xref: /openbmc/linux/kernel/sched/core.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
20 
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
31 
32 #include <asm/switch_to.h>
33 #include <asm/tlb.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37 
38 #include "sched.h"
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we average the RT time consumption, measured
71  * in ms.
72  *
73  * default: 1s
74  */
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76 
77 /*
78  * period over which we measure -rt task CPU usage in us.
79  * default: 1s
80  */
81 unsigned int sysctl_sched_rt_period = 1000000;
82 
83 __read_mostly int scheduler_running;
84 
85 /*
86  * part of the period that we allow rt tasks to run in us.
87  * default: 0.95s
88  */
89 int sysctl_sched_rt_runtime = 950000;
90 
91 /*
92  * __task_rq_lock - lock the rq @p resides on.
93  */
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 	__acquires(rq->lock)
96 {
97 	struct rq *rq;
98 
99 	lockdep_assert_held(&p->pi_lock);
100 
101 	for (;;) {
102 		rq = task_rq(p);
103 		raw_spin_lock(&rq->lock);
104 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105 			rq_pin_lock(rq, rf);
106 			return rq;
107 		}
108 		raw_spin_unlock(&rq->lock);
109 
110 		while (unlikely(task_on_rq_migrating(p)))
111 			cpu_relax();
112 	}
113 }
114 
115 /*
116  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117  */
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 	__acquires(p->pi_lock)
120 	__acquires(rq->lock)
121 {
122 	struct rq *rq;
123 
124 	for (;;) {
125 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 		rq = task_rq(p);
127 		raw_spin_lock(&rq->lock);
128 		/*
129 		 *	move_queued_task()		task_rq_lock()
130 		 *
131 		 *	ACQUIRE (rq->lock)
132 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
133 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
134 		 *	[S] ->cpu = new_cpu		[L] task_rq()
135 		 *					[L] ->on_rq
136 		 *	RELEASE (rq->lock)
137 		 *
138 		 * If we observe the old cpu in task_rq_lock, the acquire of
139 		 * the old rq->lock will fully serialize against the stores.
140 		 *
141 		 * If we observe the new CPU in task_rq_lock, the acquire will
142 		 * pair with the WMB to ensure we must then also see migrating.
143 		 */
144 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145 			rq_pin_lock(rq, rf);
146 			return rq;
147 		}
148 		raw_spin_unlock(&rq->lock);
149 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150 
151 		while (unlikely(task_on_rq_migrating(p)))
152 			cpu_relax();
153 	}
154 }
155 
156 /*
157  * RQ-clock updating methods:
158  */
159 
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
161 {
162 /*
163  * In theory, the compile should just see 0 here, and optimize out the call
164  * to sched_rt_avg_update. But I don't trust it...
165  */
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 	s64 steal = 0, irq_delta = 0;
168 #endif
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171 
172 	/*
173 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 	 * this case when a previous update_rq_clock() happened inside a
175 	 * {soft,}irq region.
176 	 *
177 	 * When this happens, we stop ->clock_task and only update the
178 	 * prev_irq_time stamp to account for the part that fit, so that a next
179 	 * update will consume the rest. This ensures ->clock_task is
180 	 * monotonic.
181 	 *
182 	 * It does however cause some slight miss-attribution of {soft,}irq
183 	 * time, a more accurate solution would be to update the irq_time using
184 	 * the current rq->clock timestamp, except that would require using
185 	 * atomic ops.
186 	 */
187 	if (irq_delta > delta)
188 		irq_delta = delta;
189 
190 	rq->prev_irq_time += irq_delta;
191 	delta -= irq_delta;
192 #endif
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 	if (static_key_false((&paravirt_steal_rq_enabled))) {
195 		steal = paravirt_steal_clock(cpu_of(rq));
196 		steal -= rq->prev_steal_time_rq;
197 
198 		if (unlikely(steal > delta))
199 			steal = delta;
200 
201 		rq->prev_steal_time_rq += steal;
202 		delta -= steal;
203 	}
204 #endif
205 
206 	rq->clock_task += delta;
207 
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 		sched_rt_avg_update(rq, irq_delta + steal);
211 #endif
212 }
213 
214 void update_rq_clock(struct rq *rq)
215 {
216 	s64 delta;
217 
218 	lockdep_assert_held(&rq->lock);
219 
220 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 		return;
222 
223 #ifdef CONFIG_SCHED_DEBUG
224 	if (sched_feat(WARN_DOUBLE_CLOCK))
225 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 	rq->clock_update_flags |= RQCF_UPDATED;
227 #endif
228 
229 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 	if (delta < 0)
231 		return;
232 	rq->clock += delta;
233 	update_rq_clock_task(rq, delta);
234 }
235 
236 
237 #ifdef CONFIG_SCHED_HRTICK
238 /*
239  * Use HR-timers to deliver accurate preemption points.
240  */
241 
242 static void hrtick_clear(struct rq *rq)
243 {
244 	if (hrtimer_active(&rq->hrtick_timer))
245 		hrtimer_cancel(&rq->hrtick_timer);
246 }
247 
248 /*
249  * High-resolution timer tick.
250  * Runs from hardirq context with interrupts disabled.
251  */
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
253 {
254 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255 	struct rq_flags rf;
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	rq_lock(rq, &rf);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	rq_unlock(rq, &rf);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 	struct rq_flags rf;
283 
284 	rq_lock(rq, &rf);
285 	__hrtick_restart(rq);
286 	rq->hrtick_csd_pending = 0;
287 	rq_unlock(rq, &rf);
288 }
289 
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	struct hrtimer *timer = &rq->hrtick_timer;
298 	ktime_t time;
299 	s64 delta;
300 
301 	/*
302 	 * Don't schedule slices shorter than 10000ns, that just
303 	 * doesn't make sense and can cause timer DoS.
304 	 */
305 	delta = max_t(s64, delay, 10000LL);
306 	time = ktime_add_ns(timer->base->get_time(), delta);
307 
308 	hrtimer_set_expires(timer, time);
309 
310 	if (rq == this_rq()) {
311 		__hrtick_restart(rq);
312 	} else if (!rq->hrtick_csd_pending) {
313 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 		rq->hrtick_csd_pending = 1;
315 	}
316 }
317 
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 	/*
327 	 * Don't schedule slices shorter than 10000ns, that just
328 	 * doesn't make sense. Rely on vruntime for fairness.
329 	 */
330 	delay = max_t(u64, delay, 10000LL);
331 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 		      HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335 
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 	rq->hrtick_csd_pending = 0;
340 
341 	rq->hrtick_csd.flags = 0;
342 	rq->hrtick_csd.func = __hrtick_start;
343 	rq->hrtick_csd.info = rq;
344 #endif
345 
346 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 	rq->hrtick_timer.function = hrtick;
348 }
349 #else	/* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353 
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif	/* CONFIG_SCHED_HRTICK */
358 
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)						\
363 	({								\
364 		typeof(ptr) _ptr = (ptr);				\
365 		typeof(mask) _mask = (mask);				\
366 		typeof(*_ptr) _old, _val = *_ptr;			\
367 									\
368 		for (;;) {						\
369 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
370 			if (_old == _val)				\
371 				break;					\
372 			_val = _old;					\
373 		}							\
374 	_old;								\
375 })
376 
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388 
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	struct thread_info *ti = task_thread_info(p);
398 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 
400 	for (;;) {
401 		if (!(val & _TIF_POLLING_NRFLAG))
402 			return false;
403 		if (val & _TIF_NEED_RESCHED)
404 			return true;
405 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 		if (old == val)
407 			break;
408 		val = old;
409 	}
410 	return true;
411 }
412 
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 	set_tsk_need_resched(p);
417 	return true;
418 }
419 
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 	return false;
424 }
425 #endif
426 #endif
427 
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 	struct wake_q_node *node = &task->wake_q;
431 
432 	/*
433 	 * Atomically grab the task, if ->wake_q is !nil already it means
434 	 * its already queued (either by us or someone else) and will get the
435 	 * wakeup due to that.
436 	 *
437 	 * This cmpxchg() implies a full barrier, which pairs with the write
438 	 * barrier implied by the wakeup in wake_up_q().
439 	 */
440 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 		return;
442 
443 	get_task_struct(task);
444 
445 	/*
446 	 * The head is context local, there can be no concurrency.
447 	 */
448 	*head->lastp = node;
449 	head->lastp = &node->next;
450 }
451 
452 void wake_up_q(struct wake_q_head *head)
453 {
454 	struct wake_q_node *node = head->first;
455 
456 	while (node != WAKE_Q_TAIL) {
457 		struct task_struct *task;
458 
459 		task = container_of(node, struct task_struct, wake_q);
460 		BUG_ON(!task);
461 		/* Task can safely be re-inserted now: */
462 		node = node->next;
463 		task->wake_q.next = NULL;
464 
465 		/*
466 		 * wake_up_process() implies a wmb() to pair with the queueing
467 		 * in wake_q_add() so as not to miss wakeups.
468 		 */
469 		wake_up_process(task);
470 		put_task_struct(task);
471 	}
472 }
473 
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483 	struct task_struct *curr = rq->curr;
484 	int cpu;
485 
486 	lockdep_assert_held(&rq->lock);
487 
488 	if (test_tsk_need_resched(curr))
489 		return;
490 
491 	cpu = cpu_of(rq);
492 
493 	if (cpu == smp_processor_id()) {
494 		set_tsk_need_resched(curr);
495 		set_preempt_need_resched();
496 		return;
497 	}
498 
499 	if (set_nr_and_not_polling(curr))
500 		smp_send_reschedule(cpu);
501 	else
502 		trace_sched_wake_idle_without_ipi(cpu);
503 }
504 
505 void resched_cpu(int cpu)
506 {
507 	struct rq *rq = cpu_rq(cpu);
508 	unsigned long flags;
509 
510 	raw_spin_lock_irqsave(&rq->lock, flags);
511 	if (cpu_online(cpu) || cpu == smp_processor_id())
512 		resched_curr(rq);
513 	raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515 
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy CPU for migrating timers
520  * from an idle CPU.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle CPU will add more delays to the timers than intended
524  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528 	int i, cpu = smp_processor_id();
529 	struct sched_domain *sd;
530 
531 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
532 		return cpu;
533 
534 	rcu_read_lock();
535 	for_each_domain(cpu, sd) {
536 		for_each_cpu(i, sched_domain_span(sd)) {
537 			if (cpu == i)
538 				continue;
539 
540 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
541 				cpu = i;
542 				goto unlock;
543 			}
544 		}
545 	}
546 
547 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
549 unlock:
550 	rcu_read_unlock();
551 	return cpu;
552 }
553 
554 /*
555  * When add_timer_on() enqueues a timer into the timer wheel of an
556  * idle CPU then this timer might expire before the next timer event
557  * which is scheduled to wake up that CPU. In case of a completely
558  * idle system the next event might even be infinite time into the
559  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560  * leaves the inner idle loop so the newly added timer is taken into
561  * account when the CPU goes back to idle and evaluates the timer
562  * wheel for the next timer event.
563  */
564 static void wake_up_idle_cpu(int cpu)
565 {
566 	struct rq *rq = cpu_rq(cpu);
567 
568 	if (cpu == smp_processor_id())
569 		return;
570 
571 	if (set_nr_and_not_polling(rq->idle))
572 		smp_send_reschedule(cpu);
573 	else
574 		trace_sched_wake_idle_without_ipi(cpu);
575 }
576 
577 static bool wake_up_full_nohz_cpu(int cpu)
578 {
579 	/*
580 	 * We just need the target to call irq_exit() and re-evaluate
581 	 * the next tick. The nohz full kick at least implies that.
582 	 * If needed we can still optimize that later with an
583 	 * empty IRQ.
584 	 */
585 	if (cpu_is_offline(cpu))
586 		return true;  /* Don't try to wake offline CPUs. */
587 	if (tick_nohz_full_cpu(cpu)) {
588 		if (cpu != smp_processor_id() ||
589 		    tick_nohz_tick_stopped())
590 			tick_nohz_full_kick_cpu(cpu);
591 		return true;
592 	}
593 
594 	return false;
595 }
596 
597 /*
598  * Wake up the specified CPU.  If the CPU is going offline, it is the
599  * caller's responsibility to deal with the lost wakeup, for example,
600  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601  */
602 void wake_up_nohz_cpu(int cpu)
603 {
604 	if (!wake_up_full_nohz_cpu(cpu))
605 		wake_up_idle_cpu(cpu);
606 }
607 
608 static inline bool got_nohz_idle_kick(void)
609 {
610 	int cpu = smp_processor_id();
611 
612 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613 		return false;
614 
615 	if (idle_cpu(cpu) && !need_resched())
616 		return true;
617 
618 	/*
619 	 * We can't run Idle Load Balance on this CPU for this time so we
620 	 * cancel it and clear NOHZ_BALANCE_KICK
621 	 */
622 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 	return false;
624 }
625 
626 #else /* CONFIG_NO_HZ_COMMON */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ_COMMON */
634 
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq *rq)
637 {
638 	int fifo_nr_running;
639 
640 	/* Deadline tasks, even if single, need the tick */
641 	if (rq->dl.dl_nr_running)
642 		return false;
643 
644 	/*
645 	 * If there are more than one RR tasks, we need the tick to effect the
646 	 * actual RR behaviour.
647 	 */
648 	if (rq->rt.rr_nr_running) {
649 		if (rq->rt.rr_nr_running == 1)
650 			return true;
651 		else
652 			return false;
653 	}
654 
655 	/*
656 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 	 * forced preemption between FIFO tasks.
658 	 */
659 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660 	if (fifo_nr_running)
661 		return true;
662 
663 	/*
664 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 	 * if there's more than one we need the tick for involuntary
666 	 * preemption.
667 	 */
668 	if (rq->nr_running > 1)
669 		return false;
670 
671 	return true;
672 }
673 #endif /* CONFIG_NO_HZ_FULL */
674 
675 void sched_avg_update(struct rq *rq)
676 {
677 	s64 period = sched_avg_period();
678 
679 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680 		/*
681 		 * Inline assembly required to prevent the compiler
682 		 * optimising this loop into a divmod call.
683 		 * See __iter_div_u64_rem() for another example of this.
684 		 */
685 		asm("" : "+rm" (rq->age_stamp));
686 		rq->age_stamp += period;
687 		rq->rt_avg /= 2;
688 	}
689 }
690 
691 #endif /* CONFIG_SMP */
692 
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695 /*
696  * Iterate task_group tree rooted at *from, calling @down when first entering a
697  * node and @up when leaving it for the final time.
698  *
699  * Caller must hold rcu_lock or sufficient equivalent.
700  */
701 int walk_tg_tree_from(struct task_group *from,
702 			     tg_visitor down, tg_visitor up, void *data)
703 {
704 	struct task_group *parent, *child;
705 	int ret;
706 
707 	parent = from;
708 
709 down:
710 	ret = (*down)(parent, data);
711 	if (ret)
712 		goto out;
713 	list_for_each_entry_rcu(child, &parent->children, siblings) {
714 		parent = child;
715 		goto down;
716 
717 up:
718 		continue;
719 	}
720 	ret = (*up)(parent, data);
721 	if (ret || parent == from)
722 		goto out;
723 
724 	child = parent;
725 	parent = parent->parent;
726 	if (parent)
727 		goto up;
728 out:
729 	return ret;
730 }
731 
732 int tg_nop(struct task_group *tg, void *data)
733 {
734 	return 0;
735 }
736 #endif
737 
738 static void set_load_weight(struct task_struct *p, bool update_load)
739 {
740 	int prio = p->static_prio - MAX_RT_PRIO;
741 	struct load_weight *load = &p->se.load;
742 
743 	/*
744 	 * SCHED_IDLE tasks get minimal weight:
745 	 */
746 	if (idle_policy(p->policy)) {
747 		load->weight = scale_load(WEIGHT_IDLEPRIO);
748 		load->inv_weight = WMULT_IDLEPRIO;
749 		return;
750 	}
751 
752 	/*
753 	 * SCHED_OTHER tasks have to update their load when changing their
754 	 * weight
755 	 */
756 	if (update_load && p->sched_class == &fair_sched_class) {
757 		reweight_task(p, prio);
758 	} else {
759 		load->weight = scale_load(sched_prio_to_weight[prio]);
760 		load->inv_weight = sched_prio_to_wmult[prio];
761 	}
762 }
763 
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (!(flags & ENQUEUE_NOCLOCK))
767 		update_rq_clock(rq);
768 
769 	if (!(flags & ENQUEUE_RESTORE))
770 		sched_info_queued(rq, p);
771 
772 	p->sched_class->enqueue_task(rq, p, flags);
773 }
774 
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (!(flags & DEQUEUE_NOCLOCK))
778 		update_rq_clock(rq);
779 
780 	if (!(flags & DEQUEUE_SAVE))
781 		sched_info_dequeued(rq, p);
782 
783 	p->sched_class->dequeue_task(rq, p, flags);
784 }
785 
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788 	if (task_contributes_to_load(p))
789 		rq->nr_uninterruptible--;
790 
791 	enqueue_task(rq, p, flags);
792 }
793 
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 {
796 	if (task_contributes_to_load(p))
797 		rq->nr_uninterruptible++;
798 
799 	dequeue_task(rq, p, flags);
800 }
801 
802 /*
803  * __normal_prio - return the priority that is based on the static prio
804  */
805 static inline int __normal_prio(struct task_struct *p)
806 {
807 	return p->static_prio;
808 }
809 
810 /*
811  * Calculate the expected normal priority: i.e. priority
812  * without taking RT-inheritance into account. Might be
813  * boosted by interactivity modifiers. Changes upon fork,
814  * setprio syscalls, and whenever the interactivity
815  * estimator recalculates.
816  */
817 static inline int normal_prio(struct task_struct *p)
818 {
819 	int prio;
820 
821 	if (task_has_dl_policy(p))
822 		prio = MAX_DL_PRIO-1;
823 	else if (task_has_rt_policy(p))
824 		prio = MAX_RT_PRIO-1 - p->rt_priority;
825 	else
826 		prio = __normal_prio(p);
827 	return prio;
828 }
829 
830 /*
831  * Calculate the current priority, i.e. the priority
832  * taken into account by the scheduler. This value might
833  * be boosted by RT tasks, or might be boosted by
834  * interactivity modifiers. Will be RT if the task got
835  * RT-boosted. If not then it returns p->normal_prio.
836  */
837 static int effective_prio(struct task_struct *p)
838 {
839 	p->normal_prio = normal_prio(p);
840 	/*
841 	 * If we are RT tasks or we were boosted to RT priority,
842 	 * keep the priority unchanged. Otherwise, update priority
843 	 * to the normal priority:
844 	 */
845 	if (!rt_prio(p->prio))
846 		return p->normal_prio;
847 	return p->prio;
848 }
849 
850 /**
851  * task_curr - is this task currently executing on a CPU?
852  * @p: the task in question.
853  *
854  * Return: 1 if the task is currently executing. 0 otherwise.
855  */
856 inline int task_curr(const struct task_struct *p)
857 {
858 	return cpu_curr(task_cpu(p)) == p;
859 }
860 
861 /*
862  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863  * use the balance_callback list if you want balancing.
864  *
865  * this means any call to check_class_changed() must be followed by a call to
866  * balance_callback().
867  */
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 				       const struct sched_class *prev_class,
870 				       int oldprio)
871 {
872 	if (prev_class != p->sched_class) {
873 		if (prev_class->switched_from)
874 			prev_class->switched_from(rq, p);
875 
876 		p->sched_class->switched_to(rq, p);
877 	} else if (oldprio != p->prio || dl_task(p))
878 		p->sched_class->prio_changed(rq, p, oldprio);
879 }
880 
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
882 {
883 	const struct sched_class *class;
884 
885 	if (p->sched_class == rq->curr->sched_class) {
886 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 	} else {
888 		for_each_class(class) {
889 			if (class == rq->curr->sched_class)
890 				break;
891 			if (class == p->sched_class) {
892 				resched_curr(rq);
893 				break;
894 			}
895 		}
896 	}
897 
898 	/*
899 	 * A queue event has occurred, and we're going to schedule.  In
900 	 * this case, we can save a useless back to back clock update.
901 	 */
902 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903 		rq_clock_skip_update(rq, true);
904 }
905 
906 #ifdef CONFIG_SMP
907 /*
908  * This is how migration works:
909  *
910  * 1) we invoke migration_cpu_stop() on the target CPU using
911  *    stop_one_cpu().
912  * 2) stopper starts to run (implicitly forcing the migrated thread
913  *    off the CPU)
914  * 3) it checks whether the migrated task is still in the wrong runqueue.
915  * 4) if it's in the wrong runqueue then the migration thread removes
916  *    it and puts it into the right queue.
917  * 5) stopper completes and stop_one_cpu() returns and the migration
918  *    is done.
919  */
920 
921 /*
922  * move_queued_task - move a queued task to new rq.
923  *
924  * Returns (locked) new rq. Old rq's lock is released.
925  */
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 				   struct task_struct *p, int new_cpu)
928 {
929 	lockdep_assert_held(&rq->lock);
930 
931 	p->on_rq = TASK_ON_RQ_MIGRATING;
932 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933 	set_task_cpu(p, new_cpu);
934 	rq_unlock(rq, rf);
935 
936 	rq = cpu_rq(new_cpu);
937 
938 	rq_lock(rq, rf);
939 	BUG_ON(task_cpu(p) != new_cpu);
940 	enqueue_task(rq, p, 0);
941 	p->on_rq = TASK_ON_RQ_QUEUED;
942 	check_preempt_curr(rq, p, 0);
943 
944 	return rq;
945 }
946 
947 struct migration_arg {
948 	struct task_struct *task;
949 	int dest_cpu;
950 };
951 
952 /*
953  * Move (not current) task off this CPU, onto the destination CPU. We're doing
954  * this because either it can't run here any more (set_cpus_allowed()
955  * away from this CPU, or CPU going down), or because we're
956  * attempting to rebalance this task on exec (sched_exec).
957  *
958  * So we race with normal scheduler movements, but that's OK, as long
959  * as the task is no longer on this CPU.
960  */
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 				 struct task_struct *p, int dest_cpu)
963 {
964 	if (p->flags & PF_KTHREAD) {
965 		if (unlikely(!cpu_online(dest_cpu)))
966 			return rq;
967 	} else {
968 		if (unlikely(!cpu_active(dest_cpu)))
969 			return rq;
970 	}
971 
972 	/* Affinity changed (again). */
973 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
974 		return rq;
975 
976 	update_rq_clock(rq);
977 	rq = move_queued_task(rq, rf, p, dest_cpu);
978 
979 	return rq;
980 }
981 
982 /*
983  * migration_cpu_stop - this will be executed by a highprio stopper thread
984  * and performs thread migration by bumping thread off CPU then
985  * 'pushing' onto another runqueue.
986  */
987 static int migration_cpu_stop(void *data)
988 {
989 	struct migration_arg *arg = data;
990 	struct task_struct *p = arg->task;
991 	struct rq *rq = this_rq();
992 	struct rq_flags rf;
993 
994 	/*
995 	 * The original target CPU might have gone down and we might
996 	 * be on another CPU but it doesn't matter.
997 	 */
998 	local_irq_disable();
999 	/*
1000 	 * We need to explicitly wake pending tasks before running
1001 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1003 	 */
1004 	sched_ttwu_pending();
1005 
1006 	raw_spin_lock(&p->pi_lock);
1007 	rq_lock(rq, &rf);
1008 	/*
1009 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 	 * we're holding p->pi_lock.
1012 	 */
1013 	if (task_rq(p) == rq) {
1014 		if (task_on_rq_queued(p))
1015 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1016 		else
1017 			p->wake_cpu = arg->dest_cpu;
1018 	}
1019 	rq_unlock(rq, &rf);
1020 	raw_spin_unlock(&p->pi_lock);
1021 
1022 	local_irq_enable();
1023 	return 0;
1024 }
1025 
1026 /*
1027  * sched_class::set_cpus_allowed must do the below, but is not required to
1028  * actually call this function.
1029  */
1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1031 {
1032 	cpumask_copy(&p->cpus_allowed, new_mask);
1033 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1034 }
1035 
1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1037 {
1038 	struct rq *rq = task_rq(p);
1039 	bool queued, running;
1040 
1041 	lockdep_assert_held(&p->pi_lock);
1042 
1043 	queued = task_on_rq_queued(p);
1044 	running = task_current(rq, p);
1045 
1046 	if (queued) {
1047 		/*
1048 		 * Because __kthread_bind() calls this on blocked tasks without
1049 		 * holding rq->lock.
1050 		 */
1051 		lockdep_assert_held(&rq->lock);
1052 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1053 	}
1054 	if (running)
1055 		put_prev_task(rq, p);
1056 
1057 	p->sched_class->set_cpus_allowed(p, new_mask);
1058 
1059 	if (queued)
1060 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1061 	if (running)
1062 		set_curr_task(rq, p);
1063 }
1064 
1065 /*
1066  * Change a given task's CPU affinity. Migrate the thread to a
1067  * proper CPU and schedule it away if the CPU it's executing on
1068  * is removed from the allowed bitmask.
1069  *
1070  * NOTE: the caller must have a valid reference to the task, the
1071  * task must not exit() & deallocate itself prematurely. The
1072  * call is not atomic; no spinlocks may be held.
1073  */
1074 static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 				  const struct cpumask *new_mask, bool check)
1076 {
1077 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1078 	unsigned int dest_cpu;
1079 	struct rq_flags rf;
1080 	struct rq *rq;
1081 	int ret = 0;
1082 
1083 	rq = task_rq_lock(p, &rf);
1084 	update_rq_clock(rq);
1085 
1086 	if (p->flags & PF_KTHREAD) {
1087 		/*
1088 		 * Kernel threads are allowed on online && !active CPUs
1089 		 */
1090 		cpu_valid_mask = cpu_online_mask;
1091 	}
1092 
1093 	/*
1094 	 * Must re-check here, to close a race against __kthread_bind(),
1095 	 * sched_setaffinity() is not guaranteed to observe the flag.
1096 	 */
1097 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 		ret = -EINVAL;
1099 		goto out;
1100 	}
1101 
1102 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1103 		goto out;
1104 
1105 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1106 		ret = -EINVAL;
1107 		goto out;
1108 	}
1109 
1110 	do_set_cpus_allowed(p, new_mask);
1111 
1112 	if (p->flags & PF_KTHREAD) {
1113 		/*
1114 		 * For kernel threads that do indeed end up on online &&
1115 		 * !active we want to ensure they are strict per-CPU threads.
1116 		 */
1117 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1119 			p->nr_cpus_allowed != 1);
1120 	}
1121 
1122 	/* Can the task run on the task's current CPU? If so, we're done */
1123 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1124 		goto out;
1125 
1126 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1127 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 		struct migration_arg arg = { p, dest_cpu };
1129 		/* Need help from migration thread: drop lock and wait. */
1130 		task_rq_unlock(rq, p, &rf);
1131 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 		tlb_migrate_finish(p->mm);
1133 		return 0;
1134 	} else if (task_on_rq_queued(p)) {
1135 		/*
1136 		 * OK, since we're going to drop the lock immediately
1137 		 * afterwards anyway.
1138 		 */
1139 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1140 	}
1141 out:
1142 	task_rq_unlock(rq, p, &rf);
1143 
1144 	return ret;
1145 }
1146 
1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1148 {
1149 	return __set_cpus_allowed_ptr(p, new_mask, false);
1150 }
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1152 
1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1154 {
1155 #ifdef CONFIG_SCHED_DEBUG
1156 	/*
1157 	 * We should never call set_task_cpu() on a blocked task,
1158 	 * ttwu() will sort out the placement.
1159 	 */
1160 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1161 			!p->on_rq);
1162 
1163 	/*
1164 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 	 * time relying on p->on_rq.
1167 	 */
1168 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 		     p->sched_class == &fair_sched_class &&
1170 		     (p->on_rq && !task_on_rq_migrating(p)));
1171 
1172 #ifdef CONFIG_LOCKDEP
1173 	/*
1174 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1176 	 *
1177 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1178 	 * see task_group().
1179 	 *
1180 	 * Furthermore, all task_rq users should acquire both locks, see
1181 	 * task_rq_lock().
1182 	 */
1183 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 				      lockdep_is_held(&task_rq(p)->lock)));
1185 #endif
1186 	/*
1187 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1188 	 */
1189 	WARN_ON_ONCE(!cpu_online(new_cpu));
1190 #endif
1191 
1192 	trace_sched_migrate_task(p, new_cpu);
1193 
1194 	if (task_cpu(p) != new_cpu) {
1195 		if (p->sched_class->migrate_task_rq)
1196 			p->sched_class->migrate_task_rq(p);
1197 		p->se.nr_migrations++;
1198 		perf_event_task_migrate(p);
1199 	}
1200 
1201 	__set_task_cpu(p, new_cpu);
1202 }
1203 
1204 static void __migrate_swap_task(struct task_struct *p, int cpu)
1205 {
1206 	if (task_on_rq_queued(p)) {
1207 		struct rq *src_rq, *dst_rq;
1208 		struct rq_flags srf, drf;
1209 
1210 		src_rq = task_rq(p);
1211 		dst_rq = cpu_rq(cpu);
1212 
1213 		rq_pin_lock(src_rq, &srf);
1214 		rq_pin_lock(dst_rq, &drf);
1215 
1216 		p->on_rq = TASK_ON_RQ_MIGRATING;
1217 		deactivate_task(src_rq, p, 0);
1218 		set_task_cpu(p, cpu);
1219 		activate_task(dst_rq, p, 0);
1220 		p->on_rq = TASK_ON_RQ_QUEUED;
1221 		check_preempt_curr(dst_rq, p, 0);
1222 
1223 		rq_unpin_lock(dst_rq, &drf);
1224 		rq_unpin_lock(src_rq, &srf);
1225 
1226 	} else {
1227 		/*
1228 		 * Task isn't running anymore; make it appear like we migrated
1229 		 * it before it went to sleep. This means on wakeup we make the
1230 		 * previous CPU our target instead of where it really is.
1231 		 */
1232 		p->wake_cpu = cpu;
1233 	}
1234 }
1235 
1236 struct migration_swap_arg {
1237 	struct task_struct *src_task, *dst_task;
1238 	int src_cpu, dst_cpu;
1239 };
1240 
1241 static int migrate_swap_stop(void *data)
1242 {
1243 	struct migration_swap_arg *arg = data;
1244 	struct rq *src_rq, *dst_rq;
1245 	int ret = -EAGAIN;
1246 
1247 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 		return -EAGAIN;
1249 
1250 	src_rq = cpu_rq(arg->src_cpu);
1251 	dst_rq = cpu_rq(arg->dst_cpu);
1252 
1253 	double_raw_lock(&arg->src_task->pi_lock,
1254 			&arg->dst_task->pi_lock);
1255 	double_rq_lock(src_rq, dst_rq);
1256 
1257 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 		goto unlock;
1259 
1260 	if (task_cpu(arg->src_task) != arg->src_cpu)
1261 		goto unlock;
1262 
1263 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264 		goto unlock;
1265 
1266 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267 		goto unlock;
1268 
1269 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1271 
1272 	ret = 0;
1273 
1274 unlock:
1275 	double_rq_unlock(src_rq, dst_rq);
1276 	raw_spin_unlock(&arg->dst_task->pi_lock);
1277 	raw_spin_unlock(&arg->src_task->pi_lock);
1278 
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Cross migrate two tasks
1284  */
1285 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286 {
1287 	struct migration_swap_arg arg;
1288 	int ret = -EINVAL;
1289 
1290 	arg = (struct migration_swap_arg){
1291 		.src_task = cur,
1292 		.src_cpu = task_cpu(cur),
1293 		.dst_task = p,
1294 		.dst_cpu = task_cpu(p),
1295 	};
1296 
1297 	if (arg.src_cpu == arg.dst_cpu)
1298 		goto out;
1299 
1300 	/*
1301 	 * These three tests are all lockless; this is OK since all of them
1302 	 * will be re-checked with proper locks held further down the line.
1303 	 */
1304 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 		goto out;
1306 
1307 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308 		goto out;
1309 
1310 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311 		goto out;
1312 
1313 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315 
1316 out:
1317 	return ret;
1318 }
1319 
1320 /*
1321  * wait_task_inactive - wait for a thread to unschedule.
1322  *
1323  * If @match_state is nonzero, it's the @p->state value just checked and
1324  * not expected to change.  If it changes, i.e. @p might have woken up,
1325  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1326  * we return a positive number (its total switch count).  If a second call
1327  * a short while later returns the same number, the caller can be sure that
1328  * @p has remained unscheduled the whole time.
1329  *
1330  * The caller must ensure that the task *will* unschedule sometime soon,
1331  * else this function might spin for a *long* time. This function can't
1332  * be called with interrupts off, or it may introduce deadlock with
1333  * smp_call_function() if an IPI is sent by the same process we are
1334  * waiting to become inactive.
1335  */
1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1337 {
1338 	int running, queued;
1339 	struct rq_flags rf;
1340 	unsigned long ncsw;
1341 	struct rq *rq;
1342 
1343 	for (;;) {
1344 		/*
1345 		 * We do the initial early heuristics without holding
1346 		 * any task-queue locks at all. We'll only try to get
1347 		 * the runqueue lock when things look like they will
1348 		 * work out!
1349 		 */
1350 		rq = task_rq(p);
1351 
1352 		/*
1353 		 * If the task is actively running on another CPU
1354 		 * still, just relax and busy-wait without holding
1355 		 * any locks.
1356 		 *
1357 		 * NOTE! Since we don't hold any locks, it's not
1358 		 * even sure that "rq" stays as the right runqueue!
1359 		 * But we don't care, since "task_running()" will
1360 		 * return false if the runqueue has changed and p
1361 		 * is actually now running somewhere else!
1362 		 */
1363 		while (task_running(rq, p)) {
1364 			if (match_state && unlikely(p->state != match_state))
1365 				return 0;
1366 			cpu_relax();
1367 		}
1368 
1369 		/*
1370 		 * Ok, time to look more closely! We need the rq
1371 		 * lock now, to be *sure*. If we're wrong, we'll
1372 		 * just go back and repeat.
1373 		 */
1374 		rq = task_rq_lock(p, &rf);
1375 		trace_sched_wait_task(p);
1376 		running = task_running(rq, p);
1377 		queued = task_on_rq_queued(p);
1378 		ncsw = 0;
1379 		if (!match_state || p->state == match_state)
1380 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381 		task_rq_unlock(rq, p, &rf);
1382 
1383 		/*
1384 		 * If it changed from the expected state, bail out now.
1385 		 */
1386 		if (unlikely(!ncsw))
1387 			break;
1388 
1389 		/*
1390 		 * Was it really running after all now that we
1391 		 * checked with the proper locks actually held?
1392 		 *
1393 		 * Oops. Go back and try again..
1394 		 */
1395 		if (unlikely(running)) {
1396 			cpu_relax();
1397 			continue;
1398 		}
1399 
1400 		/*
1401 		 * It's not enough that it's not actively running,
1402 		 * it must be off the runqueue _entirely_, and not
1403 		 * preempted!
1404 		 *
1405 		 * So if it was still runnable (but just not actively
1406 		 * running right now), it's preempted, and we should
1407 		 * yield - it could be a while.
1408 		 */
1409 		if (unlikely(queued)) {
1410 			ktime_t to = NSEC_PER_SEC / HZ;
1411 
1412 			set_current_state(TASK_UNINTERRUPTIBLE);
1413 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 			continue;
1415 		}
1416 
1417 		/*
1418 		 * Ahh, all good. It wasn't running, and it wasn't
1419 		 * runnable, which means that it will never become
1420 		 * running in the future either. We're all done!
1421 		 */
1422 		break;
1423 	}
1424 
1425 	return ncsw;
1426 }
1427 
1428 /***
1429  * kick_process - kick a running thread to enter/exit the kernel
1430  * @p: the to-be-kicked thread
1431  *
1432  * Cause a process which is running on another CPU to enter
1433  * kernel-mode, without any delay. (to get signals handled.)
1434  *
1435  * NOTE: this function doesn't have to take the runqueue lock,
1436  * because all it wants to ensure is that the remote task enters
1437  * the kernel. If the IPI races and the task has been migrated
1438  * to another CPU then no harm is done and the purpose has been
1439  * achieved as well.
1440  */
1441 void kick_process(struct task_struct *p)
1442 {
1443 	int cpu;
1444 
1445 	preempt_disable();
1446 	cpu = task_cpu(p);
1447 	if ((cpu != smp_processor_id()) && task_curr(p))
1448 		smp_send_reschedule(cpu);
1449 	preempt_enable();
1450 }
1451 EXPORT_SYMBOL_GPL(kick_process);
1452 
1453 /*
1454  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1455  *
1456  * A few notes on cpu_active vs cpu_online:
1457  *
1458  *  - cpu_active must be a subset of cpu_online
1459  *
1460  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461  *    see __set_cpus_allowed_ptr(). At this point the newly online
1462  *    CPU isn't yet part of the sched domains, and balancing will not
1463  *    see it.
1464  *
1465  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1466  *    avoid the load balancer to place new tasks on the to be removed
1467  *    CPU. Existing tasks will remain running there and will be taken
1468  *    off.
1469  *
1470  * This means that fallback selection must not select !active CPUs.
1471  * And can assume that any active CPU must be online. Conversely
1472  * select_task_rq() below may allow selection of !active CPUs in order
1473  * to satisfy the above rules.
1474  */
1475 static int select_fallback_rq(int cpu, struct task_struct *p)
1476 {
1477 	int nid = cpu_to_node(cpu);
1478 	const struct cpumask *nodemask = NULL;
1479 	enum { cpuset, possible, fail } state = cpuset;
1480 	int dest_cpu;
1481 
1482 	/*
1483 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 	 * will return -1. There is no CPU on the node, and we should
1485 	 * select the CPU on the other node.
1486 	 */
1487 	if (nid != -1) {
1488 		nodemask = cpumask_of_node(nid);
1489 
1490 		/* Look for allowed, online CPU in same node. */
1491 		for_each_cpu(dest_cpu, nodemask) {
1492 			if (!cpu_active(dest_cpu))
1493 				continue;
1494 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495 				return dest_cpu;
1496 		}
1497 	}
1498 
1499 	for (;;) {
1500 		/* Any allowed, online CPU? */
1501 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 				continue;
1504 			if (!cpu_online(dest_cpu))
1505 				continue;
1506 			goto out;
1507 		}
1508 
1509 		/* No more Mr. Nice Guy. */
1510 		switch (state) {
1511 		case cpuset:
1512 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 				cpuset_cpus_allowed_fallback(p);
1514 				state = possible;
1515 				break;
1516 			}
1517 			/* Fall-through */
1518 		case possible:
1519 			do_set_cpus_allowed(p, cpu_possible_mask);
1520 			state = fail;
1521 			break;
1522 
1523 		case fail:
1524 			BUG();
1525 			break;
1526 		}
1527 	}
1528 
1529 out:
1530 	if (state != cpuset) {
1531 		/*
1532 		 * Don't tell them about moving exiting tasks or
1533 		 * kernel threads (both mm NULL), since they never
1534 		 * leave kernel.
1535 		 */
1536 		if (p->mm && printk_ratelimit()) {
1537 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 					task_pid_nr(p), p->comm, cpu);
1539 		}
1540 	}
1541 
1542 	return dest_cpu;
1543 }
1544 
1545 /*
1546  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1547  */
1548 static inline
1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1550 {
1551 	lockdep_assert_held(&p->pi_lock);
1552 
1553 	if (p->nr_cpus_allowed > 1)
1554 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555 	else
1556 		cpu = cpumask_any(&p->cpus_allowed);
1557 
1558 	/*
1559 	 * In order not to call set_task_cpu() on a blocking task we need
1560 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1561 	 * CPU.
1562 	 *
1563 	 * Since this is common to all placement strategies, this lives here.
1564 	 *
1565 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 	 *   not worry about this generic constraint ]
1567 	 */
1568 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1569 		     !cpu_online(cpu)))
1570 		cpu = select_fallback_rq(task_cpu(p), p);
1571 
1572 	return cpu;
1573 }
1574 
1575 static void update_avg(u64 *avg, u64 sample)
1576 {
1577 	s64 diff = sample - *avg;
1578 	*avg += diff >> 3;
1579 }
1580 
1581 void sched_set_stop_task(int cpu, struct task_struct *stop)
1582 {
1583 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1585 
1586 	if (stop) {
1587 		/*
1588 		 * Make it appear like a SCHED_FIFO task, its something
1589 		 * userspace knows about and won't get confused about.
1590 		 *
1591 		 * Also, it will make PI more or less work without too
1592 		 * much confusion -- but then, stop work should not
1593 		 * rely on PI working anyway.
1594 		 */
1595 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1596 
1597 		stop->sched_class = &stop_sched_class;
1598 	}
1599 
1600 	cpu_rq(cpu)->stop = stop;
1601 
1602 	if (old_stop) {
1603 		/*
1604 		 * Reset it back to a normal scheduling class so that
1605 		 * it can die in pieces.
1606 		 */
1607 		old_stop->sched_class = &rt_sched_class;
1608 	}
1609 }
1610 
1611 #else
1612 
1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 					 const struct cpumask *new_mask, bool check)
1615 {
1616 	return set_cpus_allowed_ptr(p, new_mask);
1617 }
1618 
1619 #endif /* CONFIG_SMP */
1620 
1621 static void
1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1623 {
1624 	struct rq *rq;
1625 
1626 	if (!schedstat_enabled())
1627 		return;
1628 
1629 	rq = this_rq();
1630 
1631 #ifdef CONFIG_SMP
1632 	if (cpu == rq->cpu) {
1633 		__schedstat_inc(rq->ttwu_local);
1634 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1635 	} else {
1636 		struct sched_domain *sd;
1637 
1638 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1639 		rcu_read_lock();
1640 		for_each_domain(rq->cpu, sd) {
1641 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642 				__schedstat_inc(sd->ttwu_wake_remote);
1643 				break;
1644 			}
1645 		}
1646 		rcu_read_unlock();
1647 	}
1648 
1649 	if (wake_flags & WF_MIGRATED)
1650 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1651 #endif /* CONFIG_SMP */
1652 
1653 	__schedstat_inc(rq->ttwu_count);
1654 	__schedstat_inc(p->se.statistics.nr_wakeups);
1655 
1656 	if (wake_flags & WF_SYNC)
1657 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1658 }
1659 
1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1661 {
1662 	activate_task(rq, p, en_flags);
1663 	p->on_rq = TASK_ON_RQ_QUEUED;
1664 
1665 	/* If a worker is waking up, notify the workqueue: */
1666 	if (p->flags & PF_WQ_WORKER)
1667 		wq_worker_waking_up(p, cpu_of(rq));
1668 }
1669 
1670 /*
1671  * Mark the task runnable and perform wakeup-preemption.
1672  */
1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674 			   struct rq_flags *rf)
1675 {
1676 	check_preempt_curr(rq, p, wake_flags);
1677 	p->state = TASK_RUNNING;
1678 	trace_sched_wakeup(p);
1679 
1680 #ifdef CONFIG_SMP
1681 	if (p->sched_class->task_woken) {
1682 		/*
1683 		 * Our task @p is fully woken up and running; so its safe to
1684 		 * drop the rq->lock, hereafter rq is only used for statistics.
1685 		 */
1686 		rq_unpin_lock(rq, rf);
1687 		p->sched_class->task_woken(rq, p);
1688 		rq_repin_lock(rq, rf);
1689 	}
1690 
1691 	if (rq->idle_stamp) {
1692 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1693 		u64 max = 2*rq->max_idle_balance_cost;
1694 
1695 		update_avg(&rq->avg_idle, delta);
1696 
1697 		if (rq->avg_idle > max)
1698 			rq->avg_idle = max;
1699 
1700 		rq->idle_stamp = 0;
1701 	}
1702 #endif
1703 }
1704 
1705 static void
1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707 		 struct rq_flags *rf)
1708 {
1709 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1710 
1711 	lockdep_assert_held(&rq->lock);
1712 
1713 #ifdef CONFIG_SMP
1714 	if (p->sched_contributes_to_load)
1715 		rq->nr_uninterruptible--;
1716 
1717 	if (wake_flags & WF_MIGRATED)
1718 		en_flags |= ENQUEUE_MIGRATED;
1719 #endif
1720 
1721 	ttwu_activate(rq, p, en_flags);
1722 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1723 }
1724 
1725 /*
1726  * Called in case the task @p isn't fully descheduled from its runqueue,
1727  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728  * since all we need to do is flip p->state to TASK_RUNNING, since
1729  * the task is still ->on_rq.
1730  */
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1732 {
1733 	struct rq_flags rf;
1734 	struct rq *rq;
1735 	int ret = 0;
1736 
1737 	rq = __task_rq_lock(p, &rf);
1738 	if (task_on_rq_queued(p)) {
1739 		/* check_preempt_curr() may use rq clock */
1740 		update_rq_clock(rq);
1741 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1742 		ret = 1;
1743 	}
1744 	__task_rq_unlock(rq, &rf);
1745 
1746 	return ret;
1747 }
1748 
1749 #ifdef CONFIG_SMP
1750 void sched_ttwu_pending(void)
1751 {
1752 	struct rq *rq = this_rq();
1753 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1754 	struct task_struct *p, *t;
1755 	struct rq_flags rf;
1756 
1757 	if (!llist)
1758 		return;
1759 
1760 	rq_lock_irqsave(rq, &rf);
1761 	update_rq_clock(rq);
1762 
1763 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1765 
1766 	rq_unlock_irqrestore(rq, &rf);
1767 }
1768 
1769 void scheduler_ipi(void)
1770 {
1771 	/*
1772 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1774 	 * this IPI.
1775 	 */
1776 	preempt_fold_need_resched();
1777 
1778 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1779 		return;
1780 
1781 	/*
1782 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 	 * traditionally all their work was done from the interrupt return
1784 	 * path. Now that we actually do some work, we need to make sure
1785 	 * we do call them.
1786 	 *
1787 	 * Some archs already do call them, luckily irq_enter/exit nest
1788 	 * properly.
1789 	 *
1790 	 * Arguably we should visit all archs and update all handlers,
1791 	 * however a fair share of IPIs are still resched only so this would
1792 	 * somewhat pessimize the simple resched case.
1793 	 */
1794 	irq_enter();
1795 	sched_ttwu_pending();
1796 
1797 	/*
1798 	 * Check if someone kicked us for doing the nohz idle load balance.
1799 	 */
1800 	if (unlikely(got_nohz_idle_kick())) {
1801 		this_rq()->idle_balance = 1;
1802 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1803 	}
1804 	irq_exit();
1805 }
1806 
1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1808 {
1809 	struct rq *rq = cpu_rq(cpu);
1810 
1811 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1812 
1813 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 		if (!set_nr_if_polling(rq->idle))
1815 			smp_send_reschedule(cpu);
1816 		else
1817 			trace_sched_wake_idle_without_ipi(cpu);
1818 	}
1819 }
1820 
1821 void wake_up_if_idle(int cpu)
1822 {
1823 	struct rq *rq = cpu_rq(cpu);
1824 	struct rq_flags rf;
1825 
1826 	rcu_read_lock();
1827 
1828 	if (!is_idle_task(rcu_dereference(rq->curr)))
1829 		goto out;
1830 
1831 	if (set_nr_if_polling(rq->idle)) {
1832 		trace_sched_wake_idle_without_ipi(cpu);
1833 	} else {
1834 		rq_lock_irqsave(rq, &rf);
1835 		if (is_idle_task(rq->curr))
1836 			smp_send_reschedule(cpu);
1837 		/* Else CPU is not idle, do nothing here: */
1838 		rq_unlock_irqrestore(rq, &rf);
1839 	}
1840 
1841 out:
1842 	rcu_read_unlock();
1843 }
1844 
1845 bool cpus_share_cache(int this_cpu, int that_cpu)
1846 {
1847 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1848 }
1849 #endif /* CONFIG_SMP */
1850 
1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1852 {
1853 	struct rq *rq = cpu_rq(cpu);
1854 	struct rq_flags rf;
1855 
1856 #if defined(CONFIG_SMP)
1857 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1859 		ttwu_queue_remote(p, cpu, wake_flags);
1860 		return;
1861 	}
1862 #endif
1863 
1864 	rq_lock(rq, &rf);
1865 	update_rq_clock(rq);
1866 	ttwu_do_activate(rq, p, wake_flags, &rf);
1867 	rq_unlock(rq, &rf);
1868 }
1869 
1870 /*
1871  * Notes on Program-Order guarantees on SMP systems.
1872  *
1873  *  MIGRATION
1874  *
1875  * The basic program-order guarantee on SMP systems is that when a task [t]
1876  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877  * execution on its new CPU [c1].
1878  *
1879  * For migration (of runnable tasks) this is provided by the following means:
1880  *
1881  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1882  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1883  *     rq(c1)->lock (if not at the same time, then in that order).
1884  *  C) LOCK of the rq(c1)->lock scheduling in task
1885  *
1886  * Transitivity guarantees that B happens after A and C after B.
1887  * Note: we only require RCpc transitivity.
1888  * Note: the CPU doing B need not be c0 or c1
1889  *
1890  * Example:
1891  *
1892  *   CPU0            CPU1            CPU2
1893  *
1894  *   LOCK rq(0)->lock
1895  *   sched-out X
1896  *   sched-in Y
1897  *   UNLOCK rq(0)->lock
1898  *
1899  *                                   LOCK rq(0)->lock // orders against CPU0
1900  *                                   dequeue X
1901  *                                   UNLOCK rq(0)->lock
1902  *
1903  *                                   LOCK rq(1)->lock
1904  *                                   enqueue X
1905  *                                   UNLOCK rq(1)->lock
1906  *
1907  *                   LOCK rq(1)->lock // orders against CPU2
1908  *                   sched-out Z
1909  *                   sched-in X
1910  *                   UNLOCK rq(1)->lock
1911  *
1912  *
1913  *  BLOCKING -- aka. SLEEP + WAKEUP
1914  *
1915  * For blocking we (obviously) need to provide the same guarantee as for
1916  * migration. However the means are completely different as there is no lock
1917  * chain to provide order. Instead we do:
1918  *
1919  *   1) smp_store_release(X->on_cpu, 0)
1920  *   2) smp_cond_load_acquire(!X->on_cpu)
1921  *
1922  * Example:
1923  *
1924  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1925  *
1926  *   LOCK rq(0)->lock LOCK X->pi_lock
1927  *   dequeue X
1928  *   sched-out X
1929  *   smp_store_release(X->on_cpu, 0);
1930  *
1931  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1932  *                    X->state = WAKING
1933  *                    set_task_cpu(X,2)
1934  *
1935  *                    LOCK rq(2)->lock
1936  *                    enqueue X
1937  *                    X->state = RUNNING
1938  *                    UNLOCK rq(2)->lock
1939  *
1940  *                                          LOCK rq(2)->lock // orders against CPU1
1941  *                                          sched-out Z
1942  *                                          sched-in X
1943  *                                          UNLOCK rq(2)->lock
1944  *
1945  *                    UNLOCK X->pi_lock
1946  *   UNLOCK rq(0)->lock
1947  *
1948  *
1949  * However; for wakeups there is a second guarantee we must provide, namely we
1950  * must observe the state that lead to our wakeup. That is, not only must our
1951  * task observe its own prior state, it must also observe the stores prior to
1952  * its wakeup.
1953  *
1954  * This means that any means of doing remote wakeups must order the CPU doing
1955  * the wakeup against the CPU the task is going to end up running on. This,
1956  * however, is already required for the regular Program-Order guarantee above,
1957  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1958  *
1959  */
1960 
1961 /**
1962  * try_to_wake_up - wake up a thread
1963  * @p: the thread to be awakened
1964  * @state: the mask of task states that can be woken
1965  * @wake_flags: wake modifier flags (WF_*)
1966  *
1967  * If (@state & @p->state) @p->state = TASK_RUNNING.
1968  *
1969  * If the task was not queued/runnable, also place it back on a runqueue.
1970  *
1971  * Atomic against schedule() which would dequeue a task, also see
1972  * set_current_state().
1973  *
1974  * Return: %true if @p->state changes (an actual wakeup was done),
1975  *	   %false otherwise.
1976  */
1977 static int
1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1979 {
1980 	unsigned long flags;
1981 	int cpu, success = 0;
1982 
1983 	/*
1984 	 * If we are going to wake up a thread waiting for CONDITION we
1985 	 * need to ensure that CONDITION=1 done by the caller can not be
1986 	 * reordered with p->state check below. This pairs with mb() in
1987 	 * set_current_state() the waiting thread does.
1988 	 */
1989 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1990 	smp_mb__after_spinlock();
1991 	if (!(p->state & state))
1992 		goto out;
1993 
1994 	trace_sched_waking(p);
1995 
1996 	/* We're going to change ->state: */
1997 	success = 1;
1998 	cpu = task_cpu(p);
1999 
2000 	/*
2001 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 	 * in smp_cond_load_acquire() below.
2004 	 *
2005 	 * sched_ttwu_pending()                 try_to_wake_up()
2006 	 *   [S] p->on_rq = 1;                  [L] P->state
2007 	 *       UNLOCK rq->lock  -----.
2008 	 *                              \
2009 	 *				 +---   RMB
2010 	 * schedule()                   /
2011 	 *       LOCK rq->lock    -----'
2012 	 *       UNLOCK rq->lock
2013 	 *
2014 	 * [task p]
2015 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2016 	 *
2017 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 	 * last wakeup of our task and the schedule that got our task
2019 	 * current.
2020 	 */
2021 	smp_rmb();
2022 	if (p->on_rq && ttwu_remote(p, wake_flags))
2023 		goto stat;
2024 
2025 #ifdef CONFIG_SMP
2026 	/*
2027 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 	 * possible to, falsely, observe p->on_cpu == 0.
2029 	 *
2030 	 * One must be running (->on_cpu == 1) in order to remove oneself
2031 	 * from the runqueue.
2032 	 *
2033 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2034 	 *      UNLOCK rq->lock
2035 	 *			RMB
2036 	 *      LOCK   rq->lock
2037 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2038 	 *
2039 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 	 * from the consecutive calls to schedule(); the first switching to our
2041 	 * task, the second putting it to sleep.
2042 	 */
2043 	smp_rmb();
2044 
2045 	/*
2046 	 * If the owning (remote) CPU is still in the middle of schedule() with
2047 	 * this task as prev, wait until its done referencing the task.
2048 	 *
2049 	 * Pairs with the smp_store_release() in finish_task().
2050 	 *
2051 	 * This ensures that tasks getting woken will be fully ordered against
2052 	 * their previous state and preserve Program Order.
2053 	 */
2054 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2055 
2056 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 	p->state = TASK_WAKING;
2058 
2059 	if (p->in_iowait) {
2060 		delayacct_blkio_end(p);
2061 		atomic_dec(&task_rq(p)->nr_iowait);
2062 	}
2063 
2064 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065 	if (task_cpu(p) != cpu) {
2066 		wake_flags |= WF_MIGRATED;
2067 		set_task_cpu(p, cpu);
2068 	}
2069 
2070 #else /* CONFIG_SMP */
2071 
2072 	if (p->in_iowait) {
2073 		delayacct_blkio_end(p);
2074 		atomic_dec(&task_rq(p)->nr_iowait);
2075 	}
2076 
2077 #endif /* CONFIG_SMP */
2078 
2079 	ttwu_queue(p, cpu, wake_flags);
2080 stat:
2081 	ttwu_stat(p, cpu, wake_flags);
2082 out:
2083 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084 
2085 	return success;
2086 }
2087 
2088 /**
2089  * try_to_wake_up_local - try to wake up a local task with rq lock held
2090  * @p: the thread to be awakened
2091  * @rf: request-queue flags for pinning
2092  *
2093  * Put @p on the run-queue if it's not already there. The caller must
2094  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2095  * the current task.
2096  */
2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2098 {
2099 	struct rq *rq = task_rq(p);
2100 
2101 	if (WARN_ON_ONCE(rq != this_rq()) ||
2102 	    WARN_ON_ONCE(p == current))
2103 		return;
2104 
2105 	lockdep_assert_held(&rq->lock);
2106 
2107 	if (!raw_spin_trylock(&p->pi_lock)) {
2108 		/*
2109 		 * This is OK, because current is on_cpu, which avoids it being
2110 		 * picked for load-balance and preemption/IRQs are still
2111 		 * disabled avoiding further scheduler activity on it and we've
2112 		 * not yet picked a replacement task.
2113 		 */
2114 		rq_unlock(rq, rf);
2115 		raw_spin_lock(&p->pi_lock);
2116 		rq_relock(rq, rf);
2117 	}
2118 
2119 	if (!(p->state & TASK_NORMAL))
2120 		goto out;
2121 
2122 	trace_sched_waking(p);
2123 
2124 	if (!task_on_rq_queued(p)) {
2125 		if (p->in_iowait) {
2126 			delayacct_blkio_end(p);
2127 			atomic_dec(&rq->nr_iowait);
2128 		}
2129 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2130 	}
2131 
2132 	ttwu_do_wakeup(rq, p, 0, rf);
2133 	ttwu_stat(p, smp_processor_id(), 0);
2134 out:
2135 	raw_spin_unlock(&p->pi_lock);
2136 }
2137 
2138 /**
2139  * wake_up_process - Wake up a specific process
2140  * @p: The process to be woken up.
2141  *
2142  * Attempt to wake up the nominated process and move it to the set of runnable
2143  * processes.
2144  *
2145  * Return: 1 if the process was woken up, 0 if it was already running.
2146  *
2147  * It may be assumed that this function implies a write memory barrier before
2148  * changing the task state if and only if any tasks are woken up.
2149  */
2150 int wake_up_process(struct task_struct *p)
2151 {
2152 	return try_to_wake_up(p, TASK_NORMAL, 0);
2153 }
2154 EXPORT_SYMBOL(wake_up_process);
2155 
2156 int wake_up_state(struct task_struct *p, unsigned int state)
2157 {
2158 	return try_to_wake_up(p, state, 0);
2159 }
2160 
2161 /*
2162  * Perform scheduler related setup for a newly forked process p.
2163  * p is forked by current.
2164  *
2165  * __sched_fork() is basic setup used by init_idle() too:
2166  */
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2168 {
2169 	p->on_rq			= 0;
2170 
2171 	p->se.on_rq			= 0;
2172 	p->se.exec_start		= 0;
2173 	p->se.sum_exec_runtime		= 0;
2174 	p->se.prev_sum_exec_runtime	= 0;
2175 	p->se.nr_migrations		= 0;
2176 	p->se.vruntime			= 0;
2177 	INIT_LIST_HEAD(&p->se.group_node);
2178 
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 	p->se.cfs_rq			= NULL;
2181 #endif
2182 
2183 #ifdef CONFIG_SCHEDSTATS
2184 	/* Even if schedstat is disabled, there should not be garbage */
2185 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2186 #endif
2187 
2188 	RB_CLEAR_NODE(&p->dl.rb_node);
2189 	init_dl_task_timer(&p->dl);
2190 	init_dl_inactive_task_timer(&p->dl);
2191 	__dl_clear_params(p);
2192 
2193 	INIT_LIST_HEAD(&p->rt.run_list);
2194 	p->rt.timeout		= 0;
2195 	p->rt.time_slice	= sched_rr_timeslice;
2196 	p->rt.on_rq		= 0;
2197 	p->rt.on_list		= 0;
2198 
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2201 #endif
2202 
2203 #ifdef CONFIG_NUMA_BALANCING
2204 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 		p->mm->numa_scan_seq = 0;
2207 	}
2208 
2209 	if (clone_flags & CLONE_VM)
2210 		p->numa_preferred_nid = current->numa_preferred_nid;
2211 	else
2212 		p->numa_preferred_nid = -1;
2213 
2214 	p->node_stamp = 0ULL;
2215 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217 	p->numa_work.next = &p->numa_work;
2218 	p->numa_faults = NULL;
2219 	p->last_task_numa_placement = 0;
2220 	p->last_sum_exec_runtime = 0;
2221 
2222 	p->numa_group = NULL;
2223 #endif /* CONFIG_NUMA_BALANCING */
2224 }
2225 
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227 
2228 #ifdef CONFIG_NUMA_BALANCING
2229 
2230 void set_numabalancing_state(bool enabled)
2231 {
2232 	if (enabled)
2233 		static_branch_enable(&sched_numa_balancing);
2234 	else
2235 		static_branch_disable(&sched_numa_balancing);
2236 }
2237 
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2241 {
2242 	struct ctl_table t;
2243 	int err;
2244 	int state = static_branch_likely(&sched_numa_balancing);
2245 
2246 	if (write && !capable(CAP_SYS_ADMIN))
2247 		return -EPERM;
2248 
2249 	t = *table;
2250 	t.data = &state;
2251 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 	if (err < 0)
2253 		return err;
2254 	if (write)
2255 		set_numabalancing_state(state);
2256 	return err;
2257 }
2258 #endif
2259 #endif
2260 
2261 #ifdef CONFIG_SCHEDSTATS
2262 
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264 static bool __initdata __sched_schedstats = false;
2265 
2266 static void set_schedstats(bool enabled)
2267 {
2268 	if (enabled)
2269 		static_branch_enable(&sched_schedstats);
2270 	else
2271 		static_branch_disable(&sched_schedstats);
2272 }
2273 
2274 void force_schedstat_enabled(void)
2275 {
2276 	if (!schedstat_enabled()) {
2277 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 		static_branch_enable(&sched_schedstats);
2279 	}
2280 }
2281 
2282 static int __init setup_schedstats(char *str)
2283 {
2284 	int ret = 0;
2285 	if (!str)
2286 		goto out;
2287 
2288 	/*
2289 	 * This code is called before jump labels have been set up, so we can't
2290 	 * change the static branch directly just yet.  Instead set a temporary
2291 	 * variable so init_schedstats() can do it later.
2292 	 */
2293 	if (!strcmp(str, "enable")) {
2294 		__sched_schedstats = true;
2295 		ret = 1;
2296 	} else if (!strcmp(str, "disable")) {
2297 		__sched_schedstats = false;
2298 		ret = 1;
2299 	}
2300 out:
2301 	if (!ret)
2302 		pr_warn("Unable to parse schedstats=\n");
2303 
2304 	return ret;
2305 }
2306 __setup("schedstats=", setup_schedstats);
2307 
2308 static void __init init_schedstats(void)
2309 {
2310 	set_schedstats(__sched_schedstats);
2311 }
2312 
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table *table, int write,
2315 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2316 {
2317 	struct ctl_table t;
2318 	int err;
2319 	int state = static_branch_likely(&sched_schedstats);
2320 
2321 	if (write && !capable(CAP_SYS_ADMIN))
2322 		return -EPERM;
2323 
2324 	t = *table;
2325 	t.data = &state;
2326 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 	if (err < 0)
2328 		return err;
2329 	if (write)
2330 		set_schedstats(state);
2331 	return err;
2332 }
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else  /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2337 
2338 /*
2339  * fork()/clone()-time setup:
2340  */
2341 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2342 {
2343 	unsigned long flags;
2344 	int cpu = get_cpu();
2345 
2346 	__sched_fork(clone_flags, p);
2347 	/*
2348 	 * We mark the process as NEW here. This guarantees that
2349 	 * nobody will actually run it, and a signal or other external
2350 	 * event cannot wake it up and insert it on the runqueue either.
2351 	 */
2352 	p->state = TASK_NEW;
2353 
2354 	/*
2355 	 * Make sure we do not leak PI boosting priority to the child.
2356 	 */
2357 	p->prio = current->normal_prio;
2358 
2359 	/*
2360 	 * Revert to default priority/policy on fork if requested.
2361 	 */
2362 	if (unlikely(p->sched_reset_on_fork)) {
2363 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364 			p->policy = SCHED_NORMAL;
2365 			p->static_prio = NICE_TO_PRIO(0);
2366 			p->rt_priority = 0;
2367 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 			p->static_prio = NICE_TO_PRIO(0);
2369 
2370 		p->prio = p->normal_prio = __normal_prio(p);
2371 		set_load_weight(p, false);
2372 
2373 		/*
2374 		 * We don't need the reset flag anymore after the fork. It has
2375 		 * fulfilled its duty:
2376 		 */
2377 		p->sched_reset_on_fork = 0;
2378 	}
2379 
2380 	if (dl_prio(p->prio)) {
2381 		put_cpu();
2382 		return -EAGAIN;
2383 	} else if (rt_prio(p->prio)) {
2384 		p->sched_class = &rt_sched_class;
2385 	} else {
2386 		p->sched_class = &fair_sched_class;
2387 	}
2388 
2389 	init_entity_runnable_average(&p->se);
2390 
2391 	/*
2392 	 * The child is not yet in the pid-hash so no cgroup attach races,
2393 	 * and the cgroup is pinned to this child due to cgroup_fork()
2394 	 * is ran before sched_fork().
2395 	 *
2396 	 * Silence PROVE_RCU.
2397 	 */
2398 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2399 	/*
2400 	 * We're setting the CPU for the first time, we don't migrate,
2401 	 * so use __set_task_cpu().
2402 	 */
2403 	__set_task_cpu(p, cpu);
2404 	if (p->sched_class->task_fork)
2405 		p->sched_class->task_fork(p);
2406 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407 
2408 #ifdef CONFIG_SCHED_INFO
2409 	if (likely(sched_info_on()))
2410 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2411 #endif
2412 #if defined(CONFIG_SMP)
2413 	p->on_cpu = 0;
2414 #endif
2415 	init_task_preempt_count(p);
2416 #ifdef CONFIG_SMP
2417 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 #endif
2420 
2421 	put_cpu();
2422 	return 0;
2423 }
2424 
2425 unsigned long to_ratio(u64 period, u64 runtime)
2426 {
2427 	if (runtime == RUNTIME_INF)
2428 		return BW_UNIT;
2429 
2430 	/*
2431 	 * Doing this here saves a lot of checks in all
2432 	 * the calling paths, and returning zero seems
2433 	 * safe for them anyway.
2434 	 */
2435 	if (period == 0)
2436 		return 0;
2437 
2438 	return div64_u64(runtime << BW_SHIFT, period);
2439 }
2440 
2441 /*
2442  * wake_up_new_task - wake up a newly created task for the first time.
2443  *
2444  * This function will do some initial scheduler statistics housekeeping
2445  * that must be done for every newly created context, then puts the task
2446  * on the runqueue and wakes it.
2447  */
2448 void wake_up_new_task(struct task_struct *p)
2449 {
2450 	struct rq_flags rf;
2451 	struct rq *rq;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454 	p->state = TASK_RUNNING;
2455 #ifdef CONFIG_SMP
2456 	/*
2457 	 * Fork balancing, do it here and not earlier because:
2458 	 *  - cpus_allowed can change in the fork path
2459 	 *  - any previously selected CPU might disappear through hotplug
2460 	 *
2461 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 	 * as we're not fully set-up yet.
2463 	 */
2464 	p->recent_used_cpu = task_cpu(p);
2465 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2466 #endif
2467 	rq = __task_rq_lock(p, &rf);
2468 	update_rq_clock(rq);
2469 	post_init_entity_util_avg(&p->se);
2470 
2471 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2472 	p->on_rq = TASK_ON_RQ_QUEUED;
2473 	trace_sched_wakeup_new(p);
2474 	check_preempt_curr(rq, p, WF_FORK);
2475 #ifdef CONFIG_SMP
2476 	if (p->sched_class->task_woken) {
2477 		/*
2478 		 * Nothing relies on rq->lock after this, so its fine to
2479 		 * drop it.
2480 		 */
2481 		rq_unpin_lock(rq, &rf);
2482 		p->sched_class->task_woken(rq, p);
2483 		rq_repin_lock(rq, &rf);
2484 	}
2485 #endif
2486 	task_rq_unlock(rq, p, &rf);
2487 }
2488 
2489 #ifdef CONFIG_PREEMPT_NOTIFIERS
2490 
2491 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2492 
2493 void preempt_notifier_inc(void)
2494 {
2495 	static_key_slow_inc(&preempt_notifier_key);
2496 }
2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2498 
2499 void preempt_notifier_dec(void)
2500 {
2501 	static_key_slow_dec(&preempt_notifier_key);
2502 }
2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2504 
2505 /**
2506  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2507  * @notifier: notifier struct to register
2508  */
2509 void preempt_notifier_register(struct preempt_notifier *notifier)
2510 {
2511 	if (!static_key_false(&preempt_notifier_key))
2512 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2513 
2514 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2515 }
2516 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2517 
2518 /**
2519  * preempt_notifier_unregister - no longer interested in preemption notifications
2520  * @notifier: notifier struct to unregister
2521  *
2522  * This is *not* safe to call from within a preemption notifier.
2523  */
2524 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2525 {
2526 	hlist_del(&notifier->link);
2527 }
2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2529 
2530 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2531 {
2532 	struct preempt_notifier *notifier;
2533 
2534 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2535 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2536 }
2537 
2538 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 	if (static_key_false(&preempt_notifier_key))
2541 		__fire_sched_in_preempt_notifiers(curr);
2542 }
2543 
2544 static void
2545 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 				   struct task_struct *next)
2547 {
2548 	struct preempt_notifier *notifier;
2549 
2550 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2551 		notifier->ops->sched_out(notifier, next);
2552 }
2553 
2554 static __always_inline void
2555 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 				 struct task_struct *next)
2557 {
2558 	if (static_key_false(&preempt_notifier_key))
2559 		__fire_sched_out_preempt_notifiers(curr, next);
2560 }
2561 
2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2563 
2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2565 {
2566 }
2567 
2568 static inline void
2569 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 				 struct task_struct *next)
2571 {
2572 }
2573 
2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2575 
2576 static inline void prepare_task(struct task_struct *next)
2577 {
2578 #ifdef CONFIG_SMP
2579 	/*
2580 	 * Claim the task as running, we do this before switching to it
2581 	 * such that any running task will have this set.
2582 	 */
2583 	next->on_cpu = 1;
2584 #endif
2585 }
2586 
2587 static inline void finish_task(struct task_struct *prev)
2588 {
2589 #ifdef CONFIG_SMP
2590 	/*
2591 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 	 * We must ensure this doesn't happen until the switch is completely
2593 	 * finished.
2594 	 *
2595 	 * In particular, the load of prev->state in finish_task_switch() must
2596 	 * happen before this.
2597 	 *
2598 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2599 	 */
2600 	smp_store_release(&prev->on_cpu, 0);
2601 #endif
2602 }
2603 
2604 static inline void finish_lock_switch(struct rq *rq)
2605 {
2606 #ifdef CONFIG_DEBUG_SPINLOCK
2607 	/* this is a valid case when another task releases the spinlock */
2608 	rq->lock.owner = current;
2609 #endif
2610 	/*
2611 	 * If we are tracking spinlock dependencies then we have to
2612 	 * fix up the runqueue lock - which gets 'carried over' from
2613 	 * prev into current:
2614 	 */
2615 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2616 
2617 	raw_spin_unlock_irq(&rq->lock);
2618 }
2619 
2620 /**
2621  * prepare_task_switch - prepare to switch tasks
2622  * @rq: the runqueue preparing to switch
2623  * @prev: the current task that is being switched out
2624  * @next: the task we are going to switch to.
2625  *
2626  * This is called with the rq lock held and interrupts off. It must
2627  * be paired with a subsequent finish_task_switch after the context
2628  * switch.
2629  *
2630  * prepare_task_switch sets up locking and calls architecture specific
2631  * hooks.
2632  */
2633 static inline void
2634 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2635 		    struct task_struct *next)
2636 {
2637 	sched_info_switch(rq, prev, next);
2638 	perf_event_task_sched_out(prev, next);
2639 	fire_sched_out_preempt_notifiers(prev, next);
2640 	prepare_task(next);
2641 	prepare_arch_switch(next);
2642 }
2643 
2644 /**
2645  * finish_task_switch - clean up after a task-switch
2646  * @prev: the thread we just switched away from.
2647  *
2648  * finish_task_switch must be called after the context switch, paired
2649  * with a prepare_task_switch call before the context switch.
2650  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2651  * and do any other architecture-specific cleanup actions.
2652  *
2653  * Note that we may have delayed dropping an mm in context_switch(). If
2654  * so, we finish that here outside of the runqueue lock. (Doing it
2655  * with the lock held can cause deadlocks; see schedule() for
2656  * details.)
2657  *
2658  * The context switch have flipped the stack from under us and restored the
2659  * local variables which were saved when this task called schedule() in the
2660  * past. prev == current is still correct but we need to recalculate this_rq
2661  * because prev may have moved to another CPU.
2662  */
2663 static struct rq *finish_task_switch(struct task_struct *prev)
2664 	__releases(rq->lock)
2665 {
2666 	struct rq *rq = this_rq();
2667 	struct mm_struct *mm = rq->prev_mm;
2668 	long prev_state;
2669 
2670 	/*
2671 	 * The previous task will have left us with a preempt_count of 2
2672 	 * because it left us after:
2673 	 *
2674 	 *	schedule()
2675 	 *	  preempt_disable();			// 1
2676 	 *	  __schedule()
2677 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2678 	 *
2679 	 * Also, see FORK_PREEMPT_COUNT.
2680 	 */
2681 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2682 		      "corrupted preempt_count: %s/%d/0x%x\n",
2683 		      current->comm, current->pid, preempt_count()))
2684 		preempt_count_set(FORK_PREEMPT_COUNT);
2685 
2686 	rq->prev_mm = NULL;
2687 
2688 	/*
2689 	 * A task struct has one reference for the use as "current".
2690 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2691 	 * schedule one last time. The schedule call will never return, and
2692 	 * the scheduled task must drop that reference.
2693 	 *
2694 	 * We must observe prev->state before clearing prev->on_cpu (in
2695 	 * finish_task), otherwise a concurrent wakeup can get prev
2696 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2697 	 * transition, resulting in a double drop.
2698 	 */
2699 	prev_state = prev->state;
2700 	vtime_task_switch(prev);
2701 	perf_event_task_sched_in(prev, current);
2702 	finish_task(prev);
2703 	finish_lock_switch(rq);
2704 	finish_arch_post_lock_switch();
2705 
2706 	fire_sched_in_preempt_notifiers(current);
2707 	/*
2708 	 * When switching through a kernel thread, the loop in
2709 	 * membarrier_{private,global}_expedited() may have observed that
2710 	 * kernel thread and not issued an IPI. It is therefore possible to
2711 	 * schedule between user->kernel->user threads without passing though
2712 	 * switch_mm(). Membarrier requires a barrier after storing to
2713 	 * rq->curr, before returning to userspace, so provide them here:
2714 	 *
2715 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2716 	 *   provided by mmdrop(),
2717 	 * - a sync_core for SYNC_CORE.
2718 	 */
2719 	if (mm) {
2720 		membarrier_mm_sync_core_before_usermode(mm);
2721 		mmdrop(mm);
2722 	}
2723 	if (unlikely(prev_state == TASK_DEAD)) {
2724 		if (prev->sched_class->task_dead)
2725 			prev->sched_class->task_dead(prev);
2726 
2727 		/*
2728 		 * Remove function-return probe instances associated with this
2729 		 * task and put them back on the free list.
2730 		 */
2731 		kprobe_flush_task(prev);
2732 
2733 		/* Task is done with its stack. */
2734 		put_task_stack(prev);
2735 
2736 		put_task_struct(prev);
2737 	}
2738 
2739 	tick_nohz_task_switch();
2740 	return rq;
2741 }
2742 
2743 #ifdef CONFIG_SMP
2744 
2745 /* rq->lock is NOT held, but preemption is disabled */
2746 static void __balance_callback(struct rq *rq)
2747 {
2748 	struct callback_head *head, *next;
2749 	void (*func)(struct rq *rq);
2750 	unsigned long flags;
2751 
2752 	raw_spin_lock_irqsave(&rq->lock, flags);
2753 	head = rq->balance_callback;
2754 	rq->balance_callback = NULL;
2755 	while (head) {
2756 		func = (void (*)(struct rq *))head->func;
2757 		next = head->next;
2758 		head->next = NULL;
2759 		head = next;
2760 
2761 		func(rq);
2762 	}
2763 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2764 }
2765 
2766 static inline void balance_callback(struct rq *rq)
2767 {
2768 	if (unlikely(rq->balance_callback))
2769 		__balance_callback(rq);
2770 }
2771 
2772 #else
2773 
2774 static inline void balance_callback(struct rq *rq)
2775 {
2776 }
2777 
2778 #endif
2779 
2780 /**
2781  * schedule_tail - first thing a freshly forked thread must call.
2782  * @prev: the thread we just switched away from.
2783  */
2784 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2785 	__releases(rq->lock)
2786 {
2787 	struct rq *rq;
2788 
2789 	/*
2790 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2791 	 * finish_task_switch() for details.
2792 	 *
2793 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2794 	 * and the preempt_enable() will end up enabling preemption (on
2795 	 * PREEMPT_COUNT kernels).
2796 	 */
2797 
2798 	rq = finish_task_switch(prev);
2799 	balance_callback(rq);
2800 	preempt_enable();
2801 
2802 	if (current->set_child_tid)
2803 		put_user(task_pid_vnr(current), current->set_child_tid);
2804 }
2805 
2806 /*
2807  * context_switch - switch to the new MM and the new thread's register state.
2808  */
2809 static __always_inline struct rq *
2810 context_switch(struct rq *rq, struct task_struct *prev,
2811 	       struct task_struct *next, struct rq_flags *rf)
2812 {
2813 	struct mm_struct *mm, *oldmm;
2814 
2815 	prepare_task_switch(rq, prev, next);
2816 
2817 	mm = next->mm;
2818 	oldmm = prev->active_mm;
2819 	/*
2820 	 * For paravirt, this is coupled with an exit in switch_to to
2821 	 * combine the page table reload and the switch backend into
2822 	 * one hypercall.
2823 	 */
2824 	arch_start_context_switch(prev);
2825 
2826 	/*
2827 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2828 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2829 	 * Both of these contain the full memory barrier required by
2830 	 * membarrier after storing to rq->curr, before returning to
2831 	 * user-space.
2832 	 */
2833 	if (!mm) {
2834 		next->active_mm = oldmm;
2835 		mmgrab(oldmm);
2836 		enter_lazy_tlb(oldmm, next);
2837 	} else
2838 		switch_mm_irqs_off(oldmm, mm, next);
2839 
2840 	if (!prev->mm) {
2841 		prev->active_mm = NULL;
2842 		rq->prev_mm = oldmm;
2843 	}
2844 
2845 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2846 
2847 	/*
2848 	 * Since the runqueue lock will be released by the next
2849 	 * task (which is an invalid locking op but in the case
2850 	 * of the scheduler it's an obvious special-case), so we
2851 	 * do an early lockdep release here:
2852 	 */
2853 	rq_unpin_lock(rq, rf);
2854 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2855 
2856 	/* Here we just switch the register state and the stack. */
2857 	switch_to(prev, next, prev);
2858 	barrier();
2859 
2860 	return finish_task_switch(prev);
2861 }
2862 
2863 /*
2864  * nr_running and nr_context_switches:
2865  *
2866  * externally visible scheduler statistics: current number of runnable
2867  * threads, total number of context switches performed since bootup.
2868  */
2869 unsigned long nr_running(void)
2870 {
2871 	unsigned long i, sum = 0;
2872 
2873 	for_each_online_cpu(i)
2874 		sum += cpu_rq(i)->nr_running;
2875 
2876 	return sum;
2877 }
2878 
2879 /*
2880  * Check if only the current task is running on the CPU.
2881  *
2882  * Caution: this function does not check that the caller has disabled
2883  * preemption, thus the result might have a time-of-check-to-time-of-use
2884  * race.  The caller is responsible to use it correctly, for example:
2885  *
2886  * - from a non-preemptable section (of course)
2887  *
2888  * - from a thread that is bound to a single CPU
2889  *
2890  * - in a loop with very short iterations (e.g. a polling loop)
2891  */
2892 bool single_task_running(void)
2893 {
2894 	return raw_rq()->nr_running == 1;
2895 }
2896 EXPORT_SYMBOL(single_task_running);
2897 
2898 unsigned long long nr_context_switches(void)
2899 {
2900 	int i;
2901 	unsigned long long sum = 0;
2902 
2903 	for_each_possible_cpu(i)
2904 		sum += cpu_rq(i)->nr_switches;
2905 
2906 	return sum;
2907 }
2908 
2909 /*
2910  * IO-wait accounting, and how its mostly bollocks (on SMP).
2911  *
2912  * The idea behind IO-wait account is to account the idle time that we could
2913  * have spend running if it were not for IO. That is, if we were to improve the
2914  * storage performance, we'd have a proportional reduction in IO-wait time.
2915  *
2916  * This all works nicely on UP, where, when a task blocks on IO, we account
2917  * idle time as IO-wait, because if the storage were faster, it could've been
2918  * running and we'd not be idle.
2919  *
2920  * This has been extended to SMP, by doing the same for each CPU. This however
2921  * is broken.
2922  *
2923  * Imagine for instance the case where two tasks block on one CPU, only the one
2924  * CPU will have IO-wait accounted, while the other has regular idle. Even
2925  * though, if the storage were faster, both could've ran at the same time,
2926  * utilising both CPUs.
2927  *
2928  * This means, that when looking globally, the current IO-wait accounting on
2929  * SMP is a lower bound, by reason of under accounting.
2930  *
2931  * Worse, since the numbers are provided per CPU, they are sometimes
2932  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2933  * associated with any one particular CPU, it can wake to another CPU than it
2934  * blocked on. This means the per CPU IO-wait number is meaningless.
2935  *
2936  * Task CPU affinities can make all that even more 'interesting'.
2937  */
2938 
2939 unsigned long nr_iowait(void)
2940 {
2941 	unsigned long i, sum = 0;
2942 
2943 	for_each_possible_cpu(i)
2944 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2945 
2946 	return sum;
2947 }
2948 
2949 /*
2950  * Consumers of these two interfaces, like for example the cpufreq menu
2951  * governor are using nonsensical data. Boosting frequency for a CPU that has
2952  * IO-wait which might not even end up running the task when it does become
2953  * runnable.
2954  */
2955 
2956 unsigned long nr_iowait_cpu(int cpu)
2957 {
2958 	struct rq *this = cpu_rq(cpu);
2959 	return atomic_read(&this->nr_iowait);
2960 }
2961 
2962 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2963 {
2964 	struct rq *rq = this_rq();
2965 	*nr_waiters = atomic_read(&rq->nr_iowait);
2966 	*load = rq->load.weight;
2967 }
2968 
2969 #ifdef CONFIG_SMP
2970 
2971 /*
2972  * sched_exec - execve() is a valuable balancing opportunity, because at
2973  * this point the task has the smallest effective memory and cache footprint.
2974  */
2975 void sched_exec(void)
2976 {
2977 	struct task_struct *p = current;
2978 	unsigned long flags;
2979 	int dest_cpu;
2980 
2981 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2982 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2983 	if (dest_cpu == smp_processor_id())
2984 		goto unlock;
2985 
2986 	if (likely(cpu_active(dest_cpu))) {
2987 		struct migration_arg arg = { p, dest_cpu };
2988 
2989 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2990 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2991 		return;
2992 	}
2993 unlock:
2994 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 }
2996 
2997 #endif
2998 
2999 DEFINE_PER_CPU(struct kernel_stat, kstat);
3000 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3001 
3002 EXPORT_PER_CPU_SYMBOL(kstat);
3003 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3004 
3005 /*
3006  * The function fair_sched_class.update_curr accesses the struct curr
3007  * and its field curr->exec_start; when called from task_sched_runtime(),
3008  * we observe a high rate of cache misses in practice.
3009  * Prefetching this data results in improved performance.
3010  */
3011 static inline void prefetch_curr_exec_start(struct task_struct *p)
3012 {
3013 #ifdef CONFIG_FAIR_GROUP_SCHED
3014 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3015 #else
3016 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3017 #endif
3018 	prefetch(curr);
3019 	prefetch(&curr->exec_start);
3020 }
3021 
3022 /*
3023  * Return accounted runtime for the task.
3024  * In case the task is currently running, return the runtime plus current's
3025  * pending runtime that have not been accounted yet.
3026  */
3027 unsigned long long task_sched_runtime(struct task_struct *p)
3028 {
3029 	struct rq_flags rf;
3030 	struct rq *rq;
3031 	u64 ns;
3032 
3033 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3034 	/*
3035 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3036 	 * So we have a optimization chance when the task's delta_exec is 0.
3037 	 * Reading ->on_cpu is racy, but this is ok.
3038 	 *
3039 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3040 	 * If we race with it entering CPU, unaccounted time is 0. This is
3041 	 * indistinguishable from the read occurring a few cycles earlier.
3042 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3043 	 * been accounted, so we're correct here as well.
3044 	 */
3045 	if (!p->on_cpu || !task_on_rq_queued(p))
3046 		return p->se.sum_exec_runtime;
3047 #endif
3048 
3049 	rq = task_rq_lock(p, &rf);
3050 	/*
3051 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3052 	 * project cycles that may never be accounted to this
3053 	 * thread, breaking clock_gettime().
3054 	 */
3055 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3056 		prefetch_curr_exec_start(p);
3057 		update_rq_clock(rq);
3058 		p->sched_class->update_curr(rq);
3059 	}
3060 	ns = p->se.sum_exec_runtime;
3061 	task_rq_unlock(rq, p, &rf);
3062 
3063 	return ns;
3064 }
3065 
3066 /*
3067  * This function gets called by the timer code, with HZ frequency.
3068  * We call it with interrupts disabled.
3069  */
3070 void scheduler_tick(void)
3071 {
3072 	int cpu = smp_processor_id();
3073 	struct rq *rq = cpu_rq(cpu);
3074 	struct task_struct *curr = rq->curr;
3075 	struct rq_flags rf;
3076 
3077 	sched_clock_tick();
3078 
3079 	rq_lock(rq, &rf);
3080 
3081 	update_rq_clock(rq);
3082 	curr->sched_class->task_tick(rq, curr, 0);
3083 	cpu_load_update_active(rq);
3084 	calc_global_load_tick(rq);
3085 
3086 	rq_unlock(rq, &rf);
3087 
3088 	perf_event_task_tick();
3089 
3090 #ifdef CONFIG_SMP
3091 	rq->idle_balance = idle_cpu(cpu);
3092 	trigger_load_balance(rq);
3093 #endif
3094 	rq_last_tick_reset(rq);
3095 }
3096 
3097 #ifdef CONFIG_NO_HZ_FULL
3098 /**
3099  * scheduler_tick_max_deferment
3100  *
3101  * Keep at least one tick per second when a single
3102  * active task is running because the scheduler doesn't
3103  * yet completely support full dynticks environment.
3104  *
3105  * This makes sure that uptime, CFS vruntime, load
3106  * balancing, etc... continue to move forward, even
3107  * with a very low granularity.
3108  *
3109  * Return: Maximum deferment in nanoseconds.
3110  */
3111 u64 scheduler_tick_max_deferment(void)
3112 {
3113 	struct rq *rq = this_rq();
3114 	unsigned long next, now = READ_ONCE(jiffies);
3115 
3116 	next = rq->last_sched_tick + HZ;
3117 
3118 	if (time_before_eq(next, now))
3119 		return 0;
3120 
3121 	return jiffies_to_nsecs(next - now);
3122 }
3123 #endif
3124 
3125 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3126 				defined(CONFIG_PREEMPT_TRACER))
3127 /*
3128  * If the value passed in is equal to the current preempt count
3129  * then we just disabled preemption. Start timing the latency.
3130  */
3131 static inline void preempt_latency_start(int val)
3132 {
3133 	if (preempt_count() == val) {
3134 		unsigned long ip = get_lock_parent_ip();
3135 #ifdef CONFIG_DEBUG_PREEMPT
3136 		current->preempt_disable_ip = ip;
3137 #endif
3138 		trace_preempt_off(CALLER_ADDR0, ip);
3139 	}
3140 }
3141 
3142 void preempt_count_add(int val)
3143 {
3144 #ifdef CONFIG_DEBUG_PREEMPT
3145 	/*
3146 	 * Underflow?
3147 	 */
3148 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3149 		return;
3150 #endif
3151 	__preempt_count_add(val);
3152 #ifdef CONFIG_DEBUG_PREEMPT
3153 	/*
3154 	 * Spinlock count overflowing soon?
3155 	 */
3156 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3157 				PREEMPT_MASK - 10);
3158 #endif
3159 	preempt_latency_start(val);
3160 }
3161 EXPORT_SYMBOL(preempt_count_add);
3162 NOKPROBE_SYMBOL(preempt_count_add);
3163 
3164 /*
3165  * If the value passed in equals to the current preempt count
3166  * then we just enabled preemption. Stop timing the latency.
3167  */
3168 static inline void preempt_latency_stop(int val)
3169 {
3170 	if (preempt_count() == val)
3171 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3172 }
3173 
3174 void preempt_count_sub(int val)
3175 {
3176 #ifdef CONFIG_DEBUG_PREEMPT
3177 	/*
3178 	 * Underflow?
3179 	 */
3180 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3181 		return;
3182 	/*
3183 	 * Is the spinlock portion underflowing?
3184 	 */
3185 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3186 			!(preempt_count() & PREEMPT_MASK)))
3187 		return;
3188 #endif
3189 
3190 	preempt_latency_stop(val);
3191 	__preempt_count_sub(val);
3192 }
3193 EXPORT_SYMBOL(preempt_count_sub);
3194 NOKPROBE_SYMBOL(preempt_count_sub);
3195 
3196 #else
3197 static inline void preempt_latency_start(int val) { }
3198 static inline void preempt_latency_stop(int val) { }
3199 #endif
3200 
3201 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3202 {
3203 #ifdef CONFIG_DEBUG_PREEMPT
3204 	return p->preempt_disable_ip;
3205 #else
3206 	return 0;
3207 #endif
3208 }
3209 
3210 /*
3211  * Print scheduling while atomic bug:
3212  */
3213 static noinline void __schedule_bug(struct task_struct *prev)
3214 {
3215 	/* Save this before calling printk(), since that will clobber it */
3216 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3217 
3218 	if (oops_in_progress)
3219 		return;
3220 
3221 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3222 		prev->comm, prev->pid, preempt_count());
3223 
3224 	debug_show_held_locks(prev);
3225 	print_modules();
3226 	if (irqs_disabled())
3227 		print_irqtrace_events(prev);
3228 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3229 	    && in_atomic_preempt_off()) {
3230 		pr_err("Preemption disabled at:");
3231 		print_ip_sym(preempt_disable_ip);
3232 		pr_cont("\n");
3233 	}
3234 	if (panic_on_warn)
3235 		panic("scheduling while atomic\n");
3236 
3237 	dump_stack();
3238 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3239 }
3240 
3241 /*
3242  * Various schedule()-time debugging checks and statistics:
3243  */
3244 static inline void schedule_debug(struct task_struct *prev)
3245 {
3246 #ifdef CONFIG_SCHED_STACK_END_CHECK
3247 	if (task_stack_end_corrupted(prev))
3248 		panic("corrupted stack end detected inside scheduler\n");
3249 #endif
3250 
3251 	if (unlikely(in_atomic_preempt_off())) {
3252 		__schedule_bug(prev);
3253 		preempt_count_set(PREEMPT_DISABLED);
3254 	}
3255 	rcu_sleep_check();
3256 
3257 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3258 
3259 	schedstat_inc(this_rq()->sched_count);
3260 }
3261 
3262 /*
3263  * Pick up the highest-prio task:
3264  */
3265 static inline struct task_struct *
3266 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3267 {
3268 	const struct sched_class *class;
3269 	struct task_struct *p;
3270 
3271 	/*
3272 	 * Optimization: we know that if all tasks are in the fair class we can
3273 	 * call that function directly, but only if the @prev task wasn't of a
3274 	 * higher scheduling class, because otherwise those loose the
3275 	 * opportunity to pull in more work from other CPUs.
3276 	 */
3277 	if (likely((prev->sched_class == &idle_sched_class ||
3278 		    prev->sched_class == &fair_sched_class) &&
3279 		   rq->nr_running == rq->cfs.h_nr_running)) {
3280 
3281 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3282 		if (unlikely(p == RETRY_TASK))
3283 			goto again;
3284 
3285 		/* Assumes fair_sched_class->next == idle_sched_class */
3286 		if (unlikely(!p))
3287 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3288 
3289 		return p;
3290 	}
3291 
3292 again:
3293 	for_each_class(class) {
3294 		p = class->pick_next_task(rq, prev, rf);
3295 		if (p) {
3296 			if (unlikely(p == RETRY_TASK))
3297 				goto again;
3298 			return p;
3299 		}
3300 	}
3301 
3302 	/* The idle class should always have a runnable task: */
3303 	BUG();
3304 }
3305 
3306 /*
3307  * __schedule() is the main scheduler function.
3308  *
3309  * The main means of driving the scheduler and thus entering this function are:
3310  *
3311  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3312  *
3313  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3314  *      paths. For example, see arch/x86/entry_64.S.
3315  *
3316  *      To drive preemption between tasks, the scheduler sets the flag in timer
3317  *      interrupt handler scheduler_tick().
3318  *
3319  *   3. Wakeups don't really cause entry into schedule(). They add a
3320  *      task to the run-queue and that's it.
3321  *
3322  *      Now, if the new task added to the run-queue preempts the current
3323  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3324  *      called on the nearest possible occasion:
3325  *
3326  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3327  *
3328  *         - in syscall or exception context, at the next outmost
3329  *           preempt_enable(). (this might be as soon as the wake_up()'s
3330  *           spin_unlock()!)
3331  *
3332  *         - in IRQ context, return from interrupt-handler to
3333  *           preemptible context
3334  *
3335  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3336  *         then at the next:
3337  *
3338  *          - cond_resched() call
3339  *          - explicit schedule() call
3340  *          - return from syscall or exception to user-space
3341  *          - return from interrupt-handler to user-space
3342  *
3343  * WARNING: must be called with preemption disabled!
3344  */
3345 static void __sched notrace __schedule(bool preempt)
3346 {
3347 	struct task_struct *prev, *next;
3348 	unsigned long *switch_count;
3349 	struct rq_flags rf;
3350 	struct rq *rq;
3351 	int cpu;
3352 
3353 	cpu = smp_processor_id();
3354 	rq = cpu_rq(cpu);
3355 	prev = rq->curr;
3356 
3357 	schedule_debug(prev);
3358 
3359 	if (sched_feat(HRTICK))
3360 		hrtick_clear(rq);
3361 
3362 	local_irq_disable();
3363 	rcu_note_context_switch(preempt);
3364 
3365 	/*
3366 	 * Make sure that signal_pending_state()->signal_pending() below
3367 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3368 	 * done by the caller to avoid the race with signal_wake_up().
3369 	 *
3370 	 * The membarrier system call requires a full memory barrier
3371 	 * after coming from user-space, before storing to rq->curr.
3372 	 */
3373 	rq_lock(rq, &rf);
3374 	smp_mb__after_spinlock();
3375 
3376 	/* Promote REQ to ACT */
3377 	rq->clock_update_flags <<= 1;
3378 	update_rq_clock(rq);
3379 
3380 	switch_count = &prev->nivcsw;
3381 	if (!preempt && prev->state) {
3382 		if (unlikely(signal_pending_state(prev->state, prev))) {
3383 			prev->state = TASK_RUNNING;
3384 		} else {
3385 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3386 			prev->on_rq = 0;
3387 
3388 			if (prev->in_iowait) {
3389 				atomic_inc(&rq->nr_iowait);
3390 				delayacct_blkio_start();
3391 			}
3392 
3393 			/*
3394 			 * If a worker went to sleep, notify and ask workqueue
3395 			 * whether it wants to wake up a task to maintain
3396 			 * concurrency.
3397 			 */
3398 			if (prev->flags & PF_WQ_WORKER) {
3399 				struct task_struct *to_wakeup;
3400 
3401 				to_wakeup = wq_worker_sleeping(prev);
3402 				if (to_wakeup)
3403 					try_to_wake_up_local(to_wakeup, &rf);
3404 			}
3405 		}
3406 		switch_count = &prev->nvcsw;
3407 	}
3408 
3409 	next = pick_next_task(rq, prev, &rf);
3410 	clear_tsk_need_resched(prev);
3411 	clear_preempt_need_resched();
3412 
3413 	if (likely(prev != next)) {
3414 		rq->nr_switches++;
3415 		rq->curr = next;
3416 		/*
3417 		 * The membarrier system call requires each architecture
3418 		 * to have a full memory barrier after updating
3419 		 * rq->curr, before returning to user-space.
3420 		 *
3421 		 * Here are the schemes providing that barrier on the
3422 		 * various architectures:
3423 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3424 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3425 		 * - finish_lock_switch() for weakly-ordered
3426 		 *   architectures where spin_unlock is a full barrier,
3427 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3428 		 *   is a RELEASE barrier),
3429 		 */
3430 		++*switch_count;
3431 
3432 		trace_sched_switch(preempt, prev, next);
3433 
3434 		/* Also unlocks the rq: */
3435 		rq = context_switch(rq, prev, next, &rf);
3436 	} else {
3437 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3438 		rq_unlock_irq(rq, &rf);
3439 	}
3440 
3441 	balance_callback(rq);
3442 }
3443 
3444 void __noreturn do_task_dead(void)
3445 {
3446 	/*
3447 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3448 	 * when the following two conditions become true.
3449 	 *   - There is race condition of mmap_sem (It is acquired by
3450 	 *     exit_mm()), and
3451 	 *   - SMI occurs before setting TASK_RUNINNG.
3452 	 *     (or hypervisor of virtual machine switches to other guest)
3453 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3454 	 *
3455 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3456 	 * is held by try_to_wake_up()
3457 	 */
3458 	raw_spin_lock_irq(&current->pi_lock);
3459 	raw_spin_unlock_irq(&current->pi_lock);
3460 
3461 	/* Causes final put_task_struct in finish_task_switch(): */
3462 	__set_current_state(TASK_DEAD);
3463 
3464 	/* Tell freezer to ignore us: */
3465 	current->flags |= PF_NOFREEZE;
3466 
3467 	__schedule(false);
3468 	BUG();
3469 
3470 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3471 	for (;;)
3472 		cpu_relax();
3473 }
3474 
3475 static inline void sched_submit_work(struct task_struct *tsk)
3476 {
3477 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3478 		return;
3479 	/*
3480 	 * If we are going to sleep and we have plugged IO queued,
3481 	 * make sure to submit it to avoid deadlocks.
3482 	 */
3483 	if (blk_needs_flush_plug(tsk))
3484 		blk_schedule_flush_plug(tsk);
3485 }
3486 
3487 asmlinkage __visible void __sched schedule(void)
3488 {
3489 	struct task_struct *tsk = current;
3490 
3491 	sched_submit_work(tsk);
3492 	do {
3493 		preempt_disable();
3494 		__schedule(false);
3495 		sched_preempt_enable_no_resched();
3496 	} while (need_resched());
3497 }
3498 EXPORT_SYMBOL(schedule);
3499 
3500 /*
3501  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3502  * state (have scheduled out non-voluntarily) by making sure that all
3503  * tasks have either left the run queue or have gone into user space.
3504  * As idle tasks do not do either, they must not ever be preempted
3505  * (schedule out non-voluntarily).
3506  *
3507  * schedule_idle() is similar to schedule_preempt_disable() except that it
3508  * never enables preemption because it does not call sched_submit_work().
3509  */
3510 void __sched schedule_idle(void)
3511 {
3512 	/*
3513 	 * As this skips calling sched_submit_work(), which the idle task does
3514 	 * regardless because that function is a nop when the task is in a
3515 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3516 	 * current task can be in any other state. Note, idle is always in the
3517 	 * TASK_RUNNING state.
3518 	 */
3519 	WARN_ON_ONCE(current->state);
3520 	do {
3521 		__schedule(false);
3522 	} while (need_resched());
3523 }
3524 
3525 #ifdef CONFIG_CONTEXT_TRACKING
3526 asmlinkage __visible void __sched schedule_user(void)
3527 {
3528 	/*
3529 	 * If we come here after a random call to set_need_resched(),
3530 	 * or we have been woken up remotely but the IPI has not yet arrived,
3531 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3532 	 * we find a better solution.
3533 	 *
3534 	 * NB: There are buggy callers of this function.  Ideally we
3535 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3536 	 * too frequently to make sense yet.
3537 	 */
3538 	enum ctx_state prev_state = exception_enter();
3539 	schedule();
3540 	exception_exit(prev_state);
3541 }
3542 #endif
3543 
3544 /**
3545  * schedule_preempt_disabled - called with preemption disabled
3546  *
3547  * Returns with preemption disabled. Note: preempt_count must be 1
3548  */
3549 void __sched schedule_preempt_disabled(void)
3550 {
3551 	sched_preempt_enable_no_resched();
3552 	schedule();
3553 	preempt_disable();
3554 }
3555 
3556 static void __sched notrace preempt_schedule_common(void)
3557 {
3558 	do {
3559 		/*
3560 		 * Because the function tracer can trace preempt_count_sub()
3561 		 * and it also uses preempt_enable/disable_notrace(), if
3562 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3563 		 * by the function tracer will call this function again and
3564 		 * cause infinite recursion.
3565 		 *
3566 		 * Preemption must be disabled here before the function
3567 		 * tracer can trace. Break up preempt_disable() into two
3568 		 * calls. One to disable preemption without fear of being
3569 		 * traced. The other to still record the preemption latency,
3570 		 * which can also be traced by the function tracer.
3571 		 */
3572 		preempt_disable_notrace();
3573 		preempt_latency_start(1);
3574 		__schedule(true);
3575 		preempt_latency_stop(1);
3576 		preempt_enable_no_resched_notrace();
3577 
3578 		/*
3579 		 * Check again in case we missed a preemption opportunity
3580 		 * between schedule and now.
3581 		 */
3582 	} while (need_resched());
3583 }
3584 
3585 #ifdef CONFIG_PREEMPT
3586 /*
3587  * this is the entry point to schedule() from in-kernel preemption
3588  * off of preempt_enable. Kernel preemptions off return from interrupt
3589  * occur there and call schedule directly.
3590  */
3591 asmlinkage __visible void __sched notrace preempt_schedule(void)
3592 {
3593 	/*
3594 	 * If there is a non-zero preempt_count or interrupts are disabled,
3595 	 * we do not want to preempt the current task. Just return..
3596 	 */
3597 	if (likely(!preemptible()))
3598 		return;
3599 
3600 	preempt_schedule_common();
3601 }
3602 NOKPROBE_SYMBOL(preempt_schedule);
3603 EXPORT_SYMBOL(preempt_schedule);
3604 
3605 /**
3606  * preempt_schedule_notrace - preempt_schedule called by tracing
3607  *
3608  * The tracing infrastructure uses preempt_enable_notrace to prevent
3609  * recursion and tracing preempt enabling caused by the tracing
3610  * infrastructure itself. But as tracing can happen in areas coming
3611  * from userspace or just about to enter userspace, a preempt enable
3612  * can occur before user_exit() is called. This will cause the scheduler
3613  * to be called when the system is still in usermode.
3614  *
3615  * To prevent this, the preempt_enable_notrace will use this function
3616  * instead of preempt_schedule() to exit user context if needed before
3617  * calling the scheduler.
3618  */
3619 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3620 {
3621 	enum ctx_state prev_ctx;
3622 
3623 	if (likely(!preemptible()))
3624 		return;
3625 
3626 	do {
3627 		/*
3628 		 * Because the function tracer can trace preempt_count_sub()
3629 		 * and it also uses preempt_enable/disable_notrace(), if
3630 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 		 * by the function tracer will call this function again and
3632 		 * cause infinite recursion.
3633 		 *
3634 		 * Preemption must be disabled here before the function
3635 		 * tracer can trace. Break up preempt_disable() into two
3636 		 * calls. One to disable preemption without fear of being
3637 		 * traced. The other to still record the preemption latency,
3638 		 * which can also be traced by the function tracer.
3639 		 */
3640 		preempt_disable_notrace();
3641 		preempt_latency_start(1);
3642 		/*
3643 		 * Needs preempt disabled in case user_exit() is traced
3644 		 * and the tracer calls preempt_enable_notrace() causing
3645 		 * an infinite recursion.
3646 		 */
3647 		prev_ctx = exception_enter();
3648 		__schedule(true);
3649 		exception_exit(prev_ctx);
3650 
3651 		preempt_latency_stop(1);
3652 		preempt_enable_no_resched_notrace();
3653 	} while (need_resched());
3654 }
3655 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3656 
3657 #endif /* CONFIG_PREEMPT */
3658 
3659 /*
3660  * this is the entry point to schedule() from kernel preemption
3661  * off of irq context.
3662  * Note, that this is called and return with irqs disabled. This will
3663  * protect us against recursive calling from irq.
3664  */
3665 asmlinkage __visible void __sched preempt_schedule_irq(void)
3666 {
3667 	enum ctx_state prev_state;
3668 
3669 	/* Catch callers which need to be fixed */
3670 	BUG_ON(preempt_count() || !irqs_disabled());
3671 
3672 	prev_state = exception_enter();
3673 
3674 	do {
3675 		preempt_disable();
3676 		local_irq_enable();
3677 		__schedule(true);
3678 		local_irq_disable();
3679 		sched_preempt_enable_no_resched();
3680 	} while (need_resched());
3681 
3682 	exception_exit(prev_state);
3683 }
3684 
3685 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3686 			  void *key)
3687 {
3688 	return try_to_wake_up(curr->private, mode, wake_flags);
3689 }
3690 EXPORT_SYMBOL(default_wake_function);
3691 
3692 #ifdef CONFIG_RT_MUTEXES
3693 
3694 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3695 {
3696 	if (pi_task)
3697 		prio = min(prio, pi_task->prio);
3698 
3699 	return prio;
3700 }
3701 
3702 static inline int rt_effective_prio(struct task_struct *p, int prio)
3703 {
3704 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3705 
3706 	return __rt_effective_prio(pi_task, prio);
3707 }
3708 
3709 /*
3710  * rt_mutex_setprio - set the current priority of a task
3711  * @p: task to boost
3712  * @pi_task: donor task
3713  *
3714  * This function changes the 'effective' priority of a task. It does
3715  * not touch ->normal_prio like __setscheduler().
3716  *
3717  * Used by the rt_mutex code to implement priority inheritance
3718  * logic. Call site only calls if the priority of the task changed.
3719  */
3720 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3721 {
3722 	int prio, oldprio, queued, running, queue_flag =
3723 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3724 	const struct sched_class *prev_class;
3725 	struct rq_flags rf;
3726 	struct rq *rq;
3727 
3728 	/* XXX used to be waiter->prio, not waiter->task->prio */
3729 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3730 
3731 	/*
3732 	 * If nothing changed; bail early.
3733 	 */
3734 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3735 		return;
3736 
3737 	rq = __task_rq_lock(p, &rf);
3738 	update_rq_clock(rq);
3739 	/*
3740 	 * Set under pi_lock && rq->lock, such that the value can be used under
3741 	 * either lock.
3742 	 *
3743 	 * Note that there is loads of tricky to make this pointer cache work
3744 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3745 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3746 	 * task is allowed to run again (and can exit). This ensures the pointer
3747 	 * points to a blocked task -- which guaratees the task is present.
3748 	 */
3749 	p->pi_top_task = pi_task;
3750 
3751 	/*
3752 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3753 	 */
3754 	if (prio == p->prio && !dl_prio(prio))
3755 		goto out_unlock;
3756 
3757 	/*
3758 	 * Idle task boosting is a nono in general. There is one
3759 	 * exception, when PREEMPT_RT and NOHZ is active:
3760 	 *
3761 	 * The idle task calls get_next_timer_interrupt() and holds
3762 	 * the timer wheel base->lock on the CPU and another CPU wants
3763 	 * to access the timer (probably to cancel it). We can safely
3764 	 * ignore the boosting request, as the idle CPU runs this code
3765 	 * with interrupts disabled and will complete the lock
3766 	 * protected section without being interrupted. So there is no
3767 	 * real need to boost.
3768 	 */
3769 	if (unlikely(p == rq->idle)) {
3770 		WARN_ON(p != rq->curr);
3771 		WARN_ON(p->pi_blocked_on);
3772 		goto out_unlock;
3773 	}
3774 
3775 	trace_sched_pi_setprio(p, pi_task);
3776 	oldprio = p->prio;
3777 
3778 	if (oldprio == prio)
3779 		queue_flag &= ~DEQUEUE_MOVE;
3780 
3781 	prev_class = p->sched_class;
3782 	queued = task_on_rq_queued(p);
3783 	running = task_current(rq, p);
3784 	if (queued)
3785 		dequeue_task(rq, p, queue_flag);
3786 	if (running)
3787 		put_prev_task(rq, p);
3788 
3789 	/*
3790 	 * Boosting condition are:
3791 	 * 1. -rt task is running and holds mutex A
3792 	 *      --> -dl task blocks on mutex A
3793 	 *
3794 	 * 2. -dl task is running and holds mutex A
3795 	 *      --> -dl task blocks on mutex A and could preempt the
3796 	 *          running task
3797 	 */
3798 	if (dl_prio(prio)) {
3799 		if (!dl_prio(p->normal_prio) ||
3800 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3801 			p->dl.dl_boosted = 1;
3802 			queue_flag |= ENQUEUE_REPLENISH;
3803 		} else
3804 			p->dl.dl_boosted = 0;
3805 		p->sched_class = &dl_sched_class;
3806 	} else if (rt_prio(prio)) {
3807 		if (dl_prio(oldprio))
3808 			p->dl.dl_boosted = 0;
3809 		if (oldprio < prio)
3810 			queue_flag |= ENQUEUE_HEAD;
3811 		p->sched_class = &rt_sched_class;
3812 	} else {
3813 		if (dl_prio(oldprio))
3814 			p->dl.dl_boosted = 0;
3815 		if (rt_prio(oldprio))
3816 			p->rt.timeout = 0;
3817 		p->sched_class = &fair_sched_class;
3818 	}
3819 
3820 	p->prio = prio;
3821 
3822 	if (queued)
3823 		enqueue_task(rq, p, queue_flag);
3824 	if (running)
3825 		set_curr_task(rq, p);
3826 
3827 	check_class_changed(rq, p, prev_class, oldprio);
3828 out_unlock:
3829 	/* Avoid rq from going away on us: */
3830 	preempt_disable();
3831 	__task_rq_unlock(rq, &rf);
3832 
3833 	balance_callback(rq);
3834 	preempt_enable();
3835 }
3836 #else
3837 static inline int rt_effective_prio(struct task_struct *p, int prio)
3838 {
3839 	return prio;
3840 }
3841 #endif
3842 
3843 void set_user_nice(struct task_struct *p, long nice)
3844 {
3845 	bool queued, running;
3846 	int old_prio, delta;
3847 	struct rq_flags rf;
3848 	struct rq *rq;
3849 
3850 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3851 		return;
3852 	/*
3853 	 * We have to be careful, if called from sys_setpriority(),
3854 	 * the task might be in the middle of scheduling on another CPU.
3855 	 */
3856 	rq = task_rq_lock(p, &rf);
3857 	update_rq_clock(rq);
3858 
3859 	/*
3860 	 * The RT priorities are set via sched_setscheduler(), but we still
3861 	 * allow the 'normal' nice value to be set - but as expected
3862 	 * it wont have any effect on scheduling until the task is
3863 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3864 	 */
3865 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3866 		p->static_prio = NICE_TO_PRIO(nice);
3867 		goto out_unlock;
3868 	}
3869 	queued = task_on_rq_queued(p);
3870 	running = task_current(rq, p);
3871 	if (queued)
3872 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3873 	if (running)
3874 		put_prev_task(rq, p);
3875 
3876 	p->static_prio = NICE_TO_PRIO(nice);
3877 	set_load_weight(p, true);
3878 	old_prio = p->prio;
3879 	p->prio = effective_prio(p);
3880 	delta = p->prio - old_prio;
3881 
3882 	if (queued) {
3883 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3884 		/*
3885 		 * If the task increased its priority or is running and
3886 		 * lowered its priority, then reschedule its CPU:
3887 		 */
3888 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3889 			resched_curr(rq);
3890 	}
3891 	if (running)
3892 		set_curr_task(rq, p);
3893 out_unlock:
3894 	task_rq_unlock(rq, p, &rf);
3895 }
3896 EXPORT_SYMBOL(set_user_nice);
3897 
3898 /*
3899  * can_nice - check if a task can reduce its nice value
3900  * @p: task
3901  * @nice: nice value
3902  */
3903 int can_nice(const struct task_struct *p, const int nice)
3904 {
3905 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3906 	int nice_rlim = nice_to_rlimit(nice);
3907 
3908 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3909 		capable(CAP_SYS_NICE));
3910 }
3911 
3912 #ifdef __ARCH_WANT_SYS_NICE
3913 
3914 /*
3915  * sys_nice - change the priority of the current process.
3916  * @increment: priority increment
3917  *
3918  * sys_setpriority is a more generic, but much slower function that
3919  * does similar things.
3920  */
3921 SYSCALL_DEFINE1(nice, int, increment)
3922 {
3923 	long nice, retval;
3924 
3925 	/*
3926 	 * Setpriority might change our priority at the same moment.
3927 	 * We don't have to worry. Conceptually one call occurs first
3928 	 * and we have a single winner.
3929 	 */
3930 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3931 	nice = task_nice(current) + increment;
3932 
3933 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3934 	if (increment < 0 && !can_nice(current, nice))
3935 		return -EPERM;
3936 
3937 	retval = security_task_setnice(current, nice);
3938 	if (retval)
3939 		return retval;
3940 
3941 	set_user_nice(current, nice);
3942 	return 0;
3943 }
3944 
3945 #endif
3946 
3947 /**
3948  * task_prio - return the priority value of a given task.
3949  * @p: the task in question.
3950  *
3951  * Return: The priority value as seen by users in /proc.
3952  * RT tasks are offset by -200. Normal tasks are centered
3953  * around 0, value goes from -16 to +15.
3954  */
3955 int task_prio(const struct task_struct *p)
3956 {
3957 	return p->prio - MAX_RT_PRIO;
3958 }
3959 
3960 /**
3961  * idle_cpu - is a given CPU idle currently?
3962  * @cpu: the processor in question.
3963  *
3964  * Return: 1 if the CPU is currently idle. 0 otherwise.
3965  */
3966 int idle_cpu(int cpu)
3967 {
3968 	struct rq *rq = cpu_rq(cpu);
3969 
3970 	if (rq->curr != rq->idle)
3971 		return 0;
3972 
3973 	if (rq->nr_running)
3974 		return 0;
3975 
3976 #ifdef CONFIG_SMP
3977 	if (!llist_empty(&rq->wake_list))
3978 		return 0;
3979 #endif
3980 
3981 	return 1;
3982 }
3983 
3984 /**
3985  * idle_task - return the idle task for a given CPU.
3986  * @cpu: the processor in question.
3987  *
3988  * Return: The idle task for the CPU @cpu.
3989  */
3990 struct task_struct *idle_task(int cpu)
3991 {
3992 	return cpu_rq(cpu)->idle;
3993 }
3994 
3995 /**
3996  * find_process_by_pid - find a process with a matching PID value.
3997  * @pid: the pid in question.
3998  *
3999  * The task of @pid, if found. %NULL otherwise.
4000  */
4001 static struct task_struct *find_process_by_pid(pid_t pid)
4002 {
4003 	return pid ? find_task_by_vpid(pid) : current;
4004 }
4005 
4006 /*
4007  * sched_setparam() passes in -1 for its policy, to let the functions
4008  * it calls know not to change it.
4009  */
4010 #define SETPARAM_POLICY	-1
4011 
4012 static void __setscheduler_params(struct task_struct *p,
4013 		const struct sched_attr *attr)
4014 {
4015 	int policy = attr->sched_policy;
4016 
4017 	if (policy == SETPARAM_POLICY)
4018 		policy = p->policy;
4019 
4020 	p->policy = policy;
4021 
4022 	if (dl_policy(policy))
4023 		__setparam_dl(p, attr);
4024 	else if (fair_policy(policy))
4025 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4026 
4027 	/*
4028 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4029 	 * !rt_policy. Always setting this ensures that things like
4030 	 * getparam()/getattr() don't report silly values for !rt tasks.
4031 	 */
4032 	p->rt_priority = attr->sched_priority;
4033 	p->normal_prio = normal_prio(p);
4034 	set_load_weight(p, true);
4035 }
4036 
4037 /* Actually do priority change: must hold pi & rq lock. */
4038 static void __setscheduler(struct rq *rq, struct task_struct *p,
4039 			   const struct sched_attr *attr, bool keep_boost)
4040 {
4041 	__setscheduler_params(p, attr);
4042 
4043 	/*
4044 	 * Keep a potential priority boosting if called from
4045 	 * sched_setscheduler().
4046 	 */
4047 	p->prio = normal_prio(p);
4048 	if (keep_boost)
4049 		p->prio = rt_effective_prio(p, p->prio);
4050 
4051 	if (dl_prio(p->prio))
4052 		p->sched_class = &dl_sched_class;
4053 	else if (rt_prio(p->prio))
4054 		p->sched_class = &rt_sched_class;
4055 	else
4056 		p->sched_class = &fair_sched_class;
4057 }
4058 
4059 /*
4060  * Check the target process has a UID that matches the current process's:
4061  */
4062 static bool check_same_owner(struct task_struct *p)
4063 {
4064 	const struct cred *cred = current_cred(), *pcred;
4065 	bool match;
4066 
4067 	rcu_read_lock();
4068 	pcred = __task_cred(p);
4069 	match = (uid_eq(cred->euid, pcred->euid) ||
4070 		 uid_eq(cred->euid, pcred->uid));
4071 	rcu_read_unlock();
4072 	return match;
4073 }
4074 
4075 static int __sched_setscheduler(struct task_struct *p,
4076 				const struct sched_attr *attr,
4077 				bool user, bool pi)
4078 {
4079 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4080 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4081 	int retval, oldprio, oldpolicy = -1, queued, running;
4082 	int new_effective_prio, policy = attr->sched_policy;
4083 	const struct sched_class *prev_class;
4084 	struct rq_flags rf;
4085 	int reset_on_fork;
4086 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4087 	struct rq *rq;
4088 
4089 	/* The pi code expects interrupts enabled */
4090 	BUG_ON(pi && in_interrupt());
4091 recheck:
4092 	/* Double check policy once rq lock held: */
4093 	if (policy < 0) {
4094 		reset_on_fork = p->sched_reset_on_fork;
4095 		policy = oldpolicy = p->policy;
4096 	} else {
4097 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4098 
4099 		if (!valid_policy(policy))
4100 			return -EINVAL;
4101 	}
4102 
4103 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4104 		return -EINVAL;
4105 
4106 	/*
4107 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4108 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4109 	 * SCHED_BATCH and SCHED_IDLE is 0.
4110 	 */
4111 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4112 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4113 		return -EINVAL;
4114 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4115 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4116 		return -EINVAL;
4117 
4118 	/*
4119 	 * Allow unprivileged RT tasks to decrease priority:
4120 	 */
4121 	if (user && !capable(CAP_SYS_NICE)) {
4122 		if (fair_policy(policy)) {
4123 			if (attr->sched_nice < task_nice(p) &&
4124 			    !can_nice(p, attr->sched_nice))
4125 				return -EPERM;
4126 		}
4127 
4128 		if (rt_policy(policy)) {
4129 			unsigned long rlim_rtprio =
4130 					task_rlimit(p, RLIMIT_RTPRIO);
4131 
4132 			/* Can't set/change the rt policy: */
4133 			if (policy != p->policy && !rlim_rtprio)
4134 				return -EPERM;
4135 
4136 			/* Can't increase priority: */
4137 			if (attr->sched_priority > p->rt_priority &&
4138 			    attr->sched_priority > rlim_rtprio)
4139 				return -EPERM;
4140 		}
4141 
4142 		 /*
4143 		  * Can't set/change SCHED_DEADLINE policy at all for now
4144 		  * (safest behavior); in the future we would like to allow
4145 		  * unprivileged DL tasks to increase their relative deadline
4146 		  * or reduce their runtime (both ways reducing utilization)
4147 		  */
4148 		if (dl_policy(policy))
4149 			return -EPERM;
4150 
4151 		/*
4152 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4153 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4154 		 */
4155 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4156 			if (!can_nice(p, task_nice(p)))
4157 				return -EPERM;
4158 		}
4159 
4160 		/* Can't change other user's priorities: */
4161 		if (!check_same_owner(p))
4162 			return -EPERM;
4163 
4164 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4165 		if (p->sched_reset_on_fork && !reset_on_fork)
4166 			return -EPERM;
4167 	}
4168 
4169 	if (user) {
4170 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4171 			return -EINVAL;
4172 
4173 		retval = security_task_setscheduler(p);
4174 		if (retval)
4175 			return retval;
4176 	}
4177 
4178 	/*
4179 	 * Make sure no PI-waiters arrive (or leave) while we are
4180 	 * changing the priority of the task:
4181 	 *
4182 	 * To be able to change p->policy safely, the appropriate
4183 	 * runqueue lock must be held.
4184 	 */
4185 	rq = task_rq_lock(p, &rf);
4186 	update_rq_clock(rq);
4187 
4188 	/*
4189 	 * Changing the policy of the stop threads its a very bad idea:
4190 	 */
4191 	if (p == rq->stop) {
4192 		task_rq_unlock(rq, p, &rf);
4193 		return -EINVAL;
4194 	}
4195 
4196 	/*
4197 	 * If not changing anything there's no need to proceed further,
4198 	 * but store a possible modification of reset_on_fork.
4199 	 */
4200 	if (unlikely(policy == p->policy)) {
4201 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4202 			goto change;
4203 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4204 			goto change;
4205 		if (dl_policy(policy) && dl_param_changed(p, attr))
4206 			goto change;
4207 
4208 		p->sched_reset_on_fork = reset_on_fork;
4209 		task_rq_unlock(rq, p, &rf);
4210 		return 0;
4211 	}
4212 change:
4213 
4214 	if (user) {
4215 #ifdef CONFIG_RT_GROUP_SCHED
4216 		/*
4217 		 * Do not allow realtime tasks into groups that have no runtime
4218 		 * assigned.
4219 		 */
4220 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4221 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4222 				!task_group_is_autogroup(task_group(p))) {
4223 			task_rq_unlock(rq, p, &rf);
4224 			return -EPERM;
4225 		}
4226 #endif
4227 #ifdef CONFIG_SMP
4228 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4229 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4230 			cpumask_t *span = rq->rd->span;
4231 
4232 			/*
4233 			 * Don't allow tasks with an affinity mask smaller than
4234 			 * the entire root_domain to become SCHED_DEADLINE. We
4235 			 * will also fail if there's no bandwidth available.
4236 			 */
4237 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4238 			    rq->rd->dl_bw.bw == 0) {
4239 				task_rq_unlock(rq, p, &rf);
4240 				return -EPERM;
4241 			}
4242 		}
4243 #endif
4244 	}
4245 
4246 	/* Re-check policy now with rq lock held: */
4247 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4248 		policy = oldpolicy = -1;
4249 		task_rq_unlock(rq, p, &rf);
4250 		goto recheck;
4251 	}
4252 
4253 	/*
4254 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4255 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4256 	 * is available.
4257 	 */
4258 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4259 		task_rq_unlock(rq, p, &rf);
4260 		return -EBUSY;
4261 	}
4262 
4263 	p->sched_reset_on_fork = reset_on_fork;
4264 	oldprio = p->prio;
4265 
4266 	if (pi) {
4267 		/*
4268 		 * Take priority boosted tasks into account. If the new
4269 		 * effective priority is unchanged, we just store the new
4270 		 * normal parameters and do not touch the scheduler class and
4271 		 * the runqueue. This will be done when the task deboost
4272 		 * itself.
4273 		 */
4274 		new_effective_prio = rt_effective_prio(p, newprio);
4275 		if (new_effective_prio == oldprio)
4276 			queue_flags &= ~DEQUEUE_MOVE;
4277 	}
4278 
4279 	queued = task_on_rq_queued(p);
4280 	running = task_current(rq, p);
4281 	if (queued)
4282 		dequeue_task(rq, p, queue_flags);
4283 	if (running)
4284 		put_prev_task(rq, p);
4285 
4286 	prev_class = p->sched_class;
4287 	__setscheduler(rq, p, attr, pi);
4288 
4289 	if (queued) {
4290 		/*
4291 		 * We enqueue to tail when the priority of a task is
4292 		 * increased (user space view).
4293 		 */
4294 		if (oldprio < p->prio)
4295 			queue_flags |= ENQUEUE_HEAD;
4296 
4297 		enqueue_task(rq, p, queue_flags);
4298 	}
4299 	if (running)
4300 		set_curr_task(rq, p);
4301 
4302 	check_class_changed(rq, p, prev_class, oldprio);
4303 
4304 	/* Avoid rq from going away on us: */
4305 	preempt_disable();
4306 	task_rq_unlock(rq, p, &rf);
4307 
4308 	if (pi)
4309 		rt_mutex_adjust_pi(p);
4310 
4311 	/* Run balance callbacks after we've adjusted the PI chain: */
4312 	balance_callback(rq);
4313 	preempt_enable();
4314 
4315 	return 0;
4316 }
4317 
4318 static int _sched_setscheduler(struct task_struct *p, int policy,
4319 			       const struct sched_param *param, bool check)
4320 {
4321 	struct sched_attr attr = {
4322 		.sched_policy   = policy,
4323 		.sched_priority = param->sched_priority,
4324 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4325 	};
4326 
4327 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4328 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4329 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4330 		policy &= ~SCHED_RESET_ON_FORK;
4331 		attr.sched_policy = policy;
4332 	}
4333 
4334 	return __sched_setscheduler(p, &attr, check, true);
4335 }
4336 /**
4337  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4338  * @p: the task in question.
4339  * @policy: new policy.
4340  * @param: structure containing the new RT priority.
4341  *
4342  * Return: 0 on success. An error code otherwise.
4343  *
4344  * NOTE that the task may be already dead.
4345  */
4346 int sched_setscheduler(struct task_struct *p, int policy,
4347 		       const struct sched_param *param)
4348 {
4349 	return _sched_setscheduler(p, policy, param, true);
4350 }
4351 EXPORT_SYMBOL_GPL(sched_setscheduler);
4352 
4353 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4354 {
4355 	return __sched_setscheduler(p, attr, true, true);
4356 }
4357 EXPORT_SYMBOL_GPL(sched_setattr);
4358 
4359 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4360 {
4361 	return __sched_setscheduler(p, attr, false, true);
4362 }
4363 
4364 /**
4365  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4366  * @p: the task in question.
4367  * @policy: new policy.
4368  * @param: structure containing the new RT priority.
4369  *
4370  * Just like sched_setscheduler, only don't bother checking if the
4371  * current context has permission.  For example, this is needed in
4372  * stop_machine(): we create temporary high priority worker threads,
4373  * but our caller might not have that capability.
4374  *
4375  * Return: 0 on success. An error code otherwise.
4376  */
4377 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4378 			       const struct sched_param *param)
4379 {
4380 	return _sched_setscheduler(p, policy, param, false);
4381 }
4382 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4383 
4384 static int
4385 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4386 {
4387 	struct sched_param lparam;
4388 	struct task_struct *p;
4389 	int retval;
4390 
4391 	if (!param || pid < 0)
4392 		return -EINVAL;
4393 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4394 		return -EFAULT;
4395 
4396 	rcu_read_lock();
4397 	retval = -ESRCH;
4398 	p = find_process_by_pid(pid);
4399 	if (p != NULL)
4400 		retval = sched_setscheduler(p, policy, &lparam);
4401 	rcu_read_unlock();
4402 
4403 	return retval;
4404 }
4405 
4406 /*
4407  * Mimics kernel/events/core.c perf_copy_attr().
4408  */
4409 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4410 {
4411 	u32 size;
4412 	int ret;
4413 
4414 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4415 		return -EFAULT;
4416 
4417 	/* Zero the full structure, so that a short copy will be nice: */
4418 	memset(attr, 0, sizeof(*attr));
4419 
4420 	ret = get_user(size, &uattr->size);
4421 	if (ret)
4422 		return ret;
4423 
4424 	/* Bail out on silly large: */
4425 	if (size > PAGE_SIZE)
4426 		goto err_size;
4427 
4428 	/* ABI compatibility quirk: */
4429 	if (!size)
4430 		size = SCHED_ATTR_SIZE_VER0;
4431 
4432 	if (size < SCHED_ATTR_SIZE_VER0)
4433 		goto err_size;
4434 
4435 	/*
4436 	 * If we're handed a bigger struct than we know of,
4437 	 * ensure all the unknown bits are 0 - i.e. new
4438 	 * user-space does not rely on any kernel feature
4439 	 * extensions we dont know about yet.
4440 	 */
4441 	if (size > sizeof(*attr)) {
4442 		unsigned char __user *addr;
4443 		unsigned char __user *end;
4444 		unsigned char val;
4445 
4446 		addr = (void __user *)uattr + sizeof(*attr);
4447 		end  = (void __user *)uattr + size;
4448 
4449 		for (; addr < end; addr++) {
4450 			ret = get_user(val, addr);
4451 			if (ret)
4452 				return ret;
4453 			if (val)
4454 				goto err_size;
4455 		}
4456 		size = sizeof(*attr);
4457 	}
4458 
4459 	ret = copy_from_user(attr, uattr, size);
4460 	if (ret)
4461 		return -EFAULT;
4462 
4463 	/*
4464 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4465 	 * to be strict and return an error on out-of-bounds values?
4466 	 */
4467 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4468 
4469 	return 0;
4470 
4471 err_size:
4472 	put_user(sizeof(*attr), &uattr->size);
4473 	return -E2BIG;
4474 }
4475 
4476 /**
4477  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4478  * @pid: the pid in question.
4479  * @policy: new policy.
4480  * @param: structure containing the new RT priority.
4481  *
4482  * Return: 0 on success. An error code otherwise.
4483  */
4484 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4485 {
4486 	if (policy < 0)
4487 		return -EINVAL;
4488 
4489 	return do_sched_setscheduler(pid, policy, param);
4490 }
4491 
4492 /**
4493  * sys_sched_setparam - set/change the RT priority of a thread
4494  * @pid: the pid in question.
4495  * @param: structure containing the new RT priority.
4496  *
4497  * Return: 0 on success. An error code otherwise.
4498  */
4499 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4500 {
4501 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4502 }
4503 
4504 /**
4505  * sys_sched_setattr - same as above, but with extended sched_attr
4506  * @pid: the pid in question.
4507  * @uattr: structure containing the extended parameters.
4508  * @flags: for future extension.
4509  */
4510 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4511 			       unsigned int, flags)
4512 {
4513 	struct sched_attr attr;
4514 	struct task_struct *p;
4515 	int retval;
4516 
4517 	if (!uattr || pid < 0 || flags)
4518 		return -EINVAL;
4519 
4520 	retval = sched_copy_attr(uattr, &attr);
4521 	if (retval)
4522 		return retval;
4523 
4524 	if ((int)attr.sched_policy < 0)
4525 		return -EINVAL;
4526 
4527 	rcu_read_lock();
4528 	retval = -ESRCH;
4529 	p = find_process_by_pid(pid);
4530 	if (p != NULL)
4531 		retval = sched_setattr(p, &attr);
4532 	rcu_read_unlock();
4533 
4534 	return retval;
4535 }
4536 
4537 /**
4538  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4539  * @pid: the pid in question.
4540  *
4541  * Return: On success, the policy of the thread. Otherwise, a negative error
4542  * code.
4543  */
4544 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4545 {
4546 	struct task_struct *p;
4547 	int retval;
4548 
4549 	if (pid < 0)
4550 		return -EINVAL;
4551 
4552 	retval = -ESRCH;
4553 	rcu_read_lock();
4554 	p = find_process_by_pid(pid);
4555 	if (p) {
4556 		retval = security_task_getscheduler(p);
4557 		if (!retval)
4558 			retval = p->policy
4559 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4560 	}
4561 	rcu_read_unlock();
4562 	return retval;
4563 }
4564 
4565 /**
4566  * sys_sched_getparam - get the RT priority of a thread
4567  * @pid: the pid in question.
4568  * @param: structure containing the RT priority.
4569  *
4570  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4571  * code.
4572  */
4573 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4574 {
4575 	struct sched_param lp = { .sched_priority = 0 };
4576 	struct task_struct *p;
4577 	int retval;
4578 
4579 	if (!param || pid < 0)
4580 		return -EINVAL;
4581 
4582 	rcu_read_lock();
4583 	p = find_process_by_pid(pid);
4584 	retval = -ESRCH;
4585 	if (!p)
4586 		goto out_unlock;
4587 
4588 	retval = security_task_getscheduler(p);
4589 	if (retval)
4590 		goto out_unlock;
4591 
4592 	if (task_has_rt_policy(p))
4593 		lp.sched_priority = p->rt_priority;
4594 	rcu_read_unlock();
4595 
4596 	/*
4597 	 * This one might sleep, we cannot do it with a spinlock held ...
4598 	 */
4599 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4600 
4601 	return retval;
4602 
4603 out_unlock:
4604 	rcu_read_unlock();
4605 	return retval;
4606 }
4607 
4608 static int sched_read_attr(struct sched_attr __user *uattr,
4609 			   struct sched_attr *attr,
4610 			   unsigned int usize)
4611 {
4612 	int ret;
4613 
4614 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4615 		return -EFAULT;
4616 
4617 	/*
4618 	 * If we're handed a smaller struct than we know of,
4619 	 * ensure all the unknown bits are 0 - i.e. old
4620 	 * user-space does not get uncomplete information.
4621 	 */
4622 	if (usize < sizeof(*attr)) {
4623 		unsigned char *addr;
4624 		unsigned char *end;
4625 
4626 		addr = (void *)attr + usize;
4627 		end  = (void *)attr + sizeof(*attr);
4628 
4629 		for (; addr < end; addr++) {
4630 			if (*addr)
4631 				return -EFBIG;
4632 		}
4633 
4634 		attr->size = usize;
4635 	}
4636 
4637 	ret = copy_to_user(uattr, attr, attr->size);
4638 	if (ret)
4639 		return -EFAULT;
4640 
4641 	return 0;
4642 }
4643 
4644 /**
4645  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4646  * @pid: the pid in question.
4647  * @uattr: structure containing the extended parameters.
4648  * @size: sizeof(attr) for fwd/bwd comp.
4649  * @flags: for future extension.
4650  */
4651 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4652 		unsigned int, size, unsigned int, flags)
4653 {
4654 	struct sched_attr attr = {
4655 		.size = sizeof(struct sched_attr),
4656 	};
4657 	struct task_struct *p;
4658 	int retval;
4659 
4660 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4661 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4662 		return -EINVAL;
4663 
4664 	rcu_read_lock();
4665 	p = find_process_by_pid(pid);
4666 	retval = -ESRCH;
4667 	if (!p)
4668 		goto out_unlock;
4669 
4670 	retval = security_task_getscheduler(p);
4671 	if (retval)
4672 		goto out_unlock;
4673 
4674 	attr.sched_policy = p->policy;
4675 	if (p->sched_reset_on_fork)
4676 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4677 	if (task_has_dl_policy(p))
4678 		__getparam_dl(p, &attr);
4679 	else if (task_has_rt_policy(p))
4680 		attr.sched_priority = p->rt_priority;
4681 	else
4682 		attr.sched_nice = task_nice(p);
4683 
4684 	rcu_read_unlock();
4685 
4686 	retval = sched_read_attr(uattr, &attr, size);
4687 	return retval;
4688 
4689 out_unlock:
4690 	rcu_read_unlock();
4691 	return retval;
4692 }
4693 
4694 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4695 {
4696 	cpumask_var_t cpus_allowed, new_mask;
4697 	struct task_struct *p;
4698 	int retval;
4699 
4700 	rcu_read_lock();
4701 
4702 	p = find_process_by_pid(pid);
4703 	if (!p) {
4704 		rcu_read_unlock();
4705 		return -ESRCH;
4706 	}
4707 
4708 	/* Prevent p going away */
4709 	get_task_struct(p);
4710 	rcu_read_unlock();
4711 
4712 	if (p->flags & PF_NO_SETAFFINITY) {
4713 		retval = -EINVAL;
4714 		goto out_put_task;
4715 	}
4716 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4717 		retval = -ENOMEM;
4718 		goto out_put_task;
4719 	}
4720 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4721 		retval = -ENOMEM;
4722 		goto out_free_cpus_allowed;
4723 	}
4724 	retval = -EPERM;
4725 	if (!check_same_owner(p)) {
4726 		rcu_read_lock();
4727 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4728 			rcu_read_unlock();
4729 			goto out_free_new_mask;
4730 		}
4731 		rcu_read_unlock();
4732 	}
4733 
4734 	retval = security_task_setscheduler(p);
4735 	if (retval)
4736 		goto out_free_new_mask;
4737 
4738 
4739 	cpuset_cpus_allowed(p, cpus_allowed);
4740 	cpumask_and(new_mask, in_mask, cpus_allowed);
4741 
4742 	/*
4743 	 * Since bandwidth control happens on root_domain basis,
4744 	 * if admission test is enabled, we only admit -deadline
4745 	 * tasks allowed to run on all the CPUs in the task's
4746 	 * root_domain.
4747 	 */
4748 #ifdef CONFIG_SMP
4749 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4750 		rcu_read_lock();
4751 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4752 			retval = -EBUSY;
4753 			rcu_read_unlock();
4754 			goto out_free_new_mask;
4755 		}
4756 		rcu_read_unlock();
4757 	}
4758 #endif
4759 again:
4760 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4761 
4762 	if (!retval) {
4763 		cpuset_cpus_allowed(p, cpus_allowed);
4764 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4765 			/*
4766 			 * We must have raced with a concurrent cpuset
4767 			 * update. Just reset the cpus_allowed to the
4768 			 * cpuset's cpus_allowed
4769 			 */
4770 			cpumask_copy(new_mask, cpus_allowed);
4771 			goto again;
4772 		}
4773 	}
4774 out_free_new_mask:
4775 	free_cpumask_var(new_mask);
4776 out_free_cpus_allowed:
4777 	free_cpumask_var(cpus_allowed);
4778 out_put_task:
4779 	put_task_struct(p);
4780 	return retval;
4781 }
4782 
4783 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4784 			     struct cpumask *new_mask)
4785 {
4786 	if (len < cpumask_size())
4787 		cpumask_clear(new_mask);
4788 	else if (len > cpumask_size())
4789 		len = cpumask_size();
4790 
4791 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4792 }
4793 
4794 /**
4795  * sys_sched_setaffinity - set the CPU affinity of a process
4796  * @pid: pid of the process
4797  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798  * @user_mask_ptr: user-space pointer to the new CPU mask
4799  *
4800  * Return: 0 on success. An error code otherwise.
4801  */
4802 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4803 		unsigned long __user *, user_mask_ptr)
4804 {
4805 	cpumask_var_t new_mask;
4806 	int retval;
4807 
4808 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4809 		return -ENOMEM;
4810 
4811 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4812 	if (retval == 0)
4813 		retval = sched_setaffinity(pid, new_mask);
4814 	free_cpumask_var(new_mask);
4815 	return retval;
4816 }
4817 
4818 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4819 {
4820 	struct task_struct *p;
4821 	unsigned long flags;
4822 	int retval;
4823 
4824 	rcu_read_lock();
4825 
4826 	retval = -ESRCH;
4827 	p = find_process_by_pid(pid);
4828 	if (!p)
4829 		goto out_unlock;
4830 
4831 	retval = security_task_getscheduler(p);
4832 	if (retval)
4833 		goto out_unlock;
4834 
4835 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4836 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4837 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838 
4839 out_unlock:
4840 	rcu_read_unlock();
4841 
4842 	return retval;
4843 }
4844 
4845 /**
4846  * sys_sched_getaffinity - get the CPU affinity of a process
4847  * @pid: pid of the process
4848  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4849  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4850  *
4851  * Return: size of CPU mask copied to user_mask_ptr on success. An
4852  * error code otherwise.
4853  */
4854 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4855 		unsigned long __user *, user_mask_ptr)
4856 {
4857 	int ret;
4858 	cpumask_var_t mask;
4859 
4860 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4861 		return -EINVAL;
4862 	if (len & (sizeof(unsigned long)-1))
4863 		return -EINVAL;
4864 
4865 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4866 		return -ENOMEM;
4867 
4868 	ret = sched_getaffinity(pid, mask);
4869 	if (ret == 0) {
4870 		unsigned int retlen = min(len, cpumask_size());
4871 
4872 		if (copy_to_user(user_mask_ptr, mask, retlen))
4873 			ret = -EFAULT;
4874 		else
4875 			ret = retlen;
4876 	}
4877 	free_cpumask_var(mask);
4878 
4879 	return ret;
4880 }
4881 
4882 /**
4883  * sys_sched_yield - yield the current processor to other threads.
4884  *
4885  * This function yields the current CPU to other tasks. If there are no
4886  * other threads running on this CPU then this function will return.
4887  *
4888  * Return: 0.
4889  */
4890 SYSCALL_DEFINE0(sched_yield)
4891 {
4892 	struct rq_flags rf;
4893 	struct rq *rq;
4894 
4895 	local_irq_disable();
4896 	rq = this_rq();
4897 	rq_lock(rq, &rf);
4898 
4899 	schedstat_inc(rq->yld_count);
4900 	current->sched_class->yield_task(rq);
4901 
4902 	/*
4903 	 * Since we are going to call schedule() anyway, there's
4904 	 * no need to preempt or enable interrupts:
4905 	 */
4906 	preempt_disable();
4907 	rq_unlock(rq, &rf);
4908 	sched_preempt_enable_no_resched();
4909 
4910 	schedule();
4911 
4912 	return 0;
4913 }
4914 
4915 #ifndef CONFIG_PREEMPT
4916 int __sched _cond_resched(void)
4917 {
4918 	if (should_resched(0)) {
4919 		preempt_schedule_common();
4920 		return 1;
4921 	}
4922 	rcu_all_qs();
4923 	return 0;
4924 }
4925 EXPORT_SYMBOL(_cond_resched);
4926 #endif
4927 
4928 /*
4929  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4930  * call schedule, and on return reacquire the lock.
4931  *
4932  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4933  * operations here to prevent schedule() from being called twice (once via
4934  * spin_unlock(), once by hand).
4935  */
4936 int __cond_resched_lock(spinlock_t *lock)
4937 {
4938 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4939 	int ret = 0;
4940 
4941 	lockdep_assert_held(lock);
4942 
4943 	if (spin_needbreak(lock) || resched) {
4944 		spin_unlock(lock);
4945 		if (resched)
4946 			preempt_schedule_common();
4947 		else
4948 			cpu_relax();
4949 		ret = 1;
4950 		spin_lock(lock);
4951 	}
4952 	return ret;
4953 }
4954 EXPORT_SYMBOL(__cond_resched_lock);
4955 
4956 int __sched __cond_resched_softirq(void)
4957 {
4958 	BUG_ON(!in_softirq());
4959 
4960 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4961 		local_bh_enable();
4962 		preempt_schedule_common();
4963 		local_bh_disable();
4964 		return 1;
4965 	}
4966 	return 0;
4967 }
4968 EXPORT_SYMBOL(__cond_resched_softirq);
4969 
4970 /**
4971  * yield - yield the current processor to other threads.
4972  *
4973  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4974  *
4975  * The scheduler is at all times free to pick the calling task as the most
4976  * eligible task to run, if removing the yield() call from your code breaks
4977  * it, its already broken.
4978  *
4979  * Typical broken usage is:
4980  *
4981  * while (!event)
4982  *	yield();
4983  *
4984  * where one assumes that yield() will let 'the other' process run that will
4985  * make event true. If the current task is a SCHED_FIFO task that will never
4986  * happen. Never use yield() as a progress guarantee!!
4987  *
4988  * If you want to use yield() to wait for something, use wait_event().
4989  * If you want to use yield() to be 'nice' for others, use cond_resched().
4990  * If you still want to use yield(), do not!
4991  */
4992 void __sched yield(void)
4993 {
4994 	set_current_state(TASK_RUNNING);
4995 	sys_sched_yield();
4996 }
4997 EXPORT_SYMBOL(yield);
4998 
4999 /**
5000  * yield_to - yield the current processor to another thread in
5001  * your thread group, or accelerate that thread toward the
5002  * processor it's on.
5003  * @p: target task
5004  * @preempt: whether task preemption is allowed or not
5005  *
5006  * It's the caller's job to ensure that the target task struct
5007  * can't go away on us before we can do any checks.
5008  *
5009  * Return:
5010  *	true (>0) if we indeed boosted the target task.
5011  *	false (0) if we failed to boost the target.
5012  *	-ESRCH if there's no task to yield to.
5013  */
5014 int __sched yield_to(struct task_struct *p, bool preempt)
5015 {
5016 	struct task_struct *curr = current;
5017 	struct rq *rq, *p_rq;
5018 	unsigned long flags;
5019 	int yielded = 0;
5020 
5021 	local_irq_save(flags);
5022 	rq = this_rq();
5023 
5024 again:
5025 	p_rq = task_rq(p);
5026 	/*
5027 	 * If we're the only runnable task on the rq and target rq also
5028 	 * has only one task, there's absolutely no point in yielding.
5029 	 */
5030 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5031 		yielded = -ESRCH;
5032 		goto out_irq;
5033 	}
5034 
5035 	double_rq_lock(rq, p_rq);
5036 	if (task_rq(p) != p_rq) {
5037 		double_rq_unlock(rq, p_rq);
5038 		goto again;
5039 	}
5040 
5041 	if (!curr->sched_class->yield_to_task)
5042 		goto out_unlock;
5043 
5044 	if (curr->sched_class != p->sched_class)
5045 		goto out_unlock;
5046 
5047 	if (task_running(p_rq, p) || p->state)
5048 		goto out_unlock;
5049 
5050 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5051 	if (yielded) {
5052 		schedstat_inc(rq->yld_count);
5053 		/*
5054 		 * Make p's CPU reschedule; pick_next_entity takes care of
5055 		 * fairness.
5056 		 */
5057 		if (preempt && rq != p_rq)
5058 			resched_curr(p_rq);
5059 	}
5060 
5061 out_unlock:
5062 	double_rq_unlock(rq, p_rq);
5063 out_irq:
5064 	local_irq_restore(flags);
5065 
5066 	if (yielded > 0)
5067 		schedule();
5068 
5069 	return yielded;
5070 }
5071 EXPORT_SYMBOL_GPL(yield_to);
5072 
5073 int io_schedule_prepare(void)
5074 {
5075 	int old_iowait = current->in_iowait;
5076 
5077 	current->in_iowait = 1;
5078 	blk_schedule_flush_plug(current);
5079 
5080 	return old_iowait;
5081 }
5082 
5083 void io_schedule_finish(int token)
5084 {
5085 	current->in_iowait = token;
5086 }
5087 
5088 /*
5089  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5090  * that process accounting knows that this is a task in IO wait state.
5091  */
5092 long __sched io_schedule_timeout(long timeout)
5093 {
5094 	int token;
5095 	long ret;
5096 
5097 	token = io_schedule_prepare();
5098 	ret = schedule_timeout(timeout);
5099 	io_schedule_finish(token);
5100 
5101 	return ret;
5102 }
5103 EXPORT_SYMBOL(io_schedule_timeout);
5104 
5105 void io_schedule(void)
5106 {
5107 	int token;
5108 
5109 	token = io_schedule_prepare();
5110 	schedule();
5111 	io_schedule_finish(token);
5112 }
5113 EXPORT_SYMBOL(io_schedule);
5114 
5115 /**
5116  * sys_sched_get_priority_max - return maximum RT priority.
5117  * @policy: scheduling class.
5118  *
5119  * Return: On success, this syscall returns the maximum
5120  * rt_priority that can be used by a given scheduling class.
5121  * On failure, a negative error code is returned.
5122  */
5123 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5124 {
5125 	int ret = -EINVAL;
5126 
5127 	switch (policy) {
5128 	case SCHED_FIFO:
5129 	case SCHED_RR:
5130 		ret = MAX_USER_RT_PRIO-1;
5131 		break;
5132 	case SCHED_DEADLINE:
5133 	case SCHED_NORMAL:
5134 	case SCHED_BATCH:
5135 	case SCHED_IDLE:
5136 		ret = 0;
5137 		break;
5138 	}
5139 	return ret;
5140 }
5141 
5142 /**
5143  * sys_sched_get_priority_min - return minimum RT priority.
5144  * @policy: scheduling class.
5145  *
5146  * Return: On success, this syscall returns the minimum
5147  * rt_priority that can be used by a given scheduling class.
5148  * On failure, a negative error code is returned.
5149  */
5150 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5151 {
5152 	int ret = -EINVAL;
5153 
5154 	switch (policy) {
5155 	case SCHED_FIFO:
5156 	case SCHED_RR:
5157 		ret = 1;
5158 		break;
5159 	case SCHED_DEADLINE:
5160 	case SCHED_NORMAL:
5161 	case SCHED_BATCH:
5162 	case SCHED_IDLE:
5163 		ret = 0;
5164 	}
5165 	return ret;
5166 }
5167 
5168 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5169 {
5170 	struct task_struct *p;
5171 	unsigned int time_slice;
5172 	struct rq_flags rf;
5173 	struct rq *rq;
5174 	int retval;
5175 
5176 	if (pid < 0)
5177 		return -EINVAL;
5178 
5179 	retval = -ESRCH;
5180 	rcu_read_lock();
5181 	p = find_process_by_pid(pid);
5182 	if (!p)
5183 		goto out_unlock;
5184 
5185 	retval = security_task_getscheduler(p);
5186 	if (retval)
5187 		goto out_unlock;
5188 
5189 	rq = task_rq_lock(p, &rf);
5190 	time_slice = 0;
5191 	if (p->sched_class->get_rr_interval)
5192 		time_slice = p->sched_class->get_rr_interval(rq, p);
5193 	task_rq_unlock(rq, p, &rf);
5194 
5195 	rcu_read_unlock();
5196 	jiffies_to_timespec64(time_slice, t);
5197 	return 0;
5198 
5199 out_unlock:
5200 	rcu_read_unlock();
5201 	return retval;
5202 }
5203 
5204 /**
5205  * sys_sched_rr_get_interval - return the default timeslice of a process.
5206  * @pid: pid of the process.
5207  * @interval: userspace pointer to the timeslice value.
5208  *
5209  * this syscall writes the default timeslice value of a given process
5210  * into the user-space timespec buffer. A value of '0' means infinity.
5211  *
5212  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5213  * an error code.
5214  */
5215 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5216 		struct timespec __user *, interval)
5217 {
5218 	struct timespec64 t;
5219 	int retval = sched_rr_get_interval(pid, &t);
5220 
5221 	if (retval == 0)
5222 		retval = put_timespec64(&t, interval);
5223 
5224 	return retval;
5225 }
5226 
5227 #ifdef CONFIG_COMPAT
5228 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5229 		       compat_pid_t, pid,
5230 		       struct compat_timespec __user *, interval)
5231 {
5232 	struct timespec64 t;
5233 	int retval = sched_rr_get_interval(pid, &t);
5234 
5235 	if (retval == 0)
5236 		retval = compat_put_timespec64(&t, interval);
5237 	return retval;
5238 }
5239 #endif
5240 
5241 void sched_show_task(struct task_struct *p)
5242 {
5243 	unsigned long free = 0;
5244 	int ppid;
5245 
5246 	if (!try_get_task_stack(p))
5247 		return;
5248 
5249 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5250 
5251 	if (p->state == TASK_RUNNING)
5252 		printk(KERN_CONT "  running task    ");
5253 #ifdef CONFIG_DEBUG_STACK_USAGE
5254 	free = stack_not_used(p);
5255 #endif
5256 	ppid = 0;
5257 	rcu_read_lock();
5258 	if (pid_alive(p))
5259 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5260 	rcu_read_unlock();
5261 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5262 		task_pid_nr(p), ppid,
5263 		(unsigned long)task_thread_info(p)->flags);
5264 
5265 	print_worker_info(KERN_INFO, p);
5266 	show_stack(p, NULL);
5267 	put_task_stack(p);
5268 }
5269 EXPORT_SYMBOL_GPL(sched_show_task);
5270 
5271 static inline bool
5272 state_filter_match(unsigned long state_filter, struct task_struct *p)
5273 {
5274 	/* no filter, everything matches */
5275 	if (!state_filter)
5276 		return true;
5277 
5278 	/* filter, but doesn't match */
5279 	if (!(p->state & state_filter))
5280 		return false;
5281 
5282 	/*
5283 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5284 	 * TASK_KILLABLE).
5285 	 */
5286 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5287 		return false;
5288 
5289 	return true;
5290 }
5291 
5292 
5293 void show_state_filter(unsigned long state_filter)
5294 {
5295 	struct task_struct *g, *p;
5296 
5297 #if BITS_PER_LONG == 32
5298 	printk(KERN_INFO
5299 		"  task                PC stack   pid father\n");
5300 #else
5301 	printk(KERN_INFO
5302 		"  task                        PC stack   pid father\n");
5303 #endif
5304 	rcu_read_lock();
5305 	for_each_process_thread(g, p) {
5306 		/*
5307 		 * reset the NMI-timeout, listing all files on a slow
5308 		 * console might take a lot of time:
5309 		 * Also, reset softlockup watchdogs on all CPUs, because
5310 		 * another CPU might be blocked waiting for us to process
5311 		 * an IPI.
5312 		 */
5313 		touch_nmi_watchdog();
5314 		touch_all_softlockup_watchdogs();
5315 		if (state_filter_match(state_filter, p))
5316 			sched_show_task(p);
5317 	}
5318 
5319 #ifdef CONFIG_SCHED_DEBUG
5320 	if (!state_filter)
5321 		sysrq_sched_debug_show();
5322 #endif
5323 	rcu_read_unlock();
5324 	/*
5325 	 * Only show locks if all tasks are dumped:
5326 	 */
5327 	if (!state_filter)
5328 		debug_show_all_locks();
5329 }
5330 
5331 /**
5332  * init_idle - set up an idle thread for a given CPU
5333  * @idle: task in question
5334  * @cpu: CPU the idle task belongs to
5335  *
5336  * NOTE: this function does not set the idle thread's NEED_RESCHED
5337  * flag, to make booting more robust.
5338  */
5339 void init_idle(struct task_struct *idle, int cpu)
5340 {
5341 	struct rq *rq = cpu_rq(cpu);
5342 	unsigned long flags;
5343 
5344 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5345 	raw_spin_lock(&rq->lock);
5346 
5347 	__sched_fork(0, idle);
5348 	idle->state = TASK_RUNNING;
5349 	idle->se.exec_start = sched_clock();
5350 	idle->flags |= PF_IDLE;
5351 
5352 	kasan_unpoison_task_stack(idle);
5353 
5354 #ifdef CONFIG_SMP
5355 	/*
5356 	 * Its possible that init_idle() gets called multiple times on a task,
5357 	 * in that case do_set_cpus_allowed() will not do the right thing.
5358 	 *
5359 	 * And since this is boot we can forgo the serialization.
5360 	 */
5361 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5362 #endif
5363 	/*
5364 	 * We're having a chicken and egg problem, even though we are
5365 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5366 	 * lockdep check in task_group() will fail.
5367 	 *
5368 	 * Similar case to sched_fork(). / Alternatively we could
5369 	 * use task_rq_lock() here and obtain the other rq->lock.
5370 	 *
5371 	 * Silence PROVE_RCU
5372 	 */
5373 	rcu_read_lock();
5374 	__set_task_cpu(idle, cpu);
5375 	rcu_read_unlock();
5376 
5377 	rq->curr = rq->idle = idle;
5378 	idle->on_rq = TASK_ON_RQ_QUEUED;
5379 #ifdef CONFIG_SMP
5380 	idle->on_cpu = 1;
5381 #endif
5382 	raw_spin_unlock(&rq->lock);
5383 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5384 
5385 	/* Set the preempt count _outside_ the spinlocks! */
5386 	init_idle_preempt_count(idle, cpu);
5387 
5388 	/*
5389 	 * The idle tasks have their own, simple scheduling class:
5390 	 */
5391 	idle->sched_class = &idle_sched_class;
5392 	ftrace_graph_init_idle_task(idle, cpu);
5393 	vtime_init_idle(idle, cpu);
5394 #ifdef CONFIG_SMP
5395 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5396 #endif
5397 }
5398 
5399 #ifdef CONFIG_SMP
5400 
5401 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5402 			      const struct cpumask *trial)
5403 {
5404 	int ret = 1;
5405 
5406 	if (!cpumask_weight(cur))
5407 		return ret;
5408 
5409 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5410 
5411 	return ret;
5412 }
5413 
5414 int task_can_attach(struct task_struct *p,
5415 		    const struct cpumask *cs_cpus_allowed)
5416 {
5417 	int ret = 0;
5418 
5419 	/*
5420 	 * Kthreads which disallow setaffinity shouldn't be moved
5421 	 * to a new cpuset; we don't want to change their CPU
5422 	 * affinity and isolating such threads by their set of
5423 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5424 	 * applicable for such threads.  This prevents checking for
5425 	 * success of set_cpus_allowed_ptr() on all attached tasks
5426 	 * before cpus_allowed may be changed.
5427 	 */
5428 	if (p->flags & PF_NO_SETAFFINITY) {
5429 		ret = -EINVAL;
5430 		goto out;
5431 	}
5432 
5433 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5434 					      cs_cpus_allowed))
5435 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5436 
5437 out:
5438 	return ret;
5439 }
5440 
5441 bool sched_smp_initialized __read_mostly;
5442 
5443 #ifdef CONFIG_NUMA_BALANCING
5444 /* Migrate current task p to target_cpu */
5445 int migrate_task_to(struct task_struct *p, int target_cpu)
5446 {
5447 	struct migration_arg arg = { p, target_cpu };
5448 	int curr_cpu = task_cpu(p);
5449 
5450 	if (curr_cpu == target_cpu)
5451 		return 0;
5452 
5453 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5454 		return -EINVAL;
5455 
5456 	/* TODO: This is not properly updating schedstats */
5457 
5458 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5459 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5460 }
5461 
5462 /*
5463  * Requeue a task on a given node and accurately track the number of NUMA
5464  * tasks on the runqueues
5465  */
5466 void sched_setnuma(struct task_struct *p, int nid)
5467 {
5468 	bool queued, running;
5469 	struct rq_flags rf;
5470 	struct rq *rq;
5471 
5472 	rq = task_rq_lock(p, &rf);
5473 	queued = task_on_rq_queued(p);
5474 	running = task_current(rq, p);
5475 
5476 	if (queued)
5477 		dequeue_task(rq, p, DEQUEUE_SAVE);
5478 	if (running)
5479 		put_prev_task(rq, p);
5480 
5481 	p->numa_preferred_nid = nid;
5482 
5483 	if (queued)
5484 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5485 	if (running)
5486 		set_curr_task(rq, p);
5487 	task_rq_unlock(rq, p, &rf);
5488 }
5489 #endif /* CONFIG_NUMA_BALANCING */
5490 
5491 #ifdef CONFIG_HOTPLUG_CPU
5492 /*
5493  * Ensure that the idle task is using init_mm right before its CPU goes
5494  * offline.
5495  */
5496 void idle_task_exit(void)
5497 {
5498 	struct mm_struct *mm = current->active_mm;
5499 
5500 	BUG_ON(cpu_online(smp_processor_id()));
5501 
5502 	if (mm != &init_mm) {
5503 		switch_mm(mm, &init_mm, current);
5504 		finish_arch_post_lock_switch();
5505 	}
5506 	mmdrop(mm);
5507 }
5508 
5509 /*
5510  * Since this CPU is going 'away' for a while, fold any nr_active delta
5511  * we might have. Assumes we're called after migrate_tasks() so that the
5512  * nr_active count is stable. We need to take the teardown thread which
5513  * is calling this into account, so we hand in adjust = 1 to the load
5514  * calculation.
5515  *
5516  * Also see the comment "Global load-average calculations".
5517  */
5518 static void calc_load_migrate(struct rq *rq)
5519 {
5520 	long delta = calc_load_fold_active(rq, 1);
5521 	if (delta)
5522 		atomic_long_add(delta, &calc_load_tasks);
5523 }
5524 
5525 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5526 {
5527 }
5528 
5529 static const struct sched_class fake_sched_class = {
5530 	.put_prev_task = put_prev_task_fake,
5531 };
5532 
5533 static struct task_struct fake_task = {
5534 	/*
5535 	 * Avoid pull_{rt,dl}_task()
5536 	 */
5537 	.prio = MAX_PRIO + 1,
5538 	.sched_class = &fake_sched_class,
5539 };
5540 
5541 /*
5542  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5543  * try_to_wake_up()->select_task_rq().
5544  *
5545  * Called with rq->lock held even though we'er in stop_machine() and
5546  * there's no concurrency possible, we hold the required locks anyway
5547  * because of lock validation efforts.
5548  */
5549 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5550 {
5551 	struct rq *rq = dead_rq;
5552 	struct task_struct *next, *stop = rq->stop;
5553 	struct rq_flags orf = *rf;
5554 	int dest_cpu;
5555 
5556 	/*
5557 	 * Fudge the rq selection such that the below task selection loop
5558 	 * doesn't get stuck on the currently eligible stop task.
5559 	 *
5560 	 * We're currently inside stop_machine() and the rq is either stuck
5561 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5562 	 * either way we should never end up calling schedule() until we're
5563 	 * done here.
5564 	 */
5565 	rq->stop = NULL;
5566 
5567 	/*
5568 	 * put_prev_task() and pick_next_task() sched
5569 	 * class method both need to have an up-to-date
5570 	 * value of rq->clock[_task]
5571 	 */
5572 	update_rq_clock(rq);
5573 
5574 	for (;;) {
5575 		/*
5576 		 * There's this thread running, bail when that's the only
5577 		 * remaining thread:
5578 		 */
5579 		if (rq->nr_running == 1)
5580 			break;
5581 
5582 		/*
5583 		 * pick_next_task() assumes pinned rq->lock:
5584 		 */
5585 		next = pick_next_task(rq, &fake_task, rf);
5586 		BUG_ON(!next);
5587 		put_prev_task(rq, next);
5588 
5589 		/*
5590 		 * Rules for changing task_struct::cpus_allowed are holding
5591 		 * both pi_lock and rq->lock, such that holding either
5592 		 * stabilizes the mask.
5593 		 *
5594 		 * Drop rq->lock is not quite as disastrous as it usually is
5595 		 * because !cpu_active at this point, which means load-balance
5596 		 * will not interfere. Also, stop-machine.
5597 		 */
5598 		rq_unlock(rq, rf);
5599 		raw_spin_lock(&next->pi_lock);
5600 		rq_relock(rq, rf);
5601 
5602 		/*
5603 		 * Since we're inside stop-machine, _nothing_ should have
5604 		 * changed the task, WARN if weird stuff happened, because in
5605 		 * that case the above rq->lock drop is a fail too.
5606 		 */
5607 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5608 			raw_spin_unlock(&next->pi_lock);
5609 			continue;
5610 		}
5611 
5612 		/* Find suitable destination for @next, with force if needed. */
5613 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5614 		rq = __migrate_task(rq, rf, next, dest_cpu);
5615 		if (rq != dead_rq) {
5616 			rq_unlock(rq, rf);
5617 			rq = dead_rq;
5618 			*rf = orf;
5619 			rq_relock(rq, rf);
5620 		}
5621 		raw_spin_unlock(&next->pi_lock);
5622 	}
5623 
5624 	rq->stop = stop;
5625 }
5626 #endif /* CONFIG_HOTPLUG_CPU */
5627 
5628 void set_rq_online(struct rq *rq)
5629 {
5630 	if (!rq->online) {
5631 		const struct sched_class *class;
5632 
5633 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5634 		rq->online = 1;
5635 
5636 		for_each_class(class) {
5637 			if (class->rq_online)
5638 				class->rq_online(rq);
5639 		}
5640 	}
5641 }
5642 
5643 void set_rq_offline(struct rq *rq)
5644 {
5645 	if (rq->online) {
5646 		const struct sched_class *class;
5647 
5648 		for_each_class(class) {
5649 			if (class->rq_offline)
5650 				class->rq_offline(rq);
5651 		}
5652 
5653 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5654 		rq->online = 0;
5655 	}
5656 }
5657 
5658 static void set_cpu_rq_start_time(unsigned int cpu)
5659 {
5660 	struct rq *rq = cpu_rq(cpu);
5661 
5662 	rq->age_stamp = sched_clock_cpu(cpu);
5663 }
5664 
5665 /*
5666  * used to mark begin/end of suspend/resume:
5667  */
5668 static int num_cpus_frozen;
5669 
5670 /*
5671  * Update cpusets according to cpu_active mask.  If cpusets are
5672  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5673  * around partition_sched_domains().
5674  *
5675  * If we come here as part of a suspend/resume, don't touch cpusets because we
5676  * want to restore it back to its original state upon resume anyway.
5677  */
5678 static void cpuset_cpu_active(void)
5679 {
5680 	if (cpuhp_tasks_frozen) {
5681 		/*
5682 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5683 		 * resume sequence. As long as this is not the last online
5684 		 * operation in the resume sequence, just build a single sched
5685 		 * domain, ignoring cpusets.
5686 		 */
5687 		partition_sched_domains(1, NULL, NULL);
5688 		if (--num_cpus_frozen)
5689 			return;
5690 		/*
5691 		 * This is the last CPU online operation. So fall through and
5692 		 * restore the original sched domains by considering the
5693 		 * cpuset configurations.
5694 		 */
5695 		cpuset_force_rebuild();
5696 	}
5697 	cpuset_update_active_cpus();
5698 }
5699 
5700 static int cpuset_cpu_inactive(unsigned int cpu)
5701 {
5702 	if (!cpuhp_tasks_frozen) {
5703 		if (dl_cpu_busy(cpu))
5704 			return -EBUSY;
5705 		cpuset_update_active_cpus();
5706 	} else {
5707 		num_cpus_frozen++;
5708 		partition_sched_domains(1, NULL, NULL);
5709 	}
5710 	return 0;
5711 }
5712 
5713 int sched_cpu_activate(unsigned int cpu)
5714 {
5715 	struct rq *rq = cpu_rq(cpu);
5716 	struct rq_flags rf;
5717 
5718 	set_cpu_active(cpu, true);
5719 
5720 	if (sched_smp_initialized) {
5721 		sched_domains_numa_masks_set(cpu);
5722 		cpuset_cpu_active();
5723 	}
5724 
5725 	/*
5726 	 * Put the rq online, if not already. This happens:
5727 	 *
5728 	 * 1) In the early boot process, because we build the real domains
5729 	 *    after all CPUs have been brought up.
5730 	 *
5731 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5732 	 *    domains.
5733 	 */
5734 	rq_lock_irqsave(rq, &rf);
5735 	if (rq->rd) {
5736 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5737 		set_rq_online(rq);
5738 	}
5739 	rq_unlock_irqrestore(rq, &rf);
5740 
5741 	update_max_interval();
5742 
5743 	return 0;
5744 }
5745 
5746 int sched_cpu_deactivate(unsigned int cpu)
5747 {
5748 	int ret;
5749 
5750 	set_cpu_active(cpu, false);
5751 	/*
5752 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5753 	 * users of this state to go away such that all new such users will
5754 	 * observe it.
5755 	 *
5756 	 * Do sync before park smpboot threads to take care the rcu boost case.
5757 	 */
5758 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5759 
5760 	if (!sched_smp_initialized)
5761 		return 0;
5762 
5763 	ret = cpuset_cpu_inactive(cpu);
5764 	if (ret) {
5765 		set_cpu_active(cpu, true);
5766 		return ret;
5767 	}
5768 	sched_domains_numa_masks_clear(cpu);
5769 	return 0;
5770 }
5771 
5772 static void sched_rq_cpu_starting(unsigned int cpu)
5773 {
5774 	struct rq *rq = cpu_rq(cpu);
5775 
5776 	rq->calc_load_update = calc_load_update;
5777 	update_max_interval();
5778 }
5779 
5780 int sched_cpu_starting(unsigned int cpu)
5781 {
5782 	set_cpu_rq_start_time(cpu);
5783 	sched_rq_cpu_starting(cpu);
5784 	return 0;
5785 }
5786 
5787 #ifdef CONFIG_HOTPLUG_CPU
5788 int sched_cpu_dying(unsigned int cpu)
5789 {
5790 	struct rq *rq = cpu_rq(cpu);
5791 	struct rq_flags rf;
5792 
5793 	/* Handle pending wakeups and then migrate everything off */
5794 	sched_ttwu_pending();
5795 
5796 	rq_lock_irqsave(rq, &rf);
5797 	if (rq->rd) {
5798 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5799 		set_rq_offline(rq);
5800 	}
5801 	migrate_tasks(rq, &rf);
5802 	BUG_ON(rq->nr_running != 1);
5803 	rq_unlock_irqrestore(rq, &rf);
5804 
5805 	calc_load_migrate(rq);
5806 	update_max_interval();
5807 	nohz_balance_exit_idle(cpu);
5808 	hrtick_clear(rq);
5809 	return 0;
5810 }
5811 #endif
5812 
5813 #ifdef CONFIG_SCHED_SMT
5814 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5815 
5816 static void sched_init_smt(void)
5817 {
5818 	/*
5819 	 * We've enumerated all CPUs and will assume that if any CPU
5820 	 * has SMT siblings, CPU0 will too.
5821 	 */
5822 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5823 		static_branch_enable(&sched_smt_present);
5824 }
5825 #else
5826 static inline void sched_init_smt(void) { }
5827 #endif
5828 
5829 void __init sched_init_smp(void)
5830 {
5831 	sched_init_numa();
5832 
5833 	/*
5834 	 * There's no userspace yet to cause hotplug operations; hence all the
5835 	 * CPU masks are stable and all blatant races in the below code cannot
5836 	 * happen.
5837 	 */
5838 	mutex_lock(&sched_domains_mutex);
5839 	sched_init_domains(cpu_active_mask);
5840 	mutex_unlock(&sched_domains_mutex);
5841 
5842 	/* Move init over to a non-isolated CPU */
5843 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5844 		BUG();
5845 	sched_init_granularity();
5846 
5847 	init_sched_rt_class();
5848 	init_sched_dl_class();
5849 
5850 	sched_init_smt();
5851 
5852 	sched_smp_initialized = true;
5853 }
5854 
5855 static int __init migration_init(void)
5856 {
5857 	sched_rq_cpu_starting(smp_processor_id());
5858 	return 0;
5859 }
5860 early_initcall(migration_init);
5861 
5862 #else
5863 void __init sched_init_smp(void)
5864 {
5865 	sched_init_granularity();
5866 }
5867 #endif /* CONFIG_SMP */
5868 
5869 int in_sched_functions(unsigned long addr)
5870 {
5871 	return in_lock_functions(addr) ||
5872 		(addr >= (unsigned long)__sched_text_start
5873 		&& addr < (unsigned long)__sched_text_end);
5874 }
5875 
5876 #ifdef CONFIG_CGROUP_SCHED
5877 /*
5878  * Default task group.
5879  * Every task in system belongs to this group at bootup.
5880  */
5881 struct task_group root_task_group;
5882 LIST_HEAD(task_groups);
5883 
5884 /* Cacheline aligned slab cache for task_group */
5885 static struct kmem_cache *task_group_cache __read_mostly;
5886 #endif
5887 
5888 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5889 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5890 
5891 void __init sched_init(void)
5892 {
5893 	int i, j;
5894 	unsigned long alloc_size = 0, ptr;
5895 
5896 	sched_clock_init();
5897 	wait_bit_init();
5898 
5899 #ifdef CONFIG_FAIR_GROUP_SCHED
5900 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5901 #endif
5902 #ifdef CONFIG_RT_GROUP_SCHED
5903 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5904 #endif
5905 	if (alloc_size) {
5906 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5907 
5908 #ifdef CONFIG_FAIR_GROUP_SCHED
5909 		root_task_group.se = (struct sched_entity **)ptr;
5910 		ptr += nr_cpu_ids * sizeof(void **);
5911 
5912 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5913 		ptr += nr_cpu_ids * sizeof(void **);
5914 
5915 #endif /* CONFIG_FAIR_GROUP_SCHED */
5916 #ifdef CONFIG_RT_GROUP_SCHED
5917 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5918 		ptr += nr_cpu_ids * sizeof(void **);
5919 
5920 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5921 		ptr += nr_cpu_ids * sizeof(void **);
5922 
5923 #endif /* CONFIG_RT_GROUP_SCHED */
5924 	}
5925 #ifdef CONFIG_CPUMASK_OFFSTACK
5926 	for_each_possible_cpu(i) {
5927 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5928 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5929 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5930 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5931 	}
5932 #endif /* CONFIG_CPUMASK_OFFSTACK */
5933 
5934 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5935 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5936 
5937 #ifdef CONFIG_SMP
5938 	init_defrootdomain();
5939 #endif
5940 
5941 #ifdef CONFIG_RT_GROUP_SCHED
5942 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5943 			global_rt_period(), global_rt_runtime());
5944 #endif /* CONFIG_RT_GROUP_SCHED */
5945 
5946 #ifdef CONFIG_CGROUP_SCHED
5947 	task_group_cache = KMEM_CACHE(task_group, 0);
5948 
5949 	list_add(&root_task_group.list, &task_groups);
5950 	INIT_LIST_HEAD(&root_task_group.children);
5951 	INIT_LIST_HEAD(&root_task_group.siblings);
5952 	autogroup_init(&init_task);
5953 #endif /* CONFIG_CGROUP_SCHED */
5954 
5955 	for_each_possible_cpu(i) {
5956 		struct rq *rq;
5957 
5958 		rq = cpu_rq(i);
5959 		raw_spin_lock_init(&rq->lock);
5960 		rq->nr_running = 0;
5961 		rq->calc_load_active = 0;
5962 		rq->calc_load_update = jiffies + LOAD_FREQ;
5963 		init_cfs_rq(&rq->cfs);
5964 		init_rt_rq(&rq->rt);
5965 		init_dl_rq(&rq->dl);
5966 #ifdef CONFIG_FAIR_GROUP_SCHED
5967 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5968 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5969 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5970 		/*
5971 		 * How much CPU bandwidth does root_task_group get?
5972 		 *
5973 		 * In case of task-groups formed thr' the cgroup filesystem, it
5974 		 * gets 100% of the CPU resources in the system. This overall
5975 		 * system CPU resource is divided among the tasks of
5976 		 * root_task_group and its child task-groups in a fair manner,
5977 		 * based on each entity's (task or task-group's) weight
5978 		 * (se->load.weight).
5979 		 *
5980 		 * In other words, if root_task_group has 10 tasks of weight
5981 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5982 		 * then A0's share of the CPU resource is:
5983 		 *
5984 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5985 		 *
5986 		 * We achieve this by letting root_task_group's tasks sit
5987 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5988 		 */
5989 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5990 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5991 #endif /* CONFIG_FAIR_GROUP_SCHED */
5992 
5993 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5994 #ifdef CONFIG_RT_GROUP_SCHED
5995 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5996 #endif
5997 
5998 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5999 			rq->cpu_load[j] = 0;
6000 
6001 #ifdef CONFIG_SMP
6002 		rq->sd = NULL;
6003 		rq->rd = NULL;
6004 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6005 		rq->balance_callback = NULL;
6006 		rq->active_balance = 0;
6007 		rq->next_balance = jiffies;
6008 		rq->push_cpu = 0;
6009 		rq->cpu = i;
6010 		rq->online = 0;
6011 		rq->idle_stamp = 0;
6012 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6013 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6014 
6015 		INIT_LIST_HEAD(&rq->cfs_tasks);
6016 
6017 		rq_attach_root(rq, &def_root_domain);
6018 #ifdef CONFIG_NO_HZ_COMMON
6019 		rq->last_load_update_tick = jiffies;
6020 		rq->nohz_flags = 0;
6021 #endif
6022 #ifdef CONFIG_NO_HZ_FULL
6023 		rq->last_sched_tick = 0;
6024 #endif
6025 #endif /* CONFIG_SMP */
6026 		init_rq_hrtick(rq);
6027 		atomic_set(&rq->nr_iowait, 0);
6028 	}
6029 
6030 	set_load_weight(&init_task, false);
6031 
6032 	/*
6033 	 * The boot idle thread does lazy MMU switching as well:
6034 	 */
6035 	mmgrab(&init_mm);
6036 	enter_lazy_tlb(&init_mm, current);
6037 
6038 	/*
6039 	 * Make us the idle thread. Technically, schedule() should not be
6040 	 * called from this thread, however somewhere below it might be,
6041 	 * but because we are the idle thread, we just pick up running again
6042 	 * when this runqueue becomes "idle".
6043 	 */
6044 	init_idle(current, smp_processor_id());
6045 
6046 	calc_load_update = jiffies + LOAD_FREQ;
6047 
6048 #ifdef CONFIG_SMP
6049 	idle_thread_set_boot_cpu();
6050 	set_cpu_rq_start_time(smp_processor_id());
6051 #endif
6052 	init_sched_fair_class();
6053 
6054 	init_schedstats();
6055 
6056 	scheduler_running = 1;
6057 }
6058 
6059 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6060 static inline int preempt_count_equals(int preempt_offset)
6061 {
6062 	int nested = preempt_count() + rcu_preempt_depth();
6063 
6064 	return (nested == preempt_offset);
6065 }
6066 
6067 void __might_sleep(const char *file, int line, int preempt_offset)
6068 {
6069 	/*
6070 	 * Blocking primitives will set (and therefore destroy) current->state,
6071 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6072 	 * otherwise we will destroy state.
6073 	 */
6074 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6075 			"do not call blocking ops when !TASK_RUNNING; "
6076 			"state=%lx set at [<%p>] %pS\n",
6077 			current->state,
6078 			(void *)current->task_state_change,
6079 			(void *)current->task_state_change);
6080 
6081 	___might_sleep(file, line, preempt_offset);
6082 }
6083 EXPORT_SYMBOL(__might_sleep);
6084 
6085 void ___might_sleep(const char *file, int line, int preempt_offset)
6086 {
6087 	/* Ratelimiting timestamp: */
6088 	static unsigned long prev_jiffy;
6089 
6090 	unsigned long preempt_disable_ip;
6091 
6092 	/* WARN_ON_ONCE() by default, no rate limit required: */
6093 	rcu_sleep_check();
6094 
6095 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6096 	     !is_idle_task(current)) ||
6097 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6098 	    oops_in_progress)
6099 		return;
6100 
6101 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6102 		return;
6103 	prev_jiffy = jiffies;
6104 
6105 	/* Save this before calling printk(), since that will clobber it: */
6106 	preempt_disable_ip = get_preempt_disable_ip(current);
6107 
6108 	printk(KERN_ERR
6109 		"BUG: sleeping function called from invalid context at %s:%d\n",
6110 			file, line);
6111 	printk(KERN_ERR
6112 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6113 			in_atomic(), irqs_disabled(),
6114 			current->pid, current->comm);
6115 
6116 	if (task_stack_end_corrupted(current))
6117 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6118 
6119 	debug_show_held_locks(current);
6120 	if (irqs_disabled())
6121 		print_irqtrace_events(current);
6122 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6123 	    && !preempt_count_equals(preempt_offset)) {
6124 		pr_err("Preemption disabled at:");
6125 		print_ip_sym(preempt_disable_ip);
6126 		pr_cont("\n");
6127 	}
6128 	dump_stack();
6129 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6130 }
6131 EXPORT_SYMBOL(___might_sleep);
6132 #endif
6133 
6134 #ifdef CONFIG_MAGIC_SYSRQ
6135 void normalize_rt_tasks(void)
6136 {
6137 	struct task_struct *g, *p;
6138 	struct sched_attr attr = {
6139 		.sched_policy = SCHED_NORMAL,
6140 	};
6141 
6142 	read_lock(&tasklist_lock);
6143 	for_each_process_thread(g, p) {
6144 		/*
6145 		 * Only normalize user tasks:
6146 		 */
6147 		if (p->flags & PF_KTHREAD)
6148 			continue;
6149 
6150 		p->se.exec_start = 0;
6151 		schedstat_set(p->se.statistics.wait_start,  0);
6152 		schedstat_set(p->se.statistics.sleep_start, 0);
6153 		schedstat_set(p->se.statistics.block_start, 0);
6154 
6155 		if (!dl_task(p) && !rt_task(p)) {
6156 			/*
6157 			 * Renice negative nice level userspace
6158 			 * tasks back to 0:
6159 			 */
6160 			if (task_nice(p) < 0)
6161 				set_user_nice(p, 0);
6162 			continue;
6163 		}
6164 
6165 		__sched_setscheduler(p, &attr, false, false);
6166 	}
6167 	read_unlock(&tasklist_lock);
6168 }
6169 
6170 #endif /* CONFIG_MAGIC_SYSRQ */
6171 
6172 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6173 /*
6174  * These functions are only useful for the IA64 MCA handling, or kdb.
6175  *
6176  * They can only be called when the whole system has been
6177  * stopped - every CPU needs to be quiescent, and no scheduling
6178  * activity can take place. Using them for anything else would
6179  * be a serious bug, and as a result, they aren't even visible
6180  * under any other configuration.
6181  */
6182 
6183 /**
6184  * curr_task - return the current task for a given CPU.
6185  * @cpu: the processor in question.
6186  *
6187  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6188  *
6189  * Return: The current task for @cpu.
6190  */
6191 struct task_struct *curr_task(int cpu)
6192 {
6193 	return cpu_curr(cpu);
6194 }
6195 
6196 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6197 
6198 #ifdef CONFIG_IA64
6199 /**
6200  * set_curr_task - set the current task for a given CPU.
6201  * @cpu: the processor in question.
6202  * @p: the task pointer to set.
6203  *
6204  * Description: This function must only be used when non-maskable interrupts
6205  * are serviced on a separate stack. It allows the architecture to switch the
6206  * notion of the current task on a CPU in a non-blocking manner. This function
6207  * must be called with all CPU's synchronized, and interrupts disabled, the
6208  * and caller must save the original value of the current task (see
6209  * curr_task() above) and restore that value before reenabling interrupts and
6210  * re-starting the system.
6211  *
6212  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6213  */
6214 void ia64_set_curr_task(int cpu, struct task_struct *p)
6215 {
6216 	cpu_curr(cpu) = p;
6217 }
6218 
6219 #endif
6220 
6221 #ifdef CONFIG_CGROUP_SCHED
6222 /* task_group_lock serializes the addition/removal of task groups */
6223 static DEFINE_SPINLOCK(task_group_lock);
6224 
6225 static void sched_free_group(struct task_group *tg)
6226 {
6227 	free_fair_sched_group(tg);
6228 	free_rt_sched_group(tg);
6229 	autogroup_free(tg);
6230 	kmem_cache_free(task_group_cache, tg);
6231 }
6232 
6233 /* allocate runqueue etc for a new task group */
6234 struct task_group *sched_create_group(struct task_group *parent)
6235 {
6236 	struct task_group *tg;
6237 
6238 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6239 	if (!tg)
6240 		return ERR_PTR(-ENOMEM);
6241 
6242 	if (!alloc_fair_sched_group(tg, parent))
6243 		goto err;
6244 
6245 	if (!alloc_rt_sched_group(tg, parent))
6246 		goto err;
6247 
6248 	return tg;
6249 
6250 err:
6251 	sched_free_group(tg);
6252 	return ERR_PTR(-ENOMEM);
6253 }
6254 
6255 void sched_online_group(struct task_group *tg, struct task_group *parent)
6256 {
6257 	unsigned long flags;
6258 
6259 	spin_lock_irqsave(&task_group_lock, flags);
6260 	list_add_rcu(&tg->list, &task_groups);
6261 
6262 	/* Root should already exist: */
6263 	WARN_ON(!parent);
6264 
6265 	tg->parent = parent;
6266 	INIT_LIST_HEAD(&tg->children);
6267 	list_add_rcu(&tg->siblings, &parent->children);
6268 	spin_unlock_irqrestore(&task_group_lock, flags);
6269 
6270 	online_fair_sched_group(tg);
6271 }
6272 
6273 /* rcu callback to free various structures associated with a task group */
6274 static void sched_free_group_rcu(struct rcu_head *rhp)
6275 {
6276 	/* Now it should be safe to free those cfs_rqs: */
6277 	sched_free_group(container_of(rhp, struct task_group, rcu));
6278 }
6279 
6280 void sched_destroy_group(struct task_group *tg)
6281 {
6282 	/* Wait for possible concurrent references to cfs_rqs complete: */
6283 	call_rcu(&tg->rcu, sched_free_group_rcu);
6284 }
6285 
6286 void sched_offline_group(struct task_group *tg)
6287 {
6288 	unsigned long flags;
6289 
6290 	/* End participation in shares distribution: */
6291 	unregister_fair_sched_group(tg);
6292 
6293 	spin_lock_irqsave(&task_group_lock, flags);
6294 	list_del_rcu(&tg->list);
6295 	list_del_rcu(&tg->siblings);
6296 	spin_unlock_irqrestore(&task_group_lock, flags);
6297 }
6298 
6299 static void sched_change_group(struct task_struct *tsk, int type)
6300 {
6301 	struct task_group *tg;
6302 
6303 	/*
6304 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6305 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6306 	 * to prevent lockdep warnings.
6307 	 */
6308 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6309 			  struct task_group, css);
6310 	tg = autogroup_task_group(tsk, tg);
6311 	tsk->sched_task_group = tg;
6312 
6313 #ifdef CONFIG_FAIR_GROUP_SCHED
6314 	if (tsk->sched_class->task_change_group)
6315 		tsk->sched_class->task_change_group(tsk, type);
6316 	else
6317 #endif
6318 		set_task_rq(tsk, task_cpu(tsk));
6319 }
6320 
6321 /*
6322  * Change task's runqueue when it moves between groups.
6323  *
6324  * The caller of this function should have put the task in its new group by
6325  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6326  * its new group.
6327  */
6328 void sched_move_task(struct task_struct *tsk)
6329 {
6330 	int queued, running, queue_flags =
6331 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6332 	struct rq_flags rf;
6333 	struct rq *rq;
6334 
6335 	rq = task_rq_lock(tsk, &rf);
6336 	update_rq_clock(rq);
6337 
6338 	running = task_current(rq, tsk);
6339 	queued = task_on_rq_queued(tsk);
6340 
6341 	if (queued)
6342 		dequeue_task(rq, tsk, queue_flags);
6343 	if (running)
6344 		put_prev_task(rq, tsk);
6345 
6346 	sched_change_group(tsk, TASK_MOVE_GROUP);
6347 
6348 	if (queued)
6349 		enqueue_task(rq, tsk, queue_flags);
6350 	if (running)
6351 		set_curr_task(rq, tsk);
6352 
6353 	task_rq_unlock(rq, tsk, &rf);
6354 }
6355 
6356 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6357 {
6358 	return css ? container_of(css, struct task_group, css) : NULL;
6359 }
6360 
6361 static struct cgroup_subsys_state *
6362 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6363 {
6364 	struct task_group *parent = css_tg(parent_css);
6365 	struct task_group *tg;
6366 
6367 	if (!parent) {
6368 		/* This is early initialization for the top cgroup */
6369 		return &root_task_group.css;
6370 	}
6371 
6372 	tg = sched_create_group(parent);
6373 	if (IS_ERR(tg))
6374 		return ERR_PTR(-ENOMEM);
6375 
6376 	return &tg->css;
6377 }
6378 
6379 /* Expose task group only after completing cgroup initialization */
6380 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6381 {
6382 	struct task_group *tg = css_tg(css);
6383 	struct task_group *parent = css_tg(css->parent);
6384 
6385 	if (parent)
6386 		sched_online_group(tg, parent);
6387 	return 0;
6388 }
6389 
6390 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6391 {
6392 	struct task_group *tg = css_tg(css);
6393 
6394 	sched_offline_group(tg);
6395 }
6396 
6397 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6398 {
6399 	struct task_group *tg = css_tg(css);
6400 
6401 	/*
6402 	 * Relies on the RCU grace period between css_released() and this.
6403 	 */
6404 	sched_free_group(tg);
6405 }
6406 
6407 /*
6408  * This is called before wake_up_new_task(), therefore we really only
6409  * have to set its group bits, all the other stuff does not apply.
6410  */
6411 static void cpu_cgroup_fork(struct task_struct *task)
6412 {
6413 	struct rq_flags rf;
6414 	struct rq *rq;
6415 
6416 	rq = task_rq_lock(task, &rf);
6417 
6418 	update_rq_clock(rq);
6419 	sched_change_group(task, TASK_SET_GROUP);
6420 
6421 	task_rq_unlock(rq, task, &rf);
6422 }
6423 
6424 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6425 {
6426 	struct task_struct *task;
6427 	struct cgroup_subsys_state *css;
6428 	int ret = 0;
6429 
6430 	cgroup_taskset_for_each(task, css, tset) {
6431 #ifdef CONFIG_RT_GROUP_SCHED
6432 		if (!sched_rt_can_attach(css_tg(css), task))
6433 			return -EINVAL;
6434 #else
6435 		/* We don't support RT-tasks being in separate groups */
6436 		if (task->sched_class != &fair_sched_class)
6437 			return -EINVAL;
6438 #endif
6439 		/*
6440 		 * Serialize against wake_up_new_task() such that if its
6441 		 * running, we're sure to observe its full state.
6442 		 */
6443 		raw_spin_lock_irq(&task->pi_lock);
6444 		/*
6445 		 * Avoid calling sched_move_task() before wake_up_new_task()
6446 		 * has happened. This would lead to problems with PELT, due to
6447 		 * move wanting to detach+attach while we're not attached yet.
6448 		 */
6449 		if (task->state == TASK_NEW)
6450 			ret = -EINVAL;
6451 		raw_spin_unlock_irq(&task->pi_lock);
6452 
6453 		if (ret)
6454 			break;
6455 	}
6456 	return ret;
6457 }
6458 
6459 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6460 {
6461 	struct task_struct *task;
6462 	struct cgroup_subsys_state *css;
6463 
6464 	cgroup_taskset_for_each(task, css, tset)
6465 		sched_move_task(task);
6466 }
6467 
6468 #ifdef CONFIG_FAIR_GROUP_SCHED
6469 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6470 				struct cftype *cftype, u64 shareval)
6471 {
6472 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6473 }
6474 
6475 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6476 			       struct cftype *cft)
6477 {
6478 	struct task_group *tg = css_tg(css);
6479 
6480 	return (u64) scale_load_down(tg->shares);
6481 }
6482 
6483 #ifdef CONFIG_CFS_BANDWIDTH
6484 static DEFINE_MUTEX(cfs_constraints_mutex);
6485 
6486 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6487 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6488 
6489 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6490 
6491 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6492 {
6493 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6494 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6495 
6496 	if (tg == &root_task_group)
6497 		return -EINVAL;
6498 
6499 	/*
6500 	 * Ensure we have at some amount of bandwidth every period.  This is
6501 	 * to prevent reaching a state of large arrears when throttled via
6502 	 * entity_tick() resulting in prolonged exit starvation.
6503 	 */
6504 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6505 		return -EINVAL;
6506 
6507 	/*
6508 	 * Likewise, bound things on the otherside by preventing insane quota
6509 	 * periods.  This also allows us to normalize in computing quota
6510 	 * feasibility.
6511 	 */
6512 	if (period > max_cfs_quota_period)
6513 		return -EINVAL;
6514 
6515 	/*
6516 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6517 	 * unthrottle_offline_cfs_rqs().
6518 	 */
6519 	get_online_cpus();
6520 	mutex_lock(&cfs_constraints_mutex);
6521 	ret = __cfs_schedulable(tg, period, quota);
6522 	if (ret)
6523 		goto out_unlock;
6524 
6525 	runtime_enabled = quota != RUNTIME_INF;
6526 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6527 	/*
6528 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6529 	 * before making related changes, and on->off must occur afterwards
6530 	 */
6531 	if (runtime_enabled && !runtime_was_enabled)
6532 		cfs_bandwidth_usage_inc();
6533 	raw_spin_lock_irq(&cfs_b->lock);
6534 	cfs_b->period = ns_to_ktime(period);
6535 	cfs_b->quota = quota;
6536 
6537 	__refill_cfs_bandwidth_runtime(cfs_b);
6538 
6539 	/* Restart the period timer (if active) to handle new period expiry: */
6540 	if (runtime_enabled)
6541 		start_cfs_bandwidth(cfs_b);
6542 
6543 	raw_spin_unlock_irq(&cfs_b->lock);
6544 
6545 	for_each_online_cpu(i) {
6546 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6547 		struct rq *rq = cfs_rq->rq;
6548 		struct rq_flags rf;
6549 
6550 		rq_lock_irq(rq, &rf);
6551 		cfs_rq->runtime_enabled = runtime_enabled;
6552 		cfs_rq->runtime_remaining = 0;
6553 
6554 		if (cfs_rq->throttled)
6555 			unthrottle_cfs_rq(cfs_rq);
6556 		rq_unlock_irq(rq, &rf);
6557 	}
6558 	if (runtime_was_enabled && !runtime_enabled)
6559 		cfs_bandwidth_usage_dec();
6560 out_unlock:
6561 	mutex_unlock(&cfs_constraints_mutex);
6562 	put_online_cpus();
6563 
6564 	return ret;
6565 }
6566 
6567 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6568 {
6569 	u64 quota, period;
6570 
6571 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6572 	if (cfs_quota_us < 0)
6573 		quota = RUNTIME_INF;
6574 	else
6575 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6576 
6577 	return tg_set_cfs_bandwidth(tg, period, quota);
6578 }
6579 
6580 long tg_get_cfs_quota(struct task_group *tg)
6581 {
6582 	u64 quota_us;
6583 
6584 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6585 		return -1;
6586 
6587 	quota_us = tg->cfs_bandwidth.quota;
6588 	do_div(quota_us, NSEC_PER_USEC);
6589 
6590 	return quota_us;
6591 }
6592 
6593 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6594 {
6595 	u64 quota, period;
6596 
6597 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6598 	quota = tg->cfs_bandwidth.quota;
6599 
6600 	return tg_set_cfs_bandwidth(tg, period, quota);
6601 }
6602 
6603 long tg_get_cfs_period(struct task_group *tg)
6604 {
6605 	u64 cfs_period_us;
6606 
6607 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6608 	do_div(cfs_period_us, NSEC_PER_USEC);
6609 
6610 	return cfs_period_us;
6611 }
6612 
6613 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6614 				  struct cftype *cft)
6615 {
6616 	return tg_get_cfs_quota(css_tg(css));
6617 }
6618 
6619 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6620 				   struct cftype *cftype, s64 cfs_quota_us)
6621 {
6622 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6623 }
6624 
6625 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6626 				   struct cftype *cft)
6627 {
6628 	return tg_get_cfs_period(css_tg(css));
6629 }
6630 
6631 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6632 				    struct cftype *cftype, u64 cfs_period_us)
6633 {
6634 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6635 }
6636 
6637 struct cfs_schedulable_data {
6638 	struct task_group *tg;
6639 	u64 period, quota;
6640 };
6641 
6642 /*
6643  * normalize group quota/period to be quota/max_period
6644  * note: units are usecs
6645  */
6646 static u64 normalize_cfs_quota(struct task_group *tg,
6647 			       struct cfs_schedulable_data *d)
6648 {
6649 	u64 quota, period;
6650 
6651 	if (tg == d->tg) {
6652 		period = d->period;
6653 		quota = d->quota;
6654 	} else {
6655 		period = tg_get_cfs_period(tg);
6656 		quota = tg_get_cfs_quota(tg);
6657 	}
6658 
6659 	/* note: these should typically be equivalent */
6660 	if (quota == RUNTIME_INF || quota == -1)
6661 		return RUNTIME_INF;
6662 
6663 	return to_ratio(period, quota);
6664 }
6665 
6666 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6667 {
6668 	struct cfs_schedulable_data *d = data;
6669 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6670 	s64 quota = 0, parent_quota = -1;
6671 
6672 	if (!tg->parent) {
6673 		quota = RUNTIME_INF;
6674 	} else {
6675 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6676 
6677 		quota = normalize_cfs_quota(tg, d);
6678 		parent_quota = parent_b->hierarchical_quota;
6679 
6680 		/*
6681 		 * Ensure max(child_quota) <= parent_quota, inherit when no
6682 		 * limit is set:
6683 		 */
6684 		if (quota == RUNTIME_INF)
6685 			quota = parent_quota;
6686 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6687 			return -EINVAL;
6688 	}
6689 	cfs_b->hierarchical_quota = quota;
6690 
6691 	return 0;
6692 }
6693 
6694 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6695 {
6696 	int ret;
6697 	struct cfs_schedulable_data data = {
6698 		.tg = tg,
6699 		.period = period,
6700 		.quota = quota,
6701 	};
6702 
6703 	if (quota != RUNTIME_INF) {
6704 		do_div(data.period, NSEC_PER_USEC);
6705 		do_div(data.quota, NSEC_PER_USEC);
6706 	}
6707 
6708 	rcu_read_lock();
6709 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6710 	rcu_read_unlock();
6711 
6712 	return ret;
6713 }
6714 
6715 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6716 {
6717 	struct task_group *tg = css_tg(seq_css(sf));
6718 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6719 
6720 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6721 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6722 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6723 
6724 	return 0;
6725 }
6726 #endif /* CONFIG_CFS_BANDWIDTH */
6727 #endif /* CONFIG_FAIR_GROUP_SCHED */
6728 
6729 #ifdef CONFIG_RT_GROUP_SCHED
6730 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6731 				struct cftype *cft, s64 val)
6732 {
6733 	return sched_group_set_rt_runtime(css_tg(css), val);
6734 }
6735 
6736 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6737 			       struct cftype *cft)
6738 {
6739 	return sched_group_rt_runtime(css_tg(css));
6740 }
6741 
6742 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6743 				    struct cftype *cftype, u64 rt_period_us)
6744 {
6745 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6746 }
6747 
6748 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6749 				   struct cftype *cft)
6750 {
6751 	return sched_group_rt_period(css_tg(css));
6752 }
6753 #endif /* CONFIG_RT_GROUP_SCHED */
6754 
6755 static struct cftype cpu_legacy_files[] = {
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
6757 	{
6758 		.name = "shares",
6759 		.read_u64 = cpu_shares_read_u64,
6760 		.write_u64 = cpu_shares_write_u64,
6761 	},
6762 #endif
6763 #ifdef CONFIG_CFS_BANDWIDTH
6764 	{
6765 		.name = "cfs_quota_us",
6766 		.read_s64 = cpu_cfs_quota_read_s64,
6767 		.write_s64 = cpu_cfs_quota_write_s64,
6768 	},
6769 	{
6770 		.name = "cfs_period_us",
6771 		.read_u64 = cpu_cfs_period_read_u64,
6772 		.write_u64 = cpu_cfs_period_write_u64,
6773 	},
6774 	{
6775 		.name = "stat",
6776 		.seq_show = cpu_cfs_stat_show,
6777 	},
6778 #endif
6779 #ifdef CONFIG_RT_GROUP_SCHED
6780 	{
6781 		.name = "rt_runtime_us",
6782 		.read_s64 = cpu_rt_runtime_read,
6783 		.write_s64 = cpu_rt_runtime_write,
6784 	},
6785 	{
6786 		.name = "rt_period_us",
6787 		.read_u64 = cpu_rt_period_read_uint,
6788 		.write_u64 = cpu_rt_period_write_uint,
6789 	},
6790 #endif
6791 	{ }	/* Terminate */
6792 };
6793 
6794 static int cpu_extra_stat_show(struct seq_file *sf,
6795 			       struct cgroup_subsys_state *css)
6796 {
6797 #ifdef CONFIG_CFS_BANDWIDTH
6798 	{
6799 		struct task_group *tg = css_tg(css);
6800 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6801 		u64 throttled_usec;
6802 
6803 		throttled_usec = cfs_b->throttled_time;
6804 		do_div(throttled_usec, NSEC_PER_USEC);
6805 
6806 		seq_printf(sf, "nr_periods %d\n"
6807 			   "nr_throttled %d\n"
6808 			   "throttled_usec %llu\n",
6809 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6810 			   throttled_usec);
6811 	}
6812 #endif
6813 	return 0;
6814 }
6815 
6816 #ifdef CONFIG_FAIR_GROUP_SCHED
6817 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6818 			       struct cftype *cft)
6819 {
6820 	struct task_group *tg = css_tg(css);
6821 	u64 weight = scale_load_down(tg->shares);
6822 
6823 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6824 }
6825 
6826 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6827 				struct cftype *cft, u64 weight)
6828 {
6829 	/*
6830 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6831 	 * values which are 1, 100 and 10000 respectively.  While it loses
6832 	 * a bit of range on both ends, it maps pretty well onto the shares
6833 	 * value used by scheduler and the round-trip conversions preserve
6834 	 * the original value over the entire range.
6835 	 */
6836 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6837 		return -ERANGE;
6838 
6839 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6840 
6841 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6842 }
6843 
6844 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6845 				    struct cftype *cft)
6846 {
6847 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6848 	int last_delta = INT_MAX;
6849 	int prio, delta;
6850 
6851 	/* find the closest nice value to the current weight */
6852 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6853 		delta = abs(sched_prio_to_weight[prio] - weight);
6854 		if (delta >= last_delta)
6855 			break;
6856 		last_delta = delta;
6857 	}
6858 
6859 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6860 }
6861 
6862 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6863 				     struct cftype *cft, s64 nice)
6864 {
6865 	unsigned long weight;
6866 
6867 	if (nice < MIN_NICE || nice > MAX_NICE)
6868 		return -ERANGE;
6869 
6870 	weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6871 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6872 }
6873 #endif
6874 
6875 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6876 						  long period, long quota)
6877 {
6878 	if (quota < 0)
6879 		seq_puts(sf, "max");
6880 	else
6881 		seq_printf(sf, "%ld", quota);
6882 
6883 	seq_printf(sf, " %ld\n", period);
6884 }
6885 
6886 /* caller should put the current value in *@periodp before calling */
6887 static int __maybe_unused cpu_period_quota_parse(char *buf,
6888 						 u64 *periodp, u64 *quotap)
6889 {
6890 	char tok[21];	/* U64_MAX */
6891 
6892 	if (!sscanf(buf, "%s %llu", tok, periodp))
6893 		return -EINVAL;
6894 
6895 	*periodp *= NSEC_PER_USEC;
6896 
6897 	if (sscanf(tok, "%llu", quotap))
6898 		*quotap *= NSEC_PER_USEC;
6899 	else if (!strcmp(tok, "max"))
6900 		*quotap = RUNTIME_INF;
6901 	else
6902 		return -EINVAL;
6903 
6904 	return 0;
6905 }
6906 
6907 #ifdef CONFIG_CFS_BANDWIDTH
6908 static int cpu_max_show(struct seq_file *sf, void *v)
6909 {
6910 	struct task_group *tg = css_tg(seq_css(sf));
6911 
6912 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6913 	return 0;
6914 }
6915 
6916 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6917 			     char *buf, size_t nbytes, loff_t off)
6918 {
6919 	struct task_group *tg = css_tg(of_css(of));
6920 	u64 period = tg_get_cfs_period(tg);
6921 	u64 quota;
6922 	int ret;
6923 
6924 	ret = cpu_period_quota_parse(buf, &period, &quota);
6925 	if (!ret)
6926 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6927 	return ret ?: nbytes;
6928 }
6929 #endif
6930 
6931 static struct cftype cpu_files[] = {
6932 #ifdef CONFIG_FAIR_GROUP_SCHED
6933 	{
6934 		.name = "weight",
6935 		.flags = CFTYPE_NOT_ON_ROOT,
6936 		.read_u64 = cpu_weight_read_u64,
6937 		.write_u64 = cpu_weight_write_u64,
6938 	},
6939 	{
6940 		.name = "weight.nice",
6941 		.flags = CFTYPE_NOT_ON_ROOT,
6942 		.read_s64 = cpu_weight_nice_read_s64,
6943 		.write_s64 = cpu_weight_nice_write_s64,
6944 	},
6945 #endif
6946 #ifdef CONFIG_CFS_BANDWIDTH
6947 	{
6948 		.name = "max",
6949 		.flags = CFTYPE_NOT_ON_ROOT,
6950 		.seq_show = cpu_max_show,
6951 		.write = cpu_max_write,
6952 	},
6953 #endif
6954 	{ }	/* terminate */
6955 };
6956 
6957 struct cgroup_subsys cpu_cgrp_subsys = {
6958 	.css_alloc	= cpu_cgroup_css_alloc,
6959 	.css_online	= cpu_cgroup_css_online,
6960 	.css_released	= cpu_cgroup_css_released,
6961 	.css_free	= cpu_cgroup_css_free,
6962 	.css_extra_stat_show = cpu_extra_stat_show,
6963 	.fork		= cpu_cgroup_fork,
6964 	.can_attach	= cpu_cgroup_can_attach,
6965 	.attach		= cpu_cgroup_attach,
6966 	.legacy_cftypes	= cpu_legacy_files,
6967 	.dfl_cftypes	= cpu_files,
6968 	.early_init	= true,
6969 	.threaded	= true,
6970 };
6971 
6972 #endif	/* CONFIG_CGROUP_SCHED */
6973 
6974 void dump_cpu_task(int cpu)
6975 {
6976 	pr_info("Task dump for CPU %d:\n", cpu);
6977 	sched_show_task(cpu_curr(cpu));
6978 }
6979 
6980 /*
6981  * Nice levels are multiplicative, with a gentle 10% change for every
6982  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6983  * nice 1, it will get ~10% less CPU time than another CPU-bound task
6984  * that remained on nice 0.
6985  *
6986  * The "10% effect" is relative and cumulative: from _any_ nice level,
6987  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6988  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6989  * If a task goes up by ~10% and another task goes down by ~10% then
6990  * the relative distance between them is ~25%.)
6991  */
6992 const int sched_prio_to_weight[40] = {
6993  /* -20 */     88761,     71755,     56483,     46273,     36291,
6994  /* -15 */     29154,     23254,     18705,     14949,     11916,
6995  /* -10 */      9548,      7620,      6100,      4904,      3906,
6996  /*  -5 */      3121,      2501,      1991,      1586,      1277,
6997  /*   0 */      1024,       820,       655,       526,       423,
6998  /*   5 */       335,       272,       215,       172,       137,
6999  /*  10 */       110,        87,        70,        56,        45,
7000  /*  15 */        36,        29,        23,        18,        15,
7001 };
7002 
7003 /*
7004  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7005  *
7006  * In cases where the weight does not change often, we can use the
7007  * precalculated inverse to speed up arithmetics by turning divisions
7008  * into multiplications:
7009  */
7010 const u32 sched_prio_to_wmult[40] = {
7011  /* -20 */     48388,     59856,     76040,     92818,    118348,
7012  /* -15 */    147320,    184698,    229616,    287308,    360437,
7013  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7014  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7015  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7016  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7017  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7018  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7019 };
7020