1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 */ 374 375 static void hrtick_clear(struct rq *rq) 376 { 377 if (hrtimer_active(&rq->hrtick_timer)) 378 hrtimer_cancel(&rq->hrtick_timer); 379 } 380 381 /* 382 * High-resolution timer tick. 383 * Runs from hardirq context with interrupts disabled. 384 */ 385 static enum hrtimer_restart hrtick(struct hrtimer *timer) 386 { 387 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 388 389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 390 391 raw_spin_lock(&rq->lock); 392 update_rq_clock(rq); 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 394 raw_spin_unlock(&rq->lock); 395 396 return HRTIMER_NORESTART; 397 } 398 399 #ifdef CONFIG_SMP 400 401 static int __hrtick_restart(struct rq *rq) 402 { 403 struct hrtimer *timer = &rq->hrtick_timer; 404 ktime_t time = hrtimer_get_softexpires(timer); 405 406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 407 } 408 409 /* 410 * called from hardirq (IPI) context 411 */ 412 static void __hrtick_start(void *arg) 413 { 414 struct rq *rq = arg; 415 416 raw_spin_lock(&rq->lock); 417 __hrtick_restart(rq); 418 rq->hrtick_csd_pending = 0; 419 raw_spin_unlock(&rq->lock); 420 } 421 422 /* 423 * Called to set the hrtick timer state. 424 * 425 * called with rq->lock held and irqs disabled 426 */ 427 void hrtick_start(struct rq *rq, u64 delay) 428 { 429 struct hrtimer *timer = &rq->hrtick_timer; 430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 431 432 hrtimer_set_expires(timer, time); 433 434 if (rq == this_rq()) { 435 __hrtick_restart(rq); 436 } else if (!rq->hrtick_csd_pending) { 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 438 rq->hrtick_csd_pending = 1; 439 } 440 } 441 442 static int 443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 444 { 445 int cpu = (int)(long)hcpu; 446 447 switch (action) { 448 case CPU_UP_CANCELED: 449 case CPU_UP_CANCELED_FROZEN: 450 case CPU_DOWN_PREPARE: 451 case CPU_DOWN_PREPARE_FROZEN: 452 case CPU_DEAD: 453 case CPU_DEAD_FROZEN: 454 hrtick_clear(cpu_rq(cpu)); 455 return NOTIFY_OK; 456 } 457 458 return NOTIFY_DONE; 459 } 460 461 static __init void init_hrtick(void) 462 { 463 hotcpu_notifier(hotplug_hrtick, 0); 464 } 465 #else 466 /* 467 * Called to set the hrtick timer state. 468 * 469 * called with rq->lock held and irqs disabled 470 */ 471 void hrtick_start(struct rq *rq, u64 delay) 472 { 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 474 HRTIMER_MODE_REL_PINNED, 0); 475 } 476 477 static inline void init_hrtick(void) 478 { 479 } 480 #endif /* CONFIG_SMP */ 481 482 static void init_rq_hrtick(struct rq *rq) 483 { 484 #ifdef CONFIG_SMP 485 rq->hrtick_csd_pending = 0; 486 487 rq->hrtick_csd.flags = 0; 488 rq->hrtick_csd.func = __hrtick_start; 489 rq->hrtick_csd.info = rq; 490 #endif 491 492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 493 rq->hrtick_timer.function = hrtick; 494 } 495 #else /* CONFIG_SCHED_HRTICK */ 496 static inline void hrtick_clear(struct rq *rq) 497 { 498 } 499 500 static inline void init_rq_hrtick(struct rq *rq) 501 { 502 } 503 504 static inline void init_hrtick(void) 505 { 506 } 507 #endif /* CONFIG_SCHED_HRTICK */ 508 509 /* 510 * resched_task - mark a task 'to be rescheduled now'. 511 * 512 * On UP this means the setting of the need_resched flag, on SMP it 513 * might also involve a cross-CPU call to trigger the scheduler on 514 * the target CPU. 515 */ 516 void resched_task(struct task_struct *p) 517 { 518 int cpu; 519 520 lockdep_assert_held(&task_rq(p)->lock); 521 522 if (test_tsk_need_resched(p)) 523 return; 524 525 set_tsk_need_resched(p); 526 527 cpu = task_cpu(p); 528 if (cpu == smp_processor_id()) { 529 set_preempt_need_resched(); 530 return; 531 } 532 533 /* NEED_RESCHED must be visible before we test polling */ 534 smp_mb(); 535 if (!tsk_is_polling(p)) 536 smp_send_reschedule(cpu); 537 } 538 539 void resched_cpu(int cpu) 540 { 541 struct rq *rq = cpu_rq(cpu); 542 unsigned long flags; 543 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 545 return; 546 resched_task(cpu_curr(cpu)); 547 raw_spin_unlock_irqrestore(&rq->lock, flags); 548 } 549 550 #ifdef CONFIG_SMP 551 #ifdef CONFIG_NO_HZ_COMMON 552 /* 553 * In the semi idle case, use the nearest busy cpu for migrating timers 554 * from an idle cpu. This is good for power-savings. 555 * 556 * We don't do similar optimization for completely idle system, as 557 * selecting an idle cpu will add more delays to the timers than intended 558 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 559 */ 560 int get_nohz_timer_target(void) 561 { 562 int cpu = smp_processor_id(); 563 int i; 564 struct sched_domain *sd; 565 566 rcu_read_lock(); 567 for_each_domain(cpu, sd) { 568 for_each_cpu(i, sched_domain_span(sd)) { 569 if (!idle_cpu(i)) { 570 cpu = i; 571 goto unlock; 572 } 573 } 574 } 575 unlock: 576 rcu_read_unlock(); 577 return cpu; 578 } 579 /* 580 * When add_timer_on() enqueues a timer into the timer wheel of an 581 * idle CPU then this timer might expire before the next timer event 582 * which is scheduled to wake up that CPU. In case of a completely 583 * idle system the next event might even be infinite time into the 584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 585 * leaves the inner idle loop so the newly added timer is taken into 586 * account when the CPU goes back to idle and evaluates the timer 587 * wheel for the next timer event. 588 */ 589 static void wake_up_idle_cpu(int cpu) 590 { 591 struct rq *rq = cpu_rq(cpu); 592 593 if (cpu == smp_processor_id()) 594 return; 595 596 /* 597 * This is safe, as this function is called with the timer 598 * wheel base lock of (cpu) held. When the CPU is on the way 599 * to idle and has not yet set rq->curr to idle then it will 600 * be serialized on the timer wheel base lock and take the new 601 * timer into account automatically. 602 */ 603 if (rq->curr != rq->idle) 604 return; 605 606 /* 607 * We can set TIF_RESCHED on the idle task of the other CPU 608 * lockless. The worst case is that the other CPU runs the 609 * idle task through an additional NOOP schedule() 610 */ 611 set_tsk_need_resched(rq->idle); 612 613 /* NEED_RESCHED must be visible before we test polling */ 614 smp_mb(); 615 if (!tsk_is_polling(rq->idle)) 616 smp_send_reschedule(cpu); 617 } 618 619 static bool wake_up_full_nohz_cpu(int cpu) 620 { 621 if (tick_nohz_full_cpu(cpu)) { 622 if (cpu != smp_processor_id() || 623 tick_nohz_tick_stopped()) 624 smp_send_reschedule(cpu); 625 return true; 626 } 627 628 return false; 629 } 630 631 void wake_up_nohz_cpu(int cpu) 632 { 633 if (!wake_up_full_nohz_cpu(cpu)) 634 wake_up_idle_cpu(cpu); 635 } 636 637 static inline bool got_nohz_idle_kick(void) 638 { 639 int cpu = smp_processor_id(); 640 641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 642 return false; 643 644 if (idle_cpu(cpu) && !need_resched()) 645 return true; 646 647 /* 648 * We can't run Idle Load Balance on this CPU for this time so we 649 * cancel it and clear NOHZ_BALANCE_KICK 650 */ 651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 652 return false; 653 } 654 655 #else /* CONFIG_NO_HZ_COMMON */ 656 657 static inline bool got_nohz_idle_kick(void) 658 { 659 return false; 660 } 661 662 #endif /* CONFIG_NO_HZ_COMMON */ 663 664 #ifdef CONFIG_NO_HZ_FULL 665 bool sched_can_stop_tick(void) 666 { 667 struct rq *rq; 668 669 rq = this_rq(); 670 671 /* Make sure rq->nr_running update is visible after the IPI */ 672 smp_rmb(); 673 674 /* More than one running task need preemption */ 675 if (rq->nr_running > 1) 676 return false; 677 678 return true; 679 } 680 #endif /* CONFIG_NO_HZ_FULL */ 681 682 void sched_avg_update(struct rq *rq) 683 { 684 s64 period = sched_avg_period(); 685 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 687 /* 688 * Inline assembly required to prevent the compiler 689 * optimising this loop into a divmod call. 690 * See __iter_div_u64_rem() for another example of this. 691 */ 692 asm("" : "+rm" (rq->age_stamp)); 693 rq->age_stamp += period; 694 rq->rt_avg /= 2; 695 } 696 } 697 698 #endif /* CONFIG_SMP */ 699 700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 702 /* 703 * Iterate task_group tree rooted at *from, calling @down when first entering a 704 * node and @up when leaving it for the final time. 705 * 706 * Caller must hold rcu_lock or sufficient equivalent. 707 */ 708 int walk_tg_tree_from(struct task_group *from, 709 tg_visitor down, tg_visitor up, void *data) 710 { 711 struct task_group *parent, *child; 712 int ret; 713 714 parent = from; 715 716 down: 717 ret = (*down)(parent, data); 718 if (ret) 719 goto out; 720 list_for_each_entry_rcu(child, &parent->children, siblings) { 721 parent = child; 722 goto down; 723 724 up: 725 continue; 726 } 727 ret = (*up)(parent, data); 728 if (ret || parent == from) 729 goto out; 730 731 child = parent; 732 parent = parent->parent; 733 if (parent) 734 goto up; 735 out: 736 return ret; 737 } 738 739 int tg_nop(struct task_group *tg, void *data) 740 { 741 return 0; 742 } 743 #endif 744 745 static void set_load_weight(struct task_struct *p) 746 { 747 int prio = p->static_prio - MAX_RT_PRIO; 748 struct load_weight *load = &p->se.load; 749 750 /* 751 * SCHED_IDLE tasks get minimal weight: 752 */ 753 if (p->policy == SCHED_IDLE) { 754 load->weight = scale_load(WEIGHT_IDLEPRIO); 755 load->inv_weight = WMULT_IDLEPRIO; 756 return; 757 } 758 759 load->weight = scale_load(prio_to_weight[prio]); 760 load->inv_weight = prio_to_wmult[prio]; 761 } 762 763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 update_rq_clock(rq); 766 sched_info_queued(rq, p); 767 p->sched_class->enqueue_task(rq, p, flags); 768 } 769 770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 771 { 772 update_rq_clock(rq); 773 sched_info_dequeued(rq, p); 774 p->sched_class->dequeue_task(rq, p, flags); 775 } 776 777 void activate_task(struct rq *rq, struct task_struct *p, int flags) 778 { 779 if (task_contributes_to_load(p)) 780 rq->nr_uninterruptible--; 781 782 enqueue_task(rq, p, flags); 783 } 784 785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 786 { 787 if (task_contributes_to_load(p)) 788 rq->nr_uninterruptible++; 789 790 dequeue_task(rq, p, flags); 791 } 792 793 static void update_rq_clock_task(struct rq *rq, s64 delta) 794 { 795 /* 796 * In theory, the compile should just see 0 here, and optimize out the call 797 * to sched_rt_avg_update. But I don't trust it... 798 */ 799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 800 s64 steal = 0, irq_delta = 0; 801 #endif 802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 804 805 /* 806 * Since irq_time is only updated on {soft,}irq_exit, we might run into 807 * this case when a previous update_rq_clock() happened inside a 808 * {soft,}irq region. 809 * 810 * When this happens, we stop ->clock_task and only update the 811 * prev_irq_time stamp to account for the part that fit, so that a next 812 * update will consume the rest. This ensures ->clock_task is 813 * monotonic. 814 * 815 * It does however cause some slight miss-attribution of {soft,}irq 816 * time, a more accurate solution would be to update the irq_time using 817 * the current rq->clock timestamp, except that would require using 818 * atomic ops. 819 */ 820 if (irq_delta > delta) 821 irq_delta = delta; 822 823 rq->prev_irq_time += irq_delta; 824 delta -= irq_delta; 825 #endif 826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 827 if (static_key_false((¶virt_steal_rq_enabled))) { 828 u64 st; 829 830 steal = paravirt_steal_clock(cpu_of(rq)); 831 steal -= rq->prev_steal_time_rq; 832 833 if (unlikely(steal > delta)) 834 steal = delta; 835 836 st = steal_ticks(steal); 837 steal = st * TICK_NSEC; 838 839 rq->prev_steal_time_rq += steal; 840 841 delta -= steal; 842 } 843 #endif 844 845 rq->clock_task += delta; 846 847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 849 sched_rt_avg_update(rq, irq_delta + steal); 850 #endif 851 } 852 853 void sched_set_stop_task(int cpu, struct task_struct *stop) 854 { 855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 856 struct task_struct *old_stop = cpu_rq(cpu)->stop; 857 858 if (stop) { 859 /* 860 * Make it appear like a SCHED_FIFO task, its something 861 * userspace knows about and won't get confused about. 862 * 863 * Also, it will make PI more or less work without too 864 * much confusion -- but then, stop work should not 865 * rely on PI working anyway. 866 */ 867 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 868 869 stop->sched_class = &stop_sched_class; 870 } 871 872 cpu_rq(cpu)->stop = stop; 873 874 if (old_stop) { 875 /* 876 * Reset it back to a normal scheduling class so that 877 * it can die in pieces. 878 */ 879 old_stop->sched_class = &rt_sched_class; 880 } 881 } 882 883 /* 884 * __normal_prio - return the priority that is based on the static prio 885 */ 886 static inline int __normal_prio(struct task_struct *p) 887 { 888 return p->static_prio; 889 } 890 891 /* 892 * Calculate the expected normal priority: i.e. priority 893 * without taking RT-inheritance into account. Might be 894 * boosted by interactivity modifiers. Changes upon fork, 895 * setprio syscalls, and whenever the interactivity 896 * estimator recalculates. 897 */ 898 static inline int normal_prio(struct task_struct *p) 899 { 900 int prio; 901 902 if (task_has_rt_policy(p)) 903 prio = MAX_RT_PRIO-1 - p->rt_priority; 904 else 905 prio = __normal_prio(p); 906 return prio; 907 } 908 909 /* 910 * Calculate the current priority, i.e. the priority 911 * taken into account by the scheduler. This value might 912 * be boosted by RT tasks, or might be boosted by 913 * interactivity modifiers. Will be RT if the task got 914 * RT-boosted. If not then it returns p->normal_prio. 915 */ 916 static int effective_prio(struct task_struct *p) 917 { 918 p->normal_prio = normal_prio(p); 919 /* 920 * If we are RT tasks or we were boosted to RT priority, 921 * keep the priority unchanged. Otherwise, update priority 922 * to the normal priority: 923 */ 924 if (!rt_prio(p->prio)) 925 return p->normal_prio; 926 return p->prio; 927 } 928 929 /** 930 * task_curr - is this task currently executing on a CPU? 931 * @p: the task in question. 932 * 933 * Return: 1 if the task is currently executing. 0 otherwise. 934 */ 935 inline int task_curr(const struct task_struct *p) 936 { 937 return cpu_curr(task_cpu(p)) == p; 938 } 939 940 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 941 const struct sched_class *prev_class, 942 int oldprio) 943 { 944 if (prev_class != p->sched_class) { 945 if (prev_class->switched_from) 946 prev_class->switched_from(rq, p); 947 p->sched_class->switched_to(rq, p); 948 } else if (oldprio != p->prio) 949 p->sched_class->prio_changed(rq, p, oldprio); 950 } 951 952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 953 { 954 const struct sched_class *class; 955 956 if (p->sched_class == rq->curr->sched_class) { 957 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 958 } else { 959 for_each_class(class) { 960 if (class == rq->curr->sched_class) 961 break; 962 if (class == p->sched_class) { 963 resched_task(rq->curr); 964 break; 965 } 966 } 967 } 968 969 /* 970 * A queue event has occurred, and we're going to schedule. In 971 * this case, we can save a useless back to back clock update. 972 */ 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 974 rq->skip_clock_update = 1; 975 } 976 977 #ifdef CONFIG_SMP 978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 979 { 980 #ifdef CONFIG_SCHED_DEBUG 981 /* 982 * We should never call set_task_cpu() on a blocked task, 983 * ttwu() will sort out the placement. 984 */ 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 986 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 987 988 #ifdef CONFIG_LOCKDEP 989 /* 990 * The caller should hold either p->pi_lock or rq->lock, when changing 991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 992 * 993 * sched_move_task() holds both and thus holding either pins the cgroup, 994 * see task_group(). 995 * 996 * Furthermore, all task_rq users should acquire both locks, see 997 * task_rq_lock(). 998 */ 999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1000 lockdep_is_held(&task_rq(p)->lock))); 1001 #endif 1002 #endif 1003 1004 trace_sched_migrate_task(p, new_cpu); 1005 1006 if (task_cpu(p) != new_cpu) { 1007 if (p->sched_class->migrate_task_rq) 1008 p->sched_class->migrate_task_rq(p, new_cpu); 1009 p->se.nr_migrations++; 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1011 } 1012 1013 __set_task_cpu(p, new_cpu); 1014 } 1015 1016 static void __migrate_swap_task(struct task_struct *p, int cpu) 1017 { 1018 if (p->on_rq) { 1019 struct rq *src_rq, *dst_rq; 1020 1021 src_rq = task_rq(p); 1022 dst_rq = cpu_rq(cpu); 1023 1024 deactivate_task(src_rq, p, 0); 1025 set_task_cpu(p, cpu); 1026 activate_task(dst_rq, p, 0); 1027 check_preempt_curr(dst_rq, p, 0); 1028 } else { 1029 /* 1030 * Task isn't running anymore; make it appear like we migrated 1031 * it before it went to sleep. This means on wakeup we make the 1032 * previous cpu our targer instead of where it really is. 1033 */ 1034 p->wake_cpu = cpu; 1035 } 1036 } 1037 1038 struct migration_swap_arg { 1039 struct task_struct *src_task, *dst_task; 1040 int src_cpu, dst_cpu; 1041 }; 1042 1043 static int migrate_swap_stop(void *data) 1044 { 1045 struct migration_swap_arg *arg = data; 1046 struct rq *src_rq, *dst_rq; 1047 int ret = -EAGAIN; 1048 1049 src_rq = cpu_rq(arg->src_cpu); 1050 dst_rq = cpu_rq(arg->dst_cpu); 1051 1052 double_raw_lock(&arg->src_task->pi_lock, 1053 &arg->dst_task->pi_lock); 1054 double_rq_lock(src_rq, dst_rq); 1055 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1056 goto unlock; 1057 1058 if (task_cpu(arg->src_task) != arg->src_cpu) 1059 goto unlock; 1060 1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1062 goto unlock; 1063 1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1065 goto unlock; 1066 1067 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1068 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1069 1070 ret = 0; 1071 1072 unlock: 1073 double_rq_unlock(src_rq, dst_rq); 1074 raw_spin_unlock(&arg->dst_task->pi_lock); 1075 raw_spin_unlock(&arg->src_task->pi_lock); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Cross migrate two tasks 1082 */ 1083 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1084 { 1085 struct migration_swap_arg arg; 1086 int ret = -EINVAL; 1087 1088 arg = (struct migration_swap_arg){ 1089 .src_task = cur, 1090 .src_cpu = task_cpu(cur), 1091 .dst_task = p, 1092 .dst_cpu = task_cpu(p), 1093 }; 1094 1095 if (arg.src_cpu == arg.dst_cpu) 1096 goto out; 1097 1098 /* 1099 * These three tests are all lockless; this is OK since all of them 1100 * will be re-checked with proper locks held further down the line. 1101 */ 1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1103 goto out; 1104 1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1106 goto out; 1107 1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1109 goto out; 1110 1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1112 1113 out: 1114 return ret; 1115 } 1116 1117 struct migration_arg { 1118 struct task_struct *task; 1119 int dest_cpu; 1120 }; 1121 1122 static int migration_cpu_stop(void *data); 1123 1124 /* 1125 * wait_task_inactive - wait for a thread to unschedule. 1126 * 1127 * If @match_state is nonzero, it's the @p->state value just checked and 1128 * not expected to change. If it changes, i.e. @p might have woken up, 1129 * then return zero. When we succeed in waiting for @p to be off its CPU, 1130 * we return a positive number (its total switch count). If a second call 1131 * a short while later returns the same number, the caller can be sure that 1132 * @p has remained unscheduled the whole time. 1133 * 1134 * The caller must ensure that the task *will* unschedule sometime soon, 1135 * else this function might spin for a *long* time. This function can't 1136 * be called with interrupts off, or it may introduce deadlock with 1137 * smp_call_function() if an IPI is sent by the same process we are 1138 * waiting to become inactive. 1139 */ 1140 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1141 { 1142 unsigned long flags; 1143 int running, on_rq; 1144 unsigned long ncsw; 1145 struct rq *rq; 1146 1147 for (;;) { 1148 /* 1149 * We do the initial early heuristics without holding 1150 * any task-queue locks at all. We'll only try to get 1151 * the runqueue lock when things look like they will 1152 * work out! 1153 */ 1154 rq = task_rq(p); 1155 1156 /* 1157 * If the task is actively running on another CPU 1158 * still, just relax and busy-wait without holding 1159 * any locks. 1160 * 1161 * NOTE! Since we don't hold any locks, it's not 1162 * even sure that "rq" stays as the right runqueue! 1163 * But we don't care, since "task_running()" will 1164 * return false if the runqueue has changed and p 1165 * is actually now running somewhere else! 1166 */ 1167 while (task_running(rq, p)) { 1168 if (match_state && unlikely(p->state != match_state)) 1169 return 0; 1170 cpu_relax(); 1171 } 1172 1173 /* 1174 * Ok, time to look more closely! We need the rq 1175 * lock now, to be *sure*. If we're wrong, we'll 1176 * just go back and repeat. 1177 */ 1178 rq = task_rq_lock(p, &flags); 1179 trace_sched_wait_task(p); 1180 running = task_running(rq, p); 1181 on_rq = p->on_rq; 1182 ncsw = 0; 1183 if (!match_state || p->state == match_state) 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1185 task_rq_unlock(rq, p, &flags); 1186 1187 /* 1188 * If it changed from the expected state, bail out now. 1189 */ 1190 if (unlikely(!ncsw)) 1191 break; 1192 1193 /* 1194 * Was it really running after all now that we 1195 * checked with the proper locks actually held? 1196 * 1197 * Oops. Go back and try again.. 1198 */ 1199 if (unlikely(running)) { 1200 cpu_relax(); 1201 continue; 1202 } 1203 1204 /* 1205 * It's not enough that it's not actively running, 1206 * it must be off the runqueue _entirely_, and not 1207 * preempted! 1208 * 1209 * So if it was still runnable (but just not actively 1210 * running right now), it's preempted, and we should 1211 * yield - it could be a while. 1212 */ 1213 if (unlikely(on_rq)) { 1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1215 1216 set_current_state(TASK_UNINTERRUPTIBLE); 1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1218 continue; 1219 } 1220 1221 /* 1222 * Ahh, all good. It wasn't running, and it wasn't 1223 * runnable, which means that it will never become 1224 * running in the future either. We're all done! 1225 */ 1226 break; 1227 } 1228 1229 return ncsw; 1230 } 1231 1232 /*** 1233 * kick_process - kick a running thread to enter/exit the kernel 1234 * @p: the to-be-kicked thread 1235 * 1236 * Cause a process which is running on another CPU to enter 1237 * kernel-mode, without any delay. (to get signals handled.) 1238 * 1239 * NOTE: this function doesn't have to take the runqueue lock, 1240 * because all it wants to ensure is that the remote task enters 1241 * the kernel. If the IPI races and the task has been migrated 1242 * to another CPU then no harm is done and the purpose has been 1243 * achieved as well. 1244 */ 1245 void kick_process(struct task_struct *p) 1246 { 1247 int cpu; 1248 1249 preempt_disable(); 1250 cpu = task_cpu(p); 1251 if ((cpu != smp_processor_id()) && task_curr(p)) 1252 smp_send_reschedule(cpu); 1253 preempt_enable(); 1254 } 1255 EXPORT_SYMBOL_GPL(kick_process); 1256 #endif /* CONFIG_SMP */ 1257 1258 #ifdef CONFIG_SMP 1259 /* 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1261 */ 1262 static int select_fallback_rq(int cpu, struct task_struct *p) 1263 { 1264 int nid = cpu_to_node(cpu); 1265 const struct cpumask *nodemask = NULL; 1266 enum { cpuset, possible, fail } state = cpuset; 1267 int dest_cpu; 1268 1269 /* 1270 * If the node that the cpu is on has been offlined, cpu_to_node() 1271 * will return -1. There is no cpu on the node, and we should 1272 * select the cpu on the other node. 1273 */ 1274 if (nid != -1) { 1275 nodemask = cpumask_of_node(nid); 1276 1277 /* Look for allowed, online CPU in same node. */ 1278 for_each_cpu(dest_cpu, nodemask) { 1279 if (!cpu_online(dest_cpu)) 1280 continue; 1281 if (!cpu_active(dest_cpu)) 1282 continue; 1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1284 return dest_cpu; 1285 } 1286 } 1287 1288 for (;;) { 1289 /* Any allowed, online CPU? */ 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1291 if (!cpu_online(dest_cpu)) 1292 continue; 1293 if (!cpu_active(dest_cpu)) 1294 continue; 1295 goto out; 1296 } 1297 1298 switch (state) { 1299 case cpuset: 1300 /* No more Mr. Nice Guy. */ 1301 cpuset_cpus_allowed_fallback(p); 1302 state = possible; 1303 break; 1304 1305 case possible: 1306 do_set_cpus_allowed(p, cpu_possible_mask); 1307 state = fail; 1308 break; 1309 1310 case fail: 1311 BUG(); 1312 break; 1313 } 1314 } 1315 1316 out: 1317 if (state != cpuset) { 1318 /* 1319 * Don't tell them about moving exiting tasks or 1320 * kernel threads (both mm NULL), since they never 1321 * leave kernel. 1322 */ 1323 if (p->mm && printk_ratelimit()) { 1324 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1325 task_pid_nr(p), p->comm, cpu); 1326 } 1327 } 1328 1329 return dest_cpu; 1330 } 1331 1332 /* 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1334 */ 1335 static inline 1336 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1337 { 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1339 1340 /* 1341 * In order not to call set_task_cpu() on a blocking task we need 1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1343 * cpu. 1344 * 1345 * Since this is common to all placement strategies, this lives here. 1346 * 1347 * [ this allows ->select_task() to simply return task_cpu(p) and 1348 * not worry about this generic constraint ] 1349 */ 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1351 !cpu_online(cpu))) 1352 cpu = select_fallback_rq(task_cpu(p), p); 1353 1354 return cpu; 1355 } 1356 1357 static void update_avg(u64 *avg, u64 sample) 1358 { 1359 s64 diff = sample - *avg; 1360 *avg += diff >> 3; 1361 } 1362 #endif 1363 1364 static void 1365 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1366 { 1367 #ifdef CONFIG_SCHEDSTATS 1368 struct rq *rq = this_rq(); 1369 1370 #ifdef CONFIG_SMP 1371 int this_cpu = smp_processor_id(); 1372 1373 if (cpu == this_cpu) { 1374 schedstat_inc(rq, ttwu_local); 1375 schedstat_inc(p, se.statistics.nr_wakeups_local); 1376 } else { 1377 struct sched_domain *sd; 1378 1379 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1380 rcu_read_lock(); 1381 for_each_domain(this_cpu, sd) { 1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1383 schedstat_inc(sd, ttwu_wake_remote); 1384 break; 1385 } 1386 } 1387 rcu_read_unlock(); 1388 } 1389 1390 if (wake_flags & WF_MIGRATED) 1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1392 1393 #endif /* CONFIG_SMP */ 1394 1395 schedstat_inc(rq, ttwu_count); 1396 schedstat_inc(p, se.statistics.nr_wakeups); 1397 1398 if (wake_flags & WF_SYNC) 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1400 1401 #endif /* CONFIG_SCHEDSTATS */ 1402 } 1403 1404 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1405 { 1406 activate_task(rq, p, en_flags); 1407 p->on_rq = 1; 1408 1409 /* if a worker is waking up, notify workqueue */ 1410 if (p->flags & PF_WQ_WORKER) 1411 wq_worker_waking_up(p, cpu_of(rq)); 1412 } 1413 1414 /* 1415 * Mark the task runnable and perform wakeup-preemption. 1416 */ 1417 static void 1418 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1419 { 1420 check_preempt_curr(rq, p, wake_flags); 1421 trace_sched_wakeup(p, true); 1422 1423 p->state = TASK_RUNNING; 1424 #ifdef CONFIG_SMP 1425 if (p->sched_class->task_woken) 1426 p->sched_class->task_woken(rq, p); 1427 1428 if (rq->idle_stamp) { 1429 u64 delta = rq_clock(rq) - rq->idle_stamp; 1430 u64 max = 2*rq->max_idle_balance_cost; 1431 1432 update_avg(&rq->avg_idle, delta); 1433 1434 if (rq->avg_idle > max) 1435 rq->avg_idle = max; 1436 1437 rq->idle_stamp = 0; 1438 } 1439 #endif 1440 } 1441 1442 static void 1443 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1444 { 1445 #ifdef CONFIG_SMP 1446 if (p->sched_contributes_to_load) 1447 rq->nr_uninterruptible--; 1448 #endif 1449 1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1451 ttwu_do_wakeup(rq, p, wake_flags); 1452 } 1453 1454 /* 1455 * Called in case the task @p isn't fully descheduled from its runqueue, 1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1457 * since all we need to do is flip p->state to TASK_RUNNING, since 1458 * the task is still ->on_rq. 1459 */ 1460 static int ttwu_remote(struct task_struct *p, int wake_flags) 1461 { 1462 struct rq *rq; 1463 int ret = 0; 1464 1465 rq = __task_rq_lock(p); 1466 if (p->on_rq) { 1467 /* check_preempt_curr() may use rq clock */ 1468 update_rq_clock(rq); 1469 ttwu_do_wakeup(rq, p, wake_flags); 1470 ret = 1; 1471 } 1472 __task_rq_unlock(rq); 1473 1474 return ret; 1475 } 1476 1477 #ifdef CONFIG_SMP 1478 static void sched_ttwu_pending(void) 1479 { 1480 struct rq *rq = this_rq(); 1481 struct llist_node *llist = llist_del_all(&rq->wake_list); 1482 struct task_struct *p; 1483 1484 raw_spin_lock(&rq->lock); 1485 1486 while (llist) { 1487 p = llist_entry(llist, struct task_struct, wake_entry); 1488 llist = llist_next(llist); 1489 ttwu_do_activate(rq, p, 0); 1490 } 1491 1492 raw_spin_unlock(&rq->lock); 1493 } 1494 1495 void scheduler_ipi(void) 1496 { 1497 /* 1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1499 * TIF_NEED_RESCHED remotely (for the first time) will also send 1500 * this IPI. 1501 */ 1502 if (tif_need_resched()) 1503 set_preempt_need_resched(); 1504 1505 if (llist_empty(&this_rq()->wake_list) 1506 && !tick_nohz_full_cpu(smp_processor_id()) 1507 && !got_nohz_idle_kick()) 1508 return; 1509 1510 /* 1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1512 * traditionally all their work was done from the interrupt return 1513 * path. Now that we actually do some work, we need to make sure 1514 * we do call them. 1515 * 1516 * Some archs already do call them, luckily irq_enter/exit nest 1517 * properly. 1518 * 1519 * Arguably we should visit all archs and update all handlers, 1520 * however a fair share of IPIs are still resched only so this would 1521 * somewhat pessimize the simple resched case. 1522 */ 1523 irq_enter(); 1524 tick_nohz_full_check(); 1525 sched_ttwu_pending(); 1526 1527 /* 1528 * Check if someone kicked us for doing the nohz idle load balance. 1529 */ 1530 if (unlikely(got_nohz_idle_kick())) { 1531 this_rq()->idle_balance = 1; 1532 raise_softirq_irqoff(SCHED_SOFTIRQ); 1533 } 1534 irq_exit(); 1535 } 1536 1537 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1538 { 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1540 smp_send_reschedule(cpu); 1541 } 1542 1543 bool cpus_share_cache(int this_cpu, int that_cpu) 1544 { 1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1546 } 1547 #endif /* CONFIG_SMP */ 1548 1549 static void ttwu_queue(struct task_struct *p, int cpu) 1550 { 1551 struct rq *rq = cpu_rq(cpu); 1552 1553 #if defined(CONFIG_SMP) 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1556 ttwu_queue_remote(p, cpu); 1557 return; 1558 } 1559 #endif 1560 1561 raw_spin_lock(&rq->lock); 1562 ttwu_do_activate(rq, p, 0); 1563 raw_spin_unlock(&rq->lock); 1564 } 1565 1566 /** 1567 * try_to_wake_up - wake up a thread 1568 * @p: the thread to be awakened 1569 * @state: the mask of task states that can be woken 1570 * @wake_flags: wake modifier flags (WF_*) 1571 * 1572 * Put it on the run-queue if it's not already there. The "current" 1573 * thread is always on the run-queue (except when the actual 1574 * re-schedule is in progress), and as such you're allowed to do 1575 * the simpler "current->state = TASK_RUNNING" to mark yourself 1576 * runnable without the overhead of this. 1577 * 1578 * Return: %true if @p was woken up, %false if it was already running. 1579 * or @state didn't match @p's state. 1580 */ 1581 static int 1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1583 { 1584 unsigned long flags; 1585 int cpu, success = 0; 1586 1587 /* 1588 * If we are going to wake up a thread waiting for CONDITION we 1589 * need to ensure that CONDITION=1 done by the caller can not be 1590 * reordered with p->state check below. This pairs with mb() in 1591 * set_current_state() the waiting thread does. 1592 */ 1593 smp_mb__before_spinlock(); 1594 raw_spin_lock_irqsave(&p->pi_lock, flags); 1595 if (!(p->state & state)) 1596 goto out; 1597 1598 success = 1; /* we're going to change ->state */ 1599 cpu = task_cpu(p); 1600 1601 if (p->on_rq && ttwu_remote(p, wake_flags)) 1602 goto stat; 1603 1604 #ifdef CONFIG_SMP 1605 /* 1606 * If the owning (remote) cpu is still in the middle of schedule() with 1607 * this task as prev, wait until its done referencing the task. 1608 */ 1609 while (p->on_cpu) 1610 cpu_relax(); 1611 /* 1612 * Pairs with the smp_wmb() in finish_lock_switch(). 1613 */ 1614 smp_rmb(); 1615 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1617 p->state = TASK_WAKING; 1618 1619 if (p->sched_class->task_waking) 1620 p->sched_class->task_waking(p); 1621 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1623 if (task_cpu(p) != cpu) { 1624 wake_flags |= WF_MIGRATED; 1625 set_task_cpu(p, cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 ttwu_queue(p, cpu); 1630 stat: 1631 ttwu_stat(p, cpu, wake_flags); 1632 out: 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1634 1635 return success; 1636 } 1637 1638 /** 1639 * try_to_wake_up_local - try to wake up a local task with rq lock held 1640 * @p: the thread to be awakened 1641 * 1642 * Put @p on the run-queue if it's not already there. The caller must 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1644 * the current task. 1645 */ 1646 static void try_to_wake_up_local(struct task_struct *p) 1647 { 1648 struct rq *rq = task_rq(p); 1649 1650 if (WARN_ON_ONCE(rq != this_rq()) || 1651 WARN_ON_ONCE(p == current)) 1652 return; 1653 1654 lockdep_assert_held(&rq->lock); 1655 1656 if (!raw_spin_trylock(&p->pi_lock)) { 1657 raw_spin_unlock(&rq->lock); 1658 raw_spin_lock(&p->pi_lock); 1659 raw_spin_lock(&rq->lock); 1660 } 1661 1662 if (!(p->state & TASK_NORMAL)) 1663 goto out; 1664 1665 if (!p->on_rq) 1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1667 1668 ttwu_do_wakeup(rq, p, 0); 1669 ttwu_stat(p, smp_processor_id(), 0); 1670 out: 1671 raw_spin_unlock(&p->pi_lock); 1672 } 1673 1674 /** 1675 * wake_up_process - Wake up a specific process 1676 * @p: The process to be woken up. 1677 * 1678 * Attempt to wake up the nominated process and move it to the set of runnable 1679 * processes. 1680 * 1681 * Return: 1 if the process was woken up, 0 if it was already running. 1682 * 1683 * It may be assumed that this function implies a write memory barrier before 1684 * changing the task state if and only if any tasks are woken up. 1685 */ 1686 int wake_up_process(struct task_struct *p) 1687 { 1688 WARN_ON(task_is_stopped_or_traced(p)); 1689 return try_to_wake_up(p, TASK_NORMAL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 INIT_LIST_HEAD(&p->rt.run_list); 1721 1722 #ifdef CONFIG_PREEMPT_NOTIFIERS 1723 INIT_HLIST_HEAD(&p->preempt_notifiers); 1724 #endif 1725 1726 #ifdef CONFIG_NUMA_BALANCING 1727 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1728 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1729 p->mm->numa_scan_seq = 0; 1730 } 1731 1732 if (clone_flags & CLONE_VM) 1733 p->numa_preferred_nid = current->numa_preferred_nid; 1734 else 1735 p->numa_preferred_nid = -1; 1736 1737 p->node_stamp = 0ULL; 1738 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1739 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1740 p->numa_work.next = &p->numa_work; 1741 p->numa_faults = NULL; 1742 p->numa_faults_buffer = NULL; 1743 1744 INIT_LIST_HEAD(&p->numa_entry); 1745 p->numa_group = NULL; 1746 #endif /* CONFIG_NUMA_BALANCING */ 1747 } 1748 1749 #ifdef CONFIG_NUMA_BALANCING 1750 #ifdef CONFIG_SCHED_DEBUG 1751 void set_numabalancing_state(bool enabled) 1752 { 1753 if (enabled) 1754 sched_feat_set("NUMA"); 1755 else 1756 sched_feat_set("NO_NUMA"); 1757 } 1758 #else 1759 __read_mostly bool numabalancing_enabled; 1760 1761 void set_numabalancing_state(bool enabled) 1762 { 1763 numabalancing_enabled = enabled; 1764 } 1765 #endif /* CONFIG_SCHED_DEBUG */ 1766 #endif /* CONFIG_NUMA_BALANCING */ 1767 1768 /* 1769 * fork()/clone()-time setup: 1770 */ 1771 void sched_fork(unsigned long clone_flags, struct task_struct *p) 1772 { 1773 unsigned long flags; 1774 int cpu = get_cpu(); 1775 1776 __sched_fork(clone_flags, p); 1777 /* 1778 * We mark the process as running here. This guarantees that 1779 * nobody will actually run it, and a signal or other external 1780 * event cannot wake it up and insert it on the runqueue either. 1781 */ 1782 p->state = TASK_RUNNING; 1783 1784 /* 1785 * Make sure we do not leak PI boosting priority to the child. 1786 */ 1787 p->prio = current->normal_prio; 1788 1789 /* 1790 * Revert to default priority/policy on fork if requested. 1791 */ 1792 if (unlikely(p->sched_reset_on_fork)) { 1793 if (task_has_rt_policy(p)) { 1794 p->policy = SCHED_NORMAL; 1795 p->static_prio = NICE_TO_PRIO(0); 1796 p->rt_priority = 0; 1797 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1798 p->static_prio = NICE_TO_PRIO(0); 1799 1800 p->prio = p->normal_prio = __normal_prio(p); 1801 set_load_weight(p); 1802 1803 /* 1804 * We don't need the reset flag anymore after the fork. It has 1805 * fulfilled its duty: 1806 */ 1807 p->sched_reset_on_fork = 0; 1808 } 1809 1810 if (!rt_prio(p->prio)) 1811 p->sched_class = &fair_sched_class; 1812 1813 if (p->sched_class->task_fork) 1814 p->sched_class->task_fork(p); 1815 1816 /* 1817 * The child is not yet in the pid-hash so no cgroup attach races, 1818 * and the cgroup is pinned to this child due to cgroup_fork() 1819 * is ran before sched_fork(). 1820 * 1821 * Silence PROVE_RCU. 1822 */ 1823 raw_spin_lock_irqsave(&p->pi_lock, flags); 1824 set_task_cpu(p, cpu); 1825 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1826 1827 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1828 if (likely(sched_info_on())) 1829 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1830 #endif 1831 #if defined(CONFIG_SMP) 1832 p->on_cpu = 0; 1833 #endif 1834 init_task_preempt_count(p); 1835 #ifdef CONFIG_SMP 1836 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1837 #endif 1838 1839 put_cpu(); 1840 } 1841 1842 /* 1843 * wake_up_new_task - wake up a newly created task for the first time. 1844 * 1845 * This function will do some initial scheduler statistics housekeeping 1846 * that must be done for every newly created context, then puts the task 1847 * on the runqueue and wakes it. 1848 */ 1849 void wake_up_new_task(struct task_struct *p) 1850 { 1851 unsigned long flags; 1852 struct rq *rq; 1853 1854 raw_spin_lock_irqsave(&p->pi_lock, flags); 1855 #ifdef CONFIG_SMP 1856 /* 1857 * Fork balancing, do it here and not earlier because: 1858 * - cpus_allowed can change in the fork path 1859 * - any previously selected cpu might disappear through hotplug 1860 */ 1861 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 1862 #endif 1863 1864 /* Initialize new task's runnable average */ 1865 init_task_runnable_average(p); 1866 rq = __task_rq_lock(p); 1867 activate_task(rq, p, 0); 1868 p->on_rq = 1; 1869 trace_sched_wakeup_new(p, true); 1870 check_preempt_curr(rq, p, WF_FORK); 1871 #ifdef CONFIG_SMP 1872 if (p->sched_class->task_woken) 1873 p->sched_class->task_woken(rq, p); 1874 #endif 1875 task_rq_unlock(rq, p, &flags); 1876 } 1877 1878 #ifdef CONFIG_PREEMPT_NOTIFIERS 1879 1880 /** 1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1882 * @notifier: notifier struct to register 1883 */ 1884 void preempt_notifier_register(struct preempt_notifier *notifier) 1885 { 1886 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1887 } 1888 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1889 1890 /** 1891 * preempt_notifier_unregister - no longer interested in preemption notifications 1892 * @notifier: notifier struct to unregister 1893 * 1894 * This is safe to call from within a preemption notifier. 1895 */ 1896 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1897 { 1898 hlist_del(¬ifier->link); 1899 } 1900 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1901 1902 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1903 { 1904 struct preempt_notifier *notifier; 1905 1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1907 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1908 } 1909 1910 static void 1911 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1912 struct task_struct *next) 1913 { 1914 struct preempt_notifier *notifier; 1915 1916 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1917 notifier->ops->sched_out(notifier, next); 1918 } 1919 1920 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1921 1922 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1923 { 1924 } 1925 1926 static void 1927 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1928 struct task_struct *next) 1929 { 1930 } 1931 1932 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1933 1934 /** 1935 * prepare_task_switch - prepare to switch tasks 1936 * @rq: the runqueue preparing to switch 1937 * @prev: the current task that is being switched out 1938 * @next: the task we are going to switch to. 1939 * 1940 * This is called with the rq lock held and interrupts off. It must 1941 * be paired with a subsequent finish_task_switch after the context 1942 * switch. 1943 * 1944 * prepare_task_switch sets up locking and calls architecture specific 1945 * hooks. 1946 */ 1947 static inline void 1948 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1949 struct task_struct *next) 1950 { 1951 trace_sched_switch(prev, next); 1952 sched_info_switch(rq, prev, next); 1953 perf_event_task_sched_out(prev, next); 1954 fire_sched_out_preempt_notifiers(prev, next); 1955 prepare_lock_switch(rq, next); 1956 prepare_arch_switch(next); 1957 } 1958 1959 /** 1960 * finish_task_switch - clean up after a task-switch 1961 * @rq: runqueue associated with task-switch 1962 * @prev: the thread we just switched away from. 1963 * 1964 * finish_task_switch must be called after the context switch, paired 1965 * with a prepare_task_switch call before the context switch. 1966 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1967 * and do any other architecture-specific cleanup actions. 1968 * 1969 * Note that we may have delayed dropping an mm in context_switch(). If 1970 * so, we finish that here outside of the runqueue lock. (Doing it 1971 * with the lock held can cause deadlocks; see schedule() for 1972 * details.) 1973 */ 1974 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1975 __releases(rq->lock) 1976 { 1977 struct mm_struct *mm = rq->prev_mm; 1978 long prev_state; 1979 1980 rq->prev_mm = NULL; 1981 1982 /* 1983 * A task struct has one reference for the use as "current". 1984 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1985 * schedule one last time. The schedule call will never return, and 1986 * the scheduled task must drop that reference. 1987 * The test for TASK_DEAD must occur while the runqueue locks are 1988 * still held, otherwise prev could be scheduled on another cpu, die 1989 * there before we look at prev->state, and then the reference would 1990 * be dropped twice. 1991 * Manfred Spraul <manfred@colorfullife.com> 1992 */ 1993 prev_state = prev->state; 1994 vtime_task_switch(prev); 1995 finish_arch_switch(prev); 1996 perf_event_task_sched_in(prev, current); 1997 finish_lock_switch(rq, prev); 1998 finish_arch_post_lock_switch(); 1999 2000 fire_sched_in_preempt_notifiers(current); 2001 if (mm) 2002 mmdrop(mm); 2003 if (unlikely(prev_state == TASK_DEAD)) { 2004 task_numa_free(prev); 2005 2006 /* 2007 * Remove function-return probe instances associated with this 2008 * task and put them back on the free list. 2009 */ 2010 kprobe_flush_task(prev); 2011 put_task_struct(prev); 2012 } 2013 2014 tick_nohz_task_switch(current); 2015 } 2016 2017 #ifdef CONFIG_SMP 2018 2019 /* assumes rq->lock is held */ 2020 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 2021 { 2022 if (prev->sched_class->pre_schedule) 2023 prev->sched_class->pre_schedule(rq, prev); 2024 } 2025 2026 /* rq->lock is NOT held, but preemption is disabled */ 2027 static inline void post_schedule(struct rq *rq) 2028 { 2029 if (rq->post_schedule) { 2030 unsigned long flags; 2031 2032 raw_spin_lock_irqsave(&rq->lock, flags); 2033 if (rq->curr->sched_class->post_schedule) 2034 rq->curr->sched_class->post_schedule(rq); 2035 raw_spin_unlock_irqrestore(&rq->lock, flags); 2036 2037 rq->post_schedule = 0; 2038 } 2039 } 2040 2041 #else 2042 2043 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2044 { 2045 } 2046 2047 static inline void post_schedule(struct rq *rq) 2048 { 2049 } 2050 2051 #endif 2052 2053 /** 2054 * schedule_tail - first thing a freshly forked thread must call. 2055 * @prev: the thread we just switched away from. 2056 */ 2057 asmlinkage void schedule_tail(struct task_struct *prev) 2058 __releases(rq->lock) 2059 { 2060 struct rq *rq = this_rq(); 2061 2062 finish_task_switch(rq, prev); 2063 2064 /* 2065 * FIXME: do we need to worry about rq being invalidated by the 2066 * task_switch? 2067 */ 2068 post_schedule(rq); 2069 2070 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2071 /* In this case, finish_task_switch does not reenable preemption */ 2072 preempt_enable(); 2073 #endif 2074 if (current->set_child_tid) 2075 put_user(task_pid_vnr(current), current->set_child_tid); 2076 } 2077 2078 /* 2079 * context_switch - switch to the new MM and the new 2080 * thread's register state. 2081 */ 2082 static inline void 2083 context_switch(struct rq *rq, struct task_struct *prev, 2084 struct task_struct *next) 2085 { 2086 struct mm_struct *mm, *oldmm; 2087 2088 prepare_task_switch(rq, prev, next); 2089 2090 mm = next->mm; 2091 oldmm = prev->active_mm; 2092 /* 2093 * For paravirt, this is coupled with an exit in switch_to to 2094 * combine the page table reload and the switch backend into 2095 * one hypercall. 2096 */ 2097 arch_start_context_switch(prev); 2098 2099 if (!mm) { 2100 next->active_mm = oldmm; 2101 atomic_inc(&oldmm->mm_count); 2102 enter_lazy_tlb(oldmm, next); 2103 } else 2104 switch_mm(oldmm, mm, next); 2105 2106 if (!prev->mm) { 2107 prev->active_mm = NULL; 2108 rq->prev_mm = oldmm; 2109 } 2110 /* 2111 * Since the runqueue lock will be released by the next 2112 * task (which is an invalid locking op but in the case 2113 * of the scheduler it's an obvious special-case), so we 2114 * do an early lockdep release here: 2115 */ 2116 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2117 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2118 #endif 2119 2120 context_tracking_task_switch(prev, next); 2121 /* Here we just switch the register state and the stack. */ 2122 switch_to(prev, next, prev); 2123 2124 barrier(); 2125 /* 2126 * this_rq must be evaluated again because prev may have moved 2127 * CPUs since it called schedule(), thus the 'rq' on its stack 2128 * frame will be invalid. 2129 */ 2130 finish_task_switch(this_rq(), prev); 2131 } 2132 2133 /* 2134 * nr_running and nr_context_switches: 2135 * 2136 * externally visible scheduler statistics: current number of runnable 2137 * threads, total number of context switches performed since bootup. 2138 */ 2139 unsigned long nr_running(void) 2140 { 2141 unsigned long i, sum = 0; 2142 2143 for_each_online_cpu(i) 2144 sum += cpu_rq(i)->nr_running; 2145 2146 return sum; 2147 } 2148 2149 unsigned long long nr_context_switches(void) 2150 { 2151 int i; 2152 unsigned long long sum = 0; 2153 2154 for_each_possible_cpu(i) 2155 sum += cpu_rq(i)->nr_switches; 2156 2157 return sum; 2158 } 2159 2160 unsigned long nr_iowait(void) 2161 { 2162 unsigned long i, sum = 0; 2163 2164 for_each_possible_cpu(i) 2165 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2166 2167 return sum; 2168 } 2169 2170 unsigned long nr_iowait_cpu(int cpu) 2171 { 2172 struct rq *this = cpu_rq(cpu); 2173 return atomic_read(&this->nr_iowait); 2174 } 2175 2176 #ifdef CONFIG_SMP 2177 2178 /* 2179 * sched_exec - execve() is a valuable balancing opportunity, because at 2180 * this point the task has the smallest effective memory and cache footprint. 2181 */ 2182 void sched_exec(void) 2183 { 2184 struct task_struct *p = current; 2185 unsigned long flags; 2186 int dest_cpu; 2187 2188 raw_spin_lock_irqsave(&p->pi_lock, flags); 2189 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2190 if (dest_cpu == smp_processor_id()) 2191 goto unlock; 2192 2193 if (likely(cpu_active(dest_cpu))) { 2194 struct migration_arg arg = { p, dest_cpu }; 2195 2196 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2197 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2198 return; 2199 } 2200 unlock: 2201 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2202 } 2203 2204 #endif 2205 2206 DEFINE_PER_CPU(struct kernel_stat, kstat); 2207 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2208 2209 EXPORT_PER_CPU_SYMBOL(kstat); 2210 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2211 2212 /* 2213 * Return any ns on the sched_clock that have not yet been accounted in 2214 * @p in case that task is currently running. 2215 * 2216 * Called with task_rq_lock() held on @rq. 2217 */ 2218 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2219 { 2220 u64 ns = 0; 2221 2222 if (task_current(rq, p)) { 2223 update_rq_clock(rq); 2224 ns = rq_clock_task(rq) - p->se.exec_start; 2225 if ((s64)ns < 0) 2226 ns = 0; 2227 } 2228 2229 return ns; 2230 } 2231 2232 unsigned long long task_delta_exec(struct task_struct *p) 2233 { 2234 unsigned long flags; 2235 struct rq *rq; 2236 u64 ns = 0; 2237 2238 rq = task_rq_lock(p, &flags); 2239 ns = do_task_delta_exec(p, rq); 2240 task_rq_unlock(rq, p, &flags); 2241 2242 return ns; 2243 } 2244 2245 /* 2246 * Return accounted runtime for the task. 2247 * In case the task is currently running, return the runtime plus current's 2248 * pending runtime that have not been accounted yet. 2249 */ 2250 unsigned long long task_sched_runtime(struct task_struct *p) 2251 { 2252 unsigned long flags; 2253 struct rq *rq; 2254 u64 ns = 0; 2255 2256 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2257 /* 2258 * 64-bit doesn't need locks to atomically read a 64bit value. 2259 * So we have a optimization chance when the task's delta_exec is 0. 2260 * Reading ->on_cpu is racy, but this is ok. 2261 * 2262 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2263 * If we race with it entering cpu, unaccounted time is 0. This is 2264 * indistinguishable from the read occurring a few cycles earlier. 2265 */ 2266 if (!p->on_cpu) 2267 return p->se.sum_exec_runtime; 2268 #endif 2269 2270 rq = task_rq_lock(p, &flags); 2271 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2272 task_rq_unlock(rq, p, &flags); 2273 2274 return ns; 2275 } 2276 2277 /* 2278 * This function gets called by the timer code, with HZ frequency. 2279 * We call it with interrupts disabled. 2280 */ 2281 void scheduler_tick(void) 2282 { 2283 int cpu = smp_processor_id(); 2284 struct rq *rq = cpu_rq(cpu); 2285 struct task_struct *curr = rq->curr; 2286 2287 sched_clock_tick(); 2288 2289 raw_spin_lock(&rq->lock); 2290 update_rq_clock(rq); 2291 curr->sched_class->task_tick(rq, curr, 0); 2292 update_cpu_load_active(rq); 2293 raw_spin_unlock(&rq->lock); 2294 2295 perf_event_task_tick(); 2296 2297 #ifdef CONFIG_SMP 2298 rq->idle_balance = idle_cpu(cpu); 2299 trigger_load_balance(rq, cpu); 2300 #endif 2301 rq_last_tick_reset(rq); 2302 } 2303 2304 #ifdef CONFIG_NO_HZ_FULL 2305 /** 2306 * scheduler_tick_max_deferment 2307 * 2308 * Keep at least one tick per second when a single 2309 * active task is running because the scheduler doesn't 2310 * yet completely support full dynticks environment. 2311 * 2312 * This makes sure that uptime, CFS vruntime, load 2313 * balancing, etc... continue to move forward, even 2314 * with a very low granularity. 2315 * 2316 * Return: Maximum deferment in nanoseconds. 2317 */ 2318 u64 scheduler_tick_max_deferment(void) 2319 { 2320 struct rq *rq = this_rq(); 2321 unsigned long next, now = ACCESS_ONCE(jiffies); 2322 2323 next = rq->last_sched_tick + HZ; 2324 2325 if (time_before_eq(next, now)) 2326 return 0; 2327 2328 return jiffies_to_usecs(next - now) * NSEC_PER_USEC; 2329 } 2330 #endif 2331 2332 notrace unsigned long get_parent_ip(unsigned long addr) 2333 { 2334 if (in_lock_functions(addr)) { 2335 addr = CALLER_ADDR2; 2336 if (in_lock_functions(addr)) 2337 addr = CALLER_ADDR3; 2338 } 2339 return addr; 2340 } 2341 2342 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2343 defined(CONFIG_PREEMPT_TRACER)) 2344 2345 void __kprobes preempt_count_add(int val) 2346 { 2347 #ifdef CONFIG_DEBUG_PREEMPT 2348 /* 2349 * Underflow? 2350 */ 2351 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2352 return; 2353 #endif 2354 __preempt_count_add(val); 2355 #ifdef CONFIG_DEBUG_PREEMPT 2356 /* 2357 * Spinlock count overflowing soon? 2358 */ 2359 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2360 PREEMPT_MASK - 10); 2361 #endif 2362 if (preempt_count() == val) 2363 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2364 } 2365 EXPORT_SYMBOL(preempt_count_add); 2366 2367 void __kprobes preempt_count_sub(int val) 2368 { 2369 #ifdef CONFIG_DEBUG_PREEMPT 2370 /* 2371 * Underflow? 2372 */ 2373 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2374 return; 2375 /* 2376 * Is the spinlock portion underflowing? 2377 */ 2378 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2379 !(preempt_count() & PREEMPT_MASK))) 2380 return; 2381 #endif 2382 2383 if (preempt_count() == val) 2384 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2385 __preempt_count_sub(val); 2386 } 2387 EXPORT_SYMBOL(preempt_count_sub); 2388 2389 #endif 2390 2391 /* 2392 * Print scheduling while atomic bug: 2393 */ 2394 static noinline void __schedule_bug(struct task_struct *prev) 2395 { 2396 if (oops_in_progress) 2397 return; 2398 2399 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2400 prev->comm, prev->pid, preempt_count()); 2401 2402 debug_show_held_locks(prev); 2403 print_modules(); 2404 if (irqs_disabled()) 2405 print_irqtrace_events(prev); 2406 dump_stack(); 2407 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2408 } 2409 2410 /* 2411 * Various schedule()-time debugging checks and statistics: 2412 */ 2413 static inline void schedule_debug(struct task_struct *prev) 2414 { 2415 /* 2416 * Test if we are atomic. Since do_exit() needs to call into 2417 * schedule() atomically, we ignore that path for now. 2418 * Otherwise, whine if we are scheduling when we should not be. 2419 */ 2420 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2421 __schedule_bug(prev); 2422 rcu_sleep_check(); 2423 2424 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2425 2426 schedstat_inc(this_rq(), sched_count); 2427 } 2428 2429 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2430 { 2431 if (prev->on_rq || rq->skip_clock_update < 0) 2432 update_rq_clock(rq); 2433 prev->sched_class->put_prev_task(rq, prev); 2434 } 2435 2436 /* 2437 * Pick up the highest-prio task: 2438 */ 2439 static inline struct task_struct * 2440 pick_next_task(struct rq *rq) 2441 { 2442 const struct sched_class *class; 2443 struct task_struct *p; 2444 2445 /* 2446 * Optimization: we know that if all tasks are in 2447 * the fair class we can call that function directly: 2448 */ 2449 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2450 p = fair_sched_class.pick_next_task(rq); 2451 if (likely(p)) 2452 return p; 2453 } 2454 2455 for_each_class(class) { 2456 p = class->pick_next_task(rq); 2457 if (p) 2458 return p; 2459 } 2460 2461 BUG(); /* the idle class will always have a runnable task */ 2462 } 2463 2464 /* 2465 * __schedule() is the main scheduler function. 2466 * 2467 * The main means of driving the scheduler and thus entering this function are: 2468 * 2469 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2470 * 2471 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2472 * paths. For example, see arch/x86/entry_64.S. 2473 * 2474 * To drive preemption between tasks, the scheduler sets the flag in timer 2475 * interrupt handler scheduler_tick(). 2476 * 2477 * 3. Wakeups don't really cause entry into schedule(). They add a 2478 * task to the run-queue and that's it. 2479 * 2480 * Now, if the new task added to the run-queue preempts the current 2481 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2482 * called on the nearest possible occasion: 2483 * 2484 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2485 * 2486 * - in syscall or exception context, at the next outmost 2487 * preempt_enable(). (this might be as soon as the wake_up()'s 2488 * spin_unlock()!) 2489 * 2490 * - in IRQ context, return from interrupt-handler to 2491 * preemptible context 2492 * 2493 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2494 * then at the next: 2495 * 2496 * - cond_resched() call 2497 * - explicit schedule() call 2498 * - return from syscall or exception to user-space 2499 * - return from interrupt-handler to user-space 2500 */ 2501 static void __sched __schedule(void) 2502 { 2503 struct task_struct *prev, *next; 2504 unsigned long *switch_count; 2505 struct rq *rq; 2506 int cpu; 2507 2508 need_resched: 2509 preempt_disable(); 2510 cpu = smp_processor_id(); 2511 rq = cpu_rq(cpu); 2512 rcu_note_context_switch(cpu); 2513 prev = rq->curr; 2514 2515 schedule_debug(prev); 2516 2517 if (sched_feat(HRTICK)) 2518 hrtick_clear(rq); 2519 2520 /* 2521 * Make sure that signal_pending_state()->signal_pending() below 2522 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2523 * done by the caller to avoid the race with signal_wake_up(). 2524 */ 2525 smp_mb__before_spinlock(); 2526 raw_spin_lock_irq(&rq->lock); 2527 2528 switch_count = &prev->nivcsw; 2529 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2530 if (unlikely(signal_pending_state(prev->state, prev))) { 2531 prev->state = TASK_RUNNING; 2532 } else { 2533 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2534 prev->on_rq = 0; 2535 2536 /* 2537 * If a worker went to sleep, notify and ask workqueue 2538 * whether it wants to wake up a task to maintain 2539 * concurrency. 2540 */ 2541 if (prev->flags & PF_WQ_WORKER) { 2542 struct task_struct *to_wakeup; 2543 2544 to_wakeup = wq_worker_sleeping(prev, cpu); 2545 if (to_wakeup) 2546 try_to_wake_up_local(to_wakeup); 2547 } 2548 } 2549 switch_count = &prev->nvcsw; 2550 } 2551 2552 pre_schedule(rq, prev); 2553 2554 if (unlikely(!rq->nr_running)) 2555 idle_balance(cpu, rq); 2556 2557 put_prev_task(rq, prev); 2558 next = pick_next_task(rq); 2559 clear_tsk_need_resched(prev); 2560 clear_preempt_need_resched(); 2561 rq->skip_clock_update = 0; 2562 2563 if (likely(prev != next)) { 2564 rq->nr_switches++; 2565 rq->curr = next; 2566 ++*switch_count; 2567 2568 context_switch(rq, prev, next); /* unlocks the rq */ 2569 /* 2570 * The context switch have flipped the stack from under us 2571 * and restored the local variables which were saved when 2572 * this task called schedule() in the past. prev == current 2573 * is still correct, but it can be moved to another cpu/rq. 2574 */ 2575 cpu = smp_processor_id(); 2576 rq = cpu_rq(cpu); 2577 } else 2578 raw_spin_unlock_irq(&rq->lock); 2579 2580 post_schedule(rq); 2581 2582 sched_preempt_enable_no_resched(); 2583 if (need_resched()) 2584 goto need_resched; 2585 } 2586 2587 static inline void sched_submit_work(struct task_struct *tsk) 2588 { 2589 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2590 return; 2591 /* 2592 * If we are going to sleep and we have plugged IO queued, 2593 * make sure to submit it to avoid deadlocks. 2594 */ 2595 if (blk_needs_flush_plug(tsk)) 2596 blk_schedule_flush_plug(tsk); 2597 } 2598 2599 asmlinkage void __sched schedule(void) 2600 { 2601 struct task_struct *tsk = current; 2602 2603 sched_submit_work(tsk); 2604 __schedule(); 2605 } 2606 EXPORT_SYMBOL(schedule); 2607 2608 #ifdef CONFIG_CONTEXT_TRACKING 2609 asmlinkage void __sched schedule_user(void) 2610 { 2611 /* 2612 * If we come here after a random call to set_need_resched(), 2613 * or we have been woken up remotely but the IPI has not yet arrived, 2614 * we haven't yet exited the RCU idle mode. Do it here manually until 2615 * we find a better solution. 2616 */ 2617 user_exit(); 2618 schedule(); 2619 user_enter(); 2620 } 2621 #endif 2622 2623 /** 2624 * schedule_preempt_disabled - called with preemption disabled 2625 * 2626 * Returns with preemption disabled. Note: preempt_count must be 1 2627 */ 2628 void __sched schedule_preempt_disabled(void) 2629 { 2630 sched_preempt_enable_no_resched(); 2631 schedule(); 2632 preempt_disable(); 2633 } 2634 2635 #ifdef CONFIG_PREEMPT 2636 /* 2637 * this is the entry point to schedule() from in-kernel preemption 2638 * off of preempt_enable. Kernel preemptions off return from interrupt 2639 * occur there and call schedule directly. 2640 */ 2641 asmlinkage void __sched notrace preempt_schedule(void) 2642 { 2643 /* 2644 * If there is a non-zero preempt_count or interrupts are disabled, 2645 * we do not want to preempt the current task. Just return.. 2646 */ 2647 if (likely(!preemptible())) 2648 return; 2649 2650 do { 2651 __preempt_count_add(PREEMPT_ACTIVE); 2652 __schedule(); 2653 __preempt_count_sub(PREEMPT_ACTIVE); 2654 2655 /* 2656 * Check again in case we missed a preemption opportunity 2657 * between schedule and now. 2658 */ 2659 barrier(); 2660 } while (need_resched()); 2661 } 2662 EXPORT_SYMBOL(preempt_schedule); 2663 #endif /* CONFIG_PREEMPT */ 2664 2665 /* 2666 * this is the entry point to schedule() from kernel preemption 2667 * off of irq context. 2668 * Note, that this is called and return with irqs disabled. This will 2669 * protect us against recursive calling from irq. 2670 */ 2671 asmlinkage void __sched preempt_schedule_irq(void) 2672 { 2673 enum ctx_state prev_state; 2674 2675 /* Catch callers which need to be fixed */ 2676 BUG_ON(preempt_count() || !irqs_disabled()); 2677 2678 prev_state = exception_enter(); 2679 2680 do { 2681 __preempt_count_add(PREEMPT_ACTIVE); 2682 local_irq_enable(); 2683 __schedule(); 2684 local_irq_disable(); 2685 __preempt_count_sub(PREEMPT_ACTIVE); 2686 2687 /* 2688 * Check again in case we missed a preemption opportunity 2689 * between schedule and now. 2690 */ 2691 barrier(); 2692 } while (need_resched()); 2693 2694 exception_exit(prev_state); 2695 } 2696 2697 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2698 void *key) 2699 { 2700 return try_to_wake_up(curr->private, mode, wake_flags); 2701 } 2702 EXPORT_SYMBOL(default_wake_function); 2703 2704 static long __sched 2705 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 2706 { 2707 unsigned long flags; 2708 wait_queue_t wait; 2709 2710 init_waitqueue_entry(&wait, current); 2711 2712 __set_current_state(state); 2713 2714 spin_lock_irqsave(&q->lock, flags); 2715 __add_wait_queue(q, &wait); 2716 spin_unlock(&q->lock); 2717 timeout = schedule_timeout(timeout); 2718 spin_lock_irq(&q->lock); 2719 __remove_wait_queue(q, &wait); 2720 spin_unlock_irqrestore(&q->lock, flags); 2721 2722 return timeout; 2723 } 2724 2725 void __sched interruptible_sleep_on(wait_queue_head_t *q) 2726 { 2727 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2728 } 2729 EXPORT_SYMBOL(interruptible_sleep_on); 2730 2731 long __sched 2732 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 2733 { 2734 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 2735 } 2736 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 2737 2738 void __sched sleep_on(wait_queue_head_t *q) 2739 { 2740 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2741 } 2742 EXPORT_SYMBOL(sleep_on); 2743 2744 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 2745 { 2746 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 2747 } 2748 EXPORT_SYMBOL(sleep_on_timeout); 2749 2750 #ifdef CONFIG_RT_MUTEXES 2751 2752 /* 2753 * rt_mutex_setprio - set the current priority of a task 2754 * @p: task 2755 * @prio: prio value (kernel-internal form) 2756 * 2757 * This function changes the 'effective' priority of a task. It does 2758 * not touch ->normal_prio like __setscheduler(). 2759 * 2760 * Used by the rt_mutex code to implement priority inheritance logic. 2761 */ 2762 void rt_mutex_setprio(struct task_struct *p, int prio) 2763 { 2764 int oldprio, on_rq, running; 2765 struct rq *rq; 2766 const struct sched_class *prev_class; 2767 2768 BUG_ON(prio < 0 || prio > MAX_PRIO); 2769 2770 rq = __task_rq_lock(p); 2771 2772 /* 2773 * Idle task boosting is a nono in general. There is one 2774 * exception, when PREEMPT_RT and NOHZ is active: 2775 * 2776 * The idle task calls get_next_timer_interrupt() and holds 2777 * the timer wheel base->lock on the CPU and another CPU wants 2778 * to access the timer (probably to cancel it). We can safely 2779 * ignore the boosting request, as the idle CPU runs this code 2780 * with interrupts disabled and will complete the lock 2781 * protected section without being interrupted. So there is no 2782 * real need to boost. 2783 */ 2784 if (unlikely(p == rq->idle)) { 2785 WARN_ON(p != rq->curr); 2786 WARN_ON(p->pi_blocked_on); 2787 goto out_unlock; 2788 } 2789 2790 trace_sched_pi_setprio(p, prio); 2791 oldprio = p->prio; 2792 prev_class = p->sched_class; 2793 on_rq = p->on_rq; 2794 running = task_current(rq, p); 2795 if (on_rq) 2796 dequeue_task(rq, p, 0); 2797 if (running) 2798 p->sched_class->put_prev_task(rq, p); 2799 2800 if (rt_prio(prio)) 2801 p->sched_class = &rt_sched_class; 2802 else 2803 p->sched_class = &fair_sched_class; 2804 2805 p->prio = prio; 2806 2807 if (running) 2808 p->sched_class->set_curr_task(rq); 2809 if (on_rq) 2810 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 2811 2812 check_class_changed(rq, p, prev_class, oldprio); 2813 out_unlock: 2814 __task_rq_unlock(rq); 2815 } 2816 #endif 2817 void set_user_nice(struct task_struct *p, long nice) 2818 { 2819 int old_prio, delta, on_rq; 2820 unsigned long flags; 2821 struct rq *rq; 2822 2823 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 2824 return; 2825 /* 2826 * We have to be careful, if called from sys_setpriority(), 2827 * the task might be in the middle of scheduling on another CPU. 2828 */ 2829 rq = task_rq_lock(p, &flags); 2830 /* 2831 * The RT priorities are set via sched_setscheduler(), but we still 2832 * allow the 'normal' nice value to be set - but as expected 2833 * it wont have any effect on scheduling until the task is 2834 * SCHED_FIFO/SCHED_RR: 2835 */ 2836 if (task_has_rt_policy(p)) { 2837 p->static_prio = NICE_TO_PRIO(nice); 2838 goto out_unlock; 2839 } 2840 on_rq = p->on_rq; 2841 if (on_rq) 2842 dequeue_task(rq, p, 0); 2843 2844 p->static_prio = NICE_TO_PRIO(nice); 2845 set_load_weight(p); 2846 old_prio = p->prio; 2847 p->prio = effective_prio(p); 2848 delta = p->prio - old_prio; 2849 2850 if (on_rq) { 2851 enqueue_task(rq, p, 0); 2852 /* 2853 * If the task increased its priority or is running and 2854 * lowered its priority, then reschedule its CPU: 2855 */ 2856 if (delta < 0 || (delta > 0 && task_running(rq, p))) 2857 resched_task(rq->curr); 2858 } 2859 out_unlock: 2860 task_rq_unlock(rq, p, &flags); 2861 } 2862 EXPORT_SYMBOL(set_user_nice); 2863 2864 /* 2865 * can_nice - check if a task can reduce its nice value 2866 * @p: task 2867 * @nice: nice value 2868 */ 2869 int can_nice(const struct task_struct *p, const int nice) 2870 { 2871 /* convert nice value [19,-20] to rlimit style value [1,40] */ 2872 int nice_rlim = 20 - nice; 2873 2874 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 2875 capable(CAP_SYS_NICE)); 2876 } 2877 2878 #ifdef __ARCH_WANT_SYS_NICE 2879 2880 /* 2881 * sys_nice - change the priority of the current process. 2882 * @increment: priority increment 2883 * 2884 * sys_setpriority is a more generic, but much slower function that 2885 * does similar things. 2886 */ 2887 SYSCALL_DEFINE1(nice, int, increment) 2888 { 2889 long nice, retval; 2890 2891 /* 2892 * Setpriority might change our priority at the same moment. 2893 * We don't have to worry. Conceptually one call occurs first 2894 * and we have a single winner. 2895 */ 2896 if (increment < -40) 2897 increment = -40; 2898 if (increment > 40) 2899 increment = 40; 2900 2901 nice = TASK_NICE(current) + increment; 2902 if (nice < -20) 2903 nice = -20; 2904 if (nice > 19) 2905 nice = 19; 2906 2907 if (increment < 0 && !can_nice(current, nice)) 2908 return -EPERM; 2909 2910 retval = security_task_setnice(current, nice); 2911 if (retval) 2912 return retval; 2913 2914 set_user_nice(current, nice); 2915 return 0; 2916 } 2917 2918 #endif 2919 2920 /** 2921 * task_prio - return the priority value of a given task. 2922 * @p: the task in question. 2923 * 2924 * Return: The priority value as seen by users in /proc. 2925 * RT tasks are offset by -200. Normal tasks are centered 2926 * around 0, value goes from -16 to +15. 2927 */ 2928 int task_prio(const struct task_struct *p) 2929 { 2930 return p->prio - MAX_RT_PRIO; 2931 } 2932 2933 /** 2934 * task_nice - return the nice value of a given task. 2935 * @p: the task in question. 2936 * 2937 * Return: The nice value [ -20 ... 0 ... 19 ]. 2938 */ 2939 int task_nice(const struct task_struct *p) 2940 { 2941 return TASK_NICE(p); 2942 } 2943 EXPORT_SYMBOL(task_nice); 2944 2945 /** 2946 * idle_cpu - is a given cpu idle currently? 2947 * @cpu: the processor in question. 2948 * 2949 * Return: 1 if the CPU is currently idle. 0 otherwise. 2950 */ 2951 int idle_cpu(int cpu) 2952 { 2953 struct rq *rq = cpu_rq(cpu); 2954 2955 if (rq->curr != rq->idle) 2956 return 0; 2957 2958 if (rq->nr_running) 2959 return 0; 2960 2961 #ifdef CONFIG_SMP 2962 if (!llist_empty(&rq->wake_list)) 2963 return 0; 2964 #endif 2965 2966 return 1; 2967 } 2968 2969 /** 2970 * idle_task - return the idle task for a given cpu. 2971 * @cpu: the processor in question. 2972 * 2973 * Return: The idle task for the cpu @cpu. 2974 */ 2975 struct task_struct *idle_task(int cpu) 2976 { 2977 return cpu_rq(cpu)->idle; 2978 } 2979 2980 /** 2981 * find_process_by_pid - find a process with a matching PID value. 2982 * @pid: the pid in question. 2983 * 2984 * The task of @pid, if found. %NULL otherwise. 2985 */ 2986 static struct task_struct *find_process_by_pid(pid_t pid) 2987 { 2988 return pid ? find_task_by_vpid(pid) : current; 2989 } 2990 2991 /* Actually do priority change: must hold rq lock. */ 2992 static void 2993 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 2994 { 2995 p->policy = policy; 2996 p->rt_priority = prio; 2997 p->normal_prio = normal_prio(p); 2998 /* we are holding p->pi_lock already */ 2999 p->prio = rt_mutex_getprio(p); 3000 if (rt_prio(p->prio)) 3001 p->sched_class = &rt_sched_class; 3002 else 3003 p->sched_class = &fair_sched_class; 3004 set_load_weight(p); 3005 } 3006 3007 /* 3008 * check the target process has a UID that matches the current process's 3009 */ 3010 static bool check_same_owner(struct task_struct *p) 3011 { 3012 const struct cred *cred = current_cred(), *pcred; 3013 bool match; 3014 3015 rcu_read_lock(); 3016 pcred = __task_cred(p); 3017 match = (uid_eq(cred->euid, pcred->euid) || 3018 uid_eq(cred->euid, pcred->uid)); 3019 rcu_read_unlock(); 3020 return match; 3021 } 3022 3023 static int __sched_setscheduler(struct task_struct *p, int policy, 3024 const struct sched_param *param, bool user) 3025 { 3026 int retval, oldprio, oldpolicy = -1, on_rq, running; 3027 unsigned long flags; 3028 const struct sched_class *prev_class; 3029 struct rq *rq; 3030 int reset_on_fork; 3031 3032 /* may grab non-irq protected spin_locks */ 3033 BUG_ON(in_interrupt()); 3034 recheck: 3035 /* double check policy once rq lock held */ 3036 if (policy < 0) { 3037 reset_on_fork = p->sched_reset_on_fork; 3038 policy = oldpolicy = p->policy; 3039 } else { 3040 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3041 policy &= ~SCHED_RESET_ON_FORK; 3042 3043 if (policy != SCHED_FIFO && policy != SCHED_RR && 3044 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3045 policy != SCHED_IDLE) 3046 return -EINVAL; 3047 } 3048 3049 /* 3050 * Valid priorities for SCHED_FIFO and SCHED_RR are 3051 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3052 * SCHED_BATCH and SCHED_IDLE is 0. 3053 */ 3054 if (param->sched_priority < 0 || 3055 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3056 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3057 return -EINVAL; 3058 if (rt_policy(policy) != (param->sched_priority != 0)) 3059 return -EINVAL; 3060 3061 /* 3062 * Allow unprivileged RT tasks to decrease priority: 3063 */ 3064 if (user && !capable(CAP_SYS_NICE)) { 3065 if (rt_policy(policy)) { 3066 unsigned long rlim_rtprio = 3067 task_rlimit(p, RLIMIT_RTPRIO); 3068 3069 /* can't set/change the rt policy */ 3070 if (policy != p->policy && !rlim_rtprio) 3071 return -EPERM; 3072 3073 /* can't increase priority */ 3074 if (param->sched_priority > p->rt_priority && 3075 param->sched_priority > rlim_rtprio) 3076 return -EPERM; 3077 } 3078 3079 /* 3080 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3081 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3082 */ 3083 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3084 if (!can_nice(p, TASK_NICE(p))) 3085 return -EPERM; 3086 } 3087 3088 /* can't change other user's priorities */ 3089 if (!check_same_owner(p)) 3090 return -EPERM; 3091 3092 /* Normal users shall not reset the sched_reset_on_fork flag */ 3093 if (p->sched_reset_on_fork && !reset_on_fork) 3094 return -EPERM; 3095 } 3096 3097 if (user) { 3098 retval = security_task_setscheduler(p); 3099 if (retval) 3100 return retval; 3101 } 3102 3103 /* 3104 * make sure no PI-waiters arrive (or leave) while we are 3105 * changing the priority of the task: 3106 * 3107 * To be able to change p->policy safely, the appropriate 3108 * runqueue lock must be held. 3109 */ 3110 rq = task_rq_lock(p, &flags); 3111 3112 /* 3113 * Changing the policy of the stop threads its a very bad idea 3114 */ 3115 if (p == rq->stop) { 3116 task_rq_unlock(rq, p, &flags); 3117 return -EINVAL; 3118 } 3119 3120 /* 3121 * If not changing anything there's no need to proceed further: 3122 */ 3123 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3124 param->sched_priority == p->rt_priority))) { 3125 task_rq_unlock(rq, p, &flags); 3126 return 0; 3127 } 3128 3129 #ifdef CONFIG_RT_GROUP_SCHED 3130 if (user) { 3131 /* 3132 * Do not allow realtime tasks into groups that have no runtime 3133 * assigned. 3134 */ 3135 if (rt_bandwidth_enabled() && rt_policy(policy) && 3136 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3137 !task_group_is_autogroup(task_group(p))) { 3138 task_rq_unlock(rq, p, &flags); 3139 return -EPERM; 3140 } 3141 } 3142 #endif 3143 3144 /* recheck policy now with rq lock held */ 3145 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3146 policy = oldpolicy = -1; 3147 task_rq_unlock(rq, p, &flags); 3148 goto recheck; 3149 } 3150 on_rq = p->on_rq; 3151 running = task_current(rq, p); 3152 if (on_rq) 3153 dequeue_task(rq, p, 0); 3154 if (running) 3155 p->sched_class->put_prev_task(rq, p); 3156 3157 p->sched_reset_on_fork = reset_on_fork; 3158 3159 oldprio = p->prio; 3160 prev_class = p->sched_class; 3161 __setscheduler(rq, p, policy, param->sched_priority); 3162 3163 if (running) 3164 p->sched_class->set_curr_task(rq); 3165 if (on_rq) 3166 enqueue_task(rq, p, 0); 3167 3168 check_class_changed(rq, p, prev_class, oldprio); 3169 task_rq_unlock(rq, p, &flags); 3170 3171 rt_mutex_adjust_pi(p); 3172 3173 return 0; 3174 } 3175 3176 /** 3177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3178 * @p: the task in question. 3179 * @policy: new policy. 3180 * @param: structure containing the new RT priority. 3181 * 3182 * Return: 0 on success. An error code otherwise. 3183 * 3184 * NOTE that the task may be already dead. 3185 */ 3186 int sched_setscheduler(struct task_struct *p, int policy, 3187 const struct sched_param *param) 3188 { 3189 return __sched_setscheduler(p, policy, param, true); 3190 } 3191 EXPORT_SYMBOL_GPL(sched_setscheduler); 3192 3193 /** 3194 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3195 * @p: the task in question. 3196 * @policy: new policy. 3197 * @param: structure containing the new RT priority. 3198 * 3199 * Just like sched_setscheduler, only don't bother checking if the 3200 * current context has permission. For example, this is needed in 3201 * stop_machine(): we create temporary high priority worker threads, 3202 * but our caller might not have that capability. 3203 * 3204 * Return: 0 on success. An error code otherwise. 3205 */ 3206 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3207 const struct sched_param *param) 3208 { 3209 return __sched_setscheduler(p, policy, param, false); 3210 } 3211 3212 static int 3213 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3214 { 3215 struct sched_param lparam; 3216 struct task_struct *p; 3217 int retval; 3218 3219 if (!param || pid < 0) 3220 return -EINVAL; 3221 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3222 return -EFAULT; 3223 3224 rcu_read_lock(); 3225 retval = -ESRCH; 3226 p = find_process_by_pid(pid); 3227 if (p != NULL) 3228 retval = sched_setscheduler(p, policy, &lparam); 3229 rcu_read_unlock(); 3230 3231 return retval; 3232 } 3233 3234 /** 3235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3236 * @pid: the pid in question. 3237 * @policy: new policy. 3238 * @param: structure containing the new RT priority. 3239 * 3240 * Return: 0 on success. An error code otherwise. 3241 */ 3242 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3243 struct sched_param __user *, param) 3244 { 3245 /* negative values for policy are not valid */ 3246 if (policy < 0) 3247 return -EINVAL; 3248 3249 return do_sched_setscheduler(pid, policy, param); 3250 } 3251 3252 /** 3253 * sys_sched_setparam - set/change the RT priority of a thread 3254 * @pid: the pid in question. 3255 * @param: structure containing the new RT priority. 3256 * 3257 * Return: 0 on success. An error code otherwise. 3258 */ 3259 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3260 { 3261 return do_sched_setscheduler(pid, -1, param); 3262 } 3263 3264 /** 3265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3266 * @pid: the pid in question. 3267 * 3268 * Return: On success, the policy of the thread. Otherwise, a negative error 3269 * code. 3270 */ 3271 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3272 { 3273 struct task_struct *p; 3274 int retval; 3275 3276 if (pid < 0) 3277 return -EINVAL; 3278 3279 retval = -ESRCH; 3280 rcu_read_lock(); 3281 p = find_process_by_pid(pid); 3282 if (p) { 3283 retval = security_task_getscheduler(p); 3284 if (!retval) 3285 retval = p->policy 3286 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3287 } 3288 rcu_read_unlock(); 3289 return retval; 3290 } 3291 3292 /** 3293 * sys_sched_getparam - get the RT priority of a thread 3294 * @pid: the pid in question. 3295 * @param: structure containing the RT priority. 3296 * 3297 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3298 * code. 3299 */ 3300 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3301 { 3302 struct sched_param lp; 3303 struct task_struct *p; 3304 int retval; 3305 3306 if (!param || pid < 0) 3307 return -EINVAL; 3308 3309 rcu_read_lock(); 3310 p = find_process_by_pid(pid); 3311 retval = -ESRCH; 3312 if (!p) 3313 goto out_unlock; 3314 3315 retval = security_task_getscheduler(p); 3316 if (retval) 3317 goto out_unlock; 3318 3319 lp.sched_priority = p->rt_priority; 3320 rcu_read_unlock(); 3321 3322 /* 3323 * This one might sleep, we cannot do it with a spinlock held ... 3324 */ 3325 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3326 3327 return retval; 3328 3329 out_unlock: 3330 rcu_read_unlock(); 3331 return retval; 3332 } 3333 3334 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3335 { 3336 cpumask_var_t cpus_allowed, new_mask; 3337 struct task_struct *p; 3338 int retval; 3339 3340 rcu_read_lock(); 3341 3342 p = find_process_by_pid(pid); 3343 if (!p) { 3344 rcu_read_unlock(); 3345 return -ESRCH; 3346 } 3347 3348 /* Prevent p going away */ 3349 get_task_struct(p); 3350 rcu_read_unlock(); 3351 3352 if (p->flags & PF_NO_SETAFFINITY) { 3353 retval = -EINVAL; 3354 goto out_put_task; 3355 } 3356 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3357 retval = -ENOMEM; 3358 goto out_put_task; 3359 } 3360 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3361 retval = -ENOMEM; 3362 goto out_free_cpus_allowed; 3363 } 3364 retval = -EPERM; 3365 if (!check_same_owner(p)) { 3366 rcu_read_lock(); 3367 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3368 rcu_read_unlock(); 3369 goto out_unlock; 3370 } 3371 rcu_read_unlock(); 3372 } 3373 3374 retval = security_task_setscheduler(p); 3375 if (retval) 3376 goto out_unlock; 3377 3378 cpuset_cpus_allowed(p, cpus_allowed); 3379 cpumask_and(new_mask, in_mask, cpus_allowed); 3380 again: 3381 retval = set_cpus_allowed_ptr(p, new_mask); 3382 3383 if (!retval) { 3384 cpuset_cpus_allowed(p, cpus_allowed); 3385 if (!cpumask_subset(new_mask, cpus_allowed)) { 3386 /* 3387 * We must have raced with a concurrent cpuset 3388 * update. Just reset the cpus_allowed to the 3389 * cpuset's cpus_allowed 3390 */ 3391 cpumask_copy(new_mask, cpus_allowed); 3392 goto again; 3393 } 3394 } 3395 out_unlock: 3396 free_cpumask_var(new_mask); 3397 out_free_cpus_allowed: 3398 free_cpumask_var(cpus_allowed); 3399 out_put_task: 3400 put_task_struct(p); 3401 return retval; 3402 } 3403 3404 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3405 struct cpumask *new_mask) 3406 { 3407 if (len < cpumask_size()) 3408 cpumask_clear(new_mask); 3409 else if (len > cpumask_size()) 3410 len = cpumask_size(); 3411 3412 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3413 } 3414 3415 /** 3416 * sys_sched_setaffinity - set the cpu affinity of a process 3417 * @pid: pid of the process 3418 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3419 * @user_mask_ptr: user-space pointer to the new cpu mask 3420 * 3421 * Return: 0 on success. An error code otherwise. 3422 */ 3423 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3424 unsigned long __user *, user_mask_ptr) 3425 { 3426 cpumask_var_t new_mask; 3427 int retval; 3428 3429 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3430 return -ENOMEM; 3431 3432 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3433 if (retval == 0) 3434 retval = sched_setaffinity(pid, new_mask); 3435 free_cpumask_var(new_mask); 3436 return retval; 3437 } 3438 3439 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3440 { 3441 struct task_struct *p; 3442 unsigned long flags; 3443 int retval; 3444 3445 rcu_read_lock(); 3446 3447 retval = -ESRCH; 3448 p = find_process_by_pid(pid); 3449 if (!p) 3450 goto out_unlock; 3451 3452 retval = security_task_getscheduler(p); 3453 if (retval) 3454 goto out_unlock; 3455 3456 raw_spin_lock_irqsave(&p->pi_lock, flags); 3457 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 3458 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3459 3460 out_unlock: 3461 rcu_read_unlock(); 3462 3463 return retval; 3464 } 3465 3466 /** 3467 * sys_sched_getaffinity - get the cpu affinity of a process 3468 * @pid: pid of the process 3469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3470 * @user_mask_ptr: user-space pointer to hold the current cpu mask 3471 * 3472 * Return: 0 on success. An error code otherwise. 3473 */ 3474 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 3475 unsigned long __user *, user_mask_ptr) 3476 { 3477 int ret; 3478 cpumask_var_t mask; 3479 3480 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 3481 return -EINVAL; 3482 if (len & (sizeof(unsigned long)-1)) 3483 return -EINVAL; 3484 3485 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 3486 return -ENOMEM; 3487 3488 ret = sched_getaffinity(pid, mask); 3489 if (ret == 0) { 3490 size_t retlen = min_t(size_t, len, cpumask_size()); 3491 3492 if (copy_to_user(user_mask_ptr, mask, retlen)) 3493 ret = -EFAULT; 3494 else 3495 ret = retlen; 3496 } 3497 free_cpumask_var(mask); 3498 3499 return ret; 3500 } 3501 3502 /** 3503 * sys_sched_yield - yield the current processor to other threads. 3504 * 3505 * This function yields the current CPU to other tasks. If there are no 3506 * other threads running on this CPU then this function will return. 3507 * 3508 * Return: 0. 3509 */ 3510 SYSCALL_DEFINE0(sched_yield) 3511 { 3512 struct rq *rq = this_rq_lock(); 3513 3514 schedstat_inc(rq, yld_count); 3515 current->sched_class->yield_task(rq); 3516 3517 /* 3518 * Since we are going to call schedule() anyway, there's 3519 * no need to preempt or enable interrupts: 3520 */ 3521 __release(rq->lock); 3522 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 3523 do_raw_spin_unlock(&rq->lock); 3524 sched_preempt_enable_no_resched(); 3525 3526 schedule(); 3527 3528 return 0; 3529 } 3530 3531 static void __cond_resched(void) 3532 { 3533 __preempt_count_add(PREEMPT_ACTIVE); 3534 __schedule(); 3535 __preempt_count_sub(PREEMPT_ACTIVE); 3536 } 3537 3538 int __sched _cond_resched(void) 3539 { 3540 if (should_resched()) { 3541 __cond_resched(); 3542 return 1; 3543 } 3544 return 0; 3545 } 3546 EXPORT_SYMBOL(_cond_resched); 3547 3548 /* 3549 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 3550 * call schedule, and on return reacquire the lock. 3551 * 3552 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 3553 * operations here to prevent schedule() from being called twice (once via 3554 * spin_unlock(), once by hand). 3555 */ 3556 int __cond_resched_lock(spinlock_t *lock) 3557 { 3558 int resched = should_resched(); 3559 int ret = 0; 3560 3561 lockdep_assert_held(lock); 3562 3563 if (spin_needbreak(lock) || resched) { 3564 spin_unlock(lock); 3565 if (resched) 3566 __cond_resched(); 3567 else 3568 cpu_relax(); 3569 ret = 1; 3570 spin_lock(lock); 3571 } 3572 return ret; 3573 } 3574 EXPORT_SYMBOL(__cond_resched_lock); 3575 3576 int __sched __cond_resched_softirq(void) 3577 { 3578 BUG_ON(!in_softirq()); 3579 3580 if (should_resched()) { 3581 local_bh_enable(); 3582 __cond_resched(); 3583 local_bh_disable(); 3584 return 1; 3585 } 3586 return 0; 3587 } 3588 EXPORT_SYMBOL(__cond_resched_softirq); 3589 3590 /** 3591 * yield - yield the current processor to other threads. 3592 * 3593 * Do not ever use this function, there's a 99% chance you're doing it wrong. 3594 * 3595 * The scheduler is at all times free to pick the calling task as the most 3596 * eligible task to run, if removing the yield() call from your code breaks 3597 * it, its already broken. 3598 * 3599 * Typical broken usage is: 3600 * 3601 * while (!event) 3602 * yield(); 3603 * 3604 * where one assumes that yield() will let 'the other' process run that will 3605 * make event true. If the current task is a SCHED_FIFO task that will never 3606 * happen. Never use yield() as a progress guarantee!! 3607 * 3608 * If you want to use yield() to wait for something, use wait_event(). 3609 * If you want to use yield() to be 'nice' for others, use cond_resched(). 3610 * If you still want to use yield(), do not! 3611 */ 3612 void __sched yield(void) 3613 { 3614 set_current_state(TASK_RUNNING); 3615 sys_sched_yield(); 3616 } 3617 EXPORT_SYMBOL(yield); 3618 3619 /** 3620 * yield_to - yield the current processor to another thread in 3621 * your thread group, or accelerate that thread toward the 3622 * processor it's on. 3623 * @p: target task 3624 * @preempt: whether task preemption is allowed or not 3625 * 3626 * It's the caller's job to ensure that the target task struct 3627 * can't go away on us before we can do any checks. 3628 * 3629 * Return: 3630 * true (>0) if we indeed boosted the target task. 3631 * false (0) if we failed to boost the target. 3632 * -ESRCH if there's no task to yield to. 3633 */ 3634 bool __sched yield_to(struct task_struct *p, bool preempt) 3635 { 3636 struct task_struct *curr = current; 3637 struct rq *rq, *p_rq; 3638 unsigned long flags; 3639 int yielded = 0; 3640 3641 local_irq_save(flags); 3642 rq = this_rq(); 3643 3644 again: 3645 p_rq = task_rq(p); 3646 /* 3647 * If we're the only runnable task on the rq and target rq also 3648 * has only one task, there's absolutely no point in yielding. 3649 */ 3650 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 3651 yielded = -ESRCH; 3652 goto out_irq; 3653 } 3654 3655 double_rq_lock(rq, p_rq); 3656 while (task_rq(p) != p_rq) { 3657 double_rq_unlock(rq, p_rq); 3658 goto again; 3659 } 3660 3661 if (!curr->sched_class->yield_to_task) 3662 goto out_unlock; 3663 3664 if (curr->sched_class != p->sched_class) 3665 goto out_unlock; 3666 3667 if (task_running(p_rq, p) || p->state) 3668 goto out_unlock; 3669 3670 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 3671 if (yielded) { 3672 schedstat_inc(rq, yld_count); 3673 /* 3674 * Make p's CPU reschedule; pick_next_entity takes care of 3675 * fairness. 3676 */ 3677 if (preempt && rq != p_rq) 3678 resched_task(p_rq->curr); 3679 } 3680 3681 out_unlock: 3682 double_rq_unlock(rq, p_rq); 3683 out_irq: 3684 local_irq_restore(flags); 3685 3686 if (yielded > 0) 3687 schedule(); 3688 3689 return yielded; 3690 } 3691 EXPORT_SYMBOL_GPL(yield_to); 3692 3693 /* 3694 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 3695 * that process accounting knows that this is a task in IO wait state. 3696 */ 3697 void __sched io_schedule(void) 3698 { 3699 struct rq *rq = raw_rq(); 3700 3701 delayacct_blkio_start(); 3702 atomic_inc(&rq->nr_iowait); 3703 blk_flush_plug(current); 3704 current->in_iowait = 1; 3705 schedule(); 3706 current->in_iowait = 0; 3707 atomic_dec(&rq->nr_iowait); 3708 delayacct_blkio_end(); 3709 } 3710 EXPORT_SYMBOL(io_schedule); 3711 3712 long __sched io_schedule_timeout(long timeout) 3713 { 3714 struct rq *rq = raw_rq(); 3715 long ret; 3716 3717 delayacct_blkio_start(); 3718 atomic_inc(&rq->nr_iowait); 3719 blk_flush_plug(current); 3720 current->in_iowait = 1; 3721 ret = schedule_timeout(timeout); 3722 current->in_iowait = 0; 3723 atomic_dec(&rq->nr_iowait); 3724 delayacct_blkio_end(); 3725 return ret; 3726 } 3727 3728 /** 3729 * sys_sched_get_priority_max - return maximum RT priority. 3730 * @policy: scheduling class. 3731 * 3732 * Return: On success, this syscall returns the maximum 3733 * rt_priority that can be used by a given scheduling class. 3734 * On failure, a negative error code is returned. 3735 */ 3736 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 3737 { 3738 int ret = -EINVAL; 3739 3740 switch (policy) { 3741 case SCHED_FIFO: 3742 case SCHED_RR: 3743 ret = MAX_USER_RT_PRIO-1; 3744 break; 3745 case SCHED_NORMAL: 3746 case SCHED_BATCH: 3747 case SCHED_IDLE: 3748 ret = 0; 3749 break; 3750 } 3751 return ret; 3752 } 3753 3754 /** 3755 * sys_sched_get_priority_min - return minimum RT priority. 3756 * @policy: scheduling class. 3757 * 3758 * Return: On success, this syscall returns the minimum 3759 * rt_priority that can be used by a given scheduling class. 3760 * On failure, a negative error code is returned. 3761 */ 3762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 3763 { 3764 int ret = -EINVAL; 3765 3766 switch (policy) { 3767 case SCHED_FIFO: 3768 case SCHED_RR: 3769 ret = 1; 3770 break; 3771 case SCHED_NORMAL: 3772 case SCHED_BATCH: 3773 case SCHED_IDLE: 3774 ret = 0; 3775 } 3776 return ret; 3777 } 3778 3779 /** 3780 * sys_sched_rr_get_interval - return the default timeslice of a process. 3781 * @pid: pid of the process. 3782 * @interval: userspace pointer to the timeslice value. 3783 * 3784 * this syscall writes the default timeslice value of a given process 3785 * into the user-space timespec buffer. A value of '0' means infinity. 3786 * 3787 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 3788 * an error code. 3789 */ 3790 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 3791 struct timespec __user *, interval) 3792 { 3793 struct task_struct *p; 3794 unsigned int time_slice; 3795 unsigned long flags; 3796 struct rq *rq; 3797 int retval; 3798 struct timespec t; 3799 3800 if (pid < 0) 3801 return -EINVAL; 3802 3803 retval = -ESRCH; 3804 rcu_read_lock(); 3805 p = find_process_by_pid(pid); 3806 if (!p) 3807 goto out_unlock; 3808 3809 retval = security_task_getscheduler(p); 3810 if (retval) 3811 goto out_unlock; 3812 3813 rq = task_rq_lock(p, &flags); 3814 time_slice = p->sched_class->get_rr_interval(rq, p); 3815 task_rq_unlock(rq, p, &flags); 3816 3817 rcu_read_unlock(); 3818 jiffies_to_timespec(time_slice, &t); 3819 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 3820 return retval; 3821 3822 out_unlock: 3823 rcu_read_unlock(); 3824 return retval; 3825 } 3826 3827 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 3828 3829 void sched_show_task(struct task_struct *p) 3830 { 3831 unsigned long free = 0; 3832 int ppid; 3833 unsigned state; 3834 3835 state = p->state ? __ffs(p->state) + 1 : 0; 3836 printk(KERN_INFO "%-15.15s %c", p->comm, 3837 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 3838 #if BITS_PER_LONG == 32 3839 if (state == TASK_RUNNING) 3840 printk(KERN_CONT " running "); 3841 else 3842 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 3843 #else 3844 if (state == TASK_RUNNING) 3845 printk(KERN_CONT " running task "); 3846 else 3847 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 3848 #endif 3849 #ifdef CONFIG_DEBUG_STACK_USAGE 3850 free = stack_not_used(p); 3851 #endif 3852 rcu_read_lock(); 3853 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 3854 rcu_read_unlock(); 3855 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 3856 task_pid_nr(p), ppid, 3857 (unsigned long)task_thread_info(p)->flags); 3858 3859 print_worker_info(KERN_INFO, p); 3860 show_stack(p, NULL); 3861 } 3862 3863 void show_state_filter(unsigned long state_filter) 3864 { 3865 struct task_struct *g, *p; 3866 3867 #if BITS_PER_LONG == 32 3868 printk(KERN_INFO 3869 " task PC stack pid father\n"); 3870 #else 3871 printk(KERN_INFO 3872 " task PC stack pid father\n"); 3873 #endif 3874 rcu_read_lock(); 3875 do_each_thread(g, p) { 3876 /* 3877 * reset the NMI-timeout, listing all files on a slow 3878 * console might take a lot of time: 3879 */ 3880 touch_nmi_watchdog(); 3881 if (!state_filter || (p->state & state_filter)) 3882 sched_show_task(p); 3883 } while_each_thread(g, p); 3884 3885 touch_all_softlockup_watchdogs(); 3886 3887 #ifdef CONFIG_SCHED_DEBUG 3888 sysrq_sched_debug_show(); 3889 #endif 3890 rcu_read_unlock(); 3891 /* 3892 * Only show locks if all tasks are dumped: 3893 */ 3894 if (!state_filter) 3895 debug_show_all_locks(); 3896 } 3897 3898 void init_idle_bootup_task(struct task_struct *idle) 3899 { 3900 idle->sched_class = &idle_sched_class; 3901 } 3902 3903 /** 3904 * init_idle - set up an idle thread for a given CPU 3905 * @idle: task in question 3906 * @cpu: cpu the idle task belongs to 3907 * 3908 * NOTE: this function does not set the idle thread's NEED_RESCHED 3909 * flag, to make booting more robust. 3910 */ 3911 void init_idle(struct task_struct *idle, int cpu) 3912 { 3913 struct rq *rq = cpu_rq(cpu); 3914 unsigned long flags; 3915 3916 raw_spin_lock_irqsave(&rq->lock, flags); 3917 3918 __sched_fork(0, idle); 3919 idle->state = TASK_RUNNING; 3920 idle->se.exec_start = sched_clock(); 3921 3922 do_set_cpus_allowed(idle, cpumask_of(cpu)); 3923 /* 3924 * We're having a chicken and egg problem, even though we are 3925 * holding rq->lock, the cpu isn't yet set to this cpu so the 3926 * lockdep check in task_group() will fail. 3927 * 3928 * Similar case to sched_fork(). / Alternatively we could 3929 * use task_rq_lock() here and obtain the other rq->lock. 3930 * 3931 * Silence PROVE_RCU 3932 */ 3933 rcu_read_lock(); 3934 __set_task_cpu(idle, cpu); 3935 rcu_read_unlock(); 3936 3937 rq->curr = rq->idle = idle; 3938 #if defined(CONFIG_SMP) 3939 idle->on_cpu = 1; 3940 #endif 3941 raw_spin_unlock_irqrestore(&rq->lock, flags); 3942 3943 /* Set the preempt count _outside_ the spinlocks! */ 3944 init_idle_preempt_count(idle, cpu); 3945 3946 /* 3947 * The idle tasks have their own, simple scheduling class: 3948 */ 3949 idle->sched_class = &idle_sched_class; 3950 ftrace_graph_init_idle_task(idle, cpu); 3951 vtime_init_idle(idle, cpu); 3952 #if defined(CONFIG_SMP) 3953 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 3954 #endif 3955 } 3956 3957 #ifdef CONFIG_SMP 3958 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 3959 { 3960 if (p->sched_class && p->sched_class->set_cpus_allowed) 3961 p->sched_class->set_cpus_allowed(p, new_mask); 3962 3963 cpumask_copy(&p->cpus_allowed, new_mask); 3964 p->nr_cpus_allowed = cpumask_weight(new_mask); 3965 } 3966 3967 /* 3968 * This is how migration works: 3969 * 3970 * 1) we invoke migration_cpu_stop() on the target CPU using 3971 * stop_one_cpu(). 3972 * 2) stopper starts to run (implicitly forcing the migrated thread 3973 * off the CPU) 3974 * 3) it checks whether the migrated task is still in the wrong runqueue. 3975 * 4) if it's in the wrong runqueue then the migration thread removes 3976 * it and puts it into the right queue. 3977 * 5) stopper completes and stop_one_cpu() returns and the migration 3978 * is done. 3979 */ 3980 3981 /* 3982 * Change a given task's CPU affinity. Migrate the thread to a 3983 * proper CPU and schedule it away if the CPU it's executing on 3984 * is removed from the allowed bitmask. 3985 * 3986 * NOTE: the caller must have a valid reference to the task, the 3987 * task must not exit() & deallocate itself prematurely. The 3988 * call is not atomic; no spinlocks may be held. 3989 */ 3990 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3991 { 3992 unsigned long flags; 3993 struct rq *rq; 3994 unsigned int dest_cpu; 3995 int ret = 0; 3996 3997 rq = task_rq_lock(p, &flags); 3998 3999 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4000 goto out; 4001 4002 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4003 ret = -EINVAL; 4004 goto out; 4005 } 4006 4007 do_set_cpus_allowed(p, new_mask); 4008 4009 /* Can the task run on the task's current CPU? If so, we're done */ 4010 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4011 goto out; 4012 4013 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4014 if (p->on_rq) { 4015 struct migration_arg arg = { p, dest_cpu }; 4016 /* Need help from migration thread: drop lock and wait. */ 4017 task_rq_unlock(rq, p, &flags); 4018 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4019 tlb_migrate_finish(p->mm); 4020 return 0; 4021 } 4022 out: 4023 task_rq_unlock(rq, p, &flags); 4024 4025 return ret; 4026 } 4027 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4028 4029 /* 4030 * Move (not current) task off this cpu, onto dest cpu. We're doing 4031 * this because either it can't run here any more (set_cpus_allowed() 4032 * away from this CPU, or CPU going down), or because we're 4033 * attempting to rebalance this task on exec (sched_exec). 4034 * 4035 * So we race with normal scheduler movements, but that's OK, as long 4036 * as the task is no longer on this CPU. 4037 * 4038 * Returns non-zero if task was successfully migrated. 4039 */ 4040 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4041 { 4042 struct rq *rq_dest, *rq_src; 4043 int ret = 0; 4044 4045 if (unlikely(!cpu_active(dest_cpu))) 4046 return ret; 4047 4048 rq_src = cpu_rq(src_cpu); 4049 rq_dest = cpu_rq(dest_cpu); 4050 4051 raw_spin_lock(&p->pi_lock); 4052 double_rq_lock(rq_src, rq_dest); 4053 /* Already moved. */ 4054 if (task_cpu(p) != src_cpu) 4055 goto done; 4056 /* Affinity changed (again). */ 4057 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4058 goto fail; 4059 4060 /* 4061 * If we're not on a rq, the next wake-up will ensure we're 4062 * placed properly. 4063 */ 4064 if (p->on_rq) { 4065 dequeue_task(rq_src, p, 0); 4066 set_task_cpu(p, dest_cpu); 4067 enqueue_task(rq_dest, p, 0); 4068 check_preempt_curr(rq_dest, p, 0); 4069 } 4070 done: 4071 ret = 1; 4072 fail: 4073 double_rq_unlock(rq_src, rq_dest); 4074 raw_spin_unlock(&p->pi_lock); 4075 return ret; 4076 } 4077 4078 #ifdef CONFIG_NUMA_BALANCING 4079 /* Migrate current task p to target_cpu */ 4080 int migrate_task_to(struct task_struct *p, int target_cpu) 4081 { 4082 struct migration_arg arg = { p, target_cpu }; 4083 int curr_cpu = task_cpu(p); 4084 4085 if (curr_cpu == target_cpu) 4086 return 0; 4087 4088 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4089 return -EINVAL; 4090 4091 /* TODO: This is not properly updating schedstats */ 4092 4093 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4094 } 4095 4096 /* 4097 * Requeue a task on a given node and accurately track the number of NUMA 4098 * tasks on the runqueues 4099 */ 4100 void sched_setnuma(struct task_struct *p, int nid) 4101 { 4102 struct rq *rq; 4103 unsigned long flags; 4104 bool on_rq, running; 4105 4106 rq = task_rq_lock(p, &flags); 4107 on_rq = p->on_rq; 4108 running = task_current(rq, p); 4109 4110 if (on_rq) 4111 dequeue_task(rq, p, 0); 4112 if (running) 4113 p->sched_class->put_prev_task(rq, p); 4114 4115 p->numa_preferred_nid = nid; 4116 4117 if (running) 4118 p->sched_class->set_curr_task(rq); 4119 if (on_rq) 4120 enqueue_task(rq, p, 0); 4121 task_rq_unlock(rq, p, &flags); 4122 } 4123 #endif 4124 4125 /* 4126 * migration_cpu_stop - this will be executed by a highprio stopper thread 4127 * and performs thread migration by bumping thread off CPU then 4128 * 'pushing' onto another runqueue. 4129 */ 4130 static int migration_cpu_stop(void *data) 4131 { 4132 struct migration_arg *arg = data; 4133 4134 /* 4135 * The original target cpu might have gone down and we might 4136 * be on another cpu but it doesn't matter. 4137 */ 4138 local_irq_disable(); 4139 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4140 local_irq_enable(); 4141 return 0; 4142 } 4143 4144 #ifdef CONFIG_HOTPLUG_CPU 4145 4146 /* 4147 * Ensures that the idle task is using init_mm right before its cpu goes 4148 * offline. 4149 */ 4150 void idle_task_exit(void) 4151 { 4152 struct mm_struct *mm = current->active_mm; 4153 4154 BUG_ON(cpu_online(smp_processor_id())); 4155 4156 if (mm != &init_mm) 4157 switch_mm(mm, &init_mm, current); 4158 mmdrop(mm); 4159 } 4160 4161 /* 4162 * Since this CPU is going 'away' for a while, fold any nr_active delta 4163 * we might have. Assumes we're called after migrate_tasks() so that the 4164 * nr_active count is stable. 4165 * 4166 * Also see the comment "Global load-average calculations". 4167 */ 4168 static void calc_load_migrate(struct rq *rq) 4169 { 4170 long delta = calc_load_fold_active(rq); 4171 if (delta) 4172 atomic_long_add(delta, &calc_load_tasks); 4173 } 4174 4175 /* 4176 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4177 * try_to_wake_up()->select_task_rq(). 4178 * 4179 * Called with rq->lock held even though we'er in stop_machine() and 4180 * there's no concurrency possible, we hold the required locks anyway 4181 * because of lock validation efforts. 4182 */ 4183 static void migrate_tasks(unsigned int dead_cpu) 4184 { 4185 struct rq *rq = cpu_rq(dead_cpu); 4186 struct task_struct *next, *stop = rq->stop; 4187 int dest_cpu; 4188 4189 /* 4190 * Fudge the rq selection such that the below task selection loop 4191 * doesn't get stuck on the currently eligible stop task. 4192 * 4193 * We're currently inside stop_machine() and the rq is either stuck 4194 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4195 * either way we should never end up calling schedule() until we're 4196 * done here. 4197 */ 4198 rq->stop = NULL; 4199 4200 /* 4201 * put_prev_task() and pick_next_task() sched 4202 * class method both need to have an up-to-date 4203 * value of rq->clock[_task] 4204 */ 4205 update_rq_clock(rq); 4206 4207 for ( ; ; ) { 4208 /* 4209 * There's this thread running, bail when that's the only 4210 * remaining thread. 4211 */ 4212 if (rq->nr_running == 1) 4213 break; 4214 4215 next = pick_next_task(rq); 4216 BUG_ON(!next); 4217 next->sched_class->put_prev_task(rq, next); 4218 4219 /* Find suitable destination for @next, with force if needed. */ 4220 dest_cpu = select_fallback_rq(dead_cpu, next); 4221 raw_spin_unlock(&rq->lock); 4222 4223 __migrate_task(next, dead_cpu, dest_cpu); 4224 4225 raw_spin_lock(&rq->lock); 4226 } 4227 4228 rq->stop = stop; 4229 } 4230 4231 #endif /* CONFIG_HOTPLUG_CPU */ 4232 4233 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4234 4235 static struct ctl_table sd_ctl_dir[] = { 4236 { 4237 .procname = "sched_domain", 4238 .mode = 0555, 4239 }, 4240 {} 4241 }; 4242 4243 static struct ctl_table sd_ctl_root[] = { 4244 { 4245 .procname = "kernel", 4246 .mode = 0555, 4247 .child = sd_ctl_dir, 4248 }, 4249 {} 4250 }; 4251 4252 static struct ctl_table *sd_alloc_ctl_entry(int n) 4253 { 4254 struct ctl_table *entry = 4255 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4256 4257 return entry; 4258 } 4259 4260 static void sd_free_ctl_entry(struct ctl_table **tablep) 4261 { 4262 struct ctl_table *entry; 4263 4264 /* 4265 * In the intermediate directories, both the child directory and 4266 * procname are dynamically allocated and could fail but the mode 4267 * will always be set. In the lowest directory the names are 4268 * static strings and all have proc handlers. 4269 */ 4270 for (entry = *tablep; entry->mode; entry++) { 4271 if (entry->child) 4272 sd_free_ctl_entry(&entry->child); 4273 if (entry->proc_handler == NULL) 4274 kfree(entry->procname); 4275 } 4276 4277 kfree(*tablep); 4278 *tablep = NULL; 4279 } 4280 4281 static int min_load_idx = 0; 4282 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4283 4284 static void 4285 set_table_entry(struct ctl_table *entry, 4286 const char *procname, void *data, int maxlen, 4287 umode_t mode, proc_handler *proc_handler, 4288 bool load_idx) 4289 { 4290 entry->procname = procname; 4291 entry->data = data; 4292 entry->maxlen = maxlen; 4293 entry->mode = mode; 4294 entry->proc_handler = proc_handler; 4295 4296 if (load_idx) { 4297 entry->extra1 = &min_load_idx; 4298 entry->extra2 = &max_load_idx; 4299 } 4300 } 4301 4302 static struct ctl_table * 4303 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4304 { 4305 struct ctl_table *table = sd_alloc_ctl_entry(13); 4306 4307 if (table == NULL) 4308 return NULL; 4309 4310 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4311 sizeof(long), 0644, proc_doulongvec_minmax, false); 4312 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4313 sizeof(long), 0644, proc_doulongvec_minmax, false); 4314 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4315 sizeof(int), 0644, proc_dointvec_minmax, true); 4316 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4317 sizeof(int), 0644, proc_dointvec_minmax, true); 4318 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4319 sizeof(int), 0644, proc_dointvec_minmax, true); 4320 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4321 sizeof(int), 0644, proc_dointvec_minmax, true); 4322 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4323 sizeof(int), 0644, proc_dointvec_minmax, true); 4324 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4325 sizeof(int), 0644, proc_dointvec_minmax, false); 4326 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4327 sizeof(int), 0644, proc_dointvec_minmax, false); 4328 set_table_entry(&table[9], "cache_nice_tries", 4329 &sd->cache_nice_tries, 4330 sizeof(int), 0644, proc_dointvec_minmax, false); 4331 set_table_entry(&table[10], "flags", &sd->flags, 4332 sizeof(int), 0644, proc_dointvec_minmax, false); 4333 set_table_entry(&table[11], "name", sd->name, 4334 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4335 /* &table[12] is terminator */ 4336 4337 return table; 4338 } 4339 4340 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4341 { 4342 struct ctl_table *entry, *table; 4343 struct sched_domain *sd; 4344 int domain_num = 0, i; 4345 char buf[32]; 4346 4347 for_each_domain(cpu, sd) 4348 domain_num++; 4349 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4350 if (table == NULL) 4351 return NULL; 4352 4353 i = 0; 4354 for_each_domain(cpu, sd) { 4355 snprintf(buf, 32, "domain%d", i); 4356 entry->procname = kstrdup(buf, GFP_KERNEL); 4357 entry->mode = 0555; 4358 entry->child = sd_alloc_ctl_domain_table(sd); 4359 entry++; 4360 i++; 4361 } 4362 return table; 4363 } 4364 4365 static struct ctl_table_header *sd_sysctl_header; 4366 static void register_sched_domain_sysctl(void) 4367 { 4368 int i, cpu_num = num_possible_cpus(); 4369 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4370 char buf[32]; 4371 4372 WARN_ON(sd_ctl_dir[0].child); 4373 sd_ctl_dir[0].child = entry; 4374 4375 if (entry == NULL) 4376 return; 4377 4378 for_each_possible_cpu(i) { 4379 snprintf(buf, 32, "cpu%d", i); 4380 entry->procname = kstrdup(buf, GFP_KERNEL); 4381 entry->mode = 0555; 4382 entry->child = sd_alloc_ctl_cpu_table(i); 4383 entry++; 4384 } 4385 4386 WARN_ON(sd_sysctl_header); 4387 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4388 } 4389 4390 /* may be called multiple times per register */ 4391 static void unregister_sched_domain_sysctl(void) 4392 { 4393 if (sd_sysctl_header) 4394 unregister_sysctl_table(sd_sysctl_header); 4395 sd_sysctl_header = NULL; 4396 if (sd_ctl_dir[0].child) 4397 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4398 } 4399 #else 4400 static void register_sched_domain_sysctl(void) 4401 { 4402 } 4403 static void unregister_sched_domain_sysctl(void) 4404 { 4405 } 4406 #endif 4407 4408 static void set_rq_online(struct rq *rq) 4409 { 4410 if (!rq->online) { 4411 const struct sched_class *class; 4412 4413 cpumask_set_cpu(rq->cpu, rq->rd->online); 4414 rq->online = 1; 4415 4416 for_each_class(class) { 4417 if (class->rq_online) 4418 class->rq_online(rq); 4419 } 4420 } 4421 } 4422 4423 static void set_rq_offline(struct rq *rq) 4424 { 4425 if (rq->online) { 4426 const struct sched_class *class; 4427 4428 for_each_class(class) { 4429 if (class->rq_offline) 4430 class->rq_offline(rq); 4431 } 4432 4433 cpumask_clear_cpu(rq->cpu, rq->rd->online); 4434 rq->online = 0; 4435 } 4436 } 4437 4438 /* 4439 * migration_call - callback that gets triggered when a CPU is added. 4440 * Here we can start up the necessary migration thread for the new CPU. 4441 */ 4442 static int 4443 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 4444 { 4445 int cpu = (long)hcpu; 4446 unsigned long flags; 4447 struct rq *rq = cpu_rq(cpu); 4448 4449 switch (action & ~CPU_TASKS_FROZEN) { 4450 4451 case CPU_UP_PREPARE: 4452 rq->calc_load_update = calc_load_update; 4453 break; 4454 4455 case CPU_ONLINE: 4456 /* Update our root-domain */ 4457 raw_spin_lock_irqsave(&rq->lock, flags); 4458 if (rq->rd) { 4459 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 4460 4461 set_rq_online(rq); 4462 } 4463 raw_spin_unlock_irqrestore(&rq->lock, flags); 4464 break; 4465 4466 #ifdef CONFIG_HOTPLUG_CPU 4467 case CPU_DYING: 4468 sched_ttwu_pending(); 4469 /* Update our root-domain */ 4470 raw_spin_lock_irqsave(&rq->lock, flags); 4471 if (rq->rd) { 4472 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 4473 set_rq_offline(rq); 4474 } 4475 migrate_tasks(cpu); 4476 BUG_ON(rq->nr_running != 1); /* the migration thread */ 4477 raw_spin_unlock_irqrestore(&rq->lock, flags); 4478 break; 4479 4480 case CPU_DEAD: 4481 calc_load_migrate(rq); 4482 break; 4483 #endif 4484 } 4485 4486 update_max_interval(); 4487 4488 return NOTIFY_OK; 4489 } 4490 4491 /* 4492 * Register at high priority so that task migration (migrate_all_tasks) 4493 * happens before everything else. This has to be lower priority than 4494 * the notifier in the perf_event subsystem, though. 4495 */ 4496 static struct notifier_block migration_notifier = { 4497 .notifier_call = migration_call, 4498 .priority = CPU_PRI_MIGRATION, 4499 }; 4500 4501 static int sched_cpu_active(struct notifier_block *nfb, 4502 unsigned long action, void *hcpu) 4503 { 4504 switch (action & ~CPU_TASKS_FROZEN) { 4505 case CPU_STARTING: 4506 case CPU_DOWN_FAILED: 4507 set_cpu_active((long)hcpu, true); 4508 return NOTIFY_OK; 4509 default: 4510 return NOTIFY_DONE; 4511 } 4512 } 4513 4514 static int sched_cpu_inactive(struct notifier_block *nfb, 4515 unsigned long action, void *hcpu) 4516 { 4517 switch (action & ~CPU_TASKS_FROZEN) { 4518 case CPU_DOWN_PREPARE: 4519 set_cpu_active((long)hcpu, false); 4520 return NOTIFY_OK; 4521 default: 4522 return NOTIFY_DONE; 4523 } 4524 } 4525 4526 static int __init migration_init(void) 4527 { 4528 void *cpu = (void *)(long)smp_processor_id(); 4529 int err; 4530 4531 /* Initialize migration for the boot CPU */ 4532 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 4533 BUG_ON(err == NOTIFY_BAD); 4534 migration_call(&migration_notifier, CPU_ONLINE, cpu); 4535 register_cpu_notifier(&migration_notifier); 4536 4537 /* Register cpu active notifiers */ 4538 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 4539 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 4540 4541 return 0; 4542 } 4543 early_initcall(migration_init); 4544 #endif 4545 4546 #ifdef CONFIG_SMP 4547 4548 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 4549 4550 #ifdef CONFIG_SCHED_DEBUG 4551 4552 static __read_mostly int sched_debug_enabled; 4553 4554 static int __init sched_debug_setup(char *str) 4555 { 4556 sched_debug_enabled = 1; 4557 4558 return 0; 4559 } 4560 early_param("sched_debug", sched_debug_setup); 4561 4562 static inline bool sched_debug(void) 4563 { 4564 return sched_debug_enabled; 4565 } 4566 4567 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 4568 struct cpumask *groupmask) 4569 { 4570 struct sched_group *group = sd->groups; 4571 char str[256]; 4572 4573 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 4574 cpumask_clear(groupmask); 4575 4576 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 4577 4578 if (!(sd->flags & SD_LOAD_BALANCE)) { 4579 printk("does not load-balance\n"); 4580 if (sd->parent) 4581 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 4582 " has parent"); 4583 return -1; 4584 } 4585 4586 printk(KERN_CONT "span %s level %s\n", str, sd->name); 4587 4588 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4589 printk(KERN_ERR "ERROR: domain->span does not contain " 4590 "CPU%d\n", cpu); 4591 } 4592 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 4593 printk(KERN_ERR "ERROR: domain->groups does not contain" 4594 " CPU%d\n", cpu); 4595 } 4596 4597 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 4598 do { 4599 if (!group) { 4600 printk("\n"); 4601 printk(KERN_ERR "ERROR: group is NULL\n"); 4602 break; 4603 } 4604 4605 /* 4606 * Even though we initialize ->power to something semi-sane, 4607 * we leave power_orig unset. This allows us to detect if 4608 * domain iteration is still funny without causing /0 traps. 4609 */ 4610 if (!group->sgp->power_orig) { 4611 printk(KERN_CONT "\n"); 4612 printk(KERN_ERR "ERROR: domain->cpu_power not " 4613 "set\n"); 4614 break; 4615 } 4616 4617 if (!cpumask_weight(sched_group_cpus(group))) { 4618 printk(KERN_CONT "\n"); 4619 printk(KERN_ERR "ERROR: empty group\n"); 4620 break; 4621 } 4622 4623 if (!(sd->flags & SD_OVERLAP) && 4624 cpumask_intersects(groupmask, sched_group_cpus(group))) { 4625 printk(KERN_CONT "\n"); 4626 printk(KERN_ERR "ERROR: repeated CPUs\n"); 4627 break; 4628 } 4629 4630 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 4631 4632 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 4633 4634 printk(KERN_CONT " %s", str); 4635 if (group->sgp->power != SCHED_POWER_SCALE) { 4636 printk(KERN_CONT " (cpu_power = %d)", 4637 group->sgp->power); 4638 } 4639 4640 group = group->next; 4641 } while (group != sd->groups); 4642 printk(KERN_CONT "\n"); 4643 4644 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 4645 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 4646 4647 if (sd->parent && 4648 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 4649 printk(KERN_ERR "ERROR: parent span is not a superset " 4650 "of domain->span\n"); 4651 return 0; 4652 } 4653 4654 static void sched_domain_debug(struct sched_domain *sd, int cpu) 4655 { 4656 int level = 0; 4657 4658 if (!sched_debug_enabled) 4659 return; 4660 4661 if (!sd) { 4662 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 4663 return; 4664 } 4665 4666 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 4667 4668 for (;;) { 4669 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 4670 break; 4671 level++; 4672 sd = sd->parent; 4673 if (!sd) 4674 break; 4675 } 4676 } 4677 #else /* !CONFIG_SCHED_DEBUG */ 4678 # define sched_domain_debug(sd, cpu) do { } while (0) 4679 static inline bool sched_debug(void) 4680 { 4681 return false; 4682 } 4683 #endif /* CONFIG_SCHED_DEBUG */ 4684 4685 static int sd_degenerate(struct sched_domain *sd) 4686 { 4687 if (cpumask_weight(sched_domain_span(sd)) == 1) 4688 return 1; 4689 4690 /* Following flags need at least 2 groups */ 4691 if (sd->flags & (SD_LOAD_BALANCE | 4692 SD_BALANCE_NEWIDLE | 4693 SD_BALANCE_FORK | 4694 SD_BALANCE_EXEC | 4695 SD_SHARE_CPUPOWER | 4696 SD_SHARE_PKG_RESOURCES)) { 4697 if (sd->groups != sd->groups->next) 4698 return 0; 4699 } 4700 4701 /* Following flags don't use groups */ 4702 if (sd->flags & (SD_WAKE_AFFINE)) 4703 return 0; 4704 4705 return 1; 4706 } 4707 4708 static int 4709 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 4710 { 4711 unsigned long cflags = sd->flags, pflags = parent->flags; 4712 4713 if (sd_degenerate(parent)) 4714 return 1; 4715 4716 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 4717 return 0; 4718 4719 /* Flags needing groups don't count if only 1 group in parent */ 4720 if (parent->groups == parent->groups->next) { 4721 pflags &= ~(SD_LOAD_BALANCE | 4722 SD_BALANCE_NEWIDLE | 4723 SD_BALANCE_FORK | 4724 SD_BALANCE_EXEC | 4725 SD_SHARE_CPUPOWER | 4726 SD_SHARE_PKG_RESOURCES | 4727 SD_PREFER_SIBLING); 4728 if (nr_node_ids == 1) 4729 pflags &= ~SD_SERIALIZE; 4730 } 4731 if (~cflags & pflags) 4732 return 0; 4733 4734 return 1; 4735 } 4736 4737 static void free_rootdomain(struct rcu_head *rcu) 4738 { 4739 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 4740 4741 cpupri_cleanup(&rd->cpupri); 4742 free_cpumask_var(rd->rto_mask); 4743 free_cpumask_var(rd->online); 4744 free_cpumask_var(rd->span); 4745 kfree(rd); 4746 } 4747 4748 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 4749 { 4750 struct root_domain *old_rd = NULL; 4751 unsigned long flags; 4752 4753 raw_spin_lock_irqsave(&rq->lock, flags); 4754 4755 if (rq->rd) { 4756 old_rd = rq->rd; 4757 4758 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 4759 set_rq_offline(rq); 4760 4761 cpumask_clear_cpu(rq->cpu, old_rd->span); 4762 4763 /* 4764 * If we dont want to free the old_rd yet then 4765 * set old_rd to NULL to skip the freeing later 4766 * in this function: 4767 */ 4768 if (!atomic_dec_and_test(&old_rd->refcount)) 4769 old_rd = NULL; 4770 } 4771 4772 atomic_inc(&rd->refcount); 4773 rq->rd = rd; 4774 4775 cpumask_set_cpu(rq->cpu, rd->span); 4776 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 4777 set_rq_online(rq); 4778 4779 raw_spin_unlock_irqrestore(&rq->lock, flags); 4780 4781 if (old_rd) 4782 call_rcu_sched(&old_rd->rcu, free_rootdomain); 4783 } 4784 4785 static int init_rootdomain(struct root_domain *rd) 4786 { 4787 memset(rd, 0, sizeof(*rd)); 4788 4789 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 4790 goto out; 4791 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 4792 goto free_span; 4793 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 4794 goto free_online; 4795 4796 if (cpupri_init(&rd->cpupri) != 0) 4797 goto free_rto_mask; 4798 return 0; 4799 4800 free_rto_mask: 4801 free_cpumask_var(rd->rto_mask); 4802 free_online: 4803 free_cpumask_var(rd->online); 4804 free_span: 4805 free_cpumask_var(rd->span); 4806 out: 4807 return -ENOMEM; 4808 } 4809 4810 /* 4811 * By default the system creates a single root-domain with all cpus as 4812 * members (mimicking the global state we have today). 4813 */ 4814 struct root_domain def_root_domain; 4815 4816 static void init_defrootdomain(void) 4817 { 4818 init_rootdomain(&def_root_domain); 4819 4820 atomic_set(&def_root_domain.refcount, 1); 4821 } 4822 4823 static struct root_domain *alloc_rootdomain(void) 4824 { 4825 struct root_domain *rd; 4826 4827 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 4828 if (!rd) 4829 return NULL; 4830 4831 if (init_rootdomain(rd) != 0) { 4832 kfree(rd); 4833 return NULL; 4834 } 4835 4836 return rd; 4837 } 4838 4839 static void free_sched_groups(struct sched_group *sg, int free_sgp) 4840 { 4841 struct sched_group *tmp, *first; 4842 4843 if (!sg) 4844 return; 4845 4846 first = sg; 4847 do { 4848 tmp = sg->next; 4849 4850 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 4851 kfree(sg->sgp); 4852 4853 kfree(sg); 4854 sg = tmp; 4855 } while (sg != first); 4856 } 4857 4858 static void free_sched_domain(struct rcu_head *rcu) 4859 { 4860 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 4861 4862 /* 4863 * If its an overlapping domain it has private groups, iterate and 4864 * nuke them all. 4865 */ 4866 if (sd->flags & SD_OVERLAP) { 4867 free_sched_groups(sd->groups, 1); 4868 } else if (atomic_dec_and_test(&sd->groups->ref)) { 4869 kfree(sd->groups->sgp); 4870 kfree(sd->groups); 4871 } 4872 kfree(sd); 4873 } 4874 4875 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 4876 { 4877 call_rcu(&sd->rcu, free_sched_domain); 4878 } 4879 4880 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 4881 { 4882 for (; sd; sd = sd->parent) 4883 destroy_sched_domain(sd, cpu); 4884 } 4885 4886 /* 4887 * Keep a special pointer to the highest sched_domain that has 4888 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 4889 * allows us to avoid some pointer chasing select_idle_sibling(). 4890 * 4891 * Also keep a unique ID per domain (we use the first cpu number in 4892 * the cpumask of the domain), this allows us to quickly tell if 4893 * two cpus are in the same cache domain, see cpus_share_cache(). 4894 */ 4895 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 4896 DEFINE_PER_CPU(int, sd_llc_size); 4897 DEFINE_PER_CPU(int, sd_llc_id); 4898 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 4899 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 4900 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 4901 4902 static void update_top_cache_domain(int cpu) 4903 { 4904 struct sched_domain *sd; 4905 struct sched_domain *busy_sd = NULL; 4906 int id = cpu; 4907 int size = 1; 4908 4909 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 4910 if (sd) { 4911 id = cpumask_first(sched_domain_span(sd)); 4912 size = cpumask_weight(sched_domain_span(sd)); 4913 busy_sd = sd->parent; /* sd_busy */ 4914 } 4915 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 4916 4917 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 4918 per_cpu(sd_llc_size, cpu) = size; 4919 per_cpu(sd_llc_id, cpu) = id; 4920 4921 sd = lowest_flag_domain(cpu, SD_NUMA); 4922 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 4923 4924 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 4925 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 4926 } 4927 4928 /* 4929 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 4930 * hold the hotplug lock. 4931 */ 4932 static void 4933 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 4934 { 4935 struct rq *rq = cpu_rq(cpu); 4936 struct sched_domain *tmp; 4937 4938 /* Remove the sched domains which do not contribute to scheduling. */ 4939 for (tmp = sd; tmp; ) { 4940 struct sched_domain *parent = tmp->parent; 4941 if (!parent) 4942 break; 4943 4944 if (sd_parent_degenerate(tmp, parent)) { 4945 tmp->parent = parent->parent; 4946 if (parent->parent) 4947 parent->parent->child = tmp; 4948 /* 4949 * Transfer SD_PREFER_SIBLING down in case of a 4950 * degenerate parent; the spans match for this 4951 * so the property transfers. 4952 */ 4953 if (parent->flags & SD_PREFER_SIBLING) 4954 tmp->flags |= SD_PREFER_SIBLING; 4955 destroy_sched_domain(parent, cpu); 4956 } else 4957 tmp = tmp->parent; 4958 } 4959 4960 if (sd && sd_degenerate(sd)) { 4961 tmp = sd; 4962 sd = sd->parent; 4963 destroy_sched_domain(tmp, cpu); 4964 if (sd) 4965 sd->child = NULL; 4966 } 4967 4968 sched_domain_debug(sd, cpu); 4969 4970 rq_attach_root(rq, rd); 4971 tmp = rq->sd; 4972 rcu_assign_pointer(rq->sd, sd); 4973 destroy_sched_domains(tmp, cpu); 4974 4975 update_top_cache_domain(cpu); 4976 } 4977 4978 /* cpus with isolated domains */ 4979 static cpumask_var_t cpu_isolated_map; 4980 4981 /* Setup the mask of cpus configured for isolated domains */ 4982 static int __init isolated_cpu_setup(char *str) 4983 { 4984 alloc_bootmem_cpumask_var(&cpu_isolated_map); 4985 cpulist_parse(str, cpu_isolated_map); 4986 return 1; 4987 } 4988 4989 __setup("isolcpus=", isolated_cpu_setup); 4990 4991 static const struct cpumask *cpu_cpu_mask(int cpu) 4992 { 4993 return cpumask_of_node(cpu_to_node(cpu)); 4994 } 4995 4996 struct sd_data { 4997 struct sched_domain **__percpu sd; 4998 struct sched_group **__percpu sg; 4999 struct sched_group_power **__percpu sgp; 5000 }; 5001 5002 struct s_data { 5003 struct sched_domain ** __percpu sd; 5004 struct root_domain *rd; 5005 }; 5006 5007 enum s_alloc { 5008 sa_rootdomain, 5009 sa_sd, 5010 sa_sd_storage, 5011 sa_none, 5012 }; 5013 5014 struct sched_domain_topology_level; 5015 5016 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5017 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5018 5019 #define SDTL_OVERLAP 0x01 5020 5021 struct sched_domain_topology_level { 5022 sched_domain_init_f init; 5023 sched_domain_mask_f mask; 5024 int flags; 5025 int numa_level; 5026 struct sd_data data; 5027 }; 5028 5029 /* 5030 * Build an iteration mask that can exclude certain CPUs from the upwards 5031 * domain traversal. 5032 * 5033 * Asymmetric node setups can result in situations where the domain tree is of 5034 * unequal depth, make sure to skip domains that already cover the entire 5035 * range. 5036 * 5037 * In that case build_sched_domains() will have terminated the iteration early 5038 * and our sibling sd spans will be empty. Domains should always include the 5039 * cpu they're built on, so check that. 5040 * 5041 */ 5042 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5043 { 5044 const struct cpumask *span = sched_domain_span(sd); 5045 struct sd_data *sdd = sd->private; 5046 struct sched_domain *sibling; 5047 int i; 5048 5049 for_each_cpu(i, span) { 5050 sibling = *per_cpu_ptr(sdd->sd, i); 5051 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5052 continue; 5053 5054 cpumask_set_cpu(i, sched_group_mask(sg)); 5055 } 5056 } 5057 5058 /* 5059 * Return the canonical balance cpu for this group, this is the first cpu 5060 * of this group that's also in the iteration mask. 5061 */ 5062 int group_balance_cpu(struct sched_group *sg) 5063 { 5064 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5065 } 5066 5067 static int 5068 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5069 { 5070 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5071 const struct cpumask *span = sched_domain_span(sd); 5072 struct cpumask *covered = sched_domains_tmpmask; 5073 struct sd_data *sdd = sd->private; 5074 struct sched_domain *child; 5075 int i; 5076 5077 cpumask_clear(covered); 5078 5079 for_each_cpu(i, span) { 5080 struct cpumask *sg_span; 5081 5082 if (cpumask_test_cpu(i, covered)) 5083 continue; 5084 5085 child = *per_cpu_ptr(sdd->sd, i); 5086 5087 /* See the comment near build_group_mask(). */ 5088 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5089 continue; 5090 5091 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5092 GFP_KERNEL, cpu_to_node(cpu)); 5093 5094 if (!sg) 5095 goto fail; 5096 5097 sg_span = sched_group_cpus(sg); 5098 if (child->child) { 5099 child = child->child; 5100 cpumask_copy(sg_span, sched_domain_span(child)); 5101 } else 5102 cpumask_set_cpu(i, sg_span); 5103 5104 cpumask_or(covered, covered, sg_span); 5105 5106 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5107 if (atomic_inc_return(&sg->sgp->ref) == 1) 5108 build_group_mask(sd, sg); 5109 5110 /* 5111 * Initialize sgp->power such that even if we mess up the 5112 * domains and no possible iteration will get us here, we won't 5113 * die on a /0 trap. 5114 */ 5115 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5116 sg->sgp->power_orig = sg->sgp->power; 5117 5118 /* 5119 * Make sure the first group of this domain contains the 5120 * canonical balance cpu. Otherwise the sched_domain iteration 5121 * breaks. See update_sg_lb_stats(). 5122 */ 5123 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5124 group_balance_cpu(sg) == cpu) 5125 groups = sg; 5126 5127 if (!first) 5128 first = sg; 5129 if (last) 5130 last->next = sg; 5131 last = sg; 5132 last->next = first; 5133 } 5134 sd->groups = groups; 5135 5136 return 0; 5137 5138 fail: 5139 free_sched_groups(first, 0); 5140 5141 return -ENOMEM; 5142 } 5143 5144 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5145 { 5146 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5147 struct sched_domain *child = sd->child; 5148 5149 if (child) 5150 cpu = cpumask_first(sched_domain_span(child)); 5151 5152 if (sg) { 5153 *sg = *per_cpu_ptr(sdd->sg, cpu); 5154 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5155 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5156 } 5157 5158 return cpu; 5159 } 5160 5161 /* 5162 * build_sched_groups will build a circular linked list of the groups 5163 * covered by the given span, and will set each group's ->cpumask correctly, 5164 * and ->cpu_power to 0. 5165 * 5166 * Assumes the sched_domain tree is fully constructed 5167 */ 5168 static int 5169 build_sched_groups(struct sched_domain *sd, int cpu) 5170 { 5171 struct sched_group *first = NULL, *last = NULL; 5172 struct sd_data *sdd = sd->private; 5173 const struct cpumask *span = sched_domain_span(sd); 5174 struct cpumask *covered; 5175 int i; 5176 5177 get_group(cpu, sdd, &sd->groups); 5178 atomic_inc(&sd->groups->ref); 5179 5180 if (cpu != cpumask_first(span)) 5181 return 0; 5182 5183 lockdep_assert_held(&sched_domains_mutex); 5184 covered = sched_domains_tmpmask; 5185 5186 cpumask_clear(covered); 5187 5188 for_each_cpu(i, span) { 5189 struct sched_group *sg; 5190 int group, j; 5191 5192 if (cpumask_test_cpu(i, covered)) 5193 continue; 5194 5195 group = get_group(i, sdd, &sg); 5196 cpumask_clear(sched_group_cpus(sg)); 5197 sg->sgp->power = 0; 5198 cpumask_setall(sched_group_mask(sg)); 5199 5200 for_each_cpu(j, span) { 5201 if (get_group(j, sdd, NULL) != group) 5202 continue; 5203 5204 cpumask_set_cpu(j, covered); 5205 cpumask_set_cpu(j, sched_group_cpus(sg)); 5206 } 5207 5208 if (!first) 5209 first = sg; 5210 if (last) 5211 last->next = sg; 5212 last = sg; 5213 } 5214 last->next = first; 5215 5216 return 0; 5217 } 5218 5219 /* 5220 * Initialize sched groups cpu_power. 5221 * 5222 * cpu_power indicates the capacity of sched group, which is used while 5223 * distributing the load between different sched groups in a sched domain. 5224 * Typically cpu_power for all the groups in a sched domain will be same unless 5225 * there are asymmetries in the topology. If there are asymmetries, group 5226 * having more cpu_power will pickup more load compared to the group having 5227 * less cpu_power. 5228 */ 5229 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5230 { 5231 struct sched_group *sg = sd->groups; 5232 5233 WARN_ON(!sg); 5234 5235 do { 5236 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5237 sg = sg->next; 5238 } while (sg != sd->groups); 5239 5240 if (cpu != group_balance_cpu(sg)) 5241 return; 5242 5243 update_group_power(sd, cpu); 5244 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5245 } 5246 5247 int __weak arch_sd_sibling_asym_packing(void) 5248 { 5249 return 0*SD_ASYM_PACKING; 5250 } 5251 5252 /* 5253 * Initializers for schedule domains 5254 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5255 */ 5256 5257 #ifdef CONFIG_SCHED_DEBUG 5258 # define SD_INIT_NAME(sd, type) sd->name = #type 5259 #else 5260 # define SD_INIT_NAME(sd, type) do { } while (0) 5261 #endif 5262 5263 #define SD_INIT_FUNC(type) \ 5264 static noinline struct sched_domain * \ 5265 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5266 { \ 5267 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5268 *sd = SD_##type##_INIT; \ 5269 SD_INIT_NAME(sd, type); \ 5270 sd->private = &tl->data; \ 5271 return sd; \ 5272 } 5273 5274 SD_INIT_FUNC(CPU) 5275 #ifdef CONFIG_SCHED_SMT 5276 SD_INIT_FUNC(SIBLING) 5277 #endif 5278 #ifdef CONFIG_SCHED_MC 5279 SD_INIT_FUNC(MC) 5280 #endif 5281 #ifdef CONFIG_SCHED_BOOK 5282 SD_INIT_FUNC(BOOK) 5283 #endif 5284 5285 static int default_relax_domain_level = -1; 5286 int sched_domain_level_max; 5287 5288 static int __init setup_relax_domain_level(char *str) 5289 { 5290 if (kstrtoint(str, 0, &default_relax_domain_level)) 5291 pr_warn("Unable to set relax_domain_level\n"); 5292 5293 return 1; 5294 } 5295 __setup("relax_domain_level=", setup_relax_domain_level); 5296 5297 static void set_domain_attribute(struct sched_domain *sd, 5298 struct sched_domain_attr *attr) 5299 { 5300 int request; 5301 5302 if (!attr || attr->relax_domain_level < 0) { 5303 if (default_relax_domain_level < 0) 5304 return; 5305 else 5306 request = default_relax_domain_level; 5307 } else 5308 request = attr->relax_domain_level; 5309 if (request < sd->level) { 5310 /* turn off idle balance on this domain */ 5311 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5312 } else { 5313 /* turn on idle balance on this domain */ 5314 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5315 } 5316 } 5317 5318 static void __sdt_free(const struct cpumask *cpu_map); 5319 static int __sdt_alloc(const struct cpumask *cpu_map); 5320 5321 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5322 const struct cpumask *cpu_map) 5323 { 5324 switch (what) { 5325 case sa_rootdomain: 5326 if (!atomic_read(&d->rd->refcount)) 5327 free_rootdomain(&d->rd->rcu); /* fall through */ 5328 case sa_sd: 5329 free_percpu(d->sd); /* fall through */ 5330 case sa_sd_storage: 5331 __sdt_free(cpu_map); /* fall through */ 5332 case sa_none: 5333 break; 5334 } 5335 } 5336 5337 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5338 const struct cpumask *cpu_map) 5339 { 5340 memset(d, 0, sizeof(*d)); 5341 5342 if (__sdt_alloc(cpu_map)) 5343 return sa_sd_storage; 5344 d->sd = alloc_percpu(struct sched_domain *); 5345 if (!d->sd) 5346 return sa_sd_storage; 5347 d->rd = alloc_rootdomain(); 5348 if (!d->rd) 5349 return sa_sd; 5350 return sa_rootdomain; 5351 } 5352 5353 /* 5354 * NULL the sd_data elements we've used to build the sched_domain and 5355 * sched_group structure so that the subsequent __free_domain_allocs() 5356 * will not free the data we're using. 5357 */ 5358 static void claim_allocations(int cpu, struct sched_domain *sd) 5359 { 5360 struct sd_data *sdd = sd->private; 5361 5362 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5363 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5364 5365 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5366 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5367 5368 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5369 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5370 } 5371 5372 #ifdef CONFIG_SCHED_SMT 5373 static const struct cpumask *cpu_smt_mask(int cpu) 5374 { 5375 return topology_thread_cpumask(cpu); 5376 } 5377 #endif 5378 5379 /* 5380 * Topology list, bottom-up. 5381 */ 5382 static struct sched_domain_topology_level default_topology[] = { 5383 #ifdef CONFIG_SCHED_SMT 5384 { sd_init_SIBLING, cpu_smt_mask, }, 5385 #endif 5386 #ifdef CONFIG_SCHED_MC 5387 { sd_init_MC, cpu_coregroup_mask, }, 5388 #endif 5389 #ifdef CONFIG_SCHED_BOOK 5390 { sd_init_BOOK, cpu_book_mask, }, 5391 #endif 5392 { sd_init_CPU, cpu_cpu_mask, }, 5393 { NULL, }, 5394 }; 5395 5396 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5397 5398 #define for_each_sd_topology(tl) \ 5399 for (tl = sched_domain_topology; tl->init; tl++) 5400 5401 #ifdef CONFIG_NUMA 5402 5403 static int sched_domains_numa_levels; 5404 static int *sched_domains_numa_distance; 5405 static struct cpumask ***sched_domains_numa_masks; 5406 static int sched_domains_curr_level; 5407 5408 static inline int sd_local_flags(int level) 5409 { 5410 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 5411 return 0; 5412 5413 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 5414 } 5415 5416 static struct sched_domain * 5417 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 5418 { 5419 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 5420 int level = tl->numa_level; 5421 int sd_weight = cpumask_weight( 5422 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 5423 5424 *sd = (struct sched_domain){ 5425 .min_interval = sd_weight, 5426 .max_interval = 2*sd_weight, 5427 .busy_factor = 32, 5428 .imbalance_pct = 125, 5429 .cache_nice_tries = 2, 5430 .busy_idx = 3, 5431 .idle_idx = 2, 5432 .newidle_idx = 0, 5433 .wake_idx = 0, 5434 .forkexec_idx = 0, 5435 5436 .flags = 1*SD_LOAD_BALANCE 5437 | 1*SD_BALANCE_NEWIDLE 5438 | 0*SD_BALANCE_EXEC 5439 | 0*SD_BALANCE_FORK 5440 | 0*SD_BALANCE_WAKE 5441 | 0*SD_WAKE_AFFINE 5442 | 0*SD_SHARE_CPUPOWER 5443 | 0*SD_SHARE_PKG_RESOURCES 5444 | 1*SD_SERIALIZE 5445 | 0*SD_PREFER_SIBLING 5446 | 1*SD_NUMA 5447 | sd_local_flags(level) 5448 , 5449 .last_balance = jiffies, 5450 .balance_interval = sd_weight, 5451 }; 5452 SD_INIT_NAME(sd, NUMA); 5453 sd->private = &tl->data; 5454 5455 /* 5456 * Ugly hack to pass state to sd_numa_mask()... 5457 */ 5458 sched_domains_curr_level = tl->numa_level; 5459 5460 return sd; 5461 } 5462 5463 static const struct cpumask *sd_numa_mask(int cpu) 5464 { 5465 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 5466 } 5467 5468 static void sched_numa_warn(const char *str) 5469 { 5470 static int done = false; 5471 int i,j; 5472 5473 if (done) 5474 return; 5475 5476 done = true; 5477 5478 printk(KERN_WARNING "ERROR: %s\n\n", str); 5479 5480 for (i = 0; i < nr_node_ids; i++) { 5481 printk(KERN_WARNING " "); 5482 for (j = 0; j < nr_node_ids; j++) 5483 printk(KERN_CONT "%02d ", node_distance(i,j)); 5484 printk(KERN_CONT "\n"); 5485 } 5486 printk(KERN_WARNING "\n"); 5487 } 5488 5489 static bool find_numa_distance(int distance) 5490 { 5491 int i; 5492 5493 if (distance == node_distance(0, 0)) 5494 return true; 5495 5496 for (i = 0; i < sched_domains_numa_levels; i++) { 5497 if (sched_domains_numa_distance[i] == distance) 5498 return true; 5499 } 5500 5501 return false; 5502 } 5503 5504 static void sched_init_numa(void) 5505 { 5506 int next_distance, curr_distance = node_distance(0, 0); 5507 struct sched_domain_topology_level *tl; 5508 int level = 0; 5509 int i, j, k; 5510 5511 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 5512 if (!sched_domains_numa_distance) 5513 return; 5514 5515 /* 5516 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 5517 * unique distances in the node_distance() table. 5518 * 5519 * Assumes node_distance(0,j) includes all distances in 5520 * node_distance(i,j) in order to avoid cubic time. 5521 */ 5522 next_distance = curr_distance; 5523 for (i = 0; i < nr_node_ids; i++) { 5524 for (j = 0; j < nr_node_ids; j++) { 5525 for (k = 0; k < nr_node_ids; k++) { 5526 int distance = node_distance(i, k); 5527 5528 if (distance > curr_distance && 5529 (distance < next_distance || 5530 next_distance == curr_distance)) 5531 next_distance = distance; 5532 5533 /* 5534 * While not a strong assumption it would be nice to know 5535 * about cases where if node A is connected to B, B is not 5536 * equally connected to A. 5537 */ 5538 if (sched_debug() && node_distance(k, i) != distance) 5539 sched_numa_warn("Node-distance not symmetric"); 5540 5541 if (sched_debug() && i && !find_numa_distance(distance)) 5542 sched_numa_warn("Node-0 not representative"); 5543 } 5544 if (next_distance != curr_distance) { 5545 sched_domains_numa_distance[level++] = next_distance; 5546 sched_domains_numa_levels = level; 5547 curr_distance = next_distance; 5548 } else break; 5549 } 5550 5551 /* 5552 * In case of sched_debug() we verify the above assumption. 5553 */ 5554 if (!sched_debug()) 5555 break; 5556 } 5557 /* 5558 * 'level' contains the number of unique distances, excluding the 5559 * identity distance node_distance(i,i). 5560 * 5561 * The sched_domains_numa_distance[] array includes the actual distance 5562 * numbers. 5563 */ 5564 5565 /* 5566 * Here, we should temporarily reset sched_domains_numa_levels to 0. 5567 * If it fails to allocate memory for array sched_domains_numa_masks[][], 5568 * the array will contain less then 'level' members. This could be 5569 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 5570 * in other functions. 5571 * 5572 * We reset it to 'level' at the end of this function. 5573 */ 5574 sched_domains_numa_levels = 0; 5575 5576 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 5577 if (!sched_domains_numa_masks) 5578 return; 5579 5580 /* 5581 * Now for each level, construct a mask per node which contains all 5582 * cpus of nodes that are that many hops away from us. 5583 */ 5584 for (i = 0; i < level; i++) { 5585 sched_domains_numa_masks[i] = 5586 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 5587 if (!sched_domains_numa_masks[i]) 5588 return; 5589 5590 for (j = 0; j < nr_node_ids; j++) { 5591 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 5592 if (!mask) 5593 return; 5594 5595 sched_domains_numa_masks[i][j] = mask; 5596 5597 for (k = 0; k < nr_node_ids; k++) { 5598 if (node_distance(j, k) > sched_domains_numa_distance[i]) 5599 continue; 5600 5601 cpumask_or(mask, mask, cpumask_of_node(k)); 5602 } 5603 } 5604 } 5605 5606 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 5607 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 5608 if (!tl) 5609 return; 5610 5611 /* 5612 * Copy the default topology bits.. 5613 */ 5614 for (i = 0; default_topology[i].init; i++) 5615 tl[i] = default_topology[i]; 5616 5617 /* 5618 * .. and append 'j' levels of NUMA goodness. 5619 */ 5620 for (j = 0; j < level; i++, j++) { 5621 tl[i] = (struct sched_domain_topology_level){ 5622 .init = sd_numa_init, 5623 .mask = sd_numa_mask, 5624 .flags = SDTL_OVERLAP, 5625 .numa_level = j, 5626 }; 5627 } 5628 5629 sched_domain_topology = tl; 5630 5631 sched_domains_numa_levels = level; 5632 } 5633 5634 static void sched_domains_numa_masks_set(int cpu) 5635 { 5636 int i, j; 5637 int node = cpu_to_node(cpu); 5638 5639 for (i = 0; i < sched_domains_numa_levels; i++) { 5640 for (j = 0; j < nr_node_ids; j++) { 5641 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 5642 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 5643 } 5644 } 5645 } 5646 5647 static void sched_domains_numa_masks_clear(int cpu) 5648 { 5649 int i, j; 5650 for (i = 0; i < sched_domains_numa_levels; i++) { 5651 for (j = 0; j < nr_node_ids; j++) 5652 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 5653 } 5654 } 5655 5656 /* 5657 * Update sched_domains_numa_masks[level][node] array when new cpus 5658 * are onlined. 5659 */ 5660 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 5661 unsigned long action, 5662 void *hcpu) 5663 { 5664 int cpu = (long)hcpu; 5665 5666 switch (action & ~CPU_TASKS_FROZEN) { 5667 case CPU_ONLINE: 5668 sched_domains_numa_masks_set(cpu); 5669 break; 5670 5671 case CPU_DEAD: 5672 sched_domains_numa_masks_clear(cpu); 5673 break; 5674 5675 default: 5676 return NOTIFY_DONE; 5677 } 5678 5679 return NOTIFY_OK; 5680 } 5681 #else 5682 static inline void sched_init_numa(void) 5683 { 5684 } 5685 5686 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 5687 unsigned long action, 5688 void *hcpu) 5689 { 5690 return 0; 5691 } 5692 #endif /* CONFIG_NUMA */ 5693 5694 static int __sdt_alloc(const struct cpumask *cpu_map) 5695 { 5696 struct sched_domain_topology_level *tl; 5697 int j; 5698 5699 for_each_sd_topology(tl) { 5700 struct sd_data *sdd = &tl->data; 5701 5702 sdd->sd = alloc_percpu(struct sched_domain *); 5703 if (!sdd->sd) 5704 return -ENOMEM; 5705 5706 sdd->sg = alloc_percpu(struct sched_group *); 5707 if (!sdd->sg) 5708 return -ENOMEM; 5709 5710 sdd->sgp = alloc_percpu(struct sched_group_power *); 5711 if (!sdd->sgp) 5712 return -ENOMEM; 5713 5714 for_each_cpu(j, cpu_map) { 5715 struct sched_domain *sd; 5716 struct sched_group *sg; 5717 struct sched_group_power *sgp; 5718 5719 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 5720 GFP_KERNEL, cpu_to_node(j)); 5721 if (!sd) 5722 return -ENOMEM; 5723 5724 *per_cpu_ptr(sdd->sd, j) = sd; 5725 5726 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5727 GFP_KERNEL, cpu_to_node(j)); 5728 if (!sg) 5729 return -ENOMEM; 5730 5731 sg->next = sg; 5732 5733 *per_cpu_ptr(sdd->sg, j) = sg; 5734 5735 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 5736 GFP_KERNEL, cpu_to_node(j)); 5737 if (!sgp) 5738 return -ENOMEM; 5739 5740 *per_cpu_ptr(sdd->sgp, j) = sgp; 5741 } 5742 } 5743 5744 return 0; 5745 } 5746 5747 static void __sdt_free(const struct cpumask *cpu_map) 5748 { 5749 struct sched_domain_topology_level *tl; 5750 int j; 5751 5752 for_each_sd_topology(tl) { 5753 struct sd_data *sdd = &tl->data; 5754 5755 for_each_cpu(j, cpu_map) { 5756 struct sched_domain *sd; 5757 5758 if (sdd->sd) { 5759 sd = *per_cpu_ptr(sdd->sd, j); 5760 if (sd && (sd->flags & SD_OVERLAP)) 5761 free_sched_groups(sd->groups, 0); 5762 kfree(*per_cpu_ptr(sdd->sd, j)); 5763 } 5764 5765 if (sdd->sg) 5766 kfree(*per_cpu_ptr(sdd->sg, j)); 5767 if (sdd->sgp) 5768 kfree(*per_cpu_ptr(sdd->sgp, j)); 5769 } 5770 free_percpu(sdd->sd); 5771 sdd->sd = NULL; 5772 free_percpu(sdd->sg); 5773 sdd->sg = NULL; 5774 free_percpu(sdd->sgp); 5775 sdd->sgp = NULL; 5776 } 5777 } 5778 5779 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 5780 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 5781 struct sched_domain *child, int cpu) 5782 { 5783 struct sched_domain *sd = tl->init(tl, cpu); 5784 if (!sd) 5785 return child; 5786 5787 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 5788 if (child) { 5789 sd->level = child->level + 1; 5790 sched_domain_level_max = max(sched_domain_level_max, sd->level); 5791 child->parent = sd; 5792 sd->child = child; 5793 } 5794 set_domain_attribute(sd, attr); 5795 5796 return sd; 5797 } 5798 5799 /* 5800 * Build sched domains for a given set of cpus and attach the sched domains 5801 * to the individual cpus 5802 */ 5803 static int build_sched_domains(const struct cpumask *cpu_map, 5804 struct sched_domain_attr *attr) 5805 { 5806 enum s_alloc alloc_state; 5807 struct sched_domain *sd; 5808 struct s_data d; 5809 int i, ret = -ENOMEM; 5810 5811 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 5812 if (alloc_state != sa_rootdomain) 5813 goto error; 5814 5815 /* Set up domains for cpus specified by the cpu_map. */ 5816 for_each_cpu(i, cpu_map) { 5817 struct sched_domain_topology_level *tl; 5818 5819 sd = NULL; 5820 for_each_sd_topology(tl) { 5821 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 5822 if (tl == sched_domain_topology) 5823 *per_cpu_ptr(d.sd, i) = sd; 5824 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 5825 sd->flags |= SD_OVERLAP; 5826 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 5827 break; 5828 } 5829 } 5830 5831 /* Build the groups for the domains */ 5832 for_each_cpu(i, cpu_map) { 5833 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 5834 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 5835 if (sd->flags & SD_OVERLAP) { 5836 if (build_overlap_sched_groups(sd, i)) 5837 goto error; 5838 } else { 5839 if (build_sched_groups(sd, i)) 5840 goto error; 5841 } 5842 } 5843 } 5844 5845 /* Calculate CPU power for physical packages and nodes */ 5846 for (i = nr_cpumask_bits-1; i >= 0; i--) { 5847 if (!cpumask_test_cpu(i, cpu_map)) 5848 continue; 5849 5850 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 5851 claim_allocations(i, sd); 5852 init_sched_groups_power(i, sd); 5853 } 5854 } 5855 5856 /* Attach the domains */ 5857 rcu_read_lock(); 5858 for_each_cpu(i, cpu_map) { 5859 sd = *per_cpu_ptr(d.sd, i); 5860 cpu_attach_domain(sd, d.rd, i); 5861 } 5862 rcu_read_unlock(); 5863 5864 ret = 0; 5865 error: 5866 __free_domain_allocs(&d, alloc_state, cpu_map); 5867 return ret; 5868 } 5869 5870 static cpumask_var_t *doms_cur; /* current sched domains */ 5871 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 5872 static struct sched_domain_attr *dattr_cur; 5873 /* attribues of custom domains in 'doms_cur' */ 5874 5875 /* 5876 * Special case: If a kmalloc of a doms_cur partition (array of 5877 * cpumask) fails, then fallback to a single sched domain, 5878 * as determined by the single cpumask fallback_doms. 5879 */ 5880 static cpumask_var_t fallback_doms; 5881 5882 /* 5883 * arch_update_cpu_topology lets virtualized architectures update the 5884 * cpu core maps. It is supposed to return 1 if the topology changed 5885 * or 0 if it stayed the same. 5886 */ 5887 int __attribute__((weak)) arch_update_cpu_topology(void) 5888 { 5889 return 0; 5890 } 5891 5892 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 5893 { 5894 int i; 5895 cpumask_var_t *doms; 5896 5897 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 5898 if (!doms) 5899 return NULL; 5900 for (i = 0; i < ndoms; i++) { 5901 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 5902 free_sched_domains(doms, i); 5903 return NULL; 5904 } 5905 } 5906 return doms; 5907 } 5908 5909 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 5910 { 5911 unsigned int i; 5912 for (i = 0; i < ndoms; i++) 5913 free_cpumask_var(doms[i]); 5914 kfree(doms); 5915 } 5916 5917 /* 5918 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 5919 * For now this just excludes isolated cpus, but could be used to 5920 * exclude other special cases in the future. 5921 */ 5922 static int init_sched_domains(const struct cpumask *cpu_map) 5923 { 5924 int err; 5925 5926 arch_update_cpu_topology(); 5927 ndoms_cur = 1; 5928 doms_cur = alloc_sched_domains(ndoms_cur); 5929 if (!doms_cur) 5930 doms_cur = &fallback_doms; 5931 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 5932 err = build_sched_domains(doms_cur[0], NULL); 5933 register_sched_domain_sysctl(); 5934 5935 return err; 5936 } 5937 5938 /* 5939 * Detach sched domains from a group of cpus specified in cpu_map 5940 * These cpus will now be attached to the NULL domain 5941 */ 5942 static void detach_destroy_domains(const struct cpumask *cpu_map) 5943 { 5944 int i; 5945 5946 rcu_read_lock(); 5947 for_each_cpu(i, cpu_map) 5948 cpu_attach_domain(NULL, &def_root_domain, i); 5949 rcu_read_unlock(); 5950 } 5951 5952 /* handle null as "default" */ 5953 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 5954 struct sched_domain_attr *new, int idx_new) 5955 { 5956 struct sched_domain_attr tmp; 5957 5958 /* fast path */ 5959 if (!new && !cur) 5960 return 1; 5961 5962 tmp = SD_ATTR_INIT; 5963 return !memcmp(cur ? (cur + idx_cur) : &tmp, 5964 new ? (new + idx_new) : &tmp, 5965 sizeof(struct sched_domain_attr)); 5966 } 5967 5968 /* 5969 * Partition sched domains as specified by the 'ndoms_new' 5970 * cpumasks in the array doms_new[] of cpumasks. This compares 5971 * doms_new[] to the current sched domain partitioning, doms_cur[]. 5972 * It destroys each deleted domain and builds each new domain. 5973 * 5974 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 5975 * The masks don't intersect (don't overlap.) We should setup one 5976 * sched domain for each mask. CPUs not in any of the cpumasks will 5977 * not be load balanced. If the same cpumask appears both in the 5978 * current 'doms_cur' domains and in the new 'doms_new', we can leave 5979 * it as it is. 5980 * 5981 * The passed in 'doms_new' should be allocated using 5982 * alloc_sched_domains. This routine takes ownership of it and will 5983 * free_sched_domains it when done with it. If the caller failed the 5984 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 5985 * and partition_sched_domains() will fallback to the single partition 5986 * 'fallback_doms', it also forces the domains to be rebuilt. 5987 * 5988 * If doms_new == NULL it will be replaced with cpu_online_mask. 5989 * ndoms_new == 0 is a special case for destroying existing domains, 5990 * and it will not create the default domain. 5991 * 5992 * Call with hotplug lock held 5993 */ 5994 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 5995 struct sched_domain_attr *dattr_new) 5996 { 5997 int i, j, n; 5998 int new_topology; 5999 6000 mutex_lock(&sched_domains_mutex); 6001 6002 /* always unregister in case we don't destroy any domains */ 6003 unregister_sched_domain_sysctl(); 6004 6005 /* Let architecture update cpu core mappings. */ 6006 new_topology = arch_update_cpu_topology(); 6007 6008 n = doms_new ? ndoms_new : 0; 6009 6010 /* Destroy deleted domains */ 6011 for (i = 0; i < ndoms_cur; i++) { 6012 for (j = 0; j < n && !new_topology; j++) { 6013 if (cpumask_equal(doms_cur[i], doms_new[j]) 6014 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6015 goto match1; 6016 } 6017 /* no match - a current sched domain not in new doms_new[] */ 6018 detach_destroy_domains(doms_cur[i]); 6019 match1: 6020 ; 6021 } 6022 6023 n = ndoms_cur; 6024 if (doms_new == NULL) { 6025 n = 0; 6026 doms_new = &fallback_doms; 6027 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6028 WARN_ON_ONCE(dattr_new); 6029 } 6030 6031 /* Build new domains */ 6032 for (i = 0; i < ndoms_new; i++) { 6033 for (j = 0; j < n && !new_topology; j++) { 6034 if (cpumask_equal(doms_new[i], doms_cur[j]) 6035 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6036 goto match2; 6037 } 6038 /* no match - add a new doms_new */ 6039 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6040 match2: 6041 ; 6042 } 6043 6044 /* Remember the new sched domains */ 6045 if (doms_cur != &fallback_doms) 6046 free_sched_domains(doms_cur, ndoms_cur); 6047 kfree(dattr_cur); /* kfree(NULL) is safe */ 6048 doms_cur = doms_new; 6049 dattr_cur = dattr_new; 6050 ndoms_cur = ndoms_new; 6051 6052 register_sched_domain_sysctl(); 6053 6054 mutex_unlock(&sched_domains_mutex); 6055 } 6056 6057 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6058 6059 /* 6060 * Update cpusets according to cpu_active mask. If cpusets are 6061 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6062 * around partition_sched_domains(). 6063 * 6064 * If we come here as part of a suspend/resume, don't touch cpusets because we 6065 * want to restore it back to its original state upon resume anyway. 6066 */ 6067 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6068 void *hcpu) 6069 { 6070 switch (action) { 6071 case CPU_ONLINE_FROZEN: 6072 case CPU_DOWN_FAILED_FROZEN: 6073 6074 /* 6075 * num_cpus_frozen tracks how many CPUs are involved in suspend 6076 * resume sequence. As long as this is not the last online 6077 * operation in the resume sequence, just build a single sched 6078 * domain, ignoring cpusets. 6079 */ 6080 num_cpus_frozen--; 6081 if (likely(num_cpus_frozen)) { 6082 partition_sched_domains(1, NULL, NULL); 6083 break; 6084 } 6085 6086 /* 6087 * This is the last CPU online operation. So fall through and 6088 * restore the original sched domains by considering the 6089 * cpuset configurations. 6090 */ 6091 6092 case CPU_ONLINE: 6093 case CPU_DOWN_FAILED: 6094 cpuset_update_active_cpus(true); 6095 break; 6096 default: 6097 return NOTIFY_DONE; 6098 } 6099 return NOTIFY_OK; 6100 } 6101 6102 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6103 void *hcpu) 6104 { 6105 switch (action) { 6106 case CPU_DOWN_PREPARE: 6107 cpuset_update_active_cpus(false); 6108 break; 6109 case CPU_DOWN_PREPARE_FROZEN: 6110 num_cpus_frozen++; 6111 partition_sched_domains(1, NULL, NULL); 6112 break; 6113 default: 6114 return NOTIFY_DONE; 6115 } 6116 return NOTIFY_OK; 6117 } 6118 6119 void __init sched_init_smp(void) 6120 { 6121 cpumask_var_t non_isolated_cpus; 6122 6123 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6124 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6125 6126 sched_init_numa(); 6127 6128 /* 6129 * There's no userspace yet to cause hotplug operations; hence all the 6130 * cpu masks are stable and all blatant races in the below code cannot 6131 * happen. 6132 */ 6133 mutex_lock(&sched_domains_mutex); 6134 init_sched_domains(cpu_active_mask); 6135 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6136 if (cpumask_empty(non_isolated_cpus)) 6137 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6138 mutex_unlock(&sched_domains_mutex); 6139 6140 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6141 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6142 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6143 6144 init_hrtick(); 6145 6146 /* Move init over to a non-isolated CPU */ 6147 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6148 BUG(); 6149 sched_init_granularity(); 6150 free_cpumask_var(non_isolated_cpus); 6151 6152 init_sched_rt_class(); 6153 } 6154 #else 6155 void __init sched_init_smp(void) 6156 { 6157 sched_init_granularity(); 6158 } 6159 #endif /* CONFIG_SMP */ 6160 6161 const_debug unsigned int sysctl_timer_migration = 1; 6162 6163 int in_sched_functions(unsigned long addr) 6164 { 6165 return in_lock_functions(addr) || 6166 (addr >= (unsigned long)__sched_text_start 6167 && addr < (unsigned long)__sched_text_end); 6168 } 6169 6170 #ifdef CONFIG_CGROUP_SCHED 6171 /* 6172 * Default task group. 6173 * Every task in system belongs to this group at bootup. 6174 */ 6175 struct task_group root_task_group; 6176 LIST_HEAD(task_groups); 6177 #endif 6178 6179 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6180 6181 void __init sched_init(void) 6182 { 6183 int i, j; 6184 unsigned long alloc_size = 0, ptr; 6185 6186 #ifdef CONFIG_FAIR_GROUP_SCHED 6187 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6188 #endif 6189 #ifdef CONFIG_RT_GROUP_SCHED 6190 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6191 #endif 6192 #ifdef CONFIG_CPUMASK_OFFSTACK 6193 alloc_size += num_possible_cpus() * cpumask_size(); 6194 #endif 6195 if (alloc_size) { 6196 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6197 6198 #ifdef CONFIG_FAIR_GROUP_SCHED 6199 root_task_group.se = (struct sched_entity **)ptr; 6200 ptr += nr_cpu_ids * sizeof(void **); 6201 6202 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6203 ptr += nr_cpu_ids * sizeof(void **); 6204 6205 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6206 #ifdef CONFIG_RT_GROUP_SCHED 6207 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6208 ptr += nr_cpu_ids * sizeof(void **); 6209 6210 root_task_group.rt_rq = (struct rt_rq **)ptr; 6211 ptr += nr_cpu_ids * sizeof(void **); 6212 6213 #endif /* CONFIG_RT_GROUP_SCHED */ 6214 #ifdef CONFIG_CPUMASK_OFFSTACK 6215 for_each_possible_cpu(i) { 6216 per_cpu(load_balance_mask, i) = (void *)ptr; 6217 ptr += cpumask_size(); 6218 } 6219 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6220 } 6221 6222 #ifdef CONFIG_SMP 6223 init_defrootdomain(); 6224 #endif 6225 6226 init_rt_bandwidth(&def_rt_bandwidth, 6227 global_rt_period(), global_rt_runtime()); 6228 6229 #ifdef CONFIG_RT_GROUP_SCHED 6230 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6231 global_rt_period(), global_rt_runtime()); 6232 #endif /* CONFIG_RT_GROUP_SCHED */ 6233 6234 #ifdef CONFIG_CGROUP_SCHED 6235 list_add(&root_task_group.list, &task_groups); 6236 INIT_LIST_HEAD(&root_task_group.children); 6237 INIT_LIST_HEAD(&root_task_group.siblings); 6238 autogroup_init(&init_task); 6239 6240 #endif /* CONFIG_CGROUP_SCHED */ 6241 6242 for_each_possible_cpu(i) { 6243 struct rq *rq; 6244 6245 rq = cpu_rq(i); 6246 raw_spin_lock_init(&rq->lock); 6247 rq->nr_running = 0; 6248 rq->calc_load_active = 0; 6249 rq->calc_load_update = jiffies + LOAD_FREQ; 6250 init_cfs_rq(&rq->cfs); 6251 init_rt_rq(&rq->rt, rq); 6252 #ifdef CONFIG_FAIR_GROUP_SCHED 6253 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6254 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6255 /* 6256 * How much cpu bandwidth does root_task_group get? 6257 * 6258 * In case of task-groups formed thr' the cgroup filesystem, it 6259 * gets 100% of the cpu resources in the system. This overall 6260 * system cpu resource is divided among the tasks of 6261 * root_task_group and its child task-groups in a fair manner, 6262 * based on each entity's (task or task-group's) weight 6263 * (se->load.weight). 6264 * 6265 * In other words, if root_task_group has 10 tasks of weight 6266 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6267 * then A0's share of the cpu resource is: 6268 * 6269 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6270 * 6271 * We achieve this by letting root_task_group's tasks sit 6272 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6273 */ 6274 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6275 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6276 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6277 6278 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6279 #ifdef CONFIG_RT_GROUP_SCHED 6280 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6281 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6282 #endif 6283 6284 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6285 rq->cpu_load[j] = 0; 6286 6287 rq->last_load_update_tick = jiffies; 6288 6289 #ifdef CONFIG_SMP 6290 rq->sd = NULL; 6291 rq->rd = NULL; 6292 rq->cpu_power = SCHED_POWER_SCALE; 6293 rq->post_schedule = 0; 6294 rq->active_balance = 0; 6295 rq->next_balance = jiffies; 6296 rq->push_cpu = 0; 6297 rq->cpu = i; 6298 rq->online = 0; 6299 rq->idle_stamp = 0; 6300 rq->avg_idle = 2*sysctl_sched_migration_cost; 6301 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6302 6303 INIT_LIST_HEAD(&rq->cfs_tasks); 6304 6305 rq_attach_root(rq, &def_root_domain); 6306 #ifdef CONFIG_NO_HZ_COMMON 6307 rq->nohz_flags = 0; 6308 #endif 6309 #ifdef CONFIG_NO_HZ_FULL 6310 rq->last_sched_tick = 0; 6311 #endif 6312 #endif 6313 init_rq_hrtick(rq); 6314 atomic_set(&rq->nr_iowait, 0); 6315 } 6316 6317 set_load_weight(&init_task); 6318 6319 #ifdef CONFIG_PREEMPT_NOTIFIERS 6320 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6321 #endif 6322 6323 #ifdef CONFIG_RT_MUTEXES 6324 plist_head_init(&init_task.pi_waiters); 6325 #endif 6326 6327 /* 6328 * The boot idle thread does lazy MMU switching as well: 6329 */ 6330 atomic_inc(&init_mm.mm_count); 6331 enter_lazy_tlb(&init_mm, current); 6332 6333 /* 6334 * Make us the idle thread. Technically, schedule() should not be 6335 * called from this thread, however somewhere below it might be, 6336 * but because we are the idle thread, we just pick up running again 6337 * when this runqueue becomes "idle". 6338 */ 6339 init_idle(current, smp_processor_id()); 6340 6341 calc_load_update = jiffies + LOAD_FREQ; 6342 6343 /* 6344 * During early bootup we pretend to be a normal task: 6345 */ 6346 current->sched_class = &fair_sched_class; 6347 6348 #ifdef CONFIG_SMP 6349 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6350 /* May be allocated at isolcpus cmdline parse time */ 6351 if (cpu_isolated_map == NULL) 6352 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6353 idle_thread_set_boot_cpu(); 6354 #endif 6355 init_sched_fair_class(); 6356 6357 scheduler_running = 1; 6358 } 6359 6360 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6361 static inline int preempt_count_equals(int preempt_offset) 6362 { 6363 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6364 6365 return (nested == preempt_offset); 6366 } 6367 6368 void __might_sleep(const char *file, int line, int preempt_offset) 6369 { 6370 static unsigned long prev_jiffy; /* ratelimiting */ 6371 6372 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6373 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 6374 system_state != SYSTEM_RUNNING || oops_in_progress) 6375 return; 6376 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6377 return; 6378 prev_jiffy = jiffies; 6379 6380 printk(KERN_ERR 6381 "BUG: sleeping function called from invalid context at %s:%d\n", 6382 file, line); 6383 printk(KERN_ERR 6384 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6385 in_atomic(), irqs_disabled(), 6386 current->pid, current->comm); 6387 6388 debug_show_held_locks(current); 6389 if (irqs_disabled()) 6390 print_irqtrace_events(current); 6391 dump_stack(); 6392 } 6393 EXPORT_SYMBOL(__might_sleep); 6394 #endif 6395 6396 #ifdef CONFIG_MAGIC_SYSRQ 6397 static void normalize_task(struct rq *rq, struct task_struct *p) 6398 { 6399 const struct sched_class *prev_class = p->sched_class; 6400 int old_prio = p->prio; 6401 int on_rq; 6402 6403 on_rq = p->on_rq; 6404 if (on_rq) 6405 dequeue_task(rq, p, 0); 6406 __setscheduler(rq, p, SCHED_NORMAL, 0); 6407 if (on_rq) { 6408 enqueue_task(rq, p, 0); 6409 resched_task(rq->curr); 6410 } 6411 6412 check_class_changed(rq, p, prev_class, old_prio); 6413 } 6414 6415 void normalize_rt_tasks(void) 6416 { 6417 struct task_struct *g, *p; 6418 unsigned long flags; 6419 struct rq *rq; 6420 6421 read_lock_irqsave(&tasklist_lock, flags); 6422 do_each_thread(g, p) { 6423 /* 6424 * Only normalize user tasks: 6425 */ 6426 if (!p->mm) 6427 continue; 6428 6429 p->se.exec_start = 0; 6430 #ifdef CONFIG_SCHEDSTATS 6431 p->se.statistics.wait_start = 0; 6432 p->se.statistics.sleep_start = 0; 6433 p->se.statistics.block_start = 0; 6434 #endif 6435 6436 if (!rt_task(p)) { 6437 /* 6438 * Renice negative nice level userspace 6439 * tasks back to 0: 6440 */ 6441 if (TASK_NICE(p) < 0 && p->mm) 6442 set_user_nice(p, 0); 6443 continue; 6444 } 6445 6446 raw_spin_lock(&p->pi_lock); 6447 rq = __task_rq_lock(p); 6448 6449 normalize_task(rq, p); 6450 6451 __task_rq_unlock(rq); 6452 raw_spin_unlock(&p->pi_lock); 6453 } while_each_thread(g, p); 6454 6455 read_unlock_irqrestore(&tasklist_lock, flags); 6456 } 6457 6458 #endif /* CONFIG_MAGIC_SYSRQ */ 6459 6460 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6461 /* 6462 * These functions are only useful for the IA64 MCA handling, or kdb. 6463 * 6464 * They can only be called when the whole system has been 6465 * stopped - every CPU needs to be quiescent, and no scheduling 6466 * activity can take place. Using them for anything else would 6467 * be a serious bug, and as a result, they aren't even visible 6468 * under any other configuration. 6469 */ 6470 6471 /** 6472 * curr_task - return the current task for a given cpu. 6473 * @cpu: the processor in question. 6474 * 6475 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6476 * 6477 * Return: The current task for @cpu. 6478 */ 6479 struct task_struct *curr_task(int cpu) 6480 { 6481 return cpu_curr(cpu); 6482 } 6483 6484 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6485 6486 #ifdef CONFIG_IA64 6487 /** 6488 * set_curr_task - set the current task for a given cpu. 6489 * @cpu: the processor in question. 6490 * @p: the task pointer to set. 6491 * 6492 * Description: This function must only be used when non-maskable interrupts 6493 * are serviced on a separate stack. It allows the architecture to switch the 6494 * notion of the current task on a cpu in a non-blocking manner. This function 6495 * must be called with all CPU's synchronized, and interrupts disabled, the 6496 * and caller must save the original value of the current task (see 6497 * curr_task() above) and restore that value before reenabling interrupts and 6498 * re-starting the system. 6499 * 6500 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6501 */ 6502 void set_curr_task(int cpu, struct task_struct *p) 6503 { 6504 cpu_curr(cpu) = p; 6505 } 6506 6507 #endif 6508 6509 #ifdef CONFIG_CGROUP_SCHED 6510 /* task_group_lock serializes the addition/removal of task groups */ 6511 static DEFINE_SPINLOCK(task_group_lock); 6512 6513 static void free_sched_group(struct task_group *tg) 6514 { 6515 free_fair_sched_group(tg); 6516 free_rt_sched_group(tg); 6517 autogroup_free(tg); 6518 kfree(tg); 6519 } 6520 6521 /* allocate runqueue etc for a new task group */ 6522 struct task_group *sched_create_group(struct task_group *parent) 6523 { 6524 struct task_group *tg; 6525 6526 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 6527 if (!tg) 6528 return ERR_PTR(-ENOMEM); 6529 6530 if (!alloc_fair_sched_group(tg, parent)) 6531 goto err; 6532 6533 if (!alloc_rt_sched_group(tg, parent)) 6534 goto err; 6535 6536 return tg; 6537 6538 err: 6539 free_sched_group(tg); 6540 return ERR_PTR(-ENOMEM); 6541 } 6542 6543 void sched_online_group(struct task_group *tg, struct task_group *parent) 6544 { 6545 unsigned long flags; 6546 6547 spin_lock_irqsave(&task_group_lock, flags); 6548 list_add_rcu(&tg->list, &task_groups); 6549 6550 WARN_ON(!parent); /* root should already exist */ 6551 6552 tg->parent = parent; 6553 INIT_LIST_HEAD(&tg->children); 6554 list_add_rcu(&tg->siblings, &parent->children); 6555 spin_unlock_irqrestore(&task_group_lock, flags); 6556 } 6557 6558 /* rcu callback to free various structures associated with a task group */ 6559 static void free_sched_group_rcu(struct rcu_head *rhp) 6560 { 6561 /* now it should be safe to free those cfs_rqs */ 6562 free_sched_group(container_of(rhp, struct task_group, rcu)); 6563 } 6564 6565 /* Destroy runqueue etc associated with a task group */ 6566 void sched_destroy_group(struct task_group *tg) 6567 { 6568 /* wait for possible concurrent references to cfs_rqs complete */ 6569 call_rcu(&tg->rcu, free_sched_group_rcu); 6570 } 6571 6572 void sched_offline_group(struct task_group *tg) 6573 { 6574 unsigned long flags; 6575 int i; 6576 6577 /* end participation in shares distribution */ 6578 for_each_possible_cpu(i) 6579 unregister_fair_sched_group(tg, i); 6580 6581 spin_lock_irqsave(&task_group_lock, flags); 6582 list_del_rcu(&tg->list); 6583 list_del_rcu(&tg->siblings); 6584 spin_unlock_irqrestore(&task_group_lock, flags); 6585 } 6586 6587 /* change task's runqueue when it moves between groups. 6588 * The caller of this function should have put the task in its new group 6589 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 6590 * reflect its new group. 6591 */ 6592 void sched_move_task(struct task_struct *tsk) 6593 { 6594 struct task_group *tg; 6595 int on_rq, running; 6596 unsigned long flags; 6597 struct rq *rq; 6598 6599 rq = task_rq_lock(tsk, &flags); 6600 6601 running = task_current(rq, tsk); 6602 on_rq = tsk->on_rq; 6603 6604 if (on_rq) 6605 dequeue_task(rq, tsk, 0); 6606 if (unlikely(running)) 6607 tsk->sched_class->put_prev_task(rq, tsk); 6608 6609 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id, 6610 lockdep_is_held(&tsk->sighand->siglock)), 6611 struct task_group, css); 6612 tg = autogroup_task_group(tsk, tg); 6613 tsk->sched_task_group = tg; 6614 6615 #ifdef CONFIG_FAIR_GROUP_SCHED 6616 if (tsk->sched_class->task_move_group) 6617 tsk->sched_class->task_move_group(tsk, on_rq); 6618 else 6619 #endif 6620 set_task_rq(tsk, task_cpu(tsk)); 6621 6622 if (unlikely(running)) 6623 tsk->sched_class->set_curr_task(rq); 6624 if (on_rq) 6625 enqueue_task(rq, tsk, 0); 6626 6627 task_rq_unlock(rq, tsk, &flags); 6628 } 6629 #endif /* CONFIG_CGROUP_SCHED */ 6630 6631 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 6632 static unsigned long to_ratio(u64 period, u64 runtime) 6633 { 6634 if (runtime == RUNTIME_INF) 6635 return 1ULL << 20; 6636 6637 return div64_u64(runtime << 20, period); 6638 } 6639 #endif 6640 6641 #ifdef CONFIG_RT_GROUP_SCHED 6642 /* 6643 * Ensure that the real time constraints are schedulable. 6644 */ 6645 static DEFINE_MUTEX(rt_constraints_mutex); 6646 6647 /* Must be called with tasklist_lock held */ 6648 static inline int tg_has_rt_tasks(struct task_group *tg) 6649 { 6650 struct task_struct *g, *p; 6651 6652 do_each_thread(g, p) { 6653 if (rt_task(p) && task_rq(p)->rt.tg == tg) 6654 return 1; 6655 } while_each_thread(g, p); 6656 6657 return 0; 6658 } 6659 6660 struct rt_schedulable_data { 6661 struct task_group *tg; 6662 u64 rt_period; 6663 u64 rt_runtime; 6664 }; 6665 6666 static int tg_rt_schedulable(struct task_group *tg, void *data) 6667 { 6668 struct rt_schedulable_data *d = data; 6669 struct task_group *child; 6670 unsigned long total, sum = 0; 6671 u64 period, runtime; 6672 6673 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6674 runtime = tg->rt_bandwidth.rt_runtime; 6675 6676 if (tg == d->tg) { 6677 period = d->rt_period; 6678 runtime = d->rt_runtime; 6679 } 6680 6681 /* 6682 * Cannot have more runtime than the period. 6683 */ 6684 if (runtime > period && runtime != RUNTIME_INF) 6685 return -EINVAL; 6686 6687 /* 6688 * Ensure we don't starve existing RT tasks. 6689 */ 6690 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 6691 return -EBUSY; 6692 6693 total = to_ratio(period, runtime); 6694 6695 /* 6696 * Nobody can have more than the global setting allows. 6697 */ 6698 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 6699 return -EINVAL; 6700 6701 /* 6702 * The sum of our children's runtime should not exceed our own. 6703 */ 6704 list_for_each_entry_rcu(child, &tg->children, siblings) { 6705 period = ktime_to_ns(child->rt_bandwidth.rt_period); 6706 runtime = child->rt_bandwidth.rt_runtime; 6707 6708 if (child == d->tg) { 6709 period = d->rt_period; 6710 runtime = d->rt_runtime; 6711 } 6712 6713 sum += to_ratio(period, runtime); 6714 } 6715 6716 if (sum > total) 6717 return -EINVAL; 6718 6719 return 0; 6720 } 6721 6722 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 6723 { 6724 int ret; 6725 6726 struct rt_schedulable_data data = { 6727 .tg = tg, 6728 .rt_period = period, 6729 .rt_runtime = runtime, 6730 }; 6731 6732 rcu_read_lock(); 6733 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 6734 rcu_read_unlock(); 6735 6736 return ret; 6737 } 6738 6739 static int tg_set_rt_bandwidth(struct task_group *tg, 6740 u64 rt_period, u64 rt_runtime) 6741 { 6742 int i, err = 0; 6743 6744 mutex_lock(&rt_constraints_mutex); 6745 read_lock(&tasklist_lock); 6746 err = __rt_schedulable(tg, rt_period, rt_runtime); 6747 if (err) 6748 goto unlock; 6749 6750 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6751 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 6752 tg->rt_bandwidth.rt_runtime = rt_runtime; 6753 6754 for_each_possible_cpu(i) { 6755 struct rt_rq *rt_rq = tg->rt_rq[i]; 6756 6757 raw_spin_lock(&rt_rq->rt_runtime_lock); 6758 rt_rq->rt_runtime = rt_runtime; 6759 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6760 } 6761 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6762 unlock: 6763 read_unlock(&tasklist_lock); 6764 mutex_unlock(&rt_constraints_mutex); 6765 6766 return err; 6767 } 6768 6769 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 6770 { 6771 u64 rt_runtime, rt_period; 6772 6773 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6774 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 6775 if (rt_runtime_us < 0) 6776 rt_runtime = RUNTIME_INF; 6777 6778 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6779 } 6780 6781 static long sched_group_rt_runtime(struct task_group *tg) 6782 { 6783 u64 rt_runtime_us; 6784 6785 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 6786 return -1; 6787 6788 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 6789 do_div(rt_runtime_us, NSEC_PER_USEC); 6790 return rt_runtime_us; 6791 } 6792 6793 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 6794 { 6795 u64 rt_runtime, rt_period; 6796 6797 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 6798 rt_runtime = tg->rt_bandwidth.rt_runtime; 6799 6800 if (rt_period == 0) 6801 return -EINVAL; 6802 6803 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6804 } 6805 6806 static long sched_group_rt_period(struct task_group *tg) 6807 { 6808 u64 rt_period_us; 6809 6810 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 6811 do_div(rt_period_us, NSEC_PER_USEC); 6812 return rt_period_us; 6813 } 6814 6815 static int sched_rt_global_constraints(void) 6816 { 6817 u64 runtime, period; 6818 int ret = 0; 6819 6820 if (sysctl_sched_rt_period <= 0) 6821 return -EINVAL; 6822 6823 runtime = global_rt_runtime(); 6824 period = global_rt_period(); 6825 6826 /* 6827 * Sanity check on the sysctl variables. 6828 */ 6829 if (runtime > period && runtime != RUNTIME_INF) 6830 return -EINVAL; 6831 6832 mutex_lock(&rt_constraints_mutex); 6833 read_lock(&tasklist_lock); 6834 ret = __rt_schedulable(NULL, 0, 0); 6835 read_unlock(&tasklist_lock); 6836 mutex_unlock(&rt_constraints_mutex); 6837 6838 return ret; 6839 } 6840 6841 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 6842 { 6843 /* Don't accept realtime tasks when there is no way for them to run */ 6844 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 6845 return 0; 6846 6847 return 1; 6848 } 6849 6850 #else /* !CONFIG_RT_GROUP_SCHED */ 6851 static int sched_rt_global_constraints(void) 6852 { 6853 unsigned long flags; 6854 int i; 6855 6856 if (sysctl_sched_rt_period <= 0) 6857 return -EINVAL; 6858 6859 /* 6860 * There's always some RT tasks in the root group 6861 * -- migration, kstopmachine etc.. 6862 */ 6863 if (sysctl_sched_rt_runtime == 0) 6864 return -EBUSY; 6865 6866 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 6867 for_each_possible_cpu(i) { 6868 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 6869 6870 raw_spin_lock(&rt_rq->rt_runtime_lock); 6871 rt_rq->rt_runtime = global_rt_runtime(); 6872 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6873 } 6874 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 6875 6876 return 0; 6877 } 6878 #endif /* CONFIG_RT_GROUP_SCHED */ 6879 6880 int sched_rr_handler(struct ctl_table *table, int write, 6881 void __user *buffer, size_t *lenp, 6882 loff_t *ppos) 6883 { 6884 int ret; 6885 static DEFINE_MUTEX(mutex); 6886 6887 mutex_lock(&mutex); 6888 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6889 /* make sure that internally we keep jiffies */ 6890 /* also, writing zero resets timeslice to default */ 6891 if (!ret && write) { 6892 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 6893 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 6894 } 6895 mutex_unlock(&mutex); 6896 return ret; 6897 } 6898 6899 int sched_rt_handler(struct ctl_table *table, int write, 6900 void __user *buffer, size_t *lenp, 6901 loff_t *ppos) 6902 { 6903 int ret; 6904 int old_period, old_runtime; 6905 static DEFINE_MUTEX(mutex); 6906 6907 mutex_lock(&mutex); 6908 old_period = sysctl_sched_rt_period; 6909 old_runtime = sysctl_sched_rt_runtime; 6910 6911 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6912 6913 if (!ret && write) { 6914 ret = sched_rt_global_constraints(); 6915 if (ret) { 6916 sysctl_sched_rt_period = old_period; 6917 sysctl_sched_rt_runtime = old_runtime; 6918 } else { 6919 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 6920 def_rt_bandwidth.rt_period = 6921 ns_to_ktime(global_rt_period()); 6922 } 6923 } 6924 mutex_unlock(&mutex); 6925 6926 return ret; 6927 } 6928 6929 #ifdef CONFIG_CGROUP_SCHED 6930 6931 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6932 { 6933 return css ? container_of(css, struct task_group, css) : NULL; 6934 } 6935 6936 static struct cgroup_subsys_state * 6937 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6938 { 6939 struct task_group *parent = css_tg(parent_css); 6940 struct task_group *tg; 6941 6942 if (!parent) { 6943 /* This is early initialization for the top cgroup */ 6944 return &root_task_group.css; 6945 } 6946 6947 tg = sched_create_group(parent); 6948 if (IS_ERR(tg)) 6949 return ERR_PTR(-ENOMEM); 6950 6951 return &tg->css; 6952 } 6953 6954 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6955 { 6956 struct task_group *tg = css_tg(css); 6957 struct task_group *parent = css_tg(css_parent(css)); 6958 6959 if (parent) 6960 sched_online_group(tg, parent); 6961 return 0; 6962 } 6963 6964 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6965 { 6966 struct task_group *tg = css_tg(css); 6967 6968 sched_destroy_group(tg); 6969 } 6970 6971 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 6972 { 6973 struct task_group *tg = css_tg(css); 6974 6975 sched_offline_group(tg); 6976 } 6977 6978 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 6979 struct cgroup_taskset *tset) 6980 { 6981 struct task_struct *task; 6982 6983 cgroup_taskset_for_each(task, css, tset) { 6984 #ifdef CONFIG_RT_GROUP_SCHED 6985 if (!sched_rt_can_attach(css_tg(css), task)) 6986 return -EINVAL; 6987 #else 6988 /* We don't support RT-tasks being in separate groups */ 6989 if (task->sched_class != &fair_sched_class) 6990 return -EINVAL; 6991 #endif 6992 } 6993 return 0; 6994 } 6995 6996 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 6997 struct cgroup_taskset *tset) 6998 { 6999 struct task_struct *task; 7000 7001 cgroup_taskset_for_each(task, css, tset) 7002 sched_move_task(task); 7003 } 7004 7005 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7006 struct cgroup_subsys_state *old_css, 7007 struct task_struct *task) 7008 { 7009 /* 7010 * cgroup_exit() is called in the copy_process() failure path. 7011 * Ignore this case since the task hasn't ran yet, this avoids 7012 * trying to poke a half freed task state from generic code. 7013 */ 7014 if (!(task->flags & PF_EXITING)) 7015 return; 7016 7017 sched_move_task(task); 7018 } 7019 7020 #ifdef CONFIG_FAIR_GROUP_SCHED 7021 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7022 struct cftype *cftype, u64 shareval) 7023 { 7024 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7025 } 7026 7027 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7028 struct cftype *cft) 7029 { 7030 struct task_group *tg = css_tg(css); 7031 7032 return (u64) scale_load_down(tg->shares); 7033 } 7034 7035 #ifdef CONFIG_CFS_BANDWIDTH 7036 static DEFINE_MUTEX(cfs_constraints_mutex); 7037 7038 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7039 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7040 7041 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7042 7043 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7044 { 7045 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7046 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7047 7048 if (tg == &root_task_group) 7049 return -EINVAL; 7050 7051 /* 7052 * Ensure we have at some amount of bandwidth every period. This is 7053 * to prevent reaching a state of large arrears when throttled via 7054 * entity_tick() resulting in prolonged exit starvation. 7055 */ 7056 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7057 return -EINVAL; 7058 7059 /* 7060 * Likewise, bound things on the otherside by preventing insane quota 7061 * periods. This also allows us to normalize in computing quota 7062 * feasibility. 7063 */ 7064 if (period > max_cfs_quota_period) 7065 return -EINVAL; 7066 7067 mutex_lock(&cfs_constraints_mutex); 7068 ret = __cfs_schedulable(tg, period, quota); 7069 if (ret) 7070 goto out_unlock; 7071 7072 runtime_enabled = quota != RUNTIME_INF; 7073 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7074 /* 7075 * If we need to toggle cfs_bandwidth_used, off->on must occur 7076 * before making related changes, and on->off must occur afterwards 7077 */ 7078 if (runtime_enabled && !runtime_was_enabled) 7079 cfs_bandwidth_usage_inc(); 7080 raw_spin_lock_irq(&cfs_b->lock); 7081 cfs_b->period = ns_to_ktime(period); 7082 cfs_b->quota = quota; 7083 7084 __refill_cfs_bandwidth_runtime(cfs_b); 7085 /* restart the period timer (if active) to handle new period expiry */ 7086 if (runtime_enabled && cfs_b->timer_active) { 7087 /* force a reprogram */ 7088 cfs_b->timer_active = 0; 7089 __start_cfs_bandwidth(cfs_b); 7090 } 7091 raw_spin_unlock_irq(&cfs_b->lock); 7092 7093 for_each_possible_cpu(i) { 7094 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7095 struct rq *rq = cfs_rq->rq; 7096 7097 raw_spin_lock_irq(&rq->lock); 7098 cfs_rq->runtime_enabled = runtime_enabled; 7099 cfs_rq->runtime_remaining = 0; 7100 7101 if (cfs_rq->throttled) 7102 unthrottle_cfs_rq(cfs_rq); 7103 raw_spin_unlock_irq(&rq->lock); 7104 } 7105 if (runtime_was_enabled && !runtime_enabled) 7106 cfs_bandwidth_usage_dec(); 7107 out_unlock: 7108 mutex_unlock(&cfs_constraints_mutex); 7109 7110 return ret; 7111 } 7112 7113 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7114 { 7115 u64 quota, period; 7116 7117 period = ktime_to_ns(tg->cfs_bandwidth.period); 7118 if (cfs_quota_us < 0) 7119 quota = RUNTIME_INF; 7120 else 7121 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7122 7123 return tg_set_cfs_bandwidth(tg, period, quota); 7124 } 7125 7126 long tg_get_cfs_quota(struct task_group *tg) 7127 { 7128 u64 quota_us; 7129 7130 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7131 return -1; 7132 7133 quota_us = tg->cfs_bandwidth.quota; 7134 do_div(quota_us, NSEC_PER_USEC); 7135 7136 return quota_us; 7137 } 7138 7139 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7140 { 7141 u64 quota, period; 7142 7143 period = (u64)cfs_period_us * NSEC_PER_USEC; 7144 quota = tg->cfs_bandwidth.quota; 7145 7146 return tg_set_cfs_bandwidth(tg, period, quota); 7147 } 7148 7149 long tg_get_cfs_period(struct task_group *tg) 7150 { 7151 u64 cfs_period_us; 7152 7153 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7154 do_div(cfs_period_us, NSEC_PER_USEC); 7155 7156 return cfs_period_us; 7157 } 7158 7159 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7160 struct cftype *cft) 7161 { 7162 return tg_get_cfs_quota(css_tg(css)); 7163 } 7164 7165 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7166 struct cftype *cftype, s64 cfs_quota_us) 7167 { 7168 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7169 } 7170 7171 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7172 struct cftype *cft) 7173 { 7174 return tg_get_cfs_period(css_tg(css)); 7175 } 7176 7177 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7178 struct cftype *cftype, u64 cfs_period_us) 7179 { 7180 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7181 } 7182 7183 struct cfs_schedulable_data { 7184 struct task_group *tg; 7185 u64 period, quota; 7186 }; 7187 7188 /* 7189 * normalize group quota/period to be quota/max_period 7190 * note: units are usecs 7191 */ 7192 static u64 normalize_cfs_quota(struct task_group *tg, 7193 struct cfs_schedulable_data *d) 7194 { 7195 u64 quota, period; 7196 7197 if (tg == d->tg) { 7198 period = d->period; 7199 quota = d->quota; 7200 } else { 7201 period = tg_get_cfs_period(tg); 7202 quota = tg_get_cfs_quota(tg); 7203 } 7204 7205 /* note: these should typically be equivalent */ 7206 if (quota == RUNTIME_INF || quota == -1) 7207 return RUNTIME_INF; 7208 7209 return to_ratio(period, quota); 7210 } 7211 7212 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7213 { 7214 struct cfs_schedulable_data *d = data; 7215 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7216 s64 quota = 0, parent_quota = -1; 7217 7218 if (!tg->parent) { 7219 quota = RUNTIME_INF; 7220 } else { 7221 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7222 7223 quota = normalize_cfs_quota(tg, d); 7224 parent_quota = parent_b->hierarchal_quota; 7225 7226 /* 7227 * ensure max(child_quota) <= parent_quota, inherit when no 7228 * limit is set 7229 */ 7230 if (quota == RUNTIME_INF) 7231 quota = parent_quota; 7232 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7233 return -EINVAL; 7234 } 7235 cfs_b->hierarchal_quota = quota; 7236 7237 return 0; 7238 } 7239 7240 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7241 { 7242 int ret; 7243 struct cfs_schedulable_data data = { 7244 .tg = tg, 7245 .period = period, 7246 .quota = quota, 7247 }; 7248 7249 if (quota != RUNTIME_INF) { 7250 do_div(data.period, NSEC_PER_USEC); 7251 do_div(data.quota, NSEC_PER_USEC); 7252 } 7253 7254 rcu_read_lock(); 7255 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7256 rcu_read_unlock(); 7257 7258 return ret; 7259 } 7260 7261 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft, 7262 struct cgroup_map_cb *cb) 7263 { 7264 struct task_group *tg = css_tg(css); 7265 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7266 7267 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7268 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7269 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7270 7271 return 0; 7272 } 7273 #endif /* CONFIG_CFS_BANDWIDTH */ 7274 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7275 7276 #ifdef CONFIG_RT_GROUP_SCHED 7277 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7278 struct cftype *cft, s64 val) 7279 { 7280 return sched_group_set_rt_runtime(css_tg(css), val); 7281 } 7282 7283 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7284 struct cftype *cft) 7285 { 7286 return sched_group_rt_runtime(css_tg(css)); 7287 } 7288 7289 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7290 struct cftype *cftype, u64 rt_period_us) 7291 { 7292 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7293 } 7294 7295 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7296 struct cftype *cft) 7297 { 7298 return sched_group_rt_period(css_tg(css)); 7299 } 7300 #endif /* CONFIG_RT_GROUP_SCHED */ 7301 7302 static struct cftype cpu_files[] = { 7303 #ifdef CONFIG_FAIR_GROUP_SCHED 7304 { 7305 .name = "shares", 7306 .read_u64 = cpu_shares_read_u64, 7307 .write_u64 = cpu_shares_write_u64, 7308 }, 7309 #endif 7310 #ifdef CONFIG_CFS_BANDWIDTH 7311 { 7312 .name = "cfs_quota_us", 7313 .read_s64 = cpu_cfs_quota_read_s64, 7314 .write_s64 = cpu_cfs_quota_write_s64, 7315 }, 7316 { 7317 .name = "cfs_period_us", 7318 .read_u64 = cpu_cfs_period_read_u64, 7319 .write_u64 = cpu_cfs_period_write_u64, 7320 }, 7321 { 7322 .name = "stat", 7323 .read_map = cpu_stats_show, 7324 }, 7325 #endif 7326 #ifdef CONFIG_RT_GROUP_SCHED 7327 { 7328 .name = "rt_runtime_us", 7329 .read_s64 = cpu_rt_runtime_read, 7330 .write_s64 = cpu_rt_runtime_write, 7331 }, 7332 { 7333 .name = "rt_period_us", 7334 .read_u64 = cpu_rt_period_read_uint, 7335 .write_u64 = cpu_rt_period_write_uint, 7336 }, 7337 #endif 7338 { } /* terminate */ 7339 }; 7340 7341 struct cgroup_subsys cpu_cgroup_subsys = { 7342 .name = "cpu", 7343 .css_alloc = cpu_cgroup_css_alloc, 7344 .css_free = cpu_cgroup_css_free, 7345 .css_online = cpu_cgroup_css_online, 7346 .css_offline = cpu_cgroup_css_offline, 7347 .can_attach = cpu_cgroup_can_attach, 7348 .attach = cpu_cgroup_attach, 7349 .exit = cpu_cgroup_exit, 7350 .subsys_id = cpu_cgroup_subsys_id, 7351 .base_cftypes = cpu_files, 7352 .early_init = 1, 7353 }; 7354 7355 #endif /* CONFIG_CGROUP_SCHED */ 7356 7357 void dump_cpu_task(int cpu) 7358 { 7359 pr_info("Task dump for CPU %d:\n", cpu); 7360 sched_show_task(cpu_curr(cpu)); 7361 } 7362