREEMPTION */ 6992 6993 /* 6994 * This is the entry point to schedule() from kernel preemption 6995 * off of irq context. 6996 * Note, that this is called and return with irqs disabled. This will 6997 * protect us against recursive calling from irq. 6998 */ 6999 asmlinkage __visible void __sched preempt_schedule_irq(void) 7000 { 7001 enum ctx_state prev_state; 7002 7003 /* Catch callers which need to be fixed */ 7004 BUG_ON(preempt_count() || !irqs_disabled()); 7005 7006 prev_state = exception_enter(); 7007 7008 do { 7009 preempt_disable(); 7010 local_irq_enable(); 7011 __schedule(SM_PREEMPT); 7012 local_irq_disable(); 7013 sched_preempt_enable_no_resched(); 7014 } while (need_resched()); 7015 7016 exception_exit(prev_state); 7017 } 7018 7019 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7020 void *key) 7021 { 7022 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7023 return try_to_wake_up(curr->private, mode, wake_flags); 7024 } 7025 EXPORT_SYMBOL(default_wake_function); 7026 7027 static void __setscheduler_prio(struct task_struct *p, int prio) 7028 { 7029 if (dl_prio(prio)) 7030 p->sched_class = &dl_sched_class; 7031 else if (rt_prio(prio)) 7032 p->sched_class = &rt_sched_class; 7033 else 7034 p->sched_class = &fair_sched_class; 7035 7036 p->prio = prio; 7037 } 7038 7039 #ifdef CONFIG_RT_MUTEXES 7040 7041 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 7042 { 7043 if (pi_task) 7044 prio = min(prio, pi_task->prio); 7045 7046 return prio; 7047 } 7048 7049 static inline int rt_effective_prio(struct task_struct *p, int prio) 7050 { 7051 struct task_struct *pi_task = rt_mutex_get_top_task(p); 7052 7053 return __rt_effective_prio(pi_task, prio); 7054 } 7055 7056 /* 7057 * rt_mutex_setprio - set the current priority of a task 7058 * @p: task to boost 7059 * @pi_task: donor task 7060 * 7061 * This function changes the 'effective' priority of a task. It does 7062 * not touch ->normal_prio like __setscheduler(). 7063 * 7064 * Used by the rt_mutex code to implement priority inheritance 7065 * logic. Call site only calls if the priority of the task changed. 7066 */ 7067 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7068 { 7069 int prio, oldprio, queued, running, queue_flag = 7070 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7071 const struct sched_class *prev_class; 7072 struct rq_flags rf; 7073 struct rq *rq; 7074 7075 /* XXX used to be waiter->prio, not waiter->task->prio */ 7076 prio = __rt_effective_prio(pi_task, p->normal_prio); 7077 7078 /* 7079 * If nothing changed; bail early. 7080 */ 7081 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7082 return; 7083 7084 rq = __task_rq_lock(p, &rf); 7085 update_rq_clock(rq); 7086 /* 7087 * Set under pi_lock && rq->lock, such that the value can be used under 7088 * either lock. 7089 * 7090 * Note that there is loads of tricky to make this pointer cache work 7091 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7092 * ensure a task is de-boosted (pi_task is set to NULL) before the 7093 * task is allowed to run again (and can exit). This ensures the pointer 7094 * points to a blocked task -- which guarantees the task is present. 7095 */ 7096 p->pi_top_task = pi_task; 7097 7098 /* 7099 * For FIFO/RR we only need to set prio, if that matches we're done. 7100 */ 7101 if (prio == p->prio && !dl_prio(prio)) 7102 goto out_unlock; 7103 7104 /* 7105 * Idle task boosting is a nono in general. There is one 7106 * exception, when PREEMPT_RT and NOHZ is active: 7107 * 7108 * The idle task calls get_next_timer_interrupt() and holds 7109 * the timer wheel base->lock on the CPU and another CPU wants 7110 * to access the timer (probably to cancel it). We can safely 7111 * ignore the boosting request, as the idle CPU runs this code 7112 * with interrupts disabled and will complete the lock 7113 * protected section without being interrupted. So there is no 7114 * real need to boost. 7115 */ 7116 if (unlikely(p == rq->idle)) { 7117 WARN_ON(p != rq->curr); 7118 WARN_ON(p->pi_blocked_on); 7119 goto out_unlock; 7120 } 7121 7122 trace_sched_pi_setprio(p, pi_task); 7123 oldprio = p->prio; 7124 7125 if (oldprio == prio) 7126 queue_flag &= ~DEQUEUE_MOVE; 7127 7128 prev_class = p->sched_class; 7129 queued = task_on_rq_queued(p); 7130 running = task_current(rq, p); 7131 if (queued) 7132 dequeue_task(rq, p, queue_flag); 7133 if (running) 7134 put_prev_task(rq, p); 7135 7136 /* 7137 * Boosting condition are: 7138 * 1. -rt task is running and holds mutex A 7139 * --> -dl task blocks on mutex A 7140 * 7141 * 2. -dl task is running and holds mutex A 7142 * --> -dl task blocks on mutex A and could preempt the 7143 * running task 7144 */ 7145 if (dl_prio(prio)) { 7146 if (!dl_prio(p->normal_prio) || 7147 (pi_task && dl_prio(pi_task->prio) && 7148 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7149 p->dl.pi_se = pi_task->dl.pi_se; 7150 queue_flag |= ENQUEUE_REPLENISH; 7151 } else { 7152 p->dl.pi_se = &p->dl; 7153 } 7154 } else if (rt_prio(prio)) { 7155 if (dl_prio(oldprio)) 7156 p->dl.pi_se = &p->dl; 7157 if (oldprio < prio) 7158 queue_flag |= ENQUEUE_HEAD; 7159 } else { 7160 if (dl_prio(oldprio)) 7161 p->dl.pi_se = &p->dl; 7162 if (rt_prio(oldprio)) 7163 p->rt.timeout = 0; 7164 } 7165 7166 __setscheduler_prio(p, prio); 7167 7168 if (queued) 7169 enqueue_task(rq, p, queue_flag); 7170 if (running) 7171 set_next_task(rq, p); 7172 7173 check_class_changed(rq, p, prev_class, oldprio); 7174 out_unlock: 7175 /* Avoid rq from going away on us: */ 7176 preempt_disable(); 7177 7178 rq_unpin_lock(rq, &rf); 7179 __balance_callbacks(rq); 7180 raw_spin_rq_unlock(rq); 7181 7182 preempt_enable(); 7183 } 7184 #else 7185 static inline int rt_effective_prio(struct task_struct *p, int prio) 7186 { 7187 return prio; 7188 } 7189 #endif 7190 7191 void set_user_nice(struct task_struct *p, long nice) 7192 { 7193 bool queued, running; 7194 int old_prio; 7195 struct rq_flags rf; 7196 struct rq *rq; 7197 7198 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7199 return; 7200 /* 7201 * We have to be careful, if called from sys_setpriority(), 7202 * the task might be in the middle of scheduling on another CPU. 7203 */ 7204 rq = task_rq_lock(p, &rf); 7205 update_rq_clock(rq); 7206 7207 /* 7208 * The RT priorities are set via sched_setscheduler(), but we still 7209 * allow the 'normal' nice value to be set - but as expected 7210 * it won't have any effect on scheduling until the task is 7211 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7212 */ 7213 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7214 p->static_prio = NICE_TO_PRIO(nice); 7215 goto out_unlock; 7216 } 7217 queued = task_on_rq_queued(p); 7218 running = task_current(rq, p); 7219 if (queued) 7220 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7221 if (running) 7222 put_prev_task(rq, p); 7223 7224 p->static_prio = NICE_TO_PRIO(nice); 7225 set_load_weight(p, true); 7226 old_prio = p->prio; 7227 p->prio = effective_prio(p); 7228 7229 if (queued) 7230 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7231 if (running) 7232 set_next_task(rq, p); 7233 7234 /* 7235 * If the task increased its priority or is running and 7236 * lowered its priority, then reschedule its CPU: 7237 */ 7238 p->sched_class->prio_changed(rq, p, old_prio); 7239 7240 out_unlock: 7241 task_rq_unlock(rq, p, &rf); 7242 } 7243 EXPORT_SYMBOL(set_user_nice); 7244 7245 /* 7246 * is_nice_reduction - check if nice value is an actual reduction 7247 * 7248 * Similar to can_nice() but does not perform a capability check. 7249 * 7250 * @p: task 7251 * @nice: nice value 7252 */ 7253 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7254 { 7255 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7256 int nice_rlim = nice_to_rlimit(nice); 7257 7258 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7259 } 7260 7261 /* 7262 * can_nice - check if a task can reduce its nice value 7263 * @p: task 7264 * @nice: nice value 7265 */ 7266 int can_nice(const struct task_struct *p, const int nice) 7267 { 7268 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7269 } 7270 7271 #ifdef __ARCH_WANT_SYS_NICE 7272 7273 /* 7274 * sys_nice - change the priority of the current process. 7275 * @increment: priority increment 7276 * 7277 * sys_setpriority is a more generic, but much slower function that 7278 * does similar things. 7279 */ 7280 SYSCALL_DEFINE1(nice, int, increment) 7281 { 7282 long nice, retval; 7283 7284 /* 7285 * Setpriority might change our priority at the same moment. 7286 * We don't have to worry. Conceptually one call occurs first 7287 * and we have a single winner. 7288 */ 7289 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7290 nice = task_nice(current) + increment; 7291 7292 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7293 if (increment < 0 && !can_nice(current, nice)) 7294 return -EPERM; 7295 7296 retval = security_task_setnice(current, nice); 7297 if (retval) 7298 return retval; 7299 7300 set_user_nice(current, nice); 7301 return 0; 7302 } 7303 7304 #endif 7305 7306 /** 7307 * task_prio - return the priority value of a given task. 7308 * @p: the task in question. 7309 * 7310 * Return: The priority value as seen by users in /proc. 7311 * 7312 * sched policy return value kernel prio user prio/nice 7313 * 7314 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7315 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7316 * deadline -101 -1 0 7317 */ 7318 int task_prio(const struct task_struct *p) 7319 { 7320 return p->prio - MAX_RT_PRIO; 7321 } 7322 7323 /** 7324 * idle_cpu - is a given CPU idle currently? 7325 * @cpu: the processor in question. 7326 * 7327 * Return: 1 if the CPU is currently idle. 0 otherwise. 7328 */ 7329 int idle_cpu(int cpu) 7330 { 7331 struct rq *rq = cpu_rq(cpu); 7332 7333 if (rq->curr != rq->idle) 7334 return 0; 7335 7336 if (rq->nr_running) 7337 return 0; 7338 7339 #ifdef CONFIG_SMP 7340 if (rq->ttwu_pending) 7341 return 0; 7342 #endif 7343 7344 return 1; 7345 } 7346 7347 /** 7348 * available_idle_cpu - is a given CPU idle for enqueuing work. 7349 * @cpu: the CPU in question. 7350 * 7351 * Return: 1 if the CPU is currently idle. 0 otherwise. 7352 */ 7353 int available_idle_cpu(int cpu) 7354 { 7355 if (!idle_cpu(cpu)) 7356 return 0; 7357 7358 if (vcpu_is_preempted(cpu)) 7359 return 0; 7360 7361 return 1; 7362 } 7363 7364 /** 7365 * idle_task - return the idle task for a given CPU. 7366 * @cpu: the processor in question. 7367 * 7368 * Return: The idle task for the CPU @cpu. 7369 */ 7370 struct task_struct *idle_task(int cpu) 7371 { 7372 return cpu_rq(cpu)->idle; 7373 } 7374 7375 #ifdef CONFIG_SCHED_CORE 7376 int sched_core_idle_cpu(int cpu) 7377 { 7378 struct rq *rq = cpu_rq(cpu); 7379 7380 if (sched_core_enabled(rq) && rq->curr == rq->idle) 7381 return 1; 7382 7383 return idle_cpu(cpu); 7384 } 7385 7386 #endif 7387 7388 #ifdef CONFIG_SMP 7389 /* 7390 * This function computes an effective utilization for the given CPU, to be 7391 * used for frequency selection given the linear relation: f = u * f_max. 7392 * 7393 * The scheduler tracks the following metrics: 7394 * 7395 * cpu_util_{cfs,rt,dl,irq}() 7396 * cpu_bw_dl() 7397 * 7398 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7399 * synchronized windows and are thus directly comparable. 7400 * 7401 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7402 * which excludes things like IRQ and steal-time. These latter are then accrued 7403 * in the irq utilization. 7404 * 7405 * The DL bandwidth number otoh is not a measured metric but a value computed 7406 * based on the task model parameters and gives the minimal utilization 7407 * required to meet deadlines. 7408 */ 7409 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7410 enum cpu_util_type type, 7411 struct task_struct *p) 7412 { 7413 unsigned long dl_util, util, irq, max; 7414 struct rq *rq = cpu_rq(cpu); 7415 7416 max = arch_scale_cpu_capacity(cpu); 7417 7418 if (!uclamp_is_used() && 7419 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7420 return max; 7421 } 7422 7423 /* 7424 * Early check to see if IRQ/steal time saturates the CPU, can be 7425 * because of inaccuracies in how we track these -- see 7426 * update_irq_load_avg(). 7427 */ 7428 irq = cpu_util_irq(rq); 7429 if (unlikely(irq >= max)) 7430 return max; 7431 7432 /* 7433 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7434 * CFS tasks and we use the same metric to track the effective 7435 * utilization (PELT windows are synchronized) we can directly add them 7436 * to obtain the CPU's actual utilization. 7437 * 7438 * CFS and RT utilization can be boosted or capped, depending on 7439 * utilization clamp constraints requested by currently RUNNABLE 7440 * tasks. 7441 * When there are no CFS RUNNABLE tasks, clamps are released and 7442 * frequency will be gracefully reduced with the utilization decay. 7443 */ 7444 util = util_cfs + cpu_util_rt(rq); 7445 if (type == FREQUENCY_UTIL) 7446 util = uclamp_rq_util_with(rq, util, p); 7447 7448 dl_util = cpu_util_dl(rq); 7449 7450 /* 7451 * For frequency selection we do not make cpu_util_dl() a permanent part 7452 * of this sum because we want to use cpu_bw_dl() later on, but we need 7453 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7454 * that we select f_max when there is no idle time. 7455 * 7456 * NOTE: numerical errors or stop class might cause us to not quite hit 7457 * saturation when we should -- something for later. 7458 */ 7459 if (util + dl_util >= max) 7460 return max; 7461 7462 /* 7463 * OTOH, for energy computation we need the estimated running time, so 7464 * include util_dl and ignore dl_bw. 7465 */ 7466 if (type == ENERGY_UTIL) 7467 util += dl_util; 7468 7469 /* 7470 * There is still idle time; further improve the number by using the 7471 * irq metric. Because IRQ/steal time is hidden from the task clock we 7472 * need to scale the task numbers: 7473 * 7474 * max - irq 7475 * U' = irq + --------- * U 7476 * max 7477 */ 7478 util = scale_irq_capacity(util, irq, max); 7479 util += irq; 7480 7481 /* 7482 * Bandwidth required by DEADLINE must always be granted while, for 7483 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7484 * to gracefully reduce the frequency when no tasks show up for longer 7485 * periods of time. 7486 * 7487 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7488 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7489 * an interface. So, we only do the latter for now. 7490 */ 7491 if (type == FREQUENCY_UTIL) 7492 util += cpu_bw_dl(rq); 7493 7494 return min(max, util); 7495 } 7496 7497 unsigned long sched_cpu_util(int cpu) 7498 { 7499 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7500 } 7501 #endif /* CONFIG_SMP */ 7502 7503 /** 7504 * find_process_by_pid - find a process with a matching PID value. 7505 * @pid: the pid in question. 7506 * 7507 * The task of @pid, if found. %NULL otherwise. 7508 */ 7509 static struct task_struct *find_process_by_pid(pid_t pid) 7510 { 7511 return pid ? find_task_by_vpid(pid) : current; 7512 } 7513 7514 /* 7515 * sched_setparam() passes in -1 for its policy, to let the functions 7516 * it calls know not to change it. 7517 */ 7518 #define SETPARAM_POLICY -1 7519 7520 static void __setscheduler_params(struct task_struct *p, 7521 const struct sched_attr *attr) 7522 { 7523 int policy = attr->sched_policy; 7524 7525 if (policy == SETPARAM_POLICY) 7526 policy = p->policy; 7527 7528 p->policy = policy; 7529 7530 if (dl_policy(policy)) 7531 __setparam_dl(p, attr); 7532 else if (fair_policy(policy)) 7533 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7534 7535 /* 7536 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7537 * !rt_policy. Always setting this ensures that things like 7538 * getparam()/getattr() don't report silly values for !rt tasks. 7539 */ 7540 p->rt_priority = attr->sched_priority; 7541 p->normal_prio = normal_prio(p); 7542 set_load_weight(p, true); 7543 } 7544 7545 /* 7546 * Check the target process has a UID that matches the current process's: 7547 */ 7548 static bool check_same_owner(struct task_struct *p) 7549 { 7550 const struct cred *cred = current_cred(), *pcred; 7551 bool match; 7552 7553 rcu_read_lock(); 7554 pcred = __task_cred(p); 7555 match = (uid_eq(cred->euid, pcred->euid) || 7556 uid_eq(cred->euid, pcred->uid)); 7557 rcu_read_unlock(); 7558 return match; 7559 } 7560 7561 /* 7562 * Allow unprivileged RT tasks to decrease priority. 7563 * Only issue a capable test if needed and only once to avoid an audit 7564 * event on permitted non-privileged operations: 7565 */ 7566 static int user_check_sched_setscheduler(struct task_struct *p, 7567 const struct sched_attr *attr, 7568 int policy, int reset_on_fork) 7569 { 7570 if (fair_policy(policy)) { 7571 if (attr->sched_nice < task_nice(p) && 7572 !is_nice_reduction(p, attr->sched_nice)) 7573 goto req_priv; 7574 } 7575 7576 if (rt_policy(policy)) { 7577 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7578 7579 /* Can't set/change the rt policy: */ 7580 if (policy != p->policy && !rlim_rtprio) 7581 goto req_priv; 7582 7583 /* Can't increase priority: */ 7584 if (attr->sched_priority > p->rt_priority && 7585 attr->sched_priority > rlim_rtprio) 7586 goto req_priv; 7587 } 7588 7589 /* 7590 * Can't set/change SCHED_DEADLINE policy at all for now 7591 * (safest behavior); in the future we would like to allow 7592 * unprivileged DL tasks to increase their relative deadline 7593 * or reduce their runtime (both ways reducing utilization) 7594 */ 7595 if (dl_policy(policy)) 7596 goto req_priv; 7597 7598 /* 7599 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7600 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7601 */ 7602 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7603 if (!is_nice_reduction(p, task_nice(p))) 7604 goto req_priv; 7605 } 7606 7607 /* Can't change other user's priorities: */ 7608 if (!check_same_owner(p)) 7609 goto req_priv; 7610 7611 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7612 if (p->sched_reset_on_fork && !reset_on_fork) 7613 goto req_priv; 7614 7615 return 0; 7616 7617 req_priv: 7618 if (!capable(CAP_SYS_NICE)) 7619 return -EPERM; 7620 7621 return 0; 7622 } 7623 7624 static int __sched_setscheduler(struct task_struct *p, 7625 const struct sched_attr *attr, 7626 bool user, bool pi) 7627 { 7628 int oldpolicy = -1, policy = attr->sched_policy; 7629 int retval, oldprio, newprio, queued, running; 7630 const struct sched_class *prev_class; 7631 struct balance_callback *head; 7632 struct rq_flags rf; 7633 int reset_on_fork; 7634 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7635 struct rq *rq; 7636 bool cpuset_locked = false; 7637 7638 /* The pi code expects interrupts enabled */ 7639 BUG_ON(pi && in_interrupt()); 7640 recheck: 7641 /* Double check policy once rq lock held: */ 7642 if (policy < 0) { 7643 reset_on_fork = p->sched_reset_on_fork; 7644 policy = oldpolicy = p->policy; 7645 } else { 7646 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7647 7648 if (!valid_policy(policy)) 7649 return -EINVAL; 7650 } 7651 7652 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7653 return -EINVAL; 7654 7655 /* 7656 * Valid priorities for SCHED_FIFO and SCHED_RR are 7657 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7658 * SCHED_BATCH and SCHED_IDLE is 0. 7659 */ 7660 if (attr->sched_priority > MAX_RT_PRIO-1) 7661 return -EINVAL; 7662 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7663 (rt_policy(policy) != (attr->sched_priority != 0))) 7664 return -EINVAL; 7665 7666 if (user) { 7667 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7668 if (retval) 7669 return retval; 7670 7671 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7672 return -EINVAL; 7673 7674 retval = security_task_setscheduler(p); 7675 if (retval) 7676 return retval; 7677 } 7678 7679 /* Update task specific "requested" clamps */ 7680 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7681 retval = uclamp_validate(p, attr); 7682 if (retval) 7683 return retval; 7684 } 7685 7686 /* 7687 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 7688 * information. 7689 */ 7690 if (dl_policy(policy) || dl_policy(p->policy)) { 7691 cpuset_locked = true; 7692 cpuset_lock(); 7693 } 7694 7695 /* 7696 * Make sure no PI-waiters arrive (or leave) while we are 7697 * changing the priority of the task: 7698 * 7699 * To be able to change p->policy safely, the appropriate 7700 * runqueue lock must be held. 7701 */ 7702 rq = task_rq_lock(p, &rf); 7703 update_rq_clock(rq); 7704 7705 /* 7706 * Changing the policy of the stop threads its a very bad idea: 7707 */ 7708 if (p == rq->stop) { 7709 retval = -EINVAL; 7710 goto unlock; 7711 } 7712 7713 /* 7714 * If not changing anything there's no need to proceed further, 7715 * but store a possible modification of reset_on_fork. 7716 */ 7717 if (unlikely(policy == p->policy)) { 7718 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7719 goto change; 7720 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7721 goto change; 7722 if (dl_policy(policy) && dl_param_changed(p, attr)) 7723 goto change; 7724 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7725 goto change; 7726 7727 p->sched_reset_on_fork = reset_on_fork; 7728 retval = 0; 7729 goto unlock; 7730 } 7731 change: 7732 7733 if (user) { 7734 #ifdef CONFIG_RT_GROUP_SCHED 7735 /* 7736 * Do not allow realtime tasks into groups that have no runtime 7737 * assigned. 7738 */ 7739 if (rt_bandwidth_enabled() && rt_policy(policy) && 7740 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7741 !task_group_is_autogroup(task_group(p))) { 7742 retval = -EPERM; 7743 goto unlock; 7744 } 7745 #endif 7746 #ifdef CONFIG_SMP 7747 if (dl_bandwidth_enabled() && dl_policy(policy) && 7748 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7749 cpumask_t *span = rq->rd->span; 7750 7751 /* 7752 * Don't allow tasks with an affinity mask smaller than 7753 * the entire root_domain to become SCHED_DEADLINE. We 7754 * will also fail if there's no bandwidth available. 7755 */ 7756 if (!cpumask_subset(span, p->cpus_ptr) || 7757 rq->rd->dl_bw.bw == 0) { 7758 retval = -EPERM; 7759 goto unlock; 7760 } 7761 } 7762 #endif 7763 } 7764 7765 /* Re-check policy now with rq lock held: */ 7766 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7767 policy = oldpolicy = -1; 7768 task_rq_unlock(rq, p, &rf); 7769 if (cpuset_locked) 7770 cpuset_unlock(); 7771 goto recheck; 7772 } 7773 7774 /* 7775 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7776 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7777 * is available. 7778 */ 7779 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7780 retval = -EBUSY; 7781 goto unlock; 7782 } 7783 7784 p->sched_reset_on_fork = reset_on_fork; 7785 oldprio = p->prio; 7786 7787 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7788 if (pi) { 7789 /* 7790 * Take priority boosted tasks into account. If the new 7791 * effective priority is unchanged, we just store the new 7792 * normal parameters and do not touch the scheduler class and 7793 * the runqueue. This will be done when the task deboost 7794 * itself. 7795 */ 7796 newprio = rt_effective_prio(p, newprio); 7797 if (newprio == oldprio) 7798 queue_flags &= ~DEQUEUE_MOVE; 7799 } 7800 7801 queued = task_on_rq_queued(p); 7802 running = task_current(rq, p); 7803 if (queued) 7804 dequeue_task(rq, p, queue_flags); 7805 if (running) 7806 put_prev_task(rq, p); 7807 7808 prev_class = p->sched_class; 7809 7810 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7811 __setscheduler_params(p, attr); 7812 __setscheduler_prio(p, newprio); 7813 } 7814 __setscheduler_uclamp(p, attr); 7815 7816 if (queued) { 7817 /* 7818 * We enqueue to tail when the priority of a task is 7819 * increased (user space view). 7820 */ 7821 if (oldprio < p->prio) 7822 queue_flags |= ENQUEUE_HEAD; 7823 7824 enqueue_task(rq, p, queue_flags); 7825 } 7826 if (running) 7827 set_next_task(rq, p); 7828 7829 check_class_changed(rq, p, prev_class, oldprio); 7830 7831 /* Avoid rq from going away on us: */ 7832 preempt_disable(); 7833 head = splice_balance_callbacks(rq); 7834 task_rq_unlock(rq, p, &rf); 7835 7836 if (pi) { 7837 if (cpuset_locked) 7838 cpuset_unlock(); 7839 rt_mutex_adjust_pi(p); 7840 } 7841 7842 /* Run balance callbacks after we've adjusted the PI chain: */ 7843 balance_callbacks(rq, head); 7844 preempt_enable(); 7845 7846 return 0; 7847 7848 unlock: 7849 task_rq_unlock(rq, p, &rf); 7850 if (cpuset_locked) 7851 cpuset_unlock(); 7852 return retval; 7853 } 7854 7855 static int _sched_setscheduler(struct task_struct *p, int policy, 7856 const struct sched_param *param, bool check) 7857 { 7858 struct sched_attr attr = { 7859 .sched_policy = policy, 7860 .sched_priority = param->sched_priority, 7861 .sched_nice = PRIO_TO_NICE(p->static_prio), 7862 }; 7863 7864 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7865 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7866 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7867 policy &= ~SCHED_RESET_ON_FORK; 7868 attr.sched_policy = policy; 7869 } 7870 7871 return __sched_setscheduler(p, &attr, check, true); 7872 } 7873 /** 7874 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7875 * @p: the task in question. 7876 * @policy: new policy. 7877 * @param: structure containing the new RT priority. 7878 * 7879 * Use sched_set_fifo(), read its comment. 7880 * 7881 * Return: 0 on success. An error code otherwise. 7882 * 7883 * NOTE that the task may be already dead. 7884 */ 7885 int sched_setscheduler(struct task_struct *p, int policy, 7886 const struct sched_param *param) 7887 { 7888 return _sched_setscheduler(p, policy, param, true); 7889 } 7890 7891 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7892 { 7893 return __sched_setscheduler(p, attr, true, true); 7894 } 7895 7896 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7897 { 7898 return __sched_setscheduler(p, attr, false, true); 7899 } 7900 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7901 7902 /** 7903 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7904 * @p: the task in question. 7905 * @policy: new policy. 7906 * @param: structure containing the new RT priority. 7907 * 7908 * Just like sched_setscheduler, only don't bother checking if the 7909 * current context has permission. For example, this is needed in 7910 * stop_machine(): we create temporary high priority worker threads, 7911 * but our caller might not have that capability. 7912 * 7913 * Return: 0 on success. An error code otherwise. 7914 */ 7915 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7916 const struct sched_param *param) 7917 { 7918 return _sched_setscheduler(p, policy, param, false); 7919 } 7920 7921 /* 7922 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7923 * incapable of resource management, which is the one thing an OS really should 7924 * be doing. 7925 * 7926 * This is of course the reason it is limited to privileged users only. 7927 * 7928 * Worse still; it is fundamentally impossible to compose static priority 7929 * workloads. You cannot take two correctly working static prio workloads 7930 * and smash them together and still expect them to work. 7931 * 7932 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7933 * 7934 * MAX_RT_PRIO / 2 7935 * 7936 * The administrator _MUST_ configure the system, the kernel simply doesn't 7937 * know enough information to make a sensible choice. 7938 */ 7939 void sched_set_fifo(struct task_struct *p) 7940 { 7941 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7942 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7943 } 7944 EXPORT_SYMBOL_GPL(sched_set_fifo); 7945 7946 /* 7947 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7948 */ 7949 void sched_set_fifo_low(struct task_struct *p) 7950 { 7951 struct sched_param sp = { .sched_priority = 1 }; 7952 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7953 } 7954 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7955 7956 void sched_set_normal(struct task_struct *p, int nice) 7957 { 7958 struct sched_attr attr = { 7959 .sched_policy = SCHED_NORMAL, 7960 .sched_nice = nice, 7961 }; 7962 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7963 } 7964 EXPORT_SYMBOL_GPL(sched_set_normal); 7965 7966 static int 7967 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7968 { 7969 struct sched_param lparam; 7970 struct task_struct *p; 7971 int retval; 7972 7973 if (!param || pid < 0) 7974 return -EINVAL; 7975 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7976 return -EFAULT; 7977 7978 rcu_read_lock(); 7979 retval = -ESRCH; 7980 p = find_process_by_pid(pid); 7981 if (likely(p)) 7982 get_task_struct(p); 7983 rcu_read_unlock(); 7984 7985 if (likely(p)) { 7986 retval = sched_setscheduler(p, policy, &lparam); 7987 put_task_struct(p); 7988 } 7989 7990 return retval; 7991 } 7992 7993 /* 7994 * Mimics kernel/events/core.c perf_copy_attr(). 7995 */ 7996 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7997 { 7998 u32 size; 7999 int ret; 8000 8001 /* Zero the full structure, so that a short copy will be nice: */ 8002 memset(attr, 0, sizeof(*attr)); 8003 8004 ret = get_user(size, &uattr->size); 8005 if (ret) 8006 return ret; 8007 8008 /* ABI compatibility quirk: */ 8009 if (!size) 8010 size = SCHED_ATTR_SIZE_VER0; 8011 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 8012 goto err_size; 8013 8014 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 8015 if (ret) { 8016 if (ret == -E2BIG) 8017 goto err_size; 8018 return ret; 8019 } 8020 8021 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 8022 size < SCHED_ATTR_SIZE_VER1) 8023 return -EINVAL; 8024 8025 /* 8026 * XXX: Do we want to be lenient like existing syscalls; or do we want 8027 * to be strict and return an error on out-of-bounds values? 8028 */ 8029 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 8030 8031 return 0; 8032 8033 err_size: 8034 put_user(sizeof(*attr), &uattr->size); 8035 return -E2BIG; 8036 } 8037 8038 static void get_params(struct task_struct *p, struct sched_attr *attr) 8039 { 8040 if (task_has_dl_policy(p)) 8041 __getparam_dl(p, attr); 8042 else if (task_has_rt_policy(p)) 8043 attr->sched_priority = p->rt_priority; 8044 else 8045 attr->sched_nice = task_nice(p); 8046 } 8047 8048 /** 8049 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 8050 * @pid: the pid in question. 8051 * @policy: new policy. 8052 * @param: structure containing the new RT priority. 8053 * 8054 * Return: 0 on success. An error code otherwise. 8055 */ 8056 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 8057 { 8058 if (policy < 0) 8059 return -EINVAL; 8060 8061 return do_sched_setscheduler(pid, policy, param); 8062 } 8063 8064 /** 8065 * sys_sched_setparam - set/change the RT priority of a thread 8066 * @pid: the pid in question. 8067 * @param: structure containing the new RT priority. 8068 * 8069 * Return: 0 on success. An error code otherwise. 8070 */ 8071 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 8072 { 8073 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 8074 } 8075 8076 /** 8077 * sys_sched_setattr - same as above, but with extended sched_attr 8078 * @pid: the pid in question. 8079 * @uattr: structure containing the extended parameters. 8080 * @flags: for future extension. 8081 */ 8082 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 8083 unsigned int, flags) 8084 { 8085 struct sched_attr attr; 8086 struct task_struct *p; 8087 int retval; 8088 8089 if (!uattr || pid < 0 || flags) 8090 return -EINVAL; 8091 8092 retval = sched_copy_attr(uattr, &attr); 8093 if (retval) 8094 return retval; 8095 8096 if ((int)attr.sched_policy < 0) 8097 return -EINVAL; 8098 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 8099 attr.sched_policy = SETPARAM_POLICY; 8100 8101 rcu_read_lock(); 8102 retval = -ESRCH; 8103 p = find_process_by_pid(pid); 8104 if (likely(p)) 8105 get_task_struct(p); 8106 rcu_read_unlock(); 8107 8108 if (likely(p)) { 8109 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 8110 get_params(p, &attr); 8111 retval = sched_setattr(p, &attr); 8112 put_task_struct(p); 8113 } 8114 8115 return retval; 8116 } 8117 8118 /** 8119 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8120 * @pid: the pid in question. 8121 * 8122 * Return: On success, the policy of the thread. Otherwise, a negative error 8123 * code. 8124 */ 8125 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8126 { 8127 struct task_struct *p; 8128 int retval; 8129 8130 if (pid < 0) 8131 return -EINVAL; 8132 8133 retval = -ESRCH; 8134 rcu_read_lock(); 8135 p = find_process_by_pid(pid); 8136 if (p) { 8137 retval = security_task_getscheduler(p); 8138 if (!retval) 8139 retval = p->policy 8140 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8141 } 8142 rcu_read_unlock(); 8143 return retval; 8144 } 8145 8146 /** 8147 * sys_sched_getparam - get the RT priority of a thread 8148 * @pid: the pid in question. 8149 * @param: structure containing the RT priority. 8150 * 8151 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8152 * code. 8153 */ 8154 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8155 { 8156 struct sched_param lp = { .sched_priority = 0 }; 8157 struct task_struct *p; 8158 int retval; 8159 8160 if (!param || pid < 0) 8161 return -EINVAL; 8162 8163 rcu_read_lock(); 8164 p = find_process_by_pid(pid); 8165 retval = -ESRCH; 8166 if (!p) 8167 goto out_unlock; 8168 8169 retval = security_task_getscheduler(p); 8170 if (retval) 8171 goto out_unlock; 8172 8173 if (task_has_rt_policy(p)) 8174 lp.sched_priority = p->rt_priority; 8175 rcu_read_unlock(); 8176 8177 /* 8178 * This one might sleep, we cannot do it with a spinlock held ... 8179 */ 8180 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8181 8182 return retval; 8183 8184 out_unlock: 8185 rcu_read_unlock(); 8186 return retval; 8187 } 8188 8189 /* 8190 * Copy the kernel size attribute structure (which might be larger 8191 * than what user-space knows about) to user-space. 8192 * 8193 * Note that all cases are valid: user-space buffer can be larger or 8194 * smaller than the kernel-space buffer. The usual case is that both 8195 * have the same size. 8196 */ 8197 static int 8198 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8199 struct sched_attr *kattr, 8200 unsigned int usize) 8201 { 8202 unsigned int ksize = sizeof(*kattr); 8203 8204 if (!access_ok(uattr, usize)) 8205 return -EFAULT; 8206 8207 /* 8208 * sched_getattr() ABI forwards and backwards compatibility: 8209 * 8210 * If usize == ksize then we just copy everything to user-space and all is good. 8211 * 8212 * If usize < ksize then we only copy as much as user-space has space for, 8213 * this keeps ABI compatibility as well. We skip the rest. 8214 * 8215 * If usize > ksize then user-space is using a newer version of the ABI, 8216 * which part the kernel doesn't know about. Just ignore it - tooling can 8217 * detect the kernel's knowledge of attributes from the attr->size value 8218 * which is set to ksize in this case. 8219 */ 8220 kattr->size = min(usize, ksize); 8221 8222 if (copy_to_user(uattr, kattr, kattr->size)) 8223 return -EFAULT; 8224 8225 return 0; 8226 } 8227 8228 /** 8229 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8230 * @pid: the pid in question. 8231 * @uattr: structure containing the extended parameters. 8232 * @usize: sizeof(attr) for fwd/bwd comp. 8233 * @flags: for future extension. 8234 */ 8235 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8236 unsigned int, usize, unsigned int, flags) 8237 { 8238 struct sched_attr kattr = { }; 8239 struct task_struct *p; 8240 int retval; 8241 8242 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8243 usize < SCHED_ATTR_SIZE_VER0 || flags) 8244 return -EINVAL; 8245 8246 rcu_read_lock(); 8247 p = find_process_by_pid(pid); 8248 retval = -ESRCH; 8249 if (!p) 8250 goto out_unlock; 8251 8252 retval = security_task_getscheduler(p); 8253 if (retval) 8254 goto out_unlock; 8255 8256 kattr.sched_policy = p->policy; 8257 if (p->sched_reset_on_fork) 8258 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8259 get_params(p, &kattr); 8260 kattr.sched_flags &= SCHED_FLAG_ALL; 8261 8262 #ifdef CONFIG_UCLAMP_TASK 8263 /* 8264 * This could race with another potential updater, but this is fine 8265 * because it'll correctly read the old or the new value. We don't need 8266 * to guarantee who wins the race as long as it doesn't return garbage. 8267 */ 8268 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8269 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8270 #endif 8271 8272 rcu_read_unlock(); 8273 8274 return sched_attr_copy_to_user(uattr, &kattr, usize); 8275 8276 out_unlock: 8277 rcu_read_unlock(); 8278 return retval; 8279 } 8280 8281 #ifdef CONFIG_SMP 8282 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8283 { 8284 int ret = 0; 8285 8286 /* 8287 * If the task isn't a deadline task or admission control is 8288 * disabled then we don't care about affinity changes. 8289 */ 8290 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8291 return 0; 8292 8293 /* 8294 * Since bandwidth control happens on root_domain basis, 8295 * if admission test is enabled, we only admit -deadline 8296 * tasks allowed to run on all the CPUs in the task's 8297 * root_domain. 8298 */ 8299 rcu_read_lock(); 8300 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8301 ret = -EBUSY; 8302 rcu_read_unlock(); 8303 return ret; 8304 } 8305 #endif 8306 8307 static int 8308 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8309 { 8310 int retval; 8311 cpumask_var_t cpus_allowed, new_mask; 8312 8313 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8314 return -ENOMEM; 8315 8316 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8317 retval = -ENOMEM; 8318 goto out_free_cpus_allowed; 8319 } 8320 8321 cpuset_cpus_allowed(p, cpus_allowed); 8322 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8323 8324 ctx->new_mask = new_mask; 8325 ctx->flags |= SCA_CHECK; 8326 8327 retval = dl_task_check_affinity(p, new_mask); 8328 if (retval) 8329 goto out_free_new_mask; 8330 8331 retval = __set_cpus_allowed_ptr(p, ctx); 8332 if (retval) 8333 goto out_free_new_mask; 8334 8335 cpuset_cpus_allowed(p, cpus_allowed); 8336 if (!cpumask_subset(new_mask, cpus_allowed)) { 8337 /* 8338 * We must have raced with a concurrent cpuset update. 8339 * Just reset the cpumask to the cpuset's cpus_allowed. 8340 */ 8341 cpumask_copy(new_mask, cpus_allowed); 8342 8343 /* 8344 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8345 * will restore the previous user_cpus_ptr value. 8346 * 8347 * In the unlikely event a previous user_cpus_ptr exists, 8348 * we need to further restrict the mask to what is allowed 8349 * by that old user_cpus_ptr. 8350 */ 8351 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8352 bool empty = !cpumask_and(new_mask, new_mask, 8353 ctx->user_mask); 8354 8355 if (WARN_ON_ONCE(empty)) 8356 cpumask_copy(new_mask, cpus_allowed); 8357 } 8358 __set_cpus_allowed_ptr(p, ctx); 8359 retval = -EINVAL; 8360 } 8361 8362 out_free_new_mask: 8363 free_cpumask_var(new_mask); 8364 out_free_cpus_allowed: 8365 free_cpumask_var(cpus_allowed); 8366 return retval; 8367 } 8368 8369 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8370 { 8371 struct affinity_context ac; 8372 struct cpumask *user_mask; 8373 struct task_struct *p; 8374 int retval; 8375 8376 rcu_read_lock(); 8377 8378 p = find_process_by_pid(pid); 8379 if (!p) { 8380 rcu_read_unlock(); 8381 return -ESRCH; 8382 } 8383 8384 /* Prevent p going away */ 8385 get_task_struct(p); 8386 rcu_read_unlock(); 8387 8388 if (p->flags & PF_NO_SETAFFINITY) { 8389 retval = -EINVAL; 8390 goto out_put_task; 8391 } 8392 8393 if (!check_same_owner(p)) { 8394 rcu_read_lock(); 8395 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8396 rcu_read_unlock(); 8397 retval = -EPERM; 8398 goto out_put_task; 8399 } 8400 rcu_read_unlock(); 8401 } 8402 8403 retval = security_task_setscheduler(p); 8404 if (retval) 8405 goto out_put_task; 8406 8407 /* 8408 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8409 * alloc_user_cpus_ptr() returns NULL. 8410 */ 8411 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8412 if (user_mask) { 8413 cpumask_copy(user_mask, in_mask); 8414 } else if (IS_ENABLED(CONFIG_SMP)) { 8415 retval = -ENOMEM; 8416 goto out_put_task; 8417 } 8418 8419 ac = (struct affinity_context){ 8420 .new_mask = in_mask, 8421 .user_mask = user_mask, 8422 .flags = SCA_USER, 8423 }; 8424 8425 retval = __sched_setaffinity(p, &ac); 8426 kfree(ac.user_mask); 8427 8428 out_put_task: 8429 put_task_struct(p); 8430 return retval; 8431 } 8432 8433 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8434 struct cpumask *new_mask) 8435 { 8436 if (len < cpumask_size()) 8437 cpumask_clear(new_mask); 8438 else if (len > cpumask_size()) 8439 len = cpumask_size(); 8440 8441 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8442 } 8443 8444 /** 8445 * sys_sched_setaffinity - set the CPU affinity of a process 8446 * @pid: pid of the process 8447 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8448 * @user_mask_ptr: user-space pointer to the new CPU mask 8449 * 8450 * Return: 0 on success. An error code otherwise. 8451 */ 8452 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8453 unsigned long __user *, user_mask_ptr) 8454 { 8455 cpumask_var_t new_mask; 8456 int retval; 8457 8458 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8459 return -ENOMEM; 8460 8461 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8462 if (retval == 0) 8463 retval = sched_setaffinity(pid, new_mask); 8464 free_cpumask_var(new_mask); 8465 return retval; 8466 } 8467 8468 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8469 { 8470 struct task_struct *p; 8471 unsigned long flags; 8472 int retval; 8473 8474 rcu_read_lock(); 8475 8476 retval = -ESRCH; 8477 p = find_process_by_pid(pid); 8478 if (!p) 8479 goto out_unlock; 8480 8481 retval = security_task_getscheduler(p); 8482 if (retval) 8483 goto out_unlock; 8484 8485 raw_spin_lock_irqsave(&p->pi_lock, flags); 8486 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8487 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8488 8489 out_unlock: 8490 rcu_read_unlock(); 8491 8492 return retval; 8493 } 8494 8495 /** 8496 * sys_sched_getaffinity - get the CPU affinity of a process 8497 * @pid: pid of the process 8498 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8499 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8500 * 8501 * Return: size of CPU mask copied to user_mask_ptr on success. An 8502 * error code otherwise. 8503 */ 8504 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8505 unsigned long __user *, user_mask_ptr) 8506 { 8507 int ret; 8508 cpumask_var_t mask; 8509 8510 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8511 return -EINVAL; 8512 if (len & (sizeof(unsigned long)-1)) 8513 return -EINVAL; 8514 8515 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 8516 return -ENOMEM; 8517 8518 ret = sched_getaffinity(pid, mask); 8519 if (ret == 0) { 8520 unsigned int retlen = min(len, cpumask_size()); 8521 8522 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 8523 ret = -EFAULT; 8524 else 8525 ret = retlen; 8526 } 8527 free_cpumask_var(mask); 8528 8529 return ret; 8530 } 8531 8532 static void do_sched_yield(void) 8533 { 8534 struct rq_flags rf; 8535 struct rq *rq; 8536 8537 rq = this_rq_lock_irq(&rf); 8538 8539 schedstat_inc(rq->yld_count); 8540 current->sched_class->yield_task(rq); 8541 8542 preempt_disable(); 8543 rq_unlock_irq(rq, &rf); 8544 sched_preempt_enable_no_resched(); 8545 8546 schedule(); 8547 } 8548 8549 /** 8550 * sys_sched_yield - yield the current processor to other threads. 8551 * 8552 * This function yields the current CPU to other tasks. If there are no 8553 * other threads running on this CPU then this function will return. 8554 * 8555 * Return: 0. 8556 */ 8557 SYSCALL_DEFINE0(sched_yield) 8558 { 8559 do_sched_yield(); 8560 return 0; 8561 } 8562 8563 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8564 int __sched __cond_resched(void) 8565 { 8566 if (should_resched(0)) { 8567 preempt_schedule_common(); 8568 return 1; 8569 } 8570 /* 8571 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8572 * whether the current CPU is in an RCU read-side critical section, 8573 * so the tick can report quiescent states even for CPUs looping 8574 * in kernel context. In contrast, in non-preemptible kernels, 8575 * RCU readers leave no in-memory hints, which means that CPU-bound 8576 * processes executing in kernel context might never report an 8577 * RCU quiescent state. Therefore, the following code causes 8578 * cond_resched() to report a quiescent state, but only when RCU 8579 * is in urgent need of one. 8580 */ 8581 #ifndef CONFIG_PREEMPT_RCU 8582 rcu_all_qs(); 8583 #endif 8584 return 0; 8585 } 8586 EXPORT_SYMBOL(__cond_resched); 8587 #endif 8588 8589 #ifdef CONFIG_PREEMPT_DYNAMIC 8590 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8591 #define cond_resched_dynamic_enabled __cond_resched 8592 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8593 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8594 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8595 8596 #define might_resched_dynamic_enabled __cond_resched 8597 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8598 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8599 EXPORT_STATIC_CALL_TRAMP(might_resched); 8600 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8601 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8602 int __sched dynamic_cond_resched(void) 8603 { 8604 klp_sched_try_switch(); 8605 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8606 return 0; 8607 return __cond_resched(); 8608 } 8609 EXPORT_SYMBOL(dynamic_cond_resched); 8610 8611 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8612 int __sched dynamic_might_resched(void) 8613 { 8614 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8615 return 0; 8616 return __cond_resched(); 8617 } 8618 EXPORT_SYMBOL(dynamic_might_resched); 8619 #endif 8620 #endif 8621 8622 /* 8623 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8624 * call schedule, and on return reacquire the lock. 8625 * 8626 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8627 * operations here to prevent schedule() from being called twice (once via 8628 * spin_unlock(), once by hand). 8629 */ 8630 int __cond_resched_lock(spinlock_t *lock) 8631 { 8632 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8633 int ret = 0; 8634 8635 lockdep_assert_held(lock); 8636 8637 if (spin_needbreak(lock) || resched) { 8638 spin_unlock(lock); 8639 if (!_cond_resched()) 8640 cpu_relax(); 8641 ret = 1; 8642 spin_lock(lock); 8643 } 8644 return ret; 8645 } 8646 EXPORT_SYMBOL(__cond_resched_lock); 8647 8648 int __cond_resched_rwlock_read(rwlock_t *lock) 8649 { 8650 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8651 int ret = 0; 8652 8653 lockdep_assert_held_read(lock); 8654 8655 if (rwlock_needbreak(lock) || resched) { 8656 read_unlock(lock); 8657 if (!_cond_resched()) 8658 cpu_relax(); 8659 ret = 1; 8660 read_lock(lock); 8661 } 8662 return ret; 8663 } 8664 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8665 8666 int __cond_resched_rwlock_write(rwlock_t *lock) 8667 { 8668 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8669 int ret = 0; 8670 8671 lockdep_assert_held_write(lock); 8672 8673 if (rwlock_needbreak(lock) || resched) { 8674 write_unlock(lock); 8675 if (!_cond_resched()) 8676 cpu_relax(); 8677 ret = 1; 8678 write_lock(lock); 8679 } 8680 return ret; 8681 } 8682 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8683 8684 #ifdef CONFIG_PREEMPT_DYNAMIC 8685 8686 #ifdef CONFIG_GENERIC_ENTRY 8687 #include <linux/entry-common.h> 8688 #endif 8689 8690 /* 8691 * SC:cond_resched 8692 * SC:might_resched 8693 * SC:preempt_schedule 8694 * SC:preempt_schedule_notrace 8695 * SC:irqentry_exit_cond_resched 8696 * 8697 * 8698 * NONE: 8699 * cond_resched <- __cond_resched 8700 * might_resched <- RET0 8701 * preempt_schedule <- NOP 8702 * preempt_schedule_notrace <- NOP 8703 * irqentry_exit_cond_resched <- NOP 8704 * 8705 * VOLUNTARY: 8706 * cond_resched <- __cond_resched 8707 * might_resched <- __cond_resched 8708 * preempt_schedule <- NOP 8709 * preempt_schedule_notrace <- NOP 8710 * irqentry_exit_cond_resched <- NOP 8711 * 8712 * FULL: 8713 * cond_resched <- RET0 8714 * might_resched <- RET0 8715 * preempt_schedule <- preempt_schedule 8716 * preempt_schedule_notrace <- preempt_schedule_notrace 8717 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8718 */ 8719 8720 enum { 8721 preempt_dynamic_undefined = -1, 8722 preempt_dynamic_none, 8723 preempt_dynamic_voluntary, 8724 preempt_dynamic_full, 8725 }; 8726 8727 int preempt_dynamic_mode = preempt_dynamic_undefined; 8728 8729 int sched_dynamic_mode(const char *str) 8730 { 8731 if (!strcmp(str, "none")) 8732 return preempt_dynamic_none; 8733 8734 if (!strcmp(str, "voluntary")) 8735 return preempt_dynamic_voluntary; 8736 8737 if (!strcmp(str, "full")) 8738 return preempt_dynamic_full; 8739 8740 return -EINVAL; 8741 } 8742 8743 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8744 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8745 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8746 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8747 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8748 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8749 #else 8750 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8751 #endif 8752 8753 static DEFINE_MUTEX(sched_dynamic_mutex); 8754 static bool klp_override; 8755 8756 static void __sched_dynamic_update(int mode) 8757 { 8758 /* 8759 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8760 * the ZERO state, which is invalid. 8761 */ 8762 if (!klp_override) 8763 preempt_dynamic_enable(cond_resched); 8764 preempt_dynamic_enable(might_resched); 8765 preempt_dynamic_enable(preempt_schedule); 8766 preempt_dynamic_enable(preempt_schedule_notrace); 8767 preempt_dynamic_enable(irqentry_exit_cond_resched); 8768 8769 switch (mode) { 8770 case preempt_dynamic_none: 8771 if (!klp_override) 8772 preempt_dynamic_enable(cond_resched); 8773 preempt_dynamic_disable(might_resched); 8774 preempt_dynamic_disable(preempt_schedule); 8775 preempt_dynamic_disable(preempt_schedule_notrace); 8776 preempt_dynamic_disable(irqentry_exit_cond_resched); 8777 if (mode != preempt_dynamic_mode) 8778 pr_info("Dynamic Preempt: none\n"); 8779 break; 8780 8781 case preempt_dynamic_voluntary: 8782 if (!klp_override) 8783 preempt_dynamic_enable(cond_resched); 8784 preempt_dynamic_enable(might_resched); 8785 preempt_dynamic_disable(preempt_schedule); 8786 preempt_dynamic_disable(preempt_schedule_notrace); 8787 preempt_dynamic_disable(irqentry_exit_cond_resched); 8788 if (mode != preempt_dynamic_mode) 8789 pr_info("Dynamic Preempt: voluntary\n"); 8790 break; 8791 8792 case preempt_dynamic_full: 8793 if (!klp_override) 8794 preempt_dynamic_disable(cond_resched); 8795 preempt_dynamic_disable(might_resched); 8796 preempt_dynamic_enable(preempt_schedule); 8797 preempt_dynamic_enable(preempt_schedule_notrace); 8798 preempt_dynamic_enable(irqentry_exit_cond_resched); 8799 if (mode != preempt_dynamic_mode) 8800 pr_info("Dynamic Preempt: full\n"); 8801 break; 8802 } 8803 8804 preempt_dynamic_mode = mode; 8805 } 8806 8807 void sched_dynamic_update(int mode) 8808 { 8809 mutex_lock(&sched_dynamic_mutex); 8810 __sched_dynamic_update(mode); 8811 mutex_unlock(&sched_dynamic_mutex); 8812 } 8813 8814 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 8815 8816 static int klp_cond_resched(void) 8817 { 8818 __klp_sched_try_switch(); 8819 return __cond_resched(); 8820 } 8821 8822 void sched_dynamic_klp_enable(void) 8823 { 8824 mutex_lock(&sched_dynamic_mutex); 8825 8826 klp_override = true; 8827 static_call_update(cond_resched, klp_cond_resched); 8828 8829 mutex_unlock(&sched_dynamic_mutex); 8830 } 8831 8832 void sched_dynamic_klp_disable(void) 8833 { 8834 mutex_lock(&sched_dynamic_mutex); 8835 8836 klp_override = false; 8837 __sched_dynamic_update(preempt_dynamic_mode); 8838 8839 mutex_unlock(&sched_dynamic_mutex); 8840 } 8841 8842 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 8843 8844 static int __init setup_preempt_mode(char *str) 8845 { 8846 int mode = sched_dynamic_mode(str); 8847 if (mode < 0) { 8848 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8849 return 0; 8850 } 8851 8852 sched_dynamic_update(mode); 8853 return 1; 8854 } 8855 __setup("preempt=", setup_preempt_mode); 8856 8857 static void __init preempt_dynamic_init(void) 8858 { 8859 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8860 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8861 sched_dynamic_update(preempt_dynamic_none); 8862 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8863 sched_dynamic_update(preempt_dynamic_voluntary); 8864 } else { 8865 /* Default static call setting, nothing to do */ 8866 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8867 preempt_dynamic_mode = preempt_dynamic_full; 8868 pr_info("Dynamic Preempt: full\n"); 8869 } 8870 } 8871 } 8872 8873 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8874 bool preempt_model_##mode(void) \ 8875 { \ 8876 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8877 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8878 } \ 8879 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8880 8881 PREEMPT_MODEL_ACCESSOR(none); 8882 PREEMPT_MODEL_ACCESSOR(voluntary); 8883 PREEMPT_MODEL_ACCESSOR(full); 8884 8885 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8886 8887 static inline void preempt_dynamic_init(void) { } 8888 8889 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8890 8891 /** 8892 * yield - yield the current processor to other threads. 8893 * 8894 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8895 * 8896 * The scheduler is at all times free to pick the calling task as the most 8897 * eligible task to run, if removing the yield() call from your code breaks 8898 * it, it's already broken. 8899 * 8900 * Typical broken usage is: 8901 * 8902 * while (!event) 8903 * yield(); 8904 * 8905 * where one assumes that yield() will let 'the other' process run that will 8906 * make event true. If the current task is a SCHED_FIFO task that will never 8907 * happen. Never use yield() as a progress guarantee!! 8908 * 8909 * If you want to use yield() to wait for something, use wait_event(). 8910 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8911 * If you still want to use yield(), do not! 8912 */ 8913 void __sched yield(void) 8914 { 8915 set_current_state(TASK_RUNNING); 8916 do_sched_yield(); 8917 } 8918 EXPORT_SYMBOL(yield); 8919 8920 /** 8921 * yield_to - yield the current processor to another thread in 8922 * your thread group, or accelerate that thread toward the 8923 * processor it's on. 8924 * @p: target task 8925 * @preempt: whether task preemption is allowed or not 8926 * 8927 * It's the caller's job to ensure that the target task struct 8928 * can't go away on us before we can do any checks. 8929 * 8930 * Return: 8931 * true (>0) if we indeed boosted the target task. 8932 * false (0) if we failed to boost the target. 8933 * -ESRCH if there's no task to yield to. 8934 */ 8935 int __sched yield_to(struct task_struct *p, bool preempt) 8936 { 8937 struct task_struct *curr = current; 8938 struct rq *rq, *p_rq; 8939 unsigned long flags; 8940 int yielded = 0; 8941 8942 local_irq_save(flags); 8943 rq = this_rq(); 8944 8945 again: 8946 p_rq = task_rq(p); 8947 /* 8948 * If we're the only runnable task on the rq and target rq also 8949 * has only one task, there's absolutely no point in yielding. 8950 */ 8951 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8952 yielded = -ESRCH; 8953 goto out_irq; 8954 } 8955 8956 double_rq_lock(rq, p_rq); 8957 if (task_rq(p) != p_rq) { 8958 double_rq_unlock(rq, p_rq); 8959 goto again; 8960 } 8961 8962 if (!curr->sched_class->yield_to_task) 8963 goto out_unlock; 8964 8965 if (curr->sched_class != p->sched_class) 8966 goto out_unlock; 8967 8968 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8969 goto out_unlock; 8970 8971 yielded = curr->sched_class->yield_to_task(rq, p); 8972 if (yielded) { 8973 schedstat_inc(rq->yld_count); 8974 /* 8975 * Make p's CPU reschedule; pick_next_entity takes care of 8976 * fairness. 8977 */ 8978 if (preempt && rq != p_rq) 8979 resched_curr(p_rq); 8980 } 8981 8982 out_unlock: 8983 double_rq_unlock(rq, p_rq); 8984 out_irq: 8985 local_irq_restore(flags); 8986 8987 if (yielded > 0) 8988 schedule(); 8989 8990 return yielded; 8991 } 8992 EXPORT_SYMBOL_GPL(yield_to); 8993 8994 int io_schedule_prepare(void) 8995 { 8996 int old_iowait = current->in_iowait; 8997 8998 current->in_iowait = 1; 8999 blk_flush_plug(current->plug, true); 9000 return old_iowait; 9001 } 9002 9003 void io_schedule_finish(int token) 9004 { 9005 current->in_iowait = token; 9006 } 9007 9008 /* 9009 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 9010 * that process accounting knows that this is a task in IO wait state. 9011 */ 9012 long __sched io_schedule_timeout(long timeout) 9013 { 9014 int token; 9015 long ret; 9016 9017 token = io_schedule_prepare(); 9018 ret = schedule_timeout(timeout); 9019 io_schedule_finish(token); 9020 9021 return ret; 9022 } 9023 EXPORT_SYMBOL(io_schedule_timeout); 9024 9025 void __sched io_schedule(void) 9026 { 9027 int token; 9028 9029 token = io_schedule_prepare(); 9030 schedule(); 9031 io_schedule_finish(token); 9032 } 9033 EXPORT_SYMBOL(io_schedule); 9034 9035 /** 9036 * sys_sched_get_priority_max - return maximum RT priority. 9037 * @policy: scheduling class. 9038 * 9039 * Return: On success, this syscall returns the maximum 9040 * rt_priority that can be used by a given scheduling class. 9041 * On failure, a negative error code is returned. 9042 */ 9043 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 9044 { 9045 int ret = -EINVAL; 9046 9047 switch (policy) { 9048 case SCHED_FIFO: 9049 case SCHED_RR: 9050 ret = MAX_RT_PRIO-1; 9051 break; 9052 case SCHED_DEADLINE: 9053 case SCHED_NORMAL: 9054 case SCHED_BATCH: 9055 case SCHED_IDLE: 9056 ret = 0; 9057 break; 9058 } 9059 return ret; 9060 } 9061 9062 /** 9063 * sys_sched_get_priority_min - return minimum RT priority. 9064 * @policy: scheduling class. 9065 * 9066 * Return: On success, this syscall returns the minimum 9067 * rt_priority that can be used by a given scheduling class. 9068 * On failure, a negative error code is returned. 9069 */ 9070 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 9071 { 9072 int ret = -EINVAL; 9073 9074 switch (policy) { 9075 case SCHED_FIFO: 9076 case SCHED_RR: 9077 ret = 1; 9078 break; 9079 case SCHED_DEADLINE: 9080 case SCHED_NORMAL: 9081 case SCHED_BATCH: 9082 case SCHED_IDLE: 9083 ret = 0; 9084 } 9085 return ret; 9086 } 9087 9088 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 9089 { 9090 struct task_struct *p; 9091 unsigned int time_slice; 9092 struct rq_flags rf; 9093 struct rq *rq; 9094 int retval; 9095 9096 if (pid < 0) 9097 return -EINVAL; 9098 9099 retval = -ESRCH; 9100 rcu_read_lock(); 9101 p = find_process_by_pid(pid); 9102 if (!p) 9103 goto out_unlock; 9104 9105 retval = security_task_getscheduler(p); 9106 if (retval) 9107 goto out_unlock; 9108 9109 rq = task_rq_lock(p, &rf); 9110 time_slice = 0; 9111 if (p->sched_class->get_rr_interval) 9112 time_slice = p->sched_class->get_rr_interval(rq, p); 9113 task_rq_unlock(rq, p, &rf); 9114 9115 rcu_read_unlock(); 9116 jiffies_to_timespec64(time_slice, t); 9117 return 0; 9118 9119 out_unlock: 9120 rcu_read_unlock(); 9121 return retval; 9122 } 9123 9124 /** 9125 * sys_sched_rr_get_interval - return the default timeslice of a process. 9126 * @pid: pid of the process. 9127 * @interval: userspace pointer to the timeslice value. 9128 * 9129 * this syscall writes the default timeslice value of a given process 9130 * into the user-space timespec buffer. A value of '0' means infinity. 9131 * 9132 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 9133 * an error code. 9134 */ 9135 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 9136 struct __kernel_timespec __user *, interval) 9137 { 9138 struct timespec64 t; 9139 int retval = sched_rr_get_interval(pid, &t); 9140 9141 if (retval == 0) 9142 retval = put_timespec64(&t, interval); 9143 9144 return retval; 9145 } 9146 9147 #ifdef CONFIG_COMPAT_32BIT_TIME 9148 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 9149 struct old_timespec32 __user *, interval) 9150 { 9151 struct timespec64 t; 9152 int retval = sched_rr_get_interval(pid, &t); 9153 9154 if (retval == 0) 9155 retval = put_old_timespec32(&t, interval); 9156 return retval; 9157 } 9158 #endif 9159 9160 void sched_show_task(struct task_struct *p) 9161 { 9162 unsigned long free = 0; 9163 int ppid; 9164 9165 if (!try_get_task_stack(p)) 9166 return; 9167 9168 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9169 9170 if (task_is_running(p)) 9171 pr_cont(" running task "); 9172 #ifdef CONFIG_DEBUG_STACK_USAGE 9173 free = stack_not_used(p); 9174 #endif 9175 ppid = 0; 9176 rcu_read_lock(); 9177 if (pid_alive(p)) 9178 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9179 rcu_read_unlock(); 9180 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9181 free, task_pid_nr(p), ppid, 9182 read_task_thread_flags(p)); 9183 9184 print_worker_info(KERN_INFO, p); 9185 print_stop_info(KERN_INFO, p); 9186 show_stack(p, NULL, KERN_INFO); 9187 put_task_stack(p); 9188 } 9189 EXPORT_SYMBOL_GPL(sched_show_task); 9190 9191 static inline bool 9192 state_filter_match(unsigned long state_filter, struct task_struct *p) 9193 { 9194 unsigned int state = READ_ONCE(p->__state); 9195 9196 /* no filter, everything matches */ 9197 if (!state_filter) 9198 return true; 9199 9200 /* filter, but doesn't match */ 9201 if (!(state & state_filter)) 9202 return false; 9203 9204 /* 9205 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9206 * TASK_KILLABLE). 9207 */ 9208 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9209 return false; 9210 9211 return true; 9212 } 9213 9214 9215 void show_state_filter(unsigned int state_filter) 9216 { 9217 struct task_struct *g, *p; 9218 9219 rcu_read_lock(); 9220 for_each_process_thread(g, p) { 9221 /* 9222 * reset the NMI-timeout, listing all files on a slow 9223 * console might take a lot of time: 9224 * Also, reset softlockup watchdogs on all CPUs, because 9225 * another CPU might be blocked waiting for us to process 9226 * an IPI. 9227 */ 9228 touch_nmi_watchdog(); 9229 touch_all_softlockup_watchdogs(); 9230 if (state_filter_match(state_filter, p)) 9231 sched_show_task(p); 9232 } 9233 9234 #ifdef CONFIG_SCHED_DEBUG 9235 if (!state_filter) 9236 sysrq_sched_debug_show(); 9237 #endif 9238 rcu_read_unlock(); 9239 /* 9240 * Only show locks if all tasks are dumped: 9241 */ 9242 if (!state_filter) 9243 debug_show_all_locks(); 9244 } 9245 9246 /** 9247 * init_idle - set up an idle thread for a given CPU 9248 * @idle: task in question 9249 * @cpu: CPU the idle task belongs to 9250 * 9251 * NOTE: this function does not set the idle thread's NEED_RESCHED 9252 * flag, to make booting more robust. 9253 */ 9254 void __init init_idle(struct task_struct *idle, int cpu) 9255 { 9256 #ifdef CONFIG_SMP 9257 struct affinity_context ac = (struct affinity_context) { 9258 .new_mask = cpumask_of(cpu), 9259 .flags = 0, 9260 }; 9261 #endif 9262 struct rq *rq = cpu_rq(cpu); 9263 unsigned long flags; 9264 9265 __sched_fork(0, idle); 9266 9267 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9268 raw_spin_rq_lock(rq); 9269 9270 idle->__state = TASK_RUNNING; 9271 idle->se.exec_start = sched_clock(); 9272 /* 9273 * PF_KTHREAD should already be set at this point; regardless, make it 9274 * look like a proper per-CPU kthread. 9275 */ 9276 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 9277 kthread_set_per_cpu(idle, cpu); 9278 9279 #ifdef CONFIG_SMP 9280 /* 9281 * It's possible that init_idle() gets called multiple times on a task, 9282 * in that case do_set_cpus_allowed() will not do the right thing. 9283 * 9284 * And since this is boot we can forgo the serialization. 9285 */ 9286 set_cpus_allowed_common(idle, &ac); 9287 #endif 9288 /* 9289 * We're having a chicken and egg problem, even though we are 9290 * holding rq->lock, the CPU isn't yet set to this CPU so the 9291 * lockdep check in task_group() will fail. 9292 * 9293 * Similar case to sched_fork(). / Alternatively we could 9294 * use task_rq_lock() here and obtain the other rq->lock. 9295 * 9296 * Silence PROVE_RCU 9297 */ 9298 rcu_read_lock(); 9299 __set_task_cpu(idle, cpu); 9300 rcu_read_unlock(); 9301 9302 rq->idle = idle; 9303 rcu_assign_pointer(rq->curr, idle); 9304 idle->on_rq = TASK_ON_RQ_QUEUED; 9305 #ifdef CONFIG_SMP 9306 idle->on_cpu = 1; 9307 #endif 9308 raw_spin_rq_unlock(rq); 9309 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9310 9311 /* Set the preempt count _outside_ the spinlocks! */ 9312 init_idle_preempt_count(idle, cpu); 9313 9314 /* 9315 * The idle tasks have their own, simple scheduling class: 9316 */ 9317 idle->sched_class = &idle_sched_class; 9318 ftrace_graph_init_idle_task(idle, cpu); 9319 vtime_init_idle(idle, cpu); 9320 #ifdef CONFIG_SMP 9321 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9322 #endif 9323 } 9324 9325 #ifdef CONFIG_SMP 9326 9327 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9328 const struct cpumask *trial) 9329 { 9330 int ret = 1; 9331 9332 if (cpumask_empty(cur)) 9333 return ret; 9334 9335 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9336 9337 return ret; 9338 } 9339 9340 int task_can_attach(struct task_struct *p) 9341 { 9342 int ret = 0; 9343 9344 /* 9345 * Kthreads which disallow setaffinity shouldn't be moved 9346 * to a new cpuset; we don't want to change their CPU 9347 * affinity and isolating such threads by their set of 9348 * allowed nodes is unnecessary. Thus, cpusets are not 9349 * applicable for such threads. This prevents checking for 9350 * success of set_cpus_allowed_ptr() on all attached tasks 9351 * before cpus_mask may be changed. 9352 */ 9353 if (p->flags & PF_NO_SETAFFINITY) 9354 ret = -EINVAL; 9355 9356 return ret; 9357 } 9358 9359 bool sched_smp_initialized __read_mostly; 9360 9361 #ifdef CONFIG_NUMA_BALANCING 9362 /* Migrate current task p to target_cpu */ 9363 int migrate_task_to(struct task_struct *p, int target_cpu) 9364 { 9365 struct migration_arg arg = { p, target_cpu }; 9366 int curr_cpu = task_cpu(p); 9367 9368 if (curr_cpu == target_cpu) 9369 return 0; 9370 9371 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9372 return -EINVAL; 9373 9374 /* TODO: This is not properly updating schedstats */ 9375 9376 trace_sched_move_numa(p, curr_cpu, target_cpu); 9377 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9378 } 9379 9380 /* 9381 * Requeue a task on a given node and accurately track the number of NUMA 9382 * tasks on the runqueues 9383 */ 9384 void sched_setnuma(struct task_struct *p, int nid) 9385 { 9386 bool queued, running; 9387 struct rq_flags rf; 9388 struct rq *rq; 9389 9390 rq = task_rq_lock(p, &rf); 9391 queued = task_on_rq_queued(p); 9392 running = task_current(rq, p); 9393 9394 if (queued) 9395 dequeue_task(rq, p, DEQUEUE_SAVE); 9396 if (running) 9397 put_prev_task(rq, p); 9398 9399 p->numa_preferred_nid = nid; 9400 9401 if (queued) 9402 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9403 if (running) 9404 set_next_task(rq, p); 9405 task_rq_unlock(rq, p, &rf); 9406 } 9407 #endif /* CONFIG_NUMA_BALANCING */ 9408 9409 #ifdef CONFIG_HOTPLUG_CPU 9410 /* 9411 * Ensure that the idle task is using init_mm right before its CPU goes 9412 * offline. 9413 */ 9414 void idle_task_exit(void) 9415 { 9416 struct mm_struct *mm = current->active_mm; 9417 9418 BUG_ON(cpu_online(smp_processor_id())); 9419 BUG_ON(current != this_rq()->idle); 9420 9421 if (mm != &init_mm) { 9422 switch_mm(mm, &init_mm, current); 9423 finish_arch_post_lock_switch(); 9424 } 9425 9426 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9427 } 9428 9429 static int __balance_push_cpu_stop(void *arg) 9430 { 9431 struct task_struct *p = arg; 9432 struct rq *rq = this_rq(); 9433 struct rq_flags rf; 9434 int cpu; 9435 9436 raw_spin_lock_irq(&p->pi_lock); 9437 rq_lock(rq, &rf); 9438 9439 update_rq_clock(rq); 9440 9441 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9442 cpu = select_fallback_rq(rq->cpu, p); 9443 rq = __migrate_task(rq, &rf, p, cpu); 9444 } 9445 9446 rq_unlock(rq, &rf); 9447 raw_spin_unlock_irq(&p->pi_lock); 9448 9449 put_task_struct(p); 9450 9451 return 0; 9452 } 9453 9454 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9455 9456 /* 9457 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9458 * 9459 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9460 * effective when the hotplug motion is down. 9461 */ 9462 static void balance_push(struct rq *rq) 9463 { 9464 struct task_struct *push_task = rq->curr; 9465 9466 lockdep_assert_rq_held(rq); 9467 9468 /* 9469 * Ensure the thing is persistent until balance_push_set(.on = false); 9470 */ 9471 rq->balance_callback = &balance_push_callback; 9472 9473 /* 9474 * Only active while going offline and when invoked on the outgoing 9475 * CPU. 9476 */ 9477 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9478 return; 9479 9480 /* 9481 * Both the cpu-hotplug and stop task are in this case and are 9482 * required to complete the hotplug process. 9483 */ 9484 if (kthread_is_per_cpu(push_task) || 9485 is_migration_disabled(push_task)) { 9486 9487 /* 9488 * If this is the idle task on the outgoing CPU try to wake 9489 * up the hotplug control thread which might wait for the 9490 * last task to vanish. The rcuwait_active() check is 9491 * accurate here because the waiter is pinned on this CPU 9492 * and can't obviously be running in parallel. 9493 * 9494 * On RT kernels this also has to check whether there are 9495 * pinned and scheduled out tasks on the runqueue. They 9496 * need to leave the migrate disabled section first. 9497 */ 9498 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9499 rcuwait_active(&rq->hotplug_wait)) { 9500 raw_spin_rq_unlock(rq); 9501 rcuwait_wake_up(&rq->hotplug_wait); 9502 raw_spin_rq_lock(rq); 9503 } 9504 return; 9505 } 9506 9507 get_task_struct(push_task); 9508 /* 9509 * Temporarily drop rq->lock such that we can wake-up the stop task. 9510 * Both preemption and IRQs are still disabled. 9511 */ 9512 preempt_disable(); 9513 raw_spin_rq_unlock(rq); 9514 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9515 this_cpu_ptr(&push_work)); 9516 preempt_enable(); 9517 /* 9518 * At this point need_resched() is true and we'll take the loop in 9519 * schedule(). The next pick is obviously going to be the stop task 9520 * which kthread_is_per_cpu() and will push this task away. 9521 */ 9522 raw_spin_rq_lock(rq); 9523 } 9524 9525 static void balance_push_set(int cpu, bool on) 9526 { 9527 struct rq *rq = cpu_rq(cpu); 9528 struct rq_flags rf; 9529 9530 rq_lock_irqsave(rq, &rf); 9531 if (on) { 9532 WARN_ON_ONCE(rq->balance_callback); 9533 rq->balance_callback = &balance_push_callback; 9534 } else if (rq->balance_callback == &balance_push_callback) { 9535 rq->balance_callback = NULL; 9536 } 9537 rq_unlock_irqrestore(rq, &rf); 9538 } 9539 9540 /* 9541 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9542 * inactive. All tasks which are not per CPU kernel threads are either 9543 * pushed off this CPU now via balance_push() or placed on a different CPU 9544 * during wakeup. Wait until the CPU is quiescent. 9545 */ 9546 static void balance_hotplug_wait(void) 9547 { 9548 struct rq *rq = this_rq(); 9549 9550 rcuwait_wait_event(&rq->hotplug_wait, 9551 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9552 TASK_UNINTERRUPTIBLE); 9553 } 9554 9555 #else 9556 9557 static inline void balance_push(struct rq *rq) 9558 { 9559 } 9560 9561 static inline void balance_push_set(int cpu, bool on) 9562 { 9563 } 9564 9565 static inline void balance_hotplug_wait(void) 9566 { 9567 } 9568 9569 #endif /* CONFIG_HOTPLUG_CPU */ 9570 9571 void set_rq_online(struct rq *rq) 9572 { 9573 if (!rq->online) { 9574 const struct sched_class *class; 9575 9576 cpumask_set_cpu(rq->cpu, rq->rd->online); 9577 rq->online = 1; 9578 9579 for_each_class(class) { 9580 if (class->rq_online) 9581 class->rq_online(rq); 9582 } 9583 } 9584 } 9585 9586 void set_rq_offline(struct rq *rq) 9587 { 9588 if (rq->online) { 9589 const struct sched_class *class; 9590 9591 update_rq_clock(rq); 9592 for_each_class(class) { 9593 if (class->rq_offline) 9594 class->rq_offline(rq); 9595 } 9596 9597 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9598 rq->online = 0; 9599 } 9600 } 9601 9602 /* 9603 * used to mark begin/end of suspend/resume: 9604 */ 9605 static int num_cpus_frozen; 9606 9607 /* 9608 * Update cpusets according to cpu_active mask. If cpusets are 9609 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9610 * around partition_sched_domains(). 9611 * 9612 * If we come here as part of a suspend/resume, don't touch cpusets because we 9613 * want to restore it back to its original state upon resume anyway. 9614 */ 9615 static void cpuset_cpu_active(void) 9616 { 9617 if (cpuhp_tasks_frozen) { 9618 /* 9619 * num_cpus_frozen tracks how many CPUs are involved in suspend 9620 * resume sequence. As long as this is not the last online 9621 * operation in the resume sequence, just build a single sched 9622 * domain, ignoring cpusets. 9623 */ 9624 partition_sched_domains(1, NULL, NULL); 9625 if (--num_cpus_frozen) 9626 return; 9627 /* 9628 * This is the last CPU online operation. So fall through and 9629 * restore the original sched domains by considering the 9630 * cpuset configurations. 9631 */ 9632 cpuset_force_rebuild(); 9633 } 9634 cpuset_update_active_cpus(); 9635 } 9636 9637 static int cpuset_cpu_inactive(unsigned int cpu) 9638 { 9639 if (!cpuhp_tasks_frozen) { 9640 int ret = dl_bw_check_overflow(cpu); 9641 9642 if (ret) 9643 return ret; 9644 cpuset_update_active_cpus(); 9645 } else { 9646 num_cpus_frozen++; 9647 partition_sched_domains(1, NULL, NULL); 9648 } 9649 return 0; 9650 } 9651 9652 int sched_cpu_activate(unsigned int cpu) 9653 { 9654 struct rq *rq = cpu_rq(cpu); 9655 struct rq_flags rf; 9656 9657 /* 9658 * Clear the balance_push callback and prepare to schedule 9659 * regular tasks. 9660 */ 9661 balance_push_set(cpu, false); 9662 9663 #ifdef CONFIG_SCHED_SMT 9664 /* 9665 * When going up, increment the number of cores with SMT present. 9666 */ 9667 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9668 static_branch_inc_cpuslocked(&sched_smt_present); 9669 #endif 9670 set_cpu_active(cpu, true); 9671 9672 if (sched_smp_initialized) { 9673 sched_update_numa(cpu, true); 9674 sched_domains_numa_masks_set(cpu); 9675 cpuset_cpu_active(); 9676 } 9677 9678 /* 9679 * Put the rq online, if not already. This happens: 9680 * 9681 * 1) In the early boot process, because we build the real domains 9682 * after all CPUs have been brought up. 9683 * 9684 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9685 * domains. 9686 */ 9687 rq_lock_irqsave(rq, &rf); 9688 if (rq->rd) { 9689 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9690 set_rq_online(rq); 9691 } 9692 rq_unlock_irqrestore(rq, &rf); 9693 9694 return 0; 9695 } 9696 9697 int sched_cpu_deactivate(unsigned int cpu) 9698 { 9699 struct rq *rq = cpu_rq(cpu); 9700 struct rq_flags rf; 9701 int ret; 9702 9703 /* 9704 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9705 * load balancing when not active 9706 */ 9707 nohz_balance_exit_idle(rq); 9708 9709 set_cpu_active(cpu, false); 9710 9711 /* 9712 * From this point forward, this CPU will refuse to run any task that 9713 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9714 * push those tasks away until this gets cleared, see 9715 * sched_cpu_dying(). 9716 */ 9717 balance_push_set(cpu, true); 9718 9719 /* 9720 * We've cleared cpu_active_mask / set balance_push, wait for all 9721 * preempt-disabled and RCU users of this state to go away such that 9722 * all new such users will observe it. 9723 * 9724 * Specifically, we rely on ttwu to no longer target this CPU, see 9725 * ttwu_queue_cond() and is_cpu_allowed(). 9726 * 9727 * Do sync before park smpboot threads to take care the rcu boost case. 9728 */ 9729 synchronize_rcu(); 9730 9731 rq_lock_irqsave(rq, &rf); 9732 if (rq->rd) { 9733 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9734 set_rq_offline(rq); 9735 } 9736 rq_unlock_irqrestore(rq, &rf); 9737 9738 #ifdef CONFIG_SCHED_SMT 9739 /* 9740 * When going down, decrement the number of cores with SMT present. 9741 */ 9742 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9743 static_branch_dec_cpuslocked(&sched_smt_present); 9744 9745 sched_core_cpu_deactivate(cpu); 9746 #endif 9747 9748 if (!sched_smp_initialized) 9749 return 0; 9750 9751 sched_update_numa(cpu, false); 9752 ret = cpuset_cpu_inactive(cpu); 9753 if (ret) { 9754 balance_push_set(cpu, false); 9755 set_cpu_active(cpu, true); 9756 sched_update_numa(cpu, true); 9757 return ret; 9758 } 9759 sched_domains_numa_masks_clear(cpu); 9760 return 0; 9761 } 9762 9763 static void sched_rq_cpu_starting(unsigned int cpu) 9764 { 9765 struct rq *rq = cpu_rq(cpu); 9766 9767 rq->calc_load_update = calc_load_update; 9768 update_max_interval(); 9769 } 9770 9771 int sched_cpu_starting(unsigned int cpu) 9772 { 9773 sched_core_cpu_starting(cpu); 9774 sched_rq_cpu_starting(cpu); 9775 sched_tick_start(cpu); 9776 return 0; 9777 } 9778 9779 #ifdef CONFIG_HOTPLUG_CPU 9780 9781 /* 9782 * Invoked immediately before the stopper thread is invoked to bring the 9783 * CPU down completely. At this point all per CPU kthreads except the 9784 * hotplug thread (current) and the stopper thread (inactive) have been 9785 * either parked or have been unbound from the outgoing CPU. Ensure that 9786 * any of those which might be on the way out are gone. 9787 * 9788 * If after this point a bound task is being woken on this CPU then the 9789 * responsible hotplug callback has failed to do it's job. 9790 * sched_cpu_dying() will catch it with the appropriate fireworks. 9791 */ 9792 int sched_cpu_wait_empty(unsigned int cpu) 9793 { 9794 balance_hotplug_wait(); 9795 return 0; 9796 } 9797 9798 /* 9799 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9800 * might have. Called from the CPU stopper task after ensuring that the 9801 * stopper is the last running task on the CPU, so nr_active count is 9802 * stable. We need to take the teardown thread which is calling this into 9803 * account, so we hand in adjust = 1 to the load calculation. 9804 * 9805 * Also see the comment "Global load-average calculations". 9806 */ 9807 static void calc_load_migrate(struct rq *rq) 9808 { 9809 long delta = calc_load_fold_active(rq, 1); 9810 9811 if (delta) 9812 atomic_long_add(delta, &calc_load_tasks); 9813 } 9814 9815 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9816 { 9817 struct task_struct *g, *p; 9818 int cpu = cpu_of(rq); 9819 9820 lockdep_assert_rq_held(rq); 9821 9822 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9823 for_each_process_thread(g, p) { 9824 if (task_cpu(p) != cpu) 9825 continue; 9826 9827 if (!task_on_rq_queued(p)) 9828 continue; 9829 9830 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9831 } 9832 } 9833 9834 int sched_cpu_dying(unsigned int cpu) 9835 { 9836 struct rq *rq = cpu_rq(cpu); 9837 struct rq_flags rf; 9838 9839 /* Handle pending wakeups and then migrate everything off */ 9840 sched_tick_stop(cpu); 9841 9842 rq_lock_irqsave(rq, &rf); 9843 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9844 WARN(true, "Dying CPU not properly vacated!"); 9845 dump_rq_tasks(rq, KERN_WARNING); 9846 } 9847 rq_unlock_irqrestore(rq, &rf); 9848 9849 calc_load_migrate(rq); 9850 update_max_interval(); 9851 hrtick_clear(rq); 9852 sched_core_cpu_dying(cpu); 9853 return 0; 9854 } 9855 #endif 9856 9857 void __init sched_init_smp(void) 9858 { 9859 sched_init_numa(NUMA_NO_NODE); 9860 9861 /* 9862 * There's no userspace yet to cause hotplug operations; hence all the 9863 * CPU masks are stable and all blatant races in the below code cannot 9864 * happen. 9865 */ 9866 mutex_lock(&sched_domains_mutex); 9867 sched_init_domains(cpu_active_mask); 9868 mutex_unlock(&sched_domains_mutex); 9869 9870 /* Move init over to a non-isolated CPU */ 9871 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9872 BUG(); 9873 current->flags &= ~PF_NO_SETAFFINITY; 9874 sched_init_granularity(); 9875 9876 init_sched_rt_class(); 9877 init_sched_dl_class(); 9878 9879 sched_smp_initialized = true; 9880 } 9881 9882 static int __init migration_init(void) 9883 { 9884 sched_cpu_starting(smp_processor_id()); 9885 return 0; 9886 } 9887 early_initcall(migration_init); 9888 9889 #else 9890 void __init sched_init_smp(void) 9891 { 9892 sched_init_granularity(); 9893 } 9894 #endif /* CONFIG_SMP */ 9895 9896 int in_sched_functions(unsigned long addr) 9897 { 9898 return in_lock_functions(addr) || 9899 (addr >= (unsigned long)__sched_text_start 9900 && addr < (unsigned long)__sched_text_end); 9901 } 9902 9903 #ifdef CONFIG_CGROUP_SCHED 9904 /* 9905 * Default task group. 9906 * Every task in system belongs to this group at bootup. 9907 */ 9908 struct task_group root_task_group; 9909 LIST_HEAD(task_groups); 9910 9911 /* Cacheline aligned slab cache for task_group */ 9912 static struct kmem_cache *task_group_cache __read_mostly; 9913 #endif 9914 9915 void __init sched_init(void) 9916 { 9917 unsigned long ptr = 0; 9918 int i; 9919 9920 /* Make sure the linker didn't screw up */ 9921 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9922 &fair_sched_class != &rt_sched_class + 1 || 9923 &rt_sched_class != &dl_sched_class + 1); 9924 #ifdef CONFIG_SMP 9925 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9926 #endif 9927 9928 wait_bit_init(); 9929 9930 #ifdef CONFIG_FAIR_GROUP_SCHED 9931 ptr += 2 * nr_cpu_ids * sizeof(void **); 9932 #endif 9933 #ifdef CONFIG_RT_GROUP_SCHED 9934 ptr += 2 * nr_cpu_ids * sizeof(void **); 9935 #endif 9936 if (ptr) { 9937 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9938 9939 #ifdef CONFIG_FAIR_GROUP_SCHED 9940 root_task_group.se = (struct sched_entity **)ptr; 9941 ptr += nr_cpu_ids * sizeof(void **); 9942 9943 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9944 ptr += nr_cpu_ids * sizeof(void **); 9945 9946 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9947 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 9948 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9949 #ifdef CONFIG_RT_GROUP_SCHED 9950 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9951 ptr += nr_cpu_ids * sizeof(void **); 9952 9953 root_task_group.rt_rq = (struct rt_rq **)ptr; 9954 ptr += nr_cpu_ids * sizeof(void **); 9955 9956 #endif /* CONFIG_RT_GROUP_SCHED */ 9957 } 9958 9959 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9960 9961 #ifdef CONFIG_SMP 9962 init_defrootdomain(); 9963 #endif 9964 9965 #ifdef CONFIG_RT_GROUP_SCHED 9966 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9967 global_rt_period(), global_rt_runtime()); 9968 #endif /* CONFIG_RT_GROUP_SCHED */ 9969 9970 #ifdef CONFIG_CGROUP_SCHED 9971 task_group_cache = KMEM_CACHE(task_group, 0); 9972 9973 list_add(&root_task_group.list, &task_groups); 9974 INIT_LIST_HEAD(&root_task_group.children); 9975 INIT_LIST_HEAD(&root_task_group.siblings); 9976 autogroup_init(&init_task); 9977 #endif /* CONFIG_CGROUP_SCHED */ 9978 9979 for_each_possible_cpu(i) { 9980 struct rq *rq; 9981 9982 rq = cpu_rq(i); 9983 raw_spin_lock_init(&rq->__lock); 9984 rq->nr_running = 0; 9985 rq->calc_load_active = 0; 9986 rq->calc_load_update = jiffies + LOAD_FREQ; 9987 init_cfs_rq(&rq->cfs); 9988 init_rt_rq(&rq->rt); 9989 init_dl_rq(&rq->dl); 9990 #ifdef CONFIG_FAIR_GROUP_SCHED 9991 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9992 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9993 /* 9994 * How much CPU bandwidth does root_task_group get? 9995 * 9996 * In case of task-groups formed thr' the cgroup filesystem, it 9997 * gets 100% of the CPU resources in the system. This overall 9998 * system CPU resource is divided among the tasks of 9999 * root_task_group and its child task-groups in a fair manner, 10000 * based on each entity's (task or task-group's) weight 10001 * (se->load.weight). 10002 * 10003 * In other words, if root_task_group has 10 tasks of weight 10004 * 1024) and two child groups A0 and A1 (of weight 1024 each), 10005 * then A0's share of the CPU resource is: 10006 * 10007 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 10008 * 10009 * We achieve this by letting root_task_group's tasks sit 10010 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 10011 */ 10012 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 10013 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10014 10015 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 10016 #ifdef CONFIG_RT_GROUP_SCHED 10017 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 10018 #endif 10019 #ifdef CONFIG_SMP 10020 rq->sd = NULL; 10021 rq->rd = NULL; 10022 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 10023 rq->balance_callback = &balance_push_callback; 10024 rq->active_balance = 0; 10025 rq->next_balance = jiffies; 10026 rq->push_cpu = 0; 10027 rq->cpu = i; 10028 rq->online = 0; 10029 rq->idle_stamp = 0; 10030 rq->avg_idle = 2*sysctl_sched_migration_cost; 10031 rq->wake_stamp = jiffies; 10032 rq->wake_avg_idle = rq->avg_idle; 10033 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 10034 10035 INIT_LIST_HEAD(&rq->cfs_tasks); 10036 10037 rq_attach_root(rq, &def_root_domain); 10038 #ifdef CONFIG_NO_HZ_COMMON 10039 rq->last_blocked_load_update_tick = jiffies; 10040 atomic_set(&rq->nohz_flags, 0); 10041 10042 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 10043 #endif 10044 #ifdef CONFIG_HOTPLUG_CPU 10045 rcuwait_init(&rq->hotplug_wait); 10046 #endif 10047 #endif /* CONFIG_SMP */ 10048 hrtick_rq_init(rq); 10049 atomic_set(&rq->nr_iowait, 0); 10050 10051 #ifdef CONFIG_SCHED_CORE 10052 rq->core = rq; 10053 rq->core_pick = NULL; 10054 rq->core_enabled = 0; 10055 rq->core_tree = RB_ROOT; 10056 rq->core_forceidle_count = 0; 10057 rq->core_forceidle_occupation = 0; 10058 rq->core_forceidle_start = 0; 10059 10060 rq->core_cookie = 0UL; 10061 #endif 10062 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 10063 } 10064 10065 set_load_weight(&init_task, false); 10066 10067 /* 10068 * The boot idle thread does lazy MMU switching as well: 10069 */ 10070 mmgrab_lazy_tlb(&init_mm); 10071 enter_lazy_tlb(&init_mm, current); 10072 10073 /* 10074 * The idle task doesn't need the kthread struct to function, but it 10075 * is dressed up as a per-CPU kthread and thus needs to play the part 10076 * if we want to avoid special-casing it in code that deals with per-CPU 10077 * kthreads. 10078 */ 10079 WARN_ON(!set_kthread_struct(current)); 10080 10081 /* 10082 * Make us the idle thread. Technically, schedule() should not be 10083 * called from this thread, however somewhere below it might be, 10084 * but because we are the idle thread, we just pick up running again 10085 * when this runqueue becomes "idle". 10086 */ 10087 init_idle(current, smp_processor_id()); 10088 10089 calc_load_update = jiffies + LOAD_FREQ; 10090 10091 #ifdef CONFIG_SMP 10092 idle_thread_set_boot_cpu(); 10093 balance_push_set(smp_processor_id(), false); 10094 #endif 10095 init_sched_fair_class(); 10096 10097 psi_init(); 10098 10099 init_uclamp(); 10100 10101 preempt_dynamic_init(); 10102 10103 scheduler_running = 1; 10104 } 10105 10106 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 10107 10108 void __might_sleep(const char *file, int line) 10109 { 10110 unsigned int state = get_current_state(); 10111 /* 10112 * Blocking primitives will set (and therefore destroy) current->state, 10113 * since we will exit with TASK_RUNNING make sure we enter with it, 10114 * otherwise we will destroy state. 10115 */ 10116 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 10117 "do not call blocking ops when !TASK_RUNNING; " 10118 "state=%x set at [<%p>] %pS\n", state, 10119 (void *)current->task_state_change, 10120 (void *)current->task_state_change); 10121 10122 __might_resched(file, line, 0); 10123 } 10124 EXPORT_SYMBOL(__might_sleep); 10125 10126 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 10127 { 10128 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 10129 return; 10130 10131 if (preempt_count() == preempt_offset) 10132 return; 10133 10134 pr_err("Preemption disabled at:"); 10135 print_ip_sym(KERN_ERR, ip); 10136 } 10137 10138 static inline bool resched_offsets_ok(unsigned int offsets) 10139 { 10140 unsigned int nested = preempt_count(); 10141 10142 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 10143 10144 return nested == offsets; 10145 } 10146 10147 void __might_resched(const char *file, int line, unsigned int offsets) 10148 { 10149 /* Ratelimiting timestamp: */ 10150 static unsigned long prev_jiffy; 10151 10152 unsigned long preempt_disable_ip; 10153 10154 /* WARN_ON_ONCE() by default, no rate limit required: */ 10155 rcu_sleep_check(); 10156 10157 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10158 !is_idle_task(current) && !current->non_block_count) || 10159 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10160 oops_in_progress) 10161 return; 10162 10163 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10164 return; 10165 prev_jiffy = jiffies; 10166 10167 /* Save this before calling printk(), since that will clobber it: */ 10168 preempt_disable_ip = get_preempt_disable_ip(current); 10169 10170 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10171 file, line); 10172 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10173 in_atomic(), irqs_disabled(), current->non_block_count, 10174 current->pid, current->comm); 10175 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10176 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10177 10178 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10179 pr_err("RCU nest depth: %d, expected: %u\n", 10180 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10181 } 10182 10183 if (task_stack_end_corrupted(current)) 10184 pr_emerg("Thread overran stack, or stack corrupted\n"); 10185 10186 debug_show_held_locks(current); 10187 if (irqs_disabled()) 10188 print_irqtrace_events(current); 10189 10190 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10191 preempt_disable_ip); 10192 10193 dump_stack(); 10194 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10195 } 10196 EXPORT_SYMBOL(__might_resched); 10197 10198 void __cant_sleep(const char *file, int line, int preempt_offset) 10199 { 10200 static unsigned long prev_jiffy; 10201 10202 if (irqs_disabled()) 10203 return; 10204 10205 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10206 return; 10207 10208 if (preempt_count() > preempt_offset) 10209 return; 10210 10211 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10212 return; 10213 prev_jiffy = jiffies; 10214 10215 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10216 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10217 in_atomic(), irqs_disabled(), 10218 current->pid, current->comm); 10219 10220 debug_show_held_locks(current); 10221 dump_stack(); 10222 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10223 } 10224 EXPORT_SYMBOL_GPL(__cant_sleep); 10225 10226 #ifdef CONFIG_SMP 10227 void __cant_migrate(const char *file, int line) 10228 { 10229 static unsigned long prev_jiffy; 10230 10231 if (irqs_disabled()) 10232 return; 10233 10234 if (is_migration_disabled(current)) 10235 return; 10236 10237 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10238 return; 10239 10240 if (preempt_count() > 0) 10241 return; 10242 10243 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10244 return; 10245 prev_jiffy = jiffies; 10246 10247 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10248 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10249 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10250 current->pid, current->comm); 10251 10252 debug_show_held_locks(current); 10253 dump_stack(); 10254 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10255 } 10256 EXPORT_SYMBOL_GPL(__cant_migrate); 10257 #endif 10258 #endif 10259 10260 #ifdef CONFIG_MAGIC_SYSRQ 10261 void normalize_rt_tasks(void) 10262 { 10263 struct task_struct *g, *p; 10264 struct sched_attr attr = { 10265 .sched_policy = SCHED_NORMAL, 10266 }; 10267 10268 read_lock(&tasklist_lock); 10269 for_each_process_thread(g, p) { 10270 /* 10271 * Only normalize user tasks: 10272 */ 10273 if (p->flags & PF_KTHREAD) 10274 continue; 10275 10276 p->se.exec_start = 0; 10277 schedstat_set(p->stats.wait_start, 0); 10278 schedstat_set(p->stats.sleep_start, 0); 10279 schedstat_set(p->stats.block_start, 0); 10280 10281 if (!dl_task(p) && !rt_task(p)) { 10282 /* 10283 * Renice negative nice level userspace 10284 * tasks back to 0: 10285 */ 10286 if (task_nice(p) < 0) 10287 set_user_nice(p, 0); 10288 continue; 10289 } 10290 10291 __sched_setscheduler(p, &attr, false, false); 10292 } 10293 read_unlock(&tasklist_lock); 10294 } 10295 10296 #endif /* CONFIG_MAGIC_SYSRQ */ 10297 10298 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10299 /* 10300 * These functions are only useful for the IA64 MCA handling, or kdb. 10301 * 10302 * They can only be called when the whole system has been 10303 * stopped - every CPU needs to be quiescent, and no scheduling 10304 * activity can take place. Using them for anything else would 10305 * be a serious bug, and as a result, they aren't even visible 10306 * under any other configuration. 10307 */ 10308 10309 /** 10310 * curr_task - return the current task for a given CPU. 10311 * @cpu: the processor in question. 10312 * 10313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10314 * 10315 * Return: The current task for @cpu. 10316 */ 10317 struct task_struct *curr_task(int cpu) 10318 { 10319 return cpu_curr(cpu); 10320 } 10321 10322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10323 10324 #ifdef CONFIG_IA64 10325 /** 10326 * ia64_set_curr_task - set the current task for a given CPU. 10327 * @cpu: the processor in question. 10328 * @p: the task pointer to set. 10329 * 10330 * Description: This function must only be used when non-maskable interrupts 10331 * are serviced on a separate stack. It allows the architecture to switch the 10332 * notion of the current task on a CPU in a non-blocking manner. This function 10333 * must be called with all CPU's synchronized, and interrupts disabled, the 10334 * and caller must save the original value of the current task (see 10335 * curr_task() above) and restore that value before reenabling interrupts and 10336 * re-starting the system. 10337 * 10338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10339 */ 10340 void ia64_set_curr_task(int cpu, struct task_struct *p) 10341 { 10342 cpu_curr(cpu) = p; 10343 } 10344 10345 #endif 10346 10347 #ifdef CONFIG_CGROUP_SCHED 10348 /* task_group_lock serializes the addition/removal of task groups */ 10349 static DEFINE_SPINLOCK(task_group_lock); 10350 10351 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10352 struct task_group *parent) 10353 { 10354 #ifdef CONFIG_UCLAMP_TASK_GROUP 10355 enum uclamp_id clamp_id; 10356 10357 for_each_clamp_id(clamp_id) { 10358 uclamp_se_set(&tg->uclamp_req[clamp_id], 10359 uclamp_none(clamp_id), false); 10360 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10361 } 10362 #endif 10363 } 10364 10365 static void sched_free_group(struct task_group *tg) 10366 { 10367 free_fair_sched_group(tg); 10368 free_rt_sched_group(tg); 10369 autogroup_free(tg); 10370 kmem_cache_free(task_group_cache, tg); 10371 } 10372 10373 static void sched_free_group_rcu(struct rcu_head *rcu) 10374 { 10375 sched_free_group(container_of(rcu, struct task_group, rcu)); 10376 } 10377 10378 static void sched_unregister_group(struct task_group *tg) 10379 { 10380 unregister_fair_sched_group(tg); 10381 unregister_rt_sched_group(tg); 10382 /* 10383 * We have to wait for yet another RCU grace period to expire, as 10384 * print_cfs_stats() might run concurrently. 10385 */ 10386 call_rcu(&tg->rcu, sched_free_group_rcu); 10387 } 10388 10389 /* allocate runqueue etc for a new task group */ 10390 struct task_group *sched_create_group(struct task_group *parent) 10391 { 10392 struct task_group *tg; 10393 10394 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10395 if (!tg) 10396 return ERR_PTR(-ENOMEM); 10397 10398 if (!alloc_fair_sched_group(tg, parent)) 10399 goto err; 10400 10401 if (!alloc_rt_sched_group(tg, parent)) 10402 goto err; 10403 10404 alloc_uclamp_sched_group(tg, parent); 10405 10406 return tg; 10407 10408 err: 10409 sched_free_group(tg); 10410 return ERR_PTR(-ENOMEM); 10411 } 10412 10413 void sched_online_group(struct task_group *tg, struct task_group *parent) 10414 { 10415 unsigned long flags; 10416 10417 spin_lock_irqsave(&task_group_lock, flags); 10418 list_add_rcu(&tg->list, &task_groups); 10419 10420 /* Root should already exist: */ 10421 WARN_ON(!parent); 10422 10423 tg->parent = parent; 10424 INIT_LIST_HEAD(&tg->children); 10425 list_add_rcu(&tg->siblings, &parent->children); 10426 spin_unlock_irqrestore(&task_group_lock, flags); 10427 10428 online_fair_sched_group(tg); 10429 } 10430 10431 /* rcu callback to free various structures associated with a task group */ 10432 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10433 { 10434 /* Now it should be safe to free those cfs_rqs: */ 10435 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10436 } 10437 10438 void sched_destroy_group(struct task_group *tg) 10439 { 10440 /* Wait for possible concurrent references to cfs_rqs complete: */ 10441 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10442 } 10443 10444 void sched_release_group(struct task_group *tg) 10445 { 10446 unsigned long flags; 10447 10448 /* 10449 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10450 * sched_cfs_period_timer()). 10451 * 10452 * For this to be effective, we have to wait for all pending users of 10453 * this task group to leave their RCU critical section to ensure no new 10454 * user will see our dying task group any more. Specifically ensure 10455 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10456 * 10457 * We therefore defer calling unregister_fair_sched_group() to 10458 * sched_unregister_group() which is guarantied to get called only after the 10459 * current RCU grace period has expired. 10460 */ 10461 spin_lock_irqsave(&task_group_lock, flags); 10462 list_del_rcu(&tg->list); 10463 list_del_rcu(&tg->siblings); 10464 spin_unlock_irqrestore(&task_group_lock, flags); 10465 } 10466 10467 static struct task_group *sched_get_task_group(struct task_struct *tsk) 10468 { 10469 struct task_group *tg; 10470 10471 /* 10472 * All callers are synchronized by task_rq_lock(); we do not use RCU 10473 * which is pointless here. Thus, we pass "true" to task_css_check() 10474 * to prevent lockdep warnings. 10475 */ 10476 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10477 struct task_group, css); 10478 tg = autogroup_task_group(tsk, tg); 10479 10480 return tg; 10481 } 10482 10483 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 10484 { 10485 tsk->sched_task_group = group; 10486 10487 #ifdef CONFIG_FAIR_GROUP_SCHED 10488 if (tsk->sched_class->task_change_group) 10489 tsk->sched_class->task_change_group(tsk); 10490 else 10491 #endif 10492 set_task_rq(tsk, task_cpu(tsk)); 10493 } 10494 10495 /* 10496 * Change task's runqueue when it moves between groups. 10497 * 10498 * The caller of this function should have put the task in its new group by 10499 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10500 * its new group. 10501 */ 10502 void sched_move_task(struct task_struct *tsk) 10503 { 10504 int queued, running, queue_flags = 10505 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10506 struct task_group *group; 10507 struct rq_flags rf; 10508 struct rq *rq; 10509 10510 rq = task_rq_lock(tsk, &rf); 10511 /* 10512 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 10513 * group changes. 10514 */ 10515 group = sched_get_task_group(tsk); 10516 if (group == tsk->sched_task_group) 10517 goto unlock; 10518 10519 update_rq_clock(rq); 10520 10521 running = task_current(rq, tsk); 10522 queued = task_on_rq_queued(tsk); 10523 10524 if (queued) 10525 dequeue_task(rq, tsk, queue_flags); 10526 if (running) 10527 put_prev_task(rq, tsk); 10528 10529 sched_change_group(tsk, group); 10530 10531 if (queued) 10532 enqueue_task(rq, tsk, queue_flags); 10533 if (running) { 10534 set_next_task(rq, tsk); 10535 /* 10536 * After changing group, the running task may have joined a 10537 * throttled one but it's still the running task. Trigger a 10538 * resched to make sure that task can still run. 10539 */ 10540 resched_curr(rq); 10541 } 10542 10543 unlock: 10544 task_rq_unlock(rq, tsk, &rf); 10545 } 10546 10547 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10548 { 10549 return css ? container_of(css, struct task_group, css) : NULL; 10550 } 10551 10552 static struct cgroup_subsys_state * 10553 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10554 { 10555 struct task_group *parent = css_tg(parent_css); 10556 struct task_group *tg; 10557 10558 if (!parent) { 10559 /* This is early initialization for the top cgroup */ 10560 return &root_task_group.css; 10561 } 10562 10563 tg = sched_create_group(parent); 10564 if (IS_ERR(tg)) 10565 return ERR_PTR(-ENOMEM); 10566 10567 return &tg->css; 10568 } 10569 10570 /* Expose task group only after completing cgroup initialization */ 10571 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10572 { 10573 struct task_group *tg = css_tg(css); 10574 struct task_group *parent = css_tg(css->parent); 10575 10576 if (parent) 10577 sched_online_group(tg, parent); 10578 10579 #ifdef CONFIG_UCLAMP_TASK_GROUP 10580 /* Propagate the effective uclamp value for the new group */ 10581 mutex_lock(&uclamp_mutex); 10582 rcu_read_lock(); 10583 cpu_util_update_eff(css); 10584 rcu_read_unlock(); 10585 mutex_unlock(&uclamp_mutex); 10586 #endif 10587 10588 return 0; 10589 } 10590 10591 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10592 { 10593 struct task_group *tg = css_tg(css); 10594 10595 sched_release_group(tg); 10596 } 10597 10598 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10599 { 10600 struct task_group *tg = css_tg(css); 10601 10602 /* 10603 * Relies on the RCU grace period between css_released() and this. 10604 */ 10605 sched_unregister_group(tg); 10606 } 10607 10608 #ifdef CONFIG_RT_GROUP_SCHED 10609 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10610 { 10611 struct task_struct *task; 10612 struct cgroup_subsys_state *css; 10613 10614 cgroup_taskset_for_each(task, css, tset) { 10615 if (!sched_rt_can_attach(css_tg(css), task)) 10616 return -EINVAL; 10617 } 10618 return 0; 10619 } 10620 #endif 10621 10622 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10623 { 10624 struct task_struct *task; 10625 struct cgroup_subsys_state *css; 10626 10627 cgroup_taskset_for_each(task, css, tset) 10628 sched_move_task(task); 10629 } 10630 10631 #ifdef CONFIG_UCLAMP_TASK_GROUP 10632 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10633 { 10634 struct cgroup_subsys_state *top_css = css; 10635 struct uclamp_se *uc_parent = NULL; 10636 struct uclamp_se *uc_se = NULL; 10637 unsigned int eff[UCLAMP_CNT]; 10638 enum uclamp_id clamp_id; 10639 unsigned int clamps; 10640 10641 lockdep_assert_held(&uclamp_mutex); 10642 SCHED_WARN_ON(!rcu_read_lock_held()); 10643 10644 css_for_each_descendant_pre(css, top_css) { 10645 uc_parent = css_tg(css)->parent 10646 ? css_tg(css)->parent->uclamp : NULL; 10647 10648 for_each_clamp_id(clamp_id) { 10649 /* Assume effective clamps matches requested clamps */ 10650 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10651 /* Cap effective clamps with parent's effective clamps */ 10652 if (uc_parent && 10653 eff[clamp_id] > uc_parent[clamp_id].value) { 10654 eff[clamp_id] = uc_parent[clamp_id].value; 10655 } 10656 } 10657 /* Ensure protection is always capped by limit */ 10658 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10659 10660 /* Propagate most restrictive effective clamps */ 10661 clamps = 0x0; 10662 uc_se = css_tg(css)->uclamp; 10663 for_each_clamp_id(clamp_id) { 10664 if (eff[clamp_id] == uc_se[clamp_id].value) 10665 continue; 10666 uc_se[clamp_id].value = eff[clamp_id]; 10667 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10668 clamps |= (0x1 << clamp_id); 10669 } 10670 if (!clamps) { 10671 css = css_rightmost_descendant(css); 10672 continue; 10673 } 10674 10675 /* Immediately update descendants RUNNABLE tasks */ 10676 uclamp_update_active_tasks(css); 10677 } 10678 } 10679 10680 /* 10681 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10682 * C expression. Since there is no way to convert a macro argument (N) into a 10683 * character constant, use two levels of macros. 10684 */ 10685 #define _POW10(exp) ((unsigned int)1e##exp) 10686 #define POW10(exp) _POW10(exp) 10687 10688 struct uclamp_request { 10689 #define UCLAMP_PERCENT_SHIFT 2 10690 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10691 s64 percent; 10692 u64 util; 10693 int ret; 10694 }; 10695 10696 static inline struct uclamp_request 10697 capacity_from_percent(char *buf) 10698 { 10699 struct uclamp_request req = { 10700 .percent = UCLAMP_PERCENT_SCALE, 10701 .util = SCHED_CAPACITY_SCALE, 10702 .ret = 0, 10703 }; 10704 10705 buf = strim(buf); 10706 if (strcmp(buf, "max")) { 10707 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10708 &req.percent); 10709 if (req.ret) 10710 return req; 10711 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10712 req.ret = -ERANGE; 10713 return req; 10714 } 10715 10716 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10717 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10718 } 10719 10720 return req; 10721 } 10722 10723 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10724 size_t nbytes, loff_t off, 10725 enum uclamp_id clamp_id) 10726 { 10727 struct uclamp_request req; 10728 struct task_group *tg; 10729 10730 req = capacity_from_percent(buf); 10731 if (req.ret) 10732 return req.ret; 10733 10734 static_branch_enable(&sched_uclamp_used); 10735 10736 mutex_lock(&uclamp_mutex); 10737 rcu_read_lock(); 10738 10739 tg = css_tg(of_css(of)); 10740 if (tg->uclamp_req[clamp_id].value != req.util) 10741 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10742 10743 /* 10744 * Because of not recoverable conversion rounding we keep track of the 10745 * exact requested value 10746 */ 10747 tg->uclamp_pct[clamp_id] = req.percent; 10748 10749 /* Update effective clamps to track the most restrictive value */ 10750 cpu_util_update_eff(of_css(of)); 10751 10752 rcu_read_unlock(); 10753 mutex_unlock(&uclamp_mutex); 10754 10755 return nbytes; 10756 } 10757 10758 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10759 char *buf, size_t nbytes, 10760 loff_t off) 10761 { 10762 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10763 } 10764 10765 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10766 char *buf, size_t nbytes, 10767 loff_t off) 10768 { 10769 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10770 } 10771 10772 static inline void cpu_uclamp_print(struct seq_file *sf, 10773 enum uclamp_id clamp_id) 10774 { 10775 struct task_group *tg; 10776 u64 util_clamp; 10777 u64 percent; 10778 u32 rem; 10779 10780 rcu_read_lock(); 10781 tg = css_tg(seq_css(sf)); 10782 util_clamp = tg->uclamp_req[clamp_id].value; 10783 rcu_read_unlock(); 10784 10785 if (util_clamp == SCHED_CAPACITY_SCALE) { 10786 seq_puts(sf, "max\n"); 10787 return; 10788 } 10789 10790 percent = tg->uclamp_pct[clamp_id]; 10791 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10792 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10793 } 10794 10795 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10796 { 10797 cpu_uclamp_print(sf, UCLAMP_MIN); 10798 return 0; 10799 } 10800 10801 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10802 { 10803 cpu_uclamp_print(sf, UCLAMP_MAX); 10804 return 0; 10805 } 10806 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10807 10808 #ifdef CONFIG_FAIR_GROUP_SCHED 10809 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10810 struct cftype *cftype, u64 shareval) 10811 { 10812 if (shareval > scale_load_down(ULONG_MAX)) 10813 shareval = MAX_SHARES; 10814 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10815 } 10816 10817 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10818 struct cftype *cft) 10819 { 10820 struct task_group *tg = css_tg(css); 10821 10822 return (u64) scale_load_down(tg->shares); 10823 } 10824 10825 #ifdef CONFIG_CFS_BANDWIDTH 10826 static DEFINE_MUTEX(cfs_constraints_mutex); 10827 10828 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10829 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10830 /* More than 203 days if BW_SHIFT equals 20. */ 10831 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10832 10833 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10834 10835 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10836 u64 burst) 10837 { 10838 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10839 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10840 10841 if (tg == &root_task_group) 10842 return -EINVAL; 10843 10844 /* 10845 * Ensure we have at some amount of bandwidth every period. This is 10846 * to prevent reaching a state of large arrears when throttled via 10847 * entity_tick() resulting in prolonged exit starvation. 10848 */ 10849 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10850 return -EINVAL; 10851 10852 /* 10853 * Likewise, bound things on the other side by preventing insane quota 10854 * periods. This also allows us to normalize in computing quota 10855 * feasibility. 10856 */ 10857 if (period > max_cfs_quota_period) 10858 return -EINVAL; 10859 10860 /* 10861 * Bound quota to defend quota against overflow during bandwidth shift. 10862 */ 10863 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10864 return -EINVAL; 10865 10866 if (quota != RUNTIME_INF && (burst > quota || 10867 burst + quota > max_cfs_runtime)) 10868 return -EINVAL; 10869 10870 /* 10871 * Prevent race between setting of cfs_rq->runtime_enabled and 10872 * unthrottle_offline_cfs_rqs(). 10873 */ 10874 guard(cpus_read_lock)(); 10875 guard(mutex)(&cfs_constraints_mutex); 10876 10877 ret = __cfs_schedulable(tg, period, quota); 10878 if (ret) 10879 return ret; 10880 10881 runtime_enabled = quota != RUNTIME_INF; 10882 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10883 /* 10884 * If we need to toggle cfs_bandwidth_used, off->on must occur 10885 * before making related changes, and on->off must occur afterwards 10886 */ 10887 if (runtime_enabled && !runtime_was_enabled) 10888 cfs_bandwidth_usage_inc(); 10889 10890 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 10891 cfs_b->period = ns_to_ktime(period); 10892 cfs_b->quota = quota; 10893 cfs_b->burst = burst; 10894 10895 __refill_cfs_bandwidth_runtime(cfs_b); 10896 10897 /* 10898 * Restart the period timer (if active) to handle new 10899 * period expiry: 10900 */ 10901 if (runtime_enabled) 10902 start_cfs_bandwidth(cfs_b); 10903 } 10904 10905 for_each_online_cpu(i) { 10906 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10907 struct rq *rq = cfs_rq->rq; 10908 10909 guard(rq_lock_irq)(rq); 10910 cfs_rq->runtime_enabled = runtime_enabled; 10911 cfs_rq->runtime_remaining = 0; 10912 10913 if (cfs_rq->throttled) 10914 unthrottle_cfs_rq(cfs_rq); 10915 } 10916 10917 if (runtime_was_enabled && !runtime_enabled) 10918 cfs_bandwidth_usage_dec(); 10919 10920 return 0; 10921 } 10922 10923 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10924 { 10925 u64 quota, period, burst; 10926 10927 period = ktime_to_ns(tg->cfs_bandwidth.period); 10928 burst = tg->cfs_bandwidth.burst; 10929 if (cfs_quota_us < 0) 10930 quota = RUNTIME_INF; 10931 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10932 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10933 else 10934 return -EINVAL; 10935 10936 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10937 } 10938 10939 static long tg_get_cfs_quota(struct task_group *tg) 10940 { 10941 u64 quota_us; 10942 10943 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10944 return -1; 10945 10946 quota_us = tg->cfs_bandwidth.quota; 10947 do_div(quota_us, NSEC_PER_USEC); 10948 10949 return quota_us; 10950 } 10951 10952 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10953 { 10954 u64 quota, period, burst; 10955 10956 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10957 return -EINVAL; 10958 10959 period = (u64)cfs_period_us * NSEC_PER_USEC; 10960 quota = tg->cfs_bandwidth.quota; 10961 burst = tg->cfs_bandwidth.burst; 10962 10963 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10964 } 10965 10966 static long tg_get_cfs_period(struct task_group *tg) 10967 { 10968 u64 cfs_period_us; 10969 10970 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10971 do_div(cfs_period_us, NSEC_PER_USEC); 10972 10973 return cfs_period_us; 10974 } 10975 10976 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10977 { 10978 u64 quota, period, burst; 10979 10980 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10981 return -EINVAL; 10982 10983 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10984 period = ktime_to_ns(tg->cfs_bandwidth.period); 10985 quota = tg->cfs_bandwidth.quota; 10986 10987 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10988 } 10989 10990 static long tg_get_cfs_burst(struct task_group *tg) 10991 { 10992 u64 burst_us; 10993 10994 burst_us = tg->cfs_bandwidth.burst; 10995 do_div(burst_us, NSEC_PER_USEC); 10996 10997 return burst_us; 10998 } 10999 11000 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 11001 struct cftype *cft) 11002 { 11003 return tg_get_cfs_quota(css_tg(css)); 11004 } 11005 11006 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 11007 struct cftype *cftype, s64 cfs_quota_us) 11008 { 11009 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 11010 } 11011 11012 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 11013 struct cftype *cft) 11014 { 11015 return tg_get_cfs_period(css_tg(css)); 11016 } 11017 11018 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 11019 struct cftype *cftype, u64 cfs_period_us) 11020 { 11021 return tg_set_cfs_period(css_tg(css), cfs_period_us); 11022 } 11023 11024 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 11025 struct cftype *cft) 11026 { 11027 return tg_get_cfs_burst(css_tg(css)); 11028 } 11029 11030 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 11031 struct cftype *cftype, u64 cfs_burst_us) 11032 { 11033 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 11034 } 11035 11036 struct cfs_schedulable_data { 11037 struct task_group *tg; 11038 u64 period, quota; 11039 }; 11040 11041 /* 11042 * normalize group quota/period to be quota/max_period 11043 * note: units are usecs 11044 */ 11045 static u64 normalize_cfs_quota(struct task_group *tg, 11046 struct cfs_schedulable_data *d) 11047 { 11048 u64 quota, period; 11049 11050 if (tg == d->tg) { 11051 period = d->period; 11052 quota = d->quota; 11053 } else { 11054 period = tg_get_cfs_period(tg); 11055 quota = tg_get_cfs_quota(tg); 11056 } 11057 11058 /* note: these should typically be equivalent */ 11059 if (quota == RUNTIME_INF || quota == -1) 11060 return RUNTIME_INF; 11061 11062 return to_ratio(period, quota); 11063 } 11064 11065 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 11066 { 11067 struct cfs_schedulable_data *d = data; 11068 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11069 s64 quota = 0, parent_quota = -1; 11070 11071 if (!tg->parent) { 11072 quota = RUNTIME_INF; 11073 } else { 11074 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 11075 11076 quota = normalize_cfs_quota(tg, d); 11077 parent_quota = parent_b->hierarchical_quota; 11078 11079 /* 11080 * Ensure max(child_quota) <= parent_quota. On cgroup2, 11081 * always take the non-RUNTIME_INF min. On cgroup1, only 11082 * inherit when no limit is set. In both cases this is used 11083 * by the scheduler to determine if a given CFS task has a 11084 * bandwidth constraint at some higher level. 11085 */ 11086 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 11087 if (quota == RUNTIME_INF) 11088 quota = parent_quota; 11089 else if (parent_quota != RUNTIME_INF) 11090 quota = min(quota, parent_quota); 11091 } else { 11092 if (quota == RUNTIME_INF) 11093 quota = parent_quota; 11094 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 11095 return -EINVAL; 11096 } 11097 } 11098 cfs_b->hierarchical_quota = quota; 11099 11100 return 0; 11101 } 11102 11103 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 11104 { 11105 int ret; 11106 struct cfs_schedulable_data data = { 11107 .tg = tg, 11108 .period = period, 11109 .quota = quota, 11110 }; 11111 11112 if (quota != RUNTIME_INF) { 11113 do_div(data.period, NSEC_PER_USEC); 11114 do_div(data.quota, NSEC_PER_USEC); 11115 } 11116 11117 rcu_read_lock(); 11118 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 11119 rcu_read_unlock(); 11120 11121 return ret; 11122 } 11123 11124 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 11125 { 11126 struct task_group *tg = css_tg(seq_css(sf)); 11127 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11128 11129 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 11130 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 11131 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 11132 11133 if (schedstat_enabled() && tg != &root_task_group) { 11134 struct sched_statistics *stats; 11135 u64 ws = 0; 11136 int i; 11137 11138 for_each_possible_cpu(i) { 11139 stats = __schedstats_from_se(tg->se[i]); 11140 ws += schedstat_val(stats->wait_sum); 11141 } 11142 11143 seq_printf(sf, "wait_sum %llu\n", ws); 11144 } 11145 11146 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 11147 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 11148 11149 return 0; 11150 } 11151 11152 static u64 throttled_time_self(struct task_group *tg) 11153 { 11154 int i; 11155 u64 total = 0; 11156 11157 for_each_possible_cpu(i) { 11158 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 11159 } 11160 11161 return total; 11162 } 11163 11164 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 11165 { 11166 struct task_group *tg = css_tg(seq_css(sf)); 11167 11168 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 11169 11170 return 0; 11171 } 11172 #endif /* CONFIG_CFS_BANDWIDTH */ 11173 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11174 11175 #ifdef CONFIG_RT_GROUP_SCHED 11176 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 11177 struct cftype *cft, s64 val) 11178 { 11179 return sched_group_set_rt_runtime(css_tg(css), val); 11180 } 11181 11182 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 11183 struct cftype *cft) 11184 { 11185 return sched_group_rt_runtime(css_tg(css)); 11186 } 11187 11188 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 11189 struct cftype *cftype, u64 rt_period_us) 11190 { 11191 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11192 } 11193 11194 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11195 struct cftype *cft) 11196 { 11197 return sched_group_rt_period(css_tg(css)); 11198 } 11199 #endif /* CONFIG_RT_GROUP_SCHED */ 11200 11201 #ifdef CONFIG_FAIR_GROUP_SCHED 11202 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11203 struct cftype *cft) 11204 { 11205 return css_tg(css)->idle; 11206 } 11207 11208 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11209 struct cftype *cft, s64 idle) 11210 { 11211 return sched_group_set_idle(css_tg(css), idle); 11212 } 11213 #endif 11214 11215 static struct cftype cpu_legacy_files[] = { 11216 #ifdef CONFIG_FAIR_GROUP_SCHED 11217 { 11218 .name = "shares", 11219 .read_u64 = cpu_shares_read_u64, 11220 .write_u64 = cpu_shares_write_u64, 11221 }, 11222 { 11223 .name = "idle", 11224 .read_s64 = cpu_idle_read_s64, 11225 .write_s64 = cpu_idle_write_s64, 11226 }, 11227 #endif 11228 #ifdef CONFIG_CFS_BANDWIDTH 11229 { 11230 .name = "cfs_quota_us", 11231 .read_s64 = cpu_cfs_quota_read_s64, 11232 .write_s64 = cpu_cfs_quota_write_s64, 11233 }, 11234 { 11235 .name = "cfs_period_us", 11236 .read_u64 = cpu_cfs_period_read_u64, 11237 .write_u64 = cpu_cfs_period_write_u64, 11238 }, 11239 { 11240 .name = "cfs_burst_us", 11241 .read_u64 = cpu_cfs_burst_read_u64, 11242 .write_u64 = cpu_cfs_burst_write_u64, 11243 }, 11244 { 11245 .name = "stat", 11246 .seq_show = cpu_cfs_stat_show, 11247 }, 11248 { 11249 .name = "stat.local", 11250 .seq_show = cpu_cfs_local_stat_show, 11251 }, 11252 #endif 11253 #ifdef CONFIG_RT_GROUP_SCHED 11254 { 11255 .name = "rt_runtime_us", 11256 .read_s64 = cpu_rt_runtime_read, 11257 .write_s64 = cpu_rt_runtime_write, 11258 }, 11259 { 11260 .name = "rt_period_us", 11261 .read_u64 = cpu_rt_period_read_uint, 11262 .write_u64 = cpu_rt_period_write_uint, 11263 }, 11264 #endif 11265 #ifdef CONFIG_UCLAMP_TASK_GROUP 11266 { 11267 .name = "uclamp.min", 11268 .flags = CFTYPE_NOT_ON_ROOT, 11269 .seq_show = cpu_uclamp_min_show, 11270 .write = cpu_uclamp_min_write, 11271 }, 11272 { 11273 .name = "uclamp.max", 11274 .flags = CFTYPE_NOT_ON_ROOT, 11275 .seq_show = cpu_uclamp_max_show, 11276 .write = cpu_uclamp_max_write, 11277 }, 11278 #endif 11279 { } /* Terminate */ 11280 }; 11281 11282 static int cpu_extra_stat_show(struct seq_file *sf, 11283 struct cgroup_subsys_state *css) 11284 { 11285 #ifdef CONFIG_CFS_BANDWIDTH 11286 { 11287 struct task_group *tg = css_tg(css); 11288 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11289 u64 throttled_usec, burst_usec; 11290 11291 throttled_usec = cfs_b->throttled_time; 11292 do_div(throttled_usec, NSEC_PER_USEC); 11293 burst_usec = cfs_b->burst_time; 11294 do_div(burst_usec, NSEC_PER_USEC); 11295 11296 seq_printf(sf, "nr_periods %d\n" 11297 "nr_throttled %d\n" 11298 "throttled_usec %llu\n" 11299 "nr_bursts %d\n" 11300 "burst_usec %llu\n", 11301 cfs_b->nr_periods, cfs_b->nr_throttled, 11302 throttled_usec, cfs_b->nr_burst, burst_usec); 11303 } 11304 #endif 11305 return 0; 11306 } 11307 11308 static int cpu_local_stat_show(struct seq_file *sf, 11309 struct cgroup_subsys_state *css) 11310 { 11311 #ifdef CONFIG_CFS_BANDWIDTH 11312 { 11313 struct task_group *tg = css_tg(css); 11314 u64 throttled_self_usec; 11315 11316 throttled_self_usec = throttled_time_self(tg); 11317 do_div(throttled_self_usec, NSEC_PER_USEC); 11318 11319 seq_printf(sf, "throttled_usec %llu\n", 11320 throttled_self_usec); 11321 } 11322 #endif 11323 return 0; 11324 } 11325 11326 #ifdef CONFIG_FAIR_GROUP_SCHED 11327 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11328 struct cftype *cft) 11329 { 11330 struct task_group *tg = css_tg(css); 11331 u64 weight = scale_load_down(tg->shares); 11332 11333 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11334 } 11335 11336 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11337 struct cftype *cft, u64 weight) 11338 { 11339 /* 11340 * cgroup weight knobs should use the common MIN, DFL and MAX 11341 * values which are 1, 100 and 10000 respectively. While it loses 11342 * a bit of range on both ends, it maps pretty well onto the shares 11343 * value used by scheduler and the round-trip conversions preserve 11344 * the original value over the entire range. 11345 */ 11346 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11347 return -ERANGE; 11348 11349 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11350 11351 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11352 } 11353 11354 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11355 struct cftype *cft) 11356 { 11357 unsigned long weight = scale_load_down(css_tg(css)->shares); 11358 int last_delta = INT_MAX; 11359 int prio, delta; 11360 11361 /* find the closest nice value to the current weight */ 11362 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11363 delta = abs(sched_prio_to_weight[prio] - weight); 11364 if (delta >= last_delta) 11365 break; 11366 last_delta = delta; 11367 } 11368 11369 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11370 } 11371 11372 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11373 struct cftype *cft, s64 nice) 11374 { 11375 unsigned long weight; 11376 int idx; 11377 11378 if (nice < MIN_NICE || nice > MAX_NICE) 11379 return -ERANGE; 11380 11381 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11382 idx = array_index_nospec(idx, 40); 11383 weight = sched_prio_to_weight[idx]; 11384 11385 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11386 } 11387 #endif 11388 11389 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11390 long period, long quota) 11391 { 11392 if (quota < 0) 11393 seq_puts(sf, "max"); 11394 else 11395 seq_printf(sf, "%ld", quota); 11396 11397 seq_printf(sf, " %ld\n", period); 11398 } 11399 11400 /* caller should put the current value in *@periodp before calling */ 11401 static int __maybe_unused cpu_period_quota_parse(char *buf, 11402 u64 *periodp, u64 *quotap) 11403 { 11404 char tok[21]; /* U64_MAX */ 11405 11406 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11407 return -EINVAL; 11408 11409 *periodp *= NSEC_PER_USEC; 11410 11411 if (sscanf(tok, "%llu", quotap)) 11412 *quotap *= NSEC_PER_USEC; 11413 else if (!strcmp(tok, "max")) 11414 *quotap = RUNTIME_INF; 11415 else 11416 return -EINVAL; 11417 11418 return 0; 11419 } 11420 11421 #ifdef CONFIG_CFS_BANDWIDTH 11422 static int cpu_max_show(struct seq_file *sf, void *v) 11423 { 11424 struct task_group *tg = css_tg(seq_css(sf)); 11425 11426 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11427 return 0; 11428 } 11429 11430 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11431 char *buf, size_t nbytes, loff_t off) 11432 { 11433 struct task_group *tg = css_tg(of_css(of)); 11434 u64 period = tg_get_cfs_period(tg); 11435 u64 burst = tg->cfs_bandwidth.burst; 11436 u64 quota; 11437 int ret; 11438 11439 ret = cpu_period_quota_parse(buf, &period, "a); 11440 if (!ret) 11441 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11442 return ret ?: nbytes; 11443 } 11444 #endif 11445 11446 static struct cftype cpu_files[] = { 11447 #ifdef CONFIG_FAIR_GROUP_SCHED 11448 { 11449 .name = "weight", 11450 .flags = CFTYPE_NOT_ON_ROOT, 11451 .read_u64 = cpu_weight_read_u64, 11452 .write_u64 = cpu_weight_write_u64, 11453 }, 11454 { 11455 .name = "weight.nice", 11456 .flags = CFTYPE_NOT_ON_ROOT, 11457 .read_s64 = cpu_weight_nice_read_s64, 11458 .write_s64 = cpu_weight_nice_write_s64, 11459 }, 11460 { 11461 .name = "idle", 11462 .flags = CFTYPE_NOT_ON_ROOT, 11463 .read_s64 = cpu_idle_read_s64, 11464 .write_s64 = cpu_idle_write_s64, 11465 }, 11466 #endif 11467 #ifdef CONFIG_CFS_BANDWIDTH 11468 { 11469 .name = "max", 11470 .flags = CFTYPE_NOT_ON_ROOT, 11471 .seq_show = cpu_max_show, 11472 .write = cpu_max_write, 11473 }, 11474 { 11475 .name = "max.burst", 11476 .flags = CFTYPE_NOT_ON_ROOT, 11477 .read_u64 = cpu_cfs_burst_read_u64, 11478 .write_u64 = cpu_cfs_burst_write_u64, 11479 }, 11480 #endif 11481 #ifdef CONFIG_UCLAMP_TASK_GROUP 11482 { 11483 .name = "uclamp.min", 11484 .flags = CFTYPE_NOT_ON_ROOT, 11485 .seq_show = cpu_uclamp_min_show, 11486 .write = cpu_uclamp_min_write, 11487 }, 11488 { 11489 .name = "uclamp.max", 11490 .flags = CFTYPE_NOT_ON_ROOT, 11491 .seq_show = cpu_uclamp_max_show, 11492 .write = cpu_uclamp_max_write, 11493 }, 11494 #endif 11495 { } /* terminate */ 11496 }; 11497 11498 struct cgroup_subsys cpu_cgrp_subsys = { 11499 .css_alloc = cpu_cgroup_css_alloc, 11500 .css_online = cpu_cgroup_css_online, 11501 .css_released = cpu_cgroup_css_released, 11502 .css_free = cpu_cgroup_css_free, 11503 .css_extra_stat_show = cpu_extra_stat_show, 11504 .css_local_stat_show = cpu_local_stat_show, 11505 #ifdef CONFIG_RT_GROUP_SCHED 11506 .can_attach = cpu_cgroup_can_attach, 11507 #endif 11508 .attach = cpu_cgroup_attach, 11509 .legacy_cftypes = cpu_legacy_files, 11510 .dfl_cftypes = cpu_files, 11511 .early_init = true, 11512 .threaded = true, 11513 }; 11514 11515 #endif /* CONFIG_CGROUP_SCHED */ 11516 11517 void dump_cpu_task(int cpu) 11518 { 11519 if (cpu == smp_processor_id() && in_hardirq()) { 11520 struct pt_regs *regs; 11521 11522 regs = get_irq_regs(); 11523 if (regs) { 11524 show_regs(regs); 11525 return; 11526 } 11527 } 11528 11529 if (trigger_single_cpu_backtrace(cpu)) 11530 return; 11531 11532 pr_info("Task dump for CPU %d:\n", cpu); 11533 sched_show_task(cpu_curr(cpu)); 11534 } 11535 11536 /* 11537 * Nice levels are multiplicative, with a gentle 10% change for every 11538 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11539 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11540 * that remained on nice 0. 11541 * 11542 * The "10% effect" is relative and cumulative: from _any_ nice level, 11543 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11544 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11545 * If a task goes up by ~10% and another task goes down by ~10% then 11546 * the relative distance between them is ~25%.) 11547 */ 11548 const int sched_prio_to_weight[40] = { 11549 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11550 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11551 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11552 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11553 /* 0 */ 1024, 820, 655, 526, 423, 11554 /* 5 */ 335, 272, 215, 172, 137, 11555 /* 10 */ 110, 87, 70, 56, 45, 11556 /* 15 */ 36, 29, 23, 18, 15, 11557 }; 11558 11559 /* 11560 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11561 * 11562 * In cases where the weight does not change often, we can use the 11563 * precalculated inverse to speed up arithmetics by turning divisions 11564 * into multiplications: 11565 */ 11566 const u32 sched_prio_to_wmult[40] = { 11567 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11568 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11569 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11570 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11571 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11572 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11573 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11574 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11575 }; 11576 11577 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11578 { 11579 trace_sched_update_nr_running_tp(rq, count); 11580 } 11581 11582 #ifdef CONFIG_SCHED_MM_CID 11583 11584 /* 11585 * @cid_lock: Guarantee forward-progress of cid allocation. 11586 * 11587 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 11588 * is only used when contention is detected by the lock-free allocation so 11589 * forward progress can be guaranteed. 11590 */ 11591 DEFINE_RAW_SPINLOCK(cid_lock); 11592 11593 /* 11594 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 11595 * 11596 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 11597 * detected, it is set to 1 to ensure that all newly coming allocations are 11598 * serialized by @cid_lock until the allocation which detected contention 11599 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 11600 * of a cid allocation. 11601 */ 11602 int use_cid_lock; 11603 11604 /* 11605 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 11606 * concurrently with respect to the execution of the source runqueue context 11607 * switch. 11608 * 11609 * There is one basic properties we want to guarantee here: 11610 * 11611 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 11612 * used by a task. That would lead to concurrent allocation of the cid and 11613 * userspace corruption. 11614 * 11615 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 11616 * that a pair of loads observe at least one of a pair of stores, which can be 11617 * shown as: 11618 * 11619 * X = Y = 0 11620 * 11621 * w[X]=1 w[Y]=1 11622 * MB MB 11623 * r[Y]=y r[X]=x 11624 * 11625 * Which guarantees that x==0 && y==0 is impossible. But rather than using 11626 * values 0 and 1, this algorithm cares about specific state transitions of the 11627 * runqueue current task (as updated by the scheduler context switch), and the 11628 * per-mm/cpu cid value. 11629 * 11630 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 11631 * task->mm != mm for the rest of the discussion. There are two scheduler state 11632 * transitions on context switch we care about: 11633 * 11634 * (TSA) Store to rq->curr with transition from (N) to (Y) 11635 * 11636 * (TSB) Store to rq->curr with transition from (Y) to (N) 11637 * 11638 * On the remote-clear side, there is one transition we care about: 11639 * 11640 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 11641 * 11642 * There is also a transition to UNSET state which can be performed from all 11643 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 11644 * guarantees that only a single thread will succeed: 11645 * 11646 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 11647 * 11648 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 11649 * when a thread is actively using the cid (property (1)). 11650 * 11651 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 11652 * 11653 * Scenario A) (TSA)+(TMA) (from next task perspective) 11654 * 11655 * CPU0 CPU1 11656 * 11657 * Context switch CS-1 Remote-clear 11658 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 11659 * (implied barrier after cmpxchg) 11660 * - switch_mm_cid() 11661 * - memory barrier (see switch_mm_cid() 11662 * comment explaining how this barrier 11663 * is combined with other scheduler 11664 * barriers) 11665 * - mm_cid_get (next) 11666 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 11667 * 11668 * This Dekker ensures that either task (Y) is observed by the 11669 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 11670 * observed. 11671 * 11672 * If task (Y) store is observed by rcu_dereference(), it means that there is 11673 * still an active task on the cpu. Remote-clear will therefore not transition 11674 * to UNSET, which fulfills property (1). 11675 * 11676 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 11677 * it will move its state to UNSET, which clears the percpu cid perhaps 11678 * uselessly (which is not an issue for correctness). Because task (Y) is not 11679 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 11680 * state to UNSET is done with a cmpxchg expecting that the old state has the 11681 * LAZY flag set, only one thread will successfully UNSET. 11682 * 11683 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 11684 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 11685 * CPU1 will observe task (Y) and do nothing more, which is fine. 11686 * 11687 * What we are effectively preventing with this Dekker is a scenario where 11688 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 11689 * because this would UNSET a cid which is actively used. 11690 */ 11691 11692 void sched_mm_cid_migrate_from(struct task_struct *t) 11693 { 11694 t->migrate_from_cpu = task_cpu(t); 11695 } 11696 11697 static 11698 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 11699 struct task_struct *t, 11700 struct mm_cid *src_pcpu_cid) 11701 { 11702 struct mm_struct *mm = t->mm; 11703 struct task_struct *src_task; 11704 int src_cid, last_mm_cid; 11705 11706 if (!mm) 11707 return -1; 11708 11709 last_mm_cid = t->last_mm_cid; 11710 /* 11711 * If the migrated task has no last cid, or if the current 11712 * task on src rq uses the cid, it means the source cid does not need 11713 * to be moved to the destination cpu. 11714 */ 11715 if (last_mm_cid == -1) 11716 return -1; 11717 src_cid = READ_ONCE(src_pcpu_cid->cid); 11718 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 11719 return -1; 11720 11721 /* 11722 * If we observe an active task using the mm on this rq, it means we 11723 * are not the last task to be migrated from this cpu for this mm, so 11724 * there is no need to move src_cid to the destination cpu. 11725 */ 11726 rcu_read_lock(); 11727 src_task = rcu_dereference(src_rq->curr); 11728 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11729 rcu_read_unlock(); 11730 t->last_mm_cid = -1; 11731 return -1; 11732 } 11733 rcu_read_unlock(); 11734 11735 return src_cid; 11736 } 11737 11738 static 11739 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 11740 struct task_struct *t, 11741 struct mm_cid *src_pcpu_cid, 11742 int src_cid) 11743 { 11744 struct task_struct *src_task; 11745 struct mm_struct *mm = t->mm; 11746 int lazy_cid; 11747 11748 if (src_cid == -1) 11749 return -1; 11750 11751 /* 11752 * Attempt to clear the source cpu cid to move it to the destination 11753 * cpu. 11754 */ 11755 lazy_cid = mm_cid_set_lazy_put(src_cid); 11756 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 11757 return -1; 11758 11759 /* 11760 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11761 * rq->curr->mm matches the scheduler barrier in context_switch() 11762 * between store to rq->curr and load of prev and next task's 11763 * per-mm/cpu cid. 11764 * 11765 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11766 * rq->curr->mm_cid_active matches the barrier in 11767 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11768 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11769 * load of per-mm/cpu cid. 11770 */ 11771 11772 /* 11773 * If we observe an active task using the mm on this rq after setting 11774 * the lazy-put flag, this task will be responsible for transitioning 11775 * from lazy-put flag set to MM_CID_UNSET. 11776 */ 11777 rcu_read_lock(); 11778 src_task = rcu_dereference(src_rq->curr); 11779 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11780 rcu_read_unlock(); 11781 /* 11782 * We observed an active task for this mm, there is therefore 11783 * no point in moving this cid to the destination cpu. 11784 */ 11785 t->last_mm_cid = -1; 11786 return -1; 11787 } 11788 rcu_read_unlock(); 11789 11790 /* 11791 * The src_cid is unused, so it can be unset. 11792 */ 11793 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11794 return -1; 11795 return src_cid; 11796 } 11797 11798 /* 11799 * Migration to dst cpu. Called with dst_rq lock held. 11800 * Interrupts are disabled, which keeps the window of cid ownership without the 11801 * source rq lock held small. 11802 */ 11803 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 11804 { 11805 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 11806 struct mm_struct *mm = t->mm; 11807 int src_cid, dst_cid, src_cpu; 11808 struct rq *src_rq; 11809 11810 lockdep_assert_rq_held(dst_rq); 11811 11812 if (!mm) 11813 return; 11814 src_cpu = t->migrate_from_cpu; 11815 if (src_cpu == -1) { 11816 t->last_mm_cid = -1; 11817 return; 11818 } 11819 /* 11820 * Move the src cid if the dst cid is unset. This keeps id 11821 * allocation closest to 0 in cases where few threads migrate around 11822 * many cpus. 11823 * 11824 * If destination cid is already set, we may have to just clear 11825 * the src cid to ensure compactness in frequent migrations 11826 * scenarios. 11827 * 11828 * It is not useful to clear the src cid when the number of threads is 11829 * greater or equal to the number of allowed cpus, because user-space 11830 * can expect that the number of allowed cids can reach the number of 11831 * allowed cpus. 11832 */ 11833 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 11834 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 11835 if (!mm_cid_is_unset(dst_cid) && 11836 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 11837 return; 11838 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 11839 src_rq = cpu_rq(src_cpu); 11840 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 11841 if (src_cid == -1) 11842 return; 11843 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 11844 src_cid); 11845 if (src_cid == -1) 11846 return; 11847 if (!mm_cid_is_unset(dst_cid)) { 11848 __mm_cid_put(mm, src_cid); 11849 return; 11850 } 11851 /* Move src_cid to dst cpu. */ 11852 mm_cid_snapshot_time(dst_rq, mm); 11853 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 11854 } 11855 11856 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 11857 int cpu) 11858 { 11859 struct rq *rq = cpu_rq(cpu); 11860 struct task_struct *t; 11861 unsigned long flags; 11862 int cid, lazy_cid; 11863 11864 cid = READ_ONCE(pcpu_cid->cid); 11865 if (!mm_cid_is_valid(cid)) 11866 return; 11867 11868 /* 11869 * Clear the cpu cid if it is set to keep cid allocation compact. If 11870 * there happens to be other tasks left on the source cpu using this 11871 * mm, the next task using this mm will reallocate its cid on context 11872 * switch. 11873 */ 11874 lazy_cid = mm_cid_set_lazy_put(cid); 11875 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 11876 return; 11877 11878 /* 11879 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11880 * rq->curr->mm matches the scheduler barrier in context_switch() 11881 * between store to rq->curr and load of prev and next task's 11882 * per-mm/cpu cid. 11883 * 11884 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11885 * rq->curr->mm_cid_active matches the barrier in 11886 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11887 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11888 * load of per-mm/cpu cid. 11889 */ 11890 11891 /* 11892 * If we observe an active task using the mm on this rq after setting 11893 * the lazy-put flag, that task will be responsible for transitioning 11894 * from lazy-put flag set to MM_CID_UNSET. 11895 */ 11896 rcu_read_lock(); 11897 t = rcu_dereference(rq->curr); 11898 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) { 11899 rcu_read_unlock(); 11900 return; 11901 } 11902 rcu_read_unlock(); 11903 11904 /* 11905 * The cid is unused, so it can be unset. 11906 * Disable interrupts to keep the window of cid ownership without rq 11907 * lock small. 11908 */ 11909 local_irq_save(flags); 11910 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11911 __mm_cid_put(mm, cid); 11912 local_irq_restore(flags); 11913 } 11914 11915 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 11916 { 11917 struct rq *rq = cpu_rq(cpu); 11918 struct mm_cid *pcpu_cid; 11919 struct task_struct *curr; 11920 u64 rq_clock; 11921 11922 /* 11923 * rq->clock load is racy on 32-bit but one spurious clear once in a 11924 * while is irrelevant. 11925 */ 11926 rq_clock = READ_ONCE(rq->clock); 11927 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11928 11929 /* 11930 * In order to take care of infrequently scheduled tasks, bump the time 11931 * snapshot associated with this cid if an active task using the mm is 11932 * observed on this rq. 11933 */ 11934 rcu_read_lock(); 11935 curr = rcu_dereference(rq->curr); 11936 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 11937 WRITE_ONCE(pcpu_cid->time, rq_clock); 11938 rcu_read_unlock(); 11939 return; 11940 } 11941 rcu_read_unlock(); 11942 11943 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 11944 return; 11945 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11946 } 11947 11948 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 11949 int weight) 11950 { 11951 struct mm_cid *pcpu_cid; 11952 int cid; 11953 11954 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11955 cid = READ_ONCE(pcpu_cid->cid); 11956 if (!mm_cid_is_valid(cid) || cid < weight) 11957 return; 11958 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11959 } 11960 11961 static void task_mm_cid_work(struct callback_head *work) 11962 { 11963 unsigned long now = jiffies, old_scan, next_scan; 11964 struct task_struct *t = current; 11965 struct cpumask *cidmask; 11966 struct mm_struct *mm; 11967 int weight, cpu; 11968 11969 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 11970 11971 work->next = work; /* Prevent double-add */ 11972 if (t->flags & PF_EXITING) 11973 return; 11974 mm = t->mm; 11975 if (!mm) 11976 return; 11977 old_scan = READ_ONCE(mm->mm_cid_next_scan); 11978 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 11979 if (!old_scan) { 11980 unsigned long res; 11981 11982 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 11983 if (res != old_scan) 11984 old_scan = res; 11985 else 11986 old_scan = next_scan; 11987 } 11988 if (time_before(now, old_scan)) 11989 return; 11990 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 11991 return; 11992 cidmask = mm_cidmask(mm); 11993 /* Clear cids that were not recently used. */ 11994 for_each_possible_cpu(cpu) 11995 sched_mm_cid_remote_clear_old(mm, cpu); 11996 weight = cpumask_weight(cidmask); 11997 /* 11998 * Clear cids that are greater or equal to the cidmask weight to 11999 * recompact it. 12000 */ 12001 for_each_possible_cpu(cpu) 12002 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 12003 } 12004 12005 void init_sched_mm_cid(struct task_struct *t) 12006 { 12007 struct mm_struct *mm = t->mm; 12008 int mm_users = 0; 12009 12010 if (mm) { 12011 mm_users = atomic_read(&mm->mm_users); 12012 if (mm_users == 1) 12013 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 12014 } 12015 t->cid_work.next = &t->cid_work; /* Protect against double add */ 12016 init_task_work(&t->cid_work, task_mm_cid_work); 12017 } 12018 12019 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 12020 { 12021 struct callback_head *work = &curr->cid_work; 12022 unsigned long now = jiffies; 12023 12024 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 12025 work->next != work) 12026 return; 12027 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 12028 return; 12029 task_work_add(curr, work, TWA_RESUME); 12030 } 12031 12032 void sched_mm_cid_exit_signals(struct task_struct *t) 12033 { 12034 struct mm_struct *mm = t->mm; 12035 struct rq_flags rf; 12036 struct rq *rq; 12037 12038 if (!mm) 12039 return; 12040 12041 preempt_disable(); 12042 rq = this_rq(); 12043 rq_lock_irqsave(rq, &rf); 12044 preempt_enable_no_resched(); /* holding spinlock */ 12045 WRITE_ONCE(t->mm_cid_active, 0); 12046 /* 12047 * Store t->mm_cid_active before loading per-mm/cpu cid. 12048 * Matches barrier in sched_mm_cid_remote_clear_old(). 12049 */ 12050 smp_mb(); 12051 mm_cid_put(mm); 12052 t->last_mm_cid = t->mm_cid = -1; 12053 rq_unlock_irqrestore(rq, &rf); 12054 } 12055 12056 void sched_mm_cid_before_execve(struct task_struct *t) 12057 { 12058 struct mm_struct *mm = t->mm; 12059 struct rq_flags rf; 12060 struct rq *rq; 12061 12062 if (!mm) 12063 return; 12064 12065 preempt_disable(); 12066 rq = this_rq(); 12067 rq_lock_irqsave(rq, &rf); 12068 preempt_enable_no_resched(); /* holding spinlock */ 12069 WRITE_ONCE(t->mm_cid_active, 0); 12070 /* 12071 * Store t->mm_cid_active before loading per-mm/cpu cid. 12072 * Matches barrier in sched_mm_cid_remote_clear_old(). 12073 */ 12074 smp_mb(); 12075 mm_cid_put(mm); 12076 t->last_mm_cid = t->mm_cid = -1; 12077 rq_unlock_irqrestore(rq, &rf); 12078 } 12079 12080 void sched_mm_cid_after_execve(struct task_struct *t) 12081 { 12082 struct mm_struct *mm = t->mm; 12083 struct rq_flags rf; 12084 struct rq *rq; 12085 12086 if (!mm) 12087 return; 12088 12089 preempt_disable(); 12090 rq = this_rq(); 12091 rq_lock_irqsave(rq, &rf); 12092 preempt_enable_no_resched(); /* holding spinlock */ 12093 WRITE_ONCE(t->mm_cid_active, 1); 12094 /* 12095 * Store t->mm_cid_active before loading per-mm/cpu cid. 12096 * Matches barrier in sched_mm_cid_remote_clear_old(). 12097 */ 12098 smp_mb(); 12099 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 12100 rq_unlock_irqrestore(rq, &rf); 12101 rseq_set_notify_resume(t); 12102 } 12103 12104 void sched_mm_cid_fork(struct task_struct *t) 12105 { 12106 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 12107 t->mm_cid_active = 1; 12108 } 12109 #endif 12110