1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 #include <linux/blkdev.h> 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 #ifdef CONFIG_PREEMPT_RT 78 const_debug unsigned int sysctl_sched_nr_migrate = 8; 79 #else 80 const_debug unsigned int sysctl_sched_nr_migrate = 32; 81 #endif 82 83 /* 84 * period over which we measure -rt task CPU usage in us. 85 * default: 1s 86 */ 87 unsigned int sysctl_sched_rt_period = 1000000; 88 89 __read_mostly int scheduler_running; 90 91 #ifdef CONFIG_SCHED_CORE 92 93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 94 95 /* kernel prio, less is more */ 96 static inline int __task_prio(struct task_struct *p) 97 { 98 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 99 return -2; 100 101 if (rt_prio(p->prio)) /* includes deadline */ 102 return p->prio; /* [-1, 99] */ 103 104 if (p->sched_class == &idle_sched_class) 105 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 106 107 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 108 } 109 110 /* 111 * l(a,b) 112 * le(a,b) := !l(b,a) 113 * g(a,b) := l(b,a) 114 * ge(a,b) := !l(a,b) 115 */ 116 117 /* real prio, less is less */ 118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 119 { 120 121 int pa = __task_prio(a), pb = __task_prio(b); 122 123 if (-pa < -pb) 124 return true; 125 126 if (-pb < -pa) 127 return false; 128 129 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 130 return !dl_time_before(a->dl.deadline, b->dl.deadline); 131 132 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 133 return cfs_prio_less(a, b, in_fi); 134 135 return false; 136 } 137 138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 139 { 140 if (a->core_cookie < b->core_cookie) 141 return true; 142 143 if (a->core_cookie > b->core_cookie) 144 return false; 145 146 /* flip prio, so high prio is leftmost */ 147 if (prio_less(b, a, task_rq(a)->core->core_forceidle)) 148 return true; 149 150 return false; 151 } 152 153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 154 155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 156 { 157 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 158 } 159 160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 161 { 162 const struct task_struct *p = __node_2_sc(node); 163 unsigned long cookie = (unsigned long)key; 164 165 if (cookie < p->core_cookie) 166 return -1; 167 168 if (cookie > p->core_cookie) 169 return 1; 170 171 return 0; 172 } 173 174 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 175 { 176 rq->core->core_task_seq++; 177 178 if (!p->core_cookie) 179 return; 180 181 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 182 } 183 184 void sched_core_dequeue(struct rq *rq, struct task_struct *p) 185 { 186 rq->core->core_task_seq++; 187 188 if (!sched_core_enqueued(p)) 189 return; 190 191 rb_erase(&p->core_node, &rq->core_tree); 192 RB_CLEAR_NODE(&p->core_node); 193 } 194 195 /* 196 * Find left-most (aka, highest priority) task matching @cookie. 197 */ 198 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 199 { 200 struct rb_node *node; 201 202 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 203 /* 204 * The idle task always matches any cookie! 205 */ 206 if (!node) 207 return idle_sched_class.pick_task(rq); 208 209 return __node_2_sc(node); 210 } 211 212 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 213 { 214 struct rb_node *node = &p->core_node; 215 216 node = rb_next(node); 217 if (!node) 218 return NULL; 219 220 p = container_of(node, struct task_struct, core_node); 221 if (p->core_cookie != cookie) 222 return NULL; 223 224 return p; 225 } 226 227 /* 228 * Magic required such that: 229 * 230 * raw_spin_rq_lock(rq); 231 * ... 232 * raw_spin_rq_unlock(rq); 233 * 234 * ends up locking and unlocking the _same_ lock, and all CPUs 235 * always agree on what rq has what lock. 236 * 237 * XXX entirely possible to selectively enable cores, don't bother for now. 238 */ 239 240 static DEFINE_MUTEX(sched_core_mutex); 241 static atomic_t sched_core_count; 242 static struct cpumask sched_core_mask; 243 244 static void sched_core_lock(int cpu, unsigned long *flags) 245 { 246 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 247 int t, i = 0; 248 249 local_irq_save(*flags); 250 for_each_cpu(t, smt_mask) 251 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 252 } 253 254 static void sched_core_unlock(int cpu, unsigned long *flags) 255 { 256 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 257 int t; 258 259 for_each_cpu(t, smt_mask) 260 raw_spin_unlock(&cpu_rq(t)->__lock); 261 local_irq_restore(*flags); 262 } 263 264 static void __sched_core_flip(bool enabled) 265 { 266 unsigned long flags; 267 int cpu, t; 268 269 cpus_read_lock(); 270 271 /* 272 * Toggle the online cores, one by one. 273 */ 274 cpumask_copy(&sched_core_mask, cpu_online_mask); 275 for_each_cpu(cpu, &sched_core_mask) { 276 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 277 278 sched_core_lock(cpu, &flags); 279 280 for_each_cpu(t, smt_mask) 281 cpu_rq(t)->core_enabled = enabled; 282 283 sched_core_unlock(cpu, &flags); 284 285 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 286 } 287 288 /* 289 * Toggle the offline CPUs. 290 */ 291 cpumask_copy(&sched_core_mask, cpu_possible_mask); 292 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 293 294 for_each_cpu(cpu, &sched_core_mask) 295 cpu_rq(cpu)->core_enabled = enabled; 296 297 cpus_read_unlock(); 298 } 299 300 static void sched_core_assert_empty(void) 301 { 302 int cpu; 303 304 for_each_possible_cpu(cpu) 305 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 306 } 307 308 static void __sched_core_enable(void) 309 { 310 static_branch_enable(&__sched_core_enabled); 311 /* 312 * Ensure all previous instances of raw_spin_rq_*lock() have finished 313 * and future ones will observe !sched_core_disabled(). 314 */ 315 synchronize_rcu(); 316 __sched_core_flip(true); 317 sched_core_assert_empty(); 318 } 319 320 static void __sched_core_disable(void) 321 { 322 sched_core_assert_empty(); 323 __sched_core_flip(false); 324 static_branch_disable(&__sched_core_enabled); 325 } 326 327 void sched_core_get(void) 328 { 329 if (atomic_inc_not_zero(&sched_core_count)) 330 return; 331 332 mutex_lock(&sched_core_mutex); 333 if (!atomic_read(&sched_core_count)) 334 __sched_core_enable(); 335 336 smp_mb__before_atomic(); 337 atomic_inc(&sched_core_count); 338 mutex_unlock(&sched_core_mutex); 339 } 340 341 static void __sched_core_put(struct work_struct *work) 342 { 343 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 344 __sched_core_disable(); 345 mutex_unlock(&sched_core_mutex); 346 } 347 } 348 349 void sched_core_put(void) 350 { 351 static DECLARE_WORK(_work, __sched_core_put); 352 353 /* 354 * "There can be only one" 355 * 356 * Either this is the last one, or we don't actually need to do any 357 * 'work'. If it is the last *again*, we rely on 358 * WORK_STRUCT_PENDING_BIT. 359 */ 360 if (!atomic_add_unless(&sched_core_count, -1, 1)) 361 schedule_work(&_work); 362 } 363 364 #else /* !CONFIG_SCHED_CORE */ 365 366 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 367 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { } 368 369 #endif /* CONFIG_SCHED_CORE */ 370 371 /* 372 * part of the period that we allow rt tasks to run in us. 373 * default: 0.95s 374 */ 375 int sysctl_sched_rt_runtime = 950000; 376 377 378 /* 379 * Serialization rules: 380 * 381 * Lock order: 382 * 383 * p->pi_lock 384 * rq->lock 385 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 386 * 387 * rq1->lock 388 * rq2->lock where: rq1 < rq2 389 * 390 * Regular state: 391 * 392 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 393 * local CPU's rq->lock, it optionally removes the task from the runqueue and 394 * always looks at the local rq data structures to find the most eligible task 395 * to run next. 396 * 397 * Task enqueue is also under rq->lock, possibly taken from another CPU. 398 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 399 * the local CPU to avoid bouncing the runqueue state around [ see 400 * ttwu_queue_wakelist() ] 401 * 402 * Task wakeup, specifically wakeups that involve migration, are horribly 403 * complicated to avoid having to take two rq->locks. 404 * 405 * Special state: 406 * 407 * System-calls and anything external will use task_rq_lock() which acquires 408 * both p->pi_lock and rq->lock. As a consequence the state they change is 409 * stable while holding either lock: 410 * 411 * - sched_setaffinity()/ 412 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 413 * - set_user_nice(): p->se.load, p->*prio 414 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 415 * p->se.load, p->rt_priority, 416 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 417 * - sched_setnuma(): p->numa_preferred_nid 418 * - sched_move_task()/ 419 * cpu_cgroup_fork(): p->sched_task_group 420 * - uclamp_update_active() p->uclamp* 421 * 422 * p->state <- TASK_*: 423 * 424 * is changed locklessly using set_current_state(), __set_current_state() or 425 * set_special_state(), see their respective comments, or by 426 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 427 * concurrent self. 428 * 429 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 430 * 431 * is set by activate_task() and cleared by deactivate_task(), under 432 * rq->lock. Non-zero indicates the task is runnable, the special 433 * ON_RQ_MIGRATING state is used for migration without holding both 434 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 435 * 436 * p->on_cpu <- { 0, 1 }: 437 * 438 * is set by prepare_task() and cleared by finish_task() such that it will be 439 * set before p is scheduled-in and cleared after p is scheduled-out, both 440 * under rq->lock. Non-zero indicates the task is running on its CPU. 441 * 442 * [ The astute reader will observe that it is possible for two tasks on one 443 * CPU to have ->on_cpu = 1 at the same time. ] 444 * 445 * task_cpu(p): is changed by set_task_cpu(), the rules are: 446 * 447 * - Don't call set_task_cpu() on a blocked task: 448 * 449 * We don't care what CPU we're not running on, this simplifies hotplug, 450 * the CPU assignment of blocked tasks isn't required to be valid. 451 * 452 * - for try_to_wake_up(), called under p->pi_lock: 453 * 454 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 455 * 456 * - for migration called under rq->lock: 457 * [ see task_on_rq_migrating() in task_rq_lock() ] 458 * 459 * o move_queued_task() 460 * o detach_task() 461 * 462 * - for migration called under double_rq_lock(): 463 * 464 * o __migrate_swap_task() 465 * o push_rt_task() / pull_rt_task() 466 * o push_dl_task() / pull_dl_task() 467 * o dl_task_offline_migration() 468 * 469 */ 470 471 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 472 { 473 raw_spinlock_t *lock; 474 475 /* Matches synchronize_rcu() in __sched_core_enable() */ 476 preempt_disable(); 477 if (sched_core_disabled()) { 478 raw_spin_lock_nested(&rq->__lock, subclass); 479 /* preempt_count *MUST* be > 1 */ 480 preempt_enable_no_resched(); 481 return; 482 } 483 484 for (;;) { 485 lock = __rq_lockp(rq); 486 raw_spin_lock_nested(lock, subclass); 487 if (likely(lock == __rq_lockp(rq))) { 488 /* preempt_count *MUST* be > 1 */ 489 preempt_enable_no_resched(); 490 return; 491 } 492 raw_spin_unlock(lock); 493 } 494 } 495 496 bool raw_spin_rq_trylock(struct rq *rq) 497 { 498 raw_spinlock_t *lock; 499 bool ret; 500 501 /* Matches synchronize_rcu() in __sched_core_enable() */ 502 preempt_disable(); 503 if (sched_core_disabled()) { 504 ret = raw_spin_trylock(&rq->__lock); 505 preempt_enable(); 506 return ret; 507 } 508 509 for (;;) { 510 lock = __rq_lockp(rq); 511 ret = raw_spin_trylock(lock); 512 if (!ret || (likely(lock == __rq_lockp(rq)))) { 513 preempt_enable(); 514 return ret; 515 } 516 raw_spin_unlock(lock); 517 } 518 } 519 520 void raw_spin_rq_unlock(struct rq *rq) 521 { 522 raw_spin_unlock(rq_lockp(rq)); 523 } 524 525 #ifdef CONFIG_SMP 526 /* 527 * double_rq_lock - safely lock two runqueues 528 */ 529 void double_rq_lock(struct rq *rq1, struct rq *rq2) 530 { 531 lockdep_assert_irqs_disabled(); 532 533 if (rq_order_less(rq2, rq1)) 534 swap(rq1, rq2); 535 536 raw_spin_rq_lock(rq1); 537 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 538 return; 539 540 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 541 } 542 #endif 543 544 /* 545 * __task_rq_lock - lock the rq @p resides on. 546 */ 547 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 548 __acquires(rq->lock) 549 { 550 struct rq *rq; 551 552 lockdep_assert_held(&p->pi_lock); 553 554 for (;;) { 555 rq = task_rq(p); 556 raw_spin_rq_lock(rq); 557 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 558 rq_pin_lock(rq, rf); 559 return rq; 560 } 561 raw_spin_rq_unlock(rq); 562 563 while (unlikely(task_on_rq_migrating(p))) 564 cpu_relax(); 565 } 566 } 567 568 /* 569 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 570 */ 571 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 572 __acquires(p->pi_lock) 573 __acquires(rq->lock) 574 { 575 struct rq *rq; 576 577 for (;;) { 578 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 579 rq = task_rq(p); 580 raw_spin_rq_lock(rq); 581 /* 582 * move_queued_task() task_rq_lock() 583 * 584 * ACQUIRE (rq->lock) 585 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 586 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 587 * [S] ->cpu = new_cpu [L] task_rq() 588 * [L] ->on_rq 589 * RELEASE (rq->lock) 590 * 591 * If we observe the old CPU in task_rq_lock(), the acquire of 592 * the old rq->lock will fully serialize against the stores. 593 * 594 * If we observe the new CPU in task_rq_lock(), the address 595 * dependency headed by '[L] rq = task_rq()' and the acquire 596 * will pair with the WMB to ensure we then also see migrating. 597 */ 598 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 599 rq_pin_lock(rq, rf); 600 return rq; 601 } 602 raw_spin_rq_unlock(rq); 603 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 604 605 while (unlikely(task_on_rq_migrating(p))) 606 cpu_relax(); 607 } 608 } 609 610 /* 611 * RQ-clock updating methods: 612 */ 613 614 static void update_rq_clock_task(struct rq *rq, s64 delta) 615 { 616 /* 617 * In theory, the compile should just see 0 here, and optimize out the call 618 * to sched_rt_avg_update. But I don't trust it... 619 */ 620 s64 __maybe_unused steal = 0, irq_delta = 0; 621 622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 623 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 624 625 /* 626 * Since irq_time is only updated on {soft,}irq_exit, we might run into 627 * this case when a previous update_rq_clock() happened inside a 628 * {soft,}irq region. 629 * 630 * When this happens, we stop ->clock_task and only update the 631 * prev_irq_time stamp to account for the part that fit, so that a next 632 * update will consume the rest. This ensures ->clock_task is 633 * monotonic. 634 * 635 * It does however cause some slight miss-attribution of {soft,}irq 636 * time, a more accurate solution would be to update the irq_time using 637 * the current rq->clock timestamp, except that would require using 638 * atomic ops. 639 */ 640 if (irq_delta > delta) 641 irq_delta = delta; 642 643 rq->prev_irq_time += irq_delta; 644 delta -= irq_delta; 645 #endif 646 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 647 if (static_key_false((¶virt_steal_rq_enabled))) { 648 steal = paravirt_steal_clock(cpu_of(rq)); 649 steal -= rq->prev_steal_time_rq; 650 651 if (unlikely(steal > delta)) 652 steal = delta; 653 654 rq->prev_steal_time_rq += steal; 655 delta -= steal; 656 } 657 #endif 658 659 rq->clock_task += delta; 660 661 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 662 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 663 update_irq_load_avg(rq, irq_delta + steal); 664 #endif 665 update_rq_clock_pelt(rq, delta); 666 } 667 668 void update_rq_clock(struct rq *rq) 669 { 670 s64 delta; 671 672 lockdep_assert_rq_held(rq); 673 674 if (rq->clock_update_flags & RQCF_ACT_SKIP) 675 return; 676 677 #ifdef CONFIG_SCHED_DEBUG 678 if (sched_feat(WARN_DOUBLE_CLOCK)) 679 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 680 rq->clock_update_flags |= RQCF_UPDATED; 681 #endif 682 683 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 684 if (delta < 0) 685 return; 686 rq->clock += delta; 687 update_rq_clock_task(rq, delta); 688 } 689 690 #ifdef CONFIG_SCHED_HRTICK 691 /* 692 * Use HR-timers to deliver accurate preemption points. 693 */ 694 695 static void hrtick_clear(struct rq *rq) 696 { 697 if (hrtimer_active(&rq->hrtick_timer)) 698 hrtimer_cancel(&rq->hrtick_timer); 699 } 700 701 /* 702 * High-resolution timer tick. 703 * Runs from hardirq context with interrupts disabled. 704 */ 705 static enum hrtimer_restart hrtick(struct hrtimer *timer) 706 { 707 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 708 struct rq_flags rf; 709 710 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 711 712 rq_lock(rq, &rf); 713 update_rq_clock(rq); 714 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 715 rq_unlock(rq, &rf); 716 717 return HRTIMER_NORESTART; 718 } 719 720 #ifdef CONFIG_SMP 721 722 static void __hrtick_restart(struct rq *rq) 723 { 724 struct hrtimer *timer = &rq->hrtick_timer; 725 ktime_t time = rq->hrtick_time; 726 727 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 728 } 729 730 /* 731 * called from hardirq (IPI) context 732 */ 733 static void __hrtick_start(void *arg) 734 { 735 struct rq *rq = arg; 736 struct rq_flags rf; 737 738 rq_lock(rq, &rf); 739 __hrtick_restart(rq); 740 rq_unlock(rq, &rf); 741 } 742 743 /* 744 * Called to set the hrtick timer state. 745 * 746 * called with rq->lock held and irqs disabled 747 */ 748 void hrtick_start(struct rq *rq, u64 delay) 749 { 750 struct hrtimer *timer = &rq->hrtick_timer; 751 s64 delta; 752 753 /* 754 * Don't schedule slices shorter than 10000ns, that just 755 * doesn't make sense and can cause timer DoS. 756 */ 757 delta = max_t(s64, delay, 10000LL); 758 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 759 760 if (rq == this_rq()) 761 __hrtick_restart(rq); 762 else 763 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 764 } 765 766 #else 767 /* 768 * Called to set the hrtick timer state. 769 * 770 * called with rq->lock held and irqs disabled 771 */ 772 void hrtick_start(struct rq *rq, u64 delay) 773 { 774 /* 775 * Don't schedule slices shorter than 10000ns, that just 776 * doesn't make sense. Rely on vruntime for fairness. 777 */ 778 delay = max_t(u64, delay, 10000LL); 779 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 780 HRTIMER_MODE_REL_PINNED_HARD); 781 } 782 783 #endif /* CONFIG_SMP */ 784 785 static void hrtick_rq_init(struct rq *rq) 786 { 787 #ifdef CONFIG_SMP 788 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 789 #endif 790 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 791 rq->hrtick_timer.function = hrtick; 792 } 793 #else /* CONFIG_SCHED_HRTICK */ 794 static inline void hrtick_clear(struct rq *rq) 795 { 796 } 797 798 static inline void hrtick_rq_init(struct rq *rq) 799 { 800 } 801 #endif /* CONFIG_SCHED_HRTICK */ 802 803 /* 804 * cmpxchg based fetch_or, macro so it works for different integer types 805 */ 806 #define fetch_or(ptr, mask) \ 807 ({ \ 808 typeof(ptr) _ptr = (ptr); \ 809 typeof(mask) _mask = (mask); \ 810 typeof(*_ptr) _old, _val = *_ptr; \ 811 \ 812 for (;;) { \ 813 _old = cmpxchg(_ptr, _val, _val | _mask); \ 814 if (_old == _val) \ 815 break; \ 816 _val = _old; \ 817 } \ 818 _old; \ 819 }) 820 821 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 822 /* 823 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 824 * this avoids any races wrt polling state changes and thereby avoids 825 * spurious IPIs. 826 */ 827 static bool set_nr_and_not_polling(struct task_struct *p) 828 { 829 struct thread_info *ti = task_thread_info(p); 830 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 831 } 832 833 /* 834 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 835 * 836 * If this returns true, then the idle task promises to call 837 * sched_ttwu_pending() and reschedule soon. 838 */ 839 static bool set_nr_if_polling(struct task_struct *p) 840 { 841 struct thread_info *ti = task_thread_info(p); 842 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 843 844 for (;;) { 845 if (!(val & _TIF_POLLING_NRFLAG)) 846 return false; 847 if (val & _TIF_NEED_RESCHED) 848 return true; 849 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 850 if (old == val) 851 break; 852 val = old; 853 } 854 return true; 855 } 856 857 #else 858 static bool set_nr_and_not_polling(struct task_struct *p) 859 { 860 set_tsk_need_resched(p); 861 return true; 862 } 863 864 #ifdef CONFIG_SMP 865 static bool set_nr_if_polling(struct task_struct *p) 866 { 867 return false; 868 } 869 #endif 870 #endif 871 872 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 873 { 874 struct wake_q_node *node = &task->wake_q; 875 876 /* 877 * Atomically grab the task, if ->wake_q is !nil already it means 878 * it's already queued (either by us or someone else) and will get the 879 * wakeup due to that. 880 * 881 * In order to ensure that a pending wakeup will observe our pending 882 * state, even in the failed case, an explicit smp_mb() must be used. 883 */ 884 smp_mb__before_atomic(); 885 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 886 return false; 887 888 /* 889 * The head is context local, there can be no concurrency. 890 */ 891 *head->lastp = node; 892 head->lastp = &node->next; 893 return true; 894 } 895 896 /** 897 * wake_q_add() - queue a wakeup for 'later' waking. 898 * @head: the wake_q_head to add @task to 899 * @task: the task to queue for 'later' wakeup 900 * 901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 903 * instantly. 904 * 905 * This function must be used as-if it were wake_up_process(); IOW the task 906 * must be ready to be woken at this location. 907 */ 908 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 909 { 910 if (__wake_q_add(head, task)) 911 get_task_struct(task); 912 } 913 914 /** 915 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 916 * @head: the wake_q_head to add @task to 917 * @task: the task to queue for 'later' wakeup 918 * 919 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 920 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 921 * instantly. 922 * 923 * This function must be used as-if it were wake_up_process(); IOW the task 924 * must be ready to be woken at this location. 925 * 926 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 927 * that already hold reference to @task can call the 'safe' version and trust 928 * wake_q to do the right thing depending whether or not the @task is already 929 * queued for wakeup. 930 */ 931 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 932 { 933 if (!__wake_q_add(head, task)) 934 put_task_struct(task); 935 } 936 937 void wake_up_q(struct wake_q_head *head) 938 { 939 struct wake_q_node *node = head->first; 940 941 while (node != WAKE_Q_TAIL) { 942 struct task_struct *task; 943 944 task = container_of(node, struct task_struct, wake_q); 945 /* Task can safely be re-inserted now: */ 946 node = node->next; 947 task->wake_q.next = NULL; 948 949 /* 950 * wake_up_process() executes a full barrier, which pairs with 951 * the queueing in wake_q_add() so as not to miss wakeups. 952 */ 953 wake_up_process(task); 954 put_task_struct(task); 955 } 956 } 957 958 /* 959 * resched_curr - mark rq's current task 'to be rescheduled now'. 960 * 961 * On UP this means the setting of the need_resched flag, on SMP it 962 * might also involve a cross-CPU call to trigger the scheduler on 963 * the target CPU. 964 */ 965 void resched_curr(struct rq *rq) 966 { 967 struct task_struct *curr = rq->curr; 968 int cpu; 969 970 lockdep_assert_rq_held(rq); 971 972 if (test_tsk_need_resched(curr)) 973 return; 974 975 cpu = cpu_of(rq); 976 977 if (cpu == smp_processor_id()) { 978 set_tsk_need_resched(curr); 979 set_preempt_need_resched(); 980 return; 981 } 982 983 if (set_nr_and_not_polling(curr)) 984 smp_send_reschedule(cpu); 985 else 986 trace_sched_wake_idle_without_ipi(cpu); 987 } 988 989 void resched_cpu(int cpu) 990 { 991 struct rq *rq = cpu_rq(cpu); 992 unsigned long flags; 993 994 raw_spin_rq_lock_irqsave(rq, flags); 995 if (cpu_online(cpu) || cpu == smp_processor_id()) 996 resched_curr(rq); 997 raw_spin_rq_unlock_irqrestore(rq, flags); 998 } 999 1000 #ifdef CONFIG_SMP 1001 #ifdef CONFIG_NO_HZ_COMMON 1002 /* 1003 * In the semi idle case, use the nearest busy CPU for migrating timers 1004 * from an idle CPU. This is good for power-savings. 1005 * 1006 * We don't do similar optimization for completely idle system, as 1007 * selecting an idle CPU will add more delays to the timers than intended 1008 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1009 */ 1010 int get_nohz_timer_target(void) 1011 { 1012 int i, cpu = smp_processor_id(), default_cpu = -1; 1013 struct sched_domain *sd; 1014 const struct cpumask *hk_mask; 1015 1016 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 1017 if (!idle_cpu(cpu)) 1018 return cpu; 1019 default_cpu = cpu; 1020 } 1021 1022 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER); 1023 1024 rcu_read_lock(); 1025 for_each_domain(cpu, sd) { 1026 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1027 if (cpu == i) 1028 continue; 1029 1030 if (!idle_cpu(i)) { 1031 cpu = i; 1032 goto unlock; 1033 } 1034 } 1035 } 1036 1037 if (default_cpu == -1) 1038 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1039 cpu = default_cpu; 1040 unlock: 1041 rcu_read_unlock(); 1042 return cpu; 1043 } 1044 1045 /* 1046 * When add_timer_on() enqueues a timer into the timer wheel of an 1047 * idle CPU then this timer might expire before the next timer event 1048 * which is scheduled to wake up that CPU. In case of a completely 1049 * idle system the next event might even be infinite time into the 1050 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1051 * leaves the inner idle loop so the newly added timer is taken into 1052 * account when the CPU goes back to idle and evaluates the timer 1053 * wheel for the next timer event. 1054 */ 1055 static void wake_up_idle_cpu(int cpu) 1056 { 1057 struct rq *rq = cpu_rq(cpu); 1058 1059 if (cpu == smp_processor_id()) 1060 return; 1061 1062 if (set_nr_and_not_polling(rq->idle)) 1063 smp_send_reschedule(cpu); 1064 else 1065 trace_sched_wake_idle_without_ipi(cpu); 1066 } 1067 1068 static bool wake_up_full_nohz_cpu(int cpu) 1069 { 1070 /* 1071 * We just need the target to call irq_exit() and re-evaluate 1072 * the next tick. The nohz full kick at least implies that. 1073 * If needed we can still optimize that later with an 1074 * empty IRQ. 1075 */ 1076 if (cpu_is_offline(cpu)) 1077 return true; /* Don't try to wake offline CPUs. */ 1078 if (tick_nohz_full_cpu(cpu)) { 1079 if (cpu != smp_processor_id() || 1080 tick_nohz_tick_stopped()) 1081 tick_nohz_full_kick_cpu(cpu); 1082 return true; 1083 } 1084 1085 return false; 1086 } 1087 1088 /* 1089 * Wake up the specified CPU. If the CPU is going offline, it is the 1090 * caller's responsibility to deal with the lost wakeup, for example, 1091 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1092 */ 1093 void wake_up_nohz_cpu(int cpu) 1094 { 1095 if (!wake_up_full_nohz_cpu(cpu)) 1096 wake_up_idle_cpu(cpu); 1097 } 1098 1099 static void nohz_csd_func(void *info) 1100 { 1101 struct rq *rq = info; 1102 int cpu = cpu_of(rq); 1103 unsigned int flags; 1104 1105 /* 1106 * Release the rq::nohz_csd. 1107 */ 1108 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1109 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1110 1111 rq->idle_balance = idle_cpu(cpu); 1112 if (rq->idle_balance && !need_resched()) { 1113 rq->nohz_idle_balance = flags; 1114 raise_softirq_irqoff(SCHED_SOFTIRQ); 1115 } 1116 } 1117 1118 #endif /* CONFIG_NO_HZ_COMMON */ 1119 1120 #ifdef CONFIG_NO_HZ_FULL 1121 bool sched_can_stop_tick(struct rq *rq) 1122 { 1123 int fifo_nr_running; 1124 1125 /* Deadline tasks, even if single, need the tick */ 1126 if (rq->dl.dl_nr_running) 1127 return false; 1128 1129 /* 1130 * If there are more than one RR tasks, we need the tick to affect the 1131 * actual RR behaviour. 1132 */ 1133 if (rq->rt.rr_nr_running) { 1134 if (rq->rt.rr_nr_running == 1) 1135 return true; 1136 else 1137 return false; 1138 } 1139 1140 /* 1141 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1142 * forced preemption between FIFO tasks. 1143 */ 1144 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1145 if (fifo_nr_running) 1146 return true; 1147 1148 /* 1149 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1150 * if there's more than one we need the tick for involuntary 1151 * preemption. 1152 */ 1153 if (rq->nr_running > 1) 1154 return false; 1155 1156 return true; 1157 } 1158 #endif /* CONFIG_NO_HZ_FULL */ 1159 #endif /* CONFIG_SMP */ 1160 1161 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1162 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1163 /* 1164 * Iterate task_group tree rooted at *from, calling @down when first entering a 1165 * node and @up when leaving it for the final time. 1166 * 1167 * Caller must hold rcu_lock or sufficient equivalent. 1168 */ 1169 int walk_tg_tree_from(struct task_group *from, 1170 tg_visitor down, tg_visitor up, void *data) 1171 { 1172 struct task_group *parent, *child; 1173 int ret; 1174 1175 parent = from; 1176 1177 down: 1178 ret = (*down)(parent, data); 1179 if (ret) 1180 goto out; 1181 list_for_each_entry_rcu(child, &parent->children, siblings) { 1182 parent = child; 1183 goto down; 1184 1185 up: 1186 continue; 1187 } 1188 ret = (*up)(parent, data); 1189 if (ret || parent == from) 1190 goto out; 1191 1192 child = parent; 1193 parent = parent->parent; 1194 if (parent) 1195 goto up; 1196 out: 1197 return ret; 1198 } 1199 1200 int tg_nop(struct task_group *tg, void *data) 1201 { 1202 return 0; 1203 } 1204 #endif 1205 1206 static void set_load_weight(struct task_struct *p, bool update_load) 1207 { 1208 int prio = p->static_prio - MAX_RT_PRIO; 1209 struct load_weight *load = &p->se.load; 1210 1211 /* 1212 * SCHED_IDLE tasks get minimal weight: 1213 */ 1214 if (task_has_idle_policy(p)) { 1215 load->weight = scale_load(WEIGHT_IDLEPRIO); 1216 load->inv_weight = WMULT_IDLEPRIO; 1217 return; 1218 } 1219 1220 /* 1221 * SCHED_OTHER tasks have to update their load when changing their 1222 * weight 1223 */ 1224 if (update_load && p->sched_class == &fair_sched_class) { 1225 reweight_task(p, prio); 1226 } else { 1227 load->weight = scale_load(sched_prio_to_weight[prio]); 1228 load->inv_weight = sched_prio_to_wmult[prio]; 1229 } 1230 } 1231 1232 #ifdef CONFIG_UCLAMP_TASK 1233 /* 1234 * Serializes updates of utilization clamp values 1235 * 1236 * The (slow-path) user-space triggers utilization clamp value updates which 1237 * can require updates on (fast-path) scheduler's data structures used to 1238 * support enqueue/dequeue operations. 1239 * While the per-CPU rq lock protects fast-path update operations, user-space 1240 * requests are serialized using a mutex to reduce the risk of conflicting 1241 * updates or API abuses. 1242 */ 1243 static DEFINE_MUTEX(uclamp_mutex); 1244 1245 /* Max allowed minimum utilization */ 1246 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1247 1248 /* Max allowed maximum utilization */ 1249 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1250 1251 /* 1252 * By default RT tasks run at the maximum performance point/capacity of the 1253 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1254 * SCHED_CAPACITY_SCALE. 1255 * 1256 * This knob allows admins to change the default behavior when uclamp is being 1257 * used. In battery powered devices, particularly, running at the maximum 1258 * capacity and frequency will increase energy consumption and shorten the 1259 * battery life. 1260 * 1261 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1262 * 1263 * This knob will not override the system default sched_util_clamp_min defined 1264 * above. 1265 */ 1266 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1267 1268 /* All clamps are required to be less or equal than these values */ 1269 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1270 1271 /* 1272 * This static key is used to reduce the uclamp overhead in the fast path. It 1273 * primarily disables the call to uclamp_rq_{inc, dec}() in 1274 * enqueue/dequeue_task(). 1275 * 1276 * This allows users to continue to enable uclamp in their kernel config with 1277 * minimum uclamp overhead in the fast path. 1278 * 1279 * As soon as userspace modifies any of the uclamp knobs, the static key is 1280 * enabled, since we have an actual users that make use of uclamp 1281 * functionality. 1282 * 1283 * The knobs that would enable this static key are: 1284 * 1285 * * A task modifying its uclamp value with sched_setattr(). 1286 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1287 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1288 */ 1289 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1290 1291 /* Integer rounded range for each bucket */ 1292 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1293 1294 #define for_each_clamp_id(clamp_id) \ 1295 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1296 1297 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1298 { 1299 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1300 } 1301 1302 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1303 { 1304 if (clamp_id == UCLAMP_MIN) 1305 return 0; 1306 return SCHED_CAPACITY_SCALE; 1307 } 1308 1309 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1310 unsigned int value, bool user_defined) 1311 { 1312 uc_se->value = value; 1313 uc_se->bucket_id = uclamp_bucket_id(value); 1314 uc_se->user_defined = user_defined; 1315 } 1316 1317 static inline unsigned int 1318 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1319 unsigned int clamp_value) 1320 { 1321 /* 1322 * Avoid blocked utilization pushing up the frequency when we go 1323 * idle (which drops the max-clamp) by retaining the last known 1324 * max-clamp. 1325 */ 1326 if (clamp_id == UCLAMP_MAX) { 1327 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1328 return clamp_value; 1329 } 1330 1331 return uclamp_none(UCLAMP_MIN); 1332 } 1333 1334 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1335 unsigned int clamp_value) 1336 { 1337 /* Reset max-clamp retention only on idle exit */ 1338 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1339 return; 1340 1341 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1342 } 1343 1344 static inline 1345 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1346 unsigned int clamp_value) 1347 { 1348 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1349 int bucket_id = UCLAMP_BUCKETS - 1; 1350 1351 /* 1352 * Since both min and max clamps are max aggregated, find the 1353 * top most bucket with tasks in. 1354 */ 1355 for ( ; bucket_id >= 0; bucket_id--) { 1356 if (!bucket[bucket_id].tasks) 1357 continue; 1358 return bucket[bucket_id].value; 1359 } 1360 1361 /* No tasks -- default clamp values */ 1362 return uclamp_idle_value(rq, clamp_id, clamp_value); 1363 } 1364 1365 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1366 { 1367 unsigned int default_util_min; 1368 struct uclamp_se *uc_se; 1369 1370 lockdep_assert_held(&p->pi_lock); 1371 1372 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1373 1374 /* Only sync if user didn't override the default */ 1375 if (uc_se->user_defined) 1376 return; 1377 1378 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1379 uclamp_se_set(uc_se, default_util_min, false); 1380 } 1381 1382 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1383 { 1384 struct rq_flags rf; 1385 struct rq *rq; 1386 1387 if (!rt_task(p)) 1388 return; 1389 1390 /* Protect updates to p->uclamp_* */ 1391 rq = task_rq_lock(p, &rf); 1392 __uclamp_update_util_min_rt_default(p); 1393 task_rq_unlock(rq, p, &rf); 1394 } 1395 1396 static void uclamp_sync_util_min_rt_default(void) 1397 { 1398 struct task_struct *g, *p; 1399 1400 /* 1401 * copy_process() sysctl_uclamp 1402 * uclamp_min_rt = X; 1403 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1404 * // link thread smp_mb__after_spinlock() 1405 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1406 * sched_post_fork() for_each_process_thread() 1407 * __uclamp_sync_rt() __uclamp_sync_rt() 1408 * 1409 * Ensures that either sched_post_fork() will observe the new 1410 * uclamp_min_rt or for_each_process_thread() will observe the new 1411 * task. 1412 */ 1413 read_lock(&tasklist_lock); 1414 smp_mb__after_spinlock(); 1415 read_unlock(&tasklist_lock); 1416 1417 rcu_read_lock(); 1418 for_each_process_thread(g, p) 1419 uclamp_update_util_min_rt_default(p); 1420 rcu_read_unlock(); 1421 } 1422 1423 static inline struct uclamp_se 1424 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1425 { 1426 /* Copy by value as we could modify it */ 1427 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1428 #ifdef CONFIG_UCLAMP_TASK_GROUP 1429 unsigned int tg_min, tg_max, value; 1430 1431 /* 1432 * Tasks in autogroups or root task group will be 1433 * restricted by system defaults. 1434 */ 1435 if (task_group_is_autogroup(task_group(p))) 1436 return uc_req; 1437 if (task_group(p) == &root_task_group) 1438 return uc_req; 1439 1440 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1441 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1442 value = uc_req.value; 1443 value = clamp(value, tg_min, tg_max); 1444 uclamp_se_set(&uc_req, value, false); 1445 #endif 1446 1447 return uc_req; 1448 } 1449 1450 /* 1451 * The effective clamp bucket index of a task depends on, by increasing 1452 * priority: 1453 * - the task specific clamp value, when explicitly requested from userspace 1454 * - the task group effective clamp value, for tasks not either in the root 1455 * group or in an autogroup 1456 * - the system default clamp value, defined by the sysadmin 1457 */ 1458 static inline struct uclamp_se 1459 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1460 { 1461 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1462 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1463 1464 /* System default restrictions always apply */ 1465 if (unlikely(uc_req.value > uc_max.value)) 1466 return uc_max; 1467 1468 return uc_req; 1469 } 1470 1471 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1472 { 1473 struct uclamp_se uc_eff; 1474 1475 /* Task currently refcounted: use back-annotated (effective) value */ 1476 if (p->uclamp[clamp_id].active) 1477 return (unsigned long)p->uclamp[clamp_id].value; 1478 1479 uc_eff = uclamp_eff_get(p, clamp_id); 1480 1481 return (unsigned long)uc_eff.value; 1482 } 1483 1484 /* 1485 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1486 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1487 * updates the rq's clamp value if required. 1488 * 1489 * Tasks can have a task-specific value requested from user-space, track 1490 * within each bucket the maximum value for tasks refcounted in it. 1491 * This "local max aggregation" allows to track the exact "requested" value 1492 * for each bucket when all its RUNNABLE tasks require the same clamp. 1493 */ 1494 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1495 enum uclamp_id clamp_id) 1496 { 1497 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1498 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1499 struct uclamp_bucket *bucket; 1500 1501 lockdep_assert_rq_held(rq); 1502 1503 /* Update task effective clamp */ 1504 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1505 1506 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1507 bucket->tasks++; 1508 uc_se->active = true; 1509 1510 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1511 1512 /* 1513 * Local max aggregation: rq buckets always track the max 1514 * "requested" clamp value of its RUNNABLE tasks. 1515 */ 1516 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1517 bucket->value = uc_se->value; 1518 1519 if (uc_se->value > READ_ONCE(uc_rq->value)) 1520 WRITE_ONCE(uc_rq->value, uc_se->value); 1521 } 1522 1523 /* 1524 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1525 * is released. If this is the last task reference counting the rq's max 1526 * active clamp value, then the rq's clamp value is updated. 1527 * 1528 * Both refcounted tasks and rq's cached clamp values are expected to be 1529 * always valid. If it's detected they are not, as defensive programming, 1530 * enforce the expected state and warn. 1531 */ 1532 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1533 enum uclamp_id clamp_id) 1534 { 1535 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1536 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1537 struct uclamp_bucket *bucket; 1538 unsigned int bkt_clamp; 1539 unsigned int rq_clamp; 1540 1541 lockdep_assert_rq_held(rq); 1542 1543 /* 1544 * If sched_uclamp_used was enabled after task @p was enqueued, 1545 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1546 * 1547 * In this case the uc_se->active flag should be false since no uclamp 1548 * accounting was performed at enqueue time and we can just return 1549 * here. 1550 * 1551 * Need to be careful of the following enqueue/dequeue ordering 1552 * problem too 1553 * 1554 * enqueue(taskA) 1555 * // sched_uclamp_used gets enabled 1556 * enqueue(taskB) 1557 * dequeue(taskA) 1558 * // Must not decrement bucket->tasks here 1559 * dequeue(taskB) 1560 * 1561 * where we could end up with stale data in uc_se and 1562 * bucket[uc_se->bucket_id]. 1563 * 1564 * The following check here eliminates the possibility of such race. 1565 */ 1566 if (unlikely(!uc_se->active)) 1567 return; 1568 1569 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1570 1571 SCHED_WARN_ON(!bucket->tasks); 1572 if (likely(bucket->tasks)) 1573 bucket->tasks--; 1574 1575 uc_se->active = false; 1576 1577 /* 1578 * Keep "local max aggregation" simple and accept to (possibly) 1579 * overboost some RUNNABLE tasks in the same bucket. 1580 * The rq clamp bucket value is reset to its base value whenever 1581 * there are no more RUNNABLE tasks refcounting it. 1582 */ 1583 if (likely(bucket->tasks)) 1584 return; 1585 1586 rq_clamp = READ_ONCE(uc_rq->value); 1587 /* 1588 * Defensive programming: this should never happen. If it happens, 1589 * e.g. due to future modification, warn and fixup the expected value. 1590 */ 1591 SCHED_WARN_ON(bucket->value > rq_clamp); 1592 if (bucket->value >= rq_clamp) { 1593 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1594 WRITE_ONCE(uc_rq->value, bkt_clamp); 1595 } 1596 } 1597 1598 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1599 { 1600 enum uclamp_id clamp_id; 1601 1602 /* 1603 * Avoid any overhead until uclamp is actually used by the userspace. 1604 * 1605 * The condition is constructed such that a NOP is generated when 1606 * sched_uclamp_used is disabled. 1607 */ 1608 if (!static_branch_unlikely(&sched_uclamp_used)) 1609 return; 1610 1611 if (unlikely(!p->sched_class->uclamp_enabled)) 1612 return; 1613 1614 for_each_clamp_id(clamp_id) 1615 uclamp_rq_inc_id(rq, p, clamp_id); 1616 1617 /* Reset clamp idle holding when there is one RUNNABLE task */ 1618 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1619 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1620 } 1621 1622 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1623 { 1624 enum uclamp_id clamp_id; 1625 1626 /* 1627 * Avoid any overhead until uclamp is actually used by the userspace. 1628 * 1629 * The condition is constructed such that a NOP is generated when 1630 * sched_uclamp_used is disabled. 1631 */ 1632 if (!static_branch_unlikely(&sched_uclamp_used)) 1633 return; 1634 1635 if (unlikely(!p->sched_class->uclamp_enabled)) 1636 return; 1637 1638 for_each_clamp_id(clamp_id) 1639 uclamp_rq_dec_id(rq, p, clamp_id); 1640 } 1641 1642 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1643 enum uclamp_id clamp_id) 1644 { 1645 if (!p->uclamp[clamp_id].active) 1646 return; 1647 1648 uclamp_rq_dec_id(rq, p, clamp_id); 1649 uclamp_rq_inc_id(rq, p, clamp_id); 1650 1651 /* 1652 * Make sure to clear the idle flag if we've transiently reached 0 1653 * active tasks on rq. 1654 */ 1655 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1656 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1657 } 1658 1659 static inline void 1660 uclamp_update_active(struct task_struct *p) 1661 { 1662 enum uclamp_id clamp_id; 1663 struct rq_flags rf; 1664 struct rq *rq; 1665 1666 /* 1667 * Lock the task and the rq where the task is (or was) queued. 1668 * 1669 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1670 * price to pay to safely serialize util_{min,max} updates with 1671 * enqueues, dequeues and migration operations. 1672 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1673 */ 1674 rq = task_rq_lock(p, &rf); 1675 1676 /* 1677 * Setting the clamp bucket is serialized by task_rq_lock(). 1678 * If the task is not yet RUNNABLE and its task_struct is not 1679 * affecting a valid clamp bucket, the next time it's enqueued, 1680 * it will already see the updated clamp bucket value. 1681 */ 1682 for_each_clamp_id(clamp_id) 1683 uclamp_rq_reinc_id(rq, p, clamp_id); 1684 1685 task_rq_unlock(rq, p, &rf); 1686 } 1687 1688 #ifdef CONFIG_UCLAMP_TASK_GROUP 1689 static inline void 1690 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1691 { 1692 struct css_task_iter it; 1693 struct task_struct *p; 1694 1695 css_task_iter_start(css, 0, &it); 1696 while ((p = css_task_iter_next(&it))) 1697 uclamp_update_active(p); 1698 css_task_iter_end(&it); 1699 } 1700 1701 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1702 static void uclamp_update_root_tg(void) 1703 { 1704 struct task_group *tg = &root_task_group; 1705 1706 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1707 sysctl_sched_uclamp_util_min, false); 1708 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1709 sysctl_sched_uclamp_util_max, false); 1710 1711 rcu_read_lock(); 1712 cpu_util_update_eff(&root_task_group.css); 1713 rcu_read_unlock(); 1714 } 1715 #else 1716 static void uclamp_update_root_tg(void) { } 1717 #endif 1718 1719 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1720 void *buffer, size_t *lenp, loff_t *ppos) 1721 { 1722 bool update_root_tg = false; 1723 int old_min, old_max, old_min_rt; 1724 int result; 1725 1726 mutex_lock(&uclamp_mutex); 1727 old_min = sysctl_sched_uclamp_util_min; 1728 old_max = sysctl_sched_uclamp_util_max; 1729 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1730 1731 result = proc_dointvec(table, write, buffer, lenp, ppos); 1732 if (result) 1733 goto undo; 1734 if (!write) 1735 goto done; 1736 1737 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1738 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1739 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1740 1741 result = -EINVAL; 1742 goto undo; 1743 } 1744 1745 if (old_min != sysctl_sched_uclamp_util_min) { 1746 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1747 sysctl_sched_uclamp_util_min, false); 1748 update_root_tg = true; 1749 } 1750 if (old_max != sysctl_sched_uclamp_util_max) { 1751 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1752 sysctl_sched_uclamp_util_max, false); 1753 update_root_tg = true; 1754 } 1755 1756 if (update_root_tg) { 1757 static_branch_enable(&sched_uclamp_used); 1758 uclamp_update_root_tg(); 1759 } 1760 1761 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1762 static_branch_enable(&sched_uclamp_used); 1763 uclamp_sync_util_min_rt_default(); 1764 } 1765 1766 /* 1767 * We update all RUNNABLE tasks only when task groups are in use. 1768 * Otherwise, keep it simple and do just a lazy update at each next 1769 * task enqueue time. 1770 */ 1771 1772 goto done; 1773 1774 undo: 1775 sysctl_sched_uclamp_util_min = old_min; 1776 sysctl_sched_uclamp_util_max = old_max; 1777 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1778 done: 1779 mutex_unlock(&uclamp_mutex); 1780 1781 return result; 1782 } 1783 1784 static int uclamp_validate(struct task_struct *p, 1785 const struct sched_attr *attr) 1786 { 1787 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1788 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1789 1790 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1791 util_min = attr->sched_util_min; 1792 1793 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1794 return -EINVAL; 1795 } 1796 1797 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1798 util_max = attr->sched_util_max; 1799 1800 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1801 return -EINVAL; 1802 } 1803 1804 if (util_min != -1 && util_max != -1 && util_min > util_max) 1805 return -EINVAL; 1806 1807 /* 1808 * We have valid uclamp attributes; make sure uclamp is enabled. 1809 * 1810 * We need to do that here, because enabling static branches is a 1811 * blocking operation which obviously cannot be done while holding 1812 * scheduler locks. 1813 */ 1814 static_branch_enable(&sched_uclamp_used); 1815 1816 return 0; 1817 } 1818 1819 static bool uclamp_reset(const struct sched_attr *attr, 1820 enum uclamp_id clamp_id, 1821 struct uclamp_se *uc_se) 1822 { 1823 /* Reset on sched class change for a non user-defined clamp value. */ 1824 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1825 !uc_se->user_defined) 1826 return true; 1827 1828 /* Reset on sched_util_{min,max} == -1. */ 1829 if (clamp_id == UCLAMP_MIN && 1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1831 attr->sched_util_min == -1) { 1832 return true; 1833 } 1834 1835 if (clamp_id == UCLAMP_MAX && 1836 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1837 attr->sched_util_max == -1) { 1838 return true; 1839 } 1840 1841 return false; 1842 } 1843 1844 static void __setscheduler_uclamp(struct task_struct *p, 1845 const struct sched_attr *attr) 1846 { 1847 enum uclamp_id clamp_id; 1848 1849 for_each_clamp_id(clamp_id) { 1850 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1851 unsigned int value; 1852 1853 if (!uclamp_reset(attr, clamp_id, uc_se)) 1854 continue; 1855 1856 /* 1857 * RT by default have a 100% boost value that could be modified 1858 * at runtime. 1859 */ 1860 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1861 value = sysctl_sched_uclamp_util_min_rt_default; 1862 else 1863 value = uclamp_none(clamp_id); 1864 1865 uclamp_se_set(uc_se, value, false); 1866 1867 } 1868 1869 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1870 return; 1871 1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1873 attr->sched_util_min != -1) { 1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1875 attr->sched_util_min, true); 1876 } 1877 1878 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1879 attr->sched_util_max != -1) { 1880 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1881 attr->sched_util_max, true); 1882 } 1883 } 1884 1885 static void uclamp_fork(struct task_struct *p) 1886 { 1887 enum uclamp_id clamp_id; 1888 1889 /* 1890 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1891 * as the task is still at its early fork stages. 1892 */ 1893 for_each_clamp_id(clamp_id) 1894 p->uclamp[clamp_id].active = false; 1895 1896 if (likely(!p->sched_reset_on_fork)) 1897 return; 1898 1899 for_each_clamp_id(clamp_id) { 1900 uclamp_se_set(&p->uclamp_req[clamp_id], 1901 uclamp_none(clamp_id), false); 1902 } 1903 } 1904 1905 static void uclamp_post_fork(struct task_struct *p) 1906 { 1907 uclamp_update_util_min_rt_default(p); 1908 } 1909 1910 static void __init init_uclamp_rq(struct rq *rq) 1911 { 1912 enum uclamp_id clamp_id; 1913 struct uclamp_rq *uc_rq = rq->uclamp; 1914 1915 for_each_clamp_id(clamp_id) { 1916 uc_rq[clamp_id] = (struct uclamp_rq) { 1917 .value = uclamp_none(clamp_id) 1918 }; 1919 } 1920 1921 rq->uclamp_flags = 0; 1922 } 1923 1924 static void __init init_uclamp(void) 1925 { 1926 struct uclamp_se uc_max = {}; 1927 enum uclamp_id clamp_id; 1928 int cpu; 1929 1930 for_each_possible_cpu(cpu) 1931 init_uclamp_rq(cpu_rq(cpu)); 1932 1933 for_each_clamp_id(clamp_id) { 1934 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1935 uclamp_none(clamp_id), false); 1936 } 1937 1938 /* System defaults allow max clamp values for both indexes */ 1939 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1940 for_each_clamp_id(clamp_id) { 1941 uclamp_default[clamp_id] = uc_max; 1942 #ifdef CONFIG_UCLAMP_TASK_GROUP 1943 root_task_group.uclamp_req[clamp_id] = uc_max; 1944 root_task_group.uclamp[clamp_id] = uc_max; 1945 #endif 1946 } 1947 } 1948 1949 #else /* CONFIG_UCLAMP_TASK */ 1950 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1951 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1952 static inline int uclamp_validate(struct task_struct *p, 1953 const struct sched_attr *attr) 1954 { 1955 return -EOPNOTSUPP; 1956 } 1957 static void __setscheduler_uclamp(struct task_struct *p, 1958 const struct sched_attr *attr) { } 1959 static inline void uclamp_fork(struct task_struct *p) { } 1960 static inline void uclamp_post_fork(struct task_struct *p) { } 1961 static inline void init_uclamp(void) { } 1962 #endif /* CONFIG_UCLAMP_TASK */ 1963 1964 bool sched_task_on_rq(struct task_struct *p) 1965 { 1966 return task_on_rq_queued(p); 1967 } 1968 1969 unsigned long get_wchan(struct task_struct *p) 1970 { 1971 unsigned long ip = 0; 1972 unsigned int state; 1973 1974 if (!p || p == current) 1975 return 0; 1976 1977 /* Only get wchan if task is blocked and we can keep it that way. */ 1978 raw_spin_lock_irq(&p->pi_lock); 1979 state = READ_ONCE(p->__state); 1980 smp_rmb(); /* see try_to_wake_up() */ 1981 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1982 ip = __get_wchan(p); 1983 raw_spin_unlock_irq(&p->pi_lock); 1984 1985 return ip; 1986 } 1987 1988 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1989 { 1990 if (!(flags & ENQUEUE_NOCLOCK)) 1991 update_rq_clock(rq); 1992 1993 if (!(flags & ENQUEUE_RESTORE)) { 1994 sched_info_enqueue(rq, p); 1995 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1996 } 1997 1998 uclamp_rq_inc(rq, p); 1999 p->sched_class->enqueue_task(rq, p, flags); 2000 2001 if (sched_core_enabled(rq)) 2002 sched_core_enqueue(rq, p); 2003 } 2004 2005 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2006 { 2007 if (sched_core_enabled(rq)) 2008 sched_core_dequeue(rq, p); 2009 2010 if (!(flags & DEQUEUE_NOCLOCK)) 2011 update_rq_clock(rq); 2012 2013 if (!(flags & DEQUEUE_SAVE)) { 2014 sched_info_dequeue(rq, p); 2015 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2016 } 2017 2018 uclamp_rq_dec(rq, p); 2019 p->sched_class->dequeue_task(rq, p, flags); 2020 } 2021 2022 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2023 { 2024 enqueue_task(rq, p, flags); 2025 2026 p->on_rq = TASK_ON_RQ_QUEUED; 2027 } 2028 2029 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2030 { 2031 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2032 2033 dequeue_task(rq, p, flags); 2034 } 2035 2036 static inline int __normal_prio(int policy, int rt_prio, int nice) 2037 { 2038 int prio; 2039 2040 if (dl_policy(policy)) 2041 prio = MAX_DL_PRIO - 1; 2042 else if (rt_policy(policy)) 2043 prio = MAX_RT_PRIO - 1 - rt_prio; 2044 else 2045 prio = NICE_TO_PRIO(nice); 2046 2047 return prio; 2048 } 2049 2050 /* 2051 * Calculate the expected normal priority: i.e. priority 2052 * without taking RT-inheritance into account. Might be 2053 * boosted by interactivity modifiers. Changes upon fork, 2054 * setprio syscalls, and whenever the interactivity 2055 * estimator recalculates. 2056 */ 2057 static inline int normal_prio(struct task_struct *p) 2058 { 2059 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2060 } 2061 2062 /* 2063 * Calculate the current priority, i.e. the priority 2064 * taken into account by the scheduler. This value might 2065 * be boosted by RT tasks, or might be boosted by 2066 * interactivity modifiers. Will be RT if the task got 2067 * RT-boosted. If not then it returns p->normal_prio. 2068 */ 2069 static int effective_prio(struct task_struct *p) 2070 { 2071 p->normal_prio = normal_prio(p); 2072 /* 2073 * If we are RT tasks or we were boosted to RT priority, 2074 * keep the priority unchanged. Otherwise, update priority 2075 * to the normal priority: 2076 */ 2077 if (!rt_prio(p->prio)) 2078 return p->normal_prio; 2079 return p->prio; 2080 } 2081 2082 /** 2083 * task_curr - is this task currently executing on a CPU? 2084 * @p: the task in question. 2085 * 2086 * Return: 1 if the task is currently executing. 0 otherwise. 2087 */ 2088 inline int task_curr(const struct task_struct *p) 2089 { 2090 return cpu_curr(task_cpu(p)) == p; 2091 } 2092 2093 /* 2094 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2095 * use the balance_callback list if you want balancing. 2096 * 2097 * this means any call to check_class_changed() must be followed by a call to 2098 * balance_callback(). 2099 */ 2100 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2101 const struct sched_class *prev_class, 2102 int oldprio) 2103 { 2104 if (prev_class != p->sched_class) { 2105 if (prev_class->switched_from) 2106 prev_class->switched_from(rq, p); 2107 2108 p->sched_class->switched_to(rq, p); 2109 } else if (oldprio != p->prio || dl_task(p)) 2110 p->sched_class->prio_changed(rq, p, oldprio); 2111 } 2112 2113 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2114 { 2115 if (p->sched_class == rq->curr->sched_class) 2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2117 else if (p->sched_class > rq->curr->sched_class) 2118 resched_curr(rq); 2119 2120 /* 2121 * A queue event has occurred, and we're going to schedule. In 2122 * this case, we can save a useless back to back clock update. 2123 */ 2124 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2125 rq_clock_skip_update(rq); 2126 } 2127 2128 #ifdef CONFIG_SMP 2129 2130 static void 2131 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2132 2133 static int __set_cpus_allowed_ptr(struct task_struct *p, 2134 const struct cpumask *new_mask, 2135 u32 flags); 2136 2137 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2138 { 2139 if (likely(!p->migration_disabled)) 2140 return; 2141 2142 if (p->cpus_ptr != &p->cpus_mask) 2143 return; 2144 2145 /* 2146 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2147 */ 2148 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2149 } 2150 2151 void migrate_disable(void) 2152 { 2153 struct task_struct *p = current; 2154 2155 if (p->migration_disabled) { 2156 p->migration_disabled++; 2157 return; 2158 } 2159 2160 preempt_disable(); 2161 this_rq()->nr_pinned++; 2162 p->migration_disabled = 1; 2163 preempt_enable(); 2164 } 2165 EXPORT_SYMBOL_GPL(migrate_disable); 2166 2167 void migrate_enable(void) 2168 { 2169 struct task_struct *p = current; 2170 2171 if (p->migration_disabled > 1) { 2172 p->migration_disabled--; 2173 return; 2174 } 2175 2176 /* 2177 * Ensure stop_task runs either before or after this, and that 2178 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2179 */ 2180 preempt_disable(); 2181 if (p->cpus_ptr != &p->cpus_mask) 2182 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2183 /* 2184 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2185 * regular cpus_mask, otherwise things that race (eg. 2186 * select_fallback_rq) get confused. 2187 */ 2188 barrier(); 2189 p->migration_disabled = 0; 2190 this_rq()->nr_pinned--; 2191 preempt_enable(); 2192 } 2193 EXPORT_SYMBOL_GPL(migrate_enable); 2194 2195 static inline bool rq_has_pinned_tasks(struct rq *rq) 2196 { 2197 return rq->nr_pinned; 2198 } 2199 2200 /* 2201 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2202 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2203 */ 2204 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2205 { 2206 /* When not in the task's cpumask, no point in looking further. */ 2207 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2208 return false; 2209 2210 /* migrate_disabled() must be allowed to finish. */ 2211 if (is_migration_disabled(p)) 2212 return cpu_online(cpu); 2213 2214 /* Non kernel threads are not allowed during either online or offline. */ 2215 if (!(p->flags & PF_KTHREAD)) 2216 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2217 2218 /* KTHREAD_IS_PER_CPU is always allowed. */ 2219 if (kthread_is_per_cpu(p)) 2220 return cpu_online(cpu); 2221 2222 /* Regular kernel threads don't get to stay during offline. */ 2223 if (cpu_dying(cpu)) 2224 return false; 2225 2226 /* But are allowed during online. */ 2227 return cpu_online(cpu); 2228 } 2229 2230 /* 2231 * This is how migration works: 2232 * 2233 * 1) we invoke migration_cpu_stop() on the target CPU using 2234 * stop_one_cpu(). 2235 * 2) stopper starts to run (implicitly forcing the migrated thread 2236 * off the CPU) 2237 * 3) it checks whether the migrated task is still in the wrong runqueue. 2238 * 4) if it's in the wrong runqueue then the migration thread removes 2239 * it and puts it into the right queue. 2240 * 5) stopper completes and stop_one_cpu() returns and the migration 2241 * is done. 2242 */ 2243 2244 /* 2245 * move_queued_task - move a queued task to new rq. 2246 * 2247 * Returns (locked) new rq. Old rq's lock is released. 2248 */ 2249 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2250 struct task_struct *p, int new_cpu) 2251 { 2252 lockdep_assert_rq_held(rq); 2253 2254 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2255 set_task_cpu(p, new_cpu); 2256 rq_unlock(rq, rf); 2257 2258 rq = cpu_rq(new_cpu); 2259 2260 rq_lock(rq, rf); 2261 BUG_ON(task_cpu(p) != new_cpu); 2262 activate_task(rq, p, 0); 2263 check_preempt_curr(rq, p, 0); 2264 2265 return rq; 2266 } 2267 2268 struct migration_arg { 2269 struct task_struct *task; 2270 int dest_cpu; 2271 struct set_affinity_pending *pending; 2272 }; 2273 2274 /* 2275 * @refs: number of wait_for_completion() 2276 * @stop_pending: is @stop_work in use 2277 */ 2278 struct set_affinity_pending { 2279 refcount_t refs; 2280 unsigned int stop_pending; 2281 struct completion done; 2282 struct cpu_stop_work stop_work; 2283 struct migration_arg arg; 2284 }; 2285 2286 /* 2287 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2288 * this because either it can't run here any more (set_cpus_allowed() 2289 * away from this CPU, or CPU going down), or because we're 2290 * attempting to rebalance this task on exec (sched_exec). 2291 * 2292 * So we race with normal scheduler movements, but that's OK, as long 2293 * as the task is no longer on this CPU. 2294 */ 2295 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2296 struct task_struct *p, int dest_cpu) 2297 { 2298 /* Affinity changed (again). */ 2299 if (!is_cpu_allowed(p, dest_cpu)) 2300 return rq; 2301 2302 update_rq_clock(rq); 2303 rq = move_queued_task(rq, rf, p, dest_cpu); 2304 2305 return rq; 2306 } 2307 2308 /* 2309 * migration_cpu_stop - this will be executed by a highprio stopper thread 2310 * and performs thread migration by bumping thread off CPU then 2311 * 'pushing' onto another runqueue. 2312 */ 2313 static int migration_cpu_stop(void *data) 2314 { 2315 struct migration_arg *arg = data; 2316 struct set_affinity_pending *pending = arg->pending; 2317 struct task_struct *p = arg->task; 2318 struct rq *rq = this_rq(); 2319 bool complete = false; 2320 struct rq_flags rf; 2321 2322 /* 2323 * The original target CPU might have gone down and we might 2324 * be on another CPU but it doesn't matter. 2325 */ 2326 local_irq_save(rf.flags); 2327 /* 2328 * We need to explicitly wake pending tasks before running 2329 * __migrate_task() such that we will not miss enforcing cpus_ptr 2330 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2331 */ 2332 flush_smp_call_function_from_idle(); 2333 2334 raw_spin_lock(&p->pi_lock); 2335 rq_lock(rq, &rf); 2336 2337 /* 2338 * If we were passed a pending, then ->stop_pending was set, thus 2339 * p->migration_pending must have remained stable. 2340 */ 2341 WARN_ON_ONCE(pending && pending != p->migration_pending); 2342 2343 /* 2344 * If task_rq(p) != rq, it cannot be migrated here, because we're 2345 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2346 * we're holding p->pi_lock. 2347 */ 2348 if (task_rq(p) == rq) { 2349 if (is_migration_disabled(p)) 2350 goto out; 2351 2352 if (pending) { 2353 p->migration_pending = NULL; 2354 complete = true; 2355 2356 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2357 goto out; 2358 } 2359 2360 if (task_on_rq_queued(p)) 2361 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2362 else 2363 p->wake_cpu = arg->dest_cpu; 2364 2365 /* 2366 * XXX __migrate_task() can fail, at which point we might end 2367 * up running on a dodgy CPU, AFAICT this can only happen 2368 * during CPU hotplug, at which point we'll get pushed out 2369 * anyway, so it's probably not a big deal. 2370 */ 2371 2372 } else if (pending) { 2373 /* 2374 * This happens when we get migrated between migrate_enable()'s 2375 * preempt_enable() and scheduling the stopper task. At that 2376 * point we're a regular task again and not current anymore. 2377 * 2378 * A !PREEMPT kernel has a giant hole here, which makes it far 2379 * more likely. 2380 */ 2381 2382 /* 2383 * The task moved before the stopper got to run. We're holding 2384 * ->pi_lock, so the allowed mask is stable - if it got 2385 * somewhere allowed, we're done. 2386 */ 2387 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2388 p->migration_pending = NULL; 2389 complete = true; 2390 goto out; 2391 } 2392 2393 /* 2394 * When migrate_enable() hits a rq mis-match we can't reliably 2395 * determine is_migration_disabled() and so have to chase after 2396 * it. 2397 */ 2398 WARN_ON_ONCE(!pending->stop_pending); 2399 task_rq_unlock(rq, p, &rf); 2400 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2401 &pending->arg, &pending->stop_work); 2402 return 0; 2403 } 2404 out: 2405 if (pending) 2406 pending->stop_pending = false; 2407 task_rq_unlock(rq, p, &rf); 2408 2409 if (complete) 2410 complete_all(&pending->done); 2411 2412 return 0; 2413 } 2414 2415 int push_cpu_stop(void *arg) 2416 { 2417 struct rq *lowest_rq = NULL, *rq = this_rq(); 2418 struct task_struct *p = arg; 2419 2420 raw_spin_lock_irq(&p->pi_lock); 2421 raw_spin_rq_lock(rq); 2422 2423 if (task_rq(p) != rq) 2424 goto out_unlock; 2425 2426 if (is_migration_disabled(p)) { 2427 p->migration_flags |= MDF_PUSH; 2428 goto out_unlock; 2429 } 2430 2431 p->migration_flags &= ~MDF_PUSH; 2432 2433 if (p->sched_class->find_lock_rq) 2434 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2435 2436 if (!lowest_rq) 2437 goto out_unlock; 2438 2439 // XXX validate p is still the highest prio task 2440 if (task_rq(p) == rq) { 2441 deactivate_task(rq, p, 0); 2442 set_task_cpu(p, lowest_rq->cpu); 2443 activate_task(lowest_rq, p, 0); 2444 resched_curr(lowest_rq); 2445 } 2446 2447 double_unlock_balance(rq, lowest_rq); 2448 2449 out_unlock: 2450 rq->push_busy = false; 2451 raw_spin_rq_unlock(rq); 2452 raw_spin_unlock_irq(&p->pi_lock); 2453 2454 put_task_struct(p); 2455 return 0; 2456 } 2457 2458 /* 2459 * sched_class::set_cpus_allowed must do the below, but is not required to 2460 * actually call this function. 2461 */ 2462 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2463 { 2464 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2465 p->cpus_ptr = new_mask; 2466 return; 2467 } 2468 2469 cpumask_copy(&p->cpus_mask, new_mask); 2470 p->nr_cpus_allowed = cpumask_weight(new_mask); 2471 } 2472 2473 static void 2474 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2475 { 2476 struct rq *rq = task_rq(p); 2477 bool queued, running; 2478 2479 /* 2480 * This here violates the locking rules for affinity, since we're only 2481 * supposed to change these variables while holding both rq->lock and 2482 * p->pi_lock. 2483 * 2484 * HOWEVER, it magically works, because ttwu() is the only code that 2485 * accesses these variables under p->pi_lock and only does so after 2486 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2487 * before finish_task(). 2488 * 2489 * XXX do further audits, this smells like something putrid. 2490 */ 2491 if (flags & SCA_MIGRATE_DISABLE) 2492 SCHED_WARN_ON(!p->on_cpu); 2493 else 2494 lockdep_assert_held(&p->pi_lock); 2495 2496 queued = task_on_rq_queued(p); 2497 running = task_current(rq, p); 2498 2499 if (queued) { 2500 /* 2501 * Because __kthread_bind() calls this on blocked tasks without 2502 * holding rq->lock. 2503 */ 2504 lockdep_assert_rq_held(rq); 2505 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2506 } 2507 if (running) 2508 put_prev_task(rq, p); 2509 2510 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2511 2512 if (queued) 2513 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2514 if (running) 2515 set_next_task(rq, p); 2516 } 2517 2518 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2519 { 2520 __do_set_cpus_allowed(p, new_mask, 0); 2521 } 2522 2523 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2524 int node) 2525 { 2526 if (!src->user_cpus_ptr) 2527 return 0; 2528 2529 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2530 if (!dst->user_cpus_ptr) 2531 return -ENOMEM; 2532 2533 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2534 return 0; 2535 } 2536 2537 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2538 { 2539 struct cpumask *user_mask = NULL; 2540 2541 swap(p->user_cpus_ptr, user_mask); 2542 2543 return user_mask; 2544 } 2545 2546 void release_user_cpus_ptr(struct task_struct *p) 2547 { 2548 kfree(clear_user_cpus_ptr(p)); 2549 } 2550 2551 /* 2552 * This function is wildly self concurrent; here be dragons. 2553 * 2554 * 2555 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2556 * designated task is enqueued on an allowed CPU. If that task is currently 2557 * running, we have to kick it out using the CPU stopper. 2558 * 2559 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2560 * Consider: 2561 * 2562 * Initial conditions: P0->cpus_mask = [0, 1] 2563 * 2564 * P0@CPU0 P1 2565 * 2566 * migrate_disable(); 2567 * <preempted> 2568 * set_cpus_allowed_ptr(P0, [1]); 2569 * 2570 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2571 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2572 * This means we need the following scheme: 2573 * 2574 * P0@CPU0 P1 2575 * 2576 * migrate_disable(); 2577 * <preempted> 2578 * set_cpus_allowed_ptr(P0, [1]); 2579 * <blocks> 2580 * <resumes> 2581 * migrate_enable(); 2582 * __set_cpus_allowed_ptr(); 2583 * <wakes local stopper> 2584 * `--> <woken on migration completion> 2585 * 2586 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2587 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2588 * task p are serialized by p->pi_lock, which we can leverage: the one that 2589 * should come into effect at the end of the Migrate-Disable region is the last 2590 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2591 * but we still need to properly signal those waiting tasks at the appropriate 2592 * moment. 2593 * 2594 * This is implemented using struct set_affinity_pending. The first 2595 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2596 * setup an instance of that struct and install it on the targeted task_struct. 2597 * Any and all further callers will reuse that instance. Those then wait for 2598 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2599 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2600 * 2601 * 2602 * (1) In the cases covered above. There is one more where the completion is 2603 * signaled within affine_move_task() itself: when a subsequent affinity request 2604 * occurs after the stopper bailed out due to the targeted task still being 2605 * Migrate-Disable. Consider: 2606 * 2607 * Initial conditions: P0->cpus_mask = [0, 1] 2608 * 2609 * CPU0 P1 P2 2610 * <P0> 2611 * migrate_disable(); 2612 * <preempted> 2613 * set_cpus_allowed_ptr(P0, [1]); 2614 * <blocks> 2615 * <migration/0> 2616 * migration_cpu_stop() 2617 * is_migration_disabled() 2618 * <bails> 2619 * set_cpus_allowed_ptr(P0, [0, 1]); 2620 * <signal completion> 2621 * <awakes> 2622 * 2623 * Note that the above is safe vs a concurrent migrate_enable(), as any 2624 * pending affinity completion is preceded by an uninstallation of 2625 * p->migration_pending done with p->pi_lock held. 2626 */ 2627 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2628 int dest_cpu, unsigned int flags) 2629 { 2630 struct set_affinity_pending my_pending = { }, *pending = NULL; 2631 bool stop_pending, complete = false; 2632 2633 /* Can the task run on the task's current CPU? If so, we're done */ 2634 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2635 struct task_struct *push_task = NULL; 2636 2637 if ((flags & SCA_MIGRATE_ENABLE) && 2638 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2639 rq->push_busy = true; 2640 push_task = get_task_struct(p); 2641 } 2642 2643 /* 2644 * If there are pending waiters, but no pending stop_work, 2645 * then complete now. 2646 */ 2647 pending = p->migration_pending; 2648 if (pending && !pending->stop_pending) { 2649 p->migration_pending = NULL; 2650 complete = true; 2651 } 2652 2653 task_rq_unlock(rq, p, rf); 2654 2655 if (push_task) { 2656 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2657 p, &rq->push_work); 2658 } 2659 2660 if (complete) 2661 complete_all(&pending->done); 2662 2663 return 0; 2664 } 2665 2666 if (!(flags & SCA_MIGRATE_ENABLE)) { 2667 /* serialized by p->pi_lock */ 2668 if (!p->migration_pending) { 2669 /* Install the request */ 2670 refcount_set(&my_pending.refs, 1); 2671 init_completion(&my_pending.done); 2672 my_pending.arg = (struct migration_arg) { 2673 .task = p, 2674 .dest_cpu = dest_cpu, 2675 .pending = &my_pending, 2676 }; 2677 2678 p->migration_pending = &my_pending; 2679 } else { 2680 pending = p->migration_pending; 2681 refcount_inc(&pending->refs); 2682 /* 2683 * Affinity has changed, but we've already installed a 2684 * pending. migration_cpu_stop() *must* see this, else 2685 * we risk a completion of the pending despite having a 2686 * task on a disallowed CPU. 2687 * 2688 * Serialized by p->pi_lock, so this is safe. 2689 */ 2690 pending->arg.dest_cpu = dest_cpu; 2691 } 2692 } 2693 pending = p->migration_pending; 2694 /* 2695 * - !MIGRATE_ENABLE: 2696 * we'll have installed a pending if there wasn't one already. 2697 * 2698 * - MIGRATE_ENABLE: 2699 * we're here because the current CPU isn't matching anymore, 2700 * the only way that can happen is because of a concurrent 2701 * set_cpus_allowed_ptr() call, which should then still be 2702 * pending completion. 2703 * 2704 * Either way, we really should have a @pending here. 2705 */ 2706 if (WARN_ON_ONCE(!pending)) { 2707 task_rq_unlock(rq, p, rf); 2708 return -EINVAL; 2709 } 2710 2711 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2712 /* 2713 * MIGRATE_ENABLE gets here because 'p == current', but for 2714 * anything else we cannot do is_migration_disabled(), punt 2715 * and have the stopper function handle it all race-free. 2716 */ 2717 stop_pending = pending->stop_pending; 2718 if (!stop_pending) 2719 pending->stop_pending = true; 2720 2721 if (flags & SCA_MIGRATE_ENABLE) 2722 p->migration_flags &= ~MDF_PUSH; 2723 2724 task_rq_unlock(rq, p, rf); 2725 2726 if (!stop_pending) { 2727 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2728 &pending->arg, &pending->stop_work); 2729 } 2730 2731 if (flags & SCA_MIGRATE_ENABLE) 2732 return 0; 2733 } else { 2734 2735 if (!is_migration_disabled(p)) { 2736 if (task_on_rq_queued(p)) 2737 rq = move_queued_task(rq, rf, p, dest_cpu); 2738 2739 if (!pending->stop_pending) { 2740 p->migration_pending = NULL; 2741 complete = true; 2742 } 2743 } 2744 task_rq_unlock(rq, p, rf); 2745 2746 if (complete) 2747 complete_all(&pending->done); 2748 } 2749 2750 wait_for_completion(&pending->done); 2751 2752 if (refcount_dec_and_test(&pending->refs)) 2753 wake_up_var(&pending->refs); /* No UaF, just an address */ 2754 2755 /* 2756 * Block the original owner of &pending until all subsequent callers 2757 * have seen the completion and decremented the refcount 2758 */ 2759 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2760 2761 /* ARGH */ 2762 WARN_ON_ONCE(my_pending.stop_pending); 2763 2764 return 0; 2765 } 2766 2767 /* 2768 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2769 */ 2770 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2771 const struct cpumask *new_mask, 2772 u32 flags, 2773 struct rq *rq, 2774 struct rq_flags *rf) 2775 __releases(rq->lock) 2776 __releases(p->pi_lock) 2777 { 2778 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2779 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2780 bool kthread = p->flags & PF_KTHREAD; 2781 struct cpumask *user_mask = NULL; 2782 unsigned int dest_cpu; 2783 int ret = 0; 2784 2785 update_rq_clock(rq); 2786 2787 if (kthread || is_migration_disabled(p)) { 2788 /* 2789 * Kernel threads are allowed on online && !active CPUs, 2790 * however, during cpu-hot-unplug, even these might get pushed 2791 * away if not KTHREAD_IS_PER_CPU. 2792 * 2793 * Specifically, migration_disabled() tasks must not fail the 2794 * cpumask_any_and_distribute() pick below, esp. so on 2795 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2796 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2797 */ 2798 cpu_valid_mask = cpu_online_mask; 2799 } 2800 2801 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2802 ret = -EINVAL; 2803 goto out; 2804 } 2805 2806 /* 2807 * Must re-check here, to close a race against __kthread_bind(), 2808 * sched_setaffinity() is not guaranteed to observe the flag. 2809 */ 2810 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2811 ret = -EINVAL; 2812 goto out; 2813 } 2814 2815 if (!(flags & SCA_MIGRATE_ENABLE)) { 2816 if (cpumask_equal(&p->cpus_mask, new_mask)) 2817 goto out; 2818 2819 if (WARN_ON_ONCE(p == current && 2820 is_migration_disabled(p) && 2821 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2822 ret = -EBUSY; 2823 goto out; 2824 } 2825 } 2826 2827 /* 2828 * Picking a ~random cpu helps in cases where we are changing affinity 2829 * for groups of tasks (ie. cpuset), so that load balancing is not 2830 * immediately required to distribute the tasks within their new mask. 2831 */ 2832 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2833 if (dest_cpu >= nr_cpu_ids) { 2834 ret = -EINVAL; 2835 goto out; 2836 } 2837 2838 __do_set_cpus_allowed(p, new_mask, flags); 2839 2840 if (flags & SCA_USER) 2841 user_mask = clear_user_cpus_ptr(p); 2842 2843 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2844 2845 kfree(user_mask); 2846 2847 return ret; 2848 2849 out: 2850 task_rq_unlock(rq, p, rf); 2851 2852 return ret; 2853 } 2854 2855 /* 2856 * Change a given task's CPU affinity. Migrate the thread to a 2857 * proper CPU and schedule it away if the CPU it's executing on 2858 * is removed from the allowed bitmask. 2859 * 2860 * NOTE: the caller must have a valid reference to the task, the 2861 * task must not exit() & deallocate itself prematurely. The 2862 * call is not atomic; no spinlocks may be held. 2863 */ 2864 static int __set_cpus_allowed_ptr(struct task_struct *p, 2865 const struct cpumask *new_mask, u32 flags) 2866 { 2867 struct rq_flags rf; 2868 struct rq *rq; 2869 2870 rq = task_rq_lock(p, &rf); 2871 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2872 } 2873 2874 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2875 { 2876 return __set_cpus_allowed_ptr(p, new_mask, 0); 2877 } 2878 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2879 2880 /* 2881 * Change a given task's CPU affinity to the intersection of its current 2882 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2883 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2884 * If the resulting mask is empty, leave the affinity unchanged and return 2885 * -EINVAL. 2886 */ 2887 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2888 struct cpumask *new_mask, 2889 const struct cpumask *subset_mask) 2890 { 2891 struct cpumask *user_mask = NULL; 2892 struct rq_flags rf; 2893 struct rq *rq; 2894 int err; 2895 2896 if (!p->user_cpus_ptr) { 2897 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2898 if (!user_mask) 2899 return -ENOMEM; 2900 } 2901 2902 rq = task_rq_lock(p, &rf); 2903 2904 /* 2905 * Forcefully restricting the affinity of a deadline task is 2906 * likely to cause problems, so fail and noisily override the 2907 * mask entirely. 2908 */ 2909 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2910 err = -EPERM; 2911 goto err_unlock; 2912 } 2913 2914 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2915 err = -EINVAL; 2916 goto err_unlock; 2917 } 2918 2919 /* 2920 * We're about to butcher the task affinity, so keep track of what 2921 * the user asked for in case we're able to restore it later on. 2922 */ 2923 if (user_mask) { 2924 cpumask_copy(user_mask, p->cpus_ptr); 2925 p->user_cpus_ptr = user_mask; 2926 } 2927 2928 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2929 2930 err_unlock: 2931 task_rq_unlock(rq, p, &rf); 2932 kfree(user_mask); 2933 return err; 2934 } 2935 2936 /* 2937 * Restrict the CPU affinity of task @p so that it is a subset of 2938 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 2939 * old affinity mask. If the resulting mask is empty, we warn and walk 2940 * up the cpuset hierarchy until we find a suitable mask. 2941 */ 2942 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 2943 { 2944 cpumask_var_t new_mask; 2945 const struct cpumask *override_mask = task_cpu_possible_mask(p); 2946 2947 alloc_cpumask_var(&new_mask, GFP_KERNEL); 2948 2949 /* 2950 * __migrate_task() can fail silently in the face of concurrent 2951 * offlining of the chosen destination CPU, so take the hotplug 2952 * lock to ensure that the migration succeeds. 2953 */ 2954 cpus_read_lock(); 2955 if (!cpumask_available(new_mask)) 2956 goto out_set_mask; 2957 2958 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 2959 goto out_free_mask; 2960 2961 /* 2962 * We failed to find a valid subset of the affinity mask for the 2963 * task, so override it based on its cpuset hierarchy. 2964 */ 2965 cpuset_cpus_allowed(p, new_mask); 2966 override_mask = new_mask; 2967 2968 out_set_mask: 2969 if (printk_ratelimit()) { 2970 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 2971 task_pid_nr(p), p->comm, 2972 cpumask_pr_args(override_mask)); 2973 } 2974 2975 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 2976 out_free_mask: 2977 cpus_read_unlock(); 2978 free_cpumask_var(new_mask); 2979 } 2980 2981 static int 2982 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 2983 2984 /* 2985 * Restore the affinity of a task @p which was previously restricted by a 2986 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 2987 * @p->user_cpus_ptr. 2988 * 2989 * It is the caller's responsibility to serialise this with any calls to 2990 * force_compatible_cpus_allowed_ptr(@p). 2991 */ 2992 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 2993 { 2994 struct cpumask *user_mask = p->user_cpus_ptr; 2995 unsigned long flags; 2996 2997 /* 2998 * Try to restore the old affinity mask. If this fails, then 2999 * we free the mask explicitly to avoid it being inherited across 3000 * a subsequent fork(). 3001 */ 3002 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3003 return; 3004 3005 raw_spin_lock_irqsave(&p->pi_lock, flags); 3006 user_mask = clear_user_cpus_ptr(p); 3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3008 3009 kfree(user_mask); 3010 } 3011 3012 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3013 { 3014 #ifdef CONFIG_SCHED_DEBUG 3015 unsigned int state = READ_ONCE(p->__state); 3016 3017 /* 3018 * We should never call set_task_cpu() on a blocked task, 3019 * ttwu() will sort out the placement. 3020 */ 3021 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3022 3023 /* 3024 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3025 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3026 * time relying on p->on_rq. 3027 */ 3028 WARN_ON_ONCE(state == TASK_RUNNING && 3029 p->sched_class == &fair_sched_class && 3030 (p->on_rq && !task_on_rq_migrating(p))); 3031 3032 #ifdef CONFIG_LOCKDEP 3033 /* 3034 * The caller should hold either p->pi_lock or rq->lock, when changing 3035 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3036 * 3037 * sched_move_task() holds both and thus holding either pins the cgroup, 3038 * see task_group(). 3039 * 3040 * Furthermore, all task_rq users should acquire both locks, see 3041 * task_rq_lock(). 3042 */ 3043 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3044 lockdep_is_held(__rq_lockp(task_rq(p))))); 3045 #endif 3046 /* 3047 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3048 */ 3049 WARN_ON_ONCE(!cpu_online(new_cpu)); 3050 3051 WARN_ON_ONCE(is_migration_disabled(p)); 3052 #endif 3053 3054 trace_sched_migrate_task(p, new_cpu); 3055 3056 if (task_cpu(p) != new_cpu) { 3057 if (p->sched_class->migrate_task_rq) 3058 p->sched_class->migrate_task_rq(p, new_cpu); 3059 p->se.nr_migrations++; 3060 rseq_migrate(p); 3061 perf_event_task_migrate(p); 3062 } 3063 3064 __set_task_cpu(p, new_cpu); 3065 } 3066 3067 #ifdef CONFIG_NUMA_BALANCING 3068 static void __migrate_swap_task(struct task_struct *p, int cpu) 3069 { 3070 if (task_on_rq_queued(p)) { 3071 struct rq *src_rq, *dst_rq; 3072 struct rq_flags srf, drf; 3073 3074 src_rq = task_rq(p); 3075 dst_rq = cpu_rq(cpu); 3076 3077 rq_pin_lock(src_rq, &srf); 3078 rq_pin_lock(dst_rq, &drf); 3079 3080 deactivate_task(src_rq, p, 0); 3081 set_task_cpu(p, cpu); 3082 activate_task(dst_rq, p, 0); 3083 check_preempt_curr(dst_rq, p, 0); 3084 3085 rq_unpin_lock(dst_rq, &drf); 3086 rq_unpin_lock(src_rq, &srf); 3087 3088 } else { 3089 /* 3090 * Task isn't running anymore; make it appear like we migrated 3091 * it before it went to sleep. This means on wakeup we make the 3092 * previous CPU our target instead of where it really is. 3093 */ 3094 p->wake_cpu = cpu; 3095 } 3096 } 3097 3098 struct migration_swap_arg { 3099 struct task_struct *src_task, *dst_task; 3100 int src_cpu, dst_cpu; 3101 }; 3102 3103 static int migrate_swap_stop(void *data) 3104 { 3105 struct migration_swap_arg *arg = data; 3106 struct rq *src_rq, *dst_rq; 3107 int ret = -EAGAIN; 3108 3109 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3110 return -EAGAIN; 3111 3112 src_rq = cpu_rq(arg->src_cpu); 3113 dst_rq = cpu_rq(arg->dst_cpu); 3114 3115 double_raw_lock(&arg->src_task->pi_lock, 3116 &arg->dst_task->pi_lock); 3117 double_rq_lock(src_rq, dst_rq); 3118 3119 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3120 goto unlock; 3121 3122 if (task_cpu(arg->src_task) != arg->src_cpu) 3123 goto unlock; 3124 3125 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3126 goto unlock; 3127 3128 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3129 goto unlock; 3130 3131 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3132 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3133 3134 ret = 0; 3135 3136 unlock: 3137 double_rq_unlock(src_rq, dst_rq); 3138 raw_spin_unlock(&arg->dst_task->pi_lock); 3139 raw_spin_unlock(&arg->src_task->pi_lock); 3140 3141 return ret; 3142 } 3143 3144 /* 3145 * Cross migrate two tasks 3146 */ 3147 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3148 int target_cpu, int curr_cpu) 3149 { 3150 struct migration_swap_arg arg; 3151 int ret = -EINVAL; 3152 3153 arg = (struct migration_swap_arg){ 3154 .src_task = cur, 3155 .src_cpu = curr_cpu, 3156 .dst_task = p, 3157 .dst_cpu = target_cpu, 3158 }; 3159 3160 if (arg.src_cpu == arg.dst_cpu) 3161 goto out; 3162 3163 /* 3164 * These three tests are all lockless; this is OK since all of them 3165 * will be re-checked with proper locks held further down the line. 3166 */ 3167 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3168 goto out; 3169 3170 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3171 goto out; 3172 3173 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3174 goto out; 3175 3176 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3177 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3178 3179 out: 3180 return ret; 3181 } 3182 #endif /* CONFIG_NUMA_BALANCING */ 3183 3184 /* 3185 * wait_task_inactive - wait for a thread to unschedule. 3186 * 3187 * If @match_state is nonzero, it's the @p->state value just checked and 3188 * not expected to change. If it changes, i.e. @p might have woken up, 3189 * then return zero. When we succeed in waiting for @p to be off its CPU, 3190 * we return a positive number (its total switch count). If a second call 3191 * a short while later returns the same number, the caller can be sure that 3192 * @p has remained unscheduled the whole time. 3193 * 3194 * The caller must ensure that the task *will* unschedule sometime soon, 3195 * else this function might spin for a *long* time. This function can't 3196 * be called with interrupts off, or it may introduce deadlock with 3197 * smp_call_function() if an IPI is sent by the same process we are 3198 * waiting to become inactive. 3199 */ 3200 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3201 { 3202 int running, queued; 3203 struct rq_flags rf; 3204 unsigned long ncsw; 3205 struct rq *rq; 3206 3207 for (;;) { 3208 /* 3209 * We do the initial early heuristics without holding 3210 * any task-queue locks at all. We'll only try to get 3211 * the runqueue lock when things look like they will 3212 * work out! 3213 */ 3214 rq = task_rq(p); 3215 3216 /* 3217 * If the task is actively running on another CPU 3218 * still, just relax and busy-wait without holding 3219 * any locks. 3220 * 3221 * NOTE! Since we don't hold any locks, it's not 3222 * even sure that "rq" stays as the right runqueue! 3223 * But we don't care, since "task_running()" will 3224 * return false if the runqueue has changed and p 3225 * is actually now running somewhere else! 3226 */ 3227 while (task_running(rq, p)) { 3228 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3229 return 0; 3230 cpu_relax(); 3231 } 3232 3233 /* 3234 * Ok, time to look more closely! We need the rq 3235 * lock now, to be *sure*. If we're wrong, we'll 3236 * just go back and repeat. 3237 */ 3238 rq = task_rq_lock(p, &rf); 3239 trace_sched_wait_task(p); 3240 running = task_running(rq, p); 3241 queued = task_on_rq_queued(p); 3242 ncsw = 0; 3243 if (!match_state || READ_ONCE(p->__state) == match_state) 3244 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3245 task_rq_unlock(rq, p, &rf); 3246 3247 /* 3248 * If it changed from the expected state, bail out now. 3249 */ 3250 if (unlikely(!ncsw)) 3251 break; 3252 3253 /* 3254 * Was it really running after all now that we 3255 * checked with the proper locks actually held? 3256 * 3257 * Oops. Go back and try again.. 3258 */ 3259 if (unlikely(running)) { 3260 cpu_relax(); 3261 continue; 3262 } 3263 3264 /* 3265 * It's not enough that it's not actively running, 3266 * it must be off the runqueue _entirely_, and not 3267 * preempted! 3268 * 3269 * So if it was still runnable (but just not actively 3270 * running right now), it's preempted, and we should 3271 * yield - it could be a while. 3272 */ 3273 if (unlikely(queued)) { 3274 ktime_t to = NSEC_PER_SEC / HZ; 3275 3276 set_current_state(TASK_UNINTERRUPTIBLE); 3277 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3278 continue; 3279 } 3280 3281 /* 3282 * Ahh, all good. It wasn't running, and it wasn't 3283 * runnable, which means that it will never become 3284 * running in the future either. We're all done! 3285 */ 3286 break; 3287 } 3288 3289 return ncsw; 3290 } 3291 3292 /*** 3293 * kick_process - kick a running thread to enter/exit the kernel 3294 * @p: the to-be-kicked thread 3295 * 3296 * Cause a process which is running on another CPU to enter 3297 * kernel-mode, without any delay. (to get signals handled.) 3298 * 3299 * NOTE: this function doesn't have to take the runqueue lock, 3300 * because all it wants to ensure is that the remote task enters 3301 * the kernel. If the IPI races and the task has been migrated 3302 * to another CPU then no harm is done and the purpose has been 3303 * achieved as well. 3304 */ 3305 void kick_process(struct task_struct *p) 3306 { 3307 int cpu; 3308 3309 preempt_disable(); 3310 cpu = task_cpu(p); 3311 if ((cpu != smp_processor_id()) && task_curr(p)) 3312 smp_send_reschedule(cpu); 3313 preempt_enable(); 3314 } 3315 EXPORT_SYMBOL_GPL(kick_process); 3316 3317 /* 3318 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3319 * 3320 * A few notes on cpu_active vs cpu_online: 3321 * 3322 * - cpu_active must be a subset of cpu_online 3323 * 3324 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3325 * see __set_cpus_allowed_ptr(). At this point the newly online 3326 * CPU isn't yet part of the sched domains, and balancing will not 3327 * see it. 3328 * 3329 * - on CPU-down we clear cpu_active() to mask the sched domains and 3330 * avoid the load balancer to place new tasks on the to be removed 3331 * CPU. Existing tasks will remain running there and will be taken 3332 * off. 3333 * 3334 * This means that fallback selection must not select !active CPUs. 3335 * And can assume that any active CPU must be online. Conversely 3336 * select_task_rq() below may allow selection of !active CPUs in order 3337 * to satisfy the above rules. 3338 */ 3339 static int select_fallback_rq(int cpu, struct task_struct *p) 3340 { 3341 int nid = cpu_to_node(cpu); 3342 const struct cpumask *nodemask = NULL; 3343 enum { cpuset, possible, fail } state = cpuset; 3344 int dest_cpu; 3345 3346 /* 3347 * If the node that the CPU is on has been offlined, cpu_to_node() 3348 * will return -1. There is no CPU on the node, and we should 3349 * select the CPU on the other node. 3350 */ 3351 if (nid != -1) { 3352 nodemask = cpumask_of_node(nid); 3353 3354 /* Look for allowed, online CPU in same node. */ 3355 for_each_cpu(dest_cpu, nodemask) { 3356 if (is_cpu_allowed(p, dest_cpu)) 3357 return dest_cpu; 3358 } 3359 } 3360 3361 for (;;) { 3362 /* Any allowed, online CPU? */ 3363 for_each_cpu(dest_cpu, p->cpus_ptr) { 3364 if (!is_cpu_allowed(p, dest_cpu)) 3365 continue; 3366 3367 goto out; 3368 } 3369 3370 /* No more Mr. Nice Guy. */ 3371 switch (state) { 3372 case cpuset: 3373 if (cpuset_cpus_allowed_fallback(p)) { 3374 state = possible; 3375 break; 3376 } 3377 fallthrough; 3378 case possible: 3379 /* 3380 * XXX When called from select_task_rq() we only 3381 * hold p->pi_lock and again violate locking order. 3382 * 3383 * More yuck to audit. 3384 */ 3385 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3386 state = fail; 3387 break; 3388 case fail: 3389 BUG(); 3390 break; 3391 } 3392 } 3393 3394 out: 3395 if (state != cpuset) { 3396 /* 3397 * Don't tell them about moving exiting tasks or 3398 * kernel threads (both mm NULL), since they never 3399 * leave kernel. 3400 */ 3401 if (p->mm && printk_ratelimit()) { 3402 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3403 task_pid_nr(p), p->comm, cpu); 3404 } 3405 } 3406 3407 return dest_cpu; 3408 } 3409 3410 /* 3411 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3412 */ 3413 static inline 3414 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3415 { 3416 lockdep_assert_held(&p->pi_lock); 3417 3418 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3419 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3420 else 3421 cpu = cpumask_any(p->cpus_ptr); 3422 3423 /* 3424 * In order not to call set_task_cpu() on a blocking task we need 3425 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3426 * CPU. 3427 * 3428 * Since this is common to all placement strategies, this lives here. 3429 * 3430 * [ this allows ->select_task() to simply return task_cpu(p) and 3431 * not worry about this generic constraint ] 3432 */ 3433 if (unlikely(!is_cpu_allowed(p, cpu))) 3434 cpu = select_fallback_rq(task_cpu(p), p); 3435 3436 return cpu; 3437 } 3438 3439 void sched_set_stop_task(int cpu, struct task_struct *stop) 3440 { 3441 static struct lock_class_key stop_pi_lock; 3442 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3443 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3444 3445 if (stop) { 3446 /* 3447 * Make it appear like a SCHED_FIFO task, its something 3448 * userspace knows about and won't get confused about. 3449 * 3450 * Also, it will make PI more or less work without too 3451 * much confusion -- but then, stop work should not 3452 * rely on PI working anyway. 3453 */ 3454 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3455 3456 stop->sched_class = &stop_sched_class; 3457 3458 /* 3459 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3460 * adjust the effective priority of a task. As a result, 3461 * rt_mutex_setprio() can trigger (RT) balancing operations, 3462 * which can then trigger wakeups of the stop thread to push 3463 * around the current task. 3464 * 3465 * The stop task itself will never be part of the PI-chain, it 3466 * never blocks, therefore that ->pi_lock recursion is safe. 3467 * Tell lockdep about this by placing the stop->pi_lock in its 3468 * own class. 3469 */ 3470 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3471 } 3472 3473 cpu_rq(cpu)->stop = stop; 3474 3475 if (old_stop) { 3476 /* 3477 * Reset it back to a normal scheduling class so that 3478 * it can die in pieces. 3479 */ 3480 old_stop->sched_class = &rt_sched_class; 3481 } 3482 } 3483 3484 #else /* CONFIG_SMP */ 3485 3486 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3487 const struct cpumask *new_mask, 3488 u32 flags) 3489 { 3490 return set_cpus_allowed_ptr(p, new_mask); 3491 } 3492 3493 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3494 3495 static inline bool rq_has_pinned_tasks(struct rq *rq) 3496 { 3497 return false; 3498 } 3499 3500 #endif /* !CONFIG_SMP */ 3501 3502 static void 3503 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3504 { 3505 struct rq *rq; 3506 3507 if (!schedstat_enabled()) 3508 return; 3509 3510 rq = this_rq(); 3511 3512 #ifdef CONFIG_SMP 3513 if (cpu == rq->cpu) { 3514 __schedstat_inc(rq->ttwu_local); 3515 __schedstat_inc(p->stats.nr_wakeups_local); 3516 } else { 3517 struct sched_domain *sd; 3518 3519 __schedstat_inc(p->stats.nr_wakeups_remote); 3520 rcu_read_lock(); 3521 for_each_domain(rq->cpu, sd) { 3522 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3523 __schedstat_inc(sd->ttwu_wake_remote); 3524 break; 3525 } 3526 } 3527 rcu_read_unlock(); 3528 } 3529 3530 if (wake_flags & WF_MIGRATED) 3531 __schedstat_inc(p->stats.nr_wakeups_migrate); 3532 #endif /* CONFIG_SMP */ 3533 3534 __schedstat_inc(rq->ttwu_count); 3535 __schedstat_inc(p->stats.nr_wakeups); 3536 3537 if (wake_flags & WF_SYNC) 3538 __schedstat_inc(p->stats.nr_wakeups_sync); 3539 } 3540 3541 /* 3542 * Mark the task runnable and perform wakeup-preemption. 3543 */ 3544 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3545 struct rq_flags *rf) 3546 { 3547 check_preempt_curr(rq, p, wake_flags); 3548 WRITE_ONCE(p->__state, TASK_RUNNING); 3549 trace_sched_wakeup(p); 3550 3551 #ifdef CONFIG_SMP 3552 if (p->sched_class->task_woken) { 3553 /* 3554 * Our task @p is fully woken up and running; so it's safe to 3555 * drop the rq->lock, hereafter rq is only used for statistics. 3556 */ 3557 rq_unpin_lock(rq, rf); 3558 p->sched_class->task_woken(rq, p); 3559 rq_repin_lock(rq, rf); 3560 } 3561 3562 if (rq->idle_stamp) { 3563 u64 delta = rq_clock(rq) - rq->idle_stamp; 3564 u64 max = 2*rq->max_idle_balance_cost; 3565 3566 update_avg(&rq->avg_idle, delta); 3567 3568 if (rq->avg_idle > max) 3569 rq->avg_idle = max; 3570 3571 rq->wake_stamp = jiffies; 3572 rq->wake_avg_idle = rq->avg_idle / 2; 3573 3574 rq->idle_stamp = 0; 3575 } 3576 #endif 3577 } 3578 3579 static void 3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3581 struct rq_flags *rf) 3582 { 3583 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3584 3585 lockdep_assert_rq_held(rq); 3586 3587 if (p->sched_contributes_to_load) 3588 rq->nr_uninterruptible--; 3589 3590 #ifdef CONFIG_SMP 3591 if (wake_flags & WF_MIGRATED) 3592 en_flags |= ENQUEUE_MIGRATED; 3593 else 3594 #endif 3595 if (p->in_iowait) { 3596 delayacct_blkio_end(p); 3597 atomic_dec(&task_rq(p)->nr_iowait); 3598 } 3599 3600 activate_task(rq, p, en_flags); 3601 ttwu_do_wakeup(rq, p, wake_flags, rf); 3602 } 3603 3604 /* 3605 * Consider @p being inside a wait loop: 3606 * 3607 * for (;;) { 3608 * set_current_state(TASK_UNINTERRUPTIBLE); 3609 * 3610 * if (CONDITION) 3611 * break; 3612 * 3613 * schedule(); 3614 * } 3615 * __set_current_state(TASK_RUNNING); 3616 * 3617 * between set_current_state() and schedule(). In this case @p is still 3618 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3619 * an atomic manner. 3620 * 3621 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3622 * then schedule() must still happen and p->state can be changed to 3623 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3624 * need to do a full wakeup with enqueue. 3625 * 3626 * Returns: %true when the wakeup is done, 3627 * %false otherwise. 3628 */ 3629 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3630 { 3631 struct rq_flags rf; 3632 struct rq *rq; 3633 int ret = 0; 3634 3635 rq = __task_rq_lock(p, &rf); 3636 if (task_on_rq_queued(p)) { 3637 /* check_preempt_curr() may use rq clock */ 3638 update_rq_clock(rq); 3639 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3640 ret = 1; 3641 } 3642 __task_rq_unlock(rq, &rf); 3643 3644 return ret; 3645 } 3646 3647 #ifdef CONFIG_SMP 3648 void sched_ttwu_pending(void *arg) 3649 { 3650 struct llist_node *llist = arg; 3651 struct rq *rq = this_rq(); 3652 struct task_struct *p, *t; 3653 struct rq_flags rf; 3654 3655 if (!llist) 3656 return; 3657 3658 /* 3659 * rq::ttwu_pending racy indication of out-standing wakeups. 3660 * Races such that false-negatives are possible, since they 3661 * are shorter lived that false-positives would be. 3662 */ 3663 WRITE_ONCE(rq->ttwu_pending, 0); 3664 3665 rq_lock_irqsave(rq, &rf); 3666 update_rq_clock(rq); 3667 3668 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3669 if (WARN_ON_ONCE(p->on_cpu)) 3670 smp_cond_load_acquire(&p->on_cpu, !VAL); 3671 3672 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3673 set_task_cpu(p, cpu_of(rq)); 3674 3675 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3676 } 3677 3678 rq_unlock_irqrestore(rq, &rf); 3679 } 3680 3681 void send_call_function_single_ipi(int cpu) 3682 { 3683 struct rq *rq = cpu_rq(cpu); 3684 3685 if (!set_nr_if_polling(rq->idle)) 3686 arch_send_call_function_single_ipi(cpu); 3687 else 3688 trace_sched_wake_idle_without_ipi(cpu); 3689 } 3690 3691 /* 3692 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3693 * necessary. The wakee CPU on receipt of the IPI will queue the task 3694 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3695 * of the wakeup instead of the waker. 3696 */ 3697 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3698 { 3699 struct rq *rq = cpu_rq(cpu); 3700 3701 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3702 3703 WRITE_ONCE(rq->ttwu_pending, 1); 3704 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3705 } 3706 3707 void wake_up_if_idle(int cpu) 3708 { 3709 struct rq *rq = cpu_rq(cpu); 3710 struct rq_flags rf; 3711 3712 rcu_read_lock(); 3713 3714 if (!is_idle_task(rcu_dereference(rq->curr))) 3715 goto out; 3716 3717 rq_lock_irqsave(rq, &rf); 3718 if (is_idle_task(rq->curr)) 3719 resched_curr(rq); 3720 /* Else CPU is not idle, do nothing here: */ 3721 rq_unlock_irqrestore(rq, &rf); 3722 3723 out: 3724 rcu_read_unlock(); 3725 } 3726 3727 bool cpus_share_cache(int this_cpu, int that_cpu) 3728 { 3729 if (this_cpu == that_cpu) 3730 return true; 3731 3732 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3733 } 3734 3735 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3736 { 3737 /* 3738 * Do not complicate things with the async wake_list while the CPU is 3739 * in hotplug state. 3740 */ 3741 if (!cpu_active(cpu)) 3742 return false; 3743 3744 /* 3745 * If the CPU does not share cache, then queue the task on the 3746 * remote rqs wakelist to avoid accessing remote data. 3747 */ 3748 if (!cpus_share_cache(smp_processor_id(), cpu)) 3749 return true; 3750 3751 /* 3752 * If the task is descheduling and the only running task on the 3753 * CPU then use the wakelist to offload the task activation to 3754 * the soon-to-be-idle CPU as the current CPU is likely busy. 3755 * nr_running is checked to avoid unnecessary task stacking. 3756 */ 3757 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3758 return true; 3759 3760 return false; 3761 } 3762 3763 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3764 { 3765 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3766 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3767 return false; 3768 3769 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3770 __ttwu_queue_wakelist(p, cpu, wake_flags); 3771 return true; 3772 } 3773 3774 return false; 3775 } 3776 3777 #else /* !CONFIG_SMP */ 3778 3779 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3780 { 3781 return false; 3782 } 3783 3784 #endif /* CONFIG_SMP */ 3785 3786 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3787 { 3788 struct rq *rq = cpu_rq(cpu); 3789 struct rq_flags rf; 3790 3791 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3792 return; 3793 3794 rq_lock(rq, &rf); 3795 update_rq_clock(rq); 3796 ttwu_do_activate(rq, p, wake_flags, &rf); 3797 rq_unlock(rq, &rf); 3798 } 3799 3800 /* 3801 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3802 * 3803 * The caller holds p::pi_lock if p != current or has preemption 3804 * disabled when p == current. 3805 * 3806 * The rules of PREEMPT_RT saved_state: 3807 * 3808 * The related locking code always holds p::pi_lock when updating 3809 * p::saved_state, which means the code is fully serialized in both cases. 3810 * 3811 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3812 * bits set. This allows to distinguish all wakeup scenarios. 3813 */ 3814 static __always_inline 3815 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3816 { 3817 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3818 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3819 state != TASK_RTLOCK_WAIT); 3820 } 3821 3822 if (READ_ONCE(p->__state) & state) { 3823 *success = 1; 3824 return true; 3825 } 3826 3827 #ifdef CONFIG_PREEMPT_RT 3828 /* 3829 * Saved state preserves the task state across blocking on 3830 * an RT lock. If the state matches, set p::saved_state to 3831 * TASK_RUNNING, but do not wake the task because it waits 3832 * for a lock wakeup. Also indicate success because from 3833 * the regular waker's point of view this has succeeded. 3834 * 3835 * After acquiring the lock the task will restore p::__state 3836 * from p::saved_state which ensures that the regular 3837 * wakeup is not lost. The restore will also set 3838 * p::saved_state to TASK_RUNNING so any further tests will 3839 * not result in false positives vs. @success 3840 */ 3841 if (p->saved_state & state) { 3842 p->saved_state = TASK_RUNNING; 3843 *success = 1; 3844 } 3845 #endif 3846 return false; 3847 } 3848 3849 /* 3850 * Notes on Program-Order guarantees on SMP systems. 3851 * 3852 * MIGRATION 3853 * 3854 * The basic program-order guarantee on SMP systems is that when a task [t] 3855 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3856 * execution on its new CPU [c1]. 3857 * 3858 * For migration (of runnable tasks) this is provided by the following means: 3859 * 3860 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3861 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3862 * rq(c1)->lock (if not at the same time, then in that order). 3863 * C) LOCK of the rq(c1)->lock scheduling in task 3864 * 3865 * Release/acquire chaining guarantees that B happens after A and C after B. 3866 * Note: the CPU doing B need not be c0 or c1 3867 * 3868 * Example: 3869 * 3870 * CPU0 CPU1 CPU2 3871 * 3872 * LOCK rq(0)->lock 3873 * sched-out X 3874 * sched-in Y 3875 * UNLOCK rq(0)->lock 3876 * 3877 * LOCK rq(0)->lock // orders against CPU0 3878 * dequeue X 3879 * UNLOCK rq(0)->lock 3880 * 3881 * LOCK rq(1)->lock 3882 * enqueue X 3883 * UNLOCK rq(1)->lock 3884 * 3885 * LOCK rq(1)->lock // orders against CPU2 3886 * sched-out Z 3887 * sched-in X 3888 * UNLOCK rq(1)->lock 3889 * 3890 * 3891 * BLOCKING -- aka. SLEEP + WAKEUP 3892 * 3893 * For blocking we (obviously) need to provide the same guarantee as for 3894 * migration. However the means are completely different as there is no lock 3895 * chain to provide order. Instead we do: 3896 * 3897 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3898 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3899 * 3900 * Example: 3901 * 3902 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3903 * 3904 * LOCK rq(0)->lock LOCK X->pi_lock 3905 * dequeue X 3906 * sched-out X 3907 * smp_store_release(X->on_cpu, 0); 3908 * 3909 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3910 * X->state = WAKING 3911 * set_task_cpu(X,2) 3912 * 3913 * LOCK rq(2)->lock 3914 * enqueue X 3915 * X->state = RUNNING 3916 * UNLOCK rq(2)->lock 3917 * 3918 * LOCK rq(2)->lock // orders against CPU1 3919 * sched-out Z 3920 * sched-in X 3921 * UNLOCK rq(2)->lock 3922 * 3923 * UNLOCK X->pi_lock 3924 * UNLOCK rq(0)->lock 3925 * 3926 * 3927 * However, for wakeups there is a second guarantee we must provide, namely we 3928 * must ensure that CONDITION=1 done by the caller can not be reordered with 3929 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3930 */ 3931 3932 /** 3933 * try_to_wake_up - wake up a thread 3934 * @p: the thread to be awakened 3935 * @state: the mask of task states that can be woken 3936 * @wake_flags: wake modifier flags (WF_*) 3937 * 3938 * Conceptually does: 3939 * 3940 * If (@state & @p->state) @p->state = TASK_RUNNING. 3941 * 3942 * If the task was not queued/runnable, also place it back on a runqueue. 3943 * 3944 * This function is atomic against schedule() which would dequeue the task. 3945 * 3946 * It issues a full memory barrier before accessing @p->state, see the comment 3947 * with set_current_state(). 3948 * 3949 * Uses p->pi_lock to serialize against concurrent wake-ups. 3950 * 3951 * Relies on p->pi_lock stabilizing: 3952 * - p->sched_class 3953 * - p->cpus_ptr 3954 * - p->sched_task_group 3955 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3956 * 3957 * Tries really hard to only take one task_rq(p)->lock for performance. 3958 * Takes rq->lock in: 3959 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3960 * - ttwu_queue() -- new rq, for enqueue of the task; 3961 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3962 * 3963 * As a consequence we race really badly with just about everything. See the 3964 * many memory barriers and their comments for details. 3965 * 3966 * Return: %true if @p->state changes (an actual wakeup was done), 3967 * %false otherwise. 3968 */ 3969 static int 3970 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3971 { 3972 unsigned long flags; 3973 int cpu, success = 0; 3974 3975 preempt_disable(); 3976 if (p == current) { 3977 /* 3978 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3979 * == smp_processor_id()'. Together this means we can special 3980 * case the whole 'p->on_rq && ttwu_runnable()' case below 3981 * without taking any locks. 3982 * 3983 * In particular: 3984 * - we rely on Program-Order guarantees for all the ordering, 3985 * - we're serialized against set_special_state() by virtue of 3986 * it disabling IRQs (this allows not taking ->pi_lock). 3987 */ 3988 if (!ttwu_state_match(p, state, &success)) 3989 goto out; 3990 3991 trace_sched_waking(p); 3992 WRITE_ONCE(p->__state, TASK_RUNNING); 3993 trace_sched_wakeup(p); 3994 goto out; 3995 } 3996 3997 /* 3998 * If we are going to wake up a thread waiting for CONDITION we 3999 * need to ensure that CONDITION=1 done by the caller can not be 4000 * reordered with p->state check below. This pairs with smp_store_mb() 4001 * in set_current_state() that the waiting thread does. 4002 */ 4003 raw_spin_lock_irqsave(&p->pi_lock, flags); 4004 smp_mb__after_spinlock(); 4005 if (!ttwu_state_match(p, state, &success)) 4006 goto unlock; 4007 4008 trace_sched_waking(p); 4009 4010 /* 4011 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4012 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4013 * in smp_cond_load_acquire() below. 4014 * 4015 * sched_ttwu_pending() try_to_wake_up() 4016 * STORE p->on_rq = 1 LOAD p->state 4017 * UNLOCK rq->lock 4018 * 4019 * __schedule() (switch to task 'p') 4020 * LOCK rq->lock smp_rmb(); 4021 * smp_mb__after_spinlock(); 4022 * UNLOCK rq->lock 4023 * 4024 * [task p] 4025 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4026 * 4027 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4028 * __schedule(). See the comment for smp_mb__after_spinlock(). 4029 * 4030 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4031 */ 4032 smp_rmb(); 4033 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4034 goto unlock; 4035 4036 #ifdef CONFIG_SMP 4037 /* 4038 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4039 * possible to, falsely, observe p->on_cpu == 0. 4040 * 4041 * One must be running (->on_cpu == 1) in order to remove oneself 4042 * from the runqueue. 4043 * 4044 * __schedule() (switch to task 'p') try_to_wake_up() 4045 * STORE p->on_cpu = 1 LOAD p->on_rq 4046 * UNLOCK rq->lock 4047 * 4048 * __schedule() (put 'p' to sleep) 4049 * LOCK rq->lock smp_rmb(); 4050 * smp_mb__after_spinlock(); 4051 * STORE p->on_rq = 0 LOAD p->on_cpu 4052 * 4053 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4054 * __schedule(). See the comment for smp_mb__after_spinlock(). 4055 * 4056 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4057 * schedule()'s deactivate_task() has 'happened' and p will no longer 4058 * care about it's own p->state. See the comment in __schedule(). 4059 */ 4060 smp_acquire__after_ctrl_dep(); 4061 4062 /* 4063 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4064 * == 0), which means we need to do an enqueue, change p->state to 4065 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4066 * enqueue, such as ttwu_queue_wakelist(). 4067 */ 4068 WRITE_ONCE(p->__state, TASK_WAKING); 4069 4070 /* 4071 * If the owning (remote) CPU is still in the middle of schedule() with 4072 * this task as prev, considering queueing p on the remote CPUs wake_list 4073 * which potentially sends an IPI instead of spinning on p->on_cpu to 4074 * let the waker make forward progress. This is safe because IRQs are 4075 * disabled and the IPI will deliver after on_cpu is cleared. 4076 * 4077 * Ensure we load task_cpu(p) after p->on_cpu: 4078 * 4079 * set_task_cpu(p, cpu); 4080 * STORE p->cpu = @cpu 4081 * __schedule() (switch to task 'p') 4082 * LOCK rq->lock 4083 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4084 * STORE p->on_cpu = 1 LOAD p->cpu 4085 * 4086 * to ensure we observe the correct CPU on which the task is currently 4087 * scheduling. 4088 */ 4089 if (smp_load_acquire(&p->on_cpu) && 4090 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4091 goto unlock; 4092 4093 /* 4094 * If the owning (remote) CPU is still in the middle of schedule() with 4095 * this task as prev, wait until it's done referencing the task. 4096 * 4097 * Pairs with the smp_store_release() in finish_task(). 4098 * 4099 * This ensures that tasks getting woken will be fully ordered against 4100 * their previous state and preserve Program Order. 4101 */ 4102 smp_cond_load_acquire(&p->on_cpu, !VAL); 4103 4104 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4105 if (task_cpu(p) != cpu) { 4106 if (p->in_iowait) { 4107 delayacct_blkio_end(p); 4108 atomic_dec(&task_rq(p)->nr_iowait); 4109 } 4110 4111 wake_flags |= WF_MIGRATED; 4112 psi_ttwu_dequeue(p); 4113 set_task_cpu(p, cpu); 4114 } 4115 #else 4116 cpu = task_cpu(p); 4117 #endif /* CONFIG_SMP */ 4118 4119 ttwu_queue(p, cpu, wake_flags); 4120 unlock: 4121 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4122 out: 4123 if (success) 4124 ttwu_stat(p, task_cpu(p), wake_flags); 4125 preempt_enable(); 4126 4127 return success; 4128 } 4129 4130 /** 4131 * task_call_func - Invoke a function on task in fixed state 4132 * @p: Process for which the function is to be invoked, can be @current. 4133 * @func: Function to invoke. 4134 * @arg: Argument to function. 4135 * 4136 * Fix the task in it's current state by avoiding wakeups and or rq operations 4137 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4138 * to work out what the state is, if required. Given that @func can be invoked 4139 * with a runqueue lock held, it had better be quite lightweight. 4140 * 4141 * Returns: 4142 * Whatever @func returns 4143 */ 4144 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4145 { 4146 struct rq *rq = NULL; 4147 unsigned int state; 4148 struct rq_flags rf; 4149 int ret; 4150 4151 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4152 4153 state = READ_ONCE(p->__state); 4154 4155 /* 4156 * Ensure we load p->on_rq after p->__state, otherwise it would be 4157 * possible to, falsely, observe p->on_rq == 0. 4158 * 4159 * See try_to_wake_up() for a longer comment. 4160 */ 4161 smp_rmb(); 4162 4163 /* 4164 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4165 * the task is blocked. Make sure to check @state since ttwu() can drop 4166 * locks at the end, see ttwu_queue_wakelist(). 4167 */ 4168 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4169 rq = __task_rq_lock(p, &rf); 4170 4171 /* 4172 * At this point the task is pinned; either: 4173 * - blocked and we're holding off wakeups (pi->lock) 4174 * - woken, and we're holding off enqueue (rq->lock) 4175 * - queued, and we're holding off schedule (rq->lock) 4176 * - running, and we're holding off de-schedule (rq->lock) 4177 * 4178 * The called function (@func) can use: task_curr(), p->on_rq and 4179 * p->__state to differentiate between these states. 4180 */ 4181 ret = func(p, arg); 4182 4183 if (rq) 4184 rq_unlock(rq, &rf); 4185 4186 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4187 return ret; 4188 } 4189 4190 /** 4191 * wake_up_process - Wake up a specific process 4192 * @p: The process to be woken up. 4193 * 4194 * Attempt to wake up the nominated process and move it to the set of runnable 4195 * processes. 4196 * 4197 * Return: 1 if the process was woken up, 0 if it was already running. 4198 * 4199 * This function executes a full memory barrier before accessing the task state. 4200 */ 4201 int wake_up_process(struct task_struct *p) 4202 { 4203 return try_to_wake_up(p, TASK_NORMAL, 0); 4204 } 4205 EXPORT_SYMBOL(wake_up_process); 4206 4207 int wake_up_state(struct task_struct *p, unsigned int state) 4208 { 4209 return try_to_wake_up(p, state, 0); 4210 } 4211 4212 /* 4213 * Perform scheduler related setup for a newly forked process p. 4214 * p is forked by current. 4215 * 4216 * __sched_fork() is basic setup used by init_idle() too: 4217 */ 4218 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4219 { 4220 p->on_rq = 0; 4221 4222 p->se.on_rq = 0; 4223 p->se.exec_start = 0; 4224 p->se.sum_exec_runtime = 0; 4225 p->se.prev_sum_exec_runtime = 0; 4226 p->se.nr_migrations = 0; 4227 p->se.vruntime = 0; 4228 INIT_LIST_HEAD(&p->se.group_node); 4229 4230 #ifdef CONFIG_FAIR_GROUP_SCHED 4231 p->se.cfs_rq = NULL; 4232 #endif 4233 4234 #ifdef CONFIG_SCHEDSTATS 4235 /* Even if schedstat is disabled, there should not be garbage */ 4236 memset(&p->stats, 0, sizeof(p->stats)); 4237 #endif 4238 4239 RB_CLEAR_NODE(&p->dl.rb_node); 4240 init_dl_task_timer(&p->dl); 4241 init_dl_inactive_task_timer(&p->dl); 4242 __dl_clear_params(p); 4243 4244 INIT_LIST_HEAD(&p->rt.run_list); 4245 p->rt.timeout = 0; 4246 p->rt.time_slice = sched_rr_timeslice; 4247 p->rt.on_rq = 0; 4248 p->rt.on_list = 0; 4249 4250 #ifdef CONFIG_PREEMPT_NOTIFIERS 4251 INIT_HLIST_HEAD(&p->preempt_notifiers); 4252 #endif 4253 4254 #ifdef CONFIG_COMPACTION 4255 p->capture_control = NULL; 4256 #endif 4257 init_numa_balancing(clone_flags, p); 4258 #ifdef CONFIG_SMP 4259 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4260 p->migration_pending = NULL; 4261 #endif 4262 } 4263 4264 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4265 4266 #ifdef CONFIG_NUMA_BALANCING 4267 4268 void set_numabalancing_state(bool enabled) 4269 { 4270 if (enabled) 4271 static_branch_enable(&sched_numa_balancing); 4272 else 4273 static_branch_disable(&sched_numa_balancing); 4274 } 4275 4276 #ifdef CONFIG_PROC_SYSCTL 4277 int sysctl_numa_balancing(struct ctl_table *table, int write, 4278 void *buffer, size_t *lenp, loff_t *ppos) 4279 { 4280 struct ctl_table t; 4281 int err; 4282 int state = static_branch_likely(&sched_numa_balancing); 4283 4284 if (write && !capable(CAP_SYS_ADMIN)) 4285 return -EPERM; 4286 4287 t = *table; 4288 t.data = &state; 4289 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4290 if (err < 0) 4291 return err; 4292 if (write) 4293 set_numabalancing_state(state); 4294 return err; 4295 } 4296 #endif 4297 #endif 4298 4299 #ifdef CONFIG_SCHEDSTATS 4300 4301 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4302 4303 static void set_schedstats(bool enabled) 4304 { 4305 if (enabled) 4306 static_branch_enable(&sched_schedstats); 4307 else 4308 static_branch_disable(&sched_schedstats); 4309 } 4310 4311 void force_schedstat_enabled(void) 4312 { 4313 if (!schedstat_enabled()) { 4314 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4315 static_branch_enable(&sched_schedstats); 4316 } 4317 } 4318 4319 static int __init setup_schedstats(char *str) 4320 { 4321 int ret = 0; 4322 if (!str) 4323 goto out; 4324 4325 if (!strcmp(str, "enable")) { 4326 set_schedstats(true); 4327 ret = 1; 4328 } else if (!strcmp(str, "disable")) { 4329 set_schedstats(false); 4330 ret = 1; 4331 } 4332 out: 4333 if (!ret) 4334 pr_warn("Unable to parse schedstats=\n"); 4335 4336 return ret; 4337 } 4338 __setup("schedstats=", setup_schedstats); 4339 4340 #ifdef CONFIG_PROC_SYSCTL 4341 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4342 size_t *lenp, loff_t *ppos) 4343 { 4344 struct ctl_table t; 4345 int err; 4346 int state = static_branch_likely(&sched_schedstats); 4347 4348 if (write && !capable(CAP_SYS_ADMIN)) 4349 return -EPERM; 4350 4351 t = *table; 4352 t.data = &state; 4353 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4354 if (err < 0) 4355 return err; 4356 if (write) 4357 set_schedstats(state); 4358 return err; 4359 } 4360 #endif /* CONFIG_PROC_SYSCTL */ 4361 #endif /* CONFIG_SCHEDSTATS */ 4362 4363 /* 4364 * fork()/clone()-time setup: 4365 */ 4366 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4367 { 4368 __sched_fork(clone_flags, p); 4369 /* 4370 * We mark the process as NEW here. This guarantees that 4371 * nobody will actually run it, and a signal or other external 4372 * event cannot wake it up and insert it on the runqueue either. 4373 */ 4374 p->__state = TASK_NEW; 4375 4376 /* 4377 * Make sure we do not leak PI boosting priority to the child. 4378 */ 4379 p->prio = current->normal_prio; 4380 4381 uclamp_fork(p); 4382 4383 /* 4384 * Revert to default priority/policy on fork if requested. 4385 */ 4386 if (unlikely(p->sched_reset_on_fork)) { 4387 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4388 p->policy = SCHED_NORMAL; 4389 p->static_prio = NICE_TO_PRIO(0); 4390 p->rt_priority = 0; 4391 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4392 p->static_prio = NICE_TO_PRIO(0); 4393 4394 p->prio = p->normal_prio = p->static_prio; 4395 set_load_weight(p, false); 4396 4397 /* 4398 * We don't need the reset flag anymore after the fork. It has 4399 * fulfilled its duty: 4400 */ 4401 p->sched_reset_on_fork = 0; 4402 } 4403 4404 if (dl_prio(p->prio)) 4405 return -EAGAIN; 4406 else if (rt_prio(p->prio)) 4407 p->sched_class = &rt_sched_class; 4408 else 4409 p->sched_class = &fair_sched_class; 4410 4411 init_entity_runnable_average(&p->se); 4412 4413 #ifdef CONFIG_SCHED_INFO 4414 if (likely(sched_info_on())) 4415 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4416 #endif 4417 #if defined(CONFIG_SMP) 4418 p->on_cpu = 0; 4419 #endif 4420 init_task_preempt_count(p); 4421 #ifdef CONFIG_SMP 4422 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4423 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4424 #endif 4425 return 0; 4426 } 4427 4428 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4429 { 4430 unsigned long flags; 4431 #ifdef CONFIG_CGROUP_SCHED 4432 struct task_group *tg; 4433 #endif 4434 4435 raw_spin_lock_irqsave(&p->pi_lock, flags); 4436 #ifdef CONFIG_CGROUP_SCHED 4437 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4438 struct task_group, css); 4439 p->sched_task_group = autogroup_task_group(p, tg); 4440 #endif 4441 rseq_migrate(p); 4442 /* 4443 * We're setting the CPU for the first time, we don't migrate, 4444 * so use __set_task_cpu(). 4445 */ 4446 __set_task_cpu(p, smp_processor_id()); 4447 if (p->sched_class->task_fork) 4448 p->sched_class->task_fork(p); 4449 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4450 4451 uclamp_post_fork(p); 4452 } 4453 4454 unsigned long to_ratio(u64 period, u64 runtime) 4455 { 4456 if (runtime == RUNTIME_INF) 4457 return BW_UNIT; 4458 4459 /* 4460 * Doing this here saves a lot of checks in all 4461 * the calling paths, and returning zero seems 4462 * safe for them anyway. 4463 */ 4464 if (period == 0) 4465 return 0; 4466 4467 return div64_u64(runtime << BW_SHIFT, period); 4468 } 4469 4470 /* 4471 * wake_up_new_task - wake up a newly created task for the first time. 4472 * 4473 * This function will do some initial scheduler statistics housekeeping 4474 * that must be done for every newly created context, then puts the task 4475 * on the runqueue and wakes it. 4476 */ 4477 void wake_up_new_task(struct task_struct *p) 4478 { 4479 struct rq_flags rf; 4480 struct rq *rq; 4481 4482 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4483 WRITE_ONCE(p->__state, TASK_RUNNING); 4484 #ifdef CONFIG_SMP 4485 /* 4486 * Fork balancing, do it here and not earlier because: 4487 * - cpus_ptr can change in the fork path 4488 * - any previously selected CPU might disappear through hotplug 4489 * 4490 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4491 * as we're not fully set-up yet. 4492 */ 4493 p->recent_used_cpu = task_cpu(p); 4494 rseq_migrate(p); 4495 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4496 #endif 4497 rq = __task_rq_lock(p, &rf); 4498 update_rq_clock(rq); 4499 post_init_entity_util_avg(p); 4500 4501 activate_task(rq, p, ENQUEUE_NOCLOCK); 4502 trace_sched_wakeup_new(p); 4503 check_preempt_curr(rq, p, WF_FORK); 4504 #ifdef CONFIG_SMP 4505 if (p->sched_class->task_woken) { 4506 /* 4507 * Nothing relies on rq->lock after this, so it's fine to 4508 * drop it. 4509 */ 4510 rq_unpin_lock(rq, &rf); 4511 p->sched_class->task_woken(rq, p); 4512 rq_repin_lock(rq, &rf); 4513 } 4514 #endif 4515 task_rq_unlock(rq, p, &rf); 4516 } 4517 4518 #ifdef CONFIG_PREEMPT_NOTIFIERS 4519 4520 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4521 4522 void preempt_notifier_inc(void) 4523 { 4524 static_branch_inc(&preempt_notifier_key); 4525 } 4526 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4527 4528 void preempt_notifier_dec(void) 4529 { 4530 static_branch_dec(&preempt_notifier_key); 4531 } 4532 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4533 4534 /** 4535 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4536 * @notifier: notifier struct to register 4537 */ 4538 void preempt_notifier_register(struct preempt_notifier *notifier) 4539 { 4540 if (!static_branch_unlikely(&preempt_notifier_key)) 4541 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4542 4543 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4544 } 4545 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4546 4547 /** 4548 * preempt_notifier_unregister - no longer interested in preemption notifications 4549 * @notifier: notifier struct to unregister 4550 * 4551 * This is *not* safe to call from within a preemption notifier. 4552 */ 4553 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4554 { 4555 hlist_del(¬ifier->link); 4556 } 4557 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4558 4559 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4560 { 4561 struct preempt_notifier *notifier; 4562 4563 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4564 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4565 } 4566 4567 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4568 { 4569 if (static_branch_unlikely(&preempt_notifier_key)) 4570 __fire_sched_in_preempt_notifiers(curr); 4571 } 4572 4573 static void 4574 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4575 struct task_struct *next) 4576 { 4577 struct preempt_notifier *notifier; 4578 4579 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4580 notifier->ops->sched_out(notifier, next); 4581 } 4582 4583 static __always_inline void 4584 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4585 struct task_struct *next) 4586 { 4587 if (static_branch_unlikely(&preempt_notifier_key)) 4588 __fire_sched_out_preempt_notifiers(curr, next); 4589 } 4590 4591 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4592 4593 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4594 { 4595 } 4596 4597 static inline void 4598 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4599 struct task_struct *next) 4600 { 4601 } 4602 4603 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4604 4605 static inline void prepare_task(struct task_struct *next) 4606 { 4607 #ifdef CONFIG_SMP 4608 /* 4609 * Claim the task as running, we do this before switching to it 4610 * such that any running task will have this set. 4611 * 4612 * See the ttwu() WF_ON_CPU case and its ordering comment. 4613 */ 4614 WRITE_ONCE(next->on_cpu, 1); 4615 #endif 4616 } 4617 4618 static inline void finish_task(struct task_struct *prev) 4619 { 4620 #ifdef CONFIG_SMP 4621 /* 4622 * This must be the very last reference to @prev from this CPU. After 4623 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4624 * must ensure this doesn't happen until the switch is completely 4625 * finished. 4626 * 4627 * In particular, the load of prev->state in finish_task_switch() must 4628 * happen before this. 4629 * 4630 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4631 */ 4632 smp_store_release(&prev->on_cpu, 0); 4633 #endif 4634 } 4635 4636 #ifdef CONFIG_SMP 4637 4638 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4639 { 4640 void (*func)(struct rq *rq); 4641 struct callback_head *next; 4642 4643 lockdep_assert_rq_held(rq); 4644 4645 while (head) { 4646 func = (void (*)(struct rq *))head->func; 4647 next = head->next; 4648 head->next = NULL; 4649 head = next; 4650 4651 func(rq); 4652 } 4653 } 4654 4655 static void balance_push(struct rq *rq); 4656 4657 struct callback_head balance_push_callback = { 4658 .next = NULL, 4659 .func = (void (*)(struct callback_head *))balance_push, 4660 }; 4661 4662 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4663 { 4664 struct callback_head *head = rq->balance_callback; 4665 4666 lockdep_assert_rq_held(rq); 4667 if (head) 4668 rq->balance_callback = NULL; 4669 4670 return head; 4671 } 4672 4673 static void __balance_callbacks(struct rq *rq) 4674 { 4675 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4676 } 4677 4678 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4679 { 4680 unsigned long flags; 4681 4682 if (unlikely(head)) { 4683 raw_spin_rq_lock_irqsave(rq, flags); 4684 do_balance_callbacks(rq, head); 4685 raw_spin_rq_unlock_irqrestore(rq, flags); 4686 } 4687 } 4688 4689 #else 4690 4691 static inline void __balance_callbacks(struct rq *rq) 4692 { 4693 } 4694 4695 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4696 { 4697 return NULL; 4698 } 4699 4700 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4701 { 4702 } 4703 4704 #endif 4705 4706 static inline void 4707 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4708 { 4709 /* 4710 * Since the runqueue lock will be released by the next 4711 * task (which is an invalid locking op but in the case 4712 * of the scheduler it's an obvious special-case), so we 4713 * do an early lockdep release here: 4714 */ 4715 rq_unpin_lock(rq, rf); 4716 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4717 #ifdef CONFIG_DEBUG_SPINLOCK 4718 /* this is a valid case when another task releases the spinlock */ 4719 rq_lockp(rq)->owner = next; 4720 #endif 4721 } 4722 4723 static inline void finish_lock_switch(struct rq *rq) 4724 { 4725 /* 4726 * If we are tracking spinlock dependencies then we have to 4727 * fix up the runqueue lock - which gets 'carried over' from 4728 * prev into current: 4729 */ 4730 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4731 __balance_callbacks(rq); 4732 raw_spin_rq_unlock_irq(rq); 4733 } 4734 4735 /* 4736 * NOP if the arch has not defined these: 4737 */ 4738 4739 #ifndef prepare_arch_switch 4740 # define prepare_arch_switch(next) do { } while (0) 4741 #endif 4742 4743 #ifndef finish_arch_post_lock_switch 4744 # define finish_arch_post_lock_switch() do { } while (0) 4745 #endif 4746 4747 static inline void kmap_local_sched_out(void) 4748 { 4749 #ifdef CONFIG_KMAP_LOCAL 4750 if (unlikely(current->kmap_ctrl.idx)) 4751 __kmap_local_sched_out(); 4752 #endif 4753 } 4754 4755 static inline void kmap_local_sched_in(void) 4756 { 4757 #ifdef CONFIG_KMAP_LOCAL 4758 if (unlikely(current->kmap_ctrl.idx)) 4759 __kmap_local_sched_in(); 4760 #endif 4761 } 4762 4763 /** 4764 * prepare_task_switch - prepare to switch tasks 4765 * @rq: the runqueue preparing to switch 4766 * @prev: the current task that is being switched out 4767 * @next: the task we are going to switch to. 4768 * 4769 * This is called with the rq lock held and interrupts off. It must 4770 * be paired with a subsequent finish_task_switch after the context 4771 * switch. 4772 * 4773 * prepare_task_switch sets up locking and calls architecture specific 4774 * hooks. 4775 */ 4776 static inline void 4777 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4778 struct task_struct *next) 4779 { 4780 kcov_prepare_switch(prev); 4781 sched_info_switch(rq, prev, next); 4782 perf_event_task_sched_out(prev, next); 4783 rseq_preempt(prev); 4784 fire_sched_out_preempt_notifiers(prev, next); 4785 kmap_local_sched_out(); 4786 prepare_task(next); 4787 prepare_arch_switch(next); 4788 } 4789 4790 /** 4791 * finish_task_switch - clean up after a task-switch 4792 * @prev: the thread we just switched away from. 4793 * 4794 * finish_task_switch must be called after the context switch, paired 4795 * with a prepare_task_switch call before the context switch. 4796 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4797 * and do any other architecture-specific cleanup actions. 4798 * 4799 * Note that we may have delayed dropping an mm in context_switch(). If 4800 * so, we finish that here outside of the runqueue lock. (Doing it 4801 * with the lock held can cause deadlocks; see schedule() for 4802 * details.) 4803 * 4804 * The context switch have flipped the stack from under us and restored the 4805 * local variables which were saved when this task called schedule() in the 4806 * past. prev == current is still correct but we need to recalculate this_rq 4807 * because prev may have moved to another CPU. 4808 */ 4809 static struct rq *finish_task_switch(struct task_struct *prev) 4810 __releases(rq->lock) 4811 { 4812 struct rq *rq = this_rq(); 4813 struct mm_struct *mm = rq->prev_mm; 4814 long prev_state; 4815 4816 /* 4817 * The previous task will have left us with a preempt_count of 2 4818 * because it left us after: 4819 * 4820 * schedule() 4821 * preempt_disable(); // 1 4822 * __schedule() 4823 * raw_spin_lock_irq(&rq->lock) // 2 4824 * 4825 * Also, see FORK_PREEMPT_COUNT. 4826 */ 4827 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4828 "corrupted preempt_count: %s/%d/0x%x\n", 4829 current->comm, current->pid, preempt_count())) 4830 preempt_count_set(FORK_PREEMPT_COUNT); 4831 4832 rq->prev_mm = NULL; 4833 4834 /* 4835 * A task struct has one reference for the use as "current". 4836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4837 * schedule one last time. The schedule call will never return, and 4838 * the scheduled task must drop that reference. 4839 * 4840 * We must observe prev->state before clearing prev->on_cpu (in 4841 * finish_task), otherwise a concurrent wakeup can get prev 4842 * running on another CPU and we could rave with its RUNNING -> DEAD 4843 * transition, resulting in a double drop. 4844 */ 4845 prev_state = READ_ONCE(prev->__state); 4846 vtime_task_switch(prev); 4847 perf_event_task_sched_in(prev, current); 4848 finish_task(prev); 4849 tick_nohz_task_switch(); 4850 finish_lock_switch(rq); 4851 finish_arch_post_lock_switch(); 4852 kcov_finish_switch(current); 4853 /* 4854 * kmap_local_sched_out() is invoked with rq::lock held and 4855 * interrupts disabled. There is no requirement for that, but the 4856 * sched out code does not have an interrupt enabled section. 4857 * Restoring the maps on sched in does not require interrupts being 4858 * disabled either. 4859 */ 4860 kmap_local_sched_in(); 4861 4862 fire_sched_in_preempt_notifiers(current); 4863 /* 4864 * When switching through a kernel thread, the loop in 4865 * membarrier_{private,global}_expedited() may have observed that 4866 * kernel thread and not issued an IPI. It is therefore possible to 4867 * schedule between user->kernel->user threads without passing though 4868 * switch_mm(). Membarrier requires a barrier after storing to 4869 * rq->curr, before returning to userspace, so provide them here: 4870 * 4871 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4872 * provided by mmdrop(), 4873 * - a sync_core for SYNC_CORE. 4874 */ 4875 if (mm) { 4876 membarrier_mm_sync_core_before_usermode(mm); 4877 mmdrop_sched(mm); 4878 } 4879 if (unlikely(prev_state == TASK_DEAD)) { 4880 if (prev->sched_class->task_dead) 4881 prev->sched_class->task_dead(prev); 4882 4883 /* Task is done with its stack. */ 4884 put_task_stack(prev); 4885 4886 put_task_struct_rcu_user(prev); 4887 } 4888 4889 return rq; 4890 } 4891 4892 /** 4893 * schedule_tail - first thing a freshly forked thread must call. 4894 * @prev: the thread we just switched away from. 4895 */ 4896 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4897 __releases(rq->lock) 4898 { 4899 /* 4900 * New tasks start with FORK_PREEMPT_COUNT, see there and 4901 * finish_task_switch() for details. 4902 * 4903 * finish_task_switch() will drop rq->lock() and lower preempt_count 4904 * and the preempt_enable() will end up enabling preemption (on 4905 * PREEMPT_COUNT kernels). 4906 */ 4907 4908 finish_task_switch(prev); 4909 preempt_enable(); 4910 4911 if (current->set_child_tid) 4912 put_user(task_pid_vnr(current), current->set_child_tid); 4913 4914 calculate_sigpending(); 4915 } 4916 4917 /* 4918 * context_switch - switch to the new MM and the new thread's register state. 4919 */ 4920 static __always_inline struct rq * 4921 context_switch(struct rq *rq, struct task_struct *prev, 4922 struct task_struct *next, struct rq_flags *rf) 4923 { 4924 prepare_task_switch(rq, prev, next); 4925 4926 /* 4927 * For paravirt, this is coupled with an exit in switch_to to 4928 * combine the page table reload and the switch backend into 4929 * one hypercall. 4930 */ 4931 arch_start_context_switch(prev); 4932 4933 /* 4934 * kernel -> kernel lazy + transfer active 4935 * user -> kernel lazy + mmgrab() active 4936 * 4937 * kernel -> user switch + mmdrop() active 4938 * user -> user switch 4939 */ 4940 if (!next->mm) { // to kernel 4941 enter_lazy_tlb(prev->active_mm, next); 4942 4943 next->active_mm = prev->active_mm; 4944 if (prev->mm) // from user 4945 mmgrab(prev->active_mm); 4946 else 4947 prev->active_mm = NULL; 4948 } else { // to user 4949 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4950 /* 4951 * sys_membarrier() requires an smp_mb() between setting 4952 * rq->curr / membarrier_switch_mm() and returning to userspace. 4953 * 4954 * The below provides this either through switch_mm(), or in 4955 * case 'prev->active_mm == next->mm' through 4956 * finish_task_switch()'s mmdrop(). 4957 */ 4958 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4959 4960 if (!prev->mm) { // from kernel 4961 /* will mmdrop() in finish_task_switch(). */ 4962 rq->prev_mm = prev->active_mm; 4963 prev->active_mm = NULL; 4964 } 4965 } 4966 4967 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4968 4969 prepare_lock_switch(rq, next, rf); 4970 4971 /* Here we just switch the register state and the stack. */ 4972 switch_to(prev, next, prev); 4973 barrier(); 4974 4975 return finish_task_switch(prev); 4976 } 4977 4978 /* 4979 * nr_running and nr_context_switches: 4980 * 4981 * externally visible scheduler statistics: current number of runnable 4982 * threads, total number of context switches performed since bootup. 4983 */ 4984 unsigned int nr_running(void) 4985 { 4986 unsigned int i, sum = 0; 4987 4988 for_each_online_cpu(i) 4989 sum += cpu_rq(i)->nr_running; 4990 4991 return sum; 4992 } 4993 4994 /* 4995 * Check if only the current task is running on the CPU. 4996 * 4997 * Caution: this function does not check that the caller has disabled 4998 * preemption, thus the result might have a time-of-check-to-time-of-use 4999 * race. The caller is responsible to use it correctly, for example: 5000 * 5001 * - from a non-preemptible section (of course) 5002 * 5003 * - from a thread that is bound to a single CPU 5004 * 5005 * - in a loop with very short iterations (e.g. a polling loop) 5006 */ 5007 bool single_task_running(void) 5008 { 5009 return raw_rq()->nr_running == 1; 5010 } 5011 EXPORT_SYMBOL(single_task_running); 5012 5013 unsigned long long nr_context_switches(void) 5014 { 5015 int i; 5016 unsigned long long sum = 0; 5017 5018 for_each_possible_cpu(i) 5019 sum += cpu_rq(i)->nr_switches; 5020 5021 return sum; 5022 } 5023 5024 /* 5025 * Consumers of these two interfaces, like for example the cpuidle menu 5026 * governor, are using nonsensical data. Preferring shallow idle state selection 5027 * for a CPU that has IO-wait which might not even end up running the task when 5028 * it does become runnable. 5029 */ 5030 5031 unsigned int nr_iowait_cpu(int cpu) 5032 { 5033 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5034 } 5035 5036 /* 5037 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5038 * 5039 * The idea behind IO-wait account is to account the idle time that we could 5040 * have spend running if it were not for IO. That is, if we were to improve the 5041 * storage performance, we'd have a proportional reduction in IO-wait time. 5042 * 5043 * This all works nicely on UP, where, when a task blocks on IO, we account 5044 * idle time as IO-wait, because if the storage were faster, it could've been 5045 * running and we'd not be idle. 5046 * 5047 * This has been extended to SMP, by doing the same for each CPU. This however 5048 * is broken. 5049 * 5050 * Imagine for instance the case where two tasks block on one CPU, only the one 5051 * CPU will have IO-wait accounted, while the other has regular idle. Even 5052 * though, if the storage were faster, both could've ran at the same time, 5053 * utilising both CPUs. 5054 * 5055 * This means, that when looking globally, the current IO-wait accounting on 5056 * SMP is a lower bound, by reason of under accounting. 5057 * 5058 * Worse, since the numbers are provided per CPU, they are sometimes 5059 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5060 * associated with any one particular CPU, it can wake to another CPU than it 5061 * blocked on. This means the per CPU IO-wait number is meaningless. 5062 * 5063 * Task CPU affinities can make all that even more 'interesting'. 5064 */ 5065 5066 unsigned int nr_iowait(void) 5067 { 5068 unsigned int i, sum = 0; 5069 5070 for_each_possible_cpu(i) 5071 sum += nr_iowait_cpu(i); 5072 5073 return sum; 5074 } 5075 5076 #ifdef CONFIG_SMP 5077 5078 /* 5079 * sched_exec - execve() is a valuable balancing opportunity, because at 5080 * this point the task has the smallest effective memory and cache footprint. 5081 */ 5082 void sched_exec(void) 5083 { 5084 struct task_struct *p = current; 5085 unsigned long flags; 5086 int dest_cpu; 5087 5088 raw_spin_lock_irqsave(&p->pi_lock, flags); 5089 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5090 if (dest_cpu == smp_processor_id()) 5091 goto unlock; 5092 5093 if (likely(cpu_active(dest_cpu))) { 5094 struct migration_arg arg = { p, dest_cpu }; 5095 5096 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5097 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5098 return; 5099 } 5100 unlock: 5101 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5102 } 5103 5104 #endif 5105 5106 DEFINE_PER_CPU(struct kernel_stat, kstat); 5107 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5108 5109 EXPORT_PER_CPU_SYMBOL(kstat); 5110 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5111 5112 /* 5113 * The function fair_sched_class.update_curr accesses the struct curr 5114 * and its field curr->exec_start; when called from task_sched_runtime(), 5115 * we observe a high rate of cache misses in practice. 5116 * Prefetching this data results in improved performance. 5117 */ 5118 static inline void prefetch_curr_exec_start(struct task_struct *p) 5119 { 5120 #ifdef CONFIG_FAIR_GROUP_SCHED 5121 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5122 #else 5123 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5124 #endif 5125 prefetch(curr); 5126 prefetch(&curr->exec_start); 5127 } 5128 5129 /* 5130 * Return accounted runtime for the task. 5131 * In case the task is currently running, return the runtime plus current's 5132 * pending runtime that have not been accounted yet. 5133 */ 5134 unsigned long long task_sched_runtime(struct task_struct *p) 5135 { 5136 struct rq_flags rf; 5137 struct rq *rq; 5138 u64 ns; 5139 5140 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5141 /* 5142 * 64-bit doesn't need locks to atomically read a 64-bit value. 5143 * So we have a optimization chance when the task's delta_exec is 0. 5144 * Reading ->on_cpu is racy, but this is ok. 5145 * 5146 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5147 * If we race with it entering CPU, unaccounted time is 0. This is 5148 * indistinguishable from the read occurring a few cycles earlier. 5149 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5150 * been accounted, so we're correct here as well. 5151 */ 5152 if (!p->on_cpu || !task_on_rq_queued(p)) 5153 return p->se.sum_exec_runtime; 5154 #endif 5155 5156 rq = task_rq_lock(p, &rf); 5157 /* 5158 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5159 * project cycles that may never be accounted to this 5160 * thread, breaking clock_gettime(). 5161 */ 5162 if (task_current(rq, p) && task_on_rq_queued(p)) { 5163 prefetch_curr_exec_start(p); 5164 update_rq_clock(rq); 5165 p->sched_class->update_curr(rq); 5166 } 5167 ns = p->se.sum_exec_runtime; 5168 task_rq_unlock(rq, p, &rf); 5169 5170 return ns; 5171 } 5172 5173 #ifdef CONFIG_SCHED_DEBUG 5174 static u64 cpu_resched_latency(struct rq *rq) 5175 { 5176 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5177 u64 resched_latency, now = rq_clock(rq); 5178 static bool warned_once; 5179 5180 if (sysctl_resched_latency_warn_once && warned_once) 5181 return 0; 5182 5183 if (!need_resched() || !latency_warn_ms) 5184 return 0; 5185 5186 if (system_state == SYSTEM_BOOTING) 5187 return 0; 5188 5189 if (!rq->last_seen_need_resched_ns) { 5190 rq->last_seen_need_resched_ns = now; 5191 rq->ticks_without_resched = 0; 5192 return 0; 5193 } 5194 5195 rq->ticks_without_resched++; 5196 resched_latency = now - rq->last_seen_need_resched_ns; 5197 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5198 return 0; 5199 5200 warned_once = true; 5201 5202 return resched_latency; 5203 } 5204 5205 static int __init setup_resched_latency_warn_ms(char *str) 5206 { 5207 long val; 5208 5209 if ((kstrtol(str, 0, &val))) { 5210 pr_warn("Unable to set resched_latency_warn_ms\n"); 5211 return 1; 5212 } 5213 5214 sysctl_resched_latency_warn_ms = val; 5215 return 1; 5216 } 5217 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5218 #else 5219 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5220 #endif /* CONFIG_SCHED_DEBUG */ 5221 5222 /* 5223 * This function gets called by the timer code, with HZ frequency. 5224 * We call it with interrupts disabled. 5225 */ 5226 void scheduler_tick(void) 5227 { 5228 int cpu = smp_processor_id(); 5229 struct rq *rq = cpu_rq(cpu); 5230 struct task_struct *curr = rq->curr; 5231 struct rq_flags rf; 5232 unsigned long thermal_pressure; 5233 u64 resched_latency; 5234 5235 arch_scale_freq_tick(); 5236 sched_clock_tick(); 5237 5238 rq_lock(rq, &rf); 5239 5240 update_rq_clock(rq); 5241 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5242 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5243 curr->sched_class->task_tick(rq, curr, 0); 5244 if (sched_feat(LATENCY_WARN)) 5245 resched_latency = cpu_resched_latency(rq); 5246 calc_global_load_tick(rq); 5247 5248 rq_unlock(rq, &rf); 5249 5250 if (sched_feat(LATENCY_WARN) && resched_latency) 5251 resched_latency_warn(cpu, resched_latency); 5252 5253 perf_event_task_tick(); 5254 5255 #ifdef CONFIG_SMP 5256 rq->idle_balance = idle_cpu(cpu); 5257 trigger_load_balance(rq); 5258 #endif 5259 } 5260 5261 #ifdef CONFIG_NO_HZ_FULL 5262 5263 struct tick_work { 5264 int cpu; 5265 atomic_t state; 5266 struct delayed_work work; 5267 }; 5268 /* Values for ->state, see diagram below. */ 5269 #define TICK_SCHED_REMOTE_OFFLINE 0 5270 #define TICK_SCHED_REMOTE_OFFLINING 1 5271 #define TICK_SCHED_REMOTE_RUNNING 2 5272 5273 /* 5274 * State diagram for ->state: 5275 * 5276 * 5277 * TICK_SCHED_REMOTE_OFFLINE 5278 * | ^ 5279 * | | 5280 * | | sched_tick_remote() 5281 * | | 5282 * | | 5283 * +--TICK_SCHED_REMOTE_OFFLINING 5284 * | ^ 5285 * | | 5286 * sched_tick_start() | | sched_tick_stop() 5287 * | | 5288 * V | 5289 * TICK_SCHED_REMOTE_RUNNING 5290 * 5291 * 5292 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5293 * and sched_tick_start() are happy to leave the state in RUNNING. 5294 */ 5295 5296 static struct tick_work __percpu *tick_work_cpu; 5297 5298 static void sched_tick_remote(struct work_struct *work) 5299 { 5300 struct delayed_work *dwork = to_delayed_work(work); 5301 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5302 int cpu = twork->cpu; 5303 struct rq *rq = cpu_rq(cpu); 5304 struct task_struct *curr; 5305 struct rq_flags rf; 5306 u64 delta; 5307 int os; 5308 5309 /* 5310 * Handle the tick only if it appears the remote CPU is running in full 5311 * dynticks mode. The check is racy by nature, but missing a tick or 5312 * having one too much is no big deal because the scheduler tick updates 5313 * statistics and checks timeslices in a time-independent way, regardless 5314 * of when exactly it is running. 5315 */ 5316 if (!tick_nohz_tick_stopped_cpu(cpu)) 5317 goto out_requeue; 5318 5319 rq_lock_irq(rq, &rf); 5320 curr = rq->curr; 5321 if (cpu_is_offline(cpu)) 5322 goto out_unlock; 5323 5324 update_rq_clock(rq); 5325 5326 if (!is_idle_task(curr)) { 5327 /* 5328 * Make sure the next tick runs within a reasonable 5329 * amount of time. 5330 */ 5331 delta = rq_clock_task(rq) - curr->se.exec_start; 5332 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5333 } 5334 curr->sched_class->task_tick(rq, curr, 0); 5335 5336 calc_load_nohz_remote(rq); 5337 out_unlock: 5338 rq_unlock_irq(rq, &rf); 5339 out_requeue: 5340 5341 /* 5342 * Run the remote tick once per second (1Hz). This arbitrary 5343 * frequency is large enough to avoid overload but short enough 5344 * to keep scheduler internal stats reasonably up to date. But 5345 * first update state to reflect hotplug activity if required. 5346 */ 5347 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5348 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5349 if (os == TICK_SCHED_REMOTE_RUNNING) 5350 queue_delayed_work(system_unbound_wq, dwork, HZ); 5351 } 5352 5353 static void sched_tick_start(int cpu) 5354 { 5355 int os; 5356 struct tick_work *twork; 5357 5358 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5359 return; 5360 5361 WARN_ON_ONCE(!tick_work_cpu); 5362 5363 twork = per_cpu_ptr(tick_work_cpu, cpu); 5364 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5365 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5366 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5367 twork->cpu = cpu; 5368 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5369 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5370 } 5371 } 5372 5373 #ifdef CONFIG_HOTPLUG_CPU 5374 static void sched_tick_stop(int cpu) 5375 { 5376 struct tick_work *twork; 5377 int os; 5378 5379 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5380 return; 5381 5382 WARN_ON_ONCE(!tick_work_cpu); 5383 5384 twork = per_cpu_ptr(tick_work_cpu, cpu); 5385 /* There cannot be competing actions, but don't rely on stop-machine. */ 5386 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5387 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5388 /* Don't cancel, as this would mess up the state machine. */ 5389 } 5390 #endif /* CONFIG_HOTPLUG_CPU */ 5391 5392 int __init sched_tick_offload_init(void) 5393 { 5394 tick_work_cpu = alloc_percpu(struct tick_work); 5395 BUG_ON(!tick_work_cpu); 5396 return 0; 5397 } 5398 5399 #else /* !CONFIG_NO_HZ_FULL */ 5400 static inline void sched_tick_start(int cpu) { } 5401 static inline void sched_tick_stop(int cpu) { } 5402 #endif 5403 5404 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5405 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5406 /* 5407 * If the value passed in is equal to the current preempt count 5408 * then we just disabled preemption. Start timing the latency. 5409 */ 5410 static inline void preempt_latency_start(int val) 5411 { 5412 if (preempt_count() == val) { 5413 unsigned long ip = get_lock_parent_ip(); 5414 #ifdef CONFIG_DEBUG_PREEMPT 5415 current->preempt_disable_ip = ip; 5416 #endif 5417 trace_preempt_off(CALLER_ADDR0, ip); 5418 } 5419 } 5420 5421 void preempt_count_add(int val) 5422 { 5423 #ifdef CONFIG_DEBUG_PREEMPT 5424 /* 5425 * Underflow? 5426 */ 5427 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5428 return; 5429 #endif 5430 __preempt_count_add(val); 5431 #ifdef CONFIG_DEBUG_PREEMPT 5432 /* 5433 * Spinlock count overflowing soon? 5434 */ 5435 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5436 PREEMPT_MASK - 10); 5437 #endif 5438 preempt_latency_start(val); 5439 } 5440 EXPORT_SYMBOL(preempt_count_add); 5441 NOKPROBE_SYMBOL(preempt_count_add); 5442 5443 /* 5444 * If the value passed in equals to the current preempt count 5445 * then we just enabled preemption. Stop timing the latency. 5446 */ 5447 static inline void preempt_latency_stop(int val) 5448 { 5449 if (preempt_count() == val) 5450 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5451 } 5452 5453 void preempt_count_sub(int val) 5454 { 5455 #ifdef CONFIG_DEBUG_PREEMPT 5456 /* 5457 * Underflow? 5458 */ 5459 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5460 return; 5461 /* 5462 * Is the spinlock portion underflowing? 5463 */ 5464 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5465 !(preempt_count() & PREEMPT_MASK))) 5466 return; 5467 #endif 5468 5469 preempt_latency_stop(val); 5470 __preempt_count_sub(val); 5471 } 5472 EXPORT_SYMBOL(preempt_count_sub); 5473 NOKPROBE_SYMBOL(preempt_count_sub); 5474 5475 #else 5476 static inline void preempt_latency_start(int val) { } 5477 static inline void preempt_latency_stop(int val) { } 5478 #endif 5479 5480 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5481 { 5482 #ifdef CONFIG_DEBUG_PREEMPT 5483 return p->preempt_disable_ip; 5484 #else 5485 return 0; 5486 #endif 5487 } 5488 5489 /* 5490 * Print scheduling while atomic bug: 5491 */ 5492 static noinline void __schedule_bug(struct task_struct *prev) 5493 { 5494 /* Save this before calling printk(), since that will clobber it */ 5495 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5496 5497 if (oops_in_progress) 5498 return; 5499 5500 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5501 prev->comm, prev->pid, preempt_count()); 5502 5503 debug_show_held_locks(prev); 5504 print_modules(); 5505 if (irqs_disabled()) 5506 print_irqtrace_events(prev); 5507 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5508 && in_atomic_preempt_off()) { 5509 pr_err("Preemption disabled at:"); 5510 print_ip_sym(KERN_ERR, preempt_disable_ip); 5511 } 5512 if (panic_on_warn) 5513 panic("scheduling while atomic\n"); 5514 5515 dump_stack(); 5516 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5517 } 5518 5519 /* 5520 * Various schedule()-time debugging checks and statistics: 5521 */ 5522 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5523 { 5524 #ifdef CONFIG_SCHED_STACK_END_CHECK 5525 if (task_stack_end_corrupted(prev)) 5526 panic("corrupted stack end detected inside scheduler\n"); 5527 5528 if (task_scs_end_corrupted(prev)) 5529 panic("corrupted shadow stack detected inside scheduler\n"); 5530 #endif 5531 5532 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5533 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5534 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5535 prev->comm, prev->pid, prev->non_block_count); 5536 dump_stack(); 5537 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5538 } 5539 #endif 5540 5541 if (unlikely(in_atomic_preempt_off())) { 5542 __schedule_bug(prev); 5543 preempt_count_set(PREEMPT_DISABLED); 5544 } 5545 rcu_sleep_check(); 5546 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5547 5548 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5549 5550 schedstat_inc(this_rq()->sched_count); 5551 } 5552 5553 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5554 struct rq_flags *rf) 5555 { 5556 #ifdef CONFIG_SMP 5557 const struct sched_class *class; 5558 /* 5559 * We must do the balancing pass before put_prev_task(), such 5560 * that when we release the rq->lock the task is in the same 5561 * state as before we took rq->lock. 5562 * 5563 * We can terminate the balance pass as soon as we know there is 5564 * a runnable task of @class priority or higher. 5565 */ 5566 for_class_range(class, prev->sched_class, &idle_sched_class) { 5567 if (class->balance(rq, prev, rf)) 5568 break; 5569 } 5570 #endif 5571 5572 put_prev_task(rq, prev); 5573 } 5574 5575 /* 5576 * Pick up the highest-prio task: 5577 */ 5578 static inline struct task_struct * 5579 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5580 { 5581 const struct sched_class *class; 5582 struct task_struct *p; 5583 5584 /* 5585 * Optimization: we know that if all tasks are in the fair class we can 5586 * call that function directly, but only if the @prev task wasn't of a 5587 * higher scheduling class, because otherwise those lose the 5588 * opportunity to pull in more work from other CPUs. 5589 */ 5590 if (likely(prev->sched_class <= &fair_sched_class && 5591 rq->nr_running == rq->cfs.h_nr_running)) { 5592 5593 p = pick_next_task_fair(rq, prev, rf); 5594 if (unlikely(p == RETRY_TASK)) 5595 goto restart; 5596 5597 /* Assume the next prioritized class is idle_sched_class */ 5598 if (!p) { 5599 put_prev_task(rq, prev); 5600 p = pick_next_task_idle(rq); 5601 } 5602 5603 return p; 5604 } 5605 5606 restart: 5607 put_prev_task_balance(rq, prev, rf); 5608 5609 for_each_class(class) { 5610 p = class->pick_next_task(rq); 5611 if (p) 5612 return p; 5613 } 5614 5615 BUG(); /* The idle class should always have a runnable task. */ 5616 } 5617 5618 #ifdef CONFIG_SCHED_CORE 5619 static inline bool is_task_rq_idle(struct task_struct *t) 5620 { 5621 return (task_rq(t)->idle == t); 5622 } 5623 5624 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5625 { 5626 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5627 } 5628 5629 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5630 { 5631 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5632 return true; 5633 5634 return a->core_cookie == b->core_cookie; 5635 } 5636 5637 static inline struct task_struct *pick_task(struct rq *rq) 5638 { 5639 const struct sched_class *class; 5640 struct task_struct *p; 5641 5642 for_each_class(class) { 5643 p = class->pick_task(rq); 5644 if (p) 5645 return p; 5646 } 5647 5648 BUG(); /* The idle class should always have a runnable task. */ 5649 } 5650 5651 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5652 5653 static struct task_struct * 5654 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5655 { 5656 struct task_struct *next, *p, *max = NULL; 5657 const struct cpumask *smt_mask; 5658 bool fi_before = false; 5659 unsigned long cookie; 5660 int i, cpu, occ = 0; 5661 struct rq *rq_i; 5662 bool need_sync; 5663 5664 if (!sched_core_enabled(rq)) 5665 return __pick_next_task(rq, prev, rf); 5666 5667 cpu = cpu_of(rq); 5668 5669 /* Stopper task is switching into idle, no need core-wide selection. */ 5670 if (cpu_is_offline(cpu)) { 5671 /* 5672 * Reset core_pick so that we don't enter the fastpath when 5673 * coming online. core_pick would already be migrated to 5674 * another cpu during offline. 5675 */ 5676 rq->core_pick = NULL; 5677 return __pick_next_task(rq, prev, rf); 5678 } 5679 5680 /* 5681 * If there were no {en,de}queues since we picked (IOW, the task 5682 * pointers are all still valid), and we haven't scheduled the last 5683 * pick yet, do so now. 5684 * 5685 * rq->core_pick can be NULL if no selection was made for a CPU because 5686 * it was either offline or went offline during a sibling's core-wide 5687 * selection. In this case, do a core-wide selection. 5688 */ 5689 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5690 rq->core->core_pick_seq != rq->core_sched_seq && 5691 rq->core_pick) { 5692 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5693 5694 next = rq->core_pick; 5695 if (next != prev) { 5696 put_prev_task(rq, prev); 5697 set_next_task(rq, next); 5698 } 5699 5700 rq->core_pick = NULL; 5701 return next; 5702 } 5703 5704 put_prev_task_balance(rq, prev, rf); 5705 5706 smt_mask = cpu_smt_mask(cpu); 5707 need_sync = !!rq->core->core_cookie; 5708 5709 /* reset state */ 5710 rq->core->core_cookie = 0UL; 5711 if (rq->core->core_forceidle) { 5712 need_sync = true; 5713 fi_before = true; 5714 rq->core->core_forceidle = false; 5715 } 5716 5717 /* 5718 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5719 * 5720 * @task_seq guards the task state ({en,de}queues) 5721 * @pick_seq is the @task_seq we did a selection on 5722 * @sched_seq is the @pick_seq we scheduled 5723 * 5724 * However, preemptions can cause multiple picks on the same task set. 5725 * 'Fix' this by also increasing @task_seq for every pick. 5726 */ 5727 rq->core->core_task_seq++; 5728 5729 /* 5730 * Optimize for common case where this CPU has no cookies 5731 * and there are no cookied tasks running on siblings. 5732 */ 5733 if (!need_sync) { 5734 next = pick_task(rq); 5735 if (!next->core_cookie) { 5736 rq->core_pick = NULL; 5737 /* 5738 * For robustness, update the min_vruntime_fi for 5739 * unconstrained picks as well. 5740 */ 5741 WARN_ON_ONCE(fi_before); 5742 task_vruntime_update(rq, next, false); 5743 goto done; 5744 } 5745 } 5746 5747 /* 5748 * For each thread: do the regular task pick and find the max prio task 5749 * amongst them. 5750 * 5751 * Tie-break prio towards the current CPU 5752 */ 5753 for_each_cpu_wrap(i, smt_mask, cpu) { 5754 rq_i = cpu_rq(i); 5755 5756 if (i != cpu) 5757 update_rq_clock(rq_i); 5758 5759 p = rq_i->core_pick = pick_task(rq_i); 5760 if (!max || prio_less(max, p, fi_before)) 5761 max = p; 5762 } 5763 5764 cookie = rq->core->core_cookie = max->core_cookie; 5765 5766 /* 5767 * For each thread: try and find a runnable task that matches @max or 5768 * force idle. 5769 */ 5770 for_each_cpu(i, smt_mask) { 5771 rq_i = cpu_rq(i); 5772 p = rq_i->core_pick; 5773 5774 if (!cookie_equals(p, cookie)) { 5775 p = NULL; 5776 if (cookie) 5777 p = sched_core_find(rq_i, cookie); 5778 if (!p) 5779 p = idle_sched_class.pick_task(rq_i); 5780 } 5781 5782 rq_i->core_pick = p; 5783 5784 if (p == rq_i->idle) { 5785 if (rq_i->nr_running) { 5786 rq->core->core_forceidle = true; 5787 if (!fi_before) 5788 rq->core->core_forceidle_seq++; 5789 } 5790 } else { 5791 occ++; 5792 } 5793 } 5794 5795 rq->core->core_pick_seq = rq->core->core_task_seq; 5796 next = rq->core_pick; 5797 rq->core_sched_seq = rq->core->core_pick_seq; 5798 5799 /* Something should have been selected for current CPU */ 5800 WARN_ON_ONCE(!next); 5801 5802 /* 5803 * Reschedule siblings 5804 * 5805 * NOTE: L1TF -- at this point we're no longer running the old task and 5806 * sending an IPI (below) ensures the sibling will no longer be running 5807 * their task. This ensures there is no inter-sibling overlap between 5808 * non-matching user state. 5809 */ 5810 for_each_cpu(i, smt_mask) { 5811 rq_i = cpu_rq(i); 5812 5813 /* 5814 * An online sibling might have gone offline before a task 5815 * could be picked for it, or it might be offline but later 5816 * happen to come online, but its too late and nothing was 5817 * picked for it. That's Ok - it will pick tasks for itself, 5818 * so ignore it. 5819 */ 5820 if (!rq_i->core_pick) 5821 continue; 5822 5823 /* 5824 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5825 * fi_before fi update? 5826 * 0 0 1 5827 * 0 1 1 5828 * 1 0 1 5829 * 1 1 0 5830 */ 5831 if (!(fi_before && rq->core->core_forceidle)) 5832 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle); 5833 5834 rq_i->core_pick->core_occupation = occ; 5835 5836 if (i == cpu) { 5837 rq_i->core_pick = NULL; 5838 continue; 5839 } 5840 5841 /* Did we break L1TF mitigation requirements? */ 5842 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5843 5844 if (rq_i->curr == rq_i->core_pick) { 5845 rq_i->core_pick = NULL; 5846 continue; 5847 } 5848 5849 resched_curr(rq_i); 5850 } 5851 5852 done: 5853 set_next_task(rq, next); 5854 return next; 5855 } 5856 5857 static bool try_steal_cookie(int this, int that) 5858 { 5859 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5860 struct task_struct *p; 5861 unsigned long cookie; 5862 bool success = false; 5863 5864 local_irq_disable(); 5865 double_rq_lock(dst, src); 5866 5867 cookie = dst->core->core_cookie; 5868 if (!cookie) 5869 goto unlock; 5870 5871 if (dst->curr != dst->idle) 5872 goto unlock; 5873 5874 p = sched_core_find(src, cookie); 5875 if (p == src->idle) 5876 goto unlock; 5877 5878 do { 5879 if (p == src->core_pick || p == src->curr) 5880 goto next; 5881 5882 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5883 goto next; 5884 5885 if (p->core_occupation > dst->idle->core_occupation) 5886 goto next; 5887 5888 deactivate_task(src, p, 0); 5889 set_task_cpu(p, this); 5890 activate_task(dst, p, 0); 5891 5892 resched_curr(dst); 5893 5894 success = true; 5895 break; 5896 5897 next: 5898 p = sched_core_next(p, cookie); 5899 } while (p); 5900 5901 unlock: 5902 double_rq_unlock(dst, src); 5903 local_irq_enable(); 5904 5905 return success; 5906 } 5907 5908 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5909 { 5910 int i; 5911 5912 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5913 if (i == cpu) 5914 continue; 5915 5916 if (need_resched()) 5917 break; 5918 5919 if (try_steal_cookie(cpu, i)) 5920 return true; 5921 } 5922 5923 return false; 5924 } 5925 5926 static void sched_core_balance(struct rq *rq) 5927 { 5928 struct sched_domain *sd; 5929 int cpu = cpu_of(rq); 5930 5931 preempt_disable(); 5932 rcu_read_lock(); 5933 raw_spin_rq_unlock_irq(rq); 5934 for_each_domain(cpu, sd) { 5935 if (need_resched()) 5936 break; 5937 5938 if (steal_cookie_task(cpu, sd)) 5939 break; 5940 } 5941 raw_spin_rq_lock_irq(rq); 5942 rcu_read_unlock(); 5943 preempt_enable(); 5944 } 5945 5946 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5947 5948 void queue_core_balance(struct rq *rq) 5949 { 5950 if (!sched_core_enabled(rq)) 5951 return; 5952 5953 if (!rq->core->core_cookie) 5954 return; 5955 5956 if (!rq->nr_running) /* not forced idle */ 5957 return; 5958 5959 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 5960 } 5961 5962 static void sched_core_cpu_starting(unsigned int cpu) 5963 { 5964 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 5965 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 5966 unsigned long flags; 5967 int t; 5968 5969 sched_core_lock(cpu, &flags); 5970 5971 WARN_ON_ONCE(rq->core != rq); 5972 5973 /* if we're the first, we'll be our own leader */ 5974 if (cpumask_weight(smt_mask) == 1) 5975 goto unlock; 5976 5977 /* find the leader */ 5978 for_each_cpu(t, smt_mask) { 5979 if (t == cpu) 5980 continue; 5981 rq = cpu_rq(t); 5982 if (rq->core == rq) { 5983 core_rq = rq; 5984 break; 5985 } 5986 } 5987 5988 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 5989 goto unlock; 5990 5991 /* install and validate core_rq */ 5992 for_each_cpu(t, smt_mask) { 5993 rq = cpu_rq(t); 5994 5995 if (t == cpu) 5996 rq->core = core_rq; 5997 5998 WARN_ON_ONCE(rq->core != core_rq); 5999 } 6000 6001 unlock: 6002 sched_core_unlock(cpu, &flags); 6003 } 6004 6005 static void sched_core_cpu_deactivate(unsigned int cpu) 6006 { 6007 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6008 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6009 unsigned long flags; 6010 int t; 6011 6012 sched_core_lock(cpu, &flags); 6013 6014 /* if we're the last man standing, nothing to do */ 6015 if (cpumask_weight(smt_mask) == 1) { 6016 WARN_ON_ONCE(rq->core != rq); 6017 goto unlock; 6018 } 6019 6020 /* if we're not the leader, nothing to do */ 6021 if (rq->core != rq) 6022 goto unlock; 6023 6024 /* find a new leader */ 6025 for_each_cpu(t, smt_mask) { 6026 if (t == cpu) 6027 continue; 6028 core_rq = cpu_rq(t); 6029 break; 6030 } 6031 6032 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6033 goto unlock; 6034 6035 /* copy the shared state to the new leader */ 6036 core_rq->core_task_seq = rq->core_task_seq; 6037 core_rq->core_pick_seq = rq->core_pick_seq; 6038 core_rq->core_cookie = rq->core_cookie; 6039 core_rq->core_forceidle = rq->core_forceidle; 6040 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6041 6042 /* install new leader */ 6043 for_each_cpu(t, smt_mask) { 6044 rq = cpu_rq(t); 6045 rq->core = core_rq; 6046 } 6047 6048 unlock: 6049 sched_core_unlock(cpu, &flags); 6050 } 6051 6052 static inline void sched_core_cpu_dying(unsigned int cpu) 6053 { 6054 struct rq *rq = cpu_rq(cpu); 6055 6056 if (rq->core != rq) 6057 rq->core = rq; 6058 } 6059 6060 #else /* !CONFIG_SCHED_CORE */ 6061 6062 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6063 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6064 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6065 6066 static struct task_struct * 6067 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6068 { 6069 return __pick_next_task(rq, prev, rf); 6070 } 6071 6072 #endif /* CONFIG_SCHED_CORE */ 6073 6074 /* 6075 * Constants for the sched_mode argument of __schedule(). 6076 * 6077 * The mode argument allows RT enabled kernels to differentiate a 6078 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6079 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6080 * optimize the AND operation out and just check for zero. 6081 */ 6082 #define SM_NONE 0x0 6083 #define SM_PREEMPT 0x1 6084 #define SM_RTLOCK_WAIT 0x2 6085 6086 #ifndef CONFIG_PREEMPT_RT 6087 # define SM_MASK_PREEMPT (~0U) 6088 #else 6089 # define SM_MASK_PREEMPT SM_PREEMPT 6090 #endif 6091 6092 /* 6093 * __schedule() is the main scheduler function. 6094 * 6095 * The main means of driving the scheduler and thus entering this function are: 6096 * 6097 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6098 * 6099 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6100 * paths. For example, see arch/x86/entry_64.S. 6101 * 6102 * To drive preemption between tasks, the scheduler sets the flag in timer 6103 * interrupt handler scheduler_tick(). 6104 * 6105 * 3. Wakeups don't really cause entry into schedule(). They add a 6106 * task to the run-queue and that's it. 6107 * 6108 * Now, if the new task added to the run-queue preempts the current 6109 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6110 * called on the nearest possible occasion: 6111 * 6112 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6113 * 6114 * - in syscall or exception context, at the next outmost 6115 * preempt_enable(). (this might be as soon as the wake_up()'s 6116 * spin_unlock()!) 6117 * 6118 * - in IRQ context, return from interrupt-handler to 6119 * preemptible context 6120 * 6121 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6122 * then at the next: 6123 * 6124 * - cond_resched() call 6125 * - explicit schedule() call 6126 * - return from syscall or exception to user-space 6127 * - return from interrupt-handler to user-space 6128 * 6129 * WARNING: must be called with preemption disabled! 6130 */ 6131 static void __sched notrace __schedule(unsigned int sched_mode) 6132 { 6133 struct task_struct *prev, *next; 6134 unsigned long *switch_count; 6135 unsigned long prev_state; 6136 struct rq_flags rf; 6137 struct rq *rq; 6138 int cpu; 6139 6140 cpu = smp_processor_id(); 6141 rq = cpu_rq(cpu); 6142 prev = rq->curr; 6143 6144 schedule_debug(prev, !!sched_mode); 6145 6146 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6147 hrtick_clear(rq); 6148 6149 local_irq_disable(); 6150 rcu_note_context_switch(!!sched_mode); 6151 6152 /* 6153 * Make sure that signal_pending_state()->signal_pending() below 6154 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6155 * done by the caller to avoid the race with signal_wake_up(): 6156 * 6157 * __set_current_state(@state) signal_wake_up() 6158 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6159 * wake_up_state(p, state) 6160 * LOCK rq->lock LOCK p->pi_state 6161 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6162 * if (signal_pending_state()) if (p->state & @state) 6163 * 6164 * Also, the membarrier system call requires a full memory barrier 6165 * after coming from user-space, before storing to rq->curr. 6166 */ 6167 rq_lock(rq, &rf); 6168 smp_mb__after_spinlock(); 6169 6170 /* Promote REQ to ACT */ 6171 rq->clock_update_flags <<= 1; 6172 update_rq_clock(rq); 6173 6174 switch_count = &prev->nivcsw; 6175 6176 /* 6177 * We must load prev->state once (task_struct::state is volatile), such 6178 * that: 6179 * 6180 * - we form a control dependency vs deactivate_task() below. 6181 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6182 */ 6183 prev_state = READ_ONCE(prev->__state); 6184 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6185 if (signal_pending_state(prev_state, prev)) { 6186 WRITE_ONCE(prev->__state, TASK_RUNNING); 6187 } else { 6188 prev->sched_contributes_to_load = 6189 (prev_state & TASK_UNINTERRUPTIBLE) && 6190 !(prev_state & TASK_NOLOAD) && 6191 !(prev->flags & PF_FROZEN); 6192 6193 if (prev->sched_contributes_to_load) 6194 rq->nr_uninterruptible++; 6195 6196 /* 6197 * __schedule() ttwu() 6198 * prev_state = prev->state; if (p->on_rq && ...) 6199 * if (prev_state) goto out; 6200 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6201 * p->state = TASK_WAKING 6202 * 6203 * Where __schedule() and ttwu() have matching control dependencies. 6204 * 6205 * After this, schedule() must not care about p->state any more. 6206 */ 6207 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6208 6209 if (prev->in_iowait) { 6210 atomic_inc(&rq->nr_iowait); 6211 delayacct_blkio_start(); 6212 } 6213 } 6214 switch_count = &prev->nvcsw; 6215 } 6216 6217 next = pick_next_task(rq, prev, &rf); 6218 clear_tsk_need_resched(prev); 6219 clear_preempt_need_resched(); 6220 #ifdef CONFIG_SCHED_DEBUG 6221 rq->last_seen_need_resched_ns = 0; 6222 #endif 6223 6224 if (likely(prev != next)) { 6225 rq->nr_switches++; 6226 /* 6227 * RCU users of rcu_dereference(rq->curr) may not see 6228 * changes to task_struct made by pick_next_task(). 6229 */ 6230 RCU_INIT_POINTER(rq->curr, next); 6231 /* 6232 * The membarrier system call requires each architecture 6233 * to have a full memory barrier after updating 6234 * rq->curr, before returning to user-space. 6235 * 6236 * Here are the schemes providing that barrier on the 6237 * various architectures: 6238 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6239 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6240 * - finish_lock_switch() for weakly-ordered 6241 * architectures where spin_unlock is a full barrier, 6242 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6243 * is a RELEASE barrier), 6244 */ 6245 ++*switch_count; 6246 6247 migrate_disable_switch(rq, prev); 6248 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6249 6250 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next); 6251 6252 /* Also unlocks the rq: */ 6253 rq = context_switch(rq, prev, next, &rf); 6254 } else { 6255 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6256 6257 rq_unpin_lock(rq, &rf); 6258 __balance_callbacks(rq); 6259 raw_spin_rq_unlock_irq(rq); 6260 } 6261 } 6262 6263 void __noreturn do_task_dead(void) 6264 { 6265 /* Causes final put_task_struct in finish_task_switch(): */ 6266 set_special_state(TASK_DEAD); 6267 6268 /* Tell freezer to ignore us: */ 6269 current->flags |= PF_NOFREEZE; 6270 6271 __schedule(SM_NONE); 6272 BUG(); 6273 6274 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6275 for (;;) 6276 cpu_relax(); 6277 } 6278 6279 static inline void sched_submit_work(struct task_struct *tsk) 6280 { 6281 unsigned int task_flags; 6282 6283 if (task_is_running(tsk)) 6284 return; 6285 6286 task_flags = tsk->flags; 6287 /* 6288 * If a worker goes to sleep, notify and ask workqueue whether it 6289 * wants to wake up a task to maintain concurrency. 6290 */ 6291 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6292 if (task_flags & PF_WQ_WORKER) 6293 wq_worker_sleeping(tsk); 6294 else 6295 io_wq_worker_sleeping(tsk); 6296 } 6297 6298 if (tsk_is_pi_blocked(tsk)) 6299 return; 6300 6301 /* 6302 * If we are going to sleep and we have plugged IO queued, 6303 * make sure to submit it to avoid deadlocks. 6304 */ 6305 if (blk_needs_flush_plug(tsk)) 6306 blk_flush_plug(tsk->plug, true); 6307 } 6308 6309 static void sched_update_worker(struct task_struct *tsk) 6310 { 6311 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6312 if (tsk->flags & PF_WQ_WORKER) 6313 wq_worker_running(tsk); 6314 else 6315 io_wq_worker_running(tsk); 6316 } 6317 } 6318 6319 asmlinkage __visible void __sched schedule(void) 6320 { 6321 struct task_struct *tsk = current; 6322 6323 sched_submit_work(tsk); 6324 do { 6325 preempt_disable(); 6326 __schedule(SM_NONE); 6327 sched_preempt_enable_no_resched(); 6328 } while (need_resched()); 6329 sched_update_worker(tsk); 6330 } 6331 EXPORT_SYMBOL(schedule); 6332 6333 /* 6334 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6335 * state (have scheduled out non-voluntarily) by making sure that all 6336 * tasks have either left the run queue or have gone into user space. 6337 * As idle tasks do not do either, they must not ever be preempted 6338 * (schedule out non-voluntarily). 6339 * 6340 * schedule_idle() is similar to schedule_preempt_disable() except that it 6341 * never enables preemption because it does not call sched_submit_work(). 6342 */ 6343 void __sched schedule_idle(void) 6344 { 6345 /* 6346 * As this skips calling sched_submit_work(), which the idle task does 6347 * regardless because that function is a nop when the task is in a 6348 * TASK_RUNNING state, make sure this isn't used someplace that the 6349 * current task can be in any other state. Note, idle is always in the 6350 * TASK_RUNNING state. 6351 */ 6352 WARN_ON_ONCE(current->__state); 6353 do { 6354 __schedule(SM_NONE); 6355 } while (need_resched()); 6356 } 6357 6358 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6359 asmlinkage __visible void __sched schedule_user(void) 6360 { 6361 /* 6362 * If we come here after a random call to set_need_resched(), 6363 * or we have been woken up remotely but the IPI has not yet arrived, 6364 * we haven't yet exited the RCU idle mode. Do it here manually until 6365 * we find a better solution. 6366 * 6367 * NB: There are buggy callers of this function. Ideally we 6368 * should warn if prev_state != CONTEXT_USER, but that will trigger 6369 * too frequently to make sense yet. 6370 */ 6371 enum ctx_state prev_state = exception_enter(); 6372 schedule(); 6373 exception_exit(prev_state); 6374 } 6375 #endif 6376 6377 /** 6378 * schedule_preempt_disabled - called with preemption disabled 6379 * 6380 * Returns with preemption disabled. Note: preempt_count must be 1 6381 */ 6382 void __sched schedule_preempt_disabled(void) 6383 { 6384 sched_preempt_enable_no_resched(); 6385 schedule(); 6386 preempt_disable(); 6387 } 6388 6389 #ifdef CONFIG_PREEMPT_RT 6390 void __sched notrace schedule_rtlock(void) 6391 { 6392 do { 6393 preempt_disable(); 6394 __schedule(SM_RTLOCK_WAIT); 6395 sched_preempt_enable_no_resched(); 6396 } while (need_resched()); 6397 } 6398 NOKPROBE_SYMBOL(schedule_rtlock); 6399 #endif 6400 6401 static void __sched notrace preempt_schedule_common(void) 6402 { 6403 do { 6404 /* 6405 * Because the function tracer can trace preempt_count_sub() 6406 * and it also uses preempt_enable/disable_notrace(), if 6407 * NEED_RESCHED is set, the preempt_enable_notrace() called 6408 * by the function tracer will call this function again and 6409 * cause infinite recursion. 6410 * 6411 * Preemption must be disabled here before the function 6412 * tracer can trace. Break up preempt_disable() into two 6413 * calls. One to disable preemption without fear of being 6414 * traced. The other to still record the preemption latency, 6415 * which can also be traced by the function tracer. 6416 */ 6417 preempt_disable_notrace(); 6418 preempt_latency_start(1); 6419 __schedule(SM_PREEMPT); 6420 preempt_latency_stop(1); 6421 preempt_enable_no_resched_notrace(); 6422 6423 /* 6424 * Check again in case we missed a preemption opportunity 6425 * between schedule and now. 6426 */ 6427 } while (need_resched()); 6428 } 6429 6430 #ifdef CONFIG_PREEMPTION 6431 /* 6432 * This is the entry point to schedule() from in-kernel preemption 6433 * off of preempt_enable. 6434 */ 6435 asmlinkage __visible void __sched notrace preempt_schedule(void) 6436 { 6437 /* 6438 * If there is a non-zero preempt_count or interrupts are disabled, 6439 * we do not want to preempt the current task. Just return.. 6440 */ 6441 if (likely(!preemptible())) 6442 return; 6443 6444 preempt_schedule_common(); 6445 } 6446 NOKPROBE_SYMBOL(preempt_schedule); 6447 EXPORT_SYMBOL(preempt_schedule); 6448 6449 #ifdef CONFIG_PREEMPT_DYNAMIC 6450 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6451 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6452 #endif 6453 6454 6455 /** 6456 * preempt_schedule_notrace - preempt_schedule called by tracing 6457 * 6458 * The tracing infrastructure uses preempt_enable_notrace to prevent 6459 * recursion and tracing preempt enabling caused by the tracing 6460 * infrastructure itself. But as tracing can happen in areas coming 6461 * from userspace or just about to enter userspace, a preempt enable 6462 * can occur before user_exit() is called. This will cause the scheduler 6463 * to be called when the system is still in usermode. 6464 * 6465 * To prevent this, the preempt_enable_notrace will use this function 6466 * instead of preempt_schedule() to exit user context if needed before 6467 * calling the scheduler. 6468 */ 6469 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6470 { 6471 enum ctx_state prev_ctx; 6472 6473 if (likely(!preemptible())) 6474 return; 6475 6476 do { 6477 /* 6478 * Because the function tracer can trace preempt_count_sub() 6479 * and it also uses preempt_enable/disable_notrace(), if 6480 * NEED_RESCHED is set, the preempt_enable_notrace() called 6481 * by the function tracer will call this function again and 6482 * cause infinite recursion. 6483 * 6484 * Preemption must be disabled here before the function 6485 * tracer can trace. Break up preempt_disable() into two 6486 * calls. One to disable preemption without fear of being 6487 * traced. The other to still record the preemption latency, 6488 * which can also be traced by the function tracer. 6489 */ 6490 preempt_disable_notrace(); 6491 preempt_latency_start(1); 6492 /* 6493 * Needs preempt disabled in case user_exit() is traced 6494 * and the tracer calls preempt_enable_notrace() causing 6495 * an infinite recursion. 6496 */ 6497 prev_ctx = exception_enter(); 6498 __schedule(SM_PREEMPT); 6499 exception_exit(prev_ctx); 6500 6501 preempt_latency_stop(1); 6502 preempt_enable_no_resched_notrace(); 6503 } while (need_resched()); 6504 } 6505 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6506 6507 #ifdef CONFIG_PREEMPT_DYNAMIC 6508 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6509 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6510 #endif 6511 6512 #endif /* CONFIG_PREEMPTION */ 6513 6514 #ifdef CONFIG_PREEMPT_DYNAMIC 6515 6516 #include <linux/entry-common.h> 6517 6518 /* 6519 * SC:cond_resched 6520 * SC:might_resched 6521 * SC:preempt_schedule 6522 * SC:preempt_schedule_notrace 6523 * SC:irqentry_exit_cond_resched 6524 * 6525 * 6526 * NONE: 6527 * cond_resched <- __cond_resched 6528 * might_resched <- RET0 6529 * preempt_schedule <- NOP 6530 * preempt_schedule_notrace <- NOP 6531 * irqentry_exit_cond_resched <- NOP 6532 * 6533 * VOLUNTARY: 6534 * cond_resched <- __cond_resched 6535 * might_resched <- __cond_resched 6536 * preempt_schedule <- NOP 6537 * preempt_schedule_notrace <- NOP 6538 * irqentry_exit_cond_resched <- NOP 6539 * 6540 * FULL: 6541 * cond_resched <- RET0 6542 * might_resched <- RET0 6543 * preempt_schedule <- preempt_schedule 6544 * preempt_schedule_notrace <- preempt_schedule_notrace 6545 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6546 */ 6547 6548 enum { 6549 preempt_dynamic_undefined = -1, 6550 preempt_dynamic_none, 6551 preempt_dynamic_voluntary, 6552 preempt_dynamic_full, 6553 }; 6554 6555 int preempt_dynamic_mode = preempt_dynamic_undefined; 6556 6557 int sched_dynamic_mode(const char *str) 6558 { 6559 if (!strcmp(str, "none")) 6560 return preempt_dynamic_none; 6561 6562 if (!strcmp(str, "voluntary")) 6563 return preempt_dynamic_voluntary; 6564 6565 if (!strcmp(str, "full")) 6566 return preempt_dynamic_full; 6567 6568 return -EINVAL; 6569 } 6570 6571 void sched_dynamic_update(int mode) 6572 { 6573 /* 6574 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6575 * the ZERO state, which is invalid. 6576 */ 6577 static_call_update(cond_resched, __cond_resched); 6578 static_call_update(might_resched, __cond_resched); 6579 static_call_update(preempt_schedule, __preempt_schedule_func); 6580 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6581 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6582 6583 switch (mode) { 6584 case preempt_dynamic_none: 6585 static_call_update(cond_resched, __cond_resched); 6586 static_call_update(might_resched, (void *)&__static_call_return0); 6587 static_call_update(preempt_schedule, NULL); 6588 static_call_update(preempt_schedule_notrace, NULL); 6589 static_call_update(irqentry_exit_cond_resched, NULL); 6590 pr_info("Dynamic Preempt: none\n"); 6591 break; 6592 6593 case preempt_dynamic_voluntary: 6594 static_call_update(cond_resched, __cond_resched); 6595 static_call_update(might_resched, __cond_resched); 6596 static_call_update(preempt_schedule, NULL); 6597 static_call_update(preempt_schedule_notrace, NULL); 6598 static_call_update(irqentry_exit_cond_resched, NULL); 6599 pr_info("Dynamic Preempt: voluntary\n"); 6600 break; 6601 6602 case preempt_dynamic_full: 6603 static_call_update(cond_resched, (void *)&__static_call_return0); 6604 static_call_update(might_resched, (void *)&__static_call_return0); 6605 static_call_update(preempt_schedule, __preempt_schedule_func); 6606 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6607 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6608 pr_info("Dynamic Preempt: full\n"); 6609 break; 6610 } 6611 6612 preempt_dynamic_mode = mode; 6613 } 6614 6615 static int __init setup_preempt_mode(char *str) 6616 { 6617 int mode = sched_dynamic_mode(str); 6618 if (mode < 0) { 6619 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6620 return 1; 6621 } 6622 6623 sched_dynamic_update(mode); 6624 return 0; 6625 } 6626 __setup("preempt=", setup_preempt_mode); 6627 6628 static void __init preempt_dynamic_init(void) 6629 { 6630 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 6631 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 6632 sched_dynamic_update(preempt_dynamic_none); 6633 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 6634 sched_dynamic_update(preempt_dynamic_voluntary); 6635 } else { 6636 /* Default static call setting, nothing to do */ 6637 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 6638 preempt_dynamic_mode = preempt_dynamic_full; 6639 pr_info("Dynamic Preempt: full\n"); 6640 } 6641 } 6642 } 6643 6644 #else /* !CONFIG_PREEMPT_DYNAMIC */ 6645 6646 static inline void preempt_dynamic_init(void) { } 6647 6648 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 6649 6650 /* 6651 * This is the entry point to schedule() from kernel preemption 6652 * off of irq context. 6653 * Note, that this is called and return with irqs disabled. This will 6654 * protect us against recursive calling from irq. 6655 */ 6656 asmlinkage __visible void __sched preempt_schedule_irq(void) 6657 { 6658 enum ctx_state prev_state; 6659 6660 /* Catch callers which need to be fixed */ 6661 BUG_ON(preempt_count() || !irqs_disabled()); 6662 6663 prev_state = exception_enter(); 6664 6665 do { 6666 preempt_disable(); 6667 local_irq_enable(); 6668 __schedule(SM_PREEMPT); 6669 local_irq_disable(); 6670 sched_preempt_enable_no_resched(); 6671 } while (need_resched()); 6672 6673 exception_exit(prev_state); 6674 } 6675 6676 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6677 void *key) 6678 { 6679 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6680 return try_to_wake_up(curr->private, mode, wake_flags); 6681 } 6682 EXPORT_SYMBOL(default_wake_function); 6683 6684 static void __setscheduler_prio(struct task_struct *p, int prio) 6685 { 6686 if (dl_prio(prio)) 6687 p->sched_class = &dl_sched_class; 6688 else if (rt_prio(prio)) 6689 p->sched_class = &rt_sched_class; 6690 else 6691 p->sched_class = &fair_sched_class; 6692 6693 p->prio = prio; 6694 } 6695 6696 #ifdef CONFIG_RT_MUTEXES 6697 6698 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6699 { 6700 if (pi_task) 6701 prio = min(prio, pi_task->prio); 6702 6703 return prio; 6704 } 6705 6706 static inline int rt_effective_prio(struct task_struct *p, int prio) 6707 { 6708 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6709 6710 return __rt_effective_prio(pi_task, prio); 6711 } 6712 6713 /* 6714 * rt_mutex_setprio - set the current priority of a task 6715 * @p: task to boost 6716 * @pi_task: donor task 6717 * 6718 * This function changes the 'effective' priority of a task. It does 6719 * not touch ->normal_prio like __setscheduler(). 6720 * 6721 * Used by the rt_mutex code to implement priority inheritance 6722 * logic. Call site only calls if the priority of the task changed. 6723 */ 6724 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6725 { 6726 int prio, oldprio, queued, running, queue_flag = 6727 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6728 const struct sched_class *prev_class; 6729 struct rq_flags rf; 6730 struct rq *rq; 6731 6732 /* XXX used to be waiter->prio, not waiter->task->prio */ 6733 prio = __rt_effective_prio(pi_task, p->normal_prio); 6734 6735 /* 6736 * If nothing changed; bail early. 6737 */ 6738 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6739 return; 6740 6741 rq = __task_rq_lock(p, &rf); 6742 update_rq_clock(rq); 6743 /* 6744 * Set under pi_lock && rq->lock, such that the value can be used under 6745 * either lock. 6746 * 6747 * Note that there is loads of tricky to make this pointer cache work 6748 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6749 * ensure a task is de-boosted (pi_task is set to NULL) before the 6750 * task is allowed to run again (and can exit). This ensures the pointer 6751 * points to a blocked task -- which guarantees the task is present. 6752 */ 6753 p->pi_top_task = pi_task; 6754 6755 /* 6756 * For FIFO/RR we only need to set prio, if that matches we're done. 6757 */ 6758 if (prio == p->prio && !dl_prio(prio)) 6759 goto out_unlock; 6760 6761 /* 6762 * Idle task boosting is a nono in general. There is one 6763 * exception, when PREEMPT_RT and NOHZ is active: 6764 * 6765 * The idle task calls get_next_timer_interrupt() and holds 6766 * the timer wheel base->lock on the CPU and another CPU wants 6767 * to access the timer (probably to cancel it). We can safely 6768 * ignore the boosting request, as the idle CPU runs this code 6769 * with interrupts disabled and will complete the lock 6770 * protected section without being interrupted. So there is no 6771 * real need to boost. 6772 */ 6773 if (unlikely(p == rq->idle)) { 6774 WARN_ON(p != rq->curr); 6775 WARN_ON(p->pi_blocked_on); 6776 goto out_unlock; 6777 } 6778 6779 trace_sched_pi_setprio(p, pi_task); 6780 oldprio = p->prio; 6781 6782 if (oldprio == prio) 6783 queue_flag &= ~DEQUEUE_MOVE; 6784 6785 prev_class = p->sched_class; 6786 queued = task_on_rq_queued(p); 6787 running = task_current(rq, p); 6788 if (queued) 6789 dequeue_task(rq, p, queue_flag); 6790 if (running) 6791 put_prev_task(rq, p); 6792 6793 /* 6794 * Boosting condition are: 6795 * 1. -rt task is running and holds mutex A 6796 * --> -dl task blocks on mutex A 6797 * 6798 * 2. -dl task is running and holds mutex A 6799 * --> -dl task blocks on mutex A and could preempt the 6800 * running task 6801 */ 6802 if (dl_prio(prio)) { 6803 if (!dl_prio(p->normal_prio) || 6804 (pi_task && dl_prio(pi_task->prio) && 6805 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6806 p->dl.pi_se = pi_task->dl.pi_se; 6807 queue_flag |= ENQUEUE_REPLENISH; 6808 } else { 6809 p->dl.pi_se = &p->dl; 6810 } 6811 } else if (rt_prio(prio)) { 6812 if (dl_prio(oldprio)) 6813 p->dl.pi_se = &p->dl; 6814 if (oldprio < prio) 6815 queue_flag |= ENQUEUE_HEAD; 6816 } else { 6817 if (dl_prio(oldprio)) 6818 p->dl.pi_se = &p->dl; 6819 if (rt_prio(oldprio)) 6820 p->rt.timeout = 0; 6821 } 6822 6823 __setscheduler_prio(p, prio); 6824 6825 if (queued) 6826 enqueue_task(rq, p, queue_flag); 6827 if (running) 6828 set_next_task(rq, p); 6829 6830 check_class_changed(rq, p, prev_class, oldprio); 6831 out_unlock: 6832 /* Avoid rq from going away on us: */ 6833 preempt_disable(); 6834 6835 rq_unpin_lock(rq, &rf); 6836 __balance_callbacks(rq); 6837 raw_spin_rq_unlock(rq); 6838 6839 preempt_enable(); 6840 } 6841 #else 6842 static inline int rt_effective_prio(struct task_struct *p, int prio) 6843 { 6844 return prio; 6845 } 6846 #endif 6847 6848 void set_user_nice(struct task_struct *p, long nice) 6849 { 6850 bool queued, running; 6851 int old_prio; 6852 struct rq_flags rf; 6853 struct rq *rq; 6854 6855 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6856 return; 6857 /* 6858 * We have to be careful, if called from sys_setpriority(), 6859 * the task might be in the middle of scheduling on another CPU. 6860 */ 6861 rq = task_rq_lock(p, &rf); 6862 update_rq_clock(rq); 6863 6864 /* 6865 * The RT priorities are set via sched_setscheduler(), but we still 6866 * allow the 'normal' nice value to be set - but as expected 6867 * it won't have any effect on scheduling until the task is 6868 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6869 */ 6870 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6871 p->static_prio = NICE_TO_PRIO(nice); 6872 goto out_unlock; 6873 } 6874 queued = task_on_rq_queued(p); 6875 running = task_current(rq, p); 6876 if (queued) 6877 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6878 if (running) 6879 put_prev_task(rq, p); 6880 6881 p->static_prio = NICE_TO_PRIO(nice); 6882 set_load_weight(p, true); 6883 old_prio = p->prio; 6884 p->prio = effective_prio(p); 6885 6886 if (queued) 6887 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6888 if (running) 6889 set_next_task(rq, p); 6890 6891 /* 6892 * If the task increased its priority or is running and 6893 * lowered its priority, then reschedule its CPU: 6894 */ 6895 p->sched_class->prio_changed(rq, p, old_prio); 6896 6897 out_unlock: 6898 task_rq_unlock(rq, p, &rf); 6899 } 6900 EXPORT_SYMBOL(set_user_nice); 6901 6902 /* 6903 * can_nice - check if a task can reduce its nice value 6904 * @p: task 6905 * @nice: nice value 6906 */ 6907 int can_nice(const struct task_struct *p, const int nice) 6908 { 6909 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6910 int nice_rlim = nice_to_rlimit(nice); 6911 6912 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6913 capable(CAP_SYS_NICE)); 6914 } 6915 6916 #ifdef __ARCH_WANT_SYS_NICE 6917 6918 /* 6919 * sys_nice - change the priority of the current process. 6920 * @increment: priority increment 6921 * 6922 * sys_setpriority is a more generic, but much slower function that 6923 * does similar things. 6924 */ 6925 SYSCALL_DEFINE1(nice, int, increment) 6926 { 6927 long nice, retval; 6928 6929 /* 6930 * Setpriority might change our priority at the same moment. 6931 * We don't have to worry. Conceptually one call occurs first 6932 * and we have a single winner. 6933 */ 6934 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6935 nice = task_nice(current) + increment; 6936 6937 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6938 if (increment < 0 && !can_nice(current, nice)) 6939 return -EPERM; 6940 6941 retval = security_task_setnice(current, nice); 6942 if (retval) 6943 return retval; 6944 6945 set_user_nice(current, nice); 6946 return 0; 6947 } 6948 6949 #endif 6950 6951 /** 6952 * task_prio - return the priority value of a given task. 6953 * @p: the task in question. 6954 * 6955 * Return: The priority value as seen by users in /proc. 6956 * 6957 * sched policy return value kernel prio user prio/nice 6958 * 6959 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 6960 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 6961 * deadline -101 -1 0 6962 */ 6963 int task_prio(const struct task_struct *p) 6964 { 6965 return p->prio - MAX_RT_PRIO; 6966 } 6967 6968 /** 6969 * idle_cpu - is a given CPU idle currently? 6970 * @cpu: the processor in question. 6971 * 6972 * Return: 1 if the CPU is currently idle. 0 otherwise. 6973 */ 6974 int idle_cpu(int cpu) 6975 { 6976 struct rq *rq = cpu_rq(cpu); 6977 6978 if (rq->curr != rq->idle) 6979 return 0; 6980 6981 if (rq->nr_running) 6982 return 0; 6983 6984 #ifdef CONFIG_SMP 6985 if (rq->ttwu_pending) 6986 return 0; 6987 #endif 6988 6989 return 1; 6990 } 6991 6992 /** 6993 * available_idle_cpu - is a given CPU idle for enqueuing work. 6994 * @cpu: the CPU in question. 6995 * 6996 * Return: 1 if the CPU is currently idle. 0 otherwise. 6997 */ 6998 int available_idle_cpu(int cpu) 6999 { 7000 if (!idle_cpu(cpu)) 7001 return 0; 7002 7003 if (vcpu_is_preempted(cpu)) 7004 return 0; 7005 7006 return 1; 7007 } 7008 7009 /** 7010 * idle_task - return the idle task for a given CPU. 7011 * @cpu: the processor in question. 7012 * 7013 * Return: The idle task for the CPU @cpu. 7014 */ 7015 struct task_struct *idle_task(int cpu) 7016 { 7017 return cpu_rq(cpu)->idle; 7018 } 7019 7020 #ifdef CONFIG_SMP 7021 /* 7022 * This function computes an effective utilization for the given CPU, to be 7023 * used for frequency selection given the linear relation: f = u * f_max. 7024 * 7025 * The scheduler tracks the following metrics: 7026 * 7027 * cpu_util_{cfs,rt,dl,irq}() 7028 * cpu_bw_dl() 7029 * 7030 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7031 * synchronized windows and are thus directly comparable. 7032 * 7033 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7034 * which excludes things like IRQ and steal-time. These latter are then accrued 7035 * in the irq utilization. 7036 * 7037 * The DL bandwidth number otoh is not a measured metric but a value computed 7038 * based on the task model parameters and gives the minimal utilization 7039 * required to meet deadlines. 7040 */ 7041 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7042 unsigned long max, enum cpu_util_type type, 7043 struct task_struct *p) 7044 { 7045 unsigned long dl_util, util, irq; 7046 struct rq *rq = cpu_rq(cpu); 7047 7048 if (!uclamp_is_used() && 7049 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7050 return max; 7051 } 7052 7053 /* 7054 * Early check to see if IRQ/steal time saturates the CPU, can be 7055 * because of inaccuracies in how we track these -- see 7056 * update_irq_load_avg(). 7057 */ 7058 irq = cpu_util_irq(rq); 7059 if (unlikely(irq >= max)) 7060 return max; 7061 7062 /* 7063 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7064 * CFS tasks and we use the same metric to track the effective 7065 * utilization (PELT windows are synchronized) we can directly add them 7066 * to obtain the CPU's actual utilization. 7067 * 7068 * CFS and RT utilization can be boosted or capped, depending on 7069 * utilization clamp constraints requested by currently RUNNABLE 7070 * tasks. 7071 * When there are no CFS RUNNABLE tasks, clamps are released and 7072 * frequency will be gracefully reduced with the utilization decay. 7073 */ 7074 util = util_cfs + cpu_util_rt(rq); 7075 if (type == FREQUENCY_UTIL) 7076 util = uclamp_rq_util_with(rq, util, p); 7077 7078 dl_util = cpu_util_dl(rq); 7079 7080 /* 7081 * For frequency selection we do not make cpu_util_dl() a permanent part 7082 * of this sum because we want to use cpu_bw_dl() later on, but we need 7083 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7084 * that we select f_max when there is no idle time. 7085 * 7086 * NOTE: numerical errors or stop class might cause us to not quite hit 7087 * saturation when we should -- something for later. 7088 */ 7089 if (util + dl_util >= max) 7090 return max; 7091 7092 /* 7093 * OTOH, for energy computation we need the estimated running time, so 7094 * include util_dl and ignore dl_bw. 7095 */ 7096 if (type == ENERGY_UTIL) 7097 util += dl_util; 7098 7099 /* 7100 * There is still idle time; further improve the number by using the 7101 * irq metric. Because IRQ/steal time is hidden from the task clock we 7102 * need to scale the task numbers: 7103 * 7104 * max - irq 7105 * U' = irq + --------- * U 7106 * max 7107 */ 7108 util = scale_irq_capacity(util, irq, max); 7109 util += irq; 7110 7111 /* 7112 * Bandwidth required by DEADLINE must always be granted while, for 7113 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7114 * to gracefully reduce the frequency when no tasks show up for longer 7115 * periods of time. 7116 * 7117 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7118 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7119 * an interface. So, we only do the latter for now. 7120 */ 7121 if (type == FREQUENCY_UTIL) 7122 util += cpu_bw_dl(rq); 7123 7124 return min(max, util); 7125 } 7126 7127 unsigned long sched_cpu_util(int cpu, unsigned long max) 7128 { 7129 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 7130 ENERGY_UTIL, NULL); 7131 } 7132 #endif /* CONFIG_SMP */ 7133 7134 /** 7135 * find_process_by_pid - find a process with a matching PID value. 7136 * @pid: the pid in question. 7137 * 7138 * The task of @pid, if found. %NULL otherwise. 7139 */ 7140 static struct task_struct *find_process_by_pid(pid_t pid) 7141 { 7142 return pid ? find_task_by_vpid(pid) : current; 7143 } 7144 7145 /* 7146 * sched_setparam() passes in -1 for its policy, to let the functions 7147 * it calls know not to change it. 7148 */ 7149 #define SETPARAM_POLICY -1 7150 7151 static void __setscheduler_params(struct task_struct *p, 7152 const struct sched_attr *attr) 7153 { 7154 int policy = attr->sched_policy; 7155 7156 if (policy == SETPARAM_POLICY) 7157 policy = p->policy; 7158 7159 p->policy = policy; 7160 7161 if (dl_policy(policy)) 7162 __setparam_dl(p, attr); 7163 else if (fair_policy(policy)) 7164 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7165 7166 /* 7167 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7168 * !rt_policy. Always setting this ensures that things like 7169 * getparam()/getattr() don't report silly values for !rt tasks. 7170 */ 7171 p->rt_priority = attr->sched_priority; 7172 p->normal_prio = normal_prio(p); 7173 set_load_weight(p, true); 7174 } 7175 7176 /* 7177 * Check the target process has a UID that matches the current process's: 7178 */ 7179 static bool check_same_owner(struct task_struct *p) 7180 { 7181 const struct cred *cred = current_cred(), *pcred; 7182 bool match; 7183 7184 rcu_read_lock(); 7185 pcred = __task_cred(p); 7186 match = (uid_eq(cred->euid, pcred->euid) || 7187 uid_eq(cred->euid, pcred->uid)); 7188 rcu_read_unlock(); 7189 return match; 7190 } 7191 7192 static int __sched_setscheduler(struct task_struct *p, 7193 const struct sched_attr *attr, 7194 bool user, bool pi) 7195 { 7196 int oldpolicy = -1, policy = attr->sched_policy; 7197 int retval, oldprio, newprio, queued, running; 7198 const struct sched_class *prev_class; 7199 struct callback_head *head; 7200 struct rq_flags rf; 7201 int reset_on_fork; 7202 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7203 struct rq *rq; 7204 7205 /* The pi code expects interrupts enabled */ 7206 BUG_ON(pi && in_interrupt()); 7207 recheck: 7208 /* Double check policy once rq lock held: */ 7209 if (policy < 0) { 7210 reset_on_fork = p->sched_reset_on_fork; 7211 policy = oldpolicy = p->policy; 7212 } else { 7213 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7214 7215 if (!valid_policy(policy)) 7216 return -EINVAL; 7217 } 7218 7219 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7220 return -EINVAL; 7221 7222 /* 7223 * Valid priorities for SCHED_FIFO and SCHED_RR are 7224 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7225 * SCHED_BATCH and SCHED_IDLE is 0. 7226 */ 7227 if (attr->sched_priority > MAX_RT_PRIO-1) 7228 return -EINVAL; 7229 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7230 (rt_policy(policy) != (attr->sched_priority != 0))) 7231 return -EINVAL; 7232 7233 /* 7234 * Allow unprivileged RT tasks to decrease priority: 7235 */ 7236 if (user && !capable(CAP_SYS_NICE)) { 7237 if (fair_policy(policy)) { 7238 if (attr->sched_nice < task_nice(p) && 7239 !can_nice(p, attr->sched_nice)) 7240 return -EPERM; 7241 } 7242 7243 if (rt_policy(policy)) { 7244 unsigned long rlim_rtprio = 7245 task_rlimit(p, RLIMIT_RTPRIO); 7246 7247 /* Can't set/change the rt policy: */ 7248 if (policy != p->policy && !rlim_rtprio) 7249 return -EPERM; 7250 7251 /* Can't increase priority: */ 7252 if (attr->sched_priority > p->rt_priority && 7253 attr->sched_priority > rlim_rtprio) 7254 return -EPERM; 7255 } 7256 7257 /* 7258 * Can't set/change SCHED_DEADLINE policy at all for now 7259 * (safest behavior); in the future we would like to allow 7260 * unprivileged DL tasks to increase their relative deadline 7261 * or reduce their runtime (both ways reducing utilization) 7262 */ 7263 if (dl_policy(policy)) 7264 return -EPERM; 7265 7266 /* 7267 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7268 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7269 */ 7270 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7271 if (!can_nice(p, task_nice(p))) 7272 return -EPERM; 7273 } 7274 7275 /* Can't change other user's priorities: */ 7276 if (!check_same_owner(p)) 7277 return -EPERM; 7278 7279 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7280 if (p->sched_reset_on_fork && !reset_on_fork) 7281 return -EPERM; 7282 } 7283 7284 if (user) { 7285 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7286 return -EINVAL; 7287 7288 retval = security_task_setscheduler(p); 7289 if (retval) 7290 return retval; 7291 } 7292 7293 /* Update task specific "requested" clamps */ 7294 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7295 retval = uclamp_validate(p, attr); 7296 if (retval) 7297 return retval; 7298 } 7299 7300 if (pi) 7301 cpuset_read_lock(); 7302 7303 /* 7304 * Make sure no PI-waiters arrive (or leave) while we are 7305 * changing the priority of the task: 7306 * 7307 * To be able to change p->policy safely, the appropriate 7308 * runqueue lock must be held. 7309 */ 7310 rq = task_rq_lock(p, &rf); 7311 update_rq_clock(rq); 7312 7313 /* 7314 * Changing the policy of the stop threads its a very bad idea: 7315 */ 7316 if (p == rq->stop) { 7317 retval = -EINVAL; 7318 goto unlock; 7319 } 7320 7321 /* 7322 * If not changing anything there's no need to proceed further, 7323 * but store a possible modification of reset_on_fork. 7324 */ 7325 if (unlikely(policy == p->policy)) { 7326 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7327 goto change; 7328 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7329 goto change; 7330 if (dl_policy(policy) && dl_param_changed(p, attr)) 7331 goto change; 7332 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7333 goto change; 7334 7335 p->sched_reset_on_fork = reset_on_fork; 7336 retval = 0; 7337 goto unlock; 7338 } 7339 change: 7340 7341 if (user) { 7342 #ifdef CONFIG_RT_GROUP_SCHED 7343 /* 7344 * Do not allow realtime tasks into groups that have no runtime 7345 * assigned. 7346 */ 7347 if (rt_bandwidth_enabled() && rt_policy(policy) && 7348 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7349 !task_group_is_autogroup(task_group(p))) { 7350 retval = -EPERM; 7351 goto unlock; 7352 } 7353 #endif 7354 #ifdef CONFIG_SMP 7355 if (dl_bandwidth_enabled() && dl_policy(policy) && 7356 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7357 cpumask_t *span = rq->rd->span; 7358 7359 /* 7360 * Don't allow tasks with an affinity mask smaller than 7361 * the entire root_domain to become SCHED_DEADLINE. We 7362 * will also fail if there's no bandwidth available. 7363 */ 7364 if (!cpumask_subset(span, p->cpus_ptr) || 7365 rq->rd->dl_bw.bw == 0) { 7366 retval = -EPERM; 7367 goto unlock; 7368 } 7369 } 7370 #endif 7371 } 7372 7373 /* Re-check policy now with rq lock held: */ 7374 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7375 policy = oldpolicy = -1; 7376 task_rq_unlock(rq, p, &rf); 7377 if (pi) 7378 cpuset_read_unlock(); 7379 goto recheck; 7380 } 7381 7382 /* 7383 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7384 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7385 * is available. 7386 */ 7387 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7388 retval = -EBUSY; 7389 goto unlock; 7390 } 7391 7392 p->sched_reset_on_fork = reset_on_fork; 7393 oldprio = p->prio; 7394 7395 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7396 if (pi) { 7397 /* 7398 * Take priority boosted tasks into account. If the new 7399 * effective priority is unchanged, we just store the new 7400 * normal parameters and do not touch the scheduler class and 7401 * the runqueue. This will be done when the task deboost 7402 * itself. 7403 */ 7404 newprio = rt_effective_prio(p, newprio); 7405 if (newprio == oldprio) 7406 queue_flags &= ~DEQUEUE_MOVE; 7407 } 7408 7409 queued = task_on_rq_queued(p); 7410 running = task_current(rq, p); 7411 if (queued) 7412 dequeue_task(rq, p, queue_flags); 7413 if (running) 7414 put_prev_task(rq, p); 7415 7416 prev_class = p->sched_class; 7417 7418 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7419 __setscheduler_params(p, attr); 7420 __setscheduler_prio(p, newprio); 7421 } 7422 __setscheduler_uclamp(p, attr); 7423 7424 if (queued) { 7425 /* 7426 * We enqueue to tail when the priority of a task is 7427 * increased (user space view). 7428 */ 7429 if (oldprio < p->prio) 7430 queue_flags |= ENQUEUE_HEAD; 7431 7432 enqueue_task(rq, p, queue_flags); 7433 } 7434 if (running) 7435 set_next_task(rq, p); 7436 7437 check_class_changed(rq, p, prev_class, oldprio); 7438 7439 /* Avoid rq from going away on us: */ 7440 preempt_disable(); 7441 head = splice_balance_callbacks(rq); 7442 task_rq_unlock(rq, p, &rf); 7443 7444 if (pi) { 7445 cpuset_read_unlock(); 7446 rt_mutex_adjust_pi(p); 7447 } 7448 7449 /* Run balance callbacks after we've adjusted the PI chain: */ 7450 balance_callbacks(rq, head); 7451 preempt_enable(); 7452 7453 return 0; 7454 7455 unlock: 7456 task_rq_unlock(rq, p, &rf); 7457 if (pi) 7458 cpuset_read_unlock(); 7459 return retval; 7460 } 7461 7462 static int _sched_setscheduler(struct task_struct *p, int policy, 7463 const struct sched_param *param, bool check) 7464 { 7465 struct sched_attr attr = { 7466 .sched_policy = policy, 7467 .sched_priority = param->sched_priority, 7468 .sched_nice = PRIO_TO_NICE(p->static_prio), 7469 }; 7470 7471 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7472 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7473 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7474 policy &= ~SCHED_RESET_ON_FORK; 7475 attr.sched_policy = policy; 7476 } 7477 7478 return __sched_setscheduler(p, &attr, check, true); 7479 } 7480 /** 7481 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7482 * @p: the task in question. 7483 * @policy: new policy. 7484 * @param: structure containing the new RT priority. 7485 * 7486 * Use sched_set_fifo(), read its comment. 7487 * 7488 * Return: 0 on success. An error code otherwise. 7489 * 7490 * NOTE that the task may be already dead. 7491 */ 7492 int sched_setscheduler(struct task_struct *p, int policy, 7493 const struct sched_param *param) 7494 { 7495 return _sched_setscheduler(p, policy, param, true); 7496 } 7497 7498 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7499 { 7500 return __sched_setscheduler(p, attr, true, true); 7501 } 7502 7503 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7504 { 7505 return __sched_setscheduler(p, attr, false, true); 7506 } 7507 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7508 7509 /** 7510 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7511 * @p: the task in question. 7512 * @policy: new policy. 7513 * @param: structure containing the new RT priority. 7514 * 7515 * Just like sched_setscheduler, only don't bother checking if the 7516 * current context has permission. For example, this is needed in 7517 * stop_machine(): we create temporary high priority worker threads, 7518 * but our caller might not have that capability. 7519 * 7520 * Return: 0 on success. An error code otherwise. 7521 */ 7522 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7523 const struct sched_param *param) 7524 { 7525 return _sched_setscheduler(p, policy, param, false); 7526 } 7527 7528 /* 7529 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7530 * incapable of resource management, which is the one thing an OS really should 7531 * be doing. 7532 * 7533 * This is of course the reason it is limited to privileged users only. 7534 * 7535 * Worse still; it is fundamentally impossible to compose static priority 7536 * workloads. You cannot take two correctly working static prio workloads 7537 * and smash them together and still expect them to work. 7538 * 7539 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7540 * 7541 * MAX_RT_PRIO / 2 7542 * 7543 * The administrator _MUST_ configure the system, the kernel simply doesn't 7544 * know enough information to make a sensible choice. 7545 */ 7546 void sched_set_fifo(struct task_struct *p) 7547 { 7548 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7549 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7550 } 7551 EXPORT_SYMBOL_GPL(sched_set_fifo); 7552 7553 /* 7554 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7555 */ 7556 void sched_set_fifo_low(struct task_struct *p) 7557 { 7558 struct sched_param sp = { .sched_priority = 1 }; 7559 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7560 } 7561 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7562 7563 void sched_set_normal(struct task_struct *p, int nice) 7564 { 7565 struct sched_attr attr = { 7566 .sched_policy = SCHED_NORMAL, 7567 .sched_nice = nice, 7568 }; 7569 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7570 } 7571 EXPORT_SYMBOL_GPL(sched_set_normal); 7572 7573 static int 7574 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7575 { 7576 struct sched_param lparam; 7577 struct task_struct *p; 7578 int retval; 7579 7580 if (!param || pid < 0) 7581 return -EINVAL; 7582 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7583 return -EFAULT; 7584 7585 rcu_read_lock(); 7586 retval = -ESRCH; 7587 p = find_process_by_pid(pid); 7588 if (likely(p)) 7589 get_task_struct(p); 7590 rcu_read_unlock(); 7591 7592 if (likely(p)) { 7593 retval = sched_setscheduler(p, policy, &lparam); 7594 put_task_struct(p); 7595 } 7596 7597 return retval; 7598 } 7599 7600 /* 7601 * Mimics kernel/events/core.c perf_copy_attr(). 7602 */ 7603 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7604 { 7605 u32 size; 7606 int ret; 7607 7608 /* Zero the full structure, so that a short copy will be nice: */ 7609 memset(attr, 0, sizeof(*attr)); 7610 7611 ret = get_user(size, &uattr->size); 7612 if (ret) 7613 return ret; 7614 7615 /* ABI compatibility quirk: */ 7616 if (!size) 7617 size = SCHED_ATTR_SIZE_VER0; 7618 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7619 goto err_size; 7620 7621 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7622 if (ret) { 7623 if (ret == -E2BIG) 7624 goto err_size; 7625 return ret; 7626 } 7627 7628 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7629 size < SCHED_ATTR_SIZE_VER1) 7630 return -EINVAL; 7631 7632 /* 7633 * XXX: Do we want to be lenient like existing syscalls; or do we want 7634 * to be strict and return an error on out-of-bounds values? 7635 */ 7636 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7637 7638 return 0; 7639 7640 err_size: 7641 put_user(sizeof(*attr), &uattr->size); 7642 return -E2BIG; 7643 } 7644 7645 static void get_params(struct task_struct *p, struct sched_attr *attr) 7646 { 7647 if (task_has_dl_policy(p)) 7648 __getparam_dl(p, attr); 7649 else if (task_has_rt_policy(p)) 7650 attr->sched_priority = p->rt_priority; 7651 else 7652 attr->sched_nice = task_nice(p); 7653 } 7654 7655 /** 7656 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7657 * @pid: the pid in question. 7658 * @policy: new policy. 7659 * @param: structure containing the new RT priority. 7660 * 7661 * Return: 0 on success. An error code otherwise. 7662 */ 7663 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7664 { 7665 if (policy < 0) 7666 return -EINVAL; 7667 7668 return do_sched_setscheduler(pid, policy, param); 7669 } 7670 7671 /** 7672 * sys_sched_setparam - set/change the RT priority of a thread 7673 * @pid: the pid in question. 7674 * @param: structure containing the new RT priority. 7675 * 7676 * Return: 0 on success. An error code otherwise. 7677 */ 7678 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7679 { 7680 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7681 } 7682 7683 /** 7684 * sys_sched_setattr - same as above, but with extended sched_attr 7685 * @pid: the pid in question. 7686 * @uattr: structure containing the extended parameters. 7687 * @flags: for future extension. 7688 */ 7689 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7690 unsigned int, flags) 7691 { 7692 struct sched_attr attr; 7693 struct task_struct *p; 7694 int retval; 7695 7696 if (!uattr || pid < 0 || flags) 7697 return -EINVAL; 7698 7699 retval = sched_copy_attr(uattr, &attr); 7700 if (retval) 7701 return retval; 7702 7703 if ((int)attr.sched_policy < 0) 7704 return -EINVAL; 7705 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7706 attr.sched_policy = SETPARAM_POLICY; 7707 7708 rcu_read_lock(); 7709 retval = -ESRCH; 7710 p = find_process_by_pid(pid); 7711 if (likely(p)) 7712 get_task_struct(p); 7713 rcu_read_unlock(); 7714 7715 if (likely(p)) { 7716 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7717 get_params(p, &attr); 7718 retval = sched_setattr(p, &attr); 7719 put_task_struct(p); 7720 } 7721 7722 return retval; 7723 } 7724 7725 /** 7726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7727 * @pid: the pid in question. 7728 * 7729 * Return: On success, the policy of the thread. Otherwise, a negative error 7730 * code. 7731 */ 7732 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7733 { 7734 struct task_struct *p; 7735 int retval; 7736 7737 if (pid < 0) 7738 return -EINVAL; 7739 7740 retval = -ESRCH; 7741 rcu_read_lock(); 7742 p = find_process_by_pid(pid); 7743 if (p) { 7744 retval = security_task_getscheduler(p); 7745 if (!retval) 7746 retval = p->policy 7747 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7748 } 7749 rcu_read_unlock(); 7750 return retval; 7751 } 7752 7753 /** 7754 * sys_sched_getparam - get the RT priority of a thread 7755 * @pid: the pid in question. 7756 * @param: structure containing the RT priority. 7757 * 7758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7759 * code. 7760 */ 7761 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7762 { 7763 struct sched_param lp = { .sched_priority = 0 }; 7764 struct task_struct *p; 7765 int retval; 7766 7767 if (!param || pid < 0) 7768 return -EINVAL; 7769 7770 rcu_read_lock(); 7771 p = find_process_by_pid(pid); 7772 retval = -ESRCH; 7773 if (!p) 7774 goto out_unlock; 7775 7776 retval = security_task_getscheduler(p); 7777 if (retval) 7778 goto out_unlock; 7779 7780 if (task_has_rt_policy(p)) 7781 lp.sched_priority = p->rt_priority; 7782 rcu_read_unlock(); 7783 7784 /* 7785 * This one might sleep, we cannot do it with a spinlock held ... 7786 */ 7787 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7788 7789 return retval; 7790 7791 out_unlock: 7792 rcu_read_unlock(); 7793 return retval; 7794 } 7795 7796 /* 7797 * Copy the kernel size attribute structure (which might be larger 7798 * than what user-space knows about) to user-space. 7799 * 7800 * Note that all cases are valid: user-space buffer can be larger or 7801 * smaller than the kernel-space buffer. The usual case is that both 7802 * have the same size. 7803 */ 7804 static int 7805 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7806 struct sched_attr *kattr, 7807 unsigned int usize) 7808 { 7809 unsigned int ksize = sizeof(*kattr); 7810 7811 if (!access_ok(uattr, usize)) 7812 return -EFAULT; 7813 7814 /* 7815 * sched_getattr() ABI forwards and backwards compatibility: 7816 * 7817 * If usize == ksize then we just copy everything to user-space and all is good. 7818 * 7819 * If usize < ksize then we only copy as much as user-space has space for, 7820 * this keeps ABI compatibility as well. We skip the rest. 7821 * 7822 * If usize > ksize then user-space is using a newer version of the ABI, 7823 * which part the kernel doesn't know about. Just ignore it - tooling can 7824 * detect the kernel's knowledge of attributes from the attr->size value 7825 * which is set to ksize in this case. 7826 */ 7827 kattr->size = min(usize, ksize); 7828 7829 if (copy_to_user(uattr, kattr, kattr->size)) 7830 return -EFAULT; 7831 7832 return 0; 7833 } 7834 7835 /** 7836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7837 * @pid: the pid in question. 7838 * @uattr: structure containing the extended parameters. 7839 * @usize: sizeof(attr) for fwd/bwd comp. 7840 * @flags: for future extension. 7841 */ 7842 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7843 unsigned int, usize, unsigned int, flags) 7844 { 7845 struct sched_attr kattr = { }; 7846 struct task_struct *p; 7847 int retval; 7848 7849 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7850 usize < SCHED_ATTR_SIZE_VER0 || flags) 7851 return -EINVAL; 7852 7853 rcu_read_lock(); 7854 p = find_process_by_pid(pid); 7855 retval = -ESRCH; 7856 if (!p) 7857 goto out_unlock; 7858 7859 retval = security_task_getscheduler(p); 7860 if (retval) 7861 goto out_unlock; 7862 7863 kattr.sched_policy = p->policy; 7864 if (p->sched_reset_on_fork) 7865 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7866 get_params(p, &kattr); 7867 kattr.sched_flags &= SCHED_FLAG_ALL; 7868 7869 #ifdef CONFIG_UCLAMP_TASK 7870 /* 7871 * This could race with another potential updater, but this is fine 7872 * because it'll correctly read the old or the new value. We don't need 7873 * to guarantee who wins the race as long as it doesn't return garbage. 7874 */ 7875 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7876 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7877 #endif 7878 7879 rcu_read_unlock(); 7880 7881 return sched_attr_copy_to_user(uattr, &kattr, usize); 7882 7883 out_unlock: 7884 rcu_read_unlock(); 7885 return retval; 7886 } 7887 7888 #ifdef CONFIG_SMP 7889 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7890 { 7891 int ret = 0; 7892 7893 /* 7894 * If the task isn't a deadline task or admission control is 7895 * disabled then we don't care about affinity changes. 7896 */ 7897 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7898 return 0; 7899 7900 /* 7901 * Since bandwidth control happens on root_domain basis, 7902 * if admission test is enabled, we only admit -deadline 7903 * tasks allowed to run on all the CPUs in the task's 7904 * root_domain. 7905 */ 7906 rcu_read_lock(); 7907 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7908 ret = -EBUSY; 7909 rcu_read_unlock(); 7910 return ret; 7911 } 7912 #endif 7913 7914 static int 7915 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7916 { 7917 int retval; 7918 cpumask_var_t cpus_allowed, new_mask; 7919 7920 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7921 return -ENOMEM; 7922 7923 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7924 retval = -ENOMEM; 7925 goto out_free_cpus_allowed; 7926 } 7927 7928 cpuset_cpus_allowed(p, cpus_allowed); 7929 cpumask_and(new_mask, mask, cpus_allowed); 7930 7931 retval = dl_task_check_affinity(p, new_mask); 7932 if (retval) 7933 goto out_free_new_mask; 7934 again: 7935 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 7936 if (retval) 7937 goto out_free_new_mask; 7938 7939 cpuset_cpus_allowed(p, cpus_allowed); 7940 if (!cpumask_subset(new_mask, cpus_allowed)) { 7941 /* 7942 * We must have raced with a concurrent cpuset update. 7943 * Just reset the cpumask to the cpuset's cpus_allowed. 7944 */ 7945 cpumask_copy(new_mask, cpus_allowed); 7946 goto again; 7947 } 7948 7949 out_free_new_mask: 7950 free_cpumask_var(new_mask); 7951 out_free_cpus_allowed: 7952 free_cpumask_var(cpus_allowed); 7953 return retval; 7954 } 7955 7956 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 7957 { 7958 struct task_struct *p; 7959 int retval; 7960 7961 rcu_read_lock(); 7962 7963 p = find_process_by_pid(pid); 7964 if (!p) { 7965 rcu_read_unlock(); 7966 return -ESRCH; 7967 } 7968 7969 /* Prevent p going away */ 7970 get_task_struct(p); 7971 rcu_read_unlock(); 7972 7973 if (p->flags & PF_NO_SETAFFINITY) { 7974 retval = -EINVAL; 7975 goto out_put_task; 7976 } 7977 7978 if (!check_same_owner(p)) { 7979 rcu_read_lock(); 7980 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 7981 rcu_read_unlock(); 7982 retval = -EPERM; 7983 goto out_put_task; 7984 } 7985 rcu_read_unlock(); 7986 } 7987 7988 retval = security_task_setscheduler(p); 7989 if (retval) 7990 goto out_put_task; 7991 7992 retval = __sched_setaffinity(p, in_mask); 7993 out_put_task: 7994 put_task_struct(p); 7995 return retval; 7996 } 7997 7998 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 7999 struct cpumask *new_mask) 8000 { 8001 if (len < cpumask_size()) 8002 cpumask_clear(new_mask); 8003 else if (len > cpumask_size()) 8004 len = cpumask_size(); 8005 8006 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8007 } 8008 8009 /** 8010 * sys_sched_setaffinity - set the CPU affinity of a process 8011 * @pid: pid of the process 8012 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8013 * @user_mask_ptr: user-space pointer to the new CPU mask 8014 * 8015 * Return: 0 on success. An error code otherwise. 8016 */ 8017 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8018 unsigned long __user *, user_mask_ptr) 8019 { 8020 cpumask_var_t new_mask; 8021 int retval; 8022 8023 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8024 return -ENOMEM; 8025 8026 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8027 if (retval == 0) 8028 retval = sched_setaffinity(pid, new_mask); 8029 free_cpumask_var(new_mask); 8030 return retval; 8031 } 8032 8033 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8034 { 8035 struct task_struct *p; 8036 unsigned long flags; 8037 int retval; 8038 8039 rcu_read_lock(); 8040 8041 retval = -ESRCH; 8042 p = find_process_by_pid(pid); 8043 if (!p) 8044 goto out_unlock; 8045 8046 retval = security_task_getscheduler(p); 8047 if (retval) 8048 goto out_unlock; 8049 8050 raw_spin_lock_irqsave(&p->pi_lock, flags); 8051 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8052 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8053 8054 out_unlock: 8055 rcu_read_unlock(); 8056 8057 return retval; 8058 } 8059 8060 /** 8061 * sys_sched_getaffinity - get the CPU affinity of a process 8062 * @pid: pid of the process 8063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8064 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8065 * 8066 * Return: size of CPU mask copied to user_mask_ptr on success. An 8067 * error code otherwise. 8068 */ 8069 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8070 unsigned long __user *, user_mask_ptr) 8071 { 8072 int ret; 8073 cpumask_var_t mask; 8074 8075 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8076 return -EINVAL; 8077 if (len & (sizeof(unsigned long)-1)) 8078 return -EINVAL; 8079 8080 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8081 return -ENOMEM; 8082 8083 ret = sched_getaffinity(pid, mask); 8084 if (ret == 0) { 8085 unsigned int retlen = min(len, cpumask_size()); 8086 8087 if (copy_to_user(user_mask_ptr, mask, retlen)) 8088 ret = -EFAULT; 8089 else 8090 ret = retlen; 8091 } 8092 free_cpumask_var(mask); 8093 8094 return ret; 8095 } 8096 8097 static void do_sched_yield(void) 8098 { 8099 struct rq_flags rf; 8100 struct rq *rq; 8101 8102 rq = this_rq_lock_irq(&rf); 8103 8104 schedstat_inc(rq->yld_count); 8105 current->sched_class->yield_task(rq); 8106 8107 preempt_disable(); 8108 rq_unlock_irq(rq, &rf); 8109 sched_preempt_enable_no_resched(); 8110 8111 schedule(); 8112 } 8113 8114 /** 8115 * sys_sched_yield - yield the current processor to other threads. 8116 * 8117 * This function yields the current CPU to other tasks. If there are no 8118 * other threads running on this CPU then this function will return. 8119 * 8120 * Return: 0. 8121 */ 8122 SYSCALL_DEFINE0(sched_yield) 8123 { 8124 do_sched_yield(); 8125 return 0; 8126 } 8127 8128 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8129 int __sched __cond_resched(void) 8130 { 8131 if (should_resched(0)) { 8132 preempt_schedule_common(); 8133 return 1; 8134 } 8135 /* 8136 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8137 * whether the current CPU is in an RCU read-side critical section, 8138 * so the tick can report quiescent states even for CPUs looping 8139 * in kernel context. In contrast, in non-preemptible kernels, 8140 * RCU readers leave no in-memory hints, which means that CPU-bound 8141 * processes executing in kernel context might never report an 8142 * RCU quiescent state. Therefore, the following code causes 8143 * cond_resched() to report a quiescent state, but only when RCU 8144 * is in urgent need of one. 8145 */ 8146 #ifndef CONFIG_PREEMPT_RCU 8147 rcu_all_qs(); 8148 #endif 8149 return 0; 8150 } 8151 EXPORT_SYMBOL(__cond_resched); 8152 #endif 8153 8154 #ifdef CONFIG_PREEMPT_DYNAMIC 8155 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8156 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8157 8158 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8159 EXPORT_STATIC_CALL_TRAMP(might_resched); 8160 #endif 8161 8162 /* 8163 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8164 * call schedule, and on return reacquire the lock. 8165 * 8166 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8167 * operations here to prevent schedule() from being called twice (once via 8168 * spin_unlock(), once by hand). 8169 */ 8170 int __cond_resched_lock(spinlock_t *lock) 8171 { 8172 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8173 int ret = 0; 8174 8175 lockdep_assert_held(lock); 8176 8177 if (spin_needbreak(lock) || resched) { 8178 spin_unlock(lock); 8179 if (resched) 8180 preempt_schedule_common(); 8181 else 8182 cpu_relax(); 8183 ret = 1; 8184 spin_lock(lock); 8185 } 8186 return ret; 8187 } 8188 EXPORT_SYMBOL(__cond_resched_lock); 8189 8190 int __cond_resched_rwlock_read(rwlock_t *lock) 8191 { 8192 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8193 int ret = 0; 8194 8195 lockdep_assert_held_read(lock); 8196 8197 if (rwlock_needbreak(lock) || resched) { 8198 read_unlock(lock); 8199 if (resched) 8200 preempt_schedule_common(); 8201 else 8202 cpu_relax(); 8203 ret = 1; 8204 read_lock(lock); 8205 } 8206 return ret; 8207 } 8208 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8209 8210 int __cond_resched_rwlock_write(rwlock_t *lock) 8211 { 8212 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8213 int ret = 0; 8214 8215 lockdep_assert_held_write(lock); 8216 8217 if (rwlock_needbreak(lock) || resched) { 8218 write_unlock(lock); 8219 if (resched) 8220 preempt_schedule_common(); 8221 else 8222 cpu_relax(); 8223 ret = 1; 8224 write_lock(lock); 8225 } 8226 return ret; 8227 } 8228 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8229 8230 /** 8231 * yield - yield the current processor to other threads. 8232 * 8233 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8234 * 8235 * The scheduler is at all times free to pick the calling task as the most 8236 * eligible task to run, if removing the yield() call from your code breaks 8237 * it, it's already broken. 8238 * 8239 * Typical broken usage is: 8240 * 8241 * while (!event) 8242 * yield(); 8243 * 8244 * where one assumes that yield() will let 'the other' process run that will 8245 * make event true. If the current task is a SCHED_FIFO task that will never 8246 * happen. Never use yield() as a progress guarantee!! 8247 * 8248 * If you want to use yield() to wait for something, use wait_event(). 8249 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8250 * If you still want to use yield(), do not! 8251 */ 8252 void __sched yield(void) 8253 { 8254 set_current_state(TASK_RUNNING); 8255 do_sched_yield(); 8256 } 8257 EXPORT_SYMBOL(yield); 8258 8259 /** 8260 * yield_to - yield the current processor to another thread in 8261 * your thread group, or accelerate that thread toward the 8262 * processor it's on. 8263 * @p: target task 8264 * @preempt: whether task preemption is allowed or not 8265 * 8266 * It's the caller's job to ensure that the target task struct 8267 * can't go away on us before we can do any checks. 8268 * 8269 * Return: 8270 * true (>0) if we indeed boosted the target task. 8271 * false (0) if we failed to boost the target. 8272 * -ESRCH if there's no task to yield to. 8273 */ 8274 int __sched yield_to(struct task_struct *p, bool preempt) 8275 { 8276 struct task_struct *curr = current; 8277 struct rq *rq, *p_rq; 8278 unsigned long flags; 8279 int yielded = 0; 8280 8281 local_irq_save(flags); 8282 rq = this_rq(); 8283 8284 again: 8285 p_rq = task_rq(p); 8286 /* 8287 * If we're the only runnable task on the rq and target rq also 8288 * has only one task, there's absolutely no point in yielding. 8289 */ 8290 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8291 yielded = -ESRCH; 8292 goto out_irq; 8293 } 8294 8295 double_rq_lock(rq, p_rq); 8296 if (task_rq(p) != p_rq) { 8297 double_rq_unlock(rq, p_rq); 8298 goto again; 8299 } 8300 8301 if (!curr->sched_class->yield_to_task) 8302 goto out_unlock; 8303 8304 if (curr->sched_class != p->sched_class) 8305 goto out_unlock; 8306 8307 if (task_running(p_rq, p) || !task_is_running(p)) 8308 goto out_unlock; 8309 8310 yielded = curr->sched_class->yield_to_task(rq, p); 8311 if (yielded) { 8312 schedstat_inc(rq->yld_count); 8313 /* 8314 * Make p's CPU reschedule; pick_next_entity takes care of 8315 * fairness. 8316 */ 8317 if (preempt && rq != p_rq) 8318 resched_curr(p_rq); 8319 } 8320 8321 out_unlock: 8322 double_rq_unlock(rq, p_rq); 8323 out_irq: 8324 local_irq_restore(flags); 8325 8326 if (yielded > 0) 8327 schedule(); 8328 8329 return yielded; 8330 } 8331 EXPORT_SYMBOL_GPL(yield_to); 8332 8333 int io_schedule_prepare(void) 8334 { 8335 int old_iowait = current->in_iowait; 8336 8337 current->in_iowait = 1; 8338 if (current->plug) 8339 blk_flush_plug(current->plug, true); 8340 8341 return old_iowait; 8342 } 8343 8344 void io_schedule_finish(int token) 8345 { 8346 current->in_iowait = token; 8347 } 8348 8349 /* 8350 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8351 * that process accounting knows that this is a task in IO wait state. 8352 */ 8353 long __sched io_schedule_timeout(long timeout) 8354 { 8355 int token; 8356 long ret; 8357 8358 token = io_schedule_prepare(); 8359 ret = schedule_timeout(timeout); 8360 io_schedule_finish(token); 8361 8362 return ret; 8363 } 8364 EXPORT_SYMBOL(io_schedule_timeout); 8365 8366 void __sched io_schedule(void) 8367 { 8368 int token; 8369 8370 token = io_schedule_prepare(); 8371 schedule(); 8372 io_schedule_finish(token); 8373 } 8374 EXPORT_SYMBOL(io_schedule); 8375 8376 /** 8377 * sys_sched_get_priority_max - return maximum RT priority. 8378 * @policy: scheduling class. 8379 * 8380 * Return: On success, this syscall returns the maximum 8381 * rt_priority that can be used by a given scheduling class. 8382 * On failure, a negative error code is returned. 8383 */ 8384 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8385 { 8386 int ret = -EINVAL; 8387 8388 switch (policy) { 8389 case SCHED_FIFO: 8390 case SCHED_RR: 8391 ret = MAX_RT_PRIO-1; 8392 break; 8393 case SCHED_DEADLINE: 8394 case SCHED_NORMAL: 8395 case SCHED_BATCH: 8396 case SCHED_IDLE: 8397 ret = 0; 8398 break; 8399 } 8400 return ret; 8401 } 8402 8403 /** 8404 * sys_sched_get_priority_min - return minimum RT priority. 8405 * @policy: scheduling class. 8406 * 8407 * Return: On success, this syscall returns the minimum 8408 * rt_priority that can be used by a given scheduling class. 8409 * On failure, a negative error code is returned. 8410 */ 8411 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8412 { 8413 int ret = -EINVAL; 8414 8415 switch (policy) { 8416 case SCHED_FIFO: 8417 case SCHED_RR: 8418 ret = 1; 8419 break; 8420 case SCHED_DEADLINE: 8421 case SCHED_NORMAL: 8422 case SCHED_BATCH: 8423 case SCHED_IDLE: 8424 ret = 0; 8425 } 8426 return ret; 8427 } 8428 8429 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8430 { 8431 struct task_struct *p; 8432 unsigned int time_slice; 8433 struct rq_flags rf; 8434 struct rq *rq; 8435 int retval; 8436 8437 if (pid < 0) 8438 return -EINVAL; 8439 8440 retval = -ESRCH; 8441 rcu_read_lock(); 8442 p = find_process_by_pid(pid); 8443 if (!p) 8444 goto out_unlock; 8445 8446 retval = security_task_getscheduler(p); 8447 if (retval) 8448 goto out_unlock; 8449 8450 rq = task_rq_lock(p, &rf); 8451 time_slice = 0; 8452 if (p->sched_class->get_rr_interval) 8453 time_slice = p->sched_class->get_rr_interval(rq, p); 8454 task_rq_unlock(rq, p, &rf); 8455 8456 rcu_read_unlock(); 8457 jiffies_to_timespec64(time_slice, t); 8458 return 0; 8459 8460 out_unlock: 8461 rcu_read_unlock(); 8462 return retval; 8463 } 8464 8465 /** 8466 * sys_sched_rr_get_interval - return the default timeslice of a process. 8467 * @pid: pid of the process. 8468 * @interval: userspace pointer to the timeslice value. 8469 * 8470 * this syscall writes the default timeslice value of a given process 8471 * into the user-space timespec buffer. A value of '0' means infinity. 8472 * 8473 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8474 * an error code. 8475 */ 8476 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8477 struct __kernel_timespec __user *, interval) 8478 { 8479 struct timespec64 t; 8480 int retval = sched_rr_get_interval(pid, &t); 8481 8482 if (retval == 0) 8483 retval = put_timespec64(&t, interval); 8484 8485 return retval; 8486 } 8487 8488 #ifdef CONFIG_COMPAT_32BIT_TIME 8489 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8490 struct old_timespec32 __user *, interval) 8491 { 8492 struct timespec64 t; 8493 int retval = sched_rr_get_interval(pid, &t); 8494 8495 if (retval == 0) 8496 retval = put_old_timespec32(&t, interval); 8497 return retval; 8498 } 8499 #endif 8500 8501 void sched_show_task(struct task_struct *p) 8502 { 8503 unsigned long free = 0; 8504 int ppid; 8505 8506 if (!try_get_task_stack(p)) 8507 return; 8508 8509 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8510 8511 if (task_is_running(p)) 8512 pr_cont(" running task "); 8513 #ifdef CONFIG_DEBUG_STACK_USAGE 8514 free = stack_not_used(p); 8515 #endif 8516 ppid = 0; 8517 rcu_read_lock(); 8518 if (pid_alive(p)) 8519 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8520 rcu_read_unlock(); 8521 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8522 free, task_pid_nr(p), ppid, 8523 (unsigned long)task_thread_info(p)->flags); 8524 8525 print_worker_info(KERN_INFO, p); 8526 print_stop_info(KERN_INFO, p); 8527 show_stack(p, NULL, KERN_INFO); 8528 put_task_stack(p); 8529 } 8530 EXPORT_SYMBOL_GPL(sched_show_task); 8531 8532 static inline bool 8533 state_filter_match(unsigned long state_filter, struct task_struct *p) 8534 { 8535 unsigned int state = READ_ONCE(p->__state); 8536 8537 /* no filter, everything matches */ 8538 if (!state_filter) 8539 return true; 8540 8541 /* filter, but doesn't match */ 8542 if (!(state & state_filter)) 8543 return false; 8544 8545 /* 8546 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8547 * TASK_KILLABLE). 8548 */ 8549 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8550 return false; 8551 8552 return true; 8553 } 8554 8555 8556 void show_state_filter(unsigned int state_filter) 8557 { 8558 struct task_struct *g, *p; 8559 8560 rcu_read_lock(); 8561 for_each_process_thread(g, p) { 8562 /* 8563 * reset the NMI-timeout, listing all files on a slow 8564 * console might take a lot of time: 8565 * Also, reset softlockup watchdogs on all CPUs, because 8566 * another CPU might be blocked waiting for us to process 8567 * an IPI. 8568 */ 8569 touch_nmi_watchdog(); 8570 touch_all_softlockup_watchdogs(); 8571 if (state_filter_match(state_filter, p)) 8572 sched_show_task(p); 8573 } 8574 8575 #ifdef CONFIG_SCHED_DEBUG 8576 if (!state_filter) 8577 sysrq_sched_debug_show(); 8578 #endif 8579 rcu_read_unlock(); 8580 /* 8581 * Only show locks if all tasks are dumped: 8582 */ 8583 if (!state_filter) 8584 debug_show_all_locks(); 8585 } 8586 8587 /** 8588 * init_idle - set up an idle thread for a given CPU 8589 * @idle: task in question 8590 * @cpu: CPU the idle task belongs to 8591 * 8592 * NOTE: this function does not set the idle thread's NEED_RESCHED 8593 * flag, to make booting more robust. 8594 */ 8595 void __init init_idle(struct task_struct *idle, int cpu) 8596 { 8597 struct rq *rq = cpu_rq(cpu); 8598 unsigned long flags; 8599 8600 __sched_fork(0, idle); 8601 8602 /* 8603 * The idle task doesn't need the kthread struct to function, but it 8604 * is dressed up as a per-CPU kthread and thus needs to play the part 8605 * if we want to avoid special-casing it in code that deals with per-CPU 8606 * kthreads. 8607 */ 8608 set_kthread_struct(idle); 8609 8610 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8611 raw_spin_rq_lock(rq); 8612 8613 idle->__state = TASK_RUNNING; 8614 idle->se.exec_start = sched_clock(); 8615 /* 8616 * PF_KTHREAD should already be set at this point; regardless, make it 8617 * look like a proper per-CPU kthread. 8618 */ 8619 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8620 kthread_set_per_cpu(idle, cpu); 8621 8622 scs_task_reset(idle); 8623 kasan_unpoison_task_stack(idle); 8624 8625 #ifdef CONFIG_SMP 8626 /* 8627 * It's possible that init_idle() gets called multiple times on a task, 8628 * in that case do_set_cpus_allowed() will not do the right thing. 8629 * 8630 * And since this is boot we can forgo the serialization. 8631 */ 8632 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8633 #endif 8634 /* 8635 * We're having a chicken and egg problem, even though we are 8636 * holding rq->lock, the CPU isn't yet set to this CPU so the 8637 * lockdep check in task_group() will fail. 8638 * 8639 * Similar case to sched_fork(). / Alternatively we could 8640 * use task_rq_lock() here and obtain the other rq->lock. 8641 * 8642 * Silence PROVE_RCU 8643 */ 8644 rcu_read_lock(); 8645 __set_task_cpu(idle, cpu); 8646 rcu_read_unlock(); 8647 8648 rq->idle = idle; 8649 rcu_assign_pointer(rq->curr, idle); 8650 idle->on_rq = TASK_ON_RQ_QUEUED; 8651 #ifdef CONFIG_SMP 8652 idle->on_cpu = 1; 8653 #endif 8654 raw_spin_rq_unlock(rq); 8655 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8656 8657 /* Set the preempt count _outside_ the spinlocks! */ 8658 init_idle_preempt_count(idle, cpu); 8659 8660 /* 8661 * The idle tasks have their own, simple scheduling class: 8662 */ 8663 idle->sched_class = &idle_sched_class; 8664 ftrace_graph_init_idle_task(idle, cpu); 8665 vtime_init_idle(idle, cpu); 8666 #ifdef CONFIG_SMP 8667 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8668 #endif 8669 } 8670 8671 #ifdef CONFIG_SMP 8672 8673 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8674 const struct cpumask *trial) 8675 { 8676 int ret = 1; 8677 8678 if (!cpumask_weight(cur)) 8679 return ret; 8680 8681 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8682 8683 return ret; 8684 } 8685 8686 int task_can_attach(struct task_struct *p, 8687 const struct cpumask *cs_cpus_allowed) 8688 { 8689 int ret = 0; 8690 8691 /* 8692 * Kthreads which disallow setaffinity shouldn't be moved 8693 * to a new cpuset; we don't want to change their CPU 8694 * affinity and isolating such threads by their set of 8695 * allowed nodes is unnecessary. Thus, cpusets are not 8696 * applicable for such threads. This prevents checking for 8697 * success of set_cpus_allowed_ptr() on all attached tasks 8698 * before cpus_mask may be changed. 8699 */ 8700 if (p->flags & PF_NO_SETAFFINITY) { 8701 ret = -EINVAL; 8702 goto out; 8703 } 8704 8705 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8706 cs_cpus_allowed)) 8707 ret = dl_task_can_attach(p, cs_cpus_allowed); 8708 8709 out: 8710 return ret; 8711 } 8712 8713 bool sched_smp_initialized __read_mostly; 8714 8715 #ifdef CONFIG_NUMA_BALANCING 8716 /* Migrate current task p to target_cpu */ 8717 int migrate_task_to(struct task_struct *p, int target_cpu) 8718 { 8719 struct migration_arg arg = { p, target_cpu }; 8720 int curr_cpu = task_cpu(p); 8721 8722 if (curr_cpu == target_cpu) 8723 return 0; 8724 8725 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8726 return -EINVAL; 8727 8728 /* TODO: This is not properly updating schedstats */ 8729 8730 trace_sched_move_numa(p, curr_cpu, target_cpu); 8731 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8732 } 8733 8734 /* 8735 * Requeue a task on a given node and accurately track the number of NUMA 8736 * tasks on the runqueues 8737 */ 8738 void sched_setnuma(struct task_struct *p, int nid) 8739 { 8740 bool queued, running; 8741 struct rq_flags rf; 8742 struct rq *rq; 8743 8744 rq = task_rq_lock(p, &rf); 8745 queued = task_on_rq_queued(p); 8746 running = task_current(rq, p); 8747 8748 if (queued) 8749 dequeue_task(rq, p, DEQUEUE_SAVE); 8750 if (running) 8751 put_prev_task(rq, p); 8752 8753 p->numa_preferred_nid = nid; 8754 8755 if (queued) 8756 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8757 if (running) 8758 set_next_task(rq, p); 8759 task_rq_unlock(rq, p, &rf); 8760 } 8761 #endif /* CONFIG_NUMA_BALANCING */ 8762 8763 #ifdef CONFIG_HOTPLUG_CPU 8764 /* 8765 * Ensure that the idle task is using init_mm right before its CPU goes 8766 * offline. 8767 */ 8768 void idle_task_exit(void) 8769 { 8770 struct mm_struct *mm = current->active_mm; 8771 8772 BUG_ON(cpu_online(smp_processor_id())); 8773 BUG_ON(current != this_rq()->idle); 8774 8775 if (mm != &init_mm) { 8776 switch_mm(mm, &init_mm, current); 8777 finish_arch_post_lock_switch(); 8778 } 8779 8780 scs_task_reset(current); 8781 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8782 } 8783 8784 static int __balance_push_cpu_stop(void *arg) 8785 { 8786 struct task_struct *p = arg; 8787 struct rq *rq = this_rq(); 8788 struct rq_flags rf; 8789 int cpu; 8790 8791 raw_spin_lock_irq(&p->pi_lock); 8792 rq_lock(rq, &rf); 8793 8794 update_rq_clock(rq); 8795 8796 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8797 cpu = select_fallback_rq(rq->cpu, p); 8798 rq = __migrate_task(rq, &rf, p, cpu); 8799 } 8800 8801 rq_unlock(rq, &rf); 8802 raw_spin_unlock_irq(&p->pi_lock); 8803 8804 put_task_struct(p); 8805 8806 return 0; 8807 } 8808 8809 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8810 8811 /* 8812 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8813 * 8814 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8815 * effective when the hotplug motion is down. 8816 */ 8817 static void balance_push(struct rq *rq) 8818 { 8819 struct task_struct *push_task = rq->curr; 8820 8821 lockdep_assert_rq_held(rq); 8822 8823 /* 8824 * Ensure the thing is persistent until balance_push_set(.on = false); 8825 */ 8826 rq->balance_callback = &balance_push_callback; 8827 8828 /* 8829 * Only active while going offline and when invoked on the outgoing 8830 * CPU. 8831 */ 8832 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8833 return; 8834 8835 /* 8836 * Both the cpu-hotplug and stop task are in this case and are 8837 * required to complete the hotplug process. 8838 */ 8839 if (kthread_is_per_cpu(push_task) || 8840 is_migration_disabled(push_task)) { 8841 8842 /* 8843 * If this is the idle task on the outgoing CPU try to wake 8844 * up the hotplug control thread which might wait for the 8845 * last task to vanish. The rcuwait_active() check is 8846 * accurate here because the waiter is pinned on this CPU 8847 * and can't obviously be running in parallel. 8848 * 8849 * On RT kernels this also has to check whether there are 8850 * pinned and scheduled out tasks on the runqueue. They 8851 * need to leave the migrate disabled section first. 8852 */ 8853 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8854 rcuwait_active(&rq->hotplug_wait)) { 8855 raw_spin_rq_unlock(rq); 8856 rcuwait_wake_up(&rq->hotplug_wait); 8857 raw_spin_rq_lock(rq); 8858 } 8859 return; 8860 } 8861 8862 get_task_struct(push_task); 8863 /* 8864 * Temporarily drop rq->lock such that we can wake-up the stop task. 8865 * Both preemption and IRQs are still disabled. 8866 */ 8867 raw_spin_rq_unlock(rq); 8868 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8869 this_cpu_ptr(&push_work)); 8870 /* 8871 * At this point need_resched() is true and we'll take the loop in 8872 * schedule(). The next pick is obviously going to be the stop task 8873 * which kthread_is_per_cpu() and will push this task away. 8874 */ 8875 raw_spin_rq_lock(rq); 8876 } 8877 8878 static void balance_push_set(int cpu, bool on) 8879 { 8880 struct rq *rq = cpu_rq(cpu); 8881 struct rq_flags rf; 8882 8883 rq_lock_irqsave(rq, &rf); 8884 if (on) { 8885 WARN_ON_ONCE(rq->balance_callback); 8886 rq->balance_callback = &balance_push_callback; 8887 } else if (rq->balance_callback == &balance_push_callback) { 8888 rq->balance_callback = NULL; 8889 } 8890 rq_unlock_irqrestore(rq, &rf); 8891 } 8892 8893 /* 8894 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8895 * inactive. All tasks which are not per CPU kernel threads are either 8896 * pushed off this CPU now via balance_push() or placed on a different CPU 8897 * during wakeup. Wait until the CPU is quiescent. 8898 */ 8899 static void balance_hotplug_wait(void) 8900 { 8901 struct rq *rq = this_rq(); 8902 8903 rcuwait_wait_event(&rq->hotplug_wait, 8904 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8905 TASK_UNINTERRUPTIBLE); 8906 } 8907 8908 #else 8909 8910 static inline void balance_push(struct rq *rq) 8911 { 8912 } 8913 8914 static inline void balance_push_set(int cpu, bool on) 8915 { 8916 } 8917 8918 static inline void balance_hotplug_wait(void) 8919 { 8920 } 8921 8922 #endif /* CONFIG_HOTPLUG_CPU */ 8923 8924 void set_rq_online(struct rq *rq) 8925 { 8926 if (!rq->online) { 8927 const struct sched_class *class; 8928 8929 cpumask_set_cpu(rq->cpu, rq->rd->online); 8930 rq->online = 1; 8931 8932 for_each_class(class) { 8933 if (class->rq_online) 8934 class->rq_online(rq); 8935 } 8936 } 8937 } 8938 8939 void set_rq_offline(struct rq *rq) 8940 { 8941 if (rq->online) { 8942 const struct sched_class *class; 8943 8944 for_each_class(class) { 8945 if (class->rq_offline) 8946 class->rq_offline(rq); 8947 } 8948 8949 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8950 rq->online = 0; 8951 } 8952 } 8953 8954 /* 8955 * used to mark begin/end of suspend/resume: 8956 */ 8957 static int num_cpus_frozen; 8958 8959 /* 8960 * Update cpusets according to cpu_active mask. If cpusets are 8961 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8962 * around partition_sched_domains(). 8963 * 8964 * If we come here as part of a suspend/resume, don't touch cpusets because we 8965 * want to restore it back to its original state upon resume anyway. 8966 */ 8967 static void cpuset_cpu_active(void) 8968 { 8969 if (cpuhp_tasks_frozen) { 8970 /* 8971 * num_cpus_frozen tracks how many CPUs are involved in suspend 8972 * resume sequence. As long as this is not the last online 8973 * operation in the resume sequence, just build a single sched 8974 * domain, ignoring cpusets. 8975 */ 8976 partition_sched_domains(1, NULL, NULL); 8977 if (--num_cpus_frozen) 8978 return; 8979 /* 8980 * This is the last CPU online operation. So fall through and 8981 * restore the original sched domains by considering the 8982 * cpuset configurations. 8983 */ 8984 cpuset_force_rebuild(); 8985 } 8986 cpuset_update_active_cpus(); 8987 } 8988 8989 static int cpuset_cpu_inactive(unsigned int cpu) 8990 { 8991 if (!cpuhp_tasks_frozen) { 8992 if (dl_cpu_busy(cpu)) 8993 return -EBUSY; 8994 cpuset_update_active_cpus(); 8995 } else { 8996 num_cpus_frozen++; 8997 partition_sched_domains(1, NULL, NULL); 8998 } 8999 return 0; 9000 } 9001 9002 int sched_cpu_activate(unsigned int cpu) 9003 { 9004 struct rq *rq = cpu_rq(cpu); 9005 struct rq_flags rf; 9006 9007 /* 9008 * Clear the balance_push callback and prepare to schedule 9009 * regular tasks. 9010 */ 9011 balance_push_set(cpu, false); 9012 9013 #ifdef CONFIG_SCHED_SMT 9014 /* 9015 * When going up, increment the number of cores with SMT present. 9016 */ 9017 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9018 static_branch_inc_cpuslocked(&sched_smt_present); 9019 #endif 9020 set_cpu_active(cpu, true); 9021 9022 if (sched_smp_initialized) { 9023 sched_domains_numa_masks_set(cpu); 9024 cpuset_cpu_active(); 9025 } 9026 9027 /* 9028 * Put the rq online, if not already. This happens: 9029 * 9030 * 1) In the early boot process, because we build the real domains 9031 * after all CPUs have been brought up. 9032 * 9033 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9034 * domains. 9035 */ 9036 rq_lock_irqsave(rq, &rf); 9037 if (rq->rd) { 9038 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9039 set_rq_online(rq); 9040 } 9041 rq_unlock_irqrestore(rq, &rf); 9042 9043 return 0; 9044 } 9045 9046 int sched_cpu_deactivate(unsigned int cpu) 9047 { 9048 struct rq *rq = cpu_rq(cpu); 9049 struct rq_flags rf; 9050 int ret; 9051 9052 /* 9053 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9054 * load balancing when not active 9055 */ 9056 nohz_balance_exit_idle(rq); 9057 9058 set_cpu_active(cpu, false); 9059 9060 /* 9061 * From this point forward, this CPU will refuse to run any task that 9062 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9063 * push those tasks away until this gets cleared, see 9064 * sched_cpu_dying(). 9065 */ 9066 balance_push_set(cpu, true); 9067 9068 /* 9069 * We've cleared cpu_active_mask / set balance_push, wait for all 9070 * preempt-disabled and RCU users of this state to go away such that 9071 * all new such users will observe it. 9072 * 9073 * Specifically, we rely on ttwu to no longer target this CPU, see 9074 * ttwu_queue_cond() and is_cpu_allowed(). 9075 * 9076 * Do sync before park smpboot threads to take care the rcu boost case. 9077 */ 9078 synchronize_rcu(); 9079 9080 rq_lock_irqsave(rq, &rf); 9081 if (rq->rd) { 9082 update_rq_clock(rq); 9083 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9084 set_rq_offline(rq); 9085 } 9086 rq_unlock_irqrestore(rq, &rf); 9087 9088 #ifdef CONFIG_SCHED_SMT 9089 /* 9090 * When going down, decrement the number of cores with SMT present. 9091 */ 9092 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9093 static_branch_dec_cpuslocked(&sched_smt_present); 9094 9095 sched_core_cpu_deactivate(cpu); 9096 #endif 9097 9098 if (!sched_smp_initialized) 9099 return 0; 9100 9101 ret = cpuset_cpu_inactive(cpu); 9102 if (ret) { 9103 balance_push_set(cpu, false); 9104 set_cpu_active(cpu, true); 9105 return ret; 9106 } 9107 sched_domains_numa_masks_clear(cpu); 9108 return 0; 9109 } 9110 9111 static void sched_rq_cpu_starting(unsigned int cpu) 9112 { 9113 struct rq *rq = cpu_rq(cpu); 9114 9115 rq->calc_load_update = calc_load_update; 9116 update_max_interval(); 9117 } 9118 9119 int sched_cpu_starting(unsigned int cpu) 9120 { 9121 sched_core_cpu_starting(cpu); 9122 sched_rq_cpu_starting(cpu); 9123 sched_tick_start(cpu); 9124 return 0; 9125 } 9126 9127 #ifdef CONFIG_HOTPLUG_CPU 9128 9129 /* 9130 * Invoked immediately before the stopper thread is invoked to bring the 9131 * CPU down completely. At this point all per CPU kthreads except the 9132 * hotplug thread (current) and the stopper thread (inactive) have been 9133 * either parked or have been unbound from the outgoing CPU. Ensure that 9134 * any of those which might be on the way out are gone. 9135 * 9136 * If after this point a bound task is being woken on this CPU then the 9137 * responsible hotplug callback has failed to do it's job. 9138 * sched_cpu_dying() will catch it with the appropriate fireworks. 9139 */ 9140 int sched_cpu_wait_empty(unsigned int cpu) 9141 { 9142 balance_hotplug_wait(); 9143 return 0; 9144 } 9145 9146 /* 9147 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9148 * might have. Called from the CPU stopper task after ensuring that the 9149 * stopper is the last running task on the CPU, so nr_active count is 9150 * stable. We need to take the teardown thread which is calling this into 9151 * account, so we hand in adjust = 1 to the load calculation. 9152 * 9153 * Also see the comment "Global load-average calculations". 9154 */ 9155 static void calc_load_migrate(struct rq *rq) 9156 { 9157 long delta = calc_load_fold_active(rq, 1); 9158 9159 if (delta) 9160 atomic_long_add(delta, &calc_load_tasks); 9161 } 9162 9163 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9164 { 9165 struct task_struct *g, *p; 9166 int cpu = cpu_of(rq); 9167 9168 lockdep_assert_rq_held(rq); 9169 9170 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9171 for_each_process_thread(g, p) { 9172 if (task_cpu(p) != cpu) 9173 continue; 9174 9175 if (!task_on_rq_queued(p)) 9176 continue; 9177 9178 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9179 } 9180 } 9181 9182 int sched_cpu_dying(unsigned int cpu) 9183 { 9184 struct rq *rq = cpu_rq(cpu); 9185 struct rq_flags rf; 9186 9187 /* Handle pending wakeups and then migrate everything off */ 9188 sched_tick_stop(cpu); 9189 9190 rq_lock_irqsave(rq, &rf); 9191 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9192 WARN(true, "Dying CPU not properly vacated!"); 9193 dump_rq_tasks(rq, KERN_WARNING); 9194 } 9195 rq_unlock_irqrestore(rq, &rf); 9196 9197 calc_load_migrate(rq); 9198 update_max_interval(); 9199 hrtick_clear(rq); 9200 sched_core_cpu_dying(cpu); 9201 return 0; 9202 } 9203 #endif 9204 9205 void __init sched_init_smp(void) 9206 { 9207 sched_init_numa(); 9208 9209 /* 9210 * There's no userspace yet to cause hotplug operations; hence all the 9211 * CPU masks are stable and all blatant races in the below code cannot 9212 * happen. 9213 */ 9214 mutex_lock(&sched_domains_mutex); 9215 sched_init_domains(cpu_active_mask); 9216 mutex_unlock(&sched_domains_mutex); 9217 9218 /* Move init over to a non-isolated CPU */ 9219 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 9220 BUG(); 9221 current->flags &= ~PF_NO_SETAFFINITY; 9222 sched_init_granularity(); 9223 9224 init_sched_rt_class(); 9225 init_sched_dl_class(); 9226 9227 sched_smp_initialized = true; 9228 } 9229 9230 static int __init migration_init(void) 9231 { 9232 sched_cpu_starting(smp_processor_id()); 9233 return 0; 9234 } 9235 early_initcall(migration_init); 9236 9237 #else 9238 void __init sched_init_smp(void) 9239 { 9240 sched_init_granularity(); 9241 } 9242 #endif /* CONFIG_SMP */ 9243 9244 int in_sched_functions(unsigned long addr) 9245 { 9246 return in_lock_functions(addr) || 9247 (addr >= (unsigned long)__sched_text_start 9248 && addr < (unsigned long)__sched_text_end); 9249 } 9250 9251 #ifdef CONFIG_CGROUP_SCHED 9252 /* 9253 * Default task group. 9254 * Every task in system belongs to this group at bootup. 9255 */ 9256 struct task_group root_task_group; 9257 LIST_HEAD(task_groups); 9258 9259 /* Cacheline aligned slab cache for task_group */ 9260 static struct kmem_cache *task_group_cache __read_mostly; 9261 #endif 9262 9263 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9264 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9265 9266 void __init sched_init(void) 9267 { 9268 unsigned long ptr = 0; 9269 int i; 9270 9271 /* Make sure the linker didn't screw up */ 9272 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 9273 &fair_sched_class + 1 != &rt_sched_class || 9274 &rt_sched_class + 1 != &dl_sched_class); 9275 #ifdef CONFIG_SMP 9276 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 9277 #endif 9278 9279 wait_bit_init(); 9280 9281 #ifdef CONFIG_FAIR_GROUP_SCHED 9282 ptr += 2 * nr_cpu_ids * sizeof(void **); 9283 #endif 9284 #ifdef CONFIG_RT_GROUP_SCHED 9285 ptr += 2 * nr_cpu_ids * sizeof(void **); 9286 #endif 9287 if (ptr) { 9288 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9289 9290 #ifdef CONFIG_FAIR_GROUP_SCHED 9291 root_task_group.se = (struct sched_entity **)ptr; 9292 ptr += nr_cpu_ids * sizeof(void **); 9293 9294 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9295 ptr += nr_cpu_ids * sizeof(void **); 9296 9297 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9298 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9299 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9300 #ifdef CONFIG_RT_GROUP_SCHED 9301 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9302 ptr += nr_cpu_ids * sizeof(void **); 9303 9304 root_task_group.rt_rq = (struct rt_rq **)ptr; 9305 ptr += nr_cpu_ids * sizeof(void **); 9306 9307 #endif /* CONFIG_RT_GROUP_SCHED */ 9308 } 9309 #ifdef CONFIG_CPUMASK_OFFSTACK 9310 for_each_possible_cpu(i) { 9311 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9312 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9313 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9314 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9315 } 9316 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9317 9318 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9319 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 9320 9321 #ifdef CONFIG_SMP 9322 init_defrootdomain(); 9323 #endif 9324 9325 #ifdef CONFIG_RT_GROUP_SCHED 9326 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9327 global_rt_period(), global_rt_runtime()); 9328 #endif /* CONFIG_RT_GROUP_SCHED */ 9329 9330 #ifdef CONFIG_CGROUP_SCHED 9331 task_group_cache = KMEM_CACHE(task_group, 0); 9332 9333 list_add(&root_task_group.list, &task_groups); 9334 INIT_LIST_HEAD(&root_task_group.children); 9335 INIT_LIST_HEAD(&root_task_group.siblings); 9336 autogroup_init(&init_task); 9337 #endif /* CONFIG_CGROUP_SCHED */ 9338 9339 for_each_possible_cpu(i) { 9340 struct rq *rq; 9341 9342 rq = cpu_rq(i); 9343 raw_spin_lock_init(&rq->__lock); 9344 rq->nr_running = 0; 9345 rq->calc_load_active = 0; 9346 rq->calc_load_update = jiffies + LOAD_FREQ; 9347 init_cfs_rq(&rq->cfs); 9348 init_rt_rq(&rq->rt); 9349 init_dl_rq(&rq->dl); 9350 #ifdef CONFIG_FAIR_GROUP_SCHED 9351 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9353 /* 9354 * How much CPU bandwidth does root_task_group get? 9355 * 9356 * In case of task-groups formed thr' the cgroup filesystem, it 9357 * gets 100% of the CPU resources in the system. This overall 9358 * system CPU resource is divided among the tasks of 9359 * root_task_group and its child task-groups in a fair manner, 9360 * based on each entity's (task or task-group's) weight 9361 * (se->load.weight). 9362 * 9363 * In other words, if root_task_group has 10 tasks of weight 9364 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9365 * then A0's share of the CPU resource is: 9366 * 9367 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9368 * 9369 * We achieve this by letting root_task_group's tasks sit 9370 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9371 */ 9372 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9373 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9374 9375 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9376 #ifdef CONFIG_RT_GROUP_SCHED 9377 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9378 #endif 9379 #ifdef CONFIG_SMP 9380 rq->sd = NULL; 9381 rq->rd = NULL; 9382 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9383 rq->balance_callback = &balance_push_callback; 9384 rq->active_balance = 0; 9385 rq->next_balance = jiffies; 9386 rq->push_cpu = 0; 9387 rq->cpu = i; 9388 rq->online = 0; 9389 rq->idle_stamp = 0; 9390 rq->avg_idle = 2*sysctl_sched_migration_cost; 9391 rq->wake_stamp = jiffies; 9392 rq->wake_avg_idle = rq->avg_idle; 9393 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9394 9395 INIT_LIST_HEAD(&rq->cfs_tasks); 9396 9397 rq_attach_root(rq, &def_root_domain); 9398 #ifdef CONFIG_NO_HZ_COMMON 9399 rq->last_blocked_load_update_tick = jiffies; 9400 atomic_set(&rq->nohz_flags, 0); 9401 9402 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9403 #endif 9404 #ifdef CONFIG_HOTPLUG_CPU 9405 rcuwait_init(&rq->hotplug_wait); 9406 #endif 9407 #endif /* CONFIG_SMP */ 9408 hrtick_rq_init(rq); 9409 atomic_set(&rq->nr_iowait, 0); 9410 9411 #ifdef CONFIG_SCHED_CORE 9412 rq->core = rq; 9413 rq->core_pick = NULL; 9414 rq->core_enabled = 0; 9415 rq->core_tree = RB_ROOT; 9416 rq->core_forceidle = false; 9417 9418 rq->core_cookie = 0UL; 9419 #endif 9420 } 9421 9422 set_load_weight(&init_task, false); 9423 9424 /* 9425 * The boot idle thread does lazy MMU switching as well: 9426 */ 9427 mmgrab(&init_mm); 9428 enter_lazy_tlb(&init_mm, current); 9429 9430 /* 9431 * Make us the idle thread. Technically, schedule() should not be 9432 * called from this thread, however somewhere below it might be, 9433 * but because we are the idle thread, we just pick up running again 9434 * when this runqueue becomes "idle". 9435 */ 9436 init_idle(current, smp_processor_id()); 9437 9438 calc_load_update = jiffies + LOAD_FREQ; 9439 9440 #ifdef CONFIG_SMP 9441 idle_thread_set_boot_cpu(); 9442 balance_push_set(smp_processor_id(), false); 9443 #endif 9444 init_sched_fair_class(); 9445 9446 psi_init(); 9447 9448 init_uclamp(); 9449 9450 preempt_dynamic_init(); 9451 9452 scheduler_running = 1; 9453 } 9454 9455 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9456 9457 void __might_sleep(const char *file, int line) 9458 { 9459 unsigned int state = get_current_state(); 9460 /* 9461 * Blocking primitives will set (and therefore destroy) current->state, 9462 * since we will exit with TASK_RUNNING make sure we enter with it, 9463 * otherwise we will destroy state. 9464 */ 9465 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9466 "do not call blocking ops when !TASK_RUNNING; " 9467 "state=%x set at [<%p>] %pS\n", state, 9468 (void *)current->task_state_change, 9469 (void *)current->task_state_change); 9470 9471 __might_resched(file, line, 0); 9472 } 9473 EXPORT_SYMBOL(__might_sleep); 9474 9475 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9476 { 9477 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9478 return; 9479 9480 if (preempt_count() == preempt_offset) 9481 return; 9482 9483 pr_err("Preemption disabled at:"); 9484 print_ip_sym(KERN_ERR, ip); 9485 } 9486 9487 static inline bool resched_offsets_ok(unsigned int offsets) 9488 { 9489 unsigned int nested = preempt_count(); 9490 9491 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9492 9493 return nested == offsets; 9494 } 9495 9496 void __might_resched(const char *file, int line, unsigned int offsets) 9497 { 9498 /* Ratelimiting timestamp: */ 9499 static unsigned long prev_jiffy; 9500 9501 unsigned long preempt_disable_ip; 9502 9503 /* WARN_ON_ONCE() by default, no rate limit required: */ 9504 rcu_sleep_check(); 9505 9506 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9507 !is_idle_task(current) && !current->non_block_count) || 9508 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9509 oops_in_progress) 9510 return; 9511 9512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9513 return; 9514 prev_jiffy = jiffies; 9515 9516 /* Save this before calling printk(), since that will clobber it: */ 9517 preempt_disable_ip = get_preempt_disable_ip(current); 9518 9519 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9520 file, line); 9521 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9522 in_atomic(), irqs_disabled(), current->non_block_count, 9523 current->pid, current->comm); 9524 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9525 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9526 9527 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9528 pr_err("RCU nest depth: %d, expected: %u\n", 9529 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9530 } 9531 9532 if (task_stack_end_corrupted(current)) 9533 pr_emerg("Thread overran stack, or stack corrupted\n"); 9534 9535 debug_show_held_locks(current); 9536 if (irqs_disabled()) 9537 print_irqtrace_events(current); 9538 9539 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9540 preempt_disable_ip); 9541 9542 dump_stack(); 9543 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9544 } 9545 EXPORT_SYMBOL(__might_resched); 9546 9547 void __cant_sleep(const char *file, int line, int preempt_offset) 9548 { 9549 static unsigned long prev_jiffy; 9550 9551 if (irqs_disabled()) 9552 return; 9553 9554 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9555 return; 9556 9557 if (preempt_count() > preempt_offset) 9558 return; 9559 9560 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9561 return; 9562 prev_jiffy = jiffies; 9563 9564 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9565 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9566 in_atomic(), irqs_disabled(), 9567 current->pid, current->comm); 9568 9569 debug_show_held_locks(current); 9570 dump_stack(); 9571 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9572 } 9573 EXPORT_SYMBOL_GPL(__cant_sleep); 9574 9575 #ifdef CONFIG_SMP 9576 void __cant_migrate(const char *file, int line) 9577 { 9578 static unsigned long prev_jiffy; 9579 9580 if (irqs_disabled()) 9581 return; 9582 9583 if (is_migration_disabled(current)) 9584 return; 9585 9586 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9587 return; 9588 9589 if (preempt_count() > 0) 9590 return; 9591 9592 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9593 return; 9594 prev_jiffy = jiffies; 9595 9596 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9597 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9598 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9599 current->pid, current->comm); 9600 9601 debug_show_held_locks(current); 9602 dump_stack(); 9603 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9604 } 9605 EXPORT_SYMBOL_GPL(__cant_migrate); 9606 #endif 9607 #endif 9608 9609 #ifdef CONFIG_MAGIC_SYSRQ 9610 void normalize_rt_tasks(void) 9611 { 9612 struct task_struct *g, *p; 9613 struct sched_attr attr = { 9614 .sched_policy = SCHED_NORMAL, 9615 }; 9616 9617 read_lock(&tasklist_lock); 9618 for_each_process_thread(g, p) { 9619 /* 9620 * Only normalize user tasks: 9621 */ 9622 if (p->flags & PF_KTHREAD) 9623 continue; 9624 9625 p->se.exec_start = 0; 9626 schedstat_set(p->stats.wait_start, 0); 9627 schedstat_set(p->stats.sleep_start, 0); 9628 schedstat_set(p->stats.block_start, 0); 9629 9630 if (!dl_task(p) && !rt_task(p)) { 9631 /* 9632 * Renice negative nice level userspace 9633 * tasks back to 0: 9634 */ 9635 if (task_nice(p) < 0) 9636 set_user_nice(p, 0); 9637 continue; 9638 } 9639 9640 __sched_setscheduler(p, &attr, false, false); 9641 } 9642 read_unlock(&tasklist_lock); 9643 } 9644 9645 #endif /* CONFIG_MAGIC_SYSRQ */ 9646 9647 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9648 /* 9649 * These functions are only useful for the IA64 MCA handling, or kdb. 9650 * 9651 * They can only be called when the whole system has been 9652 * stopped - every CPU needs to be quiescent, and no scheduling 9653 * activity can take place. Using them for anything else would 9654 * be a serious bug, and as a result, they aren't even visible 9655 * under any other configuration. 9656 */ 9657 9658 /** 9659 * curr_task - return the current task for a given CPU. 9660 * @cpu: the processor in question. 9661 * 9662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9663 * 9664 * Return: The current task for @cpu. 9665 */ 9666 struct task_struct *curr_task(int cpu) 9667 { 9668 return cpu_curr(cpu); 9669 } 9670 9671 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9672 9673 #ifdef CONFIG_IA64 9674 /** 9675 * ia64_set_curr_task - set the current task for a given CPU. 9676 * @cpu: the processor in question. 9677 * @p: the task pointer to set. 9678 * 9679 * Description: This function must only be used when non-maskable interrupts 9680 * are serviced on a separate stack. It allows the architecture to switch the 9681 * notion of the current task on a CPU in a non-blocking manner. This function 9682 * must be called with all CPU's synchronized, and interrupts disabled, the 9683 * and caller must save the original value of the current task (see 9684 * curr_task() above) and restore that value before reenabling interrupts and 9685 * re-starting the system. 9686 * 9687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9688 */ 9689 void ia64_set_curr_task(int cpu, struct task_struct *p) 9690 { 9691 cpu_curr(cpu) = p; 9692 } 9693 9694 #endif 9695 9696 #ifdef CONFIG_CGROUP_SCHED 9697 /* task_group_lock serializes the addition/removal of task groups */ 9698 static DEFINE_SPINLOCK(task_group_lock); 9699 9700 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9701 struct task_group *parent) 9702 { 9703 #ifdef CONFIG_UCLAMP_TASK_GROUP 9704 enum uclamp_id clamp_id; 9705 9706 for_each_clamp_id(clamp_id) { 9707 uclamp_se_set(&tg->uclamp_req[clamp_id], 9708 uclamp_none(clamp_id), false); 9709 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9710 } 9711 #endif 9712 } 9713 9714 static void sched_free_group(struct task_group *tg) 9715 { 9716 free_fair_sched_group(tg); 9717 free_rt_sched_group(tg); 9718 autogroup_free(tg); 9719 kmem_cache_free(task_group_cache, tg); 9720 } 9721 9722 static void sched_free_group_rcu(struct rcu_head *rcu) 9723 { 9724 sched_free_group(container_of(rcu, struct task_group, rcu)); 9725 } 9726 9727 static void sched_unregister_group(struct task_group *tg) 9728 { 9729 unregister_fair_sched_group(tg); 9730 unregister_rt_sched_group(tg); 9731 /* 9732 * We have to wait for yet another RCU grace period to expire, as 9733 * print_cfs_stats() might run concurrently. 9734 */ 9735 call_rcu(&tg->rcu, sched_free_group_rcu); 9736 } 9737 9738 /* allocate runqueue etc for a new task group */ 9739 struct task_group *sched_create_group(struct task_group *parent) 9740 { 9741 struct task_group *tg; 9742 9743 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9744 if (!tg) 9745 return ERR_PTR(-ENOMEM); 9746 9747 if (!alloc_fair_sched_group(tg, parent)) 9748 goto err; 9749 9750 if (!alloc_rt_sched_group(tg, parent)) 9751 goto err; 9752 9753 alloc_uclamp_sched_group(tg, parent); 9754 9755 return tg; 9756 9757 err: 9758 sched_free_group(tg); 9759 return ERR_PTR(-ENOMEM); 9760 } 9761 9762 void sched_online_group(struct task_group *tg, struct task_group *parent) 9763 { 9764 unsigned long flags; 9765 9766 spin_lock_irqsave(&task_group_lock, flags); 9767 list_add_rcu(&tg->list, &task_groups); 9768 9769 /* Root should already exist: */ 9770 WARN_ON(!parent); 9771 9772 tg->parent = parent; 9773 INIT_LIST_HEAD(&tg->children); 9774 list_add_rcu(&tg->siblings, &parent->children); 9775 spin_unlock_irqrestore(&task_group_lock, flags); 9776 9777 online_fair_sched_group(tg); 9778 } 9779 9780 /* rcu callback to free various structures associated with a task group */ 9781 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9782 { 9783 /* Now it should be safe to free those cfs_rqs: */ 9784 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9785 } 9786 9787 void sched_destroy_group(struct task_group *tg) 9788 { 9789 /* Wait for possible concurrent references to cfs_rqs complete: */ 9790 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9791 } 9792 9793 void sched_release_group(struct task_group *tg) 9794 { 9795 unsigned long flags; 9796 9797 /* 9798 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9799 * sched_cfs_period_timer()). 9800 * 9801 * For this to be effective, we have to wait for all pending users of 9802 * this task group to leave their RCU critical section to ensure no new 9803 * user will see our dying task group any more. Specifically ensure 9804 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9805 * 9806 * We therefore defer calling unregister_fair_sched_group() to 9807 * sched_unregister_group() which is guarantied to get called only after the 9808 * current RCU grace period has expired. 9809 */ 9810 spin_lock_irqsave(&task_group_lock, flags); 9811 list_del_rcu(&tg->list); 9812 list_del_rcu(&tg->siblings); 9813 spin_unlock_irqrestore(&task_group_lock, flags); 9814 } 9815 9816 static void sched_change_group(struct task_struct *tsk, int type) 9817 { 9818 struct task_group *tg; 9819 9820 /* 9821 * All callers are synchronized by task_rq_lock(); we do not use RCU 9822 * which is pointless here. Thus, we pass "true" to task_css_check() 9823 * to prevent lockdep warnings. 9824 */ 9825 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9826 struct task_group, css); 9827 tg = autogroup_task_group(tsk, tg); 9828 tsk->sched_task_group = tg; 9829 9830 #ifdef CONFIG_FAIR_GROUP_SCHED 9831 if (tsk->sched_class->task_change_group) 9832 tsk->sched_class->task_change_group(tsk, type); 9833 else 9834 #endif 9835 set_task_rq(tsk, task_cpu(tsk)); 9836 } 9837 9838 /* 9839 * Change task's runqueue when it moves between groups. 9840 * 9841 * The caller of this function should have put the task in its new group by 9842 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9843 * its new group. 9844 */ 9845 void sched_move_task(struct task_struct *tsk) 9846 { 9847 int queued, running, queue_flags = 9848 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9849 struct rq_flags rf; 9850 struct rq *rq; 9851 9852 rq = task_rq_lock(tsk, &rf); 9853 update_rq_clock(rq); 9854 9855 running = task_current(rq, tsk); 9856 queued = task_on_rq_queued(tsk); 9857 9858 if (queued) 9859 dequeue_task(rq, tsk, queue_flags); 9860 if (running) 9861 put_prev_task(rq, tsk); 9862 9863 sched_change_group(tsk, TASK_MOVE_GROUP); 9864 9865 if (queued) 9866 enqueue_task(rq, tsk, queue_flags); 9867 if (running) { 9868 set_next_task(rq, tsk); 9869 /* 9870 * After changing group, the running task may have joined a 9871 * throttled one but it's still the running task. Trigger a 9872 * resched to make sure that task can still run. 9873 */ 9874 resched_curr(rq); 9875 } 9876 9877 task_rq_unlock(rq, tsk, &rf); 9878 } 9879 9880 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9881 { 9882 return css ? container_of(css, struct task_group, css) : NULL; 9883 } 9884 9885 static struct cgroup_subsys_state * 9886 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9887 { 9888 struct task_group *parent = css_tg(parent_css); 9889 struct task_group *tg; 9890 9891 if (!parent) { 9892 /* This is early initialization for the top cgroup */ 9893 return &root_task_group.css; 9894 } 9895 9896 tg = sched_create_group(parent); 9897 if (IS_ERR(tg)) 9898 return ERR_PTR(-ENOMEM); 9899 9900 return &tg->css; 9901 } 9902 9903 /* Expose task group only after completing cgroup initialization */ 9904 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9905 { 9906 struct task_group *tg = css_tg(css); 9907 struct task_group *parent = css_tg(css->parent); 9908 9909 if (parent) 9910 sched_online_group(tg, parent); 9911 9912 #ifdef CONFIG_UCLAMP_TASK_GROUP 9913 /* Propagate the effective uclamp value for the new group */ 9914 mutex_lock(&uclamp_mutex); 9915 rcu_read_lock(); 9916 cpu_util_update_eff(css); 9917 rcu_read_unlock(); 9918 mutex_unlock(&uclamp_mutex); 9919 #endif 9920 9921 return 0; 9922 } 9923 9924 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9925 { 9926 struct task_group *tg = css_tg(css); 9927 9928 sched_release_group(tg); 9929 } 9930 9931 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9932 { 9933 struct task_group *tg = css_tg(css); 9934 9935 /* 9936 * Relies on the RCU grace period between css_released() and this. 9937 */ 9938 sched_unregister_group(tg); 9939 } 9940 9941 /* 9942 * This is called before wake_up_new_task(), therefore we really only 9943 * have to set its group bits, all the other stuff does not apply. 9944 */ 9945 static void cpu_cgroup_fork(struct task_struct *task) 9946 { 9947 struct rq_flags rf; 9948 struct rq *rq; 9949 9950 rq = task_rq_lock(task, &rf); 9951 9952 update_rq_clock(rq); 9953 sched_change_group(task, TASK_SET_GROUP); 9954 9955 task_rq_unlock(rq, task, &rf); 9956 } 9957 9958 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9959 { 9960 struct task_struct *task; 9961 struct cgroup_subsys_state *css; 9962 int ret = 0; 9963 9964 cgroup_taskset_for_each(task, css, tset) { 9965 #ifdef CONFIG_RT_GROUP_SCHED 9966 if (!sched_rt_can_attach(css_tg(css), task)) 9967 return -EINVAL; 9968 #endif 9969 /* 9970 * Serialize against wake_up_new_task() such that if it's 9971 * running, we're sure to observe its full state. 9972 */ 9973 raw_spin_lock_irq(&task->pi_lock); 9974 /* 9975 * Avoid calling sched_move_task() before wake_up_new_task() 9976 * has happened. This would lead to problems with PELT, due to 9977 * move wanting to detach+attach while we're not attached yet. 9978 */ 9979 if (READ_ONCE(task->__state) == TASK_NEW) 9980 ret = -EINVAL; 9981 raw_spin_unlock_irq(&task->pi_lock); 9982 9983 if (ret) 9984 break; 9985 } 9986 return ret; 9987 } 9988 9989 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9990 { 9991 struct task_struct *task; 9992 struct cgroup_subsys_state *css; 9993 9994 cgroup_taskset_for_each(task, css, tset) 9995 sched_move_task(task); 9996 } 9997 9998 #ifdef CONFIG_UCLAMP_TASK_GROUP 9999 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10000 { 10001 struct cgroup_subsys_state *top_css = css; 10002 struct uclamp_se *uc_parent = NULL; 10003 struct uclamp_se *uc_se = NULL; 10004 unsigned int eff[UCLAMP_CNT]; 10005 enum uclamp_id clamp_id; 10006 unsigned int clamps; 10007 10008 lockdep_assert_held(&uclamp_mutex); 10009 SCHED_WARN_ON(!rcu_read_lock_held()); 10010 10011 css_for_each_descendant_pre(css, top_css) { 10012 uc_parent = css_tg(css)->parent 10013 ? css_tg(css)->parent->uclamp : NULL; 10014 10015 for_each_clamp_id(clamp_id) { 10016 /* Assume effective clamps matches requested clamps */ 10017 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10018 /* Cap effective clamps with parent's effective clamps */ 10019 if (uc_parent && 10020 eff[clamp_id] > uc_parent[clamp_id].value) { 10021 eff[clamp_id] = uc_parent[clamp_id].value; 10022 } 10023 } 10024 /* Ensure protection is always capped by limit */ 10025 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10026 10027 /* Propagate most restrictive effective clamps */ 10028 clamps = 0x0; 10029 uc_se = css_tg(css)->uclamp; 10030 for_each_clamp_id(clamp_id) { 10031 if (eff[clamp_id] == uc_se[clamp_id].value) 10032 continue; 10033 uc_se[clamp_id].value = eff[clamp_id]; 10034 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10035 clamps |= (0x1 << clamp_id); 10036 } 10037 if (!clamps) { 10038 css = css_rightmost_descendant(css); 10039 continue; 10040 } 10041 10042 /* Immediately update descendants RUNNABLE tasks */ 10043 uclamp_update_active_tasks(css); 10044 } 10045 } 10046 10047 /* 10048 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10049 * C expression. Since there is no way to convert a macro argument (N) into a 10050 * character constant, use two levels of macros. 10051 */ 10052 #define _POW10(exp) ((unsigned int)1e##exp) 10053 #define POW10(exp) _POW10(exp) 10054 10055 struct uclamp_request { 10056 #define UCLAMP_PERCENT_SHIFT 2 10057 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10058 s64 percent; 10059 u64 util; 10060 int ret; 10061 }; 10062 10063 static inline struct uclamp_request 10064 capacity_from_percent(char *buf) 10065 { 10066 struct uclamp_request req = { 10067 .percent = UCLAMP_PERCENT_SCALE, 10068 .util = SCHED_CAPACITY_SCALE, 10069 .ret = 0, 10070 }; 10071 10072 buf = strim(buf); 10073 if (strcmp(buf, "max")) { 10074 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10075 &req.percent); 10076 if (req.ret) 10077 return req; 10078 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10079 req.ret = -ERANGE; 10080 return req; 10081 } 10082 10083 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10084 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10085 } 10086 10087 return req; 10088 } 10089 10090 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10091 size_t nbytes, loff_t off, 10092 enum uclamp_id clamp_id) 10093 { 10094 struct uclamp_request req; 10095 struct task_group *tg; 10096 10097 req = capacity_from_percent(buf); 10098 if (req.ret) 10099 return req.ret; 10100 10101 static_branch_enable(&sched_uclamp_used); 10102 10103 mutex_lock(&uclamp_mutex); 10104 rcu_read_lock(); 10105 10106 tg = css_tg(of_css(of)); 10107 if (tg->uclamp_req[clamp_id].value != req.util) 10108 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10109 10110 /* 10111 * Because of not recoverable conversion rounding we keep track of the 10112 * exact requested value 10113 */ 10114 tg->uclamp_pct[clamp_id] = req.percent; 10115 10116 /* Update effective clamps to track the most restrictive value */ 10117 cpu_util_update_eff(of_css(of)); 10118 10119 rcu_read_unlock(); 10120 mutex_unlock(&uclamp_mutex); 10121 10122 return nbytes; 10123 } 10124 10125 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10126 char *buf, size_t nbytes, 10127 loff_t off) 10128 { 10129 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10130 } 10131 10132 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10133 char *buf, size_t nbytes, 10134 loff_t off) 10135 { 10136 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10137 } 10138 10139 static inline void cpu_uclamp_print(struct seq_file *sf, 10140 enum uclamp_id clamp_id) 10141 { 10142 struct task_group *tg; 10143 u64 util_clamp; 10144 u64 percent; 10145 u32 rem; 10146 10147 rcu_read_lock(); 10148 tg = css_tg(seq_css(sf)); 10149 util_clamp = tg->uclamp_req[clamp_id].value; 10150 rcu_read_unlock(); 10151 10152 if (util_clamp == SCHED_CAPACITY_SCALE) { 10153 seq_puts(sf, "max\n"); 10154 return; 10155 } 10156 10157 percent = tg->uclamp_pct[clamp_id]; 10158 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10159 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10160 } 10161 10162 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10163 { 10164 cpu_uclamp_print(sf, UCLAMP_MIN); 10165 return 0; 10166 } 10167 10168 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10169 { 10170 cpu_uclamp_print(sf, UCLAMP_MAX); 10171 return 0; 10172 } 10173 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10174 10175 #ifdef CONFIG_FAIR_GROUP_SCHED 10176 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10177 struct cftype *cftype, u64 shareval) 10178 { 10179 if (shareval > scale_load_down(ULONG_MAX)) 10180 shareval = MAX_SHARES; 10181 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10182 } 10183 10184 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10185 struct cftype *cft) 10186 { 10187 struct task_group *tg = css_tg(css); 10188 10189 return (u64) scale_load_down(tg->shares); 10190 } 10191 10192 #ifdef CONFIG_CFS_BANDWIDTH 10193 static DEFINE_MUTEX(cfs_constraints_mutex); 10194 10195 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10196 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10197 /* More than 203 days if BW_SHIFT equals 20. */ 10198 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10199 10200 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10201 10202 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10203 u64 burst) 10204 { 10205 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10206 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10207 10208 if (tg == &root_task_group) 10209 return -EINVAL; 10210 10211 /* 10212 * Ensure we have at some amount of bandwidth every period. This is 10213 * to prevent reaching a state of large arrears when throttled via 10214 * entity_tick() resulting in prolonged exit starvation. 10215 */ 10216 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10217 return -EINVAL; 10218 10219 /* 10220 * Likewise, bound things on the other side by preventing insane quota 10221 * periods. This also allows us to normalize in computing quota 10222 * feasibility. 10223 */ 10224 if (period > max_cfs_quota_period) 10225 return -EINVAL; 10226 10227 /* 10228 * Bound quota to defend quota against overflow during bandwidth shift. 10229 */ 10230 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10231 return -EINVAL; 10232 10233 if (quota != RUNTIME_INF && (burst > quota || 10234 burst + quota > max_cfs_runtime)) 10235 return -EINVAL; 10236 10237 /* 10238 * Prevent race between setting of cfs_rq->runtime_enabled and 10239 * unthrottle_offline_cfs_rqs(). 10240 */ 10241 cpus_read_lock(); 10242 mutex_lock(&cfs_constraints_mutex); 10243 ret = __cfs_schedulable(tg, period, quota); 10244 if (ret) 10245 goto out_unlock; 10246 10247 runtime_enabled = quota != RUNTIME_INF; 10248 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10249 /* 10250 * If we need to toggle cfs_bandwidth_used, off->on must occur 10251 * before making related changes, and on->off must occur afterwards 10252 */ 10253 if (runtime_enabled && !runtime_was_enabled) 10254 cfs_bandwidth_usage_inc(); 10255 raw_spin_lock_irq(&cfs_b->lock); 10256 cfs_b->period = ns_to_ktime(period); 10257 cfs_b->quota = quota; 10258 cfs_b->burst = burst; 10259 10260 __refill_cfs_bandwidth_runtime(cfs_b); 10261 10262 /* Restart the period timer (if active) to handle new period expiry: */ 10263 if (runtime_enabled) 10264 start_cfs_bandwidth(cfs_b); 10265 10266 raw_spin_unlock_irq(&cfs_b->lock); 10267 10268 for_each_online_cpu(i) { 10269 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10270 struct rq *rq = cfs_rq->rq; 10271 struct rq_flags rf; 10272 10273 rq_lock_irq(rq, &rf); 10274 cfs_rq->runtime_enabled = runtime_enabled; 10275 cfs_rq->runtime_remaining = 0; 10276 10277 if (cfs_rq->throttled) 10278 unthrottle_cfs_rq(cfs_rq); 10279 rq_unlock_irq(rq, &rf); 10280 } 10281 if (runtime_was_enabled && !runtime_enabled) 10282 cfs_bandwidth_usage_dec(); 10283 out_unlock: 10284 mutex_unlock(&cfs_constraints_mutex); 10285 cpus_read_unlock(); 10286 10287 return ret; 10288 } 10289 10290 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10291 { 10292 u64 quota, period, burst; 10293 10294 period = ktime_to_ns(tg->cfs_bandwidth.period); 10295 burst = tg->cfs_bandwidth.burst; 10296 if (cfs_quota_us < 0) 10297 quota = RUNTIME_INF; 10298 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10299 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10300 else 10301 return -EINVAL; 10302 10303 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10304 } 10305 10306 static long tg_get_cfs_quota(struct task_group *tg) 10307 { 10308 u64 quota_us; 10309 10310 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10311 return -1; 10312 10313 quota_us = tg->cfs_bandwidth.quota; 10314 do_div(quota_us, NSEC_PER_USEC); 10315 10316 return quota_us; 10317 } 10318 10319 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10320 { 10321 u64 quota, period, burst; 10322 10323 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10324 return -EINVAL; 10325 10326 period = (u64)cfs_period_us * NSEC_PER_USEC; 10327 quota = tg->cfs_bandwidth.quota; 10328 burst = tg->cfs_bandwidth.burst; 10329 10330 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10331 } 10332 10333 static long tg_get_cfs_period(struct task_group *tg) 10334 { 10335 u64 cfs_period_us; 10336 10337 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10338 do_div(cfs_period_us, NSEC_PER_USEC); 10339 10340 return cfs_period_us; 10341 } 10342 10343 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10344 { 10345 u64 quota, period, burst; 10346 10347 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10348 return -EINVAL; 10349 10350 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10351 period = ktime_to_ns(tg->cfs_bandwidth.period); 10352 quota = tg->cfs_bandwidth.quota; 10353 10354 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10355 } 10356 10357 static long tg_get_cfs_burst(struct task_group *tg) 10358 { 10359 u64 burst_us; 10360 10361 burst_us = tg->cfs_bandwidth.burst; 10362 do_div(burst_us, NSEC_PER_USEC); 10363 10364 return burst_us; 10365 } 10366 10367 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10368 struct cftype *cft) 10369 { 10370 return tg_get_cfs_quota(css_tg(css)); 10371 } 10372 10373 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10374 struct cftype *cftype, s64 cfs_quota_us) 10375 { 10376 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10377 } 10378 10379 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10380 struct cftype *cft) 10381 { 10382 return tg_get_cfs_period(css_tg(css)); 10383 } 10384 10385 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10386 struct cftype *cftype, u64 cfs_period_us) 10387 { 10388 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10389 } 10390 10391 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10392 struct cftype *cft) 10393 { 10394 return tg_get_cfs_burst(css_tg(css)); 10395 } 10396 10397 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10398 struct cftype *cftype, u64 cfs_burst_us) 10399 { 10400 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10401 } 10402 10403 struct cfs_schedulable_data { 10404 struct task_group *tg; 10405 u64 period, quota; 10406 }; 10407 10408 /* 10409 * normalize group quota/period to be quota/max_period 10410 * note: units are usecs 10411 */ 10412 static u64 normalize_cfs_quota(struct task_group *tg, 10413 struct cfs_schedulable_data *d) 10414 { 10415 u64 quota, period; 10416 10417 if (tg == d->tg) { 10418 period = d->period; 10419 quota = d->quota; 10420 } else { 10421 period = tg_get_cfs_period(tg); 10422 quota = tg_get_cfs_quota(tg); 10423 } 10424 10425 /* note: these should typically be equivalent */ 10426 if (quota == RUNTIME_INF || quota == -1) 10427 return RUNTIME_INF; 10428 10429 return to_ratio(period, quota); 10430 } 10431 10432 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10433 { 10434 struct cfs_schedulable_data *d = data; 10435 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10436 s64 quota = 0, parent_quota = -1; 10437 10438 if (!tg->parent) { 10439 quota = RUNTIME_INF; 10440 } else { 10441 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10442 10443 quota = normalize_cfs_quota(tg, d); 10444 parent_quota = parent_b->hierarchical_quota; 10445 10446 /* 10447 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10448 * always take the min. On cgroup1, only inherit when no 10449 * limit is set: 10450 */ 10451 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10452 quota = min(quota, parent_quota); 10453 } else { 10454 if (quota == RUNTIME_INF) 10455 quota = parent_quota; 10456 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10457 return -EINVAL; 10458 } 10459 } 10460 cfs_b->hierarchical_quota = quota; 10461 10462 return 0; 10463 } 10464 10465 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10466 { 10467 int ret; 10468 struct cfs_schedulable_data data = { 10469 .tg = tg, 10470 .period = period, 10471 .quota = quota, 10472 }; 10473 10474 if (quota != RUNTIME_INF) { 10475 do_div(data.period, NSEC_PER_USEC); 10476 do_div(data.quota, NSEC_PER_USEC); 10477 } 10478 10479 rcu_read_lock(); 10480 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10481 rcu_read_unlock(); 10482 10483 return ret; 10484 } 10485 10486 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10487 { 10488 struct task_group *tg = css_tg(seq_css(sf)); 10489 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10490 10491 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10492 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10493 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10494 10495 if (schedstat_enabled() && tg != &root_task_group) { 10496 struct sched_statistics *stats; 10497 u64 ws = 0; 10498 int i; 10499 10500 for_each_possible_cpu(i) { 10501 stats = __schedstats_from_se(tg->se[i]); 10502 ws += schedstat_val(stats->wait_sum); 10503 } 10504 10505 seq_printf(sf, "wait_sum %llu\n", ws); 10506 } 10507 10508 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10509 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10510 10511 return 0; 10512 } 10513 #endif /* CONFIG_CFS_BANDWIDTH */ 10514 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10515 10516 #ifdef CONFIG_RT_GROUP_SCHED 10517 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10518 struct cftype *cft, s64 val) 10519 { 10520 return sched_group_set_rt_runtime(css_tg(css), val); 10521 } 10522 10523 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10524 struct cftype *cft) 10525 { 10526 return sched_group_rt_runtime(css_tg(css)); 10527 } 10528 10529 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10530 struct cftype *cftype, u64 rt_period_us) 10531 { 10532 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10533 } 10534 10535 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10536 struct cftype *cft) 10537 { 10538 return sched_group_rt_period(css_tg(css)); 10539 } 10540 #endif /* CONFIG_RT_GROUP_SCHED */ 10541 10542 #ifdef CONFIG_FAIR_GROUP_SCHED 10543 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10544 struct cftype *cft) 10545 { 10546 return css_tg(css)->idle; 10547 } 10548 10549 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10550 struct cftype *cft, s64 idle) 10551 { 10552 return sched_group_set_idle(css_tg(css), idle); 10553 } 10554 #endif 10555 10556 static struct cftype cpu_legacy_files[] = { 10557 #ifdef CONFIG_FAIR_GROUP_SCHED 10558 { 10559 .name = "shares", 10560 .read_u64 = cpu_shares_read_u64, 10561 .write_u64 = cpu_shares_write_u64, 10562 }, 10563 { 10564 .name = "idle", 10565 .read_s64 = cpu_idle_read_s64, 10566 .write_s64 = cpu_idle_write_s64, 10567 }, 10568 #endif 10569 #ifdef CONFIG_CFS_BANDWIDTH 10570 { 10571 .name = "cfs_quota_us", 10572 .read_s64 = cpu_cfs_quota_read_s64, 10573 .write_s64 = cpu_cfs_quota_write_s64, 10574 }, 10575 { 10576 .name = "cfs_period_us", 10577 .read_u64 = cpu_cfs_period_read_u64, 10578 .write_u64 = cpu_cfs_period_write_u64, 10579 }, 10580 { 10581 .name = "cfs_burst_us", 10582 .read_u64 = cpu_cfs_burst_read_u64, 10583 .write_u64 = cpu_cfs_burst_write_u64, 10584 }, 10585 { 10586 .name = "stat", 10587 .seq_show = cpu_cfs_stat_show, 10588 }, 10589 #endif 10590 #ifdef CONFIG_RT_GROUP_SCHED 10591 { 10592 .name = "rt_runtime_us", 10593 .read_s64 = cpu_rt_runtime_read, 10594 .write_s64 = cpu_rt_runtime_write, 10595 }, 10596 { 10597 .name = "rt_period_us", 10598 .read_u64 = cpu_rt_period_read_uint, 10599 .write_u64 = cpu_rt_period_write_uint, 10600 }, 10601 #endif 10602 #ifdef CONFIG_UCLAMP_TASK_GROUP 10603 { 10604 .name = "uclamp.min", 10605 .flags = CFTYPE_NOT_ON_ROOT, 10606 .seq_show = cpu_uclamp_min_show, 10607 .write = cpu_uclamp_min_write, 10608 }, 10609 { 10610 .name = "uclamp.max", 10611 .flags = CFTYPE_NOT_ON_ROOT, 10612 .seq_show = cpu_uclamp_max_show, 10613 .write = cpu_uclamp_max_write, 10614 }, 10615 #endif 10616 { } /* Terminate */ 10617 }; 10618 10619 static int cpu_extra_stat_show(struct seq_file *sf, 10620 struct cgroup_subsys_state *css) 10621 { 10622 #ifdef CONFIG_CFS_BANDWIDTH 10623 { 10624 struct task_group *tg = css_tg(css); 10625 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10626 u64 throttled_usec, burst_usec; 10627 10628 throttled_usec = cfs_b->throttled_time; 10629 do_div(throttled_usec, NSEC_PER_USEC); 10630 burst_usec = cfs_b->burst_time; 10631 do_div(burst_usec, NSEC_PER_USEC); 10632 10633 seq_printf(sf, "nr_periods %d\n" 10634 "nr_throttled %d\n" 10635 "throttled_usec %llu\n" 10636 "nr_bursts %d\n" 10637 "burst_usec %llu\n", 10638 cfs_b->nr_periods, cfs_b->nr_throttled, 10639 throttled_usec, cfs_b->nr_burst, burst_usec); 10640 } 10641 #endif 10642 return 0; 10643 } 10644 10645 #ifdef CONFIG_FAIR_GROUP_SCHED 10646 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10647 struct cftype *cft) 10648 { 10649 struct task_group *tg = css_tg(css); 10650 u64 weight = scale_load_down(tg->shares); 10651 10652 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10653 } 10654 10655 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10656 struct cftype *cft, u64 weight) 10657 { 10658 /* 10659 * cgroup weight knobs should use the common MIN, DFL and MAX 10660 * values which are 1, 100 and 10000 respectively. While it loses 10661 * a bit of range on both ends, it maps pretty well onto the shares 10662 * value used by scheduler and the round-trip conversions preserve 10663 * the original value over the entire range. 10664 */ 10665 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10666 return -ERANGE; 10667 10668 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10669 10670 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10671 } 10672 10673 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10674 struct cftype *cft) 10675 { 10676 unsigned long weight = scale_load_down(css_tg(css)->shares); 10677 int last_delta = INT_MAX; 10678 int prio, delta; 10679 10680 /* find the closest nice value to the current weight */ 10681 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10682 delta = abs(sched_prio_to_weight[prio] - weight); 10683 if (delta >= last_delta) 10684 break; 10685 last_delta = delta; 10686 } 10687 10688 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10689 } 10690 10691 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10692 struct cftype *cft, s64 nice) 10693 { 10694 unsigned long weight; 10695 int idx; 10696 10697 if (nice < MIN_NICE || nice > MAX_NICE) 10698 return -ERANGE; 10699 10700 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10701 idx = array_index_nospec(idx, 40); 10702 weight = sched_prio_to_weight[idx]; 10703 10704 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10705 } 10706 #endif 10707 10708 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10709 long period, long quota) 10710 { 10711 if (quota < 0) 10712 seq_puts(sf, "max"); 10713 else 10714 seq_printf(sf, "%ld", quota); 10715 10716 seq_printf(sf, " %ld\n", period); 10717 } 10718 10719 /* caller should put the current value in *@periodp before calling */ 10720 static int __maybe_unused cpu_period_quota_parse(char *buf, 10721 u64 *periodp, u64 *quotap) 10722 { 10723 char tok[21]; /* U64_MAX */ 10724 10725 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10726 return -EINVAL; 10727 10728 *periodp *= NSEC_PER_USEC; 10729 10730 if (sscanf(tok, "%llu", quotap)) 10731 *quotap *= NSEC_PER_USEC; 10732 else if (!strcmp(tok, "max")) 10733 *quotap = RUNTIME_INF; 10734 else 10735 return -EINVAL; 10736 10737 return 0; 10738 } 10739 10740 #ifdef CONFIG_CFS_BANDWIDTH 10741 static int cpu_max_show(struct seq_file *sf, void *v) 10742 { 10743 struct task_group *tg = css_tg(seq_css(sf)); 10744 10745 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10746 return 0; 10747 } 10748 10749 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10750 char *buf, size_t nbytes, loff_t off) 10751 { 10752 struct task_group *tg = css_tg(of_css(of)); 10753 u64 period = tg_get_cfs_period(tg); 10754 u64 burst = tg_get_cfs_burst(tg); 10755 u64 quota; 10756 int ret; 10757 10758 ret = cpu_period_quota_parse(buf, &period, "a); 10759 if (!ret) 10760 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10761 return ret ?: nbytes; 10762 } 10763 #endif 10764 10765 static struct cftype cpu_files[] = { 10766 #ifdef CONFIG_FAIR_GROUP_SCHED 10767 { 10768 .name = "weight", 10769 .flags = CFTYPE_NOT_ON_ROOT, 10770 .read_u64 = cpu_weight_read_u64, 10771 .write_u64 = cpu_weight_write_u64, 10772 }, 10773 { 10774 .name = "weight.nice", 10775 .flags = CFTYPE_NOT_ON_ROOT, 10776 .read_s64 = cpu_weight_nice_read_s64, 10777 .write_s64 = cpu_weight_nice_write_s64, 10778 }, 10779 { 10780 .name = "idle", 10781 .flags = CFTYPE_NOT_ON_ROOT, 10782 .read_s64 = cpu_idle_read_s64, 10783 .write_s64 = cpu_idle_write_s64, 10784 }, 10785 #endif 10786 #ifdef CONFIG_CFS_BANDWIDTH 10787 { 10788 .name = "max", 10789 .flags = CFTYPE_NOT_ON_ROOT, 10790 .seq_show = cpu_max_show, 10791 .write = cpu_max_write, 10792 }, 10793 { 10794 .name = "max.burst", 10795 .flags = CFTYPE_NOT_ON_ROOT, 10796 .read_u64 = cpu_cfs_burst_read_u64, 10797 .write_u64 = cpu_cfs_burst_write_u64, 10798 }, 10799 #endif 10800 #ifdef CONFIG_UCLAMP_TASK_GROUP 10801 { 10802 .name = "uclamp.min", 10803 .flags = CFTYPE_NOT_ON_ROOT, 10804 .seq_show = cpu_uclamp_min_show, 10805 .write = cpu_uclamp_min_write, 10806 }, 10807 { 10808 .name = "uclamp.max", 10809 .flags = CFTYPE_NOT_ON_ROOT, 10810 .seq_show = cpu_uclamp_max_show, 10811 .write = cpu_uclamp_max_write, 10812 }, 10813 #endif 10814 { } /* terminate */ 10815 }; 10816 10817 struct cgroup_subsys cpu_cgrp_subsys = { 10818 .css_alloc = cpu_cgroup_css_alloc, 10819 .css_online = cpu_cgroup_css_online, 10820 .css_released = cpu_cgroup_css_released, 10821 .css_free = cpu_cgroup_css_free, 10822 .css_extra_stat_show = cpu_extra_stat_show, 10823 .fork = cpu_cgroup_fork, 10824 .can_attach = cpu_cgroup_can_attach, 10825 .attach = cpu_cgroup_attach, 10826 .legacy_cftypes = cpu_legacy_files, 10827 .dfl_cftypes = cpu_files, 10828 .early_init = true, 10829 .threaded = true, 10830 }; 10831 10832 #endif /* CONFIG_CGROUP_SCHED */ 10833 10834 void dump_cpu_task(int cpu) 10835 { 10836 pr_info("Task dump for CPU %d:\n", cpu); 10837 sched_show_task(cpu_curr(cpu)); 10838 } 10839 10840 /* 10841 * Nice levels are multiplicative, with a gentle 10% change for every 10842 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10843 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10844 * that remained on nice 0. 10845 * 10846 * The "10% effect" is relative and cumulative: from _any_ nice level, 10847 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10848 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10849 * If a task goes up by ~10% and another task goes down by ~10% then 10850 * the relative distance between them is ~25%.) 10851 */ 10852 const int sched_prio_to_weight[40] = { 10853 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10854 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10855 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10856 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10857 /* 0 */ 1024, 820, 655, 526, 423, 10858 /* 5 */ 335, 272, 215, 172, 137, 10859 /* 10 */ 110, 87, 70, 56, 45, 10860 /* 15 */ 36, 29, 23, 18, 15, 10861 }; 10862 10863 /* 10864 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10865 * 10866 * In cases where the weight does not change often, we can use the 10867 * precalculated inverse to speed up arithmetics by turning divisions 10868 * into multiplications: 10869 */ 10870 const u32 sched_prio_to_wmult[40] = { 10871 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10872 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10873 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10874 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10875 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10876 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10877 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10878 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10879 }; 10880 10881 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10882 { 10883 trace_sched_update_nr_running_tp(rq, count); 10884 } 10885