xref: /openbmc/linux/kernel/sched/core.c (revision 95e9fd10)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744 
745 /*
746  * There are no locks covering percpu hardirq/softirq time.
747  * They are only modified in account_system_vtime, on corresponding CPU
748  * with interrupts disabled. So, writes are safe.
749  * They are read and saved off onto struct rq in update_rq_clock().
750  * This may result in other CPU reading this CPU's irq time and can
751  * race with irq/account_system_vtime on this CPU. We would either get old
752  * or new value with a side effect of accounting a slice of irq time to wrong
753  * task when irq is in progress while we read rq->clock. That is a worthy
754  * compromise in place of having locks on each irq in account_system_time.
755  */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758 
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761 
762 void enable_sched_clock_irqtime(void)
763 {
764 	sched_clock_irqtime = 1;
765 }
766 
767 void disable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 0;
770 }
771 
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774 
775 static inline void irq_time_write_begin(void)
776 {
777 	__this_cpu_inc(irq_time_seq.sequence);
778 	smp_wmb();
779 }
780 
781 static inline void irq_time_write_end(void)
782 {
783 	smp_wmb();
784 	__this_cpu_inc(irq_time_seq.sequence);
785 }
786 
787 static inline u64 irq_time_read(int cpu)
788 {
789 	u64 irq_time;
790 	unsigned seq;
791 
792 	do {
793 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 		irq_time = per_cpu(cpu_softirq_time, cpu) +
795 			   per_cpu(cpu_hardirq_time, cpu);
796 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797 
798 	return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804 
805 static inline void irq_time_write_end(void)
806 {
807 }
808 
809 static inline u64 irq_time_read(int cpu)
810 {
811 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814 
815 /*
816  * Called before incrementing preempt_count on {soft,}irq_enter
817  * and before decrementing preempt_count on {soft,}irq_exit.
818  */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 	unsigned long flags;
822 	s64 delta;
823 	int cpu;
824 
825 	if (!sched_clock_irqtime)
826 		return;
827 
828 	local_irq_save(flags);
829 
830 	cpu = smp_processor_id();
831 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 	__this_cpu_add(irq_start_time, delta);
833 
834 	irq_time_write_begin();
835 	/*
836 	 * We do not account for softirq time from ksoftirqd here.
837 	 * We want to continue accounting softirq time to ksoftirqd thread
838 	 * in that case, so as not to confuse scheduler with a special task
839 	 * that do not consume any time, but still wants to run.
840 	 */
841 	if (hardirq_count())
842 		__this_cpu_add(cpu_hardirq_time, delta);
843 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 		__this_cpu_add(cpu_softirq_time, delta);
845 
846 	irq_time_write_end();
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850 
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852 
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 	if (unlikely(steal > NSEC_PER_SEC))
857 		return div_u64(steal, TICK_NSEC);
858 
859 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 		u64 st;
899 
900 		steal = paravirt_steal_clock(cpu_of(rq));
901 		steal -= rq->prev_steal_time_rq;
902 
903 		if (unlikely(steal > delta))
904 			steal = delta;
905 
906 		st = steal_ticks(steal);
907 		steal = st * TICK_NSEC;
908 
909 		rq->prev_steal_time_rq += steal;
910 
911 		delta -= steal;
912 	}
913 #endif
914 
915 	rq->clock_task += delta;
916 
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 		sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922 
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 	unsigned long flags;
928 	u64 latest_ns;
929 	int ret = 0;
930 
931 	local_irq_save(flags);
932 	latest_ns = this_cpu_read(cpu_hardirq_time);
933 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 		ret = 1;
935 	local_irq_restore(flags);
936 	return ret;
937 }
938 
939 static int irqtime_account_si_update(void)
940 {
941 	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 	unsigned long flags;
943 	u64 latest_ns;
944 	int ret = 0;
945 
946 	local_irq_save(flags);
947 	latest_ns = this_cpu_read(cpu_softirq_time);
948 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 		ret = 1;
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955 
956 #define sched_clock_irqtime	(0)
957 
958 #endif
959 
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964 
965 	if (stop) {
966 		/*
967 		 * Make it appear like a SCHED_FIFO task, its something
968 		 * userspace knows about and won't get confused about.
969 		 *
970 		 * Also, it will make PI more or less work without too
971 		 * much confusion -- but then, stop work should not
972 		 * rely on PI working anyway.
973 		 */
974 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975 
976 		stop->sched_class = &stop_sched_class;
977 	}
978 
979 	cpu_rq(cpu)->stop = stop;
980 
981 	if (old_stop) {
982 		/*
983 		 * Reset it back to a normal scheduling class so that
984 		 * it can die in pieces.
985 		 */
986 		old_stop->sched_class = &rt_sched_class;
987 	}
988 }
989 
990 /*
991  * __normal_prio - return the priority that is based on the static prio
992  */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 	return p->static_prio;
996 }
997 
998 /*
999  * Calculate the expected normal priority: i.e. priority
1000  * without taking RT-inheritance into account. Might be
1001  * boosted by interactivity modifiers. Changes upon fork,
1002  * setprio syscalls, and whenever the interactivity
1003  * estimator recalculates.
1004  */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 	int prio;
1008 
1009 	if (task_has_rt_policy(p))
1010 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 	else
1012 		prio = __normal_prio(p);
1013 	return prio;
1014 }
1015 
1016 /*
1017  * Calculate the current priority, i.e. the priority
1018  * taken into account by the scheduler. This value might
1019  * be boosted by RT tasks, or might be boosted by
1020  * interactivity modifiers. Will be RT if the task got
1021  * RT-boosted. If not then it returns p->normal_prio.
1022  */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 	p->normal_prio = normal_prio(p);
1026 	/*
1027 	 * If we are RT tasks or we were boosted to RT priority,
1028 	 * keep the priority unchanged. Otherwise, update priority
1029 	 * to the normal priority:
1030 	 */
1031 	if (!rt_prio(p->prio))
1032 		return p->normal_prio;
1033 	return p->prio;
1034 }
1035 
1036 /**
1037  * task_curr - is this task currently executing on a CPU?
1038  * @p: the task in question.
1039  */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 	return cpu_curr(task_cpu(p)) == p;
1043 }
1044 
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 				       const struct sched_class *prev_class,
1047 				       int oldprio)
1048 {
1049 	if (prev_class != p->sched_class) {
1050 		if (prev_class->switched_from)
1051 			prev_class->switched_from(rq, p);
1052 		p->sched_class->switched_to(rq, p);
1053 	} else if (oldprio != p->prio)
1054 		p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056 
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 	const struct sched_class *class;
1060 
1061 	if (p->sched_class == rq->curr->sched_class) {
1062 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 	} else {
1064 		for_each_class(class) {
1065 			if (class == rq->curr->sched_class)
1066 				break;
1067 			if (class == p->sched_class) {
1068 				resched_task(rq->curr);
1069 				break;
1070 			}
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * A queue event has occurred, and we're going to schedule.  In
1076 	 * this case, we can save a useless back to back clock update.
1077 	 */
1078 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 		rq->skip_clock_update = 1;
1080 }
1081 
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	/*
1087 	 * We should never call set_task_cpu() on a blocked task,
1088 	 * ttwu() will sort out the placement.
1089 	 */
1090 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 
1093 #ifdef CONFIG_LOCKDEP
1094 	/*
1095 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 	 *
1098 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 	 * see task_group().
1100 	 *
1101 	 * Furthermore, all task_rq users should acquire both locks, see
1102 	 * task_rq_lock().
1103 	 */
1104 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 				      lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108 
1109 	trace_sched_migrate_task(p, new_cpu);
1110 
1111 	if (task_cpu(p) != new_cpu) {
1112 		p->se.nr_migrations++;
1113 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 	}
1115 
1116 	__set_task_cpu(p, new_cpu);
1117 }
1118 
1119 struct migration_arg {
1120 	struct task_struct *task;
1121 	int dest_cpu;
1122 };
1123 
1124 static int migration_cpu_stop(void *data);
1125 
1126 /*
1127  * wait_task_inactive - wait for a thread to unschedule.
1128  *
1129  * If @match_state is nonzero, it's the @p->state value just checked and
1130  * not expected to change.  If it changes, i.e. @p might have woken up,
1131  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132  * we return a positive number (its total switch count).  If a second call
1133  * a short while later returns the same number, the caller can be sure that
1134  * @p has remained unscheduled the whole time.
1135  *
1136  * The caller must ensure that the task *will* unschedule sometime soon,
1137  * else this function might spin for a *long* time. This function can't
1138  * be called with interrupts off, or it may introduce deadlock with
1139  * smp_call_function() if an IPI is sent by the same process we are
1140  * waiting to become inactive.
1141  */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 	unsigned long flags;
1145 	int running, on_rq;
1146 	unsigned long ncsw;
1147 	struct rq *rq;
1148 
1149 	for (;;) {
1150 		/*
1151 		 * We do the initial early heuristics without holding
1152 		 * any task-queue locks at all. We'll only try to get
1153 		 * the runqueue lock when things look like they will
1154 		 * work out!
1155 		 */
1156 		rq = task_rq(p);
1157 
1158 		/*
1159 		 * If the task is actively running on another CPU
1160 		 * still, just relax and busy-wait without holding
1161 		 * any locks.
1162 		 *
1163 		 * NOTE! Since we don't hold any locks, it's not
1164 		 * even sure that "rq" stays as the right runqueue!
1165 		 * But we don't care, since "task_running()" will
1166 		 * return false if the runqueue has changed and p
1167 		 * is actually now running somewhere else!
1168 		 */
1169 		while (task_running(rq, p)) {
1170 			if (match_state && unlikely(p->state != match_state))
1171 				return 0;
1172 			cpu_relax();
1173 		}
1174 
1175 		/*
1176 		 * Ok, time to look more closely! We need the rq
1177 		 * lock now, to be *sure*. If we're wrong, we'll
1178 		 * just go back and repeat.
1179 		 */
1180 		rq = task_rq_lock(p, &flags);
1181 		trace_sched_wait_task(p);
1182 		running = task_running(rq, p);
1183 		on_rq = p->on_rq;
1184 		ncsw = 0;
1185 		if (!match_state || p->state == match_state)
1186 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 		task_rq_unlock(rq, p, &flags);
1188 
1189 		/*
1190 		 * If it changed from the expected state, bail out now.
1191 		 */
1192 		if (unlikely(!ncsw))
1193 			break;
1194 
1195 		/*
1196 		 * Was it really running after all now that we
1197 		 * checked with the proper locks actually held?
1198 		 *
1199 		 * Oops. Go back and try again..
1200 		 */
1201 		if (unlikely(running)) {
1202 			cpu_relax();
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * It's not enough that it's not actively running,
1208 		 * it must be off the runqueue _entirely_, and not
1209 		 * preempted!
1210 		 *
1211 		 * So if it was still runnable (but just not actively
1212 		 * running right now), it's preempted, and we should
1213 		 * yield - it could be a while.
1214 		 */
1215 		if (unlikely(on_rq)) {
1216 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217 
1218 			set_current_state(TASK_UNINTERRUPTIBLE);
1219 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Ahh, all good. It wasn't running, and it wasn't
1225 		 * runnable, which means that it will never become
1226 		 * running in the future either. We're all done!
1227 		 */
1228 		break;
1229 	}
1230 
1231 	return ncsw;
1232 }
1233 
1234 /***
1235  * kick_process - kick a running thread to enter/exit the kernel
1236  * @p: the to-be-kicked thread
1237  *
1238  * Cause a process which is running on another CPU to enter
1239  * kernel-mode, without any delay. (to get signals handled.)
1240  *
1241  * NOTE: this function doesn't have to take the runqueue lock,
1242  * because all it wants to ensure is that the remote task enters
1243  * the kernel. If the IPI races and the task has been migrated
1244  * to another CPU then no harm is done and the purpose has been
1245  * achieved as well.
1246  */
1247 void kick_process(struct task_struct *p)
1248 {
1249 	int cpu;
1250 
1251 	preempt_disable();
1252 	cpu = task_cpu(p);
1253 	if ((cpu != smp_processor_id()) && task_curr(p))
1254 		smp_send_reschedule(cpu);
1255 	preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259 
1260 #ifdef CONFIG_SMP
1261 /*
1262  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263  */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 	enum { cpuset, possible, fail } state = cpuset;
1268 	int dest_cpu;
1269 
1270 	/* Look for allowed, online CPU in same node. */
1271 	for_each_cpu(dest_cpu, nodemask) {
1272 		if (!cpu_online(dest_cpu))
1273 			continue;
1274 		if (!cpu_active(dest_cpu))
1275 			continue;
1276 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 			return dest_cpu;
1278 	}
1279 
1280 	for (;;) {
1281 		/* Any allowed, online CPU? */
1282 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 			if (!cpu_online(dest_cpu))
1284 				continue;
1285 			if (!cpu_active(dest_cpu))
1286 				continue;
1287 			goto out;
1288 		}
1289 
1290 		switch (state) {
1291 		case cpuset:
1292 			/* No more Mr. Nice Guy. */
1293 			cpuset_cpus_allowed_fallback(p);
1294 			state = possible;
1295 			break;
1296 
1297 		case possible:
1298 			do_set_cpus_allowed(p, cpu_possible_mask);
1299 			state = fail;
1300 			break;
1301 
1302 		case fail:
1303 			BUG();
1304 			break;
1305 		}
1306 	}
1307 
1308 out:
1309 	if (state != cpuset) {
1310 		/*
1311 		 * Don't tell them about moving exiting tasks or
1312 		 * kernel threads (both mm NULL), since they never
1313 		 * leave kernel.
1314 		 */
1315 		if (p->mm && printk_ratelimit()) {
1316 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 					task_pid_nr(p), p->comm, cpu);
1318 		}
1319 	}
1320 
1321 	return dest_cpu;
1322 }
1323 
1324 /*
1325  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326  */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 
1332 	/*
1333 	 * In order not to call set_task_cpu() on a blocking task we need
1334 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 	 * cpu.
1336 	 *
1337 	 * Since this is common to all placement strategies, this lives here.
1338 	 *
1339 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 	 *   not worry about this generic constraint ]
1341 	 */
1342 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 		     !cpu_online(cpu)))
1344 		cpu = select_fallback_rq(task_cpu(p), p);
1345 
1346 	return cpu;
1347 }
1348 
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 	s64 diff = sample - *avg;
1352 	*avg += diff >> 3;
1353 }
1354 #endif
1355 
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 	struct rq *rq = this_rq();
1361 
1362 #ifdef CONFIG_SMP
1363 	int this_cpu = smp_processor_id();
1364 
1365 	if (cpu == this_cpu) {
1366 		schedstat_inc(rq, ttwu_local);
1367 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 	} else {
1369 		struct sched_domain *sd;
1370 
1371 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 		rcu_read_lock();
1373 		for_each_domain(this_cpu, sd) {
1374 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 				schedstat_inc(sd, ttwu_wake_remote);
1376 				break;
1377 			}
1378 		}
1379 		rcu_read_unlock();
1380 	}
1381 
1382 	if (wake_flags & WF_MIGRATED)
1383 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384 
1385 #endif /* CONFIG_SMP */
1386 
1387 	schedstat_inc(rq, ttwu_count);
1388 	schedstat_inc(p, se.statistics.nr_wakeups);
1389 
1390 	if (wake_flags & WF_SYNC)
1391 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392 
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395 
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 	activate_task(rq, p, en_flags);
1399 	p->on_rq = 1;
1400 
1401 	/* if a worker is waking up, notify workqueue */
1402 	if (p->flags & PF_WQ_WORKER)
1403 		wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405 
1406 /*
1407  * Mark the task runnable and perform wakeup-preemption.
1408  */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 	trace_sched_wakeup(p, true);
1413 	check_preempt_curr(rq, p, wake_flags);
1414 
1415 	p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 	if (p->sched_class->task_woken)
1418 		p->sched_class->task_woken(rq, p);
1419 
1420 	if (rq->idle_stamp) {
1421 		u64 delta = rq->clock - rq->idle_stamp;
1422 		u64 max = 2*sysctl_sched_migration_cost;
1423 
1424 		if (delta > max)
1425 			rq->avg_idle = max;
1426 		else
1427 			update_avg(&rq->avg_idle, delta);
1428 		rq->idle_stamp = 0;
1429 	}
1430 #endif
1431 }
1432 
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 	if (p->sched_contributes_to_load)
1438 		rq->nr_uninterruptible--;
1439 #endif
1440 
1441 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 	ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444 
1445 /*
1446  * Called in case the task @p isn't fully descheduled from its runqueue,
1447  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448  * since all we need to do is flip p->state to TASK_RUNNING, since
1449  * the task is still ->on_rq.
1450  */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 	struct rq *rq;
1454 	int ret = 0;
1455 
1456 	rq = __task_rq_lock(p);
1457 	if (p->on_rq) {
1458 		ttwu_do_wakeup(rq, p, wake_flags);
1459 		ret = 1;
1460 	}
1461 	__task_rq_unlock(rq);
1462 
1463 	return ret;
1464 }
1465 
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 	struct rq *rq = this_rq();
1470 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 	struct task_struct *p;
1472 
1473 	raw_spin_lock(&rq->lock);
1474 
1475 	while (llist) {
1476 		p = llist_entry(llist, struct task_struct, wake_entry);
1477 		llist = llist_next(llist);
1478 		ttwu_do_activate(rq, p, 0);
1479 	}
1480 
1481 	raw_spin_unlock(&rq->lock);
1482 }
1483 
1484 void scheduler_ipi(void)
1485 {
1486 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 		return;
1488 
1489 	/*
1490 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 	 * traditionally all their work was done from the interrupt return
1492 	 * path. Now that we actually do some work, we need to make sure
1493 	 * we do call them.
1494 	 *
1495 	 * Some archs already do call them, luckily irq_enter/exit nest
1496 	 * properly.
1497 	 *
1498 	 * Arguably we should visit all archs and update all handlers,
1499 	 * however a fair share of IPIs are still resched only so this would
1500 	 * somewhat pessimize the simple resched case.
1501 	 */
1502 	irq_enter();
1503 	sched_ttwu_pending();
1504 
1505 	/*
1506 	 * Check if someone kicked us for doing the nohz idle load balance.
1507 	 */
1508 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 		this_rq()->idle_balance = 1;
1510 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 	}
1512 	irq_exit();
1513 }
1514 
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 		smp_send_reschedule(cpu);
1519 }
1520 
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 	struct rq *rq;
1525 	int ret = 0;
1526 
1527 	rq = __task_rq_lock(p);
1528 	if (p->on_cpu) {
1529 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 		ttwu_do_wakeup(rq, p, wake_flags);
1531 		ret = 1;
1532 	}
1533 	__task_rq_unlock(rq);
1534 
1535 	return ret;
1536 
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539 
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545 
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 	struct rq *rq = cpu_rq(cpu);
1549 
1550 #if defined(CONFIG_SMP)
1551 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 		ttwu_queue_remote(p, cpu);
1554 		return;
1555 	}
1556 #endif
1557 
1558 	raw_spin_lock(&rq->lock);
1559 	ttwu_do_activate(rq, p, 0);
1560 	raw_spin_unlock(&rq->lock);
1561 }
1562 
1563 /**
1564  * try_to_wake_up - wake up a thread
1565  * @p: the thread to be awakened
1566  * @state: the mask of task states that can be woken
1567  * @wake_flags: wake modifier flags (WF_*)
1568  *
1569  * Put it on the run-queue if it's not already there. The "current"
1570  * thread is always on the run-queue (except when the actual
1571  * re-schedule is in progress), and as such you're allowed to do
1572  * the simpler "current->state = TASK_RUNNING" to mark yourself
1573  * runnable without the overhead of this.
1574  *
1575  * Returns %true if @p was woken up, %false if it was already running
1576  * or @state didn't match @p's state.
1577  */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 	unsigned long flags;
1582 	int cpu, success = 0;
1583 
1584 	smp_wmb();
1585 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 	if (!(p->state & state))
1587 		goto out;
1588 
1589 	success = 1; /* we're going to change ->state */
1590 	cpu = task_cpu(p);
1591 
1592 	if (p->on_rq && ttwu_remote(p, wake_flags))
1593 		goto stat;
1594 
1595 #ifdef CONFIG_SMP
1596 	/*
1597 	 * If the owning (remote) cpu is still in the middle of schedule() with
1598 	 * this task as prev, wait until its done referencing the task.
1599 	 */
1600 	while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 		/*
1603 		 * In case the architecture enables interrupts in
1604 		 * context_switch(), we cannot busy wait, since that
1605 		 * would lead to deadlocks when an interrupt hits and
1606 		 * tries to wake up @prev. So bail and do a complete
1607 		 * remote wakeup.
1608 		 */
1609 		if (ttwu_activate_remote(p, wake_flags))
1610 			goto stat;
1611 #else
1612 		cpu_relax();
1613 #endif
1614 	}
1615 	/*
1616 	 * Pairs with the smp_wmb() in finish_lock_switch().
1617 	 */
1618 	smp_rmb();
1619 
1620 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 	p->state = TASK_WAKING;
1622 
1623 	if (p->sched_class->task_waking)
1624 		p->sched_class->task_waking(p);
1625 
1626 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 	if (task_cpu(p) != cpu) {
1628 		wake_flags |= WF_MIGRATED;
1629 		set_task_cpu(p, cpu);
1630 	}
1631 #endif /* CONFIG_SMP */
1632 
1633 	ttwu_queue(p, cpu);
1634 stat:
1635 	ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638 
1639 	return success;
1640 }
1641 
1642 /**
1643  * try_to_wake_up_local - try to wake up a local task with rq lock held
1644  * @p: the thread to be awakened
1645  *
1646  * Put @p on the run-queue if it's not already there. The caller must
1647  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648  * the current task.
1649  */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 	struct rq *rq = task_rq(p);
1653 
1654 	BUG_ON(rq != this_rq());
1655 	BUG_ON(p == current);
1656 	lockdep_assert_held(&rq->lock);
1657 
1658 	if (!raw_spin_trylock(&p->pi_lock)) {
1659 		raw_spin_unlock(&rq->lock);
1660 		raw_spin_lock(&p->pi_lock);
1661 		raw_spin_lock(&rq->lock);
1662 	}
1663 
1664 	if (!(p->state & TASK_NORMAL))
1665 		goto out;
1666 
1667 	if (!p->on_rq)
1668 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669 
1670 	ttwu_do_wakeup(rq, p, 0);
1671 	ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 	raw_spin_unlock(&p->pi_lock);
1674 }
1675 
1676 /**
1677  * wake_up_process - Wake up a specific process
1678  * @p: The process to be woken up.
1679  *
1680  * Attempt to wake up the nominated process and move it to the set of runnable
1681  * processes.  Returns 1 if the process was woken up, 0 if it was already
1682  * running.
1683  *
1684  * It may be assumed that this function implies a write memory barrier before
1685  * changing the task state if and only if any tasks are woken up.
1686  */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 	return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	INIT_LIST_HEAD(&p->rt.run_list);
1721 
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726 
1727 /*
1728  * fork()/clone()-time setup:
1729  */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 	unsigned long flags;
1733 	int cpu = get_cpu();
1734 
1735 	__sched_fork(p);
1736 	/*
1737 	 * We mark the process as running here. This guarantees that
1738 	 * nobody will actually run it, and a signal or other external
1739 	 * event cannot wake it up and insert it on the runqueue either.
1740 	 */
1741 	p->state = TASK_RUNNING;
1742 
1743 	/*
1744 	 * Make sure we do not leak PI boosting priority to the child.
1745 	 */
1746 	p->prio = current->normal_prio;
1747 
1748 	/*
1749 	 * Revert to default priority/policy on fork if requested.
1750 	 */
1751 	if (unlikely(p->sched_reset_on_fork)) {
1752 		if (task_has_rt_policy(p)) {
1753 			p->policy = SCHED_NORMAL;
1754 			p->static_prio = NICE_TO_PRIO(0);
1755 			p->rt_priority = 0;
1756 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 			p->static_prio = NICE_TO_PRIO(0);
1758 
1759 		p->prio = p->normal_prio = __normal_prio(p);
1760 		set_load_weight(p);
1761 
1762 		/*
1763 		 * We don't need the reset flag anymore after the fork. It has
1764 		 * fulfilled its duty:
1765 		 */
1766 		p->sched_reset_on_fork = 0;
1767 	}
1768 
1769 	if (!rt_prio(p->prio))
1770 		p->sched_class = &fair_sched_class;
1771 
1772 	if (p->sched_class->task_fork)
1773 		p->sched_class->task_fork(p);
1774 
1775 	/*
1776 	 * The child is not yet in the pid-hash so no cgroup attach races,
1777 	 * and the cgroup is pinned to this child due to cgroup_fork()
1778 	 * is ran before sched_fork().
1779 	 *
1780 	 * Silence PROVE_RCU.
1781 	 */
1782 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 	set_task_cpu(p, cpu);
1784 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785 
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 	if (likely(sched_info_on()))
1788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 	p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 	/* Want to start with kernel preemption disabled. */
1795 	task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800 
1801 	put_cpu();
1802 }
1803 
1804 /*
1805  * wake_up_new_task - wake up a newly created task for the first time.
1806  *
1807  * This function will do some initial scheduler statistics housekeeping
1808  * that must be done for every newly created context, then puts the task
1809  * on the runqueue and wakes it.
1810  */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 	unsigned long flags;
1814 	struct rq *rq;
1815 
1816 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 	/*
1819 	 * Fork balancing, do it here and not earlier because:
1820 	 *  - cpus_allowed can change in the fork path
1821 	 *  - any previously selected cpu might disappear through hotplug
1822 	 */
1823 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825 
1826 	rq = __task_rq_lock(p);
1827 	activate_task(rq, p, 0);
1828 	p->on_rq = 1;
1829 	trace_sched_wakeup_new(p, true);
1830 	check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 	if (p->sched_class->task_woken)
1833 		p->sched_class->task_woken(rq, p);
1834 #endif
1835 	task_rq_unlock(rq, p, &flags);
1836 }
1837 
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839 
1840 /**
1841  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842  * @notifier: notifier struct to register
1843  */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849 
1850 /**
1851  * preempt_notifier_unregister - no longer interested in preemption notifications
1852  * @notifier: notifier struct to unregister
1853  *
1854  * This is safe to call from within a preemption notifier.
1855  */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 	hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861 
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 	struct preempt_notifier *notifier;
1865 	struct hlist_node *node;
1866 
1867 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870 
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 				 struct task_struct *next)
1874 {
1875 	struct preempt_notifier *notifier;
1876 	struct hlist_node *node;
1877 
1878 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 		notifier->ops->sched_out(notifier, next);
1880 }
1881 
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887 
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 				 struct task_struct *next)
1891 {
1892 }
1893 
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895 
1896 /**
1897  * prepare_task_switch - prepare to switch tasks
1898  * @rq: the runqueue preparing to switch
1899  * @prev: the current task that is being switched out
1900  * @next: the task we are going to switch to.
1901  *
1902  * This is called with the rq lock held and interrupts off. It must
1903  * be paired with a subsequent finish_task_switch after the context
1904  * switch.
1905  *
1906  * prepare_task_switch sets up locking and calls architecture specific
1907  * hooks.
1908  */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 		    struct task_struct *next)
1912 {
1913 	trace_sched_switch(prev, next);
1914 	sched_info_switch(prev, next);
1915 	perf_event_task_sched_out(prev, next);
1916 	fire_sched_out_preempt_notifiers(prev, next);
1917 	prepare_lock_switch(rq, next);
1918 	prepare_arch_switch(next);
1919 }
1920 
1921 /**
1922  * finish_task_switch - clean up after a task-switch
1923  * @rq: runqueue associated with task-switch
1924  * @prev: the thread we just switched away from.
1925  *
1926  * finish_task_switch must be called after the context switch, paired
1927  * with a prepare_task_switch call before the context switch.
1928  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929  * and do any other architecture-specific cleanup actions.
1930  *
1931  * Note that we may have delayed dropping an mm in context_switch(). If
1932  * so, we finish that here outside of the runqueue lock. (Doing it
1933  * with the lock held can cause deadlocks; see schedule() for
1934  * details.)
1935  */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 	__releases(rq->lock)
1938 {
1939 	struct mm_struct *mm = rq->prev_mm;
1940 	long prev_state;
1941 
1942 	rq->prev_mm = NULL;
1943 
1944 	/*
1945 	 * A task struct has one reference for the use as "current".
1946 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 	 * schedule one last time. The schedule call will never return, and
1948 	 * the scheduled task must drop that reference.
1949 	 * The test for TASK_DEAD must occur while the runqueue locks are
1950 	 * still held, otherwise prev could be scheduled on another cpu, die
1951 	 * there before we look at prev->state, and then the reference would
1952 	 * be dropped twice.
1953 	 *		Manfred Spraul <manfred@colorfullife.com>
1954 	 */
1955 	prev_state = prev->state;
1956 	finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 	local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 	perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 	local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 	finish_lock_switch(rq, prev);
1965 	finish_arch_post_lock_switch();
1966 
1967 	fire_sched_in_preempt_notifiers(current);
1968 	if (mm)
1969 		mmdrop(mm);
1970 	if (unlikely(prev_state == TASK_DEAD)) {
1971 		/*
1972 		 * Remove function-return probe instances associated with this
1973 		 * task and put them back on the free list.
1974 		 */
1975 		kprobe_flush_task(prev);
1976 		put_task_struct(prev);
1977 	}
1978 }
1979 
1980 #ifdef CONFIG_SMP
1981 
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 	if (prev->sched_class->pre_schedule)
1986 		prev->sched_class->pre_schedule(rq, prev);
1987 }
1988 
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 	if (rq->post_schedule) {
1993 		unsigned long flags;
1994 
1995 		raw_spin_lock_irqsave(&rq->lock, flags);
1996 		if (rq->curr->sched_class->post_schedule)
1997 			rq->curr->sched_class->post_schedule(rq);
1998 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 
2000 		rq->post_schedule = 0;
2001 	}
2002 }
2003 
2004 #else
2005 
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009 
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013 
2014 #endif
2015 
2016 /**
2017  * schedule_tail - first thing a freshly forked thread must call.
2018  * @prev: the thread we just switched away from.
2019  */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 	__releases(rq->lock)
2022 {
2023 	struct rq *rq = this_rq();
2024 
2025 	finish_task_switch(rq, prev);
2026 
2027 	/*
2028 	 * FIXME: do we need to worry about rq being invalidated by the
2029 	 * task_switch?
2030 	 */
2031 	post_schedule(rq);
2032 
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 	/* In this case, finish_task_switch does not reenable preemption */
2035 	preempt_enable();
2036 #endif
2037 	if (current->set_child_tid)
2038 		put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040 
2041 /*
2042  * context_switch - switch to the new MM and the new
2043  * thread's register state.
2044  */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 	       struct task_struct *next)
2048 {
2049 	struct mm_struct *mm, *oldmm;
2050 
2051 	prepare_task_switch(rq, prev, next);
2052 
2053 	mm = next->mm;
2054 	oldmm = prev->active_mm;
2055 	/*
2056 	 * For paravirt, this is coupled with an exit in switch_to to
2057 	 * combine the page table reload and the switch backend into
2058 	 * one hypercall.
2059 	 */
2060 	arch_start_context_switch(prev);
2061 
2062 	if (!mm) {
2063 		next->active_mm = oldmm;
2064 		atomic_inc(&oldmm->mm_count);
2065 		enter_lazy_tlb(oldmm, next);
2066 	} else
2067 		switch_mm(oldmm, mm, next);
2068 
2069 	if (!prev->mm) {
2070 		prev->active_mm = NULL;
2071 		rq->prev_mm = oldmm;
2072 	}
2073 	/*
2074 	 * Since the runqueue lock will be released by the next
2075 	 * task (which is an invalid locking op but in the case
2076 	 * of the scheduler it's an obvious special-case), so we
2077 	 * do an early lockdep release here:
2078 	 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082 
2083 	/* Here we just switch the register state and the stack. */
2084 	switch_to(prev, next, prev);
2085 
2086 	barrier();
2087 	/*
2088 	 * this_rq must be evaluated again because prev may have moved
2089 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 	 * frame will be invalid.
2091 	 */
2092 	finish_task_switch(this_rq(), prev);
2093 }
2094 
2095 /*
2096  * nr_running, nr_uninterruptible and nr_context_switches:
2097  *
2098  * externally visible scheduler statistics: current number of runnable
2099  * threads, current number of uninterruptible-sleeping threads, total
2100  * number of context switches performed since bootup.
2101  */
2102 unsigned long nr_running(void)
2103 {
2104 	unsigned long i, sum = 0;
2105 
2106 	for_each_online_cpu(i)
2107 		sum += cpu_rq(i)->nr_running;
2108 
2109 	return sum;
2110 }
2111 
2112 unsigned long nr_uninterruptible(void)
2113 {
2114 	unsigned long i, sum = 0;
2115 
2116 	for_each_possible_cpu(i)
2117 		sum += cpu_rq(i)->nr_uninterruptible;
2118 
2119 	/*
2120 	 * Since we read the counters lockless, it might be slightly
2121 	 * inaccurate. Do not allow it to go below zero though:
2122 	 */
2123 	if (unlikely((long)sum < 0))
2124 		sum = 0;
2125 
2126 	return sum;
2127 }
2128 
2129 unsigned long long nr_context_switches(void)
2130 {
2131 	int i;
2132 	unsigned long long sum = 0;
2133 
2134 	for_each_possible_cpu(i)
2135 		sum += cpu_rq(i)->nr_switches;
2136 
2137 	return sum;
2138 }
2139 
2140 unsigned long nr_iowait(void)
2141 {
2142 	unsigned long i, sum = 0;
2143 
2144 	for_each_possible_cpu(i)
2145 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146 
2147 	return sum;
2148 }
2149 
2150 unsigned long nr_iowait_cpu(int cpu)
2151 {
2152 	struct rq *this = cpu_rq(cpu);
2153 	return atomic_read(&this->nr_iowait);
2154 }
2155 
2156 unsigned long this_cpu_load(void)
2157 {
2158 	struct rq *this = this_rq();
2159 	return this->cpu_load[0];
2160 }
2161 
2162 
2163 /*
2164  * Global load-average calculations
2165  *
2166  * We take a distributed and async approach to calculating the global load-avg
2167  * in order to minimize overhead.
2168  *
2169  * The global load average is an exponentially decaying average of nr_running +
2170  * nr_uninterruptible.
2171  *
2172  * Once every LOAD_FREQ:
2173  *
2174  *   nr_active = 0;
2175  *   for_each_possible_cpu(cpu)
2176  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177  *
2178  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179  *
2180  * Due to a number of reasons the above turns in the mess below:
2181  *
2182  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2183  *    serious number of cpus, therefore we need to take a distributed approach
2184  *    to calculating nr_active.
2185  *
2186  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188  *
2189  *    So assuming nr_active := 0 when we start out -- true per definition, we
2190  *    can simply take per-cpu deltas and fold those into a global accumulate
2191  *    to obtain the same result. See calc_load_fold_active().
2192  *
2193  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194  *    across the machine, we assume 10 ticks is sufficient time for every
2195  *    cpu to have completed this task.
2196  *
2197  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2198  *    again, being late doesn't loose the delta, just wrecks the sample.
2199  *
2200  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201  *    this would add another cross-cpu cacheline miss and atomic operation
2202  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2203  *    when it went into uninterruptible state and decrement on whatever cpu
2204  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2205  *    all cpus yields the correct result.
2206  *
2207  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208  */
2209 
2210 /* Variables and functions for calc_load */
2211 static atomic_long_t calc_load_tasks;
2212 static unsigned long calc_load_update;
2213 unsigned long avenrun[3];
2214 EXPORT_SYMBOL(avenrun); /* should be removed */
2215 
2216 /**
2217  * get_avenrun - get the load average array
2218  * @loads:	pointer to dest load array
2219  * @offset:	offset to add
2220  * @shift:	shift count to shift the result left
2221  *
2222  * These values are estimates at best, so no need for locking.
2223  */
2224 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225 {
2226 	loads[0] = (avenrun[0] + offset) << shift;
2227 	loads[1] = (avenrun[1] + offset) << shift;
2228 	loads[2] = (avenrun[2] + offset) << shift;
2229 }
2230 
2231 static long calc_load_fold_active(struct rq *this_rq)
2232 {
2233 	long nr_active, delta = 0;
2234 
2235 	nr_active = this_rq->nr_running;
2236 	nr_active += (long) this_rq->nr_uninterruptible;
2237 
2238 	if (nr_active != this_rq->calc_load_active) {
2239 		delta = nr_active - this_rq->calc_load_active;
2240 		this_rq->calc_load_active = nr_active;
2241 	}
2242 
2243 	return delta;
2244 }
2245 
2246 /*
2247  * a1 = a0 * e + a * (1 - e)
2248  */
2249 static unsigned long
2250 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251 {
2252 	load *= exp;
2253 	load += active * (FIXED_1 - exp);
2254 	load += 1UL << (FSHIFT - 1);
2255 	return load >> FSHIFT;
2256 }
2257 
2258 #ifdef CONFIG_NO_HZ
2259 /*
2260  * Handle NO_HZ for the global load-average.
2261  *
2262  * Since the above described distributed algorithm to compute the global
2263  * load-average relies on per-cpu sampling from the tick, it is affected by
2264  * NO_HZ.
2265  *
2266  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268  * when we read the global state.
2269  *
2270  * Obviously reality has to ruin such a delightfully simple scheme:
2271  *
2272  *  - When we go NO_HZ idle during the window, we can negate our sample
2273  *    contribution, causing under-accounting.
2274  *
2275  *    We avoid this by keeping two idle-delta counters and flipping them
2276  *    when the window starts, thus separating old and new NO_HZ load.
2277  *
2278  *    The only trick is the slight shift in index flip for read vs write.
2279  *
2280  *        0s            5s            10s           15s
2281  *          +10           +10           +10           +10
2282  *        |-|-----------|-|-----------|-|-----------|-|
2283  *    r:0 0 1           1 0           0 1           1 0
2284  *    w:0 1 1           0 0           1 1           0 0
2285  *
2286  *    This ensures we'll fold the old idle contribution in this window while
2287  *    accumlating the new one.
2288  *
2289  *  - When we wake up from NO_HZ idle during the window, we push up our
2290  *    contribution, since we effectively move our sample point to a known
2291  *    busy state.
2292  *
2293  *    This is solved by pushing the window forward, and thus skipping the
2294  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2295  *    was in effect at the time the window opened). This also solves the issue
2296  *    of having to deal with a cpu having been in NOHZ idle for multiple
2297  *    LOAD_FREQ intervals.
2298  *
2299  * When making the ILB scale, we should try to pull this in as well.
2300  */
2301 static atomic_long_t calc_load_idle[2];
2302 static int calc_load_idx;
2303 
2304 static inline int calc_load_write_idx(void)
2305 {
2306 	int idx = calc_load_idx;
2307 
2308 	/*
2309 	 * See calc_global_nohz(), if we observe the new index, we also
2310 	 * need to observe the new update time.
2311 	 */
2312 	smp_rmb();
2313 
2314 	/*
2315 	 * If the folding window started, make sure we start writing in the
2316 	 * next idle-delta.
2317 	 */
2318 	if (!time_before(jiffies, calc_load_update))
2319 		idx++;
2320 
2321 	return idx & 1;
2322 }
2323 
2324 static inline int calc_load_read_idx(void)
2325 {
2326 	return calc_load_idx & 1;
2327 }
2328 
2329 void calc_load_enter_idle(void)
2330 {
2331 	struct rq *this_rq = this_rq();
2332 	long delta;
2333 
2334 	/*
2335 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 	 * into the pending idle delta.
2337 	 */
2338 	delta = calc_load_fold_active(this_rq);
2339 	if (delta) {
2340 		int idx = calc_load_write_idx();
2341 		atomic_long_add(delta, &calc_load_idle[idx]);
2342 	}
2343 }
2344 
2345 void calc_load_exit_idle(void)
2346 {
2347 	struct rq *this_rq = this_rq();
2348 
2349 	/*
2350 	 * If we're still before the sample window, we're done.
2351 	 */
2352 	if (time_before(jiffies, this_rq->calc_load_update))
2353 		return;
2354 
2355 	/*
2356 	 * We woke inside or after the sample window, this means we're already
2357 	 * accounted through the nohz accounting, so skip the entire deal and
2358 	 * sync up for the next window.
2359 	 */
2360 	this_rq->calc_load_update = calc_load_update;
2361 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 		this_rq->calc_load_update += LOAD_FREQ;
2363 }
2364 
2365 static long calc_load_fold_idle(void)
2366 {
2367 	int idx = calc_load_read_idx();
2368 	long delta = 0;
2369 
2370 	if (atomic_long_read(&calc_load_idle[idx]))
2371 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372 
2373 	return delta;
2374 }
2375 
2376 /**
2377  * fixed_power_int - compute: x^n, in O(log n) time
2378  *
2379  * @x:         base of the power
2380  * @frac_bits: fractional bits of @x
2381  * @n:         power to raise @x to.
2382  *
2383  * By exploiting the relation between the definition of the natural power
2384  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386  * (where: n_i \elem {0, 1}, the binary vector representing n),
2387  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388  * of course trivially computable in O(log_2 n), the length of our binary
2389  * vector.
2390  */
2391 static unsigned long
2392 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393 {
2394 	unsigned long result = 1UL << frac_bits;
2395 
2396 	if (n) for (;;) {
2397 		if (n & 1) {
2398 			result *= x;
2399 			result += 1UL << (frac_bits - 1);
2400 			result >>= frac_bits;
2401 		}
2402 		n >>= 1;
2403 		if (!n)
2404 			break;
2405 		x *= x;
2406 		x += 1UL << (frac_bits - 1);
2407 		x >>= frac_bits;
2408 	}
2409 
2410 	return result;
2411 }
2412 
2413 /*
2414  * a1 = a0 * e + a * (1 - e)
2415  *
2416  * a2 = a1 * e + a * (1 - e)
2417  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2419  *
2420  * a3 = a2 * e + a * (1 - e)
2421  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423  *
2424  *  ...
2425  *
2426  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428  *    = a0 * e^n + a * (1 - e^n)
2429  *
2430  * [1] application of the geometric series:
2431  *
2432  *              n         1 - x^(n+1)
2433  *     S_n := \Sum x^i = -------------
2434  *             i=0          1 - x
2435  */
2436 static unsigned long
2437 calc_load_n(unsigned long load, unsigned long exp,
2438 	    unsigned long active, unsigned int n)
2439 {
2440 
2441 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442 }
2443 
2444 /*
2445  * NO_HZ can leave us missing all per-cpu ticks calling
2446  * calc_load_account_active(), but since an idle CPU folds its delta into
2447  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448  * in the pending idle delta if our idle period crossed a load cycle boundary.
2449  *
2450  * Once we've updated the global active value, we need to apply the exponential
2451  * weights adjusted to the number of cycles missed.
2452  */
2453 static void calc_global_nohz(void)
2454 {
2455 	long delta, active, n;
2456 
2457 	if (!time_before(jiffies, calc_load_update + 10)) {
2458 		/*
2459 		 * Catch-up, fold however many we are behind still
2460 		 */
2461 		delta = jiffies - calc_load_update - 10;
2462 		n = 1 + (delta / LOAD_FREQ);
2463 
2464 		active = atomic_long_read(&calc_load_tasks);
2465 		active = active > 0 ? active * FIXED_1 : 0;
2466 
2467 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470 
2471 		calc_load_update += n * LOAD_FREQ;
2472 	}
2473 
2474 	/*
2475 	 * Flip the idle index...
2476 	 *
2477 	 * Make sure we first write the new time then flip the index, so that
2478 	 * calc_load_write_idx() will see the new time when it reads the new
2479 	 * index, this avoids a double flip messing things up.
2480 	 */
2481 	smp_wmb();
2482 	calc_load_idx++;
2483 }
2484 #else /* !CONFIG_NO_HZ */
2485 
2486 static inline long calc_load_fold_idle(void) { return 0; }
2487 static inline void calc_global_nohz(void) { }
2488 
2489 #endif /* CONFIG_NO_HZ */
2490 
2491 /*
2492  * calc_load - update the avenrun load estimates 10 ticks after the
2493  * CPUs have updated calc_load_tasks.
2494  */
2495 void calc_global_load(unsigned long ticks)
2496 {
2497 	long active, delta;
2498 
2499 	if (time_before(jiffies, calc_load_update + 10))
2500 		return;
2501 
2502 	/*
2503 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504 	 */
2505 	delta = calc_load_fold_idle();
2506 	if (delta)
2507 		atomic_long_add(delta, &calc_load_tasks);
2508 
2509 	active = atomic_long_read(&calc_load_tasks);
2510 	active = active > 0 ? active * FIXED_1 : 0;
2511 
2512 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515 
2516 	calc_load_update += LOAD_FREQ;
2517 
2518 	/*
2519 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520 	 */
2521 	calc_global_nohz();
2522 }
2523 
2524 /*
2525  * Called from update_cpu_load() to periodically update this CPU's
2526  * active count.
2527  */
2528 static void calc_load_account_active(struct rq *this_rq)
2529 {
2530 	long delta;
2531 
2532 	if (time_before(jiffies, this_rq->calc_load_update))
2533 		return;
2534 
2535 	delta  = calc_load_fold_active(this_rq);
2536 	if (delta)
2537 		atomic_long_add(delta, &calc_load_tasks);
2538 
2539 	this_rq->calc_load_update += LOAD_FREQ;
2540 }
2541 
2542 /*
2543  * End of global load-average stuff
2544  */
2545 
2546 /*
2547  * The exact cpuload at various idx values, calculated at every tick would be
2548  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549  *
2550  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551  * on nth tick when cpu may be busy, then we have:
2552  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554  *
2555  * decay_load_missed() below does efficient calculation of
2556  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558  *
2559  * The calculation is approximated on a 128 point scale.
2560  * degrade_zero_ticks is the number of ticks after which load at any
2561  * particular idx is approximated to be zero.
2562  * degrade_factor is a precomputed table, a row for each load idx.
2563  * Each column corresponds to degradation factor for a power of two ticks,
2564  * based on 128 point scale.
2565  * Example:
2566  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568  *
2569  * With this power of 2 load factors, we can degrade the load n times
2570  * by looking at 1 bits in n and doing as many mult/shift instead of
2571  * n mult/shifts needed by the exact degradation.
2572  */
2573 #define DEGRADE_SHIFT		7
2574 static const unsigned char
2575 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576 static const unsigned char
2577 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 					{0, 0, 0, 0, 0, 0, 0, 0},
2579 					{64, 32, 8, 0, 0, 0, 0, 0},
2580 					{96, 72, 40, 12, 1, 0, 0},
2581 					{112, 98, 75, 43, 15, 1, 0},
2582 					{120, 112, 98, 76, 45, 16, 2} };
2583 
2584 /*
2585  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586  * would be when CPU is idle and so we just decay the old load without
2587  * adding any new load.
2588  */
2589 static unsigned long
2590 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591 {
2592 	int j = 0;
2593 
2594 	if (!missed_updates)
2595 		return load;
2596 
2597 	if (missed_updates >= degrade_zero_ticks[idx])
2598 		return 0;
2599 
2600 	if (idx == 1)
2601 		return load >> missed_updates;
2602 
2603 	while (missed_updates) {
2604 		if (missed_updates % 2)
2605 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606 
2607 		missed_updates >>= 1;
2608 		j++;
2609 	}
2610 	return load;
2611 }
2612 
2613 /*
2614  * Update rq->cpu_load[] statistics. This function is usually called every
2615  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616  * every tick. We fix it up based on jiffies.
2617  */
2618 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 			      unsigned long pending_updates)
2620 {
2621 	int i, scale;
2622 
2623 	this_rq->nr_load_updates++;
2624 
2625 	/* Update our load: */
2626 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628 		unsigned long old_load, new_load;
2629 
2630 		/* scale is effectively 1 << i now, and >> i divides by scale */
2631 
2632 		old_load = this_rq->cpu_load[i];
2633 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634 		new_load = this_load;
2635 		/*
2636 		 * Round up the averaging division if load is increasing. This
2637 		 * prevents us from getting stuck on 9 if the load is 10, for
2638 		 * example.
2639 		 */
2640 		if (new_load > old_load)
2641 			new_load += scale - 1;
2642 
2643 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644 	}
2645 
2646 	sched_avg_update(this_rq);
2647 }
2648 
2649 #ifdef CONFIG_NO_HZ
2650 /*
2651  * There is no sane way to deal with nohz on smp when using jiffies because the
2652  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654  *
2655  * Therefore we cannot use the delta approach from the regular tick since that
2656  * would seriously skew the load calculation. However we'll make do for those
2657  * updates happening while idle (nohz_idle_balance) or coming out of idle
2658  * (tick_nohz_idle_exit).
2659  *
2660  * This means we might still be one tick off for nohz periods.
2661  */
2662 
2663 /*
2664  * Called from nohz_idle_balance() to update the load ratings before doing the
2665  * idle balance.
2666  */
2667 void update_idle_cpu_load(struct rq *this_rq)
2668 {
2669 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670 	unsigned long load = this_rq->load.weight;
2671 	unsigned long pending_updates;
2672 
2673 	/*
2674 	 * bail if there's load or we're actually up-to-date.
2675 	 */
2676 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 		return;
2678 
2679 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 	this_rq->last_load_update_tick = curr_jiffies;
2681 
2682 	__update_cpu_load(this_rq, load, pending_updates);
2683 }
2684 
2685 /*
2686  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687  */
2688 void update_cpu_load_nohz(void)
2689 {
2690 	struct rq *this_rq = this_rq();
2691 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 	unsigned long pending_updates;
2693 
2694 	if (curr_jiffies == this_rq->last_load_update_tick)
2695 		return;
2696 
2697 	raw_spin_lock(&this_rq->lock);
2698 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 	if (pending_updates) {
2700 		this_rq->last_load_update_tick = curr_jiffies;
2701 		/*
2702 		 * We were idle, this means load 0, the current load might be
2703 		 * !0 due to remote wakeups and the sort.
2704 		 */
2705 		__update_cpu_load(this_rq, 0, pending_updates);
2706 	}
2707 	raw_spin_unlock(&this_rq->lock);
2708 }
2709 #endif /* CONFIG_NO_HZ */
2710 
2711 /*
2712  * Called from scheduler_tick()
2713  */
2714 static void update_cpu_load_active(struct rq *this_rq)
2715 {
2716 	/*
2717 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718 	 */
2719 	this_rq->last_load_update_tick = jiffies;
2720 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2721 
2722 	calc_load_account_active(this_rq);
2723 }
2724 
2725 #ifdef CONFIG_SMP
2726 
2727 /*
2728  * sched_exec - execve() is a valuable balancing opportunity, because at
2729  * this point the task has the smallest effective memory and cache footprint.
2730  */
2731 void sched_exec(void)
2732 {
2733 	struct task_struct *p = current;
2734 	unsigned long flags;
2735 	int dest_cpu;
2736 
2737 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2738 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739 	if (dest_cpu == smp_processor_id())
2740 		goto unlock;
2741 
2742 	if (likely(cpu_active(dest_cpu))) {
2743 		struct migration_arg arg = { p, dest_cpu };
2744 
2745 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747 		return;
2748 	}
2749 unlock:
2750 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 }
2752 
2753 #endif
2754 
2755 DEFINE_PER_CPU(struct kernel_stat, kstat);
2756 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757 
2758 EXPORT_PER_CPU_SYMBOL(kstat);
2759 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760 
2761 /*
2762  * Return any ns on the sched_clock that have not yet been accounted in
2763  * @p in case that task is currently running.
2764  *
2765  * Called with task_rq_lock() held on @rq.
2766  */
2767 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768 {
2769 	u64 ns = 0;
2770 
2771 	if (task_current(rq, p)) {
2772 		update_rq_clock(rq);
2773 		ns = rq->clock_task - p->se.exec_start;
2774 		if ((s64)ns < 0)
2775 			ns = 0;
2776 	}
2777 
2778 	return ns;
2779 }
2780 
2781 unsigned long long task_delta_exec(struct task_struct *p)
2782 {
2783 	unsigned long flags;
2784 	struct rq *rq;
2785 	u64 ns = 0;
2786 
2787 	rq = task_rq_lock(p, &flags);
2788 	ns = do_task_delta_exec(p, rq);
2789 	task_rq_unlock(rq, p, &flags);
2790 
2791 	return ns;
2792 }
2793 
2794 /*
2795  * Return accounted runtime for the task.
2796  * In case the task is currently running, return the runtime plus current's
2797  * pending runtime that have not been accounted yet.
2798  */
2799 unsigned long long task_sched_runtime(struct task_struct *p)
2800 {
2801 	unsigned long flags;
2802 	struct rq *rq;
2803 	u64 ns = 0;
2804 
2805 	rq = task_rq_lock(p, &flags);
2806 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807 	task_rq_unlock(rq, p, &flags);
2808 
2809 	return ns;
2810 }
2811 
2812 #ifdef CONFIG_CGROUP_CPUACCT
2813 struct cgroup_subsys cpuacct_subsys;
2814 struct cpuacct root_cpuacct;
2815 #endif
2816 
2817 static inline void task_group_account_field(struct task_struct *p, int index,
2818 					    u64 tmp)
2819 {
2820 #ifdef CONFIG_CGROUP_CPUACCT
2821 	struct kernel_cpustat *kcpustat;
2822 	struct cpuacct *ca;
2823 #endif
2824 	/*
2825 	 * Since all updates are sure to touch the root cgroup, we
2826 	 * get ourselves ahead and touch it first. If the root cgroup
2827 	 * is the only cgroup, then nothing else should be necessary.
2828 	 *
2829 	 */
2830 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831 
2832 #ifdef CONFIG_CGROUP_CPUACCT
2833 	if (unlikely(!cpuacct_subsys.active))
2834 		return;
2835 
2836 	rcu_read_lock();
2837 	ca = task_ca(p);
2838 	while (ca && (ca != &root_cpuacct)) {
2839 		kcpustat = this_cpu_ptr(ca->cpustat);
2840 		kcpustat->cpustat[index] += tmp;
2841 		ca = parent_ca(ca);
2842 	}
2843 	rcu_read_unlock();
2844 #endif
2845 }
2846 
2847 
2848 /*
2849  * Account user cpu time to a process.
2850  * @p: the process that the cpu time gets accounted to
2851  * @cputime: the cpu time spent in user space since the last update
2852  * @cputime_scaled: cputime scaled by cpu frequency
2853  */
2854 void account_user_time(struct task_struct *p, cputime_t cputime,
2855 		       cputime_t cputime_scaled)
2856 {
2857 	int index;
2858 
2859 	/* Add user time to process. */
2860 	p->utime += cputime;
2861 	p->utimescaled += cputime_scaled;
2862 	account_group_user_time(p, cputime);
2863 
2864 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865 
2866 	/* Add user time to cpustat. */
2867 	task_group_account_field(p, index, (__force u64) cputime);
2868 
2869 	/* Account for user time used */
2870 	acct_update_integrals(p);
2871 }
2872 
2873 /*
2874  * Account guest cpu time to a process.
2875  * @p: the process that the cpu time gets accounted to
2876  * @cputime: the cpu time spent in virtual machine since the last update
2877  * @cputime_scaled: cputime scaled by cpu frequency
2878  */
2879 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 			       cputime_t cputime_scaled)
2881 {
2882 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2883 
2884 	/* Add guest time to process. */
2885 	p->utime += cputime;
2886 	p->utimescaled += cputime_scaled;
2887 	account_group_user_time(p, cputime);
2888 	p->gtime += cputime;
2889 
2890 	/* Add guest time to cpustat. */
2891 	if (TASK_NICE(p) > 0) {
2892 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894 	} else {
2895 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897 	}
2898 }
2899 
2900 /*
2901  * Account system cpu time to a process and desired cpustat field
2902  * @p: the process that the cpu time gets accounted to
2903  * @cputime: the cpu time spent in kernel space since the last update
2904  * @cputime_scaled: cputime scaled by cpu frequency
2905  * @target_cputime64: pointer to cpustat field that has to be updated
2906  */
2907 static inline
2908 void __account_system_time(struct task_struct *p, cputime_t cputime,
2909 			cputime_t cputime_scaled, int index)
2910 {
2911 	/* Add system time to process. */
2912 	p->stime += cputime;
2913 	p->stimescaled += cputime_scaled;
2914 	account_group_system_time(p, cputime);
2915 
2916 	/* Add system time to cpustat. */
2917 	task_group_account_field(p, index, (__force u64) cputime);
2918 
2919 	/* Account for system time used */
2920 	acct_update_integrals(p);
2921 }
2922 
2923 /*
2924  * Account system cpu time to a process.
2925  * @p: the process that the cpu time gets accounted to
2926  * @hardirq_offset: the offset to subtract from hardirq_count()
2927  * @cputime: the cpu time spent in kernel space since the last update
2928  * @cputime_scaled: cputime scaled by cpu frequency
2929  */
2930 void account_system_time(struct task_struct *p, int hardirq_offset,
2931 			 cputime_t cputime, cputime_t cputime_scaled)
2932 {
2933 	int index;
2934 
2935 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936 		account_guest_time(p, cputime, cputime_scaled);
2937 		return;
2938 	}
2939 
2940 	if (hardirq_count() - hardirq_offset)
2941 		index = CPUTIME_IRQ;
2942 	else if (in_serving_softirq())
2943 		index = CPUTIME_SOFTIRQ;
2944 	else
2945 		index = CPUTIME_SYSTEM;
2946 
2947 	__account_system_time(p, cputime, cputime_scaled, index);
2948 }
2949 
2950 /*
2951  * Account for involuntary wait time.
2952  * @cputime: the cpu time spent in involuntary wait
2953  */
2954 void account_steal_time(cputime_t cputime)
2955 {
2956 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2957 
2958 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959 }
2960 
2961 /*
2962  * Account for idle time.
2963  * @cputime: the cpu time spent in idle wait
2964  */
2965 void account_idle_time(cputime_t cputime)
2966 {
2967 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2968 	struct rq *rq = this_rq();
2969 
2970 	if (atomic_read(&rq->nr_iowait) > 0)
2971 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972 	else
2973 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974 }
2975 
2976 static __always_inline bool steal_account_process_tick(void)
2977 {
2978 #ifdef CONFIG_PARAVIRT
2979 	if (static_key_false(&paravirt_steal_enabled)) {
2980 		u64 steal, st = 0;
2981 
2982 		steal = paravirt_steal_clock(smp_processor_id());
2983 		steal -= this_rq()->prev_steal_time;
2984 
2985 		st = steal_ticks(steal);
2986 		this_rq()->prev_steal_time += st * TICK_NSEC;
2987 
2988 		account_steal_time(st);
2989 		return st;
2990 	}
2991 #endif
2992 	return false;
2993 }
2994 
2995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996 
2997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998 /*
2999  * Account a tick to a process and cpustat
3000  * @p: the process that the cpu time gets accounted to
3001  * @user_tick: is the tick from userspace
3002  * @rq: the pointer to rq
3003  *
3004  * Tick demultiplexing follows the order
3005  * - pending hardirq update
3006  * - pending softirq update
3007  * - user_time
3008  * - idle_time
3009  * - system time
3010  *   - check for guest_time
3011  *   - else account as system_time
3012  *
3013  * Check for hardirq is done both for system and user time as there is
3014  * no timer going off while we are on hardirq and hence we may never get an
3015  * opportunity to update it solely in system time.
3016  * p->stime and friends are only updated on system time and not on irq
3017  * softirq as those do not count in task exec_runtime any more.
3018  */
3019 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 						struct rq *rq)
3021 {
3022 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023 	u64 *cpustat = kcpustat_this_cpu->cpustat;
3024 
3025 	if (steal_account_process_tick())
3026 		return;
3027 
3028 	if (irqtime_account_hi_update()) {
3029 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030 	} else if (irqtime_account_si_update()) {
3031 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032 	} else if (this_cpu_ksoftirqd() == p) {
3033 		/*
3034 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 		 * So, we have to handle it separately here.
3036 		 * Also, p->stime needs to be updated for ksoftirqd.
3037 		 */
3038 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039 					CPUTIME_SOFTIRQ);
3040 	} else if (user_tick) {
3041 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 	} else if (p == rq->idle) {
3043 		account_idle_time(cputime_one_jiffy);
3044 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 	} else {
3047 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048 					CPUTIME_SYSTEM);
3049 	}
3050 }
3051 
3052 static void irqtime_account_idle_ticks(int ticks)
3053 {
3054 	int i;
3055 	struct rq *rq = this_rq();
3056 
3057 	for (i = 0; i < ticks; i++)
3058 		irqtime_account_process_tick(current, 0, rq);
3059 }
3060 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061 static void irqtime_account_idle_ticks(int ticks) {}
3062 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 						struct rq *rq) {}
3064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065 
3066 /*
3067  * Account a single tick of cpu time.
3068  * @p: the process that the cpu time gets accounted to
3069  * @user_tick: indicates if the tick is a user or a system tick
3070  */
3071 void account_process_tick(struct task_struct *p, int user_tick)
3072 {
3073 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074 	struct rq *rq = this_rq();
3075 
3076 	if (sched_clock_irqtime) {
3077 		irqtime_account_process_tick(p, user_tick, rq);
3078 		return;
3079 	}
3080 
3081 	if (steal_account_process_tick())
3082 		return;
3083 
3084 	if (user_tick)
3085 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088 				    one_jiffy_scaled);
3089 	else
3090 		account_idle_time(cputime_one_jiffy);
3091 }
3092 
3093 /*
3094  * Account multiple ticks of steal time.
3095  * @p: the process from which the cpu time has been stolen
3096  * @ticks: number of stolen ticks
3097  */
3098 void account_steal_ticks(unsigned long ticks)
3099 {
3100 	account_steal_time(jiffies_to_cputime(ticks));
3101 }
3102 
3103 /*
3104  * Account multiple ticks of idle time.
3105  * @ticks: number of stolen ticks
3106  */
3107 void account_idle_ticks(unsigned long ticks)
3108 {
3109 
3110 	if (sched_clock_irqtime) {
3111 		irqtime_account_idle_ticks(ticks);
3112 		return;
3113 	}
3114 
3115 	account_idle_time(jiffies_to_cputime(ticks));
3116 }
3117 
3118 #endif
3119 
3120 /*
3121  * Use precise platform statistics if available:
3122  */
3123 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125 {
3126 	*ut = p->utime;
3127 	*st = p->stime;
3128 }
3129 
3130 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131 {
3132 	struct task_cputime cputime;
3133 
3134 	thread_group_cputime(p, &cputime);
3135 
3136 	*ut = cputime.utime;
3137 	*st = cputime.stime;
3138 }
3139 #else
3140 
3141 #ifndef nsecs_to_cputime
3142 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3143 #endif
3144 
3145 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3146 {
3147 	u64 temp = (__force u64) rtime;
3148 
3149 	temp *= (__force u64) utime;
3150 
3151 	if (sizeof(cputime_t) == 4)
3152 		temp = div_u64(temp, (__force u32) total);
3153 	else
3154 		temp = div64_u64(temp, (__force u64) total);
3155 
3156 	return (__force cputime_t) temp;
3157 }
3158 
3159 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3160 {
3161 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3162 
3163 	/*
3164 	 * Use CFS's precise accounting:
3165 	 */
3166 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3167 
3168 	if (total)
3169 		utime = scale_utime(utime, rtime, total);
3170 	else
3171 		utime = rtime;
3172 
3173 	/*
3174 	 * Compare with previous values, to keep monotonicity:
3175 	 */
3176 	p->prev_utime = max(p->prev_utime, utime);
3177 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3178 
3179 	*ut = p->prev_utime;
3180 	*st = p->prev_stime;
3181 }
3182 
3183 /*
3184  * Must be called with siglock held.
3185  */
3186 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3187 {
3188 	struct signal_struct *sig = p->signal;
3189 	struct task_cputime cputime;
3190 	cputime_t rtime, utime, total;
3191 
3192 	thread_group_cputime(p, &cputime);
3193 
3194 	total = cputime.utime + cputime.stime;
3195 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3196 
3197 	if (total)
3198 		utime = scale_utime(cputime.utime, rtime, total);
3199 	else
3200 		utime = rtime;
3201 
3202 	sig->prev_utime = max(sig->prev_utime, utime);
3203 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3204 
3205 	*ut = sig->prev_utime;
3206 	*st = sig->prev_stime;
3207 }
3208 #endif
3209 
3210 /*
3211  * This function gets called by the timer code, with HZ frequency.
3212  * We call it with interrupts disabled.
3213  */
3214 void scheduler_tick(void)
3215 {
3216 	int cpu = smp_processor_id();
3217 	struct rq *rq = cpu_rq(cpu);
3218 	struct task_struct *curr = rq->curr;
3219 
3220 	sched_clock_tick();
3221 
3222 	raw_spin_lock(&rq->lock);
3223 	update_rq_clock(rq);
3224 	update_cpu_load_active(rq);
3225 	curr->sched_class->task_tick(rq, curr, 0);
3226 	raw_spin_unlock(&rq->lock);
3227 
3228 	perf_event_task_tick();
3229 
3230 #ifdef CONFIG_SMP
3231 	rq->idle_balance = idle_cpu(cpu);
3232 	trigger_load_balance(rq, cpu);
3233 #endif
3234 }
3235 
3236 notrace unsigned long get_parent_ip(unsigned long addr)
3237 {
3238 	if (in_lock_functions(addr)) {
3239 		addr = CALLER_ADDR2;
3240 		if (in_lock_functions(addr))
3241 			addr = CALLER_ADDR3;
3242 	}
3243 	return addr;
3244 }
3245 
3246 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247 				defined(CONFIG_PREEMPT_TRACER))
3248 
3249 void __kprobes add_preempt_count(int val)
3250 {
3251 #ifdef CONFIG_DEBUG_PREEMPT
3252 	/*
3253 	 * Underflow?
3254 	 */
3255 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256 		return;
3257 #endif
3258 	preempt_count() += val;
3259 #ifdef CONFIG_DEBUG_PREEMPT
3260 	/*
3261 	 * Spinlock count overflowing soon?
3262 	 */
3263 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264 				PREEMPT_MASK - 10);
3265 #endif
3266 	if (preempt_count() == val)
3267 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3268 }
3269 EXPORT_SYMBOL(add_preempt_count);
3270 
3271 void __kprobes sub_preempt_count(int val)
3272 {
3273 #ifdef CONFIG_DEBUG_PREEMPT
3274 	/*
3275 	 * Underflow?
3276 	 */
3277 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278 		return;
3279 	/*
3280 	 * Is the spinlock portion underflowing?
3281 	 */
3282 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283 			!(preempt_count() & PREEMPT_MASK)))
3284 		return;
3285 #endif
3286 
3287 	if (preempt_count() == val)
3288 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3289 	preempt_count() -= val;
3290 }
3291 EXPORT_SYMBOL(sub_preempt_count);
3292 
3293 #endif
3294 
3295 /*
3296  * Print scheduling while atomic bug:
3297  */
3298 static noinline void __schedule_bug(struct task_struct *prev)
3299 {
3300 	if (oops_in_progress)
3301 		return;
3302 
3303 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304 		prev->comm, prev->pid, preempt_count());
3305 
3306 	debug_show_held_locks(prev);
3307 	print_modules();
3308 	if (irqs_disabled())
3309 		print_irqtrace_events(prev);
3310 	dump_stack();
3311 	add_taint(TAINT_WARN);
3312 }
3313 
3314 /*
3315  * Various schedule()-time debugging checks and statistics:
3316  */
3317 static inline void schedule_debug(struct task_struct *prev)
3318 {
3319 	/*
3320 	 * Test if we are atomic. Since do_exit() needs to call into
3321 	 * schedule() atomically, we ignore that path for now.
3322 	 * Otherwise, whine if we are scheduling when we should not be.
3323 	 */
3324 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3325 		__schedule_bug(prev);
3326 	rcu_sleep_check();
3327 
3328 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3329 
3330 	schedstat_inc(this_rq(), sched_count);
3331 }
3332 
3333 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3334 {
3335 	if (prev->on_rq || rq->skip_clock_update < 0)
3336 		update_rq_clock(rq);
3337 	prev->sched_class->put_prev_task(rq, prev);
3338 }
3339 
3340 /*
3341  * Pick up the highest-prio task:
3342  */
3343 static inline struct task_struct *
3344 pick_next_task(struct rq *rq)
3345 {
3346 	const struct sched_class *class;
3347 	struct task_struct *p;
3348 
3349 	/*
3350 	 * Optimization: we know that if all tasks are in
3351 	 * the fair class we can call that function directly:
3352 	 */
3353 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354 		p = fair_sched_class.pick_next_task(rq);
3355 		if (likely(p))
3356 			return p;
3357 	}
3358 
3359 	for_each_class(class) {
3360 		p = class->pick_next_task(rq);
3361 		if (p)
3362 			return p;
3363 	}
3364 
3365 	BUG(); /* the idle class will always have a runnable task */
3366 }
3367 
3368 /*
3369  * __schedule() is the main scheduler function.
3370  */
3371 static void __sched __schedule(void)
3372 {
3373 	struct task_struct *prev, *next;
3374 	unsigned long *switch_count;
3375 	struct rq *rq;
3376 	int cpu;
3377 
3378 need_resched:
3379 	preempt_disable();
3380 	cpu = smp_processor_id();
3381 	rq = cpu_rq(cpu);
3382 	rcu_note_context_switch(cpu);
3383 	prev = rq->curr;
3384 
3385 	schedule_debug(prev);
3386 
3387 	if (sched_feat(HRTICK))
3388 		hrtick_clear(rq);
3389 
3390 	raw_spin_lock_irq(&rq->lock);
3391 
3392 	switch_count = &prev->nivcsw;
3393 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3394 		if (unlikely(signal_pending_state(prev->state, prev))) {
3395 			prev->state = TASK_RUNNING;
3396 		} else {
3397 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398 			prev->on_rq = 0;
3399 
3400 			/*
3401 			 * If a worker went to sleep, notify and ask workqueue
3402 			 * whether it wants to wake up a task to maintain
3403 			 * concurrency.
3404 			 */
3405 			if (prev->flags & PF_WQ_WORKER) {
3406 				struct task_struct *to_wakeup;
3407 
3408 				to_wakeup = wq_worker_sleeping(prev, cpu);
3409 				if (to_wakeup)
3410 					try_to_wake_up_local(to_wakeup);
3411 			}
3412 		}
3413 		switch_count = &prev->nvcsw;
3414 	}
3415 
3416 	pre_schedule(rq, prev);
3417 
3418 	if (unlikely(!rq->nr_running))
3419 		idle_balance(cpu, rq);
3420 
3421 	put_prev_task(rq, prev);
3422 	next = pick_next_task(rq);
3423 	clear_tsk_need_resched(prev);
3424 	rq->skip_clock_update = 0;
3425 
3426 	if (likely(prev != next)) {
3427 		rq->nr_switches++;
3428 		rq->curr = next;
3429 		++*switch_count;
3430 
3431 		context_switch(rq, prev, next); /* unlocks the rq */
3432 		/*
3433 		 * The context switch have flipped the stack from under us
3434 		 * and restored the local variables which were saved when
3435 		 * this task called schedule() in the past. prev == current
3436 		 * is still correct, but it can be moved to another cpu/rq.
3437 		 */
3438 		cpu = smp_processor_id();
3439 		rq = cpu_rq(cpu);
3440 	} else
3441 		raw_spin_unlock_irq(&rq->lock);
3442 
3443 	post_schedule(rq);
3444 
3445 	sched_preempt_enable_no_resched();
3446 	if (need_resched())
3447 		goto need_resched;
3448 }
3449 
3450 static inline void sched_submit_work(struct task_struct *tsk)
3451 {
3452 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3453 		return;
3454 	/*
3455 	 * If we are going to sleep and we have plugged IO queued,
3456 	 * make sure to submit it to avoid deadlocks.
3457 	 */
3458 	if (blk_needs_flush_plug(tsk))
3459 		blk_schedule_flush_plug(tsk);
3460 }
3461 
3462 asmlinkage void __sched schedule(void)
3463 {
3464 	struct task_struct *tsk = current;
3465 
3466 	sched_submit_work(tsk);
3467 	__schedule();
3468 }
3469 EXPORT_SYMBOL(schedule);
3470 
3471 /**
3472  * schedule_preempt_disabled - called with preemption disabled
3473  *
3474  * Returns with preemption disabled. Note: preempt_count must be 1
3475  */
3476 void __sched schedule_preempt_disabled(void)
3477 {
3478 	sched_preempt_enable_no_resched();
3479 	schedule();
3480 	preempt_disable();
3481 }
3482 
3483 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3484 
3485 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3486 {
3487 	if (lock->owner != owner)
3488 		return false;
3489 
3490 	/*
3491 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492 	 * lock->owner still matches owner, if that fails, owner might
3493 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3494 	 * ensures the memory stays valid.
3495 	 */
3496 	barrier();
3497 
3498 	return owner->on_cpu;
3499 }
3500 
3501 /*
3502  * Look out! "owner" is an entirely speculative pointer
3503  * access and not reliable.
3504  */
3505 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3506 {
3507 	if (!sched_feat(OWNER_SPIN))
3508 		return 0;
3509 
3510 	rcu_read_lock();
3511 	while (owner_running(lock, owner)) {
3512 		if (need_resched())
3513 			break;
3514 
3515 		arch_mutex_cpu_relax();
3516 	}
3517 	rcu_read_unlock();
3518 
3519 	/*
3520 	 * We break out the loop above on need_resched() and when the
3521 	 * owner changed, which is a sign for heavy contention. Return
3522 	 * success only when lock->owner is NULL.
3523 	 */
3524 	return lock->owner == NULL;
3525 }
3526 #endif
3527 
3528 #ifdef CONFIG_PREEMPT
3529 /*
3530  * this is the entry point to schedule() from in-kernel preemption
3531  * off of preempt_enable. Kernel preemptions off return from interrupt
3532  * occur there and call schedule directly.
3533  */
3534 asmlinkage void __sched notrace preempt_schedule(void)
3535 {
3536 	struct thread_info *ti = current_thread_info();
3537 
3538 	/*
3539 	 * If there is a non-zero preempt_count or interrupts are disabled,
3540 	 * we do not want to preempt the current task. Just return..
3541 	 */
3542 	if (likely(ti->preempt_count || irqs_disabled()))
3543 		return;
3544 
3545 	do {
3546 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3547 		__schedule();
3548 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3549 
3550 		/*
3551 		 * Check again in case we missed a preemption opportunity
3552 		 * between schedule and now.
3553 		 */
3554 		barrier();
3555 	} while (need_resched());
3556 }
3557 EXPORT_SYMBOL(preempt_schedule);
3558 
3559 /*
3560  * this is the entry point to schedule() from kernel preemption
3561  * off of irq context.
3562  * Note, that this is called and return with irqs disabled. This will
3563  * protect us against recursive calling from irq.
3564  */
3565 asmlinkage void __sched preempt_schedule_irq(void)
3566 {
3567 	struct thread_info *ti = current_thread_info();
3568 
3569 	/* Catch callers which need to be fixed */
3570 	BUG_ON(ti->preempt_count || !irqs_disabled());
3571 
3572 	do {
3573 		add_preempt_count(PREEMPT_ACTIVE);
3574 		local_irq_enable();
3575 		__schedule();
3576 		local_irq_disable();
3577 		sub_preempt_count(PREEMPT_ACTIVE);
3578 
3579 		/*
3580 		 * Check again in case we missed a preemption opportunity
3581 		 * between schedule and now.
3582 		 */
3583 		barrier();
3584 	} while (need_resched());
3585 }
3586 
3587 #endif /* CONFIG_PREEMPT */
3588 
3589 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3590 			  void *key)
3591 {
3592 	return try_to_wake_up(curr->private, mode, wake_flags);
3593 }
3594 EXPORT_SYMBOL(default_wake_function);
3595 
3596 /*
3597  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599  * number) then we wake all the non-exclusive tasks and one exclusive task.
3600  *
3601  * There are circumstances in which we can try to wake a task which has already
3602  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3604  */
3605 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3606 			int nr_exclusive, int wake_flags, void *key)
3607 {
3608 	wait_queue_t *curr, *next;
3609 
3610 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611 		unsigned flags = curr->flags;
3612 
3613 		if (curr->func(curr, mode, wake_flags, key) &&
3614 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615 			break;
3616 	}
3617 }
3618 
3619 /**
3620  * __wake_up - wake up threads blocked on a waitqueue.
3621  * @q: the waitqueue
3622  * @mode: which threads
3623  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624  * @key: is directly passed to the wakeup function
3625  *
3626  * It may be assumed that this function implies a write memory barrier before
3627  * changing the task state if and only if any tasks are woken up.
3628  */
3629 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3630 			int nr_exclusive, void *key)
3631 {
3632 	unsigned long flags;
3633 
3634 	spin_lock_irqsave(&q->lock, flags);
3635 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3636 	spin_unlock_irqrestore(&q->lock, flags);
3637 }
3638 EXPORT_SYMBOL(__wake_up);
3639 
3640 /*
3641  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3642  */
3643 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3644 {
3645 	__wake_up_common(q, mode, nr, 0, NULL);
3646 }
3647 EXPORT_SYMBOL_GPL(__wake_up_locked);
3648 
3649 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3650 {
3651 	__wake_up_common(q, mode, 1, 0, key);
3652 }
3653 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3654 
3655 /**
3656  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3657  * @q: the waitqueue
3658  * @mode: which threads
3659  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660  * @key: opaque value to be passed to wakeup targets
3661  *
3662  * The sync wakeup differs that the waker knows that it will schedule
3663  * away soon, so while the target thread will be woken up, it will not
3664  * be migrated to another CPU - ie. the two threads are 'synchronized'
3665  * with each other. This can prevent needless bouncing between CPUs.
3666  *
3667  * On UP it can prevent extra preemption.
3668  *
3669  * It may be assumed that this function implies a write memory barrier before
3670  * changing the task state if and only if any tasks are woken up.
3671  */
3672 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673 			int nr_exclusive, void *key)
3674 {
3675 	unsigned long flags;
3676 	int wake_flags = WF_SYNC;
3677 
3678 	if (unlikely(!q))
3679 		return;
3680 
3681 	if (unlikely(!nr_exclusive))
3682 		wake_flags = 0;
3683 
3684 	spin_lock_irqsave(&q->lock, flags);
3685 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3686 	spin_unlock_irqrestore(&q->lock, flags);
3687 }
3688 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3689 
3690 /*
3691  * __wake_up_sync - see __wake_up_sync_key()
3692  */
3693 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694 {
3695 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3696 }
3697 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3698 
3699 /**
3700  * complete: - signals a single thread waiting on this completion
3701  * @x:  holds the state of this particular completion
3702  *
3703  * This will wake up a single thread waiting on this completion. Threads will be
3704  * awakened in the same order in which they were queued.
3705  *
3706  * See also complete_all(), wait_for_completion() and related routines.
3707  *
3708  * It may be assumed that this function implies a write memory barrier before
3709  * changing the task state if and only if any tasks are woken up.
3710  */
3711 void complete(struct completion *x)
3712 {
3713 	unsigned long flags;
3714 
3715 	spin_lock_irqsave(&x->wait.lock, flags);
3716 	x->done++;
3717 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3718 	spin_unlock_irqrestore(&x->wait.lock, flags);
3719 }
3720 EXPORT_SYMBOL(complete);
3721 
3722 /**
3723  * complete_all: - signals all threads waiting on this completion
3724  * @x:  holds the state of this particular completion
3725  *
3726  * This will wake up all threads waiting on this particular completion event.
3727  *
3728  * It may be assumed that this function implies a write memory barrier before
3729  * changing the task state if and only if any tasks are woken up.
3730  */
3731 void complete_all(struct completion *x)
3732 {
3733 	unsigned long flags;
3734 
3735 	spin_lock_irqsave(&x->wait.lock, flags);
3736 	x->done += UINT_MAX/2;
3737 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3738 	spin_unlock_irqrestore(&x->wait.lock, flags);
3739 }
3740 EXPORT_SYMBOL(complete_all);
3741 
3742 static inline long __sched
3743 do_wait_for_common(struct completion *x, long timeout, int state)
3744 {
3745 	if (!x->done) {
3746 		DECLARE_WAITQUEUE(wait, current);
3747 
3748 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3749 		do {
3750 			if (signal_pending_state(state, current)) {
3751 				timeout = -ERESTARTSYS;
3752 				break;
3753 			}
3754 			__set_current_state(state);
3755 			spin_unlock_irq(&x->wait.lock);
3756 			timeout = schedule_timeout(timeout);
3757 			spin_lock_irq(&x->wait.lock);
3758 		} while (!x->done && timeout);
3759 		__remove_wait_queue(&x->wait, &wait);
3760 		if (!x->done)
3761 			return timeout;
3762 	}
3763 	x->done--;
3764 	return timeout ?: 1;
3765 }
3766 
3767 static long __sched
3768 wait_for_common(struct completion *x, long timeout, int state)
3769 {
3770 	might_sleep();
3771 
3772 	spin_lock_irq(&x->wait.lock);
3773 	timeout = do_wait_for_common(x, timeout, state);
3774 	spin_unlock_irq(&x->wait.lock);
3775 	return timeout;
3776 }
3777 
3778 /**
3779  * wait_for_completion: - waits for completion of a task
3780  * @x:  holds the state of this particular completion
3781  *
3782  * This waits to be signaled for completion of a specific task. It is NOT
3783  * interruptible and there is no timeout.
3784  *
3785  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786  * and interrupt capability. Also see complete().
3787  */
3788 void __sched wait_for_completion(struct completion *x)
3789 {
3790 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3791 }
3792 EXPORT_SYMBOL(wait_for_completion);
3793 
3794 /**
3795  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796  * @x:  holds the state of this particular completion
3797  * @timeout:  timeout value in jiffies
3798  *
3799  * This waits for either a completion of a specific task to be signaled or for a
3800  * specified timeout to expire. The timeout is in jiffies. It is not
3801  * interruptible.
3802  *
3803  * The return value is 0 if timed out, and positive (at least 1, or number of
3804  * jiffies left till timeout) if completed.
3805  */
3806 unsigned long __sched
3807 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3808 {
3809 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3810 }
3811 EXPORT_SYMBOL(wait_for_completion_timeout);
3812 
3813 /**
3814  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815  * @x:  holds the state of this particular completion
3816  *
3817  * This waits for completion of a specific task to be signaled. It is
3818  * interruptible.
3819  *
3820  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3821  */
3822 int __sched wait_for_completion_interruptible(struct completion *x)
3823 {
3824 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825 	if (t == -ERESTARTSYS)
3826 		return t;
3827 	return 0;
3828 }
3829 EXPORT_SYMBOL(wait_for_completion_interruptible);
3830 
3831 /**
3832  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833  * @x:  holds the state of this particular completion
3834  * @timeout:  timeout value in jiffies
3835  *
3836  * This waits for either a completion of a specific task to be signaled or for a
3837  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3838  *
3839  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840  * positive (at least 1, or number of jiffies left till timeout) if completed.
3841  */
3842 long __sched
3843 wait_for_completion_interruptible_timeout(struct completion *x,
3844 					  unsigned long timeout)
3845 {
3846 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3847 }
3848 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3849 
3850 /**
3851  * wait_for_completion_killable: - waits for completion of a task (killable)
3852  * @x:  holds the state of this particular completion
3853  *
3854  * This waits to be signaled for completion of a specific task. It can be
3855  * interrupted by a kill signal.
3856  *
3857  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3858  */
3859 int __sched wait_for_completion_killable(struct completion *x)
3860 {
3861 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862 	if (t == -ERESTARTSYS)
3863 		return t;
3864 	return 0;
3865 }
3866 EXPORT_SYMBOL(wait_for_completion_killable);
3867 
3868 /**
3869  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870  * @x:  holds the state of this particular completion
3871  * @timeout:  timeout value in jiffies
3872  *
3873  * This waits for either a completion of a specific task to be
3874  * signaled or for a specified timeout to expire. It can be
3875  * interrupted by a kill signal. The timeout is in jiffies.
3876  *
3877  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878  * positive (at least 1, or number of jiffies left till timeout) if completed.
3879  */
3880 long __sched
3881 wait_for_completion_killable_timeout(struct completion *x,
3882 				     unsigned long timeout)
3883 {
3884 	return wait_for_common(x, timeout, TASK_KILLABLE);
3885 }
3886 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3887 
3888 /**
3889  *	try_wait_for_completion - try to decrement a completion without blocking
3890  *	@x:	completion structure
3891  *
3892  *	Returns: 0 if a decrement cannot be done without blocking
3893  *		 1 if a decrement succeeded.
3894  *
3895  *	If a completion is being used as a counting completion,
3896  *	attempt to decrement the counter without blocking. This
3897  *	enables us to avoid waiting if the resource the completion
3898  *	is protecting is not available.
3899  */
3900 bool try_wait_for_completion(struct completion *x)
3901 {
3902 	unsigned long flags;
3903 	int ret = 1;
3904 
3905 	spin_lock_irqsave(&x->wait.lock, flags);
3906 	if (!x->done)
3907 		ret = 0;
3908 	else
3909 		x->done--;
3910 	spin_unlock_irqrestore(&x->wait.lock, flags);
3911 	return ret;
3912 }
3913 EXPORT_SYMBOL(try_wait_for_completion);
3914 
3915 /**
3916  *	completion_done - Test to see if a completion has any waiters
3917  *	@x:	completion structure
3918  *
3919  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3920  *		 1 if there are no waiters.
3921  *
3922  */
3923 bool completion_done(struct completion *x)
3924 {
3925 	unsigned long flags;
3926 	int ret = 1;
3927 
3928 	spin_lock_irqsave(&x->wait.lock, flags);
3929 	if (!x->done)
3930 		ret = 0;
3931 	spin_unlock_irqrestore(&x->wait.lock, flags);
3932 	return ret;
3933 }
3934 EXPORT_SYMBOL(completion_done);
3935 
3936 static long __sched
3937 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3938 {
3939 	unsigned long flags;
3940 	wait_queue_t wait;
3941 
3942 	init_waitqueue_entry(&wait, current);
3943 
3944 	__set_current_state(state);
3945 
3946 	spin_lock_irqsave(&q->lock, flags);
3947 	__add_wait_queue(q, &wait);
3948 	spin_unlock(&q->lock);
3949 	timeout = schedule_timeout(timeout);
3950 	spin_lock_irq(&q->lock);
3951 	__remove_wait_queue(q, &wait);
3952 	spin_unlock_irqrestore(&q->lock, flags);
3953 
3954 	return timeout;
3955 }
3956 
3957 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958 {
3959 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3960 }
3961 EXPORT_SYMBOL(interruptible_sleep_on);
3962 
3963 long __sched
3964 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3965 {
3966 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3967 }
3968 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969 
3970 void __sched sleep_on(wait_queue_head_t *q)
3971 {
3972 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973 }
3974 EXPORT_SYMBOL(sleep_on);
3975 
3976 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3977 {
3978 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3979 }
3980 EXPORT_SYMBOL(sleep_on_timeout);
3981 
3982 #ifdef CONFIG_RT_MUTEXES
3983 
3984 /*
3985  * rt_mutex_setprio - set the current priority of a task
3986  * @p: task
3987  * @prio: prio value (kernel-internal form)
3988  *
3989  * This function changes the 'effective' priority of a task. It does
3990  * not touch ->normal_prio like __setscheduler().
3991  *
3992  * Used by the rt_mutex code to implement priority inheritance logic.
3993  */
3994 void rt_mutex_setprio(struct task_struct *p, int prio)
3995 {
3996 	int oldprio, on_rq, running;
3997 	struct rq *rq;
3998 	const struct sched_class *prev_class;
3999 
4000 	BUG_ON(prio < 0 || prio > MAX_PRIO);
4001 
4002 	rq = __task_rq_lock(p);
4003 
4004 	/*
4005 	 * Idle task boosting is a nono in general. There is one
4006 	 * exception, when PREEMPT_RT and NOHZ is active:
4007 	 *
4008 	 * The idle task calls get_next_timer_interrupt() and holds
4009 	 * the timer wheel base->lock on the CPU and another CPU wants
4010 	 * to access the timer (probably to cancel it). We can safely
4011 	 * ignore the boosting request, as the idle CPU runs this code
4012 	 * with interrupts disabled and will complete the lock
4013 	 * protected section without being interrupted. So there is no
4014 	 * real need to boost.
4015 	 */
4016 	if (unlikely(p == rq->idle)) {
4017 		WARN_ON(p != rq->curr);
4018 		WARN_ON(p->pi_blocked_on);
4019 		goto out_unlock;
4020 	}
4021 
4022 	trace_sched_pi_setprio(p, prio);
4023 	oldprio = p->prio;
4024 	prev_class = p->sched_class;
4025 	on_rq = p->on_rq;
4026 	running = task_current(rq, p);
4027 	if (on_rq)
4028 		dequeue_task(rq, p, 0);
4029 	if (running)
4030 		p->sched_class->put_prev_task(rq, p);
4031 
4032 	if (rt_prio(prio))
4033 		p->sched_class = &rt_sched_class;
4034 	else
4035 		p->sched_class = &fair_sched_class;
4036 
4037 	p->prio = prio;
4038 
4039 	if (running)
4040 		p->sched_class->set_curr_task(rq);
4041 	if (on_rq)
4042 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4043 
4044 	check_class_changed(rq, p, prev_class, oldprio);
4045 out_unlock:
4046 	__task_rq_unlock(rq);
4047 }
4048 #endif
4049 void set_user_nice(struct task_struct *p, long nice)
4050 {
4051 	int old_prio, delta, on_rq;
4052 	unsigned long flags;
4053 	struct rq *rq;
4054 
4055 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056 		return;
4057 	/*
4058 	 * We have to be careful, if called from sys_setpriority(),
4059 	 * the task might be in the middle of scheduling on another CPU.
4060 	 */
4061 	rq = task_rq_lock(p, &flags);
4062 	/*
4063 	 * The RT priorities are set via sched_setscheduler(), but we still
4064 	 * allow the 'normal' nice value to be set - but as expected
4065 	 * it wont have any effect on scheduling until the task is
4066 	 * SCHED_FIFO/SCHED_RR:
4067 	 */
4068 	if (task_has_rt_policy(p)) {
4069 		p->static_prio = NICE_TO_PRIO(nice);
4070 		goto out_unlock;
4071 	}
4072 	on_rq = p->on_rq;
4073 	if (on_rq)
4074 		dequeue_task(rq, p, 0);
4075 
4076 	p->static_prio = NICE_TO_PRIO(nice);
4077 	set_load_weight(p);
4078 	old_prio = p->prio;
4079 	p->prio = effective_prio(p);
4080 	delta = p->prio - old_prio;
4081 
4082 	if (on_rq) {
4083 		enqueue_task(rq, p, 0);
4084 		/*
4085 		 * If the task increased its priority or is running and
4086 		 * lowered its priority, then reschedule its CPU:
4087 		 */
4088 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4089 			resched_task(rq->curr);
4090 	}
4091 out_unlock:
4092 	task_rq_unlock(rq, p, &flags);
4093 }
4094 EXPORT_SYMBOL(set_user_nice);
4095 
4096 /*
4097  * can_nice - check if a task can reduce its nice value
4098  * @p: task
4099  * @nice: nice value
4100  */
4101 int can_nice(const struct task_struct *p, const int nice)
4102 {
4103 	/* convert nice value [19,-20] to rlimit style value [1,40] */
4104 	int nice_rlim = 20 - nice;
4105 
4106 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4107 		capable(CAP_SYS_NICE));
4108 }
4109 
4110 #ifdef __ARCH_WANT_SYS_NICE
4111 
4112 /*
4113  * sys_nice - change the priority of the current process.
4114  * @increment: priority increment
4115  *
4116  * sys_setpriority is a more generic, but much slower function that
4117  * does similar things.
4118  */
4119 SYSCALL_DEFINE1(nice, int, increment)
4120 {
4121 	long nice, retval;
4122 
4123 	/*
4124 	 * Setpriority might change our priority at the same moment.
4125 	 * We don't have to worry. Conceptually one call occurs first
4126 	 * and we have a single winner.
4127 	 */
4128 	if (increment < -40)
4129 		increment = -40;
4130 	if (increment > 40)
4131 		increment = 40;
4132 
4133 	nice = TASK_NICE(current) + increment;
4134 	if (nice < -20)
4135 		nice = -20;
4136 	if (nice > 19)
4137 		nice = 19;
4138 
4139 	if (increment < 0 && !can_nice(current, nice))
4140 		return -EPERM;
4141 
4142 	retval = security_task_setnice(current, nice);
4143 	if (retval)
4144 		return retval;
4145 
4146 	set_user_nice(current, nice);
4147 	return 0;
4148 }
4149 
4150 #endif
4151 
4152 /**
4153  * task_prio - return the priority value of a given task.
4154  * @p: the task in question.
4155  *
4156  * This is the priority value as seen by users in /proc.
4157  * RT tasks are offset by -200. Normal tasks are centered
4158  * around 0, value goes from -16 to +15.
4159  */
4160 int task_prio(const struct task_struct *p)
4161 {
4162 	return p->prio - MAX_RT_PRIO;
4163 }
4164 
4165 /**
4166  * task_nice - return the nice value of a given task.
4167  * @p: the task in question.
4168  */
4169 int task_nice(const struct task_struct *p)
4170 {
4171 	return TASK_NICE(p);
4172 }
4173 EXPORT_SYMBOL(task_nice);
4174 
4175 /**
4176  * idle_cpu - is a given cpu idle currently?
4177  * @cpu: the processor in question.
4178  */
4179 int idle_cpu(int cpu)
4180 {
4181 	struct rq *rq = cpu_rq(cpu);
4182 
4183 	if (rq->curr != rq->idle)
4184 		return 0;
4185 
4186 	if (rq->nr_running)
4187 		return 0;
4188 
4189 #ifdef CONFIG_SMP
4190 	if (!llist_empty(&rq->wake_list))
4191 		return 0;
4192 #endif
4193 
4194 	return 1;
4195 }
4196 
4197 /**
4198  * idle_task - return the idle task for a given cpu.
4199  * @cpu: the processor in question.
4200  */
4201 struct task_struct *idle_task(int cpu)
4202 {
4203 	return cpu_rq(cpu)->idle;
4204 }
4205 
4206 /**
4207  * find_process_by_pid - find a process with a matching PID value.
4208  * @pid: the pid in question.
4209  */
4210 static struct task_struct *find_process_by_pid(pid_t pid)
4211 {
4212 	return pid ? find_task_by_vpid(pid) : current;
4213 }
4214 
4215 /* Actually do priority change: must hold rq lock. */
4216 static void
4217 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4218 {
4219 	p->policy = policy;
4220 	p->rt_priority = prio;
4221 	p->normal_prio = normal_prio(p);
4222 	/* we are holding p->pi_lock already */
4223 	p->prio = rt_mutex_getprio(p);
4224 	if (rt_prio(p->prio))
4225 		p->sched_class = &rt_sched_class;
4226 	else
4227 		p->sched_class = &fair_sched_class;
4228 	set_load_weight(p);
4229 }
4230 
4231 /*
4232  * check the target process has a UID that matches the current process's
4233  */
4234 static bool check_same_owner(struct task_struct *p)
4235 {
4236 	const struct cred *cred = current_cred(), *pcred;
4237 	bool match;
4238 
4239 	rcu_read_lock();
4240 	pcred = __task_cred(p);
4241 	match = (uid_eq(cred->euid, pcred->euid) ||
4242 		 uid_eq(cred->euid, pcred->uid));
4243 	rcu_read_unlock();
4244 	return match;
4245 }
4246 
4247 static int __sched_setscheduler(struct task_struct *p, int policy,
4248 				const struct sched_param *param, bool user)
4249 {
4250 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4251 	unsigned long flags;
4252 	const struct sched_class *prev_class;
4253 	struct rq *rq;
4254 	int reset_on_fork;
4255 
4256 	/* may grab non-irq protected spin_locks */
4257 	BUG_ON(in_interrupt());
4258 recheck:
4259 	/* double check policy once rq lock held */
4260 	if (policy < 0) {
4261 		reset_on_fork = p->sched_reset_on_fork;
4262 		policy = oldpolicy = p->policy;
4263 	} else {
4264 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265 		policy &= ~SCHED_RESET_ON_FORK;
4266 
4267 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269 				policy != SCHED_IDLE)
4270 			return -EINVAL;
4271 	}
4272 
4273 	/*
4274 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 	 * SCHED_BATCH and SCHED_IDLE is 0.
4277 	 */
4278 	if (param->sched_priority < 0 ||
4279 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281 		return -EINVAL;
4282 	if (rt_policy(policy) != (param->sched_priority != 0))
4283 		return -EINVAL;
4284 
4285 	/*
4286 	 * Allow unprivileged RT tasks to decrease priority:
4287 	 */
4288 	if (user && !capable(CAP_SYS_NICE)) {
4289 		if (rt_policy(policy)) {
4290 			unsigned long rlim_rtprio =
4291 					task_rlimit(p, RLIMIT_RTPRIO);
4292 
4293 			/* can't set/change the rt policy */
4294 			if (policy != p->policy && !rlim_rtprio)
4295 				return -EPERM;
4296 
4297 			/* can't increase priority */
4298 			if (param->sched_priority > p->rt_priority &&
4299 			    param->sched_priority > rlim_rtprio)
4300 				return -EPERM;
4301 		}
4302 
4303 		/*
4304 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4306 		 */
4307 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308 			if (!can_nice(p, TASK_NICE(p)))
4309 				return -EPERM;
4310 		}
4311 
4312 		/* can't change other user's priorities */
4313 		if (!check_same_owner(p))
4314 			return -EPERM;
4315 
4316 		/* Normal users shall not reset the sched_reset_on_fork flag */
4317 		if (p->sched_reset_on_fork && !reset_on_fork)
4318 			return -EPERM;
4319 	}
4320 
4321 	if (user) {
4322 		retval = security_task_setscheduler(p);
4323 		if (retval)
4324 			return retval;
4325 	}
4326 
4327 	/*
4328 	 * make sure no PI-waiters arrive (or leave) while we are
4329 	 * changing the priority of the task:
4330 	 *
4331 	 * To be able to change p->policy safely, the appropriate
4332 	 * runqueue lock must be held.
4333 	 */
4334 	rq = task_rq_lock(p, &flags);
4335 
4336 	/*
4337 	 * Changing the policy of the stop threads its a very bad idea
4338 	 */
4339 	if (p == rq->stop) {
4340 		task_rq_unlock(rq, p, &flags);
4341 		return -EINVAL;
4342 	}
4343 
4344 	/*
4345 	 * If not changing anything there's no need to proceed further:
4346 	 */
4347 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348 			param->sched_priority == p->rt_priority))) {
4349 		task_rq_unlock(rq, p, &flags);
4350 		return 0;
4351 	}
4352 
4353 #ifdef CONFIG_RT_GROUP_SCHED
4354 	if (user) {
4355 		/*
4356 		 * Do not allow realtime tasks into groups that have no runtime
4357 		 * assigned.
4358 		 */
4359 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4360 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4361 				!task_group_is_autogroup(task_group(p))) {
4362 			task_rq_unlock(rq, p, &flags);
4363 			return -EPERM;
4364 		}
4365 	}
4366 #endif
4367 
4368 	/* recheck policy now with rq lock held */
4369 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4370 		policy = oldpolicy = -1;
4371 		task_rq_unlock(rq, p, &flags);
4372 		goto recheck;
4373 	}
4374 	on_rq = p->on_rq;
4375 	running = task_current(rq, p);
4376 	if (on_rq)
4377 		dequeue_task(rq, p, 0);
4378 	if (running)
4379 		p->sched_class->put_prev_task(rq, p);
4380 
4381 	p->sched_reset_on_fork = reset_on_fork;
4382 
4383 	oldprio = p->prio;
4384 	prev_class = p->sched_class;
4385 	__setscheduler(rq, p, policy, param->sched_priority);
4386 
4387 	if (running)
4388 		p->sched_class->set_curr_task(rq);
4389 	if (on_rq)
4390 		enqueue_task(rq, p, 0);
4391 
4392 	check_class_changed(rq, p, prev_class, oldprio);
4393 	task_rq_unlock(rq, p, &flags);
4394 
4395 	rt_mutex_adjust_pi(p);
4396 
4397 	return 0;
4398 }
4399 
4400 /**
4401  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402  * @p: the task in question.
4403  * @policy: new policy.
4404  * @param: structure containing the new RT priority.
4405  *
4406  * NOTE that the task may be already dead.
4407  */
4408 int sched_setscheduler(struct task_struct *p, int policy,
4409 		       const struct sched_param *param)
4410 {
4411 	return __sched_setscheduler(p, policy, param, true);
4412 }
4413 EXPORT_SYMBOL_GPL(sched_setscheduler);
4414 
4415 /**
4416  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4417  * @p: the task in question.
4418  * @policy: new policy.
4419  * @param: structure containing the new RT priority.
4420  *
4421  * Just like sched_setscheduler, only don't bother checking if the
4422  * current context has permission.  For example, this is needed in
4423  * stop_machine(): we create temporary high priority worker threads,
4424  * but our caller might not have that capability.
4425  */
4426 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4427 			       const struct sched_param *param)
4428 {
4429 	return __sched_setscheduler(p, policy, param, false);
4430 }
4431 
4432 static int
4433 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4434 {
4435 	struct sched_param lparam;
4436 	struct task_struct *p;
4437 	int retval;
4438 
4439 	if (!param || pid < 0)
4440 		return -EINVAL;
4441 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4442 		return -EFAULT;
4443 
4444 	rcu_read_lock();
4445 	retval = -ESRCH;
4446 	p = find_process_by_pid(pid);
4447 	if (p != NULL)
4448 		retval = sched_setscheduler(p, policy, &lparam);
4449 	rcu_read_unlock();
4450 
4451 	return retval;
4452 }
4453 
4454 /**
4455  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4456  * @pid: the pid in question.
4457  * @policy: new policy.
4458  * @param: structure containing the new RT priority.
4459  */
4460 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4461 		struct sched_param __user *, param)
4462 {
4463 	/* negative values for policy are not valid */
4464 	if (policy < 0)
4465 		return -EINVAL;
4466 
4467 	return do_sched_setscheduler(pid, policy, param);
4468 }
4469 
4470 /**
4471  * sys_sched_setparam - set/change the RT priority of a thread
4472  * @pid: the pid in question.
4473  * @param: structure containing the new RT priority.
4474  */
4475 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4476 {
4477 	return do_sched_setscheduler(pid, -1, param);
4478 }
4479 
4480 /**
4481  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4482  * @pid: the pid in question.
4483  */
4484 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4485 {
4486 	struct task_struct *p;
4487 	int retval;
4488 
4489 	if (pid < 0)
4490 		return -EINVAL;
4491 
4492 	retval = -ESRCH;
4493 	rcu_read_lock();
4494 	p = find_process_by_pid(pid);
4495 	if (p) {
4496 		retval = security_task_getscheduler(p);
4497 		if (!retval)
4498 			retval = p->policy
4499 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4500 	}
4501 	rcu_read_unlock();
4502 	return retval;
4503 }
4504 
4505 /**
4506  * sys_sched_getparam - get the RT priority of a thread
4507  * @pid: the pid in question.
4508  * @param: structure containing the RT priority.
4509  */
4510 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4511 {
4512 	struct sched_param lp;
4513 	struct task_struct *p;
4514 	int retval;
4515 
4516 	if (!param || pid < 0)
4517 		return -EINVAL;
4518 
4519 	rcu_read_lock();
4520 	p = find_process_by_pid(pid);
4521 	retval = -ESRCH;
4522 	if (!p)
4523 		goto out_unlock;
4524 
4525 	retval = security_task_getscheduler(p);
4526 	if (retval)
4527 		goto out_unlock;
4528 
4529 	lp.sched_priority = p->rt_priority;
4530 	rcu_read_unlock();
4531 
4532 	/*
4533 	 * This one might sleep, we cannot do it with a spinlock held ...
4534 	 */
4535 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4536 
4537 	return retval;
4538 
4539 out_unlock:
4540 	rcu_read_unlock();
4541 	return retval;
4542 }
4543 
4544 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4545 {
4546 	cpumask_var_t cpus_allowed, new_mask;
4547 	struct task_struct *p;
4548 	int retval;
4549 
4550 	get_online_cpus();
4551 	rcu_read_lock();
4552 
4553 	p = find_process_by_pid(pid);
4554 	if (!p) {
4555 		rcu_read_unlock();
4556 		put_online_cpus();
4557 		return -ESRCH;
4558 	}
4559 
4560 	/* Prevent p going away */
4561 	get_task_struct(p);
4562 	rcu_read_unlock();
4563 
4564 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4565 		retval = -ENOMEM;
4566 		goto out_put_task;
4567 	}
4568 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4569 		retval = -ENOMEM;
4570 		goto out_free_cpus_allowed;
4571 	}
4572 	retval = -EPERM;
4573 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4574 		goto out_unlock;
4575 
4576 	retval = security_task_setscheduler(p);
4577 	if (retval)
4578 		goto out_unlock;
4579 
4580 	cpuset_cpus_allowed(p, cpus_allowed);
4581 	cpumask_and(new_mask, in_mask, cpus_allowed);
4582 again:
4583 	retval = set_cpus_allowed_ptr(p, new_mask);
4584 
4585 	if (!retval) {
4586 		cpuset_cpus_allowed(p, cpus_allowed);
4587 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4588 			/*
4589 			 * We must have raced with a concurrent cpuset
4590 			 * update. Just reset the cpus_allowed to the
4591 			 * cpuset's cpus_allowed
4592 			 */
4593 			cpumask_copy(new_mask, cpus_allowed);
4594 			goto again;
4595 		}
4596 	}
4597 out_unlock:
4598 	free_cpumask_var(new_mask);
4599 out_free_cpus_allowed:
4600 	free_cpumask_var(cpus_allowed);
4601 out_put_task:
4602 	put_task_struct(p);
4603 	put_online_cpus();
4604 	return retval;
4605 }
4606 
4607 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4608 			     struct cpumask *new_mask)
4609 {
4610 	if (len < cpumask_size())
4611 		cpumask_clear(new_mask);
4612 	else if (len > cpumask_size())
4613 		len = cpumask_size();
4614 
4615 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4616 }
4617 
4618 /**
4619  * sys_sched_setaffinity - set the cpu affinity of a process
4620  * @pid: pid of the process
4621  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4622  * @user_mask_ptr: user-space pointer to the new cpu mask
4623  */
4624 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4625 		unsigned long __user *, user_mask_ptr)
4626 {
4627 	cpumask_var_t new_mask;
4628 	int retval;
4629 
4630 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4631 		return -ENOMEM;
4632 
4633 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4634 	if (retval == 0)
4635 		retval = sched_setaffinity(pid, new_mask);
4636 	free_cpumask_var(new_mask);
4637 	return retval;
4638 }
4639 
4640 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4641 {
4642 	struct task_struct *p;
4643 	unsigned long flags;
4644 	int retval;
4645 
4646 	get_online_cpus();
4647 	rcu_read_lock();
4648 
4649 	retval = -ESRCH;
4650 	p = find_process_by_pid(pid);
4651 	if (!p)
4652 		goto out_unlock;
4653 
4654 	retval = security_task_getscheduler(p);
4655 	if (retval)
4656 		goto out_unlock;
4657 
4658 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4659 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4660 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4661 
4662 out_unlock:
4663 	rcu_read_unlock();
4664 	put_online_cpus();
4665 
4666 	return retval;
4667 }
4668 
4669 /**
4670  * sys_sched_getaffinity - get the cpu affinity of a process
4671  * @pid: pid of the process
4672  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4673  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4674  */
4675 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4676 		unsigned long __user *, user_mask_ptr)
4677 {
4678 	int ret;
4679 	cpumask_var_t mask;
4680 
4681 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4682 		return -EINVAL;
4683 	if (len & (sizeof(unsigned long)-1))
4684 		return -EINVAL;
4685 
4686 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4687 		return -ENOMEM;
4688 
4689 	ret = sched_getaffinity(pid, mask);
4690 	if (ret == 0) {
4691 		size_t retlen = min_t(size_t, len, cpumask_size());
4692 
4693 		if (copy_to_user(user_mask_ptr, mask, retlen))
4694 			ret = -EFAULT;
4695 		else
4696 			ret = retlen;
4697 	}
4698 	free_cpumask_var(mask);
4699 
4700 	return ret;
4701 }
4702 
4703 /**
4704  * sys_sched_yield - yield the current processor to other threads.
4705  *
4706  * This function yields the current CPU to other tasks. If there are no
4707  * other threads running on this CPU then this function will return.
4708  */
4709 SYSCALL_DEFINE0(sched_yield)
4710 {
4711 	struct rq *rq = this_rq_lock();
4712 
4713 	schedstat_inc(rq, yld_count);
4714 	current->sched_class->yield_task(rq);
4715 
4716 	/*
4717 	 * Since we are going to call schedule() anyway, there's
4718 	 * no need to preempt or enable interrupts:
4719 	 */
4720 	__release(rq->lock);
4721 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4722 	do_raw_spin_unlock(&rq->lock);
4723 	sched_preempt_enable_no_resched();
4724 
4725 	schedule();
4726 
4727 	return 0;
4728 }
4729 
4730 static inline int should_resched(void)
4731 {
4732 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4733 }
4734 
4735 static void __cond_resched(void)
4736 {
4737 	add_preempt_count(PREEMPT_ACTIVE);
4738 	__schedule();
4739 	sub_preempt_count(PREEMPT_ACTIVE);
4740 }
4741 
4742 int __sched _cond_resched(void)
4743 {
4744 	if (should_resched()) {
4745 		__cond_resched();
4746 		return 1;
4747 	}
4748 	return 0;
4749 }
4750 EXPORT_SYMBOL(_cond_resched);
4751 
4752 /*
4753  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4754  * call schedule, and on return reacquire the lock.
4755  *
4756  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4757  * operations here to prevent schedule() from being called twice (once via
4758  * spin_unlock(), once by hand).
4759  */
4760 int __cond_resched_lock(spinlock_t *lock)
4761 {
4762 	int resched = should_resched();
4763 	int ret = 0;
4764 
4765 	lockdep_assert_held(lock);
4766 
4767 	if (spin_needbreak(lock) || resched) {
4768 		spin_unlock(lock);
4769 		if (resched)
4770 			__cond_resched();
4771 		else
4772 			cpu_relax();
4773 		ret = 1;
4774 		spin_lock(lock);
4775 	}
4776 	return ret;
4777 }
4778 EXPORT_SYMBOL(__cond_resched_lock);
4779 
4780 int __sched __cond_resched_softirq(void)
4781 {
4782 	BUG_ON(!in_softirq());
4783 
4784 	if (should_resched()) {
4785 		local_bh_enable();
4786 		__cond_resched();
4787 		local_bh_disable();
4788 		return 1;
4789 	}
4790 	return 0;
4791 }
4792 EXPORT_SYMBOL(__cond_resched_softirq);
4793 
4794 /**
4795  * yield - yield the current processor to other threads.
4796  *
4797  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4798  *
4799  * The scheduler is at all times free to pick the calling task as the most
4800  * eligible task to run, if removing the yield() call from your code breaks
4801  * it, its already broken.
4802  *
4803  * Typical broken usage is:
4804  *
4805  * while (!event)
4806  * 	yield();
4807  *
4808  * where one assumes that yield() will let 'the other' process run that will
4809  * make event true. If the current task is a SCHED_FIFO task that will never
4810  * happen. Never use yield() as a progress guarantee!!
4811  *
4812  * If you want to use yield() to wait for something, use wait_event().
4813  * If you want to use yield() to be 'nice' for others, use cond_resched().
4814  * If you still want to use yield(), do not!
4815  */
4816 void __sched yield(void)
4817 {
4818 	set_current_state(TASK_RUNNING);
4819 	sys_sched_yield();
4820 }
4821 EXPORT_SYMBOL(yield);
4822 
4823 /**
4824  * yield_to - yield the current processor to another thread in
4825  * your thread group, or accelerate that thread toward the
4826  * processor it's on.
4827  * @p: target task
4828  * @preempt: whether task preemption is allowed or not
4829  *
4830  * It's the caller's job to ensure that the target task struct
4831  * can't go away on us before we can do any checks.
4832  *
4833  * Returns true if we indeed boosted the target task.
4834  */
4835 bool __sched yield_to(struct task_struct *p, bool preempt)
4836 {
4837 	struct task_struct *curr = current;
4838 	struct rq *rq, *p_rq;
4839 	unsigned long flags;
4840 	bool yielded = 0;
4841 
4842 	local_irq_save(flags);
4843 	rq = this_rq();
4844 
4845 again:
4846 	p_rq = task_rq(p);
4847 	double_rq_lock(rq, p_rq);
4848 	while (task_rq(p) != p_rq) {
4849 		double_rq_unlock(rq, p_rq);
4850 		goto again;
4851 	}
4852 
4853 	if (!curr->sched_class->yield_to_task)
4854 		goto out;
4855 
4856 	if (curr->sched_class != p->sched_class)
4857 		goto out;
4858 
4859 	if (task_running(p_rq, p) || p->state)
4860 		goto out;
4861 
4862 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4863 	if (yielded) {
4864 		schedstat_inc(rq, yld_count);
4865 		/*
4866 		 * Make p's CPU reschedule; pick_next_entity takes care of
4867 		 * fairness.
4868 		 */
4869 		if (preempt && rq != p_rq)
4870 			resched_task(p_rq->curr);
4871 	} else {
4872 		/*
4873 		 * We might have set it in task_yield_fair(), but are
4874 		 * not going to schedule(), so don't want to skip
4875 		 * the next update.
4876 		 */
4877 		rq->skip_clock_update = 0;
4878 	}
4879 
4880 out:
4881 	double_rq_unlock(rq, p_rq);
4882 	local_irq_restore(flags);
4883 
4884 	if (yielded)
4885 		schedule();
4886 
4887 	return yielded;
4888 }
4889 EXPORT_SYMBOL_GPL(yield_to);
4890 
4891 /*
4892  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4893  * that process accounting knows that this is a task in IO wait state.
4894  */
4895 void __sched io_schedule(void)
4896 {
4897 	struct rq *rq = raw_rq();
4898 
4899 	delayacct_blkio_start();
4900 	atomic_inc(&rq->nr_iowait);
4901 	blk_flush_plug(current);
4902 	current->in_iowait = 1;
4903 	schedule();
4904 	current->in_iowait = 0;
4905 	atomic_dec(&rq->nr_iowait);
4906 	delayacct_blkio_end();
4907 }
4908 EXPORT_SYMBOL(io_schedule);
4909 
4910 long __sched io_schedule_timeout(long timeout)
4911 {
4912 	struct rq *rq = raw_rq();
4913 	long ret;
4914 
4915 	delayacct_blkio_start();
4916 	atomic_inc(&rq->nr_iowait);
4917 	blk_flush_plug(current);
4918 	current->in_iowait = 1;
4919 	ret = schedule_timeout(timeout);
4920 	current->in_iowait = 0;
4921 	atomic_dec(&rq->nr_iowait);
4922 	delayacct_blkio_end();
4923 	return ret;
4924 }
4925 
4926 /**
4927  * sys_sched_get_priority_max - return maximum RT priority.
4928  * @policy: scheduling class.
4929  *
4930  * this syscall returns the maximum rt_priority that can be used
4931  * by a given scheduling class.
4932  */
4933 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4934 {
4935 	int ret = -EINVAL;
4936 
4937 	switch (policy) {
4938 	case SCHED_FIFO:
4939 	case SCHED_RR:
4940 		ret = MAX_USER_RT_PRIO-1;
4941 		break;
4942 	case SCHED_NORMAL:
4943 	case SCHED_BATCH:
4944 	case SCHED_IDLE:
4945 		ret = 0;
4946 		break;
4947 	}
4948 	return ret;
4949 }
4950 
4951 /**
4952  * sys_sched_get_priority_min - return minimum RT priority.
4953  * @policy: scheduling class.
4954  *
4955  * this syscall returns the minimum rt_priority that can be used
4956  * by a given scheduling class.
4957  */
4958 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4959 {
4960 	int ret = -EINVAL;
4961 
4962 	switch (policy) {
4963 	case SCHED_FIFO:
4964 	case SCHED_RR:
4965 		ret = 1;
4966 		break;
4967 	case SCHED_NORMAL:
4968 	case SCHED_BATCH:
4969 	case SCHED_IDLE:
4970 		ret = 0;
4971 	}
4972 	return ret;
4973 }
4974 
4975 /**
4976  * sys_sched_rr_get_interval - return the default timeslice of a process.
4977  * @pid: pid of the process.
4978  * @interval: userspace pointer to the timeslice value.
4979  *
4980  * this syscall writes the default timeslice value of a given process
4981  * into the user-space timespec buffer. A value of '0' means infinity.
4982  */
4983 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4984 		struct timespec __user *, interval)
4985 {
4986 	struct task_struct *p;
4987 	unsigned int time_slice;
4988 	unsigned long flags;
4989 	struct rq *rq;
4990 	int retval;
4991 	struct timespec t;
4992 
4993 	if (pid < 0)
4994 		return -EINVAL;
4995 
4996 	retval = -ESRCH;
4997 	rcu_read_lock();
4998 	p = find_process_by_pid(pid);
4999 	if (!p)
5000 		goto out_unlock;
5001 
5002 	retval = security_task_getscheduler(p);
5003 	if (retval)
5004 		goto out_unlock;
5005 
5006 	rq = task_rq_lock(p, &flags);
5007 	time_slice = p->sched_class->get_rr_interval(rq, p);
5008 	task_rq_unlock(rq, p, &flags);
5009 
5010 	rcu_read_unlock();
5011 	jiffies_to_timespec(time_slice, &t);
5012 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5013 	return retval;
5014 
5015 out_unlock:
5016 	rcu_read_unlock();
5017 	return retval;
5018 }
5019 
5020 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5021 
5022 void sched_show_task(struct task_struct *p)
5023 {
5024 	unsigned long free = 0;
5025 	unsigned state;
5026 
5027 	state = p->state ? __ffs(p->state) + 1 : 0;
5028 	printk(KERN_INFO "%-15.15s %c", p->comm,
5029 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5030 #if BITS_PER_LONG == 32
5031 	if (state == TASK_RUNNING)
5032 		printk(KERN_CONT " running  ");
5033 	else
5034 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5035 #else
5036 	if (state == TASK_RUNNING)
5037 		printk(KERN_CONT "  running task    ");
5038 	else
5039 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5040 #endif
5041 #ifdef CONFIG_DEBUG_STACK_USAGE
5042 	free = stack_not_used(p);
5043 #endif
5044 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5045 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5046 		(unsigned long)task_thread_info(p)->flags);
5047 
5048 	show_stack(p, NULL);
5049 }
5050 
5051 void show_state_filter(unsigned long state_filter)
5052 {
5053 	struct task_struct *g, *p;
5054 
5055 #if BITS_PER_LONG == 32
5056 	printk(KERN_INFO
5057 		"  task                PC stack   pid father\n");
5058 #else
5059 	printk(KERN_INFO
5060 		"  task                        PC stack   pid father\n");
5061 #endif
5062 	rcu_read_lock();
5063 	do_each_thread(g, p) {
5064 		/*
5065 		 * reset the NMI-timeout, listing all files on a slow
5066 		 * console might take a lot of time:
5067 		 */
5068 		touch_nmi_watchdog();
5069 		if (!state_filter || (p->state & state_filter))
5070 			sched_show_task(p);
5071 	} while_each_thread(g, p);
5072 
5073 	touch_all_softlockup_watchdogs();
5074 
5075 #ifdef CONFIG_SCHED_DEBUG
5076 	sysrq_sched_debug_show();
5077 #endif
5078 	rcu_read_unlock();
5079 	/*
5080 	 * Only show locks if all tasks are dumped:
5081 	 */
5082 	if (!state_filter)
5083 		debug_show_all_locks();
5084 }
5085 
5086 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5087 {
5088 	idle->sched_class = &idle_sched_class;
5089 }
5090 
5091 /**
5092  * init_idle - set up an idle thread for a given CPU
5093  * @idle: task in question
5094  * @cpu: cpu the idle task belongs to
5095  *
5096  * NOTE: this function does not set the idle thread's NEED_RESCHED
5097  * flag, to make booting more robust.
5098  */
5099 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5100 {
5101 	struct rq *rq = cpu_rq(cpu);
5102 	unsigned long flags;
5103 
5104 	raw_spin_lock_irqsave(&rq->lock, flags);
5105 
5106 	__sched_fork(idle);
5107 	idle->state = TASK_RUNNING;
5108 	idle->se.exec_start = sched_clock();
5109 
5110 	do_set_cpus_allowed(idle, cpumask_of(cpu));
5111 	/*
5112 	 * We're having a chicken and egg problem, even though we are
5113 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5114 	 * lockdep check in task_group() will fail.
5115 	 *
5116 	 * Similar case to sched_fork(). / Alternatively we could
5117 	 * use task_rq_lock() here and obtain the other rq->lock.
5118 	 *
5119 	 * Silence PROVE_RCU
5120 	 */
5121 	rcu_read_lock();
5122 	__set_task_cpu(idle, cpu);
5123 	rcu_read_unlock();
5124 
5125 	rq->curr = rq->idle = idle;
5126 #if defined(CONFIG_SMP)
5127 	idle->on_cpu = 1;
5128 #endif
5129 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5130 
5131 	/* Set the preempt count _outside_ the spinlocks! */
5132 	task_thread_info(idle)->preempt_count = 0;
5133 
5134 	/*
5135 	 * The idle tasks have their own, simple scheduling class:
5136 	 */
5137 	idle->sched_class = &idle_sched_class;
5138 	ftrace_graph_init_idle_task(idle, cpu);
5139 #if defined(CONFIG_SMP)
5140 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141 #endif
5142 }
5143 
5144 #ifdef CONFIG_SMP
5145 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5146 {
5147 	if (p->sched_class && p->sched_class->set_cpus_allowed)
5148 		p->sched_class->set_cpus_allowed(p, new_mask);
5149 
5150 	cpumask_copy(&p->cpus_allowed, new_mask);
5151 	p->nr_cpus_allowed = cpumask_weight(new_mask);
5152 }
5153 
5154 /*
5155  * This is how migration works:
5156  *
5157  * 1) we invoke migration_cpu_stop() on the target CPU using
5158  *    stop_one_cpu().
5159  * 2) stopper starts to run (implicitly forcing the migrated thread
5160  *    off the CPU)
5161  * 3) it checks whether the migrated task is still in the wrong runqueue.
5162  * 4) if it's in the wrong runqueue then the migration thread removes
5163  *    it and puts it into the right queue.
5164  * 5) stopper completes and stop_one_cpu() returns and the migration
5165  *    is done.
5166  */
5167 
5168 /*
5169  * Change a given task's CPU affinity. Migrate the thread to a
5170  * proper CPU and schedule it away if the CPU it's executing on
5171  * is removed from the allowed bitmask.
5172  *
5173  * NOTE: the caller must have a valid reference to the task, the
5174  * task must not exit() & deallocate itself prematurely. The
5175  * call is not atomic; no spinlocks may be held.
5176  */
5177 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5178 {
5179 	unsigned long flags;
5180 	struct rq *rq;
5181 	unsigned int dest_cpu;
5182 	int ret = 0;
5183 
5184 	rq = task_rq_lock(p, &flags);
5185 
5186 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5187 		goto out;
5188 
5189 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5190 		ret = -EINVAL;
5191 		goto out;
5192 	}
5193 
5194 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5195 		ret = -EINVAL;
5196 		goto out;
5197 	}
5198 
5199 	do_set_cpus_allowed(p, new_mask);
5200 
5201 	/* Can the task run on the task's current CPU? If so, we're done */
5202 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5203 		goto out;
5204 
5205 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5206 	if (p->on_rq) {
5207 		struct migration_arg arg = { p, dest_cpu };
5208 		/* Need help from migration thread: drop lock and wait. */
5209 		task_rq_unlock(rq, p, &flags);
5210 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5211 		tlb_migrate_finish(p->mm);
5212 		return 0;
5213 	}
5214 out:
5215 	task_rq_unlock(rq, p, &flags);
5216 
5217 	return ret;
5218 }
5219 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5220 
5221 /*
5222  * Move (not current) task off this cpu, onto dest cpu. We're doing
5223  * this because either it can't run here any more (set_cpus_allowed()
5224  * away from this CPU, or CPU going down), or because we're
5225  * attempting to rebalance this task on exec (sched_exec).
5226  *
5227  * So we race with normal scheduler movements, but that's OK, as long
5228  * as the task is no longer on this CPU.
5229  *
5230  * Returns non-zero if task was successfully migrated.
5231  */
5232 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5233 {
5234 	struct rq *rq_dest, *rq_src;
5235 	int ret = 0;
5236 
5237 	if (unlikely(!cpu_active(dest_cpu)))
5238 		return ret;
5239 
5240 	rq_src = cpu_rq(src_cpu);
5241 	rq_dest = cpu_rq(dest_cpu);
5242 
5243 	raw_spin_lock(&p->pi_lock);
5244 	double_rq_lock(rq_src, rq_dest);
5245 	/* Already moved. */
5246 	if (task_cpu(p) != src_cpu)
5247 		goto done;
5248 	/* Affinity changed (again). */
5249 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5250 		goto fail;
5251 
5252 	/*
5253 	 * If we're not on a rq, the next wake-up will ensure we're
5254 	 * placed properly.
5255 	 */
5256 	if (p->on_rq) {
5257 		dequeue_task(rq_src, p, 0);
5258 		set_task_cpu(p, dest_cpu);
5259 		enqueue_task(rq_dest, p, 0);
5260 		check_preempt_curr(rq_dest, p, 0);
5261 	}
5262 done:
5263 	ret = 1;
5264 fail:
5265 	double_rq_unlock(rq_src, rq_dest);
5266 	raw_spin_unlock(&p->pi_lock);
5267 	return ret;
5268 }
5269 
5270 /*
5271  * migration_cpu_stop - this will be executed by a highprio stopper thread
5272  * and performs thread migration by bumping thread off CPU then
5273  * 'pushing' onto another runqueue.
5274  */
5275 static int migration_cpu_stop(void *data)
5276 {
5277 	struct migration_arg *arg = data;
5278 
5279 	/*
5280 	 * The original target cpu might have gone down and we might
5281 	 * be on another cpu but it doesn't matter.
5282 	 */
5283 	local_irq_disable();
5284 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5285 	local_irq_enable();
5286 	return 0;
5287 }
5288 
5289 #ifdef CONFIG_HOTPLUG_CPU
5290 
5291 /*
5292  * Ensures that the idle task is using init_mm right before its cpu goes
5293  * offline.
5294  */
5295 void idle_task_exit(void)
5296 {
5297 	struct mm_struct *mm = current->active_mm;
5298 
5299 	BUG_ON(cpu_online(smp_processor_id()));
5300 
5301 	if (mm != &init_mm)
5302 		switch_mm(mm, &init_mm, current);
5303 	mmdrop(mm);
5304 }
5305 
5306 /*
5307  * While a dead CPU has no uninterruptible tasks queued at this point,
5308  * it might still have a nonzero ->nr_uninterruptible counter, because
5309  * for performance reasons the counter is not stricly tracking tasks to
5310  * their home CPUs. So we just add the counter to another CPU's counter,
5311  * to keep the global sum constant after CPU-down:
5312  */
5313 static void migrate_nr_uninterruptible(struct rq *rq_src)
5314 {
5315 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5316 
5317 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5318 	rq_src->nr_uninterruptible = 0;
5319 }
5320 
5321 /*
5322  * remove the tasks which were accounted by rq from calc_load_tasks.
5323  */
5324 static void calc_global_load_remove(struct rq *rq)
5325 {
5326 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5327 	rq->calc_load_active = 0;
5328 }
5329 
5330 /*
5331  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5332  * try_to_wake_up()->select_task_rq().
5333  *
5334  * Called with rq->lock held even though we'er in stop_machine() and
5335  * there's no concurrency possible, we hold the required locks anyway
5336  * because of lock validation efforts.
5337  */
5338 static void migrate_tasks(unsigned int dead_cpu)
5339 {
5340 	struct rq *rq = cpu_rq(dead_cpu);
5341 	struct task_struct *next, *stop = rq->stop;
5342 	int dest_cpu;
5343 
5344 	/*
5345 	 * Fudge the rq selection such that the below task selection loop
5346 	 * doesn't get stuck on the currently eligible stop task.
5347 	 *
5348 	 * We're currently inside stop_machine() and the rq is either stuck
5349 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5350 	 * either way we should never end up calling schedule() until we're
5351 	 * done here.
5352 	 */
5353 	rq->stop = NULL;
5354 
5355 	/* Ensure any throttled groups are reachable by pick_next_task */
5356 	unthrottle_offline_cfs_rqs(rq);
5357 
5358 	for ( ; ; ) {
5359 		/*
5360 		 * There's this thread running, bail when that's the only
5361 		 * remaining thread.
5362 		 */
5363 		if (rq->nr_running == 1)
5364 			break;
5365 
5366 		next = pick_next_task(rq);
5367 		BUG_ON(!next);
5368 		next->sched_class->put_prev_task(rq, next);
5369 
5370 		/* Find suitable destination for @next, with force if needed. */
5371 		dest_cpu = select_fallback_rq(dead_cpu, next);
5372 		raw_spin_unlock(&rq->lock);
5373 
5374 		__migrate_task(next, dead_cpu, dest_cpu);
5375 
5376 		raw_spin_lock(&rq->lock);
5377 	}
5378 
5379 	rq->stop = stop;
5380 }
5381 
5382 #endif /* CONFIG_HOTPLUG_CPU */
5383 
5384 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5385 
5386 static struct ctl_table sd_ctl_dir[] = {
5387 	{
5388 		.procname	= "sched_domain",
5389 		.mode		= 0555,
5390 	},
5391 	{}
5392 };
5393 
5394 static struct ctl_table sd_ctl_root[] = {
5395 	{
5396 		.procname	= "kernel",
5397 		.mode		= 0555,
5398 		.child		= sd_ctl_dir,
5399 	},
5400 	{}
5401 };
5402 
5403 static struct ctl_table *sd_alloc_ctl_entry(int n)
5404 {
5405 	struct ctl_table *entry =
5406 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5407 
5408 	return entry;
5409 }
5410 
5411 static void sd_free_ctl_entry(struct ctl_table **tablep)
5412 {
5413 	struct ctl_table *entry;
5414 
5415 	/*
5416 	 * In the intermediate directories, both the child directory and
5417 	 * procname are dynamically allocated and could fail but the mode
5418 	 * will always be set. In the lowest directory the names are
5419 	 * static strings and all have proc handlers.
5420 	 */
5421 	for (entry = *tablep; entry->mode; entry++) {
5422 		if (entry->child)
5423 			sd_free_ctl_entry(&entry->child);
5424 		if (entry->proc_handler == NULL)
5425 			kfree(entry->procname);
5426 	}
5427 
5428 	kfree(*tablep);
5429 	*tablep = NULL;
5430 }
5431 
5432 static void
5433 set_table_entry(struct ctl_table *entry,
5434 		const char *procname, void *data, int maxlen,
5435 		umode_t mode, proc_handler *proc_handler)
5436 {
5437 	entry->procname = procname;
5438 	entry->data = data;
5439 	entry->maxlen = maxlen;
5440 	entry->mode = mode;
5441 	entry->proc_handler = proc_handler;
5442 }
5443 
5444 static struct ctl_table *
5445 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5446 {
5447 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5448 
5449 	if (table == NULL)
5450 		return NULL;
5451 
5452 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5453 		sizeof(long), 0644, proc_doulongvec_minmax);
5454 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5455 		sizeof(long), 0644, proc_doulongvec_minmax);
5456 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5457 		sizeof(int), 0644, proc_dointvec_minmax);
5458 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5459 		sizeof(int), 0644, proc_dointvec_minmax);
5460 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5461 		sizeof(int), 0644, proc_dointvec_minmax);
5462 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5463 		sizeof(int), 0644, proc_dointvec_minmax);
5464 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5465 		sizeof(int), 0644, proc_dointvec_minmax);
5466 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5467 		sizeof(int), 0644, proc_dointvec_minmax);
5468 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5469 		sizeof(int), 0644, proc_dointvec_minmax);
5470 	set_table_entry(&table[9], "cache_nice_tries",
5471 		&sd->cache_nice_tries,
5472 		sizeof(int), 0644, proc_dointvec_minmax);
5473 	set_table_entry(&table[10], "flags", &sd->flags,
5474 		sizeof(int), 0644, proc_dointvec_minmax);
5475 	set_table_entry(&table[11], "name", sd->name,
5476 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5477 	/* &table[12] is terminator */
5478 
5479 	return table;
5480 }
5481 
5482 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5483 {
5484 	struct ctl_table *entry, *table;
5485 	struct sched_domain *sd;
5486 	int domain_num = 0, i;
5487 	char buf[32];
5488 
5489 	for_each_domain(cpu, sd)
5490 		domain_num++;
5491 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5492 	if (table == NULL)
5493 		return NULL;
5494 
5495 	i = 0;
5496 	for_each_domain(cpu, sd) {
5497 		snprintf(buf, 32, "domain%d", i);
5498 		entry->procname = kstrdup(buf, GFP_KERNEL);
5499 		entry->mode = 0555;
5500 		entry->child = sd_alloc_ctl_domain_table(sd);
5501 		entry++;
5502 		i++;
5503 	}
5504 	return table;
5505 }
5506 
5507 static struct ctl_table_header *sd_sysctl_header;
5508 static void register_sched_domain_sysctl(void)
5509 {
5510 	int i, cpu_num = num_possible_cpus();
5511 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5512 	char buf[32];
5513 
5514 	WARN_ON(sd_ctl_dir[0].child);
5515 	sd_ctl_dir[0].child = entry;
5516 
5517 	if (entry == NULL)
5518 		return;
5519 
5520 	for_each_possible_cpu(i) {
5521 		snprintf(buf, 32, "cpu%d", i);
5522 		entry->procname = kstrdup(buf, GFP_KERNEL);
5523 		entry->mode = 0555;
5524 		entry->child = sd_alloc_ctl_cpu_table(i);
5525 		entry++;
5526 	}
5527 
5528 	WARN_ON(sd_sysctl_header);
5529 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5530 }
5531 
5532 /* may be called multiple times per register */
5533 static void unregister_sched_domain_sysctl(void)
5534 {
5535 	if (sd_sysctl_header)
5536 		unregister_sysctl_table(sd_sysctl_header);
5537 	sd_sysctl_header = NULL;
5538 	if (sd_ctl_dir[0].child)
5539 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5540 }
5541 #else
5542 static void register_sched_domain_sysctl(void)
5543 {
5544 }
5545 static void unregister_sched_domain_sysctl(void)
5546 {
5547 }
5548 #endif
5549 
5550 static void set_rq_online(struct rq *rq)
5551 {
5552 	if (!rq->online) {
5553 		const struct sched_class *class;
5554 
5555 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5556 		rq->online = 1;
5557 
5558 		for_each_class(class) {
5559 			if (class->rq_online)
5560 				class->rq_online(rq);
5561 		}
5562 	}
5563 }
5564 
5565 static void set_rq_offline(struct rq *rq)
5566 {
5567 	if (rq->online) {
5568 		const struct sched_class *class;
5569 
5570 		for_each_class(class) {
5571 			if (class->rq_offline)
5572 				class->rq_offline(rq);
5573 		}
5574 
5575 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5576 		rq->online = 0;
5577 	}
5578 }
5579 
5580 /*
5581  * migration_call - callback that gets triggered when a CPU is added.
5582  * Here we can start up the necessary migration thread for the new CPU.
5583  */
5584 static int __cpuinit
5585 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5586 {
5587 	int cpu = (long)hcpu;
5588 	unsigned long flags;
5589 	struct rq *rq = cpu_rq(cpu);
5590 
5591 	switch (action & ~CPU_TASKS_FROZEN) {
5592 
5593 	case CPU_UP_PREPARE:
5594 		rq->calc_load_update = calc_load_update;
5595 		break;
5596 
5597 	case CPU_ONLINE:
5598 		/* Update our root-domain */
5599 		raw_spin_lock_irqsave(&rq->lock, flags);
5600 		if (rq->rd) {
5601 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5602 
5603 			set_rq_online(rq);
5604 		}
5605 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5606 		break;
5607 
5608 #ifdef CONFIG_HOTPLUG_CPU
5609 	case CPU_DYING:
5610 		sched_ttwu_pending();
5611 		/* Update our root-domain */
5612 		raw_spin_lock_irqsave(&rq->lock, flags);
5613 		if (rq->rd) {
5614 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5615 			set_rq_offline(rq);
5616 		}
5617 		migrate_tasks(cpu);
5618 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5619 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5620 
5621 		migrate_nr_uninterruptible(rq);
5622 		calc_global_load_remove(rq);
5623 		break;
5624 #endif
5625 	}
5626 
5627 	update_max_interval();
5628 
5629 	return NOTIFY_OK;
5630 }
5631 
5632 /*
5633  * Register at high priority so that task migration (migrate_all_tasks)
5634  * happens before everything else.  This has to be lower priority than
5635  * the notifier in the perf_event subsystem, though.
5636  */
5637 static struct notifier_block __cpuinitdata migration_notifier = {
5638 	.notifier_call = migration_call,
5639 	.priority = CPU_PRI_MIGRATION,
5640 };
5641 
5642 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5643 				      unsigned long action, void *hcpu)
5644 {
5645 	switch (action & ~CPU_TASKS_FROZEN) {
5646 	case CPU_STARTING:
5647 	case CPU_DOWN_FAILED:
5648 		set_cpu_active((long)hcpu, true);
5649 		return NOTIFY_OK;
5650 	default:
5651 		return NOTIFY_DONE;
5652 	}
5653 }
5654 
5655 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5656 					unsigned long action, void *hcpu)
5657 {
5658 	switch (action & ~CPU_TASKS_FROZEN) {
5659 	case CPU_DOWN_PREPARE:
5660 		set_cpu_active((long)hcpu, false);
5661 		return NOTIFY_OK;
5662 	default:
5663 		return NOTIFY_DONE;
5664 	}
5665 }
5666 
5667 static int __init migration_init(void)
5668 {
5669 	void *cpu = (void *)(long)smp_processor_id();
5670 	int err;
5671 
5672 	/* Initialize migration for the boot CPU */
5673 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5674 	BUG_ON(err == NOTIFY_BAD);
5675 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5676 	register_cpu_notifier(&migration_notifier);
5677 
5678 	/* Register cpu active notifiers */
5679 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5680 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5681 
5682 	return 0;
5683 }
5684 early_initcall(migration_init);
5685 #endif
5686 
5687 #ifdef CONFIG_SMP
5688 
5689 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5690 
5691 #ifdef CONFIG_SCHED_DEBUG
5692 
5693 static __read_mostly int sched_debug_enabled;
5694 
5695 static int __init sched_debug_setup(char *str)
5696 {
5697 	sched_debug_enabled = 1;
5698 
5699 	return 0;
5700 }
5701 early_param("sched_debug", sched_debug_setup);
5702 
5703 static inline bool sched_debug(void)
5704 {
5705 	return sched_debug_enabled;
5706 }
5707 
5708 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5709 				  struct cpumask *groupmask)
5710 {
5711 	struct sched_group *group = sd->groups;
5712 	char str[256];
5713 
5714 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5715 	cpumask_clear(groupmask);
5716 
5717 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5718 
5719 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5720 		printk("does not load-balance\n");
5721 		if (sd->parent)
5722 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5723 					" has parent");
5724 		return -1;
5725 	}
5726 
5727 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5728 
5729 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5730 		printk(KERN_ERR "ERROR: domain->span does not contain "
5731 				"CPU%d\n", cpu);
5732 	}
5733 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5734 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5735 				" CPU%d\n", cpu);
5736 	}
5737 
5738 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5739 	do {
5740 		if (!group) {
5741 			printk("\n");
5742 			printk(KERN_ERR "ERROR: group is NULL\n");
5743 			break;
5744 		}
5745 
5746 		/*
5747 		 * Even though we initialize ->power to something semi-sane,
5748 		 * we leave power_orig unset. This allows us to detect if
5749 		 * domain iteration is still funny without causing /0 traps.
5750 		 */
5751 		if (!group->sgp->power_orig) {
5752 			printk(KERN_CONT "\n");
5753 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5754 					"set\n");
5755 			break;
5756 		}
5757 
5758 		if (!cpumask_weight(sched_group_cpus(group))) {
5759 			printk(KERN_CONT "\n");
5760 			printk(KERN_ERR "ERROR: empty group\n");
5761 			break;
5762 		}
5763 
5764 		if (!(sd->flags & SD_OVERLAP) &&
5765 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5766 			printk(KERN_CONT "\n");
5767 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5768 			break;
5769 		}
5770 
5771 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5772 
5773 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5774 
5775 		printk(KERN_CONT " %s", str);
5776 		if (group->sgp->power != SCHED_POWER_SCALE) {
5777 			printk(KERN_CONT " (cpu_power = %d)",
5778 				group->sgp->power);
5779 		}
5780 
5781 		group = group->next;
5782 	} while (group != sd->groups);
5783 	printk(KERN_CONT "\n");
5784 
5785 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5786 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5787 
5788 	if (sd->parent &&
5789 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5790 		printk(KERN_ERR "ERROR: parent span is not a superset "
5791 			"of domain->span\n");
5792 	return 0;
5793 }
5794 
5795 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5796 {
5797 	int level = 0;
5798 
5799 	if (!sched_debug_enabled)
5800 		return;
5801 
5802 	if (!sd) {
5803 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5804 		return;
5805 	}
5806 
5807 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5808 
5809 	for (;;) {
5810 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5811 			break;
5812 		level++;
5813 		sd = sd->parent;
5814 		if (!sd)
5815 			break;
5816 	}
5817 }
5818 #else /* !CONFIG_SCHED_DEBUG */
5819 # define sched_domain_debug(sd, cpu) do { } while (0)
5820 static inline bool sched_debug(void)
5821 {
5822 	return false;
5823 }
5824 #endif /* CONFIG_SCHED_DEBUG */
5825 
5826 static int sd_degenerate(struct sched_domain *sd)
5827 {
5828 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5829 		return 1;
5830 
5831 	/* Following flags need at least 2 groups */
5832 	if (sd->flags & (SD_LOAD_BALANCE |
5833 			 SD_BALANCE_NEWIDLE |
5834 			 SD_BALANCE_FORK |
5835 			 SD_BALANCE_EXEC |
5836 			 SD_SHARE_CPUPOWER |
5837 			 SD_SHARE_PKG_RESOURCES)) {
5838 		if (sd->groups != sd->groups->next)
5839 			return 0;
5840 	}
5841 
5842 	/* Following flags don't use groups */
5843 	if (sd->flags & (SD_WAKE_AFFINE))
5844 		return 0;
5845 
5846 	return 1;
5847 }
5848 
5849 static int
5850 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5851 {
5852 	unsigned long cflags = sd->flags, pflags = parent->flags;
5853 
5854 	if (sd_degenerate(parent))
5855 		return 1;
5856 
5857 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5858 		return 0;
5859 
5860 	/* Flags needing groups don't count if only 1 group in parent */
5861 	if (parent->groups == parent->groups->next) {
5862 		pflags &= ~(SD_LOAD_BALANCE |
5863 				SD_BALANCE_NEWIDLE |
5864 				SD_BALANCE_FORK |
5865 				SD_BALANCE_EXEC |
5866 				SD_SHARE_CPUPOWER |
5867 				SD_SHARE_PKG_RESOURCES);
5868 		if (nr_node_ids == 1)
5869 			pflags &= ~SD_SERIALIZE;
5870 	}
5871 	if (~cflags & pflags)
5872 		return 0;
5873 
5874 	return 1;
5875 }
5876 
5877 static void free_rootdomain(struct rcu_head *rcu)
5878 {
5879 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5880 
5881 	cpupri_cleanup(&rd->cpupri);
5882 	free_cpumask_var(rd->rto_mask);
5883 	free_cpumask_var(rd->online);
5884 	free_cpumask_var(rd->span);
5885 	kfree(rd);
5886 }
5887 
5888 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5889 {
5890 	struct root_domain *old_rd = NULL;
5891 	unsigned long flags;
5892 
5893 	raw_spin_lock_irqsave(&rq->lock, flags);
5894 
5895 	if (rq->rd) {
5896 		old_rd = rq->rd;
5897 
5898 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5899 			set_rq_offline(rq);
5900 
5901 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5902 
5903 		/*
5904 		 * If we dont want to free the old_rt yet then
5905 		 * set old_rd to NULL to skip the freeing later
5906 		 * in this function:
5907 		 */
5908 		if (!atomic_dec_and_test(&old_rd->refcount))
5909 			old_rd = NULL;
5910 	}
5911 
5912 	atomic_inc(&rd->refcount);
5913 	rq->rd = rd;
5914 
5915 	cpumask_set_cpu(rq->cpu, rd->span);
5916 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5917 		set_rq_online(rq);
5918 
5919 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5920 
5921 	if (old_rd)
5922 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5923 }
5924 
5925 static int init_rootdomain(struct root_domain *rd)
5926 {
5927 	memset(rd, 0, sizeof(*rd));
5928 
5929 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5930 		goto out;
5931 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5932 		goto free_span;
5933 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5934 		goto free_online;
5935 
5936 	if (cpupri_init(&rd->cpupri) != 0)
5937 		goto free_rto_mask;
5938 	return 0;
5939 
5940 free_rto_mask:
5941 	free_cpumask_var(rd->rto_mask);
5942 free_online:
5943 	free_cpumask_var(rd->online);
5944 free_span:
5945 	free_cpumask_var(rd->span);
5946 out:
5947 	return -ENOMEM;
5948 }
5949 
5950 /*
5951  * By default the system creates a single root-domain with all cpus as
5952  * members (mimicking the global state we have today).
5953  */
5954 struct root_domain def_root_domain;
5955 
5956 static void init_defrootdomain(void)
5957 {
5958 	init_rootdomain(&def_root_domain);
5959 
5960 	atomic_set(&def_root_domain.refcount, 1);
5961 }
5962 
5963 static struct root_domain *alloc_rootdomain(void)
5964 {
5965 	struct root_domain *rd;
5966 
5967 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5968 	if (!rd)
5969 		return NULL;
5970 
5971 	if (init_rootdomain(rd) != 0) {
5972 		kfree(rd);
5973 		return NULL;
5974 	}
5975 
5976 	return rd;
5977 }
5978 
5979 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5980 {
5981 	struct sched_group *tmp, *first;
5982 
5983 	if (!sg)
5984 		return;
5985 
5986 	first = sg;
5987 	do {
5988 		tmp = sg->next;
5989 
5990 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5991 			kfree(sg->sgp);
5992 
5993 		kfree(sg);
5994 		sg = tmp;
5995 	} while (sg != first);
5996 }
5997 
5998 static void free_sched_domain(struct rcu_head *rcu)
5999 {
6000 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6001 
6002 	/*
6003 	 * If its an overlapping domain it has private groups, iterate and
6004 	 * nuke them all.
6005 	 */
6006 	if (sd->flags & SD_OVERLAP) {
6007 		free_sched_groups(sd->groups, 1);
6008 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6009 		kfree(sd->groups->sgp);
6010 		kfree(sd->groups);
6011 	}
6012 	kfree(sd);
6013 }
6014 
6015 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6016 {
6017 	call_rcu(&sd->rcu, free_sched_domain);
6018 }
6019 
6020 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6021 {
6022 	for (; sd; sd = sd->parent)
6023 		destroy_sched_domain(sd, cpu);
6024 }
6025 
6026 /*
6027  * Keep a special pointer to the highest sched_domain that has
6028  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6029  * allows us to avoid some pointer chasing select_idle_sibling().
6030  *
6031  * Iterate domains and sched_groups downward, assigning CPUs to be
6032  * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
6033  * due to random perturbation self canceling, ie sw buddies pull
6034  * their counterpart to their CPU's hw counterpart.
6035  *
6036  * Also keep a unique ID per domain (we use the first cpu number in
6037  * the cpumask of the domain), this allows us to quickly tell if
6038  * two cpus are in the same cache domain, see cpus_share_cache().
6039  */
6040 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6041 DEFINE_PER_CPU(int, sd_llc_id);
6042 
6043 static void update_top_cache_domain(int cpu)
6044 {
6045 	struct sched_domain *sd;
6046 	int id = cpu;
6047 
6048 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6049 	if (sd) {
6050 		struct sched_domain *tmp = sd;
6051 		struct sched_group *sg, *prev;
6052 		bool right;
6053 
6054 		/*
6055 		 * Traverse to first CPU in group, and count hops
6056 		 * to cpu from there, switching direction on each
6057 		 * hop, never ever pointing the last CPU rightward.
6058 		 */
6059 		do {
6060 			id = cpumask_first(sched_domain_span(tmp));
6061 			prev = sg = tmp->groups;
6062 			right = 1;
6063 
6064 			while (cpumask_first(sched_group_cpus(sg)) != id)
6065 				sg = sg->next;
6066 
6067 			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
6068 				prev = sg;
6069 				sg = sg->next;
6070 				right = !right;
6071 			}
6072 
6073 			/* A CPU went down, never point back to domain start. */
6074 			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
6075 				right = false;
6076 
6077 			sg = right ? sg->next : prev;
6078 			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
6079 		} while ((tmp = tmp->child));
6080 
6081 		id = cpumask_first(sched_domain_span(sd));
6082 	}
6083 
6084 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6085 	per_cpu(sd_llc_id, cpu) = id;
6086 }
6087 
6088 /*
6089  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6090  * hold the hotplug lock.
6091  */
6092 static void
6093 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6094 {
6095 	struct rq *rq = cpu_rq(cpu);
6096 	struct sched_domain *tmp;
6097 
6098 	/* Remove the sched domains which do not contribute to scheduling. */
6099 	for (tmp = sd; tmp; ) {
6100 		struct sched_domain *parent = tmp->parent;
6101 		if (!parent)
6102 			break;
6103 
6104 		if (sd_parent_degenerate(tmp, parent)) {
6105 			tmp->parent = parent->parent;
6106 			if (parent->parent)
6107 				parent->parent->child = tmp;
6108 			destroy_sched_domain(parent, cpu);
6109 		} else
6110 			tmp = tmp->parent;
6111 	}
6112 
6113 	if (sd && sd_degenerate(sd)) {
6114 		tmp = sd;
6115 		sd = sd->parent;
6116 		destroy_sched_domain(tmp, cpu);
6117 		if (sd)
6118 			sd->child = NULL;
6119 	}
6120 
6121 	sched_domain_debug(sd, cpu);
6122 
6123 	rq_attach_root(rq, rd);
6124 	tmp = rq->sd;
6125 	rcu_assign_pointer(rq->sd, sd);
6126 	destroy_sched_domains(tmp, cpu);
6127 
6128 	update_top_cache_domain(cpu);
6129 }
6130 
6131 /* cpus with isolated domains */
6132 static cpumask_var_t cpu_isolated_map;
6133 
6134 /* Setup the mask of cpus configured for isolated domains */
6135 static int __init isolated_cpu_setup(char *str)
6136 {
6137 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6138 	cpulist_parse(str, cpu_isolated_map);
6139 	return 1;
6140 }
6141 
6142 __setup("isolcpus=", isolated_cpu_setup);
6143 
6144 static const struct cpumask *cpu_cpu_mask(int cpu)
6145 {
6146 	return cpumask_of_node(cpu_to_node(cpu));
6147 }
6148 
6149 struct sd_data {
6150 	struct sched_domain **__percpu sd;
6151 	struct sched_group **__percpu sg;
6152 	struct sched_group_power **__percpu sgp;
6153 };
6154 
6155 struct s_data {
6156 	struct sched_domain ** __percpu sd;
6157 	struct root_domain	*rd;
6158 };
6159 
6160 enum s_alloc {
6161 	sa_rootdomain,
6162 	sa_sd,
6163 	sa_sd_storage,
6164 	sa_none,
6165 };
6166 
6167 struct sched_domain_topology_level;
6168 
6169 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6170 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6171 
6172 #define SDTL_OVERLAP	0x01
6173 
6174 struct sched_domain_topology_level {
6175 	sched_domain_init_f init;
6176 	sched_domain_mask_f mask;
6177 	int		    flags;
6178 	int		    numa_level;
6179 	struct sd_data      data;
6180 };
6181 
6182 /*
6183  * Build an iteration mask that can exclude certain CPUs from the upwards
6184  * domain traversal.
6185  *
6186  * Asymmetric node setups can result in situations where the domain tree is of
6187  * unequal depth, make sure to skip domains that already cover the entire
6188  * range.
6189  *
6190  * In that case build_sched_domains() will have terminated the iteration early
6191  * and our sibling sd spans will be empty. Domains should always include the
6192  * cpu they're built on, so check that.
6193  *
6194  */
6195 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6196 {
6197 	const struct cpumask *span = sched_domain_span(sd);
6198 	struct sd_data *sdd = sd->private;
6199 	struct sched_domain *sibling;
6200 	int i;
6201 
6202 	for_each_cpu(i, span) {
6203 		sibling = *per_cpu_ptr(sdd->sd, i);
6204 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6205 			continue;
6206 
6207 		cpumask_set_cpu(i, sched_group_mask(sg));
6208 	}
6209 }
6210 
6211 /*
6212  * Return the canonical balance cpu for this group, this is the first cpu
6213  * of this group that's also in the iteration mask.
6214  */
6215 int group_balance_cpu(struct sched_group *sg)
6216 {
6217 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6218 }
6219 
6220 static int
6221 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6222 {
6223 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6224 	const struct cpumask *span = sched_domain_span(sd);
6225 	struct cpumask *covered = sched_domains_tmpmask;
6226 	struct sd_data *sdd = sd->private;
6227 	struct sched_domain *child;
6228 	int i;
6229 
6230 	cpumask_clear(covered);
6231 
6232 	for_each_cpu(i, span) {
6233 		struct cpumask *sg_span;
6234 
6235 		if (cpumask_test_cpu(i, covered))
6236 			continue;
6237 
6238 		child = *per_cpu_ptr(sdd->sd, i);
6239 
6240 		/* See the comment near build_group_mask(). */
6241 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6242 			continue;
6243 
6244 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6245 				GFP_KERNEL, cpu_to_node(cpu));
6246 
6247 		if (!sg)
6248 			goto fail;
6249 
6250 		sg_span = sched_group_cpus(sg);
6251 		if (child->child) {
6252 			child = child->child;
6253 			cpumask_copy(sg_span, sched_domain_span(child));
6254 		} else
6255 			cpumask_set_cpu(i, sg_span);
6256 
6257 		cpumask_or(covered, covered, sg_span);
6258 
6259 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6260 		if (atomic_inc_return(&sg->sgp->ref) == 1)
6261 			build_group_mask(sd, sg);
6262 
6263 		/*
6264 		 * Initialize sgp->power such that even if we mess up the
6265 		 * domains and no possible iteration will get us here, we won't
6266 		 * die on a /0 trap.
6267 		 */
6268 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6269 
6270 		/*
6271 		 * Make sure the first group of this domain contains the
6272 		 * canonical balance cpu. Otherwise the sched_domain iteration
6273 		 * breaks. See update_sg_lb_stats().
6274 		 */
6275 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6276 		    group_balance_cpu(sg) == cpu)
6277 			groups = sg;
6278 
6279 		if (!first)
6280 			first = sg;
6281 		if (last)
6282 			last->next = sg;
6283 		last = sg;
6284 		last->next = first;
6285 	}
6286 	sd->groups = groups;
6287 
6288 	return 0;
6289 
6290 fail:
6291 	free_sched_groups(first, 0);
6292 
6293 	return -ENOMEM;
6294 }
6295 
6296 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6297 {
6298 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6299 	struct sched_domain *child = sd->child;
6300 
6301 	if (child)
6302 		cpu = cpumask_first(sched_domain_span(child));
6303 
6304 	if (sg) {
6305 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6306 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6307 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6308 	}
6309 
6310 	return cpu;
6311 }
6312 
6313 /*
6314  * build_sched_groups will build a circular linked list of the groups
6315  * covered by the given span, and will set each group's ->cpumask correctly,
6316  * and ->cpu_power to 0.
6317  *
6318  * Assumes the sched_domain tree is fully constructed
6319  */
6320 static int
6321 build_sched_groups(struct sched_domain *sd, int cpu)
6322 {
6323 	struct sched_group *first = NULL, *last = NULL;
6324 	struct sd_data *sdd = sd->private;
6325 	const struct cpumask *span = sched_domain_span(sd);
6326 	struct cpumask *covered;
6327 	int i;
6328 
6329 	get_group(cpu, sdd, &sd->groups);
6330 	atomic_inc(&sd->groups->ref);
6331 
6332 	if (cpu != cpumask_first(sched_domain_span(sd)))
6333 		return 0;
6334 
6335 	lockdep_assert_held(&sched_domains_mutex);
6336 	covered = sched_domains_tmpmask;
6337 
6338 	cpumask_clear(covered);
6339 
6340 	for_each_cpu(i, span) {
6341 		struct sched_group *sg;
6342 		int group = get_group(i, sdd, &sg);
6343 		int j;
6344 
6345 		if (cpumask_test_cpu(i, covered))
6346 			continue;
6347 
6348 		cpumask_clear(sched_group_cpus(sg));
6349 		sg->sgp->power = 0;
6350 		cpumask_setall(sched_group_mask(sg));
6351 
6352 		for_each_cpu(j, span) {
6353 			if (get_group(j, sdd, NULL) != group)
6354 				continue;
6355 
6356 			cpumask_set_cpu(j, covered);
6357 			cpumask_set_cpu(j, sched_group_cpus(sg));
6358 		}
6359 
6360 		if (!first)
6361 			first = sg;
6362 		if (last)
6363 			last->next = sg;
6364 		last = sg;
6365 	}
6366 	last->next = first;
6367 
6368 	return 0;
6369 }
6370 
6371 /*
6372  * Initialize sched groups cpu_power.
6373  *
6374  * cpu_power indicates the capacity of sched group, which is used while
6375  * distributing the load between different sched groups in a sched domain.
6376  * Typically cpu_power for all the groups in a sched domain will be same unless
6377  * there are asymmetries in the topology. If there are asymmetries, group
6378  * having more cpu_power will pickup more load compared to the group having
6379  * less cpu_power.
6380  */
6381 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6382 {
6383 	struct sched_group *sg = sd->groups;
6384 
6385 	WARN_ON(!sd || !sg);
6386 
6387 	do {
6388 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6389 		sg = sg->next;
6390 	} while (sg != sd->groups);
6391 
6392 	if (cpu != group_balance_cpu(sg))
6393 		return;
6394 
6395 	update_group_power(sd, cpu);
6396 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6397 }
6398 
6399 int __weak arch_sd_sibling_asym_packing(void)
6400 {
6401        return 0*SD_ASYM_PACKING;
6402 }
6403 
6404 /*
6405  * Initializers for schedule domains
6406  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6407  */
6408 
6409 #ifdef CONFIG_SCHED_DEBUG
6410 # define SD_INIT_NAME(sd, type)		sd->name = #type
6411 #else
6412 # define SD_INIT_NAME(sd, type)		do { } while (0)
6413 #endif
6414 
6415 #define SD_INIT_FUNC(type)						\
6416 static noinline struct sched_domain *					\
6417 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6418 {									\
6419 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6420 	*sd = SD_##type##_INIT;						\
6421 	SD_INIT_NAME(sd, type);						\
6422 	sd->private = &tl->data;					\
6423 	return sd;							\
6424 }
6425 
6426 SD_INIT_FUNC(CPU)
6427 #ifdef CONFIG_SCHED_SMT
6428  SD_INIT_FUNC(SIBLING)
6429 #endif
6430 #ifdef CONFIG_SCHED_MC
6431  SD_INIT_FUNC(MC)
6432 #endif
6433 #ifdef CONFIG_SCHED_BOOK
6434  SD_INIT_FUNC(BOOK)
6435 #endif
6436 
6437 static int default_relax_domain_level = -1;
6438 int sched_domain_level_max;
6439 
6440 static int __init setup_relax_domain_level(char *str)
6441 {
6442 	if (kstrtoint(str, 0, &default_relax_domain_level))
6443 		pr_warn("Unable to set relax_domain_level\n");
6444 
6445 	return 1;
6446 }
6447 __setup("relax_domain_level=", setup_relax_domain_level);
6448 
6449 static void set_domain_attribute(struct sched_domain *sd,
6450 				 struct sched_domain_attr *attr)
6451 {
6452 	int request;
6453 
6454 	if (!attr || attr->relax_domain_level < 0) {
6455 		if (default_relax_domain_level < 0)
6456 			return;
6457 		else
6458 			request = default_relax_domain_level;
6459 	} else
6460 		request = attr->relax_domain_level;
6461 	if (request < sd->level) {
6462 		/* turn off idle balance on this domain */
6463 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6464 	} else {
6465 		/* turn on idle balance on this domain */
6466 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6467 	}
6468 }
6469 
6470 static void __sdt_free(const struct cpumask *cpu_map);
6471 static int __sdt_alloc(const struct cpumask *cpu_map);
6472 
6473 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6474 				 const struct cpumask *cpu_map)
6475 {
6476 	switch (what) {
6477 	case sa_rootdomain:
6478 		if (!atomic_read(&d->rd->refcount))
6479 			free_rootdomain(&d->rd->rcu); /* fall through */
6480 	case sa_sd:
6481 		free_percpu(d->sd); /* fall through */
6482 	case sa_sd_storage:
6483 		__sdt_free(cpu_map); /* fall through */
6484 	case sa_none:
6485 		break;
6486 	}
6487 }
6488 
6489 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6490 						   const struct cpumask *cpu_map)
6491 {
6492 	memset(d, 0, sizeof(*d));
6493 
6494 	if (__sdt_alloc(cpu_map))
6495 		return sa_sd_storage;
6496 	d->sd = alloc_percpu(struct sched_domain *);
6497 	if (!d->sd)
6498 		return sa_sd_storage;
6499 	d->rd = alloc_rootdomain();
6500 	if (!d->rd)
6501 		return sa_sd;
6502 	return sa_rootdomain;
6503 }
6504 
6505 /*
6506  * NULL the sd_data elements we've used to build the sched_domain and
6507  * sched_group structure so that the subsequent __free_domain_allocs()
6508  * will not free the data we're using.
6509  */
6510 static void claim_allocations(int cpu, struct sched_domain *sd)
6511 {
6512 	struct sd_data *sdd = sd->private;
6513 
6514 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6515 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6516 
6517 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6518 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6519 
6520 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6521 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6522 }
6523 
6524 #ifdef CONFIG_SCHED_SMT
6525 static const struct cpumask *cpu_smt_mask(int cpu)
6526 {
6527 	return topology_thread_cpumask(cpu);
6528 }
6529 #endif
6530 
6531 /*
6532  * Topology list, bottom-up.
6533  */
6534 static struct sched_domain_topology_level default_topology[] = {
6535 #ifdef CONFIG_SCHED_SMT
6536 	{ sd_init_SIBLING, cpu_smt_mask, },
6537 #endif
6538 #ifdef CONFIG_SCHED_MC
6539 	{ sd_init_MC, cpu_coregroup_mask, },
6540 #endif
6541 #ifdef CONFIG_SCHED_BOOK
6542 	{ sd_init_BOOK, cpu_book_mask, },
6543 #endif
6544 	{ sd_init_CPU, cpu_cpu_mask, },
6545 	{ NULL, },
6546 };
6547 
6548 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6549 
6550 #ifdef CONFIG_NUMA
6551 
6552 static int sched_domains_numa_levels;
6553 static int *sched_domains_numa_distance;
6554 static struct cpumask ***sched_domains_numa_masks;
6555 static int sched_domains_curr_level;
6556 
6557 static inline int sd_local_flags(int level)
6558 {
6559 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6560 		return 0;
6561 
6562 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6563 }
6564 
6565 static struct sched_domain *
6566 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6567 {
6568 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6569 	int level = tl->numa_level;
6570 	int sd_weight = cpumask_weight(
6571 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6572 
6573 	*sd = (struct sched_domain){
6574 		.min_interval		= sd_weight,
6575 		.max_interval		= 2*sd_weight,
6576 		.busy_factor		= 32,
6577 		.imbalance_pct		= 125,
6578 		.cache_nice_tries	= 2,
6579 		.busy_idx		= 3,
6580 		.idle_idx		= 2,
6581 		.newidle_idx		= 0,
6582 		.wake_idx		= 0,
6583 		.forkexec_idx		= 0,
6584 
6585 		.flags			= 1*SD_LOAD_BALANCE
6586 					| 1*SD_BALANCE_NEWIDLE
6587 					| 0*SD_BALANCE_EXEC
6588 					| 0*SD_BALANCE_FORK
6589 					| 0*SD_BALANCE_WAKE
6590 					| 0*SD_WAKE_AFFINE
6591 					| 0*SD_PREFER_LOCAL
6592 					| 0*SD_SHARE_CPUPOWER
6593 					| 0*SD_SHARE_PKG_RESOURCES
6594 					| 1*SD_SERIALIZE
6595 					| 0*SD_PREFER_SIBLING
6596 					| sd_local_flags(level)
6597 					,
6598 		.last_balance		= jiffies,
6599 		.balance_interval	= sd_weight,
6600 	};
6601 	SD_INIT_NAME(sd, NUMA);
6602 	sd->private = &tl->data;
6603 
6604 	/*
6605 	 * Ugly hack to pass state to sd_numa_mask()...
6606 	 */
6607 	sched_domains_curr_level = tl->numa_level;
6608 
6609 	return sd;
6610 }
6611 
6612 static const struct cpumask *sd_numa_mask(int cpu)
6613 {
6614 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6615 }
6616 
6617 static void sched_numa_warn(const char *str)
6618 {
6619 	static int done = false;
6620 	int i,j;
6621 
6622 	if (done)
6623 		return;
6624 
6625 	done = true;
6626 
6627 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6628 
6629 	for (i = 0; i < nr_node_ids; i++) {
6630 		printk(KERN_WARNING "  ");
6631 		for (j = 0; j < nr_node_ids; j++)
6632 			printk(KERN_CONT "%02d ", node_distance(i,j));
6633 		printk(KERN_CONT "\n");
6634 	}
6635 	printk(KERN_WARNING "\n");
6636 }
6637 
6638 static bool find_numa_distance(int distance)
6639 {
6640 	int i;
6641 
6642 	if (distance == node_distance(0, 0))
6643 		return true;
6644 
6645 	for (i = 0; i < sched_domains_numa_levels; i++) {
6646 		if (sched_domains_numa_distance[i] == distance)
6647 			return true;
6648 	}
6649 
6650 	return false;
6651 }
6652 
6653 static void sched_init_numa(void)
6654 {
6655 	int next_distance, curr_distance = node_distance(0, 0);
6656 	struct sched_domain_topology_level *tl;
6657 	int level = 0;
6658 	int i, j, k;
6659 
6660 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6661 	if (!sched_domains_numa_distance)
6662 		return;
6663 
6664 	/*
6665 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6666 	 * unique distances in the node_distance() table.
6667 	 *
6668 	 * Assumes node_distance(0,j) includes all distances in
6669 	 * node_distance(i,j) in order to avoid cubic time.
6670 	 */
6671 	next_distance = curr_distance;
6672 	for (i = 0; i < nr_node_ids; i++) {
6673 		for (j = 0; j < nr_node_ids; j++) {
6674 			for (k = 0; k < nr_node_ids; k++) {
6675 				int distance = node_distance(i, k);
6676 
6677 				if (distance > curr_distance &&
6678 				    (distance < next_distance ||
6679 				     next_distance == curr_distance))
6680 					next_distance = distance;
6681 
6682 				/*
6683 				 * While not a strong assumption it would be nice to know
6684 				 * about cases where if node A is connected to B, B is not
6685 				 * equally connected to A.
6686 				 */
6687 				if (sched_debug() && node_distance(k, i) != distance)
6688 					sched_numa_warn("Node-distance not symmetric");
6689 
6690 				if (sched_debug() && i && !find_numa_distance(distance))
6691 					sched_numa_warn("Node-0 not representative");
6692 			}
6693 			if (next_distance != curr_distance) {
6694 				sched_domains_numa_distance[level++] = next_distance;
6695 				sched_domains_numa_levels = level;
6696 				curr_distance = next_distance;
6697 			} else break;
6698 		}
6699 
6700 		/*
6701 		 * In case of sched_debug() we verify the above assumption.
6702 		 */
6703 		if (!sched_debug())
6704 			break;
6705 	}
6706 	/*
6707 	 * 'level' contains the number of unique distances, excluding the
6708 	 * identity distance node_distance(i,i).
6709 	 *
6710 	 * The sched_domains_nume_distance[] array includes the actual distance
6711 	 * numbers.
6712 	 */
6713 
6714 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6715 	if (!sched_domains_numa_masks)
6716 		return;
6717 
6718 	/*
6719 	 * Now for each level, construct a mask per node which contains all
6720 	 * cpus of nodes that are that many hops away from us.
6721 	 */
6722 	for (i = 0; i < level; i++) {
6723 		sched_domains_numa_masks[i] =
6724 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6725 		if (!sched_domains_numa_masks[i])
6726 			return;
6727 
6728 		for (j = 0; j < nr_node_ids; j++) {
6729 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6730 			if (!mask)
6731 				return;
6732 
6733 			sched_domains_numa_masks[i][j] = mask;
6734 
6735 			for (k = 0; k < nr_node_ids; k++) {
6736 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6737 					continue;
6738 
6739 				cpumask_or(mask, mask, cpumask_of_node(k));
6740 			}
6741 		}
6742 	}
6743 
6744 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6745 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6746 	if (!tl)
6747 		return;
6748 
6749 	/*
6750 	 * Copy the default topology bits..
6751 	 */
6752 	for (i = 0; default_topology[i].init; i++)
6753 		tl[i] = default_topology[i];
6754 
6755 	/*
6756 	 * .. and append 'j' levels of NUMA goodness.
6757 	 */
6758 	for (j = 0; j < level; i++, j++) {
6759 		tl[i] = (struct sched_domain_topology_level){
6760 			.init = sd_numa_init,
6761 			.mask = sd_numa_mask,
6762 			.flags = SDTL_OVERLAP,
6763 			.numa_level = j,
6764 		};
6765 	}
6766 
6767 	sched_domain_topology = tl;
6768 }
6769 #else
6770 static inline void sched_init_numa(void)
6771 {
6772 }
6773 #endif /* CONFIG_NUMA */
6774 
6775 static int __sdt_alloc(const struct cpumask *cpu_map)
6776 {
6777 	struct sched_domain_topology_level *tl;
6778 	int j;
6779 
6780 	for (tl = sched_domain_topology; tl->init; tl++) {
6781 		struct sd_data *sdd = &tl->data;
6782 
6783 		sdd->sd = alloc_percpu(struct sched_domain *);
6784 		if (!sdd->sd)
6785 			return -ENOMEM;
6786 
6787 		sdd->sg = alloc_percpu(struct sched_group *);
6788 		if (!sdd->sg)
6789 			return -ENOMEM;
6790 
6791 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6792 		if (!sdd->sgp)
6793 			return -ENOMEM;
6794 
6795 		for_each_cpu(j, cpu_map) {
6796 			struct sched_domain *sd;
6797 			struct sched_group *sg;
6798 			struct sched_group_power *sgp;
6799 
6800 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6801 					GFP_KERNEL, cpu_to_node(j));
6802 			if (!sd)
6803 				return -ENOMEM;
6804 
6805 			*per_cpu_ptr(sdd->sd, j) = sd;
6806 
6807 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6808 					GFP_KERNEL, cpu_to_node(j));
6809 			if (!sg)
6810 				return -ENOMEM;
6811 
6812 			sg->next = sg;
6813 
6814 			*per_cpu_ptr(sdd->sg, j) = sg;
6815 
6816 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6817 					GFP_KERNEL, cpu_to_node(j));
6818 			if (!sgp)
6819 				return -ENOMEM;
6820 
6821 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6822 		}
6823 	}
6824 
6825 	return 0;
6826 }
6827 
6828 static void __sdt_free(const struct cpumask *cpu_map)
6829 {
6830 	struct sched_domain_topology_level *tl;
6831 	int j;
6832 
6833 	for (tl = sched_domain_topology; tl->init; tl++) {
6834 		struct sd_data *sdd = &tl->data;
6835 
6836 		for_each_cpu(j, cpu_map) {
6837 			struct sched_domain *sd;
6838 
6839 			if (sdd->sd) {
6840 				sd = *per_cpu_ptr(sdd->sd, j);
6841 				if (sd && (sd->flags & SD_OVERLAP))
6842 					free_sched_groups(sd->groups, 0);
6843 				kfree(*per_cpu_ptr(sdd->sd, j));
6844 			}
6845 
6846 			if (sdd->sg)
6847 				kfree(*per_cpu_ptr(sdd->sg, j));
6848 			if (sdd->sgp)
6849 				kfree(*per_cpu_ptr(sdd->sgp, j));
6850 		}
6851 		free_percpu(sdd->sd);
6852 		sdd->sd = NULL;
6853 		free_percpu(sdd->sg);
6854 		sdd->sg = NULL;
6855 		free_percpu(sdd->sgp);
6856 		sdd->sgp = NULL;
6857 	}
6858 }
6859 
6860 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6861 		struct s_data *d, const struct cpumask *cpu_map,
6862 		struct sched_domain_attr *attr, struct sched_domain *child,
6863 		int cpu)
6864 {
6865 	struct sched_domain *sd = tl->init(tl, cpu);
6866 	if (!sd)
6867 		return child;
6868 
6869 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6870 	if (child) {
6871 		sd->level = child->level + 1;
6872 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6873 		child->parent = sd;
6874 	}
6875 	sd->child = child;
6876 	set_domain_attribute(sd, attr);
6877 
6878 	return sd;
6879 }
6880 
6881 /*
6882  * Build sched domains for a given set of cpus and attach the sched domains
6883  * to the individual cpus
6884  */
6885 static int build_sched_domains(const struct cpumask *cpu_map,
6886 			       struct sched_domain_attr *attr)
6887 {
6888 	enum s_alloc alloc_state = sa_none;
6889 	struct sched_domain *sd;
6890 	struct s_data d;
6891 	int i, ret = -ENOMEM;
6892 
6893 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6894 	if (alloc_state != sa_rootdomain)
6895 		goto error;
6896 
6897 	/* Set up domains for cpus specified by the cpu_map. */
6898 	for_each_cpu(i, cpu_map) {
6899 		struct sched_domain_topology_level *tl;
6900 
6901 		sd = NULL;
6902 		for (tl = sched_domain_topology; tl->init; tl++) {
6903 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6904 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6905 				sd->flags |= SD_OVERLAP;
6906 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6907 				break;
6908 		}
6909 
6910 		while (sd->child)
6911 			sd = sd->child;
6912 
6913 		*per_cpu_ptr(d.sd, i) = sd;
6914 	}
6915 
6916 	/* Build the groups for the domains */
6917 	for_each_cpu(i, cpu_map) {
6918 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6919 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6920 			if (sd->flags & SD_OVERLAP) {
6921 				if (build_overlap_sched_groups(sd, i))
6922 					goto error;
6923 			} else {
6924 				if (build_sched_groups(sd, i))
6925 					goto error;
6926 			}
6927 		}
6928 	}
6929 
6930 	/* Calculate CPU power for physical packages and nodes */
6931 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6932 		if (!cpumask_test_cpu(i, cpu_map))
6933 			continue;
6934 
6935 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6936 			claim_allocations(i, sd);
6937 			init_sched_groups_power(i, sd);
6938 		}
6939 	}
6940 
6941 	/* Attach the domains */
6942 	rcu_read_lock();
6943 	for_each_cpu(i, cpu_map) {
6944 		sd = *per_cpu_ptr(d.sd, i);
6945 		cpu_attach_domain(sd, d.rd, i);
6946 	}
6947 	rcu_read_unlock();
6948 
6949 	ret = 0;
6950 error:
6951 	__free_domain_allocs(&d, alloc_state, cpu_map);
6952 	return ret;
6953 }
6954 
6955 static cpumask_var_t *doms_cur;	/* current sched domains */
6956 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6957 static struct sched_domain_attr *dattr_cur;
6958 				/* attribues of custom domains in 'doms_cur' */
6959 
6960 /*
6961  * Special case: If a kmalloc of a doms_cur partition (array of
6962  * cpumask) fails, then fallback to a single sched domain,
6963  * as determined by the single cpumask fallback_doms.
6964  */
6965 static cpumask_var_t fallback_doms;
6966 
6967 /*
6968  * arch_update_cpu_topology lets virtualized architectures update the
6969  * cpu core maps. It is supposed to return 1 if the topology changed
6970  * or 0 if it stayed the same.
6971  */
6972 int __attribute__((weak)) arch_update_cpu_topology(void)
6973 {
6974 	return 0;
6975 }
6976 
6977 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6978 {
6979 	int i;
6980 	cpumask_var_t *doms;
6981 
6982 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6983 	if (!doms)
6984 		return NULL;
6985 	for (i = 0; i < ndoms; i++) {
6986 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6987 			free_sched_domains(doms, i);
6988 			return NULL;
6989 		}
6990 	}
6991 	return doms;
6992 }
6993 
6994 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6995 {
6996 	unsigned int i;
6997 	for (i = 0; i < ndoms; i++)
6998 		free_cpumask_var(doms[i]);
6999 	kfree(doms);
7000 }
7001 
7002 /*
7003  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7004  * For now this just excludes isolated cpus, but could be used to
7005  * exclude other special cases in the future.
7006  */
7007 static int init_sched_domains(const struct cpumask *cpu_map)
7008 {
7009 	int err;
7010 
7011 	arch_update_cpu_topology();
7012 	ndoms_cur = 1;
7013 	doms_cur = alloc_sched_domains(ndoms_cur);
7014 	if (!doms_cur)
7015 		doms_cur = &fallback_doms;
7016 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7017 	err = build_sched_domains(doms_cur[0], NULL);
7018 	register_sched_domain_sysctl();
7019 
7020 	return err;
7021 }
7022 
7023 /*
7024  * Detach sched domains from a group of cpus specified in cpu_map
7025  * These cpus will now be attached to the NULL domain
7026  */
7027 static void detach_destroy_domains(const struct cpumask *cpu_map)
7028 {
7029 	int i;
7030 
7031 	rcu_read_lock();
7032 	for_each_cpu(i, cpu_map)
7033 		cpu_attach_domain(NULL, &def_root_domain, i);
7034 	rcu_read_unlock();
7035 }
7036 
7037 /* handle null as "default" */
7038 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7039 			struct sched_domain_attr *new, int idx_new)
7040 {
7041 	struct sched_domain_attr tmp;
7042 
7043 	/* fast path */
7044 	if (!new && !cur)
7045 		return 1;
7046 
7047 	tmp = SD_ATTR_INIT;
7048 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7049 			new ? (new + idx_new) : &tmp,
7050 			sizeof(struct sched_domain_attr));
7051 }
7052 
7053 /*
7054  * Partition sched domains as specified by the 'ndoms_new'
7055  * cpumasks in the array doms_new[] of cpumasks. This compares
7056  * doms_new[] to the current sched domain partitioning, doms_cur[].
7057  * It destroys each deleted domain and builds each new domain.
7058  *
7059  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7060  * The masks don't intersect (don't overlap.) We should setup one
7061  * sched domain for each mask. CPUs not in any of the cpumasks will
7062  * not be load balanced. If the same cpumask appears both in the
7063  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7064  * it as it is.
7065  *
7066  * The passed in 'doms_new' should be allocated using
7067  * alloc_sched_domains.  This routine takes ownership of it and will
7068  * free_sched_domains it when done with it. If the caller failed the
7069  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7070  * and partition_sched_domains() will fallback to the single partition
7071  * 'fallback_doms', it also forces the domains to be rebuilt.
7072  *
7073  * If doms_new == NULL it will be replaced with cpu_online_mask.
7074  * ndoms_new == 0 is a special case for destroying existing domains,
7075  * and it will not create the default domain.
7076  *
7077  * Call with hotplug lock held
7078  */
7079 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7080 			     struct sched_domain_attr *dattr_new)
7081 {
7082 	int i, j, n;
7083 	int new_topology;
7084 
7085 	mutex_lock(&sched_domains_mutex);
7086 
7087 	/* always unregister in case we don't destroy any domains */
7088 	unregister_sched_domain_sysctl();
7089 
7090 	/* Let architecture update cpu core mappings. */
7091 	new_topology = arch_update_cpu_topology();
7092 
7093 	n = doms_new ? ndoms_new : 0;
7094 
7095 	/* Destroy deleted domains */
7096 	for (i = 0; i < ndoms_cur; i++) {
7097 		for (j = 0; j < n && !new_topology; j++) {
7098 			if (cpumask_equal(doms_cur[i], doms_new[j])
7099 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7100 				goto match1;
7101 		}
7102 		/* no match - a current sched domain not in new doms_new[] */
7103 		detach_destroy_domains(doms_cur[i]);
7104 match1:
7105 		;
7106 	}
7107 
7108 	if (doms_new == NULL) {
7109 		ndoms_cur = 0;
7110 		doms_new = &fallback_doms;
7111 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7112 		WARN_ON_ONCE(dattr_new);
7113 	}
7114 
7115 	/* Build new domains */
7116 	for (i = 0; i < ndoms_new; i++) {
7117 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7118 			if (cpumask_equal(doms_new[i], doms_cur[j])
7119 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7120 				goto match2;
7121 		}
7122 		/* no match - add a new doms_new */
7123 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7124 match2:
7125 		;
7126 	}
7127 
7128 	/* Remember the new sched domains */
7129 	if (doms_cur != &fallback_doms)
7130 		free_sched_domains(doms_cur, ndoms_cur);
7131 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7132 	doms_cur = doms_new;
7133 	dattr_cur = dattr_new;
7134 	ndoms_cur = ndoms_new;
7135 
7136 	register_sched_domain_sysctl();
7137 
7138 	mutex_unlock(&sched_domains_mutex);
7139 }
7140 
7141 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7142 
7143 /*
7144  * Update cpusets according to cpu_active mask.  If cpusets are
7145  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7146  * around partition_sched_domains().
7147  *
7148  * If we come here as part of a suspend/resume, don't touch cpusets because we
7149  * want to restore it back to its original state upon resume anyway.
7150  */
7151 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7152 			     void *hcpu)
7153 {
7154 	switch (action) {
7155 	case CPU_ONLINE_FROZEN:
7156 	case CPU_DOWN_FAILED_FROZEN:
7157 
7158 		/*
7159 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7160 		 * resume sequence. As long as this is not the last online
7161 		 * operation in the resume sequence, just build a single sched
7162 		 * domain, ignoring cpusets.
7163 		 */
7164 		num_cpus_frozen--;
7165 		if (likely(num_cpus_frozen)) {
7166 			partition_sched_domains(1, NULL, NULL);
7167 			break;
7168 		}
7169 
7170 		/*
7171 		 * This is the last CPU online operation. So fall through and
7172 		 * restore the original sched domains by considering the
7173 		 * cpuset configurations.
7174 		 */
7175 
7176 	case CPU_ONLINE:
7177 	case CPU_DOWN_FAILED:
7178 		cpuset_update_active_cpus(true);
7179 		break;
7180 	default:
7181 		return NOTIFY_DONE;
7182 	}
7183 	return NOTIFY_OK;
7184 }
7185 
7186 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7187 			       void *hcpu)
7188 {
7189 	switch (action) {
7190 	case CPU_DOWN_PREPARE:
7191 		cpuset_update_active_cpus(false);
7192 		break;
7193 	case CPU_DOWN_PREPARE_FROZEN:
7194 		num_cpus_frozen++;
7195 		partition_sched_domains(1, NULL, NULL);
7196 		break;
7197 	default:
7198 		return NOTIFY_DONE;
7199 	}
7200 	return NOTIFY_OK;
7201 }
7202 
7203 void __init sched_init_smp(void)
7204 {
7205 	cpumask_var_t non_isolated_cpus;
7206 
7207 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7208 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7209 
7210 	sched_init_numa();
7211 
7212 	get_online_cpus();
7213 	mutex_lock(&sched_domains_mutex);
7214 	init_sched_domains(cpu_active_mask);
7215 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7216 	if (cpumask_empty(non_isolated_cpus))
7217 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7218 	mutex_unlock(&sched_domains_mutex);
7219 	put_online_cpus();
7220 
7221 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7222 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7223 
7224 	/* RT runtime code needs to handle some hotplug events */
7225 	hotcpu_notifier(update_runtime, 0);
7226 
7227 	init_hrtick();
7228 
7229 	/* Move init over to a non-isolated CPU */
7230 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7231 		BUG();
7232 	sched_init_granularity();
7233 	free_cpumask_var(non_isolated_cpus);
7234 
7235 	init_sched_rt_class();
7236 }
7237 #else
7238 void __init sched_init_smp(void)
7239 {
7240 	sched_init_granularity();
7241 }
7242 #endif /* CONFIG_SMP */
7243 
7244 const_debug unsigned int sysctl_timer_migration = 1;
7245 
7246 int in_sched_functions(unsigned long addr)
7247 {
7248 	return in_lock_functions(addr) ||
7249 		(addr >= (unsigned long)__sched_text_start
7250 		&& addr < (unsigned long)__sched_text_end);
7251 }
7252 
7253 #ifdef CONFIG_CGROUP_SCHED
7254 struct task_group root_task_group;
7255 LIST_HEAD(task_groups);
7256 #endif
7257 
7258 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7259 
7260 void __init sched_init(void)
7261 {
7262 	int i, j;
7263 	unsigned long alloc_size = 0, ptr;
7264 
7265 #ifdef CONFIG_FAIR_GROUP_SCHED
7266 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7267 #endif
7268 #ifdef CONFIG_RT_GROUP_SCHED
7269 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7270 #endif
7271 #ifdef CONFIG_CPUMASK_OFFSTACK
7272 	alloc_size += num_possible_cpus() * cpumask_size();
7273 #endif
7274 	if (alloc_size) {
7275 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7276 
7277 #ifdef CONFIG_FAIR_GROUP_SCHED
7278 		root_task_group.se = (struct sched_entity **)ptr;
7279 		ptr += nr_cpu_ids * sizeof(void **);
7280 
7281 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7282 		ptr += nr_cpu_ids * sizeof(void **);
7283 
7284 #endif /* CONFIG_FAIR_GROUP_SCHED */
7285 #ifdef CONFIG_RT_GROUP_SCHED
7286 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7287 		ptr += nr_cpu_ids * sizeof(void **);
7288 
7289 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7290 		ptr += nr_cpu_ids * sizeof(void **);
7291 
7292 #endif /* CONFIG_RT_GROUP_SCHED */
7293 #ifdef CONFIG_CPUMASK_OFFSTACK
7294 		for_each_possible_cpu(i) {
7295 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7296 			ptr += cpumask_size();
7297 		}
7298 #endif /* CONFIG_CPUMASK_OFFSTACK */
7299 	}
7300 
7301 #ifdef CONFIG_SMP
7302 	init_defrootdomain();
7303 #endif
7304 
7305 	init_rt_bandwidth(&def_rt_bandwidth,
7306 			global_rt_period(), global_rt_runtime());
7307 
7308 #ifdef CONFIG_RT_GROUP_SCHED
7309 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7310 			global_rt_period(), global_rt_runtime());
7311 #endif /* CONFIG_RT_GROUP_SCHED */
7312 
7313 #ifdef CONFIG_CGROUP_SCHED
7314 	list_add(&root_task_group.list, &task_groups);
7315 	INIT_LIST_HEAD(&root_task_group.children);
7316 	INIT_LIST_HEAD(&root_task_group.siblings);
7317 	autogroup_init(&init_task);
7318 
7319 #endif /* CONFIG_CGROUP_SCHED */
7320 
7321 #ifdef CONFIG_CGROUP_CPUACCT
7322 	root_cpuacct.cpustat = &kernel_cpustat;
7323 	root_cpuacct.cpuusage = alloc_percpu(u64);
7324 	/* Too early, not expected to fail */
7325 	BUG_ON(!root_cpuacct.cpuusage);
7326 #endif
7327 	for_each_possible_cpu(i) {
7328 		struct rq *rq;
7329 
7330 		rq = cpu_rq(i);
7331 		raw_spin_lock_init(&rq->lock);
7332 		rq->nr_running = 0;
7333 		rq->calc_load_active = 0;
7334 		rq->calc_load_update = jiffies + LOAD_FREQ;
7335 		init_cfs_rq(&rq->cfs);
7336 		init_rt_rq(&rq->rt, rq);
7337 #ifdef CONFIG_FAIR_GROUP_SCHED
7338 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7339 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7340 		/*
7341 		 * How much cpu bandwidth does root_task_group get?
7342 		 *
7343 		 * In case of task-groups formed thr' the cgroup filesystem, it
7344 		 * gets 100% of the cpu resources in the system. This overall
7345 		 * system cpu resource is divided among the tasks of
7346 		 * root_task_group and its child task-groups in a fair manner,
7347 		 * based on each entity's (task or task-group's) weight
7348 		 * (se->load.weight).
7349 		 *
7350 		 * In other words, if root_task_group has 10 tasks of weight
7351 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7352 		 * then A0's share of the cpu resource is:
7353 		 *
7354 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7355 		 *
7356 		 * We achieve this by letting root_task_group's tasks sit
7357 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7358 		 */
7359 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7360 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7361 #endif /* CONFIG_FAIR_GROUP_SCHED */
7362 
7363 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7364 #ifdef CONFIG_RT_GROUP_SCHED
7365 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7366 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7367 #endif
7368 
7369 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7370 			rq->cpu_load[j] = 0;
7371 
7372 		rq->last_load_update_tick = jiffies;
7373 
7374 #ifdef CONFIG_SMP
7375 		rq->sd = NULL;
7376 		rq->rd = NULL;
7377 		rq->cpu_power = SCHED_POWER_SCALE;
7378 		rq->post_schedule = 0;
7379 		rq->active_balance = 0;
7380 		rq->next_balance = jiffies;
7381 		rq->push_cpu = 0;
7382 		rq->cpu = i;
7383 		rq->online = 0;
7384 		rq->idle_stamp = 0;
7385 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7386 
7387 		INIT_LIST_HEAD(&rq->cfs_tasks);
7388 
7389 		rq_attach_root(rq, &def_root_domain);
7390 #ifdef CONFIG_NO_HZ
7391 		rq->nohz_flags = 0;
7392 #endif
7393 #endif
7394 		init_rq_hrtick(rq);
7395 		atomic_set(&rq->nr_iowait, 0);
7396 	}
7397 
7398 	set_load_weight(&init_task);
7399 
7400 #ifdef CONFIG_PREEMPT_NOTIFIERS
7401 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7402 #endif
7403 
7404 #ifdef CONFIG_RT_MUTEXES
7405 	plist_head_init(&init_task.pi_waiters);
7406 #endif
7407 
7408 	/*
7409 	 * The boot idle thread does lazy MMU switching as well:
7410 	 */
7411 	atomic_inc(&init_mm.mm_count);
7412 	enter_lazy_tlb(&init_mm, current);
7413 
7414 	/*
7415 	 * Make us the idle thread. Technically, schedule() should not be
7416 	 * called from this thread, however somewhere below it might be,
7417 	 * but because we are the idle thread, we just pick up running again
7418 	 * when this runqueue becomes "idle".
7419 	 */
7420 	init_idle(current, smp_processor_id());
7421 
7422 	calc_load_update = jiffies + LOAD_FREQ;
7423 
7424 	/*
7425 	 * During early bootup we pretend to be a normal task:
7426 	 */
7427 	current->sched_class = &fair_sched_class;
7428 
7429 #ifdef CONFIG_SMP
7430 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7431 	/* May be allocated at isolcpus cmdline parse time */
7432 	if (cpu_isolated_map == NULL)
7433 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7434 	idle_thread_set_boot_cpu();
7435 #endif
7436 	init_sched_fair_class();
7437 
7438 	scheduler_running = 1;
7439 }
7440 
7441 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7442 static inline int preempt_count_equals(int preempt_offset)
7443 {
7444 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7445 
7446 	return (nested == preempt_offset);
7447 }
7448 
7449 void __might_sleep(const char *file, int line, int preempt_offset)
7450 {
7451 	static unsigned long prev_jiffy;	/* ratelimiting */
7452 
7453 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7454 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7455 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7456 		return;
7457 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7458 		return;
7459 	prev_jiffy = jiffies;
7460 
7461 	printk(KERN_ERR
7462 		"BUG: sleeping function called from invalid context at %s:%d\n",
7463 			file, line);
7464 	printk(KERN_ERR
7465 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7466 			in_atomic(), irqs_disabled(),
7467 			current->pid, current->comm);
7468 
7469 	debug_show_held_locks(current);
7470 	if (irqs_disabled())
7471 		print_irqtrace_events(current);
7472 	dump_stack();
7473 }
7474 EXPORT_SYMBOL(__might_sleep);
7475 #endif
7476 
7477 #ifdef CONFIG_MAGIC_SYSRQ
7478 static void normalize_task(struct rq *rq, struct task_struct *p)
7479 {
7480 	const struct sched_class *prev_class = p->sched_class;
7481 	int old_prio = p->prio;
7482 	int on_rq;
7483 
7484 	on_rq = p->on_rq;
7485 	if (on_rq)
7486 		dequeue_task(rq, p, 0);
7487 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7488 	if (on_rq) {
7489 		enqueue_task(rq, p, 0);
7490 		resched_task(rq->curr);
7491 	}
7492 
7493 	check_class_changed(rq, p, prev_class, old_prio);
7494 }
7495 
7496 void normalize_rt_tasks(void)
7497 {
7498 	struct task_struct *g, *p;
7499 	unsigned long flags;
7500 	struct rq *rq;
7501 
7502 	read_lock_irqsave(&tasklist_lock, flags);
7503 	do_each_thread(g, p) {
7504 		/*
7505 		 * Only normalize user tasks:
7506 		 */
7507 		if (!p->mm)
7508 			continue;
7509 
7510 		p->se.exec_start		= 0;
7511 #ifdef CONFIG_SCHEDSTATS
7512 		p->se.statistics.wait_start	= 0;
7513 		p->se.statistics.sleep_start	= 0;
7514 		p->se.statistics.block_start	= 0;
7515 #endif
7516 
7517 		if (!rt_task(p)) {
7518 			/*
7519 			 * Renice negative nice level userspace
7520 			 * tasks back to 0:
7521 			 */
7522 			if (TASK_NICE(p) < 0 && p->mm)
7523 				set_user_nice(p, 0);
7524 			continue;
7525 		}
7526 
7527 		raw_spin_lock(&p->pi_lock);
7528 		rq = __task_rq_lock(p);
7529 
7530 		normalize_task(rq, p);
7531 
7532 		__task_rq_unlock(rq);
7533 		raw_spin_unlock(&p->pi_lock);
7534 	} while_each_thread(g, p);
7535 
7536 	read_unlock_irqrestore(&tasklist_lock, flags);
7537 }
7538 
7539 #endif /* CONFIG_MAGIC_SYSRQ */
7540 
7541 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7542 /*
7543  * These functions are only useful for the IA64 MCA handling, or kdb.
7544  *
7545  * They can only be called when the whole system has been
7546  * stopped - every CPU needs to be quiescent, and no scheduling
7547  * activity can take place. Using them for anything else would
7548  * be a serious bug, and as a result, they aren't even visible
7549  * under any other configuration.
7550  */
7551 
7552 /**
7553  * curr_task - return the current task for a given cpu.
7554  * @cpu: the processor in question.
7555  *
7556  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7557  */
7558 struct task_struct *curr_task(int cpu)
7559 {
7560 	return cpu_curr(cpu);
7561 }
7562 
7563 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7564 
7565 #ifdef CONFIG_IA64
7566 /**
7567  * set_curr_task - set the current task for a given cpu.
7568  * @cpu: the processor in question.
7569  * @p: the task pointer to set.
7570  *
7571  * Description: This function must only be used when non-maskable interrupts
7572  * are serviced on a separate stack. It allows the architecture to switch the
7573  * notion of the current task on a cpu in a non-blocking manner. This function
7574  * must be called with all CPU's synchronized, and interrupts disabled, the
7575  * and caller must save the original value of the current task (see
7576  * curr_task() above) and restore that value before reenabling interrupts and
7577  * re-starting the system.
7578  *
7579  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7580  */
7581 void set_curr_task(int cpu, struct task_struct *p)
7582 {
7583 	cpu_curr(cpu) = p;
7584 }
7585 
7586 #endif
7587 
7588 #ifdef CONFIG_CGROUP_SCHED
7589 /* task_group_lock serializes the addition/removal of task groups */
7590 static DEFINE_SPINLOCK(task_group_lock);
7591 
7592 static void free_sched_group(struct task_group *tg)
7593 {
7594 	free_fair_sched_group(tg);
7595 	free_rt_sched_group(tg);
7596 	autogroup_free(tg);
7597 	kfree(tg);
7598 }
7599 
7600 /* allocate runqueue etc for a new task group */
7601 struct task_group *sched_create_group(struct task_group *parent)
7602 {
7603 	struct task_group *tg;
7604 	unsigned long flags;
7605 
7606 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7607 	if (!tg)
7608 		return ERR_PTR(-ENOMEM);
7609 
7610 	if (!alloc_fair_sched_group(tg, parent))
7611 		goto err;
7612 
7613 	if (!alloc_rt_sched_group(tg, parent))
7614 		goto err;
7615 
7616 	spin_lock_irqsave(&task_group_lock, flags);
7617 	list_add_rcu(&tg->list, &task_groups);
7618 
7619 	WARN_ON(!parent); /* root should already exist */
7620 
7621 	tg->parent = parent;
7622 	INIT_LIST_HEAD(&tg->children);
7623 	list_add_rcu(&tg->siblings, &parent->children);
7624 	spin_unlock_irqrestore(&task_group_lock, flags);
7625 
7626 	return tg;
7627 
7628 err:
7629 	free_sched_group(tg);
7630 	return ERR_PTR(-ENOMEM);
7631 }
7632 
7633 /* rcu callback to free various structures associated with a task group */
7634 static void free_sched_group_rcu(struct rcu_head *rhp)
7635 {
7636 	/* now it should be safe to free those cfs_rqs */
7637 	free_sched_group(container_of(rhp, struct task_group, rcu));
7638 }
7639 
7640 /* Destroy runqueue etc associated with a task group */
7641 void sched_destroy_group(struct task_group *tg)
7642 {
7643 	unsigned long flags;
7644 	int i;
7645 
7646 	/* end participation in shares distribution */
7647 	for_each_possible_cpu(i)
7648 		unregister_fair_sched_group(tg, i);
7649 
7650 	spin_lock_irqsave(&task_group_lock, flags);
7651 	list_del_rcu(&tg->list);
7652 	list_del_rcu(&tg->siblings);
7653 	spin_unlock_irqrestore(&task_group_lock, flags);
7654 
7655 	/* wait for possible concurrent references to cfs_rqs complete */
7656 	call_rcu(&tg->rcu, free_sched_group_rcu);
7657 }
7658 
7659 /* change task's runqueue when it moves between groups.
7660  *	The caller of this function should have put the task in its new group
7661  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7662  *	reflect its new group.
7663  */
7664 void sched_move_task(struct task_struct *tsk)
7665 {
7666 	struct task_group *tg;
7667 	int on_rq, running;
7668 	unsigned long flags;
7669 	struct rq *rq;
7670 
7671 	rq = task_rq_lock(tsk, &flags);
7672 
7673 	running = task_current(rq, tsk);
7674 	on_rq = tsk->on_rq;
7675 
7676 	if (on_rq)
7677 		dequeue_task(rq, tsk, 0);
7678 	if (unlikely(running))
7679 		tsk->sched_class->put_prev_task(rq, tsk);
7680 
7681 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7682 				lockdep_is_held(&tsk->sighand->siglock)),
7683 			  struct task_group, css);
7684 	tg = autogroup_task_group(tsk, tg);
7685 	tsk->sched_task_group = tg;
7686 
7687 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 	if (tsk->sched_class->task_move_group)
7689 		tsk->sched_class->task_move_group(tsk, on_rq);
7690 	else
7691 #endif
7692 		set_task_rq(tsk, task_cpu(tsk));
7693 
7694 	if (unlikely(running))
7695 		tsk->sched_class->set_curr_task(rq);
7696 	if (on_rq)
7697 		enqueue_task(rq, tsk, 0);
7698 
7699 	task_rq_unlock(rq, tsk, &flags);
7700 }
7701 #endif /* CONFIG_CGROUP_SCHED */
7702 
7703 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7704 static unsigned long to_ratio(u64 period, u64 runtime)
7705 {
7706 	if (runtime == RUNTIME_INF)
7707 		return 1ULL << 20;
7708 
7709 	return div64_u64(runtime << 20, period);
7710 }
7711 #endif
7712 
7713 #ifdef CONFIG_RT_GROUP_SCHED
7714 /*
7715  * Ensure that the real time constraints are schedulable.
7716  */
7717 static DEFINE_MUTEX(rt_constraints_mutex);
7718 
7719 /* Must be called with tasklist_lock held */
7720 static inline int tg_has_rt_tasks(struct task_group *tg)
7721 {
7722 	struct task_struct *g, *p;
7723 
7724 	do_each_thread(g, p) {
7725 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7726 			return 1;
7727 	} while_each_thread(g, p);
7728 
7729 	return 0;
7730 }
7731 
7732 struct rt_schedulable_data {
7733 	struct task_group *tg;
7734 	u64 rt_period;
7735 	u64 rt_runtime;
7736 };
7737 
7738 static int tg_rt_schedulable(struct task_group *tg, void *data)
7739 {
7740 	struct rt_schedulable_data *d = data;
7741 	struct task_group *child;
7742 	unsigned long total, sum = 0;
7743 	u64 period, runtime;
7744 
7745 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7746 	runtime = tg->rt_bandwidth.rt_runtime;
7747 
7748 	if (tg == d->tg) {
7749 		period = d->rt_period;
7750 		runtime = d->rt_runtime;
7751 	}
7752 
7753 	/*
7754 	 * Cannot have more runtime than the period.
7755 	 */
7756 	if (runtime > period && runtime != RUNTIME_INF)
7757 		return -EINVAL;
7758 
7759 	/*
7760 	 * Ensure we don't starve existing RT tasks.
7761 	 */
7762 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7763 		return -EBUSY;
7764 
7765 	total = to_ratio(period, runtime);
7766 
7767 	/*
7768 	 * Nobody can have more than the global setting allows.
7769 	 */
7770 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7771 		return -EINVAL;
7772 
7773 	/*
7774 	 * The sum of our children's runtime should not exceed our own.
7775 	 */
7776 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7777 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7778 		runtime = child->rt_bandwidth.rt_runtime;
7779 
7780 		if (child == d->tg) {
7781 			period = d->rt_period;
7782 			runtime = d->rt_runtime;
7783 		}
7784 
7785 		sum += to_ratio(period, runtime);
7786 	}
7787 
7788 	if (sum > total)
7789 		return -EINVAL;
7790 
7791 	return 0;
7792 }
7793 
7794 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7795 {
7796 	int ret;
7797 
7798 	struct rt_schedulable_data data = {
7799 		.tg = tg,
7800 		.rt_period = period,
7801 		.rt_runtime = runtime,
7802 	};
7803 
7804 	rcu_read_lock();
7805 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7806 	rcu_read_unlock();
7807 
7808 	return ret;
7809 }
7810 
7811 static int tg_set_rt_bandwidth(struct task_group *tg,
7812 		u64 rt_period, u64 rt_runtime)
7813 {
7814 	int i, err = 0;
7815 
7816 	mutex_lock(&rt_constraints_mutex);
7817 	read_lock(&tasklist_lock);
7818 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7819 	if (err)
7820 		goto unlock;
7821 
7822 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7823 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7824 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7825 
7826 	for_each_possible_cpu(i) {
7827 		struct rt_rq *rt_rq = tg->rt_rq[i];
7828 
7829 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7830 		rt_rq->rt_runtime = rt_runtime;
7831 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7832 	}
7833 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7834 unlock:
7835 	read_unlock(&tasklist_lock);
7836 	mutex_unlock(&rt_constraints_mutex);
7837 
7838 	return err;
7839 }
7840 
7841 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7842 {
7843 	u64 rt_runtime, rt_period;
7844 
7845 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7846 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7847 	if (rt_runtime_us < 0)
7848 		rt_runtime = RUNTIME_INF;
7849 
7850 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7851 }
7852 
7853 long sched_group_rt_runtime(struct task_group *tg)
7854 {
7855 	u64 rt_runtime_us;
7856 
7857 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7858 		return -1;
7859 
7860 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7861 	do_div(rt_runtime_us, NSEC_PER_USEC);
7862 	return rt_runtime_us;
7863 }
7864 
7865 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7866 {
7867 	u64 rt_runtime, rt_period;
7868 
7869 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7870 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7871 
7872 	if (rt_period == 0)
7873 		return -EINVAL;
7874 
7875 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7876 }
7877 
7878 long sched_group_rt_period(struct task_group *tg)
7879 {
7880 	u64 rt_period_us;
7881 
7882 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7883 	do_div(rt_period_us, NSEC_PER_USEC);
7884 	return rt_period_us;
7885 }
7886 
7887 static int sched_rt_global_constraints(void)
7888 {
7889 	u64 runtime, period;
7890 	int ret = 0;
7891 
7892 	if (sysctl_sched_rt_period <= 0)
7893 		return -EINVAL;
7894 
7895 	runtime = global_rt_runtime();
7896 	period = global_rt_period();
7897 
7898 	/*
7899 	 * Sanity check on the sysctl variables.
7900 	 */
7901 	if (runtime > period && runtime != RUNTIME_INF)
7902 		return -EINVAL;
7903 
7904 	mutex_lock(&rt_constraints_mutex);
7905 	read_lock(&tasklist_lock);
7906 	ret = __rt_schedulable(NULL, 0, 0);
7907 	read_unlock(&tasklist_lock);
7908 	mutex_unlock(&rt_constraints_mutex);
7909 
7910 	return ret;
7911 }
7912 
7913 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7914 {
7915 	/* Don't accept realtime tasks when there is no way for them to run */
7916 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7917 		return 0;
7918 
7919 	return 1;
7920 }
7921 
7922 #else /* !CONFIG_RT_GROUP_SCHED */
7923 static int sched_rt_global_constraints(void)
7924 {
7925 	unsigned long flags;
7926 	int i;
7927 
7928 	if (sysctl_sched_rt_period <= 0)
7929 		return -EINVAL;
7930 
7931 	/*
7932 	 * There's always some RT tasks in the root group
7933 	 * -- migration, kstopmachine etc..
7934 	 */
7935 	if (sysctl_sched_rt_runtime == 0)
7936 		return -EBUSY;
7937 
7938 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7939 	for_each_possible_cpu(i) {
7940 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7941 
7942 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7943 		rt_rq->rt_runtime = global_rt_runtime();
7944 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7945 	}
7946 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7947 
7948 	return 0;
7949 }
7950 #endif /* CONFIG_RT_GROUP_SCHED */
7951 
7952 int sched_rt_handler(struct ctl_table *table, int write,
7953 		void __user *buffer, size_t *lenp,
7954 		loff_t *ppos)
7955 {
7956 	int ret;
7957 	int old_period, old_runtime;
7958 	static DEFINE_MUTEX(mutex);
7959 
7960 	mutex_lock(&mutex);
7961 	old_period = sysctl_sched_rt_period;
7962 	old_runtime = sysctl_sched_rt_runtime;
7963 
7964 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7965 
7966 	if (!ret && write) {
7967 		ret = sched_rt_global_constraints();
7968 		if (ret) {
7969 			sysctl_sched_rt_period = old_period;
7970 			sysctl_sched_rt_runtime = old_runtime;
7971 		} else {
7972 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7973 			def_rt_bandwidth.rt_period =
7974 				ns_to_ktime(global_rt_period());
7975 		}
7976 	}
7977 	mutex_unlock(&mutex);
7978 
7979 	return ret;
7980 }
7981 
7982 #ifdef CONFIG_CGROUP_SCHED
7983 
7984 /* return corresponding task_group object of a cgroup */
7985 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7986 {
7987 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7988 			    struct task_group, css);
7989 }
7990 
7991 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7992 {
7993 	struct task_group *tg, *parent;
7994 
7995 	if (!cgrp->parent) {
7996 		/* This is early initialization for the top cgroup */
7997 		return &root_task_group.css;
7998 	}
7999 
8000 	parent = cgroup_tg(cgrp->parent);
8001 	tg = sched_create_group(parent);
8002 	if (IS_ERR(tg))
8003 		return ERR_PTR(-ENOMEM);
8004 
8005 	return &tg->css;
8006 }
8007 
8008 static void cpu_cgroup_destroy(struct cgroup *cgrp)
8009 {
8010 	struct task_group *tg = cgroup_tg(cgrp);
8011 
8012 	sched_destroy_group(tg);
8013 }
8014 
8015 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
8016 				 struct cgroup_taskset *tset)
8017 {
8018 	struct task_struct *task;
8019 
8020 	cgroup_taskset_for_each(task, cgrp, tset) {
8021 #ifdef CONFIG_RT_GROUP_SCHED
8022 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
8023 			return -EINVAL;
8024 #else
8025 		/* We don't support RT-tasks being in separate groups */
8026 		if (task->sched_class != &fair_sched_class)
8027 			return -EINVAL;
8028 #endif
8029 	}
8030 	return 0;
8031 }
8032 
8033 static void cpu_cgroup_attach(struct cgroup *cgrp,
8034 			      struct cgroup_taskset *tset)
8035 {
8036 	struct task_struct *task;
8037 
8038 	cgroup_taskset_for_each(task, cgrp, tset)
8039 		sched_move_task(task);
8040 }
8041 
8042 static void
8043 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
8044 		struct task_struct *task)
8045 {
8046 	/*
8047 	 * cgroup_exit() is called in the copy_process() failure path.
8048 	 * Ignore this case since the task hasn't ran yet, this avoids
8049 	 * trying to poke a half freed task state from generic code.
8050 	 */
8051 	if (!(task->flags & PF_EXITING))
8052 		return;
8053 
8054 	sched_move_task(task);
8055 }
8056 
8057 #ifdef CONFIG_FAIR_GROUP_SCHED
8058 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8059 				u64 shareval)
8060 {
8061 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8062 }
8063 
8064 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8065 {
8066 	struct task_group *tg = cgroup_tg(cgrp);
8067 
8068 	return (u64) scale_load_down(tg->shares);
8069 }
8070 
8071 #ifdef CONFIG_CFS_BANDWIDTH
8072 static DEFINE_MUTEX(cfs_constraints_mutex);
8073 
8074 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8075 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8076 
8077 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8078 
8079 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8080 {
8081 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8082 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083 
8084 	if (tg == &root_task_group)
8085 		return -EINVAL;
8086 
8087 	/*
8088 	 * Ensure we have at some amount of bandwidth every period.  This is
8089 	 * to prevent reaching a state of large arrears when throttled via
8090 	 * entity_tick() resulting in prolonged exit starvation.
8091 	 */
8092 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8093 		return -EINVAL;
8094 
8095 	/*
8096 	 * Likewise, bound things on the otherside by preventing insane quota
8097 	 * periods.  This also allows us to normalize in computing quota
8098 	 * feasibility.
8099 	 */
8100 	if (period > max_cfs_quota_period)
8101 		return -EINVAL;
8102 
8103 	mutex_lock(&cfs_constraints_mutex);
8104 	ret = __cfs_schedulable(tg, period, quota);
8105 	if (ret)
8106 		goto out_unlock;
8107 
8108 	runtime_enabled = quota != RUNTIME_INF;
8109 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8110 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8111 	raw_spin_lock_irq(&cfs_b->lock);
8112 	cfs_b->period = ns_to_ktime(period);
8113 	cfs_b->quota = quota;
8114 
8115 	__refill_cfs_bandwidth_runtime(cfs_b);
8116 	/* restart the period timer (if active) to handle new period expiry */
8117 	if (runtime_enabled && cfs_b->timer_active) {
8118 		/* force a reprogram */
8119 		cfs_b->timer_active = 0;
8120 		__start_cfs_bandwidth(cfs_b);
8121 	}
8122 	raw_spin_unlock_irq(&cfs_b->lock);
8123 
8124 	for_each_possible_cpu(i) {
8125 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8126 		struct rq *rq = cfs_rq->rq;
8127 
8128 		raw_spin_lock_irq(&rq->lock);
8129 		cfs_rq->runtime_enabled = runtime_enabled;
8130 		cfs_rq->runtime_remaining = 0;
8131 
8132 		if (cfs_rq->throttled)
8133 			unthrottle_cfs_rq(cfs_rq);
8134 		raw_spin_unlock_irq(&rq->lock);
8135 	}
8136 out_unlock:
8137 	mutex_unlock(&cfs_constraints_mutex);
8138 
8139 	return ret;
8140 }
8141 
8142 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8143 {
8144 	u64 quota, period;
8145 
8146 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8147 	if (cfs_quota_us < 0)
8148 		quota = RUNTIME_INF;
8149 	else
8150 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8151 
8152 	return tg_set_cfs_bandwidth(tg, period, quota);
8153 }
8154 
8155 long tg_get_cfs_quota(struct task_group *tg)
8156 {
8157 	u64 quota_us;
8158 
8159 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8160 		return -1;
8161 
8162 	quota_us = tg->cfs_bandwidth.quota;
8163 	do_div(quota_us, NSEC_PER_USEC);
8164 
8165 	return quota_us;
8166 }
8167 
8168 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8169 {
8170 	u64 quota, period;
8171 
8172 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8173 	quota = tg->cfs_bandwidth.quota;
8174 
8175 	return tg_set_cfs_bandwidth(tg, period, quota);
8176 }
8177 
8178 long tg_get_cfs_period(struct task_group *tg)
8179 {
8180 	u64 cfs_period_us;
8181 
8182 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8183 	do_div(cfs_period_us, NSEC_PER_USEC);
8184 
8185 	return cfs_period_us;
8186 }
8187 
8188 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8189 {
8190 	return tg_get_cfs_quota(cgroup_tg(cgrp));
8191 }
8192 
8193 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8194 				s64 cfs_quota_us)
8195 {
8196 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8197 }
8198 
8199 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8200 {
8201 	return tg_get_cfs_period(cgroup_tg(cgrp));
8202 }
8203 
8204 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8205 				u64 cfs_period_us)
8206 {
8207 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8208 }
8209 
8210 struct cfs_schedulable_data {
8211 	struct task_group *tg;
8212 	u64 period, quota;
8213 };
8214 
8215 /*
8216  * normalize group quota/period to be quota/max_period
8217  * note: units are usecs
8218  */
8219 static u64 normalize_cfs_quota(struct task_group *tg,
8220 			       struct cfs_schedulable_data *d)
8221 {
8222 	u64 quota, period;
8223 
8224 	if (tg == d->tg) {
8225 		period = d->period;
8226 		quota = d->quota;
8227 	} else {
8228 		period = tg_get_cfs_period(tg);
8229 		quota = tg_get_cfs_quota(tg);
8230 	}
8231 
8232 	/* note: these should typically be equivalent */
8233 	if (quota == RUNTIME_INF || quota == -1)
8234 		return RUNTIME_INF;
8235 
8236 	return to_ratio(period, quota);
8237 }
8238 
8239 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8240 {
8241 	struct cfs_schedulable_data *d = data;
8242 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 	s64 quota = 0, parent_quota = -1;
8244 
8245 	if (!tg->parent) {
8246 		quota = RUNTIME_INF;
8247 	} else {
8248 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8249 
8250 		quota = normalize_cfs_quota(tg, d);
8251 		parent_quota = parent_b->hierarchal_quota;
8252 
8253 		/*
8254 		 * ensure max(child_quota) <= parent_quota, inherit when no
8255 		 * limit is set
8256 		 */
8257 		if (quota == RUNTIME_INF)
8258 			quota = parent_quota;
8259 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8260 			return -EINVAL;
8261 	}
8262 	cfs_b->hierarchal_quota = quota;
8263 
8264 	return 0;
8265 }
8266 
8267 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8268 {
8269 	int ret;
8270 	struct cfs_schedulable_data data = {
8271 		.tg = tg,
8272 		.period = period,
8273 		.quota = quota,
8274 	};
8275 
8276 	if (quota != RUNTIME_INF) {
8277 		do_div(data.period, NSEC_PER_USEC);
8278 		do_div(data.quota, NSEC_PER_USEC);
8279 	}
8280 
8281 	rcu_read_lock();
8282 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8283 	rcu_read_unlock();
8284 
8285 	return ret;
8286 }
8287 
8288 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8289 		struct cgroup_map_cb *cb)
8290 {
8291 	struct task_group *tg = cgroup_tg(cgrp);
8292 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8293 
8294 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8295 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8296 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8297 
8298 	return 0;
8299 }
8300 #endif /* CONFIG_CFS_BANDWIDTH */
8301 #endif /* CONFIG_FAIR_GROUP_SCHED */
8302 
8303 #ifdef CONFIG_RT_GROUP_SCHED
8304 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8305 				s64 val)
8306 {
8307 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8308 }
8309 
8310 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8311 {
8312 	return sched_group_rt_runtime(cgroup_tg(cgrp));
8313 }
8314 
8315 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8316 		u64 rt_period_us)
8317 {
8318 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8319 }
8320 
8321 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8322 {
8323 	return sched_group_rt_period(cgroup_tg(cgrp));
8324 }
8325 #endif /* CONFIG_RT_GROUP_SCHED */
8326 
8327 static struct cftype cpu_files[] = {
8328 #ifdef CONFIG_FAIR_GROUP_SCHED
8329 	{
8330 		.name = "shares",
8331 		.read_u64 = cpu_shares_read_u64,
8332 		.write_u64 = cpu_shares_write_u64,
8333 	},
8334 #endif
8335 #ifdef CONFIG_CFS_BANDWIDTH
8336 	{
8337 		.name = "cfs_quota_us",
8338 		.read_s64 = cpu_cfs_quota_read_s64,
8339 		.write_s64 = cpu_cfs_quota_write_s64,
8340 	},
8341 	{
8342 		.name = "cfs_period_us",
8343 		.read_u64 = cpu_cfs_period_read_u64,
8344 		.write_u64 = cpu_cfs_period_write_u64,
8345 	},
8346 	{
8347 		.name = "stat",
8348 		.read_map = cpu_stats_show,
8349 	},
8350 #endif
8351 #ifdef CONFIG_RT_GROUP_SCHED
8352 	{
8353 		.name = "rt_runtime_us",
8354 		.read_s64 = cpu_rt_runtime_read,
8355 		.write_s64 = cpu_rt_runtime_write,
8356 	},
8357 	{
8358 		.name = "rt_period_us",
8359 		.read_u64 = cpu_rt_period_read_uint,
8360 		.write_u64 = cpu_rt_period_write_uint,
8361 	},
8362 #endif
8363 	{ }	/* terminate */
8364 };
8365 
8366 struct cgroup_subsys cpu_cgroup_subsys = {
8367 	.name		= "cpu",
8368 	.create		= cpu_cgroup_create,
8369 	.destroy	= cpu_cgroup_destroy,
8370 	.can_attach	= cpu_cgroup_can_attach,
8371 	.attach		= cpu_cgroup_attach,
8372 	.exit		= cpu_cgroup_exit,
8373 	.subsys_id	= cpu_cgroup_subsys_id,
8374 	.base_cftypes	= cpu_files,
8375 	.early_init	= 1,
8376 };
8377 
8378 #endif	/* CONFIG_CGROUP_SCHED */
8379 
8380 #ifdef CONFIG_CGROUP_CPUACCT
8381 
8382 /*
8383  * CPU accounting code for task groups.
8384  *
8385  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8386  * (balbir@in.ibm.com).
8387  */
8388 
8389 /* create a new cpu accounting group */
8390 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8391 {
8392 	struct cpuacct *ca;
8393 
8394 	if (!cgrp->parent)
8395 		return &root_cpuacct.css;
8396 
8397 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8398 	if (!ca)
8399 		goto out;
8400 
8401 	ca->cpuusage = alloc_percpu(u64);
8402 	if (!ca->cpuusage)
8403 		goto out_free_ca;
8404 
8405 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8406 	if (!ca->cpustat)
8407 		goto out_free_cpuusage;
8408 
8409 	return &ca->css;
8410 
8411 out_free_cpuusage:
8412 	free_percpu(ca->cpuusage);
8413 out_free_ca:
8414 	kfree(ca);
8415 out:
8416 	return ERR_PTR(-ENOMEM);
8417 }
8418 
8419 /* destroy an existing cpu accounting group */
8420 static void cpuacct_destroy(struct cgroup *cgrp)
8421 {
8422 	struct cpuacct *ca = cgroup_ca(cgrp);
8423 
8424 	free_percpu(ca->cpustat);
8425 	free_percpu(ca->cpuusage);
8426 	kfree(ca);
8427 }
8428 
8429 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8430 {
8431 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8432 	u64 data;
8433 
8434 #ifndef CONFIG_64BIT
8435 	/*
8436 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8437 	 */
8438 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8439 	data = *cpuusage;
8440 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8441 #else
8442 	data = *cpuusage;
8443 #endif
8444 
8445 	return data;
8446 }
8447 
8448 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8449 {
8450 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8451 
8452 #ifndef CONFIG_64BIT
8453 	/*
8454 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8455 	 */
8456 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8457 	*cpuusage = val;
8458 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8459 #else
8460 	*cpuusage = val;
8461 #endif
8462 }
8463 
8464 /* return total cpu usage (in nanoseconds) of a group */
8465 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8466 {
8467 	struct cpuacct *ca = cgroup_ca(cgrp);
8468 	u64 totalcpuusage = 0;
8469 	int i;
8470 
8471 	for_each_present_cpu(i)
8472 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8473 
8474 	return totalcpuusage;
8475 }
8476 
8477 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8478 								u64 reset)
8479 {
8480 	struct cpuacct *ca = cgroup_ca(cgrp);
8481 	int err = 0;
8482 	int i;
8483 
8484 	if (reset) {
8485 		err = -EINVAL;
8486 		goto out;
8487 	}
8488 
8489 	for_each_present_cpu(i)
8490 		cpuacct_cpuusage_write(ca, i, 0);
8491 
8492 out:
8493 	return err;
8494 }
8495 
8496 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8497 				   struct seq_file *m)
8498 {
8499 	struct cpuacct *ca = cgroup_ca(cgroup);
8500 	u64 percpu;
8501 	int i;
8502 
8503 	for_each_present_cpu(i) {
8504 		percpu = cpuacct_cpuusage_read(ca, i);
8505 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8506 	}
8507 	seq_printf(m, "\n");
8508 	return 0;
8509 }
8510 
8511 static const char *cpuacct_stat_desc[] = {
8512 	[CPUACCT_STAT_USER] = "user",
8513 	[CPUACCT_STAT_SYSTEM] = "system",
8514 };
8515 
8516 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8517 			      struct cgroup_map_cb *cb)
8518 {
8519 	struct cpuacct *ca = cgroup_ca(cgrp);
8520 	int cpu;
8521 	s64 val = 0;
8522 
8523 	for_each_online_cpu(cpu) {
8524 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8525 		val += kcpustat->cpustat[CPUTIME_USER];
8526 		val += kcpustat->cpustat[CPUTIME_NICE];
8527 	}
8528 	val = cputime64_to_clock_t(val);
8529 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8530 
8531 	val = 0;
8532 	for_each_online_cpu(cpu) {
8533 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8534 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8535 		val += kcpustat->cpustat[CPUTIME_IRQ];
8536 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8537 	}
8538 
8539 	val = cputime64_to_clock_t(val);
8540 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8541 
8542 	return 0;
8543 }
8544 
8545 static struct cftype files[] = {
8546 	{
8547 		.name = "usage",
8548 		.read_u64 = cpuusage_read,
8549 		.write_u64 = cpuusage_write,
8550 	},
8551 	{
8552 		.name = "usage_percpu",
8553 		.read_seq_string = cpuacct_percpu_seq_read,
8554 	},
8555 	{
8556 		.name = "stat",
8557 		.read_map = cpuacct_stats_show,
8558 	},
8559 	{ }	/* terminate */
8560 };
8561 
8562 /*
8563  * charge this task's execution time to its accounting group.
8564  *
8565  * called with rq->lock held.
8566  */
8567 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8568 {
8569 	struct cpuacct *ca;
8570 	int cpu;
8571 
8572 	if (unlikely(!cpuacct_subsys.active))
8573 		return;
8574 
8575 	cpu = task_cpu(tsk);
8576 
8577 	rcu_read_lock();
8578 
8579 	ca = task_ca(tsk);
8580 
8581 	for (; ca; ca = parent_ca(ca)) {
8582 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8583 		*cpuusage += cputime;
8584 	}
8585 
8586 	rcu_read_unlock();
8587 }
8588 
8589 struct cgroup_subsys cpuacct_subsys = {
8590 	.name = "cpuacct",
8591 	.create = cpuacct_create,
8592 	.destroy = cpuacct_destroy,
8593 	.subsys_id = cpuacct_subsys_id,
8594 	.base_cftypes = files,
8595 };
8596 #endif	/* CONFIG_CGROUP_CPUACCT */
8597